
ed coverage of commands and

•

DOS
POWER
TOOLS™

2nd Edition,
Revised for DOS 5. 0

DOS
POWER
TOOLS™
2nd Edition,

Revised for DOS 5.0

Techniques, Tricks,
and Utilities

Paul Somerson

BANTAM BOOKS

TORONTO• NFW YORK • I ONOON • SYONEY • Allf"KLANO

DOS Power Tools, 2nd Edition, Revised for DOS 5.0
A Bantam Book/ July 1991

All rights reserved.
Copyright © 1990 by Paul Somerson and Ziff Communications Company
Second Edition Revisions copyright© 1991 by Bantam Doubleday Dell

Publishing Group, Inc.
Cover design © 1991 by Bantam Books, Inc.

Interior design by Nancy Sugihara
Produced by Micro Text Productions, Inc.

Composed in Ventura Publisher by Context Publishing Services

This book may not be reproduced in whole or in part, by mimeograph or any
other means, without permission. For information address: Bantam Books.

Throughout this book, tradenames and trademarks of some
companies and products have been used, and no such uses

are intended to convey endorsement of or other affiliations with the book.

Bantam Books ("Bantam ") warrants that the physical diskettes are free from defects in
materials and workmanship for a period of 90 days from the date of purchase. If Bantam
receives notification within the warranty period of defects in material or workmanship,

Bantam will replace the defective diskette(s). The remedy for the breach of this warranty will
be limited to replacement and will not encompass any other damages, including but not

limited to loss of profit, and special, incidental, consequential or other claims.

BANTAM AND THE AUTHORS SPECIFICALLY DISCLAIM ALL OTHER WARRANTIES,
EXPRESS OR IMPLIED, INCLUDING BUT NOT UM/TED TO IMPLIED WARRANTIES

OF MERCHANTABIU1Y AND FITNESS FORA PARTICULAR PURPOSE WITH
RESPECT TO THE DISKE1TES, THE PROGRAMS THEREIN CONTAINED, THE

PROGRAM USTINGS IN THE BOOK, AND/OR THE TECHNIQUES DESCRIBED IN THE
BOOK, AND IN NO EVENT SHALL BANTAM OR THE AUTHORS BE LIABLE FOR ANY
LOSS OF PROFIT OR ANY OTHER COMMERCIAL DAMAGE, INCLUDING BUT NOT

LIMITED TO SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR OTHER DAMAGES.

ISBN 0-553-35464-7

Published simultaneously in the United States and Canada

Bantam Books are published by Bantam Books, a division of
Bantam Doubleday Dell Publishing Group, Inc. Its
trademark, consisting of the words "Bantam Books" and the
portrayal of a rooster, is Registered in U.S. Patent and
Trademark Office and in other countries. Marca Registrada,
Bantam Books, Inc., 666 Fifth Avenue, New York, New
York 10103.

PRINTED IN THE UNITED STATES OF AMERICA

0 9 8 7 6 5 4 3 2

Contents

Preface xiii

PART I

Getting Up to Speed 1

1

2

The Development of DOS 3

DOS 1.0 5
DOS 2.0 7
DOS 3.0 10
DOS4.0 16
DOS 5.0-Room to Move 17

DOS 5.0: An Overview 21

Yesterday's History: DOS 4.0 22
And Now, DOS 5.0 24

New Feature Summary 24 •A Few Pre-installation Notes 26 •A DOS
Uninstallation 28 •A Setup: The DOS 5.0 Installation Procedure 29 • Old
Bats and Con.fig Considerations 32

A Closer Look at DOS 5.0 32

Memory Management 33 • Of Modes and MEM 33 • Categories of
Random Access Memory 35

v

vi DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

3

4

Better Memory Management Tactics 37

A Pair of Memory Management Specifications 37 • A Duo of Drivers and a
DOS Command 39 • Loading Drivers and TSRs in Reserved Me">nory 40 •
A Look at Memory Savings 41

Other DOS 5.0 Features 47

Attribute Command (AITRIB) 47 • DEBUG Your Hex Math 48 •
DIRectory Command Enhancements 48 • DOSKEY 52 • DRIVPARM 52 •
EDIT 53 • EXPAND 54 • Friendlier Formatting 55 • Help Screens 59 •
MIRROR 60 • Quick! Where's the BASIC? 61 • SETVER 61 • The SHELL
Game 63 • Undeleting a Deletion 66 • Unformatting a Format 67

Beyond 5.0 74

Disk Organization, Files, Filenames

The Physical Disk 78
File Types 82

Program Files 82 • Nonprogram Files 85

Creating Filenames
Reserved Filenames
The Parts of a Filename
The PATH Command
Wildcards 103
Filename Extensions

86
88

92
95

116

Hard Disks Made Easy 119

Formatting the Hard Disk 120
Subdirectory Structure 121
Directory Limits 125
Disk Tools 125
Customizing Your Prompt 130
The CONFIG.SYS File 131
Important Files 135
The DOS RAMdisk 144

77

Protecting AUTOEXEC.BAT and CONFIG.SYS 145
Hidden Files 14 7
Subdirectory Navigation 149
Finding Files 153
Moving Files 154
Fine-Tuning Your Hard Disk System 155
Caveat Emptor 157

Contents

5 Hex Class 159

Pattern Recognition 164
Chip Logic 171
Bit Masks 173
Hex Marks the Spot 175
Multiplying and Dividing Hex Numbers 178

6 The Keys to the Kingdom 181

Typewriter Keys 182
High-Bit Characters 184
Shift and Special Purpose Keys 186
Cursor Movement and Number Pad Keys 198
Freezing the Display 204
CapsLock 205

Esc 206

Function Keys 207
New Keyboard Tricks 215
Keyboard Magic with DOS 5.0's DOSKEY 216
The CPU - The Brains of the PC 225

7 Chips and Memory 225

RAM 229
Parity Problems 232
ROM - Free Programs 234
Mapping the Meg 242
The Original Way to Expand Memory 246
Unofficial Ways to Expand Memory for DOS (Pre-5.0) 248
DOS 5.0 Memory Management 249
Expanded vs. Extended 250
Memory and the Bus 253

PART II

The DOS Tools 255

8 EDIT and EDLIN 257

How to Start EDIT 258

Starting EDIT from the DOS Prompt 258 • Starting the Editor from
DOSSHELL 259

vii

viii DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

9

Accessing EDIT's Menu Options 260

Using Dialog Boxes 262

Customizing the Editor 263

Using the Mouse Scroll Bars 264

Getting Help 265

Viewing Help Text While Editing 265 ··Printing Help Information 266

Browsing Through a Document 266

Setting Bookmarks 267

Moving the Cursor for Editing 267
Editing Text 268

Inserting Special Characters 269

Copying, Cutting, and Pasting with the Clipboard 269

Selecting Text to Copy, Cut or Delete 269 • Using the Clipboard 270

Using the Search Options 271

Using the Find Option 271 • Finding and Changing Text 272

Using the File Options 273
Printing the Document 27 4
EDLIN 274
Starting EDLIN 278
The EDLIN Commands 280

Append Lines 280 • Copy Lines 280 • Delete Lines 281 • Edit Line 283 •
End Edit 284 • Import Files 285 • Insert Lines 285 •. List Lines 287 •
Merge Files 289 • Move Lines 289 • Page 291 • Quit Edit 294 • Read In
Files 294 • Replace Text 294 • Search Text 297 • Transfer Lines 299 •
Write Lines 300

Using EDLIN 301
ECHO Version Madness 304

DEBUG 307

Addresses 309
Starting Up DEBUG 340
Naming a File for Loading or Writing 342
Displaying Memory Contents 343
Entering New Memory Contents 348
Filling a Block of Memory 353
Moving a Block of Memory 356

Searching for Characters 362
Assembling ASM Instructions 369
Unassembling Instructions 374
Displaying Register and Flag Contents
Performing Hexadecimal Arithmetic
Comparing Two Blocks of Memory
Loading Disk Information into Memory

388
396

400
402

Loading Files 403 • COM vs. EXE 407 • Loading Sectors 409

Writing Information from Memory to Disk 423
Quitting DEBUG 429
Advanced Commands 430

Contents ix

Input/Display a Single Byte from a Port 430 • Outpuf/Send a Single Byte to
a Port 430 • Execute Program in Memory (Go) 433 • Execute and Show
Registers/Flags (Trace) 434 • Execute One Instruction (Proceed) 434

Expanded Memory Magic 438

10 ANSI and Other DOS Drivers 439

DRIVER.SYS 440
RAMDRIVE.SYS 443
HIMEM.SYS 445
EMM386.EXE 445
SMARTDRV.SYS 450
DISPLAY.SYS, EGA.SYS, PRINTER.SYS, and SETVER.EXE 451
ANSI.SYS 451

Working with Color 465 • Full Screen Displays 484 • Mode-Setting
Commands 491 • Redefining Keys 492 • Macro Magic 503

PART III

Power User's Secrets 507

11 Batch Techniques 509

Easy Batch File Creation 510 • Turning ECHO Off513 • REMinding
Yourself 515 •Jumping, Skipping, Looping, and Branching 519 •
ERRORLEVEL - Best Command, Worst Name 519 • Breaking Out of a
Batch Job 534 • Putting It All Together 543

The Batch Commands 548

ECHO 549 • REM 558 • GOTO 559 • CALL 566 • FOR. .. IN ... DO 572 •
PA USE 577 • Replaceable Parameters 578 • SHIFT Parameters 584 •
Environment Variables 587 • IF 589

x DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

Batch File Applications 624

DOS Notepads 624 • A Date with DOS 626 • Free Dialer 628 • Free
Telephone Directory 630 • Daily Chores 633 • Time of the Month 638 •
Current Events 640 • Real-Time Batch File Entries 642 • More Efficient
Copies 643 • AUTOEXEC.BAT645

12 The DOS Environment 649

Setting Environment Variables 651
Expanding Environment Size 653

Altering the Environment Size 653 • Patching DOS 2.x and DOS 3.0 654

Using COMMAND to Load a Temporary Environment 655
The COMSPEC Command 656
The PA TH Command 657

Methods/or Reducing the PATH String 659 • Editing and Saving the
PATH661

The PROMPT Command 663
The SET Command 666
Using Environment Variables in Batch Files 667

13 Screens and Color 671

In the Cards 701
Storage Schemes 704
Blanking Out the Screen 710
Cursor Words 711
Clear Colors 713
Adapters 715

14 EGA, VGA, and Beyond 715

Monitors 717
VGA Internals 719
Other Features 724

Vertical Interrupt 724 • Alternate fonts 725 • Palettes 726 • VGA
Extensions 726

VESA 727
Coprocessors 732

8514/A 733 • XGA 734

DOS Commands 735

RECOVER735

Contents xi

15 Favorite Tips 735

CHKDSK 736 • COPY 738 • VERIFY 744 • DISKCOPY 746 •
ASSIGN 747 • APPEND 747 • EXE2BIN 749 • KEYBxx 749 •
GRAPHICS and GRAFTABL 752 • STACKS 753 • XCOPY 753 •
COMMAND 755 • SYS 760 • FD/SK 761 •

DOS Filters 767
Printers 786
Security 793

16 When It All Goes Wrong 799

PART IV

The Utilities DOS Forgot 809

17 Utilities 811

Summary of Programs and Credits 813

PART V

Quick Ref ere nee 967

18 The PC-DOS 5.0 Commands 969

Primary DOS 5.0 Commands 970
DOS 4.0 CONFIG.SYS Commands 1027
DOS 4.0 Batch File Commands 1035

19 EDLIN, DEBUG, and ANSI Commands 1043

EDLIN 1043
DEBUG 1044
ANSI.SYS 1045

Cursor Movers 1045 • Erasing and Screen Clearing 1047 • Color and
Attribute Setting 1048 •Mode Controls 1049 • Keyboard Controls 1050

Index 1055

Preface

Many PC users think DOS is simply the few seconds of disk grinding between the time
they hit the power switch and the time their favorite software pops onto the screen.
They've learned how to format a disk and copy a floppy but are ignorant of the genuine
magic it can perform in the right hands. Still, even experienced users often miss important
shortcuts and tricks. This book and the programs on the accompanying disk will make
mastering any DOS system a breeze.

If you've ever wondered why computers aren't easier to deal with, you 're not alone.
It's really not your fault - the standard DOS manual is a fat, inscrutable alphabetical
reference crammed with useless details on how to use Norwegian characters or hook your
computer to a nuclear reactor. It doesn't try very hard to help you. If General Patton were
alive today he'd slap it.

Worse, the DOS manual makes even the few things that you have to do every day -
like print out files - insanely complex. A typical entry on its PRINT command reads:

Format: [d:][path]PRINTUD:device]UB:buffsiz]
UU:busytick]UM:maxtick]US:timeslice]
UQ:quesiz] UC] f/T] uP] [[d: [path]
[filename][.ext] ...]

Clear? And it follows this madness with six pages of dense, oblique prose that would
make Hemingway weep. So what's a busytick? According to the manual it "specifes the
number of clock 'ticks' PRINT waits until the PRINT device is available ... If PRINT
waits longer than /U: busyticks, it gives up its time slice." Clock ticks? Print device? Time
slice?Give us all a break.

You don't really have to understand what maxticks are, or what a buffsiz is. But
knowing about these details can actually save you time and trouble. In this case, they '11
let you print one or more documents without tying up your whole system, so you can start
working on other documents right away. We'll explain every one of these PRINT terms

xiii

xiv DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

later in crisp, understandable English. And in any case we'll give you a handful of PRINT
shortcuts you can type in to start speeding up your own work, even if you don't want to
learn what it all means.

So Who's This Book For?

Glad you asked. It's for every serious user who wants to work faster, smarter, and better.
If you 're starting out, or if you want a refresher course in the fundamentals, plunge in

at the beginning. If you happen to be a black belt expert, you'll still learn plenty; just
skim over the first few chapters (we'll bet that even advanced users will find tricks they
didn't know).

But no matter where you start, you '11 soon find yourself collecting armloads of
powerful tips, shortcuts, and advanced techniques. Trust us. Hundreds of thousands of
smart readers do on a regular basis.

But a Whole Book On DOS?

This book starts with DOS. But it shows users at every level how to operate their whole
systems better. DOS affects every aspect of operation, from keyboards to screens to
printers to modems to disk drives.

You can nibble at it and pick up the few techniques you need to get a specific job done,
or devour every word and become a true PC guru. If you want the hex numbers and the
undocumented commands and the environment variables it's all here. But if all you want
to do is master the basics and make your time at the computer so efficient you won't
believe you ever did it the hard way, you can do that too.

Okay, So What Exactly Is DOS?

It's easier to start with what DOS isn't. It isn't very easy, friendly, or forgiving. Several
years ago IBM responded to such criticism by publishing a booklet with little dancing
birds in the margins. This didn't solve the problem. Users still did things the hard way,
or avoided doing anything tricky in the fear they'd damage their files (and they were
often right to worry).

Sometimes using DOS is a little like manipulating plutonium in the next room through
a thick glass window using remote- control robot hands. It's far too clumsy. And s-1-o-w.
What you really want to do is just get in there and grab what you 're working on and knead
it into shape. But the mechanisms DOS provides are cumbersome and seemingly difficult
to master.

Preface xv

Using a PC means creating, changing, displaying, printing, copying, moving, and
storing files. DOS does the really dirty work for you - interpreting and processing the
commands you type, loading programs into memory, salting away your work in a
semipermanent form that can readily be retrieved and altered, or sending data down a
cable to a printer or another computer.

DOS has a truly limited vocabulary of a few dozen commands to handle all of this.
Many of these commands are primitive, incomplete, even purposely crippled to protect
you from yourself. Some are useless. The trick is to master the important ones, super
charge the incomplete ones, learn the effective DOS shortcuts that can automate your
daily chores, and get your hands on a few necessary tools that DOS forgot. This book
shows you how, with step-by-step instructions - and provides a slate of powerful
programs to do all the hard work for you.

Keeping Current

One reason DOS is so thorny is that it has to adapt to a rapidly changing technology while
remaining compatible with the older hardware and all the original commands. Even so,
it should be a whole lot friendlier and easy to get along with. That's where we come in.

Times really have changed. The reason its creators called it DOS (short for Disk
Operating System) was that it let users work with floppy disks, which were revolutionary
two decades ago, but are commonplace to even kindergarteners now. These days optical
disks (laser-based storage systems somewhat similar to audio CDs) and even a few hard
disks can put a gigabyte - a billion characters' worth - of storage space at your
fingertips in a fraction of a second.

(Some system manufacturers are even starting to talk about terabytes - a trillion
characters' worth. Sending a terabyte of data to someone over a 1,200-baud modem
would take over two millenia, give or take a century.)

To put this in perspective, when IBM introduced its first PC in 1981 it actually stuck
a plug on the back so users could store data on cassette tape recorders - a method so
inefficient it's laughable today.

Impatient?

To be a real power user you should understand what makes your system tick, and be
familiar with its evolution and internal structure. This is especially important because
DOS comes in so many flavors, revisions, and dialects that you have to know how to
handle the important differences between versions.

If you see a term in the early chapters of this book that you don't fully grasp, don't
worry. It will all be explained in detail a little later. However, if you just can't wait to
plunge in and start boning up on specific tips, jump ahead to the following chapters.

xvi DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

How to Use This Book

The shortest distance between two points may be a straight line, but frankly, we prefer
the scenic route. It may take you just a bit longer, but it's a lot more fun. When you travel
on an expressway you often miss the sights.

This book will tum anyone into a true power user. But don't be scared by its size. You
don't have to start at page 1 and follow it all the way through to the end (although if you
do, you'll become an absolute DOS wizard). Most readers tend to jump around from
place to place, and this book is designed to accommodate them.

You can use this book and disk several different ways:

• If you 're still fairly new at this, you can learn the ropes quickly by glancing at the
Up to Speed section.

• If you need the best possible tips on a specific area such as organizing your hard
disk, harnessing the color abilities of your new monitor, automating complex file
management tasks, or taming your keyboard, jump directly to that particular
chapter.

• If you 're interested in wringing the maximum horsepower out of your system, be
sure to investigate the advanced techniques in the DOS Tools pages.

• And if you really want to stomp on your system's accelerator, step through every
last trick in the Power User Secrets section.

No matter what your level, be sure to try the programs on the accompanying disks.
They'll make it a snap to master every aspect of your system.

Warning!

As with any power tools, be extremely careful when using the programs and tips in this
book and on the disks.

Read the appropriate manual entries carefully before running any of the programs. Not
all programs will work on all systems (for instance, some are designed for EGAs, ATs,
or PS/2 systems only). And just as you wouldn't plug too many power tools into the same
outlet, if you want to load lots of different programs into memory at once, experiment
with them to see how your hardware configuration handles it before working with any
unsaved data.

The final section of this book contains two additional resources - a detailed program
manual and a series of handy DOS quick reference charts. The manual is more than just
a list of command syntaxes. It's jam-packed with tips, technical explanations, and
'ingenious customization hints. Both are extremely useful.

Preface xvii

No Os

Note that in virtually every example in the text, a 0 is the numeral zero and not a capital
o. Similarly, a 1 isaoneandnotalowercaseL. Thisbookassumesyou'reusinga version
of DOS 2.1 or later. If you 're not, go out right now and get your hands on the very latest
version available.

While virtually all the tricks included here are utterly safe, a few (like those that deal
with advanced disk modification techniques) are so powerful that you have to use extreme
caution when trying them. The text includes stem warnings about these, but be sure you
observe the following rules: read each entire section carefully before attempting the
procedures mentioned, don't try modifying any of the procedures, and if you're really
nervous, don't execute them. The book contains thousands of other equally useful but
less fearsome tips.to try.

Finally, the book makes extensive use of a technique called redirection to create and
modify files. In most cases, this involves creating a small text file that DOS redirects, or
feeds, into its DEBUG file-customization program. When creating these small text files
or scripts be sure to use a "pure-ASCII" word processor. The DOS 5.0 EDIT, or older
versions EDLIN editor will create such files, as will the ASCII/text modules of popular
word processors such as Microsoft Word, WordStar, Xy Write, or WordPerfect.

As it's used here, a pure-ASCII file is one that, with just a few exceptions, contains
nothing other than the letters, numbers, and punctuation that you can type directly from
the keyboard. Most word processors throw in other nontext characters to handle format
ting commands such as underlining or margin settings. But just about every word
processor lets you create files without these formatting characters.

You can test whether your own word processor is capable of producing such files by
using the DOS TYPE command to display them. If you create a file called TEST.FIL,
for example, just make sure you 're at the DOS A> or C> prompt and type:

TYPE TEST.FIL

If all you see is clear, unadulterated text, you're probably safe. But if you see odd
characters, or if the text jumps and beeps its way across the page, look at your word
processor's manual under "DOS files" or "Text files" or "ASCII files" and try again.

Whether you're just starting out, or you're an old hand at DOS, the tips and programs
included here will make you the master of your system rather than the other way around.
Isn't that why you started using a computer in the first place?

This second edition revised for DOS 5.0 includes all the earlier magic - and adds
critical new tips, shortcuts, and power-user techniques on DOS 5.0, using extended and
expanded memory, advanced video tricks, the shell, and much, much more. And it brings
you over 100 new utilities to handle the really tricky parts. Try it; you won't believe how
easily it will help you truly master things - or how hard it used to be before you learned
its secrets.

Special thanks to all the people who made this revised edition possible: the
authors of the the utility programs who were so generous with their creations;
John Woram, Tom Sheldon, and Bradley Dyck Kliewer, who provided the
technical depth and range for much of the new material; and the Bantam staff
and freelancers --Janice Borzendowski, Maureen Drexel, Steve Gambino, Steve
Guty, Barbara Hanson, Randall Pink, Jeff Rian, Cheryl Smith, Tom
Szalkiewicz, and Raine Young--who pulled it all together.

Kenzi Sugihara
Vice President and Publisher
Bantam Electronic Publishing

Getting Up to
Speed

The Development of
DOS

Personal computers began appearing in the mid 1970s, initially as hobbyist toys that
didn't even have keyboards or screens. The first real one, named Altair by a magazine
editor's 12-year old daughter who liked a Star Trek episode that took place in that star
system, was built around a jazzed-up calculator chip, the Intel 8080. (Today Intel supplies
the state-of-art CPUs for all of IBM's desktop computers.) Produced as a do-it-yourself
kit by a company called MITS (for Micro Instrumentation Telemetry Systems), it
originally came with 256 bytes of memory, enough to hold only three or four lines of
text. Since it lacked a keyboard, you entered information into it by flipping a series of
switches on the front panel in binary on-off sequences. Because it had no screen, you had
to decode the binary patterns of blinking lights it produced. And it didn't let you store
information permanently. Compared to that, DOS is positively telepathic.

Two teenagers, Bill Gates and Paul Allen, who had gotten their digital feet wet by
starting Traf-0-Data, a company that made Intel-based computers to measure how many
cars rolled over a rubber hose stretched across a road, happened to see a picture of the
Altair on the cover of Popular Electronics magazine, and developed a version of the
BASIC programming language for it. Gates later upgraded Altair BASIC to give it
primitive file-management disk-storage abilities, something that would come in handy
later. The pair subsequently changed the company name to Microsoft; by 1976 the
industry had progressed to the point where Gates was already railing against software
pirates (although back then users were making illegal copies of punched paper tape rather
than floppy disks). A few years later Gates became the world's youngest billionaire.

Soon after the Altair introduction, a coterie of hard-driving salespeople and "est"
devotees became the market leaders with their IMSAI 8080, another Intel-chip machine,

3

4 DOS Power Tools, 2nd Edition, Revisedfor DOS 5.0

and the first computer aimed squarely at small businesses. To let users store data
efficiently, IMS AI developed a floppy disk drive whose motors and circuits were run by
a program called CP/M (short for Control Program for Microcomputers), which it had
licensed from Intergalactic Digital Research - later shortened to Digital Research.
Digital Research's Gary Kildall had created CP/M while working for Intel, to scale down
the mainframe PL/I programming language into a version that would fit on a microcom
puter. Intel hadn't seen much value in this brand new CP/M operating system and had
given Kildall all rights to it.

The early versions of DOS owe quite a bit to CP/M. In fact, things like the COM formats
of CP/M and DOS and the basic system calls were so similar that programmers could
easily switch up from CP/M. CP/M used a command interpreter called CCP (for Console
Command Processor), and two fundamental system files called BDOS and BIOS that
handled files and I/0. This arrangement is nearly identical to the DOS COM
MAND.COM, IBMDOS.COM, and IBMBIO.COM system trio. What was especially
remarkable about CP/M was that it took up only 4K of space. DOS 1.0 doubled that, and
has been mushrooming ever since.

Chain store magnate and leathercrafter Charles Tandy tried unsuccessfully to buy
computers from IMSAI, then ended up creating his own system, the TRS-80, which
contained a competing Zilog Z-80 chip, boasted slightly more than 4,000 characters of
memory (a page or two of text), and came fully assembled rather than in kit form. To
shave a few dollars off the price he designed it to work entirely in uppercase letters.
Customers snapped them up as fast ~ Tandy could make them.

What really kicked the microcomputer business into high gear, however, were a
handful of visionary renegades from California and Florida.

In 1976 Steves Wozniak and Jobs, whose early careers included a stint peddling "black
box" devices to circumvent AT&T long distance billing computers, bought some MOS
6502 chips and built a few hundred copies of a computer that they christened the Apple
I. It too worked in uppercase characters only. Their second-generation Apple II offered
an optional floppy disk drive, and sold several orders of magnitude more. One reason for
its success was a revolutionary program called VisiCalc, which was cobbled together by
Dan Bricklin, Dan Fylstra, and Bob Frankston. Visicalc turned Wozniak and Jobs• s little
computer into a powerful financial analysis and planning machine.

But not all operating systems work on all chips. The increasingly popular CP/M ran
on chips made by Zilog and Intel but not on the Apple's MOS processor.

Microsoft's Gates and Allen moved to Seattle to write programming languages for
computers built around Intel and Zilog processor chips and running CP/M. Dismayed
that their languages wouldn't work on MOS-based Apples, they considered translating
them all to run on Apple's proprietary operating system, an arduous job. Instead, they
joined the crowd, licensed CP/M, and sold it along with an add-in board that had a Zilog
chip on it. Apple owners could stick the Microsoft board in their systems and run any
CP/M programs.

But Apple was an eight-bit machine and Gates and Allen felt Intel's new 16-bit
processors were the wave of the future. So did a local board maker named Tim Patterson
who worked for Seattle Computer Products. All earlier processor chips managed data in
eight-bit chunks. Intel's new 8088/8086 chip family doubled the processing power.

The Development of DOS 5

Patterson's board sported an 8086, and he needed a new 16-bit operating system to
take advantage of it. Digital Research had announced that it was planning to tweak CP/M
into a 16-bit CP/M-86 version, but Patterson couldn't wait. In early 1980 he started work
on one of his own design called QDOS (for Quick and Dirty Operating System) that was
to become 86-DOS (or SCP-DOS) and eventually just plain DOS. To make it relatively
easy for programmers to translate CP/M software to his system, he retained fundamental
CP/M file-management structures and mimicked the way it loaded and ran programs.
Patterson then added a device called a File Allocation Table (FAT) which Gates had used
in Altair disk BASIC , and a few other refinements.

DOS 1.0
In late 1980, IBM approached Microsoft and revealed that it was considering production
of its own eight-bit personal computer. Vast helpings of money, ego, pride, and general
corporate paranoia have tempered the details of this exchange, but the popular version is
that IBM wanted Microsoft to design a version of BASIC for its new machine that would
be delivered on a ROM chip inside the IBM chassis. Gates was happy to oblige and
wanted to do a whole raft of languages, as the story. goes, but argued that IBM should
consider a 16-bit computer instead. When IBM asked who made a 16-bit operating
system, Gates is said to have suggested that IBM contact Gary Kildall - and supposedly
even dialed the phone to Digital Research himself.

Here the tale gets very fuzzy. According to one telling of it, when IBM trooped down
to see Digital Research the next day, Kildall's wife and lawyer were hesitant to sign
IBM's strict nondisclosure agreements. Other stories had Kildall out flying his plane
while IBM executives waited impatiently for him to land. Microsoft's own publications
admit that Gates and Allen had heard rumors that Kildall was about to buy a version of
BASIC from a Microsoft competitor and give it away free with every copy of CP/M-86,
which didn't exactly endear him to them.

In any event, Gates and Allen bought the rights to Patterson• s 86-DOS for around
$50,000 and proposed to IBM that Microsoft provide BASIC, FORTRAN, Pascal,
COBOL, an 8086 Assembly language, and the 86-DOS operating system for the new
computer. IBM agreed in November 1980, and on August 12, 1981 introduced the world
to its new PC and its main operating system, Microsoft's DOS 1.0 (which IBM called
PC-DOS). At the announcement, IBM mentioned that users would someday be able to
buy two competing operating systems: CP/M-86 or the UCSD p-System. But IBM priced
these much higher than DOS, and since they were late in reaching the market and received
little support from other software vendors, they went nowhere.

Computer hardware (the chips and disk drives and other parts inside the cabinet) isn't
useful without software (the programs that put the chips through their paces). And IBM
didn't initially offer much software - Easy Writer, a bug-filled version of a mediocre
word processor; Adventure, a mainframe text game adapted for smaller computers; a DOS
version of VisiCalc; some artless business software; a few Microsoft languages; and one
or two other packages.

6 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

The most popular and powerful programs back then -dBASE II and WordStar - ran
only on CP/M systems. One of IBM's highest priorities was to make it easy for software
vendors to translate programs from CP/M to DOS, and it was smart enough to know that
making it easy meant making the two operating systems similar.

Many of the DOS features that today's users truly hate - such as overly brief
eight-character filenames with three-character extensions, terse prompts like A>, and
unfriendly or missing messages (such as stony silence in response to file deletions) were
directly swiped from CP/M. So were underlying structures such as File Control Blocks
(FCBs), Program Segment Prefixes (PSPs), and reliance on CP/M's memory loading
addresses.

DOS did change a few CP/M quirks. File lengths that were rounded off in CP/M were
reported precisely in DOS. Some commands were turned around to be more logical.
Programmers could treat input and output to peripheral devices such as printers and
screens the same way that they handled files. DOS's variable record lengths made disk
storage and retrieval far more efficient. DOS could load and run larger EXE-format files
in addition to the smaller standard CP{M-style COM-format files which were limited to
64K. And it could keep a program loaded in memory but inactive so that users could pop
it onto their screens whenever they needed it. DOS relied on a FAT, first used by Bill
Gates and Tom Patterson, to keep track of where all the various pieces of a file wpre
stored, and could read and write more than one piece of data at a time, which speeded up
disk activity significantly. ,

DOS at least theoretically made it easier for programmers to create their own versions
of the COMMAND.COM user interface, although none has ever caught on. But the ability
to run scripts of commands called batch files did become very popular. When DOS
reported inevitable errors, it did so ina slightly friendlier way than CP/M, and it handled
severe hardware errors far better. DOS also sniffed out new disks automatically while
CP/M forced users to log such changes manually, and it kept track of the date files were
created or changed.

It also split the COMMAND.COM user interface into several parts, a mixed blessing.
When the PC was new, and IBM offered it with a maximum 65,536 characters of memory
(which is usually rounded off to 64K), this feature was welcome since it let other
space-hungry software temporarily steal a few thousand characters of memory space from
DOS. When the user was finished with the software he• d have to then insert his DOS
disk in drive A: so the part of DOS that hadn't been stolen could reload the part that had.
Trouble was that a short time later users were buying systems with ten times that much
memory, and the amount of space freed up by this technique was relatively insignificant.
But floppy disk users still had to contend with keeping a DOS disk handy to reload the
"transient" stolen part.

One of the worst things about the first IBM PC and its operating system was that it
could store only 163,840 (160K) characters of data on floppy disks that were clearly
capable of squirreling away twice that much. A standard floppy disk has two usable sides,
but IBM's original drives (and DOS) took advantage of just one.

And the initial DOS release contained several nasty bugs. In mid-1982 IBM began
selling PCs with double-sided drives, and released DOS version 1.1 to handle the new

The Development of DOS 7

storage abilities and fix several of the early bugs. Microsoft then released its own similar
generic DOS upgrade, which it called MS-DOS 1.25.

The initial release of DOS was tiny and relatively crude. Version 1.0 TIME and DATE
commands were separate short programs rather than part of the main COMMAND.COM
user interface. While the DOS 1.0 directory listing noted the date a file was created or
changed, it ignored the time. The MODE command couldn't set communications speeds
or protocols, or let the PC's parallel printer adapter work with the many serial printers
on the market. You weren't able to have the COPY command join (or concatenate)
smaller files into larger ones. The onscreen prompts and messages were especially ugly
and cryptic.

DOS 1.1 fixed all these problems, or at least made them less irritating. The biggest
problem of all was that DOS was still constrained by its CP/M heritage and its clanky
internal structure. And although IBM doubled the amount of disk storage space from
163,840 (160K) characters to 327,680 (320K), users found this was far from enough.
They demanded disks that were faster and more efficient.

DOS 2.0
In March 1983, IBM announced its PC-XT, a beefed up version of the standard PC that
came with three additional internal expansion slots (for a total of eight), a ten-megabyte
hard disk, a heftier power supply, and a new version of DOS - 2.0.

The new hard disk (which IBM referred to as a fixed disk) could hold the equivalent
of more than 31 double-sided floppies. But all that storage space introduced a new
problem. DOS 1.0,and 1.1 had crammed all the file information for each floppy disk into
a single directory. A single-sided floppy directory had room for a maximum of 64 entries,
and you could fit only 112 on a double-sided diskette.

Keeping track of all the files on a hard disk meant coming up with a new DOS file
management and directory system. CP/M had dealt with large disks by splitting (or
partitioning) them evenly into smaller ones, an inelegant and inefficient solution. But
UNIX, an operating system developed by the phone company, could handle vast volumes
of files with relative style and ease. Microsoft had licensed UNIX, and was offering a
version of it called XENIX. At the heart of UNIX/XENIX was a hierarchical or
tree-.structured directory system that gave users lots of flexibility in dividing up the
available storage space.

Microsoft adapted this tree-structured system as the core of a significantly new
incarnation of DOS - version 2.0. But it blundered slightly. UNIX used a slash (/) to
identify the hierarchical subdirectory levels that acted as branches on the tree structure.
But earlier DOS versions used such slashes as switches, command suffixes (such as the
/S in FORMAT /S) that turned certain optional features on and off. Microsoft substituted
a backslash (\) to identify subdirectory levels, which ended up confusing a whole
generation of DOS and UNIX users, and caused much consternation abroad where
foreign keyboards often didn't come with backslash characters.

8 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

IBM and Microsoft also had to find a way to deal with an explosion in the number and
type of devices that manufacturers were stamping out for the PC. One of DOS's m~in
roles was to manage the communication between the PC and anything you could hook
up to it. If DOS had to contain explicit internal tables and instructions for every possible
external device it would end up being absurdly large and cumbersome.

Microsoft designed a new version of DOS with hooks in it so that manufacturers of
peripheral equipment could supply installable device driver programs to hook the new
hardware effortlessly into the operating system. Users could load these specific additional
sets of instructions into DOS as needed, through a special CONFIG.SYS file. This file
also let users customize the configuration of their systems by telling DOS such things as
how much memory it should devote to disk buffers (areas of memory that hold disk data
for speedy access), how many files could be opened simultaneously, and how frequently
DOS should check to see whether a user might be hitting the Ctrl-Break panic button. It
also made it easy for users to load a replacement command processor if they weren't
planning on using the standard COMMAND.COM, or tell DOS if they were storing
COMMAND.COM in an unusual place. And it gave users extended screen and keyboard
control with ANSI.SYS, a special device driver supplied by Microsoft in an unsuccessful
attempt to standardize certain parts of the user interface across different computer
systems.

Version 2.0 introduced several commands most users can't live without. It's hard to
believe, but versions 1.0 and 1.1 didn't offer any way to clear the screen. CLS now does
it, although unless you 're one of the few users taking advantage of ANSI, it will reset
your screen colors to drab grey on black. This version was the first to offer batch file
commands such as ECHO, IF, FOR, SHIFf, and GOTO. If you haven't yet mastered
these, you 'II be amazed at how they can help automate drudgework. We 'II show you how
(and point out tricks for retaining colors when you clear your screen) a bit later.

DOS 2.0 also introduced a raft of commands and utilities to give users control of hard
disks, although some, like the pathetic TREE command - designed to ''display the entire
directory structure" - were a bad joke. DOS 4.0 finally fixed this.

Perhaps to compensate, IBM threw in a gem that has become a power user's best friend
- the mini-assembler in DEBUG. You can,become an absolute computer whiz without
ever having to learn a single thing about hex codes or assembly language. But if you want
to climb inside your system and stomp on the gas pedal, there's no better way. It's a lot
easier than you think.

One of the most significant changes in DOS 2.0 was the way it dealt with files
internally. To remain compatible with CP/M, DOS versions 1.0 and 1.1 kept track of
critical file information with a device called a File Control Block (FCB). But as programs
became more sophisticated they were forced to manipulate the data stored in FCBs
directly, which was awkward and potentially dangerous. And FCBs had no provisions
for subdirectory names.

DOS 2.0 introduced.file handles as an optional way to streamline disk management.
Once DOS knew about a particular file in a particular subdirectory, it could act on that
file simply by using a two-character shorthand code called a handle. In addition, DOS
established five special handles that made it a snap to switch inputs and outputs. Normally
the keyboard and screen (which DOS collectively refers to as the console or CON) act as

The Development of DOS 9

both the input and output. But DOS 2.0 let users "redirect" input and output to or from
printers, files, or other devices. And it allowed users to pipe streams of data through filters
to do things like tum uppercase files into lowercase ones, strip out extraneous characters,
or sort records in alphabetical order.

The sample filters DOS 2.0 provided are actually pretty useful. They'll let you slog
through files and skim out the text you want saved or discarded. They'll sort your
directories (or any list of names, numbers, or items that have carriage returns at the end
of each entry) lightning fast. And they'll pause your displays for you so you'll never again
have text scroll off your screen too quickly to read.

To top it off, DOS 2.0 provided rudimentary background processing. DOS was
originally designed as a single-tasking operating system that let users do just one thing
at a time. But the designers of version 2.0 threw in a PRINT spooler command that could
print out one file while a user was actively working on another.

While spoolers are nothing new, this one was. Spoolers normally lop off a big chunk
of RAM and trick DOS into sending files to memory that were really destined for the
printer. Then they wait for a quiet moment and re-route the files onto your printed page.
When they're done printing, however, they still hold onto all the memory they hogged
- very inefficient. The DOS PRINT command reads files off your disks and uses your
precious memory much more sparingly. It watches how you work, and about 18 times
each second, if you 're not doing something at that precise moment, it sneaks a few
characters at a time to the printer. Your computer is so blazingly fast that this "time
slicing" technique makes it appear that it's doing two things at once, when what it's really
doing is alternating so quickly you don't notice it. And the best part is that if you happen
to be working on something that takes more of your computer's constant attention than
usual, you can adjust how frequently the spooler tries to intercede.

In addition, DOS increased the number of 512-byte sectors - the wedge-shaped
magnetic pie slices on a floppy disk that actually hold your data - from eight to nine.
While DOS kept the number of tracks in each sector at 40, this upped the storage capacity
of double-sided floppy disks from 320K to 360K. DOS 2.0 also let users add electronic
volume labels to their disks, gave them access to a part of memory called the environment
in which critical system settings were maintained, made memory allocation more
efficient, and threw in more than two dozen new commands.

With so many changes and new features, you'd think a brand new version of DOS such
as 2.0 would be filled with insidious bugs. And you'd ,be right. In March 1984, a year
after the PC-XT introduction, IBM released DOS version 2.1 to excise these software
errors - and to handle a hardware error it produced called the PCjr.

The less said about the PCjr the better. While it provided more colors onscreen in
graphics mode than IBM's real microcomputers, and came with three-voice sound that
could play chords, it was utterly nonstandard inside and out. In fact, it used such a cheap,
flimsy disk drive that DOS 2.1 actually had to slow down the drive performance so the
thing wouldn't crash.

What's especially sad about this is that lots of users still rely on DOS 2.1, which means
they have to put up with unacceptably slow drive access times even though they're using
machines that could handle much higher speeds. A pity. And one of many good reasons
to upgrade to a more recent DOS edition.

10 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

Microsoft ended up producing versions '2.05, 2.11, 2.2, and 2.25 with an added
modicum of international time, date, keyboard, and currency support. These may come
in handy if you need to work with Korean Hangeul or Japanese Kanji characters; today
Microsoft sells DOS in more than 60 assorted languages.

DOS 3.0
IBM's PC and PC-XT brought microcomputing into the mainstream of American
business. But these machines were both relatively slow and small. In fact, they weren't
really even true 16-bit computers. While a 16-bit Intel 8088 central processing unit (CPU)
ticked away inside each one, their system bus - the connecting pathway of wires that
ties the CPU to all the other parts of the system - was a bottleneck that worked in eight-bit
chunks only.

IBM introduced its first genuine 16-bit system, the PC-AT. Compared to IBM's earlier
releases, this was a rocket ship of a computer. Inside was an 80286 CPU with a trick up
its sleeve - it could run everything IBM and Microsoft threw at it and could also
accommodate Microsoft's next-generation OS/2 operating system. Arid it needed a new
version of DOS - 3.0.

Engineers measure computer performance in many ways. Two prime indicators are
the clock speed of the CPU and the average access time of the hard disk. The faster the
clock, the faster a computer processes instructions and the faster just about everything
runs. The speedier the hard disk average access time, the speedier it can read and write
programs and data. The higher the clock speed and the lower the average access time,
the nimbler the system.

Both the PC and the PC-XTran at 4.77 megahertz (MHz). IBM sold many different
brands of hard disks for the XT, and the average access time was somewhere between 80
and 115 milliseconds.

The official clock speed of IBM's first AT was 6 MHz, but users quickly found out
that by replacing a socketed $4 quartz crystal on the main system board they could boost
performance to 8 or even 9 MHz without any ill effects. (IBM is famous for publishing
ultraconservative specifications and holding down performance a bit on purpose.) When
IBM discovered that users were hot-rodding their systems, they wrote a program that
acted as a speed governor and put it onto a system ROM chip to prevent tampering.

All of IBM's AT hard disks ran at speeds of 40 milliseconds or better. Unfortunately,
the first big batch of PC-ATs came with CMI-brand drives that crashed in shockingly
high numbers. Hard disks - rapidly spinning precision-crafted aluminum platters with
magnetic coatings on both sides - need precise feedback on where their magnetic
read/write heads are located. If the location mechanism is off by even a tiny bit the heads
can write bad data over good or wipe out important tables that tell the computer where
files are stored.

Hard disk heads actually "fly" on a cushion of air directly above the surface of the
platters themselves. All decent hard disks retract or park the magnetic heads when the
power goes off so they don't sink down and plow furrows into your data. To save money,
CMI disks used what many believe was an unreliable implementation of wedge servo

The Development of DOS 11

technology. Most other hard disks used a dedicated positioning surface, a whole side of
a hard disk platter that contained no user data and instead acted as a map to the platters
that did. But not CMl's AT drives. And these drives didn't park the heads when you
turned the power off. The heads just dropped down onto the data area and scraped against
it.

IBM never really admitted doing anything wrong, but tens of thousands of users know
differently. If this black episode in microcomputing history had a silver lining, it was that
it taught hard disk users how absolutely imperative it is to make frequent and comprehens
ive backup copies of their work.

In any event, a PC-AT running at 8 MHz was 67 percent speedier than a standard PC
or PC-XT. The PC-AT hard disk was twice as fast as the speediest PC-XT drive, which
made everything seem a lot more energetic, and ended up turbocharging disk-intensive
applications such as database searches. On top of all that, the PC-AT could deal with
memory in 16-bit chunks, while the PC and PC-XT had to lumber along with half that
amount. Clone makers soon began producing respectable AT imitations that chugged
along even faster. To avoid falling behind the competition too much, IBM eventually had
to nudge the performance upward slightly each time it refined the AT design.

IBM's newest PS/2 line of hardware and the many high-performance clones on the
market make even the fastest IBM PC-AT look like it's standing still. With CPU speeds
of 20 and even 24 MHz, hard disk access times in the high teens, and a 32-bit bus that
moves information nearly four times as efficiently as the one in the original PC, these
hot new microcomputers give refrigerator-sized minicomputers a run for their money.

The PC-AT was originally delivered with a 20-megabyte hard disk, although subse
quent versions have enhanced both the AT's speed and the size of its hard disk. Still,
20,480,000 characters• worth of storage meant that backing it all up would take 56
standard 360K double-density floppies. The mind reels. Apparently, so did IBM·s. It
dropped a quad-density floppy disk drive, which could hold 1.2 megabytes of data - or
the equivalent of nearly four 360K floppies - into each PC-AT. IBM refers to these.as
high-capacity drives. Unhappy users have called them something else, unprintable here.

The PC-AT's new DOS, version 3.0, could handle the increased floppy disk storage.
But it also had to understand every other floppy format. In the space of six years IBM
had introduced single-sided and double-sided drives, with eight or nine sectors, and in
double or quad density, so downward compatibility meant knowing how to deal with:

• 160K single-sided 5-1/4 inch drives
• 180K single-sided 5-1/4 inch drives
• 320K double-sided 5-1/4 inch drives
• 360K double-sided 5-1/4 inch drives
• l .2M double-sided 5-1/4 inch drives

Well, there's compatibility and there's compatibility. Out of the 25 different possible
combinations of using the DISKCOPY command to move information from one to the
other, 16 won•t work.

What's more, IBM's PS/2 hardware uses 3-1/2 inch diskettes, a whole new ball game.
These smaller diskettes are sturdier, easier to transport, and vastly more efficient at storing

12 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

Model

PC
XT
PCjr

AT
PC/2
XT/286

information. IBM characteristically complicated matters by producing two different and
slightly incompatible 3-1/2 inch formats, one that holds 720K and one capable of storing
1.4 megabytes of data. The 5-1/4 inch 320/360K floppy format won't go away very
quickly, since so many vendors have made it the standard for program distribution. But
the PC-AT's 1.2 megabyte drive and the low-end PS/2 720K diskette are orphans.

All IBM microcomputers gave users a clock and calendar that could stamp DOS
directory listings with the time and date files were created or most recently changed. But
users had to set the clock each time they started (booted up) their systems, unless they
had purchased an add-in board with a battery-driven clock on it (and most did). The
PC-AT came with its own internal battery-run clock/calendar, although it wasn't until
DOS version 3.3 that users could reset it easily.

Figure 1.1 shows the configurations of all of IBM's PCs through the PS/2 80.

ID Speed IJOBus Maximum DOS
Byte CPU (MHz) (Bits) RAM Keyboard Version

FF 8088 4.77 8 640K old 1.0
FE 8088 4.77 8 640K old 2.0
FD 8088 4.77 8 640K special 2.1
PC 80286 6/8 16 15M both 3.0
PB 8088 4.77 8 640K both
PC 80286 6 16 15M both

Convertible F9 80C88 4.77 8 640K special
* Model25 FA 8086 8 8 640K new
* Model 30 FA 8086 8 8 640K new

Model SO PC 80286 10 16 16M new 3.3+
Model60 PC 80286 10 16 16M new 3.3+
Model 70 F8 80386 16/20 32 40 new 3.3+
Model80 F8 80386 16/20 32 40 new 3.3+

* Models 25 & 30 have a 16-bit memory bus. Data on late-model machines courtesy of John Woram's PC
Configuration Handbook.

Figure 1.1. Hardware Configurations of IBM's Personal Computers

Program developers live by a rule: "The software is never finished." Each release of
DOS or any commercial application is quickly followed by a version with bug fixes,
speedups, and forgotten utilities. Market considerations force manufacturers to ship
everything at the earliest possible date. Microsoft officially admits that DOS 3.0 "wasn't
quite ready" at the introduction of the PC-AT. But it went out the door anyway.

Today, virtually every desk in America has a telephone in one corner. IBM's vision
of the future puts a computer terminal next to it, and strings all the terminals together

The Development of DOS 13

electronically. Networking computers this way does have lots of advantages. It lets users
"mail•• messages and files to each other, and share centralized data bases of information.
Someday when everyone has to send text to everyone else and when it's easier and
cheaper to consult a far wider range of databases, this will be attractive.

Networks can also let users share expensive peripherals like plotters or laser printers,
but it doesn't make much sense to install three $1,500 network hookups to share one
$1,500 printer. Today networks are interesting to a minority of users only - although
the number grows as the costs and headaches often associated with using them are
reduced. Networks introduce their own special set of problems. Two users may reach for
the same data base records at the same time, and something has to mediate the conflict.
Worse, giving users access to centralized information means someone has to decide who
has the authority to read what files and change which data. And then something has to
keep track of the authorization levels and enforce it all, and make sure the right data is
routed to the right place.

Microsoft designed DOS version 3.0 to support the official IBM PC network hardware.
Unfortunately, the AT was ready before the network features of DOS were, and the
Microsoft designers had to deactivate these features in the final product. They finally
turned them back on in version 3.1,releasedinNovember 1984. But DOS 3.1 was picky;
it would handle only certain "well-behaved" networks. ("Misbehaved" products are ones
that use undocumented commands, or bypass software safeguards by manipulating
hardware directly, or otherwise bend industry rules to enhance performance.)

DOS 3.0 introduced a streamlined method for integrating FCBs and handles. And
while it provided a small handful of new features, none was a radical departure from
DOS 2.1. In fact, IBM stated in its documentation that "DOS 3.0 does not replace DOS
2.1." But it did fix a nasty 2.1 oversight, by making it harder for users to format their
hard disks if they weren't careful. (It wasn't until version 2.0 that DOS a$ked for
confirmation if users tried to delete all the files on their disk with a single ERASE *. *
command.) Version 3.0 also let users make files read-only to prevent any inadvertent
changes or deletions.

Version 3.1 provided better aliasing features to combine drives and directories and to
trick DOS into treating a subdirectory like a disk drive. DOS 3.2 introduced users to 3-1/2
inch diskettes (although the tools it provided to handle this were dowmight awful), made
it easier for them to upgrade DOS versions, and gave them one of the best, but least-used,
new commands, XCOPY.

DOS 3.3, tossed off by IBM pitchmen at the introduction of the PS/2 as an ''interim
solution" and the operating system for a string of dogs including the PC Convertible,
Portable PC, and PCjr, deftly excised a heap of user headaches, and added a few sizzling
new tricks.

As all seasoned hard disk users are aware, working efficiently on a hard disk machine
means pigeonholing related programs and data in electronic file drawers called sub
directories. But users who are currently working in one subdirectory often want to execute
a program or look at data stored in another.

Since version 2.0, users had been able to tell the PA TH command to check specified
subdirectories for executable files (with filenames ending in COM, EXE, or BAT). This
let users run programs in other subdirectories, but it didn't let them get at distant data.

14 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

Nonexecutable files remained immune to even the most comprehensive search, forcing
power users to purchase commercial ''path extender" programs such as FilePath or File
Facility, or struggle with the DOS 3.1 SUBST command. The DOS 3.3 APPEND
command made the process relatively easy - and a lot cleaner.

Serial ports are your system's main gateway to the outside world. Version 3.3 let
MODE work with four serial ports rather than just two (OS/2 can juggle up to eight), and
cruise along at up to 19,200 baud, double the previous limit. And IBM finally recognized
·that at least twice a year users need to reset their internal IBM clocks and provided a way
to do this without having to hunt down their Diagnostics disks, figure out which option
adjusts the time, and then grind through all the irritating preliminary screens. The 3.3
TIME and DATE commands automatically adjusted IBM CMOS memory to reflect the
change.

Another improvement was the newfound ability of the DOS 3.3 A TTRIB command
to gang-process all files in a directory and its related subdirectories, which made it easier
to create backups and prevent inadvertent .file deletions or changes. Unfortunately, the
same process used by A TTRIB can also "hide" files from casual snooping, but IBM won't
show you how. (We will.)

The original DOS architects preferred working with 512-byte disk sectors, and used a
FAT to keep track of what data is in which sector. When they designed the FAT they
used 16-bit addresses, which allowed a maximum of 65,536 (64K) table entries. This
clamped a firm 32 megabyte limit (512 x 65,536 = 33,554,432 bytes) on the size of any
physical hard disk. To get around this limit, manufacturers either had to increase the
sector size, which made their hardware nonstandard and relatively wasteful, or come up
with a whole new file management scheme, which ended up being even more nonstan
dard.

IBM tuned DOS 3.3 to divide physical hard disks into smaller logical drives, and fixed
the FDISK command to create extended DOS partitions in addition to the primary ones
users were able to carve out previously. Each extended partition could be further
subdivided into logical drives 32 megabytes or smaller, with their own drive letters.
Compaq quickly made it even easier to use enormous hard disks, by introducing a DOS
version (3.31) that boasted 32-bit FAT addresses.

To expedite directory searches with the new generation of larger hard disks, DOS 3.3
provided a filename cache utility called FASTOPEN. Caches keep track of things in
memory rather than on disk, speeding up many processes significantly. FASTOPEN
notes the location of files and subdirectories (which are really just special classes of files)
the first time you hunt for them, and then directs DOS to the exact spot on the disk the
next time you have to deal with them.

The DOS BACKUP command had always been so pathetic that an entire industry of
third-party backup software has evolved to fill in the gaps. While the version 3.3
enhancements aren't going to put all those developers out of business, they will bring
some users back into the fold. Under previous DOS versions you had to format a tall stack
of disks before starting the backup process. If you ran out of formatted disks halfway
through you had to abort and either find a way to catch up, or start the whole elaborate,
time-consuming procedure over again~

The Development of DOS 15

In DOS 3.3 the BACKUP command can summon the FORMAT command and prepare
unfonnatted disks if necessary - with certain irritating restrictions. And you have to
limit the disks and drives you use; it still can't mix and match. The DOS 3.3 BACKUP
works faster and more efficiently than older versions, by copying all smaller files to a
single enonnous one, and by creating a guide file that tells DOS how to take the big file
apart and restore it properly later. It will also create a log file telling you what it did where.

The DOS 3.3 RESTORE gives you added flexibility in restoring backed-up files by
date and time, as well as those deleted or changed since you backed them up, or files that
are no longer on the target disk. Better yet, while older versions of RESTORE let you
accidently obliterate your current system files (IBMBIO.COM, IBMDOS.COM, and
COMMAND.COM or their generic counterparts) with older backed-up versions, DOS
3.3 RESTORE won't. Inadvertently mixing versions of hard disk system files is like
replacing a heart surgeon, in the middle of an operation, with a tree surgeon.

Batch files can take much of the anguish out of tricky or repetitive tasks. The first thing
most power users do when they create a batch file is turn off the display by issuing an
ECHO OFF command. This stops DOS from littering your screen with the frantic
prompts, messages, and ·other electronic graffiti a batch file triggers. But users had no
authorized way of preventing this ECHO OFF command from adding to the screen clutter
itself. Version 3.3 users can prevent such clutter simply by prefacing any command with
a@ symbol.

In addition, DOS 3.3 could CALL one batch file from another, execute it, and then
return to the original batch file and continue executing it. Doing this kind of "nesting"
under previous editions of DOS meant that each batch file had to load its own separate
version of COMMAND.COM, do its work, exit, and drop back to yet another version -
which was sort of like restarting a movie each time a latecomer walked into the theatre.
DOS 3.3 also documented environment variables for the first time, which let users pass
informatfon back and forth from application to application.

DOS 3.0 to 3.2 came in five international flavors. By executing the appropriate
KEYBxx command, users could transfonn the keyboard into British, German, French,
Italian, or Spanish modes. With version 3.3, IBM totally revamped the way DOS handled
foreign alphabets. IBM's manuals have gotten a bit better over the years, but the three
abstruse and seemingly contradictory chunks on this international support virtually defy
comprehension. IBM prefaced its long appendix-like treatment of the topic with the
caveat "You can use code page switching without fully understanding everything about
it.•• After poring over the text, you'll know why this was included. And if you live in the
United States, you'll take one look, put your hand over your heart, and say "Thank God
we 're Americans."

For the first time, DOS 3.3 set a default number of disk buffers based on your system ·s
configuration. Under previous versions, it assumed every PC and XT user really wanted
only two and every AT user only three. DOS will now sniff out what hardware you have
available, and allocate from two buffers (minimal RAM and no high density floppies,
3-1/2 inch diskettes, or hard disks) to 15 (any machine with 5l2K or more of RAM). If
you're using a big hard disk you may want more than 15. Better yet, you should try a
commercial file cache program.

16 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

DOS 4.0
Through seven years of upgrades, IBM and Microsoft still hadn't made it any easier to
learn the ropes, or do simple tasks like move groups of files from one place to another.
Beginners who thought they could just press a button or two and have their new computers
do all the work found themselves staring at a lonely DOS prompt on an otherwise blank
screen. Worse, DOS still made it too easy for even experienced users to do dangerous
things like wipe out their work by copying older versions of files onto newer ones.

Some users relished the challenge and learned to rattle off thorny strings of DOS
commands bristling with backslashes and inscrutable parameters like MAXTICK,
TIMESLICE, QUESIZ, and CODEPAGE. Many operated solely by brute force and
avoided doing anything the least bit complex. Others bought special menu-based inter
face programs called DOS shells to step them over the rough spots, or else gave up and
bought Macs.

One of the most irksome problems was that DOS couldn't really handle single hard
disks bigger than 32 megabytes. It forced users to employ silly schemes like dividing up
one large storage device into little pieces, so that a single 200 meg hard disk might end
up as drives C:, D:, E:, F:, G:, H:, and I:. While IBM had always been the first hardware
manufacturer to solve such problems, this time Compaq became frustrated with such
limitations and made a special arrangement with Microsoft to introduce a slightly
enhanced version it called 3.31. (Another irritating constraint was that DOS couldn't use
more than 640 kilobytes of RAM for most tasks.)

Then on a steamy 1988 summer afternoon in New York City (and with little fanfare)
IBM released a new incarnation of DOS called 4.0, which was quickly followed by a bug
fix called 4.01. Collectively most users referred to these new versions either as "DOS 4••
or "the big, expensive, new version of DOS that nobody uses.•• As with every other major
new version of DOS, this one increased in size, and added some powerful new utilities.
But it also came with a DOS shell cleverly named the "DOS Shen·· that promised to tame
just about every formerly nightmarish system chore. Unfortunately it didn't.

Microsoft and IBM wanted DOS to fade away so they could sell expensive new
programs like Windows and OS/2 and Presentation Manager (PM), and pricey new
hardware. Users were demanding huge machines with tons of RAM and hard disk space
and friendly features, and it was growing increasingly difficult to graft such things onto
what was essentially a tricked-up version of CP/M and Unix, with the worst drawbacks
of each.

However, by the end of the '80s, according to Microsoft chairman Bill Gates (who
licenses all copies of DOS and knows the real numbers), various hardware manufacturers
had sold an astonishing 60 million DOS systems. While vendors were hyping their hot
new 80386- and 80486-based machines, tens of millions of users owned systems that
lacked the sophisticated chips, expensive color graphics, and whopping amounts of
memory required to handle OS/2. And frankly, huge numbers of DOS users really didn't
need the fancy multitasking or data exchange abilities of OS/2.

The Development of DOS 17

What they did want was something easier, smarter, friendlier, and more powerful. DOS
4.0 was a step in the right direction, but a baby step. Microsoft finally realized that some
users wanted more power and ease but simply weren't going to need complex OS/2-like
operating systems, and it privately announced that a friendlier DOS 5 would be forth
coming.

DOS 5.0-Room to Move
After months of testing, Microsoft finally released MS-DOS 5.00 in June of 1991.
Corroborating the rumors that circulated while it was in beta, it features an organized and
sanctioned workaround to the worst aspects of the 640K barrier, allowing much of DOS
itself to reside in the area above 640K, and providing support for loading device drivers
and TSR programs in this memory space. On a typical 386-or-better system with more
than 640K of memory, DOS 5.0 will, with a bit of fine-tuning, leave more than 620K
free for applications. In addition, an improved Shell, on-line help, a new BASIC
interpreter, an enhanced command-line edit capability, and a long-awaited alternative to
EDLIN are included, along with some significant improvements to familiar commands
like DIR and A TTRIB. It also provides a number of features that users previously had to
seek in third-party software, such as the capability to unerase a file, or unformat a disk.
And for the first time, DOS directly supports task swapping - if you've got the patience
to put up with the DOS shell. A full treatment of these and other topics follows, in the
next chapter.

Figure 1.2 shows the relative sizes of the various versions of DOS. You can use the
chart provided to look at the size of COMMAND.COM on diskettes formatted with the
/S option and determine the DOS version number. Note that while DOS 4.0 was a
whopping six times larger than the first DOS version, and 38 percent fatter than its
immediate predecessor, DOS 5.0, when loaded into high memory, takes up only as much
space as DOS 2.1 did.

Figure 1.3 traces the addition of commands through versions of DOS, up to 5.0. Figure
1.4 shows which commands were modified in which versions.

18 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

DOS 1.0 - 13312 bytes used by system files
COMMAND COM 3231 8-04-81 12:00a
IBMBIO COM 1920 7-23-81 12:00a
IBMDOS COM 6400 8-13-81 12:00a

DOS 1.1 - 14336 bytes used by system files
COMMAND COM 4959 5-07-82 12:00p
IBMBIO COM 1920 5-07-82 12:00p
IBMDOS COM 6400 5-07-82 12:00p

DOS 2.0 - 40960 bytes used by system files
COMMAND COM 17664 3-08-83 12:00p
IBMBIO COM 4608 3-08-83 12:00p
IBMDOS COM 17152 3-08-83 12:00p

DOS 2.1 - 40960 bytes used by system files
COMMAND COM 17792 10-20-83 12:00p
IBMBIO COM 4736 10-20-83 12:00p
IBMDOS COM 17024 10-20-83 12:00p

DOS 3.0 - 60416 bytes used by system files
COMMAND COM 22042 8-14-84 8:00a
IBMBIO COM 8964 7-05-84 3:00p
IBMDOS COM 27920 7-05-84 3:00p

DOS 3.1 - 62464 bytes used by system files
COMMAND COM 23210 3-07-85 1:43p
IBMBIO COM 9564 3-07-85 1:43p
IBMDOS COM 27760 3-07-85 1:43p

DOS 3.2 - 69632 bytes used by system files
COMMAND COM 23791 12-30-85 12:00p
IBMBIO COM 16369 12-30-85 12:00p
IBMDOS COM 28477 12-30-85 12:00p

DOS 3.3 - 78848 bytes used by system files
COMMAND COM 25307 3-17-87 12:00p
IBMBIO COM 22100 3-18-87 12:00p
IBMDOS COM 30159 3-17-87 12:00p

DOS 4.0 - 108544 bytes used by system files
COMMAND COM 37637 6-17-88 12:00p
IBMBIO COM 32816 8-03-88 12:00p
IBMDOS COM 36000 8-03-88 12:00p

DOS 5.0 - 118669 bytes used by system files
COMMAND COM 47845 4-09-91 5:00a
IO SYS 33430 4-09-91 5:00a
MS DOS SYS 37394 4-09-91 5:00a

Figure 1.2. Relative Sizes of All IBM DOS Versions

DOS 1.0 DOSl.1

BASIC.COM EXE2BIN.EXE
BASICA.COM
CHKDSK.COM
COMMAND.COM
COMP.COM
DATE.COM
DEBUG.COM
DISK COMP.COM
DISKCOPY.COM
EDLIN.COM
FORMAT.COM
LINK.EXE
MODE.COM
SYS.COM
TIME.COM

DOSl.O

COPY
DIR
ERASE
PAUSE
REM
RENAME
TYPE

DOSl.1

DATE
DEL
REN
TIME

DOS2.0/2.1

ANSI.SYS
ASSIGN.COM
BACKUP.COM
FDISK.COM
FIND.EXE
GRAPHICS.COM
MORE.COM
PRINT.COM
RECOVER.COM
RESTORE.COM
SORT.EXE
TREE.COM

DOS2.0/2.1

BREAK
BUFFERS
CD
CHOIR
CLS
CTTY
ECHO
ERRORLEVEL
EXIST
EXIT
FILES
FOR
GOTO
IF
MD
MKDIR
PATH
PROMPT
RD
RMDIR
SET
SHIFT
VER
VERIFY
VOL

New External Commands

DOS3.0

ATTRIB.COM
GRAFTABL.COM
KEYBFR.COM
KEYBGR.COM
KEYBIT.COM
KEYBSP.COM
KEYBUK.COM
LABEL.COM
SELECT.COM
SHARE.EXE
VDISK.LST
VDISK.SYS

DOS3.1

BASIC.PIF
BASICA.PIF
JOIN.EXE
SUBST.EXE

DOS3.2

DRIVER.SYS
REPLACE.EXE
XCOPY.EXE

New Internal Commands

DOS3.0 DOS3.1 DOS3.2

COUNTRY (none) (none)
DEVICE
FCBS
LASTDRIVE

DOS3.3

4201.CPI
5202.CPI
APPEND.EXE
COUNTRY.SYS
DISPLAY.SYS
EGA.CPI
FASTOPEN.EXE
KEYB.COM
KEYBOARD.SYS
LCD.CPI
NLSFUNC.EXE
PRINTER.SYS

DOS3.3

CALL
CHCP

DOS4.0

DOSSHELL.BAT
MEM.EXE
XMAEM.SYS
XMA2EMS.SYS

DOS4.0

INSTALL
SWITCHES
TRUENAME

(undocumented)

DOSS.O

DELOLDOS.EXE
DOSKEY.COM
DOSSWAP.EXE
EDIT.COM
EGA.SYS
EMM386.EXE
HELP.EXE
HIMEM.SYS
LOAD FIX.COM
MIRROR.COM
QBASIC.EXE
SETVER.EXE
UNDELETE.EXE
UNFORMAT.EXE

DOSS.O

DEVICEHIGH
LOAD HIGH
LH

Note: Files with extensions are predominantly external commands or device drivers. Those without extensions are either
internal commands (part of COMMAND.COM) or configuration commands that work specifically with CONFIG.SYS.

Figure 1.3. New DOS Commands and Utilities

~
~

~
~
.[
:=
~ ...
~
t;:,

~

-'°

Modified External Commands N
0

DOSl.O DOSI.I DOS2.0/2.1 DOSJ.O DOS3.1 DOSJ..2 DOS3.3 DOS4.0 DOS5.0
t::::i

(none) (TIME.COM) CHKDSK.COM FORMAT.COM LABEL.COM ATTRIB.EXE
*

ATTRIB.EXE ANSI.SYS ATTRIB.EXE ~
(DATE.COM) COMP.COM BACKUP.COM TREE.COM COMMAND.COM BACKUP.COM APPEND.EXE DOSHELL.EXE

~ FORMAT.COM DEBUG.COM RESTORE.COM LINK.EXE DISK COMP.CM FDlSK.COM BACKUP.COM FORMAT.COM
CHKDSK.COM DISK COMP.COM DI SK COMP.COM DISKCOPY.COM GRAFT ABL.COM CHKDSK.COM MEM.EXE ~
ERASE.COM DISKCOPY.COM DISKCOPY.COM FORMAT.COM MODE.COM DISPLAY.SYS RAMDRIVE.SYS ..,
DISK COMP.COM EDLIN.COM GRAPHICS.COM SELECT.COM RESTORE.COM DI SK COMP.COM SMARTDRIVE.SYS 03
DISKCOPY.COM FORMAT.COM

*
DISKCOPY.COM 0

LINK.EXE environment size FASTOPEN.EXE §i"
DEBUG.EXE FD I SK.COM t'V
MODE.COM FORMAT.COM [

GRAFTABL.COM g; GRAPHICS.COM
KEYB.COM ::::!'.
MODE.COM 0

PRINTER.SYS
;s

REPLACE.EXE ~
SELECT.EXE ~

SHARE.EXE ~·
SYS.COM ~
TREE.COM ~
VD I SK.SYS

..,
t::::i

Modified Internal Commands ~
~

DOSl.O DOSI.I DOS2.0/2.1 DOS3.0 DOS3.1 DOS3.2 DOS3.3 DOS4.0 DOSS.O c

(none) (none) DIR DATE (none) SHELL ECHO BUFFERS DIR
DEL ERASE (external command DATE COUNTRY

paths okay) TIME DEL
DIR
ERASE
LABEL
REM
TIME
VOL

Figure 1.4. Modified DOS Commands and Utilities

DOS 5. 0: An Overview

The first edition of the IBM Disk Operating System, or DOS, was introduced in 1981 to
support the company's entry into the world of personal computers. Right from the start,
DOS was perceived to be an IBM product, although it was in fact developed by Microsoft
- with a little help from Big Blue of course. "IBM" and "DOS" were printed on the
spine of the manual, but inside, "Disk Operating System by Microsoft, Inc.," was printed
on the title page. Blurred authorship notwithstanding, DOS version 1.0 was not much
more than a grab bag of features "borrowed" from earlier operating systems, with a
COMMAND.COM processor that was some 3231 bytes long. Today, the file with the
same name eats up almost SOK bytes. Back in version 1.0 days, you had to run separate
standalone programs to set the date and time. You couldn't store more than 160Kb on a
single diskette. You could rename, copy or erase a file, but if you wanted to do much
more than that, you were out of luck. But this wasn't such a big deal way back then. IBM
sold its PC-1 with a measly l 6Kb of RAM inside, and many users stored data on analog
audio cassettes.

In early 1982 IBM acknowledged that the operating system had a few little problems
and released what it called the Version 1.1 DOS Upgrade (some others called it the "DOS
1.0 bug fix"). The manual noted: ··we've just brushed the surface of the many enhance
ments." Big Blue was not kidding;

Over the years, subsequent DOS enhancements have brought us hard disk support, the
hierarchical file system, networks, all sorts of diskette sizes, and a foreign alphabet -
the latter often used to describe much of the former. For good measure, the
IBM/Microsoft marriage partners even threw in a collection of tantalizing utility pro
grams; some good, some bad and some just plain awful. To help feed and clothe the
ever-expanding clone marketplace, Microsoft began distributing its part of the operating
system to other manufacturers, some of whom would add enhancements before bundling
it with their own hardware systems.

21

22 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

, But almost immediately after the release of each new DOS version, some new
hardware would outpace the new operating system, much to the distress of the user in
search of "more": more hard disk space, more RAM, more colors, more this and more
that. Oh yes, and an interface that would please the normal human, if not the computer
nerd.

From time to time the DOS programming wizards would announce new solutions to
various longstanding problems. But wait: isn't ··nos programming wizards" one of those
oxymorons, like ••military intelligence" or ••business ethics"? Aren't one of these partners
the same wonderful people who brought us Top View and Display Write? And did not
these very same wizards sell (or try to sell) a lot of truly wretched accounting software
designed for an obsolete minicomputer?"

Well, yes. But every now and then the wizards would get something right and help
DOS dig its way out of the software doghouse. For DOS version 3.2, they developed
XCOPY - one of the finest DOS utilities ever. And over the years since DOS 1.0, the
companies everyone loves to hate have spent much effort burnishing other facets on the
surface of the operating system that everyone loves to hate. Today, some shine brightly.
Others could use a bit more polish.

Yesterday's History: DOS 4.0
In the long march towards the ultimate operating machine, DOS 4.0 was a giant step.
Backwards. Its bug list was long, and over the first two years of its life, IBM released a
regular stream of CSDs (Corrective Service Diskettes) to its authorized dealers. By
mid-1990 the various updates had fixed many of its quirks, and history may yet celebrate
DOS 4.0 as a powerful marketing tool - for OS/2. However, version 4.0 did have its
good points, a few of which are listed here. These features were significantly different
from, or simply didn't exist in, the earlier DOS editions. Most of the features described
here have been retained or improved in DOS 5.0.

Ease of Installation

You didn't have to worry much about installing DOS 4.0; the INSTALL diskette took
care of most of the chores for you. It figured out what kind of hardware you had and
busied itself creating system subdirectories, copying the proper files into them, and
making all the proper configuration settings (well, almost all the proper settings).

The DOS Shell

Users who previously needed a dog-eared manual and a bottle of Excedrin to get up and
running were jolted by the sight of the new DOS Shell, a friendly full-color screen that
offeted to load any application or take care of mundane diskette and file chores at the
touch of a few keys.

DOS 5.0: An Overview 23

The DOS Shell brings prompt relief to anyone suffering the discomforts of a C> prompt
allergy, and it protects both the neophyte and the guru from such esoterica as, say

[d:] [path] FORMAT d: [/S] [/1] [/8] [/V] [/B] [/4] [/N: 9) [/T: 80) [/F]

All that, merely to prepare a diskette for use. The Shell does away with such turgid
command-line syntax in favor of the point-and-shoot menu style that has made the (gasp!)
Apple Macintosh so popular. For a company's MIS department, it may be ranked as a
blessing from above, since it allows the executive computerphobe to get through the
business of the day by simply negotiating an onscreen menu, rather than by making
endless calls downstairs to Corporate 911.

Yet some users neither want nor need a layer of insulation between themselves and
their operating system. In fact, there are those who regard the DOS shell as some kind of
infoclam defense against penetration from the outside world. Such folk prefer to navigate
the old-fashioned way - by executing their orders at the DOS prompt. It may not look
pretty, but it's often faster, especially for those who know their way around the keyboard.
For such users, DOS 4.0 made some effort to standardize the way it interpreted instruc
tions. For example, the early DOS rules for switches and other command tail parameters
(all that business following the FORMAT command above) were not always consistent.
Sometimes you could type in your backslashes and other punctuation in one long, endless
chain, and sometimes you couldn't: you'd need to use delimiters - symbols (space,
comma, etc.) that separate one switch or other parameter from another. And of course
you'd have to get all your variables right, or else try to guess which one was wrong. In
early versions of DOS, a FORMAT B : / s / z command would display a terse "Invalid
parameter" message. It was up to you to guess which parameter was invalid.

Things are better now. DOS 4.0 helped out by reporting "Invalid switch /Z" so you
knew just where the problem lay, if not yet how to fix it. But DOS 5.0 takes care of even
that little detail (see below).

Improved Disk and RAM Management

DOS 4.0 finally broke through two nasty barriers - the 32 Mbyte hard disk ceiling and
the 640Kb RAM limit. While earlier versions let users slice an enonnous hard disk into
smaller logical drives, each no greater than 32 Mbytes, DOS 4.0 let you treat any size
hard disk as a single drive. And, for the first time, DOS acknowledged that the user may
need more than minimal RAM. In previous editions, RAM addresses above 640K were
all but ignored. You could install an electronic disk up there, but that was about it. DOS
4.0 opened up the higher-memory real estate to other applications by supporting the LIM
(Lotus/Intel/Microsoft) Expanded Memory Specification. In the IBM version of DOS
4.0, the required device driver.- XMA2EMS.SYS (Big Blue has a way with names) -
would work only with IBM-brand EMS memory (surprise!), but Microsoft's generic
driver (HIMEM.SYS) works well on most systems.

24 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

Other Improvements

All DOS upgrades have provided more and better system tools, and DOS 4.0 was no
exception. It introduced several new utilities, and supercharged nearly two dozen existing
commands. The new goodies ranged from friendlier formatting to better backups, most
of which have been carried forward into DOS 5.0, as described below.

And Now, DOS 5.0
But first, another backward glance. Prior to version 5.0, users might have purchased the
operating system directly from IBM, in which case it was - according to the accompa
nying User's Manual - the .. IBM Operating System." For the vast IBM-compatible
market, Microsoft supplied an OEM (Original Equipment Manufacturer) DOS directly
to the hardware manufacturer, who might make some modifications before delivering it
to the end-user. In this case, it was usually bundled with the computer itself, and a retail
sale of this brand of DOS was rare.

But effective with DOS 5.0, the Microsoft marketeers have come out of their own DOS
marketing shell with two versions of DOS, both described here.

The Upgrade Path

A new MS-DOS 5.0 Upgrade package is available through traditional retail outlets, such
as your friendly(?) local computer dealer. This version can only be installed on a system
that is already up and running with an earlier version of DOS installed. It will not install
itself on a brand new machine.

The OEM Version

This is the new DOS in the old familiar format, as sold to the user by IBM and the other
OEMs out there in hardwareland. This is the version to buy for your brand new computer.

Unless otherwise noted, this chapter follows the DOS path described in the Microsoft
MS-DOS version 5.0 manual.

New Feature Summary

To help you decide if DOS 5.0 is for you, here• s a brieflist of some features that are either
new or considerably enhanced over previous versions, notably over DOS 4.0. Later on,
each of these features will be described in greater detail.

Memory Management

As noted in the first paragraph of this chapter, DOS has not gotten smaller with age. But
with that age has come wisdom: DOS is now smart enough to install much of itself above
the 640Kb point, thus freeing valuable conventional memory space for running your

DOS 5.0: An Overview 25

applications. With an 80386 or better microprocessor, various device drivers and pro
grams can also be moved out of the conventional memory area, again leaving more space
below for other programs. And if you 're wondering just what is going on inside all that
RAM, the MEM command shows where all your loaded programs have landed, and
where the free space is. With luck, and good memory management, there should be plenty
of it.

Oops Guard

The new UNFORMAT and UNDELETE utilities do just what you think they do.

The Help Screen

Except for DOS, just about every application out there offers the user some sort of
onscreen help. Now, so does DOS. Just follow any command with/? and, instead of the
command being executed, the screen displays a brief explanation of the command,
followed by a list of the various switches and other parameters that are available. It
doesn't always eliminate the need for the manual, but it might offer just enough
information to jog your own memory.

A New Editor

For years, DOS gums have lamented the limitations of the EDLIN utility, which was,
and is, a cheap-and-dirty little line editor. If not quite all you needed to write the next
great American novel, it was, and is, all you need to knock off a quickie batch file, or
something no more demanding than that.

EDLIN bashers now have a bigger target to shoot at. Although old EDLIN itself is still
around, and still does what it does quite nicely, the new EDIT utility is a full-screen editor
with considerably more power and flexibility.

Bigger Partitions

As noted above, the old 32Kb hard disk limit is gone. DOS 5.0 supports disk partitions
of up to two gigabytes, which is 1,073,741,824 times two. If that won't do, you're
probably too verbose.

Better Directories

Starting now, you can append various switches to the familiar DIR command, to sort your
directory list alphabetically, by date/time, by type (i.e., extension) and/or by file size. If
you have a favorite sorting style, you can specify it as a default setting in the DOS
environment.

The Basic BASIC

It's gone! Good old GWBASIC has given way to QBASIC, a scaled-down version of the
Microsoft QuickBASIC language, which is sold separately. According to the manual,

26 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

QBASIC "provides a complete environment for programming in the BASIC language."
That depends on how one defines "complete.•• Actually, QuickBASIC is complete.
QBASIC leaves out all the compiling options. But it should be enough to convince you
that Microsoft•s really complete version is well worth having around, especially for those

· times when you need a little something done, but you don •t feel quite up to facing the
complexities of C or the arcana of assembly.

A Few Steps Beyond F3

Most DOS users know about hitting function key F3 to bring the last command back to
the screen. Ifs quite helpful when that command was one of those dreadful lines with all
sorts of parameters, and you only got one of them wrong. But what if you want the
next-to-last command, or maybe the one before that? With the TSR (Terminate, Stay
Resident) DOSKEY program loaded, you can use the arrow and page up/down keys to
fetch various command lines that were entered prior to the one that now appears on screen.

Denser Data

The DOS 5.0 manual lists a new switch Uf:2.88) for the familiar FORMAT command.
The addition lets you format 2.88Mb 3.5" diskettes, or it will just as soon as the necessary
hardware (drives) and software (diskettes) hit the market. There was talk of a 2.88 diskette
drive for the IBM models 90 and 95, but both machines made their debut with l.44Mb
drives as standard. But sooner or later the drives will show up, and DOS 5.0 is ready for
them.

Easier Installation

Not the least of DOS 5.o·s attractions is its hassle-free installation. Upgrading from an
earlier DOS is easy; installing DOS 5.0 on a brand new computer is easier still. The DOS
5.0 Instal'lation section below shows how to do both. After that, we·n take a closer look
at some of the bells and whistles.

A Few Pre-installation Notes

Until version 4.0, DOS was downward compatible; each new version could handle just
about anything created by an older version. For example, insert an old single-sided 160Kb
diskette into a 1.2 Mb drive and type DIR- after a few seconds you·ll see the directory
of diskette files.

For the sake of that downward compatibility, when any command format was changed,
the command will usually still operate in the old format as well as the new. For example,
here are the new (DOS 4.0 and 5.0) and old ways to set the parameters for a serial
communications port:

MODE COM1:2400, N, 8, 1
MODE COMl BAUD=2400 PARITY=NONE DATA=8 STOP=l

DOS 5.0: An Overview 27

DOS 4.0 and 5.0 recognize either format, while only the first one will function with
pre-DOS 4.0 operating systems.

However, there was one little compatibility problem that IBM introduced in its own
version of DOS 4.0. Assuming you had previously formatted your hard disk with an
earlier IBM DOS (3.3, for example), there would be no problem in upgrading to the latest
DOS. But if you had the temerity to use a non-IBM DOS in the past, then Big Blue would
not be pleased with you. During an upgrade to the new IBM DOS, the installation routine
would display an "Invalid media type" error message and quit. The problem is due to a
special eight-character "OEM identification field" in the boot sector at the beginning of
a hard disk partition. This field stores the manufacturer's name and the version of DOS
resident on the hard disk. If it was an IBM version, the field contained the letters ··mM "
(with a space after the "M"). If not, it contained something like "MSDOS" or ··os2."
When IBM's installation routine looks at this spot on the disk, if it sees anything other
than "IBM " it grinds to a halt and issues that invalid media error message.

Compaq and some other non-IBM vendors actually put the letters "IBM " in this
location just to be sure they remain as compatible as possible with IBM versions.
However, if your hard disk does not pass an IBM media inspection, and you know your
way around DEBUG, you can modify the OEM ID field so that IBM DOS will install
itself without incident. To see what's in the OEM ID field in your system, make sure your
DOS DEBUG program is handy, and type the following lines exactly as they appear but
make sure to read these notes first.

Note 1: Type carefully. Don't experiment, and heaven forbid, don't enter a W (Write)
command unless you 're sure you know what you 're doing. In fact, before trying this,
back up your entire hard disk. Typing in the following lines without error won't hurt
anything, but it's a good excuse to make sure you're completely backed up.

Note 2: The following DEBUG instructions assume your hard disk is drive C. The
DEBUG utility refers to drives by number rather than by letter, and it starts numbering
at 0 rather than at 1. So, drive A is 0, drive B is 1, C is 2 and so on. This can be initially
confusing, so be incredibly careful when using DEBUG and drive/numbers!

For a system with a bootup hard disk C, type DEBUG and press the Enter key. When
you see the DEBUG hyphen prompt at the left edge of your screen, type:

L 100 2 0 1

The terse command instructs DEBUG to load (L) data to memory address 100, from drive
C (2). The drive-C data to be loaded begins at disk sector 0, and comprises 1 sector only.
The hard drive light will blink on for an instant, and then you'll see another DEBUG
hyphen prompt. Then type:

D 103 LS

which means; display (D) on screen the data bytes beginning at address 103. List (or
display) five bytes only (LS).

If your hard disk was formatted with IBM DOS, you'll see the magic letters "IBM"
over at the right side of your screen. If the disk was formatted with some other version,

28 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

you should see something like "MSDOS" over there instead. The whole works should
look like this:

C> DEBUG
-L 100 2 0 1
-D 103 LS
xxxx:OlOO 49 42 4D 20 20 IBM

If you see something other than the IBM signature, and you want to upgrade to an IBM
DOS, you can do it via the DEBUG utility. Just be careful. One little finger slip and you
might corrupt your hard disk boot record, which you really don •t want to do. If you want
to try this, continue reading here. Otherwise, just hit Q key and then press the Enter key
to quit DEBUG. Or to continue, type the following lines at the hyphen prompt:

-E 103 "IBM II

-w 100 2 0 1
-Q

In the first line (-E) above, make sure you insert a blank space after the letters IBM and
before the final closing quotation mark. The next line (-W) writes the new information
into sector 0 and the final line (-Q) quits DEBUG.

Now reboot and try the installation again. When you're finished, restore all your
backed up files to the hard disk.

A DOS Uninstallation

If you 're taking the DOS upgrade path, the installation procedure described below will
be augmented by an ''uninstall" procedure. This requires one or two scratch diskettes,
depending on your diskette and hard drive capacity. If necessary, the diskette(s) may be
used later on to restore your system's previous DOS version, and might be regarded as
an insurance policy for those who have learned the hard way never to trust a DOS version
number that ends with a zero.

After DOS 5.0 is installed, you'll discover an OLD_DOS directory on drive C. As the
name suggests, OLD _DOS contains nothing more mysterious than your old DOS version,
whatever it was. If you decide to return to this version, insert your UNINSTALL 1 diskette
in drive A, reboot and follow the onscreen directions. Your old AUTOEXEC.BAT and
CONFIG.SYS files will be returned to drive C, as will the old COMMAND.COM and
system files. DOS 5.0 will be removed and your previous version will once again be in
place. Microsoft does not say why you would ever want to do this, but there it is, just in
case you do.

The OLD _DOS directory is of course created on the day you do the upgrading, so its
date and time stamps record when that upgrade took place. Next, the new DOS 5.0 files
are moved into your original DOS directory to replace the old ones that were just copied

DOS 5.0: An Overview 29

into OLD _DOS. But since the old DOS directory (not the files, just the directory) remains
intact, its date and time stamps indicate when it was originally created. Thus, the
OLD _DOS directory appears to be newer than the new one. You might want to remember
this little bit of trivia, just so you don't lose sleep later on wondering why your DOS
directory seems to be so much older than the files it contains.

Once you've determined that DOS 5.0 is really where it's at, you'll probably want to
free up the space occupied by that new OLD _DOS directory and its contents. To do so,
log onto the DOS 5.0 directory, type DELOLDOS and press the Enter key. Follow the
onscreen instructions to remove the old DOS. But wait a while just to be safe, for once
OLD_DOS is gone, the UNINSTALL diskette(s) won't bring it back.

A Setup: The DOS 5.0 Installation Procedure

Perhaps it's just change for the sake of change, but the former Install procedure is now
called Setup, and it comes to you on multiple 3.5" or 5.25" diskettes. During the install
... oops, Setup procedure, you will be prompted to insert MS-DOS 5.0 Disk x into drive
A and press the Enter key to continue. Depending on the set of diskettes you use, the
prompts will of course appear at different points during the complete procedure. The
description below applies to a setup made from the 5.25" diskettes and to a DOS directory
on drive C; that is, on your hard disk.

To begin a completely new installation, boot the system with MS-DOS SETUP diskette
1 in drive A. To upgrade, boot with your old DOS and then insert diskette 1 in drive A.
Log onto that drive, type SETUP and press the Enter key. In either case, you '11 see a brief
"Please wait" message as the Setup program inspects your system configuration. This is
followed by a "Welcome to Setup" screen which reminds you of the help screens that are
available during the Setup procedure. If you are upgrading an earlier DOS, the screen
message reminds you to have one or two UNINST ALL diskettes ready.

The next screen prompts you to enter "Y" if you use a network, or "N" if you don't.
If you answer in the affirmative, you are prompted to exit Setup and review the
documentation for making network files compatible with DOS 5.0. After doing so,
resume the Setup procedure.

If you are upgrading an earlier DOS, the next screen prompts you to "Back up hard
disk(s)" before continuing. If you elect to do so, follow the onscreen prompts. When the
backup procedure is done, reinsert Setup diskette 1 in drive A and press the Enter key.
Otherwise, select the "Do not back up hard disk(s)" option.

Press the Enter key to continue your Setup. When you do, the screen displays the
following default settings:

DATE/TIME
COUNTRY
KEYBOARD
INSTALL TO

today's date and time
United States
US Default
Hard Disk

The settings are correct.

30 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

If all the settings are not correct, select the appropriate line by pressing the up arrow
key until that line is highlighted. Then press the Enter key to display a list of available
options. Again, using the arrow keys, highlight the desired new option (say, some other
country). Press the Enter key once more to return to the screen shown above. The new
option should now be seen. When you have finished making changes, highlight the
"settings are correct" line and press.theEnter key to move on to the next screen, which
displays

Install to

Run Shell on startup

C:\DOS

YES

The listed options are correct.

As before, change either option if you wish to do so, and then press the Enter key to
continue the installation. (The Shell option is described in its own section later on in this
chapter.)

If you are upgrading an earlier version of DOS, you will be prompted to insert an
UNINSTALL diskette in drive A. Follow the onscreen prompts to format and prepare
the UNINSTALL diskette(s). Then reinsert the Setup diskette in drive A and continue
the installation as described in the section below entitled, "Your Hard Disk is Formatted."

However, if this is a new installation and your hard disk is not yet formatted, you will
instead be prompted to make one of the following choices:

Allocate all free hard disk space for MS-DOS.

Allocate some free hard disk space for MS-DOS.

Do not allocate free hard disk space for MS-DOS.

This is as good a place as any to learn about the Help (Fl) key, for there's more to those
first two choices than first meets the eye. For example, you may indeed want to allocate
all free hard disk space to MS-DOS, but you may also want to divide that space into
several partitions. If so, then although the first choice looks like the right choice, it isn't.
If you pick it by accident, Setup creates one monster DOS partition on your hard disk. If
that's what you really wanted, then fine, you got it. But if you were planning to create
two or more partitions, you should have picked the second choice in the above list. So

. before making any "obvious" choice that is not based on previous installation experience,
press the Fl key to verify that your choice is the right one. Often enough it's not, and in
such cases a quick scan of the help screen will spare you a bit of time and a lot of
aggravation.

If you select choice two, you will be prompted to insert disk 2 into drive.A. When you
do, the first of several FDISK screens is seen, and you can go about the work of setting
up a primary and an extended partition, and then divide the latter into several logical
drives. If you 're not sure how to get through all this, both the FDISK utility and partitions
are described in detail later on in this chapter.

DOS 5.0: An Overview 31

When you are finished with FDISK, you will be prompted to (re)insert disk 1 in drive
A and press the Enter key. When you do, the system reboots itself and displays the
following prompt:

Hard disk partition C: is unformatted.

MS-DOS version 5.0 does not recognize

unformatted media.

Exit Setup

Format Partition

To continue, select the "Format Partition" option and press the Enter key. An onscreen
message continuously updates the percentage of the partition that has been formatted.
When the partition is completely formatted, the screen display repeats for each remaining
unformatted partition.

If you wish to complete the DOS 5.0 installation, you must take the time now to format
each partition. In other words, you can •t postpone formatting the remaining partitions for
another day. If you decide to "Exit Setup,•• that •s just what will happen; you get dumped
back to the DOS prompt and have to restart the installation. When you do, you wind up
right back here where you left off. So sit tight, finish the formatting and then move on to
the next step in the DOS installation, as described immediately below.

Your Hard Disk Is Formatted

Regardless of how you got here, you are now ready to finish the DOS installation and
get on to other things. Insert SETUP disk 1 in drive A (if it is not already there) and press
the Enter key. You should see the following screen:

MS-DOS version 5.0 is now being set up.

Setup installs a basic MS-DOS system. See the 'Microsoft

MS-DOS User's Guide and Reference' to learn about additional

features.

You may want to read the chapter on optimizing your system

in the manual. This chapter describes how to fine-tune

MS-DOS to achieve maximum performance.

x% complete

For the moment, forget about seeing that manual for additional features or boning up
on system optimization. You •ll be too busy inserting diskettes in drive A in response to
an onscreen prompt which periodically overlays the screen shown above.

As the contents of each setup diskette are copied ~o the DOS directory on drive C, the
"x % complete" legend updates itself and a horizontal bar gives a graphic progress report.

32 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

In addition, the lower right-hand comer of the screen keeps you posted with a "Reading
filename" message.

If an error occurs during the setup operation, you'll see a message like this:

An error occurred while reading or writing to drive

A:

Try the operation again.
Fail the operation.

Note the filename that appears in the lower right-hand comer of the screen. If it's
something not absolutely essential to your computer's well-being (say, GORILLA.BAS),
you may decide not to try the operation again. However, if the file is potentially important
(for example, anything with a COM or EXE extension), retry it a few times before giving
up. If the error persists, make a note of the file name, select the "Fail" option and continue
the installation. When you 're done installing everything else, try the EXP AND command
(described below) to copy the troublesome file to the DOS directory.

When all the files have been transferred, remove the last SETUP diskette from drive
A and press the Enter key. The system reboots itself, and if all's well, you'll be ready to
do whatever it is that made you buy the computer in the first place.

Old Bats and Config Considerations

If your system previously held an earlier DOS version, SETUP either modified the old
CONFIG.SYSandAUTOEXEC.BATfiles,oritcreatedanentirelynewsetofthesefiles.
In the latter case, your original files are saved with numeric extensions in place of the
usual SYS and BAT extensions. It's a good idea to compare the contents of the old files
and the new ones, to make sure that nothing important has been left out. If you find that
DOS 5.0 has indeed forgotten to include some critical line from your original configura
tion or batch file, you can edit the new version to restore the missing information. If you
can't find your originals, have a look on the UNINSTALL diskette, where they'll appear
as CONFIG.DAT and AUTOEXEC.DAT.

With DOS 5.0 installed, watch the onscreen display carefully the first few times the
system is booted. If you see any error messages such as "filenarn.e not installed,•• "wrong
DOS version," or whatever, there's probably something in your CONFIG.SYS or
AUTOEXEC.BAT file that needs to be fixed. For example, an old DOS 4.0 VDISK.SYS
driver in your configuration file does not automatically get replaced by DOS 5.0's
RAMDRIVE.SYS file. You'll have to edit the CONFIG.SYS file yourself to make the
necessary change.

A Closer Look at DOS 5.0
The rest of this chapter reviews many of the DOS 5.0 enhancements in detail. To keep
descriptions reasonably short and screen displays reasonably clear, remember that each

DOS 5.0: An Overview 33

line typed in by the user must end by pressing the Enter key and, when a screen prompt
calls for a user response (usually Y or N), the user will press the appropriate key.

Since memory management and the related commands are such an important - and
potentially confusing - aspect of DOS 5.0, this subject is discussed first and then
followed by details about the other DOS 5.0 features.

Memory Management

Users of earlier DOS versions complained about two annoying constraints - the 32
Mbyte hard drive barrier, and the 640Kb RAM wall. It was possible to get around the 32
Mb limitation by splitting massive drives into smaller logical ones with their own drive
letters. But, until version 4.0, DOS didn't provide any mechanism for using large amounts
of memory past 640K. Its only concession to this was the ability to use ''extended"
memory for large VDISK RAMdisks.

Not all expanded memory hardware will work with the supplied DOS 4.0 drivers. But,
since the DOS version doesn't really let users do much with expanded memory, and since
boards come with their own expanded memory drivers, this isn't much of a loss.

The DOS 4.0 MEM command reports the amount of expanded memory available. And
DEBUG 4.0 lets technically oriented users see the status of expanded memory with the
XS command, allocate EMS with XA, map it to a logical page with XM, and deallocate
itXD.

While users often confuse extended and expanded memory, these two kinds of memory
enhancements are very different. The only similarity is that they don't use the system's
main 640Kb of memory.

Of Modes and MEM

As the PC family moves ever farther away from its PC (as in IBM PC) roots, new jargon
is coined to increasingly confuse the user. For example, there's now a "real" mode (as
opposed to an "unreal" one?) and also a protected mode. Protected against what?, one
might ask, and get an answer that has little to do with the word "protected." Sometimes
it makes you wonder who thinks these terms up, and where they studied English.

With DOS 5.0 offering so much more memory management capability than its
predecessors, a quickie look at a few potentially confusing terms may come in handy for
negotiating the memory-related features described later in the chapter.

Real Memory

In computer jargon, the term refers specifically to the system memory that lies within the
lMbyte addressing limit of the 8088 (IBM PC & XT) and 8086 (PS/2 models 25 and 30)
microprocessors. Such memory is accessed via the familiar segment:offset address
format, in which the segment gives the address of a paragraph (16-byte) boundary, and
the offset indicates the number of bytes above that address. Thus, 4000:0100 points to a
segment that begins at (decimal) paragraph 16384 (4 x 4096). Multiply that number by

34 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

16 to find the absolute address of the segment, which is 262144. Then add the offset (0100
= decimal 256) to find the actual address.

This memory is "real" in the sense that the segment:offset address points directly to a
specific physical/logical memory location. So by extension, one might expect that any
directly addressable memory (say, the 80286's l 6Mb, or the 80386's 4Gb) is no less real
than that first lMb. Yet the term is - as IBM might put it - "reserved" for just that part
of the total system memory that can be accessed via the 20 address lines (AO-A19) of an
8088 and 8086 MPU.

Virtual Memory

The ANSI and ISO standards organizations prefer to call it virtual storage, but everybody
else uses virtual memory to refer to data residing on a large storage medium, such as a
hard disk. Such memory is accessed by mapping it into real memory addresses.

Real Mode

When any microprocessor addresses the lMb real memory area described above, it is
said to be operating in the real mode. Therefore, this is the only mode in which the 8088
and 8086 can operate. Subsequent MPUs (80 x 86) can of course operate in the real mode
for the sake of compatibility, or in the protected mode described next.

Protected Mode

Beginning with the 80286 microprocessor, memory far beyond the lMb limit became
accessible to any operating system/hardware combo that was up to the challenge of
managing all that space. To break the former lMb limit, the segment:offset format
described earlier is replaced by a Selector:offset addressing scheme. Instead of having a
segment point to a paragraph boundary, the selector points to a 64-bit segment descriptor
stored in a separate local or global descriptor table. In tum, the descriptor points to the
segment's starting address. The offset functions as before.

In the 80286 MPU, 24 bits within the segment descriptor define the segment's.starting
address, which means that 2A24 = 16Mb is available. If that's not enough, the 80386
MPU picks up an additional eight bits, for 2A32 = 4G-bytes of memory addressing
capability.

Well, this is all very impressive, but what's it got to do with that word "protected?"
Nothing. Unfortunately for readers in search of computer terms that follow the usual

laws of common sense, protected mode does nothing to describe enhanced memory-ad
dressing prowess. Instead, it merely refers to the memory protection feature that is an
added attraction of the latest batch ofMPUs. The protected mode makes sure that memory
allocated to any application is protected against invasion from other programs running
at the same time. Ot}\erwise, there would be regular system crashes as one's word
processor ran amok through the spreadsheet, or worse.

DOS 5.0: An Overview 35

As its name suggests, the protected mode does its job without regard to the type of
memory - real or virtual - that needs protection. In other words, the real and protected
modes are not mutually exclusive. But of course, this feature is not retroactive; if you
don't have a '286 or better, you get real (only) but you don't get protected (ever). Just
one more reason for upgrading.

Categories of Random Access Memory

Figure 2.1 is a simplified PC memory map, and each memory area seen in the figure
is described briefly here. Unfortunately, as already noted, the computer industry is
devoted to descriptive terms that convey almost no meaning, and worse, that look
pretty much like other terms with quite different meanings. Therefore, it may be
necessary to read at least a few of the following descriptions several times to
distinguish one from another.

Base Memory

The amount of memory actually installed in the conventional memory area. These days
it should be 640Kb, which is the limit of the conventional memory area.

Expanded memory
(for use below 1 Mb)

I
I
I
I

- ~m::ndedmemoryblock(EMB)

__!.----- High memory area (HMA)-64Kb

~l%.i!l'.~ifil%.lib"t& ~Upper memory block (UMB)

t@lfilEillHIEiiElffi@IJ} Reserved memory, upper memory area-384Kb

-----------~ i 640Kb Video memory-128Kb

1nventional memory-640Kb

Figure 2.1. PC Memory Map

36 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

Conventional Memory

Also called User Memory since it is immediately available for user applications, this is
the 640Kb area beginning at absolute address zero.

Expanded Memory

This is unassigned random access memory that may be mapped into lower memory
addresses. In the real mode, a device driver shuffles 16Kb chunks of expanded memory
in and out of page frames located below lMb, as described by an EMS (Expanded
Memory Specification, described below).

Expansion Memory

A term loosely applied to any random access memory used to expand a personal
computer's capacity. Due to the similarity between "expanded" and "expansion," ifs
important to remember that the latter term applies to any additional RAM, and is
frequently encountered in describing various memory devices that may be installed
within the Conventional (user) or Extended Memory areas.

Extended Memory

The extended memory area comprises RAM installed (or mapped) to begin at 1024 Kb
(lMb). Until recently, it was pretty much restricted to electronic disk and disk caching
applications. However, Extended Memory can now be put to other uses via the XMS
(Extended Memory Specification, see below).

Extended Memory Block (EMB)

The XMS describes the creation of extended memory blocks within the Extended Memory
area. The blocks are then available for use, in much the same way that expanded memory
is managed by the EMS.

Note that although "X" is the popular abbreviation for eXtended, and "E'' is for
Expanded, the Extended Memory Block is usually abbreviated as EMB. XMB would
have been the more logical choice, which is probably why it isn •t used.

High Memory Area (HMA)

This XMS term defines the first 64Kb block of memory in the extended memory area.

Reserved or Upper Memory Area

This is the area between 640 and 1024Kb, containing video memory, ROM on various
installed adapters, expanded memory RAM, etc. The system ROM BIOS is located at
the top of this memory area.

DOS 5.0: An Overview 37

Upper Memory Block (UMB)

This is a block of unused memory within the Reserved Memory Area between 640K and
1024K. DOS 5.0 can load much of itself within this area, thus freeing up conventional
memory for user applications.

Video Memory

Also referred to as graphics memory, this is the 128Kb area immediately following
conventional memory, which is occupied by the RAM on various display adapters.

Better Memory Management Tactics
One of DOS 5.0's noteworthy features is its ability to release much of the conventional
memory space formerly taken up by device drivers, TSR programs and by DOS itself.
By kicking all this stuff up beyond the 640Kb barrier, DOS 5.0 gives the user considerably
more room in which to run applications.

But of course the additional free space doesn't just show up automatically because
you 're using DOS 5.0. To get it, you must first configure your system with the appropriate
memory management drivers and then load DOS, other device drivers and your TSR
programs into the upper reaches of RAM. To do all this, you'll need to add a few lines
to your configuration file to set up the necessary memory management schemes, and then
make further changes to get everything up and running. The following sections show
what you need, and where you need it. We begin with a quick look at memory
management specifications, then move on to the drivers that take advantage of these
specs, and conclude with instructions on how to load whatever you want to load into
upper memory.

A Pair of Memory Management Specifications

Assuming you've survived the memory mine field planted above, the next step in the
operating system obstacle course is to get your programs safely across the same rocky
road. To bring some semblance of order to a potentially chaotic subject, the following
two memory specifications have been introduced.

EMS (Expanded Memory Specification)

When the PC was first introduced, users could take advantage only of the bottom 640Kb
of RAM - and some of this was needed for DOS functions, BIOS tables, etc. As
programs grew in size, and needed more memory space for data, vendors began thinking
up schemes for exceeding the 640Kb limit. Not long after Big Blue introduced the PC
AT, Lotus and Intel got together to see what could be done to to break through the barrier.
Shortly thereafter they were joined by Microsoft, and the trio introduced the

38 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

Lotus/Intel/Microsoft Expanded Memory Specification - or LIM EMS for short.
Actually, it was properly introduced as LIM EMS version 3.2, to signify its compatibility
with a certain operating system then in widespread use. The specification gave users
(mostly users of enormous spreadsheets) an additional eight Mb of memory in which to
romp with their data.

Next, another set of industry players - AST, Quadram and Ashton-Tate - produced
a superset of LIM EMS, which they called EEMS (Enhanced EMS). It didn't really go
anywhere, although Quarterdeck's DESKview window-oriented multitasking software
used it and became something of a success.

Still later, the LIM folks issued their own enhanced EMS version 4.0, and added
multitasking abilities of their own. EMS 4.0 also upped the RAM limit from 8 Mb to 32
Mb, and it quickly became the standard. DOS 4.0 supported this version, and so does
DOS 5.0.

The Expanded Memory Specification has not repealed the real mode address law,
which still stands at that old lMb memory limit. Instead, it permits expanded memory to
be paged into the addressable memory area. At first, EMS could handle only four page
frames within the Reserved Memory area above 640Kb. However, EMS 4.0 can juggle
as many as 50 pages within any 1 Mb area, provided they don't conflict with main system
RAM, video buffers, ROM BIOS code, etc.

But you can't just pop in an EMS driver and expect your programs to automatically
use all that extra memory; each application must be specifically written (or rewritten) to
do its own expanded memory management.

Expanded Memory and DEBUG

If you use EMM386.EXE or some other device driver that supports expanded memory,
the DOS DEBUG utility will show you the status of that memory. Just type DEBUG and
press the Enter key. When you see the DEBUG's hyphen prompt, type XS (eXpanded
memory Status) to display a status report such as:

Handle 0000 has 0018 pages allocated

Physical page 04 Frame segment 4000
Physical page 05 Frame segment 4400
Physical page 06 Frame segment 4800

(additional pages listed here)
Physical page 03

18 of a total
1 of a total

= Frame segment DCOO

28 EMS pages have been allocated
40 EMS handles have been allocated

XMS (Extended Mempry Specification)

The Extended Memory Specification is conceptually similar to the Expanded Memory
Specification just described, except that it uses extended memory to perform much the
same functions.

DOS 5.0: An Overview 39

A Duo of Drivers and a DOS Command

DOS 5.0 provides two memory management device drivers and a new command that
loads much of DOS itself into the high memory area. To make use of these features, your
configuration file must be modified as described here. Once this is done, you can move
most of your device drivers and TSR programs out of conventional memory, also
described below.

HIM EM.SYS

This extended memory specification (XMS) driver provides an entry into extended
memory to those programs that can take advantage of it. As part of its memory
management chores, HIMEM makes sure that programs do not try to load themselves
into the same memory addresses.

The following device command line must appear in your CONFIG.SYS file ahead of
any other device lines that load programs or drivers into reserved or extended memory
(such as EMM386.EXE below).

DEVICE=HIMEM.SYS

EMM386.EXE

As indicated by the filename, this driver is an expanded memory manager (EMM) which
wants to see an 80386 or better MPU. Actually, ifs an expanded memory emulator, since
it uses your system•s extended memory to emulate expanded memory. With the appro
priate device driver line added to your CONFIG.SYS file, EMM386.EXE provides
expanded memory to any application that needs it.

The driver will also supply UMB (Upper Memory Block) management within the
reserved memory area, thus allowing programs and other device drivers (but not itself)
to be loaded into reserved memory. In this context, it is sometimes referred to as a .. UMB
provider.. without identifying it by name (perhaps just to make sure you •re paying
attention).

Assuming your computer has extended memory available, and an 80386 or better
MPU, first add the extended memory manager HIMEM.SYS line described above to
your CONFIG.SYS file. Then insert the following line with the appropriate parameter:

Device line

DEVICE=EMM386.EXE ram

DEVICE=EMM386.EXE noems

Running DOS on High

Memory to be managed is

expanded and reserved

reserved only

One of the ways in which DOS 5.0 can save conventional memory is to load much of
itself into the High Memory Area, that is, into the first 64Kb of extended memory. For
example, with DOS loaded in the usual manner, the MEM /c command will show that

40 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

MSDOS has chewed a 54144-byte chunk out of conventional memory. DOS 5.0's new
DOS command can be used to move a 40Kb chunk of DOS out of conventional memory,
thus freeing up that amount of space for other use. The same command is also used to
provide the link to reserved memory that is required by EMM and other drivers, as shown
here.

Device line

DOS=high

DOS=umb

DOS=high,umb

Purpose
load part of DOS into HMA

provide a link between conventional and reserved memory

do both

The umb parameter must be included if you plan to load device drivers into reserved
memory, as described later in this section.

Driver/DOS Summary

Assuming you want to sweep out your conventional memory as described above, just
add the following lines to your CONFIG.SYS file:

DOS=high, umb
DEVICE=HIMEM.SYS
DEVICE=EMM386.EXE ram (or noems)

Make sure that the HIMEM line appears before the EMM386 line. The DOS= command
line can appear at any location in the file.

Loading Drivers and TSRs in Reserved Memory

Finally, it's time to modify your CONFIG.SYS and AUTOEXEC.BAT files so that your
other device drivers and TSR programs will be loaded into reserved memory instead of
taking up space in conventional memory. There's almost nothing to it: just change every
DEVICE line to DEVICEHIGH in your configuration file. Thus:

Device line

DEVICE=HIMEM.SYS

DEVICEHIGH=ANSI.SYS

DEVICEHIGH=filename.ext

Purpose
load HIMEM into conventional memory (as
required - it can't be loaded into reserved
memory)

load ANSI into reserved memory

load some other driver into reserved memory

Some device drivers expand to take up more space than the size indicated by a directory
listing would indicate. If the expanded space exceeds that available in the UMB area,
there could be a device error or a system crash. If this happens, the DEVICEHIGH line

DOS 5.0: An Overview 41

can be revised to include a size parameter. To find the required size, first load the device
driver in the usual manner. Now execute the DOS MEM /PROGRAM command
(described below) to display the amount of memory occupied by various installed
programs, including the device driver of interest. Finally, modify the DEVICEHIGH line
to include this value, as follows:

DEVICEHIGH size=xxxx (path and name of device driver)

In either of the above examples, the device driver will be loaded into low memory if there
is not enough UMB space available for it.

In your AUTOEXEC.BAT file, use the LOADHIGH command to load other programs
into reserved memory. In the following examples, a typical path instruction is included
for illustration purposes.

Command line

C:\UV\UV on

LOADHIGH C:\UV\UV on

Purpose

load Personics UV (Ultra Vision) utility into
conventional memory

load the UV utility into reserved memory

Not all programs are compatible with the LOADHIGH command, so do a little
experimenting to determine if your program runs properly from within the reserved
memory area. In case of any unpredictable results, try the same operation with the
program loaded in conventional memory. If this cures the problem, then the program is
indeed incompatible with UMB. If not, then there is some other problem which should
be resolved before trying LOADHIGH again.

As a final caution, note that although the LOAD HIGH command can be executed from
within a batch file, it cannot itself be used to load a batch file into the UMB area.

A Look at Memory Savings

The original PC architecture was designed way back when full-fledged applications like
WordStar needed only about 90Kb, and 640Kb seemed like a generous amount. The
ancient 8088 chip could work with (or address) only one Mbyte of RAM, and it needed
to employ the old segment:offset trick just to sneak past the first 64Kb.

These days many applications can barely squeeze into 640K, and serious users often
find themselves ramming megs of RAM into their systems. A microprocessor like the
80386 or the awesome i486 can address vast quantities of RAM, and vendors are trying
to convince users that they have to run lots of memory-hungry applications at the same
time. Today· s systems can take advantage of far more RAM than the old and conventional
640Kb of "user memory" by using extended and expanded memory.

Prior to DOS 4.0, the existence of such "high" memory was barely acknowledged, and
there were no DOS tools to examine it. But with DOS 4.0 came the powerful MEM

42 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

command, which provided a report on system memory allocation - including extended
and expanded memory. And by appending a /DEBUG or /PROGRAM switch to the
command, DOS displayed an incredibly detailed map of what was where in memory.

MEM /PROGRAM, or MEM /P, tells you about all programs currently loaded in
memory (you may be surprised how many you see when you first try it). The more
powerful MEM /DEBUG, or MEM /D, supplements the /PROGRAM data with valuable
information on device drivers and DOS/BIOS low-memory areas. The option isn't for
everyone, since much of the information is fairly exotic, and all numbers are in hex
notation. However, it can be extremely helpful if you 're trying to shoehorn lots of popup
programs into memory, since it shows how much RAM each one consumes. It also lets
you spot ill-mannered TSRs that lop off wasteful amounts of memory every time you run
them. And if you 're a programmer or someone with an insatiable curiosity about how
your system works, you '11 just love the MEM /D command.

DOS 5.0 adds a new switch to the MEM command, and this may be used to get a
general idea of how the conventional memory area is affected by all the memory
management described above. Here's a brief description, followed by several screens of
memory-usage information.

MEM/CLASSIFY (or MEM/C)

When /C is appended to the MEM command, the screen shows a concise report of
conventional and upper-memory usage. For example, the listing below is a simple
CONFIG.SYS listing, immediately followed by the memory report delivered by typing
MEM/C and then pressing the Enter key.

DEVICE=C:\DOS\SETVER.EXE

DEVICE=C:\DRIVERS\ANSI-UV.SYS

DEVICE=C:\DRIVERS\RCD.SYS /f

Conventional Memory :

Name Size in Decimal
___ ., _________ ---------------------

MS DOS 54144 52 .9K)

SETVER 400 0.4K)

ANSI·UV 1664 1.6K)

RCD 10912 10 .7K)

COMMAND 4704 4 .6K)

SETVID 720 0.7K)

UV 19456 19 .OK)

DE 2256 2 .2K)

FREE 64 O.lK)

FREE 559744 (546.6K)

Total FREE 559808 (546. 7K)

Size in Hex

D380

190

680

2AAO

1260

2DO

4COO

8DO

40

88A80

DOS 5.0: An Overview 43

Total bytes available to programs

(546.7K)

Largest executable program size

(546. SK)

4456448 bytes total contiguous extended memory

4456448 bytes available contiguous extended memory

559808

559600

The last two lines show that all contiguous extended memory is available for use. But for
the moment, this use is limited to electronic disks and disk caching.

Note that MS-DOS occupies 52.9Kb of conventional memory and is followed by the
three drivers loaded by the CONFIG.SYS file. The SETVID, UV, and DE entries are
three utilities loaded by the AUTOEXEC.BAT file (not shown).

To free up some space, the first thing to do is get DOS (most of it, that is) out of
conventional memory, and this is done by adding two lines to the configuration file, as
shown here:

DOS=HIGH

DEVICE=C:\DOS\HIMEM.SYS

DEVICE=C:\DOS\SETVER.EXE

DEVICE=C:\DRIVERS\ANSI-UV.SYS

DEVICE=C:\DRIVERS\RCD.SYS /f

Now type MEM/C again to display the following memory report:

Conventional Memory :

Name Size in Decimal Size in Hex

------------- --------------------- -------------
MS DOS 13536 13 .2K) 34EO

HIMEM 1184 l.2K) 4AO

SETVER 400 0.4K) 190

ANSI-UV 1664 l.6K) 680

RCD 10912 10. 7K) 2AAO

COMMAND 2624 2 .GK) A40

SETVID 720 0.7K) 200

UV 19456 19. OK) 4COO

DE 2256 2 .2K) 8DO

FREE 64 O.lK) 40

FREE 601216 (587. lK) 92C80

Total FREE 601280 (587 .2K)

Total bytes available to programs : 601280

44 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

(587.2K)

Largest executable program size

(587. OK)

4456448 bytes total contiguous extended memory

o bytes available contiguous extended memory

4390912 bytes available XMS memory

MS-DOS resident in High-Memory Area

601072

Note that both the MSDOS and COMMAND sizes are smaller and there is therefore more
conventional memory available. Also, the lines at the bottom of the listing have changed.
The contiguous extended memory is gone, but there a~e now 4390912 bytes of XMS
memory available. This is still extended memory, but it's no longer contiguous because
the first 64Kb of it are missing since HIMEM.SYS has picked it up for use by MS-DOS,
as reported in the last line above.

But now, back to conventional memory space. The next step is to move the three device
drivers (SETVER, ANSI-UV, RCD) into the upper-memory area, which is accomplished
by modifying the DOS= command, installing the EMM386 expanded memory emula
tor/manager, and changing the DEVICE lines to DEVICEIDGH, as shown below. In this
example, the ram parameter on the EMM386 line enables expanded memory manage
ment, as described earlier.

DOS=HIGH,UMB

DEVICE=C:\DOS\HIMEM.SYS

DEVICE=C:\DOS\EMM386.EXE ram

DEVICEHIGH=C:\DOS\SETVER.EXE

DEVICEHIGH=C:\DRIVERS\ANSI-UV.SYS

DEVICEHIGH=C:\DRIVERS\RCD.SYS /f

To move the three utilities (SETVID, UV, DE) into upper memory, change each line
in the AUTOEXEC.BAT file to begin with LOADHIGH=filename. Having done all that,
the SETVER, ANSI-UV and RCD drivers should all be loaded into upper memory, along
with the three utilities just mentioned. But one of them, UV, still appears in the
conventional memory area, as shown here.

Conventional Memory :

Name

MS DOS

HIMEM

EMM386

COMMAND

UV

FREE

Size in Decimal Size in Hex

13552

1184

9424

2624

19456

64

13 .2K)

1.2K)

9 .2K)

2.6K)

19. OK)

O.lK)

34FO

4AO

24DO

A40

4COO

40

DOS 5.0: An Overview 45

FREE 608832 (594.6K) 94A40

Total FREE : 608896 (594.6K)

Upper Memory

Name Size in Decimal Size in Hex

SYSTEM

SETVER

ANSI-UV

RCD

SETVID

DE

FREE

Total FREE :

163840

400

1664

10912

720

2256

16672

16672

(160. OK)

(. 0.4K)

1.6K)

10. 7K)

0.7K)

2 .2K)

16. 3K)

16 .3K)

28000

190

680

2AAO

2DO

8DO

4120

Total bytes available to programs (Conventional+Upper)

Largest executable program size :

Largest available upper-memory block

655360 bytes total EMS memory

262144 bytes free EMS memory

4456448 bytes total contiguous extended memory

O bytes available contiguous extended memory

3997696 bytes available XMS memory

MS-DOS resident in High-Memory Area

625568 (610. 9K)

608688 (594.4K)

16672 (16. 3K)

The reason our UV utility is still parked down there in the conventional memory lot is
simple: at the moment, the largest available upper-memory block is only 16.3Kb, as
reported above. Since that's not enough room for UV, the LOADHIGH command is
ignored and the utility stays put.

The shortage of upper memory is because the ram parameter on the EMM386 line in
CONFIG.SYS has enabled expanded memory support, and in so doing, has whittled away
at the available memory. (See the EMM386.SYS section earlier in the chapter for more
details.) Since we don't need expanded memory, we can fix this by changing ram in line
3 to noems (No Expanded Memory) and try again.

DOS=HIGH,UMB

DEVICE=C:\DOS\HIMEM.SYS

DEVICE=C:\DOS\EMM386.EXE noems

DEVICEHIGH=C:\DOS\SETVER.EXE

DEVICEHIGH=C:\DRIVERS\ANSI-UV.SYS

46 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

DEVICEHIGH=C:\DRIVERS\RCD.SYS /f

Conventional Memory :

Name Size in Decimal Size in Hex

--------------------- -------------
MS DOS

HIMEM

EMM386

COMMAND

FREE

FREE

Total FREE :

Upper Memory

13552

1184

9424

2624

64

628304

628368

13 .2K) 34FO

1.2K) 4AO

9 .2K) 24DO

2.6K) A40

O.lK) 40

(613. 6K) 99650

(613. 6K)

Name Size in Decimal Size in Hex

--------------------- -------------
SYSTEM

SETVER

ANSI-UV

RCD

SETVID

UV

DE

FREE

Total FREE :

163840

400

1664

10912

720

19456

2256

62736

62736

(160. OK) 28000

(0.4K) 190

1.6K) 680

10. 7K) 2AAO

0 .7K) 2DO

19. OK) 4COO

2 .2K) 8DO

61.3K) F510

61. 3K)

Total bytes available to programs (Conventional+Upper)

Largest executable program size :

Largest available upper memory block

4456448 bytes total contiguous extended memory

O bytes available contiguous extended memory

4205568 bytes available XMS memory

MS-DOS resident in High Memory Area

691104 (674. 9K)

628160 (613. 4K)

62736 (61. 3K)

The above exercise is just one example of how DOS 5.0 can be tweaked for optimum
memory management. There are many additional memory management parameters for
just about every command line shown above.

DOS 5.0: An Overview 47

Other DOS 5.0 Features
In addition to the enhanced memory management facilities described above, DOS 5.0
introduces a lot of other operating system bells and whistles. Some early DOS commands
have been souped up with extra parameters or switches, and several entirely new
commands and utilities have been added to the repertoire. Three of the latter (MIRROR,
UNDELETE and UNFORMA T) are included under license from Central Point Software,
and are part of that company's PC Tools software. The UNFORMA Tutility is equivalent
to PC Tools' REBUILD utility.

Attribute Command (ATTRIB)

In every file header, the byte following the filename and extension is the file attribute
byte, in which each bit defines a file parameter. Effective with DOS 5.0, the A TTRIBute
command allows all file attribute bits to be changed. Each such attribute is described
here.

Attribute bit
archive

hidden

read-only

system

Determines if
data has been written to the file since the last backup session

the filename appears in the directory listing

the file is write-protected

the file is a system file

If the attribute bit is set (1), the file possesses the attribute defined by that bit; if the bit
is cleared (0), that attribute is disabled. To set or clear a file attribute, type the ATTRIB
command, followed by a plus (set) or minus (clear) sign, and the name of the file, as
shown here:

ATI'RIB command

A TTRIB +p filename

A TIRIB -p filename

ATIRIB

ATIRIB/S

A TIRIB ±p filename /S

Purpose

Set the attribute bit defined by p.

Clear the attribute bit defined by p.

Display all file attributes of all files in the current directory.

Display files in this directory and in its subdirectories.

Set (+) or clear (-) the attribute bit defined by p for all files with
filename in this directory and in its subdirectories.

The last example above may be useful for modifying all files with a common extension,
as for example, all *.SYS files.

Replace the p above with one of the following parameters. To change more than one
file attribute, simply repeat the p parameter, as required.

48 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

Attribute
parameter Purpose
+A set archive bit

-A clear archive bit

+H set hidden-file bit

-H clear hidden-file bit

+R set read-only bit

-R clear read-only bit

+S set system-file bit

-S clear system-file bit

The A TTRIB command can also be used to search out all occurrences of a certain
filename, or all filenames that contain a common extension. For example, to search all
subdirectories for files with an EXE extension, just type

ATTRIB *.EXE /s

DEBUG Your Hex Math

The DEBUG utility has been around forever, and there•s nothing new to report for DOS
5.0. However, there is an often overlooked feature that may help anyone who can •t figure
out how the sum of FE and DC is IDA and the difference is 22 (or can't even figure out
what all that means).

With DEBUG loaded, just type an Hand follow it with any two hexadecimal numbers.
When you press the Enter key, the next line reports the sum and difference of the numbers.
Thus:

-H FE DC
OlDA 0022

This can come in handy for those quick hex calculations that need to be done every once
in awhile. However, there is one little caution. The answers are given only in four digits,
thus the sum of say, FOOO and 1000 (10000) is reported as 0000. So if any such value
appears to be less than the sum of its parts, you need to append a hex 1 to the beginning
of the number.

DIRectory Command Enhancements

Even the lowly old DIRectory command has been souped up with several new DOS 5.0
switches. In each case the format is as follows:

DIR /X:p

DOS 5.0: An Overview 49

where Xis the desired switch and pis some modifying parameter. To specify additional
switches, simply repeat the /X as appropriate. Note that not all switches are followed by
a parameter.

Attributes VA:p)

This switch displays only those files whose attribute is specified by the letter following
the colon. For example, use the following:

Attribute switch

/A:A

/A:-A

/A:D

/A:-D

/A:H

/A:-H

/A:R

/A:-R

/A:S

/A:-S

/A

Displays

files ready for archiving (for backup)

files that have already been archived

directory names only

filenames only (no subdirectories listed)

hidden files

files that are not hidden

read-only files

files that are not read-only

system files

all files except system files

all hidden, system and regular files

Bare (Show File Names only) VB)

This switch displays a bare directory listing; that is, one in which only the filename and
extension is displayed. If the /B switch is used together with /W (wide), the latter switch
is ignored.

Search Subdirectories VS)

The /S switch shows the contents of the current directory and all its subdirectories. Or
you can use it to search for one or more files lost in the maze of directories and
subdirectories. For example,

Search switch

/S
/S filename.ext

/S WS*.*

/S *.EXE

Displays

all directory and subdirectory listings

a specific file

all files beginning with WS

all files with an EXE extension

The search may be narrowed as required. For example, to search an entire drive, type the
command from the root directory. Or, log onto any subdirectory to confine the search to
just that directory and its own subdirectories. If the search switch finds the desired file
or files, the directory containing the file(s) is displayed, followed by the names of the

50 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

files. This is followed by the name of the next directory (if any) and its files, and so on
until all occurrences of the searched item have been found.

The search switch is helpful for flushing out all the backup files that accumulate over
time. Just log onto the root directory and type

DIR /S *.BAK

Or, type a specific filename to make sure that the same name does not exist in two
separate locations.

Combination Bare Name and Search (/B/S)

When these two switches are both appended to the DIRectory command, each line
displays the complete path name followed by the nam~ (only) of the appropriate file.

Sort Order (/O:p)

The directory listings may be sorted as specified by a letter following the colon, as
indicated here.

Sort switch

/O:D

/0:-D

/O:E

/0:-E

/O:G
/0:-G

/O:N

/0:-N

/O:S

/0:-S

Directory is sorted

by date and time; earliest first

by date and time; latest first

alphabetically by extension

alphabetically by extension, in reverse order

with directories grouped before filenames

with directories grouped after filenames

alphabetically by filename

alphabetically by filename, in reverse order

by size; smallest first

by size; largest first

Preset Directory Display

If you would like to use one or more of the above switches every time you execute the
DIRectory command, simply add the directory command (DIRCMD) environment
variable to your AUTOEXEC.BAT file. For example, to display your directory listings
sorted in reverse alphabetical order, include hidden files, and pause when the screen is
full, add the following line to the batch file.

SET DIRCMD=/0:-N/A/P

The next time the system is rebooted, the DIR command will display the directory listing
as specified by SET DIRCMD.

DOS 5.0: An Overview 51

Wide Directory Listing (/W)

When the DIR command is followed by the fW (wide) switch, all displayed directories
are enclosed in square brackets, as shown in this sample line from a wide directory listing.

COMMAND.COM [DOS] [MACE] GENS386.SYS IBMCDROM.SYS

AD/Rectory Search and Destroy Mission

The DIR command can be used in conjunction with the FIND command, to locate all
filenames that contain a certain string. This can be quite handy for flushing out all those
backup files that accumulate on your hard disk over time. For example, the following
one-liner searches the root directory and all subdirectories on drive C for files with a BAK
extension, and writes the complete path and filename for each such file into a new file
named HITLIST.

DIR C:\ /S /B I FIND "BAK" > C:\HITLIST

The following Quick:BASIC program will now erase every backup file whose name is
in your HITLIST, after which it destroys the evidence by wiping out the HITLIST itself:

OPEN "C:\HITLIST" FOR INPUT AS #1

WHILE NOT EOF(l)

INPUT #1, FILENAME$

KILL FILENAME$

WEND

KILL "C:\HITLIST"

CLOSE #1: END

If you'd rather be asked if it's OK to kill each file, just replace the KILL FILENAME$
line above with the following two lines:

PRINT "OK to kill "; FILENAME$; : INPUT OK$

IF OK$ = "Y" OR OK$ = "y" THEN KILL FILENAME$

How Many Bytes?

As a final enhancement, the DOS 5.0 directory listing tallies up the bytes of all files in
the current directory and gives that figure to the right of the number of files in the
directory. The second line reports - as before - the number of free bytes remaining on
the complete disk. Thus:

xx file (s) xxxxx bytes

xxxxxxx bytes free

52 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

DOS KEY

When the DOSKEYutility is loaded, it maintains a record of your recent DOS commands,
which may be recalled by pressing the up and down arrow keys or the page up and down
keys. To use the utility, type either DOSKEY at the DOS prompt or add the command
to your AUTOEXEC.BAT file.

After DOSKEY has been loaded, and several DOS commands have been issued, you
can toggle through these commands by pressing one of the following keys:

Press this key
Uparrow

Down arrow

Page up

Page down

Left arrow

Right arrow

Ctrl +Left arrow

Ctrl +Right arrow

Home
End

Escape key

Togo
to the previous command

to the next command

to the earliest command

to the latest command

back one character (nondestructive)

forward one character

back one word (nondestructive)

forward one word

to the beginning of the line

to the end of the line

clear the present command line

Repetitive presses of an up or down arrow key will toggle forward or backward through
the entire list, one command at a time. When the first (or last) command is reached, the
next keypress will return to the top (or bottom) of the list, and subsequent keypresses will
again toggle through the list.

DOSKEY also lets you define keypress macros for repetitive tasks, or your own custom
commands. If, for example, you just can't live without the Unix Is command,

DOSKEY ls=dir

will give you at least the illusion of being able to run part of Unix on your PC.

DRIVPARM

The default operating parameters of a block device can be changed by inserting a
DRIVPARM (Drive Parameters) command in your configuration file. A block device is
any mass storage device, such as a diskette or hard disk drive, or a tape drive, Bernoulli
box, etc. The term is used because data is sent to and from such a device in blocks -
generally, of 512 bytes.

The DRIVPARM command's /I switch supports a 3.5" diskette drive in a PC whose
ROM BIOS does not recognize this size device. Or, within certain limits, you can change
drive capacity. For example, a 5.25" l.2Mb drive can be tricked into thinking it's a 360Kb

EDIT

DOS 5.0: An Overview 53

or smaller capacity drive. Or, a 3.5" 1.44Mb drive can be downgraded to 720Kb.
Unfortunately, you can't convince a low-capacity drive to function at some higher
capacity though.

The command line syntax is

DRIVPARM=/D:d /F:f /I

where

d physical drive number (0 drive A, 1 drive B, etc.)

f desired drive type

0 160-360Kb

1 1. 2Mb

2 720Kb

5 hard disk

6 tape drive

7 1. 44Mb

8 read/write optical

9 2.88Mb

disk

5. 25 11

5.25 11

3. 5 11

3. 5 11

3. 5 11

/I specify a 3.5 11 drive, if not supported by ROM BIOS

Other DRIVP ARM switches specify the number of heads (/H), sectors (/S) and tracks
(ff).

If you attempt to trick say, a 1.44Mb drive into 2.88Mb capacity (nice try!), and then
format a diskette in that drive, the following error message will be seen:

Formatting 2.88M

Parameters not supported by drive.

However, the DRIVPARM command may be useful if it becomes necessary to do a
DISKCOPY operation between drives of the same size but of dissimilar capacities. It
may also be used to revise the track and sector configuration of a tape drive.

For those who need more editing power than is available in DOS EDLIN, DOS 5.0 offers
a new full-screen editor for creating ASCII files. To begin editing, simply type EDIT,
optionally followed by the name of the file you wish to edit. The EDIT utility recognizes
keystroke combinations used by Microsoft Word and WordStar.

To use the maximum number of lines possible on your monitor display configuration,
type EDIT /H at the DOS prompt. Once the editor is up and running, an extensive set of
help screens is available to answer just about any question that might come up.

The EDIT utility requires the presence of the QBASIC.EXE file, which is also resident
in the DOS subdirectory. So even if you have no plans to use QBASIC, don't erase it if

54 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

you expect to use the editor. In any case, the remarks in the QBASIC section below about
cursor shape in the insert mode apply to the EDIT utility, as well as to QBASIC.

EXPAND

Most of the files on the DOS 5.0 installation diskettes are in a compressed format. For
each such file, the three-letter file name extension ends with an underline character; thus
the compressed FORMAT.COM is listed as FORMAT.CO_, DRIVER.SYS is
DRIVER.SY_, and so on. A compressed file is not directly executable; in order to run,
it must first be expanded to its full size. This takes place automatically as DOS 5.0
installs itself, and in the process each underline is automatically replaced by the
appropriate letter.

In the event of subsequent damage to, or loss of, a file, you can return to the DOS
installation diskettes and expand just the file for which you need a fresh copy. Assuming
the compressed file is on a diskette in drive A, and you want the expanded copy to be
written into the DOS subdirectory on drive C, the command line syntax is:

EXPAND A:FILENAME.CO C:\DOS\FILENAME.COM

As just shown, the command expands one file at a time and must be repeated for each
compressed program that you wish to expand. This is no big deal if you just want to
expand a file or two, but you may prefer to run a batch file if you need to expand more
than a few files. If so, create a batch file called X.BAT which contains the following
lines:

FOR %%X IN (A:*.EX_} DO EXPAND %%X C:\DOS
CD \DOS
RENAME *.EX *.EXE

The first line (which just about defies comprehension) really means the following:

1. Find the first file defined by (A:*.EX_). That is, a file on drive A whose extension
is EX_.

2. FOR each such file (temporarily called "X") DO the following:
EXPAND it (i.e., EXPAND %%X).

3. Write the expanded file to the C:\DOS subdirectory.

By comparison, the next two lines are a piece of cake: log onto the DOS subdirectory
and change each file named *.EX_ to *.EXE.

To expand all compressed files on drive A, change the batch file expression in
parentheses to (A:*.??_) and add a RENAME line for every other file category {RE
NAME* .co_* .COM, and so on).

DOS 5.0: An Overview 55

Friendlier Formatting

The eight different diskette formats encountere.d in PC applications are listed below.
Fortunately, not all are in wide use today: most 5.25" diskettes are now fonnatte.d at either
360Kb or 1.2Mb, with the first three configurations (160, 180, 320Kb) phased out in favor
of the last two. Nevertheless, it may be necessary to format a 5.25" diskette at one of the
lower capacities for use in someone• s older machine.

For 3.5" diskettes, both 720Kb and 1.44Mb capacities are in wide use, with the 2.88Mb
diskette expecte.d to reach the market momentarily. It doubles the capacity of the 1.44Mb
diskette by packing 36 sectors into the track, which probably makes it double-quadruple
(octuple?) density. Such diskettes require a new diskette drive.

Capacity

5. 25" diskettes

160Kb

180Kb

320Kb

360Kb

1.2Mb

3.5" diskettes

720Kb

1.44Mb

2.88Mb

Sides

one

one

two

two

two

two

two

two

The Format of FORMAT

Tracks
/side

40

40

40

40

80

80

80

80

Sectors
/track

8

9

8

9

15

9

18

36

Density

double

double

double

double

quadruple

double

quadruple

Use format
size switch

/f:160

/f:180

/f:320

/f:360

/f:1200 or 1.2

/f:720

/f:1440 or 1.44

/f:2880 or 2.88

The FORMAT command must be followed by a drive letter parameter and optionally by
one or more switches to modify the procedure as required for the specific application. In
all cases, the command is written as

FORMAT A: /x /y /z

where x, y, z are replace.cl by the actual letter(s) required. Switches that are new to DOS
5.0 are describe.cl in the following sections.

Sizing Up the Format

The size switch listed above may be ignored for most routine operations, since the diskette
is automatically fonnatte.d at the default capacity of the drive in use. However, when it

56 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

becomes necessary to format a diskette at a capacity lower than that of the drive, then the
switch must be appended to the format command line, as shown here.

FORMAT A: /f :xxxx

The /f:xxxx style of specifying the desired diskette capacity was introduced in DOS 4.0.
For prior versions, it was necessary to append switches for tracks-per-side (/T:40, for
example) and sectors-per-track (N:/8) data. The /f:2880 size is new to DOS 5.0, and
requires a 2.88Mb diskette drive.

Some Format Size Cautions

Note that there are 40 tracks per side on all 5.25" diskettes except the l.2Mb diskette,
which accommodates 80 tracks per side. In order to write 80 tracks in the same space
formerly occupied by 40, the read/write head on a l .2Mb drive is considerably narrower
than the head on any other 5.25" drive, and therefore is the written track on the diskette
surface. This of course presents no problem when a l .2Mb drive is used with a 1.2Mb
diskette. But when such a drive formats a diskette to any other capacity, the diskette may
not work properly in some non- l.2Mb drives. This is because the narrow diskette track
width does not line up properly with the wide read/write head on the lower capacity drive.
Therefore, before formatting a lot of 360Kb diskettes in a 1.2Mb drive, do one or two
and try them out in the 360Kb drive. To be on the extra-safe side, at the first opportunity
copy all critical files to another diskette that actually was formatted in a 360Kb drive.

Many l.44Mb drives will format any 3.5" diskette at either 720Kb or l.44Mb. So it
may seem like a bargain to buy 720Kb diskettes and format them at 1.44Mb. You may
even get away with it for awhile. But, due to the different magnetic characteristics of the
two types of diskette surfaces, there's a very good chance that your ••t.44Mb" diskettes
will eventually become unreadable. In which case, the bargain will not be such a bargain
after all. So find some other way to save money, and buy the kind of diskettes you really
need for the job at hand.

Safe Formatting

Effective with DOS 5.0, the default format mode is a "safe format," in which your stored
programs, data files, etc. are not erased during the FORMAT operation. Instead, only the
FAT (file allocation table) and the root directory are wiped clean. As a consequence, the
entire disk surface appears to be (and in fact, is) ready to be reused. However, the
••missing" data can be recovered by the UNFORMA T command, should you discover (it
happens) that you really didn't mean to do that format in the first place.

The safe format features can be disabled - and formatting speeded up - by appending
the /Q and/or /U switches after the FORMAT command, as shown here:

FORMAT A: /Q /U

If neither the /Q nor the /U switch is used, the disk is safe-forinatted. The use of either
switch modifies the operation as described below.

DOS 5.0: An Overview 51

The /Q ("quick") Switch

This switch deletes the FAT and root directory, but saves this information elsewhere on
the disk surface for subsequent use by the UNFORMA T utility. The data area is left intact,
and the disk surface is not scanned for bad sectors. Therefore the /Q switch should be
used only on a previously formatted surface that you know is in good shape. In fact, if
the disk is brand new (unformatted) then an attempt to do a quick fonnat will display the
following error message:

Invalid existing format.
This disk cannot be Quickformatted.
Proceed with Unconditional Format (Y/N)?

The /Q switch also does not work with 160Kb and 320Kb diskettes that were previously
formatted with DOS versions other than than MS-DOS 5.0.

The /U ("unconditional") Switch

This switch also deletes the FAT and root directory, but does not retain this information
elsewhere for use by the UNFORMA T utility. The data area is likewise erased, and the
disk surface is scanned for bad sectors. With all data deleted, the disk surface cannot be
unformatted later on.

The/Qand/U Switches

To save even more formatting time, use both switches to reformat a diskette that is known
to be in good shape. The /Q switch prevents the /U switch from erasing the data area, so
data can be recovered by the UNFORMA T utility.

Safe Format Summary

The table below summarizes the effect of each switch on the FORMAT command.

Format Saves unformat Checks for Wipes out
switch info bad sectors program data

none yes yes no

IQ yes no no

/U ·no yes yes

/Q/U no no no

Note: These new DOS 5.0 switches make the FORMAT utility a bit more foolproof.
Now you must go to the trouble of appending the /U (only) switch if you really want to
do a thorough sector check and data erasure. Any other switch choice, including no

58 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

switches at all, leaves you with a recoverable disk. In other words, this is the only option
that performs a complete format procedure.

Use the /U switch to format a new diskette. With no previous information that needs
to be saved, this cuts down on formatting time yet insures that the surface is good.

When a formatted disk is reformatted to a different configuration (size, sectors, tracks),
the format is by default unconditional, since the track and sector layout must be rewritten
to suit the new configuration. If you wish to do this, but do not use the /U switch, the
following warning message will be seen before the format begins:

Existing format differs from that specified.

This disk cannot be unformatted.

Proceed with Format (Y/N)?

Add a Ltibel

The FORMAT command's /V:label switch has been around since DOS 4.0, and it hasn't
changed with DOS 5.0. It lets you enter the desired volume label at the beginning of the
FORMAT procedure, and if you use it, you won't be prompted for a label later on.
However, don't use the label switch if you're going to format more than one diskette,
unless you want all the diskettes to have the same label. Or, if you don't mind "cheating,"
append the /V: switch to the FORMAT command anyway, then hold down the Alt key
and type in 255 at the number keypad area of the keyboard. This gives each formatted
diskette a "label" of one blank space, which should at least prevent one diskette from
being confused with another later on.

Format Error Messages

If you attempt to format a disk that is almost full, the following error message may show
up:

Drive B error. Insufficient space for the MIRROR image file.

There was an error creating the format recovery file.

This disk cannot be unformatted.

Proceed with Format (Y/N)?

Despite the sinister tone of the warning, you can still unformat the diskette later on by
using the UNFORMAT command before writing new data. However, if you see this
message in the first place, consider it a warning to stop for a closer look at the directory
contents. Are you sure you want to consign everything to oblivion? If so, use the /Q and
/U switches described above to provide your files with a quick and painless death.

If you wish to proceed with formatting, but want to maintain the option to unformat
later on, answer no ("N" or "n") and make room for the UNFORMAT.DAT file by
transferring a few files elsewhere. Then repeat the FORMAT instruction.

DOS 5.0: An Overview 59

Help Screens

The DOSHELP.HLP file in the DOS subdirectory contains a brief description of each
MS-DOS and batch command. To display this list, simply type HELP at the DOS prompt
and press the Enter key.

For a more detailed help screen, type HELP, a space, and then the desired command
name. Or for slightly faster assistance, type the command name first and follow it with
the /? switch. For example, for help with the DIR command, type either

C>HELP DIR

or

C>DIR /?

to display the following help screen.

Displays a list of files and subdirectories in a directory.

DIR [drive:] [path] [filename] [/P] [/W] [/A [[:]attributes]]

[/O [[:] sortorder]] [/S] [/B] [/L]

[drive:] [path] [filename]

Specifies drive, directory, and/or files to list.

/P Pauses after each screenful of information.

/W Uses wide list format.

/A Displays files with specified attributes.

attributes D Directories R Read-only files

H Hidden files A Files ready for archiving

s System files Prefix meaning "not"

/0 List by files in sorted order.

sortorder N By name {alphabetic) s By size {smallest first)

E By extension {alphabetic) D By date & time (earliest

G Group directories first Prefix to reverse order

first)

/S Displays files in specified directory and all subdirectories.

/B Uses bare format {no heading information or summary) .

/L Uses lowercase.

Switches may be preset in the DIRCMD environment variable. override

preset switches by prefixing any switch with - {hyphen) - for example, /-W;

When you type HELP plus the command name, DOS searches the DOSHELP.HLP
file, and if it finds the name the complete help screen is displayed. For internal commands,
the help screen information is read from the COMMAND.COM file. For external
commands, the information resides in the external program itself. Thus, the DIR help

60 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

screen is embedded in COMMAND.COM, while the debug utility's help screen is an
integral part of the DEBUG.EXE program.

If the desired command name is not listed in the DOSHELP file, then a "Help not
available for this command" message is seen and DOS does not bother looking for a help
screen. The message may mean help is indeed not available, or simply that DOS didn't
find the command name in DOSHELP.HLP, as is the case with the undocumented
TRUENAME command (described below).

To bypass the search through DOSHELP.HLP, simply type the command name first,
followed by the /? switch. This sends DOS directly to COMMAND.COM or to the
appropriate external file to display the appropriate help screen. In the case of
TRUENAME, the help screen ("Reserved command name") still isn't much help though.

MIRROR

The new DOS 5.0 MIRROR.COM utility is a TSR program that saves disk-recovery data
for subsequent use by the UNFORMAT and UNDELETE commands that are described
below. For example, to keep track of future deletions on a diskette in drive B, simply
type MIRROR B: /TB at the DOS prompt (no colon after the drive letter following the
/T switch). This creates a read-only MIRROR.FIL file on the diskette and, the next time
you delete a file on that diskette, file-recovery data is written to a hidden
PCTRACKR.DEL on the diskette. The screen displays are shown here.

B:\>MIRROR A: /TA

Creates an image of the system area.

Drive A being processed.

The MIRROR process was successful.

Deletion-tracking software being installed.

The following drives are supported;

Drive A - Default files saved.

Installation complete.

With MIRROR in place, recovery from an accidental FORMAT or DELETE (or ERASE)
is considerably faster and less susceptible to error. If the MIRROR command line is
written into your AUTOEXEC.BAT file, then every time the system is booted, MIRROR
saves a copy of the file allocation table and root directory for the specified drive(s). The
information is written to a read-only file named MIRORSA V.FIL.

Saving Partition Information

The MIRROR utility can also save hard disk partition information to a diskette for
subsequent use by the UNFORMAT utility, should the need arise. To use this feature,
type the following command at the DOS prompt:

DOS 5.0: An Overview 61

MIRROR /PARTN

Now press the Enter key to display the following message:

The partition information from your hard disk drive(s) has been read.

Next, the file PARTNSAV.FIL will be written to a floppy disk. Please

insert a formatted diskette and enter the name of the diskette drive.

What drive? A

Assuming drive A is correct, press the Enter key. Or type in some other drive letter. The
PARTNSAV.FIL file is written to the diskette in the designated drive, and ··successful"
is displayed on screen. It's a good idea to make frequent use of this feature, as a regular
part of your disaster insurance program. For further details, refer to .. Rebuilding a
Partition Table" in the Unformat section below.

Quick! Where's the BASIC?

The old familiar GWBASIC has been replaced by Microsoft's QuickBASIC Interpreter.
The DOS 5.0 QBASIC program offers many of the features of Microsoft's complete
QuickBASIC program, although it is not possible to compile the BASIC programs
created with the interpreter. For that, you'll need to buy the complete program, which is
sold separately.

To delete line numbers from a program written under the earlier GWBASIC, load
QBASIC and then run the included REMLINE.BAS program. Many programs change
the cursor shape from its standard blinking underline to a horizontal rectangle as a visual
cue that the insert mode is enabled. In this. mode text may be inserted into a line without
overstriking whatever is already there. Instead, characters to the right of the cursor simply
move right to make room for the inserted text. Although QBASIC also offers this facility,
it keeps you on your toes by reversing the de facto cursor standard: a blinking underline
indicates the (default) insert mode, while a vertical rectangle appears when the insert
mode is disabled.

Note that the new DOS 5.0 EDIT utility requires the presence of the QBASIC.EXE
file. So, even if you have no plans to use QBASIC, don't erase it unless you also don't
want the EDIT utility.

SETVER

Once DOS 5.0 is installed, if an application displays a .. Wrong DOS version" error
message, the SETVER command can be used to modify a DOS version table stored in
the MSDOS.SYS hidden file. To view the existing table, type SETVER without any

62 DOS Power Tools, 2nd Edition, Revisedfor DOS 5.0

parameters and press the Enter key. This displays a table of existing programs and the
DOS version required for each one, as shown by the following table excerpts:

EXCEL.EXE 4.10

MSCDEX.EXE 4.00

IBMCACHE.SYS 3.40

NET.COM 3.00

METRO.EXE 3.31

If your version of say, WHATEVER.EXE demands DOS 3.10, you can add this
information to the table by entering the following command:

SETVER WHATEVER.EXE 3.10

To make sure you 're properly impressed by the gravity of fooling around with version
numbers, the following message is displayed:

WARNING - The application you are adding to the MS-DOS version table

may not have been verified by Microsoft on this version of MS-DOS.

Please contact your software vendor for information on whether this

application will operate properly under this version of MS-DOS.

If you execute this application by instructing MS-DOS to report a

different MS-DOS version number, you may lose or corrupt data, or

cause system instabilities. In that circumstance, Microsoft is not

responsible for any loss or damage.

Version table successfully updated. The version change will take

~ffect the next time you restart your system.

To verify that the table has indeed been updated, type SETVER again and press the Enter
key to display the revised table. Note that although the above warning message indicates
that the change has already been written to the version table, you must reboot the system
in order for it to take effect. So if you decide you don't want to keep the change in the
table, delete it before rebooting by typing

SETVER WHATEVER.EXE /DELETE

Note: Although SETVER modifies the version table hidden within itself, neither the
length of the file nor its file creation date are changed.

SETVER and Virus Detection Utilities

Some some virus detection utilities display a warning message if a file has been recently
modified, while others monitor the system files for tampering. Since the SETVER
command modifies the SETVER.EXE file, such utilities will either report this file as a

DOS 5.0: An Overview 63

as a possible suspect for virus infection, or warn you of impending attack as SETVER is
about to revise the version table.

If virus detection is a consideration, you may want to run a routine virus check before
using the SETVER command, to make sure no files are corrupted. Then, use the SETVER
utility as required and follow it up by immediately running the virus check once again,
this time ignoring the warning message; or if an online virus detection utility prevents
SETVER from doing its work, temporarily disable it until SETVER is finished.

The SHELL Game

For the DOSaphobic computer user, the big news about DOS 4.0 was the brand-new
shell. If you just couldn't handle long, involved, exacting DOS commands, and didn't
like the idea of facing a blank screen each time you started up, the shell did away with
all that. You• d never again have to stare at a DOS prompt unless you really wanted to.

The Shell can indeed make hours at the keyboard far less intimidating for anyone who
refuses to crack the manual. Once you learn which keys control what operations, you'll
be amazed at how easy it is to to run, print, move, copy, delete, rename, view or sort just
about anything. Yet the Shell isn't for everyone. Yes, it can make life easier for the casual
user, the beginner and the confirmed DOS hater. But if you're reading this book, you
may not want or need it, although you should know how to configure it and what it can
do in case you have to set things up for a DOS novice.

The Shell can do a few things that DOS alone can't do, such as renaming subdirectories.
In the pre-Shell era you had to go through a four-step ritual: 1. Create a new subdirectory,
2. Copy the old subdirectory files into it, 3. Delete the files in the old subdirectory, and
4. Remove the now-empty old subdirectory. Five minutes of nuisance work just to rename
a subdirectory. And if you made a mistake during the copying process, you could actually
wipe out all your files by concatenating them into one big useless file.

Installing the Shell

During the initial DOS 5.0 installation procedure, a DOSSHELL line is inserted into your
AUTOEXEC.BAT file, unless you chose not to select this option, as described earlier in
this chapter in the DOS 5.0 installation section. If the Shell is not automatically loaded
during bootup, you can start it from the DOS prompt at any time simply by typing
DOSSHELL and pressing the Enter key.

In either case, the first screen you'll see is the MS DOS Shell screen shown in Figure
2.2. The screen is divided into several sections.

Menu Bar

This is a single line across the top of the screen which lists the available menus. On startup
the listed menus are; File, Options, View, Tree and Help. Press the Actions function key
(FlO) to gain access to these menu options. When you do, the File option is highlighted,

64 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0
Starting address

segment contents•
in hex

decimal
in Kb begin extended memory

FCOO
FSOO
F400
FOOO

ECOO
ESOO
E400
EOOO

OCOO
0800
0400
0000
ccoo
csoo
C400
cooo
BCOO
8800
8400
8000
AOOO

8000
6000
4000
2000
0000

1

J~--,BIOS
976
960--
944
928

I BASIC

m--, LIM XMS ')::: token ring

832-· -
816 --•token ring
800 --• XT hard disk • ESOI controller

~:==•EGA •VGA

~~ ::::: t: C/GA

f~ -- iiiil VGA, MCGA - MOA (4Kb)

• Each line= 16Kb
•• Each line = 128Kb

• = ROM; :)}c, = RAM

Figure 2.2. MS DOS Shell Screen

and you can toggle through all the others by pressing the Tab key or using a mouse if one
is installed.

As a typical example, wander over to Options, press the Enter key to view the
pull-down Options menu, and select Colors. You can do this in one of three ways: drag
the mouse down to Colors, or type the letter .. o .. (as in cOlors), or hit the down arrow key
a few times to move the highlight bar to Colors and then press the Enter key. In any case,
you'll see a menu of screen colors, including those perennial favorites, Hot Pink, Emerald
City and Turquoise. If you 're leery (you should be) about any of these decorator delights,
preview it by toggling over to the Preview bar. Then take two Excedrin and go back to
one of the other selections.

Drive Selector

Immediately below the Menu Bar is the name of the current directory, followed by a list
of all your active drive letters. The current drive letter is highlighted.

Directory Tree

Just below the Drive Selector area, the left side of the screen shows the directory tree for
the current drive. The tree is pruned though: it only shows the first level of subdirectories
within the current directory. If any of these contain subdirectories of their own, a plus
sign shows up within the brackets to the immediate left of the name. To view the next
level of subdirectories, toggle down to one of these plus signs and press the + key. Or
press Ctrl-Shift-Asterisk to light up the complete directory tree. As you toggle through
the directory tree, the File List to the right of the screen shows the filenames in the selected
directory.

DOS 5.0: An Overview 65

File List

The area to the immediate right of the Directory Tree shows the first eight files within
the current directory.

Program List Area

On start up, the bottom half of the screen shows a "Main" menu listing of four options:
· Command prompt, Editor, MS-DOS QBasic and [Disk Utilities]. The brackets around

the latter option indicate that it leads to additional options. These are disk copying, backup
and restore, quick and regular format and undelete.

Perhaps the biggest attraction of the DOS Shell is that it gives a reasonably clear map
of the total system, which is certainly a lot more informative than staring at a DOS prompt
and wondering what's really out there. Given a mouse or some hands-on experience
navigating the Shell via the keyboard, it's quite easy to get from anywhere to just about
anywhere else in the system. On the other hand, you can get there a lot faster from the
DOS prompt, provided you know where you want to go in the first place.

If you're still feeling your way around your PC, or around DOS 5.0, stick with the
Shell for awhile. You'll know when it's time to seek out the DOS prompt. In the
meantime, don't overlook the possibilities of task-swapping.

Task Swapping

If you need multitasking, you'll just have to switch to OS/2. Oh yeah? Before you chuck
DOS, select Options and toggle on down to Enable Task Swapper. When you enable the
option, the Active Task List in the lower right-hand quadrant of the screen lists the
programs you want to run simultaneously. Assuming there are not yet any names in the
list, just start any program by highlighting its name in the appropriate subdirectory and
pressing the Enter key. While the program is running, press Ctrl + Esc to return to the DOS
Shell. The name of the program should now be seen in the Active Task List. Now start
some other program.

To return to the first program, hold down the Alt key, press the Tab key once but do
not release the Alt key. The screen clears, and a bar at the top lists a program name or
MS-DOS Shell. Press the Tab key a few times to toggle through the available selections
(which come from your Active Task List). When you see the desired name at the top of
the screen, release the Alt key, and that program starts running. Now use the Alt and Tab
keys to switch back and forth between programs. (It takes a bit of practice.)

To remove a program from the active list, simply exit the program in the usual manner.
The program name disappears from the Active Task List. Or, you can Tab over to the
Active Task List, select the program you want to delete, and press the Delete key. If the
program happens to be active, you will be warned about a potential data loss. You can
either return to the program and make an orderly exit, or bail out from here anyway.

You can also add a program to your active list by selecting its name and pressing
Shift+ Enter. The name shows up on the active list and the program can be run as just
described.

66 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

To disable the Task Swapper, first delete all programs from the Active Task List, then
select Options and again move down to Enable Task Swapper. When you press the Enter
key, the now-empty Active Task List is deleted from your screen.

Undeleting a Deletion

File destruction need not always be wholesale: it's just as easy to accidentally erase just
a file or two with the FORMAT command. In this case, the DOS 5.0 UNDELETE
command comes in handy. For example, let's say you •ve just erased COMMAND.COM
from drive C, and that the MIRROR utility is in place. Let's see what happens when you
simply type UNDELETE. The screen display will look like this:

Directory: C:\

File Specifications: *·*

Deletion-tracking file contains 1 deleted files.

Of those, 1 files have all clusters available,

O files have some clusters available,

0 files have no clusters available.

MS-DOS directory contains 1 deleted files.

Of those, 1 files may be recovered.

Using the deletion-tracking file.

COMMAND COM 47845 3-22-01 5:10a ... A Deleted: (date and time)

All of the clusters for this file are available. Undelete. (Y/N)?Y

File successfully undeleted.

If the MIRROR utility had not been loaded, then the final lines of the screen display
would look like this:

?OMMAND COM 47845 3-22-01 5:10a ... A Undelete (Y/N)?Y

Please type the first character for ?OMMAND .COM: C

File successfully undeleted.

The /L (list) switch can be used with UNDELETE to simply display a list of all files and
subdirectories found by the UNFORMATutility.

DOS 5.0: An Overview 67

Unformatting a Format

Ifyou•ve ever lost important files by accidentally formatting a diskette, you'll appreciate
DOS 5.o·s new UNFORMAT command, which restores such information, provided
certain conditions are met. The diskette must have been previously fonnatted under DOS
5.o·s default "safe format" mode, in which information essential to file recovery is
preserved for future use. And, you must not have written new files to the disk before
attempting the unformat procedure.

Assuming the MIRROR utility is active, you can unformat your diskette by simply
typing

UNFORMAT A:

You '11 see a screen display that looks like this:

Restores the system area of your disk by using the image file created

by the MIRROR command.

WARNING ! ! WARNING ! !

This command should be used only to recover from the inadvertent use of

the FORMAT command or the RECOVER command. Any other use of the UNFORMAT

command may cause you to lose data! Files modified since the MIRROR image

file was created may be lost.

Searching disk for MIRROR image.

The last time the MIRROR or FORMAT command was used was at (time) on (date).

The prior time the MIRROR or FORMAT command was used was at (time) on (date) .

If you wish to use the last file as indicated

above, press L. If you wish to use the prior

file as indicated above, press P. Press ESC

to cancel UNFORMAT.

L

The MIRROR image file has been validated.

Are you sure you want to update the system area of your drive B (Y/N)? Y

The system area of drive B has been rebuilt.

You may have to restart the system.

Type DIR B: to display your directory listings. If all went well, all the files in your root
directory and subdirectories are recovered.

68 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

A Worst-Case Unformat

Now let's assume that Edsel Murphy has been "helping" you maintain your system. You
have a critical diskette that was formatted with the /Q and the /U switches, so although
the data area is not erased, the FAT and directory listings have not been saved. And of
course you forgot to use the MIRROR utility. Well, all is not lost (yet). Retry the
UNFORMA T command with the /U switch. Whatever this /U stands for (the manual
doesn't say), it permits UNFORMAT to work (slowly, very slowly) in the absence of the
MIRROR file. However, only your subdirectories and the files contained therein will be
recovered. Files in the root directory remain lost.

The following example shows the various screen displays when the /U switch is used
to unformat a diskette in drive B.

UNFORMAT B: /U

Insert disk to rebuild in drive B:

and press ENTER when ready.

CAUTION ! !

This attempts to recover all the files lost after a
format, assuming you've not been using the MIRROR command.

This method. cannot guarantee complete recovery of your files.

The search-phase is safe: nothing is altered on the disk.

You will be prompted again before changes are written to the disk.

Using drive B:

Are you sure you want to do this?

If so, press Y; anything else cancels.

?Y

Searching disk ...

100% searched, 2 subdirectories found.

Files found in the root: O

Subdirectories found in the root: 2

Walking the directory tree to locate all files ...

Path=B:\

Path=B:\SUBDIR.1\
(the recovered subdirectory 1 contents appear here)

Path=B:\SUBDIR.2\

(the recovered subdirectory 2 contents appear here)

Path=B:\

DOS 5.0: An Overview 69

Files found: xx

Warning! The next step writes changes to disk.

Are you sure you want to do this?

If so, press Y; anything else cancels.

? y

Checking for file fragmentation ...

Path=B:\

Path=B:\SUBDIR.1\

Path=B:\

Path=B:\SUBDIR.2\

Path=B:\

xx files recovered.

Operation completed.

Type DIR B: to see what your unformatted diskette looks like. Since the prior FORMAT
did not save the root directory and MIRROR was not in use, no files in your root directory
are recovered and your subdirectories have lost their original names and are now labeled
SUBDIR.1, SUBDIR.2, and so on. It's not great, but it's better than losing the whole
works.

Rebuilding a Partition Table

The UNFORMA T utility may also be employed to restore a corrupted hard disk partiti<?n
table. To do so, type UNFORMAT JP ARTN at the DOS prompt. You will be prompted
to insert the diskette containing PARTNSAV.FIL into drive A. (See .. Saving Partition
fufonnation" in the MIRROR section above for details on the PARTNSAV.FIL file.).

With the PAR TN SA V .FIL diskette in place, press the Enter key to display a summary
of the partition table that will be rebuilt on your hard drive, such as the one shown here.

Partition information was saved by MIRROR 6M, (date and time)

Old partition information for fixed disk # 1 (DL=80h)

Total - size start _partition End_partition

Type Bytes Sectors Cyl Head Sector Cyl Head Sector

- - - - - - - - - - - ----------------- - - - - - - - - - - - - - - - - ------------- ---

DOS16 Boot 32M 65504 0 1 1 31 63 32

DOS16 30M 61408 32 1 1 61 63 32

DOS16 30M 61408 62 1 1 91 63 32

DOS16 23M 47072 92 1 1 114 63 32

Options: Q - quit, take no action.

1 - restore partition records for fixed disk # 80h.

Which option?

Rel#

32

32

32

32

70 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

To continue, press the 1 key. You will be asked if you 're really sure this is what you
want to do. If so, type YES and again press the Enter key to actually do the restoration.
When the operation is completed, press the Enter key one more time to reboot the system.

DOS Documented and Otherwise, or, When All Else Fails,
Read the Manual

Not the least attraction of DOS 5.0 is its entirely new documentation, some of which is
actually written in English. Here's a brief overview of what you'll find.

DOS 5.0 User's Guide And Reference.

This 600+ page manual is divided into the following sections:

Part 1 MS-DOS Fundamentals
1 Learning About Your Computer
2 Command-Line Basics
3 MS-DOS Shell Basics

Part 2 Working with MS-DOS
4 Working with Files
5 Working with Directories
6 Managing Disks
7 Advanced Command Techniques
8 Customizing MS-DOS Shell
9 Working with MS-DOS Editor

Part 3 Customizing MS-DOS
10 Working with Batch Programs
11 Customizing Your System
12 Optimizing Your System
13 Customizing for International Use

Part 4 MS-DOS Reference
14 Commands
15 Device Drivers

Appendixes
A
B

Index

Keyboards and Their Codes
Messages

Perhaps the best feature of the User's Guide and Reference is its "Commands" chapter
(14), which includes just about everything you need to know for daily operations. Listed
alphabetically are all the DEBUG and EDLIN parameters, batch commands, FORMAT
instructions and, of course, all the routine DOS commands. The layout will come as
blessed relief to users upgrading from IBM's DOS 4.0 manual, in which it was almost
impossible to find anything without consulting the index first.

DOS 5.0: An Overview 71

For further infonnation about various commands, the cross-referencing to earlier
chapters is good but not great. For example, the DOS command in Chapter 14 suggests
that, "For an introduction to using the DOS command and reserved memory, see Chapter
12." Needless to say, there are no headings in that chapter for either the DOS command
or for reserved memory. No doubt the infonnation is buried in there somewhere (it's a
big chapter) but you'll have to do a page-by-page search to ferret it out. Once you do find
it, mark the DOS section of Chapter 12 accordingly, in case you need to find it again
later.

The front of the book infonnation is extensive, but could be better organized - you'll
need to do a lot of skipping around to find all you need to know about any topic. Again,
make your own marks as you go, for future reference. At the back of the book many error
messages don't show up in the "Messages" appendix (B), and the index still needs some
work.

Well, software documentation is supposed to be difficult to read, if only to make books
like DOS Power Tools so valuable. But as such tomes go, the Microsoft User's Guide
and Reference is a cut or two above much of the competition, if not yet up there with
Hennan Melville and friends.

Don't forget to READ ME

In addition to the User's Guide, don't overlook the README, APPNOTES, UMB and
any other text files found in the DOS subdirectory - look for files with a TXT extension.
Here you'll find the latest infonnation on changes that didn't make it into the regular
documentation, up-to-date notes on various hardware compatibility issues, memory
management details, and so on.

The Packing List

Another bit of documentation is the PACKING.LST file found on one of the DOS 5.0
distribution diskettes. This uncompressed file shows the names of all the programs on
the entire set of diskettes. For the benefit of users who will install DOS 5.0 on diskettes,
PACKING .LST also shows the correct contents for each diskette that will be made during
the installation.

Neither list of filenames is in alphabetical order, which is no big deal unless you refer
to the list frequently, in which case it's a nuisance. If you want to sort the list for easier
access, first make a copy of that part which lists the distribution diskette files. Using your
word processor, search for every hard carriage return symbol and replace it with a tab
and a return symbol. Now move the cursor down to the first filename on the last diskette.
Replace every tab return pair with tab-(x)-return, where x is the number of the last
diskette. Now move up to the next-to-last diskette and do it again, but this time make x
the number of that diskette. Repeat the procedure for each diskette in the list. When you 're
finished, sort the list. The result should look something like this:

5202.cp_ (5)
ansi. sy_ (2)

72 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

append.ex_ (5)
appnotes.txt (6)

assign.co_ (5)
attrib.ex (5)

autoexec.bat (1)
backup.ex_ (5)
cga.gr (3) -

and so on. The number in parentheses is of course the diskette on which the listed file is
found.

The Undocumented Side of DOS

Psst, want to look at something you're not supposed to see? It's easy, if you enjoy a little
detective work. It's the kind of snooping every experienced user does if there's even the
slightest hint of undocumented goodies lying within the latest version of DOS. The trick
is first to find one of them, and then to figure out what to do with it.

The first part is easy. DOS comes with two kinds of commands, external and internal.
The external commands are the ones you see in the DOS directory - all those standalone
programs with the COM and EXE extensions, such as CHKDSK.COM or XCOPY.EXE.
To run any one of these, all you need do is type its name (minus the extension) and hit
the Enter key - that is, assuming the program with that name is in the current directory,
or that your PATH control knows where to find it.

However, the names of important commands such as DIR, COPY, RENAME, ERASE
- as well as batch file commands like GOTO, ERRORLEVEL and IF - don't show up
in the DOS directory at all. Instead, the main COMMAND.COM file contains both the
name and the instruction code for each of these commands. Hence, they're referred to as
internal commands, and DOS stores them in a dispatch table at the very end of the
COMMAND.COM file.

All internal commands have priority over external commands and batch files with the
same name. So unless you know a little trick (add a.\ prefix), you'll never be able to run
a batch file called DIR.BAT, since DOS will find its internal DIR command first and
never even get to your DIR.BAT file.

If you want to see COMMAND.COM's table of internal commands, just type DEBUG
\COMMAND.COM and then type the lines below that start with DEBUG's hyphen
prompt. The intervening lines are displayed in response to your instructions.

-S 100 fffe 11 PATH=PROMPT 11

xxxx:A7A3
xxxx:E003

-D A7A3

What all this means is that you've instructed DEBUG to search for the
"PATH=PROMPT" string, which it finds at the two locations beginning with xxxx. In

DOS 5.0: An Overview 73

the last (-D) line, you're telling DEBUG to display the first occurrence of that string,
which happens to mark the beginning of COMMAND.COM's dispatch table. You should
see the string on the right-hand side of the screen, followed by some meaningless (to you,
that is) characters and a lot of periods.

Now alternately press D and the Enter key a few times to move through the complete
table. Interspersed amongst all the meaningless characters, you '11 see NOT,
ERRORLEVEL, EXIST, DIR, CALL and all the other internal commands. Keep an eye
out for words you don't recall seeing before. Like TRUENAME.

So, now you know there's this new DOS command called TRUENAME, but with no
documentation you don't know what it does. Unless you 're an absolute DOS DEBUG
demon, now's the time to bail out of DEBUG. Press Q and the Enter key to return to the
DOS prompt.

Well, go ahead and get it over with: type TRUENAME at the DOS prompt and see
what happens.

Nothing. It turns out that the command only does something after you've used SUBST,
ASSIGN or JOIN. Taking SUBST as an easy example, it's used to assign a single drive
letter to a long subdirectory path, as in SUBST H: C:\LETTERS\FINANCE\MARCH

From now on, whenever you need access to

C:\LETTERS\FINA~CE\MARCH, simply log onto drive H instead.

But what is drive H's true name? Just type TRUENAME H: to find out. As you may
suspect by now, you'll see the C: \LETTERS (etc.) line displayed on screen. So, it turns
out that TRUENAME can help sort through the confusion generated by SUBST and the
other two DOS "alias" commands, ASSIGN and JOIN.

SUBST can fool old dBASE or early WordStar programs into loading their overlay
files from a subdirectory instead of a diskette, and it lets you put a single drive letter
instead of a long search path into your PATH and APPEND strings. Besides, it's a lot
easier to switch back and forth between \PROGRAMS\NEW\WORDPROC\MSWORD
and \DOS\UTILS\DISK\TOOLS by referring to them as drives M and T.

ASSIGN will soothe a cranky application that insists on having certain files on
diskettes in drives A or B. And with JOIN, files in different locations can be treated as if
they were all in one place.

All this can be useful. But if you're doing too much of it at 3:00 AM and you make
backup copies or delete files without thinking about what you 're doing, you can really
screw things up. In this case, TRUENAME comes to the rescue by reporting the real
identity of each drive or subdirectory. For example, if you're logged onto drive T and
can't remember what it really is, just type TRUENAME and press the Enter key. You'll
be reminded that drive Tis your \DOS\UTILS\DISK\TOOLS subdirectory. Or if you 're
elsewhere at the moment when uncertainty strikes, type TRUENAME followed by the
drive letter in question and a colon. Again, TRUENAME gives you the information you
need.

Very nice, but why is there no documentation in either DOS 4.0 where TRUENAME
was introduced, or in DOS 5.0? Well, there's an old saying that

74 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

Hardware folks workfrom dawn 'til setting sun,
But a programmer's job is never done.

There's always some little bit of code that wants tweaking, or an exotic bug that needs
to be sprayed. Most of the time the programmers get all the kinks out (well, most of the
kinks) before the software is released. If a feature isn't working just right yet, it can be
disabled before the production runs, yet the feature's instruction code may remain in
place, even though the feature itself is not quite ready to be brought to the public's
attention.

It wasn't always like this. In the early days, some software actually went out the door
with known bugs crawling around inside. Today, this doesn't usually happen. Or if it
does, the manual carries lots of warnings not to do the thing that still has the bug.

TRUENAME seems to work well, and if there are bugs they're rather well-behaved
(so far). Since it wasn't entirely disabled, maybe it won't cause havoc. But then again,
maybe it will. So if you're the overly cautious type, don't tempt the fates by invoking its
name. But if your files are all backed up (really), and you like to live dangerously,
well ...

Beyond 5.0
It seems that every time you pick up a computer publication, the guru-de-jour is predicting
the imminent demise of DOS. It's possible to make a strong case for a slick multitasking
operating system with a friendly front end, but OS/2 isn't it. It's also easy to make a case
for something as friendly and intuitive and technologically dazzling as the Mac or the
NeXT machine, but the massive body of DOS software offers a tenfold quantity
advantage over the software for those two sexy systems put together. And people buy
their hardware because of the software. It's even possible to consider an interim step like
some of the new and markedly improved Windows versions, but if you 're interested in a
GUI (Graphical User Interface), Apple does it better.

The truth is that the huge base of IBM-compatible systems isn't one market; it's three.
At the beginning of the 1990s, according to Microsoft chairman Bill Gates, there were
over 40 million DOS machines in use. One market comprises several million high-priced,
high-end corporate systems stuffed with expensive peripherals that let their users talk to
mainframes all day. There's another market of systems used for education, impressing
office visitors, and letting the kids zap aliens. This might include a subset of a few million
doddering antiques and closet dwellers. But take all that away from Bill's 40 million
DOSers and you 're still left with a nice little core market of 20 to 30 million serious
average users.

Many of these folks struggle along as best they can, avoiding anything tricky and
running batch files set up by someone else a long time ago. These low-current users are
intimidated by the hardware and software documentation, and are reluctant to spend
whatever time it might take to become power users. Which is unfortunate.

DOS 5.0: An Overview 15

But these millions of users do have a lot of investment tied up in their DOS. They or
their companies have spent a bundle of bucks to buy hardware and software. Even more
important, they've spent their own time learning how to copy files, fonnat disks, start a
program, load data and do all the dozens of chores we all face daily. Is this megagroup
suddenly going to chuck it all and run to OS/2? Not likely.

The real tragedy is that DOS is extremely powerful and flexible, if you know just the
right tricks and have just the right tools. But the DOS manual is no great teaching aid,
and DOS sometimes doesn't provide the tools anyway, although DOS 5.0 certainly goes
a long way to remedy both ills. But of course there is still much that needs to be done.
For example, should one really have to deal with crotchety IF ERRORLEVEL syntax;
and shouldn't DOS provide at least one program for returning ERRORLEVEL codes?
Why even give this powerful feature an intimidating name like ERRORLEVEL? Even
though it can be used to report whether your formatting operation ran into trouble, it's
vastly more useful as an interactive tool.

Some programmers hate DOS because it doesn't give them all the memory they need
for fat, sloppy code or slapping on tons of flashy features. On the other hand, other
programmers like DOS because they can write tight, efficient Assembly Language code
(which you really can't do as easily with OS/2), and because their programs can
communicate directly to the hardware.

Face it - DOS is never going to be OS/2. But at least for a while, neither is OS/2.
Software upgrades have to be vastly better than their predecessors, or users just can't be
bothered. Until someone can demonstrate that a hot new operating system is significantly
better, the millions of DOS users will remain faithful.

In the future, DOS will get even friendlier and more tractable, but it's never going to
be a slick multitasking protected mode system with decent interprocess communications,
terrific memory management, and an awesome interface.

Go back and read that last sentence again. It was taken word-for-word from the
previous version of DOS Power Tools, Second Edition. So if you've read this chapter
carefully, you may want to suggest that a writer must never say "never." DOS 5.0 has
chipped its way into multitasking, memory management is much improved, and the
interface - if not totally awesome - is at least much improved.

But do most users really need even more than this? Only if new applications suddenly
arrive that blow today's software into the weeds and don't run under DOS. This hasn't
happened, and it probably won't for a few years. Besides, DOS works on just about
anything from an old PC-1 to a pocket machine to the newest high-end hardware. OS/2
doesn't want to play on any of the 8088 and 8086 systems.

If you really need to run several huge programs concurrently and swap data from one
to the other, and you have a sufficiently new system, try OS/2. But if you're like most
users, you '11 benefit even more - at least for the next few years - by learning how to
tame DOS and add powerful tools to it. This book shows you how.

Disk Organization,
Files, Filenames

The first thing most users do when they walk over to a computer equipped with a hard
disk is type DIR to see what's there. On a well-organized system you'll probably see
something like:

Volume in drive C is WORKDISK
Volume Serial Number is 104F-16CD
Directory of C:\

COMMAND COM 37637 6-17-88 12:00p
CONFIG SYS 47 10-18-90 7: 07a
AUTO EXEC BAT 256 10-18-90 12:01a
DOS <DIR> 10-18-90 7:09a
WORDS TAR <DIR> 11-06-90 12:22a
DEASE <DIR> 2-11-90 12:00a
LOTUS <DIR> 12-03-90 12:02a

7 File(s) 28220672 bytes free

However, try this on a disorganized floppy disk system and you '11 see a real mess:

Volume in drive A has no label
Volume Serial Number is 104F-16CD
Directory of A:\

77

78 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

TF86 CDY RPT 65387 1-01-80 7.: 07a
TF86 CDY BAK 54396 1-01-80 12:01a
RRXWFEB7 4QS 6754 1-01-80 7: 07a
FIN 54TT RPT 11239 1-01-80 ll:Olp
SPELL IT <DIR> 1-01-80 12:02a
PROSEWIZ EXE 86456 4 -17 -87 9:54p
FIN 54TT BAK 9437 1-.01- 80 5:07p
COMMAND COM 37637 6-17-88 12:00p
AUTO EXEC BAT 256 1-01-80 12:01a

etc.

When you type DIR and press the Enter key, DOS shows you what's in the directory
that you happen to be using. Directories are storage bins, like drawers in a file cabinet.
Just as some file cabinets prevent you from opening more than one file drawer at once,
you can look at the contents of only one directory at a time. Each line in the main part of
a DIR listing represents either a single file stored in that directory, or the name of another
related directory on the same disk.

And just as some well-organized workers keep their file cabinets in meticulous shape
and can find any document in seconds, while others live in the shadow of chaos and can't
find anything without tedious searching, disks can be well-organized or in total disarray.
Fortunately, once you know the basic techniques and have a few powerful programs
handy, your computer can do all the organizing for you. This book will show you the
tricks and provide the programs you need.

The Physical Disk
All diskettes and hard disks use the same basic technology. The surface of each is coated
with a material that can store lots of isolated magnetic charges. An electromagnetic coil
of wire or special "stepping .. motor propels a tiny magnetic read-write head over the
surface of the disk. When you want to store information, you tell a controller circuit to
move the magnetic head to an unused part of the disk, then send signals into the head that
alter the magnetic charges on a small adjacent area of the surface. When you want to
retrieve information, you have the controller move the head to the appropriate area and
tell the head to sniff out the pattern of magnetic charges located there.

It's actually a lot more complicated than this. When you issue a command, something
has to interpret your typing and figure out what you 're trying to do. If it determines that
you want to load a program, it has to decipher the name and location of the file, and look
on the appropriate disk to make sure it's there. Files are normally stored in small chunks
scattered over the surface of the disk, and something has to thread all the chunks together,
then find an unused area in memory and copy the chunks there in the right order. At this

Disk Organization, Files, Filenames 19

point things get even more complex, since something has to rope off the area of memory
that holds the program, set up other memory areas for storage, see if you entered any
parameters after the name of the program that need processing, and pass control to the
program.

Fortunately, DOS handles all the details. All you have to do is type in the filename and
press Enter.

Individual floppy disks on IBM's earliest PC could hold a mere 64 files, or 160,256
bytes of programs and data. As users began demanding bigger and more efficient systems,
manufacturers first tried cramming additional storage space onto the same 5-1/4 inch
floppies. But as space needs skyrocketed, vendors started introducing increasingly large
hard disks - as well as 3-1/2 inch diskettes that could store as much as 1,457 ,664 bytes
of information - more than nine times the capacity of the first PC diskettes.

IBM's first hard disk, for the XT, held ten megabytes; the first for the AT could store
20 megs. Users accustomed to floppy disks initially wondered how they could possibly
fill so relatively enormous a storage space. But having all their programs and files at their
fingertips was so seductive that users quickly clamored for more. Stacks of today's
muscular hard disks and optical disks can salt away bytes in the gigabyte range (giga
means billion and is pronounced "jig-guh" the way gigantic is pronounced "jy-gan-tic"
- although most users say "giga" with a hard g as in "gargantuan").

But DOS wasn't designed for such massive storage. It doesn't store data in long,
continuous, uninterrupted blocks of space. If it did, making additions and deletions to
files would become insanely inefficient, since each time you made a file longer, DOS
would have to find a brand new uninterrupted amount of disk area to store the enlarged
file. So DOS divides files up into little pieces and stores the pieces in small areas called
clusters.

Clusters are made up of sectors. Each sector - the smallest possible user storage area
on any DOS disk - is 512 bytes long. On some disks, like the earliest single-sided l 60K
and l 80K floppies, or the high-density 1.2 megabyte 5-1/4 inch and 1 A4 megabyte 3-1/2
inch diskettes, each cluster contains just one sector. At the other end of the scale, the
absurdly inefficient ten-megabyte XT hard disk allots eight sectors to each cluster, which
means it takes 8 x 512, or 4,096 bytes to store even the smallest file on an original XT.
And some mammoth DOS 5.0 hard disks are even worse.

When you store a file on a disk, DOS splits it into cluster-sized chunks and starts
looking for vacant parts of your disk to hold these chunks. On a newly formatted hard
disk, all these chunks can be continuous and uninterrupted. But on a disk that's seen
months or years of heavy use - especially one that's nearly filled with data - DOS has
to look long and hard to find empty spaces, and may end up dividing a typical file into
dozens of fragmented clusters scattered all over the surface of your disk.

DOS relies on a chart called the File Allocation Table (FAT) to remember which
clusters on the disk are temporarily unused, and to keep track of where all the scattered
chunks of your files are located. It also uses a special nondisplaying part of the disk's
directory to steer itself into each file's very first cluster. But while the directory contains
the address of the initial cluster, the FAT maintains the addresses of all the rest of any
file• s clusters. The FAT is so important that most disks contain two identical copies, and

80 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

DOS updates both each time it adds, deletes, or changes a file. This way if one copy of
the FAT becomes damaged, DOS can consult the other for the vital mapping information
it needs.

A raw disk is sort of like a tract of undeveloped land that someone wants to tum into
a housing development crammed with one-acre lots. At first the land is just one large
uniform property that may have some random buildings, hills, gulleys, and dirt roads on
it. The first thing the developer does is flatten out the property, divide the land into lots,
and build a grid of roads that lead to each individual lot. He may find that one or two lots
contain jagged rocks or swampy areas that can't easily be converted into homes. Then
he constructs a main office and puts a map of the development on the wall, displaying
the addresses of each lot and marking off the few that have cliffs or quicksand that prevent
them from being sold. As buyers start purchasing homes, the developer crosses off these
lots one by one.

Fresh from the factory, a disk is just one large uniform surface that has some random
information on it (left over from the manufacturing process). The first thing a user has to
do with a disk is format it, which divides the disk into uniform sectors, evens out the
random magnetic hills and valleys in key places, creates the underlying maps and
structures, and reports any .. bad" sectors that are magnetically unstable or unfit for
holding data.

(Actually, hard disks require two kinds of formatting, low-level and high-level. To
continue our analogy, a low-level format is like drawing a map of the land. A high-level
format is like actually putting in roads. Most hard disks come from the factory with the
low-level formatting already done. And today many dealers even do the DOS high-level
formatting to spare users the grief of having to read the manual.)

When the developer first starts hawking his hundreds of homes, the map of available
lots is wide open, except for the few that are too craggy or wet to build on. Likewise,
when a disk is first formatted, its map of available sectors is wide open, except for the
few that are magnetically unsuited to store information. If one huge clan of families
approached the developer just as he started selling, and wanted to buy a long string of
homes adjacent to each other, the developer could easily put them all in a row, then cross
an entire contiguous block of homes off the map. But if the developer sold most of the
building lots to unrelated families, the map would start filling up in somewhat random
order. Over the years, many of these unrelated families would sell their individual homes
and move out, and the development would always contain some homes that were
temporarily vacant. If the clan descended on the development a few years after it was
built, they probably wouldn't be able to find a string of homes next to each other, and
would have to settle for one here, one there, one way over there, etc.

When a disk is newly formatted and empty, you can store files in relatively contiguous
clusters. But as you add new files and erase old ones, and make existing files smaller and
larger, you end up with pieces of your files all over the disk. It's far faster to load and
write files that aren't scattered in many pieces. Hard disk users should periodically make
full file-by-file backup copies of all their files, reformat their disks, and then put all the
important files back. This has three good effects:

Disk Organization, Files, Filenames 81

1. It makes sure everything is backed up.
2. It unfragments files so they load faster. When you back up a file, DOS takes all the

scatiered pieces from the far-flung reaches of your hard disk and puts them all together
in one continuous area on the newly formatted backup floppy or tape. When you go
back later and restore your backed up files to the newly formatted hard disk, DOS
writes the file in one long, efficient, continuous piece. Of course, as soon as you start
editing it again, the efficiency plummets. Because programs don't change much,
however, reformatting your disk and then copying programs back to it may speed up
loading dramatically.

3. It cl~ up unwanted files, giving you lots more free space on your hard disk. You'll
be surprised at how many files you'll decide aren't worth copying back to the hard
disk once you've backed them up. Having them available on a backup floppy or tape
means you can always retrieve them if you need to. But by not copying them back to
your hard disk, you'll end up with free space for new files - and you'll prevent the
wasteful "churning" DOS is forced to do when it tries to hunt down the few vacant
sectors on an overstuffed hard disk.

DOS had a serious design problem when it came to large hard disks. When you asked
it to store a file, DOS consulted the FAT to find out where the unused sectors were located.
And when you later asked DOS to load a file, it looked up the locations of the bulk of
the file's_sectors by again examining the FAT.

The engineers who originally designed DOS had to decide how big the FAT should
be. Making it too small meant limiting the number of bytes users could store on a single
disk. But if they made it too large, they would have ended up with an ungainly FAT that
would have. taken up too much raw space on each disk. (And remember, this was back
in the days when a standard disk~tte held a trifling 160K, the standard PC came with 16K
of RAM, and IBM seriously thought users were going to store their data on cheap tape
recorders.) They finally settled on giving the FAT a maximum of 16-bit addresses, which
meant that the largest possible table could have 64K worth of entries. Since each entry
on the chart was a sector 512 bytes long, the maximum size of any single DOS disk was
64K x 512, or 32 megabytes.

The first IBM hard disk FAT, for the XT, used 12-bit, or 1.5 byte, addresses. Each
address was made of three hexadecimal digits (16-bit addresses use four hex digits). But
since FAT values are. maintained as even pairs of hex digits, and because of the
"back-words" storage technique used by the CPU, juggling 12-bit FAT addresses can be
a real headache. Fortunately, DOS does all the work.

While 32 megabyte8 must have seemed enormous in the early 1980s, today it can seem
small and ci:amped. The FDISK command in IBM's PC-DOS 3.3 let users divide one
large physical hard disk into several smaller logical drives, each 32 megabytes or less,
and each with its own drive letter. Compaq DOS version 3.31 extended the idea of logical
drives by adding 32-bit FAT addresses, which allow logical drives as large as half a
gigabyte. IBM's DOS 4.0 finally smashed through the 32 Mb barrier, allowing single
enormous hard drives.

82 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

File Types
Files are either executable or nonexecutable. Executable files come in two classes -
most are programs (with COM or EXE extensions) that your system can run, such as
WordStar, or CHKDSK, or 1-2-3. But DOS can also execute batch files (with BAT
extensions), which are sequential lists of DOS commands and program names. DOS
churns through batch files a line at a time, executing any DOS. commands on each line
and running any programs you've specified there.

Most other files store data, in one of two forms. Some data files are in text or low-bit
ASCII format, which means that they contain nothing but the alphanumeric characters
you could produce on a conventional typewriter. You can use the DOS TYPE command
to read such ASCII files (although the TYPE command can also handle high-bit ASCII
characters without missing a beat). But such files waste lots of space, and aren't very
secure from prying eyes. Many data files are stored in proprietary nontext formats that
compress the data more efficiently than ASCII files, and keep the information safe from
snoopers. If you try using the DOS TYPE command ·on these, you ·u either see a
meaningless mass of what look like random characters, or a few familiar words inter
spersed with gibberish.

Some special kinds ofnonexecutable files, with extensions like SYS or ORV, contain
instructions that your operating system uses to control hardware better. The DOS
ANSI.SYS device driver gives you enhanced keyboard and screen control. VDISK.SYS
turns some of your memory into a virtual disk (as IBM calls it), or RAMdisk. And
DRIVER.SYS lets you use some of IBM's external oddball drives.

You may also see files on recent DOS disks that have PIP extensions, which stands
for Program Information File. IBM invented the PIP file for use with its Top View
operating environment. Although Top View is now extinct, Microsoft also used PIP files
for its Windows operating environment. Some programs are specially written to run under
Microsoft Windows. But many normal programs that run under DOS can still run under
Windows. Microsoft refers to these programs as either standard applications or old
applications.

Windows looks for a PIP file whenever you want to run an old application. The PIP
file contains information about the program and tells Windows things like how much
memory the application needs and how "well-behaved" the program is. An "ill-behaved"
program generally writes directly to the display memory. Virtually all word processors,
spreadsheets, and graphics programs do. Windows cannot run these programs in a window
and may have trouble multitasking them. It has to give up the entire display because it
has no way of knowing when the program will write to the screen. (A program that does
not write directly to display memory, but instead goes through DOS or the BIOS to
display everything, can be run in a window, share the screen with other applications, and
often be multi tasked.)

Program Files

Programs all sport either COM or EXE extensions. The COM stands for command and
the EXE for executable files, but they're really both executable. They're also unreadable.

Disk Organization, Files, Filenames 83

If you manage to peek inside one (using the COPY fB trick mentioned below) all you·n
see is beeping, flashing gibberish punctuated by any error messages and English-lan
guage prompts or instructions that happen to be imbedded inside the program code.

The gibberish is really just an artifact. Each byte of every program has a value between
0 and 255; your system interprets strings of these values as instructions that put your
programs through their paces. But since mM·s version of the ASCII character set
contains 256 separate characters with values between 0 and 255, when you display the
contents of a program onscreen your system prints the ASCII characters that happen to
represent the value of each byte. These characters generally have nothing to do with the
actual program instructions. The beeping and flashing is caused when your system tries
to display certain very low values that DOS interprets as control characters.

COM files are memory image files. The pattern of bytes in the file on the disk is exactly
the same as the pattern when the file is loaded into memory, which isn •t the case with
EXE files. They can•t be larger than 64K, and are generally more compact than EXE
files. DOS always loads COM files at offset lOOH (which is why DEBUG starts COM
files at address lOOH), and squeezes a 256-byte Program Segment Prefix (PSP) beneath
it. The bottom half of the PSP contains a lot of important addresses that tell DOS where
to find the things it needs, and the top half contains a copy of the command tail - the
part of the command line that you entered at the DOS prompt after the filename. Any
parameters and switches show up here. DOS also uses this upper area as a default Disk
Transfer Area (DTA), a file 1/0 buffer space.

The COM file extension came from the older CP/M operating system, since the first
versions of DOS were heavily based on CP/M. In fact, the COM file formats of CP/M
and DOS (including the PSP that DOS builds when it loads a COM file) are practically
identical. For software developers, this similarity helped ease the early transition to the
PC. Programmers could ignore the segmented addressing scheme of the 8086 and work
withjust 64K of program and data space, the same as under CP/M.

EXE files are gradually replacing COM files. The mix of code and data in the same
segment and the calculation of segment addresses outside the code segment are two of
the major stumbling blocks that limit PC programs to one megabyte of addressable
memory and prevent them from running under the 80286 extended-memory protected
mode. Strictly speaking, COM files no longer exist under OS/2, although you can still
run these programs in a "DOS Mode .. session. For the millions of older systems running
DOS, however, COM programs will still work as advertised.

While programmers once prided themselves on what tight, sleek assembly language
COM programs they could write, EXE programs today are often pieced together by teams
of coders who use higher-level languages like C and end up with enormous, often sloppy
programs that are relative memory hogs.

The EXE format started with DOS and can handle programs larger than 64K; in fact,
an EXE file can snatch around 600K in a typical maxed-out system. It does this by using
multiple segments for program code, data, and a special storage area called the stack (see
Chapter 7). Each of these segments can be 64K long. DOS looks at a special header at
the beginning of any EXE file to figure out how and where to load the individual
segments. Every EXE header contains information that DOS needs to load the program
into memory correctly, juggle the segment assignments, and allocate space for it to run.
You can't see this header information if you load the EXE file directly into DEBUG,

84 DOS Power Tools,. 2nd Edition, Revised/or DOS 5.0

because DEBUG uses the header to perform all the space allocation and fix-ups and gets
the program ready to run. But you can look at the header if you first rename the file to
give it an extension other than EXE and then load it into DEBUG. (But then you won't
be able to run it in DEBUG, so don't try.)

Use the following commands to examine the first part of the file header on a sample
EXE program called SAMPLE.EXE:

RENAME SAMPLE.EXE SAMPLE.XXX
DEBUG
N SAMPLE.XXX
L 0
D 0

Q

One value in the header specifies the number of 16-byte paragraphs needed after
the end of the loaded program. This extra memory space is used for the heap and the
stack. During calculations, the stack is used to store intermediate results. The heap
is used by the program mostly for dynamic storage. If a program executes a STRING$
command or DIMensions an array, the result has to be put somewhere, and it goes in
the heap. In a program that does a lot of dynamic string and array allocation, the heap
can get pretty cluttered up and disorganized. At times, normal execution can grind to
a halt while the program cleans up the heap in a process technically referred to as
"garbage collection."

You can examine the PSP by loading the EXE file (not the renamed XXX file) or COM
file into DEBUG. To look at SAMPLE.EXE, type:

DEBUG SAMPLE.EXE
D 0 L 100
Q

In all DOS versions before 3.3 users received a utility called EXE2BIN that can
translate certain kinds of EXE files into COM (BIN stands for binary) files. (In 3.3 IBM
moved EXE2BIN to the DOS Technical Reference Manual.) Only EXE files that have
been specially prepared, generally in assembly language, can be successfully turned into
COM files. These programs must not contain a stack segment, must have no references
to relocatable segments, and must begin execution at offset 1 OOH in the file. Since an
executable EXE file must have a stack segment and generally uses separate code and data
segments, the two formats are essentially incompatible.

Disk Organization, Files, Filenames 85

Nonprogram Files

Programs produce and process data. This data is either in pure-low-bit-ASCII text format
or in some compressed proprietary form.

A "pure-low-bit" ASCII file contains only letters, numbers, punctuation, the symbols
"#$%&'()*+-/<=>@[\]"_'{I}-, tabs, and variations of the carriage return/line feed com
bination that tells your system to end one line and start the next one. Such files can't
include most characters with ASCII values less than 32 or greater than 127.

Word processors often use special proprietary formats that rely on ASCII characters
lower than 32 or greater than 127 to keep track of things like settings (margins, line
spacing, etc.) and special printing tricks (underlines, boldfaces, pitch changes, etc.). But
most good word processors include a mode that will let you create and edit pure-ASCII
files. Or if they don't, they'll usually let you strip out any offending characters from their
proprietary formats and leave just the letters, numbers, and punctuation.

Pure-low-bit ASCII files are usually called just ASCII files, text files, or DOS files.
You can tell if a file is pure ASCII by using the DOS TYPE command to display its
contents onscreen. If it looks like normal everyday text, it's probably pure ASCII or close
to it. However, if it's jumbled, or littered with smiling faces, math symbols, crooked lines,
and foreign language characters, it's not a pure-ASCII file.

If you have a file punctuated with jumbled characters, you can view the stripped
contents by using the DL.EXE program on one of the accompanying disks, and using the
F option to toggle the high bits off. Most word processors have the ability to produce a
straight ASCII file; those that don't often can be converted to straight ASCII through the
conversion routines of one that does. For example, you can use WordPerfect's CON
VERT utility to convert WordStar files to WordPerfect format, and then save it in
WordPerfect' s DOS text format to get an ASCII file.

While powerful word processors - with their abilities to move and copy blocks of
text, perform formatting magic, and search for and replace strings of characters - are at
one end of the editing spectrum, the DOS COPY CON command is at the other. The DOS
EDLIN text editor is somewhere in between, although few users ever bother with EDLIN,
since everyone either uses word processors, program editors, or even the character
handling features of programs like 1-2-3 to create small text files.

All COPY CON can really do is copy characters from the keyboard to a file. The only
"editing" it offers is the ability to erase mistakes on the current line with the backspace
or left arrow key. But it's fast and convenient, and it lets you create short files without
having to leave DOS or have your word processor handy.

COPY CON creates absolutely pure ASCII text files, without any embedded codes,
except to indicate the end of the file. It's simple to create a file such as a batch file using
COPY CON. First, just pick a filename that ends with BAT, such as DIRSIZE.BAT, type
it in after the command COPY CON at the DOS prompt, and press the Enter key:

COPY CON DIRSIZE.BAT

86 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

DOS will drop the cursor down a line and just sit there waitingfor you to do something.
Start typing up to 127 characters of text per line (126 if it's the last line). If you make a
mistake, you can backspace it away only if it's on the same physical line of the screen as
the cursor. Lines wrap down one row on the screen when they reach 80 characters, so if
you 're typing the 8 lst and you notice a goof at character 79, you 're out of luck. (To abort
the process and start again, press Ctrl-Break.) When you're done typing each line, press
Enter key to start the next one.

In this case, type in a command to sort the DIR listing in reverse size order and discard
extraneous lines:

DIR I FIND 11 - 11 I FIND /V II<" I SORT /R /+14. I MORE

(To make this work, you'll have to have the DOS FIND.EXE, SORT.EXE, and
MORE.COM files on the same disk as the batch file you're creating, unless they're in a
subdirectory that your PATH command knows about.) Before pressing the Enter key at
the end of the line, press the F6 function key. You'll see a "Z onscreen. This tells DOS
you're done. Then press the Enter key and you should see the message:

1 File(s) copied

Check the directory and you'll see a new file called DIRSIZE.BAT. If you do have the
FIND.EXE, SORT.EXE, and. MORE.COM files handy, typing DIRSIZE at the DOS
prompt will produce a directory listing sorted by file size, with the biggest files at the top.

If for some reason you have changed the meaning of the F6 key (either with ANSI.SYS
or a commercial macro-writing program like ProKey), you could instead hold down the
Ctrl key and press Z. Or you could even hold down the Alt key, type 26 on the number
pad (not the top row keys), and then release the Alt key. All three methods will put an
ASCII character 26 end-of-file marker at the end of the file.

Most of the time you can put the "Z end-of-file marker at the end of the last command
rather than on an extra line all by itself at the very end of the file. However, certain
commands, such as ECHO, require that you follow the command with a carriage return
rather than an end-of-file marker. And if you do put the Ctrl-Z on a line by itself, the
batch file will usually end up putting two prompts on the screen after it finishes executing.

Creating Filenames
You can't store any information on any disk unless you give it a filename. Unfortunately,
because of its CP/M heritage, DOS limits the length of all filenames to 11 characters, just
enough to remind you what's inside the file, but far too few if your file contains chart #2
for the fourth quarter income report on the Airframe Division of Amalgamated Electron
ics, since you'll end up with some cryptic entry like ADAE4QIN.CH2.

Disk Organization, Files, Filenames 87

Filenames can contain:

• the letters A through Z
• the numerals 0 through 9
• the characters ' - ' I @ # $ % " & () - _ { }
• high-bit characters (with ASCII values over 127)

Filenames can't contain:

• spaces
• characters treated as spaces, such as ... ; , tab
• the "wildcard" characters ? and *
• characters with special DOS meanings . : " \ / I < > + []
• control characters (with ASCII values less than 33)
• lowercase letters (DOS automatically uppercases these)

Many of the ASCII characters with values between 128 and 165 are foreign language
versions of a, e, i, o, u, and y. When creating filenames, the American version of DOS
tends to ignore the wide range of accent marks and treat these as the plain old vowels.
And DOS turns all lowercase letters into their uppercase versions, which means that you
can't have one file called:

autoexec.bat

and a different one called:

AUTOEXEC.BAT

(Actually, if you use the brute-force techniques described in Chapter9 on DEBUG, you
can do this, by loading and writing absolute sectors. But while DOS will acknowledge
that this lowercase file exists by including it in DIR listings, it won't let you change or
delete or examine it - except with DEBUG. This does let you keep the file secure, but
fooling around with your directory directly is a bad idea unless you know exactly what
you 're doing and are sure all your files are backed up. And on a hard disk, where you can
really lose big if you make one silly mistake, it's an especially bad idea.)

This capitalized exclusivity also means that upper- and lowercase pairs of special
characterssuchastheoneswithvalues 128/135, 145/146, 148/153, 129, 154,and 164/165
automatically tum into their uppercase versions.

Using some of the more unusual high-bit ASCII characters for filenames can keep
prying fingers away, since few users have ASCII charts handy when they snoop inside
someone else's system, and even fewer know the Alt-keypad method of generating these
odd characters (described in Chapter 6). There's nothing more confounding to a casual
snoop than entering a DIR command and seeing an entire screen full of gibberish where
the filenames should be.

88 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

If you try to create a filename using ASCII 127 (with the Alt-keypad technique), DOS
will just backspace the previous character away. But you can use this character in a
filename, if you find a way to type it in. BASIC lets you do it. Try typing in the following
CHAR127.BAS program:

100 'CHAR127.BAS

110 OPEN CHR$(127) FOR OUTPUT AS #1

120 PRINT #1,"It works ... "

130 CLOSE:SYSTEM

Then, at the DOS prompt, type:

BASICA CHAR127.BAS

(or GWBASIC CHAR127 if you're using a generic MS-DOS version of BASIC).
The CHAR127.BAS program will create a file with a single ASCII character 127 as

the filename. This character will show up in DIR listings as a delta (which looks like a
little house).

You can view it by typing:

DIR ?

because using the single ? wildcard in a DIR command will display all the filenames that
are just one character long.

If you try to use an illegal character, such as an asterisk, DOS will discard everything
from the asterisk on. So if you type:

A>COPY CON NOTE*IT

DOS will discard the asterisk and the IT that follows, and create a file called NOTE.

Reserved Filenames
DOS is selfish about its internal names for devices such as printers, communications
hardware, the keyboard/screen combination (which is collectively called the console, or
CON), and a special dummy device with interesting properties, known as NUL. One
reason for this hands-off attitude is that you can use some DOS commands on devices as
well as files. For instance, while the COPY command is great for backing up your files
to another disk or subdirectory (the more recent XCOPY command is even better), you
can also use COPY in conjunction with the CON device to create files:

COPY CON FILENAME

Disk Organiza.tion, Files, Filenames 89

Using COPY this way tells DOS to take whatever the user is typing at the keyboard and
put it in a file called FILENAME (or any other legal filename you specify). And if you
type:

COPY /B COMMAND.COM CON

you'll be able to see the entire contents of COMMAND.COM onscreen, since copying
a file to CON reads it from a disk and sends it to your display. You can't do this with a
TYPE COMMAND.COM command, since all but the very shortest executable files
contain addresses or instructions loaded with ASCII 26 characters. The DOS TYPE
command interprets these ASCII 26 characters as end-of-file markers, and grinds to a
halt as soon as it stumbles over the first one.

The /B that appears directly after the COPY command in the above example is called
a switch. Switches tum optional command features on and off (and can also furnish
needed values and settings at the same time). In this case, the /B switch tells DOS to look
at the directory listing, figure out the exact number of bytes in the file you want copied,
and copy them all - including any ASCII 26 characters it sees (which it displays as little
arrows). You can slap lots of different switches onto various commands, producing such
nightmarish results as:

PRINT /D:LPT2 /B:8192 /U:2 /M:4 /8:20 /Q:20 B:\INFO\FILl C:\FIL2

This particular thorny command would use DOS's background printing feature to print
two files in a row - one on drive B:, the other on drive C: - using the second of two
printers that were attached to your system. And it would let you run another program
while the files were printing. (See the next chapter for a full discussion of backslashes
and subdirectories.)

DOS refers to the prompt and all the commands, switches, filenames, and miscella
neous parameters following it as the command line. Everything after the actual command
itself is called the command tail. Here's an example:

.command line I
witch

l
A>COPY /B COMMAND.COM CON

proLpt ·I L command tail __J
command

CON isn't the only device that's useful with COPY. You could print out a copy of
your AUTOEXEC.BAT file with the command:

COPY AUTOEXEC.BAT PRN

90 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

And COPY isn •t the only command that works with devices. If you wanted to send a
fonnfeed command to your printer to advance the paper, you could do it with:

ECHO "L > PRN

(You create the "L by holding down the Ctrl key and typing L. Typing ECHO "L PRN
without the > redirection symbol won•t do anything other than printing a "L PRN
onscreen.)

Because DOS has to know when you want it to use PRN or CON as a device, you can •t
use such reserved device names as filenames. Names like:

•CON
• PRN
• PRN.XYZ

are invalid. (PRN.XYZ is no good because DOS interprets the dot after PRN as a space,
leaving the filename as just PRN.) However, you could use PRN as the extension, or
along with other characters in the filename. These are all legal:

• DRIVER4.PRN
• XYZPRN
• PRNl.CON

But stay away from the following reserved DOS device names:

CLOCK$
CON (keyboard/screen)
AUX (first serial port)
PRN (first parallel printer)
NUL (dummy device)
COMl, COM2, COM3, COM4 (serial ports 1through4)
LPTl, LPT2, LPT3 (parallel printer ports 1 through 3)

COMl is pretty much interchangeable with AUX, and LPTl with PRN. NUL is useful
for getting rid of most simple DOS messages - although it can •t suppress serious error
messages.

If you try copying your COMMAND.COM file to something called ABC.COM, with
the command:

COPY COMMAND.COM ABC.COM

DOS will oblige, and print a:

1 File(s) copied

message. If you then type DIR to see what's on your disk, you·n see two files with
identical sizes:

COMMAND COM
ABC COM

47845

47845

Disk Organization, Files, Filenames 91

3-22-91 12:00p
3-22-91 12:00p

But if you try copying it to a file called NUL.COM, with the command:

COPY COMMAND.COM NUL.COM

DOS will interpret this command as

COPY COMMAND.COM NUL

and discard the .COM part. Copying a file to the NUL device makes DOS go through the
motions but not actually copy anything. It will still print a:

1 File(s) copied

message, but when you type DIR you won't see any file called NUL.COM. Similarly, if
you try copying your startup AUTOEXEC.BAT file to one called PRN.BAT, with the
command:

COPY AUTOEXEC.BAT PRN.BAT

DOS will toss the .BAT part and interpret this command as:

COPY AUTOEXEC.BAT PRN

Since copying any file to the PRN device will cause it to be printed on your default
LPTl printer, this command will either print out your AUTOEXEC.BAT file (if your
printer happens to be turned on and connected properly) or freeze your system as DOS
tries to print a file to a printer that's not responding.

You can also run into trouble if you try to create a file that has the same name as a
subdirectory entry. If you're in a directory that has a subdirectory called BIN branching
off of it, typing DIR will produce a listing that includes something like:

BIN <DIR> 12-15-90 10:59p

If you then try to create a file called BIN, you '11 see a message that makes it look as if
you just created a file called BIN even though you didn't.

COPY CON BIN
This is a test
"Z

This is a test
1 File(s) copied

This happens because subdirectories are really just special kinds of files, and you can't
have two files in the same directory with the same name. When you try to create a file

92 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

called BIN, DOS looks at the directory and sees there• s already a file with that name.
However, instead of reporting that it can't create the file, it lies. If you think that's
unfriendly, you 're right. But you have to very careful with filenames in general. If
you've been working on a 100,000-byte file called LIFSTORY that's on drive A: and
you type:

COPY CON LIFSTORY
Oops

and press the F6 function key (to tell DOS you 're at the end of the file) and then the Enter
key, DOS will wipe out the 100,000 byte file and replace it with the new four-byte file
you just created.

Similarly, if you want to print out a short file, such as your startup A UTOEXEC.BAT
file, you can type:

COPY AUTOEXEC.BAT PRN

which will copy the file to your default printer. But if you accidentally switch the order
and type:

COPY PRN AUTOEXEC.BAT

DOS will print a:

O File(s) copied

message - and then wipe·out your AUTOEXEC.BAT file. Gone. So be very careful
with filenames. And make sure you have· everything backed up.

The Parts of a Filename
Filenames can be as short as one character, or as long as 11. Once they grow past eight,
however, they start encroaching on the filename extension. Most users refer to the entire
name of the file as the filename, which isn't technically correct. According to IBM, the
whole thing is really called afilespec (short forfile specification), and has three parts:

d:FILENAME.EXT

where:

d: is the drive the file is on
FILENAME is the actual filename
EXT is the optional filename extension

Disk Organization, Files, Filenames 93

A period separates the filename from its extension, although DOS doesn't display
periods in DIR listings. You don't have to use a period when you 're dealing with files
that don't have extensions, although doing so won •t hurt. So you could create a file called
TEST by typing either:

COPY CON TEST

or:

COPY CON TEST.

Technically you need to include a drive letter in the filespec, since you can have two
similarly named files on two drives with utterly different contents - A:DATAFILE can
be totally unrelated to B:DATAFILE. However, DOS tries to second-guess you if you
omit something it needs. If you're on drive A: and you want to have DOS give you a
report on the status of your file and memory use, you can type:

A:CHKDSK.COM

or simply:

CHKDSK

In the second version of this command, DOS fills in the missing (A:) drive letter and
(COM) extension for you by furnishing defaults. Since you were already logged onto
drive A: DOS makes drive A: the default. Whenever you issue a command that needs a
drive letter, DOS will try using the current drive. And you don't need to supply the COM
extension when you're running a command like CHKDSK. The reason for this is a bit
complicated:

When DOS sees something on the command line, it tries to figure out, or parses, what
you typed by first capitalizing it if necessary, then looking for delimiters (spaces, and
things like commas and equal signs that act the same as spaces), switches (like /B), drive
letters, subdirectory paths, and filenames. It assumes that the very first thing you typed
on the command line after the prompt is the main command itself.

This command can be one of four things: an internal command, an external command,
the name of the application program, or a typo or missing filename.

Internal commands are the instructions that execute many of the fundamental DOS
operations such as DIR and TYPE. They are actually buried inside the main DOS
COMMAND.COM command processor. DOS first compares what you typed to the list
maintained inside COMMAND.COM. In version 5.0 the list contains these commands:

BREAK
CALL
CD
CHCP

LH
MD
MKDIR
NOT

94 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

CHOIR
CLS
COPY
CTTY
DATE
DEL
DIR
ECHO
ERASE
ERRORLEVEL
EXIST
EXIT
FOR
GOTO
IF
LOAD HIGH

PATH
PAUSE
PROMPT
RD
REM
REN
RENAME
RMDIR
SET
SHIFT
TIME
TRUENAME (undocumented)
TYPE
VER
VERIFY
VOL

Some of these are just parts of larger commands. EXIST and ERRORLEVEL really
only work with IF. FOR and IN DO work together. And NOT doesn•t do anything by
itself. These few have slightly different properties (which you•ll see a bit later) from the
others on the list.

If it finds a match, COMMAND.COM then runs the proper instructions, which are
also kept inside COMMAND.COM, to execute the command. If it can•t find a match, it
starts looking in the default directory for an external command or applications program
with the name you typed. If it can •t find the specified filename in the current directory,
it will see if you ·ve specified a PA TH and start looking in all the directories that this
PA TH specifies.

External commands are separate programs, outside of COMMAND.COM. DOS
version 5.0 contains 50 of these, all of which end in COM or EXE:

APPEND.EXE
ASSIGN.COM
ATTRIB.EXE
BACKUP.EXE
CHKDSK.EXE
COMP.EXE
DEBUG.EXE
DISKCOMP.COM
DISKCOPY.COM
DOSKEY.COM
DOS SHELL.COM
DOS SHELL.EXE
DOSSW AP.EXE

HELP.EXE
JOIN.EXE
KEYB.COM
LABEL.EXE
LOAD FIX.COM
MEM.EXE
MIRROR.COM
MODE.COM
MORE.COM
MSHERC.COM
NLSFUNC.EXE
PRINT.EXE
QBASIC.EXE

EDIT.COM
EDLIN.EXE
EMM386.EXE
EXE2BIN.EXE
EXPAND.EXE
FASTOPEN.EXE
PC.EXE
FDISK.EXE
FIND.EXE
FORMAT.COM
GRAFTABL.COM
GRAPHICS.COM

Disk Organization, Files, Filenames 95

RECOVER.EXE
REPLACE.EXE
RESTORE.EXE
SETVER.EXE
SHARE.EXE
SORT.EXE
SUBST.EXE
SYS.COM
TREE.COM
UNDELETE.EXE
UNFORMAT.COM
XCOPY.EXE

Users sometimes forget that these DOS external commands are actually separate
programs, and that they won •t work unless the appropriate programs are in the default
directory or are in a directory that their PATH command knows about. (And yes,
COMMAND.COM, the part of DOS that actually processes the commands you enter,
can be an external command itself, and a very useful one as you'll soon see.)

You can also type the name of an application program on the command line. DOS
doesn't give its external commands any priority over commercial applications with
similar names. It simply tries to run an internal command first and if that doesn •t work,
it then looks for a file in the current directory that has a matching filename and a COM,
EXE, or BAT extension. If it happens to find a DOS program that fits the bill, it runs it.
But if you didn •t have any external DOS commands handy, and for some reason you
renamedyourmain WS.COM WordStarfiletoCHKDSK.COM, typing CHKDSK would
run WordStar.

Other commands such as BUFFERS, BREAK, DEVICE, FILES, FCBS, LAST
DRIVE, STACKS, COUNTRY, SHELL, INSTALL, IFS, CPSW, COMMENT, REM,
and SWITCHES are installation programs that work with CONFIG.SYS and are part of
the IBMBIO.COM or generic IO.SYS file.

Finally, if DOS doesn •t understand what you've entered, you've probably mistyped a
command or entered the name of a file that DOS cannot locate. This is usually a PATH
problem.

The PATH Command
The PATH command specifies a list of the important directories you want DOS to search
when it can •t find an executable program in the current directory; DOS keeps this list in
a special section of memory called the environment.

If you weren •t able to use P ATHs to tell DOS where to search, you• d either have to
keep copies of all your important programs in all your subdirectories, or you• d always
have to specify each program's precise location each time you ran it. And if you•re
wondering why DOS can •t just search in every single directory, doing so on even a

96 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

medium-sized hard disk could take a while each time you typed a command. A typical
PATH might look something like:

PATH D:\;C:\;C:\BIN;C:\DOS;C:\DOS\BAT;C:\SK;C:\DOS\NORTON

which tells DOS to look in the following places for the file you specified, if it can't find
it in the current directory:

D:\ (the root directory of drive D:)
C:\ (the root directory of drive C:)
C:\BIN
C:\DOS
C:\DOS\BAT
C:\SK
C:\DOS\NORTON

If you wanted to run a program that wasn't in the current directory or in any of the
places listed in your PA TH statement, DOS wouldn't be able to run it unless you explicitly
entered the name of the directory this file happened to be in. So if the CHKDSK.COM
command was in a subdirectory called:

C:\LIONS\TIGERS\AND\BEARS

and your PA TH didn't mention this subdirectory, typing just:

C>CHKDSK

wouldn't run the program. Even though it was on your disk, if DOS couldn't find it, it
couldn't run it. You could run it, however, by typing:

C:\LIONS\TIGERS\AND\BEARS\CHKDSK

or:

\LIONS\TIGERS\AND\BEARS\CHKDSK

Here's a fine point but an important one: Note the initial backslash character at the
very beginning. By putting this backslash character there, you're telling DOS that the
specified PA TH for the CHKDSK file started at the root directory. If you omitted this
initial backslash:

LIONS\TIGERS\AND\BEARS\CHKDSK

DOS would assume that the first directory in the list - LIONS - was a directory one
level below whatever directory you happened to be in at the time. If you were logged into

Disk Organization, Files, Filenames 97

the root directory, this wouldn't matter. But if you were already in a directory called
\WIZ\OZ, and you omitted the initial backslash before LIONS, DOS would think you
were really telling it to run:

\WIZ\OZ\LIONS\TIGERS\AND\BEARS\CHKDSK

And if you happened to be in one called \INCOME\REPORT\4Q, DOS would assume
you meant:

\INCOME\REPORT\4Q\LIONS\TIGERS\AND\BEARS\CHKDSK

When you include an initial backslash in a PATH, you are giving DOS an explicit
PA TH. When you omit the backslash you give DOS a relative path - one that starts a
level down from whatever directory you are in at the time.

If you made a typing mistake when you entered the command, or specified a program
that DOS couldn't find, all you'd get would be an error message that told you:

Bad command or file name

Also, remember that DOS can execute only three kinds of files - those that end in
COM or EXE or BAT. So if you had just the following files on your disk:

• CHKDSK
• CHKDSK.WKS
• CHKDSK.BAS
• CHKDSK.DBF
• CHKDSK.SYS
• CHKDSK.DRV
• CHKDSK.PIF

and you typed CHKDSK, all you'd get would be the "Bad command or file name" error
message, even though DOS uses extensions such as SYS or PIF (but not on executable
programs).

By including the name of a· subdirectory in your PATH, you tell DOS to look in that
directory for executable files (with COM, EXE, or BAT extensions). But PATHs are for
executable files only; DOS won't be able to find nonexecutable files, such as your data
files, or overlay files that help programs work, in subdirectories specified in your PA TH.
To have DOS search through your directories to find nonexecutable files, use the
APPEND command introduced with version 3.3.

DOS will always execute internal commands first, then COM files, then EXE files,
and finally BAT files. So if you have these three files on your disk:

• RUNME.COM
• RUNME.EXE
• RUNME.BAT

98 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

and you type RUNME, you·n always run RUNME.COM. You·ll never get a chance to
run either RUNME.EXE or RUNME.BAT, since DOS always tries to run COM files
before any other kind of program. If you erased RUNME.COM, you could run
RUNME.EXE, but you •d never be able to run RUNME.BAT while either RUNME.COM
or RUNME.EXE was in the same directory.

But thaf s if you try just RUNME without any extension. What if those three RUNME
files are on your disk, and you include the extension by typing RUNME.EXE or
RUNME.BAT? Sorry, out of luck. DOS will still execute RUNME.COM.

If you have any separate programs on your disk that happen to have the same name as
most of the internal DOS commands, you •ll never be able to run these at all. This means
you can•t ever create executable files like BREAK.COM, REM.EXE, DATE.COM, or
SET.BAT, since DOS will look inside COMMAND.COM, find a match, and execute the
internal command before it has a chance to run the external COM, EXE, or BAT version.

While most of the internal commands will indeed preempt external versions, you can
actually use four parts of internal command names in external programs: ERRORLEVEL
(which under certain circumstances DOS truncates to ERRORLEV), EXIST, INDO, and
NOT.

So don •t try creating a batch file that has the same basic filename as a program you •re
using. If you wanted to set up a batch file that logged into your WP subdirectory, activated
underlining on an EGA screen, then ran WordPerfect (and you had a program called
UNDERLIN.COM handy to handle this) you could do it with something like:

CD C: \WP

UNDERLIN ON
WP

However, you couldn•t name this batch file WP.BAT, since typing WP would simply
bypass the WP .BAT file and load the WP .EXE program. Instead, name it something like
W.BAT.

Well, okay, if you·re a stickler, there actually is a way to run a program that has the
same name as an internal command.

All you have to do is prefix the similarly named program with a drive letter or path.
For example, if you had a special program on your disk that sorted the directory, and you
were using something newer than DOS 2.x and just had to name it DIR.COM, you could
run it by typing:

.\DIR

The . \ is DOS shorthand that specifies a file in the current directory. If you omitted this
prefix, all you• d get is the normal DOS DIR listing, since COMMAND.COM always
gives internal commands priority over external commands with the same name. However,
prefacing a command with a drive letter or path designation tells DOS that you want to
execute an external file rather than an internal command.

You won•t be able to add a.\ prefix like this in DOS versions 2.x, since version 3.0
was the first that let you specify a drive and path before external commands. But if you •re

Disk Organization, Files, Filenames 99

logged into a directory called C:\WORK and the DIR.COM program also happens to be
in that directory, you could run it by entering:

\WORK\DIR

You really shouldn•t have to worry about this, however, since you can almost always
come up with a name that•s slightly different from the actual internal DOS command.

Fooling COMMAND.CoM·s knee-jerk reflex to give internal commands priority can
actually save you grief. Say your office is short of PCs, and you have to share your hard
disk system with a less sophisticated user. Your worst fear is that your co-worker will try
to format a floppy disk, forget to add the drive letter in the FORMAT command, and end
up wiping out the contents of the hard disk.

This was all too easy on older versions of DOS. Newer versions of FORMAT.COM
won •t do anything unless the user specifies a drive letter. And newer versions can also
tell if a user is trying to reformat a hard disk, and won •t budge unless the user types in
the hard disk•s volume label. Still, the message DOS prints:

Enter current Volume Label for Drive C:
WARNING, ALL DATA ON NON-REMOVABLE DISK
DRIVE C: WILL BE LOST!
Proceed with Format (Y/N)?

is confounding to someone who has no idea what a non-removable disk is, and if a new
or clumsy user has a deadline and needs to format a disk, well, that's what backups are
for.

Hard-disk-format victims have devised all sorts of solutions to prevent hard disk
format. The best is obviously to remove the FORMAT.COM program from your disk,
or rename it to something that would throw beginners off track. But a new user could
always bring a floppy disk copy of FORMAT.COM over and copy it onto the hard disk.

If you don•t mind patching COMMAND.COM, you can prevent most FORMAT
heartache by tricking COMMAND.COM into thinking FORMAT is an internal com
mand. DOS maintains a table of internal commands inside COMMAND.COM and
always checks there first when you enter something on the command line. FORMAT is
six letters long. Three internal commands - PROMPT, RENAME, and VERIFY - also
have six letters in their names. If you replace the six letters in one of these entries with
the letters "FORMAT" DOS will see FORMAT on the table when it checks to see if you
entered an internal command, and won •t execute any external program with the same
name.

But putting FORMAT in the table means getting rid of one of the existing six-letter
table entries. Fortunately, RENAME has a shorter version, REN. So if you replace the
letters RENAME in the table with FORMAT you ·n still be able to rename files by using
REN. But changing the letters R-E-N-A-M-E to F-0-R-M-A-T in the lookup table won•t
change the actual instructions that DOS uses to rename files. So if a user enters FORMAT,
DOS will see it on the table and execute the rename procedure. Since you can •t rename

100 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

files unless you specify an existing name and a new name, all you'll get is an error.
Typing:

FORMAT OLDNAME.TXT NEWNAME.DOC

will rename a file called OLDNAME.TXT to NEWNAME.DOC. And typing:

FORMAT C:

will just produce an "Invalid number of parameters" message. .
But this won't work if a user boots off a diskette and executes the FORMAT command

that's on the floppy. And patching COMMAND.COM isn't always such a good idea. If
you do it, be sure that all versions of COMMAND.COM on your disk are identical.
Otherwise DOS can become confused.

You could use either the Norton Utilities or DEBUG to change RENAME to FOR
MAT. Once you've patched COMMAND.COM, use REN to rename FORMAT.COM
to FORMATO.COM (where D stands for an ALT+255 null). To do this, type:

REN FORMAT.COM FORMAT

but don't press the Enter key yet - hold down the Alt key and type 255 on the numeric
keypad, then release the Alt key. The cursor will move over one space. Then type:

.COM

and press the Enter key.
Finally, create a batch file called F.BAT:

ECHO OFF
CLS
ECHO Insert disk in drive A: and
PAUSE
FORMAT[] A: /V /S

Remember to type in FORMA TD (where D represents Alt+255) when creating your
batch file, or this won't work.

To patch COMMAND.COM with DEBUG, first make a backup copy of COM
MAND.COM called COMMAND.OLD so that if you make a mistake you can start over.
Then type:

DEBUG COMMAND.COM

Find out how long your version is by typing:

RCX

and pressing the Enter key twice. You '11 see something like:

Disk Organization, Files, Filenames 101

ex BAES

Take the four-digit hex number following the CX and type:

S 100 LBAES "RENAME"

(substituting the four-digit hex number if yours is different from BABS). Press the Enter
key and you should see something like:

48B8:81DC

Ignore the leftmost four digits, preceding the colon. Take the rightmost four digits and
type:

E 81DC "FORMAT"

(substituting the four-digit hex number if yours is different from 8 lDC). Press the Enter
key. Then press W (and Enter) to write the new version back to disk, and Q (and the
Enter) to quit DEBUG. Once you've patched COMMAND.COM, reboot.

Another simple way to prevent unwanted formatting is to rename FORMAT.COM to
something innocuous like DATA.COM and then insert a simple reboot routine at the
beginning of your old FORMAT.COM file. Type in FORMAT and the system will
reboot. Type in DATA and you can format disks. Make sure you have DEBUG.COM
handy, and type in the following ten lines to create both files.

DEBUG
N FORMAT.COM
L
N DATA.COM
w
N FORMAT.COM
E 100 BS 40 00 8E D8 BS 34 12
E 108 A3 72 00 EA 00 00 FF FF
w
Q

Be sure to press the Enter key at the end of each line. You could of course create a tiny
16-byte reboot file called FORMAT.COM, but the short length would be a tipoff to an
unauthorized user that something was amiss.

If you try this, you can format a floppy in drive A: by typing:

DATA A:

And if you type FORMAT at the DOS prompt your system will do a warm reboot. If you
really want to be safe, change the 34 12 at the end of the line that begins E 100 to 7F 7F,
so the line looks like:

· 102 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

E 100 B8 40 00 8E D8 B8 7F 7F

This will make your system do a long cold boot with all the slow memory diagnostics.
Before DOS 5.0, some users created a file on every disk that contained a sorted DIR

listing. You can do this easily if you have the DOS programs MORE.COM, FIND.EXE,
and SORT.EXE handy. (It's best to have them on a hard disk in a subdirectory that your
PATH knows about.) Just type:

DIR I SORT I FIND II - II I FIND /V II< II > DIRFILE

The DIR command produces a list of files as well as a report on how many bytes are free,
how many files are there, and what the volume label is, if one exists; The I is the pipe
sign, and the > is a redirection sign. The default devices for input and output (.VO) are
obvious: input usually comes from the keyboard; output usually goes to the screen. But
starting with version 2.0, DOS let you mix and match 1/0. You can take output that would
normally appear on your screen, and instead reroute it to your printer or modem - or
capture the characters by turning them into a file on your disk. Similarly, you can take
characters in a file on your disk and feed them into a program just as if you ·Were typing
them at the keyboard. And you can.filter files through pipes on the way from one place
to another. This lets you do things like search for or screen out certain characters, or sort
jumbled lists into orderly ones. Piping and redirection of 1/0 are extremely powerful tools
that you'll use often.

Using the SORT command as shown above will arrange the DIR listing in rough
alphabetical order. The first FIND command will screen out most of the miscellaneous
DIR information and leave just the filenames, since files all have hyphens in their creation
dates but miscellaneous "bytes free" or "Volume in" reports rarely use hyphens. The
second FIND will weed out any subdirectory listings, because each contains a <DIR>
instead of a size:

Volume in drive C is WORKDISK

Volume serial Number is 104F-16CD

Directory of C:\

COMMAND COM 47845 14-09-91

CONFIG SYS 47 10-18-90

AUTOEXEC BAT 256 10-18-9-0

DOS <DIR> 10-18-90

WORDS TAR <DIR> 11-06-90

DBASE <DIR> 2-11-90

LOTUS <DIR> 12-03-90

5:00a

7:07a

12:01a

7:09a

12:22a

12:00a

12:02a

7 File (s) 28220672 bytes free

Miscellaneous DIR
information mostly
filtered out by first
FIND command

~Subdirectory
listings.filtered out
by the second FIND
command

I Miscellaneous DIR
---- information.filtered

out by first FIND
command

Disk Organization, Files, Filenames 103

The final redirection command sends the output to a file called DIRFILE. You could then
view the sorted list of files on your disk by typing:

TYPE DIRFILE

If your list was longer than 24 files, you could type:

MORE < DIRFILE

which would show you a screenful at a time (assuming you were using a monitor that
displayed the standard 25 lines), then pause and prompt you to press any nonshift key to
view another screenful.

If you do this to all your disks, you'll end up with a different version of DIRFILE on
each one. The one on drive A: is really A:DIRFILE, the one on B: is B:DIRFILE, etc.
And when you do just about anything with these files you have to use the appropriate
drive letters, so they really are part of the filespec.

Even though IBM's various manuals don't seem to agree in their definition of the
filespec, a file's PATH is just as important as its drive letter, especially on a hard disk,
and should be thought of as a fourth filespec component. Just as you can have two
similarly named files called A:DIRFILE and B:DIRFILE, you can also create
C:\DOS\DIRFILE and C:\WORD\DIRFILE on the same physical disk.

Wildcards
You don't have to specify the PA TH if you 're referring to files in the current - or default
- subdirectory. If you're logged into a subdirectory called \DOS and you want to check
out your COMMAND.COM file, all four commands below will produce the same result:

DIR COMMAND.COM
DIR C:\DOS\COMMAND.COM
DIR \DOS\COMMAND.COM
DIR .\COMMAND.COM

DOS is very flexible, and provides even more ways to ferret out just the COM
MAND.COM file entry. In DOS 5.0, you could type:

DIR \COMMAND.COM /S

to see occurrences of COMMAND.COM. Or you could simply type DIR and use a DOS
filter to screen out everything that didn't have the character string "COMMAND COM"
in it:

DIR I FIND "COMMAND COM"

104 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

Unfortunately, you'd have to specify "COMMAND COM" rather than "COM
MAND.COM" because that's how the DIR listing displays it. DOS is flexible, but
consistently inconsistent.

You could also isolate COMMAND.COM in directory searches by looking for a part
of its filename:

DIR I FIND "COMMAND"

However, if you had a game on your disk called COMMANDO.EXE, and a list of
WordPerfect commands called WCOMMAND.LST, this filtering technique would find
all three files with the characters "COMMAND" in their names.

Finding one file is easy. However, you might want to look at an entire class of related
files, such as all the COM files on your disk, at one time. Or you may have several
customized versions of COMMAND.COM, such as COMMANDl.COM and COM
MAND2.COM on your disk and want to look at the date you created each version.

DOS makes it easy to list such groups of files, by using one of two special symbols on
the command line. IBM calls this pair - an asterisk(*) and a question mark(?) - global
file name characters. Everyone else calls them wildcards.

A question mark can stand for any single character (including a blank, or no charac
ters). An asterisk can represent up to 11 characters. If you apply this rule to the character
string:

?UN

you could substitute ten single characters in place of the ? and end up with English words
-- BUN, DUN, FUN, GUN, HUN, NUN, PUN, RUN, SUN, TUN (a big barrel).

If you tried this with the character string:

SYL*

you could substitute all sorts of character combinations of varying lengths in place of the
* and end up with words like SYLLABLE, SYLLABUB, SYLLABUS; SYLLOGISM,
SYLPH, and SYLVAN. Of course, not all of these could be filenames, because some are
longer than eight characters. If you tried to create a file called SYLLOGISM, DOS would
end up calling it SYLLOGIS.M since it allows a maximum of eight characters to the left
of the extension.

Suppose your disk contained the following files:

• COMMAND.COM
• COMMAND.CO
• COMMAND.EXE
• C.COM
• COMMANDl.COM
• COMMAND.C
• ZOMMAND.COM
• COMMAND.ZOM

•COMMA.COM
•COMMAND
•COMM.AND
• ZZZ.l
• REDLINE.DBF

Disk Organiza.tion, Files, Filenames 105

The broadest possible wildcard directory search would be:

DIR*·*

which is really the same as:

DIR

or:

DIR *

or:

DIR ????????.???

An asterisk to the left of a period lets DOS substitute from one to eight characters there.
An asterisk to the right of a period lets DOS substitute from zero to three characters there.
A filename needs at least one character to the left of the period, but can get by just fine
with no characters after the period. One asterisk used by itself can stand for all 11 possible
characters. When you issue a DIR command without anything after it, DOS internally
puts *. * after it. And it then turns all the asterisks into the correct number of question
marks. So when you type DIR, DOS first translates it to DIR *. * and then finally to DIR
????????. ??? (both of which will show all your files).

Incidentally, you could also see the complete set of files in any directory by typing:

DIR .

but this technique doesn't have anything to do with wildcards. Used this way, the period
following DIR is shorthand for the current subdirectory itself, just as a double period
represents the parent directory. You can see these special directory entries by logging
into any subdirectory and typing DIR. You '11 see, for example,

Volume .in drive C is WORKDISK
Volume Serial Number is 104F-16CD
Directory of C:\DOS

<DIR> 3-15-90 5:15p
<DIR> 3-15-90 5:15p

106 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

Wildcards really come in handy when you use them to isolate certain parts of filenames.
For instance, you could limit your search to files that end in COM only with the command:

DIR *.COM

This tells DOS to accept anything on the left side of the period, but to screen out all files
that have something other than a COM to the right of the period. This command would
display every file on the above sample list that ended in COM, and no others:

• COMMAND.COM
• C.COM
• COMMANDl.COM
• ZOMMAND.COM
•COMMA.COM

If you put the asterisk on the other side of the period:

DIR COMMAND.*

DOS wouldn •t care what was after the period, but would list only those files with the
precise letters "COMMAND .. - and only those letters - before the period:

• COMMAND.COM
• COMMAND.CO
• COMMAND.EXE
• COMMAND.C
• COMMAND.ZOM
•COMMAND

This variation would list plain old COMMAND (with no extension) because an asterisk
to the right of a period .can stand for three, two, one, or no characters. COMMAND with
no extension is really the same as:

COMMAND.

but you rarely see it listed that way.
However, this particular search won•t list COMMANDl.COM, since COMMAND!

is not equal to COMMAND, and you told DOS to list only those files with the exact string
"COMMAND .. to the left of the period. If you wanted to include COMMANDl.COM
in the list, you• d have to broaden the previous command either with:

DIR COMMAND*.*

or:

Disk Organization, Files, Filenames 107

DIR COMMAND*

or even with:

DIR COMMAND?.*

Remember, asterisks can represent from one to 11 letters, but a question mark always
represents just one character. All three of the above commands would produce the same
result:

• COMMAND.COM
• COMMAND.CO
• COMMAND.EXE
• COMMANDl.COM
• COMMAND.C
• COMMAND.ZOM
•COMMAND

You should always try to limit wildcard searches by making them as explicit as
possible. A command like:

DIR C*.COM

would list any file that started with C and ended with COM:

• COMMAND.COM
• C.COM
• COMMANDl.COM
•COMMA.COM

You could limit the search to list only files that ended in COM and that started with
the letter C but had five or fewer characters to the left of the period, with:

DIR ?????.COM

which would yield:

• C.COM
•COMMA.COM

If you wanted files that started with the letter C and had extensions that started with
the letter C, you could try:

DIR C*.C*

108 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

or:

DIR C* .C??

which would both list:

• COMMAND.COM
• COMMAND.CO
• C.COM
• COMMANDl.COM
• COMMAND.C
•COMMA.COM

To narrow this search to files that started with the letter C and had extensions shorter
than two characters long, this would do it:

DIR C*.??

You• d see just:

• COMMAND.CO
• COMMAND.C

You get the idea. One thing to watch outfor is that once DOS sees an asterisk, it ignores
everything following the asterisk up to the next period or the end of the filename. So:

DIR C*QQQ.COM

will list

• COMMAND.COM
• C.COM
• COMMANDl.COM
•COMMA.COM

just as if you had typed:

DIR C*.COM

And trying:

DIR *OMMAND. *OM

or even:

Disk Organization, Files, Filenames 109

DIR *HELLOTHERE

will list every file on your disk, since DOS ignores what comes after the asterisks and
treats these two commands as:

DIR *·*

and:

DIR *

What you probably meant to type rather than DIR *OMMAND. *OM was:

DIR ?OMMAND.?OM

which will yield:

• COMMAND.COM
• ZOMMAND.COM
• COMMAND.ZOM

since all three of these are the same except for the very first letter and the first letter of
the extension. The more specific you make the command, the more you '11 limit the search.

