Assembly Language
'Programming Manual ¥

by Microdata

GERGRGGS ﬁﬁﬁﬂﬁﬁ.

A 4#4%414\4141«
-l-l-# A a2 -l-l-l» - -_-I,

PROPRIETARY INFORMATION

The information contained herein is propnetary to and
considered a trade secret of Microdata Corporation
and shall not be reproduced in whole or part without
the wntten authorization of Microdata Corporation.

©1977 Microdata Corporation

All Rights Reserved

TM —Trademark of Microdata Corporation
Specifications Subject to Change Without Notice
Printed in U S.A

Price: $20.00

REALITY

(3.0 SERIES)

Assembly Language

L

Programming Manual

771049

° Microdata Corporation

17481 Red Hill Avenue, Irvine, California 92714
Post Office Box 19501, Irvine, California 92713
Telephone: 714/540-6730 - TWX: 910-595-1764

SECTION

1

TITLE
INTRODUCTION
1.1 THE REALITY CPU AND HARDWARE
1.2 THE REALITY SYSTEM ARCHITECTURE
1.3 THE REALITY INSTRUCTION SET
1.4 RESTRICTIONS ON USE OF ASSEMBLY LANGUAGE
ON REALITY
1.5 MANUAL ORGANIZATION AND CONVENTIONS

TABLE OF CONTENTS

REALITY CPU REFERENCE INFORMATION

2.1

SYSTEM STRUCTURE
2.1.1 SYSTEM COMPONENTS
2.1.2 INFORMATION FORMATS
VIRTUAL STORAGE
2.2.1 VIRTUAL STORAGE ORGANIZATION
2.2.2 ADDRESSING VIRTUAL STORAGE
CORE STORAGE
2.3.1 CORE STORAGE ORGANIZATION
2.3.2 ADDRESSING CORE STORAGE
VIRTUAL STORAGE MANAGEMENT
2.4.1 FRAME FAULTS
2.4.2 AUTOMATIC FRAME WRITES
PROCESSES
2.5.1 PROCESS IDENTIFICATION BLOCK
2.5.2 PRIMARY CONTROL BLOCK
FRAME FORMATS AND LINKAGES
2.6.1 FRAME FORMATS
2.6.2 LINKED SETS OF FRAMES
ADDRESS REGISTERS

ADDRESS REGISTER ATTACHMENT

2.7.1
2.7.2 CAUTIONS INVOLVING REGISTER ATTACHME
2.7.3 ATTACHMENT AND DETACHMENT OF ADDRESS

REGISTERS
THE MONITOR
2.8.1 MONITOR FUNCTIONAL ELEMENTS
2.8.2 PROCESS SCHEDULING
PERIPHERAL I/O
PROGRAM TRAPS

REALITY ASSEMBLY LANGUAGE (REAL)

3.1

wwwww
. o e
NN wN

OURCE LANGUAGE

LABEL FIELD

OPERATION FIELD

OPERAND FIELD

OPERAND FIELD EXPRESSIONS
COMMENT FIELD
DOCUMENTATION CONVENTIONS
CALLING THE ASSEMBLER

LISTING OUTPUT

LOADING

VERIFYING A LOADED PROGRAM MODE
TCL-II CROSS REFERENCE CAPABILITY
3.6.1 CROSS-INDEX VERB

S
3.
3.
3.
3.
3.
3.

H h'h‘F'H H
O\U‘I-hwwo—‘

PAGE

RORN0
W e

[
U o
S w

|
HHEH 900 U0UUWwWwwWwNHPF B H -

)
e
N0 WWw

NNNNNNNNNI})NNNNNNNNNN

N
1

2-18

2-18
2-19
2-19
2-1¢

wWwwww w ? wWwWwwwww
DO UVTWWNNNFHHH B

w
[}

TABLE OF CONTENTS (Continued)

SECTION TITLE

3.6.2 X-REF VERB
3.6.3 XREF PROC

3.7 THE KEAL INSTRUCTION REPERTOIRE
3.7.1 CHARACTER INSTRUCTIONS (MOVES)
3.7.2 CHARACTER INSTRUCTIONS (TESTS)
3 7.3 BIT INSTRUCTIONS
3.7.4 DATA MOVEMENT AND ARITHMETIC INSTRUCTIONS
3.7.5 REGISTER INSTRUCTIONS
3.7.6 DATA COMPARISON INSTRUCTIONS
3.7.7 TRANSLATE INSTRUCTIONS
3.7.8 EXECUTION TRANSFER INSTRUCTIONS
3.7.9 I/0 AND CONTROL INSTRUCTION
3.7.10 ASSEMBLER DIRECTIVES
3.7.11 ADDRESS REGISTER USAGE
3.7.12 REAL INSTRUCTION SIDE EFFECTS

3.8 ASSEMBLER TABLES
3.8.1 TSYM/PSYM TABLE ENTRY FORMATS
3.8.2 OSYM TABLE-LOOKUP TECHNIQUE

3.8.3 TSYM TABLE ENTRY SETUP
3.9 ASSEMBLER OUTPUT
3.10 ASSEMBLER ERROR MESSAGES
3.11 REAL INSTRUCTION SUMMARY
3.12 PROGRAMMING CONSIDERATIONS AND CONVENTIONS

3.12.1 REENTRANCY
3.12.2 WORK-SPACES OR BUFFERS
3.12.3 DEFINING A SEPARATE BUFFER AREA
3.12.4 USAGE OF XMODE
3.12.5 INITIAL CONDITIONS
3.12.6 SPECIAL PSYM ELEMENTS
4 THE INTERACTIVE DEBUGGER (DEBUG)
4.1 ENTERING DEBUG

4.2 THE DEBUG CONTROL COMMANDS
4.2.1 CONTROL COMMAND SYNTAX

4.2.2 DEBUG CONTROL TABLES
4.2.3 CONTROL COMMANDS
4.3 THE DEBUG DATA DISPLAY COMMANDS
4.3.1 WINDOWS
4.3.2 DATA DISPLAY COMMANDS
4.3.3 DATA REPLACEMENT SPECIFICATIONS
4.3.4 SPECIAL CONTROL CHARACTERS
4.4 THE FORMATTED TRACE
4.5 SYMBOLIC REFERENCES
4.5.1 SYMBOLIC OPERATORS
4.5.2 DISPLAY FEATURES
4.5.3 SYMBOLIC WINDOWS
4.6 THE ADDRESS FUNCTION
4.7 THE LINKS FUNCTION

4.8 BIT DATA
4.8.1 SYMBOLIC BITS

ii

(o e]

|

N N N N N N N N N N N N N N N N N NN
|
HHFEFEREFROWOOOMNOU B D WNKFFHBH

o= e

SECTION

TABLE OF CONTENTS (Continued)

TITLE
4.8.2 BIT ADDRESSES
4.8.3 REPLACING BIT DATA
4.8.4 BIT WINDOWS

4.9 BREAK MESSAGES
4.10 EXAMPLES
4.10.1 SIMPLE EXAMPLE
4.10.2 EXTENDED EXAMPLE
SYSTEM S'JBROUTINES

CONVERSION FROM LEVEL 2.X TO 3.0

iii

PAGE

4-11
4-12
4-12
4-12
4-13
4-13
4-14

5-1

FIGURE NO.

1-1

|
O o 9o b w -

NN NN NDNDDNDNDNNDNDND
|]
-
(@]

]
e
N -

L»)L'A)(.-J
w N+

LIST OF FIGURES

TITLE
Hierarchy of System Architecture

Information Formats

Memory Management Tables

PIB General Format

PCB Elements Accessed by Firmware
Primary Control Block

Secondary Control Block

Unlinked Vs. Linked Frame Formats
Link Field Format

Examples of Linked Sets of Frames
Address Register Format

Attachment & Detachment of Address Registers

Order Codes

Sample Assembly Listing

Sample of CSYM File After CROSS-INDEX

Sample of XSYM File After X-REF

iv

HOW TO USE THE REALITY® MANUALS

The Reality® manuals are written in modular format with each pair of facing
pages presenting a single topic.

This and other Reality manuals differ substantially from the typical reference
manual format. The left-~hand page of each topic is devoted to text, while the
right-hand page presents figures referred to by the text. At the head of each
text page are a pair of titles, the first title naming the section, the second
the topic. Immediately below these titles is a brief summary (boxed) of the
material covered in the topic.

The advantage of this format will become readily apparent to the reader as he
uses this manual. First, the figures referred to in the text are always con-
veniently right in front of the reader at the point where the reference is made.
Secondly, the reader knows that when he turns the page, he has completed one
idea and is ready to encounter a new one.

Documentation for the Reality system includes the following:
Reality Programmer's Reference Manual, #1048
Reality EDITOR Operator's Guide, #1052
Reality ENGLISH'M Programming Manual, #1038
Reality DATA/BASICTM. programming Manual, #1051
Reality PROC and BATCH Programming Manual, #1044
Reality Assembly Language Programming Manual, #1049
Reality Bisync Operator's Guide, #1043

The examples throughout this manual use certain conventions as defined in
Figure A.

CONVENTION MEANING
EXT Shaded text represents the user's input.
TEXT Standard text represents computer output

printed by the system.

TEXT Ttalicized text 1s used for comments and notes
which help explain or describe the example.

This symbol represents a carriage return.

B This symbol represents a space (blank).

Figure A. Conventions Used Throughout This Manual

SECTION 1

INTRODUCTION

1.1 THE REALITY® CPU AND HARDWARE

The Reality system runs on a Microdata 1600 CPU. Although small in size, it has
the architecture of a medium scale computer. Its main memory is core, and is ex-
pandable to 131,072 bytes. The CPU cycle time is 200 nanoseconds, and the main
memory full cycle time is 1 microsecond. The CPU is microprogrammed, meaning that
the assembly language instructions are executed by many small micro-instructions
which are "close" to the machine. These micro-instructions (firmware) are in read-
only, fixed memory, as tais affords higher execution speeds. Taking this approach
permits proven hardware to be used for Reality systems while allowing the .flexibil-
ity of a custom instruction set.

The mass memory is disc, which is organized into 512 byte blocks called frames.

Over 300 megabytes of disc storage can be configured on a Reality system. There

is a large list of supporting hardware which can be interfaced to the 1600 Computer,
including tapes, communication devices, terminals, etc.

1.2 THE REALITY SYSTEM ARCHITECTURE

Figure 1-1 shows an overall view of the software on the Reality system. The firmware
is burned onto integrated circuit chips and placed on a firmware board. The monitor
serves to allocate disc activity and to schedule processes for activation. It uses
assembly language instructions which are executed by the firmware. There is a large
volume of available system software, also written in assembly language, with instruc-
tions executed by the firmware. This system software includes compilers, utilities,
the assembler, and a large number of subroutines to which the user may interface.

Reality will support up to 32 separate asynchronous processes (terminals plus the
work they are doing). Because Reality code is reentrant, each may be running the
same or different tasks.

Reality assembly language operates through its own set of registers, stacks, accu-
mulators, and other data structures. Each process is assigned a control block which
contains 16 addressing registers, an accumulator, a return stack which will hold 11
entries, an accumulator extension, and a large number of other registers, counters,
pointers, and flags which make the assembly language very powerful. The 16 address
registers in a control block can access any byte in disc space. Relative addressing
is also possible using an offset displacement plus one of the registers to any bit,
byte, word (16 bits), double word (32 bytes), or triple word (48 bits) in the entire
virtual memory.

Input and output to the terminals is handled automatically by the firmware, which
makes these operations fast. Input and output to the discs are handled automati-
cally by the monitor and firmware, a feature which greatly simplifies the program-
ming task.

HIGHER LEVEL
LANGUAGES (RPG,
ENGLISHT-M-, pata/BasicT-M.

SYSTEM SOFTWARE

MONITOR

FIRMWARE

CPU & CORE

Figure 1-1. Hierarchy of System Architecture

1.3 THE REALITY INSTRUCTION SET

The Reality Computer System has an extensive instruction set. The main features

include:

* Bit, byte, word, double-word, and triple-word operations.

* Memory-to-memory operation using relative addressing on bits, bytes, words,
double-words, and triple-words.

* Bit operations permitting the setting, resetting, and branching on condition
of a specific bit.

* Branch instructions which permit the comparison of two relative memory
operands and branching as a result of the compare.

* Addressing register operations for incrementing, decrementing, saving, and
restoring addressing registers.

* Byte string operations for the moving of arbitrarily long byte strings from
one place to another.

* Operations for the conversion of binary numbers to printable ASCII characters
and vice versa.

* Arithmetic instructions for loading, storing, adding, subtracting, multiplying,
and dividing the extended accumulator and a memory operand.

* Control instructions for branching, subroutine calls, and program linkage.

1.4 RESTRICTIONS ON USE OF ASSEMBLY LANGUAGE ON REALITY

While the use of assembly language on Reality is supported, certain restrictions

are placed on this usage to insure compatibility from one release to another, and to
insure that the systems are both hardware and software supportable. The following
are not supported.

1)

2)

3)

4)

5)

6)

Any change to the assembly code system software supplied by Microdata.

Any interface to routines not documented in the chapter SYSTEM SUBROUTINES
in this manual.

Any interface to P.I.B's or other data or code in non-virtual core.
Any code written in monitor mode.

Any modifications, deletions or additions to the tables PSYM and OSYM as
supplied on SYS-GEN tapes.

Any interface to a device or peripheral not supplied by Microdata.

1.5 MANUAL ORGANIZATION AND CONVENTIONS

This manual is organized as follows:

* Section 2 is essentially a "reference manual" for the Reality CPU. It des-
cribes the system structure and the machine instructions.

* Section 3 describes the Reality Assembly Language (REAL).

* Section
monitor

* Section

4 describes the Interactive Debugger (DEBUG), which may be used to
and control program execution.

5 documents Microdata-supplied system subroutines (and their inter-

faces) which users may call.

In presenting general command formats throughout this manual, the following conven-

tions apply.

Convention

UPPER CASE

lower case

{}

{}...

Meaning

Characters or words printed in upper case are required and must
appear exactly as shown.

Characters or words printed in lower case are parameters to be
supplied by the user (e.g., file name, item-ID, data, etc.).

Braces surrounding a word and/or parameter indicate that the word
and/or parameter is optional and may be included or omitted at
the user's option.

If an ellipsis (i.e., three dots) follows the terminating
bracket, then the enclosed word and/or parameter may be omitted
or repeated an arbitrary number of times.

In presenting examples, the following conventions apply:

Convention

TEXT

Meaning

Shaded ‘text represents the user's input.

Standard text represents output printed by the system.
This symbol represents a carriage return.

This symbol represents a line feed.

SECTION 2

REALITY CPU REFERENCE INFORMATION

This section is a "reference manual" for the Microdata Reality CPU. It provides a
description of the system structure; of the arithmetic, logical, branching, skipping,
and input/output operations; and of the interrupt and storage management system.
Input/output devices are discussed in separate documents.

