
UJ~r~
TM

INCORPORATED

High C ™

Library Reference Manual

Version 1.2

by Meta Ware ™ Incorporated

High C TM

Library Reference Manual

Version 1.2

@ 1985, MetaWare™ Incorporated, Santa Cruz, CA

All rights reserved

NOTICES
The software described in this manual is licensed, not sold. Use of the soft
ware constitutes agreement by the user with the terms and conditions of the
End-User License Agreement packaged with the software. Read the Agreement
carefully. Use in violation of the Agreement or without paying the license
fee is unlawful.

Every effort has been made to make this manual as accurate as possible. How
ever, MetaWare Incorporated shall have no liability or responsibility to any
person or entity with respect to any liability, loss, or damage caused or
alleged to be caused directly or indirectly by this manual, including but not
limited to any interruption of service, loss of business or anticipated
profits, and all direct, indirect, and consequential damages resulting from
the use of this manual and the software that it describes.

MetaWare Incorporated reserves the right to change the specifications and
characteristics of the software described in this manual, from time to time,
without notice to users. Users of this manual should read the file named
"README" contained on the distribution media for current information as to
changes in files and characteristics, and bugs discovered in the software.
Like all computer software this program is susceptible to unknown and un
discovered bugs. These will be corrected as soon as reasonably possible but
cannot be anticipated or eliminated entirely. Use of the software is subject
to the warranty provisions contained in the License Agreement.

v.lO.IS.85

A. M. D. G.

Trademark Acknowledgments
The term(s)
Hlgh C, MetaWare
MS-DOS
Professional Pascal
UNIX

is a trademark of
MetaWare Incorporated
Microsoft Corporation (registered tm.)
MetaWare Incorporated
AT&T Bell Laboratories

© 1983-85 MetaWare Incorporated

Feedback, Please
(Upon first reading.)

We would greatly appreciate your ideas regarding im
provement of the language, its compiler, and its documen
tation. Please take time to mark up the manual on your first
reading and make corresponding notes on this page (front and
back) and on additional sheets as necessary. Then mail the
results to:

MetaWare™ Incorporated
412 Liberty Street

Santa Cruz, CA 95060

MetaWare may use or distribute any information you supply
in any way it believes appropriate without incurring any obli
gation whatever. You may, of course, continue to use that
information. If you wish a reply, please provide your name and
address. Thank you in advance, The Authors.

Page Comment

v.09.15.85 o 1983-85 MetaWare Incorporated

Feedback, Please

v.09.1S.85 c 1983-85 MetaWare Incorporated

Contents page(s)

for High C TM Library Reference Manual total 200 pp.

Cover, Title, Contents, Feedback 10 pp.

Sections 1-13 total 181 pp.

1 Introduction. .. 12 pp.

Organization 1-1
Contents 1-3
Including Header Files 1-4
Parameter Passing 1-5
Macros 1-6
Naming Conventions 1-8
Terms 1-8
Regular Expressions 1-10

2 assert.h 2 pp.

assert 2-2

3 ctype.h 5 pp.

isalnum . 3-1
isalpha 3-1
iscntrl 3-2
isdigi t 3-2
isgraph ' 3-2
islower 3-3
isprint 3-3
ispunct 3-3
isspace .' 3-4
isupper . 3-4
isxdigi t 3-4
tolower 3-5
toupper 3-5

4 limits.h 4 pp.

Characteristics of Integral Types 4-2
Characteristics of Floating-Paint Types 4-3

v.10.1S.8S © 1985 MetaWare Incorporated

Contents page(s)