Wildcards are especially useful in deleting groups of files and in making backups.
Many word processors create backup files with BAK extensions, and these can eat up
lots of space. Once you've determined that you don't need these files any longer, you
can wipe out the whole gang of them with a simple command:

DEL *.BAK

And wildcards can take the drudgery out of backups. If you spent all day working on
the fourth quarter projections, and all the files have 4QO extensions (for fourth quarter of
1991), you can copy them all from your hard disk to a floppy with the command:

COPY *. 4Q9 A:

(or the even better DOS 3.2 and later XCOPY *.4QO)
Of course, many applications use their own extensions, so you may have to put

identifying codes at the beginning rather than the end of the filename. If you were working
on the Sturm and Drang accounts, you might want to give these files names like:

• 4QOSTURM.WK1
• 4QODRANG.WK1

110 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

The problem with naming files this way is that you later might want to copy all your
Drang accounts to one disk, and they might have names like:

• 4QODRANO.WK1
•DRANO.RPI'
• 90DRANO.MEM

You could put the DRANO part at the beginning of the filenames:

• DRAN04QO.WK1
•DRANO.RPI'
• DRAN090.MEM

which would let you handle them with a DRANO*.* wildcard. But this way you wouldn •t
necessarily be able to use wildcards to find all the files with 4QO in them. STURM4QO
and DRAN04QO have the same number of letters, which would let you use ?????4QO,
but a filename like OUB4QO would throw the process off.

DOS doesn •t make it easy to use wildcards when the string of characters you want to
isolate is in different places in the filenames. But you can employ a combination of
sophisticated DOS tricks to do it, as long as the DOS FIND.EXE program is either in your
current directory or is in a directory that your PATH knows about. It gets a little
complicated (no one ever said DOS would be easy) so you may want to refer to the chapter
on batch files before you tackle this:

Use your pure-ASCII word processor, EDLIN, or the DOS COPY CON command to
create two BAT files. (Before you try this, be sure you don •t already have a file on your
disk called DOIT.BAT, because this process will erase it. If you do, either rename the
existing file, or change all the references in COPYSOME.BAT and NEXTFILE.BAT
from DOIT.BAT to something else.)

First, COPYSOME.BAT:

ECHO OFF
IF %2!==! GOTO OOPS
IF EXIST DOIT.BAT DEL DOIT.BAT
FOR %%A IN (*.*) DO COMMAND /C TESTTHEM %%A %1 %2
COMMAND /C DOIT
DEL DOIT.BAT
GOTO END
:OOPS
ECHO Enter a string to search for, and a drive
ECHO or directory to copy the matching file to
:END

Then, TESTTHEM.BAT:

ECHO OFF
ECHO COPY %1 %3 I FIND 11 %2 11 » DOIT.BAT

Disk Organization, Files, Filenames 111

Then, to copy any filename with the string DRANO in it to drive A:, just type:

COPYSOME DRANG A:

Or to copy the files to \WORK\ACCT\1990, type:

COPYSOME DRANG \WORK\ACCT\1990

The COPYSOME.BAT batch file will first make sure that you entered both a string of
characters to search for and a drive or directory to copy the matching files to. If you forget
one or the other it will abort the process and print an error message.

Be sure you enter the string first and the drive or directory second. And make certain
that you enter the string in all uppercase letters, and that you don't put quotation marks
around the string.

COPYSOME will then use a FOR batch command to take all the filenames in your
directory one by one and feed them into the second TESTTHEM.BAT batch file. The:

%%A %1 %2

at the end of the FOR command will pass three parameters to TESTIHEM.BAT. Each
time the FOR command cycles through, this will replace % %A with the name of the file,
%1 with the character string you're trying to match, and %2 with the drive or directory
you want to copy everything to. But by the time these parameters reach TEST
THEM.BAT, the parameters shift slightly:

% %A in COPYSOME becomes % 1 in TES'ITHEM
% 1 in COPYSOME becomes %2 in TESTTHEM
%2 in COPYSOME becomes %3 in TESTTHEM

Each time COPYSOME passes these parameters to TESTTHEM, TESTTHEM translates
the:

ECHO COPY %1 %3 I FIND 11 %2 11 >> DOIT.BAT

line to something like:

ECHO COPY 90DRANG4.MEM A: I FIND 11 DRANG 11 » DOIT.BAT

The command at the beginning of this line would normally use ECHO to display the text
following the word ECHO. But this .batch file pipes this text through the FIND filter.
FIND will look at the text to see if it contain the specified string (in this case .. DRANO").

If the text doesn't contain the specified string, nothing else will happen and the process
will continue with the next filename. But if FIND does locate the string it passes the string
through to the very end of the command. Here, the final:

>DOIT.BAT

112 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

command takes any text that survived the FIND test and adds it to a file called DOIT.BAT.
Note that a single > sign creates a new file and redirects data into it. A double >> sign
will create a file if none exists, and will append data to the file if it's already there. You
have to use a double >> sign here because each time you find a filename with the
characters ORANG in it, you're going to add an additional line to DOIT.BAT, and you
don't want each new line to wipe out the old one.

So if COPYSOME.BAT passes TESTIHEM.BAT parameters like:

%%A 90DRANG4.MEM
%1 DRANG
%2 A:

TESTIHEM plugs these into its main command and ends up with:

ECHO COPY 90DRANG4 .MEM A: I FIND 11 DRANG 11 » DOIT.BAT

Since the characters "ORANG" are indeed in the string:

COPY 90DRANG4.MEM A:

the FIND filter passes this string through to the:

>DOIT.BAT

command, where the string is appended to the DOIT.BAT file.
However, if COPYSOME passes TESTIHEM parameters that don't include the

specified characters, such as:

%%A 90STURM4.MEM
%1 DRANG
%2 A:

TESTIHEM will turn this into:

ECHO COPY 90STURM4.MEM A: I FIND "DRANG" » DOIT.BAT

The FIND test won't pass anything through, since the characters "ORANG" aren't in the
COPY 90STURM4.MEM A: string.

When the FOR command in the COPYSOME.BAT file has worked all the way through
the (*. *) set of files, COPYSOME will execute the command ill the next line:

COMMAND /C DOIT

This will run the DOIT.BAT file you just created, and make all the copies. When DOIT
has made its last copy, DOS will delete DOIT.BAS and the process ends.

Disk Organization, Files, Filenames 113

Whew. Okay, it's convoluted, but it shows what you can do by slapping together a few
DOS commands. And once you have both the COPYSOME.BATand TESTTHEM.BAT
batch files on your disk, you don't have to worry about how they work. You just use
them. It's a whole lot easier than sitting down with (shudder) paper and pen and making
a list of all the files you have to copy and then typing in the COPY commands one by
one.

Incidentally, if you're using a version of DOS 3.3 or later, replace the:

FOR %%A IN (*.*) DO COMMAND /C TESTTHEM %%A %1 %2

line in COPYSOME.BAT with:

FOR %%A IN (*.*) DO CALL TESTTHEM %%A %1 %2

Do the same thing with the COMMAND /C DOIT line that follows. Prefix the initial
ECHO OFF with a@ sign (so it looks like @ECHO OFF), which will prevent it from
displaying onscreen.

Using CALL will expedite things a bit and get rid of some screen clutter. The
COPYSOME.BAT batch file turns ECHO OFF to prevent commands from showing up
on the screen as they execute. But when you use COMMAND /C to run another batch
file, DOS loads a second copy of COMMAND.COM, which turns ECHO on again for
the second batch file. CALL leaves the ECHO state alone. If it's off in the first batch file,
CALL leaves it off.

Be careful when you're using a command such as REN (or its longer version
RENAME) or DEL (or its longer cousin ERASE) with wildcards, since the wildcard may
end up including more files than you intended.

If you tried to delete all your BAK backup files by typing:

DEL *.BA*

you would erase anything with an extension beginning with BA. Since this includes batch
files (which end in BAT) and BASIC program files (which normally end in BAS), you'd
delete far more than you wanted. The safe way to delete or rename is to use the D~
command with the wildcard structure first, and then to use the DEL or REN. DOS makes
this easy, since it lets you use the F3 key. to duplicate any or all of what you typed in the
previous command.

So if the only files in your directory that had extensions beginning with BA were indeed
backup files, you could type:

DIR *.BA*

and· see something like:

114 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

Volume in drive C is WORKDISK
Volume Serial Number is 104F-16CD
Directory of C:\ACCOUNT

SCHEDULE BAK
4QODRANG BAK
DRANG BAK
90DRANG BAK

16256
212S6
32932

9674

10-17-90
10-24-90
11-12-90
11-15-90

4 File(s} 4122624 bytes free

you could then just type DEL and press F3:

DEL *.BA*

12:01a
6:32a

11:40a
1:23p

However, if you tried typing DIR *.BA* and you saw:

Volume in drive C is WORKDISK
Volume Serial Number is 104F-16CD
Directory of C:\ACCOUNT

AUTO EXEC BAT 256 2-11-90
SCHEDULE BAK 16256 10-17-90
RUN BAT 128 2-12-90
4QODRANG BAK 21256 10-24-90
DRANG BAK 32932 11-12-90
CHART BAS 28932 8-22-90
90DRANG BAK 9674 11-15-90

7 File (s} 4122624 bytes free

3:15p
12:0la
7:28a
6:32a

11:40a
8:32p
1:23p

you could see that the DEL *.BA* would have erased too much. If this happens, just
narrow the focus of the wildcard by changing the command to DEL *.BAK instead.

DOS is a little protective of your files. If you type just:

DIR C*

DOS will display everything beginning with the letter C (such as COMMAND.COM).
But if you type:

DEL C*

DOS won't erase COMMAND.COM or anything else that has an extension of any kind.
(It will, however, erase files that begin with C but don't have extensions.) It's decent of
DOS to make the directory search wildcards broader than the deletion wildcards.

Disk Organization, Files, Filenames 115

One place that a wildcard can come in very handy is in fixing filenames with spaces
in them. DOS won't let you put a space in a filename, but some programs (and even
BASIC) will. If you try to create a file called

SPACE IT

DOS 5.0 will get confused and print an error message that warns:

Too many parameters - IT

But you can create such a file with BASIC. Type in the following short BAD NAME.BAS
program:

100 I BADNAME.BAS
110 OPEN "SPACE IT" FOR OUTPUT AS #1
120 PRINT #1,"0oops ... 11

130 CLOSE:SYSTEM

Then, at the DOS prompt, type:

A>BASICA BADNAME

(or GWBASIC BAD NAME if you 're using a generic MS-DOS version of BASIC). The
BADNAME.BAS program will create a file with a space in it called SPACE IT. To see
this file, just type:

DIR S*

and sure enough you '11 see:

SPACE IT 11 11-17-90 5:3lp

If you try to rename or copy or delete the file, you won't be able to, since DOS will
interpret the space as the end of the filename, not a character in the middle. Depending
on what you're trying to do all you'll get is error messages like:

• Invalid number of parameters
• Duplicate file name or File not found
• Invalid parameter
• File not found

You could remove the space by loading your disk's directory sectors into DEBUG and
changing the name with the DEBUG E command. But why bother, when a simple
wildcard operation can do it for you? Just type:

116 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

REN SPACE?IT SPACEIT

and you '11 end up with something called SPACEIT that will respond to all normal DOS
commands.

Filename Extensions
Filenames can contain from one to eight character$. Extensions can have from zero to
three characters. You don't have to use extensions, but they help you organize or search
for data. However, you can't use an extension without a filename preceding it. These are
all valid filenames:

•A
• A.B
•A.BB
•A.BBB
• AAAAAAAA
• AAAAAAAA.B
• AAAAAAAA.BB
• AAAAAAAA.BBB
• f Ul
• '-'!@#%$."&-
• $

These aren't:

• AAAAAAAAA
•.AAA
• AAAAAAAA.AAAA
• AAAAAA A
• AA+AA/A
• ?

If you do try creating a file such as:

(more than eight characters in the filename)
(no filename)
(more than three characters in the extension)
(space in the filename)
(illegal characters + and/ in filename)
(illegal character)

ABCDEFGHIJKLM.NOPQRSTUVWXYZ

I I L__J
.filename .ext

DOS will truncate the filename to the first eight characters before the dot, and the
extension to the first three characters after the period, producing:

ABCDEFGH.NOP

Disk Organiza.tion, Files, Filenames 117

Extensions are important, since they tell DOS which files it can try to execute and which
it can't, and how in memory to load the executable ones. You and your programs can use
extensions to organize your files. Most applications keep track of their specialized data
files by giving them extensions, such as WKS for old-style 1-2-3 worksheets and DBF
for old-style dBASE database files.

And by using extensions you can exploit DOS 's formidable wildcard abilities. Without
this wildcard magic it would be a real headache to do simple everyday chores like copying
all your database files from drive C: to drive B:. First you'd have to type DIR to see all
the files in your logged subdirectory, and then write down the names of each one that
you thought was a database file. Then you'd have to copy them one by one. Instead,
assuming you're on drive C: and that all your database files end with a DBF extension,
you can simply type:

COPY *.DBF B:

Normally DOS will print a message when it's done, reporting how many files it copied.
If you want to suppress this message, just stick a > NUL on the end of the command. This
redirects the output of the command (which in this case is just the "File(s) copied"
message) into a special DOS device called NUL that simply discards the characters.
Typing:

COPY *.DBF B: > NUL

will make the copies and avoid screen clutter. Doing this isn't such a good idea when
you 're making important backup copies, since you want to know the number of files that
DOS actually was able to copy. If you have 30 files on your disk that have a DBF
extension and DOS reports: ·

2 File(s) copied

you can tell something is wrong, and go back and fix the problem before it's too late.
However, most serious users have to issue so many commands to set things up properly

when they start working that they put all these commands in a special startup file called
AUTOEXEC.BAT. DOS executes this startup file automatically when you power up
each day. These users also know that they can improve performance by lopping off a
chunk of memory and convincing DOS to treat this memory as a super-fast disk called a
RAMdisk. So their AUTOEXEC.BAT files are filled with cominands to copy files from
floppies or hard disks to RAMdisks. This normally produces a long cascade of "1 File(s)
copied" messages. Adding a> NUL to each COPY command in your AUTOEXEC.BAT
will do away with these unsightly messages.

(Incidentally, IBM and Microsoft have had more than half a decade to cram sophisti
cated tricks into DOS and generally refine it. It's hard to believe that they still have DOS
printing an idiotic message like" 1 File(s) copied." Or refusing to tell you how many files
DOS erased when you use a wildcard with the DEL or ERASE commands.)

118 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

In this chapter we described the basic principles of data storage and the physical
properties of the disk. While the PC will place data in its own convenient locations, it's
up to you to impose a structure on that data by organizing it into files and assigning those
files unique and descriptive names. DOS has some inflexible rules that define what it will
and will not recognize in a filename. We've presented those rules here, as well as some
simple tips to help you create workable filenames.

In the next chapter we ·n take a closer look at how to manage these files on a hard disk.

Hard Disks Made Easy

The single most important productivity enhancement for most users is a fast hard disk.
A hard disk gives you instant access to all your files, speeds up operation dramatically,
and makes "disk full" errors a lot less common. Floppies are how new software products
are packaged, and how you back up your files - unless you use a tape drive or Bernoulli
box. They're also for the birds. Hard disks used to be expensive and unreliable. That's
all changed. Today they're inexpensive and unreliable. I've personally replaced seven
hard disks over the past three years, and have to perform tedious daily ministrations to
keep my current one purring .

. Even the most expensive hard disks are frail and transitory. Many users wedge PC-A Ts
or PS/2s into floor stands beneath their desks, which is fine until they start playing
knee-hockey with their systems. Others blithely slide working XTs back and forth across
their desks to make room for paperwork, or routinely lift a comer of the chassis to retrieve

. something that's burrowed beneath it.
You've all probably ~n versions of the famous illustration where a human hair, a

smoke particle, and even the greasy schmutz of a fingerprint seem enormous compared
to the gap between the magnetic head of a hard disk and the rotating disk platter itself.
With tolerances slightly above the angstrom level, dropping a chassis a quarter inch, or
tapping it with your toe, is the hard disk equivalent of an atom bomb going off directly
overhead.

Ifs· true that packages like Jhe Norton Utilities and Mace Utilities, and even the
dangerous DOS RECOVER command, can rescue parts of text files that remain intact
after a bounced magnetic head has plowed little oxide furrows into the disk surface. But
these programs aren •t very good at resurrecting program files, or chunks of data stored
in binary format. And when you see a message like:

General Failure error reading drive c
Abort, Retry, Ignore, Fail?

120 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

well, that's what backups are for.
If you set up your hard disk properly, you'll not only take the anguish out of daily

backups, but you'll also end up working a whole lot smarter and more efficiently. While
you'll have to learn how to handle subdirectories, the tips and utilities provided here
should make it a breeze. Once you learn the basics - and install the tools you'll find in
this chapter - you'll be able to solo with the best of them.

Formatting the Hard Disk
Hard disks require two kinds of formatting, low-level and high-level. These days the
fundamental low-level formatting is done at the factory. You or your dealer have to do
the high DOS-level formatting.

Dealers nowadays test and set up hard disks before shipping them to purchasers.
Unfortunately, they also usually follow the questionable advice in the DOS manual and
copy all the files from the two DOS floppy disks onto the root directory. For best
performance, you should clean things up if you log into a brand new hard disk, type nm,
and see the listing scroll off your screen. But you can't just erase or move all the files
there; you'll leam which ones have to stay in a moment.

If your dealer or MIS department didn't set up your system, it• s fairly straightforward.
(If you have a hard disk that no one has touched, and all you see when you try to start

is a "161 - System Options Not Set" message, hunt for the SETUP program, which on
older systems IBM perversely buried on its Diagnostics disk. Put this disk in drive A:,
tum the computer on, press Fl when prompted, and answer the questions about date,
time, hard disk type, floppy disk type(s), and memory size. If you need to know the drive
type, check to see that it's not in the documentation that came with your system. If it's
not, take the cover off the computer and look for the number on the label on the front of
the drive. If all else fails, call your dealer. DOS 4.0 combed out the wrinkles and made
installation a whole lot easier.)

Once the setup program has run, insert your DOS disk in drive A: and tum your system
on. Press the Enter key twice when asked for the date and time. Type in:

FD I SK

and press the Enter key, and when you see the "Fixed Disk Setup Program" screen, accept
the defaults by pressing the Enter key again to create a DOS partition, and then once more
to tell the program you want to devote the entire hard disk to DOS.

You can slice up a standard hard disk into as many as four partitions, and jump from
one to the other by using FDISK. Take our word for it, unless you have a penchant for
dabbling in other operating systems, you don't want to.

After you've answered the partitioning questions, press any key and your system
should reboot. This time, unless you're using an AT or XT-286 or PS/2 with a battery
operated clock, enter the correct date and time when asked. Type:

Hard Disks Made Easy 121

FORMAT C:/S/V

and, if necessary, verify that you want to proceed by entering Y.
The /S suffix, or switch tells DOS you not only want to fonnat the hard disk, but want

to add the three system files - IBMBIO.COM, IBMDOS.COM (or their non-IBM-spe
cific cousins), and COMMAND.COM - to it so you can boot without having to stick a
DOS floppy disk in drive A:.

H you forgot to add the /S, or if your system is delivered with a hard disk that's been
FDISKed and formatted but without these three system files, tum your system on with
your main DOS disk in drive A:, enter the correct date and time, and then type:

SYS C:
COPY COMMAND.COM C:

The /V switch tells DOS to let you add a volume name. This doesn •t really do much
except let you personalize your directory listings and CHKDSK reports, and avoid the
pesky "Volume in drive Chas no label" messages. With recent versions of DOS you can
always go back and use the LABEL command to add or revise the volume label.

Subdirectory Structure
Many users who are either lazy or are befuddled by the terse explanation of subdirectories
in the.·DOS manual end up dumping all their files into the main, or root directory. 1t•s
called a root directory because all other subdirectories branch off of it in a shape vaguely
resembling an upside-down tree, or more accurately, a family tree, with the progenitor
planted at the top and all the descendants fanning out beneath him. A simple representa
tion looks likes this:

Level One Root
Directory

I
l l

Level 1\.vo Subdirectory Subdirectory
#1 #2

You could make the tree much more complex, with third, fourth and fifth levels
dangling below the second, each one bristling with additional subdirectories. Too few
subdirectories and you end up with unmanageable numbers of files in each; too many
and you can run into PA TH problems (more about that later).

122 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

Note that the schematic representation of your subdirectory structure doesn •t have to
be in the form of a symmetric tree. An equally valid way to describe the above setup is:

- Root ----.---- Subdirectory #1

Subdirectory #2

Note also that the root of the tree is at the top, so ifs really an upside-down tree. A
lower level is one farther away from the root. As you go higher in the tree you get closer
to the root. This sounds confusing, and it is. Just be thankful that IBM didn •t choose
UNIX instead of DOS.

IBM's XT and AT hard disks (which in its typically contrary way IBM calls fixed disks
because they're fixed in place and not removable like floppies) can hold between ten and
30 million characters; under DOS 4.0 and 5.0, newer systems can squirrel away as many
as half a billion. With storage space so capacious, keeping similar files grouped together
is a necessity. Otherwise, you (and DOS) would have to sort through hundreds or
thousands of files each time you wanted to find a single program to run.

Just as you can't be at two places at the same time (unless you have a good lawyer),
DOS lets you log into only one subdirectory at a time. When you first boot up, DOS logs
you into the root directory of either your hard disk or the diskette in drive A:. If you
installed the necessary DOS system files on your hard disk, and if you either didn •t have
a floppy disk in drive A: or had one there but left the drive A: door open, you'll boot off
the hard disk. If this doesn •t happen it ·s probably because you either have some bizarre
brand-X hard disk or an early PC with an old ROM chip that doesn't understand hard
disks.

You really need only three files in your root directory:

• COMMAND.COM
• AUTOEXEC.BAT
• CONFIG.SYS

Plus SHARE.EXE under DOS 4.0 or 5.0 using extra-large hard disks. Actually, a root
directory formatted with the /S/V option will contain two additional, hidden files,
IBMBIO.COM and IBMDOS.COM (or in DOS 5.0 and Microsoft's earlier versions of
MS-DOS IO.SYS and MSDOS.SYS), plus the volume label, which is also stored in a
small hidden file. They're called hidden files since they W<?n't show up in normal
directory searches. But they're there, and you can see at least the system files at the top
of the list when you type:

CHKDSK C:/V

IBMBIO.COM contains additions and corrections to the gut-level device-handling
BIOS routines that come with your system on ROM chips. IBMDOS.COM provides other

Hard Disks Made Easy 123

fundamental services for things like copying and deleting files, searching through the
directory, or reading the keyboard.

Technically, you can patch these system files and put the COMMAND.COM, AU
TOEXEC.BAT, and CONFIG.SYS files in other places than the root directory. But
playing with your hidden files is like playing with fire.

COMMAND.COM is the primary command interpreter, processor, and loader that
watches what you type at the DOS prompt. When it sees you trying to execute an internal
command such as DIR, TYPE, RENAME, COPY, or ERASE, it can dispatch these right
away, since the main routines for these are stored inside COMMAND.COM (which is
why they're called internal commands). When it can't find an internal command to match
what you typed - such as FORMAT, SORT, or 123 - it looks in a set of directories
you specify, called a path, for files with COM, EXE, or BAT extensions, and tries to load
or execute these external commands. In addition, a disposable part of COMMAND.COM
looks for the startup AUTOEXEC.BAT file to execute immediately after bootup.

Every hard disk system should have an AUTO EXEC.BAT file, if only to set the proper
system prompt. But it's also handy for loading resident popup programs like SideKick
into memory, changing screen colors, setting operating modes (to switch monitors or
specify communications protocols, for instance), copying files into RAMdisks, and
otherwise automatically configuring your system the way you like it.

The normal DOS hard disk prompt is a cryptic:

C>

which tells you only that at that moment DOS recognizes drive C: - rather than the other
drives in your system - as the active drive. Once you start creating subdirectories and
jumping around from one to another, you'll want to know which subdirectory you 're
currently logged into. By issuing the command:

PROMPT PG

you'll tell DOS to report the name of the subdirectory along with the drive that• s active,
each time you finish executing a command or program. The root directory prompt will
change to:

C:\>

The solitary backslash is DOS's shorthand for indicating the root directory. If the
backslash-greater-than-sign combination is too visually jarring, you could adapt the
prompt to:

PROMPT $P:

which will make the root directory appear as:

C:\:

124 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

Remember, the\ sign all by itself stands for the root directory. You can always see what's
in the root directory, for instance, by typing:

DIR \

Later, when you add other subdirectories, you'll connect subdirectory names and their
files with\ characters. So a subdirectory called DOSPT that's one level down from the
root directory would actually be called \DOSPT. And if you were to branch an additional
subdirectory off of\DOSPT, and called it \UTIL, the actual name of this new subdirectory
would be \DOSPT\UTIL. A file called TOOLS.DOC in this new subdirectory would then
be called \DOSPT\UTIL\TOOLS.DOC.

One of the handiest, but most confusing, aspects of naming files in subdirectories is
that you could pepper your hard disk with other TOOLS.DOC files. So a TOOLS.DOC
file on drive C: in the \DOSPT subdirectory would really be C:\DOSPT\TOOLS.DOC,
while a different version in the root directory would be C:\TOOLS.DOC. The full name
of any filehas three parts - drive letter,. path, and the actual filename-plus-extension.

A representation of this structure would be:

Root \

I
One Level Down \DOSPT

l
Two Levels Down \DOSPT\UTIL

The root directory doesn't have a user-defined name such as DOS PT, so DOS designates
it as just \ with nothing following it. The DOS manuals clearly state that the maximum
length of any subdirectory path - the list of directory names from the top (root) to the
deepest level - may be no longer than 63 bytes, measured from the beginning of the
first name to the end of the last name, excluding slashes in front or at the end.

DOS function call 47H (Get Current Directory) requires a 64-byte area in memory to
return the current directory path. It is not preceded by a backslash but it is terminated by
a hex 0, so this is consistent with the 63-character restriction.

How many nested levels are allowed in a directory structure? Although the manuals
never say so, the answer is obviously 32. If each of the subdirectory names is one letter
long and they are separated by backslashes, then 32 levels would make the total length
63.

Of course, 32 nested levels of subdirectories would place an enormous drain on DOS
as well as on the human user's mental faculties. What happens if you attempt to go beyond

Hard Disks Made Easy 125

32? Don't even try. You may get away with it but DOS will make life hard after that and
you'll have difficulty just removing that snarl of subdirectories.

Directory Limits
You can store up to 64 files in the root directory of a single-sided floppy disk (if you can
still find one), and 112 files in the root directory of a more common 360K floppy and
720K 3 1/2" disk. The root directory on the 1.2 megabyte floppy and 1.44 megabyte
high-density 3 1/2" disk holds 224. And there's space on most hard disk root directories
to store 512 files.

But don't test this out on your hard disk. If you do, you'll end up after the 509th with
a "File creation error" message (the 510th, 51 lth, and 512th are the two hidden system
files and the hidden volume label). Any subdirectory entries you may have in the root
directory are really just special types of files, so they're included in the count too. So you
may run out of room well before you actually have a chance to create the 512th file.

The number of directory entries in a subdirectory is limited only by available space on
the disk. That's because each subdirectory is really just a special kind of file that keeps
track of other files. Because the subdirectory itself is a file, it can grow the same way a
data file grows when you add information to it.

Remember - if you really want to organize your hard disk properly, don't put any
other files on your root directory than the ones mentioned above. Then, when you type:

DIR C:\

all you'll see is one screenful of your bootup files and main subdirectory listings. It'll be
an index into your hard disk.

Disk Tools
When IBM introduced its hard disk XT, it added several UNIX-like hierarchical
subdirectory features (as well as a UNIX-like tree structure) to the new release of DOS
that accompanied it (version 2.0). Among these powerful new commands were:

• MKDIR (and MD)
• RMDIR (and RD)
• CHDIR (and CD)
•PATH

Nobody anywhere ever uses the command names MKDIR, RMDIR, and CHDIR, since
the shorthand versions MD, RD, and CD will do just fine. Of course, since the IBM DOS
documentation is not exactly what you'd call friendly, you can't look up these commands
by hunting for the shorter versions in the alphabetical reference manual. MD, CD, and
RD aren't even in the manual's index. Nice touch, IBM.

126 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

The MD command creates a new subdirectory. The first thing you should do after
running FDISK and FORMAT is create a DOS subdirectory. To do this, type:

MD \DOS

If you are sure you are in the root directory, you can also type:

MD DOS

since both commands will do the same thing - create a subdirectory one level down
from where you currently are, in the root directory.

By omitting the backslash (as in MD DOS) you're saying "create a directory called
DOS that's one level down in the subdirectory tree from where I currently am." By
including the backslash (as in MD \DOS) you're saying "create a directory called DOS
that·is one level down from the root directory," since the single backslash specifies the
root directory.

The method that omits the backslash uses relative locations. The technique that
includes the backslash uses absolute locations. Both have their advantages. We'll discuss
this in more detail later. This is a critical distinction, and a point of real confusion among
new hard disk users. (Many DOS commands allow alternate phrasings. For instance, you
can use several different syntaxes to perform the same COPY command, depending on
what you want to do and where you currently are.)

Once you've created the \DOS subdirectory, log into it (or Change Directories) from
the root directory by issuing the CD DOS (or CD \DOS) command. Here• s a shortcut -
once you've typed MD \DOS to create the subdirectory, type the letter C and then press
F3. F3 repeats the previous command, so it will fill in the command line with the rest of
what you typed at the previous DOS prompt. So at the C> prompt you• d type:

MD \DOS

then press the Enter key. Then you• d type:

c

and press F3. As soon as you did you'd see:

CD \DOS

Press the Enter key and DOS will log you into your new \DOS subdirectory, and you '11
see:

C>

How do you know you 're in the \DOS subdirectory? If you type in DIR you'll get
something like:

Volume in drive C is POWER TOOLS
Volume Serial Number is 104F-16CD
Directory of C:\DOS

Hard Disks Made Easy 127

<DIR>
<DIR>

2 File(s)

6-10-90 10:48p
6-10-90 10:48p

20840448 bytes free

You can see the current directory in the second line of the DIR report. But if you
remembered to set your prompt to $P: you could automatically tell which directory you
were logged into, since instead of:

C>

as soon as you typed CD \DOS you• d see:

C:\DOS:

Typing CD by itself will also display the current subdirectory. But that's an extra step.
Notice that DOS already thinks you have two files in the \DOS subdirectory with the

peculiar names . and .. and with <DIR> where the file size usually goes. Dot notation
will be covered a bit later. The <DIR> tells you you're dealing with subdirectory entries.
Now go back to the root directory. You can do this one of two ways.

You can use the absolute location technique and issue a command that says "move to
the root directory":

CD \

or you can say "move one level up from where I am" with the command:

CD ..

You could have typed CD\ rather than CD \ , and CD .. rather than CD .. since in this
case DOS isn't picky about extra spaces (unless you're using one of the older DOS
versions, in which case the space between the CD and the .. is mandatory). The double
dot stands for the parent directory of the one you 're currently logged into - the directory
(or subdirectory) directly one level up toward the root. In this case the only level up is
the root.

If you're curious, the single dot stands for the directory you're currently in. This
shorthand actually comes in handy when you 're prompted for a subdirectory name and
you 're in one five levels deep and would rather type a single period than a long, elaborate
pathname - although just pounding on the Enter key sometimes works in such situations.

If you're deep inside one subdirectory like A\B\C\D\E\F\G and you're using the DOS
COMP utility to compare a file there with another file deep within another directory like
\1 \2\3\4\5\6, you c~n enter:

128 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

COMP \1\2\3\4\5\6\PROGRAM

COMP will respond with a message to enter the directory the other version of the file is
in. Just type a period, which tells DOS to look at the subdirectory you 're currently logged
into. Or, you could specify the period on the command line, as was done earlier:

COMP \1\2\3\4\5\6\PROGRAM .

or:

COMP . \1\2\3\4\5\6\PROGRAM

You can also use the dot to simplify erasing all the files in a subdirectory. Instead of
typing:

DEL *.*

all you really have to type is:

DEL .

This technique can be potentially dangerous, however. If you let someone who doesn't
understand subdirectories use your system you can run into trouble. If a novice user
doesn't have a clue what the . and .. represent in a directory listing but does know about
the DIR and ERASE commands, and somehow logs into a directory one level down from
the root, he or she may be tempted to erase these mysterious double dot entries and end
up deleting all the files in the current and root directories.

DOS will respond with a:

Are you sure (Y/N)?

warning when you try to erase an entire subdirectory like this, but that's not a threatening
enough message to a novice. You can make this message meaner by patching COM
MAND.COM, butmany users feel COMMAND.COM is sacrosanct and shouldn't be
touched. If you 're not one of these, here's how to avoid potential mass-erasure problems
like this by changing the message from:

Are you sure (Y/N)?

to:

Now hit the N key!!

First, make sure you have a copy of DEBUG.COM handy, and then make a backup copy
of COMMAND.COM called COMMAND.OLD so that if you make a mistake you can
start over. Then type:

Hard Disks Made Easy 129

DEBUG COMMAND.COM

Find out how long your version is by typing:

RCX

and pressing the Enter key twice. You '11 see something like:

ex 9305

Take the four-digit hex number following the CX and type:

S 100 9305 "Are you sure"

(substituting the four-digit hex number if yours is different from 9305). Press the Enter
key and you should see something like:

4938: 7CB2

Ignore the first four digits preceding the colon. Take the rightmost four digits and type:

E 7CB2 "Now hit the N key!! 11

(substituting the four-digit hex number if yours is different from 7CB2). Press the Enter
key. Then press W (and Enter) to write the new version back to disk, and Q (and Enter)
to quit DEBUG. Once you've patched COMMAND.COM, reboot.

. If you do this, make sure you don't mix patched and unpatched versions of COM
MAND.COM on the same disk, or you'll confuse DOS.

In any event, once you've used the CD\ or the CD .. command, and you 're back in the
root directory, type DIR and you '11 see a new listing along with:

Volume in drive C is POWER TOOLS
Volume Serial Number is 104F-16CD
Directory of C:\
COMMAND COM 47845 4-09-91 5:00a
CONFIG SYS 128 4-09-91 6:30a
AUTO EXEC BAT 640 4-09-91 8:12p
DOS <DIR> 4-09-91 10:48p

The <DIR> tells you that you now have a subdirectory one level down from the root
directory.

130 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

Customizing Your Prompt
The PROMPT command can do all sorts of tricky things, such as reporting the time and
date, or the DOS version. If you ask it to, it will print the current time whenever you do
something that summons another DOS prompt, such as press the Enter key again, or finish
executing a program. It will not act as a clock and display the continuously changing
time. And it will display time in hundredths of seconds based on a 24-hour clock. If you
want it to print just the hours and minutes, you can backspace away everything else, with
the command:

PROMPT It's now THHHHH$H

Users who discover the PROMPT command's flexibility invariably end up creating
strange prompts such as:

PROMPT +QQQQ+$_$B NG B_+QQQQ+$_

which produces:

+====+
I C> I
+====+

or:

PROMPT LN$G LNG_ B_ QQQ_

which yields:

<C> <C>
_L

A less frivolous use of the PROMPT command is in sending escape sequences to the
ANSI.SYS extended screen driver, which can give you precise control over the way your
monitor looks and works. The real strength of including $P in any PROMPT command
is that when you log into a subdirectory, DOS will display the name of that subdirectory.
So if your PROMPT setting is $P: and you create a subdirectory called STAR in which
you keep all your WordStar files, and you move from the root directory into that
subdirectory, your prompt will change from:

C:\:

to:

C:\STAR:

Hard Disks Made Easy 131

To see the command that most recently configured your prompt, type SET on a line
by itself, which displays the system's environment - the fundamental settings that tell
DOS where to look for key files and how to prompt the user. To restore the prompt to its
original C> just type PROMPf with nothing following it.

Customizing your prompt isn't all roses. Once you tell DOS to include the subdirectory
name in the prompt, it will relentlessly seek one out. So if you have a $P in your PROMPf
command and log into a floppy drive, then remove the disk from that floppy drive and
do something that generates an "Abort, Retry, Ignore, Fail?" message, DOS won't budge
until you stick the diskette back in the floppy slot. Only newer versions of DOS give you
the additional option to "Fail" which actually lets you succeed here. If you are offered
this option, type F, then enter the drive letter of your hard disk.

A second disadvantage is that if you have tons of multilayered subdirectories with long
directory names, and you're logged into one five levels deep, the prompt may be so long
that your commands wrap around the right edge of your screen. The best solution is to
keep subdirectory names short. In addition to preventing wraparound problems, this
makes it far easier to switch between subdirectories. It's a lot simpler to type \WST\UT
than \WORDSTAR\UTILITY, especially when you're doing it several times a day.
(While you 're at it, truncate the names of programs you use every day. Why type EDITOR
when you could just key in ED? If you don't like the idea of renaming your files you can
always create batch files with short names that can run programs with longer ones.) Also,
resist the temptation to use extensions in subdirectory names since they'll just make the
whole process more cumbersome and prone to error.

Another solution to wraparound ills is to end all your prompts with a $_which jumps
the cursor down to column 1 of the line below. Unfortunately, doing this will confuse
certain DOS utilities like MORE that are designed for single-line prompts and will end
up scrolling information off the screen before you can read it.

The CONFIG.SYS File
Apart from AUTOEXEC.BAT, the only other file that normally has to be in the root
directory is CONFIG.SYS. Your system will run without a CONFIG.SYS file, but will
work better with one. Arid certain programs demand one. If you 're using a database
manager, for instance, that handles more than eight open files at once, you have to prepare
DOS for juggling the extra op.es with a FILES= command in CONFIG.SYS.

But where CONFIG.SYS really shines is in increasing disk-read buffers, loading
device drivers, and adding logical drives to your system.

For some odd reason, IBM specified a default of two buffers for the XT, and a paltry
three for the AT. Recent DOS versions allocate 15 buffers for any system with more than
512K of RAM. Buffers are simply chunks of memory set aside to store the data your
system most recently read from or wrote to your disk, although some buffers don't store
written data. If you have to go back and read or write the same data, it's far speedier to
do so via these memory buffers than to have to move the magnetic heads again and slurp
up or slap down the information on the physical disks one more time.

132 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

Buffer needs vary from system to system, and the number of buffers is often a topic
of heated discussion when tech types get together .. Virtually everyone agrees that three
is a joke. Somewhere around ten or 15 seems right for XT users, and 20 or 30 for AT
users and other power users. Specifying too many is as detrimental to performance as too
few, since your system will end up wasting time· as it chums through endless reams of
data it will never use.

If you currently have a directory crammed with hundreds of files, it's easy to
demonstrate how increasing the number of buffers can help boost performance. First,
make sure you don't have a CONFIG.SYS file, or if you do, that it doesn't contain a
BUFFERS= command. If yours does, rename it temporarily.

Reboot, and issue a DIR command. The first few dozen files scroll rapidly by, but
eventually the buffers fill, and the display suddenly turns balky. If you get tired of
watching your files bounce slowly upward, interrupt the directory listing by holding down
the Ctrl key and tapping either the C key or the ScrollLock key. Then, when you're.back
in the root directory at the DOS prompt, create a CONFIG.SYS file by typing:

COPY CON CONFIG.SYS

and then pressing the Enter key. The cursor will drop down a line. Type:

BUFFERS=20

and then press Enter, the F6 function key, and then the Enter key again. You'll see the
message:

1 File(s) copied

Reboot and reissue the DIR command. Now virtually all the files will fly by, not just the
first few, since your system can load a giant chunk of directory data from your disk into
memory at one pass and not have to keep reading the disk in little sips.

CONFIG.SYS is also where you instruct your system to load device drivers such as
the DOS VDISK.SYS virtual disk (RAMdisk), or drivers to link your basic hardware
with mice, nonstandard external storage devices, 3-1/2 inch outboard floppy drives, or
giant hard disks. Under DOS 4.0, you can use the INSTALL command to load your TSR
programs here.

And it's where you tell DOS how many drives you're going to want to use. When you
boot up, DOS assumes a maximum.of five (drives A: through E:). But if your system is
loaded to the gills with hard disks, half-heights, microfloppies, and other exotica, you
might need more. And if you use the SUBST command to fool your system into treating
a subdirectory like a disk drive to get around PA TH or environment limitations, you 'II
have to prearrange it with a LASTDRIVE== CONFIG.SYS command.

Apart from the hidden DOS system files, COMMAND.COM, AUTOEXEC.BAT, and
CONFIG.SYS, a well-organized disk's root directory should contain no other nonhidden
files.

Hard Disks Made Easy 133

Some users don't mind having their important DOS utilities in their root directory, and
cut through the clutter of a messy directory with a DIR/P (paused directory) or DIR/W
(wide directory) command. This won't radically degrade performance, and may actually
be a hair faster than storing the utilities in a separate \DOS subdirectory, if the files are
kept at the very beginning of the hard disk directory. But it's even faster to keep them on
a RAMdisk. And clutter gets to be a bad habit. Soon you start dumping files anywhere.

As mentioned earlier, it's a good idea to clean up a root directory cluttered with
extraneous files. If all a dealer or corporate systems installer did when setting up your
brand new system was copy all the DOS files from their original floppies to your root
directory, you can go ahead and erase everything except COMMAND.COM (which is
required to reboot the computer).

You can see if all the files in your root directory are also on your DOS disk either by
putting the DOS disk in drive A: and then typing:

DIR C:/W

and then:

DIR A:/W

for a wide-display filenames-only listing. Or, turn on your printer and either type:

DIR C: > PRN

and then:

DIR A: > PRN

or hold down the Ctrl key and press P (or PrtSc) to toggle your printer on so that it echoes
everything simultaneously to the printer and the screen, and type DIR C: and then DIR
A: for a printed copy of your directory listing. If you used the Ctrl-P (or Ctrl-PrtSc)
technique to turn simultaneous printing on, hold down the Ctrl key and type P (or PrtSc)
once more to toggle it off.

You can also see what's on your disk by sorting the files in order of their extension.
The command:

DIR I SORT /+10 I MORE

will make it easy. For this to work, the DOS SORT.EXE and MORE.COM files must be
on the current directory, or be in directories that you've included in your PA TH command.

The DOS COMP utility can also come in handy here. If your DOS disk is in drive A:,
type:

COMP . A:

134 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

(The period used in this example is a shorthand way to indicate whatever Lrectory you
are currently in.)

Any way. you do it, if you see that all you have on your root director IS DOS files,
erase all the files except COMMAND.COM (you'll put them back in the proper places
later). If you have AUTOEXEC.BAT or CONFIG.SYS files,. examine t ~ir contents by
using the TYPE command. To see what's inside CONFIG.SYS, just type:

TYPE CONFIG.SYS

If you see other files listed, such as:

DEVICE=RAMDRIVE.SYS.360 /E
DEVICE=ANSI.SYS
DEVICE=MOUSE.SYS

you 'II want to leave VDISK.SYS, ANSI.SYS, and MOUSE.SYS where they are on the
root directory. Later you can move them out of the root directory to a subdirectory called
\BIN (so named because that's where you store your programs, which are in binary,
nontext format), and change the CONFIG.SYS file so that it says:

DEVICE=\BIN\RAMDRIVE.SYS 360 /E
DEVICE=\BIN\ANSI.SYS
DEVICE=\BIN\MOUSE.SYS

Similarly, if you use the TYPE command to examine AUTOEXEC.BAT and see that
it loads SideKick with the command SK, leave SK.COM in the root directory for now.
Later, if you create a third-level subdirectory below \BIN called \BIN\KICK, and move
your Side Kick files there, you would change the line in your A UTOEXEC.BAT file from:

SK

to:

\BIN\KICK\SK

The TYPE command is terrific for peeking into short text files. But if a file is longer
than 24 lines, the beginning will scroll off the screen before you can read it. To prevent
this, use the MORE.COM utility, which shows you the contents of files a screenful at a
time. If your AUTOEXEC.BATis getting long, type:

MORE < AUTOEXEC.BAT

You could also enter:

TYPE AUTOEXEC.BAT I MORE

but the first method is more efficient and easier to type.

Hard Disks Made Easy 135

Important Files
You should now copy all the important files from your DOS floppy disks into your new
DOS subdirectory. You can log onto drive A: and type:

COPY *. * C: \DOS

or, while in the root directory in drive C:, type:

COPY A:*.* \DOS

Or you could log into C:\DOS (with the CD DOS or CD \DOS command) and simply
type:

COPY A:'*.*

or:

COPY A:.

Even better is to use \he XCOPY command introduced with DOS 3.2. COPY works
one file at a time. XCOPY will read in as many commands in one gulp as memory allows,
then spit them out in one continuous stream without bouncing back and fortl,l repeatedly
the way COPY does. XCOPY is also a terrific backup tool.

If you're logged into C:\DOS and you have XCOPY handy, just type:

XCOPY A:

Make sure you copy the important files from both the main DOS floppy disk and the
supplemental one. Starting with DOS 3.3, these are called "Operating" and "Startup"
disks. With DOS 4.0 you get three "Operating" disks, plus an ••1nstal1," a ··select,'' and
a ··shell."

However, you can skip some of the files nobody ever uses, such as VDISK.LST (a
long assembly language source code file for programmers), anything that ends with a
BAS extension (unless you think DONKEY is an exciting and challenging game), and
some of the stranger utilities such as KEYBIT.COM and KEYBFR.COM which load in
foreign keyboard templates (in this case Italian and French). These foreign utilities were
all combined into one file called KEYB in version 3.3.

You can also toss BASIC, since BASICA does everything BASIC does and more. In
fact, with version 3.3, BASIC just loads BASICA. It's hard to believe, but some of the
programs on some of the more recent versions of DOS will work only on the PCjr; try
running MUSICA.BAS for instance. Do however copy DEBUG.COM, which, for some
bizarre reason is not on the main DOS disk. Incidentally, while ·IBM removed the
documentation for DEBUG from the 3.3 manual, it left the program on the disk.

Now that you've created a subdirectory (called \DOS) one level down from the root
directory, go ahead and create another subdirectory on the same level as \DOS, called
\BIN. But be careful. Why?

136 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

If you 're currently logged into either the root directory or the \DOS directory, you
could create \BIN with the absolute command:

MD \BIN

This command in effect says "create a subdirectory one level down from the root directory
and call it BIN.'' The single\ prefix means "one level down from the root directory."

However, if you forget the backslash and try the command:

MD BIN

two different things will happpen, depending on where you currently are on your hard
disk, since omitting the backslash makes this a relative command rather than an absolute
one.

Typing MD BIN will create a subdirectory that• s one level down from where you
currently are. So if you 're currently logged into the root directory, MD BIN will create
a subdirectory called \BIN that's one level down from the root.

But if you 're currently logged into \DOS, which is already one level down from the
root, and you type MD BIN, you ·n end up creating a subdirectory called \DOS\BIN that• s
one level down from \DOS and two levels down from the root. That's because leaving
out the backslash in the MD command makes it a relative rather than an absolute
command.

To recap, if you already have a subdirectory called \DOS, but you 're currently logged
into the root directory:

You are here _____ _ \

l
\DOS

and you type MD BIN, you'll end up with:

Root \

l
l

l
One Level Down \DOS \BIN

Hard Disks Made Easy 137

which is what you want. But if you're already one level down, in \DOS:

Root \

l
You are here ------ \DOS

and you type MD BIN, you'll get:

Root \

I
One Level Down \DOS

1
Two Levels Down \DOS\BIN

Actually, it really doesn't matter which way you set up your subdirectories. Most users
aren't really comfortable creating tree structures any more complex than one or two levels
deep. A few prefer intricately filigreed systems. For best results, keep it simple. The only
real reason to create lots of subdirectories branching off of each other is if your work
demands it.

For instance, if you 're a CPA with many clients, each one deserves its own subdirec
tory, and each will require still deeper subdirectory levels of organization. It's good
practice to keep records separated by year or quarter or even month, depending on the
quantity of files. But while it might make sense to keep expenses in one subdirectory and
income in another, it would be ridiculous to have one called:

\SMITHC0\1990\JUNE\EXPENSES\OFFICE\PENCILS

and another:

\SMITHC0\1990\JUNE\EXPENSES\OFFICE\STAPLES

If you've followed the earlier instructions properly, you now have two subdirectories
called \DOS and \BIN, each one level down from the root directory. \DOS contains all

138 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

the important files you copied from your two main DOS disks. \BIN should contain all
the smaller non-DOS utilities and batch files you use every day.

Once you've created your \BIN subdirectory, copy these utilities into it (by adapting
any of the syntaxes you used to copy your DOS files into \DOS, above). Log into \BIN
by typing:

CD \BIN

and run VTREE by typing:

VT REE

You should see something that looks like:

-r-DOS

LBIN

This may not be a very impressive graphic representation, but it's vastly better than the
nearly useless output produced by older versions of the DOS TREE.COM utility. All
TREE.COM used to do was grind out a long, slightly confusing textual description. With
just two subdirectories it's not so terrible, but with 20 or 30 all you get is an unmanageable
scrolling mess. And displaying such a graphic object as a hierarchical tree with words
alone is like trying to describe colors to someone who's congenitally blind.

You can make TREE slightly more useful by adding an /F switch, which will display
all the files in all the subdirectories. But even this use of TREE is overshadowed by the
far better CHKDSK /V, which also lists all the files on your disk. CHKDSK /V displays
full pathnames; TREE /F doesn't. And TREE pads all its listings with unnecessary spaces,
which makes it scroll rapidly off your screen. As a bonus, CHKDSK /V adds the standard
CHKDSK report detailing the number of files, bytes free, etc. And it displays the hidden
files; TREE /F doesn't. Finally, CHKDSK /Vis far faster.

Incidentally, early versions of TREE contain a nasty bug. When the TREE command
in PC-DOS 2.0, 2.1, and 3.0 encounters a directory with an extension, such as
UTILS.NEW, it stops in its tracks after it has finished listing any directories below the
one with the extension. DOS didn't get around to fixing it until version 3.1.

Earlier TREE versions also don't list files in the root directory when you specify the
/F parameter after TREE. The upgraded TREE in DOS versions 3.1 and later also fixes
this problem.

If you're not using DOS 4.0 or 5.0, copy VTREE.COM into your \BIN subdirectory.
Then type:

ERASE \DOS\TREE.COM

Note that in the above example, the full name of the primitive DOS utility that you just
expunged was \DOS\ TREE.COM rather than just TREE.COM. That's because you can

Hard Disks Made Easy 139

have different versions of similarly named files in different subdirectories. You can even
have similarly named subdirectories; if you wanted to (but trust us, you don't) you could
have a subdirectory called \DOS and one called \BIN\DOS on the same disk.

For instance, you could rename VTREE.COM to TREE.COM and put it in \BIN. So
if you keep the original DOS version in the \DOS subdirectory, your hard disk would
then contain files called \DOS\TREE.COM (which is the original DOS version) and
\BIN\TREE.COM (which is the renamed version of VTREE.COM). To run the original
DOS version, you'd type:

\DOS\TREE

To run VTREE.COM, which for this example you renamed to TREE.COM, you'd type:

\BIN\ TREE

If you were in the root directory, and you hadn't yet used the PATH command to tell
DOS where to look for executable files, and you typed:

TREE

you wouldn't run either \DOS\TREE or \BIN\TREE; all you'd get is a .. Bad command
or file name" message. As discussed above, when you type a command like TREE at the
DOS prompt, COMMAND.COM first checks whether it's an internal command, and
when it discovers it's not, checks the current directory and then a PATH - a specified
set of directories - for a file by that name with a COM, EXE, or BAT extension. If \DOS
and \BIN aren't yet included in the path, COMMAND.COM won't check in those
subdirectories, and won't run either version of TREE.COM.

You can tell COMMAND.COM to check in both of these subdirectories with the
command:

PATH C:\DOS;C:\BIN

or:

PATH C:\BIN;C:\DOS

The difference between these two is that if the top path is active, DOS will look in the
\DOS subdirectory before it looks in \BIN. In the second example it will examine \BIN
before \DOS. If DOS finds a TREE file ending in COM, EXE, or BAT, it will stop looking
and execute the file. So if the first path is in use, typing TREE will run the DOS version
of TREE. If the second path is in use, DOS will find the renamed version of VTREE and
run it. If you had files called TREE.COM, TREE.EXE, and TREE.BAT in either
subdirectory, DOS would run TREE.COM. It always looks for COM files first, then
EXEs, and finally BATs. But it won't look for filenames with any other extensions, such
as data files or program overlays. If you have a version of DOS 3.3 or later, you can use

140 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

the APPEND command to mimic the PA TH command and find any kind of file. If you 're
using an earlier version, you can purchase a commercial PA TH extender like Filepath or
File Facility. But save yourself heartache and upgrade to the most current DOS version
available.

It's best to include a PATH command like either of the ones above in your startup
AUTOEXEC.BAT file. And if you 're using a PA TH extender or APPEND, add a separate
line in your AUTOEXEC.BAT for it too.

As mentioned above, the SET command can show you the command you entered to
customize your prompt. Typing SET on a line by itself will also dispJay the current path
setting, as will typing PATH by itself. You can always modify your existing path setting
by following the PATH command with the new list of subdirectories, joined together
with semicolons.

A smarter technique for adding path settings is to use environment variables. These
variables weren't documented until version 3.3, and they don't work at all in version 3.0.
And you have to make sure you have enough environment space to accommodate these
variables.

The environment is a special area of memory that DOS uses to store important settings
like your current PROMPT setting, what directories your path includes, and where to
look for your main copy of COMMAND.COM. You can also park variables there by
using the SET command, and retrieve them in batch files by wrapping the variable name
in percent signs. So if you wrote a small batch file that included just the lines:

SET COLOR=BLUE
ECHO %COLOR%

the first line of the batch file would insert the string:

COLOR=BLUE

into the environment, and the second line would look in the environment for the value,
replace %COLOR% with BLUE, and display the word:

BLUE

on screen. If you later typed:

SET COLOR=RED

and ran a batch file that included the line:

ECHO %COLOR%

it would print:

RED

Hard Disks Made Easy 141

To get rid of the COLOR environment variable, just type:

SET COLOR=

with nothing after the equals sign. At any point you can see all your environment settings
by typing:

SET

at the DOS prompt.
However, DOS sets up a default environment that's only 160 bytes long, and this space

fills up quickly. You can make it bigger, but the method varies with the DOS version
you're using. Under DOS 2.0 and 2.1 you can patch COMMAND.COM at address ECF
to represent the number of 16-byte memory paragraphs that will make up your new
environment. (For DOS 2.11 the address is DF3.) DOS 3.0 and 3.1 lets you put a:

SHELL [d:] [path] COMMAND.COM /E:n /P

command in your CONFIG.SYS file, where n is the number of 16-byte paragraphs. For
versions 3.2 and later, use the same SHELL command but specify the actual number of
bytes rather than paragrdphs. You can increase the size from the default of 160 bytes up
to 32K in DOS 3.2, 3.3, 4.0, and 5.0, but the maximum size in earlier versions is 62
paragraphs, or 992 bytes.

Once you've made sure you have enough environment space, create a small batch file
called ADD PA TH.BAT by getting into DOS, typing in the lines below, pressing the Enter
key at the end of each one, and then pressing the F6 key and the Enter key one final time
when you're all done. Do it right and you'll get a "1 File(s) copied" message afterwards:

COPY CON ADDPATH.BAT
ECHO OFF
IF %1!==! GOTO OOPS
PATH=%PATH%;%1
GOTO END
:OOPS
ECHO EnteI the new diiectoiy af teI %0
ECHO that you want to add to youI PATH
:END

To test it out, assuming you don't already have PATH set, create a simple PATH to your
C:\DOS directory with the command:

PATH=C:\DOS

Then type either PA TH or SET to make sure you typed it in properly. To extend the path
so it included C:\BIN, you'd ordinarily have to type:

142 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

PATH=C:\DOS;C:\BIN

But if you have ADD PA TH.BAT handy, all you have to do is type:

ADPPATH C:\BIN

Then type SET or PATH again and you ·ll see the path setting has indeed been extended.
When the PATH statement is short, this doesn •t save much typing. But when your path

goes all the way across the screen, you •ll appreciate it. It works by using an environment
setting as a variable. The %PATH% is a variable that tells DOS "look inside the current
environment setting and substitute, in place of the %PATH% in the batch file, whatever
follows the word PA TH=." The technique also uses what is called a replaceable parameter
..- the % 1. When DOS sees this in a batch file, it replaces the % 1 with the first word or
string of characters you typed on the command line immediately following the name of
the batch file.

So if the batch file is called ADD PA TH, and at the DOS prompt you typed:

ADDPATH HELLO

it would replace the % 1 with HELLO.
The "IF % 1 ! == ! GOTO OOPS .. (note the double equal sign) tests to see whether you

typed anything in after the name of the batch file. If you did type something in, like
C:\BIN, DOS replaces the % 1 with C:\BIN and turns the test into:

IF C:\BIN!==! GOTO OOPS

Now C:\BIN! is clearly not equal to!, so the test fails. However, if you entered nothing
after the name of the batch file, % 1 would be equal to nothing, and DOS would tum the
test into:

IF !==! GOTO OOPS

Sure enough, ! does equal !, so the batch file will jump to the "label" called :OOPS, where
it prints a message providing instructions. (Labels are preceded with colons and don •t
execute.) This effectively jumps around the "PATH=%PATH%;%1 .. command if you
forgot to enter an additional path extension. DOS will replace the %0 in the line that says
"ECHO Enter the new directory after %0" with the name of the batch file itself. This
way, if you change the name of the batch file from ADD PA TH.BAT to something else,
DOS will always display the current name in the instructions.

If you did enter a new subdirectory that you wanted tacked onto the end of your path,
DOS would concatenate it when it came to the "PATH=%PATH%;%1 .. line. It would
replace the %PATH% with the current path and the %1 with the new subdirectory you
just typed in. And it would tack on the semicolon DOS uses to separate subdirectories.
If the current path was:

Hard Disks Made Easy 143

PATH C:\DOS

and you typed in:

ADDPATH C:\BIN

you• d end up with:

PATH C:\DOS;C:\BIN

The equal sign sometimes used after PA TH is optional; DOS treats it as a space. Typing:

PATH C:\DOS

or:

PATH=C:\DOS

will produce identical results. If you do like to experiment with your path settings, you
can always make it easy to reset everything by typing:

PATH > OLDPATH.BAT

at the DOS prompt before you make any changes. This redirects the environment string
into a batch file called OLDPATH.BAT. When you're done changing the PATH, just
type:

OLDPATH

at the DOS prompt to put things back to normal. Sometimes you may need to add
directories to your PATH setting temporarily, then get rid of the additions when
you're done. You can adapt the process described above by modifying ADDPATH
slightly:

COPY CON ADDPATH.BAT
ECHO OFF
IF %1!==! GOTO OOPS
SET P1=%PATH%
PATH=%PATH%;%1
GOTO END
:OOPS
ECHO Enter the new directory after %0
ECHO that you want to add to your PATH
:END

144 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

Then create another called PATHOLD.BAT that restores the original PATH:

ECHO OFF
PATH=%P1%
SET Pl=

For instance, if you want to add C:\BIN to your existing PATH temporarily, type:

ADDPATH C:\BIN

just the way you did before. But when you're done, to restore things the way they were
before you made the addition, just type:

PATHOLD

The new "SET P1=%PATH%" line simply creates a dummy variable called Pl that
stores the contents of the old PA TH, before you make any PATH changes.
PATHOLD.BAT then takes the original PATH - stored under the Pl environment
variable - and puts things back the way they were, then gets rid of the dummy Pl.

The only problem with this is that you have to single-step your way through. If you
add one directory and later want to get rid of it and add another one, you have to run
PA TH OLD before you add the second one. If you don't, ADD PA TH will add the second
new one onto the first.

The DOS RAMdisk
As every power user knows, a RAMdisk is a section of memory that some software has
tricked DOS into treating like an additional physical disk drive. RAMdisks are far faster
than even the fastest hard disks, since they contain no moving parts. The tradeoff, of
course, is that RAMdisks are volatile; all data stored on them vanishes when you tum the
power off or when the current in your wall socket hiccups.

To install the free RAMdisk that comes with later versions of DOS, make sure the
DOS RAMDRIVE.SYS program is in your C:\DOS subdirectory, and include this line
in your CONFIG.SYS file:

DEVICE=C:\DOS\RAMDRIVE.SYS

This command will set up a virtual drive D: with a default 64K of available space. If you
want a larger RAMdisk, you can specify the number of bytes at the end of the command,
plus, in DOS 5.0, the sector size, maximum number of files or directories, and whether
to use extended or expanded memory. For example,

DEVICE=C:\DOS\RAMDRIVE.SYS 360

would set up a drive D: that's the same size as a standard double-sided floppy. However,
IBM won't let you DISK COPY into it. RAMdisk software from other manufacturers,

Hard Disks Made Easy 145

such as AST·s SUPERDRV, will let you use the DISKCOPY command. IBM·s VDISK
and Microsoft DOS 5.o·s RAMDRIVE driver will let you create multiple virtual disks,
configure the sector size and number of directory entries, and, in the most recent versions
of DOS, use extended or expanded memory.

Under DOS 4.0 and 5.0, you can install VDISK.SYS or RAMDRIVE.SYS in extended
or expanded memory. Using expanded memory can be a problem on some systems with
proprietary caches that conflict with the DOS BUFFER command. (In DOS 4.0 you need
to specify /X after your BUFFERS command to use VDISK•s /X expanded memory
abilities.) A safer way is to put RAMDRIVE into extended memory. To create a 128K
RAMdisk in extended memory, include a line in your CONFIG.SYS file that reads:

DEVICE=C:\DOS\RAMDRIVE.SYS 128 /E

The trick is to figure out which major programs, batch files, and utilities you use
frequently and insert a cascade of commands in your AUTOEXEC.BAT file to copy
those files to the RAMdisk. Then make sure your path includes this new drive. In the
example used above, the path would now look like:

PATH=D:\;C:\DOS;C:\BIN

Putting D:\ first means that the root directory of the RAMdisk is the first place DOS will
look.

1t•s smart to put all your batch files except the tiniest ones into a RAMdisk, since batch
files execute one slow line at a time. Watching even a hard disk grind its way through a
medium sized batch file is no fun.

Lef s say you use three programs very often - CHKDSK.COM, a color-setting and
screen-clearing program called C.COM, and BROWSE.COM. Your AUTOEXEC.BAT
file would contain the lines:

COPY C:\CHKDSK.COM D: > NUL
COPY C:\C.COM D: > NUL
COPY C:\BROWSE.COM D:Z.COM > NUL

The> NUL at the end of each line gets rid of the ••1 File(s) copied .. messages. Notice
that the third line not only copies BROWSE.COM to D: but also renames it to Z.COM.
Thaf s because Z is a lot easier to type than BROWSE since Z is one letter long and
happens to be at the lower lefthand comer of the keyboard.

Protecting AUTOEXEC.BAT an:d CONFIG.SYS
Most software packages these days either come with instructions that suggest creating
one or more dedicated subdirectories, or have their own installation programs that do it
automatically.

However, these automatic installers can be downright dangerous. Some replace your
versions of AUTOEXEC.BAT and CONFIG.SYS with their own, when they really ought

146 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

to modify yours rather than trashing them. Others hide files, which makes it difficult to
remove subdirectories.

You can prevent your AUTOEXEC.BAT and CONFIG.SYS files from being
written over by using the TYPE or BROWSE commands or your word processor to
examine the program's BAT and installation programs. If you see a command that
simply copies that program's versions of AUTOEXEC.BAT and CONFIG.SYS to
your hard disk, you can use your word processor to adapt your existing files rather
than watch them get trashed.

A smart idea is to maintain a small subdirectory called \BAKUP containing nothing
but your current versions of COMMAND.COM, AUTOEXEC.BAT, and CONFIG.SYS.
Every time you update one of these, copy it to the \BAKUP subdirectory. Then when a
program installs itself destructively you can type:

COPY \BAKUP \

This is shorthand - you could have said:

COPY \BAKUP*.* \

Or, you can log into the root directory and just type:

COPY BAKUP

DOS thinks that when you tell it to perform a task such as copying or deleting and you
specify just the name of the subdirectory, you are asking it to do something to all the files
in the subdirectory. So if you have a \BIN directory and you type:

DEL \BIN

DOS assumes you want to wipe out every file in the subdirectory just as if you had typed:

DEL \BIN*.*

In both cases it will warn you in its quirky way with the message:

Are you sure (Y/N)?

(DOS 4.0 and 5.0 make it clearer by adding a message .. All files in directory will be
deleted!")

Keeping duplicates of your important root directory files in a \BAKUP subdirectory
is also a good idea if you try to get too tricky. While DOS usually pauses to warn you if
you Lry to delete all the files in a directory, you can sidestep die protection. Execute either
of the commands:

FOR %A IN (*.*) DO DEL %A

Hard Disks Made Easy 147

or:

ECHO y I DEL *·*

and DOS will merrily wipe out every last nonhidden file. The syntax for the above FOR
command is correct if you type it in at the DOS prompt (be careful if you try this). But
if you want to use it in a batch file replace both single % signs with double % % signs
(and be even more careful).

An easy way to keep your files safe is to use the A TIRIB command to make them all
read-only so they can't be deleted, overwritten, or changed. Just type:

ATTRIB *·* +R

Hidden Files
Hidden files can be a real problem with subdirectories. Few users keep the same
subdirectory structure for very long. Most end up cutting and pasting branches of the tree
as they get more sophisticated or desperately short of space, or when they replace
applications packages with newer ones.

The RD command removes subdirectories, but only when they're empty. If you've left
even one file or lower-level subdirectory in them, you won't be able to expunge the
subdirectory.

Some programs, in spiteful attempts at copy protection, install hidden files that you
can't see in normal directory searches. If you try to remove a subdirectory that you think
is empty, and you see this message:

Invalid path, not directory,
or directory not empty

first check to see if you've left any subdirectories branching off the one you want to get
rid of. If so, you have to move or erase the contents of those lower-level subdirectories
first, then use the RD command to remove them.

If there aren't any files or lower-level subdirectories, some nasty application has
probably planted a hidden file there. You can check on this by executing the CHKDSK
/V I MORE command, which will show all the files on your disk a screenful at a time,
including the hidden ones. Then use A TTRIB.EXE to unhide the file.

Warning: Some commercial software packages not only hide files but scramble the
arrangement of DOS sectors beneath the hidden file. If at all possible, always try to use
the deinstallation program that came with the software package before using a utility to
reveal the program so you can erase it.

Changing the file attributes to "hidden" or "read-only" will prevent programs from
overwriting them. These utilities use function 43H of INT 21 to first check the existing
attribute byte, and change only the bits that need modification. ORing the existing value
with 1 makes it read-only; ORing it with 2 makes the file hidden. ANDing it with FE

148 DOS Power Too/,s~ 2nd Edition, Revised/or DOS 5.0

takes away the read-only attribute; ANDing it with FD unhides the file. This way it leaves
other attributes (system or archive) as they were.

Unfortunately, you can •t use function 43 to change the attribute byte of subdirectories
or volume labels, so this won •t let you meddle with those.

Be careful when hiding files en masse. If you issued a command such as:

FOR %A in (*.*) DO HIDE %A

you• d end up with a whole directory of hidden files. You won •t be able to use a similar
command to unhide them all at once, since DOS won •t see any files to unhide. You ·ll
have to unhide all your files individually. The safest thing to do if you hide lots of files
is first create a master file listing all the filenames, and put this master file in another
directory or on another disk. If you •re on drive C: you could use a command like:

DIR > B:C-HIDDEN.LST

Of course, with DOS 5.0, you can use the enhanced features of A TTRIB.EXE to unhide
files en masse rather simply with

ATTRIBU -h *·*

Making all your root directory files hidden may look interesting, but it can confuse
anyone else who tries to work with your system. Making them read-only will prevent
other programs from changing (or deleting) them, but you •ll still see them in normal DIR
searches.

Some awful installation programs change things as they proceed. They may rename a
driver file on the original disk or delete files once they·ve copied them to a hard disk. If
the installation process is interrupted, or if it's so dumb that it doesn•t know when
something•s gone wrong, you may have trouble reinstalling things later.

Another clever way to prevent having software packages replace or otherwise modify
AUTOEXEC.BAT is to make your AUTOEXEC.BAT tiny and have it run another
start-up batch file with a different name that does all the real work. This way if something
clobbers the file on your disk named AUTOEXEC.BAT, it won•t hurt your real startup
file.

To do this, just put the following two lines in your AUTOEXEC.BAT:

ECHO OFF
SETPATH STARTUP

All this does is execute another batch file called SETP A TH.BAT:

SET NORMPATH=C:\DOS;C:\UTIL;C:\
PATH %NORMPATH%
%1

Hard Disks Made Easy 149

SETPATH.BAT sets the path, and then executes the STARTUP.BAT file, since its %1
replaceable parameter refers to the word STARTUP in the last line of the AU
TOEXEC.BAT file.

The STARTUP.BAT file contains all commands you normally would have placed in
an AUTOEXEC.BAT file:

PROMPT PG
PRINT /D:PRN /Q:32
CARDFILE C:\UTIL\CARDFILE.TXT
DOS KEY
CTYPE /MA
SPEEDUP

There are several advantages to this technique:

• The AUTOEXEC.BAT file is simple to recreate if it is destroyed or inadvertently
modified.

• The PATH command is in its own separate batch file, making it easy to change if
directories are added or removed.

• The SETP A TH.BAT file can quickly restore the default path if it has been changed.
• By creating a batch file like ADD PA TH.BAT:

PATH %NORMPATH%;%1

it's easy to add a new directory to the path temporarily, and then restore it later
with SETPATH.BAT. Don•t try this with buggy DOS 3.0 however.

• H all memory resident programs are removed by utilities such as INSTALL/RE
MOVE, running STARTUP.BAT restores the memory resident programs as they
were at power-on time.

Another ingenious protection solution is to change COMMAND.COM so it looks for
a file with a name other than AUTOEXEC.BAT. In fact, the first file COMMAND.COM
tries to execute doesn •t even have to end in .BAT.

Subdirectory Navigation
It's easy to create new subdirectories and move around inside existing ones if you have
the right tools handy and follow a few simple rules.

The first rule is to remember that when you want to move up - toward the root
directory - all you have to do is type:

CD ..

150 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

(or CD ..) to jump to each successive parent directory. However, when you finally land
in the root directory, you can't move up any more levels, trying to do so will produce an
"Invalid directory" message.

It is especially easy to back out to the root directory by using the. F3 key. If you 're in
a subdirectory five levels deep called:

LEV1\LEV2\LEV3\LEV4\LEV5

(you can tell this by the C:\LEVl \LEV2\LEV3\LEV 4\LEVS: prompt that your PROMPT
$P: command displays) and you want to jump back to the root directory, you can do this
the easy way, by typing:

CD \

or, you can jump upward a level at a time by typing:

CD ..

once and then tapping the F3 key four more times. Each time you do, DOS will repeat
the earlier command, and since that command is CD .. -it will' ·bounce you rapidly
rootward.

To move in the other direction, down from the root directory to LEVS, you could of
course simply type:

CD \LEV1\LEV2\LEV3\LEV4\LEV5

However, you can't type:

CD \LEV5

because that would tell DOS to jump you_ into a subdirectory called \LEVS fl,lat was just
one level down from the root directory. The real name of the \LEVS subdirectory above
is not just \LEVS; it's \LEV1\LEV2\LEV3\LEV4\LEV5.

Another way to get from the root directory to there is by using the relative version of
the CD command to bounce you down one level at a time. Note that since DOS keeps
track of each subdirectory by its full pathname rather than by just its particular branch
on the tree, you could have a path like:

C:\SHARE\AND\SHARE\ALIKE

since the subdirectory:

C:\SHARE

Hard Disks Made Easy 151

is utterly different from:

C:\SHARE\AND\SHARE

One is a single level down from the root directory, while the other is three levels down.
However, having similar names like this i~ confusing, and is a bad idea for an important
reason you'll see later.

To go from the root to the lowest branch one level at a time, you'd type:

CD SHARE
CD AND
CD SHARE
CD ALIKE

When you 're on one branch of a tree it's easy to bounce around from one subdirectory
to another on the same level. If you have a tree that looks like this:

FRUIT

I
l I l

APPLE PEACH GRAPE

and you're currently in \FRUIT\APPLE and you want to jump to \FRUIT\GRAPE, you
can type in:

CD .. \GRAPE

since the .. is shorthand for the parent directory (\FRUIT). But jumping from one deep
branch of your subdirectory structure to a completely different branch can be a bad
typist's nightmare.

If you 're currently logged into:

\FRUIT\ PEACH

and you want to jump to:

\PROGS\STAR\VER3\MEMOS\MERGER

you'd normally have to type in:

CD \PROGS\STAR\VER3\MEMOS\MERGER

152 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

Awful. But there's a far easier trick. If your hard disk is set up properly you can simply
type:

MERGER

and DOS will zap you there.
The trick is to create either a slate of small batch files - or one huge batch file - to

do all the switching. If you had a batch file called MERGER.BAT on your hard disk, in
a subdirectory included in your path, with the contents:

CD \PROGS\STAR\VER3\MEMOS\MERGER

typing MERGER would execute that batch file, which would in tum execute the proper
thorny CD command. This is why it• s a good idea to have subdirectories that avoid
confusingly similar names. You can create a new batch file every time you issue an MD
command to create a new subdirectory.

But how do you know what directories are on your disk? Simple. Just redirect the
output of VTREE into a file called VTREE.PIC with the command:

VTREE > VTREE.PIC

and then create a small batch file called V.BAT:

COPY CON V.BAT
BROWSE VTREE.PIC

(If you're using DOS 4.0 or 5.0, substitute TREE for VTREE.) Press the Enter key after
each line, and when you're finished, press the F6 function key and then the Enter key
one more time.

Redirect the output of VTREE into VTREE.PIC every time you create a new subdirec
tory or remove an existing one. Then, assuming BROWSE.COM and V.BAT are in a
subdirectory that you've included in your PATH, each time you type:

v

you '11 see an instant graphic representation of your subdirectory tree structure. You can
use the arrow and PgUp/PgDn keys to move around in the tree. Pressing Esc will return
you to DOS where you can switch to the target subdirectory by using one of the
BATMAKR programs described above.

If you have SideKick, an even better adaptation of this method is to use SideKick's
notepad as a window that displays the VTREE.PIC file as the default. Store VTREE.PIC
in your \BIN subdirectory. Bring up SideKick's main menu, and type F7 or S for the setup
menu. Type in \BIN\ VTREE.PIC as the new Notefile name and press F2 to save this as

Hard Dis/<£ Made Easy 153

the default. Then whenever you pop up SideKick and select the notepad, the graphic
representation will jump onto the screen. ~ QG to tum on the graphics line characters
that connect the subdirectories.

Once you've created a lot of individual switcher files, make sure that whenever you
create a new subdirectory, you also create a batch file (which goes in \BIN or \BAT) that
simply contains the full pathname of the subdirectory with a CD\ prefix. So if you 're
adding a new directory called 1 \2\3\4\S, create a batch file called 5.BAT:

CD \1\2\3\4\5

and put this batch file into \BIN or \BAT. Then, just type 5 to jump directly into your
\1 \2\3\4\S directory.

You'll obviously have a problem with this if your disk contains two subdirectories
with similar names, such as \ACCOUNT\1990\T AX and \ACCOUNT\1991 \TAX. In this
case you• d have to either change one of the names slightly, or forego this technique.

Some users feel this is too wasteful; since each file, no matter how small, can take up
from 2K to SK. However, this is a small price to pay for ease of tree-hopping.

Finding Files
Users have their own favorite ways to find files buried deep inside a long-forgotten
subdirectory. The FF and WHEREIS programs on one of the accompanying disks can
help. But by executing a simple FINDFILE.BAT batch file you can have DOS do it:

ECHO OFF
IF %1!==! GOTO OOPS
ECHO NOW SEARCHING DIRECTORIES FOR 11 %1 11

CHKDSK /V I FIND 11 %1 11 I MORE
GOTO END
:OOPS
ECHO Enter a f ilespec (or part of one) after %0
:END

FINDFILE exploits the /V feature of CHKDSK.COM. The /V option lists all files in
all subdirectories, but you wouldn't know this from some of the early DOS manuals,
which describe it with meaningless remarks like saying it will .. display a series of

· messages indicating its progress, and provide more detailed information about the errors
it finds.•• The more recent editions of the manual are a little clearer.

Adding a /V switch makes it a snap to search for a particular file. FIND FILE pipes the
output of CHKDSK /V through the FIND.EXE and MORE.COM filters, so you have to
have these DOS utilities on the same subdirectory as FINDFILE.BAT or in a directory
your path knows about.

154 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

If you wanted to search for BASICA.COM, for instance, you would simply type:

FINDFILE BASICA

If you typed:

FINDFILE BASIC

the batch file would locate both BASIC.COM and BASICA.COM, and any other
filename with the capital letters BASIC in it. You may also use parts of names. Typing:

FINDFILE ASICA

would find BASICA.COM. This comes in handy if you want to look for files with the
same extensions. Enter:

FINDFILE .COM

and you '11 see all your COM files. Remember to enter capital letters only. And don't put
quotes around the filenames or parts of filenames you want to find - the batch file will
do this for you automatically. FINDFILE won't display a special message telling you no
matches were found if it comes up empty. But this will be obvious when no matches are
displayed on your screen. The only real problem with this is that FIND FILE.BAT is slow,
especially on a nearly full hard disk, since it has to pipe hundreds or thousands of
filenames through a filter, and create temporary files while it does so. You could redirect
the output of CHKDSK /V into a file and adapt FINDFILE so it looks at the existing list
of filenames instead of having to recreate the list each time. The tradeoff is that such a
list has to be updated frequently, and ends up always being at least a bit out of date.

(You can do the same trick with A TTRIB \filename /S.)

Moving Files
When users normally move a file from one subdirectory to another, they first copy the
file with the COPY command and then use ERASE to delete the original. Or they write
a short batch file to do it:

COPY %1 %2
ERASE %1

The problem with such a batch file is that if an incorrect destination is specified, it can
fail to make the copy but then go ahead and erase the original anyway. You could try the
following MO VEIT.BAT batch file:

ECHO OFF
IF NOT %2! GOTO TEST

ECHO You must specify what to move
ECHO and where to move it to, eg:
ECHO %0 CHKDSK.COM \DOS
GOTO END
:TEST
IF NOT EXIST %2\%1 GOTO COPY
ECHO %1 is already in %2
ECHO To prevent overwriting %1, press
ECHO Ctrl-Break right now. Otherwise
PAUSE
:COPY
COPY %1 %2\%1>NUL
IF NOT EXIST %2\%1 GOTO ERROR
ERASE %1
GOTO END
:ERROR

Hard Disks Made Easy 155

ECHO Error in destination specified, or
ECHO the file to be moved is not in
CD
:END

MO VEIT.BAT starts by checking to see if you entered the correct number of param
eters, and gives you a help message if you didn •t. It then copies the file, using %2\% 1 so
you don •t have to spell out the name of the file in both locations (wildcards will work).
However, this limits you a bit, since you have to be in the directory of the file you are
trying to copy. (You could modify it to COPY % 1 %2 if you like, which would allow
you to copy files without having to first log into those files· subdirectory - but you
would have to spell out the name of the file in both places.) Finally, it erases the original
file only if it finds the new one.

1t•s smart to confirm that the copy was indeed made before deleting the original. But
versions of DOS earlier than 3.0 will have problems with IF EXIST tests and paths.

MO VEIT.BAT checks to make sure the file isn •t already at the destination subdirectory
before you copy it, which prevents you from accidentally overwriting files. If you see a
message warning you that you•re about to obliterate an existing file, just press Ctrl-Break
and then the Y key to abandon the process. Otherwise, press any key to proceed.

Fine-Tuning Your Hard Disk System
While DOS limits the number of files you can shoehorn into the root directory, and smart
users know to keep their root directories small, the number of files in each of your
subdirectories is limited only by the amount of space on your disk.

But it• s not wise to let your subdirectories get too big, unless you have an easy way to
back them up.

The DOS BACKUP and RESTORE commands aren•t very slick, but they•re free and
can split large files up and spread them over several disks. You can back up incrementally,

156 DOS Power Tools,"2nd Edition, Revised/or DOS 5.0

by having BACKUP copy only files created or changed after a certain date, or modified
since the last time you backed up. You can tell BACKUP to dig down into your
subdirectory structure and overwrite earlier versions or add a new version along with the
old.

But, BACKUP should format brand new disks automatically. And it changes backed
up programs slightly so you can't just run them unless you first RESTORE them. You
have to be careful (and use the /P switch) when you 're restoring files backed up with
earlier DOS versions so you don't write the wrong system files onto your hard disk. DOS
3.3 and later versions are careful about this; earlier ones weren't.

Because of all these potential problems, many users keep their subdirectories small
enough so each can be copied onto a single floppy disk. And they're starting to discover
the terrific DOS 3.2 XCOPY command as a better way to create backups. This obviously
won't work with giant files. If you work with large files, you have to either grit your teeth
and use BACKUP, or buy a tape drive or Bernoulli box.

Do get into the habit of backing up regularly. The morning you turn your system on
and hear a sound like a wrench in a blender, you'll be glad you did.

Backing up just the files you changed or added recently is better than not backing up
at all, but when your hard disk goes south, you'll have to spend days putting all the little
puzzle pieces back together. It's a good stopgap measure, but nothing beats making
complete archive copies of the whole disk.

A real advantage to backing up everything at once is that you'll be able to streamline
your file structure and end up working far faster. The routine process of adding to and
editing down your files each day ends up sowing little file fragments more or less at
random over the surface of your disk.

You should periodically copy all your files to a backup medium (and get rid of the
duplicates, BAK versions, and dead data in the process), reformat your hard disk, and
then copy everything back. You'll notice an immediate improvement in speed. When
you do this, put the subdirectories that you path to at the very beginning of your directory
by making sure they're the first ones you copy to the newly formatted disk.

One final pearl is obvious, but bears repeating. Think before you FORMAT. Even
though the latest versions of DOS make you type in a Y and then press the Enter key
before going ahead and wiping everything out, late at night you may misinterpret the
question or press a Y when you meant N, or have some aberrant and lethal combination
of JOIN, APPEND, and SUBST bubbling away under the surface that steers an innocent
floppy request into a jolt of panic. (And never run RECOVER, unless you're really
desperate, since this will bollix up everything and tum your hard disk structure and all
the files on it into anonymous mush.)

A few seconds into the formatting process the hard disk FATs and directories get
zeroed out, and any attempt at resurrection is only a best guess. It is possible to bring
much of your data back to life with a utility like Mace's or Norton's, especially if you
let them park a copy of your FAT ahead of time. But don't tempt fate.

If you 're working on something time-sensitive and critically important, stop frequently
while you 're working and make a working copy to a floppy. It is possible to corrupt a
hard disk if you 're writing to it and the local power company decides that moment would
be a good one to switch generators. You can set up a batch file to automate the process.

Hard Disks Made Easy 157

Otherwise you might end up spending the rest of the evening patching together little
shards of your work that you've fished out of the magnetic murk.

If you notice that performance is degrading, or hear the percussive rhythm of repeated
read retries, run Norton's disk diagnosis and repair programs. This takes a few minutes,
but can ferret out developing problems and zap out bad sectors better than DOS can. And
if Norton reports grief, back up everything pronto and hie down to your dealer. When
hard disks start whimpering they go downhill real fast. Hard disk problems never just go
away.

Caveat Emptor
If you don't yet own a hard disk, remember, no matter what kind of hard drive you're
considering, don't buy yourself trouble. Make sure it's (1) safe, and (2) fast. While no
hard disk is immune to potential disaster, some are more fragile than others. Since most
users back up their data infrequently, a hard disk problem can wipe out weeks of work.

Don't buy a hard disk unless its heads retract automatically when you turn the power
off. Otherwise, they '11 just drop down to the disk and take a bite out of whatever data• s
there.

And don't get stuck with a low-speed disk in a high-speed system. While you can
measure hard disk performance many different ways, the most common single gauge is
average access time in milliseconds. The lower the number, the faster the drive. IBM's
original PC-XT drives crept along at 80 to 115 ms. Today's best performers are in the
very low teens. You can make things even faster by using buffers or a disk cache, by
setting up your hard disk files and directories properly and keeping things pruned and
orderly, reformatting, then restoring only the files you truly need and making sure they're
unfragmented.

While other factors can influence speed, average access time is a fairly reliable
performance indicator. Take pains not to buy a hard drive that's dragging its foot,
especially in a computer that runs at a relatively high clock speed.

Hex Class

Ok, this is your chance. If you 're fairly new to all this, or if all you want is a thorough
mastery of the DOS commands, with a double armload of time-saving tricks and
ingenious shortcuts thrown in, tum to the next chapter. Because it's time to talk about
binary and hex. You can get by just fine without them. But if you really want to make
your system hum, you should know your way around inside. And inside means hex
numbers.

It's really not all that difficult; it's just that discussions of ls and Os are not inherently
absorbing. Still, being a power user means knowing at least a little about all this so that
later when we talk about things like. binary, bit masks (to give you total control over the
shift keys on your keyboard) and hexadecimal addresses (to help you recover lost data)

.·you don'tjust scratch your head and tum on HBO. So here goes. We'll try to make it as
painless as possible. And we'll throw in a few surprises you'll like.

There's no such thing as a little bit pregnant, or a little bit dead. You either are or you
aren't. Life offers few such absolutes. A hundred people look at a sculpture in an art
museum. A third love it. A third hate it. A third look at their watches.

If you watch old Fred Astaire movies you rarely see objects that are all black or all
white. Some things are close, but if you look carefully you'll admit that they are 2 percent
grey or 98 percent grey. And most things are closer to the middle of the scale.

High-contrast photographic paper, on the other hand, is.designed to produce a stark
black-on-white image without any greys whatsoever. You put it into a darkroom enlarger
and project a normal photographic negative with lots of shadows and grey shades onto
it. Anything that's 49.99 percent grey or lighter doesn't trigger the silver salts and remains
bright and white; wherever anything is 50 percent grey or darker, however, the paper
turns jet black.

The world is analog. A dot of color on a TV screen is produced by a fast-changing
wave-shaped signal and can be one of hundreds of thousands of hues and tints. However,
the waveform is subject to all kinds of distortion and deterioration; make a copy of a TV

159

160 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

show on a VCR and then a copy of the copy, and after a few generations play it back on
the same TV set and you'll see the colors and the general sharpness are very different
from the original. Each copy chews up the shape of the wave a little; after thousands of
copies all you• d have is hissy static and a demonstration of entropy in action.

Computers are digital. A dot on a computer screen is produced by a hard, cold,
unchanging numeric value. Create a graphics image on a digital computer and make
hundreds of successive copies of it and display the 500th one on the same computer and
it will have the exact same colors as the original. When you copy a file containing the
data that make up the picture, all the mechanisms involved make sure if the value of the
first dot in the file was a 69, it remains a 69. It's easier to pack more information into an
analog signal. But if you need precision, you have to sacrifice a little quantity for quality.
And when you 're dealing with computers, the integrity of your data is sacrosanct.

The fundamental building block of digital information is a bit (short for binary digit).
One bit can't store much information by itself; it has a short menu - on or off, 1 or 0,
••high" or ••tow." But in the right chip at the right time, a single bit can trigger instructions
that change or move lots of other bits, and when you start stringing millions of them
together incredibly fast, you can get some real work done.

Some people are adept at fudging their way through life, laying down dense fog like
a PT boat. But you can't fudge a bit. It's either in one state or the other - one of life's
few absolutes. Binary numbering makes a lot of sense on a digital computer, a system
made up of hundreds of thousands of interconnected switches that are either on or off.
Simple two-position switches can indicate the status of something (like an ••occupied"
sign on a jet), store data (a W or L is what you really want to know about what your local
baseball team did the night before), or execute important decisions (like switching tracks
to send Chicago trains either north to Boston or south to Washington). But bits are most
useful when arranged in groups of eight called bytes. A byte is a convenient way to store
eight related pieces of information, such as the condition of eight different status
indicators deep in the heart of your main chips. It's also handy for representing a letter,
number, or special character such as 1/2 or the symbol for pi. And while chips deal with
long binary streams of ls and Os, humans prefer friendlier alphabets.

Your system is built to move information in one, two, otfour byte chunks - depending
on whether you 're using an eight-bit, 16-bit, or 32-bit computer - rather than in lots and
lots of individual bits. (Actually, some second-level processors, like those used by newer
display adapter boards, even work with halves of bytes called nibbles, and a base-8
numbering system called octal. If you're genuinely interested in such sleight-of-hand,
you may want to dabble in octal a little later.)

If you noticed that everything so far seems to be divisible by the number 2, you're
right. It all leads back to binary. Display adaptors use one, two, four, or. eight bits to
specify colors. PCs rely on a mixture of eight and 16. Systems based on Intel's 80286
chip, can handle 16 from stem to stem. And the latest crop of 80386 and 80486
powerhouses devour 32 at a single gulp. Users once added extra computer memory in
packages of about 64,000 bytes. Today the number has jumped to roughly sixteen times
that.

We all like round numbers. Folks who make it to 100 get on the evening news. The
advent of a decade is important enough; we 're on the verge of a new century and

Hex Class 161

millenium, and the celebration will undoubte.dly be eye-popping, all because of a few
well-placed zeros.

The computer industry likes round numbers too. But in this business they should really
be called "around" numbers, since the two most common big ones - a K for kilobyte
(around a thousand bytes) and M for megabyte (around a million bytes) are actually 1,024
and 1,048,576, respectively.

Inflation is affecting even these numbers. Huge storage devices (optical disks and
monstrous hard disks) that can salt away a gigabyte (around a billion characters) or two
are appearing on the scene. (Incidentally, the word is pronounced IlG-uh-byte, not
GIG-uh-byte, since it comes from the same root as giant and gigantic rather than
gargantuan.) And chip makers love to see our reaction when they start talking about the
80386/80486's ability to address a terabyte (around a trillion bytes). (The root for this
word, which means monster, was last in the news as "teratogenic" when it described the
property of the drug thalidomide to deform offspring.)

One kilobyte is 2" 10 (2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2). One megabyte is 2"20. So
when you see a memory board that holds 64K, it actually can juggle 64 x 1,024, or 65,536
bytes. And when someone tells you a PC's 8088 chip can directly handle a megabyte of
memory, they mean 1,048,576 rather than just a paltry one million memory locations.
However, it's far easier to call these amounts Ks and me gs, which everyone does anyway.

Working with binary or hex numbers isn't intrinsically harder than dealing with
decimals; it's just that we've all had so much practice with decimal calculations that we 're
pretty handy with them by now. But play with binary and hex for a while and you'll pick
it up pretty fast.

Odds are that we use a decimal (base-10) system because human have ten fingers and
toes. So let's count toes. In decimal it's easy. But start with 0 instead of 1 to make it a
little less dull.

0
1
2
3
4
5
6
7
8
9

Ten toes, ten digits. At this point you run out of both. Any more and you have to go to
double-digits.

Counting in binary is easy too. The decimal system has ten digits to play with. When
you run out, you have to start using more than one digit, and you do it by putting a 0 in
the column where the single digits were, and a 1 in the next column.

The binary system has two digits to play with, 0 and 1. When you run out, you also
put a 0 in the column where the single digits were, and a 1 in the next column. Only you

162 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

run out a lot sooner. So you have to keep putting Os in the columns where you just ran
out and ls in the next column over to the left. Counting toes in binary looks like this:

0 (the first number, just as with decimal)
1 (ran out of single digits; shift over one column)
10
11 (ran out of double-digits; shift again)
100
101
110
111 (that's all the triple-digits; shift one more time)
1000
1001 (last toe)

People often pad binary numbers out with Os, so the same counting process could just
as easily look like:

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001

How do you translate a decimal number into binary format? The key is to become
comfortable with the first nine powers of 2. Remember that 2AO is equal to 1.

rs= 256
r1=12s
r6=64
2A5 = 32
2A4 = 16
2A3 = s
2A2 =4
2Al = 2
ro= 1

Look at the binary version of this chart and you '11 see an interesting pattern that will make
sense in a moment:

rs = 100000000
r1=010000000

2"6 ... 001000000
2"5 - 000100000
2"4 ... 000010000
2"3 - 000001000
2"2 - 000000100
2" 1 == ()()()()()()() 10
2"0 = 000000001

Now pick a number to translate: 13.

Hex Class 163

The goal is to see which of the powers of 2 make up this number. Consult the chart
and look for the biggest number that's equal to or smaller than the one you've picked
(13). Obviously the number that fits this description is 8. Since 8 is the fourth one in the
chart, the binary version of 13 will have four binary digits, and the leftmost one will be
a 1 (although you could stick Os on the left, since leading Os don't mean anything in binary
just as they don't in decimal; 00000027 is the same in decimal as just plain 27). Then,
since you already considered the 8, get rid of it. Subtract it from 13.

1

After subtracting 8 from 13, you 're left with 5. Look at the chart again. The next number
under 8 is 4. Since you can safely subtract 4 from 5 without ending up with a negative
number, put another 1 in the next position over to the right, and subtract the 4 from 5 to
leave a remainder of 1.

1 1

Consult the chart again. The next lower number after 4 is 2. But you can't subtract the 2
from 1 or you'd end up with a negative number. So you'll put a 0 in the next position
over.

110

The last number on the chart is 1. You can subtract 1 from the remainder of 1 and still
not have a negative number, so put a final 1 in the rightmost position.

1101

Decimal 13 is equalto binary 1101.
Another way to look at what you just did is to say 13 is made up of 1 1 0 1

1 x 2"3 8
1 x 2"2 4
0 x 2"1 0

_ _____.II
1 x 2"0 1

Total 13

164 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

Going from binary to decimal is easier. Pick a number: 00110100. Ignore the Os on the
left side (remember, 00000027 in decimal is equal to plain old 27). This leaves a six-digit
binary number, 110100. Tum it on its side and put it next to the lowest six entries on the
chart. Mutiply as indicated, then add up the result:

1 x rs 32
1 x 2A4 = 16
0 x 2A3 0
1 x 2A2 4
0 x 2Al 0
0 x 2A0 0

Total = 52

You don •t really need the chart. You do need to remember the sequence of 1, 2, 4, 8, 16,
32, 64, 128, 256. Then whenever you see a binary number,just count over from the right,
and in your head say "that's no ls plus no 2s plus a 4 (subtotal=4) plus no 8s plus a 16
(subtotal 20) plus a 32 (total 52).'. It's easier than it sounds.

Pattern Recognition
While your system can deal with 256 different characters, all ifs really doing is handling
256 different numeric values. In one of the only fairly successful attempts to standardize
anything on the PC, IBM adopted (and added to) a character-numbering system called
Asen (pronounced as-kee, and standing for the American Standard Code for Information
Interchange). In every Asen file a capital A has a value of decimal 65, a capital B 66, a
lowercase a 97, a lowercase b 98, etc.

Your keyboard lets you type 95 characters directly - 26 uppercase and 26 lowercase
letters, ten digits, a space, and 32 punctuation marks:

!"#$%&'()*+,-./:;<=>?@NA_' {j}-

In addition, your keyboard and computer have to agree on codes for other important
operation's such as tabs, backspaces, escapes, carriage returns, line feeds, form feeds
(otherwise known as page breaks), and so on. You can generate these codes by holding
down the Ctrl key and pressing letter keys; to generate a 3 you• d hold down the Ctrl key
and press a C (since C is the third letter in the alphabet). You can use a Ctrl-C, abbreviated
as AC, to stop many DOS operations in their tracks, just as with Ctrl-ScrollLock.
(However, in IBM BASIC, a AC will act as a carriage return.) A few of the important
operations (some in DOS; some in BASIC) with ASCn codes below 32 are shown in
Figure 5.1.

Hex Class 165

CtrlCode ASCII Value What it does in DOS and/or BASIC

0 Nul
"B 2 Jump to previous word
"C 3 Break; carriage return in BASIC
"E 5 Erase to end of line
"F 6 Jump to next word
"G 7 Beep
"H 8 Backspace
"I 9 Tab
"J 10 Linefeed
"K 11 Home (sometimes)
"L 12 Form feed
"M 13 Carriage return
"N 14 End of line
"P 16 Toggle echo to printer on and off
"Q 17 Restart scrolling in CP/M type operations
"R 18 Toggle InsertJovertype
"S 19 Toggle scrolling on and off
"Z 26 End of file
"[27 Esc

"\ 28 Cursor right
"] 29 Cursor left

30 Cursor up
31 Cursor down

Figure 5.1. Control Code Operations

You can fit all the letters of the alphabet, digits, punctuation, and control codes (with
ASCII values lower than 32) into 128 characters. Early seven-bit systems could address
only 128 characters, since 2"7 is 128. IBM added one bit to this system and doubled the
number of characters to 256.

The leftmost side of a number is the high order side and the rightmost side the low
order one. This is obvious; for the decimal number 567, for instance, the 5 stands for how
many hundreds and the 7 for how many ones. Hundreds are higher than ones in any
system, so the 5 is on the high side and 7 on the low side.

Because adding this additional bit meant slapping it onto the leftmost side, ASCII
numbers over 128 - which all have a 1 as the leftmost digit - are sometimes referred
to as high-bit characters.

IBM's high-bit characters let you use foreign languages, create mathematical formulas,
and draw box-character pictures and borders. IBM also added a few printable symbols
to the ASCII characters with values under 32 (for instance, decimal ASCII character 11
produces the biological male sign and character 12 the female sign).

166 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

BIOS provides many different methods for writing characters. You could use some
thing like BIOS service hex OE, which treats the screen like a teletype, advancing the
cursor automatically each time it prints a character, and wrapping text down to the next
line when necessary.

However, this service gives special treatment to four ASCil characters:

• decimal 7 - beep
• decimal 8 - backspace
• decimal 10 - linefeed
• decimal 13 - carriage return

If you use it to print these four, you won't see their character symbols onscreen. Try
to write an ASCII 7 with service OE, for instance, and instead of displaying the small
centered dot character that IBM assigned to a character 7, all you '11 get is a beep.

BIOS services 09 and OA will print the characters IBM assigned to all 256 ASCII
values, including the troublesome four above. All three services, 09, OA, and OE, will
display three ASCII characters as blanks:

• decimal 0 - null
• decimal 32 - space
• decimal 255 - blank

The difference between services 09 and OA is that service 09 can change the attribute
as it writes each character, while service OA can't. But with both of these you have to
advance the cursor yourself, since BIOS won't do it for you.

The SHOWCHAR.COM program will first use BIOS service 08 to read the attribute
at the current cursor position, and will then use service 06 to clear the screen to that
position. Then it will display all 256 characters in rows of 32.

MOV AH,8
INT 10
MOV BH,AH
MOV AX,0600
XOR CX,CX
MOV DX,1849
INT 10
XOR DX,DX
XOR BH,BH
MOV CX,1
PUSH AX
MOV AH,02
INT 10
POP AX

read attribute at cursor
do it
move attribute into BH
clear screen
starting wth upper lefthand corner
and using whole 25 x 80 screen
do it
put cursor in upper left corner
of page o
just print one character at a time
save value of character
set cursor position

·do it
restore value of character

MOV
INT
INC
ADD
CMP
JNZ
INC
XOR
CMP
JNZ
RET

AH,OA
10
AL
DL,2
DL,40
12F
DH
DL,DL
AL,FF
0117

write character to screen
do it

Hex Class 167

get ready for next character
two columns over
is cursor at end of row?
no, so skip next routine
otherwise move down a line
and back to beginning of line
is it last character?
no, go back and print next one
yes, bye

You can create a script file that will produce the program for you. Create a script file
called SHOWCHAR.SCR that contains the following nine lines:

E 0100 B4 08 CD 10 88 E7 BS 00 06 31 C9 BA 49
E OlOD 18 CD 10 31 D2 30 FF B9 01 00 50 B4 02
E OllA CD 10 58 B4 OA CD 10 FE co 80 C2 02 80
E 0127 FA 40 75 04 FE C6 30 D2 3C FF 75 E4 C3
N SHOWCHAR.COM
RCX
34
w
Q

Be certain you press the Enter key at the end of each line, especially the last one with
the Q. Then make sure DEBUG.COM version 2.0 or later is handy at the DOS prompt,
type:

DEBUG < SHOWCHAR.SCR

Displaying the ASCII characters in rows of 32 shows that the lowercase alphabet letters
have values that are decimal 32 (hex 20) higher than their uppercase cousins.

You can experiment with this program to change the way it displays characters. For
instance, once you've created it, you can type:

DEBUG SHOWCHAR.COM
E 115 DO 07
E 123 EB OA
N SHOWFULL.COM
w
Q

168 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

The basic SHOWCHAR.COM program displays only one of each character at a time.
SHOWFULL.COM will display 2,000 (hex 700) characters at a time - a full 25 x 80
screenful. BIOS will flash through all 256 full screens of characters in a few seconds.

Or, to see the difference between services 09 and OA, first use a pure-ASCII word
processor or EDLIN to create the following ADDCOLOR.SCR script file. Be sure to
press the Enter key at the end of each line, especially the last one with the Q:

E llD 88 C3 B4 09 CD 10 FE co 80 C2 01 80 FA
E 12A 40 75 04 FE C6 30 D2 3C FF 75 E2 C3
N SHOWCOLR.COM
RCX
36
w
Q

Then, at the DOS prompt, type:

DEBUG SHOWCHAR.COM < ADDCOLOR.SCR

and you'll end up with a variation of SHOWCHAR.COM called SHOWCOLR.COM
that displays each character using the ASCII value of the character as the attribute. If
you're using a color monitor, you'll see all 256 possible attributes.

SHOWCOLR.COM will display four rows of characters, rather than the eight pro
duced by SHOWCHAR.COM. All four rows will be in color, and because of the BIOS
color numbering system, the foreground colors in the bottom two rows will be blinking.
The four rows will be divided into four chunks of background colors that are each 16
characters wide. Within these chunks, each of the 16 characters· will have a different
foreground color. The leftmost eight will appear in normal colors, while the rightmost
eight will appear as high-intensity (bright) colors.

Here's why:
Ifs easiest to see how this works by using the hex value of each attribute. All

attributes can be expressed as two-digit hex numbers. The lefthand and righthand
digits can each range from 0 to F, which yields decimal 256 possible values from 00
through FF.

The lefthand digit represents the background color, and the righthand digit the
foreground color. So on a color system, a number like 71 will produce blue (1) text on a
white (7) background, while 17 will yield white text on a blue background. The hex color
assignments are shown in Figure 5.2.

However, a value like 4E will produce bright yellow text (E) on a red (4) background,
while E4 will produce bright blinking yellow text on a red background. Any value lhat
has a lefthand digit higher than 7 will blink. So a number like 71 won't blink, while a
number like 81 will.

Hex Class 169

Value Color Value Color

1 Blue 9 Bright blue
2 Green A Bright green
3 Cyan (Lt Blue) B Bright cyan
4 Red c Bright red
5 Magenta D Bright magenta
6 Brown E Bright yellow
7 White F Bright white

- background only -
foreground

Figure 5.2. Hex Color Assignments

Any value that has a righthand digit higher than 7 will appear as a high-intensity color.
So a number like 47 will produce a normal, low-intensity color, while 48 will display
something in high-intensity.

When you type something like:

DEBUG SHOWCHAR.COM < ADDCOLOR.SCR

what you're doing is using the redirection abilities of DOS (versions 2.0 and later) to take
characters in a file and treat them as keystrokes that DEBUG uses to create a file. DEBUG
doesn't care where its keystrokes are coming from - a live user at the keyboard or a file
that contains keystrokes that the user put there long ago.

Redirecting script files like this makes a lot of sense when you "re using DEBUG to
create files, since it lets you check your typing, and since you can often adapt script files
so DEBUG can create customized variations of programs for you.

To create files using this technique, make sure you use a pure-ASCII word processor,
the DOS EDLIN line editor, or the DOS COPY CON command. 'If you're not sure
whether your word processor can produce pure ASCII text (a file composed of just letters
and numbers and punctuation, and not containing anything else), just load it up and type
a paragraph and save it as a short file called TEST. Then exit your word processor and
get into DOS and type:

TYPE TEST

You could also use lowercase letters, by typing:

type test

170 DOS Power Too/,s, 2nd Edition, Revised/or DOS 5.0

since DOS translates all characters into uppercase before trying to do anything serious
with them, except in a few rare examples such as the with ANSI.SYS keyboard and screen
extender that are discussed later.

Either way, if all you see is the text you typed and nothing else, your word processor
should do just fine for creating script files. But if your screen fills with "garbage"
characters that jump around and beep and clear the screen, you'll have to use another
method. Most word processors have a way to create pure-ASCII files; check your manual
under "text files" or "ASCII" or "DOS files" or "program editing."

To create the file directly in DOS, make sure you 're at the DOS prompt, and type:

COPY CON SHOWCHAR.SCR

and press the Enter key. The cursor should do nothing except drop down a line and blink
dully at you.

Start typing the script, line by line. Make sure each line is absolutely correct before
you press the Enter key at the end of it; if you make any mistakes use the backspace key
to erase them and then type in the right characters.

Be sure to press the Enter key at the end of each line, especially the last one (with the
lonesome Q).

When you're all done, and you're sure you've pressed the Enter key after the fmal Q,
the cursor should be directly below the Q. Press the grey F6 function key and then press
the Enter key one last time. When you press the F6 key you'll see a AZ appear, and then
when you press the fmal Enter key you'll see a "l File(s) copied" message. You'll then
be back at the DOS prompt again. If you want, type DIR SHOWCHAR.SCR and you
should see the file you just. created with a number just under a thousand beside it, and a
date and time. If you don't, you did something wrong and should start the whole process
over again.

The COPY CON FILENAME (where FILENAME stands for the name of the file you
want to create and not the word "FILENAME" itselt) command tells DOS to take the
information you're typing at the console (the keyboard and screen) and copy it into a file
with the name you entered after the word CON. Pressing the F6 function key when you 're
all done puts a special character at the end of your file called (surprise) an end-of-.file
marker. This special character has an ASCII value of 26, and there are several other ways
you could put this character there. The easiest is to hold down the Ctrl key and press the
Z key while you're holding it down. The AZ that shows up on the screen when you do
either is shorthand for Ctrl-Z.

DOS generally stops in its tracks when it sees an end-of-file marker, as do many
commercial software products. So, when creating text files, be careful not to let a stray
AZ wander into your file or DOS will ignore everything that follows.

The only real problem with using the COPY CON technique is that you can't back up
and correct a line above the one you 're working on. You can fix probl~ms only in the
current line. If you make a mistake and don't catch it in time, you have to start over, or

Hex Class 171

go in and edit the file later with EDLIN or a real word processor. And if you have one of
those handy, you might as well create the whole file on it.

Anyway, once you've created the SHOWCHAR.SCR script file, locate your supple
mental DOS disk and look for DEBUG.COM on that disk.

Copy DEBUG.COM onto the disk that has SHOWCHAR.SCR on it. If you're way
ahead of this discussion and have a hard disk with DEBUG in a subdirectory that you've
included in your path, fine. If you don't understand a word of that last sentence, go back
to the Hard Disk chapter to review the PA TH command.

Finally, to create the final program, make sure both SHOWCHAR.SCR and
DEBUG.COM are on the disk you're currently using, and at the DOS prompt type:

DEBUG < SHOWCHAR.SCR

You'll see the SHOWCHAR.SCR scroll down your screen. You don't want to see
anything that says ··error." If you do see any error messages, use the DOS TYPE command
(as mentioned above) to make sure you actually did create a pure ASCII file. If the file
goes by too quickly, you can stop and start it from scrolling by holding down the Ctrl key
and pressing the S key. Also, be sure you left a blank line above RCX; if you didn't you'll
see a string of error warnings.

If your whole system locks up, it• s because you forgot to press the Enter key after the
final Q. Reboot, then go back and retype the SHOWCHAR.SCR file and press the Enter
key twice for good measure at the end. What the •'DEBUG < SHOWCHAR.SCR"
commanddoesistakethescriptfileyoujustcreatedandredirectitintotheDEBUG.COM
program. Essentially, it takes the keystrokes that you typed in earlier when you created
the file and feeds them into DEBUG. Those keystrokes contain data and DEBUG
commands to assemble the data into a file called a COM file or command file (one that
you can run in DOS and that ends in .COM). Script files like this are handy, especially
when you create them with a real word processor, because they let you correct previous
mistakes and it's easy to modify them slightly and create improved versions of the COM
files.

When you're all done, just be sure you're looking at a DOS prompt, and type:

SHOW CHAR

and you'll see every ASCII character.

Chip Logic
Dealing with all the binary ls and Os is a nuisance. But they really come in handy when
you have to do logical operations.

172 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

Why is the ASCII value for A 65 and for a 91? Look at the binary representations of
the first few letters of the alphabet:

A 65 1000001
a 97 1100001

t
sixth
bit

(2A5)

=32

B 66 1000010
b 98 1100010

t
sixth
bit

(2A5)

=32

c 67 1000011
c 99 1100011

t
sixth
bit

(2A5)

=32

The lowercase version of each is identical to the uppercase version, except that in all
cases the sixth binary digit over from the right is a 1 in the lowercase version and a 0 in
the uppercase one.

The easy way to find out the decimal value of a binary bit is to count over from the
right" 1, 2, 4, 8, 16, 32, 64 Do this and you "ll reach 32 when you get to the sixth binary
digit. You could also try to remember that the sixth bit over is 2A5, since computer
numbering systems generally start with 0 rather than 1 and since the rightmost bit is 2AO.
But some users forget, and make the sixth bit 2"6, which is wrong.

Subtract 65 (the value of uppercase A) from 97 (the value of lowercase A) and you "ll
get 32. So you can instantly calculate the value of any capital letter by subtracting decimal
32 from the value of the lowercase letter. And, of course, you could add 32 to the value
of the uppercase letter to obtain the ASCII value of the lowercase letter.

If you wanted to convert every lowercase character in a typical text file to uppercase
you couldn't just subtract 32 from the ASCII value of every letter, since files contain
mixtures of uppercase and lowercase letters. Subtracting 32 from all the lowercase letters
would indeed yield uppercase ones. But if you did this blindly, you• d also end up
subtracting 32 from the letters that were already uppercase, which would tum them into
something unrecognizable.

Here ·s a short sentence, with the decimal ASCII value of each character shown beneath
it:

I
73

L o v e
76 111 118 101

Subtract 32 from each and you get:

)
41

OVE
44 79 86 69

NY
78 89

. 9
4657

As you can see from the "ABC" and "abc" examples above, subtracting 32 from the
value of a number is the same as turning t.11e sixth bit (2 A 5) from a 1 to a 0. So what you
really want to do is find a way to look at the sixth bit and tum it into a 0 only if it's
currently a 1.

Hex Class 173

Your computer can do this instantly, by using logical operations. In this case, you
would use the logical AND operation to make letters uppercase, and the logical OR
operation to make them lowercase.

The most useful logical operations are AND, OR, NOT, and XOR. They're fairly
intuitive, but as with binary numbers, they take some getting used to. Think of them as
miniature legal contracts.

If a contract says you will be paid if you:

write a novel
AND
write greeting cards

obviously you'll get paid only if you write both. If a contract says you will be paid if you:

write a novel
OR
write greeting cards

you have to write only one of these to get paid (what a choice). If a contract says you will
be paid if you:

do NOT grow crops this year

you '11 fatten your bank account only if your back 40 sit idle.
We all deal with AND, OR, and NOT operations regularly. XOR, which stands for

eXclusive OR, simply flips one binary state to another, but can also add binary numbers
together (see "Chomping at the Bit"). Flipping twice brings you back to the original state.

Computers use XOR operations for all sorts of things. If you XOR a value with itself,
you cancel it out and end up with 0. And if you want to produce graphic animations, you
first XOR one image onto the screen to draw something at a certain location, and then
XOR the same image at the same location again to restore the screen to the way it was
originally. Since the second XOR effectively erases the image (by canceling out the
changes), you can move an image across your screen by having XOR repeatedly draw it
and then erase it.

Bit Masks
ANDing any ASCII value with decimal 223 will capitalize lowercase letters and leave
uppercase letters alone. AND works by comparing two values (the example below will
compare one bit at a time) and returning a 1 only when both values are nonzero.

174 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

1
1
0
0

AND Table
AND 1
AND 0
AND 1
AND 0

= 1
= 0
= 0
... o.

In binary notation, 223 is 11011111, and this number works as a bit mask. ANDing any
binary number of eight digits or less with it will leave things the way they were in every
position except the sixth over from the right, where it will leave Os alone and change ls
to Os. This forces the digit in that position to become a 0, which is the same as subtracting
32. But it does this only when there's a 1 in that position. In other words, it subtracts 32
only when there's a 32 there to subtract. It's called a mask because it masks out any
changes except in the one place where we want the change to happen - the 0 in the 2"5
position.

Since A (decimal 65) is binary 01000001, while a (decimal 97) is binary 01100001,
ANDing these numbers with 11011111 could be represented as:

01000001 (65)
AND 11011111 (223)

01000001 (65)

01100001 (97)
AND 11011111 (223)

01000001 (65)

ANDing either a 0 or a 1 with 1 in effect leaves the value alone, and ANDing both a
0 and a 1 with 0 in effect turns the value into a 0. The binary number 11011111 forces
the 2"5 bit - the sixth one from the right - to become a 0 and leav~ all the other bits
the way they were.

Changing a bit from 0 to 1 is often referred to as setting the bit, and changing it from
a 1 to a 0 as unsetting the bit. The only difference between a lowercase letter and its
capital counterpart is that the 2"' 5 bit is set (= 1) in the lowercase. version. ANDing it with
11011111 unsets the bit, changing it to a 0 and lowering the ASCII value,by 32.

To reverse the process and tum capital letters into lowercase ones, use the logical OR
operation to OR a value with 32.

OR Table
1 OR 1 = 1
1 OR 0 = 1
0 OR 1 = 1
0 OR 0 = 0

32 equals binary 00100000. Since ORing either a 1 or a 0 with 0 in effect leaves the value
alone, and ORing either a 1 or a 0 with 1 in effect turns the value into a 1, the binary

Hex Class 175

number 00100000 forces the 2"5 bit to become a 1 and leaves all the other bits the way
they were.

This sets the unset 2A5 bit in an uppercase letter, changing it to a 1 and raising the
ASCII value by 32. But it leaves already set bits just the way they were.

01000001 (65)
OR 00100000 (32)

01100001 (97)

01100001 (97)
OR 00100000 (32)

01100001 (97)

Hex Marks the Spot
Nobody likes dealing in cumbersome eight-bit binary numbers. But our more comfortable
decimal (base-ten) system doesn't really lend itself to the base-two world of computers.
A base-16 number system does, since every eight-bit binary number can be expressed as
two single-digit base-16, or hexadecimal, numbers strung together. In fact, ifs easier to
translate binary numbers into hexadecimal and back than to translate binary into decimal
and back.

Hexadecimal (hex for short) numbering works just like decimal numbering except that
it provides six additional digits. The first ten digits are the same as the ten decimal ones
you use every day.·But you run out of digits after you get to 9. Hex then tacks on the first
six letters of the alphabet. So, you count to 10 in hex like this (decimal values are shown
in parentheses):

0 (0)
1 (1)
2 (2)
3 (3)
4 (4)
5 (5)
6 (6)
7 (7)
8 (8)
9 (9)
A(lO)
B (11)
c (12)
D (13)
E (14)
F (15)
10 (16)

176 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

How do you tell a hexadecimal 10 (which is really equal to decimal 16) from a
garden-variety decimal 10? Hex numbers usually end with an H (or an h), or have a &H
(or &h) prefix attached. So,

lOh
lOH
&HlO
&hlO

are all the same number.
Programmers often like working with two-digit hex numbers, so they'll stick zeros

onto the left side. OD is the same as D; OA the same as A. Scripts often use ",OD,OA" at
the end of the messages to tell the program to insert a carriage return (an OD character)
and a linefeed (an OA character) at the end of the text.

Hex is handy because you can squeeze lots of values into a compact amount of space.
Using decimal numbers takes three digits to write 156 of the ASCII characters (all the
ones greater than 99). But every ASCII character can fit into two hex digits (decimal 255
is the same as hex FF).

Your system comes from the factory containing certain important gut-level tools and
programs already loaded on ROM chips (which will be discussed in the next chapter),
and each generation of these chips has important changes from previous versions. You
can figure out which set of chips is in your system by peeking at a specific memory
location, or address. The address that tells you the date your system ROM was released
is 61440:65525 in decimal, but is FOOO:FFF5 in hex.

To see this date yourself, get into DOS, make sure DEBUG.COM is on your disk, and
type:

DEBUG

You'll see a(-) at the left edge of your screen; this is DEBUG's prompt the same way
that "OK" is BASIC's prompt and A> or C> is DOS's default prompt. Type:

D FOOO:FFF5 L8

and press the Enter key. The date will appear at the right edge of your screen. Then press
Q and then Enter to quit DEBUG and return to DOS.

You could also retrieve the date by plugging the numbers into a short BASIC program:

100 DEF SEG=61440!
110 FOR A=O TO 7
120 PRINT CHR$(PEEK(65525!+A));
130 NEXT

The hex version of this program doesn't save much typing, though:

100 DEF SEG=&HFOOO
110 FOR A=O TO 7
120 PRINT CHR$(PEEK(&HFFF5+A));
130 NEXT

Hex Class 177

Hex also makes binary translations a dream. For instance, what is the binary equivalent
of FF? Well, that one's too easy, since it's equal to 255, and 255 is the highest number
you can make out of ls and Os, which means it must be made up of all ls:

11111111

But pick any other hex number: &H3D (61 in decimal notation). Each hex digit stands
for half of an eight-digit binary number. Remember that one binary digit is a bit and that
eight bits make a byte. And that half a byte is called a nibble. (Get it? Byte? Nibble?)

In &H3D, the 3 stands for the lefthand (or high) nibble, and the D for the righthand
(or low) nibble. In binary notation, decimal 3 is 0011, while decimal 13 - which is what
hex D is equal to - is 1101. We figured that out above.

So hex 3D is equal to 00111101. This is easier to see if you put a space in the middle:
0011 1101.

Going from binary to hex is also easy. What's 10100101? First break it in half: 1010
0101. The left half (or high nibble) is 1010:

1 x 2"3 8
0 x 2"2 0
1 x 2"1 2
0 x 2"0 0

Total 10 decimal, or A in hex

The right half (low nibble) is 0101:

0 x 2"3 0
1 x 2"2 4
0 x 2"1 0
1 x 2"0 1

Total 5 decimal, or 5 in hex

Therefore, 10100101 is AS in hex, or 165 in decimal. Note that the numbers 1through9
are the same in decimal and hex. Most new users get the hang of it pretty quickly, but
they all make a common mistake of putting 10 after 9 in hex, when everyone knows hex
9 is followed by hex A. Don't worry, you'll get used to it. It's not really all that hard to
convert two-digit hex numbers into decimal. First, convert each digit into decimal. From
the above example, A is equal to 10, and 5 is equal to 5. Multiply the value of the left-hand
digit by 16 and add the righthand digit to it:

(10 x 16) + 5 = 165.

178 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

Converting a decimal number 256 or less to hex is only a little harder. First divide the
number by 16. You'll probably end up with a whole number quotient and a remainder.
Convert them each to single digit hex numbers. Put the whole number on the left and the
remainder on the right:

165 / 16 = 10 with a remainder of 5
10 =A
5 = 5

So the hex representation is A5.
Hex is the language of DEBUG. And DEBUG is an incredible power tool. It lets you

rip open the DOS covers and repair, examine, or customize anything. And it makes it
easy to create and customize short assembly language programs like SHOWCHAR.COM
above.

Multiplying and Dividing Hex Numbers
Translating numbers into and out of hex is hard enough, and adding or subtracting them
is no picnic, but multiplying and dividing is out of the question. Lots of books show you
how; we'll spare you the grief. Actually, we will tell you how: just install a copy of
Borland's classic SideKick on your system. Even the older version of the software comes
with an ASCII chart, a powerful notepad/clipboard that can lift text off your screen and
move it to another program or store it in a file, and a terrific decimal/hex/binary calculator.
Some programmers even use the WordStar-Iike notepad as their main program editor.

BASIC makes it a snap to translate most integer values in and out of hex. And it can
simplify working with ASCII values. Type either BASICA or GWBASIC to get the ball
rolling. To have it figure out the decimal value of the hex number 7 ABC, just type:

PRINT &H7ABC

and press the Enter key. BASIC will print out:

31420

Unfortunately, since BASIC has to work with both positive and negative integers, the
largest positive integer it can deal with is 32,767 (7FFFH). Tell it to PRINT &H7FFF
and you'll indeed get 32767 (without the comma). But since BASIC can handle only
65,536 possible integers, it has to rope off the half starting with 32, 768 and pretend they 're
negative numbers. So entering:

PRINT &H8000

will get you

-32768

Hex Class 179

Note that while you may use either &H or &h as a prefix, BASIC won't understand H
or h suffixes on hex numbers. If you tried to type PRINT 7FFFH you'd get:

7 0

since BASIC would think you were asking it to print the value of 7 (which is 7) and then
print the value of the variable FFFH, which would be zero unless you had by chance
assigned it another value previously.

However, if you treat this operation as a calculation, BASIC will oblige with higher
numbers. Enter:

PRINT &H7FFF+l

and BASIC will return:

32768

Try:

PRINT &H7FFF+&H7FFF

and you'll get:

65534

You can go the other way, from decimal to hex, without such headaches. Type in:

PRINT HEX$(64206)

and BASIC will respond with:

FACE

(&HFACE is a valid hex number). You can go all the way up to:

PRINT HEX$(65535)

which will produce:

FFFF

Try anything higher, such as:

PRINT HEX$(65535+1)

and BASIC will simply print the error message "Overflow."

180 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

To figure out the ASCII value of any character, nestle it inside parentheses and quotes,
and preface it with ASC. Type:

PRINT ASC ("A")

and you'll get its decimal ASCII value:

65

To convert numbers from 0 to 255 into their respective ASCII characters, put the
decimal ASCII value inside parentheses and preface it with CHR$. Enter:

PRINT CHR$ (6 5)

and you'll see:

A

You can also use hex notation when producing ASCII characters. You could have
typed:

PRINT CHR$(&H41)

to produce the same:

A

since hex 41 is equal to decimal 65.
But if all you have to do is add or subtract hex numbers, which is usually the case, you

can do it for free by using DEBUG. Just get into DOS, type DEBUG, and at the DEBUG
hyphen(-) prompt, type in the letter H followed by any two hex numbers of four digits
or less, and press the Enter key. DEBUG will print out the sum of your numbers and the
difference.

It might look something like this:

-H FFFF 0001
0000 FFFE

DEBUG reports sums in four digits only, as you can see from the example above, since
FFFFH + 1 equals lOOOOH, not OOOOH. But that doesn't matter much, because four digits
is plenty for what you'll have to do with hex.

The Keys to the
Kingdom

Sure, sure. You 're an old hand at the keyboard, and your fingers automatically reach for
the home row when you climb out of bed in the morning. But you may not know all the
PC keyboard's basic tricks.

First, a quick history: the earliest PC sported an 83-key keyboard that divided the user
community into two camps. Most of us loved it, since it had the best .. feel" of any
keyboard ever made. IBM spends a lot of time sticking people in chairs and watching
them work, and all this ergonomic research paid off handsomely.

The few ragtag complainers and malcontents who hated it did have one valid point -
the placement of some of the keys was nonstandard. The Enter key was somewhat small
and too far to the right. The left Shift key was a little far to the left. The whole right side
of it was a bit crowded. And you couldn't tell what state the Shift keys happened to be
in.

The original 84-key PC-AT keyboard fixed all these woes, and bcame an instant and
absolute classic. However, IBM didn't know when to stop, and ended up moving the
function keys from the left side to the top, doing random damage to the Ctrl and Alt keys,
and using a slightly cheaper mechanism to pop the keys up after you press them down.

The subsequent generation of 101/ 102-key keyboards featured separate number and
cursor pads, stuck on a handful of new keys, and were as wide as your desk. They also
made it difficult to use some software products. For example, millions of WordStar users
depended on having the Ctrl key beside the A key.

But all the IBM keyboards shared the same glorious feel. Each had exactly the right
amount of "overstrike" so that you had to build up a certain amount of pressure to reach
a trigger point before the key sprang into action. Each clicked on the way down and on

181

182 DOS Power Tools, 2nd Edition, Revisedfor DOS 5.0

the way up, giving users unparalleled tactile feedback and· boOstiflg their morale by
subconsciously making them think they were typing twice as fast. Every key was
bounce-free; pallid plastic clone keyboards commonly stuttered extra characters onto the
screen, but not IBM's. IBM's was angled perfectly, and expertly scooped and dished so
that your fingers fit precisely onto the wide keytops. It was also heavy, so that muscular
typing wouldn't chase it around the desktop.

Some users· liked competitors' keyboards because they were silent. That's like prefer
ring beer to vintage champagne because the bottles are easier to open. The IBM keyboard
is so good that it's almost reason enough to stick with IBM (unless you can't resist
increased power froll} a company like Compaq or low price from a mail order vendor).
Using anything el8e is like kneading gummy marshmallows or typing on a pocket
calculator.

Users switching from typewriters to computers are often stymied by the welter of extra
PC keys. After all, four separate ones have left arrows on them. Function keys are
intimidating to new users, as are such foreign-looking characters as:

And labels like SysReq, PgDn, and PrtSc can initially confound anyone. However, until
someone comes up with a flawless voice recognition device, IBM's crisp, solid, elegant
keyboards will remain the best ways to digitize your thoughts and data.

The keys to the kingdom come in four families:

1. The normal typewriter keys (and their less familiar cousins such as<,>, and I).
2. The shift and special purpose keys.
3. The cursor-movement and number-pad keys.
4. The grey function keys (Fl through FlO on older models, Fl through Fl2 on newer

ones).

Typewriter Keys
Nothing is really different about these on the PC keyboard except that you get a few extras
thrown in - and some common keys, such as the cents sign, are missing.

This is because computer keyboards are designed to work with the ASCII character
set. As mentioned earlier, IBM adopted (and enhanced) a character-numbering system
called ASCII (American Standard Code for Information Interchange). Deep down,
computers don't know anything about letters. But they're terrific at juggling numbers.
So when it has to move an A from one place to another, your computer actually uses the
number 65 to represent the A. Programs in your ROM chips translate these values into
the dot patterns that draw the actual characters on your screen. But to the computer, an
A is always a 65 (unless it's a iowercase a, in which case ifs a 97).

You can type in 95 of the ASCII characters shown in Figure 6.1 from your keyboard.
In the chart, the. number in each lefthand column is the ASCII value of the character
beside it.

The Keys to the Kingdom 183

ASC CHR ASC CHR ASC CHR ASC CHR ASC CHR ASC CHR

* 32 (SPC) 48 0 64 @ 80 p 96 . 112 p

33 ! 49 1 65 A 81 Q 97 a 113 q

34 II 50 2 66 B 82 R 98 b 114 r

35 # 51 3 67 c 83 s 99 c 115 s

36 $ 52 4 68 D 84 T 100 d 116 t

37 % 53 5 69 E 85 u 101 e 117 u

38 & 54 6 70 F 86 v 102 f 118 v

39 . 55 7 71 G 87 w 103 g 119 w

40 (56 8 72 H 88 x 104 h 120 x

41) 57 9 73 I 89 y 105 i 121 y

42 * 58 : 74 J 90 z 106 j 122 z
43 + 59 ; 75 K 91 [107 k 123 {

44
'

60 < 76 L 92 \ 108 I 124 I
45 - 61 = 77 M 93] 109 m 125 }

46 62 > 78 N 94 A 110 n 126 -
** 47 I 63 ? 79 0 95 111 0 127 l1 -

* **Character 32 is a space, and is generated when you tap the spacebar.
IBM calls character 127 a delta but ifs actually shaped like a small house.

Figure 6.1. ASCII Typewriter Keys

The characters you see onscreen will differ slightly from system to system. Characters
on IBM monochrome screens are made up of lots of dots. Those on EGA displays are
nearly as sharp and clear as monochrome characters. But CGA character sets are crude.
The dot patterns for each monitor are contained on special ROM chips attached to the
respective display adapters. But IBM keeps a set of these CGA patterns in the main system
ROM so it can draw characters when you 're in BASIC graphics screens 1 and 2. The
characters are crude because they're drawn in a grid eight dots wide and eight dots high
- not very conducive to graceful curves and tricky angles.

You can't easily look inside your main system ROM but the BASIC ROMPRINT.BAS
program below can (starting ataddress FOOO:FA6E). It reads the values stored there and
interprets them as light and dark blocks on your screen. The main ROM stores the patterns
for each character as a sequence of eight binary numbers, one per row. ROMPRINT
retrieves the_ decimal value of each number and translates it into the binary pattern for
each row. It lets you strike actual keys from the keyboard, or enter ASCII values between
0 and 127 from the chart shown in Figure 6.1. If you want to see the dot patterns for the
digits 0-9, enter their ASCII values (0 = 48, 1 = 49 ... 9 = 57). If you do type in ASCII
numbers, press the Enter key after entering any values with fewer than three digits. When
you're all done, press the FlO function key to end the program.

184 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

100 'ROMPRINT - displays ROM ASCII dot patterns

110 SCREEN O:COLOR 2,0,0:LOCATE ,,O:KEY OFF:DEFINT A-Z:CLS

120 DEF SEG=O:POKE 1047,PEEK(1047) OR 32:KEY 10,""

130 ' --- points to ROM; sets up print characters ---

140 DEF SEG=&HFOOO:A$=STRING$(2,219) :B$=STRING$(2,176)

150 ' - - - gets ASCII value - - -

160 PRINT "Type a key, or enter any number between"

170 PRINT "000 and 127 (press the <FlO> key to end): ";

180 I$=INKEY$:IF I$= 1111 THEN 180 ELSE IF I$=CHR$(0)+"D" THEN END

190 IF I$=CHR$ (13) THEN IF C$= 1111 THEN D=13 :GOTO 240 ELSE 220

200 IF I$>CHR$(57) OR I$<CHR$(48) THEN D=ASC(I$) :GOTO 240

210 C$=C$+I$:PRINT I$;:IF LEN(C$)<3 THEN 180

220 IF VAL(C$)>127 THEN C$= 1111 :CLS:GOTO 160 ELSE D=VAL(C$)

230 ' --- draws dot pattern row by row ---

240 CLS:FOR E=l TO 8

250 F=PEEK(&HFA6D+(8*D)+E)

260 IF F=O THEN PRINT STRING$(16,176) :GOTO 300

270 FOR G=7 TO 0 STEP -1

280 IF F<2 4 G THEN PRINT B$; ELSE PRINT A$;:F=F-2 4 G

290 NEXT:PRINT

300 NEXT:PRINT:IF D<>ll AND D<>12 THEN PRINT TAB(8);CHR$(D).

310 PRINT:C$= 1111 :GOTO 160

The program also displays the actual life-size character beneath the enlarged dot
pattern. It won •t display the whole character set, since the system uses some with values
like 7, 10, 12, and 13 to control the position of the cursor, clear the screen, beep, and
manage other display chores. But ROMPRINT will show you the actual patterns stored
in ROM for every single one.

High-Bit Characters
Display adapters are designed to zap the appropriate character dot patterns onto the screen
very rapidly. BASIC's graphics modes have to go in and draw text characters a dot at a
time. And in all 1.x and 2.x versions of DOS, users couldn •t put any of the high-bit foreign
language, math, and border-drawing characters (with ASCII values over 127) onto
BASIC graphics screens, since the patterns for these weren•t stored on the system ROM
chips.

But DOS version 3.0 offered a new utility called GRAFfABL.COM that made it
possible to display the high-bit characters. All you had to do was type in GRAFf ABL
before loading BASIC and DOS would create a memory-resident lookup table containing
the proper values. GRAFfABL.COM remained the same in versions 3.1and3.2, but
when IBM introduced its confounding foreign language features in version 3.3 it made

The Keys to the Kingdom 185

GRAFf ABL.COM five times larger to accommodate slight differences in foreign
character sets.

The GRAFPRNT.BAS program below looks inside GRAFf ABL.COM, reads the
character patterns into an array, and uses ROMPRINT's binary pattern printer to display
an enlarged version of any ASCII character from 128 through 255. It checks to make sure
you have a proper version handy, and automatically sniffs out whether ifs dealing with
an older GRAFfABL.COM or a fat new one, since the internal structures are different.

100 ' GRAFPRNT - prints GRAFTABL.COM hi-bit ASCII patterns

110 SCREEN O,O:KEY OFF:COLOR 2,0,0:CLS:DEFINT A-Z

120 DEF SEG=O:POKE 1047,PEEK(1047) OR 32:DEF SEG:KEY 10,""

130 DIM H(l28,8) :M$=STRING$(2,176) :N$=STRING$(2,219)

140 ' --- open GRAFTABL, get version, validate, fill array

150 OPEN "GRAFTABL.COM" AS #1 LEN=l:FIELD #1,1 AS A$

160 IF LOF(1)=1169 THEN S=4 ELSE S=48

170 GET #1,l+S:IF ASC(A$)<>120 THEN CLOSE:GOTO 360

180 FOR B=l TO 128:LOCATE 1,1,0:PRINT 128-B:FOR C=l TO 8

190 GET #1, (B-1)*8+C+S:H(B,C)=ASC(A$) :NEXT:NEXT:CLOSE:CLS

200 ' --- gets ASCII value ---

210 PRINT "Enter any number between 128 and 255"

220 PRINT "or (press the <FlO> key to end): ";

230 I$=INKEY$:IF I$="" THEN 230 ELSE IF I$=CHR$(0)+"D" THEN END

240 IF I$>CHR$(57) OR I$<CHR$(48) THEN BEEP:GOTO 230

250 C$=C$+I$:PRINT I$;:IF LEN(C$)<3 THEN 230

260 IF VAL(C$) <128 OR VAL(C$) >255 THEN C$= 1111 :CLS:GOTO 210

270 ' --- draws dot pattern row by row ---

280 CLS:FOR E=l TO 8

290 F=H(VAL(C$) -127,E)

300 IF F=O THEN PRINT STRING$(16,176) :GOTO 340

310 FOR G=7 TO 0 STEP -1

320 IF F<2•G THEN PRINT M$; ELSE PRINT N$;:F=F·2·G

330 NEXT:PRINT

340 NEXT:PRINT:PRINT TAB(8) ;CHR$(VAL(C$)) :PRINT:C$= 1111 :GOTO 210

350 ' --- if correct file is not found ---

360 PRINT "Put DOS 3.0 or later GRAFTABL.COM on disk and restart"

If you want to see the cents. sign that's missing from the IBM keyboard, just run
GRAFPRINT and type in -155. (If your printer can handle it, you can insert this character
into your documents where needed, by using the Alt-key method described below.)

The nonalphanumeric typewriter keys have their own ASCII codes:

• Backspace 8
• Tab 9
• Enter 13

186 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

You can see the characters produced by these three by pressing the actual keys. Or you
could press Ctrl-H to print a backspace, Ctrl-1 to print a tab, and Ctrl-M to print a
backspace. (Pressing Ctrl-H means holding down the Ctrl key and pressing the H key.)
In fact, you could also see the lower 26 ASCII characters by running ROMPRINT, and
holding down the Ctrl key while you type the letters of the alphabet.

Why?

Shift and Special Purpose Keys
A typewriter contains just one set of Shift keys, in which both keys do the exact same
thing and are duplicated just to make two-handed typing easier. The PC keyboard
contains three different sets of Shift keys, not just one. Each changes the meaning of an
alphanumeric key just as pressing the A key by itself produces an "a" but pressing it while
holding the Shift key down produces a capital A. To your computer, a and A are totally
different characters with different ASCII codes (although certain programs, such as DOS
and BASIC, automatically translate most lowercase keys to their uppercase versions).

When you type an A, the keyboard sends two special codes to the CPU - the first a
hardware interrupt telling it to wake up because a key has been struck, and the second a
scan code telling it that this particular key happened to be a capital A. Then, when you
lift your finger off the A, the keyboard actually sends a third release code telling the CPU
you 're all done, which comes in handy when you 're holding down a key to repeat a whole
row of the same character, such as an underline.

But your PC needs to keep track of more than just letters, numbers, and punctuation.
It has to know when you want to go to the next line, or the next page, or tab over to the
right - or when to beep to get your attention, or to stop when you press the panic button
because something is going wrong. And the programs you run ·have to know lots more,
such as when text should be underlined or boldfaced.

To make it easy for you to generate these additional codes, your PC gives you two
extra Shift keys, Ctrl and Alt. All these extra Shift keys really do is change the codes
generated by your normal alphanumeric typewriter keys. It's up to the program you're
running to interpret the special codes that you type into meaningful commands. Unfor
tunately, there's virtually no standardization of codes today; just about every program
uses its own completely unique set. The code that tells one word processor to shift into
boldfaced text might tell another word processor to change the right margin.

When you type any letter, your computer looks at a special pair of status bytes at
locations 417 and 418 in the very bottom (0000) segment of memory to see if any of the
Shift keys are engaged. Whenever you hold down a Shift key or toggle one on, your
computer "sets" (turns from 0 to 1) an individual bit in one of these two bytes to keep
track of every shift state in the system. It then resets (turns back to 0) the relevant bits
when you lift your finger or toggle a Shift key off. Later we ·n pi0vide tools that give you
control over these bytes and let you set them in any state you want.

The Keys to the Kingdom 187

If the status bytes show that no Shift keys are active, your computer translates the scan
code sent by the letters on your keyboard into ASCII values somewhere between 97 (an
a) and 122 (a z).

If you 're holding down the normal Shift key, your computer knows you want a capital
letter, and translates the keystroke into an ASCII value between 65 (A) and 90 (Z). The
ASCII value for each uppercase letter is the same as the value for the lowercase letter
minus 32, and your computer can instantly tum a lowercase letter into its uppercase
version simply by turning the sixth bit from a 1 to a 0. In the binary representation of the
ASCII code for every lowercase letter, the sixth bit over from the right is always on (set
to 1). In every uppercase letter, this bit is turned off (set to 0). When this bit is on, it adds
a value of 2A6 (or 32) to the ASCII code. Turning the bit on adds 32 and lowercases any
letter; turning it off subtracts 32 and uppercases the letter.

You can verify this by looking at Figure 6.1, which is conveniently arranged in columns
16 entries long. The uppercase letters in columns 3 and 4 are in the same relative positiom
as the lowercase versions in columns 5 and 6. Each is just shifted 32 table entries (or
exactly two columns) over.

When you type in letters while holding down the Ctrl key, your computer generates
codes between 1 (for both A and a) and 26 (for both Z and z). The ASCII value for these
is the same as the value for the corresponding uppercase letter minus 64.

Typing Ctrl-A is the same to your computer as typing Ctrl-a; the Ctrl key takes
precedence over the normal Shift key. (When manuals refer to Ctrl-shifted keys they
always use capital letters, so you'll see Ctrl-A and Ctrl-B but never Ctrl-a and Ctrl-b.)

If you 're in DOS, typing Ctrl-A will put a A A onscreen. The caret (A) as a prefix is
shorthand for Ctrl. As mentioned earlier, some of the Ctrl-shifted keys trigger DOS or
BASIC operations. You can tell DOS you 're done creating a file by typing Ctrl-Z. You
can make DOS beep by telling it to ECHO a AG. To see this in action, get into DOS, type
the following line, and press the Enter key. To generate the AG, hold down the Ctrl key
and type G while the Ctrl key is down:

ECHO "G

You could also have typed:

COPY CON BEEP
"G"Z

which would have created a file called BEEP. (To create the AG and the "Z, hold down
the Ctrl key and press GZ.) Then type:

TYPE BEEP

and you• d hear the familiar tone. If you try this, erase the BEEP file you just created by
typing ERASE BEEP, or else you'll clutter up your disk.

188 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

The important DOS Ctrl and alphabetic key combinations are:

EJ c:J
EJ c:J
EJc:J
EJ [:]
EJ c:J
EJ c:J

Generally breaks out of whatever you happen to be doing at the
time. Interchangeable most of the time (not in BASIC) with
Ctrl-Break.

Beep (only when used in certain ways).

Same as backspace.

Same as Tab.

Same as Enter.

Acts as a ••toggle .. to tum a feature on and off that sends whatever
is appearing onscreen simultaneously to your printer. Be sure
your printer is on before trying this. If your system .. hangs .. and
all you get is an error message, press Ctrl-P again to toggle it off.
Typing in Ctrl-PrtSc is usually the same as typing Ctrl-P, al
though Ctrl-PrtSc works in BASIC while Ctrl-P doesn't. This
shouldn't be confused with Shift-PrtSc, which dumps an image
of whatever is onscreen to your printer one whole screen at a
time.

Freezes and restarts some DOS operations (like scrolling DIR
listings); similar to Ctrl-NumLock except that Ctrl-Numlock
will only suspend things while Ctrl-S will pause and restart them

DOS end-of-file marker.

You can see the characters IBM uses to represent all the ASCII codes below 32 by
running ROMPRINT and typing in Ctrl-A for ASCII character 1, Ctrl-B for character 2,
etc. Figure 6.2 shows the ASCII Ctrl characters. To extend the ASCII chart, shown in
Figure 6.1, attach these two columns to the left side:

The Keys to the Kingdom 189

ASCII Crtl CHR ASCII Ctr I CHR

0 "@ 16 l\P ...
l\A g 17 "Q ...

2 l\B e 18 l\R

3 l\C • 19 l\S !!
4 l\D • 20 l\T qr
5 l\E " 21 l\U §
6 l\f • 22 l\V
7 l\G 23 l\W

8 l\H a 24 l\X t
9 l\l 0 25 l\Y i
10 I\} I 26 l\Z --+-

11 l\K § 27 I\[+-

12 l\L 9 28 I\\

13 l\M) 29 I\] ~

14 l\N ~ 30 1\1\ ..
15 A() ~ 31 I\

~

Figure 6.2. ASCII Ctrl Characters

Some of the characters in Figure 6.2 may look a little strange. The A"' means Ctrl-caret
and the A_ means Ctrl-underline, which look odd, but don •t worry, since you'll never
really have to use them. The A[represents ASCII character 27, or Esc, and you definitely
will have lots of reasons to use this one. It plays a critical role in issuing escape codes or
escape sequences that can put your printer through its paces or help send DOS commands
to set screen colors or redefine keys using ANSI.SYS.

The A@ (ASCII character 0) is a null that your system uses to identify plain old function
keys, function keys you press while holding down Shift keys (Shift, Ctrl, Alt), or various
keys you press while holding down the Alt key (such as Alt-A, Alt-5, or Alt-=). Some
programs, especially communications software, insert nulls as placeholders in data files,
which can play havoc with noncomprehending applications like old-fashioned word
processors.

As mentioned above, the Ctrl key has a special role when used with some of the
nonalphabetic keys:

EJ IPt:Scl

EJ~

Same as Ctrl-P; toggles simultaneous printing to screen and
printer.

Nearly the same as Ctrl-S; suspends some DOS operations (but
another key has to restart them).

190 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

Scroll
Lock

Nearly the same as <;trl-C; breaks or stops many DOS opera
tions. Stops BASIC operations while Ctrl-C won't.

Performs "warm" reboot that restarts system but
bypasses time-consuming diagnostic tests. Hold
Ctrl and Alt down first and then press Del.

interchangeable in DOS, but only Ctrl-PrtSc will echo what's on the screen to the printer;
Ctrl-NumLock will pause the display but Ctrl-S won't, and Ctrl-Break will stop BASIC
in its tracks but Ctrl-C won't.

However, ·BASIC throws in a few Ctrl-key gifts of its own. Ctrl-Home clears the
screen, Ctrl-left arrow (or Ctrl-B) moves the cursor to the previous word, Ctrl-right arrow
(or Ctrl-F) moves the cursor to the next word, and Ctrl-End (or Ctrl-E) erases to the end
of the current line. Ctrl-K moves the cursor to the home position at the screen·~ upper
left comer, Ctrl-L clears the screen (just like Ctrl-Home), Ctrl-N moves the cursor to the
end of the current line (like the End key), Ctrl-G really does beep, Ctrl-R toggles between
insert and overwrite modes, and Ctrl-[simulates an Esc. The odd quartet of Ctrl-\, Ctrl-],
Ctrl-caret, and Ctrl-underline move the cursor right, left, up, and down, respectively.

Both Shift keys work exactly alike, although your computer can tell whether you've
pressed the left or right one. Game designers often use the different Shift keys to perform
different tasks, such as triggering left or right flippers in pinball games. Each Shift key
doesn't do much niore than flip the case ofletters. It turns lowercase letters into uppercase
ones, just like the Shift on a typewriter. It also works backwards when the CapsLock key
is toggled on, so that uppercase keys tum into their lowercase cousins.

The Shift key also temporarily reverses the state of the cursor/number pad. The
NumLock toggle is normally off so the pad works in cursor mode when you first boot up
(although IBM turned it back on when it delivered the 101-key wide-foad keyboard, since
it assumed everyone would use the number pad for numbers and the independent cursor
pad to move the cursor). Pressing the Shift key switches the state of the cursor/number
pad for as long as you hold it down, so that if NumLock is toggled on, pressing Shift-8
will move the cursor up a line rather than putting an 8 onscreen. Dedicated spreadsheet
users can take advantage of this so they don't have to keep toggling the NumLock back
and forth to move the cursor between numeric entries.

And of course, the reverse is also true - holding down the Shift key while the cursor
pad is in cursor mode will let you type in numbers without having to change the state of
the pad~ This is especially handy ori machines that don't have shift indicator lights, since
it lets users stay in one mode all the time and use the Shift key only when they have to
switch temporarily to the other mode and back.

Shift does have one special trick up its sleeve. You can use it to make hard copies on
your printer of whatever text happens to be on your screen, simply by pressing Shift
PrtSc. This is referred to as a screen dump. The dump will show only the current screen;

The Keys to the Kingdom 191

if you want to take every single line on your screen and "echo" it simultaneously to your
printer, use Ctrl-PrtSc or Ctrl-P instead. (While Ctrl-P will toggle simultaneous printing,
all Shift-P will do is print a capital Son your screen.)

The problem with Shift-PrtSc is that if you trigger it inadvertently it will either waste
a sheet of paper if your printer is currently turned on and online (connected to your PC
and ready to receive characters), or freeze your system if the printer is either turned off
or o.ffline. If this happens, the easiest thing to do is tum the printer on, let it print the screen
dump, and then tum it off. If you don't have a printer connected, you may have to wait
for the system to time out since it will give up and unfreeze the system after a good long
wait.

It's fairly simple to deactivate the screen dump feature, since a screen dump is an
interrupt (INT 5). The first thing such an interrupt does when triggered is look in the
Interrupt Vector Table to find the address of the actual dumping program. You could
poke around in the table and change the address to something harmless, but this would
disable the feature the whole time your system was running, unless you went back and
restored it. A better way is to use the utility we provide, which puts a message on your
screen after you press Shift-PrtSc and asks if you really want to go ahead or if you just
pressed the keys by mistake. If you did press them accidentally, the utility will go away
and give you back control of your system before it has a chance to lock up.

Screen dumps don't always work. Text screens often contain high-bit ASCII border
and box-drawing characters that many printers don't understand. While your screen may
display a very fancy menu box with shadows on two sides giving it a classy 3-D effect,
dumping the image to your printer may produce an ugly mess. And true graphics images
often send printers into fits. If you want to dump unusual characters or fancy graphics
images to your IBM-compatible printer, load the memory-resident DOS GRAPHICS
utility first (simply by typing GRAPHICS at the DOS prompt). Then type Shift-PrtSc. If
you don't have an official IBM printer, this may not work. Some printer manufacturers
who persist in using nonstandard codes may supply their own graphics screen dump
programs. And just about every non-IBM Shift-PrtSc graphics dump will have little white
horizontal stripes on it, since IBM's official graphics resolution is - surprise - different
from most other manufacturers'.

I Shill I

Temporarily reverses whatever shift state the keyboard is in. Normally, all
this does is tum lowercase letters into capital letters. But if CapsLock is on
and everything you 're typing is capitalized, holding either Shift key down
lets· you type a few lowercase letters. Even better, it flips the state of the
cursor/number pad, to let you move the cursor while in numeric mode or
enter numbers while in cursor mode.

Prints a screen dump - a copy of whatever is currently on the
screen. If you want a graphics image printed, you have to execute
the external DOS GRAPHICS command first, and hope when
your salesman sold you that "IBM compatible" printer he wasn't
just blowing smoke.

192 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

The Alt key doesn't really do much on its own, but team it up with the number pad
and you get a powerful tool. About the only thing the Alt key does, in fact, is provide a
shorthand way of writing and editing BASIC programs. When you 're using the BASIC
editor, instead of having to type SCREEN, you can just press Alt-S and the word SCREEN
will pop onto the screen. BASIC supplies Alt-key shortcuts for every letter of the alphabet
except J, Q, Y, and Z. But not too many programmers really use these. Figure 6.3 shows
the Alt-key combinations that can be used in BASIC.

Alt-A AUTO Alt-M MOTOR
Alt-B BSAVE Alt-N NEXT
Alt-C COLOR Alt-0 OPEN
Alt-D DELETE Alt-P PRINT
Alt-E ELSE Alt-R RUN
Alt-F FOR Alt-S SCREEN
Alt-G GOTO Alt-T THEN
Alt-H HEX$ Alt-U USING
Alt-I INPUT Alt-V VAL
Alt-K KEY Alt-W WIDTH
Alt-L LOCATE Alt-X XOR

Note: No Alt-key combinations for J,Q,Y,Z

Figure 6.3. BASIC Alt-Key Shortcuts

Although these shortcuts are currently built into IBM hardware, they're really out of
date. The MOTOR command, for instance, is used only to start and stop tape cassette
operation, and the mechanism for this was discontinued years ago. But the command
remains. (Actually, early BASIC programmers found a legitimate use for this command.
All it really did was turn a mechanical switch called a solenoid on or off, and programmers
found that by repeatedly and rapidly turning it on and then off, they could generate a
motorboat sound.)

The Alt key's real magic is in generating ASCII characters. By holding down the Alt
key, typing in a decimal ASCII value on the number pad, and then releasing the Alt key,
you can make any character appear at the cursor except one - a null, or ASCII character
0. Null identifies shifted key combinations or nonalphanumeric keys such as Home, End,
or Fl. (IBM claims you can generate this null character by typing in Alt-2, but that doesn't
work. However, pressing the F7 function key in DOS will generate an ASCII 0 and put
a"@ onscreen; if you're using the DOS COPY CON technique to create a small file, just
tap F7 to insert a null.) This technique works only with the number pad. Holding down
the Alt key and typing the numbers on the top-row typewriter keys just won't do it.

The Alt-number pad technique is extremely useful for creating fancy borders, boxes,
math formulas, foreign language characters, and anything else you can construct out of

The Keys to the Kingdom 193

the high-bit ASCII characters - those with values greater than 127. It's also handy for
exercising the ASCII characters with very low values - less than 32.

Want to see a smiling face in DOS? Just type ECHO and a space, hold down the Alt
key, type 1 (or 2), release the Alt key, and press the Enter key. Then have a nice day. You
could have also typed Ctrl-A in place of Alt-1, or Ctrl-B instead of Alt-2, to generate the
face character. It's easy to remember that A is the first letter of the alphabet, B the second,
C the third, and Z the 26th. But quick - which letter do you hold down for V? It's far
easier to type Alt-22.

And while you can use the Ctrl-key combinations as well as the Alt- key ones for very
low characters, once you get past Z, you 're strictly in Alt territory.

To generate little boxes in DOS, type the two sets of keystrokes that follow. An
instruction like ALT-201 means:

1. Hold down the Alt key.
2. Type 201 on the number pad, not the top row.
3. Release the Alt key.

An "Enter" means press the Enter key, "space" means tap the spacebar, and "F6" means
lean on the grey F6 function key.

For a small single-line box For a small double-line box:

COPY CON SINGLE COPY CON DOUBLE
Enter Enter
ALT-218 ALT-201
ALT-196 ALT-205
ALT-196 ALT-205
ALT-191 ALT-187
Enter Enter
ALT-179 ALT-186
space space
space space
ALT-179 ALT-186
Enter Enter
ALT-192 ALT-200
ALT-196 ALT-205
ALT-196 ALT-205
ALT-217 ALT-188
Enter Enter
F6 F6
Enter Enter

When you're done, type:

TYPE SINGLE

194 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

for a single-line box, and

TYPE DOUBLE

for a double-line box.
The boxes look like this:

D D
Once you have the basic box parts - the four comers, the horizontal line, and the

vertical line - created, you can work on the files with your word processor and use the
block copy feature to expand it and change its shape. Some word processors may be
confused by the high ASCII values, however.

You can combine single and double-line boxes in four possible ways. The ASCII
values you need to know to draw these are as follows:

Single horizontal, single vertical:

218 196 194 191
r T 1

179 I I 179
195 ~ 197- + -f 180

L ..L J
192 196 193 217

Double horizontal, double vertical:

201 205 203 187
rr 1r i1

186 II II 186
204 I~

JL
~I 185 2 0 6- lf

l!: = J!: :!J
200 205 202 188

Single horizontal, double vertical:

214 196 210 183
rr 1T' 11

186 II II 186
199 I~ 215- * ~I 182

IL .IL jj
211 196 208 189

The Keys to the Kingdom 195

Double horizontal, single vertical:

213 205 209 184
F = =r 9

179 I I 179
198 r 216- + 4 181

b = d:: ='
212 205 207 190

You can also use the high-bit solid and shaded characters to draw pictures onscreen.
You may want to use the GRAFPRNT.BAS program to look at these in more detail. IBM
provides a kit of eight:

219 solid box
178 75% grey
177 50% grey
176 25% grey

220 bottom half
223 top half
221 left half
222 right half

These may not seem like a flexible enough arsenal, but with a little ingenuity you can
use these and other high-bit characters to draw charts, tables, graphs, and even animated
pictures.

You use the Alt key in BASIC instead of the usual CHR$(n) notation. If you wanted
to print a capital A you could tell· BASIC:

PRINT CHR$(65)

Or you could say:

PRINT "A"

The same is true with high-bit characters. Just type in PRINT and the left quotation mark,
use the Alt-number pad technique to generate the character you want, and then type a
closing quotation mark. Ifs all the same to BASIC. But even if you never want to touch
a line of BASIC, the Alt key can be very useful, especially if you keep sensitive files on
your disks.

One of the very best uses of the Alt key is in adding a special kind of blank character
in your filenames that can prevent casual users who don't know the trick from gaining
access to your sensitive files.

196 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

If you keep a file on your disk that you don't want anyone to see, you can do several
things to keep it out of harm's way:

1. Lock your system whenever you walk away from it for even a few seconds.
2. Hide the file from normal directory searches.
3. Hide the subdirectory in which the file is stored.
4. Give the file an incomprehensible name such as L VX_l TQY or an innocent one like

DIAGNOST.PRG.
5. If your applications software can handle it (some can't), put a Ctrl-Z DOS end-of-file

marker as the first character in the file, to prevent casual snoops from using the DOS
TYPE command to view the contents.

6. Slap (mostly) invisible character on the end of it that most users won't figure out.

Actually, there's only one way to keep your data safe, and that's to maintain it on
removable media such as floppy disks or Bernoulli cartridges, and keep these locked up.
(To edit or consult such secret files, security-conscious users frequently copy them from
floppies to their hard disks and then put them back on floppies when they're done. Then
they erase the sensitive files from their hard disk. Programs like the Norton Utilities make
it easy for someone to come along and "unerase" these files. But Norton also provides a
utility called WIPEFILE that can totally obliterate any traces of your secret data. If you
do use a program like WIPEFILE, be sure to check your hard disk for all erased files,
since many applications create temporary work files without your knowledge that remain
hidden on your disk. These can be just as dangerous in the wrong hands as the originals.)

Trick #6 above is easy. To try it, create a dummy file called DUMMY.BAT by typing
the program below and pressing the Enter key at the end of each line. Press the F6 function
key where it says <F6>, and then press the Enter key again at the very end. Note - don't
actually enter the @ sign shown in the filename. In place of the @ after the word
DUMMY, enter Alt-255 by holding down the Alt key, typing 255 on your number pad,
and then releasing the Alt key. What looks like a space will appear above the cursor. Then
continue typing the letters .BAT that follow this character.

COPY CON DUMMY@.BAT
ECHO OFF
ECHO Most users couldn't get this far
<F6>

Verify that the file is on your disk by typing:

DIR DUM*.*

and you '11 see something like:

DUMMY BAT 49 9-08-90 10:59p

The Keys to the Kingdom 197

Since this is a batch file, you should be able to execute it simply by typing the part of the
filename before the BAT extension. But if you type just:

DUMMY

all you'll get is an error message that says:

Bad command or filename

This is because the name of the file isn't DUMMY.BAT; it's DUMMY@.BAT, where
the @.represents the ASCII 255 blank character. Now press the F3 key, which will dredge
up the last command you typed, and put the letters DUMMY at the DOS prompt - but
don't press the Enter key yet. Instead, use the Alt-key trick to type in the Alt-255
character, and then press the Enter key. You should see:

ECHO OFF
Most users couldn't get this far

Remember, this filename has six characters before the BAT extension, not five. The sixth
is ASCII character 255, which is a blank. It may be annoying to have to use the Alt-255
technique every time you want to do anything with the file, but it will keep the honest
people from snooping into it.

Unscrupulous users will always find a way. They may know the Alt-key trick. If they
don't, they'll realize something is fishy when they try the DOS TYPE command:

TYPE DUMMY.BAT

and nothing happens. If they're smart, they'll know another way to display the contents
of files. All they have to do is type:

COPY DUM*.* CON /B

This command tells DOS to display the full contents every file beginning with the letters
DUM. Adding a/Bat the end gets around the trick of putting a Ctrl-Z as the first character
of the file.

This trick works fairly well with directory listings, since DOS puts spaces between the
left half of the filename and its extension rather than a period. But if you copied a file
that had an Alt-255 character in its filename, DOS would tip its hand. If this file were the
only one on your disk that started with the letters DUM, and you typed:

COPY DUM*.* ZUM*.*

198 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

DOS would print:

DUMMY .BAT
1 File(s) copied

which would reveal the extra blank character before the period. Still, it will keep casual
users from causing problems.

If you already know what subdirectories are, you might want to use this Alt-255 trick
the next time you create one. (If you don't, refer to Chapter 3, and then come back here
and try this.) When you type MD (or MKDIR) to create a subdirectory, add an Alt-255
to the end of the subdirectory name just as you did with the DUMMY filename above.
Once you've created it, you won't be able to log into it, or remove it, or do anything to
it unless you tack on the Alt-255. The only problem with this is that if you change your
DOS prompt (with a command like $P:) the blank space will look odd. If you created a
subdirectory called C:\DOS* (again, where the* represents an Alt-255), and your prompt
was indeed $P:, when you logged into it you'd see:

C:\DOS :

Still, casual users would think the blank was a space, and wouldn't be able to log into
the subdirectory unless they knew how to generate an ALT-255.

Holding down the Alt key and typing an ASCII code
on the number pad, and then releasing the Alt key
produces an ASCII character for that code, here an
upside down i for ASCII character 173.

You don't have to type in all three numbers; Alt-1 works just like Alt-001. And if you
type more than three numbers, the PC first does a mod 256 operation on the it (converts
it to an integer between 0 and 255). One interesting note about the Alt key - if you press
it and the Ctrl key and either Shift key at the same time, the PC gives the Alt key priority,
and then Ctrl. It works alphabetically.

While you can't use the top row numbers to generate Alt-key ASCII codes, they'll
work just as well as the number pad when it comes to entering numbers in most
applications. But numbers aren't the only characters that you can enter in different ways.

Cursor Movement and Number Pad Keys
Your keyboard sports two pluses and two minuses, as well as two periods and two
asterisks. This redundancy makes sense, since IBM had to keep users happy who were
accustomed to typewriter layouts, while appealing to green eyeshade types who use

The Keys to the Kingdom 199

adding machine keypads all day long. IBM's wide-body keyboard goes even further in
this direction.

One thing that confuses legions of new users are the four keys with arrows on them
pointing left. These do four very different things:

EJ Backspace - moves the cursor left one character at a time, erasing characters
as it plows through them.

Enter - tells DOS (and most applications) to process the line you just typed.

Tab - moves the cursor a preset number of spaces. DOS tabs only to the
right, but some applications let you use Shift-Tab to move to previous tab
stops.

Left Arrow (or Cursor Left) - moves the cursor left, like the backspace, but
nondestructively, sliding under characters without erasing.

But these aren't the only potentially troublesome pairs or trios of keys.

New users have to learn that they can't type a
lowercase L when they want to enter the digit 1.
Some typewriter keyboards don't have ls on them,
since .. ell" and 1 are so similiar. But to a computer,
these are totally different classes of characters that
it treats in two distinct ways. And the PC even
provides two keys to enter the digit 1.

Similarly, the digit 0 is not a capital 0. Since these
are often hard to distinguish on some systems, expe
rienced users put a slash through zeros whether
entered from the top row or the number pad.

Everybody uses slashes, in fractions, in dates, or in
constructions like either/or. But unless you've spent
much time with integer division or with DOS sub
directories, you probably haven't had to use a back-
slash much. Don't worry, you will.

200 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

EJGJCJ
DD

DD

In school, we learned to use an x as a multiplication
operator. Your computer prefers an asterisk(*). In
fact, it insists on it. Either * key will do.

Many computer operations let you substitute a sin
gle quote (') for a double quote (") and vice versa
(although there are times when this won't work).
The ' is a grave accent, and is definitely not a
quotation mark. Although you may get away with
using it in a word processor as a single left quote, if
your computer is expecting a quotation mark of
some sort and sees an accent, it will balk.

The underline isn't actually much longer than the
hyphen or minus sign, unless you look at it very
carefully. Of course, it's down at the bottom of the
line, so you can't miss it. But is its lowercase version
a hyphen or a minus? It doesn't really matter, since
it's usually interchangeable with the grey minus
key.

Similarly, is a period different from a decimal point?
Not when you type it in using either of these two
keys.

Isn't there a song about these two? "You must
remember thus, a plus is just a plus ... " Here, that's
very true.

The funny thing is that when most new users first get their hands on a PC keyboard, they
complain about all the extra keys. Once they master the new keyboards, if they ever have
to use a typewriter again they end up echoing Ronald Reagan's line "where's the rest of
me?"

The NumLock key - which toggles the cursor pad between its numeric and cursor
moving states - is the source of much user consternation. Somehow it always seems to
wriggle itself into the opposite state from the one you want. If you 're trying to move your
cursor up the screen, for instance, you may end up with a row of 888888s instead, since
Up Arrow and 8 share the same key.

It's possible to set the state of a Shift Lock key more or less permanently, and then run
a short program that disables it for as long as you want. A second program is for users
who don't ever enter numbers on the cursor pad and causes the PC to -beep if NumLock
is set wrong. A third program can change any shift state with a single command. But most

The Keys to the Kingdom 201

Bit: 7 6 s 4 3 2 1 0
0 0 0 0 0 0 0 0

I
Right Shift

Left Shift
Ctrl

Alt
ScrollLock

NumLock
CapsLock

Insert

PC If bit If bit 6th Line Replacement for
Shift Bit is set is set ShiftKey Script
Key to 1 too turns on turns off

Insert 7 on off ORAL,80 ANDAL,7F
CapsLock 6 on off ORAL,40 ANDAL,BF
NumLock 5 on off ORAL,20 ANDAL,DF
ScrollLock 4 on off ORAL,10 ANDAL,EF
Alt 3 down up ORAL,08 ANDAL,F7
Ctrl 2 down up ORAL,04 ANDAL,FB
Left Shift 1 down up ORAL,02 ANDAL,FD
Right Shift 0 down up ORAL,01 ANDAL,FE

Figure 6.4. Keyboard Status Control Bytes at Address 0000:0417

users want the flexibility to shift it back and forth, and they don •t need any extra beeps.
If you want to take our word for this, and skip the slightly technical explanation that
follows, jump ahead in this chapter right now to the section on freezing your display.

Since IBM's 101/102-key keyboard provides a number pad and a separate cursor pad,
it designed the keyboard to start operating with the number pad already in numeric mode.
Some users hate this. If you're among them, you can create a tiny program that will reset
the NumLock state for you. You can add the name of this tiny file to your AUTO
EXEC.BAT program to do the resetting right after you boot up. Figure 6.4 shows you
how.

The PC keeps track of the state of each Shift key by setting (turning to 1) and unsetting
(turning to 0) individual bits in the Keyboard Status Control Byte at address 0000:0417
in RAM. Ifs easy to adapt an all-purpose assembly language program to set or unset any
of these Shift keys. The basic framework is a file called SHIFTKEY.SCR:

202 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

N UNAMEIT.COM <- 1. REPLACE THE FILENAME.
A
MOV DX,0040
MOV DS,DX
MOV AL, [0017]
AND AL,DF <- 2. CHANGE THIS LINE.
MOV [0017) ,AL
INT 20

RCX
F
w
Q

Use a word processor to create the basic SHIFTKEY.SCR, starting with the
N UNAMEIT.COM line and ending with the Q. Be sure to leave the blank line above
the RCX, and press the Enter key after each line, especially the last line.

Then, to create a particular assembly language file to set one of the Shift keys the way
you want it, all you have to do is:

1. Make a copy of the SHIFTKEY.SCR file and call it WORKFILE.SCR, by typing:

COPY SHIFTKEY.SCR WORKFILE.SCR

2. Change the UNAMEIT.COM in the top line to reflect what you're going to use the
program for. If you want to set the CapsLock key on, you might pick a name like
CAPSON.COM. If you want to set the NumLock key off, choose a name like
NUMOFF.COM.

3. Here's the only slightly tricky part. Replace the entire sixth line - the one that now
says

AND AL,DF

with a line from Figure 6.4. If you look at the two righthand columns in the chart,
you'll see that the AND AL,DF turns NumLock off (if this is what you want, leave
it alone). If you want to do something like tum the CapsLock on, however, you'd
change it to

OR AL,40

4. Ynen save this WORKFILE.SCR fiie with the changes you just made, and put it on
the same disk as DEBUG.COM version 2.0 or later. To create the file, type:

DEBUG < WORKFILE.SCR

The Keys to the Kingdom 203

Obviously, this isn't much use in changing the status of a key like Alt or Ctrl. But these
individual files are very useful for toggling the shift locks on your keyboard the exact
way you want just as if you manually leaned on them yourself. You can put these in batch
files that first set the appropriate shift state and then load your favorite commercial
software, so the program comes up with all the shifts properly set and ready to go.

The assembly language utilities that you create this way all use the same technique.
First they load the segment (0040) and the offset (0017) addresses. As mentioned earlier,
you can express just about every address in many different ways. The address 0040:0017
is the same as 0000:0417, which is the same as absolute address 417. IBM calls the byte
at this address the Keyboard Status Control Byte, or the Status Byte, and you'll often
hear this important location referred to as the byte at address 417.

The utility then looks up the value at this address, and puts it into a workspace called
a register. It performs a logical bit-mask operation on this value, forcing one particular
bit to turn on or off, and then moves the newly changed value back to its old 417 address.

All a bit mask does is turn a single specified bit on (so it's a 1) or off (so it's a 0) while
making sure the other seven bits in the byte aren't disturbed. The logical operation process
itself is interesting since it has to be smart enough to switch the state of a bit when the
bit is set incorrectly, but leave the state of the bit alone if it's already set properly. (Bit
masks are explained in detail in the previous chapter.)

Remember that either Shift key will temporarily switch the state of the cursor/number
pad. So if you 're entering a series of numbers with NumLock set on, and you see a mistake
and want to move the cursor up a few rows, just hold down either the left or right Shift
and tap the Up Arrow key a few times. When you're done, release the Shift and you're
back in numeric mode. And this works just as well the other way around.

But be careful. If NumLock is on and you 're entering figures into the number pad, and
you decide to hold down the Shift key to move the cursor, don't type in a period, since
a shifted period is the same as a tap of the Delete key and something will vanish.

Incidentally, you can perform several bit mask operations at once. If you want to turn
CapsLock and NumLock on at the same time, just add the two hex numbers in the OR
column.

CapsLock
+ NumLock

Both

ORAL,40
ORAL,20
ORAL,60

(Remember that these are hex numbers. Adding 40 + 20 equals 60 both in decimal and
hexadecimal notation. But adding 80 + 20 equals AO in hex.)

Figuring out the combination AND numbers to turn shift states off isn't really all that
hard. If you ·n notice, the numbers in the AND column are just hex FF minus the numbers
in the OR column. If OR AL,60 turns both the CapsLock and NumLock on, you can
figure out which values will turn them off when used with a logical AND:

FF
- 60

9F

204 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

So to tum CapsLock and NumLock off with the same command, use:

AND AL,9F

~
~

And of course you freeze DOS displays in mid-scroll by pressing
Ctrl-NumLock. But to restart things you have to press a letter or
number key. Ctrl-S is a better bet because the two keys are close
together and because you can unfreeze the paused display just
by pressing Ctrl-S again.

Freezing the Display
.. Now hold on a minute," you might say, .. let me get this straight. If I want to freeze my
display while it's scrolling I have to hold down the Ctrl key and press NumLock? The
key right next to NumLock on most systems is ScrollLock, but it doesn't seem to have
anything to do with scrolling. You mean IBM named one key ScrollLock but didn't give
it any connection with scrolling, and then went ahead and assigned a key the power to
stop scrolling, but called it NumLock? Does IBM make up this stuff as it goes along?"

Well, you said it, we didn't.
To make matters worse, written below the ScrollLock label almost as an afterthought,

and invisible in poor light, is the word .. Break." Now ask yourself this: If you 're new at
this, and someone's just spent a pile of money on a system that's taken you and an installer
a week to get working, and you already have a deadline staring you in the face, are you
going to let any of your fingers even close to a key named Break? Especially a key that's
somehow supposed to lock scrolling but doesn't do anything of the sort?

If you think about it for a second or two you '11 realize that a panic button key isn't such
a bad idea, since it's so easy for a computer to start running madly off in the opposite
direction, and you need a device to get its attention again. But when your system is
cranking madly away processing something you don't want it to, or scrolling through a
long list that suddenly reveals the items you were searching for, the last thing you want
to have to do is grope for two different keys. Imagine if a huge stamping press had a
two-part red emergency stop button. If OSHA ever bought a PC they'd have the guy who
designed the Break feature making little rocks out of big ones.

But remember, IBM provides an easier way to hit the brakes, with Ctrl-C, even through
Ctrl-C and Ctrl-ScrollLock aren't exactly the same. The one thing they both may do is
put a AC on the screen if they manage to bring a process to its knees. Why didn't IBM
use the far more mnemonic Ctrl-B to trigger this? They thought Ctrl-C was easy to
remember, since by the time you find the two proper keys to· press you're screaming
.. Come on already, break!"

The worst thing about having to grope blindly for Ctrl-ScrollLock or Ctrl-NumLock is
that if your fingers slip a bit you may end up pressing Ctri-PrtSc, which may indeed stop
everything in its tracks as your system tries to send output to a printer that's turned off.

Break isn't just for emergencies. Some programs, like the current versions of EDLIN
distributed along with DOS, are so primitive that they make you use Ctrl-ScrollLock to
stop normal editing commands. Give us a break.

The Keys to the Kingdom 205

Pawing at Ctrl-ScrollLock or Ctrl-break won •t always stop what you •re doing. Some
programs use these key combinations to trigger their own commands. Typing Ctrl-C in
WordStar is the same as pressing the PgDn key. And if you press Ctrl-ScrollLock all
WordStar 3.3 will do is put a

(Vp6w6n?

on your screen.
Programmers can write software using a variety of keyboard-reading techniques that

explicitly check or refrain from checking to see whether the user pressed Ctrl-C. DOS
checks to see whether a user typed Ctrl-C only during standard input/output such as
accepting keystrokes or displaying a file using the TYPE command, and when it•s in
control of printing or communications. But version 2.0 let users add the command:

SET BREAK=ON

to their CONFIG.SYS system configuration file, which forces DOS to check for this
combination of keystrokes more frequently. However, forcing DOS to do anything
usually slows it down a bit, and increased break-checking is no exception.

You can turn the extra break-checking on and off at the DOS prompt. Just type BREAK
ON to enable the additional checks and (surprise) BREAK OFF to disable them. Typing
just BREAK by itself will report the current ON or OFF status.

Scroll
Lock

CapsLock

Scroll
Lock

Mostly interchangeable with Ctrl-C, and both stop or "break out"
of DOS operations most of the time.

Used alone, this key exercises the finger muscles only.

New users often gripe that the CapsLock key doesn't work properly. On typewriters it
usually hunkers down a quarter inch or so and stays there to let you know it's set. Early
PCs offered a feature to let you know as well. It was called looking at the screen to see
whether everything you were typing was iN tHE wRONG sTATE.

The AT and subsequent systems changed all this, by providing status lights to display
the current state of the CapsLock, NumLock, and ScrollLock shifts. For some inexplica
ble reason, IBM left these off some of its later keyboards, even though the spaces for
them were clearly visible. And with enough fancy fingerwork, you can knock these status
lights out of synch, so they blink on when they should be off and vice versa. We'll explain
how to reset them later.

The other complaint most often voiced by novices is that CapsLock doesn't shift
"uppercase" punctuation marks properly. Toggle the CapsLock on and press the comma
key expecting to see its upstairs < sign, or type the top row 1 when you want a ! and all

206 DOS Power Too/,s, 2nd Edition, Revised/or DOS 5.0

Esc

you get is the unshifted version of each. Presumably IBM either felt the downstairs keys
were more important, or thought that the only keys the CapsLock should adjust were the
ones with just one character stamped on them- the alphabetic keys. Any key with two
characters on it needs a tap on the Shift key to produce its upper version.

The Esc key is another (smaller scale) panic-button. In DOS, it stops what you 're typing,
prints a backslash, drops the cursor down to the next line, and gives you a chance to start
over. It won't give you back your DOS prompt though, because it figured if you wanted
to do that you'd pound on Ctrl-C. Instead, it assumes you interrupted your earlier
command and want to try entering it again.

In most commercial applic~tions, Esc steps you backwards through a succession of
hierarchical menus or commands, or cancels operations. It's one of the few conventions
adopted by a large number of program designers; the only other one is that Fl will
summon some sort of help screen. If you 're ever using a new application and the manual
isn't handy or isn't indexed (hard to believe but true) or was written by the programmer
and not a professional manual writer, and you 're stuck, try drumming on the Esc key until
you land in a familiar place.

ASCII character 27, generated by the Esc key, wakes up certain printers and screens.
When you print a page all you 're really doing is sending a stream of characters out the
back of your system and down a cable to another set of processors in another hardware
box. These other processors watch the data go by and convert it into printed characters
by moving the printer's motors, gears, or mirrors. But they also watch for special control
or escape codes that trigger the printer's processor to change the current configuration.

Commands like these can tell your printer to use larger or smaller characters, change
paper trays or ribbon colors, adjust spacing measurements, shift to different type fonts,
even print sideways (in landscape mode rather than portrait - these terms were
borrowed from the art world where portraits are generally taller than they are wide and
landscapes the other way around).

Escape sequences can also tell DOS you're trying to send it a special ANSI.SYS
command. Few users take advantage of ANSI (which stands for the American National
Standards Institute and is pronounced ANN-see), since its commands are nasty to deal
with and don't work all the time. When everything is properly set, they can tum drabs
screens into lush, colorful ones. But if you 're not expecting an ANSI file brimming with
escape characters and left brackets, and you try to do anything with it, you end up with
a mess.

DOS screens are usually a dull grey on black, and work only one line at a time. And
even if you've set your screen colors using a small<utility like any of the ones we provide
later, as soon as you type CLS to dear the screen, DOS jumps back to grey on black. The
ANSI screen commands can position your DOS cursor anywhere you want it and set any
character to any color. And the colors stick, so that CLS simply erases characters but
doesn't meddle with any colors you've chosen.·

You can also use the ANSI codes to redefine and add primitive macro features to your
keyboard. And you can get at much of its magic through the underused DOS PROMPT
command.

The Keys to the Kingdom 201

Function Keys
Function keys (Fl through FlO on older systems, Fl through Fl2 on newer ones) fall
neatly into two categories - underused and overused. Some software, like WordPerfect,
makes such extensive use of the these keys that it can be hard to remember whether to
press F8, Ctrl-F8, Shift-F8, or Alt-F8 to get something done. Other software, like DOS,
makes such feeble use of function keys that a few keys remain unassigned and most that
are assigned remain unpopular with users.

Actually, function keys can be helpful in two ways. They can compress lots of
hard-to-remember or tricky-to-type keystrokes onto one single key. And they can act as
dedicated command keys so that pressing Fl brings up a help screen, or striking F9 jumps
you to the beginning of a file and FlO to the end.

DOS uses the first seven function keys, Fl through F7, to make life a little easier at
the keyboard. One key, F3, is indeed a terrific tool. The others are occasionally handy.
(BASIC gives function keys far more intrinsic power.) You can harness ANSI's redefi
nition abilities to make function keys more useful, but few users bother. Most either don't
use function keys much, or else purchase a full-fledged keyboard macro package like
ProKey or SuperKey to redefine keys.

The majority of DOS's built-in function keys let you re-execute the previous DOS
command you just entered, either exactly as you entered it earlier, or with changes. DOS
puts all the keystrokes you type for each command into a template. If you typed in:

DIR

the template would contain just the letters D, I, and R. If you typed:

COPY C:\DOS\UTILITY*.PRG B:\BACKUP\DOS\PROGS *.PBK /V

that whole long string of characters from the intial COPY to the final /V would be in the
template. The ability to re-execute commands isn't such a big deal when all you 're doing
is typing DIR repeatedly. But even then, it's easier to press one key than three, and when
you 're dealing with long and thorny commands this can be an absolute blessing.

Some of the examples below use the same sample template, and assume you are logged
onto drive C:

COPY A:ABCD B:WXYZ

c

Both of these take one key at a time from the
previous command and copy it to the current com
mand. So if you had finished executing the sample
COPY command shown here, and were back again
at the DOS prompt, the first time you press either of
these keys, you'd see:

208 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

Press either key once again and the screen would look like:

co

Press either one of these seven more times and you• d see:

COPY A:AB

So if you wanted to repeat the previous command, you could simply hold down the Fl
or right-arrow key until DOS displayed the entire previous template. If you then press
the Enter key, DOS would execute this command just as if you had typed it in. But there's
a far easier way than dredging up all the keystrokes one at a time.

One tap on F3 zaps the last command entered back onscreen. This is one of
the best things the designers of DOS ever did. Since users frequently find
themselves repeating DOS commands, and since many commands involve
hard-to-type combinations of slashes, backslashes, colons, and hierglyphic
filenames, F3 is a genuine boon.

Even better, you can use these keys to .. fill out" the rest of a command. Here's a good
example: Once you copy critical files, you may want to check the validity of the copies
by using the COMP command to compare them to the originals. Both COPY and COMP
are four letters long, and both share the same basic syntax. So once you type in:

COPY A:ABCD B:WXYZ

and press the Enter key to make the copies, you can simply type in:

COMP

and then press the F3 key. DOS will fill in the rest of the template for you, supplying
drives and filenames of both the original files and the copies:

COMP A:ABCD B:WXYZ

You may have to edit the command slightly. If you used a /V suffix, or switch, at the
end of the original COPY command to verify the accuracy of your copies, you'll have to
delete it from the COMP command. But this is simple; just backspace it away. (Inciden
tally, adding a /V to verify the copying process -- which is the same as giving DOS a
VERIFY ON command - doesn't compare the two files byte by byte. Instead, it simply
makes sure that DOS can read the appropriate sectors that contain the copy of your file,
and then does a CRC check - a crude test for errors that catches flagrant mistakes but
can be fooled. To compare two files more precisely, use the limited PC-DOS COMP or
the better MS-DOS FC commands.)

The Keys to the Kingdom 209

Pressing F3 to COMP a file after you COPY it isn't really necessary unless your drives
are acting up and generating error messages. But it doesn't hurt, especially when you 're
copying a vitally important file from a RAMdisk or hard disk to a single backup floppy.
We've had lots of trouble with IBM's awful 1.2 megabyte floppy drives, where COPY
/V bubbles blithely along without reporting any errors but COMP catches them by the
fistful.

Fl/right arrow and F3 can also tum a:

DISKCOPY A: B:

command into a:

DISKCOMP A: B:

with a few simple keystrokes. Just tap Fl six times, type in MP to replace the final two
PY characters of DISK COPY, and then press F3. (You really shouldn't use DISK COPY
to back up your files, for reasons we'll get to later.) But again, DOS provides an easier
way.

plus

C>DISKCO

any
char
acter

The first six letters of DISKCOPY and DISKCOMP
are identical. You can have DOS copy those six
letters from the old template into the new one by
entering F2 and the seventh letter (in this case, the
P in DISKCOPY). Typing F2 and the P would
produce:

You could then type MP and then press F3 to finish changing the DISK COPY A: B: into
a DISKCOMP A: B:.

Typing F2 and then a character will look inside the template created by the previous
command and copy everything up to (but not including) that character onto the screen.
In the unlikely event that you want to do the reverse - copy everything after a specific
character - DOS will happily oblige.

SWEEP.COM, a program on one of the accompanying disks, lets you execute
commands in all the subdirectories on your disk. You can see all the backup files that
end with a .BAK in all of your subdirectories, by typing:

SWEEP DIR *.BAK

While this will display the backup files in every subdirectory, you might want to focus
on the ones in the subdirectory you 're currently working in (you can be in only one
subdirectory at a time). You could re-enter the command:

DIR *.BAK

210 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

but DOS provides a slightly easier way.

plus any
char
acter

Just type F4 and then D, and DOS will skip over all
the characters up to the Din the word DIR. However,
you won •t see anything onscreen. But then press F3
and DOS will put the rest of the previous command
onscreen, from the D onward. The F4 key works like
the F2 key in reverse.

So, if the previous command was:

SWEEP DIR *.BAK

and you typed F4, then D, then F3, you 0d see:

DIR *.BAK

The F2 and F4 keys will always jump over or to the first occurrence of the character
you specify. If you want to jump over or to a second or third occurrence of that character
you can repeat the command a second or third time. But this gets confusing, especially
when you •re working with F4 and can •t see what you •re doing. Few users rely on the F2
key, and virtually nobody uses F4.

If you ·re trying any of the above tricks and you get hopelessly lost or confused, you
can always press Ctrl-ScrollLock or Ctrl-C to abort, and start again on the next line.
However, if you want to make some corrections in the current line, and keep working on
it, you can do so.

Pressing F5 replaces the old template from the previous command with the
new one you •re working on. You can then continue to edit this new one, using
the Fl, F2, F3, and F4 keys. This is another fairly useless and unpopular
function key.

While DOS provides the Fl through F5 keys to edit the command line template, it
tosses in two more simple tools.

When you create files in DOS you have to tell it when you•re done. You do this by
adding an end-of-file marker as the very last character. This special character is a Ctrl-Z,
with an ASCil value of 26 - easy to remember since Z is the 26th letter of the alphabet.
You can generate this character using three different techniques. First, you could hold
down the Ctrl key and press Z. Second, you could hold down the Alt key, type 26 on the
number pad (not the top row number keys), and then release the Alt key. Or third, you
could simply press F6. Each will put a AZ onscreen and an end-of-file marker (which may
show up undei cer..ain ciicumstances as a small right-pointing arrow) in your file.

Pressing F6 isn°t much more efficient than typing Ctrl-Z. But it"s there, and lots of
users are accustomed to ending files by pressing F6 and then the Enter key.

The Keys to the Kingdom 211

Puts an ASCII character 26 (Ctrl-Z end-of-file marker) onto the screen at the
current cursor position.

The only other function key that does anything at all is 'F7, which sticks a null - with
an ASCII value of 0 - onto the screen at the current cursor position. Pressing 'F7 prints
a "@ and can generate a CHR$(0) if you need one. You probably won't. But if you do,
be glad 'F7 is there, since this null character is the only one you can't create using the
Alt-key-plus-number-pad technique.

Puts an ASCII character 0 (null) onto the screen at the current cursor position.

Several other keys can help you edit in DOS:

Pressing the Esc key cancels whatever you're doing, prints a backslash(\),
and drops the cursor down one line without disturbing the contents of the old
template. You can often get a similar interrupted result by pounding on
Ctrl-ScrollLock or Ctrl-C.

Pressing the Ins key lets you insert characters at the cursor position without
wiping out any characters in the template. DOS is normally in overstrike or
overwrite mode, which means that if you put the cursor in the middle of a
word and start typing, DOS will obliterate the old characters with any new
ones you type. The Ins key will tell DOS to go into insert mode, which pushes
existing text to the right as you type in new characters.

You '11 find yourself using the Ins key often. If you were currently logged into drive
C: and you tried to execute the example mentioned earlier:

COPY A:ABCD B:WXYZ

but you forgot the A: before ABCD, you'd end up with:

COPY ABCD B:WXYZ

This would tell DOS to copy the file ABCD from your current drive (which in this case
would be C:) to drive B: and rename it WXYZ. What you really wanted to do however
was copy the ABCD file on drive A:, but you forgot to specify the A:. If DOS found a
file on drive C: called ABCD it would copy C:ABCD to B: and rename it during the
process. But if DOS couldn't find it (which was probably the case) it would print an error
message. To fix the command, you'd either lean on the Fl or the right arrow key to read
the:

212 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

COPY

out of the old template, or you• d press F2 A, which would do the same thing a little faster.
Then, press Ins to put DOS into insert mode and type A:

COPY A:

and finally, press F3 to put the rest of the old template onscreen:

COPY A:ABCD B:WXYZ

Del simply deletes keys from the template one by one. If you spelled COPY
COPPY, you'd just position the cursor on one of the Ps and press Del to erase
it. You need to use the Del key when dealing with characters inside words.
(COPY isn•t the same thing as COPY.) The Del key lets you close up the
word and get rid of the extra space.

However, if the letter you have to erase happens to be at the beginning or end of a
word, you can usually just press the space bar to get rid of it, since DOS interprets one
space the same way it treats many continuous spaces. So:

C> COPY A:ABCD B:WXYZ

will do the same thing as the original example. If you spelled COPY mistakenly as
COPYY, you could simply position the cursor on the second Y and press the spacebar.

If you realize you've made a typing mistake while you •re working on the same line,
you could either press F5 to replace the old template with the new one, and then move
to the offending character and write over it, or you could backspace to the mistake, correct
it, and then re-enter the rest of the command. The left arrow key will do the same thing.
Both backspace .. destructively" since they erase everything as they move.

Erases characters and moves the cursor to the left.

Of all the DOS function keys, the best is clearly F3. You·n find yourself using it all
day long. One of the handiest F3 tricks lets you verify wildcard deletions. If you're
working on a corporate contest, and have a lot of old files on your disk like CON
TEST.RUL, CONTEST.TXT, CORP.LOG, and CORP.TXT, and you want to delete
them all with the command:

DEL CO*.*

The Keys to the Kingdom 213

you'd better be careful, since this command would also erase files such as COM
MAND.COM and COMP.COM. To see what files you would erase with such a wildcard
command, first type:

DIR CO*.*

If all you see is something like:

CONTEST RUL
CONTEST TXT
CORP LOG
CORP TXT

Then just type:

DEL

1920
26624

3968
7552

8-17-90
9-08-90
9-12-90
8-21-90

8:00p
3: 07p
9:03p
1:02p

and press the F3 key, which will add the remaining characters from the previous template:

DEL CO*.*

However, if you see files like COMMAND.COM in the directory listing, you can avoid
potential trouble by making the DEL command more specific. In this case you might
want to try it in two stages, first:

DEL CON*.*

and then:

DEL COR*.*

But even then it doesn •t hurt to try DIR CON*.* and DIR COR *. * first and then use F3
when you 're satisfied you won •t erase any unexpected files.

F2 can be a real lifesaver as well. Whenever you tell DOS about a disk drive you have
to use a colon. Unfortunately, the colon is a shifted character, and it's common when
typing rapidly or working late to press the lowercase semicolon instead. If you end up
with a command such as:

COPY A;ABCD B:WXYZ

DOS will become confused, since it treats a semicolon like a space (tabs, equals signs,
and commas are also turned into delimiters that work like spaces). It will think that you 're
trying to copy a file called A on your current drive and rename it to ABCD in the process.

214 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

But it won•t understand the B:WXYZ and will print an ··1nvalid number of parameters ..
message.

To fix this, simply press F2 and then a semicolon, which will put a:

COPY A

onscreen. Then type a colon and press F3 and the command will be ready to go.
Figure 6.5 summarizes the keys that will execute certain DOS functions.

Key

Fl
F2
F3
F4
F5

*

** F6
F7
&c
Ins

Del

Bksp

*

DOS Function

Copies characters one by one from old template to new
Copies up to specified character from old template
Copies all remaining characters from old template
Skips up to specified character from old template
Replaces old template with existing one
Generates ASCII 26 end-of-file marker ("Z)
Generates ASCII 0 null("@)

Interrupts and cancels changes in current line
Switches DOS from overwrite mode into Insert mode

Erases character at cursor and skips over it in template
Erases one character to the left

** Same as right arrow key
Same as Ctrl-Z

*** Same as left arrow key

Figure 6.5. Keys that Produce Selected DOS Functions.

Assuming that you •re logged onto drive C: and that the previous command was COPY
A:ABCD B:WXYZ, here·s what you can do with function keys:

Pressing

Fl
F2+W

F3
F4+W+F3

Produces

c
COPY A:ABCD B:

COPY A:ABCD B:WXYZ
WXYZ

If you then press F5, DOS would replace the old COPY A:ABCD B: WXYZ template
with these.

The Keys to the Kingdom 215

New Keyboard Tricks
IBM started letting users program their keyboards with the first AT. By issuing a few
simple BASIC commands you can experiment with IBM's programmable keyboards to
see how they work, or to customize the key action.

To change the keyboard's LED shift-lock indicators, just issue an OUT &H60,&HED
(the SET/RESET LEDS command), and follow this immediately with an OUT &H60,nn
(where nn is a binary value indicating which LEDs to tum on). Bit 0 is for the ScrollLock
indicator, bit 1 is for NumLock and bit 2 is for CapsLock.

The KBD program on the accompanying disk allows you to toggle the key values.
It's simple to change both the typeamatic repeat rate and delay, using the KBD, QKRP,

or EQKRP programs on the accompanying disks, or the MODE command in DOS 4.0
and 5.0. If you are forever frustrated by the slowness of the keyboard,

MODE CON RATE=32 DELAY=l

will speed things up to the maximum directly allowed by DOS, while

MODE CON RATE=l DELAY=4

will give you lots of time to reflect on the meaning of life between keystrokes.
You can also create two assembly language files, FAST.COM and SLOW.COM, that

will also set the rates. Just make sure DEBUG.COM is handy and type in the following
ten lines, pressing Enter at the end of each one.

DEBUG
E 100 BO F3 E6 60 B9 00 10 90 E2 FD BO 00 E6 60 C3
N FAST.COM
RCX
F

w
E lOB 7F
N SLOW.COM
w
Q

When you're done, you'll have two new files on your disk. For a laugh, type:

SLOW

and press Enter. See what your typematic rate is like. You won't believe it. Then, to speed
things up considerably, type:

FAST

216 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

and press Enter. If you•ve never speeded up your keyboard before, you won•t believe
this either. To change the rates, patch the byte in either SLOW.COM or FAST.COM at
address 1 OB.

Keyboard Magic with DOS 5.0's DOSKEY
Beyond the simple line-editing capabilities of the function keys, DOS 5.o·s DOSKEY
provides an entirely new set of features for dealing with the command line. DOSKEY
lets you recall, modify, and execute previously issued DOS commands, using the arrow
keys and the PageUp/PageDn keys to go back and forth through the DOS-maintained
stack of recent commands. Unlike the STACK utility on the accompanying disks,
DOSKEY only displays one previous command line at a time - although you can display
all the previous commands in the buffer with F7, you can •t cursor to them directly and
execute them as you can in STACK.

You can either make DOSKEY a permanent part of your system utilities, by including
it in your AUTOEXEC.BAT, or just invoke it from the command line when you know
you 're going to have a lot of repetitive command sequences or keystrokes to wade
through. There are two basic approaches to using DOS KEY, and deciding which one is
best for you is a simple matter of taste. If you 're most comfortable finding solutions by
trial and error, DOSKEY·s ability to recall previous commands lets you experiment with
a variety of commands, and then only reuse those you like. If, on the other hand, you find
it hard to go on a picnic without making a list first, DOSKEY's macro capability lets you
create your own custom commands based on the exact sequences of keystrokes you'll
need to accomplish the task at hand. Let's suppose you want to find a very important
snippet of information about Windows you saw while glancing through one of the many
READ.ME files you know are scattered throughout your hard disk. Of course, you no
longer have a clue as to which particular READ.ME it was in, or even if it was called
READ.ME or README.lST, so the task is to locate and search each of the possible
files. You could start by typing

ATTRIB \READ*.* /S

which produces a response like

A
A

A

A
A
A

C:\SYS\DOS\README.DOC
C:\SYS\DOS\README.TXT
C:\SYS\SIDEKICK\READ.ME
C:\SYS\WIN\README.TXT
C:\SYS\DEVS\READ.ME
C:\SYS\INSET\README.DOC

A
A

A

A

A

A

A

The Keys to the Kingdom 217

C:\SYS\HIJAAK\READ.ME
C:\WP\WS4\README.COM
C:\WP\WS4\README.TXT
C:\LANGS\PASCAL\DOC\READ.ME
C:\LANGS\MSPASCAL\README.DOC
C:\APPS\Q2\README.COM
C:\APPS\Q2\README

To look through the files, you• d normally summon up your favorite word processor or
file browser with the first file name, as in

EDIT C:\SYS\DOS\README.DOC

Then after perusing the file, use F2 and F3 to change the filename to

EDIT C:\SYS\DOS\README.TXT

and so on down the list. Of course, at some point, the file names will start scrolling off
the top of the screen, and you'll need to stop, reissue the A TIRIB command, and then
pick up where you left off with EDIT and the pathname for the next file. With DOSKEY
installed, a few simple up-arrow keystrokes will get you to the A TIRIB command, and
after you've gotten the file names back on the screen, a few more keystrokes will get you
to the last EDIT command you issued.

If you 're even more organized, you can start the whole process by using DOSKEY to
define the first step, issuing the A TIRIB command, as a single keystroke:

DOSKEY l=ATTRIB \READ*.* /S

so when the file names scroll off the screen, you need only type 1 to refresh the list, and
up-arrow only twice to get back to the last EDIT command. Once you get started with
DOSKEY, it's easy to get carried away. Have fun!

The following figures summarize the ASCII hex and decimal values, and the scan code
values in both hex and decimal for the various keys and key combinations.

218 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

Character Decimal Hex Character Decimal Hex

A@ 0 00 @ 64 40
"A 1 01 A 6S 41
AB 2 02 B 66 42
Ac 3 03 c 67 43
AD 4 04 D 68 44
AE s OS E 69 4S
"F 6 06 F 70 46
AG 7 07 G 71 47
AH 8 08 H 72 48
AI 9 09 I 73 49
AJ 10 OA J 74 4A
AK 11 OB K 75 4B
"L 12 oc L 76 4C
"M 13 OD M 77 4D
AN 14 OE N 78 4E
"O IS OF 0 79 4F
AP 16 10 p 80 so
AQ 17 11 Q 81 SI
AR 18 12 R 82 52
As 19 13 s 83 S3
"T 20 14 T 84 S4
Au 21 15 u 8S SS
Av 22 16 v 86 S6
Aw 23 17 w 87 57
Ax 24 18 x 88 S8
Ay 25 19 y 89 S9
AZ 26 lA z 90 SA
A[27 IB [91 SB
A\ 28 lC \ 92 5C
"] 29 1D 1 93 5D

30 IE 94 SE
31 IF 9S SF

SP 32 20 96 60
33 21 a 97 61
34 22 b 98 62

3S 23 c 99 63
$ 36 24 d 100 64
% 37 2S e 101 6S
& 38 26 f 102 66

39 27 g 103 67
(40 28 h 104 68
) 41 29 105 69
* 42 2A j 106 6A

43 2B k 107 6B

Figure 6.6. ASCII Characters with Decimal and Hex Values

The Keys to the Kingdom 219

Character Decimal Hex Character Decimal Hex

44 2C 108 6C
45 20 m 109 60
46 2E n 110 6E

I 47 2F 0 111 6F
0 48 30 p 112 70
1 49 31 q 113 71
2 50 32 r 114 72
3 51 33 s 115 73
4 52 34 116 74
5 53 35 u 117 75
6 54 36 v 118 76
7 55 37 w 119 77
8 56 38 x 120 78
9 57 39 y 121 79

58 3A z 122 7A
59 3B 123 7B

< 60 3C 124 7C
61 30 125 70

> 62 3E 126 7E
? 63 3F Ci 127 7F

Figure 6.6. ASCII Characters with Decimal and Hex Values (continued)

Key Hex Scan Code Decimal Scan Code

Escape 01 01
! 1 02 02
@2 03 03
#3 04 04
$4 05 05
%5 06 06
"6 07 07
&7 08 08
*8 09 09
(9 OA 10
)0 OB 11

oc 12
+= OD 13
Backspace OE 14
Tab OF 15
Qq 10 16
Ww 11 17

Figure 6.7. Key Scan Codes

220 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

Key Bex Scan Code Decimal Scan Code

Ee 12 18
Rr 13 19
Tt 14 20
Yy 15 21
Uu 16 22
Ii 17 23
Oo 18 24
Pp 19 25
{ [lA 26
}] 1B 27
Enter lC 28
Ctrl 1D 29
Aa 1E 30
Ss lF 31
Dd 20 32
Ff 21 33
Gg 22 34
Hh 23 35
Jj 24 36
Kk 25 37
LI 26 38

. ' 27 39
28 40
29 41

Left Shift 2A 42
I\ 2B 43
Zz 2C 44
Xx 2D 45
Cc 2E 46
Vv 2F 47
Bb 30 48
Nn 31 49
Mm 32 50
<, 33 51
>. 34 52
?/ 35 53
Right Shift 36 54
PrtSc * 37 55
Alt 38 56
Space Bar 39 57
Caps Lock 3A 58
Fl 3B 59
F2 3C 60
F3 3D 61

Figure 6.7. Key Scan Codes (continued)

The Keys to the Kingdom 221

Key Hex Scan Code Decimal Scan Code

F4 3E 62
F5 3F 63
F6 40 64
F7 41 6S
F8 42 66
F9 43 67
FlO 44 68
NumLock 4S 69
Scroll Lock 46 70
?Home 47 71
8 Cursor Up 48 72
9PgUp 49 73
- (gray key) 4A 74
4 Cursor Left 4B 7S
s 4C 76
6 Cursor Right 4D 77
+(gray key) 4E 78
1 End 4F 79
2 Cursor Down so 80
3PgDn Sl 81
0 Insert 52 82
.Del 53 83
Sys Req(84 Key) 54 84

101 Key Board Extended Keys

Pause El 225

Gray Keys Cursor Left E04B
Cursor Right E04D
Cursor Down BOSO
Cursor Up E048
Delete E053
End E04F
Home E047
Insert EOS2
Page Down EOSl
Page Up E049
Pause El 1D 4S El 9D CS
Print Screen E02AE037

Keypad Area Enter EO lC
I E035

Other Keys Right Alt E038
Right Ctrl EOlD

Figure 6. 7. Key Scan Codes (continued)

222 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

Key Decimal Hex Key Decimal Hex
Combination Code Code Combination Code Code

NUL 3 03 Shift-Fl 84 54
Shift-Tab 15 OF Shift-F2 85 55
Alt-Q 16 10 Shift-F3 86 56
Alt-W 17 11 Shift-F4 87 57
Alt-E 18 12 Shift-F5 88 58
Alt-R 19 13 Shift-F6 89 59
Alt-T 20 14 Shift-F7 90 5A
Alt-Y 21 15 Shift-PS 91 5B
Alt-U 22 16 Shift-F9 92 5C
Alt-I 23 17 Shift-FlO 93 5D
Alt-0 24 18 Ctrl-Fl 94 5E
Alt-P 25 19 Ctrl-F2 95 5F
Alt-A 30 1E Ctrl-F3 96 60
Alt-S 31 lF Ctrl-F4 97 61
Alt-D 32 20 Ctrl-F5 98 62
Alt-F 33 21 Ctrl-F6 99 63
Alt-G 34 22 Ctrl-F7 100 64
Alt-H 35 23 Ctrl-F8 101 65
Alt-J 36 24 Ctrl-F9 102 66
Alt-K 37 25 Ctrl-FlO 103 67
Alt-L 38 26 Alt-Fl 104 68
Alt-Z 44 2C Alt-F2 105 69
Alt-X 45 2D Alt-F3 106 6A
Alt-C 46 2E Alt-F4 107 6B
Alt-V 47 2F Alt-F5 108 6C
Alt-B 48 30 Alt-F6 109 6D
Alt-N 49 31 Alt-F7 110 6E
Alt-M 50 32 Alt-F8 111 6F
Fl 59 3B Alt-F9 112 70
F2 60 3C Alt-FlO 113 71
F3 61 3D Ctrl-PrtSc 114 72
F4 62 3E Ctrl-Cursor Left 115 73
F5 63 3F Ctrl-Cursor Right 116 74
F6 64 40 Ctrl-End 117 75
F7 65 41 Ctrl-PgDn 118 76
FS 66 42 Ctrl-Home 119 77
F9 67 43 Alt-1 120 78
FlO 68 44 Alt-2 121 79
Home 71 47 Alt-3 122 7A

Figure 6.8. Key Combination Codes

The Keys to the Kingdom 223

Key Decimal Hex Key Decimal Hex
Combination Code Code Combination Code Code

Cursor Up 72 48 Alt-4 123 7B

Pg Up 73 49 Alt-5 124 7C

Cursor Left 75 4B Alt-6 125 7D

Cursor Right 77 4D Alt-7 126 7E

End 79 4F Alt-8 127 7F
Cursor Down 80 50 Alt-9 128 80

PgDn 81 51 Alt-0 129 81

Ins 82 52 Alt-- 130 82

Del 83 53 Alt-= 131 83
Shift-Fl 84 54 Ctrl-PgUp 132 84

Figure 6.8. Key Combination Codes (continued)

Value Alt Ctrl L-Shtl R-Shft

00
01 x
02 x
03 x x
04 x
05 x x
06 x x
07 x x x
08 x
09 x x
OA x x
OB x x x
oc x x
OD x x x
OE x x x
OF x x x x

Note: X means key is pressed

Figure 6.9. Shift-Mask Value Table

Chips and Memory

Deep down, all people are pretty much alike. True, some have blue eyes and some have
brown, some are well over six feet tall and others short and stumpy, and one may pick
up the Unified Field Theory where Einstein left off while another becomes the nation's
latest celebrity thrill killer. But their internal parts are basically similar. The same is true
with PCs.

The CPU- The Brains of the PC
At the heart of every microcomputer is a microprocessor, a skinny sliver of purified
crystaline silicon that has been doped - coated with impurities that give it electronic
switching abilities - etched with a witch's brew of poisonous gasses, and then entombed
in a small ceramic block. When people talk about "the chip .. inside a PC they mean this
one. It's often referred to as a CPU or central processing unit, although you never hear
anyone say "hey, nice unit in that computer."

The two most popular microcomputer CPUs these days are made by Intel and Motorola
in "clean rooms" straight out of science fiction movies, where workers pad the halls
wearing sneeze masks and special dust-free booties. (Chips are fast because they're so
small and densely packed that signals can move from one place on them to another a few
millionths of an inch away in a few billionths of a second. The scale is so infinitesimal
that a dust speck on a chip would be like an aircraft carrier in your bathtub.) The two
biggest microcomputer companies are Apple and IBM. Apple switched from chips made
by MOS Technology to the Motorola 68000 family of CPUs. IBM has stuck with the
Intel 8088/8086/80x86 line of chips from the beginning.

What distinguishes a CPU from humbler chips is its ability to do arithmetic and logical
operations, decode special instructions, and issue appropriate controlling signals to other
chips in the system. One typical instruction might store a character in the computer's

225

226 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

main memory, while another instruction will fetch the character back when needed. The
CPU can communicate with the rest of the system through numbered ports. And it comes
from the chip foundry with a tiny amount of memory aboard, located in places called
registers. An 8088 CPU has a scant 14 registers, each capable of storing two bytes. A
byte can hold any eight-bit binary address or a single character like an A or a 4. When
two bytes are strung together, as they are in registers, they're called a word. Virtually
everything your computer does is in one fonn or other shuttled in and out of those registers
at incredible speeds.

For their tiny size, registers are power-packed. They do things like store memory
addresses (the PC's 8088 registers can handle up to a million different ones), hold data,
keep track of which instructions to execute next, and maintain status and control
indicators called flags that report on the success or failure of previous instructions and
can control how the CPU executes current and future ones.

The CPU sits astride the computer's bus, a multilane highway of wires that carries
data, controlling signals, and electrical power to all the major parts under the hood. The
wider the bus the greater the amount of data a computer can move in a single operation.
A PC or PC-XT has eight data lines, an AT-class machine 16, and an 80386/486 system
32.

The original PC is classed as a 16-bit machine, since· its 8088 CPU does indeed
manipulate infonnation in 16-bit chunks - but only inside the CPU itself. When its CPU
needs raw data to work on, or when it finishes processing some infonnation and wants
to store it back in memory, it has to break the data into eight-bit pieces so it can squeeze
through the narrow eight-bit bus. A timer circuit commonly called the clock sends pulses
down one of the bus lines several million times each second to keep everything
synchronized. In a PC the timer ticks at 4. 77 megahertz (MHz). Since mega- means
million and Hertz means cycles-per-second, that may seem pretty fast. Well, compared
to a postal worker maybe, but these days 4. 77 MHz is a real crawl. Current hardware runs
at up to ten times the original PC's clock speed.

A clock is like the big sweaty guy on a galley slave ship in a gladiator movie beating
out the rowing tempo on a drum. The more energetic his drumming the faster the ship
moves. However, no microcomputer actually performs calculations at anywhere near the
clock rate. The PC, like virtually every other computer, is a Von Neumann machine
(named after mathematician John Von Neumann who contributed to the design of early
room-sized computers such as ENIAC). Von Neumann machines execute all instructions
one at a time. Some state-of-the-art supercomputers, like those made by Cray, can process
similar groups of instructions concurrently in what is called parallel processing. Every
Von Neumann CPU wastes lots of time waiting for the current instruction to finish so it
can trigger the next one. And instructions can hog lots of timer cycles. Even the PC's
NOP (pronounced no-opp) instruction, a placeholder that is expressly there to do nothing
except wait, takes three clock cycles to execute.

(The clock in the original PC is actually a special Intel chip that oscillates at 14.31818
MHz, or three times as fast as the often-quoted 4. 77 MHz clock speed. This is too fast
for most circuits, so other timer chips inside the PC use every third or fourth or fifth of
these ticks to slow down the pace for their own needs.)

Chips and Memory 227

Most CPUs are pretty capable at doing basic integer arithmetic (remember, they were
first designed as calculator chips) but stumble over floating point operations, which
require juggling of decimal points and so take longer and demand more precision than
working with whole numbers. Normally, when software has to work with decimal
numbers it uses relatively slow brute-force tricks, and can end up dragging its feet and
rounding off calculations crudely.

When IBM first introduced the PC it left a large empty socket next to the CPU that it
eventually filled with a numeric coprocessor chip called an 8087. This number-crunching
chip was designed to perform the complex calculations Intel's main 8088 and 8086 CPUs
couldn't handle efficiently. And it included special built-in circuitry to zip through things
like trigonometric operations in the blink of an electronic eye. As Intel re-engineered its
8088/8086 into an 80286 and then an 80386 and later an 80486, it made sure the
companion math coprocessors kept pace.

However, just sticking a math chip in the empty socket doesn't make every software
application run faster. Some applications, such as word processors or data base managers,
don't do much tricky math. And while some applications, such as CAD (computer aided
design) packages, engineering programs, and spreadsheets, could run far faster by using
such a number cruncher, unless the software includes special instructions to wake up the
math chip and send data to it, the chip will just sit idly by.

Computers can get things done one of two ways. They can actively and repeatedly go
out and check whether something has happened yet, or they can lie back and wait for
events to announce themselves. Continuously polling the hardware to see whether the
user has hit a key, a disk drive has stopped spinning, or a printer is turned on is incredibly
wasteful. Today's CPUs are interrupt-driven, somewhat like a hospital emergency room
staff that's normally in low gear doing routine record keeping but can spring into action
when necessary. And as in an emergency room, certain interrupts have priority over
others. If a physician is adjusting one patient's bandage and the local rescue crew wheels
in a sword swallower who tried shoplifting a chain saw, the focus of attention changes
instantly. If your computer is leisurely printing out a document and you happen to start
typing, its attention has to shift quickly or the keystrokes will be lost forever.

When a computer detects an incoming interrupt, it parks or "pushes" critical informa
tion about what it was originally doing into a section of memory called a stack and attends
to the interrupt. Then when the CPU is finished handling the interrupt, it retrieves or pops
the critical information it temporarily stored so it can get back to what it was originally
working on. And it can stack such information many levels deep, so that if a second, more
urgent interrupt barges in, the CPU parks information about the first interrupt while it
works on the second, and so on.

This temporary storage device is called a stack because it resembles a box-shaped
device in a cafeteria with a hole in the top for dishes and a spring at the bottom to push
the dishes upward. Both the cafeteria and the computer stacks are designed so that only
the top item on the stack is accessible; as you push each new item onto it, it presses all
the items beneath it down one level each time. And when you remove an item from either
stack, the one directly under it pops up and rises to the top. It's like a union seniority
system when times are hard: LIFO - last in, first out.

228 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

If you were very methodical and had just finished washing a pile of dishes with the
letters of the alphabet painted on them, and you wanted to store them in the right order,
you• d put dish labeled Z in the cafeteria storage device first.

D
Empty

Dish Stacker
(X-ray view)

-Z
DishZ

-Y
DishY

-X
DishX

Dish Z would then be at the very top of the stack, since it was the only one in the stack.

0
Dish Stacker

-Y
DishY

-X
DishX

Then, you• d put dish Y on top of dish Z. Dish Y would push dish Z down inside the
storage box and then would become the top dish.

1=i=1 L_J-
Dish Stacker

-X
DishX

Continue by putting dish X on top of dish Y, which then disappears down the stack along
with dish Z. Only dish X is visible.

Dish Stacker

To get to dish Z at this point, you• d have to first pop dish X off; and then pop off dish Y.

Chips and Memory 229

As any harried office worker knows, processing interrupts is a tricky business. You
have to be able to respond quickly to genuine crises, ignore persistent but trivial ones,
put all such interruptions in proper priority order, and make sure that everything is
eventually dispatched. To take pressure off the main CPU, IBM routed all interrupt
requests through a chip cleverly named an Interrupt Controller. In the PC and PC-XT
this chip can juggle as many as eight interrupts at once; by daisy-chaining two of these
chips together, the PC-AT's designers were able to have it handle up to 15 simulta
neously.

Other semi-intelligent chips control other important aspects of operation, leaving the
CPU free to chew its way through programs and data while leaving the actual dirty work
to specialists. Instead of filtering every last byte of your data through its registers, the
CPU knows how to delegate. Handling data on disks is painfully slow since the system
has to make sure the disks are spinning at the proper rate, move a magnetic head to a
directory table to figure out where the data is, wait for that area of the disk to come
spinning around, move the heads to read it, and maybe even go back and repeat the process
if the data is scattered over several locations (as it often is). Shuffling data around in
memory is fast; there are no moving parts.

One common CPU chore is to move large amounts of information from slow disks to
fast memory and back. Passing it all through the CPU's skimpy registers would be
ridiculously inefficient (as it was on the PCjr). The PC's DMA (direct memory access)
controller can bypass this potential bottleneck; it's like an interstate beltway that skirts a
city while the main highway chugs its way downtown.

Other controller chips manage the disk drives, the keyboard, the video output, and
some of the input and output. Fortunately, DOS - with the help of some gut-level BIOS
(basic input/output software) programs built into the PC - takes care of all the messy
details so you don't have to.

RAM

Some chips, like the CPU and the DMA controller, contain small amounts of onboard
memory for temporary storage. But all the garden-variety day-to-day storage and retrieval
activities take place in the main system RAM.

Every microcomputer comes with two kinds of memory, RAM and ROM. RAM
originally stood for random access memory, but it really should be called RWM for
read/write memory. ROM stands for read only memory, which is correct. RAM,
ROM, and disks are all random-access storage devices since they let you jump
directly to any point on them to store or look up information. You don't have to slog
through storage areas 1 and 2 to get to storage area 3. But RAM and ROM chips have
several important differences. ROM chips contain vital, permanently stored informa
tion put there by your computer manufacturer. Turn the power off and this informa-

230 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

tion remains intact. You can't change, or "write" over this information directly (although
IBM provided a clever way to update it). But you can retrieve, or "read" it. That's why
it's called read-only.

When you turn your system on, programs stored on a ROM chip tell the hardware how
to begin operating. After sniffing around to figure out what hardware happens to be
hooked up to your system, a special program on a ROM chip tests your RAM to make
sure it's working properly. In all but the earliest PCs, as it checks memory, this POST
(Power On Self Test) diagnostic program displays the amount of RAM it has tested and
approved. This is the slowly changing number you see in the upper lefthand corner of
your screen when you start. The POST tests memory by writing information into RAM
and then reading it back and comparing it with the original information to make sure
RAM hasn't mangled it. You can read from both ROM and RAM. But you can write only
to RAM.

ROM never changes. The information on it always stays the same, whether the power
is on or off. The only way to fix serious bugs on them is to yank them out and replace
them with newer models. IBM's early PC ROM chips had several annoying deficiencies.
One chip couldn't divide properly by 10, but that was corrected in a hurry. And the early
PC RO Ms made it hard for users to stuff the maximum 640K of RAM into their systems,
or to boot up from hard disks.

We'll get to where all this memory is located a little later in this chapter. For now,
think about memory as a concert hall, with several sections, and numbered seats in each
section. ROM is all the way in the back of the hall. RAM hogs all the good seats, from
the first row to about two-thirds of the way toward the rear.

Each new version of DOS contains patches to some of the gut-level programs and
tables delivered on ROM chips. These patches can't alter the ROM chips themselves.
But when the PC starts up each day, it takes some of the permanent ROM information
and copies it into "low" RAM memory - the first rows of theatre seats - and then goes
to the copy of the information rather than the original ROM chip when it needs to look
something up. (The million or so characters of memory in a PC are arranged in regions
called segments that will be discussed soon; ROM data is stored in a distant Siberia far
from the "lower" 640K of RAM where most of the computer's action takes place.) The
patches provided with each new DOS version can and regularly do overwrite the older
ROM information that's been copied into low memory.

As you use your system, you write information into RAM. When RAM fills up, you
have to erase unwanted information to make room for new data. And, when you turn your
system off, all the information stored in RAM vanishes forever. Sometimes your local
power company or a fellow employee turning on an air conditioner or heater that's
plugged into the same outlet accidentally does this for you while you 're working, so you
have to be fanatical about taking the data stored in memory and copying it onto a more
or less permanent storage medium like a disk frequently.

RAM and ROM are both memory chips that store information. The important similar
ities and differences in storage devices are shown in Figure 7.1.

Storage Devices

Data already on it when you tum computer on
Data remains on it when you turn computer off

Can read information from it
Can write information to it

Can change the information on it
Can handle information very quickly

Figure 7.1. Characteristics of Storage Devices

RAM

No
No
Yes
Yes
Yes
Yes

Chips and Memory 231

ROM Disks

Yes Maybe
Yes Yes
Yes Yes
No Yes
No Yes
Yes No

Here's an easy way to remember the difference between memory chips. Let's say you
walk into a classroom, and see an empty blackboard at one end of the room (RAM), and
a bulletin board inside a glass display case at the other (ROM).

The bulletin board may contain schedules, fire drill codes, and lists of telephone
numbers. The blackboard has nothing on it. You can write on the blackboard. But you
can't write on the glass-covered bulletin board. You can read information from both.
When you fill the blackboard, you have to erase some older information so you have
room to write down the newer data. When class is over, you erase the blackboard, tum
out the lights, and leave. The blackboard is again empty. But the bulletin board at the
other end of the room still contains the information that was on it when you entered. And
it will be there tomorrow.

Blackboard Bulletin board

data often! tin board already has information on it.
1. D .__B_a-ck_u_p_y_o-ur- When you start, the blackboard is empty. The bulle-

2· ABCDEFGHIJK
abcdefghijk

3. 1234567890K
!@#$%"&*0_

Backup your
data often!

Back up your
data often!

You can write data on the blackboard but not the
bulletin board.

You can change information on the blackboard by
writing new data over old data.

4. D ._ ______ When finished, you erase the data from the black-Back up your
data often! board, but not the bulletin board, which remains

intact.

RAM ROM

232 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

All data stored in RAM vanishes when you tum the power off; such storage is volatile.
Information on ROM chips remains intact when the power snaps off; this kind of storage
is non-volatile.

Parity Problems
While there are eight bits in a byte, the PC's RAM normally handles small packages of
information nine bits at a time rather than eight. The extra bit is called a parity bit and
it's a crude way to insure the integrity of your data. One bit can make a whale of
difference. Here's why:

To your CPU, the letter U is a just the decimal number 85. The binary representation
of 85 is:

01010101

(If you skipped ahead to here, and you 're mystified by all those ls and Os, go back two
chapters and read how binary numbers work. It's actually pretty simple.)

Change just a single bit from one state to the other - say the fourth one over from the
left - and the binary number becomes:

01000101

which translates to decimal 69, or the value of E.
The problem is that one letter can make a big difference. If you write a computer letter

to the newly crowned heavyweight boxing champ and the message comes out "chump"
or "chimp" you'd better take a long and sudden vacation. And switched letters are bad
enough. If you 're working on a spreadsheet and such an error changes an income
projection of $7,000,000 to $237 ,000,000, you can really lose big.

To help prevent such disasters, the PC initially adds up the number of ls in the binary
representation of each byte and then adjusts the ninth bit to tell itself whether the number
of ls in the byte is even or odd.

In the example above, the binary value of U was 01010101, which has four ls in it,
while the binary value of E was 01000101, which has only three ls. As it moves each
byte around the system, a PC continually looks at this ninth bit to make sure it accurately
reflects whether the number of ls in the byte is even or odd. If a single bit somehow gets
switched around from 1to0, or from 0 to 1, the parity bit and the number of ls won't
match any longer, and the system will generate a dreaded ''Parity Check" error.

Actually, the error isn't so bad, it's what the system does when it sees this error that's
insidious. After displaying the message in the upper left comer of your screen, it just
plain stops whatever it was in the process of doing and shuts down. At this point you 're
totally locked out of any data stored in RAM. The only thing you can do is tum the power
off and start everything all over again. If you've been careful about saving your work to
a disk every few minutes, all you lose are the few changes you made since the last disk
save. If you haven't saved anything, you say "dam" and learn to save next time.

Chips and Memory 233

The parity error may have occurred because a RAM chip failed - they do mysteriously
break from time to time. Or a stray cosmic ray may have zapped the chip as it passed
through you and the earth on its way to Neptune. Or a balky generator at your local power
company may have burped out some fluctuation in the line voltage that got past your
computer's power supply. If it was a bad chip you'll get the same message again after
you reboot, and you either have to figure out which chip went south, yank it out, and
replace it, or pay your dealer to do it. If a chip on your main system board - the one that
the CPU is attached to - fails, the system will display PARITY CHECK 1. If it senses
a broken chip on an add-in board it will display PARITY CHECK 2. While the PC-AT
is a little less terse, if this happens to you, a cheerier message is not what you want or
need.

You'll know you have a bad chip if you reboot and see an error message beginning
with a string of numbers followed by 201. The four hexadecimal digits that precede the
201 can pinpoint the exact chip that failed. On a PC, the machine will boot and you'll get
an instant PARITY CHECK message that overwrites the 201 numbers, so you have to
look quickly. On an XT, the message is not overwritten. On PS/2 systems, IBM replaced
the PARITY message with two numerical error codes:

• 110 for PARITY CHECK 1
• 111 for PARITY CHECK 2

These are two numbers you won't want to see.
What the PC really should do when it detects such an error is put the offending data

onscreen (if it's still able to) with the message: "Error detected in this data. Should I
continue (Y/N)?" If the error was in the programming code ·that puts your software
through its paces, or in a long list of numbers, you may want to quit and restart. But if all
you see is the message:

The bank robber's holdup note said "I have a gub."

you can fix the error and continue without losing any work.
What is particularly irritating about parity . errors is every one out of nine (11.11 %)

times such errors occur it's the result of the error-detecting mechanism and not incorrect
data. All a parity error detector does is compare eight bits to one bit. If the chip with the
one parity bit on it fails, your data - the oth~r eight bits - may be perfectly fine, but
the comparison test will indicate a problem and shut down your system.

Parity-checking can prevent data integrity problems. But only some of them. If one bit
gets changed in a byte, the system will ferret out the problem. But if two bits in a single
byte change, the parity detection bit will accurately reflect the oddness or evenness of
the number of ls. If the original byte was U or01010101, thenumberof ls is four, which
is even. If you flip any two bits from 1 to 0 or from 0 to 1, you '11 still have an even number
of bits, although the new number won't represent a U anymore.

ROM is not parity checked. Some clone makers let you flick a switch to disable RAM
parity checking. And some portable computers don't check parity, since that lets the
manufacturers put in fewer chips that consume less power, and power sipping is the name

234 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

of the game with laptops. If you have the option of turning parity checking on or off, you
should probably leave it on anyway. But in any case you should save your work to disk
often.

Larger computers that can't afford to stop dead in their tracks use a more sophisticated
system called error correction. But this takes even more space, and incorporating error
corrections into the PC would mean changing the underlying system architecture. And
it's not perfect. The common error correcting scheme used today can fix one-bit errors,
but it can only detect - not fix - errors of two or more bits in a single byte. All PCs
will have error correction abilities someday, but they don't yet.

Future microcomputers may also have static RAM. All but a few of today's PCs use
dynamic RAM that needs to be recharged or "refreshed" hundreds of times each second,
which limits memory speeds. Static RAM doesn't need to be continually recharged, and
is faster than dynamic RAM, but far more expensive. However, it's great for memory
caches.

ROM - Free Programs
When you buy a PC you get two sets of free programs. One set, called microcode, is
permanently hard-wired into the circuitry of the CPU and tells it (in the tersest, most
inscrutable machine code possible) how to operate. The other set comes on a few ROM
chips and provides software routines that help the system function. Programs that are
delivered on chips are in a netherworld somewhere between hardware and software.
Hardware is the machinery itself. Software is the list of instructions that tell the hardware
what to do.

Your home phonograph, tape deck, or CD player is hardware. The records, disks, and
tapes contain software. The general rule is if it has a wire coming out of it, it's hardware.
If it doesn't do anything until you memorize a manual that sounds as if it was translated
from a foreign language by a bored high school student, it's software.

Programs (software) that come delivered on ROM chips (hardware) are called.firm
ware. Firmware includes copyright information, tests, tables, error messages, and a
toolkit of useful routines that display characters on the screen in the colors of your choice,
read information from a disk or keyboard, or send a copy of what's on your screen to
your printer. ROM chips on IBM computers also include a stripped down version of the
BASIC language.

Every piece of commercial software on the market uses at least some of these routines,
by issuing what are called software interrupts. Software interrupts are different from the
hardware interrupts mentioned earlier, which let the computer know you're pressing a
key or that the printer just ran out of paper. And they're also different from the panicky
interrupts triggered inside the CPU when something truly bizarre or unexpected happens
like when something tries to divide by zero.

All programs have to perform the same basic operations such as interpreting key
strokes, displaying characters on a screen, or reading information from disks. The routines
on ROM chips handle the hard part. Some programs, in a mad quest for extra speed or

Chips and Memory 235

control, bypass these routines and control the hardware directly. But most programs are
content to use the toolkit IBM (and its copycat clone makers) provided.

To see one of these routines in action, walk over to any IBM computer and turn the
power on without putting a disk in the drive. If the computer doesn't have a hard disk,
BASIC will appear onscreen. If it does have a hard disk, load BASIC by typing:

BASIC

and then pressing the Enter key. Then type the following line exactly as it appears:

DEF SEG=61440:R=57435:CALL R

Press the Enter key and your system will reboot. What this command does is use the
BASIC language that comes on one IBM ROM chip to run a little firmware program on
another ROM chip that restarts your system.

The PC's 8088 CPU can keep track of, or address, slightly more than a million memory
locations. Just about everything the CPU does use addresses in one form or another. It's
either looking in one location to see what's there, parking data temporarily in another
location so it can process other data, or running short programs that are kept at certain
addresses.

But a million is a big number, and it's sometimes easier to work with smaller numbers.
If you 're in New York City, which has a telephone area code of 212, and you have to call
someone nearby, you want to be able to dial just the seven-digit phone number and not
have to punch in a 1 and the extra three digits of the area code each time you make a local
call. If most of your calls are indeed local, this saves time as well as wear and tear on the
dialing finger. When you dial any seven digits (that don't start with a 1), the phone
company assumes you're calling a number in the immediate vicinity.

If you want to talk to someone in Seattle, you can add the extra area code numbers,
and the phone company knows you 're not placing a local call.

The 8088 CPU addresses memory locations in a similar way. It divides the whole
one-megabyte range of possible addresses into 16 regional sections called segments that
are each 64K bytes long. (Newer systems can address more memory, and do it directly.)

The DEF SEO in the example that appeared earlier switches BASIC to one of these
segments (in this case the very topmost one), which happens to be where IBM keeps track
of the ROM chip routines that make up its main BIOS input/output toolkit.

This kind of memory segmentation can be useful, since it can let programs use smaller
numbers to keep track of important local addresses. Working with most smaller numbers
is faster than struggling with bigger ones. But they can also be the bane of programmers,
since the advantage in using smaller, local numbers applies only to whatever 64K
segment the programmer happens to be using at that time. Most programs these days are
considerably larger than 64K, which means jumping repeatedly from one 64K segment
to another.

Remember, computers are built around chips that have a really limited perspective.
The fundamental piece of information in any chip is a bit. And a bit can be in only one

236 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

of two states, on or off. So a one-bit chip (if one existed) could theoretically keep track
of only two possible locations, at address 0 or address 1. Not very useful.

A two-bit chip - one with room for twice as many binary digits as a one-bit chip -
could theoretically keep track of 2 A2 (2 x 2, or four) locations, at binary addresses:

00 (decimal 0)
01(decimal1)
10 (decimal 2)
11 (decimal 3)

11
two
bits

If you kept on adding bits to the addressing mechanism, you would double the number
of locations each time. A three-bit system could handle 2 A3 (2 x 2 x 2, or eight) locations:

000 (decimal 0)
001 (decimal 1)
010 (decimal 2)
011 (decimal 3)
100 (decimal 4)
101 (decimal 5)
110 (decimal 6)
111 (decimal 7)

Ill
three
bits

A 16-bit chip like the 8088 can address only r 16 (65,536) bytes directly. So 17 bits
could address 2 x 65,536 (131,072) bytes; 18 bits 2 x 131,072 (262,144) bytes; 19 bits 2
x 262,144 (524,288) bytes; and 20 bits 2 x 524,288 (1,048,576) bytes - the "megabyte"
used as the standard measure of memory.

Now hold on It says here that the PC can address one megabyte of memory. But
the calculations above show that it would take 20 bits to address a full 1,048,576 bytes.
The CPU inside the PC is a 16-bit 8088, and with 16 bits all you can address is 65,536
bytes. How does a 16-bit CPU handle 20-bit addresses?

Easy. Well, not exactly. It uses two addresses for each memory location, one for the
segment itself and one for the offset into that segment. If you use the concert hall metaphor
mentioned earlier, the segment is the section and the offset is the seat. So you could have
two seats numbered 27 - one in the orchestra and one in the balcony. Just as the full
number of the seats might be something like 027 and B27, you can express the address
of any byte in your PC as SEGMENT:OFFSET.

In the DEF SEO statement, the number 61440 was the segment address. The other
number, 57435, was the offset. So:

Chips and Memory 237

DEF SEG=61440:R=57435:CALL R

was the same as saying .. look at the 57 ,435th byte in from the beginning of the segment
that begins at address 61440 and run the program that starts there.••

If you think this sounds confusing, you •re right. Instead of having to wrestle with
segmented addresses, programmers would much rather have had a chip that could do
direct linear addressing, where each byte had an address from 0 to 1,048,576. If the PC
had a linear addressing system, the BASIC program could have said "run the program at
address 1,040,475 ...

You may be scratching your head now and wondering two things. First, how did 61440
and 57435 become 1,040,475? Second, do you really have to know all this?

The answer to the second question is a qualified no. PC users should really never have
to take the tops off their computers and fiddle with the boards inside. Their systems should
figure out what equipment is attached and then configure all the important settings
automatically. DOS should be smart enough to anticipate what the user wants to do next,
and deal with the user in a far friendlier and more intelligent way. Software should be
infinitely flexible and understanding, and continually customize itself to the user's
changing needs and abilities.

But we•re still in the frontier of this business. We•re pioneers (although at least we
don •t have to load programs from paper tape and read blinking lights to get our work
done like the computer scouts who blazed the early trails in the 70s.) It's still the Wild
West out there. Each new software company gallops onto the scene yelling .. My standard
is better than your standard ... The ensuing Darwinian gunfights weed out the real losers
but wound a lot of bystanders like us in the process.

You can have someone else set up and repair your system, and can struggle through
your favorite software without ever knowing about memory segments. But the more you
know about your system the better off you •ll be. Most users discover that the longer they
spend at their systems the more proficient they get and the more they want to be able to
do. If you know the basics you •ll be able to adapt your system and get it to do far more
things far faster and far more easily. And prevent disasters.

Here's a specific example: Once a week like clockwork our support line gets a panicky
phone call from someone who inadvertently exited a word processor without ever having
saved the file to disk. If the caller was using mainstream word processing software, and
didn•t touch the computer after realizing what happened, it's usually fairly simple to look
inside the user·s RAM, find the file, and copy it from memory to a disk.

A rescue job like this starts by having the DOS DEBUG.COM program search through
memory for the first few words of the user's file. DEBUG is very good at this, but can
search only one segment at a time. If you know how segments work, finding unsaved
files is a snap.

As mentioned earlier, the 14 registers inside the CPU are each two bytes long. A
two-byte register can hold 16 bits, so the biggest number any of its registers can
manipulate is 2" 16, or 65,536. (If you want to use signed numbers that could be either
positive ornegative, the largest value would be 32,767 and the smallest-32,768. But take
it from us, for the purposes of this book you don•t want to.)

238 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

··since there are 16 64K memory segments," you might argue, ••the CPU could have
used a kind of shorthand and called the first segment 0, the second segment 1, the third
2, and the last one 15. Then our BASIC reboot program could have been written DEF
SEG=l5:R=57435:CALL R." But that won't work

The reason is that while the addressable memory in a PC is indeed split into 16
segments each 64K long for certain purposes, programmers need to divide available
RAM into much finer slices than in such whopping chunks.

Just about all programs use memory in several standard ways. Some RAM has to store
the actual program instruction code itself - the part that "runs." Some is needed to store
the data that the program creates or changes. A little is needed for the stack, a storage
area that holds addresses and miscellaneous amounts of temporary information. And
sometimes programs have to work with so much data that they need a little extra room
for it.

The 8088 CPU has four different segment registers to keep track of these four kinds
of segments:

• Code segment (CS)
• Data segment (DS)
• Stack segment (SS)
• Extra segment (ES)

Since registers control segment addresses, the maximum number of addresses can't be
greater than the largest number a 16-bit register can hold - 65,536, or 64K. In dealing
with PCs you keep coming across that 64K number. 64K is the:

• number of possible segment addresses
• maximum number of bytes in a segment
• number of port addresses the CPU can use for 1/0
• maximum size of a COM program
• maximum size of a BAS (BASIC) program

all because:

• the 8088 is a 16-bit chip
• each bit can be in two states (0 or 1)
• so 2"' 16 = 65,536 (64K)

But while the maximum size of each segment is 64K, the segments can (and do) overlap
each other. And they can be far smaller than 64K.

A stack segment can be fairly tiny. Unless you change it with a CLEAR command, for
instance, the default size of the stack in BASIC is either 512 bytes or one-eighth of the
available memory, whichever is smaller. If you're not nesting lots of short routines, or
trying to fill in or ••paint" complex pictures (both of which need more than the usual
amount of stack space so BASIC can interrupt operations and jump to other operations

Chips and Memory 239

repeatedly and then get back to what it was doing) this 512 bytes will do just fine. If
programmers had to lop off 64K for each segment, they'd end up wasting tons of space.

If each segment had to be 64K, it could start at only one of 16 fixed places in memory.
So to make things more flexible, the CPU lets programmers deals with any one of 65,536
different segment addresses. The only restriction is that each segment has to start at the
beginning of a paragraph.

Paragraph?
In computer parlance, a paragraph is simply a number that is evenly divisible by 16.

The reason for this is that while the 8088 CPU can address 1,048,576 total bytes, its
segment registers can handle only 65,536 possible segment starting addresses. Divide
1,048,576 by 65,536 and you get 16. You can have a segment start at the very first
paragraph (0), or at paragraph 1, or at paragraph 65,535. But it can't start at paragraph
1.5.

It's sort of like talking about fingers. You like to deal with whole hands, not fractions
like 1.5 hands. And just as each set of hands is made up of ten smaller parts (fingers),
each paragraph is made up of hexadecimal 10 smaller parts (bytes). What is written as
10 in hex notation is equal to 16 in our more familiar decimal system.

The idea of paragraphs is familiar to anyone who has used DEBUG. If the lower 128
ASCII characters were loaded into the very bottom part of your system's memory (and
there's a good reason why they aren't, since other important things are kept there), and
you used the DEBUG D command to display them, you'd see something like:

0000:0000 00 01 02 03 04 05 06 07·08 09 OA OB OC OD OE OF

0000:0010 10 11 12 13 14 15 16 17-18 19 lA lB lC lD lE lF

0000:0020 20 21 22 23 24 25 26 27-28 29 2A 2B 2C 2D 2E 2F

0000:0030 30 31 32 33 34 35 36 37-38 39 3A 3B 3C 3D 3E 3F

0000:0040 40 41 42 43 44 45 46 47-48 49 4A 4B 4C 4D 4E 4F

0000:0050 50 Sl S2 S3 S4 SS 56 S7-S8 59 SA SB SC SD SE SF

0000:0060 60 61 62 63 64 65 66 67-68 69 6A 6B 6C 6D 6E 6F

0000:0070 70 71 72 73 74 75 76 77-78 79 7A 7B 7C 7D 7E 7F

l f individual 16-byte paragraphs ---
offset

segment
address

! "#$%&' () *+, - ./

01234S6789:;<=>?