2.1 SYSTEM STRUCTURE
2.1.1 SYSTEM COMPONENTS

The Reality system consists of a core storage unit, a tape drive, a printer, a disc
storage device used as a virtual storage unit, a central processing unit (CPU), and
from one to 32 input/output terminals. There is a one-to-one correspondence between
a terminal attached to the system and a process. Additional input/output devices
such as magnetic tape units, disc units, card readers, and printers may be attached
to the system. Input/output devices, other than a process's terminal, may be ac-
cessed by any process. The disc unit containing the virtual store, however, cannot
be accessed as an input/output unit, except by the monitor.

2.1.2 INFORMATION FORMATS

The system CPU processes information in units of 8 bits, or in multiples of 8 bits
at a time. Each 8-bit unit is called a byte.

Information may be a single byte, or may be grouped together in fields. Fields of
two, four, and six bytes are called words, double words, and triple words, respec-
tively. A field made up of an arbitrary number of bytes is called a string. The
location of any field is specified by the address of the leftmost byte of the field.
Addresses increase from left to right.

Within any information format, the bits making up the format are numbered from left
to right, starting with 0. Figure 2-1 shows the information formats.

2,2 VIRTUAL STORAGE

All information in the Reality system, other than the monitor program and certain
data used by the monitor, is stored in virtual space. "Virtual" means that the
physical location of this space moves from disc to core and from core to disc auto-
matically, without attention from the user.

2.,2.1 VIRTUAL STORAGE ORGANIZATION

Virtual storage is organized into blocks of 512 bytes each. Each block is called
a frame. Frames are numbered from one to some maximum number which depends on the
system configuration. When frames are needed for processing, they are moved into
core for access by the CPU. Frames which are not used often are moved into disc

storage to make room for other frames in core. This movement of frames is handled

BYTE

11000110

!

0 BITS 7

——

WORD

11110001{01001011

0 7 8 1
5

DOUBLE WORD

11100000|10001111 {00000000|10101011

3

0 7 8 2
4 1

11 2
56 3

TRIPLE WORD

00000001/00100111{0011111111110000|00001001 00000111

4
7

0 7 8 11 2 2 33 3 4
56 34 12 90

Figure 2-1. Information Formats

automatically by the Reality firmware and monitor, so as far as the user is con-
cerned, available space can be viewed as a linear set of frames. Whether data is
actually in core or on disc at any given time is of little importance, and is con-
sidered only when optimizing programs.

2.2.2 ADDRESSING VIRTUAL STORAGE

All program references to information are references to virtual storage. Fields
in virtual storage are referenced via a frame number (frame-ID, or FID) and a
displacement. If the field being referenced is a single byte or a string, the
displacement is the number of bytes relative to the first data byte of the frame.
If the reference is to a word, double word or triple word, the displacement is
the number of words relative to the first data byte of the frame. References to
instructions are via a 12-bit frame number. Therefore, programs must be located
in the first 4096 frames.

2.3 CORE STORAGE
2.3.1 CORE STORAGE ORGANIZATION

Core storage is also organized into 512-byte blocks, called buffers. A few buffers
are reserved for the monitor, tables, and status indicators which are required to
operate the Reality system. The remaining buffers are available for storing data
read in from disc; one buffer can hold exactly one frame of virtual storage.

Any core buffer can hold any frame, and at any given time the buffers in core will
have a scattering of frames. Frames are read into core as buffers become available,
without regard to which buffers they are. Frames are written back to disc as they
fall into disuse.

2.3.2 ADDRESSING CORE STORAGE

Byte locations in core storage are consecutively numbered starting with zero. A
group of bytes is addressed by the leftmost byte of the group. The number of bytes
in a group is either implied or explicitly defined by the particular Reality in-
struction. The addressing mechanism uses a one-bit bank select register and a
sixteen-bit binary address register, giving a maximum of 131,072 addressable bytes.

2.4 VIRTUAL STORAGE MANAGEMENT

The Reality monitor uses several tables to manage the movement of frames between
core and disc.

The Buffer Status Table contains the status of each buffer in core storage--whether
it is I/O-busy, corelocked (not to be read into) or, write-required (data in frame
changed) .

The Buffer Map (or FID Table) is a table containing the virtual storage addresses
of all frames currently in core buffers.

The Buffer Queue (or Links Table) is a linked list of buffer numbers used to schedule
buffers for disc I/O efficiently.

The Hash Address Table (HAT) and the Hash Link Table (HLT) are used to locate frames
in core storage. To detzrmine whether a given frame is in core or not, the frame
number is transformed ("hashed") into a HAT entry number, which points to a list of
HLT entries. This list contains the numbers of all frames in core which have the
same HAT entry number. If the given frame number is not in the list, the frame is
not in core, and a frame fault is then generated in order to read the frame in from
disc.

Figure 2-2 shows the interaction of the memory management tables.

START

START HERE TO SEE IF A FRAME
IS IN CORE & IF SO, WHERE

HASH TRANSFORMATION

] Cren 5 \ ,
LIST N
\\
\‘

HAT HLT e
ENTRIES POINT TO 1 BLoC COMPOSED OF SEVERAL TS~
LINKED LISTS PERLBuﬁFER INTERTWINED LINKED LISTS. >

IN copg COMNECTS BUFFERS HAVING FID's

WHICH HASH THE SAME.
/
/
/

/ /
/
/
/
/
/
4
/
/
4

/

/

L

’
/]
/
/
/
/
PY ’

BUFFER QUEUE (ORDERS BUFFERS BY

MOST RECENT USAGE)

BUFFER MAP (SHOWS FRAMES)

Figure 2-2.
2-4

Memory Management Tables

2.4.1 FRAME FAULTS

If a program (process) attempts to reference data which is not in core, it is de-
activated and marked disc-roadblocked by the firmware, and the monitor is activated
to search for an available buffer for the frame. If an available buffer exists and
the required disc drive is not busy, the monitor sets that buffer's status to I/0-
busy and corelocked, zeroes the frame number in the Buffer Map, and commands the
disc to read the requested frame into that buffer. Then the monitor selects another
process for activation. When the disc interrupt occurs, indicating completion of the
read, the monitor stores the requested frame number in the Buffer Map, clears the
I/0-busy and corelocked buffer status, and clears the process's disc-roadblocked
flag. The monitor then starts another disc read, if possible, for another process,
and selects another process for activation.

If a process needs a frame read into core and no buffer is available, the monitor
finds the least recently used buffer which is not corelocked, writes it out to disc
if its write-required flag is set, and marks it available. By the time a buffer is
written out, however, the disc drive required to read in the desired frame may be
busy, or another process may have already read this frame into core. But the buffer
freed by a write is always marked available in the Buffer Map (by zeroing the frame
number), and this table is always searched before using the available buffer.

2.4.2 AUTOMATIC FRAME WRITES

Whenever the monitor completes a search for disc roadblocks for an available disc
drive and fails to find any, it next looks for a buffer with write-required, non-
corelocked status. It searches the Buffer Map beginning with the least recently
used buffer and starts a write/verify operation for the first buffer found for an
available disc drive. The monitor sets the buffer's corelocked flag and clears the
write-required flag, but does not set the I/O-busy flag in this case. This means
that processes may read and write data into and out of the buffer after the write/
verify operation is initiated, but if the data in the buffer changes, the firmware
will set the write-required flag again. When the write/verify operation is complete,
the monitor clears the buffer's corelocked status and searches for another process
reguiring disc I/0. The monitor thus ensures system efficiency by continually pro-
viding available buffers.

2.5 PROCESSES

The Reality CPU is designed as an interactive system capable of communicating with
several users simultaneously. A user communicates with the system via a terminal,
and associated with each terminal is a process. A process can be defined as a con-
tinuing operation on a set of functional elements (areas of virtual space). The
number of processes in a Reality system is a function of its configuration. Each
process, except the monitor process, is associated with a Process Identification
Block (PIB) in core, and a Primary Control Block (PCB) and other elements in virtual
space.

2.5.1 PROCESS IDENTIFICATION BLOCK

Process Identification Blocks (PIBs) are used in handling the I/O operations asso-
ciated with each process, and in scheduling activation and deactivation of the

processes.

Each PIB is 64 bytes long and is formatted as shown in Figure 2-3.

NOTE

The information in Figure 2-3 is intended to give a better understanding
of the operation of Reality systems.
interface spectification.

It 1s not intended to be used as an

Byte

»w N o

31
32

e e o o o - —]
e
e e e e e s e e e

e e s e s e e e

Status
Bytes

Terminal
I/0 Buffer

w
[
+

0| ACTIVE

1| SLEEP

2| DIOBLK/

3| --

al|l --

5| OBYTEBLK/

6 | IBYTEBLK/

7| --
INDEBUG

Set when process may be activated
Zeroed to sleep until time in bytes 12-15
Zeroed by firmware on frame fault

Zero during terminal output
Zero during terminal input

Set to echo terminal input
Set when process is executing from TCB
Set by firmware on program trap

Trap number

yte address of last character in terminal I/0 buffer

umber of bytes in terminal I/O buffer minus one

Figure 2-3.

P

IB Format

2.5.2 PRIMARY CONTROL BLOCK

For each process there is a frame called the Primary Control Block (PCB). The

PCB contains the accumulator, address registers, subroutine return stack and string
scan control characters associated with the process. Figure 2-4 describes elements
of the PCB which are accessed by the firmware. Figure 2-5 shows the entire PCB
layout. Figure 2-6 shows the Secondary Control Block (SCB) layout.

BYTES DESCRIPTION
0] Reserved.
1 This byte contains the condition code resulting

from a previous arithmetic instruction execution.

3-5 These bytes are used for controlling the Move
and Scan through Delimiter instructions.

6-7 These bytes are used for controlling the DEBUG
trace mode of operation.

8-X'0OB' These bytes contain the double-word accumulator
extension. The accumulator extension contains
the most significant portion of a product

after a multiply operation. It contains the
remainder after a divide operation.

X'0C'-X'0F' These bytes contain the double-word accumulator.

X'100'-X'17F' These bytes contain the 16 address registers.
See the description of the address registers
below.

X'182'-X'183" These bytes contain the pointer to the current

top of the subroutine stack.

X'184'-X'1AF' These bytes contain the subroutine return
stack. Each entry is four bytes long: the
first two bytes contain the FID and the
last two contain the displacement of the
address one before that where program exe-
cution is to resume upon returning from the
subroutine.

Figure 2-4. PCB Elements Accessed by Firmware

PRIMARY CONTROL BLOCK

L d

Addressing register RO set to PCB. Areas bordered by hea
reserved for future system software use.

] 1 2 3 4 5 6 7

000 m ACF PRMPC SCO sc1 sC2 DEBUGBYTE | RNICTR
010 AFLG-ZFLG, SB0-SB35, DAF0-DAF9, MISC. BITS
020 CHO] CH1 4] CH2 I CH3 CHa | CH8 l CH9] ScP
030 D2 D3
040 RECORD FRMN

050 BASE MODULO SEPAR

060 MBASE MMOD MSEP

070 OVRFLW CMODE W
080 | INHIBITH bCFSAv RCDCTR MODEID2 WMODE

090 CTRO CTR1 CTR2 CTR3

0A0 CTR8 CTR9 CTR10 CTR11

0BO REJCTR REJO IBSIZE OBSIZE
0Co0 F HSEND ISBEG

0Do OSBEG AI

0E0 7 I TSEND

OF0 = UPDEND BMSBEG
100 ROWA J RODSP ROFLGS] ROFID

110 R2 (SCB)

120 R4 (1S)

130 R6 {IR)

140 R8 (BMS)

150 R10 (1B)

160 R12 (CS)

170 R14

180 RSCWA F”;«TN STACKl ENTRY #lsp

190 ENTRY #4 ENTRY #5

1A0 ENTRY #8 ENTRY #9

180 AFBEG ,

1C0 7 I CSEND

1D0 A IBEND 44] OBBEG
1E0 IRBEG I

1F0 7 l SYSR1 (FPY)

Figure 2-5. Primary Control Block

vy lines are accessed by hardware. Shaded areas are
8 1 9 1 | c | D 1 |
. D1 DO
TAPSTW l MISC. BITS
PR A 6 l 7
D4 D5
FRMP NNCF | NPCF SIZE
DBASE DMOD DSEP
EBASE EMOD ESEP
SBASE SMOD SSEP
RMODE MODEID3 XMODE USER
CTR4 CTR5 CTR6 CTR7
CTR12 CTR13 CTR14 CTR15
HSBEG ‘ ¥
ISEND
OSEND TSBEG =
UPDBEG *
BMSEND
R1
R3 (HS)
RS (OS)
R7 (UPD)
R9 (AF)
R11 (OB)
R13 (TS)
R15
ENTRY #2 ENTRY #3
ENTRY #6 ENTRY #7
ENTRY #10 ENTRY #11
AFEND CSBEG A
| IBBEG [¥
OBEND
IREND SYSRO (FPX) F
1 CHARGE — UNITS BYTECTR

SECONDARY CONTROL BLOCK

Addressing register R2 set to SCB. SCB = PCB+l.

0 1 2 | 3 4 . 5 6 . 7
000 |[(SCRATCH)| BSPCH ci c2 c3
010 ABIT-ZBIT, NUMFLG 1, NUMFLG 2, ACTBIT CTR16 CTR17
020 CTR22 CTR23 CTR24 CTR25
030 CTR30 CTR31 CTR32 CTR33
040 CTR38 CTR39 CTRA40 CTR41
050 PFILE NEXT FP1
060 FP3
070 T r D9 REJ1
080 SYSR2
090 7 l ST
0A0 7 S3 L sS4
0BO S6
0Co 7 L s9
0D0 F SR1 l SR2
0EO SR4
0F0 T | SR7
100 F SR9 W SR10
110 SR12
120 7 L SR15
130 7 SR17 T SR18
140 SR20
150 = L SR23
160 F SR25 7 SR26
170 SR28
180 T L PQCUR
190 STKEND l STKBEG
1A0 LOCKSR
1C0 ////////////////////% FOOTCTR PAGFOOT
100 PBUF
1E0 POBSIZE PPAGSIZE I PLINCTR PPAGNUM
1FO PAGNUM PAGHEAD

Figure 2-6. Secondary Control Block

A D
ca cs c6 c7
CTR18 CTR19 CTR20 CTR21
CTR26 CTR27 CTR28 CTR29
CTR34 CTR35 CTR36 CTR37
CTR42 FP5
FP2
% D7 [D8
| REJ2 FPa4
NXTITM J S0
| : |
I s5
s7 ’ s8
| SRO |
] SR3
SR5 I SR6
l SR8 l
| SR11
SR13 I SR14
T SR16 |
AJ SR19
SR21 I SR22
I SR24 |
l SR27
SR29 | PQBEG
J PQEND I
| SR35

>

PQ-REG

BDESCTBL

PBUFBEG
PBUFEND OVRFLCTR
TOBSIZE TPAGSIZE TLINCTR TPAGNUM
LINCTR PAGSIZE PAGSKIP LFDLY

2.6 FRAME FORMATS AND LINKAGES

2.6.1 FRAME FORMATS
The Reality system provides two types of frame formats: linked and unlinked.

Unlinked formats contain 512 data bytes (see Figure 2-7). For unlinked frames,
the displacement portion of an address is relative to byte 0 of the frame. Dis-
placements outside the range 0 through 511 are not valid for frames in the unlinked

format.

