
The Waite Group's

MS-DOS®
Developer's Guide

Quick Reference Card

Owned or Sponsored I1\':

© 1(!8') hI' 'i1JC \'Vuile Groll/!, lllC.,
ill :lIS-DOS Del'eloper's Guide, Second Fditi(J/l, jJlliJ/isbed

hI' J/(i/mrd II" Sallis {- CU}ll/)W 11 ,

Predefined File Handles
o = Standard input device (can be redirected)
1 = Standard output device (can be redirected)
2 = Standard error device (cannot be redirected)
3 = Standard auxiliary device
4 = Standard printer device

Error Returns
Of the following error codes, only codes 01h through 12h are
returned in AX upon exit from int 21h or 24h. The rest are ob
tained by issuing the Get Extended Error function call (int 21h,
function 59h).

MS-DOS 2.0 through 4.0 Error Codes
Olh = Invalid function number
02h = File not found
03h = Path not found
04h = Tho many open files (no handles left)
05h = Access denied
06h = Invalid handle
07h = Memory control blocks destroyed
OSh = Insufficient memory
09h = Invalid memory block address
OAh = Invalid environment
OBh = Invalid format
OCh = Invalid access code
ODh = Invalid data
OEh = Reserved
OFh = Invalid drive was specified
10h = Attempt to remove the current directory
llh = Not same device
12h = No more files
13h = Attempt to write on a write-protected diskette
14h = Unknown unit
15h = Drive not ready
16h = Unknown command
17h = CRC error
ISh = Bad request structure length
19h = Seek error
1Ah = Unknown media type
lBh = Sector not found
1 Ch = Printer out of paper
lDh = Write fault
1Eh = Read fault
1Fh = General failure

MS-DOS 3.0 through 4.0 Error Codes
20h = Sharing violation
21h = Lock violation
22h = Invalid disk change
23h = FCB unavailable
24h = Sharing buffer overflow (MS-DOS 3.3, 4.0)
25h-41h = (Reserved)
42h-5Sh = (See MS-DOS 3.1 through 4.0 Error Codes)
59h-5Fh = (Reserved)
60h = File exists
61h = (Reserved)
62h = Cannot make function
63h = Failure on int 24h
64h-6Sh = (See MS-DOS 3.3,4.0 Error Codes)

MS-DOS 3.1 through 4.0 Error Codes
42h = Network request not supported
43h = Remote computer not listening
44h = Duplicate name on network
45h = Network name not found
46h = Network busy

2

47h = Network device no longer exists
4Sh = NETBIOS command limit exceeded
49h = Network adapter hardware error
4Ah = Incorrect response from network
4Bh = Unexpected network error
4Ch = Incompatible remote adapter
4Dh = Print queue full
4Eh = Queue not full
4Fh = Not enough space to print file
50h = Network name was deleted
51h = Access denied
52h = Network device type incorrect
53h = Network name not found
54h = Network name limit exceeded
55h = NETBIOS session limit exceeded
56h = Temporarily paused
57h = Network request not accepted
5Sh = Print/disk redirection paused
59h-5Fh = (Reserved)
60h = File exists
61h = Reserved
62h = Cannot make
63h = Fail on int 24

MS-DOS 3.3,4.0 Error Codes
64h = Out of structures
65h = Already assigned
66h = Invalid password
67h = Invalid parameter
6Sh = Network write fault

Error Classes

Olh = Out of resource OSh = Not found
02h = Temporary situation 09h = Bad format
03h = Authorization OAh = Locked
04h = Internal OBh = Media failure
05h = Hardware failure OCh = Already exists
06h = System failure ODh = Unknown
07h = Application error

Action Codes

Olh = Retry 05h = Immediate exit
02h = Delay retry 06h = Ignore
03h = Reenter input 07h = User intervention
04h = Abort

Locus

Olh = Unknown 04h = Serial device
02h = Block device 05h = Memory
03h = Reserved

MS-DOS Interrupts
NOTE: In the following descriptions of MS·DOS interrupts,

the numbers in brackets refer to versions of MS·
DOS.

Interrupt 20h-Program Terminate [1][2][3][4]
ENTRY: CS = Segment address of program's PSP
RETURN: None

Interrupt 21h-Function Call &quest
NOTE: Unless otherwise noted, all functions check for Ctrl·

Break and Ctrl·C; if issued, interrupt 23h is exe·
cuted.

3

AH = OOh Program Terminate [1] [2] [3] [4]
ENTRY: CS = Segment address of program's PSP
RETURN: None
NOTE: All file buffers are flushed: files opened with

FCBs may have data lost if not closed before·
hand. Func. 4Ch is preferred.

AH = Olh Input Character from Console with Echo
[1][2][3][4]
ENTRY: None
RETURN: If AL > 0 on first call, AL = standard ASCII

character
If AL = 0 on first call, call function Olh second
time to obtain Extended ASCII character in AL

AH = 02h Output Character to Console [1][2][3][4]
ENTRY: DL = character to write to first serial port [1] or

to STDAUX [2][3][4]
RETURN: None
AH = 03h Input Character from Auxiliary Port [1][2][3][4]
ENTRY: None
RETURN: AL = Character from first serial port [1] or from

STDAUX [2][3][4]
NOTE: Input is not buffered or interrupt·driven. The

status ofthe serial port is not checked (see ROM·
BIOS int 14h).

AH = 04h Output Character to Auxiliary Port [1][2][3][4]
ENTRY: DL = Character to output to STDAUX
RETURN: None
NOTE: The status of the serial port is not checked.