®ABCDEFGHIJKLMNO

PQRSTUVWXYZ[\] A

'abcdefghijklmno

pqrstuvwxyz {I}-.

-ASCII-

Each horizontal line is one paragraph, and contains 16 bytes. The two groups of
four-digit numbers on the left, separated by the colon, are the segment and offset
addresses. (Each is only four digits long because DEBUG works exclusively in hexadec
imal notation and can cram any number from 0 to 65,536 into four hex digits.) The
numbers in the middle are the hexadecimal representations of the bytes in each paragraph.
DEBUG will display the actual characters each byte represents at the right side of its
display, if the characters have ASCII values greater than 31 (IF in hex) and less than 127
(7F in hex). Otherwise it prints dots.

240 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

The decimal number for the segment 61440 is actually FOOO in hex. And the decimal
57 435 offset is hex E05B. The conventional notation for memory addresses is SEG
MENT: OFFSET, so this address is really FOOO:E05B.

To translate a two-part address like FOOO:E05B into a single linear or absolute address
that actually points to the precise one byte in the PC's megabyte of memory that you
want, just shift and add.

In this case, shifting means bumping the number up by one decimal place, or order of
magnitude. The decimal orders of magnitude start with 1, 10, 100, 1000, 10000; each
time you add a zero. What you're really doing is multiplying the previous number by 10,
since we use a base-10 number system.

Shifting over a digit in hex means multiplying by 16. The decimal equivalents of the
first few hex orders of magnitude are 1, 16, 256, 4096, 65536. In hex, these are lH, 1 OH,
lOOH, lOOOH, lOOOOH; multiplying by 16 is really multiplying by lOH. So first, multiply
the segment address by 16 to shift it up a notch. This is simple; stick a 0 on the end of
FOOO and you get FOOOO. Then add the offset to it:

FOOOO
+ E05B

FE05B

Hex FE05B is indeed equal to decimal 1,040,475. To check it, multiply decimal 61440
by 16 and add 57 435 to it.

While only the four segment registers mentioned earlier can keep track of the segment,
your system can calculate and juggle offsets in lots of different ways. Segment and offset
registers deal with two-byte addresses. General purpose registers (called AX, BX, CX,
and DX), which can be pressed into action to hold two-byte offsets, can also store single
byte values. Because of this, the four general purpose registers are often divided in halves.
If you looked inside AX and found it holding the value E05B, the "low" half of that
two-byte pair (5B) would be in register AL (L =Low) and the "high" half (EO) in register
AH (H = High).

But - are you ready for this? - if you stored the offset address E05B in register AX,
it would end up switched around, tail first, in the form SB EO. Why?

Don't peek inside your system and expect to see all addresses in the form FOOO:E05B.
Most of the time programs establish the segment they're working in early on and then
just specify offsets inside that segment - like dialing local phone numbers without the
area codes.

But if the segment you're using is FOOO, you'll never see it written that way. FOOO is
really two bytes, FO and 00. A pair of bytes joined like this is called a word. Your PC
uses a backwards (or "backwords") method for storing each of these, so FOOO is actually
stored OOFO.

In the word FOOO (or any hex number bigger than a single byte), the most significant
byte is the larger one (FO) and the least significant byte is the smaller one (00). The PC
stores such two- byte addresses with the least significant byte.first. It stores strings of
letters such as error messages in the normal non-backwards way, however.

Chips and Memory 241

That's because the PC puts the upper half of the number higher in memory and the
lower half lower in memory, which makes perfect sense. When you scan through
memory, you generally start from near the bottom and move upward, which also makes
sense, so you hit the low byte first. When you refer to the address of a word, you always
mean where the word starts, and it starts at the lower half.

To simplify things, say you 're storing the word FOOO at absolute memory address 1.
The nonnal way to map out on paper how memory works is to put the very bottom part
at the top of the page and work downward:

Absolute address 0

Absolute address 1 -

Absolute address 2

Absolute address 3

Bottom of Memory

00

FO

Toward the top of
memory

Lower

Higher

Confusing? At first. It's especially diabolical when dealing with the 12-bit addresses
that the PC-XT File Allocation Table (FAT) used to keep track of clusters. But for now,
just remember that if you're using DEBUG to search for segment FOOO, you'll have to
tell it to hunt for 00 FO.

One more note about addresses - the same absolute address can be expressed in many
different ways. This is sort of like saying you could express the decimal number 10 as (5
+ 5) or (8 + 2).

The very bottom of memory is at relative address 0000:0000, and absolute address
00000. (The very top is FOOO:FFFF or FFFFF.) The absolute hex address one paragraph
up from the bottom of memory (lOH bytes up in hex; 16 bytes up from the bottom in
decimal) would be 00010. You could express this as 0000:0010. But you could just as
easily write it as 0001:0000. All three refer to the same location in memory.

To test this, use the shift-and-add technique mentioned earlier:

for~:OOl]O
00000

+ 0010
00010

for~l:QOOOJ
00010

+ 0000
00010

Obviously, the higher up you go into memory the more ways you have of referring to
paragraph addresses (sometimes called paragraph boundaries) using relative SEG
MENT:OFFSET notation. One is just as good as another in telling your CPU how to
behave.

242 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

Mapping the Meg
But you can •t get your hands on the whole megabyte of memory. IBM originally divided
the available megabyte into 16 blocks, each one 64K long, and reserved some for ROM,
and some for the displays, some for expansion room, which was used eventually by
gut-level BIOS extension programs to handle things like hard disks that weren•t offered
originally. It left the remaining ten blocks, or 640K, for your programs.

Well, almost 640K. DOS takes up a good chunk, and the amount grew with each release
prior to DOS 5.0. BIOS needs a little, to store keystrokes when you type so fast the
program you·re using can•t soak them all up right away, and to keep track of things like
whether the Ctrl key is being held down, how much memory is installed, the current video
mode, the current time (expressed in clock ticks since midnight), how many lines can fit
on your screen, or what equipment is supposedly installed in your system.

Each PC maintains a sort of travel agency called the Interrupt Vector Table at the
absolute bottom of memory. When something generates an interrupt, it checks this table
to see where it should go for the routine that will do the actual work. This table is very
popular; ifs used by BIOS, DOS, the interrupt controller chip, the main CPU itself, and
even the programs you may be running at the time. Ifs really just a list of up to 256
four-byte addresses, in SEGMENT:OFFSET form.

When interrupt 0 (.. Divide by Zero ..) needs to know where in the total megabyte to
look for the special routine to deal with such an error, it checks the first four bytes (table
entry #0) for the address or vector. When interrupt 1 (used by DEBUG) drops in, it checks
the next four byte address (table entry #1). When INT 2 (which is usually how interrupts
are abbreviated) is involved, you have problems, because odds are that's a parity error
lurching toward its fatal nonmaskable interrupt goodnight kiss. If you poke around in this
table and replace an existing entry with the address of your own program, the table will
send the respective interrupt to your program rather than the old one.

The top segment of the megabyte is taken up by your system ROM, which needs this
space to store the tests that are performed during the initial power-on diagnostic check
to make sure things are working properly, and the gut-level BIOS routines that take care
of the nitty-gritty details in controlling your drives, keyboard, clock, displays, printer,
serial port, and memory.

The middle BOOO segment was originally allocated for video. PC displays are mem
ory-mapped, which means that each video memory address corresponds with a small but
specific area of the screen. If you have a color system, running this program:

100 DEF SEG=&HB800
120 POKE 1,78
130 POKE 0,1
140 POKE 3999,100
150 POKE 3998,2

will put four values into memory at segment B800H that your CRT controller will tum
instantly into characters and colors onscreen. This particular program will put a small

Chips and Memory 243

yellow-on-red face in the upper lefthand comer of your screen and a red-on-yellow one
in the lower righthand comer. (If you 're using a monochrome screen, omit lines 120 and
140, and change the &HB800 in line 100 to &HBOOO.)

A rough map of the entire megabyte would look something like:

Segment

0000

1000

2000

3000

4000

5000

6000

7000

8000

9000

AOOO

BOOO
B800 cooo

DOOO

EOOO

FOOO
F400

--INT vector table
--DOS BIOS low memory tables

640K user RAM area

--COMMAND.COM transient part
--Used by EGA and VGA Adapter

--Mono Display Adapter

- --CGA Display Adapter
--ROM extensions (e.g., PC-XT hard disk

BIOS)

--Page frame for older Expanded Memory
Manager

--System ROM
- ----- - ---- - ------- - - - ------- --- --BASIC and older system ROM

Top of Memory

244 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

The lower 640K (segments 0000 through 9000) can get pretty crowded. Users
commonly wedge in the Interrupt Vector Table, the low-memory BIOS control area, the
updated IBMBIO.COM and IBMDOS.COM system file patches and services (or their
generic Microsoft equivalents), the guts-level DOS kernel (which manages system
functions such as file and memory management), any device drivers (such as
MOUSE.SYS or ANSI.SYS), disk buffers, stacks, environment and file control blocks,
the resident slice of COMMAND.COM (the part that prints the friendly .. Abort, Retry,
Ignore, Fail?" message when your drive door is open}, and the transient slice (the part
that's responsible for the friendly A> prompt and that parses and executes your com
mands), as well as any commercial programs that are currently running or are resident
but inactive (such as Side Kick), the stack and data for these programs, and any DOS TSRs
(Terminate-and-Stay-Resident programs) such as MODE and PRINT that lurk in the
background.

When IBM first introduced the PC, it left several gaps in the megabyte. The first was
at segment AOOO, the one directly after the 640K of user memory. Since the next hunk
of RAM real estate wasn't officially claimed until segment BOOO or B800, this left 64K
of prime memory for the taking. Users quickly figured out that they could set the tiny
and inaccessible DIP switches (which supposedly stands for .. dual in-line package
switches" but really means .. damned invisible plastic" since they're so hard to see) to
tum 640K into 704K or even more.

The next 64K memory block after AOOO was for extended video displays like the EGA
and VGA, among other things. IBM's common monochrome adapter locked up an
address in this block, BOOO. But CGAs (color/graphics adapters) used a starting address
higher up the block, at B800. This meant that enterprising memory hounds could squeeze
out the additional 32K between BOOO and B800 and use it above the extra 64K they
already swiped at AOOO.

The settings on block 2 of PC and PC-XT dip switch blocks to do this were:

Switch 704K 736K

1 ON OFF
2 ON ON
3 OFF OFF
4 ON ON
5 OFF OFF
6 OFF OFF
7 OFF OFF
8 OFF OFF

Users who had IBM's originai ROM chip set found it wouldn't recognize more than
544, but IBM sold a replacement part up until the middle of 1987. And memory hungry

Chips and Memory 245

users had to purchase expansion RAM boards sophisticated enough to let them set the
addresses of such additional RAM to AOOO and BOOO, so it wouldn't conflict with existing
memory, and so that DOS could find it. This undocumented memory enlarger worked
fine for a few years. The POST memory diagnostic routine would examine this additional
user memory, and the DOS CHKDSK.COM utility would report it.

But a new generation of IBM displays created a new problem. IBM's outdated CGA
was, in a word, pathetic. It produced an image so grainy you thought you were looking
at it through a screen door.

Display adapters draw letters and numbers out of dot patterns in a grid called a
character box. The monochrome adapter's relatively detailed character box measures 9
dots x 14 dots. However, this really works out to 7 x 11 since the leftmost and rightmost
columns and the top two rows and bottom row are blank, and serve as character
separators to keep nearby letters from touching. And the bottom two rows are reserved
for descenders on characters such as q, y, j, g, and p.

The CGA character box is a crude 8 x 8. The only character separators are the rightmost
column and the bottom row, so this produces 7 x 7 dot characters. However, the bottom
row also doubles as space for descenders, so the lower parts of letters such as q and y
actually touch the tops of tall letters below them.

Worse, the CGA adapter didn't have enough memory on it, so that each time it scrolled
up one line the entire display would go dead and turn black for a fraction of a second and
then flash back into life. Repeated scrolling meant an extremely disturbing flicker. And
to top it off, while the memory on the monochrome adapter was dual ported so you could
write data to it at the same time you were reading other data from it without disturbing
the onscreen image, trying this on a monitor attached to a CGA card produced a jarring
burst of visible static called "snow." The monochrome adapter put a total of 720 x 350
dots onscreen (and came with a long-persistence phosphor that removed any hint of
flicker, and blurred the last traces of dots into what looked like solid lines), while all the
CGA could muster was 640 x 200. And the mono adapter could form characters faster
and pump data onto the screen faster. IBM really seemed to have designed the CGA to
hook up to television sets. As proof, its CGA characters were all constructed of double-dot
patterns to overcome the inherent fuzziness and imprecision of home TVs. Users could
change jumper J3 on the CGA itself so that it would produce slightly sharper single-dot
characters in a 5 x 7 grid. But to do this you had to rip open your system, pull out the
board, and solder in a wire! Would you?

IBM wasn't interested in color back then, and still makes life hard for users of color
systems. The CLS clear screen command still resets any existing colors to grey on black,
unless the user happens to have ANSI.SYS loaded and properly configured, and ANSI
can be a pain in the neck, since not all software can handle it.

However, IBM wised up and realized it had to upgrade the color display, and eventually
introduced the EGA and VGA (and the 8514/A).

The EGA and VGA devoured memory, and claimed the block at AOOO for the start of
their high-resolution graphics modes, which conflicted with users who had reset their
system switches to push RAM past 640K.

246 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

The Original Way to Expand Memory
IBM's very first PC came standard with a tiny 16K of RAM, on 16K memory chips. One
reason DOS was so scrawny back then is that it had to squeeze inside this small scrap of
RAM. If you were really adventurous you could expand it all the way up to 64K, but all
that extra memory wasn't cheap back then.

Several years later IBM started putting 64K RAM chips on its system board, and just
about everyone bought multifunction/memory expansion cards and shoved the full
complement of 640K into their machines. Eventually IBM would move to 256K and one
megabyte chips and let users play with eight megs or more.

But users quickly found 640K wasn't enough.
First, programmers who had written very tight, compact assembly language applica

tions software soon found that they could crank out programs faster, and maintain them
more easily, if they wrote them in a compiled language that ended up taking more disk
space. And programs began getting feature-crazy, so that software vendors could crow
about how their packages offered fancy but useless chrome strips and tailfins that
competitor's products didn't.

Second, users began creating larger data files. Instead of keeping separate yearly
spreadsheets on company performance, for instance, they found they could combine the
last five years into one massive whopper.

Finally, users discovered memory-resident, or TSR, programs. You'd load these into
memory and they'd sit idly in the background waiting to spring into the foreground. TSR
(Terminate-and-Stay-Resident) programs like these turned out to be so useful and popular
that many users couldn't get any work done unless three or four of them were stuffed into
RAM.

SideKick, the granddaddy of them all, provided a pop-up calculator, ASCII table,
clipboard/notepad, dialer, and calendar. Others let you create keyboard macros, so that
one or two keystrokes could trigger hundreds more and pare repetitive tasks down to size;
or would kick your modem into action periodically to download your electronic mail; or
back up your hard disk onto a tape drive every night at 5:00.

All PCs shared three space problems. You couldn't run programs that were larger than
640K, and even that figure was low, since you also had to take into account the overhead
required by DOS and BIOS. You couldn't put more than 640K of data into memory, and
again, you had to leave space for DOS, BIOS, and at least part of your program. And you
couldn't have DOS handle individual hard disks that were larger than 32 megabytes.

Lotus Development Corporation, the makers of 1-2-3, finally got tired of listening to
their customers scream that they couldn't create enormous spreadsheets. So together with
chip-maker Intel, they developed a variation of an old "bank switching" technique and
named it the Expanded Memory Specification 3.0. Later, they twisted Microsoft's arm
to endorse a 3.2 mutation of it and called the result the Lotus/Intel/Microsoft (LIM)
Expanded Memory Specification 3.2, or "LIM spec memory" for short.

Shortly afterward, board manufacturer AST eniisted two other industry heavyweights,
Qua dram and Ashton-Tate, and published a much more flexible EMS version they called

Chips and Memory 247

EEMS (Enhanced EMS). EEMS was a superset of EMS, which caused problems since
software designed for EMS boards would run on EEMS hardware but it wouldn't always
work the other way around. Both gave users up to eight megabytes of additional memory,
although various headaches with drivers and multiple memory boards prevented the spec
from being exploited fully.

The Lotus/Intel/Microsoft trio then enhanced some of AST's ideas and added a few
of their own and announced an improved version called LIM 4.0. This new LIM spec
quadrupled the potential amount of expanded memory in a system from eight megs to
32, gave developers a whole new set of programming tools, and added better support for
multitasking and program execution in high memory. This solved the "large data"
problem temporarily. It didn't solve the "large program" problem. Recent operating
systems such as OS/2 and hot chips like the 80386 make short work out of memory
problems. And both Microsoft and IBM have tricks up their sleeves as larger hard disks
become common. Compaq was first to smash the 32 meg hard disk barrier with DOS
3.31, although other vendors had done it in a wasteful way by increasing sector size past
512 bytes.

The original LIM bank switcher used expanded memory that wasn't a part of the PC's
addressable one megabyte. Just add a bank-switching memory expansion board to your
system, tell your CONFIG.SYS bootup configuration file about a program called an
Expanded Memory Manager (EMM), and any LIM-aware software could toss enormous
data files around in RAM with abandon.

The trick was to grab (or map) one unused 64K segment near the top of the PC's
addressable megabyte of RAM and use it as a narrow doorway into the far greater amount
of memory on the bank switching card itself. This doorway was called a page frame and
contained four smaller l 6K sections called windows.

While the original spec demanded one contiguous 64K chunk of RAM, later enhance
ments eased the requirements slightly, and made the mapping process far more accom
modating.

When a program like 1-2-3 needed more space in RAM for a growing spreadsheet,
it could put information into expanded memory, and retrieve it later, by shuttling it
up and back l 6K at a time through one of the windows. The EMM had to be smart
enough to know when 1-2-3 needed something that wasn't currently in one of these
little windows, and shuffle things around to snag it and bring it down to the page
frame.

Expanded memory is like a research department in a small office using a bank of four
elevators connected to a vast warehouse of archives. Whenever they need a single
document from the warehouse, they can send the elevator up to retrieve it. But if they
want several hundred volumes, they're going to have to use all the elevators and make
several trips. The elevators are all one size, which makes it wasteful to get just one scrap
of paper, and slow to retrieve large amounts of data. Since the warehouse manager doesn't
want his precious data to get lost, and since there isn't much room to spare in the research
department office, when the researchers want something new they have to send some of
the older stuff back.

248 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

Unofficial Ways to Expand Memory for DOS (Pre-5.0)
Even though your application software could get around the 640K barrier, DOS versions
before 5.0 couldn't - at least not officially. As you collect TSRs, begin experimenting
with DOS device drivers and resources like IBMCACHE, FASTOPEN, and VDISK,
and/or upgrade to newer (and larger) releases of DOS, what's left of that original 640K
grows smaller and smaller. If you want to see exactly how your system uses memory, the
RAMMAP and MAPMEM utility programs on the accompanying disks or DOS 5.0's
MEM /C will really open your eyes to how much memory is used by the typical array of
startup devices and programs in your CONFIG.SYS and AUTOEXEC.BAT files. To
paraphrase Everett Dirksen, "A couple of Kb here, a couple of Kb there, pretty soon it
adds up to real memory."

Before EGA came along, several brave souls had tried poaching over the 640K
boundary to use the then-vacant 64K block starting at AOOO. When IBM began using this
block for the EGA adapter card, many of these same memory-hungry power users cast
covetous eyes on the other gaps in the 640K-1Mb address space - if you're using an
EGA, then the memory dedicated to an MDA or CGA adapter should be free to use for
other purposes, shouldn't it? Even though these gaps are not contiguous to the original
640K (and thus of limited use to regular applications), a lot of high-powered thought has
gone into finding some use for this memory space.

From these efforts, a number of products are now available to allow you to free up
space in the 640K area of conventional memory by mapping any available expanded
memory into the unused memory areas between 640K and 1 MB, to create high RAM.
Programs like 386-to-the-Ma.x from Qualitas and QEMM86, QEMM 50/60, and QRAM
from Quarterdeck Systems install as device drivers in your CONFIG.SYS file. Once
installed, they allow you to load your TSRs and other device drivers up in high RAM
using special loader programs, leaving free the space these TSRs and devices would
otherwise occupy in regular RAM. However, not all these products work with all PCs.
Basically, there are three levels of hardware-dependent functionality available:

1. 386 and 486-specific products, such as QEMM-386 from Quarterdeck and 386-to
the-Max from Qualitas. On some high-speed 286 and 386 machines, the contents of
the ROM BIOS is copied to RAM during bootup, to take advantage of the faster
access time of high-speed RAM relative to ROM. This RAM is then mapped to the
normal ROM address space, and is known as shadow RAM. On machines where this
technique is supported (using the Chips and Technology NEAT or LEAP chip sets),
these 386 and 486 memory managers can map RAM directly to the gaps between
physical devices in the address space between 640K and 1024K. On other 386 or 486
machines, the memory managers can convert some of the extended memory present
above 1024K to expanded RAM in the 640-1024K region. Once converted, TSRs,
device drivers, and even DOS resources like FILES and BUFFERS (in the 5.0 version
of QEMM386) can be moved to high RAM.

2. products for older 8088-8086, or 80286 machines machines with either add-in
expanded memory boards or with shadow ram. Unless you have an AT compatible

Chips and Memory 249

with shadow RAM, you must have an expanded RAM card to be able to make use of
high RAM without disabling your graphics capabilities. Even though the PS/2s and
many AT compatibles come with 1024K of memory standard, the additional 384K
above 640K is configured as extended memory, and the various software EMS
simulators such as EMS40.SYS can't provide the hardware support needed to allow
the expanded memory manager to remap the converted memory to useful high RAM.

3. on machines with extended memory but no expanded memory, you can get an
additional 96K of room for DOS or for high memory, but at the cost of limiting
yourself to character-only graphics. Quarterdeck's VIDRAM will allow you to
expand the memory available to DOS to 736Kb by temporarily disabling your CGA,
EGA, and VGA graphics capabilities, taking over the address spaces used by the
video RAM and filling them with any available extended memory it finds in your
system. If you absolutely must use three or four large TSRs and a memory-hungry
program like dBASE IV or Paradox on your XT simultaneously, this approach is
worth a look, but most folks won't want to give up the graphics.

When all else failed, a simpler, slightly more labor intensive approach to managing
memory was via the CONFIG.CTL utility for controlling which device drivers were
loaded in CONFIG.SYS at bootup, and the INSTALL/REMOVE utilities for loading and
unloading TSRs. With DOS 5.0, of course, HIMEM.SYS and EMM386.SYS manage the
Upper Memory Block (UMB), and expanded or extended memory.

DOS 5.0 Memory Management
New with DOS 5.0 are several tools that help solve the perennial memory problem
inherent in IBM's original decision to allocate only 640K for user applications. On
systems with extended memory, DOS 5.0 can load much of its code into the High Memory
Area (HMA) which is the first 64K block above 1 Megabyte, leaving only a small kernel
in the 640K application area to grab commands and service requests and then vector them
to the appropriate routines in the HMA. HIMEM.SYS and EMM386.SYS,are two device
drivers that provide extended and expanded memory management on machine capable
of supporting these features, typically 80386 or later machines with more than 1 megabyte
of RAM.

HIMEM.SYS manages extended memory, using the XMS (eXtended Memory Spec
ification) standard, and the High Memory Area (HMA), the first 64K block above 1
Megabyte. It must be the first device driver that manages or uses extended memory in
your CONFIG.SYS file, as it controls other drivers• access to both the HMA and extended
memory areas. If you're already using the version of HIMEM.SYS that came with
Windows 3.0, you should replace the older HIMEM.SYS with the one that comes with
DOS 5.0.

EMM386 is both an expanded memory manager, taking extended memory from
HIMEM and converting it to simulate expanded memory for applications that need it,

250 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

and the manager of the Upper Memory Blocks (UMBs) between 640K and 1 Meg. On
386 or better systems with more than 1 megabyte of memory, the CONFIG.SYS sequence

DEVICE=drive:\path\HIMEM.SYS
DEVICE=drive:\path\EMM386.EXE NOEMS
DOS=HIGH,UMB

will give you the ability to free up as much of the 640K memory area as possible, by
loading DOS into high memory and allowing you to load your other device drivers and
TSRs into the UMB area using the new DEVICEHIGH and LOADHIGH (or LH)
commands. If you absolutely need expanded memory for your applications, put RAM
instead of NOEMS on the DEVICE=EMM386.EXE line - this will give you expanded
memory capability, but will significantly reduce the amount of UMB space you can use.

With the UMB area properly set up, you can now load subsequent device drivers in
your CONFIG.SYS file into high memory using the syntax
DEVICEHIGH=drive:\path\devicename. Unfortunately, HIMEM.SYS and
EMM386.EXE can't themselves be loaded high (at least in this release), but almost
anything else is fair game. Obvious candidates are ANSI.SYS, MOUSE.COM or
MOUSE.SYS, network drivers and SHARE.EXE (which, by the way, you only need load
if you're using a network or multitasking software that really might need SHARE's file
locking capability - it's no longer needed just because your disk partitions are greater
than 32Mb, as it was for DOS 4.0.)

To get the most efficient use of the UMB, it's best to load the larger devices first -
you can experiment with different sequences and check the results using MEM /C. The
same holds true for TSRs in your AUTOEXEC.BAT, which are loaded with the
comparable LOADHIGH drive:\path\filename syntax.

With HIMEM.SYS and EMM386.EXE installed on a 80386 or i486 and the rest of the
normal assortment of device drivers and simple TSRs loaded· high, CHKDSK should
show about 630K free. On a stock IBM 80286-based machine, DOS itself will load high
but the UMB space won't be available for device drivers or TSRs, so the best you can
reasonably hope for is about 600K. And on an 8088/8086 machine, don't expect to see
any real benefit at all - just consider DOS 5.0 as yet another reason to upgrade your
hardware.

Expanded vs. Extended
Who names these things? Few enough users really understand what's going on under
their hoods anyway, and you'd think the folks who invent all this stuff would go out of
their way to make it clear and unconfusing. Then again, these are the same people who
created a multibillion dollar industry based around a computer system so hostile to
novices that if brand new users somehow manage to get their systems hooked up properly
and figure out which one of eight possible ways to insert their DOS floppy disks is right,
their reward is a black screen with nothing on it but an A> in the comer.

Chips and Memory 251

Some rascals decided to call bank-switched RAM expanded memory, while calling the
special kind of RAM available in 80286 and 80386 machines (like the PC-AT and most
PS/2s) extended memory. These even sound the same if you say them both fast enough.

Working on one of today's hot chips in a normal everyday one-megabyte configuration
with 640K or less ofusable RAM is called running in real mode. However, you can tweak
chips like the 80286 to run in a special, enhanced state called protected mode. A protected
mode system lets users directly address more than one megabyte of memory, and lets
them multitask, or run several programs simultaneously.

Previous attempts at multitasking ran into lots of trouble. The usual bugaboo was that
if three programs were churning through their paces at the same time and one crashed,
the whole house of cards would tumble down. That's bad enough in real mode when one
program with one set of data crashes and burns; it's downright evil when a crashed
multitasking system does two or three times the normal damage. Protected mode protects
the user from this nightmare - when one program crashes, the others keeping humming
blithely away.

When people mention the bit-size of a computer, they're really talking about the micro
processor register size used for storing data within the CPU. (However, if they mention two
numbers, the second one is the width of the bus.) The register size was eight bits (one byte)
for the ancient generation of 8080 and Z-80 chips popular before the PC was introduced; 16
bits (one word) for the 8088, 8086 chips, and 80286, which are used in the PC, AT, and some
of the PS/2 systems; and 32 bits (a long word or double word) for the 80386 and i486. These
chips can often divide larger registers into several smaller ones.

The CPU includes an arithmetic logic unit (ALU) that can do addition and subtraction,
logical ANDs and ORs, bit shifts, and negation on the data in the registers. To be efficient,
the ALU has to operate on whole registers at once. Microprocessors also generate
addresses to access data from memory, and perform arithmetic operations on these
addresses. Ideally, the microprocessor should use the same ALU to operate on both data
and addresses.

The early eight-bit 8080 chip would have been simpler if it had used only eight bits
for addressing. But this would have limited its addressing abilities to just 256 bytes (2" 8).
Instead, the 8080 forms addresses by sticking two bytes together. This chip has minimal
16-bit arithmetic capabilities.

Both the 8086 and 8088 CPUs handle data internally in 16-bit chunks, although the
8088 used in the PC and XT accesses memory externally only eight bits at a time. The
easiest way for the designers of the PC to handle memory addresses would have been to
limit the machine to 64K (2" 16) so the CPU could address everything directly. But 64K
is just too small. Instead, they had the CPU in the PC and XT calculate physical addresses
by adding a 16-'bit offset register to a 16-bit segment register that has been shifted to the
left four bits. The result is a 20-bit address that can access one megabyte. But the chip is
really only working with 16 its for both data and address.

With the advent of the 80286 chip things got even more complex. In real mode, the
80286 works the same as the 8086 and 8088. In protected mode, however, the segment
registers are selectors for accessing a 24-bit base address from memory. The chip then
adds this to the 16-bit offset address. This yields a 24-bit address that can handle 16
megabytes of memory.

252 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

The 80386 and i486 are full-fledged 32-bit microprocessors. They store data in 32-bit
registers and can do full 32-bit arithmetic. They use a 32-bit address that can directly
access four gigabytes (four billion bytes) of memory. Like the 80286 in protected mode,
the 80386 and i486 use a selector to reference a base address that it adds to an offset
address, but the base address and offset address are both 32 bits. The only time they use
64 bits is when doing double word multiplication and division.

The 80286 chip at the heart of the PC-AT can theoretically address 16 megabytes of
RAM directly. The 80386 or i486 can go to 4GB. Anything past the normal one megabyte
is extended. The PC-AT's designers figured that three megabytes would be enough, but
recent developments have given power users several times that amount. Still, there really
aren't very many programs that can take advantage of this extended RAM. The most
common is the DOS 3.x and later RAMDRIVE RAMdisk.

Because of significant differences between real mode and protected mode, current
versions of DOS and most application programs cannot use this additional 15 megabytes
of extended memory. Getting access to it requires OS/2 or one of the many protected
mode operating systems trying to compete with it. DOS 4.0 can do few measly tricks
with extended and expanded memory, while DOS 5.0 gives you many more options.

Lots of clones these days brag about how they come straight from the factory with a
megabyte of RAM while IBM's machines sport a relatively meager 512K or 640K. What
they don't explain is that this additional 384K can't be addressed directly. In fact, about
all you can do with the excess RAM is make a large RAMdisk out of it, which isn't such
a bad idea.

RAMdisks are nothing more than areas of memory that your system treats just like
physical disk drives. You don't have to format them, and at least with the VDISK version
supplied by IBM, you can't use the DISK COPY or DISKCOMP utilities with them
(although you can do this with RAMdisk software supplied by other manufacturers such
as AST). RAMdisks are extremely fast, since they have none of the arms and motors and
other moving parts that slow down mechanical disk drives. But they're volatile, so that
you have to take any information temporarily stored on a RAMdisk and copy it to a floppy
or hard disk before you tum your system off or you '11 lose it all.

You can use this kind of extra clone memory for a RAMdisk by making sure the DOS
3.x and later VDISK.SYS or RAMDRIVE.SYS device driver is on your disk in a
subdirectory called \DOS. Then put this line in your CONFIG.SYS file:

DEVICE=\DOS\RAMDRIVE.SYS 384 /E

The VDISK driver uses a BIOS call that temporarily switches to protected mode,
access-es the extended memory, and then switches back to real mode.

To make things even more confusing, vendors eventually introduced products to use
extended memory that emulated LIM expanded memory. Clear?

Chips and Memory 253

Memory and the Bus
One last note about chips and memory: The PC used a 16-bit chip but an eight-bit bus.
The PC-AT came with an interim 16-bit chip that used 16-bit bus. (Intel later revealed
that it was sort of a mistake and that the 80386 was really the chip the 80286 should have
been. Now they're saying the 80486 is really it, not the 80386.) The new top-level
generation of PS/2s use a 32-bit chip and a 32-bit bus.

One of the big speed advantages of the PC-AT was that it could move memory around
on the bus twice as efficiently as the PC. New 16-bit memory boards came with a small
stub that fits into a special plug on the system board to handle the extra data lines. And
users who upgraded from PCs to PC-ATs thought that they'd have to throw their old
memory boards away when they switched. Well, it turns out that they didn't have to. But
maybe they should have.

The PC and XT expansion board bus connectors carry 62 signals including the 20
address lines (which allow the 8088 microprocessor to access one megabyte of memory)
and eight bidirectional data lines. The PC-AT has eight expansion board slots. Six of
these have a second bus connector with 36 signals, including four additional address lines
(for the total 16-megabyte memory space) and eight more bidirectional data lines,
because the 80286 accesses data in words rather than bytes.

The 62-signal connector on the PC-AT is highly compatible with that on the PC and
XT. The two PC-AT expansion board slots that have only the old 62-signal connector
are designed for older boards with byte-accessible memory and 1/0. Existing video cards
work in these slots, for instance. However, the 62-signal connectors on the other six slots
are wired exactly the same as these two. Here's the catch: The 36-signal bus connector
on the PC-AT has two signals called "MEM CS 16" and "1/0 CS 16." These signals must
be generated by any AT board that can handle 16-bit memory or I/O transfers. If these
signals are not present - and they won't be if the board doesn't use this second connector
- the AT will access memory (or 1/0) with eight-bit transfers.

This means the PC-AT can indeed handle old memory boards. But users will notice a
significant speed penalty for programs that run in this memory space or use data in it. It's
just not worthwhile to spend the money for a PC-AT and then slow it down by inhibiting
16-bit memory transfers, which is one of the major speed advantages of the 80286 over
the 8088. The AT bus is a defacto standard - it's commonly known as the Industry
Standard Architecture, or ISA, bus.

Most PS/2 systems use a 32-bit bus called Micro Channel Architecture (MCA). A
consortium of competitors is pushing a different 32-bit bus standard called EISA. The
battle is on, but for the moment, the ISA bus is the market leader.

The DOS Tools

EDIT and EDLIN

The single most popular microcomputer application is word processing. Nearly every
serious user has one handy, and the people who don't own one use text entry functions
of programs such as 1-2-3 to create memos and batch files.

Longtime DOS users are probably familiar with the EDLIN line editor and know its
limitations. However, EDLIN is a useful tool for creating and making changes to the
CONFIG.SYS and AUTOEXEC.BAT startup files, as well as batch files in general. In
fact, as a line editor, it's perfect for creating batch files which usually consist of one-line
commands. EDLIN is still part of our tool kit because it loads quickly and provides a
simple, easy-to-remember command set. It is also useful for creating files that send ANSI
escape codes to the screen and keyboard.

Before DOS 5.0, if you needed a better editing tool than EDLIN, you had to buy a
third-party editor or use a word processor like Microsoft Word. DOS didn't include a
full-screen editor with scrolling features, only the line-oriented EDLIN editor. With the
introduction of DOS 5.0, however, users now have EDIT. It fits in a niche just above
EDLIN, but is not meant to be used to write professional documents. It doesn't offer
character formatting, style sheets, spell checking or other features. EDIT can be useful,
however, to users who need to write program code, batch files, lists and notes.

EDIT's main advantage over EDLIN is that you can scroll between lines using the
arrow keys; in EDLIN you must type the number of each line you want to edit. EDIT
also offers a user interface that makes cutting and pasting, as well as search and replace
operations, much simpler. One thing it still doesn't have, though, is word-wrap. You can
type a line up to 256 characters long, which is fine for program coding, but to write a
letter to a friend, you'll have to press Enter every time you get near the right margin.

Because of EDIT's line-oriented approach, it is clear that it was designed as a
programmer's tool. In fact, EDIT is a product of the BASIC language development
environment called QBASIC now included with DOS 5.0. QBASIC comes with a

257

258 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

debugger and a full-screen editor to provide a self-contained programming environment.
When you run EDIT, you'reactually running a version of QBASIC's full-screen editor.

EDIT looks a lot like its cousins, Windows Notepad and Windows Write. Those
familiar with Windows will already know how to use the EDIT menu options and
keystroke commands. But why would you use EDIT if you already have Windows
Notepad and Windows Write? If you're like many users, you don't start Windows every
time you tum on your computer. Users who are comfortable and familiar with DOS
continue to work at the DOS level when interacting with the operating system and
manipulating files. EDIT provides a quick and easy tool to use from the DOS level, and
while it doesn't load as quickly as EDLIN, it provides many more features.

How to Start EDIT
EDIT can be started from the DOS 5.0 command prompt, or from within the DOSSHELL
program. Both startup methods are described here. Note that EDIT will not start if the
file QBASIC.EXE is not in the current directory or on the current path.

Starting EDIT from the DOS Prompt

From the DOS prompt, simply type EDIT, but before doing so, you may want to view
startup information. This can be done by typing the following at the DOS prompt:

EDIT /?

You'll see a list of options similar to those listed here:

Starts the MS-DOS Editor, which creates and changes ASCII files.

EDIT [[drive:] [path] filename] (/b] (/g] [/h] [/nohi]

[drive:] [path] filename Specifies the ASCII file to edit.

/b Allows use of a monochrome monitor with a color graphics card.

/g Provides the fastest update of a CGA screen.

/h Displays the maximum number of lines possible for your hardware.

/nohi Allows the use of a monitor without high-intensity support.

To start EDIT and load an existing file, type EDIT followed by the filename. If the file
is not in the current directory, specify its path. You can also type the name of a file you
want to create. For example, to create a new file called MYFILE. TXT, type the following:

EDIT MYFILE.TXT

You may also need to type one of the command line switches when you start EDIT.
Switches are always typed last on the command line. The switches are shown in the help
information listed above. If you have a monochrome monitor, you may need to use the

EDIT and EDLIN 259

/b switch as shown below. This will start EDIT in black-and-white mode and allow you
to see all of its menu options.

EDIT /b
, . .,

If you have a color monitor, EDIT will load with color background and borders.
Normally, EDIT displays up to 16 colors, but some monitors show only eight colors,
which means that some high-intensity menu options may not show up. First, check to
make sure EDIT is loaded in the proper color mode. Thls can be done by opening one of
the pull-down menus to see if high-intensity characters are displayed. Press the Alt key,
then press F to view the File menu. If your monitor does not support 16 colors,
high-intensity characters on the File menu will be invisible. You'll see options like "ew"
instead of "New" or "pen" instead of "Open." To correct this, exit EDIT by pressing the
X key, assuming the File drop-down menu is still open, then type the following command
at the DOS prompt to restart EDIT:

EDIT /nohi

This starts EDIT in the "no high-intensity" mode. The menu options will then display the
previously missing characters in a color that is visible on your monitor. If you have this
problem with a CGA monitor, start EDIT by typing:

EDIT /b

Some graphics monitors have the capability to display more than 25 lines of text. You
can try loading EDIT with the /h switch as shown below to see if your monitor supports
this mode and if you can work with the smaller character size.

EDIT /h

The /h switch displays the maximum number of lines possible on your monitor. If you
don't see any change, or you don't like the smaller text size presented by this mode, exit
EDIT by pressing the Alt key first, then pressing the F and X keys. Start EDIT again
without using a switch.

If you have a CGA (Color Graphics Adapter) monitor, which was the original graphics
standard for IBM PCs, you should start EDIT using the /g switch, which provides faster
screen updating.

Starting the Editor from DOSSHELL

If the DOS SHELL program is loaded, press the Tab key until the highlight is in the Main
section at the lower portion of the screen. Use the arrow keys to highlight "Editor," then
press the Enter key. If you have a mouse, just double-click on the Editor icon.

EDIT asks for the name of the file you want to edit or create. You can type in a filename
and press Enter, or click on the OK button. If the file is on another drive or directory, or

260 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

< Press ESC to clear this dialog box >

Fl=Help Enter=Execute Esc=Cancel Tab=Next Field Arrow=Next Ite111

Figure 8.1. EDIT's Welcome Message

you want to create a file in a location other than the current directory, type the drive letter
and path with the filename.

The first thing you see when EDIT starts is the welcome message and copyright screen
shown in Figure 8.1. Press the Enter key to view the Survival Guide, which is an on-line
help system. On-line help will provide assistance when working with the various EDIT
options, but in this chapter, we'll do a step-by-step tutorial of the tool. So, continue
reading this chapter if you are learning EDIT for the first time, then use the Survival
Guide as a reference when using EDIT in your day-to-day work. Press the Escape key
now to bypass the Survival Guide.

Accessing ED/T's Menu Options
Edit presents a window with pull-down menu options at the top and messages at the
bottom. All typing and editing is done-in the workspace between. Notice that the name
of the document may appear in the second line of text at the top. In Figure 8.1, this bar
displays Untitled, which means that an existing document has not been loaded or that a
new document name has not been specified yet.

To quickly learn some of EDIT's features, start by loading the README.TXT file in
Llie \DOS directory. To open a new file, you need to access the Open option on the File
pull-down menu. Select an option by scrolling to it with the arrow keys and pressing the
Enter key, or by typing the capitalized (or highlighted) letter in the option. Or, if you have

EDIT and EDLIN 261

File Edit Search Options Help

Figure 8.2. EDIT' S Menu Bar

a mouse, point and click on the option. All pull-down menus originate from the menu
bar at the top of the screen, as shown in Figure 8.2. Press the Alt key to access this menu
bar now.

The highlight jumps to the menu bar. If you have a monitor that displays high-intensity
colors, one letter in each option will be highlighted. These keys are referred to as the
shortcut keys and are designed to make menu options easier to access. There are four
available main menu options and a Help option further to the right. To select one of the
options, do one of the following:

• Type the highlighted or capitalized letter.
• Click on the menu option with the mouse.
• Use the left or right arrow keys to move the highlight to the target option, then press

the Enter key.

Choose the File option by pressing the F key. The pull-down menu shown in Figure
8.3 appears. You can now select a menu item using one of the selection techniques
described above. For this example, just press the letter 0 key to select the Open option.

All menu options are selected in the same way. If you have a mouse, you can just point
and click, but sometimes it's easier to use the keyboard method rather than reaching for
the mouse. After a while, you'll become familiar with the keyboard shortcut keys and be
able to use them without looking at the menus. We'll review each of them in this section.

Alt+F,O

This key sequence displays the Open dialog box. First press the Alt key, then the F key
and finally the 0 key. Note that the letters used for selections are capitalized, and on some
monitors, highlighted, to remind you of the keys to press.

~
Saue ljs ...

[tint... c,

Figure 8.3. EDIT's File Option

262 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

Using Dialog Boxes

When you press Alt+F,O, the Open dialog box will appear (see Figure 8.4). Dialog boxes
are used to set options for EDIT commands before actually executing the command. The
methods used to access options in dialog boxes are discussed below. Because the Open
dialog box has features that are common to other EDIT dialog boxes, such as Save and
Find, it is used here as an example.

The dialog box has five sections. The top line is the File Name field. Under that is the
current directory, which, in this case, is the root directory of drive C. The Files box is in
the middle left portion, and the Dirs/Drives box is in the middle, right portion. At the
bottom of the screen are the OK, Cancel or Help options. You can press the Tab key to
move to a section, or you can press Shift+Tab to move back to a section. Mouse users
can simply point and click on an option in a section.

The wild card characters* and? can be typed in the File Name field to display a list
of files in the Files box. EDIT always displays *.TXT in the File Name field, but you can
type over this with your own file specification. In Figure 8.4, no files are listed in the
Files field because there are no TXT files in the root directory of drive C. You can display
files for a different directory by selecting the DOS directory in the Dirs/Drives box. To
do so, press the Tab key until the cursor is in the Dirs/Drives box, then press the down
arrow key to highlight DOS. Notice that the File Name field is updated with the new
directory. Press the Enter key to display the list of TXT files in the DOS directory. If you
have a mouse, just click on the directory you want to view.

README.TXT is now listed in the Files box. Press the Tab key until the cursor is in
the Files box, then press the down arrow until the file is selected. Press Enter to load the
file. To cancel the operation, press the Tab key until you get to the Cancel option at the
bottom of the dialog box and press Enter, or better yet, just press the Escape key.

~----------- Open ---------------.

File tta11te: IL...CllEiJ ___________________ _,
C:\

Files

< Cancel >

Figure 8.4. Open Dialog Box

Dirs.1Driues

DBASE
DOS
EZ
INSET
NEWDOS
NOTES
OLD_DOS.1
OLD_DOS.2

< Help >

l

I
J.
J

EDIT and EDLIN 263

There are of course other methods for using the Open dialog box. If you have a mouse,
you can point and click on each of the different drives, directories or files listed. Another
method is to simply type the drive, path and filename of the file you want to open in the
File Name field, assuming you know the name and location of the file. In this example,
you could have typed the following in the File Name field:

C:\DOS\README.TXT

In the future, when working with other dialog boxes, keep the following in mind:

• You can jump to some dialog box sections by pressing the Alt key and the
highlighted letter above the section.

• When you first open a dialog box, some fields will already be filled in. You can Tab
to these fields and type over them with new text, or press the spacebar to clear the
current text.

• Some options will be in groups, with the currently selected option indicated with a
dot. You can move the dot with the arrow keys, or click on a different selection with
the mouse.

• To execute the changes you have made in a dialog box, press the Enter key if the
OK button is highlighted, otherwise, Tab to it and press Enter. To cancel a dialog
box, press the Escape key or choose the Cancel option.

To leave the Editor at any time, press Alt+F,X.

Customizing the Editor
One of the first things you might want to do before you continue is to customize the way
EDIT appears on the screen. If you use a mouse, this section will be of particular interest
since it shows you how to tum the mouse scroll bars on. Press the Alt+O key sequence
now to open the Options pull-down menu, then type D to open the Display dialog box,
which is shown in Figure 8.5.

In the Display dialog box, you can change the foreground and background colors of
the EDIT screen by choosing options in the top boxes. The options in the Display Options
box are used to tum the scroll bars on, if you have a mouse, and to set the size of tabs.

To change screen colors, use the Tab key to move to either the Foreground or
Background box, or press Alt+ For Alt+ B. When the cursor is in the correct box, use the
up or down arrow keys to select a new color. As you select colors, the sample foreground
and background colors on the left change.

With a mouse, you can point and click directly on a color you want to select. Mouse
users also can use the scroll bars on the right of each color selector box. Simply click on
the top or bottom of the slider bar to adjust the list of colors. You can also click on the
slider button and drag it into the slider bar while holding down the mouse.

Before closing the Display dialog box, you can change the size of tabs from the default
8-characters width to another width. Press the Tab key until you get to the Tab Stops box,

264 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

:.----------- Display ---------~
.------------ Colors ---------~

Foreground Background

Set colors for the
text editor window:

i;ltitilMt
Blue I

[;t. I
White 1'

.---------- Display Options -----------.
CXJ Scroll Bars Tab Stops: B

< Cancel > < Help >

Figure 8.5. Display Dialog Box

then enter a new value. Mouse users should click on Scroll Bars in the Display Options
box. An X will appear in the field to indicate that scroll bars will be activated. Once the
colors and other options are adjusted to your liking, you can press Enter, or click on OK,
to make the changes permanent. When the Display dialog box disappears, the new
changes take effect.

Using the Mouse Scroll Bars

Mouse users should experiment with the scroll bar on the right and bottom of the display.
They consist of arrow buttons, a slider and a slider bar. To scroll up and down through
text, click on the right slider and drag it while holding the mouse button, then release the
button. Think of the right slider bar.as a ruler that represents the entire length of your
document. Moving the slider to any position on the slider bar scrolls you to that relative
position in the document. If you drag the-slider to the middle of the slider bar, you will
be in the middle of the document.

If you click in the slider bar immediately above or below the slider itself, text will
scroll one screen at a time either up or down. You can also click in the up or down arrow
at the top or bottom of the slider bar to. scroll text one line at a time in either direction. If
you click and hold the mouse button on the arrows, the text wili scroll continuously.

The bottom scroll bar is used to move left or right in a document when working with
wide text. This is often the case when writing program code. The operation of the lower
scroll bar is similar to the right scroll bar, except that text scrolls left and right.

EDIT and EDLIN 265

f'\bout ...

Figure 8.6. EDIT's Help

Getting Help
If you need help while using EDIT, press Alt+ H at any time to open the Help pull-down
menu as shown in Figure 8.6. For general help instructions, choose the Getting Started
option. For a list of keyboard commands, select Keyboard. The About option is used to
display the version number of Edit, which you may need to provide if you ever call
Microsoft for technical support.

You can get immediate help by pressing the Fl key at any time. If you are in the editing
area, this key opens the general Help menu. If you have a menu option highlighted, help
information for that menu option will be displayed. For example, if you press Alt+ F and
press the Fl key, you will see help information for the New command since the highlight
is currently on that menu option.

Also notice that help information for each menu option is displayed at the bottom of
the screen as you scroll through a pull-down menu. Use the arrow keys now to scroll
through the File menu as you watch the status bar at the bottom of the screen.

The following keys can be used while working with the help system:

View Help information

Exit Help:

View Getting Started

Display the Help menu

Move cursor to next Help topic

Move cursor to previous Help topic

Jump to topic:

Jump to previous topic

View next topic in Help

View previous topic in Help

Viewing Help Text While Editing

Fl
(or click the right mouse button)

Esc

Shift+ Fl

Alt+H

Tab

Shift+ Tab

1st letter of topic

Shift+topic letter.

Ctrl+Fl

Shift+Ctrl+Fl

You can keep a help window open while you work with the text of a document. In this
way, you can display keystrokes or procedures you don't remember. The following keys

266 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

are used to resize a help window. You can then jump between text and help windows by
pressing the F6 key. Some help windows are already small enough that you won't need
to resize them, but others may need to be reduced so you can see the document window.
Press F6 to move the cursor to the help window, then press Alt+ Minus until the window
is the correct size. When a help window is reduced, you may need to jump to it
periodically with the F6 key to scroll through the help text.

Increase size of current window

Decrease size of current window

Move to next window

Printing Help Information

Alt+ Plus

Alt+ Minus

F6

The help information displayed on the screen can be printed for quick reference. Printing
the keystrokes information for the keyboard is especially useful. To do so, first open the
Help menu by pressing Alt+ H, then press K to choose the Keyboard option. When the
keyboard options appear, press Tab until the cursor is in the "Text-Scrolling Keys" field,
then press Enter. When the list appears, press Alt+F,P to display the Print dialog box.
Make sure the dot is in the Current Window option by moving it with the up or down
arrow keys, then press Enter to print the list.

The next few sections will discuss the techniques for scrolling through text, selecting
text, and editing documents. You may want to print all of the keystroke commands before
continuing.

Browsing Through a Document
Assuming that README.TXT is still loaded in EDIT's workspace, you can experiment
with some of the edit and jump keys, or if you have a mouse, with the mouse techniques.
By the way, README.TXT offers important information about DOS 5.0 you may want
to read now while you have it on the screen. If you want to make changes to this file for
practice, go ahead. You can always exit EDIT later without saving your changes.

If you use a mouse, refer to the scroll bar techniques described earlier for methods used
to move through the text of a document. In some cases, keyboard techniques may be
faster, as described next.

To move through the text using the keyboard, press the PgDn or Pg Up keys to move
one window at a time. You can also press Ctrl+R to page up and Ctrl+C to page down.
Another method is to use the up and down arrow keys. This causes the cursor to jump
through lines until you reach the top or bottom border, then the text starts scrolling. To
scroll the text one line at a time no matter where the cursor is, hold the Ctrl key while
pressing the up or down arrow. You can also press Ctrl + W to move up one line or Ctrl + Z
to move down one line. When working with wide documents, you can scroll left one
window by pressing Ctrl+PgUp and right one window by pressing Ctrl+PgDn.

EDIT and EDLIN 267

As you scroll through the text of the document, notice the numbers in the lower-right
comer. The left number indicates the current line and the right number indicates the
character position of the cursor in the line.

The Text scrolling keys are listed below.

Lineup

Line down

Page up

Page down

Left one window

Right one window

Setting Bookmarks

Ctrl+Up Arrow or Ctrl+W

Ctrl +Down Arrow or Ctrl+Z

PgUp or Ctrl+R

PgDn or Ctrl +C

Ctrl+PgUp

Ctrl+PgDn

Bookmarks can be used to mark parts of a document you want to refer back to later. By
pressing a keystroke, you can then quickly jump to the marked position in the text. Up
to four bookmarks can be set, numbered 0 through 3.

To set a bookmark, first move the cursor to the position in the text you want to mark,
then press Ctrl + K,O, to set the 0 bookmark, or substitute another number to set bookmarks
1 through 3. After scrolling away from the bookmark, you can return to it at any time by
pressing Ctrl+Q,O or the number that corresponds to the marker you set.

Moving the Cursor for Editing
There are a whole set of keystrokes you can use to move the cursor to a location in your
document when you need to make changes, or when you need to select a block of text
for an operation. To delete a block of text, first select it by moving the cursor to the
beginning of the text and then hold down the shift key while moving through the text you
want to delete. The selected text is highlighted and you can press the delete key to remove
it.

The keystrokes described here are used to move the cursor to positions where you want
to insert new text or delete a character. When selecting a block of text, you can also use
these keys while holding down the Shift key to extend a selection, as discussed later.

Character left

Character right

Word left

Word right

Lineup

Line down

First indent of line

Left Arrow or Ctrl+S

Right Arrow or Ctrl+D

Ctrl+Left Arrow or Ctrl+A

Ctrl+Right Arrow or Ctrl+F

Up Arrow or Ctrl+E

Down Arrow or Ctrl+ X

Home

268 DOS Power Tools, 2nd Edition, Revised for DOS 5. 0

End

Ctrl+Q,S

End of current line

Beginning of current line

Beginning of next line

Top of window

Ctrl +Enter or Ctrl + J

Ctrl+Q,E

Bottom of window Ctrl+Q,X

As an example, to remove a paragraph, you would first move to the beginning of the
paragraph using the arrow keys or other methods listed above. Then hold down the Shift
key while pressing Ctrl +Right Arrow to extend the selection one word at a time through
the paragraph. Since EDIT is a line-oriented editor, you'll often need to jump to the
beginning or end of the current line or next line. This can be accomplished by pressing
the Home or End keys.

Editing Text
Once the cursor has been moved to the position in the text where you want to make
changes, you can add or remove text or begin marking a block of text you want to copy,
move or delete. Many text operations are done with the Clipboard. You can delete a block
of text to the Clipboard, then move to another location in the document and paste the
Clipboard contents.

The following keys can be used to insert new text or lines, and to delete characters.
Note that you can delete the character you 're on by pressing the Delete key, and delete
the character to the left by pressing the Backspace key. If overstrike is on, you can
type over characters. Or, you can toggle between the insert and overstrike modes by
pressing the Ins or Ctrl + V keys. In most cases you '11 want to have the insert mode
on, but overstrike is often used when replacing an existing set of characters with a
new set of characters. For example, if you create a menu with borders using the high
ASCII graphics characters, you '11 need to align these characters in several different
lines. It is easier to make editing changes with overstrike mode on to prevent the
characters from moving out of alignment.

Toggle insert or overstrike modes

Insert a blank line below the cursor

Insert a blank line above the cursor

Insert special characters

Delete character to left of cursor

Delete character at cursor

Delete remainder of current word

Delete selected text

Delet~ leading spaces to left

Ins or Ctrl + V

End+Enter

Home,Ctrl+N

Ctrl+P,Ctrl+key

Backspace or Ctrl + H

Del or Ctrl+G

Ctrl+T

Del or Ctrl+G

Shift+ Tab

EDITand EDLIN 269

Inserting Special Characters

EDIT users who want to reassign keys or change the colors of their screen using the
ANSI.SYS keyboard and screen driver can create special files with EDIT that contain
the codes to do so. Press Ctrl + P, then press the Escape key to introduce an escape
sequence into the file. Follow this with the ANSI codes required to change the keyboard
or screen as discussed in Chapter 10.

You can also insert high ASCII characters into your documents by holding down the
Alt key while you type the characters ASCII value on the numeric keypad. After typing
the number, let up on the Alt key to display the character in the document. For example,
to create a menu with borders, you could enter the following ASCII codes.

Alt+201 If

Alt+204 I~
Alt+200 I!:

Alt+205

' Alt+203

Alt+206

Alt+202

Alt+186

;;=

JL
ir
:&

II

Alt+187 11

Alt+185 ~I

Alt+188 JJ

Copying, Cutting, and Pasting with the Clipboard
As already mentioned, text can be placed on the Clipboard, then pasted elsewhere in your
document. Think of the Clipboard as a holding area. It lets you remove text in one
location, then scroll to another location and paste it. Text placed on the Clipboard can be
copied or cut from anywhere in your document, so you'll first need to select a block of
text using the selection keys described in the next section.

Be aware, however, of the difference between copied text and cut text. When the text
you highlight is copied to the Clipboard, it remains in the document. When highlighted
text is cut to the Clipboard, it is removed from the document. Cutting text in the document
is the same as deleting it, but since the text is placed oil the Clipboard, you can paste it
elsewhere. Keep in mind that text currently on the Clipboard is lost when you copy or
cut new information to it, so you must paste Clipboard contents you want to save before
using the copy or cut commands. To delete a block of text and not overwrite the Clipboard,
press the Delete key after selecting text.

Selecting Text to Copy, Cut or Delete

Text is easy to select if you have a mouse. Simply point to the beginning of the text to
select, then click and hold the mouse button while you drag through the text you want to
copy, cut or delete. When done, let up on the mouse.

270 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

To select text with the keyboard, first move the cursor to the beginning of the block of
text you want to copy or cut. Then use one of the following keystokes to select text - a
character, word, line or screen at a time. The last two keystokes in the list are used to
select all text from the current cursor position to the top or bottom of the document.

Character left

Character right

Word left

Word right

Current line

Line above

Screen up

Screen down

To beginning of file

To end of file

Using the Clipboard

Shift+ Left Arrow

Shift+ Right Arrow

Shift+Ctrl+Left Arrow

Shift+Ctrl +Right Arrow

Shift+ Down Arrow

Shift+ Up Arrow

Shift+PgUp

Shift+PgDn

Shift+Ctrl+ Home

Shift+Ctrl +End

Once you've selected text, use one of the keystokes listed here to copy or cut it to the
Clipboard. Or, you can select the Cut or Copy option on the Edit pull-down menu using
the mouse or keyboard methods. If you just want to delete text and not place a copy of it
on the Clipboard, press the Delete key.

Copy selected text to the Clipboard

Delete selected text to the Clipboard

Ctrl+Ins

Shift+ Del

Alternate methods for cutting a single line or part of a line to the Clipboard are listed
below and do not require that you select the text ahead of time. You must place the cursor
on the line you wish to cut, then press one of the keystrokes. These options are useful
when writing programs to remove a line of code and place it elsewhere. Note that both
commands delete the text at the current position. If you just want a copy of the text using
these keystrokes, first cut the text, then paste it back immediately before· moving the
cursor. This places a copy on the Clipboard so you can paste it elsewhere in the document.

Delete current line to the Clipboard

Delete up to end of line to the Clipboard

Ctrl+Y

Ctrl+Q,Y

To paste the contents of the Clipboard, first position the cursor in the appropriate
document location, then press Shift+ lns, or select Paste from the Edit menu.

Paste the contents of the Clipboard Shift+ Ins

EDIT and EDLIN 271

Using the Search Options
The options on EDIT's Search pull-down menu are used to find text or change text within
a document. All searches start at the current cursor position, but when the end of the
document is reached, searching continues at the top of the document. To limit the search
to a specific area of your document, first highlight that part of the document using the
text selection keys.

The Find option on the Search menu is used to locate text within a document you want
to edit, or to reposition the cursor to a specific location. For example, if you need to
temporarily jump back to the beginning of a document to review it or copy some text to
the Clipboard, you can mark your current position by typing "***" or another suitable
marker. To quickly return to the section, you would type "***" as the search text in the
Find command. When Edit returns you to the position, the marker will be highlighted
and you can press Delete to remove it. If you have text on the Clipboard, don't press
delete until you've pasted the text, however. The Change option is used to change the
text found in a search with the text you specify. You could search for all occurrences of
"Tom" in a document and replace it with "Joe."

Using the Find Option

To find text, select the Find option on the Search menu, or press Ctrl +Q,F. The dialog
box shown in Figure 8. 7 appears.

In the Find What field, type the text you want to find, including any spaces or other
punctuation that might appear in it. You can type whole words or parts of words in the
field. Alternatively, you can limit the search to only whole words by tabbing to the Whole
Word field and pressing the space bar to mark it. When the Whole Word field is marked,
the text you type is treated as a whole word so that occurrences within other words are
not found. For example, a search for "son" would not display ··person" when the Whole
Word field is marked.

You can also mark the Match Upper/Lowercase field to limit the search to text that
specifically matches the case of the text in the Find What box. For example, a search for
··uppercase" would not find ••uppercase."

,....---------- Find -------------.

Find What:

J Match Upper/Lowercase J Whole Word

OK < Cancel > <Help>

Figure 8. 7. Find Dialog Box

272 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

...-----------Change ----------

Find What:

Change To:

1 Hatch Upper/Lowercase [1 Whole Word

Find and Verify < Change All > < Cancel > < Help >

Figure 8.8. Change Dialog Box

When the fields of the dialog box have been set to the criteria for the search, press the
Enter key. The first occurrence of the search text is highlighted. You can then make
changes to the document at that location. To continue the search, press the F3 key. The
criteria used in the last search is used again. To start a new search, choose the Find option
from the Search menu and enter a new set of search criteria.

Finding and Changing Text

The Change option on the Search menu is used to search and replace text within a
document or selected block of text. As with the Find command, the search starts at the
cursor location and wraps back to the beginning of the document when the end of the
document is encountered. The Change dialog box is shown in Figure 8.8.

As with the Find command, you specify the text you want to search for in the Find
What field. Type the text replacement text in the Change To field. You can also mark the
Match Upper/Lowercase and Whole Word fields to limit the search as discussed in the
previous section.

In most cases, you won't want to change every occurrence of text found during the
search. The Find and Verify option at the bottom of the Change dialog box is used to
search for the next occurrence, then display a verify box so you can decide whether or
not you want to change the text. The Change All option is used to quickly change all
occurrences of the text in the Find What field. You will not be given a chance to verify
when using Change All, so use caution when selecting this option.

After filling in the upper fields, press the Alt key to highlight the field options. Press
Alt+ V to verify each occurrence; if you know you want to change all occurrences, press
Alt+C. If you select the Find and Verify option, the dialog box in Figure 8.9 appears for
each find. You can press C to change the text, or S to skip over it and jump to the next
occurrence. To stop the search, tab to Cancel and press Enter, or just press Escape.

EDIT and EDLIN 273

.--------- Change ---------.

< Change > < Skip > < Cancel > < Help >

Figure 8.9. Find and Verify Dialog Box

Using the File Options
You've already learned how to open a new file using the Open option. However, there
are several options on the File menu that we haven't investigated yet. If you've made
changes to a file, you can save those changes using the Save and Save As options, or you
can discard the changes and clear the workspace using the New option. You can also
open another file using the Open option.

The Save option is used to save a file that already has a filename. A dialog box does
not appear when you select this option; instead the file is quickly saved under the name
that appears in the second line on the EDIT window. If a document has not yet been
named, you '11 see "Untitled" in the second line. If you select Save when an untitled
document is in the workspace, the Save As dialog box appears to request a filename.

The Save As option is used to save a file for the first time, or to save an existing file
under a new name. To do either, choose the Save As option on the File menu, or press
Alt+F,A to access the dialog box, which is shown in Figure 8.10.

Type the new filename, or type over an existing filename. To save the file on a different
drive or directory, type the drive and directory path in the File Name field, or tab to the
Dirs/Drives box and use the arrow keys to select a new drive or directory. When the File
Name field is filled out correctly, press Enter or click on the OK option with the mouse .

.------ Saue As -------.

File tlHe:

Dirs/Driues

~

!=El I
1

< OK > < Cancel > < Help >

Figure 8.10. Save As Dialog Box

274 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

.------ Print -------.

) Selected Text Only
C•) Complete Document

OK < Cancel > < Help >

Figure 8.11. Print Dialog Box

To clear the EDIT workspace and start a new untitled document, choose the New option
on the File menu. If the current document has not been saved, a warning message appears
to ask if you want to save it now. If you answer Yes and the file has already been named,
the changes will be saved under that filename. If you answer Yes and the file has not
been named, the Save As dialog box appears so you can enter a new name for the file as
described above.

Printing the Document
In EDIT, you can choose to print your entire document, or you can select a portion and
just print what is highlighted. When you 're ready to print, choose the Print option on the
File menu. The dialog box shown in Figure 8.11 will appear.

To print the entire document, press Enter or click on the OK button with the mouse.
To print just the selected text, press the up arrow key to move the dot to the Selected Text
Only field.

If you have the help window open and the cursor is in the help window, an option
called Current Window will appear on the Print dialog box. Choose this option if you
want to print only the contents of the help window.

EDLIN
As a matter of preference virtually no one uses EDLIN, the text editor that came with
DOS prior to 5.0, and with good reason. EDLIN is a line editor rather than a full-screen
editor, which means you can edit only one line at a time rather than jumping all over the
screen. And it's far from friendly. But if you're accustomed to one word processor, and
you find yourself on someone else's system and all that's handy is a word processor
you've never used, you can always boot up EDLIN to create or change ASCII files. We'll
let you in on some interesting things you can do with EDLIN, and provide an armload
of shortcuts. We ·n also show you how to use EDIT, the much easier-to-grasp edition that
comes with DOS 5.0.

Don •t get us wrong, however. EDLIN won •t do any fancy text formatting. It doesn't
have an adjustable right margin that will automatically wrap your text down to the next
line the way every word processor does. You can •t use it to create double-spaced

EDIT and EDLIN 275

documents. It makes you use truly awful DOS brute-force commands such as Ctrl-Z and
Ctrl-Break to get serious work done. It can't handle any lines longer than 254 characters
(the manual says 253 but 254 works on our systems), or any file with more than 65,529
lines in it. It can't back up to the previous screen line once you've wrapped the cursor
around from the right edge of your screen to the next line. And you have to switch
constantly back and forth from command mode to editing mode. But you can copy or
move groups of lines, search for particular strings of characters, or even replace one chunk
of text with another. And the price is right.

You need to specify a filename when starting EDLIN from DOS. EDLIN has two
modes, command mode and edit/insert mode. When you 're in command mode the EDLIN
prompt - an asterisk (*) - hugs the lefthand screen margin; when you 're in edit/insert
mode this prompt is indented eight spaces. To switch from command mode to edit/insert
mode, enter a command such as I, to add new text, or a valid line number, to edit the line
with the number you specified. The easiest way to switch from edit/insert mode to
command mode is to hit Ctrl-Break or Ctrl-C.

Every example below starts with an asterisk to show you what the screen should look
like. However you don't ever have to type an asterisk; EDLIN will take of that for you.

EDLIN numbers all lines only for your and its own convenience; the line numbers that
appear before each line aren't put into the actual file. Since EDLIN is a line editor rather
than a full-screen editor it can really edit only one line at a time. It refers to the line it's
working on as the current line, and puts an asterisk on this single line, after the line
number and before the text. This current-line asterisk is different from the asterisk EDLIN
uses as a prompt.

In virtually all cases you may enter EDLIN commands in uppercase or lowercase (or
a combination of the two), and you can usually insert spaces inside the command. These
three commands will all do the same thing:

*1,2P
*1,2p
* 1, 2P

However, EDLIN's Search (S) and Replace (R) commands are pickier about extra
spaces, since they let you search for spaces and replace them. And when using these
commands you have to make sure that you specify the exact strings you want to search
for - if you ask EDLIN to find "HELLO" it will catch every HELLO but ignore
variations such as "Hello" and "hello."

With commands that can work with ranges of lines, EDLIN lets you omit the actual
line numbers and accept default settings.

However, with operations such as Move or Copy, you still have to include the comma
separating the beginning and end of the range, even if you omit the line numbers
themselves. Other EDLIN commands such as List, Page, Delete, Search, and Replace,
are less fussy, and don't require either line numbers or commas. You can specify lines
one at a time or in ranges, or you can refer to them in relative terms. To edit line 3, just
type:

*3

276 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

To list just line 3 you could type:

*3,3P

(which tells EDLIN to start and stop with just line 3). Once you issue either of these
commands, EDLIN makes line 3 the current line. If you then wanted to edit line 5, you
could type either:

*5

or:

*+2

as the +2 tells EDLIN to edit the line with a line number two higher than the current line.
Or if you had just listed line 3, and wanted to broaden the display one line on either side,
you could either type:

*2,4P

or:

*-1,+lP

To exit prematurely from a long process (such as a Replace Text command) hit
Ctrl-Break or Ctrl-C. To quit and save your changes, type E. To quit without saving your
changes, type Q and then tell EDLIN you're sure you want to abort your file, by typing
Y. Be careful when using Ctrl-Break or Ctrl-C when inserting or editing text, since this
tells EDLIN to cancel any changes made in the line. To register a change, you have to
press the Enter key. If you want to insert a special control character, preface it with a AV.
Normally you can't enter an Escape character in your file, since DOS interprets this as a
signal to interrupt what you're doing. But if you're trying to create an ANSI file that
needs a CHR$(27) Esc prefix, simply type:

"V [

If you need to put any other control character (such as AA or AB) into your file to trigger
a special effect on your printer, just enter the uppercase version of the letter after AV (or

EDIT and EDLIN 277

the Ctrl- shifted version). Be sure not to enter the lowercase version. To put a "A in your
file, you could type either:

or:

If you want to put high-bit ASCII math, border, or foreign language characters into your
file, use the Alt-plus-number-pad technique: Just hold down the Alt key, type the ASCII
value on the number pad (not the top row number keys), and release the Alt key. If you
wanted to put the pi symbol in your text, you'd simply hold down Alt, type 227 on the
number pad while holding it down, and then release the Alt key. A pi sign would then
appear at the cursor. Unfortunately, not all printers can reproduce such high-bit characters
accurately. Nor will this Alt key technique let you put a CHR$(0) null in your text. If you
need to do this, just press the F7 key. A "@ will appear at the cursor, and an ASCII
character 0 will be inserted into your text.

It's possible to put more than one command on a single line by separating the
commands with a semicolon. If you wanted to display lines 7-8 and lines 12-14 together,
you could do it with the single command:

7,8L;12,14L

If you want to add a second command to the same line as a search, you have to separate
the commands with a Ctrl-Z or else EDLIN will think that the second command,
semicolon and all, is part of the string involved in the search.

While EDLIN can help you put your files into shape, it's not designed to print anything.
You could use your word processor to print the file, or you could use the DOS PRINT
or COPY commands. To use the PRINT command, make sure the DOS PRINT.COM
file is on the disk you ~re using, or is in a drive or subdirectory that your PATH command
knows about. Then just type PRINT FILENAME (substitute the name of your own file
for FILENAME). Or just type COPY FILENAME PRN.

Finally, one simple tip that can save lots of keystrokes - make a copy of EDLIN.COM
and call it E.COM. You could simply rename EDLIN.COM to E.COM, but it's a good
idea to keep all the files on your \DOS subdirectory intact if someone else has to use your
system, and doing so makes it easier to upgrade from one version of DOS to the next.
You may decide EDLIN is so clanky and unintuitive that you'd rather use your word
processor or a vastly better quick editor like SideKick's notepad instead. But if you do
plan to use EDLIN, it's a lot easier and faster to type:

E CONFIG.SYS

278 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

than:

EDLIN CONFIG.SYS

especially if you use it all day long. If you try this, either keep E.COM on your main
floppy disk (the file is so small you should be able to squeeze it on), or put it in your hard
disk \BIN subdirectory along with the rest of your important utilities.

All examples below assume the file you started out with consists of the following five
lines. The current line is always line 1, unless otherwise specified:

l:*line 1

2: line 2
3: line 3

4: line 4
5: line 5

Starting EDLIN
Format: EDLIN FILENAME

You can't start EDLIN without specifying a filename. If you enter the name of an existing.
file, EDLIN will try to load the whole file into memory. However, EDLIN will stop
loading a file if it determines that RAM is filling up so fast that only 25 percent of available
memory is free. If this happens, you'll have to edit the file in pieces, then use the Write
Lines (W) and Append Lines (A) commands to write the beginning of the edited file to
disk and load the unedited part of the file-into memory. You really shouldn't have to
worry about this, since you shouldn't be editing long files with EDLIN. It's really best
for batch files, short memos, and other miscellaneous DOS tasks, like changing your
CONFIG.SYS system configuration file or creating an ANSI string to change colors. For
longer files, use your word processor instead.

EDLIN is actually an external DOS program called EDLIN.COM. Some commands
such as DIR or TYPE are internal, which means they're part of COMMAND.COM and
are always available to you whenever you see the DOS prompt. But you have to tell DOS
where the EDLIN.COM program is on your disk, so DOS can find and load it if you are
currently in a subdirectory that doesn't contain a copy of EDLIN.COM. If you 're using
a hard disk, the best way to handle this is to have a dedicated \DOS subdirectory that
contains all your DOS files, including EDLIN.COM, and nothing else. To make sure
DOS knows where all its important files are kept, include the \DOS subdirectory in your
PATH command. By setting your disk up this way, you'll be able to use EDLIN no matter
what subdirectory you happen to be using. Either issue this PATH command at the DOS
prompt, or include a variation of it in your AUTOEXEC.BAT bootup file.

If you start EDLIN by specifying the name of a file that's not on your disk, EDLIN
will create a new one, and tell you so, with a "New file" message. This means that if
you 're trying to edit an existing file and you see the "New file" message you either made

EDJTand EDLIN 279

a typing mistake when you entered the filename, or you're in the wrong subdirectory.
Quit (by typing Q and then Y) and when you 're back at the DOS prompt, type DIR
FILENAME and press the Enter key (but of course substitute the actual name of your
file). If you see the file, restart EDLIN and watch your typing. If you don't see the file,
you're probably in the wrong subdirectory. Use the CD (Change Directory) command to
log into the correct one.

Even if there's plenty of free memory in your system, EDLIN will stop loading any
existing file when it sees a special character (with an ASCII value of 26) called a Ctrl-Z
end-of-file-marker. EDLIN makes sure this special character is at the end of each file it
edits, and puts one there if none exists, along with an extra carriage return and line feed.
It doesn't expect to stumble over this character in the middle of a file.

But EDLIN can remove such nasty Ctrl-Z end-of-file characters that have somehow
crept into your files by mistake. If you know you have a file that's 100 lines long, but
EDLIN will display only the first three lines, odds are that an ASCII character 26
mysteriously found its way into the beginning of line 4. Other DOS commands such as
TYPE will also screech to a halt when they see this end-of-file character, as will some
commercial products such as WordStar.

If you think this has happened, add a /B to the end of the EDLIN FILENAME
command. So if you have a file called PHONE.LST and EDLIN seems to be loading only
the beginning of it, type Q and then Y to quit, and then reload the file with the command:

EDLIN PHONE.LST /B

(DOS almost always lets you enter switches such as /B either in uppercase or lowercase.
But version 3.3 contains a bug that doesn't recognize /b, so it's always safe to use /B. fu
fact, version 3.3 has a hard time with uppercase and lowercase commands in general.
Normally, if you try to edit a backup file that ends in BAK, EDLIN will refuse to load it
and will just print a "Cannot edit .BAK file - rename file" message. If you try this with
version 3.3 and enter a filename that ends in BAK you'll indeed get such an error message,
and EDLIN will drop you back into DOS. But enter the extension using lowercase
characters (bak) and EDLIN will blithely edit and save the file.)

You can either page through your document using the Page (P) command to see if any
lines contain a stray "Z, or you can have EDLIN's Search (S) hunt for it. To have EDLIN
do the work, as soon as you load the file type:

When you first load a file, EDLIN makes line 1 the current line. Using the S command
without line numbers will search from the line immediately following the current one
(since the current line is 1, the search would start with line 2), and continue all the way
to the last line loaded in memory. This won't catch any Ctrl-Z characters in line 1, but
there probably wasn't an end-of-file marker there since in the above example EDLIN
managed to display the first few lines. If you wanted to broaden the search to include the
first line, just add a 1, prefix to the command right before the S.

280 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

You couldn't just enter the command as *S"Z since EDLIN uses "Z in search
commands to mark the end of the command, and not as a literal keystroke to hunt for.
Fortunately, EDLIN lets you enter control characters by prefacing them with a "V. So
when you tell it to search for "V"Z you're really saying "try to find a "Z character."

If you do find a Ctrl-Z character in your file you can edit the line to remove it, and then
continue searching for others. Or you can simply use the Replace (R) command to delete
every Ctrl-Z in your file. The command:

*R"V"Z"Z

will do just that. (Again, to include line 1 in the search, add a 1, at the beginning of the
command.) Then save and exit the file with the E command.

Let's get right into EDLIN's commands. Then, at the end of the chapter you'll find
more advice on using EDLIN.

The EDLIN Commands

Append Lines

Format: [n] A

This command loads additional lines from disk to memory. You need to do this only
when EDLIN wasn't able to load your entire file into memory when you started. EDLIN
will stop loading your file if it figures out that 3/4 of your available memory is full. If
this happens, and you want to edit the rest of your file, first use the Write Lines command
(W) to write the beginning of your file from memory to a disk. Then use Append to read
in [n] additional lines from your disk to the end of the file in memory. You probably
won't have to use this, since you should edit large files with your word processor rather
than EDLIN. (See Write Lines.)

Copy Lines

Format: [Iine],[Iine],Iine[,count]C

This command copies one line or a block of lines from one place in your file to another.
Copying lines leaves the original lines alone and simply duplicates them elsewhere. If
you want to copy lines from one place to another and delete the originals, use the Move
command instead. The optional [,count] lets you make multiple copies of the block of
lines you specified - if you omit this number EDLIN will make only one copy. If you
omit either of the first two [line] numbers, EDLIN will assume you want to copy the
current line (but you have to type in the commas even if you omit the numbers). And you
have to specify where you want the copied block to go. The line number you want the

EDIT and EDLIN 281

block copied to has to be outside the range of the block you want copied, so you can't
tell EDLIN to take lines 3 through 5 and copy them to line 4.

For example:

*3,4,Sc

makes one copy of lines 3 and 4 and puts these two lines before line 5. It will then make
the second line 3 the current line and renumber all the lines:

1: line 1
2: line 2

3: line 3
4: line 4
S:*line 3

6: line 4
7: line 5

* ,,6,3c

makes three copies of the current line (here it's line 1) and adds these after line 5. It will
then make the first of these three copied lines the current line, and renumber all your
lines:

1: line 1

2: line 2
3: line 3
4: line 4
5: line 5
6:*line 1

7: line 1

8: line 1

Delete Lines

Format: [Iine][,Iine]D

This command deletes the current line and moves all following lines up a notch, when
used without any line numbers. Specifying just one line number deletes that particular
line. Omitting the first parameter (but leaving in the initial comma) deletes all lines from
the current one to the one specified. Specifying two numbers deletes everything between
them, including the specified lines themselves. EDLIN then makes the line immediately
following the deletion the current one.

If you want to get rid of several lines in a row, it's best to specify the beginning and
end of the range you want deleted rather than erasing them one at a time. Users often

282 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

forget that EDLIN renumbers their documents each time a line is deleted. So if you use
the P or L command to view your text, and see that you want to erase lines 10 and 11,
issuing the commands:

*lOD
*llD

won't do it. After the first command (100) gets rid of line 10 it will then move the old
line 11 down a notch and tum it into the new line 10, move the old line 12 down and
make it the new line 11, etc. The second command (110) would mistakenly end up erasing
what used to be line 12, since everything moved down a notch after the first deletion. If
you did want to erase lines 10 and 11 one at a time you could type:

*lOD
*lOD

An easy way to do this is to type in the command the first time and press Enter, then press
F3 to repeat the previous command, and then press Enter.

For example:

*,3D

deletes everything from the current line (in this case line 1) up to and including line 3:

l:*line 4
2: line 5

*2,4D

deletes everything from lines 2 through 4, including lines 2 and 4:

1: line 1

2:*line 5

*2D

deletes line 2:

1: line 1

2:*line 3
3: line 4
4: line 5

*D

EDIT and EDLIN 283

deletes the current line only (in this case line 1):

l:*line 2
2: line 3
3: line 4
4: line 5

Edit Line

Format: [line] or [special symbol] or [Enter key alone]

This command lets you edit any existing line. If you 're in the command mode (with the
asterisk hugging the left margin) and you simply press the Enter key without specifying
a number, EDLIN will assume you want to edit the line following the current one. If
you're not at the end of the file, it will take the line following the current one and display
it in edit mode (indented eight spaces), and treat this new line as the current one. So if
the current line happens to be line 2, and you simply press the Enter key in command
mode, EDLIN will display line 3 in edit mode and tum line 3 into the current line. Typing
a question mark (?) and then pressing the Enter key is the same as pressing the Enter key
by itself.

If you 're in command mode and you want to edit the current line, just type a period
(.),a minus sign(-), or a plus sign(+) and then press the Enter key. If you want to edit a
specific line, just enter the number of that line and press Enter. Although it's not
documented, if you want to edit the next two lines, just type a semicolon (;) and press
Enter. Typing a pound sign(#) and then pressing Enter will take you past the last line of
your file; if you then type I and press the Enter key to go into insert mode, EDLIN will
let you append text to the end of your file.

Once you've edited a line, pressing the Enter key replaces the original version of the
line with the edited version. Once you've switched from command mode to edit mode,
if you want to abort the process and leave the original line intact, either press the Enter
key before making any changes, or press either Ctrl-Break or Ctrl-C. You can also press
Esc and then the Enter key to avoid making any changes.

When you're in edit mode you can use all the familiar DOS editing keys, such as F2
plus a character to display everything from the beginning of the original version of that
line to the first occurrence of the specified character in the line.

If you're not comfortable with the F2-plus-a-character technique, you can edit an
existing line simply by pressing F3 to have DOS type in the previous version of the line
automatically for you, and then use the backspace or left arrow keys to erase the part of
the line you want to change. Or instead of hitting F3 to reproduce the entire line, you can
hold down the Fl or right arrow keys to retype the previous version of the line one
character at a time. If you 're careful about it, you can use the Insert and Delete keys to
add and remove individual characters in the middle of the line, and then press F3 when
you 're done, to type in the rest of the line for you.

284 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

For example:

*

or:

*+

or:

*-

brings the current line (in this case line 1) into edit mode:

l:*line 1

*

Just pressing the Enter key by itself when in command mode brings the following line
into edit mode. In this case the current line is line 1, so the following line is line 2:

2:*line 2

*3

Specifying any valid line number brings that line (in this case line 3) into edit mode:

3:*line 3

*· I

Typing a semicolon and then pressing the Enter key brings the two following lines into
edit mode. In this case the current line is line 1 so the two following lines are 2 and 3.
This example assumes you then press the Enter key twice and didn't make any changes:

End Edit

2:*line 3

2:*
3:*line 3

3:*

Format: E

This command saves the file to disk and exits. (If you want to exit without saving any
changes you made, type Q to quit.) If you 're editing an existing file called OLD FILE. TXT

EDIT and EDLIN 285

and exit EDLIN with an E command, EDLIN will save the newly edited version as
OLDFILE.TXT and tack a BAK extension onto the old, unchanged version, renaming
the old version to OLD FILE.BAK. If you're just starting a file, EDLIN won't create such
a backup file. Each subsequent time you edit the file, EDLIN will get rid of the previous
BAK version of it and create a new BAK version. EDLIN makes sure there is a carriage
return/line-feed/end-of-file marker trio of characters (ASCII characters 13, 10, and 26)
at the end of any file it saves.

If your disk doesn't have enough room to save all the changes you made, EDLIN will
save as much as it can onto your disk, and discard the rest. If this happens, EDLIN will
give the partially saved version a $$$ extension, and it won't give the original version of
your file a BAK entension.

(See Quit Edit.)

Import Files

See Transfer Lines.

Insert Lines

Format: [line]I

This command lets you start adding text to a new file, or insert new text in an existing
file directly before the line you specified. When you type I, EDLIN assumes you want
to insert multiple lines, and will keep displaying the next higher line number each time
you press the Enter key. If you want to stop inserting lines, you have to press Enter to
lock in the last line you inserted, and then press either the Ctrl-Break or Ctrl-C keys to
abort the insertion process. If you don't press the Enter key at the end of your last line of
inserted text before aborting, EDLIN will think you want to abort this last line, and discard
it.

If you type I by itself and then press Enter, or type a period(.), and then I, and then
press Enter, EDLIN will start inserting text directly before the current line. If you type a
valid line number, then I, and then Enter, EDLIN will insert any text you type directly
before the line number you specified. If you type a pound sign (#) and then I and press
Enter, or a ridiculously high number such as 65000 and then I and Enter, EDLIN will
move to the end of your file and start appending text there.

If you type a semicolon(;), then I, and then press Enter, strange things will happen
depending on what you do next. In all cases, EDLIN will increase the number of the
current line by 1. If you press the Enter key without entering any text, EDLIN will give
you a second chance to insert text on that same line. Type in a line of text at that point
and EDLIN will accept it and move on to the next line. But if you enter text at the first
opportunity, EDLIN will accept it, make it look as if you have a second chance to enter
text on that same line, accept that as well, and put the second line before the first.

In fact, the insert function gets confused and will do all sorts of odd things if you follow
I with a plus(+) or minus(-) sign before pressing Enter, or type several lllls in a row
before you press Enter. None really helps you very much.

286 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

The following examples assume the new single line you insert is always "This is a new
line" and ignore the curious but useless variations such as I+ and ;I:

*.I

or:

*I

lets you insert new lines before the current line. In this case the current line is line 1:

l:*This is a new line
2:*"C

produces:

1: This is a new line
2:*line 1

3: line 2
4: line 3
5: line 4
6: line 5

*3I

lets you insert new lines directly before line 3:

3:*This is a new line
4:*"C

produces:

1 t line 1

2: line 2
3: This is a new line
4:*line 3
5: line 4
6:. line 5

*65000I

or:

*#I

lets you append new lines at the very end of your file, assuming your file is smaller than
65000 lines:

EDIT and EDLIN 287

6:*This is a new line
7:*AC

produces:

1: line 1

2: line 2
3: line 3

4: line 4
5: line 5
6: This is a new line

List Lines

Format: [Iine][,Iine]L

This command lists, or displays, one or more lines without changing which line
EDLIN thinks is the current one. If you type L by itself and then press Enter, EDLIN
will try to display a screenful (23) of lines, with the current line in the middle of the
screen. The 11 lines preceding the current line will appear above the current line, and
the 11 lines following the current line will appear below it. If EDLIN can't find 11
lines that precede the current line, it will try to add,extra lines at the end until it can
display a total of 23.

If you type one valid line number followed by L, and then press Enter, EDLIN will try
to display 23 lines beginning with the line you specified. Type a single line number, and
then a comma, and then Land press Enter, and EDLIN will do the same thing. Both
variations of this command tell EDLIN to display the specified line and up to 22 lines
that follow it.

If you type a comma, and then a valid line number, and then press Enter, EDLIN will
try to display the 11 lines preceding the current one, and all the lines following the current
one up to and including the specified line. However, if you try this and the specified line
is very far after the current line, EDLIN will end up displaying too many lines and will
scroll the display off the screen. Worse, if the specified line is more than 11 lines before
the current line, EDLIN will ignore your numbers and treat the command as if you had
simply typed in a naked L.

If you type two valid line numbers separated by a comma and followed by an L, and
then press Enter, EDLIN will display the lines starting with the first line number and
going up to and including the second line number. Since EDLIN uses a pound sign(#)
to mean "the last line in the file,·· you can view a 60-line file in one big continuous gulp
by typing:

*1,#L

to produce:

288 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

l:*line 1

160 lines total

60_J 60: line

The following examples assume a 60-line file in which each line is simply the word
"line" followed by the appropriate line number, and where line 30 is the current line:

*L

lists the 11 lines before the current line (30), plus the current one itself, and then the 11
lines after the current line. If EDLIN finds fewer than 11 lines before the current line it
will try to display more than 11 lines after the current line. However, if you had just
started to edit, and hadn't yet identified a current line, typing L would list the first 23
lines of your file.

19: line 19

~ 11 lines before the current line

29: line 29
30:*line 30 current line
31: line 31

~ 11 lines after the current line

41: line 41

*25L

displays the line specified (25) plus the 22 lines that follow it.

25: line 25

29: line 29
30:*line 30
31: line 31

47: line 47

*,25L

EDIT and EDLIN 289

displays lines starting 11 lines before the current one, and ending at the line specified
(25). Since the current line in this case is line 30, the display begins 11 lines earlier
(line 19). If you had just started to edit, and hadn't yet identified a current line, typing
,25L would list the first 25 lines of your file (scrolling the first few off the top of your
screen):

19: line 19
20: line 20
21: line 21
22: line 22
23: line 23
24: line 24
25: line 25

*25,28L

lists everything from the first specified line to the second specified line, inclusive:

25: line 25
26: line 26
27: line 27
28: line 28

See Page.

Merge Files

See Transfer Lines.

Move Lines

Format: [Iine],[Iine],IineM

This command moves a line or lines, in the range defined by the first two numbers, to a
position in your text directly before the third line number. The new location (the third
number) must be outside the range defined by the first two numbers, so you can't move
lines 3 through 5 to a position directly before line 4. If you omit either of the first two
numbers, EDLIN will assume you want to move the current line - but you '11 still need
to type in the commas, and you must specify a third (destination) line number.

For example:

*3,5,lM

290 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

moves all the lines from 3 through 5 to a new location directly before line 1:

l:*line 3

2: line 4
3: line 5
4: line 1
5: line 2

*5,5,lM

moves the single line 5 directly before line 1:

l:*line 5

2: line 1
3': line 2
4: line 3

5: line 4

*1,1,SM

or:

*I I SM

moves the single line 1 directly before line 5. Omitting the first two numbers tells EDLIN
to assume that you want to move the current line, which in this case is line 1:

1: line 2
2: line 3

3: line 4
4:*line 1
5: line 5

*1,1,6M

or:

*1,1,#M

or:

I ,#M

Page

EDIT and EDLIN 291

moves line 1 to the end of the file, since in this case line 1 is the current line and line 5
is the last line:

1: line 2

2: line 3

3: line 4
4: line 5
5:*line 1

Format: [Iine][,line]P

This command displays lines, and changes the number of the current line. The similar
List Line (L) command also displays lines - though according to slightly different rules
- but doesn't alter the number of the current line. When you use the P command without
any line numbers, EDLIN will display the 23 lines following the current line (but won't
show the current line itself), and will change the current line in the process. This is very
handy for examining your file a screen at a time; when you start EDLIN if you just keep
tapping P and Enter you'll page all the way through from beginning to end. You can't do
this with repeated L commands, since L won't change the number of the current line and
will keep displaying the same screen over and over. (See List.)

The following examples assume a 60-line file where each line is simply the word "line"
followed by the appropriate line number, and where line 30 is the current line. The
examples are identical to those presented for the List command, to make it easy for you
to compare the Page and List commands:

*1,#P

displays the entire file just as List (L) does, except that P will tum the last line in the file
into the current one, while L will leave the current line alone.

1: line 1

60~- 60 lines total

60:*line this becomes the new current line

*P

displays the line immediately after the original current line plus the 22 lines following it,
and will then tum the last line displayed into the new current line. While List (L) will
also display 23 lines, it will try to show the 11 lines before and after the current line, and
will not change the current line.

292 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

31: line

53:*line

31~
23 lines total

5 3 - this becomes the current line

*25P

displays the line specified (in this case it's line 25) and the 22 lines following it, and will
make the very last line displayed (in this case 25 + 22, or line 47) the current one. Here,
Page (P) works about the same as List (L) except that L doesn•t change the current line.

25: line 2 5

1 23 lines total

4 7 __J - this becomes the current line 47:*line

*,25L

produces only an "Entry error" message if the current line is 30, since in effect you ·re
asking it to display from lines 30-25, and EDLIN can•t page backwards. However, the
List (L) command can indeed handle such a command, since it tries to start displaying
text starting 11 lines before the current one, and ending at the line specified. So if the
current line is 30, the command ,25L will display from line 19 (30 - 11) through 25. If
the current line was line 1, both the ,25L and ,25P commands would display the first 25
lines of your file, and would end up scrolling the first few off the top of your screen. The
only difference would be that the P version would make line 25 the current line, while
the L version would leave the current line as line 1.

1: line 1

25~- 25 lines total if current line was 1

25:*line this becomes the new current line

*25,28P

lists everything from the first specified line to the second specified line, inclusive. In this
case P works just like L except that P will tum the last displayed line into the current one.

25: , ~ - - 25 .L .Ll!~

26: line 26
27: line 27
28:*line 28

EDIT and EDLIN 293

Note: The EDLIN P (Page) command displays just 23 lines when arguments are not
specified. By changing the line count byte it's possible to have EDLIN display any
number of lines from 1 to 128. For instance, since 43-line screens are becoming more
popular, you may want to patch EDLIN so the P command displays 41 lines rather than
just 23.

The hex offset address of the line count byte varies according to the DOS version:

Version Off set
2.0 700
2.1 700
3.0 102B
3.1 105C
3.2 105C
3.3 105C

(DOS 4.0 handles this differently.)
The default value at this address is 16, since this is part of the instruction:

ADD DX,+16.

The value of this byte cannot exceed 7F hex, unless you want your whole document to
streak past. Values lower than hex 16 will cause the P command to display fewer than
23 lines. Note that the actual number of lines EDLIN will display is one greater than the
value at this byte.

Screen
Size

25
35
43

Hex Value
at Offset

16
20
28

To patch EDLIN so the P command lists 41 lines, be sure DEBUG.COM i$ handy. Make
a copy of EDLIN.COM called EDLIN41.COM. Then use the E command to make the
change at the address appropriate for the DOS version you 're using.

For versions 3.1 through 3.3 the process would look like:

C>COPY EDLIN.COM EDLIN41.COM
1 File(s) copied

C>DEBUG EDLIN41.COM
-E 105C
30F9:105C 16.28
-w
Writing 1D66 bytes
-Q

294 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

Once you've copied EDLIN.COM to EDLIN41.COM, DEBUG prints the hyphens, this
line (the 30F9 right before the colon is a hex number that will vary from system to system
and doesn't matter here):

30F9:105C 16.

and the "Writing 1D66 bytes" message. You type everything else.
See List.

Quit Edit

Format: Q

This command lets you abort a file - quit EDLIN without saving any changes you may
have made - and return to DOS. To make sure you don't lose your work inadvertently
by typing Q when you don't mean it, EDLIN displays an "Abort edit (Y/N)?" message
to allow you to confirm the action. If you type Y, EDLIN will quit and all your changes
will be lost. Type N (or any character other than Y or y) and EDLIN returns you to
command mode with your file intact.

Read In Files

See Transfer Lines.

Replace Text

Format: [Iine][,Iine][?]R[oldstring][<F6>newstring]

This command replaces one string of characters with another. EDLIN can replace strings
in just one line or throughout your entire document, with confirming prompts or without,
and can handle multiple occurrences of a string in the same line. (Each time it replaces
a string it will print the entire revised line, so if it's making multiple changes in the same
line you'll see that line onscreen several times.) EDLIN identifies the last line that it
changes as the current line.

The R command can replace one single character or a whole series of words, but as
with the Search Text (S) command, the matches have to be exact. If you tell EDLIN to
find every "the" it will skip over "THE" and "The" - but it will find imbedded strings
such as the letters t-h-e inside "them" and "whether" and "Goethe." If you want to find
whole words only, you can try putting a space on either side of the word when you specify
it in the R command. This will work most of the time with a word like "the" which is
almost never followed by punctuation. But many words could be followed by commas,
periods, or question marks, so this technique is far from foolproof. And since EDLIN

ED/Tand EDLIN 295

can't ignore cases, you may have to search through once for each "the" and repeat the
command to catch any "The" that happens to start a sentence. If you do try putting a space
on either side of the old string, remember to put spaces on either side of the replacement
string as well. Note that quotes are used here to make the examples clearer - don't use
quotation marks in the actual EDLIN commands unless a quote mark is indeed part of
the string you're replacing.

You can ask to preview each potential replacement, with the change already in place,
by putting a question mark (?) before the R. If you do this, EDLIN will show you what
the replacement would look like and then print a very terse "O.K. ?"prompt. If you type
either Y or y or press the Enter key, EDLIN will make the change. If you type any other
character EDLIN will leave that particular string alone. In either event it will then
continue searching. If you use this prompt feature, make sure you put the ? before the R,
not after it, since EDLIN interprets anything after the Ras part of the old string you want
to replace, and will end up hunting for a string beginning with a question mark.

EDLIN uses a Ctrl-Z to separate the old string from the new one. You can generate a
Ctrl-Z either by tapping once on the F6 function key; by holding down the Ctrl key and
typing Z; or by holding down the Alt key, typing 26 on the number pad (not the top row
keys), and then releasing the Alt key. Be sure not to put any extra spaces on either side
of the Ctrl-Z or EDLIN will interpret them as part of the string to replace.

You may use this feature to delete strings of text. After the R in the command, simply
enter the old string you want deleted, press the F6 function key, and then press Enter
instead of specifying a new string. In effect you 're telling EDLIN to replace something
(the old string) with nothing. If you try this, be sure to consider any leading or trailing
spaces around the string you're deleting.

If you omit the first line number, EDLIN will start trying to replace strings in the line
immediately following the current line. Omit the second line number and EDLIN will
scan through to the end of the document, or at least as much of it as is currently in memory.
Omit both line numbers and EDLIN will start the replacement process with the line
following the current one and stop only when it reaches the final line in memory.

Each time you specify a Search string or a Replace string, EDLIN stores it in a special
buffer. If you omit either string the next time you issue the command, EDLIN will use
the strings from the previous command. If you wanted to find every occurrence of the
word ''flower" and replace it with "Zantedeschia aethiopica" between lines 1and50 of
your document, you would type:

*1,SORflowerAZZantedeschia aethiopica

(where AZ represents a Ctrl-Z character, not a A and a Z). If you then wanted to replace
the same old string with the same new one in lines 51 through 100, all you'd have to type
is:

*51,lOOR

If you omit the first string (the old text that you want to replace), EDLIN will look in its
buffers and try to dredge up either the previous initial R (Replace Text) string, or the

296 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

previous S (Search Text) string, whichever is more recent. But if you omit the second
string (the new text that replaces the old), EDLIN will try to hunt down the last R string.

Since EDLIN can't work with lines longer than 254 characters, it won't be able to
handle such lengthy lines when you're replacing a short string with a longer one.

The following examples assume the file is the simple five-line file used above, and
that the current line is line 1. And don't forget that the AZ represents a Ctrl-Z character,
not a A and a Z. See the text above for the three ways to generate this character:

*Rline"ZLINE

starts the replacement process on the line following the current one (line 2 in this case,
since the current line is line 1), and replaces each "line" it finds with a new "LINE" string.

2: LINE 2
3: LINE 3
4: LINE 4
5: LINE 5

*1,3Rline"ZLINE

limits the replacement process to all lines between 1 and 3, and changes each "line" it
finds there to "LINE."

1: LINE 1
2: LINE 2

3:*LINE 3
4: line 4
5: line 5

*,3Rline"ZLINE

since no beginning line is specified, EDLIN starts the replacement process with the line
following the current one. The current line is line 1, so this starts at line 2 and ends with
line 3, changing each "line" it finds to "LINE."

1: line 1
2: LINE 2

3: *LINE 3
4: line 4
5: line 5

*1,#Rline"Z

searches through the entire document from line 1 to the final line loaded in memory and
replaces every "line" string with a null string, effectively deleting the word "line"
throughout the document.

EDIT and EDUN 297

l:* 1
2: 2
3: 3
4: 4

5: 5

*1,#?Rline"ZLINE

searches through the entire document from line 1 to the final line loaded in memory and
asks whether or not to replace every occurrence of "line" that it finds with "LINE ... When
EDLIN prompts the user in this way it displays what the replacement would look like if
the user answered the prompt with Y or y or Enter. It interprets any other character
keypress as a No. In the example below, the user responded to the five prompts with: Y
Ny A Enter. EDLIN replaced strings in the first, third, and fifth lines, but not the second
and fourth, since only Y or y or Enter tells EDLIN to go ahead with the change.

l:*LINE 1
O.K.? y

2: LINE 2
O.K.? N

3: LINE 3
O.K.? y

4: LINE 4
O.K.? A

5: LINE 5
O.K.?

1: LINE 1
2: line 2
3: LINE 3
4: line 4

5:*LINE 5

Search Text

Format: [line][,line][?]S[string]

This command scans through the file for occurrences of a specified string. Just about all
the tricks and caveats that apply to the Replace Text command also apply here. Since
searches are case-sensitive you have to specify search strings exactly. You can often
isolate words by specifying spaces before and after. If you omit line numbers EDLIN
starts with the line immediately following the current one and searches until it fmds the
last line in memory. Once you've specified a search string using the S or R commands,
you can repeat the search without having to type in that string.

298 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

And, as with the Replace command, you can insert a question mark(?) in the command
to have EDLIN prompt you by asking "O.K. ?"when it finds a match. At that point if you
do anything other than type Y or y or just press Enter, EDLIN will search for the next
occurrence of the string. If you don't use a question mark, EDLIN will stop the first time
it finds the string and make the line with the string the current one. If you do use a prompt
EDLIN will tum the first line you accept into the current one.

EDLIN will print a "Not found" message if it can't locate the string you specified, or
if you ask it to prompt you and it finishes searching through a range without having you
accept any of the matches it uncovered.

It's possible to add a second command to Search Text, by tacking a Ctrl-Z and then
the new command (with no intervening spaces) onto the end. For instance, if you knew
you had used the word "banana" only once in your document and wanted to see the line
it was in ~long with the 23 lines following it, you could issue the command:

1,#SbananaAZP

and EDLIN would execute a P (Page) command as soon as it found the word banana.
The following examples assume the file is the simple five-line file used above, and

that the current line is line 1:

*S3

searches from the line after the current one to the last file in memory for the first
occurrence of the string "3." Here the current line is line 1, so the search begins at line
2:

3: line 3

*Sline

searches from the line after the current one to the last file in memory for the first
occurrence of the string "line." Here the current line is line 1, so the search begins at line
2:

2: line 2

*lSline

or:

*1,Sline

or:

*l ,. #Sline

EDIT and EDLIN 299

searches from line 1 to the last file in memory for the first occurrence of the string "line."

l:*line 1

*,3Sline

since no beginning line is specified, EDLIN starts the replacement process with the line
following the current one. In this case the current line is line 1, so this starts at line 2. As
specified, EDLIN would continue searching until line 3, but it stumbled over the string
it was looking for in line 2.

2: line 2

*l?Sline

searches through the entire document from line 1 to the final line in memory for
occurrences of the string "line" and asks whether each is the one the user wants. In the
example below, the user responded to the four prompts with: N n A Enter. EDLIN will
stop searching only when it reaches the end of the range specified, or when the user types
a Y or y or presses Enter in response to the "O.K. ?" prompt. In this case, the user didn't
respond positively until the fourth request:

l:*line 1

O.K.? N

2: line 2
O.K.? n

3: line 3
O.K.? A

4: line 4
O.K.?

See Search Text.

Transfer Lines

Format: [Iine]T[d:]filename

This command merges an existing file from disk into memory directly before the
specified line, or before the current line if no line number is specified.

The following examples assume that the current line is line 1 and that you have a file
on drive A: called ONELINE.TXT that contains the single line "IBM keyboards are the
best:"

*3TA:ONELINE.TXT

300 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

merges the file ONELINE.TXT from drive A: into the current file directly before line 3.

1: line 1

2: line 2
3:*IBM keyboards are the best
4: line 3
5: line 4
6: line 5

*TA:ONELINE.TXT

merges the file ONELINE.TXT from drive A: into the current file directly before the
current line. In this case the current line is line 1, so EDLIN reads the new file in at the
very beginning of the existing one.

l:*IBM keyboards are the best
2: line 1
3: line 2

4: line 3

5: line 4
6: line 5

*#TA:ONELINE.TXT

merges the file ONELINE.TXT from drive A: into the current file at the very end of the
current file.

1: line 1
2: line 2

3: line 3
4: line 4
5: line 5
6:*IBM keyboards are the best

Write Lines

Format: [n]W

This command writes lines to disk to provide space for EDLIN to load an additional part
of a file that was originally too large to fit into memory. If you tried to edit a file that
EDLIN couldn't load in one gulp, you have to edit t.lie part t.liat it could load, use this
command to write the beginning of the file to disk and automatically renumber the
remaining part of the file, and then read in more of the file from disk using the Append
(A) command. This command won't work if more than 25 percent of memory is available.

EDIT and EDLIN 301

If needed, EDLIN will write lines to disk starting with line 1 and continue until 25 percent
of memory is free. (See Append Lines.)

Using EDLIN
Be careful when mixing EDLIN output with redirected DOS output. For instance, if you
redirect the output of ECHO to create a sample TEST.TXT file:

ECHO Line 1 > TEST.TXT
ECHO Line 2 >> TEST.TXT
ECHO Line 3 >> TEST.TXT

and then enter:

TYPE TEST.TXT

to see what's in the new file, DOS will display:

Line 1
Line 2
Line 3

Load TEST.TXT into EDLIN and save it with the E command. Now append another line
onto the file:

ECHO Line 4 >>TEST.TXT

and do another TYPE command:

TYPE TEST.TXT

and all you '11 see is the first three lines:

Line 1
Line 2
Line 3

What happened here was that EDLIN added an end-of-file marker to the file, and the next
redirection command appended the line after that end-of-file marker. Line 4 was still in
the file, but was located after the end-of-file marker. When the DOS TYPE command hit
the end-of-file marker it quit before it reached the new line. DOS lets you get around this
by using a /B switch (the /B stands for binary since binary, or nontext, files treat ASCII
character 26 as just another character and not a signal to quit).

302 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

Programs written for DOS should not really need an end-of-file marker because the
exact size of the file is contained in the directory entry. This was not always the case.
Before DOS, the most popular eight-bit microcomputer operating system was CP/M,
which stored files in blocks of 128 bytes. The CP/M directory entries indicated only the
number of 128-byte blocks and not the exact size of the file. ASCII text editors needed
an end-of-file marker to determine what was actually part of the file and what was junk.
When you redirect standard output to a file, DOS does not append an end..,of-file marker
to the file it writes. And if the file already contains an end-of-file marker, DOS does not
remove it. However, EDLIN always adds an end-of-file mark to files it saves. And the
DOS TYPE command always stops at the first end-of-file marker it finds.

To see whaf s going on, add a /B when you load the file into EDLIN:

EDLIN TEST.TXT /B

(Some versions of EDLIN contain a bug that won't let EDLIN recognize a lowercase /b
switch. To be safe, make sure any /B you enter is a capital letter.) This tells EDLIN to
load in the entire file regardless of imbedded end-of-file marks. You'll see the whole file
with the fourth line if you do an L (list) in EDLIN. You can also see the whole file by
entering:

COPY /B TEST.TXT CON

or:

COPY TEST.TXT CON /B

both of which do a binary mode copy of the file to CON (the screen, or console). The
end-of-file markers show up as little right arrows.

But even if you use EDLIN in binary mode, it will still append an end-of-file marker
to the end of the file. To get rid of it you could execute the following commands right
after you exited EDLIN:

TYPE TEST.TXT >TEMPFILE
DEL TEST.TXT
REN TEMPFILE TEST.TXT

The TYPE command normally displays the file TEST.TXT up to (but not including) the
end-of-file marker. Redirecting the output of this TYPE process into a temporary file like
TEMPFILE will copy everything in the TEST.TXT file except the end-of-file marker.
Then just delete the original TEST.TXT file, rename the new TEMPFILE to TEST. TXT,
and then delete TEMPFILE. You could automate the whole process with a batch file:

ECHO OFF
IF %1!==! GOTO OOPS
EDLIN %1

TYPE %1 >TEMPFILE
DEL %1
REN TEMPFILE %1
GOTO END
:OOPS

EDIT and EDLIN 303

ECHO Enter a f ilenarne after %0
:END

You can try using EDLIN to remove end-of-file characters one at a time. If there aren't
too many in your file you may be able to get away with a global replacement operation.
Since you can't specify a Ctrl-Z directly, you have to enter it as Ctrl-V Ctrl-Z, which
looks like "V"Z.

However, EDLIN will choke if you try a R (Replace) command and the end-of-file
markers are too thick. If this happens, use DEBUG to ferret out the offending ASCII 26
characters. (The process described here is for files less than 64K in length; for longer
ones you '11 have to work with the CX and BX registers. See Chapter 9 on DEBUG for
details.) DEBUG works exclusively in hex, so use the hex lA notation for decimal ASCII
26. First, make a copy of the file, and work with the copy of the file rather than the original.
If you make a mistake you can start the whole process again.

Load the file into DEBUG. See how large it is by typing RCX and pressing Enter twice.
Then take the hex number that DEBUG prints out in response, and plug it into a S (Search)
command. The whole process will look something like:

C>DEBUG TESTFILE
-RCX
ex OOAC

-S 100 LOOAC lA
30DD:Ol02
30DD:Ol05
30DD:0108
30DD:OlOB
30DD:OlOE
30DD:Olll
30DD:Ol14
30DD:Ol17
30DD:011A
30DD:01AB
-E 0102 20
-w
-Q

This uses a file called TESTFILE.
You type RCX and press Enter twice.
DEBUG responds with a file length in

hex; here it's OOAC.
Plug the length into this S command.

These are all addresses of hex lA end-of
tile markers DEBUG found.

This replaces the first lA with a space
(hex 20); W writes it to disk.
And Q quits.

The example used only one E command to fix just the first occurrence of the hex lA. To
get rid of all the end-of-file markers you'd have to repeat the E command with every
address DEBUG reported.

304 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

Note: If you 're good at hex, and you see that all the addresses of the lA characters are
in one continuous block, you can use a single DEBUG F (Fill) command to repair the
damage. So if you see something like:

30DD:10C9
30DD:lOCA
30DD:10CB
30DD:10CC
30DD:lOCD
30DD:10CE
30DD:lOCF

You can issue the command:

F 10C9 lOCF 20

which will fill the range of addresses from 10C9 (the first one on the list) to lOCF (the
last one on the list) with hex 20 characters - spaces. Then type W (and press Enter) and
Q (and press Enter) to save the changes. However, in the main example above, the
addresses aren't in one continuous block.

Ignore the four digits to the left of the colon in the long list of addresses DEBUG prints
out (here it's 30DD). This will vary from system to system and doesn't matter here. The
four hex numbers to the right of each colon are the DEBUG offsets of each hex lA
character (remember, DEBUG works in hex - a hex lA is the same as a decimal 26).

Then, use the E command with each address to replace the lA with a 20 (a hex 20 is
a space):

E 0102 20

and work your way through. When you 're done, enter W to write the changes to disk and
Q to quit. Again, work only on a copy of your file, not the original. And note that the
above procedure is for files 64K or less in length only.

ECHO Version Madness
If you created batch files before DOS version 3.1 and used the trick of printing a blank
line by following the ECHO command with two spaces, when you upgrade to a newer
DOS version these ECHO commands will simply print "Echo is off' messages rather
than blank lines. A batch file and EDLIN can fix the problem. ECHO will print a blank
line if you follow it with a space and then an ASCII 255 character rather than with two
spaces. ASCII 255 shows up as a blank on the PC screen, but to DOS, it's nonblank, so
you won't get the "Echo is off' message. You can enter an ASCII 255 by holding down

EDIT and EDLIN 305

the Alt key, typing 255 on the number pad (not the top row number keys), and then
releasing the Alt key.

Some text editors and word processors will have trouble with this ASCII 255, but the
DOS EDLIN editor can handle it without any problems.

To fix the double space problem with EDLIN, use the R command to replace the final
space with the a character 255,by entering this line:

1. Type: l,RECHO (with two spaces after the ECHO).
2. Press the F6 function key.
3. Type just: ECHO.
4. Generate a character 255 by holding down the Alt key, typing 255 on the number

pad, then releasing Alt.

The line looks like this:

*1,RECHO "ZECHO

The first number tells EDLIN to start at line 1. Since you didn't enter a second number
after the comma, this tells EDLIN to repeat the operation on every line loaded in memory.
The R is EDLIN·s Replace command, and here ifs followed immediately by the old
string - ECHO and two blanks. When you press the F6 key after entering the old string,
you ·n see a "Z. Then type the new string - ECHO followed by a blank followed by the
ASCII code 255. Character 255 will appear as a blank on your display. EDLIN·s search
and replace is case-sensitive, so you •ll have to repeat the command for occurrences
ECHO, echo, and Echo.

Since EDLIN gets keyboard input through DOS (unlike most word processors and text
editors), you can use it with redirection of standard input. Begin by creating a small script
file (in EDLIN, of course) called REPLACE that looks like:

1,RECHO <F6>ECH0<255>
1,REcho <F6>Echo<255>
1,Recho <F6>echo<255>
E

To enter the above four lines, first enter:

I

to put EDLIN into Insert mode. Then type each line, but press the F6 key where each one
has an <F6> and generate a character 255 where each has a <255>. Be sure to observe
the capitalizations carefully.

If you ever have to edit REPLACE after you create it, use the /B option with EDLIN.
Since F6 is the same as a Ctrl-Z, which normally means "end of file," EDLIN will stop
reading the file at the first Ctrl-Z unless it has the /B flag.

306 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

After typing the fourth line (with the solitary E), press Ctrl-C to get back to command
mode and then enter E to save the file and quit.

To change a particular batch file (here called OLDFILE.BAT), all you have to do is
enter the command:

EDLIN OLDFILE.BAT < REPLACE

DOS will take its input from REPLACE to do the search-and-replace operations auto
matically for you.

If you have lots of batch files with two spaces after ECHO, you can change them all
with a pair of one-line batch files. First, create a one-line batch file called CHGBAT.BAT:

EDLIN %1 < REPLACE

Then create another one-line batch file call CHGALL.BAT that looks like:

FOR %%X IN (*.BAT) DO COMMAND /C CHGBAT %%X

If you run CH GALL.BAT, it will execute CHG BAT .BAT for every batch file on the disk
(or subdirectory). Each time CHGBAT runs, it loads another batch file into EDLIN and
uses REPLACE for the keystrokes to do the search-and-replace.

One interesting side effect of this process is that some batch files get edited twice.
EDLIN renames the old version of an edited file with an extension .BAK, and creates a
new directory entry to save the new version. Because of this, the FOR command in
CHGALL.BAT stumbles over the file a second time. Note that CHGALL.BAT and
CHGBAT.BAT will themselves be edited by EDLIN during this process. Neither of these
peculiarities should cause a problem.

DEBUG

Don't be put off by the name or the formidable set of commands: DEBUG is a serious
computer user's best friend. Those of you who are already familiar with DEBUG may
wish to go directly to the summary of commands in the second part of this chapter.

IBM and Microsoft need some real help when it comes to being friendly. They
shouldn't have called this wonderful program DEBUG, which sounds as if it's for
programmers only and that it involves something that's broken. fustead, they should have
named it something like POWERUSR, or SLIKTOOL, or DOITALL. Well, maybe not.

It's almost as if these two companies tried to scare users away. Okay, DEBUG can be
used as a high-level tool for fixing broken programs. But most real programmers have
moved on to more powerful debugging aids produced by Microsoft and others. IBM
would like us to believe that DEBUG is there mostly to "provide a controlled testing
environment so you can monitor and control the execution of a program to be debugged"
and "execute object files." Lost in the shuffle is a fragment admitting that it can "load,
alter, or display any file." Totally ignored is its crude but useful ability to assemble and
unassemble code - to translate assembly language instructions used by programmers
into the machine language your CPU speaks, and back again.

Actually, DEBUG is for two sets of users. It's true that a handful of its commands are
only for hard-core programmers who really need to trace though the underlying chip
instructions one step at a time, or set breakpoints so that a program will screech to a halt
and display the contents of the main CPU registers, or suck in data from a computer port.

But to the average power user, DEBUG is the ultimate program generator, analyzer,
and customizer. Once you learn its few simple rules you can create short, powerful new
programs and add flash to existing ones.

Unfortunately, because DEBUG is so incredibly powerful, it's also incredibly danger
ous. (And, like every other part of DOS, it's frequently counterintuitive.) It's sort of like
a carpenter's shop- filled with sharp tools you can use to build or fix just about anything
safely, so long as you wear goggles and watch out for your fingers.

307

308 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

Most users are smart enough to work with copies of their programs rather than the
originals when trying any sort of customization, so they won't end up ruining a $500
program with an errant keystroke. But certain madcap copy protection schemes can cause
trouble because the programs they "protect" often don't play by the rules even if you and
DEBUG do. Worse, because DEBUG lets you write information to absolute addresses
on your disk rather than forcing you to have DOS take care of this safely for you, you
can wipe out an entire hard disk with one simple erroneous command.

The general DEBUG safety rules are:

1. Always work with copies of your programs, never the originals.
2. Don't fool around with copy protected programs unless you 're positive you know

exactly what you're doing.
3. Whenever you are about to write sector information (with the W command) stop and

triple-check your typing and your intentions. If you had read information from drive
B:, had changed it slightly, and are about to write it back to the same drive, be sure
your drive specification is correct. DEBUG uses a 0 to represent drive A:, a 1 to
represent drive B:, and a 2 to represent drive C:. If you're trying to alter the disk
directory, or (heaven forbid) the File Allocation Table (FAT) on drive B:, and it's
late at night, and you inadvertently write the new information to drive 2, well, that's
what backups and four-letter words (like "oops") are for.

4. If you have any doubt whatsoever about what you 're doing, get back to the DEBUG
prompt (by hitting Ctrl-Break or Ctrl-C), type Q on a line by itself to quit, and then
press the Enter key to return to the main DOS prompt. You can always go back later
and try your DEBUG work again. If you're at all hesitant about a change you made
or a value you entered, make absolutely sure that you don't enter the W (Write)
command. And avoid using the DEBUG G (Go) command to execute the program
you're fiddling with, since unpredictable things can happen if you haven't reset all
the registers properly, or if you've entered some but not all the changes you're
working on.

5. While it may be tempting to change real gut-level aspects of the program, such as
timing settings, again, don't, unless you're an expert. It's true that you can goose up
the performance of your system by altering table settings that control such things as
floppy disk head movement. It's also true that putting the wrong value in the wrong
part of a table can send a disk head mechanism careening into someplace noisy and
destructive.

6. There's a saying that "software can't destroy hardware." Unfortunately, it's not true.
Apart from sending sensitive disk drive mechanisms into never-neverland, it's
possible to blow out monitors or transformers. Again, if you simply follow reliable
instructions to the letter and heed all of the warnings, you should be safe.

If you're in doubt about a particular DEBUG trick, don't try it. We hear lots of horror
stories where users say "I know the instructions said 'for IBM hardware only• but my
salesman told me this Yamagazi AT was virtually identical to an IBM." Or where the
user says "I know it said 'for color monitors only' but my monochrome was a color -
green. Now it's black."

DEBUG 309

Every DEBUG technique discussed in this book has been tested extensively on IBM
equipment. However it is impossible to test every technique presented here on every
single nonstandard system, given all the combinations and permutations on the market.
Again, if you're not using an IBM system and you have any doubts whatsoever, don't
even think of trying these!

Now that that's out of the way, we have to mention one more nasty thing - DEBUG
works exclusively in hex. Hexadecimal notation is pretty basic stuff, and it's not hard to
master. If you're uncomfortable with it, see the earlier chapter on hex and binary.

Addresses
The smallest four-digit hex number is 0000 (same as decimal 0). The largest is FFFF
(same as decimal 65,535). This means that four hex digits can represent 65,536 different
decimal values (1 through 65,535, plus 0). Decimal 65,536 is often abbreviated as 64K.
lK is equal to2"10, or 1024(not1000, as some users think). 64 * 1024 = 2"16, or65,536.

The PC can address one megabyte of memory. One megabyte is equal to 2 "20, or
decimal 1,048,576. 16 * 65,536 is also equal to 1,048,576. The lowest address is address
0. The highest is 1,048,576.

For many common tasks it's easier and quicker to work with smaller numbers rather
than larger ones. Anyway, the original PC came with a 16-bit chip, and the biggest number
this chip could address "directly" was 2"16, or 65,536.

But since 65,536 is l/16th of 1,048,576, being able to handle only 65,536 addresses
directly meant working with only l/16th of the available memory at any one time. To
give users access to the rest, IBM designers employed relative addressing. They chopped
the one megabyte into 16 chunks called segments, each 64K long. Once you specified
which of the 16 segments you wanted to work with, you could address any of the 65,536
bytes in that segment directly.

If you have to know what's at address 5, you can tell DEBUG simply to report the
value at address 5. Because you didn't mention any particular segment, it will tell you
the value at address 5 of whatever segment you 're in at the time. If you want to look at
address 5 in another segment, you have to specify both the address and the segment you
want.

Manuals sometimes provide maps that show the one meg of memory divided neatly
into 16 even chunks 64K apart from each other, starting out:

address OOOOH (decimal 0000)
segment 0

address lOOOH (decimal 65536)
segment 1

address 2000H (decimal 131072)
segment2

address 3000H (decimal 196608)

310 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

It doesn't really work like that. Segments can have any starting absolute address from
0 to 1048560, so long as the address is evenly divisible by 16. So 16 and 32 and 524288
are all valid absolute addresses, but 1 and 17 are not. And segments can overlap, either
partially or totally.

Relative, or segmented, addresses are usually expressed as a pair of two four-digit hex
numbers separated by a colon:

XXXX:YYYY

The XXXX represents the segment. The YYYY stands for the offset into that segment.
Once you've mastered hex, start putting it into action. DEBUG.COM is usually on the

DOS Supplemental or Operating disk, depending on the version. If you have a hard disk,
be sure to copy it into your main DOS subdirectory, and be sure you're using a PATH
command that includes this DOS subdirectory. This will let you use DEBUG anywhere
on your hard disk. If you don't have a hard disk, you should put DEBUG.COM on your
main bootup or utilities disk and keep it handy at all times.

The DEBUG prompt is simply a hyphen hugging the left edge of your screen:

All of DEBUG's commands are single letters. You may enter them in upper- or
lowercase, or a mixture of both. The examples here will use uppercase text to avoid
confusing 1 with "ell.·· And you don't have to separate the single-letter commands from
the parameters that follow them. Typing:

RCX

to see what's in the CX register (this will be covered shortly) is the same as typing:

R ex

Similarly, you can use either:

D120

or:

D 120

to display the values of the 128 bytes of memory starting at offset i20H (again, we'U get
to displaying memory a bit later).

When entering a lot of information or making extensive changes using DEBUG, it's
often best to create pure-ASCII scripts and then redirect these scripts into DEBUG. DOS
versions 2.0 and later treat such redirected files as if they were actual keystrokes.

DEBUG 311

Scripts are handy because they make it easy for you to proofread your typing before
executing actual DEBUG commands. If you find a typo in your script it's a whole lot
easier to correct it with a word processor or EDLIN than to end up with a real mess that
you created while in DEBUG because you typed something incorrectly.

Scripts are also valuable because in some cases you can add nonexecutable comments
that DEBUG ignores but that can remind you much later of what you did. And if you
store your scripts on disk, you can cannibalize them and use them to create other slightly
different scripts. They're also handy for transmitting via modem. Many telecommunica
tions services work with text files only, and won't let you send programs. But you can
send scripts, since they're just ASCII files, and have the recipient redirect these scripts
into DEBUG to create the program you wanted to send.

Redirectable scripts have to be pure-ASCII files, without any extra word processing
formatting commands imbedded in them. The easiest way to create them is with a
pure-ASCII editor like SideKick's notepad, or with a word processor that can export DOS
files (such as WordPerfect or Word), or with a word processor that has a built-in ASCII
mode (such as WordStar in nondocument mode). EDLIN isn't bad for shorter scripts,
and you could even use the DOS COPY CON command.

DEBUG doesn't execute a command until you press the Enter key. So any script you
create has to have a carriage return at the end of every line - especially the last one,
which is always Q on a line by itself to quit. If you don't end every script file with a Q
that has a carriage return after it, redirecting it will hang your system. So be sure you
press the Enter key at the very end of any DEBUG script, or you'll have to reboot.

Most DEBUG commands perform just one task and then return you to the DEBUG
prompt. If the task takes too long to execute (displaying the contents of a huge chunk of
memory, for instance), you can hit Ctrl-Break or Ctrl-C to interrupt it and return to the
DEBUG prompt. If you 're using the DEBUG mini-assembler to tum assembly language
statements into machine readable code, press the Enter key twice after you enter your
final statement, to return to the DEBUG prompt.

Since many DEBUG scripts contain assembly language commands and statements,
you can simulate pressing the Enter key at the end of the final statement by leaving a
blank line after that statement. If you don't do this, DEBUG will try to interpret everything
that follows as additional assembly language statements. If you try typing in the example
scripts that follow, be sure to copy them exactly as they appear, blank lines and all.

Here's an example of a DEBUG script file, called BEEP.SCR:

N BEEP.COM
A
MOV DL, 7
MOV AH,2
INT 21
RET

RCX
7
w
Q

gives the file a name

ASCII 7 is the beep character
the DOS "display output" function
kicks DOS into action
return to DOS - next line is blank!

312 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

DEBUG ignores any text following semicolons, and the semicolons themselves.
They're included just to remind you later what the program is doing. You have to be
careful when you use them, since DEBUG may interpret such comments as part of a
command to execute, and get thoroughly confused. It's pretty safe to use them with
assembly language instructions like the ones above, and very unsafe when you 're entering
single letter commands.

You can type this script in using any of the tools mentioned above. If by some crazy
circumstance you don't have a word processor handy and refuse to learn EDLIN, you
could create the script by adding a COPY CON BEEP.SCR line before the first "N
BEEP.COM" line, and pressing Enter, then the F6 function key, and then Enter when
you're done.

In any case, be sure to leave the blank line above RCX. You can do this by pressing
the Enter key twice after RET. And double check that you press the Enter key at the very
end, after the Q. If you did, the cursor will be on the line below the Q. Call the file
BEEP.SCR. When you 're all done, get back to your main DOS prompt and type:

DEBUG < BEEP.SCR

DOS will feed the BEEP.SCR commands into DEBUG a line at a time, and you'll be
able to see DEBUG processing them one by one. If everything goes the way it should,
near the bottom of the screen you'll see the message:

Writing 0007 bytes

If you make a typing mistake, DEBUG will show you where the trouble is by pointing
to it and printing the word Error. If you had typed "MOV LD,7" instead of "MOY DL,7,"
you'd see:

33DB:0100 MOV LD,7
" Error

If DEBUG detects such a syntax error, it may or may not continue and create the file,
depending on the severity of the problem. Watch the screen closely as DOS redirects the
script file into DEBUG. If you see any error messages do not try to execute the program
you were trying to create! Instead, erase any erroneous file it may have created, check
your typing, and try again.

If you type the BEEP.SCR file correctly and redirect it properly into DEBUG, you'll
end up with a seven-byte program on your disk called BEEP.COM. Type BEEP to run
it and DOS will beep. Here's how it works:

The first "N BEEP.COM" line tells DEBUG to give the file a name. DEBUG can't
create a file unless you specify a filename. Since you want to create an executable file,
you have to give the file a COM or EXE extension. When creating any kind of files with
DEBUG, use COM extensions only.

The "A" command turns on DEBUG's mini-assembler, which will convert any
assembly language statement(s) that follow into a machine-level form your CPU can

DEBUG 313

readily understand. If you haven't used the Assemble command previously and you enter
an A without specifying an address after it, DEBUG will start assembling these machine
level instructions at address 100. If you're using the A command more than once in a
particular DEBUG session, or you want to have DEBUG put the assembled code at an
offset higher than 100, be sure to include the proper addresses.

The next four lines are the actual assembly language statements. "MOV DL, 7" moves,
or puts, the value 7 into the register DL. "MOV AH,2" moves, or puts, the value 2 into
the register AH. INT 21 is the main interrupt that kicks DOS into action. When your
program invokes INT 21, DOS looks at the value in the AH register to figure out which
of its dozens of function calls it's supposed to execute. Other values in other registers
provide the raw material for the specific DOS function call to process, or narrow how
some of the more flexible function calls should act. In this example, the value of 2 in
register AH tells DOS to use function call 2 to print one character onto the screen. When
you trigger DOS with an INT 21 and it sees a 2 in AH, it looks in the DL register for a
number and displays onscreen the ASCII character represented by that number. Printing
an ASCII 7 character beeps. As it's used here, the final "RET" will jump control of the
system back to COMMAND.COM when the program finishes executing.

Registers are tiny storage areas inside the main CPU chip, and virtually every
instruction or slice of data in your computer either passes through these registers or is in
some way controlled by what's temporarily stored there. Chips in the Intel 8088 family
contain 14 registers, each of which is 16 bits (two bytes) long. Four of these are general
purpose, or scratch-pad registers: AX, BX, CX, and DX. Each of these four two-byte
scratch-pad registers can be divided into high and low bytes. Remember, one byte
contains eight bits. Two bytes together form what's called a word, so each of these 16-bit
registers is actually a word. And each word has high and low halves, the way the decimal
number 27 does - in this case the 2 would be the high half since it's actually 2 x 10 (or
20), while the 7 is the low half, since it's actually 7 x 1(or7). The number on the left, in
the tens column, is always higher, or worth more than, the lower number on the right, in
the ones column.

The high bytes are referred to as AH, BH, CH, and DH, and the low bytes as AL, BL,
CL, and DL. Each of these high and low registers can store a single byte; the full AX,
BX, CX, and CX registers can store two bytes (one word) in a single gulp. If you need
to manipulate just one byte, you generally use the high or low registers. If you have to
handle two bytes together, you use the full-size registers. The above example used AH
to tell DOS which function call you wanted, and DL to store the value of the character
you wanted to display.

Four additional segment registers tell the CPU the starting address of four important
64K memory segments: the code segment (CS), data segment (DS), stack segment (SS),
and extra segment (ES). Another five registers provide the necessary offsets: the instruc
tion pointer (IP), stack pointer (SP), base pointer (BP), source index (SI) and destination
index (DI). The final one, called the flags register, maintains the on-off status of 16
individual bits. Processes can change individual bit settings to keep track of events, or
refer to the settings changed by other processes or events and act accordingly.

When you initially load DEBUG, it sets the addresses of the CS, DS, ES, and SS
segments so they're all located in memory directly after the space taken up by the DEBUG

314 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

program itself. It also normally sets the values of the main registers you'll be using -
AX, BX, CX, and DX (as well as some of the others) to zero. If you loaded a file shorter
than 64K bytes from the DOS command line at the same time that you started DEBUG,
DEBUG will set the ex register to reflect the length of this file. If the file is larger than
64K, DEBUG will use both the CX and BX registers to maintain the file length. If you
later load a file using the N (Name) and L (Load) commands, DEBUG will then put the
file's length into the CX register (and the register BX if necessary).

The last four lines of the example above reset the ex register to 7 (since ex is a
two-byte register, this actually set ex to 0007 - the high byte is 00 and the low one 07),
write the file to disk (W), and then quit (Q). When you ask DEBUG to write a file, you
have to specify a filename and a file length. You tell it the filename either by using the
N (Name) command, or by including the name on the command line when you first start
DEBUG (as in C>DEBUG BEEP.COM). You specify the file length by putting a value
in the ex register.

At times you may want DEBUG to process strings of characters. When entering such
strings, you can use pairs of either single quotes (') or double quotes ("). This lets you
include the opposite kind of quote in the string you 're entering. So if you entered "The
word• gub • will appear in quotes" or 'The word "gub" will appear in quotes,• sure enough
both statements will be true. It gets tricky, but you can also use the same type of quotation
marks inside and outside the string, if you double them inside: "This uses the ""double
quote"" mark twice."

The purpose of the DEBUG examples in this chapter is not to teach you every last
thing you have to know about assembly language, but to familiarize you with the kinds
of things DEBUG can do. If you really want to learn about assembly language, purchase
the IBM or Microsoft MASM programs and read the manuals. The programs you'll leam
to create here are all very short and single-minded, and they use a lot of shortcuts and
defaults.

Also, unless you're a serious assembly language programmer, you don't really have
to know every last command in DEBUG. All you need to learn are the basic commands
to create and modify programs. For the purpose of working more productively you don't
have to learn how to use DEBUG as a "controlled testing environment." Commands that
execute programs from within DEBUG, or trace through them one instruction at a time
are extremely helpful to professional programmers, but they're not necessary here. And
virtually all the following examples will concentrate on creating and customizing files
rather than tearing into your disk sectors and fooling around with underlying system
structures.

You can make a permanent record of any DEBUG activity either by redirecting your
efforts to a file, or by echoing them simultaneously to your printer. To get a printed copy
of your DEBUG session, tum your printer on, then type Ctrl-P or Ctrl-PrtSc. Anything
that appears onscreen will also be sent to your printer a line at a time, although your
printer may have a hard time trying to reproduce some of the nontext characters that your
screen can handle with ease. To tum this printer echo feature off when you 're done, just
type Ctrl-P or etrI-PrtSc one more time.

While it's often useful to redirect a DEBUG output to a file, this can be a bit tricky
since you won't be able to see what you 're doing. Redirecting output to a file is the

DEBUG 315

opposite of the script file process mentioned earlier. When you redirect input (such as a
script file) into DEBUG, DOS feeds characters from the script file into DEBUG just as
if you were typing at the keyboard. When you redirect the output from DEBUG into a
file, DOS takes all the characters that would normally show up on your screen and instead
reroutes them into a file on your disk. Because DOS will intercept each character before
it gets to your monitor, you won't see be able to see what's going on until you finally
type Q to quit, press Enter, and return to the main DOS prompt. So if you try redirecting
the DEBUG output with the simple command:

DEBUG > OUTPUT.FIL

you have to know exactly what you want to type, because you '11 be flying blind.
A better way to end up with a DEBUG output file on disk is to first step through the

exact DEBUG process you want - without worrying about redirection. Write down
every keystroke you use, or have a screen-capture utility like SideKick's notepad record
your keystrokes for you. Then type all these keystrokes into a script file called
DEBUG.SCR (or edit the file SideKick created). Remember to insert blank lines in the
script file if necessary, and be absolutely sure to press the Enter key at the very end after
the final Q.

Then review the DEBUG.SCR file carefully. It should contain all the keystrokes you
would normally enter in the particular DEBUG session you want to capture on disk, and
nothing else. Put this script file on the same disk as DEBUG and type:

DEBUG < DEBUG.SCR > DEBUG.OUT

Your disk will churn for a second or two as DOS feeds the DEBUG.SCR keystrokes into
DEBUGandthencreatesafileonyourdiskcalledDEBUG.OUTthatcontainseverything
DEBUG would have displayed on your screen.

For example, let's say you wanted to see the text parts of the main DOS command
processor, COMMAND.COM. These include internal commands, error messages,
prompts, etc.

As we've seen, DOS commands come in two flavors - internal and external. External
commands are individual programs (with COM or EXE extensions) delivered on your
DOS disks. Commands like CHKDSK and SORT are external commands, since you
execute them by running programs called CHKDSK.COM and SORT.EXE. However,
the instructions for executing commands like DIR and TYPE are internal, since they're
actually imbedded inside COMMAND.COM.

When you enter something at the DOS prompt, DOS first looks inside COM
MAND.COM to see if what you typed is an internal command. If not, it tries to find a
file with the name you specified ending with COM, then EXE, or finally BAT in the
current subdirectory. If it doesn't locate one, it will scan through all the other subdirector
ies listed in your PATH statement for COM, EXE, or BAT files, in that order. As soon
as it finds one it will stop looking and execute it. If it doesn't, it will issue a "Bad command
or filename" error message.

316 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

So, let's look inside COMMAND.COM. The following example uses DOS version
5.0, but any version 2.0 or later will work the same way. If you are using a DOS version
other than 5.0, some of the numbers shown below will be different. And while it assumes
you're on drive C:, the process is the same on any drive so long as COMMAND.COM
and DEBUG.COM are on a disk in that drive.

First, at the main DOS prompt, start DEBUG and tell it you want to load the
COMMAND.COM program into memory:

DEBUG COMMAND.COM

Then, when you see the DEBUG hyphen prompt, find out how long the program is by
typing:

RCX

DEBUG will respond by printing:

ex BAES

(The hex number after ex will be different if you're trying this on a version other than
DOS 5.0. Note this number, since you'll have to use it shortly.)

Typing RCX (or R CX, or r ex, or rcx) tells DEBUG to display the value currently in
register ex and then pause and wait to see if you want to change this value. If you do
want to enter a new value, type a hex number immediately after the colon and then press
the Enter key. If you don't want to change the value, but just wanted to see what the value
was, just press the Enter key without entering a new value.

You could also type just an R by itself, and then press the Enter key. Doing this right
after you typed DEBUG COMMAND.COM would print:

AX=OOOO BX=OOOO CX=BAE5 DX=OOOO SP=FFFE BP=OOOO SI=OOOO DI=OOOO

DS=1297 ES=1297 SS=1297 CS=1297 IP=OlOO NV UP EI PL NZ NA PO NC

33F7:0100 E95D14 JMP 1560

Entering R without anything after it will display the contents of all your system's
registers, the state of all its flags, and the actual instruction that will be executed next. In
the above display, the registers are the 13 blocks of characters with equals signs in the
middle, the flags are the eight pairs of letters, and the bottom line indicates that the JMP
OE30 instruction at address 100 is the next one to execute. For the purpose of this example,
all you need is the value in register ex. The third number in the top row tells you this
value is BAE5.

Once you learn the file's length, have DEBUG search all the way through the
COMMAND.COM file that's currently loaded in memory for the string "Batch."
COMMAND.COM stores its main messages, commands, and prompts in a lump near the
very end of the file. The first bit of text stored there is a "Batch file missing" error message,

DEBUG 317

so if you find the address of this particular message you can jump to this address and
browse through all the text that follows.

DEBUG needs to know where it should start and stop searching for something (in this
case the "Batch" string). You can specify the search parameters one of two ways. Either
give DEBUG explicit starting and stopping addresses, or tell it the starting address and
then provide a number representing how many bytes after this address DEBUG should
scan through.

The starting address is simple; DEBUG always loads COM files so they start at
memory offset 100 (remember, all these numbers are in hex, not decimal). Since you
want to search a file from beginning to end that is BAE5 bytes long, starting at 0100, the
ending address is BBE5. So you would specify explicit starting and stopping addresses
by typing:

-S 100 BBE5 "Batch"

In the procedure above, you snooped inside the R register to learn how long the
COMMAND.COM file was. DOS version 5.0 DEBUG will report BAE5; this number
will be different if you're using a different version of DOS. But notice that while the
length of the file is BAE5 bytes, you have to enter BBE5 as the explicit ending address.
Why?

The number BBE5 is 100 higher than the actual file length BAE5. DEBUG normally
loads files at address 100, not at address 0 (unless they're EXE files), and this moves all
the addresses in the file up by 100. If you want to look at the first two bytes in a file -
bytes 0 and 1 - you actually have to tell DEBUG to look at the contents of addresses
100 and 101.

The first byte in the file is loaded into address 100, the second byte at address 101, and
the BAE5th byte at BBE5. So you have to add 100 to the length of the file if you want
DEBUG to search all the way through to the last byte loaded in memory. To do this, just
add 1 to the third hex digit over from the right. The third digit from the right in this
example is 2, so you add 1 to it and it becomes 3.

The process of adding 100 like this is trivial unless the third digit over is hex F. In the
decimal number system, if you add:

1
+ 9

you end up with a 0 in the column that has the 9 in it, and you carry a 1 over to the column
immediately to its left. In the hexadecimal number system, if you add:

1
+ F

you end up with a 0 in the column that has the Fin it, and you carry a 1 over to the column
immediately to its left. If DEBUG had reported a file length of 1111, adding 100 to it
would give you 1211. But if the file length were lFl l, adding 100 to it would produce

318 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

2011. And if the file length were 9Fll, adding 100 would yield AOll. Don't mix hex
and decimal numbers when in DEBUG; be careful to work exclusively in hex.

If you feel squeamish about adding hex numbers, let DEBUG do it for you. If you
wanted to add 100 to BAE5, all you have to do is make sure you see the DEBUG hyphen
prompt and then type:

H BAES 100

DEBUG will respond by printing:

BBES B9E5

The first number (BBE5, the one you're looking for) is the sum of BAE5 + 100. The
second number (B9E5) is the difference of BAE5 - 100. You don't need to use the
subtraction feature of this H (hex math) command here, but if you ever do, make sure
you enter the numbers in the proper order. Adding numbers in either order will produce
the same result (3 + 5 and 5 + 3 will both yield 8). But this even-handedness doesn't apply
to subtraction; 3 - 5 is definitely not the same as 5 - 3.

DEBUG makes it even easier to specify a search range. All you really have to do is
enter the starting address and the number of bytes to search. Since you want to scan
through the entire COMMAND.COM file, the number of bytes to search is equal to the
length of the file. So instead of entering explicit starting and stopping addresses, you
could issue a variation of the search command used earlier:

-S 100 L BAES "Batch"

This command tells DEBUG to start a search for the string "Batch" at address 100 and
continue searching for a length of BAE5 bytes. You'll get the same results whether you
use an "L" like this to specify the search length, or instead specify the explicit starting
and stopping addresses. But this way you don't have to do any hex math.

DEBUG will search through the file and report all occurrences of the "Batch" string.
Since searches are case sensitive, DEBUG will ignore any "batch" or "BATCH" strings
it may find. It's important in this example to specify all lowercase letters except for the
initial capital B, since COMMAND.COM does indeed contain other "batch" strings that
you don't want to examine.

If you had wanted DEBUG to locate every occurrence of this word including all-low
ercase versions ("batch") as well as lowercase versions with initial capital letters
("Batch") you could have changed the search command to:

-S 100 L BAES 11 atch 11

or:

-s 100 BBES 11 atch 11

DEBUG 319

Of course, this would also find words like patch, or snatch, or potlatch if any existed in
the file you were scanning.

But since you really wanted DEBUG to look for just the string "Batch" it will find just
one occurrence:

1359:8191

The number to the left (in this case 1359) is the segment address, and it will vary from
system to system depending on how much memory your computer has and what else you
currently have loaded in memory. Manuals sometimes replace the varying segment
addresses with a row of "xxxx" characters, so if you see something that looks like:

xxxx:OA51
xxxx: 4DCA

xxxx: 4DF4

all it really means it that any four-digit hex number can appear where the xxxx characters
are.

Jot down theoffsetaddress-therightmostfourbytes, or8191- becauseyou'llneed
it for the next process.

To make sure you've found the proper string, use the DEBUG Display (D) command.
You can use the same basic syntax rules for the Display command that you used with the
search command. The display range can either be an explicit starting and stopping
address, or a starting address and a length of bytes for DEBUG to display. Since the word
"Batch" is five characters long, both of the following commands will display the string
at the offset address the above search command located:

D 8191 8195

or:

D 8191 L 5

The top command first lists the starting address and then the stopping address. Note that
the stopping address is the starting address+ 4, not the starting address+ 5. This is becaIBe
you want DEBUG to display the value of the byte at address 8191 (the "ff' in "Batch")
plus the next four characters ("atch"). Again, if you 're a little shaky on hex math, you
can use the DEBUG H command to add the two numbers together for you.

The bottom command first lists the starting address and then tells DEBUG to display
five bytes starting with that address. In this case you specify five rather than four, since
you 're asking DEBUG to display a total of five bytes.

Either way, you'll see something like:

1359:8190 42 61 74 63 68 Batch

320 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

Every DEBUG D display has three parts. The first part, at the lefthand edge of your
screen, is the address of the memory that DEBUG is displaying, in SSSS:OOOO
segment: offset format. The second, in the middle of your screen, are the individual values
of the chunk of memory DEBUG is displaying, in hexadecimal notation. The third, at the
righthand edge of your screen, is the ASCII representation of what's in memory at the
addresses you specified. To avoid cluttering up this part of the display with things like
happy faces, musical notes, or Greek and math characters, DEBUG will print a period(.)
when it sees any value below hex 20 (decimal 32) or above hex 7E (decimal 126).

DEBUG will often display what looks like random letters, numbers, and punctuation
in the rightmost third of the screen. These are just artifacts, and don't mean anything.
DEBUG isn't smart enough to know what parts of a program are text that should be
displayed and what parts are actually meachine-level instructions that shouldn't be
displayed. Whenever it sees a hex value of 50 (decimal 80), for instance, DEBUG will
display a "P." If this value of 50 happens to be in a message such as "Path not found"
you '11 be glad it did. But the 50 could just as easily have been part of an address or value
in a gut-level instruction.

For instance, if the internal code of a program moved a value of 5000 into register AX
(with the command MOY AX,5000), the actual machine-level version of this instruction
would be:

B80050

DEBUG would display the B8 and the 00 as periods, since B8 is above hex 7E and 00 is
below hex 20. But it would display the 50 in the righthand third of the screen as a P. In
fact, one particular assembly language command (PUSH AX) is represented in machine
level code as the single value:

50

which would show up in a DEBUG display as a solitary P.
Artifacts like these occur because your system has a small, 256-unit vocabulary. Every

message, prompt, command, instruction, and address has to be made up of single-byte
values between 0 and 255. Your CPU is smart enough to sort it all out when it processes
the stream of bytes, but DEBUG isn't. So ignore these random characters in DEBUG
displays.

You can't use the Search (S) command without specifying an address range and
something to search for. So typing S by itself at the DEBUG prompt would be meaning
less, and would only generate an error message. But you can (and will frequently want
to) issue a Display (D) command on a line by itself.

If you start DEBUG, load COMMAND.COM into it, then type D by itself and press
Enter, DEBUG will display the first 128 bytes of the file, from address 100 through
address 17F. Each subsequent time you type D without any parameters after it and press
Enter, DEBUG will display the next 128 bytes in memory immediately following the
previous block. If you keep pressing just D and then Enter enough times - 512 to be

DEBUG 321

exact - you'll work all the way to the end of the current segment and start over again at
the beginning of the segment. '

DEBUG displays such blocks of memory information in a grid 16 bytes wide, and
either eight or nine rows tall. (If you specify a starting address at the beginning of a
paragraph - one that ends in a 0 such as 100 or 3DO - you'll see a tidy block of bytes
eight rows high. But if you specify any other address DEBUG will stagger the display
into a ninth row.) So if you type the following two lines to display the beginning of
COMMAND.COM version 5.0:

C>DEBUG COMMAND.COM
-D

(don't type the DOS C prompt or the DEBUG - prompt; these are just included to
illustrate what your screen should look like) you'll see:

13S9:0100 E9 SD 14 00 7S 14 00 OO-B7 OE 00 00 7S OD 00 00 .] .. x u ...

13S9: 0110 SS 11 00 00 00 00 00 00-00 00 00 00 00 00 00 00 • • 0 ••I I I I I I I I I I I

13S9:0120 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 I I I I I I I I I I I I I I I I

13S9: 0130 00 00 00 00 00 FB ES 64-00 lE OE 2E FF 2E 04 01 d

13S9:0140 FB ES S9 00 lE OE 2E FF-2E OS 0·1 FB ES 4E 00 lE .. Y N ..

13S9:01SO OE 2E FF 2E QC 01 FB ES-43 00 lE OE 2E FF 2E 10 c
13S9:0160 01 ES 39 00 1E OE 2E FF-2E 14 01 ES 2F 00 lE OE .. 9 I ...
13S9:0170 2E FF 2E lS 01 ES 2S 00-lE OE 2E FF 2E lC 01 ES •••••• % ••••••••.

Again, if you try this on your own DOS 5.0 version of COMMAND.COM the only
difference will be the 1359 segment at the left edge of the display.

Each row of 16 bytes is called a paragraph. DEBUG doesn't label the individual
columns, but if it did, you'd see something like:

13S9:0100 E9 SD 14 00 7S 14 00 OO-B7 OE 00 00 7S OD 00 00

13S9:0110 SS 11 00 00 00 00 00 00-00 00 00 00 00 00 00 00

.] .. x u .. .

It's simple to find a value at a particular address. First, locate the paragraph (the row)
with the offset address at or just below the precise address you're seeking. Then count
over from left to right one byte at a time. As you can see from the column labels above,
the address of the first byte in each paragraph ends with 0, the second byte with 1, the
third with 2, and the last (16th) byte with F. (Remember, these labels don't actually appear
in DEBUG displays. Neither do the pairs of xx characters below; they simply mean that
here you should ignore everything marked xx.) In the above example the value at address
100 is E9 since this is the number at the intersection of the row starting with 0100 and
the column with the label of 0:

13S9:0100 E9 xx xx xx xx xx xx xx-xx xx xx xx xx xx xx xx
13S9:0110 xx xx xx xx xx xx xx xx-xx xx xx xx xx xx xx xx

,) .. x u .. .

322 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

The value at address 112 is 00, since this number appears at the intersection of the row
beginning 110 and the column with the label 2:

1359:0100 xx xx xx xx xx xx xx xx-xx xx xx xx xx xx xx xx

1359: 0110 xx xx 00 xx xx xx xx xx-xx xx xx xx xx xx xx xx

.] .. x u .. .

While DEBUG doesn't show column labels, it does make the process of counting over
somewhat easier by putting a hyphen halfway across the display, between columns 7 and
8. So if you want to see the value at an address ending with a 7, find the appropriate row
and look at the number directly to the left of the hyphen. The value at 107 is 00:

1359: 0100 xx xx xx xx xx xx xx 00 -xx xx xx xx xx xx xx xx

1359:0110 xx xx xx xx xx xx xx xx-xx xx xx xx xx xx xx xx

.] .. x u .. .

Once you've used the D command to verify that the "Batch" search address is correct,
start displaying the next few 128-byte blocks of memory following that address. Your
displays will be neater if you round the address down to an even paragraph address. To
do this just replace the rightmost digit with a 0.

Since the Search command found the "Batch" string at address 8191, replace the
rightmost 1 with a 0 and enter the command:

D 8190

You should see a chunk of memory that contains DOS error messages:

1359:8190 14 42 61 74 63 68 20 66-69 6C 65 20 6D 69 73 73 .Batch file miss

1359:81AO 69 6E 67 OD OA lF OD OA-49 6E 73 65 72 74 20 64 ing Insert d

1359:81BO 69 73 6B 20 77 69 74 68-20 62 61 74 63 68 20 66 isk with batch f

1359:81CO 69 6C 65 OD OA lA 42 61-64 20 63 6F 6D 6D 61 6E ile ... Bad comman

1359:81DO 64 20 6F 72 20 66 69 6C-65 20 6E 61 6D 65 OD OA d or file name ..

1359:81EO 10 41 63 63 65 73 73 20-64 65 6E 69 65 64 20 OD .Access denied .

1359:81FO OA 29 43 6F 6E 74 65 6E-74 20 6F 66 20 64 65 73 .) Content of des

1359:8200 74 69 6E 61 74 69 6F 6E-20 6C 6F 73 74 20 62 65 tination lost be

Ignore the segment addresses, which will be different on your system. Keeping pressing
just D and the Enter key a few times and you '11 see more error messages:

1359: 8210 66 6F 72 65 20 63 6F 70-79 OD OA 24 49 6E 76 61 fore copy .. $Inva

1359: 8220 6C 69 64 20 66 69 6C 65-6E 61 6D 65 20 6F 72 20 lid filename or

1359:8230 66 69 6C 65 20 6E 6F 74-20 66 6F 75 6E 64 OD OA file not found ..

1359:8240 13 25 31 20 66 69 6C 65-28 73 29 20 63 6F 70 69 .%1 file(s) co pi

1359:8250 65 64 OD OA OB 25 31 20-66 69 6C 65 28 73 29 20 ed ... %1 file (s)

1359:8260 1D 49 6E 76 61 6C 69 64-20 64 72 69 76 65 20 73 .Invalid drive s

1359: 8270 70 65 63 69 66 69 63 61-74 69 6F 6E OD OA 26 43 pecification .. &C

1359:8280 6F 64 65 20 70 61 67 65-20 25 31 20 6E 6F 74 20 ode page %1 not

DEBUG 323

and then, later, some prompts, and finally a list of internal DOS commands:

13S9:ASCO 26 24 9D lE 00 03 4E 4F-S4 EF OA OA 4S S2 S2 4F

13S9:ASDO S2 4C 4S S6 4S 4C B2 OB-OS 4S SS 49 S3 S4 46 OB

13S9:ASEO 00 03 44 49 S2 03 SD 10-D2 S4 04 43 41 4C 4C 02

13S9:ASFO 27 OC 34 SS 04 43 4S 43-SO 02 OF 21 A2 S4 06 S2

13S9:A900 4S 4E 41 4D 4S 03 DF lA-OE SS 03 S2 4S 4E 03 DF

13S9:A910 lA OE SS OS 4S S2 41 S3-4S 03 S7 lA CA S4 03 44

13S9:A920 4S 4C 03 S7 lA CA S4 04-S4 S9 SO 4S 03 SD lB 24

13S9:A930 SS 03 S2 4S 4D 06 04 01-3A SS 04 43 4F SO S9 03

13S9:A940 C3 3S B4 S4 OS SO 41 SS-S3 4S 06 4A lA 3E SS 04

13S9:A9SO 44 41 S4 4S 02 C4 2F C4-S4 04 S4 49 4D 4S 02 2D

13S9:A960 30 lE SS 03 S6 4S S2 02-B7 lD 2S SS 03 S6 4F 4C

13S9:A970 03 BB lC 30 SS 02 43 44-03 77 2S AS S4 OS 43 4S

13S9:A9SO 44 49 S2 03 77 2S AS S4-02 4D 44 03 E2 2S EA S4

13S9:A990 OS 4D 4B 44 49 S2 03 E2-2S EA S4 02 S2 44 03 S6

13S9:A9AO 26 OA SS OS S2 4D 44 49-S2 03 S6 26 OA SS OS 42

13S9:A9BO S2 4S 41 4B 02 BC 37 9E-S4 06 S6 4S S2 49 46 S9

13S9:A9CO 02 FF 37 2C SS 03 S3 4S-S4 06 D7 22 16 SS 06 SO

13S9:A9DO S2 4F 4D SO S4 06 BD 22-F6 S4 04 SO 41 S4 4S 02

13S9:A9EO lF lF EE S4 04 4S SS 49-S4 00 19 22 E6 S4 04 43

13S9:A9FO S4 S4 S9 03 6B 20 CO S4-04 4S 43 4S 4F 06 S2 37

13S9:AAOO 42 SS 04 47 4F S4 4F 06-SB OC 4S SS OS S3 4S 49

13S9:AA10 46 S4 02 EO OB 4E SS 02-49 46 06 SF OA S2 SS 03

13S9:AA20 46 4F S2 06 24 OF 62 SS-03 43 4C S3 00 CB lF BO

13S9:AA30 S4 OS S4 S2 SS 4S 4E 41-4D 4S 03 97 21 6C SS OS

13S9:AA40 4C 4F 41 44 4S 49 47 4S-02 27 S9 70 SS 02 4C 4S

13S9:AASO 02 27 S9 70 SS 00 2E 43-4F 4D 2E 4S SS 4S 2E 42

13S9:AA60 41 S4 3F S6 42 41 SO S7-S2 4S S3 76 44 41 4E 4S

13S9:AA70 44 S3 47 00 20 00 00 00-00 00 02 01 00 AS 9S S6

13S9:AASO S7 00 01 03 01 00 AS 9S-S6 S7 00 01 02 01 00 AS

13S9:AA90 9S S6 S7 00 00 00 02 00-AS 9S S6 S7 01 2F SO 00

13S9:AAAO S3 S7 00 00 01 S9 S7 00-00 01 20 02 00 AS 9S 92

13S9:AABO S7 00 03 00 00 02 00 9C-S7 66 9F S7 4F 4E 00 4F

&$ NOT ... ERRO

RLEVEL ... EXISTF.

.. DIR CALL.

' . 4 .. CHCP .. ! ... R

ENAME REN ..

.... ERASE.W D

EL.W TYPE ... $

.. REM ... : .. COPY.

. S ... PAUSE. J ...

DATE .. / ... TIME.-

0 ... VER ... (.. VOL

... 0 .. CD. w% ... CH

DIR.w% ... MD •• % ..

.MKDIR .. % ... RD.V

& ... RMDIR.V& ... B

REAK .. 7 ... VERIFY

.. 7 , .. SET .. II ••• p

ROMPT .. 11
••• PATH.

..... EXIT .. 11
••• C

TTY. k ... ECHO .. 7

B .. GOTO. [.H .. SHI

FT ... N .. IF ... R ..

FOR.$.b .. CLS

.. TRUENAME .. ! 1 ..

LOADHIGH. 'Yp .. LH

. 'Yp ... COM.EXE.B

AT?VBAPWRHSvDANE

DSG ... ~ V

........ v

. V V .. /P.

......... f .. ON.O

As you can see, the interesting text parts of DOS 5.0 COMMAND.COM start at the
even paragraph address 8190 and end at address AA4F. Now you can create a script file
called DEBUG.SCR that contains the commands:

D 8190 AA4F
Q

324 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

Be sure to press the Enter key after the final Q. Put this DEBUG.SCR script file on the
same disk as DEBUG.COM and type:

DEBUG COMMAND.COM < DEBUG.SCR > DEBUG.OUT

Since this process creates a file, make sure you have room on your disk for a new file
and that if you 're using a floppy disk the write-protect notch isn't covered. When DOS
finishes redirecting the files in and out of DEBUG it will simply print a new DOS prompt
onscreen. It won't tell you that it created a new file, but you can verify that it did by
typing:

DIR DEBUG.OUT

You '11 see something like:

DEBUG OUT 9733 10-14-90 4:52p

You can examine this file with your word processor, or with the EDLIN text editor on
your DOS disk. Or you could simply type:

MORE < DEBUG.OUT

This command will redirect the DEBUG.OUT output file into MORE.COM, which will
display a screenful of the file at a time. You can either type any character key to see each
additional screenful, or press Ctrl-Break or Ctrl-C to abort the display and return to the
DOS prompt.

Notice that the command:

DEBUG COMMAND.COM < DEBUG.SCR > DEBUG.OUT

(1) (2) (3) (4)

had four parts. The first part started running DEBUG. The second had DEBUG load
COMMAND.COM into memory. The third provided the necessary DEBUG Display and
Quit commands, and the fourth told DOS to send the output to a file rather than to the
screen.

You could remove the second step and shorten the process a bit, by changing the
DEBUG.SCR file. Add two lines to the beginning and call this new file
DEBUGNEW.SCR:

N COMMAND.COM
L
D 8190 AA4F

Q

DEBUG 325

Then then issue the shorter command:

DEBUG < DEBUGNEW.SCR > DEBUG.OUT

The N (Name) command in the first line of DEBUGNEW.SCR tells DEBUG that a
future Write or Load command will apply to the file whose name follows. The L (Load)
command on the second line loads that file into memory just as if you had typed it in after
the word DEBUG at the DOS prompt.

Be careful when dealing with files that end in EXE. Both DOS and DEBUG have to
shuffle things around a bit in memory when working with EXE files. You'll notice a
difference right away if you load one (try the DOS SORT.EXE file, for instance) into
DEBUG and type D. Instead of starting the display at address 100, DEBUG will begin
at address 0. And if you try to change the file and write it back to disk, DEBUG won't
let you.

It is possible to change the contents of an EXE file with DEBUG. If you read about an
interesting patch for an EXE file, copy the file and give the copy an extension other than
EXE, such as XXX. (Put the original safely away on another disk or in another
subdirectory so you don't accidentally write over it later.) Then load this copy into
DEBUG, and treat it like any other file. After you make the changes in the file with the
XXX extension, write them to disk and quit. When you 're back at the main DOS prompt,
make sure you put the original EXE file on another disk or in another subdirectory, and
use the RENAME (or REN) command to change the extension from XXX to EXE. Then
run it to check your changes. Finally, decide whether you want to use the newer version
or the older version of the program - don't keep two similarly named versions of a file
on any hard disk. If you prefer the older version, erase the newly changed one. If you like
the new, patched version better, rename the old one by giving it an OLD suffix, or copy
it to an archive floppy disk and make sure it's gone from your hard disk.

As was shown earlier with the BEEP.COM program, DEBUG makes it a snap to create
small programs. All BEEP.COM really does is use DOS function call 2 to display a single
character onscreen. It just so happens that printing this ASCII 7 character onscreen makes
your system beep.

But printing one character isn't very dramatic. Fortunately, it's nearly as easy to print
a whole screenful. You wouldn't actually want to fill the entire screen, since the DOS
prompt that appears after such a program finishes running will scroll some of the lines
off the top. So we'll settle for 23 lines. And we'll fill these lines with hearts.

One of the hallmarks of topnotch programming these days is the ability to make screens
"pop." It's much more dramatic to have a screenful of information flash instantaneously
onto your screen than to watch it flicker slowly down the glass a line at a time. However,
speedy displays and DOS don't mix. Virtually all the fast screen techniques involve
low-level BIOS or memory-shuffling routines. The HEART.COM program below is
designed to extend the DOS-based BEEP.COM example, not break any speed limits.
Type in the following HEART.SCR script file:

326 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

N HEART.COM
A
MOV CX,730
MOV DL,3
MOV AH,2
INT 21
LOOP 107
RET

repeat 1,S40 times (23 lines x so chars)
ASCII 3 is a heart character

RCX
c
w
Q

DOS "display output" function
gets DOS rolling
jumps back a line 1,S39 times

(If you don't have a word processor or EDLIN available, you can create this file in DOS
by adding a line at the very top that says:

COPY CON HEART.SCR

Then type the above script, omitting the comments after the semicolons and the semico
lons themselves. When you're all done, press the Enter key an extra time, then press the
F6 function key, then Enter again.)

Once you've created the script file, put it on the same disk as DEBUG and type:

DEBUG < HEART.SCR

This will create a slightly enhanced version of the BEEP .COM file called HEART .COM.
It prints a heart-shaped character instead of a character that beeps, and does it 1,840 times
(23 rows x 80 characters per row). Run it and 92 percent of your screen will fill up with
hearts. Put it in someone's AUTOEXEC.BAT file on Valentine's Day.

(Okay, nobody likes slow programs. If you really want to see how must faster it can
be to use BIOS services than DOS routines, type in the following script:

N FILLFAST.COM
E 100 B4 02 BA 00 00 B7 00 CD 10 B4 OS CD 10 SS E7 BS
E 110 00 06 B9 00 00 BA 4F lS CD 10 B4 02 BA 00 00 B7
E 120 00 CD 10 B9 30 07 BS 03 OA B7 00 CD 10 B4 02 BA
E 130 00 17 B7 00 CD 10 C3
RCX
37
w
,..,
"""'

This program, FILLFAST, reads the attribute in the upper lefthand corner of the screen
and fills most of the screen instantly with hearts in· that color.)

DEBUG 327

Let's look at the original HEART.COM program closely to see what's going on. To
do this, use DEBUG's U (Unassemble) command. Get the ball rolling by typing:

DEBUG HEART.COM

When you see the familiar DEBUG prompt, find out how long the file is by typing:

RCX

and pressing the Enter key twice. Or, cheat by looking at the line in the HEART.SCR
script between RCX and W. Either way, you'll figure out that it's OC bytes (decimal 12)
in length.

As with most of DEBUG, you could issue an Unassemble command using one of two
syntaxes. The easy way is entering the starting address and the length:

U 100 L C

This looks cryptic, but it simply means .. try to convert the 12 (hex C) bytes of machine
level code starting at memory offset 100 into recognizable assembly language com
mands." Finally, type Q to quit and press Enter. The whole process look like:

C>DEBUG HEART.COM
-RCX
ex oooc

-u 100 L c
33F7:0100 B93007 MOV ex, 0730
33F7:0103 B203 MOV DL,03
33F7:0105 B402 MOV AH,02
33F7: 0107 CD21 INT 21
33F7:0109 E2FC LOOP 0107
33F7:010B C3 RET
-Q

(Ignore the 33F7 segment address, as always.) The harder way to issue the Unassemble
command is to enter explicit starting and stopping addresses. The starting address is easy
since DEBUG loads all COM files at offset 100. And since the file is OC bytes long, the
ending address is starting address + length - 1, or:

100 + C - 1 = lOB

Technically you don't have to subtract the 1, since all leaving it in will do is stretch out
the display one extra line. But the file starts at address 100, not address 101. The first
byte of the file is at address 100, the second at 101, the third at 102, and the last (12th)
at address 1 OB. So the command:

328 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

U 100 lOB

would have produced the same display as U 100 L C.
You may have noticed that the display produced by the U command is almost identical

to the HEART.SCR script file that created it. The Unassemble command usually produces
a reasonable facsimile of the original, although since certain assembler programs tum
slightly different assembly language instructions into the same machine-level code,
DEBUG may not be able to tum things back exactly the way they were. But it'll almost
always be close enough.

DEBUG's U display does provide something very useful that wasn't in the script -
the addresses of each instruction. In this case you really need to have the addresses handy
to see what's going on.

The middle of both the BEEP.COM and HEART.COM programs are pretty much the
same:

BEEP.COM

MOV DL,7
MOV AH,2
INT 21

HEART.COM

MOV DL,3
MOV AH,2
INT 21

Both programs use the DOS .. display output" function call 2, which looks at the value
in the DL register and prints the ASCII character with that value onscreen. With
BEEP.COM the value here is 7; with HEART.COM it's 3. And both programs use the
RET instruction to jump control back to COMMAND.COM when they're finishing
executing.

But HEART.COM adds two additional lines that work hand in hand:

MOV CX,730

LOOP 107

If you 're handy with BASIC, the MOV CX and LOOP instructions are similar to BASIC's
FOR. .. NEXT commands. Both tell your program to repeat a process a certain number of
times. The BASIC version of HEART.COM would look something like:

100 FOR A=l TO 1840
110 PRINT CHR$(3);
120 NEXT A
130 SYSTEM

DEBUG 329

In assembly language you can specify how many times you want something to repeat by
moving that number into the CX register. Filling 23 lines, each 80 characters long, means
printing the heart character 1,840 times (730 in hex). The first time the HEART.COM
program executes, it stuffs this hex 730 value into CX, displays the ASCII 3 character,
and then executes the LOOP 107 instruction. At this point LOOP does two things. First,
it subtracts 1 from the number in the CX register, turning the original 730into 72F (since
hex 730 - 1 = 72F). Then it checks to see if this number is equal to 0 (after subtracting 1
from the current value enough times it will be). Since 72F is greater than 0, LOOP tells
the program to loop back to the address specified after the word LOOP - offset 107.

As you can see from the unassembled listing, address 107 contains the instruction INT
21, which tells DOS to execute a function call again. Nothing has changed in any of the
registers, so DOS looks in register AH, sees the 2 that was there earlier, and starts
executing the same "display output" function call 2. It looks in register DL to see which
character to display, finds the 3 that was there before, and prints a character 3 heart. Then
it reaches the LOOP instruction once more, reduces the value in the CX register by 1
from 72F to 72E, sees that this number is not yet equal to 0, and loops back to address
107.

After 1,839 loops the value in the CX register will be 1. This time (after printing the
1,840th heart), when the program hits the LOOP instruction, LOOP will subtract 1, check
and see that the value in the ex register is finally 0, and end the looping process. The
program will have its first opportunity to execute the instruction on the line following
the LOOP 107; each previous time LOOP jumped it back to address 107. Since this
instruction is RET, the program finishes running and hands control back to COM
MAND.COM.

But this program gets boring after you run it a few times. So to spice it up, change the
character it prints. If you like music, you might want to see a screen full of notes. All you
have to do is change the value in the DL register from 3 to E (decimal 14). You can change
this value one of two ways. But first you have to figure out where in memory the value
is. By looking at the Unassemble listing you can spot it in a second:

33F7:0103 B203 MOV DL,03

The Unassemble listing is made up of three parts. The lefthand column contains the
address of the instruction in memory, in segment:offset form. (Yes, ignore the 33F7
segment address. But jot down the 103 offset address.) Immediately after the address is
the second part of the listing - a hexadecimal representation of the actual machine-level
code that puts the CPU through its paces. In this case it's B203. B2 is shorthand that tells
the CPU to move a value into the DL register. The 03 is the value it moves; At the right

330 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

edge of the listing is DEBUG's best guess at what the programmer's original assembly
language instruction was.

Each address in memory contains a single byte that DEBUG displays as a two-digit
hex number (it pads a single digit value like A with a 0, turning it into OA). The B203
machine-level code actually represents two bytes, B2 and 03. Since the two-byte B203
code begins at offset 103, the actual hex value at address 103 is B2. The address of the
03 value is 104.

So to change the HEART.COM program so it displays musical notes instead of hearts,
all you really have to do is put a value of OE at address 104, and then use the Write
command to make the change stick. You'll probably also want to give the file a new name
like MUSIC.COM or NOTE.COM.

The easiest way to do this is to use the E (Enter) command (although you could also
manage with the somewhat similar F (Fill) command). You can use the Enter command
in expert or nervous mode. In expert mode you enter the address and the new value blindly
at the same time and then write the changed file to disk. In nervous mode you first enter
just the address and have DEBUG report what's there before you make the change. If
you see a value there that tells you you 're at the wrong address, you just press the Enter
key to cancel the command and return to the DEBUG prompt.

Here's what the process would look like in expert mode, assuming you're absolutely
sure the value you want changed is at address 104, and assuming you want to save the
new file as MUSIC.COM:

C>DEBUG HEART.COM
-E 104 OE
-N MUSIC.COM
-w
Writing OOOC bytes
-Q

You would type everything shown except the C and - prompts and the "Writing OOOC
bytes" message. And you could enter the new value after the 104 as E instead of OE if
you liked.

Because you specified a new name with the N command, DEBUG will create a brand
new file called MUSIC.COM the same length as the HEART.COM program you started
out with, and otherwise identical except for the one change at address 104. It won't alter
the original HEART.COM program; all it did was borrow HEART.COM's code. You'll
end up with two programs on your disk, HEART.COM and MUSIC.COM.

If you 're the cautious type, you'll probably want to use the nervous mode. Type
DEBUG HEART.COM to get the ball rolling, and when you see the DEBUG - prompt,
just type:

E 104

and press the Enter key. When you specify an address after the E command but not a new
value, DEBUG displays the address and the value that's currently there and then prints

DEBUG 331

a period (.). It parks the cursor directly to the right of the period, ready for you to enter a
new value that will replace the existing one:

33F7:0104 03.

If you 're satisfied that this is where you want to make the change, just type in the new
value and press Enter. If you realize you 're at the wrong address, you can press Enter
without putting in a new value, to abort the process.

If you do type in a new value at this point and then lock it in by pressing the Enter key,
you can check to make sure you entered the correct number at the correct address by
pressing F3. DEBUG uses the same function key tricks as DOS and EDLIN. So whenever
you hit the F3 key, DEBUG will type in the previous command for you automatically. If
you did enter a new value, pressing the F3 key will display the address and the new value,
and a period, and sit there waiting to see if you want to change it again. Since you probably
don't, just tap the Enter key and you'll be right back at the DEBUG prompt.

If you entered the new value in nervous mode, and then pressed F3 to check on your
handiwork, the screen would look like this:

C>DEBUG HEART.COM
-E 104
33F7:0104 03.0E
-E 104
33F7:0104 OE.
-N MUSIC.COM
-w
Writing oooc bytes
-Q

The E command is actually far more flexible than these simple changes indicate. The
following few examples are just dummies; don't try typing them in since they won't do
anything except illustrate the proper E command syntax.

You can use E to enter a new string of characters:

E 4D3 "This is a test"

Or you can enter a series of bytes in hex notation:

E A27 41 7C 3C 3E 24 28 29 29

Or you can mix strings and bytes:

E 2FO 41 7C "A test" 3C 3E 24 28 29 29

If you use the E command in nervous mode (okay, it's not actually called nervous mode)
instead of working a single byte at a time, you can move forward and backward through

332 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

your entire file by pressing the space bar or the minus key. Each time you tap on the space
bar DEBUG will print the value of the next higher address onscreen and skip to it. When
it has printed eight values onscreen it will jump down to the next line and start to print
another eight. If you hit either of the minus keys, DEBUG will start marching in the other
direction and print the next lower address onscreen, one to a line. (If you lean on the space
bar or minus key long enough, you '11 reach the top or bottom of the segment and DEBUG
will cycle through the entire segment again.)

To try scanning forward and then backward through the NOTE.COM file, load it into
DEBUG with the command:

DEBUG NOTE.COM

and then type:

E 100

to get the ball rolling. Then start tapping on the space bar and minus keys to navigate
your way through. The following example steps all the way through the 12-byte file from
front to back (by pressing the space bar 11 times) and then from back to front (by hitting
the minus key 11 times):

-E 100
33F7:0100 B9. 30. 07. B2. OE. B4.
02. CD.
33F7:0108 21. E2. FC. C3. -
33F7:010A FC. -
33F7:0109 E2. -
33F7:0108 21. -
33F7: 0107 CD. -
33F7:0106 02. -
etc.

When you're all done, press the Enter key by itself, or Ctrl-Break or Ctrl-C to return
to the DEBUG prompt.

DEBUG' s Fill (F) command is especially handy for replacing a large chunk of memory
with one repeating character. If you wanted to put a 0 in every memory address from
offset 100 to offset DOOO - nearly 53,000 (decimal) zeros - you could do it instantly
with the command:

F 100 DOOO 0

You could also use the Fill command to change the one value at address 104 so the
program displays a musical note rather than a heart. The command:

F 104 L 1 OE

DEBUG 333

would do it. This tells DEBUG to start at address 104 and fill a range of memory 1 byte
long with the value OE.

DEBUG provides another way to change BEEP.COM. When you originally created
thefileyouusedascriptfilethattumedonDEBUG'smini-assemblerwithanAcommand
and then fed assembly language instructions (such as MOV AH,2 and INT 21) into it.
You can use the A command to make selective patches as well. The assembly language
instruction that tells the DOS "display output" function call 2 which character to display
is:

33F7:0103 B203 MOV DL,03

As you can see from the Unassemble (U) listing, this instruction is located at address 103
in memory. To insert one or more new assembly language instructions in memory, enter
the A command followed by the address where the new instructions will start, and then
enter the new lines. When you're done, just press the Enter key by itself to exit the
mini-assembler and return to the DEBUG prompt. Finally, use the Unassemble command
to check your work. To tum HEART.COM into MUSIC.COM using this technique, first
Unassemble the code to see which address to alter, then enter the A command along with
this address to make the change, then use Unassemble again to check your typing. Enter
the new name (with N), write the new file to disk (with W), and quit (Q). The whole
process would look like:

C>DEBUG HEART.COM
-U 100 L C
33F7:0100 B93007
33F7:0103 B203
33F7:0105 B402
33F7:0107 CD21
33F7:0109 E2FC
33F7:010B C3
-A 103
33F7:0103 MOV DL,OE
33F7:0105
-U 100 L C
33F7:0100 B93007
33F7:0103 B20E
33F7:0105 B402
33F7:0107 CD21
33F7:0109 E2FC
33F7:010B C3
-N MUSIC.COM
-w
Writing oooc bytes
-Q

MOV
MOV
MOV
INT
LOOP
RET

MOV
MOV
MOV
INT
LOOP
RET

CX,0730
DL,03
AH,02
21
0107

CX,0730
DL, OE
AH,02
21
0107

334 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

If you 're not crazy about hearts or notes, you can substitute just about any character
at address 104. For an interesting effect, try values BO, Bl, or B2 (which produce
interesting textures), or F8, F9, or FA, which will fill your screen with dot patterns. The
IBM character set has some other interesting possibilities as well. Once you've created
HEART.COM, type in the following PICTURE.SCR script file to see some of the
possibilities:

N HEART.COM
L

E 104 BO
N PATTERNl.COM
w
E 104 Bl
N PATTERN2.COM
w
E 104 B2
N PATTERN3.COM
w
E 104 F8
N DOTl.COM
w
E 104 F9
N DOT2.COM
w
E 104 FA
N DOT3.COM
w
E 104 OB
N MAN.COM
w
E 104 oc
N WOMAN.COM
w
E 104 01
N FACEl.COM
w
E 104 02
N FACE2.COM
w
Q

To create the flies, make sure HEART.COM, PICTURE.SCR, and DEBUG.COM are
on your disk, that your disk has room on it for a few files, and that if you 're using a floppy
disk, that the write-protect notch isn't covered. Then type:

DEBUG < PICTURE.SCR

DEBUG 335

When it finishes, run PATTERN!, PATTERN2, PATTERN3, DOTI, DOTI, DOT3,
MAN, WOMAN, FACEl, and FACE2 to see what these look like.

While DEBUG offers a handful of additional commands, the only other one serious
power users probably need to know about is Move (M). Microsoft and IBM misnamed
this command since it really copies memory values instead of moving them. The term
"move" incorrectly suggests that DEBUG gets rid of the original after relocating it to a
new place. In fact, DEBUG leaves the original alone, unless the new place you move it
to overlaps itself.

If your file contains the message "This is a test" at address 100 and you move (copy)
this block of 14 characters to a new location 15 bytes later (at address lOE), you'll end
up with:

"This is a testThis is a test"

at address 100. But if you take the same block of text and instead move it up just five
bytes (to address 104), you'll get:

11 ThisThis is a test"

since the new address overlaps most of the old one.
Moves can be a bit tricky, because you have to make sure you don't accidentally

obliterate any existing parts of your program, and because you have to remember to adjust
the value in the ex register to compensate for any change in length.

To see Move in action, first create a small file called MOVETEST.COM, by typing in
the following MOVEl.SCR:

N MOVETEST.COM
A
MOV AH,09
MOV DX,0108
INT 21
RET

E 108 "DEBUG is 11 ,D,A
E 112 11 very 11 ,D,A
E 118 11 powerful. 11 ,D,A,24
RCX
24
w
Q

Be sure to leave the blank line after RET, and to press the Enter key after the final Q.
Then redirect this script file into DEBUG with the command:

DEBUG < MOVEl.SCR

336 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

When you run MOVETEST.COM (by typing MOVETEST at the DOS prompt), all it
will do is print:

DEBUG is
very
powerful.

MOVETEST.COM takes advantage of the DOS "display string(s)" function call 9.
When DOS sees a value of 9 in the AH register, it looks in the CX register for an address
that tells it where the text strings are located. Then it displays any ASCII strings it finds
starting at that address and continuing until a character 24 ($) tells it to stop. (If you try
this yourself, remember that you need to put an:

I OD, OA

or simply:

,D,A

at the end of each string when you want a carriage return and line feed.)
When you use the Move command you have to give DEBUG two pieces of information

- what you want copied, and where you want it copied to. You can tell DEBUG what
part of memory you want copied either by specifying explicit starting and stopping
addresses, or by listing the starting address and telling it how many bytes to copy. In
either case you then have to specify the new destination address (where you want this
copied chunk of memory to go).

All of the examples below use starting addresses and lengths rather than explicit
starting and stopping addresses, but either technique will work. The number immediately
following each M is the starting address. The number following each L is the length -
the number of bytes to move. The final number in each line is the new destination address.

Let's say that after looking at everything DEBUG can do, you want to change the
MOVETEST.COM message to be more emphatic. To do this, create the following
MOVE2.SCR script file:

N MOVETEST.COM
L

M 118 L c 130
M 112 L 6 118
M 112 L 6 llE
M 112 L 6 124
M 112 L 6 12A
RCX
3C
w
Q

DEBUG 337

Then redirect the file into DEBUG with the command:

DEBUG < MOVE2.SCR

Finally, run the changed version MOVETEST and you'll see the new message:

DEBUG is
very
very
very
very
very
powerful.

The MOVE2.SCR script file contains five Move instructions that copy small blocks
of information from one place to another in memory. First it summons the old MOVE
TEST.COM file by using the N command to tell DEBUG which file you want to work
on, and then the L command to load this file into memory. Then it uses the Move
command to insert an additional copy of the line:

"powerful.",D,A,24

18 hex (24 decimal) bytes higher (later) in memory. Here's a step-by-step scorecard of
what happens:

Original arrangement of
MOVETEST.COM text: After the first Move instruction:

Address Text starting at this Address Text starting at this
address address

108 "DEBUG is",D,A 108 "DEBUG is",D,A

112 "very",D,A 112 "very",D,A

118 "powerful.",D,A,24 118 "powerful." ,D,A,24

130 "powerful." ,D,A,24

MOVE2.SCR has to copy the line containing "powerful" before it makes any other
moves, to get it safely out of the way. The second Move instruction copies the word
"very" (plus the OD and OA carriage return and line feed characters) on top of it. This
obliterates the first six letters of the original "powerful" at address 118:

338 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

After the second Move instruction:

Address Text starting at this
address

108 "DEBUG is'',D,A

112 "very",D,A

118 "very",D,A;·uI.",D,A
,24

130 "powerful.",D,A,24

The third Move instruction finishes wiping out the tail end of the original .. powerful" at
address 118:

After the third Move instruction:

Address Text starting at this
address

108 "DEBUG is",D,A

112 "very",D,A

118 "very",D,A,

llE "very",D,A,

130 "powerful. ",D,A,24

The final two Move instructions fill in the gap:

After the fifth Move instruction:

Address Text starting at this
address

108 "DEBUG is",D,A

112 "very",D,A

118 "very",D,A,

llE "very",D,A,

124 "very",D,A,

12A "very",D,A,

130 "powerful." ,D,A,24

DEBUG 339

All these five Move commands really do is push the word "powerful" up to a higher
address in memory, and then fill in the gap by making four additional copies of the word
"very" (plus the OD and OA carriage return and line feed characters that follow it). Each
of the four new occurrences of "very" (and its OD,OA) takes up six characters. So the file
has to be 4 x 6 = 24 bytes longer (decimal 24 = 18 in hex notation). The old MOVE
TEST.eOM file was 24 (hex) bytes long. MOVE2.SeR reset the ex register to 3e to
reflect the increased length (hex 24 + 18 = 3C).

Now that you lengthened the file, what about making it smaller? Shortening a file with
the Move command is even easier than stretching it out. Let's say you want to change
the display so it says simply:

DEBUG is
powerful.

All you have to do is move the "powerful" line down from its 130 address so it overwrites
the first "very" at address 112. Actually, since the string "powerful" (along with the
OD,OA,24 characters that follow it) is twice as long as each ··very" string (and its OD,OA
characters), this will overwrite the first two occurrences of ••very."

This short MOVE3.SeR script file will do it:

N MOVETEST.COM
L

M 130 L C 112
RCX
lE
w
Q

Once you've created MOVE3.SeR, redirect it into DEBUG with the command:

DEBUG < MOVE3.SCR

Moving the line ••powerful" (and its OD,OA,24 suffix) from address 130 down to
address 112 actually leaves a lot of unneeded text still in memory - three orphaned
occurrences of ··very" at addresses 1 lE, 124, and 12A as well as the original ••powerful"
at address 130. The DOS display string function call won't even get to all this extra text,
because it will stop printing when it hits the first character 24 ($). When you moved the
••powerful" line down from address 130 to address 112, you brought the $ with it. DOS
will stop dead in its tracks when it reaches this $, even though more text is in memory
beyond it.

In order to get rid of all this unneeded MOVETEST.eOM text, the MOVE3.SeR script
file adjusted the value in the ex register from 3e (decimal 60) bytes down to 1E (decimal
30) bytes. Technically it really didn't have to make the file any smaller. Because of the
way DOS allocates disk space, even a one-byte file takes up a minimum of 2,048 (2K)
bytes, and can hog as much as 8,192 bytes (8K) on an XT. So making the file 30 bytes

340 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

shorter isn't going to save any disk space. And since the DOS display text function call
will stop working as soon as it reaches the first $, it will ignore the unneeded text that
follows. But why be sloppy?

Here's what your system's memory looked like after MOVE3.SCR shortened the
MOVETEST.COM file:

After the single MOVE3.SCR
Move instruction:

Address Text starting at this
address

108 "DEBUG is",D,A

112 "powerful.,. ,D,A,24

llE "very",D,A,

124 "very",D,A,

12A "very",D,A,

130 "powerful.,. ,D,A,24

Starting Up DEBUG

} All of this is unused.

Format: DEBUG or DEBUG d:[path]FILENAME

To start DEBUG, type either:

DEBUG

or:

DEBUG [d:] [path]filename[.ext]

substituting the name of the file you want to examine or change in place of
[d:][path]filename[.ext].

If you type just DEBUG and press Enter all you'll see is the DEBUG - hyphen prompt.
If you type DEBUG and then the name of a file DOS can locate, you'll still see nothing
but the DEBUG hyphen prompt. However, when you specify a filename on the DOS
command line (e.g., DEBUG COMMAND.COM), DEBUG will load that file into
memory. You can then display or modify any part of that file. If you do make any changes
you can then write the modified file back to disk. You can start DEBUG without including
a filename on the command line, and then later use the N (Name) and L (Load) commands
to load a file for DEBUG to examine or change.

DEBUG 341

Most of the time you'll want to start DEBUG by specifying a filename on the DOS
command line. The only times you wouldn't want to are when you need to examine what's
already loaded in memory or create a brand new file. But even then you still may want
to include a filename on the command line.

If you specify a file DEBUG can't locate, such as a brand new file you're trying to
create, you'll see a "File not found" message, followed on the next line by the normal
hyphen prompt. If you 're trying to load an existing file and you see this message, you
either typed in the filename incorrectly or you were trying to load a file in another
subdirectory or on another disk that DOS couldn't locate. If this happens, type Q and hit
Enter to quit, then make sure that file is handy and restart.

If you are trying to create a brand new file, you have to tell DEBUG what to name it.
While you can do this with the N (Name) command, specifying the new name on the
DOS command line will have the same effect. You'll still see the "File not found"
message, but this will let you Write (W) the new file to disk later without having to
re-enter it with the DEBUG N command.

For example, if you were on drive C: and you wanted to look inside your system ROM
to see the copyright date, or if you wanted to examine any other part of memory, you• d
start by typing simply DEBUG. All you'd see is the DEBUG prompt:

C>DEBUG

If you then entered D to display the contents of memory, DEBUG would show you
whatever happened to be loaded at offset 100 (hex) of DEBUG's data segment.

If you wanted to examine the copy of COMMAND.COM in your \DOS subdirectory,
you'd type DEBUG and the path and filename:

C>DEBUG \DOS\COMMAND.COM

Type D and then press Enter at this point and you'd see the first 128 bytes of COM
MAND.COM.

If you wanted to create a brand new file called NEWHEART.COM, you could either
specify it on the command line:

C>DEBUG NEWHEART.COM
File not found

or you could use the N (Name) command:

C>DEBUG
-N NEWHEART.COM

342 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

Naming a File for Loading or Writing
Format: N [d:][path]filename[.ext]

You can't load or write a file unless you first specify a filename one of two ways. You
can either enter a filename on the DOS command line (e.g., DEBUG COM
MAND.COM), or you can use the N command to do it later. For example,

DEBUG GREEN.COM

or

-N GREEN.COM

If you try to use the W command to write a file without having first specified a name,
DEBUG won't oblige, and will simply print the error message ''(W)rite error, no
destination defined."

If you start DEBUG without specifying a filename, and want to load an existing file
(like YELLOW.COM) later, you have to use the N command to give DEBUG the
filename you want it to load:

C>DEBUG
-N YELLOW.COM
-L

The N command comes in very handy when you 're modifying a file and you want to save
the modified version without destroying the original. Let's say you had a file on your
disk called RED.COM that cleared your screen, set the colors (on a CGA, VGA, or EGA
only) to red text on a white background, and even set the border to red if you were using
a CGA (and did nothing if you weren't). Don't have such a file handy? Then make sure
DEBUG is on your disk, and at the DOS prompt type:

DEBUG RED.COM
E 100 BS 00 06 B9 00 00 BA 4F 18 B7 74 CD 10 B4 02
E lOF BA 00 00 B7 00 CD 10 BO 04 BA D9 03 EE C3
RCX
1D
w
Q

Ignore the "File not found" message DEBUG prints when you start. If you wanted to
change the file slightly so it set the text and border colors to blue instead of red, you could
patch the program at locations lOA for the text color and 117 for the border. To do this,
you'd use the E command and type the following:

DEBUG RED.COM
E lOA 71
E 117 01
N BLUE.COM
w
Q

DEBUG 343

Notice that after entering the patches with the E command, you used the N command to
give the modified file a new name. By doing this you created a second file called
BLUE.COM and left the first RED.COM file alone. If you hadn't done this you would
have saved the changed file as RED.COM - and RED.COM would have set your colors
to blue.

You could also have created a file called PURPLE.COM at the same time you created
RED.COM, by adding two new E instructions and another N and W command. If you
had typed:

DEBUG RED.COM
E lOA 71
E 117 01
N BLUE.COM
w
E lOA 75
E 117 05
N PURPLE.COM
w
Q

the first W would have written the changes to a file called BLUE.COM that set your
colors to blue on white. The second W would have written the second set of changes to
a file that the second N named PURPLE.COM.

Displaying Memory Contents
Format: D [address][address] or D address length

Microsoft and IBM call the D command .. Dump" but you may want to think of it as
.. Display." Use it to examine from 1 to 65,536 bytes of memory at a time.

Issuing a D command on a typical 80-column screen will display three things:

1. At the left edge of yo11,r screen, the segment and offset addresses of the memory you
want to examine, in even-paragraph chunks. A paragraph is a slice of memory 10 hex
(decimal 16) bytes long that is evenly divisible by hex 10; in other words a chunk of
memory that starts at an offset address ending in a 0. 100 and 110 and FEO and CCO
are all paragraph addresses. 101and112 and FE9 and CCF are not.

344 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

2. In the middle part of your screen, the hex values of the bytes in that paragraph. If you
ask DEBUG to display the whole paragraph, you'll see decimal 16 bytes. If you ask
it to start displaying memory at an address that's not a paragraph boundary, you'll
see fewer than decimal 16. DEBUG will insert a hyphen between bytes 7 and 8. (Since
the first byte in each paragraph is byte 0, the hyphen is smack in the middle, between
the 8th and 9th byte in each row.)

3. At the right edge of your screen, the ASCII representation of any values between hex
20 and 7E (decimal 32 and 126). DEBUG displays a period (.) for any value below
hex 20 or greater than hex 7E.

If you issued the command:

-D FOOO:O L 30

to display the hex 30 (decimal 48) bytes starting at offset 0 of segment FOOO on an IBM
AT (this address happens to be the beginning of the AT's BIOS), you'd see:

FOOO:OOOO 36 36 31 31 38 38 31 31-30 30 32 32 38 39 20 20 66118811002289

FOOO:OOlO 43 43 4F 4F 50 50 52 52-2E 2E 20 20 49 49 42 42 CCOOPPRR .. IIBB

F000:0020 4D 4D 20 20 31 31 39 39-38 38 34 34 FA B4 DD EB MM 11998844

I oJset J alue at address F000:0020
Segment

ASCII representation
of 4D value at address
F000:0020

Note that in this case DEBUG displayed periods after 11998844 because the values
there (FA B4 DD E8) are higher than 7E. But it displayed periods after CCOOPPRR
because the values there (2E 2E) are the hex representation of actual periods.

The double letters in the message are there because of the way display memory is
arranged, in odd- and even-address chunks. To see what this really says, you can copy
this message from the part of memory where it normally sits - the very beginning of
segment FOOO - to the part of memory that controls your video display. On a color
system the beginning of video memory is located at address B800:0. On a monochrome
system it's BOOO:O. (If you have a mono system, substitute BOOO for B800 in the statement
below.) Load DEBUG and type:

-M FOOO:O L 2C B800:0

The M command (Move) copies the first 2C (decimal 44) bytes of memory from offset
0 of segment FOOO - the beginning of the AT ROM BIOS - to offset 0 of segment
B800 (the beginning of color video memory, and the upper lefthand corner of a color
screen). On the upper lefthand comer of either screen you'll see a crazy- quilt of attributes
and the letters:

6181028 COPR. IBM 1984

DEBUG 345

The long number is the part number for the ROM chip that contains the message. The
rest is IBM's copyright notice. The unusual colors (or mono attributes on a mono system)
are artifacts.

Video memory is arranged so that the even-numbered bytes contain the values of
the characters you want to display, and the odd-numbered ones hold the attributes.
Since each value appears twice, the system will display the even-numbered ones as
the characters these represent, and then translate the odd-numbered versions of each
into the attributes for these characters. You may enter D commands in four slightly
different ways:

1. If you enter D by itself, DEBUG will display 128 bytes of memory. If you begin the
display on an even paragraph boundary, as you would if you had just loaded DEBUG
and issued no other commands, DEBUG will display these 128 bytes in eight even
rows (paragraphs). If you had previously displayed a part of memory that didn't start
on a paragraph boundary (an offset that ends in a 0), DEBUG would stagger the 128
bytes over nine rows.

Once you enter D and see 128 bytes of memory, entering D by itself will display
the next 128 bytes. If the display reaches the top of a 64K segment, DEBUG will
cycle back to the bottom; if it reaches the bottom DEBUG will begin again at the top.

If you start DEBUG and do not specify an address, DEBUG will generally start
displaying memory at offset 100 of the current data segment.

However, if you enter a D without any address after it, and display a few successive
memory blocks by entering just D a few more times, and then later load a COM file
(by entering an Nanda filename that ends with .COM and then an L), and then enter
a D all by itself, DEBUG will start displaying bytes at 100 again, instead of
remembering the last address it displayed.

2. If you enter a D with a single address after it, DEBUG will display the 128 bytes
beginning with that address. If you follow this immediately by entering just a D with
no address after it DEBUG will show you the very next 128 bytes after the first 128
that you specified.

If you enter an address in segment: off set form, DEBUG will show you the contents
of memory in the segment you specified. If you omit the segment and simply enter
the offset, DEBUG will assume you want it to look inside its default data segment
- the one it will load your programs into if you ask it to.

You can also enter segment:offset addresses by using the alphabetical shorthand
form of the segment (such as DS: 100 when you want to specify offset 100 of the data
segment), but this is really just for serious programmers.

3. If you enter a D followed by an address, then an Land a hex number range from 1 to
0000 (0000 is shorthand for 10000), DEBUG will display the number of bytes in the
range specified, starting at the address specified. This will let you examine just one
single byte (if the range number is 1), or an entire 64K segment (if the range number
is 0000 and you're starting at offset 0) in one continuous scrolling list. If you want
to break out of an overly long display, just type Ctrl-Break or Ctrl-C.

4. If you enter a D followed by two addresses, DEBUG will display the contents of
memory starting at the first and continuing to the second. You may specify a segment
and offset for the first address, but only an offset for the second.

346 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

For example, to display the single byte of memory starting at offset 0 of segment FOOO,
you could enter either:

-D FOOO:O 0

which tells DEBUG to display memory starting and stopping at offset 0 of segment FOOO,
or:

-D FOOO:O L 1

which tells DEBUG to display one byte of memory starting at offset 0 of segment FOOO.
To display the entire FOOO 64K segment of memory, you could enter either:

-D FOOO:O FFFF

or:

-D FOOO:O L 0000

Or you could type:

-D FOOO:O

and press the Enter key 512 times. The first two examples will scroll the display in one
continuous gulp. The third will do it in 128-byte slices.

All of the following examples assume you loaded COMMAND.COM version 5.0 into
memory either by typing DEBUG COMMAND.COM at the DOS command line, or by
entering DEBUG, then using successive N COMMAND.COM and L commands to take
care of it.

To view COMMAND.COM from the beginning of the file in even eight-paragraph
chunks, you'd simply keep typing D and pressing the Enter key:

1359:0100 E9 5D 14 00 78 14 00 OO-B7 OE 00 00 75 OD 00 00 .] .. x u ...

1359: 0110 85 11 00 00 00 00 00 00-00 00 00 00 00 00 00 00
1359:0120 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
1359: 0130 00 00 00 00 00 FB E8 64-00 lE OE 2E FF 2E 04 01 d

1359:0140 FB E8 59 00 lE OE 2E FF-2E 08 01 FB E8 4E 00 lE .. Y N ..

1359: 0150 OE 2E FF 2E OC 01 FB E8-43 00 lE OE 2E FF 2E 10 c
1359:0160 01 E8 39 00 lE OE 2E FF-2E 14 01 E8 2F 00 lE OE .. 9 I ...
1359:0170 2E FF 2E 18 01 E8 25 00-lE OE 2E FF 2E lC 01 EB .••••. % •••••••••

-D

1359:01BO lB 00 lE OE 2E FF 2E 20-01 EB 11 00 lE OE 2E FF o o t 0 0 0 t I

1359:0190 2E 24 01 EB 07 00 lE OE-2E FF 2E 2B 01 9C 2E BO . $ (....

1359:01AO 3E 34 01 00 74 OB E8 OC-00 73 03 EB lA 00 9D C3 4 .. t s

DEBUG 347

1359:01BO EA 35 01 00 00 53 50 B4-07 2E FF lE 30 01 OB CO .5 ... SP 0 .. .

1359:01CO 5S 5B 75 02 F9 C3 FS C3-53 50 B4 05 2E FF lE 30 X[u SP 0

1359:01DO 01 OB CO 74 03 5S 5B C3-EB FE CD 21 FA OE 17 BC ... t.X[.... !

1359:01EO 3E OS FB OE lF 9C 2E A0-40 OS AS SO 74 07 24 7F @ ... t.$.

13S9:01FO 2E FF lE 2C 01 2E SO 26-40 OS 7F 9D E9 62 FF 02 ... , ... &@ b ..

and so on. Not really much to look at here.
To view a continuous list of internal DOS commands, you would enter:

-D A8C6 AA4F

which tells DEBUG to display everything from offsets A8C6 through AA4F:

13S9:ASCO 4E 4F-S4 EF OA OA 4S 52 52 4F NOT ... ERRO

1359:ASDO 52 4C 45 56 45 4C B2 OB-05 45 5S 49 53 54 46 OB RLEVEL ... EXISTF.

1359:A8EO 00 03 44 49 52 03 SD 10-D2 S4 04 43 41 4C 4C 02 .. DIR CALL.

1359:A8FO 27 QC 34 S5 04 43 48 43-50 02 OF 21 A2 84 06 52 I .4 .. CHCP .. ! ••• R

1359:A900 45 4E 41 4D 45 03 DF lA-OE 85 03 52 45 4E 03 DF ENAME REN ..

1359:A910 lA OE 85 05 45 52 41 53-45 03 57 lA CA 84 03 44 ERASE.W D

1359:A920 45 4C 03 57 lA CA S4 04-54 59 50 45 03 SD lB 24 EL.W TYPE ... $

1359:A930 S5 03 52 45 4D 06 04 01-3A S5 04 43 4F 50 59 03 .. REM ... : .. COPY.

1359:A940 C3 38 B4 84 05 50 41 55-53 45 06 4A lA 3E 85 04 .8 ... PAUSE.J ...

1359:A950 44 41 54 45 02 C4 2F C4-84 04 54 49 4D 45 02 2D DATE .. / ... TIME.-

1359:A960 30 lE S5 03 S6 45 52 02-B7 lD 2S 85 03 56 4F 4C 0 ... VER ... (.. VOL

1359:A970 03 BB lC 30 S5 02 43 44-03 77 25 AS S4 05 43 4S ... 0 .. CD.w% ... CH

1359:A9SO 44 49 52 03 77 25 A8 84-02 4D 44 03 E2 25 EA 84 DIR.w% ... MD .. % ..

1359:A990 05 4D 4B 44 49 52 03 E2-25 EA 84 02 52 44 03 56 .MKDIR .. % ... RD.V

1359:A9AO 26 OA 85 05 52 4D 44 49-52 03 56 26 OA 85 05 42 & ... RMDIR.V& ... B

1359:A9BO 52 45 41 4B 02 BC 37 9E-84 06 56 45 52 49 46 59 REAK .. 7 ... VERIFY

1359:A9CO 02 FF 37 2C S5 03 53 45-54 06 D7 22 16 S5 06 50 .. 7, .. SET .. " ... P

1359:A9DO 52 4F 4D 50 54 06 BD 22-F6 S4 04 50 41 54 4S 02 ROMPT .. " ... PATH.

1359 :A9EO lF lF EE S4 04 45 58 49-54 00 19 22 E6 84 04 43 EXIT .. II ••• c
1359:A9FO 54 54 59 03 GB 20 CO S4-04 45 43 4S 4F 06 S2 37 TI'Y.k ... ECHO .. 7

1359:AAOO 42 S5 04 47 4F 54 4F 06-5B QC 4S 85 05 53 48 49 B .. GOTO. [.H .. SHI

1359:AA10 46 54 02 EO OB 4E S5 02-49 46 06 8F OA 52 85 03 FT ... N .. IF ... R ..

1359:AA20 46 4F 52 06 24 OF 62 85-03 43 4C 53 00 CB lF BO FOR.$.b .. CLS

1359:AA30 84 08 54 52 55 45 4E 41-4D 45 03 97 21 6C S5 08 .. TRUENAME .. !l ..

1359:AA40 4C 4F 41 44 48 49 47 4S-02 27 59 70 S5 02 4C 4S LOADHIGH.'Yp .. LH

Remember that since DEBUG loads COM files at address 100, these offsets are hex
100 bytes higher than they actually appear in the file.

You could have viewed the same list of version 5.0 internal commands by typing:

-D A8C6 L 18A

348 DOS Power Tools, 2nd Edition, Revisedfor DOS 5.0

This would display hex 18A bytes of memory starting at offset A8C6.
Or, you could examine these commands simply by typing:

-D A8C6

and pressing Enter, and then typing just D and pressing Enter twice. Entering D and a
single address will display 128 bytes starting at that address. Typing D by itself after that
will keep displaying consecutive 128-byte chunks following the one you specified.

Note that while you can enter a range (using the L command to specify a length of
bytes to display) after you enter an address, you can't just enter a range by itself. The
command:

-D L18A

will produce an error message.
DEBUG remembers which addresses you specified most recently when using the D

command. If you use D to view memory between offsets 100 and 200, then use the U
command to unassemble the code between offsets 600 and 700, and then enter D by itself,
DEBUG will display memory starting at 201 rather than 701, because the last byte the D
command displayed was at offset 200.

Entering New Memory Contents
Format: E address [list]

The versatile Enter command lets you insert new memory values and modify existing
ones. You can use it in one of two modes:

1. You may specify an address and a value and have DEBUG blindly enter that value
at that address.

2. Or you may enter an address, have DEBUG display the value currently stored at that
address, and change the value only if you want to.

The first brute-force technique lets you enter a block of new information at one time.
This comes in handy when you 're entering strings of characters, or when you 're following
a script.

The second technique lets you confirm your modifications by verifying the current
values before you make any changes. And it lets you jump forward or backward through
the file a byte at a time. For example, many users rely on the E command to enter small
COM programs. Try typing in the following REMINDER.SCR file using a pure ASCII
word processor:

DEBUG 349

N REMINDER.COM
E 100 B4 09 BA 08 01 CD 21 C3 42 61 63 6B 20 75 70 20
E 110 79 6F 75 72 20 77 6F 72 6B 20 64 61 69 6C 79 21
E 120 OD OA 24
RCX
23
w
Q

Of course, since all this program does is print a message that says:

Back up your work daily!

it's actually easier to use the E command to enter the message directly than to type in the
individual hex values of the letters in the string:

N REMINDER.COM
E 100 B4 09 BA 08 01 CD 21 C3
E 108 "Back up your work daily!"
E 120 OD OA 24
RCX
23
w
Q

In both cases you 're creating a new file, so you really don't care what memory values
your brand new program is overwriting. And since you're following a published script
you can pretty much enter the values without worrying about damaging anything.

But when you're changing values inside an existing file you really should verify that
you 're modifying the proper bytes.

Let's make a simple change in the REMINDER.COM file so it beeps at you to drive
the "Back up ... " message home. One easy way is to replace the exclamation point
(character 21 hex) with an ASCII character 7. Printing a character 7 onscreen causes a
beep.

To do this you have to find the memory address that currently stores a value of 21, and
enter a 7 at that address. You can see from looking at the script file you typed previously
that the file is hex 23 bytes long (this is the value entered below the RCX command that
sets the file length), and that the exclamation point is very near the end of the file.

To figure out the exact address, look at the middle of the second script file:

E 108 "Back up your work daily!"
E 120 OD OA 24

350 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

Notice that the actual message starts at address 108, and that the three characters that
follow the message begin at address 120. Since the exclamation point is the last character
in the string, its location is right before the three characters that start at offset 120.

(You could, of course, zero in on the exact address by counting from the "B" in "Back"
- at address 108 - and working your way one byte at a time across to the"!" at the
end. Each character represents one byte, so you• d simply count 108 ... 109 ... lOA etc. But
it•s easier to assume that the exclamation point is at the address directly before the three
characters starting at 120.)

Here·s where the the interactive mode of the E command comes in handy: New
DEBUG users sometimes forget that in hex the number right before 20 is lF, not 19. So
if you used the interactive E mode to change 21 to 7 and you thought the right address
was 119, when you entered the 119 address you• d see:

-E 119
30F9:0119 20.
-Q

(If you try this yourself, remember that you '11 see another number in place of the 30F9
to the left of the colon, because this is the segment address, which will vary depending
on your system configuration.)

Notice that the E 119 command reported that the value at address 119 was 20. Since
you wanted to replace an existing value of 21, not 20, offset 119 is the wrong address.

Fortunately, the interactive E mode lets you scan ahead in the file byte by byte until
you reach the proper value. To scan ahead, just tap the space bar until you see the value
you're looking for. This would look like:

-E 119
30F9:0119 20. 64. 61. 69. 6C. 79. 21.

The value of 21 is actually located six bytes later, at address 1 lF. Once you found it
by leaning on the space bar, you could enter a new value of 7 to the right of the period
DEBUG displays, then use the W and Q commands to write the changed file to disk and
quit:

-E 119
30F9: 0119 20.
21. 7

-w
Writing 0023 bytes
-Q

64. 61. 69. 6C. 79.

If you wanted to keep the original REMINDER.COM file (with the exclamation point)
intact and create an additional file that beeped, you could add a line to give the modified
file a new name like REMINDR2.COM:

-E 119
30F9:0119 20.
21. 7

-REMINDR2.COM
-w
Writing 0023 bytes
-Q

64.

DEBUG 351

61. 69. 6C. 79.

It's easy to get too far ahead in the file when jumping byte by byte by tapping the space
bar. If this happens you can move backward by hitting the minus (hyphen) key. You'll
know you went too far if you see the three final characters - the OD, OA, and 24. If this
happens, hit the minus key several times to back up to the 21, enter the new value, then
execute the same closing commands as above.

-E 119
30F9:0119 20.
30F9:0120 OD.
30F9:0121 OA. -
30F9:0120 OD. -
30F9:011F 21. 7
-REMINDR2.COM
-w
Writing 0023 bytes
-Q

64. 61. 69. 6C. 79. 21.
OA. 24.-

The interactive E command also comes in handy when you have to replace several
characters in a row.

Some commercial word processing programs stick hex lA (decimal 26) end-of-file
markers onto the back of text files to pad out their lengths. If you combine two such files
into one, it's possible to end up with end-of-file markers in the middle of the file - which
will confuse these programs (and DOS as well) into thinking the files end prematurely.
If this happens, you can use DEBUG to scan through the file byte by byte. Whenever you
see a value of lA in the middle of your text, you can replace it with a space (a hex 20).
Whenever you see any other value you can press the space bar to skip over it and leave
it untouched.

If you know that you combined two files, but when you try to load them into your word
processor or examine them with the DOS TYPE command, the file seems to end with:

This is the end of the first little file.

Examine the file with DEBUG. Figure out the hex file length by typing RCX, and then
use the Search (S) command to look for any lA characters that aren't right at the end.
You may see something like:

352 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

-RCX

ex 0780

-S 100 L 780 lA
30DD:062B
30DD:062C
30DD:062D
30DD:062E
30DD:062F
30DD: 087C
30DD:087D
30DD:087E
30DD:087F

The four addresses at the end (087C, 087D, 087E, and 087F) are where they belong
- at the end. Remember, if RCX tells you the file is hex 780 bytes long, the file will
actually end 100 hex bytes highter, since DEBUG loads files at address 100, not address
0. So these are the last four addresses in the file.

The other five occurrences of lA that DEBUG's Search command uncovered - 062B,
062C, 062D, 062E, 062F - shouldn't be there, since lA characters don't belong
anywhere in a text file except at the very end. You can see them by using the D command.
Here these lA characters are at the end of the third paragraph (row):

-D 600

30DD:0600 54 68 69 73 20 69 73 20-74 68 65 20 65 6E 64 20 This is the end

30DD:0610 6F 66 20 74 68 65 20 66-69 72 73 74 20 6C 69 74 of the first lit

30DD:0620 74 6C 65 20 66 69 6C 65-2E OD OA lA lA lA lA lA tle file

30DD:0630 41 6E 64 20 74 68 69 73-20 69 73 20 74 68 65 20 And this is the

30DD:0640 62 65 67 69 6E 6E 69 6E-67 20 6F 66 20 74 68 65 beginning of the

30DD:0650 20 73 65 63 6F 6E 64 20-6C 69 74 74 6C 65 20 6F second little o

It's easy to get rid of them. You could use the E or Fill (F) commands to do it without
confirmation, but if you 're the cautious type you might want to make sure you 're making
changes at the proper addresses. To do so, type:

-E 620
30DD:0620 74.
6C. 65.
30DD:0628 2E.
lA. 20 lA. 20
30DD:0630 41.
-w
Writing 0780 bytes
-Q

6C. 65. 20. 66. 69.

OD. OA. lA.20 lA.20 lA.20

DEBUG 353

When DEBUG displayed any character other than lA, simply press the Enter key to
leave it unchanged and skip to the next one. When you do finally see the string of lA
characters, change them by entering hex 20 values (spaces) beside the periods DEBUG
prints. Then write the modified file to disk and quit, using the W and Q commands.

If you used the DOS TYPE command now, you• d see something like:

This is the end of the first little file.
And this is the beginning of the second little one.

The second line is pushed over several spaces to the right because you changed the
end-of-file characters separating the two lines into space characters. You can use your
word processor to remove these extra spaces, or you could have used the DEBUG Move
(M) command to wipe them out by moving everything five addresses lower from the
word "And" on up.

Filling a Block of Memory
Format: F range list

The Fill command can double as a brute-force, noninteractive Enter command.
Here are two similar ways to create a program called FOOTBALL.COM. The first

uses the Enter (E) command:

N FOOTBALL.COM
E 100 B4 09 BA 08 01 CD 21 C3 11 Hi Morn!" OD OA 24
RCX

12
w
Q

The second uses the Fill (F) command:

N FOOTBALL.COM
F 100 L 12 B4 09 BA 08 01 CD 21 C3 11 Hi Morn!" OD OA 24
RCX

12
w
Q

You can see that these two programs are almost identical.
The Fill command is useful for converting data files to text files. Many database

managers produce ASCII files that contain nontext information in a "header" at the
beginning of the file. If you try to read this file into your own database program, word
processor, or spreadsheet, you '11 end up with a mess. Sometimes database programs even

354 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

put end-of-file markers at the beginning of such files to prevent nonauthorized users from
peeking at the contents of the file. But you can have DEBUG examine the beginning of
the file to see where the ASCII data actually starts, then cover over any nontext
information. Just use the Fill command to put spaces (hex 20 characters) over anything
before your data. Then use your word processor to remove the spaces. (An even better
way is to use the DEBUG Move command to move the part of the file with your data
over the nondata part, obliterating anything non-ASCII.)

You can also use the Fill command to wipe out a whole block of troublesome repeating
characters in a file. Some word processors insert large numbers of end-of-file markers
into text files. And some communications programs stick nulls - character Os - into
files. Both can confound certain commercial programs.

To get rid of these, browse through the file with the Display (D) command or scan
through with the Search (S) command to find out where the block of 00 or lA characters
is located. Then use the Fill command to change these characters into something harmless
like spaces. (Again, the Move command does this even better.)

If nulls creep into a text file, you might load a file and see nothing but:

signs. Worse, once your cursor hits these null signs your word processor may choke to a
halt and force you to reboot. To get rid of these, figure out where they start and stop:

C>DEBUG EXPAND.RPT

-D

3482:0100 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
3482:0110 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
3482:0120 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
3482: 0130 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
3482:0140 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
3482:0150 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
3482:0160 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 t It I' I I I I I I I I I I I

3482:0170 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
-D

3482:0180 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 I I I I I I I I I I I I I I I I

3482:0190 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 I I I I I I I I I I I I I I I I

3482:01AO 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 I I I I I I I I I I I I I I I I

3482:01BO 00 00 00 00 00 00 00 49-74 20 73 65 65 6D 73 20 It seems

3482:01CO 74 68 65 20 66 69 67 75-72 65 73 20 77 65 27 76 the figures we'v

3482:01DO 65 20 62 65 65 6E 20 75-73 69 6E 67 20 74 6F 20 e been using to

3482:01EO 70 6C 61 6E 20 6F 75 72-20 77 65 73 74 65 72 6E plan. our western

3482:01FO 20 65 78 70 61 6E 73 69-6F 6E 20 61 72 65 20 6F expansion are o

When you tell DEBUG to fill an area of memory you can specify explicit starting and
stopping addresses. Or you can enter a starting address and then tell DEBUG how many
bytes it should fill beginning with that address.

DEBUG 355

The 00 null characters start at address 100 and continue to address 1B6. You could
change these to asterisks (hex 2A) with either of the following Fill commands:

-F 100 1B6 2A

or:

-F 100 L B7 2A

In either case, if you used the:

-D 100

command to examine the changes, you'd see:

-D 100

3482:0100 2A 2A 2A 2A 2A 2A 2A 2A-2A 2A 2A 2A 2A 2A 2A 2A ****************

3482:0110 2A 2A 2A 2A 2A 2A 2A 2A-2A 2A 2A 2A 2A 2A 2A 2A ****************

3482:0120 2A 2A 2A 2A 2A 2A 2A 2A-2A 2A 2A 2A 2A 2A 2A 2A ****************

3482: 0130 2A 2A 2A 2A 2A 2A 2A 2A-2A 2A 2A 2A 2A 2A 2A 2A ****************

3482:0140 2A 2A 2A 2A 2A 2A 2A 2A-2A 2A 2A 2A 2A 2A 2A 2A ****************

3482:0150 2A 2A 2A 2A 2A 2A 2A 2A-2A 2A 2A 2A 2A 2A 2A 2A ****************

3482:0160 2A 2A 2A 2A 2A 2A 2A 2A-2A 2A 2A 2A 2A 2A 2A 2A ****************

3482:0170 2A 2A 2A 2A 2A 2A 2A 2A-2A 2A 2A 2A 2A 2A 2A 2A ****************

-D

3482:0180 2A 2A 2A 2A 2A 2A 2A 2A-2A 2A 2A 2A 2A 2A 2A 2A ****************

3482:0190 2A 2A 2A 2A 2A 2A 2A 2A-2A 2A 2A 2A 2A 2A 2A 2A ****************

3482:01AO 2A 2A 2A 2A 2A 2A 2A 2A-2A 2A 2A 2A 2A 2A 2A 2A ****************

.3482:01BO 2A 2A 2A 2A 2A 2A 2A 49-74 20 73 65 65 6D 73 20 *******It seems

3482:01CO 74 68 65 20 66 69 67 75-72 65 73 20 77 65 27 76 the figures we'v

3482:01DO 65 20 62 65 65 6E 20 75-73 69 6E 67 20 74 6F 20 e been using to

3482:01EO 70 6C 61 6E 20 6F 75 72-20 77 65 73 74 65 72 6E plan our western

3482:01FO 20 65 78 70 61 6E 73 69-6F 6E 20 61 72 65 20 6F expansion are o

Later you can use your word processor to get rid of these extra asterisks.
You can also use Fill to clean out a block of memory. If you want to do some serious

DEBUG string moving on a file called FIXIT.TXT, it's hard enough to figure out where
all the important strings start and stop. If you load a file into a part of memory that already
contained similar strings you can get hopelessly lost. To prevent this, you can wipe out
any existing values by filling the whole bottom of DEBUG's data segment with uniform
background characters. If you wanted to fill the entire workspace with 00 characters,
you• d load DEBUG without specifying a filename, fill a large chunk of memory with 00
characters, then Name and Load the file:

356 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

C>DEBUG
-F 100 7000 00
-N FIXIT.TXT
-L

Since IBM and IBM-compatible video displays are memory-mapped, you can see how
fast DEBUG fills memory. If you stick decimal 4000 (hex PAO) characters into the right
part of memory (address B800:0 for color systems; BOOO:O for mono), your screen will
instantly fill with the characters you entered. If you have a color system, type:

C>DEBUG
-F B800:0 L FAO "q"

and 2,000 blue lowercase "q" characters will appear in a flash. Or substitute a lowercase
"t" to end up with 2,000 red lowercase "t" characters. (Use BOOO:O instead of B800:0 on
mono systems, and forget about colors. Using "q" will underline the entire screen,
however.)

A typical 80-column screen holds 2,000 characters. But hex PAO is equal to decimal
4,000, not 2,000. Why? Standard PC video memory is divided into even and odd halves.
Putting a value at an even address (B800:0, B800:2, etc.) will display the ASCII
representation of that character onscreen. Putting a value at an odd address (B800: 1,
B800:3, etc.) provides the attribute for the character at the next lower address. The hex
valuefor"q'' is 71, which produces bluetext(blue = 1) ona white background (7 =white).
The hex value for "t" is 74, which produces red text (red= 4) on a white background. On
mono screens, blue text ends up as underlined text.

Moving a Block of Memory
Format: M range address

The Move command is misnamed. It really should be called the Copy command, since
it copies data from one place in memory to another rather than moving it. The term
"Move" suggests that DOS deletes the original. It doesn't, unless you intentionally
overlap the areas involved so the new location overwrites the old one.

You can end up with some strange effects by moving strings into video memory. If
you try this, remember that to be recognizable, text has to load at even bytes and attributes
for the text at odd bytes.

To see this in action, create the following three short files. First SCRNTST.BAT:

ECHO OFF
T"IT'O
.U..L.L\.

PAUSE
DEBUG < SHIFTl
PAUSE
DEBUG < SHIFT2

Then SHIFf 1:

M BSQQ:Q L FAQ B8QQ:52
Q

And finally, SHIFf2:

M B8QQ:52 L FAQ BSQQ:Q
Q

DEBUG 357

Remember to press the Enter key after typing the Q in SHIFf 1 and SHIFf2, or your
system will hang and you'll have to reboot. Also, these files are written to work on color
systems. For mono screens, change the each of the four B800s to BOOO.

All this will do is fill your screen with a directory listing, then move one 80 x 25
screenful - 4,000 bytes (hex FAO) - of video memory to a slightly higher address and
then back. The DIR display will shift over to the right side of the screen and then return
to its normal position. If you change the 52 in both SHIFf 1 and SHIFf2 to an odd number
like 51or53, DEBUG will move the even numbered part of memory, your text, into the
odd part, turning it into attributes. Then it will move it back to text.

Move is very useful when it comes to eliminating headers on data files. Many database
managers create pure ASCII fixed-length files that you can import into a word processor
or spreadsheet, except that these files begin with coded information that tells the database
the record structure, number of entries, and so on. You can get rid of this header with a
few simple DEBUG instructions. Here's a simplified example, using a very small file:

Let's say someone gives you a file called ADRSBOOK containing names and
addresses that you need. If you don't have the database program that created the file, and
your own database program won't import it, you can't really do much with it. Unless you
fix the problem with DEBUG.

First, load the file into DEBUG. Use the RCX command to see how long it is, then
plug this length into the Search (S) command to see if it contains a hex lA end-of-file
marker:

C>DEBUG ADRSBOOK
-RCX
ex 0400

-S 100 L 400 lA
3QDD:Q3B4

Now you know that the file is 400 bytes long and that it may end at offset 3B4.
(Obviously, not all database file formats will be this easy. But this example uses a genuine
database file.) Type D and press the Enter key a few times until you see where the actual
data begins:

358 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

-D

30DD:0100

30DD: 0110

30DD:0120

30DD: 0130

30DD:0140

30DD:0150

30DD:0160

30DD: 0170

-D

30DD:0180

30DD:0190

30DD:01AO

30DD:OlBO

30DD:01CO

30DD:01DO

30DD:01EO

30DD:01FO

-D

30DD:0200

30DD:0210

30DD:0220

30DD:0230

30DD:0240

30DD:0250

30DD:0260

30DD: 0270

-D

30DD:0280

30DD:0290

30DD: 02AO

30DD:02BO

30DD:02CO

30DD:02DO

30DD:02EO

30DD:02FO

-D

02 03 00 06 06 58 39 00-4C 41 53 54 00 00 00 00

00 00 00 43 OF D9 AA 00-46 49 52 53 54 00 00 00

00 00 00 43 08 EB AA 00-53 54 52 54 41 44 52 53

00 00 00 43 12 FO AA 00-43 49 54 59 00 00 00 00

00 00 00 43 08 02 AB 00-53 54 00 00 00 00 00 00

00 00 00 43 02 OA AB 00-5A 49 50 00 00 00 00 00

00 00 00 4E 05 OC AB 00-0D 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

30DD:0300 00 00 00 00 00 00 00 00-00 20 54 65 6E 6E 79 73

30DD:0310 6F 6E 20 20 20 20 20 20-20 41 6C 20 20 20 20 20

30DD:0320 20 31 38 20 48 6F 67 62-6F 6E 65 20 4C 61 6E 65

30DD:0330 20 20 20 54 68 75 64 77-65 6C 6C 47 41 33 30 32

30DD:0340

30DD:0350

37 33 20 41 72 6E 6F 6C-64 20 20 20 20 20 20 20

20 20 4D 61 74 74 20 20-20 20 31 31 31 20 57 69

..... X9 .LAST

... C FIRST .. .

... C STRTADRS

... C CITY

... C ST

... C ZIP

... N •...........

...... ~ ... Tennys

on Al

18 Hogbone Lane

ThudwellGA302

73 Arnold

Matt 111 Wi

30DD:0360 6E 65 64 61 72 6B 20 53-74 2E 20 20 54 68 69 72 nedark St. Thir

30DD:0370 73 74 79 20 54 58 37 37-36 31 39 20 44 75 6E 6E sty TX77619 Dunn

DEBUG 359

The data starts at address 30A. And it presumably stops at the end-of-file marker at
address 3B4. (Remember, it's a short file.) What you then have to do is move this block
of data down into memory to the beginning of the file so the data overwrites the header:

-M 30A 3B4 100

You can use the D command to display the new memory contents at address 100:

-D 100

30DD:Ol00 54 65 6E 6E 79 73 6F 6E-20 20 20 20 20 20 20 41 Tennyson A

30DD:Oll0 6C 20 20 20 20 20 20 31-38 20 48 6F 67 62 6F 6E 1 lB Hogbon

30DD:Ol20 65 20 4C 61 6E 65 20 20-20 54 68 75 64 77 65 6C e Lane Thudwel

30DD:Ol30 6C 47 41 33 30 32 37 33-20 41 72 6E 6F 6C 64 20 1GA30273 Arnold

30DD:Ol40 20 20 20 20 20 20 20 20-4D 61 74 74 20 20 20 20 Matt

30DD:0150 31 31 31 20 57 69 6E 65-64 61 72 6B 20 53 74 2E 111 Winedark St.

30DD:Ol60 20 20 54 68 69 72 73 74-79 20 54 SB 37 37 36 31 Thirsty TX7761

30DD:0170 39 20 44 75 6E 6E 65 20-20 20 20 20 20 20 20 20 9 Dunne

Now you want to write this new file to disk. You don't want to destroy the old one, in
case you made a mistake, so give the new file a name like NEWDB.FIL:

-N NEWDB.FIL

If you want, you can adjust the length. The data used to start at address 30A, but you
moved it down to address 100. So you can now make the file 30A minus 100, or 20A
bytes shorter. The old file length was 400. If you subtract 20A from 400, you get a new
length of 1F6. Use the DEBUG H (Hex math) command if you 're shaky about hex
calculations:

-H 30A 100
040A 020A
-H 400 20A

060A 01F6

(After you type in the numbers after the H, DEBUG prints first the sum of the two numbers
and then the difference.)

If you've been paying close attention, you might think this file length of 1F6 is too
long. After all, if the data started at address 30A and stopped at the end-of-file marker at
address 3B4, 3B4 minus 30A is OAA bytes. Actually, the data in this example is just
about this short. What happened was that the database manager padded out the end of
the file.

Finally, use the W command to write the new NEWDB.FIL file to disk and the Q file
to quit. In this case you were fortunate - the process got rid of the header and left you
with a perfectly readable ASCII file. You won't always be so lucky. Sadly, the structure
of every database file is different. Some don't even contain ASCII text. But in most cases

360 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

you can use DEBUG to extract the important data. The critical thing here is to give any
files you write to disk a new name so you don't wipe out the old. (Instead of using the N
command, you could copy the file before you started working with DEBUG, then load,
modify, and write the copy to disk.)

While you can use the Move command to copy text, you may have a harder time
moving program instructions. Unless you're really sure you know what you're doing,
don't start slicing and dicing your programs by moving blocks of instructions around.
For example, if you're starting out with a file that looks like this when displayed with the
Dcommand:

30DD:0100 41 42 43 44 4S 46 47 48-49 4A 4B 4C 4D 4E 4F SO

30DD:0110 Sl S2 S3 S4 SS S6 S7 S8-S9 SA 31 32 33 34 3S 36

30DD:Ol20 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

30DD:Ol30 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

30DD:Ol40 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

30DD:01SO 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

30DD:0160 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

30DD:0170 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

ABCDEFGHIJKLMNOP

QRSTUVWXYZ1234S6

you could copy this text by specifying explicit starting and stopping addresses (100 and
1 lF respectively) and then telling DEBUG where to put the copy (120). After issuing
this command, check your work by using the Display command (but tell it to start
displaying at address 100):

-M 100 llF 120

-D 100

30DD:0100 41 42 43 44 4S 46 47 48-49 4A 4B 4C 4D 4E 4F SO

30DD:0110 Sl S2 S3 S4 SS S6 S7 S8-S9 SA 31 32 33 34 3S 36

30DD:0120 41 42 43 44 4S 46 47 48-49 4A 4B 4C 4D 4E 4F SO

30DD:0130 Sl S2 S3 S4 SS S6 S7 S8-S9 SA 31 32 33 34 3S 36

30DD:0140 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

30DD:OlSO 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

30DD:0160 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

30DD:0170 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

ABCDEFGHIJKLMNOP

QRSTUVWXYZ1234S6

ABCDEFGHIJKLMNOP

QRSTUVWXYZ1234S6

You can also give DEBUG a starting address and a range of bytes to copy. The first
M command took 20 (hex) bytes and copied them without any overlap, yielding 40 bytes.
To copy these 40 bytes (again without any overlap) by using an address and a range
length, specify the starting address (100), the range length (40), and the destination
address (140). The use the D 100 command to view your work:

-M 100 L 40 140

-D 100

30DD:Ol00 41 42 43 44 4S 46 47 48-49 4A 4B 4C 4D 4E 4F SO ABCDEFGHIJKLMNOP

30DD:0110 Sl S2 S3 S4 SS S6 S7 S8-S9 SA 31 32 33 34 3S 36 QRSTUVWXYZ1234S6

30DD:Ol20

30DD: 0130

30DD:Ol40

30DD:0150

30DD:0160

30DD:0170

41 42 43 44 45 46 47 48-49 4A 4B 4C 4D 4E 4F 50

51 52 53 S4 SS S6 S7 S8-59 SA 31 32 33 34 3S 36

41 42 43 44 4S 46 47 48-49 4A 4B 4C 4D 4E 4F SO

51 52 53 54 55 56 57 58-59 5A 31 32 33 34 35 36

41 42 43 44 45 46 47 48-49 4A 4B 4C 4D 4E 4F SO

Sl S2 S3 S4 SS S6 57 S8-S9 SA 31 32 33 34 3S 36

DEBUG 361

ABCDEFGHIJKLMNOP

QRSTUVWXYZ1234S6

ABCDEFGHIJKLMNOP

QRSTUVWXYZ1234S6

ABCDEFGHIJKLMNOP

QRSTUVWXYZ1234S6

Both of the examples above assumed you wanted to move text without overlapping
anything. Let's assume you wanted to copy just the first line (ABCDEFGHIJKLMNOP)
and get rid of the second (QRSTUVWXYZ123456). The Move command makes it easy.
First, start with the original file again:

30DD:0100 41 42 43 44 4S 46 47 48-49 4A 4B 4C 4D 4E 4F 50

30DD:Oll0 Sl S2 53 54 SS S6 S7 S8-S9 SA 31 32 33 34 3S 36

30DD:0120 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

30DD:Ol30 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

30DD:Ol40 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

30DD:OlSO 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

30DD:Ol60 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

30DD:0170 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

ABCDEFGHIJKLMNOP

QRSTUVWXYZ123456

Then move just the first line down so it overwrites the second one. Both of the following
commands would do it:

-M 100 lOF 110

or:

-M 100 L 10 110

The first tells it to take everything from addresses 100 through 1 OF and copy it to address
110. The second says to take the hex 10 bytes starting at address 100 and copy them down
to address 110. In either case, use the D 100 command afterward and you'd see:

30DD:Ol00 41 42 43 44 4S 46 47 48-49 4A 4B 4C 4D 4E 4F 50

30DD:Ol10 41 42 43 44 4S 46 47 48-49 4A 4B 4C 4D 4E 4F SO

30DD:0120 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

30DD:0130 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

30DD:Ol40 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

30DD:01SO 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

30DD:0160 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

30DD:Ol70 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 OA

ABCDEFGHIJKLMNOP

ABCDEFGHIJKLMNOP

362 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

Searching for Characters
Format: S range list

The Search command will scan through up to 64K of memory at a time for a list of
specified characters and report the starting addresses of any it finds. If DEBUG stumbles
over lots of occurrences, it will scroll the addresses off the screen. If it doesn •t find any
matches it will simply print another DEBUG - prompt.

You can search for individual hex values such as 49 42 4D or for text strings "IBM ..
or for combinations of both such as "IBM .. 41 54. Make sure you specify the precise
characters you want DEBUG to find. Looking for "IBM .. won't find "l.B.M ... and "DIR ..
won't find "Dir .. or "dir .. or any other inexact match. To look for such variations, execute
multiple searches.

What you see onscreen is not necessarily what you get. WordStar, for instance, adds
decimal 128 to the ASCII value of the last character in most words. If you search for the
word "bullnose .. in a WordStar file, you may never find it. But if you lop off the last
letter, and search for "bullnos .. you probably will.

If you're searching all the way through your main 640K of memory, you'll end up
seeing reports of phantom matches. When you type in the Search command, DOS enters
the command itself in memory, and DEBUG will find occurrences like these as it scans
through. So if you make an extensive all-sector search and then go back and use the D
command to verify the occurrence, you may not see why DEBUG reported it in the first
place. For example, to search through the top segment of memory (ROM BIOS segment
FOOO) for the string "/84 .. - the copyright date of an early AT - you could use explicit
starting and stopping addresses:

-S FOOO:O FFFF 11 /84 11

This tells DEBUG to start searching at address FOOO:OOOO for the string "/84 .. and
continue the search until offset FFFF in that same segment. You could also use a starting
address and a range to perform the same search:

-S FOOO:O L 0000 11 /84 11

This has DEBUG scan 10,000 bytes for the same string, starting at address FOOO:OOOO.
When searching for text, ifs easiest to wrap it in quotes. But you could have specified
the actual hex representation for the characters/ and 8 and 4 (''/" = 2F; ••g .. = 38; and "4 ..
= 34):

-S FOOO:O L 0000 2F 38 34

And, obviously, you don't have to scan through an entire segment each time. To search
for this string in the first hex 100 bytes of segment FOOO, you could enter:

-S FOOO:O FF 11 /84 11

DEBUG 363

or:

-S FOOO:O L 100 11 /84 11

DEBUG searches through memory very quickly. If it finds lots of occurrences of the
string you 're looking for, it will scroll the addresses rapidly off the top of the screen. You
can get around this problem by echoing everything to your printer, or by redirecting the
output to a file.

To send the output to both your screen and printer, tum on your printer and type Ctrl-P
or Ctrl-PrtSc. To stop this echoing process, type Ctrl-P or Ctrl-PrtSc again.

To redirect the output to a file, type:

DEBUG > OUTPUT.FIL

then type in the command that produced the overly large output and press Enter. (Be
careful; since DOS is redirecting all of DEBUG's output, you won't be able to see what
you type.) Then type Q and press Enter. You should see the DOS prompt again. To view
the list of addresses, load the OUTPUT.FIL into your word processor, or use the DOS
TYPE command (TYPE OUTPUT.FIL). If the file is long, make sure the DOS
MORE.COM utility is handy and type:

MORE < OUTPUT.FIL

You could also create a tiny file with the single DEBUG command and a Q (to quit)
and call the file INPUT .FIL. It might look like:

S FOOO:O L 100 11 /84 11

Q

(Be sure to include the Q and to press the Enter key after typing the Q or your system
will freeze and you'll have to reboot.) Then get into DOS and type:

DEBUG < INPUT.FIL > OUTPUT.FIL

To search through version 3.3 COMMAND.COM for the DIR command, load COM
MAND.COM into DEBUG, use the RCX command to find out how long the file is, then
specify this length in the Search command:

C>DEBUG COMMAND.COM
-RCX
ex 62DB

-S 100 L 62DB 11 DIR 11

30FB: 517 0
30FB:5464

364 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

30FB:54E2
30FB:54Fl
30FB:5500

You can check to see exactly what the Search command found by using the D
command. To make the screen tidy, replace the very last digit in the addresses DEBUG
reported with a 0. So if DEBUG reported a match at 30FB:5464, ask it to look for the
hex 10 bytes starting with 5460. (When you're searching through a file and then using
the D .command to verify the matches, you don't have to specify the segment - the offset
address will do fine by itself.)

-D 5170 L 10

30FB:5170 44 49 52 3E 20 20 20 00-0E 3B 49 42 4D 20 50 65 DIR> .. ;IBM Pe

-D 5460 L 10

30FB:5460 DB 09 00 03 44 49 52 03-CB OE 04 43 41 4C 4C 02 DIR CALL.