0 511
Jo UNLINKED 511

LOGICAL NUMBERING

PHYSICAL LOCATIONS
OF BYTES

OF BYTES

0 11 12 511

LINK
LINKED 50
AREA I:Ex

NOTE: FOR LINKED FRAMES, THE PHYSICAL BYTE
IS 11 PLUS THE LOGICAL BYTE NUMBER.

Figure 2-7. Unlinked Vs. Linked Frame Formats

Linked frames contain 500 data bytes, numbered 1 to 500. For linked frames, the
displacement of an address is relative to byte 11 of the frame. However, a dis-
placement of zero is a rz=ference to byte 511 of the frame previous to the current
frame. Displacements for linked frames may be positive or negative so long as the
displacement references a logically linked frame. The link field is described in

Figure 2-8.

2 3

4 5 6 7 8 9

FRMN

(Next FID) (previous FID)

FRMP

0 -
1 NNCF
2-5 FRMN
FORWARD
LINK
6-9 FRMP
BACKWARD
LINK
10 NPCF
11 --
12-511

DESCRIPTION

Unused and reserved.

This byte contains a count of the number of next contig-
uous frames which follow this frame. A zero in this
byte indicates that this frame is the last frame in a
contiguously linked set of frames.

This field contains the frame number of the frame that
logically follows this frame. If byte 1 contains other
than zero, this will be the next higher numbered frame.
If byte 1 contains a zero this may be any frame number.
A zero in this field indicates that this is the last
frame of a linked set.

This field is similar to bytes 2 through 5 except that
it contains the number of the frame preceding this
frame.

This byte is similar to byte 1 except that it contains
a count of the number of previous contiguous frames
preceding this frame.

Unused and reserved.

Data section.

fit in a single frame.

Figure 2-8. Linked Frame Format

2.5.2 LINKED SETS OF FRAMES

A series of frames may be linked together to hold data structures that will not
. Such a linked set may contain contigquous frames, singly
linked frames, or combinations. Figure 2-9 shows some examples.

A. A SERIES OF SINGLY LINKED FRAMES

NNCF = 26
FRMN = 1004
FRMP = 1002
1000| |[1001| |1002| [1003| ... 1029

B. A SET OF 30 CONTINGUOUSLY LINKED FRAMES
NOTE

If all NNCF and NPCF fields in these frames were zero, this would
be a singly linked list of frames which happened to have consec-
utive FID's,

1000| [1001| [1002] [1003]| [1004]| |1005 [20000] [29001] |
- / A J/
6 CONTIGUOUS FRAMES SINGLE 54
LINK CONTIGUOUS
FRAMES

C. TWO CONTIGUOUS LINKED SETS THEMSELVES LINKED WITH A SINGLE LINK.
TIIIS IS TYPTCAL OF 'LOGON WORKSPACE.'

PHYSICAL REGISTER POINTS TO PHYSICAL

#'s BYTE 61&

3 11 12 61 511 0 11 12 6 511 0 11 12 61 511
50 500 50 500 50 500

.]

FRAME 2000 FRAME 3070 FRAME 1296

LOGICAL

#'s

REG points to logical byte 50 of frame 3070.
REG minus 500 points to byte 50 of frame 2000.
REG plus 500 points to byte 50 of frame 1296.

D. DISPLACEMENTS OFF OF A REGISTER WHICH POINTS INTO A SET OF
LINKED FRAMES LOGICAT, —]

#'s

Figure 2-9. Examples of Linked Sets of Frames

2-15

2.7 ADDRESS REGISTERS

All references to data, except immediate data, are made indirectly through an
address register. There are 16 address registers in each PCB. Each address
register contain 8 bytes as described in Figure 2-10.

Address 0 1 2 3 4 5 6 7

Register CORE ADDRESS|DISPLACEMENT | LINK FID

Format

BYTES DESCRIPTION

0-1 These bytes contain the 16 bit main storage address of the

referenced data. If the address is less than X'800', the
address register is "detached."

2-3 These bytes contain the displacement of the referenced data
relative to the first data byte of the frame. The displace-
ment is a 16-bit signed number. Negative values are
represented in twos complement form. These bytes are
meaningful only when the register is detached. (See the
section ADDRESS REGISTER ATTACHMENT.)

4 Zero in bit zero of this byte indicates that the register
references data in linked format. If bit zero is a one,
the register references the data in unlinked format.

One in bit one indicates that frame attachment is in
progress. Bit one can only be set during the execution of
instructions that increment addresses with data movement.

Bit 7 is used as an extension of the word address to
indicate a main memory bank.

5-7 These bytes contain the virtual storage frame number of
the byte being referenced.

Figure 2-10. Address Register Format

ADDRESS REGISTER ZERO

Register zero is used in a special way. This register always points to the PCB.
Register zero is attached when the process is activated. The displacement field
of this register is always effectively zero.

ADDRESS REGISTER ONE

When a process is not active, address register one contains the FID and displacement

(minus one) for the next instruction to be executed. When the process is activated,
the buffer address of the program frame (as determined from the buffer map) is added

tote displacement from register one. This value is placed into a hardware instruc-
tion counter. The register is then converted to the attached form with the buffer

2-16

i

address set to byte zero of the program frame. This allows register one to be used
to reference data in the program frame. When the process is deactivated, the main
storage location from the instruction counter is converted to the corresponding FID
and displacement and the register is detached with these values placed into it.

2.7.1 ADDRESS REGISTER ATTACHMENT

When setting up an address register, the first two bytes of the register must

be set to zero. Bytes 2 through 7 are set to contain a virtual frame number and
displacement. A register in this format is said to be detached. When a subse-
quent instruction uses the detached register for a data reference, an attempt is
made to convert the address register to the attached format. The attaching attempt
is automatic and procedes as follows. The buffer map is searched to determine if
the referenced frame is located in main storage. If the frame is in main storage,
the location of the required byte is computed by adding the buffer address from the
map to the displacement from the address register. The address is then placed into
bytes 0 and 1 of the address register, thus forming the attached format. Once the
register is attached, instruction execution takes place.

If the referenced frame is not in main storage, the frame number is placed into
bytes 12 through 15 of the PIB. Byte 0, bit 2 of the PIB is set to 0, thus road-
blocking the process. Next, all of the address registers in the PCB are converted
to detached format and a fault interrupt to the monitor is taken.

Figure 2-11 summarizes the attachment/detachment process.

A/R is Attached A/R is Detached
when: when:
0 1 2 3 4 5 6 17
00 - DISP Flags|F I D
Word - - Flags|F I D
Address
(1) Any instruction (1) Process is deac-
that references tivated due to:
data via the A/R terminal 1/0;
is executed. disk I/O (frame

fault); peripheral
I/0; timer run-out;
monitor call.

(2) Execution of (2) A S/R is moved to
INC r the A/R.
DEC r
instructions.

(3) Execution of (3) Execution of
FAR r,n INC r,t
instruction. DEC r,t

if a frame bound-
ary is crossed.

Figure 2-11. Attachment & Detachment of Address Registers

2-17

2.7.2 CAUTIONS INVOLVING REGISTER ATTACHMENT

Address registers can be set up explicitly by setting their fields appropriately; a
more conventional way is to move a S/R into it. Consider the following:

FRM100 ADDR 0,X'100" DEFINE A LITERAL S/R
. REFERENCING FRAME X'100'

MoV FRM100,R15

and .

ZERO R15WA
ZERO R15DSP
MoV =DX'80000100"',R15FID

It is important to note that, in the first sequence, the address register is auto-

matically set to the "detached" format when the "MOV" instruction executes; in the

second sequence, the address register is explicitly set to the "detached" format by
the "ZERO RLS5WA" instruction. The word-address of an A/R must be zeroed before

other segments of the A/R are modified.

2.7.3 ATTACHMENT AND DETACHMENT OF ADDRESS REGISTERS

All instructions that reference data force "attachment" of the A/R(s) used in the
reference. Other instructions do not do this; for example, the "increment A/R by
tally" instruction will not cause a "detached" A/R to attach before execution.

This point may lead to programming errors; consider the following sequence:

L1 BCU AM,R6,NXT R6 "ATTACHED' AT THIS POINT
L2 INC R6, SIZE R6 MAY "DETACH" DUE TO THIS INSTRUCTION

L3 MOV R6, SR4 SAVE R6

The instruction at L2 may force R6 to "detach" (if the contents of SIZE are such
that the resultant address is beyond the limits of the current frame); storing R6
in SR4 will then cause SR4 to have a large positive displacement, and a FID equal
to that in R6 at the time of execution of the instruction at Ll. Subsequently, a

register comparison instruction of the form:

BE R15,SR4,L20

may execute incorrectly due to the fact that if the FID's of R15 and SR4 are unequal
at the time of execution, it is assumed that the two frames are continguously linked
(see Section 3.14). Therefore, it is best to force "attachement" of R6 before L3; a
convenient way of doing so is to execute the instruction:

L3A FAR R6,0

though any data reference instruction would serve as well.

2.8 THE MONITOR

The monitor is a program that is an integral part of the Reality system. Its
function is to initiate the transmission of information between core storage and
virtual storage and to schedule each of the processes.

2.8.1 MONITOR FUNCTIONAL ELEMENTS

The monitor process is the only one not associated with a PIB. The PCB for the
monitor is located in low core.

Besides the functional elements described in Section 2.5.2, the monitor PCB con-
tains such information as the system time and date, pointers for peripheral devices
zero through fifteen, and the bootstrap software.

When the system is operating in monitor mode, address registers are not checked for
attachment. Instead, all data references are assumed by the firmware to be refer-
ences to absolute core addresses.

2.8.2 PROCESS SCHEDULING

The monitor maintains a queue of processes currently in the system, arranged in
increasing order of expected total processing time. The position of a process in
the queue determines its priority for activation--the process at the head of the
queue has the highest priority. The process with the highest priority without
any roadblocks is always the next one to be activated.

Expected total processing time for a process, at any given instant, is based on the
amount of CPU processing and number of disc reads already done by that process.
Interactive processes are favored by increasing their priority. As a process out-
puts characters to the terminal, it migrates up the priority queue. When a process
receives terminal input, it is moved to the head of the queue, for immediate activa-
tion. As a process consumes system resources (CPU time and disc reads), it

migrates down the priority queue.

The effect of each system resource on a process's priority is controlled by a
weighting factor. When the number of units of a resource consumed reaches the
weighting factor, the process is moved up or down in the priority queue one posi-
tion and the resource unit count is reset to zero. See 'priority scheduling' in
The Programmer's Reference Manual.

One process in the Reality system may be designated the Super High Priority Process
(SHPP) in order to receive special handling in the process scheduling mechanism,
The SHPP has top priority to all system resources, allowing it to run without
interference from other process. This is implemented for BISYNC communictions.

The following rules are applied to the SHPP:

. The SHPP is reactivated when its CPU processing time quantum is used up.

. Frame faults for the SHPP are processed as soon as the necessary disc is
available.

. Disc interrupts which signal completion of a disc read for the SHPP cause
the SHPP to be activated immediately.

. Interrupts from devices with addresses in the range X'10'-X'13' which
are for the SHPP cause the SHPP to be activated immediately.

. Voluntary RQM's by the SHPP allow two other processes to run before the
SHPP is activated again.

2.9 PERIPHERAL I/0O

Communication between the CPU and peripheral devices .is made through controllers.
Each controller has a unique device address in the Reality system. Device
addresses 0 through 15 are used for non-virtual storage devices such as tape drives
and line printers, addresses 16 through 23 are used for virtual storage devices
(disc drives), and addresses 24 through 27 are used for the process terminals.

I/0 instructions other than those for terminal I/0 must specify a device address
and an order code. The meaning of each of the eight possible order codes is ex-
plained in Figure 2-12. External interrupts cause the monitor to perform certain
processing; during this time, further external interrupts are inhibited.

2.10 PROGRAM TRAPS

Certain error conditions cause the CPU to execute a trap to the DEBUG state;
processing of the current program will be aborted, and a message indicating the
nature of the trap, and the location at which it occurred, will be displayed. The
table below shows these error conditions:

Message Description
ILLEGAL OPCOLE An illegal (undefined) operation code
has been executed.
RTN STACK EMPTY A RTN (return) instruction was executed

when the return-stack was empty
(RSCWA equals X'0184').

RTN STACK FULL A BSL or BSLI (subroutine call)
instruction was executed when the
return-stack was full (RSCWS equals
X'01B0') ; the return-stack has been
reset to an "empty" condition before

the trap.
REFERENCING FRAME ZERO An address register has a FID of zero.
CROSSING FRAME LIMIT An address register in the "unlinked"

format 1) has been incremented or
decremented off the boundary of a frame,
or 2) has been used in a relative address
computation that causes the generated
relative address to cross a frame
boundary.

Message

FORWARD LINK ZERO

BACKWARD LINK ZERO

PRIVILEGED OPCODE

REFERENCING ILLEGAL FRAME

RTN STACK FORMAT ERR

DIVIDE OVERFLOW
REFERENCING ILLEGAL DEVICE

UNNORMALIZED

Description

An address register in the "linked"
format has henn incremented past the
last frame in the linked frame set.
An address register in the "linked"
format has been decremented prior to
the first frame in the linked frame
set.

A Privileged operation code (one
executable only in the Monitor mode
of operation), has been found while
executing in the Virtual mode.

An address register has a FID outside
the allowable disc configuration.
The Return-stack pointer is illegal
either less than X'01l84', or greater
than X'01BO'. The return-stack has
been reset to an "empty" condition.
An overflow condition occurred on a
divide operation.

A device has been referenced outside
the allowable system configuration.
A storage register with an unnormalized
displacement was referenced.

*A register number will be printed out.

2-21

ORDER NUMBER

OPERATION

DESCRIPTION

0]

Data Transfer

Status/Function

Block Input/INT

Arm Interrupt

Disconnect

Disarm Interrupt

Block Output/INT

Unassigned

A data byte will be transferred between the
addressed device and the processor. Direc-
tion of the transfer will depend on
whether the instruction is an input or an
output.

A status byte will be input from the
addressed device or a function byte will be
output to the addressed device, depending

on whether the instruction is an input or an
output.

The addressed device will start a concur-
rent block input to memory and will generate
an external interrupt at the conclusion of
the transfer unless the interrupt has been
subsequently disarmed. This order should
be sent by an output instruction.

Permits the addressed device to make an
external interrupt request upon the satis-
faction of an interrupt condition. This
order should be sent by an output instruc-
tion.

The block transfer in progress by the
addressed device is stopped and an end
of block interrupt will occur unless the
interrupt has been disarmed. This order
should be sent by an output instruction.

Inhibits the addressed device from marking
an external interrupt request under any
condition. This order should be sent by
an output instruction.

The addressed device will start a concurrent
block output from memory and will generate
an external interrupt at the conclusion

of the transfer unless the interrupt has
been subsequently disarmed. This order
should be sent by an output instruction.

This order, if assigned, may perform any
required function as interpreted by the
individual interface. If a byte transfer
is desired the order may be sent by an
input or an output instruction.