5 math 0 h 0 0 0 • 0 0 0 •• 0 0 • 0 0 0 0 0 •• 0 • 0 0 •• 0 0 • • •• 14 ppo

ED OM 0 0 0 0 0 0 •••••••••• 0 •••• 0 0 • 0 •••••• 0 0 0 0 0 •• 5-2
ERANGE 0 • 0 0 •••••••••••• 0 0 ••••••••••• 0 0 0 • 0 •• 5-2
HUGE VAL ••••.••.••••••••.•..••••••. 0 0 0 0 ••• 5-3
abs -: . 0 0 •••• 0 ••••••••••••••• 0 •• 0 •••• 0 • 0 ••• 5-3
acos. 0 0 0 • 0 ••• 0 •• 0 •••••••••••••••• 0 0 • 0 •• 0 •• 5-4
asin .. 0 0 ••••••••• 0 ••••••••••••• 0 •••• 0 • 0 ••• 5-4
atan ... 0 ••••••••••••••••••••••••••• 0 •••••• 5-5
atan2 0 0 0 0 0 • 5-6
ceil. 0 • 0 0 0 • 0 • 0 •••••••••••••••• 0 ••• 0 0 0 • 0 0 •• 5-7
cos . 0 0 0 • 0 ••• 0 ••• 0 0 • 0 •• 0 ••••• 0 0 0 0 0 • 0 0 0 0 0 0 • 5-7
cosh 0 ••••••• 0 ••••• 0 •••••• 0 0 •••• 0 • 0 0 •• 5-7
exp .. 0 0 0 •• 0 ••••• 0 ••••••• 0 ••••••• 0 0 • 0 • 0 0 0 • 5-8
fabs .. 0 0 ••• 0 ••••••••••• 0 • 0 ••••• 0 ••••••• 0 • 0 5-8
floor. 0 •••••• 0 0 •••••••••• 0 •••• 0 0 •••••• 0 0 • 0 5-8
frnod 0 •••••••• 0 0 ••• 0 • 0 •• 0 5-9
frexp 0 ••• 0 •• 0 •• 5-10
Idexp ... 0 ••••••••••••••••••••••••••• 0 •• 0 • 0 5-11
log 0 ••••• 0 • 0 •••••••• 0 •• 0 ••• 0 ••• 5-11
10g10. 0 •••••••••• 0 •••••••••••••••••••• 0 ••• 5-12
rnodf 0 •••••••••• 5-12
pow .. 0 ••••••••••••••••••••••••••••••• 0 ••• 5-13
sin ' 0 ••••••••• 5-13
sinh 0 •••••••••••••••••••••••• 5-13
sqrt 0 •••••••••••••••• 5-14
tan 0 •••••••• 5-14
tanh 5-14

6 setjrnpoh .0.0 •• 000.0.0.000.0000.000 •••• 3 pp.

jrnp buf 0 •••••• 0 0 •• 6-1
longjrnp . 0 •••••••••••••••••••••• 0 •••••••••• 6-1
setjrnp 0 •••• 0 •• 0 •• 6-3

7 signal.h 00000000.000000000 ••• 00000 ••• 0 5 pp.

SIGABRT, SIGFPE •••••• 0 •••••••••• 0 •••••• 0 0 •• 7-1
SIGILL, SIGINT, SIGSEGV ••.••••..•..•• 0 • 0 0 • 0 7-2
SIGTERM, SIGDFL, SIGERR .• 0 •••••••••••• 0 ••••• 7-3
SIGIGN ..•..•.•..•...•.•....••..••••. 0 ••••• 7-4
kill 0 ••• 7-4
signal 7-5

v.lO.lS.8S © 1985 MetaWare Incorporated

Contents page(s)
8 stdarg.h 5 pp.

va list 8-1
va-start 8-2
va-arg 8-3
va-end 8-5

9 stdefs.h 2 pp.

errno 9-1
NULL 9-1
ptrdiff t 9-2
size t :--................................... 9-2

10 stdio.h 69 pp.

Streams 10-1
Errors 10-2
End of File 10-2
Text and Binary Streams 10-3
System Dependencies 10-4
FILE 10-5
BUFSIZ . 10-5
EOF 10-5
L tmpnam 10-5
NULL 10-6
SEEK CUR, SEEK END, SEEK SET • • • • • • • • • • • • • • • • 10-6
SYS OPEN • • • • :-: • • • • • • • -:-. • • • • • • • • • • • • • • • • . • 10-8
TMP-MAX ••••••••••••••••.••••••••••••••••• 10-8
size t 10-7
stdin, stdout, stderr 10-7
clear err 10-9
fclose '.' 10-9
feof 10-11
ferror 10-11
fflush 10-12
fgetc 10-13
fgets 10-15
fopen . 10-17
fprintf 10-19
fputc . 10-28
fputs . 10-29

v.10.1S.8S © 1985 MetaWare Incorporated

Contents page(s)

fread . 10-30
freopen . 10-31
fscanf 10-33
fseek 10-41
ftell . 10-43
fwr i te . 10-44 .
getc 10-45
getchar . 10-46
gets 10-47
perror . 10-48
printf 10-49
putc 10-50
putchar . 10-51
puts 10-52
remove 10-53
rename 10-54
rewind . 10-55
scanf 10-56
setbuf . 10-58
sprintf 10-59
sscanf . 10-61
tmpf i1e . 10-62
tmpnam . 10-63
ungetc 10-64
vfpr int f . 10-66
vprintf 10-66
vsprintf 10-67