-D 54EO L 10

30FB:54EO 43 48 44 49 52 01 C2 18-02 4D 44 01 05 19 05 4D CHDIR MD M

-D 54FO L 10

30FB:54FO 4B 44 49 52 01 05 19 02-52 44 01 49 19 05 52 4D KDIR RD. I. .RM

-D 5500 L 10

30FB:5500 44 49 52 01 49 19 05 42-52 45 41 4B 00 F5 28 06 DIR. I. .BREAK .. {.

If you want to scan all the way through a segment such as 3000 for a string like "IBM"
you can issue the command:

-S 3000:0 0000 11 IBM 11

If you want to scan through every one of the ten segments in main memory (the main
640K is made up of ten individual 64K segments), you can use the DOS function keys
to streamline the process of entering so many similar commands. First look through the
lowest segment (0000):

-8 0000:0 0000 11 IBM 11

Then tap either the right arrow key or the Fl key twice, which repeats the Sand the
space that follows it from the previous command. Assuming DEBUG didn't find any
matches in segment 0000, the screen will look like:

-8 0000:0 0000 11 IBM 11

-8

Type in a 1 and press F3, which fills in the rest of the previous command. Tne screen
will look like:

-8 0000:0 0000 "IBM"
-S 1000:0 0000 11 IBM 11

DEBUG 365

You can also use the DOS F2 key plus a character, which repeats the previous
command up to the specified character. Pressing F2 and the 1 at this point would print
the previous S and space and stop before the 1. You could then enter a 2 and press F3 to
complete the command.

An easier way to search through all 16 of your system's segments (including things
like ROM BIOS and video areas) is to use a SCAN.BAT batch file:

ECHO OFF

IF %1!==! GOTO OOPS

ECHO S 0000:0 LOOOO %1 %2 %3 %4 %5 %6 %7 %8 %9 > RAWFILE

ECHO S 1000:0 LOOOO %1 %2 %3 %4 %5 %6 %7 %8 %9 » RAWFILE

ECHO S 2000:0 LOOOO %1 %2 %3 %4 %5 %6 %7 %8 %9 » RAWFILE

ECHO S 3000:0 LOOOO %1 %2 %3 %4 %5 %6 %7 %8 %9 » RAWFILE

ECHO S 4000:0 LOOOO %1 %2 %3 %4 %5 %6 %7 %8 %9 » RAWFILE

ECHO s 5000:0 LOOOO %1 %2 %3 %4 %5 %6 %7 %8 %9 » RAWFILE

ECHO S 6000:0 LOOOO %1 %2 %3 %4 %5 %6 %7 %8 %9 » RAWFILE

ECHO s 7000:0 LOOOO %1 %2 %3 %4 %5 %6 %7 %8 %9 » RAWFILE

ECHO S 8000:0 LOOOO %1 %2 %3 %4 %5 %6 %7 %8 %9 » RAWFILE

ECHO S 9000:0 LOOOO %1 %2 %3 %4 %5 %6 %7 %8 %9 » RAWFILE

ECHO S AOOO:O LOOOO %1 %2 %3 %4 %5 %6 %7 %8 %9 » RAWFILE

ECHO S BOOO:O LOOOO %1 %2 %3 %4 %5 %6 %7 %8 %9 » RAWFILE

ECHO S COOO:O LOOOO %1 %2 %3 %4 %5 %6 %7 %8 %9 » RAWFILE

ECHO S DOOO:O LOOOO %1 %2 %3 %4 %5 %6 %7 %8 %9 » RAWFILE

ECHO S EOOO:O LOOOO %1 %2 %3 %4 %5 %6 %7 %8 %9 » RAWFILE

ECHO S FOOO:O LOOOO %1 %2 %3 %4 %5 %6 %7 %8 %9 » RAWFILE

ECHO Q >> RAWFILE

DEBUG < RAWFILE I FIND /V It - II) HITLIST

DEL RAWFILE

ECHO The results are in a file called HITLIST

GOTO END

:OOPS

ECHO Specify something for %0 to search

ECHO such as hex bytes, eg : %0 45 3B 61 FF

ECHO or text in quotes, eg: %0 "qwerty"

ECHO or both, eg: %0 "qwerty" 45 61

END

Be sure to include the line:

ECHO Q » RAWFILE

If you omit this, the script won't execute the proper instruction to quit DEBUG, and your
system will freeze, forcing you to reboot.

The SCAN .BAT batch file starts out by using the line:

IF !%1==! GOTO OOPS

366 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

to make sure you entered a string to search for. DOS substitutes the first thing that you
typed on the command line after the name of the batch file, in place of each % 1
replaceable parameter that it sees inside the batch file. If you typed:

SCAN "IBM"

DOS will replace every occurrence of % 1 in the batch file with the string "IBM". If you
typed:

SCAN "IBM" 20 31

DOS would still replace every % 1 with "IBM". But it would also replace any %2 it finds
with the hex value 20, since 20 is the second thing you typed after the name of the batch
file, and any % 3 with 31. It replaces any %0 in the batch file with the name of the batch
file itself. So in:

SCAN "IBM" 20 31

DOS would replace any occurrences of %0, %1, %2, and %3 as follows:

SCAN %0

"IBM" %1
20 %2

31 %3

If you entered just:

SCAN

the % 1 replaceable parameter would be equal to (nothing), since you didn't type anything
in after SCAN. The test:

IF !%1==! GOTO OOPS

means that if you did type something in after SCAN (such as SCAN "IBM"), the % 1
would be replaced by "IBM" and the test would become:

IF !"IBM"==! GOTO OOPS

Now sh1ce ! "IBM" is clearly not equal to ! the test fails. (Remember, you have to use
a double equal sign in batch file tests.) If you didn't enter anything, the test becomes:

IF !==! GOTO OOPS

DEBUG 367

This test is true since ! does equal ! and the batch file then executes the rest of the
command, jumping to a label named OOPS. Labels are short words starting with colons.
When the batch file jumps to the OOPS label it executes the three lines following it,
printing a message onscreen that tells the user to enter a parameter next time.

You don•t have to specify the colon before the label in a GOTO command (although
it won•t hurt), but you do have to include it at the point in the batch file where it actually
serves as a label. Labels and conditional GOTO commands let you jump around, or
branch, inside a batch file, adding tremendous power and flexibility.

If you entered just a single parameter, such as .. IBM .. , the batch file would replace
every % 1 it finds with it, turning a line such as:

ECHO S 0000:0 LOOOO %1 %2 %3 %4 %5 %6 %7 %8 %9 > RAWFILE

into:

ECHO S 0000:0 LOOOO "IBM" > RAWFILE

(If your batch file included a line such as:

ECHO %1 %1 %1

DOS would translate this to:

ECHO II IBM" II IBM" II IBM"

since it would replace all three instances of % 1.)
If you entered only one parameter on the command line after the name of the batch

file, DOS would make the rest of the replaceable parameters - %2 through %9 - equal
to (nothing) and would effectively discard them.

The single > redirection sign followed by a filename (RA WFILE) tells DOS to send
the characters following the ECHO command into the file specified instead of printing
them on the screen. A single > command will wipe out an existing file with the name
specified; a double >> sign will append the new information without destroying the old
one. By starting out with a single > sign you erase any old RA WFILE file that happens
to be on your disk. And by following this with a succession of double >>signs, you build
up the new RA WFILE file one line at a time.

The SCAN.BAT batch file creates a new script file called RA WFILE. RA WFILE
contains instructions to search through all 16 memory segments one by one for the string
or hex characters that you entered. In this particular case the file will look like:

s 0000:0 LOOOO "IBM" 20 31
s 1000:0 LOOOO "IBM" 20 31
s 2000:0 LOOOO "IBM" 20 31
s 3000:0 LOOOO "IBM" 20 31
s 4000:0 LOOOO "IBM" 20 31

368 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

s 5000:0 LOOOO IBM" 20 31
s 6000:0 LOOOO IBM" 20 31
s 7000:0 LOOOO IBM" 20 31
s 8000:0 LOOOO IBM" 20 31
s 9000:0 LOOOO IBM" 20 31
s AOOO:O LOOOO IBM" 20 31
s BOOO:O LOOOO IBM" 20 31
s COOO:O LOOOO IBM" 20 31
s DOOO:O LOOOO IBM" 20 31
s EOOO:O LOOOO IBM" 20 31
s FOOO:O LOOOO IBM" 20 31
Q

(You'll never see RA WFILE, since the batch file erases it before it exits.)
SCAN.BATuses two kinds of redirection - sending a file into DEBUG and capturing

the output from DEBUG. First, it redirects the contents of RA WFILE into DEBUG just
as if you had typed in all the search instructions yourself. Then, it redirects the DEBUG
output to a file called HITLIST. When it's all done, all you have to do to see the address
of each occurrence of the information you were hunting for is look at HITLIST. The best
way to do this is to load HITLIST into your word processor or, use the DOS TYPE
command. If HITLIST is long, use the MORE command; make sure the DOS
MORE.COM program is handy and type:

MORE < HITLIST

The SCAN.BAT batch file also pipes the DEBUG output through a FIND filter with
the line:

DEBUG < RAWFILE I FIND /V 11
-

11 > HITLIST

As DOS sends each line of output through its FIND.EXE filter utility, it checks to see
if the line contains a specified character or string of characters. In this case the specified
character it looks for is a hyphen (-). The /V switch after the FIND tells DOS to discard
any line it finds that happens to have a hyphen anywhere in it. The FIND utility can either
screen out lines that do contain the specified string, or those that don't contain it. (As it's
used here the command excludes anything with a hyphen. All DEBUG commands have
a hyphen as the first character in each line and you don't want your file cluttered with
these commands - you want just the results.) However, filtering the text this way takes
a bit more execution time and means you have to have the DOS FIND.EXE program
handy. If you don't mind seeing the actual commands in the output, and you want to
speed things up slightly, change the line to:

DEBUG < RAWFILE > HITLIST

This means that once you put the SCAN.BAT file and DEBUG.COM in the same
directory you can search all the way through memory for any string, or (up to 9) hex

DEBUG 369

values, or combinations of both simply by typing the word SCAN and the information
you're looking for. Make sure that you enclose any text you're hunting for inside
quotation marks, and that any values you enter on the command line are in hex notation
rather than decimal.

As mentioned earlier, DEBUG will report some phantom addresses where it or DOS
temporarily puts copies of the string you specified.

Assembling ASM Instructions
Format: A [address]

DEBUG's mini-assembler is an extremely powerful tool. As with all power tools,
however, you have to be careful how you use it. If you're carefully copying a program
out of a book or magazine, or you 're an old hand at assembly language, this DEBUG
feature can be incredibly useful. Otherwise, don't experiment, unless you're absolutely
sure every last file on your system is backed up - and be especially wary about fooling
around with anything that deals with disks, and especially anything that writes.

Serious assembly language programmers will use the IBM/Microsoft full-fledged
assembler, which is far more powerful and sophisticated. The mini-assembler is for
creating and fixing short programs like the ones in this book.

You can use most of the standard 8086/8088 assembly language syntax in DEBUG.
But DEBUG's mini-assembler is not built to handle complex programs. For instance
when you want the program flow to jump from one place to another you have to furnish
precise addresses of where to go; with full-fledged assemblers you can use "labels"
instead of addresses. And DEBUG isn't as flexible or understanding about certain kinds
of instructions. But for quick-and-dirty programs it's just what the doctor ordered.

To figure out what to do with it, you '11 have to get your hands on a book specially
written for serious users who want to pick up the fundamentals of programming. One of
the best for beginners is Peter Norton's Programmer's Guide to the IBM PC & PS/2 from
Microsoft Press.

To use the mini-assembler for the first time, just get into DEBUG and type A at the
main DEBUG - prompt. DEBUG will print an address in segment:offset form starting
with offset 0100:

C>DEBUG
-A

30DD:0100

(Ignore the four hex digits to the left of the colon. This will vary from system to system
and won't affect what you're doing.)

At this point DEBUG expects you to enter an assembly language instruction. If you
don't want to, just press the Enter key and you'll return to the DEBUG prompt. If you
do want to, go ahead and enter. it. Type MOV AH,05 and press the Enter key:

370 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

C>DEBUG
-A

30DD:0100 MOV AH,05
30DD:0102

DEBUG will accept what you typed, assemble the instruction into machine-readable
code at that address, and skip ahead the proper number of bytes to the next free space in
memory waiting for you to enter another instruction. Here it translated the MOV AH,05
instruction into something two bytes long, since the next address it displayed was 0102.
If you type something DEBUG doesn't understand, it prints an error message and lets
you try again at the same address. For instance, if you had accidentally typed:

C>DEBUG
-A

30DD:0100 MOV HA,05
"' Error

30DD:0100

DEBUG would have caught the mistake and indicated where it was by pointing to it.
Then it would put the same 0100 address onscreen a second time to let you enter the
corrected version of this instruction.

But since DEBUG liked the MOV AH,05 (you could have just as easily typed MOV
AH,5 by the way), it asked you to enter another instruction at address 102. So type in
MOVDL,OC:

C>DEBUG
-A

30DD:0100 MOV AH,05
30DD:0102 MOV DL,OC
30DD:0104

Again, you can tell it liked what you typed, since it dropped down a line and offered
you the chance to enter another instruction at an address two bytes higher, 0104.

(DEBUG is smart enough to know what's legal and what isn't. But it obviously can't
tell what's ridiculous. So long as you enter the proper syntax, it will blithely let you create
a program to wipe out all the files on your hard disk, or spin into an endless loop that will
crash your system. Be extremely careful about all this; one mistyped digit can have
catastrophic results. For instance, BIOS interrupt 13 lets you read disk sectors by putting
a value of 2 in the AH register. But it lets you write disk sectors by putting a value of 3
in AH. If you accidentally type a 3 instead of a 2, you can kiss your data goodbye.)

To finish the sample program, enter INT 21 to launch DOS into action, and then RET
to return to the DOS prompt. You could use INT 20 instead of RET to end short COM
programs, but they'll both have the same effect, and RET is easier to type:

DEBUG 371

C>DEBUG
-A
30DD:0100 MOV AH,05
30DD:0102 MOV DL,OC
30DD:0104 INT 21
30DD:0106 RET
30DD:0107

When you've entered the last assembly language instruction, you'll see the next
address - 0107. Just press the Enter key and you'll return to the main DEBUG prompt.
Note the 0107 address, however, since you'll need it for the next step.

You can check your typing by using the Unassemble (U) command. DEBUG will look
at the machine-readable code it just assembled, and try to take it apart and reproduce the
assembly language instructions you typed in. Since you just started entering instructions
at address 0100 and stopped right before 0107, you could type either:

-u 100 106

or:

-U 100 L 7

Since you stopped entering instructions right before address 0107, the assembled code
occupies seven bytes of memory, not six. Remember that the first byte is at address 100,
not 101. And the last byte is at address 106. The first version of the Unassemble command
above tells DEBUG to unassemble everything from addresses 100 through 106. The
second tells it to unassemble the seven bytes starting at address 100. Both will generate
the same display:

30F9:0100 B405
30F9:0102 B20C
30F9:0104 CD21
30F9:0106 C3

MOV AH, 05
MOV DL, OC
INT 21
RET

The leftmost column contains the segment:offset memory addresses that you wanted
to examine. The next column shows the hexadecimal representations of the actual
machine-level code that DEBUG translated the assembly language instructions into.
Sending the two bytes B4 and 05, here stuck together as B405, to the CPU tells it to put
a value of (MOV) 05 into register AH. The rightmost column is DEBUG's best guess
about which instructions you originally typed.

If you saw at this point that you had made a mistake, you could use the A command
to correct it. The program you're in the process of creating will send an ASCII decimal
character 12 to the printer, which should generate a form feed. Since DEBUG works

372 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

exclusively in hex, you have to enter the character in its hex fonn, OC (or just plain C).
If you forgot this, and entered a decimal 12 instead of a hex C, you'd be telling the
program to send a hex 12 (decimal 18) to the printer. If you unassembled your typing,
you• d see something like:

30F9:0100 B405
30F9:0102 B212
30F9:0104 CD21
30F9:0106 C3

MOV AH, 05
MOV DL, 12
INT 21
RET

To fix this, tell DEBUG you want to reassemble the instruction beginning at address
102, since you'll have to re-enter the entire MOV DL,OC and this starts at offset 0102:

-A 102

DEBUG will respond with:

30F9:0102

Just type in the correct instruction:

30F9:0102 MOV DL,OC

and press the Enter key. DEBUG doesn't know if you wanted to fix just one instruction
or enter several new ones, so it will print the next memory address and offer you the
chance to change it as well:

30F9:0102 MOV DL,OC
30F9:0104

Since all you wanted to re-enter was the single instruction at address 102, press the
Enter key to exit the mini-assembler and return to the main DEBUG prompt. Then repeat
the unassemble command to verify the correction.

(You could have also used the Enter (E) command to make the change. By looking at
the unassembled code you could see that the erroneous value of 12 was at address 103:

30F9:0102 B212 MOV DL, 12

/"' address address
102 103

You could then have typed:

-E 103

DEBUG 373

and pressed the Enter key. DEBUG would have responded with:

30F9:0103 12.

Then enter the correct value of OC by typing it in and hitting Enter. Use either the
Unassemble or Enter commands to verify the change.)

To create the program you just entered, you have to name it, using N FF.COM. First
tell DEBUG how long it is, by typing RCX and pressing Enter, then enter 7 when DEBUG
displays the colon, and write it to disk (with W), and quit (Q):

-N FF.COM
-RCX

ex 0000
:7

-w
Writing 0007 bytes
-Q

This program will send a form-feed character (decimal 12, hex OC) to LPTl:, unless
you rerouted printer output somewhere else.

If you go back later to work with the mini-assembler again in the same DEBUG session,
DEBUG will remember the last address you used. If you type A without specifying an
address after it, DEBUG will assume you want to continue entering new instructions
where you left off. Since you left off at address 107 in the above example, you can do
some other DEBUG chores and then type:

-A

to have DEBUG would respond with:

30DD:Ol07

Keeping track of the last memory address is handy if you want to continue working
on a program in progress. But if you want to create a brand new, unrelated program,
you '11 have to tell the mini-assembler to start again at address 100:

-A 100

The mini-assembler is terrific at handling text. To do so, just prefix the text with a DB
opcode:

C>DEBUG
-A

30DD:0100 MOV AH,09
30DD:Ol02 MOV DX,108

374 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

30DD:0105 INT 21
30DD:Ol07 RET
30DD:Ol08 DB "Common sense is not so common.",OD,OA
30DD:Ol28 DB " - Voltaire",OD,OA,24
30DD:0149
-RCX
ex 0000
:49
-N HOWTRUE.COM
-w
Writing 0049 bytes
-Q

DEBUG will calculate how long each string is and automatically start the next instruction
(or string) at the next available location. So after you entered:

30DD:Ol08 DB "Common sense is not so common.",OD,OA

DEBUG figured out that the next string would begin at address 128, and printed:

30DD:0128

Each line of text is followed by an OD,OA (or D,A) carriage-return and line-feed
combination. The commas separating these from the text are optional; spaces will work
just as well. Note also that when you use function 9 of interrupt 21 you have to put a final
"$" after the end of the last string. You could have just as easily entered:

30DD:Ol08 DB "Common sense is not so common." DA
30DD:Ol28 DB " - Voltaire" DA "$"

If you put your strings at the end of the program, DEBUG makes it a snap to figure
out how many bytes to tell the ex register to write. Just look at the address the
mini-assembler prints after you enter the last string. In this case it's 149. Since DEBUG
began assembling instructions at offset 100, subtract 100 from 149 and tell the ex register
to write 49 bytes.

Unassembling Instructions
Format: U [address] or U [range]

fost as DEBUG iets you transiate assembiy ianguage instructions into machine-readable
code (with the Assemble (A) command), it will reverse the process and tum a stream of
hex bytes only a CPU can understand back into recognizable assembly language state
ments. Or at least it will try to.

DEBUG 375

One of the main problems is that the Unassemble command can't distinguish program
instructions from data, and will try to translate the data back into assembly language
statements instead of roping it off and indentifying it as something other than program
instructions. Another problem is that different assembler programs can tum different
variations of assembly language instructions into the same basic code. The DEBUG
Unassembly command has no idea which one of the original variations the programmer
used, and may not translate every byte back to the exact source code used to create the
program. A third problem is that if you give the Unassemble command the wrong starting
address, it will start translating things in mid-instruction, and end up with gibberish. And
finally, it's best at translating the kinds of short and sweet COM programs DEBUG can
create. Long complex programs, and code created by compilers jump around so much
and use so many intertwined libraries of subroutines that you really won't be able to make
much sense of most Unassembled output.

But this command can be extremely useful in fixing short programs you or someone
else created with DEBUG's mini-assembler. Let's say that someone put a program called
WARNING.COM on your disk that was supposed to print the message "DO NOT
ERASE YOUR FILES NOW!" Unfortunately, the programmer goofed. When you run
it, the program prints "ERASE YOUR FILES NOW!"

The first thing to do is load WARNING.COM into DEBUG, see how long it is (by
typing RCX and hitting Enter twice), and display the program using the D command:

-RCX

ex 0021

-D 100 L 27

30F9:0100 B4 09 BA OF 01 CD 21 C3-44 4F 20 4E 4F 54 20 45 ! .DO NOTE

30F9:0110 52 41 53 45 20 59 4F 55-52 20 46 49 4C 45 53 20 RASE YOUR FILES

30F9: 0120 4E 4F 57 21 OD OD 24 NOW! .. $

What this tells you is that the actual message inside WARNING.COM is accurate, but
that something is wrong with the program portion. You can see by looking at the ASCII
display and counting over that the text begins at address 108. But the machine-readable
program code from addresses 100 to 107 is inscrutable. Until you use the Unassemble
command:

-u 100 107
30F9:0100 B409 MOV AH,09
30F9:0102 BAOFOl MOV DX,OlOF
30F9:0105 CD21 INT 21
30F9:0107 C3 RET

Now you have to do a little detective work. How does the program work? The first
thing to do is look for the workhorses of the programming world - interrupts. In this
case the program contains just one instruction that begins with INT. The 21 after the INT
tells you the program uses the main DOS interrupt.

376 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

By consulting a book such as Norton's Programmer's Guide to the IBM PC or IBM's
DOS Technical Reference Manual, you can look at the description of INT 21 and see that
this key interrupt executes dozens of individual function calls and identifies which one
to execute by putting the hex value of that function ca~l into the AH register. Sure enough,
the very first instruction puts a value of 09 there.

If you then jump to the section detailing function call 09H, you'll see all the important
facts that govern its operation. DOS refers to this function call as "Print String'" while
Norton cautions that it really should be called "Display String.,. Both sources provide the
following information:

1. The string must end in a$ (hex character 24).
2. DOS will send the string to the standard output device (Norton adds that the default

is the screen).
3. The value in the data segment's DX register "points'" to the beginning of the string.

The second line of the unassembled code shows that the value in DX is 01 OF. But when
you used the D command to display the contents of the program you saw that the text
actually started at address 108. So in the erroneous WARNING.COM program, the DX
register is pointing somewhere inside the text string rather than at the very beginning of
it:

DO NOT ERASE YOUR FILES NOW!

address
108

address
lOF

To fix the problem, change the value in the DX register from lOF to 108. You can do
this by using the Assemble (A) command to create a whole new MOV DX,OlOF
instruction at address 102:

-A 102
30F9:0102 MOV DX,0108
30F9:0104

and then pressing the Enter key when DEBUG prints the following 104 address. Or you
can look at the actual machine-level hex byte code, figure out which bytes store the
incorrect 01 OF value, and use the Enter (E) key to replace the old incorrect number with
the correct one.

Using the E command on two-byte addresses is a bit tricky. If you look carefully at
the unassembled line beginning at address 102:

30F9:0102 BAOFOl MOV DX, OlOF

DEBUG 377

you'll notice that the BAOFOl machine-level code seems to have scrambled the OlOF
address into OFOl. This happens because of the seemingly backwards (or .. backwords")
way your computer stores two-byte numbers, words.

Each offset address is two bytes long. Two bytes together make up what is called a
word. In any word, one byte is higher, or worth more than, the other, just as in the decimal
number 39, the 3 is worth more than the 9, since the 3 digit actually stands for 30, not 3.
The byte that is worth more is called the most-significant byte and the one that's worth
less is the least-significant byte. These are sometimes abbreviated as MSB and LSB.
Grammarians might quibble that these should really be called ••more-significant" and
··1ess-significant" but engineers designed this system, not grammarians.

Here's the important part: It takes two bytes in memory to store a word. One byte has
a higher address than the other. Your computer stores the most-significant byte of any
word at the higher address of the two (and, obviously, the least-significant byte at the
lower address).

The word 01 OF is actually made up of two individual bytes, 01 and OF. The 01 byte is
the most significant, and the OF the least significant. So the higher 01 byte is at the higher
address and the lower OF at the lower address.

By looking at the output of the D command you issued earlier:

30F9:0100 B4 09 BA OF 01 CD 21 C3-44 4F 20 4E 4F 54 20 45 , ! .DO NOTE

address: 1 I 1 I 1 100 102 104
101 103 I

I MSB
LSB

you can count over from the left and see that the lower OF byte is indeed at the lower
address (103) and that the higher 01 byte is at the higher (104) address.

To replace the old incorrect OlOF value with the proper 0108 value, first divide the
0108 word in half. Then enter the least-significant byte (the 08 part) at the lower address
(103) and the most-significant byte (the 01 part) at the higher address (104). Since the
value at address 104 is already 01, you can just replace the OF at address 103 with 08.

It doesn't matter whether you use the Assemble (A) or Enter (E) command to change
the MOV DX,OlOF instruction to MOV DX,0108. Each has its advantages. In any case,
go back and unassemble the beginning part of WARNING.COM again. This time you
should see:

-u 100 107
30F9:0100 B409 MOV AH,09
30F9:0102 BA0801 MOV DX,0108
30F9:0105 CD21 INT 21
30F9:0107 C3 RET

378 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

Use the W command to write the changed program to disk and the Q command to quit.
If you 're nervous about all this, you may want to add another line:

-N WARN.COM

before you write the modified version. This will create a new file called WARN.COM
that won't overwrite the existing WARNING.COM program. If you goofed when
modifying the original program, you can erase WARN.COM and try again on the
undamaged original. Another way to safeguard the original is to make a copy of
WARNING.COM called WARN.COM (or whatever) before making any changes, and
then load the WARN.COM copy into DEBUG rather than the WARNING.COM original.

If you had used the Unassemble command on the text part of WARNING.COM (the
part that started at address 108), DEBUG would have ended up displaying a meaningless
series of instructions. First figure out how long the program is, by typing RCX and
pressing Enter twice. Then use the D command to display everything from address 108
(where you know the text starts) to the end:

-RCX

ex 0027

-D 108 126

30F9: 0100 44 4F 20 4E 4F 54 20 45 DO NOT E

30F9:0110 52 41 53 45 20 59 4F 55-52 20 46 49 4C 45 53 20 RASE YOUR FILES

30F9:0120 4E 4F 57 21 OD OD 24 NOW! .. $

Then Unassemble the same range of addresses:

-u 108 126
30F9:0108 44 INC SP
30F9:0109 4F DEC DI
30F9:010A 204E4F AND [BP+4F] ,CL
30F9:010D 54 PUSH SP
30F9:010E 204552 AND [DI+52] I AL
30F9:0111 41 INC ex
30F9:0112 53 PUSH BX
30F9:0113 45 INC BP
30F9:0114 20594F AND [BX+DI+4F] ,BL
30F9:0117 55 PUSH BP
30F9:0118 52 PUSH DX
30F9:0119 204649 AND [BP+49] I AL
30F9:011C 4C DEC SP
30F9:011D 45 INC BP
30F9: OllE 53 PUSH BX
30F9:011F 204E4F AND [BP+4F] ,CL

DEBUG 379

30F9:0122 57 PUSH DI
30F9:0123 210D AND [DI] , ex
30F9:0125 OD2461 OR AX,6124

1Js J I
126

127

Junk. That's why when you're trying to fix a program you have to use the D and U
commands together. In many cases neither the U or D will help, since programs often
insert (or hard-wire) important data into the program code. Programmers use such data
to set defaults, provide lookup tables, etc.

Incidentally, you may have noticed that in the above example even though you asked
DEBUG to unassemble memory between addresses 108 and 126, DEBUG went all the
way to address 127. lfyou didn't notice, look at three bytes in the unassembled listing at
address 125. (They're all lumped together here, but the first is OD, the second 24, and the
third 61. The second value - 24 - is the actual end of the program. Hex 24 is the code
for the final "$" you used to mark the end of the string.")

So why did DEBUG display more memory than you specified? It interpreted the
OD2461 clump of bytes that started at address 125 as one big instruction, and displayed
the entire instruction rather than lopping the end of it off prematurely. In fact, the
Unassemble listing would have been the same if you had used any of the three following
ranges:

-u 108 125

or:

-u 108 126

or:

-u 108 127

In each case, once the Unassemble command sniffs out what it thinks is even a single
byte of an instruction it will print the entire instruction.

The Unassemble command can interpret the same stream of hex codes in different
ways depending on where you tell it to start. Begin at the beginning, and DEBUG will
get it right:

-U 100 L8
30F9:0100 B409
30F9:0102 BA0801
30F9:0105 CD21
30F9:0107 C3

MOV AH, 09
MOV DX, 0108
INT 21
RET

380 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

But start at an address one byte too high and DEBUG will turn the first two instructions
into mush:

-u 101 L8
30F9:0101 09BA0801 OR [BP+s'I+o108] , DI
30F9:0105 CD21 INT 21
30F9:0107 C3 RET
30F9:0108 44 INC SP

Start even farther up and you get equally meaningless results:

-U 104 L8
30F9:0104 OlCD ADD BP,CX
30F9:0106 21C3 AND BX,AX
30F9:0108 44 INC SP
30F9:0109 4F DEC DI
30F9:010A 204E4F AND [BP+4F] I CL

If you're trying to unassemble something and you just know the program is in there
somewhere, try a few different starting addresses until you see a display that contains
recognizable instructions. It can be especially confusing when you're just a byte or two
off. If you're looking for a specific address, start a dozen or so bytes earlier so the
Unassemble command has a chance to get properly on track.

When you first start DEBUG, if you enter the U command without any address or
range after it, DEBUG will unassemble the first 32 bytes starting at offset 100 (and
possibly a few more than 32, if the 32nd byte is in the middle of a single instruction it's
trying to display). Each successive time you then hit U without any parameters after it,
DEBUG will unassemble the next 32 or so bytes. DEBUG will always remember the last
byte it unassembled. If you enter another command, such as D, between two U com
mands, the second U command will start displaying code right after the address where
the first U command stopped - ignoring whatever you happened to do with D. For
example, if you want to unassemble the first 32 bytes of COMMAND.COM (version
5.0):

-u
1359:0100 E95D14 JMP 1560
1359:0103 007814 ADD [BX+SI+l4] ,BH
1359:0106 0000 ADD [BX+SI] ,AL
1359:0108 B70E MOV BH,OE
1359: OlOA 0000 ADD [BX+SI] ,AL
1359:010C 750D JNZ OllB
1359:010E 0000 ADD [BX+SI] I AL
1359:0110 8511 TEST DX, [BX+DI]
1359: 0112 0000 ADD [BX+SI] I AL
1359: 0114 0000 ADD [BX+SI] I AL

DEBUG 381

1359:0116 0000 ADD [BX+SI] ,AL
1359: 0118 0000 ADD [BX+SI] , AL
1359:011A 0000 ADD [BX+SI] ,AL
1359:011C 0000 ADD [BX+SI] , AL
1359: 011E 0000 ADD [BX+SI] , AL

DEBUG will actually display the first 33. If you then entered U again without any
parameters after it, DEBUG would continue the unassembly process with address 121.

You don't ever have to specify a stopping address. And you can tell DEBUG to start
anywhere. If you entered:

-u 121

DEBUG would display the 32 bytes (and actually end up showing you 33) starting at
address 121 and stopping at address 141. If for some perverse reason you wanted to
unassemble all of COMMAND.COM version 5.0 you would first find out how long the
program is by typing RCX and pressing Enter twice. DEBUG would report a length of
BABS bytes. Then you'd enter the command:

-U 100 BAE5

and sit back and watch for a long while. To stop the display,just hit Ctrl-Break or Ctrl-C.
If you wanted to see the assembly language code for the first two instructions, you

could type either:

-u 100 105

or:

-U 100 L 6

Both would display the same unassembled code:

30F9:0100 E92DOD
30F9:0103 BADAOA

JMP 1560
MOV DX, OADA

Fine, fine, you may be saying. But what can you really do with this command that's
useful?

Here's something:
It's really incredible that DOS is still back in the dark ages (well, maybe the black and

white ages) when it comes to color. Even after half a decade of changes, DOS still clears
the screen to grey on black. But it doesn't have to. In fact, the code to set the foreground
and background colors to anything you want is already in COMMAND.COM. It's just
that the folks who maintain the code have decided they want you to see everything in
attribute 07 - and that translates to whitish-grey (the 7) on a black (0) background.

382 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

Some programmers feel that you should never patch COMMAND.COM. They say
that if you start getting patch-happy you may change something that will have unexpect
edly awful results later. But the truth is that if you keep your patches to the barest
minimum, it's not so terrible. The only thing you do have to guard against, however, is
mixing versions of COMMAND.COM on the same disk, which confuses DOS.

DOS and most other programs do video tasks such as clearing the screen by using
BIOS interrupt 10 (hex). Some fancy programs come with their own proprietary screen
utilities. But not DOS. When you type CLS, COMMAND.COM scans its list of internal
commands, sees that CLS is indeed an internal command, then executes the screen-clear
ing routine inside itself.

BIOS interrupt 10 provides two similar services called Scroll Window Up (Service 6)
and Scroll Window Down (Service 7). These will both open just about any size window
onscreen and insert blank lines at the top or bottom to scroll the existing text away. You
can tell it exactly how big a window to scroll and what color to make the blank lines by
using the following registers:

• AH = the service itself (6 means up, 7 means down)
• AL= how many lines to scroll (a 0 here clears the window)
• BH = the color of the blank lines
• CH = upper lefthand window row
• CL = upper lefthand window column
• DH = lower righthand window row
• DL = lower righthand window column

To clear an entire 25 x 80 screen to blue text on a white background using Service 6,
you could create the following code fragment:

MOV AX,0600
MOV BH,71
MOV CX,0000
MOV DX,184F
INT 10

; AH=6 means up; AL=O means clear screen
; color (7=white bkgnd; l=blue frgrnd)
start at row O, column O (top left corner)
stop at row 18 (dee 24; col 4F (decimal 79)

(The reason this fragment tells interrupt 10 to stop the window on the 79th column of
the 24th row is that since the screen actually begins on column 0 of row 0, the lower
righthand comer is indeed column 79 of row 24. In wouldn't hurt anything to specify
row 25 and column 80 unless you 're doing something fancy such as using more than one
screen "page." You're probably not.)

This code fragment uses a sort of shorthand in filling the appropriate registers. Instead
of putting two separate byte values into the AH and AL registers, it combined the
single-byte values (06 and 00) into one double-byte word (0600) and moved this word
into the AX register. In this example:

MOV AX,0600

J J
AHAL

DEBUG 383

the 06 fills the AH register and the 00 fills the AL register. This is the same as saying:

MOV AH,06
MOV AL,00

except that the first way is shorter. The example fills the CX and DX registers using the
same kind of shorthand.

You can even assemble this if you want. If you do, be sure to stick a RET command
onto it below the INT 10. Tell DEBUG it will be OE bytes long (with the RCX command).
Name it BLUE.COM. Then write it and quit, and when you 're back at the DOS prompt
type BLUE. To make this really effective you'd have to add some cursor positioning code
too, but that's not the point of this exercise.

COMMAND.COM uses a variation of this code fragment to do its screen clearing. To
find this COMMAND.COM screen clearing mechanism, use DEBUG's Search (S)
command to look for interrupt 10. Load COMMAND.COM into DEBUG. Find out how
long your version is by typing RCX and pressing Enter twice (this example uses version
5.0). Then search the whole file for all occurrences of CD 10, the machine-readable code
for interrupt 10:

C>DE8UG COMMAND.COM
-RCX

ex 8AE5

-S 100 L 8AE5 CD 10
1359:4328
1359:4337
1359:435F
1359:436C
1359:4370
1359:4376

Fortunately these addresses are clumped closely together, which makes it easy to
display them all with the Unassemble command in one gulp. Start a few bytes before the
first match that the Search command found, and continue a bit past the last one:

-u 4322 437f
1359:4322 7505 JNZ 4329
1359:4324 E85200 CALL 4379
1359:4327 E82C JMP 4355
1359:4329 840F MOV AH, OF
1359:4328 CDlO INT 10
1359:432D 3C03 CMP AL,03
1359:432F 760A J8E 4338
1359:4331 3C07 CMP AL, 07
1359:4333 7406 JZ 4338
1359:4335 8400 MOV AH,00

384 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

1359:4337 CDlO INT 10
1359:4339 EBlA JMP 4355
1359:433B 1E PUSH DS
1359:433C B84000 MOV AX,0040
1359:433F 8ED8 MOV DS,AX
1359:4341 8B164AOO MOV DX, [004A]
1359:4345 8A368400 MOV DH, [0084]
1359:4349 lF POP DS
1359:434A OAF6 OR DH,DH
1359:434C 7502 JNZ 4350
1359:434E B619 MOV DH,19
1359:4350 FEC6 INC DH
1359:4352 E80100 CALL 4356
1359:4355 C3 RET
1359:4356 FECE DEC DH
1359:4358 FECA DEC DL
1359:435A 52 PUSH DX
1359:435B B40B MOV AH,OB
1359:435D 33DB XOR BX,BX
1359:435F CDlO INT 10
1359:4361 SA POP DX
1359:4362 33CO XOR AX,AX
1359:4364 8BC8 MOV CX,AX
1359:4366 B406 MOV AH,06
1359:4368 B707 MOV BH, 07
1359:436A 32DB XOR BL,BL
1359:436C CDlO INT 10
1359:436E B40F MOV AH, OF
1359:4370 CDlO INT 10
1359:4372 B402 MOV AH,02
1359:4374 33D2 XOR DX,DX
1359:4376 CDlO INT 10
1359:4378 C3 RET
1359:4379 BE7885 MOV SI,8578
1359:437C AC LODSB
1359:437D 8AC8 MOV CL,AL

This display may look a bit daunting, but you '11 see how easy it is to map it out.
Incidentally, this whole process is easier when you do it on paper. To get a printout of it,
tum your printer on and type either Ctrl-P or Ctrl-PrtSc before you issue the U 2B80
2BCO command. DOS will print each line both on the screen and on the printer. Then
type Ctrl-P or Ctrl-PrtSc one more time to tum this printer "echoing" feature off.

The first thing to do is to figure out what each of the six INT 1 Os does. Get out your
copy of Norton's Programmer's Guide to the PC & PS/2 or any other reference book
that lists the various BIOS services. Scan through the instructions right before each INT

DEBUG 385

10 until you see a MOV AH. In some programs you may have to look for a MOV AX,
since it may use the same kind of ••shorthand" mentioned earlier. When the program gets
to an INT 10 it looks at the value in the AH register to figure out which interrupt 10
service to execute. Here's an annotated version of the unassembled listing, trimmed on
the top and bottom:

1359:4329 B40F

1359:432B CDlO

1359:432D 3C03

1359:432F 760A

1359:4331 3C07

1359:4333 7406

1359:4335 B400

1359:4337 CDlO

1359:4339 EBlA

1359: 433B lE

1359:433C B84000

1359:433F 8ED8

1359:4341 8Bl64AOO

1359:4345 8A368400

1359:4349 lF

1359:434A OAF6

1359:434C 7502

1359:434E B619

1359:4350 FEC6

1359:4352 E80100

1359:4355 C3

1359:4356 FECE

1359:4358 FECA

1359:435A 52

1359:435B B40B

1359:435D 33DB

1359:435F CDlO

1359:4361 SA

1359:4362 33CO

1359:4364 8BC8

1359:4366 B406

1359:4368 B707

1359:436A 32DB

1359:436C CDlO

1359:436E B40F

MOV

INT

CMP

JBE

CMP

JZ

MOV

INT

JMP

PUSH

MOV

MOV

MOV

MOV

POP

OR

JNZ

MOV

INC

CALL

RET

DEC

DEC

PUSH

MOV

XOR

INT

POP

XOR

MOV

MOV

MOV

XOR

INT

MOV

AH,OF

10

AL,03

433B

AL, 07

433B

AH,00

10

4355

DS

AX,0040

DS,AX

; Se:rvice OF =
; get video mode

; Se:rvice co =
; set video mode

DX, [004A]

DH, [0084]

DS

DH,DH

4350

DH,19

DH

4356

DH

DL

DX

AH,OB Se:rvice OB =
BX,BX set palette

10

DX

AX,AX

CX,AX

AH,06 Se:rvice 06 =

BH, 07 sc:roll window up

BL,BL

10

AH,OF ; Se:rvice OF =

386 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

1359:4370 CDlO

1359:4372 B402

1359:4374 33D2

1359:4376 CDlO

INT

MOV

XOR

INT

10 get video mode

AH,02 Service 02 =
DX,DX ; set cursor position

10

The one we're hunting for is the large Service 06 near the bottom. This doesn't look
exactly like the BLUE.COM example mentioned above, but all the necessary values and
settings are there, even if COMMAND.COM does things differently. For instance, when
BLUE.COM put a 00 in register AL to tell interrupt 10 to clear the window it did it with
the instruction:

MOV AX,0600

(The 00 at the end of 0600 filled AL.) COMMAND.COM does it with the command:

XOR AX,AX

since using a XOR operation on any value cancels out that value and turns it into 0. It
followed this with a MOV AH,06 instruction to put the 6 into AH.

The register that controls color settings for Service 06 is BH. BLUE.COM put a 71
there:

MOV BH,71

The left digit of the value in BH (here it• s 71) controls the background. The right digit
controls the foreground (text). The basic IBM color scheme is:

0 Black
1 Blue
2 Green
3 Cyan (light blue)
4Red
5 Magenta (purple)
6 Brown (dark yellow)
7 White (light grey)

8 Dark grey
9 Bright blue
A Bright green
B Bright cyan
C Bright red
D Bright magenta
E Yellow
F Bright white

So 71 will produce blue text on a white background.
COMMAND.COM puts a value of 07 into this register, which means grey-white text

on a black background. All you have to do to patch this permanently is to change the
value to something more colorful. A value of 4E will clear your screen to bright yellow
text on a red background, so try it. Once you know the technique you can always change
it to something else.

Look at the annotated listing again. The 07 byte is at address 4369. So to patch
COMMAND.COM so that it will clear the screen and print bright yellow text on a red
background in version 5.0, type:

C>DEBUG COMMAND.COM
-E 4369

and press the Enter key. Make sure you see something like:

1279:4369 07.

DEBUG 387

(Remember, ignore the first four hex digits to the left of the colon; they'll vary from
system to system and don't affect anything here.) If you don't see an 07, press Enter to
return to the DEBUG prompt, then type Q and Enter to quit and make sure you're using
version 5.0. Then start again. If you do see an 07, type in the new value (4E) next to the
period and press Enter.

Then, give the file a new name. Use the N command to name it COMMAND I.COM.
Then type W and Enter to write the file and then Q and Enter to quit:

-N COMMANDl.COM
-w
Writing BAES bytes
-Q

With older versions of DOS and ANSI.SYS, you could test your work to this point by
running COMMAND 1 (as a secondary processor), then typing CLS to see the colors take
effect. Later versions, including DOS 5.0 will let you run COMMANDl, but ANSI.SYS
won't surrender screen control, so CLS gives you the same colors you started with.

To test the color change, format a floppy with the /s option, then copy COM
MANDl.COM to the floppy as COMMAND.COM. (For example, COPY COM
MANDl.COM A:COMMAND.COM, which replaces the original COMMAND.COM
on the A: drive with the modified COMMANDl.COM.)

Now if you boot from the floppy, CLS will clear the screen to the color combination
you've chosen. Once you 're convinced you like the new colors, you can rename the
patched COMMANDl.COM to COMMAND.COM and put it on your start-up disk to
replace the older version. Boot up with the patched version and type CLS to set the colors
properly. You can also set colors by using ANSI.SYS (see the chapter on ANSI.SYS).

The instructions above are for DOS 5.0 only. For other versions of DOS use these
addresses to patch COMMAND.COM to add color to CLS:

DOS Version
2.0
2.1
3.0
3.1
3.2
3.3
4.01
4.01

Address
2346
2359
2428
2642
282E
2BAD
3EC7 (IBM)
3E97 (Generic MSDOS)

388 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

If you have a CGA system these patches won't set the border color. EGA and VGA
screens don't have borders that can be set, and, anyway, adding code to set CGA borders
is far more complex than just changing a byte value.

Displaying Register and Flag Contents
Format: R [registername]

This command is primarily for hard-core programmers, but all users need to understand
one very important aspect of it: it shows the current state of the CPU registers and flags
and lets you change them.

The R command can work three different ways:

1. Typing R by itself will print the hex values in all 14 of the system registers, show all
eight flag settings, and display the next instruction DEBUG is poised to execute.

2. Typing R with an F after it will display just the flag settings.
3. Following R with the name of a specific register will display the contents of that

single register and let the user either enter a new value or just press the Enter key to
keep the old one.

If you 're not a serious programmer you never really have to see the state of your system
flags. And while you do need to examine and change one or two system registers, you
really don't need to see them all at once. So you can pretty much ignore modes 1 and 2
above. But here's what they look like, if you 're curious:

C>DEBUG CO:MMAND.COM

-R

AX=OOOO BX=OOOO CX=62DB DX=OOOO SP=FFFE BP=OOOO SI=OOOO DI=OOOO

DS=30F9 ES=30F9 SS=30F9 CS=30F9 IP=OlOO NV UP EI PL NZ NA PO NC

30F9:0100 E92DOD

-R F

NV UP EI PL NZ NA. PO NC

JMP OE30

DEBUG initially sets the value of the four general-purpose or scratch-pad registers
(AX, BX, CX, and DX) to zero. However, when you tell DEBUG to load a typical (short)
program into memory it moves the program's length into register CX. COM
MAND.COM version 3.3 is decimal 25307 bytes long, or 62DB in hex, so these four
registers would look like:

• AX =0000
• BX= 0000
• ex= 62DB
• DX =0000

DEBUG 389

Each register can hold two-byte values from hex 0000 (0 decimal) to FFFF (65535
decimal - or 64K). If a program is larger than 64K, DEBUG uses both the CX and BX
registers to store the length.

Remember, a pair of bytes together is word. You can manipulate each of these registers
one word (two bytes) at a time by referring to them as AX, BX, CX, and DX. Or you can
chop each in half and manipulate just a single byte at a time: the high half and the low
half. The high halves are called AH, BH, CH, and DH. The low halves are AL, BL, CL,
andDL.

AH AL = AX

BH BL = BX

CH CL = ex

DH DL = DX

1 byte 1 word

If the two-byte value in CX is 62DB, then CH holds the high 62 byte and CL the low
DB byte. Used by itself, DEBUG's R command will show you all the two-byte registers.
And it will let you examine, and change, any single two-byte register. But you can't use
it to see just the high or low halves; you have to look at the valUe of the whole word.

Virtually all the examples in this book use the CX register to set or change program
lengths. Many of the programs use one or more of these general-purpose registers to feed
parameters into interrupts. For instance, if you 're using Service 6 of BIOS interrupt 10
to clear the screen (or scroll a window of any size upward) you put the following values
into the following registers:

• The number of the service itself into AH
• The number of lines to scroll into AL
• The color of the new blank lines into BH
• The upper lefthand row number into CH
• The upper lefthand column number into CL
• The lower righthand row number into DH
• The lower righthand column number into DL

In this case you simply put the appropriate values• inputs into the proper registers and
execute the interrupt without having to worry about the state of the registers afterward.
In other cases, interrupts perform operations for you and leave the results in certain
registers.

390 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

For instance, to find cut what character and color are at the current cursor position
(with Service 8 of BIOS interrupt 10) you put the following numbers into the following
registers:

• The number of the service itself
• The video page number

into
into

AH
BH

(In most cases, the page - the slice of video memory that displays the image - is 0.)
After you execute this interrupt you can look into two registers to get the information
you need:

• The ASCII value of this character
• The attribute of this character

is in
is in

AL
AH

To master most of the techniques in this book you won't have to work much (or at all)
with the other registers. The PC's one megabyte of main memory is segmented (divided)
into slices 64K bytes or smaller. Segment registers tell the system which slice you're
working with. Offset registers specify the precise location in each segment slice.

If you want to look at the value at offset 62DB, you have to tell the system which 62DB
address you want to examine. If you don't specify a distant segment, the system will
assume you're talking about the one you've been using, the one you're currently in, or
the one it normally checks for similar requests.

Each of the four segment registers (CS, DS, SS, and ES) has a special role. CS tells
the system where to find the code segment, the slice of memory where your program is
loaded. DS contains the address of the data segment, the place your program stores its
data. SS points to the stack segment, a special storage area where the program can
temporarily park information it needs to function properly. And ES lets the system know
where to find an extra segment it can use to squirrel away working data.

These CS, DS, SS, and ES segments may be at different parts of memory, or they may
overlap. When DEBUG loads a program like COMMAND.COM, all four of these
segments share the same exact area of memory, starting at the first unused memory space
- in this case right after where DEBUG itself is loaded:

• DS=30F9
• ES=30F9
• SS=30F9
• CS=30F9

While you '11 use the four general-purpose registers frequently, and the four segment
registers on occasion, you probably won't need to worry about the other five - the
segment registers. One special offset register, the instruction pointer (IP), specifies where
inside t.11.e code segment to find the very next executabie instruction. The other offset
registers are divided into pointer and index registers.

The stack pointer (SP) and base pointer (BP) help programs manage the flow of
information onto and off of the stack. A computer like the PC can handle only one tightly

DEBUG 391

focused task at a time. A seemingly simple task such as printing one character onscreen
can actually be made up of lots of smaller, discrete ones such as moving values around
in memory, checking modes, looking up dot patterns, setting attributes, deciding whether
or not to scroll the screen, advancing the cursor, and doing other miscellaneous house
keeping. As your computer executes one main task it frequently has to pause and execute
others, and then return to the original task at hand. When it puts one thing on hold so it
can do another, it stores the values, addresses, and other settings needed by the first task
temporarily in the chunk of memory called the stack. Then when it's done with the second
task, it can retrieve all this needed information from the stack and resume working on
the first task. Pointer registers keep track of offsets in the stack segment.

The source index (SI) and destination index (DI) registers work somewhat like the
pointer registers, except that index registers normally maintain offsets into the current
data segment rather than the stack segment. They're used for things like moving strings
from one place in memory (the source) to another (the destination).

DEBUG initially sets the index registers and base pointers to zero. Unless it's working
with an EXE file, DEBUG sets the stack pointer to FFFE, or as high as the available
memory allows. And it usually puts a value of 100 in IP, since the instruction pointer
initially stores the address of the first executable instruction at the very beginning of the
program. After DEBUG loaded COMMAND.COM (at offset 100), these looked like:

• SP=FFFE
• BP=OOOO
• SI=OOOO
• Dl=OOOO
• IP=OlOO

Apart from the four general-purpose registers, four segment registers, and five
offset registers, the PC maintains a special two-byte storehouse of data called the
flags register. A flag is an individual bit (a 1ora0) that can show the status of - or
control - gut-level operations. Six of these are status flags that act as a scoreboard
to report what happened during recent arithmetic and logical operations. Three are
control flags that influence the behavior of certain processes. (In Intel's early CPUs,
the other seven bits in the flag register remain unused; more ,advanced chips take
advantage of a few other flags.)

The status flags report on the outcome of events. Programs constantly test to see
whether two numbers have the same value, or whether numbers are equal to zero. If they
are, the system sets the zero flag bit; turns it "on" by giving it a value of 1. If they're not,
the system clears the zero flag, turns it off by giving it a value of 0. Flags can also tell
whether the result of an arithmetic process was so big that the system had to carry a digit
out of a register. And they can specify whether a number is negative, or so huge that it
totally overflows the system's working range. The system also monitors parity by setting
a flag if the binary number representing a value has an even number of ls in it. And it
maintains a special auxiliary carry flag to help straighten out the messy conversions
required when dealing with binary-coded decimal (BCD) calculations. (Take our word
for it -you don't want to know.)

392 DOS Power Too/,s, 2nd Edition, Revised/or DOS 5.0

Control flags can send certain repeated operations in one direction or another, or tell
the system whether or not it may use external interrupts, or let programmers step through
(trap) executable code one instruction at a time.

Packing all these flags into a single register lets you treat them as a single unit. This
makes it easier to save, examine, or change the state of your system with special flag
instructions. When you first load a program such as COMMAND.COM into DEBUG
and enter Rall by itself, or R followed by F, all you'll see is:

NV UP EI PL NZ NA PO NC

The abbreviations are vaguely mnemonic. NV, the least obvious abbreviation, stands
for "No oVerflow" (the reverse OV would spell trouble). UP reveals that the direction is
UP (the opposite is DN for DowN). EI stands for "Enable Interrupts" (DI would indicate
that external interrupts were temporarily Disabled). PL is used when the sign of a number
is a PLus; if the number were NeGative the abbreviation would be NG. NZ obviously
says "Not Zero" (and ZR would mean a number was equal to ZeRo or that two numbers
were equal to each other). NA tells us ··No Auxiliary" carry correction is necessary (AC
would let us know one was needed). PO spells out "Odd Parity;" even would trigger a
PE. And NC informs us "No Carry" was involved; a CY would tell us a CarrY did occur.
The codes are summarized in the following chart:

Flag
Overflow (yes/no)
Direction (down/up)
Interrupt (enabled/disabled)
Sign (negative/positive)
Zero (equal/not equal)
Auxiliary carry (yes/no)
Parity (even/odd)
Carry (yes/no)

Set (=1)
ov
DN
EI
NG
ZR
AC
PE
CY

Clear (=O)
NV
UP
DI
PL
NZ
NA
PO
NC

DEBUG's R command will display the state of all six status flags, and two of the three
control flags (direction and interrupt). If you want to single-step your way through a
program, you have to tum the trap flag on by invoking DEBUG's Trace command.

At any point you can examine the state of all the registers and flags by typing R and
pressing Enter:

-R

AX=OOOO BX=OOOO CX=62DB DX=OOOO SP=FFFE BP=OOOO SI=OOOO DI=OOOO

DS=30F9 ES=30F9 SS=30F9 CS=30F9 IP=OlOO NV UP EI PL NZ NA PO NC

30F9:0100 E92DOD JMP OE30

If you want to display just the flags, add an F:

DEBUG 393

-R F
NV UP EI PL NZ NA PO NC

(The spaces between the R command and any register after it are optional. RF is the same
as RF. RCX and R CX will both work.) If you issue an RF command, DEBUG will wait
for you to change one or more flag settings. If you want to leave things exactly as they
were (and most of the time you probably should), just press the Enter key. If not, enter
the opposite code(s), shown in the table above.

For example, if you wanted to disable external interrupts and switch parity from odd
to even, you could type:

NV UP EI PL NZ NA PO NC DI PE

or:

NV UP EI PL NZ NA PO NC PE DI

or:

NV UP EI PL NZ NA PO NC PEDI

or:

NV UP EI PL NZ NA PO NC DIPE

and then press Enter. The order, spacing, and uppercasing are optional. To check your
typing, enter R F again and you should see:

-R F

NV UP DI PL NZ NA PE NC

The only time you '11 probably ever have to use the R command is when you create or
modify a program. If you used the Assemble (A) command to create a tiny program called
AMERICA.COM:

C>DEBUG
-A

30DD:Ol00 MOV AH,9
30DD:0102 MOV DX,108
30DD:0105 INT 21
30DD:0107 RET
30DD:0108 DB "Back in the US" OD OA 24
30DD: 0119
-N AMERICA.COM
-w

394 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

and tried to write the file to disk without specifying a length, DEBUG would create a file
zero bytes long:

Writing 0000 bytes

To have DEBUG create the file you wanted, you have to tell it how many bytes to write.
Whenever you use its mini-assembler to assemble a program, DEBUG figures out how
many bytes the machine-level version of the previous command would fill in memory
and prints the very next address onscreen as a prompt. In this case the last line of the
program was:

30DD:0108 DB "Back in the US" OD OA 24

so DEBUG assembled that line and then printed:

30DD:Oll9

To exit the mini-assembler and return to the main DEBUG prompt, you would note this
address (119) and press the Enter key. Then, since the file starts at offset 100, tell DEBUG
how long the file is by subtracting 100 from 119 and entering the result, 19, in the ex
register:

-RCX

ex 0000
:19

Now use the W command to write the file to disk (and then Q to quit). You should see:

-w
Writing 0019 bytes
-Q

New users sometimes forget to subtract the 100. It usually won't hurt a program to
make it a bit longer, since programs stop when they reach instructions like INT 20 or
RET, and anything past that is ignored. The AMERICA.COM program uses the DOS
"Display String" function call 9, which stops when it sees a$ (here this is entered as a
hex 24). So DOS would ignore anything after the equals sign. ·

However, it can be dangerous to make programs too short. If the final instruction were
INT 20 or RET (to quit the program and return to the main COMMAND.COM prompt),
and you entered a length in the CX register that was one byte too short, DOS wouldn't
be able to execute this last instruction, and would never be able to exit the program. You'd
then have to reboot.

DEBUG 395

You also may have to use the RCX command when you modify a program. If you run
the AMERICA.COM program, it will simply print:

Back in the US

To add a few characters to the string this program displays, load AMERICA.COM into
DEBUG, type RCX and press the Enter key twice to find out how long the program is,
then use the Display (D) command to show you the contents:

C>DEBUG AMERICA.COM

-RCX

ex 0019

-D 100 L 19

30F9:0100 B4 09 BA 08 01 CD 21 C3-42 61 63 6B 20 69 6E 20 ! .Back in

30F9:0110 74 68 65 20 55 53 OD OA-24 the US .. $

The actual string that AMERICA.COM displays ends at address 115, and is followed
at addresses 116 through 118 by an OD OA 24 - a carriage return, a line feed, and a$
string terminator. So add two more letters to the existing string, starting at address 116,
and then slap on the required OD OA 24:

-E 116 "SR" OD OA 24

If you tried to write the program to disk at this point, you'd end up with a mess, since
DEBUG still thinks the program is 19 hex bytes long and will truncate it prematurely,
omitting the final two characters from the file. The final few characters of the original
and new programs would look like:

Address Address Address Address Address Address Address
114 115 116 117 118 119 llA

Original u s (CR) (LF) s
New u s s R (CR) (LF) s

(CR) = carriage return
(LF) = line feed end of program

(Remember, the program starts at address 100, not address 101. So the last - hex 19th
- byte is at address 118, not 119.)

396 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

In the original program, the final character was a $ that DOS needed to terminate the
string. But in the modified version, the two new bytes of text pushed the final two
characters - the line feed and the $ - into addresses 119 and 1 lA. The new program
is 1B bytes long (hex 19 + 2 = lB), but since you didn't tell DEBUG the program was
larger, it wrote only the first 19 bytes to the new file. So when DOS executes the new
one, it won't find a $ to tell it to stop, and will keep printing whatever garbage is in
memory until it inevitably stumbles onto a random value of 24 that just happens to be in
memory.

To prevent this from happening, tell DEBUG the program is now 1B bytes long instead
of 19. And since you're modifying an existing file, give the new one a new name so you
don't wipe out the old one. Then write the file and quit:

-RCX
ex 0019
:lB
-N BEATLES.COM
-w.
Writing OOlB bytes
-Q

This time when you run BEATLES.COM you'll see:

Back in the USSR

If all you want to do is examine the contents of a register like CX, you can type RCX and
press the Enter key twice, or you can just type R and press Enter once. The second way
involves a bit less typing, but it clutters up your screen by showing you the contents of
all the registers and flags. Either way will work.

Performing Hexadecimal Arithmetic
Format: H value value

Counting in hex is daunting for beginners, who commonly forget that the number after
19 is lA, not 20, and that the number right before 20 is lF, not 19. Doing even simple
math, especially with hex numbers several digits long, can be hair-raising.

But the only real math you have to do is add and subtract hex numbers. To help,
DEBUG gives you a free hex calculator. Just get to the DEBUG prompt, type H and two
numbers, and DEBUG will print first the sum and then the difference.

You can't enter numbers larger than FFFF (about 65,000 decimal). And DEBUG can't
handle sums larger than FFFF, or negative numbers. If you ask it to add FFFF and 1 it
will print 0000:

-H FFFF 1
0000 FFFE

Tell it to subtract 1 from 0 and you'll get FFFF:

-H O 1

0001 FFFF

DEBUG 397

While these examples are trivial, this command really comes in handy when you 're
fumbling with two thorny numbers such as:

-H C79B E8AF
B04A DEEC

Note that the order in which you specify the raw hex numbers is critical. Entering:

-H 2 3

will produce:

0005 FFFF

while switching the numbers around:

-H 3 2

will print:

0005 0001

The additions will always be the same, but subtracting 3 - 2 is far different from
subtracting 2 - 3.

If you keep DEBUG.COM and the DOS FIND.EXE filter on your disk, you can write
a small batch file to do hex addition and subtraction for you automatically. Create the
following batch file using a pure ASCII word processor, or EDLIN:

ECHO OFF
IF !%2==! GOTO OOPS
ECHO H %1 %2 > DEBUG.SCR
ECHO Q >> DEBUG.SCR
ECHO The sum and difference of %1 and %2 are:
DEBUG < DEBUG.SCR I FIND /V "-"
DEL DEBUG.SCR
GOTO END

398 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

:OOPS
ECHO You have to enter %0 followed by
ECHO 2 hex numbers each FFFF or less
ECHO (e.g. %0 4D7F 5A4)
:END

(You can also create this file by using the DOS COPY CON command. To do so, add a
line at the top that says:

COPY CON HEX.BAT

When you're done typing the last line, press the Enter key, then press the F6 function
key, and then press the Enter key a final time.)

To use it at the main DOS prompt, make sure you have DEBUG.COM, FIND.EXE,
and this HEX.BAT batch file handy. Then type the word HEX followed by the two hex
numbers (hex FFFF or smaller) that you want to add or subtract.

After issuing the ECHO OFF command to suppress screen clutter, the batch file first
makes sure you entered two hex numbers. When you execute a batch file, DOS looks for
any delimiters such as spaces or commas that separate what you typed into groups of
characters. It then takes these groups and uses them to set the values of up to ten
replaceable parameters.

The first replaceable parameter is always the name of the batch file itself, and DOS
refers to this as %0. DOS calls the second discrete thing you type% 1, the third one %2,
etc. If you put a %0 or % 1 in your batch file, DOS will replace these with what you typed
on the command line. So if you execute the batch file HEX.BAT by typing:

HEX lA 3B

DOS will make the following substitutions:

%0
%1
%2

HEX
lA
3B

To make sure you entered two hex numbers after the word HEX on the command line,
the batch file checks to see if parameter %2 contains something or not. If you entered
just one hex number on the command line after the word HEX, or didn't enter any hex
numbers at all after the word HEX, % 2 would be equal to nothing. The test:

IF !%2==! GOTO OOPS

would replace the %2 with nothing, leaving:

IF !==! GOTO OOPS

DEBUG 399

Since ! is indeed equal to ! (you could have used another symbol such as @ if you
don't like exclamation points), the test is true, and the batch file executes the command
following the test (GOTO OOPS). The batch file will look for a label called :OOPS and
jump directly there without executing any intervening instructions. In this batch file, the
commands following the :OOPS label will provide a reminder about the proper syntax.

If you did enter two hex numbers, such as IA and 3B, DOS will replace the %2 with
3B and make the test:

IF !3B==! GOTO OOPS

Since !3B is clearly not the same as!, the test will fail (which is what you want), and the
batch file will grind into action.

The lines:

ECHO H %1 %2 > DEBUG.SCR
ECHO Q >> DEBUG.SCR

will first redirect the letter H, plus the two hex numbers you entered on the DOS command
line after the word HEX, into a file called DEBUG.SCR. (The double>> symbol appends
the redirected characters to an existing file rather than creating a new one.)

What this will end up doing is creating a temporary file called DEBUG.SCR that
contains two DEBUG commands and the hex numbers you entered. If these hex numbers
were IA and 3B, the contents of the DEBUG.SCR file would be:

H lA 3B
Q

The batch file will then display a message onscreen to clarify what's happening.
DEBUG will replace the % I and %2 here as well, and end up printing:

The sum and difference of lA and 3B are:

It then takes the DEBUG.SCR file it just created and redirects the characters in this
file into DEBUG just as if you had typed them at the keyboard. These characters issue
the DEBUG commands to perform hex arithmetic on the numbers you entered. The same
batch file line then sends the resulting DEBUG output through a FIND filter to get rid of
the actual DEBUG commands. If you didn't use this filter, you'd see

The sum and difference of lA and 3B are:
-H lA 3B
0055 FFDF

Q

400 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

However, the:

/V II - II

at the end of the FIND command tells DOS to display only those lines that do not contain
a''-." Since all DEBUG commands contain a hyphen, this filters out the actual commands
and cleans up the display. All you see is:

The sum and difference of lA and 3B are:
0055 FFDF

Finally, the batch file deletes the temporary DEBUG.SCR file and exits. While
HEX.BAT can check to make sure you entered two hex numbers, it can •t check to see if
these numbers are valid. So if you enter something DEBUG can •t handle, you'll see an
error message.

Comparing Two Blocks of Memory
Format: C range address

This command is useful in isolating file differences, though you probably won't use it
much (if at all). The pathetic PC-DOS COMP command (Microsoft's MS-DOS FC is far
superior) will refuse to work if you ask it to examine two things of unequal length. And,
the DOS COMP utility will stop in its tracks after ten mismatches, while the DEBUG C
command will grind merrily away reporting them by the screenful.

To use the C command, type in C, then a first range of memory, and then a second
starting address. When entering the first range you can use explicit starting and stopping
addresses, or you can specify a starting address and a length of bytes to check. When
specifying the second block of memory you want to check, all you have to enter is the
starting address. DEBUG will calculate the length of the first block and apply that length
to both comparisons.

The two commands below will each direct DEBUG to compare two blocks of memory
each 10 hex (16 decimal) bytes long - one starting at address 100 and the other at address
110:

-C 100 L 10 110

and:

-C 100 lOF 110

If you had used the E command to enter the following values into addresses 100 and
110:

DEBUG 401

-E 100 0 1 2 3 4 5 6 7 8 9 A B C D E F
-E 110 0 1 2 3 4 5 6 8 7 9 A B C D E F

you could then view these values by using the D command:

-D 100 L 20
30DD:0100 00 01 02 03 04 05 06 07-08 09 OA OB OC OD OE OF
30DD:0110 00 01 02 03 04 05 06 08-07 09 OA OB QC OD OE OF

Notice that the seventh and eighth bytes are switched. The C command tells DEBUG
to look at every byte in the first range you specified and compare it to the corresponding
byte in the second chunk. If it finds mismatches, it will sandwich them between the two
addresses of the differing bytes, so the two Compare commands above would each yield
the report:

30DD:0107 07 08 30DD:0117
30DD:0108 08 07 30DD:0118

If DEBUG doesn't find any mismatches it will simply print another hyphen prompt.
If you had two programs on your disk of the same length called REDWHITE.COM

and WHITERED.COM that cleared the screen to different colors (red on white vs. white
on red), to find the differences in the files; you could use the DOS COMP utility

C>COMP REDWHITE.COM C:WHITERED.COM
C:REDWHITE.COM and C:WHITERED.COM
Compare eIIOI at OFFSET A
File 1 74
File 2 = 47

Or you could use the DEBUG C command. But since DEBUG will load any file with
a COM extension at address 100, you'd have to rename one of the files. Then get into
DEBUG, Name (with N) and Load (with L) the file that still had the COM extension,
and find out its length by entering RCX and pressing the Enter key twice. DEBUG will
load this COM file at address 100. Then load the other file (without the COM extension)
at address 200. Issue a Compare command that tells DEBUG to check two blocks of
memory ID bytes long, starting at addresses 100 and 200. Then enter Q to quit:

C>RENAME WHITERED.COM WHITERED
DEBUG
-N REDWHITE.COM
-L

-RCX
ex OOlD

-N WHITERED

402 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

-L 200
-C 100 L lD 200
30F9:010A 74 47 30F9:020A
-Q

The COMP command reported that the files were the same except for the bytes at
off-set A. Since DEBUG loaded the files at offsets 100 and 200, it found the same
mismatches at addresses 1 OA and 20A.

(If you want to try this, you can create the two color setting files with the following
DEBUG script. Type it in using a pure-ASCII word processor or the DOS EDLIN utility.
Name the script COLOR.SCR:

N REDWHITE.COM
E 100 B8 00 06 B9 00 00 BA 4F 18 B7 74 CD 10 B4 02
E lOF BA 00 00 B7 00 CD 10 BO 04 BA D9 03 EE C3
RCX
1D
w
E lOA 47
N WHITERED.COM
w
Q

Be sure to press the Enter key at the end of each line, especially the last one, with the Q.
Then put COLOR.SCR and DEBUG on the same disk and type:

DEBUG < COLOR.SCR

(If you don't have a pure-ASCII word processor handy, use the DOS COPY CON
command. Add a line to the very beginning of the program that says:

COPY CON COLOR.SCR

When you're all done, press the Enter key after the final Q, then press the F6 function
key, and then press Enter again.)

Loading Disk Information into Memory
Format: L [address [drive sector sector]]

Tnis powerfui command lets you take just about any information from any part of a disk
and put a copy of it in memory. You can then use DEBUG 's editing commands to modify
it and very carefully write the new information back to the disk.

DEBUG lets you load information in two forms - files and disk sectors.

DEBUG 403

Loading files is safe and easy. Loading sectors is trickier. Users often load something
so they can change it and then write the changes back to disk, so working with sectors is
playing with fire:

WARNING!
Unless you know exactly what you're doing, are sure your disks are completely
backed up, take every possible prudent measure to safeguard your system,
and triple-check every command before you execute it, be extraordinarily
careful when loading and working with sectors, and utterly paranoid and
overcautious when writing them. Be sure you always work on copies of your
files, never the originals. If you're the least bit nervous or uncertain about this
kind of activity, don't do it. Just type Q and press the Enter key to Quit.

Loading Files

The easiest way to load a file is to specify it on the DOS command line after the word
DEBUG. To load a copy of the DOS MODE.COM utility that's in your \DOS subdirec
tory on drive C: you could do it from any subdirectory on any disk by typing:

DEBUG C:\DOS\MODE.COM

(This of course assumes that DEBUG.COM is itself in the current subdirectory or is in a
directory that your PATH command knows about.)

If you're loading a copy of MODE.COM that's in the subdirectory you're currently
logged into, just type:

DEBUG MODE.COM

If DEBUG can locate the file it will usually load it into memory at offset 100 and then
just print the DEBUG hyphen prompt to tell you it's ready for a command. If DEBUG
can't find the file it will print the "File not found" error message to let you know it had
trouble, and then display the hyphen prompt. It won't be able to find files in other
directories unless you specify the precise subdirectory the file is in, even if it's in a
subdirectory you've included in your system's path. While you can run any executable
file in any subdirectory that your path knows about, DEBUG won't let you load a file in
another directory unless you explicitly include the file's path on the DOS command line.

So if your normal PATH command is:

PATH C:\BIN;C:\DOS;C:\;D:\

and you're currently in a subdirectory called C:\WORK and you want to load
C:\DOS\MODE.COM into DEBUG, just typing:

404 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

DEBUG MODE.COM

won't do it. But:

DEBUG \DOS\MODE.COM

would.
Incidentally, when you want to write a file to disk, you have to make sure DEBUG

knows the file's name beforehand. You can load a file from the DOS command line (by
putting the filename after DEBUG), or you can use the N and L commands together:

DEBUG
-N \DOS\MODE.COM
-L

If DEBUG can't find the file you specified using this Name and Load technique, it
will tell you so by printing a "File not found" message. But be careful - even if DEBUG
prints this message, it will use the name of this file that it couldn't find the next time you
issue a Write (W) command, unless you enter a new name later.

So if you type:

DEBUG PI.FIL

and it comes back and tells you:

File not found

it will still register the name "Pl.FIL." If you forget to enter a different name later, and
you use the W command to Write some information to disk, DEBUG will use the filename
Pl.FIL for the file it creates.

So if you originally loaded DEBUG by typing DEBUG Pl.FIL, and had DEBUG tell
you it couldn't find a file with that name, but you went ahead anyway and entered some
information and then told the ex register how many bytes to write, and used the w
command to write it:

-E 100 11 PI=3.14159265 11

-RCX

ex 0000
:D
-w
Writing OOOD bytes
-Q

DEBUG will create a brand new file called Pl.FIL. If you later issue the DOS command:

DEBUG 405

TYPE PI.FIL

you'll see:

PI=3.14159265

Loading any file is easy. Just type an N and then the filename (and its path, if the file
is located in another subdirectory) and then an L. You can see if DEBUG knows the
filename by peeking at the address where DEBUG stores it - offset 82 of the code
segment. To check, just type:

D CS:81

DOS uses the area at this offset in its Program Segment Prefix control block to store
the characters you entered on the command line after the main program name - often
called the command tail. When you type CHKDSK /F, for instance, everything after the
final K in CHKDSK - the space, the slash, and the F - goes here. When you load a
file into DEBUG by specifying it after the DEBUG name on the command line, DOS
puts this filename at offset 81, and it uses the single byte at offset 80 to tell it how many
characters you typed after the main program name. Using the DEBUG Name (N)
command also puts the name you entered at this offset.

If you load one file and then later load a different one, DEBUG will load them both at
offset 100, and the second one will overwrite the first. DEBUG normally loads files at
offset 100, so if you want to load two files at different addresses, you can do so by
including the addresses after the L command.

If you also have a file on your disk called E.FIL that contains the text E=2. 71828, you
could load both Pl.FIL and E.FIL into memory at the same time with the commands:

C>DEBUG
-N PI.FIL
-L 100
-N E.FIL
-L 110

Then, typing:

D 100 L 20

would display something like:

30DD:0100 50 49 3D 33 2E 31 34 31-35 39 32 36 35 00 00 00 PI=3.14159265 .. .

30DD:Ol10 45 3D 32 2E 37 31 38 32-38 00 00 00 00 00 00 00 E=2.71828

You really didn't have to specify the address of 100 when you loaded the first Pl.FIL
file, since DEBUG normally loads files at offset 100. But you did have to tell DEBUG

406 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

to load the second E.FIL file at offset 110. If you loaded these two files one after the other
but forgot to specify addresses, DEBUG would put the second one over the first one. It
would look like:

C>DEBUG

-N PI. FIL

-L

-D 100 L 20

30DD:0100 50 49 3D 33 2E 31 34 31-35 39 32 36 35 00 00 00 PI=3 .14159265 ...

30DD: 0110 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 ,
-N E.FIL

-L

-D 100 L 20

30DD:0100 45 3D 32 2E 37 31 38 32-38 39 32 36 35 00 00 00 E=2. 718289265 ...

30DD: 0110 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

Note that since the PI.FIL file is longer than the E.FIL file, the contents of the E.FIL
file overwrite just the beginning of the Pl.FIL file; the end of the Pl.FIL string is still
visible after DEBUG plunks the E.FIL file on top of it.

In addition, you have to be careful when loading COM files, since DEBUG always
loads files ending with COM at offset 100. So if you try to load a COM file at an address
other than 100, DEBUG won't let you:

C>DEBUG
-N MODE.COM
-L 110

A Error
-L 101

A Error
-L 100

If you do need to load two COM files at the same time, you '11 have to rename one of
them before starting DEBUG, and then load the renamed COM file at an address higher
than 100. If you wanted to load two short color-setting COM files called RED.COM and
BLUE.COM, you would first rename BLUE.COM to BLUE.TMP. Then you'd load
RED.COM into memory without specifying an address (DEBUG will load it at offset
100), and then load BLUE. TMP at a higher address. You can use the RCX command to
find out how long the RED.COM file is so you don't overwrite it with the BLUE.TMP
file:

REN BLUE.COM BLUE.TMP
DEBUG
-N RED.COM
-L
-RCX

DEBUG 407

ex 0010

-N BLUE.TMP
-L 120

The RCX command reported that the RED.COM file was lD bytes long, which means
the last byte in the file was at address 1 OE. You could have loaded BLUE. TMP directly
after it - at address lOE - but it's often easier to work with files that are loaded at even
paragraph boundaries, with offsets that end in 0, such as 100, or 120, or FDO.

COM vs.EXE

DEBUG loads different kinds of files in different ways. First, some background.
DOS can execute only three kinds of files, those with BAT, COM, or EXE extensions.

Two of these, COM and EXE files, are generally called programs, although frustrated
users sometimes call them far more colorful things. (Originally, "COM" stood for
"command" and ··EXE" stood for ··executable" but these names don't mean much these
days.) Files that end in BAT are called batch files.

Program files contain long sequences of machine-level commands in binary format
that put your CPU through its paces. If you peeked inside one (with the DOS TYPE
command) you'd see lots of seemingly meaningless strings of odd-looking characters.
Batch files are ASCII files that contain recognizable English-language commands to load
and run programs or perform certain DOS functions.

An executable program is simply a collection of instructions (and the data for these
instructions) kept in a language your system can readily process. Some programs can be
short and simple; others need to span several different 64K segments and do fancy
footwork with memory.

Programs that end in COM are exact images of the instructions in memory that make
the programs do their magic. And they're relatively short; COM files, their internal data,
and their temporary stack storage areas, must all squeeze into 64K. Actually, the largest
size of a COM file is 65,278 bytes, rather than the full 64K (65,536), since each COM
file must reserve a min um um of two bytes for its stack, and 256 bytes (100 hex bytes)
for a Program Segment Prefix that contains certain important addresses and data needed
by DOS. (This is why DEBUG loads most files at offset 100.) Since no translation is
required when reading them off a disk and putting them into memory, COM files load
and start quickly. DOS just copies the block of instructions that constitutes the file to a
certain memory address and presses the start button.

Programs that end in EXE, (pronounced ··ex-ee"), are not exact duplicates of what ends
up in memory. EXE files aren't limited to 64K, and in fact can take up all available
memory. Each EXE file is prefaced by a block of information called a header that tells
DOS how to allocate the proper amount of memory space it needs and then load the
various parts of the file into the proper memory areas.

DEBUG is more than just a file editor; as mentioned earlier, it's a programming
development and debugging environment. Programmers can work on a file and then run

408 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

it from inside DEBUG without having to exit to DOS. Because of this, if you load an
EXE file directly into DEBUG, DEBUG looks at the header and performs all the
necessary memory allocation, segment juggling, and other fancy DOS tricks.

When you load a COM file into DEBUG the first byte of the file is at offset 100, the
second at offset 101, etc. When you load a file with an EXE extension into DEBUG, the
first few bytes of the actual file are discarded; these tell DOS that it's working with an
EXE file, and specify how many sectors long the file is, how big the header is, etc.

If you want to examine or modify an EXE file with DEBUG, you'll have to first make
a copy of the file that has an extension other than EXE (or no extension at all). Then when
you load this renamed version of the file, the first byte will indeed be at offset 100, and
the second at offset 101. (These bytes should be 4D and 5A, which are the EXE "file
signature" that tells DOS to give them special treatment.) Working with the non-EXE
version of the file will make it easier to modify, but you won •t be able to run it while
inside DEBUG (no great loss). You can see how differently DEBUG treats the versions
by looking at the shortest DOS file that has an EXE extension - SORT.EXE. Copy
SORT.EXE to a file named SORT.XXX. Load each into DEBUG and use the RCX
command to see how long DEBUG thinks the file is. Then look at the first hex 10 (16
decimal) bytes at offset 0 - the very beginning of each file, and the hex 10 bytes at offset
100 - where DEBUG normally loads all files:

C>DEBUG SORT.EXE

-RCX

ex 05B9

-D 0 L 10

30F9:0000 CD 20 6A 31 00 9A 10 06-AB FF F4 02 2E 2D 2F 03 . jl -/.

-D 100 L 10

30F9:0100 00 00 2F 00 00 00 00 OO-B4 30 CD 21 3D 03 lE 74 .. / 0. != .. t

-Q

C>DEBUG SORT.XXX

-RCX

ex 07B9

-D 0 L 10

30DD:OOOO CD 20 00 AO 00 9A EE FE-lD FO F4 02 2E 2D 2F 03 -/.

-D 100 L 10

30DD:0100 4D SA 9D 01 04 00 01 00-20 00 01 00 01 00 3D 00 MZ =.
-Q

Remember, here you're looking at the exact same file with two slightly different
names.

If you do have to modify an EXE file, be sure to make a copy of it with a non-EXE
extension. Then, when you're done making the changes, rename the changed file back

DEBUG 409

to an EXE file again so DOS will run it. DOS will refuse to execute a file called
SORT.XXX, even though it may be a perfectly executable file.

Loading Sectors

Data is data. Whether it's in memory or on your disk, ifs just magnetically coded
information. But storing this data is very tricky. You could keep it permanently in
memory, but you• d need a huge amount of memory to maintain all your programs and
data as well as a surefire way to prevent it from disappearing when you turned the power
off. (You could actually do it, if you used very expensive static or battery backed-up
CMOS RAM chips rather than the cheaper but power-hungry dynamic RAM chips in
most systems.) And while such a storage system would be blazingly quick, it wouldn't
let you transport your data easily from machine to machine.

Disks are a far better way to store data; they're vastly cheaper, more transportable, and
secure. But you can't just throw data onto the surface of a disk. You have to organize it
so storage and retrieval are fast and reliable. You have to know exactly what's on each
disk, and which of the different versions of your data is the most recent. And you have
to allow frequent modification; users are constantly changing their files - making them
bigger, smaller, editing them, and moving the information in them around.

The best way to store data is in chunks. But the chunks have to be a workable size. If
the chunks are too small you'll spend all your time figuring out where each is located.
Storing just one byte at a time would be a logistical nightmare; the map needed to record
where each byte is would take up more space than the data itself. Make the chunks too
large, however, and you'll end up with utter inefficiency. If each chunk is 10,000 bytes
long and you're storing five 200-byte programs, you'll waste 49,000 bytes of space.

The standard chunk on a PC disk is called a sector, and the standard sector is 512 bytes
long. Sectors are actually parts of tracks. Tracks are concentric rings like circles on
bull's-eye targets. Each track is divided into wedges shaped like slices of pie. These
wedges form the disk sectors.

But your system doesn't always store data in individual sectors. Instead, it uses
something called an allocation unit, more commonly referred to as a cluster. A cluster
can be a single sector (as is it on single-sided 5-1/4 inch diskettes, or the godawful AT
1.2 megabyte floppies). Or it can be two sectors long (as with the common 360K diskette),
or four (on the original AT 20-megabyte drive), or even eight (on some mammoth hard
disk partitions under DOS 4.0).

Manipulating these sectors directly is an elaborate and tedious process, but DOS does
all the dirty work for you, organizing and keeping track of your files. And it also knows
where all the little pieces of the file are scattered across your disk.

When you first create a file on a brand new disk, all the sectors that contain the
information in that file are in the same contiguous area. But as you add and delete files
on the disk, and make existing files bigger and smaller, DOS ends up storing pieces of
your files in clusters scattered over the entire disk surface. This kind of fragmentation

410 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

slows everything down, since DOS has to chum through numerous read and write
operations each time you load or save a file. One of the best ways to improve performance
of your hard disk is to back up all your files (very assiduously) to floppies, reformat the
hard disk, and then copy them back. Doing this will make your files contiguous and do
away with fragmentation - until you start chomping away at them again.

DOS uses two tables to keep track of where all the individual clusters in every file are
located. The first one is the disk directory itself, which maintains the name, size, creation
date and time, and attribute (which is a label that lets you hide files or prevent them from
being changed or erased). It also tells DOS where the very first cluster of the file is located.
The second one, called a file allocation table (or FAT), takes over after the initial directcry
entry and keeps track of where all the remaining clusters are stashed.

As we've seen, it's relatively safe and easy to load whole files into DEBUG and then
write them back to disk, since DOS takes care of the tricky loading and writing processes
for you. However, it's extraordinarily risky to load specific sectors into DEBUG, then
modify and write these back to disk, since one little slip could corrupt your directory or
FAT. Scramble those two tables (especially the FAT) and you'll make it impossible for
DOS to figure out where all the little pieces of your files are located.

The FAT is so important, in fact, that your disks contain two identical versions of it.
Actually this is a bit short-sighted. Mariners know to take either one compass or three to
sea, but never two. If two don't agree, which one is wrong? DOS should have allocated
space for three FATs, on the theory that it's unlikely two will fail spontaneously. Of
course, with DEBUG, nothing's impossible.

It's bad enough that you could destroy all the data on a floppy disk with an errant
DEBUG command. But the same thick-fingered command could eradicate the key FAT
and directory information on your hard disk, leaving you with a funny expression on your
face and your foot through the screen.

So while you can load and write disk sectors, don't experiment unless you 're totally
backed up, and are the kind of belt-and-suspenders type who checks every action five
times before he does anything. And be absolutely sure to keep DEBUG away from your
hard disk sectors - one little slip and goodbye.

The following examples all apply to floppy disks only. In fact, they all illustrate how
to work with the floppy disk in drive A:, for two reasons:

1. Some users with hard disks don't have a floppy disk that's strictly called drive B:
(although they can simulate it by temporarily renaming drive A:).

2. Worse, one of the biggest pitfalls in working with sectors is that DEBUG refers to
drive A: as drive 0, drive B: as drive 1, drive C: as drive 2, etc. It's easy to forget this
late at night and put something on drive 2 when you really wanted to write to drive
B:. Accidentally writing a floppy disk FAT sector onto the hard disk FAT will zap
your data to dust. Your files will still be on your disk, in lots of little scattered pieces,
but with the FAT gone you won't have any way to find where the pieces are located.
If you use drive A: exclusively (which DEBUG refers to as drive 0) and you

DEBUG 411

accidentally write something to drive 1 thinking that 1 is A:, you may wreak havoc
on the floppy in drive B: but at least your hard disk will still be intact.

So remember:

Drive
Letter

A:
B:
C:
D:

What DEBUG
Calls It

0
1
2
3

You won't really need to load and write absolute disk sectors very often. But this ability
can come in handy. If you do somehow bomb your FATs, you can put the broken disk
in drive A: and laboriously go through it sector by sector, loading the information from
each sector to figure out where your text and data files are located. Then, once you've
mapped out the contents of each sector, you can load the sectors from the bombed-out
disk in the proper order and write them sequentially to a blank, formatted disk in drive
B:. When you're done, you can load all the sequential sectors from drive B: into higher
and higher addresses in memory, then use the N and W commands to name and write a
new file containing all these pieces. It· s nasty work, but it beats losing all your files.
Barely.

This technique won't work with binary files (programs), since you won't be able to
tell where all the pieces are, and even if you could, if you 're off by even one byte when
you put everything together you'll end up with garbage. With text or most data files you
can always go into the file with your editor or word processor when you're done and
clean things up. Better yet, use a program like the Norton or Mace Utilities to handle all
the drudgery for you.

A real problem with this ldnd of rescue operation is that you may end up hopelessly
confused because of all the slightly different versions of your file scattered over the disk.
When you create a text file, your word processor generally saves the previous version as
a backup (BAK) file. Some programs also create working files with extensions like TMP
or$$$ while they're operating; they usually erase these or give them BAK extensions
when you save or quit. When you look at your disk with DEBUG you may find several
sectors that seem to have nearly identical contents, since they stored temporary or backup
versions of your file. Sorting them all out can give you a big headache. The real answer
is to back up all your work carefully and often, assuming the worst, since the computer
definition of .. the worst" is .. just a matter of time."

One place where you really can use DEBUG's sector reading and writing abilities is
with directories. Remember, however, don't try meddling with absolute sectors on your
hard disk!

412 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

DOS disks are arranged as follows:

beginning of the disk
Boot sector

A pair ofFATs

Root directory

1----------t ..,._____ beginning of the user area
Programs and

user data

The boot sector does three things: It lets DOS know that the disk is indeed an MS-DOS
or PC DOS-formatted disk, and not a disk for anApple, DEC, or other system. It provides
a table (called the BIOS Parameter Block, or BPB) of important values that DOS needs
to know, such as the size of the disk's sectors, clusters, and directory. And it runs a
bootstrap program that looks for the main operating system files and launches them into
action.

The two FATs keep tabs on every cluster on your disk. When DOS needs to store a
chunk of information, it looks at the FAT to see where the first available unused cluster
is on your disk, and puts the data there. When it later has to retrieve the data it consults
the FAT to see which cluster holds the information.

The main directory is called the root directory because ifs at the beginning of a
''tree-structured .. (or hierarchical) system with subdirectories branching off it.

The root directory maintains the name, size, creation (or last modification) time
and date, and the initial cluster location for a specified number of files - the number
varies depending on the type of system you• re using. (DOS limits the number of root
directory entries, but lets subdirectories hold as many files as disk space permits.)
Finally, the directory maintains a key piece of information about each file called an
attribute.

A file attribute tells DOS what kind of file ifs dealing with. Some files contain
such important gut-level utilities and information that erasing them would bring your
system to its knees, and DOS prevents you from altering or deleting these. Some files
perform special services; the volume label and·every subdirectory on your disk are
just special kinds of files that can •t be copied or deleted using normal DOS file
management commands. And DOS lets you "hide.. sensitive files from normal
directory searches, or stamp them as "read only .. so users can examine them but not
change or erase them.

Each directory listing takes up 32 (or hex 20) bytes. The file attribute information is
kept in the 12th byte (byte number 11, or hex OB, since the first byte is byte number 0).
You can look at the first few directory entries on a 360K floppy disk in drive A: with the
command:

DEBUG 413

C>DEBUG
-L 100 0 5 1
-D 100 L CO

The first command told DEBUG to load the one sector starting at sector 5 on drive A:
(which DEBUG calls drive 0) into memory at offset 100. The second command had
DEBUG display the first hex CO bytes starting at offset 100. DEBUG will display
something like:

30DD:Ol00 49 42 4D 42 49 4F 20 20-43 4F 4D 27 00 00 00 00 IBMBIO COM'

30DD: 0110 00 00 00 00 00 00 00 60-72 OE 02 00 54 56 00 00 'r ... TV ..

30DD:Ol20 49 42 4D 44 4F 53 20 20-43 4F 4D 27 00 00 00 00 IBMDOS COM'

30DD:Ol30 00 00 00 00 00 00 00 60-71 OE 18 00 CF 75 00 00 'q u ..

30DD:Ol40 43 4F 4D 4D 41 4E 44 20-43 4F 4D 20 00 00 00 00 COMMAND COM

30DD:0150 00 00 00 00 00 00 00 60-71 OE 36 00 DB 62 00 00 'q.6 .. b ..

30DD:0160 50 43 20 4D 41 47 41 5A-49 4E 45 28 00 00 00 00 POWER_ TOOLS (....

30DD: 0170 00 00 00 00 00 00 45 6E-5B OF 00 00 00 00 00 00 En[.......

30DD:0180 48 49 44 44 45 4E 20 20-46 49 4C 22 00 00 00 00 HIDDEN FIL"

30DD:Ol90 00 00 00 00 00 00 51 6E-5B OF 4F 00 29 00 00 00 Qn[.O.) ...

30DD:01AO 53 55 42 44 49 52 31 20-20 20 20 10 00 00 00 00 SUBDIRl

30DD: OlBO 00 00 00 00 00 00 6A 6E-5B OF 50 00 00 00 00 00 jn[.P

(Obviously the contents will be different on your own system, but the structure will be
similar.)

The first 32-byte entry, for IBMBIO.COM, is made up of the following parts:

Byte: 00 01 02 03 04 05 06 07 08 09 OA OB oc OD OE OF
0100 49 42 4D 42 49 4F 20 20 43 4F 4D
0100 ..

Filename Extension

Byte: 00 01 02 03 04 05 06 07 08 09 OA OB oc OD OE OF
0100 .. 27
0100 ..

u
Attribute

Byte: 00 01 02 03 04 05 06 07 08 09 OA OB oc OD OE OF
0100 ..
0110 .. 00 60 72 OE

t_j L_J
Time Date
(in coded form)

414 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

Byte: 00 01 02 03 04 05 06 07 08 09 OA OB oc OD OE OF
0100 ..
0110 .. 02 00

L_J
First cluster in FAT

Byte: 00 01 02 03 04 05 06 07 08 09 OA OB oc OD OE OF
0100 ..
0110 .. 54 56 00 00

t J
File size

(The area from offset OC through 15 is .. reserved" for future use; all bytes in this part of
the entry have a value of zero.)

By looking at the DEBUG display, you can tell this floppy disk is probably bootable,
since the first two files in the directory are IBMBIO.COM and IBMDOS.COM. These
two files have an attribute value of hex 27, which means that the following bits are ''set"
to 1 rather than 0:

• Read-Only
• Hidden
• System
• Archive

Most bytes in the directory entry are values that tell DOS what ASCII characters to
display, or how big something is, or where in a table to look up something. Some are
coded values - the date and time words (remember, a word is two bytes) compress a lot
of information into a short space.

But the attribute byte is just a collection of bits. Its value depends on which bits happen
to be set to 1 and which aren't. If the first (0th), second (1st), third (2nd), and sixth (5th)
bits are set:

Bit: 7 6 5 4 3 2 1 0
0 0 1 0 0 1 1 1

l l
set set set set

the value of the byte would be 2"0+2"1 + 2"2 + 2"5, or 1 + 2 + 4 + 32, or decimal
39 (hex 27). The value of hex 27 itself means nothing - it just happens to be a convenient
way to store a lot of information, the above bit pattern, in one compressed chunk.

But how can you tell which bits represent which attributes? Just look them up in
Figure 9.1:

DEBUG 415

Bit: 7 6 5 4 3 2 1 0
Dec: 128 64 32 16 8 4 2 1
Hex: 80 40 20 10 8 4 2 1

* * 1 I I (reserved)
archive

subdir
volume

system
hidden

read-only

Figure 9.1 Interpretation of Directory Attribute Byte

Bit = number of bit
Dec = decimal value of bit
Hex = hexadecimal value of bit

To use this, you obviously have to be able to know the binary representation of the
byte. Hex 27 in binary is:

1 0 0 1 1 1
t l I

I

ARC
(SUB)

(VOL)
SYS

HID
RO

Translating bytes from hex to binary isn't all that hard, if you know how to count from
0 to F (0 to 16 decimal) in binary:

0000 = 0
0001 = 1
0010 = 2
0011 = 3
0100 = 4
0101 = 5
0110 = 6
0111 = 7

1000 = 8
1001 = 9
1010 = A
1011 = B
1100 = c
1101 = D
1110 = E
1111 = F

Notice that the first column (0-7) has the same bit pattern as the second column (8-F),
except that on binary numbers lower than 8 the leftmost digit is a 0 and on those from 8
through F this digit is a 1.

416 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

Now take the hex digit 27, and divide it in half. Translate each half into binary and
then put the two halves together, to see that hex 27 equals binary 00100111:

2 7

I I I I
0 0 1 0 0 1 1 1

\ I
0 0 1 0 0 1 1 1

Here's a decimal/hex/binary table for all hex values from 0 to 3F (decimal 0 through
63), if you'd rather look things up than puzzle them out:

Dec Hex Six-Bit Binary Dec Hex Six-Bit Binary
Val Val Representation Val Val Representation

0 0 000000 32 20 100000
1 1 000001 33 21 100001
2 2 000010 34 22 100010
3 3 000011 35 23 100011
4 4 000100 36 24 100100
5 5 000101 37 25 100101
6 6 000110 38 26 100110
7 7 000111 39 27 100111
8 8 001000 40 28 101000
9 9 001001 41 29 101001

10 A 001010 42 2A 101010
11 B 001011 43 2B 101011
12 c 001100 44 2C 101100
13 D 001101 45 2D 101101
14 E 001110 46 2E 101110
15 F 001111 47 2F 101111
16 10 010000 48 30 110000
17 11 010001 49 31 110001
18 12 010010 50 32 110010
19 13 010011 51 33 110011
20 14 010100 52 34 110100
21 15 010101 53 35 110101
22 16 010110 54 36 110110
23 17 010111 55 37 110111
24 18 011000 56 38 111000
25 19 011001 57 39 111001
26 IA 011010 58 3A 111010
27 lB 011011 59 3B 111011

(continued)

Byte:

0100

0120
0140
0160
0180
OlAO

DEBUG 417

Dec Hex Six-Bit Binary Dec Hex Six-Bit Binary
Val Val Representation Val Val Representation

28 lC 011100 60 3C 111100
29 1D 011101 61 3D 111101
30 1E 011110 62 3E 111110
31 lF 011111 63 3F 111111

The following BASIC A TTRBUTE.BAS program will do all the work for you by
looking at which bits are set to 1 in any attribute value you enter, and reporting the
appropriate attributes.

100 I ATTRBUTE.BAS
110 SCREEN O:COLOR 3,0:KEY OFF:CLS
120 S$=STRING$(5,32) :PRINT STRING$(56,61)
130 PRINT "Enter hex attribute value ";
140 INPUT "(or just hit Enter to end): ",N$
150 N=VAL("&H"+N$)
160 IF N>63 THEN BEEP:GOTO 130
170 IF N=O THEN END
180 PRINT "File Attributes are:"
190 IF N AND 1 THEN PRINT S$;"Read-Only"
200 IF N AND 2 THEN PRINT S$;"Hidden"
210 IF N AND 4 THEN PRINT S$;"System"
220 IF N 8 THEN PRINT S$;"Volume"
230 IF N AND 16 THEN PRINT S$;"Subdirectory"
240 IF N AND 32 THEN PRINT S$;"Archive"
250 GOTO 120

If you examine the attribute byte values for the other files in the above DEBUG display:

00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF

27 IBMBIO COM'

27 IBMDOS COM'

20 COMMAND COM
28 POWER_ TOOLS (....

22 HIDDEN FIL"

10 SUBDIRl

418 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

you can look at Figure 9.1 to figure out which attribute bits are set:

Filename Hex value Binary value Attributes
IBMDOS.COM 27 100111 ARC, SYS, HID, RO
COMMAND.COM 20 100000 ARC
POWER_ TOOLS 28 101000 ARC, VOL
HIDDEN.FIL 22 100010 ARC, HID
SUBDIRl 10 010000 SUB

This tells you that IBMDOS.COM, like IBMBIO.COM, has its archive bit set, and is
a hidden, system, read-only file. The only bit set in the COMMAND.COM entry is the
archive bit. POWER_ TOOLS is the disk's volume label (which appears in DIR listings,
CHKDSK output, etc.) since its 2A3 bit is set. The archive bit is also set in HIDDEN.FIL,
and since the r 1 bit is set, this is also hidden from normal directory searches. And
SUBDIRl, with its r4 bit set, is a subdirectory.

Don't start meddling with volume labels or subdirectory entries. And if any file is
marked as a system file, keep your hands off that as well. But the other attributes are fair
game. For example:

• DOS sets the directory archive bit on (to 1) whenever it creates or modifies a file.
When you use the DOS BACKUP or XCOPY commands with a fM switch, DOS
unsets (turns off, or sets to 0) this bit after it makes the copy. This lets subsequent
backup operations skip over any files that you haven't changed since you last backed
up your disk. By setting the read-only bit on (to 1) you can prevent anyone from
changing or erasing any file. You'll still be able to read or copy it, but DOS won't
let you alter its contents.

• By setting the hidden bit on (to 1) you can keep a file from showing up in DIR
searches. Actually, setting the system bit on will exclude it from DIR searches as
well. (Since a subdirectory is just a special kind of file, you can even hide whole
subdirectories from DIR listings. You'll still be able to change (CHDIR or CD) and
remove (RMDIR or RD) and they'll show up if your PROMPT contains a $P.)

Here's where DEBUG's sector-handling ability can be very useful. DOS maintains
file attributes in your disk's directory. You can't use the L FILENAME command to load
your directory into DEBUG as if it were a file. Instead, you have to tell DEBUG to read
specific sectors off your disk and put them into memory.

The problem is that directories aren't all the same length, and they don't start at the
same sector on every disk. DOS supports 160K, 180K, 320K, 360K, 720K, 1.2M and
1.44M diskettes. The number of possible listings in the root directories of these diskettes
varies from 64 to 224. And since the directories occupy space on the disks after the two
FA Ts of varying sizes, the starting directory sectors vary widely.

To figure out where each directory starts, and how long it is, you can examine the BIOS
Parameter Block (BPB) in the boot sector (sector 0 - the first one on the disk). Note:

DEBUG 419

DOS 4.0 changed things slightly by allowing 32-bit addresses and altering the BPB on
some hard disks. For the diskette examples here you can ignore this fact.

The root directory is located right after the single boot sector and the two redundant
FATs. So if you figure out how many sectors each FAT takes up, multiply this number
by 2 (since FATs come in pairs), and then add 1 (for the boot sector), the directory will
start at the sector with the very next number.

The BPB uses the single byte at offset 10 (hex) of the boot record to keep track of how
many FATs are on the disk- one or two. And it uses the two bytes at offset 16 (hex) to
keep track of how many sectors each FAT contains.

To examine the boot sector (sector 0) on a 360K diskette in drive A: load DEBUG
without specifying a filename. Then issue a Load command with four parameters:

1. The address in memory where you want DEBUG to load the information (any address
will do, but use 100 hex).

2. The drive number. Remember that drive A: is drive number 0, drive B: is drive number
1, drive C: is drive number 2, etc. To avoid disaster, always think twice when
specifying DEBUG drive numbers!

3. The first sector you want loaded.
4. How many sectors you want to load - starting with the first sector specified in the

previous step. You can't load more than hex 80 sectors (64K) at once, but this
shouldn't be a problem.

To load the single sector 0 on drive A: (drive number 0) into address 100, issue the
command:

-L 100 0 0 1

Then display the first hex 20 bytes. To make life easier, display the one byte at BPB
off-set 10 (which is at offset 110 in memory, since you loaded the file at address 100
rather than address 0), and the two bytes starting at offset 16 (DEBUG offset 116):

C>DEBUG

-L 100 0 0 1

-D 100 L 20

30DD:0100 EB 34 90 49 42 4D 20 20-33 2E 33 00 02 02 01 00 .4.IBM 3.3

30DD:Oll0 02 70 00 DO 02 FD 02 00-09 00 02 00 00 00 00 00 .p

-D 110 L 1

30DD:0110 02

-D 116 L 2

30DD: 0110 02 00

The value of 2 at offset 110 specifies that this disk contains two FA Ts (all DOS disks
do). And the value of 2 at offset 16 tells you that each FAT sprawls over two sectors.

420 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

Armed with this information, you can figure out that the directory on a 360K floppy
begins on sector 5:

• The boot sector starts at sector 0 and stops at sector 1
• The pair of FA Ts start at sector 1 and stop at sector 4
• The directory begins at sector 5

So the formula for figuring out the starting directory sector is:

(number of sectors in FAT x 2) + 1

Since all FATs on floppy disks use fewer than 256 sectors., you can figure out the
number of sectors per FAT with the simple DEBUG commands:

C>DEBUG
-L 100 0 0 1
-D 116 L 1

This would look on drive A:. To look on drive B: change the first line to:

-L 100 1 0 1

Fine. Now you know where the directory starts; but where does it end? The two-byte
value at offset hex 11 gives you the maximum number of entries in the root directory;
you can see by looking at the DEBUG display above that the value here is hex 70 (decimal
112).

(Two-byte values can be tricky, since they're stored in .. backwards" format. Users
gave IBM's storage system this informal name because two eight-bit bytes combine into
one 16-bit word and because the low-order byte - the half that's worth less - is at the
lower address, which sometimes seems backward. You '11 see why in a second.)

This book contains many warnings that caution you against fooling around with hard
disk sectors. To make sure you don't try to fiddle with the real thing yourself, here• s what
one looks like on a typical hard disk system:

30DD:Ol00 EB 34 90 49 42 4D 20 20-33 2E 33 00 02 04 01 00
30DD:Ol10 02 00 02 07 A3 F8 29 00-11 00 04 00 11 00 80 00

LJ
bytes 11 and 12

The number of root directory entries is obviously more than 2. Since the bytes are
stored in backwards order, flip 00 02 around and you get 02 00, or hex 200 (decimal 512).

The floppy disk directory used in these examples can hold hex 70 (decimal 112) entries,
and because each entry is 20 hex (decimal 32) bytes long, this particular directory will

DEBUG 421

take up EOO hex bytes. Sectors are always 200 hex bytes long, so EOO / 200 - 7, which
means that the directory will span seven sectors, starting at sector 5.

The formula for figuring out how many sectors the whole root directory takes up is:

Number of root directory entries * hex 20 / hex 200

which translates to:

Number of root directory entries/ hex 10

And while you're at it, you can figure out the total number of bytes taken up by the root
directory either with:

Number of root directory entries * hex 20

or:

Number of sectors taken up by the root directory * 200

Since the number of root directory entries on a floppy disk is less than 256, you can
figure out the number (on drive A:) with the simple DEBUG commands:

C>DEBUG
-L 100 0 0 1
-D 111 L 1

You could load the entire directory on a 360K floppy disk in drive A: and then display
it with the command:

offset where DEBUG loads it

drive (A:)

starting sector I rw many sectors you want loaded

-L 100 O 5 7
-D 100 L EOO

I ntmber of bytes to display

starting display offset

422 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

5-1/2
160K

5-1/2
180K

5-1/2
320K

5-1/2
360K

5-1/2
1.2M

3-1/2
720K

3-1/2
1.44M

Dumping EOO (3,584 decimal) bytes will scroll the listing quickly off the screen, but
you can stop and restart the display by alternately pressing Ctrl-S. You could also press
Ctrl-NumLock to halt the display, but you'd then have to press an alphanumeric key to
restart it. Or, to end up with a printed copy of the listing, you could tum your printer on
and type Ctrl-P or Ctrl-PrtSc before you start. When you're finished, press Ctrl-P or
Ctrl-PrtSc again to toggle this printer echoing feature off. And if you want a copy of it
on your disk, you could always create a file called DEBUG.SCR that contained the three
lines:

L 100 0 5 7
D 100 L EOO
Q

Make sure you press the Enter key after each line, especially .the last one with the Q!
Then, at the DOS prompt, type:

DEBUG < DEBUG.SCR >DIRLIST

and DOS will redirect the DEBUG listing into a file called DIRLIST.
To make things easier, Figure 9.2 presents all the necessary DEBUG loading and

display addresses:

Sectors in Sectors in Sectors in Entries in DEBUG commands to
boot record FATs root DIR root DIR see root directory in A

2 4 64 L100034
D 100L800

4 4 64 Ll00054
D 100L800

2 7 112 L 1000 3 7
D lOOLEOO

4 7 112 L 10005 7
D lOOLEOO

14 14 224 L lOOOFE
D lOOL lCOO

6 7 112 L lOOOBE
D lOOLEOO

18 14 224 Ll00013E
D lOOL lCOO

Note: All values in decimal format; DEBUG command parameters in hexadecimal

Figure 9.2. DEBUG Loading and Display Addresses

DEBUG 423

Writing Information from Memory to Disk
Format: W [address [drive sector sector]]

Write is potentially the most dangerous tool in DEBUG's arsenal. It lets you write
information to any part of any disk in your system. If you 're not extremely careful, you
can destroy good data on your disk by writing bad data over it. Worse, if you accidentally
write the wrong data over the two key tables that DOS uses to organize every disk - the
pair of FA Ts and the directory - you can pretty much just kiss your data goodbye.

DEBUG lets you load and write information in two forms - as files and as absolute
disk sectors.

Working with files is relatively safe and easy, so long as you always work with copies
of your important files rather than the originals. This way you can start over again if the
DEBUG changes you made weren't exactly right. But working with sectors is playing
with fire. Once again, a warning:

WARNING!
Unless you know exactly what you're doing, and are sure your disks are
completely backed up, and take every possible prudent measure to safeguard
your system, and triple-check every command before you execute it, be
extraordinarily careful when loading and working with sectors, and utterly
paranoid and overcautious when writing them. And be sure you always work
on copies of all your files, never the originals. If you 're the least bit nervous or
uncertain about this kind of activity, don't do it. Just type Q and press the
Enter key to Quit.

The easiest way to use the Write command is to load an existing file (either with the
N and L commands or by specifying it at the end of the DOS command line), then change
it and write the modified file back to the same disk with the simple command:

-w

You can't write a file to disk unless DEBUG knows the name and size of the file. When
you load an existing file 64K or smaller, DEBUG keeps track of the filename at offset
hex 82 of the code segment and puts the number of bytes (the file size) into the CX
register. If the file is larger than 64K, DEBUG uses the CX and BX registers to store the
file size.

To patch version 5.0 of COMMAND.COM so CLS clears the screen to red text on a
white background, you could issue just three commands:

C>DEBUG COMMAND.COM
-E 4369 74
-W

424 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

Writing BAE5 bytes
-Q

Since you specified the name of a file at the end of the DOS command line, after the word
DEBUG, DEBUG knows the name of the file and how many bytes to write.

But if you tried to create a file from scratch, you• d have to make sure you gave DEBUG
a proper name and size. If you simply typed:

C>DEBUG
-E 4369 74
-w

DEBUG wouldn't know what you wanted to name the file, and would respond with a
"(W)rite error, no destination defined" message. And if you specified a brand new
filename like XYZ.COM without telling DEBUG how long the file was, either by typing:

or:

C>DEBUG XYZ.COM
File not found
-E 4369 74
-w
-Q

C>DEBUG
-E 4369 74
-N XYZ.COM
-w
-Q

DEBUG would create a directory entry, but wouldn't write anything to the file. You'd
see the message ··writing 0000 bytes." A subsequent DIR listing would display the
XYZ.COM filename, the correct creation time and date, but a file size of 0.

So when creating a new file, specify both the name (either at the end of the DOS
command line after the word DEBUG, or by using the N command), and the size (with
the RCX command - and the RBX command if you're creating a real monster). Here's
a sample script file:

N DRIVE.COM
E 100 B4 09 BA 14 01 CD 21 B4 19 CD
E lOA 21 04 41 88 C2 B4 02 CD 21 C3
E 114 "Current drive is $"
RCX
26
w
Q

DEBUG 425

Type this in using a pure-ASCII word processor or EDLIN, and call the file DRIVE.SCR.
Or, if you don't have either of those tools handy, make sure you're at the DOS prompt
and insert the line:

COPY CON DRIVE.SCR

at the very top, and when you 're all done, press the F6 function key and then the Enter
key at the very end. In either case, be sure to press the Enter key after each line, especially
the final one (with the Q). Then put this DRIVE.SCR file in the same directory as DEBUG
(unless DEBUG.COM is in a subdirectory that your path knows about) and type:

DEBUG < DRIVE.SCR

This will create a simple program that reports the current drive. Nothing special. In
fact, you could do the same thing with the DOS PROMPT command:

PROMPT Current drive is n_

Note that the script file starts off by naming the file that DEBUG will create. You can
put this N command just about anywhere before the W command (except in the middle
of a set of continuous Assemble (A) instructions). The RCX command near the end sets
the value in the CX register to hex 26 - the length of the file. YOU al ways need to specify
the length. But you could also have named the file by omitting the:

N DRIVE.COM

line and instead issuing a:

DEBUG DRIVE.COM < DRIVE.SCR

command at the DOS prompt. In either case a simple, unadorned W will write the file to
disk.

Using a naked W without anything after it tells DEBUG to write the information
starting at offset 100 of the code segment. If the information you plan to write starts
elsewhere, you can tell DEBUG where to start looking by specifying Wand then the
appropriate address. So if DRIVE.SCR used the E command to Enter information 100
hex bytes higher than normal, at offset 200, you would type:

N DRIVE.COM
E 200 B4 09 BA 14 01 CD 21 B4 19 CD
E 20A 21 04 41 88 C2 B4 02 CD 21 C3
E 214 "Current drive is $"
RCX
26
w 200
Q

426 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

You• d have to use the W 200 command to tell DEBUG where to look in memory for the
information you want it to write to disk. You might want to do this if you have two
programs loaded into different places in memory and you wanted to write the one to disk
that didn•t start at offset 100. Or you might want to write a module of a larger program
to disk.

If you do plan to change the contents of an existing file, always make sure you·re
working on a copy of the file, never the original. Mistakes do happen. Or you might
decide you liked the older version better. This is especially necessary when patching files
that end in EXE. DEBUG loads EXE files differently from other files. DEBUG doesn•t
load the first byte of an EXE file at offset 100 the way it does with COM files or virtually
every other kind of file. When customizing an EXE file, change the extension to
something other than EXE at the same time you ·re copying it. So if you wanted to patch
off-set 1A5 of ABCD.EXE, do it this way:

C>COPY ABCD.EXE ABCD.XXX
1 File(s) copied

C>DEBUG ABCD.XXX
-E 1A5 41
-w
Writing 2BCO bytes
-Q
C>REN ABCD.XXX ABCDNEW.EXE

Then experiment with the ABCDNEW.EXE program to make sure you like it before
you replace the older ABCD.EXE with it. In any case, save the original ABCD.EXE
safely on a floppy disk somewhere. Or name it ABCDOLD.EXE. But don't patch
originals. And don't try to write EXE files in DEBUG - it won•t let you.

While we're at it, unless you·re a programming ace, refrain from using commands like
Trace (T), Proceed (P), or Go (G) to run programs from inside DEBUG. Doing this can
alter the values in the CX and BX registers. If you·re not careful about resetting these
registers later so they contain the proper file sizes, DEBUG can end up writing the wrong
number of bytes to disk. And it can do very strange things with EXE files, even if you •ve
renamed them. These commands are really for serious programmers only.

If you forget to make a copy of your COM or text file before you start slashing away
at it from inside DEBUG, you can prevent DEBUG from overwriting the original. Just
use the N command to give a new name to the program currently loaded in memory. So
if you're modifying a series of bytes in XYZ.COM and you don•t want to obliterate the
original version of the program by writing the patched version over it, you could rename
the program before you wrote it. Or you could write it to another disk:

DEBUG XYZ.COM
-E 111 34
-E 12D CO
-E 20A 4F

-N XYZNEW.COM

-w
Writing 302 bytes
-Q

or:

DEBUG XYZ.COM
-E 111 34
-E 12D CO
-E 20A 4F
-N A:XYZ.COM
-w
Writing 302 bytes
-Q

DEBUG 427

The first example gives the file a new name before it writes the file to disk. The second
example writes a file with the same name but to a different disk.

Always be sure you're writing the proper number of bytes. If you use the Move (M)
command to make a file larger, add instructions to a program, or increase the size of
messages that are stuck at the end, be sure to specify the new length with the RCX
command. You may have to use the Unassemble (U) and Dump (D) commands to see
exactly where the new file ends. Even if you 're a single byte too short you can cause
problems, especially since the last bytes of a program often jump control of the program
back to DOS with code like CD 20 or C3. Truncate those and the program will hang, and
you'll have to reboot. It usually doesn't hurt to make programs a bit longer than necessary.
And remember when calculating lengths that files generally start at address 100 rather
than 101 - so to be on the safe side, add 1 to the length you specify with RCX.

You can't really do much harm when writing entire files, so long as you 're working
with copies rather than originals. But you can cause devastating heartache if you're not
careful when using DEBUG to write absolute sectors.

If you want to create or patch a file, DEBUG will take care of all the dirty DOS work
for you. But if you want to alter a directory listing, or work with other fundamental disk
underpinnings, you have to manipulate specific sectors directly. And while DEBUG is
superb at doing delicate sector surgery, it won't stop you from destroying your disk if
you issue a bone-headed or thick-fingered command at the wrong time.

The problem with writing sectors is that it's easy to wipe out or corrupt two key disk
structures. DOS relies on two tables - the directory and the duplicate pair of FATs -
to tell it where all the little pieces of your file are located. All programs and data are stored
in small chunks called clusters, which are in tum made up of disk sectors. On just about
all systems where users are constantly making changes to their data, and adding and
deleting files, these clusters end up scattered in various places all over the disk surface.

The directory tells DOS where the initial cluster is on your disk, and the FAT maps
out where all the remaining clusters (containing the rest of the file) are located. Without
these, DOS won't know where to find the pieces of your programs and files. When you
ask DOS to load a file, it consults these tables, figures out where the pieces are, and jumps

428 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

around the disk gathering them all in the correct order and stringing them together
properly in memory.

What makes writing sectors especially tricky is that all the parameters have to be in
hexadecimal notation, and that DEBUG refers to the first number in any series as 0 rather
than 1.

Here• s where the trouble happens:
Users sometimes forget what they're doing and mix hex and decimal numbers. Or

worse, they forget that DEBUG calls drive A: drive 0 rather than drive 1. If you·re trying
to write to drive A: and you accidentally specify a 1 when you meant to type a 0, you
may damage the disk in drive B:, since DEBUG treats drive 1 as drive B: and will write
the sectors to drive B: when you really wanted them to go to drive A:. That's bad, but
presumably you have up-to-date backup copies of all your floppy disks, so you won •t
really lose anything.

However, if you·re trying to write sectors to drive B: and you accidentally specify
drive 2 when you really meant drive 1, DEBUG will happily oblige and write the sectors
to drive C:, since it thinks of drive 2 as drive C:. Unfortunately, drive C: is usually a hard
disk. If you ·re working with sectors from a floppy disk directory, and you inadvertently
write these to a hard disk, that one errant keystroke will cost you days or weeks of
reconstruction anguish. The data and program pieces will still be on your disk but you
won •t have any way to find out where they are or be able to assemble them into useful
units. To be absolutely safe make sure every last byte of every important file is totally
backed up before you start using DEBUG to fiddle with sectors.

Above all, etch into your consciousness how DEBUG refers to drives.
Then, pause whenever you·re about to write absolute sectors, and then triple-check

your typing and your intentions. Be especially careful if you decide to write to drive B:
or your hard disk. If you ·re at all nervous about it - don't. Just erase your Write command
(with the backspace or left arrow keys) or press Esc, Ctrl-C, or Ctrl-ScrollLock, then type
Q and press Enter to quit.

The following examples all apply to floppy disks only. To keep things as safe as
possible, they all illustrate how to work with the floppy disk in drive A:.

You don •t often need to manipulate absolute disk sectors. One time you do is when
you ·ve stupidly destroyed your FA Ts and are scanning through.all your disk sectors one
by one looking for the pieces to pick up. This kind of emergency reconstruction is tedious,
nasty work, and you ·n barely be able to use it to put your text files back together in
reasonable form. Splicing your programs or any other binary files together is pretty much
out of the question. In fact, doing any work like this is such an arduous undertaking that
you·re probably better off using commercial utility programs such as Peter Norton•s or
Paul Mace• s to rescue your files.

But if you ·re adventurous and extraordinarily careful, you can do things like alter your
disk directory by patching the relevant sectors. See the Load (L) section for details.

To reduce the risk when working with sectors, use the exact same syntax for loading
and writing. So to load an entire directory on a 360K floppy disk in drive A:, you would
specify the seven directory sectors starting with sector 5 with the command:

L 100 0 5 7

DEBUG 429

You can later write these back to the same disk by changing the initial L to a W:

w 100 0 5 7

Here's what this particular Write command tells DEBUG:

starting with sector S I jd continuing for 7 sectors

w 100 0 5 7

' I ' Write onto drive A:

the contents of memory
beginning at offset 100

A sector is 512 (hex 200) bytes. When you use the D command without any parameters
after it, DEBUG normally displays eight paragraphs, or 128 (hex 80) bytes at a time. So
each four times you type D and press the Enter key, you display one sector.

It's a good idea when you're working with sectors to jot down on a notepad the
parameters you used to load the sectors, and then refer to your notes and very carefully
type the same exact parameters when you 're ready to write them back to disk. Then, when
you 're ready to issue any Write command, always stop and check your typing - and be
sure to verify that the disk you've specified is the one you want DEBUG to write to.

You can't write more than hex 80 sectors (64K) at once or write any sectors when
using a network drive. And if DEBUG senses a problem when it's trying to write (if a
drive door is open, for instance), it will print an error message and halt. If this happens,
fix the problem, then press F3 to repeat the previous command and try again to write the
file. But the single most important thing to remember is to pause and check all Write
commands several times before actually writing any sectors to disk. It may take an extra
few seconds. But it sure beats trying to piece together a bombed hard disk.

Quitting DEBUG
Format: Q

You can't exit DEBUG and return to DOS unless you issue this simple Quit command.
DEBUG doesn't process any commands until you press the Enter key. So if you 're using
ASCII script files to redirect keystrokes into DEBUG, make sure you press the Enter key
after typing in the Q. When you do press Enter after the final Q, the cursor will drop down
a line and hover directly below the Q. If you don't do this, your system will freeze and
you'll have to reboot.

430 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

Quitting does not automatically save your work. If you use the Q command before
issuing any W commands, all the work you did in the DEBUG session will be lost. If this
happens you may be able to load DEBUG again and hope everything is intact in memory
and then use the W command to save - but you can •t rely on this technique.

If you realize that you ·ve made a mistake or are afraid you 're about to write bad
information over good information, you can abandon your work by quitting DEBUG. Or
you can use the N command to give the file in memory a different name or write it to a
different drive. It's better to redo things than to end up with a mess on your disk.

To wriggle out of a command you 're typing, either backspace the command away with
the backspace or left arrow keys and press the Esc key to cancel the line, or press Ctrl-C
or Ctrl-ScrollLock to cancel everything and return to the DEBUG hyphen prompt. If
you·re using the Assemble (A) command, once you've cancelled the current line you
may have to press the Enter key once to return to this prompt. Then just type Q and press
the Enter key to get back to DOS.

It's entirely possible that you'll end up using all 14 of the above DEBUG commands
to examine and modify files and parts of your disk - and cr~ate brand new files. But
unless you're a serious programmer, you probably won't ever need the following
bare-metal commands. So they're included here in abbreviated form just so you know
that they exist.

Advanced Commands

Input/Display a Single Byte from a Port

Format: I portaddress

and

Output/Send a Single Byte to a Port

Format: 0 portaddress byte

PCs use ports to control and determine the status of various timers, controllers,
coprocessors, printer and communications gateways to the outside world, expansion
units, and the keyboard. Each port has a unique number. You can read the current values
at some (but not all) ports, and can send, or write, new values to some (but not all) ports.
In many cases, consecutive ports work together as pairs. First you send a value to the port
with the lower address to tell it which function you want to read or write, then you send
a value to or read a value from the port wiH1 the higher address.

The various AT models (and many newer systems) use a battery-backed-up slice of
CMOS memory to store your system's configuration. To see the stored CMOS values
you first use the DEBUG 0 command to tell port hex 70 which function you want to

DEBUG 431

examine, and then use the DEBUG I command to read the specified value from port hex
71.

Type in the following CMOS.SCR script using a pure-ASCII word processor, or
EDLIN:

E 0 "Century is: II
0 70,32
I 71
E 0 "Year is: II
0 70, 9
I 71
E 0 "Month is: II
0 70,8
I 71
E 0 "Day is: II
0 70, 7
I 71
Q

Note that the first character in the lines with 70s in them is a capital 0 (although a
lowercase one will work just fine) and not a zero. Be sure to press the Enter key after the
final Q. You can also create the file at the DOS prompt by adding a line at the very
beginning:

COPY CON CMOS.SCR

Then enter each line as shown - making sure you press the Enter key after the final Q.
When you're done, after you typed the last Q and press Enter, press the F6 key, and then
Enter one more time.

The E 0 commands are just dummy labels to let you know what• s going on. You should
see something like:

-E 0 "Century is: II
-0 70,32
-I 71
19
-E 0 "Year is: II
-0 70 I 9
-I 71
88
-E 0 "Month is: II
-0 70,8
-I 71
11
-E 0 "Day is: II

432 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

-0 70,7
-I 71
08
-Q

This tells you that the date stored in CMOS is 08-11-1988. You can read lots of
important information this way, but you'll have to interpret some of it by turning it into
binary and looking at which bits are 1 and which are 0.

For instance, the fixed disk type is maintained at CMOS port hex 12. (Be very careful
if you have to examine anything having to do with your fixed disk! Follow instructions to
the letter. And don't experiment unless you truly know what you're doing.) So if you
wanted to see your hard disk type you could enter:

DEBUG
-0 70,12
-I 71
20
-Q

In this case the value stored at this address is hex 20, which doesn't tell you much. To
make sense out of it you have to translate the hex 20 into high and low binary nibbles (a
nibble is four bits, or half a byte):

HEX 20 = 0 O 1 0 0 0 0 0

1 1
drive C: drive D:

The high nibble on the left represents the first hard disk (drive C:). The low nibble on
the right represents the second hard disk (drive D:). If the value of a nibble is 0000 you
don't have the appropriate hard disk installed, or at least your CMOS RAM doesn't know
about it.

In this case, a hex 20 means the system contains only one hard disk (since the low
nibble is 0000) and that the drive C: hard disk type is type 2 (because binary 0010 =

decimal 2).
You could similarly examine the equipment byte at port hex 14 with the commands:

DEBUG
-0 70,14
-I 71
43

-Q

DEBUG 433

Again, translate the 43 that DEBUG reported in this case into its binary representation:

43 = 01000011

but split up the binary number as follows:

Bytes: 76 54 32 1 0
01 00 00 1 1

l l l
number of

I
(not used) I any floppies?

floppy drives

primary display math coprocessor?

Then consult a table that explains what's going on (like the one in the Technical
Reference manual):

• Bits 6,7:

• Bits 5,4:

• Bit 1:

• Bit 0:

A 00 means l floppy drive
A 01 means 2 floppy drives

A 00 means no monitor or an EGA or better
A 01 means primary display is 40-column color
A 10 means primary display is 80-column color
A 11 means primary display is monochrome

A 0 means math coprocessor is not installed
A 1 means math coprocessor is installed

A 0 means no floppy drives installed
A 1 means floppy drives are installed

So a value of hex 43 means:

• 2 floppy drives are installed.
• Either no monitor or something fancier than a CGA.
• A math coprocessor is installed.

Execute Program in Memory (Go)

Format: G [=address][address[address •••]]

and

434 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

Execute and Show Registers/Flags (Trace)

Format: T [=address][value]

and

Execute One Instruction (Proceed)

Format: P [=address][value]

DEBUG is really two tools in one. To most power users it's a handy tool for examining
and modifying files and parts of disks, as well as for creating new files from scratch. But
to programmers it's also a testing and debugging environment. You can load a program
into DEBUG and watch it run step by step, which lets you trace the flow of execution
from one instruction to the next, and look at the values of all the registers and flags in the
process.

Once you've loaded a program (by specifying it at the end of the DOS command line
after the word DEBUG, or by using the N and L commands), issuing a Go (G) instruction
will execute it. If the program doesn't have any serious programming problems, and is
designed to exit gracefully to DOS, DEBUG will print a .. Program terminated normally"
message onscreen. Don't issue another G at this point, or your system may hang. If you
want to execute it a second time, reload the program first by typing:

L

Then re-enter the G command to run it again.
You may set breakpoints by specifying one, or as many as ten, addresses after the G.

If the program execution flow reaches any of these breakpoint addresses while it's
running, the program slams on its brakes and DEBUG displays the register and flag
settings in force at that instant. You may also tell DEBUG to start the program execution
at an address other than the default offset 100 of the code segment. To do so, you would
add an equal sign(=) and an address right after the G.

Here's a script for the tiny program BEEP.COM we saw at the beginning of the chapter.
(It beeps the speaker by printing a character 7.) Type in the script using any pure-ASCII
word processor or EDLIN and call it BEEP.SCR:

A

MOV AH,02

MOV DL,07
INT 21
RET

RCX
7

N BEEP.COM
w
Q

DEBUG 435

Make sure you leave the blank line above RCX, and that you press the Enter key after
each line (especially the last one with the Q). You could also create the file at the DOS
prompt by inserting one line at the very beginning:

COPY CON BEEP.SCR

Then type in all the lines indicated, and be sure you press the Enter key after each one.
When you're done, press the F6 function key, and then tap the Enter key one final time.

Either way, put BEEP.SCR on the same disk as DEBUG (or make sure DEBUG is in
a subdirectory that your PA TH knows about) and then type:

DEBUG < BEEP.SCR

To execute BEEP, just type BEEP at the DOS prompt. Then try running it from inside
DEBUG. Load BEEP.COM either by typing:

DEBUG BEEP.COM

or:

DEBUG
-N BEEP.COM
-L

and then type G and press the Enter key. The program will run and you'll hear a beep.
DEBUG will then display the message "Program terminated normally."

At this point if you want to run it again, first type L and press the Enter key to reload
it. Then type G and press Enter to re-execute it.

DEBUG lets you trace through a program one or more steps at a time, displaying the
state of the registers and flags after each instruction. You can single-step your way
through by repeatedly pressing T and then Enter, or can specify a number directly after
the T (without an equal sign) that tells DEBUG how many consecutive instructions to
execute in a row. If you don't specify a starting address (with an equal sign and an address,
just like G) DEBUG will begin tracing through the program at offset 100 of the code
segment or at whatever offset address the Instruction Pointer (IP register) is pointing to.

The T command will trace through every single instruction - including those in each
interrupt, loop, subroutine, call, etc. If you want to execute these separate processes but
not step your way through them one instruction at a time, you can jump to the end of each
process with the P command. T will slog through every last step of your program, while
P will jump over the repetitive and tangential steps. Some programmers even refer to P
as the jumP command.

436 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

Using T can get very complicated even in tiny programs, since when it reaches an
interrupt, DEBUG will start tracing through the complex code that makes up the actual
interrupt instead simply executing it and jumping to the next step in your program. It's
useful if you need to see how a particular subroutine or interrupt changes your system's
registers. But for nonprogrammers, P is definitely the one to use.

If you took a trip from New York to Portland, Oregon, the P equivalent description of
the trip might be:

1. Took cab from home to JFK airport.
2. Took flight to Chicago.
3. Changed planes and took flight to Portland.
4. Took cab from PDX airport to Intel office.

The T instruction would look like:

1. Went out door to hail cab.
2. Located cab.
3. Got in.
4. Told driver to go to JFK.
5. Driver muttered softly and made U-tum.
6. Driver ran first red light.
7. Driver made illegal left tum onto CPW.
8. Driver ran second red light.
9. Driver swerved and narrowly avoided oncoming bus.

and so on. If you need to know the details of each operation, you would use T. If you
want just the main points, use P.

Proceed will display the same registers and flags as the Trace command, and let you
run the command multiple times by specifying a value after the P (but without an equal
sign). Again, if you don't specify a starting address (with an equal sign followed by an
address), DEBUG will begin at offset 100 of the code segment. If you try this with
BEEP.COM you'll see something like:

-P 5

AX=0200 BX=OOOO CX=0007 DX=0007 SP=FFFE BP=OOOO SI=OOOO DI=OOOO

DS=3131 ES=3131 88=3131 C8=3131 IP=0102 NV UP EI PL NZ NA PO NC

3131:0102 8207 MOV DL,07

AX=0200 BX=OOOO CX=0007 DX=0007 8P=FFFE BP=OOOO 8I=OOOO DI=OOOO

DS=3131 E8=3131 88=3131 C8=3131 IP=Ol04 NV UP EI PL NZ NA PO NC

3131:0104 CD21 INT 21

AX=0207 BX=OOOO CX=0007 DX=0007 SP=FFFE BP=OOOO SI=OOOO DI=OOOO

DEBUG 437

DS=3131 ES=3131 SS=3131 CS=3131 IP=0106 NV UP EI PL NZ NA PO NC

3131:0106 C3 RET

AX=0207 BX=OOOO CX=0007 DX=0007 SP=OOOO BP=OOOO SI=OOOO DI=OOOO

DS=3131 ES=3131 SS=3131 CS=3131 IP=OOOO NV UP EI PL NZ NA PO NC

3131:0106 CD20 INT 20

Program terminated normally

Note that the original BEEP.COM program consisted of the four lines:

MOV AH,02
MOV DL, 07

INT 21
RET

The first line is missing in the P display, and DEBUG added a final INT 20 line.
The first line isn't there because the tracing process didn't kick in until after the first

instruction. You can see the first instruction, and the state of things at the very beginning
of the process, by typing R. The last INT 20 line is listed because a coded version of this
instruction makes up the first two bytes - offset 0 - of the Program Segment Prefix
that DOS uses to keep track of important information it needs to run the program properly.
Under certain circumstances, such as ending a program with RET, execution jumps to
offset 0, which executes INT 20. INT 20 shuts things down and returns to DOS.

If you do find yourself creating short assembly language programs to set colors, change
file attributes, handle odd inputs for IF ERRORLEVEL batch tests and the like, you '11
invariably end up making mistakes. By loading your ailing (or developing) program into
DEBUG - complete with command line parameters - you can use P to step through
the code and diagnose the trouble. The P command will usually pause at the right places
and ask for input, print any of the executing program's built-in messages onscreen, and
execute chores like changing colors.

A program like the screen-clearer mentioned elsewhere in this book accepts color
numbers from the user on the command line. If you're writing a program like this, you
can watch it read in and process the actual user input. Just enter something like:

DEBUG COLOR.COM 4e

(with the COM extension) and press P repeated to step through the program, keeping
your eyes on the registers that are supposed to be affected. You might have constructed
the program to process uppercase letters only and see that the value in a certain register
is hex 20 too high, since the hex ASCII value for "e" is 65 whil~ its uppercase version is
45. DEBUG's P command won't fix the problem for you, but it will help you spot it,
which is often the hardest part of finishing something.

438 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

Expanded Memory Magic
DOS 4.0 introduced four new DEBUG commands that let you fiddle with expanded
memory. But seriously, unless you're a high-powered programmer working with a
memory-gluttonous application, you can pretty much ignore these.

Neither DOS 4.0 nor DOS 5.0 really provide much in the way of serious expanded
memory tools. You can have the MEM /C command tell you how much extended and
expanded memory your system is using and how it's being used. And if you really want
to experiment, you can play with the four new DEBUG commands, XA, XD, XM, and
XS.

XA and XD allocate and deallocate 16K pages. To use XA, specify how many new
EMS pages you want. If DEBUG successfully makes the allocation it will return the
number of a "handle .. it uses as shorthand to refer to this block of pages. To deallocate
the block of pages, use XD and specify the handle number DEBUG reported with XA.
You can "map .. a logical page onto one of the existing physical pages by using XM and
specifying the logical page, the physical page, and the appropriate handle.

For the vast majority of users, the only really interesting command of the four is XS,
which provides a status report. Just enter XS and DEBUG will give you three pieces of
information:

1. The list of handles (starting with 0) and how many pages have been allocated to each.
This will look something like:

Handle 0000 has 0018 pages allocated
Handle 0001 has 0003 pages allocated

2. A long list of individual physical pages and their respective "frame segment ..
addresses in the form:

Physical page OA
Physical page OB
Physical page oc

Physical page 07
Physical page 08
Physical page 09

Frame segment 4000
Frame segment 4400
Frame segment 4800

Frame segment E400
Frame segment E800
Frame segment ECOO

3. A report on how many EMS pages and handles DOS has been allocated, in the form:

lB of a total
2 of a total

98 EMS pages have been allocated
FF EMS handles have been allocated

ANSI and Other DOS
Drivers

You can clear your screen on a color system to a color other than the dull default grey
on black by running a short program. Likewise, you can redefine your keys with another
set of programs that would, for example, put the Ctrl key back where it belongs on IBM's
unwieldy 101-key keyboards. And you can switch from one screen width to another with
the DOS MODE command, if you happen to have MODE.COM handy.

But DOS provides one direct way to accomplish all these tasks - with ANSI.SYS.
And it even tosses in a few special new tricks. ANSI's abilities are a bit cumbersome to
work with, and horribly documented, but once you start fiddling with ANSI you may find
it hard to stop. We'll present ANSI (and other DOS drivers) in this chapter, and show
you how to master all of its commands.

ANSI.SYS is a device driver. DOS uses device drivers as bridges between the
operating system and the vast array of hardware gadgets on the market. In an ideal world,
hardware manufacturers would get together and agree on one set of immutable standards.
This way, users would need to learn only one command to set any printer's right margin,
or move a cursor on a screen.

But the reverse has occurred. Manufacturers are loathe to tell each other what they're
up to. And they often try to widen their markets by producing hardware that can run on
dozens of different computers and dozens of operating systems. In addition, many
hardware designers simply invent new standards either because they think their way of
doing things is better, or because they want to lop off a share of the market and make all
other vendors' products incompatible. Even if everyone agreed on one existing set of

439

440 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

commands, vendors would undoubtedly slap on brand new features so often that any
standard would need frequent and constant upgrading.

DOS couldn't possibly keep up with this perplexing vendor shivaree by maintaining
internal tables of codes and instructions. The tables would be huge, and would slow lots
of operations down. And they'd be out of date as soon as they were compiled. So the
designers of DOS came up with an ingenious solution - they published a specification
that all hardware manufacturers could use to develop their own hooks to the operating
system. Any vendor who wanted his hardware to plug into DOS would provide a program
called a driver that purchasers could copy onto their disks. Then, the user would simply
tell DOS which drivers were there, and DOS would attach the driver and sniff out the
necessary information.

Device drivers come in two classes - block drivers and character drivers. Block
drivers move data around in relatively large chunks and are used to control random 1/0
on mass-storage devices such as hard disks, tape drives, and optical disks. Character
drivers shuttle data in and out of systems serially (one character at a time), and deal with
things like screens, printers, mice, keypads, and modems.

To install such a device all a user has to do is include the name and path of the device's
driver in a CONFIG.SYS file. So if you're hooking up a mouse, you need to have a
CONFIG.SYS file in the main root directory of your bootup disk that contains a line like
(with the correct path for the file, of course):

DEVICE=MOUSE.SYS

When your computer boots up, your IBMBIO.COM system file (or IO.SYS file in
non-IBM systems) checks for a CONFIG.SYS file, and loads the appropriate drivers into
memory.

DOS provides several drivers of its own: DRIVER.SYS and VDISK.SYS (aka
RAMDRIVE.SYS on some systems), as well as a few to handle its confounding "code
page switching" abilities - DISPLAY.SYS, KEYBOARD.SYS, COUNTRY.SYS, and
PRINTER.SYS. DOS 4.0 introduced a pair of EMS utilities, XMAEM.SYS and
XMAZEMS.SYS.

DOS 5.0 offers a complete set of memory management utilities, HIMEM.SYS and
EMM386.EXE, to handle both extended and expanded memory, as well as the High
Memory Area (HMA) just above 1 Megabyte and the Upper Memory Blocks (UMBs)
between 640K and 1 Meg.

DRIVER.SYS
DRIVER.SYS lets you do for any diskette drive what DOS does automatically for a
system with a single floppy. If you need to copy files from one 3-1/2 inch diskette to
another, for instance, the best way is to trick your system into thinking you have two
logical drives for the same physical drive.

ANSI and Other DOS Drivers 441

DRIVER.SYS: Format

Here's the form DRIVER.SYS should follow in the CONFIG.SYS file:

DEVICEHIGH=[d:] [path]DRIVER.SYS /D:ddd
[IT : t t t] [Is : s s] [I H : hh] [I c] [IN] [/ F : f]

where:

JD:ddd is the drive number, from 0 to 127 (if you're up to 127 we'd like to
see your system). A 0 here refers to the first diskette drive (A:), a 1 to the
second diskette drive, and a 2 to the third diskette drive.

JT:ttt is the number of tracks on each side, from 1 to 999. If you omit this
switch, DOS uses a default of 80 tracks.

/S:ss is the number of sectors per track, from 1to99. Omit this and DOS as
sumes 9 sectors.

/H:hh is the number of read/write heads per drive, from 1 to 99. Leave this
out and DOS will use 2 heads. (In virtually all cases the number of heads is
the number of disk surfaces, or sides.)

/C means you need changeline support. This is a special hardware feature of
AT-class and above systems that knows when you've changed the disk in a
particular drive. You don't really have to worry about this.

/F:f tells DOS what type (form factor) of drive you 're talking about. Omit this
and DOS assumes you want a 720K 3-1/2-inch diskette (type 2). However,
you could also specify any one of these values for f, depending on the type
of drive:

0 160/180/320/360K 5-1/4" floppy
1 1.2Mb 5-1/4" floppy
2 720K 3-1/2" diskette
7 1.44Mb 3-1/2" diskette
9 2.88Mb 3-1/2" diskette

442 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

The most common use for this driver is in hooking up an external 3-1/2 inch diskette.
You have to tell DOS the drive number. But apart from that, if you don't specify anything
to the contrary, the default is:

• 80 tracks per side
• 9 sectors per track
• 2 sides
• no changeline support required
• 3-1/2 inch 720K diskette

If you need to specify another type of diskette, you should consult the documentation
furnished with it.

Since the defaults are set for a 3-1/2 inch 720K external diskette, to hook one up to a
system with a single hard disk (assuming you stored the DRIVER.SYS file in your \DOS
subdirectory), you would use the simple CONFIG.SYS command:

DEVICE=C:\DOS\DRIVER.SYS /D:2

You could then treat this external device as drive D:. Some of the more popular laptops
on the market come with a cable that attaches to the external floppy disk controller port
on a PC or XT. By using a command like the one above, and then running a special
program on the laptop, you can temporarily tum the laptop diskette drive into a slave
drive. Your PC or XT will then use this remote laptop drive as an additional floppy drive,
which it will refer to as C: on a PC or D: on an XT. This makes it a snap to move
information back and forth from your desktop and laptop systems, and transfer files from
5-1/4 to 3-1/2 inch formats and vice versa.

A generation of original XT users learned that they could treat the single floppy drive
as both A: and B:, which made it less of a chore to copy diskettes. DRIVER.SYS makes
it possible for users to give any internal or external drive an additional drive letter. If you
installed one external 3-1/2 inch 720K diskette and want to refer to it both as drive D:
and E: just use the above command twice:

DEVICE=C:\DOS\DRIVER.SYS /D:2
DEVICE=C:\DOS\DRIVER.SYS /D:2

Your system will bump up the drive letter one notch each time it processes this command.
You could then copy files from one 3-1/2 inch 720K diskette to another with a command
like:

COPY D: * . * E:

Similarly, if you're using an AT with a 1.2 megabyte 5-1/4 inch diskette in drive A:, and
you want to copy files from one of these dead-end disks to another, you can have the
DRIVER.SYS command customize your system so you can refer to this drive both as A:
andD:

ANSI and Other DOS Drivers 443

To do this, you have to use a 0 after the /D: switch to tell DOS to work its magic on
the first diskette drive in the system. And remember that the default switch settings are
designed for 720K diskettes:

/T:SO /8:9 /H:2 /F:2

while l .2M floppies require these settings:

/T:80 /8:15 /H:2 /F:l

The number of tracks and heads is the same on both, but you'll have to redefine the other
parameters. So on an AT with a l.2Mb floppy as drive A:, a second floppy, and a hard
disk, and all the DOS files in a subdirectory called C:\DOS, you could treat the l.2Mb
drive both as A: and D: with the command:

DEVICE=C:\D08\DRIVER.8Y8 /D:O /8:15 /F:l

When DOS assigns drive letters, it always refers to the first diskette drive as A:. If it finds
a second internal diskette drive, DOS calls this B:. If it finds only one internal diskette
drive it refers to this single drive both as A: and B:. The lowest drive designation for a
hard disk is C:, but since you can have such a welter of hard disks, external floppies,
RAMdisks, and external block devices of all sorts, once it gets past the floppies, DOS
starts checking out your configuration and assigns drive letters in the order in which it
finds things. If you 're using RAMDRIVE.SYS to set up RAMdisks, put the RAMDRIVE
commands after the DRIVER.SYS commands.

RAMDRIVE.SYS
RAMDRIVE.SYS (or VDISK.SYS on some systems) is used to create a RAMdisk, by
fooling your system into treating part of RAM like a disk. DOS won't install RAMDRIVE
if it determines that you have less than 65K of memory free. And even if you specify a
smaller value (for bbb), the smallest virtual drive it will try to set up is 64K. However, if
you're short on memory, DOS may reduce the size of the virtual disk that you specified
since it will always leave a minimum 64K of memory free after the VDISK is in place.
The size specified for the RAMdisk includes space allocated for normal disk structures
(the boot sector, file allocation table (FAT), and directory), so you won't be able to use
the entire space you specified for data.

If you have a system with one or two floppies and a single hard disk and low memory
to spare, and you keep your DOS files in a \DOS subdirectory on drive C:, and you accept
all the defaults by including the line:

DEVICE=C:\D08\RAMDRIVE.8Y8

444 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

RAMDRIVE.SYS: Format

Here's the syntax ofRAMDRIVE.SYS in the CONFIG.SYS file:

DEVICEHIGH=[d:] [path]RAMDRIVE.SYS
[bbb] [sss] [ddd] [/E] [/A]

where:

bbb is the size of the virtual disk, expressed as the decimal number of
kilobytes, ranging from 1 to the maximum amount of free memory in your

. system. The default is 64K.

sss is the sector size in bytes. The default is 512 bytes, but you can use 128,
256, or 512.

ddd is the number of directory entries, from 2 to 512. The default is 64.
Obviously the number of directory entries determines the number of files
you can store on this virtual disk (except that one entry is used to store the
volume label). If you specify a value for the number of entries, you must
also specify the disk and sector size.

Note: You may stick in "comments" (text such as "buffer size=") before the
bbb, sss, and ddd parameters, but why bother?

/E installs the virtual disk in extended memory.

/A works just like /E but uses expanded memory rather than extended
memory.

ANSI and Other DOS Drivers 445

in your CONFIG.SYS file, DOS will set up a 64K RAMDRIVE on drive D: with the
following specifications:

Total sectors:
Bytes per sector:
Directory entries:
Memory location:
Maximum root directory entries:

512
512
64
Conventional
64

RAMDRIVE is one of the only DOS functions that uses extended memory. Most other
applications that go past 640K use expanded rather than extended RAM. Extended
memory works only on A Ts and later hardware with properly configured memory above
the 1 megabyte address space. You can use up to 4 megabytes for each VDISK in
extended memory.

You can't use the DOS DISK COPY command with a virtual disk created by VDISK.
You can't format VDISK's virtual disks, but they come already formatted so you don't
have to. And if you create multiple virtual disks, DOS will automatically give them
increasingly higher drive letters.

HIMEM.SYS
HIMEM.SYS manages extended memory, using the XMS (eXtended Memory Specifi
cation) standard, and the High Memory Area (HMA), the first 64K block above 1
Megabyte. It provides a hardware independent way of reading and writing data in the
HMA via the A20 handler, which provides physical access to the machine's A20 address
line. To get at HMA, the basic trick is to togggle the the A20 line on and shift the contents
of a segment register left 4 bits, giving you a 21-bit address. If that means nothing to you,
don't worry - you don't have to be able to derive Maxwell's equations to tum on a light
switch. The A20 handler is implemented in different ways on different machines -
sometimes even on different models from a single manufacturer.

HIMEM.SYS arbitrates other programs' usage of extended memory and the HMA,
and thus must be the first device driver that manages or uses extended memory in your
CONFIG.SYS file. HIMEM.SYS has several switches which let you control HMA use
by other programs, define the number of extended memory block handles that can be
used at one time, describe your machine's A20 handler, and set a number of options which
are specific to certain applications software and to particular hardware systems. If you 're
already using the version of HIMEM.SYS that came with Windows 3.0, you should
replace the older HIMEM.SYS with the one that comes with DOS 5.0.

EMM386.EXE
On an 80386-class machine, with HIMEM.SYS or an equivalent extended memory
manager in place, EMM386.EXE gives you two distinct capabilities - the ability to use

446 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

HIMEM.SYS: Format

Here's the syntax for HIMEM.SYS in CONFIG.SYS:

DEVICE=[d:] [path]HIMEM.SYS [/hmamin=mm] [/numhandles=nnn]

[intlS=xxxx] [/machine :yy] [a20control: on I off] [shadowram: on I off]
[cpuclock:onloff]

where

/hmamin=mm is the minimum amount of memory (in kilobytes, from 0 to
63) a program must use before HIMEM.SYS will grant it access to the
HMA. The default is 0, which means that the HMA is available to any pro
gram that requests it on a first-come, first served basis. If necessary, you
can deny HMA access to programs by raising this threshold value to just
less than that needed by the largest program you want to let use HMA. Ap
plication programs rarely use the HMA, anyway (one of Microsoft's key
motivations in moving DOS there, or so it would appear), so you're un
likely to have to worry about this switch too often.

/numhandles=nnn is the maximum number of extended-memory-block han
dles that can be open at one time. The range of allowable values is 1 to
128, and the default is 32. Again, this is something you're unlikely to have
to tinker with, unless the installation instructions for a specific piece of soft
ware explicitly ask you to change this value.

/intlS=xxxx allocates kilobyte-sized chunks of extended memory for pro
grams which use an Interrupt 15 interface for accessing extended memory.
You can allocate from 64K through 65535K of extended memory for this
purpose, at least according to the DOS 5.0 docs. As a general rule of
thumb, you should try to stay away from any program that needs 64Mb for
its interface to extended memory. The default is zero.

/machine=yy is a setting you might actually need to use someday. It tells
HIMEM.SYS about your machine's hardware and ROM BIOS, to enable
HIMEM.SYS to use the HMA via the A20 handler. You can enter either
the code or value from the following table:

Value

2

3

Code

at

ps2

pt I cascade

A20Handler

IBM PC/AT

IBMPS/2

Phoenix Cascade BIOS

ANSI and Other DOS Drivers 447

4 hpvectra HP Vectra (A and A+)

5 att6300plus AT&T 6300 Plus

6 acerllOO Acer 1100

7 toshiba Toshiba 1600 and 1200XE

8 wyse Wyse 12.5 MHz 286

9 tulip Tulip sx
10 zenith Zenith ZBIOS

11 atl IBM PC/AT

12 at2 IBM PC/AT (alternative delay)

12 css CSS Labs

13 at3 IBM PC/AT (alternative delay)

13 philips Philips

14 fasthp HPVectra

If your machine isn't listed, check the READ ME. TXT for additional val
ues or suggestions as to which existing value to use. The default value
is 1.

/a20control:onloff tells HIMEM.SYS whether or not to take control of the
A20 address line if it's already in use. If you follow Microsoft's advice
about loading HIMEM.SYS first, this shouldn't be a problem unless you're
trying to do something seriously masochistic like attempting to run DOS
5.0 in extended memory as a task under OS/2. The setting /a20control:off
means that HIMEM.SYS will not grab the A20 line if it's already in use;
the default is on.

/shadowram:onloff allows you to specify whether shadow RAM - memory
used to hold a copy of information normally read from ROM - should be
disabled and used by HIMEM.SYS as extended memory. Not all machines
support shadow RAM in the first place, but using shadow RAM will speed
up most machines that have this feature. For systems with less than 2 mega
bytes of RAM, the default HIMEM.SYS setting is /shadowram:off. If you
tum it on, you 're making a decision to go for speed at the expense of mem
ory.

cpuclock:onloff doesn't literally tum your CPU's clock on or off - it can be
used to try to correct a problem on some systems, where loading
HIMEM.SYS lowers the CPU clock speed. Unfortunately, setting
/cpuclock:on to fix this problem slows HIMEM.SYS down.

448 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

EMM386.EXE: Format

The syntax for the EMM386.EXE device driver is:

device=[d:] [path]EMM386.EXE [onlofflauto] [eeee] [w=onlw=off]

[mxlframe=mmmml/prnmmrn] [pn=rnmmrn] [x=rnmmrn-nnnn]

[i=mmmm-nnnn] [b=rnmmrn] [L=xxx] [a=aaa] [h=hhh] [d=ddd] [RAM]

[NOEMS}

where

onlofflauto turns the device driver on or off, or puts it in auto mode, where ex
panded memory support is enabled only if a program requests it. The de
fault is on.

eeee is the amount of expanded memory (in kilobytes) to be provided by
EMM386.EXE. The default value is 256, from a range of 16 to 32768.

w=onlw=off enables or disables Weitek coprocessor support. The default is
off.

The next three switches provide three different but equivalent ways of doing the
exact same thing - telling EMM386.EXE where to put the page frame area for
expanded memory.

mx specifies the page frame address from the following table:

Value Address Value Address

1 cooo 8 DCOO

2 C400 9 EOOO

3 C800 10 8000

4 ccoo 11 8400

5 DOOO 12 8800

6 D400 13 8COO

7 D800 14 9000

FRAME=mmmm lets you specify the starting address of the page frame di
rectly. Any of the values above are valid.

/pmmmm does the same thing with even less typing.

ANSI and Other DOS Drivers 449

pn =mmmm lets you do something slightly different - specify the starting ad
dress of page n from the same range of values. Since the LIMS 3.2 stan
dard requires that all 4 pages be contiguous, this option is only useful if
you have a rather contorted memory arrangement and are using LIMS 4.0
compatible software. You can't use this option if you've used any of the
three previous ones.

x=mmmm-nnnn tells EMM386.EXE to exclude a range of memory addresses
from possible use by an EMS page. Rather than specifying a particular
page address, this options tells the device driver, "Anywhere but here."
Valid values range from AOOO to FFFF- from 640Kb to lMb.

i=mmmm-nnnn tells EMM386.EXE to use a particular memory range for
either EMS pages or UMB RAM. Valid values are also from AOOO to
FFFF; if x= and i= values overlap, the x= values take precedence.

b=mmmm specifies the lowest address to be used for swapping EMS pages
into conventional memory (EMS "banking"). Values range from 1000 to
4000, with a default of 4000.

L=xxx provides a minimum value for available extended memory after
EMM386.EXE loads. The default is 0, so if you 're using both expanded
and extended memory, you may need to plug in a number here to keep
some extended memory in play.

a=aaa sets the number of alternate high-speed register sets to be allocated to
EMM386.EXE. These are useful for multitasking, but incur a cost of about
200 bytes per set. Values can range from 0 to 254, with a default of 7.

h=hhh sets the number of handles available to EMM386.EXE. Valid values
range from 2 to 255, with a default of 64.

d =ddd reserves memory to be used for buffering direct memory access
(DMA) transfers, such as might occur with high-speed 1/0 devides or net
works. This should be set to the size of the largest anticpated DMA transfer
that might occur while EMM386.EXE is active. The range of possible val
ues for this option is 16 to 256, with a default of 16.

RAM tells EMM386.EXE to provide both expanded memory and UMB sup
port.

NOEMS tells EMM386.EXE to provide UMB support but not expanded
memory.

450 DOS Power Tools, 2nd Edition, Revised for DOS 5. 0

existing extended memory to emulate expanded memory for applications that need it,
and the ability to make use of Upper Memory Blocks (UMBs) between 640Kb and 1 Mb
to load device drivers and TSRs up out of the 640Kb application area. EMM386.EXE is
unusual, as compared to most other DOS device drivers, in that it's an .EXE file rather
than a .SYS file, which means you can also use it from the command line after booting
to examine the status of EMM386.EXE's memory services and to reset parameters.

There are a number of EMM386.EXE switches that control the creation and allocation
of expanded memory. What EMM386.EXE is really doing is taking extended memory
and simulating expanded memory with it :__ convincingly enough to fool any application
that conforms to the LIMS 3.2 and 4.0 standards. Expanded memory is inherently
inefficient in its need to shuffle blocks of memory into and out of the page frame area,
but large applications that need to keep compatibility with AT-type machines don't have
any other real choice. The 80286 processor can't access any extended memory besides
the HMA, and that's only through some programming sleight of hand. So while expanded
memory, like the 80286, is heading for the status of historical footnote, it's not going to
disappear overnight - anymore than the legions of PC/XTs still out there performing
faithfully.

The two switches that provide access to the UMBs, and allow DOS 5.0 to work its
memory magic, are the RAM and NOEMS options. RAM enables the UMBs in addition
to the expanded memory services, while NOEMS enables the UMBs while suppressing
the expanded memory services. Since the page frame for expanded memory takes up a
64K block from a typical UMB area of 96K, you won't get a lot of mileage from the
UMBs with expanded memory in action.

From the command line in DOS, EMM386.EXE provides a status report on memory
services provided by the driver, and allows you to turn expanded memory on or off, as
well as toggling on or off support for Weitek co-processors.

EMM386.EXE won't work on machines prior to the 80386 series, returning the
message'"'.

SMARTDRV.SYS
SMARTDRV.SYS is a logical successor to earlier caching software that came with prior
DOS versions, such as IBMCACHE.SYS. It will greatly speed up your disk 1/0, and its
use, where available memory permits, is strongly encouraged by Microsoft. The cache
can be located in either extended or expanded memory, and the device driver itself loaded
into high memory, so there's no real memory cost to running SMARTDRV.SYS on a
system with available UMB memory and extended or expanded memory. You can control
both the initial cache size and the minimum cache size (some application programs reduce
the cache to free up memory for themselves), as well as where the cache is located, using
the SMARTDRV switch options. At present Windows 3.0 is the only program you need
worry about trying to reduce your cache; if you 're running Windows, putting in a nominal
value here may help keep things moving along. If you experiment, you'll find that there
is a definite law of diminishing returns in increasing the cache size - doubling the cache
size will bring a smaller and smaller improvement in speed once you get past a certain
size.

ANSI and Other DOS Drivers 451

SMARTDRV.SYS: Format

The syntax for running this device driver is:

DEVICEIDEVICEHIGH=[d:] [path]SMARTDRV.SYS [mmmm] [nnn] [/a]

where

mmmm is the initial size of the cache in kilobytes. Valid values range from
128 through 8192; the default is 256.

nnn is the minimum cache size; the default is zero. Obviously, the minimum
value should not be larger than the initial value.

/a tells SMARTDRV.SYS to install the cache in expanded memory; the de
fault is to install it in extended memory.

DISPLAY.SYS, EGA.SYS, PRINTER.SYS, and
SETVER.EXE

Both DISPLAY.SYS and PRINTER.SYS are for specialized font loading~ which IBM
perversely calls code page switching. You can wrestle with this pair of drivers to add
multilingual, Portugese, French-Canadian, or Norwegian touches to your work. As IBM
sheepishly points out, "The U.S. user normally does not need" this aggravation. Skip it.

EGA.SYS is needed if you're going to use the Task Swapper with an EGA display.
SETVER.EXE is used to fool applications that look at the DOS version number to run
anyway.

ANSI.SYS
While RAMDRIVE.SYS can help you by speeding up disk-intensive operations, and
DRIVER.SYS is useful in certain hardware configurations, the one real gem of a DOS
device driver is ANSI.SYS. But although users of all types could benefit from the
extended screen and keyboard control that ANSI offers, this feature is documented poorly
and hard to implement with the meager tools DOS provides. Worse, IBM took its turgid
but factual descriptions of how to use this driver out of the DOS manual and put them
instead in the DOS Technical Reference manual, which few users own.

In some respects DOS hasn't changed much since its early· days on tiny 16K single
sided floppy hardware. Even on today's capable color systems the default DOS display

452 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

EGA.SYS

To solve a problem encountered when using the Task Swapper in the DOS Shell
with EGA monitors, this device driver is included with DOS 5.0. If you have an
EGA monitor and plan on using the Task Swapper, this·one is mandatory. If
you 're also using a mouse, you can save a bit of memory by loading EGA.SYS
first.

The syntax for EGA.SYS is:

DEVICEIDEVICEHIGH=[d:] [path] EGA.SYS

No switches, no decisions to make.

is a dingy grey text against a black background. DOS normally doesn't make it easy to
use foreign language alphabets, symbols like cents signs, or common characters like 1/2.
And its macro abilities are limited to repeating and editing previous commands.

DOS treats screens as TTY (teletype) devices, displaying just one line at a time. It can't
handle graphics (apart from clumsy ASCII border characters), or put characters anywhere
other than the line the cursor is currently on, and it can't back up past the left margin. In
fact, DOS behaves as if it were driving a printer instead of a full-sized screen.

SETVER.EXE

Like EMM386.EXE, SETVER.EXE is both a device driver and a command. As
a device driver, it installs a MS-DOS version table into memory. Some applica
tions check for DOS version numbers on startup; if they were written to check
for valid numbers in the range of, say, 2.1to3.3, they'll come to a rapid halt
when they see 5.0. To allow these applications to run, DOS will compare the
application's filename against a user-modifiable entry in the table, and return
the table entry value. Table entries for some commonly encountered programs
are predefined; you can use SETVER.EXE from the command line to add
others.

The syntax for the SETVER.EXE device driver is simply:

DEVICEIDEVICEHIGH=[d:] [path]SETVER.EXE

ANSI and Other DOS Drivers 453

DISPLAY.SYS and PRINTER.SYS: Format

Here's the syntax of DISPLAY.SYS and PRINTER.SYS in CONFIG.SYS.

DEVICEHIGH=[d:] [path] DISPLAY.SYS CON[:]=(type[, [hwcp] [,n]))

or

DEVICEHIGH=[d:] [path]DISPLAY.SYS CON[:]=(type[, [hwcp) [, (n,m))))

where:

type is the display (MONO, CGA, EGA, or LCD). Under DOS 4.0 and 5.0,
use either LCD for the PC convertible, or EGA for all other types including
VGA or 8514/A.

hwcp is the hardware code page (437, 850, 860, 863, or 865).
n tells how many additional ··prepared" code pages you want, from 0 to 6,

although on MONO or CGA systems this number has to be 0. The default
is 0 for MONO and CGA, and 1 for everything else. Under DOS 4.0 and
5.0, use 1 for code page 437, and 2 for anything else.

m defines the number of "sub-fonts" per code page. The default is 1 for the
LCD screen on IBM's Convertible laptop, and 2 on EGA and VGA
screens. You can skip this parameter for DOS 4.0 and 5.0.

DEVICEHIGH=[d:) [path) PRINTER.SYS LPT#[:)=(type[, [hwcp] [,n]])

or

DEVICEHIGH=[d:] [path]PRINTER.SYS LPT#[:]=(type[, [(hwcpl,hwcp2, ...)] [,n]])

where:

LPT# is the printer, from LPTl to LPT3 (you may use PRN instead of LPTl).
type is either 4201 (for the IBM Proprinter) or 5202 (for the IBM Quietwriter

III) or 4208 for the Proprinter X24 or XL24.
hwcp is the hardware code page (437, 850, 860, 863, or 865).
n is the number of additional code pages, from 1 through 6.

You can also use COUNTRY.SYS and KEYBOARD.SYS to help in code
page switching. COUNTRY.SYS contains the specific idiosyncratic
country-dependent information, and is specified as a NLSFUNC parameter.
KEYBOARD.SYS is a KEYB parameter that specifies which of several
possible country-specific keyboard layouts you want to use.

454 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

ANSI fixes all that (well, most of it). By installing the ANSI driver, and coming up
with an automated method for issuing its thorny commands, you can dress your color
screen in a rainbow of attributes, put text anywhere you like, redefine any alphanumeric
key on the keyboard (sorry, it won't alter keys like Alt or CapsLock), and even give your
system primitive macro powers.

CONFIG.SYS is the place to tell your system that you want to use ANSI.SYS. (You
should already have a CONFIG;SYS configuration file on your bootup disk to specify
how many disk buffers you want, increase the number of files you can open at one time
if you 're using a large database, expand the number of drive designations, specify a much
larger environment size than the wimpy 160 bytes DOS normally allots, and load drivers
for devices like mice or fancy hard disks.) Just include this line in CONFIG.SYS:

DEVICE=ANSI.SYS

or

DEVICEHIGH=ANSI.SYS

If you're using a hard disk, you should keep all your DOS files - including the DOS
device drivers - in their own subdirectory called \DOS. If ANSI.SYS is properly in your
\DOS subdirectory on drive C:, the CONFIG.SYS command to load it would actually
look like:

DEVICE=C:\DOS\ANSI.SYS

or

DEVICEHIGH=ANSI.SYS

Be sure to include the SYS extension in this command. If you haven't ever used ANSI,
copy the ANSI.SYS file from your DOS diskettes into your \DOS subdirectory. If you 're
using a floppy disk system (and these days there's little reason to do so), copy ANSI.SYS
onto your main system disk - once DOS loads ANSI it will keep it in memory so you
can replace your bootup disk with an applications disk if you need to. Either way, if you 're
changing your CONFIG.SYS file or creating one for the first time, reboot your system
when you're done since it has to read the CONFIG.SYS file at bootup to load and set
everything properly. If you're using a 2.x version of DOS, and this line is the last (or
only) one in your CONFIG.SYS file, be sure to press the Enter key at the end of the line
or else DOS may become hopelessly confused, refuse to load ANSI.SYS, and print a
garbled message onscreen. DOS 3.x fixed this problem.

You can add optional /X, (K., or /L parameters at the end of the command. The first
two, /X and/K enable and disable ANSI's ability to handle extended keyboards. The last,
/L, tells it to retain screen size after MODE changes.

ANSI and Other DOS Drivers 455

When you load ANSI.SYS, DOS will grab the module containing the ANSI code, and
grow slightly in size - by about 4K - if you haven't loaded it into high memory using
DEVICEHIGH.

Once ANSI is hooked up and ready to go, every DOS command will filter through it.
The ANSI driver will assiduously look for two special "signature" characters and execute
whatever legal ANSI instructions follow.

All ANSI commands must begin with the same two characters:

1. The ESC character - decimal 27, hex lB
2. The left bracket("[") - decimal 91, hex SB

If it doesn't see these two characters it will pass everything on to be processed normally.
Because every ANSI command begins with an ESC, the ANSI commands are some

times referred to as escape sequences. If you don't have ANSI loaded, and you display
these escape sequences, you'll see a small arrow pointing left followed by a left bracket
and a tangle of other characters. If you do have ANSI loaded, you '11 never see these
characters since the ANSI driver will intercept them and act on the commands they
contain.

The rest of the commands are combinations of upper- and lowercase letters, decimal
numbers, text, and punctuation. DOS usually doesn't care whether you type commands
in uppercase or lowercase, since it generally turns everything into capital letters. How
ever, ANSI is case-sensitive. If the command calls for a small "u" and a capital "K" you
have to type these in exactly as specified or they won't work. Its syntax is precise and a
bit jarring, so be careful to type everything in exactly as it appears here.

Since every ANSI command starts off with an ESC character, you can't just type in
the appropriate escape sequence at the DOS prompt. This is because DOS interprets any
tap on the Esc key as an instruction to abort whatever you happened to be doing.
Regardless of what you were typing, as soon as you press the Esc key, DOS will print a
backslash(\), cancel the command you were trying to execute, and drop down a line
waiting for a new one.

DOS does let you issue an ESC by following its PROMPT command with the
meta-string $E or $e. (A meta-string is just a fancy name for a sequence of characters
beginning with a dollar sign.) But using this technique makes your existing system prompt
disappear, leaving you with a blank, promptless screen. And it forces you to work with
raw, unfriendly ANSI codes.

It's fairly easy to create COM or BAT files that execute ANSI strings. All the major
word processors, including WordPerfect, Microsoft Word, and WordStar, let you insert
an ASCII 27 in your text. (To do it in WordStar, for instance, type "P"Esc - hold down
the Ctrl key and while you 're holding it down, press the P key and then the Esc key. Then
release the Ctrl key.) In some cases you'll see a"[onscreen if you're successful.

Don't be confused by the left bracket following the caret if you do see " [- this just
happens to be one way to display the single ASCII 27 ESC character (another way is a
little arrow pointing left). This has nothing to do with the real left bracket character that
follows ESC in every ANSI command. If your word processor uses " [to signify an ESC,
it will make the beginning of every ANSI command look like:

4S6 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

So on some word processors, an ANSI command to clear the screen, ESC[2J, would
actually look like:

" [[2J

(Remember, the ESC in ESC[2J and all the other examples shown here actually stands
for the ASCII 27 escape character, not the letters "ESC.")

With many other word processors, you can insert an ESC character by holding down
the Alt key, typing 27 on the number pad while you 're holding it down, and then releasing
the Alt key. (This technique works only with the numbers on the cursor/number pad, not
with the top row number keys.)

You can also use EDLIN or DEBUG to create files that contain ANSI commands, with
all the required ESC characters. With EDLIN, type Ctrl-V and then type a left bracket to
enter the ESC character. EDLIN will display "V[if you do this properly. Again, this left
bracket is part of the representation of the ESC character; you'll have to type an additional
left bracket (without the Ctrl-V this time) to enter the second character of each ANSI
command. EDLIN will show the pair of characters as "V[[. Note that some 3.x versions
of EDLIN have trouble displaying this pair.

To execute an ANSI command, you first have to make sure you booted your system
with a CONFIG.SYS file that included a line that loaded ANSI.SYS. Then you have to
check that the ANSI command you want to issue begins with an ESC character and a left
bracket, and that you typed the rest of the command precisely. If you're following
instructions that say 2J and you type 2j instead, all that will happen when you execute
the command is that DOS will display the erroneous "j."

You then have to print the correct ANSI instruction onscreen for it to take effect. You
can use a DOS command like TYPE or COPY or MORE to do this. Or you can put the
ANSI command in a batch file and use the ECHO batch command. Or issue a PROMPT
command either at the DOS command line or inside a batch file. But doing so will wipe
out your normal C> or other customized DOS prompt, so you'll have to follow it with
another PROMPT command to reset it.

NOTE
All examples presented use the abbreviation "ESC" to represent the decimal
ASCII 27 (or hexadecimal lB) escape character. Don't type in the letters "E-S-C"
since this won't do anything except exercise your fingers. Use the techniques
mentioned above to insert this ESC character in each command. And remember
that each ESC character is always followed by a left bracket([) character, so every
ANSI string begins with the two characters ESC[.

If you 're looking at an ANSI string in DEBUG, you '11 see that every one begins
with lB SB, since lB is the hex value for the ESC character, and SB the hex value
of the left bracket character.

ANSI and Other DOS Drivers 457

Creating ANSI Commands with EDLIN and DEBUG

Using the DOS EDLIN.COM utility to create ANSI files is a bit tricky. First,
make sure EDLIN.COM is on your disk. If not, copy it from the DOS disk into
your \DOS subdirectory. To have EDLIN create a new file, type EDLIN and
then the name of the file you want to create. (You can't start EDLIN unless you
enter a filename after it on the command line.) This example will produce a
small file called CLEAR that clears the screen. So you start off by typing:

C>EDLIN CLEAR

EDLIN will then respond with a message indicating that it can't find an existing
file with the name CLEAR, and then print an asterisk on the next line:

New file

*

An asterisk hugging the lefthand edge of your screen is EDLIN's prompt, just as
A> or C> is DOS's prompt and a hyphen("-") is DEBUG's prompt. The prompt
tells you EDLIN is waiting for a command.

If you don't see the "New file" message, or see something like "End of input
file" this means you do have a file called CLEAR on your disk. Abort the pro
cess by typing Q (then Enter) and then Y (and Enter). Then pick another
filename and start over.

To start entering characters in this file, just type I and press the Enter key.
You'll see:

*I
1:*

The "1:" tells you that you're working on line 1. EDLIN is a line editor that can
work only one line at a time. The asterisk following the 1: is EDLIN's way of in
dicating the current line - the one it's working on at the moment. (For details,
see the chapter on EDLIN.)

Now you start entering characters. The ANSI command to clear the screen is
only four characters long:

1. The first character has to be: ESC
2. The second character has to be: [
3. The third character is: 2
4. The fourth character is: J

458 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

So the entire command looks like:

ESC[2J

To enter the ESC character, type "V and then a left bracket("["). This combina
tion of "V[inserts an ESC character into your file. Note however that the left
bracket that follows the "Vis different from the actual left bracket character re
quired by ANSI. It just so happens that you create an ESC character by typing
"V and then [. But all that typing ,.. V[does is put an ESC character in your text.
It has nothing to do with the [that DOS requires in all ANSI commands. So
you'll have to type a SECOND [character. Then type the remaining 2 and J
characters. Be careful to type a capital J rather than a lowercase one, since ANSI
is case-sensitive. Line 1 would now look like:

l:*"V[[2J

This tells you that line 1 contains four characters:

1. "V[(ESC character)
2. [([character)
3. 2 (2 character)
4. J (J character)

Press the Enter key to enter the four characters. EDLIN won't accept anything
you typed on a particular line until you press Enter at the end of that line. Once
you press Enter, it will offer you the chance to type in something on line 2:

2:*

Ypu don't want to, so type Ctrl-C or Ctrl-Break to tell EDLIN both that you're
done entering characters and that you want it to go back to command mode.
This will look like:

2:*"C

*

To save the text you just created, type E and press Enter:

*E

C>

ANSI and Other DOS Drivers 459

Then, assuming you had previously loaded ANSI.SYS by including a line in
your CONFIG.SYS file that said something like:

DEVICE=ANSI.SYS

or:

DEVICE=C:\DOS\ANSI.SYS

you can test the file you just created by typing:

TYPE CLEAR

If you did everything properly the screen should clear. If DOS simply prints a 21
on the screen, you probably forgot to type the second left bracket character.

If you didn't originally have a DEVICE=ANSl.SYS line in your CON
FIG.SYS file, and you just added it, you'll have to reboot for it to take effect.
DOS has to see this line in your CONFIG.SYS file when it boots up, or else it
won't load ANSI or process ANSI commands.

The whole process looks like:

C>EDLIN CLEAR
New file
*I

*E

C>

l:*"V[[2J

2:*"C

The only problem with using EDLIN is that it automatically puts a carriage re
turn and line feed (as well as "Z end-of-file marker) at the end of the files it cre
ates. So when you execute an ANSI command created with EDLIN it may
bounce the DOS prompt down an extra line. You could fix this by using
DEBUG to subtract the last three bytes from the file.

First, make sure the DEBUG.COM file is in the current directory or is in a
subdirectory that your PATH knows about. If it's not, copy it from your DOS
diskette into your \DOS subdirectory.

Load the CLEAR file into DEBUG with the command:

C>DEBUG CLEAR

460 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

You should see just the DEBUG hyphen prompt. If DEBUG prints a "File not
found" message above the hyphen, abort the process by typing Q and then press
ing Enter. Make sure CLEAR is in the subdirectory you 're currently logged
into, and try again.

To have DEBUG report the length of the file in hexadecimal representation,
just type RCX and press the Enter key. In this case you should see:

-RCX

ex 0007

Typing RCX instructs DEBUG to display the contents of the CX register. When
you load a typically short file like CLEAR into DEBUG, DEBUG looks at the
directory entry for this file, figures out how many bytes the file contains, and
then puts this number of bytes into the CX register. So typing RCX right after
you load the file will display this number (in hex notation).

The 0007 following the ex tells you that the value in ex is hex 7' or that the
file is seven bytes long.

The colon on the next line is a special DEBUG prompt that offers you the op
portunity to change the value of a register, which is exactly what you want to do.

If you had used the DEBUG Display (D) command to view the seven bytes of
the file, you would have seen something like:

-D 100 L7
34E5:0100 lB 5B 32 4A OD OA lA . [2J ...

The D 100 L 7 command tells DEBUG to display seven bytes starting at memory
offset 100. Ignore the 34E5; this number is the segment address and varies from
system to system. The 0100 is the starting address of the memory contents
DEBUG is displaying. And:

lB 5B 32 4A OD OA lA

is the hexadecimal representation of all seven bytes in the file, as follows:

lB - ESC character
SB - [character
32 - 2 character
4A - J character
OD - carriage return
OA - linefeed
IA - "Z end-of-file marker

ANSI and Other DOS Drivers 461

EDLIN added three extra characters (a carriage return, a linefeed, and an end-of
file marker), so if you subtract 3 from the length of the file, DEBUG will make
the file three characters shorter, chopping those extra meddlesome characters
off. DEBUG reported that the length of the file (the value in register CX) is 7,
and 7 - 3 = 4. So type a 4 to the right of the colon and press the Enter key:

ex 0007
:4

You might want to check your work by examining the new value in the CX reg
ister. Just type RCX again and press the Enter key:

ex 0004

Since this is the value you wanted, just press the Enter key again without enter
ing a new number, and you'll return to the DEBUG hyphen prompt. Then, save
the truncated file and quit DEBUG by typing W (then Enter) and then Q (and
then Enter). The whole process looks like:

C>DEBUG CLEAR
-RCX
ex 0007
:4
-w
Writing 0004 bytes
-Q

C>

However, if you're going to use DEBUG to trim the extra characters off, you
might as well use it to create the whole file.

Remember that DEBUG works exclusively in hex. But once you get the hang
of it, you can bang out ANSI commands in seconds. To create the ESC[2J clear
screen instruction in DEBUG you would type everything following the DEBUG
hyphen prompts:

C>DEBUG
-E 100 lB II [2J"
-N CLEAR
-RCX

462 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

ex 0000
:4
-w
Writing 0004 bytes
-Q

The line:

E 100 lB II [2J"

tells DEBUG to enter a group of characters starting at memory offset 100. The
characters it enters are lB (the hexadecimal represention of the ESC character it
self), then a left bracket, a 2, and a capital J. Normally you make DEBUG en
tries in hex as you did with the lB. But when entering normal letters and
numbers, you can put them in quotes and have DEBUG translate them into hex
for you.

You specify a filename with the DEBUG N command. The line:

N CLEAR

tells DEBUG to name the file that you'll eventually save as CLEAR. You also
have to tell DOS how long to make the file. The lB ESC counts as one charac
ter, and the [2J add up to three more, for a total of four. You specify the length
by typing:

RCX

and then entering:

4

when you see the cursor blinking beside a colon. Then, write the CLEAR file to
disk and quit DEBUG by typing W and pressing Enter and then typing Q and
pressing Enter.

With DOS 5.0's EDIT utility, life is a bit simpler. You can use its Wordstar
emulation to create the Esc character by typing "P"Esc - hold down the Ctrl
key and while you're holding it, press the P key and then press the Esc key.
What you'll see is a left arrow, but what you've created is an ASCII lB - the
Esc character.

ANSI and Other DOS Drivers 463

The methods DOS provides are all relatively primitive and cumbersome:

1. Putting the commands in a file (called something like ANSI.FIL, although you can
give it any legal filename) and then using any DOS command that displays text, such
as one of these:

TYPE ANSI.FIL
MORE < ANSI.FIL
COPY ANSI.FIL CON

2. Putting the commands after the word ECHO in a batch file, e.g. ECHO ESC[2J
(to clear the screen). This ECHOANSl.BAT batch file will make setting colors a
bit less painful (remember to substitute the actual escape character for the ESC
below):

ECHO OFF
IF %1!==! GOTO OOPS
:TOP
ECHO ESC[%lm
SHIFT
IF %1!==! GOTO END
GOTO TOP
GOTO END
:OOPS
ECHO You have to specify at least
ECHO one parameter, eg:
ECHO %0 O to reset all attributes, or
ECHO %0 34 47 for blue text on white
:END

3. Using a $E or $e meta-string with the DOS PROMPT command, in the form $c
(where c = meta-string). Remember that meta-strings are not case-sensitive, and you
can combine them, so that a sample sequence like:

PROMPT $P (Time is THHHHH$H) :

at 3:20 PM in directory \DOS on drive C: yields:

C:\DOS (Time is 15:20):

464 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

Here are the meta-strings and their purposes:

Meta-String
t

d
p
v
n

$
g
1
b
q

h
e

DOS FunctioflS
Time
Date
Current directory on default drive
DOS version number
Default drive letter

Drawing Characters
$character
>character
<character
I character
=character

Special Characters
Backspace (erases previous character)
Escape character (ASCII 27 decimal, 1B hex)
Carriage return/line feed (drops down one

(line and moves to left edge of screen)

As an example, you could reset any previous screen attributes (with ESC[Om), then set
the colors to bright (with ESC[lm) cyan text (with ESC[36m) on a blue background (with
ESC[44m), then clear the screen (ESC[2J) and reset your prompt to show the current
subdirectory, by using:

PROMPT $E[0;36;1;44m
PROMPT $E[2J
PROMPT $P:

An even better way to use the PROMPT meta-strings is to create and run the following
ANSIPROM.BAT batch file:

ECHO OFF
IF %1!==! GOTO OOPS
SET OLDPROM=%PROMPT%
ECHO ON
PROMPT $E[%1
ECHO OFF
SET PROMPT=%0LDPROM%
SET OLDPROM=
GOTO END

ANSI and Other DOS Drivers 465

:OOPS
ECHO You forgot to specify an ANSI string, eg:
ECHO %0 34;47rn (for blue text on white) :END

The ANSIPROM.BA T batch file will let you enter ANSI codes without having to
worry about the ESC or left bracket characters. And it will reset the PROMPT automat
ically for you. If does this by using environment variables (%PROMPT% and
%0LDPROM%), so be sure your environment can handle the few extra bytes this process
requires. You can expand your environment in later versions of DOS with the CON
FIG.SYS SHELL command, which will look something like:

SHELL=C:\COMMAND.COM /E:512 /P

(This particular example expands the default 160-byte environment to 512 bytes.)
To use ANSIPROM.BAT, enter the part of the ANSI command that follows the ESC

and left bracket. To clear the screen, just type:

ANSIPROM 2J

Note: You can't use PROMPT to generate ANSI sequences when ECHO happens to be
off. If you remove the:

ECHO ON

line from the ANSIPROM.BA T batch file above, DOS won't set any colors. Most users
routinely set ECHO OFF at the beginning of their batch files so commands in the batch
file don 'tel utter up the screen as they execute. But if one of the commands is a PROMPT
that is supposed to set attributes, and ECHO is off, nothing will happen. To set colors
with PROMPT when ECHO is off, include an ECHO ON line directly above the
PROMPT color-setting line, and an ECHO OFF line right below it.

If you do want to keep ECHO off for the duration of your batch file, have ECHO issue
your ANSI commands (just as ECHOANSl.BAT does) instead of using PROMPT.

But it's fairly simple to learn a few simple techniques that can really tame ANSI.

Working with Color

One of the easiest ways to use ANSI is to create a small COM file that writes ANSI escape
sequences to standard output (as IBM suggests half-heartedly). Here's a COLORl.SCR
DEBUG script that creates such a file:

A
MOV BX,1
MOV CX,E

466 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

MOV AH,40
MOV DX,lOE
INT 21
RET
DB lB, 11 [O; 34; 47m 11

, lB, 11 [2J 11

N ANSCOLOR.COM
RCX
lC
w
Q

Every attribute-setting ANSI command ends with a lowercase "m." You can issue just
one color-changing command at a time, or you can stack several together. But you need
only one "m" per line. So the command:

ESC[34m

by itself will change the foreground to blue, while the longer:

ESC[0;34;47m

will also undo any existing attributes, and set the background to white at the same time.
The COLORl.SCR DEBUG script will create a file called ANSCOLOR.COM that

will set your screen colors to blue text on a white background and then clear the screen.
You can substitute other colors by replacing the 34 with the foreground color of your
choice, and 4 7 with the background color of your choice. The line:

DB lB, 11 [0;31;43m",1B,"[2J"

would yield red text (31) on a yellow background (43).
The first 0 in either color version resets all the existing attributes. This is necessary

because ANSI adds attributes in layers. If your text is red and blinking, changing the color
to green will yield green blinking text; it won't do away with the blink. The 0 will first
reset everything before it changes the colors the way you want them. So the string that
this program sends to your screen contains three parts:

ESC[O; 34;47m

l
reset T

colors
(blue on white)

ESC[2J

l
clear screen

ANSI and Other DOS Drivers 467

You can create both a blue-on-white ANSCOLOR.COM and a special black-on-black
INVIS.COM with the following COLOR2.SCR DEBUG SCRIPT:

E 100 BB 01 00 B9 OE 00 B4 40 BA OE 01 CD 21 C3
E lOE lB SB 30 3B 33 34 3B 34 37 6D lB SB 32 4A
N ANSCOLOR.COM
RCX
lC
w
E 104 8
E 110 38
M 117 LS 111
N INVIS.COM
RCX
16
w
Q

Type in either of these DEBUG script files with a pure-ASCII word processor, or EDLIN.
If you don't have one handy, add a line at the very top of each that says:

COPY CON COLORl.SCR

or:

COPY CON COLOR2.SCR

and then carefully enter the lines at the DOS prompt. When you 're all done typing, press
the Enter key after the final Q (very important!), then press the F6 function key, then
press the Enter key one final time. You should see the message "1 File(s) copied." If
you 're creating the COLORl.SCR script, be sure to leave the blank line directly above
N ANSCOLOR.COM.

Then put either script file in the same directory as DEBUG.COM (or make sure you
have DEBUG in a subdirectory your path knows about) and type:

DEBUG < COLORl.SCR

or:

DEBUG < COLOR2.SCR

If you later want to use DEBUG to substitute your own colors in ANSCOLOR.COM,
put the hex ASCII value of the last digit of the foreground color of your choice at address
113 and the hex ASCII value of the last digit of the background color of your choice at
address 116. You can figure out the values to patch ANSCOLOR. COM from this table:

468 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

Color

Black
Red
Green
Yellow
Blue
Magenta
Cyan
White

Hex ASCII Value to Use at
DEBUG Addresses 113 and 116

of .. ff' is 30
of .. 1 .. is 31
of .. 2" is 32
of .. 3" is 33
of .. 4" is 34
of "5" is 35
of "6" is 36
of ··r is 37

So if the ANSCOLOR.COM you originally created set the colors to blue on white, and
you wanted yellow text on a red background instead, you would use DEBUG to put a
value of 33 at address 113 and a value of 31 at address 116. Then you'd give the file a
new name like REDYEL.COM (so you don't wipe out the existing ANSCOLOR.COM
file):

C>DEBUG ANSCOLOR.COM
-E 113 33

-E 116 31

-N REDYEL.COM
-w
-Q

Or you could do the same thing with:

C>DEBUG ANSCOLOR.COM
-E 113 11 3 11

-E 116 11 1 11

-N REDYEL.COM
-w
-Q

This may seem confusing at first, because you're entering the hex representation of the
last digit of the color numbers, and not the value of the numbers themselves. The hex
representations of the digits 0 through 7 happen to be 30 through 37 r·o" is ASCII 30,
•T' is ASCII 31, etc.). When you patch the original ANSCOLOR.COM file to set new
colors, what you 're really doing is replacing just the second digit of the foreground and
the second digit of the background. The first digits of each remain the same.

Languages like BASIC use the same color numbers for foreground and background,
but ANSI has a different set for each. All ANSI color numbers have two digits. The first
digit of all foregrounds is •T• and the first digit of all backgrounds is ••4" in the ANSI
color system. In each case the second numbers specify the color (O=black, 1 =red,
2=green, etc.). So a green foreground is 32, and a green background would be 42, for

ANSI and Other DOS Drivers 469

example. These ANSI numbers are slightly different from IBM's standard color values,
as is shown here:

Color IBM ANSI

Black 0 0
Red 4 1
Green 2 2
Yellow 6 3
Blue 1 4
Magenta 5 5
Cyan 3 6
White 7 7

For high-intensity IBM colors, add 8 to the value of the color. So high-intensity yellow
is 6 + 8, or 14 decimal; E hex. For high-intensity ANSI colors the command ESC[lm
will do it.

The special INVIS.COM program will tum your colors to black on black and then
clear the screen. This is useful when you have to leave your system unattended and you
don't want anyone else to look through your directories. When you get up to take a break,
just type:

INVIS

Unauthorized users will still be able to meddle by typing DEL *. * or COPY *. * A: for
instance, but they'll have to do it on a totally blank screen. If they're smart, and they
know you have a program such as WordStar that isn't affected by ANSI color settings,
they can use the directory-reporting and file manipulation abilities of the program to poke
around.

When you return, type ANSCOLOR (or REDYEL or whatever you've named your
real color-setting program to) to unblank the screen. You can use a variation of this
technique to keep nosy co-workers from using the TYPE command to examine things
like your CONFIG.SYS or AUTOEXEC.BAT files. Just put the INVISIBLE ANSI string
itself at the beginning of the file. When your system tries to execute it you '11 get either a
"Unrecognized command in CONFIG.SYS" message or a "Bad command or filename"
message, which won't hurt anything. But if someone tries to use the TYPE command to
see what's in your text files, ANSI will intercept the string and tum the display off.

You can create this invisible string with the DEBUG INVIS.SCR script:

E 100 lB SB 38 6D lB SB 32 4A
N LINEONE
RCX
8

w
Q

4 70 DOS Power Tools, 2nd Edition, Revised for DOS 5. 0

(Or just get into DEBUG and type each of the six lines.) This will create a tiny file
called LINEONE. You can then blank out your screen with the command:

TYPE LINEONE

But the trick here is to use your word processor to read the LINEONE file into the
beginning of your CONFIG.SYS or AUTO EXEC.BAT or related files. If you do this and
you see a string of "@"@"@ "@"@ characters, erase these.

One final variation of this technique will make it very easy to prevent anyone from
getting into your hard disk when you 're not there. Rename both the color-setting file
(ANSCOLOR.COM, REDYEL.COM or whatever you call it) to something innocuous
like WRDCOUNT.COM. Put this file in a directory that your PATH knows about (such
as \DOS). And rename the INVIS.COM program to an equally uninteresting name like
SETMODEM.COM.

Then add a line to your AUTOEXEC.BAT that says something like:

SETMODEM /1 /12 /N81

When DOS reaches this line of the batch file it will execute SETMODEM (and ignore
the innocent-looking parameters after it), which will blank the screen. The only way to
unblank it is to type WRDCOUNT, or whatever you named ANSCOLOR.COM to.
Remember, WRDCOUNT.COM either has to be in the root directory or a subdirectory
that's included in your PATH setting for this to work properly.

This isn't foolproof, since another user could boot off a diskette in the floppy drive
and circumvent your AUTOEXEC.BAT file. But, as they say in the locksmith business,
it will keep the honest people out.

Okay, okay. Just one more. But you have to promise that you'll check your typing
very, very carefully and that you won't try this on your hard disk. And if you haven't
read about DEBUG in the chapter dedicated to it, you might want to give it a quick scan.
The following instructions are designed for a floppy disk in drive A: only.

If you have a hard disksystem that loads ANSI.SYS, you can keep prying eyes from
seeing what's on your floppies. All you have to do is put the INVIS code into your floppy
disk directory. A good place is in the directory entry that holds the disk's volume label.

This example will use a 360K 5-1/4 inch floppy and add the system files to it. This
way you can put ANSI.SYS on your diskette along with a CONFIG.SYS file that contains
the line:

DEVICE=ANSI.SYS

Then you can copy your DOS files to the disk and label it "DOS 3.3" (or whatever version
you happen to be using). If you've locked intruders out of your hard disk, the first thing
they'll probably try to do is boot off a floppy disk with the DOS system files on it. If you

ANSI and Other DOS Drivers 471

leave this disk around they'll find it, try to boot off of it, and end up temporarily stymied.
First, format a blank disk, using the:

FORMAT A: /S /V

syntax, which will copy the system files onto it and then prompt you to enter a volume
label. If you 're using an AT high-density drive you can either add a /4 switch to the end
of the above command, or format the disk in drive B:. IBM admits that the /4 option is
unreliable, so format the floppy in drive B: and then switch it into drive A:.

After DOS finishes, it will tell you the format was successful and then ask for a volume
label:

Format complete
System transferred

Volume label (11 characters, ENTER for none)? POWER
TOOLS

As the example illustrates, type in:

POWER TOOLS

or any other 11-letter name.
Make sure this formatted disk is in drive A:, and that DEBUG.COM is in a directory

that your PATH knows about (if it's not, put it there). Load it by typing:

DEBUG

Now very carefully load the first four directory entries from drive A: by typing:

-L 100 0 5 1

(Note: The 0 in this command refers to drive A:. Be very careful not to have anything
other than a 0 in this position!)

Tell DEBUG to display these four directory entries by typing:

-D

You should see something like:

3140:0100 49 42 4D 42 49 4F 20 20-43 4F 4D 27 00 00 00 00 IBMBIO COM'

3140:0110 00 00 00 00 00 00 00 60-72 OE 02 00 54 56 00 00 'r ... TV ..

3140:0120 49 42 4D 44 4F 53 20 20-43 4F 4D 27 00 00 00 00 IBMDOS COM'

3140:0130 00 00 00 00 00 00 00 60-71 OE 18 00 CF 75 00 00 'q u ..

3140:0140 43 4F 4D 4D 41 4E 44 20-43 4F 4D 20 00 00 00 00 COMMAND COM

472 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

3140:0150 00 00 00 00 00 00 00 60-71 OE 36 00 DB 62 00 00 'q.6 .. b ..

3140:0160 50 43 20 4D 41 47 41 5A-49 4E 45 28 00 00 00 00 POWER TOOLS(... .

3140:0170 00 00 00 00 00 00 09 B3-74 OF 00 00 00 00 00 00 t

Ignore the first four characters in each row (here they're 3140); these will vary from
system to system and don't affect this. Note that the fourth entry is POWER TOOLS.
The 28 in the same row tells you that this entry is the disk's volume label. Use DEBUG's
E command to replace all 11 characters in .. POWER TOOLS" with the INVIS string plus
three ASCII 7 beep characters. Type this very carefully:

-E 160 lB," [Sm", lB, 11 [2J",7, 7, 7

This will overwrite all the letters in "POWER TOOLS." Use a variation of the D
command to check your work:

-D 160 L 10

Apart from the 3140 at the beginning of the line, your screen should look exactly like
this:

3140: 0160 lB 5B 38 6D lB 5B 32 4A-07 07 07 28 00 00 00 00 . [Sm. [2J ... (....

If it doesn't, type Q and press Enter to quit. Then start again.
If it does, write the file to disk. Be extraordinarily careful and type this exactly as it

appears! Type this in wrong on a hard disk and you could lose everything, so check your
typing several times before finally pressing the Enter key. Above all, make sure that the
number between the 100 and the 5 is a 0:

-w 100 0 5 1

Then type Q to quit and press Enter. Make sure you included the line:

DEVICE=ANSI.SYS

(or a variation with your particular system's path to ANSI.SYS in it) in your CON
FIG.SYS file. Also, be certain you have your ANSI color-setting program (ANS
COLOR.COM or REDYEL.COM) handy. And type DIR A:.

As soon as DOS tries to display the directory and prints the volume label onscreen,
ANSI.SYS will intercept the code and blank the screen. Then DOS will beep three times.
This should deter any unauthorized user, who's probably wondering if he or she just broke
your system. Again, you can get around this by booting up from a factory-fresh DOS
disk.

ANSI and Other DOS Drivers 473

If you want to see the files on drive A:, just be sure the DOS FIND.EXE utility is in a
subdirectory your PA TH knows about, and type:

: DIR A: I FIND II - II

This will filter out everything that doesn't have a hyphen in it, which means the volume
label won't print onscreen but all the filenames will.

The entire FORMAT and DEBUG process looks like this, for DOS version 3.3:

FORMAT A: /S /V

Format complete
System transferred

Volume label (11 characters, ENTER for none)? POWER
TOOLS

362496 bytes total disk space
78848 bytes used by system

283648 bytes available on disk

Format another (Y/N)?n

C>DEBUG

-L 100 0 s 1

-D

3140:0100 49 42 4D 42 49 4F 20 20-43 4F 4D 27 00 00

3140: 0110 00 00 00 00 00 00 00 60-72 OE 02 00 S4 S6

3140:0120 49 42 4D 44 4F S3 20 20-43 4F 4D 27 00 00

3140: 0130 00 00 00 00 00 00 00 60-71 OE 18 00 CF 7S

3140: 0140 43 4F 4D 4D 41 4E 44 20-43 4F 4D 20 00 00

3140:01SO 00 00 00 00 00 00 00 60-71 OE 36 00 DB 62

3140:0160 so 43 20 4D 41 47 41 SA-49 4E 4S 28 00 00

3140:0170 00 00 00 00 00 00 09 B3-74 OF 00 00 00 00

-E 160 lB, 11 [8m 11
, lB, 11 [2J 11

, 7, 7, 7

-D 160 L 10

00 00

00 00

00 00

00 00

00 00

00 00

00 00

00 00

3140:0160 lB SB 38 6D lB SB 32 4A-07 07 07 28 00 00 00 00

-w 100 0 s 1

-Q

IBMBIO COM'

....... 'r ... TV ..

IBMDOS COM I ••••

....... 'q u ..

COMMAND COM

. 'q.6 .. b ..

POWER TOOLS(... .

........ t

. [Sm. [2J ... (....

If you want to do something particularly sensitive in DOS, and you don't want to have
it appear on your screen, ANSI can turn off the display if you set the colors to ESC[8m
(where ESC represents a decimal 27 or hex lB character), clear the screen with ESC[2J,
and then reset the screen to your default colors when you 're done. If you like blue text

474 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

on a white background, you'd reset them to ESC[34;47m, so the batch file would look
like:

ECHO ESC[8m;ESC[2J
REM (sensitive things happen here)
ECHO ESC[34;47m

Obviously, replace the "REM (sensitive things happen here)" line with the actual
sensitive command(s).

If you're not using ANSI, you could get the same basic effect with two small COM
programs, BLANK.COM and UNBLANK.COM. Create them both by typing in the
following BLANK.SCR with a pure ASCII word processor or EDLIN:

A 100
MOV
MOV
MOV
MOV
INT
MOV
MOV
MOV
INT
RET

RCX
17

DX,184F
CX,0000
AX,0600
BH,00
10
AH,02
BH,00
DX,0000
10

N BLANK.COM
w
E lOA 71
N UNBLANK.COM
w
Q

;80 x 25
; Top left corn€<-r
;Scroll window up
;00 = black on black
;Do it
;Set cursor position
;Main page
;Top left corner
;Do it
;Back to DOS

Omit the semicolons and the text following them. Be sure to leave a blank line above
RCX, and to press the Enter key at the end of each line, especially the last one with the
Q. Be certain DEBUG.COM is handy and type:

DEBUG < BLANK.SCR

Then put lines in your batch file that look like:

BLANK
REM (sensitive things happen here)
UNBLANK

ANSI and Other DOS Drivers 475

Both of these techniques use the same color settings. BLANK will clear your screen to
black on black, and UNBLANK will restore it to blue on white. You may change either
of these as follows:

To change the BLANK.COM program, make sure you set the foreground and back
ground to the same color. If you use the BLANK.SCR script, change:

MOV BH,00 ;00 = black on black

by replacing the 00 with any other pair of digits. Using 11 would give you a solid blue
screen, 22 a solid green screen, 33 solid cyan, 44 solid red, 55 solid magenta, 66 solid
brown, and 77 solid white.

To change the color of the UNBLANK.COM program, replace the 71 in the
BLANK.SCR script line:

E lOA 71

with any other color you like. The lefthand digit is the background color, and must be in
the range 0 to 7. The righthand digit is the text (foreground) color and must be a hex
number between 0 and F. Once again, here are the available colors:

Value
0
1
2
3
4
5
6
7

Color
Black
Blue
Green
Cyan (Lt Blue)
Red
Magenta
Brown
White

- background only -

Value
8
9
A
B
c
D
E
F

Color
Grey
Bright blue
Bright green
Bright Cyan
Bright red
Bright magenta
Yellow
Bright white

---------foreground---------

Changing the hex number from 71 to 74 would give you red text on a white background.
Changing it to 4E would give you yellow text on a red background. The advantage to
using the ANSI method is that typing CLS when the black on black setting is in effect
would keep things black on black. However, typing CLS when BLANK.COM had
temporarily made things black on black would reset your attributes to the default DOS
grey on black, so you'd be able to see what you were doing. If you use BLANK.COM
in a batch file, you won't have to worry about this.

A completely different (and more flexible) way to master ANSI is to enter commands
via the ESCAPE.COM program below. You can create this program either of two ways.
You could type in the following DEBUG ESCAPE.SCR script:

476 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

A 100

MOV DX,0120

MOV AX, 3D01

INT 21

MOV BX,AX

MOV SI,0080

MOV CL, [SI]

INC CL

XOR CH,CH

MOV WORD PTR

MOV DX,SI

MOV AH,40

INT 21

MOV AH, 3E

INT 21

RET

;point to device name CON at offset 120

;open the standard input device

;do it

;save file handle in BX

;point to buffer containing inputed string

;get count of characters in string

;adjust count for prefix

;zero out high byte of count

[SI], 5B1B

;put ANSI ESC[sequence at beginning

;point to start of string

;output string to the standard input device

;do it

;close handle

;do it

;back to DOS

DB "CON",20,20,20,20,20,0

RCX

N ESCAPE.COM

2B

w
Q

While this lets you enter ANSI escape sequences from the command line, it uses a
slow and slightly cumbersome trick (writing to standard output). A faster way is simply
to have DOS display the string. Here's an adaptation of the above program that uses an
undocumented DOS interrupt 29 "Quick TTL .. display:

A

MOV SI,0080

MOV CL, [SI]

INC CL

XOR CH,CH

MOV WORD PTR [SI] ,5B1B

MOV AL, [SI]

INT 29

INC SI

LOOP OlOD

RET

RCX

15

;point to buffer containing inputed string

;get count of characters in string

;adjust count for prefix

;zero out high byte of count

;put ANSI ESC[sequence at beginning

;put character from string into AL

;undocumented "quick TTL" interrupt

;point to next character in string

;go back and put next character into AL

;return to DOS

N ESCAPE.COM

w
Q

ANSI and Other DOS Drivers 477

But since running undocumented commands can be potentially troublesome, try this
slightly longer, legal version that's nearly as fast:

A

MOV SI,0080

MOV CL, [SI]

INC CL

XOR CH,CH

MOV WORD PTR [SI] ,5B1B

MOV AH,02

MOV DL, [SI]

INT 21

INC SI

LOOP OlOD

RET

RCX

17

N ESCAPE.COM

w
Q

;point to buffer containing inputed string

;get count of characters in string

;adjust count for prefix

;zero out high byte of count

;put ANSI ESC[sequence at beginning

;DOS "display output" function

;put character from string into DL

;execute main DOS interrupt

;point to next character in string

;go back and put next character into AL

If you try any of these ESCAPE.SCR methods, use a pure-ASCII word processor or
EDLIN, call the file ESCAPE.SCR, and be sure that you leave a blank line above RCX,
and that you press the Enter key after each line - especially the last one with the solitary
Q. You may omit the comments following the semicolons and the semicolons themselves.
Then put the ESCAPE.SCR script file in the same directory as DEBUG.COM (or be sure
DEBUG is in a directory that your path knows about) and type:

DEBUG < ESCAPE.SCR

The ESCAPE.COM program that these techniques creates will let you enter ANSI
commands without having to worry about the ESC character or the left bracket that
follows it. So to clear the screen, just type:

ESCAPE 2J

or:

ESCAPE J

478 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

To reset all attributes to grey on black:

ESCAPE Om

or:

ESCAPE m

To set the foreground to bright red, type:

ESCAPE 31;1m

Or to redefine Alt-1 so it prints the Spanish upside-down exclamation point, type:

ESCAPE 0;120;173p

(To save wear and tear on your typing fingers, you might want to rename ESCAPE.COM
to E.COM. Then you could simply type:

E 0;120;173p

to redefine Alt-1, or:

E J

to clear the screen, etc.
And if you don't want to deal with ANSI numbers (such as 34 for a blue foreground,

or 1 for highlighting) you can use the following FORE.BAT, BACK.BAT, and SPE
CIAL.BAT batch files:

First, FORE.BAT, to change foreground colors. Just type FORE and then a color -
black, red, green, yellow, blue, magenta, cyan, or white. You may enter the colors in
uppercase, lowercase, or a combination of both:

ECHO OFF
REM This is FORE.BAT
IF %1!==! GOTO OOPS
GOTO %1
ECHO ON
:BLACK
ECHO ESC[30m
GOTO END
:RED
ECHO ESC[31m
GOTO END

:GREEN
ECHO ESC[32m
GOTO END
:YELLOW
ECHO ESC[33m
GOTO END
:BLUE
ECHO ESC[34m
GOTO END
:MAGENTA
ECHO ESC[35m
GOTO END
:CYAN
ECHO ESC[36m
GOTO END
:WHITE
ECHO ESC[37m
GOTO END
:OOPS

ANSI and Other DOS Drivers 419

ECHO You must enter a new text color, eg:
ECHO %0 WHITE or %0 red
:END

Next, BACK.BAT. This works exactly the same as FORE.BAT except that it lets you
set the background color. Again, enter the color you want on the command line after the
name BACK:

ECHO OFF
REM This is BACK.BAT
IF %1!==! GOTO OOPS
GOTO %1
ECHO ON
:BLACK
ECHO ESC[40m
GOTO END
:RED
ECHO ESC[41m
GOTO END
:GREEN
ECHO ESC[42m
GOTO END
:YELLOW
ECHO ESC[43m
GOTO END

480 DOS Power Tools, 2nd Edition, Revisedfor DOS 5.0

:BLUE
ECHO ESC[44m
GOTO END
:MAGENTA
ECHO ESC[45m
GOTO END
:CYAN
ECHO ESC[46m
GOTO END
:WHITE
ECHO ESC[47m
GOTO END
:OOPS
ECHO You must enter a new background color, eg:
ECHO %0 WHITE or %0 red
:END

Finally, SPECIAL.BAT, to give you control over ANSI's other attributes (blinking,
underlining on mono systems, high-intensity, etc.). You can also use it reset all your
existing attributes back to plain white on black. You'll need to do this if you want to turn
off blinking, or high-intensity, or any of the other special features:

ECHO OFF
REM This is SPECIAL.BAT
IF %1!==! GOTO OOPS
GOTO %1
ECHO ON
:RESET
:NORMAL
ECHO ESC[Om
GOTO END
:BOLD
:BRIGHT
:HIGHLIGHT
ECHO ESC[lm
GOTO END
:UNDERLINE
ECHO ESC[4m
GOTO END
:BLINK
ECHO ESC[5m
GOTO END
:REVERSE
ECHO ESC[7m

GOTO END

:CANCEL
:BLANK
ECHO ESC[8m
GOTO END
:CLS
ECHO ESC[2J
GOTO END
:OOPS

ANSI and Other DOS Drivers 481

ECHO You must enter a special attribute from this list:
ECHO RESET, NORMAL, BOLD, BRIGHT, HIGHLIGHT, CLS
ECHO UNDERLINE, BLINK, REVERSE, CANCEL, BLANK
ECHO eg: %0 RESET or %0 CLS
:END

This trio lets you set attributes by typing in words rather than codes. So to set the
foreground to blue, you'd type:

FORE blue

or:

FORE BLUE

or even something like:

FORE bLuE

To set the background to white, type:

BACK white

or:

BACK WHITE

And you can use the SPECIAL.BAT batch file to reset everything back to the default
grey on black, or make the foreground blink or become bold. To reset everything to
normal, just type:

SPECIAL reset

or:

SPECIAL RESET

482 DOS Power Tools, 2nd Edition, Revised for DOS 5. 0

or:

SPECIAL normal

or:

SPECIAL NORMAL

The choices are listed at the end of the SPECIAL.BAT file - and they appear onscreen
if you simply type SPECIAL with nothing following it. Some definitions are duplicates.
Here's the full slate of special ANSI attributes:

Action Code
Normal grey-on-black (cancels

any attributes currently in effect) 0
Bold (bright, or high-intensity; works

on foreground only) 1
Underline (on IBM-compatible mono

screens only; blue foreground on color
systems) 4

Blink (foreground only) 5
Reverse video (white on black) 7
Canceled (black on black; invisible) 8

Most non-ANSI color-setting programs simply invoke one of the two BIOS INT 10 Scroll
Window video services (Scroll Up or Scroll Down). But the colors these set aren't
"sticky." If you run a program to give yourself bright magenta text on a cyan background,
and then type CLS, DOS will reset your colors to grey on black, although you can patch
the Scroll Window BIOS routine buried inside COMMAND.COM so that CLS will clear
the screen to a predefined set of colors. But when you set colors and then clear the screen
with ANSI, any subsequent CLS commands will wipe away existing text while main
taining the attributes you specified.

In fact, when you type a normal CLS command, DOS sends an ESC[2J to your BIOS
to clear the screen. You can see this in action by redirecting the output of the CLS
command into a file called CLRSCRN:

A>CLS > CLRSCRN

Then use the DOS TYPE command to display the contents of the file:

A>TYPE CLRSCRN

and the screen will clear.
Actually, this gives you one more way to create ANSI files that contain the elusive

ESC character. Once you've redirected the CLS command into a file, you can edit that

ANSI and Other DOS Drivers 483

file with your word processor or EDLIN and change the command following the ESC[
to execute whatever ANSI sequences you like. You can even add an ECHO to the
beginning of the line and then rename the file by adding a BAT extension, which will
turn it into a batch file that can set your colors or redefine your keys.

You could also have the following ANSICOLR.BAT batch file create individual files
called COL.COM that you can run whenever you need to set your screen attributes to the
predefined colors that you like. For this to work, your DEBUG.COM utility has to be in
the same directory or in a directory that your path knows about:

ECHO OFF
IF %1!==! GOTO OOPS
IF EXIST COL.COM GOTO RENAME
ECHO N COL.COM
ECHO E 100 B4 9 BA 8 1 CD 21 C3 lB 11

["

IF %4!==! GOTO THREE
ECHO E lOA 11 %1;%2;%3;%4m$"
GOTO FINISH
:THREE
IF %3!==! GOTO TWO
ECHO E lOA "%1;%2;%3m$"
GOTO FINISH
:TWO
IF %2!==! GOTO ONE
ECHO E lOA 11 %1;%2m$"
GOTO FINISH
:ONE
ECHO E lOA 11 %lm$ 11

:FINISH
ECHO RCX
ECHO 16
ECHO W
ECHO Q
DEBUG < COL.SCR
DEL COL.SCR

> COL.SCR
» COL. SCR

» COL.SCR

» COL. SCR

» COL.SCR

» COL.SCR

» COL.SCR
» COL.SCR
» COL.SCR
» COL.SCR

ECHO Now run COL to set your color(s) to %1 %2 %3 %4
GOTO END
:OOPS
ECHO Enter from one to four ANSI color values after %0
ECHO eg: %0 34 for a blue foreground
ECHO or: %0 34 47 for blue text on a white background
ECHO or: %0 O 1 37 44 to reset the existing attributes
ECHO then set your colors to bright white on blue
ECHO (And you must have ANSI loaded)
GOTO END
:RENAME

484 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

ECHO First rename your existing COL.COM so this
ECHO doesn't write over it, then restart_%0
:END

Once you've typed in ANSICOLR.BAT, you could create a small program called
COL.COM that would set your text color to blue, by typing:

ANSICOLR 34

The ANSICOLR batch file would redirect a customized script into DEBUG and create
the appropriate COL.COM file. Typing:

COL

at the DOS prompt would set the foreground to blue. The:

IF EXIST COL.COM GOTO RENAME

in this batch file prevents it from overwriting any COL.COM you may have created
previously. If ANSICOLR.BAT finds an existing COL.COM it will print a message
telling you to rename the one you already have and then restart.

You may enter from one to four attributes on the command line after the name of the
batch file itself. So:

ANSICOLR 5 35 42

would create a version of COL.COM that sets your colors to blinking magenta on green
- a combination so horrid you would immediately erase COL.COM and type something
like:

ANSICOLR 0 1 37 44

to create a COL. COM that would cancel any existing attributes and set the colors to bright
white on a blue background.

One nice thing about having a program like COL.COM around is that you can stick it
in your A UTOEXEC.BAT startup file and have DOS set your colors automatically. And
if something accidentally resets your colors, you can run the COL.COM version you've
created to put them back the way you like.

Full Screen Displays

While DOS ordinarily keeps you confined to the single line your cursor is on, ANSI gives
you full control over the screen. You can move anywhere you want by issuing either of
the commands:

ANSI and Other DOS Drivers 485

ESC[row;columnH

or:

ESC[row;columnf

substituting the row you want for "row" and the desired column for "column." So
ESC[13;35f and ESC[13;35H will both position the cursor on row 13, column 35, roughly
in the center of the display. This doesn't do much good unless you display something at
that location. So you could print a centered "WARNING!" either with:

ESC[l3;35fWARNING!

or:

ESC[13;35HWARNING!

You can make this even more dramatic by adding:

ESC[Sm

on the previous line to make the message blink. If you do this, you '11 later have to get rid
of the blink (with ESC[Om) and then reset your colors (with something like ESC[34;4 7m)
on the line following it. Or you could combine the reset and color-setting operations into
one line. The whole process would look like:

ESC[34;47m
ESC[Sm
ESC[l3;35fWARNING!
ESC[0;34;47m

The first line sets the colors; in this case to blue on white. The second makes the
foreground blink. The third positions the message and prints it. The fourth gets rid of the
blink by resetting everything back to white on black (with ESC[O), and then resets the
colors to blue on white.

Actually, you could put all of these on the same line. The following short batch file
would do it:

ECHO ESC[34;47mESC[SmESC[13;35fWARNING!ESC[0;34;47m

You don't have to put spaces between ANSI commands when you concatenate them like
this. In fact, ANSI will print any leading and trailing spaces you specify, and these will
show up if you print the message in a color that contrasts with the background. The

486 DOS Power Tools, 2nd Edition, Revised for DOS 5. 0

following variation of the above command would put two spaces on either side of the
WARNING message, and print the message in magenta on green:

ECHO ESC[34;47mESC[5;35;42mESC[13;35f WARNING! ESC[0;34;47m

ANSI uses decimal numbers only. If you omit both parameters when using the
ESC[row;columnH positioning command, DOS will move the cursor to the home
position, in the upper lefthand comer. Include just a single parameter and ANSI will use
a default of 1 for either missing value. So:

ESC[fWARNING!

will print the word WARNING! in the upper lefthand corner, since both the row and
column parameters are missing. ANSI treats this as if you entered the command:

ESC[l;lfWARNING!

If you type:

ESC[lO;fWARNING!

ANSI will fill in a 1 for the missing column and print the message on column 1 of row
10. If you issue the command:

ESC[;lOfWARNING!

ANSI will insert a default value of 1 for the row, and print the message on column 10 of
row 1.

The following ANYWHERE.BAT batch file will let you position one word of text
anywhere on your screen:

ECHO OFF
IF %3!==! GOTO OOPS
IF %4!==! GOTO START
ECHO ESC[2J
:START
ECHO ESC[s
ECHO ESC[%1;%2f%3
ECHO ESC[u
GOTO END
:OOPS
ECHO You must specify three parameters
ECHO (row, column, word) after %0, eg:
ECHO %0 10 15 Hello
ECHO (Adding any 4th parameter clears screen)
:END

ANSI and Other DOS Drivers 487

If you enter:

ANYWHERE 10,20,Hello

or:

ANYWHERE 10 20 Hello

it will print the word "Hello" on column 20 of row 10. Include any dummy fourth
parameter, to clear the screen first. So:

ANYWHERE 10,20,Hello,1

or:

ANYWHERE 10 20 Hello Sports Fans

will print the word "Hello" on row 10, column 20 of a blank screen. This works because
DOS scans across the command line when you enter any batch file command and assigns
replaceable parameter values to each successive chunk of text separated by a space,
comma, colon, or other delimiter. All replaceable parameters begin with percent signs.
DOS would assign five of these to the command:

C>ANYWHERE 10 20 Hello Sports Fans

l l l l l
%0 %1 %2 %3 %4 %5

The very first chunk of text DOS sees after the C> or A> prompt is always a command
or the name of an executable file, and it gives this special string of characters the
parameter %0. The next chunk becomes% 1, the one following that %2, etc. If your batch
file doesn't use replaceable parameters, DOS ignores this special feature. But whenever
it does see a % sign followed by a number from 0 to 9 it will try to replace it with the
respective chunk of text from the command line. So if you execute the ANYWHERE
batch file using the above command syntax, whenever DOS sees a %0 in the batch file
it will replace the %0 and print out "ANYWHERE" instead.

If the batch file included the line:

ECHO The password is %0

DOS would print:

The password is ANYWHERE

488 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

If the line said:

ECHO The password is %1

DOS would display:

The password is 10

since 10 is the second discrete lump of text on the command line, and DOS assigns the
second chunk of text on the command line a parameter of % 1.

The ANYWHERE.BAT batch file uses a %0 at the bottom to print out the name of the
batch file itself. This way if you rename it to something like POSITION.BAT, it will print
out the new batch file name. This batch file also uses replaceable parameters % 1 through
%4. It will replace % 1 with the first thing it found after the name of the batch file itself
(here this is 10), %2 with the second thing (here it's 20), and %3 with the third thing
(Hello). It doesn't really care what %4 is, since it uses this simply to test whether or not
you specified any additional parameters after %3. If you did enter a word there like
.. Sports," DOS will tum the:

IF %4!==! GOTO START

test into:

IF Sports!==! GOTO START

The characters .. Sports!" are clearly not equal to the single character"!" so the test fails
(note that batch file tests like this use double equals signs). Since the test failed, DOS
won't execute the command that follows at the end of the line (in this example the
conditional command is GOTO START). If you hadn't entered anything on the command
line after Hello, %4 would be equal to (nothing), and DOS would have translated the test
into:

IF !==! GOTO START

Sure enough, .. , .. does equal"!" so DOS will jump to the label named START. (A label
is a short word preceded by a colon). So if you didn't enter a parameter for %4, DOS will
jump around the line that follows the test and go directly to :START. As illustrated here,
this will skip the following clear-screen command.

Before it does anything else, the ANYWHERE.BAT batch file checks to see if the user
entered any third parameter. The first two parameters are the row and column, but these
won't do much if the user didn't enter anything on the command line to display. So DOS
checks to make sure %3 isn't equal to (nothing) with the test:

IF %3!==! GOTO OOPS

ANSI and Other DOS Drivers 489

If it finds nothing there, it will jump to the OOPS label and print a message displaying
the proper syntax and reminding the user to enter a row, a column, a message, and an
optional fourth parameter to clear the screen.

While ANSI's ESC[row;columnH and ESC[row;columnf positioning commands let
you print messages at a precise location, there are times when you want to print text at
relative locations. For example, if you want to display a message below the prompt, you
could position the prompt at a certain predefined place on the screen and then print the
message. However, if you didn't want to disturb what was on the screen, you could tell
ANSI to figure out where the prompt happened to be at the time, and print the message
directly below wherever that location was.

To make such relative positioning commands easy, ANSI lets you move the cursor up,
down, left, or right one or more characters at a time with the following commands:

Up
Down
Left
Right

ESC[#A
ESC[#B
ESC[#C
ESC[#D

The # in each command equals the number of rows or columns to move; the default is 1.
ANSI will ignore these commands if further movement in the specified direction is
impossible. So if the cursor is already at the left edge of the screen, issuing an ESC[2C
command won't do anything. If you leave out a number, ANSI will move just one row
or column, so ESC[B will move down one row. When ANSI moves the cursor left or
right it maintains the original row; when it moves up or down it keeps the original column
position.

It's possible to blank a line by moving up and then printing spaces over it. You can
use the ECHO command to do this in a batch file if you want to obliterate the initial
commands. But you can't just put spaces after ECHO or DOS will think you're asking
it whether ECHO currently happens to be set on or off.

The following CLEARSLF.BAT batch file will erase both the command line and the
ECHO OFF message it prints. The line of xxxx 's represents spaces; if you try this be sure
to type a space in place of each x (you may have to vary the number of spaces to suit your
screen). You have to use a character like a colon or period directly after the the ECHO
for this to work.

ECHO OFF
ECHO ESC[2A
ECHO:xxxxxxxxxxxxxxxxxxxxxxxxxxx
ECHO ESC[4A
ECHO:xxxxxxxxxxxxxxxxxxxxxxxxxxx

Wiping out text with spaces isn't very efficient. ANSI provides two erasing commands
to make it far easier. Many of the above examples above use one of these commands,
ESC[2J, to clear the entire screen. (Incidentally, the DOS manuals say to use ESC[2J,
but ESC[J works just as well; both will clear the screen to the foreground and background

490 DOS Power Tool.s, 2nd Edition, Revised/or DOS 5.0

colors currently in effect. It doesn't really matter what reasonably sized number precedes
the J.) But ANSI gives you finer erasing control than that. It lets you erase any line from
and including the cursor position and extending to the right edge of the screen. Just issue
the command:

ESC[K

You might want to position the cursor first and then erase to the end of the line. To get
rid of everything to the right of column 40 on row 5, type:

ESC[5;41fESC[K

or:

ESC [5; 41HESC [K

A better CLEARSLF.BAT batch file that incorporated this technique looks like:

ECHO OFF
ECHO ESC [2A
ECHO ESC[K
ECHO ESC [4A
ECHO ESC[K

While you're jumping all around the screen printing messages in various places it's
handy to return to your original position when you finish. ANSI makes this a snap. Just
issue this command:

ESC[s

to store the current cursor position, and then a:

ESC[u

command to put it back where it originally was when you stored it.
ANSI provides a set of commands called CPR (Cursor Position Report) and DSR

(Device Status Report) that you almost certainly won't ever need. Issuing a DSR:

ESC[6n

will trigger a CPR in the form:

ESC[row,columnR

where row and column represent the current cursor position.

ANSI and Other DOS Drivers 491

Mode-Setting Commands

You probably won't use ANSI's mode-setting commands either, since most users do all
their DOS work exclusively in their system's 80 x 25 default text mode. However, ANSI
provides one of the only ways to set the more recent EGA and VGA screen modes, but
with DOS later than 4.0 only. It also lets you disable and enable line wrapping, something
most users just don't have a burning desire to do.

To set screen widths and modes, use the similar commands ESC[=#1 or ESC[=#h,
substituting a number from 0 to 19 in place of the#. Note that the 1 in the first version is
a lowercase L, not a 1.

Screen Mode
0 40 x 25 black and white
1 40 x 25 color
2 80 x 25 black and white
3 80 x 25 color
4 320 x 200 color
5 320 x 200 black and white
6 640 x 200 black and white
13 320 x 200 color
14 640 x 200 color
15 640 x 350 mono
16 640 x 350 color
17 640 x 480 color
18 640 x 480 color
19 320 x 200 color

While the 1 and h suffixes. work exactly the same with values from 0 through 6, they
behave very differently when used with a value of 7. To set line wrap off, issue the
command:

ESC[?71

or:

ESC [=71

To tum it back on, type:

ESC [?7h

or:

ESC [=7h

492 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

If you 're typing something long and you reach the right edge of your screen, DOS
normally wraps the text down one line and over to the left edge of the screen. Turning
line wrap off means that once you reach the right edge of a typical 80-column screen,
instead of bouncing down a line, DOS will print each character on the 80th column. Every
letter will overlap the previous letter. You won't lose any keystrokes, but you won't really
be able to see what you've typed. Turning line wrap off may have made sense once, but
it's an anachronism today.

Redefining Keys

ANSI's attribute-handling abilities are extremely welcome on today's increasingly
common color screens. But equally handy is its tal~nt for redefining keys.

You can harness ANSI's formidable key definition abilities to:

• create duplicate keys
• switch keys around on the keyboard
• configure or redefine function keys to execute commands and cut down on typing

For example, some people need to type quotation marks far more often than they need
the apostrophe that's on the same physical key as the quote mark. Or they may use
question marks frequently but never have to type slashes. Normally you have to hold
down the shift to have your keyboard generate quotation and question marks. But it's
simple for ANSI to swap the uppercase and lowercase versions of these keys.

And some new users keep pressing the forward slash / key when they really mean to
type the backslash \ key. ANSI can tum the slash key into a duplicate backslash. Then
whenever the user pressed either key his system would think he typed a backslash. The
only problem is that this would prevent him from using a normal slash, unless the slash
function was moved somewhere else.

Finally, if you're tired of having to issue repetitive, long-winded DOS commands full
of tricky syntaxes, you can assign these commands to single keys. This makes it easier
to handle daily DOS chores - and far more accurate.

Redefining keystrokes can be dangerous, so be very careful, and think about what
you 're doing. Users often give their files shorthand names to save typing. If you 're writing
a massive report on the 1990 plans for the Atlanta regional office, you may temporarily
call the file just A rather than ATLOFC90.RPT. This makes it easier to work with, since
it's faster to load the file into your word processor by typing:

WS A

(for WordStar) than:

WS ATLOFC90.RPT

ANSI and Other DOS Drivers 493

When you're all done with the report, you can rename the file to give it its properly
inscrutable but far more descriptive name. These same time-pressured users may also use
ANSI to switch the semicolon (which they don't use in DOS) with the colon (which they
do use frequently). This way they don't have to hold down the shift key when referring
to a drive like C:.

If you have a long file on your C: drive that you've temporarily named A, and you've
switched the colon and semicolon keys, and it's late at night, and you 're tired, you could
wipe out the whole file with an innocent command. How? If you want to copy a small
file called C:MEMO to drive A: and you accidentally hold down the shift key, you'll end
up with:

C>COPY MEMO A;

DOS will interpret the semicolon as a space, and copy the short MEMO file on top of the
long file you've named A. Okay, maybe it's not a good idea to use single-letter names
(especially names you could confuse with disk drive letters), and of course you should
have backed up your work, and anyway DOS should alert you when you 're about to copy
one file onto another one (but it doesn't). These things happen. Back up often and be
careful.

ANSI isn't perfect when it comes to redefining keys. It limits the number of keys you
can redefine and the amount of information you can assign to them. Most programs come
with their own keyboard handlers that bypass DOS, so your macros won't work in all
cases. But you can use them at the DOS prompt, in DEBUG, EDLIN, or in certain editors
such as IBM's Personal Editor.

You also have to make sure you don't reset a key such as Enter or space, or replace a
letter of the alphabet that would prevent you from issuing normal DOS commands. You
can reassign uppercase letters while leaving the lowercase ones intact (or vice versa),
which lets you type practically anything. But if you reassign both the uppercase "I'' and
lowercase "i" you won't be able to execute commands like PRINT or DIR. And if you
fool around with character 13 - the Enter key - you're dead in the water.

Finally, while DOS does let you reset any ANSI key redefinitions back to normal, it
doesn't provide any method for listing the current key reassignments or clearing them
out of memory to make room for others. Fortunately, you can do it yourself, if you're
extremely careful and you follow the directions below.

First, however, move some keys around to see what ANSI can do.
If you never ever use square brackets - the "[" and 'T' characters - but you rely

heavily on normal parentheses and you hate having to hold the Shift key down to type
them, just have ANSI tum the brackets into a duplicate set of parentheses.

You '11 still be able to type them the old way, by leaning on Shift and pressing the 9
and 0 keys. But once you've executed a short ANSI script you '11 also be able to generate
parentheses by tapping the lowercase bracket keys. However, this will temporarily
prevent you from putting brackets into your text - a minor drawback if you have to
create any new ANSI sequences, since the second character of every ANSI command is

494 DOS Power Too/,s, 2nd Edition, Revised/or DOS 5.0

a left bracket. Any key redefinitions you make using this technique will stay in effect
until you reboot, unless you know the trick below for doing an ANSI lobotomy.

The decimal ASCII codes for the characters involved in this particular redefinition
process are:

[= 91
] = 93
(= 40
) = 41

To redefine any key, issue the usual ANSI ESC[prefix, follow it with two ASCII codes
separated by a semicolon, and tack a lowercase p onto the end. The first ASCII code is
the key you want to press and the second is the character you want that key to produce.
To redefine the [and] keys so they'll generate parentheses rather than brackets, for
example, run the following two-line batch file:

ECHO ESC[91;40p
ECHO ESC[93;4lp

Remember, this ANSI command has five parts:

ESC [

normal
ANSI prefix

93

t
key you want

to hit

41 p

character you l
semicolon want key to ANSI

generate reassignment
suffix

You can enter the characters themselves in quotes rather than the ASCII codes if you
like, but this can look confusing, especially when you're assigning lots of characters to
a single key as you will a bit later. The following two lines will do the exact same
redefinition as the ones above:

ECHO ESC [II [II i II (11 p
ECHO ESC [II] II i II) 11 p

If you redefine these keys, and you discover that you do need to type brackets, you can
reset the keys back to normal by putting the same ASCII code on both sides of the
semicolon. This will do the trick:

ECHO ESC[91;91p
ECHO ESC[93;93p

You could also reset things by running a batch file that you created previously containing
the two lines:

ECHO ESC [II [II; II [11 p
ECHO ESC [II] II; II] 11 p

ANSI and Other DOS Drivers 495

However, you can't create these lines in DOS while the old redefinitions are in effect,
because reassigning parentheses to the bracket keys temporarily did away with the
brackets. (If you really had to do it, you could run a word processor such as WordStar
that disregarded any ANSI changes.)

Redefining keys often ends up preventing you from typing certain characters, as it did
above with brackets. However, ANSI makes it just as easy to swap one set of characters
for another. If you use quotation marks more often than apostrophes, both of which share
the same physical key, you can switch them so a tap on the unshifted key generates a
quotation mark, while holding down the Shift and pressing the key yields an apostrophe.
The ASCII values of these two keys are:

II 34
39

So you could run the following two-line batch file:

ECHO ESC[34;39p
ECHO ESC[39;34p

To switch both characters you have to execute both lines. Running just the first one by
itself:

ECHO ESC[34;39p

would assign the apostrophe character to the shifted version of the key - the one that
normally produces a quotation mark. This would cause the key to produce an apostrophe
regardless of whether you were holding the Shift key down, which isn't what you want.

Again, you could also use the actual characters themselves in the ANSI command
rather than the ASCII codes. But this gets tricky when one of the keys you're trying to
redefine is a quotation mark, since you have to use quotation marks to identify the
characters you want to change.

DOS can treat pairs of single quotation marks (which are really just apostrophes) the
same way it handles pairs of double quotation marks. So you can run the following,
two-line batch file to make the swap:

ECHO ESC [I II I ; II I 11 p
ECHO ESC [II I II ; I II Ip

and then either:

ECHO ESC[34;34p
ECHO ESC[39;39p

496 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

or:

ECHO ESC [I II I ; I II Ip

ECHO ESC [II I II; II I 11 p

to reset things to their original state.
Swapping or duplicating alphanumeric keys is straightforward and easy. But ANSI

can also assign characters to dozens of special key combinations that generate what IBM
calls extended codes.

ANSI deals with normal "typewriter" keys like A, a, 1, or$ by manipulating single
ASCII values between 32 (a space) and 126 (a Spanish tilde). A capital ••A" has an ASCII
value of 65, and a lowercase ••a" an ASCII value of 97. Refer back to the chart of ASCII
values for the typewriter keys in Chapter 6. Any of these values can be plugged into the
examples above to move the keys around the keyboard.

ANSI can also handle nonalphanumeric keys such as the Fl function key, the Home
key, and the Ins key. And it can work with less common shifted key combinations such
as Ctrl-End, Alt-E, or Shift-Fl. All of the special key combinations generate a pair of
ASCII values rather than just a single value. The first value in the pair is always an ASCII
0, or NUL character. Figure 10.1 is an index of all key combinations and their values.

* * Key Combination Code Key Combination Code

NUL 0;3 Shift-Fl 0;84
Shift-Tab 0;15 Shift-F2 0;85
Alt-Q 0;16 Shift-F3 0;86
Alt-W 0;17 Shift-F4 0;87
Alt-E 0;18 Shift-F5 0;88
Alt-R 0;19 Shift-F6 0;89
Alt-T 0;20 Shift-F7 0;90
Alt-Y 0;21 Shift-PS 0;91
Alt-U 0;22 Shift-F9 0;92
Alt-I 0;23 Shift-FlO 0;93
Alt-0 0;24 Ctrl-Fl 0;94
Alt-P 0;25 Ctrl-F2 0;95
Alt-A 0;30 Ctrl-F3 0;96
Alt-S 0;31 Ctrl-F4 0;97
Alt-D 0;32 Ctrl-F5 0;98
Alt-F 0;33 Ctrl-F6 0;99
Alt-G 0;34 Ctrl-F7 0;100
Alt-H 0;35 Ctrl-F8 0;101

Figure 10.1. Index of Extended ASCII Codes

ANSI and Other DOS Drivers 497

* * Key Combination Code Key Combination Code

Alt-J 0;36 Ctrl-F9 0;102
Alt-K 0;37 Ctrl-FlO 0;103
Alt-L 0;38 Alt-Fl 0;104
Alt-Z 0;44 Alt-F2 0;105

Alt-X 0;45 Alt-F3 0;106
Alt-C 0;46 Alt-F4 0;107
Alt-V 0;47 Alt-PS 0;108
Alt-B 0;48 Alt-F6 0;109
Alt-N 0;49 Alt-F7 0;110
Alt-M 0;50 Alt-F8 0;111
Fl 0;59 Alt-F9 0;112

F2 0;60 Alt-FlO 0;113

F3 0;61 Ctrl-PrtSc 0;114

F4 0;62 Ctrl-Cursor Left 0;115
F5 0;63 Ctrl-Cursor Right 0;116
F6 0;64 Ctrl-End 0;117

F7 0;65 Ctrl-PgDn 0;118
F8 0;66 Ctrl-Home 0;119

F9 0;67 Alt-1 0;120
FlO 0;68 Alt-2 0;121
Home 0;71 Alt-3 0;122
Cursor Up 0;72 Alt-4 0;123
Pg Up 0;73 Alt-5 0;124

Cursor Left 0;75 Alt-6 0;125
Cursor Right 0;77 Alt-7 0;126

End 0;79 Alt-8 0;127
Cursor Down 0;80 Alt-9 0;128
PgDn 0;81 Alt-0 0;129
Ins 0;82 Alt-- 0;130
Del 0;83 Alt-= 0;131
Shift-Fl 0;84 Ctrl-PgUp 0;132

* In the form ASCII O;code.

Figure 10.1. Index of Extended ASCII Codes (continued)

When IBM designed the BIOS support for the enhanced keyboard, it added over 30
new extended keyboard codes starting at 133. However, it did not make these keyboard
codes available to programs through the normal BIOS keyboard interface. To do so would
have created incompatibilities with some existing programs. For instance, some keyboard

498 DOS Power Tools, 2nd Edition, Revisedfor DOS 5.0

macro programs define their own extended keys and these may conflict with the new
IBM codes. DOS (and most programs) get keyboard information from the BIOS through
interrupt 16H, function calls 0, 1, and 2. For the enhanced keyboard, IBM defined new
function calls numbered lOH, 1 lH, and 12H that duplicated 0, 1, and 2 except that the
new calls also return the new extended keyboard codes in addition to the old ones.

Under DOS 4.0 and 5.0, ANSI can handle these if you specify a /X parameter when
loading it. Or just issue a ESC[lq to do so. The program below lets you do this with earlier
DOS versions.