Figure 2-12. Order Codes

SECTION 3

REALITY ASSEMBLY LANGUAGE (REAL)

The Reality Assembler Language (REAL) translates source statements into Reality

CPU machine language equivalents. The source program, or "mode", is an item in any
file defined on the data base. The mode is assembled in place; that is, at the con-
clusion of the assembly process, the item contains both the original source state-
ments as well as the generated object code. The same mode can then be used to
generate a formatted listing (using the MLIST verb) or can be loaded for execution
(using the MLOAD verb).

3.1 SOURCE LANGUAGE

The source language accepted by the REAL assembler is a sequence of symbolic state-
ments, one statement per source-item line. Each statement consists of a label
field, an operation (or opcode) field, an operand field, and a comment field.

3.1.1 LABEL FIELD

The label field begins in column one of the source statement, and is terminated

by the first blank or comma; there is no limit on its length. If the character

"*" appears in the first column, the entire statement is treated as a comment, and
is ignored by the assembler. The reserved characters * + - ' = are the only ones
that may not appear in the label field. An entry in this field is optional for all
except a few opcodes. A label may not begin with a numeric character.

3.1.2 OPERATION FIELD

The operation field begins following the label field and consists of a legal REAL
opcode. Opcodes are pre-defined in the permanent opcode symbol file OSYM and con-
sist of one or more alpha characters. Opcodes may be mnemonics for Reality machine
language instructions (e.g., B for BRANCH) ; macros, which may assemble into sever-
al Reality machine language instructions (e.g., MBD for MOVE BINARY to DECIMAL) ;

or assembler pseudo-ops (e.g., ORG for ORIGIN).

3.1.3 OPERAND FIELD

Operand field entries are optional, and vary in number according to the needs of
the associated REAL opcode. Entries are separated by commas and cannot contain
embedded blanks (except for character string literals enclosed by single quotes).
The operand field is terminated by the first blank encountered. The characters
+ - ' * have special meaning in this field.

3.1.4 OPERAND FIELD EXPRESSIONS

Entries in the operand field may be a symbol or a constant. A symbol is a string
of characters that is either defined by a single label-field entry in the mode, or

¥-¢€

FEAME S0} l=e——FRAME STATEMENT
+FRMI G501
+0ORG

-

i

4
T -
-n

*
O 4 -y

O W ein
*T-¢ @anbtg

*

LABEL FIELD

*SMITH

[
L 4 F.
E SIS a
+E3 tLIE 5
& LR Q
o’ L BRCS AR 9
P LERA

ATquassy atdures

Q10 M Z ZC

g1t T AT 2

C1z o AD 2

0t

141]

- COMMENT FIELD

£

1
et i ' Ty o2 T W
7 PIT i Y S. il

o g

- .
I S T N U W WA R A T
4

= e
019
- - - =g == - sttt st Sht e
[I Bl PeciR R} B It S o f ol
-t T =
oo aidL D
ZTO INIT 2172
CLE ERIF IE IS
FOl75014 +ET 3
SO0 \om-:mo FIELDS

Q25 QZ0 FOI17014 DEC CTRY

OZb G244 AUD14Z DEC CTRS

027 027 A03040 ZERZ LCTRE INGICATE THAT FPOINTER IS NOT IN &, ILE
0B o SO0300

D MACRO EXPANSION OF ABOVE LINE

+F 50500

20300 ERD CTR® INDICATE NO POINMTER IN =0 1.E.

FUIZOB0Z ety BEZ SFLG, $1000 IF STACK ACTIVE, EXCHANGE IS, UFL.
IS AND UFD WILL BE EXCHANGED AGAIN LATER

1747
EO&ZC4H
D EDT

EZCACT

Sy LUFPD

EEG, IS CALCULATE FPOSITION CF FOINTER INTO F.O.E.
Rid

FEEG, URD DITTS FOR “F. 0L E.

The mode will not load correctly if its size exceeds 512 bytes, or if a FRAME
statement is not the first statement assembled in the mode. In either case, a
message will be returned indicating the error.

The "N" option may be used with the MLOAD verb to load code into the TS workspace
but suppress the normal copy from there to the specified frame. This may be help-
ful in checking the size or checksum.

3.5 VERIFYING A LOADED PROGRAM MODE

After assembling and loading a program, the TCL-II verb MVERIFY is used to check
the assembled program against the loaded program.

Examples:

[217] MODE 'EXAMPL1' VERIFIED FRAME = 34 SIZE = 477 CHECKSUM = C3A2

014 oC 18

[218] MODE 'EXAMPL2' FRAME = 35 HAS 1 MIS-MATCHES

The first example verifies, but the second does not. In example two, the system
informs the user that one byte at byte address 14 should have a value of 0C, not 18.

An "A" option is available, and will cause a columnar listing of all bytes which
mismatch. Each value in the source program which mismatches will be listed,

followed by the value in the executable frame.

Example:

LOCE SB AB LOC SB AB IOC SB AB 10C SB AB
014 OC 18 015 13 17 0l6 OE OD 017 3A 3C

[218] MODE 'EXAMPLE3' PRAME = 35 HAS 78 MIS-MATCHES

The "E" option, useful when verifying several programs (items) with the same
MVERIFY command, causes a message to be printed only if a program does not verify,
and suppresses output otherwise.

The "P" option causes all messages from MVERIFY to be routed to the line printer
(spooler).

3-5

3.6 TCL-II CROSS REFERENCE CAPABILITY

|
/3.6.1 CROSS-INDEX VERB

| The TCL-II CROSS-INDEX verb first clears the CSYM file then updates it item by

item with the external references of each item. Each attribute in the CSYM item
‘records references of a particular type, such as bit, character, half-tally, etc.
| The CROSS-INDEX verb requires the following format:

CROSS-INDEX file-name item-list { (options)}

Example:

Would cross index all items of the MODES file.

An example of what a portion of the CSYM file might look like after using the
CROSS-INDEX wverb is shown in Figure 3-2. Notice that the item called SYSTEM-SUBS-1
has one external reference to Bl4, two external references to BKBIT, etc.

3.6.2 X-REF VERB

The TCL-II X-REF verb uses the CSYM file as updated by the CROSS-INDEX verb for
input. X-REF then updates the XSYM file in the opposite order of the CSYM file.
The X-REF verb requires the following format:

| X-REF file-name item-list {(options)}

Example:

Would cross reference all items of the CSYM file. An example of what a portion of
the XSYM file might look like after using the X-REF verb is shown in Figure 3-3.
Notice that the item called T5 was externally referenced by WP3, WRAPUP-II, etc.

The SORT verb may be used after performing X-REF to produce a sorted output.

Zxample:

| Would produce an alphabetical non-columnar listing on the line printer. REFERENCES
and NONCOL are attribute definitions in the XSYM dictionary.

3-6

Figure 3-2, Figure 3-3.

mple of CSYM File After CROSS- Sample of XSYM File After X-REF

DEX

5
Y11 PRIVTST? C1JRDLINK ND1RDREC O1)RELCHN O01IRETIXU 0}

[4¥]
(=2 '
<
o
- T4l
o &} -
>3 —
[+ 4 0n
— (=] <
vt -t
< S 4
- o
(A Y) ~— [0 4
(L] - <
-J < o
'S T3]
b3 (=4 na
= [Ll ont
< L) i
— -t weo
-— [=] o
(= C=
< =
« (8] n -
- o [4 ¥ nN> cC
18 2 4 cC [
2 - w — = -
- - - e -0 []
< (= [+4 -C cC C ~
- - - [W} - o
[4 ¥ L - o Tl p-odf [F5) z
C = - (=25 = o =
wn L - b o
| o - I Ia —— - c
- a - = [Tex o] - -
o - o - -C B - (L4
= - N - Ura -3 -t C
= ccCc [4 N [=X = re C o -
< (=] - [& [+ o <
~— ac 0nne x= -— < [o
nN o -— - — —iss L4 - L
< (=] T8 or -l cl =z L (&)
[o -t -— —ti—t -— (8]] (4 V]
Lol [« 412 4 (=2 ~— Tt Lanl [« ¥ |
o — (=) o - Lol = o
< - < -C Y [] a o
T 7] ccC [+ 8 — Comm (723 < L4
< - 0 £z -t a x ~—
— al L =~ -3 JOoX - z -
[4 9 = < a o 2 w - L
< T = uih erd] z |
-—C o > Ne= —Xo = C a
- [1 4 4 C - -— Lol VAN o P 1 Y] ' (L) =2
[l ——— - N C -mCc cae [(=) a
o - [l < e T - (/] | -t
x <©OCC < . - - O e > - [+ 4
- 9 b3 > I Zoxc o - =z
- Uain o > [T R TR -— - —
e IWCe— = 0 x =N e - - -
1C —CmO - - O deT Z«d Lol] | o
. (AR~ K M~ o =Q et] w =
g~ CeaC> < C > T M e a [+ 4 u
=~ a a — SO e = = (43}
b T v-Cm HOW 1IN e -~ W a >0 >
WO «= NC NNl DO CccC e < T w 21
- CeC n_c oo L S VO » SR o X)] - Ak
s ax < a <C<U WU I - VMoo 20
P> whell OCCIT XCIOLS TIP3 o >> oC
oo OCoOCoC — COCOCCOCO— < < o
o [

3.6.3 XREF PROC

The XREF Proc will perform the following functions:

Clear the XSYM file.

Use the X-REF verb to update the XSYM file.

Alphabetically sort the XSYM file and output the results to either
the user's terminal or to the system line printer.

The XREF Proc requires the following format:

Example:

XREF file-name item-list {(options)}

would cross reference a.l items of the CSYM file and would list the results in

alphabetical order on tke line printer.

3.7 THE REAL INSTRUCTION REPERTOIRE

In defining the REAL opcodes, the following set of symbolic operands are used.

Symbol

b

Operand

BIT

CHARACTER

DOUBLE-WORD

HALF-WORD

LABEL

MODE ID

Description

A bit addressed relatively via a base
address register and a bit displacement.

A byte addressed relatively via a base
address register and an 8-bit byte dis-
placement.

A 4-byte field addressed relatively via
a base register and a 16-bit word dis-
placement.

A l1-byte field addressed relatively via a
base register and an 8-bit byte dis-
placement.

A label definition local to the current
program frame.

A 16-bit modal identification, comprised
of a 4-bit entry point and a 12-bit frame
number. The implied location is in the
frame defined by the low-order 12 bits of
"m", offset from the frame-beginning by
twice the entry-point value.

n LITERAL A literal or immediate value. The size of
the assembled literal or value is
dependent on the instruction in which
the "n" is used.

r ADDRESS-REGISTER One of the sixteen Reality address
registers (A/R's).

s STORAGE-REGISTER A 6-byte field (usually a storage-register,
or S/R) relatively addressed via a base
register and a 16-bit word displacement.

t WORD A 2-byte field relatively addressed via a
base register and a 16-bit word displace-
ment.

In the following subsections, the first number in the comment field of each
instruction is the length in bytes of that instruction. The parenthesized foot-
notes are defined in Section 3.7.12.

3.7.1 CHARACTER INSTRUCTIONS (MOVES)

MCC n,c 6 (1) Move Character to Character; the byte
n,r 3 (character) defined or addressed by
n,s 6 (1) operand-1 is moved to the location addressed
c,cC 4 by operand-2.
c,r 3
c,s 6 (1)
r,c 3
r,r 2
r,s 5 (1)
s,C 8 (2)
s,r 5 (3)
s,s 8 (2)

MCI n,r 3 Move Character to Incrementing character;
n,s 9 (1) The byte (character) pointer operand-2 is
c,r 4 incremented by one and the byte defined
c,s 10 (1) or addressed by operand-1l is moved to the
r,r 2 location then addressed by operand-2.
r,s 8
s,r 5 (3)
s,s 11 (2)

MCI

MII

MIID

n,r,n
n,r,h
n,r,t
n,r,d

r,r,r
r,r,s

r,r,n

10
13
13
13

(SN0, BNC, IS,]

(4)
(4)
(4)
(4)

(1)
(2)
(3)
(2)

(1)
(3)
(2)

(5)
(5)
(5)
(5)

(3)
(3)

Move Character Incrementing; the byte
(character) pointer operand-2 is incre-
mented by one and the byte defined by
operand-1l is moved to the location then
addressed by operand-2. This process
continues until the number of bytes
specified by operand-3 have been moved.

At least one byte is always moved and if
initially operand-3 = 0, 65,536 bytes will
be moved.

Move Incrementing character to Character;
the byte (character) pointer operand-l is
incremented by one and the byte then
addressed by operand-1l is moved to the
location addressed by operand-2.

Move Incrementing character to Incrementing
character; both byte pointers are incre-
mented by one and the byte then addressed
by operand-1l is moved to the location
addressed by operand-2.

Move Incrementing character to Incrementing
character; both byte pointers are incre-
mented by one and the byte addressed by
operand-1l is moved to the location addressed
by operand-2. This process is repeated
until the number of bytes specified by

n,h,t or d have been moved. h,t or d are
not destroyed and if initially zero, no
bytes are moved.

Move Incrementing character to Incrementing
character; both addressing-registers
operand-l and operand-2 are incremented by
one and the byte then addressed by
operand-1 is moved to the location
addressed by operand-2. This process is
repeated until the first addressing-
register operand-l matches the byte-pointer
operand-3. If operand-l = operand-3 on
entry no movement takes place.

Both addressing-registers are incremented
by one, and the byte addressed by address-
ing register-1l is moved to the location
addressed by addressing-register-2. The
byte moved is then tested under the follow-
ing masking condition where "n" is an 8-bit
mask field:

SCD

MIIT

MIIR

MEANING BIT 0 1 2 3 4 5 o6 7
LI T T T 1T 11

True/False w-——J
Match on: X'FF'-e——m————
X'FE '-——————
X'FD'
X'FC'=-
SCO
SCl
SC2

Bit 0 is a true/false flag; if set, the
move stops on a "match" condition (as de-
fined by bits 1 through 7); if zero, the
move stops on a "non-match". Bits 1 through
7 represent one character each; if any bit
is set, the byte moved is compared to the
character represented by the bit for a
match. Bits 1 through 4 represent the
special system delimiters SM (X'FF'), AM
(X'FE'), VM (X'FD'), and SVM (X'FC')
respectively. Bits 5, 6, and 7 represent
the contents of the scan character-registers
SCO, SCl, and SC2 respectively. (Thus only
three of the delimiters are variable.)

NOTE: Character-register SCO may not con-
tain the hex patterns X'00' or X'0Ol'. None
of the scan characters may contain a system
delimiter.

Scan characters to delimiter(s). The
addressing-register is incremented until a
"match" condition (see MIID instruction) as
defined by the 8-bit mask field "n" is
found.

This instruction assumes that the lower half
of the accumulator (TO) has an absolute byte
count (up to 65535) defining the number of
bytes to be moved (see MII opcode). If TO
is zero when the instruction is executed, no
operation is performed. Otherwise, the
addressing-registers are incremented by

one, and the byte addressed by addressing-
register-1 is moved to the location addressed
by addressing-register-2, and TO is decre-
mented by one. This sequence is repeated
till TO reaches zero.