AH = 05h Output Character to Printer [1][2][3][4]
ENTRY: DL = Character to output to STDPRN
RETURN: None
AH = 06h Direct Console 110 [1][2][3][4]
ENTRY: If DL (> OFFh, output character in DL to

STDOUT; otherwise perform direct console in·
put

RETURN: None for direct console output.
For direct console input:

ZF = 1 if no character available; else AL =
character

NOTE: Extended ASCII codes require two calls.

AH = 07h Direct Input Character from Console without
Echo [1][2][3][4]
ENTRY: None
RETURN: AL = Character from STDIN
NOTE: Functions 07h and OSh require 2 calls for Ex·

tended ASCII codes
AH = 08h Input Character from Console without Echo
[1][2][3][4]
ENTRY: None
RETURN: AL = Character from STDIN

AH = 09h Output String to Console [1][2][3][4]
ENTRY: DS:DX = Pointer to string terminated by "$"
RETURN: None

AH = OAh Input Buffered String from Console with Echo
[1][2][3][4]
ENTRY: DS:DX = Pointer to input buffer. Buffer struc·

ture:
buf count db? ; number of bytes in buffer
re(count db? ; number of bytes returned
ret_char _str db x DUP (?) i returned characters

RETURN: None

AH = OBh Check Standard Input Status [1][2][3][4]
ENTRY: None

RETURN: AL = OFFh if character available from STDIN;
AL <> FFh if not

AlI = OCh Clear Keyboard Buffer and Invoke Keyboard
Function [1][2][3][4]
ENTRY: AL = int 21h function number (01h, 06h, 07h, 08h

orOAh)
Other registers defined by function in AL

RETURN: AL = Character (unless function OAh was in·
voked)
Other registers defined by function in AL on en·
try

AlI = ODh Disk Reset [1][2][3][4]
ENTRY: None
RETURN: None
NOTE: Flushes all file buffers but doesn't close files.
AlI = OEh Select Disk [1][2][3][4]
ENTRY: DL = Drive number (0 = A:, ... , 26 = Z:)
RETURN: AL = Number oflogical drives (0 = A:, ... ,26

=Z:)
NOTE: In DOS 3 and 4, a minimum of 5 logical drives is

reported unless overridden by LASTDRIVE set·
ting in CONFIG.SYS.

AlI = OFh FCB Open File [1][2][3][4]
ENTRY: DS:DX = Pointer to unopened FCB
RETURN: AL = OOh if file was opened successfully; AL =

OFFhifnot
AlI = 10h FCB Close File [1][2][3][4]
ENTRY: DS:DX = Pointer to opened FCB
RETURN: AL = OOh if file was closed successfully; AL =

OFFh if not
AlI = lIh FCB Search for First Entry [1][2][3][4]
ENTRY: DS:DX = Pointer to an unopened FCB
RETURN: AL = OOh if match was found; AL = OFFh if not
AlI = 12h FCB Search for Next Entry [1][2][3][4]
ENTRY: DS:DX = Pointer to FCB returned by previous

search·first or search·next function call
RETURN: AL = OOh if match was found; AL = OFFh if not
AlI = 13h FCB Delete File [1][2][3][4]
ENTRY: DS:DX = Pointer to an unopened FCB
RETURN: AL = OOh if file was deleted; AL = OFFh if not
AlI = 14h FCB Sequential Read [1][2][3][4]
ENTRY: DS:DX = Pointer to an opened FCB
RETURN: AL = Success/failure

OOh = read was successfully completed
Olh = no read attempted; already at end of

file
02h = read cancelled; DTA too small
03h = partial read completed; now at EOF

AlI = 15h FCB Sequential Write [1][2][3[4]
ENTRY: DS:DX = Pointer to an opened FCB
RETURN: AL = Success/failure

OOh = write was successfully completed
01h = no write attempted; media is full
02h = write cancelled; DTA too small

AlI = 16h FCB Create File [1][2][3][4]
ENTRY: DS:DX = Pointer to an unopened FCB
RETURN: AL = OOh if file was created; AL = OFFh if not
AlI = 17h FCB Rename File [1][2][3][4]
ENTRY: DS:DX = Pointer to a modified FCB (new name

starts in current block number field)
RETURN: AL = OOh if file was renamed; AL = OFFh if not
AlI = 19h Get Current Disk [1][2] [3][4]
ENTRY: None
RETURN: AL = Current drive number (0 = A:, ... , 25 =

Z:)

5

AlI = lAb Set Disk Transfer Address [1][2][3][4]
ENTRY: DS:DX = Pointer to new DTA
RETURN: None
AlI = lBh Get Allocation Table Information [1][2][3][4]
ENTRY: None
RETURN: DS:BX = Pointer to byte containing FAT ID

byte for default drive
DX = Number of clusters
AL = Number of sectors per cluster
CX = Number of bytes per sector

AlI = 1Ch Get Allocation Table Information for Specific
Device [1][2][3][4]
ENTRY: DL = Drive number (0 = current drive, 1 = A:,

... ,26 = Z:)
RETURN: Same as for Function lBh
AlI = 21h Random Read [1][2][3][4]
ENTRY: DS:DX = Pointer to an opened FCB
RETURN: AL = Return status:

OOh = read was successful
01h = end of file; no data read
02h = DTA is too small
03h = end of file; partial record read

AlI = 22h Random Write [1][2][3][4]
ENTRY: DS:DX = Pointer to an opened FCB
RETURN: AL = Return status:

OOh = write was successful
Olh = no write attempted; media full
02h = write cancelled; DTA too small