Here·s a DEBUG script for a NEWKEYS.COM program you can create that allows
DOS access to the new codes and lets you use these new keys with ANSI.SYS:

N NEWKEYS.COM
A
JMP 013A
DW 0,0
CMP AH,00
JZ 0115
CMP AH,01
JZ 0121
CS:
JMP FAR [0102]
MOV AH,10
PUS HF
CS:
CALL FAR [0102]
CALL 0131
IRET
MOV AH,11
PUS HF
CS:
CALL FAR [0102]
JZ 012E
CALL 0131
RETF 0002
CMP AL,EO
JNZ 0139
SUB AL,AL
CMP AL,01
RET
MOV AX,3516
INT 21
MOV [0102] I BX
MOV [0104] I ES
MOV DX,0106
MOV AX,2516

Jmp Initialize

Newint16:
Jmp GetKey

Jmp GetStatus

Jmp Oldint16
GetKey:

Call Oldint16
Call FixUp

GetStatus:

Call Oldint16

Call FixUp

FixUp:

Initialize:
Get Oldint16
Save it

ANSI and Other DOS Drivers 499

INT 21 Set Newint16
MOV DX, 013A
INT 27 Stay Resident

RCX
54

w
Q

Create NEWKEYS.COM by typing the lines shown into a file called NEWKEYS.SCR.
(Don't type the semicolons or the comments that follow them.) Then type:

DEBUG < NEWKEYS.SCR

to creates the program.
NEWKEYS.COM is a Terminate and Stay Resident (TSR) program so you need to

load it only once during your PC session. Like most TSRs, it may have some compatibility
problems with other programs. If everything seems to work OK once you load it, then
you 're probably in good shape.

When NEWKEYS is loaded, you can use the extra keyboard codes for ANSI.SYS
redefinitions. The new codes are shown in Figure 10.2.

Miscellaneous
* Key Combination Code

Fll 0;133
F12 0;134
Shift-Fll 0;135
Shift-F12 0;136
Ctrl-Fll 0;137
Ctrl-F12 0;138
Alt-Fll 0;139
Alt-F12 0;140
Ctrl-Up-Arrow 0;141
Ctrl- 0;142
Ctrl-5 0;143
Ctrl-+ 0;144
Ctrl-Down-Arrow 0;145
Ctr I-Insert 0;146
Ctrl-Delete 0;147
Ctrl-Tab 0;148
Ctrl-/ 0;149
Ctrl-* 0;150

Figure 10.2. IBM 101/102-Key Keyboard Extended Codes

500 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

* In the form ASCII O;code.

Miscellaneous
Key Combination

Alt-Home
Alt-Up-Arrow
Alt-Page-Up
Alt-Left-Arrow
Alt-Right-Arrow
Alt-End
Alt-Down-Arrow
Alt-Page-Do~n

Alt-Insert
Alt-Delete
Alt-/
Alt-Tab
Alt-Enter

* Code

0;151
0;152
0;153
0;155
0;157
0;159
0;160
0;161
0;162
0;163
0;164
0;165
0;166

Figure 10.2. IBM 101/102-Key Keyboard Extended Codes (continued)

Note: Under DOS 4.0 and 5.0, you can enable ANSI's use of extended keys by loading
it with a /X parameter or entering ESC[lq. To disable this, use a /K parameter, or enter
ESC[Oq.

As an example, if you have ANSI.SYS loaded and want to redefine the Fl 1 key to do
a DIR command, just issue the command:

ESC[0;133; 11 DIR 11 ;13p

(where ESC is a hex lB or decimal 27 Esc character, not the letters ESC).
You can examine the ASCII values of all the keys on the keyboard - except for the

Ctrl, Alt, CapsLock, NumLock, ScrollLock, Sys Req, and Shifts - by running this
BASIC KEYCODE.BAS program:

100 I KEYCODE.BAS

110 DEF SEG=O:POKE 1047,PEEK(1047) AND 223 ' turns cursor pad on

120 DEF SEG:KEY OFF:COLOR 2,0:CLS ' sets screen

130 FOR A=l TO lO:KEY A,"":NEXT ' disables function keys

140 PRINT "Press a key (or Enter to end):", ' instructions

150 I$=INKEY$:IF I$="" THEN 150 ' waits for key to be hit

160 IF I$=CHR$(13) THEN END ' **hit Enter to end**

170 IF LEN(I$)>1 THEN PRINT "ext", :GOTO 190 ' is it extended code?

180 PRINT I$, ' print character

190 IF LEN(I$) >1 THEN PRINT "0 +"; I again, is it extended?

200 PRINT ASC(RIGHT$(I$,1))

210 GOTO 140

ANSI and Other DOS Drivers 501

' print ASCII code

' loop back for new key

BASIC has trouble displaying certain characters such as ASCII 7, 10, 11, and 12, since
it interprets these as commands to beep, clear the screen, and so on. But you'll be able to
see the ASCII values for all the alphanumeric and extended keys.

The ASCII code method for swapping or duplicating extended keys is exactly the same
as for normal alphanumeric keys except that you have to include an extra "O;" prefix. To
to swap Fl and F3, run the following two-line batch file:

ECHO ESC[0;59;0;61p
ECHO ESC[0;61;0;59p

In notation that ANSI can understand, the extended ASCII codes for Fl and F3 are 0;59
and 0;61. At the DOS prompt, pressing the Fl key normally repeats the previous DOS
command one character at a time, while F3 reproduces the entire previous command with
a single tap. But after you run the two-line ANSI command above, the functions will
reverse.

You can restore the original functions of these two keys with the two lines:

ECHO ESC[0;59;0;59p
ECHO ESC[0;61;0;61p

When dealing with extended keys you have to use ASCII codes exclusively since DOS
doesn't provide any method for referring to these keys in quotes. You can't make Fl
duplicate the function of F3 with a command like:

ECHO ESC["Fl";"F3"p

All this will do is assign the character string ''1F3" to the uppercase F key.
You could also have the following ANSICHAR.BAT batch file (similar to the

attribute-setting ANSICLOR.BAT file above) create a series of individual files called
CHAR.COM that you can run whenever you need to redefine a key. Again, for this to
work, your DEBUG.COM utility has to be in the same directory or in a directory that
your PATH knows about:

ECHO OFF
IF %2!==! GOTO OOPS
IF EXIST CHAR.COM GOTO RENAME
ECHO N CHAR.COM > CHR.SCR
ECHO E 100 B4 9 BA 8 1 CD 21 C3 lB "[" » CHR.SCR
IF %4!==! GOTO THREE
ECHO E lOA "%1;%2;%3;%4p$"
GOTO FINISH
:THREE

» CHR.SCR

502 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

IF %3!==! GOTO TWO
ECHO E lOA 11 %1;%2;%3p$ 11

GOTO FINISH
:TWO
ECHO E lOA 11 %1;%2p$ 11

:FINISH
ECHO RCX
ECHO 7F
ECHO W
ECHO Q
DEBUG < CHR.SCR
DEL CHR.SCR

» CHR.SCR

» CHR.SCR

» CHR.SCR
» CHR.SCR
» CHR.SCR
» CHR.SCR

ECHO Now run CHAR whenever you want to reset this key
GOTO END
:OOPS
ECHO Enter two ANSI key codes after %0
ECHO eg: %0 126 155 to have the - key print a
ECHO cent-sign (And you must have ANSI loaded)
ECHO Remember to use a o for extended characters
ECHO eg: %0 O 68 O 61 to make FlO work like F3, or
ECHO %0 0 67 1111 DIR/W 1111 13 to make F9 do a wide DIR
ECHO (Note the double quotes around character strings!
ECHO - and note you CAN'T have spaces in strings, so
ECHO you cannot enter: %0 O 67 1111 DIR /W 1111 13)
GOTO END
:RENAME
ECHO First rename your existing CHAR.COM so this
ECHO doesn't write over it, then restart %0
:END

Once you've typed in ANSICHAR.BAT, you could create a small program called
CHAR.COM that would tum your dollar sign into an English pound sterling sign, by
typing:

ANSICHAR 36 156

The ANSICHAR batch file would redirect a customized script into DEBUG and create
the appropriate CHAR.COM file. Typing:

CHAR

at the DOS prompt would redefine your dollar sign key so it printed a pound symbol
instead.

As with ANSICOLR.BAT, the:

IF EXIST CHAR.COM GOTO RENAME

ANSI and Other DOS Drivers 503

line in this batch file prevents it from overwriting any CHAR.COM you may have created
previously. If ANSICHAR.BAT finds an existing CHAR.COM it will print a message
telling you to rename the one you already have and then restart. If you 're redefining
extended keys such as function keys, cursor-pad keys, or Alt-key combinations, be sure
to include the 0 prefix that ANSI requires.

So, to turn F8 into an additional Insert key, you'd type:

ANSICHAR 0 66 0 82

Then you'd run the CHAR program it created to do the actual redefining. Or if you wanted
to have DOS print a pi symbol whenever you typed Alt-P, you'd enter:

ANSICHAR 0 25 227

and then type CHAR to finish the process. If you want to define a function key like FlO
so it executes a command such as DIR/W, you'd type:

ANSICHAR 0 67 1111 DIR/W 1111 13

(The double quote marks are necessary only because of the way the batch file interacts
with DEBUG; if you attach this definition to this key using a technique other than
ANSI CHAR.BAT you'd use only one set. And if you enter a string, be sure not to insert
any spaces in it, so:

1111 DIR/W 1111

will work just fine, while:

1111 DIR /W 1111

won't work at all.)
The 13 at the end of the line represents the Enter key (which has an ASCII value of

decimal 13). If you include this at the end of a redefined key command, DOS will print
the command out when you press the appropriate key and then execute it. If you leave
the 13 off, DOS will simply print out the command without running it.

As with COL.COM, it's handy to have versions of CHAR.COM around to put in your
AUTOEXEC.BATstartup file so DOS will redefine your keys automatically each time
you boot up. Be sure to rename previous versions of CHAR.BAT each time you create
new ones. It's helpful to give them descriptive names like CHARPl.COM ifit types a pi
symbol, or CHARDIRW if it executes a DIR/W.

Macro Magic

If you want to assign a text string or a command to any key, ANSI will let you if there's
room left. DOS maintains an area inside the ANSI.SYS code itself as a table of

504 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

redefinitions. This table is absurdly small. DOS 2.x provides only 196 bytes of space for
this purpose, DOS 3.x a mere 204 and DOS 4.0 and 5.0 just 404 - and some of this space
at the end of the table can't be used.

In fact, even in the later versions, you can cram in a maximum of 131 redefinitions -
assuming you're not using any extended keys (which take up slightly more space) and
that each redefinition is only a single key long. Wedging in more can create problems.

Worse, if you try using ANSI to attach text messages to your keys you '11 run out of
space almost before you begin. If you try hard under DOS 4.0 or 5.0 you can define a
maximum of 387 characters - by creating four macros, three of 127 characters, and the
fourth just six characters. For instance, you could define one that turned "a" into 127
capital As:

and the same with B(ESC[98;"BBB ...) and C(ESC[99;"CCC ...).
Then just six Ds:

ESC[l00; 11 DDDDDD 11 p

However, if you want a true macro processor, get your hands on a powerful commercial
package like SuperKey, ProKey, SmartKey, KeyWorks, or any of the other similar
products crowding the market. For quick and dirty macro work, ANSI does just fine. If
you miss having a cent sign at your fingertips, ANSI can put one there. To define Alt-C
so that it prints a cent sign (which is ASCII character 155), run this one-line batch file:

ECHO ESC[0;46;155p

Or you could define a group of keys at once. The following CHARS.BAT batch file will
give you direct keyboard access to the ten characters shown. It's sometimes handy to add
text as this batch file does to keep you (or other users you give the file to) informed. ANSI
won't start processing commands in a line until it sees an ESC[, so the initial descriptive
labels won't affect the definition process:

ECHO OFF
ECHO Defining keys as follows:
ECHO ALT+l=square-root radical sign
ECHO ALT+2=degree sign
ECHO ALT+3=old-fashioned division sign
ECHO ALT+4=pi
ECHO ALT+S=infinity

ESC[0;120;251p
ESC[0;121;248p
ESC[0;122;246p
ESC[0;123;227p
ESC[0;124;236p

ANSI and Other DOS Drivers 505

ECHO ALT+6=(squared) A2
ECHO ALT+7=1/2
ECHO ALT+8=1/4
ECHO ALT+9=pound sterling
ECHO ALT+O=yen

ESC[0;125;253p
ESC[0;126;171p
ESC[0;127;172p
ESC[0;128;156p
ESC[0;129;157p

You can, of course, attach more than one character to a key. So after running EIN
STEIN.BAT:

ECHO ESC[O;l8; 11 E=MC 11 ;253p

typing Alt-E will display the familiar formula.
A more practical application would give you one-key execution of a complex com

mand that you perform all day long, such as:

DIR C: I SORT /R /+14 I FIND 11
-

11 I MORE

This displays the contents of the current directory on drive C: with the largest files at the
top of the list. It also screens out extraneous information about volume labels and bytes
free by filtering the output through FIND.EXE, and pauses a screenful at a time. The
NEWDIR.BAT batch file:

ECHO ESC[0;46;"DIR C: I SORT /R /+14 I FIND ";34;"-";34;" I MORE";13p

lets you run this command simply by typing AL T-C.
The pair of 34s on the above line provide the two quotation marks that you need to

surround the "-" in the FIND command, since 34 is the decimal ASCII value of ". The
13 at the end is the ASCII representation of a carriage return, which executes the
command. If you omitted the 13, ANSI would print the command but not execute it.

What makes this especially handy is that you can add two more lines to the batch file
so the three keys Alt-A, Alt-B, and Alt-C, will execute this command on the three drives
A:, B:, and C:

ECHO ESC[0;30;"DIR A: SORT /R /+14 FIND ";34;"-";34;" MORE";13p

ECHO ESC[0;48;"DIR B: SORT /R /+14 FIND ";34;"-";34;" MORE";13p

ECHO ESC[0;46;"DIR C: SORT /R /+14 FIND ";34;"-";34;" MORE";13p

You can attach any text to any key, if there's room. The following ADDRESS.BAT batch
file would print a three-line return address each time you typed Alt-P:

ECHO ESC[0;25;"Bantam Books";13;"666 Fifth Avenue";13;"New York, NY 10103";13p

506 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

You won't be able to use this with any word processor that has its own internal keyboard
handling routine. But if you create a letter using the DOS COPY CON command, or
EDLIN, or a commercial product like IBM Personal Editor, tapping Alt-Ponce will put:

Bantam Books
666 Fifth Avenue
New York, NY 10103

at the cursor position.
The only real problems with having ANSI assign text and commands to specific keys

are that you normally can't see what key assignments you've previously made, and that
you run out of space for new commands very quickly. And, while ANSI lets you reset
keys to their original values, it doesn't provide a way to clear everything out of memory
and start afresh. Fortunately, we do.

Power User's
Secrets

Batch Techniques

A batch file is simply a file with a BAT extension that contains a list of DOS instructions
you want to execute and programs you want to run. When you execute the batch file,
DOS looks at each line and executes the instruction or runs the program specified on that
line just as if you had typed it in directly.

Once you master its dozen or so batch commands, you can have DOS automate all
your daily chores and chop tedious file management tasks down to size. You can even
use these commands to dial your phone, look up names and addresses, or keep track of
your appointments. All at the touch of a key or two.

Batch files are really just computer programs, written in DOS. All programming
languages share certain basic features. One is the conditional ability to execute com
mands only when the proper conditions are met. Other features are the ability to loop
repeatedly, or use variables with changeable values, or divipe jobs into small subroutines.
Microsoft's batch file language isn't elegant, and it needs a little help. But it packs a
wallop into its few commands and gives you astonishing control over your system.

Batch File Basics
To illustrate how a batch file works, you n~ a program for it to run. The examples that
follow will use the DOS CHKDSK.EXE program.

Batch file creation and operation are complex and exacting. It's a little like trying to
write a novel in a language with only a handful of words - or ·commands. To give you
a feel for how the commands work and what you have to do whip them into shape, this
section will start out by providing a brief overview of the most important commands.
Then it will explore each command in painstaking detail, fleshing out the fundamentals
where necessary. Finally, it will provide a slate of useful samples.

509

510 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

Once you have CHKDSK.EXE handy, run it by typing:

C>CHKDSK

The program simply checks your current disk drive and memory usage. You might find
that, in working with large files or experimenting with TSRs, you may need to check both
the disk space and available memory quite often, and having to type CHKDSK each time
gets tedious. You could rename CHKDSK.EXE to something shorter, like K.EXE (on
the somewhat arbitrary basis that you 're measuring kilobytes, and besides, there are more
Ks than anything else in the original file name.) Then all you'd have to do to run the
program is type:

K

However, the program would then show up in your DIR listings simply as K.EXE, and
if you didn't use it for a long time and then happened to see the not-very-descriptive
K.EXE filename several months later, you might forget what the program did.

You could run it to find out, but some programs don't do anything immediately
apparent when you execute them. For instance, try running the DOS GRAPHICS.COM
program. Your disk will spin for a second or two and nothing will appear onscreen to tell
you what just happened. All programs should at least put a message onscreen to keep you
informed, but many don't. In this case the message should have been something like
"Graphics print screen function (Shift-PrtSc) now properly configured for IBM compat
ible printers." ·

Even worse, a program could have potentially destructive results. That K.EXE program
could have once been named KILL.EXE and you may have used it long ago to erase all
the files on your disk for security purposes.

Easy Batch File Creation

But you can execute the CHKDSK.EXE program with a single keystroke without having
to rename it. Just create a one-line batch file called K.BAT that will do all the typing for
you. You could use your word processor to create this file, but DOS provides three
quicker, easier ways - the COPY CON command, EDIT, and EDLIN.

To use the COPY CON technique, type:

COPY CON K.BAT

and press Enter. The cursor will simply drop down a line. Then type:

CHKDSK

and press the F6 function key, then the Enter key. When you press F6 you '11 see a "Z
appear, and when you press Enter you should see a message that says •• 1 File(s) copied."

Batch Techniques 511

If you make a mistake while using COPY CON, hold down the Ctrl key, and press either
C or ScrollLock to abort the process. Then press the F3 key and then Enter to restart.

EDIT makes it easy to correct typing mistakes without having to start the process over
again. Start by typing:

EDIT K.BAT

which will bring you into a blank edit screen. Now just type:

CHKDSK

then issue an Alt-F-S and an Alt-F-X key sequence to save and exit. If you make a mistake
in typing CHKDS K, you can either cursor back to the mistake and correct it before saving,
or re-open the file and use the cursor to fix the error.

To use the EDLIN technique, type:

EDLIN K.BAT

You should see a message that says:

New file

*

When EDLIN displays an asterisk hugging the left margin, it means ifs waiting for you
to enter a command. An asterisk in column 1 like this is the EDLIN .. prompt" just as A>
or C> is the default DOS prompt.

If you don't see this .. New file" message, or you see something that says:

End of input file

*

this tells you that you 're editing an existing file rather than cre~ting a new one, which is
definitely not what you want to do. If this happens, type Q to quit, and when you see the
message:

Abort edit (Y/N)?

type Y to confirm that you do indeed want to quit. Then restart the process, but pick a
different name, such as A.BAT (which is short for Answer).

However, if you did see the:

New file

*

512 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

message, type an I (or an i) to start Inserting text. EDLIN will indent itself and print:

1:*

Here EDLIN uses the asterisk to tell you that line 1 is the "current" line. EDLIN can
work on only one line at a time (which it refers to as the current line) and it signifies
which line is the current one by putting an asterisk beside its line number.

Type in:

l:*CHKDSK

either in uppercase or lowercase; DOS isn't picky when it comes to ordinary batch file
commands. Press the Enter key and you should see:

l:*CHKDSK
2:*

Now EDLIN is telling you that line 2 is the current line. But all you wanted to do was
create a one-line batch file, so to tell EDLIN you 're done inserting text, just hold down
the Ctrl key and press either C or ScrollLock while you're holding it down. You should
see:

l:*CHKDSK
2:*"C

*

Then End the EDLIN file creation process by typing:

*E

(ore).
Whether you used EDLIN, EDIT, or the COPY CON approach, after you get back to

the familiar DOS prompt, type K to execute the batch file. DOS executes a batch file one
line at a time. The first (and only) line in K.BAT is:

CHKDSK

DOS tries to execute this line by first seeing if CHKDSK is an internal DOS command.
The instructions to execute common DOS commands such as DIR, TYPE, or COPY are
buried inside the DOS COMMAND.COM program, and Microsoft refers to these as
internal commands. External commands, like SORT.EXE or CHKDSK.EXE, are sepa
rate programs, and are not a part of COMMAND.COM at all. You can always execute
an internal command like TYPE or DIR, since they're built into COMMAND.COM. But
you won't be able to run an external command such as FORMAT unless the FOR
MAT.COM program happens to be on your disk.

Batch Techniques 513

DOS maintains a list of all the internal commands inside COMMAND.COM, and it
won't find one called CHKDSK.EXE there. So it then looks for a program called
CHKDSK.EXE in the current directory. Since you just put this file there, DOS will run
it.

Incidentally, if you created the K.BA T file and you happen to have a file in the same
directory called K.COM or K.EXE, you'll never be able to run K.BAT. Whenever you
enter a command or the name of a file you want to run, COMMAND.COM first checks
to see if you entered an internal DOS command. If it doesn't find an internal command
that matches what you typed, it next checks for a file with the same name but with a COM
extension. If it doesn't find a COM file with the same name, it looks for a similarly named
file with an EXE extension. It will run a batch file with the name you typed only if it can't
find an internal command, a COM file, and an EXE file with the same filename.

Similarly, don't ever try giving any executable file a name that duplicates an internal
command. If you tried to create a file called TYPE.COM or DIR.BAT you'd have a hard
time trying to run it, since DOS would see that you wanted to execute something called
TYPE or DIR and think you were referring to the internal command with the same name.

Well, okay, DOS provides a tricky way to run a file with a name similar to an internal
command, by letting you put a drive letter or pathname in front of it. When you add a
drive or path, DOS knows you can't be talking about an internal command. To try it,
make a copy ofK.BATcalled DIR.BAT. Then enter:

.\DIR

(The ••. \" prefix tells DOS that the filename after the prefix is in the current directory.)
But spare yourself the trouble and avoid such names.

Turning ECHO Off

Running a batch file like K.BAT really clutters up your screen. You type:

K

You should see:

C>CHKDSK

Volume PARTITION 1 created 11-10-1987 10:40a
Volume Serial Number is 16A5-B482

22167552 bytes total disk space
81920 bytes in 32 directories

19324928 bytes in 1144 user files
2048 bytes in bad sectors

2758656 bytes available on disk

514 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

2048 bytes in each allocation unit
10824 total allocation units on disk

1347 available allocation units on disk

655360 total bytes memory
629952 bytes free

This is a bit better than the original version, because it suppresses the name of the
program the batch file executes when you run it. But you do have to look at the initial
ECHO OFF command.

However, if you're using DOS version 3.3 or later, you can prevent any batch file
command from appearing onscreen by putting a @ sign at the beginning of the line. So
if you're using a later DOS version and you changed K.BAT to read:

@ECHO OFF
CHKDSK

when you ran this version all you'd see is:

C>K

Volume PARTITION 1 created 11-10-1987 10:40a
Volume Serial Number is 16A5-B482

22167 552 bytes total disk space
81920 bytes in 32 directories

19324928 bytes in 1144 user files
2048 bytes in bad sectors

2758656 bytes available on disk

2048 bytes in each allocation unit
10824 total allocation units on disk

1347 available allocation units on disk

655360 total bytes memory
629952 bytes free

Still, while this prevents the DECIDE filename from appearing onscreen, and
suppresses the ECHO OFF command, it makes you stare at the name of the batch file
itself, D.BAT. You can get rid of this by clearing the screen with a CLS command. So
adding a third line to D.BAT:

ECHO OFF
CLS
DECIDE

Batch Techniques 515

will clear the screen and print in the upper lefthand comer.
You can tell whether or not ECHO is off or on by typing ECHO on a line by itself and

pressing Enter. If your batch file ever displays a line that says:

ECHO is off

or:

ECHO is on

it means that the batch file either had the command ECHO on a line by itself with nothing
following it, or thought it did. Since DOS treats equal signs, tabs, semicolons, and
commas as spaces, it will interpret lines such as:

• ECHO=
• ECHO;
• ECHO,

simply as ECHO commands with nothing after them other than meaningless spaces, and
think you're asking it to report whether ECHO happens to be toggled off or on.

REMinding Yourself

Running the CHKDSK.EXE program from the K.BAT batch file rather than renaming
CHKDSK.EXE to K.EXE does help prevent your disk from filling up with mysterious
sounding programs like A.COM, BB.EXE, and Z.COM that don't really tell you what
they do.

However, months from now if you stumble across K.BATyou may forget what it does.
It sounds harmless enough, but if you have a few dozen megabytes of critical information
on your hard disk, and, well, one of these days you 're definitely going to back up every
last file, don't take chances.

To make life easier, use the DOS REM (Remark) batch command to add a nonexecut
ing comment to D.BAT:

ECHO OFF
REM K.BAT runs CHKDSK.EXE
CLS
CHKDSK

Lines beginning with REM can contain up to 123 characters of text. If you tum ECHO
off earlier in the batch file they won't appear onscreen. If you don't tum ECHO off, or
if you tum ECHO back on before the REM line, DOS will display it onscreen, REM and
all. So a batch file such as:

516 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

or:

REM K.BAT runs CHKDSK.EXE
CHKDSK

ECHO OFF
CLS
ECHO ON
REM K.BAT runs CHKDSK
CHKDSK

would display:

C>REM K.BAT runs CHKDSK

CHKDSK
Volume PARTITION 1 created 11-10-1987 10:40a
Volume Serial Number is 16A5-B482

22167552 bytes total disk space
81920 bytes in 32 directories

19324928 bytes in 1144 user files
2048 bytes in bad sectors

2758656 bytes available on disk

2048 bytes in each allocation unit
10824 total allocation units on disk

1347 available allocation units on disk

655360 total bytes memory
629952 bytes free

The second example above would, of course, clear the screen first. If you don't tum
ECHO off, and you indent the lines in your batch file, DOS will maintain the indentation
when it displays them. So a batch file that contained the lines:

REM Be very
REM very

REM very
REM very

REM careful
REM when you use the FORMAT command

would show up onscreen as:

Batch Techniques 517

C> REM Be very

C> REM very

C> REM very

C> REM very

C> REM careful

C> REM when you use the FORMAT command

Since DOS won •t display any lines beginning with REM if ECHO is off, adding an
ECHO OFF at the beginning of the above batch file would end up spinning your disk but
displaying nothing except a blank line or two.

If you wanted to print a warning message like the one above, and you didn't want it
cluttered with REMs and DOS prompts and extra spaces, you could use the ECHO
command to display it.

Putting the word ECHO at the beginning of a line tells DOS to print onscreen
everything that follows it on the same line.

If you included the line:

ECHO Hello there

in a batch file, DOS would print:

Hello there

When using ECHO command to display messages, be sure to tum ECHO off before
you print the first one. Otherwise you ·n end up printing both the words you want
displayed and the command to display them. If you didn •t first tum ECHO off, the "ECHO
Hello there" line would appear as:

C>ECHO Hello there
Hello there

So a better version of the FORMAT-cautioning batch file would be:

ECHO OFF
ECHO Be very
ECHO
ECHO

very
very

ECHO very
ECHO careful
ECHO when you use the FORMAT command

518 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

DOS will display:

Be very
very

very
very

careful
when you use the FORMAT command

The indentation trick that staggered REM statements across the screen won't work
with ECHO commands. To indent text that ECHO displays you '11 have to add spaces
between the word ECHO and the text that it prints.

ECHO can print boxes and borders onscreen as well as text. The BOXMAKER.BAS
program on the accompanying disk will create a BOX.BAT batch file that displays a
single-line or double-line box any size you want, and indented wherever you want it. You
can use your word processor or EDLIN to add text inside the box.

DOS executes batch files one line at a time. If you have a system with a fast hard disk
or RAMdisk, you can get away with using the ECHO command to print a large block of
text onscreen. But on a floppy disk system all you'll get is a lot of disk grinding and a
painfully slow display as DOS churns the floppy line by line to see what it should ECHO
next.

If you don't have a hard disk, set up a RAMdisk and copy your batch files onto it. The
DOS VDISK.SYS or RAMDISK.SYS virtual disk driver supplied with versions 3.0 and
later works well, or you can use the program furnished with your system's memory
expansion card.

An alternative method is to use the TYPE command to display any really large text
blocks. If you want your batch file to print a long involved set of instructions, you could
type these into a separate file called INSTRUCS and then insert a line into your batch
file at the appropriate place that said:

TYPE INSTRUCS

While using the TYPE command to display text in a separate file is far faster than
ECHOing it to the screen a line at a time, you'll have to remember to keep both the batch
file with the TYPE command and the file to be typed together. If you want to give your
batch file to a co-worker, you may forget to pass along the text file. Or the co-worker
may see the file, not know what it is, and unwittingly erase it. And if your batch file uses
TYPE to display the contents of multiple message files, you complicate things even more.

One final problem is that small files take up more space than you think. On an old
PC-XT, even a two-line file took up 4K of disk space.

The best solution in this case (and in just about every other one) is to get yourself a
jet-propelled hard disk, and a speedy CPU. Speed is addictive. One of the reasons you
started using a computer in the first place was to do more chores in less time, and a
neck-snapping system makes this easier. The highly competitive hardware market

Batch Techniques 519

ensures that hot, muscular new systems are always coming down in price. Or you can
purchase an accelerator board. And in any event, stuff your system with memory, then
have your start-up AUTOEXEC.BAT file copy your important batch files to a RAMdisk
and run them directly out of memory.

Jumping, Skipping, Looping, and Branching

Say you wanted to print a whole bunch of identical banners for a party, using the
BANNER.EXE program on the accompanying disks. You could type

BANNER "Happy Birthday, Terry!"

umpteen times, or you could also write a short NONSTOP.BAT batch file to rerun the
program automatically until you tell it to stop:

@ECHO OFF
:TOP
BANNER "Happy Birthday, Terry!"
GOTO TOP

(Be sure to put a carriage return at the end of the last line, or the batch file will print one
banner and then quit.) Run the NONSTOP.BAT file, and your printer will start spewing
forth banners. The only way to stop it, other than rebooting your computer, is to press
Ctrl-C or Ctrl-Break, at which point DOS will print a message that says "Terminate batch
job (Y/N)?"

If you type Y or y the batch file will abort and you'll return to the DOS prompt. If you
type N or n the batch file will continue doing whatever it was doing. Type anything else
and DOS will stubbornly keep printing the same (Y/N) request.

The mechanism that repeated the NONSTOP.BAT batch file output - a loop - is
one of the fundamental computer tools. Remember, computers aren't smart, they're just
fast. They're especially good at executing the same basic instruction over and over. This
comes in handy more often than you might think, since computer programs are loaded
with loops. Even something as simple as figuring out what you typed on the DOS
command line is a loop, since what DOS really does is examine and interpret the first
character and then move on to examine the next character, and the next, until it's reached
the end of the line and processed each one.

Loops are terrific tools. But endless loops that force you to break out of them by typing
Ctrl-C or Ctrl-ScrollLock aren't so terrific.

ERRORLEVEL - Best Command, Worst Name

Knowing how to use ERRORLEVEL is vital if you want to tum ordinary batch files into
screaming power tools. Don't be thrown off by its rotten name; it's the only real method

520 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

DOS provides for making batch files dynamically interactive. But while the framework
is there, it needs a little help. DOS does let you use replaceable parameters to pass
information from the command line into a batch file when you first execute it, but this
won't let you or your system talk to a batch file while it's running.

The only problem is that while ERRORLEVEL provides the raw muscle, DOS doesn't
give you any convenient way to harness it. So you have to create your own tiny assembly
language programs to help. It's easy once you get the hang of it. And you'll be amazed
at the increased power and flexibility of DOS when you grab the assembly language
front-end reins. ·

We '11 explore every aspect of the IF ERRORLEVEL command later on in this chapter.
For now, just type in the examples that follow to get a sense of what DOS can do in the
right hands. They'll show you how to really make DOS purr when you 're trying to create
your own menu systems or run a complex series of tasks with lots of options.

Many times you want the user to be able to stop a program at the appropriate time by
pressing a key. But you don't want the stopping mechanism to interfere with the loop,
and you don't want to force the user to press something as awkward as Ctrl-ScrollLock.

To solve this problem, create a tiny KEYSTROK.COM program by typing in the
following seven lines:

DEBUG
E 100 BS 00 06 B2 FF CD 21 74 04 B4 4C CD 21 C3
N KEYSTROK.COM
RCX
E
w
Q

The program it creates looks like this:

MOV AX,0600 ;Direct-console I/O function
MOV DL,FF ;Select input request
INT 21 ;Do it
JZ OlOD ;If no key pressed, exit
MOV AH,4C ;Otherwise, terminate with code in
INT 21 ;Do it
RET ;Back to DOS

Then, create a brand new version of NONSTOP.BAT:

ECHO OFF
ECHO Press any key to stop
:TOP
BANNER "My message is II

KEYSTROK
IF NOT ERRORLEVEL 1 GOTO TOP

AL

Batch Techniques 521

Now NONSTOP.BAT will loop continuously until you press any key (other than a
shift key such as Ctrl or NumLock). If you don't press a key it will keep looping. If you 're
familiar with BASIC, this is similar to:

100 PRINT "Press any key to stop"
110 REM (The repeating command goes here)
120 IF INKEY$="" GOTO 110

You can fine-tune the KEYSTROK.COM program to work only if the user presses a
specific key. If you want to limit this process so the user has to press the Esc key to stop,
you could create a file called TEST4ESC.COM by typing in the following eight lines:

DEBUG
E 100 BS 00 06 B2 FF CD 21 74 OA 3C
E lOA lB 75 06 BO FF B4 4C CD 21 C3
N TEST4ESC.COM
RCX
14
w
Q

This jazzes up the KEYSTROK.COM program slightly:

MOV AX,0600 ;Direct-console I/O function
MOV DL,FF ;Select input request
INT 21 ;Do it
JZ 0113 ;No key pressed, so exit
CMP AL,lB ;Key was pressed; was it Esc?
JNZ 0113 ;No, so exit
MOV AL,FF ;Yes, so put FF in AL for ERRORLEVEL
MOV AH,4C ;Terminate with code
INT 21 ;Do it
RET ;Back to DOS

Then change the NONSTOP.BAT batch file to read:

ECHO OFF
ECHO Press the Esc key to stop
:TOP
BANNER "My message is II

TEST4ESC
IF NOT ERRORLEVEL 255 GOTO TOP

TheversionofNONSTOP.BATthatusedKEYSTROK.COMletyouquitbypressing
any key, and required a value of 1 after the word ERRORLEVEL. The new NON-

522 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

STOP.BAT that uses TEST4ESC won't quit unless you press the Esc key, and needs a
value of 255 after the word ERRORLEVEL.

You can change the trigger key from Esc to Enter, space, or tab, or any other
single-purpose key that doesn't have different uppercase and lowercase versions, simply
by changing one byte. Notice that the TEST4ESC.SCR script contained a line:

CMP AL,lB

The lB is the hexadecimal representation of decimal 27, which is the ASCII value of
Esc. To change this so a user would have to press the Enter key to stop, substitute an OD
(the hex version of decimal 13) in place of the lB. To change the trigger to the spacebar,
substitute a 20 (the hex representation of decimal 32) in place of the lB.

If you're typing in the lines that begin with E 100, replace the 1B directly after the E
lOA.

The process becomes a bit trickier if you want the user to type a letter, such as Q (for
Quit), A (for Abort), X (for eXit), or S (for Stop), since the uppercase and lowercase
versions of these letters have different ASCII values. However, by adding an additional
logical OR instruction, you can create a program that will recognize both the uppercase
and lowercase versions of any alphabetic character.

Type in the following eight lines:

DEBUG
E 100 B8 00 06 B2 FF CD 21 74 OC OC 20 3C
E lOC 61 75 06 BO FF B4 4C CD 21 C3
RCX
16
N TEST4A.COM
w
Q

This produces a TEST4A.COM program that looks like:

MOV AX,0600 ;Direct-console I/O function
MOV DL,FF ;Select input request
INT 21 ;Do it
JZ 0115 ;No key pressed, so exit
OR AL,20 ;Make sure the letter is lowercase
CMP AL,61 ;Was it an 'a' ?

JNZ 0115 ;No, so exit
MOV AL,FF ;Yes, so put FF in AL for ERRORLEVEL
MOV AH,4C ;Terminate with code
INT 21 ;Do it
RET ;Back to DOS

Again, change NONSTOP.BAT to read:

ECHO OFF
ECHO Press A to Abort
:TOP
BANNER "My message is
TEST4A
IF NOT ERRORLEVEL 255 GOTO TOP

Batch Techniques 523

To change the trigger key from A to any other letter key, replace the hex 61 in the
TEST4A.SCR script line:

CMP AL,61

or if you're typing the eight lines directly into DEBUG, replace it in the second line
directly after E 1 OC. To figure out the new values, consult the chart below, which contains
the hexadecimal ASCII representation of the lowercase version of each letter. The
program converts uppercase values to lowercase ones, and leaves lowercase ones alone.

Hex Lowercase ASCII Values

a - 61 j-6A s- 73
b-62 k-6B t- 74
c- 63 l-6C u- 75
d-64 m-6D v-76
e- 65 n-6E w-77
f-66 o-6F x- 78
g- 67 p-70 y-79
h-68 q-71 z-7A
i- 69 r-72

You may take this even one step further, and allow the user to enter any letter of the
alphabet. Type:

DEBUG
E 100 BS 00 06 B2 FF CD 21 74 OE OC 20 3C
E lOC 61 72 08 3C 7A 77 04 B4 4C CD 21 C3
N ANYLETR.COM
RCX
18
w
Q

to produce the ANYLETR.COM program:

MOV AX,0600
MOV DL,FF

;Direct-console I/O function
;Select input request

524 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

INT 21 ;Do it
;No key pressed, so exit JZ 117

OR AL,20
CMP AL,61
JB 117
CMP AL, 7A
JA 117
MOV AH,4C
INT 21
RET

;Make sure letter is lowercase
;Is letter lower than 'a' ?

;Yes, so exit
;Is letter higher than 'z' ?
;Yes, so exit
;Terminate with code
;Do it
;Back to DOS

Once you've created ANYLETR.COM, type in the following LETTERl .BAT batch
file:

ECHO OFF

ECHO Type Z to quit

:TOP

ANYLETR

IF ERRORLEVEL 122 GOTO END

IF ERRORLEVEL 0 IF NOT ERRORLEVEL 1 BANNER "My message is

IF ERRORLEVEL 97 IF NOT ERRORLEVEL 98 ECHO You typed A

IF ERRORLEVEL 98 IF NOT ERRORLEVEL 99 ECHO You typed B

IF ERRORLEVEL 99 IF NOT ERRORLEVEL 100 ECHO You typed C

IF ERRORLEVEL 100 IF NOT ERRORLEVEL 101 ECHO You typed D

IF ERRORLEVEL 101 IF NOT ERRORLEVEL 121 ECHO You typed E-Y

GOTO TOP

:END

ECHO Ok, you typed Z; quitting ...

This will repeat the same old BANNER.EXE program, but will also quit if the user
types in a Z (or a z), and will report any other letter he or she types. Each letter requires
a separate test on a separate line, so to keep things short, LETTERl .BAT explicitly echoes
back A, B, C, or D (or a, b, c, or d) but will lump together E through Y. Otherwise it
would have to contain 21 additional lines of tests .

. While reporting which letter the user typed may be interesting, it's not really all that
practical. But if you want to include a menu in your batch file that gives a user several
choices, this technique comes in very handy, as the following LETTER2.BAT batch files
suggests:

ECHO OFF
:MENU
ECHO Type Q to quit, M for this menu
:TOP
ANY LE TR
IF ERRORLEVEL 113 IF NOT ERRORLEVEL 114 GOTO END

Batch Techniques 525

IF ERRORLEVEL 109 IF NOT ERRORLEVEL 110 GOTO MENU
BANNER "My message is ... "
GOTO TOP
:END
ECHO Ok, you typed Q; quitting ...

LETTER2.BAT will also run BANNER.EXE repeatedly. But it will quit if the user
enters Q, or print the menu if the user enters M. Okay, it's a short menu, but you could
make it much longer.

All of the above keystroke-sniffing programs - KEYSTROK.COM,
TEST4ESC.COM, TEST4A.COM, and ANYLETR.COM - will sit back and let a batch
file loop, acting only if the user types a key. This is definitely a plus if you have to run a
program continuously and you don't want your batch file stopping at frequent intervals
to ask users if they want to continue.

But if you want to create a simple menu system that waits patiently for the user to enter
a menu choice, and screens out invalid choices, you '11 need a keystroke-sniffer such as
WAIT4A-Z.COM that's a bit more sophisticated. Type in these ten lines:

DEBUG
E 100 BA 2A 01 B4 09 CD 21 B8 07 QC CD 21 oc 20
E lOE 3C 61 72 F5 3C 7A 77 Fl 50 88 C2 B4 02 CD
E llC 21 B2 OD CD 21 B2 OA CD 21 58 B4 4C CD 21
E 12A 'Enter a letter from A to Z: $'
N WAIT4A-Z.COM
RCX
47
w
Q

Since you may want to modify this program later, you could create W AIT4A-Z.COM
by turning the assembly language instructions below into a DEBUG script file called
W AIT4A-Z.SCR. Type it in exactly as shown (although you may omit the semicolons
and the comments following them), being careful to leave a blank line above RCX and
to press the Enter key at the end of each line - especially the last one.

A

MOV DX,12A
MOV AH,09
INT 21
MOV AX, OC07
INT 21
OR AL,20
CMP AL,61
JB 107
CMP AL, 7A

;Address of 'Enter a letter ... '
;Ready to print message
;Do it
;Flush buffer then input char
;Do it
;Make sure letter is lowercase
;Is letter lower than 'a' ?
;Yes, so exit
;Is letter higher than 'z' ?

526 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

JA 107 ;Yes, so exit
PUSH AX ;Save keystroke
MOV DL,AL ;Then get ready to
MOV AH,02 ;Print it
INT 21 ;Do it
MOV DL, OD ;Now print carriage
INT 21 ;Do it
MOV DL,OA ;And line feed
INT 21 ;Do it
POP AX ;Retrieve keystroke
MOV AH,4C ;Terminate with code
INT 21 ;Do it
DB 'Enter a letter from A to Z: $'

RCX
47
N WAIT4A-Z.COM
w
Q

return

When you're done, put the WAIT4A-Z.SCR file in the same directory as
DEBUG.COM, or make sure DEBUG.COM is in a directory your PATH knows about,
and at the DOS prompt type:

DEBUG < WAIT4A-Z.SCR

Then you'll need a batch file like MENU.BAT that handles all the other menu details:

ECHO OFF
:TOP
PAUSE
CLS ECHO *************************
ECHO
ECHO
ECHO
ECHO
ECHO
WAIT4A-Z

A Run dBase
B Run WordStar
c Run 123
Z - Quit

IF ERRORLEVEL 122 GOTO END
IF NOT ERRORLEVEL 100 GOTO OPTION3
ECHO You typed D - Y; no options here
GOTO TOP
:OPTION3
IF NOT ERRORLEVEL 99 GOTO OPTION2

Batch Techniques 527

ECHO This would run 123
GOTO TOP
:OPTION2
IF NOT ERRORLEVEL 98 GOTO OPTIONl
ECHO This would run WordStar
GOTO TOP
:OPTIONl
ECHO This would run dBase
GOTO TOP
:END
ECHO Ok, you typed Z; quitting ...

You could change this to ask the user to type a number between 1 and 9 rather than a
letter between A and Z. To do this, replace four lines in the WAIT4A-Z.COM program:

1. Change: CMP AL,61 ;Is letter lower than I a f?

to: CMP AL,31 ;Is number lower than '1'?

2. Change: CMP AL,7A ;Is letter higher than I z f?

to: CMP AL,39 ;Is number higher than I 9 f?

3. Change: DB 'Enter a letter from A to Z: $'
to: DB 'Enter a number from 1 to 9: $'

4. Change: N WAIT4A-Z.COM
to: N WAIT41-9.COM

To make the patches, type everything below:

DEBUG WAIT4A-Z.COM
E lOF 31
E 113 39
E 132 "numb"
E 13E 31
E 143 39
N WAIT41-9.COM
w
Q

If you prefer the WAIT41-9.COM number version to the WAIT4A- Z.COM letter
version, you'll have to change the MENU.BAT batch file as well:

ECHO OFF

:TOP

PAUSE

ECHO OFF

:TOP

PAUSE

528 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

CLS CLS

ECHO ************************* ECHO *************************

ECHO A -- Run dBase ECHO 1 Run dBase

ECHO B -- Run WordStar ECHO 2 Run WordStar

ECHO c -- Run 123 ECHO 3 -- Run 123

ECHO z Quit ECHO 9 - Quit

ECHO ************************* ECHO *************************

WAIT4A-Z WAIT41-9

IF ERRORLEVEL 122 GOTO END IF ERRORLEVEL 57 GOTO END

IF NOT ERRORLEVEL 100 GOTO OPTION3 IF NOT ERRORLEVEL 52 GOTO OPTION3

ECHO You typed D - Y; no options here ECHO You typed 4 - 8; no options here

GOTO TOP GOTO TOP

:OPTION3 :OPTION3

IF NOT ERRORLEVEL 99 GOTO OPTION2 IF NOT ERRORLEVEL 51 GOTO OPTION2

ECHO This would run 123 ECHO This would run 123

GOTO TOP GOTO TOP

:OPTION2 :OPTION2

IF NOT ERRORLEVEL 98 GOTO OPTIONl IF NOT ERRORLEVEL 50 GOTO OPTIONl

ECHO This would run WordStar ECHO This would run WordStar

GOTO TOP GOTO TOP

:OPTIONl :OPTIONl

ECHO This would run dBase ECHO This would run dBase

GOTO TOP GOTO TOP

:END :END

ECHO Ok, you typed Z; quitting... ECHO Ok, you typed 9; quitting ...

This example will assume you're using the A-Z letter version. Note that in both cases,
the MENU.BAT batch file only simulates running programs. To make the batch file
useful, substitute the actual commands that execute your programs instead of the
messages telling the programs would have run. So where the batch file says something
like:

ECHO This would run WordStar

replace the line with the actual command that runs WordStar. Here you'd replace this
line with:

ws

The WAIT4A-Z.COM program works by printing a message on the screen, waiting
for the user to enter a keystroke, testing the keystroke to make sure it's in an acceptable
range, and then putting the keystroke in a special place when it exits so the DOS IF
ERRORLEVEL command can handle it.

The message it prints is "Enter a letter from A to Z:". If you wanted, you could limit
the range to something like "Enter a letter from A to H: ".

Batch Techniques 529

W AIT4A-Z.COM rejects all keystrokes that aren't letters of the alphabet. To modify
the range of acceptable inputs, you'll have to change the actual values that the program
tests. W AIT4A-Z.COM automatically turns uppercase letters into lowercase ones (and
leaves lowercase letters alone) to reduce the number of tests it has to make. The test for
the lower limit is the line:

CMP AL,61 ;Is letter lower than 'a' ?

You probably don't want to change this. If you do, the 61 is the hexadecimal number
of a lowercase 'a.' To change this to 'b' you'd replace the 61witha62. But again, you
probably shouldn't.

The test for the upper limit is:

CMP AL, 7A ;Is letter higher than 'z' ?

The 7 A is the hexadecimal representation of a lowercase 'z.' If you do want to limit
the range, and change the program so it rejects anything other than the letters A through
H, substitute the hex value of lowercase 'h' (which the chart in Chapter 6-Figure
6.6-tells you is hex 68):

CMP AL,68 ;Is letter higher than 'h' ?

You don't have to modify the comments, but it doesn't hurt, and it makes it far easier
later to see what you did.

Obviously if you chop the top off the range, you won't be able to have the user type
Z to quit. You'll probably want to make the highest letter H the exit key. MENU.BAT
tests for a • z • with the line:

IF ERRORLEVEL 122 GOTO END

To change this so H quits, replace the 122 (the decimal value of lowercase 'z') with
the decimal value for lowercase 'h • - 104. Unfortunately, DEBUG requires hex notation
but the DOS IF ERRORLEVEL command works exclusively with decimal numbers. One
more thing - if you do limit the range to something like A-H, make sure you modify all
references to it. This means changing:

1. The CMP AL,hexvalue test(s) for upper/lower limits in the WAIT4A-Z.SCR script.
2. The DB 'Enter a letter from A to Z: $'message at the bottom of the WAIT4A-Z.SCR

script.
3. The decimal number in the MENU.BAT exit test that normally reads '':IF

ERRORLEVEL 122 GOTO END."
4. The "You typed D - Y; no options here" MENU.BAT error message two lines below

the test in #3 above.
5. The "ECHO Z - Quit" menu choice itself.

530 DOS Power Too/,s, 2nd Edition, Revised/or DOS 5.0

6. And the "ECHO Ok, you typed Z; quitting ... " message it triggers at the very end of
MENU.BAT

You don't have to patch the program to limit the choices, since the WAIT4A-Z.COM
program filters out anything that isn't a letter, and the MENU.BAT batch file "traps" any
keystrokes that aren't currently menu choices. Here's how to add another menu option:

First, make the little menu larger by adding a D option:

ECHO *************************
ECHO A Run dBase
ECHO B Run WordStar
ECHO c Run 123
ECHO D Run ProComm
ECHO z - Quit
ECHO *************************

Then, change the message that said D was out of range from:

ECHO You typed D - Y; no options here

to:

ECHO You typed E - Y; no options here

Finally, (and this is the only tricky part), add a module near the top of the batch file to
accommodate D entries. The top of the batch file currently looks like:

IF ERRORLEVEL 122 GOTO END
IF NOT ERRORLEVEL 100 GOTO OPTION3
ECHO You typed D - Y; no options here
GOTO TOP
:OPTION3
IF NOT ERRORLEVEL 99 GOTO OPTION2
ECHO This would run 123
GOTO TOP
:OPTION2

Since D (with a lowercase decimal value of 100) is now the highest legal value, you'll
have to change the test for invalid entries so it starts at 101 (the decimal value of the

Batch Techniques 531

lowest new invalid entry - E) rather than 100. And you'll also have to insert the D
module directly after the test that executes the menu choice. The code that replaces the
above section will look like:

IF ERRORLEVEL 122 GOTO END
IF NOT ERRORLEVEL 101 GOTO OPTION4
ECHO You typed E - Y; no options here
GOTO TOP
:OPTION4
IF NOT ERRORLEVEL 100 GOTO OPTION3
ECHO This would run ProComm
GOTO TOP
:OPTION3
IF NOT ERRORLEVEL 99 GOTO OPTION2
ECHO This would run 123
GOTO TOP
:OPTION2

Two final cosmetic notes - the MENU.BAT file echoes a very small menu onscreen.
You may prefer to use the DOS TYPE command to display a separate, fancier menu file.
A tiny program such as MAKESCRN.BAS can create a template called MENU with a
little 3-D shadow behind it; you can use your pure-ASCII word processor to add text to
it. Actually, EDLIN is terrific at this, once you know how to use the F3 and arrow keys.

100 ' MAKESCRN.BAS -- makes MENU
110 ' screen you can TYPE in DOS
120 CLS
130 OPEN "MENU" FOR OUTPUT AS #1
140 S$=STRING$(26,219)
150 T$=S$+STRING$(2,177)
160 U$=STRING$(26,177)
170 FOR A=l TO 5:PRINT #1, :NEXT
180 PRINT #1,TAB(27);S$
190 FOR A=lO TO 20
200 PRINT #1,TAB(27);T$
210 NEXT
220 PRINT #1,TAB(29) ;U$
230 FOR A=l TO 3:PRINT #1, :NEXT

532 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

240 PRINT "Now type TYPE MENU"
250 CLOSE:SYSTEM

When you've created the MENU with MAKESCRN.BAS and entered text with
EDLIN, EDIT, or your word processor, replace the lines:

ECHO *************************
ECHO
ECHO
ECHO
ECHO

A Run dBase
B Run WordStar
C Run 123
Z - Quit

ECHO *************************

in MENU .BAT with a single line:

TYPE MENU

Create a fancy menu or text screen and call it something like SCREEN 1 - but make sure
it's no larger than 24 rows by 79 columns. Then run the MAKECOM program and when
prompted for a filename, enter SCREENl. MAKECOM will attach an assembly language
program to your text screen that makes it leap instantly onto your display. And it retains
the existing screen colors.

You could create several text screens, with fancy boxes and borders, and call them
HELPl.COM, HELP2.COM, HELP3.COM. Put a centered message at the bottom of
each one that says .. Press any key for the next screen " Then add a section to a batch
file that looks like:

ECHO Instructions follow
PAUSE
HELPl
PAUSE > NUL
HELP2
PAUSE > NUL
HELP3

The fancy text screens will flash onto the display one by one. When the user presses
a key he '11 instantly get the next one. You can also use this to display menus, introductory
sign-on screens, etc. Redirecting the output of PA USE to NUL with the command:

PAUSE > NUL

will suppress the normal DOS .. Strike a key when ready ... "·message in version 3.x.
However, version 2.x will display this message even if you try to get rid of it, so if you
try this on a 2.x system, allow for this intrusive message.

Batch Techniques 533

The MENU.BAT batch file clears the screen each time it displays a menu. If you don't
have ANSI.SYS loaded, this will cancel any attribute settings you may have in effect,
and tum the screen to a drab grey on black. Issuing the CLS command with ANSI loaded
will clear the screen but retain the preset colors.

To avoid this, either load and use ANSI.SYS (see the chapter on ANSI techniques),
or replace the CLS line with a line such as BLUWHITE or WHITEBLU and then make
sure you have a short COM program handy to clear the screen to the colors you like. The
following COLOR.SCR DEBUG script will create both BLUWHITE.COM (blue text
on a white background) and WHITEBLU.COM (the reverse):

N BLUWHITE.COM
E 100 B8 00 06 B9 00 00 BA 4F 18 B7
E lOA 71 CD 10 B4 02 BA 00 00 B7 00
E 114 CD 10 BO 04 BA D9 03 EE C3
RCX
lD
w
E lOA 17
N WHITEBLU.COM
w
Q

Type this in using a pure-ASCII word processor, or EDLIN, or else insert a COPY
CON COLOR.SCR script at the very top, then after typing the final line with the Q, press
Enter, then the F6 function key, then Enter again.

In any event,, make sure you press Enter at the end of each line, especially the last one.
Then get into DOS, make sure DEBUG.COM is handy, and type:

DEBUG < COLOR.SCR

The byte that actually sets the cqJor is at DEBUG offset lOA - the first entry on the
second line, directly after E lOA. fu the above script this value is 71.

This byte is a two-digit hex number where the first digit is the background color and
the second digit is the foreground color. The choices for each are: 0 = black, 1 = blue, 2
=green, 3 =cyan (light blue), 4 =red, 5 =magenta (purple), 6 =brown or yellow, and 7
= white. You can make the foreground number (but not the background) high intensity
by using: 8 = grey, 9 = bright blue, A = bright green, B = bright ~yan, C = bright red, D
= bright purple, E = yellow, or F = bright white as the second digit.

To change the color, either replace th~ 71 direptly after the E lOA on the second line
with a different color value, and then change the name in the first line from BLU
WHITE.COM to something that re.fleets your new colors, Or, opce you've created the
above files, you can change the color by using DEBUG directly. this series of commands
would produce a program called YELRED.COM with bright yellow text on a red
background:

534 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

DEBUG BLUWHITE.COM
E lOA 4E
N YELRED.COM
w
Q

Breaking Out of a Batch Job

We started the discussion of looping and branching with an example that printed out lots
of banners for a party by looping back to a label. DOS provides another way to set up a
continuous loop by making use of the filename and a concept called recursion. Just create
a batch file called REPEAT.BAT by typing:

COPY CON REPEAT.BAT
ECHO OFF
BANNER "Happy Birthday, Terry!"
REPEAT

Then press F6 and then the Enter key. Run this new batch file by typing:

REPEAT

and your printer should start cranking out banners.
DOS executes each batch file one line at a time. The first line turns off the ECHO

feature to prevent screen clutter. The second line runs the BANNER program. And the
third line starts the whole process all over again by executing its own name. A program
which calls itself is recursive.

Once you start REPEAT it will loop endlessly until you tum your system off or "break"
out of it. To break out, hold down the Ctrl key and press either the C key or the ScrollLock
key. DOS will temporarily halt the scrolling, display a "C onscreen, and then print the
message: "Terminate batch job (Y/N)?" If you an5wer No by typing an Norn, DOS will
resume where it left off and continue scrolling. If you tell it Yes by typing a Y or y, DOS
will break out of the loop and return to what you were doing previously. (Usually this
returns you to the DOS prompt, but since batch files can in tum run other batch files, as
you'll see soon, breaking out of the second one will return you to the first one.)

If you type anything other than a Y, y, N, or n, DOS will stubbornly keep repeating
the "Terminate batch job (Y/N)?" message.

As it's written above, the REPEAT batch file will keep invoking itself and looping
only if you keep its name REPEAT.BAT. If you renamed it to AGAIN.BAT, it would
execute normally the first time through until it reached the third line. Then it would try
to run a command or file called REPEAT. But since you renamed it, it wouldn't find such
a command, and would simply print a "Bad command or file name" error message and
crash to a halt.

Batch Techniques 535

DOS provides an easy way to solve this problem. Create a new file called
ONCEMORE.BAT containing the three lines:

ECHO OFF
BANNER "Happy Birthday, Terry!"
%0

The %0 is a replaceable parameter. When DOS starts running any batch file, it looks
at what you entered on the command line and parses it into as many as ten separate parts
separated by the standard DOS delimiters.

A command line delimiter is a character that DOS uses to separate entries that you
type at the DOS prompt. You may use spaces, commas, tabs, semicolons, or equals signs
as delimiters.

DOS scans through whatever you typed at the DOS prompt and assigns replaceable
parameters %0 through %9 to the first ten things it identifies as separate, discrete entries.
The first entry on the command line is always the name of a command or file, and DOS
assigns a %0 to this. So if you type:

A>ONCEMORE

DOS will make %0 equal to ONCEMORE. It will execute the first line by turning
ECHO off, then will run the BANNER program specified on the second line, and finally
will replace the %0 on the third line with the ONCEMORE that you typed directly after
the DOS prompt. Since this is the name of the batch file itself, it will re-execute itself
and continue looping until you press Ctrl-C or Ctrl-Break.

If you typed:

ONCEMORE INTO THE BREACH G-G-GUYS SAID PFC A121763

DOS would assign the following parameters:

ONCEMORE INTO THE BREACH G-G-GUYS SAID PFC A121763

' ' ' ' ' ' %0 %1 %2 %3 %4

You actually could have typed:

ONCEMORE INTO;THE=BREACH,G-G
GUYS, SAID;; ;PFC==;;, ,A121763

%5 %6 %7

and DOS would have assigned the same parameters, since it treats all the delimiters shown
above as spaces. And it treats repeating delimiters just the same as single ones.

536 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

(If you renamed ONCEMORE.BAT to DOIT AGIN.BAT or XYZ.BAT and ran either
of those fil~, they too would repeat endlessly, since DOS would substitute the new
DOITAGIN or XYZ names for the %0 on the third line.)

DOS will replace every single occurrence of %0 with the name of the batch file itself,
so if you modified ONCEMORE.BAT to contain the lines:

ECHO OFF
ECHO This is a batch file called %0.BAT.
ECHO You typed %0 to start it.
ECHO Now %0 is going to run the BANNER program.
BANNER "Happy Birthday, Terry!"
ECHP ~nd %0 will now start over again
%0

running it would produce something like:

C>ONCEMORE
This is a batch file called ONCEMORE.BAT.
You typed ONCEMORE to start it.
Now ONCEMORE is going to run the BANNER program.

And ONCEMORE will now start over again
This is a batch file called ONCEMORE.BAT.
You typed ONCEMORE to start it.
Now ONCEMORE is going to run the BANNER program.

etc.
If DOS sees a replaceable parameter on any line beginning with an ECHO, it will try

to substit~* the appropriate parameter that you typed on the command line. If the
replaceable parameter following ECHO is %0, something will definitely appear in place
of the %0 since you had to enter some filename to run the batch file in the first place, and
since %0 always represents that filemlme.

So the command:

ECHO You typed %0

will always print something after the word .. typed." But it you changed the line to:

ECHO You typed %8

DOS would replace the %8 with the ninth thing you typed on the command line
(rememper, the first thing on the command line is %0 rather than% 1, so %8 prints the
ninth command line entry). If you didn't type nine separate things (and you probably
wouldn't have), DOS would print a blank after the word .. typed:"

You typed

Batch Techniques 531

Note that DOS replaces the %0 with the actual command you typed, not the whole
filename. Since you typed ONCEMORE at the DOS prompt, it makes %0 =

ONCEMORE, not ONCEMORE.BAT.
You can tell your batch file to add the BAT extension to an ECHO display by tacking

it on after the %0:

ECHO This is a batch file called %0.BAT.

Technically you could execute the batchfile by typing either:

ONCEMORE

or:

ONCEMORE.BAT

However, virtually no one adds the BAT extension when they run a batch file, and there's
really no reason to. But if you did enter ONCEMORE.BAT rather than just plain
ONCEMORE, and your batch file included the line:

ECHO This is a batch file called %0.BAT.

DOS would print:

This is a batch file called ONCEMORE.BAT.BAT.

The %0 parameter will duplicate exactly what you typed. So it you start the ball rolling
by typing:

OnCeMoRe

You '11 end up with:

This is a batch file called OnCeMoRe.BAT.
You typed OnCeMoRe to start it.
Now OnCeMoRe is going to run the DECIDE program.

If you want to experiment with replaceable parameters, run the following
SHOWPARM.BAT batch file:

ECHO OFF
ECHO Parameter 0 is %0
IF NOT %1!==! ECHO Parameter 1 is %1
IF NOT %2!==! ECHO Parameter 2 is %2
IF NOT %3!==! ECHO Parameter 3 is %3
IF NOT %4!==! ECHO Parameter 4 is %4

538 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

IF NOT %5!==! ECHO Parameter 5 is %5
IF NOT %6!==! ECHO Parameter 6 is %6
IF NOT %7!==! ECHO Parameter 7 is %7
IF NOT %8!==! ECHO Parameter 8 is %8
IF NOT %9!==! ECHO Parameter 9 is %9

EDLIN makes it easy to create a batch file like this one with so many similar lines. To
start the process, type:

EDLIN SHOWPARM.BAT

When you see the EDLIN "New file" message and asterisk prompt, type:

I

to start inserting lines, then enter the first three lines. This should look like:

New file
*I

l:*ECHO OFF
2:*ECHO Parameter o is %0
3:*IF NOT %1!==! ECHO Parameter 1 is %1

Then hold down the Ctrl key and press either the C or ScrollLock keys while you 're
holding it down. You '11 see a:

4:*"C

and you'll return to EDLIN's command mode, where the asterisk is in column 1. Then,
make nine more copies of the:

3:*IF NOT %1!==! ECHO Parameter 1 is %1

line you just typed by issuing the EDLIN command:

*3,3,4,8C

If you wanted to make sure you had copied line 3 the correct number of times, you
could type:

*L

which would list:

1: ECHO OFF
2: ECHO Parameter O is %0

Batch Techniques 539

3: IF NOT %1!==! ECHO Parameter 1 is %1
4:*IF NOT %1 ! == ! ECHO Parameter 1 is %1
5: IF NOT %1!==! ECHO Parameter 1 is %1
6: IF NOT %1 ! == ! ECHO Parameter 1 is %1

7: IF NOT %1!==! ECHO Parameter 1 is %1
8: IF NOT %1!==! ECHO Parameter 1 is %1
9: IF NOT %1 ! == ! ECHO Parameter 1 is %1

10: IF NOT %1!==! ECHO Parameter 1 is %1
11: IF NOT %1!==! ECHO Parameter 1 is %1

Now all you have to do is increase the number references in each of the lines you just
copied, so that all the ls become 2s in line 4, 3s in line 5, and so on. Again, EDLIN makes
this surprisingly easy. Actually, the DOS function keys make it easy, and EDLIN is one
of the few programs that knows how to use them.

While the arsenal of DOS editing tricks is not exactly overwhelming, its function keys
can really cut down on repetitive keystrokes. Most users know that tapping the F3 key
once will repeat the previous DOS command. But they rarely use the powers of the F2
key, probably because they'd rather just press F3 and backspace the errant characters
away.

While the F3 key will repeat the entire command that you typed previously at the DOS
prompt, entering the F2 key followed by a character will repeat just part of the previous
command - up to but not including the character you entered. So if the previous
command was:

A>ONCEMORE abcdefghijklmnopqrstuvwxyz

and you pressed the F3 key, you'd end up again with:

A>ONCEMORE abcdefghijklmnopqrstuvwxyz

But if you pressed the F2 key and then typed a lowercase e you would see:

A>ONCEMORE abed

since this tells DOS to display the part of the previous command starting from where the
cursor currently is and ending right before the first occurrence of the letter you entered.
When you're staring at a bare DOS prompt, the cursor is at column 1, so tapping the F2
key and then typing eat that point will display everything from column 1 right up to (but
not including) where the first lowercase e is located.

If you had pressed the F2 key and typed an uppercase E, DOS would have displayed:

A>ONC

since the F2 key is case-sensitive and will stop right before the first uppercase E it finds.
This technique makes it a snap to replace all the ls with 2s and 3s and 4s when you 're

using EDLIN.

540 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

Tell EDLIN you want to edit the first line that needs changing - line 4 - by typing:

*4

EDLIN will respond by printing the current contents of line 4 and then dropping down a
line to let you edit it:

4:*IF NOT %1!==! ECHO Parameter 1 is %1
4:*

If you were to type F3, DOS would fill the lower line with an exact duplicate of the upper
one:

4:*IF NOT %1!==! ECHO Parameter 1 is %1
4:*IF NOT %1!==! ECHO Parameter 1 is %1

But this isn't what you want. Instead, press the F2 key and type a 1. EDLIN will display
the beginning of the upper line right up to but not including the first occurrence of a 1:

4:*IF NOT %1!==! ECHO Parameter 1 is %1
4:*IF NOT %

Now, type in a 2 to replace the 1:

4:*IF NOT %1!==! ECHO Parameter 1 is %1
4:*IF NOT %2

But don't press the Enter key yet. Instead, repeat the same process to get to the next 1
- press F2 and type a 1. You should see:

4:*IF NOT %1!==! ECHO Parameter 1 is %1
4:*IF NOT %2!==! ECHO Parameter

Type another 2 and press F2 one more time, so your screen looks like:

4:*IF NOT %1!==! ECHO Parameter 1 is %1
4:*IF NOT %2!==! ECHO Parameter 2 is %

Add a final 2 and press the Enter key:

4:*IF NOT %1!==! ECHO Parameter 1 is %1
4:*IF NOT %2!==! ECHO Parameter 2 is %2

Batch Techniques 541

Then try this with line 5, this time replacing the ls with 3s. It looks more complicated
than it actually is. All you have to do to fix line 5 is:

1. Type 5 (and press Enter).
2. Press F2 and type 1 then type 3 (do this three times).

It really goes quickly once you get the hang of it. Be sure to press Enter when you're
all done and you reach the very end of each line, since EDLIN won't register any changes
until you do.

After editing the last line (line 11), type:

*E

to save and exit. Then type SHOWP ARM at the DOS prompt and try following it with
different kinds of parameters. First enter SHOWPARM with nothing after it:

C>SHOWPARM
Parameter 0 is SHOWPARM

Try it with nine other entries on the command line:

C>SHOWPARM a b c d e f g h i j
Parameter 0 is SHOWPARM
Parameter 1 is a
Parameter 2 is b
Parameter 3 is c
Parameter 4 is d
Parameter 5 is e
Parameter 6 is f
Parameter 7 is g

Parameter 8 is h
Parameter 9 is i

Since SHOWPARM.BAT displays only ten parameters, you'll see the same result as
the one directly above if you try:

C>SHOWPARM a b c d e f g h i k 1 m n o p q r s t u v w x y z

Parameter O is SHOWPARM

Parameter 1 is a

Parameter 2 is b

Parameter 3 is c

Parameter 4 is d

Parameter 5 is e

Parameter 6 is f

542 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

Parameter 7 is g

Parameter 8 is h

Parameter 9 is i

Various collections of delimiters will have predictable results:

C>SHOWPARM a=bb=ccc
Parameter O is SHOWPARM
Parameter 1 is a
Parameter 2 is bb
Parameter 3 is ccc

C>SHOWPARM a,,,b====c;;;;;;d
Parameter o is SHOWPARM
Parameter 1 is a
Parameter 2 is b
Parameter 3 is c
Parameter 4 is d
Parameter 5 is e
Parameter 6 is f

e,=; ;=,f

You may have noticed that SHOWPARM displayed a message like "Parameter 6 is"
only when you typed a seventh entry on the command line that required it. The batch file
was smart enough to know how many entries you had typed so it could print the
appropriate number of .. Parameter N is ... " messages.

If DOS weren't able to do this, and you had entered just one parameter, the display
would have looked something like:

C>SHOWPARM a
Parameter 0 is SHOWPARM
Parameter 1 is a
Parameter 2 is
Parameter 3 is
Parameter 4 is
Parameter 5 is
Parameter 6 is
Parameter 7 is
Parameter 8 is
Parameter 9 is

The mechanism that prevented this was an IF STRING 1 ==STRING2 test. Each line
contains one. The first line with a test is:

IF NOT %1!==! ECHO Parameter 1 is %1

Batch Techniques 543

If you entered:

SHOWPARM XXX

DOS would make %0 equal to SHOWP ARM, and % 1 equal to XXX. So when it
executed the test it would substitute XXX for % 1 and end up with:

IF NOT XXX!==! ECHO Parameter 1 is XXX

Since XXX! is not equal to!, the test fails. However, it's a negative test, so you want
it to fail. Note that you have to use double equal signs in IF tests like these.

If you had entered just:

SHOWPARM

without anything after it, DOS would have made %0 equal to SHOWPARM, and % 1
equal to nothing. So the test would have turned into:

IF NOT !==! ECHO Parameter 1 is XXX

Here the single ! on the left side of the == is equal to the single ! on the right side. The
test passes. The "NOT" in the test means that DOS won't execute the ECHO command
that follows the test at the end of the line.

Putting It All Together

By combining environment variables, replaceable parameters, FOR commands, ECHO
statements, fancy branching, nested batch file calling, and IF ERRORLEVEL tests you
can do something that will make cleaning up cluttered disks a joy.

This CLEANUP process will queue up selected groups of files and present them to
you one file at a time with a simple menu that makes it a snap to examine them, delete
them, or leave them intact.

For this to work you need four files:

1. A small assembly language program called GETANS.COM that makes your batch
files interactive. (You'll create GETANS.COM below.)

2. A main CLEANUP.BAT batch file that screens unwanted files from the cleanup
process. (You'll also create CLEANUP.BAT.)

3. A secondary DOIT.BAT batch file loaded by CLEANUP.BAT that does most of the
work and is the part the user ends up interacting with.

4. The custom version of the MORE.EXE file that DOIT.BAT uses to display the
beginnings of files. (This version of MORE.EXE is on one of the accompanying
disks.)

544 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

You also should make sure the DOS FIND.EXE program is in the same directory as
these four files, or is in a directory that your path knows about. If you're using a floppy
disk system, copy the FIND.EXE file onto your floppy and make sure COMMAND.COM
is also on the diskette if you 're running a version of DOS earlier than 3.3.

GET ANS.COM is an example of a customized keystroke-sniffing program that returns
exit codes that the DOS IF ERRORLEVEL command can process. Power users often end
up writing their own variations of programs like this, or customizing similar ones.

To create GETANS.COM, type in the following eight lines:

DEBUG
E 100 B8 00 08 CD 21 OC 20 3C 79 74 OC 3C 63 74
E lOE 08 3C 64 74 04 3C 65 75 04 B4 4C CD 21 C3
N GETANS.COM
RCX
lC
w
Q

The actual GET ANS.COM program looks like:

MOV AX,0800 ;Get keystroke
INT 21 ;Do it
OR AL,20 ;Make sure it's lowercase
CMP AL,79 ;See if it's a 'y'
JZ 0117 ;Yes, so goto exit with code
CMP AL,63 ;See if it's a 'c'
JZ 0117 ;Yes, so goto exit with code
CMP AL,64 ;See if it's a 'd'
JZ 0117 ;Yes, so goto exit with code
CMP AL,65 ;See if it's an 'e'
JNZ OllB ;No, so go to exit no code
MOV AH,4C ;Exit with code
INT 21 ;Do it
RET ;Exit without code

You could save typing by using the DOS MORE.COM utility in place of our
MORE.EXE. However, MORE.COM will display the entire file one screenful at a time
rather than just showing you the beginning of the file and then letting you quit, the way
MORE.EXE does.

In any event, create CLEANUP.BAT next:

ECHO OFF
SET VAR=%1
IF %1!==! SET VAR=*.*

Batch Techniques 545

FOR %%I IN (%VAR%) DO COMMAND /C DOIT %%I
SET VAR=
:END

If you're using DOS version 3.3 or later, you may want to substitute the line:

FOR %%I IN (%VAR%) DO CALL DOIT %%I

in place of:

FOR %%I IN (%VAR%) DO COMMAND /C DOIT %%I

shown above. If you do use CALL instead of COMMAND /C the process will run a bit
more smoothly. However, CALL won't work in any version of DOS older than 3.3.

Andfinally, DOIT.BAT:

ECHO OFF
IF %1!==! GOTO WRONG
:TOP
ECHO [Alt-255 or Character O]
ECHO Examine/Delete/CheckDIR/Skip
GET ANS
IF ERRORLEVEL 102 GOTO
IF ERRORLEVEL 101 GOTO
IF ERRORLEVEL 100 GOTO
IF ERRORLEVEL 99 GOTO
:SKIP
ECHO %1 NOT deleted ...
GOTO END
:DELETE

SKIP
EXAMINE
DELETE
DIRLIST

%1 (E/D/C/S)?

ECHO Are you sure you want to delete %1 (Y/N)?
GET ANS
IF ERRORLEVEL 121 IF NOT ERRORLEVEL 122 GOTO DOIT
GOTO SKIP
:DIRLIST
DIR %1 I FIND
GOTO TOP
:DOIT
DEL %1

II _ 11

ECHO %1 deleted ...
GOTO END
:EXAMINE
ECHO The beginning of %1 looks like:
TYPE %1 MORE.EXE
ECHO [Alt-255 or Character O]

546 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

GOTO TOP
:WRONG
ECHO Run the accompanying CLEANUP.BAT first
:END

The fourth line from the top and the fifth line from the bottom in DO IT.BAT look like:

ECHO [Alt-255 or Character O]

Don't actually type ••[Alt-255 or Character O]" after the ECHO and the space. This
simply tells you to put either an ASCII 255 blank character or ASCII 0 null character
here; both are impossible to display. By following the word ECHO with a space and then
either an ASCII 255 character or an ASCII 0 character you can have DOS print a blank
line when the batch file executes.

If you're entering these batch files with a word processor, you're probably better off
trying to create a character 255. Most good word processors let you enter ASCII
characters by holding down the Alt key, typing the ASCII value (in this case 255) on the
number pad - not the top row number keys - and then releasing the Alt key. So type
in:

ECHO

then press the spacebar once, then hold down Alt, tap 255 on the number pad, and then
let the Alt key up.

If you 're entering the batch files using EDLIN or the DOS COPY CON command, you
may use the same technique to insert an ASCII 255, or you may use a simpler trick to put
an ASCII 0 in your file. To enter an ASCII 0 in DOS (or EDLIN) just press the F7 function
key. Again, remember first to type in the word ECHO, then press the spacebar once, then
press F7.

Now that you've got all the files you need, you can clean up any disk. Make sure
CLEANUP.BAT, DOIT.BAT, GETANS.COM, MORE.EXE, and FIND.EXE - and
COMMAND.COM if you're using a version of DOS older than 3.3 - are handy, and
type:

CLEANUP [filespec]

Omitting filespec and typing simply:

CLEANUP

has the same effect as typing:

CLEANUP *·*

Batch Techniques 547

If you wanted to clean up all your TXT files, for example, you could type:

CLEANUP *.TXT

Or if you wanted to clean up all files that began with the letter T you could type:

CLEANUP T*.*

Once you've entered your choice, the batch files will click into action and start
displaying one by one the names of all files that match the filespec you specified. So if
you have three BAK files on your disk:

• REPORT90.BAK
• MEMOPC.BAK
• INCOME90.BAK

and you enter:

CLEANUP *.BAK

DOS will begin by printing:

Exarnine/Delete/CheckDIR/Skip REPORT90.BAK (E/D/C/S)?

At this point you have four choices. Press E and DOS will display the first 22 (or fewer)
lines of REPORT90.BAK and then print the:

Exarnine/Delete/CheckDIR/Skip REPORT90.BAK (E/D/C/S)?

prompt again.
If you want to delete it, type D. You'll get a confirmation message "Are you sure you

want to delete REPORT90.BAK (Y/N)?" Here you'll have to type Y or y to erase the
file. Typing any other key will abort the deletion process, print a "REPORT90.BAK NOT
deleted ... " message to keep you posted, and move on to the next file:

Exarnine/Delete/CheckDIR/Skip MEMOPC.BAK (E/D/C/S)?

If you have no idea what MEMO PC.BAK was, and you want to see the size of the file
or the date you created it, type C to Check the DIR listing:

MEMO PC BAK 6253 12-18-90 2:57a

548 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

You'll then again see the familiar:

Examine/Delete/CheckDIR/Skip MEMOPC.BAK (E/D/C/S)?

This process uses environment variables, which won't work in DOS 3.0, and can work
erratically in earlier versions. The main CLEANUP.BAT file does only two jobs:

1. It uses a FOR command to execute the DOIT command repeatedly, once for each
element in the filespec. If you wanted to look at all the *.BAK files and you had four
of these on your disk, the FOR command would execute DOIT four times.

2. It also looks at the filespec you entered, and substitutes *. * if you didn't enter
anything. It does this by setting an environment variable - here called VAR - to
the filespec you enter, and then testing to make sure you entered something. If you
forgot to enter something it sets the variable to ••*. *" and assumes you want to look
at all the files on your disk.

3. The DEL and ERASE commands in DOS 4.0 let you erase files selectively.

If you haven't increased the size of your environment, and you have a long PA TH and
some other space-eaters, setting a new variable may fill up the environment. It's easy to
run out of space, since the default is a paltry ten 16-byte paragraphs, or 160 bytes.

To increase the environment size under DOS 3.0 and 3.1, just put this command in
your CONFIG.SYS file:

SHELL [d:] [path] COMMAND.COM /E:n /P

where n represents the number of 16-byte paragraphs. For versions 3.2 and later, use the
same SHELL command but specify the actual number of bytes rather than paragraphs.
The default in all cases is 160 bytes (ten paragraphs). You can increase it all the way to
32K in DOS 3.2 and 3.3, but are limited to 62 paragraphs (992 bytes) in earlier versions.

If you're using DOS 2.0 or 2.1 these techniques won't work. You'll have to patch
COMMAND.COM at hex address ECF to represent the number of 16-byte memory
paragraphs that will make up your new environment. (For DOS 2.11 the address is hex
DF3.)

Now that you have a taste of what batch files can do, read the list of guidelines below,
and then roll up your sleeves and plunge in by learning the nuances of each command.
Then when you're done, try the very useful examples provided.

The Batch Commands
This section· describes each batch command in detail, with lots of sample programs to
show you just how the commands work. The commands are presented roughly in the
order in which they are usually crop up in a file.

ECHO

Batch Techniques 549

First, some rules and advice:

• The general format for executing a batch file is:

[d:] [path] filename [.BAT] [parameters]

• Each line in a batch file must be shorter than 128 characters.
• Generally, all lines must end with carriage returns. However, a carriage return may

be omitted from the very last line in cases when including it would print a double
DOS prompt upon exiting.

• Since DOS processes batch files one line at a time, it's best to run them from fast
hard disks or RAMdisks for optimal performance.

• When branching conditionally, batch files will always start searching for labels at
the beginning of the file, so duplicate labels are ignored.

• Labels are not case sensitive, but all other aspects of batch file operations are.
• Batch filenames must end in BAT. Make sure that no COM or EXE file shares the

same filename as your batch file. If you have a file on your disk called RUN.COM
or RUN.EXE, and you create a batch file called RUN.BAT, DOS will always
execute the RUN.COM or RUN.EXE file first, and never get around to running the
RUN.BAT file.

• DOS processes batch files differently in versions 2.x from the way it does in later
versions. Earlier versions cannot use IF EXIST tests outside the current subdirectory
or redirect PAUSE messages, insist that labels begin in column 1, and become
confused if label names are longer than eight characters.

• Versions 3.x and later offer the ability to CALL other batch files without having to
run an additional copy of COMMAND.COM, can suppress line displays by prefac
ing them with @ signs, and in recent editions document the use of environment
variables (although these won't work in 3.0).

• Finally, each version of DOS uses slightly different (but overlapping) techniques
for generating blank lines with the ECHO command.

Format: ECHO [ON!OFFlmessage]

Controls display of onscreen messages and can create files or append data to existing
files by redirecting ECHO output.

ECHO ON displays all commands as they execute. This is the normal default.
ECHO OFF suppresses commands (including REM remark statements) from display

ing as DOS executes them. But messages and errors will still appear. To prevent screen
clutter and suppress as many messages as possible, make ECHO OFF the first line in
your batch file.

550 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

If you nest batch files by using COMMAND /C to jump back and forth from one to
the other, you'll have to put an ECHO OFF at the beginning of each. When COMMAND
/C loads a secondary command processor, the new command processor turns ECHO on
again, forcing you to tum it off manually. The CALL command introduced in version 3.3
maintains the ECHO state when jumping from one batch file to another.

In versions 3.3 or later, prefacing any command with an @ sign tells DOS not to display
the command, as if ECHO were turned off. By starting all your batch files with @ECHO
OFF you not only prevent subsequent commands from displaying, but you also keep the
ECHO OFF command itself from showing up onscreen.

You probably don't use any programs that begin with a @ character. But if you do,
and you want to execute one in a version 3.3 or later batch file, add an extra @ sign to
the beginning of the filename, when you refer to it in the batch file.

Following ECHO with up to 122 characters of text displays this text, so that:

ECHO Back Up Your Disks Of ten

would print:

Back Up Your Disks Of ten

regardless of whether ECHO is currently on or off. If ECHO is off, just .the text will
appear. If ECHO is on, the actual ECHO command will appear first, followed on a
separate line by the message it's printing, so you'll see something like:

C>ECHO Back Up Your Disks Of ten
Back Up Your Disks Of ten

Actually, ECHO can display any printable ASCII character. This lets you print fancy
borders and boxes around your text, or display foreign language characters or math
symbols. However, DOS doesn't make it easy to generate these characters except by
using the Alt-keypad technique or by letting you harness ANSI.SYS to redefine certain
shifted keys so they print characters with ASCII values greater than 127.

To ECHO a message with a DOS operator symbol (such as I, <, or >) in it, wrap the
symbol between quotation marks, as in:

ECHO "I" is the Piping Symbol

You may dress up your screen by using ECHO to display fancy box and border high-bit
ASCII characters (with values over 127). Some of the accompanying utilities will make
it easy to. work with such characters, or you can use the Alt + numeric keypad technique
or redefine your keyboard using ANSI.SYS or a commercial keyboard macro program.

To create or append data to a file, use:

ECHO data > filename

Batch Techniques 551

which creates a brand new file called filename, or:

ECHO data >> filename

which appends data to an existing file.
Entering ECHO on a line by itself, or with nothing after it other than spaces, tells DOS

to report whether ECHO currently happens to be set ON or OFF.
Be careful when using ECHO to display characters that DOS treats as delimiters

(commas, semicolons, or equals signs) to separate parameters and commands. DOS will
treat these as blanks and, if nothing else is on the same line other than the word ECHO,
will think you 're asking for a report on the current ON/OFF state.

Also, since batch files use percent signs to indicate environment variables or replace
able parameters, DOS will display every other one if you try to ECHO a string of them.
So a batch file like:

ECHO OFF
ECHO
ECHO
ECHO

I I I I I I I I I I

;;;;;;;;;;

ECHO %%%%%%%%%%

will produce:

ECHO is off
ECHO is off
ECHO is off
%%%%%

The addition of the message-suppressing @ symbol is welcome, but still won •t prevent
DOS from printing messages such as ··1 File(s) copied.'' The way to suppress these is to
add a NUL after any DOS command that would normally generate a message onscreen:

COPY C:\DOS*.COM D: > NUL

The following UPDATE.BAT batch file will change the date and time in the directory
listing for any file you specify:

ECHO OFF
IF %1!==! GOTO OOPSl
IF NOT EXIST %1 GOTO OOPS2
COPY /B % 1 + I I

ECHO %l's date and time now updated.
GOTO END
:OOPSl
ECHO You must specify a filename to update.

552 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

GOTO END
:OOPS2
ECHO There is no file called %1 in this directory.
:END

If COMMAND.COM is in the current directory and you enter:

UPDATE COMMAND.COM

you'll see:

C>ECHO OFF
COMMAND.COM

1 File(s) copied
COMMAND.COM'S date and time now updated.

To clean this up, change the:

COPY /B % 1 +I I

line to read:

COPY /B %1 +,, > NUL

Then when you enter UPDATE COMMAND.COM, all you'll see is:

C>ECHO OFF
COMMAND.COM's date and time now updated.

(And in versions 3.3 or later, you can change the first line in the batch file to @ECHO
OFF to suppress the initial ECHO OFF message.)

If you try this yourself, be sure to include the /B in the COPY line. The COPY +,,
process actually copies the file onto itself, and updates the directory listing in the process.
By adding a /B switch, you tell DOS to copy the entire length of the file specified by the
number of bytes in the directory listing. If you don't include this, DOS will stop copying
if it sees an ASCII character 26, since it interprets this as an end-of-file marker. Many
text files slap on such an end-of-file indicator, but program files treat occurrences of these
ASCII 26 characters differently. If you forget to add the /B parameter you'll end up
truncating your program files, which makes them utterly worthless - so be careful.

If you really want to shut things down, you can sandwich any potential screen-clutterers
between the lines:

CTTY NUL

and:

Batch Techniques 553

CTTY CON

But if you try this, be very careful, since CITY NUL effectively disconnects your
keyboard and screen from what's going on, and unless you're absolutely certain that the
batch file is going to make it back to the restorative CITY CON line, you 're playing with
fire.

Assuming you don't have a file in your current directory called ! @#$, running the
following ERROR.BAT batch file:

ECHO OFF
DIRR
DIR !@#$

will display two error messages - "Bad command or file name" since DIR is misspelled,
and "File not found" since the !@#$ file isn't on your disk. But if you add CTIY NUL
and CTTY CON commands:

ECHO OFF
CTTY NUL
DIRR
DIR !@#$
CTTY CON

nothing will display except ECHO OFF.
The normal DOS default setting is ECHO ON. You can turn ECHO off directly at the

command line if you want, which makes the prompt disappear. Executing a subsequent
CLS wipes everything off your screen.

Some users patch COMMAND.COM to flip the default to ECHO on. If you aren't
comfortable doing this (and there are valid reasons for being squeamish about it), you
can suppress initial ECHO OFF commands in batch files several ways. The obvious one
is to prefix the command with an@ sign, but this won't work in versions prior to 3.3.

If you have ANSI.SYS loaded, you can follow ECHO off with the ANSI sequence:

ESC[lA ESC[K ESC[B

on the line below (being sure to substitute an actual ASCII character 27 - hex lB - in
place of the three ESCs in the example). ESC[lA moves up a line, ESC[K erases that
line, and ESC[B moves down a line when done.

However, most users don't load ANSI. The alternative is to use the NOECHO.COM
program on the accompanying disk, which does essentially the same thing without
forcing the user to deal with ANSI codes.

NOECHO.COM moves cursor up one line on the current video page, then erases that
line. To use this, make the first line in your batch file ECHO OFF and make the second
NOECHO.

554 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

Adding blank lines to your batch files is a bit trickier. Under later versions of DOS,
you can print blank lines in your batch files by typing any of 35 different characters
(ASCII values 0, 1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,
27, 28, 29, 30, 31, 34, 43, 46, 47, 58, 91, or 93) right after the word ECHO, without any
intervening space (as in ECHO: or ECHOD.

Many of these ASCII values represent control characters that you can enter in DOS
by using the Alt-keypad method. Just hold down the Alt key, type in the ASCII value on
the number pad (not the top row number keys), then release the Alt key. You won't be
able to do this with all of them, however. DOS will interpret entries like ASCII 3 as
Ctrl-Break, 8 as a backspace, and 27 as Esc. You can enter a character 0 in DOS by
pressing the F7 key.

To enter such difficult characters, you could use a BASIC program such as
ECHOMAKR.BAS:

100 ' ECHOMAKR.BAS -- for blank lines
110 OPEN "ECHOBLNK.BAT" FOR OUTPUT AS #1
120 PRINT #1,"ECHO OFF"
130 FOR A=l TO 3:READ B
140 PRINT #1,"ECHO USING CHARACTER";B;"-- 11

150 PRINT #1,"ECHO";CHR$(B)
160 NEXT:CLOSE
170 DATA 0,8,27

Or you could type in dummy characters and use DEBUG to patch them. If you created
a file called DUMMY .BAT that looked like:

ECHO OFF
ECHO USING CHARACTER 0
ECHOa
ECHO USING CHARACTER 8
ECHOb
ECHO USING CHARACTER 27 - -
ECHOc

You could then go into DEBUG and replace the a, b, and c with 0, 9, and 1B (lB is the
hexadecimal representation of decimal 27 and DEBUG works exclusively in hex):

C>DEBUG DUMMY.BAT

-RCX

ex 0011

-D 100 L 71

30DD:0100 45 43 48 4F 20 4F 46 46-0D OA 45 43 48 4F 20 55 ECHO OFF .. ECHO U

30DD:Oll0 53 49 4E 47 20 43 48 41-52 41 43 54 45 52 20 30 SING CHARACTER 0

Batch Techniques 555

30DD:Ol20 20 2D 2D OD OA 45 43 48-4F 61 OD OA 45 43 48 4F -- .. ECHOa .. ECHO

30DD:0130 20 55 53 49 4E 47 20 43-48 41 52 41 43 54 45 52 USING CHARACTER

30DD:Ol40 20 38 20 2D 2D OD OA 45-43 48 4F 62 OD OA 45 43 8 -- .. ECHOb .. EC

30DD:Ol50 48 4F 20 55 53 49 4E 47-20 43 48 41 52 41 43 54 HO USING CHARACT

30DD:Ol60 45 52 20 32 37 20 2D 2D-OD OA 45 43 48 4F 63 OD ER 27 -- .. ECHOc.

30DD:0170 OA

-S 100 L 71 "a"

30DD:Ol29

-E 129 0

-S 100 L 71 "b"

30DD:014B

-E 14B 8

-S 100 L 71 "c"

30DD:Ol6E

-E 16E lB

-w
Writing 0071 bytes

-Q

You type everything following the DEBUG hyphen (-) prompts; DEBUG prints out
all the rest. Typing RCX and pressing the Enter key twice reports how long the file is.
The D 100 L 71 command tells DEBUG to display (D) the contents of the file starting at
address 100 and continuing for a length (L) of 71 bytes (you have to start at address 100
because DEBUG loads just about all files at that address rather than at address 0).

One way to figure out where the a, b, and c are located is just to eyeball the display,
but DEBUG's search (S) command can do it for you automatically. A command like S
100 L 71 "a" tells DEBUG to Search for the character "a" starting at address 100 and
continue searching for 71 bytes. In the example above, DEBUG found an "a" at address
30DD:0129. When you're dealing with virtually any batch file you can ignore the four
hex digits to the left of the colon; these will vary from system to system and don't matter
here. The 0129 number does matter - it's the address of the "a."

To replace the "a" with a character 0, use the Enter command in the form E 129 0. This
tells DEBUG to Enter (E) a value of 0 at address 0129.

Remember to use hex notation exclusively. Consult a decimal-to-hex chart if you need
to. So when entering decimal ASCII character 27, you have to first convert it to its hex
form, lB. If you tried to enter a 27 rather than a lB, DEBUG would think you meant a
hex 27, which is equal to decimal 39.

When you're all done, use the Wand Q commands to write the file to disk and then
quit. If you 're not an experienced DEBUG user, work on a copy of DUMMY.BAT called
DUMMY2.BAT (or whatever). That way if you make a mistake you can always make
another copy of the original and try again.

You can type some version 3.x and later blank-producing characters directly:

ECHO"
ECHO+

556 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

ECHO.
ECHO/
ECHO:
ECHO [
ECHO]

Again, this will work only in 3.x and later versions. (Under DOS 3.x you can also
follow ECHO with a space and then one of the ASCII characters 0, 8, or 255.)

Unfortunately, earlier versions of DOS behave very differently.
Under version 2.x you can print a blank line by following ECHO directly with any of

theASCIIcharactersO, 1,2,3,4,5,6, 7,8,9, 10, 11, 12, 14, 15, 16, 17, 18, 19,20,21,
22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 34, 43, 44, 47, 58, 59, 61, 91, 92, and 93 - and
then adding an extra space. If you forget the extra space at the end this technique won't
work at all.

Note that this list is different from the 3.x and later list above. You can generate a blank
line in version 3.x and later by putting a period (character 46) directly after ECHO, but
this won't work with 2.x. However, under version 2.x, putting characters 9, 10, 32, 44,
59, and 61 (tab, line feed, space, comma, semicolon, or equals sign) and then a space
after ECHO will display a blank line while these won't do the trick in version 3.x and
later . And recent versions don't really care whether you have an extra space at the end
of the line, while 2.x won't budge unless you include this final space. DOS is consistently
inconsistent.

You can also generate blank lines by following ECHO with a space, and then one of
a short list of characters. In DOS 2.x you can use this method with characters 0, 8, 9, 32,
and 255. Under DOS 3.x and later, characters 9 and 32 won't work. In both cases you
don't need to slap on an additional space at the end of the line.

However, the safest way in just about every version is to use ASCII character 0 and a
space, in either order. Type:

ECHO
(then press the space bar)
(then press the F7 function key)

or type:

ECHO
(then press the F7 function key)
(then press the space bar)

Following ECHO with just a character 0 will work under DOS 3.x but not 2.x, 4.0, or
5.0.

When you press F7 at the DOS prompt, DOS will display a @ sign. Don't confuse this
with the@ character itself, and don't try entering a@ by typing the shifted 2 key.

Some versions of DOS also insist that every line that begins with an ECHO end with
a carriage return. Recent editions have gotten around this problem, but if you 're using an

Batch Techniques 557

older version and DOS prints the ECHO command itself as well as the message it's
supposed to ECHO, try inserting a carriage return at the end of the offending line.

This is especially true if an ECHO command is the last line of a batch file. If you use
the ECHO+ space+ ASCII 0 technique (which will appear as ECHO@):

ECHO OFF
ECHO First line
ECHO @

ECHO Last line

If you omit the carriage return after:

ECHO Last line

DOS 3.x and later won't mind, but DOS 2.x will become confused and print the "Echo
Last line" command onscreen along with the "Last line" message that it's supposed to
ECHO. So be sure to include a carriage return at the end of any ECHO command that
happens to be on the final line of a batch file.

Automated ECHO Entry

ECHO can come in very handy when you have to simulate user response in a batch file,
or when you want to combine commands. You can delete all your files, for instance, by
using ECHO to send DOS a Y as if you had typed it in response to the "Are you sure
(Y/N)?" prompt:

ECHO Y I DEL *.*

Use this command sparingly, since it will wipe out all your files.
A similar trick will print the time or date without any user intervention. Just type:

ECHO I MORE I TIME

Normally you'd have to press Enter when you just want to print the time or date
onscreen, since DOS always asks you if you want to change the current settings. ECHO
helps do this for you.

ECHO will trigger the MORE command, which sends a carriage return into the TIME
command. Sounds complicated, but it's actually very simple, and it lets you harness
TIME and DATE without having to be there to bang on the Enter key. You can use this
to redirect the output of TIME and DATE into a log file:

ECHO
ECHO

MORE
MORE

DATE
TIME

FIND 11 C 11 > LOGFILE
FIND "C" >> LOGFILE

558 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

REM

The extra FIND command screens out the DOS update requests and cleans up
LOGFILE by looking only for the lines with the word "Current .. in them and tossing
anything else. Without them you• d end up with a file that looked like: ·

Current date is Sun 1-14-1990
Enter new date (mm-dd-yy) :
Current time is 2:47:36.80
Enter new time:

Format: REM [message]

REM lets you add comments and titles to your batch files.
It will display up to 123 characters of text following the word REM - but only when

ECHO is on. When ECHO is off, DOS won•t display anything. Under version 2.x, you
could put a period in the first column and follow it with a text message to add remarks
to your batch files, but Microsoft removed this from version 3.x.

To include a DOS operator symbol (such as I, <,or >) in the remark, enclose the symbol
in quotes, e.g.:

REM 11 111 is the Piping Symbol

The text following REM may actually be longer than 123 characters, but DOS will
display only the first 123 when ECHO is turned ON.

You can also add comments to your batch files by prefacing them with a colon and
treating them as unreferenced labels - labels for which there is no corresponding GOTO
command (see GOTO). DOS treats any line beginning with a colon as a label, and won•t
display it or process it regardless of whether ECHO happens to be ON' or OFF. (This
means you don •t have to wrap operators such as I or < inside quotation marks when using
them as label-type comments.) Comments can be far longer if you treat them as labels
than if you preface them with REMs.

If you do use labels to insert comments, be sure that the first word of the comment is
not the same as any of the real labels paired with a GOTO statement. DOS always starts
searching for labels at the beginning of a batch file, and will stop as soon as it finds a
match. If you have two identical labels in the same batch file, DOS will always jump to
the first one and will never get around to any others with the same spelling.

DOS 2.x was fussy about having labels begin at the left edge of the screen, and it
insisted that colons be in column 1. DOS 3.x, 4.0, and 5.0 are far more liberal.

Some users include a REM and the name of the batch file in each batch file:

ECHO OFF
REM This is DIRSORT.BAT
DIR I SORT

Batch Techniques 559

Not too many people ever want their REM statements to display, and most generally
use colons instead to fool DOS into treating remarks like labels, which never print
onscreen.

If you do want to print a message, ifs probably better to use ECHO. But if you insist
on sticking with REM, you can eliminate the actual word REM from the display. Just
add a string of backspaces after the word REM. You can't do this when using COPY
CON to create your batch files, since DOS uses the backspace key for making corrections.
But any word processor that allows embedded control codes (such as WordStar) makes
the process a snap. With WordStar you can enter a backspace by typing Ctrl-P then Ctrl-H.

If your word processor can't imbed ASCII character 8 backspaces in your file, try
running the following BASIC program, which will create a REMLESS.BAT demonstra
tion file:

100 ' REMLESS.BAS - creates REMLESS.BAT test batchfile

110 OPEN "REMLESS.BAT" FOR OUTPUT AS #1

120 PRINT #1,"CLS"

130 PRINT #1,"REM this is a remark"

140 PRINT #1,"REM";STRING$(3,8);"this is a REMless remark"

150 CLOSE:END

GOTO

Format: GOTO [:]LABEL

This is a powerful command that sends control of a batch file (or branches) to another
location in the batch file identified by a unique label.

A batch file label is simply a string of characters with a colon prefix in the leftmost
column. (DOS 2.x is fussier than later versions about what constitutes the leftmost
column; under 2.x the colon has to be at the very left edge of the screen. Version 3.x
simply wants a colon as the first character, and can handle leading spaces and indenta
tions.) The rules for naming labels are virtually the same as for naming files, except that
for some reason, DOS version 3.x accepts question marks as labels. If you ran the
following QUESTION.BAT batch file using version 3.x:

ECHO OFF
ECHO This is the first line
GOTO ???
ECHO This middle line won't appear
:???
ECHO This is the bottom line

The middle line won't ever appear, since the GOTO??? command skips around it and
jumps execution directly to the:??? label. However, other illegal filename characters
such as<>[]j;,*=." won't work.

560 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

Run QUESTION.BAT under version 2.x, however, and DOS would display the first
line onscreen but stumble over the ??? and print a "Label not found" error message. If
DOS scans all the way through a batch file and can't locate a label specified by a GOTO
command, it prints this message and stops the batch file in its tracks.

If you hadn't exactly matched the NONSTOP.BAT label with the reference in the
GOTO command:

ECHO OFF
:TOPP
DECIDE
GOTO TOP

or

ECHO OFF
:TOP
DECIDE
GOTO

or

ECHO
OFF
:TOP
DECIDE

each example would run the DECIDE program once then grind to a halt.
It's smart to give your labels names that help you debug, enlarge, or otherwise adapt

them later. So you'd be better off changing QUESTION.BAT to read:

ECHO OFF
ECHO This is the first line
GOTO CONTINUE
ECHO This middle line won't appear
:CONTINUE
ECHO This is the bottom line

DOS is fussy about not allowing reserved devices names (such as CON and NUL) in
filenames, so it won't let you create a file such as NUL.BAT or PRN.TXT. But you can
use these as batch labels. So the RESERVED.BAT file:

ECHO OFF
GOTO CON
:NUL
ECHO This is NUL
GOTO PRN
:AUX
ECHO This is AUX
GOTO END
:CON
ECHO This is CON
GOTO NUL
ECHO This is the right place
:PRN
ECHO This is PRN
GOTO AUX
:END

Batch Techniques 561

would print out:

This is CON
This is NUL
This is PRN
This is AUX

When DOS hunts for labels it starts at the top of the batch file and works down toward
the end. So if you try the following NEVER.BAT batch file with duplicate labels:

ECHO OFF
GOTO LABELl
REM Dummy line
:LABELl
ECHO It will print this
GOTO END
:LABELl
ECHO It will never print this
:END

when DOS sees the GOTO LABEL 1 label it will jump to the first instance ofit and never
get to the second one. Even if you moved the GOTO command below the first occurrence
of the label it specifies:

ECHO OFF
REM Dummy line
:LABELl
ECHO It will keep printing this
GOTO LABELl
:LABELl
ECHO It will never print this
:END

DOS will still circle back to the beginning of the file and jump to the first :LABEL 1 label.
In this particular case it would display the "It will keep printing this" line and then loop
back endlessly - or at least until you type Ctrl-C or Ctrl- ScrollLock and then Y to stop
it.

While you can use very long label names in your batch files, such as:

:THIS IS WHERE THE PROGRAM WILL GO NEXT

all that DOS really cares about is the first eight letters, not including the colon, which
isn •t actually part of the label.

562 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

So under version 3.x, 4.0, and 5.0, running the LONG.BAT batch file:

ECHO OFF
GOTO THIS IS
GOTO END
:THIS IS WHERE THE PROGRAM WILL GO NEXT
ECHO Yes, the program did get here.
:END

will print out:

Yes, the program did get here.

since DOS whittles the THIS_IS_ WHERE_ THE_PROGRAM_ WILL_ GO _NEXT label
down to THIS_IS_.

Unfortunately, different versions of DOS handle long label names differently. While
DOS 3.x truncates extra long labels, DOS 2.x doesn't. Under version 2.x, the long

:THIS IS WHERE THE PROGRAM WILL GO NEXT

label is totally different from:

:THIS IS

So under 2.x, running the above batch file would simply display "Label not found."
If you tried using long, similar label names, in the following variation of the above

NEVER.BAT batch file under 3.x, 4.0, or 5.0:

ECHO OFF
GOTO LONGLABELl
REM Dummy line
:LONGLABEL2
ECHO This is the wrong place.
GOTO END
:LONGLABELl
ECHO This is the right place.
:END

DOS would print out:

This is the wrong place.

because it would interpret the GOTO LONGLABELl command simply as GOTO
LONGLABE, and truncate the :LONGLABEL2 label (which is ten characters long) to
simply LONGLABE. So to this version of DOS, the NEVER.BAT batch file really looks
like:

ECHO OFF
GOTO LONGLABE
REM Dummy line
:LONGLABE
ECHO This is the wrong place.
GOTO END
:LONGLABE
ECHO This is the right place.
:END

Batch Techniques 563

But try to run this new NEVER.BAT batch file under DOS 2.x and all you'll get is a
nasty "Label not found" error, since DOS will chop off the end of the instruction "GOTO
LONGLABELl" and tum it into "GOTO LONGLABE." It will then scan through the
batch file looking for a ":LONGLABE" label but will find only ":LONGLABELl" and
":LONGLABEL2" and it will consider these to be different from plain old
":LONGLABE."

If you shortened the labels in NEVER.BAT down to the maximum eight characters
long:

ECHO OFF
GOTO LONGLBLl
REM Dummy line
:LONGLBL2
ECHO This is the wrong place.
GOTO END
:LONGLBLl
ECHO This is the right place.
:END

and then ran it under any version of DOS, you'd see:

This is the right place.

Be sure to put a colon in the leftmost column when you actually use a label on a line
by itself to tell the batch file where to jump. You don't have to attach the colon to the
label name in the GOTO command, but it won't hurt. The original NONSTOP.BAT batch
file could would work either way:

ECHO OFF
:TOP
DECIDE
GOTO TOP

(no colon)

or

ECHO OFF
:TOP
DECIDE
GOTO :TOP

(colon)

564 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

Batch files often boast multiple GOTO commands that share the same label destination.
It's common practice to end complex batch files with an ••:END" label and include lots
of different GOTO END commands that will jump execution there when appropriate.

DOS doesn •t mind if you include' labels in your batch files that aren't matched with
GOTO commands. Such unreferenced labels are treated as REM statements, except that
DOS will never display them. (It will display REM statements if ECHO is turned on.)

Labels are not case sensitive, so a batch file such as:

:top
ECHO This line will keep printing.
GOTO ToP

will loop until you press Ctrl-C or Ctrl-ScrollLock. Later you ·n see how useful this can
be in branching user input to the right label without having to do all sorts of repetitive
tests for TOP, top, Top, ToP, TOp, toP, etc.

If your batch file does contain an error such as a missing label, DOS won't detect the
mistake unless it tries unsuccessfully to execute it. So a batch file like:

ECHO OFF
GOTO END
GOTO ABCD
:END
ECHO This is the end

will execute flawlessly, since DOS will never have the chance to see that the :ABCD
label is missing.

You may mix GOTO commands with conditional IF commands:

IF %l==RED GOTO COLOR

or:

IF NOT ERRORLEVEL 255 GOTO END

This lets you include provisions for many different potential user responses or system
configurations in one large batch file, and branch to the one that's appropriate.

You can easily exploit the case-insensitivity of labels. It's common to ask a user to
enter information from the command line and then have your batch file process this
information so it can branch properly. This is usually done by handling the user input as
a replaceable parameter (such as % 1 or %2) and then passing it through a series of IF
% 1 ==STRING tests. If the user entered a parameter n characters long, you would
normally have to set up 2 An tests to trap every possible combination of uppercase and
lowercase letters.

Batch Techniques 565

Even if the user entered a three-letter parameter from the command line, you'd have
to examine eight potential variations. If you were testing for JFK to julrip to the
:AIRPORT label, this would mean a cascade of tests:

IF %1==JFK GOTO AIRPORT
IF %1==JFk GOTO AIRPORT
IF %1==JfK GOTO AIRPORT
IF %1==jFK GOTO AIRPORT
IF %1==jFk GOTO AIRPORT
IF %1==jfK GOTO AIRPORT
IF %1==j fk GOTO AIRPORT

And all these tests are for just one possible user parameter. If you had to test for other
airports the batch file would quickly grow long and porlderous.

Because labels are case-insensitive, you could eliminate all these tests by having one
"dispatcher" line at the beginning of your batch file:

GOTO %1

You'd then make the label names the same as the parameters that the user might enter.
So if you had a :JFK label (or one spelled :jfk or :Jfk, etc.) in a batch file called
FLIGHT.BAT, and the user entered:

FLIGHT JFK

or:

FLIGHT jfk

or even something like:

FLIGHT jFk

the GOTO % 1 dispatcher would branch immediately ta the :JFK label without having to
wade through dozens of tests.

However, while the IF % 1 ==STRING method lets you screen out every possible right
or wrong entry, a GOTO % 1 command won't test for invalid entries or errant keystrokes.
If a label exists that exactly matches the letters in the parameter the user ~ntered, the batch
file will jump execution to it. But if the user entered a parameter for which there was no
matching label, DOS would panic, print a "Label not found" error message, and abort
the batch file.

566 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

CALL

Format: CALL [d:][path]tilename

Starting with version 3.3, this lets you execute one batch file from inside another and
return execution to the original batch file· when the second one finishes. When DOS
returns command to the original batch file it will jump to the line immediately following
the CAL~ .. Beginning with version 2.x, users had been able to nest batch files by using
COMMAND /C to load additional command processors, but this had environment
drawbacks, and ate up unnecessary space.

Each time you load another command processor, it makes the default ECHO ON. This
means that if you tum ECHO OFF in the first line of a batch file, and then use
COMMAND /C to load a second batch file, you '11 have to include a second ECHO OFF
in the second batch file to keep DOS from cluttering up your display. But when you use
CALL the ECHO state is maintained in any nested batch files so you don't have to keep
resetting it.

However, COMMAND /C has its uses. While DOS claims you can't nest FOR
commands, you can do it by inserting a COMMAND /C at the right place. This technique
won't work with CALL.

Both COMMAND /C and CALL let you nest batch files several levels deep. You may
have a batch file CALL itself, so long as you're certain you'll be able to exit properly
and avoid an endless loop.

If you have a file on your disk called BATCH I .BAT:

ECHO OFF
ECHO This is BATCHl.BAT
COMMAND /C BATCH2
ECHO Now you're back to BATCHl

and another one called BATCH2.BAT:

ECHO OFF
ECHO Now you're in BATCH2.BAT

and you run BATCHl.BAT in any version of DOS 2.0 or later, DOS will:

1. Start executing BATCHI.BAT by turning ECHO OFF and.printing just the .. This is
BATCHl.BAT" message.

2. Load a second copy of COMMAND.COM.
3. Have this additional copy of COMMAND.COM start running BATCH2.BAT.
4. Tum ECHO OFF and print just the "Now you 're in BATCH2.BAT" message.
5. Exit both BATCH2.BAT and the second copy of COMMAND.COM.

· 6. Return to BATCHl.BAT.
7. Print the final "Now you're back to BATCHl" message.

Batch Techniques 567

This will take a few seconds, since DOS has to find a copy of COMMAND.COM to
load, read it off the disk into memory, and then load and run the second batch file. The
whole process will look like:

C>ECHO OFF
This is BATCHl.BAT

C>ECHO OFF
Now you're in BATCH2.BAT
Now you're back to BATCHl

If you're using a DOS version 3.3 or later, you can change BATCHl.BAT to read:

ECHO OFF
ECHO This is BATCHl.BAT
CALL BATCH2
ECHO Now you're back to BATCHl

This time DOS doesn't have to hunt for a version of COMMAND.COM to load. And
it doesn't need the additional ECHO OFF at the beginning of BATCH2.BAT. The process
takes far less time and will look like:

C>ECHO OFF
This is BATCHl.BAT
Now you're in BATCH2.BAT
Now you're back to BATCHl

If you try the COMMAND /C version, be sure you have a copy of COMMAND.COM
handy for the batch file to load. And also note that when you load a seeondary command
processor you have to tum ECHO OFF again in the second batch file.

DOS is very liberal about handling different COMMAND /C syntaxes. All of the
following versions will work identically:

• COMMAND /C BATCH2
• COMMAND/C BATCH2
• COMMAND /CBATCH2
• COMMAND/CBATCH2

Don't assume that DOS will be so cavalier about spacing with most other commands.
It's not.

568 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

Fast Exits

Users often want to have DOS treat direct calls to batch programs the same way it handles
other executable commands from within batch files - as subroutines. You can call
another batch file by loading a secondary command processor that runs the second batch
file and' then returns to the first, or you can use CALL to tum batch branches into
subroutines (in versions 3.3 or above).

However, calls to executable programs and system commands always act as subroutine
calls, returning processing to the next line in the batch file. Many times ifs necessary for
a batch file to branch to one other command after an IF test and then exit. This is usually
done with a cumbersome and clutter-producing GOTO command that branches to another
part of the batch program, runs the desired command, and then branches again to a
common exit point, such as a final line called :END.

All this branching, especially in long batch programs, can be time-consuming and
confusing to edit. An quick alternative is to capitalize on DOS's absolute branching
feature by calling a batch file that simply runs a program or an internal DOS command
and then quits. A tiny DO.BAT batch file can accomplish this for you with just one line:

@%1 %2 %3 %4

(The initial @ will prevent the line from displaying, and works only in versions 3.3 or
later. Omit it if you're using an older version of DOS.)

This technique works very quickly. Just have an IF test (or an IF ERRORLEVEL
check) branch to an executable DOS command or COM or EXE program and then quit.

As an example, you could use DO.BAT in a program called #.BAT that displays either
a selected phone number or your entire phone list, depending on whether you specify a
parameter when you run it. So:

Nixon

or:

(212)

would find all listings with Nixon or (212) in them, while:

by itself would display the entire list. The batch file looks like:

ECHO OFF
REM #.BAT
IF %1!==! DO TYPE C:\DATA\PHONE.DAT
FIND "~1" C:\DATA\PHONE.DAT

Batch Techniques 569

Of course, #.BAT is short and doesn't really need such a trick. But DO.BAT does save
time and space. Without it, the original batch file would have been written:

ECHO OFF
REM #.BAT
IF !%1==! GOTO SEELIST
FIND 11 %1 11 C:\DATA\PHONE.DAT
GOTO END
:SEELIST
TYPE C:\DATA\PHONE.DAT
:END

You can adapt this technique with two other speedy batch files - ABORT.BAT and
COMPLETE.BAT - that can branch absolutely. These will quickly quit any batch file
after an IF check, with the option of including a message:

REM ABORT.BAT
IF NOT %1!==! ECHO %1 %2 %3 %4 %5 %6 %7 %8 %9
ECHO Operation aborted.

REM COMPLETE.BAT
IF NOT %1!==! ECHO %1 %2 %3 %4 %5 %6 %7 %8 %9
ECHO Operation completed.

So you can have a line in your program like:

IF NOT EXIST ABC ABORT ABC not found.

If DOS doesn't find ABC, the batch file will quit without executing any GOTO statements
and display:

ABC not found.
Operation aborted.

If the words after ABORT had been omitted, then the only closing message would be
"Operation aborted ...

You can combine the two techniques into one big #.BAT batch file:

ECHO OFF
REM #.BAT
IF NOT EXIST ABC ABORT ABC not found.
IF %1!==! DO TYPE C:\DATA\PHONE.DAT
FIND 11 %1 11 C:\DATA\PHONE.DAT

570 DOS Power Tools,. 2nd Edition, Revised/or DOS 5.0

In this case, whether or not you type anything after the #, the program simply won't
proceed if ABC isn't on your disk. If you create a dummy ABC file (that contains just
the word REM), the program will bypass this test and look up numbers with aplomb. If
you erase ABC, all you '11 get is the:

ABC not found.
Operation aborted.

message and the #.BAT file will grind to a halt.
These examples assume that you have a list of your phone numbers called

PHONE.DAT in your C:\DATA directory, and that this file is in a form, with each entry
on one line with a carriage return at the end of it, that FIND can handle.

Passing Parameters

You may pass parameters from one batch file to another. Just include a parameter after
the filename on the line with the CALL or the COMMAND /C.

If you had a file on your disk called TESTl .BAT:

@ECHO OFF
ECHO this is TESTl
CALL TEST2 TESTPARM
ECHO Back to TESTl

and another called TEST2.BAT that was called by TESTl.BAT:

ECHO This is TEST2
ECHO %1

if you ran TEST 1, you• d see:

This is TESTl
This is TEST2
TESTPARM
Back to TESTl

The first batch file passed the parameter TESTP ARM to the second by including it
after the name of the file it called. The second batch file picked up the parameter with
%1.

If you're using a version of DOS earlier than 3.3, substitute COMMAND /C in place
of CALL, and add an additional ECHO OFF line at the very beginning of TEST2.BAT.

You can make this process more useful by blitzing out parameters repeatedly with a
FOR command.

If you run the following FIL I .BAT batch file:

@ECHO OFF
Echo Starting out in FILl.BAT
FOR %%A in (*.BAK) DO CALL FIL2 %%A
ECHO Back to batch file #1

the third line will CALL the next FIL2.BAT batch file:

ECHO OFF
ECHO ***********************
ECHO Now you're in FIL2.BAT
ECHO The contents of %1 are:
TYPE %1
ECHO ***********************
PAUSE

Batch Techniques 571

and pass parameters from FILl .BAT to FIL2.BAT using the % %A in FILI.BAT and the
%1 in FIL2.BAT.

FILI.BAT will seek out all the files that have BAK extensions and FIL2.BAT will
ECHO the name of each one and then use TYPE to display the contents of each one.
After FIL2.BAT has displayed the last *.BAK file, it will stop running and DOS will
return command to the line in FIL 1.BAT following the line with the CALL. If you try
this yourself and you·re using an older version of DOS, substitute COMMAND /C for
CALL.

Later you •ll see how you can construct some very useful disk management utilities by
combining FOR commands with CALL or COMMAND /C.

You can also pass values to other batch files without having to first load them with
COMMAND /C or CALL. Just use SET to store the value as an environment variable.

You can have your batch files detect whether any specified settings are currently in
force with a test like:

IF %MONITOR%!==! GOTO NOSETTNG

You could test to see if you had previously set any variables, check the validity of the
setting, and act on it with a batch file like this:

ECHO OFF
IF %MONITOR%!==! GOTO SETMON
IF %MONITOR%==MONO GOTO GREENCOL
IF %MONITOR%==mono GOTO GREENCOL
IF %MONITOR%==COLOR GOTO NORMLCOL
IF %MONITOR%==color GOTO NORMLCOL
ECHO %MONITOR% monitor setting invalid
GOTO END

572 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

:SETMON
ECHO No monitor variable in use
GOTO END
:GREENCOL
ECHO Mono attribute setter would go here
GOTO END
:NORMLCOL
ECHO Color setter would go here
:END

FOR ... IN ... DO

This integrated trio allows repeated execution of a command on a specified set of files.
The format is :

FOR %%variable IN (set) DO command [%%variable]

inside batch files, and:

FOR %variable IN (set) DO command [%variable]

outside of batch files. (Note that you use double % % signs inside batch files and single
% signs outside batch files.)

%%variable and %variable are variable names, generally single letters such as %%a
or %Z. You can•t use the digits 0-9 for variable names, since DOS reserves these for
replaceable parameters.

(set) is the filespec or collection of filespecs that DOS will act on, and can be a wildcard
such as:

(*. *)

or:

(*.BAK)

or a group of files such as:

(MORE.ASM MORE.OBJ MORE.COM)

So a batch file command such as:

FOR %%A IN (*.*) DO DEL %%A

Batch Techniques 573

would erase all the files in your directory one by one without asking for a confirming:

Are you sure (Y/N)?

the way DEL *. * does.
However, a batch file that used a FOR command to delete all your files would end up

erasing itself, and you'd get a "Batch file missing .. error message. To avoid this, put a
drive letter or path in front of the *. * and run it from another directory or drive.

To see a directory listing of all you COM and EXE files, you· d type:

FOR %%A in (*.COM *.EXE) DO DIR %%A

Be sure to add the final %%A. If you leave it off, DOS won't do a DIR *.COM and a
DIR *.EXE. Instead it will just do a plain old DIR, since there wouldn't be any parameters
after it. When you don't enter any parameters after DIR, DOS assumes you mean:

DIR *.*

The command:

FOR %%A in (*.COM *.EXE) DO DIR

would sniff out all the files that ended in COM and EXE, but would end up doing the
same repeated DIR *. * listing for each occurrence of a COM or EXE file. So if there are
two COM files and three EXE files, DOS will do a DIR *. * command five times. You
must add the % %variable command onto the end for the FOR command to act on what
you've specified in the (set).

Be sure that the % % variable matches in case at the beginning and end of the line:

FOR %%A IN (*.BAK) DO DEL %%A

and:

FOR %%a IN (*.BAK) DO DEL %%a

will erase all your BAK files, but:

FOR %%a IN (*.BAK) DO DEL %%A

and:

FOR %%A IN (*.BAK) DO DEL %%a

won't.

574 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

If you had a lot of quarterly expense reports on your disk, with names like
88QlEXP.RPT, 88Q2EXP.RPT, 88Q3EXP.RPT, 88Q4EXP.RPT, 87Q4EXP.RPT,
87Q3EXP.RPT, 87Q2EXP.RPT, and 87Q1EXP.RPT, and you wanted to print out just
the ones from the first and sec0nd quarters, you could run a batch file with the single line:

FOR %%A IN (1 2) DO COPY 8?Q%%AEXP.RPT PRN

DOS would replace the ? with the last digit of the year (7 or 8) and replace the % %A
with 1or2.

One of the simplest and most useful FOR applications can check to see whether you've
backed up your files, and will make backup copies only when you haven't. Just create a
one-line batch file, called BACKCHEK.BAT:

, FOR %%A IN (*.*) DO IF NOT EXIST B:%%A COPY %%AB:

This is far from the perfect backup tool, since it won't copy newer versions of files over
older ones, or pause when your B: diskette is full and prompt you to fnsert another floppy.
And it works within one directory only. But it can come in handy for quick brute-force
backups and puts a lot of DOS intelligence into one line.

By adding replaceable parameters you can enhance this one-line backup command to
accept filespecs from the command line and copy files to another disk or subdirectory
only if they're not already there. The following COPYFAST.BAT batch file will do it:

ECHO OFF
IF %2!==! GOTO HELP
ECHO Copying files from %1 that are not already on %2
CTTY NUL

' FOR %%A IN (%1) DO IF NOT EXIST %2%%A COPY %%A %2
CTTY CON
GOTO END
:HELP
ECHO %0 copies files from a source disk or directory to a
ECHO destination if they're NOT already on the destination.
ECHO Syntax: %0 *·* c:
ECHO %0 *.DOC \suqdir
ECHO You must be in the directory you want to copy from.
:END

This batch file uses CTTY NUL to disconnect the keyboard and screen temporarily so
you don't see a long line of" 1 File(s) copied" messages. The CTTY CON command puts
things back the way they were. Unfortunately, if something goes wrong after the CTTY
NUL but before the CTTY CON has a chance to return control to you, you'll be locked
out of your system. If you want to avoid this potential problem, without having to concoct
a scheme. where this batch file loads another batch file, just remove the two lines that
begin with CTTY.

Batch Techniques 575

You can adapt this technique to help make various directory chores a whole lot easier.
For instance, if you want to compare the contents of two disks or a disk with a subdirectory
to see which files are in one and not in the other, you can use the UNIQ.BAT batch file:

ECHO OFF
IF %2!==! GOTO HELP
ECHO Files on %1 but not on %2
FOR %%A IN (%1*.*) DO IF NOT EXIST %2%%A ECHO %%A
ECHO Files on %2 but not on %1
FOR %%A IN (%2*.*} DO IF NOT EXIST %1%%A ECHO %%A
GOTO END
:HELP
ECHO %0 lists files that are not on both disks
ECHO Syntax: %0 A: C: where C: is the default drive
:END

To have UNIQ.BAT tell you what files are on drive C: but not drive B: and vice versa,
just type:

UNIQ C: B:

This won •t work with DOS versions earlier than 3.0, since these can't handle IF EXIST
searches with paths in them.

If you want to log the list of files reported by UNIQ.BAT to disk rather than just
displaying them on the screen, create a small file called LOG .BAT:

ECHO OFF
IF !%2==! GOTO OOPS
COMMAND /C UNIQ %1 %2 > LOGFILE
GOTO END
:OOPS
ECHO Syntax: %0 A: C: where C: is the default drive
:END

Combining the FOR command with both replaceable parameters and environment
variables gives it real power. If your path included the root directory (which is why the
NOT test is required) and it specified subdirectories on one disk only, a batch file called
PATHDIR.BAT containing the command:

FOR %%A IN (%PATH%} DO IF NOT %%A==C:\ DIR %%A\%1

would let you find all your COM files in all the subdirectories in your PA TH by typing:

PATHDIR *.COM

576 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

DOS would replace the %PATH% variable with the actual list of subdirectories
specified by your PA TII command, and the FOR command would perform a DIR search
through each for any *.COM files. Elements in the set must be separated by delimiters
such as spaces, but the semicolons used in path specifications will work admirably.

To use the FOR command directly at the DOS prompt, replace the twin % % signs with
single % signs. However, double % % signs are required for use in batch files.

DOS won't normally let one FOR command execute another FOR command. Try it
and DOS will print a "FOR cannot be nested" error message. However, you can make an
end run around this restriction by having the first FOR load a secondary command
processor right before the second FOR.

If you try nesting these without COMMAND /C in a batch file called FOR
NESTl.BAT:

FOR %%A IN (1 2) DO FOR %%B IN (A B) DO ECHO %%A %%B

you'll just get a "FOR cannot be nested" error message. But create a file called
FORNEST2.BAT that adds a COMMAND /C to invoke a secondary command proces
sor:

FOR %%A IN (1 2) DO COMMAND/C FOR %%B IN (A B) DO ECHO %%A %%B

and sure enough DOS will execute it, nest the two commands, and print:

C>FOR %A IN (1 2) DO COMMAND/C FOR %B IN (A B) DO ECHO %A %B

C>COMMAND/C FOR %B IN (A B) DO ECHO 1 %B

C>ECHO 1 A

1 A

C>ECHO 1 B

1 B

C>COMMAND/C FOR %B IN (A B) DO ECHO 2 %B

C>ECHO 2 A

2 A

C>ECHO 2 B

2 B

You could reduce the clutter a bit by adding an initial ECHO OFF, but this won't
suppress the bulk of the display since DOS turns ECHO back on when it loads the second
copy of COMMAND.COM. This nesting technique works only with COMMAND /C,
so if you're using a DOS version 3.3 or later, don't try replacing the COMMAND /C with
CALL.

Batch Techniques 577

Commands like COPY and DIR don •t take multiple arguments. A way around this is
to have DOS execute the command multiple times, each with a different argument. For
example, to copy all COM and EXE files to a floppy disk, you could type directly at the
DOS prompt:

FOR %F IN (*.COM *.EXE) DO COPY %FA:

While this works, DOS will grind through the process one file at a time rather than
ganging things up as it does with wildcards.

Using a FOR loop on the command line isn •t limited to just filenames. Commands can
also be used as FOR loop variables as in:

FOR %C IN (COPY ERASE) DO %C A:*.EXE

to copy .EXE files from a floppy disk, then erase them from the disk.
Another way to do multiple copies on the same command line is to use piping. The

following command will copy all your COM and EXE files to drive A:

COPY *.COM A: I COPY *.EXE A:

PAUSE

Format: PAUSE [message]

This momentarily halts exect1tion. Nothing more.
PA USE is helpful if you have to change disks, turn on a printer, or perform some other

time-consuming task, since it puts the batch file on hold until you press a key to continue:

ECHO Put a blank formatted
ECHO diskette in drive A:
PAUSE

Used on a line by itself, this command temporarily halts the batch file execution, then
prints a .. Strike a key when ready ... ••message, and waits for the user to press any nonshift
key other than Ctrl-C or Ctrl-ScrollLock. If the user presses either of those "break" key
combinations the process aborts and DOS displays the usual interruption message
.. Terminate batch job (Y/N)?".

If you type Y or y DOS will abort the batch file and return you to whatever you were
doing before. If you type N or n, DOS will continue running the batch file as if nothing
had happened. Press any other key and DOS will stubbornly repeat the .. Terminate ... ••
message.

It's possible to put a message after the word PAUSE, but this message displays only
when ECHO is off, which means that the user also sees the DOS prompt and the word
PAUSE. Very unsightly.

578 DOS Power Tools, 2nd Edition, Revisedfor DOS 5.0

Users of version 3.x and later can replace the normal "Strike a key when ready"
message with an ECHO command and then redirect the normal PAUSE output to NUL
with a trio of lines like:

ECHO OFF
ECHO Make sure your printer is on, then press any key
PAUSE > NUL

but this won•t suppress the "Strike" message on older versions. If users of DOS 2.x want
to display a message, they can at least prevent the word PAUSE from showing up
onscreen by putting five backspaces directly after it. They can add backspace characters
usbg most good word processors (with WordStar, for example, they•d simply type Ctrl-P
Ctrl-H five times).

Replaceable Parameters

%0 %1 %2 %3 %4 %5 %6 %7 %8 %9

These handy tools let batch files use text entered on the DOS command line to control
how the batch files work or display custom messages and prompts.

When you execute a batch file, DOS scans the command line, looks for delimiters such
as spaces, equals signs, semicolons, commas, and tabs that separate what you entered
into discrete chunks, and then assigns the text that makes up these chunks to ten variables
- %0 through %9.

DOS can handle up to 127 characters typed on the command line. If you enter more
than nine separate clumps of text after the name of a batch file, DOS can •t immediately
assign replaceable parameters to anything past the ninth one. But by using the SHIFf
command, you can have DOS gradually work its way through them all.

If you enter fewer than nine discrete parameters after the name of the batch file, DOS
assigns null strings that are zero characters long to any variables for which there isn •t
any text.

The first discrete chunk of text is assigned to %0. This is always the name of the batch
file itself. The next is assigned to % 1, and the one after that to %2, etc.

If you run the simple ENDLESS.BAT batch file, the sole contents of which are the
two characters:

%0

DOS will substitute the name of the :batch file itself - ENDLESS - for the %0, and
then execute it, which will rerun itself until you press Ctrl-C or Ctrl-ScrollLock and then
type Y to stop.

When DOS replaces the variables with the actual text from the command line, ifs
sensitive about spacing. So if you created a batch file called OVER.BAT:

%1%2%3%4 %1 %2 %3 %4

Batch Techniques 579

and then ran it by typing:

OVER 0 V E R

DOS would keep repeating the batch file endlessly since it would concatenate the 0, the
V, the, E, and the R that you entered after the batch file name itself, and lump them
together into OVER.

You can display all the replaceable parameters you entered with the following short
SEEALL.BAT batch file:

ECHO OFF
FOR %%A IN (%0 %1 %2 %3 %4 %5 %6 %7 %8 %9) DO IF NOT
%%A!==! ECHO %%A

If you type in just SEEALL, all you '11 get is:

SEEALL

But enter something like:

C>SEEALL 12345 abc LMNOP ! ! ! ! ! ! !

and the batch file will print out:

SEALL
12345
abc
LMNOP
! ! ! ! ! ! !

If you have ANSI.SYS loaded, and you use a color monitor and like white back
grounds, but you sometimes want black text, red text, or blue text, you could create a file
called TEXT.BAT:

ECHO OFF
IF %1!==! GOTO OOPS
GOTO %1
:OOPS
ECHO Enter %0 BLUE or %0 RED or %0 BLACK
GOTO END
:BLUE
ECHO ESC[0;47;34rn
GOTO END
:BLACK
ECHO ESC[0;47;30rn
GOTO END

580 DOS Power Tools, 2nd Edition, Revisedfor DOS 5.0

:RED
ECHO ESC[0;47;31m
:END

Note: Don't type this in exactly as shown - instead, substitute the actual Esc character,
decimal ASCII 27 (or hex lB) in place of the three occurrences of "ESC." Also, be sure
your CONFIG.SYS file includes a line like:

DEVICE=ANSI.SYS

If you've loaded ANSI.SYS and have inserted actual Esc characters in place of each
ESC, you can change your foreground color to red simply by typing:

TEXT RED

just as shown, or in mixed case or lowercase - it doesn't matter.
Typing TEXT BLACK will give you black text on a white background, and TEXT

BLUE will yield blue letters against white. However, if you typed simply:

TEXT

without any color after it, TEXT.BAT would print out instructions on how to use this
file, and quit. You• d see something like:

Enter TEXT BLUE or TEXT RED or TEXT BLACK

The line that prints the instructions:

ECHO Enter %0 BLUE or %0 RED or %0 BLACK

uses %0 rather than the name TEXT.BAT, so if you rename TEXT.BAT to something
like FOREGRND.BAT or COLORSET.BAT the instructions will always print out the
correct new batch filename.

This batch file uses labels that are the same as the replaceable parameters entered by
the user. Labels are not case-sensitive, so this technique eliminates the long list of tests
normally required to see whether a user entered Red, RED, or ReD, for example.

To see whether you did enter a color on the command line, TEXT.BAT uses the line:

IF %1!==! GOTO OOPS

If you entered something like:

TEXT RED

Batch Techniques 581

DOS would assign replaceable parameter % 1 the value RED. It would then replace each
occurrence of % 1 in the batch file with RED, so the test would become:

IF RED!==! GOTO OOPS

Since the characters "RED! .. obviously do not equal the single character"!" the test
fails and the batch file does not jump execution to the :OOPS label.

However, if the user didn't enter any color, and simply typed:

TEXT

on the DOS command line, % 1 would be equal to (nothing) and the test would become:

IF !==! GOTO OOPS

Clearly, •• ! " is equal to "!" so the batch file will execute the command at the end of the
line, which jumps execution to the :OOPS label. The commands at this label will print
instructions on how to use the program and then quit.

You don't have to use exclamation points; any pair of characters will do. The test could
just as easily have been:

IF %1@==@ GOTO OOPS

If you didn't mind slogging through a cascade of case-sensitive tests, and you were
willing to forego tests for unusual capitalizations s4ch as bLuE, you could change the
top of the batch file so that TEXT.BAT looked like:

ECHO OFF
IF %1!==! GOTO OOPS
IF %1==BLUE GOTO COLl
IF %1==blue GOTO COLl
IF %1==BLACK GOTO COL2
IF %1==black GOTO COL2
IF %1==RED GOTO COL3
IF %1=~red GOTO COL3
:OOPS
ECHO Enter %0 BLUE or %0 RED or %0 BLACK
GOTO END
:COLl
ECHO ESC[0;47;34m
GOTO END
:COL2
ECHO ESC[0;47;30m

582 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

GOTO END
:COL3
ECHO ESC[0;47;31m
:END

In this case if the user entered a color that TEXT.BAT wasn •table to handle, such as:

TEXT MAUVE

the batch file would pass the first IF %1!==! test, but fail all six IF %1==COLOR tests.
Execution would ··ran through .. this sieve of tests and end up at the :OOPS label, where
the batch file would display the message about which colors were allowed, and then exit.

Unfortunately, if the user entered:

TEXT Blue

the batch file would think this was a disallowed color, since the only versions of color
entries that TEXT.BAT is prepared to accept are all uppercase and all lowercase. It would
be easy to add an additional test for each color that accepted variations where the first
letter was uppercase and all the remaining ones were lowercase. But then if the user
entered:

TEXT BLue

(which is a common typing mistake), the batch file wouldn•t recognize this variant.
There is a way to get around this (DOS is nothing if not flexible), but it's preposterous.

Add a few lines so the TEXT.BAT file looks like:

ECHO OFF
IF %1!==! GOTO OOPS
ECHO :%1 > TEMPFILE
ECHO COPY %0.BAK %0.BAT >> TEMPFILE
ECHO DEL %0.BAK >> TEMPFILE
COPY %0.BAT %0.BAK > NUL
COPY %0.BAT+TEMPFILE > NUL
DEL TEMPFILE
GOTO %1
:OOPS
ECHO Enter %0 BLUE or %0 RED or %0 BLACK
GOTO END
:BLUE
ECHO ESC[0;47;34m
GOTO END
:BLACK
ECHO ESC[0;47;30m
GOTO END

:RED
ECHO ESC[0;47;31m
:END

Batch Techniques 583

This uses the ECHO command and DOS redirection to create a temporary file called
TEMPFILE containing a brand new label that matches whatever you typed in, as well as
some commands to copy and delete backup versions of the main file. TEXT.BAT then
appends this new file to the end of itself. Since the new file contains a valid label, you
won•t get a .. Label not found .. message.

If you typed in an invalid color such as PUCE, you ·n end up with a meaningless :PUCE
label at the very end that won •t change any colors and is there simply to guard against
error messages. If you typed in a valid color such as RED, you ·n end up with two :RED
labels. However, since (1) this process appends the phony label at the end, (2) DOS starts
looking for labels at the beginning of the file, and (3) DOS will execute the first
occurrence of a label if a batch file contains more than one, TEXT.BAT will jump to the
first :RED label and execute the proper command to set the foreground to red.

This enhancement will clean up after itself by making a backup copy of the original
file, copying this unblemished backup copy onto the changed one, and then erasing the
extra backup. But it•s not really worth it. For one thing, DOS 2.x can become confused
if you enter a label name thaf s longer than eight characters. And this won •t work with
any version of DOS if you enter an invalid label, such as one with a period in it. But it
shows what you can do to get around a DOS bottleneck.

If you had a batch file on your disk called READBACK.BAT:

ECHO OFF
ECHO %0.BAT is the name of the batch file
ECHO %1
ECHO %2
ECHO %3
ECHO %4
ECHO %5

and you entered at the DOS prompt:

READBACK This message

you• d end up with:

C>ECHO OFF
READBACK.BAT is the name of the batch file
This
message
ECHO is off
ECHO is off
ECHO is off

584 DOS Power Tools, 2nd Editi.on, Revised/or DOS 5.0

DOS would substitute "READBACK .. for %0, "This .. for %1, and "message .. for %2.
But since you didn•t enter any other text, DOS would make the parameters %3, %4, and
%5 equal to nothing. When it got around to executing the lines:

ECHO %3
ECHO %4
ECHO %5

DOS would turn them into:

ECHO
ECHO
ECHO

and report the current ON/OFF ECHO state.
To prevent this from happening, you can put an ASCII character 0 at the end of each

of the bottom five lines (by using EDLIN to create READBACK.BAT and pressing the
F7 key and the end of each line).

Adding a character 0, which will appear onscreen as a blank, to each line will make
sure that DOS will ECHO something and not interpret a missing parameter as just an
ECHO command on a line by itself.

DOS can handle up to nine replaceable parameters %1 through %9 in one gulp, and
will always replace %0 with the name of the batch file itself Gust as it was entered at the
DOS prompt). If you want to use more than nine replaceable parameters you have to use
the SHIFI' command.

SHIFT Parameters

Each time DOS executes the SHIFI' command it moves each replaceable parameter down
in value one notch. So the value that was stored as %3 moves down and becomes %2,
and the value stored at %2 becomes % 1, and % 1 becomes %0 (which originally held the
name of the batch file). Each time you execute SHIFI' the old %0 value disappears.

If you had a batch file called SHIFI'IT .BAT:

ECHO OFF
ECHO %0 %1 %2 %3
SHIFT
ECHO %0 %1 %2 %3
SHIFT
ECHO %0 %1 %2 %3
SHIFT

and you typed:

SHIFTIT A B C D

DOS would print:

C>ECHO OFF
SHIFTIT A B C
A B C D
B C D

as it shifted all the parameters down one by one.

Batch Techniques 585

In the first line DOS replaced %0 with the name of the batch file and printed three of
the four letters entered on the command line. After the first shift, the name of the batch
file disappears as DOS moves everything down a notch, but this time the batch file prints
the fourth parameter entered on the command line (the D) even though the fourth
parameter didn't appear the first time.

If you want to preserve the name of the batch file itself when using the SHIFf
command, you have to set an environment variable as this new SHIFfIT2.BAT batch
file does:

ECHO OFF
SET NAME=%0
ECHO %0 %1 %2 %3
SHIFT
ECHO %NAME% %0 %1 %2 %3
SHIFT
ECHO %NAME% %0 %1 %2 %3
SHIFT
SET NAME=

DOS will still wipe out the name of the batch file originally stored as %0 the first time
it executes the SHIFf command, but it will still be able to remember and display it since
you stored it as an environment variable called NAME with the:

SET NAME=%0

command, and then dredged it back up when you used the:

ECHO %NAME%

command. This time, using the same four parameters after SHIFTIT2.BA T:

SHIFTIT2 A B C D

would yield:

C>ECHO OFF
SHIFTIT2 A B C

586 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

SHIFTIT2 A B C D
SHIFTIT2 B C D

retaining the name of the batch file each time even though the SHIFT command wrote
over it. Unfortunately, because of a DOS bug, environment variables won't work in
version 3.0.

The SHIFT command can read as many parameters off the command line as you
entered, and you can type in only 127 characters including the name of the batch file
itself. If your batch file had a name that was just one letter long and you entered only
single-character parameters, with spaces between them, you could have SHIFT squeeze
out 63 of them. The MAXSHIFf .BAT batch file below:

ECHO OFF
:TOP
IF %1!==! GOTO END
ECHO %1
SHIFT
GOTO TOP
:END

will keep reading all the parameters off the command line and ECHOing them one by
one until they've all been processed. You could enter:

MAXSHIFT A B C D E F G H I J K L M N 0 P Q R S T U V

and continue all the way through the uppercase and lowercase alphabets and MAXSHIFf
would display every letter. It knows when to stop because it runs a:

IF %1!==! GOTO END

test each time it shifts. This test will be true (and it will stop displaying characters) only
when % 1 is finally equal to nothing because all the parameters have been used up. When
this happens the test will become:

IF !==! GOTO END

Until then, % 1 ! will always be equal to A! or B! or z! or whatever variable just shifted
over. And something like:

IF A!==! GOTO END

will not be true, because "A!" is not equal to just"!" by itself.

Batch Techniques 587

Environment Variables

Format: SET ENVV AR=V ALUE (to create an environment variable)
ECHO %ENVVAR% orIF %ENVVAR%==PRESETGOTOLABEL
(to use it)

Although it wasn't documented until PC-DOS version 3.3, doesn't always work properly
with earlier versions, and doesn't work at all under 3.0, you may use a special section of
memory called the environment as a storage area for variables.

You can see what DOS currently stores in your environment by typing SET at the DOS
prompt. You ·n always see a line beginning COMSPEC= which tells your system where
to look for the COMMAND.COM command processor. And you '11 probably also see
your path, your PROMPT, and possibly an APPEND path and a few variables set by
some commercial software (such as WordPerfect).

Entering the word SET followed by a variable name of your choice, then an equal sign,
then a character string:

SET SCREEN=EGA

will add:

SCREEN=EGA

to your environment.
Once you've added a variable to your environment, you can change it simply by using

another SET command:

SET SCREEN=VGA

You can remove the variable from the environment by entering the variable name and
an equals sign with nothing after it:

SET SCREEN=

If you have two screens and you're changing to a monochrome display, the batch file
that does the changing can also reset the SCREEN variable:

SET SCREEN=MONO

Then any other programs and batch files can tell which screen is active by looking at the
%SCREEN% variable.

The ability to keep track of a state and pass the information to a batch file can help you
debug batch files. When you 're creating and testing a batch file you often want ECHO
to be ON so you can see where any potential problems are. But when you run the batch

588 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

file you want ECHO to be off so it doesn't clutter your screen with commands. To solve
this, make the first line in your batch file:

ECHO %ECHO%

Then, at the DOS prompt, type:

SET ECHO=ON

when you want to see all the commands execute, and:

SET ECHO=OFF

when you want to suppress them.
Be careful when setting environment variables since they're case-sensitive and space

sensitive. If you set ECHO=ON you'll have to test for:

IF %ECH0%==0N GOTO OKAY
IF %ECHO%==on GOTO OKAY
IF %ECH0%==0n GOTO OKAY

In addition, you should first test to see whether you've given the %ECHO% variable
any setting at all, with a test like:

IF %ECHO%!==! GOTO NOTSET

And watch your typing if you reset environment variables. If you initially set
ECHO=ON and you tried to reset the value to OFF by typing:

SET ECHO =OFF

DOS would think you were trying to establish an additional environment variable with
a space as the fifth character, and you'd end up with two variables:

ECHO=ON
ECHO =OFF

The first one would be %ECHO% and the second would be %ECHO %.
However, while extra spaces are always a concern, you don't have to worry about case

on the left side of the equals sign when setting a variable. The three commands:

• SET ECHO=OFF
• SET echo=OFF
• SET eChO=OFF

will all set an environment variable ECHO to OFF.

IF

Batch Techniques 589

You can put all these tests into a batch file that would look like:

ECHO OFF
IF %ECHO%!==!
IF %ECH0%==0N
IF %ECHO%==on
IF %ECH0%==0n
IF %ECH0%==0FF
IF %ECHO%==of f
IF %ECH0%==0f f
ECHO %ECHO% is
GOTO END
:NOTSET

GOTO NOTS ET
GOTO OKAY
GOTO OKAY
GOTO OKAY

GOTO OKAY
GOTO OKAY
GOTO OKAY
an invalid ECHO setting

ECHO Set your ECHO variable
GOTO END
:OKAY
ECHO ECHO is current set to %ECHO%
:END

Note: If you insert too many strings into your environment you can run out of
environment space. The default is a paltry ten 16-byte paragraphs, or 160 bytes.

Under DOS 2.0 and 2.1 you can patch COMMAND.COM at hex address ECF to
represent the number of 16-byte memory paragraphs that will make up your new
environment. (For DOS 2.11 the address is hex DF3.)

For DOS 3.0 and 3.1, there's a much better way. Just put a:

SHELL [d:] [path] COMMAND.COM /E:n /P

command in your CONFIG.SYS file, where n represents the number of 16-byte para
graphs. For versions 3.2 and later, use the same SHELL command but specify the actual
number of bytes rather than paragraphs. The default in all cases is 160 bytes (ten
paragraphs). You can increase it all the way to 32K in DOS 3.2 and later, but you're
limited to 62 paragraphs (992 bytes) in earlier versions.

Format:

IF EXIST [d:] [path]filename[.ext] command
IF NOT EXIST [d:] [path]filename[.ext] command

IF stringl==string2 command
IF NOT stringl==string2 command

590 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

IF ERRORLEVEL number command
IF NOT ERRORLEVEL number command

IF allows conditional command execution. It is invaluable for finding files, string
hand-ling, and other uses including IF ERRORLEVEL, DOS's undocumented gem.

File Finding

One of DOS's most powerful tools, IF allows batch files to execute specific commands
or branch to specific batch routines depending on external conditions. This lets you make
your batch files smarter and interactive, with the addition of a tiny utility to process user
input (which DOS neglected to provide).

The simplest IF command tests whether a file is present. Under DOS 2.x, you couldn't
specify a path, so all tests had to be within the 9urrent directory. However, DOS 3.x and
later versions remedied this glaring oversight. The command:

IF EXIST HELP.TXT TYPE HELP.TXT

will display a HELP.TXT file only if one exists in the current directory. This can come
in handy if you want to create a log file and check that the header in the file says what
you want.

A section of a batch file like:

IF EXIST LOGFILE GOTO FOUNDIT
ECHO This is a new file > LOGFILE
:FOUNDIT

will create a new file and put a line of text in it only if no file with the specified name
existed previously. Or, if you've kept a blank LOGFILE file in a subdirectory called
C:\MISC, you could copy it to the current directory, if none existed, with the command:

IF NOT EXIST LOGFILE COPY C:\MISC\LOGFILE

Batch files often use DOS filters like MORE.COM, FIND.EXE, and SORT.EXE. It's
simple to have a batch file check whether these happen to be in the current directory. But
you can also tell it to see whether these files happen to be in a directory that your path
knows about. If these executable files are either in the current directory or one specified
by your path, a batch file that needs th'em will be able to do its job. If they're not in either
of those places the batch file will stumble. You can test whether a file is in a directory
your path can handle with a CHEKPATH.BAT batch file like:

ECHO OFF
IF %1!==! GOTO OOPS
FOR %%A IN (%PATH%) DO IF EXIST %%A\%1 GOTO YES
FOR %%A IN (%PATH%) DO IF EXIST %%A%1 GOTO YES

Batch Techniques 591

GOTO END
:YES
ECHO %1 is in a directory your PATH knows about
GOTO END
:OOPS
ECHO Enter a file (with extension) to search for
:END

DOS replaces the %PATH% in the FOR commands with your actual path, then has
each FOR command execute an IF EXIST check in every directory your path specifies.
All elements in a set specified by a FOR command have to be separated by normal DOS
delimiters. Usually this delimiter is a space, and you end up with a set like:

(*.COM *.EXE *.BAT)

I
space space

However, a semicolon works just as well as a space, and path directories happened to be
separated by semicolons. So DOS translates a (%PATH%) set to something like:

(C:\;C:\DOS;C:\DOS\BIN)

which is the same as:

(C:\ C:\DOS C:\DOS\BIN)

You need both versions of the FOR test since your path can include directories that
end in a backslash (such as C:\) as well as those that don •t (such as C:\DOS). Fortunately,
DOS won •t choke on the inevitable syntax errors that result from some of the tests.
Unfortunately, DOS versions earlier than 3.0 won •t do an IF EXIST test outside the
current directory. And 3.0 has trouble with environment variables such as %PATH%.

You• d obviously have to adapt this demonstration CHEKPATH.BAT batch file to look
for the specific files your particular batch file needs.

If you ·re writing this for someone else you may want to include a test to make sure
that a path does in fact exist. You could do this with a line:

IF %PATH%!==! GOTO NOPATH

:NOPATH
ECHO Set up a proper path.!
GOTO END

592 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

The following DIRSORT.BAT batch file will check to make sure that the DOS
SORT.EXE utility is either in the current directory or a directory that your path knows
about, that you have a path, and that you entered a parameter after the name of the batch
file to tell it how to sort. If everything is okay it will then sort your directory by name,
size, or extension. If it finds something wrong it will print the appropriate error message:

ECHO OFF
IF %1!==! GOTO OOPSl
IF %PATH%!==! GOTO OOPS2
IF EXIST SORT.EXE GOTO YES
FOR %%A IN {%PATH%} DO IF EXIST %%A\SORT.EXE GOTO YES
FOR %%A IN {%PATH%} DO IF EXIST %%ASORT.EXE GOTO YES
ECHO Put SORT.EXE on your disk for this to work
GOTO END
:YES
IF %1==S GOTO SIZE
IF
IF
IF
IF

%1==s
%1==F
%1==f
%1==E

GOTO SIZE
GOTO FILEN
GOTO FILEN
GOTO EXTEN

IF %1==e GOTO EXTEN
GOTO OOPSl
:SIZE
DIR I SORT /+14
GOTO END
:FILEN
DIR I SORT
GOTO END
:EXTEN
DIR I SORT /+10
GOTO END
:OOPSl
ECHO Enter %0 S to sort by size, %0 F to sort by
ECHO filename, or %0 E to sort by extension
GOTO END
:OOPS2
ECHO Set up a proper PATH
:END

String Handling

You can also use the IF command to compare two sets of character strings. For the
comparison to be valid, the strings must be identical in length, content, and case.

One of the most important uses for this type of IF test is in processing replaceable
parameters. If you want to protect your hard disk against accidental formatting, you can

Batch Techniques 593

rename your FORMAT.COM command to something like FMT.COM, and run it out of
a batch file called FORMAT.BAT:

ECHO OFF
IF %1!==!
IF %1==A:
IF %1==a:
IF %1==B:
IF %1==b:
ECHO You
GOTO END
:OKAY
FMT %1
GOTO END
:OOPS

GOTO OOPS
GOTO OKAY
GOTO OKAY
GOTO OKAY
GOTO OKAY

can't format drive %1 ! !

ECHO Enter FORMAT then a drive letter A: or B: only
:END

Note that you have to use a double equal sign in a string comparison test.
Since users can enter text in uppercase or lowercase, you need two IF tests (IF % 1 ==A:

GOTO OKAY and IF % 1 ==a: GOTO OKAY) to catch both variations of each drive
letter.

If the user enters FORMAT B:, DOS will make replaceable parameter % 1 equal to B:
and then plug this into the IF tests. The test:

IF %1==B: GOTO OKAY

will become:

IF B:==B: GOTO OKAY

Since the replaceable parameter string B: is indeed equal to the preset string B:, the
batch file will jump to the :OKAY label and run the real FORMAT.COM program -
which you've named to FMT.COM - and pass the B: drive letter to it.

FORMAT.BAT will accept only four parameters - A:, a:·, B:, and b:. If the user enters
anything other than one of these, all four tests will fail and the batch file will eventually
reach the error message "ECHO You can't format drive % 1 ! ! ". Again, it will replace the
% 1 with whatever the user entered. If he or she entered FORMAT C:, the batch file will
take the C: and replace the % 1 with it, producing the message "ECHO You can't format
drive C: !!".Then it will exit by jumping to the :END label.

FORMAT.BAT contains an initial IF % 1 ! == ! GOTO OOPS test to make sure that the
user entered something on the command line after the name of the batch file. If the user
didn't enter anything at all after the name of the batch file, the test becomes:

IF !==! GOTO OOPS

594 DOS Power Tools, 2nd Edition, Revisedfor DOS 5.0

Since ! clearly does equal ! the batch file jumps to a message at the :OOPS label that
gives the user instructions. You may use any character on both sides of the double ==

sign, but make sure it's something unusual such as!,#, or$. So:

IF $%1==$ GOTO OOPS

is just as valid a test.
DOS offers considerable flexibility in writing batch files like these. For example, you

could rephrase the tests to make them negative and nest them all on one line in NEST.BAT
if you wanted:

ECHO OFF
IF %1!==! GOTO OOPS
IF NOT %1==A: IF NOT %1==a: IF NOT %1==B: IF NOT %1==b:
GOTO NOPE
FMT %1
GOTO END
:NOPE
ECHO You can't format drive %1 ! !
GOTO END
:OOPS
ECHO Enter FORMAT then a drive letter A: or B: only
:END

Another clever way to allow multiple inputs but screen out invalid keystrokes is to use
the FOR command. The FORTEST.BAT batch file will accept A, B, or C, or the
lowercase version of each, while rejecting everything else. And it does this all on one
line:

ECHO OFF
FOR %%A in (AB c a b c) DO IF !%1 == !%%A GOTO OKAY
ECHO No, Enter: %0 A or %0 B or %0 C
ECHO (or the lowercase versions of these) .
GOTO END
:OKAY
ECHO Entering %1 is okay
:END

It's often necessary to avoid long strings of IF commands, especially on slower
systems. EASY AS.BAT tests three conditions in a single line:

ECHO OFF
IF NOT %2!==! IF %1==123 IF %2==456 GOTO. YES
ECHO Sorry, you entered the numbers wrong
GOTO END

Batch Techniques 595

:YES
ECHO Yes, you entered both numbers correctly
:END

If you enter just the name of the batch file, the first test, for a missing second parameter
(if not %2!=--!) will jump execution down to the "Sorry ... " line. The same is true if you
enter just one number, or any two numbers other than the correct ones, after the name of
the batch file. However, if you enter:

EASYAS 123 456

the file will print the correct "Yes, you entered ... " message.
One of the best places to use string tests is in dealing with environment variables. If

you have two color-setting routines on your disk, one that uses direct BIOS calls (like
the programs on the accompanying disks) and one that uses ANSI.SYS commands, you
can have your batch file figure out which color system is active and execute the
appropriate setting program.

To do this, make sure you issue a batch file command SET ANSl=OFF (or BIOS=ON)
when you configure your system to run without ANSI.SYS. Here it's easier to test for
the absence rather than the presence of ANSI.SYS, since you load ANSI through your
CONFIG.SYS file and not through a batch file. If you happened to have a batch file that
loaded ANSI, it could set ANSI ==ON at the same time.

Some users have complex batch file schemes to rename various versions of their
CONFIG.SYS and AUTOEXEC.BAT files and then reboot, in an effort to load ANSI or
start their systems without it, and ifs possible to have the batch file that triggers the whole
process create a file called YESANSI when it does this. Then you could use an IF EXIST
YESANSI command to detect whether ANSI is loaded. If you did try this, you• d have to
make sure you erased YESANSI when you weren't starting your system with ANSI
active. A lot of bother.

Once your AUTOEXEC.BAT file executed a line like:

SET ANSI=OFF

or:

SET BIOS=ON

or:

SET ANSI=ON

later batch files could include a line like IF ANSI==-ON GOTO ANSISET or IF
BIOS==ON GOTO BIOSSET. If ANSI was loaded, you could then jump to the ANSI
color setter rather than the BIOS color setter. When you weren't using ANSI, the test

596 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

would look at the environment and see that ANSI was not equal to ON, and branch to the
BIOS setter rather than the ANSI one.

Being able to phrase tests using negative conditions adds flexibility. The ANSI
TEST .BAT batch file could be written:

ECHO OFF
IF NOT !%ANSI%==!0N GOTO BIOSSET
:ANSISET
ECHO ANSI color setter goes here
GOTO END
:BIOSSET
ECHO BIOS color setter goes here
:END

The exclamation points are needed to prevent a syntax error if no ANSI variable exists
in the environment. Without something there (you could use any two other identical
symbols such as IF NOT @%ANSl%==@0N) you would end up with a line that
translated to

IF NOT ==ON

which would trigger a syntax error.

Case Insensitivity

DOS is flexible about combinations of uppercase and lowercase text when it processes
labels, but ifs rigid and inflexible when comparing strings.

This means that if you want to test all the possible ways to enter something as short as
a three-letter word you'd have to make eight tests (r number of letters). And longer
words mean dramatically longer tests.

To speed things up, you can use the COMPARE.COM utility on the accompanying
disk. COMPARE.COM compares two strings and ignores the case of the alphabetic
characters. On return, it sets ERRORLEVEL 255 if both strings are equal and
ERRORLEVEL 0 if they are not equal or if a syntax error has occurred. After executing
COMPARE.COM, your batch file may take appropriate action with the statement:

IF ERRORLEVEL 255 action

You can try this out by creating a sample batch file called COMPTEST.BAT:

ECHO OFF
IF %2!==! GOTO OOPS
COMPARE %1==%2
IF ERRORLEVEL 255 GOTO MATCH
ECHO The strings are not equal

GOTO END
:MATCH
ECHO The strings are equal
GOTO END
:OOPS
ECHO The format required is:
ECHO COMPTEST 'STRINGl STRING2
:END

Then, at the DOS prompt, type:

COMPTEST hello HELLO

and it will respond with the message:

The strings are equal.

Batch Techniques 591

,But type something like "COMPTEST hello HELLOE" and the batch file will let you
know the strings don't match.

IF ERRORLEVEL

One of the single most powerful DOS batch file tools is also one of the most poorly
documented - IF ERRORLEVEL.

ERRORLEVEL makes your batch files truly interactive, and lets you create slick,
friendly, foolproof menus that can run your whole system - or help a beginner through
a complex task.

Before users ~ew about IF ERRORLEVEL techniques, they'd slap together primitive
menu systems that involved lots of little batch files. The main batch file would do nothing
other than use the DOS TYPE command to display the contents of a text file like:

Menu

1 - Spreadsheet
2 - Wordprocessor
3-Database

Pick a number (1-3) then press Enter

Then they'd write short batch files called 1.BAT, 2.BAT, and 3.BAT. Each would
contain just the name of the software they wanted to load, and perhaps a CD\ command
to jump into the proper subdirectory.

While this worked, it had many drawbacks. After the batch file used TYPE to display
the menu, it dropped back to DOS. The user saw a DOS prompt, and wasn't sure whether

598 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

to type in a number or enter a command. You could get around this by using the PROMPT
command to change the DOS prompt itself from C> or A> to:

Type a number from 1 to 3 then press Enter ==>

But when you were done running a particular program, the prompt would still ask you
to pick a number. Then again, you could have the individual 1.BAT, 2.BAT, 3.BAT batch
files reset the prompt back to normal, but you might want to make another menu selection.

Worse, if the user entered the wrong kind of response, the menu would scroll up
off the screen. In addition, the user had to press the Enter key after typing in the proper
response, and some couldn't figure that out. And when the user was finished running
the program he or she had chosen, the menu had long since vanished, leaving a bare
screen. Again, the individual batch files could redisplay the menu when they finished,
but that might be confusing to users who wanted to do something other than what was
listed.

Finally, dorens of little menu batch files, each with its own array of program-loading
files, can waste a tremendous amount of space, especially on a system like an XT with
its greedy 4K clusters.

ERRORLEVEL avoids every one of these problems, and lets you create menus that
are smart, easy, and compact.

An ideal menu system would display the options and wait for the user to enter a
(preferably) single-digit choice, then execute that choice, without forcing him or her to
hit the Enter key.

It would be sirigle-minded, preventing the user from stumbling into some other
command. This defect alone makes the primitive 1.BAT, 2.BAT system worthless, since
it returns to the DOS command line after di~playing its choices. If the user enters a
command like DIR, DOS will scroll tlie menu choices off the s9reen.

And it would retain control by 'looping back to the beginning every time a program
,finished running. One of the menu.options would be to exit gracefully, and the menu
system would restore the screen back to normal.

IF ERRORLEVEL is one of the worst-named and most powerful of all DOS com
mands. According to IBM, all it really does is let your batch files know whether DOS
successfully completed commands such as BACKUP, KEYB, REPLACE, RESTORE,
or FORMAT. These programs set exit codes (also called return codes) depending on
whether the programs were able to work completely or partially. And they can tell if the
user or some system error interrupted the program in midstream.

The IF ERRORLEVEL command can read these exit codes and act accordingly. So
you could create a batch file to execute BACKUP or FORMAT and have provisions in
the batch file to print customized messages onscreen if something goes wrong. IBM
spends a ldt of space in its manuals on this, and nobody uses it.

On the other hand, IBM doesn't talk at all about how to send user input into batch files,
which is something that DOS desperately needs. And DOS doesn't provide any direct
utilities for putting IF ERRORLEVEL to work this way.

Batch Techniques 599

But it's simple to harness IF ERRORLEVEL and make your batch files truly interac
tive. All you need is a version of a short assembly language program that reads keystrokes
and translates them into exit codes that IF ERRORLEVEL can process. Then you just
include the name of the program in your batch file and follow it with tests for the
appropriate exit codes. These tests can jump to different labels inside the batch file, or
they can execute programs or commands directly if the codes match.

The basic test is in the format:

IF ERRORLEVEL number action

or:

IF NOT ERRORLEVEL number action

where number is the decimal value of the exit code, and action is the command to execute.
Note: The tricky part of this is that IF ERRORLEVEL will .execute the action if the

exit code is equal to - or greater than - the number after the word ERRORLEVEL.
DOS allows 256 possible exit codes from 0 to 255, so the command:

IF ERRORLEVEL 0 ECHO True

will always work, since all 256 possible exit codes are equal to or greater than 0. So this
test will always print the message "True." You don •t even need a batch file to test this.
Just type it in at the DOS prompt.

At the other end of the spectrum:

IF ERRORLEVEL 255 ECHO True

will work in only one case - when the exit code happens to be 255.
If you want to isolate a character like a space (which has an ASCII value of decimal

32), you have to first screen out any higher exit codes:

IF ERRORLEVEL 33 ECHO Nonspace
IF ERRORLEVEL 32 ECHO Space

You can combine such tests into one long line:

IF ERRORLEVEL 32 IF NOT ERRORLEVEL 33 ECHO Space

The most primitive example of a keystroke processing program.is GETKEY.COM,
which you can create by making sure DEBUG.COM is handy and then typing these seven
lines:

600 DOS Power Too/s, 2nd Edition, Revised/or DOS 5.0

DEBUG
E 100 B4 00 CD 16 B4 4C CD 21
N GETKEY.COM
RCX
8

w
Q

Here's the assembly language program that this creates:

MOV AH,00
INT 16
MOV AH, 4C
INT 21

BIOS read a character and
puts its ASCII code into AL
ready to exit.with code
do it

·(Both DOS and your system's BIOS can process keystrokes for you. This particular
example uses BIOS, but you could just as easily have substituted a DOS function call. In
fact, DOS is better for certain applications because it offers several options. It can display
the character you entered, or discard it. It can wait for a keystroke - which you usually
want to do in menu systems - or process one only if it's there waiting. And it can handle
attempts to break out of the operation, or ignore them.)

Then create a batch file called ERRTEST.BAT:

ECHO OFF
:TOP
ECHO You may break out of this loop
ECHO by pressing Enter. Or press
ECHO any other key to continue . . .
GETKEY
IF ERRORLEVEL 13 IF NOT ERRORLEVEL 14 GOTO END
GOTO TOP
:END

This batch file simply tests to see whether the user pressed the Enter key, which has
an ASCII value of decimal 13.

When ERRTEST executes, it will print the three-line message and then run
GETKEY.COM. GETKEY.COM waits for the user to press a single alphanumeric key,
and sets the return code to the ASCII value of that key. The single line:

IF ERRORLEVEL 13 IF NOT ERRORLEVEL 14 GOTO END

Batch Techniques 601

in the batch file tests whether the return code was 13, and at the same time screens out
any higher values. You could just as easily change the batch file to:

ECHO OFF
:TOP
ECHO You may break out of this loop
ECHO by pressing Enter. Or press
ECHO any other key to continue
GETKEY
IF ERRORLEVEL 14 GOTO TOP
IF ERRORLEVEL 13 GOTO END
GOTO TOP
:END

The following CASETEST.BAT batch file uses GETKEY.COM to fetch keystrokes
and pass the ASCII value for each one to a "cascade" of IF ERRORLEVEL tests:

ECHO OFF
:ERR
ECHO Enter a lowercase or
ECHO an uppercase letter
ECHO (Or spacebar to quit)
:TOP
GET KEY
IF ERRORLEVEL 123 GOTO ERR
IF
IF
IF
IF
IF

ERRORLEVEL
ERRORLEVEL
ERRORLEVEL
ERRORLEVEL
ERRORLEVEL

97
91
65

33
32

IF ERRORLEVEL 0
:LOWER
ECHO Lowercase
GOTO TOP
:UPPER
ECHO Uppercase
GOTO TOP
:END

GOTO LOWER
GOTO ERR
GOTO UPPER
GOTO .ERR
GOTO END

GOTO ERR

All lowercase letters have decimal ASCII values from 97 through 122. All uppercase
letters have decimal ASCII values from 65 through 90. The chart below shows all the IF
ERRORLEVEL ASCII Characters.

602 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

Characters 255-224: math, Greek letters, symbols

Characters 223-219: blocks

Characters 218-179: box and border elements

Characters 178-176: shaded blocks

Characters 175-169: miscellaneous symbols

Characters 168-155: miscellaneous currency signs and symbols

Characters 154-128: various diacritical marks and symbols

Characters 127-123: miscellaneous exotic punctuation

Characters 122-97: lowercase alphabet (z= 122; a=97)

Characters 96-91: more miscellaneous exotic punctuation

Characters 90-65: uppercase alphabet (Z=90; A=65)

Characters 64-58: punctuation

Characters 57-48: digits (9=57; 0=48)

Characters 47-33: punctuation and symbols

Character 32: space

Character 27: escape
Character 26: end-of-file marker ("Z)

Character 13: enter("M)

Character 10: line feed ("J)

Character 9: tab ("I)

Character 8: backspace ("H)

Character 7: beep ("G)

Character 0: null

CASETEST.BAT first uses a test for 123 to screen out anything higher than the top
range of lowercase values. The second test will detect anything from 97 through 122 and
jump to the label that identifies this as a lowercase letter. The next test screens out the
few odd characters with values from 91 through 96. It• s followed by a test that detects
anything from 65 through 90 and jumps to a label identifying these as uppercase letters.

Finally, a test for 33 screens out any key with a value greater than a space (remember,
a space is 32) but lower than the bottom range of uppercase letters. Then a test for 32
isolates spaces, and a last test for 0 traps any other keystrokes.

Most single keys on your keyboard generate single ASCII codes. But key combinations
like Ctrl-End, Ins, or F7 generate two-character values called extended codes, where the
first value is always a 0. Key-sniffing programs more sophisticated than GETKEY.COM
can detect these; GETKEY thinks all such keys are returning codes of 0. Later you '11 see
how you can soup up GETKEY to handle such keys.

More sophisticated key-processing programs, like GET.EXE on the accompanying
disks, let you print customized onscreen prompts telling the user which of several keys
to press. If the program doesn't do this, you have to have an ECHO command display a
message prompting the user.

Batch Techniques 603

The following PROGMAKR.BAT batch file will actually create a version of
GETKEY.COM that displays its own customized message:

ECHO OFF

REM PROGMAKR.BAT

IF %2!==! GOTO ERROR

CTTY NUL

ECHO E 100 B4 09 BA OF 01 CD 21

ECHO E 107 B4 00 CD 16 B4 4C CD 21

ECHO E lOF '%2 %3 %4 %5 %6 %7 %S %9$'

ECHO N % 1. COM

ECHO RCX

ECHO 100

ECHO W

ECHO Q

DEBUG < DBG.ZZZ

DEL DBG.ZZZ

GOTO END

:ERROR

ECHO The correct syntax is:

> DBG.ZZZ

» DBG.ZZZ

» DBG.ZZZ

» DBG.ZZZ

» DBG.ZZZ

» DBG.ZZZ

» DBG.ZZZ

» DBG.ZZZ

ECHO %0 PROGNAME WORDl [WORD2] . . . [WORDS]

ECHO Where: PROGNAME is the name of the .COM file and

ECHO WORDl to WORDS are words the program will print.

ECHO eg: %0 BATCHKEY Enter a number from 1 to 5:

ECHO Notes: 1) DON'T use single quotes (') or dollar signs.

ECHO 2) DON'T put a .COM extension on PROGNAME!

ECHO (%0 will do it for you automatically.)

:END

CTTY CON

IF NOT %1!==! ECHO Now type %1

To use PROGMAKR.BAT, you need to have DEBUG.COM in the current directory
or in one your path knows about. It lets you enter a program name (such as GETKEY or
BATCHKEY) and then a prompt of up to eight words after it. So if you entered:

PROGMAKR BATCHKEY Enter a number from 1 to 5:

it will automatically create a small file called BATCHKEY.COM that displays the
prompt:

Enter a number from 1 to 5:

and waits for a key. When you press any normal (nonextended) key, BATCHKEY will
tum its ASCII value into an exit code that IF ERRORLEVEL can process.

604 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

This is a very powerful little batch file. But if you use it, note:

1. Be sure you have DEBUG.COM handy.
2. It uses a CfTY NUL command to shut off the display temporarily while it• s working.

If something unexpected happens before the batch file gets to the restorative CTTY
CON command at the end, you •ll be frozen out of your keyboard. Check your typing
carefully and make sure you don•t have any unsaved files lurking around when you
try this for the first time.

3. You can enter up to eight discrete words or clumps of characters, but don •tenter any
single quotes or dollar signs, since DOS treats these specially.

4. Type in everything exactly as it appears, and watch for small but important characters
like the single quote marks in the ECHO E lOF ·%2 %3 %4 %5 %6 %7 %8 %9$•
line.

5. Remember that directly below the CITY NUL the first ECHO line ends with a single
> DBG.ZZZ while the others have double» DBG.ZZZ signs. A single> sign creates
a file and a double >> sign appends data to an existing file.

6. Remember to type in the name of the program you want to create before you start
entering the message. And be sure to leave off the .COM extension; the batch file
will add it for you automatically.

PROGMAKR.BAT will create a file that looks (at least for the sample prompt above)
like:

MOV AH,09
MOV DX,OlOF
INT 21
MOV AH,00
INT 16
MOV AH,4C
INT 21

DOS message printer
address of the message
print it
BIOS read a character and
puts its ASCII code into AL
ready to exit with code
do it

DB 'Enter a number from 1 to 5: $'

Narrowing the Search

In any IF ERRORLEVEL process something has to screen out e1!oneous keystrokes. You
can have the batch file do it by including a series of IF ERRORLEVEL tests. Or you can
have the assembly language program do it, either by refusing to budge unless the user
presses certain keys, or by setting one kind of exit code for correct responses and another
kind for incorrect keypresses. You can adapt GETKEY.COM to do either.

This version will set a code of 13 if the user presses Enter, and a code of 0 otherwise:

DEBUG
E 100 B4 00 CD 16 3C OD 74 02 30 CO B4 4C CD 21
N GETKEY2.COM

RCX
E

w
Q

Batch Techniques 605

You can run this with a shorter version of ERRTEST.BAT called ERRTEST2.BAT:

ECHO OFF
:TOP
ECHO You may break out of this loop
ECHO by pressing Enter. Or press
ECHO any other key to continue
GETKEY2
IF ERRORLEVEL 13 GOTO END
GOTO TOP
:END

Here you don't need to test for any exit code other than 13, since GETKEY2.COM
does all the keystroke screening by making sure that the exit code for every key other
than Enter is 0. The assembly language program for this looks like:

MOV AH,00
INT 16
CMP AL,OD
JZ OlOA
XOR AL,AL
MOV AH,4C
INT 21

BIOS read a character
puts ASCII code into AL
is character an Enter?
yes; skip next step
make the exit code a O
ready to exit with code
do it

The exit code that the program sets doesn't have to be the same as the ASCII code of
the key that the user pressed. GETKEY3.COM sets a code of 255 if the user pressed
Enter. Create it by typing:

DEBUG
E 100 B4 00 CD 16 3C OD 75 02 BO FF B4 4C CD 21
N GETKEY3.COM
RCX
E

w
Q

This is almost identical to GETKEY2.COM:

MOV AH,00
INT 16

BIOS read a character
puts ASCII code into AL

606 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

CMP AL, OD is character an Enter?
JNZ OlOA no; skip next step
MOV AL,FF make the exit code a 255
MOV AH,4C ready to exit with code
INT 21 do it

The ERRTEST3.BAT batch file to use this program might look like:

ECHO OFF
:TOP
ECHO You may break out of this loop
ECHO by pressing Enter. Or press
ECHO any other key to continue
GETKEY3
IF ERRORLEVEL 255 GOTO END
GOTO TOP
:END

or even simpler:

ECHO OFF
:TOP
ECHO You may break out of this loop
ECHO by pressing Enter. Or press
ECHO any other key to continue
GETKEY3
IF NOT ERRORLEVEL 255 GOTO TOP

GETKEY3.COM sets the exit code to 255 if the user presses the Enter key. It leaves
all other values intact, so that if the user happened to press the space bar, which has an
ASCII value of 32, the exit code would be 32. But testing for an ERRORLEVEL of 255
heads all other lower exit codes off at the pass.

The only problem with this is that if the user happened to enter character 255 (by
holding down the Alt key, typing 255 on the number pad, and then releasing the Alt key),
ERRTEST3.BAT would treat it as if the user had pressed the Enter key. Both would end
up with an exit code of 255. Screening this out would be trivial, but seriously, how many
users are going to enter character 255?

You could have the assembly language program do even more work by rejecting any
keystrokes other than the ones your batch file is designed to handle. GETKEY 4.COM
will sit and wait for the user to press a key,' and will discard all keypresses other than
Enter (with a code of decimal 13, or hex OD) and Escape (with an exit code of decimal
27, or hex lB):

Batch Techniques 607

DEBUG
E 100 B4 00 CD 16 3C OD 74 04 3C lB 75 F4 B4 4C CD 21
N GETKEY4.COM
RCX
10
w
Q

If you ran the ERRTEST4.BAT batch file:

ECHO OFF
:TOP
ECHO Press Esc to loop again
ECHO or Enter to quit
GETKEY4
IF ERRORLEVEL 27 GOTO TOP

. pressing Esc would loop through the batch file and repeat the message, pressing Enter
would quit, and pressing any other key would do nothing. GETKEY 4.COM looks like:

MOV AH,00
INT 16
CMP AL,OD
JZ lOC
CMP AL,lB
JNZ 100
MOV AH,4C
INT 21

BIOS read a character
. ; puts ASCII code into AL

is character an Enter?
yes; goto exit code

· is character an Esc?
no; go back and get: another
exit code
do it

These tiny exit-code setters can really enhance the operation of your system. Earlier a
program called FORMAT.BAT used string tests to screen out attempts to format any
drive higher than B:. You could adapt a batch file like that to use a small drive-sensing
program called DRIVE.COM together with a few IF ERRORLEVEL tests to exit
automatically if it found that you were on drive C: or D:. To create DRIVE.COM, just
type:

DEBUG
E 100 B4 19 CD 21 B4 4C CD 21
N DRIVE.COM
RCX
8

w
Q

608 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

DRIVE.COM is somewhat similar to GETKEY.COM:

MOV AH,19
INT 21
MOV AH,4C
INT 21

get current drive
do it (A=O, B=l, etc)
put drive in exit code
do it

A DRIVER.BAT batch file to show how this worked might look like:

ECHO OFF
DRIVE
IF ERRORLEVEL 0 IF NOT ERRORLEVEL 1 ECHO Drive
IF ERRORLEVEL 1 IF NOT ERRORLEVEL 2 ECHO Drive
IF ERRORLEVEL 2 IF NOT ERRORLEVEL 3 ECHO Drive
IF ERRORLEVEL 3 IF NOT ERRORLEVEL 4 ECHO Drive
IF ERRORLEVEL 4 ECHO Higher than Drive D

A
B
c
D

You could add a DRIVE command at the beginning of your FORMAT batch file, and
if the following IF ERRORLEVEL test detected a value of 2 or more, just have it GOTO
END.

The easiest way to create IF ERRORLEVEL-based menus is probably to limit yourself
to ten choices - the digits 0 through 9. Or you could use letters rather than numbers,
since letters offer 26 single-digit choices rather than ten. But you• d have to test for both
uppercase and lowercase entries, and all the ASCII characters in between, which means
lots of IF tests or a clever assembly language program to do all the work.

You could expand the GETKEY.COM program slightly to handle function keys,
which don•t have uppercase and lowercase versions. Or, you could limit all your
ERRORLEVEL decisions to Yes/No questions. This second method works very well in
some cases, but not in menus.

Typing in the following few lines will create a GETFKEY.COM program designed to
work with extended key combinations:

DEBUG
E 100 B4 00 CD 16 3C 00 74 04 BO
E 109 FF EB 02 88 EO B4 4C CD 21
N GETFKEY.COM
RCX
12
w
Q

The GETFKEY program looks like:

MOV AH,00
INT 16
CMP AL,00

BIOS read a character
puts ASCII code into AL
is character extended?

Batch Techniques 609

yes; go to register mover
no; so make exit code 255
and skip next step

JZ OlOC
MOV AL,FF
JMP OlOE
MOV AL,AH
MOV AH,4C
INT 21

make extended code the exit code
exit with code
do it

It works just like GETKEY.COM, except that it can handle function keys and shifted
key combinations as well as normal alphanumeric keys. When you press an alphanumeric
key, BIOS puts the ASCII value of the key in the AL register and the scan code in the
AH register. When you trigger an extended key combination, BIOS puts the ASCII code
in the AH register and a NUL, or character 0, in the AL register.

GETFKEY.COM waits until the user presses a key, then checks to see if the AL register
is set to 0. If not, GETFKEY assumes the key was a normal garden-variety letter or
number, makes the exit code 255, and quits. If it does see a 0 in AL it moves the ASCII
code down from AH to AL and makes it the exit code. At this point any normal key has
an exit code of 255; anything less means the user pressed an extended key combination.

On IBM's old reliable keyboards you actually have a lot of possible extended keys
from which to choose (the newer IBM Chinese typesetting version offers even more):

Function Keys Keypad Keys
FL.PIO unshifted = 59 ... 68 Unshifted Ctrl
Fl...FIO +Shift = 84 ... 93 Home 71 119
FL.PIO +Ctrl = 94 ... I03 Up 72
FL.PIO +Alt =104 ... 113 Pg Up 73 132

Left 75 115
Right 77 116

Alt + Regular Key End 79 117
QWERTYUIOP 16 ... 25 Down 80
ASDFGHJKL 30 ... 38 PgDn 81 118
ZXCVBNM 44 ... 50 Ins 82
1234567890-= 120 ... 131 Del 83

A typical batch EXTENKEY.BAT file that used extended keys would look something
like this:

ECHO OFF
:START
ECHO INS - See a sorted DIR
ECHO DEL - Return to DOS
ECHO *** Hit Ins or Del ***
GETFKEY
IF ERRORLEVEL 84 GOTO START
IF ERRORLEVEL 83 GOTO 2
IF ERRORLEVEL 82 GOTO 1

610 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

GOTO START
:1

DIR I SORT
PAUSE
GOTO START
: 2

This uses the Ins (82) and Del (83) keys, and rejects anything else.
While the previous examples demonstrate how ERRORLEVEL can manage menus,

IF ERRORLEVEL can also come in handy when a batch file gives a user a two-way
choice - continue or not, load a program or not, echo something to the printer or not,
and so on.

In all these cases, the batch file pauses and asks a Yes or No question, and then proceeds
with the option only if the user answers with Y or y.

The GETYES.COM program below checks for Y or y and puts an ASCII 255 value
into the AL register if it finds one. Batch files that use this technique can get away with
just a single IF ERRORLEVEL test - for a value of 255 only.

You can create GETYES.COM by typing:

DEBUG
E 100 B4 00 CD 16 3C 59 74 04 3C
E 109 79 75 02 BO FF B4 4C CD 21
RCX
12
N GETYES.COM
w
Q

The program it creates looks like:

MOV AH,00
INT 16
CMP AL,59
JZ OlOC
CMP AL,79
JNZ OlOE
MOV AL,FF
MOV AH,4C
INT 21

BIOS read a character
puts ASCII code into AL
is character a 'Y' ?
yes; go to 255 stuffer
is character a 'Y' ?
if not, skip next step
make exit code 255
exit with code
do it

You can see this in action by running the following YESNO.BAT batch file:

ECHO.OFF
:TOP
ECHO Hit y or Y or another key:

GETYES
IF ERRORLEVEL 255 GOTO YES
GOTO NO
:YES
ECHO You said yes.
GOTO CONTINUE
:NO
ECHO You didn't hit y or Y.
:CONTINUE
ECHO Now, want to quit (Y/N)?
GETYES
IF ERRORLEVEL 255 GOTO END
GOTO TOP
:END

Batch Techniques 611

GETYES.COM checks for Y (hex 59) and y (hex 79). You could substitute 4E (the
hex code for N) and 6E (the hex code for n) for 59 and 79 and create GETNO.COM.

Just use DEBUG to patch GETYES.COM and make a new copy of it called
GETNO.COM:

DEBUG GETYES.COM
E 105 4E
E 109 6E
N GETNO.COM
w
Q

Then adapt the above batch file and turn it into NOYES.BAT:

ECHO OFF
:TOP
ECHO Hit n or N or another key:
GETNO
IF ERRORLEVEL 255 GOTO NO
GOTO YES
:NO
ECHO You said no.
GOTO CONTINUE
:YES
ECHO You didn't hit nor N.
:CONTINUE
ECHO Now, want to quit (Y/N)?
GETNO
IF ERRORLEVEL 255 GOTO TOP
:END

612 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

GETYES.COM and GETNO.COM behave quite differently, as you can see from
experimenting with the YESNO.BAT and NOYES.BAT batch files. These batch files
are designed to do one task if the user presses one specific letter, and another task if he
or she presses any other key. If you're asking whether a user is sure he or she wants to
FORMAT a hard disk, you'd better be sure you accept only a Y or y answer. Having
programs handy that operate only on Y (or y) and only on N (or n) gives you flexibility
in phrasing such potentially dangerous questions.

Ifs simple to turn a handful of IF ERRORLEVEL tests into a menu system. If you
want to write your own keyboard processor, one of the easiest ways is to use numeric
entries, since you don't have to worry about uppercase and lowercase variations. Of
course you're limited to ten entries.

A very simple MENUl.BAT menu system might look like:

ECHO OFF
:TOP
ECHO + - +

ECHO 1 - Run 123
ECHO 2 - Run WordStar
ECHO 3 - Return to DOS
ECHO + - +

:MENU
ECHO Select 1, 2 or 3
GETNUM
IF ERRORLEVEL 52 GOTO MENU
IF ERRORLEVEL 51 GOTO END
IF ERRORLEVEL 50 GOTO STAR
IF ERRORLEVEL 49 GOTO LOTUS
GOTO MENU
:LOTUS
123
GOTO TOP
:STAR
ws
GOTO TOP
:END

You could just run a program like GETKEY .BAT that returns an exit code for any key
on the keyboard. But ifs not much more difficult to create a small program called
GETNUM.COM that rejects all keystrokes other than 0 through 9:

DEBUG
E 100 B4 00 CD 16 3C 30 72 F8 3C 39 77 F4 B4 4C CD 21
N GETNUM.COM
RCX
10
w
Q

This program looks like:

MOV AH,00
INT 16
CMP AL,30
JB 100
CMP AL,39
JA 100
MOV AH,4C
INT 21

BIOS read a character
puts ASCII code into AL
is character < O ?
yes; get another key
is character > 9 ?
yes; get another key
exit code
do it

Batch Techniques 613

While IF ERRORLEVEL works exclusively in decimal notation, DEBUG handles
only hex. The ASCII value for character 0 is 30, and for 9 is 39.

Digit Decimal Hex
0 48 30
1 49 31
2 50 32
3 51 33
4 52 34
5 53 35
6 54 36
7 55 37
8 56 38
9 57 39

If you press any number key between 0 and 9, GETNUM.COM transfers its ASCII
value to the exit code. If you press any other key GETNUM simply rejects it and goes
back for another.

The MENU I .BAT program accepts only the choices 1, 2, or 3. The topmost:

IF ERRORLEVEL 52 GOTO MENU

bounces any exit code of 52 or higher, screening out any digit from 4 through 9.
You could narrow the test by going into DEBUG and changing the:

CMP AL,30 ; is character < O ?

and:

CMP AL,39 is character > 9 ?

lines so they were more restrictive, but it's really not necessary.
Many users prefer working with letters rather than numbers.
But if you want to create a menu with options A, B, and C you have to worry about

uppercase and lowercase entries.

614 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

Actually this isn't much of a problem. All you have to do is perform a logical OR
operation on the key, which turns uppercase letters into lowercase ones and leaves
lowercase ones alone.

The lowercase letters have ASCII values 20 hex (32 decimal) higher than their
uppercase counterparts:

Letter Dec Hex Letter Dec

A 65 41 a 97
B 66 42 b c 98
c 67 43 c 99
D 68 44 d 100
E 69 45 e 101
F 70 46 f 102
G 71 47 g 103
H 72 48 h 104
I 73 49 i 105
J 74 4A j 106
K 75 4B k 107
L 76 4C 1 108
M 77 4D m 109
N 78 4E n 110
0 79 4F 0 111
p 80 50 p 112
Q 81 51 q 113
R 82 52 r 114
s 83 53 s 115
T 84 54 t 116
u 85 55 u 117
v 86 56 v cl18
w 87 57 w 119
x 88 58 x 120
y 89 59 y 121
z 90 SA z 122

So to make all letters lowercase, just add the line:

OR AL,20

to the GETKEY.COM program:

MOV AH,O
INT 16

Hex

61
62
63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F
70
71
72
73
74
75
76
77
78
79
7A

OR AL,20
MOV AH,4C
INT 21

Batch Techniques 615

You could create the small LOWERIT.COM program by typing:

DEBUG
E 100 B4 00 CD 16 OC 20 B4 4C CD 21
N LOWERIT.COM
RCX
A

w
Q

Then run the following sample HALFrEST.BAT demonstration batch file:

ECHO OFF
ECHO Press any letter key
ECHO Or press spacebar to quit
:TOP
LOWER IT
IF ERRORLEVEL
IF ERRORLEVEL
IF ERRORLEVEL
IF ERRORLEVEL
IF ERRORLEVEL
:BACK
ECHO N-Z
GOTO TOP
:FRONT
ECHO A-M
GOTO TOP
:END

123 GOTO TOP
110 GOTO BACK
9 7 GOTO FRONT
33 GOTO TOP
32 GOTO END

Type in any uppercase or lowercase letter and the batch file will tell you which half of
the alphabet it's in.

You could, of course, go the other way and make all letters uppercase. Instead of the
line:

OR AL,20

substitute:

AND AL,DF

616 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

Create UPPERIT.COM by typing:

DEBUG
E 100 B4 00 CD 16 24 DF B4 4C CD 21
N UPPERIT.COM
RCX
A
w
Q

The program looks like:

MOV AH,O BIOS read a character and
INT 16 puts its ASCII code into AL
AND AL,DF uppercase all letters
MOV AH,4C ready to exit with code
INT 21 do it

And you'll have to change the HALFfEST.BAT demonstration batch file slightly:

ECHO OFF
ECHO Press any letter key
ECHO Or press Enter to quit
:TOP
UPPER IT
IF ERRORLEVEL
IF ERRORLEVEL
IF ERRORLEVEL
IF ERRORLEVEL
IF ERRORLEVEL
:BACK
ECHO N-Z
GOTO TOP
:FRONT
ECHO A-M
GOTO TOP
:END

91 GOTO TOP
78 GOTO BACK
65 GOTO FRONT
14 GOTO TOP
13 GOTO END

ANDing any ASCII value with 223 (hex DF) will capitalize lowercase letters and leave
uppercase letters alone. The logical AND operation works by comparing two values (the
example below will compare one bit at a time) and returning a "1 ''only when both values
are nonzero.

• lANDl=l
• lANDO=O

Batch Techniques 617

• OANDl ... O
• OANDO=O

223 equals binary 11011111. Capital A (decimal 65) is binary 01000001, while
lowercase a (decimal 97) is binary 01100001. The AND operation on these numbers
could be represented as

01000001 (65)
AND 11011111 (223)

01000001 (65)

01100001 (97)
AND 11011111 (223)

01000001 (65)

ANDing either a 0 or a 1 with 1 in effect leaves the value alone, and ANDing both a
0 and a 1 with 0 in effect turns the value into a 0. The binary number 11011111 forces
the 2"5 bit - the sixth one from the right - to become a 0 and leaves all the other bits
the way they were. (The rightmost bit is 2"0; the leftmost is 2"7.)

The only difference between a lowercase letter and its capital counterpart is that the
2" 5 bit is set (equals 1) in the lowercase version. ANDing it with 11011111 unsets the
bit, changing it to a 0 and lowering the ASCII value by 32.

To reverse the process and turn capital letters into lowercase ones, use the logical OR
operation to OR a value with 32:

• 1OR1=1
• 1ORO=1
• 0 OR 1=1
• OORO=O

32 equals binary 00100000. Since ORing either a 1 or a 0 with 0 in effect leaves the
value alone, and ORing either a 1 or a 0 with 1 in effect turns the value into a 1, the binary
number 00100000 forces the 2"5 bit to become a 1 and leaves all the other bits the way
they were.

This sets the unset 2"5 bit in an uppercase letter, changing it to a 1 and raising the
ASCII value by 32.

01000001 (65)
OR 00100000 (32)

01100001 (97)

01100001 (97)
OR 00100000 (32)

01100001 (97)

618 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

One problem with blanket logical operations like the OR AL,20 and the AND AL,DF
is that they switch uppercase to lowercase and vice versa, but end up changing the values
of many of the nonletter keys as well.

The solution is to test each letter to make sure it"s in the right range before performing
the logical operation on it. GETLETR.ASM does just that:

MOV AH,08
INT 21
CMP AL, lB
JE llE
CMP AL, 7A
JA 0102
CMP AL,60
JBE 0114
AND AL,DF
JMP 011C
CMP AL, 5A
JA 0102
CMP AL,41
JB 0102
AND AL,3F
MOV AH,4C
INT 21

get a keystroke
do it
is it escape?
bye
higher than 'z' ?
get another one
lower than 'a' ?
then try next test
otherwise uppercase it
and jump to subtract
higher than 'Z' ?
get another one
lower than 'A' ?
get another one
subtract 64
exit with code
do it

But you could create an executable version, GETLETR.COM, easily by adding an:

A

on a line by itself at the very beginning of GETLETR.ASM, a blank line, and then the
following five lines at the end:

RCX
22
N GETLETR.COM
w
Q

at the end (don't forget the blank line above RCX).
This won't accept nonletter entries, and is case insensitive. It will generate a code of

1 for A, 2 for B, and 26 for Z. It will also generate a 27 for Esc, which lets you use Esc
as an exit.

It takes advantage of a DOS keyboard-reading routine rather than the BIOS interrupt
16H used in the GETKEY.COM series. Either will do.

Then create a sample batch file like MENU2.BA T:

ECHO OFF
:TOP

Batch Techniques 619

ECHO Enter a letter from A to E (or type Esc to quit):
:START
GETLETR
IF ERRORLEVEL 27 GOTO END
IF ERRORLEVEL 6 GOTO START
IF ERRORLEVEL 5 GOTO LABELE
IF ERRORLEVEL 4 GOTO LAB ELD
IF ERRORLEVEL 3 GOTO LABELC
IF ERRORLEVEL 2 GOTO LABELB
:LABELA
ECHO (this simulates menu choice A)
PAUSE
GOTO TOP
:LABELB
ECHO (this simulates menu choice B)
PAUSE
GOTO TOP
:LABELC
ECHO (this simulates menu choice C)
PAUSE
GOTO TOP
:LABELD
ECHO (this simulates menu choice D)
PAUSE
GOTO TOP
:LABELE
ECHO (this simulates menu choice E)
PAUSE
GOTO TOP
:END

This example uses only five choices. When you start adding lots more, the tests can
become cumbersome.

As mentioned above, ifs possible to shorten long cascades ofIF ERRORLEVEL tests
by using a FOR command to dispatch the branching operation correctly.

The demonstration LEVEL.BAT batch file uses seven programs called ERR
TESTO.COM through ERRTEST6.COM that simulate the errors in their filenames. It's
a little complicated, but the batch file crams a ton of performance into a relatively small
space:

ECHO OFF
IF %1!==! GOTO OOPS

620 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

FOR %%A IN {O 1 2 3 4 5 6) DO IF %1==%%A GOTO NEXT
GOTO OOPS
:NEXT
ERRTEST%1
FOR %%E IN {l 2 3 4 5 6) DO IF ERRORLEVEL %%E GOTO
LABEL%%E
ECHO Everything is okay
GOTO END
:LABELl
ECHO ERROR #1
GOTO END
:LABEL2
ECHO ERROR #2
GOTO END
:LABEL3
ECHO ERROR #3
GOTO END
:LABEL4
ECHO ERROR #4
GOTO END
:LABELS
ECHO ERROR #5
GOTO END
:LABEL6
ECHO ERRORLEVEL GREATER THAN 5
GOTO END
:OOPS
ECHO Enter %0 and then a number from o to 6
:END

The line:

IF %1!==! GOTO OOPS

tests to make sure you entered something after the name of the batch file, and the:

FOR %%A IN {O 1 2 3 4 5 6) DO IF %1==%%A GOTO NEXT

screens out any entries that aren't the digits 0 through 6.
When you enter a valid digit, the line:

ERRTEST%1

tacks on (concatenates) the appropriate number in place of the % 1 replaceable parameter,
turning the ERRTEST string into something like ERRTEST2 or ERRTEST4. DOS then
executes one of the seven error-simulating files on the disk, and the line:

Batch Techniques 621

FOR %%E IN (1 2 3 4 5 6) DO IF ERRORLEVEL %%E GOTO LABEL%%E

reads the error the small program generated and branches to the appropriate comment
line in the batch file.

While LEVEL.BAT simply prints a message and exits, you could easily modify it to
include specific actions to be taken for each error type. Also, note that if ERRORLEVEL
is some value larger than any in the list, control will transfer based on the last value in
the list.

To test this out, make sure DEBUG is handy and type in the following 24 lines. Or use
a pure ASCII word processor to type them into a script file called ERR.SCR, and when
you 're done, get back to the DOS prompt and type:

DEBUG < ERR.SCR

This creates seven small files, ERRTESTO.COM through ERRTEST6.COM. Substi
tute them one at a time for the ERRTEST line in the LEVEL.BAT batch file. Each will
set an ERRORLEVEL equivalent to the number in its name.

E 100 B8 00 4C CD 21
RCX
5
N ERRTESTO.COM
w
E 101 1
N ERRTESTl.COM
w
E 101 2
N ERRTEST2.COM
w
E 101 3
N ERRTEST3.COM
w
E 101 4
N ERRTEST4.COM
w
E 101 5
N ERRTEST5.COM
w
E 101 6
N ERRTEST6.COM
w
Q

All of the key-processing programs above discard the keystroke after reading it and
setting an exit code. Since batch files execute painfully slowly on a slow system, an
impatient user may repeatedly press the key several times until he or she sees something

622 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

happen. The computer stores these extra keystrokes in the keyboard buffer, and they may
cause problems.

You could-adapt the basic GETKEY.COM program to display the key entered by
changing it to:

MOV AH,O
INT 16
MOV DL,AL
MOV AH,02
INT 21
MOV AH,4C
INT 21

BIOS read a character and
puts its ASCII code into AL
ready to display character

.; DOS display output
do it
ready to exit with code
do it

Type the following to create it:

DEBUG
E 100 B4 00 CD 16 88 C2 B4 02 CD 21 B4 4C CD 21
N GETNEWl.COM
RCX
E
w
Q

If you wanted to adapt this to display uppercase letters for any uppercase or lowercase
letters you entered, type:

E 100 B4 00 CD 16 24 DF 88 C2 B4 02 CD 21 B4 4C CD 21
N GETNEW2.COM
RCX
10
w
Q

This creates a program called GETNEW2.COM that will automatically uppercase any
lowercase letter you enter while leaving uppercase entries alone. However, it works by
performing a logical AND operation on the value in register AL:

AND AL,DF

If you entered a lowercase "a" (with a hex value of 61), ANDing this value with DP
will tum it into 41, which is the hex value of uppercase "A.•• Enter an uppercase "A•• and
the AND DF operation wiii ieave it alone.

Since this process forces the 2" 5 bit to become unset (turning it into a 0), it will subtract
a value of 32 from any number that has its 2 "5 bit set; :and leave any number that already
has a 0 in that bit position alone.

Batch Techniques 623

• FromO to 31 - values remain the same
• From 32 to 63 - it subtracts 32 from the value
• From 64 to 95 - values remain the same
• From 96 to 127 - it subtracts 32 from the value
• From 128 to 159 - values remain the same
• From 160 to 191 - it subtracts 32 from the value
• From 192 to 223 - values remain the same
• From 224 to 255 - it subtracts 32 from the value

So use a program like GETNEW2.COM with care.
Incidentally, as mentioned earlier, DOS offers a variety of key-processing functions,

some of which display the key you press and some of which don't. Function 1 of interrupt
21 does. So you could just as easily have used:

MOV AH,1
INT 21
MOV AH,4C
INT 21

DOS read a character and
displays it
ready to exit with code
do it

to echo the keystroke to the screen.

Speeding Things Up

You may notice a lag when running batch files containing long strings of IF
ERRORLEVEL tests on a slow system. The first rule of batch files is to execute them
from RAMdisks or fast hard disks.

But you can also streamline the operation by designing your batch files properly. One
method for speeding things up is to limit the number of choices. But this isn't really
practical for many applications.

The second rule of batch files is that it's always better to do processing outside of the
batch file. DOS executes batch files one slow line at a time. But an assembly language
program can process keyboard information virtually instantly. You'll be able to take out
almost all the potential delays by putting the tests you want in the key-processing program
rather than in the batch file. That's why this section included so many examples and
provided the assembly language code for each. You should be able to adapt one of the
above programs to do all the testing you need.

But if you do have to put a cascade of IF ERRORLEVEL tests in your batch files,
you '11 find one method is indeed faster than the other. Tests generally work in one of two
ways. You either put the muscle on each line or spread it over a dispatching cascade:

To put it on each line, test for a value, and make sure the next higher value isn't valid:

ECHO OFF
:TOP
ECHO Type a letter key (A-Z) or Esc to quit:

624 DOS Power Too/,s, 2nd Edition, Revised/or DOS 5.0

GETLETR
IF ERRORLEVEL 27 GOTO END
IF ERRORLEVEL 26 IF NOT ERRORLEVEL 27 ECHO z
IF ERRORLEVEL 25 IF NOT ERRORLEVEL 26 ECHO y

IF ERRORLEVEL 24 IF NOT ERRORLEVEL 25 ECHO x

and so on. To dispatch the command execution, try something like:

ECHO OFF
:TOP
ECHO Type a lette:r key {A-Z) o:r Esc to quit:
GETLETR
IF ERRORLEVEL 27 GOTO END
IF ERRORLEVEL 26 GOTO z
IF ERRORLEVEL 25 GOTO y

IF ERRORLEVEL 24 GOTO x

:Z
ECHO z
GOTO TOP
:Y
ECHO y

GOTO TOP
:X
ECHO x
GOTO TOP
:W

etc. The second way is faster.

Batch File Applications
The small demonstration programs above were designed to exercise the various batch
commands and show you how they operate. But if you really want to put these commands
to work, try some of the following batch file applications.

DOS Notepads

Batch files make it easy to harness the DOS COPY CON command and tum it into a
quick notepad. One method for doing this is to type in the BUILD.BAT batch file below,
and then enter:

Batch Techniques 625

BUILD filename

when you're in DOS (substituting the name of your own file). BUILD.BAT will clear
the screen, display a ruler line, and save all your input in an ASCII file called filename.
When you 're finished entering text, simply hit the Z key while holding down the Ctrl key
and then press the Enter key - or just press the F6 function key, which does the same
thing. If a file with the same name as filename already exists, BUILD.BAT will rename
it to have a BAK extension. By specifying PRN as the filename, all text entered is dumped
to your default printer. This is useful for short memos or notes.

Since BUILD.BAT allows only the current line to be edited, it won't replace your word
processor. In fact, even EDLIN leaves it in its dust. But it does allow you to create tiny
batch files or memos quickly and painlessly in DOS. And it's forgiving enough not to
write over an existing file.

ECHO OFF

IF %1!==! GOTO OOPS

IF %1==PRN GOTO START

IF EXIST %1.BAK GOTO OOPS2

IF NOT EXIST %1 GOTO START

REN %1 *.BAK

:START

CLS

ECHO ** Press F6 and then the Enter key when you're all done to save %1 **

ECHO 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

ECHO - - - - ! - - - - ! - - - - ! - - - - ! - - - - ! - - - - ! - - - - ! - - - - ! - - - - ! - - - - ! - - - - ! - - - - ! - - - - ! - - - - ! - - - - ! - - - -

COPY CON %1

GOTO END

:OOPS

ECHO Enter a filename after %0

GOTO END

:OOPS2

ECHO You already have a file called %1.BAK

ECHO Rename or erase it so this can proceed

:END

Another memo maker, QUIKNOTE.BAT, creates a small memo file and lets you
update it automatically without having to use a word processor.

After you've entered any information, typing QUIKNOTE will display it. To update
the information, just type QUIKNOTE followed by up to nine words of text. The next
time you type QUIKNOTE the new text will appear, appended to the old.

QUIKNOTE.BAT also prints instructions even if you don't enter anything after the
filename:

ECHO OFF
IF %1!==! GOTO DISPLAY
ECHO %1 %2 %3 %4 %5 %6 %7 %8 %9 >> %0.DOC

626 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

:DISPLAY
CLS
IF NOT EXIST %0.DOC GOTO OOPS
TYPE %0.DOC
GOTO END
:OOPS
ECHO You haven't entered anything yet ..
ECHO To enter data, type %0 and then type
ECHO up to 9 words on each line
ECHO (You can enter up to 23 lines.)
ECHO
ECHO To see what you've typed, just type %0
:END

A Date with DOS

You can adapt the above techniques to create a small appointment book that lets you add
and delete entries, sorts your appointments for you automatically, and can show you in
just a few seconds what you have lined up on any day:

ECHO OFF
IF %1!==! GOTO LIST
IF %2!==! GOTO TODAY
ECHO %1 %2 %3 %4 %5 %6 %7 %8 %9 >> NEW.DAT
SORT < NEW.DAT > TODO
ECHO (%1 %2 %3 %4 %5 %6 %7 %8 %9 ADDED)
GOTO DONE
:LIST
IF NOT EXIST TODO GOTO FIRSTIME
ECHO ******* APPOINTMENTS ********
MORE < TODO
:FIRSTIME
ECHO *****************************
ECHO To enter appointments, type:
ECHO -
ECHO %0 DATE TIME MEMO
ECHO -
ECHO WHERE DATE = MM/DD
ECHO TIME HH/MM
ECHO MEMO = 7 OR FEWER WORDS
GOTO DONE
:TODAY
ECHO *** TODAY'S APPOINTMENTS ***

IF NOT EXIST TODO GOTO FIRSTIME
FIND 11 %1 11 TODO
:DONE

To use APPT.BAT just type:

APPT APPTDATE APPTTIME APPTMEMO

Batch Techniques 621

where APPTDA TE is in MM/DD format (and you pad out single digit months and days
with zeros), APP'ITIME is in HH:MM format (and you pad out single digit hours and
minutes with zeros here also), and APPTMEMO is text from one to seven words long.

If you simply type:

APPT

the batch file will type all your appointments. And if you type:

APPT MM/DD

(substituting a real date, such as 01/05 for MM/DD), the batch file will display all the
appointments for that particular date.

For APPT.BAT to work, you must either have the DOS SORT.EXE, MORE.COM,
and FIND.EXE files on your disk or have them properly pathed to. Still, it's not perfect.
If you ask it to find 2/ 1 it will also show any line with a 2/ 11 or 12/ l l date at the beginning,
as well as any line with a 2/ 1 in the memo part of a listing that starts with a totally unrelated
date.

However, you can also use it to display all your appointments on all dates with Mr.
Jones, by typing APPT Jones (it's case sensitive, so it won't find JONES if you ask for
Jones), or all your meetings with different people on the subject of taxes if the word taxes
appears in the memo area of several different appointments with those different people.
If you try searching for key words rather than dates, remember these have to be single
words - you can search for "Jones" but not "John Jones."

You can indeed have DOS remove names as well as add them. APPT.BAT keeps track
of things with the files NEW.BAT and TODO. REMOVE.BAT uses the FIND /V
command to expunge any date you don't want from these two files:

ECHO OFF
IF %1!==! GOTO OOPS
FIND /V 11 %1 11 NEW.DAT I FIND /V 11

-
11 I FIND II II > TEMP

DEL NEW.DAT
DEL TODO
REN TEMP NEW.DAT
COPY NEW.DAT TODO > NUL
GOTO END
:OOPS

628 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

ECHO Enter the date you want removed after
ECHO the word %0
:END

To remove everything on 6/12, type:

REMOVE 6/12

Or to remove all references to Mrs. Smith, type:

REMOVE Smith

(observing case sensitivity and remembering that this will also remove any references to
Mr. Smith if one exists).

Free Dialer

Now that you have a memo pad and an appointment book, you'll need a telephone dialer.
By using features of the Hayes Smartmodem and the output redirection capabilities of
DOS, you can tum a simple batch file into your own telephone dialer with its own built-in
directory,

DIAL.BAT will automatically dial the phone (with a 1200 baud modem), disconnect
the modem, and allow you to continue the call. In addition, it lets you set up an extensive
dialing directory by expanding the conditional tests for names within the program. You '11
need to have the DOS MODE.COM and FIND.EXE programs in the same directory as
the dialer program or in a directory your PA TH command knows about.

ECHO OFF
MODE COM1:1200 >NUL
IF %1!==! GOTO OOPS
IF %1 # GOTO LIST
IF %1 TOM GOTO TOM#
IF %1
IF %1
IF %1

Tom GOTO TOM#
tom GOTO TOM#
DICK GOTO DICK#

IF %1 Dick GOTO DICK#
IF %1 dick GOTO DICK#
IF %1 HARRY GOTO HARRY#
IF %1 Harry GOTO HARRY#
IF %1 harry GOTO HARRY#
ECHO ATDT%1; >COMl:
GOTO END
:TOM#

ECHO ATDTlll-1111; >COMl:
GOTO END
:DICK#
ECHO ATDT222-2222; >COMl:
GOTO END
:HARRY#
ECHO ATDT9-333-3333; >COMl:
GOTO END
:LIST
ECHO The %0 batch file currently
ECHO contains numbers for:
FIND 11 # 11 %0.BAT I FIND /V 11 %% 11

GOTO BYE
:OOPS

Batch Techniques 629

ECHO You have to enter a number or a riame that
ECHO you've put in the batch file after %0
ECHO eg %0 555-1212 or %0 TOM
ECHO OR - Type %0 # to see a list of names
ECHO currently in the %0.BAT directory
GOTO BYE
:END
ECHO -
ECHO When the dialing is done, press
ECHO any key to disconnect the modem.
ECHO -
PAUSE
ECHO ATH >COMl:
:BYE

To use DIAL.BAT, just type:

DIAL number

or:

DIAL name

where number is the telephone number you wish to dial, and name is the name of someone
in the batch file's directory. Listen to the speaker in the modem to determine when the
dialing is done, lift the handset, and then press any key to disconnect the modem and
reconnect the handset. Complete your call as usual.

So if you want to call your friend Tom, and you've put his name in the directory, you
can enter:

DIAL TOM

630 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

(or DIAL Tom or DIAL tom). If you haven't put his name in the directory, but you know
his number is 123-4567, enter:

DIAL 123-4567

You can see which names are currently included in your DIAL.BAT batch file by
typing:

DIAL #

The names TOM, DICK, and HARRY in the sample DIAL.BAT batch file and the
phone numbers that follow are obvious dummies. Replace them with your own entries.
Note the following rules, however:

1. You should add three tests for each name, so you can type them in in uppercase,
lowercase, or with an initial capital letter.

2. Make sure you put a #at the end of each label, as shown by :TOM# or :DICK#, as
well as in the GOTO TOM# or GOTO DICK# commands. This·· lets the FIND
command isolate the names if you enter DIAL # to see which names are currently
listed in the batch file.

MODE insures that the right COM port is set to the proper baud rate. If you 're using
COM2 or a different baud rate, change the values in the program accordingly. MODE
usually prints a message to the screen; DIAL.BAT gets rid of this by redirecting it to the
NULdevice.

When using modems by manufacturers other than Hayes, be sure the RS-232-C lines
CTS (clear to send) and DSR (data set ready) from the modem are on, or else you'll get
a DOS error. And although some non-Hayes modem options can be set for DSR and CTS
on, the lines may be disabled until the ''wake up" signal is sent to the modem. DOS,
however, aborts the transmission to the modem before it sends any characters at all since
the modem does not appear to be ready.

Free Telephone Directory

Hate to look up numbers in your telephone book or Rolodex? You don't ever have to
again; DOS can do all the work for you.

The trick is to whip together three batch files - ADD.BAT, REMOVE.BAT, and
LOOKUP.BAT. Then create a subdirectory called \PHONES that contains these batch
files and room for the NAME.LST list of names.

ADD.BAT is very straightforward:

ECHO OFF
IF %1!==! GOTO OOPS
IF %1==# GOTO SEELIST

Batch Techniques 631

ECHO %1 %2 %3 %4 %5 %6 %7 %8 %9 >> NAME.LST
SORT < NAME.LST > TEMP
DEL NAME.LST
REN TEMP NAME.LST
GOTO END
:OOPS
ECHO To add data, enter up to 9 words after %0:
ECHO -
ECHO LASTNAME FIRSTNAME PHONENUMBER ADDRESS MEMO
ECHO -
ECHO (Try to avoid spaces, so use 212-555-1212
ECHO rather than (212) 555 1212)
ECHO -
ECHO ** Or enter %0 # to see the whole list **
GOTO END
:SEELIST
IF NOT EXIST NAME.LST GOTO OOPS
MORE < NAME.LST
:END

You either type ADD followed by up to nine words:

ADD Cleaver Theodore 312-555-1111 34 Elm, Chicago, IL 34567

or:

ADD #

to see the whole list.
REMOVE.BAT is also simple:

ECHO OFF

IF %1!==! GOTO OOPS

FIND /V 11 %1 11 NAME.LST I FIND /V "NAME.LST" I FIND II II > TEMP

COPY NAME.LST NAME.OLD > NUL

DEL NAME.LST

REN TEMP NAME.LST

GOTO END

:OOPS

ECHO Enter a key word from the line you want

ECHO removed after the word %0

:END

632 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

To delete a name, just type:

REMOVE Cleaver

But be careful, since this will remove any line that has the character string Cleaver in
it. However, if you find you've made a mistake, you won't lose anything since RE
MOVE.BAT creates a backup file each time called NAME.OLD.

LOOKUP.BAT is the simplest of all:
; _, ~ '

ECHO OFF
IF %1!==! GOTO OOPS
IF %1==# GOTO SEELIST
FIND 11 %1 11 NAME.LST I MORE
GOTO END
:OOPS
ECHO To look up data, enter %0 then a single key word
ECHO ** Or enter %0 # to see the whole list **
GOTO END
:SEELIST
IF NOT EXIST NAME.LST GOTO OOPS2
MORE < NAME.LST
GOTO END
:OOPS2
ECHO First use ADD.BAT to create your NAME.LST
:END

You can retrieve information in all sorts of useful ways. You could, of course, hunt
for ~ name by typing something like:

LOOKUP Benway

But you could also get a list of all the names and numbers in NY by typing:

LOOKUP NY

Or if you remember that someone has a telephone number containing a 98 in it, but you
can't remember the name or anything else, you could type:

LOOKUP 98

You can also add "keys" like BB to indicate business, or HH to tell you the listing is
a home addr~.

Obvio-q~ly· this isn •t perfect. It's case sensitive, so it wouldn't report Dr. Benway if you
typed the lowercase:

LOOKUP benway

Batch Techniques 633

But it would find him if you entered an abbreviated form, like:

LOOKUP enwa

since it looks for occurrences of character strings. In any event, it's fast and handy, and
it can retrieve names and numbers when all you have to go on is a scrap of information
such as part of a phone number or a recollection that the person was on the west coast
(with a 90xxx Zip code).

Again, to make this work, you have to have FIND.EXE, SORT.EXE, and MORE.COM
in the same subdirectory, or in one your path knows about.

Daily Chores

If you need a way to run your systems unattended overnight to reindex data base files,
print reports, and get your electronic mail, or if you want to run certain programs on
certain days only, you can have batch files do all the dirty work for you.

You need a few small utilities to help. GETDATE.COM returns an ERRORLEVEL
of 1 to 31 equal to the current date-of-month. GETMONTH returns an ERRORCODE
of 1to12, equal to the current month. DOW.COM returns an error code related to the
day of the week, where Sunday equals 0 and Saturday equals 6.

To create the three programs, type in the following 15 lines:

DEBUG
E 100 B4 2A CD 21 88 FO B4 4C CD 21 CD 20
N GETMONTH.COM
RCX
c
w
E 105 DO
N GETDATE.COM
w
E 104 B4 4C CD 21 CD 20
N DOW.COM
RCX
A
w
Q

Then create the three batch files below: SHOWMON.BAT, SHOWDATE.BAT, and
WEEKDAY.BAT. Substitute your own commands in place of the dummy ECHO
statements to execute your programs at specified times. First, SHOWMON.BAT:

ECHO OFF
REM This is SHOWMON.BAT
GETMONTH

634 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

IF ERRORLEVEL 1 IF NOT ERRORLEVEL 2 ECHO Month Jan
IF ERRORLEVEL 2 IF NOT ERRORLEVEL 3 ECHO Month Feb
IF ERRORLEVEL 3 IF NOT ERRORLEVEL 4 ECHO Month Mar
IF ERRORLEVEL 4 IF NOT ERRORLEVEL 5 ECHO Month Apr
IF ERRORLEVEL 5 IF NOT ERRORLEVEL 6 ECHO Month May
IF ERRORLEVEL 6 IF NOT ERRORLEVEL 7 ECHO Month Jun
IF ERRORLEVEL 7 IF NOT ERRORLEVEL 8 ECHO Month Jul
IF ERRORLEVEL 8 IF NOT ERRORLEVEL 9 ECHO Month Aug
IF ERRORLEVEL 9 IF NOT ERRORLEVEL 10 ECHO Month = Sep
IF ERRORLEVEL 10 IF NOT ERRORLEVEL 11 ECHO Month Oct
IF ERRORLEVEL 11 IF NOT ERRORLEVEL 12 ECHO Month = Nov
IF ERRORLEVEL 12 ECHO Month = Dec

Next, SHOWDATE.BAT:

ECHO OFF
REM This is SHOWDATE.BAT
GETDATE
IF ERRORLEVEL 1 IF NOT ERRORLEVEL 2 ECHO Date 1st
IF ERRORLEVEL 2 IF NOT ERRORLEVEL 3 ECHO Date 2nd
IF ERRORLEVEL 3 IF NOT ERRORLEVEL 4 ECHO Date 3rd
IF ERRORLEVEL 4 IF NOT ERRORLEVEL 5 ECHO Date 4th
IF ERRORLEVEL 5 IF NOT ERRORLEVEL 6 ECHO Date 5th
IF ERRORLEVEL 6 IF NOT ERRORLEVEL 7 ECHO Date 6th
IF ERRORLEVEL 7 IF NOT ERRORLEVEL 8 ECHO Date 7th
IF ERRORLEVEL 8 IF NOT ERRORLEVEL 9 ECHO Date 8th
IF ERRORLEVEL 9 IF NOT ERRORLEVEL 10 ECHO Date = 9th
IF ERRORLEVEL 10 IF NOT ERRORLEVEL 11 ECHO Date 10th
IF ERRORLEVEL 11 IF NOT ERRORLEVEL 12 ECHO Date 11th
IF ERRORLEVEL 12 IF NOT ERRORLEVEL 13 ECHO Date
IF ERRORLEVEL 13 IF NOT ERRORLEVEL 14 ECHO Date
IF ERRORLEVEL 14 IF NOT ERRORLEVEL 15 ECHO Date
IF ERRORLEVEL 15 IF NOT ERRORLEVEL 16 ECHO Date
IF ERRORLEVEL 16 IF NOT ERRORLEVEL 17 ECHO Date
IF ERRORLEVEL 17 IF NOT ERRORLEVEL 18 ECHO Date
IF ERRORLEVEL 18 IF NOT ERRORLEVEL 19 ECHO Date
IF ERRORLEVEL 19 IF NOT ERRORLEVEL 20 ECHO Date
IF ERRORLEVEL 20 IF NOT ERRORLEVEL 21 ECHO Date
IF ERRORLEVEL 21 IF NOT ERRORLEVEL 22 ECHO Date
IF ERRORLEVEL 22 IF NOT ERRORLEVEL 23 ECHO Date
IF ERRORLEVEL 23 IF NOT ERRORLEVEL 24 ECHO Date
IF ERRORLEVEL 24 IF NOT ERRORLEVEL 25 ECHO Date
IF ERRORLEVEL 25 IF NOT ERRORLEVEL 26 ECHO Date
IF ERRORLEVEL 26 IF NOT ERRORLEVEL 27 ECHO Date
IF ERRORLEVEL 27 IF NOT ERRORLEVEL 28 ECHO Date

12th
13th
14th
15th
16th
17th
18th
19th
20th
21st
22nd
23rd
24th
25th
26th
27th

Batch Techniques 635

IF ERRORLEVEL 28 IF NOT ERRORLEVEL 29 ECHO Date 28th
IF ERRORLEVEL 29 IF NOT ERRORLEVEL 30 ECHO Date 29th
IF ERRORLEVEL 30 IF NOT ERRORLEVEL 31 ECHO Date 30th
IF ERRORLEVEL 31 ECHO Date = 31st

(This long batch file is actually easy to create using the copy commands of your word
processor or EDLIN.) And fmally WEEKDAY.BAT:

ECHO OFF
REM This is WEEKDAY.BAT
DOW
IF ERRORLEVEL 0 IF NOT ERRORLEVEL 1 ECHO Sun
IF ERRORLEVEL 1 IF NOT ERRORLEVEL 2 ECHO Mon
IF ERRORLEVEL 2 IF NOT ERRORLEVEL 3 ECHO Tue
IF ERRORLEVEL 3 IF NOT ERRORLEVEL 4 ECHO Wed
IF ERRORLEVEL 4 IF NOT ERRORLEVEL 5 ECHO Thu
IF ERRORLEVEL 5 IF NOT ERRORLEVEL 6 ECHO Fri
IF ERRORLEVEL 6 ECHO Sat

The sample batch files are based on pairs of IF ERRORLEVEL tests on each line.
Since IF ERRORLEVEL tests are true if the exit codes they test are equal to - or greater
than - the value after IF ERRORLEVEL, you have to screen out the next higher one to
isolate any exit code.

You could put just one test on each line, interspersed with GOTO statements. The
following WEEK2.BATwould yield the same results as WEEKDAY.BAT, but it's far
longer:

ECHO OFF
REM This is WEEK2.BAT
DOW
IF ERRORLEVEL 1 GOTO 1
ECHO It's Sunday
GOTO END
: 1

IF ERRORLEVEL 2 GOTO 2
ECHO It's Monday
GOTO END
: 2

IF ERRORLEVEL 3 GOTO 3
ECHO It's Tuesday
GOTO END
: 3

IF ERRORLEVEL 4 GOTO 4
ECHO It's Wednesday
GOTO END

636 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

:4
IF ERRORLEVEL 5 GOTO 5
ECHO It's Thursday
GOTO END
:5
IF ERRORLEVEL 6 GOTO 6
ECHO It's Friday
GOTO END
: 6

ECHO It's Saturday
:END

You could also try setting environment variables rather than ECHOing directly. The
following WEEKDA Y2.BAT batch file will cycle through the choices, resetting the
environment variable DAY until the IF test is no longer true, and then retrieve the current
setting and ECHO it to the screen.

ECHO OFF
REM This is WEEKDAY2.BAT
DOW
IF ERRORLEVEL 0 SET DAY=Sun
IF ERRORLEVEL 1 SET DAY=Mon
IF ERRORLEVEL 2 SET DAY=Tue
IF ERRORLEVEL 3 SET DAY=Wed
IF ERRORLEVEL 4 SET DAY=Thu
IF ERRORLEVEL 5 SET DAY=Fri
IF ERRORLEVEL 6 SET DAY= Sat
ECHO Day is %DAY%

The advantage here is that once you've run WEEKDA Y2.BAT, other programs and
batch files can grab the DAY variable directly from the environment without having to
rerun the WEEKDAY2.BAT and DOW.COM. The DAY variable and its value don't
take up much environment space, but you should consider expanding your environment
just to make sure you don't run out. Or insert a placeholder:

SET DAY=XXX

command in your AUTOEXEC.BAT file to reserve the few bytes needed.
It's simple to adapt this process to report on anything DOS can sniff out. For instance,

create the ID.COM and MODEREAD.COM programs by typing in this MODEID.SCR
file:

A
MOV AX,FOOO
MOV DS,AX
MOV BX,FFFE
MOV AX, [BX]
MOV AH,4C
INT 21

RCX
E
N ID.COM
w
A 100
MOV AH,OF
INT 10
MOV AH,4C
INT 21 ; do it

RCX
s
N MODEREAD.COM
w
Q

top segment
ready to use it
ID off set
ready to read it
exit with code
do it

get video mode
do it
exit with code

Batch Techniques 637

Be careful to leave the two blank lines above each RCX, and to press the Enter key at
the end of each line - especially the last one. Then, at the DOS prompt, type:

DEBUG < MODEID.SCR

Or, just type the following 12 lines:

DEBUG
E 100 BS 00 FO SE DS BB FE FF SB 07 B4 4C CD 21
N ID.COM
RCX
E
w
E 100 B4 OF CD 10 B4 4C CD 21
N MODEREAD.COM
RCX
s
w
Q

638 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

Then run HARDWARE.BAT:

ECHO OFF

REM This is HARDWARE.BAT

ID

IF ERRORLEVEL 255 ECHO System = PC

IF ERRORLEVEL 254 IF NOT ERRORLEVEL 255 ECHO System = XT or Portable

IF ERRORLEVEL 253 IF NOT ERRORLEVEL 254 ECHO System = PCjr

IF ERRORLEVEL 252 IF NOT ERRORLEVEL 253 ECHO System = AT or Model 50 or 60 or XT/286

IF ERRORLEVEL 251 IF NOT ERRORLEVEL 252 ECHO System = XT

IF ERRORLEVEL 250 IF NOT ERRORLEVEL 251 ECHO System = Model 30 or 25

IF ERRORLEVEL 249 IF NOT ERRORLEVEL 250 ECHO System = Convertible

IF ERRORLEVEL 248 IF NOT ERRORLEVEL 249 ECHO System = Model 80

Obviously these are demonstration programs and not workhorse batch files. To put
them to use, you·d have to jump to different system-handling and screen-handling
routines instead of just printing messages as these do here.

Time of the Month

Or, you may want to execute a specific program at boot-up on a specific day, perhaps to
run CHKDSK once each week and Peter Norton ·s DISKTEST once each month to
monitor the condition of a fixed drive. Batch files make it easy.

First, create the DATECHEK.COM program by typing in the DATECHEK.SCR
script:

A
MOV AH, 2A
INT 21
CMP AL,02
JNZ 0113
MOV AL,00
CMP DL,08
JNB 0115
MOV AL,01
JMP 0115
MOV AL,02
MOV AH,4C
INT 21

RCX
19

get date
do it
is it Tues?
no, AL=2
yes, AL=O
first week?
no, AL=O
yes, AL=l
skip next line
set level
exit with code
do it

N DATECHEK.COM
w
Q

Batch Techniques 639

Again, be careful to leave the blank line above RCX and to press Enter after each line,
especially the last one. Then get back into DOS and type:

DEBUG < DATECHEK.SCR

Or just type the following eight lines:

DEBUG
E 100 B4 2A CD 21 3C 02 75 OB BO 00 80 FA 08
E lOD 73 06 BO 01 EB 02 BO 02 B4 4C CD 21
N DATECHEK.COM
RCX
19
w
Q

Then create a CHKDATE.BAT batch file:

ECHO OFF
DATECHEK
IF ERRORLEVEL 2 GOTO 2
IF ERRORLEVEL 1 GOTO 1
ECHO It's Tues (not the
GOTO END
: 2
ECHO It's not Tuesday
GOTO END
: 1

1st)

ECHO It's the first Tuedsay
:END

DA TECHEK program requests the system date via function 2AH, looks for the day
of the week and, if it is Tuesday, then checks to see if it is the first Tuesday of the month.
The program terminates with function 4CH, which returns a value in AL that the IF
ERRORLEVEL command can test in a batch file.

You can alter the day of the week to be tested by changing the line:

CMP AL,02

640 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

in the listing (00 = Sun, 02 = Tues, 06 = Sat). If you wanted to patch an existing
DA TECHEK.COM program with DEBUG, change the value at offset 105. So to change
it to Wednesday, which has a value of 3, type:

DEBUG DATECHEK.COM
E 105 3
w
Q

The day of the month is reported in DL. Tuesday was chosen to avoid missing the
monthly test due to a holiday (July 1 and January 1 present problems only infrequently).

The CHKDATE.BAT uses the ERRORLEVEL returned by DATECHEK.COM to
branch to the appropriate test. It's a dummy file for demonstration purposes; substitute
your own commands for the ECHO messages shown.

Current Events

It's usually difficult to give DOS access to the date or time when running batch files. But
there• s a way to get around this problem.

Assume you want to run a program called ONCEONLY.COM only once a day. Add
the following line to your AUTOEXEC.BAT:

ECHO I MORE I DATE > READDATE.BAT

and make:

READDATE

the last line in your AUTOEXEC.BAT. Then create a batch file called CURRENT.BAT:

ECHO OFF
IF !%TODAY%==!%4 GOTO END
SET TODAY=%4
REM ONCEONLY program goes here
:END

You can even arrange that it runs only once a week, say every Friday, by adding a line:

IF NOT %3==Fri GOTO END

after the line SET TODAY=%4. And as a bonus, you wind up with today's date in the
environment.

This works by creating a file READDATE.BAT, containing the output of DATE:

Current date is Sun 9-30-1990
Enter new date (rnrn-dd-yy) :

Batch Techniques 641

DOS tries to run the line beginning with "Current date is .. by looking for an executable
file (with an extension COM, EXE, or BAT) called CURRENT - and finds the one we
created called CURRENT.BAT. DOS then interprets the groups of words and numbers
following the word "Current .. as parameters for CURRENT.BAT. So it reads "date .. as
% 1, "is .. as %2, the day of the week as %3, and the actual numeric date as %4.

One special trick that's worth noting is the use of the MORE command in the
middle of the ECHO I MORE I DATE > READ DATE.BAT line. All this does is
supply the extra carriage return that the DATE command needs to execute properly.
(To make this work, MORE.COM has to be in the same directory or be in one your
path knows about.) Note also that adding READDATE as the final line in your
AUTOEXEC.BAT means that as soon as AUTOEXEC.BAT finishes, DOS will load
and execute READDATE.BAT.

You could adapt this process slightly if you didn•t have an internal clock but needed
to reboot frequently. First, put these lines near the top of your AUTOEXEC.BAT file:

ECHO OFF
IF NOT EXIST.D.BAT GOTO SETIT
COMMAND /C D
:SETIT
DATE
DATEMAKE

and then a final AUTOEXEC.BAT line:

DATEMAKE

The COMMAND /C allows one batch file to run another batch file and then jump
execution back to the first when the second is done. Users of DOS 3.3 or later could
substitute CALL for COMMAND /C. D.BAT is a short batch file created by
DATEMAKE.BAT, containing the lines

Current date is Sun 9-30-1990
Enter new date {rnm-dd-yy) :

(or whatever the last set date was). ~

The DATE command below COMMAND/CD lets you correct the date the first time
you run AUTOEXEC.BAT each day. DATEMAKE.BAT contains the single line:

ECHO I MORE I DATE > D.BAT

Again, MORE.COM has to be in the current subdirectory or in one your PATH knows
about. The only other file you need for this to work is a tiny one called, you guessed it,
CURRENT.BAT:

DATE %4

642 DOS Power Tools,-2nd Edition, Revised/or DOS 5.0

Real-Time Batch File Entries

If you could send a command from the keyboard to a batch file while it was executing,
you could enter a switch or a command as needed during execution. To do this, include
a line:

COPY CON TEST.BAT

in your batch file. As soon as DOS reaches this line it will pause and let you enter anything
you want. Then when you type Ctrl-Z and press Enter, DOS will resume processing the
batch file.

To see this in action, type in the SAMPLE.BAT batch file below:

ECHO OFF
REM SAMPLE.BAT
ECHO To edit or create a file
ECHO using WordStar, type:
ECHO WS followed by a filename
ECHO Then Enter, Ctrl-Z, then Enter
ECHO example: WS MYFILE.LET
ECHO (then Enter, Ctrl-Z, Enter)
COPY CON TEST.BAT
COMMAND /C TEST
ECHO end of demo

The COMMAND /C command (you may substitute CALL if you•re using DOS 3.3 or
later) executes the new TEST.BAT file that you just created. Then, when TEST.BAT
finishes running, DOS returns control to the main SAMPLE.BAT batch file.

This is handy for giving instructions to new users and then executing the commands
they type.

You can adapt this technique to create a real-time log that will keep track of who•s
using your system. Just create the following LOGIT.BAT batch file:

ECHO OFF
IF EXIST LOG GOTO NEXT
ECHO === Logfile === > LOG
:NEXT
ECHO This will add your name
ECHO Instructions:
ECHO 1. Enter your name
ECHO 2. Hit the Enter key
ECHO 3. Hit the F6 key
ECHO 4. Hit the Enter key
CTTY NUL
COPY CON ADD

to the logf ile

again

Batch Techniques 643

COPY LOG+ADD /B
ECHO I MORE I TIME I FIND "Current" » LOG
ECHO - > > LOG
CTTY CON
MORE < LOG

Run it by typing LOGIT. When promptoo, enter your name, then press Enter, then
press F6, then Enter. Your name and the current time will be addoo to the log. You may
also add comments below your name, on separate lines - just be sure to press Enter,
then F6, then Enter when you 're done.

More Efficient Copies

DOS doesn't make it easy to copy groups of files from the current directory to another
directory or disk with a single command - unless you do it with a batch file. The
COPYEASY.BAT batch file lets you use as many as eight shorthand filespecs on a single
command line:

ECHO OFF
IF 11 %2 11 == 1111 GOTO HELP
ECHO This will copy %2 %3 %4 %5 %6 %7 %8 %9
ECHO from
CD
ECHO to %1
ECHO Hit Ctrl-Break to abort, or
PAUSE
SET MYVAR=%1
SHIFT
:AGAIN
ECHO Copying %1 to %MYVAR%
FOR %%A IN (%1) DO COPY %%A %MYVAR% > NUL
SHIFT
IF NOT 11 %1 11 == 1111 GOTO AGAIN
SET MYVAR=
GOTO END
:HELP
ECHO To use this %0 utility, enter:
ECHO %0, DESTINATION, and up to 8 fiiespecs
ECHO in current directory. For example:
ECHO -
ECHO %0 B: *.BAT *.D?? MYFILE.TXT TEST.*
ECHO -
:END

644 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

This batch utility provides help if ifs needed and specific feedback on what to type on
the command line; it also requests confirmation before proceeding. This version uses
only DOS commands, but you can streamline it by adding IF ERRORLEVEL branching.

COPYEASY really takes advantage of DOS variables. It starts out by using replaceable
parameters to read everything off the command line, and then has the DOS SHIFf
command process them one by one. Each time the SHIFf command executes it moves
all the replaceable parameters up a notch, so %3 becomes %2 and %2 becomes %1 and
the old value for % 1 is discarded.

So if you entered:

COPYEASY D: *.BAT C*.COM ??.EXE

• %1 would= D:
• %2 would= *.BAT
• %3 would = C* .COM
• %4 would = ?? .EXE

Execute SHIFT once and:

• %1 would= *.BAT
• %2 would = C* .COM
• %3 would = ??.EXE

The old D: value of %1 would vanish, and %4 wouldn't have any value. Remember,
the %0 parameter is a special case - it represents the name of the batch file itself.

The % 1 parameter originally represents the destination for all the copies, and this is
used the whole time the batch file runs. But the first time SHIFT executes, it wipes out
the old value of % 1 and replaces it with what used to be %2. COPYEASY gets around
this by taking the original value of % 1 and setting it to an environment variable, with the
command:

SET MYVAR=%1

It can then use this destination at any subsequent time in the batch file by referring to
it as %MYV AR% rather than % 1. And it cleans up when finished by removing the
variable from the environment with the command:

SET MYVAR=

If you do try this, make sure your environment is large enough to hold the extra
variable. Under DOS 2.0 and 2.1 you can patch COMMAND.COM at address ECF to
represent the number of 16-byte memory paragraphs that will make up your new
environment. (For DOS 2.11 the address is DF3.) For DOS 3.0 and 3.1, use a SHELL
[d:][path]COMMAND.COM /E:n /P command in your CONFIG.SYS file, where n

Batch Techniques 645

represents the number of 16-byte paragraphs. For versions 3.2 and later, use the same
SHELL command but specify the actual number of bytes rather than paragraphs. The
default in all cases is 160 bytes (ten paragraphs). You can boost it all the way up to 32K
in DOS 3.2 and later, but are limited to 62 paragraphs in earlier versions.