This instruction assumes that address
register R15 is set up to a location equal
to or greater than that of addressing-
register-1. (See MII opcode). If the
addresses of addressing-register-1 and

3-11

XCC

OR

XOR

3.7.2 CHARACTER INSTRUCTIONS (TESTS)

BCE

BCU

BCL

BCLE

nnnHxKRKOQOOQOO
- - - ~- - - -
KR onhROQ®OKAQO

-

-

S 8 S N N
S N S 8N

T T =

~

R3S KQOaBRAO

KRR OQOQOQS33

-
-

(see BCE)

(see BCE)

(see BCE)

o wULoownNuvlo v o

o w o

w

w

Wb D DO D

(2)
(3)
(2)
(1)
(1)
(2)
(3)
(2)
(3)
(3)
(3)
(3)
(3)

(3)

(1)

(3)

register R15 are equal, no operation is
performed. Otherwise, the addressing-
registers are incremented by one, and the
byte addressed by addressing-register-1 is
moved to the location addressed by address-
ing-register-2. This sequence is repeated
till the addresses of addressing-register-1
and register R15 are equal.

Exchange Character with Character; the byte
(addressed) by operand-1 is interchanged
with the byte defined by operand-2.

OR character; the byte (character) addressed
by operand-1 is logically or'd with the
8-bit immediate operand-2.

Exclusive OR character; the byte (character)
addressed by operand-1l is exclusively or'd
with the 8-bit immediate operand-2.

AND character; the byte (character)
addressed by operand-1l is logically and'd
with the 8-bit immediate operand-2.

Branch Character Equal; the byte (character)
defined or addressed by operand-1l is com-
pared to the byte defined or addressed by
operand-2. If the two bytes are equal,
instruction execution branches to the loca-
tion as defined by operand-3. Neither
operand-1 nor operand-2 are altered. The
arithmetic condition flag (ACF) is set on
c,c,1l only.

Branch Character Unequal; branch if
characters are not equal.

Branch Character low; branch if operand-1
is less than operand-2.

Branch Character lLess than or Equal; branch

if operand-1l is less than or equal to
operand-2.

3-12

BCH (refer to BCE)
BCHE (refer to BCE)
BCN r,l 5
BCX r,l 5
BCA r,l 5

3.7.3 BIT INSTRUCTIONS

SB b 2
ZB b 2
BBS b,1 4
BBZ b,l 4

Branch Character High; branch if operand-l
is greater than operand-2.

Branch Character High or Equal; branch if
operand-1 is greater than or equal to
operand-2.

Branch if Character is Numeric; branch if
the character addressed by the first
operand is in the range 0-9, inclusive.

Branch if Character is hexadecimal; branch
if the character addressed by the first
operand is in the range 0-9 or A-F,
inclusive.

Branch if Character is Alphabetic; branch
if the character addressed by the first
operand is in the range A-Z, inclusive.

Set Bit; the bit addressed by the operand is
set to an on condition (one).

Zero Bit; the bit addressed by the operand
is set to an off condition (zero).

Branch Bit Set; the bit addressed by
operand-1l is tested and if set (one)
instruction execution branches to the
location defined by operand-2.

Branch Bit Zero; the bit addressed by
operand-1 is tested and if not set (zero)
instruction execution branches to the
location defined by operand-2.

3.7.4 DATA MOVEMENT AND ARITHMETIC INSTRUCTIONS

All arithmetic is done on two's complement binary integers. All instructions in
this section except the MOV set the arithmetic condition flag (ACF).

MOV n,h 6
n,t 4
n,d 4
h,h 4
h,t 6
h,d 6
t,h 6
t,t 4
t,d 6
d,h 6

-~

(6)

(6)
(6)
(6)

(6)
(6)

MOVe word to word; integer defined or
addressed by integer-1 is moved to the
location addressed by operand-2.

3-13

TST

INC

DEC

ZERO

ONE

NEG

LOAD

[o i e P o)
Ot

jop

Q ot

~ 0~

~ ~

ptbbadbsanbs

[o TR e TR o T o Ml o i o g o = il o St = Bio BN o P o o

~

.~ N 0~

~ ~

~

~

At oS Ao S ar s

~

-

[oTRN o PR o T o i o o Ml n i o = i} o S« e B TR = 3

-

ot T

ot o

Q5

[oMi s Jile g}

[y

w W

DI DRI OO DYOWWW

DI IRRIPDPOO DO WWW

w w

w

w ww

W www

(6)

(6)

(6)
(6)

(6)
(6)

(6)
(6)

(6)

(6)
(6)

(6)
(6)

(6)
(6)

Test the contents of the operand and set
the arithmetic condition flags.

INCrement by one; the integer defined by
the operand is incremented by one.

INCrement word by word; the integer de-
fined or addressed by operand-2 is added
to the integer stored in the location
addressed by operand-l and the result is
stored in the latter location.

DECrement by one; the integer defined by
the operand is decremented by one.

DECrement word by word; the integer
defined or addressed by operand-2 is
subtracted from the integer stored in
the location addressed by operand-1l and
the result is stored in the latter loca-
tion.

ZERO word; a zero is moved to the operand
location defined by operand-1.

Set word ONE; an integer value of one is
moved to the operand location defined by
operand-1.

NEGate word; the integer defined by
operand-1l is negated (two's complement).

LOAD to accumulator; the integer addressed
by operand-1l is loaded into the 32-bit
accumulator (DO). For half-word and word
operands, the sign bit is extended.

3-14

STORE

SUB

MUL

DIV

XRR

INC

INC

(allt=2 [oTRN o it = i o]

QDB [o T o = i~ fo1]

(oI it o i =

(o T o e i

r,r
r,s
s,r
s,s

(20}

(I)H:GHH
=R T o = =]

wwww

w w

wwww wWwwww

wwww

wwww

REGISTER INSTRUCTIONS

SwwN

@ 0o N

1

o

& oOwow

(1)
(2)
(1)

LOAD to accumulator; the integer addressed
by operand-1 is loaded into the 48-bit
accumulator (FPO), and the sign bit is
extended.

STORE from accumulator; the contents of the
32-bit accumulator (DO) are stored into the
location defined by operand-l. For half-
word and word operands, the high order bits
are lost.

ADD to accumulator; the integer addressed
by operand-1 is added to the 32-bit accumu-
lator (DO) with sign extension.

SUB from accumulator; the integer addressed
by operand-1l is subtracted from the 32-bit
accumulator (DO) with sign extension.

MULtiply to accumulator; the integer
addressed by operand-1 is multiplied by the
contents of the 32-bit accumulator (DO).
The resulting product is stored in the 64-
bit accumulator extension (D1,D0), as a
63-bit number and a duplicated sign bit.

DIVide into the accumulator; the integer
addressed by operand-1 is divided into the
32-bit accumulator (DO). The answer is
stored in DO and the integer remainder is
stored into the accumulator extension (D1).

MOVe register to register; the address or
storage register operand-1l is moved into
the address or storage register operand-2.

eXchange Register with Register; the
address or storage register operand-1l is
exchanged with the address or storage
register operand-2.

INCrement register; the address or storage
register operand-1l is incremented by one.

INCrement register by count; the address or
storage register operand-l is incremented
by the integer stored at the location
addressed by operand-2.

3-15

s,h 7
s,t 4
s,d 7
DEC r 1 DECrement register; the address or storage
s 3 register operand-1l is decremented by one.
DEC r,n 3 DECrement register by count; the address or
r,h 6 storage register operand-1l is decremented by
t,t 3 the integer stored at the location addressed
r,d 6 by operand-2.
s,n 4
s,h 7
s,t 4
s,d 7
LAD r,r 6 (7) Load Absolute Difference; the absolute
r,s 3 difference in bytes (characters) between
S,r 3 the byte pointer operand-1l and the byte
s,s 6 (1) pointer operand-2 is computed and stored
into the lower half of the accumulator (TO).
Please see special note following Branch
Register Equal/Unequal instructions.
SRA r,c 3 Set Register to Address; the byte pointer
r,h 3 operand-1l is set pointing to the first
r,t 3 byte of the functional element at the
r,d 3 location addressed by operand-2.
r,s 3
r,l 3
FAR r,n 3 Flag and Attach Register; the address-
register operand-1l is attached. Normally
n=0. If n=4 (or any value with bit 5 set),
R15 is set to the first byte (unlinked
format) of the frame.
BE r,r,1l 7 (7) Branch Register Equal/Unequal; the address
BU r,s,1 4 of the byte pointer operand-l is compared
s,r,l 4 to the address of the byte pointer, operand-

2. The branch is taken appropriately.
NOTE: if the FID's of the registers are
unequal, it is assumed that the affected
frames are contiguously linked and the
address computation is made on that basis;
therefore the instruction execution may
prove incorrect if one of the registers is
in an unlinked format, and the other is
not. An abort will occur displacement if
a linked format SR is greater than 500.
(This can be remedied by moving it to a
register, forcing attachment, and moving
it back.) This is unnecessary if the SR
and register point into the same contiguous
block.

3-16

BE
BU

3.7.6 DATA COMPARISON INSTRUCTIONS

BE

BU

BL

BLE

BE3
BU3
BL3
BLE3

BH

BHE

BDZ

-
-

HFHEHEHFRRPRRRRRRRRRRB

-
-

pppaAddr DTS 5D
At AdDDp
DOV OWOOWMOWOHWOOYWOoO O

-~
-

oo
oo n o
PN
oo oo

as 3o
e e
OO0

Qo S

-~ =~

(6)

(6)

(6)
(6)

(6)
(6)

(6)
(6)

Branch Register Equal/Unequal; the 6-byte
storage register operand-1l is arithmetically
compared to the storage register operand-2
and the branch is made accordingly. If the
displacement fields are not normalized, this
may fail. See the forms above.

Branch word Equal; the integer stored in
the word addressed by operand-1l is compared
arithmetically (2's complement) to the
integer stored in the word addressed by
operand-2. If an equal comparison is made,
instruction branches to the location defined
by operand-3.

Branch word Unequal; branch if words are
unequal.

Branch word Low; branch if operand-l is
less than operand-2.

Branch word Low or Equal; branch if operand-
1 is less than or equal to operand-2.

These forms of the compare instructions
compare 3 byte fields starting 1 byte after
each register. These allow register FIDS
to be compared without including the flag
byte in the compare.

Branch word High; branch if operand-1 is
greater than operand-2.

Branch word High Equal; branch if operand-1
is greater than or equal to operand-2.

Branch on Decrementing word Zero; the word
at the location addressed by operand-l is
decremented by the integer at the location
addressed by operand-2. If the result is
zero, instruction branches to the location
defined by operand-3.

BDNZ (see BD2Z) Branch on Decrementing word Not Zero; same
as BDZ but branch on result not zero.

BDLZ (see BDZ) Branch on Decrementing word Less than Zero;
same as BDZ but branch on result less than
zero.

BDLEZ (see BDZ) Branch on Decrementing word Less than or

Equal to Zero; same as BDZ but branch on
result less than or equal to zero.

BDZ t,1 6 Branch on Decrementing word Zero; same as
d,1 6 BDZ above but decrement by one.

BDNZ t,1 6 Branch on Decrementing word not Zero; same
d,1 6 as BDNZ above but decrement by one.

BDLZ t,1 6 Branch on Decrementing word Less than Zero;
d,1 6 same as BDLZ above but decrement by one.

BDLEZ t,1 6 Branch on Decrementing word Less than or
d,1 6 Equal to Zero; same as BDLEZ above but

decrement by one.

All of the above data comparison instructions set the arithmetic condition flags.

3.7.7 TRANSLATE INSTRUCTIONS

MBD 10 Move Binary word to Decimal characters;

10 This macro generates a call to the sub-

10 routine MBDSUB (if "n"™ is not specified) or

r 14 MBDNSUB (if "n" is specified), which con-

' r 14 verts from a binary integer at the location

r 14 addressed by operand-1l to a string of deci-
mal ASCII characters, stored beginning from
the location addressed by the byte-pointer
operand-2 plus one.

The following elements are used by the sub-
routine and macro: DO; Dl; D2; T4; T5; Rl4;
R15. A minus sign will precede the con-
verted value if it was negative; at the
conclusion of the instruction, the byte
pointer operand-2 addresses the last convert-
ed byte. MBDSUB deletes leading zeros, but
converts at least one character; MBDNSUB
converts at least "n" characters, padded
with leading zeros if necessary.

w

t Move Decimal character to Binary word;

,d 3 ASCII decimal to binary conversion. The
word at the location addressed by operand-2
is multiplied by 10, and a value (as defined
for the MXB instruction) from the byte

s

MBXN

ot o
R R K

888
Q5
R KK

H:iH
Qo

EXECUTION TRANSFER INSTRUCTIONS

1

w

w W

2

(9)

addressed by the addressing register is
added to it. The arithmetic condition flags
are not reset, and arithmetic overflow
cannot be detected.

Move Binary word to heXadecimal characters;
Binary to ASCII hex conversion.

This instruction assumes that the least
significant byte of the accumulator (HO) has
a parameter (see MBX/MBXN macro). The four
low order bits contain a digit count,
specifying the maximum number of ASCIT
digits to be converted. As each digit is
converted, the addressing register is incre-
mented by one, and the converted ASCII
character is stored in the location address-
ed by the addressing register. The format
of HO at the conclusion of this instruction
is unpredictable. If the digit count in

HO exceeds the field defined by operand-1,
no operation is performed.

Move Binary word to heXadecimal characters;
This macro expands as a LOAD of the first
operand (MBX) or the first operand +X'80'
(MBXN) , and a primitive. The MBX macro,
therefore, causes conversion from binary to
ASCIT hex, with only significant digits (to
a maximum of "n") converted. The MBXN macro
causes conversion as above, but always
converts "n" digits, with leading zeros if
necessary. The addressing register defined
by the third operand is incremented before
each byte converted.

Move heXadecimal characters to Binary word;
ASCII hex to binary conversion.

The field defined by operand-2 is shifted
left 4 bits, and the value defined below,
from the byte addressed by the addressing
register, is added to the field: The 4-bit
value from bits 3-0 of the byte (bits
numbered right to left), plus nine times
bit 6. The arithmetic condition flags are
not reset by this instruction, and arithme-
tic overflow cannot be detected.

Branch;
branch to location defined, in the current
frame, defined by label "1".

BSL 1 2 Branch and Stack Location;
m 3 Subroutine call to mode defined by mode-ID

"m" or to local label "1".
The location of the instruction following
the BSL, minus one, is saved in the retumm
stack, and the next instruction executed is
that defined by the operand. The return
stack level is increased by one; if the call
causes the return stack level to exceed
its maximum value, the stack pointers are
reset to the beginning and a trap to the
DEBUG mode is executed.

BSLI 1 Branch and Stack Location Indirect;
Subroutine call indirect; this instruction
assumes that the lower half of the accumu-
lator, TO contains a mode-ID (see BSL¥*
macro). The 1l6-bit mode-ID contained in
TO defines the location of the next instruc-
tion that is to be executed, after the
location-1 of the instruction following the
TCI is saved in the return stack.

RTN 1 ReTurN;
Return to subroutine called. The last entry
in the return stack defines the location of
the next instruction to be executed; the
return stack level is decremented by one.
If the return stack is empty, a trap to the
DEBUG mode is executed.

ENT m 3 ExterNal Transfer;
Branch to location defined by mode-ID"m".