AlI = 23h Get File Size [1][2][3][4]
ENTRY: DS:DX = Pointer to an unopened FCB
RETURN: If AL = OOh, FeB random record field =

records in file
If AL = OFFh, file not found

AlI = 24h Set Relative Record Field [1][2][3][4]
ENTRY: DS:DX = Pointer to an opened FCB
RETURN: None
AlI = 25h Set Interrupt Vector [1][2][3][4]
ENTRY: AL = Interrupt number to set

DS:DX = Pointer to new interrupt handling rou·
tine

RETURN: None
AlI = 26h Create New Program Segment PrefIx [1][2][3][4]
ENTRY: DX:O = Pointer to new PSP area
RETURN: None
AlI = 27h Random Block Read [1][2][3][4]
ENTRY: DS:DX = Pointer to an opened FCB

CX = Number of records to read
RETURN: AL = Return status:

00 = read was successful
01 = end of file; no data read
02 = DTA too small
03 = end of file; partial record read

CX = Actual number of records read
AlI = 28h Random Block Write [1][2][3][4]
ENTRY: DS:DX = Pointer to an opened FCB

CX = Number of records to be written
RETURN: AL = Return status:

OOh = write was successful
01h = no write attempted; media full
02h = write cancelled; DTA too small

CX = Actual number of records written
AlI = 29h FCB Parse Filename [1][2][3][4]
ENTRY: DS:SI = Pointer to a command line to parse

ES:DI = Pointer to FCB for parsed filename
AL = Parsing control

6

76543210

1 = scan off leading separators
1 = set dri ve ID byte*
1 = set fi lename*
1 = set ext ens i on*

--- Reserved

*only if specified on the command line

RETURN: DS:SI = Pointer to first byte after parsed
filename
ES:DI = Pointer to first byte of the formatted
FCB
AL = Return status:

OOh = no global characters encountered
Olh = global characters were encountered
OFFh = drive specified was invalid

AH = 2Ah Get Date [1][2][3][4]
ENTRY: None
RETURN: CX = Year (1980 to 2099)

DR = Month (1 to 12)
DL = Day (1 to 31)
AL = Day of the week (0 = Sunday)

AH = 2Bh Set Date [1][2][3][4]
ENTRY: CX = Year (1980 to 2099)

DR = Month (1 to 12)
DL = Day (1 to 31)

RETURN: AL = OOh if date was valid; AL = OFFh if not
valid

AH = 2Ch Get Time [1][2][3][4]
ENTRY: None
RETURN: CR = Hour (0 to 23)

CL = Minutes (0 to 59)
DR = Seconds (0 to 59)
DL = Hundredths (0 to 99)

AH = 2Dh Set Time [1][2][3][4]
ENTRY: CR = Hour (0 to 23)

CL = Minutes (0 to 59)
DR = Seconds (0 to 59)
DL = Hundredths (0 to 99)

RETURN: AL = OOh if time was valid; AL = OFFh if not
valid

AH = 2Eh Set/Reset Verify Switch [1][2][3][4]
ENTRY: AL = OOh to set verify to off; AL = 01h to set

verify to on
RETURN: None
AH = 2Fh Get Disk Transfer Address (DTA) [2][3][4]
ENTRY: None
RETURN: ES:BX = Pointer to the current DTA
AH = 30h Get MS·DOS Version Number [2][3][4]
ENTRY: None
RETURN: AL = Major version number (left of decimal)

AR = Minor version number (right of decimal)
BX,CX = 0000

NOTE: AX = 0 if MS· DOS version 1.X
AH = 31h Terminate Process and Remain Resident
[2][3][4]
ENTRY: AL = Return code (batch ERRORLEVEL)

DX = Number of memory paragraphs to stay
resident

RETURN: None
AH = 33h Get/Set Ctrl·Break Check State [2][3][4]
ENTRY: AL = Get current state; AL = Set Ctrl·Break

check

7

DL = OOh to set Ctrl· Break to off; AL = Olh to
set to on

RETURN: DL = OOh ifCtrl-Break is off; AL = Olh if on
AH = 35h Get Interrupt Vector [2] [3] [4]
ENTRY: AL = Vector number
RETURN: ES:BX = Pointer to the current interrupt

handler
AH = 36h Get Disk Free Space [2][3][4]
ENTRY: DL = Drive number (0 = current drive, 1 = A:,

... ,26 = Z:)
RETURN: BX = Number of available clusters

DX = Number of clusters on drive
CX = Number of bytes per sector
If AX = OFFFFh, drive is invalid
If AX () OFFFFh, AX = number of sectors
per cluster

AH = 38h Get Current Country Information [2][3][4]
ENTRY: AL = 00 to get current country information

AL = Olh through OFEh for country codes (255
AL = OFFh for country codes)255
BX = Country code if AL = OFFh
DS:DX = Pointer to 34-byte country information
buffer

RETURN: If CF = 0, BX = country code
If CF = 1, AX = error code

NOTE: See MS-DOS manual for structure and contents
of country information buffer.