AUTOEXEC.BAT

Virtually all users start their systems with AUTOEXEC.BAT files. But there are times
when you want to start without all of the various programs your AUTOEXEC.BAT
normally loads.

A combination of resident programs loaded by your AUTOEXEC.BAT might cause
your machine to hang. Or, you might not want to run a product your AUTOEXEC.BAT
installs (for example, you might not want to bring up your network before doing backups).

You could simply begin the file with a PAUSE command, but this means you'd have
to sit by and watch the disks grind until you reached the PAUSE. And you'd end up just
banging the space bar to proceed 99 percent of the time.

Or, you could boot off a floppy disk in your A: drive, or do what most users do -
continually press Ctrl-Break while your machine is booting, hoping your AU
TOEXEC.BA T will be aborted before the critical instructions occur. Either solution is
fine if you only run into the problem once in a while, but neither solution is ideal.

A far better method is to use a small program called KBFLAG.COM to monitor your
keyboard as you boot up, and send a code to your AUTOEXEC.BAT file that an IF
ERRORLEVEL instruction can trap. Once you install this program, you can press one
single key while your machine is booting to avoid running your AUTOEXEC.BAT.

To create KBFLAG.COM, type in the following KBFLAG.SCR script:

A

MOV AX,40
MOV DS,AX
MOV AL, (17]
MOV AH,4C
INT 21

RCX
c
N KBFLAG.COM
w
Q

segment 0040
get it ready
get value at offset 17
exit with code
do it

Be sure to leave a blank space above RCX, and press the Enter key at the end of each
line, especially the last one. Then get into DOS and type:

DEBUG < KBFLAG.SCR

646 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

Or just type in the following seven lines:

DEBUG
E 100 B8 40 00 8E D8 AO 17 00 B4 4C CD 21
N KBFLAG.COM
RCX
c
w
Q

Then, add these two lines at the very beginning of your AUTOEXEC.BAT:

KB FLAG
IF ERRORLEVEL number GOTO END

(replacing. "number" with one from the chart below).
You '11 also need a label at the end of your batch file that says simply:

:END

KBFLAG sets the DOS ERRORLEVEL to the value of the KBFLAG in the ROM
BIOS area. You can use different keys to trigger KBFLAG. These keys, and the codes
read by IF ERRORLEVEL, are: .

1 Right shift
2 Left shift
4 Ctrl key
8 Alt key

16 ScrollLock
32 NumLock
64 CapsLock

128 Insert

For example, you can avoid running AUTOEXEC.BAT if you press and hold a Shift
key while your machine boots, or if you simply press NumLock while your CONFIG.SYS
is running.

You can add the above key values together. If you wanted the trigger to be the Right
and Left Shift keys plus the Ins key (toggled on), you would use an ERRORLEVEL trap
of 131(1+2 + 128 = 131).

You could make your batch file test for several ERRORLEVELs, and act differently
when different keys are pressed. For example, CapsLock could mean abort the AU
TOEXEC.BAT, while NumLock could do everything but ioad a couple of resident
programs. KBFLAG can be used in any BAT file, not just AUTOEXEC.BAT.

Batch Techniques 641

A handy way to do this is to use a value of 128. Then you can avoid running your
AUTOEXEC.BAT file by toggling the Ins key when you boot up. KBFLAG will send a
128 to the IF ERRORLEVEL trap, which will branch to the :END label.

This is a far more elegant solution to avoiding AUTOEXEC.BAT than pounding on
the keyboard, which can generate bootup errors and force you to press the F 1 key and
then restart the whole operation. Using the Ins (or NumLock, ScrollLock, or CapsLock)
toggle means that you can branch out of the program with one simple key press, or start
running normally by keeping your fingers off the keyboard.

The DOS Environment

The term "DOS Environment" is a little misleading. Novice users might think this is a
discussion of the DOS interface and how users interact with it. The DOS environment
could more appropriately be called the "DOS Cubbyhole," because it's a block of
memory that has been set aside for the storage of variables used by DOS, batch files and
some programs.

Typically, the environment is referred to as the environment space. This space is a
block of memory set at a default size, depending on the version of DO,S you are using. It
is also resizable, which may be necessary when you start creating environment variables
of your own. Casual DOS users are usually not aware of the environment and its contents
until one day, the message "Out of environment space" appears on the screen. This
message may appear if the environment space is not large enough for a program that uses
it. More likely, it appears after you've been experimenting with the PATH, PROMPT,
and SET commands. All of these co~ands insert variables into the environment, and
if you like to set long paths or Interesting DOS prompts, as discussed later in this chapter,
you can rapidly use the memory allocated in the environment. Gaining more environment
space is a simple matter of making a change in the CONFIG.SYS file and rebooting the
system, unless you 're using version 2.x or version 3.0 of DOS, in, which case you'll need
to patch COMMAND.COM, as described later.

The SET command can be used to see what's in the environment and to understand
the way it works. If DOS has been installed and configured on your system already, or
if you've prtwiously set a system PATH and PROMPT, type SET now to see a listing of
your environment. It may look similar to the following:

COMSPEC=C:\DOS\COMMAND.COM
PROMPT=PG
PATH=C:\DOS;\BATCH
TEMP=C:\WINDOWS\TEMP

649

650 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

Note: DOS 5.0 users may also see the DIRCMD variable, which specifies the default
switches to be used with the DIR command when listing files.

From this listing, you can tell that the DOS environment space is the place where DOS
stores information that it needs to refer to at a later time. Notice that variables are "equal"
to values. For example, the COMSPEC variable is equal to the drive and path of the
COMMAND.COM file. This variable is used to specify where DOS can find COM
MAND.COM if it needs to reload it into memory at a later time. Some programs remove
parts of COMMAND.COM to free memory for their own use. When you exit the
program, DOS looks in the environment for the COMSPEC variable to find out where
COMMAND.COM is located.

Another variable is the line that reads TEMP=C:\WINDOWS\TEMP, which may or
may not be in your listing. The TEMP variable is created by some programs to specify
the directory where temporary files can be stored. Temporary files are created as a place
to store information or the contents of memory while a program runs. The files are usually
unnecessary after the program ends. In most cases, you can safely delete all the files in
a temporary directory as long as the programs are not still running, but check the programs
documentation before doing so. Microsoft Windows, for example, created the TEMP
variable shown above. During installation, it inserted a SET commands in the AU
TOEXEC.BAT file to create the variable in the environment whenever the system is
started.

DOS commands related to the environment are PATH, PROMPT, COMSPEC and
SET, as listed below. The variables set by these commands are stored as strings in the
environment. They can be referenced later by DOS, batch files or programs.

• PATH: Sets the path of directories that DOS will search when an executable file is
called.

• PROMPT: Sets the format of the DOS prompt.
• COMSPEC: Specifies the location of COMMAND.COM.
• SET: Used to create custom environment variable for use by batch files or programs.

In addition, COMMAND.COM and the SHELL command (in CONFIG.SYS) will
also be discussed in this chapter since they can be used to work with or change the
environment size. For example, invoking COMMAND.COM at any time after DOS has
already been loaded will install a second copy of COMMAND.COM. While this second
command processor inherits the environment variable set in the original command
processor, you can change them to suit your needs. When you exit to the first command
processor, the original environment variable will be intact. You may want to load a
second command processor so you can temporarily change the environment, then return
to the way it was. '*1.

After the PATH, PROMPT, and COMSPEC commands have been executed and their
variable have been placed in the environment, any remaining environment space can be
used to store custom variables. A popular technique for overcoming some of the
limitations of batch files has been to create environment variables that can be passed to
other batch files. (Several interesting methods for doing so are discussed at the end of
this chapter.)

The DOS Environment 651

Setting Environment Variables
To assign a value to a variable and place it in the environment, the SET command is used
in the following form:

SET variable=value

where variable is the name of the new variable you want to define and value is the text
string it will represent. For example, you could set a variable called MYDIR to the value
C:\USERS\TOM with the following command:

SET MYDIR=C:\USERS\TOM

To see how this command affects the environment, type the SET command. The new
entry will look similar to the following:

MYDIR=C:\USERS\TOM

You could then create a set of batch files that use the variable to copy, move or delete
files in the directory specified by the variable value. In DOS batch files, the variable is
used by surrounding it with percent (%) signs. For example, a batch file to move files
from the directory specified by the MYDIR variable might have the following commands:

COPY %MYDIR%*.DOC C:\ARCHIVE
DEL %MYDIR%*.DOC

The first command copies all files with the DOC extension from the source directory
specified by the MYDIR variable to the ARCHIVE destination directory. When the batch
file is executed, this command would take the form:

COPY C:\USERS\TOM*.DOC C:\ARCHIVE

The second command then clears the DOC files from the directory. It would take the
form:

DEL C:\USERS\TOM*.DOC

The environment variable name is always capitalized while the value maintains its
lowercase format if you typed it that way. So, for example, if you typed:

SET homedir=c:\docfiles

a listing of the environment with the SET command would reveal the following:

HOMEDIR=c:\docfiles

652 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

Be careful not to include spaces on either side of the equal sign. If you do, those spaces
become part of the variable name or its value. If you typed .. HOMEDIR "you'd get

HOMEDIR =c:\docfiles

in the environment. You can copy over an existing environment variable by assigning it
a new value, or you can clear an environment variable by issuing a new SET command
without a value. To clear the HOMEDIR variable created above, you would type:

SET HOMEDIR =

Notice that the extra space was put in to remove the correct variable. Type SET and view
the environment if you 're not sure a variable has been removed.

Another thing to keep in mind is the 127-character limit for commands typed at the
DOS prompt. And, when using the SET command, you are limited to a 123-character
string since four characters are required to type "SET" at the beginning of the command.
This is sometimes a problem when using the PATH command to set a long search path,
but we '11 give you ways to get around the problem in a moment.

You don't really need to include the SET command when using the PATH or PROMPT
commands. It is an option that can be included for clarity. For example, the following
commands accomplish the same thing, although you must use SET when creating your
own environment variables.

SET PATH=C:\DOS
PATH=C:\DOS

Once you start adding your own variables to the environment, you run the risk of running
out of environment space. However, expanding the environment space is a simple matter
of including the SHELL command in the CONFIG.SYS file with an appropriate param
eter to specify the new environment size.

In some cases, you may want to know how many bytes are being used in the
environment. For instance, when running some batch files that set environment variables,
you may need to know in advance if there will ·be enough room in the environment space
for the new variables. To determine the amount of space used by the existing variables
and their values; type the SET command, then count each character, including the equal
sign. Because an ASCII 0 terminates each string in the environment, you '11 need to add
1 for each line plus 1 for an additional ASCII 0 used to terminate the entire set of strings.

The remainder of this chapter descibes each of the commands, features and techniques
you can use to affect the environment or work with environment variables. It may be
important for you to expand the size of your environment, so the steps for doing so are
covered first. Discussion of the COMSPEC, PATH, PROMPT and SET commands and
the use of environment variables in batch files follows.

The DOS Environment 653

Expanding Environment Size
With the introduction of DOS 3.1, expansion of environment space became easy to
accomplish by inserting a SHELL command to specify the new environment size in the
CONFIG. SYS file, followed by a restart of your system. But keep in mind that you should
not increase the environment space unless absolutely necessary since doing so reduces
the amount of memory available to applications.

SHELL can also be used to specify the location of COMMAND.COM in a directory
other than the root directory. Removing COMMAND.COM from the root makes sense
for several reasons. First, you probably already have a duplicate copy in the \DOS
directory anyway so you should remove the one in the root directory not only to free disk
space but also to reduce clutter. Second, the copy of COMMAND.COM in the root
directory is more likely to be copied over or accidentally deleted than the copy in the
DOS directory. Third, a virus attack on COMMAND.COM is less likely if it is not located
in the root directory, although this is no guarantee that a virus will not attack it.

SHELL also can take the place of the COMSPEC command. An additional parameter
can be used to specify where COMMAND.COM is located in case it needs to be reloaded.
As mentioned earlier, some utilities and programs temporarily remove COM
MAND.COM from memory to gain more room. When the program ends, COM
MAND.COM is reloaded from the location specified by either the COMSPEC variable
or the directory specified in the SHELL command as shown below. The SHELL
command takes a form similar to the following:

SHELL=C:\DOS\COMMAND.COM C:\DOS /P /E:512

where C:\DOS\COMMAND.COM is the location at which COMMAND.COM can be
found when your system first boots. The second parameter, C:\DOS, can take the place
of the COMSPEC variable by pointing to the directory where COMMAND.COM is
located. To increase performance, you can specify the drive letter of a RAM disk in this
parameter, then include a command in AUTOEXEC.BAT that copies COM
MAND.COM to the RAM disk. The /P option should always be included since it specifies
that the command processor remain permanently in memory. The last parameter is used
to expand the environment, as discussed next.

Altering the Environment Size

The default size of the environment in DOS versions 2.x, 3.x and 4.x is 160 bytes. With
DOS version 5.0, the default environment size has been increased to 256 bytes. If you
want to change the size, you can use the SHELL command with the /E parameter as
described here. After placing the command in the CONFIG.SYS file, remember to reboot
your system to initialize the new settings.

If you are still using DOS 3.1, the new environment size is specified in blocks of 16
bytes each with a range of 11 to 62 blocks. So, to increase to a new environment size of

654 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

256 bytes, you would specify 16 blocks. The SHELL command in the CONFIG.SYS file
would look like:

SHELL=C:\DOS\COMMAND.COM /P /E:16

If you have DOS 3.2 or later, all you have to do is specify the new environment size
in bytes, with a range of 160 bytes to 32,767 bytes. The following command specifies a
new environment size of 320 bytes:

SHELL=C:\DOS\COMMAND.COM /P /E:320

Remember, the first parameter, C:\DOS\COMMAND.COM, specifies where COM
MAND.COM can be found during boot up. The second parameter (C:\DOS\) specifies
where COMMAND.COM is located in case it needs to be reloaded. The /P option makes
this copy of COMMAND.COM permanent.

Besides using SHELL to expand the environment space, it is often used when booting
a hard drive system from a floppy disk for security reasons. For example, if you remove
COMMAND.COM from the root directory, and remove the SHELL command from the
CONFIG.SYS file, a system will not boot. l:lowever, you can start the system from a
bootable diskette with a SHELL command in its CONFIG.SYS file that looks like:

SHELL=C:\DOS\COMMAND.COM C:\DOS\ /P

This command points to the copy of COMMAND.COM on the hard disk. From then
on, the system will use the hard disk as its default drive. In this way you can hide the boot
disk and prevent would-be snoopers from starting your system. While this method won't
stop experienced DOS users, it might prevent your kids from logging on and using up all
your disk space for games.

Patching DOS 2.x and DOS 3.0

Since the SHELL command cannot be used to expand the environment in DOS 2.x and
3.0, you'll need to use the brute force method of patching the COMMAND.COM file.
This should always be done to a copy of COMMAND.COM, preferably on a diskette.
Then you can boot from the diskette to test the altered version before copying it to your
main boot disk.

To fix PC DOS 2.0 or 2.1, first format a floppy disk using the /S option, then issue the
following commands to set the environment at a size of 256 bytes. Note that if you have
MS DOS version 2.1, replace ECF in the second line with DF3.

DEBUG A:COMMAND.COM
E ECF 10
w
Q

The DOS Environment 655

To increase the size of the environment further, change the 10 in the second line to one
of the following:

14 320 bytes
1E 480 bytes
28 640 bytes
32 800 bytes
3C 960 bytes

To patch DOS 3.0, format a floppy disk using the /S parameter, then type the following
commands to increase the environment size to 256 bytes:

DEBUG A:COMMAND.COM
E F2C 10
w
Q

To increase the environment size further, replace the 10 in the second line with one of
the other values listed above.

Using COMMAND to Load a Temporary Environment
A temporary command processor can be loaded by executing the COMMAND.COM
command at the DOS prompt. Doing so installs a secondary command processor (or
"child" process), complete with its own environment. The important point is that the
environment of the second processor can be changed without affecting the environment
of the first or ''parent" command processor. To return to the parent, the EXIT command
is typed~ This clears the second command processor and restores the first, along with its
original environment. In reality, the original environment was never removed or changed
but continued to occupy space in memory while the second processor ran.

This feature offers several advantages for DOS users. Say, for instance, you need an
expanded environment space, but only temporarily. You could load a secondary com
mand processor. When you exit, the smaller environment and its variables are restored.
In another case, you might want to temporarily change your environment variables. You
could do so in the secondary environment, then· return to your original environment
variables by exiting the secondary processor. This is also useful if another person wants
to use your system. Assume a coworker needs to run a program on your system that
requires a change in the path and some environment variables, but you want to save your
current settings. Just load a secondary processor and let the coworker make any changes
he wants. When done, just type EXIT to return to your original environment.

Loading a secondary command processor takes about 5K of memory in DOS version
3.x and 4.x. If you use DOS 5.0 and DOS is loaded in the High Memory Area (HMA),
only about 2K of memory is used by the secondary processor. If you are running short

656 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

on memory, the amount used by the a secondary processor may be of consideration, but
in most cases, the amount is too small to cause a problem.

To install a second command processor, type a command similar to that shown below.
In this example, the /E parameter is used to specify an environment size of 512 bytes for
the secondary processor.

COMMAND /E:512

If you don·~ specify an environment size, don't think that DOS will create a new
environment space that matches the existing environment space in size. Instead, DOS
makes the environment only as large as the existing number of characters in your current
environment. This could be a problem if additional environment variables need to be
added, or a new path setting has more characters than the existing path setting. To be on
the safe side, always use the /E parameter to specify the exact environment size you need
in the secondary environment. Remember to type EXIT to free up the memory used by
the secondary environment when done.

The COMSPEC Command
As mentioned already, the SET COMSPEC command can be included in the AU
TOEXEC.BAT file to specify the location of COMMAND.COM. This command string
is inserted into the environment space where it serves as a pointer to the COM
MAND.COM file. In this way, COMMAND.COM can be reloaded in memory if parts
of it were discarded by a running program. The parts of COMMAND.COM that are
normally discarded are those in the high memory area such as the DOS internal
commands. Since most programs don't need to use these portions of COMMAND.COM
while they run, the designers of DOS allowed them to be temporarily discarded to free
up memory. An alternative method for specifying the location of COMMAND.COM is
to include its directory location as the second parameter in the SHELL command, which
was discussed earlier.

If DOS cannot find COMMAND.COM when it needs to reload it in memory, you will
see the following message and the system will have to be rebooted, probably from a
floppy disk until COMSPEC or SHELL are set correctly.

Cannot load COMMAND, system halted

COMSPEC is an acronym for COMmand SPECification. The string should include
the drive and path to the file COMMAND.COM. Normally, COMSPEC can be inserted
into the AUTOEXEC.BAT file using the form shown below. In this example, the DOS
directory on drive C is specified as the location of COMMAND.COM.

SET COMSPEC=C:\DOS\COMMAND.COM

The DOS Environment 657

You may need to substitute a different drive or path, depending on the location of your
COMMAND.COM, but if you don't set a command specifier using either COMSPEC
or SHELL, the default COMSPEC will be as follows:

COMSPEC=C:\COMMAND.COM

To see what the current command specification is, type the SET command by itself at
the DOS prompt.

On systems with fast hard drives and clock speeds, DOS reloads the discarded portions
of COMMAND.COM very quickly and you probably won't notice a delay. On slower
systems and those where COMMAND.COM needs to be reloaded from floppy disk, a
noticeable delay may occur. This can be resolved by creating a RAM drive and copying
COMMAND.COM to it. Then you can specify the RAM drive as the location of
COMMAND.COM in the COMSPEC or SHELL command. The commands below can
be inserted in the AUTOEXEC.BAT file to copy COMMAND.COM to RAM drive D
and to set the new command specification.

COPY COMMAND.COM D:
SET COMSPEC=D:\COMMAND.COM

The PATH Command
The PATH command was introduced to DOS when hard disk filing systems began to
appear. In fact, IBM announced DOS 2.0 and the IBM PC XT at the same time (March
of 1983). The XT was IBM's first personal computer to include a hard drive, all lOMB
of it! Before hard drive systems, users simply organized their files by separating them
onto different floppy disks. With the large storage space available on hard drives, personal
computer users could now keep many files available at once on one hard disk volume.
Directories and subdirectories came into use in the DOS world as a method to separate
and organize files. The PATH command allowed the user to specify which of these
directories contained executable program files so those files could be run from outside
the directory. In other words, the user could switch to a "data" directory, then start
programs stored in a "program" directory. In this way, data files could be kept separate
from program files.

Later versions of DOS included the APPEND command, which allows you to specify
the location of directories where data files are located, so that you can request the use of
a data file stored in a directory other than the one you are currently working in.

The PATH command lets you specify a set of directories ori one or more drives that
DOS will look through when you type an executable file name at the DOS prompt.
However, DOS always looks in your current directory for the requested file before it
starts looking down the path. The PATH command takes the following form:

SET PATH=d:\directory;\directory

658 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

where dis an optional drive letter and directory is the path of the directory to search. You
can include many different directories by separating them with a semicolon. Also note
that the SET portion of the command is optional. For example, the following PA TH
command sets the search path to the DOS directory on C, the BATCH directory on C,
and the LOTUS directory on D.

PATH=C:\DOS;C:\BATCH;D:\LOTUS

Because DOS searches each directory in the list one after the other, you could optimize
the search by placing directories most likely to contain the programs and batch files you
use most at the beginning of the path. If, for instance, you always execute batch files to
start other programs on your system, you might want to change the previous path to that
shown below:

PATH=C:\BATCH;C:\DOS;D:\LOTUS

With such a small search path, this change is not likely to give you a big gain in
performance. However, if your path is long, be sure to specify the most important or the
most used directories first. If you have a RAM drive, you can copy your most used
programs and batch files to the RAM drive, then include its drive letter at the beginning
of the path. For example, the following command assumes that the RAM drive is E:

SET PATH:E:\;C:\BATCH;C:\DOS;D:\LOTUS

While you may be tempted to include as many directories as possible in a path, that
may not be beneficial. First, long paths use environment space that may be needed for
other variables. Second, typing an incorrect command will send DOS searching through
every directory on the path before it displays an error message stating that the command
could not be found. Methods for reducing the path are discussed later in this section.

If you have only one hard drive, you can eliminate the drive letters in the path, thus
saving environment space for other variables. So, if drive C is the only drive you need to
search, the previous path example could be changed to the following:

SET PATH=\DOS;\BATCH;\LOTUS

Additional methods for reducing the size of the path string and for optimizing the path
search will be covered in a moment. But first, there are a few other features you need to
know about PATH.

One school of thought on DOS directory organization maintains that data directories
should branch from the directory of the application that creates them. Thus, you might
have a directory called C:\LOTUS and, branching from it, a subdirectory called
C:\LOTUS\DATA. When the directory structure is set up this way, you can include the
parent directory symbol (..) in your path to make DOS search back one directory level,

The DOS Environment 659

no matter what the current directory is. An example of the PA TH command is shown
below:

PATH= .. ;C:\DOS;C:\BATCH

Now, no matter what directory you are in, DOS will always search its parent directory
first. If you were in the \LOTUS\DATA directory, you could start programs stored in the
\LOTUS directory, even though it is not specifically named in the path.

To display the current path settings, type PA TH at the DOS prompt without parameters,
or type the SET command to display the PATH setting as it appears in the environment.
To remove the path settings and have DOS search only the current directory, type either
of the following commands:

PATH ;
PATH=

If a PATH command is not specified, only the current directory is searched. In fact,
the current directory is automatically searched before DOS begins searching down the
path. That means you don't need to include a . (the current directory specifier) in the path
to search the current directory. Use this advantage when running batch files. Assume you
have a set of batch files in a directory called C:\BATCH. Because this directory is on the
path, you can run any batch file in it from any directory. But assume you have a directory
where the batch file in the BATCH directory should not be used. Then, a slightly altered
version must be run. If you create the altered version in this directory, DOS will always
run it before running the one in the BATCH directory because the current directory is
always searched first.

One more point about the lineup: DOS runs COM files before EXE files and EXE files
before BAT files. So, if you had three files, STARTUP.COM, STARTUP.EXE and
STARTUP.BAT in the same directory, STARTUP.COM would be executed when you
typed STARTUP at the DOS prompt. If only STARTUP.EXE and STARTUP.BATwere
in the directory, STARTUP.EXE would be executed.

Methods for Reducing the PATH String

When saving space in the environment becomes important, you may want to reduce the
size of the path as touched on earlier. One method is to use the SUBST (Substitute)
command to assign drive letters to the directory names you intend to put on the path. The
three directories below are assigned to drive letters E through G.

SUBST E: C:\DOS
SUBST F: C:\BATCH
SUBST G: C:\LOTUS

660 DOS Power Tool,s, 2nd Edition, Revised/or DOS 5.0

Then the PATH command below could be issued to place the three directories in the path,
thereby saving 16 bytes of environment space.

PATH= E : ; F : ; G :

When using the SUBST command on a drive letter higher than E, you must include
the LASTDRIVE command in the CONFIG.SYS file. Therefore, to substitute paths for
drive letters up to drive S, you would include the following command in the CON
FIG.SYS file.

LASTDRIVE=S

Keep in mind that each additional drive letter takes up 81 bytes in RAM, so only set
as many drive letters with LASTDRIVE as you really need. Also remember, when using
SUBST you cannot or should not use the following commands with substituted drives:

BACKUP
CHKDSK
DISKCOMP
DISKCOPY
FD I SK
FORMAT
LABEL
MIRROR (DOS 5 only)
RECOVER
RESTORE
SYS

Another way to shorten the path is to create batch files in a directory called BATCH
that starts all of your applications. Then, the only directories you need to have on the path
are DOS and BATCH as shown below.

PATH=C:\DOS;C:\BATCH

Using substituted drive letters, this can become as short as:

PATH=E:; F:

If you use batch files to start your applications, you can include commands in them to
temporarily change the path if necessary. The following batch file, called WORD.BAT,
can be created and stored in the \BATCH directory. It places the user in a directory where
documents are stored, then runs Microsoft Word.

CD \DOCS
PATH=\WORD

WORD
CD %HOMEDIR%
PATH=%DEFAULT%

The DOS Environment 661

The first line changes directories to the \DOCS directory where documents are stored.
The second command changes the ,path so WORD can be run from the \DOCS directory

. I'
and the third command starts Word. The last two commands execute when the user exits
from Word. They rely on previously set environment variables to return the user to his
or her home directory and restore the path. These variables are initially set in the
AUTOEXEC.BAT file with commands similar to the following.

SET HOMEDIR=C:\USERS\TOM
SET DEFAULT=C:\DOS;C:\BATCH

Because they remain in the environment, they can be used in batch files to restore paths
and directories as shown above. This will be covered further at the end of this chapter.

Editing and Saving the PATH

Any time you enter a new PATH statement, the old path is retriovoo. In some cases, you
may want to keep part of your existing path or add a new direciory fo it. One method is
to execute a second command processor as discussed previOusly. Another method is to
simply save the old path in a batch file using the following redirection technique,

SET > OLDPATH.BAT

then issue a new path. This command copies the listing produced by PATH to the batch
file OLDPATH.BAT. You can then create a new path, and when done, restore the original
path simply by typing OLDPATH.

In some cases, you might want to temporarily add a directory to the path, then restore
the original path. This can be done using the following two batch files. The first batch
file is called NEWP A TH.BAT and is listed here:

ECHO OFF
SET OLD=%PATH%
PATH=%0LD%;%1

After creating this file in the \BATCH directory or another directory on the path, you
can add a new directory to the path by typing the following command:

NEWPATH \DBASE

The second line of the NEWP A TH.BAT batch file saves the existing p~th to an
environment variable called OLD. Type SET to see this new variable in the environment.

662 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

Note that percent signs surround the variable PA TH; this is how environment variables
are used in batch files. The third line appends parameter % 1 which is \DBASE in the
command above to the OLD environment variable. The last command looks like the
following when it executes, assuming \DOS and \BATCH were already on the path:

PATH=\DOS;\BATCH;\DBASE

To change the search priority of the directory you are adding, change line 3 in the batch
file as shown to make \DBASE appear first in the path.

PATH=%1%;0LD%

The following batch file must be created to restore the old path which is stored in the
OLD environment variable. This must be done in a batch file to restore the value that the
OLD variable represents. Type the commands shown below in a file called
OLDPATH.BAT.

ECHO OFF
PATH=%0LD%
SET OLD=

To restore the old path, type OLDPATH. Note that the last command clears the OLD
variable from the environment. As mentioned earlier, you could set a default path in the
environment by including a SET command similar to the following in your AU
TOEXEC.BAT file.

SET DEFAULT=C:\DOS;C:\BATCH

Then the OLDPATH.BAT file could be changed as follows:

ECHO OFF
PATH=%DEFAULT%

Another method for changing the PATH settings is to create a batch file that executes
a new PATH command for each path setting you need. For example, if you are working
on a newsletter, you might set paths to a directory for a graphics program and a directory
for a page layout program using a batch file called NEWS.BAT. Other batch files could
set different paths depending on the programs you need to use. However, creating a lot
of batch files may not be a good idea if you have limited disk space. The batch file below
illustrates how you can combine them all into one batch file used to select different paths.
The filename is PATHSET.BAT.

ECHO OFF
IF 11 %1 11 == 1111 ECHO Options are DEFAULT, NEWSLETTER, REPORTS
IF 11 %1 11 =="DEFAULT" PATH=C: \DOS.; C: \BATCH

The DOS Environment 663

IF 11 %l 11 == 11 NEWSLETTER 11 PATH=C:\PAGEMAKER;C:\DESIGNER
IF 11 %l 11 == 11 REPORTS 11 PATH=C:\LOTUS;C:\DBASE

You can, of course, create this file using path settings appropriate to your own system.
The second line displays help if P ATHSET is typed on the command line without
parameters. The last three lines set a path based on the value of parameter % 1. For
example, if PATHSET DEFAULT is typed, the path returns to its default setting of
C:\DOS;C:\BATCH as shown in line 3. The batch file can be expanded to include startup
commands for programs associated with the new paths. An example is shown below.

REM ECHO OFF
IF 11 %1 11 == 1111 GOTO HELP
GOTO %1
:DEFAULT
PATH=C:\DOS;C:\BATCH
GOTO END
:NEWSLETTER
PATH=C:\PAGEMAKER;C:\DESIGNER
WIN /S
GOTO END
:REPORTS
PATH=C:\LOTUS;C:\DBASE
123
GOTO END
:HELP
ECHO Options are DEFAULT, NEWSLETTER, REPORTS
:END

Because this batch file has become more of a startup routine for your programs, it
might be more appropriately named START.BAT. Note that the third line jumps to a
label that matches the % 1 parameter entered by the user on the command line. You can
include any commands between the jump label and the GOTO END statement in each
section. More information on these types of batch files can be found in the batch file
chapter of this book.

The PROMPT Command
The PROMPT command is used to change the DOS prompt. It takes the form

SET PROMPT string

The string option can include text characters or special characters called meta-strings.
The SET command is optional; in most cases, simply type PROMPT and the string. As
a quick example, type the following at the DOS prompt and press Enter:

664 DOS Power Too_ls, 2nd Edition, Revised/or DOS 5.0

PROMPT Sir, yes sir!

The DOS prompt changes to display "Sir, yes sir!" Now change the prompt again using
one of the prompt meta-strings. These are codes used to display the date, time or other
value in the pr9mpt. Type the command below to display the date in the prompt, as well
as the greater than sign {>).

PROMPT $d.$g

The $d meta-string displays the date, and the $g meta-string adds the greater than sign
at the end of the prompt. The all-time classic DOS prompt is shown below. It displays
the current directory and helps you keep track of where you are in the filing system. Your
syst~m may have already been set to this prompt before you started experimenting with
the PROMPT command, so type the command now to restore the prompt.

PROMPT pg

You can type SET at any time to view the environment settings and the command used
to set the current prompt. There are a number of interesting prompts you can set, some
quite useful while others are just fun. A complete list of meta-strings is shown below. If
you have DOS ~.O, you can get a listing at any time by typing PROMPT/?.

$$ Qisplays ~he dollar sign in the prompt

$t Displays the time

$d Displays the date

$p Displays the current directory

$v pisplays the DOS version number

$n Displays the default drive

$g Displays the > charficter

$1 Displays the < character

$b Displays the I character (vertical bar)

$q Displays the = character

$h Backspaces over the previou§ character

$e The Escape code

$_ Starts a new line

To display the date and time on separate lines, followed by the normal system prompt,
type the following: '

PROMPT t d_pg

There's one prompt that demonstrates the use of the $h backspace character and creates
an animateq effect that looks like a spinning wheel by first displaying the \, /, and -

The DOS Environment 665

characters. If you create this string, do so in a batch file called WHEEL.BAT so you can
use or edit it later. Each character is displayed three times to prolong its time on the screen.
The $h backspace meta-string is used to backspace over it and display the next character.
There are four sequences, so the "wheel" spins four times. If your system has a fast
processor, the sequence may run too fast to see, so if you're a real computer nerd, you'll
slow the processor down to see it. Note that the first and last character meta-strings in
the sequence display the normal DOS prompt.

prompt=$p\$h\$h\$h/$h/$h/$h-$h-$h-$h\$h\$h\$h/$h/$h/$h-$h-$h
$h\$h\$h\$h/$h/$h/$h-$h-$h-$h\$h\$h\$h/$h/$h/$h-$h-$h-hg

When you find a prompt you like, add the command to the AUTOEXEC.BAT file so
it appears every time you boot your system. Or, if you're experimenting with PROMPT
and you create an interesting one that you'd like to show your friends later, save it, then
return to the more generic pg prompt until they are ready to see it. To save any prompt,
type a command similar to the following:

SET > PROMPT$.BAT

This sends the display of environment variables to the file PROMPT$.BAT. You can
then edit this file to remove all lines except the PROMPT command. To redisplay your
unique prompt, run the PROMPT$.BA T batch file. If you create several interesting
prompts, be sure to save each in its own batch file.

The $e meta-string lets you send ANSI Escape sequences to DOS so you can reassign
the keyboard or make changes to the display. You could assign your company name to
the Fl key, or change the color of text that appears on the screen. To make these changes,
you must first install the ANSI.SYS device driver by including the following command
in your CONFIG.SYS file. To load the driver, you must then reboot your system.

DEVICE=C:\DOS\ANSI.SYS

Once your system reboots, you can use the PROMPT command to reassign keys. To
assign the DIR /P command to the FlO key, type the following:

PROMPT $e[0;68;"DIR /P"13p

Because this removes the existing prompt, you'll need to type another prompt com
mand to restore the DOS prompt to its original setting, but the key assignments will
remain. For example, the following command restores the generic directory prompt:

PROMPT pg

For a complete discussion of screen and keyboard controls using the ANSI.SYS device
driver, refer to Chapter 10.

666 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

The SET Command
The SET command is used to display a copy of the current environment to the screen. It
is also used to add or remove custom environment variables. You might want to refer to
these custom variables as global variables because they can be used by any program or
batch file once they are set. To set a global variable, use the SET command in the
following form:

SET variable=value

where variable is the variable name you want to create and value is the string you want
to assign to it. So, to assign the string TOM to the variable USER, you would type the
following command:

SET USER=TOM

Notice that there are no spaces on either side of the equal sign. If you include a space, it
becomes part of the variable or value.

Type SET to view the environment and its new variable. To clear an environment
variable, type the SET command, the variable and an equal sign, but not a value. The
following command would remove the USER variable from the environment:

SET USER=

Variables cannot be used on the command line but can be used in batch files when
surrounded by percent signs. Here's an example of a command you could place in a batch
file to use the USER variable. It would copy all files in the directory represented by the
USER variable to drive A. When USER is set to TOM, it would copy all files in the TOM
directory.

XCOPY \%USER%*.* A:

Environment variables are important tools in batch file design. You can set variables
when the system boots, when a user logs in or when a batch file is executed. The variables
can then be used by batch files or programs later in the session. Batch files using the
variables can be created to work in a wide variety of situations and with more than one
user. If several people are using a computer, you could create a startup batch file that
assigns their startup name to a variabie called USER. You can then create batch files that
execute commands based on the USER variable. The next section will present a few more
examples of this.

The DOS Environment 667

Using Environment Variables in Batch Files
Once you know how to get variables into the environment, you can begin to build batch
files that use them. You've already seen how a command in the AUTOEXEC.BAT file
might set the default directory path, such as:

SET DEFAULT=C:\DOS;C:\BATCH

If you ever change the path, you can easily return to the default by running a batch file
with the following command:

SET PATH=%DEFAULT%

A more elaborate example of environment variables can be demonstrated by capturing
the current day and date in the environment. This is done by first combining the ECHO,
MORE and DATE commands in a way that was never intended by the designers of DOS.
The combination, however, directs the screen output of the DATE command to a file
where it can be used later to add the current day and date to the environment. Type the
command shown below, keeping in mind that you can place this command in your
A UTOEXEC.BAT file if you want to capture this information every time you start your
system.

ECHO I MORE I DATE > DATE$.BAT

Next create a batch file called CURRENT.BAT and add the following lines to it:

SET DAY=%3
SET TODAY=%4

Then, execute the DATE$.BAT batch file that was created with the ECHO command
above, and type SET to display your environment variables, which will now appear
similar to those listed here:

DAY= Sat
TODAY=04-20-1991

You can now use these variables in other batch files with commands that rely on the
day or date. If you're wondering how the above commands managed to capture the day
and date as environment variables, look inside the DATE$.BAT file, which will look
something like this:

Current date is Sat 04-20-1991
Enter new Date (mrn-dd-yy)

668 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

The messages that normally appear on the screen when you type the DATE command
are now lines in a batch file. When you run the batch file, DOS executes the first line as
if it were a command. In this case, you've created a batch file called CURRENT.BAT,
so DOS runs the batch file and uses the remaining words on the line as if they were
command line parameters. So Sat becomes parameter %3 and 04-20-1991 becomes
parameter %4. CURRENT.BAT assigns these parameters to the DAY and TODAY
variables respectively.

Now for an example of how you might use these variables. Assume you create a memo
or appointment file for each day of the week. These files have names like MON.DOC,
TUE.DOC, and so on. The following commands, placed in the AUTOEXEC.BAT file,
would automatically display the memo file that matches the DAY setting in the environ
ment.

ECHO MORE I DATE > DATE$.BAT
DATE$
MORE < %DAY%.DOC

If DAY were Sat, the third line of the batch file would execute the following command,
which would display any messages or reminders for Saturday.

MORE < Sat.DOC

You could also include commands similar to the following to remind yourself of birthdays
or other important dates.

IF %TODAY%==01-03-92 ECHO **** Today is Alex's birthday!!!!!
IF %TODAY%==04-10-92 ECHO **** Tax deadline in 5 days!!!!!

One thing to keep in mind is that these types of commands in batch files tend to slow
your system down. You can create a RAM drive, then copy a batch file containing all
your startup commands and other batch files to the RAM drive for faster execution. Here's
an example of a modified AUTOEXEC.BAT file that accomplishes this task.

ECHO OFF
COPY C:\DOS\STARTUP.BAT E:
E:STARTUP

All of the commands normally in AUTOEXEC.BAT file should be included in the
STARTUP.BAT file, which is then copied to the RAM drive in the second command. It
is then executed from the RAM drive.

The next example demonstrates how to create a password system that determines who
is logging onto a system shared by several users. This allows you to set environment
variables specific to each user. The main task of the A UTOEXEC.BAT file in this routine
is to ask the user for their password, then temporarily blank the screen using ANSI.SYS

The DOS Environment 669

screen control codes. You'll need to ensure that ANSI.SYS is loaded before proceeding.
The password typed by the user is the name of a batch file that contains the startup
commands you would normally put in AUTOEXEC.BAT. In addition, it sets variables
like USER to the name of the user and HOMEDIR to the path of the users home directory.
These variables can then be used in batch files. This routine is not a fullproof security
system, but it does serve to capture environment variables specific to each user logging
onto the shared system. In addition, it demonstrates how you might capture and use
environment variables during startup.

First, determine the password you'll use for each user, then copy the current AU
TOEXEC.BAT file to a file with their password names. If John will use the password
FROGGY, you would issue the command shown below.

COPY AUTOEXEC.BAT FROGGY.BAT

Next, create a new AUTOEXEC.BAT file with the following commands. Note that the
last command is an ANSI command that blanks the screen to keep users from going astray
during the login procedure.

ECHO OFF
CLS
ECHO Enter your password
PROMPT $e[8m

You should then edit the password file for each user to include commands relevant to
their login session, making sure to insert the following line at the beginning of each
password batch file. This command is important because it restores the screen to visible
mode. ·

PROMPT $e[Om

Other relevant commands you might enter in the users' password file are shown below;
These commands are for John's password file.

SET USER=JOHN
SET DEFAULT=C:\DOS;C:\BATCH
SET HOMEDIR=C:\HOME\JOHN
SET DATA=\HOME\JOHN\DATA

You can now create generic batch files that use these variables. The USER variable could
be used in a batch file to display message files from other users. The command below,
placed in a batch file called MAIL.BAT, would display the mail file for the current user.

MORE < C:\MAIL\%USER%.DOC

670 DOS Power Tool.s, 2nd Edition, Revised/or DOS 5.0

When John is logged in and USER is set to John, the batch file would display his message
file in the MAIL directory. This routine assumes that other users are creating and editing
mail files to their coworkers in the MAIL directory.

Another batch file called HOME.BAT uses the HOMEDIR variable to quickly return
the current user to their home directory.

CD %HOMEDIR%

The DATA variable can be included in batch files to move users to their data directories,
then start applications. A batch file to start LOTUS might include the following com
mands:

CD %DATA%
LOTUS

Obviously, environment variables enable you to create versatile batch files. And
because the environment variables have different values for each user that logs on, you
won't need to create specific batch files for each user and you can store the batch files in
a single directory. In addition, fewer batch files mean it is easier to manage and make
changes to your batch files.

Screens and Color

Okay, you've worn the letters off your keytops, and you've ground the heads on your
disk drives down to the bare metal, but the one part of your system you probably know
better than any other is your screen. If you're like most avid users, you're glued to it
hypnotically each day for hours on end. So you might as well make staring at it as pleasant
as possible.

The first important thing to learn is that color is a true productivity tool. You can cram
2,000 characters onto a typical 80-column, 25-line screen (and twice as much text on
newer 50-line displays). With information this dense, you need a way to highlight
important information without making it blink or drawing little boxes around it.

The only method DOS provides for setting screen colors is through ANSI.SYS.
However, ANSI is cumbersome because it makes you deal with escape characters that
DOS normally treats as abort commands, and its color numbering scheme is different
from the standard one used by BIOS and BASIC. But without ANSI, DOS consigns users
of color systems to a drab grey-on-black existence.

According to insiders, IBM designers considered color frivolous, and were reluctant
to produce a color system for the original PC. Colors were for games, they reasoned, and
adding color meant handling lots more information - you not only had to put a character
at a certain location on the screen, but had to worry about setting its display attribute at
the same time.

Anyway, the PC's high-resolution monochrome adapter produced crisp, detailed
characters on IBM's rock-solid mono monitor. The cool green persistent phosphor was
touted as ergonomic perfection. To sweeten the monochrome deal, IBM threw in a
parallel printer port for free.

(Way back then IBM didn't even offer a color display; you had to spend close to a
thousand dollars to buy a third-party monitor. And when IBM did eventually advertise
one, serious business users dismissed it as a toy. Besides which, coaxing color out of
existing software was next to impossible. For users accustomed to the razor-sharp

671

672 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

monochrome output, IBM's gritty, flickery color hardware made w.:>rk on it nearly
impossible. It was like reading text through a twitching screen door.)

But the IBM design team caved in at the last minute and offered a board called the
CGA (Color Graphics Adapter) that offered several low-resolution color text and
graphics modes, and a small selection of available colors. If you knew the right tricks,
you could run a few applications in color, and you could use the system's built-in BASIC
language to write graphics routines that addressed 320 x 200 pixels (short for "picture
elements" - really just dots) in two palettes of three colors each, or 640 x 200 pixels in
grey on black.

Trouble is, whether you bought an early CGA card and a grainy color monitor, or one
of the newest high-tech color systems on the market, you'll still end up with a grey-on
black DOS. If you set colors with ANSI.SYS, typing CLS will clear the screen to those
colors. But without ANSI, COMMAND.COM is hard-wired to use the color attribute
number 07 when clearing the screen. The 0 yields a black background, and 7 is IBM's
number for grey.

You can use DEBUG to patch COMMAND.COM so that typing CLS will clear the
screen to any color you choose. Just pick the background and foreground colors you want,
look up their single-digit hex values on the charts below, and combine the individual
digits into a two-digit hex number. The background goes on the left and the foreground
on the right. If you wanted bright yellow (hex E) text on a red (hex 4) background, for
instance, you• d use the number 4E. Bright white text on a dark blue background would
be 17. Then pick the appropriate patching address:

DOS Version
2.0
2.1
3.0
3.1
3.2
3.3
4.01 (IBM)
4.01 (MS)
5.0

DEBUG Address
2346
2359
2428
2642
282E
2BAD
3EC7
3E97
4369

To patch IBM's version 5.0 so CLS will change your colors to bright yellow text on a
red background, just type:

DEBUG COMMAND.COM
E 4369 4E

w
Q

If you're not using version 5.0, substitute the proper addresses in place of the 3EC7.
Then either reboot, or load the patched version of COMMAND.COM by typing COM
MAND. When you type CLS, DOS should clear your screen and print the prompt in

Screens and Color 673

bright yellow on red. Don't pick a background color (lefthand digit) higher than 7 unless
you want your screen to blink.

This procedure won't set the border color, however. It's possible to move things around
inside COMMAND.COM and add a routine to set the color of the border, but it's really
not worth it these days, since the EGA and VGA screens don't really support borders.
And while patching one attribute byte in COMMAND.COM is really not all that
dangerous, moving chunks of instructions around can cause problems. (Remember, if
you do try patching COMMAND.COM, don't mix patched and unpatched versions on
the same disk, and work only with copies of COMMAND.COM, never your original.)

If you're using a CGA system and you're desperate to set the border color, type in the
following 12 lines. Omit the semicolons and the comments that follow them. Be certain
to leave a blank line after the RET Gust press Enter twice after typing RET), and make
sure you press the Enter key at the end of each line, especially the last one with the Q:

DEBUG
A

MOV AH, OB
MOV BL,4
INT 10
RET

RCX
7

N REDBORDR.COM
w
Q

set color palette on CGA
to produce a red (4) border
have BIOS do it
back to DOS

This will create a tiny program called REDBORDR.COM that sets CGA borders to
red. To have it use a different color, substitute the hex value of the color you want in
place of 4 in the fourth line. So to have a bright cyan border (with a value of hex B),
change the fourth line to:

MOV BL,B

Or you could type in the following 14 lines:

DEBUG
A
SUB BH,BH
MOV BL, [SD]
AND BL,OF
MOV AH, OB
INT 10
INT 20

color ID=O
get paramter from FCB
keep 4 low bits
BIOS palette setter
do it
back to DOS

674 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

RCX
F
N BORDRSET.COM
w
Q

to create a program called BORDRSET.COM. Again, omit the semicolons and the
comments that follow them. Be certain to leave a blank line after the INT 20 Gust press
Enter twice after typing INT 20), and make sure you press the Enter key at the end of
each line, especially the last one.

You can enter the border color you want on the DOS command line directly after the
name of the program. So:

BORDRSET 1

will give you a dark blue border, and:

BORDRSET E

will produce a bright yellow one.
Even better is to use the program on one of the accompanying disks, which lets you

reset border colors on the fly. For more behind-the-scene details, see the chapter on
DEBUG. And for advanced techniques involving the EGA and VGA systems and
beyond, see the chapter that follows.

One last note about ANSI and the CLS command. If you type CLS, DOS will generate
the ANSI command to clear the screen - ESC2J (where ESC stands for the decimal 27
or hex lB escape character and not the letters E-S-C). To see this, type:

CLS > SEEIT

which redirects the output of the CLS command into a file called SEEIT. If you then
examine the SEEIT file by typing:

TYPE SEEIT

you'll see a little arrow pointing left (the escape character) followed by a 2 and a J. If you
have ANSI loaded, using TYPE to display the file will end up clearing the screen instead,
since ANSI will see its CLS command onscreen, and process it. If you need to work with
ANSI or printer escape sequences, you can use EDLIN or your word processor to
customize this SEEIT file, since the hard-to-type ESC character will already be in the
file and you can simply add any other non-ESC commands after it.

The first thing most decent programs do these days when they start up is figure out
whether or not a color adapter (CGA, EGA, or VGA) is active, and set the screen colors
accordingly. Other programs simply use one set of colors that works on both monochrome
and color systems.

Screens and Color 675

Basic CGA text screens can use only eight possible colors (including black). IBM
assigned the following numbers to these:

Color Dec Hex Binary
Black 0 0 000
Blue 1 1 001
Green 2 2 010
Cyan 3 3 011
Red 4 4 100
Magenta 5 5 101
Brown 6 6 110
White 7 7 111

Cyan is otherwise known as light blue; magenta as purple. Brown is the hardest color
to produce on many monitors, and may end up appearing as dingy yellow or purplish
orange.

All of these numbers can be expressed in three binary digits (bits) as varying
combinations of Os and 1 s. Three of these - red, green, and blue - have just a single 1
in them:

• Red 100
• Green 010
• Blue 001

Early IBM color displays were often referred to as "RGB" monitors since they had
three electron guns behind the CRT that handled individual red, green, and blue signals.
A binary color 100 meant that only the red gun was active; 001 turned on just the blue
gun. By mixing and matching IBM came up with the other five. Black (000) meant that
all guns were off, and white (111) that all were on.

Turn the rightmost bit (001) on by itself and you get blue. Turn the middle bit (010)
on and you end up with green. Set the leftmost bit to 1 (100) and the screen displays red.
Turn both the red and blue bits on (101) and your monitor activates the red and blue guns
and ends up with purple (which IBM calls magenta).

By slapping one additional bit of information onto the three other color bits, IBM
increased the number of color choices to 16. It named the leftmost bit the "intensity" bit,
and when this bit was turned on, the screen displayed a brighter version of the color
determined by the other three bits.

Turning this fourth bit on (setting it to 1) is the same as adding 8 to the value of the
other three bits. So if the value of a normal color happened to be 5 (binary 101), turning
on the intensity bit would add 8 to the color value, yielding 13:

101
+ 1000

1101

(magenta = decimal 5)
setting the intensity bit (adding 8)
(bright magenta= decimal 13 or hex D)

676 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

This chart shows the decimal, hex, and binary values for the high-intensity colors:

High-Intensity
Color Dec Hex Binary

Bright black 8 8 1000
Bright blue 9 9 1001
Bright green 10 A 1010
Bright cyan 11 B 1011
Brightred 12 c 1100
Bright magenta 13 D 1101
Bright brown 14 E 1110
Bright white 15 F 1111

Bright black turned into grey. Bright red became a sort of salmony pink color, and
bright brown emerged as yellow.

Displays that could handle the intensity bit were called "IRGB" monitors. Some
displays were blind to this intensity bit and made a color like bright magenta (color 13)
look exactly like normal magenta (color 5). Others had trouble with the intensity circuitry
and made bright colors too bright or too close to normal colors.

However, by limiting the color information to four bits - half of a byte, or a nibble
- IBM could put the color information for both the foreground and background into one
byte. It specified that the text or foreground data would be in the rightmost ("low") nibble
and the background data in the leftmost ("high") nibble. So bright blue text (1001) on a
cyan background (0011) would be coded as:

0011 1001

I t
bright blue (foreground)

cyan (background)

The value of this byte would be 00111001, or decimal 57 (hex 39). This is one case
where hex numbering is clearly easier to work with than decimal. The binary number for
bright blue text on cyan is 0011 1001. Again, the high nibble is the four bits on the left,
while the low nibble is the four bits on the right. (The left half is called high because it's
worth more than the right half, just as in the decimal number 57, the 5 is the high half
because it's really equal to 5 x 10, or 50, and the 7 is the low half because it's equal to 7
x 1, or 7.)

The high nibble ..,.-- cyan - is equal to 3. The low nibble - bright blue - is equal to
9. Together the hex value for this byte is 39:

0011 1001
(3) (9)

Each nibble can be one of 16 values, from 0 (0000) to 15 (1111). So a color byte can
have 256 possible values, from a low of 0 (0000 0000) to a high of 255 (1111 1111).

Screens and Color 677

Incidentally, these examples insert a space between the high and low nibbles for clarity;
but your system doesn't. To it, 255 is just 11111111.

But IBM wanted this one byte to store all the attributes, not just the color. By turning
on the leftmost bit in the low (foreground) nibble it could highlight text the same way
boldface type stands out on a page. And by rotating the foreground and background
around, it could produce the reverse of a normal display so that text appeared black against
white (or black on green in monochrome).

IBM felt that two other attributes - blinking and underlining - were important. But
virtually no room was left in the byte, since three bits in each nibble were taken up by
red/green/blue color information, and the remaining bit in the low nibble served as a
high-intensity on/off switch.

After puzzling over underlines, IBM's designers gave up and cheated. They realized
that the resolution of the original CGA color screen was truly rotten. Every one of the
255 possible displayable characters had to be made up out of a crude box or grid eight
dots wide and eight dots high. That's eight rows and eight columns (actually one of the
eight columns was left blank in most cases so adjacent letters wouldn't touch, and one
of the eight rows was reserved for descenders on lowercase letters, yielding a 7 x 7 box).
Try making characters like @, &, and % on such a small grid yourself and see how hard
it is.

Worse, the bottom of one 8 x 8 CGA character box touched the top of the one below
it. This meant that descenders, like the tails on the letters y or j or p, actually touched the
tops of capital letters and ascenders on lowercase letters like 1, d, or b. The only way to
add an underline would have been to sacrifice one of the eight rows that made up the
characters. Things were so tight already that the engineers decided to allow underlining
on monochrome screens only, where the character box measured 9 x 14. They assigned
the first nonzero value - 0001 - as a switch to tum on underlining. This value of 1
happens to be the setting for blue on a color monitor. So anything designed to appear in
blue text on a color monitor ends up underlined on a mono display and vice versa.

Probably after staring at a high-intensity purple background for too long, IBM
engineers realized they could sacrifice the high-intensity bit in the background (high)
color nibble and use it instead to control blinking. Nobody would want to look at a glaring
bright green or pulsing purple background anyway. So the leftmost bit in the low nibble
controls intensity, while the leftmost bit in the high nibble controls blinking.

Actually, you can disable blinking and use high-intensity backgrounds. The easiest
way to see this is in BASIC. Load BASIC by typing either QBASIC (for DOS 5.0),
BASIC (for IBM systems) or GWBASIC (for generic systems). Then type:

COLOR F,B

substituting a foreground color from 0 to 15 in place of the F, and a background color
from 0 to 7 in place of the B. Entering COLOR 15,1 will produce bright white text on a
dark blue background. If you add 16 to the foreground color, it will blink. Entering
COLOR 31, 1 will yield blinking bright white text on a blue background. Now, assuming
you 're using an 80-character screen, type:

OUT &H3D8,9

678 DOS Power Tools, 2nd Edition, Revised for DOS 5. 0

The text should stop blinking, and the background will turn high-inten~lty blue.
This technique won't work on all color systems or on all color monitors; the older your

system the more likely this command will disable blinking and brighten your background.
And note that BASIC actually lets you enter three color numbers (COLOR F,G,B) where
the B sets the border color - the area between the 80 x 25 screen and the bezel of your
monitor. IBM stopped using border colors with the EGA and made them only slightly
better on the VGA, so borders are pretty much passe by now.

Since the background nibble is on the left, and the text nibble on the right, this meant
that the very leftmost bit - the eighth one - would determine whether or not blinking
was turned on. The eighth bit is equal to 128 (2A7 or 1000 0000). So if this bit is on, or
set to 1, the text color blinks. Turning this bit on is the same as adding 128 to the existing
combination of color and intensity attributes. So the bright-blue-on-cyan hex 39 example
above:

0011 1001

doesn't blink. But adding 128, or binary 1000 0000 to it:

00111001
+ 1000 0000

1011 1001

· would produce a blinking bright blue on cyan display. The decimal value of 1011 1001
is 185. The nonblinking version of this was 57. 57 + 128 = 185.

But again, it's easier to work with hex. 1011 is equal to hex B. 1001 is equal to hex 9.
So the hex notation for this is B9. Any hex number with a lefthand digit higher than 7
will blink.

In summary, an attribute byte looks like this:

Blink bit

1
0 0 0 0

L background _J
color.

Intensity bit

1
0 0 0 0

L foreground_J
color

If the value of this byte is over 7F hex (127 decimal), the blink bit will be set and the
text color will blink. If the blink bit is 0, it won't. In both cases the lefthand hex digit is
the background color and the righthand digit is the foreground (text) color.

Most programs that set colors or clear the screen use BIOS interrupt 10. (Some
programs bypass BIOS and go straight to the hardware, but such ill-behaved software
won't be discussed here.) DOS doesn't offer any underlying color facilities oilier than
ANSI, and uses the BIOS functions itself. It can write individual characters, or strings of
characters, but these will appear in whatever attribute happens to be set at the time.

BIOS INT 10 offers a fat toolkit of character-based functions to handle just about
everything you '11 need to add sparkle to your display. While IBM enhanced INT 10 when

Screens and Color 679

it released the AT, and then jazzed it up even more when it brought the PS/2 series to
market, the original services are still very capable. Figure 13.1 summarizes the standard
text arsenal available (though it doesn't include pixel-oriented services, and ones that
deal with things like light pens).

Since BIOS is your system's hardware specialist, just about all video tools use BIOS
interrupt 10. However, DOS gets into the act a bit with a scant few teletype-oriented
interrupt 21 routines (Figure 13.2).

Name of Service What You Specify What You Get Back Notes

Set mode (text) AH=O Modes:
AL=mode 0 = 40x25 16-color
(On EGA and later 1 = 40x25 16-color

systems, add 80H 2 = 80x25 16-color
to mode number 3 = 80x25 16-color
to prevent screen 4 = 320x200 4-color
from clearing) 5 = 320x200 4-color

6 = 640x200 2-color
7 = 80x25 monochrome
OD = 320x200 16-color
OE= 640x200 16-color
OF = 640x350 monochrome
10 = 640x350 16-color
11 = 640x480 16-color
12 = 640x480 16-color
13 = 320x200 256-color

Set cursor type and AH=l Largest mono cursor is:
size CL=starting line 0 starting line

CH =ending line D ending line
Largest CGA cursor is:

0 starting line
7 ending line

Default mono is:
CH=OB CL=OC

Default CGA is:
CH=06 CL=07

Default EGA/MDA is:
CH=ll CL=12

Default VGA/MCGA is:
CH=13 CL=14

Setting CH =20 may make
the cursor vanish

A start line larger than its
ending line will produce
a 2-part cursor.

(continued)

680 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

Name of Service What You Specify What You Get Back Notes

Set cursor position AH=2 Upper lefthand comer is
DH=row 0,0, so DX =0000
DL=column Unless you're really tricky,
BH=page(O) page is always 0

Read cursor position AH=3 DH=screen row Again, assume the page
BH=page (0) DL=screen column is 0, although BIOS

CH =starting line maintains positions
CL=ending line for each page

Set active page AH=5 AL=0-3 for 80-column
AL=page screens (modes 2,3)

AL=O-7 for 40-column
screens (modes 0,1)

EGA and later systems can
handle pages in 16-color
graphics modes

Scroll up window AH=6 To clear 80x25 screen use:
AL=number of lines AL=O

to scroll CH=O
CH =upper lefthand CL=O

window row DH=l8
CL=upper lefthand DL=4F

window column BH=color
DH= lower righthand DH and DL are 1 less

window row than 80x25 (hex 4F and
DL=lower righthand 18 since these start

window column at 0, not 1)
BiI =attribute to Use AL=O to clear screen

fill window

Scroll down window AH=7 To clear 80x25 screen use:
AL=number of lines AL=O

to scroll CH=O
CH =upper lefthand CL=O

window row DH=18
CL=upperlefthand DL=4F

window column BH=color
DH=lower righthand DH and DL are 1 less

window row than 80x25 (hex 4F and
DL=lower righthand 18 since these start

window column at 0, not 1)
BH =attribute to Use AL=O to clear screen

fill window

Screens and Color 681

Name of Service What You Specify What You Get Back Notes

Read attribute, AH=8 AL= ASCII value Use 0 for page. This comes
character at cursor BH=page (0) of character in handy for clearing

AH =attribute screen to existing color.

Write attribute, AH=9 Use 0 for page. This can fill
character at cursor BH=page (0) an 80x25 screen instantly

ex =number of by putting a hex 7DO
characters to write (same as decimal 2000)

AL= ASCII value inRCX.
of character to Have to worry about moving
write the cursor yourself.

BL=attribute of
character

Write character AH=OA Use 0 for page. You can use
at cursor BH=page (0) this without having to

ex =number of worry about getting the
characters to existing color or coming
write up with a new one.

AL= ASCII value of
character to
write

Set color palette AH=OB Works on CGAs only
(border in text mode) BH=O Border may be 0-16.

BL=border color (Function OB has other
graphics abilities.)

Write character as AH=OE Advances cursor
TTY (teletype) AL= ASCII value automatically but can't

of character to handle colors and treats
write ASCII 7, 8, 10, and 13

characters specially

Get current video AH=OF AL=mode
state AH=number of

columns
BH =active page

Figure 13.1. Original INT 10 Tools

682 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

Name of Service

Set Palette Register

Set Border Register

Set Palette
Registers and
Border

Select Blink or
Background Colors

Read Palette
Register

Read Border
Register

Read Palette/
Border Register

SetDAC
(digital =to=analog
converter) Color

What You Specify

AH=lO
AL=O
BH=palette

register value
BL=palette

register value

AH=lO
AL=l
BH=border color

AH=lO
AL=2
ES:DX=17-byte

table of palette
and border values

AH=lO
AL=3
BL=choice:

O= 16 background
colors and no blink

1 =8 background
colors and blink

AH=lO
AL=7
BL=palette register

number

AH=lO
AL=8

AH=lO
AL=9

AH=lO
AL=lO
BX =register
DH =6-bit red value
r<TT cn-6-ou green vame
CL=6-bit blue value

What You Get Back

BH=palette
register value

BH=border color

ES:DX=17-byte
table of palette
and border values

Notes

EGA, VGA, only

EGA, VGA only

EGA, VGA only

EGA, VGA only

VGA only

VGA only

VGA only

VGA, MCGA only

Screens and Color 683

Name of Service What You Specify What You Get Back Notes

Set Multiple DAC AH=lO VGA, MCGA only
colors AL=12

BX =initial register
ex =number of

registers
ES:DX=table of RGB

values

SetDACPage AH=lO VGA only
Configuration AL=13

BL=O
BH=choice:

0=4 pages,
64 registers

1 =16 pages,
16 registers

SetDACPage AH=lO VGA only;
AL=13 4 pages 0-3 if 64
BL=l registers
BH=page 16 pages 0-F if 16

registers

Read DAC Color AH=lO DH=6-bit red value VGA, MCGA only
AL=15 CH =6-bit green value
BX =register CL=6-bit blue value

Read Multiple DAC AH=lO ES:DX 17-byte table VGA, MCGA only
Colors AL=17 filled in

BX =initial register
ex =number of

registers
ES:DX=location of

table

GetDACPage AH=lO BH =current page VGA only
Configuration AL=lA BL=current page

mode:
0=4 pages,
64 registers

1=16 pages,
16 registers

(continued)

684 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

Name of Service

Convert DAC Colors
to Greys

Load Custom Text
Character Set

Load 8 x 14 Text
Character Set

Load 8 x 8 Text
Character Set

Select Loaded Text
Character Set

Load 8 x 16 Text
Character Set

Load Custom Text
Character Set and
Adjust Height

What You Specify

AH=lO
AL=lB
BX =initial register
ex =numbers of

registers

AH=ll
AL=O
BH =bytes/character
BL=table
ex =number of

characters
DX=ASCII code of

initial character
ES:BP=table of bit

patterns

AH=ll
AL=l
BL=table

AH=ll
AL=2
BL=table

AH=ll
AL=3
BL=table

AH=ll
AL=4
BL=table

AH=ll
AL=lO
BH =bytes/character
BL=table
ex =number of

characters
DX= ASCII code of

initial character
...... = t t r • ~s.BP tao1e or bit

patterns

What You Get Back Notes

VGA, MCGA only

EGA, VGA, MCGA
only

EGA, VGA only

EGA, VGA, MCGA
only

EGAandMCGA
allow 4 tables

VGA allows 8 tables

VGA, MCGA only

EGA, VGA, MCGA
only

Screens and Color 685

Name of Service What You Specify What You Get Back Notes

Load 8 x 14 Text AH=ll EGA, VGA only
Character Set and AL=ll
Adjust Height BL=table

Load 8 x 8 Text AH=ll EGA, VGA only
Character Set and AL=12
Adjust Height BL=table

Load 8 x 16 Text AH=ll VGA only
Character Set and AL=14
Adjust Height BL=table

Load 8 x 8 Graphics AH=ll EGA, VGA, MCGA
Custom Character Set AL=20 only (For high-bit

ES:BP=table of bit characters only)
patterns

Load Custom Graphics AH=ll EGA, VGA, MCGA
Character Set AL=21 only

ex =bytes/character
ES:BP=table of bit

patterns
BL=O (and DL=

number of rows)
BL=l (for 14 rows)
BL=2 (for 25 rows)
BL=3 (for 43 rows)

Load 8 x 14 Graphics AH=ll EGA, VGA only
Character Set AL=22

BL=O (and DL=
number of rows)

BL=l (for 14 rows)
BL=2 (for 25 rows)
BL=3 (for 43 rows)

(continued)

686 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

Name of Service What You Specify What You Get Back Notes

Load 8 x 8 Graphics AH=ll EGA, VGA, MCGA
Character Set AL=23 only

BL=O (and DL=
number of rows)

BL=l (for 14 rows)
BL=2 (for 25 rows)
BL=3 (for 43 rows)

Load 8 x 16 Graphics AH=ll VGA, MCGA only
Character Set AL=24

BL=O (and DL=
number of rows)

BL=l (for 14 rows)
BL=2 (for 25 rows)
BL=3 (for 43 rows)

Get Character Set AH=ll ex =height of EGA, VGA, MCGA
Parameter Sizes AL=30 characters only

DL=number of rows
(-1)

Get Character Set AH=ll ES:BP=location of EGA, VGA, MCGA
Table Information AL=30 bit-pattern tables only

BH =0 (for 8x8 CGA ex =character height
high-bit characters DL=number of
pointed to by INT IF) on-screen rows (-1)

BH=l (for current
characters)

BH=2 (for 8x14
characters)

BH=3 (for 8x8
characters)

BH =4 (for top of 8x8
character table)

BH=5 (for 9x14
characters)

BH=6 (for 8x16
characters)

BH=7 (for 9x16
characters)

Screens and Color 687

Name of Service What You Specify What You Get Back Notes

Get Video AH=12 BH =current video EGA, VGA only
Configuration BL=IO mode

(O=color)
(!=mono)

BL= Blocks of EGA
RAM

(0=64K)
(1=128K)
(2=192K)
(3=256K)

CH= EGA feature
connector input status

CL= EGA switch
settings

Alternate Print Screen AH=12 EGA, VGA, MCGA,
Select BL=20 only (for rows > 25)

Select Text Scan Line AH=12 VGA only
Number BL=30 200=CGA emulation

AL=O (for 200 lines) 350= EGA emulation
AL=l (for 350 lines) 400= VGA default
AL=2 (for 400 lines)

Enable/Disable Palette AH=12 VGA, MCGA only
Loading on Mode BL=31
Change AL=O (enables default

palette)
AL=l (disables palette

loading; keeps
current values)

Enable/Disable AH=12 VGA, MCGA only;
Buff er/Port Addressing BL=32 See AL=35 (for use

AL=O (enables together in same
addressing) system)

AL=l (disables
addressing)

Enable/Disable Grey AH=12 VGA, MCGA only
Scale BL=33 (can force grey

AL=O (to enable grey scale display on
scale) color system with

AL= 1 (to disable grey AL=O)
scale)

(continued)

688 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

Name of Service What You Specify What You Get Back Notes

Enable/Disable Cursor AH=l2 VGA only
Emulation BL=34

AL=O (to enable CGA-
type cursor)

AL=l(to disable it)

Switch Display AH=12 VGA, MCGA only;
BL=35 See AL=32 (lets
AL=O (initial adaptor you switch between

off) PS/2 video adaptors)
AL= 1 (inital adaptor

on)
AL=2 (tum active

video off)
AL=3 (tum inactive

video on)
ES:DX=128-byte

buff er address

Enable/Disable AH=12 VGA only
Refresh BL=36

AL=O (enables refresh)
AL=l (disables

refresh for faster
screen updates

Write Text String AH=13 AT, New XT, PS/2,
Without Moving AL=O EGA only
Cursor BL=attribute

BH=page
DX =cursor start
ex =string length
ES:BP=string address

Write Text String and AH=13 AT, New XT, PS/2,
Move Cursor AL=l EGA only

BL=attribute
BH=page
DX =cursor start
ex =string length

I
ES:BP=string address

I

Screens and Color 689

Name of Service What You Specify What You Get Back Notes

Write Text/Attribute AH=13 AT, New XT, PS/2,
String Without Moving AL=2 EGA only (Form:
Cursor BH=page character 1,

DX =Cursor Start attribute!,
ex =string length character2,
ES:BP=string address attribute2, ... etc.)

Write Text/Attribute AH=13 AT, New XT, PS/2,
String and Move AL=3 EGA only (Form:
Cursor BH=page character 1,

DX =cursor start attribute!,
ex =string length character2,
ES:BP=string address attribute2, ... etc.)

Get Video AH=lA AL=lA VGA, MCGA only
Combination Code Al=O BL=active display code Codes for BL/BH:

BH =inactive display O=no display
code l=MDA

2=CGA
4=colorEGA
5=monoEGA
6=PGC
7=monoVGA
8=colorVGA
B=monoMCGA
C=color MCGA
FF=unknown

Set Video AH=lA AL=lA VGA, MCGA only
Combination Code AL=l Codes for BL/BH:

BL=active display O=no display
BH =inactive display l=MDA

2=CGA
4=colorEGA
5=monoEGA
6=PGC
7=monoVGA
8=colorVGA
B=monoMCGA
C=color MCGA
FF=unknown

(continued)

690 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

Name of Service What You Specify What You Get Back Notes

Get BIOS AH=lB AL=lB VGA, MeGA only
Functionality BX=O ES:Dl=video mode
Information ES:DI=64-byte buffer and configuration

table

Get VGA State AH=le AL= le VGA only; use this
Store/Restore Buff er AL=O BX =number of 64- before AL= 1 save
Size ex =state to store byte buffer blocks

(O=DAC) required
(l=BIOS)
(2 =registers)

VGA State Store AH=le VGA only; use AL=O
AL=l first
ex =state to store

(O=DAC)
(l=BIOS)
(2=registers)

ES:BX =buffer address

VGA State Restore AH=le VGA only; use after
AL=2 AL=O and AL= 1
ex =state to restore

(O=DAC)
(l=BIOS)
(2 =registers)

ES:BX =buffer address

Figure 13.2. Enhanced INT 10 Tools

Name of Service What You Specify What You Get Back Notes

Display output AH=2 One character at a time
DL=character

Display String AH=9 Must end string with a
DS:DX=pointer to $ which means you

output stnng can't display a $

Figure 13.3. INT 21 Tools

Screens and Color 691

DOS's INT 21 tools are far more feeble than INT lO's. While DOS lets you display
single characters, or strings of characters, it doesn't let you set or change the colors. It
just displays them in whatever colors happen to be active. And since its Display Output
function 9 uses a dollar sign to indicate the end of the string, you can't have function 9
display a dollar sign.

You could also use some of the other slightly more exotic DOS services such as the
output half of Direct Console 1/0 function 6, or Write to File or Device function 40, or
you could even use Open File 3D and write to the CON (console) device rather than a
file. (The discussion of ANSI in an earlier chapter showed how to use the undocumented
INT 29 "Fast TTY" function.) But the Display Output (function 2) and Display String
(function 9) services, or the speedier BIOS services, can handle just about anything you '11
need.

To create a short program that will display the letters "PC" you could try several
different approaches. Each of the examples below uses the DEBUG (2.0 or later)
mini-assembler. DEBUG works exclusively in hex, so be careful not to mix hex and
decimal notation. If you 're confused about registers, read the chapters on memory and
DEBUG first.

After starting DEBUG (by typing DEBUG) you tum on the assembler by typing A at
the DEBUG hyphen (-)prompt. You'll be creating COM files that start at hex offset 100.
If you're creating several COM files in succession without leaving DEBUG, use the
command:

A 100

to start each new one at offset 100. After you've created the first one, don't just use A
without adding a 100 after it or else you'll end up telling DEBUG to begin the next
program at the wrong starting address.

When you 're done entering the interrupt 10 BIOS or interrupt 21 DOS instructions, be
sure to include an instruction to exit your small program and return to DOS. If you don't,
the program will freeze, or "hang" your system. There are all sorts of ways to exit. Most
experts tell you that you should use function 4C of interrupt 21, the code for which looks
like:

MOV AH,4C
INT 21

This approach is handy when you have to set an exit code (or return code) that a batch
file can process. Adding a line before the INT 21:

MOV AH,4C
MOV AL,FF
INT 21

will set an exit code of hex FF (decimal 255). Your batch file can then include a line that
says:

692 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

IF ERRORLEVEL 255 GOTO LABELl

so the batch file jumps, or branches to :LABEL! if your display program worked
properly. See the batch techniques chapter for more information.

However, you can also exit a program and return to DOS with a simple:

INT 20

And with short programs like the ones below, you can use a still simpler:

RET

After you enter the final instruction to return your program to DOS, you '11 have to
press the Enter key twice to exit DEBUG's mini-assembler. Then just give DEBUG a
name that ends with a COM extension (by using the N command), tell DEBUG how long
the program is (by using the RCX command), write the program to disk (with a W), and
quit (by typing Q).

To use DOS service 2 of Interrupt 21, the process would look like:

C>DEBUG
-A
30DD:0100 MOV AH,2
30DD:0102 MOV DL,50
30DD:0104 INT 21
30DD:0106 MOV DL,43
30DD:0108 INT 21
30DD:010A RET
30DD:010B
-N SERVICE2.COM
-RCX
ex 0000
:B
-w
Writing OOOB bytes
-Q

You type DEBUG to start.
Then type A at the hyphen prompt.

Here DEBUG prints the AAAA:BBBB
addresses; you type in the instructions
like MOV AH,2 or INT 21 and press
Enter after each.

Just press Enter here.
You type N and the filename.
You enter RCX.
DEBUG responds with this.
And you enter the length (B bytes) here.
Then you enter W to write the file.
DEBUG prints this message.
And you type Q to quit.

The 30DD before the colon on seven of the lines is the segment address, and will probably
be different on your system. It doesn't matter here.

Each time you enter an instruction, DEBUG figures out how many bytes it took and
offers you a chance to enter an additional instruction at the next available address. When
you're ali done entering instructions, just press Enter. In the above example, you'd do
this when you see the line:

30DD:010B

Screens and Color 693

To figure out how long your program is, just look at the offset address of this line (the
one following your last instruction). Ignore the leftmost four digits. Since DEBUG starts
all files at address 100, subtract 100 from the rightmost four digits:

30DD:010B

subtract 100 from this
ignore this

With small programs, hex subtraction is easy:

OlOB
100

B

If even this scares you, use the free hex calcµlator supplied with DEBUG. Just enter
H (for .. H math") then the rightmost four digits (here these are OlOB) and finally the 100
you want to subtract. The whole command looks like:

-H OlOB 100
020B OOOB

You.type everything after the hyphen.
DEBUG responds with this.

The first number DEBUG prints is the sum of the two numbers. The second number
is the difference. You want the difference (OOOB). You can skip the leading zeros; OOOB
is the same as just plain B. Hex numbers are often expressed as pairs of digits, so you'll
often see hex B written as OB.

If you enter everything as it appears above, you'll end up with a small program on your
disk called SERVICE2.COM that uses DOS service 2 to display a P and then a C and
then exit. Once you've created it, just type SERVICE2 at the DOS prompt.

This program uses service 2 twice - once to print the P (which has a hex value of 50),
and once to display the C (with has a hex value of 43). You tell the program you want to
use service 2 of interrupt 21 by putting a 2 into the AH register with the MOV AH,2
instruction. Then you put the hex values of the characters you want to display into the
DL register one at a time, with the MOV DL,50 and MOV DL,43 instructions. Then you
issue an INT 21 to put DOS to work. DOS will look in the AH register to see what you
want it to do, figure out that you'd like it to display a character, then get the value in
register DL and display the character with that value.

This example used only one:

MOV AH,2

instruction, but two:

694 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

MOV DL,50
MOV DL,43

instructions. This is a shortcut; the first MOV AH,2 instruction lasts for both of the MOV
DL,50 and MOV DL,43 instructions since the program doesn't meddle with the AH
register at all after putting the 2 into it. Sometimes this won't work and you'll have to
specify the MOV AH,2 twice:

MOV AH,2
MOV DL,50
INT 21
MOV AH,2
MOV DL,43
INT 21
RET

You could modify this SERVICE2.COM program and tum it into SERVICE6.COM,
by repeating the process but changing the line:

30DD:Ol00 MOV AH,2

to:

30DD:0100 MOV AH,6

and then changing the line:

-N SERVICE2.COM

to:

-N SERVICE6.COM

Both will work almost identically. About the only difference is that while you can break
out of the SERVICE2.COM program by pressing Ctrl-C (very quickly), you can't do this
to the SERVICE6.COM program. However, these programs are both so short this doesn't
really make any difference.

If you then wanted to see what the actual assembly language instructions looked like,
you could use DEBUG's U (Unassemble) command:

C>DEBUG SERVICE2.COM
-U 100 LB
30F9:0100 B402
30F9:0102 B250

MOV
MOV

AH,02
DL,50

30F9:0104 CD21
30F9:0106 B243
30F9:0108 CD21

INT
MOV
INT

21
DL,43
21

Screens and Color 695

30F9:010A C3 RET

To use the U command, specify the starting address (on programs like these it will
always be 100), then the letter L, then the hex length. If you don't know the hex length
of a file you just loaded into DEBUG (with a command like DEBUG SERVICE2.COM),
you can have DEBUG tell you - just type RCX and press Enter twice. The number
DEBUG prints after the CX is the length. The process will look something like:

-RCX
ex OOOB

Both SERVICE2.COM and SERVICE6.COM printed one character at a time. If you
wanted to print both at once, you could use service 9, which prints a string of characters.
Just type:

C>DEBUG
A

30DD:0100 MOV AH,9
30DD:0102 MOV DX,108
30DD:Ol05 INT 21
30DD:0107 RET
30DD:Ol08 DB 'PC$'
30DD:010B
-N SERVICE9.COM
-RCX
ex oo~oo

:B
-w
Writing OOOB bytes
-Q

You type DEBUG to start.
Then type A at the hyphen prompt.

J
Here DEBUG prints the AAAA:BBBB
addresses; you type in the instructions
like MOV AH,9 and INT 21 and press
Enter after each.

Just press Enter here.
You type N and the filename.
You enter RCX.
DEBUG responds with this.
And you enter the length (B bytes) here.
Then you enter W to write the file.
DEBUG prints this message.
And you type Q to quit.

When you use service 9 of DOS interrupt 21, all you have to do is:

1. Put a 9 in register AH (with MOV AH,9).
2. Use register DX to point to the address in memory of the string that you want to print

(with MOV DX,108 for instance, if the string starts at offset address 108).
3. Make sure the string you want to print starts at the address you specified in step 2,

and ends with a$ (a hex 24 character).

696 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

4. Issue an INT 21 to have DOS do it for you.
5. Use one of the exit commands (such as RETor INT 20) to return to the DOS prompt

once you 're done.

When entering a string with the DEBUG A (Assemble) command, put it inside a pair
of single or d~:mble quotation marks, and precede it with a DB. And be sure you end the
string with a dollar sign, which won't appear onscreen when DOS displays the rest of the
string.

You could have used the hex value of the dollar sign (24) instead of putting the$
between the quotes. Both:

30DD:0108 DB 'PC$'

and:

30DD:0108 DB 'PC' 24

will work the same.
With simple programs like this the dollar sign is often the last character in the file. If

you forget to add the dollar sign, or if you specify a file length that's a byte too short so
DEBUG doesn't include the final dollar sign when it writes the file to disk, you can run
into problems. When you run the file DOS will print the string (in this case, PC), but
since there's no dollar sign to tell it to stop it will keep printing whatever characters
happen to be loaded in memory after the string until it hits a character 24 by chance. DOS
may stumble over a character 24 right away, or it may print a screen or two of beeping,
flashing garbage before it finally stops.

Technically, the MOV DX,108 instruction that points to the string skips a step. If you
were writing a longer program, you'd have to specify an additional value, for DS, since
the address of the string is pointed to by DS:DX, where DS is the segment address and
DX is the offset address. (See Chapter 7 for details.) With tiny programs like these you
don't have to worry about the DS segment address.

However, this time, if you try to use the DEBUG Unassemble command, you'll see:

C>DEBUG SERVICE9.COM
-u 100 LB
30DD:0100 B409 MOV AH,09
30DD:0102 BA0801 MOV DX,0108
30DD:0105 CD21 INT 21
30DD:0107 C3 RET
30DD:0108 50 PUSH AX
30DD:Ol,-09 43 INC BX
30DD:OlOA 2426 AND AL,26

The first four lines are correct, but the:

Screens and Color 697

30DD:0108 DB 'PC$'

instruction that specifies the string disappeared and was replaced by three other assembly
language instructions:

30DD:0108 50
30DD:0109 43
30DD:010A 2426

PUSH
INC
AND

AX
BX
AL,26

DEBUG's U command tries to turn everything into instructions. It isn't smart enough
to see that you're using a Display String instruction and that you're telling it that the
string begins at address 108. So it looks at the bytes that make up the string (and the final
dollar sign) and translates these into meaningless instructions rather than identifying them
as data.

If you used the DEBUG D (for Dump or Display) command instead of the U command,
you'd see your string:

-D 100 LB
30DD:Ol00 B4 09 BA 08 01 CD 21 C3-50 43 24 ! .PC$

The SERVICE2.COM, SERVICE6.COM, and SERVICE9.COM programs all use
display services of DOS interrupt 21. They don't meddle with the color settings, and will
display the characters you specified in whatever colors happen to be active at the time.
They essentially treat your screen like a teletype device (abbreviated as TTY).

In this respect, they're similar to the BIOS Write Character as Teletype service E of
interrupt 10. You could adapt the SERVICE2.COM program above very easily to use
this BIOS function:

C>DEBUG
-A
30DD:Ol00 MOV AH,E
30DD:0102 MOV AL,50
30DD:0104 INT 10
30DD:0106 MOV AL,43
30DD:0108 INT 10
30DD:010A RET
30DD:OlOB
-N SERVICEE.COM
-RCX
ex 0000
:B
-w
Writing OOOB bytes
-Q

698 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

Service E of BIOS interrupt 10 lets you use screen pages on a color system. In fact,
you could add a line before the first INT 10 that says:

MOV BH,0

This tells your system to write the characters to screen page 0 - the one you normally
work with. If you did this you'd have to increase the length of the program that you
specified with the RCX command. Fortunately, you shouldn't have to worry about this,
since just about nothing takes advantage of screen pages other than page 0.

What's a page?
It's far easier to display a screenful of characters than a screenful of dots. A 25-row,

80-column screen can hold 2,000 characters (25 x 80 = 2,000). It takes one byte to store
the value of each character, and one additional byte to store the color of each character.
So displaying one complete 25 by 80 screenful of text requires 2,000 bytes of memory
to store the characters, plus another 2,000 bytes to store the colors of each character.

However, IBM's original four-color 320 by 200 medium-resolution graphics screen
required 16,000 bytes of memory. The system has to keep track of 64,000 dots (320 x
200) and the colors of these dots. It does this by using two bits - a quarter of a byte -
to represent the color of each dot (pixel). Two bits yields four possible colors (actually
three colors plus color 00, which is the same as the background color):

Bits Decimal Result
00 0 no color
01 1 first color
10 2 second color
11 3 third color

These four values (0-3) will produce different colors depending on which "palette" of
possible colors is active. You can see this palette by typing in the following PALS
HOW.BAS BASIC program, using a pure ASCII word processor, EDIT, or EDLIN. Omit
the single quotation (') marks and the comments following them

100 'PALSHOW.BAS - shows different graphics palettes

110 SCREEN 1

120 COLOR 1,0

130 CLS

140 FOR A=l TO 3

150 CIRCLE (60+A*50,50) ,25,A

160 PAINT (60+A*50,50) ,A,A

170 NEXT

180 LOCATE 20,4

' 320 x 200 graphics

' blue background, palette O

' clear screen

' draw three circles

' color them with colors 1, 2, and 3

190 PRINT "Press any key to switch palettes"

200 LOCATE 21,9

210 PRINT "(or press Esc to end)"

Screens and Color 699

220 I$=INKEY$:IF I$="" THEN 220

230 IF I$=CHR$(27) THEN END ELSE K=K+l

240 COLOR 1,K

250 GOTO 220

' switch to the other palette

Once you've created the program, run it on any color system by typing QBASIC
PALSHOW, BASICA PALSHOW (or GWBASIC PALSHOW if you're not using IBM
hardware). Press any key and you'll see the three circles change from palette 0 (where
they're green, red, and brown/yellow) to palette 1 (where they're cyan, magenta, and
white). Press the Esc key to quit.

The location of the dot onscreen is simply its relative position in the 16,000 possible
bytes of memory. The very first of the 16,000 bytes of display memory represents the
first four dots on the screen (since each byte contains eight bits and each dot takes up two
bits), starting in the upper lefthand comer. The second byte represents the next four dots,
and so on. It actually gets fairly complicated, since the odd-numbered rows and even
numbered rows are maintained separately. More on that later.

Originally, IBM also offered a "high resolution" graphics screen measuring 640 by
200. This meant keeping track of 128,000 dots (640 x 200). Each bit of each of the 16,000
bytes stood for one dot. A dot was either on (white) or off (black), and no color was
allowed unless you knew how to program the graphics controller directly.

The total 16,000 bytes x 8 bits per byte= 128,000 bits. In high resolution, all the bits
were used up just telling your system whether each of the 128,000 dots was on or off. In
medium resolution, you could use two bits to specify one of four colors (with binary
values 00, 01, 10, or 11) so 64,000 dots x 2 bits= 128,000. And if you knew how to tweak
your system, you could even experiment with a low-resolution screen that displayed 160
x 200 dots in 16 colors.

Each CGA system came with 16K of display memory on the display adapter. Graphics
used it all. But a full 80-column screen of text used only 4,000 of the 16,000 bytes. IBM
let you use the rest by dividing the 16,000 total bytes into four screen pages each 4,000
bytes long. The default was always page 0. But you could write on any of the four pages
and then switch instantly to any of them.

With 40-column screens you could use eight pages. Nobody really ever uses 40-col
umn text screens, which were developed originally so that users could hook up their
systems to home television sets. Home TVs didn't have decent enough resolution to
display 80-character text, but they could handle 40-character text decently. You can't
ordinarily mix 40-character text and 80-character text on the same screen. The following
BASIC SIZEMIX.BAS program will do it, however, on most color systems:

100 I SIZEMIX.BAS

110 SCREEN 2:0UT 985,2:CLS

120 LOCATE 5,30:PRINT "This is small type"

130 DEF SEG=O:POKE 1097,4:POKE 1098,40:DEF SEG

140 LOCATE 7,12:PRINT "This is large type"

150 DEF SEG=O:POKE 1097,6:POKE 1098,SO:DEF SEG

160 LOCATE 9,30:PRINT "And back to small type"

700 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

Screen pages are potentially very useful, since you could put things like menus and
help screens on pages 1, 2, and 3, and then flip to these instantly without disturbing the
contents of your main page 0. Unfortunately, few (if any) programs ever use this. Why?
Because users with monochrome screens don't have any extra screen memory, so they
don't have any extra pages. And software vendors don't like to create programs that
owners of some systems can't use properly.

Also, by putting slightly different images on different screen pages and then switching
rapidly from one page to another you can create the illusion of movement or animation.

You could also see how pages work by running the small PAGEDEMO.BAS program
below:

100 ' PAGEDEMO.BAS - shows color screen pages
110 ' --- set up array of 200 screen positions
120 DIM R(200) ,C(200)
130 FOR A=l TO 200
140 R(A)=INT(RND*23+1)
150 C(A)=INT(RND*79+1)
160 NEXT
17 0 CLS
180 LOCATE 12,30
19 O PRINT "Building screens . . . 11

200 ' --- fill array with arrows
210 FOR C=3 TO 0 STEP -1
220 IF C>l THEN E=C+2 ELSE E=C
230 SCREEN I I c, 0
240 COLOR E,7:CLS
250 FOR D=l TO 200
260 LOCATE R(D) ,C(D)
270 PRINT CHR$(24+C)
280 NEXT
290 LOCATE 25,13
300 PRINT "Press any key to switch to 11

;

310 PRINT "another page (or Esc to end)";
320 NEXT
330 ' --- switch from one page to next ---
340 I$=INKEY$:IF I$="" THEN 340
350 IF I$=CHR$(27) THEN 380 ELSE K=(K+l) MOD 4
360 SCREEN ,,,K
370 GOTO 340
380 SCREEN O,l,O,O:SYSTEM

PAGEDEMO first figures out 200 random screen coordinates, then puts four different
sets of arrows in four different colors on the four 80 x 25 video pages. It lets you flip from
one to the next by pressing any key. Pressing Esc sets things back to normal and quits.

Screens and Color 701

In the Cards
When the PC was first introduced, just about everyone purchased IBM's monochrome
display adapter (MDA), which could be hooked up only to IBM's monochrome display.
A handful of pioneers purchased IBM's color graphics adapter (COA), which they used
to drive either an ROB monitor (which cost over $1,000 way back then), or a home
television set.

Hooking up a PC to a TV set meant having to purchase a separate RF modulator, or
trying to run the signal through the RF circuitry of a video tape recorder. The results were
totally unsatisfactory, since the definition was crude. If you were lucky you could just
about make out text in 40-column modes. When the COA was attached to an ROB
monitor it used separate outputs for the red, green, and blue (and intensity) signals. When
it was attached to a TV, it used a composite output that blurred all the information into
one signal. The burst parameter that turns color on and off with things like BASIC's
SCREEN command applies to composite output only.

Composite screens often have trouble displaying colors other than black (0) and white
(7 or F). However, if you know what you're doing, you can produce interesting artifact
color displays by experimenting with different black-and-white line patterns.

PCs use memory-mapped displays. The system builds an image of the screen in
memory, which the video circuitry reads and turns into recognizable text or graphics. The
adapter card translates the information in video memory into signals that control one or
more electron guns. These scan beams of electrons onto chemical phosphors painted on
the monitor glass that glow when energized.

The COA had several nasty habits. It occasionally produced a random pattern of
interference called "snow" when programs tried to write directly to this video memory
memory at the same time that the display electronics was putting the image onscreen.
(The MDA and most recent video adapters have dual-ported video RAM that lets the
CPU update memory without interfering with the reading process.) Relatively sophisti
cated programs write data to COA video memory only during the 1.25 millisecond
vertical retrace interval.

The electron beam sweeps from left to right and from top to bottom as it zigzags its
way across the entire surface of the screen. Each time it reaches the right edge it has to
scurry down a line and over to the left edge again. This is the horizontal retrace. And
each time it reaches the very bottom righthand comer of the screen it has to jump all the
way back to the upper lefthand comer and start over. This is the vertical retrace. In
addition, the beam always overscans each line a hair past the edge, which wastes a tiny
bit of time.

COA screens also flickered when they scrolled up a line, which produced a disturbing
strobe effect if you were reading through a long document. The display circuitry was
supposed to paint images onto the screen 60 times each second, but the COA put just 30
images onto the screen and alternated these with all-black screens. This wasn't that
noticeable when the image didn't change much, or when the background was black. But
if you used a light-colored background and scrolled lines repeatedly, you ended up
goggle-eyed.

702 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

The CGA was also slower and fuzzier than the MDA. The MDA could handle more
dots (720 across and 350 up and down compared to the CGA 's maximum 640 x 200
resolution). And it boasted a long-persistence phosphor that blurred the individual
dots together into solid-looking characters and did away with just about all flicker.
The MDA also had a higher bandwidth than the CGA, which let the mono adapter
pump more information per second to a mono screen than the CGA could send to a
color screen.

But while the MDA and CGA could both juggle 2,000 characters on each screen, the
CGA could manipulate discrete dots, which let users draw lines, circles, and other graphic
images.

One year after the PC hit the market, an independent hardware manufacturer developed
a display adapter called the Hercules Graphics Card (HGC) that handled monochrome
text on mono monitors just like the MDA but added dot-addressable graphics abilities
like those on the CGA. This was followed four years later by an upgraded Hercules
Graphics Card Plus (HGC+) that could work with different customized onscreen fonts,
and a year after that with a proprietary Hercules InColor Card that could display 16 colors
out of a palette of 64 in graphics mode, in 720 x 348 resolution.

In 1985 IBM introduced a display card called the Enhanced Graphics Adapter (EGA)
that produced text and dot-addressable graphics on both color and IBM monochrome
screens. It could drive a higher resolution color screen than the CGA, could juggle more
colors, didn't flicker when it scrolled, and didn't have problems with snow. It could use
customizable fonts, and could display a very readable 43 lines of text onscreen, 72 percent
more than the CGA or MDA. IBM's original EGA card was expensive, and didn't come
with the full complement of memory required. But manufacturers soon began stamping
out inexpensive clones with the full 256K of video RAM, and the EGA became an instant
standard. See the following chapter for more details.

These early adapters had digital outputs. When IBM brought out its PS/2 computer
series, it stunned the monitor industry by using analog graphics systems. Analog outputs
can handle color gradations more adroitly than digital ones. But all of the monitors sold
by IBM were digital. Some of the popular multisynching monitors sold by companies
like NEC and Sony could handle both digital and analog inputs.

IBM's integrated a new standard called Multi-Color Graphics Array (MCGA) - a
sort of beefed-up CGA - into the main circuit board of the bottom-of-the-line PS/2
Models 25 and 30. Maximum MCGA resolution was decent (640 by 480 dots) and it
could put 256 colors onscreen at once, out of a palette 256K colors wide, in 320 by 200
resolution. And it could produce 64 shades of grey on IBM's newer monochrome
displays.

But the MCGA was overshadowed by a more capable system named after a chip
called the Video Graphics Array, or VGA. The VGA handled all MDA, CDA, and
EGA modes, and tossed in a few new ones of its own. It also worked with an IBM
enhancement add-in card with the euphonious name 8514/A that boosted perfor
mance even more.

Figure 13.4 compares the various types of dispiays.

Screens and Color 703

Bandwidth Horizontal Scan Vertical Scan Dot Box
System (MHz) Rate (KHz) Rate (Hz) (width x height)

MDA 16.257 18.432 50 9x14
HOC 16.257 18.432 50 9x14
CGA 14.318 15.75 60 8x8
EGA color 14.318-16.257 15.75-21.85 60 8x8,8x14
EGA mono 16.257 18.432 50 9x14
MCGA 25.175 31.47 60-70 8x16
VGA 25.175-28.322 31.47 60-70 8x8,8xl4,

*
9xl4,9x16

8514/A 44.9 35.52 43.48 (interlaced) Superset of VGA

* Note: Only the 8514 is interlaced; its effective scan rate looks like 87 Hz.

Figure 13.4. Video Hardware Specifications

The bandwidth determines the maximum number of dots each system can handle per
second. The relatively slow CGA can push just 14,318,000 dots down the line each
second, while the sprintier VGA can shuttle nearly twice than number in the same amount
of time. The horizontal scan rate tells how many lines each system can display per second.
Again, the PS/2 displays can handle double the number of lines (31,500 per second)
compared to the older CGA. The vertical scan rate is the number of fully refreshed
screens each system produces per second. The dot box is the dimensions of the box in
which a character is formed.

The horizontal scan rate divided by the vertical scan rate yields the maximum
displayable lines per screen. (Some of these are used for other things, however, such as
vertical retrace intervals and overscan margins.) The bandwidth divided by the horizontal
scan rate yields the number of dots per line (although some of these are used for the
horizontal retrace and overscan). You can then divide these by the various dot widths and
heights to see how many characters each could handle.

You can put combinations of these display adapters into the same system. IBM
originally assigned different memory and port addresses to the MDA and CGA cards:

System

MDA
CGA

Video Memory
Address
BOOO
B800

Port
Addresses
3B0-3BF
3D0-3DF

Since an EGA can drive either a color or mono display, you can add it to a system that
already has an MDA or CGA attached. You can also mix an MDA with a VGA or MCGA.

704 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

Hercules monochrome cards will work with just about everything (other than an IBM
MDA). However, since Hercules cards use 64K of video RAM starting at address BOOO:O,
32K of this overlaps memory allotted to the CGA that begins at address B800:0. You can
use the two together if you configure the Hercules video memory to avoid conflicts with
theCGA.

The EGA (and VGA) can use 32K of video RAM beginning either at the normal mono
address of BOOO:O, or the normal color address of B800:0. Or it can start at AOOO:O and
use just the 64K AOOO segment, or take 128K by spanning both the AOOO and BOOO
segments. The MCGA uses the 64K AOOO segment.

Or you could combine VGA and MCGA, using subservices 32H and 35H of BIOS
INT 10 Service 12H. But you wouldn't really want to.

Storage Schemes
PCs store text in character/attribute pairs of ASCII values. The position of each
character onscreen depends on its position in video memory. Since each 80-column,
25-line screen can display 2,000 characters, it takes 4,000 bytes of memory to hold
the characters and attributes for a full screen. The first of the 4,000 bytes in video
memory stores the ASCII value of the text character in the upper lefthand corner. The
second byte stores the attribute of that character. The third byte stores the ASCII
value of the second character on the top line. The fifth byte stores the value of the
third character on the top line.

So if you 're using a color system with blue text on a white background, and you have
the letters ABC in the upper lefthand comer of your screen, the hex representation of the
contents of memory starting at address B800 would look like:

Address Value Contents
B800:0000 41 the letter A
B800:0001 71 the color for A
B800:0002 42 the letter B
B800:0003 71 the color for B
B800:0004 43 the letter C
B800:0005 71 the color for C

The hex value for "A" is 41, so this is the first value in video memory. This is followed
at the very next address by the color in which the "A" appears (71 is blue on white). The
third memory address contains a value of 42 ("B'') which is again followed by the color
(71), and so on.

You can see this better by using DEBUG. If you're using a color system, just clear
your screen, make sure DEBUG.COM is handy, and at the DOS prompt, type:

DEBUG
D B800:0 LBO

Screens and Color 105

Depending on what your prompt looks like, you should see something like:

B800:0000 20 07 20 07 20 07 20 07-20 07 20 07 20 07 20 07

B800:0010 20 07 20 07 20 07 20 07-20 07 20 07 20 07 20 07

B800:0020 20 07 20 07 20 07 20 07-20 07 20 07 20 07 20 07

8800:0030 20 07 20 07 20 07 20 07-20 07 20 07 20 07 20 07

B800:0040 20 07 20 07 20 07 20 07-20 07 20 07 20 07 20 07

B800:0050 20 07 20 07 20 07 20 07-20 07 20 07 20 07 20 07

B800:0060 20 07 20 07 20 07 20 07-20 07 20 07 20 07 20 07

B800:0070 20 07 20 07 20 07 20 07-20 07 20 07 20 07 20 07

B800:0080 20 07 20 07 20 07 20 07-20 07 20 07 20 07 20 07

B800:0090 20 07 20 07 20 07 20 07-20 07 20 07 20 07 20 07

B800:00AO 43 07 3E 07 44 07 45 07-42 07 55 07 47 07 20 07 C.>.D.E.B.U.G.

Then type Q and press the Enter key to quit. (If you 're trying this on a mono system,
substitute BOOO for B800 in the example.) Clearing the screen with CLS on many systems
actually puts the DOS prompt on the second line, as is the case here, so the first line is
blank. A blank line is made up of 80 spaces, which takes 160 bytes of storage - 80 for
the space characters themselves and another 80 for the color of the spaces. The ASCII
character for a space is hex 20. The first, third, fifth, etc. characters above are all hex 20
spaces.

When you type CLS, COMMAND.COM normally clears the screen to white (color
7) on black (color 0). The second, fourth, sixth, etc. characters above are all 07
white-on-black attributes.

The command you typed:

DEBUG

appears hex AO (decimal 160) characters into the DEBUG display.
Again, each character is followed by its attribute. These show up as dots in the

right-hand column of the DEBUG display, since DEBUG uses dots to represent anything
with ASCII values lower than hex 20 (decimal 32) or higher than hex 7E (decimal 126).

You can use DEBUG to write information to video memory, which is a lot more
interesting than just reading from RAM.

If you 're using a color system, type:

DEBUG
F B800:0 LAO 41

This will put the value hex 41 into the first AO (decimal 160) bytes of video memory.
Each 80-column screen line uses 80 spaces in RAM to store the character values and
another 80 addresses to maintain the attributes for these characters, for a total of decimal
160 bytes. So this command will fill the top line of your screen with the hex character
41 - uppercase A. And since the attribute 41 happens to be blue (color 1) on red (color
4), the line of AAAAAAAs will appear in blue on red.

706 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

If you enter:

F BSOO:O LAO 61

you'll get a top row of lowercase .. a" characters in blue (color 1) on a yellow (color 6)
background. If you enter:

F BSOO:O LAO FE

the top row will fill with blinking bright yellow boxes (character hex FE) on a white
background, since the E produces a high-intensity yellow foreground and the F makes
the background white and blinks the foreground. Or try:

F BSOO:O LAO DD

which produces a top line of blinking alternate light and dark purple horizontal stripes.
The LAO in each of these tells DEBUG to fill just hex AO (decimal 160) bytes, or one
line. By expanding this to hex PAO (decimal 4,000), you can fill the entire screen. The
command:

F B800:0 LFAO DD

will blanket your entire screen with these blinking purple stripes.
If you type:

E B800:0 "aabbccddeeffgghhiijjkkllmmnnooppqq:r:rssttuuvvwwxxyyzz"

you '11 end up with a lowercase alphabet in various foreground colors on brown and white
backgrounds. The hex ASCII values of the letters "a" through "z" are all between 61 and
7 A. The color for brown is 6 and for white is 7, which happens to be the lefthand digits
of the character values.

If you tried:

E B800:0 "AABBCCDDEEFFGGHHIIJJKKLLMMNNOOPPQQRRSSTTUUVVWWXXYYZZ"

you'd see an uppercase alphabet in assorted text colors on a red and purple background,
since the hex ASCII values of the letters •'A" through "Z" are all between 41 and SA.
The color for red is 4, and the color for purple (magenta) is 5.

Since the position in memory dictates the position onscreen, you could put a string
anywhere you want by varying its address. The following three DEBUG commands will
put three messages in three colors in three places on screen:

E B800:0 11 TGOGPG 11

E B800:7CA 11 MVIVDVDVLVEV 11

E B800:F94 11 BaOaTaTaOaMa 11

Screens and Color 707

The top command will put the letters "TOP" in white text on a red background in the
upper lefthand comer of the screen. The first, third, and fifth characters of "TGOGPG"
are the ones that show up onscreen. The second, fourth, and sixth "G" characters don't
actually appear; instead, these set the color to white (7) on red (4), since the hex ASCII
value of "G" is 47. The 0 address after B800: tells DEBUG to put the "TGOGPG" string
at the very beginning of color video memory.

"TGOGPG"

l l l
T 0 P

characters

"TGOGPG"

GGG
attributes

The second command will put the word "MIDDLE" in the middle of your screen. The
alternate "V" characters will make the word appear in brown (6) text on a purple (5)
background, since the value of "V" is hex 56. And the 7CA offset address after the B800:
told DEBUG to insert the "MVIVDVDVL VEV" string hex a little less than halfway
through the 4,000 bytes of video memory. Hex 7CA is equal to decimal 1994.

Similarly, the third command will put the word "BOTTOM" in the lower righthand
corner of a 25-line, 80-column screen. The lowercase "a" characters in the
''BaOaTaTaOaMa" string set the color to blue (1) on brown (6), since the hex ASCII
value of "a" is 61. The F94 offset address following the B800: starts the string near the
very end of the 4,000 bytes of video memory, since F94 is equal to 3,988.

The attribute value for blue text on a white background is 71, which is also the hex
value of the "q" character. To print "THIS IS A TEST" in the upper lefthand comer of
your color screen, just type:

DEBUG
E B800:0 "TqHqiqSq qiqSq qAq qTqEqSqT"

DEBUG will put the values for all these characters into the beginning of color video
memory, which will interpret the hex 71 "q" characters as blue-on-white attributes.
Remember that your system stores characters first and then attributes. If you accidentally
started the string off with a "q" rather than a text character:

DEBUG
E B800:0 11 qTqHqiqSq qiqSq qAq qTqEqSqT 11

all you'd end up with is a multicolored string of qqqqqqs. Memory numbering systems
start with 0. Even-numbered addresses contain ASCII values of characters. Odd-num
bered addresses store the attribute values for these characters.

This technique provides a quick and dirty way to set the screen attributes while using
DEBUG. If you normally prefer blue text on a white background, and you're using
DEBUG to trace through a program, you can run into color trouble. Programs often
contain routines to clear the screen, and if you stumble over one of these your screen may

708 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

suddenly turn a dismal grey on black (unless you have ANSI.SYS loaded). To fix it, just
issue a command like:

F BSOO:O LFAO "q"

and your screen will instantly be filled with blue-on-white lowercase "q" characters. Lean
on the Enter key until the "q" characters disappear off the top, and you'll be left with a
cleared blue-on-white screen. Substitute "t" for "q" if you want a red-on-white screen,
since the hex ASCII value for "t" is 74.

If you want to clear your screen to a color such as cyan (3) on dark blue (1), you won't
be able to enter a character such as "t" or "q." So just enter the hex number directly:

F BSOO:O LFAO 13

As an added bonus, when you're all done working with DEBUG and you enter Q to
return to DOS, the colors this trick set will remain in effect until something else changes
them.

Note that you can put a red-on-white••$" character at the very bottom righthand corner
of a 25-line, 80-column screen, by typing:

E B800:F9E "$t"

Since video memory starts at page 0, this will display a red dollar sign character on the
default 0 page. And, as mentioned earlier, page 1 follows page 0. You might think that
since F9E (the address of the$) and F9F (the address of the red-on-white attribute value)
were the last two memory addresses of page 0, you could print a blue-on-white dollar
sign at the top of the following video page - page 1 - by using an address two bytes
higher:

E BSOO:FAO "$q"

Try this and nothing visible will happen. Page 1 does indeed follow page 0 - but not
directly. The second video page starts at the even hex address 1000, which is equal to
decimal 4096, not 4000. The:

E BSOO:FAO "$q"

command put the blue dollar sign in an unused area between page 0 and page 1. To put
this blue dollar sign at the top of page 1, type:

E B800:1000 u$qu

To see that the blue dollar sign actually appeared at the top of page 1, create a tiny
program called PAGEl.COM by typing:

E 100 B4 05 BO 01 CD 10 C3
N PAGEl.COM
RCX
7

w
Q

The PAGEl.COM program looks like:

MOV AH,5
MOV AL,1
INT 10
RET

set video page
to page 1

have BIOS do it
back to DOS

Screens and Color 709

You can return to the default page 0 by using the PAGE.COM program or, if you're
using a color system, by making sure the DOS MODE.COM utility is handy and typing:

MODE COBO

The video page map for an 80 x 25 display would look like:

0000-6
PageO

- OF9F 1000-E Page 1

-1F9F 2000-E Pagel

-2F9F 3000-E
Page3

- 3F9F

Your system wastes the hex 60 (decimal 96) bytes of memory between each of the
pages.

While the focus of this book is on text-rather than graphics, it's interesting to note that
IBM uses odd-even distinctions in graphics areas as well.

If you run the following BASIC HIRES.BAS program:

100 I HIRES.BAS
110 KEY OFF:SCREEN 2:CLS
120 FOR A=200 TO 1 STEP -2
130 LINE (O,A) - (639,A) :NEXT
140 FOR E=l TO 150

710 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

150 A=RND*600+1:B=RND*180+1:C=RND*20+5
160 LINE (A,B) - (A+C,B+C) ,O,BF
170 LINE (A+4,B+l) - (A+C+4,B+C+l) ,,BF
180 NEXT
190 DEF SEG=&HB800
200 BSAVE 11 IMAGE, 11 0,&H4000

BASIC will create a 640 x 200 graphics image, and store it on disk as a 16K file containing
a bank of even-numbered lines and a bank of odd-numbered lines.

Once you've run HIRES.BAS, run the short RELOAD.BAS program to load the disk
file onto the screen:

100 SCREEN 2
110 BLOAD "IMAGE"

You'll see BASIC recreate the image in two passes. You can have the HIRES.BAS
program store only one bank by changing line 200 to:

200 BSAVE 11 IMAGE, 11 0,&H2000

RELOAD.BAS will then only restore every other line.

Blanking Out the Screen
Of course, black is a color too. And it's very useful. If you 're using a CGA, for instance,
you can reduce (but not eliminate) the effects of scroll-flicker by using a black back
ground. A black background also makes foreground colors look brighter. But one of the
best uses for black is in blanking screens.

It's possible to "burn" a permanent image into the long-persistence phosphor on an
IBM monochrome display. If you use one program all day long on a mono system, and
the software has certain screen elements in the same place all the time - such as the
1-2-3 grid or the WordStar function keys - you can actually etch this element into the
screen so you see it even when the monitor is turned off.

Lots of utilities can shut off monochrome displays attached to monochrome adapters
if a certain period has elapsed when nothing has been typed on the keyboard. These
utilities usually won't work on other video boards such as the EGA. Screen blanking
programs for the mono adapter shut off the display by writing a 0 to bit 3 of output port
3B8H, which disables the video signal. Port 3B8H does not exist on boards like the EGA.
And although these screen-blanking utilities have no effect on the EGA, some of them
have very serious effects when used with a Hercules Monochrome Graphics Adapter.

You can turn an IBM or compatible CGA display off by using the BASIC statement:

OUT 984,1

Screens and Color 711

To tum it back on, type:

OUT 984,41

While this works on a CGA, it will run into problems on something like a Hercules
Graphics Card, or a regular IBM mono system. This OUT command manipulates the
"Mode Control Port Register," which has a different address on color adapters and
monochrome adapters (including the Hercules Graphics Card). The control port for
monochrome displays is at address 952 rather than 984. (In hexadecimal, these addresses
are 3B8 and 3D8.)

You can blank an IBM Monochrome Adapter or Hercules Graphics Card with the
statement:

OUT 952,1

and unblank it with:

OUT 952,41

but that's not the best way to do it.
The control port address is always four higher than the I/O address of the 6845 video

chip. That port address is a word (two bytes) stored at hexadecimal address 0040:0063
in the BIOS data area. So, you can define a variable for the control port with the BASIC
commands:

DEF SEG=&H40
CTRLPORT = 4 + 256 * PEEK(&H64) + PEEK(&H63)

Now you can simply use the variable CTRLPORT instead of 984 or 952.
Or, you can simply clear the screen to black on black. The BLANK-IT.COM program

on one of the accompanying disks will:

1. Figure out the existing screen colors and store them.
2. Blank the screen by clearing the display to black on black.
3. Sit there waiting for you to press a certain key (in this case the spacebar).
4. Clear the screen back to the existing colors as soon as the spacebar is pressed.

Cursor Words
The blinking onscreen cursor is controlled by hardware. Some users would prefer that
the cursor be a different size, or refrain from blinking. Changing the size is easy. Turning
off the blinking isn't. It's possible to write a routine that continuously figures out where
the cursor is, makes the cursor invisible, temporarily stores the value and attribute of the

712 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

character at the cursor position, writes a solid unblinking block ASCII 219 character over
that character, and then restores the old character and attribute when you move the cursor
to another position. It's not worth it.

Monochrome display adapters use a 9 x 14 dot box to form all characters. Uppercase
letters actually take up a maximum of nine rows and seven columns. The two outside
columns provide interletter spacing. Descenders on letters such as y and g use the 10th
and 11th lines. The 12th and 13th lines (hex OC and OD, since the first line is 00) are used
by the cursor. The 14th (bottom) line keeps the lines of text separated from each other.

CGA display adapters use an 8 x 8 dot grid. Default EGA is 8 x 14 and VGA 9 x 16.
Uppercase letters take up a maximum of seven rows and seven columns. The rightmost
column keeps letters separated. The bottom two lines do double duty - they display
descenders on lowercase letters, and also display the cursor.

You can change the size of the cursor by using service 1 of BIOS interrupt 10. And
you can read the size of the cursor by using service 3 of interrupt 10. But there's a serious
catch with the EGA that's explained in detail in Chapter 14.

When dealing with cursors you have to keep track of two values - the starting line
and the ending line. On monochrome systems, the default starting line is hex OC (decimal
12) and the default ending line is hex OD (decimal 13). On CGA systems, the default
starting line is 6 and the default ending line is 7.

You can make the cursor larger by widening the distance between the starting and
ending lines. Using values of 0 (start) and OD (end) will produce a full-size cursor on
mono systems. Settings of 0 (start) and 7 (end) will do the same on CGA systems. You
can experiment with different settings by using the BASIC LOCATE statement:

LOCATE , , , S , E

where S represents the starting line and E represents the ending line.
Some settings will produce bizarre effects, such as two-part wraparound cursors, or

no cursor at all.
IBM's newer hardware is a little trickier. The MCGA doubles the CGA starting line

and ending line, then adds 1 to the ending line in an effort to map 8 x 8 settings onto an
8 x 16 box. The EGA and VGA try to scale monochrome and CGA values into settings
appropriate to the dot box that happens to be in use - but with slight differences.

The EGA cursor starts at the starting line but ends one line sooner than the specified
value of the ending line. This means that you have to specify an ending line that's actually
1 greater than the one you really want. If the ending line is less than the starting line, the
cursor wraps around from the bottom to the top and splits into two parts. If the values of
the starting and ending lines are the same, the cursor takes up just one line instead of the
usual two. And if the ending line is larger than the total number of rows in the dot box,
the EGA displays a full-block cursor.

The VGA extends from the specified starting line to the ending line. You don't have
to worry about adding 1 to the value of the ending line as you do with the EGA. And if
you specify a starting line that's larger than the ending line, the cursor won't wrap.

(The newer PS/2 hardware offers many more options than earlier systems, and the PS/2
BIOS provides a far richer assortment of interrupt 10 tools to handle it all.)

Screens and Color 713

You can run the CURSOR.COM program on one of the accompanying disks to
experiment with cursors of different sizes. CURSOR.COM lets you modify the cursor
either from the command line or interactively.

In its interactive mode, CURSOR.COM lets you use the arrow keys interactively to
adjust the start line and the end line. The up-arrow and down-arrow keys will adjust the
start line, and the left-arrow and right-arrow keys will change the end line. You '11 be able
to see the size of the new cursor as you press the keys. When you see a cursor that you
like, you can press the Enter key to lock it in. Or, if you press the Esc key, you can exit
the program without making any changes.

These programs all assume you're using page 0. BIOS actually keeps track of the
different cursor positions on each video page, although it will use the same cursor shape
for all pages. But these demonstration programs are busy enough without having to worry
about other pages.

Clear Colors
Several of the programs on the accompanying disks make it easy to fiddle with your
screen's colors, cursor shape and appearance, and line heights. COLSET.COM and
SA.EXE give you lots of flexibility in setting your basic screen colors. OxlO.EXE lets.
you use additional colors (like dark grey or bright white) as background colors, or lets
you emulate a monochrome display (which can be real handy for previewing screen shots
that will be printed in black and white later). BC3.COM, CURSOR.EXE, and CUR
LOCK.COM let you adjust and lock the appearance of your cursor, while you can use
FONTHT.COM and SETV .EXE to set the number of lines per screen and video modes,
and then use MOOSA V .COM to save your video mode when you go into most applica
tions. To find out what video display adapter is installed on an unfamiliar machine, try
WHATVID.EXE. Cutting and pasting from text screens is a snap with NAB.COM.
SETUP.EXE lets you determine whether your monitor is in shape, while BLANK
IT.COM, SS.COM, and QUIXX.COM help you keep it that way through a variety of
ways to blank the screen when you step away for a few minutes. And if you've got a
VGA display, you're going to be blown away by the color palette setting capabilities of
PRISM.EXE. The next chapter provides more details about EGA and VGA displays.

EGA, VGA, and Beyond

Adapters
Most computers on the market today come with display adapters which are VGA (Virtual
Graphics Array) compatible. Many of these adapters are called Super VGAs, and the
latest IBM entry is called the XGA (eXtended Graphics Array). The VGA and its
progenitors were derivations and extensions of the EGA hardware introduced by IBM in
1984. The EGA marked IBM's first attempt to market an affordable graphics system with
enough quality (in terms of resolution and available colors) to use in day-to-day work.
The 640 x 350 resolution essentially matched the fairly crisp character definition of the
monochrome monitor, while adding graphics support and 16 simultaneous colors (select
able from a palette of 64).

EGA had its problems, though. For programmers, many of the critical hardware
settings could be changed, but it was difficult (or impossible) to read the current values.
This was especially problematic to programmers who wrote memory-resident programs
- if you can't read the settings, you can't be sure the screen will restore properly when
the memory resident application ends. As the PC world moved toward multitasking
systems and GUis (Graphical User Interfaces), it became clear that further improvement
was necessary.

With the advent of the PS/2 line and an eye toward multitasking systems using OS/2,
IBM improved the graphics interface by making the adapter hardware completely
readable, and thus completely restorable, when the system switched from one program
to another. As an added benefit, the new VGA improved resolution slightly to 640 x 480
and increased the size of the color palette to over 260,000 colors. However, in most modes
only 16 colors could be displayed simultaneously (the VGA has one 320 x 200 mode
which can use 256 colors at once).

715

716 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

One often overlooked attribute of the improved VGA resolutions was their use of a
square pixel. In earlier IBM adapters, the pixels were slightly elongated. Thus, drawing
a box of 100 x 100 pixels would produce a rectangle rather than a square, and circles
would look like ellipses. With a square pixel, everything comes out "right" - a
development particularly important to the then fairly new field of desktop publishing.

When IBM designed the highest resolution EGA and VGA modes, they did not use all
of the graphics memory available to the adapter. Thus, the EGA could use the extra
memory to store an extra screen full of information. But, the increased resolution of the
VGA used only part of this second "page" and a large portion of memory went totally
unused. Other manufacturers had already been creating new modes with the EGA which
required all memory for a single page (most programs did not use the second page), and
the Super EGA was born. With the full 256K memory of the EGA/VGA, there was
enough room to increase 16-color resolution to 800x600 while maintaining a square pixel.

To a programmer, 800 x 600 mode is nearly identical to 640 x 480 mode - it requires
recalculations for line length and the number of lines available. But, in terms of setting
colors and accessing memory, the instructions remain the same, and there were a few
problems. One was detecting a Super VGA and setting the new mode. IBM set the
standards for numbering other VGA modes, but the question was how to extend that
without risking incompatibilities? If the manufacturers simply used the next available
number (14h), IBM might later design an adapter which used that number for a different
resolution.

Monitor timing was another problem. For each supported resolution, the video adapter
and monitor must be synchronized. IBM used unique signal voltage combinations on the
adapter output pins to set the monitor to particular modes and IBM monitors will work
at fixed (pre-programmed) frequencies. But, some monitor manufacturers, such as NEC,
designed "smart" monitors which could analyze the signal frequencies and set the mode
accordingly. Since color monitors are one of the more expensive pieces of hardware,
these multifrequency monitors were designed to outlast the adapter - hopefully, working
with the higher resolutions of the next graphics standard.

Although a multifrequency monitor can adapt to differing frequencies well enough to
form a displayable picture, it cannot always get the picture aligned quite right. The image
may seem shifted to one side or compressed along one axis. Depending on the moni
tor/adapter combination, manual adjustments are sometimes required when switching to
new modes. Many of the newer multifrequency monitors can be programmed to shift and
size the image automatically when a particular frequency is detected.

To solve some of the problems in programming and synchronizing the Super VGA's,
several manufacturers started a new organization - the Video Electronic Standards
Association (VESA). One of their first goals was to set a common number for 800 x 600
mode (6Ah was selected). But already, manufacturers were adding memory to increase
the number of colors (800 x 600 with 256 colors), and the resolution (1024 x 768 with
16 colors). This could be done by doubling the memory from 256K to 512K and adding
bank switching techniques to address the greater range. The next set of VESA Super
VGA standards added a new set of function calls. These calls could return information
about the adapter and its supported modes, set modes and switch banks.

EGA, VGA, and Beyond 717

Monitors
The display quality of a graphics system depends as much (or more) on the quality of the
monitor as on the resolution of the adapter driving it. There are several factors involved
in display quality in addition to the already-mentioned synchronization problem. Ther
fore, when buying a monitor, or even setting the adjustments on newer models, it helps
if you understand some of the basic concepts behind the monitor's design.

The front of a color display is coated with three phosphors which make up the primary
colors: red, green, and blue. The phosphors are arranged either as stripes or dots in a
triangular pattern (if you look at the display very closely, you may be able to see the
pattern). There are three electron guns in the back of the monitor - one assigned to each
color of phosphor. The electron beams produced by the guns sweep across the display
and the strength of the beam at any one point determines the brightness with which the
phosphors glow.

Just behind the screen (before the electrons strike the phosphors) is a mask. The mask
has one hole or slit for each phosphor trio. The spacing is called the dot pitch - generally,
the smaller the dot pitch, the better the image (see Figure 14.1). (There are other factors,
such as alignment, that can affect the quality of the display and the best way to determine
image quality is to view it yourself. Look for sharply defined, white characters with
minimal artifacts, such as noticeably colored edges, in the center and comers of the
screen.) After scanning across the face of the display, the beam is turned off and returns
to the other side. This interval is called the horizontal retrace, during which the beam is
moved down to the next line (or, in the case of an interlaced display, down two lines).
When the beam reaches the bottom, the beams are disabled again and returned to the top
- this is known as the vertical retrace (See Figure 14.2). The beam must be able to scan
the entire face of the display quickly enough to prevent flicker. Normally, this requires
updating the entire display 60-70 times per second (60-70 Hz). This figure, called the
vertical scanning rate, can sometimes be reduced slightly by using phosphors which glow
a bit longer (long persistence phosphors).

During each scan, the horizontal lines must be drawn. As the horizontal scanning rate
increases, so does the vertical resolution. The highest resolution standard VGA modes
require a horizontal scanning rate of about 31.SkHz, or 31,500 lines per second (480 lines
per scan x 60 scans per second plus some overhead for the retrace intervals and borders).
Once a basic rate has been set, the vertical resolution may be adjusted by slightly
increasing the vertical scanning rate and/or the border sizes (fewer lines), or decreasing
the vertical scanning rate and/or border size (more lines).

The border areas are called the overscan or blanking intervals. The vertical overscan
forms the top and bottom borders, and the horizontal overscan the left and right borders.
To some degree, the position and size of the displayable area may be changed by adjusting
the synchronization between the retrace signals and the blanking intervals. Indeed, the
reason that Super VGA modes sometimes require screen adjustments is that the timing
has not been standardized.

Some of the more expensive multifrequency monitors will analyze the timing infor
mation and then store the current position and size settings. After setting the monitor for

718 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

Electron Guns

Shadow Mask

Figure 14.1. Dot-Pitch Geometry

r ' ~
~
~

:::i:
Horizontal Scan ~

~ Horizontal Retrace ~. :s
::s;

:s;:
.....-
~
~
~

::s:
........ k :::,;:

~./'/.•
.... ~ 'JcCi/

:s.~ ~~ll
~r/'q, c~

~ ::::s:
~

:::s;:
:::s;;

:..,..

~ ::::s:
~ ::s;:

:..!..

~
~
~ :s:

l ________)
Figure 14.2. Scan Intervals

EGA, VGA, and Beyond 719

each mode, you needn't set the controls every time the display switches between a
standard and Super VGA mode. If you work with graphical applications such as CAD or
desktop publishing, you should fine-tune the adjustments to get square squares and
circular circles.

As scanning rates go up, the electronics become more expensive. To hold down costs
(especially at resolutions beyond 800 x 600), some monitors run in interlaced mode.
Interlaced monitors scan every other line during the first vertical scan and then fill in the
skipped lines during the second vertical pass. Thus, the horizontal scan rate can be
dropped by a factor of two, although many. people find the resulting flicker annoying.
Manufacturers sometimes use longer persistence monitors to reduce the flicker, but it is
often still noticeable - especially on horizontal lines that are one pixel wide.

Increasing horizontal resolution is perhaps the simplest operation of a monitor. The
adapter simply toggles the signal faster during the horizontal scan. In essence, the
horizontal resolution is more a function of the adapter than the monitor. Of course, the
monitor's electronics must respond quickly enough, otherwise, the pixels may fade at the
edges as the guns respond (called "roping" because of the rope-like lines that result).
Also, the dot pitch and alignment must be fine enough so that the pixels are distinguish
able. Some Super VGAs extend the horizontal resolution in text mode to create displays
that have 132 characters per line.

VGA Internals
Now that we've covered some of the background, it's time to look at the details of the
VGA architecture. The VGA supports several different text and graphics modes. Many
of these modes are backwards compatible to the earlier CGA and EGA adapters. A
summary of the modes appears in Table 14.1. Super VGAs can support higher resolution
text and graphics modes. VESA has brought some standardization to these extended
modes, though there is still quite a bit of variation. The VESA-defined modes are listed
in Table 14.2. Note that a particular VESA monitor may support any (or none) of the
VESA-defined modes - VESA also provides a method whereby a manufacturer may
include mode descriptions for proprietary modes.

VGA graphics work in one of two mapping modes (we'll ignore the CGA compatibility
modes which are seldom used). The simplest is the 256-color mode. Each byte stores the
color for one pixel. The lowest memory location is the upper left corner of the screen. As
the memory addresses increase, the mapping moves to the right and then down. Calcu
lating the address of a pixel is simple: multiply the pixel's row number by the total number
columns, and add the pixel's column number (numbering always starts with 0). Then,
add the result to the base address of the display memory.

The more common 16-color modes are a bit more complicated - primarily because
of the limited memory space available to the PC. IBM originally reserved 128K for
graphics adapter memory. And, due to other considerations, such as dual monitor
configurations and the 80 x 86 segmentation scheme, it's desirable to limit the address
space to 64K whenever possible. But, if each pixel of a 640 x 480 display required one
byte, 300K would be required. Even at half a byte per pixel it would exceed the graphics
address area.

720 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

Number Type Colors Resolution Segment

00 Text 16 40x25 B800h

01 Text 16 40x25 B800h

02 Text 16 80x25 B800h

03 Text 16 80x25 B800h

04 Graphics 4 320x200 B800h

05 Graphics 4 320 x 200 B800h

06 Graphics 2 640 x 200 B800h

07 Text 2 80x25 BOOOh

Odh Graphics 16 320x 200 AOOOh

Oeh Graphics 16 640x200 AOOOh

Ofh Graphics 2 640x 350 AOOOh

lOh Graphics 16 640x 350 AOOOh

llh Graphics 2 640x480 AOOOh

12h Graphics 16 640x 480 AOOOh

13h Graphics 256 320x200 AOOOh

Table 14.1. VGA Modes

Modes under lOOh are vendor proprietary modes, except for 6Ah which is the same as 102h (for
backwards compatibility to the earliest VESA standard).

Number Type Colors Resolution

lOOh Graphics 256 640x400

lOlh Graphics 256 640x 480

102h Graphics 16 800x600

103h Graphics 256 800 x 600

104h Graphics 16 1024 x 768

105h Graphics 256 1024 x 768

106h Graphics 16 1280 x 1024

107h Graphics 256 1280 x 1024

108h Text 16 80x60

109h Text 16 132 x 25

lOah Text 16 132 x 43

lObh Text 16 132 x 50

lOch Text 16 132 x 60

Table 14.2. VESAModes

EGA, VGA, and Beyond 721

To reduce the footprint, the VGA uses a bit-plane architecture. In essence, the VGA
stacks four layers of memory at every address. Every linear bit represents a pixel, just as
in the 256-color mode every linear byte represents a pixel. However, the stack of four
bits at one location allows 16 (2 A 4) combinations for 16 colors. This architecture presents
three complications. First, the address (as compared to 256-color mode) must be multi
plied by the number of bytes in a row rather than the number of pixels in a row, or divided
by eight to get the byte offset. Then, the remainder (from the division) must be used to
select a pixel offset and the unmodified pixels must be masked so that they will not be
overwritten.

The second complication is that the planes must be masked. If all four planes were
modified with every write, then you still would get only two colors. So, the program must
first inform the VGA which color is about to be written. These masking operations, the
bit mask for pixel selection and map mask for color selection, are performed through the
1/0 channel (the 80 x 86 In and Out instructions). While the bit plane architecture reduces
the size of the memory map, it comes at a cost: more overhead, which translates to slower
programs.

Finally, as a third complication, there probably will be pixels within the byte which
must be saved. Although the mask registers tell the VGA which pixel and planes should
be changed, it isn't smart enough to change only the selected bits. You must first tell the
VGA to read the old values (even though you won't be able to see all four planes). This
is done by first reading the memory that's about to be written - the process is called
loading the latch registers (each bit plane has a register which can latch, or temporarily
save, the contents of a single byte within the plane). When the program then writes to the
VGA, the new pixel data is combined with the latch registers. Note that if a program is
writing pure colors by masking planes, it must first write 0 to all four planes to clear
current values. Figure 14.3 shows a graphical representation of the plotting process.

There are, however, ways to reduce the overhead. The VGA allows several write
modes. Each mode is more efficient for particular types of operations, such as transfers
from VGA memory to VGA memory, writing several pixels of the same color, or writing
individual pixels of fairly random colors. A talented programmer can switch the write
modes as the needs of the application change, and thus improve the performance of the
program. Thus, instead of setting a color by clearing all four planes and then setting the
selected planes, you can use a mode which writes a color number which the VGA
translates into plane data. This is one of the many reasons that programmers bypass the
BIOS calls for writing pixels and write directly to video registers and memory.

Let's look at a simple 256-color program. The LINE256 color program draws a vertical
line in column 7 from row 24 down to the bottom of the screen. The color changes with
each pixel.

debug
a
mov ax,13
int 10
mov ax,aOOO
mov es,ax

;256 color mode
;set mode
;video memory segment

722 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

mov ax,18
mov bx,140
mul bx
add ax,7
mov bx,ax
mov cx,bo
es: mov [bx] , ex
add bx,140
loop llb

int 20
rcx
126
n line256.com
w
q

;start at row 24
;screen is 200 pels wide
;byte offset of row 24
;add col 7 to byte offset
;put pel address in BX
;start with color/row 176
;write color to adapter
;next row (add 200)
;color number-1
;stop at color O
;end program

The same program in a 16-color mode requires more work. LINE16.COM has
essentially the same effect, but draws a longer line in column 38. Note that the pixel is
selected with a binary mask. In this case, position 6 (value of 4, or OOOOOlOOb) within
the byte is selected. Each byte addresses 8 columns. Since we will use byte 4, the eight
columns start at pixel 32.

Latch Registers Video Memory

L ...LJ_JL.1---1..-L..L_J-1 •---r•~l __L...LJ_L.1---1.._Jl~l _____ _Jl Bit Plane 3 +
LJ_J__L...L.LLJJI-• -----ji~· i_l _L..LLJLJ_J__L_L_ _____ _j/ Bit Plane 2

LJLI---1..-L..LLJLJl-•---jir•-Ll -L.L.LJLJ_L_L.L. _____ _j/ Bit Plane 1

co=r=rII:LJ:I !;•===xi=! =i11;[1=1=1IIrr=oc======11 Bit Plane 0
I
I
I

I~ M~M~
..---......--.---.---.---.-~-.--............ Bit Mask

CPU Data (80X86)

Figure 14.3. The Screen Plotting Process

debug
a
mov ax,10
int 10
mov ax,aooo
mov es,ax
mov ax,18
mov bx,50
mul bx
add ax,4
mov bx, ax
mov al,8
mov dx,3ce
out dx,al
mov al,4
inc dx
out dx,al
dee dx
mov al,5
out dx,al
inc dx
in al,dx
and al,fc
or al,2
out dx,al
mov cx,lc8
mov ax,cx
and ax, f
es: mov dx, [bx]
es: mov [bx] , ax
add bx,50
loop 12f
mov dx,3ce
mov al,5
out dx,al
inc dx
in al,dx
and al,fc
out dx,al
dee dx
mov ax,ff08
out dx,ax
int 20
rcx

;640x480, 16 color
;set mode

EGA, VGA, and Beyond 723

;video memory segment

;start at row 24
;screen is 80 bytes wide
;byte offset of row 24
;add cols 32-39 to byte offset
;put pel address in BX
;bit mask index
;Graphics Control Register
;Select bit mask function
;pixel OOOOOlOOb
;Graphics Control Data
;set bit mask
;Graphic Control again
;Mode Register Index
;Select mode register function
;Graphics Control Data
;get old mode
·;clear bits o and 1
; Write. mode 2 (write
;color value to memory)
;set row count to 456
;put count in AX
;reduce to 4-bit color
;latch current data
;write color to adapter
;next row (add 80 bytes)
;count (ex) - 1, stop at O
;Graphics controller
;Mode register
;select mode register

;point to mode register
;get current mode
;clear bits 0-1 back to o
;set write mode
;Graphics controller
;Shortcut: bit mask (8)
;value ff (unmask all)
;end program

724 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

151
n line16.corn
w
q

That's a lot of work to draw a simple line! The final resetting of the mode register and
bit mask (after the LOOP instruction) is necessary for the BIOS. The BIOS assumes that
the VGA is always in write mode 0 with all bits accessible - if it were not, the characters
would not display properly after the program runs. When these sample programs run, the
display ends up in graphics mode. You can return to normal text mode with MODE C080,
MODE MONO, or by using the mode set utility.

Note that the LINE16 program reads the mode register. This is the type of operation
that was impossible on the EGA. Because the mode register stores several pieces of
information in the different bits, the program cannot blindly write a new value to the
register. On the EGA, the program was responsible for tracking all of the changes to the
registers and restoring them accordingly. And, the program had to calculate the initial
value based on the current hardware configuration - a method that's not always reliable
under a multitasking system or memory-resident program.

Other Features
The VGA has about 70 registers. Many of these registers provide low-level hardware
control such as timing information for the display. But, several provide support for
functions that are seldom incorporated into commercial programs. These include screen
disabling, smooth scrolling support, dual windows, data rotation, and alternate character
fonts. A few programs alter the timing information and memory mapping to create
non-standard video modes. Other functions are widely used, such as setting the color
palette, cursor size and underlining characters.

As you can see, the VGA has support for a fairly broad family of features. However,
some of these features (particularly those that are rarely used), can be rather difficult to
program. And sometimes, incompatible hardware will create an undesired side effect.
For example, a few VGAs will jitter when attempting smooth horizontal scrolling.

Vertical Interrupt

IBM is responsible for some of the confusion regarding the minor features. For example,
the EGA's hardware could signal a program when the adapter started a vertical retrace
(through the vertical interrupt). When IBM introduced the VGA on the PS/2 motherboard,
the vertical interrupt remained as part of the new standard. But, when IBM created an
adapter for ISA computers, the interrupt was dropped. So, how should a compatible
manufacturer respond? Since all Micro Channel machines included a VGA, the market
ing opportunities were for the ISA bus. Should a compatible adapter follow the PS/2
VGA convention, or keep strict compatibility with the ISA standard?

EGA, VGA, and Beyond 725

This was a rather unfortunate situation. The VGA must share memory access time
between the microprocessor (CPU) and the display. If both are allowed to access standard
memory at the same time, snow will appear on the display, a common problem on the
older CGA standard. On the CGA, a program could check whether the adapter was in a
vertical retrace (when the display is not reading adapter memory), and write data at that
time to avoid snow. The EGA inserted wait states to temporarily block memory access,
so that no checking was required. However, there are still reasons for checking the retrace
status. First, there are adapter registers which should be changed only during a retrace
interval. Second, some operations will seem more "polished" if done during a retrace.

Imagine you're writing a video game. One of your fanciful creations, a greebidger,
comes flying across the screen. Just after the top half of the greebidger' s been drawn, the
program determines that it's time to move the greebidger. The program restores the
background scenery over the bottom half of the greebidger just before the electron beam
draws that portion of the screen. For a brief instant (about 1/60th of a second) you only
have half a greebidger. This really isn't enough time for most people to realize that only
half a greebidger's hanging around, but it does cause a noticeable flick~ring of the image.
You could make your program sit and wait to draw the greebidger until the next retrace,
but this may cause it to run too slowly. The most elegant (but very difficult to program)
option is to have the VGA inform the program when an interrupt occurs. In essence, the
program is written in two parts. The main portion runs continuously - it calculates the
position of objects on the screen, but doesn't draw. The other portion, which draws
objects, sits idle most of the time. But, when a retrace occurs, the drawing portion "wakes
up," reads the positions (as calculated by the main program) ~nd redraws those portions
of the screen that have changed. However, there are many :Complications with this
method. Most VGA modes have very short retrace intervals, so very little drawing can
take place during that time. But, most importantly, the IBM ISA VGA does not have a
vertical interrupt, and several VGA compatibles have no interrupt support, either.

Alternate fonts

The VGA fonts are completely programmable in both text and graphics mod~s. The
process is rather convoluted (it is a C programmer's delight, relying upon poitlters to
pointers to pointers), but fairly simple once the technique is mastered. Internally, the
VGA handles text and graphics mapping a bit differently. In both modes the program
must keep a bit image of the characters in memory (each byte of the character table
contains one row from a character - 8 bits= 8 character dots). In the graphics modes,
the VGA reads this table directly, transferring the appropriate character to video memory
as it is written. Character drawing in graphics mode is a programming function - the
BIOS simply builds characters pixel by pixel. .

In text modes, the VGA moves all of the character data into a bit plane resprved for
character definitions. Then, the VGA hardware constructs the pixels based on the ASCII
and attribute codes. The adapter can load eight 256-character sets. However, only one or
two sets may be displayed simultaneously for a total of either 256 or 512 characters. If a

726 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

512-character set is activated, the VGA uses the bold attribute to select the second set of
256 characters.

Obviously, such programmability is important for supporting special character sets
such as international letters and symbols or scientific/mathematical symbols. However,
the tables which define the character sets have entries which define the height of the
character and the number of rows on the display. By decreasing the height of the
character, you can increase the number of rows. Many programs, such as PICK.COM
and FONTHT.COM wlong with VFONT.COM and VFONT4.COM, can extend the
number of rows displayed from 25 to 43 or 50.

Palettes

A standard VGA can display only 16 or 256 colors, but can select those colors from a
palette of over 256,000. In most color modes, the color information stored in the attribute
bytes or bit planes is converted into a color on the display in several stages. First, the
four-bit (16-color) color value selects an entry from the corresponding palette register
(16 palette registers, total).-The palette registers encode the color in six bits for a total of
64 color combinations, the older EGA total. The VGA then uses a select register to add
two more bits for a total of eight bits, or 256 colors.

The eight-bit color value selects a DAC (Digital to Analog Converter) register that
translates the digital color value into an analog color signal for the display. Each register
of the DAC can be programmed with an 18-bit color value (six bits each for the red, green
and blue signal), giving the final color selection of 262,144 colors. Although the colors
cannot be displayed simultaneously, the various stages of the color selection process
make some interesting effects possible.

The color selection index, which adds the final two bits to the DAC register selection,
acts much like the Segment: Offset architecture of the 80 x 86 family of microprocessors.
The total set of DAC registers can thus be grouped into smaller sets of 16 or 64 colors,
just as the total memory of the PC is grouped into 64K pieces. A program can cycle
through these sets to change the colors across the entire display - sometimes subtly,
sometimes dramatically. For example, a screen could start with a greyscale palette at the
top 16 DAC registers, and fade in colors by cycling down through the DAC maps. Each
step down would brighten the colors until reaching the brightest set at the bottom of the
DAC registers.

VGA Extensions

Manufacturers of compatible VGA adapters are constantly seeking ways to improve the
design: extended palettes, anti-aliasing, extended resolution, and faster memory access
are some of the more popular features added to their products. A few extensions, such as
a 24-bit DAC can be done rather naturally, but require knowledge that the feature exists.
One company, Edsun Laboratories Inc., has created a modified DAC which performs
anti-aliasing. This process softens the transitions between edges with subtle shadings -

EGA, VGA, and Beyond 727

in effect, calculates a softer color that will make the edge appear smoother, hence raising
the apparent resolution. The anti-aliasing mode must be activated by a program, but the
procedure is fairly simple.

Other enhancements, such as faster memory access, don't require special program
ming. There are a number of ways the speed of a VGA can be improved. As mentioned
earlier, the VGA must block programs from accessing memory during the display
intervals. During the vertical retrace an adapter can grant more frequent access. Further
improvements can be made during the horizontal retrace - this interval is extremely
short, but occurs more often than the vertical retrace.

The retrace interval can be used for other improvements, too. For example, A TI
implements two clocks on some of their VGA models. During the display interval, the
dot clock (which determines the horizontal resolution) works as the memory clock, as in
a normal VGA. But, during the retrace intervals, ATI switches the memory to a faster
clock, improving memory access time.

Buffering is another common technique for improving access time. Rather than writing
directly to memory, the CPU can immediately write to a buffer and move on to the next
instruction. When the VGA is ready for the next CPU memory access, it uses the value
stored in the buffer. A few vendors use VRAM (Video RAM) in some of their models.
VRAM lets two devices access memory at the same time. However, VRAM is much
more expensive than the DRAMs normally installed in a VGA. So, most manufacturers
continue to use DRAMs and squeeze cycles wherever they can.

Sometimes performance can be improved through special register access. For example,
Headland Technology provides a direct masking register that completely masks access
to the video bits. If a program uses this direct mask, it can skip instructions such as the
memory read that loads the latch registers. While additional hardware features can make
dramatic performance improvements, it's very difficult for programmers to support the
features. There are so many varieties of VGAs (and no hardware standards beyond the
IBM specifications) that large video driver libraries would become necessary, a time
consuming, and thus expensive, proposition for programmers.

On the other hand, programmers can use commerciallibraries or systems that take care
of this overhead. Windows 3. 0 has become a very popular program on IBM compatibles.
Because of its popularity, VGA vendors place a high priority on Windows display driver
development. Programs written under Windows do not access hardware directly. Rather,
they make graphics calls that provide higher-level functions, such as line drawing.
Windows then takes care of details like register and memory access mechanisms. The
VGA manufacturer can then write a Windows driver that takes advantage of their own
unique VGA features. And, the scftware programmer can write Windows programs and
leave the messy details of programming hardware to someone else.

VESA
Programming for a GUI (Graphical User Interface) such as Windows or OS/2 has its own
advantages and disadvantages. DOS-based programs are still a long way from breathing
their last breath. So, standards for some of the shared extensions are very useful to both

728 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

hardware vendors and programmers. The programmers can write routines that will work
on many varieties of VGA (thus pleasing their clients). And, the vendors can list more
programs that run on their VGAs. As already noted, several companies interested in
creating a Super VGA compatibility started an organization called VESA to standardize
~he high resolµ~ion modes.
'? The extendeq resolution modes of the Super VGAs comprise one of their most
attractive features. Higher resolution and more colors grab attention! .The 800 x 600
modes are an easy extension - add a few bytes to the row multiplier (for the wider
columns) and increase the address range (for the additional rows). But, at 1024 x 768, or
256 color~ in resolutions above 320 x 200 the address space exceeds the 64K segment
limit. Super VGA vendors worked around this limit using several different techniques.

First, even a standard V(JA can be custom programmed to use a 128K address space
froni segment AOO()h toBfffh. That's enough room to accommodate 1024 x 768, 16-color
mode, or 320 'f. 400,' 256-color mode. But this method is incompatible with dual monitor
systems (which have a monochrome adapter at BOOOh), and it doesn't allow high-reso
lution, 256-color modes.

Second, the' VGA can be programmed to present only a portion of the video memory
in the 64K segment from AOOOh to Afffh. Then, by using a special register, the portion
of video memory filling this ,space t(ln be changed. This technique is called bank
~witching, and is the same type of process used to access LIM EMS memory. However,
VESA calls the banks ••windows" (a rather confusing term given the context of a video
environment). There are three different implementations of VESA windows: Single
Window, Non-overlapping (dual) Windows, and Overlapping (dual) Windows.

The single-window technique uses one 64K bank that is both readable and writeable.
Of the three methods it is the simplest to use. Consider, for example, a 1024 x 768,
16-color mode. It requires about 96K of address space and four bit planes. The first 64K
is mapped to the 64K segment at AOOOh and can be read and written. To access the
remaining 32K, the program requests a bank switch, and the 64-96K portion is mapped
into the 64K segment.

Super·VGAs which use Overlapping Windows may set the adapter to read and write
different areas in video memory. Thus, the processor could request that CPU writes to
segment Aqpoh go to the first 64 K of video memory, and that reads from segment AOOOh
come from the bank 1 of video memory (64K-96K). This may seem like an odd feature
- it's designed tq make transfers from one section of video memory to another run faster.
Video-to-vided transfers can execute more quickly than conventional memory-to-video
transfers.

Like Overlapping Windows, Non-overlapping Windows use two banks. Both banks
are readable and writeable. However, each is only 32K - one starts at segment AOOOh
and the other at A800h. With either type of dual window method, a single window may
be emulated by setting the banks appropriately (most standard plotting applications will
use such a setup).

Yoµ may notice that in 1024 x 768 mode, the area from 96-128K is unused. This area
is accessible, but not displayable. Fqnts or frequently drawn objects such as icons can be

AX

4FOOh

4F01h

4F02h

4F03h

4F04h

4F05h

4f06h

4f07h

Purpose

Return Super VGA Information

Return Mode Information

Set Super VGA Mode

Return Super VGA Mode

Save/Restore Super VGA State

EGA, VGA, and Beyond 729

CPU Video Memory Window Control (bank switching)

Setf Get Logical Scan Line Length

Set/Get Start of Display Memory (video pages)

Table 14.3. VESA Calls

stored in the additional memory for fast access. However, to perform the transfer, the
adapter must be able to read this area while writing to any portion of the display. Dual
windows make this possible.

The VESA standards emphasize software rather than hardware. For example, the
standards do not specify the design or address of the bank-switching hardware. Rather,
the standards provide a BIOS call (and the address of a function that may be called
directly) to set the bank. Likewise, there are no standards for modes which must be
supported. Why so much variation, both in terms of supported modes and memory access
techniques? Because VESA standards were written after Super VGA hardware was on
the market. The standards were designed in such a way that vendors could write
memory-resident programs to add VESA to their existing products.

Indeed, the VESA standards were written in such a way that a program can "learn"
how to access proprietary modes. Proprietary modes may use unusual resolutions or
memory structures (such as CGA four-color bit maps in a high-resolution mode). VESA
includes several functions to return detailed information about the Super VGA, and set
the extended attributes. The functions are called through the video BIOS (INT 1 Oh) as
call 4Fh, set through register AH. The VESA call consists of several sub-functions
designated in register AL. A list of these functions appears in Table 14.3.

Each function requires several parameters, and detailing the operation is beyond the
scope of this chapter. But, it is interesting to see how the VESA call returns adapter
information: it should give you a feel for the flexibility of the standard. The two critical
information calls are 4f00h and 4FOlh. Both calls require the program to reserve at least
256 bytes for the information. The ES:DI registers must point to this area before making
the call. The 4F01h call requires a Super VGA mode number in register CX. If a
VESA-compatible adapter is installed, call 4FOOh will return 004Fh in register AX.

730 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

The Super VGA information is organized as follows:

Offset

0

4

6

Eh
12h

Description

The letters 'VESA'

Version number

Address of vendor ID

Address of mode list

Amount of memory on VGA

The Mode information includes:

Offset

0

2

3

4

6

8

Ah

Ch

lOh

Description

Mode Attributes

Window A Attributes (i.e., is the bank readable and/or writeable?)

Window B Attributes

Window Granularity (offset of each bank in Kb)

Window size (bank size in granularity units)

Address of Window A

Address of Window B

Address of window (bank switching) function

Length of one scan line in bytes

This is followed by a section of optional information. For the VESA-defined modes, the
information would be identical for every card, and would waste ROM space. However,
the information is very useful, so many vendors include it for all modes.

Offset Description

12h Horizontal resolution

14h Vertical resolution

16h Character width in pixels

17h Character height in pixels

18h Number of bit planes

19h Bits per I?ixel (includes bits in planes)

lAh Banks (interleaved memory segments, not bank switching)

lBh Memory model

1 Ch Bank size (interleaved memory segment size)

lDh Number of pages available for multiple screens

lEh Reserved

Some items, such as the bank size, which gives the number of interleaved memory
banks (like the CGA's four-color mode), are of little interest except for unusual vendor
proprietary modes. An example will highlight some of the more important features. The
following debug session was run on on an A TI VGA Wonder+:

271A:0100 mov ax,4f00

271A:0103 mov di,200

271A:0106 int 10

271A:0108 mov ax,4f01

271A:OlOB mov di,300

271A:OlOE mov cx,103

271A: 0111 int 10

27 lA: 0113 int 20

27 lA: 0115

-g

Program terminated normally

d 200 1 20

27 lA: 0200 56 45 53 41 01 01

27 lA: 0210 98 22 00 00 00 00

d 2298:146 1 20

2298:0140

2298:0150 08 01 09 01 OA 01

2298:0160 FF FF FF FF FF FF

d 300 1 20

27 lA: 0300 lB 00 07 00 40 00

271A:0310 20 03 20 03 58 02

EGA, VGA, and Beyond 731

46 01-98 22 00 00 00 00 50 01

00 00-00 00 00 00 00 00 00 00

37 36-31 32 39 35 35 32 30 00

00 Ol-6A 00 02 01 01 01 03 01

40 00-00 AO 00 00 70 OA 98 22

08 OE-01 08 01 04 00 C7 02 SA

I cheated a bit in the program. I already knew this Super VGA supported mode 103h.
To save space, the program doesn't read the mode table. But, if you look at the hex dump
at address 271A:0200, you will see the values 50 01 at the end of the first line, and 98 22
at the beginning of the second. This is the address (2298:0150) of the mode table. In the
next instruction, I also dumped the Vendor ID bytes at address 2298:0146 (this address
also appears in the 271A:0200 dump).

The vendor ID is a C-style string, ending in a Null (00). The A TI string is rather
uninteresting: it is simply the numbers '761295520'. The manufacturer decides what to
place in this area - some include the vendor name and/or product name. This is followed
by the mode list (though other VESA adapters may locate it elsewhere), which ends with
FFh. The list, which conveniently fills the second line, shows that modes 108h, 109h,
lOAh, lOOh, 6Ah, 102h, lOlh, and 103h are available.

Finally, there is the mode information - hex dump 271A:0300 in the example. The
first two bytes are the mode attributes. The next byte is the attribute of Window A (07)
followed by the attribute of Window B (00). The attributes are assigned to bit fields. Bit

732 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

0 is set if the window exists, bit 1 is set if the window is readable, and bit 2 is set if the
window is writeable. This is a single window mode - Window B has no attributes.
Window A exists, and is both readable and writeable.

The window granularity (the next word) is 64K. This means each bank maps to a
distinct area within video memory. Sometimes, the granularity is smaller and there will
be some overlap in the mapping scheme (much like the 80 x 86 can map 64K segments
on any 16-byte boundary). This is different than overlapping windows, which use a
smaller window size, the next word in the information section. In this case, the window
size is also 64K. And, Window A is located at segment AOOOh (no surprise there).
Window B does not exist. The bank switch can be performed through a far call to address
2298:0A 70, the next double word.

The scan line is 320h, or 800 bytes long. Since this is an 800 x 600 mode, there is one
byte per pixel (the standard method for 256-color mode). The remaining section is
redundant since this is a VESA standard mode, but A TI chose to include it anyway (which
makes the programmer's task a bit simpler). You can confirm that the resolution is 800
x 600 (320h and 258h). At 318h and 319h, we can see that there is one bit plane and eight
bits per pixel (256 colors). Had this been a 16-color mode the parameters would show
four bit planes and four bits per pixel. To get the number of linear bits per pixel, you must
divide the total bits per pixel by the number of bit planes.

The descriptions are set up in such a way that a vendor could use a proprietary
combination like two linear bits per pixel (following the CGA mapping) in four bit planes
(with a VGA-like feature). Even and odd scan lines could appear at different addresses
(what VESA calls the banks). Fortunately, the VESA compliant modes (those that are
numbered lOOh and higher), must follow the VGA format: eight linear bytes per pixel
for 256 colors or one linear bit with four planes for 16 colors.

VESA programming can be rather complicated. There are many different im
plementations of the bank switching scheme. And, if you want to support proprietary
modes, many possible memory mapping schemes. It's not even unusual to see an adapter
mixing several techniques. It may support several proprietary modes and include multiple
bank switching techniques depending on the video mode selected.

Because of the complexity, a sample plotting algorithm would be too long for this
chapter. Further details about VESA programming can be obtained through VESA at
1330 South Bascom Avenue, Suite D; San Jose, CA 95128, or found in recent books on
VGA programming such as the second edition of EGAjVGA: A Programmer's Reference
Guide, McGraw-Hill, 1990.

Coprocessors
Graphics on the VGA require extensive support from the CPU. The program must
calculate and plot every pixel on the screen. On a 640 x 480 screen, that's up to 307,200
pixels. At 1024 x 768, the number of pixels more than double to 786,432. Many of the
plotting operations include common tasks: draw a character, plot a line, fill a boundary,
copy a portion of the screen from one area to another (called BITBLT, for Bit Block
Transfer), etc.

EGA, VGA, and Beyond 733

A graphics coprocessor can accept instructions from a program. These instructions can
be sent to an 1/0 port (1/0-mapped) or a reserved memory area (memory-mapped). The
coprocessor reads the instructions, performs the required calculations and displays the
appropriate results. While the coprocessor is processing, the program can move on to
other tasks such as accepting user input. The coprocessor can usually process graphics
related tasks much faster than the program. So, even if the program is sending long
streams of graphics instructions and must wait on the coprocessor, execution is usually
much faster than with a bit-mapped graphics adapter such as the VGA.

Consider a line drawing example. This is usually implemented as a polyline where
several lines can be drawn - each new line starting at the end of the last. The coprocessor
may assign a code to the polyline command, say 1. Then it might accept the number of
lines to draw. We'll say 3. Finally, it might accept the coordinates in x,y pairs: start of
line 1, end of line 1, end of line 2, end of line 3. The instruction stream might look like:

01 03 06 06 6A 6A 06 6A 06 06

which would draw a right triangle from (6,6) to (106,106), then to (6,106), and back to
(6,6). Since the shape is closed, another instruction might tell the coprocessor to fill the
shape. Compared to VGA plotting, the number of bytes sent from the program to the
adapter has been reduced from hundreds (or thousands with a fill) to a handful. And, the
program needn't calculate the position of every intermediate point - a fairly simple, but
time consuming, task.

There are many coprocessors on the market. Some, such as the IBM 8514/ A and XGA,
have a fixed set of operations (mostly line drawing, area fills and area moves). Others,
like those based on the Texas Instruments 34010 and 34020, are programmable. Each
vendor who produces a 34010-based product can implement advanced shape drawing
routines or give the user access to the programming features to define their own. A
coprocessor may limit its operations to the more common tasks such as lines and fills, or
implement more complex tasks such as drawing ellipses and Bezier curves. Usually,
straight lines and fills are sufficient. Most CAD packages, the prime market for graphics
coprocessors, have an adapter interface which works strictly at a line drawing level -
even if the coprocessor supports ellipses, for example, the CAD package will translate
an on-screen circle into line segments for screen display.

As GUls such as Windows and OS/2 Presentation Manager become more common
and the price of coprocessors drop, we will probably see graphics coprocessors as
standard equipment on many machines. Such environments benefit from line drawing,
area fills and BITBLT. A character drawing and scaling function would also help most
GUI applications, but this is a capability which is still fairly primitive (or non-existent)
in most coprocessors.

8514/A

The 8514/A was hailed as the next standard up from VGA. When IBM released the
8514/ A it had several factors working against it as a standard. First, the price was much
higher than VGA. Second, IBM did not release details for the hardware interface. The

734 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

XGA

only official programming method was to use a graphics library called the AI (Adapter
Interface). The AI consisted of several C functions which translated function calls and
parameters into hardware instructions. Third, the 8514/A supported 1024 x 768 resolution
on an interlaced display, and many users objected to the resulting flicker. Fourth, the
8514/ A did not have a native support mode and has always been an accessory rather than
standard equipment. A computer cannot boot directly into 8514/A modes complete with
DOS and BIOS support. Rather, a separate VGA handles the initial functions, and the
8514/ A is later activated by programs which specifically request the advanced modes.

Although other vendors could develop AI-based products on hardware which was not
8514/A-compatible, a few products were relea~ed or announced which wrote directly to
hardware. It was clear that Al compatibility was not sufficient for every 8514/ A
application. Since the hardware specifications were not readily available, vendors began
reverse engineering the 8514/ A and developing standards for 8514/ A compatibility
through VESA. The ensuing delays have kept 8514/ A from developing as quickly as the
EGA/VGA market. However, 8514/A still shows signs of life.

The 8514/ A is 1/0-mapped. Although IBM has never documented the hardware, details
can be found in Jake Richter's and Bud Smith's, Graphics Programming for the 8514/A,
M&T Books, 1990. With the availability of detailed programming information and
reverse engineering, the compatible market is growing. And, the compatibles add features
that make the 8514/ A an attractive alternative. With lower prices, non-interlaced displays,
bus support for both ISA and Micro Channel, and other features available on some of the
compatibles, the 8514/ A remains a viable platform.

XGA is IBM's latest attempt at a graphics standard. Like the 8514/A, the advanced
functions of the XGA are programmed through the AI, but the XGA is memory-mapped
rather than 1/0-mapped. Additionally, the XGA is much faster and addresses some of the
deficiencies of the 8514/ A: IBM has documented the XGA hardware, the adapter is
standard equipment in the PS/2 Models 90 and 95, and it is backwards compatible with
the VGA. There are still a few drawbacks: the XGA uses interlaced 1024 x 768 modes,
and the current design requires the bus-mastering support of Micro Channel machines.
Moreover, the current interface specifically requires some of the features of the 80386
and 80486 processors.

The VGA compatibility modes have a few enhancements. Most importantly, IBM has
widened the data path and improved the performance using the same techniques em
ployed by many of the VGA compatible vendors. A new 132-:column character mode is
also available. In its higher-resolution, extended modes, the memory-mapping can be
manipulated in several ways, including a bank switching and bit-mapped mode that is
accessed in the same address range as VGA. It is possible, for example, that a VESA
driver could be developed for the high-resolution XGA modes. For more advanced
operating systems that have better access to the memory above the first megabyte, the
XGA can be mapped into a flat lMb address space near the top of the system's
addressable memory.

Favorite Tips

Over the years many friends and readers have sent us basketfuls of their favorite tips, and
we've assembled (and enhanced) the most popular ones below. You'll find tips here on
the DOS commands, filters, printers, security, communications, and more.

DOS Commands

RECOVER

Just about everyone knows that the FORMAT command can be dangerous if it's used
indiscriminately or carelessly. However, few users know about another potentially
destructive DOS command - RECOVER.COM.

The DOS manual says RECOVER.COM is supposed to "recover files." Novice users
who have lost or corrupted files may try this command in desperation without fully
understanding what it does, and accidentally type RECOVER C: at the DOS prompt.
Even though DOS prints a warning message most users will probably type Y to proceed
with the recovery.

RECOVER then does the following:

1. Removes the subdirectory structure from the disk.
2. Places all the files into the root directory.
3. Renames all files FILEOOOl.REC, FILE0002.REC, etc.

You 're then forced to back up all of these similarly named REC files, reformat the
disk, and then filter.through the files to try and discover which file is which. It's nearly
impossible to recover from RECOVER..

735

736 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

The description in the DOS manual is truly inadequate, and doesn't provide nearly
enough warning about how potentially dangerous the command is is. It's another case of
the moronic names in DOS. DEBUG really ought to be called something friendlier like
PATCHER or TOOLBOX. The IF ERRORLEVEL command should be called some
thing like TEST. It's no wonder that a panicky and inexperienced user might think a
command named RECOVER will fix his disk right up.

RECOVER isn't so bad if you ask it to dig out the pieces of just one file that had a
sector go south somewhere. And if you've somehow wiped out your whole directory,
laboriously sorting out the puzzle pieces of your text files is better than losing everything.
But it's far too easy to wipe out a whole disk with it. Back up often, plod through the
manual before trying anything you're not familiar with, and take RECOVER.COM off
your hard disk.

CHKDSK

When used with a /V parameter, CHKDSK churns out a long list of all the directories
and files on the specified or default disk. This can come in very handy when you have to
locate a file or group of files. To see every file with MAC in it, for instance, you could
type:

CHKDSK /V I FIND "MAC"

However, if you start experimenting with this feature, you'll notice that the filenames are
sometimes not listed under the directory where they are actually located.

The problem results from the confusing and downright deceptive manner in which
CHKDSK lists directories and files. To illustrate this, start with a formatted blank disk
in drive A: and run the following four commands:

COPY
MD
COPY
COPY

CHKDSK.COM A:
A:\SUBDIR
TREE.COM A:\SUBDIR
BACKUP.COM A:

Now execute a CHKDSK A:/V command. You '11 probably see the listing shown below:

Directory A:\
A:\CHKDSK.COM

Directory A:\SUBDIR
A:\SUBDIR\TREE.COM
A:\BACKUP.COM

It sure seems like BACKUP.COM is in the SUBDIR directory, doesn't it? But look
closer. The files are listed with the full path name. So A:\BACKUP.COM means that
BACKUP.COM is in the root directory, which is absolutely correct. CHKDSK lists the

Favorite Tips 737

files and directories in the order that it finds them in the directory. Since SUBDIR is the
second entry of the root directory, CHKDSK lists all files in the SUBDIR directory and
then finishes listing the files of the root directory.

Whenever you do a DIR command and see files listed below directory entries, be aware
that CHKDSK /V will list those files after it lists the files in the directory.

On a disk where a lot of deletion and creation of directories and files has taken place,
the CHKDSK /F listing may be almost unreadable. Use the TREE /F command instead
for seeing what files are in what directories.

CHKDSK can also let you know about potential disk problems. Almost nothing is as
terrifying as seeing a list of unfamiliar messages from CHKDSK (except perhaps a zinger
such as "General Failure Error Reading Drive C:"). Sometimes CHKDSK messages
indicate very serious problems with the data on the disk. Sometimes they don't.

Among other things, CHKDSK checks for consistency between a disk's directory
listing and its file allocation tables (FA Ts) - the critical maps that tell DOS how a disk's
clusters are chained together. Files are stored in separate chunks, and the redundant FA Ts
keep track of where these individual pieces are located on the disk.

When you get a message from CHKDSK indicating "lost clusters," it's usually not
much to worry about. It simply means that an area on the disk had been allocated for a
file, but the file was never properly closed. The lost clusters are "orphaned" - the FAT
says they've been allocated, but they don't belong to any file. This sometimes happens
if the program creating the file terminates abnormally, or runs out of disk space and
doesn't clean up afterwards.

If you run CHKDSK with a /F parameter, it will convert the lost clusters to files with
the extension CHK in the root directory. If your normal files are missing something, the
data could be in one of the CHK files. You can take a look at the CHK files with the
TYPE command, but unless they're in ASCII format and came out of a word processing
document, you probably won't be able to do much with them.

If you're missing entire files from your directory, these CHK files may correspond to
the missing files. This could result from a damaged directory. The FAT still allocates
chained clusters as if they belonged to a file, but the directory doesn't indicate where the
chains begin.

Messages from CHKDSK indicating "cross-linked files" are cause for concern.
Cross-linking means that the FAT's cluster chain for two or more files intersects at some
point, so that some clusters seem to belongto multiple files. In other words, your FAT
or directory has probably been badly mangled. Although cross-linking is relatively rare,
it could be caused by gremlins (i.e., a power surge or line drop during a disk write
operation).

You can easily create a cross-linked FAT and a mangled directory yourself by
replacing a diskette before typing an answer to an "Abort, Retry, Ignore, Fail?" message.

For instance, if you 're running a program and you try to save something to a diskette
that has a write-protect tab, DOS will try to write to the disk and will end up displaying
a "Write Protect Error" message followed by "Abort, Retry, Ignore, Fail?" If instead of
removing the write-protect tab from the disk you insert another disk in the drive and press
R for Retry, you can kiss that data goodbye. This often happens when you realize you 're
trying to save a file on the wrong disk.

738 DOS Power Tools, 2nd Edition, Revised for DOS 5. 0

The problem is that DOS keeps FAT and directory information in memory, but doesn't
check to make sure that it's writing data back to the original disk it thinks is still in the
drive. If you switch disks without telling it, it will write the FAT and directory map (or
part of it) from the first disk onto the second disk, and you'll end up with an unusable
mess.

Sometimes you can salvage chunks of mangled files by using disk surgery programs
like the Norton Utilities to piece them back together, but it's hard work and you need to
know what you 're looking for.

To prevent this, don't switch disks in the middle of a program unless you're very
careful about it. And if you're about to write data to a floppy and you get an .. Abort,
Retry" message, choose abort, then make sure the disk you originally read from is in the
drive you want to write to. If it's not, try to execute a DIR command to read the new
directory information into memory.

COPY

COPY will usually detect when you are trying to copy a file to itself. For instance, if you
have a file called MYFILE and you enter:

COPY MYFILE MYFILE

it will tell you it can't do it. But COPY can be fooled. If MYFILE is located in the root
directory and you enter:

COPY MYFILE \MYFILE

COPY gets confused and doesn't realize you're referring to the same file two different
ways. This can be a serious problem if the file is larger than 64K.

Here's what will happen in that second case: COPY will open the first file for reading.
It will read 64K of the file into memory (or less if the full 64K is not available). It will
then tell DOS to create the second file. If the second file already exists (as it does in this
case), the file gets truncated to zero bytes and the space in the FAT is freed up. Then
COPY writes the 64K buffer to the second file. Now COPY goes back to read the next
chunk of the first file. DOS takes a look at the FAT for the first file and finds out all the
clusters have been freed up. It says .. Hey, what happened?" and generates an error
message.

You can also run into trouble if you try a command like:

COPY FILEl FILE2

If FILE2 already exists, but FILEl is much larger than available disk space, DOS aborts
the COPY with an .. Insufficient disk space" message, but also deletes FILE2. It may seem
like a .. Shoot first, ask questions later" approach.

Favorite Tips 739

To determine whether enough disk space exists to copy FILEl to FILE2, COM
MAND.COM would have to check if the space available on the disk plus the size of
FILE2 is less than or equal to the size of FILE 1. Instead, the COPY command creates the
destination file FILE2 (erasing the old one in the process) and then tries to copy the
contents of FILEl to it. If this fails, FILE2 is gone. Usually this won't create a serious
problem, since you were intending to get rid of the existing FILE2 anyway.

But one other COPY problem can cause heartache. Let's say you're trying to copy all
your programs to a subdirectory called SUBDIR, and you issue the two commands:

COPY A:*.COM SUBDIR
DEL A:*.COM

If you make a mistake and type something like SUBDIT (rather than SUBDIR), which
is not an existing directory name, COPY will create a file called SUBDIT and copy all
the COM files into it. Since this is an ASCII copy, because the syntax implies you're
concatenating the files, it stops copying after the first ASCII end-of-file marker in each
on the COM files. Result: garbage.

Here's another COPY quirk-you can display an ASCII file to the screen with:

COPY filename CON

because the output device CON is the display. This command does basically the same
thing as:

TYPE filename

Likewise, you can copy a file to the printer with:

COPY filename PRN

The file goes to the printer and a .. 1 file(s) copied" message appears on the screen. Using
redirection of standard output, you can also copy a file to the printer with the command:

TYPE filename >PRN

So far, so good. Based on this, you might think that the command:

COPY filename CON >PRN

would copy the file to the printer, because the COPY command is copying it to the screen,
and the screen is redirected to the printer. But it doesn't. Instead, it just copies the file to
the screen and puts the .. file(s) copied" message on the printer.

While the results look a little peculiar, DOS is actually working consistently. To see
why, you have to understand the distinction between devices (CON and PRN) and the
handles that programs use to refer to these files and devices.

740 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

Beginning with version 2.0, DOS adopted a handle approach to working with files and
devices. When a program such as COMMAND.COM opens a file or device for the COPY
or TYPE commands, it tells DOS the filename and DOS returns a handle (which is simply
a number) that refers to the file.

DOS maintains two tables that correlate the handles and the files or devices they refer
to. The first table is located in the program's Program Segment Prefix starting at offset
18H. The number at address [18H +handle] refers to a second table internal to DOS that
contains the file or device name and other information that DOS needs to read from or
write to the file. (This is not documented, by the way.)

The restriction of 20 file handles per program derives from the length of this table in
the Program Segment Prefix. The maximum number of open files that DOS can maintain
depends upon the space allocated for the internal DOS tables and is governed by the
FILES statement in a CONFIG.SYS file.

When a program begins execution, five file handles are already defined. Normally,
handle 1 (which is defined as standard output) is mapped to the output device CON, which
is the display.

The internal workings of the TYPE command are simple. It reads a file and writes it
with function call 40H using a handle of 1, so output normally goes to the CON device.
However, when you specify on the command line that standard output should be
redirected to PRN with the command:

TYPE filename >PRN

COMMAND.COM opens the PRN device to get a handle for it, and then uses the
FORCDUP function call (46H) to make handle 1 refer to the PRN device. So, TYPE is
still writing the file using handle 1, but the handle refers to a device other than CON.

When you specify CON or PRN as the destination in a COPY command, COM
MAND.COM opens that device through DOS, gets back a handle for it (which will not
be one of the predefined handles), and uses that handle for writing the file. So, the two
commands:

COPY filename PRN

and:

TYPE filename > PRN

are not really the same thing. In the first case, the COPY command uses a handle that
refers to the device PRN. In the second case, the TYPE command uses handle 1, but this
handle has been redirected to the device PRN. Because of this, when COMMAND.COM
executes the command:

COPY filename CON >PRN

it first redirects handle 1 to the PRN device. But then COPY opens the device called CON
for the destination and DOS returns a new handle that refers to this device. The file

Favorite Tips 741

appears on the screen because the COPY command is writing it using this new handle.
It then writes the "file(s) copied" message to standard output (the handle 1), but this
message goes out to the printer because the handle has been redirected.

Copying files to devices can come in handy when you want to scan through several
files one after the other, or peek inside executable files.

If you use the TYPE command on a binary, nontext file like COMMAND.COM, DOS
will stop when it reaches the first ASCII character 26, since it will erroneously think this
is an end-of-file marker and grind to a halt.

But you can see the whole COMMAND.COM file by typing:

COPY /B COMMAND.COM CON

The /B (for "Binary" file) tells DOS to look up the length of the file in the disk directory
and copy that number of bytes. Using CON as a destination tells DOS to copy these bytes
to the console (screen) rather than a file.

Get to know the /B switch. It can prevent lots of COPY problems. For instance, you
can use the COPY command to update (or backdate) the time and date in the directory
listing of any file. But be extremely careful when using this update feature. If you have
a short text file on your disk called OLDFILE that you created a long time ago, you can
make the date and time in its directory listing current by typing:

COPY OLDFILE +I I

However, DOS thinks all files it copies this way are ASCII files unless you tell it
otherwise, and will stop copying the contents if it sees an ASCII character 26, which it
interprets as an end-of-file marker. If you're not careful, you can end up with a copy of
just the beginning of a non-ASCII file.

Most text files don't contain any ASCII 26 characters (except at the very end), but just
about every COM or EXE file contains several. You can tell DOS to bypass this problem
by making copies based on the file's true length, as reported by the directory listing.

While adding a /B after the word COPY tells DOS to make copies based on file length
rather than the detection of an ASCII 26, adding a/ A (for "ASCII" file) does the reverse.
When you tack on a /B or/ A switch, DOS will handle all files listed after the switch in
that particular COPY command with these rules in mind.

You can mix-and-match /A and /B switches, file by file, if you are concatenating
several smaller ASCII and binary files into one big one. When you don't specify any
switches, DOS assumes all concatenations are for ASCII files, while all non concatenat
ing (normal) copies are for binary files.

The"+" sign in the "COPY filename+,," updating command makes DOS treat the
process like a concatenation, even though it is really dealing with only one file at a time.
Because of this, it is important to add a /B switch to the command.

So the final command to update the directory listing for both ASCII and binary files
is:

COPY /B filename+,,

742 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

You can create a one-line batch file called UPDATE.BAT that uses a replaceable
parameter:

COPY /B % 1 + I I

Then, you can make the date of any file current by typing:

UPDATE f ilenarne

You can also use this technique to change the date backwards or forwards. Before you
run UPDATE.BAT, just reset the DATE (and TIME, if you want) commands.

You can't update all your files using wildcards. The command:

COPY /B *·* +,,

won't work. But you can bring all your files up to date using FOR. . .IN ... DO. To enter
the command directly in DOS, type:

FOR %F IN (*.*) DO COPY /B %F +,,

To put this into a batch file called REDATE.BAT, substitute a %%F for each %F, and
redirect the output to NUL to suppress the one-by-one executions and "1 File(s) copied"
messages produced by the FOR. . .IN ... DO command. The contents of REDATE.BAT
would be:

FOR %%FIN (*.*) DO COPY /B %%F +,, > NUL

An even better way is to use the TOUCH.COM program on the accompanying disk.
If you 're nervous about making copies, and you want to verify that the backup is indeed

valid, don't bother with the /V COPY option. All this does is make sure that DOS can
read the copied file; it doesn't check the copy against the original to make sure that every
byte is the same. And it slows the whole process down.

A better way is to use the COMP command immediately after you make any copies.
Since the actual commands COPY and COMP are the same length and use the same
syntax, once you've copied the files you can check the accuracy of the copies by pressing
Fl or the right cursor arrow key twice, typing "MP" to replace the ••py" in the word
COPY, and then pressing F3 to finish repeating the command. So:

COPY *. * B:

with just a few keystrokes becomes:

COMP *. * B:

Favorite Tips 743

If you're using XCOPY, just insert an extra space at the beginning, so the process
would look like:

C>XCOPY * * B:
C> COMP *·* B:

DOS will ignore the space directly after the prompt.
If you want to look at lots of files - such as a collection of your small batch files -

in succession, you can adapt this technique with:

COPY *.BAT CON

Another good way to do this is to create two short batch files called SCANBATS.BAT
and READ.BAT. First, SCANBATS.BAT cycles through all the BAT files on your disk:

ECHO OFF
FOR %%F IN (*.BAT) DO COMMAND /C READ %%F

Then, READ.BAT, which is called by SCANBATS.BAT, does the actual displaying:

ECHO OFF
CLS
ECHO %1
MORE < %1
PAUSE

If you create these files using EDLIN or the DOS COPY CON command, you may
want to add a line before the final PAUSE in READ.BAT that says:

ECHO <F7>

But instead of actually typing <F7>, press the F7 key. If you 're in DOS, this will generate
an ASCII 0 null character (unless you've redefined the F7 key). Following ECHO with
a null will put a blank line onscreen. You may need this if the files you 're trying to display
don't end with carriage returns. If they don't, the "Strike a key when ready ... "message
generated by the PAUSE command will appear at the end of the last line of the batch file
rather than on a line by itself.

To try SCANBATS and READ, create both batch files, then enter:

SCANBATS

If you 're using a 3.3 or later version of DOS you can make the process slightly more
efficient by changing the second line of SCANBA TS.BAT to:

FOR %%F IN (*.BAT) DO CALL READ %%F

744 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

If you are using a more recent DOS version, you can also omit the ECHO OFF at the
top of READ.BAT. And you'll find that using CALL instead of COMMAND /C makes
it easier to break out of the process prematurely if you want.

Users often ask about turning their computers into typewriters. It's hard to have each
letter appear on your printer as you type it, but you can harness the COPY command and
end up with something halfway close. At the DOS prompt, try typing:

COPY CON PRN

CON refers to both the keyboard and screen, although here DOS will use the keyboard
half of the device. PRN refers to your printer. After you enter this command, start typing.
Press the Enter key at the end of each line. If you make a mistake on a screen line, you
can use the backspace or left arrow key to correct it, but after you've pressed Enter, or
wrapped down to the next screen line, you're stuck with it (which is why it's better to
use a word processor or EDLIN). And don't try any lines longer than 127 characters.

The text won't appear on the printer until you're done. To finish, press the F6 key (or
Ctrl-Z) and then press Enter one final time. The text will then be printed.

You may have to add a Ctrl-L before the Ctrl-Z to issue a form feed after the text is
printed.

One final note - be careful about the order of filenames or devices when making
copies. Users_ of non-DOS systems may be accustomed to listing these in reverse order.
If you wanted to send a small file's output to your printer, and typed:

COPY LPTl filename

instead of the correct:

COPY filename LPTl

you'll end up with a "O file(s) copied" message and a deleted file.

VERIFY

The DOS VERIFY option often confuses users, who wonder whether running their
systems with VERIFY on actually does anything. They also want to know if their word
processor, data base, and spreadsheet programs take advantage of whatever protection
VERIFY provides.

The good news is that because most applications do their file handling by calling DOS
functions, the VERIFY option is invoked whenever data is written to the disk. The bad
news is that turning the VERIFY option on in DOS actually does little more than slow
down your disk operations.

The syntax of the VERIFY switch is easy to understand. You turn it on with the
command VERIFY ON, and off with VERIFY OFF. Entering VERIFY with no argument
displays the current status. But while the syntax is fairly obvious, the effect of the
command isn't.

Favorite Tips 745

Common sense would lead you to expect that VERIFY makes sure the correct data
had been written to the disk. A logical procedure for the operation might be: write the
data to the disk, read it back from the disk, and compare the returned data to the original.
If it isn't the same, retry the operation a specified number of times. If the process continues
to be unsuccessful, signal an error. Logical as this may seem, in reality, it doesn't happen
that way.

One of the reasons for creating DOS was to free applications from the burden of having
to include code for handling disk 1/0 directly. Consequently, most programs interact with
the disk by going through DOS. DOS, in tum, accesses the disk hardware through your
system's hardware-specific BIOS routines.

Consider what happens when you save a file from inside an application program. The
program first calls DOS with the request to save the file. DOS must then move the data,
which is stored in a buffer in memory, to the disk. This is accomplished by providing the
correct parameters to the BIOS disk write routine. BIOS, in tum, then sends the correct
commands to the disk controller. Before the data is written onto the disk, however, some
additional information is appended. This extra information is used to detect errors, and
it is written to the disk at the same time as the data. The most common addition is called
a Cyclical Redundancy Check (CRC), which is a halfway sophisticated type of checksum.
The same data will always generate the same CRC value. So, by calculating the CRC
and writing it to the disk along with the data, two independent representations of the same
data are recorded.

The read function is simply the reverse of the write function. It causes data to be
transferred from the disk to a memory buffer. Each time the data is read, however, the
CRC is again calculated and compared with the CRC that was recorded when the data
was originally written. If the two CRCs match exactly, the data is assumed to be correct,
and is copied to the buffer. If not, the operation may be retried several times, but if the
old CRC and the new CRC still don't match, the BIOS reports an error and does not return
the data. (This discussion uses a little legerdemain by lumping BIOS and the disk
controller together. In fact, the disk controller itself can actually detect and correct certain
errors, which provides one more level of defense.)

The verify function operates nearly identically to the disk read operation, except that
no data is moved to a buffer, even if the read is successful. VERIFY causes the data to
be read from the disk and the CRC to be recalculated. The new CRC is compared to the
old CRC to ensure that they match. Again, typically, if they don't match, the operation
is retried a specified number of times, and then an error is returned. The important thing
to note is that at no time is the data itself on the disk compared to anything. Thus, the
verify function serves simply to check the continued readability and integrity of the disk,
not of the data.

When you tum on the DOS VERIFY switch, a flag is set inside DOS. From then on,
each disk write operation that DOS is requested to perform is immediately followed by
a similar call to the verify operation. In other words, DOS simply checks to see that the
area of the disk it just wrote your data to is readable - not that it wrote the correct data!
Excluding bad sections, each normal area of a disk always has a valid CRC. If the data
your program tried to write was somehow sidetracked into the Twilight Zone, and never
made it to the disk, the verify call would still return a good value, and DOS would never
know.

746 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

VERIFY has one other effect. The disk drive hardware must always wait for the correct
area of the disk to rotate under the head, read the data, and calculate the CRC. The new
CRC must then be compared to the recorded CRC. All this takes a certain amount of
time. In the case of disk access, an operation that might normally have been accomplished
in a single rotation might take three or more to complete. So, VERIFY's most obvious
effect is to slow down disk 1/0.

DISKCOPY

Many new users make backups of their files by using the DISKCOPY command. This
isn't smart. The only times you should use DISKCOPY are when you want to back up a
commercial software disk or when you have a data-integrity problem with a diskette.
Ironically, what could have caused the problem is DISKCOPY itself.

New users like DISK COPY because it's faster than COPY *. * and because it formats
on the fly. Experienced users know that COPY*.* and the even better XCOPY handle
two problems better - fragmentation and bad tracks.

The more you use a disk the more fragmented the files on it become. Ideally your files
should be contiguous. Having pieces of your files scattered over the disk results in
time-consuming head "churning," or "thrashing" as your system retrieves all the far-flung
chunks of each file. This also causes unnecessary wear and tear on the disk and the drive
heads and motor.

You should periodically back up any disk you've used for a while onto a freshly
formatted one using the COPY *. * or XCOPY *. * commands.

The second, and more troublesome, reason not to use DISKCOPY is that it puts a
mirror image of the original disk's contents onto the new one. If the blank disk has internal
defects such as bad sectors, especially bad sectors that have bitten the dust after the
FORMAT command originally roped off defective areas, DISKCOPY can write a copy
of the original disk's data onto these bad areas, rendering such information unusable on
the copy.

You should use DISKCOPY when you discover that you 're having a data-integrity
problem with a floppy, or when you accidentally erase a file on a disk and realize
you're going to have to perform surgery with something like the Norton Utilities to
recover the data. If this happens, you can use DISK COPY to make a perfect copy of
the affected disk, and first try the surgery on the copy. If you make a mistake in the
recovery process and end up ruining it, you can make another DISKCOPY of the
original and try again.

When you open a fresh package of floppy disks, format them all, without the system
files (you can always add these later with SYS). It's always a good idea to have a box of
blank formatted disks around, since you somtimes need one when you're in the middle
of a program and can't quit to fonnat one then or you'd lose data.

Then use XCOPY (or COPY if you 're using an older version of DOS) to make backups
onto these blank, formatted disks.

Favorite Tips 747

ASSIGN

Sometimes users expect DOS to be a whole lot smarter than it actually is, especially when
they try to outfox it. So beware of dangerous collisions when using "alias" commands
such as ASSIGN that trick DOS into treating one drive as another.

The ASSIGN program included with PC-DOS is potentially bad news. ASSIGN is a
remain-resident program that intercepts most DOS file calls and simply swaps disk drive
letters. It was included with DOS 2.0 and later to deal with pre-XT programs that assumed
every PC had only drives A: and B: and nothing more. All of the PC-DOS manuals include
warnings about using ASSIGN.

If you must use ASSIGN with certain programs, don't issue the ASSIGN commands
manually. Put them in a batch file like this:

ASSIGN A=C B=C

[then execute the program that can't use drive C:]

ASSIGN

The second ASSIGN undoes all the ASSIGNments so you don't accidently do something
dangerous with a command such as COPY. For instance, if you had typed:

ASSIGN A=C

and then later had tried to copy a hard disk file to a floppy disk with the command:

COPY C:filename A:

DOS would have attempted to copy the file on top of itself. If the file was larger than
64K you could end up with a "File Allocation Table Error" and a truncated version of
the original.

APPEND

Since version 2.0, you've been able to tell the DOS PATH command which subdirectories
to check for executable files (ending in COM, EXE, or BAT). But nonexecutable files
remained immune to even the most comprehensive search.

DOS executes internal commands such as DIR, VER, or TYPE directly, since the
instructions for these are imbedded inside COMMAND.COM. If DOS doesn't recognize
the command you typed, it first checks the current directory (if you entered something
like CHKDSK), or any directory you may have specified (if you typed something like

748 DOS Power Tools, 2nd Edition, Revisedfor DOS 5.0

D:\BIN\CHKDSK). It then looks in each of the subdirectories that you included in your
path. So if you added a line to your AUTOEXEC.BAT file that read:

PATH C:\;C:\DOS;D:\

if DOS didn't immediately find the file you specified it would hunt for one by that name
with a COM, EXE, or BAT extension in the root and \DOS subdirectories on drive C:,
and on the root directory of drive D:.

However, if you or your program needed to find a file that had an extension other than
COM, EXE, or BAT, you had to purchase a path extender program. Or, if you were
working with DOS 3.1 or 3.2, you could use the SUBST command to trick DOS into
thinking a subdirectory was actually a logical drive with its own drive letter.

For example, the main classic WordStar 3.3 WS.COM file always needed to know
where you'd stored its two .OVR overlay files. If these files were kept in C:\PROGS you
could use DEBUG to patch WS.COM so that it looked on drive E:

DEBUG WS.COM
E 2DC 5
w
Q

and then tell DOS about it with the command:

SUBST E: C:\PROGS

(For anything higher than drive E: you also had to add a LASTDRIVE command to your
CONFIG.SYS.) If your MEMO file was stored in C:\STAR\WORK and you had used
SUBST to tum that subdirectory into F: you could then type WS F:MEMO.

APPEND makes the process relatively easy - and a lot cleaner. Just follow the PATH
command in your AUTOEXEC.BAT file with an APPEND command using similar
syntax and telling DOS where your important nonexecutable files are located. If you keep
overlays in the subdirectory mentioned above, and correspondence with royalty in
\KING\LTRS, your APPEND command could be:

APPEND C:\PROGS;C:\KING\LTRS

DOS gives you two ways to keep tabs on your APPEND list. You can start off with
an extra APPEND /E command, which loads APPEND strings into your environment
and lets you change them with the SET command, just as with PATH. But, if you or your
programs switch command processors (by exiting the one you're currently using) such
strings become inaccessible. With long PATH and APPEND strings, you may have to
expand your environment size by using the SHELL command. In fact, these days the
default 160 byte environment is straining at the seams.

You can also add an additional APPEND /X command to spiff up the way DOS looks
for files. Or you can add both /E and /X, but you then have to run APPEND twice - first
with any switches, and then with the actual list of subdirectories DOS will search.

Favorite Tips 749

The DOS manual contains all sorts of dire warnings on using APPEND with BACKUP
and RESTORE, running it with ASSIGN, or having it anywhere near IBM LAN
commands of the same name (hard to believe IBM didn't change the name, but true).
And as with any path extender, you have to be careful that you're not accidentally pulling
in a long-forgotten file from a distant subdirectory that APPEND knows about but that
you don't.

EXE2BIN

When IBM first delivered DOS 2.0 it included some very valuable programs and
documentation. But it gradually did away with some key tools. First, it removed all
mention of ANSI.SYS from the DOS manual. Then in version 3.3 it got rid of the manual
section on DEBUG and replaced it with some turgid prose about using foreign character
sets.

And, for some incomprehensible reason, IBM removed the EXE2BIN.EXE program
from the DOS program diskettes; to obtain a copy of this program, you have to buy the
DOS 3.3 Technical Reference manual. If you try using the old 3.2 version under 3.3,
you'll just get an "Incorrect DOS Version" message.

EXE2BIN version 3.2 checks the DOS version number right after it's loaded, and exits
if it finds itself running under any version of DOS greater than 3.2. Changing the byte at
offset 30D converts a JZ instruction to a JMP, causing the program to jump to the right
place regardless of what the version test found.

To patch the 3.2 version of EXE2BIN.EXE so it runs under other versions, copy and
rename your 3.2 version of EXE2BIN.EXE to EXE2BIN.XXX. Then patch the byte at
address 30D from 71 to EB. Finally, rename the EXE2BIN.XXX file EXE2BIN.EXE.
The whole process looks like:

COPY EXE2BIN.EXE EXE2BIN.XXX

DEBUG EXE2BIN.XXX
E 30D EB
w
Q
REN EXE2BIN.XXX EXE2BIN.EXE

KE YB xx

DOS 3.0 to 3.2 came in five international flavors. By executing the appropriate KEYBxx
command you could tweak the keyboard into British, German, French, Italian, or Spanish
modes. Actually, since you could toggle back and forth between the standard keyboard
and the foreign variants, you could adapt the KEYBxx command to print just about
anything onscreen.

750 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

For instance, you could patch KEYBUK.COM (the smallest of the five KEYBxx files)
so that the:

QWE
ASD
zxc

block of keys would produce either a single line box (with lowercase letters) or a
double-line box (with capital letters). To try this (with DOS 3.2 on an old AT keyboard),
type in the following SCRIPT.KBD file:

N KEYBUK.COM
L

E 9AB DA C2 BF
E 9B9 C3 C5 B4
E 9C7 co Cl D9
E 9E5 C9 CB BB
E 9F3 cc CE B9
E AOl C8 CA BC
N KEYBOX.COM
w
Q

For other 3.x versions of DOS, replace the address column directly after the initial Es
as follows: ·

DOS Version
3.0 3.1 3.2
592 662 9AB
5AO 670 9B9
5AE 67E 9C7
5CC 69C 9E5
5DA 6AA 9F3
5E8 6B8 AOl

Once you've created the appropriate KEYBOX. COM file, run it. You can toggle back
and forth between the normal keyboard and the new one by hitting Ctrl-Alt-Fl and
Ctrl-Alt-F2.

With version 3.3, IBM totally revamped the way DOS handles foreign alphabets. But
it did so in the most confusing way possible. First, instead of calling the process something
clear and simple like "font loading,•• IBM referred to it as .. code page' switching." Then,
it forced the user to digest three different and seemingly contradictory chunks of the
manual - a whole chapter relegated to the rear between Error Messages and EDLIN, an
abstruse few pages under "DEVICE" in the CONFIG.SYS section, and several other

Favorite Tips 751

dense dollops under MODE, NLSFUNC, and CHCP. Manual writers everywhere should
be forced to plod their way through these sections to see the ultimate example of how not
to explain things.

Code page switching will show new fonts only with DOS 3.3 or later and only on
EGNVGA monitors and IBM Convertible LCD screens. (You can print the new
character fonts only on IBM Model 4201 Proprinters and Model 5202 Quietwriter IIIs.)
If you want to see all the new characters, assuming both that the 3.3 or later DIS
PLAY.SYS file is in your C:\DOS subdirectory and that you're using an EGA, first
include a line in your CONFIG.SYS file:

DEVICE=C:\DOS\DISPLAY.SYS CON=(EGA,437,5)

Then create a small SHOWFONT.COM file that will display the high-bit ASCII
characters DOS tinkers with, by loading DEBUG.COM and typing in:

ElOO B4 OE BO 84 CD 10 FE
E107 co 3C FC 75 F8 BO OD
ElOE CD 10 BO OA CD 10 C3
N SHOWFONT.COM
RCX
15
w
Q

Finally, type in the following CODEPAGE.BAT batch file (assuming COUN
TRY .SYS is in your C:\DOS subdirectory and that MODE, NLSFUNC, and the SHOW
FONT.COM file you just created are in a directory you've included in your path):

C:\DOS\COUNTRY.SYS
MODE CON CP PREP=((850,860,863,865) EGA.CPI)
ECHO Hit any key 4 times
MODE CON CP SEL=865 >NUL
SHOWFONT
PAUSE>NUL
MODE CON SP SEL=850 >NUL
PAUSE>NUL
MODE CON SP SEL=860 >NUL
PAUSE>NUL
MODE CON SP SEL=863 >NUL
PAUSE>NUL
MODE CON SP SEL=437 >NUL

While code pages 865, 863, and 860 will be interesting only to residents of Norway,
French-speaking Canada, and Portugal, Multilinfual rp 850 can display some long
needed characters, such as ®, ©, ~' x, ¢, 3/4, and and .

752 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

GRAPHICS and GRAFTABL

If you 're working with text and you want a permanent copy of what's on the screen, you
can just tum your printer on and press Shift-PrtSc.

But if you 're working with a language like BASIC or Pascal and you have a fancy
graphics image on your screen and want to send a copy of this image to your printer, you
can'tjust use the Shift-PrtSc technique unless you first run the DOS GRAPHICS utility.

The print screen routine coded in ROM BIOS works only with characters. If the display
is in a graphics mode, the routine will print only the ASCII characters that it can recognize,
but won't translate the graphics. This is a reasonable restriction, since graphics protocols
for printers vary a great deal and the ROM BIOS can't support them all.

The GRAPHICS.COM program (or GRAPHICS.EXE in some versions) supplements
the ROM BIOS print screen routines. It remains resident in memory, so you need load it
only once during your PC session. Once it's loaded, your system can print 320 x 200
four-color graphics (video modes 4 and 5), and 640 x 200 black and white graphics (video
mode 6) on an IBM Graphics Printer or compatible. Under DOS 4.0 and 5.0 you can
dump newer graphics screens.

GRAPHICS uses different dot densities for the four colors of the 320 x 200 mode to
simulate color. More recent DOS versions of GRAPHICS also support various IBM
printers that can actually reproduce the colors.

Older versions of GRAPHICS.COM don't support the additional video modes of the
IBM Enhanced Graphics Adapter (EGA).

If you 're using a graphics screen on a CGA system and you try to generate ASCII
characters with values above 127, you'll end up with a mess unless you first load the
DOS GRAFfABL utility.

The PC ROM stores the bit patterns for ASCII characters with values from 0 through
127 starting at address FOOO:FA6E. Each character is represented by eight successive
bytes. Interrupt lF at the very bottom of memory (address 0000:007C) stores the address
of an optional table of bit patterns for the high-bit ASCII characters with values from 128
to 255. GRAFf ABL loads such a table into RAM and adjusts the address at 0000:007C
to point to this table.

If GRAFf ABL isn't loaded, the address at 0000:007C will be 0. If you then try to print
an ASCII value over 127 in graphics mode, your system will assume the table of high-bit
character patterns is stored at address 0, or 0000:0000. This happens to be where your
system stores interrupt vectors, not character patterns, so your system will end up trying
to make characters out of vector addresses. The result is junk.

Each new hardware release changes the rules. EGA and later video adapter BIOS
provide bit patterns for all 255 characters. In the most recent versions of DOS,
GRAFf ABL can also load the hodgepodge of foreign language code page data into
memory.

Starting with the EGA, IBM made it easy to use alternate character sets. The CGA and
monochrome adapter ROMs contained character dot patterns that only the adapter could
use. But the EGA and all subsequent adapters put copies of the dot patterns into the normal
megabyte of the PC's address space, where they're fairly easy to reach.

Favorite Tips 753

(Actually, the CGA contains two sets of dot patterns. The normal one draws characters
out of lines that are two pixels wide. If you yank out your CGA adapter, find jumper P3,
and connect the jumper's two pins, you can see the alternate single-pixel character set.
Ifs not worth the trouble.)

STACKS

If you 're stuck using DOS version 3.2, watch out for a nasty but easily correctible bug
- an "Internal Stack Error" message. Simply pressing the Pause key on the new IBM
keyboard rapidly ten times will produce this message and lock your system, forcing a
power-down restart.

The DOS manual states that this error is caused by a "rapid succession of recursive
hardware interrupts," and suggests adding the command "STACKS=N,S" to your CON
FIG.SYS file. N represents the number of stack frames, where the default is 9 and the
range is 8 to 64. S is the size in bytes of each frame, where the default size of each stack
frame is 128 bytes and the range is 32 to 512. Using this STACKS statement reduces
available memory.

While most users don't pound on the Pause key, a fast typist entering data into a Lotus
1-2-3 spreadsheet can easily trigger the error, halting your system and resulting in lost
data, time, and effort.

You can eliminate the problem by adding a line like:

STACKS=32,256

to your CONFIG.SYS file, which lets you pound on the Pause key about 25 times before
causing an error.

If you're using DOS 4.0 or 5.0, the line STACKS=O,O will free up a bit more memory
for you to use.

XCOPY

Sometimes a new DOS version isn't much of an improvement over the previous one. At
other times, however, the new DOS version contains a real gem. One of the most dazzling
is the XCOPY command introduced with version DOS 3.2. Ifs an extended COPY
command that includes some of the features of BACKUP, as well.

XCOPY is fast. It reads as many files as will fit into memory from the source disk,
then writes the files to the destination disk in one speedy gulp. COPY, on the other hand,
reads and writes each file individually, continually switching back and forth between the
drives.

When used with its optional /S switch, XCOPY will also copy files from nested
subdirectories, creating new subdirectories on the target disk as needed. While sub
directories are more common on hard disks than diskettes, some floppies contain

754 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

subdirectories to organize the data on them better or to store more than the maximum
112 or 224 files that a diskette root directory can hold. To copy such a diskette type:

XCOPY A:*.* B: /S

To copy all the diskette files to a subdirectory of your hard disk while maintaining the
same directory structure, try:

XCOPY A:*.* C:\SUBDIR /S

where SUBDIR is a subdirectory of your hard disk.
Similarly, if you need to copy a directory of your hard disk (including subdirectories

within just that directory) to a diskette, XCOPY also comes to the rescue:

XCOPY C:\SUBDIR*.* A: /S

Sometimes you may want to copy selected files from one disk to another. You could
COPY each of these files individually, or you could use the /P (prompt) switch with
XCOPY:

XCOPY C:\SUBDIR*.* A: /P

In this case, XCOPY will ask file by file whether you want to copy each. You simply
type Y or N. And, you can use the /S and /P switches together.

XCOPY is extremely useful for making backups. The JD switch followed by a date
copies just those files created or changed on that date or later. So:

XCOPY C:\SUBDIR*.* A: /D:04-15-91

copies to A: only those files created or changed on or after April 15, 1991.
Another aid in backing up files is the file archive bit, which is set to 1 when the file is

first created and every subsequent time you change it. When you tack on a /M parameter,
XCOPY will copy only those files whose archives bit are set to 1. After it copies each
file, XCOPY resets the archive bit to 0. The next time you use XCOPY with a /M
parameter, XCOPY will skip over any file with an archive bit value of 0, which avoids
cluttering up your backup disks with duplicate copies of files that you haven't changed.

You can use XCOPY to back up your C: hard disk with the command:

XCOPY C:*.* A: /S /M

When drive A: runs out of space, simply put in a new diskette and rerun the command.
Those files already copied will not be recopied to the next diskette.

The advantage of using XCOPY instead of BACKUP for this chore is that the copies
on the diskette remain normal useable files. While BACKUP can also copy files
selectively, you have to use the RESTORE command on copies made with BACKUP

Favorite Tips 755

before you can use them. The one advantage of BACKUP is that it can split huge files
over several floppy disks. But until version 3.3, BACKUP and RESTORE could create
havoc on your hard disk by copying older versions of your DOS system files over newer
versions.

COMMAND

If you 're like most users, you know that COMMAND.COM is a part of DOS needed to
operate your system properly. Erase it from your root directory and you won't be able to
boot your system. You may also know that one of COMMAND.COM's roles is to process
the commands you type, like DIR, CHKDSK, or 123. But you may not know that
COMMAND.COM itself is also a useful command.

To understand how this works, you have to know what the various parts of DOS do.
When you make a disk bootable (by formatting it with a /S parameter, or later using SYS
and COPY COMMAND.COM), you're adding three files to it:

• IBMBIO.COM
• IBMDOS.COM
• COMMAND.COM

The first two files (which are called IO.SYS and MSDOS.SYS on DOS 5.0 and on
earlier non-IBM systems) are .. hidden" since they won't show up in normal directory
searches, although· you can see them by typing CHKDSK /V or running a program on
one of the accompanying disks like DR.COM.

In DOS 2.0 and above, IBMBIO is essentially a series of device drivers that let DOS
communicate with the hardware of the PC, including the display, the keyboard, the disk
drives, and the printer. In many cases, these IBMBIO.COM device drivers use the ROM
BIOS interrupts.

IBMDOS.COM contains the code needed to execute the DOS function calls that
actually do the behind-the-scenes file, disk, and basic system work. If a particular function
call needs to use a hardware device, it calls a device driver routine in IBMBIO.COM.
This is why the chapter on screens deals almost exclusively with BIOS calls rather than
DOS calls, since video is hardware-based.

In most cases, programs issue DOS calls to IBMDOS.COM, then IBMDOS.COM
issues device driver calls to IBMBIO.COM, then the device drivers issue interrupts to
the ROM BIOS, and the ROM BIOS talks to the hardware.

COMMAND.COM is the program that is running when no other program is running.
It asks for the date and time when you boot up, displays the DOS prompt, reads in what
you type at the DOS prompt, and searches to see if what you typed in is an internal
command (DIR, C9PY, ERASE, etc.). If so, it will execute that command, often using
lots of interrupt 21H DOS function calls. If the command you typed is not an internal
command, then COMMAND.COM will search the current directory for a COM, EXE,
or BAT file of that name, and then use directory paths set by path to do further searches.
COMMAND.COM then loads the program, and takes over when the program is done.

756 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

COMMAND.COM also executes batch file programs, including AUTOEXEC.BAT
when DOS is first loaded. And it assumes control during critical hardware errors and
issues the much-loved "Abort, Retry, Ignore, Fail?" message.

To further complicate matters, COMMAND.COM divides itself into two pieces when
it is first loaded into memory. The "resident" part of COMMAND.COM, about 3K bytes,
sits in the lower end of memory above the other two DOS files. The ••transient" part of
COMMAND.COM - the bulk of the program - resides up at the very top of user
memory.

The transient part of COMMAND.COM interprets and executes the DOS internal
commands and does batch file processing. These facilities are not needed when other
programs are running. By sitting at the top of memory, the transient COMMAND.COM
does not take up valuable memory space. It can be overwritten by other programs if they
need the space.

When a program exits, it returns control to the resident part of COMMAND.COM,
which performs a simple checksum calculation of the memory area normally occupied
by the transient COMMAND.COM. This way it can tell whether the information loaded
in that area of memory is indeed its own transient part or whether the transient part was
overwritten. If it was overwritten, the resident part then reloads the transient part of
COMMAND.COM back into memory.

That's why exiting from a large program can cause a disk access while COM
MAND.COM is reloaded into memory. Some programs - like 1-2-3 and many compil
ers - always use that top area, so this may happen often.

You can execute any DOS internal command (or any COM, EXE, or BAT program
for that matter) from within an assembly language program by loading a secondary copy
of COMMAND.COM and passing to it a parameter containing the command or program
name. COMMAND.COM will then handle all the complicated details and return control
back to your program.

If you want, you can load a secondary version of COMMAND.COM directly from the
DOS command level. First, figure out how much memory is available by typing:

CHKDSK

Then type:

COMMAND /C CHKDSK

and you'll see that a smaller amount of memory is available.
Under DOS 5.0 the memory-reporting part of the listing will look something like:

C>CHKDSK

655360 bytes total memory
629728 bytes free

C>COMMAND /C CHKDSK

655360 bytes total memory
626912 bytes free

Favorite Tips 757

The 3000-byte difference is the amount of memory used by the second resident portion
of COMMAND.COM. When you add a /C and the name of an executable file (such as
CHKDSK), COMMAND.COM will execute the file and then terminate just like any
other program by returning control to the previously exeeuting program, which in this
case is the primary copy of COMMAND.COM.

This can come in very handy with batch files. Normally if a line in one batch file
executes a second batch file, control won't return to the first batch file. But if the first
batch file contains a line like:

COMMAND /C BATFILE2

I ~
then the second BATFILE2.BAT batch file will be executed by tlie secon~zy command
processor. When BATFILE2 finishes, DOS returns control to the original copy of
COMMAND.COM, which continues processing the initial batch file at a point directly
following the COMMAND /C BATFILE2 line.

(The CALL batch command, introduced with version 3.3, handles this task somewhat
more efficiently.)

However, if BATFILE2 contains a PROMPT, PATH, or SET command, then this will
affect the environment of the secondary COMMAND.COM which will be lost when
BATFILE2 completes execution and control is returned to the primary COM
MAND.COM.

If you load a secondary copy of COMMAND.COM without the /C you can see how
this works, by having the two versions juggle different prompts. Try typing in these four
commands, one after the other:

PROMPT [LEVELl]
COMMAND
PROMPT [LEVEL2]
EXIT

The first command changes your nonnal prompt to [LEVELi]. The second command
loads a secondary version of COMMAND.COM. The third command changes the prompt
to [LEVEL2]. This [LEVEL2] prompt is effective only for the second copy of COM
MAND.COM. Typing EXIT at that point returns you to your original version of
COMMAND.COM, so the prompt returns to [LEVEL 1].

Programs often load secondary versions of COMMAND.COM themselves. First, they
make sure that enough memory is available for DOS to load another version of COM
MAND.COM. When a program first begins executing, all available memory is allocated

758 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

to it. So; some of this memory must be freed up. Before the memory is freed up, the stack
pointer may have to be moved from the area of memory being freed, so the stack isn't
destroyed in some way.

Then, the program has to figure out where you've stored COMMAND.COM on your
disk. In DOS 2.0 and above, programs have access to your system's environment, which
is designed to keep track of things like the current DOS prompt, any path you may have
set with the PATH command, and the drive, directory, and filename of your current
command processor.

You can see the current environment setting by typing SET. One of the lines displayed
will begin with "COMSPEC=" and will show the drive, directory, and filename of the
command processor COMMAND.COM. Any program can get at its environment by
accessing the memory beginning at the segment address stored in offset 002CH of the
Program Segment Prefix.

Once the program that needs to load COMMAND.COM figures out where it's stored,
it can perform a PC-DOS EXEC function call 4Ha of interrupt 21H, which loads any
COM or EXE file, executes it, and then passes control back when finished.

COMMAND.COM can generate slightly confusing errors based on which parts of it
are handy and which are not. If you run programs that use disks without DOS on them,
you may see one of the following three messages on the screen:

or

or

Non-system disk or disk error.
Replace and strike any key when ready.

Insert disk with COMMAND.COM
and strike any key when ready.

Insert disk with batch file
and press any key when ready.

The first message occurs when the PC is booting and the disk in drive A: does not have
a copy of all the required operating system files on it. If you get the first message after
you run a program, it means the program is terminating by rebooting your system. That• s
not very polite, but some primitive programs do it that way.

The transient section of COMMAND.COM that includes all the internal commands is
not needed while another program is running. But once a program terminates, your system
does need this section, so the resident part of COMMAND.COM performs the checksum
calculation mentioned above. If it can't find COMMAND.COM on the disk, it prints the
message:

Insert disk with COMMAND.COM
and strike any key when ready.

Favorite Tips 759

Usually, the transient part of COMMAND.COM looks for COMMAND.COM on the
disk it was originally loaded from. For a floppy system, this will be drive A:. You can
change this, however, if it will later be more convenient to keep COMMAND.COM
somewhere else. With DOS 3.x versions you can tell DOS to look for COMMAND.COM
elsewhere by changing the COMSPEC variable in the environment string. If you 're using
a RAMdisk as drive C:, for instance, you can enter:

COPY COMMAND.COM C:
SET COMSPEC=C:\COMMAND.COM

Under DOS 2.x, this won't work. You have to load a secondary copy of COMMAND
and specify the search path as a parameter:

COPY COMMAND.COM C:
COMMAND C:\COMMAND.COM

Copying COMMAND.COM onto a RAMdisk and then telling your system you've
done so can speed up operation significantly after memory-hungry programs have
finished.

The third error message from the above list:

Insert disk with batch file
and press any key when ready.

means that the program was invoked from a batch file and COMMAND.COM needs the
rest of the batch file to continue. What's annoying is that you'll get the third message
even if the batch file has just executed its last line. But this message is the easiest to get
rid of. Just press Ctrl-Break. You'll be asked if you want to terminate the batch file.
Answer with a Y.

If you have a batch file called SAMPLE.BAT and you want a permanent record of its
execution, you can't get one by redirecting the output with a command like:

SAMPLE.BAT > LOGFILE

However, 2.x versions of DOS let you use COMMAND.COM to do it. First, add a
final line to your batch file that says:

EXIT

Then type:

COMMAND > LOGFILE

This will load a second version of COMMAND.COM and redirect all activity into it.
You won't be able to see anything on your screen at this point. Type in the name of your

760 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

SYS

batch file very carefully. The batch file will run normally, then execute the EXIT
command \VJien it's done and return to the first version of COMMAND.COM. To see
what went oil, just inspect the LOGFILE file.

With later versions of DOS, you can try:

COMMAND /C SAMPLE.BAT > LOGFILE

(repl~cing SAMPLE.BAT with the actual name of the batch file you want to execute and
any p~rameters you want to pass to it).

You can also record batch activity by typing Ctrl-PrtSc or Ctrl-P to toggle on your
system's p$t~r echo feature. Press Ctrl-PrtSc or Ctrl-P when you're done to turn this
feature off. While it's on, everything that appears onscreen will also be sent to your printer
(unless you 're doing something tricky that your printer can't figure out).

These days there's no excuse for doing anything with floppy disks other than using them
to back up your data or move information to another system.

However, some qi~hards still work on floppy-based systems, and some pesky copy
protected software still forces users to boot from floppies. Booting from a diskette means
that the floppy has to have the three DOS system files on it. However, each new, improved
version of DOS is even more bloated than the one before it. And sometimes there's almost
no room left on your floppies for the fat new system files.

To upgrade the DOS version on a bootable disk, you'd normally use SYS to transfer
the new IB~J3IO.COM and IBMDOS.COM files' (or their generic equivalents) to the
old disk, theri'use COPY to install the new version of COMMAND.COM.

But this may not always be so easy.
Each disk contains a tiny single-sector 512-byte boot record that reads IBMBIO and

IBMDOS from the disk and loads them into memory. It's handicapped greatly because
IBMBIO and IBMDOS know all about using files and the disk, but the boot record can't
use them because the files aren't in memory yet.

Because of this handicap, the boot record requires that IBMBIO.COM and
IBMDOS.COM be the first two directory entries and that IBMBIO.COM be at the
begfnning of the disk data area in contiguous sectors .. (The IBMDOS.COM can be
anywhere on the disk.)

The problem is that DOS has grown so much that diskettes prepared for earlier DOS
versions do n~t have enough room for the later IBMBIO files. A floppy containing a
once-popular version of 1~2-3 (lA) allocated 1,920 bytes for IBMBIO.COM and 6,400
bytes for IBMDOS.COM. Under DdS version 3.1 IBMBIO.COM grew to 9,564 bytes.
For PC-DOS 3.2, it ballooned to 16,368 bytes. The 4.01 version was 32,816 and DOS
5.0's MSDOS.SYS needs 37,394 bytes of space.

To fix a si~ation like this, you have to get rid of the file temporarily that prevents
IBMBIO.COM from being stored in contiguous sectors. In the case of the 1-2-3 (lA)

Favorite Tips 761

system disk, this file is the first one you see when you do a DIR command, or run
123.EXE.

So you would first use the COPY command to transfer 123.EXE to another diskette.
Next (assuming you have the DOS disk in the default drive A: and the 1-2-3 system disk
in drive B:) you'd execute the following commands:

DEL B:123.EXE
SYS B:
COPY COMMAND.COM B:

Finally, you would copy the 123.EXE file back to its old floppy.
The copy protection used in 1-2-3 (IA) was innocuous so you can safely copy files to

other diskettes and then copy them back. Other copy-protected software may require that
all the files be in certain sectors, and the above technique won't work with those disks.

FDISK

Fooling around with your hard disk can be very dangerous. Don't even think of doing it
if you 're not totally backed up or if you 're the least bit nervous about it. But because you
may have a strange hardware configuration, a funny version of DOS, or some other
bizarre and potentially troublesome system quirk, don't try these tricks unless you follow
every instruction to the letter and take full responsibility for anything that happens.

When you first tum on your PC or reboot with Ctrl-Alt-Del, ROM BIOS first checks
out and initializes your system. BIOS then attempts to load into memory the first sector
of the first surface of the first track of the diskette in drive A. The first sector on a diskette
contains a single-sector bootstrap loader program. If the diskette is bootable, the
bootstrap loader loads the rest of the operating system into memory. The operating system
is effectively pulling itself up by its own bootstraps, which is why a system reset is called
a boot.

On a hard disk system, the BIOS will first attempt to boot from drive A:. If drive A:
does not contain a diskette or the drive door is open, the BIOS then attempts to boot from
the hard disk. Again, it reads into memory the first sector of the first surface of the first
cylinder of the hard disk. If this sector contained a bootstrap loader like the one on a
disk-ette, the hard disk could accommodate only one operating system.

Instead, the first sector on a hard disk contains another small partition loader program
and some partition information. The format of this partition information is documented
in IBM's DOS Technical Reference manual. Only 16 bytes are required for each partition.
These 16 bytes contain a code to identify the operating system, the starting and ending
sectors of each partition on the hard disk, and which partition is bootable.

The partition loader searches through the partition information to determine which
partition is marked as bootable. Each partition contains its own bootstrap loader in the
first sector of the partition. So, all the partition loader need do is load the bootstrap loader
for the bootable partition and then let the bootstrap loader take over.

762 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

In summary, for a diskette, the BIOS loads the bootstrap loader and the bootstrap loader
loads the operating system. For a hard disk, the BIOS loads the partition loader, the
partition loader loads the bootstrap loader for the bootable partition, and the bootstrap
loader loads the operating system.

The program that lets you juggle hard disk partitions is FDISK, which can divide a
hard disk into one, two, three, or four separate partitions. Each of these partitions can
accommodate a different operating system. Most people use the whole hard disk for DOS
and thus have only one partition on the hard disk. When you first set up a system with a
hard disk, you have to use FDISK to define a DOS partition even before you use
FORMAT. (Often this is done by the computer store, so if you're using a hard disk and
have never used FDISK, don't worry about it.)

If you use FDISK to define more than one partition on your hard disk, FDISK lets you
mark one (and only one) of these partitions as "active," which means that it's bootable.
If you boot from the hard disk, the operating system in that partition will be the one that
comes up.

For a partitioned hard disk, you have several ways to choose one operating system over
another when you boot up your machine:

Even if the DOS partition is not marked as bootable, you can still access the DOS
partition if you boot DOS from a diskette. So, if you had two partitions on your hard disk
- DOS and something else - you could use the DOS partition if you boot DOS from
a diskette and the "something else" partition if you boot from the hard disk. The choice
between the two partitions simply depends upon the drive A: door being open or not.

Or, you could boot up DOS from a diskette, use FDISK to change the partition, then
reboot from hard disk. This is fairly fast and if you do it a lot, you may want to set up a
special disk that calls FDISK from an AUTOEXEC.BAT file.

Be very careful - experimenting with hard disk partitions is best done with a clean
hard disk or a hard disk with disposable data. Changing the size of the DOS partition with
FDISK wipes out the DOS partition (or at least the FAT and directory information).
FDISK will warn you about this. Heed the warning.

If you 're using a hard disk that seems to devour more than its share of space, you might
be able to make things more efficient by reducing the cluster size. Might. And again, you
have to very careful about this.

The entire data area of a hard disk is divided into smaller areas called clusters. Files
on a disk are always stored in one or more clusters. If the file does not fill up the last
cluster it occupies, then the rest of the space in that cluster is lost. The number of bytes
in each file reported by the DIR command is the size of the file when it was created or
last modified. The amount of space that file actually requires on the disk is the size of the
file rounded up to the next multiple of the cluster size.

On average, you would probably lose about half a cluster for each file on the disk. It
might be more if you have a lot of small files less than half the cluster size.

You can easily determine the cluster size for a particular disk. First, do a DIR and note
the ••bytes free" vaiue. Then create a very smaU fiie. Tne easiest method is with the
command:

ECHO > SMALLFIL

Favorite Tips 763

Do another DIR and see how much space you've lost. That's your cluster size. DOS 4.0
and 5.0 report the size of the cluster, which are called "allocation units."

The cluster size is always a power of 2 and for most normal disks, a multiple of 512.
Some RAMdisks may have cluster sizes of 128 or 256, but real disks have cluster sizes
of 512, 1,024, 2,048, 4,096, and 8, 192 bytes. For a single-sided floppy diskette, the cluster
size is 512 bytes. For a double-sided diskette, it's 512 or 1,024 bytes. For a ten-megabyte
hard disk, the cluster size can be 4,096 bytes.

For hard disks larger than ten megabytes, the cluster size is dependent upon the DOS
version used when originally configuring the disk using FDISK and FORMAT. A
20-megabyte hard disk originally configured under DOS 2.x has a cluster size of 8, 192
bytes.

A cluster size of 8, 192 bytes is absurdly large, and is the result of the method introduced
way back in DOS 1.0 for storing files on a disk. This method limited the total number of
clusters on a disk to 4,078 (4,096 minus a handful of cluster numbers used for special
purposes).

With DOS 3.0, the total number of clusters possible on a hard disk was increased to
65,518, which let users make the cluster size on a hard disk smaller. A 20- or 30-megabyte
hard disk that has been FDISKed and formatted under DOS 3.x has a cluster size of 2,048
bytes, because DOS 3.x allows cluster sizes on a hard disk to be represented by 16-bit
values instead of 12-bit values. However, DOS 2.x can work only with the old 12-bit
FAT.

It's a good thing that DOS 2.x doesn't even recognize the 20-megabyte hard disk
formatted under DOS 3.x. If it assumed that the FAT contained 12-bit values, it could
easily scramble up the FAT beyond recognition. Since the FAT is the most critical part
of a disk, this would be a very serious problem.

How does DOS 2.x know enough to leave the disk alone? It's all in the partition table.
A hard disk can be divided into one to four partitions, each of which may contain a
different operating system. A table with the partition information is stored on the first
sector of the disk. Each partition has a system indicator, which is a one-byte value that
denotes the operating system of the partition. DOS 2.x uses a 01 to indicate a DOS
partition. DOS 3.x uses a value of 01 for a DOS partition with a 12-bit FAT and 04 for
a DOS partition with a 16-bit FAT. A value of 5 means an extended partition, while 6
means it's a DOS 4.0 or later monster drive. So, when DOS 2.x looks at the hard disk
partition table and sees only that 04 system indicator, it thinks the partition is non-DOS
even though it really is a DOS partition.

You'll experience this DOS 2.x incompatibility only with hard disks greater than ten
megabytes formatted under DOS 3.x. A normal PC-XT ten-megabyte disk can be used
by either DOS 2.x or DOS 3.x or later regardless of the formatting.

With 65,518 clusters available, it's theoretically possible to have a cluster size of 512
bytes for a 20- or 30-megabyte disk, but you really don't want a cluster size that small.
Since files are stored in noncontiguous areas of a disk, a small cluster size would mean
that files could become overly fragmented, which could slow down file access time.

Prior to DOS 3.0 (which was introduced at the same time as the IBM PC-AT) IBM
did not sell a hard disk over ten megabytes. The original PC-AT had IBM's first
20-megabyte hard disk. Although it's possible to install a 20- or 30-megabyte drive on a

764 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

PC or XT running DOS 2.x, nobody working with strict IBM parts ever had a cluster size
over 4,096 bytes. The problem of these excessively large cluster sizes was fixed only
when IBM introduced a 20-megabyte hard disk. In one sense, it's not even IBM's problem
if you have a 8, 192 byte cluster size.

So, what can you do about this? If you have a hard disk over ten megabytes originally
configured under DOS 2.x, you can usually reconfigure it under DOS 3.x to get a smaller
cluster size.

Warning: don't even think of trying the techniques mentioned in this section unless
every single one of your files is absolutely currently backed up, and you 're working with
a brand new blank hard disk, and you know what you 're doing, and you take all the
responsibility for any bizarre effects. Otherwise, just read along.

This assumes that your C: hard disk is connected to a hard disk controller card that has
its own ROM BIOS, that you don't need anything special in a CONFIG.SYS file to use
the hard disk, and that you (or somebody at your computer store) originally configured
the hard disk by running the normal FDISK and FORMAT command included in IBM's
PC-DOS. It also assumes you're using a version of PC-DOS 3.2 or later.

First, you must back up your entire hard disk. Do it twice to play it safe. For your 12
megabytes of files, you '11 need about six boxes of diskettes for two backups. Buy high
quality diskettes for this. Format them all before you begin. Don't use any that have bad
sectors.

The BACKUP command you want is:

BACKUP C:*.* A: /S

which backs up everything on drive C: in all subdirectories. BACKUP will prompt you
to put in new diskettes. Label them in sequence.

When you're done with the backup, boot up PC-DOS from drive A:, and run FDISK
by typing:

FD I SK

One of the FDISK menu options is to delete the existing DOS partition. Do this first.
Then create a DOS partition, which is another menu option. You probably want to use
the entire hard disk for DOS, so answer yes to that question. Your system will now reboot.
Make sure the DOS diskette is still in drive A:.

When you get back to the DOS prompt, format the hard disk with:

FORMAT C:/S/V

After this is done, you can verify that everything is running smoothly by doing a DIR
and a CHKDSK on drive C:. You can try rebooting with the drive A: door open. Your
machine should boot from the hard disk. At this point, you can create a small file to see
if your cluster size is indeed smaller. It should be 2,048 bytes.

Favorite Tips 165

Boot up again from the floppy. Now you can proceed to RESTORE the backed-up
files onto your hard disk with the RESTORE command:

RESTORE A: C:*.* /S /P

This whole process can be very scary and you may encounter some .. gotchas" along
the way. Here are some of them:

First, some copy-protected programs installed on a hard disk may not work after a
BACKUP and RESTORE. Others will. Some of the problem programs (Lotus 1-2-3
Release 2, for instance) can be deinstalled. If you have any of these programs, deinstall
them from the hard disk before you begin and reinstall them when you 're all done. When
in doubt, contact the manufacturer. (After they give you the information you need, tell
them what you think about copy protection. Use whatever language you feel appropriate.)

Second, people have sometimes had problems with BACKUP and RESTORE. Some
times RESTORE chokes in the middle of restoring from a bunch of diskettes. That's why
you should do two backups. You may want to take other precautions: your hard disk
probably has a number of purchased programs on it and a number of your own data files
in various subdirectories. You can probably recreate those purchased programs from the
original diskettes. For your own data files, particularly the ones most valuable to you,
use the regular COPY or XCOPY command to copy them to diskettes.

Third, if you 're using a version of DOS older than 3.3, BACKUP will back up hidden
and read-only files, including the DOS files called IBMBIO.COM and IBMDOS.COM.
When you run RESTORE, you want to use the /P switch as shown above, which prompts
you when it is about to backup over existing read-only files. When you get the prompt
for IBMBIO.COM and IBMDOS.COM, answer NO. DOS 4.0 and 5.0 do this automat
ically.

Older versions of RESTORE will copy the old version of COMMAND.COM from the
backed up floppies. to your hard disk. When you are done with the RESTORE, copy
COMMAND.COM from your newest DOS floppy diskette to the root directory of the
hard disk with the command:

COPY COMMAND.COM C:\

If you booted from the newly formatted hard disk before running RESTORE, DOS
will try to load the COMMAND.COM from the hard disk after RESTORE is completed.
But this would be the old COMMAND.COM. This is why you should boot from your
latest DOS floppy before beginning RESTORE. When RESTORE ends, you will be
prompted to put the DOS disk in drive A:, so it can find the correct version of
COMMAND.COM.

DOS 3.3 solved these system-file problems by modifying RESTORE so it won't
restore IBMBIO.COM, IBMDOS.COM, or COMMAND.COM. However, because it
won't restore these files, you have to use SYS to put these system files back on your hard
disk, and then use the COPY command to put COMMAND.COM back. Nobody said it
would be easy.

766 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

I

Fourth, after you 're done with the RESTORE, your hard disk will still contain copies
of all the external DOS programs (such as CHKDSK and MODE) from your old DOS
version. You should replace these with the latest DOS versions. More recent copies of
DOS have a command called REPLACE that automates this process.

Fifth, sometimes after all this, funny things happen. For instance, you may not be able
to boot from drive C:. If this is the case, boot from a new DOS floppy and get into FDISK
again. Choose "Ch3;nge the Active Partition" in the menu. If the status of the DOS
partition is marked "N," it means it's nonactive and you can't boot from it. Make it active.
Sometimes just entering and leaving FDISK fixes the problem. ~

If you think that your hard disk still has the old DOS IBMBIO, IBMDO~r
COMMAND files on it, you can boot from your new DOS floppy and execute th~,
commands: '"

SYS C:

and:

COPY COMMAND.COM C:\

This will reinstall the newest version of DOS on your hard disk.
Sixth, if you have a tape backup unit and you would rather use that instead of BACKUP

and RESTORE, you should determine whether it does a file-by-file backup or an "image ..
backup. Many tape backup units give you a choice. You want to do a file-by- file backup.
If your tape backup unit can only do an image backup, don't use it. The image stored on
the tape will include the hard disk's FAT and this will be a different format under newer
DOS versions. When you restore the hard disk from the imaged tape, the old File
Allocation Table will be copied back to the disk. No good. If you do a file-by-file backup
and restore, it will probably copy over the DOS files. Boot your new version of DOS
from drive A: and do the SYS command and COPY of COMMAND.COM before you
try bootiqg from the hard disk.

Seventh, after you've used DOS 3.x or later FDISK on a 20-megabyte or bigger disk,
you cannot use the hard disk with any DOS version prior to 3.0. If you boot up from a
DOS 2.x floppy, DOS simply will not recognize the hard disk. Some people (program
developers, mainly) need to test programs under several DOS versions. These people
may nt<OO to have their hard disks recognizable by DOS 2.x. They shouldn't reconfigure
their hard disk.

Finally, this whole discussion is based on the IBM version of MS-DOS (which is called
"Personal Computer DOS .. by IBM and commonly called "PC-DOS" by the rest of us).
Some ~ersion8 of MS-DOS for other manufacturer's ma~hines may not support the
smaller cluster size, so doing this will not have any effect. Again, when in doubt, contact
the manufacturer. '·

If in doubt, don't try any of this.

Favorite Tips 767

DOS Filters
One of the most useful features of DOS versions starting with 2.0 is the ability to pipe or
redirect data.

These later versions of DOS provide five standard input and output devices (standard
input, output, error, auxiliary, and printer) and let you reshuffle the way these devices
handle their input and output. For instance, while programs normally receive input from
the keyooard and display output on the screen, you could easily reroute things so that a
program receives input from a disk file and sends output to your printer.

To give you added power, DOS provides three special programs called filters that can
comb through the data on its way from one part of your system to another: MORE.COM,
SORT;EXE, and FIND.EXE. You can use MORE to display text a screenful at a time,
SORT to arrange the contents of your files in sorted order, and the multitalented FIND
to hunt through files for specific strings of characters, count the number of lines in your
files, and even add line numbers to your text.

The accompanying disks contain several other useful filters that do useful things like
redirect output to two devices, and improve on the DOS MORE and SORT commands.

DOS uses three command-line operators to handle redirection and piping:<,>, and I·
The command:

DIR > DIRLIST

redirects output by taking the directory information that would normally appear onscreen
and sending it i~tead into a disk file call~ DIRLIST. Similarly, the command:

SORT < DIRLIST

would redirect input by using the contents of the DIRLIST file as input for the SORT
filter rather than keystrokes from the keyboard. The output of this process would go to
the screen, and you'd see a directory listing sorted in alphabetical filename order.

(You could even combine redirected input and output on the same line, by adapting
this command to:

SORT < DIRLIST > DIRLIST.$RT

DOS would then take the raw, unsorted DIRLIST file, redirect it as input into the SORT
program, and redirect the output into a new alphabetically sorted file called DIR
LIST.SRT.)

By executing the first two commands one after the other, you could produce a sorted
directory listing:

DIR > DIRLIST
SORT < DIRLIST

768 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

However, this would leave a file on your disk called DIRLIST that you• d have to erase
later. What you really want to do is combine the two lines into one command. But you
can't do it with a command like:

DIR > SORT

Instead, use the I piping symbol:

DIR I SORT

When you pipe the output of DIR into-SORT, DOS will create its own temporary files
in the root directory of your disk to hold the information normally sent to standard output
by the DIR command. Then it will redirect standard input so this temporary file feeds
into the SORT program. When ifs done, DOS will automatically delete the temporary
files it created.

If you're in the root directory when you try this, you may see two strange files with
names like:

OD102A1F
OD102A25

0

0

6-01-88
6-01-88

1:16p
1:16p

These zero-length files with eight-digit hexadecimal filenames are the temporary files
DOS creates during the redirection process.

Recent DOS versions use the PC's clock to derive names for the temporary files, which
is why they look like numbers. DOS 2.x gave the temporary files names with the word
PIPE in them, which is at least a hint at what they did:

%PIPE1
%PIPE2

$$$
$$$

0

0

6-01-88
6-01-88

1:16p
1:16p

All temporary PIPE files have 0 bytes lengths since DOS displays the directory listings
after it created the files and opened them for input but before it had a chance to close
them.

You can also use piping to execute several programs or commands in sequence. For
instance, if you had a \GAMES subdirectory and a program in it called CHESS.COM,
you could first change directories and then run CHESS by typing:

CD \GAMES I CHESS

If you had another game called CHECKERS.COM in the same subdirectory, you could
do the above and then run CHECKERS immediately after CHESS by typing:

CD GAMES I CHESS I CHECKERS

Favorite Tips 769

While this doesn't work with all DOS commands, it does let you combine certain
operations together into one line. To see how this works, type in the following one-line
batch file called THISFILE.BAT that creates a subdirectory called TEMP one level lower
than the directory you are currently using, copies itself into this new subdirectory, logs
into it, and then does a directory listing:

MD TEMP I COPY THISFILE.BAT TEMP I CD TEMP I DIR

Actually, DOS provides a fourth redirection operator: >>. When you use the double
>>symbol, DOS will create a new file for output if the specified file doesn't already
exist, but will append information to an existing file without overwriting any old
information already in the file. If you use a single > symbol, DOS will always overwrite
any existing information.

So if you don't already have a file called DIRLIST on your disk, both of these
commands will work identically:

• DIR I SORT > DIRLIST
• DIR I SORT » DIRLIST

As will DOS 5.0's DIR /O:N > DIRLIST.
But if your disk already contains a DIRLIST file, the first command will wipe it out

and replace it with the sorted directory listing, while the second command will just tack
the new sorted directory listing onto the end of the existing DIRLIST file.

When you issue a command like DIR I SORT without any parameters after it, DOS
assumes you want to sort alphabetically starting with the first character on each line. If
SORT finds lines with the same first character, it will look at the second character to
break the tie. If these are the same, it will keep looking at the next column until it finds
a difference.

SORT arranges text by looking at the ASCII value of each character. The decimal
ASCII value of a lowercase "a" is 97 while the value of an uppercase "A" is 65. However,
DOS 2.x and later versions sort characters differently. DOS 2.x was case-sensitive, and
would arrange a character string like "AAA" before one like "aaa" since the ASCII value
of initial uppercase "A" is lower than its lowercase counterpart. Later versions gave
lowercase letters the same value as their uppercase versions and treat high-bit accented
foreign-language characters the same as their normal low-bit unaccented cousins.

So if you asked DOS 2.0 or 2.1 to sort a file called DATA.RAW that contained the
three lines:

banana
AVOCADO
apple

with the command:

SORT < DATA.RAW

770 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

you'd end up with:

AVOCADO
apple
banana

But if you tried the same command under more recent versions, you'd get:

apple
AVOCADO
banana

You can use two different syntaxes for many identical filter operations. For example,
if your disk contains a long text file called LONGTEXT, and you tried to view the
contents with the command:

TYPE LONGTEXT

DOS would scroll the display rapidly off your screen before you had a chance to read
it. You could pause and then restart the scrolling process by pressing Ctrl-S repeatedly,
but this takes too much concentration and is too imprecise. Instead, just send the output
of the TYPE command through the MORE.COM filter with:

TYPE LONGFILE I MORE

DOS will start displaying information, then pause automatically when the screen fills.
If you press just about any key, DOS will then display another screenful, and repeat the
process until it reaches what it thinks is the end of the file.

You could do the same thing with the command:

MORE < LONGFILE

Similarly, if you wanted to sort the above DATA.RAW file, you could do it either
with:

TYPE DATA.RAW I SORT

or:

SORT < DATA.RAW

But be very careful about which way you point the redirection symbol. While:

SORT < DATA.RAW

Favorite Tips 771

will sort the contents of your DA TA.RAW file, turning the symbol around:

SORT > DATA.RAW

will wipe out your DATA.RAW file. This is because DOS thinks you want a new file
called DAT A.RAW to be the output of the SORT process rather than to serve as the input.
So it opens the DATA.RAW file and erases everything already in it.

Similarly, typing:

DIR I MORE

will display your files a screen at a time (as will DIR /P), but typing:

DIR > MORE

will create a new file called MORE and redirect your directory listing into it. It won't
damage the MORE filter, since its real name is MORE.COM.

When a redirection symbol is pointing into a filter,' DOS will treat the file on the other
side of the symbol as a source of input. When a redirection symbol is pointing out of, or
away from, a filter, DOS will treat any filename on the other side of the symbol as an
output file.

If you 're using a redirection symbol rather than a piping symbol, the name of the DOS
filter has to be the first thing after the DOS prompt. So:

C>SORT < DATA.RAW

will work just fine, while:

C>DATA.RAW > SORT

won't do anything other than generate a .. Bad command or filename" error, since DOS
will view the period between DATA and RAW as a space, and look for a command or
executable file named DATA. If you happened to have a file called DATA.COM,
DATA.EXE, or DATA.BAT handy, DOS would run it.