ENTI 1 ExterNal Transfer Indirect;
Enter mode indirect: this instruction
assumes that TO contains a 16-bit mode-ID
(see ENT* macro), which defines the next
instruction to be executed.

BSL* h 4 (8) Branch and Stack Location indirect;
t 4 subroutine call to mode defined by the
d 4 mode-ID contained in the word addressed by
operand-1l. The 16 bit mode-ID is loaded
into the accumulator, and a BSLI instruc-
tion is executed.
ENT * h 4 (8) ExterNal Transfer indirect; branch to
t 4 external location defined by the mode-ID
d 4 contained in the word addressed by operand-1l.

The 16 bit mode-ID is loaded into the
accumulator, and an ENTI instruction is
executed.

3.7.9 I/0O AND CONTROL INSTRUCTION

m, 3 I/0 Instruction Input; this instruction
is used to set up block transfer starting
and ending addresses and start input for
peripheral devices whose device addresses
are in the range 0 through X'F' (15). This
instruction causes an MCAL instruction to
entry point 8 in the Monitor. Register r
points to the start of the input buffer;
n. is a 3-bit order code; n, is a 4-bit
device address. Refer to Section 2.7 for
details.

I0
T r,nl

100 r,nl,n2 3 I/0 instruction Output; as above this
instruction controls output to peripheral
devices.

READ r 2 A byte from the byte-I/O buffer in the PIB
is stored at the location addressed by the
addressing register. If the buffer is empty,
or if there is data in the byte I/0 buffer
yet to be output to the byte I/0 device, the
process executing the READ instruction will
enter a quiescent state till data from the
byte input device causes a re-activation.

WRITE r 2 The byte addressed by the addressing register
is moved into the byte I/O buffer of the PIB.
If the buffer is empty, the byte is also
output immediately to the byte I/O device.
If the buffer is full, the process executing
the write will enter a quiescent state till
the byte output device has accepted the
data from the buffer, and causes a re-
activation. Execution of this instruction
causes a loss of any input data in the byte
I/0 buffer, and inhibits any further data
input from the byte I/O device.

,n 3 Some standard calls are provided for
functions which can only be performed in
monitor code. These include:

MCAL r,5,11 (corelock)

MCAL r,6,11 (unlock)

MCAL r,nl

ROM 3 Process releases the remainder of its time
quantum to the monitor. Equivalent to:
McaL 0,0,9.

3-21

NOP

3.7.10 ASSEMBLER DIRECTIVES

1

ADDR

AR

HTLY
TLY
DTLY
SR

CMNT

DEFM

DEFk

n,n

r,*[string]
n,*[string]

register, or output (OB) from the location
addressed by the addressing register. I/O
pointers must be set up initially with an
I00 instruction.

No OPeration is performed by this instruc-
tion.

Defines the local symbol "1" as a storage
register in unlinked format. The displace-
ment is defined by the first operand. The
FID is defined by the second operand.

Defines the local symbol "1" as an address
register with a value defined by the oper-
and.

Defines the local symbol "1" (if present) as
a character (CHR) half-word (HTLY), word
(TLY) , double-word (DTLY) or S/R (SR)
respectively; object code of the appropriate
length and value defined by the operand is
assembled, except for the SR opcode, which
ignores the operand field.

Comment; the contents of this statement are
treated as commentary, and ignored by the
assembler. Note: A label field entry is
allowable.

Defines the local symbol "1" to be of type
m; a mode-ID with entry point defined by
the first operand and FID defined by the
second operand.

Defines the local symbol "1" to be of type
"k" (where k=b,c,d,h,1l,s,t), with base
register defined by the first operand and
displacement defined by the second operand.

When the assembler location counter "*" is
used as the second operand, an optional
string can be used, with the following
format:

1 4 + i =
string nz[_n3] or string = #n,
If n. is specified after the *, instructions
referencing 1 will obtain a displacement (D
field) appropriate for an operand length of
n_, bits. Values of n_, = 1,8, and 16 are

valid, with a default of n2 = 8.

If +n, is specified after the *n, the
effecgive displacement will be adjusted

n_, bits, bytes or double-bytes, depending
on whether n2 = 1,8 or 16.

Example:
ORG 10
LABEL1 DEFT 1,*16
STORE LABEL1
produces the object code Al0559 correspond-
ing to the instruction:
opcode-1 register D L opcode-2
[1010 | ooo1 | oooooiol] o1 | o11o001]
with a displacement (D field) of 5 words
relative to the byte addressed by register 1.
Example:
ORG 1
LABEL2 DEFB 1,*1+7
SB LABEL2
produces the object code 810F corresponding
to the instruction.
opcode register D
[1000 | 0001 | 00001111]
with a displacement of 15 bits relative to
the byte addressed by register 1.

1 DEFk 1 Defines local symbol "1" to be of type "k"
(where k=b,c,d,h,1,s,t) with base register
and displacement defined by the operand.

1 DEFTU d Defines local symbol "1" to be of type "t"

s with base register and displacement defined
by the upper (left-most) tally of the
operand.

1 DEFTL d Defines local symbol "1" to be of type "t"

s with base register and displacement defined
by the lower (right-most) tally of the
operand.

1 DEFDL s Defines local symbol "1" to be of type "t"

with base register and displacement defined
by the lower double tally of the operand.

3.7.11 ADDRESS REGISTER USAGE

EQU

FRAME

ORG

TEXT

S H0 Qo Do

Equates the local label "1" to the symbol or
literal value of the operand.

Must be the first assembled statement in a
mode that is to be loaded; "n" defines the
frame on which the object code is to be
loaded.

Resets the location counter to value defined
by the operand. This statement may have a
label field entry.

Assembles binary equivalent of character
strings (enclosed in quotes and preceded by
a 'C') or hexadecimal values. Any number
and combination of C and X literals sepa-
rated by commas is permitted.

In some, a displacement is added to the contents of the address register to form an

effective address.

The length of the operand(s) is (are) encoded in the instruction.

For REAL instructions allowing an address register r in the operand field, the
displacement relative to the register and the operand length can be specified

using the following formats:

Displacement Relative Operand
Format to Address Register n Length
Rn 0 bytes 1 byte
Rn;Bm m bits 1 bit
Rn;Cm m bytes 1 byte
Rn ,Hm m bytes
Rn;Tm 2*m bytes 2 bytes
Rn;Dm 4*m bytes 4 bytes
Rm;Sm 6*m bytes 6 bytes

Example:

MCC RO;C15,R15 Move low order byte of the Accumulator to the
byte addressed by R15.

Example:
SB R5;B0O Set bit 0 of the byte addressed by R5.
Example:
MOV MBASE, R10;D4 Move double-word MBASE to the double-word
starting 16 bytes past the byte addressed
by R10.

3.7.12 REAL INSTRUCTION SIDE EFFECTS

Many of the REAL opcodes use functional elements not specified as operands for
execution. Those instructions are so footnoted in the previous listing; the fol-
lowing explanation of the various footnotes describes the state of these implied
elements at the conclusion of instruction execution:

(1) R15 points to byte addressed by operand-2.

(2) Rl4 points to byte addressed by operand-1l, RL5 points to byte addressed by
operand-2.

(3) RL15 points to byte addressed by operand-1l.

(4) R15 points one prior to last byte moved and TO contains number of bytes
moved into last frame.

(5) Contents of TO are unpredictable.

(6) DO contains the integer moved or compared.
(7) SYSRO contains the byte pointer operand-1.
(8) TO contains the 16-bit mode-ID; Tl is zero.

(9) HO contains the number of digits converted into the last frame, if its high
order bit (BO) is set; otherwise original value.

3.8 ASSEMBLER TABLES

The REAL Assembler is completely table-driven and is therefore both powerful and
flexible in its definition of mnemonics. In addition, the assembler accesses a
permanent symbol table. which allows the predefinition of a set of symbols used by
all assemblies. Symbols defined in the source mode are placed in a temporary
(local) symbol table, and such entries override corresponding entries in the perma-
nent symbol file. It should be noted that forward references to local symbols that
match entries in the permanent symbol table will, in general, cause assembly errors.
Therefore, such overriding symbol definitions must precede the first reference to

them.

3-25

At the start of the assembly process, the assembler searches the user's Master Dic-
tionary (M/DICT) for the following file definitions:

PSYM - Permanent symbol table.
TSYM - Temporary symbol table.
osym - Operation-code symbol table.

The assembly will abort if any of these file-definitions are missing, with a mes-
sage indicating the one that was not found. The temporary symbol table is initial-
ized before the assembly starts. TSYM is a permanently defined file on a user's
account. It can be examined at the conclusion of the assembly. Although TSYM has
a lock to limit its use to one person on an account during an assembly, entries
fromone assembly disappear when another starts. TSYM is also used by the FIX-FILE-
ERRORS verb.

3.8.1 TSYM/PSYM TABLE ENTRY FORMATS

The item format of the entries in the PSYM and TSYM files is as follows (entries
are in character form):

Item-ID: Symbol-name

Line 1 : Symbol-code (single character - see below)
Line 2 : Symbol-value (hexadecimal location or displacement)
Line 3 : Base-register value (single hexadecimal digit)

SYMBOL-CODES

The symbol-code is a single character code that defines the type of the symbol, it
is used in the operation code lookup to determine legal operands, and to flag un-
defined or multi-defined labels, etc.

Symbol-Code Description - Symbol Type Unit of Displacement
B Bit Bits
C Character Register Bytes
D Double-Word (4-byte) Words
H Half-Word (l-byte) Bytes
L Local Symbol, Defined Bytes
M Mode-ID Undefined
N Literal value Bytes
R Address Register Undefined
S Storage Register (6 bytes) Words
T Word (2 bytes) Words
U Local Symbol, Undefined Value=0

3-26

3.8.2 OSYM TABLE-LOOKUP TECHNIQUE

All REAL mnemonic operation codes are stored in the OSYM file. BAn entry in this
table may be either (1) the REAL mnemonic for the instruction (basic opcode), or
(2) the REAL mnemonic suffixed by the symbol type-codes of all the operand field
entries. The purpose of the suffixing is (1) to provide for the separate handling
of REAL mnemonics with variable operand field entries; (2) to provide for a check
on the number and type'of operand field entries. As an example, the basic REAL
mnemonic for "move register to register" is MOV, but it has four different object
code expansions, depending on whether the registers involved are address (R) or
storage-type (S). To allow for all cases, there are four entries in the OSYM file:
MOVRR, MOVRS, MOVSR and MOVSS. The assembler will attempt to look up the basic
opcode first, and, if it is not found, a second attempt will be made with the
basic opcode suffixed as described above.

3.8.3 TSYM TABLE ENTRY SETUP

As the assembler goes through the "suffixing" technique described above, it neces-
sarily looks up each non-literal operand in the TSYM and PSYM files, in that order.
If found, the type-code can be suffixed to the basic opcode. 1If no entry is found
in the TSYM and PSYM files, the assembler then sets up an entry in the TSYM file
with type "U" (undefined), and location zero. This has an important ramification
with regard to literal generation.

3.9 ASSEMBLER OUTPUT

The assembler output consists of (1) macro statement expansions; (2) error messages
and (3) generated object code, all appended to the original source statement.

A user-input source statement is of the format:
Source Statement (AM)

On output, the format is as follows:
Source Statement (SVM) location object-code (AM)

where 'location' is a 3-digit hexadecimal field, and the 'object code' is in hexa-
decimal.

Error messages are appended to the source statement as the assembler encounters
errors; the messages are appended in the format:

.. (VM) * message....
Messages may precede or follow the object code.

Macro expansions resemble source statements in terms of source statement, errors
and object code, and are of the format:

Source Statement (VM) macro statement (SVM) location object-code (VM)... (AM).

Note that regardless of what the assembler appends to the original source statement,

3-27

the delimiters surrounding the entire statement remain, unchanged; this ensures
proper source statement input on subsequent assemblies.

3.10 ASSEMBLER ERROR MESSAGES

*UNDEF: Symbol, Symbol

l 200..

*MULT-IDEF
*REF: UNDEF
LBL REQD
*OPCD?
*OPRWD REQD

*TLGL OPCD:opcode

*OPRWD RNG

*TRUNC.

*OPRND DEF

Undefined symbols at end of pass 1 (Message
at end-of-mode).

Label-field entry was previously defined.
Reference to undefined symbol.

Required label-field missing.
Opcode-field entry missing.

Required operand-field entry missing.

Either the opcode was illegal, or the
operand types were illegal for the opcode.

The range of the operand-field entry is
illegal.

Object code truncation may be due to: branch
out-of-range; TSYM/PSYM table entry error;
specification error in the GEN primitive.

The operand-field entry is improperly
defined e.g.: non-hexadecimal character
in a hexadecimal string.

The following are errors in the OSYM-table entry specifications.

*FRMT. A-FIELD
*FRMT. B-FIELD

*OPCD TYP!

*MACRO DEF!

Error in A- or B-field specification.
Opcode type not a P/Q/M, or primitive type
was illegal.

Error in the macro specification.

3-28

3.11 REAL INSTRUCTION SUMMARY PAGE

ADDR defines address 3-22
ADD add to accumulator 3-15
AND and variables 3-12
AR defines address register 3-22
B branch unconditional 3-19
BBS branch on bit set 3-13
BBZ branch on bit zero 3-13
BCA branch on character alphabetic 3-13
BCE branch on character equal 3-12
BCH (E) branch character high (or equal) 3-13
BCL (E) branch character low (or equal) 3-12
BCN branch on character numeric 3-13
BCU branch on character unequal 3-12
BCX branch on hexadecimal character 3-13
BDLEZ branch decrementing word < = zero 3-18
BDLZ branch decrementing word < zero 3-18
BNDZ branch decrementing word not zero 3-18
BDZ branch decrementing word zero 3-17, 3-18
BE(3) branch, register/word equal 3-16, 3-17
BL(E) (3) branch word < (or=) 3-17
BH(F) branch word < (or=) 3-17
BSL branch and stack location 3-20
BSLIT branch and stack location indirect 3-20
BU(3) branch, register/word unequal 3-16, 3-17
CHR define character 3-33
CMNT comment 3-22

3-29

DEC
DEFDL
DEFk
DEFM
DEFTL
DEFTU
DIV
DTLY
ENT (I)
EQU
FAR
FRAME
HTLY
1B
INC
101

I00

MBX(N)
MCAL
MCC

MCI

decrement

define as lower double tally
define as b,c,d,h,1l,s, or t
define as m

define as lower tally
define as upper tally
divide accumulator

define as doubleword
external transfer (indirect)
equate

flag and attach register
define frame

define as halfword

input byte

increment

I/0 instruction input

I/0 instruction output

load absolute difference

load accumulator

move binary to decimal (n char)

move binary to hex (n char)
monitor call

move character to character

move character to incrementing char

move decimal to binary

PAGE

3-14,
3-23

3-22,

3-23
3-15
3-22
3-20
3-24
3-16
3-24
3-22

3-21

3-14, 3-15,

3-14,
3-18
3-19
3-21

3-9

3-16

3-23

3-15

3-9, 3-10

3

18

3-16

MIC
MII
MIID
MIIR
MIIT
MOV

MUL

NEG
NOP
OB
ONE
OR
ORG
READ
ROM
RTN
SB
ScD
SR
SRA
STORE
SUB

TEXT

move incrementing char to char
move inc char to inc char

move inc char to inc char (delimiter)
move inc char to inc char (register)
move inc char to inc char (word)
move word to word

multiply accumulator

move hex to binary

negate

no op

output byte

set word equal to one

logical or

origin

read

return time quantum

return

set bit

scan characters to delimiter
define as storage register

set register to address

store accumulator

subtract from accumulator

message

PAGE

3-13,

3-15

3-14
3-22

3-21

3-14,

3-15

PAGE

TLY define as word 3-22
TST test (set condition flags) 3-14
WRITE write 3-21
XCC exchange character with character 3-12
XOR logical exclusive or 3-12
XRR exchange register with register 3-15
ZB zero bit 3-13
ZERO zero word 3-14

3.12 PROGRAMMING CONSIDERATIONS AND CONVENTIONS
3.12.1 REENTRANCY

In practically all cases, the system software is reentrant, that is, the same copy
of the object code may by used simultaneously by more than one process. For this
reason, no storage internal to the program is utilized; instead the storage space
direttly associated with a process is used; this is part of the process' Primary,
Secondary, Debug (or Tertiary) and Quaternary Control blocks. The Primary Control
Block (PCB) is addressed via address register zero, the SCB via register two. The
Debug Control Block is used solely by the DEBUG processor and should not be used
by any other programs. The Quaternary Control Block has no register addressing it;
it is used by some system software (magnetic tape routines, for example, which
temporarily set up a register pointing to it); its used is reserved for future
software extensions.