AH = 38h Set Country Information [3][4]
ENTRY: DX = OFFFFh (to indicate "set country")

AL = 01h through OFEh for country codes (255
AL = OFFh for country codes)255
BX = Country code if AL = OFFh

RETURN: If CF = 1, AX = Error code
AH = 39h Create Subdirectory (MKDIR) [2][3][4]
ENTRY: DS:DX = Pointer to ASCIIZ path name
RETURN: IfCF = 1, AX = error
AH = 3Ah Remove Subdirectory (RMDIR) [2][3][4]
ENTRY: DS:DX = Pointer to ASCIIZ path name
RETURN: IfCF = 1, AX = error
AH = 3Bh Change Current Directory (CHDIR) [2][3][4]
ENTRY: DS:DX = Pointer to ASCIIZ path name
RETURN: If CF = 1, AX = error
AH = 3Ch Create a File (CREAT) [2][3][4]
ENTRY: DS:DX = Pointer to ASCIIZ path name

CX = File attributes
RETURN: IfCF = 0, AX = file's ha.ndle

If CF = 1, AX = error code
AH = 3Dh Open a File [2][3][4]
ENTRY: DS:DX = Pointer to an ASCIIZ path name

AL = Open mode:
76543210

Access mode: 000 = read on l y
001 = write only,
010 => read/write

---AlwaysO
"'----~ Sharing mode:

000 = compatibi l ity mode
001 = deny read/wri te
010 = deny write
011 = deny read
100 = deny none

l....--~~~Inheritance flag
RETURN: IfCF = 0, AX = file handle

If CF = 1, AX = error code

8

NOTE: Opening of network files not available under
DOS2.X.

AH = 3Eh Close a File Handle [2][3][4]
ENTRY: BX = File handle
RETURN: If CF = 1, AX = error code
AH = 3Fh Read from a File or Device [2] [3][4]
ENTRY: BX = File handle

CX = Number of bytes to read
DS:DX = Pointer to read buffer

RETURN: If CF = 0, AX = number of bytes actually read
If CF = 1, AX = error code

AH = 40h Write to a File or Device [2][3][4]
ENTRY: BX = File handle

CX = Number of bytes to write
DS:DX = Pointer to write buffer

RETURN: If CF = 0, AX = number of bytes actually writ
ten
If CF = 1, AX = error code

AH = 41h Delete a File from a Specified Directory
(UNLINK) [2][3][4]
ENTRY: DS:DX = Pointer to an ASCIIZ filename
RETURN: If CF = 1, AX = error code
AH = 42h Move File ReadlWrite Pointer (LSEEK)
[2][3][4]
ENTRY: CX:DX = Distance to move in bytes (offset)

AL = Origin of move:
00 = beginning of file plus offset
01 = current location plus offset
02 = end of file plus offset

BX = File's handle
RETURN: IfCF = 0, DX:AX = new pointer location

If CF = 1, AX = error code
AH = 43h Change File Mode (CHMOD) [2][3][4]
ENTRY: DS:DX = Pointer to an ASCIIZ path name

AL = OOh to get attribute; AL = Olh to set at
tribute
CH = OOh if AL = Olh
CL = New attribute if AL = Olh

RETURN: If CF = 0 and AL = OOh, CL = file's attributes
If CF = 1, AX = error code

AH = 44h I/O Control for Devices (IOCTL)
NOTE: See the MS-DOS technical reference manual for

details on the following IOCTL sub functions:

OOh Get device information [2][3][4]
Olh Set device information [2][3][4]
02h Read from character device [2][3][4]
03h Write to character device [2][3][4]
04h Read from block device [2][3][4]
05h Write to block device [2][3][4]
06h Get input status [2][3][4]
07h Get output status [2][3][4]
08h Is a particular block device changeable

[3][4]
09h Is logical device local or remote

[3.1][3.2][3.3][4]
OAh Is handle local or remote [3.1][3.2][3.3][4]
OBh Change sharing retry count [3][4]
OCh Generic IOCTL handle request (code page

switching) [3.3][4]
ODh Block device generic IOCTL request

[3.2][3.3][4]
OEh Get logical device [3.2][3.3][4]
OFh Set logical device [3.2][3.3][4]

9

AH = 45h Duplicate a File Handle (DUP) [2][3][4]
ENTRY: BX = Existing file handle
RETURN: If CF = 0, AX = new duplicate file handle

If CF = 1, AX = error code
AH = 46h Force a Duplicate of a File Handle (FORCDUP)
[2][3][4]
ENTRY: BX = Existing file handle

CX = Desired duplicate file handle
RETURN: If CF = 1, AX = Error code
AH = 47h Get Current Directory [2][3][4]
ENTRY: DS:SI = Pointer to a 64-byte user buffer

DL = Drive number (0 = current drive, 1 = A:,
... ,26 = Z:)

RETURN: DS:SI = Pointer to full path name from root

NOTE:
If CF = 1, AX = Error code
Returned path name does not include drive ID
and leading "\".

AH = 48h Allocate Memory [2][3][4]
ENTRY: BX = Number of paragraphs of memory re

quested
RETURN: If CF = 0, AX:O = pointer to allocated memory

block
If CF = 1, AX = error code and BX = size of
the largest block of memory available
(paragraphs)

AH = 49h Free Allocated Memory [2][3][4]
ENTRY: ES = Segment of allocated block to be freed
RETURN: IF CF = 1, AX = error code
AH = 4Ah Modify Allocated Memory Blocks
(SETBLOCK) [2][3][4]
ENTRY: ES:O = Segment address of allocated block to be

modified
BX = New number of paragraphs for block

RETURN: If CF = 1, AX = error code and BX = maxi
mum size possible for block

AH = 4Bh Load or Execute a Program (EXEC) [2][3][4]
ENTRY: DS:DX = Pointer to an ASCIIZ file specification

AL = Function value:
OOh = load and execute the program
03h = load an overlay

ES:BX = Pointer to parameter block:

seg_env dw
cmd ptr dd
fcb1 pt r dd
fcb(ptr dd

If AL = OOh

? ; segment of envi r. string
? ; poi nter to command line

; poi nter to fi rst FCB
; poi nter to second FCB

If AL = 03h

seg_load dw ? ; segment at whi ch to load fi le
rel_fact dw ? ; relocation factor to be used