When you have the choice, it's more efficient to use redirection than piping. To see
the comparison, try running two slightly different sets of batch files that display the
contents of all the batch files in your current subdirectory one at a time. Once you've
created all four files, see the difference in speed by first running SCANBA Tl and then
running SCANBAT2. The first pair, SCANBATl.BAT and READl.BAT, use piping:

REM SCANBATl.BAT
ECHO OFF
FOR %%F IN (*.BAT) DO COMMAND /C READl %%F

REM READl.BAT

772 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

ECHO OFF
CLS
ECHO %1
TYPE %1 I MORE
PAUSE

The second pair, SCANBA T2.BAT and READ2.BAT, use redirection:

REM SCANBAT2.BAT
ECHO OFF
FOR %%F IN (*.BAT) DO COMMAND /C READ2 %%F

REM READ2.BAT
ECHO OFF
CLS
ECHO %1
MORE < %1
PAUSE

The workhorse line in READ2.BAT:

MORE < %1

is far faster than its equivalent in READl.BAT:

TYPE %1 I MORE

(Again, you can speed things up even more by substituting CALL in place of COM
MAND /C for any DOS version 3.3 or later.)

You can have the SORT command start sorting on a column other than the first one.
Just add a/+ and a column number after the SORT command.

A normal directory listing looks something like:

FILE 001 11759 10-01-87 5:34p
FILE 002 2176 10-02-88 2:45p
FILE 003 11454457 10-03-86 11:27p

t t t t t t
coll col 10 col 14 col24 col30 col34
name ext size month year time

The filename itseif starts on coiumn i. Tne filename extension begins on column iO,
its size on column 14, its date on column 24, and its time on column 34.

To sort this list of files by size using SORT, type:

DIR I SORT /+14

Favorite Tips 773

If you wanted to sort them by size, but in reverse order, just add a /R:

DIR I SORT /+14 /R

or:

DIR I SORT /R /+14

These numbers are hard to remember. You can create one big SD.BAT (for Sorted
Directory) batch file that makes it easy to see any sort of directory listing you want:

ECHO OFF
SET DEV=CON
IF %1!==! GOTO OOPS
FOR %%A IN (N n E e S s D d T t) DO IF %1==%%A GOTO OKAY
GOTO OOPS
:OKAY
IF %3!==! GOTO NOTHIRD
SET DEV=%3
IF %2==/r GOTO CHEKNAME
IF %2==/R GOTO CHEKNAME
GOTO OOPS
:CHEKNAME
ECHO This will create a file called %3
ECHO If this is not what you want, press
ECHO Ctrl-C then answer Y. Otherwise,
PAUSE
GOTO MAIN
:NOTHIRD
IF %2!==! GOTO MAIN
IF %2==/r GOTO MAIN
IF %2==/R GOTO MAIN
ECHO This will create a file called %2
ECHO If this is not what you want, press
ECHO Ctrl-C then answer Y. Otherwise,
PAUSE
SET DEV=%2
:MAIN
GOTO %1
:N
DIR I SORT %2 > %DEV%
GOTO END
:E
DIR I SORT /+10 %2 > %DEV%
GOTO END
:S

774 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

DIR I SORT /+14 %2 > %DEV%
GOTO END
:D
DIR I SORT /+24 %2 > %DEV%
GOTO END
:T
DIR I SORT /+34 %2 > %DEV%
GOTO END
:OOPS
ECHO You can sort by name, extension, size, date or time
ECHO by following %0 with a N or E or S or D or T, eg:
ECHO %0 N or %0 n or %0 E
ECHO
ECHO
ECHO
ECHO
:END

To sort in reverse order,
%0 N /R or %0 n /r or %0
To put the results into
%0 s /R DIRSORTR.FIL

IF %DEV%==CON GOTO BYE
IF %DEV%!==! GOTO BYE
ECHO Now enter: TYPE %DEV%
:BYE
SET DEV=

or

E
a
%0

add a /R, eg:
/r

file, add a filename, eg:
S DIRSORT.FIL

This is a lot of work to go through to get the equivalent of the new DOS 5.0 DIR
options, but it shows how versatile SORT can be.

Early versions of DOS may erroneously turn ECHO back on at the end of the batch
file. If this happens, stick an ECHO OFF at the offending point.

This batch file is somewhat complicated because it can accept so many different
syntaxes and because it tries hard to screen out invalid entries.

If you enter just SD without any parameters, or with invalid parameters, the batch file
will jump to the :OOPS label and print instructions. Here's a summary of what the
program will do for you:

Sort in Order Of
Name
Extension
Size
Date
Time
Reverse name
Reverse extension
Reverse size
Reverse date
Reverse time

Syntax
SDN (or) SDn
SD E (or) SD e
SD S (or) SD s
SDD (or) SDD
SDT(or) SDT
SD N /R (or) SD n /R.
SD E/R (or) SD e/R
SD S /R (or) SD s/R
SD D /R (or) SD D /R
SD T /R (or) SD T /R

(Actually, you could substitute /r in place of /R.)

Favorite Tips 775

The %0 variables in the ECHO statements following the :OOPS label will make sure
that the instructions accurately reflect the batch file's name if you decide to rename it to
something like DIRSORT.BAT.

The long test line:

FOR %%A IN (N n E e s s D d T t) DO IF %1==%%A GOTO OKAY

screens out any sorting parameters that aren't valid. Then it uses the:

GOTO %1

command to jump execution to the proper batch label, so if you enter S because you
wanted to sort by size, the batch file will jump to the :S label. DOS is normally
case-sensitive about everything, but it automatically capitalizes labels, so it will jump to
the :S label whether you typed SD S or SD s.

The lines that look like:

IF %1!==! GOTO OOPS

and:

IF %2!==! GOTO MAIN

and:

IF %3!==! GOTO NOTHIRD

test to see how many parameters you entered. When you enter a command at the DOS
prompt, DOS sets the. value of a replaceable parameter called %0 with the name of the
command (or executable file) itself. Then it sees if you typed anything after the name of
the command or file and sets additional replaceable parameters values accordingly. So
if you entered:

SD E /R

DOS would set the following parameter values:

%0 SD
%i E
%2 /R

SD .BAT gives you two options for handling the results of the various directory sorts.
You can either have it display the results onscreen (the default) or redirect the results into
a file. If you specify a valid filename as a third parameter, SD.BAT will create a file and
redirect the sorted listing into it. You may also skip the /R parameter and add a filename
as the second parameter.

776 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

To give you the option of sending the sorted results to the screen or to a file, SD.BAT
uses an environment variable called %DEV%. It first sets the value of %DEV% to CON.
If you didn't enter a filename, DOS will substitute CON for %DEV: and turn the line:

DIR I SORT /+14 %2 > %DEV%

into:

DIR I SORT /+14 %2 > CON

Here the CON output device stands for the screen, so redirecting output to CON
displays the sorted listing on your monitor.

However, if you stuck a filename onto the end:

SD S DIRSORT.FIL

or:

SD S /R DIRSORT.FIL

SD.BAT will redefine %DEV% to the filename you entered. The tricky part is that
this filename can either be the second or third thing that you enter on the command like
after the SD, since you can add an optional/Ras the second parameter.

The %DEV% variable doesn't hog much room in the environment, but if yours is
already crammed to the gills you may get an error message telling you you're out of
environment space. If so, you'll have to make your environment a bit bigger. See the
chapter on environments for details.

You can try the same kind of device switching if you program in BASIC. Many
programmers who write routines that send output to the printer first write them to display
on the screen. This saves paper and makes debugging a lot easier.

The technique involves using PRINT# instead ofthe normal PRINT command. Before
executing any of these PRINT# statements OPEN the screen (SCRN:) for output (e.g.,
OPEN "SCRN:" FOR OUTPUT AS #1).

Then, whenever the PRINT# statement executes, the output will go to the screen just
as it would if it were using an ordinary PRINT statement. If you want a hardcopy version
of the same output, CLOSE the file and OPEN it again using your printer as the output
device (e.g., OPEN "LPTl:" FOR OUTPUT AS #1).

If you try this, avoid using commands like LOCATE statements that would confuse
your printer. A sample routine might look like:

100 I DEVSHIFT.BAS
110
120 PRINT "Where should the output go - "
130 PRINT TAB(lO) ;"1 - Screen"
140 PRINT TAB(lO) ;"2 - Printer

150 I$=INKEY$:IF I$="" THEN 150
160 ON VAL{I$) GOTO 180,190
170 BEEP:GOTO 150
180 OPEN "SCRN: II FOR OUTPUT AS #l:GOTO
190 OPEN "LPTl:" FOR OUTPUT AS #1
200 I

210 ' ** program continues here **
220 I

230 PRINT #1, "This is a test"

Favorite Tips 777

230

If you do try sorting your files, make sure that similar entries all begin in the same
column. SORT will work well with a fixed-field data base but not with a random access
file. Fixed field files look like:

Allenovitch Paul
Ballmer ski Steve
Kingstein Adrian

345 Hilltop Lane
10 Maple Avenue
98612 Hideaway Heights

A random-access or comma-delimited version of this might be:

Allenovitch,Paul,345 Hilltop Lane
Ballrnerski,Steve,10 Maple Avenue
Kingstein,Adrian,98612 Hideaway Heights

If you wanted to sort on first names, you'd be able to do it on the fixed-field version.
SORT also won't work on any file longer than 63K. A pity. And it needs to see carriage

returns at the ends of the lines it's sorting. Many applications have their own sorting
routines that use faster algorithms, but for quick and dirty DOS tasks, SORT works just
fine.

FIND is one of the most versatile DOS commands. When combined with other DOS
commands and features, it can track down long-forgotten files, scan across hundreds of
files in a subdirectory for matching strings, and even give you a rudimentary address
book with an automatic lookup feature.

Most users clutter their root directory with dozens of miscellaneous or temporary files.
The ideal root directory, however, should contain only your first level of subdirectories
and the critical files COMMAND.COM, CONFIG.SYS, and AUTOEXEC.BAT. This
way, typing:

DIR \

will give you an index to the main subdirectory structure of your hard disk.
While DOS will print out a list of subdirectories if you type:

DIR *

778 DOS Power Tools, 2nd Edition, Revisedfor DOS 5.0

the list will also include any filename that lacks an extension. The DOS manual provides
a better way, using FIND:

DIR I FIND "<DIR>"

Actually, to prevent wear and tear on your fingers, all you have to enter is:

DIR I FIND 11 <11

However, this will show you only the subdirectories in your root directory. For a quick
onscreen list of all your subdirectories, type either:

TREE I FIND "Path"

or:

CHKDSK /V I FIND 11 Dir 11

For a permanent copy, redirect the output into a SUBDIR.LST file:

TREE I FIND 11 Path 11 > SUBDIR.LST

or:

CHKDSK /V I FIND 11 Dir 11 > SUBDIR.LST

In fact, since CHKDSK /V reports every file on your disk in every subdirectory, along
with the full path, you can use it to locate a file buried in a subdirectory many levels deep.
The FIND FILE.BAT batch file mentioned earlier can find any file on your disk. It's built
around the single line:

CHKDSK I v I FIND 11 %1 11 I MORE

(The newer ATTRIB /S command works even better.)
FIND FILE.BAT isn't as fast as dedicated assembly language utilities such as WHERE

or SEARCH but it's slightly easier to use, since it lets you locate files by entering just a
fragment of the filename. FIND FILE will uncover any matches containing the specified
fragment, regardless of whether the match is to the left or right of the dot in the filename.

If you normally use FIND to uncover single words or parts of single words, and you
hate typing in the required quotation marks, you can create another small batch file called
F.BAT:

ECHO OFF
IF %2!==! GOTO OOPS

FIND 11 %1 11 %2
GOTO END
:OOPS
ECHO The format is: %0 STRING FILE
ECHO where STRING is the one-word
ECHO string you want, and FILE is
ECHO the file you're searching
:END

Favorite Tips 779

While this saves typing, it won't let you hunt for any strings with spaces in them, since
it will interpret the word after the first space as the name of the file you want to search.
Remember, too, that FIND is case-sensitive, so it won't locate "String" if you tell it to
find "string" or "STRING."

DOS can't handle wildcards when executing a normal FIND command, although you
can tell it to look through several files in one operation. To have it search through the
first three chapters of a book for the text "DOS version" you would use a command like:

FIND uDOS version" CHAPTER.1 CHAPTER.2 CHAPTER.3

You can have FIND snoop through every file on your disk by using a FOR .. .IN ... DO
command in a batch file like the following PINDALL.BAT:

ECHO OFF
IF %1!==! GOTO OOPS
FOR %%A IN (*.*) DO FIND 11 %1 11 %%A
GOTO END
:OOPS
ECHO You must enter a one-word
ECHO string you want to find
:END

This batch file will uncover every matching single-word string in every file in the
logged subdirectory. Unfortunately, while it will print each match it finds, it will also
print the name of every file it checks, along with a "----------" whether or not it locates a
match.

You can normally get rid of such unwanted lines by piping text through a FIND
command that includes a /V parameter. If you wanted to see a listing of all the files in a
particular directory, but didn't want to see any subdirectories, you could type:

DIR I FIND /V "<DIR>"

or the shorthand version:

DIR I FIND /V II< II

780 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

If you're currently in a subdirectory bursting with files and you want to see all the files
with the letters .. COM" in them, you can type:

DIR I FIND "COM"

and you may see something like:

COMFILES <DIR> 6-05-88 7:46p
WELCOME HOM 21376 8-27-88 11:32a
INCOMING MAL 6925 2-22-88 10:22p
MORE COM 2166 6-17-88 12:00p
COMMON LST 1561 5-22-88 12:00p
PRINT COM 14024 8-3-88 12:00p
PROCO MM <DIR> 6-05-88 7:46p

To remove the subdirectories from this list, add a FIND /V command:

DIR I FIND II COM" I FIND /V II< II

and you'll get:

WELCOME HOM 21376 8-27-88 11:32a
INCOMING MAL 6925 2-22-88 10:22p
MORE COM 2166 6-17-88 12:00p
COMMON LST 1561 5-22-88 12:00p
PRINT COM 14024 8-3-88 12:00p

(If all you wanted was the COM files, you could of course type:

DIR *.COM

But this FIND command would do it as well:

DIR I FIND II COM"

You need the extra space between the quotation marks, since DOS sticks a space between
the filename and the extension in all directory listings.)

However, you can't combine FIND commands in a FOR. . .IN ... DO batch command.
Changing the third line in PINDALL.BAT to:

FOR %%A IN (*.*) DO FIND 11 %11 %%A I FIND /V 11

11

wouldn't remove the extraneous filenames and "----------" bars. You could do it by
adapting PINDALL.BAT so it passes parameters to a second batch file called FA.BAT
that does the actual work:

First, the revised PINDALL.BAT:

ECHO OFF
IF %1!==! GOTO OOPS
FOR %%A IN (*.*) DO COMMAND /C FA %1 %%A
GOTO END
:OOPS
ECHO You must enter a one-word
ECHO string you want to find
:END

Next, FA.BAT:

ECHO OFF
FIND 11 %1 11 %2 I FIND /V 11

11

Favorite Tips 781

If you're using a DOS version 3.3 or later, you could improve performance slightly by
substituting CALL for COMMAND /C.

It's importantto time- and date-stamp your files so you'll always know which versions
are most current. And by doing so, you can have the DOS FIND filter help locate recent
files for you.

If you have a crowded archive subdirectory that contains an important file you know
you created in January, but you can't remember what you named the file, you can isolate
all your January files by typing:

DIR I FIND II 1- II

DOS is finicky about what's inside the quotation marks. FIND ··1-" would display
dates like .. 11-23-87" and•• 3-21-86" since the .. 1-" string is part of each. The leading
space (directly after the initial quotation mark and before the 1) in•• 1-" is unique to
January. However, if your subdirectory contains files created over several years, FIND
•• 1-" may display files created in 1/85, 1/86, 1/87, 1/88, etc. To toss out all but 1/88 files,
use FIND twice:

DIR I FIND II 1- 11 I FIND 11 -88 11

This pipes the entire directory through the January filter, and then filters out everything
that doesn't have an 88 in it. If you suspect that this process would uncover lots of files,
you can pause the display a screenful at a time by sending the output through the MORE
filter:

DIR I FIND II 1- II I FIND II -88 11 I MORE

Piping output through one or two filters in a row doesn't degrade performance very
much, but a long chain of successive FINDs could drag on for quite a while. Copy the

782 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

files to a RAMdisk if you can. And if you try it on a crowded floppy disk, you may as
well ju$t go out for lunch.

Directory output contains more information than just a listing of files and subdirector
ies. If want to see your files without the volume serial number and directory information
at the top:

Volume in drive A is POWER TOOLS
Volume Serial Number is 104F-16CD
Directory of A:\SUBDIR

or the "bytes free" data at the bottom:

5 File(s) 295936 bytes free

you can type:

DIR I FIND /V "e"

All fotlr lines of text contain lowercase "e" characters but no filenames can, and the /V
will suppress anything with an "e" in it.

One of FIND's least used features is its ability to count your lilies. If you were sure
every line of all your files contained something common like a space, you could have
FIND look for spaces (by specifying •• ") and count them. Unfortunately, many files
contain lines with nothing on them except carriage returns, or single unspaced words at
the end of paragraphs.

However, since presumably no line in any of your files has a ridiculous string like
.. &@#$"you can use the /V to count how many lines don't contain this. This NUM
BER.BAT file will use this trick to give you an accurate line count:

ECHO OFF
IF %1!==! GOTO OOPS
ECHO Number of lines:
FIND /C /V "&@#$" %1
GOTO END
:OOPS
ECHO Enter a filename after %0
:END

Run this batch file on the revised PINDALL.BAT batch file above and you'll see:

Number of lines:
---------- FINDALL.BAT: 8

The FIND command can also number all your lines. Again, use the trick of having the
/V report all lines without an unlikely string:

ECHO OFF
IF %1!==! GOTO OOPS
FIND /V /N 11 &@#$ 11 %1 I FIND /V 11

11

GOTO END
:OOPS
ECHO Enter a filename after %0
:END

Run this batch file on the new FIND ALL.BAT and you ·n see:

[l] ECHO OFF
[2]IF %1!==! GOTO OOPS
[3]FOR %%A IN (*.*) DO COMMAND /C FA %1 %%A
[4] GOTO END
[5] : OOPS
[6]ECHO You must enter a one-word
[7]ECHO string you want to find
[8] : END

Favorite Tips 783

You can create a brand new file where each line is individually numbered, by redirecting
the output to a file (here called NMBRFILE):

ECHO OFF
IF %1!==! GOTO OOPS
FIND /V /N 11 &@#$ 11 %1 I FIND /V 11

- - - - -
11 > NMBRFILE

GOTO END
:OOPS
ECHO Enter a filename after %0
:END

You can use FIND to clean up many displays and reports. For instance, if you want to
see how many bad sectors are on your hard disk and type CHKDSK, DOS will bury this
bad-sector information in with a report on the volume name, the amount of free memory,
the number of hidden files, etc. But if you filter the output through FIND with:

CHKDSK I FIND 11 bad 11

all you'll see is how many bytes of bad sectors that DOS uncovered. By putting other
strings inside the quotes, you could use this same technique to report just the number of
subdirectories, the amount of free space on your disk, the number of files on your disk,
etc.

One of the more annoying aspects of DOS is that it won't ordinarily report the time
and date without asking you whether you want to reset them. By using FIND, however,
you can create two files, T.BAT and D.BAT, that will print the current time and date
without any fuss.

784 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

T.BAT contains the single line:

ECHO ONE I MORE I TIME I FIND "Cu"

Similarly, D.BAT is:

ECHO ONE I MORE I DATE I FIND "Cu"

If you're using a version of DOS 3.3 or later, put a@ at the very beginning of the line
so it doesn't display onscreen as it executes. Using the ECHO command starts the whole
process, but it doesn't actually print ·the word ONE. The MORE command supplies the
carriage return needed to trigger the DATE and TIME. And the FIND command screens
out everything other than the line with the word "Current" on it.

Many RAMdisk users reset their COMSPEC so that DOS looks on the correct drive
if it needs to reload COMMAND.COM. What's your current COMSPEC? A single-line
batch file called COMSPEC.BAT will let you know:

SET I FIND "SP"

If you've ever used the TYPE command to snoop inside a COM file to see what text
messages it contains, you've probably been annoyed by a profusion of beeps. Whenever
TYPE stumbles across an ASCII character 7 it tells DOS to beep the speaker. You can
avoid this in examining a beep-filled file like COMMAND.COM, by typing:

FIND /V ""G" COMMAND.COM

(Note: You don't actually enter the "G in the above example, although one will show up
onscreen when you enter the ASCII 7 bell character. To enter it, after typing in the FIND
/V and the initial quotation mark, type Ctrl-G, then type the second quotation mark and
the COMMAND.COM filename.)

The above techniques assume you're hunting for single strings only. By piping the
output of one FIND command through another FIND command, you can limit your search
to the few instances where two specified strings occur in the same line.

Suppose you have a file called NAMEFILE with the following contents:

Buddy Jones, 3 Main Street, Boneville, OK
Mary Smith, 1 Park Lane, Washington, DC
Sam Jonesbury, 21 M Street, Washington, DC

If you wanted to locate just the Jones who lived in Washington, typing:

FIND "Jones" NAMEFILE

would report both the Jones you were looking for and the Jonesbury you weren't. You
could limit the search to lines containing both "Jones" and "DC" with the command:

FIND "Jones" NAMEFILE I FIND "DC"

Favorite Tips 785

While SORT required fixed-field records, FIND isn't picky. But it is fussy about
quotation marks. If you 're searching for these you have to wrap each one in its own set
of quote marks. Assume you're hunting through a MORETEXT file covering the MORE
filter that contains the passages:

Unfortunately, the MORE command isn't
really very friendly. After it fills a
screen with text, it prints a terse
message at the bottom: "- More -"
What it really means at this point is
"Hit a key to see additional text."

If you want to find occurrences of the string " - More - " you• d have to use a command
like:

FIND """- More -""" MORETEXT

FIND also makes it easy to print a list of files that you've either created or changed on
a particular.day. If you've been toiling away all day on 12/9/90, and you want to check
a particular file you updated early in the morning but have forgotten its name, you can
simply type:

DIR I FIND "12-09-90" I FIND "a"

The first FIND will search for everything created on 12/9 (you must remember to pad
single-digit dates with zeros), and the "a" will limit the search only to files created before
noon. This assumes, of course, that you properly date- and time-stamp your files.

While you can pipe the output of one FIND search through several others, such
repeated FIND sieves can take an awfully long time unless you 're working on a fast hard
disk or RAMdisk.

The classic use of FIND is to give yourself a lightning-fast address book. First, to build
up your NAMEFILE file of names and addresses, create an ADD NAME.BAT batch file
with the following contents:

ECHO OFF
ECHO Enter up to one line of name
ECHO and address info at a time
ECHO
ECHO When all done, press Enter, then
ECHO the F6 key, then Enter again
ECHO
ECHO Enter names and addresses now:
COPY NAMEFILE + CON NAMEFILE > NUL

Then, whenever you want to add a new name to your master NAMEFILE list, just type
ADDNAME and follow the directions onscreen. When you're all done entering new
names, be sure to hit the Enter key and then the F6 function key and then the Enter key

786 DOSPower Tools, 2nd Edition, Revised/or DOS 5.0

one last time. The > NUL in ADD NAME.BAT prevents unnecessary text from showing
up onscreen.

The actual LOOKUP.BAT batch file that searches through your address book looks
like:

ECHO OFF
IF %1!==! GOTO OOPS
FIND 11 %1 11 NAMEFILE I MORE
GOTO END
:OOPS
ECHO Enter the string to look up after the %0
:END

Again, putting quotation marks in the batch file saves you from having to type them
in yourself each time you want to look something up, but it also limits you to single-word
entries. If you don •t mind typing quotation marks from the command line, and you want
the ability to search for strings with spaces in them, remove the quotation marks that
surround the % 1.

If you create your master NAMEFILE properly, you can use this technique to print
out the listings for those people living in NY, or with Zip Codes that start with 100 .. , or
who have area codes beginning with 212. And if you add discrete codes to the NAMEF
ILE listing, such as XM to indicate that the person should be on your Christmas card list,
you can sort such listings out easily.

Remember, though, that FIND is case sensitive, and that ifyou•re hunting for Empire
State listings by searching for "NY,•• LOOKUP.BAT would also print out a listing for
the "PONY RIDERS ASSOCIATION.••

You could create a DELNAME.BAT batch file that used redirection and the /V FIND
option to delete names:

COPY NAMEFILE NAMEFILE.BAK
FIND /V "%1" NAMEFILE.BAK I FIND /V "---" > NAMEFILE

This DELNAME.BAT procedure is far from foolproof, however, since ifs all too easy
to delete an inadvertent match (which is why the batch file creates an automatic backup
file). And this process can pile up extra carriage returns in your files.

Printers
When ROM-BIOS tries to send something to your printer, it checks whether the printer
is ready to receive characters. If the printer isn•t ready, BIOS sits there continually
rechecking the status. To avoid getting trapped in an endiess loop, BIOS wiH give up
after a predetermined "timeout•• interval, and report that the printer is busy. If you·re
printing from DOS, you·n be greeted with the friendly ''Abort, Retry, Ignore, Fail?"
message.

Favorite Tips 787

On early PCs, timeouts sometimes occurred during fonn feeds on the IBM's slow dot
matrix printer, so IBM increased the timeout interval starting with version 1.1 of DOS.
These delay values are stored in the BIOS data area beginning at hex address 0040:0078.
This area contains four-byte values for the four parallel printers that the BIOS (in theory)
supports. The current PC ROM BIOS initializes the time-out values to hex 14 (decimal
20).

You can experiment with different timeout values in DEBUG. To double the LPTl
timeout value to 40 (28 hex), for instance, just load DEBUG and enter the following pair
of lines at the DOS prompt:

E 0040:0078 28

Q

Be careful with memory addresses; if you get them wrong, you can write over some
other important settings or instructions and get into trouble.

Once you find a value that works well, you can add a line to your AUTOEXEC.BAT
file to change it everytime you boot up. Just adapt the two lines shown above and put
them into a file called TIMEOUT.SET. Then add the following line to your AU
TOEXEC.BAT:

DEBUG < TIMEOUT.SET

When your system boots up, BIOS sniffs through your hardware trying to figure out,
among other things, how many parallel printer adapters are attached. It uses three possible
1/0 port addresses to communicate with up to three adapters - hex 278, 378, and 3BC.

When it finds a valid printer adapter, it inserts the adapter's port number into a table
starting at BIOS data area 0000:0408. The table has room for four 16-bit entries. BIOS
puts the first port address at offset 408, the second (if it exists) at 40A, and the third (if
there is one) at 40C. Then it encodes the number of printers it found into the high two
bits of the BIOS Equipment List word at offset 410.

DOS uses four device names to refer to printers - PRN, LPTl, LPf2, and LPT3. PRN
is the default, and is the same as LPTl.

Many commercial applications are designed to work with LPTl. If you have two
printers - LPTl and LPf2 - hooked to your system and want to swap them, all you
have to do is exchange the port addresses at offsets 408 and 40A of low memory.

Several of the programs on the accompanying disks are designed to tame your printer.
Some let you generate fonn feeds from the keyboard. Others make it easy to send
commands to your printer or prevent accidental print-screen attempts.

It's really frustrating to hit Shift-Pt1Sc accidentally. If your printer is on you have to
wait until it finishes typing the contents of the screen, and then readjust the paper to the
top of the next page. If it• s off, your system will hang until DOS realizes that the printer
is not going to respond.

When you type Shift-PrtSc, DOS issues an interrupt 5, which first looks at a location
in low memory called STATUS_BYTE to see whether your system is already dumping
a screen to the printer. If STATUS_BYTE is equal to 1, DOS thinks a screen dump is

788 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

taking place, and exits the routine without dumping another screen to the printer. If
STATUS_BYTE is equal to 0, the routine sets STATUS_BYTE to 1 so that it cannot
interrupt itself, then does the actual dump, and finally resets STATUS_BYTE equal to 0
and exits the routine.

This means you can disable the Shift-PrtSc routine with a simple assembly language
routine, DISABLE.COM, that sets STATUS_BYTE to 1. A similar routine, EN
ABLE.COM, can tum it back on by setting STATUS_BYTE to 0. Both are on the
accompanying disk.

Most printers are capable of doing fancy tricks with fonts, spacing, and unusual
operating modes of one sort or another. But sending codes to your printer isn't always
easy.

First, many printer command codes begin with an escape character (hex lB, decimal
27). But if you try to issue an escape character in DOS, you won't be successful, since
DOS interprets this character as a signal to abort whatever you were trying to do.
However, you can use DEBUG, or EDLIN, or a good word processor, or even BASIC
to generate these escape sequences. See the chapter on ANSI.SYS for tips on how to do
it (ANSI codes also begin with Escape characters).

To make creating custom printer control files easy, you can use the PRCODER.BAT
below. You'll need to have DEBUG.COM in your current subdirectory, or in a directory
that your PATH knows about.

PRCODER.BAT reads parameters from the command line and inserts them into a
DEBUG script (to send the hex values lBH, 49H, and 03H you would type PRCODER
lB 49 3). You can enter several dozen codes on the same command line; the SHIFT
command reads them in and substitutes them one by one for the % 1 replaceable parameter
in the:

ECHO MOV DL,%1 >> PR.SCR

line. PRCODER.BAT then loops back and uses the:

IF %1!==! GOTO FINISH

test to see if there are any more command-line parameters to process. If it finds any, it
concatenates them to the existing DEBUG script. If it doesn't find any, it jumps to the
:FINISH label, adds the necessary DEBUG instructions to write the file, redirects the
script into DEBUG by loading a secondary command processor with: ,

COMMAND /C DEBUG < PR.SCR

to create a COM file, and then erases the DEBUG script.
If the user doesn't enter any parameters, PRCODER.BAT prints instructions and then

quits. DOS substitutes the actual name of the batch file for the %0, so you can rename
PRCODER.BAT to whatever you want. The process will make each PRCODE.COM file
284 bytes long, the maximum length this process can handle. Be sure to rename existing

Favorite Tips 789

PRCODE.COM files before creating new ones so the older version isn •t obliterated by
the new.

While some users might argue that it really isn't necessary to rewrite the MOV AH,5
line each time, it's a good idea to do so since you can't always be sure the AX register
will remain intact after an INT 21.

Note also that the line:

ECHO. » PR. SCR

won •t work properly in some versions of DOS. Its purpose in this batch file is to generate
a solitary carriage return. If your version of DOS stumbles over this, see the comments
on ECHO in the chapter on batch files. If you 're creating this batch file in DOS, you can
press the F7 key instead of typing the period, which will generate a null.

ECHO OFF
IF %1!==! GOTO OOPS
ECHO N PRCODE.COM > PR.SCR
ECHO A >> PR.SCR
:TOP
IF %1!==! GOTO FINISH
ECHO MOV DL,%1 >> PR.SCR
ECHO MOV AH,5 >> PR.SCR
ECHO INT 21 >> PR.SCR
SHIFT
GOTO TOP
:FINISH
ECHO INT 20 >> PR.SCR
ECHO. » PR. SCR
ECHO RCX >> PR.SCR
ECHO llC >> PR.SCR
ECHO W >> PR.SCR
ECHO Q >> PR.SCR
COMMAND /C DEBUG < PR.SCR
DEL PR.SCR
ECHO PRCODE.COM created
GOTO END
:OOPS
ECHO Enter %0 and then the HEXADECIMAL
ECHO values (each FF or less) of the
ECHO printer codes you want to send, eg:
ECHO %0 lB 49 3
:END

The DOS PRINT utility, introduced with version 2.0, is a resident program that lets
you print out disk files while you 're running other programs. It• s fundamentally different

790 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

from other background (or spooler) printing programs, since most software print buffers
lop off a large chunk of user memory as a holding area for text being sent to the printer.
The print buffer program intercepts printer output, stores it in this memory buffer, and
then later transfers it to the printer. This frees up the system for other activities.

PRINT, however, transfers disk files to the printer and· takes up much less memory
than a print buffer program. The size of these files is limited only by disk space. Once a
regular print buffer becomes full, printing slows down to the speed of the printer.

Although PRINT can be used with a diskette system (if you don't change the diskette
containing the print file while printing is in progress), it's best suited for a hard disk
system.

The PRINT.COM program in DOS versions 2.0 and 2.1 had some real problems. You
couldn't specify directory paths with the filename or optimize operation for particular
printers. PRINT version 3.0 corrected these problems and added a slate of new parameters
designed to make the process far more efficient and painless.

PRINT's syntax looks mystifying:

[d:] [path] PRINT [/D:device] [/B:buffsiz] [/U:busytick]
[/M:maxtick] [/S:timeslice] [/Q:quesiz] [/C] [/T] [/P]
[[d:] [path] filename [.ext]]

The /D (device name) and /Q (queue size) parameters are simple enough. Most of the
time you'lljust specify /D:PRN or fD:LPTl to send output to the first parallel printer. /Q
can be set to the largest number of files you'll want to print at one time.

The /B parameter specifies the buffer size; its default is 512 bytes. This is the amount
of memory PRINT sets aside for reading the disk file. The default value means that the
print file will be read 512 bytes at a time. If the buffer is too small, you'll see frequent
disk accesses, particularly with a fast printer. If the buffer is too large, the disk accesses
will be less frequent but slightly longer, and PRINT will occupy more memory.

For a hard disk system with 640K, the best buffer size is probably something like 4096
or 8192, both of which are multiples of 512.

To understand the /S, /M, and /U parameters, you have to understand how PRINT
works.

During operation of the PC, the 8253 timer chip invokes a hardware interrupt (08H)
18.2 times per second, or about once every .055 seconds. This interrupt executes a short
routine in ROM BIOS that counts the number of times it• s called so DOS can know what
time it is. The interrupt 08H routine also invokes an interrupt 1 CH, often called the "Timer
Tick." PRINT intercepts the Timer Tick interrupt to trigger it into operation.

The /S parameter, which IBM calls the timeslice, is the number of timer ticks during
which PRINT will do nothing. When PRINT is doing nothing, the rest of the PC system
will operate as normal, so the /S parameter should really be called the "System Time
Slice."

The /M parameter, which IBM calls the maxtick, is the number of timer ticks during
which PRINT will attempt to shovel characters out to the printer. This is really the time

Favorite Tips 791

slice allocated to PRINT. Assuming that the printer is ready for these characters, PRINT
will have nearly total control during this period and other programs may do nothing.

The default maxtick and timeslice settings are /M:2 and /S:8, which means that PRINT
will be alternately active for 0.11 seconds and inactive for 0.44 seconds (assuming that
the printer is always ready to accept characters). Consequently, PRINT will be working
20% of the time; any other program will be working at 80% of normal speed.

The /U parameter, which IBM calls the busy tick, comes into play only if the printer is
busy when PRINT attempts to print a character. The default value is /U: 1, which means
that PRINT will wait one clock tick (.055 seconds) before giving up its /M time slice.
The rest of the system can then work for /S timer ticks before PRINT makes another
attempt to print.

PRINT also gives up its time slice if a disk access is in progress. The reason for this is
obvious - if PRINT has to get another piece of the file during this time, then real
problems could develop if another program is accessing the disk. The time slice is also
forfeited if a DOS function call is in progress. If /M is very high in relation to /S, you'll
notice a significant degradation of system speed. If/Mis too low, printing will not proceed
as fast as the printer can manage. If /U is too high, PRINT may spend too much time just
checking the printer without actually printing anything if the printer is busy.

However, these parameters may be specified only when PRINT is first loaded. So,
unless you like doing little three-finger exercises repeatedly, you would normally have
a very difficult time optimizing the parameters for your system.

The IBM Graphics Printer that most print utilities consider to be the standard has an
80-character internal buffer. It will not begin printing until the buffer is full or the printer
receives a carriage return or a form feed. When the printer begins printing, it is busy and
cannot accept any more characters until the internal buffer is empty.

The optimum parameter settings for this printer are an /M value equal to the number
of timer ticks needed for PRINT to fill up the printer's buffer, and a /S value equal to the
timer ticks required for the printer to print the contents of the buffer.

For the IBM Graphics Printer printing 80 character lines, the optimal values are /S:20,
/M:4, and /U :2. These values caused better performance than the default values, even
though for most lines, PRINT is active only· 1/6th of total system time. The PRINT
command would look like:

PRINT /D:PRN /Q:20 /B:8192 /8:20 /M:4 /U:2

Unlike the IBM Graphics Printer, many other printers have internal buffers larger than
80 characters. If you attempted to set /M equal to the time it takes for PRINT to fill up a
large· buffer, you may find it to be something like 20 clock ticks or more. In operation,
this would be intolerable, because 20 clock ticks is over one second and the rest of your
system would halt during that time.

For printers with large internal buffers, set /U equal to 1, and /M equal to 4 or 5 (about
1/4 second), and experiment with /S. For very fast printers, you may find /S to be low in
relation to /M. You may want to deliberately slow down the printing so you can get some
work done, or speed up the printing if that's what's important.

792 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

You can use PRINT to print any text file, with or without control characters, stored on
a disk. It expands tabs and assumes that an ASCII 26 (hex 1 A) character represents the
end of the file, so you can't use PRINT for graphics. PRINT will be active during any
program that does not steal interrupt lC. (Some compiled BASIC programs do this.)

Programs that let you go to the DOS command level and then return when you 're done
make this process a lot easier. Be sure, though, to load PRINT before you use it from
within another program, becausy you don't want to make it resident on top of some other
application.

Here's the real kicker: On the DOS command level, and during execution of any
program using DOS function calls to obtain keyboard input, PRINT operates in a totally
different manner, and none of the above information about timer ticks applies.

You could set completely wrong values for PRINT (JS to 255 and JM to 1) and when
you jump into DOS, the printer will chum away, printing your text as fast as possible.
To understand why this happens, you have to look at the internal guts of PRINT.

PRINT works with disk files, so it must make DOS calls to pull these files into memory.
During a DOS function call, DOS S,Witches to an internal stack. DOS actually maintains
three stacks ..::_ one for function calls 01 through OC, another for function calls OD and
above (which includes the file accesses), and a third for function calls 01 through OC
when a critical error is in progress.

Because of this internal stack, PRINT (or any other multitasking utility triggered by a
hardware interrupt) cannot arbitrarily make DOS function calls to access a disk file. If
another program is making a DQS function call, PRINT's function calls may clobber the
intef!ml stack and eventually cause the system to crash.

To prevent this, PRINT uses the undocumented DOS interrupt 21 function call 34 when
it first loads. This function call returns registers ES:BX pointing to a byte in DOS.
Whenever this byte is nonzero, a DOS function call is in progress. When PRINT is
triggered by a timer tick, it ch~cks this byte. If it• s nonzero, PRINT just returns from the
interrupt without attempting to print anything.

Th.is creates~ real problem, because on the DOS command level, COMMAND.COM
executes ~ DOS function call OA for keyboard input, and this DOS call is in progress
until the user presses the Enter key at the end of a line. Many other DOS programs, such
as DEBUG or EDLIN, also use this function call.

So, PRINT takes advantage of another undocumented feature of DOS - interrupt 28.
PC,-::pos itself continually executes an interrupt 28 whenever it is in a wait state (i.e.,
when it is waiting for keyboard input) during a function call of 01 through OC.

WQ.~n an int~rrupt 28 is invoked, PRINT knows that a function call of 01 through OC
is in progress. Because a separate stack is used for function calls of OD and above, which
includes all the file ~ccess calls, PRINT knows that it• s safe to retrieve a file if necessary.
" PRINT will always grind to a halt during any disk access. But you'll also see it stop
dudhg a TYPE comniand after the disk has been accessed. This is because TYPE uses
function call 40 to write the file to the display, and PRINT cannot use DOS during that
time.

Anyone who believes that multitasking is simple to implement in PC-DOS should try
dissassembling PRINT.COM and take a look at the backflips and contortions required
for simple background printing from disk files.

Favorite Tips 793

Security
The more information you can store on your system, the more vulnerable you are to
security problems. Hard disks are a treasure of valuable data - about your company,
your job, even your personal activities.

It's not bad enough that someone could make unauthorized copies of your important
files. What's worse is that he could change or destroy the data. You would certainly know
if someone had erased a critical file. But you might never know if someone altered an
important record or two.

Starting with its AT, IBM wised up and wired its systems to a lock and key. You don't
think IBM added it for show, did you?

Unfortunately, many users are cavalier about security. They leave floppy disks in
drawers or plastic disk caddies, and often wouldn't miss a valuable diskette if it vanished.
One of the penalties of such portability is that someone could walk out of your office
with several file cabinets' worth of confidential information hidden in a pocket or
briefcase.

And while you can catalog your floppies and keep sensitive ones locked in a safe, your
hard disk is just a sitting duck for anyone who wants to pry. An unbreachable system is
certainly not impossible to put together. Legions of government users have to forego the
convenience of conventional hard disks for removable mass storage devices that can be
locked up at night.

There's even a government standard for erasing files and then writing over them to
obliterate any last magnetic trace. The Norton Utilities WIPEDISK and WIPEFILE
programs use these.

If you really need grade-A security, DOS can't help. And most power users can break
into any system in seconds. Encryption is also a possible solution, but a genuine nuisance.
However you can keep casual snoops from getting at your files.

Most tricks involve preventing unauthorized users from booting your hard disk. The
only drawback with such techniques is that a snoop can start an otherwise unstartable
hard disk system by bringing his own diskette along and booting off it. Still, the following
tricks are like locks on desk drawers - they keep the honest people out. If someone wants
to get in, he or she will.

When DOS boots, it looks to see whether A UTOEXEC.BAT is in your root directory.
If it is, DOS passes control to it. So an easy way to keep the honest people out is to patch
COMMAND.COM so it looks for another file, especially one that doesn't have a BAT
extension. In fact, if you 're the cautious type, it shouldn't.

Once you patch COMMAND.COM to start from a hidden AUTOEXEC.BAT file, the
AUTOEXEC.BAT clone can then do the magic you want.

An easy example would be to run an IF ERRORLEVEL program that looked for a
strange key combination - such as Shift-Tab - to continue. If you press Shift-Tab (or
whatever you set the IF ERRORLEVEL test to detect) the program would forge ahead,
and would set things up properly.

But if a user typed any other key, like the Enter key, another IF ERRORLEVEL test
in the list of IFs would detect it and jump to a batch file command that would execute a
small file that reboots your system.

794 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

When a PC boots, its BIOS checks aflag word at location 0040:0072. (One word equals
two bytes; a flag is a part of memory used to keep track of a condition, such as whether
something is set off or on.) If the value of the flag is 1234H, BIOS does a warm boot -
the fast Ctrl-Alt-Del type. However, if it finds the value of the flag is not 1234H, BIOS
does a cold slow boot, going through its tedious memory and equipment checks.

If you use DEBUG to look at low memory addresses 472 and 473 you'll see 34 12
rather than 12 34, since the PC stores words backwards. The high order byte (12) goes
into the higher memory address (473), while the low order byte (34) goes into the lower
memory address (4 72). Despite this, the word takes the lower memory address as its own.

You can use the WARMBOOT.COM and COLDBOOT.COM programs on the
accompanying disks for this. The effect is the same. Actually, it's probably more
infuriating to a data snooper to make him sit through a long memory diagnostic or two.

To further confound unauthorized users, you can do additional mischief. Make sure
you've permanently set your COMMAND.COM to ECHO OFF, or use the ECHO-sup
pressing techniques mentioned in the chapter on batch techniques. Then, since you no
longer have a startup file called AUTOEXEC.BAT, create one with the five lines below
and leave only it and COMMAND.COM on your root directory:

CLS
ECHO ===== Unauthorized Access =====
ECHO Damage to computer will result if
ECHO it is not turned off immediately.
PROMPT Error

If the user tries to run this file, he '11 get a warning and a blank screen. If he just TYPEs
it, he '11 know you mean business. The last line - customizing the PROMPT to say
"Error" - is a nice touch, since every time the user tries something, the screen will balk
and then just print:

Error

Even more diabolical is preventing the unauthorized user from trying any of the
standard DOS commands. The way to do this is simply to rename the important
commands inside COMMAND.COM using DEBUG.

COMMAND.COM maintains a table of internal commands for RENAME, ERASE,
etc. Two of these, DIR and TYPE, are the ones a snooper would use in trying to figure
out what's going on.

If you rename DIR to something like RID or XYZ, and TYPE to EPYT or QRST,
whenever the unauthorized user tries the normal version of these, all he '11 get is the
irritating message "Bad command or file name" since COMMAND.COM will no longer
recognize TYPE or DIR.

You can use DEBUG to change the name_s of the commands stored inside COM
MAND.COM. Load COMMAND.COM into DEBUG and find the file length using
RCX. Specify a search from 100 to the length reported by RCX for something like "REN"

Favorite Tips 195

or .. TYPE." Use E to replace them, making sure your new commands are the same size
as the old ones. Verify with D, write (W), and quit (Q).

You should keep a real copy of COMMAND.COM somewhere on your disk. Once
you've gotten past your IF ERRORLEVEL test and screened out the unauthorized users,
you can load a copy of the real COMMAND.COM, as a secondary command processor.
(If you ever want to, you can drop down to the phony one by entering EXIT.) Using a
secondary command processor like this lets you run all the normal DOS commands. But
be careful if you try this since DOS sometimes gets mad if you mix different versions of
COMMAND.COM.

But the best simple DOS security tip of all lets you hide all your files - including
COMMAND.COM, AUTOEXEC.BAT, CONFIG.SYS, and all your subdirectories -
with the improved DOS A TTRIB command that adjusts the directory listing so DIR won't
show them. And you can bring them all back just as easily. This means that you can hide
everything in your root directory, presenting the snooper with a bare disk. The files are
still there, and they still work, but DIR won't report any.

Of course, CHKDSK /V will still be able to see them, but not all users know this, and
you can rename CHKDSK.COM to something like CH.COM, which is far easier to type
anyway. Still, any serious user can bring his own DOS disk up to your system and figure
out what you did.

This lets you hide and rename your key files and subdirectories, pretty much locking
out anyone who doesn't know how to unhide files using DEBUG.

You can hide all your files at once with the command:

FOR %FIN (*.*) DO ATTRIB +H %F

Just remember how to unhide them with the ATTRIB-H option.
The Norton Utilities (and other similar programs) make it child's play for anyone to

.. unerase" a file that you've deleted from your disk. With the latest iteration of Norton's
software, all you have to do is type QU (for Quick Unerase) and your data is back unless
something else has written over it in the interim.

This is because DOS doesn't actually erase the file; it simply changes the first character
in the directory listing (to tell itself that the old file's space on the disk is available for
new files) and adjusts the disk's internal location tables accordingly.

If you start to overwrite the file before you get a chance to unerase it, you may lose
the beginning of the deleted file, and may have to puzzle over the pieces somewhat, but
if it was a text file you can usually rescue much of it.

Norton• s WIPEFILE and WIPEDISK programs can obliterate any trace of deleted files
by writing a new file over their entire length. You can even have these programs write
specially designed bit patterns over the old data area, and re-execute themselves multiple
times to make sure what• s gone is gone.

So once you've used a program like WIPEFILE on your deleted files, you can breathe
easy, right? Don't be so sure. Such programs expunge only those files you know about.
But what about the secret copies of your files you don't know about?

796 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

Many programs, especially word processors, create temporary files during their normal
operation. They all erase these files before they shut down in normal use, so you almost
never see them.

But if something unexpected happens and you crash out of the program, you may see
a file with a similar filename to one you were just working on, but with a $$$ or TMP
extension.

The trouble is that your word processor almost certainly isn't going to erase the temp
file any better than the DOS ERASE (or DEL) command, which, as we've seen, doesn't
do a very thorough job. And unless you know they're there, you can't obliterate them
with a WIPEFILE-type program.

The solution is simple. Before using WIPEFILE, try to use an unerase program like
QU. You should before someone else does.

This means UN erasing all the little tiny orphan clusters too that end up strewn around
your disk. When it's time to use WIPEFILE, do a maximum disk-wide unerase first, and
follow it up with a maximum text search (Norton again). Then wipe out all the files you
didn't know existed, and all the little leftover pieces.

For maximum hard disk security, periodically copy all your files to floppies or tape,
or to a Bernoulli Box, and WIPEDISK the entire disk. Then reformat the hard disk and
copy everything back. The added benefits to this time-consuming task make the project
worth the effort. First, you end up with current backups, which you obviously should lock
in a safe place. Also, you do away with the inevitable disk fragmentation that results
when you write pieces of files over each other. Your files will fly on a newly formatted,
nonfragmented disk.

Another security technique is to keep a large harmless file around, and copy it over
the file you want to erase before you erase it. This way if someone unerases a file with a
name like SECRET they'll see the contents of the harmless file that you used to obliterate
the actual sensitive one.

To keep the honest people out of your files, hide a Ctrl-Z, or decimal ASCII character
26 end-of-file marker, near the beginning of a file. When a DOS TYPE command trips
over one of these, it stops in its tracks, no matter how long the directory listing says the
file actually is.

You can try using DEBUG to imbed an end-of-file hex lA at the beginning of your
files; it will always stop the DOS TYPE command, but it also may stop the file from
working properly.

A better tip is to give your files bizarre, high-bit names. This will freeze beginners out
of your files, since they won't be able to figure out how to enter the characters to TYPE,
load, or run the filenames. (You know - just use Alt+ the numeric keypad.)

Or you can try something odd like inserting spaces in the middle of your filenames.
DOS chokes on these, but you can use BASIC to manipulate them. And in a pinch, you
can substitute wildcards for spaces in DOS and rename any spaced-out file.

You can also use DEBUG to substitute high-bit characters for COMMAND.COM
L.'ltemal comiuands if you really want to confuse snoopers. Carrying this one step further,
you can turn your normal DOS messages, like:

Volume in drive C is POWER TOOLS
Volume Serial Number is 104F-16CD
Directory of C:\PROGRAM

34 File(s) 1677312 bytes free

Favorite Tips 797

into the same kind of high-bit gibberish. If someone boots up and sees undecipherable
messages and filenames, odds are he '11 give up pretty quickly, thinking you 're using some
sort of very exotic operating system he couldn't possible figure out.

High-bit messages and filenames, coupled with selectively hidden subdirectories and
files, wild-goose-chase AUTOEXEC files, renamed DOS commands, and totally oblit
erated disk surfaces, should let you sleep a tiny bit easier at night. But they can end up
being a pain in the neck for you too.

PC users in corporations often live by a simple rule: if the file contains confidential
information, it must be stored on a diskette and kept in a locked desk. Typically some
paranoia accompanies this rule, requiring users to tum off the PCs after using a confi
dential file so nobody can DEBUG the data out of memory, but this is a little extreme
outside the CIA.

Another potential trouble area is a print spooler or buffer. Some spoolers hang onto
copies of the most recently printed file. If you 're nervous about this, reboot after printing
something sensitive, and tum any hardware buffers off and on again.

While you 're at it, be careful about communications programs that store your password
or other secret information in plain ASCII. These days most "comm" software encrypts
such information, but users often take advantage of keyboard macro programs to put
things like bank account numbers and access codes onto single keys to avoid having to
type them in when doing electronic banking. Make sure any program you use for this
doesn't make it easy for others to learn more about you than you want them to know.

If you're using a sensitive data base that's much too big and complex for diskettes,
another solution is a removable storage medium like the one on !omega's popular
Bernoulli box.

Another possibility is to use an encryption and decryption program. After using a
confidential file, you'd run the encryption program with a password, which scrambles
up the file. When you want to use it again, you'd run the decryption program with the
same password to unscramble it.

Such encryption schemes are very difficult to break without knowing the password,
even if you have access to the decryption program. Moreover, if someone maliciously
tries to scramble up the encrypted program, it should be obvious when it's decrypted. For
such events you should be keeping diskette backups anyway.

Users often want to know how they can install some sort of password protection
on their systems. Infortunately, because of the PC's open architecture, password
security is very difficult to implement. Unless you put a special ROM in your system,
any smart user can defeat just about any password scheme on a hard disk by booting
off a floppy.

798 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

It is technically possible to install a password program that cannot be circumvented by
a drive A: boot. But this program has to be executed before the PC even attempts to boot.
Here's how it works:

When the PC is first turned on, it executes a Power-On Self Test (POST) program
coded in the PC's ROM BIOS. This program initializes the system, checks memory, and
ultimately boots the operating system from a diskette or hard disk. Before the boot,
however, the POST program checks memory locations between hex addresses C8000
and F4000 for the presence of additional ROM programs. Generally these programs must
perform some extra system initialization before the PC is booted. In fact, the extra BIOS
for the XT hard disk is at hex address C8000. You would have to program a small
password routine somewhere in that memory space where it wouldn't conflict with
anything else. Moreover, the program must stay in memory when the PC is turned off.

Getting the password program encoded in ROM is a bit extreme. An easier approach
is to code it into random access memory on a CMOS RAM memory board with battery
backup. CMOS RAM uses very little power - almost none at all while inactive - so a
rechargeable battery backup should last for many months.

The board's memory address would be set up to begin at DOOOO, D8000, EOOOO or
E8000. The program must be in a special format, explained in the ROM BIOS section of
the PC or XT Technical Reference manuals under the heading .. Adapter Cards with
System-Accessible ROM Modules." The code must start off with a hex 55 and AA, to
tell the BIOS that it is executable. The third byte is the number of 512 byte blocks in the
program (probably 1 for a simple password routine). The program itself begins at the
fourth byte. It must return to the BIOS with a far return. You should write the program
in assembly language and not use any DOS calls (interrupts 20 and up) because DOS will
not be loaded when the program runs. You may use all the BIOS resources for the
keyboard and display.

The ROM BIOS does a checksum of the bytes of the program and gives you a terse
"ROM" message if they don't add up to zero ignoring overflow above 256. So, you're
going to have to add up all the bytes in your program, take the negative, and put that byte
somewhere in the file.

One final tip - if you have a security system that disables your keyboard when you
walk away from it, be sure to lock up any other input devices, like mice. If you 're using
Windows, for instance, someone could come along and use the mouse to do all sorts of
damage. Be careful out there.

When It All Goes
Wrong

Funny, isn't it. You get up one perfect morning and the air is crisp and clear, you're full
of energy, bubbling with ideas and enthusiasm. You roll up your sleeves and snap on
your PC to get some real work done. Along about half a disk later you notice a faint odor
of toasting plastic. Nothing to worry about, right? The citizens of Pompeii and
Herculaneum probably shrugged it off too, when they caught the first slight whiff of
sulphur hissing down the slopes of Vesuvius.

Unlike the ancient Romans, however, you have some control over your fate - at least
when it comes to your computer. You can protect yourself from obvious problems simply
by exercising some care. The following pages contain some important common sense
rules.

Don't erase files blindly. And avoid unnecessary shortcuts. If you want to erase the
BAK backup files that are cluttering up your disk, typing:

DEL *.B*

will take all your BAT batch files and BAS basic files with it. Whenever you're using
wildcards to delete files, make it a two-step process. First do a directory listing, with
something like:

DIR *.B*

799

800 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

or whatever the wildcard filespec happens to be. If you see any surprises you can make
the filespec more specific (*.BAK for instance) and try again. But if everything is fine,
just type:

DEL

and press the F3 function key. DOS will fill in the wildcard filespec from the previous
DIR command. For extra peace of mind, use the /P option for both the DIR and DEL
commands. It's a new option for DEL in DOS 5.0.

If you're trying to delete all EXE files with names ending with ABC and you
accidentally issue the command:

DEL *ABC.EXE

DOS will get rid of all your EXE files. This is because DOS stops looking at characters
after a wildcard, and interprets the command as:

DEL *.EXE

If you entered:

DEL *ABC.*XE

DOS would read this as:

DEL *·*

You'd know you were in trouble when it prompted you with" Are you sure (Y/N)?" which
is the sign it's about to get rid of everything.

Back up every day. There are three kinds of backups: the perfectly organized,
meticulously verified kind that nobody does; the adequate .. throw it all on a disk and sort
it out later" kind that's a lot more common; and the "I'll definitely back up everything
tomorrow" lie that freezes you in your seat when you see the inevitable "General failure
error reading drive C:" message instead of the DOS prompt.

Remember, even expensive hard disks are just aluminum coated with iron oxide.
Would you trust your future to a rusty pie plate? You can purchase lots of fancy
commercial backup packages to automate the process. Or you could use the
ARCOPY.COM utility on the accompanying disk. And the sensational PC-DOS XCOPY
command first introduced with version 3.2 is a real treasure.

XCOPY is speedy and powerful. While the older COPY command reads files from
the source disk and then writes them laboriously to the target disk one at a time, XCOPY
soaks up as many files as memory can handle, and blasts them onto your backup disk en
masse.

When It All Goes Wrong 801

If you add an /S switch it can copy all the files from all your buried subdirectories, and
will duplicate any subdirectory structure on the fly so you don't have to sit there and
fumble with MD and CD commands.

Adding a /P will automate the decision-making process by pausing at each file and
asking whether you want to copy it. Type a Y and it will make the copy, type a N and it
will prompt you for the next file. You can use the /S and /P switches in tandem.

Best of all, by adding a /D switch followed by a date you can have it copy only those
files created or changed on the specified date or later. And, of course, it can make backups
based on whether the archive bit is set, which lets you skip over files that you haven't
changed since the last backup.

DOS has gradually improved the BACKUP and RESTORE commands over the years
(so they work faster and won't do idiotic things like write old system files back onto your
hard disk over newer ones). And BACKUP is ideal when you 're copying files to diskettes
that are bigger than the diskette, since it can break them up and have RESTORE put them
back together later. But BACKUP stores files in a format that's nonexecutable; you have
to run them through RESTORE before you can use them again. XCOPY doesn't change
a bit; it keeps files in executable form. The astonishing thing is that XCOPY was written
by IBM, which is not noted for producing wonderful PC software. This one is a winner,
however. Use it every day.

Don't experiment with original copies of files. If you feel adventurous and want to
reformat a data file with unusual margins, or replace carriage returns with something else,
or if you decide to see just what DEBUG can do to a program, do it to a copy. Originals
are sacred.

Be extremely wary of DOS commands like ASSIGN, FORMAT, and RECOVER.
Everyone knows that you have to be careful when using the FORMAT command on a
hard disk, and DOS has grown more careful over the years, by asking you to enter volume
labels, refusing to proceed unless you enter a drive letter, and printing scary boldface
warnings in the manuals.

But if you get fancy and start shuffling your drive letters with ASSIGN, JOIN, and
SUBST, and then try to run BACKUP, RESTORE, or PRINT, or if you change the
configuration of your system drives frequently by putting RAMdisks in odd places,
you 're just asking for trouble.

Always stop before you FORMAT and check your intentions, especially late at night
or when you've been pounding away at the keyboard for so long you're starting to hear
voices from the speaker. And if any beginners ever share your system, use one of the
tricks described elsewhere in this book to give yourself added protection. One of the
slickest tricks is to patch COMMAND.COM so it thinks FORMAT is an internal
command, which will head off any FORMAT requests at the pass unless someone boots
your hard disk system off a floppy.

And avoid the RECOVER command entirely. It's nothing but trouble, and can tum
every file and subdirectory on your hard disk into an undecipherable puzzle piece that
will take you days to reconstruct. If you absolutely must use it, make sure you enter a

802 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

filename after it. Otherwise, pray your backups are current. To be safe, remove it from
your system altogether.

DOS makes it almost too easy to delete files, but there's always the DOS 5.0
UNDELETE and/or the Norton Utilities to bring your files backfrom the netherworld.
If you discover that you've just erased a key file or used too broad a wildcard and
expunged a whole slate of files, be absolutely sure you don't create or change any other
files. Immediately stop what you 're doing and drag out your Norton disk (or equivalent),
and "unerase" the temporarily lost files.

An innocent-looking command like COPY can also do real damage if you 're not
careful. First, you could copy an older version of a file over a newer one. Second, if you 're
concatenating several small files into one big one, and you try combining binary and
ASCII files, you can end up mangling the result. You can also end up wiping out a smaller
file you 're trying to join with others if you use its filename as the name of the final big
file. Third, if you 're trying to copy a list of program files into another directory (like
\BACKUP) and you make a typing error (like COPY *.COM \BAKUP), you may end
up concatenating them into one useless mess of a file. Fourth, if you try copying a file
over itself and the process somehow gets interrupted, you can end up with garbage where
your file used to be. Fifth, if you've been making backup copies of a file to a floppy disk,
and the original grows larger than the amount of available space, and you try to copy the
oversized file anyway, DOS will erase the previous copy on the floppy. Sixth, if you've
forgotten you have an old file on your disk with the same name as the one you're giving
to the copy of a file you 're about to make, you'll lose the contents of the old file. Seventh,
if you try copying a file to another drive with a command like COPY MYFIL B: and you
accidentally type a semicolon rather than a colon after the B, you'll end up with a copy
on the same drive as MYFIL called B. Think before you copy.

You may think this one's obvious, but guard against stupid power problems. Don't
plug your system into a rat's nest of cubetaps and four-way plugs that are so heavy they're
falling out of the wall socket. Don't string your power cord across the room. Don't plug
into a circuit shared with power-greedy appliances like air conditioners and heating
elements. And don't put a power director or power strip on the floor beneath your desk
where your toe is going to tapdance on the on/off switch.

Don't ever change add-in boards with the power on. And be careful about static
electricity - touch your stereo, a radiator, or a lamp when you shuffle over to your system
after petting the cat in the winter. A spark may not seem like much, but those hundreds
of thousands of volts can really do damage when they're hurtling down pathways a
micron or two wide.

Don't buy floppy disks that are so cheap you can't believe the price. Your data is worth
the extra few cents. If you format them and see "bad sector" messages, throw them out,
or use them for emergencies. One of the worst sounds known to mankind is the noise of
a cheap sandpaper disk grinding down your drive heads.

When It All Goes Wrong 803

Watch out when redirecting commands and files. The command:

SORT < DATA.FIL

will sort the contents of the DATA.FIL file on column one and display the results
onscreen. But:

SORT > DATA.FIL

will trash your DATA.FIL and give it a length of 0. Be careful when using MORE (which,
when used backwards, will wipe out your file and replace it with a two-byte file
containing just a solitary carriage return and line feed) or any other filter. Redirection is
a powerful tool. But learn the rules first - so you can avoid doing things like using the
TYPE command to redirect the contents of a file that contains an ASCII 26 somewhere
in it, since this tells TYPE to screech to a halt. Also, don't use >, <, or I signs in batch
files. If you put a line in your batch file that says:

ECHO ----> Enter a key:

DOS will think you are asking it to create a file called Enter and use ECHO to redirect
text from that line into the file. Even something as innocent as:

REM Now returning to the C> prompt

ends up generating a file called PROMPT. In later DOS versions you can include such
signs in batch files if you put quotes around them:

ECHO The 11 1 11 is a pipe sign

Caveats are usually given for a reason. When you see a program listed somewhere
that says "use this on color monitors only" you might as well place the call to your
insurance agent before you try it on your monochrome display. Contrary to popular belief,
software can indeed destroy hardware. You can break a hard disk activator arm by
slamming it into a place where it wasn't supposed to go, or bum out a monitor "in an
instant by fiddling with the video controller.

If you ever see the message "Are you sure (Y/N)?" when you don't expect it, the answer
is always NO. If you're trying to erase a file and you make a typing mistake you can
accidentally be telling your operating system to erase everything in a subdirectory. That• s
what these warnings are for.

Don't mix hex and decimal. The single easiest mistake to make when working with
DEBUG is to slip in a decimal value, or subtract 1 from a number like 100 and think the
result is 99 when it's really FF. Work with copies of your files, never originals. Educate
your fingers so they type only in hex.

804 DOS Power Too/,s, 2nd Edition, Revised/or DOS 5.0

And, whenever you 're using DEBUG to work with absolute sectors rather than files,
and you 're about to use the W command - pause and stare at what you 're about to enter
before going near the Enter key. Remember too that DEBUG treats drive A: as 0 rather
than 1. One little slip here, especially when you're fooling with something like the FAT
or directory, and it• s time to hunt for the backup disks.

Be extremely carefu1 when trying new memory-resident software, especially when you
already have other resident software loaded. These things can be tricky and unpredictable
enough by themselves; throwing a few together in memory and watching them fight for
the same interrupts is not a pretty sight. It• s also a recipe for a power-switch reboot. Don't
work with any unsaved data files when you 're testing out resident software interactions.
And to be really safe, use a TSR manager like the INSTALL/REMOVE duo on the
accompanying disk, or any of the similar commercial packages available.

Don't mix utilities from different DOS versions, and avoid having different, patched
versions of COMMAND. COM on your disk. One of the most chilling messages you can
see is "Cannot load COMMAND, system halted." And you're a lot more likely to see it
when you mix and match DOS parts.

If you use a RAMdisk, stop working at least once or twice an hour and copy your work
to a more tangible medium. RAMdisks are fast. But they can also lose data in the blink
of an eye if you bump the power cord, or if the generator at your local power company
burps, or if your software just decides to lock up. RAMdisk software ought to come with
a little clock that beeps every 15 minutes to remind you to back up your ephemerall files.

Treat hard disks as if they contained little booby-trapped bottles of nitroglycerine.
Don't bang, drop, nudge, tap, stomp, poke, jostle, smack, shove, whack, thump, pound,
or otherwise knock into any system with a humming hard disk. One little bump is all it
takes to send the drive heads plowing into the disk surface. From then on you can just
kiss your data goodbye. Be especially careful with systems that are mounted on the floor,
since these tend to attract a disproportionate share of kicks, hammer blows from
vacuum-cleaners, and other miscellaneous assaults.

Don't mix high-density and low-density floppies, especially when dealing with 720K
and l.44M diskettes. It shouldn't be a problem, but because of the way these disks are
formatted, it is. Label potentially confusing disks after you format them, and don't
intermingle high- and low-density formats.

Take care in using the CTTY NUL command in batch files. This disconnects your
keyboard until the batch file sees a restorative CTTY CON command. If something
unexpected happens in the interim, all you can do is reach for the power switch.

It's a great convenience to redirect keystroke scripts into DEBUG rather than having
to type each command. This lets you check your typing before you proceed, and modify
long, previous DEBUG instructions just by changing the file. But be sure to include blank

When It All Goes Wrong 805

lines where indicated (after ending A commands) and to include a carriage return at the
end of each line, especially the last one that quits.

If you have sensitive.files on your disk, don't leave words like "CONFIDENTIAL" or
"SECRET" in them if any other users have access to your system. It's easy to scan across
the disk for such text, which lets anyone pinpoint such files. And give any sensitive files
or subdirectories innocent-sounding names, not names like SECRET. I or CONFDNTL.

While you shouldn't make it too easy for someone to get at your confidential files,
don't make it too hard. If you encrypt your files, don't use keys like F$J#DV!N&lE@
unless you're sure you can remember them later.

If you erase sensitive files, make sure they're gone. Use a utility like Norton's
WIPEFILE, or else someone may use Norton's UNERASE utilities to bring the files back
to life. And while you're at it, tell Norton's program to wipe out all erased files. You may
get rid of the latest version of a confidential report, but if you 're not careful, you can end
up leaving previously erased BAK or $$$ copies lurking on the disk. Some word
processors create backup or temporary work files without your knowledge, and erase
them before you exit the program. A snooping co-worker can revive these just as easily
as any other "erased" file.

If you lock your system and you have mouse attached, hide the mouse or lock it up too.
A mouse is simply an alternate input device, and a knowledgeable user can use it instead
of the locked keyboard to change or examine your files.

If you have to print a sensitive document, turn off the printer when you 're done, and
reset your system as well. It's possible that parts or all of the file are still buffered in
memory when you finish.

Be careful when "unerasing" hidden files left by commercial software. Some be
nighted software, in an effort to be as greedy and hostile as possible, scrambles your disk
sectors and then hides a file in these sectors. If you have software like this installed in a
subdirectory, and you want to get rid of it, and you try deleting all the files and then using
the RD command to remove the subdirectory, you '11 get some version of a:

Invalid path, not directory,
or directory not empty

message. You can see the file by running CHKDSK /V or by using some of the utilities
on the accompanying disks. And you can unhide it and delete it. But the sectors will
remain scrambled, which can bring your operating system to its knees later. If commercial
software comes with a deinstallation program, use it instead of trying to erase all the files
yourself. It will usually repair any damage it's caused during installation.

Assume any software that you download from any source other than one that rigorously
tests everything, such as Compuserve, is dangerous until proven otherwise. You can use

806 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

some of the utilities on the accompanying· disks to peek inside any just-downloaded
programs and look for messages such as "Gotcha!" Or you can run it on a floppy disk
system with a RAMdisk configured as drive C: and watch what it does.

If someone wants to corrupt your system, and you like to experiment with downloaded
software, you really can't protect yourself entirely. Most bulletin boards are careful to
screen out such potentially dangerous software; and much of the electronically distributed
software available today is sensational. But nasty "virus" software and "trojan horse"
programs do get around. Unless you trust your source implicitly, watch out for programs
that intentionally wipe out the files on your hard disk.

Don't use DISKCOPY except in two cases - when you 're making a backup copy of
a new commercial software disk, or when you've somehow damaged a disk and want to
work on it with DEBUG or Norton Utilities-type products. For all other copies, format a
blank disk and use the COPY *. * or XCOPY command to make the backups.

Except when copy protection schemes are involved, DISKCOPY will make an exact
replica of the original disk. This is bad for two reasons:

When you put a lot of wear and tear on a a diskette - erasing, adding, and changing
data frequently - you end up fragmenting your files. DOS ends up chopping them into
small pieces and pigeonholes the pieces in lots of different locations. Then when it has
to load or write a fragmented file, DOS takes a long time to sort everything out. In fact,
if you use floppies extensively, you should periodically format a blank disk and copy the
files from the older disk to the newly formatted one to enhance performance. Copying
them gets rid of the fragmentation - at least until you start slicing and dicing them again.

Also, while DOS is supposed to protect against it, it's possible when using DISKCOPY
to copy good information from one disk onto a magnetically unsound ~ea on another
without knowing it. The disk formatting process guards against this, but DISKCOPY
won't reformat a disk unless it has to. If a sector has gone bad since the disk was formatted,
it's possible to write good information onto a bad sector and lose it.

Using DISK COPY to make exact replicas of commercial disks is certainly a good idea.
And if you somehow mangle a disk and want to dig beneath the surface and try to fix it,
you should use DISKCOPY to duplicate the broken disk and try to repair the copy. This
way if you make matters worse, you can always create another DISKCOPY and try the
process again.

It's not always smart to set BREAK to ON. The default DOS setting is OFF, which
means DOS will check to see if you pressed Ctrl-C or Ctrl-ScrollLock only during a
handful of routine screen, output, and keyboard operations. If you 're running a program
that chews data all day long and doesn't do much 1/0, and you have to break out of it
periodically, you may want to set BREAK to ON so DOS will check for Ctrl-C or
Ctrl-ScrollLock presses far more frequently.

Butthis can have a down side as well, since a break signal can grind certain programs
to a halt. If you're running WordSiar, for instance, and you pound incessantly on Ctrl-C
you can crash out of the program without saving the file you were working on. Since
Ctrl-C happens to be a WordStar command to scroll the screen up (same as a PgDn), this
can be dangerous when you're paging through a long file. Worse, this may bypass the

When It All Goes Wrong 807

program's normal cleanup operations (such as resetting interrupt vectors), which can
clobber subsequent programs you try to run.

Don't assume you 've copied files correctly just because the VERIFY command is
active. DOS lets you add a /V switch to the COPY and XCOPY commands, or issue a
VERIFY ON command, that supposedly ensures data integrity by verifying that the
original and copy are the same.

Unfortunately, this process uses a CRC check, which can catch gross errors but is not
utterly foolproof. The COMP command, on the other hand, compares both files byte-by
byte and is more reliable. Unfortunately, COMP.COM is crude and slow, and will stop
working if it stumbles over a scant ten mismatches. The generic DOS PC.EXE File
Compare utility is vastly better, and it's a real mystery why IBM gave users the pathetic
COMP command instead of the far superior PC.

In any event, if you 're validating copies, COMP should work just fine, and will uncover
potential problems that can fool /V or VERIFY.

Using your computer in a thunderstorm is a bit risky, since lightning strikes can foul
up the power lines. If you 're nervous about direct lightning hits and you put a lightning
arrester in the power circuit, don't forget to isolate the phone line to your modem. A
wire's a wire.

Never switch diskettes in the middle of an aborted operation. If you try to copy files
to a floppy and DOS for some reason interrupts the process and pauses, and you realize
you put the wrong diskette in the drive, don't just remove the wrong floppy and put in
the right one. DOS may still think the old one is there and copy data to the wrong place
on the new one, which will damage it. Instead, to be safe, stop what you were doing and
issue a nonwriting command for that drive like DIR to let DOS know you've switched
disks. The SHARE command helps guard against this, but you can't be too careful.

The Utilities
DOS Forgot

Utilities

New to this revised second edition are more than 100 utilities, culled from the best
freeware and shareware programs available. We've tried to select programs that offer
functionality out of the ordinary, and that complement, rather than duplicate, the utilities
from the previous editions of this book.

The freeware programs, as the name implies, may be freely used and distributed
without obligation. Please note that there is a distinction between a program being
considered freeware and a programs specifically put into the public domain. The
copyright for freeware generally resides with the author, and thus commercial use or
distribution requires permission, whereas material specifically put into the public domain
can be used for any purpose without restriction.

Shareware is an interesting approach to distributing intellectual property that has no
real counterpart in many other fields of human endeavor. It's hard to imagine a restaurant
operating on the proposition that if you like a meal, you'll pay whatever you felt it was
worth - at least, not any restaurant since Alice's.

What is Shareware

Shareware distribution gives users a chance to try software before buying it. If you try a
shareware program and continue using it, you are expected to register. Individual
programs differ on details - some request registration while others require it, some
specify a maximum trial period. With registration, you get anything from the simple right
to continue using the software to an updated program with printed manual. Copyright
laws apply to both shareware and commercial software, and the copyright holder retains
all rights, with a few specific exceptions as stated below. Shareware authors are accom
plished programmers, just like commercial authors, and the programs are of comparable

811

812 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

quality. (In both cases, there are good programs and bad ones!) The main difference is
in the method of distribution. The author specifically grants the right to copy and
distribute the software, either to all and sundry or to a specific group. For example, some
authors require written permission before a commercial disk vendor may copy their
shareware.

Shareware is a distribution method, not a type of software. You should find software
that suits your needs and pocketbook, whether it• s commercial or shareware. The
shareware system makes fitting your needs easier, because you can try before you buy.
And because the overhead is low, prices are low also. Shareware has the ultimate
money-back guarantee - if you don't use the product, you don't pay for it.

We can't police your conscience in this matter, but we've tried to reduce the hassle of
locating the author of a specific piece of shareware and registering the software, should
you decide that you want to use it regularly. We think you'll be surprised, pleasantly, at
the quality of the software, and urge you to support those authors whose work you find
worthwhile.

Utilities 813

Summary of Programs and Credits

ADD COMM EXE Adds software support for communications ports 3 & 4
David Foley/Foley Hi-Tech Systems 818

ALARMCLK COM Enables mutliple alarms during a work session
David Foley/Foley Hi-Tech Systems 819

ALARMS ET EXE Sets alarm in ALARMCLK.COM
David Foley/Foley Hi-Tech Systems 820

ALL SUB COM Executes command in subdirs
David Foley/Foley Hi-Tech Systems 821

ARCO PY COM Extended file management
Eric Meyer 822

AREA EXE Area code lookup
David Foley/Foley Hi-Tech Systems 824

BANNER EXE Banner printer
David Foley/Foley Hi-Tech Systems 827

BC3 COM Big cursor
Bob Hummer 828

BC3-SET EXE Configures BC3
Bob Hummer 828

BIGBUFER COM Extended keyboard buffer
Jonathan Kraidin 829

BL COM Bright line cursor highlighter
Scott Chaney/RSE, Inc. 830

BLANK-IT COM Screen saver
Rhode Island Soft Systems, Inc. 831

BOOT LOCK COM Stops Ctrl-Alt-Del, Ctrl-C, or Ctrl-Break
David Foley/Foley Hi-Tech Systems 832

BRKBOX COM RS-232 breakout box for troubleshooting serial ports
David Foley/Foley Hi-Tech Systems 833

CAL EXE Flexible calendar
David Foley/Foley Hi-Tech Systems 834

CAT EXE Unix-like file concatenator
David Foley/Foley Hi-Tech Systems 835

CHIMES COM Musical chimes on the hour, half, and quarter
David Foley/Foley Hi-Tech Systems 836

COLS ET COM Sets screen colors
Raymond P. Tackett 837

COMPORT EXE Shows status of serial and parallel ports
JohnWoram 838

COPYDISK EXE Copies disks, even from dissimilar media
Gordon Harris 839

CTRLKEY COM Turll.s .. 5 .. on numeric pad to second (or third) Ctrl key
ShaneBergl 840

CURLOCK COM Locks cursor size/shape
David Foley/Foley Hi-Tech Systems 841

814 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

CURSOR EXE Sets cursor shape, either from command line or interactively
David Foley/Foley Hi-Tech Systems 842

CUT EXE Extracts data from files by column
David Foley/Foley Hi-Tech Systems 843

D EXE Small, fast directory lister
MarcPerkel 844

DAAG EXE Graphs disk usage, identifies disk hogs and duplicate files 845
Steve Leonard

DD EXE Displays file and directory info in several formats
Dennis Vallianos/D and D Software, Inc. 847

DEL2 COM Improved delete command
Dennis Vallianos/D and D Software, Inc. 849

DELAY EXE Pause and wait for either a keypress or an interval
David Foley/Foley Hi-Tech Systems 850

DETAB EXE Removes tabs
David Foley/Foley Hi-Tech Systems 852

DEVICE EXE System info on installed devices
Kim KokkonenjTurbo Power Software 853

DIRCMP COM Compares directories, showing differences in files
Eric Meyer 856

DIRR COM Non-resident version of FileNotes (FN.COM)
RSEinc 858

DISABLE EXE Disables TSRs
Kim Kokkonenf Turbo Power Software 859

DL EXE DoubleLister - compares contents of two files
Stephen S. Bates 861

DLT COM File deletion utility
Eric Meyer 864

DMLITE EXE Flexible directory manager
MarcPerkel 866

DTA EXE Directory tree attributes
Eric Meyer 8.69

EQKRP COM Key rate control
Eric Meyer 873

EVAL EXE Mathematical calculator
David Foley/Foley Hi-Tech Systems 874

FAKEY COM Stuffs keyboard buffer and more
System Enhancement Associates, Inc. 877

FF EXE Finds files, even inside *.AR Cs and * .ZIPs
David Foley/Foley Hi-: Tech Systems 879

FIND EXE Enhanced FIND command
MarcPerkel 880

FINDMODL EXE Checks model byte
JohnWoram 881

FIXPATH EXE Compares path against actuai directories
MarcPerkel 882

FN COM Lets you annotate directory file notes
Scott Chaney/RSE Inc. 883

Utilities 815

FONT HT COM Sets font height for screen control
Eric Meyer 885

FORK EXE Redirects output to two different devices, files, or commands
MarcPerkel 887

FREE EXE Shows free memory
MarcPerkel 888

FS EXE Shows file size
David Foley/Foley Hi-Tech Systems 889

FT EXE File tree
David Foley/Foley Hi-Tech Systems 890

GET EXE Versatile system query utility using error level locks
Bob Stephan 891

HEX EXE Hex dump
David Foley/Foley Hi-Tech Systems 896

HIT AKEY SYS Inserts pause in CONFIG.SYS
Raymond P .. Tackett 897

HUSH COM Suppresses speaker noise
David Foley/Foley Hi-Tech Systems 898

KBD EXE Flexible keyboard control
MarcPerkel 899

KI LLD IR EXE Deletes and removes entire directory
David Foley/Foley Hi-Tech Systems 900

LHA EXE Super file compressor
Haruyasu Y oshizaki 901

LS EXE Unix-like lister
David Foley/Foley Hi-Tech Systems 903

MAPMEM EXE Shows mem usage
Kim KokkonenjTurbo Power Software 904

MARK EXE Sets a marker in memory for releasing TSRs
Kim Kokkonen/Turbo Power Software 906

MODSAV COM Saves video mode
Chris Dunford/The Cove Software Group 908

MORE EXE Enhanced version of DOS command
Marc Perkel 909

MOVE EXE Copies and deletes old files in one operation
MarcPerkel 910

NAB COM Cut-and-paste from screen to printer or application
Scott Chaney/RSE Inc. 911

NABCONFG COM Configures NAB.COM
Scott Chaney/RSE Inc. 911

ND EXE Names directories
Davi~ Foley/Foley Hi-Tech Systems 912

PARK COM Parks drive heads
MarcPerkel 913

PF EXE Searches path for file
David Foley/Foley Hi-Tech Systems 914

PIPED IR EXE Searches for filenames within your path
MarcPerkel 915

816 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

PRISM EXE Stunning palette setter
David Gerrold 916

QKRP COM Sets key rate
Eric Meyer 917

QUI XX COM Screen blanker with colorful random display
Jonathan Kraidin 919

RAMFREE COM Shows free RAM
Kim KokkonenfTurbo Power Software 921

RAMMAP EXE Displays what's in memory
MarcPerkel 922

RELEASE EXE TSR uninstaller
Kim KokkonenfTurbo Power Software 923

RES PRO COM Automated TSR manager
Eric Gans 926

ROMTABLE EXE Shows available disk drive types
John Woram 928

RV EXE Displays what's in archive files
Raymond T. Kaya 929

SA EXE Controls screen attributes
David Foley/Foley Hi-Tech Systems 931

SETUP EXE Checks display
Nathaniel S. Johnson 932

SETV EXE Sets video mode
Bob Eyer 933

SHOW EXE Displays a file for easy browsing
Steve Leonard 934

SORT EXE Improved sort command
MarcPerkel 935

SPEEDRAM EXE Can improve system memory speed
David Foley/Foley Hi-Tech Systems 936

SS COM Screen saver
Kevin Curtis 938

STACK COM Pop-up command stack utility
ShaneBergl 939

TI COM Gives second level of protection against file deletion
Scott Chaney/RSE Inc. 941

TICONFIG COM Configures TI.COM
Scott Chaney/RSE Inc. 943

TIDY EXE Deletes * .bak and zero-length files
David Foley/Foley Hi-Tech Systems 944

TOUCH EXE Resets file date and time to system clock
David Foley/Foley Hi-Tech Systems 945

TS EXE Text search utility
David Foley/Foley Hi-Tech Systems 946

TURBOBAT COM Converts batch files to com files
David Foley/Foley Hi-Tech Systems 947

Utilities 817

VANS I SYS Enhanced version of ANSI.SYS
Chris Dunford/The Cove Software Group 948

VERSION EXE Fakes DOS-version number
MarcPerkel 949

VF ONT EXE Loads VGA fonts
Chris Dunford/The Cove Software Group 950

VGACOLOR COM Reset screen colors from within TSR
Doug Cox 952

VGAEDIT2 COM Paint program
Doug Cox 954

VIEW2 EXE Double file viewer
Steve Leonard 956

WATCH COM Gathers data on TSRs
Kim Kokkonen/Turbo Power Software 958

WHATVID EXE Determines display type
Orville Jenkins/Panther Associates 959

WHERE IS EXE Finds files and directories
MarcPerkel 960

XARC EXE Extracts *.ARC files
System Enhancement Associates, Inc. 961

XMNDRVRS EXE Displays information about installed device drivers
John Woram 962

ZDEL EXE Deletes files and directories
MarcPerkel 963

OX10 EXE Screen utility controlling blink bit and grey scale
William J. Klos, CS 73077,1601 964

3CT EXE File size counter
Daniel B. Doman/DarrySoft 965

818 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

ADDCOMM.EXE
Version 1.11

David Foley
Foley Hi-Tech Systems

Shareware

Purpose: Allows you to define the address of your COM ports in the DOS lower-memory
segment. Useful for machines whose BIOS doesn't support COM3 and COM4
ports by default.

Syntax: [d:] [path] ADDCOMM [port] [address]

where:

PORT

ADDRESS

the COM port to add, and

the address of the COM port.

Remarks: In many older machines including early 80386-based systems, the BIOS would
only set up COMl and COM2 for DOS. Newer serial cards and modems allow
you to define COM3 and COM4 on the cards but these machines won't allow
DOS to see these additional ports unless you place the corresponding address in
low DOS memory. ADDCOMM will place this information in the correct loca
tion for you and ADDCOMM will also display the current address values for any
COM ports that are installed in your system.

By placing the ADDCOMM statements in your AUTOEXEC.BAT file you can
have the machine load the correct values without having to intervene.
ADDCOMM is not a TSR and will not require any overhead memory to set up
your ports from AUTOEXEC or the DOS prompt.

Example: ADDCOMM COM3 3E8 will tell DOS to address COM3 at address 3E8.

ADDCOM.EXE is Copyright© 1989-1991 by Foley High-Tech Systems
This program is not public domain but is "shareware" and a part of the Foley Hi-Tech Systems
ExtraDOS collection. To register send a check or money order for $19.00 to:

Foley Hi-Tech Systems
ExtraDOS Registration
172 Amber Drive
San Francisco, CA 94131
(415) 826-6084

ALARMCLK.COM
Version 2.01

David Foley
Foley Hi-Tech Systems

Utilities 819

Shareware

Purpose: Together with its companion program ALARMSET.EXE, provides a simple
alarm clock for MS-DOS machines.

Syntax: [d:] [path]ALARMCLK /U

where

/U Removes ALARMCLK.COM from memory

Example: ALARMCLK and ALARMSET allow you to set a time for your system to beep
at you to remind you of appointments or meetings. You may install as many
alarms as you wish per session. The alarm information does not survive rebooting
or turning off the system power.

ALARMCLK.COM is Copyright© 1989-1991 by Foley Hi-Tech Systems
This program is not public domain but is "shareware" and a part of the Foley Hi-Tech Systems
ExtraDOS collection. To register send a check or money order for $19.00 to:

Foley Hi-Tech Systems
ExtraDOS Registration
172 Amber Drive
San Francisco, CA 94131
(415)826-6084

820 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

ALARMSET.EXE
Version 2.00

David Foley
Foley Hi-Tech Systems

Purpose: Sets alarms with ALARMCLK.

Syntax: ALARMSET [time] [PM] [options]

where:

Shareware

TIME = Time in HH:mm format. Twelve-hour or 24-hour clocks are both
accepted for the time format.

PM ALARMCLK will assume AM with 12-hour format unless
PM is defined.

/D Deactivates all alarms.

/U Removes ALARMCLK.COM from memory.

ALARMSET.EXE is Copyright© 1989-1991 by Foley HiTech Systems
This program is not public domain but is "shareware" and a part of the Foley Hi-Tech Systems
ExtraDOS collection. To register send a check or money order for $19.00 to:

Foley Hi-Tech Systems
ExtraDOS Registration
172 Amber Drive
San Francisco, CA 94131
(415)826-6084

ALLSUB.COM
Version 1.20

David Foley
Foley Hi-Tech Systems

Utilities 821

Shareware

Purpose: Allows any command or program to be run on the current directory as well as on
all subdirectories of the current directory.

Syntax: [d:] [path]ALLSUB [command]

where

COMMAND is any valid DOS command or program with its parameters.

Enter the command just as if you were running it from the DOS prompt.

Example: ALLSUB is useful for deleting groups of files or performing tasks with programs
that don't normally allow for subdirectories. As ALLSUB is performed in each
subdirectory ALLSUB, it displays the directory of execution.

Example: ALLSUB DEL *.BAK will delete all files with the extension of .BAK from all
subdirectories on your default drive.

ALLSUB.COM is Copyright© 1989-1991 by Foley Hi-Tech Systems
This program is not public domain but is "shareware" and a part of the Foley Hi-Tech Systems
ExtraDOS collection. To register send a check or money order for $19.00 to:

Foley Hi-Tech Systems
ExtraDOS Registration
172 Amber Drive
San Francisco, CA 94131
(415)826-6084

822 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

ARCO PY.COM
Version 1.6

Eric Meyer

Purpose: Backs up and maintains multiple copies of files.

Syntax: [d:] [path]ARCOPY source [, source2, ...] [target]
[I switches]

where

source, source2, ... are the' names of the files to be backed up.

Target is the drive and path destination for the copied files.

and valid switches are:

Free ware

/A = copy only source files with archive bit set, but do not clear source
file archive bits.

/Bdate:time = copy only files whose timestamp is earlier than the
specified date:time. (Defaults are today:midnight)

/E = copy only files that already exist in target directory.

/H = copy hidden and system files.

/Ldate:time = copy only files whose timestamp is later than the specified
date:time. (Defaults are today:midnight) ·

/M = same as A, except that source file archive bits are cleared.

/N = copy only source files wliose names do not already exist in target
directory.

/P = display "Y/N?" prompt for each file to be copied.

/R = if a global target filename is given, every specified file will be
renamed. For example, ARCOPY *.COM
X*.COM /R changes first letter of every source COM file to "X." If
different target directory is specified, files are moved to that directory.

/T = if file already exists in target directory, it will be overwritten only if
source file has a more recent date/timestamp.

/W = a read-only target file will be overwritten by a source file with the
same name.

/X = all source files will be copied, except for the one whose name is
given, thus ARCOPY B:*.EXE /X copies all files except those with an EXE
extension.

/Z = the high bit in each byte in the source file will be zeroed in the
target copy.

Notes:

Utilities 823

Unless otherwise specified, the drive and path for any source is the same as that
specified for the previous source. If the target is not specified, the current direc
tory is the target.

Typing ARCOPY by itself will give you a hyphen prompt, and a help message
giving you valid options at that point. To exit the hyphen prompt, type return.

The first switch must be preceded by a slash; additional slashes, spaces are op
tional. For B and L switches, date format is MMDDYY (month-day-year) and
timeformat is HHMM (hour-minutes). Complete date/timestamp is therefore
MMDDYY:HHMM. Use both Land B switches to copy only source files later
than L but before B.

R switeh warning: If the only difference between two filenames is the first let
ter~ only the last of these files will remain.

· If W switch is omitted, a write error is reported if source fj.le attempts to over
write a read-only target file. The Z switch is an excellent tool for converting a
WordStar document into an ASCil file (or for completely trashing a binary file).
To quickly read a WordStar document on screen, just type ARCOPY filename
CON /Z. Use CON or PRN as targets to display source file on screen or to send it
to the printer.

This program is .. freeware" and may be freely used and distributed, but not modified or sold for
profit without author consent.

ARCOPY.COM Copyright© 1991 by Eric Meyer
All Rights Reserved

824 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

AREA.EXE
Version 2.13

David Foley
Foley Hi-Tech Systems

Shareware

Purpose: Helps to locate .the region to which an area code applies or to locate the area code
for a specific region.

Syntax:

Options:

Examples:

[d:] [path]AREA [code] [string] [options]

[code] is any three-digit area code.

[string] is any string that might match a state or region that you are
searching for.

/L = Load as a TSR. This makes the AREA code program a pop TSR
that allows you to call up an area code or location while running another
application without exiting to DOS. [CTRL][LSHIFf]A is the hotkey to
activate the pr~gram once installed as a TSR.

/U = Uninstall the AREA code program if it is installed as a TSR, freeing
up the overhead that it required. Uninstall works only if AREA was the last
TSR loaded on the Heap. If the program is unable to uninstall it will inform
you when running the /U parameter.

/NOil = If it is running AREA from a batch file or from another shell
program and you want it riot to display the header information.

jt

/K$nnnn = Allow~ you to set the default key for the TSR popup command.
You can alternatively set the hotkey by using the environment variable
AREAJ.(EY, but don't use this option unless you are familiar with your
~ystem's currently defined hotkeys. By changing the hotkey value you may
cause conflict with another TSR in your system.
Ex~!Ilples i~<;lude a chart that shows you the value to use for either the /K
p~rameter odhe environment variable /K.

AREA /K$0836 /L would specify [ALT][RSHFT] as a new hotkey
b"

Environment Variable for hotkey definition:

SET AREAKEY=$0836 as a line in the AUTOEXEC.BAT file would set the
[ALT][RSHFr:f as the hotkey

Keyboard Scan Codes for Hotkey Use

Hotkey = $XXYY

Notes:

Utilities 825

where:

XX aggregate hex code for the Alt, Ctrl, Lshft, and/or Rshft

Y One of the hex codes from the scancode tables below
Computing the XX value:

Alt
Ctrl
Lshft =
Rshft =

$0800
$0400
$0200
$0100

so, [Alt][Lshft] = $0800 + $0200 = $0AOO + YY = $0A YY

or, [Ctrl][Rshft] = $0400 + $0100 = $0500 + YY = $05YY

or, [Alt][Ctrl][Rshft] = $0800 + $0400 + $0100 =$OD+ YY = $0DYY

If XX = $0000 then this is a single key hotkey which will be defined by the YY
key code.

Computing the YY value:

To use previous examples,

[Alt] [Lshft] [G]

[Ctrl][Rshft][FlO]

$0AOO + 22 (G = hex 22) = $0A22

$0500 + 44 (FlO =hex 44) = $0544

You can also use something like [Alt][Lshft] only. To do this, you would use

$0800

[Alt]

+ 2A

[Lshft]

$082A

[Alt][Lshft]

The XX portion of the hotkey may not use anything ··1ower" than Ctrl for the
following keys: Esc, BkSp, Space, CapsLock, Tab, ENTER, PrtSc, Ins, Del, and
NumLock. This means you can't use Lshft-Tab, or Rshft-Tab, but you can use
Ctrl-Tab or Alt-Tab. See Table 6-7 for Scan Codes Note that you can use the Alt,
Ctrl, L/Rshft keys by themselves. For example, the following hotkeys/codes are
valid:

Alt-Rshft
Ctrl-Rshft
Lshft-Rshft
Ctrl-Alt-Lshft

$0836
$0436
$0236
$0C2A

826 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

Since the phone company constantly updates regions and expands with more
area codes, the data may become outdated. If you know of a new area code, or
one that has been changed, please inform us so that we may keep the AREA util
ity current.

Please contact us either by BBS, FAX or PHONE.

AREA.EXE is Copyright© 1983-1991 by Foley Hi-Tech Systems
This program is not public domain but is "shareware" and a part of the Foley Hi-Tech Systems
ExtraDOS collection. To register send a check or money order for $19.00 to:

Foley Hi-Tech Systems
ExtraDOS Registration
172 Amber Drive
San Francisco, CA 94131
(415)826-6084

BANNER.EXE
Version 1.21

David Foley
Foley Hi-Tech Systems

Utilities 827

Shareware

Purpose: Displays an ASCII rendition of the letters you put in a message rotated at 90 de
grees. This is based on the BANNER that is available in many UNIX systems.

Syntax: [d:] [pa th] BANNER [options] [message]

Options: /? = Display Help

/w = Set to 132-column width

/wnn = Set to nn-column width

/p =Send output to LPTl *default setting

/pLPTn = Send output to LPTn

/s = Send output to Screen

/o[fname] = Send output to file [fname]

/noh = suppress the header information

To send the banner to your printer type:

BANNER /wBO "Hi there 11

This sends an 80-Column-wide ··m there" to your printer.

BANNER.EXE is Copyright© 1989-1991 by Foley Hi-Tech Systems
This program is not public domain but is .. shareware" and a part of the Foley Hi-Tech Systems
ExtraDOS collection. To register send a check or money order for $19.00 to:

Foley Hi-Tech Systems
ExtraDOS Registration
172 Amber Drive
San Francisco, CA 94131
(415)826-6084

828 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

BC3.COMand
BC3-SET.EXE

Bob Hummer Free ware

Purpose: BlockCursor3 (BC3) is a small, fast TSR that maintains a block cursor.

Syntax: [d:] [pa th] BC3

Example: BC3 works even with "cursor crunchers" such as the original SideKick. The best
way to start BC3 is by adding the line:

[d:] [path]BC3

to your AUTOEXEC.BAT file. This will automatically load BC3 whenever you
start your computer. Unlike many TSRs, BC3 isn't fussy about the loading order.

Certain video displays may require a different value for the bottom scan line in
order to set a block cursor than the preset value in BC3. The companion program
BC3-SET.EXE can be used to change this value in the BC3.COM file.

Just type:

BC3-SET

at the DOS command line and follow the instructions. The top scan line is set to 0.
BC3-SET will search the DOS path for BC3.COM, and can thus be operated

from any directory as long as both BC3-SET.EXE and BC3.COM are on the path.
Note that, if BC3 is loaded in memory when BC3-SET started, it will override
BC3-SET's attempt to show you the new cursor shape, and you won't be able to
see what the new cursor will look like until the computer is restarted.

This program is "freeware" and may be freely used and distributed, but not modified or sold for
profit without author consent.

BIGBUFER.COM
Version 1.11

Jonathan Kraidin

Purpose: Extends keyboard buffer between 60 and 76 keystrokes.

Syntax: [d:] [pa th] BIGBUFER

Utilities 829

Freeware

Example: This program enhances your keyboard operations by expanding the type-ahead
buffer to 60 keystrokes. There are no options; simply place the program in your
autoexec.bat file. If you are also using a type-a-matic rate enhancer, place it be
fore the extender. Incompatibilities may exist when using any other utility that
manipulates the BIOS keyboard buffer.

This program is .. freeware" and may be freely used and distributed, but not modified or sold for
profit without author consent.

830 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

BL.COM
Version 1.3

Purpose: Highlights the cursor line.

Scott Chaney
RSE, Inc.

Syntax: [d:] [path] BL [/R] [/CJ

Shareware

Example: Brightline is a TSR program which reverses the text and background screen col
ors on the cursor line. Therefore, the cursor line text appears in a highlighted bar
running across the width of the screen.

Notes: Once BL is loaded, the hotkey combination Alt+O toggles the highlighted bar on
and off. If the bar is toggled off, it will automatically come back on again after
two minutes of keyboard inactivity, but goes off when keyboard is used again. ,
The registered version supports your choice of color for the highlight; the
shareware version lets you choose red only via the /R switch. The /C switch will
minimize flicker and ··snow" on older CGA displays.

BL is not compatible with Windows, and may create video artifacts with some
applications (QuickBASIC, for example).

This program is not public domain but is ••shareware" and part of the RSE, Inc. collection. For
registration and fee information contact:

RSE,Inc.
1157 57 Drive S.E.
Auburn, WA 98002
(206)939-4105

Utilities 831

BLANK-IT.COM Rhode Island Soft Systems, Inc. Shareware

Purpose: Blanks the screen if there is no keyboard activity.

Syntax: BLANK - IT [NJ

where

N is the waiting time, in minutes, until screen is blanked following the last
keystroke. Default is 10 minutes.

Example: Press the spacebar to restore the screen display. The keystroke is discarded, so it
does not affect whatever is on the screen.

Unlike some TSR screen-blanking utilities, BLANK-IT works when loaded
into an upper memory block via the LOADHIGH command.

Notes: Press Ctrl+Left Shift key to blank the screen immediately.
Press Alt+ Left Shift to disable BLANK-IT. To re-enable screen blanking func

tion, press Alt+ Left Shift again, or Ctrl +Left Shift.

WARNING: Remember to disable BLANK-IT before starting WINDOWS or any
other application that takes over control of the keyboard. Otherwise, if the screen
blanks, pressing the spacebar will not restore the screen display, and you'll have
to do a warm reboot.

This program is not public domain but is "shareware" and a part of the Rhode Island Soft Sys
tems, Inc. collection. For registration and fee information,. contact:

Rhode Island Soft Systems, Inc.
200 Heroux Boulevard, #403
Cumberland, RI 02864
(401)658-4217

BLANK-IT is copyrighted 1990 and 1991 by, and is a trademark of, Rhode Island Software
Systems, Inc.

832 DOS Power Tools, 2nd Edition, Revised for DOS 5. 0

BOOTLOCK.COM
Version 1.10

David Foley
Foley Hi-Tech Systems

Shareware

Purpose: Locks out the use of the [CTRL] [ALT] [DEL] soft boot sequence and the
[CTRL] C or [CTRL] [BREAK] break sequence. Once installed, BOOTLOCK re
quires 624 bytes of memory.

Syntax: [d:] [path]BOOTLOCK [/options]

Where options include:

/? = display help
/R = disable Ctl-Alt-Del
/B =disable Ctl-Break
/C = disable Ctl-C
/U = remove Bootlock from memory

Example: Bootlock /R/C disables both Ctl-Alt-Del and Ctl-C but leaves Ctl-Break enabled.

BOOTLOCK.COM is Copyright© 1989-1991 by Foley Hi-Tech Systems
This program is not public domain but is .. shareware" and a part of the Foley Hi-Tech Systems
ExtraDOS collection. To register send a check or money order for $19.00 to:

Foley Hi-Tech Systems
ExtraDOS Registration
172 Amber Drive
San Francisco, CA 94131
(415)826-6084

BRKBOX.COM
Version 1.21

David Foley
Foley Hi-Tech Systems

Purpose: Displays the status of a COM port inside your PC.

Syntax: [d:] [path]BRKBOX [port] [U]

where,

[port] is the serial port COMx. Valid numbers are 1 through 4.

Utilities 833

Shareware

[U] tells the program to remove itself from memory. This only works if
BRKBOX is the last TSR installed.

Remarks: The status of the DTR, DSR, RTS, CTS, DCD, and RI pins, as well as the data
rate, parity, number of data bits, and number of stop bits are displayed on the top
right hand corner of the screen. This information is sometimes useful when trying
to debug a serial port or some associated communications software.

If no communications port is specified the program defaults to COMl. To tog
gle the display on and off use ALT-C. The program will start with the display tog
gled off.

BRKBOX can be uninstalled by entering it with the optional U parameter (if it
was the last TSR loaded).

Example: BRKBOX COMl monitors communications port #1.

BRKBOX.COM is Copyright© 1987-1991 by Foley Hi-Tech Systems
This program is not public domain but is .. shareware" and a part of the Foley Hi-Tech Systems
ExtraDOS collection. To register send a check or money order for $19.00 to:

Foley Hi-Tech Systems
ExtraDOS Registration
172 Amber Drive
San Francisco, CA 94131
(415)826-6084

834 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

CAL.EXE
Version 1.20

David Foley
Foley Hi-Tech Systems

Shareware

Purpose: Displays a calendar from DOS in one of two formats, either one month or 12
months of one year.

Syntax: [d:] [path]CAL [mm] yyyy

where:

mm is the month [1..12]

yyyy is the year [100 .. 9999]

If you specify two digits for yyyy then it will assume you mean 19xx.

Remarks: To pause the display of a full year, press [CTRL] S to pause the screen and then
any key to continue the display.

CAL.EXE is Copyright © 1989-1990 by Foley Hi-Tech Systems
This program is not public domain but is "shareware .. and a part of the Foley Hi-Tech Systems
ExtraDOS collection. To register send a check or money order for $19.00 to:

Foley Hi-Tech Systems
ExtraDOS Registration
172 Amber Drive
San Francisco, CA 94131
(415)826-6084

CAT.EXE
Version 1.11

David Foley
Foley Hi-Tech Systems

Utilities 835

Shareware

Purpose: A UNIX utility written for the MS-DOS world for displaying, printing, and con
catenating files together.

Syntax: [d:] [path]CAT [fname]

or

CAT [filel] [file2] > [file3]

Remark: CAT handles redirection of both input and output. It can be used like COPY CON
to create files as well. With only a single filename as an argument, it will copy
from the standard input to the filename. With two or more filenames, it will copy
the earlier files to the last file.

CAT.EXE is Copyright© 1989-1990 by Foley Hi-Tech Systems
This program is not public domain but is "shareware" and a part of the Foley Hi-Tech Systems
ExtraDOS collection. To register send a check or money order for $19.00 to:

Foley Hi-Tech Systems
ExtraDOS Registration
172 Amber Drive
San Francisco, CA 94131
(415)826-6084

836 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

CHIMES.COM
Version 1.01

David Foley
Foley Hi-Tech Systems

Shareware

Purpose: A terminate-and-stay resident program that attaches itself to the BIOS timer-tick
interrupt.

Syntax: [d:] [path]CHIMES /code

These are the available chimes and their codes:

/MO Time Tones

/M 1 Westminster Chimes

/M2 Saint Michael Chimes

/M3 Whittington Chimes

Remarks: CHIMES counts the time internally, so that it does not bring any overhead into
system throughput by using DOS functions. When the program realizes that the
time is nearing the hour, the program starts chiming.

In its default mode, chimes produces "Time Tone" beeps. These consist of
three short beeps, starting at three seconds before the hour. Then, at the hour, a
longer and higher beep is given.

Many of the dial-up time services provide such a time tone. CHIMES can be
given the /M option on the command line to provide the different clock chimes.
Using chimes /Ml would setup chimes to use the Westminster chimes.

If you select the MO option of the program, chimes will only become active at
the hour. Otherwise, chimes will faithfully reproduce the chimes for each quarter
hour of the clock. The program will also strike the hour by chiming for each hour,
or chiming just once for the half hour.

CHIMES.COM is Copyright© 1988-1991 by Foley Hi-Tech Systems
This program is not public domain but is "shareware" and a part of the Foley Hi-Tech Systems
ExtraDOS Collection. To register send a check or money order for $19.00 to:

Foley Hi-Tech Systems
ExtraDOS Registration
172 Amber Drive
San Francisco, CA 94131
(415)826-6084

Utilities 837

COLSET.COM
Version 2.0

Raymond P. Tackett Free ware

Purpose:

Syntax:

Maintains your preferred color settings in the color text mode (video mode 3).

[d:] [path] COLSET [BT] [min max] [set]

B =background color (0-F). A-F sets blinking text.

T = text color (0-F)

min max = color settings apply to all modes between min and max (must be
used together, or not at all)

set = video adapter switched to mode number specified by set

Remarks: COLSET intercepts and examines BIOS calls which manipulate the video lOH in
terrupt. All bracketed parameters are hexadecimal numbers. Default (no parame
ters) is grey text on blue background. See Chapter 13 for details of the color
codes, and Chapters 13 and 14 for discussions of the video modes that can be se
lected via set.

Notes: Do not run COLSETon a system with a monochrome monitor. Monochrome
hardware may be damaged if COLSET attempts to switch to a color mode. Some
screen-blanking utilities will not function in conjunction with COLSET. COLSET
does not work with some replacement ANSI.SYS drivers such as UV-ANSI.SYS.

This program is .. freeware" and may be freely used and distributed, but not modified or sold for
profit without author consent.

838 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

COMPORT.EXE
Version 1.0

JohnWoram.

Purpose: Displays list of installedparallel and serial ports. .

Syntax: [d:] [path] COMPORT

Remarks: Reports the status of COMl through COMN and Parallel ports 1 though N as ''va
cant" or "installed" as appropriate.

Example Comport yields a report similar to the following:

Asynchronous Adapter Ports:
COM 1 installed
COM2 vacant
COM3vacant
COM.4 vacant

Parallel Adapter Ports:
1 installed
2 vacant
3 vacant

COMPORT.EXE is Copyright© 1990 by John Woram

Utilities 839

COPYDISK.EXE Gordon Harris Freeware

Purpose: Copies volume label, subdirectory structure and all files regardless of attribute
type, from one disk medium to another.

Syntax: [d:] [path]COPYDISK s: t: [-n] [-x] [-f]

where "s:" and "t:" are valid DOS drives and the optional parameters are:

-n =(no prompt). Useful when using COPYDISK in batch files. With the .. _n"
parameter, COPYDISK will not prompt you for permission to delete all data
from the target disk.

-x =°(relaxed media checking). With this parameter, the target disk may be a
hard.disk and the source data may be larger than the capacity of the target
disk.

-f = (format target automatically if media check failure). With this parameter,
the DOS FORMAT.COM command will be spawned without prompting if
the target disk fails the media check.

Example: COPYDISK is an XCOPY-like utility which allows you to copy an entire disk to
a drive of differing tyJ:>e, e.g. copy the contents of a 1.2 m floppy to a 1.44 m
floppy, etc.

Unlike XCOPY, COPYDISK will copy the volume label from the source disk
to the target, as well as copying all subdirectories and files including hidden, sys
tem or read-only files and directories. All files on the target disk created by
COPYDISK will have identical attributes (dates, times, etc) as the files on the
source disk. If the source disk is bootable, so will the resulting target disk.

Notes: Given valid parameters, COPYDISK (1) performs a media check on the indicated
drives, (2) prompts the user for permission to delete all existing data from the tar
get drive, (3) copies the volume label from the source drive to the target and then
(4) proceeds to copy all files and directories from the source to the target.

COPYDISK aborts if its check of the media type of the target disk reveals that
it is a fixed disk. This protects you from inadvertently deleting the contents of a
hard disk either by using an incorrect parameter for the target drive or by using a
virtual drive name created by ASSIGN or SUBST which represents a fixed disk
drive or subdirectory on a hard disk.

During the media check, COPYDISK installs its own critical error handler. If
an error is detected reading either the source or target drives, COPYDISK will
prompt you to retry access to the disk. If you choose not to retry access to the tar
get disk, COPYDISK will prompt you as to whether you wish to format the target.

COPYDISK also aborts if the data on the source disk is too large to fit on the
empty target disk, or if any errors occur reading data from the source or writing
data to the target disks.

This program is "freeware" and may be freely used and distributed, but not modified or sold for
profit without author consent.

840 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

CTRLKEY.COM Shane Bergl Shareware

Purpose: Tums the keypad .. 5,, into a second control key, and also changes the •• -" key on
the numeric keypad to produce control K when it is pressed. Both functions are
disabled if Num Lock or Scroll Lock are engaged.

Syntax: [d:] [path]CTRLKEY

Notes: CTRLKEY will usually clash (non-destructively) with keyboard macro programs
such as Smartkey, but if you have such a program loaded then you don't really
need CTRLKEY. The effects of CTRLKEY will also be overridden by keyboard
accelerators if it is loaded before them.

While there are a number of keyboard macro programs that can do the same
thing, CTRLKEY has th_e virtue of being small enough (500 bytes) to be loaded
all the time whereas sometimes there isn •t room for Smartkey.

This program and STACK.EXE are not public domain but are "shareware.•• If you wish to reg
ister as a user please send $A20 to:

P.O. Box 78
Dickson, Australia Capital Territory, 2602, Australia

From outside Australia please add $A4 to cover currency conversion costs.

CURLOCK.COM
Version 1.10

David Foley
Foley Hi-Tech Systems

Utilities 841

Shareware

Purpose: Locks the cursor shape so that no matter what software you use, the cursor will
not be changed.

Syntax: [d:] [path]CURLOCK

Example: CURLOCK intercepts all calls to BIOS interrupt lOh and bypasses any calls to
change the cursor shape.

It is a TSR requiring 592 bytes of resident RAM.

CURLOCK.COM is Copyright© 1987-1990 by Foley Hi-Tech Systems
This program is not public domain but is "shareware" and a part of the Foley Hi-Tech Systems
ExtraDOS collection. To register send a check or money order for $19.00 to:

Foley Hi-Tech Systems
ExtraDOS Registration
172 Amber Drive
San Francisco, CA 94131
(415)826-6084

842 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

CURSOR.EXE
Version 2.11

David Foley
Foley Hi-Tech Systems

Purpose:

Syntax:

Controls your cursor from the DOS prompt.

[d:] [path] CURSOR [switches]

where valid switches are:

/D turns the cursor on to the bootup default underline

/H turns the cursor off (hide cursor)

/B makes the cursor a full block

/M displays the values of the registers for the video call

/? displays the help screen

/V returns version information

/I (Interactive Setup) gives you a full screen editor of your cursor

/T:nn sets the top scan line of your cursor

/B:nn sets the bottom scan line of your cursor

/LOCK locks the cursor shape

/UNLOCK unlocks the cursor shape

Shareware

Example: You can set the cursor to various shapes as listed above. Some software uses the
DOS cursor in which case the cursor will stay the same as what you set it using
CURSOR. If the software makes its own cursor then the cursor you create with
CURSOR will not function inside this software. Some software resets the DOS
cursor to its own shape. Therefore you might want to put CURSOR in a batch file
after this software to reset the cursor to what you want it to be at the DOS prompt.

CURSOR.EXE is Copyright© 1988-1991 by Foley Hi-Tech Systems
This program is not public domain but is "shareware" and a part of the Foley Hi-Tech Systems
ExtraDOS Collection. To register send a check or money order for $19.00 to:

Foley Hi-Tech Systems
ExtraDOS Registration
172 Amber Drive
San Francisco, CA 94131
(415)826-6084

CUT.EXE
Version 1.10

David Foley
Foley Hi-Tech Systems

Utilities 843

Shareware

Purpose: A UNIX utility written for the MS-DOS world that displays and prints text files in
different formats by eliminating columns and other formatting options.

Syntax: [d:] [path] CUT -clist [fnamel] [fname2] ...

where list is the list of columns to display, in the format firstcolumn-lastcolumn.

Examples: CUT -cl-15 test. txt

will display all characters in the file test.txt in columns 1 through 15.

CUT -cl-15 test.txt > prn

would print all the characters in the file test.txt in columns 1 to 15.

CUT -cl-15 test.txt > testedit.txt

would copy just the material in columns 1 to 15 of test.txt to the file testedit.txt.

CUT.EXE is Copyright© 1988-1991 by Foley Hi-Tech Systems
This program is not public domain but is "shareware" and a part of the Foley Hi-Tech Systems
ExtraDOS collection. To register send a check or money order for $19.00 to:

Foley Hi-Tech Systems
ExtraDOS Registration
172 Amber Drive
San Francisco, CA 94131
(415)826-6084

844 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

D.EXE
Version 4.0

MarcPerkel

Purpose: A small, fast directory lister driven from the command line.

Syntax: [d:] [path] D <path\mask, (path\mask ...) > options

Shareware

where path\mask is of the form dir* .ext and the following options are valid:

Notes:

/E Sort by Ext

/S Sort by Size

/B Sort Backwards

/R Programs that can Run

/L Long Display, no Pause

/D Sort by Date

/U Unsorted

/I Identify Directory

/A Files with Archive Set

/W Wait for Keypress at End

/0 Use Standard Output Device /P Output to Printer

/F Filenames Only

/+DATE Files after Date /-DATE Files before Date

/1/2/3/4/5/6 Controls Number of Columns and Information Displayed

You can list multiple directories or several groups of files with different exten
sions within a directory by specifying a list of paths and masks. For displaying in
formation from within a batch file, it's useful to have all the switches available
from the command line.

D.EXE is Copyright© 1988-1991 by Marc Perkel. All Rights Reserved
These programs are part of the Computer Tyme DOS ToolBox.
To Register, ask for the BANTAM BOOK special price of $25. (Reg Price $60)

Contact:
Computer Tyme
411 North Sherman, Suite 300
Springfield, MO 65802
(800) 548-5353

Utilities 845

DAAG.EXE
Version 2.34

Steve Leonard Shareware

Purpose:

Syntax:

DAAG.EXE ((Disk-at-a-Glance) provides an easy-to-use map of your hard disk.

[d:] [path]DAAG [drive:]

From the opening screen, the following commands are valid:

Up Arrow, Down Arrow, PgUp, PgDown, Home, End move you around the
directory tree displayed on the screen.

Enter gives you a summary by file extension of the current highlighted
directory, showing the amount of space occupied by files of each extension.

Pressing ENTER a second time displays the individual files of a particular
highlighted file extension, and pressing ENTER a third time displays the
contents of a specific file. This window is also sortable by

FILENAME or by SIZE, and Del deletes the file currently highlighted.

Fl provides on-line help.

F2 saves the current tree map to a file in your root directory named
DDyymmdd.DAG, where yymmdd is the current date.

F3 displays files from the current highlighted directory that duplicate the names
of other files on the disk. Pressing F5 at this point will save the list of
duplicates to disk as DAAG.DUP.

F4 displays a piechart of the top 16 directories by number of bytes of disk used.
If you have more than 16 directories, then the smallest ones are grouped
collectively under ••other". This option requires an EGA or VGA monitor
it's - great for identifying disk hogs!

Remarks: DAAG initially displays a tree-structured directory map, showing hidden directo
ries and providing useful statistics relating to file and directory size.

Notice that the sum of all directories is not exactly equal to the total disk size
minus the space available. This is because DOS allocates file space in CLUS
TERS, so that a 20 byte batch file will actually use 4096 bytes (depending on clus
ter size).

DAAG uses an ancillary program called SHOW.EXE to browse through files
- if you have a preferred browser, keep a copy under the name SHOW.EXE in a
path DAAG can find.

Duplicates displayed are the full pathnames of files from the current directory
that replicate the name of another file on the disk, and the full name (including
path) of the duplicate filenames. You won't see files from other directories that
duplicate filenames elsewhere on the disk, and you won't be able to delete files
from the display window of duplicates.

DAAG requires about 390k of memory. If you plan to use the BROWSE func
tion, then you will need additional memory. The included browse program,

846 DOS Power Too/,s, 2nd Edition, Revised/or DOS 5.0

SHOW.EXE, requires approximately 131k of memory, making TOTAL MEM
ORY REQUIREMENTS about 521k. Luckily it is not a TSR!

DAAG has several tables in memory, that hold directory and file information.
The maximum number of directories DAAG can hold (1st window) 200; max-
imum different extensions in a directory (2nd window) 250; maximum files
with the same extension (3rd window) 400; maximum number of files on
disk (for duplicate checking) 4000;If these maximums are exceeded, DAAG
should still work, but it will give a warning message that not all files are available
for display.

This program is "shareware"; anyone who finds this program of value is encouraged to make a
voluntary donation to the author; those sending $10 or more will receive a free update, if one is
written: ·

· Steve Leonard
260 Dunbar Road
Hilton, NY 14468

DD.EXE
Version 1.13

Dennis Vallianos
D & D Software, Inc.

Purpose: Display file and directory information in various screen formats.

Syntax: DD [/options] [pathspec(s)]

Options show

/A all files and directories

/D directories only

/J archive files only

/R regular and read-only files (Default)

/6 files only

Sort by

/F filename (Default)

/K file size based on clusters taken

/N no sort (show in DOS order)

/S file size

/SI file size in inverted order

/T time and date

/TI time and date in inverted order

/X extension

Toggles

/C Clear screen before displaying listing.

/L Use lowercase for file names.

/P Disable pause between screens.

Screen display format

/1 one column; filenames only

/2 two columns; filename, size, attributes, time, date

/4 four columns; filename, size in Kbytes (Default)

Other options

/H Show directory help screen.

/M Modify default settings (see Notes).

Utilities 84 7

Free ware

848 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

Notes:

/0 Restore original defaults (see Notes).

Options and pathspec may be repeated to show multiple listings.
The switch before the first option may be a slash (as illustrated) or a hyphen.
If no pathspec is entered, *. * is assumed. To display the current directory fol

lowed by the DOS directory, type

DD * . * C: \DOS

(other pathspecs, as desired).
Each pathspec may be preceded by its own options.
To customize DD.EXE to your display preference, type

DD /optionsM.

Subsequent use of DD alone will display listing according to the options you
listed. To restore original defaults, type

DD /OM.

DD.EXE is Copyright© 1990 by D & D Software, Inc. All Rights Reserved
This program is "freeware" and may be freely used and distributed, but not modified or sold for
profit without author consent.

D&D Software, Inc.
809 Jackson A venue
Lindenhurst, NY 11757
(516)957-8356

DEL2.COM Dennis Vallianos
D & D Software, Inc.

Utilities 849

Free ware

Purpose: Displays filename(s) that will be deleted, requests verification before proceeding.

Syntax: DEL2 f ilespec [C]

filespec name and extension of file to be deleted.

Wildcards may be used for name or extension.

C Confirm each filename separately before deleting.

Remarks: DEL2 displays the names of all files that will be erased, along with an "OK to
erase?" prompt. If you answer "yes," all listed files are erased. If the C parameter
is appended, filenames are displayed sequentially, and the prompt is repeated for
each listed file.

Notes: Use as is or rename as ERA.COM. To use in place of the regular DOS DEL or
ERASE command, find either command name within the COMMAND.COM file
and patch to XEL or XRASE (or similar), thereby disabling the DOS command.
Then replace the disabled command by renaming DEL2.COM to DEL.COM or
ERASE.COM, as appropriate.

This program is "freeware" and may be freely used and distributed, but not modified or sold for
profit without author consent.

D&D Software, Inc.
809 Jackson Avenue
Lindenhurst, NY 11757
(516)957-8356

850 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

DELAY.EXE
Version 1.60

David Foley
Foley Hi-Tech Systems

Shareware

Purpose: Replaces the PAUSE command within a batch file, or provides a pause within
CONFIG.SYS.

Syntax: [d: J [path] DELAY [time] or

DEVICE

or

DEVICEHIGH=DELAY.EXE [time]

where time specifies the number of seconds to wait before continuing.
Time can be a value between 0 and 65000, with a default value of 5.
DELAY returns an ERROR LEVEL of :

2 - [CTRL][BREAK] pressed

- A key was pressed

0 - Time ran out

Remarks: PAUSE will never continue until a key is pressed, whereas with DELAY you can
set the amount of seconds to pause, and then continue or continue immediately by
pressing a key. Pressing [CTRL]C will also cause a break in a batch file that can
be monitored with the error level returned by DELAY. This is useful if you are
trying to break out of a stream of commands from within a large batch file.
DELAY can be used in CONFIG.SYS as well as from within BATCH files. This
is helpful when trying to delay the execution of device drivers in order to see
what is going by on the screen. Specifying no time on the delay batch line acts the
same as PAUSE.

Example: To use DELAY error codes in a batch file: DETEST.BAT

echo off
echo Now I will wait 5 seconds for you to decide
echo Press [CTRL]C to skip the network loader
delay 5
if errorlevel=2 goto skip
:load
network
:skip

The above batch file will skip over the network program if CTRL C is pressed
during the delay period.

Utilities 851

DELAY .EXE is Copyright © 1989-1991 by Foley Hi-Tech Systems
This program is not public domain but is "shareware" and a part of the Foley Hi-Tech Systems
ExtraDOS collection. To register send a check or money order for $19.00 to:

Foley Hi-Tech Systems
ExtraDOS Registration
172 Amber Drive
San Francisco, CA 94131
(415)826-6084

852 DOS Power Tools, 2nd Edition, Revisedfor DOS 5.0

DETAB.EXE
Version 1.30

David Foley
Foley Hi-Tech Systems

Shareware

Purpose: Strips any tab characters from an ASCII text file and converts them into four
spaces.

Remarks: This capability is useful when working with old formatted .ASM files that you
would like to work with in an editor that treats fixed tabs differently.

Syntax: [d:] [path]DETAB [input filename] [output filename]

DETAB.EXE is Copyright© 1985-1991 by Foley Hi-Tech Systems
This program is not public domain but is "shareware" and a part of the Foley Hi-Tech Systems
ExtraDOS collection. To register send a check or money order for $19.00 to:

Foley Hi-Tech Systems
ExtraDOS Registration
172 Amber Drive
San Francisco, CA 94131
(415)826-6084

Utilities 853

DEVICE.EXE
Version 2.9

Kim Kokkonen
Turbo Power Software

Purpose:

Syntax:

Notes:

Reports on device drivers installed by the CONFIG.SYS file.

[d:] [path]DEVICE

DEVICE offers the following command line options:

/R raw report.

/? write a help screen.

The raw report shows more information about the device drivers, but in a less
convenient format.

DEVICE shows the memory used by DOS itself, any additional drivers installed
in CONFIG.SYS, and the space used for DOS file handles and buffers. Here is a
simple example of DEVICE output:

Address

0070:0BB3
0070:0C68
0070:0C7A
0070: OD17
0070:0D29
0070: OE15
0070:0EE5
0070: 2071
0070:2083
0070:2095
0000:2C58

09A5:0000
OA7F:OOOO
OA7F: 0012
OA83:0000
OAB3:0000
OAE3:0000

Bytes

37712

3488
18
46

768
768

18256

Name

CON
AUX
CO Ml
PRN
LPTl
CLOCK$
3 Block Units
LPT2
LPT3
COM2
NUL

O Block Units
EMMXXXXO

Hooked vectors

08 OA OC OD OE 13 25 26 29
73 74 75 76 77

386MAX$$ 20
1 Block Unit 19
1 Block Unit
DOS buffers

The devices up to and including NU:{.. are all part of DOS. DEVICE lumps their
memory usage into a single value nexdo the NUL device. The memory usage as
sociated with NUL does not include the interrupt vector table, the BIOS data area,
or the low-memory DOS data area. If you wish to add this memory to the total,
just take the hexadecimal segment of the first driver you see (in this case CON)

854 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

and multiply it by 16 decimal. When the segment is 0070 as shown, that adds
1792 bytes to the total space for DOS.

Don't expect the sum of the DEVICE bytes to match the bytes reported by
MAPMEM in the row labeled 'config'. MAPMEM's report shows what DOS
thinks has been allocated, but that number isn't complete since some of the mem
ory was used before DOS was truly loaded. However, you should find that the
sum of the DEVICE bytes, plus all of MAPMEM's memory excluding the
'config' row, equals the total normal RAM in the system.

DEVICE also lumps all of the drivers up to NUL into a single block when it
comes to reporting hooked interrupt vectors.

Because WATCH can't be installed prior to these device drivers, DEVICE
must use an empirical technique to detect which vectors each driver controls.
Therefore, some meaningless vectors rhay appear in the list. Any vectors that are
grabbed by another program after the driver is loaded will not appear. "Block
units" typically refer to disk drives. Any drivers that appear after the NUL device
are in the order that you've entered them in CONFIG.SYS. Drivers loaded for
non-standard hard disks, like SpeedStor, sometimes make odd entries in the DE
VICE report, as shown with "O Block Units" above. RAM disks appear more logi
cally: each of the "1 Block Unit" entries above is a VDISK with the data stored in
extended memory.

Devices like 386MAX may also cause odd-looking entries: 386MAX puts most
of its code in extended memory, and leaves just a bit behind in normal memory.

Here's an example of the raw report option, taken on the same system as the
previous report.

Starting Next Strategy Interrupt Device

Address Hdr Addr Attr Entry Pnt Entry Pnt Name
- ... - - - - - .. - - - - - - - - - - ... -
0000:2C58 OAB3:0000 8004 0000:14C6 0000: 14CC NUL

OAB3:0000 OA83:0000 0800 OOOO:OOA9 OOOO:OOD4 1 Block Unit

OA83:0000 OA7F:0012 0800 OOOO:OOA9 OOOO:OOD4 1 Block Unit

OA7F:0012 OA7F:OOOO cooo 0000:0036 0000:003B 386MAX$$

OA7F: 0000 09A5:0000 8000 0000:0036 0000:003B EMMXXXXO

09A5:0000 0070:0BB3 2000 0000:0012 OOOO:OOlD 0 Block Units

007 0: OBB3 0070: OC68 8013 OOOO:OOC6 OOOO:OODl CON

0070: OC68 007 0: ODl 7 8000 OOOO:OOC6 OOOO:OOD7 AUX

0070: OD17 0070:0El5 A040 OOOO:OOC6 OOOO:OOE6 PRN

0070:0E15 007 0: OEE5 8008 OOOO:OOC6 OOOO:OlOC CLOCK$

0070:0EE5 0070: OC7A 0840 OOOO:OOC6 0000:0112 3 Block Units

0070: OC7A 007 0: OD29 8000 OOOO:OOC6 OOOO:OOD7 CO Ml

007 0: OD29 007 0: 2071 A040 OOOO:OOC6 OOOO:OOEC LPTl

007 0: 2071 0070:2083 A040 OOOO:OOC6 OOOO:OOF4 LPT2

007 0: 2083 007 0: 2095 A040 OOOO:OOC6 OOOO:OOFC LPT3

0070:2095 0070:FFFF 8000 OOOO:OOC6 OOOO:OODD COM2

Utilities 855

In this report, the drivers are listed in DOS priority order rather than the order
in which they are loaded in memory.

Additional columns describe how DOS treats each driver. Ray Duncan's book
"Advanced MS-DOS" is a good place to learn more about these details.

The DEVICE program assumes that all device drivers are loaded in the CON
FIG.SYS file. That is not the case with the NetWare shell, which patches itself
into the device driver chain. DEVICE will write a warning message and terminate
before reporting the first patched-in driver. The raw device report will still show
all of the devices even in this case.

The TSR Utilites - DEVICE.EXE, DISABLE.EXE, MAPMEM.EXE, MARK.EXE,
RAMFREE.COM, RELEASE.EXE, and WATCH.COM - are Copyright© 1986, 1987, 1989
by Kim Kokkonen of Turbo Power Software.

856 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

DIRCMP.COM
Version 1.2

Eric Meyer Free ware

Purpose: Reconciles two directories: (l)to detect differing versions of a file, or (2)to see
which files are in one directory but not the other.

Syntax: [d:] [path] C>dircmp dirl [dir2] [/options]

Remarks: Two arguments are expected: Each may consist of an MS-DOS directory name
and/or an ambiguous filename. If the second is omitted, it is assumed to be the
current directory, *. *.

In addition, you can specify the options:

/P pause display every 25 lines

You can also choose one of these options to restrict the display:

JE files EXISTING in both directories only

JN files NOT existing in both directories only

JM files MODIFIED only

Otherwise, by default, the complete set of listings will be produced.

Notes: Nonidentical versions of files (same name, different timestamps) will appear in
the lists of DIFFERING files. The newer version will be flagged with a"+" sign
before the filename, the older version with a"-".

You can also select a more restricted display: The JE option gives only the first
listing (common files). The JN option gives only the second and third (differing
files). The JM option gives a single listing, of modified versions of files with the
same name only.

Remarks: Error messages are as follows:

<Bad argument> = Missing or invalid argument; think (read?) and try again.

<No memory> = You don't have enough free memory (about 45k required).

<Too many> = Too many files to compare (maximum is 1024 in each dir); try
a more restrictive filespec, e.g. *.DOC instead of*.*.

Examples: C>dircmp a:
C>dircmp a:\work /mp
C>dircmp \prg*.asm a: /n

Utilities 857

DIRCMP will normally give three alphabetical file listings:

1. files common to both directories;
2. files present in the first but not the second;
3. files present in the second but not the first.

In each case the number of files, and their total size (to the nearest K), is also re
ported.

DIRCMP.COM is Copyright© 1991 by Eric Meyer, All Rights Reserved
This program is ··rreeware" and may be freely used and distributed, but not modified or sold for
profit without author consent.

858 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

DIRR.COM
Version 1.6

Scott Chaney
RSE, Inc.

A non-TSR version of the FN.COM utility. See FN.COM for instructions.

DIRR.COM is Copyright© 1990 by RSE, Inc.

Shareware

This program is not public domain but is ··shareware" and part of the RSE, Inc. collection. For
registration and fee information contact:

RSE,Inc.
1157 57th Drive S.E.
Auburn, WA 98002
(206) 939-4105

Utilities 859

DISABLE.EXE Kim Kokkonen
Turbo Power Software

Purpose: Disables or reactivates TSR's, leaving them in memory.

Syntax: [d:] [path]DISABLE TSRnamel$PSPaddress [options]

where TSRname or $PSPaddress identify the TSR to be disabled or reactivated.

Options: Options may be preceded by either/ or-. Valid options are as follows:

/A reactivate the specified TSR.

/C check for the presence of the specified TSR.

/? write a help screen.

If no option is specified, DISABLE will disable the named TSR.

Remarks: In order to use DISABLE, you must install WATCH.COM as the first memory
resident program in your system. WATCH keeps the detailed information about
each memory resident program that DISABLE uses to later control them.

Like the other TSR utilities on these disks, DISABLE is operated from the com
mand line. You specify a single TSR by its name (if you are running DOS 3.0 or
later) or by its address as determined from a MAPMEM report (described below).
If you specify an address, immediately precede the address with a dollar sign .. $"
and specify the address in hexadecimal.

The name specified for a TSR is the one reported by MAPMEM in the .. owner"
column. If the owner column reports "N/A", then you must instead specify the ad
dress from the "PSP" column.

Examples: DISABLE SK
DISABLE SK /A
DISABLE SK /C
DISABLE $2F2E

disables SideKick
reenables SideKick
checks for the presence of SideKick
disables the TSR at address 2F2E (hex)

Note:

DISABLE sets the DOS ERRORLEVEL in order to return status information
to a batch file. It uses the following values of errorlevel:

0 success: TSR is present, was disabled, or was reenabled.

1 TSR is present, but no action was required to enable or disable it.

2 TSR is not present in memory.

254 invalid command line.

255 severe error.

You cannot use DISABLE to deactivate SideKick Plus, whose swapping tech
nique is incompatible with DISABLE.

860 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

With DISABLE.EXE, you can disable and reenable specified memory resident
programs without removing them from memory. Its function is analogous to that
performed by REFEREE from Persoft, although

DISABLE has neither a fancy user interface nor an option to work from within
other programs. DISABLE can allow conflicting TSR's to coexist, and it can let
you run applications whose keystrokes conflict with those of TSR's already
loaded. DISABLE also provides a small bonus in that it can be used to detect the
presence of a particular TSR in memory, thus allowing the design of semi-intelli
gent batch files.

The TSR Utilites - DEVICE.EXE, DISABLE.EXE, MAPMEM.EXE, MARK.EXE,
RAMFREE.COM, RELEASE.EXE, and WATCH.COM - are Copyright© 1986, 1987, 1989
by Kim Kokkonen of Turbo Power Software.

DL.EXE
Version 1.03a

Stephen S. Bates

Purpose: Displays two files simultaneously on the screen.

Syntax: [d:] [path]DL [d:] [\path\]filel[.ext]
[d:] [\path\] [file2] [.ext]

Utilities 861

Shareware

Remarks: The files will be displayed initially as text in two horizontal windows, with the
first file in the upper window designated as "active". The active file's name (and
path, if there's room) is displayed in reverse video; its window is framed in dou
ble lines. From the main display, you can use the following commands.

You must give at least one filename. If you omit the second file, the first file
will appear in both windows. Full pathnames are accepted. You may abbreviate
the second file:

1. use'*' in place of filename or ext (or both), OR
2. give d: or \path\ (or both) and omit the filename.ext altogether.

In either case, the missing parts will be supplied from the first file.
(Note: fullblown wildcards are not supported.)

Q - to leave the program. Press Esc to leave the program and restore the
screen to its original contents.

+ - to make the second file active; - to make the first file active.

L - to enter or leave Lockstep mode. In Lockstep mode, both files are
active; i.e., scroll simultaneously. Lockstep is very useful for
comparing files that are almost alike. NOTE: on some keyboards,
with certain versions of BIOS, you may use the Scroll Lock
instead of L.

PgUp, PgDn, Up Arrow or Down Arrow - to scroll the active file up or down.

Home - to go the top of the file.

End - to go to the bottom.

Left Arrow and Right Arrow - to scroll right or left 20 columns at a time.

Ctrl Left Arrow and Ctrl Right Arrow - to scroll one column at a time

Ctrl Home - returns to the left margin. The column number will be displayed
near the file name.

Other Options:

These keys affect the entire display:

V - changes to a vertical (side-by-side, columnar) display.

H - changes back to horizontal.

862 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

Pressing V repeatedly when the display is already vertical to make the left
window wider, narrower, or the same as the right. Pressing H repeatedly when
the display is already horizontal to make the upper window taller, shorter, or
the same as the lower.

4 - enters or leaves 43-line mode on EGA or VGA displays.

Results are unpredictable on mono or CGA displays.

These key commands affect only the active window(s):

T - changes the tab stop spacing to 1, 2, ... 8 characters. By default, tab stop
spacing is eight characters.

B - reverses the background color following each line, so that ends of
lines are visible. B also causes tabs to be expanded in shaded spaces so they
can be distinguished from normal spaces. Press B again to return to normal
display.

7 - enters or leaves 7-bit display mode. In this mode, the high-order bit of
each character is set 0, "nd control characters other than new-line are
omitted from the display. Seven-bit mode may be set any time, but is
suspended while hexadecimal mode is in effect. This mode is useful for
viewing files created by some word processors.

X - enters or leaves hexadecimal display mode. By default, if the display is
horizontal, 16 bytes will be shown on each line; if vertical, eight. The
hexadecimal address within the file of the first byte shown is displayed next
to the filename. Hexadecimal offsets from that starting address are displayed
to the left of each line.

Four additional keys (shown in parentheses after ''heX .. on the help line) are
available only in hexadecimal mode; these assist in aligning records or arrays
within the file for convenient display:

Tab or Shift-Tab - increments or decrements the file address of the first byte
displayed in hexadecimal mode. Use Up/Down Arrows or PgUp/Dn to get
close to the desired address, then Tab or Shift-Tab to adjust.

Ins or Del - increments or decrements the number of bytes per line, starting
from the default eight or 16. Striking V, H, or Home Will reinstate the
defaults. The offsets to the left of the line will be changed to reflect the new
number. Note that use of Ins may create display lines longer than the
window width. As in text mode, you may use Right Arrow or Ctrl Right
Arrow to scroll the window to the right. The actions of these keys are
modified slightly in hexadecimal mode for a more readable display. End of
file is not detected in hexadecimal mode; you are not prevented from
scrolling (harmlessly) off the end of t11e file buffer.

F - finds the next occurrence of a string within a line. You will be prompted
for a string. Searching is case-sensitive, so enter the exact desired string.
Only ASCII printable characters are permitted in the search string. The

Notes:

Utilities 863

search begins with the second line currently displayed. To search again for
the same string, strike F again and press Enter when prompted for the string.
In Lockstep mode, both files will be scrolled until the string is found in
either file. If the string is found, the line containing it will be displayed at
the top of its window. If the line is long, or if the display is scrolled left or
right, the found string may not appear onscreen. If it does appear, it will be
brightened. F has no effect in hexadecimal display mode.

D - locates the next difference between the files. Comparison begins with the
second line of each window, and proceeds until a difference is found or the
end of either file is reached. The first lines to differ are displayed at the top
of the windows. You may then strike D again immediately, or scroll one file
to ·realign the files before striking D again. D has no effect in hexadecimal
display mode.

DL uses direct video memory display and works only with IBM mono, CGA,
EGA, VGA or HGC or exact compatible display adapters, in an 80-column text
mode only. Appearance may suffer on CGA-composite monitors.

The combined size of both files is limited to available main memory. If the
files are larger, only part of them will be displayed, up to a maximum of about
128k each. In that case, the End key travels only to the end of the buffer, not to
the true end of file, and the message

"Out of Space" is displayed. The first file has priority on available memory, so
if you have a big and a little file, enter the little one first.

Lines longer than 2,048 characters will be wrapped without warning.
In hexadecimal mode, Ins can increment the number of bytes per line to a maxi

mum of 511 bytes.

DoubleLister v. 1.03a written by Stephen S. Bates
DL.EXE Copyright© 1989 by Stephen S. Bates
This program js not public domain but is "shareware." To register, send $15 to:

Stephen S. Bates
3510 Gramercy St.
Houston, TX 77025

864 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0

DLT.COM
Version 1.1

Eric Meyer Free ware

Purpose: Deletes lists or groups of files (in different directories) with a single command,
displaying the number deleted. In addition, options: (l)display and ask for user
confirmation before deletion; (2)delete all except specified files; (3)selection of
files by time/date; include hidden, system, or read-only files.

Syntax: [d:] [path]DLT filespec [,filespec2, ...] [/options]

where filespec is the target file(s) to delete, and valid options are:

/P = PROMPT to confirm. You will be shown the files and asked ··Delete?
(y/n)".

/H =HIDDEN and System files (otherwise not found) will be included
as well.

/R =READ-ONLY files may be deleted as well (otherwise an
error results).

/E =Only files EARLIER than specified date/time (MMDDYY:HHMM)
are deleted.

/L = Only files LATER than specified date/time are deleted.

/X =All files EXCEPT those specified will be deleted. (Be careful!)

The /X option cannot be used with a list of files in more than one directory. Also,
/X cannot be used with /E or /L.

With the /E and /L options, you can choose to delete only files dated before or
after a given date or time. (You can even use both together, to delete files dated
between two date/times.)

With /E or /L, the date/time should follow the option letter. Dates must be
given as six digits in the form MMDDYY; the date .. 000000" may be used for a
blank timestamp, otherwise YY must be 80 or above. You may also type a colon,
followed by a four-digit (24-hour) time in the form HHMM. Given a date with no
time, the time defaults to 0000 hrs; given a time with no date (note the leading
colon is necessary), the date defaults to today. If time/date are omitted altogether,
the default is today, 0000 hrs.

Examples: /1 since today 0:00

/e: 1300 before today 13:00

/1020190:1300 since 2/1/90 13:00

/1120189 /e010190 since 12/1/89 0:00, and before 1/1/90 0:00

Notes: The target is either a single (ambiguous) filespec or a list of them delimited with
spaces and/or commas. Sub-directories are supported. If not specified, drive and
directory default to the current values.

If the target is a list, the previous item's drive and directory carry over to the
next one, unless the latter itself begins with a drive or root directory.

Utilities 865

Options must be preceded by one slash ·r; separating spaces and further
slashes, are optional.

Use care when deleting groups of files; recovering accidentally deleted files re
quires special utilities, and can be difficult. While learning to use DLT and its var
ious options always use the "/P" option: you will be shown the selected files, and
can choose NOT to delete them!

Type "DLT" alone for a help message.

Examples: A> dl t * . bak read. me todo
A>dlt *·*

(Doesn•t give the annoying confirmation prompt that DOS does.)

A>dlt b:\wrk*.doc,apr*.not

Deletes all files B:\WRK*.DOC and B:\WRK\APR*.NOT.

A>dlt *.doc *.not /x

Deletes all files other than *.DOC and *.NOT.

A>dlt *.sys /p/rh

All files *.SYS in the root directory (including hidden files like MSDOS.SYS)
will be deleted after you are prompted to confirm this.

A>dlt *.bak /e010189

Every file *.BAK dated earlier than 1/1/89 is deleted.

A>dlt *.* /l/e:1200

Every file dated today before noon is deleted.

Remarks: Error messages are as follows:

<Bad argument> = missing or invalid argument; think (read?) and try again

<No memory> = you don•t have enough free memory or, too many files

(try a more restrictive filespec)

<R/O Error> = DOS error deleting file (is it read/only?)

<Aborted> = you pressed "C

DLT.COM is Copyright© 1991, Eric Meyer, All Rights Reserved
This program is "freeware" and may be freely used and distributed, but not modified or sold for
profit without author consent.

866 DOS Power Tools, 2nd Edition, Revised for DOS 5.0

DMLITE.EXE
Version 3.12

Marc Perkel Shareware

Purpose:

Syntax:

Directory Master Lite copies, moves, and deletes files quickly and easily.

[d:] [path]DMLITE

Once you've invoked DMLITE, you can use the following commands:

ESC - Aborts any command.

Right-Arrow - Selects or marks a file.

Left-Arrow - Unselects or unmarks a file.

CTRL-Right-Arrow - Selects or marks all files.

CTRL-Left-Arrow - Unselects or unmarks all files.

Q - Quit Directory Master Lite. ALT-X also exits.

C - Copies the file you are pointing to. DMLITE asks you where to copy the
file. You must then enter a path or drive.

M - Moves the selected file DMLITE asks you for.

D - Deletes the selected file.
R - Renames the selected file.

V- Views the file you are pointing to. This only works with text files; therefore,
if you see garbage on the screen, the file you are trying to view is not a text
file.

S - Changes the sort order. DMLITE normally shows the files sorted by name.
You can sort them by date, size, or extension. You can also sort in reverse
order. Sort only changes the way the files are displayed and not the order on
the disk.

L- Re-reads the directory. If you use DMLITE on a floppy disk and you
change floppies, press the L key to read in the new floppy's file information.

Alt-C - This command copies all marked files instead of the one you are
pointing to.

Alt-M - This command moves all marked files instead of the one you are
pointing to.

Alt-D - This command deletes all marked files instead of the one you are
pointing to.

Alt-P- Prints help information to your printer.

F5 - Changes to a different disk drive.

F6 - Changes path and mask. It also lets you change drives, path, and file mask
in one command.

F7 - Selects TREE MODE. In Tree Mode, only directories that are in the
current directory are displayed. The main purpose of tree mode is to move

Notes:

Utilities 867

around through the directory tree to the directory you want to be in. Then
you normally switch back to file mode for a list of the files in that particular
directory (press ENTER).

In Tree Mode, you use your right and left arrows to move to different levels of
the directory tree. The left arrow moves you towards the root directory, the right
moves you down the directory tree. You exit Tree Mode by pressing F7 again or
by pointing to a directory and pressing ENTER.

While in Tree Mode you can make, rename, and delete directories with the fol
lowing commands:

M- Makes a new subdirectory. Directory Master Lite will prompt you for a
name. Remember, you can't make a directory that has the same name as a
file that is already in that directory.

R - Renames the subdirectory you are pointing to. You can't change a directory
name to the same name as a file that already exists in that directory.

D - Deletes the subdirectory you are pointing to. You cannot delete a
subdirectory that contains files - you must first delete or move all of the
files from within the subdirectory.

Additional Tree Mode Commands:

. \-Places you in the root directory's list of subdirectories. This is your "main"
directory list.

ENTER - Exits Tree Mode and lists the files residing in the subdirectory you
are pointing to.

DM LITE displays a list of files in the left-hand column. You can move up and
down the list by using your cursor control keys. The upper right-hand box dis
plays status information. The lower right-hand box displays a list of commands
you can use.

Use your LEFT and RIGHT cursor arrows to select files. Selected (or
"marked") files are displayed in high-intensity (bold) on the screen. You can
copy, move, or delete the marked files all at once.