A user program may utilize storage internal to the program if it is to be non-
reentrant. Often it will be found that the functional elements defined in the PSYM
will be sufficient.

In some cases it may be required to set up a program to be executable by only one
process at a time; that is, the code is "locked" while a process is using it, and
any other process attempting to execute the same code waits for the first process
to "unlock" it. The following sequence is typical:

ORG O
TEXT X'O1!' INITIAL CONDITION FOR LOCK BYTE (NOTE USAGE
CMNT OF STORAGE INTERNAL TO PROGRAM)
LOCK MCC X'00',R2 SET "LOCKED" CODE AT R2

XCC R2,Rl EXCHANGE BYTES AT R2 AND Rl
BCE R2,X'01',CONTINUE OK TO CONTINUE; PROGRAM LOCKED
ROM WAIT (RELEASE QUANTUM)
B LOCK TRY AGAIN
. §

UNLOCK MCC X'0l',Rl UNLOCK PROGRAM

3-32

3.12.2 WORK-SPACES OR BUFFERS

There is a set of work-spaces, or buffer areas, that is predefined and available
to each process. 1f the system conventions with regard to these buffers are
maintained, they should prove adequate for the majority of assembly programming.
There are three "linked" buffers, or work-spaces, of equal size, symbolically
called the IS, the 0S, and the HS. These are at least 3000 bytes in length each;
more space for each area can be assigned to a process at LOGON time. There are
five other work-spaces, the BMS, CS, AF, IB and the OB, which may vary between 50
and 140 bytes in length and are all in one frame. There is the TS, a one-frame
unlinked work-space of 512 bytes, and the PROC work-space, 2000 bytes in length,
which is used normally by the PROC processor alone; finally, there are four addi-
tional frames (CPB+28 through PCB+3l) that are unused by the system, subroutines,
through they are used by some of the processors. '

Each work-space is defined by a beginning pointer and an ending pointer, both of
which are storage registers (S/R's). When the process is at the TCL level, all
these pointers have been set to an initial condition. At other levels of process-
ing, the beginning pointers should normally be maintained; the ending pointers may
be moved by system or user routines. The address registers (A/R's) that are named
after these work-spaces (IS,0S,AF,etc.) need not necessarily be maintained within
their associated work-spaces; however, specific system routines may reset the

A/R to its associated work-space. The table below discusses these points for each
work-space. Note that, conventionally, a buffer beginning pointer addresses one
byte before the actual location where the data starts. This is because data is
usually moved into a buffer using one of the "moving incrementing" type of instruc-
tions, which increment the A/R before the data movement.

Location
Work- (Offset
Space From PCB Size Linked? Remarks
BMS 4 50 No Normally contains an item-ID when
(disp.=0) communicating with the disc file I/0
routines. Typically, the item-ID is
copied to the BMS area, starting at
BMSBEG+1. BMSBEG may be moved to
point within any scratch area. BMSEND
normally points to the last byte of the
item-ID. BMS (A/R) is freely usable
except when explicitly or implicitly
calling a disc file I/0 routine.
AF 4 50 No This work-space is not used by any
(disp.=50) system subroutine, although the AF
A/R is used as a scratch register.
Cs 4 100 No As above.
(disp.=100)
IB 4 <140 No Is used by the terminal input routines
(disp.=200) to read data. IBBEG may be moved to

point within any scratch area before
use. IBEND conventionally points to
the logical end of data. 1IB A/R is

3-33

Location

Work- (Offset .
Space From PCB) Size Linked?
OB 4 140 No
(disp.=201
+ IBSIZE)
TS 5 511 No
PROC 6-9 2000 Yes
HS 10-15 3000+ Yes
IS l6-21 3000+ Yes
0s 22-27

Remarks

freely usable except when explicitly
or implicitly calling a terminal input
routine.

Is used by the terminal output routines
to write data. OBBEG & OBEND should
not be altered; they always point to
the beginning and end of the OB area.
OB A/R conventionally points one
before the next available location in
the OB buffer.

Used for conversions.

Used exclusively by the PROC
processor for working storage. User-
exits from Proc's may change pointers
in this area.

Used as a means of passing messages to
the WRAPUP processor at the conclusion
of a TCL statement. May be used as a
scratch area if there is no conflict
with the WRAPUP history-string formats.
HSBEG should not be altered;

HSEND conventionally points one byte
before the next available location

in the buffer (initial condition is
HSBEG=HSEND) .

These work-spaces are used inter-
changeably by some system routines
since they are of the same size (and
are equal in size to the HS). Specific
usage is noted under the various

system routines.

ISBEG and OSBEG should not be altered,
but may be interchanged if necessary.

Initial condition is that ISEND and
OSEND point 3000 bytes past ISBEG and
OSBEG respectively (not at the true
end if additional work-space is assign-
ed at LOGON time).

IS and 0OS A/R's are freely usable
except when calling system subroutines
that use them.

Location

Work- (Offset
Space From PCB) Size Linked? Remarks
28-31 Used for compilation and execution

of the RPG programs, and by the
DATA/BASIC Debugger.

3.12.3 DEFINING A SEPARATE BUFFER AREA

If it is required to define a buffer area that is unique to a process, the unused

frames PCB+28 through PCB+31 may be used. The following sequence of instructions
is one way of setting up an A/R to a scratch buffer:

MOV RO,R15

ZERO R3WA SET R3 "DETACHED"
ZERO R3DSP INITIALIZE DISPLACEMENT FIELD
INC R3FID,29 SET R15 to PCB+29

Register 3 can now be used to reference buffer areas, or functional elements that
are addressed relative to R3. None of the system subroutines use R3, so that a
program has to set up R3 only once in the above manner. However, exit to TCL via
WRAPUP will reset R3 to PCB+3.

3.12.4 USAGE OF XMODE

In several cases, the multiple-byte move instructions can be used (say, when
building a table) even when it is not known whether there is enough room in the
current linked frame set to hold the data. Normally, if the end of a linked frame
set is reached, DEBUG is entered with a "forward link zero" abort condition.
However, the tally XMODE may be set up to contain a mode-ID of a user-written sub-
routine that will gain control under such a condition. This subroutine can then
process the end-of-frame condition, and, by executing a 'RTN' instruction, normal
processing will continue. Instructions that can be handled by this scheme are:
INC register; MCI; MIC; MII; MIID; MIIT; SCD; MIIR. Care should be taken in the
case of MIIR to save register R15 in the subroutine.

Example:
MoV XXX, XMODE SET UP XMODE FOR NEXT INSTRUCTION
MII R12,R13,SR4 COPY FROM R12 TO R13, TILL Rl12=SR4

ZERO XMODE

3-35

Example: (continued)

IXXX EQU * ENTRY POINT FOR SUBROUTINE
MOV R15, SR20 SAVE R15
SRA R15, ACF SET TO SAVE REGISTER NUMBER
BCE X'0D',R15,0K ENSURE TRAP WAS DUE TO R13
MOV 0, XMODE PREVENT DEBUG RE-ENTRY
ENT 5,DB1 NO! : REENTER DEBUG TO PRINT
CMNT "FORWARD LINK ZERO" MESSAGE
*
OK MOV 500, R13DSP RESET DISPLACEMENT FIELD OF R13, SINCE
CMNT FIRMWARE HAS LEFT IT IN A STRANGE STATE.
* HANDLE END-OF-FRAME CONDITION HERE
MOV R13FID, RECORD SET UP INTERFACE FOR ATTOVF
BSL ATTOVF GET ANOTHER FRAME FROM OVERFLOW
MOV SR20,R15 RESTORE R15
RTN RETURN TO CONTINUE EXECUTION OF MIT
INSTRUCTION.

3.12.5 INITIAL CONDITIONS

At any level in the system, the following elements are assumed to be set up; they
should not be altered by any programs:

MBASE D Contain base-FID, modulo and separation of
MMOD T the M/DICT associated with the process.
MSEP T

3.12.6 SPECIAL PSYM EILEMENTS

Certain elements have a "global" significance to the system in addition to those
described above; they are:

Functional Element Description
Arithmetic condition These are altered by any arithmetic instruction,
flags: as well as the branch instructions that compare

two relatively addressed fields.

ZROBIT Set if result of operation is zero (equal).

NEGBIT Set if result of operation is negative.

OVFBIT Set if arithmetic overflow resulted.

HO through H7 Overlays accumulator and extension; H7 is
high-order byte of Dl; HO is low-order byte
of DO.

Functional Element Description

INHIBIT If set, the "BREAK" key on the terminal is
inhibited; used by processes that should not
be interrupted.

OVRFLCTR See WRAPUP for usage.

RSCWA Return-stack current word address; contains
address one byte past current entry in stack;
stack is null if RSCWA=X'184"'.

SYSPRIV1 If set indicates system privileges, level one.

SYSPRIV2 If set in addition to SYSPRIV1, indicates
system privileges, level two.

TO through T3 Overlays accumulator and extension.

XMODE This tally may be set up to a mode-ID of a
subroutine that is to gain control when a
"forward link zero" condition occurs.

WMODE If WMODE is non-zero on any entry to WRAPUP,
a BSL* through WMODE will be executed at the
termination of history-string processing,
before 1) the print-spool-files are closed,
and 2) the overflow chain is released. The
BSL* instruction will be executed whether
RMODE is zero or not. This feature may be
used by processors that require special
WRAPUP processing.

USER Tally 'USER' in the PCB has global significance:
Tally=0 Indicates not logged on.
Tally=-1 Indicates the spooler
process.
Tally=1 Indicates the file restore
process.
Tally=2 Indicates a process which

must go to LOGOFF after
WRAPUP processing.

Other values indicate normal logged
on processes.

SECTION 4

THE INTERACTIVE DEBUGGER (DEBUG)

The Interactive Debugger (DEBUG) provides a means for monitoring and controlling
program execution. For all Reality users, DEBUG has the ability to turn the print
off at the terminal, and to terminate program execution.

The use of the extended facilities of DEBUG (other than turning the terminal print-
ing on and off, and terminating program execution) require system privileges level
two. If the user has such privileges, he may control program execution by the in-
sertion of break-points in the program, and by executing specific DEBUG commands.
The user may also trace execution by displaying data at specific locations. DEBUG
additionally allows the user to display data throughout the virtual memory of the

system.

Thus (for users with system privileges level two) DEBUG is ideally suited for the
checkout phase of assembly language programming.

4.1 ENTERING DEBUG

DEBUG is entered voluntarily by depressing the BREAK key on the terminal (INT key
on some terminals). DEBUG will then display the location of the execution inter-
ruption point, followed by the DEBUG prompt character; the DEBUG prompt character
is the exclamation mark (!).

DEBUG is entered involuntarily when a hardware trap condition occurs. In this case,
DEBUG will display a message indicating the nature of the error causing the trap
(see Section 4.6), followed by the location at which the trap occurred, followed

by the DEBUG prompt character (!).

When the DEBUG prompt character is displayed, the user enters an appropriate DEBUG
Control Command or DEBUG Data Display Command.

4.2 THE DEBUG CONTROL CCMMANDS
4.2.1 CONTROL COMMAND SYNTAX

Prior to describing the actual DEBUG Control Commands, it is necessary to define
the terms "address" and "indirect-address".

ADDRESS

An "address" references a byte in virtual memory. An "address" consists of a frame-
ID (FID) and an offset byte displacement within the frame. The FID and/or displace-
ment may be either in decimal or hexadecimal. The general forms of an "address"

are shown below ("f" represents the FID value, and "d" represents the displacement

value) .

Address Description
f£,d FID in decimal; displacement in decimal.

Address Descrigtion

f.d FID in decimal; displacement in hexadicimal.
.f£,4 FID in hexadecimal; displacement in decimal.
.£.4 FID in hexadecimal; displacement in hexadecimal.
.d Displacement in hexadecimal.

,d Displacement in decimal.

If the FID value is omitted, then the PCB FID is used as a default value. The dis-
placement must be in the range 0 < d < 512.

As a general example, the following "addresses" are equivalent:
12.3C
12,60

.C.3C
.C,60

INDIRECT-ADDRESS

An "indirect-address" references a byte in the virtual memory by specifying an
Address Register which therefore indirectly references a particular byte. Address
Registers zero and one cannot be used in this manner. The "indirect-address" spec-
ification takes the following forms.

Indirect Address Description
Rr Specifies Address Register "r" (where "r" is a

decimal value in the range 0 < r < 15).

R.Tr Specifies Address Register "r" (where "r" is a
hexadecimal value in the range 0 < r < F).

Note that "indirect-addresses" have an implied displacement within the FID that
the Address Register is pointing to; this displacement depends on whether the re-
gister is in the "linked" or the "unlinked" format (see Section 2).

4.2.2 DEBUG CONTROL TABLES

DEBUG maintains three tables which may be manipulated by the DEBUG commands: the
Break Table, the Trace Table, and the Indirect Trace Table. If there are entries
in the Break Table, the address of every instruction is compared with the address
in the Break Table and a break occurs if there is a match. If there are entries
in the Trace or Indirect Trace Tables, then the data pointed at by the entries are
printed whenever a break message is printed (see Section 4.4). Up to four entries
can be placed in each of these tables.

{.2.3 COONTROL COMMANDS

e following is a list of the DEBUG Control Commands. Users without system pri-
vileges level two may only use the P, G, END, and OFF commands.

General Form

A address
B address
D
En

END

G
or
line-feed

G address

H

K address

Nn

OFF

Description

Displays the address of an element.
This command adds the "address" to the Break Table.
This command displays the Break Table and Trace Table.

This command sets the Execution Counter to "n",
where "n" is a positive integer < 250. Setting
the Execution Counter causes a break to occur
after the execution of every "n" instruction.
The command "E 0" or simply "E" turns off the
Execution Counter.