RETURN: If CF = 1, AX = error code

AH = 4Ch Terminate a Process (EXIT) [2][3][4]
ENTRY: AL = Return code (batch ERRORLEVEL)
RETURN: None

AH = 4Dh Get Return Code of a Subprocess (WAIT)
[2][3][4]
ENTRY: None
RETURN: AL = Return code sent by subprocess

AH = Return status:
OOh = normal termination
Olh = Ctrl-Break termination
02h = critical error termination
03h = stayed resident via int 21h function

31h

10

AH = 4Eh Find First Matching File (FIND FIRST)
[2][3][4]
ENTRY: DS:DX = Pointer to ASCIIZ file specification

CX = Attribute used during search
RETURN: IfCF = 1, AX = Error code

If CF = 0, DTA is filled as follows:
reserved db 21 dup (1) ; reserved'
attrib db? ; file's attribute
time dw? ;-file's time stamp
date dw? ; file'sdatestamp
size dd? ; fi le's size
name db 13 dup (?) ; ASCIIZ fi le name

AH = 4Fh Find Next Matching File (FINDNEXT) [2][3][4]
ENTRY: DTA as returned from previous FINDFIRST or

FINDNEXT call
RETURN: Same as FINDFIRST function call
AH = 54h Get Verify Setting [2][3][4]
ENTRY: None
RETURN: AL = OOh if verify is off; AL = 01h if verify is on

. AH = 56h Rename a File [2][3][4]
ENTRY: DS:DX = Pointer to old ASCIIZ

[drive:path\fIlename)
ES:DI = Pointer to new ASCIIZ
[drive:path \filename)

RETURN: If CF = 1, AX = error code
AX = 5700h Get a File's Date and Time [2][3][4]
ENTRY: BX = File's handle
RETURN: If CF = 0, CX = file's time and DX = file's date

If CF = 1, AX = error code
AX = 5701h Set a File's Date and Time [2][3][4]
ENTRY: BX = File's handle

CX = New time
DX = New date

RETURN: If CF = 1, AX = error code

AH = 59h Get Extended Error Information [3][4]
ENTRY: BX = OOOOh
RETURN: AX = Extended error code

BH = Error class
BL = Suggested action
CH = Locus
CL, DX, SI, DI, ES and DS are destroyed.

AH = 5Ah Create a Temporary File [3][4]
ENTRY: DS:DX = Pointer to ASCIIZ string with drive

and path, ending in "\"
CX = File attributes

RETURN: If CF = 0, AX = file handle and DS:DX =
pointer to ASCIIZ string, complete with
filename
If CF = 1, AX = error code

AH = 5Bh Create a New File [3][4]
ENTRY: DS:DX = Pointer to ASCIIZ path/filename

CX = File attributes
RETURN: If CF = 0, AX = handle

If CF = 1, AX = error code
AH = 5Ch LockfUnlock File Access [3][4]
ENTRY: AL = to lock file access; AL = Olh to unlock file

access
BX = File handle
CX = High word of offset
DX = Low word of offset
SI = High word of length
DI = Low word oflength

RETURN: If CF = 1, AX = error code

11

AX = 5EOOh NETWORK: Get Machine Name
[3.1][3.2][3.3][4]
ENTRY: DS:DX = Pointer to 16-byte buffer for ASCIIZ

computer name
RETURN: If CF = 0, DS:DX = pointer to ASCIIZ com·

putername
If CF = 1, AX = error code
If CH = 0, name/number is undefined
If CH () 0, name/number is defined and CL =
NETBIOS name number

AX = 5E02h NETWORK: Set Printer Setup String
[3.1][3.2][3.3][4]
ENTRt: BX = Redirection list index

CX = Length of setup string (maximum length
= 64 bytes)
DS:SI = Pointer to printer setup string

RETURN: IfCF = 1, AX = error code
AX = 5E03h NETWORK: Get Printer Setup String
[3.1][3.2][3.3][4]
ENTRY: BX = Redirection list index

ES:DI = Pointer to 64-byte printer setup buffer
RETURN: IfCF = 0, CX = length of returned data and

ES:DI = pointer to printer setup string
If CF = 1, AX = error code

AX = 5F02h NETWORK: Get Redirection List Entry
[3.1][3.2][3.3][4]
ENTRY: BX = Redirection list index (zero-based)

DS:SI = Pointer to 128-byte buffer for local
name
ES:DI = Pointer to 128-byte buffer for network
name

RETURN: IfCF = 0, BH'= device status flag
If bit 0 = 0, device is valid
If bit 0 = 1, device is invalid

BL = Device type
CX = Stored parameter value
DS:SI = ASCIIZ local name
ES:DI = ASCIIZ network name
If CF = 1, AX = error code

AX = 5F03h NETWORK: Redirect Device [3.1][3.2][3.3][4]
ENTRY: BL = Device type:

03 = Printer device
04 = File device
CX = OOOOh
DS:SI = Pointer to ASCIIZ local name to redi
rect
ES:DI = Pointer to ASCnZ network destination
name

RETURN: If CF = 1, AX = error code
AH = 62h Get Program Segment Prefix Address [3][4]
ENTRY: None
RETURN: BX:O = Pointer to current PSP

AH = 65h Get Extended Country Information [3.3][4]
ENTRY: AL = Information ID

BX = Code page (-1 = global code page)
DX = Country ID (-1 = current country)
CX = Size
ES:DI = Pointer to country information buffer

RETURN: If CF = 0, CX = size of country information re
turned and ES:DI = pointer to country informa
tion
If CF = 1, AX = error code