The status window (upper right-hand comer of the display) shows you how
~~~~~~~~~~~~~~~~ 
size as well. Also displayed are: total disk space in megabytes (that's what the lit
tle "m" stands for); free disk space; the current sort method (Name, Date, Size, or 
Extension); the current path (that is, the drive and subdirectory); and the size and 
last update time of the file you are pointing to. 

Directory Master Lite has two modes: File Mode and Tree Mode. The program 
always starts in File Mode, which lets you manage your files. In Tree Mode, the 
left-hand side of the screen displays the current list of directories. 

Tree Mode lets you make or delete directories, and change quickly to different 
directories to get to the files you need to display (see above under "Commands"). 

When copying or moving a file, if you select a directory that does not exist, Direc
tory Master Lite will ask you if you want to create the directory or create a file 



868 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0 

with that name. In the case of creating the directory, Directory Master Lite saves 
you the step of having to go into Tree Mode and create the directory first. 

You can't delete a directory if it has files in it. You must first go into the direc
tory and delete or move the files. Only empty directories can be deleted. You 
can't make a directory if a file exists with the same name. 

In the status window, the total size of all the files is rounded by the cluster size 
to show how much space it takes on the disk. Marked files are rounded to lk clus
ter size. This is done so that if you are marking files to be copied to a floppy disk, 
it will indicate more accurately how much will fit. This is why if you mark all 
files, the two totals do not match. 

If you are using a laptop computer with an LCD screen and the screen doesn't 
look right, run DMLITE /L. 

These programs are part of the Computer Tyme DOS ToolBox.id DOS com
mand that produces redirectable output, and target 1 and target2 are either file or 
logical device names that can accept input from a DOS pipe. 

Remarks: If you don't use redirection a lot, this may seem a bit obscure at first, but it's 
worth playing with until the old light bulb goes on. What this does is give you 
two outputs from a single source like a tee fitting on a physical pipe. Say you 
need to print a directory using DIR >PRN, but you also want to see the directory 
on screen, too. You'd simply type: 

DIR I FORK >CON I >PRN 

Note that the argument immediately following FORK needs a > if the argu
ment is a device and a/ if it's a command, but doesn't need the usual> if it's a 
file. 

Examples: DIR I FORK I SORT 
DIRIFORK UNSORT.TXTISORT >SORT.TXT 
DIRIFORK/MOREISORTIMORE 

DMLITE.EXE is Copyright© 1985-1990 by Marc Perkel. All Rights Reserved 
This program is not public domain but is .. shareware" and part of a Computer Tyme collection. 
To register contact: 

Computer Tyme 
411 North Sherman 
Suite 300 
Springfield, MO 65802 
(800)548-5353 



Utilities 869 

DTA.EXE 
Version 1.4 

Eric Meyer Free ware 

Purpose: 

Syntax: 

A super directory that stands for Directory-Tree-Attributes and replaces the DIR, 
TREE, and A TTRIB commands of DOS, as well as the WHEREIS utility. 

[d:] [path] dta [filespec] [/options], 

where .. filespec" may include a drive, path, or wildcards; "/"is the delimiter for 
option letters, including: 

/? = help: gives version message, brief summary of usage and options. 

/T = tree: show it, starting at specified or current directory. 

/G = global: search for specified files throughout the tree. 

/F = full: for files, show attributes and time/date also (automatically selected 
for single file display) for directory tree, show total size of contents. 

/W =wide: just like DIR /W, five columns with no file sizes 

/N = narrow: use only half the usual number of columns 

/P = paginate: pause every 24 lines for a keystroke 

/X = except: select only items other than those named 

/D = directories: select directories instead of files 

/U = universal: select both directories and files 

/E =earlier: select files earlier than specified time: MMDDYY:HHMM 
/L =later: files later than (or equal to) specified time: MMDDYY:HHMM 

/ A,H,R,S = select only items with the specified attributes: Archive; Hidden; 
Read/only; System 

/a,h,r,s = select only items WITHOUT these attributes 

/@ =set timestamp on items, in format: MMDDYY:HHMM 

/C = change items to have the following specified attributes 

Remarks: If the drive or path is omitted, the defaults are the active ones. If the filespec is 
omitted it defaults to ••*. *". If it is a directory name, the contents of the directory 
are displayed. 

By default, DTA displays a list of all files specified, along with their sizes, and 
some disk space information. You can modify this considerably with a variety of 
options. One / must precede any options; additional slashes may be used or not as 
desired. 

The /@ and /C options actually change the DOS timestamp and attributes for 
files. Timestamps, in particular, provide valuable information about the age and 
revision of a file, so change only when necessary. Dates must be given as six dig
its in the form MMDDYY; the date ··ooOOOO" may be used for a blank timestamp, 
otherwise YY must be 80 or above. You may also type a colon, followed by a 



870 DOS Power Tools, 2nd Edition, Revised for DOS 5.0 

four-digit (24-hour) time in the form HHMM. Given a date with no time, the time 
defaults to 0000 hrs; given a time with no date (leading colon is necessary), the 
date defaults to today. If time/date are omitted altogether, /E and /L default to 
today, 0000 hrs; I@ defaults to today, now. File attributes are case sensitive (up
percase=set, lower=clear). Those listed alone, or before the "C" option letter, are 
used for file selection; those after it, represent changes to be made. The /C option 
can be used alone, with NO following attributes, to cause attributes to display in
stead of file sizes (no attributes will be changed). 

You can pause or abort during operation of DTA by typing AS or AC. 
Output can be directed to a file or other device in the standard fashion: 

DTA FILESPEC /OPTIONS >DEVICE. 

Examples: DIRECTORY TREE 

dta \work /tp 

Show the directory tree starting frqm C:\WORK, pausing after each screenful. 

dta *.bak /g 

Find all directories on drive C: containing files *.BAK. 

FILES and DIRECTORIES 

dta a:\*.sys 

Show all files *.SYS in the root directory on A:. (System, etc included.) 

dta a:\*.sys /xf 

Show all files EXCEPT *.SYS, with "full" display (attributes and time/date). 

dta /d 

Show all subdirectories in the current directory. 

dta \work /u 

Show all files AND subdirectories in C:\WORK. 

TIMESTAMPS 

dta \work /1 

Show only files in directory C:\WORK created or modified since ... today. 



Notes: 

dta /e090189 

Show only files in current directory dated earlier than 9/1/89. 

dta *.doc /l/e:1700 

Show only files *.DOC dated today earlier than 5:00pm. 

dta log /@090189:1320 

Modify the file LOG to have the time/date 9/1/89, 1:20pm. 

ATIRIBUTES 

dta /c 

Show all files in current directory with their attributes. 

dta /A 

Utilities 871 

Show all files in current directory marked with the Archive attribute. 

dta a: /SH 

Show all files in current directory on A: which are System and Hidden. 

dta a:*.sys /Hca 

Select all Hidden files *.SYS on A: and clear their Archive attribute. 

File SIZES are displayed to the nearest kilobyte (or "k"; lk is 1,024 bytes). The 
"used/free" space shown by DTA is for the entire drive. The "items use" amount 
is only for the specific files listed. Because allocation clusters on a disk can vary 
from 128 bytes (on a RAMdisk) to 4k or more (on a hard disk), the space actually 
''used" can be several K more or a fraction of a Kless than a file's actual size. 

File ATIRIBUTES, when displayed, show as a letter ("A,H,R,S") if set, or as 
"."if clear. The Archive attribute indicates to a backup utility that a file has been 
changed recently and needs to be backed up; the bit is cleared by the utility when 
it does so. (Simple backup utilities that work well with DTA include the DOS 
XCOPY corrirlland and ARCOPY.COM.) 

The Read-only attribute prevents a file from being changed or deleted, though 
it can be read and copied. The Hidden and System attributes both exclude a file 
from normal searches: such files cannot be accessed at all by ordinary MSDOS 
file commands. Ordinarily only the DOS boot files MSDOS.SYS and IO.SYS 
have these attributes. (If you do NOT want to see hidden or system files, use 
"/sh".) 



872 DOS Power Tools, 2nd Edition, Revised for DOS 5.0 

DTA can display up to 1,000 files, 64 MB total size. If any file exceeds 999k, 
its size won't display properly, but other statistics will be correct. 

Error messages are as follows: 

··o items"= No such file (or directory) was found. (If you expected something, 
check your arguments again ... ) 

"<invalid argument>" = You guessed it. Invalid option, bad path, illegal 
character in filename, etc. Think and try again. (Note: some arguments 
conflict: you can't specify /ud, or /Aa.) 

OTA.EXE is Copyright© 1991 by Eric Meyer. All Rights Reserved 
This program is "freeware" and may be freely used and distributed, but not modified or sold for 
profit without author consent. 



EQKRP.COM 
Version 1.0 

Eric Meyer 

Utilities 873 

·Freeware 

Purpose: Enhanced Quick Key Repeat lets you shorten the two delays associated with key 
repeat in order to make the keyboard behave more responsively. 

Syntax: [d:] [path]EQKRP /D /R 

where D is the length of time a key must be held down before it begins to repeat, 
and R, the "repeat delay" ,is the interval between repeats while the key continues 
to be held down. 

In both cases, a shorter delay gives faster action. 
Two arguments must be specified with EQKRP: 

1. A choice of "initial delay": 
2. A choice of "repeat delay", 

"S" = Short from "1" (shortest) 

"M" = Moderate to "9" (longest) 

"L" =Long 

These arguments can be specified in any order; they may be separated by 
spaces or slashes"/". 

Remarks: To restore the original AT BIOS setting, simply type "EQKRP" with no argu
ments. (This makes both delays longer than the range described here.) 

EQKRP will not work if it does not detect the presence of an enhanced key
board BIOS, or if you do not specify bot~ arguments correctly. 

This program is "freeware" and may be freely distributed, but not modified or sold for profit 
without author consent. 

EQKRP.COM is Copyright© 1991 by Eric Meyer, All Rights Reserved 



874 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0 

EVAL.EXE 
Version 1.00 

David Foley 
Foley Hi-Tech Systems 

Purpose: Evaluates mathematical expressions input on the command line. 

Shareware 

Syntax: [d:] [path] EVAL [expression] [function] [expression] ... 

Remarks: EV AL supports the four basic functions: addition, multiplication, subtraction, and 
division. The syntax used is very similar to that used by most modem computer 
languages and by most spreadsheet programs. For example, to add 2 to 8 and mul
tiply that result by 13, one would use: 

EVAL {2+8)*13 

The operator precedence used for exponents is similarto most high-level lan
guages, as well. Multiplication and division are .. higher" than addition and sub
traction. Exponents, represented by the carat(") are lower than all four operators. 
You can exponentiate values by using ** in place of the carat. Thus, you can use: 
EVAL 2**1/2 to find 2"0.5. 

This is also a good way to find roots. The program has no sqrt() or curt() func
tions, however. 

EV AL uses the full "double" precision of the C language. Thus, answers will 
be represented to a maximum of 16 digits to the right of the decimal point. EV AL 
allows all numbers between 1. 7E-308 and 1. 7E+ 308 to exist. Of course, the nega
tives of these numbers are also available. 

EVAL doesn't check for overflows or underflows. It will, however, flag "digi
tal math" nono 's, such as division by zero and exponentiations resulting in com
plex numbers. To use these numbers, just write them as you would specify them 
in a program like 1-2-3 or in a program: 

3.1415 
0.1 
-34 

18.01 
35e-2 

6.2e+23 

EV AL, as well as complementing the four functions with exponentiation, al
lows the use of the modulo operator. This operator provides the integral "remain
der" of division. Since 5 divided by 2 is 2 remainder 1, the command: EVAL 5%2 
results in the answer 1.0. 

EV AL supports an extensive list of functions. They may be specified either in 
upper- or lowercase, and may be abbreviated to as few as three characters. (Of 



Utilities 875 

course, if the function's name is one or two characters long, all characters must be 
specified.) 

Functions supported by EV AL: 

abs(x) absolute value of x 

acos(x) arc cos of the angle x radians 

acot(x) arc cotangent of the angle x radians 

acsc(x) arc cosecant of the angle x radians 

asec(x) arc secant of the angle x radians 

asin(x) arc sine of the angle x radians 

atan(x) arc tangent of the angle x radians 

cos(x) cosine of the angle x radians 

cot(x) cotangent of the angle x radians 

csc(x) cosecant of the angle x radians 

deg(x) convert x radians to degrees 

exp(x) e to the power of x 

fact(x) factorial of x 

ln(x) natural (base e) logarithm of x 

log(x) base 10 logarithm of x 

pi(x) pi times x 
rad(x) converts x degrees to radians 

sec(x) secant of the angle x radians 

sin(x) sine of the angle x radians 

tan(x) tangent of the angle x radians 

sinh(x) hyperbolic sine of x 

cosh(x) hyperbolic cosine of x 

tanh(x) hyperbolic tangent of x 

sech(x) hyperbolic secant of x 
csch(x) hyperbolic cosecant of x 

If any of these functions are passed invalid values, EV AL will abort with an 
error. The arc-trig functions, for example, cannot accept values outside of the 
closed interval [0,1]. 

Using these functions is similar to any other high-level language. The function 
name and its ending left parenthesis function as an opening parenthesis in the pre
cedence of the evaluation. Thus, sin(.7)"2+cos(.7)"2 would evaluate to 1.0. Cer
tain identities don't evaluate to what you would expect them to, because of the 
limits of precision in computer math when dealing with irrational numbers. While 
the sin"2+cos"2 identity almost always works, the sec"2-tan"2 identity usually 
doesn't work, for example. 



876 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0 

Along with this problem comes another. For example, mathematically 
sec(0.5*pi) is undefined. However, EVAL will evaluate sec(pi(0.5)) to be a very 
(very) large number. This again is because of the rounding errors in binary math. 
It is a good approximation, considering 

lim (sec (x)) +infinity x -> 0.5+ 

A "memory" feature is part of EV AL. If you make a computation using EV AL, 
the result is remembered and may be used as needed in any further invocation of 
EV AL. For example, using the command: 

EVAL SIN(l 

would display the sine of one radian. If you executed the command: 

EVAL ASIN(@) 

next, you'd get, effectively, 

AS IN (SIN ( 1) ) ... 

the result would be one. 
Similarly, if you used 

EVAL 35+15, 

EV AL would print 50. If you did 

EVAL @+100, 

a result of 150 would be displayed. 
EVAL stores the results in your machine's environment. View the previous re

sult by typing the SET command; DOS will list the environment variables it has 
stored. EVAL's environment variable is listed on the line "EVAL". 

EV AL.EXE is Copyright © 1988-1990 by Mike Blaszczak 
This program is not public domain but is "shareware" and a part of the Foley Hi-Tech Systems 
ExtraDOS collection. To register send a check or money order for $19.00 to: 

Foley Hi-Tech Systems 
ExtraDOS Registration 
172 Amber Drive 
San Francisco, CA 94131 
( 415)826-6084 



FAKEY.COM 
Version 2.90 

System Enhancement Associates, Inc. 

Purpose: Preloads keystroke inputs for use within batch file. 

Syntax: FAKEY one or more arguments 

"string" 

Utilities 877 

Shareware 

The characters in the string are inserted in the keyboard buffer. The string may 
contain various special sequences, as indicated here: 

"N Ctrl+N 
!N Alt+N 
\B backspace 

\E Escape \"" 
\R Enter\\\ 
\T Tab 

decimal number or hexadecimal number 

The character represented by the number is inserted in the keyboard buffer. 

mnemonics 

The following mnemonics can also be used: 

ASCII: 

ACK BEL BS CAN CR DCl-4 DLE EM ENQ 
EOT ESC ETB ETX FF PS GS HT LP NAK 
NUL RS RUB SI SO SOH SP SUB SYN US VT 

Cursor movement: 

DASH DEL DOWN END HOME INS LEFf 
PGDN PGUP PLUS RITE UP 

Function key (N = 1-10): 

FN Function key N 
AN Alt+ Function key N 
CN Ctrl +Function key N 
SN Shift+ Function key N 

Special: 

BEEP 
BOOT 

Sound a warbling tone. 
Execute a warm system boot. 



878 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0 

Notes: 

CBRK 
COLD 
LOADN 

PSCR 
TOSS 
WAITN 

Simulate a Ctrl-Break key press. 
Execute a cold system boot. 
Load FAKEY but do not display help screen. 
Reserve room for N keystrokes (default is 200). 
Execute a Print Screen. 
Discard previous pending keystrokes 
Wait N seconds before inserting keystrokes into buffer 
(default is 1 second). 

To use FAKEY to erase all files within a directory without pausing for the DOS 
"Are you sure?" message, create the following ZAP.BAT file 

FAKEY WAIT "Y\R" 
DEL %1 

FAKEY waits one second, to give the ''Are you sure?" message time to show up. 
Then it "presses" the Y key (yes) followed by the Enter key. To erase all files in a 
DONTNEED directory, type ZAP DONTNEED and press the Enter key. 

This program is not public domain but is "shareware" and a part of the System Enhancement 
Associates, Inc., collection. Copyright© 1986-1989 System Enhancement Associates, Inc. For 
information, contact: 

System Enhancement Associates, Inc. 
Attn: Mr. C. J. Wang 
925 Clifton A venue 
Clifton, NJ 07013 
(201)473-5153 



FF.EXE 
Version 2.00 

David Foley 
Foley Hi-Tech Systems 

Utilities 879 

Shareware 

Purpose: Locates files by searching the entire disk for a specified file; will also search 
within compressed files to search for filenames as well. 

Syntax: [d:] [path] FF [d:] fname [.ext] [options] 

where 

d: designates a valid DOS drive 
fname[.ext] specifies the file(s) to search for. Wildcards are accepted. 

Options: 

JV verbose mode, will show file statistics 

/T total mode, will show file totals and not found names 

JD progress Display, will show files as searching 

JR all Drive mode, will search across all drives found 

JN normal files only, do not search inside any compressed files 
(this is a combination of all of the below options) 

JO do not search inside .ZOO files 

JZ do not search inside .ZIP files 

J A do not search inside .ARC files 

JP do not search inside .PAK files 

J do not search inside .LZH files 

Ctrl-C= will halt the execution of the program at any time 

Ctrl-S = will pause the display at any time 

FF searches across your disk looking for any files that you specify. When it 
finds a matching file it will display the Directory the file was found in, the com
plete file name, the file size, creation date and time, and any attributes associated 
with the file. 

FF.EXE is Copyright© 1991 by Foley Hi-Tech Systems 
This program is not public domain but is "shareware" and a part of the Foley Hi-Tech Systems 
ExtraDOS collection. To register send a check or money order for $19.00 to: 

Foley Hi-Tech Systems 
ExtraDOS Registration 
172 Amber Drive 
San Francisco, CA 94131 
(415)826-6084 



880 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0 

FIND.EXE 
Version 2.5 

MarcPerkel Shareware 

Purpose: Offers enhanced functionality in searching for text strings over the DOS com
mand of the same name. 

Syntax: [d:] [pa th] FIND "String" <File File File> /V /C/N/L/P /I 

where:. 

/V Displays all lines that do not contain String. 

/C Counts lines that contain String. 

/N Adds line numbers to output. 

/L List only names of files that contain String. 

/I Ignore Case. 
/P Pauses display every 24 lines. 

Remarks: In addition to the standard /v, /c, /n, and /i options that DOS provides, this version 
of FIND lets you list just the file names where a match occurred, and also lets you 
page the output. 

FIND.EXE is Copyright© 1989-1990 by Marc Perkel, All Rights Reserved. 
This program is part of the Computer Tyme DOS ToolBox. 
To Register, ask for the BANTAM BOOK special price of $25. (Reg Price $60) 

Contact: 

Computer Tyme 
411 North Sherman, Suite 300 
Springfield, MO 65802 



Utilities 881 

FINDMODL.EXE John Woram 

Purpose: Reports BIOS date and PC model byte data 

Syntax: [d:] [path]FINDMODL 

Remarks: Displays the BIOS date as mm/dd/yy, plus model byte, submode! and revision 
numbers for IBM computers and clones that follow the IBM convention. 

FINDMODL.EXE is Copyright© 1990 by John Woram 



882 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0 

FIXPATH.EXE 
Version 1.0 

Marc Perkel Shareware 

Purpose: Reads your path environment variable and checks to verify that all referenced di
rectories actually exist. Any directory that doesn't exist, or is inacessible is re
moved from the path. 

Syntax: [d:] [path] FIXPATH 

Remarks: This program is particularly handy after logging off a network to avoid DOS er
rors. 

If more than one command processor is in memory, FixPath will affect only the 
last one. 

FIXPATH.EXE is Copyright © 1990-1991 by Marc Perkel. All Rights Reserved 
This program is not public domain but is "shareware .. and part of a Computer Tyme collection. 
To register contact: 

Computer Tyme 
411 North Sherman 
Suite 300 
Springfield, MO 65802 
(800)548-5353 



Utilities 883 

FN.COM 
Version 1.6 

Scott Chaney 
RSE, Inc. 

Shareware 

Purpose: 

Syntax: 

Attaches explanatory notes to a filename, plus other file management utilities. 

[d:] [path] FN 

Once FN.COM is loaded into memory, you can use the following commands: 

Alt-D - Hot key to bring up FileNotes. A two-column directory listing is seen, 
with highlighted bar at first entry. 

Arrow keys - Arrow keys move highlighted bar to desired listing. 

J - A "Jump to?" prompt is displayed. Press the first letter of the desired 
listing. Then move to desired listing as just described. 

Insert key - The bottom two lines are cleared. Type in your file notes about 
the highlighted directory listing (160 character limit). 

Enter key - Your file note is displayed on screen and written into a 
FILENOTE text file for subsequent viewing. 

Q - When you are finished entering file notes, press Q to return to the DOS 
prompt. The next time FN is activated (by again pressing the Alt+D keys), 
the file note will be seen if you highlight a file for which you have written a 
note. 

Other file management utilities are described below. Press the Alt+D keys and 
then one of the following keys, as appropriate. 

C - Copy. First, use the T (Tag) command to tag files for copying. Then move 
to the desired target directory and press C. Answer Yes to the "Perform 
Copy?" prompt. 

D - Drive Change. Enter the letter for the drive you wish to view. 

Delete key - Highlight any file and press the Delete key. Then answer the 
"Delete filename?" prompt. If you answer No, a "Cancelled" message is 
seen. To remove the message, press the Enter key, which enables the View 
option (q.v.). Now press V to exit the View screen. 

R - Rename the highlighted file. If you include a new path, the file is moved 
to the specified directory. 

S - Sort. A menu displays options to sort the directory listing by name, 
extension, size or date. 

T - Tag a file (or files) for copying. Highlight the desired file and press T. A 
hyphen is seen to the left of the file name. Press T again to remove the tag. 
Repeat as required and then use the C (Copy) command to copy the files. 



884 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0 

V - View the contents of the highlighted file. Press V again to exit the View 
screen. To review all the file notes you have written, highlight the 
FILENOTE file and press V. 

Remarks: FN.COM is a TSR utility which occupies 26,320 bytes of memory. To remove it 
from memory, type FN/U at the DOS prompt and press the Enter key. If you can
not spare that amount of memory, use the equivalent but smaller DIRR.COM util
ity. 

FN.COM is Copyright© 1990 by RSE, Inc. 
This program is not public domain but is .. shareware" and a part of the RSE, Inc. collection. 
For registration and information contact: 

Scott Chaney 
c/o RSE, Inc. 
1157 57th Drive S.E. 
Auburn, WA 98002 



Utilities 885 

FONTHT.COM 
Version 1.0 

Eric Meyer Free ware 

Purpose: Adapts the line text screen and is capable of a wide range of font sizes. The table 
below shows some of the possibilities offered by FONTHT. Character height is 
given in "points" or scan lines, and the two "standard" combinations are marked 
with asterisks: 

Syntax: [ d: ] [pa th] FONTHT argl, where 

nn changes to font height nn (7-20) 

OorOFF reverts to normal for your system 

? displays current font information 

FONT TEXT LINES FONT TEXT LINES 
HEIGHT ONEGA ON VGA HEIGHT ONEGA ON VGA 

7 50 57 14 25 * 28 

8 43 * 50* 15 23 26 

9 38 44 16 21 25 * 

10 35 40 17 20 23 

11 31 36 18 19 22 

12 29 33 19 18 21 

13 26 30 20 17 20 

Remarks: To see as much text as possible on screen at once.use the 7-point font which can 
display a full page. Use larger size characters, such as the 20-point, for easy view
ing. 

The usefulness of FONTHT depends on the ability of your favorite software to 
adapt to nonstandard screen sizes. Some older MS-DOS programs simply assume 
the screen has the standard 25 lines; they won't work well with fewer lines and 
will ignore any extra. Programs that (re)set the video mode will wipe out any font 
selected with FONTHT. Experiment to determine compatibility with other soft
ware. 

Even DOS itself will show a few quirks; for example, the TYPE and CLS com
mands will not use any screen lines beyond 25. If you have an ANSI.SYS driver 
installed, you can fix the CLS problem simply by adding "$e[J" to your PROMPT. 



886 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0 

When FONTHT changes fonts, the overlapping portion of the screen is pre
served, but some text will have disappeared or been added at the bottom, which 
may make the display slightly confusing at first. 

FONTHT.COM is Copyright© 1991 by Eric Meyer. All Rights Reserved 
This program is "freeware" and may be freely used and distributed, but not modified or sold for 
profit without author consent. 



FORK.EXE 
Version 2.5 

Marc Perkel 

Utilities 887 

Shareware 

Purpose: Lets you split the output of a DOS piping command into two separate streams. 

Syntax: command I [d:] [path]FORK>device > ltarget2> 

or 

command [d:] [path] FORK Filename! >target2 

or 

command [d:] [path] FORK/command2l >target2 

where command is a valid DOS command that produces redirectable output, and 
target 1 and target2 are either file or logical device names that can accept input 
from a DOS pipe. 

Remarks: If you don't use redirection a lot, this may seem a bit obscure at first, but it's 
worth playing with until the old light bulb goes on. What this does is give you 
two outputs from a single source like a tee fitting on a physical pipe. Say you 
need to print a directory using DIR >PRN, but you also want to see the directory 
on screen, too. You• d simply type: 

DIR I FORK >CON I >PRN 

Note that the argument immediately following FORK needs a > if the argument 
is a device and a/ if it's a command, but doesn't need the usual> if it's a file. 

Examples: 

DIRI FORKI SORT 
DIRIFORK UNSORT.TXTISORT >SORT.TXT 
DIRIFORK/MOREISORTIMORE 

FORK.EXE is Copyright© 1989-1990 by Marc Perkel. All Rights Reserved 
This program is not public domain but is "shareware" and part of a Computer Tyme collection. 
To register contact: 

Computer Tyme 
411 North Sherman 
Suite 300 
Springfield, MO 65802 
(800)548-5353 



888 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0 

FREE.EXE 
Version 1.3 

MarcPerkel Shareware 

Purpose: Reports on available disk space, DOS memory, EMS memory, and DOS environ
ment memory. 

Syntax: [ d: ] [pa th] FREE 

Remarks: Provides a useful collection of vital statistics, especially as your file or application 
keeps growing in size. Also reports on your disk's cluster and sector size. 

FREE.EXE is Copyright © 1989-1991 by Marc Perkel. All Rights Reserved 
This program is not public domain but is .. shareware" and part of a Computer Tyme collection. 
To register contact: 

Computer Tyme 
411 North Sherman 
Suite 300 
Springfield, MO 65802 
(800)548-5353 



FS.EXE 
Version 1.10 

David Foley 
Foley Hi-Tech Systems 

Utilities 889 

Shareware 

Purpose: Lists each file in a directory's size, then sums that listing and shows total and free 
space on that particular disk drive. 

Syntax: [d:] [path]FS [filespec] 

Remarks: You may pass FS a specific file, or group of files, to list. If no parameters are 
passed FS will list all files in the current directory. 

PS.EXE is Copyright© 1985-1991 by Foley Hi-Tech Systems 
This program is not public domain but is "shareware" and a part of the Foley Hi-Tech Systems 
ExtraDOS collection. To register send a check or money order for $19.00 to: 

Foley Hi-Tech Systems 
ExtraDOS Registration 
172 Amber Drive 
San Francisco, CA 94131 
( 415)826-6084 



890 DOS Power Tools, 2nd Edition, Revised for DOS 5.0 

FT.EXE 
Version 1.01 

David Foley 
Foley Hi-Tech Systems 

Shareware 

Purpose: Scans the directory structure of a disk and gives a top down tree listing of the en
tire disk's directory structure. 

Syntax: [d:] [pa th] FT 

Note: Ff works only on the currently logged drive. 

Ff.EXE is Copyright© 1985-1990 by Foley Hi-Tech Systems 
This program is not public domain but is .. shareware" and a part of the Foley Hi-Tech Systems 
ExtraDOS collection. To register send a check or money order for $19.00 to: 

Foley Hi-Tech Systems 
ExtraDOS Registration 
172 Amber Drive 
San Francisco, CA 94131 
( 415)826-6084 



GET.EXE 
Version 2.lb 

Bob Stephan 

Utilities 891 

Shareware 

Purpose: Provides system information via the ERRORLEVEL code and the GET= environ
ment variable. 

Syntax: [d:] [path]GET arg 

where arg is any letter or pair of letters described below. 

A 

The GET= environment and Error Level are both 1 if ANSI.SYS is installed, both 
0 if it is not. 

B [new attribute] 

The screen is cleared and color settings change as defined by decimal value of 
new attribute. The former attribute value appears in the GET= environment and as 
the Error Level. 

BE [new attribute] 

Same, except that new attribute is hexadecimal, as is the former attribute value in 
the GET= environment. 

c ["prompt"] [chars] [#secs] 

"prompt" is an optional instruction to the user. 
If any one of the specified characters (chars) is entered within# seconds, that 

character echoes to the screen, appears in the GET= environment, and the Error 
Level is the character's ASCII value. Otherwise, ERRORLEVEL=O. If no charac
ters are included, GET accepts any key pressed. If a key other than one of the 
specified chars is pressed, and/or if #secs is not included, GET waits forever. 

CE ["prompt"] [chars] [#secs] 

Same, except letter is not echoed to screen. 

D 

DOS major version number appears in the GET= environment. The Error Level 
shows 10 x the major version number, plus the minor version number. Thus DOS 
3.2 gives an Error Level of 32. 

DE 



892 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0 

Same, except DOS minor version number is given. 

E 

The remaining environment space, in bytes, appears in the GET= environment 
and as the Error Level. 

EE 

Same, except Error Level is remaining environment space divided by 10. 

F f ilespec 

The hexadecimal size of the filespec appears in the GET= environment. The Error 
Level is the file size in kilobytes. 

FE f ilespec 

Same, except Error Level is file size divided by 10. 

If Error Level = 0, filespec is a directory 
2, filename not found 
3, path not found 

H N 

Depending on the value of N, the indicated time/date information appears in the 
GET= environment 

1 day of the week 
2 day of the month 
4month 
8 year 

16 hour 
32 minute 
64 second 

If 128·is added, the Error Level is 1 for an odd value, 0 for an even value. 

HE N 

Same as H, except that if N is the sum of two or more of the listed numbers, the 
equivalent time/date data appears in the GET= environment. Thus, for GET HE 
14, the environment shows mm-dd-yy. 

K [drive letter] 

The free space remaining on the drive appears in the GET= environment, in 
Kbytes. The Error Level is the free space, in Kbytes divided by 10. Error Level is 
0 if disk is unformatted, or if diskette drive does not contain a formatted diskette. 

KE [drive letter] 



Utilities 893 

Same, except Error Level is free space divided by 100. 

L [drive letter] 

The volume label appears as the GET= environment. The Error Level is 1 if a 
label if found, 0 is there is no label. 

LE ["string"] [drive letter] 

Same, except Error Level is 1 if volume label matches "string•• and 0 if there is no 
match. 

M 

The free memory appears in the GET= environment, and as the Error Level, both 
in Kbytes. 

ME 

Same, except Error Level is Kbytes divided by 10 

N ["prompt"] [secs] 

Same as C, except that GET accepts only N, n, Y, or y. 

NE ["prompt"] [secs] 

Same, except letter is not echoed to screen. 

p 

The GET= environment and the Error Level are both 1 if the printer is ready, and 
0 if it is not. 

PE 

Same, plus printer initialization signal is sent to printer, and Print-Screen func
tions are disabled if printer is not ready. 

Q [drive letter] 

The total disk space on the drive appears in the GET= environment, in Kbytes. 
The Error Level is the same, but in Kbytes divided by 10. 

QE [drive letter] 

Same, except Error Level is disk space divided by 100. 

s ["prompt"] [string] [#secs] 



894 DOS Power Tool.s, 2nd Edition, Revised for DOS 5.0 

••prompt" is an optional instruction to the user. 
Same as C, except that GET accepts only the character sequence given by 

string. Other characters entered within the string sequence are ignored. 

U "characters" [number#number] 

The characters enclosed in quotes are inserted into the keyboard buffer. Each 
number is an ASCII code or a scan code plus 255. Thus for FI (scan code 59), 
enter 59 + 255 = 314. Enter #13 to end the character string with a carriage return. 

UE #number 

Enter the indicated number to enable the function listed next to it. Sum the num
bers to enable two or more functions, or enter #0 to disable all functions. 

16 Scroll Lock 
32 Number Lock 
64CapsLock 

VN 

Sets new color mode. The GET= environment and Error Level both give the for
mer value of N. 

VE N 

Sets EGA or VGA border to color indicated by N. The GET= environment and 
Error Level both give the former value of N. 

w 

Initiates a warm reboot (same as pressing Ctrl+Alt+Del keys). 

WE 

Initiates a cold reboot (same as turning system off and back on again). 

y 

The current directory appears in the GET= environment. The Error Level is the 
level of the current directory (1 =root, 2 =subdirectory, 3 =sub-subdirectory, 
etc.). 

YE 

Same, except Error Level is drive number (0 = A, 1 = B, 2 = C, etc.). 



Utilities 895 

z "string" 

The string appears in the GET= environment, and the Error Level is the length of 
the string. 

7 

The GET= environment and Error Level are both 1 if a math coprocessor is in
stalled, 0 if it is not. 

7E 

The PC model byte number appears in the GET= environment (hexadecimal) and 
as the Error Level (decimal). 

Remarks: GET is a powerful tool which requires a bit of forethought to use successfully. 
See the examples under TOUCH.EXE for some ideas. What it does is interrogate 
the keyboard or other system device or memory location, and write a result to the 
DOS environment and to the DOS Error Level code. Thus you can test the results 
either by testing the environment variable GET, via IF %GET%==value, or use 
the equivalent IF ERRORLEVEL test. See the chapter on batch file and on the 
DOS environment for more details on setting up applications which test both error 
levels and environment variable values. 

Notes: To pisplay a summary of GET options, type GET only, and press the Enter key. 
Kand Q assume sectors are 512 bytes, and are intended for diskette measure

ments. Very large hard disk sizes may be reported inaccurately. 
Do not use GET V or GET VE to set color modes or border colors not sup

ported by your monitor. 

GET.EXE is Copyright© 1991 by Bob Stephan 
This program is not public domain but is "shareware" and a part of the Moby Disk collection. 
For registration and information, contact: 

Bob Stephan 
Moby Disk 
1021 San Carlos Road 
Pebble Beach, CA 93953 
( 408)646-1899 



896 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0 

HEX.EXE 
Version 1.12 

David Foley 
Foley Hi-Tech Systems 

Shareware 

Purpose: Provides a quick dump of the contents of any file. The dump is very similar in for
mat to what you get with the Norton Utilities file viewer. An advantage of HEX is 
that you can quickly dump the contents of any file to the screen without having to 
load the overhead of a shell program. You can display any type of file ASCII or 
Binary. The default display is to list the HEX values on the left and the ASCII 
equivalents on the right hand column. 

Syntax: [d:] [path] HEX [filename] [options] 

where [filename] can be any valid DOS file including .EXE type files 

Remarks: /B dump the file in binary groups rather than hex. 
dump the file in octal groups rather than hex. /0 

/H 

/P 

display the file in raw hexadecimal format rather than showing the hex 
and ASCII values side by side 
pause mode, will pause each screen full 

HEX.EXE is Copyright © 1990-1991 by Foley Hi-Tech Systems 
This program is not public domain but is "shareware" and a part of the Foley Hi-Tech Systems 
ExtraDOS collection. To register send a check or money order for $19.00 to: 

Foley Hi-Tech Systems 
Extra DOS Registration 
172 Amber Drive 
San Francisco, CA 94131 
(415)826-6084 



Utilities 897 

HIT AKEY.SYS 
Version 3.0 

Raymond P. Tackett Free ware 

Purpose: 

Syntax: 

A dummy device driver that stops to let you look at the screen before you hit a 
key to continue booting. The effect occurs exactly once at load time, then the 
driver aborts its load and disappears. 

DEVICE or DEVICEHIGH=[d:] [path]HITAKEY.SYS [optional message] 

When that line of your config.sys file is reached, you will see the prompt, "Hit 
a key when ready" or the remainder of the command line up to 79 characters. The 
boot process will stop there until you hit a key. Typeahead is cleared, so it WILL 
wait. After the keystroke, HIT AKEY will disappear from memory. 

Remarks: Imagine that you have a boot problem, which you believe to be caused by foo.sys. 

NOTES: 

You think there's an error message, but the screen is cleared immediately by 
bar.sys when it loads. Your present config.sys file contains: 

device=foo.sys 
device=bar.sys 

Edit your config.sys file to insert HITAKEY.SYS immediately after the driver 
in question: 

device=foo.sys 
device=hitakey.sys We just loaded foe.sys 
device=bar.sys 

and copy hitakey .sys to the root of your boot drive. The next time you boot, 
HITAKEY.SYS will halt and let you see whatever else is on the screen, possibly 
a message from foo.sys. Hitting any key will let the boot process continue. You 
can invoke HITAKEY.SYS any number of times in config.sys. 

The driver needs less than 200 bytes of free memory to load. After it has ac
complished its one keystroke mission, it disappears. 

HITAKEY.SYS should be used only as a debugging aid and should be removed 
from config.sys once it has served its purpose and the system rebooted. 

HITAKEY.SYS is Copyright© 1990 by Raymond P. Tackett 
This program is "freeware" and may be freely used and distributed, but not modified or sold for 
profit without author consent. 



898 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0 

HUSH.COM 
Version 1.21 

David Foley 
Foley Hi-Tech Systems 

Shareware 

Purpose: Eliminates a majority of the sounds generated by the PC's internal speaker. 

Syntax: [ d: ] [pa th] HUSH [mode] 

where mode is either: 

ON enables HUSH functions 
OFF disables HUSH functions 

Remarks: HUSH cannot eliminate all beeps. Tones that it cannot completely silence, it can 
reduce to a small click. HUSH is a small TSR which, when loaded, watches for 
output to the speaker. When activated, HUSH will try and suppress the speaker 
18.2 times a second. 

Note: If you install other timer monitoring functions such as screen blankers after 
HUSH, you may not be able to disable HUSH's functions. 

HUSH.COM is Copyright© 1985-1990 by Foley Hi-Tech Systems 
This program is not public domain but is "shareware" and a part of the Foley Hi-Tech Systems 
ExtraDOS collection. To register send a check of money order for $19.00 to: 

Foley Hi-Tech Systems 
ExtraDOS Registration 
172 Amber Drive 
San Francisco, CA 94131 
( 415)826-6084 



Utilities 899 

KBD.EXE 
Version 1.3 

MarcPerkel Shareware 

Purpose: Sets various keyboard functions. 

Syntax: [d:] [path]KBD function 

Remarks: Valid function arguments include: 

Note.s: 

Caps ON 

CapsOFF 

Clear 

Lock 

NumON 

NumOFF 

PrtScrON 

PrtScrOFF 

Scroll ON 

Scroll OFF 

Show 

Unlock 

0-31 

'0-3 
"string" 

keyword 

set Caps Lock ON 

set Caps Lock OFF 

Clear all characters from keyboard buffer 

Lock the keyboard 

set Number Lock ON 

set Number Lock OFF 

set Print-screen ON 

set Print-screen OFF 

set Scroll-lock ON 

set Scroll-lock OFF 

Display keyboard scan codes 

Unlock the keyboard 

Set keyboard repeat rate (0 is fastest) 

Set keyboard repeat delay (0 is fastest, 1 is default) 

Insert string in keyboard buffer 

Insert keyword in keyboard buffer 

Keywords are Fl-FlO, SFl-SFlO, AFl-AFlO, CFl-CFlO, Alt-A through Alt-Z, 
Alt-1 through Alt-0, CR, ESC, TAB, LF, FF. For example KBD ··mR" CR puts 
the DIRectory command and a Carriage Return into the buffer. 

The KBD utility is not compatible with some hotkey combinations used by 
TSR programs (for example, Alt-0 in the BL utility). 

KBD.EXE is Copyright© 1990 by Marc Perkel. All Rights Reserved 
This program is not public domain but is "shareware" and part of a Computer Tyme collection. 
To register contact: 

Computer Tyme 
411 North Sherman 
Suite 300 
Springfield, MO 65802 
(800) 548-5353 



900 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0 

KILLDIR.EXE 
Version 1.02 

David Foley 
Foley Hi-Tech Systems 

Purpose: Makes eliminating a directory and all of its contents a lot easier. 

Syntax: [d:] [path] KILLDIR [dirname] 

Shareware 

Remarks: KILLDIR will display the information about the directory that you wish to re
move including the number of files and sizes as well as any subdirectory informa
tion. KILLDIR will remove all files and file types including hidden or system 
files. It's not a good idea to shorten the name of this utility to something easier to 
type like KD, as there's at least a minimum level of error protection in having to 
type a name as long and ominous as KILLDIR. 

KILLDIR.EXE is Copyright© 1990-1991 by Foley Hi-Tech Systems 
This program is not public domain but is "shareware" and a part of the Foley Hi-Tech Systems 
ExtraDOS collection. To register send a check or money order for $19.00 to: 

Foley Hi-Tech Systems 
ExtraDOS Registration 
172 Amber Drive 
San Francisco, CA 94131 
( 415)826-6084 



Utilities 901 

LHA.EXE 
Version 2.12 

Haruyasu Yoshizaki Free ware 

Purpose: 

Syntax: 

Serves as a high-performance file-compression program. 

[d:] [path]LHA command [/option] archive[.LZH] 
[path] [filenames] 

Valid commands are: 

a: Add files 
d: Delete files 
e: Extract files 
f: Freshen files 
1: List of files (default) 
m: Move files 
p: disPlay files 
s: make a Self-extracting archive 
t: Test the integrity of an archive 
u: Update files 
v: View listing of files with pathnames 
x: eXtract files with pathnames 

Valid options are: 

/aO won't archive files with hidden or system Attributes (default) 
/a 1 allows any file Attributes 
/cO Check timestamp before overwriting files 
/c 1 don't Check timestamp 
/hO no Header (default) 
/h 1 standard Header 
/h2 extended Header 
/iO Ignore case of filenames (default) 
/i 1 don't Ignore case of filenames 
/10 don't display Long filenames 
/11 display Long names of files stored or to be stored in archive 
/12 display Long names of all files referenced by LHA 
/mO displays Message before overwriting files orcreating directories 
/m 1 no Messages-assumes ''Y" response to queries 
/m2 no Message, but renames de-archived file with numeric extension 
/nO No indicator toggle-default shows progress and compression factor 
/nl No indicator-disables "ooo ... " progress indicator 
/n2 No indicator-disables filenames and compression rates 
/oO Old version (of LH) compatability-default is off 
/ol Old version (of LH) compatability-produces compatible output 
/pO Precise filenames off-will restore all files of a given name 
/pl Precise files on-will distinguish between files of the same name from 

different directories within an archive 
/rO Recursive mode off (default) 



902 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0 

/rl Recursively selects a given file from any subdirectory 
/r2 Recursively collects all files from all subdirectories of the named directory 
/tO Timestamp off-defaults to system clock 
/tl Timestamp on-with a, u, f, m, and d commands, sets archive time and 

date to time and date of newest file in archive 
/wO sets Work directory to current directory (default) 
/w 1 path sets Work directory to path specified 
/xO sets eXtended pathnames off 
/x 1 sets extended pathnames on 
/zO Zero compression is off-files are compressed 
/zl Zero compression on-files are stored but not compressed 
/z2[ext] files ending in .ARC, .LZH, .LZS, .PAK, .ZIP, and .ZOO are not 

compressed-optionally, any specfied extensions will also be exempted 
/-1 allows the character @ as a character in a file name 
/-2 allows either - or@ as characters. 

Remarks: LHA lets you store files in a highly-compressed format, using an algorithm devel
oped by Haruhiko Okumura. One or more files can be compressed into a single 
file, called an archive, which has a default extension of LHZ. The basic A, D and 
E commands, repsectively add, delete, and extract files to or from the archive. To 
add BIGFILE.TXT to an archive STORTEXT.LHZ, you'd type 

LHA A STORTEXT BIGFILE.TXT 

assuming LHA is in your DOS path and you want to store the archive of BIGF
ILE.TXT in the same (and current) directory where BIGFILE.TXT resides. 

The M command moves the specified files into the archive, erasing the origi
nals. This can be useful for compressing files you only need look at occasionally, 
as it frees up disk space. 

The L and V commands let you examine the contents of an archive, while the 
F, U, and T commands can be used to update and verify archives. Many other op
tions let you use full pathnames, work with files in subdirectories of the specified 
directory, work with hidden or system files (by allowing any attributes), toggle an 
indicator of compression or extraction progress on or off, use special characters in 
filenames, and more. Of particular note are the /x 1 and /r2 options, which let you 
store and extract complete tree structures. The /xl option is also needed to create 
a self-extracting file that can have its output redirected at the command line-if 
you create an archive with /xl: 

LHA A /xl MY ARC*.* 

then create a self-extracting archive with: LHA s /x 1 MY ARC 

You can then redirect the output of the MY ARC.EXE as follows: MY ARC /e 
path 

LHA.EXE is Copyright © 1989-1991 by Haruyasu Y oshizaki. This program is 
"freeware" and may be freely copied and distributed, but not modified or sold 
without author consent. 



Utilities 903 

LS.EXE 
Version 1.00 

David Foley 
Foley Hi-Tech Systems 

Shareware 

Purpose: A utility with most of Unix Is command's features built in. 

Syntax: [d:] [path] LS [options] [filespec] 

where options include: 

-1 list in single column 

-C list in multiple columns 

-F directories are marked with a trailing'\', system files are marked with a 
trailing '@' and executable files are marked with a trailing '*' 

-P print the directory name before listing 

-R recursively list subdirectories 
-S sort by file size in bytes (cluster size if option 's' is selected) 

-a list all entries including hidden and system files 

-d list directories as if they were a normal file 

-f do not sort (list in the order files appear in the directory) 
-1 list in long format ([size in clusters,] mode, size, date, name) 

-r reverse the order of the selected sort 

-s list the file size in clusters 

-t sort by time 

Remarks: Any LS options that you set with the SET command will be loaded automatically 
when you run the program from the DOS prompt. Set your most used parameters 
in your AUTOEXEC.BAT file with a SET statement like 

SET LS=-td 

and then a plain LS will run those parameters for you. 
As in the Unix Is the switches are case sensitive. 

LS.EXE is Copyright© 1990 Foley Hi-Tech Systems 
This program is not public domain but is "shareware" and a part of the Foley Hi-Tech Systems 
ExtraDOS collection. To register send a check or money order for $19.00 to: 

Foley Hi-Tech Systems 
ExtraDOS Registration 
172 Amber Drive 
San Francisco, CA 94131 
( 415)826-6084 



904 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0 

MAPMEM.EXE Kim Kokkonen 
Turbo Power Software 

Purpose: 

Syntax: 

Shows what memory resident programs are loaded. 

[d:] [path]MAPMEM [options] 

MAPMEM offers the following command line options: 

/V verbose report. 

/?write a help screen. 

Remarks: MAPMEM.EXE displays a map of DOS memory. It shows the resident programs, 
how much memory they use, and what interrupt vectors each one controls. 
MAPMEM also shows information about expanded and extended memory when 
available. 

Examples: 

MAPMEM writes to the standard output - hence, the output can be printed or 
stored to a file by using DOS redirection. 

A typical MAPMEM report might look something like: 

PSP bl ks bytes owner command line chained vectors 
- - - - - - - - ------------------- -------------------

0008 1 34240 config 

1228 2 3536 command 

1315 2 3888 WATCH TSR WATCHER 16 21 27 

140A 2 22128 CED N/A lB 21 64 

1973 1 144 N/A C:\MARK\PS.MRK 

197D 2 736 PS KEY 83 09 15 

19AD 2 68400 PS /B:O /E:l /R: 0 I ... 01 03 06 OD 

2A62 2 1504 MARK test 00 3F 

2AC2 2 10384 EATMEM 10 

2D4D 2 469808 free 

block bytes (Expanded Memory) 

1 1048576 

free 1048576 

total 2097152 

(Extended Memory) 

total 379240 

"PSP" stands for Program Segment Prefix. This is the physical address, speci
fied in hexadecimal, where the program was loaded. If you 're running DOS 2.x, 
you'll need to use an address from this column to pass to DISABLE. 



Utilities 905 

"Blks" is the number of memory blocks DOS is using to manage the program. 
This will typically be two: one for the program itself and another for the environ
ment that stores the program name, the DOS path, and other environment vari
ables. 

"Bytes" is the number of bytes of memory, specified in decimal, allocated to 
the program. 

The "owner" column shows the name of the program that allocated the block. 
An "N/A" in this column means either that the program deallocated its environ
ment to reduce memory usage (as shown on the fifth row of the report) or that the 
system is running DOS 2.x, where the owner names are simply not available. 

"Command line" shows the command line entered when the TSR was origi
nally loaded. Some TSR 's overwrite their command line with other code or data 
in order to save memory space. MAPMEM can usually detect this behavior and 
will display ••N/A" in the command line column when it does. 

The last column will be titled with either ••chained vectors" or ••hooked vec
tors". When WATCH is loaded, ••chained" will appear; otherwise, ••hooked" will. 
The numbers in this column indicate what interrupt vectors the TSR has grabbed. 
Without WATCH, MAPMEM must use a heuristic technique to identify the 
owner of each vector; don't be surprised if you see some ridiculous looking vec
tor numbers. With WATCH, MAPMEM should report an accurate list for each 
TSR, and should show the complete chain of control for each interrupt. 

MAPMEM indicates disabled TSR's by displaying the word ••disabled" in the 
interrupt vector column of the report. The expanded memory report shows each al
located block of expanded memory, as well as the free and total EMS space. 
When extended memory is available, MAPMEM shows just the total amount 
available. The extended memory report is not highly reliable because of the lack 
of a standardized method for allocating extended memory space. Some applica
tions that use extended memory allocate the space by making it appear that the 
memory is no longer in the system. MAPMEM shows the various types of marks 
so that you can examine them prior to releasing them. As shown in the example, 
MAPMEM reports a call to MARK with the owner name "MARK", and the mark 
name (if any) in the command line area. The result of a call to FMARK or 
MARKNET will show "N/A" in the owner column (due to the minimal memory 
kept by an FMARK), and the name of the mark file in the command line area. 

The verbose report shows each individual memory block rather than just one 
for each program. It also adds two new columns of information. "Mcb" stands for 
Memory Control Block. This is a physical address, expressed in hexadecimal, of 
the DOS data structure used for managing each block of memory. The MCB ad
dress is typically one less than the address of the program. "Files" reports the 
number of files kept open by the TSR. In most cases this will be zero. When it is 
non-zero, the maximum number of files opened by the rest of the programs (in
cluding the foreground application) is reduced accordingly. 

The TSR Utilites - DEVICE.EXE, DISABLE.EXE, MAPMEM.EXE, MARK.EXE, 
RAMFREE.COM, RELEASE.EXE, and WATCH.COM- are Copyright© 1986, 1987, 1989 
by Kim Kokkonen of Turbo Power Software. 



906 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0 

MARK.EXE Kim Kokkonen 
Turbo Power Software 

Purpose: Marks a position in memory above which TSR's can be released. 

Syntax: [ d: ] [pa th] MARK [ ! ] [TSRname] 

where ! is the optional protection mark (see below) and TSRname is the name of 
the memory mark (it need not be the name of the actual TSR.) 

Remarks: MARK.EXE and RELEASE.EXE are used to manage TSR's in memory, without 
requiring a system reboot. In their simplest form, MARK and RELEASE are used 
as follows: 

1. Run MARK before installing your TSR(s). This marks the current position 
in memory and stores information that RELEASE will later need to restore 
the system. A common place to call MARK is in your AUTOEXEC.BAT 
file. 

2. Install whatever TSR's you want, using the normal method for each TSR. 
3. To remove those TSR's from memory, run RELEASE. This will release all 

of the memory above (and including) the last MARK, and will restore the 
system to the state at the time the MARK was made. 

There are a number of variations of this simple method. First, MARKs can be 
stacked in memory, as shown in the following hypothetical batch file: 

MARK 
TSRl 
MARK 
TSR2 
MARK 
TSR3 

Each call to RELEASE releases memory above and including the last MARK. 
In this example, the first call to RELEASE would remove TSR3 and the last 
MARK from memory, the second call would remove TSR2 and its MARK, and 
soon. 

MARK and RELEASE may be called using a command line parameter. The pa
rameter specifies a "mark name" and allows releasing TSR's to a specific point in 
memory. Consider the following example: 

MARK TSRl 
TSRl 
MARK TSR2 
TSR2 
MARK TSR3 
TSR3 



Utilities 901 

This loads the three TSR's just as in the previous example. However, if RE
LEASE were called like this 

RELEASE TSR2 

then both TSR2 and TSR3 would be removed from memory. Note that the use of 
such a name does not allow just a single layer of TSR 's to be removed (just 
TSR2, for example). RELEASE always removes all TSR's including and beyond 
the one named. A mark name is any string up to 126 characters long. The name 
may not include white space (blanks or tabs). Case (upper or lower) is not signifi
cant when matching mark names. 

When named marks are used as in this example, calling RELEASE without 
specifying a mark name will still remove the last TSR from memory. Assuming 
that TSRl, TSR2, and TSR3 are still in memory, typing just RELEASE would re
move TSR3 and the last mark. 

It is possible to change this behavior by using "protected marks", which can be 
released only by explicitly specifying their names. A protected mark is placed by 
giving it a name that starts with an exclamation point, • ! '. Consider the following: 

MARK TSRl 
TSRl 
MARK TSR2 
TSR2 
MARK !TSR3 
TSR3 

Here !TSR3 specifies a protected mark. Typing just RELEASE would produce 
an error message "No matching marker found, or protected marker encountered". 
The same error would occur after entering the command RELEASE TSR2. When 
this error occurs, RELEASE does not remove any TSR's from memory. 

The only way to remove TSR3 in this case is by entering 

RELEASE !TSR3 

The TSR Utilites - DEVICE.EXE, DISABLE.EXE, MAPMEM.EXE, MARK.EXE, 
RAMFREE.COM, RELEASE.EXE, and WATCH.COM - are copyright© 1986, 1987, 1989 
by Kim Kokkonen of Turbo Power Software. 



908 DOS Power Too/,s, 2nd Edition, Revised for DOS 5.0 

MODSAV.COM 
Version 1.00 

Chris Dunford 
The Cove Software Group 

Public Domain 

Purpose: Saves video mode, defeating the efforts of most (but not all) applications to reset 
the mode. 

Syntax: [d:J [path]MODSAV 

Remarks: To install MOOSA V, simply type MODSA Vat the DOS prompt, or include it in 
a batch file (such as AUTOEXEC.BAT). 

MOOSA V will load and remain resident, using about 250 bytes of memory. 
After MODSA V is loaded, you can temporarily disable it by executing: 

MODSAV /D 

It can later be re-enabled via 

MODSAV /E 

VGA adapters are designed to permit custom RAM-based screen fonts; they 
can also use a wide variety of screen sizes: 25, 28, 30, 33, 44, 50, and even more 
lines. 

Many applications reset the video mode as they start up; this has the effect of 
restoring the default screen font and the standard screen size. MODSAV suppress 
mode resets when the video system is already in the requested mode. Once 
loaded, MOOSA V watches all requests for video mode resets and discards re
quests that duplicate the current mode. For example, if a program requests 80-col
umn color text mode and the VGA is already in that mode, MOOSA V simply 
ignores the request and returns to the calling program (with your RAM font and 
screen size intact). 

This program is in the public domain and may be freely used and distributed without restriction. 



MORE.EXE 
Version 2.5 

Marc Perkel 

Purpose: Replaces the standard MS-DOS MORE program. 

Syntax: command I [d:] [pa th] MORE 

Utilities 909 

Shareware 

Remarks: This replacement for the standard MORE command offers two very useful func
tional enhancements - it asks you if you want to continue via a .. y /N" prompt, 
and it lets you move down the screen a line at a time by hitting ENTER rather 
than Y or N. If you decide to use this as a full-time replacement for the DOS com
mand, rename the original DOS command to something like XMORE.EXE and 
copy this utility into your DOS directory. 

MORE.EXE is Copyright© 1988-1990 by Marc Perkel. All Rights Reserved 
This program is part of the Computer Tyme DOS ToolBox. 
To Register, ask for the BANTAM BOOK special price of $25 (Reg Price $60). 

Contact: 
Computer Tyme 
411 North Sherman, Suite 300 
Springfield, MO 65802 
(800) 548-5353 



910 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0 

MOVE.EXE 
Version 2.6 

Marc Perkel Shareware 

Purpose: Moves files to other names, subdirectories or drives. 

Syntax: [d:] [path]MOVE [file] [path] /option 

where options include: 

IQ ;Quiet mode, no messages are displayed while moving. 

/0 ;OverWrite existing files without asking. 

/A ;Always ask before overwriting existing files. 

/R ;Include Read-Only files. 

/H ;Include Hidden, System, and Read-Only files. 

/C ;Copy instead of move. 

/D ;Delete files. 

Remarks: Wildcards are allowed. This MOVE utility first attempts to move by renaming. If 
this fails, it copies the files and then deletes the originals. MOVE will normally 
overwrite existing files if the source file is newer than the destination file unless 
you use the /A or /0 switches. 

Examples: 

MOVE XYZ.DOC \SUBDIR 
SUBDIR 
MOVE XYZ.DOC D: 
MOVE *.DOC \SUBDIR 
MOVE ABC.DOC XYZ.DOC 
MOVE A·* * /D/H 
MOVE *.DOC \SUBDIR\*.TXT 

;Moves XYZ.DOC to subdirectory 

;Moves XYZ.DOC to D: 
;Moves all .DOC files to SUBDIR 
;Renames ABC.DOC to XYZ.DOC 
;Deletes all files on A: in root 
;Moves all .DOC files to SUBDIR 
; and changes names to .TXT 

Pipes and redirection are also allowed: 

TYPE FILE.LST I MOVE C:\UTIL ;Moves all files in FILE.LST 
; to C:\UTIL 

MOVE.EXE is Copyright© 1988-1990 by Marc Perkel. All Rights Reserved 
This program is part of the Computer Tyme DOS ToolBox. 
To Register, ask for the BANTAM BOOK special price of $25. (Reg Price $60) 
Contact: 

Computer Tyme 
411 North Sherman, Suite 300 
Springfield, MO 65802 
(800) 548-5353 



Utilities 911 

NAB.COM and 
NABCONFG.COM 

Scott Chaney 
RSE, Inc. 

Shareware 

Purpose: Prints partial screen dumps with NABBIT utility. 

Syntax: [d:} [path]NAB [/U] 

where /U unloads NAB.COM 

Remarks: To capture part of the screen display, do the following: 

Notes: 

1. Press Crtl-G to activate NABBIT. Cursor size changes to indicate that 
NABBIT is active. 

2. Move cursor to upper lefthand comer of block to be printed. 
3. Press S (Start) key. 
4. Move cursor to lower righthand comer of block to be printed. 

To print the marked screen block, press one of the following keys: 

B Print address on a large envelope. 

E Print address on a standard size business envelope. 

L Print any other screen information. 

To capture the marked screen block in an insert buffer, press one of the follow
ing keys: 

I Capture marked text in the Insert buffer. 

SpaceBar Same, but strip out carriage returns and multiple spaces. 

To insert buffer contents elsewhere in a document, do the following: 

1. Move cursqr to the spot where you want the buffer contents to be inserted. 
2. Press the Ctrl+I keys. 

A companion program (NABCONFG.COM) may be used to reconfigure 
NABBIT to use keys other than the ones described here. 

NAB.COM and NABCONFG.COM are Copyright© 1990 by RSE, Inc. 
This program is not public domain but is .. shareware" and part of the RSE, Inc. collection. For 
registration and information, contact: 

Scott Chaney 
c/o RSE, Inc. 
1157 57th Drive SE 
Auburn, WA 98002 
(206)939-4105 



912 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0 

ND.EXE 
Version 1.20 

David Foley 
Foley Hi-Tech Systems 

Purpose: Renames directories without emptying or modifying their contents. 

Syntax: [d:] [path] ND [olddir] [newdir] 

ND.EXE is Copyright© 1990 by Foley Hi-Tech Systems 

Shareware 

This program is not public domain but is "shareware" and a part of the Foley Hi-Tech Systems 
ExtraDOS collection. To register send a check of money order for $19.00 to: 

Foley Hi-Tech Systems 
ExtraDOS Registration 
172 Amber Drive 
San Francisco, CA 94131 
( 415)826-6084 



Utilities 913 

PARK.COM Marc Perkel Shareware 

Purpose: Parks the read/write heads on your hard drive in an unused ''landing zone" to pre
pare the computer for moving. 

Syntax: [d:] [path]PARK 

Remarks: While many late model drives have a self-parking feature, it never hurts to be sure 
that your drive heads aren't doing a flamenco imitation on the drive media while 
you trundle the computer to a new office down the hall. PARK moves the read
write heads to an area of the drive that's not used for data storage, thus safeguard
ing your bits from an accidental and deletrious jolting encounter with the heads 
while the computer is in transit. Run PARK and then turn off the machine. Power
ing up restores the read-write heads to their normal position. 

PARK.COM is Copyright© by Marc Perkel. All Rights Reserved 
This program is part of the Computer Tyme DOS ToolBox. 
To Register, ask for the BANTAM BOOK special price of $25. (Reg Price $60) 

Contact: 

Computer Tyme 
411 North Sherman, Suite 300 
Springfield, MO 65802 
(800) 548-5353 



914 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0 

PF.EXE 
Version 1.30 

David Foley 
Foley Hi-Tech Systems 

Purpose: Allows you to search the file path for any files. 

Syntax: [d:] [path] PF [filespec] 

Shareware 

Remarks: You may use any DOS wildcards in the filespec. This utility handy when you are 
trying to locate a similar program or file that could exist in multiple places in your 
path statement. It will display the files that it finds in order of appearance within 
the path. 

PF.EXE is Copyright© 1985-1990 by Foley Hi-Tech Systems 
This program is not public domain but is "shareware" and part of the Foley Hi-Tech Systems 
ExtraDOS collection. To register send a check or money order for $19.00 to: 

Foley Hi-Tech Systems 
ExtraDOS Registration 
172 Amber Drive 
San Francisco, CA 94131 
( 415)826-6084 



PIPED IR.EXE 
Version 2.7 

Marc Perkel 

Purpose: Pipes filenames and directory names into other applications. 

Syntax: [d:] [path] PIPEDIR filespec [filespec] [/option] 

Utilities 915 

Shareware 

where filespec is a file name or valid path, including wildcard characters, and op
tions include: 

/S include all subdirectories below the path of the given filespec. 

/W WHEREIS mode, assumes /S and root directory. 

/H include hidden and system files. 

ff gives only directory names. 

/P same as ff but adds a \ to the end. 

/X exclude current directory. 

/A files that have been modified since last backup. 

/N names only, no path. 

/F full display, size, date, time, attributes. 

/D deletes files. 

/R remove directory, all files, and all subdirectories. 

IQ ask before delete. 

/+DATE all files after date. 

/-DATE all files before date. 

Remarks: PIPEDIR is also handy for finding and cataloging files on a hard disk. Using fF 
will give you a detailed display. The /D and /R options are useful for deleting files 
and removing directories, but should always be used with caution, lest you delete 
more than you intended. The /N option, like the /B option in DOS 5.0's DIR, can 
be used to pass file names to another command, either by saving to and then read
ing from a list file, or by piping directly through DOS. Try using PIPEDIR with 
the /F option to get a feel for what it can generate, then try redirecting its ouput to 
some scratch files to see how the other options can be used. Once you're comfort
able with that, you're reading to start piping to commands - and you can always 
use FORK as the first destination so that you can send a copy to CON to see 
what's going on. PIPEDIR is an alternate version of WHEREIS.EXE. For amuse
ment, use PC on the two of them, then run each one separately and see how the 
help screens differ. 

PIPEDIR.EXE is Copyright© 1989-1991 by Marc Perkel. All Rights Reserved. 
This program is part of the Computer Tyme DOS ToolBox. 
To Register, ask for the BANTAM BOOK special price of $25. (Reg Price $60). Contact: 
Computer Tyme, 411 North Sherman, Suite 300, Springfield, MO 65802 (800) 548-5353 



916 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0 

PRISM.EXE 
Version 1.21 

David Gerrold Shareware 

Purpose: Lets you set the color palette on a VGA system to one of 262,144 color combina
tions. 

Syntax: [d:] [path] PRISM [palette .pal] 

where palette.pal is a stored palette file. 

Remarks: PRISM should only be run on a VGA-equipped system. If you run PRISM with
out a palette filename, the first thing you'll note is the fade-out/fade-in video spe
cial effect which transports you to the main screen of the PRISM palette editor. 
Here, using either the keyboard or the mouse, you can load a predefined color pal
ette, or go off and create your own. To set or alter a palette, click on one of the 16 
color panels at the top of the screen, then change the color mix using the slider 
bars below. The menu at the bottom of the screen offers you help, useful back
ground information and the ability to toggle or change both the sound and video 
special effects, as well as the usual load/save/exit options. The program comes 
with a set of 40 predefined palettes, some of which are quite amusing. Even if you 
don't want to stare at a screen colored by PRISM's BROCCOLI.PAL or 
NEON.PAL paletes all day, it's definitely worth browsing through them. 

You can load a saved palette file by simply typing PRISM filename. 

PRISM.EXE is Copyright © 1990 by David Gerrold 
This program is not public domain but is "shareware." To register send a check or money order 
for $25.00 to: 

David Gerrold/PRISM REGISTRATION 
9420 Reseda Boulevard 
Northridge, CA 91324-2932 



QKRP.COM 
Version 1.2 

Eric Meyer. 

Utilities 917 

Freeware 

Purpose: Modifies the way the BIOS handles incoming keystrokes. It accelerates key re
peat action, yet stops instantly when the key is released. Furthermore, the delay 
before repeat action begins can be adjusted. 

Syntax: [ d: ] [pa th] > QKRP I 

to Install. 

Remarks: QKRP roughly doubles the key auto-repeat rate on an IBM PC. This makes mov
ing the cursor, as well as typing repeated characters, faster ahd easier~ At the same 
time, it solves a problem in the PC BIOS: when you hold down a key, repeat key
strokes are stored in the type-ahead buffer, whether or not your software is ready 
for them yet. Then an annoying "overshoot" effect occurs as, even after you've re
leased the key, your software is still reading these keystrokes from the buffer. 
QKRP avoids this, by engaging auto-repeat only when the typeahead buffer is 
empty. QKRP does not interfere with normal keyboard operation, for example the 
use of the Alt and numeric keys to enter graphic characters. However, it will only 
work on 100 percent PC-compatible computers, and might conflict with other 
TSR (memory resident) software. Test it out before installing it in your bootup 
procedure. 

Once QKRP is installed, you can adjust the repeat delay setting (the time, after 
pressing a key, before auto repeat begins) at will, simply by typing: 

> QKRP 1 .. 5 for delay from 1 (shortest) to 5 (longest). 

A value of "3" is the default for a moderate delay. Different settings will suit 
different typists; experiment to find out which you like. If you prefer a different 
value, you can specify this at the time of installation: 

> QKRP I 2 to 'T'nstall with moderately short delay. 

You may include option slashes if desired, eg: > QKRP /I /2. 
QKRP consumes only about 400 bytes of memory. It should not be installed 

more than once, as this wastes memory and complicates the keyboard interrupts. 
Consequently, QKRP tries to detect the fact that it is already resident; if so, it will 
accept a command to change the delay setting, but will refuse to install itself 
again. 

If you simply type "QKRP", with no arguments, the program will tell you 
whether it is installed. 



918 DOS Power Tools, 2nd Edition, Revised for DOS 5.0 

Note: QKRP cannot tell that it is already memory resident if another keyboard-intercept
ing TSR has been loaded since. In this situation you can no longer vary the delay 
setting. (Also, an installation command would result in a duplicate installation, 
which should be avoided.) 

QKRP.COM is Copyright© 1991 by Eric Meyer. All Rights Reserved 
This program is "freeware" and may be freely used and distributed, but not modified or sold 
without author consent. 



Utilities 919 

QUIXX.COM 
Version 2.03 

Jonathan Kraidin Free ware 

Purpose: 

Syntax: 

This TSR screen-saver program for DOS 3.0 and above generates beautiful vapor
like trails after a given idle time period. 

[d:] [path]QUIXX time mode 

or 

QUIXX option 

where time is the idle time in minutes ( 1 to 99) and Mode is the video mode from 
0 to 19. 

Valid options are: 

? - provides help 

r - removes Quixx from memory 

stops the timeout counter 

+ - restarts the counter 

F - speeds up !he display 

S - slows down the display 

Remarks: Modes 1 through 15 select a constant color display for the QUIXX using a color 
palette corresponding to the Mode. That is Mode 2 = color 2. 

Mode 0 selects an alternating color display. Every time the Quixx pattern 
bounces off of a wall the color increments. Mode 16 selects a pattern where the 
colors vary within each line of the Quixx pattern. This yields a constantly chang
ing image as the vapor trail moves. Mode 17 selects the same pattern-type, but in 
VGA mode19, allows 256 colors. The resolution is 320 x 200. Mode 18 is also in 
VGA mode19, but the lines of the vapor trail are solid. As a new lines are drawn 
they go go through all 256 colors. 

Mode 19 is the Glide mqde. Here the Quixx pattern is one color, but as the 
image moves its color goes through a continuous spectrum of 384 shades. 

The options can be changed at 'any time by retyping the command. If you type: 

QUIXX 2 15 

selecting a two-minute time-out using mode 15, and you then type 

QUIXX 5 



920 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0 

Notes: 

you change the time-out to five minutes and leave the mode unchanged. If you 
type 

QUIXX 5 19 

the mode changes to mode 19. 
Quixx disables the sleep countdown and will never become active. Typing 

Quixx + re-enables the Quixx sleep countdown. Use this feature in a BATCH file 
if you want to selectively enable/disable Quixx without changing the programs in 
active memory. 

It is STRONGLY RECOMMENDED that you have expanded or extended mem
ory to prevent memory conflicts when the TSR saves your video screen. While 
the program will use higher memory without expanded memory, the program 
may crash your system depending on what applications are running. This program 
has worked well using expanded memory with programs like WordPerfect and 
Harvard Graphics. 

Quixx will check first for an expanded memory driver, if not found, it will 
check for an extended memory driver such as HIMEM.SYS. If none of these are 
found then high memory is used. 

The program also has a speed sensing algorithm to adjust the speed of the pro
gram to the speed of the computer. 

If only a CGA is present the color white is used. No other modes work. Modes 
17, 18, and 19 are meant for the VGA and will not work properly on an EGA 
monitor., 

The.mouse is polled at COMl and COM2 

QUIXX.COM is Copyright© 1990 by Jonathan Kraidin 
This program is .. freeware" and may be freely used and distributed, but not modified or sold for 
profit without author consent. 



RAMFREE.COM Kim Kokkonen 
Turbo Power Software 

Utilities 921 

Purpose: Tells you how many bytes of memory are free for the next application. 

Syntax: [d:] [path]RAMFREE 

Remarks: The number RAMFREE reports is the same as that reported by the DOS 
CHKDSK utility. RAMFREE's advantage is that you don't need to wait for your 
hard disk to be analyzed before you find out how much memory is free. 

The TSR Utilites - DEVICE.EXE, DISABLE.EXE, MAPMEM.EXE, MARK.EXE, 
RAMFREE.COM, RELEASE.EXE, and WATCH.COM- are Copyright© 1986, 1987, 1989 
by Kim Kokkonen of Turbo Power Software. 



922 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0 

RAMMAP.EXE 
Version 1.3 

Marc Perkel. Shareware 

Purpose: 

Syntax: 

Displays what's in memory, and is able to free up some wasted memory blocks. It 
can also return an error level code to a batch file to indicate which TSRs are in 
memory. 

[d:] [path] RAMMAP [options] 

where options include: 

Free - frees up otherwise wasted memory blocks 

InMem filename - tests to see if filename is in memory 

Remarks: When loading TSRs, each program has its own environment space. Generally, 
this is wasted memory. Running RAMMAP FREE after each TSR load can re
cover this memory. It won't gain much, but in some situations, every byte counts. 

The command InMem tests to see what TSRs are loaded in memory. If the pro
gram is found, it returns errorlevel 1. Otherwise it returns errorlevel 0. Besides 
finding TSRs, InMem will also find BATCH files that are running. 

RAMMAP.EXE is Copyright© by Marc Perkel. All Rights Reserved 
This program is not public domain but is "shareware" and part of a ComputerTyme collection. 
To register contact: 

ComputerTyme 
411 North Sherman 
Suite 300 
Springfield, MO 65802 
(800)548-5353 



RELEASE.EXE Kim Kokkonen 
Turbo Power Software 

Purpose: Removes TSRs from memory. 

Syntax: [d:] [path]RELEASE Filename [/option] 

The following options, which must start with a slash,' /'include: 

/E do NOT access EMS memory. 

/K release memory, but keep the mark in place. 

/S chars stuff string ( < 16 chars) into keyboard buffer on exit. 

/? write this help screen. 

Utilities 923 

Remarks: MARK.EXE and RELEASE.EXE are used to manage TSR's in memory, without 
requiring a system reboot. In their simplest form, MARK and RELEASE are used 
as follows: 

1. Run MARK before installing your TSR(s). This marks the current position 
in memory and stores information that RELEASE will later need to restore 
the system. A common place to call MARK is in your AUTOEXEC.BAT 
file. 

2. Install whatever TSRs you want, using the normal method for each TSR. 
3. To remove those TSRs from memory, run RELEASE. This will release all 

of the memory above (and including) the last MARK, and will restore the 
system to the state at the time the MARK was made. 

There are a number of variations of this simple method. First, MARKs can be 
stacked in memory, as shown in the following hypothetical batch file: 

MARK 
TSRl 
MARK 
TSR2 
MARK 
TSR3 

Each call to RELEASE releases memory above and including the last MARK. 
In this example, the first call to RELEASE would remove TSR3 and the last 
MARK from memory, the second call would remove TSR2 and its MARK, and 
soon. 

MARK and RELEASE may be called using a command line parameter. 



924 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0 

Notes: 

The parameter specifies a "mark name" and allows releasing TSR's to a spe
cific point in memory. Consider the following example: 

MARK TSRl 
TSRl 
MARK TSR2 
TSR2 
MARK TSR3 
TSR3 

This loads the three TSRs just as in the previous example. 
However, if RELEASE were called like this 

RELEASE TSR2 

then both TSR2 and TSR3 would be removed from memory. Note that the use of 
such a name does not allow just a single layer of TSRs to be removed (just TSR2, 
for example). RELEASE always removes all TSRs including and beyond the one 
named. 

RELEASE deletes the mark file when it has finished. RELEASE has several com
mand line options to modify its behavior. 

None of the options is required for normal use of RELEASE. 
/E is made available for systems running early, buggy EMS (expanded mem

ory) drivers that don't correctly implement all of the EMS 3.2 system calls. Don't 
use it unless you have an EMS-related problem during or after running RE
LEASE. 

/K is useful when you will be releasing and reloading a TSR repeatedly. With 
it, you avoid the need to replace the mark each time the TSR is released. Using /K 
in combination with a file mark also prevents RELEASE from deleting the mark 
file. 

/S followed by at least one space and then a short string (15 characters or 
fewer) tells RELEASE to stuff this string into the keyboard buffer just before exit
ing. RELEASE automatically adds a carriage return to the end of the string. 

To explain why the /S option is important, we must digress a moment. Let's as
sume that you normally keep SideKick loaded, but that you must unload it in 
order to have enough memory free to run Lotus 1-2-3. It would seem reasonable 
to write a little batch file like this: 

RELEASE SK 
LOTUS 
MARK SK 
SK 

which would remove the previously loaded SideKick from memory, run Lotus, 
and then load SideKick again. Unfortunately, this won't work! The reason is com
plicated to explain. It must suffice here to say that DOS batch files trap memory, 
and the memory freed by a call to RELEASE does not truly become available the 



Utilities 925 

current batch file ends. Now the need for the /S option becomes clear. We can 
split the previous batch file into two: 

batchl: 
RELEASE SK /S BATCH2 

batch2: 
LOTUS 
MARK SK 
SK 

The first batch file releases the memory and stuffs the charac-
ters 'BATCH2<Enter>' into the keyboard buffer. When the batch file ends, the re
leased memory becomes available. DOS automatically reads the keystrokes 
waiting in the buffer and starts up the second batch file, which runs Lotus and 
later reloads SideKick. 

To keep things simple, the /S option pokes the specified keystrokes directly 
into the system keyboard buffer. As a result, the number of keystrokes is limited 
to 15 (not counting the <Enter> key, which RELEASE adds automatically). This 
always allows enough keys to start another batch file, however, and the new batch 
file can take over from there. 

RELEASE detects when it is releasing memory within a batch file. It writes a 
warning message to that effect, but continues processing anyway under the as
sumption that the batch file is about to end. You can ignore the warning if you've 
already taken account of DOS• s memory management behavior within batch files. 

MARK and RELEASE are capable of removing many, but not all, TSRs from 
memory. The TSRs that cannot be released fall into two categories: those that can
not be released without specific internal knowledge of the TSR, and those that 
can be released by storing additional general information about the system. 

The TSR Utilites - DEVICE.EXE, DISABLE.EXE, MAPMEM.EXE, MARK.EXE, 
RAMFREE.COM, RELEASE.EXE, and WATCH.COM - are Copyright© 1986, 1987, 1989 
by Kim Kokkonen of Turbo Power Software. 



926 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0 

RESPRO.COM 
Version 1.35 

Eric Gans Freeware 

Purpose: 

Syntax: 

Disables, enables (reactivates), and clears memory-resident programs. 

[d:] [path] RESPRO [/switch] 

when valid switches are: 

A filename.ext 
Activate (enable) the previously disabled TSR filename.ext program. 

C Same as above. 

K Use at command line only, to change hotkey assignments. 

D filename.ext 
Disable the TSR filename.ext program. 

R Same as above. 

U pse a_t command line only, to change hotkey assignments for 
UnCrash feature. 

Remarks: Load RESPRO.COM before any other TSR programs, since it only looks for pro
grams loaded above itself. 

To use RESPRO once it's loaded, press the Alt+' (accent grave on tilde) keys. 
The screen displays a numbered list of the TSR programs, together with their start
ing address and size. 

Press one of the following keys: 

AN Activate (enable) the previously-disabled program number N. 
See DN below. 

C Clear all memory-resident programs above RESPRO. 

DN Disable prqgram number N (from the numbered list). 
A "** DISABLED **" message appears on the screen next to that 
program name. 

Escape key Press to clear RESPRO menu from screen. 

R Remove last program from the list, freeing the memory for use by other 
applications. 

V Verbose. For each TSR, this mode displays the interrupts used and their 
addresses. 

For command line (or batch file) operation, the switch will let you activate or 
deactivate programs without having to press keys. 

UnCrash Feature In the event of a system hang-up, press the CapsLock and 
ScrollLock keys simultaneously to return tQ the DOS prompt. 



Utilities 927 

Remarks: Most screen-blanking programs are disabled while the RESPRO menu is on 
screen. When the menu is cleared, normal screen-blanking is restored. 

In command-line or batch file operation, the /A and /D switches do not recog
nize pathspecs. Therefore, the program to be disabled/enabled must be in the 
same directory as RESPRO.COM. 

Notes: To disable a screen-blanking utility prior to loading an application (WINDOWS, 
for example) that takes control of hotkey combinations, try the following batch 
file: 

RESPRO /D (screen-blanking utility name) 
[path]WINDOWS\WIN 

RESPRO /A (screen-blanking utility name) 

If the RESPRO menu shows a "~lubs" symbol (extended character set symbol 
005) instead of a filename, then that program can only be disabled via the menu, 
by referring to its number. The /A and /D command line switches will not operate. 

RESPRO.COM is Copyright© by Eric Gans 
This program is "freeware .. and may be freely used and distributed, but not modified or sold for 
profit without author consent. 



928 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0 

ROMTABLE.EXE John Woram 

Purpose: Displays the Hard Drive table embedded in ROM in IBM and compatible comput
ers. 

Syntax: [d:] [path]ROMTABLE 

Remarks: If the table contains a listing for the hard drive type(s) installed in your computer, 
the drive letter and a blinking":" appear next to the type number. If pointer data 
is stored in the reserved type-15 location, that line will display ••Pointer: Drive C 
is Type nn" (where nn is the actual drive type. A similar message appears for 
Drive D, if appropriate. 

Notes: The starting address of the drive-type table varies from one IBM computer type to 
another. If the table displays garbage, then ROMT ABLE does not recognize the 
computer on which it is running. 

ROMTABLE.EXE is Copyright© 1990 by John Woram 



Utilities 929 

RV.EXE 
Version 2.36 

Raymond T. Kaya Free ware 

Purpose: 

Syntax: 

Displays contents of archived files. Converts self-extracting archive files to nor
mal archive files. Includes other archive management utilities. 

[d:] [path]RV (archive name) /switches [file specs] 
[d:] [filename (s)] 

where archive name is the name of the archive file to be searched. 
Valid switches include: 

/A Strip all (same as using /C/U/X switches) 

/B Show filename and extension only. Pathnames within LZH and ZIP files 
are not displayed. 

/C[filename] Strip/attach ZIP file comments. If a valid filename is included, 
then comments contained in that file will be attached to any ZIP files that 
match archive name. 

/D Sort ZIP files. Local and central directory headers are written back to disk 
in sorted order. 

/I Ignore the switches specified in an RV.CFO file (see Notes), thus 
temporarily resetting RV to its factory defaults. 

/L Relax checking. If RV default mode will not list contents of archive file, 
this option may allow it to do so. Do not use with other options that actually 
modify the archive file. 

/N List archived files in natural order (as actually stored in archive file). 

/P Pause after each full screen. Press any key to continue. 

/R Reset date and time of archive file to that of the most recent file within the 
archive. 

/S Subdirectory search through directories below the directory implied by 
archive name. 

/U[path] Converts a self-extracting (SFX) archive to a normal archive. A new 
archive file is created with the same name but a new extension, as 
appropriate (ARC, LZH, etc.). If a path is not specified, the new file is 
written to the current directory. 

/W Show contents of archived file in five-column wide display format. Show 
filename and extension only. 

/X Strip extra bytes from end of the archive file. Xmodem file transfer 
protocols often pad transferred files with extra bytes. The /X switch 
truncates LZH and ZIP archives to their true sizes. 



930 DOS Power Tools, 2nd Edition, Revised for DOS 5.0 

Notes: Each switch must be preceded by a slash or hyphen. To automatically use any of 
the switches descibed above, use an ASCII text editor to write the switches to a 
file named RV.CFO. Write the file as /a/b/c/ ... where a,b,c are your switch 
choices. The file may also contain comments. Do not include slashes or hyphens 
in the comments, which might be interpreted as switch instructions. 

This program is "freeware" and may be freely used and distributed, but not modified or sold for 
profit without author consent. 



SA.EXE 
Version 1.10 

David Foley 
Foley Hi-Tech Systems 

Utilities 931 

Shareware 

Purpose: Allows you to set the foreground, background and border colors of your monitor. 

Syntax: [d:] [path] SA [options] [foreground] [on background] 

Example: SA bright red on green 

Notes: The following are valid colors: 

Black 
Red 
DarkGray 
LightRed 

Blue 
Magenta 
LightBlue 
LightMagenta 

Green 
Brown 
Light Green 
Yellow 

SA.EXE is Copyright© 1989-1991 by Foley Hi-Tech Systems 

Cyan 
Gray 
LightCyan 
White 

This program is not public domain but is .. shareware" and a part of the Foley Hi-Tech Systems 
ExtraDOS collection. To register send a check or money order for $19.00 to: 

Foley Hi-Tech Systems 
ExtraDOS Registration 
172 Amber Drive 
San Francisco, CA 94131 
( 415)826-6084 



932 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0 

SETUP.EXE Nathaniel S. Johnson Freeware 

Purpose: Displays test patterns for monitor alignment. 

Syntax: [d:] [path] SETUP 

Remarks: SETUP displays dots, cross hatches, and color bars for determining monitor align
ment. In the hands of a qualified technician, it can be used to align the color guns 
and CRT yoke in a monitor. For the rest of us, it's got some attractive screens, 
and can be used to determine if a call to a technician is warranted - if, for exam
ple, the cross-hatch pattern looks more like a soccer ball than the rectilinear grid 
it's supposed to be. 

SETUP.EXE is Copyright© 1990 by Nathaniel S. Johnson 
This program is "freeware" and may be freely used and distributed, but not modified or sold for 
profit without author consent. 



Utilities 933 

SETV.EXE 
Version 2.0 

Bob Eyer Free ware 

Purpose: Sets VGA to seven text resolutions. 

Syntax: [d:J [path]SETV Mode 

The possible modes may be listed by entering SETV with no parameter. 

Remarks: There should be virtually no risk of damaging your video equipment on use of 
SETV: This program will not permit display of anything but the help screen if the 
adaptor detected is not VGA. 

If you run a display program, such as an editor, which scrambles your video 
after running SETV, just reboot. 

Video scrambling is most likely to occur in some programs, when the screen 
width is set to 132 rather than 80, and is due to the failure of the display program 
to take into account large screen widths. A few programs, such Vern Bu erg· s 
LIST, will take 132-column modes into account. 

SETV supports both 132 x 25 and 132 x 44 132-line modes. 

Notes: All of SETV's modes except 40 x 25 and (N)ormal mode require a more sophisti
cated ANSI driver than DOS's ANSI.SYS. The latter is limited chiefly by failing 
to account for screens longer than 25 lines. Use VANSl.SYS instead. The syntax 
to use in your CONFIG.SYS will be the same. And V ANSI.SYS provides faster 
screens and more flexible operation. 

SETV.EXE was written by Bob Eyer [CI5:73230,2620] 
This program is "freeware" and may be freely used and distributed, but not modified or sold for 
profit without author consent. 



934 DOS Power Tools, 2nd Edition, Revised for DOS 5.0 

SHOW.EXE Steve Leonard Shareware 

Purpose: Displays a file for easy browsing. 

Syntax: [d:] [path] SHOW filename 

Remarks: The filename is non-optional - but given the intended function, that's not unrea
sonable. SHOW lets you use the normal assortment of cursor keys - Up Arrow, 
Down Arrow, Left Arrow, Right Arrow, Home, End, Pg Up and Pg Dn - to 
move around the file. 

In addition, it provides on-line help via Fl, and supports toggling between text 
and hex displays via F2, 

It also has a search for, and find next, capability using F3 and F4. Pressing F3 
prompts you for a string to search for; once one is found, F4 will repeat the search 
for the next occurrence. 

Its one significant limitation is that it only works with the first 64Kb of files 
longer than that. 

This program is "freeware" and may be freely used and distributed, but not modified or sold for 
profit without author consent. 

Anyone who finds this program of value is.encouraged to make a voluntary donation to the au
thor. 

Steve Leonard 
260 Dunbar Road 
Hilton, NY 14468 



SORT.EXE 
Version 2.5 

Marc Perkel. 

Purpose: Improves on DOS SORT command by providing case sensitivity 

Syntax: [d:] [path]SORT [/R] [/I] [+N] [<][source] [>target] 

or 

command I [d:] [path] SORT [/R] [/I] [+N] [>target] 

Utilities 935 

Shareware 

where source and target are valid file specifications, command is any DOS com
mand that generates redirectable output, and valid options for SORT are: 

/R reverses the sort order from first-to-last to last-to-first 

/I ignores upper and lower case 

/+N sorts according to the character in column N 

Remarks: As in the standard DOS command, the default value for N is 1. 
With the /I option in use, this command performs the same as its cousin from 

Redmond. Without the /I, you can sort according to the ASCII sequence of upper 
case and lower case - A to Z preceeds a to z. 

If you intend to use this in place of the DOS command, consider renaming the 
DOS command to XSORT, and placing this utility in your DOS directory. 

SORT.EXE is Copyright© 1989-1990 by Marc Perkel. All Rights Reserved 
This program is not public domain but is "shareware" and part of a ComputerTyme collection. 
To register contact: 

ComputerTyme 
411 North Sherman 
Suite 300 
Springfield, MO 65802 
(800)548-5353 



936 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0 

SPEED RAM.EXE 
Version 1.10 

David Foley 
Foley Hi-Tech Systems 

Shareware 

Purpose: 

Syntax: 

Increases the speed of your system CPU by changing the refresh rate of your sys
tems 8253 timer chip. 

[d:) [path)SPEEDRAM [parameter) 

where valid parameters are: 

+ Enable SpeedRam. Entering a + will enable SpeedRam and set the optimum 
refresh rate. 

- Disable SpeedRam. Entering a - will disable SpeedRam and set the refresh 
rate to stock values. 

r:nn Set refresh rate to nn Us. Entering r:nn will set the refresh rate to nn micro 
seconds. Only use this if you have a good understanding of the refresh rates. 

Setting too high a refresh rate will cause memory parity errors or hang your sys
tem. If you find that SpeedRam + causes parity errors or hangs your system than 
you will want to try this option. 

If you do not specify a parameter then SpeedRam will list the available parame
ters for you. 

Remarks: All Personal Computers, including the original IBM PC were designed with a 
very high refresh rate. The rate used by all personal computers is far beyond the 
rate required by the RAM chips used in these machines. SpeedRam sets the re
fresh rate to match closer with RAM manufacturers specifications and in tum 
frees up CPU cycles. These free cycles can be used by your software rather than 
going to waste by refreshing the RAM too often. The change in refresh rate 
matches within specifications of most DRAM manufacturers. Depending on your 
system SpeedRam should increase your CPU's performance from 2% to 10%. 
You can measure this in many ways such as LANDMARK's CPU SPEED Test or 
Norton Utilities SI program. 

Notes: The memory in your Personal Computer is called DRAM, or Dynamic Random 
Access Memory. DRAM chips can not hold a charge of electricity for a very long 
time. In fact, a new charge of 5 volts must be supplied about every 65 micro sec
onds or it will loose its data. To supply this charge, or refresh, the memory, the 
CPU must stop processing data and direct the 8253 chip to send the refresh 
charge to the bank of memory. 

Once the refresh is done the CPU can continue processing. SPEEDRAM 
speeds up your system by reducing the number of times the CPU has to stop to re
fresh DRAM. 

SpeedRam is not a TSR. It does not require any RAM or take any away from 
your system. SpeedRam only needs to be loaded once and will perform until the 
machine is rebooted. Be sure to save any critical data in memory before experi-



Utilities 937 

menting with SPEEDRAM, as you may experience system crashes before you get 
it set up correctly for your system. 

TROUBLE SHOOTING 

SpeedRam has been thoroughly tested on many systems before being released but 
due to the complexity and variety of equipment available there can be no guaran
tee that it will work on every Personal Computer. 

If SpeedRam causes any problem, it will cause memory problems. If you notice 
memory errors, parity errors, or that your machine is hanging after running 
SpeedRam + then the rate that SpeedRam has chosen for your system is causing 
the DRAM chips to fail. This is in no way a permanent failure, you will just have 
to pick a lower rate at which to run SpeedRam. To use a manual refresh rate with 
SpeedRam enter the following: 

SpeedRam r:nn 

where nn is the refresh rate you wish to use. Start with 60 and retest your system. 
If you continue to have problems keep decrements the amount by 5 until you 
reach a value that your system works with. If the value is less than 18 then you 
will most likely not benefit from SpeedRam. 

SPEEDRAM.EXE is Copyright© 1987-1991 by Foley Hi-Tech Systems. 
This program is not public domain but is "shareware" and a part of the Foley Hi-Tech Systems 
ExtraDOS collection. To register send a check or money order for $19.00 to: 

Foley Hi-Tech Systems 
ExtraDOS Registration 
172 Amber Drive 
San Francisco, CA 94131 
(415)826-6084 



938 DOS Power Tools, 2nd Edition, Revised for DOS 5.0 

SS.COM 
Version 2.10 

Kevin Curtis Shareware 

Purpose: 

Syntax: 

Blanks the screen if there is no keyboard (or mouse) activity. 

[d:] [path] SS [N] [/switches] 

N waiting time, in minutes, until screen is blanked following the last 
keystroke. Default is 15 minutes~ switches 

Alt+ Tab Toggle to alternately disable/enable screen saver mode. System 
beeps when screen saver mode is enabled. 

Alt+5 Restores a Hercules monochrome Graphics Card to its graphics mode. 

D Disable screen saver. 

E Enable screen saver. 

H Help screen. 

K Disable keyboard buffer-clearing option (required on some PC clones is 
system locks up when a key is pressed to restore screen display. 

K + Re-enable buff er-clearing option, if disabled by /K. 
M Enable mouse support. 
S Display current status of screen saver. 

U Unload screen saver (only valid if SS.COM is the last program loaded into 
memory. 

V Display the Set Video Type help screen. 

VM Force screen saver to work with the following type of monitor: 

C-CGA or color; E-EGA; H-Hercules; M-monochrome; V-VGA 

Remarks: Press any key to restore the screen display. The keystroke is discarded, so it does 
not affect whatever is on the screen (unless the /K switch has been used). 

Notes: Press the same Shift key three times to blank the screen immediately. 
To disable SS.COM prior to loading an application (WINDOWS, for example) 

that takes control of the keyboard, try the following batch file: 

[path] SS /D 
[path]WINDOWS\WIN 
[path] SS /E 

Failure to disable SS.COM before going into Windows may produce either odd 
displays or system crashes and should be avoided. 

SS.COM is Copyright© 1990, 1991 by Curtis Software. All Rights Reserved. 
This program is not public domain, but is .. shareware.·· To register, contact: 

Keven Curtis, 7710 Swiss Way, Roulette, TX 75088 



STACK.COM 
Version 3.2 

Shane Bergl 

Purpose: Utility for editing current and previous command lines. 

Syntax: [d:] STACK [pa th] (to load STACK.COM into memory) 

Utilities 939 

Shareware 

Notes: With STACK loaded into memory, various cursor, Alt and Ctrl key combinations 
perform the functions described here: 

Alt-FN Copy the current command line to the designated Shift+function key. 
If insert mode is disabled, command is terminated with a carriage return. 

Alt-Ctrl-W Write the current command stack and function key definitions to a 
designated file (default is STACK.DFL) 

Backspace Delete the character to the left of the cursor. 

Ctrl-A Toggles stack on, so it can be used within applications. 

Ctrl-End Delete from the command line cursor to the end of the line. 

Ctrl-FN Copy the current command line to the designated function key 
(1-10). If insert mode is disabled, command is terminated with a carriage 
return. 

Ctrl-Home Delete the command line to the left of the cursor. 

Ctrl-Left or right arrow Move left or right one word on the current command 
line. 

Ctrl-R Reads the command stack and function key definitions from the file 
name listed on the command line. 

Ctrl-T Delete from the command line cursor to the beginning of the next 
word. 

Ctrl-W Writes the command stack and function key definitions to the file 
listed on the command line. 

Del Delete the character at the cursor position. 

End Move the cursor to the end of the command line. 

Escape Clear the command line and close the Stack window. 

FN and Shift-FN Copy the command associated with the function key to the 
command line. Execute the command if it ends with a carriage return. 

Home Move the cursor to the beginning of the command line. 

Ins Toggle Insert mode on and off. 

PageDown Move down a page in the Stack window. 

PageUp Move up a page in the Stack window. 

Shift Left-Enter key Transfer the current command line to the bottom of the 
Stack window. 



940 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0 

Shift Right-Enter key Transfer the current command line to the current 
(highlighted) line in the Stack window. 

Shift-Del Delete the highlighted command in the Stack or function key 
window and on the command line. 

Shift-Tab Toggles between an automatic display of the command and 
function key windows to disabling the automatic display. 

Tab Displays command window if not automatically.displayed; toggles 
between the command window and the function key window otherwise. 

Up and down arrows Toggle through the command list displayed in the Stack 
window and display the highlighted command at the DOS prompt. 

# Characters to the left of the # are displayed but not executed. 

A Use in commandl A command2 format to place two or more commands on 
the same line. 

As opposed to DOSKEY, STACK lets you see the commands, and save a standard set of batch 
commands and function key definitions. 

STACK.COM Version 3.2 is Copyright© 1991 by Shane Bergl. 
This program is not public domain byt is .. shareware ... If you wish to register as a user please 
send$A20to 

P.O. Box 78 
Dickson, Australia Capital Territory, 2602, Australia 

From outside Australia please add $A4 to cover currency conversion costs. 



Utilities 941 

TI.COM 
Version 1.6 

Scott Chaney 
RSE, Inc. 

Shareware 

Purpose: Prevents accidental deletion of files. 

Syntax: [d:] [path] TI [/U] 

where /U uninstalls Tl.COM 

Remarks: TI stands for Trash-It, a TSR to give you an additional layer of protection against 
accidental file deletion. Even though UNDELETE and other programs of that 
type exist, they won •t work if you ·ve cleverly clobbered the disk space where 
your accidentally-deleted files used to reside, by writing new data to the disk. 

Trash-It works with DOS, PC-Directory, PC-FileNotes, MS Windows or any 
program that uses DOS function calls to delete files. Instead of deleting the file, 
Trash-It moves the file over a directory called \TRASH, which you must create 
using MD \TRASH. 

In other words, your deleted files remain intact, they just get moved out of the 
way, to the \TRASH subdir where DOS can't overwrite it. 

Of course, since you're not actually deleting these files, eventually your hard 
disk is going to fill up, requiring that you "dump the trash", i.e., go to the 
\TRASH subdirectory and delete the files. Trash-It doesn't interfere with deletes 
done in the \TRASH subdir. 

Files deleted in the \TRASH subdir are actually deleted. 

Notes: 1. Before you use Trash-It for the first time you need to create a subdirectory 
called •'\TRASH" on your hard disk by entering: 

"MD \TRASH" 

at the DOS prompt. If you have your hard drive partitioned than create a 
"\TRASH" subdir in each partition. 

After you've created the •'\TRASH" subdir then all you do to run Trash-It 
is move to the subdir where Tl.COM is located and enter .. ti" at the DOS 
prompt. Once loaded Trash-It automatically intercepts all attempts via DOS 
function calls to delete files, and instead moves the files to the Trash 
("\TRASH subdir"). You don't do anything differently than before. It is to
tally transparent to the user. 

The best way to make sure Trash-It is loaded is to put ''Tl.COM" in the 
root directory, and the phrase •'TI" in your "AUTOEXEC.BAT" file, also lo
cated in the root directory. This will automatically load Trash-It every time 
you boot your computer. 

2. You can remove Trash-It from memory by entering "ti/u" at the DOS 
prompt. 

3. Programs can delete files using two methods. Most programs use DOS func
tion calls do it. However, a few programs directly modify the disk data 



942 DOS Power Tools, 2nd Edition, Revised for DOS 5.0 

(FAT and Directory info) without using DOS. Trash-It works only if DOS 
function calls are used to delete the file(s). Trash-It can't protect against pro
grams that go in and modify theFAT and Directory information directly. 
However, almost all programs let DOS do what it's designed for by using 
DOS function calls to delete files, thereby allowing Trash-It to do its job. 

4. Trash-It only works if it finds a "\TRASH" subdirectory on the disk (or par
tition) where the deleted files are located. 

For example, let's say you have a Trash subdir on your hard drive, C:. 
You then attempt to delete files on the A: drive. If the disk in the A: drive 
doesn't have a \TRASH subdir then the files will be deleted, even tho there 
is a \TRASH subdir on the C: drive. Files will only be moved to the 
\TRASH subdir if the \TRASH subdir is located on the same disk as the 
files being deleted. Of course, you can make \TRASH subdirs on all your 
disks if you want. 

Warning: You shouldn't take deleting files any less seriously than you al
ways have, because in the situations described above (and possibly a few 
others) the file will actually be deleted. 

5. If Trash-It finds a file in the \TRASH subdir with the same name as the file 
it's trying to move there, then it will increment the last letter of the filename 
until it's unique. 

For example, if you 're trying to delete "TEMP" and a file named 
"TEMP" already exists in the "\TRASH". subdir then Trash-It would incre
ment the last letter of the filename being moved, in this case from "TEMP" 
to "TEMQ", and try again. 

Tl.COM is Copyright© 1990 by RSE, Inc. 
This program is not public domain but is "shareware" and part of the RSE, Inc. collection. For 
registration and information, contact: 

Scott Chaney 
c/o RSE, Inc. 
1157 57th Drive SE 
Auburn, WA 98002 
(206)939-4105 



Utilities 943 

TICONFIG.COM Scott Chaney 
RSE, Inc. 

Shareware 

Purpose: Configures Tl.COM (Trash-It) for most efficient operation. 

Syntax: [d:] [path]TICONFIG 

where TICONFIG.COM is in the same directory as Tl.COM 

Remarks: The key to keeping disk space free is to only trash significant files. 
TICONFIG.COM lets you do just that. You use the configuration program to ex
empt files from being trashed. You can set a minimum file size in which files 
greater than the limit are trashed (moved to the TRASH subdir) and those less 
than the limit are deleted. This can save a lot of disk space. Even a 1 byte file 
takes up 4K of hard disk space. By having Trash-It delete small files (instead of 
trashing them) you can free up a significant amount of disk space, without sacri
ficing any important files. 

The configuration program also lets you specify up to five different filename 
extensions. All "deleted" files with the extension(s) you define will be deleted in
stead of trashed. This too can save a significant amount of disk space. For exam
ple, some programs create temporary files with "TMP" as the filename extension. 
These files aren't important once the program ends and are deleted. If you specify 
"TMP" in the configuration program then Trash-It would delete these files rather 
than trash them. You may use the global character "?" when defining your exten
sions. 

The last item in the configuration program lets you decide whether you want 
Trash-It to change the trashed file's date/time to the time it was trashed. If you se
lect "No" then Trash-It leaves the date/time of the trashed file unchanged. This 
lets Trash-It run a little faster. "Yes" is the default value. However if you 're a real 
speed freak, or for some reason you want the deleted files to retain their original 
date/time, then select "No". To change an item use the up/down arrow keys to se
lect the item and press C for Change. Then input the new value. To delete an ex
tension: select the extension you want to delete, press C to Change, and then press 
the Enter or Return key without entering anything. When you've finished making 
all your changes then press the Escape key to save the changes and exit the config
uration program. 

TICONFIG.COM is Copyright© 1990 by RSE, Inc. 
This program is not public domain but is "shareware" and part of the RSE, Inc. collection. For 
registration and information, contact: 

Scott Chaney 
c/o RSE, Inc. 
1157 57th Drive SE 
Auburn, WA 98002 
(206)939-4105 



944 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0 

TIDY.EXE 
Version 1.04 

David Foley 
Foley Hi-Tech Systems 

Shareware 

Purpose: 

Syntax: 

Finds all the subdirectories on the current disk and removes all *.BAK files, as 
well as any files that have a length of zero. 

[d:] [path] TIDY [extension] [drive] [/p] 

Remarks: TIDY displays the name of each file as it is deleted. Also displays a summary of 
files that it has erased, as well as a total showing how much disk space was freed. 

Enter any words on the command line after TIDY, and the program will search 
for files with those extensions and delete them. 

Example: TIDY MAP 

tells TIDY to delete all *.BAK files, as well as all *.MAP files. 
You cannot specify wildcards in the file extension here, but you can list up to 

64 extensions to search for. 
Additionally, you can give TIDY a disk drive specifier so that have the pro

gram tidies that drive. For example, to clean up on the A: drive, use TIDY A: 
You can use the extensions and disk drive specifier in any order, but the only 

restriction is that the specifier must contain the colon and there must only be one 
specifier on a line. So, 

TIDY A: MAP TMP 

will perform identically to 

TIDY MAP TMP A: 

The /P option will cause the program to prompt the user if the file should really 
be deleted or not. If the user enters Q, for quit, the program exits and display a sta
tus report. 

TIDY.EXE is Copyright© 1987-1991 by Foley Hi-Tech Systems 
This program is not public domain but is "shareware" and a part of the Foley Hi-Tech Systems 
ExtraDOS collection. To register send a check or money order for $19.00 to: 

Foley Hi-Tech Systems 
ExtraDOS Registration 
172 Amber Drive 
San Francisco, CA 94131 
(415)826-6084 



TOUCH.EXE 
Version 1.20 

David Foley 
Foley Hi-Tech Systems 

Utilities 945 

Shareware 

Purpose: A Unix-like utility used to stamp a file's attributes with the current system date 
and time. 

Syntax: [d:] [path] TOUCH [filespec [filespec]] 

Remarks: Touch is useful if you want to have a group of files with identical date and 
timestamps. Multiple filespecs are acceptable, as are wildcards within each 
filespec. If you need to set the time and date to a different time and date than the 
system clock, you can write a short batch file, using the GET utility, to save the 
current date and time to environment variables, reset the clock to the desired time 
and date, TOUCH the files, and then restore the system time and date, like so: 

GET HE 112 
SET savetime=%GET% 
GET HE 14 
SET savedate=%GET% 
TIME 12:00:00 
DATE 5-01-91 
TOUCH \myfiles\*.* 
TIME %savetime% 
DATE %savedate% 

If you're really compulsive you'll want to readjust the seconds afterward. 

TOUCH.EXE is Copyright © 1985-1991 by Foley Hi-Tech Systems 
This program is not public domain but is "shareware" and a part of the Foley Hi-Tech Systems 
ExtraDOS collection. To register send a check or money order for $19.00 to: 

Foley Hi-Tech Systems 
ExtraDOS Registration 
172 Amber Drive 
San Francisco, CA 94131 
( 415)826-6084 



946 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0 

TS.EXE 
Version 1.01 

David Foley 
Foley Hi-Tech Systems 

Shareware 

Purpose: Searches for all occurrences of a given string inside a specified text file. 

Syntax: [d:] [path] TS [filespec] [text] 

Note: TS stops ar each occurence and displays the found string, and then prompts the 
user to continue or exit.TS is case sensitive and does not work on executable files. 

TS.EXE is Copyright© 1985-1990 by Foley Hi-Tech Systems 
This program is not public domain but is ··shareware .. and a part of the Foley Hi-Tech Systems 
ExtraDOS collection. To register send a check or money order for $19.00 to: 

Foley Hi-Tech Systems 
ExtraDOS Registration 
172 Amber Drive 
San Francisco, CA 94131 
( 415)826-6084 



TURBOBAT.COM 
Version 1.00 

David Foley 
Foley Hi-Tech Systems 

Utilities 94 7 

Shareware 

Purpose: Allows you to compile standard DOS batch files into .COM binary programs. 

Syntax: [d:] [path]TURBOBAT filename.ext 

The output will be filename.COM. 

Remarks: Turbobat greatly enhance the speed of large batch files by allowing them to run in 
native code rather than-interpreted DOS commands. The resulting .COM files 
may call nested batch files without losing the parent since the parent calling pro
gram is no longer a batch file. 

TURBOBAT.COM is Copyright© 1990 by Foley Hi-Tech Systems 
This program is not public domain but is "shareware" and a part of the Foley Hi-Tech Systems 
ExtraDOS collection. To register send a check or money order for $19.00 to: 

Foley Hi-Tech Systems 
ExtraDOS Registration 
172 Amber Drive 
San Francisco, CA 94131 
(415)826-6084 



948 DOS Power Too/,s, 2nd Edition, Revised/or DOS 5.0 

VANSI.SYS Chris Dunford Free ware 
The Cove Software Group 

Purpose: Enhanced ANSI screen driver. 

Syntax: DEVICE=[d:] [path]VANSI.SYS 

or 

DEVICEHIGH=[d:] [path]VANSI.SYS 

Remarks: To take advantage of screens larger than 25 lines at the DOS prompt, you need a 
screen driver that understands what's going on. 

V ANSI.SYS is a modification of Dan Kegel's excellent NANSl.SYS to 
accomodate the VGA system. To use it, simply install as you would ANSI.SYS 
by including the statement 

DEVICE=[d:path]VANSI.SYS 

in your CONFIG.SYS. With V ANSI installed, you will find that you have full use 
of all available lines when you 're working at the DOS prompt. 

V ANSI is a modification of the free NANSI.SYS by Daniel Kegel. Both original and modified 
source are available from the IBM Systems Forum (IBMSYS) on CompuServe. 



Utilities 949 

VERSION.EXE Marc Perkel Shareware 

Purpose: 

Syntax: 

Lets you fake any DOS version number to avoid the "Incorrect DOS version" 
error message. 

[d:] [path]VERSION M.N command arguments 

where M.N is the DOS version number - e.g., 3.3 or 5.0; command is any com
mand that checks the DOS version; and arguments are the normal arguments ex
pected by the command. 

Remarks: There are few things more aggrava,ting than backing up a huge file to floppies, 
carrying them all the way across town, and then finding that you can't RESTORE 
the file on the system you're trying to move it to because of a slight difference in 
DOS versions. When you see that "Incorrect DOS version" messa,ge instead of 
the 10 megabyte file you were expecting, you get to explore new frontiers of frus
tration. Without VERSION, you'd heed to go back to the original system and gen
erate a bootable floppy with the correct RESTORE command for that system's 
version of DOS, and boot from that floppy before you could get at the file. DOS 
5.0 addresses this sort of problem with its SETVER.EXE <levee driver and com
mand, but some people are leery ofMicrosoft's solution to this problem, as 
SETVER creates and maintains a hidden table which is modified without chang
ing the file date or time. This leads to two equally unpleasant possibilities: your 
virus-checking program is going to think SETVER has been infected and bring 
your system to a halt, or someone with more time on their hands than is good for 
them will figure out a way to use the SETVER table as a tool in propagating a 
virus. 

VERSION offers a benign solution to this problem, as it doesn't modify any
thing on disk. 

Example: VERSION 3. 3 A: \RESTORE A: c: \ *; * /S 

will fool the copy of RESTORE. EXE on the A: drive into restoring data onto a 
system not running DOS 3.3. 

VERSION.EXE is Copyright© 1989-1991 by Marc Perkel. All Rights Reserved 
This program is part of the Computer Tyme DOS ToolBox. 
To Register, ask for the BANTAM BOOK special price of $25. (Reg Price $60) 

Contact: 
Computer Tyme 
411 North Sherman, Suite 300 
Springfield, MO 65802 
(800) 548-5353 



950 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0 

VFONT.EXE 
Version 1.00 

Chris Dunford 
The Cove Software Group 

Public Domain 

Purpose: Loads VGA fonts various sizes providing for 25, 30, 33, 36, 44, and 50-line VGA 
text displays. 

Syntax: [d:] [path] VFONT [option] 

where options include: 

R25 load the 25-line ROM-based font provided by your VGA card 

R50 load the 50-line ROM-based font provided by your VGA card 

file load a font from one of the supplied font files (* .FNn 
[attrib] set the screen attributes as a two-digit number 

Remarks: For file names, the FNT extension is assumed if none is provided. When VFONT 
loads a new font into the VGA, it must perform a screen clear in order to ensure 
that the video system is in a stable state. Normally it will clear the screen to white
on-black, but you can specify any color attribute you want by adding the A TTRIB 
option. 

Examples: To load the 33-line font (contained in 33.FNT), type: 

Notes: 

VFONT 33 

To load the 36-line font and clear the screen to light cyan on blue: 

VFONT 36 27 

where 27 is the attribute number for light cyan on blue. 

1. The following fonts are supplied; all are sans serif unless otherwise 
specified: 

25.fnt 25-line font 
25s.fnt 25-line serif font (similar to the ROM font, but nicer) 
30.fnt 30-line font 
33.fnt 33-line font 
33q.fnt A 33-line "square" font for fun. Impress your non-computing 
friends with how computery your display looks. 
36.fnt 36-line font 
44.fnt 44-line font 
50.fnt 50-line font 



Utilities 951 

Note that 25.fnt and 50.fnt differ from the ROM-based fonts in that they 
are sans serif. 

2. Two related programs can help in making these fonts more useful. 
You may find that some of your applications programs tend to reload the 

ROM fonts and/or change the number of lines displayed. MODSA V, also 
from Cove Software, can be helpful in preventing this. MODSA V is a free 
program that should be included in this archive (along with its separate doc
umentation). 

In order to take advantage of screens larger than 25 lines at the DOS 
prompt, you will need a screen driver that understands what's going on. 

Included on disk is a modified version of Dan Kegel's excellent 
NANSl.SYS to accomodate the VGA system. The modified version 
(V ANSI.SYS) should also be included with this archive. To use it, simply 
install as you would ANSI.SYS by including the statement 

DEVICE=[d:path]VANSI.SYS 

in your CONFIG.SYS. With V ANSI installed, you will find that you have 
full use of all available lines when you 're working at the DOS prompt. 

3. The format of the font files is as follows: 

Offset Length Contents 

0 2 File signature: .. VF" 

2 Binary 0 

3 .. Points": number of dot rows per character 

4 Var Character definitions 

The character definitions are in the format required by the VGA subsystem. 
The length is 256 * points. 

This program is in the public domain and may be freely used and distributed without restriction. 
VFONT has been donated to the public domain by the author: 

Chris Dunford 
The Cove Software Group 
PO Box 1072 
Columbia, MD 21044 
301/992-9371 (voice only) 
CompuServe 76703,2002 



952 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0 

VGACOLOR.COM 
Version 2.1 

Doug Cox Free ware 

Purpose: 

Syntax: 

Remarks: 

Notes: 

Enables you to change any color to any of the 256k (262,144) colors available on 
a VGA computer. 

[d:] [path]VGACOLOR 

VGACOLOR is a TSR; to invoke it once ifs installed, press an ALT key and the 
RIGHT SHIFf key at the same time. The following line will appear (in light 
blue) where the cursor line was: 

O Red O Green O Blue 0 Use PgUp, PgDn, Home, End, Arrows, Esc 

Press the Page Up key to change from the current color (which is color number 
0 as shown at the left of the line) to color number 1, and so on up to color number 
15. The color associated with the color number will be shown at the far left of the 
line. 

Press the Page Down key to go through the 16 colors in the opposite direction. 
Initially, markers bracket "Red O". 
Press the Right Arrow key to move these markers to the right. Press the Left 

Arrow key to move these markers to the left. 
·Press the Up Arrow key to increase the intensity level of Red, Green, or Blue 

(depending on where the markers are). Press the Down Arrow key to decrease the 
intensity level. 

Press the Home key to restore the selected color to its original default color. 
The defal;llt VGA colors are th~ same as the 16 colors available on CGA comput
ers in alphanumeric.mode. 
Pr~s Ctrl-Home to restore all colors to the original default colors, and exit. 
Press either the End key or the Esc key to exit. The line will disappear and the 

original cursor line will re-appear. 
There is a subtle difference between exiting with the End key and with the Esc 

key. Normally, when there is a mode change on your computer (such as when you 
run a game that's in grapliics mode), all colors will return to their default color set
tii:igs. But you probably don't want this to happen after you change a color with 
this program. So you have a choice of whether the changes you make will "stick" 
or noL Jf you exit with the End key, those changes will "stick". If you exit with 
the Esc key, a mode change will return all colors to their default color settings 
(and some programs even"make a mode change to simply clear the screen). 

1. VGACOLOR it only works in normal alphanumeric mode, not in graphic 
or 40-column mode. 

2. There are three components to any color on an RGB screen: red, green, and 
blue. VGA ~omputers can divide each of these three color components into 
64 different intensities, and 64 x 64 x 64 = 262, 144. 



Utilities 953 

This program is "freeware" and may be freely used and distributed, but not modified or sold for 
profit without author consent. 

Thanks to Ralph Smith for writing VPT (Video Graphics Adapter Palette Tool), after which 
this program is modelled. That program has more features than this one, but it can't be run 
while in another program. 

Written by Doug Cox in 80286, using the Shareware assembler, A86 

140 Monroe Dr 
Palo Alto, Ca 94306 
(415) 949-0624 
Feb. 26, 1988 & Oct. 23, 1990 



954 DOS Power Tools, 2nd Edition, Revised for DOS 5.0 

VGAEDIT2.COM Doug Cox Public Domain 

Purpose: A graphics editor (a bare-bones paint program) for the VGA 320 x 200 256-color 
graphic mode that enables you to quickly and easily choose and change colors 
while drawing a screen. 

Syntax: [d:] [path]VGAEDIT2 filename. 

where the non-optional filename is any name you make up, or one which you've 
already used with VGAEDIT2. 

Remarks: After VGAEDIT2 starts, you'll see menus at the top of the screen, 256 color 
boxes at the bottom, three color bars (red, green, and blue) at the right of the 
screen, four small boxes above the color bars with a diagonal line in one and a 
solid rectangle in another, a white dot in the center, (and a previously saved draw
ing, if there was one). The white dot is the cursor. 

Pressing the left button of the mouse will leave a dot on the screen under the 
cursor in the CURRENT COLOR (a shade of blue, initially). Pressing the right 
button will erase the dot under the cursor, except when the menus have been 
cleared from the screen, in which case pressing the right button will re-display the 
menus. The way to erase under the menus is to make the background color the 
current color and then draw over the area to be erased. 

You can move the cursor anywhere on the screen with the mouse. If the menus 
are displayed, putting the cursor over one of them and pressing either button will 
activate that menu. 

The menus at the top of the screen are: EXIT, CLEAR MENUS, CLEAR 
SCREEN, BLOCK, ZOOM, and COLOR COMPONENTS/CURSOR LOCA
TION. 

Pressing a mouse button when the cursor is over the numbers at the right of the 
top menu will toggle between color components and cursor location Cursor loca
tion numbers represent the vertical and horizontal components of the cursor loca
tion. 

Initially, the numbers at the right of the top menu represent the amount of red, 
green and blue components of the color under the cursor (unless the cursor is over 
the vertical color bars at the right of the screen, in which case the numbers repre
sent the components of the current color). 

The three vertical color bars at the right indicate (and enable you to change) the 
amount of red, green, and blue in the current color. Moving the cursor over one of 
these color bars and pressing a button will move the thick part of the color up or 
down to the cursor location and change that component of the current color. 
There are 63 gradations for each of the red, green, and blue components. 

The 256 colors at the bottom are the colors that can be used. Each one can be 
changed to any of the 262, 144 possible colors. The current color has a border 
around it. (The color under the cursor is marked by a small square in the center of 
that color). Moving the cursor over a color box and pressing a button will make 
that color the current color. 



Utilities 955 

Of the 256 colors available, seven are used for this program. Black is the first 
color, at the top left of the color boxes, which is used to erase, and serves as the 
background color. The last six colors, at the bottom right are used for the white 
cursor; the light blue is for menus and zoom box outlines; the dark green lines in 
the big zoom box; and the red, green, and blue colors are for the vertical color 
bars. Naturally, you can change these, too. For example, you may want to change 
the cursor color when drawing a bright color so you can continue to see the cursor. 

Clicking a mouse button on the diagonal line at the right of the screen allows 
you to draw a line. Press a button again to anchor one end of the line and move 
the cursor to where you want the other end to be, and press the left button to an
chor that line and stay in line-drawing mode, or press the right button to anchor 
that line and exit from line-drawing mode. 

Clicking on solid rectangle allows you to fill an area on the screen with the cur
rent color. Be sure there aren't any openings in the boundary of the area where 
the color could leak out. 

Clicking on the BLOCK menu at the top will clear the menus and leave a cur
sor. Move the cursor to where you want to begin to draw a box and press a button. 
Then when you move the mouse a box will be drawn with the initial corner re
maining stationary. Pressing a button again will free the cursor from the box and 
put a menu box in the center of the screen. You can choose from either MOVE, 
COPY, ERASE, WRITE, or CANCEL by moving the cursor over the appropriate 
menu and pressing a button. 

WRITE will write the contents of the current red, green, and blue contents of 
each color settings and the contents of the block to a file named 'ICON', in ASCil 
hexadecimal format (for use as data in a program). The color components will be 
written first, in the order mentioned (red, green, blue). They will be written 24 
bytes to a line, 32 lines, for a total of 768 bytes (3 x 256). Each line of the block 
contents will be on one line. 

Clicking on the ZOOM menu at the top will display a small box that can be 
moved around the screen with the mouse. When a button is pressed again, what is 
in the small box will be expanded in a large box at one side of the screen. The 
mouse cursor can now be moved anywhere. Changes can be made inside the large 
zoom box that will change whatever is in the small box. Selecting ZOOM again 
will remove the big and little zoom boxes. The zoom boxes can also be removed 
by moving the cursor to either the CLRMENU or CLRSCRN box and pressing a 
mouse button. 

Clicking on the EXIT menu box causes a menu to be displayed, asking if you 
DO or DON'T want to save the screen to the file you named when you started the 
program. If you select DO and press a button, the screen will be saved to the file 
as you exit. (If you press the ESC key on the keyboard at any time, you '11 exit 
without the screen being saved to the file). 

The first 64,000 bytes in the saved file are the screen pixel colors. The 768 
bytes at the end hold the red, green, and blue components of each of the 256 col
ors used in the file. So, for example, if you've changed color number 0 from the 
original black (which is all Os) to solid green (which is 0 red, 63 green, and 0 
blue), the first three bytes at address 64,000 in the file would be 0,63,0. 

This program is released to the public domain by its author and may be freely used and distrib
uted. 



956 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0 

VIEW2.EXE 
Version 1.41 

Steve Leonard Shareware 

Purpose: Lets you view two text files simultaneously, each in its own window. 

Syntax: [d:] [path] VIEW2 [filename. [ext]] 

Remarks: To view two files, e.g., MYFILE.DOC and MYFILE.BAK, type "VIEW2 MYF
ILE.DOC MYFILE.BAK". 

Notes: 

Hit the ENTER key to alternate between the two windows. The "active" win
dow will be marked with the word "ACTIVE" on the top line. 

You can resize the windows vertically by using the left and right arrow keys. 
Additionally, text within each window can be scrolled left and right (using F5 and 
F6) as well as up and down (using the arrow keys). 

While in browse, there is a "find" function (the TAB key) which will search ei
ther (or both) windows for a text string. 

A compare function (F3) starts with the top line in each window and compares 
the two files line by line. 

Though not an editor, View-Two does have the capability to mark text in one 
window (F7 marks top line), then insert the marked block into the other window 
(INS key). 

Write the "Active" file to disk with the FlO key. The output file will always be 
named "VIEW2.0UT". 

Type "View2" without entering any filenames, and get a half decent Directory 
Display. 

If the names of the files to be viewed are not supplied on the command line, 
then View-Two will present a scrolling window of files in the current directory. 
The directory list may be sorted by Name, Date, Size, or Extension at the press of 
a function key. To select a file for viewing, just highlight the desired file by using 
the arrow keys, and hit Enter. Hit Escape without selecting a file, and you will be 
prompted to enter the filename directly. 

On the IBM XT, the smallest file possible still requires 4096 bytes. So even if a 
file (like a small batch file) shows that it takes up 24 bytes, DOS allocates file 
space in 4096-byte "chunks." Since running short of room on hard disks seems to 
be a universal problem, View-Two shows the total amount of space required by 
all files in the listed directory as two totals: the sum of the number of bytes re
quired by all the files, as well as the true number of bytes required because of the 
way DOS allocates space in 4K chunks. (For AT and 386 machines, as well as 
DOS versions 3.0 and above, the second total may not be correct). 

If you are viewing a file or files and hit the Shift and Tab keys simultaneously, 
the file in the active window will be written out to disk to a file called 
"View2.out". If there already is a file on disk called VIEW2.0UT, it will be over
written (Gone forever). 

If you are viewing a large file (larger than 64k) and it is written to disk (Shift 
TAB), the VIEW2.0UT file will never contain more than 64k of data. 



Notes: 

Utilities 957 

1. On the Directory Screen, F3 allows you to enter a file mask, such as 
''*.PAS" or "*.ba?" to restrict the files it displays to those matching the 
wildcard characters in the "mask". 

2. The compare function has "WARP DRIVE" capability. Hit the letter "W" 
after starting a compare by F3, and it will be much faster. 

3. Shift Fl-Compare Options allows you to restrict a compare to a range of 
columns within the two files being VIEWED. Also allows you to enter 
"equivalent strings." For example, if you are comparing 2 files where you 
cloned a letter, and one letter was full of "Dear Jane" and the other is full of 
"Dear Sue," you could make "Jane" equivalent to "Sue" for the purposes of 
comparison. The program would not stop during the compare if one file con
tains a "Jane" and the other file contains a "Sue" in the same position. 

4. Enter the letter "C" on the command line as a third paramter and start the 
compare automatically. 

This program is "freeware" and may be freely used and distributed, but not modified or sold for 
profit without author consent. 
Anyone who finds this program of value is encouraged to make a voluntary donation to the au
thor: 

Steve Leonard 
260 Dunbar Road 
Hilton, NY 14468 



958 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0 

WATCH.COM Kim Kokkonen 
Turbo Power Software 

Shareware 

Purpose: WATCH.COM is a resident program that keeps track of other memory resident 
programs. 

Syntax: [d:] [path]WATCH 

Remarks: As a TSR goes resident, WATCH updates a data area in memory that contains in
formation about what interrupt vectors were taken over. This information can 
later be used by MAPMEM and DISABLE to show more details about interrupts 
than normally available. 

Installation of WATCH.COM is optional. All of the TSR Utilities except DIS
ABLE can be used whether or not WATCH is installed. 

The TSR Utilites - DEVICE.EXE, DISABLE.EXE, MAPMEM.EXE, MARK.EXE, 
RAMFREE.COM, RELEASE.EXE, and WATCH.COM- are Copyright© 1986, 1987, 1989 
by Kim Kokkonen of Turbo Power Software. 



WHATVID. EXE Orville Jen kins 
Panther Associates 

Purpose: Determines video adapter type and graphic modes available. 

Syntax: [d:] [path]WHATVID 

Utilities 959 

Shareware 

Remarks: This program can save a lot of rooting throught the innards of systems and 
adapter card manuals when you're dealing with unfamiliar computers. It identifies 
the adapter type, and gives you a list of the video modes available. It can save a 
lot of swearing when you're trying to install VGA-specific software on a system 
that seems to have a VGA display but doesn't support the mode you need. 

WHATVID.EXE is Copyright© 1989, 1990 by Orville Jenkins, Panther Associates, 
This program is not public domain but is "shareware ... To register send a check or money order 
for $5.00 to: 

Panther Associates 
Route 1, 1014 Cimarron Circle 
Roanoke,Texas76262 
(817) 379-5266 

Source code in Turbo C is also available for $15. 



960 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0 

WHEREIS.EXE 
Version 2.7 

Marc Perkel 

Purpose: Searches for files in all directory on the current drive. 

Syntax: [d:] [path] WHEREIS filespec [filespec] [/option] 

Shareware 

where filespec is a file name or valid path, including wildcard characters, and op
tions include: 

JS include all subdirectories below the path of the given filespec. 

/W PIPEDIR mode, does not assume /S and root directory. 

/H include hidden and system files. 

/T gives only directory names. 

JP same as fT but adds a \ to the end. 
/X exclude current directory. 

/A files that have been modified since last backup. 

JN names only, no path. 

/F full display, size, date, time, attributes. 

JD deletes files. 

JR remove directory, all files, and all subdirectories. 

IQ ask before delete. 

/+DATE all files after date. 

/-DATE all files before date. 

Remarks: Whereis is handy for finding and cataloging files on a hard disk. Using /F will 
give you a detailed display. The JD and JR options are useful for deleting files and 
removing directories, but should always be used with caution, lest you delete 
more than you intended. The /N option, like the /B option in DOS 5.0's DIR, can 
be used to pass file names to another command, either by saving to and then read
ing from a list file, or by piping directly through DOS. Try using WHEREIS with 
the /F option to get a feel for what it can generate, then try redirecting its ouput to 
some scratch files to see how the other options can be used. Once you're comfort
able with that, you're reading to start piping to commands - and you can always 
use FORK as the first destination so that you can send a copy to CON to see 
what's going on. PIPEDIR.EXE is an alternate version of WHEREIS.EXE. 

WHEREIS.EXE is Copyright© 1989-1991 by Marc Perkel. All Rights Reserved 
This program is part of the Computer Tyme DOS ToolBox. 
To Register, ask for the BANTAM BOOK special price of $25. (Reg Price $60) 
Contact: Computer Tyme, 411 North Sherman, Suite 300, Springfield, MO 65802, (800) 548-
5353 



Utilities 961 

XARC.EXE System Enhancement Associates, Inc. Shareware 

Purpose: Extracts .ARC compressed files 

Syntax: [d:] [path] XARC archive [options] [path] 

where archive is the *.ARC file you want to decompress, path is the target direc
tory for the decompressed files, and valid options are: 

/0 overwrite existing files of the same name without asking 

/Gpassword to open a password-protected archive 

Remarks: XARC is part of the ARC+ Plus package from SEA. XARC cannot be used ex
tract only selected files from an archive. The full package features a menu-driven 
archive management system. 

This program is not public domain but is .. shareware .. and a part of the System Enhancement 
Associates, Inc., collection. Copyright© System Enhancement Associates, Inc. 

For information, contact: 

System Enhancement Associates, Inc. 
Attn: Mr. C. J. Wang 
925 Clifton A venue 
Clifton, NJ 07013 
(201)473-5153 



962 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0 

XMNDRVRS.EXE JohnWoram 

Purpose: Displays information about installed device drivers. 

Syntax: XMNDRVRS 

Remarks: For each installed device driver, XMNDRVRS.EXE displays the following infor
mation: 

Starting address in segment:offset format 

Type (character or block) 

Device name (NUL, CON, AUX, LPTn, etc.) 

Removable media? (Yes or No) 

Drive letter(s), if appropriate 

Last line shows "No more device drivers" 

XMNDRVRS.EXE is Copyright© 1990 by John Woram 



ZDEL.EXE 
Version 2.5 

Marc Perkel. 

Purpose: Deletes files according to specified options. 

Syntax: [d:] [path] ZDEL [file [file]] [options] 

Utilities 963 

Shareware 

where file is either a single file or a list of files and valid options include: 

IQ prompt before deleting each file 

/R include Read-Only files 

/H include System, Hidden and Read-Only files 

/N delete files without asking permission (as in "All files in directory will be 
deleted!") 

/S delete files from subdirectories 

/D delete directory and all subdirectories 

Remarks: It's a good idea to try this out with the /Q option first, as you can get into a fair 
amount of trouble if you're not careful. Consider (but DON'T ATTEMPT) the ef
fects of ZDEL \ /H/N/D - it's an awfully good argument for getting that tape 
backup you've been putting off buying. 

The /S and /D options need to be able to access PIPEDIR to work. 
ZDEL also allows pipes, as in: 

TYPE DEL.LSTIZDEL 

Use with care! 

ZDEL.EXE is Copyright© 1989, 1990 by Marc Perkel. All Rights Reserved 
These programs are part of the Computer Tyme DOS ToolBox. 
To Register, ask for the BANTAM BOOK special price of $25. (Reg Price $60) 
Contact: 

Computer Tyme 
411 North Sherman, Suite 300 
Springfield, MO 65802 
(800) 548-5353 



964 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0 

OXlO.EXE William J. Klos 
JRyan Application Systems 

Freeware 

Purpose: Toggles the blink bit or enables/disables grey summing on a VGA monitor. 

Syntax: [d:] [path] OxlO [-GI -g] (-Bl-bl 

where 

-G enable grey summing 

-g disable grey summing 

-B blink bit ON 

-b blink bit OFF 

Remarks: Toggling the blink bit off allows you to use colors 8-15 (dark grey-bright white) 
as background colors. 

Enabling grey summing puts your display in a sort of monochrome emulation 
mode, changing all colors to a corresponding shade of grey. 

Note: OxlO is the BIOS interrupt used for video functions. 

Developed by .William J. Klos, CIS[73077,1601], Copyright© by JRyan Application Systems 
This program is "freeware .. and may be freely used and distributed, but not modified or sold for 
profit without author consent. 



Utilities 965 

3CT.EXE 
Version 5.0 

Daniel B. Doman 
DarrySoft 

Free ware 

Purpose: 

Syntax: 

File Space Counter 

[d:] [path]3CT [/VOl/Vll/V21/V3] [MASK=xxx] [/SKIPEQUAL] [NOPATHEXP] 

where: 

/VO = Just give totals for search, show no subdirectories. 

/V 1 = List totals for Each parent directory, but do not show children. 
This is a handy option for network administrators. 

/V2 =List count for each directory searched (default). 

/V3 = List count for each directory searched and display all files. You 
might use this option if you want to verify that 3CT is finding all of the files 
that you think that it should find. 

/Mask=xxx = Change the default file mask from *. * to something more 
specific such as .. *. bak ". 

/SkipEqual = Do not display empty subdirectories. 

/NoPathExp =Do not expand partial pathnames such as··.\" into their full 
canonical value. Use this switch when scanning Novell Drives which tend to 
have long server and volume names. 

Remarks: 3CT counts files and their sizes to show how much space the files in each sub
directory are taking up. It starts counting from the specified location and works its 
way through the various subdirectories. It can work on only one drive at a time, 
but is compatible with most LAN environments, and can return four levels of ver
biage. The default level gives the total files and bytes used in each subdirectory. 

At most, 3CT will list every file it finds; and at least it will return only the total 
count for the area checked. 

Notes: 3CT counts all hidden files, so you will sometimes see it report more files than 
the DOS DIR command. 

3CT requires DOS version 3.x or greater to run. 

Examples: 3CT <- Calculate from current directory 
3CT \ <- Calculate from Root Directory 
3CT F:\FOO <- Calculate from F:\FOO directory 
3CT F:\FOO /VO <- Calculate from F:\FOO directory 

Give Search Total Only 
3CT F:\UT /Vl <- Give subdirectory totals 

of F:\UTL directory 
3CT .. \ /V4 <- Display all files Too 
3CT /Mask=*.zip /skipEqual <- Count All .Zip Files 

This program is .. freeware" and may be freely used and distributed, but not modified or sold for 
profit without author consent. 





Quick Reference 





The DOS 5.0 
Commands 

This chapter covers all the DOS 5.0 commands, including those used by CONFIG.SYS 
and batch files. Some of the following ones, such as APPEND or FASTOPEN, don't 
exist in previous editions of DOS. Many, as A TIRIB, BACKUP, RESTORE, or TIME 
and DATE, work differently in earlier versions. One, XCOPY, isn't on generic DOS disks 
since it was written by IBM rather than Microsoft. And some terrific Microsoft com
mands, such as PC, aren't included here since they're not on the standard IBM DOS disk. 

See Figures 1.3 and 1.4 in Chapter 1 for a list of new and modified commands in all 
PC-DOS versions from 1.0 through 5.0. 

For more hints and explanations on some of the most powerful DOS commands, such 
as PRINT or XCOPY, see Chapter 15. 

When part of a command's format is specified in brackets ([d:]) it means the part is 
optional. When two choices are separated by a vertical bar (QN I OFF) it means you 
should enter one or the other. An or means DOS allows multiple syntaxes. 

The label [external command] means that a separate program that starts with the name 
of the command and ends with an extension like .EXE or .COM must be on the disk in 
the current directory or one that your PA TH command knows about. If this [external 
command] label does not appear after the name of the command in the listing below, the 
command is "internal," which means you don't have to have a separate file handy to use 
it. The mechanisms for internal commands are contained inside the main DOS COM
MAND.COM file. 

The number below the line containing the name of the command is the DOS version 
in which the command was introduced. Many of the commands have gone through 
extensive revision (for instance, DISKCOPY changed in versions 1.1, 2.0/2.1, 3.0, and 
3.2), so the syntaxes and features listed are for version 5.0 only. 

Q6Q 



970 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0 

Primary DOS 5.0 Commands 

APPEND [external command] 
3.2 

Format: 

Searches a specified list of drives and directories for nonexecutable files and over
lays needed by your programs; the PA TH command does the same thing for exe
cutable files. Under DOS 5.0, APPEND can handle both executable and 
non-executable files. 

APPEND [ d: ] pa th [ ; [ d: ] pa th ... ] [ /X I /X: ON I /X: OFF] 
[/PATH:ON I PATH:OFF] 

or 

APPEND /E [/X I /X:ON I /X:OFF] [/PATH:ON I PATH:OFF] 

or 

APPEND [;] 

[ d:] [path] = path to search 

/X (same as /X:ON) =lets APPEND search for and run executable files 
(.COM, .EXE, or .BAT) just as the PATH command does. 

/X:OFF =turns off the ability to run executable files (this is the default setting) 
so that APPEND won't handle files that end in .COM, .EXE, or .BAT. 

/E = store APPEND path in environment, which then lets you use the SET and 
APPEND commands to view and change the parameters. Use this command 
first by itself without specifying the path to search; follow it with a second 
APPEND command that does include the path to search. 

/PATH:ON = tells DOS to look through the normal APPEND search path even 
when you've tacked on a specific drive and path to the command you want 
it to search for. Some applications add drive and path information to their 
program names so DOS will look in certain locations. If you 're using the 
/PA TH: ON feature, DOS will also look in your normal search path if it can't 
find the program in the location specified by the application. So if you want 
it to find C:\BIN\RUNME.EXE and DOS can't find RUNME.EXE in the 
C:\BIN subdirectory, DOS will have APPEND hunt through your normal 
search path to see if RUNME.EXE is located in another subdirectory. 

/PATH:OFF = tells DOS not to look in its normal search path if you tacked on 
a drive letter or path prefix to the filename. If you're using this/PATH:OFF 
setting, APPEND will look for files only if you omit drive and path 



The DOS 5.0Commands 971 

infonnation and specify just the bare-bones filename (so it will hunt for 
RUNME.EXE but not C:\BIN\RUNME.EXE). 

; =resets the APPEND path to null when used alone (the semicolon is also 
used to separate subdirectories in the path specification) 

Used without any parameters, APPEND will print the current APPEN path 
string. 

ASSIGN [external command] 
2.0 

Format: 

Notes: 

Gives a drive a new name. 

ASSIGN [ a [ =] b [ ... ] ] 

a = drive to get new name 

b =new name 

ASSIGN without parameters clears all assignments 

Don't use colons after the drive letters. With a single assignment you don't have 
to use the equal sign. 

Never use commands like BACKUP, RESTORE, JOIN, LABEL, SUBST, or 
PRINT while ASSIGN is active. FORMAT, DISKCOPY, and DISKCOMP com
mands ignore ASSIGN I/O reroutings. 

The best way to use ASSIGN is from inside a batch file where the first batch 
file line makes the new assignment, the second line runs the program requiring 
the assignment, and the third resets things the way they originally were. In fact, if 
you can use SUBST instead of ASSIGN, do it. 

ATTRIB [external command] 
3.0 

Format: 

Displays or changes file attributes. 

ATTRIB [±A] [±H] [±R] [±S] [path] [file name] [/SJ 

+ set the bit (enable the attribute) 

reset the bit (disable the attribute) 

A archive file 



972 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0 

Notes: 

H hidden file 

R read-only file 

S system file 

/S Search current directory and all its subdirectories. 

One of the best-kept DOS secrets is that A TTRIB can find the location of any file 
on your disk. Simply use the following format: 

ATTRIB [path]\filename /S 

You can use wildcards and also redirect output to a disk file. So, to find all 
backup files and store their names in a new file called BAKFILES, just type 

ATTRIB [path] \*.BAK /S > \BAKFILES 

To view the contents of bakfiles, type MORE < BAKFILES or TYPE BAKFILES. 
When you enter just a filename or global filename after the A TTRIB com

mand, DOS displays the attributes and name of each such file. 
Type A TTRIB with no parameters to display the attributes and names of every 

file in the current directory. Or add the /S switch to show the same information 
for all files in the current directory and its subdirectories. 

BACKUP [external command] 
2.0 

Format: 

Backs up files; can split large files over several floppy disks. Use the RESTORE 
command to put files back. 

BACKUP s: [path] [filename[.ext)] t: [/s] [/M] [/A] [/D:mm
dd-yy] [/T:hh:mm: ss] [/F] [/L [: [d:] [path] [logname. [ext]]] 

s: [path] [filename[.ext]] = source drive and/or file(s) to back up 

t: =target drive 

/S = do files in subdirectories also 

/M =back up files changed since last BACKUP (by checking archive bit) 

/A= add files to those already on backup disk (so it doesn't erase what's 
already there) 



Notes: 

BREAK 
2.0 

Format: 

The DOS 5.0Commands 973 

/D = back up files changed on or after date specified 

/T = back up files changed on or after time on date specified 

/F = format backup disk if necessary (DOS 4.0 does this automatically so you 
don't have to use this switch). DOS has to be able to find its 
FORMAT.COM program for this to work. 

/L = create a log file (Default is BACKUP.LOG.) 

[d:] [path] [logname.[ext]] =drive/path and filename for log file 

BACKUP stores files in a special format; you must use the RESTORE command 
to put them back in their original condition. Starting with version 3.3, BACKUP 
stores backup files in one large chunk; earlier versions maintained individual 
backup files for each file. 

Since early BACKUP and RESTORE versions erroneously let you write sys
tem files from earlier versions onto disks using newer versions, be careful when 
using older versions to restore files. 

Version 3.3 can run the DOS FORMAT command (if it's accessible) when 
you 're backing up files onto unformatted disks. DOS 5.0 does this automatically; 
with DOS 3.3 you have to add a /F switch to do it. Older versions won't do this at 
all, which forced you to have a tall stack of formatted disks handy before you 
began. Be careful when using the /F option, since the source and target drive sizes 
must be identical. And don't use BACKUP when drive or directory mixing com
mands such as JOIN are in effect. 

Lets you specify more or less frequent Ctrl-Break checking, or display the current 
BREAK status. 

BREAK [ON I OFF] 

ON = break on demand (for programs with little 1/0) 

OFF= check for break only during 1/0 functions (default) 

BREAK without parameters displays BREAK status. 
You can use this command either in your CONFIG.SYS file or from the com

mand line (or, of course, in AUTOEXEC.BAT). 



974 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0 

BUFFERS [CONFIG.SYS] 
2.0 

Format: 

Notes: 

Allocates memory for the number of buffers 

BUFFERS=B [, S] 

B = number of buffers ( 1-99) 

S =number of buffers in a secondary buffer cache (1-8) 

If the Buffers command is not used, the default buffer allocation is a function of 
system configuration, as shown here. 

Configuration B s 
RAM Disk 

< 128Kb 360Kb 2 2 

<128Kb >360Kb 3 3 

128-255Kb 5 1 

256-511Kb 10 1 

512-650Kb 15 

Each buffer occupies about 532 bytes of memory. The optimum number of 
buffers varies with the capacity of the hard drive, as follows: 

Hard drive Buffers 
capacity B s 
<40Mb 20 8 

40-79Mb 30 8 

80-119Mb 40 8 

120 or greater 50 8 

Use the secondary buffer cache if you are not using a disk-caching utility. Dur
ing a disk read operation, additional file data is stored in the secondary buffer area 
for faster access. 

CALL [internal batch] 
3.3 

Calls one batch file from within another. 

Format: CALL [path] [filename.bat] [file parameters, if any] 



Notes: 

The DOS 5.0 Commands 975 

At the conclusion of the called batch file, control passes back to the calling file. A 
batch file may call itself, provided some conditional exit command is provided to 
avoid an endless loop. 

CD [See CHDIR] 
2.0 

CHCP 
3.3 

Format: 

Selects DOS code page. 

CHCP [nnn] 

mm = number of desired code page 

Note: You must load NLSFUNC before using CHCP. May need to have COUN
TRY.SYS handy. 

CHDIR(CD) 
2.0 

Format: 

Notes: 

Changes or displays current directory (moves you from one subdirectory to an
other or tells you which one you 're currently in). 

CHDIR [d:] [path] 

or 

CD [d:] [path] 

d: =drive with path location to change 

path = new path location 

CHDIR without parameter displays current directory. 

Specifying a directory name without a backslash (\) in front of it tells DOS to 
switch into a subdirectory one level lower than the current directory. So if the cur-



976 DOS Pqwer Tools, 2nd Edition, Revised/or DOS 5.0 

rent directory is \DOS, the command CD UTILS will log into \DOS\UTILS. But 
if you typed CD \UTILS, DOS would log into a subdirectory called \UTILS one 
level down from the root directory that had no relation to the \DOS subdirectory. 

Entering CD \ will return to the root directory. Entering CD .. will change to 
the parent directory one level up toward the root from the current subdirectory. 
Since the double dot( .. ) is shorthand for the parent directory, if you're logged 
into \DOS\UTILS\P'fOOLS and you want to change to \DOS\UTILS\NORTON 
you could type CD .. \NORTON. 

Nobody uses CHDIR, since the much shorter CD works exactly the same. 
While typing CD by itself will display what subdirectory you 're currently 

logged into, you can have DOS always report the current subdirectory by issuing 
the command: 

PROMPT $P$G 

or 

PROMPT $P: 

(the second version produced a prompt that looks a bit less cluttered). 
Since typing CD by itself will display the current subdirectory, you can have 

DOS redirect this to a file and perform some useful tasks. For instance, if you 
have the MORE.COM and FIND.EXE utilities handy (they should be in a \DOS 
subdirectory that your PA TH command knows about), you can create a batch file 
called CHANGE.BAT: 

ECHO OFF 
REM This is CHANGE.BAT 
IF %1!==! GOTO OOPS 
IF %1==? GOTO PRINTIT 
CD %1 
ECHO I MORE I TIME FIND /V "new" >>\LOGFILE 
ECHO I MORE I DATE FIND /V "new" »\LOGFILE 
CD >>\LOGFILE 
GOTO END 
:OOPS 
ECHO Enter %0 followed by the name of the 
ECHO subdirectory you want to change into 
ECHO Or Enter %0 ? to see the log of 
ECHO subdirectories you've switched into 
GOTO END 
:PRINTIT 

MORE < \LOGFILE 
:END 

(If you're using DOS 3.3 or later, change the first line to @ECHO OFF.) 



The DOS 5. 0 Commands 977 

To use CHANGE.BAT, type: 

CHANGE 

by itself for instructions. Or enter a subdirectory after CHANGE, e.g.: 

CHANGE \123\SMITH 

and CHANGE will not only move into the \123\SMITH subdirectory but will add 
the name of the subdirectory you switched into into a master log in the root direc
tory called LOGFILE along with the time and date. To see the log, just type: 

CHANGE ? 

If you 're in a subdirectory and you want to add its name to the log, just type: 

CHANGE . 

This is handy if you want to keep track of how much time you spent in which 
task (if you 're a lawyer or a consultant and you keep your different clients' work 
in different subdirectories). 

If you use this batch it, keep it in a subdirectory (like \DOS\UTILS) that your 
PA TH knows about, so DOS can find it no matter what subdirectory you happen 
to be in. 

CHKDSK [external command] 
1.0 

Format: 

Checks and repairs disks, reports on memory use and file fragmentation, and can 
show names and locations of all files on disk. 

CHKDSK [d:] [path] [filename. [ext]] [/F] [/V] 

[d:] = drive to check 

[path] [filename.[ext]] = file(s) for fragmentation report 

/F = fix errors 

/V = show all files and paths on disk 

CHKDSK *. * will produce a file fragmentation report for all files. To fix frag
mented files (which slow DOS down), copy them to another disk, erase the origi
nals, then copy them back. 



978 DOS Power Tools, 2nd Edition, Revised for DOS 5.0 

Notes: 

CLS 
2.0 

Format: 

Notes: 

If you 're using the /F switch and CHKDSK finds lost clusters, it will recover 
the lost data and create files on your root directory in the form FILEnnnn.CHK, 
starting with FILEOOOO.CHK, then using FILEOOOl.CHK. 

Using CHKDSK /V I FIND FILE.TXT will locate all occurrences of a file called 
FILE.TXTon the specified disk. However, ATTRIB /Scan do this withjust one 
step. 

When CHKDSK reports that it found hidden files, it usually means the two hid
den system files (IBMBIO.COM and IBMDOS.COM or their generic 
MSDOS.SYS and IO.SYS equivalents) plus the hidden volume label. If it reports 
other hidden files that you don •t know about, these are probably sneaky copy pro
tection devices. Don't try using ATTR or DEBUG to unhide such files hidden as 
copy-protection devices; instead try to uninstall the program that hid them. This is 
necessary because some nasty copy-protection schemes scramble the underlying 
disk structure before hiding a file, and will put things back to normal only when 
you use the authorized deinstallation program that came with software. 

Don •t use CHKDSK on a drive involved with an active alias command such as 
SUBST, JOIN, or ASSIGN. 

Under DOS 5.0, CHKDSK will display the volume's serial number (a unique 8-
digit hex number that DOS can use to tell if you've accidentally switched drives 
at the wrong time), as well as the size, number, and available number of clusters 
("allocation units") on the disk. A cluster is the smallest amount of storage space 
on a disk. If CHKDSK reports: 

4096 bytes in each allocation unit 
39157 total allocation units on disk 27821 available allocation units on disk 

this means that the cluster size is 4K, so that even if you create a tiny 1-byte file, 
DOS will eat up 4,096 bytes to store it. 

Clears a 25-line screen. 

CLS 

This will always clear the screen to grey on black (attribute 07) unless ANSI.SYS 
is active. 

Yes, it's hard to believe, but CLS wasn't a part of DOS until version 2.0. 



The DOS 5.0 Commands 919 

COMMAND [external] 
1.0 

Format: 

Notes: 

COMP 
1.0 

Format: 

Starts a new COMMAND.COM command interpreter. 

COMMAND [path] [device] [/C string] [E/: size] [/MSG] [/P] 

or in a CONFIG.SYS file, 

SHELL=[DOSpath] COMMAND.COM [path] [device] [E/:nnnn] [/P] 

path = path to the COMMAND.COM file 

device = a different device than COMMAND.COM for command input and 
output 

string = the command interpreter performs the string command and then stops 

size= the environment size, in bytes (160-32768). Default is 256 bytes. 

/MSG /P = stores all error messages in memory (use if running DOS from 
diskettes). Note /P switch must also be used. 

/P = makes new command interpreter permanent. Use /P only in conjunction 
with SHELL command in CONFIG.SYS. If /P is not used in this 
application, your AUTOEXEC.BAT file will not run. 

If running DOS from diskette, error messages are not loaded into memory and 
must therefore be retrieved from the COMMAND.COM resident on the diskette. 
If this diskette is not available, DOS displays a terse "PARSE ERROR" or "EX
TENDED ERROR.'' If desired, use the /MSG and /P switches to force DOS to 
load error messages into memory. 

Compares files (only if both are same size; stops after 10 mismatches) 

COMP [a:] [path] [filename[.ext]] [b:] [path] [filename[.ext]] 

[a:] [path] [filename[.ext]] = primary file(s) 

[b:] [path] [filename[.ext]] = secondary file(s) 



980 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0 

Notes: 

COPY 
1.0 

Format: 

The generic MS-DOS 2.0 FC command is much better than COMP; unfortunately 
IBM never included FC in PC-DOS versions. 

Fortunately, this command accepts wildcards. And, if you want to refer to the 
current directory, you can use the single period (.) shorthand. 

While COMP lets you specify both files on the command line, you can also use 
COMP interactively. Just type COMP by itself at the DOS prompt. DOS will ask 
you: 

Enter primary filename 

and then 

Enter 2nd filename or drive id 

Just fill in the blanks and it will churn away comparing files for you. 
If you're comparing lots of files and the display scrolls rapidly off the screen, 

you can make the screen alternately pause and then restart by pressing Ctrl-S 
(holding down the Ctrl key and pressing the S key). If you try redirecting the out
put to a file so you can examine it later, or using the I MORE filter to slow things 
down, you'll end up with only part of the COMP report, since DOS bypasses stan
dard output when it prints certain error messages like "File not found" and will 
display these onscreen in a blur regardless of any other tricks you emply. 

Copies, updates, and concatentates files, and can copy to devices as well as files. 

COPY [/A] [/B] [a:] [path] [filename[.ext]] [/A] [/B] 
[b:] [path] [filename [.ext]] [/A] [/B] [/V] 

or 

COPY [/A] [/B] [a:] [path] [filename [.ext]] [/A] [/B] [+[a:] 
[path] [filename[.ext]] [/A] [/B] ... ] [b:] [path] 
[filename [.ext]] [/A] [/B] [/V] 

/A = ASCII; stop at first Ctrl-Z end-of-file marker in source; add Ctrl-Z to 
target 

/B = binary; don't treat any Ctrl-Z as an end-of-file marker; instead use file 
length specified by directory 

[a:] [path] [filename[.ext]] = source file(s) 



Notes: 

[b:] [path] [filename[.ext]] =destination 

/V = use primitive CRC verification 

+,, /B = updates date and time 

The DOS 5.0Commands 981 

You can COPY to devices as well as files, so that COPY TEXT.FIL CON would 
display the contents of a file called TEXT.FIL onscreen and COPY TEXT.FIL 
PRN would print it on the first parallel printer attached to your system. 

If you switch the order around, and type COPY CON TEXT.FIL, DOS will let 
you create a file (or overwrite an existing file) called TEXT.FIL and enter text 
into it. This can be useful for creating small batch files if EQLIN or your word 
processor isn't handy. Unfortunately, you can't back up to the previous line to 
make corrections. When you're all done entering text, type Enter, then Ctrl-Z (or 
press the F6 function key) and theh'press Enter again to tell DOS you're done. 

You can also use COPY's concatenation abilities to add lines to files. If you 
want to add a line at the end of your batch file that says CLS, just type: 

COPY AUTOEXEC.BAT+CON 

DOS will print: 

AUTOEXEC.BAT 
CON 

Then type: 

CLS 

(or whatever other line(s) you want to add), press Enter, type Ctrl-Z (or press F6), 
and then press Enter again. DOS will add the CLS line to the end of AU
TOEXEC.BAT. 

It's almost always a good idea to press Enter at the end of a line. If you didn't 
do this in your original AUTOEXEC.BAT, the above process may stick the CLS 
at the end of the existing last line instead of putting it on a line by itself. 

You can use the COPY /B filespec CON command to display several files in 
succession (substituting the particular wildcard construction for filespec in this ex
ample). 

It's possible to erase or truncate files if you're not careful about using the 
COPY command, especially when dealing with long pathnames or concatenating 
files. Unless you specify a /B, DOS will stop copying before the end of the file if 
it sees a Ctrl-Z (ASCII 26 character). 

Be careful when you copy a read-only file, since the copy will NOT be read
only. Some protection. 

See the COPY section in the Favorite Tips chapter for more tricks. 



982 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0 

COUNTRY [CONFIG.SYS] 
3.0 

Changes the displayed format of time, date, currency symbol, case conversion 
and decimal separator to suit style of specified country. 

so rm at: 

CTTY 
2.0 

Format: 

COUNTRY code [, [page] [I [path] COUNTRY . SYS] 

code country code 

page code page for specified country 

path location of the COUNTRY.SYS file 

Country or language Country code Code pages default 

Belgium 032 850 

Brazil 055 850 

Canadian French 002 863 

Denmark 045 850 

English (international) 061 437 

English (United Kingdom) 044 437 

Finland 358 850 

France 033 437 

Italy 039 437 

Latin America 003 850 

Netherlands 031 437 

Portugal 351 850 

Spain 034 850 

Sweden 046 437 

Switzerland 041 850 

United States 001 437 

Lets you change the way DOS handles stcuidard 1/0. 

CTTY device-name 

Other 

437 

437 

850 

865 

850 

850 

437 

850 

850 

437 

850 

860 

437 

850 

437 

850 



DATE 

The DOS 5. 0 Commands 983 

device-name= AUX, COMl, COM2, COM3, COM4 to set a new console; 
CON to restore to screen and keyboard 

CITY NUL = disconnects keyboard and screen; use with care only in batch 
files with a subsequent CTTY CON command or you won't be able to 
regain control. 

1.0 as external command; 1.1 as internal command 

Format: 

Notes: 

DEL 
1.1 

Format: 

Reports and sets the system date. 

DATE [mm-dd-yy] I [dd-mm-yy] I [yy-mm-dd] 

mm = month (1-12) 

dd =day (1-31) 

yy =year (80-99 or 1980-1999) 

DA TE without parameters displays the current date (and day of the week). 
Pressing the Enter key after typing DATE by itself will leave the date unchanged. 

You can use period, dash, or slash to separate elements; various orders of entry 
are based on the active COUNTRY selection. 

DOS won't let you enter a year earlier than 1980 or later than 2079. You may 
enter two numbers for the year from (19)80 through (19)99 but you '11 need four 
digits and DOS 3.0 or later to go from 2000 to 2079. 

While DOS will display the day of the week, don't enter the name of the day 
yourself. 

Believe it or not, DATE and TIME were external commands in DOS version· 
1.0. In version 3.3 and later these will permanently set the system CMOS clock. 

Deletes file(s). [see ERASE] 

DEL [d:] [path]filename[.ext] [/P] 

[d:][path]filename[.ext] = file(s) to delete 



984 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0 

Notes: The new DOS 4.0 /P switch tells DOS to print the name of each file that DEL is 
about tq erase and asks you (with a Delete (Y/N)? message) whether you do in
deed want to delete the file. Type N or n and the file remains. Type Y or y and 
DOS erases it. This makes it safer for you to use this command with wildcards (? 
and*). 

If you specify a global *. * DOS will ask for confirmation with: 

All files in directory will be deleted! 

Are you sure (Y/N)? 

Type N or n if you don't want to erase everything. Be careful if you specify a 
directory after DEL (e.g. DEL \SUBDIR) since DOS will assume you mean DEL 
\SUBDIR\*.* 

Take care when using * wildcards, since DOS stops reading characters on each 
side of the period when it sees an asterisk. It will interpret the command: 

DEL *FIL.*NM 

as DEL *. * which is probably not what you had in mind. Similarly, the command: 

DEL . 

tells DOS to erase all files in the current directory. 
Use RD or RMDIR to remove subdirectories after deleting all files in them. 
Be careful when using DEL while a directory or drive alias command such as 

SUBST, ASSIGN, or JOIN is active. DOS won't let you erase read-only files, so 
use the A TTRIB command first to remove the read-only attribute. 

Utilities like Peter Norton's or Paul Mace's can usually recover inadvertently 
erased fil~s so long as you use these utilities immediately after the erasure. 

; 

DEVICEHIGH (CONFIG.SYS] 
5.0 

Format: 

Loads a device driver into reserved memory. 

DEVICEHIGH=[path] filename.ext [parameters] or 

DEVICEHIGH SIZE=size [drive & path name] filename.ext [parameters] 

filename.ext = name and extension of the device driver 

parameters = any para~~ters required by the device driver 

SIZE=size = minimum memory that must be available or DEVICEHIGH will 
not load filename into reserved memory. Specify in hexadecimal notation. 



Notes: 

The DOS 5.0 Commands 985 

CONFIG.SYS file must also include DOS=UMB command plus HIMEM.SYS 
and EMM386.EXE (or other UMB provider). Otherwise, DEVICEHIGH is ig
nored and driver is loaded into conventional memory. 

If system locks up, insert the hexadecimal SIZE=size parameter in the 
DEVICEHIGH line. To determine the value for size, first load the driver into con
ventional memory. Then type MEM /D and note the displayed driver size (third 
column). Use that value for size and try again to load the driver with 
DEVICEHIGH. 

DIR [internal] 
1.0 

Format: 

Notes: 

Lists filenames and related information. 

DIR [path] [filename] [one or more switches, as listed below] 

JA:attributes (see A TTRIB command for list of switches) (If /A is not followed 
by a parameter, listing shows all files, including hidden and system files.) 

JB =brief listing (directory or filename and extension only) 

/L = lowercase display 

JO:± = sort order 

+ ascending order 
descending order 

d by date 
e by extension 
g directories before ( +) or after (-) files 
n byname 
s by size 

(If JO is not followed by a parameter, directories are sorted first, followed by 
filenames.) 

JP = pause between screen listings 

JS = search current directory and all its subdirectories 

/W = wide display format 

DOS displays all files with names that begin with S if you type DIR S* only. 
(However, S*.* format must be used to copy or delete all such files.) 

DOS identifies subdirectories by showing <DIR> in the size column, or by en
closing the directory name in brackets [NAME] when the /W (wide) switch is 
used. 

Directory names, including current and parent directory (seen as a single and 
double dot, respectively) are added to the total file count reported at bottom of 
listing. 

Bytes listing to the right of file count now gives total bytes for all files listed. 



986 DOS Power Tools, 2nd Edition, Revised for DOS 5.0 

DISKCOMP [external command] 
1.0 

Format: 

Notes: 

Compares two entire diskettes for content differences. 

DISKCOMP [a: [b:]] [/1] [ /8) 

a: = source drive 

b: = target drive 

/1 = compare the first side only 

/8 = use only 8 sectors per track 

DOS won't let you DISKCOMP a VDISK, and is picky about which physical 
disks you can DISKCOMP. And don't use DISKCOMP while drive or directory 
mixing commands such as JOIN, SUBST, or ASSIGN are in effect. 

Under DOS 4.0, DOS is smart enough to know that two otherwise identical 
disks with different serial numbers (unique 8-digit hex numbers that DOS can use 
to tell if you've accidentally switched drives at the wrong time) are in fact identi
cal. 

DISKCOPY [external command] 
1.0 

Format: 

Notes: 

Copies an entire diskette and formats the copy if necessary. 

DISKCOPY [a: [b:]] [/1] 

a: = source drive 

b: = target drive 

/1 =copy the first side only 

Entering DISKCOPY without any parameters tells DOS to use the same drive 
as the source and target, and prompt you when to remove and insert the appropri
ate disks into this single drive. 

DOS won't let you DISKCOPY to a VDISK, and is picky about which physical 
disks you can DISKCOPY from and to. And don't use DISKCOMP while drive 
or directory mixing commands such as JOIN, SUBST, or ASSIGN are in effect. 

DISKCOPY is the fastest way to copy similar-sized disks (and formats on the 
fly if necessary), but XCOPY is almost as fast and avoids potential fragmentation 
headaches. 



DOS 
5.0 

Format: 

The DOS 5. 0 Commands 987 

Under DOS 4.0, DOS will give the otherwise identical target disk a different se
rial number (a unique 8-digit hex number that DOS can use to tell if you've acci
dentally switched drives at the wrong time). 

Loads part of DOS into the high-memory area and/or sets up a link between con
ventional and reserved memory. 

DOS=parameter (s) as listed below 

LOW= 

HIGH= 

UMB= 

load DOS into conventional memory 

load DOS into the high-memory area 

set up a link between conventional and reserved memory 

DOSKEY [external] 
5.0 

Format: 

Notes: 

Maintains a record of recent DOS commands, which may be recalled by pressing 
the arrow and page up/down keys. Creates a macro file containing automated 
command line instructions. 

DOSKEY [one or more switches, as listed below] [filename=[text]] 

/BUFSIZE=size 

size = the size of the buffer in which DOSKEY commands and macros are 
stored. Minimum is 256 bytes, default is 512 bytes 

/HISTORY = display a list of all commands stored in the buffer 

/INSERT or /OVERSTRIKE = enable insert or overstrike mode 

/MACROS = display a list of all DOSKEY macros 

/REINSTALL = clear the buffer and reinstall DOSKEY 

filename=text or filename= filename is a name assigned to a macro file, text is 
a series of instructions written into filename 

The DOSKEY command itself uses the following selected keys. 

Press this key to go 



988 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0 

Uparrow 

Down arrow 

Page up 

Page down 

Left arrow 

Right arrow 

Ctrl +Left arrow 

Ctrl +Right arrow 

Home 

End 

Escape key 

to the previous command 

to the next command 

to the earliest command 

to the latest command 

back one character (nondestructive) 

forward one character 

back one word (nondestructive) 

forward one word 

to the beginning of the line 

to the end of the line 

clear the present command line 

To write a keyboard macro to quick-format a diskette, type 

DOSKEY QF=FORMAT $1 /Q /U 

Now, whenever QF (the filename) is typed, the DOS quick format command is 
executed on the diskette in the drive specified by the $1 parameter. The$ sign is 
the DOSKEY equivalent of the % parameter used in batch files. Thus, QF A: 
quick-formats the diskette in drive A. 

DOSSHELL [external] 
4.0 

Format: 

Loads and starts the DOS Shell. 

DOSSHELL [/BJ DOSSHELL /T [:res [nJ [/BJ DOSSHELL /G [:res [nJ [/BJ 

/B black & white display 

/G graphics mode 

/T texttnode 

res screen resolution (default is hardware dependent) 

L low 
M medium 
H high 

n = screen resolution if more than one is available within the specified res 
category (default is hardware dependent) 



Notes: 

The DOS 5.0 Commands 989 

Optional values for res and n are listed here 

Graphics modes Text modes 

/G:L 25 lines (f:L 25 lines 

/G:Ml 30 /T:Hl 43 

/G:M2 34 /T:H2 50 

/G:Hl 43 

/G:H2 60 

If no parameters follow DOSSHELL, screen resolution is whatever it was the 
last time Shell was loaded. 

DRIVPARM [CONFIG.SYS] 
5.0 

Format: 

Modifies the default operating parameters of a mass storage device (disk or tape 
drive, etc.). 

DRIVPARM= /D: n /F: f /I [and other switches, as listed below] 

D =physical drive number (0 =drive A, 1 =drive B, etc.) 

f = desired drive type 

0 160-360Kb 5.25" 
1 l.2Mb 5.25" 
2 720Kb 3.5" 
5 hard disk 
6 tape drive 
7 l.44Mb 3.5" 
8 read/write optical disk 
9 2.88Mb 3.5" 

/I = specify a 3.5" drive, if not supported by ROM BIOS 

Other switches 
/C = change-line detection: if supported by drive hardware, detects drive door 

opened (for protection against diskette swapping during read/write 
operation) 

/H:h = number of Heads ( 1-99) 

/N = Nonremovable block device 

/S:s = Sectors-per-track (1-99) 

fT:t = Tracks-per-side 



990 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0 

ECHO [internal batch] 
2.0 

Format: 

Notes: 

Turns command-echo mode on or off. Displays a message written in a batch file. 

ECHO switch 
ECHO message 
®command (in a batch file only) 

switch 

ON = turn command-echo mode on 

OFF = turn command-echo mode off 

message = a message to be displayed when the batch file is run 

@command= suppresses screen display of the command. 

Use @ECHO OFF before an ECHO message line to display the message only, 
but not the command line on which it was written. Thus, the following batch file 
lines produce the screen displays shown below each line. 

ECHO This is a message ®ECHO This is a message 

C:\ECHO This is a message This is a message 
This is a message 

EDIT [external] 
5.0 

Format: 

Starts the MS-DOS full-screen ASCII text editor. 

EDIT [path & filename] [/B] [/G] [/H] [/NOHI] 

path & filename = the location and name of the ASCIII text file to be edited. If 
the file does not already exist, the editor opens a new file. 

/B = use black-and-w.hite mode. 

/G = (for CGA) use fastest screen updating 

/H = use highest number of text lines possible 

/NOHI = 8-color monitor mode (see notes) 



Notes: 

The DOS 5.0Commands 991 

If your monitor does not display EDIT shortcut keys, use /B switch (CGA moni
tors). Use /NOHI switch for systems that do not support boldface characters. 

QBASIC.EXE must be available in order to use EDIT utility. 

EMM386 [external] 
5.0 

Format: 

Notes: 

ERASE 
1.0 

Format: 

Notes: 

Enables/disables expanded memory and/or Weitek coprocessor support for sys
tems with 80386 or better MPU. 

EMM386 [switch] [W=w] 

switch 

w 

ON = enable the EMM386.EXE device driver (default) 

OFF = disable the EMM386.EXE device driver 

AUTO= enable expanded memory support only if program calls for it. 

ON = enable Weitek coprocessor support 

OFF= disable Weitek coprocessor support (default) 

The EMM386.EXE driver must be listed in your CONFIG.SYS file in order to 
use this command. 

Type EMM386 with no switches or parameter to display the current status of 
EMM386 expanded memory support. 

Deletes file(s). [See DEL] 

ERASE [d:] [path]filename[.ext] [/P] 

[d:][path]filename[.ext] = file(s) to delete 

The new DOS 4.0 /P switch tells DOS to print the name of each file that ERASE 
is about to delete and asks you (with a Delete (Y/N)? message) whether you do in
deed want to delete the file. Type N or n and the file remains. Type Y or y and 



992 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0 

DOS erases it. This makes it safer for you to use this command with wildcards (? 
and*). 

If you specify a global *. * DOS will ask for confirmation with: 

All files in directory will be deleted! 

Are you sure (Y/N)? 

Type N or n if you don't want to erase everything. Be careful if you specify a 
directory after ERASE (e.g. ERASE \SUBDIR) since DOS will assume you mean 
ERASE \SUBDIR\*.* 

Take care when using * wildcards, since DOS stops reading characters on each 
side of the period when it sees an asterisk. It will interpret the command: 

ERASE *FIL.*NM 

as ERASE *. * which is probably not what you had in mind. Similarly, the com
mand: 

ERASE 

tells DOS to erase all files in the current directory. 
Use RD or RMDIR to remove subdirectories after deleting all files in them. 
Be careful when using ERASE while a directory or drive alias command such 

as SUBST, ASSIGN, or JOIN is active. DOS won't let you erase read-only files, 
so use the A TTRIB command first to remove the read-only attribute. 

Utilities like Peter Norton's or Paul Mace's can usually recover inadvertently 
erased files so long as you use these utilities immediately after the erasure. 

EXIT [internal] 
3.3 

Format: 

Note: 

Exits a secondary command interpreter and returns to the program that started it 
(and to the old command interpreter). 

EXIT 

If COMMAND.COM was executed with the /P (permanent) switch, EXIT has no 
effect. 



The DOS 5.0Commands 993 

FASTOPEN [external command] 
3.3 

Format: 

Notes: 

Remembers location on disk of recently accessed files/directories. 

FASTOPEN c: [ =n] . . . [/X] 

or 

FASTOPEN c: = ( [n] [Im] } . . . [/X] 

c: = disk drive 

n =#of directory or file buffers for c: (10 to 999; default is 34) 

m =#of continuous buffers for files on for c: (1to999; default is 34) 

/X = tells DOS 4.0 to use expanded memory. For this to work you have to set 
things up properly (by using the XMA2EMS.SYS P254 page address, etc.) 

Don't use FASTOPEN while directory or drive alias commands such as SUBST, 
ASSIGN, or JOIN are active. Use FASTOPEN only once each session and be 
sure you've defined all your active drives before running it. Each additional entry 
consumes 35 bytes of system memory. Experiment to find the most efficient 
value; don't just assume the largest one is best. 

DOS 4.0 lets you load FASTOPEN by using the CONFIG.SYS INSTALL com
mand; if you use this technique remember to specify the entire FASTOPEN.EXE 
filename. Make sure the n value is larger than your deepest nested level 
(\A \B\C\D\E etc.) of subdirectories. 

FC [external] 
5.0 

Format: 

Compares two files and displays the differences between them. 

FC [one or more switches] [pathl]filenamel [path2]filename2 
FC /B [pathl]filenamel [path2]filename2 

paths and filenames give locations and names of files to be compared. 

/A= abbreviated display (first and last line only for each set of differences) 

/B = binary comparison mode. Do not use with other switches. 

/C = ignore case differences. 

/ = line comparison of files in ASCII mode 



994 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0 

Notes: 

/LBn = line Buffer specifies the number of lines to be compared. Default is 100 
lines. 

JN = display line numbers during ASCII comparison 

rr = tabs not expanded to spaces 

/W =white space (tabs and spaces) compressed during comparison. 
Consecutive spaces and tabs are treated as a single space. White space at 
line beginning/end is ignored. 

/n = number of consecutive lines that must match for files to be considered 
resynchronized. Default is 2. 

For ASCII comparisons, FC shows the following information for both files: The 
filename, the first matching line, line(s) that do not match, line(s) that appear in 
one file only, the next line that does match, and so on. 

In a binary comparison, the position and contents of each non-matching byte 
pair is displayed. Thus, two mismatches might look like this: 

00000018: 6F 69 

0000003F: 45 7B 

FCBS [CONFIG.SYS] 
3.0 

Format: 

Notes: 

Specifies the number of FCBS (File Control BlockS) that can be open at the same 
time. 

FCBS=x 

x = number of FCBS (1-255). The default is 4. 

If a program tries to open more than x control blocks, file 1 may be closed when 
file x + 1 is opened, and so on. Use FCBS only if required by program. Most 
newer programs do not require file control blocks. 

FDISK [external command] 
2.0 

Lets you set up, switch, and otherwise manipulate hard disk partitions. 

Format: FDISK 



Notes: 

The DOS 5.0 Commands 995 

In version 3.3 and later, FDISK lets you create "extended" logical partitions to 
handle drives larger than 32 megabytes. DOS 4.0 lets you get around this limit 
and create huge hard disk partitions. If you do create a partition larger than 32 
megabytes, be sure to put the DOS SHARE.EXE file in your root directory (or a 
directory specified by SHELL). 

Version 4.0 of FDISK has a friendlier interface, and allows you to do things 
like enter the size of partitions either by specifying an explicit number of mega
bytes or by telling it what percentage of the disk you want to use. It also gives you 
more information about each partition, and makes overall operation easier. 

FIND [external command] 
2.0 

Format: 

Notes: 

Locates specific strings of characters in files; can count lines or number them. 

FIND [/V] [/C] [/N] "string" [[d:] [path]filename[.ext] ... ] 

/V = select lines not containing string 

/C = display count of matching lines; ignores /N if both /C and /N specified 

/N = display line number of matching lines 

"string" = search string enclosed in double quotation marks; DOS interprets 
two quotes in a row as a single quote mark. 

[[d:] [path]filename[.ext] ... ] = file(s) to search 

Wildcards are not allowed (so you have to use FOR. . .IN ... DO for global 
searches). However, you can specify several filenames at once at the end of the 
command. 

To count or number all lines, specify a string after the /V option (such as 
$#@&)that doesn't occur at all in the file. 

Searches are case-sensitive and stop at the first occurrence of a Ctrl-Z end-of
file marker. 

FOR [internal batch] 
5.0 

Executes the specified command for each file in a set of files. 

Format: in a batch file, 

FOR %%X IN (file set) DO command [command parameters, if any] 



996 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0 

Notes: 

at the command prompt, 

FOR %X IN (file set) DO command [command parameters, if any] 

%X or % %X = any arbitrary variable, sequentially replaced by each file in the 
specified file set. 

(file set)= one or more file names or text strings, enclosed in a single set of 
parentheses. 

command = the command that is to be executed on each file included in the file 
set 

command parameters = parameters required by the command, if any 

To expand a set of files whose extensions end with an underline, use the the line 
below in a batch file. Or use a single % sign at each location to execute the com
mand at the DOS prompt. 

FOR %%X IN (*.??_) DO EXPAND %%X C:\DOS 

FORMAT [external] 
1.0 

Format: 

Formats the specified hard disk or diskette. 

FORMAT drive: [/V: label] [/Q] [/U] [/F: size] [/B or /S] 
FORMAT drive: [/V: label] [/Q] [/U] [T: tracks /N: sectors] 
or /S] 
FORMAT drive: [/V: label] [/Q] [/U] [/1] [/4] [/B or /S] 
FORMAT drive: [/V: label] [/Q] [/U] [/1] [/4] [/8] [/B or 

drive = the drive to be formatted 

/B = reserve space for system files, but do not transfer them to the disk. 

/F:size = specifies the size (capacity) of the diskette to be Formatted. 

160, 320, 360, 720 K or Kb may be appended to size 
1.2, 1.44, 2.88 M or Mb may be appended to size 

/N:sectors 

sectors = number of sectors-per-track. 

[/B 

/S] 

/Q =quick format (FAT and root directory deleted, surface not scanned for bad 
sectors) 

/S = transfer system files and COMMAND.COM to the formatted disk 



The DOS 5. 0 Commands 997 

fl': tracks 

tracks = number of tracks on the disk. 

/U = unconditional format (FAT and root directory deleted, surface scanned for 
bad sectors, sector headers rewritten) 

IQ /U = FAT and root directory deleted, no bad sector check, sector headers not 
rewritten 

/V:label =volume label specified prior to formatting 

/1 =format one side only of a diskette 

/4 = format a 360Kb diskette in a 1.2Mb diskette drive. 

/8 = format a 5.25" diskette with 8 sectors-per-track. 

GOTO [internal batch] 
2.0 

Format: 

Notes: 

Directs batch file program execution to jump to a line identified by a label. 

GOTO label 

label = a string found elsewhere in the batch file, preceded by a colon. 

In the following batch file, the second line is ignored 

GOTO blazes 
ECHO This line is ignored. 
:blazes 
ECHO This line is printed. 

The GOTO command is usually used in conjunction with IF (or IF NOT), so 
that the jump is made IF a certain condition is (or is not) met. 

GRAFTABL [external command] 
3.0 

Format: 

Loads high-bit ASCII graphics table (characters with values above decimal 128) 
into memory for CGA mode only; supports code pages. 

GRAFTABL [437 I 850 I 860 I 863 I 865 ] 



99S DOS Power Tools, 2nd Edition, Revised/or DOS 5.0 

or 

GRAFTABL ? 

or 

GRAFTABL /STATUS 

437 = United States code page (default) 

S50 = Multilingual code page 

S60 = Portugal code page 

S63 = Canada (French) code page 

S65 = Norway/Denmark code page 

? = show number of code page plus list of code page options 

/STATUS (or /STA) = show number of current code page 

GRAPHICS [external command] 
2.0 

Format: 

Allows Shift-PrtSc screen "dump" of graphics image to IBM-compatible graphics 
printer. 

GRAPHICS [printer type] [,profile] [/R] [/B] [/LCD] [/PB: id] 

[printer type] = 

COLORl =IBM Color Printer with black ribbon (for up to 19 grey shades) 

COLOR4 = IBM Color Printer with red, green, blue, black 

COLORS = IBM Color Printer with black, cyan, magenta, yellow 

COMPACT = IBM Compact Printer (DOS 3.3) 

GRAPHICS= IBM normal carriage Graphics Printer, Proprinter, Quietwriter, 
Pageprinter 

GRAPHICSWIDE = IBM wide carriage Proprinter or Quietwriter 

THERMAL = IBM Convertible Printer 

/R = don't reverse black and white; without it DOS doesn't print any onscreen 
blacks, and prints all onscreen whites as black 

/B = print background color (COLOR4, COLORS only) 

/LCD = print from IBM Convertible LCD display 

profile = under DOS 4.0, file containing specific printer information. Default 
name is GRAPHICS.PRO, and this file should be in same dorectory as 
GRAPHICS.COM utility. 



The DOS 5.0 Commands 999 

/PB:id = uses id ''print box" size, where id can be either STD of LCD. STD is 
default and will print normal screen aspect ratio. LCD will print flattened 
LCD aspect. 

HELP [external] 
5.0 

Format: 

Note: 

HELP command 
command /? 

The help screen associated with command is displayed on screen, and the com
mand itself is not executed. The command /? format is slightly faster than the 
HELP command. 

IF [internal batch] 
s.o 

Format: 

Note: 

Performs conditional command execution in a batch file. 

IF [NOT] ERRORLEVEL N command 
IF [NOT] stringl==string2 command 
IF [NOT] %1==%2 command 
IF [NOT] EXIST [path] filename command 

N = if a previous program run by COMMAND.COM did (did NOT) return an 
exit code equal to, or greater than, N, the designated command is executed. 

stringl ==string2or%1 ==%2 (note double-equal signs) =if the strings or 
parameters are (are NOT) equal, the designated command is executed. 

EXIST= if the designated [path] and filename exists (does NOT exist), the 
designated command is executed. 

The IF [NOT] command can be used to cause a conditional jump to a label line in 
a batch file. For example, the following batch file looks for GORILLA.BAS in 
two locations. If the •'not in DOS directory'' message is seen, then GO
RILLA.BAS is in the root directory, unless the "Oh-Oh" message is seen. 

@echo OFF 
IF EXIST C:\DOS\GORILLA.BAS goto FOUNDIT 
echo GORILLA.BAS not in DOS directory 
IF NOT EXIST C:\GORILLA.BAS goto TROUBLE 
:FOUNDIT 



1000 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0 

echo The GORILLA has been found. 
GOTO END 
:TROUBLE 
echo Oh-Oh, I can't find him. 
END 

INSTALL [CONFIG.SYS] 
4.0 

Format: 

Notes: 

Loads a TSR program from the CONFIG.SYS file instead of from the 
AUTOEXEC.BAT file. 

INSTALL=[path] filename [parameters, if any] 

filename [parameters] = the name of the TSR program to be loaded, and its 
parameters (if any) 

INST ALL does not create an environment block for the TSR program, and so the 
program occupies slightly less memory than if it were loaded in a batch file or 
from the command line. 

Do not use INSTALL if the program requires environment variables, shortcut 
keys, or that COMMAND.COM be present to handle critical errors. 

JOIN [external command] 
3.1 

Joins a disk drive with a directory on other drive. 

Format: JOIN 

or 

JOIN a: c:\directory 

or 

JOIN a: /D 

a: = drive to join 

c:\directory =directory to join to (at root only and only one level deep 
maximum) 



Notes: 

The DOS 5.0 Commands 1001 

/D = disconnect a JOIN 

JOIN without parameters displays JOIN status. 

Be careful when using commands like SUBST or ASSIGN while drive or direc
tory alias commands like this are active. Don't use BACKUP, RESTORE, FOR
MAT, DISKCOPY, or DISKCOMP while JOIN is active. 

KEYB [external command] 
3.3 

Loads a non-U.S. keyboard template. 

Format: KEYB 

Notes: 

or 

KEYB layout [,codepage] [,filename] [/ID:code] 

or 

KEYB code 

code= keyboard code (120=Belgium, 058=French-speaking Canada, 
159=Denmark, 153=Finland, 120/189=France, 129=Germany, 
141/142=1taly, 171 =Latin America, 143=Netherlands, 155=Norway, 
163=Portugal, 172=Spain, 153=Sweened, 150=French-speaking 
Switzerland, OOO=German-speaking Switzerland, 166/168=United 
Kingdom, 103=USA) 

codepage = code page for character set 

filename= name of keyboard definition file (default is KEYBOARD.SYS) 

layout= keyboard layout (BE=Belgium, CF=French-speaking Canada, 
DK=Denmark, SU=Finland, FR=France, GR=Germany, IT=ltaly, LA=Latin 
America, NL=Netherlands, NO=Norway, PO=Portugal, SP=Spain, 
SV =Sweened, SF= French-speaking Switzerland, SG=German-speaking 
Switzerland, UK=United Kingdom, US=USA) 

This replaces individual commands such as KEYBUK and KEYBIT introduced 
in DOS version 3.0. 

DOS lets you shift back and forth between the standard keyboard and any new 
one specified by KEYB bu pressing Ctrl-Alt-Fl for the US version and Ctrl-Alt
F2 for the foreign version. 

IBM seems to redo this with each new version of DOS. Don't mix versions. 
You can use the INSTALL command to load KEYB in CONFIG.SYS. 



1002 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0 

LABEL [external command] 
3.0 

Format: 

Notes: 

Sets, changes, or deletes a disk's volume label 

LABEL [d:] [volume label] 

d: = drive to label 

volume label = 1 to 11 characters 

You can also create a volume label when you first format a disk by using the 
FORMAT /V option. It's important to add a label to hard disks, since this pro
vides an added layer of protection against accidentally formatting the hard disk. 

Earlier versions allowed lowercase labels, but DOS now automatically capital
izes them. And it lets you insert spaces in the volume name, although in most 
other respects it follows the same rules (no *, >, or + charactera etc.) as with 
filenames. 

Don't use LABEL when drive alias commands such as SUBST or ASSIGN are 
active. 

Under DOS 4.0, LABEL also prints the serial number (a unique 8-digit hex 
number that DOS can use to tell if you've accidentally switched drives at the 
wrong time). 

LASTDRIVE [CONFIG.SYS] 
3.0 

Format: 

Note: 

Specifies the letter of the last accessible drive. 

LASTDRIVE=x 

x = any letter in the range from A to Z. The lowest permissible letter 
corresponds to the number of installed drives. The default is one letter above 
the last physical drive in your system. 

Increase the LASTDRIVE letter as required to accommodate logical or network 
drives. 

To save memory space, do not specify more drives than are actually required. 



The DOS 5. 0 Commands 1003 

LOADHIGH [internal] 
5.0 

Format: 

Notes: 

Loads a program into reserved memory. 

LOADHIGH [path] filename [parameters] 
LH [path] filename [parameters] 

[path] filename [parameters] =specifications of the file to be loaded into 
reserved memory. 

Your CONFIG.SYS file must contain DOS=UMB plus the HIMEM.SYS and 
EMM386.EXE drivers. These commands must appear before the LOADHIGH 
command. 

MD [See MKDIR] 
2.0 

MEM [external] 
4.0 

Format: 

Displays a report of system memory usage. 

MEM [/switch] 

switch 

/PROGRAM or /P = reports all programs and environments currently loaded in 
memory, their size and absolute starting addresses. 

/DEBUG or fD = same as /PROGRAM, plus addresses of low-memory areas, 
device drivers, and DOS commands like BUFFERS and LASTDRIVE. 

/CLASSIFY or /C = summarizes allocation of low memory, upper memory and 
expanded memory. 



1004 DOS Power Tools, 2nd Edition, Revised for DOS 5. 0 

Notes: MEM with no switches reports the following: 

bytes total conventional memory 
bytes available to MS-DOS 
largest executable program size 
bytes total contiguous memory 
bytes available contiguous memory 
bytes available XMS memory 
MS-DOS resident in High Memory area (if it is) 

MIRROR [external] 
5.0 

Format: 

Saves information about one or more disks for subsequent use by UNDELETE 
and UNFORMAT commands. 

MIRROR [drive (s) : ] [/1] [/TD [-entries]] 

MIRROR [/U] 
MIRROR [/PARTN] 

drives(s) =the drive(s) for which MIRROR is to save recovery information for 
use by UNFORMAT 

/1 =(numeral one). Retain only the lastest disk information. 

{fD D = the drive letter for which MIRROR is to save recovery information for 
use by UNDELETE. Repeat as requried for multiple drives. 

-entries = the maximum number of entries in the deletion-tracking file. The 
default value depends on the disk being tracked, as listed here. 

Disk size Entries Maximum tile size 

360Kb 25 5Kb 

720Kb 50 9Kb 

l.2Mb 75 14Kb 

l.44Mb 75 14Kb 

20Mb 101 18Kb 

32Mb 202 36Kb 

>32Mb 303 55Kb 

/U = unload the deletion-tracking program from memory and disable 
deletion-tracking. 

/PARTN =save hard disk partioning information to a diskette. 



The DOS 5.0 Commands 1005 

MKDIR(MD) 
2.0 

Format: 

Notes: 

Creates a subdirectory. 

MKDIR [d:] path 

or 

MD [d:] path 

[d:] =drive for new subdirectory 

path= subdirectory to make (total 63-character limit including the backslashes) 

Be careful when creating directories if drive alias commands such as JOIN, AS
SIGN, or SUBST are active. 

Specifying a new directory name without a backslash (\) in front of it tells DOS 
to create a subdirectory one level lower than the current directory. So if the cur
rent directory is \DOS, the command MD UTILS will create a subdirectory called 
\DOS\UTILS. But if you typed MD \UTILS, DOS would create a subdirectory 
called \UTILS one level down from the root directory that had no relation to the 
\DOS subdirectory. 

MODE [external command] 
1.0 (with lots of upgrades) 

Pre-DOS4.0 
Format: 

DOS4.0 
Format: 

1. Sets the printer mode. 

MODE LPT# [:] [n] [, [m] [, P]] 

#=printer number (1, 2, or 3) 

n =characters per line (80 or 132) 

m =vertical lines per inch (6 or 8) 

P = continuous retry on timeout errors 

MODE LPT#[:] COLS=c LINES=l RETRY=r 

c = 80 or 132 columns per line 

1 = 6 or 8 lines per inch of vertical spacing 



1006 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0 

Format: 

Note: 

Pre-DOS 4.0 
Format: 

r = status request response, indefinite retry, with four choices, B, E, R, none 

B = (same as P in older syntax); return "busy" from status check of busy port 

E = return error from status check of busy port 

R =return "ready" from status check of busy port 

none= (default) no retry action 

2. Sends parallel printer output to a serial port. 

MODE LPT#[:]=COMx 

#=printer number (1, 2, or 3) 

x =COM port number (1, 2, 3, or 4) 

You must first initialize your COM port with the following version of the MODE 
command, including ,Pat the end in pre-DOS 4.0, or a RETRY=B under DOS 4.0. 

3. Sets the serial communication mode (protocols). 

MODE COM# [:] baud [, [parity] [, [databits] [, [stopbi ts] 
[, P] ] ] ] 

#=COM port being set (1, 2, 3, or 4) 

baud= baud rate (110, 150, 300, 600, 1200, 2400, 4800, 9600, 19200; only 
first two digits of each rate are required) 

parity= N, 0, or E (for None, Odd, Even; default is Even) 

databits = 7 or 8 (default is 7) 

stopbits = 1or2 (default is 2 if 110 baud, 1 if not) 

P = indicates COM port is being used for printer; continuously retries on 
timeout errors 

Note: You must first initialize your COM port with this version of the MODE com
mand, including ,P at the end, before sending parallel printer output to a serial 
port. 

DOS4.0 
Format: MODE COM#[:] BAUD=b DATA=d STOP=s PARITY=p RETRY=r 

# = COM port being set (1, 2, 3, or 4) 

b =baud rate (110, 150, 300, 600, 1200, 2400, 4800, 9600, 19200; only first 
two digits of each rate are required) 

p =NONE (no parity), ODD (odd parity), EVEN (even parity), MARK (stick 
odd parity), SPACE (stick even parity) 

d = number of data bits from 5 through 8; default is 7 

s = 1, 1.5, or 2 (default is 2 if 110 baud, 1 if not) 



Format: 

Notes: 

Format: 

The DOS 5.0 Commands 1007 

r - status request response, indefinite retry, with four choices, B, E, R, none 

B = (same as P in older syntax); return "busy" from status check of busy port 

E == return error from status check of busy port 

R = return "ready" from status check of busy port 

none= (default) no retry action 

4. Sets the video mode. 

MODE n 

n =video mode (40, 80, BW40, BW80, C040, C080, MONO) 

MODE doesn't support any of the newer EGA and VGA video modes. 

5. Shifts screen to left or right. 

MODE [n] , m [, T] 

n = video mode ( 40, 80, BW40, BW80, C040, C080, MONO) 

m = R or L; shift display right or left 1 or 2 characters 

T = shows test pattern for aligning display 

6. Sets screen length and width. 

MODE CON LINES=l COLS=c 

l = 25, 43, or 50 onscreen lines (assuming monitor can handle it) 

c = 40 or 80 columns per line 

7. Sets video mode and screen length 

MODE n,l 

n =video mode (40, 80, BW40, BW80, C040, C080, MONO) 

l = 25, 43, or 50 onscreen lines (assuming monitor can handle it) 

8. Prepares code pages (foreign fonts) 

MODE device CODEPAGE PREPARE=((cplist) [d:] 
[path]filename[.ext]) 

or 

MODE device CODEPAGE PREPARE=((cp) [d:] [path]filename[.ext]) 



1008 DOS Power Tools, 2nd Edition, Revised for DOS 5.0 

device= CON, PRN, LPTl, LPT2, or LPT3 

cp = a single code page number 

cplist = code page number or list of numbers; a list must be surrounded by 
parentheses 

[d:] [path]filename[.ext] = CPI file containing code pages 

Note: You may substitute CP for CODEPAGE and PREP for PREPARE. 

Format: 

9. Selects code pages. 

MODE device CODEPAGE SELECT=cp 

device= CON, PRN, LPTl, LPT2, or LPT3 

cp =code page (437, 850, 860, 863, 865) 

Note: You may substitute CP for CODEPAGE and SEL for SELECT. 

10. Displays the active code page. 

Format: MODE device CODEPAGE [/STATUS] 

device= CON, PRN, LPTl, LPT2, or LPT3 

Note: You may substitute CP for CODEPAGE and STA for STATUS. 

11. Refreshes the code page. 

Format: MODE device CODEPAGE REFRESH 

device= CON, PRN, LPTl, LPT2, or LPT3 

Note: You may substitute CP for CODEPAGE and REF for REFRESH. 

Format: 

Note: 

Format: 

12. Requests code page status (DOS 4.0) 

MODE device /STATUS 

You may substitute ST A for STATUS; this is not available for COM or keyvoard 
parameters and is required only for LPT# 

13. Sets keyboard typematic rates (DOS 4.0) 

MODE CON RATE=r DELAY=d 



The DOS 5. 0 Commands 1009 

r =a rate related to how many times per second a key will repeat once it's been 
held down (1to32) 

d = the delay before your system figures out that the key is indeed held down 
(1to4; corresponds to 1/4 second, 1/2 second, 3/4 secon4, 1 second) 

RVALUE REPETITIONS/SEC RVALUE REPITITIONS/SEC 

2.0 17 8.0 

2 2.1 18 8.6 

3 2.3 19 9.2 

4 2.5 20 10.0 

5 2.7 21 10.9 

6 3.0 22 12.0 

7 3.3 23 13.3 

8 3.7 24 15.0 

9 4.0 25 16.0 

10 4.3 26 17.1 

11 4.6 27 18.5 

12 5.0 28 20.0 

13 5.5 29 21.8 

14 6.0 30 24.0 

15 6.7 31 26.7 

16 7.5 32 30.0 

MORE [external command] 
2.0 

Format: 

Displays files one 25-line screenful at a time. 

MORE < FILE.NAM 

or 

TYPE FILE.NAM I MORE 

where FILE.NAM is the file you want to examine one screenful at a time. If the 
entire file hasn't yet been displayed, DOS will print the message --More--. Press 
any key at this point to have it display another screenful. 



1010 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0 

NLSFUNC [external] 
3.3 

Format: 

Notes: 

PATH 
2.0 

Format: 

Loads country-specific data for national language support. 
1: 

in CONFIG.SYS file, 

INSTALL=[DOSpath] NLSFUNC.EXE [filename] 

on command line, 

NLSFUNC [[path] filename] 

DOSpath = the location of the NLSFUNC.EXE file. 

filename= name of a file other than COUNTRY.SYS that contains 
country-specific data. Use if CONFIG.SYS does not include a COUNTRY 
command. 

Use NLSFUNC with no filename to access country-specific data in the COUN
TRY.SYS file. 

Tells DOS to extend its normal search so that it looks in a specified list of drives 
and directories when it tries to run a program that it can't find in the current direc
tory. 

PATH [ [d:]path[ [; [d:]path ... ] ] ] 

or 

PATH [;] 

[d:]path =drive/path for search list 

; = resets the search path to null (so DOS will not include any additional drives 
or directories in the search) when used as PATH ; 



The DOS 5. 0 Commands 1011 

PATH without parameters displays the current PATH list of drives and directo
ries to search for executable files. 

Note: PA TH works with COM, EXE, or BAT files only; the APPEND command lets 
DOS search for non-executable files. Recent versions of APPEND can also find 
executable files just like PATH. 

PRINT [external command] 
2.0 

Format: 

Notes: 

Prints files; can handle background printing and groups (queues) of files. 

PRINT [/D:device] [/B:buffsiz] [/U:busytick] [/M:maxtick] 
[/s: timeslice] [/Q:quesiz] [/c] [/T] [/P] [ [d:] [path] 
[filename] [.ext] ... ] 

/D:device =print device (default is PRN; must be first one specified) 

/B:buffsiz =bytes for internal buffer (default is 512) 

/U: busytick = ticks to wait for printer to be available (default is 1) 

/M:maxtick =ticks to use for printing (1-255, default is 2) 

/S:timeslice =time slice value (1-255, default is 8) 

/Q:quesiz =number of files in print queue (l-32, default is 10) 

/C =lets you cancel file(s) in queue 

/T = terminate; cancel entire print queue 

/P = print preceding file and add all files to queue until a /C or Enter 
[d:] [path] [filename] [.ext] = file(s) to print; wildcards are okay 

PRINT without any parameters displays the list of filenames currently in the 
queue. 

DOS Disables Shift-PrtSc and Ctrl-PrtSc while PRI!\T'f is printing. 
PRINT adds a formfeed command after each print job to start each new file at 

the top of a page, and expands tabs (by inserting spaces) to 8-column boundaries. 
If you don't use a /D option the first time you execute the command, PRINT 

will pause and ask which printer you want to use. While you can specify PRN (or 
LPTl) by pressing Enter at this point, using the /D switch saves a step. 

See the Favorite Tips chapter for an explanation of how this works and what 
settings are best. 



1012 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0 

PROMPT 
2.0 

Format: 

Notes: 

Sets the DOS prompt; transmits strings to ANSI.SYS. 

PROMPT [prompt-text] 

PROMPT without parameter resets the default DOS prompt. To see the active 
PROMPT string, type SET. 

prompt-text can contain the following meta-string characters, preceded by a$ 
sign: 

$ $ character 
T time 
D date 
P current directory 
V version number 
N default drive letter 
G > character 
L < character 
B I character 
Q = character 
H backspace (erases previous character) 
E Escape character 

CR/LF sequence (jumps to next lower line on screen) 

DOS treats all other characters not on the above list as nulls. 

Every hard disk user should use PROMPT $P: or PROMPT $P$G to display the 
current subdirectory. 

You can use the PROMPT command to send otherwise hard-to-type Escape se
quences to ANSI.SYS for extended screen and keyboard control. However, doing 
so will change any custom prompt you may have assigned. To avoid this, first 
type: 

SET I FIND 11 PROMPT 11 > RESET.BAT 

to store your prompt. Then have PROMPT issue the ANSI escape sequence, enter 
RESET to restore your original prompt, and finally erase RESET.BAT. You can 
create a batch file to automate this. Or have a batch file save the prompt as a_n en
vironment variable (by typing SET OLD=%PROMPT%) and later use SET 
PROMPT=%0LDP% to restore it. 

To use ANSI.SYS you must include a line in the CONFIG.SYS file that was ac
tive when you booted that says DEVICE=\DOS\ANSl.SYS (if you store 



The DOS 5.0 Commands 1013 

ANSI.SYS in your \DOS subdirectory). See the ANSI and Other DOS Drivers 
chapter for an extensive discussion of this. 

You may use either the uppercase or lowercase versions of the above meta
strings (so that $P works just as well as $p). However, ANSI is picky about the 
case of its special commands. 

QBASIC [external] 
5.0 

Format: 

Notes: 

Loads the Microsoft QBASIC interpreter. 

QBASIC [[path] filename] [one or more switches] 

filename = the name of a BASIC file to be edited with the QBASIC interpreter. 

/B = use black-and-white mode on color monitor. 

/G = graphics, provides fastest screen update on CGA monitor. 

/H = high resolution, displays the maximum number of text lines on screen. 

/MBF = convert following functions, as indicated 

From To 

CVD CVDMBF 

CVS CVS:MBF 

MKD$ MKDMBF$ 

MKS$ MKSMBF$ 

/NOHI = use with a monitor that does not support high-intensity video. 

/RUN = run filename before displaying it for editing. 

If your CGA monitor does not support shortcut keys, use the /B switck If your 
monitor does not support high-intensity (bold) characters, use the NOHI switch. 

RECOVER [external command] 
2.0 

Format: 

Recovers individual defective files or every file and subdirectory on a disk. But 
don't use it to recover an entire disk unless as a desperate last resort. 

RECOVER [d:] [path]filename[.ext] 



1014 DOS Power Tools, 2nd Edition, Revised for DOS 5.0 

Notes: 

or 

RECOVER d: 

[d:] [path]filename[.ext] = file(s) to recover 

d: = recover all files on d: [USE WITH EXTREME CAUTION!] 

BEW ARE - Don't use this for a whole disk! Use it on specific files only unless 
there's no hope left for the disk. If you try it without specifying a single filename, 
RECOVER will tum your entire disk structure into mush. 

In addition, RECOVER puts its recovered files in the root directory. Since a 
typical 5-1/4 inch 360K floppy disk root directory can hold a maximum of 112 
files, you may have to repeat the process several times, delete files from the dam
aged disk, etc. Use only as an absolute last resort. 

REN [See RENAME] 
1.1 

RENAME (REN) 
1.0 

Format: 

Notes: 

Renames files. 

RENAME [d:] [path]filename[.ext] filename[.ext] 

[d:] [path]filename[.ext] = file(s) to rename 

filename[.ext] = new name. 

You can use wildcards in the filename. If by chance an application (or a program 
such as BASIC) has created a filename with a space in it, you can use a wildcard 
to remove the space. So if your directory contains a file called FILE 1. TXT you 
can type: 

REN FILE?l.TXT FILEl.TXT 



The DOS 5.0 Commands 1015 

REPLACE [external] 
3.2 

Format: 

Notes: 

Replaces files in target directory with files in source directory with the same 
filename(s). Copies new files into target directory from source directory. 

REPLACE [path] source [targetpath] [/A] [/P] [/R] [/W] 
REPLACE [path] source [targetpath] [/P] [/R] [/S] [/U] [/W] 

source = name of the source file or files 

targetpath = desired location for target files. If no targetpath is specified, 
REPLACE uses the current drive and directory as target. 

/A = add new files to the target directory 

/P = prompt before replacing an existing target file or adding a new one 

/R = replace read-only and all other sJ>ecified target files. 

/S = search all subdirectories within the target directory and replace matching 
files 

/U = replace only those target files that are older than matching files in source 

fW = wait for diskette insertion before searching for source files 

REPLACE does not replace or add hidden or system files to the target. 

RESTORE [external command] 
2.0 

Format: 

Restores files saved by the BACKUP command. 

RESTORE a: [c:] [path]filename[.ext] [/S] [/P] [/B:mm-dd-yy] 
[/A:mm-dd-yy] [/M] [/NJ [/L:time] [/E:time] 

a: = drive with BACKUP source 

[c:] [path]filename[.ext] =destination 

/S =restore all files in subdirectories too 

/P = prompt before restoring files changed since last backup or marked 
read-only; respond with Y or N 

/B = restore if changed on or before date specified 

/A = restore if changed on or after date specified 



1016 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0 

Notes: 

/M = restore if changed or deleted since backup 

/N = restore if no longer on target 

/L = restore if changed at or after time specified 

/E = r~tore if changed at or before time specified 

Don't use /B, /A, and/Nat the same time. And the DOS manual warns against 
using RESTORE when a drive or directory alias command such as SUBST, 
JOIN, or ASSIGN was active when you ran BACKUP. So what are you supposed 
to do then? · 

Since early BACKUP and RESTORE versions erroneously let you write sys
tem files from earlier versions onto disks using newer versions, be careful when 
using older versi~ps tR restore files. 
BACKU~ :~!pres files in a special format; you must use the RESTORE com

mand to:put them back in.their original condition. Version 3.3 stores backup files 
in one large chunk; earlier versions maintained individual backup files for each 
file. 

RD [See RMDIR] 
2.0 

RMDIR(RD) 
2.0 

Format: 

Notes: 

Removes a directory. 

RMDIR [d:] path 

or 

RD [q:] path 

[ d:] = drive to remove from 

path = directory to remove 

DOS won't let you remove a directory if it contains any files or lower-level 
~irectories. 

If DOS tells you that the directory is not empty when you try using RD or 
RMDIR to remove a subdirectory, and you've already erased all the files in it and 
used &p. to remove any lower-level directories, the culprit is probably a hidden 
file inside the subdirectory. If the, subdirectory contained a program that used a 



The DOS 5.0Commands 1017 

copy-protection scheme, try to uninstall the program. If you 're sure that no copy 
protection scheme was employed, use the A TTR program on the accompanying 
disk to unhide the file, then erase it. RD or RMDIR should now work. 

SELECT [external command] 
3.0 

Sets up DOS on a new disk or replaces an older DOS version with a newer one. 

Pre-DOS4.0 
Format: 

Note: 

DOS4.0 
Format: 

Note: 

SET 
2.0 

Format: 

SELECT [[A: I B:] [d:] [path]] xxx yy 

A: or B: =source drive (default is A:) 

[d:] [path] =target drive and path (default is B: root directory) 

xxx = country code 

yy = keyboard code 

Use this command only on brand new disks (if at all) since it runs the DOS FOR
MAT command as part of its overall operation. 

SELECT (actually runs automatically from installation disks) 

DOS 4.0 version can handle drives larger than 32 megabytes without having to di
vide them into smaller logical volumes. The DOS 4.0 SELECT command is much 
friendlier and more capable than previous versions. 

Puts strings into the environment; displays environment strings. 

SET [name=[parameter]] 

name = environment variable (automatically uppercased) 

parameter = value for environment variable 



1018 DOS Power Too/,S, 2nd Edition, Revised/or DOS 5.0 

SET with just name (and equals sign) clears name from environment 
SET without name or parameters displays environment settings 

Note: The environment always contains COMSPEC= and probably PA TH= and 
PROMPT= variables. Many applications can store and read environment vari
ables. Batch files in later versions of DOS can read them by sandwiching them be
tween single% signs (e.g. %PROMPT%). 

DOS uses a paltry 160 bytes (or 127 bytes under certain circumstances) for the 
environment size. See COMMAND UE:xxxxx] for instructions on increasing the 
default size. 

SETVER [external] 
5.0 

Format: 

Notes: 

Sets the DOS version number reported to a program that requests it. 

SETVER filename n.nn 
SETVER filename [/DELETE [/QUIET]] 

filename = the name of a program file (with COM or EXE extension) to add to 
the version table. 

n.nn = the version number to be reported 

/DELETE= Deletes the.filename entry in the version table. 

/QUIET = Do not display message during /DELETE operation. 

Type SETVER without any parameters to show contents of the version table. Dis
play shows each filename in table and the DOS version with which the file is set 
to run. For example, 

WIN200.BIN 3.40 
EXCEL.EXE 4.10 
NET.COM 3.30 
ZFMT.SYS 4.01 

SHARE [external command] 
3.0 

Format: 

Supports file sharing. In DOS 4.0, helps DOS keep track of things on hard disk 
partitions larger than 32 megabytes. 

SHARE [/F: f ilespace] [/L: locks] 



The DOS 5.0 Commands 1019 

/F: =bytes to allocate for sharing info (default is 2048); each open file takes 
length of filename plus 11 more bytes 

/L:locks =locks to allocate (default is 20) 

If you 're using a massive hard disk under DOS 4.0, DOS needs to have the 
SHARE.EXE file in the root directory (or the directory specified by SHELL) to 
keep track of where things are. If you don't do this, DOS may become very con
fused. 

SHARE knows when drive doors have been opened and can warn you if you 're 
about to copy data onto the wrong disk, such as one you've switched in the mid
dle of a disk write. 

You can run SHARE by adding an INSTALL=SHARE.EXE to your CON
FIG.SYS file. 

SORT [external command] 
2.0 

Format: 

Notes: 

Sorts lines of text inside files starting at the column specified. 

SORT [/R] [/+ n] 

/R = sort in reverse order 

/+ n = sort starting with column n 

DOS treates lowercase letters the same as uppercase ones in version 3.x; but ear
lier versions assumed uppercase letters came before lowercase ones. And DOS 
3.0 and later versions can treat accented high-bit foreign-language characters the 
same as their unaccented cousins. 

SORT doesn't expand tabs (it treats them as single characters) and can't handle 
files longer than 63K. 

SUBST [external command] 
3.1 

Assigns a drive letter to a path. 

Format: SUBST e: c:path 

or 

SUBST e: /D 



1020 DOS Power Tools, 2nd Edition, Revised for DOS 5.0 

Notes: 

or 

SUB ST 

e: = drive letter to refer to path 

c:path = drive/path referred to (nicknamed) 

fD = deletes substitution of e: 

Entering SUBST without parameters displays substitutions in effect. 

Since SUBST lets you use short drive letters to refer to long paths, you can use it 
to extend a PATH or APPEND command past the normal character limit. 

The default number of drives is five (A: through E:). To use a SUBST drive let
ter higher than E: you must first include a LASTDRIVE= command in the CON
FIG.SYS file that was active when you booted. 

DOS commands such as CHDIR (and CD), MKDIR (and MD), RMDIR (and 
RD), APPEND, and PATH can work differently when SUBST is active. And all 
sorts of DOS commands, such as ASSIGN, FORMAT, BACKUP, RESTORE, 
LABEL, JOIN, DISKCOPY, DISKCOMP, and FDISK have trouble with 
SUBST, so don't use them while SUBSTis in effect. 

SYS [external command] 
1.0 

Pre-DOS 4.0 
Format: 

DOS4.0 
Format: 

Puts the two hidden system files onto disk. 

SYS t: 

t: = the disk you want to contain the IBMBIO.COM and IBMDOS.COM 
system files (or their generic equivalents). 

SYS s: t: 

s: = source drive 

t: = target drive 



Notes: 

TIME 

The DOS 5.0 Commands 1021 

SYS doesn't transfer COMMAND.COM; you must use COPY COM
MAND.COM t: to do so. On the other hand, FORMAT /S will transfer both the 
pair of hidden system files and COMMAND.COM 

DOS is picky about where certain system files are located on the disk. Since 
software vendors aren't allowed to give away the DOS system files on the disk
ettes they sell, many vendors leave space on the disk for you to use SYS to copy 
these system files to the proper place on the disk. 

The DOS 4.0 SYS command can transfer the system files from one different 
disk to another different disk; the source doesn't have to be the one SYS is cur
rently on. 

1.0 as external command; 1.1 as internal command 

Format: 

Notes: 

Reports and sets the system time. 

TIME [hh: mm [ : SS [ . xx] ] ] 

hh = hours (0-23) 

mm= minutes (0-59) 

ss = seconds (0-59) 

xx = hundredths of a second (0-99) 

TIME without parameters displays the current time. Pressing the Enter key 
after typing TIME by itself will leave the time unchanged. 

So long as you enter at least the hour after the TIME command, you can skip all 
the rest of the settings. So entering TIME 8 will set the time to 8:00:00.00. 

Pre-DOS 4.0 versions of TIME use a 24-hour clock, so 8 PM is actually 
20:00:00.00. Also, while you can enter hundredths of seconds, your ~ystem's 
clock is actually not that accurate, since it divides each second into just over 18 
slices rather than 100. 

Starting with DOS 4.0, TIME let you use a 12-hour clock rather than 24-hour 
notation. To take advantage of this, add an a or a p directly after the last digit, e.g. 
12:15p (rather than 12:15 p). 

You may use a period or colon to separate hours, minutes, and seconds. And 
you may use a period or a comma to separate seconds from hundredths, depend
ing on whether you're using US or foreign settings. 

Believe it or not, DATE and TIME were external commands in DOS version 
1.0. Starting with version 3.3 DOS will permanently set the system CMOS clock. 



1022 DOS Power Tools, 2nd Edition, Revised for DOS 5.0 

TREE [external command] 
2.0 

Format: 

Notes: 

Displays all the directory paths. 

TREE [c:] [/F] 

[c:] =drive to display 

/F = show file names in all directories 

I A = use alternate typewriter-like character set rather than high-bit drawing 
characters (DOS 4.0 only) 

The MORE command (TREE I MORE) pauses the display a screenful at a time. 
A picture is worth a K of words, especially here. If you have a version of DOS 

older than 4.0,, use the VTREE or RN utilities on the accompanying disk instead 
of TREE, since they'll provide a graphical representation of your disk structure 
rather than just a long list of names. And use CHKDSK /V (or A TTRIB /S) rather 
th.an TREE /F to display all your files, especially if you 're redirecting the output 
of the process to a file. 

DOS 4.0 finally draws two versions of a graphical tree. If you omit the /A pa
rameter, DOS will create a tree structure using attractive high-bit drawing charac
ters. Since some printers can't handle these, you can make things easier and faster 
by· adding a /A, which tells DOS to use characters like I and - instead. 

To see the whole tree, tell it to start with the root directory (by adding a back
slash: TREE \) 

TRUENAME [undocumented] 
4.0 

Format: 

Helps sort through the confusion generated by some of the DOS "alias" com
mands (SUBST, ASSIGN, and JOIN) that mix and match drives and subdirector
ies so that drive letters and subdirectory names are not always what they seem. 
TRUENAME reports the true name of each drive or subdirectory. 

TRUENAME 

or 

TRUENAME drive 

or 

TRUENAME subdirectory 



Notes: 

TYPE 
1.0 

Format: 

Notes: 

The DOS 5.0 Commands 1023 

If you enter the command by itself, it tells you the real, honest-to-goodness drive 
or directory you 're using. If you specify a drive or subdirectory after it it will tell 
you what that drive or subdirectory was before you gave it another temporary 
name. 

Since this was not documented, odds are it doesn't always work exactly right. 
So make sure everything is currently backed up (you do anyway, don't you?) and 
use it at your own risk. 

Displays a file by sending it to standard output (default is the screen) 

TYPE [d:] [path]filename[.ext] 

[d:] [path]filename[.ext] = file to display 

TYPE wraps long lines after 80 columns and expands tab characters to eight-col
umn boundaries. It stops when it reaches any Ctrl-Z end-of-file marker. 

You can't use wildcard characters in TYPE commands but can type several 
files one after the other by using a FOR. . .IN ... DO command. Or you could use the 
COPY /B filespec CON command to display several files in succession (substitut
ing the particular wiidcard construction for filespec in this example). COPY /B 
also lets you display a file past a Ctrl-Z character. 

You can redirect the output of TYPE to another file (which is sometimes handy 
in batch files) or to a device such as a printer. 

UNDELETE [external] 
5.0 

Format: 

Restores files previously deleted with the DEL .or ERASE command. 

UNDELETE [[path] filename] [/ALL OI /LIST] [/DOS OI /DT] 

filename = name of file or set of files to be recovered. Default is all deleted 
files in the current directory. 

/ALL = recover all deleted files without waiting for prompt 

/LIST= list the d~leted files, but do not initiate the UNDELETE process 

/DOS = ignore deletion-tracking file (if any) and recover only those files that 
are intel'.11ally listed in the directory as deleted (first character of filename 
replaced by E5). Prompt for confirmation on each file. 



1024 DOS Power Tools, 2nd Edition, Revised for DOS 5. 0 

Notes: 

/DT = recover only those files listed in the deletion-tracking file created by the 
MIRROR command. Prompt for confirmation on each file. 

Recovering files via the deletion-tracking file (/DT) is more reliable than consult
ing the directory listing (/DOS) of deleted files. UNDELETE can neither restore a 
removed directory, nor a deleted file that was in a removed directory. However, if 
a removed subdirectory was listed in the root directory, try to use UNFORMAT 
to restore it, and then use UNDELETE to restore the file(s) that were in that sub
directory. 

UNFORMAT [external] 
5.0 

Format: 

Notes: 

Restores a disk erased by the FORMAT command or restructured by the RE
COVER command. 

UNFORMAT drive: [/J] 
UNFORMAT drive: [/L] [/P] [/U] [/TEST] 
UNFORMAT /PARTN [/L] 

drive: = the drive to be unformatted 

/J = verify that the file created by the MIRROR comand was saved and that it 
agrees with the system information on the disk to be unformatted. This 
switch does not UNFORMAT the disk. 

/L =list every file and subdirectory found by UNFORMAT, but do not use the 
MIRROR file. 

/P =send output messages to LPTl printer 

/PARTN =restore a corrupted hard disk partition table, using recovery data 
previously saved to diskette in a PARTNSAV.FIL file created by the 
MIRROR /PARTN command. 

/PARTN /L = as above, but also display current partition table 

/TEST = show how UNFORMA T will recover the disk information, but do not 
actually perform the UNFORMAT operation. Do not use the MIRROR file. 

/U = unformat the disk without using the MIRROR file 

UNFORMATcannot restore a disk that was unconditionally formatted (FOR
MAT /U). 

UNFORMAT restores the root directory to its condition at the time the MIR
ROR command was last used. Therefore, root directory files created after the last 
use of MIRROR are not recovered. 

Use UNFORMAT to attempt recovery of deleted root directory files only if 
UNDELETE was unsuccessful. 



VER 
2.0 

Format: 

Note: 

VERIFY 
2.0 

Format: 

The DOS 5.0 Commands 1025 

Reports the DOS version. 

VER 

DOS refers to the single digit to the left of the period as the major version num
ber, and the pair of digits to the right of the period as the minor version number. 

Verifies disk writes (in a primitive way) 

VERIFY [ON I OFF] 

ON = verify that data was written correctly 

OFF= do not verify (default) 

VERIFY without parameters displays VERIFY status. 

Note: This performs a CRC check only, which indicates whether or not DOS wrote 
something to the disk. It doesn't perform the byte-by-byte comparison that COMP 
does. COPY /V performs the same primitive checking process. 

VOL 
2.0 

Format: 

Display the disk's volume label. 

VOL [d:] 

[d:] ~ display label of which drive 

Note: Under DOS 4.0, LABEL also prints the serial number (a unique 8-digit hex num
ber that DOS can use to tell if you've accidentally switched drives at the wrong 
time). 



1026 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0 

XCOPY [external command] 
3.2 

Format: 

Notes: 

Copies and backs up files selectively 

XCOPY [a:] [path]filename[.ext] [b:] [path] [filename[.ext]] 
[/A] [/D] [/E] [/M] [/P] [/S] [/VJ [/W] 

or 

XCOPY [a:]path[filename[.ext]] [b:] [path] [filename[.ext]] 
[/A] [/D] [/E] [/M] [/P] [/S] [/V] [/W] 

or 

XCOPY a:[path] [filename[.ext]] [b:] [path] [filename[.ext]] 
[/A] [/D] [/E] [/M] [/P] [/S] [/V] [/W] 

[a:] (path] [filename[.ext]] =source 

[b:] [path] [filename[.ext]] = target 

JA =copy only if archive bit set 

JD:mm-dd-yy =copy if date is same or later 

JE = create subdirectories on target even if they end up empty 

JM= copy modified files and reset archive bit 

JP = prompt before copying each; respond with Y or N 

JS = copy files in current directory and all lower subdirectories and create 
directories on target only if not empty 

JV= verify 

/W = wait for source disk 

XCOPY is vastly better than COPY, since it avoids the repetitive disk churning 
done by COPY. XCOPY uses all available low memory and reads lots of files in 
one gulp before writing them to disk. Even better, it can reproduce the subdirec
tory structure of the source disk onto the target disk, and can thread its way down 
a long line of subdirectories while it works. 

While most DOS utilities were created by Microsoft, this one was written by 
IBM, so it's not on some generic DOS disks. 

If you want to copy a whole disk, be sure to add a backslash right after the 
drive letter, or else XCOPY will start copying fromwhatever subdirectory you 
happen to be logged into. 

XCOPY won't copy hidden or write-only files. If you want to copy a lot of 
files and subdirectories to small diskettes, use the JS and JM parameters together. 
When the first target disk fills up, insert a new blank one and repeat the same 



The DOS 5.0 Commands 1027 

XCOPY command (the easiest way is by pressing the F3 function key). XCOPY 
will know where it left off by examining the archive bit of the original files. 

DISKCOPY is the fastest way to copy similar-sized disks (and it formats on the 
fly if necessary), but XCOPY is nearly as fast and avoids potential fragmentation 
headaches. 

The /M option lets you use XCOPY as superior backup utility. 

DOS 5.0 CONFIG.SYS Commands 

BREAK 
2.0 

Format: 

The following commands are used only in the main CONFIG.SYS system config
uration file. They have to be in the CONFIG.SYS file when you boot, so you 
can't change them after starting up and expect DOS to know about them unless 
you reboot after the change. 

To take advantage of these, use the form: 

DEVICE[HIGH] [=]number 

or 

DEVICE [HIGH] [ =] status 

or 

DEVICE[HIGH] [=] [d:] [path] filename.ext 

Under DOS 4.0 or later, you can also use the INSTALL command to do this. 
You may substitute a DOS delimiter such as a space or semicolon in place of 

the equal sign. The CONFIG.SYS file must be a text (or pure-ASCII) file contain
ing nothing other than the letters, numbers, and punctutation that you can type di
rectly from the keyboard. And unless you really know what you're doing, the 
CONFIG.SYS file must be in the root directory of your startup disk. 

As with other DOS commands, the syntax and available features differ for ver
sions earlier than 5.0 

Allows extended Ctrl-Break checking. 

BREAK = [ON I OFF] 

ON = check during any DOS function 

OFF = check only during 1/0 functions 



1028 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0 

Notes: Use BREAK =ON for processes with little 1/0; avoid it when using applications 
that have their own use for Ctrl-C. 

You can use this command either in your CONFIG.SYS file or from the com
mand line (or, of course, in AUTOEXEC.BAT). 

BUFFERS 
2.0 

Format: 

Notes: 

Sets the number of disk buffers. 

BUFFERS = n [, m] [ /X] 

n = number of buffers (1-99 in early versions and in DOS 5.0; 1-10,000 under 
DOS 4.0 if the /X parameter is also specified) 

m = number of "read-ahead" or "look-ahead" buffers. Under DOS 4.0 or 5.0, 
BUFFERS can now read in from 1 to 8 sectors at a time ahead of the data 
you asked DOS to read; this is helpful when using sequential files since it 
means the next information you were probably going to look at is already in 
this special "look-ahead" memeory area. 

/X = told DOS 4.0 to put the buffers in expanded memory. For this to work you 
had to set things up properly (by using an expanded memory manager). 

Each buffer adds 528 bytes to the size of the resident portion of DOS. Don't use 
BUFFERS if you're running a disk cache program such as SMARTDRV.SYS. 

The default number of buffers is 2 to 15 depending on hardware configuration. 
You'll have to experiment to see what's best for your own system, but you should 
try numbers like 20 or 30 for newer, more powerful systems. 

COUNTRY 
3.0 

Specifies country-specific data 

Format: COUNTRY= xxx, [yyy], [d:] [path]filename[.ext] 

or 

COUNTRY xxx, [yyy] 



Notes: 

The DOS 5. 0 Commands 1029 

xxx ""' international telephone country code 

yyy = code page; each country has two 

[d:][path]filename[.ext] = name of COUNTRY data file 

The default country code is 001 for U.S. systems (and the default code page is 
437). The number of the country is the international telephone dialing prefix (001 
to 999 in recent versions). 

DEVICE and DEVICE HIGH 
3.0 5.0 

Format: 

Format: 

Format: 

Installs the seven drivers listed below: 

DEVICE=[d:] [path]filename[.ext] 

or 

DEVICE HIGH= [d] [path]filename[.ext] 

[d:][path]filename[.ext] = file containing device driver 

1. ANSI.SYS - Extended keyboard and screen device driver (DOS version 2.0) 

DEVICE= [d:] [pa th] ANSI. SYS 

2. DISPLAY.SYS - Display code page switching device driver (3.3) 

DEVICE= [d:] [path] DISPLAY. SYS CON [:] = (type[, [hwcp] [, n]] ) 

or 

DEVICE= [d:] [path] DISPLAY. SYS CON [:]=(type [, [hwcp] [, (n,m)]]) 

type = MONO, CGA, LCD, EGA (use EGA for PS/2) 

hwcp =hardware code page (437, 850, 860, 863, or 865) 

n = number of prepared code pages (0-12) For MONO and CGA types, n 
must be 0 

m = number of sub-fonts per page 

(U.S. users don't need this (whew)) 
DOS 4.0 and later check your hardware configuration to pick the display type 

for you automatically if you don't use type= to specify one. 



1030 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0 

Format: 

Format 

Format 

3. DRIVER.SYS - Disk device access-provider device driver (3.2) 

DEVICE=[d:] [path]DRIVER.SYS /D:ddd[/T:ttt] [/S:ss] 
[/H: hh] [/C] [/N] [/F: f] 

/D:ddd =physical drive number of (diskette 0-127, fixed 128-255); 0 is A:; 2 
must be external; first physical hard disk must be 128 

{f:ttt = tracks per side (1-999, default is 80) 

/S:ss =sectors per track (l-99, default is 9) 

/H:hh = number of heads/sides (1-99, default is 2) 

/C = changeline support required on AT and later only 

/N = nonremovable block device (hard disk) 

/F:f =form factor (device type) 

(Use SUBST rather than DRIVER.SYS for IBM hard drives.) 

4. EGA.SYS - Allows use of EGA monitors with the DOS Shell Task Swapper 

DEVICEIDEVICEHIGH=[d:] [path]EGA.SYS 

No switches, no decisions to make. 

5. EMM386.EXE - Expanded and UMB memory manager 

DEVICE= [d:] [path] EMM386. EXE [on] [off] [eeee] [w=on I w=off] 
[mxlframe=mmmml/pmmmm] [pn=mmmm] [x=mmmm-nnnn] 
[i=mmmm-nnnn] [b=mmmm] [L=xxx] [a=aaa] [h=hhh] [d=ddd] [RAM] [NOEMS] 

onlofflauto turns the device driver on (default), off, or puts it in auto mode. 

eeee is expanded memory (in kilobytes) from a range of 16 to 32768. The 
default value is 256. 

w=onlw=off enables or disables Weitek coprocessor support. 

mx specifies the page frame address (see table on page 448). 

FRAME=mmmm lets you specify the starting address of the page frame 
directly. Any of the values above are valid . 

. · /pmmmm does the same thing with even less typing 

pn=mmmm lets you do something slightly differect - specify the starting 
address of page n from the same range of values. 

x=mmmm-nnnn tells EMM386.EXE to exclude a range of memory addresses 
from possible use by an EMS page. 

i=mmmm=nnnn tells EMM386.EXE to use a particular emeory range for eiLher 
EMS pages or UMB RAM. 

b=mmm·m specifies the lowest address to be used for swapping EMS pages 
into conventional memory. 



Format 

Format: 

The DOS 5.0 Commands 1031 

L=xxx provides a minimum value for available extended memory after 
EMM386.EXE loads. 

a=aaa sets the number of alternate high-speed register sets to be allocated to 
EMM386.EXE. 

h=hhh sets the number of handles available to EMM386.EXE 

d=ddd reservs memory to be used for buffering direct memory access. 

RAM tells EMM386.EXE sto provide both expanded memory and UMB 
supp0rt. 

NOEMS tells emm386.exe TO PROVIDE umb support but not expanded 
memory. 

6. HIMEM.SYS - The central memory management facility for DOS 5.0 

DEVICE=[d:] [path]HIMEM.SYS[/hmarnin=mm] [/nurnhandles=nnn] 
[int15=xxxx] [machine: yy] [a20control: on I off] 
[shadowrarn: I off] [cpuclock:onloff] 

/hmamin=mmm is the minimum amount of memory (in kilobytes, from 0 to 
63) a program must use before HIMEM.SYS will grant it access to the 
HMA. The default is 0, which means that the HMA is available to any 
program that requests it on a first-come, first-served basis. 

/numhandles=nnn is the maximum number of extended-memory-block 
handles that can be open at one time. The range of allowable values is 1 to 
128, and the default is 32. 

/intlS=xxxx allocates kilobyte-sized chunks of extended memory for programs 
which use an Interrupt 15 interface for accessing extended memory. 

/machine=yy tells HIMEM.SYS about your machine's hardware and ROM 
BIOS, to enable HIMEM.SYS to use the HMA via the A20 handler. You 
can enter either the code or value from the table found on pages 446 and 44 7. 

/a20control:onloff tells HIMEM.SYS whether or not to take control of the 
A20 address line if it's already in use. 

/shadowram:onloff allowsyou to specify whether shadow RAM should be 
disabled and used by HIMEM.SYS as extended memory. 

cpuclock:onloff corrects a problem on some systems, where loading 
HIMEM.SYS lowers the CPU clock speed. 

7. PRINTER.SYS - Printer code page switcher device driver (3.3) 

DEVICE= [d:] [pa th] PRINTER. SYS LPT# [:] = (type [, [hwcp] [, n] ] ) 

or 

DEVICE=[d:] [path] PRINTER.SYS 
LPT# [:] = (type[, [ (hwcpl, hwcp2, ... ) ] [, n]]) 



1032 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0 

Pre-DOS 5.0 
Format: 

DOS 5.0 
Format: 

Format 

Format 

LPT# = printer 1, 2, or 3 

type = 4201 or 4208 (IBM Proprinters) or 5202 (IBM Quietwriter III) 

hwcp = hardware code page ( 437, 850, 860, 863, or 865) 

n =number of additional prepared code pages (0-12) 

8. RAMDRIVE - VDISK.SYS (older versions) 

DEVICE=VDISK.SYS [comment] [bbb] [comment] [sss] 
[comment] [ddd] [/E [ :m]] 

comment = string of ASCII characters 32-126 except slash/ 

bbb =disk size in K bytes (default is 64) 

sss =sector size in bytes (128 (default), 256, 512) 

ddd =maximum directory entries (2-512, default is 64) 

/E:m = use extended memory, where m is the number of sectors from 1 through 
8 that VDISK should transfer at once. 

(You can't use DISKCOPY on this virtual disk.) 

DEVICE=RAMDRIVE.SYS [bbb] [sss] [ddd] [/E] [/A] 

bbb =disk size in K bytes (default is 64) 

sss =sector size in bytes (128, 256, 512(default)) 

ddd =maximum directory entries (2-1024, default is 64) 

/E = use extended memory. 

I A = use expanded memory. 

9. SETVER.EXE - Installs a MS-DOS version table into memory to allow ap
plications that check version number to run normally. 

DEVICEIDEVICEHIGH=[d:] [path]SETVER.EXE 

10. SMARTDRV.SYS - Installs a smart cache to increase system throughput. 

DEVICEIDEVICEHIGH=[d:] [path]SMARTDEV.SYS[mmmm] [nnn]]/a] 

mmmm is the initial size of the cache in kilobytes. Valid values range from 
128 through 8192; the default is 256. 

nnn is the minimum cache size; the default is zero. Obviously, the minimum 
value should not be larger than the initial value. 

/a tells SMARTDRV.SYS to install the cache in expanded memory; the default 
is to install it in extended memory. 



FCBS 
3.0 

Format: 

FILES 
2.0 

Format: 

The DOS 5.0 Commands 1033 

Specifies the number of concurrently open files using file control blocks (FCBs). 

FCBS = m,n 

m =max files opened by FCBs at once (1-255, default is 4) 

n = files protected from auto-closing if program tries to open more than m files 
(0-255, default is 0) 

(Used primarily with SHARE or networks.) 

Specifies the maximum number of file handles open at once. 

FILES = x 

x = 8-255 (default is 8) 

Note: DOS uses two methods for file access - file control blocks (FCBs) and file han
dles. The CONFIG.SYS FCBS command deals with file control blocks (the older 
system). The FILES command deals with handles (the newer and preferable 
method). 

INSTALL 
4.0 

Format: 

Lets you automatically load programs when you start up from CONFIQ.SYS 
rather than AUTOEXEC.BAT. 

INSTALL=filename.ext 

DOS 4.0 lets you load four DOS utilities this way - FASTOPEN.EXE, 
KEYB.COM, NLSFUNC.EXE, and SHARE.EXE. You can also use this option 
to load commercial TSRs (terminate-and-stay-resident pop-up programs). 

Remember to include the extension (.EXE or .COM). 



1034 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0 

LASTDRIVE 
3.0 

Specifies the largest usable drive letter. 

Format: LASTDRIVE = x 

x =letter A-Z (default is E) 

Note: Colons aren't required after the drive letter. This command is especially handy 
when used with SUBST. Each additional drive above E: takes up 81 bytes of sys
tem RAM. 

REM 
4.0 

Format: 

Lets you add comments to a CONFIG.SYS file, or prevent CONFIG.SYS com
mands from taking effect. 

REM comment 

or 

REM command 

Note: While you've been_able to use REM in batch files to suppress comments since 
version 2.0, DOS now lets you use this technique in CONFIG.SYS files. This lets 
you insert comments that DOS won't try to execute. And it also lets you "park" 
commands that you sometimes use and sometimes don't. For instance, if you 
sometimes use ANSI.SYS, but you temporarily want to prevent DOS from load
ing it, stick a REM at the beginning of the DEVICE=C:\DOS\ANSl.SYS line and 
DOS will ignore it. Then when you want to use ANSI again, just remove the 
REM. 



SHELL 
2.0 

Format: 

STACKS 
3.2 

Format: 

The DOS 5. 0 Commands 1035 

Specifies substitute for COMMAND.COM, and allows modification of environ
ment size. 

SHELL= [d:] [path]filename[.ext] [parml] [parm2] 

For COMMAND.COM: 

/E:xxxxx =number of bytes in environment (160-32768;default is 160 -
different syntax in earlier versions) 

/P =keeps COMMAND.COM loaded and runs AUTOEXEC.BAT 

You can do some very powerful tricks with the environment (see the DOS En
vironment chapter for details), but DOS allocated too little default space for it. To 
increase the size, just use the SHELL command in any version of DOS 3.2 or 
later. Assuming you have a C: hard disk, add a line in your CONFIG.SYS file: 

SHELL=C:\COMMAND.COM /E:xxxxx /P 

where xxxxx is the new environment size in bytes (from 160 to 32768). Be sure to 
add the /P at the end of DOS won't run AUTO EXEC.BAT when you boot. 

Sets stack resources (allowing multiple interrupts to keep interrupting each other 
without crashing the system). 

STACKS = n,s 

n = stack frames (0, 8-64) 

s =frame size (0, 32-512) 

0 means no dynamic STACK support 



1036 DOS Power Too/,s, 2nd Edition, Revised/or DOS 5.0 

defaults are 0,0 for PC, XT, Portable; 9,128 for rest 

SWITCHES 
4.0 

Format: 

Note: 

Lets your system treat an extended (101-key) keyboard as if it were a classic AT
style 84-key keyboard. 

SWITCHES=/K 

Some older programs (and some older users) get confused by the extra keys on 
the newer keyboards. If this happens, just insert the SWITCHES command in 
your CONFIG.SYS file. 

DOS 5.0 Batch File Commands 

The following commands are used primarily in batch files, although some (such 
as FOR. . .IN ... DO) may also be used in slightly different format directly at the 
DOS prompt. 

Because DOS batch file commands provide the muscle of a small, powerful, 
and slightly complex programming language, a detailed batch command help sec
tion follows. 

Replaceable Parameter 
2.0 

Format: %n 

n = 0 to 9 (refers to position of parameter on.command line) 

%0 is always the DOS command itself; % 1 is first parameter after the com
mand. Use SHIFf for more than %9 parameters. 



The DOS 5.0 Commands 1037 

Environment Variable 
3.3 

Format: 

@ 

3.3 

Format: 

CALL 
3.3 

Format: 

%name% 

name = environment variable 

This lets batch files work with variable values stored in the DOS environment. 
See the DOS SET command in the main command section for details on inserting 
such values into the environment. 

For example, you may want to store the value of your current PROMPT setting 
if you 're also using PROMPT to generate ANSI Escape sequences. To do this, 
have a batch file save your PROMPT setting as an environment variable (with the 
command SET OLD=%PROMPT%) and later use SET PROMPT=%0LDP% to 
restore it. 

Prevents any command or comment that follows from displaying. 

@command 

batch-line= command to execute without display when ECHO is ON. 

The most use common use for this is starting a batch file with @ECHO OFF 
(in version 3.3 and later) to suppress command displays without having this com
mand itself appear onscreen. 

Runs another batch file then returns to first batch file. 

CALL [d:] [path] filename 

[d:][path] =drive/path for batch file 



1038 DOS Power Tools, 2nd Edition, Revised for DOS 5.0 

ECHO 
2.0 

Format: 

FOR 
2.0 

Format: 

This is similar to COMMAND /C but is more efficient in that it retains the 
ECHO state, is easier to break out of, and executes faster. It also makes it easier 
to work with environment settings. 

It can be very useful to have one batchfile run another and then have control re
turn, especially if the first batch file is feeding filenames or parameters to a sec
ond batchfile that processes them. The most common way to do this is to have a 
FOR. .. IN ... DO in the first batchfile and then pass parameters to the second. 

Controls message display. 

ECHO [ON I OFF I message] 

ON = show lines as they execute 

OFF = do not show lines 

message = message to display 

ECHO without any parameters after it displays the current display state. 
You use ECHO to can redirect output into new file called FILE.NAM by tack

ing on a > FILE.NAM 
If you 're using ECHO to display ANSI Escape sequence strings in batch files, 

make sure ECHO is on. 

Lets you execute DOS commands repeatedly. 

FOR %%variable IN (set) DO command 

% %variable = variable name 

(set) = list of files; wildcards will work 

command = DOS command using % %variable 

If you use this command outside of a batch file (directiy at the DOS prompt), 
use single % signs rather than the double % % signs required by the batch 
processor. 



GOTO 
2.0 

Format: 

IF 
2.0 

Format: 

The DOS 5.0 Commands 1039 

Transfers control of execution to an area of the batch file starting with the label 
specified. 

GOTO [:]label 

label - a text string similar to a filename but starting with a colon. You may in
clude the colon here as well but it's not necessary. 

See the "label" entry. 

Executes commands conditionally. 

IF [NOT] EXIST [d:] [path]filename[.ext] command 

or 

IF [NOT] stringl string2 command 

or 

IF [NOT] ERRORLEVEL n command 

NOT = reverses logical condition 

EXIST = TRUE if the specified file exists 

stringl == string2 =TRUE if two strings are identical 

ERRORLEVEL n =TRUE if previous program's exit code>= n 

command = DOS command line, executed only if TRUE 
You can limit ERRORLEVEL tests by combining two into one line with some

thing like: 

IF ERRORLEVEL 4 IF NOT ERRORLEVEL 5 GOTO FOUND4 

This is one of the most powerful (and complex) batch commands, and one re
quiring the most explanation and help. For instance, while IF ERRORLEVEL al
lows user intervention in batch files, DOS doesn't provide any direct method for 



1040 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0 

LABEL 
2.0 

Format: 

PAUSE 
2.0 

Format: 

REM 
2.0 

processing user entries. See the longer batch help section that follows for de
tails. 

Note that string comparisons require double== signs. 

Place marker for GOTO. 

:string 

string = 8 characters significant 

Label names generally follow the same kinds of rules as DOS filenames, ex
cept that a period(.) is not allowed. However, different DOS versions have their 
own peculiarities, so be sure to read the following help section for details. 

Pauses execution and wait for a keypress. 

PAUSE [remark] 

remark = message to display at pause 

If you don't enter a new remark, DOS will print its familiar "Strike a key when 
ready ... " message. Press any key at this point to proceed. 

It• s possible under some versions of DOS to get rid of this message by redirect
ing it to NUL and using ECHO to substitute a message of your own: 

ECHO Now press a key 
PAUSE > NUL 

Remark or comment. 



Format: 

SHIFT 
2.0 

Format: 

The DOS 5. 0 Commands 1041 

REM [remark] 

remark = text up to 123 characters 

Lines beginning with REM don't display when ECHO is OFF. 

Allows over standard ten %-parameters %0 through %9. 

SHIFT 

This also lets you move the value of a replaceable parameter down one step at a 
time (e.g., from %4 to %3 to %2). When you do this you'll lose the value of the 
lowest replaceable parameter, %0. If you need to retain a lower value you can use 
the SET command to store it in the DOS environment before executing SHIFf. 





EDLIN, DEBUG, and 
ANSI Commands 

EDLIN 

To do the following in EDLIN: 

Load and begin EDLIN 

Start entering text 

Stop entering text 

Edit an existing line 

Delete existing line(s) 

Move line(s) to another location 

Copy line(s) to another location 

Display part of your text 

Search for a specified string 

Replace one string with another 

Merge disk file into current one 

Use the following commands: 

EDLIN filename UB] 

I 

Ctrl-Break or Ctrl-C 

[line] (See note) 

[line] [,line ]D 

[line] ,[line] ,lineM 

[line],[line],line[,count]C 

[line][,line]L or [line][,line]P 

[line] [,line][?] S [string] 

[line] [,line] [?]R[ oldstring] [ <F6>newstring] 

[line ]T[ d: ]filename 

1043 



1044 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0 

Write part to disk and load more 

Quit and save any changes 

Quit without saving any changes 

[n]W then [n]A 

E 

QthenY 

Note: Substitute the appropriate line number in place of [line] above. And note that 
[line][,line] and [line],[line] really mean "enter the beginning and ending line numbers 
of the range of lines you want to work on." 

DEBUG 

To do the following in DEBUG: Use the following commands: 

Load and begin DEBUG DEBUG or DEBUG FILENAME 

Name file for loading/writing N [ d:] [path ]filename[ .ext] 

Load disk information into memory L [address [drive sector sector]] 

Display memory contents D [address][address] or D address length 

Display register/flag contents R [registemame] 

Enter new memory contents E address [list] 

Fill block of memory F range list 

Move block of memory M range address 

Compare two blocks of memory C range address 

Perform hexadecimal arithmetic H value value 

Search for characters S range list 

Assemble ASM instructions A [address] 

Unassemble instructions U [address] or U [range] 

Input/display· 1 byte from port I portaddress 

Output 1 byte to port 0 portaddress byte 

Execute program in memory (Go) G [ =address][address[address ... ]] 

Execute one main instruction P [=address] [value] 



Execute and show registers/flags 

Write data to disk 

Quit (without saving) 

New DEBUG Commands/or DOS 
4.0are: 

EDLIN, DEBUG, and ANSI Commands 1045 

T[ ... address][valUe] 

W [address [drive sector sector]] 

Q 

Allocate expanded memory XA number of 16K EMS pages 

Deallocate expanded memeory XD handle-number 

Map logical to physical EMS page XM logicalpage physicalpage handle 

Display expanded memory status XS 

ANSI.SYS 

Note: In all examples, ESC represents decimal ASCII character 27 and not the letters 
E-S-C. 

Cursor Movers 

Move the cursor to a specific 
position: 

Move the cursor up: 

ESC[#l;#2H orESC[#l;#2f 

#1 =tow 
#2 =column 

Default is 1. Omitting all parameters moves the 
cursor to row 1, column 1 (upper lefthand corner 
of the screen). All numbers are in decimal for
mat, and the upper lefthand comer is row 1, col
umn 1. 

Example: ESC[5;8H moves the cursor to row 5, 
column 8. 

ESC[#A 

# = number of lines to move 
; ~ 

Default is 1. Maintains the current column posi-
tion. If the cursor is already on the top line, noth
ing ch~hges. 



1046 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0 

Move the cursor down: 

Move the cursor right: 

Move the cursor left: 

Device Status Report (Report 
Current Cursor Position) 

Example: ESC[3A moves the cursor up three 
rows. 

ESC[#B 

# = number of lines to move 

Default is 1. Maintains the current column posi
tion. If the cursor is already on the bottom line, 
nothing changes. 

Example: ESC[6B moves the cursor down six 
rows. 

ESC[#C 

# = number of columns to move 

Default is 1. Maintains the current row position .. 
If the cursor is already at the right edge of the 
screen, nothing changes. 

EXatnple: ESC[40C moves the cursor 40 col
umns to the right. 

ESC[#D 

# = number of columns to move 

Default is 1. Maintains the current row position. 
If the cursor is already at the left edge of the 
screen, nothing changes. 

Example: ESC[25D moves the cursor 25 col
umns to the left. 

ESC[6n 

Issuing this command (you can't do it via 
PROMPT) triggers a Cursor Position Report in 
the form: 

ESC[#l,#2R 

where # 1 is the current row and #2 is the current 
colmnn. 

Example: ESC[6n (if the cursor is at row 3, col
umn 7) will generate a ESC[3, 7R string. 



Save current cursor position: 

Restore saved cursor position: 

Erasing and Screen Clearing 

Clear the screen: 

Erase to end of line: 

EDLIN, DEBUG, and ANSI Commands 1047 

ESC[s 

Stores most recent cursor position so you can 
later restore it with the ESC[u sequence. 

Example: ESC[s (if cursor is at row 6, column 7) 
will save these coordinates to be restored later. 

ESC[u 

Restores the current row and column previously 
stored by the ESC[s sequence. 

Example: ESC[u (if ESC[s had previously stored 
the cursor position as row 6, column 7) will repo
sition the. cursor at those coordinates. 

ESC[2J 
orESC[J 

This erases everything and positions the cursor 
in the upper lefthand comer of the screen - row 
1, column 1. 

Actually, you don't need the 2 before the J. Just 
about any number there will work. So will just a 
J by itself: 

ESC[J 

Example: ESC[2J clears the screen to the exist
ing colors. 

ESC[K 

Erases from the current cursor position to the 
en4 of the line - including the current column. 

Examples: ESC[K (if you 're using an 80-column 
screen and the cursor is on column 8) will erase 
from column 8 through, to colimm 80 on that row. 

ESC[5;8tESC[K will first move the cursor to col
umn 8 of row 5, and will then erase everything 
from column 8 through column 80 on .that line. 



1048 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0 

Color and Attribute Setting 

Set one or more screen attributes: ESC[#; ... ;#m 

Miscellaneous Attributes: 

#s are the attributes 

Also called Set Graphics Rendition (SOR), the 
attributes that it establishes remain in place until 
reset by a subsequent SOR command. 

0 All attril>µtes off (resets everything) 
1 High intensity (bright/bold) on 
4 Underline on (mono screens only; blue otherwise) 
5 a1inkon 
7 Reverse video on (black on white) 
8 .. Canc~lled" (invisible) 

Color Attributes: 

~olor: (IBM value) As background: As foreground: 
30 Black 

Red 
Green 
Yellow 
Blue 
Magenta 
Cyan 
White 

(0) 40 
(4) 41 
(2) 42 
(6) 43 
(1) 44 
(5) 45 
(3) 46 
(7) 47 

31 
32 
33 
34 
35 
36 
37 

Examples: 

ESC[Om resets all attributes to normal (white on 
black). 

ESC[m also resets all attributes to white on 
black. 

ESC[8m blanks the screen (black on black). 

ESC[5m blinks the current text color. 



Mode Controls 

Set screen widths/modes: 

Mode settings (values for#) 

0 40x25 black and white 
1 40x25 color 
2 80x25 black and white 
3 80x25 color 
4 320x200 color graphics 

EDLIN, DEBUG, and ANSI Commands 1049 

ESC[lm makes the current text color bold. 

ESC[5;1m blinks current text color a~d makes it 
bold. 

ESC[ 44m sets background to blue. 

ESC[ 44;37m sets colors to white text on blue 
background. 

ESC[44;37;1m sets colors to bright white text on 
blue background. 

ESC[44;37;1;5m sets colors to blinking bright 
white text on blue background. 

ESC[=#h 
orESC[=#l 

When used with values from 0 to 6 ESC[ =#h 
(SET MODE) and ESC[ =#1 (RESET MODE) 
work identically to change screen modes on ap
propriate displays. (Note that the 1 is a lowercase 
L rather than a 1.) 

(DOS MODE) 

(BW40) 
(C040) 
(BW80)(MONO) 
(C080) 

5 320x200 black and white graphics 
6 640x200 black and white graphics 

13 320x200 16-color 
14 640x200 16-color 
15 640x350 mono 
16 640x350 16-color 
17 640x480 2-color 
18 640x480 16-color 
19 320x200 256-color 



1050 DOS Power Too/.s, 2nd Edition, Revised/or DOS 5.0 

Set line wrap on: 

Set line wrap off: 

Keyboard Controls 

Redefine one key as another: 

Examples: ESC[ =3h and ESC[ =31 will each set 
the screen mode on a color system to 80x25 
color. 

ESC[?7h 
orESC[=7h 

Anything typed past the rightmost column of the 
screen will wrap down one line to the leftmost 
column. 

Example: ESC[?7h will make text wrap normally 
around from right to left and down one line. 

ESC[?71 
orESC[=71 

If you reach the right edge of the screen DOS 
will lock the cursor there and overlap any addi
tional text you type meaninglessly on the one 
rightmost column. However, it won't discard 
any keystrokes, even though it has trouble dis
playing them. (Note that the 1 character is a low
ercase L and not a 1.) 

Example: ESC[?71 will make text disappear 
once it reaches the rightmost column of the 
screen. 

ESC[#1;#2p 
or ESC[O;#l ;#2p 
or ESC[#1;0;#2p 
or ESC[0;#1;0;#2p 

# 1 is the ASCII code of the key to be redefined 
#2 is the ASCII value of the new definition 
If using an extended key, its ASCII value is two 
characters long; the first character is 0 

ANSI can juggle the definitions of any non-Shift 
keys. (It can't change keys without ASCII val
ues such as Shift or Ctrl or Alt.) To redefine one 
alphanumeric key (like A or a or 1), first specify 
the decimal ASCII value of the key you want to 



EDLIN, DEBUG, and ANSI Commands 1051 

redefine and follow it with its new ASCII value. 
If you 're using an "extended" key (like F7, Alt
U, or Ins) either as the key you want redefined 
or as the new definition, specify this extended 
key by preceding it with a 0. 

To reset a key to its original value, redefine it as 
itself (put its ASCII value on both sides of the 
semicolon). 

Examples: 

ESC[65;90p turns an uppercase A (65) into an 
uppercase Z (90) while leaving the lowercase a, 
and both the upper- and lowercase Z alone. (You 

would be able to type an uppercase Z by holding 
down the shift key and typing either A or Z.) 

ESC[65;90p and ESC[90;65p will switch upper
case Z and A but leave the lowercase versions of 
each alone. 

ESC["A";"Z"p and ESC["Z";"A"p will also 
switch uppercase A and Z and leave everything 
else alone. 

ESC[65;65p will reset the uppercase A key so it 
again prints and uppercase A. 

ESC[65;65p and ESC[90;90p will put the upper
case A and the uppercase Z back they way they 
were originally. 

ESC[34;39p and ESC[39;34p will swap the •• 
and' keys. 

ESC['"";""p and ESC["";"'"p will also swap 
the " and • keys. 

ESC[0;46;155p will tum Alt-C (an "extended" 
key with an ASCII value two characters long -



1052 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0 

Assign multiple characters to 
keys: 

0 46) into a cent sign (which has an ASCII value 
of 155). 

ESC[0;59;0;60p and ESC[0;60;0;59p will switch 
function keys Fl (0 59) and F2 (0 60). 

ESC[0;59;0;59p and ESC[0;60;0;60p will re
store function keys Fl and F2 to their original 
settings. 

ESC[#l ;"text"p 
ESC[O;#l;"text"p 
ESC[#l;#2; ... ;#127p 
ESC[#1;#2;"text";#l00p 

# 1 is the ASCII code of the key to be redefined. 

"text" is the text you want to assign to this key. 

If using an extended key, its ASCII value is two 
characters long; the first character is 0. 

#2 through #100 or #127 are the ASCII values of 
the new definitions. 

"text" is ASCII text between quotes. 

ANSI lets you tum any alphanumeric (nonshift) 
key on the keyboard into a "macro" key that can 
enter commands, print messages, etc. You may 
enter up to 127 characters as the new definition 
for each key, by specifying the ASCII value(s) 
of the key(s) in the new definition, or by specify
ing text (between quotation marks) for the new 
definition, or by combining both decimal ASCII 
values and text into the new definition. 

To reset a key to its original value, redefine it as 
itself (put its ASCII value on both sides of the 
semicolon). 

Examples: 

ESC[65;66;67;68;69;70p will assign the letters 
BCDEF to the capital A, so that typing an A will 
print out BCDEF. This will leave the lowercase 
"a" alone. 



EDLIN, DEBUG, and ANSI Commands 1053 

ESC[65;65;66;67;68;69;70p will assign the let
ters ABCDEF to capital A. 

ESC[65;65p will restore the capital A back to 
normal. 

ESC["A";"A"p will also restore the capital A to 
normal. 

ESC[0;59;"DIR "p will put the letters DIR fol
lowed by a space on the command line when
ever you press the Fl key. It won't actually 
execute the command, so you '11 be able to add a 
drive letter and then press the Enter key. 

ESC["-";"DIR C:";13p will assign the com
mand DIR C: to the tilde (-). Adding a 13 at the 
end before the p will make DOS execute the 
command instead of just printing it out, because 
13 is the ASCII value of the Enter key, and this 
will simulate pressing Enter. This will leave the 
lowercase character on the tilde key alone. 

ESC[126;"DIR C:";13p will assign the same 
DIR C: and Enter command to the tilde. 

ESC[0;25;"Name: ";13;"Rank: ";13;·•serial 
Number: "; 13p will have AH-P trigger: 

Name: 
Rank: 
Serial Number: 

with a carriage return and a space after each. At 
the DOS prompt this will produce error mes
sages since DOS will think you're trying to exe
cute files called Name:, Rank:, and Serial. But 
you can use this when creating files with EDLIN 
or the DOS COPY command or certain text edi
tors such as IBM PE. 

ESC[0;15;"DIR I FIND ";34;"-88";34;13p will 
tum the little-used Shift-Tab key combination 
into a command that will list all the 1988 files in 



1054 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0 

New ANSI.SYS Commands for 
DOS 4.0are: 

Disable En~anced Keyboards: 

Enable Enhanced Keyboards: 

the current subdirectory (assuming the DOS 
FIND.EXE utility is handy). The two 34s are 
needed because 34 is the ASCII value of the quo
tation m~rks needed for the FIND command. 

ESC [Oq 

This makes newer enhanced ( 101-key) key
boards behave like older 83- and 84-key key
boards by telling DOS 4 to ignore extended key 
values and ANSI reassignments. This is the 
same as loading ANSI with a /K parameter. 

ESC [lq 

This tells ANSI to take advantage of the addi
tional keys on enhanced (101-key) keyboards. 
You can do the same thing by specifying a /X pa
rameter when loading ANSI under DOS 4. 



Index 

A executing commands, 455 standard and old 

ABORT.BAT, 569 
placement of commands, applications, 82 

Absolute address, 241 
462-464 typing name on command 

A command, DEBUG, 312-313, 
ANSIESC, 494 line, 95 

369-374 ANSIPROM.BAT, 463-464 APPNOTES, 71 

ADD.BAT, 630-631 ANSI.SYS, 8, 245, 439, 451, Appointment book, creating with 

ADDNAME.BAT, 785-786 453-506 batch file, 626-628 

Address 18 H + handle, 740 color/attribute setting, APPT.BAT, 627 

Address, 235 1047-1048 Arithmetic logic unit, 251 

absolute address, 241 color changing script, Arrow keys, 199 

and DEBUG, 309-310 464-483 Artifact color, 701 

linear addressing, 237 and CONFIG.SYS, 453 ASCII characters, 164-171, 172 

relative address, 241 cursor moves, listing of, and BIOS, 166 

Address book, creating with 1044-1046 and ECHO, 550 

FIND, 785-786 erasing/screen clearing, EDIT, inserting in document, 

Aliasing, 13 1046-1047 269 

Allen, Paul, 3, 4 full screen display, 484-490 in filenames, 87-88 

Allocation unit, 409 functions of, 453 function of, 165 

Alt key keyboard controls, 1050-1054 generation of, Alt key, 

ASCII characters, generation key redefinition, 492-503 192-195 

of, 192-195 macros, 504-506 and hexadecimal numbers, 

and BASIC, 192, 195 mode controls, 490-492, 180 

functions of, 192-198 1048-1049 high-bit ASCII characters, 

to protect files, 196-198 ANSITEST.BAT, 596 165 

Analog outputs, 702 ANYLETR.COM, 523-524, 525 utility for display of, 

AND, 173, 174 ANYWHERE.BAT, 486-488 184-186 

ANSCOLOR.COM, 465-468 APPEND,657,747-749 index of extended ASCII 

ANSICHAR.BAT, 501-503 APPEND/X, 747 codes, 

ANSICOLOR.BAT, 482-483 format of, 970 496-497 

ANSI commands functions of, 748 and keyboards, 182-184 

beginning characters for, keeping tabs on APPEND listing with hex and decimal 
454 list, 748-749 values, 218-219 

creating with DEBUG, Append lines, EDLIN, 280 program to display 
459-461 Applications characters, 167 -168 

creating with EDLIN, and hidden files, 147 ASCII files 
456-458 loading secondary COPYCON,85 

erasing commands, 489 COMMAND.COM, formats, 82 
as escape sequences, 454 757-758 low-bit ASCII format, 82 



1056 DOS Power Tools, 2nd Edition, Revised for DOS 5. 0 

with nonstandard/jumbled 
characters, 85 

pure-low-bit ASCII files, 85 
as word processor files, 85 

ASCII scripts, DEBUG, use of, 
310-311 

Assembler 
DEBUG, 312-314 

assembling ASM instructions, 
369-374 

unassembling instructions, 
374-388 

ASSIGN, 73, 747, 971 
caution related to, 801 
fonnat of, 970 
function of, 7 4 7 
putting in batch file, 747 

Asterisk, 200, 275 
See also Wildcards 

@command 
batch file command, 1036 
fonnat of, 1036 
message suppression, 551 

ATTRIB, 14, 217, 971-972 
DOS 5.0 enhancements, 47-48 
fonnat of, 971 

Attributes, and ANSI.SYS, 
1047-1048 

AUTOEXEC.BAT 
batch file to avoid, 645-647 
and installation, 32 
protection of, 145-147, 148-149 

Auxiliary carry flag, 391 

B 

BACK.BAT, 478-479 
Background printing, 89 

and PRINT, 790 
Backslash, and CD, 975-976 
Backspace key, 199 
BACKUP, 764, 972-973 

and copy-protected programs, 765 
and DOS versions, 14-15, 973 
format of files in, 973 
format of, 972 
problems related to, 765 
use of, 155-156 

Backups 
importance of, 800-801 
types of backups, 800 
wildcards, 109-110 

Bad sectors, location with FIND, 783 
Bandwidth, 702, 703 
Bank switching, 246 
BANNER.EXE, 519, 524, 525 
Bare directory listing 

combination bare name and 
search, 50 

switch for, 49 

Base address, 251 
Base memory, nature of, 35 
Base pointer, 313, 389 
BASIC,5 

and Alt key, 192, 195 
translation of hexadecimals, 

178-180 
BASICA.COM, 154 
BASIC.COM, 154 
BATCHl.BAT, 566-567 
BATCH2.BAT 
Batch file commands 

@, 1036 
CALL,566-572,1037 
ECHO, 549-558, 1037 
environment variables, 587-589, 

1036 
FOR. . .IN ... DO, 572-577, 

1037-1038 
GOTO, 559-566, 1030 
guidelines related to, 549 
IF,589-597, 1038-1039 
IF ERRORLEVEL, 597-624 
LABEL, 1039 
PAUSE, 577-584, 1039 
REM,558-559,1040 
replaceable parameters, 578-584, 

1036 
SHIFf, 584-587, 1040 

Batch files, 15 
adding comments as reminders, 

515-519 
applications 

appointment book, 626-628 
to avoid AUTOEXEC.BAT, 

645-647 
to copy groups of files to 

another directory/disk, 
643-645 

creating real time log, 
642-643 

DOS notepads, 624-626 
to give DOS access to 

time/date, 640-641 
running program at specific 

time, 638-640 
running unattended system, 

633-638 
send command to batch file 

during execution, 642 
telephone dialer, 628-630 
telephone directory, 630-633 

for boxes and borders, 518 
CHKDSK.EXE, example 

program, 510-513 
and COMMAND.COM, 

512-513,759-760 
copied onto RAMdisk, 518 
DOS handling of, 535-538 
and EDLIN, 511-512, 538-543 

and environment variables, 585, 
666 

and ERRORLEVEL, 519-534 
labels, 559-565 
looping program, 519 

menu in, 524-534 
stopping program, 520-524 

names for, 98 
nature of, 509 
nesting, 566-567 
preventing from appearing 

onscreen, 514-515 
program to clean up disks, 

543-548 
and RAMdisks, 145, 623 
recursive program, 534-543 
to reduce PATH string, 660-661 
with replaceable parameter, 

535-537 
speeding up batch files, 623-642 
turning ECHO off, 513-515 
and TYPE, 518, 531 

BATCHKEY.COM, 603 
BC3.COM, 713 
BDOS,4 
BIN, 84, 91-92 

BIN subdirectory, 136138 
Binary-coded decimal calculations, 

391 
Binary files, 84 
Binary numbers, 160 

and bit mask, 174-175 
counting in, 161-163 
and logical operations, 171-173 

BIOS, 4,497 
and ASCII characters, 166 

BIOS interrupt 10 
colors, 678-679 
table of tools, 679.:..690 

BIOS interrupt 21, 695 
colors, 679, 691-692 
table of tools, 690 

Bit, 160 
Bit Block Transfer, 732 
BITBLT, 732 
Bitmask, 174-175 
Bit-plane architecture, VGA, 721 
BLANK.COM, 473-474 
Blanking intervals, 717 
BLANKIT.COM, 711, 713 
Block device, 52 
Block drivers, 440 
Bookmarks, setting, 267 
Boot sector, examination of, 419 
Bootstrap loader program, 761 
Boot-up, 12 

prevention for security, 793-794 
Borders, 550 

batch file for, 518 
setting color, 673-674 



BORDER.SET, 674 
Boundaries, paragraph, 241 
Boxes, 550 

batch file for, 518 
drawing, 194-195 

BREAK,973 
CONFIG.SYS conunand, 

1027-1028 
format of, 973, 1027 
setting to ON, 806 

Breakpoints, 307 
Bricklin, Dan, 4 
Buffers, 15, 974 

Conunand, 1028 
CONFIG.SYS, 131-132 
secondary buffer cache, 974 
default buffer allocation, 974 
format of, 974, 1928 

BUILD.BAT, 624-625 
Bus, 10, 253 
Busytick, 791 
Bytes, 160, 313 

tally of, 51 

c 
Cache utility, 14 
CALL,566-672,974-975 

batch file conunand, 1037 
for fast exit, 568-570 
formatoL566,974, 1037 
functions of, 566-572 
to pass parameters from batch 

files, 570-572 
CapsLock key, 203-204, 

205-206 
Caret, 187, 189 
Case insensitivity, and strings, 

596-597 
CASETEST.BAT, 601-602 
C command, DEBUG, 400-402 
CD, 127-129, 149-150, 975-977 

and backslash, 975-976 
and CHANGE.BAT, 976-977 
format of, 975 
use of, 126-129 

Central processing unit, 225-229 
bus,226 
clock, 226 
interrupt handling, 227-229 
numeric coprocessor chip, 227 
operations of, 225-226 
ports, 226 
registers, 226 

CGA, 672-675, 677, 699, 701-704, 
711, 712, 752, 753 

colors of, 675 
limitations of, 677, 701-702 
quality of, 245 

CHANGE.BAT, 976-977 

Character drivers, 440 
Character separators, 245 
CHAR.COM, 503 
CHARS.BAT, 504-506 
CHCP,975 

format of, 974 
CHDIR. See CD 
CHECKPATH.BAT, 590-591 
CHKDA TE.BAT, 639-640 
CHKDATE.COM,640 
CHKDSK, 153, 509-513, 515, 

977-978 
cross-linked files message, 

737-738 
format of, 977 
functions of, 736-737 
and hidden files, 978 
manner for listing files, 736-737 

CLEANUP.BAT, 543-546, 548 
CLEARSLF.BAT, 489-490 
Clipboard, 269-270 

selection of text, 269-270 
use of, 270 

Clock, central processing unit, 226 
Clock speed, 10, 12 
CLRSCRN, 481 
CLS, 533, 978 

format of, 978 
Clusters, 409, 762 

cluster size, 763 
hard disk, 79 

Coded values, 414 
CODEPAGE.BAT, 751 
Code page switching, KEYBxx, 

749-751 
Code segment, 313, 389 
COL.COM, 482-483, 503 
COLDBOOT.COM, 794 
COLORl.SCR, 464-465 
Colors, 206 

and analog outputs, 702 
and ANSI.SYS, 671, 1047-1048 
and BIOS interrupt IO, 678-679 

table of tools, 679-690 
and BIOS interrupt 21, 679, 

691-692,695 
table of tools, 690 

and bytes, 698-699 
CGA, 672-675, 677, 699, 

701-704 
clear colors, 713 
color changing script, 

ANSI.SYS, 464-483 
comparison of display types, 703 
and DEBUG, 696-697 
EGA, 702, 704 
entering instructions, 691-695 
Hercules lnColor Card, 702 
IBM versus ANSI, 468 
MCGA, 704 

Index 1051 

and PCs, 671-672, 701 
ROB, 675-676 
storage schemes, 704-710 
table of values/colors, 474 
VGA, 703, 704 

COLSET.COM, 713 
COM files, 755 

COM extension, meaning of, 82 
and DEBUG, 407 
nature of, 82-83 

Conuna delimited files, and SORT, 
777 

COMMAND, 979 
format of, 979 

COMMAND.COM, 755-760 
accessing, 103-104 
applications and secondary 

versions of, 757-758 
and batch files, 15, 512-513, 

759-760 
confusing messages of, 758-759 
and COPY, 740-741 
development of, 6, 8 
divisions of, 756 
functions of, 755-756 
and internal commands, 98-99 
loading second version of, 650, 

756-758 
to load temporary command 

processor, 655-656 
locating, 653 
patching, 99-100 
patching to expand DOS 

environment, 654-655 
on RAMdisk, 759 
removing from root directory, 653 
screen clearing, 383 
viewing with DEBUG, 316-324 
viewing table of internal 

commands, 72-73 
COMMAND/C, 550, 566-567, 641, 

642 
to nest batch files, 566-567 
syntaxes for, 567 

Command line, 89 
Command mode, EDLIN, 275 
Command tail, 83, 89 
Communications programs, and 

security, 797 
COMP, 807, 979-980 

format of, 979 
interactive use of, 980 

COMPARE.COM, 596 
COMPLETE.BAT, 569 
Compressed files, expanding files, 54 
COMPTEST.BAT, 596-597 
COMSPEC, 650, 656-657, 759 

functions of, 656-657 
SHELL as substitute for, 653 

COMSPEC.BAT, 784 



1058 DOS Power Tools, 2nd Edition, Revised for DOS 5. 0 

CON, See Console 
Concatenation, 142 
CONFIG.CTL, 249 
CONFIG.SYS, 131-134 

advantages of, 131 
and ANSI.SYS, 453 
and buffers, 131-132 
and device drivers, 132 
and installation, 32 
commands 

BREAK:, 1027-1028 
BUFFERS, 1028 
COUNTRY, 1028-1029 
DEVICE, 1029-1032 
FCBS, 1032 
FILES, 1032-1033 
INST ALL, 1033 
LASTDRIVE, 1033 
REM, 1033-1034 
SHELL, 1034 
STACKS, 1035 
SWITCHES, 1035 

memory drivers, 40 
protection of, 145-147 
viewing contents of, 134 

Console (CON), 88, 691 
Contiguous sectors, 760 
Control characters, 83, 554 
Controlcodes, 164-165,206 

listing of operations, 165 
Controlflags,391,392 
Conventional memory, nature of, 36 
Coprocessors, VGA, 732-733 
COPY, 154, 738-744, 760, 761, 

980-981 
/B switch to prevent problems, 

741 
caution related to, 802, 981 
to create files, 88-89 
to devices, 981 
format of, 980 
handle approach, 740 
problems related to, 738-739 

COPY CON, 743, 744 
ASCII files, 85 
limitations of, 169-170 

Copy/cut/paste, Clipboard, 269-270 
COPYEASY.BAT, 643'-645 
COPYFAST.BAT, 574 
Copying files, batch file for, copy 

groups 
of files to anotQ.er 

directory/disk, 643-645 
Copying lines, EDLIN, 280-281 
Copy-protected programs, and 

BACKUP and RESTORE, 
765 

COUNTRY, 982 
CONFIG.SYS command, 

1028-1029 

format of, 982, 1028-1029 
listing of country code, 982 

CP/M,4-8 
Cross-linked files message, 

CHKDSK, 737-738 
Cross-linking, file allocation table, 

737-738 
Ctrl-[, 190 
Ctrl-A, 187 
Ctrl-Alt-Del, 190 
Ctrl-C, 188 
Ctrl-End, 190 
Ctrl-G, 188, 190 
Ctrl-H, 188 
Ctrl-Home, 190 
Ctrl-I, 188 
Ctrl-K, 190 
Ctrl-left arrow, 190 
Ctrl-L, 190 
Ctrl-M, 188 
Ctrl-N, 190 
Ctrl-NumLock, 189, 190, 204 
Ctrl-P, 188, 191 
Ctrl-PtrSc, 189, 191 
Ctrl-R, 190 
Ctrl-right arrow, 190 
Ctrl-S, 188 
Ctrl-ScrollLock, 190, 204, 205 
Ctrl-Z, 188, 210 
Ctrl key 

Ctrl/alphabetic key 
combinations, 188 

Ctrl/noniilphabetic key 
combinations, 189-190 

functions of, 187-190 
CTTY.CON, 982-983 
CTTY CON, 553, 574 
CTTY NUL, 553, 574 

caution related to, 804, 983 
function of, 983 

CURLOCK.COM, 713 
CURRENT.BAT, 640-641, 667, 668 
Cursor 

customization of, 712-713 
movements in EDIT, 267-268 
movers in ANSI.SYS, 1044-1046 

CURSOR.COM, 713 
CURSOR.EXE, 713 
Cursor pad, 201 
Cyclical redundancy check, 745, 746 

D 

Data segment, 313, 389 
DATE, 983 

format of, 983 
DATECHEK.COM, 638-639 
DATEMAKE.BAT, 641 
DATES$.BAT, 667 
DBASEII,6 

D.BAT, 783-784 
D command, DEBUG, 319-320, 

322,343,345-348 
DEBUG, 8, 100, 237, 526, 533 

Acommand,312-313,369-374 
actions/corresponding 

commands,1043-1044 
and addresses, 309-310 
ASCII scripts, use of, 310-311 
caution related to, 804 
C command, 400-402 
and colors, 696-697 
and COM files, 407 
commands, canceling, 430 
commands related to expanded 

memory,438 
copying to DOS subdirectory, 310 
to create files, 169-171 
creating ANSI commands, 

459-461 
DOS 5.0 enhancements, 48 
Dcommand,319-320,322,343, 

345-348 
E command, 330-331, 343, 

348-351,372,400 
entering commands, 310, 311 
execute one instruction, 434-437 
execute program in memory, 433 
execute and show registers/flags, 

434 
and EXE files, 407-408 
exiting, 429-430 
and expanded memory, 38 
F command, 330, 332, 352-355 
G command, 433 
and hex, 209 
hexadecimal arithmetic, 396-400 
and hexadecimal numbers, 180 
for hex math, 48 
I command, 430 
input/display single byte from 

port,430 
L command, 402-407 
memory 

comparing two blocks, 
400-402 

display of memory contents, 
343-348 

entering new contents, 
348-353 

filling block of memory, 
353-356 

loading disk information into, 
402-407 

moving block of memory, 
356-362 

writing information from 
memory to disk, 423-429 

mini-assembler, 312-314 



assembling ASM instructions, 
369-374 

unassembling instructions, 
374-388 

Move command, 335-340, 344, 
356-361 

naming files for loading/writing, 
342-343 

Ncommand,325,330,342,343 
0 command, 430-433 
and OEM identification field, 

27-28 
output file, 314-315 
output/send single byte to port, 

430-433 
and paragraphs, 239, 321 
P command, 434-437 
prompt for, 310 
Q command, 429-430 
R command, 388-396 
recording activities of, 314-315 
register and flag contents, display 

of, 388-396 
safety rules for, 308 
sample script file, 311-312 
scanning file with, 332 
S command, 318-319, 320, 351, 

362-369 
search, 318-319 

for characters, 362-369 
sectors of data, loading, 409-422 
startup, 340-341 
strings processing, 314 
and syntax errors, 312, 370 
T command, 434 
U command, 327-329, 374-388 
usefulness of, 307 
to view COMMAND.COM, 

316-324 
viewing file with, 327-331 
\Vcommand,343,378,423-429 
XS command, 438 

Defaults, 93 
DEL, 983-984 

format of, 983 
Deleting files, wildcards, 109-115 
Deleting lines, EDLIN, 281-283 
Delimiters, 23, 213 
Del key, 203, 212 
DELNAME.BAT, 786 
Destination index, 313, 391 
DEVICE 

CONFIG.SYS command, 
1029-1032 

formats of, 1029-1032 
Device driver programs, 8 
Device drivers 

ANSI.SYS, 451, 453-506 
and AUTOEXEC.BAT, 41 
block drivers, 440 

character drivers, 440 
and CONFIG.SYS, 40-41, 132 
DISPLAY.SYS, 451-452 
DRIVER.SYS, 440-443 
EGA.SYS, 451 
EMM386.EXE, 445, 448-450 
functions of, 439 
HIMEM.SYS, 445, 446-447 
installation, 440 
PRINTER.SYS, 451-452 
RAMDRIVE.SYS, 443-445 
SETVER.EXE, 451 
SMARTDRV.SYS, 450-451 

DEVICEHIGH, 250, 984-985 
and device drivers/TSR 

programs, 40-41 
format of, 984 

Device switching, 776 
DIAL.BAT, 628-630 
Dialog boxes, EDIT, 262-263 
Digital to analog converter register, 

VGA, 726 
Digital information, 160 
Digital outputs, 702 
DIR, 105, 985 

DOS 5.0 enhancements, 48-52 
attribute switches, 49 
bare switch, 49 
combination bare name and 

search, 50 
DIR used with FIND, 51 
preset directory display, 50 
search subdirectories, 49-50 
sort order, 50 
tally of bytes, 51 
wide directory listing, 51 

format of, 985 
DIR.BAT, 513 
DIRCMD,50 
Direct console 1/0 function 6, 691 
Direct memory access, 229 
Directories 

locating filenames with common 
string, 51 

nature of, 78 
preset directory display, 50 
wide directory listing, 51 

Directory handling, 25 
Directory tree, DOS shell, 64 
DIRLIST, 767-768, 76,9 
DIRSORT, BAT, 592' 
DISABLE.COM, 788 
DISKCOMP, 986 

format of, 986 
DISKCOPY, 209, 746, 986-987 

format of, 986 
function of, 746 
times for use of, 806 

Diskettes 
caution related to, 11, 12 

5-1/4 inch, 11, 12 
FORMAT,55-58 

Index 1059 

future 2.88MB diskettes, 26 
listing of all formats for, 55 
quality of, 802 
3-1/2 inch, 12 
upgrading DOS on bootable disk, 

760-761 
Disk information, loading into 

memory, DEBUG, 
402-407 

Disks 
arrangement of DOS on, 412 
file allocation table, 79-80 
formatting, 80 
hard disks, 79-82 
physical disk, 78-80 
and read-write head, 78 
See also Hard disk; Diskettes 

Dispatch table, 72 
Display 

customizing cursor, 712-713 
freezing the display, 204-205 
full screen display, ANSI.SYS, 

484-490 
high resolution graphics screen, 

699 
monochrome, 704, 710-712 
quality components, 717-718 
screen blanking, 710-712 

Display adapters 
EGA, 715 
8514/A display adapter, 733-734 
VGA, 715-716, 719-733 
XGA, 715, 734 

Display Output function 2, 691 
Display String function 9, 691 
DISPLAY.SYS, 451-452 

format for, 451 
function of, 451 

DOIT.BAT, 543, 545 
DOS 4.0 

disk and RAM management, 23 
DOS shell, 22-23 
installation of, 22 
introduction of, 16-17 

DOS5.0 
commands 

APPEND, 970-971 
ASSIGN, 971 
ATTRIB, 47-48, 971-972 
BACKUP, 972-973 
BREAK,973 
BUFFERS, 974 
CALL, 974-975 
CD, MD, 975-977, 1003 
CHCP,975 
CHKDSK, 977-978 
CLS, 978 
COMMAND, 979 



1060 DOS Power Tools, 2nd Edition, Revised for DOS 5.0 

COMP, 979-980 
COPY, 980-981 
COUNTRY, 982 
CITY, 982-983 
DATE,983 
DEL, 983-984 
DEVICEHIGH, 984-985 
DIR, 985 
DISKCOMP, 986 
DISKCOPY, 986 
DOS (CONFIG.SYS), 987 
DOSKEY, 26, 52, 987-988 
DOSSHELL, 988-989 
DRIVP ARM, 52-53, 

989-990 
ECH0,990 
EDIT, 53-54, 990-991 
EM386,991 
ERASE, 991-992 
EXIT,992 
FASTOPEN, 993 
FC,993-994 
FCBS,994 
FDISK, 994-995 
FIND,995 
FOR, 995-996 
FORMAT, 26, 55-58, 

996-997 
GOT0,997 
GRAFTABL,997-998 
GRAPHICS,998-999 
HELP,999 
IF,999-1000 
INST ALL, 1000 
JOIN, 1000 
KEYB, 1001 
LABEL, 1002 
LASTDRIVE, 1002 
LOADHIGH, 1003 
MEM, 1003-1004 
MIRROR, 60-61, 1004 
MKDIR, 1005 
MODE, 1005-1009 
MORE, 1009 
NULSFUNC, 1010 
PATH, 1010 
PRINT, 1011 
PROMPT, 1012-1013 
QBASIC, 25-26, 61, 1013 
RD,1016-1017 
RECOVER, 1013-1014 
RENAME, 1014 
REPLACE, 1015 
RESTORE, 1015-1016 
SELECT, 1017 
SET, 1017-1018 
SETVER, 61-63, 1018 
SHARE,1018-1019 
SORT, 1019 
SUBST,1019-1020 

SYS, 1020-1021 
TIME, 1021 
TREE, 1022 
TRUENAME, 1022-1023 
TYPE, 1023 
UNDELETE, 25, 66, 

1023-1024 
UNFORMAT, 25, 56-58, 

67-70, 1024 
VER, 1025 
VERIFY, 1025 
VOL, 1025 
XCOPY, 1026-1027 

installation 
and old AUTOEXE.BAT and 

CONFIG.SYS, 32 
pre-installation guidelines, 

26-28 
procedurein,29-32 
uninstallation, 28-29 

introduction of, 17 
memory management, 37-46 

driver/DOS summary, 40 
example of optimal 

management, 43-46 
expanded memory, 37-38, 

39 
extended memory, 38, 39 
loading device drivers, 40-41 
loading into high memory 

area, 39-40 
loading TSR programs, 

40-41 
MEM/CLASSIFY (MEM/C), 

42-46 
memory management device 

drivers,39 
memory savings, 41-42 
tools for, 249-250 

new/enhanced features 
DEBUG,48 
DIR,48-52 
directory handling, 25 
DOS Shell, 63-66 
ease of installation, 26 
EDLIN,25 
EXPAND,54 
help screen, 25 
help screens, 59-60 
memory management, 24-25 
PACKiNG.LST, 71-72 
partitioning, 25 
text files, 71 
User's Guide and Reference, 

70-71 
using internal commands, 

72-74 
versions 

OEM version, 24 
upgrade package, 24 

DOS 
development of 

additions of commands to 
versions of DOS, 19-20 

DOS 1.0, 5-7, 21 
DOS 2.0, 7-10 
DOS 3.0, 10-15 
DOS 4.0, 16-17 
DOS,5.0, 17 
sizes of versions of DOS, 

18 
DOS (CONFIG.SYS), 987 

format of, 987 
DOS environment 

commands 
COMSPEC, 656-657 
PATH, 657-663 
PROMPT, 663-665 
SET, 649, 666 

default size, 653 
as environment space, 649 
environment variables 

setting of, 651-652 
use in batch files, 667-670 

expanding size of, 653-655 
patching DOS 2.x and 3.0, 

654-655 
SHELL,653 
and versions of DOS, 

653-655 
temporary environment, loading, 

655-656 
DOSHELP.HLP, 59-60 
DOSKEY, 987-988 

DOS 5.0 enhancements, 52 
DOS,5;0,26 
format of, 987 
keys used with, 988 
use of, 216-217 

DOSSHELL, 988-989 
format of, 988 
starting EDIT from, 259-260 

DOS shell, 16 
advantages of, 63 
directory tree, 64 
drive selector, 64 
file list, 65 
installation of, 63 
introduction of, 22-23 
menu bar, 63-64 
program list area, 65 
task swapping, 65-66 

DOS subdirectory 
copying important files to, 

135-144 
creating, 126 

DOSTYPE,89 
Dot box, 703 
Double-density floppies, 11 
DRIVE.COM, 607-608 



DRIVER.SYS, 440-443 
format for, 441 
function of, 440, 442-443 

Drive selector, DOS shell, 64 
DRIVP ARM, 989-990 

DOS 5.0 enhancements, 52-53 
format of, 989 

DUMMY.BAT, 554-555 
Dynamic RAM, 234, 409 

E 

EASY AS.BAT, 594-595 
ECHO, 549-558, 990 

automated ECHO entry, 557-558 
batch file command, 1037 
ECHO OFF, 549, 550, 551, 552, 

553 
ECHO ON, 549, 551, 553 
format for, 549, 990, 1037 
functions of, 549-557 

ECHOMAKR.BAS, 554 
ECHO OFF, 15 

turning off, batch file, 513-515 
E command, DEBUG, 330-331, 

343,348-351,372 
EDIT, 990-991 

accessing menu options, 260-261 
bookmarks, setting, 267 
browsing through documents, 

266-267 
Clipboard, 269-270 

selection of text, 269-270 
use of, 270 

cursor movements, 267-268 
customization of, 263-264 
dialog boxes, use of, 262-263 
DOS5.0,25 
compared to EDLIN, 257 
file options, 273-274 
format of, 990 
help 

keys used in help, 265 
printing help information, 266 
viewing help while editing, 

265-266 
insertion of special characters, 

269 
mouse scroll bars, use of, 264 
printing, 274 
and QBASIC, 53-54 
saving, 273-274 
search, 271-272 

finding/changing text, 272 
find option, 271-272 

start up, 258 
from DOS prompt, 258-259 
from DOSSHELL, 259-260 

text editing, 268 
use of, 53-54 

Edit line, EDLIN, 283-284 
EDLIN,25 

actions/corresponding 
commands,1041-1042 

and batch files, 511-512, 
538-543 

in binary mode, 302 
bugin,302 
command mode, 275 
commands 

Append lines, 280 
copy lines, 280-281 
delete lines, 281-283 
edit line, 283-284 
end edit, 284-285 
insert lines, 285-287 
list lines, 287-289 
move lines, 289-291 
page, 291-294 
quit edit, 294 
replace text, 294-297 
search text, 297-299 
transfer lines, 299-300 
write lines, 300-301 

creating ANSI commands, 
456-458 

double space problem and early 
DOS versions, 
304-306 

exiting, 275 
inserting special characters, 

276-277 
insert mode, 275 
limitations of, 257, 

274-275 
line numbering, 275 
mixing with redirected DOS 

output, 301-302 
printing, 277 
to remove end-of-file characters, 

303 
startup, 278-280 
tip for easy use of, 277-278 

EGA, 245, 702, 704, 715, 752 
limitations of, 715 

EGA.SYS, 451 
8514/ A display adapter, 733-734 

features of, 733-734 
86DOS,5 
EMM386.EXE, 45, 249, 445, 

448-450,991 
expanded memory driver, 39 
format for, 448-449, 991 
functions of, 445, 450 

EMS40.SYS, 249 
ENABLE.COM, 788 
Encryption, 797-798 
End edit, EDLIN, 284-285 
ENDLESS.BAT, 578 

Index 1061 

End-of-file marker, 170, 210, 211, 
351 

removing with EDLIN, 303 
as security measure, 796 

Enter key, 199 
Environment, 9 

meaning of, 95 
See also DOS environment 

Environment variables, 140-141, 548 
and batch files, 548, 585, 

587-589,666 
batch file command, 1036 
examples of, 667 
format for, 587 
format of, 1036 
setting of, 651-652 
use in batch files, 667-670 

ERASE,154,991-992 
caution related to, 799-800, 

992 
format of, 991 

ERRORLEVEL 
and batch files, 519-534 
IF ERRORLEVEL, 597-624 

ERRTEST2.BAT, 605 
ERRTEST3.BAT, 606 
ERRTEST.BAT, 600, 605 
Escape codes, 189, 206 
ESCAPE.COM, 474-476 
ESCAPE.SCR, 476 
Escape sequences, 189 

ANSicorrunandsas,454 
Esc key, 206, 211 
EXE2BIN, 749 

function of, 749 
getting copy of, 749 
patching DOS 3.2 version, 749 

Executable files, 82, 407 
EXE files 

and DEBUG, 407-408 
EXE extension, meaning of, 82 
header of, 83-84 
nature of, 83-84 

EXIT,992 
format of, 992 
CALL for fast exit, 568-570 

EXPAND 
and installation, 32 
use of, 54 

Expanded memory, 246-251 
and DEBUG, 38 
DEBUG commands related to, 

438 
development of, 37-38 
DOS, 5.0, 37-38, 39 
driver for, 39 
LIM expanded memory 

specification.23, 38 
nature of, 36 

Extended codes, 496 



1062 DOS Power Tools, 2nd Edition, Revised for DOS 5.0 

Extended memory, 251 
DOS, 5.0, 38, 39 
driver for, 39 
nature of, 36 

Extended memory block, nature of, 
36 

EXTENKEY.BAT, 609-610 
Extensions 

filenames,· i 16-118 
number of charactets in, 116 
usefulness of, 116, 117 
and wildcards, 117 

External commands, 72, 98, 278, 315 
and help, 59 
nature of, 94-95 

Extra segment, 313, 389 

F 

FASTOPEN, 14, 248, 993 
format of, 993 

F.BAT, 778 
FC,993-994 

format of, 993 
FCBS,994 

CONFIG.SYS command, 1032 
format of, 994 

F command, DEBUG, 330, 332, 
352-355 

FDISK, 761-766, 994-995 
format of, 994 
functions of, 762-766 
and installation, 30-31 
and versions of DOS, 995 

FILI.BAT, 571 
FIL2.BAT., 571 
File allocation table, 5, 6, 14 

cross-linking, 737-738 
FORMAT switch for deletion, 57 
importance of, 410 
and problem with DOS, 81 
purpose of, 79-80 

File archive bit, 754 
File attribute, 412 
File attribute byte, 4 7 
File control blocks, 6, 8 
File fragmentation report, and 

CHKDSK, 977-978 
File handles, 8 
File list, DOS shell, 65 
Filenames 

acceptable/unacceptable data in, 
87 

and DEBUG, 342-343 
extensions, 116-118 

number of characters in, 116 
usefulness of, 116 
and wildcards, 117 

filespec as, 92 

fixing filenames with spaces, 
115-116 

length of, S6 
parts of, 92-95 
reserved filenames, 88-92 

File recovery, MIRROR utility, 60 
FILES 

CONFIG.SYS command, 
1032-1033 

format of, 1032 
Files 

formats 
high-bit ASCII format, 82 
low-bit ASCII format, 82 

nonprogram files, 84-86 
with operating system 

instructions, 82 
piping, 102 
program files, 82-84 
redirection, 102 
types of 

executable files, 82 
nonexecutable files, 82 

Filters, 9, 102, 767-786 
command line operators for 

redirection, 767 
FIND, 767, 777-786 
MORE, 767, 785 
names for temporary files, 768 
and position of redirection 

symbol, 770-771 
SORT, 767, 768, 769-777 

FIND, 767,777-786,995 
batch files and use of, 778-786 
to count lines, 782 
withDIR,51 
to find bad sectors, 783 
format of, 995 
functions of, 777-786 
line numbering, 782-783 
to locate files by time, 781 
to make address book, 785-786 
for onscreen list of 

subdirectories, 778 
to print list of files, 785 
and quotation marks, 785 
for two strings in same line, 784 
usefulness of, 777 
to view list of files in directory, 

779 
FINDALL.BAT,779-781,782-783 
FINDFILE, use of, 153-154 
FINDFILE.BAT, 778 
Find option, EDIT, 272-272 

finding/changing text, 272 
Firmware, 234-235 
Fixed field files, and SORT, 777 
Flags, 226 

DEBUG, 388-396 
Flags register, 313, 391 

Floating point operations, 227 
FONTHT.COM, 713, 726 
Fonts 

and code page switching, 751 
VGA, 725-726 

FOR, 995-996 
batch file command, 1037-1038 
format of,995-996, 1037-1038 

FORE.BAT, 477-478 
Foreign alphabets, 15 

KEYBxx, 749-751 
FOR. .. IN ... DO, 572-577 

function of, 572-577 
FORMAT, 15, 55-58, 735, 996-997 

adding labels, 58 · 
caution related to, 801 
cautions telated to size, 56 
COM,99, 101 
deleting FAT and ROOT 

directories, 57 
DOS.5.0,26 
error messages, 58 
format of, 55, 996 
quick switch, 57 
safe foml.at,-56, 57-58 
size switch, 55-56 
unconditional switch, 57 

FORMAT.BAT, 593 
Format partition, and installation, 31 
Formatting 

hard disks, 120-121 
nature of, 80 

FORNESTl.BAT, 576 
FORNEST2.BAT, 576 
FORTEST.BAT,594 
Frankston, Bob, 4 
Freezing the display, 204-205 
FSDISK, 761-766 
Function keys, 207-214 

for pos functions, 214 
Fl,207-208 
F2,209 
FJ,208-209 
F4,210 
F5, 210 
F6, 211 
F7, 211 
usefulness of, 207 

Fylstra, Dan, 4 

G 

Garbage collection, 84 
Gates, Bill, 3, 4, 6, 16 
G command, DEBUG, 433 
GETANS.COM, 543-546 
GETDATE.COM, 633 
GET.EXE, 602 
GETFKEY.COM, 609 
GETKEY2.COM, 605 



GETKEY3.COM, 605, 606 
GETKEY 4.COM, 606-607 
GETKEY.BAT, 612 
GETKEY.COM, 599, 600-603, 

608-609,614,622 
GETLETR.ASM, 618 
GETLETR.COM, 618 
GETNEW2.COM, 622-623 
GETNO.COM, 611, 612 
GETNUM.COM, 612, 613 
GETYES.COM, 610, 611, 612 
Gigabyte, 161 
Global filename characters. See 

Wildcards 
Global variables, and SET, 666 
GOTO, 559-566, 997 

ba.tph file command, 1038 
forinatfo~559,997, 1038 
functions of, 559-565 
and IF, 564-565 

GRAFfABL, 184-185, 752, 
997-998 

format of, 997-998 
functions of, 752 

GRAPHICS,752,998-999 
format of, 998 
functions of, 752 
and screen dump, 191 

Graphics memory, nature of, 37 
Grave accent, 200 

H 

HALFI'EST.BAT, 615, 616 
Handle approach, COPY, 740 
Hard c<;>py, .190 
Hard disk, 79-82 

actions at bootup, 761-762 
buying tips, 157 
careof,804 
clusters,. 79 
CONFIG.SYS, 131-134 

commands, 1027-1035 
copying important files to 

DOS subdirectory, 
135-144 

and development of DOS, 7 
directory limits, 125 
formatting, 120-121 
hard disk tools, 125129 

CD, 126-129 
MD,126 
RD, 125 

low-level and high-level, 80 
partitioning, 762-763 
periodieal reformatting of, 80-81 
and problem with DOS, 81 
PROMPT, 130-131 
sectora,79 

subdirectories, 125-126 
subdirectory structure, 121-125 

HARDWARE.BAT, 638 
Hard-wired code, 234 
Header, EXE file, 83-84, 407 
Heap, 84 
HELP,999 

EDIT 
keys used in, 265 
printing help information, 266 
viewing help while editing, 

265-266 
format of, 999 

Help screens 
DOS,5.0,25 
use of, 59-60 

Hercules Graphics Card, 702, 711 
Hercules Graphics Card Plus, 702 
Hercules InColor Card, 702 
Hexadecimal arithmetic, and 

DEBUG, 48, 209, 396-400 
Hexadecimal numbers, 175-180 

advantages of, 176-177 
and ASCII characters, 180 
caution related to, 803 
converting from binary, 177 
converting to binary, 178 
counting in, 175-176 
and DEBUG, 180 
decimal/hex/binary table, 

416-417 
translation with BASIC, 178-180 

Hidden files, 147-149 
and applications, 147 
caution in unerasing files, 805 
and CHKDSK, 978 
hiding many files, 148 
unhiding many files, 148 

High-bit ASCII characters, 82, 165 
utility for display of, 184-186 

High bytes, 313 
High-capacity drives, 11 
High memory area, 39-40, 249 

and HIMEM.SYS, 445 
nature of, 36 

HIMEM.SYS, 249, 249-250, 445 
extended memory driver, 39 
format for, 446-447 
functions of, 445 

HIRES.BAS, 709-710 
HOME.BAT, 670 
Hooks, 8 
Horizontal retrace, 701 
Horizontal scanning rate, 703, 717 

I 

IBMBIO.COM, 244, 440, 760 
function of, 755 

IBMCACHE, 248, 450 

Index 1063 

IBMDOS.COM, 244, 760 
function of, 755 

I command, DEBUG, 430 
IF,589-597,999-1000 

batch file command, 1038-1039 
file finding with, 590-592 
format for, 589-590, 1038 
and GOTO, 564-565 
string handling, 592-596 
case insensitivity, 596-597 

IF ERRORLEVEL, 597-624, 793 
menus,597-598,612-613 
to screen for erroneous 

keystrokes, 604-612 
speeding up batch files, 623-642 

Insert lines, EDLIN, 285-287 
Insert mode, 211 ' 

EDLIN,275 
Ins key, 211 
INST ALL, 1000 

CONFIG.SYS command, 1033 
formato~ 1000, 1033 

Installation 
device drivers, 440 
DOS 5.0 

and oldAUTOEXE.BAT and 
CONFIG.SYS, 32 

pre-installation guidelines, 
26-28 

procedurein,29-32 
uninstallation, 28-29 

DOS shell, 63 
RAMdisk, 144-145 

Instruction pointer, 313, 389 
Intel 8080, 3, 251 
Intel 8086, 4-5, 33, 34, 227, 251 
Intel 8088, 4-5, 33, 34, 227 
Intel 80286, 10, 33, 227, 251, 252, 

253 
Intel 80386, 34, 227, 252, 253 
Intel 80486, 253 
Internal commands, 98, 278, 315, 

747 
and COMMAND.COM, 98-99 
and help, 59 
nature of, 93-94 . 
use of, 72-74 

International characters, 9 
Interrupt 

nature of, 191 
software interrupts, 234 

Interrupt controller, 229 
Interrupt handling, central 

processing unit, 227-229 
Interrupt vector table, 242, 244 
INVIS.COM, 468 
IRGB,676 



1064 DOS Power Tools, 2nd Edition, Revised/or DOS 5.0 

J 

Jobs, Steve, 4 
JOIN, 1000 

format of, 1000 

K 

K.BAT, 510, 512, 513, 514-516 
KBFLAG.COM, 645-646 
Kernel, DOS, 244 
KEYB, lOCH 

format of, 1 OCH 
Keyboard 

arrow keys, 199 
and ASCII characters, 182-184 
CapsLock, 205-206 
controls and ANSI.SYS, 

1050-1054 
cursor pad, 201 
development of, 181-182 
and DOSKEY, 216-217 
Esc key, 206 
freezing the display, 204-205 
function keys, 207-214 
Keyboard Status Control Byte, 

201-202,203 
number pad, 201 
programming of, 215-216 
release code, 186 
scan code, 186 
special keys, 186-198 

Alt key, 192-198 
Ctrl key, 187-190 
Shift key, 186-187, 190-191 

and status bytes, 186-187 
typewriter keys, 182-184 

KEYBUK.COM, 750 
KEYBxx, 15, 749-751 

code page switching, 750-751 
functions of, 7 49-751 
and versions of DOS, 750 

Key combination codes, listing of, 
222-223 

Key redefinition 
ANSI.SYS, 492-503 
caution related to, 493 
for nonalphanumeric keys, 

496-503 
swapping characters, 495-496 

KEYSTROK.COM, 520-521, 525 
KeyWorks, 504 
Kildall, Gary, 4, 5 
Kilobyte, 161 

L 

LABEL, 1002 
batch file command, 1039 
format of, 1002, 1039 

Labels, batch files, 559-565 

Landscape mode, 206 
LASTDRIVE, 660, 1002 

CONFIG.SYS command, 1033 
format of, 1002, 1033 

Latch registers, 721 
L command, DEBUG, 402-407 
Least significant byte, 240, 377 
Left arrow key, 199 
LETTERl.BAT, 524 
LETTER2.BAT, 524-525 
LEVEL.BAT, 619-621 
Lightning arrester, 807 
LIM expanded memory 

specification, 23, 38 
LINE16.COM, 722-723 
LINE256, 721-722 
Linear addressing, 237 
Line numbering, with FIND, 

782-783 
List lines, EDLIN, 287-289 
LOADHIGH, 250, 1003 

and device drivers/TSR 
programs, 41 

format of, 1003 
LOCATE, 712 
LOG.BAT,575 
Logical drives, 14 
Logical operations 

AND/OR/NOT/XOR, 173 
and binary numbers, 171-173 

LOGIT.BAT, 642-643 
Long-persistence phosphor, 702 
Long word, 251 
LOOKUP.BAT, 632, 786 
Looping program 

batch file, 519 
menu in, 524-534 

Loops, nature of, 519 
Low-bit ASCII files, 82, 85 
Low bytes, 313 
LOWERIT. COM, 615 
LPTl, 787 
LPT2, 787 

M 

Mace Utilities, 119 
Machine code, 234 
Macros 

ANSI.SYS, 504-506 
commercial macro processors, 

504 
and DOSKEY, 52 

MAIL.BAT, 669-670 
MAKECOM, 532 
MAKESCRN.BAS, 531-532 
MAPMEM,248 
Mapping, memory-mapping, 

242-243 

Mapping modes 
VGA, 719-720 
Video Electronics Standards 

Association (VESA), 720 
Mask, 717 
MAXSHIFf.BAT, 586 
Maxtick, 790-791 
MCGA, 702, 704, 712 
MD, 198, 1003, 1005 

format of, 1005 
use of, 126 

Megabyte, 161,309 
Megaherz, 226 
MEM,33,1003-1004 

format of, 1003 
MEMJC,250 
MEM/DEBUG (MEM/D), 42 
Memory 

base memory, 35 
and bus, 253 
characteristics of storage devices, 

231 
conventional memory, 36 
DEBUG 

comparing two blocks, 
400-402 

display of, 343-348 
entering new contents, 

348-353 
filling block of memory, 

353-356 
loading disk information into, 

402-407 
moving block of memory, 

356-362 
writing information from 

memory to disk, 423-429 
expanded memory, 36 
expansion memory, 36 
expansion of 

CONFIG.CTL, 249 
enhanced expanded memory 

specification, 247 
expanded memory 

specification, 246 
LIM expanded memory 

specification, 246-24 7 
programs to create high 

RAM,248-249 
TSR programs, 246 

extended memory, 36 
extended memory block, 36 
high memory area, 36 
interrupt vector table, 242, 244 
memory-mapping, 242-243 
memory report, 42-44 
memory segments, 313 
protected mode, 34-35 
random access memory, 229-232 
read only mem,ory, 229-232 



real memory, 33-34 
real mode, 34 
reserved (upper) memory, 36 
segmentation of, 235-237, 

238-239 
segments, 230 
upper memory block, 37 
video memory, 37 
virtual memory, 34 

Memory emulator, 39 
Memory image files, 83 
Memory management 

DOS 5.0, 24-25, 37-46 
driver/DOS summary, 40 
example of optimal 

management, 43-46 
expanded memory, 37-38 
extended memory, 38, 39 
loading device drivers, 40-41 
loading into high memory 

area, 39-40 
loading TSR programs, 40-41 
MEM/CLASSIFY (MEM/C), 

42-46 
memory management device 

drivers, 39 
memory savings, 41-42 

Memory management device drivers 
and CONFIG.SYS, 40 
EMM386.EXE, 39, 445, 448-450 
and high memory area, 39-40 
HIMEM.SYS, 39, 445, 446-447 

Memory-mapped displays, 701 
Memory resident programs. See TSR 

programs 
MEM/PROGRAM (MEM/P), 42 
Menu bar, DOS shell, 63-64 
MENU.BAT, 526-534 
MENUI.BAT, 612, 613 
Menus 

in batch file, 524-534 
IF ERRORLEVEL, 597-598, 

612-613 
Meta-strings, 462-463 

listing of strings/DOS functions, 
463 

and PROMPT, 664-665 
Micro channel architecture, 253 
Microcode, 234 
Micro Instrumentation Telemetry 

Systems, 3 
MIRROR, 1004 

format of, 1004 
saving partitioned information, 

60-61 
use of, 60 

MKDIR. See MD 
MODE, 1005-1009 

formats of, 1005-1008 
MODE command, DOS 1.0, 7 

Modems 
batch file for telephone dialer, 

628-630 
and DOS error, 630 

Mode-setting commands, 
ANSI.SYS, 490-492, 
1048-1050 

MOOSA V.COM, 713 
Monitors. See Color; Display 
Monochrome displays 

and EGA, 704 
screen blanking, 710-712 

MORE,543,544, 767, 770, 785, 
1009 

caution related to, 803 
format of, 1009 

Most significant byte, 240, 377 
Mouse scroll bars, EDIT, use of, 264 
Move command, DEBUG, 335-340, 

344,356-361 
MOVEIT.BAT, 154-155 
Moving files, batch file for, 154-155 
Moving lines, EDLIN, 289-291 
MS-DOS, 7, 766 
MSDOS.SYS, 61 
Multisynching monitors, 702 
Multitasking, 251 

N 

N command, DEBUG, 325, 330, 
342,343 

NEST.BAT, 594 
Nesting, batch files, 566-567 
Networks, and DOS versions, 13 
NEVER.BAT, 561-563 
NEWKEYS.COM, 498-499 
NEWP A TH.BAT, 661-662 
NEWS.BAT,662 
Nibbles, 160 
NOECHO.COM, 553 
Nonexecutable files, 82 
Nonprogram files, 84-86 

ASCII files, 85 
NONSTOP.BAT, 519, 520-521, 

563 
Non-volatile storage, 232 
Norton Utilities, 119, 196, 738, 

793 
NOT, 173 
Notepads, creating with batch file, 

624-626 
NOYES.BAT, 611, 612 
Null character, 189 
Null strings, 578 
NULSFUNC, 1010 

format of, 1010 
NUMBER.BAT, 782 
Number pad, 201 

Index 1065 

Numeric coprocessor chip, 227 
NumLock key, 190, 200-201, 203 

0 

0 command, DEBUG, 430-433 
Octal numbers, 160 
OEM identification field, 27 

and DEBUG, 27-28 
OEM version, DOS, 5.0, 24 
Offline, 191 
OLDPATH.BAT, 661-662 
ONCEMORE.BAT, 535-537 
1.BAT, 597-598 
Online, 191 
Open File 3D, 691 
Operators, including in commands, 

558 
OR, 173 
OS/2, 16 
OVER.BAT, 578-579 
Overlay files, 97 
Overscan, 717 
Overwrite mode, 211 

p 

PACKING.LST, 71-72 
PAGEDEMO.BAS, 700 
Page frame, 247 
Pages,389 

EDLIN, 291-294 
usefulness of, 700 

Paragraphs, 141 
and DEBUG, 239, 321 
nature of, 239 

Parallel processing, 226 
Parameter passing, CALL, 570-572 
Parent directory, 127 
Parity, 391 

parity bit, 232 
parity check error, 232-233 
parity-checking, effect of, 233 
problems, random access 

memory, 232-234 
Parsing, 93 
Partitioning, 7 

DOS,5.0,25 
hard disk, 762-763 
saving partitioned information, 

60-61 
Partition loader program, 761 
Partition table, rebuilding of, 69-70 
PARTNSA V.FIL, 61, 69 
Password system, creating, 668-669 
Patching, COMMAND.COM, 

99-100 
PATH, 13, 95-103, 650, 657-663, 

1010 
inAUTOEXEC.BAT, 140 
backslash in, 96-97 



1066 · DOS Power Tools, 2nd Edition, Revised/or DOS 5.0 

changing settings, 661-663 
displaying current settings, 659 
editing/saving, 661-663 
and environment variables, 

140-141 
extending, 140-142 
and files in current directory, 103 
format for, 657-658, 1010 
functions of, 657-659 
introduction of, 657 
methods for reducing string, 

659-661 
nature of, 95-99 
order of files in, 659 
temporary changes to, 143-144 

PATHDIR.BAT, 575 
Path extender programs, 14 
PATHSET.BAT, 662-663 
Patterson, Tim, 4-5, 6 
PAUSE, 577-584 

batch file command, 1039 
format for, 577, 1039 
functions of, 577-578 

PC-AT, 10-11, 253 
PC-DOS, 5, 765 
P command, DEBUG, 434-437 
PC ROM, 752 
PCTRACK.DEL, 60 
PC-XT, 7, 10 
Personal computers, development of, 

3-5 
Phosphors, display, 717 
PICK.COM, 713, 726 
Piping, 102 

filters, 767-785 
compared to redirection, 771-772 

Polling,227 
Polyline, 733 
Port address, 711 
Portrait mode, 206 
Ports, 226 
#.BAT, 568-570 
Power problems, avoiding, 802 
Power on self test, 230 
PRCODER.BAT, 788-789 
Presentation Manager, 16, 733 
PRINT,789-793,1011 

and disk files, 792 
forfeiting of time slice, 791 
format of, 1011 
and IBM Graphics Printer, 791 
/M parameter, 790-791 
compared to print buff er 

program, 790 
to print text file, 792 
problems related to, 790, 792 
slowing/speeding printing, 791 
/S parameter, 790 
syntax of, 790 
/U parameter, 791 

Printers 
device names referring to, 787 
printer not ready, 786-787 
PRINT utility, 789-793 
sending codes to, 788 
and Shift-PrtSc, 787-788 
timeout values and DEBUG, 787 

PRINTER.SYS, 451-452 
format for, 451 
function of, 451 

Printing 
DEBUG information, 314-315 
EDIT,274 

help information, 266 
EDLIN,277 

Print spoolers, and security, 797 
PRISM.EXE, 713 
PRN device, 740 
PROGMAKR.BAT, 603, 604 
Program files, 82-84 

COM files, 82-83 
EXE files, 83-84 

Program list area, DOS shell, 65 
Programming languages, features of, 

509 
Program segment prefixes, 6, 405, 

407,740 
ProKey,86,201,504 
PROMPT, 130-131, 650, 663-665, 

1012-1013 
customization of prompt, 

130-131 
format for, 663, 1012 
and meta-strings, 664-665 
uses of, 130-131 

PROMPT$.BAT, 665 
Protected mode, 33, 251 

nature of, 34-35 
PrtSc, Shift-PrtSc screen dump, 

190-191 
PS/2, 253 
Pure-low-bit ASCII files, 85 

Q 

QBASIC, 1013 
DOS, 5.0, 25-26 
and EDIT, 53-54 
format of, 1013 
use of, 61 

Q command, DEBUG, 429-430 
QDOS,5 
QEMM50/60, 248 
QEMM86,248 
QRAM,248 
QUESTION.BAT, 559-560 
Question mark. See Wildcards 
QUIKNOTE.BAT, 625-626 
Quit edit, EDLIN, 294 
QUIXX.COM, 713 

R 

RAMdisk, 117, 132, 144-145 
and batch files, 145, 623 
batch files copied to, 518 
COMMAND.COM on, 759 
installation, 144-145 
nature of, 144, 252 
and RAMDRIVE.SYS, 443-445 

RAMDRIVE.SYS, 32, 144, 443-445 
format for, 444 
function of, 443, 445 

RAMMAP,248 
Random-access files, and SORT, 777 
Random access memory, 229-232 

dynamic RAM, 234 
expansion of, 246-249 
parity problems, 232-234 
shadow RAM, 248 
static RAM, 234 
workings of, 230-232 

RBX,424 
RCX, 424, 525, 637, 645, 698, 794 
RD, 125, 1016-1017 

format of, 1016 
use of, 147 

READBACK.BAT, 583-584 
READ.BAT, 743, 744 
READDATE.BAT, 640-641 
README file, 71 
Read only memory, 229-232 

firmware, 234-235 
workings of, 230 

Read-write head, and disk, 78 
Real memory, nature of, 33-34 
Real mode, 251 

nature of, 34 
Real time log, batch file for, 642-643 
Reboot, warm reboot, 190 
RECOVER, 1013-1014 

caution related to, 735-736, 801 
format of, 1013-1014 
functions of, 736 

Recursive program, with batch file, 
534-543 

REDATE.BAT, 742 
REDBORDER.COM, 673 
Redirection 

filters, 767 - 785 
compared to piping, 771-772 

Redirection sign, 102, 367 
and filters, 770-771 

Registers, 251 
central processing unit, 226 
DEBUG, displaying contents of, 

388-396 
generalpurpose,240 
VGA, 724 

Relative address, 241 
Release code, 186 



RELOAD.BAS, 710 
REM, 558-559 

adding to batch file, 515-519 
batch file command, 1040 
CONFIO.SYS command, 

1033-1034 
fonnatfor,558, 1033-1034, 1040 
fonnat of, 1040 
functions of, 558-559 

REMLESS.BAT, 559 
Remote operation 

batch files for 
running program at specified 

time, 638-640 
running unattended system, 

633-638 
REMOVE.BAT, 631-632 
REN, 99, 1014 

fonnat of, 1014 
REPEAT.BAT, 534 
REPLACE, 1015 

fonnat of, 1015 
Replaceable parameters, 142 

and batch files, 535-537, 
578-584 

batch file command, 1036 
fonnat for, 1036 
and SHIFI', 584-586 

Replace text, EDLIN, 294-297 
RESERVED.BAT, 560 
Reserved filenames, 88-92 
Reserved (upper) memory, nature of, 

36 
RESTORE, 15, 1015-1016 

and copy-protected programs, 765 
fonnatof, 1015-1016 
problems related to, 765 

ROB, 675, 675-676 
RMDIR. See RD 
ROM BIOS, 36, 248, 752, 755 
ROMPRINT, 183-184 
Root directory, 419 

s 

FORMAT switch for deletion, 57 
navigation and, 150-151 
viewing files in, 133-134 

Safe fonnat, 56, 57-58 
SAMPLE.BAT, 642, 759 
Saving, EDIT, 273-274 
SCANBATS.BAT, 743 
Scan codes, 186 

listing of, 219-221 
Scanning rates, display, 717-718 
S command, DEBUG, 318-319, 

320,351,362-369 
SCP-DOS,5 
Scratch-pad registers, 313 
Screen blanking, 710-712 

Screen clearing 
ANSI.SYS, 1046-1047 
COMMAND.COM, 383 

Screen dump, 190-191 
and unusual characters, 191 

SCRIPT.KBD, 750 
Scripts 

and DEBUG, 310-312 
redirectable scripts, 311 

ScrollLock, 204, 205 
SD.BAT, 773-776 
Search 

combination bare name and 
search, 50 

DEBUG 
for characters, 362-369 
S command, 318-319, 320, 

351,362-369 
EDIT,271-272 

finding/changing text, 272 
find option, 271-272 

EDLIN, 297-299 
subdirectories, 49-50 
with wildcards, 104-113 

Sectors 
hard disk, 79 
loading with DEBUG, 409-422 

Security, 793-798 
with Alt key, 196-198 
bootup prevention, 793-794 
and communications programs, 

797 
DOS commands, preventing use 

of, 794-795 
encryption, 797-798 
and filenames, 796, 805 
hiding files, 795 
and high-bit messages, 796-797 
method for maximum security, 

796 
and print spoolers, 797 
wiping out deleted files, 

795-796,805 
SEEALL.BAT, 579 
Segmentation, memory, 230, 

235-237,238-239 
Segment descriptor, 34 
Segments, 310 
SELECT, 1017 

fonnat of, 1017 
Selectors, 251 
Serial ports, and DOS versions, 14 
SERVICE2.COM, 693-694, 695, 

697 
SERVICE6.COM, 694, 695, 697 
SERVICE9.COM, 695, 697 
SET, 141-142, 649, 650, 666, 

1017-1018 
fonnat for, 666, 1017 
to set global variable, 666 

Index 1067 

setting environment variables, 
651-652 

size limit, 652 
with use of PATH or PROMPT, 

652 
SETBLINK.COM, 713 
SET DIRCMD, 50 
Setup procedure. See Installation, 

DOS,5.0 
SETVER, 451, 1018 

fonnat of, 1018 
modify DOS version table, 

61-62 
and virus detection utilities, 

62-63 
SETV.EXE, 713 
Shadow RAM, 248 
SHARE,807,1018-1019 

format of, 1018-1019 
Shareware, nature of, 811-812 
SHELL 

CONFIO.SYS command, 1034 
to expand DOS environment, 653 
to expand DOS environment 

size, 653-654 
format of, 1034 
as substitute for COMSPEC, 653 

SHIFI', 584-587 
batch file command, 1040 
format of, 1040 
and replaceable p~ameters, 

584-586 
SHIFI'IT2.BAT, 585-586 
SHIFTIT.BAT, 584-585 
Shift key 

functions of, 186-187, 190-191 
program to set/unset keys, 

201-202 
Shift-PrtSc screen dump, 

190-191 
Shift Lock key, 200 
Shift-mask value table, 223 
Shift-PrtSc, 787-788 
SHOWDATE.BAT, 634-635 
SHOWFONT.COM, 751 
SHOWMON.BAT, 633-634 
SHOWPARM.BAT, 537-543 
SideKick, 134, 152-153, 246, 315 
Signed numbers, 237 
SIZEMIX.BAS, 699-700 
Slashes, 199 
SMARTDRV.SYS, 450-451 

format for, 451 
functions of, 450 

SmartKey, 504 
Software interrupts, 234 
SORT, 767, 768, 769-777, 1019 

batch file related to, 773-776 
and comma delimited files, 777 
and fixed field files, 777 



1068 DOS Power Tools, 2nd Ediiion, Revised/or DOS 5.0 

fonnat of, 1019 
options after sort process, 

775-776 
and size of file limitation, 777 
sorting by file size, 772-77 4 
sort switches, 50 
specifying column for sort, 

772-773 
syntax/order of sort, 774 
workings of, 769-771 

Sourceindex,313,391 
SPECIAL.BAT, 479-481 
Spoolers, 9 
SS.COM, 713 
Stack, 83, 84, 227-228, 753 

internal stack error message, 753 
stack segment, 313, 389 

Stack pointer, 313, 389 
STACKS 

CONFIG.SYS command, 1035 
format of, 1035 
problem related to, 753 

START.BAT, 663 
Static RAM, 234, 409 
Status bytes, 186-187 
Status flags, 391 
STATUSLPT2BYTE, 787-788 
Strings 

IF and string handling, 592-596 
case insensitivity, 596-597 

Subdirectories 
BACKUP, 155-156 
BIN subdirectory, 136138 
changing, CD, 126-129 
DOS subdirectory, creating, 126 
finding files, 153-154 
and hidden files, 147-149 
moving files, 154-155 
navigation in, 149-153 
parent directory, 127 
removing, 147 
search, 49-50 
TREE, 138-139 
tree structure, 125 

SUBST,132,1019-1020 
format of, 1019-1010 
to reduce PATH string, 659-660 

Super](ey,201,504 
Survival Guide, 260 
Switch, 7, 208 

nature of, 89 
SWITCHES 

CONFIG.SYS command, 1035 
format of, 1035 

SYS, 760-761, 1020-1021 
format of, 1020 
function of, 760-761 

System indicator, 763 

T 

Tab key, 199 
Tape backup, methods of backup, 

765 
Task swapping, DOS shell, 65-66 
T.BAT, 783-784 
T command, DEBUG, 434 
Telephone dialer, creating with 

batch file, 628-630 
Telephone directory, creating with 

batch file, 630-633 
Template, 207 
TEMP variable, 650 
TESTl.BAT, 570 
TEST2.BAT, 570 
TEST4A.COM, 522, 525 
TEST4ESC.COM, 525 
TEST.BAT, 642 
TESTPARM, 570 
TEXT.BAT, 579-584 
Text scrolling, in EDIT, 266-267 
THISFILE.BAT, 769 
3.BAT, 597-598 
386-to-the Max, 248 
TIME, 1021 

format of, 1021 
Time out, 191 
TIMEOUT.SET, 787 
Timeslice settings, 791 
Toggle, Ctrl P, 188 
Top View, 82 
TOUCH.COM, 742 
Transfer lines, EDLIN, 

299-300 
TREE, 138-139, 1022 

format of, 1022 
/F switch, 737 

Tree structure, 7, 125 
TRUENAME, 73-74, 1022-1023 

format of, 1022 
TSR programs, 244 

caution related to, 804 
and CONFIG.SYS and 

AUTOEXEC.BAT, 40-41 
MIRROR utility, 60 
nature of, 246 

2.BAT, 597-598 
TYPE, 302, 1023 

u 

and batch files, 518, 531 
format of, 1023 
use of, 134 

U command, DEBUG, 327-329, 
374-388,695 

UCSD p-System, 5 
UMB area, 40, 41, 250, 450 
UNBLANK.COM, 473-474 

UNDELETE, 802, 1023-1024 
format of, 1023 
new features, 25 
use of, 66 

Underline character, 200 
UNERASE, 805 
Unerase programs, 795, 802 
UNFORMAT,25,56, 1024 

format of, 1024 
rebuilding partition table, 69-70 
use of, 67 
for worst case scenario, 68-69 

UNINSTALL, and DOS 5.0 
installation, 28-29, 30 

UNIQ, BAT, 575 
UNIX, 7 
Unsetting the bit, 174 
UPDATE.BAT,551-552, 742 
Upgrading DOS on bootable disk, 

SYS, 760-761 
UPPERIT.COM, 616 
Upper memory block, 39, 249 

nature of, 37 
User's Guide and Reference, DOS 

5.0, 70-71 
Utilities, listing of DOS utilities, 

813-817 

v 
VDISK, 32, 145, 248, 252, 443 
VER, 1025 

format of, 1025 
VERIFY,744-746,807,1025 

and applications, 744 
format of, 1025 
functions of, 745-746 
syntax for, 744 

Versions of DOS 
caution related to mixing 

versions of, 804 
SETVER, modify DOS version 

table, 61..:.62 
See also DOS, development of 

Vertical interrupt, VGA, 724-725 
Vertical retrace, 701 
Vertical retrace interval, 701 
Vertical scanning rate, 703, 717 
VFONT4.COM, 726 
VFONT.COM, 726 
VGA, 245, 702, 703-704, 715-716, 

719-733 
alternate fonts, 725-726 
architecture of, 719-724 
color palette, 726 
coprocessors, 732-733 
enhancements to, 726-727 
improvements to, 715-716 
mapping modes, 719-720 
registers, 724 



vertical interrupt, 724-725 
and Video Electronic Standards 

Association (VESA), 716, 
727-732 

mapping modes, 720 
standards of, 728-732 

Video memory, 345, 389 
nature of, 37 

Video RAM, 727 
VIDRAM,249 
Virtual disk, 132 
Virtual memory, nature of, 34 
Virtual storage, 34 
Virus detection utilities, and 

SETVER, 62-63 
Virus protection, 805-806 
VisiCalc, 4, 5 
VOL, 1025 

format of, 1025 
Volatile storage, 232 
Volume, and FORMAT, 58 
Volume labels, 9 
Von Neumann machine, 226 
VTREE, 138-139, 152 

w 
W AIT4A-Z.COM., 525, 527-530 
W AIT4A-Z.SCR, 525-526 

WARMBOOT.COM, 794 
Warm reboot, 190 
W command, DEBUG, 343, 378, 

423-429 
Wedge servo technology, 10-11 
WEEKDAY.BAT, 635-636 
WHATVID.EXE, 713 
WHEEL.BAT, 665 
Wildcards, 104-115 

asterisk, use of, 104, 107 
backups, 109-110 
to delete groups of files, 109-115 
directory search with, 104-105 
and filename extensions, 117 
and filenames with spaces, 

115-116 
question mark, use of, 104, 107 
to search for parts of filenames, 

106-109, 110-113 
JVindows, 16,82,727, 733 
Windows, 247 
WIPEDISK, 793, 795-796 
WIPEFILE,196,793, 795-796,805 
JVordPerfect, 207 
Word processor files, ASCII files, 85 
Words,226,313,389 
JVordStar, 6 
Wozniak, Steve, 4 

Index 1069 

Write to File or Device function 40, 
691 

Write lines, EDLIN, 300-301 

x 
XA,33 
XCOPY, 88, 743, 746, 753-755, 

1026-1027 
advantages of, 753-754, 1026 
format of, 1026 
functions of, 753-755 

XENIX, 7 
XGA, 715, 734 

features of, 734 
XM2EMS.SYS, 23 
XM,33 
XOR, 173 
XS, 33, 38 

DEBUG,438 

y 

YESNO.BAT, 610, 612 

z 
Zilog Z-80 chip, 4 



Also Available on 3.5" Diskettes 

This Bantam software product is also available in a 3.5"{720K format. If you'd like 
to exchange this software for the 3.5" format, please: 

• Package your original 5.25" diskettes in a mailer .. 

• Include a check or money order for US $7 .95 ($9 .95 Canadian) to cover 
media, postage and handling (California and Massachusetts residents add 
sales tax). Foreign orders: Please send international money orders; no foreign 
checks accepted. 

• Include your completed warranty card. 

Upon receipt Bantam will immediately send your replacement disks via first 
class mail. 

Mail to: Bantam Electronic Publishing 
666 Fifth Avenue 
New York, NY 10103 
Attn: DOS Power Tools(5.0)/3.5 Disk 



IBM I Operating Systems 

"This book is a fabulous work, in a league by itself, and it has found a 
permanent spot in my reference library. An inva.luable resource. A must 
buy/" - JOHN DVORAK 

Make the Most of Your PC 
This authoritative book and software package gives you the techniques and tools to master 
any DOS system -easily. Its many example programs and settings cover almost everything 
you want to do with your system. Best of all, clear instructions are provided for optimizing 
each program and setting for your version of DOS. Use this indispensable reference to 
make your PC perform at its maximum! 

Featuring the latest technology, this revised edition: 

• Contains coverage of all versions of DOS-including the new 5.0. 

• Offers memory management techniques for 386- and 486-class machines. 

• Provides three 51/4'' disks with hundreds of utilities, updated to work with all versions of 
DOS, through DOS 5.0. 

More Than 100 All-New Ready-to-Run Utilities! 

These powerful utilities automate hard-disk management, streamline screen and printer 
control, and speed up virtually every PC operation. 

This Revised Edition Covers Every Important Aspect of Running Your Computer! 

• Disk and file secrets: how to master subdirectories, make DOS find your applications for 
you, update file directory information, and create logical drives for faster copying. 

• Advanced batch-file techniques: including how to make interactive batch programs, 
combine them with simple assembly-language programs, and get around DOS limits. 

• Making the most of video cards: including video modes and how to 
control them. 

• 1/0 and device redirection: how to tell DOS where to get data from and where to send it, 
and how to pass information through multiple programs. 

• Environment and memory management: how to optimize RAM usage, overcome 
environment memory-space limits, and make creative use of environment variables. 

• Screen and color secrets: reset your screen colors, change your cursor, and change screen 
colors without affecting your text. 

• Keyboard and character tricks: create your own screen fonts and characters and create 
keyboard macros. 

• Handling disasters and other problems: explanations of all common mistakes and how to 
avoid them. 

As Executive Editor of PC Magazine, Paul Somerson edited the industry's longest-running 
DOS advice column and was responsible for all of the magazine's technical columns, 
programs, and articles. He has written many books on programming and other PC topics, 
including Star Fixer, a WordStar utility and guide. 

ISBN 0-553-35464-7 

I 
9 780553 354645 

35464-7 • IN U.S. $49.95(1N CANADA $62.95) •BANTAM COMPUTER BOOKS 
IN U.K. £46.99 (incl. VAT) 