This command terminates execution and returns
to TCL. "END (carriage-return)" re-initializes
the break and trace tables, whereas "END (line-
feed)" preserves the tables.

This command causes resumption of process execu-
tion from the point of interruption. G cannot
be used if a process ABORT condition caused the
entry to DEBUG.

This command causes resumption of execution at
the specified "address".

"HUSHES" terminal output (this is an on/off toggle).

This command "kills" the break-point (i.e., de-
letes "address" from Break Table). "K" alone
kills all break-points.,

Display frame links.

Each entry of an M command switches (toggles)
"Modal-Break" status ON and OFF. When "Modal-
Break" status is ON, a break in execution will
occur upon all intermodal transfers (i.e., BSL
or ENT instructions; see Section 3.7.8). The
message "ON" is displayed when the M command
switches "Model-Break" on; the message "OFF"

is displayed when "Modal-Break" is switched off.

This command sets the Break-Point Counter to
"n" (i.e., inhibits traps until "n" breaks have
occurred). "N" is equivalent to "N 0".

This command logs the user off of the system.

Each entry of a P command switches (toggles)
from print suppression to print non-suppression.
The message OFF is displayed if output is cur-
rently suppressed. The message ON is displayed
if output is resumed.

General Form Description

T Each entry of a T command switches (toggles)
suppression of display of entries in the trace
tables.

T format address; window This command adds the "address" to the Trace
Table with the given display format and window,
if present. Default display is hexadecimal, 4
bytes. No negative displacement for windows is
allowed.

T format/symbol; window This command adds the address referenced by the
"symbol" to the Trace Table with the specified
or default format and window. Default format and
window depends on "symbol" type.

T format indirect-address; This command adds the "indirect-address" to the
window Indirect Trace Table with the specified or de-
fault format and window.

T format * symbol; window This command adds the address referenced in-
directly by the "symbol" (A/R or S/R) to the In-
direct Trace Table with the specified or default
format and window.

U address This command deletes the "address" from the Trace
Table.
U indirect-address This command deletes the "indirect-address"

from the Indirect Trace Table.

U This commands deletes all addresses and indirect-
addresses from the trace tables.

/€ Symbolic displays of elements.

4.3 THE DEBUG DATA DISPLAY COMMANDS
4.3.1 WINDOWS

Before describing the Data Display commands, it is necessary to define the concept
known as a "window."

A "window" specifies the number of bytes to display (m), and optionally the nega-
tive displacement (n) from the "address" or "indirect-address" from which to start
the display. If n is not specified, it is assumed to be zero. The general forms
of the "window" are shown below.

Window Description
;m Number of bytes in decimal.

Window Description

;.m Number of bytes in hexadecimal.

;n,m Displacement in decimal; number of bytes in decimal.

;n.m Displacement in decimal; number of bytes in hexadecimal.
;.n,m Displacement in hexadecimal; number of bytes in decimal.
;.n.m Displacement in hexadecimal; number of bytes in hexadecimal.

The default "window" is 0,4 (no neg9tive displacement, display four bytes).

4.3.2 DATA DISPLAY COMMANDS

The following is a list of the DEBUG Data Display commands.

General Form

Caddress ;window

Cindirect-address;window

Xaddress ;window

Xindirect-address;window

Iaddress;window

Iindirect-address;window

Format/symbol ; window

Format*symbol ;window

A/symbol

A*symbol

L fid

Description

These commands display specified data in
character format.

These commands display specified data
in hexadecimal format.

These commands display specified data
in integer format. ("window" must be <6)

This command displays data referenced by
"symbol" in given or default format and
window size.

This command displays data referenced
indirectly by "symbol" in given or de-

fault format and window size.

This command displays the address at
which program execution was interrupted.

This command displays the address refe-
renced by "symbol".

This command displays the address refe-
renced indirectly by "symbol".

This command displays the link fields of
frame "fid".

4-5

General Form Description

L*symbol This command displays the link fields
of the frame referenced indirectly by

"symbol".
Immediately after the data at the specified address has been displayed, DEBUG

prompts with an equal sign (=). The user then enters either a Data Replacement
Specification or a Special Control Character.

4.3.3 DATA REPLACEMENT SPECIFICATIONS

Displayed data may be altered (replaced) by entering the new data in one of the
following forms (after DEBUG prompts with an equal sign).

General Form Description
« XXXXXX. .. Replaces data with hexadecimal string "xxxxxx". The

string should contain an even number of hexadecimal
digits, and may be up to 80 digits in length.

'cceccce. .. Replaces data with character string "cccccc". The
string may be up to 80 characters in length.

n Replaces data with integer value "n".

In the case of a hexadecimal or character string replacement, the data actually
replaced may extend beyond the currently defined "window".

A Special Control Character (see Section 4.3.4) must be entered immediately fol-
lowing a Data Replacement Specification.

4.3.4 SPECIAL CONTROL CHARACTERS

The user may enter a Special Control Character in response to the DEBUG equal sign
prompt character. In addition, the user must terminate a Data Replacement Speci-

fication (see Section 4.3.3) with a Special Control Character.

The Special Control Characters are listed below.

Control Character Description
Carriage Return Terminates display mode; DEBUG will prompt with an

exclamation mark (!).

Line Feed Displays data in the next "window" (i.e., the pre-
viously specified "address" or "indirect-address"
is updated according to the currently specified
"window"”). The data is displayed on the same line.

Control-N Displays data in the next "window", preceded by the

address being displayed (in the format "f.d", where
f is in decimal and 4 is in hexadecimal).

4-6

Control Character Description

Control-P Displays data in the previous "window" preceded
by the address being displayed (in the format
llf‘dll) .

On a display using the "indirect-address" specification, the Line Feed or Control-N
will cause an automatic crossing of linked frame boundaries if the register being
used in the display is in the "linked" format.

Generally speaking, Control-N displays the set of bytes the same size as and imme-
diately following the current display, and Control-P displays the immediately pre-
ceding set, with each skipping first to the next line and preceding the display of
these bytes with their address (Line-Feed functions the same as Control-N, without
skipping a line or displaying an address). Exceptions occur only in the case of
the specification in the initial display of a negative displacement window, i.e.,
a window of the form:

:Windowl, Window2
Where windowl is positive.

In these cases, the address of the beginning of the next byte-set display is deter-
mined by the formulas:

For Control-N and Line-Feed:

ADDR OF DISPLAY ADDR OF CURRENT DISPLAY + SIZE WINDOW - DSPLC WINDOW

For Control-P:

ADDR OF DISPLAY ADDR OF CURRENT DISPLAY - SIZE WINDOW - DSPLC WINDOW

The user may describe a sequence by careful specification of size and displacement
windows. A few examples follow.

Display a data list of DTLYS from right to left, i.e., by diminishing addresses,
first displaying the DTLY at address 200.100. The easiest way is to simply use
Control-P with a non-negative displacement window:

!1X200.100; DO .ClF1043F= (Control-P)
200.FC .07510254= (Control-P)
200.F8 .Al10551F0= (etc.)

Another way of reading right to left, using Control-N, is accomplished by specify-
ing the value of the displacement window (:window) to be twice that of the value
of the size window (.window2 (= 4 |for DTLYS)):

1200.108;8.4 .ClF1043F= (Control-N) (display DTLY at 200.100)
200.FC .07510254= (Control-N)
200.F8 .Al0551F0= (etc.)

To display an address over and over, as when monitoring changes at a certain ad-
ress, the Line-Feed function may be used, specifying a displacement window equal
in value to the size window. For example:

!1510.102;2,2 5000= 5000= 5000= 5001= 5001= 5002=
(Line-Feed display of tally at 510.100)

A somewhat more tricky example: suppose one has sorted a list of five-letter words
beginning at the 100th data byte of linked frame 510 and wishes to check it for
correct order by comparing items O and 1, 1 and 2, 2 and 3, and so forth. This may
be done, using Control-N, by specifying a size window twice the value of the dis-
placement window:

'C510.106;6,12 APPLECHAIR= (Control-N)
+510.111 CHAIRCHOIR= (Control-N)
+510.117 CHOIRFUNNY= (Control-N)
+510.11D FUNNYHELLO= (etc.)

4.4 THE FORMATTED TRACE

The TRACE facility also allows formatting. This enables the user to specify a for-
mat and one window only (the size window) for each item traced. The display of each
item will then reflect its specified format and byte size. Forward or backward dis-
placements will be ignored. Note, however, that the default format and window of
an indirect trace is hex display of 4 bytes, not the preceding window.

Examples:

!TX200.100;4+ (Will trace location 200.100 with 4 bytes displayed in
hex - the '+' prompt from DEBUG indicates entry into
the table.)

!T/CH1+ 736.21 (Trace of symbol CH1 - format = C, display size =1
character - prompt 736.21 = display address of CHl.)

!T*R15; TO+ (Indirect trace R15 - format = I, window size = 2 bytes.)

!T*SR4+ 737.EO (Indirect trace SR4 - format = X, display size = 4 bytes -
default trace format and window is hex with 4 bytes,
not previous format and window.)

D

BRK TBL: 0. 0. 0. O.

TRC TBL: 200.100 736.21 0. O.

*TRC TBL: R 15. * 737.E0 0. O.
(Display of above entries in trace tables - 736.21 =
display address of CH1l, * 737.E0 means the address
pointed to by the S/R at 737.E0 (i.e., SR4) will be
displayed.)

4.5 SYMBOLIC REFERENCES

Symbolic reference to system-defined or user-defined data items is possible with

the use of the SET-SYM and SET-SYM2 verbs. These TCL-II verbs are issued to specify
tables for symbolic operands to be referenced by DEBUG. Entries in these tables

must be in the format ucsed in the Assembler PSYM and TSYM files.

SET-SYM assigns one symbol table; SET-SYM2 assigns another. Typically, SET-SYM is

4-8

x4

used to reference standard system-defined elements, and SET-SYM2 is used to reference
user-defined elements. For example:

DEBUG always looks for a symbolic operand first in the table set up by SET-SYM2.
If this table in not assigned, or if the symbol is not found, it then looks in the
table set up by SET-SYM.

4.5.1 SYMBOLIC OPERATORS

The symbolic operators '/' and '*' respectively indicate that a symbolic or indirect
symbolic operand is to follow. They may be preceded by any format specification
(X.I.C) or followed by a window specification (:windowl.window2 or :symbolic window)
which will override the listed default display values. DEBUG will display only
those symbols from the Symbol Table which would be accepted by the Assembler as
legal in a normal assembly.

4.5.2 DISPLAY FEATURES

Symbolic operands for display may be any properly defined bit, character, half-word,
word, double-word, triple-word, storage register, or address register within the
assigned Symbol Table. Normal display features are as follows:

Type of Symbol Format of Display # Bytesg Dj ed
HTLY Integer (I) 1
TLY Integer 2
CHR Character (C) 1
DTLY Integer 4
FTLY Hex (X) 6
S/R Hex 6
A/R Hex 8
S/R (INDIRECT) Previous format Previous window
A/R (INDIRECT) Previous format Previous window

These values are default values and are superceded whenever a specific format or
window size is entered as part of a command.

Examples:

{/CTR5 3l= (Symbol = CTR5, format = I, display
size = 2 bytes.)

!/R15 708.CA .000000CA800002C4=
(708.CA is the address pointed to by R15-
see 'the address function' - format = X,
window size = 8 bytes. These are the con-
tents of R15.)

1X/D0 008C008C= (Actual stored contents of accumulator -
format = X (as specified), display size = 4
bytes.)

Examples: (Continued)

1*R15 708.CA . 2D2F2A2F= (Indirect display - contents at 708.CA -
format = X (prev. format). Window size =
4 bytes (prev. window).)

IC*R15;0,4 708.CA ~-/*/- ({Format = C, window = 4 bytes with no
negative displacement)

A '+' indicates an address of a symbolic operand defined within a linked frame
where 11 (hex 'B') has been added to the displacement to produce a display address
starting from byte 1 of the frame.

4.5.3 SYMBOLIC WINDOWS

The symbolic window provides a useful means of referencing data pointed to by an
A/R or S/R. It also enables the user to specify a forward reference from the
address pointed to and carries an implicit default format specification.

Examples:
!*R9,D0 708.32 17301644= (Specifies the double-tally pointed to
by R9)
1*R3,T2 705.4 12593= (Specifies second tally after the tally
pointed to by R3)
I *SR6;Cl +32075.13A ,= (Gives the character HTLY immediately after
the one pointed to by SR6 - implicit format = (C)
IX/SR4;T0 .0l12F= (Gives the displacement (in hex) of SR4)
!/CTR4;S2 .009900010035= (Implicit format = X, size = 6 bytes)

4.6 THE ADDRESS FUNCTION

The address function is evoked by preceding a symbolic operator by the command 'A'.
An indirect symbolic operator preceded by the command 'A' yields the address
pointed to by the specified A/R or S/R.

The command 'A' alone, not followed by any operators, will yield the interrupt
address from which execution was halted when the DEBUGGER was invoked. 1If the
DEBUGGER was not entered due to an error trap condition, this address is also the
address from which execution will continue if a 'G' command without a specified
address is given. Some examples of the use of the 'A' function follow:

1A/CTR5 512.9A (Display address of symbol CTR5)

!A*SR1 +534.2F (Adjusted byte address on linked frame pointed
to by S/R SR1)

'A*SR1;4.0 +534.2B (Address of DTLY preceding address pointed to
by S/R SR1)

4-10

!A 6.94 (Address from which execution interrupted
when DEBUG entered. Execution will continue
from this address also.)

4.7 THE LINKS FUNCTION

This facility enables the user to display the forward and backward links of a
specified frame as well as the number of next contiguous frames (NNCF) and number
of previous contiguous frames (NPCF). The links of a frame pointed to be an A/R or
S/R may also be obtained by an indirect symbolic links specification. The format

of display is:

NNCF : FORWARD LINK BACKWARD LINK : NPCF
Examples:
'L,727 4 : 728 726 : 1 (Links for frame 727 - 4 contiguous linked

frames follow beginning at frame 728.
1 contiguous linked frame precedes frame 726.)

IL*IRBEG 14891. O : 14893 0 :0
(S/R IRBEG points to frame 14891 -

frame 14891 has no immediately contiguous
links. Forward link is 14891. No backward

link.)

'L.1F 28 : 68944000 -179407469 : -112
(These are the 'links' of frame 31 which is

not a linked frame. No test is made to de-
termine if a frame is linked or not before
play. If NNCF = 28 or 29 then the frame is
probably not linked.)

4.8 BIT DATA

4.8.1 SYMBOLIC BITS

Symbolically defined bits may also be displayed, providing they are defined within
a 32-byte displacement range of their reference base register. Among the display

functions are:

Control-N Skip to next line, display bit address and value of next bit.

Line-Feed Display bit value on same line.

Control-P Skip to next line, display bit address and value of previous
bit.

4.8.2 BIT ADDRESSES

The address function may also be used for bit operands. A bit address has the
form:

4-11

(+) FID. DSP:BIT

where BIT is the bit displacement of the byte display address.

Examples:
!/ABIT O= (ABIT is not <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>