12

AH = 66h Get/Set Global Code Page [3.3][4]
ENTRY: AL = 01h to get global code page; AL = 02h to

set
BX = Code page (if AL = 02h)

RETURN: If CF = 0, EX = active code page and DX =
system code page
If CF = 1, AX = error code

AH = 67h Set Handle Count [3.3][4]
ENTRY: BX = Number of open handles allowed
RETURN: If CF = 1, AX = error code
AH = 68h Commit File [3.3][4]
ENTRY: BX = File handle
RETURN: CF = 1, AX = error code
AH = 69h Extended Open/Create [4]
ENTRY: BX = Open mode:
BL = 7654321 0

Access code:
000 = read
001 = lOr; te
002 = read/wri te

~-~-~ Sharing mode:
000 = compati bi l i ty
001 = deny read/wri te
010 = deny wri te
011 = deny read
100 = deny none

I Ib ___ ~_ Inheritance:
0= pass hand le to chi ld
1 = no inheritance

~-~--- Reserved

BH = 76 5 43 2 1 0

Reserved
0= execute INT 24h
1 = return error

I L _____ 0 = no comm; t
1 = auto commi t
Reserved

CX = New file attributes (ignored on file open)
DX = Function control:

76543210

Exi sts action:
000 = fai l
001 = open
010 = replace/open

----Does not exist action
000 = fail
001 = create

DS:SI = Pointer to 64-byte ASCIIZ file
specification

RETURN: If CF = 0, AX = file handle and CX = action-
taken code:

1 = file opened
2 = file created/opened
3 = file replaced/opened

If CF = 1, AX = error code

Interrupt 22h-Terminate Address [1J[2J[3J[4J
NOTE: Don't issue this interrupt directly; instead, use

the EXEC function call, which issues int 22h for
you.

13

Interrupt 23h-CtrllBreak Exit Address [1][2][3J[4J
NOTE: Don't issue this interrupt directly; if BREAK is

on, int 23h is checked on most function calls (ex
cept functions 06h and 07h).

Interrupt 24h-Critical Error Handler Address [3J[4J
ENTRY: AH =
Bits76543210

o read /1 wri te operati on
affected di sk area:

00 = DOS area; 01 FAT area;
10 = di rectory; 11 = data area

FAIL allowed: O=no; 1 =yes
-~-- RETRY allowed: 0 = no; 1 = yes
-.~--~ IGNORE allowed: 0 = no; 1 = yes

i 6 ____ (unused)
L-____ 0 = di sk error; 1 = other

BP:SI = Pointer to device header control block
from which additional information can be
retrieved.
DL = Device error code, as follows:

RETURN: AL = 0 (ignore the error)
AL = 1 (retry the error)
AL = 2 (terminate the program through int 23h)
AL = 3 (system failure: call in progress)

Interrupt 24h Critical Error Handler Address Error Codes:
OOh = Attempt to write on write-protected disk
01h = Unknown unit
02h = Drive not ready
03h = Unknown command
04h = Data error (CRC)
05h = Bad request structure length
06h = Seek error
07h = Unknown media type
08h = Sector not found
09h = Printer out of paper
OAh = Write fault
OBh = Read fault
OCh = General failure

Interrupts 25h (Absolute = (32-Mbyte Disk Read) and 26h
(Absolute = (32-Mbyte Disk m-ite) [1][2J[3][4J
ENTRY: AL = Drive number (0 = A, 1 = B, etc.)

CX = Number of sectors to read (int 25h) or
write (int 26h)
DX = Beginning logical sector number
DS:BX = Transfer address

RETURN: CF = 0 if successful transfer
CF = 1 if unsuccessful transfer:

AL = Error code
AH = 80h if attachment failed to respond

40h if SEEK operation failed
OSh if bad CRC on disk read
04h if requested sector not found
03h if write attempt on write-pro
tected diskette
02h if error other than types listed
above

AX = 0207h if failed to read/write extended
format using conventional int 25h/26h calls

Interrupts 25h (Absolute) 32-Mbyte Disk Read) and 26h
(Absolute >32-Mbyte Disk m-ite) [4J
ENTRY: AL = Drive number (0 = A, 1 = B, etc.)

BX = Pointer to parameter list
CX = -1 (indicates extended 032-Mbyte) format)

14

RETURN: CF = 0 if successful transfer; CF = 1 if unsuc
cessful

NOTE: POP AX (error code) on return. Error codes the
same as above.
Parameter list structure:

rba dd?; fi rst sector (32-bits, a origin) to
; read/wri te

count dw ? ; number of sectors to read/wri te
buffer dd ? ; data buffer

Interrupt 27h-Terminate and Stay &sident [1][2J[3Jf4J
ENTRY: CS = Segment address of program's PSP

DX = Address at which next program may be
loaded (highest address to stay resident + 1)

RETURN: None
NOTE: Files are not closed after int 27h. Int 21h function

31h is the preferred method of causing a program
to terminate and stay resident.

Interrupt 2Fh-Multiplex Interrupt Function Galls [3J[4J
ENTRY: AX = Multiplexing program control:

0100h = Get PRINT installed state
0101h = Submit file to PRINT
0102h = Cancel file in PRINT queue
0103h = Cancel all files.in PRINT queue
0104h = Pause PRINT and return its status
0105h = End of PRINT status
0200h = Get ASSIGN installed state
loo0h = Get SHARE installed state
B700h = Get APPEND installed state

DS:DX = Pointer to submit packet if AX =
0101h (0 + DWORD pointer to ASCnZ filespec
(no wildcards)); or pointer to ASCnZ filespec to
cancel if AX = 0102h

RETURN: IfCF = 1, AX = error code; else
If AL = OFFh, "program" is installed
If AL = 0, "program" not installed; OK to install
If AL = 1, "program" not installed; not OK to in
stall

Interrupt 67h-Expanded Memory Manager (EMS) [2J[3J[4J
NOTE: Int 67h is used for LIM EMS in all versions of MS

DOS beginning with version 2.0 but is officially re
served for such use only in MS-DOS versions 4.0 and
above. All EMS function numbers are placed in AH,
and status/error codes are returned in AH. Status/
error codes are:

LIM EMS 3.X, 4.0, MS-DOS 4.0, and AQA EEMS 3.X
Error Codes
ooh = Successful operation
80h = Internal error
81h = Hardware malfunction
83h = Invalid handle
84h = Undefined function requested
85h = No more handles available
86h = Error in save or restore of mapping context
87h = More pages requested than physically exist
88h = More pages requested than currently available
89h = Zero pages requested
8Ah = Invalid logical page number
8Bh = Illegal physical page number
8Ch = Page-mapping hardware state save area is full
8Dh = Page-mapping save failed
8Fh = Undefined subfunction

15

LIM EMS 4.0, MS·DOS 4.0, and AQA EEMS 3.X Error
Codes
90h = Undefined attribute type
91h = Feature not supported
92h = Successful, but a portion of the source region has

been overwritten
93h = Length of source or destination region exceeds

length of region allocated to either source or destination
handle

94h = Conventional and expanded memory regions overlap
95h = Offset within logical page exceeds size of logical page
96h = Region length exceeds 1 megabyte
97h = Source and destination EMS regions have same han-

dle and overlap
98h = Memory source or destination type undefmed
9Ah = Specified alternate map register set not supported
9Bh = All alternate map register sets currently allocated
9Ch = Alternate map register sets not supported
9Dh = Undefined or unallocated alternate map register set
9Eh = Dedicated DMA channels not supported
9Fh = Specified dedicated DMA channel not supported
AOh = No such handle name
A1h = Duplicate handle name
A2h = Attempted to wrap around I-megabyte conventional

address space
A3h = Contents of source array corrupted or count of map

pable segments exceeds total number of mappable seg
ments in system

A4h = Access denied by operating system

AH = 40h Get Manager Status
ENTRY: None
RETURN: None (status/error code returned in AH)
NOTE: Use only after establishing that EMS driver is

present.
AH = 4th Get Page Frame Segment Address
ENTRY: None
RETURN: BX = Segment address of page frame
AH = 42h Get Unallocated Page Count
ENTRY: None
RETURN: BX = Number of unallocated pages

CX = 'Ibtal number of pages
AH = 43h Allocate Pages
ENTRY: BX = Number oflogical pages to allocate
RETURN: DX = Handle
AH = 44h MapfUnmap Handle Pages
ENTRY: AL = Physical page number

BX = Logical page number, or -1 to unmap
page
DX= Handle

RETURN: None
AH = 45h Deallocate Pages
ENTRY: DX = Handle
RETURN: None
AH = 46h Get Version
ENTRY: None
RETURN: AL = Version number in BCD
AH = 47h Save Page Map
ENTRY: DX = Handle
RETURN: None
AH = 48h Restore Page Map
ENTRY: DX = Handle
RETURN: None
AH = 4Bh Get Handle Count
ENTRY: None
RETURN: BX= Number of handles

16

AH = 4Ch Get Handle Pages
ENTRY: DX = Handle
RETURN: BX = Number of logical pages allocated to speci-

fied handle

AH = 4Dh Get All Handle Pages
ENTRY: ES:DI = Pointer to handle page array
RETURN: BX = Number of handles in use

AX = 4EOOh Get Page Map
ENTRY: ES:DI = Pointer to page map array
RETURN: EMM mapping state stored in page map array

pointed to by ES:DI

AX = 4EOlh Set Page Map
ENTRY: DS:SI = Pointer to page map array
RETURN: EMM mapping state set from page map array
AX = 4E02h Get and Set Page Map
ENTRY: ES:DI = Pointer to destination page map array

DS:SI = Pointer to source page map array
RETURN: EMM mapping state set from source page map

array (DS:SI). Destination page map array
(ES:DI) updated with EMM mapping state.

AX = 4E03h Get Size of Page Map Array
ENTRY: None
RE TURN: AL = Number of bytes required for source or

destination page map array

AX = 4FOOh Get Partial Page Map [EMS 4.0]
ENTRY: DS:SI = Pointer to mappable segment array

ES:DI = Pointer to destination partial page map
array

RETURN: Partial EMM page map state is contained in des
tination partial page map array (ES:DI).

AX = 4FOlh Set Partial Page Map [EMS 4.0]
ENTRY: DS:SI = Pointer to source partial page map

array
RETURN: Partial EMM page map state is updated from

source partial page map array (DS:SI)

AX = 4F02h Get Size of Partial Page Map Array [EMS
4.0]
ENTRY: BX = Number of pages in partial page map

array
RETURN: AL = Number of bytes required to store partial

page map array

AH = 50h MaplUnmap Multiple Handle Pages by Page
Number [EMS 4.0]
ENTRY: AL = Subfunction:

OOh = physical page specified as page
number

Olh = physical page specified by segment
address

DX = Handle
CX = Number of entries in logical-to-physical
map array
DS:SI = Pointer to logical-to-physical map array

RETURN: AH = status/error code

AH = 51h Reallocate Pages [EMS 4.0]
ENTRY: DX = Handle

BX = Number of pages to be allocated to handle
RETURN: BX = Actual number of pages allocated to

handle

AX = 5200h Get Handle Attribute [EMS 4.0]
ENTRY: DX = Handle
RETURN: AL = OOh if handle attribute is volatile; AL =

Olh if not

17

AX = 5201h Set Handle Attribute [EMS 4.0]
ENTRY: DX = Handle

BL = OOh if new handle attribute is volatile; BL
= Olh if not

RETURN: None

AX = 5202h Get Attribute Capability [EMS 4.0]
ENTRY: None
RETURN: AL = OOh if attribute nonvolatility is supported;

AL = O1h if not

AX = 5300h Get Handle Name [EMS 4.0]
ENTRY: DX = Handle

ES:DI = Pointer to 8-character handle name
destination buffer

RETURN: Handle name is returned in buffer pointed to by
ES:DI

AX = 5301h Set Handle Name [EMS 4.0]
ENTRY: DX = Handle

ES:DI = Pointer to 8-character handle name
source buffer

RETURN: Handle name is set based on name in buffer
pointed to by ES:DI

AX = 5400h Get Handle Directory [EMS 4.0]
ENTRY: ES:DI = Pointer to handle directory array
RETURN: AL = Number of entries in handle directory
AX = 5401h Search for Named Handle [EMS 4.0]
ENTRY: DS:SI = Pointer to 8-character handle name

search buffer
RETURN: DX = Value of named handle

AX = 5402h Get Total Handles [EMS 4.0]
ENTRY: None
RETURN: BX = Total number of handles supported
AH = 55h Alter Page Map and Jump [EMS 4.0]
ENTRY: AL = Subfunction:

OOh = physical pages specified as page
number

O1h = physical pages specified by segment
address

DX = Handle
DS:SI = Pointer to map and jump structure

RETURN: Positioned at target address (if AH = OOh)

AH = 56h Alter Page Map and Call [EMS 4.0]
ENTRY: AL = Subfunction:

OOh = physical pages specified as page
number

O1h = physical pages specified by segment
address

DX = Handle
DS:SI = Pointer to map and call structure

RETURN: Target address is called (if AH = OOh)
NOTE: Use RETF to return from called location and re-

store mapping context.

AX = 5602h Page Map Stack Space Size [EMS 4.0]
ENTRY: None
RETURN: BX = Number of stack space bytes required by

Alter Page Map and Call function

AH = 57h Move/Exchange Memory Region [EMS 4.0]
ENTRY: AL = Subfunction:

OOh = move memory region
Olh = exchange memory region

DS:SI = Pointer to source/destination region de
scriptor

RETURN: None

18

AX = 5800h Get Mappable Physical Address Array [EMS
4.0]
ENTRY: ES:DI = Pointer to mappable physical address

array
RETURN: ex = Number of entries in mappable physical

address array
AX = 5801h Get Physical Address Array Entry Count
[EMS 4.0]
ENTRY: None
RETURN: ex = Number of entries in mappable physical

address array
AX = 5900h Get Hardware Configuration Array [EMS 4.0]
ENTRY: ES:DI = Pointer to hardware configuration

array
RETURN: Hardware data is copied into hardware configu-

ration array (pointed to by ES:DI)
AX = 5901h Get Unallocated Raw Page Count [EMS 4.0]
ENTRY: None
RETURN: BX = Number of unallocated raw pages

DX = Total number of raw pages
AH = 5Ah Allocate Standard/Raw Pages [EMS 4.0]
ENTRY: AL = Subfunction

OOh = allocate standard pages
Olh = allocate raw pages

BX = Number of pages to allocate
RETURN: DX = Handle
AX = 5BOOh Get Alternate Map Register Set [EMS 4.0]
ENTRY: None
RETURN: If BL = 0, ES:DI points to map register context

save area
If BL (> 0, BL = pointer to active alternate
map register set

AX = 5BOlh Set Alternate Map Register Set [EMS 4.0]
ENTRY: If BL = OOh, ES:DI = pointer to map register

context save area
If BL (> OOh, BL = alternate map register set
number

RETURN: None
AX = 5B02h Get Alternate Map Save Area Size [EMS 4.0]
ENTRY: None
RETURN: DX = Number of bytes in map register context

save area
AX = 5B03h Allocate Alternate Map Register Set [EMS
4.0]
ENTRY: None
RETURN: If BL = OOh, no alternate map register sets are

available
If BL (> OOh, then BL = alternate map register
set number allocated

AX = 5B04h Deallocate Alternate Map Register Set [EMS
4.0]
ENTRY: BL = Alternate map register set number
RETURN: None
AX = 5B05h Allocate DMA Register Set [EMS 4.0]
ENTRY: None
RETURN: If BL = OOh, DMA register sets are not

supported
If BL (> OOh, BL = allocated DMA register set
number

AX = 5B06h Enable DMA on Alternate Map Register Set
[EMS 4.0]
ENTRY: BL = DMA register set number

DL = DMA channel number
RETURN: None

19

AX = 5B07h Disable DMA on Alternate Map Register Set
[EMS 4.0]
ENTRY: BL = DMA register set number
RETURN: None

AX = 5B08h Deallocate DMA Register Set [EMS 4.0]
ENTRY: BL = DMA register set number
RETURN: None

AH = 5Ch Prepare for Warm Boot [EMS 4.0]
ENTRY: None
RETURN: None

AH = 5Dh EnablelDisable OS/E Function Set [EMS 4.0]
ENTRY: AL = Subfunction

OOh = enable OS/E function set
Olh = disable OS/E function set
02h = return access key

BX, ex = Access key (required only on subse
quent calls)

RETURN: BX, ex = Access key returned only on first call
of subfunction OOh or Olh

20