setmode .. 10-67

11 stdlib. h .. 19 pp.
onexi t t 11-1
NULL .. -. 11-2
size t 11-2
abort 11-3
atof 11-4
atoi 11-5
atol 11-6
calloc . 11-7
exit 11-8
free 11-9

v.lO.15.85 © 1985 MetaWare Incorporated

Contents page(s)

getenv . 11-10
ma110e 11-10
onexi t 11-11
rand 11-13
realloc . 11-14
srand 11-14
strtod 11-15
strtol . . • . • 11-17
system•............. 11-19

12 string.h .••.•••.•••••••••••••.•.•...• 35pp.

size t 12-1
MAXSTRING 12-1

memehr . 12-2
memcmp • • . 12-4
memcpy • . 12-6
memset . • 12-8
strcat•........................... 12-10
strchr•........•.................. 12-12
strcmp • . . • • . 12-14
strcpy 0. 12-16
strcspn . 12-18
str len ...•.............. ~ . • 12-19
strncat•..•.•...........•.......••. 12-20
strncmp • . . • • • . 12-21
strnepy•...........................•. 12-22
strpbrk . . • • • • • • . 12-23
strrchr•............•.....• 12-24
strspn • . . • • . • • • . 12-25
strtok••....•.........•• 12-26
_ rmemcpy•....•...•.........•.•.. 12-28
_rstrcpy•..••........ 0 •••••••• 12-30
_ rstrncpy•..•.•.••......•...•••. 12-32

strcats .•...............•..............• 12-34
=strncat .•....•.......•...•...........••. 12-35

v.10.15.85 © 1985 MetaWare Incorporated

Contents page(s)

13 time.h •............................... 6 pp.

clock t 13-1
time t 13-1
tm .-: 13-1
ClK TCK •••••••.•.••..•.•.••.••••...••.•••. 13-2
asctime 13-2
clock 13-4
ctime 13-4
di fftime 13-5
gmtime 13-5
local time. 13-6
time 13-6

Index 5 pp.

More Feedback, Acknowledgments, End 4 pp.

v.1O.15.85 © 1985 MetaWare Incorporated

Introduction

1
Introduction

page 1-1

This manual describes the MetaWare™ High C ™ Library,
which is largely ANSI-standard, but which has a few additions.

This section briefly describes the organization, format, and
contents of the library and the rest of this manual. It then
describes: the effect of including the ".h" header files in
source programs, parameter passing conventions used in the
library, macros, naming conventions used in the library, and
finally some terms and the regular expression notation
common to several subsequent sections of the manual.

Organization. The library is divided into several areas,
such as mathematics and string handling, according to the
ANSI C Library standard. For each area, there is a header file
that contains definitions of macros and declarations of
functions and types dealing with that area. For each header
file, there is a section in this manual with the same name. The
sections and their contents are arranged alphabetically.

Each section contains a general description of a header
file. Following that are alphabetized individual descriptions of
first the types declared in the header file, then the macros
defined in the header file that embody manifest constants, and
finally the functions declared in the file.

The individual descriptions appear in the format illustrated
below.

All words from the C language, including names from the
header files and names representing arguments to functions
are set in this fixed-width type. Of those, keywords and
preprocessor directives are set in boldface. Most such words
(usually excepting macro names) must be in lower case, as the
language is case sensitive. Due to the difficulty of picking out
C words in the middle of an English paragraph, those that are

v.lD.l5.85 © 1985 MetaWare Incorporated

Introduction page 1-2

not boldfaced nor CAPITALIZED are underlined in the context of
English text, though not in program text.

Regular expressions (see below) are set in this fixed
width type, but are not underlined since the names used there
always beginning with a capital letter.

Finally, occasional special terms not part of the C language
nor of the header files, such as Infinity, NAN, and the names of
the header files themselves, are set in italics.

The template below shows the format of the descriptions of
each function. For any given function, there might appear only
a subset of the paragraphs in this template. The description of
a type or macro differs in that only the INTERFACE and DESCRIPTION

paragraphs appear. The INTERFACE paragraph of a type or
macro description contains the preprocessor directive that
causes the header file containing the type declaration or
macro definition to be included in a source file.

fen

INTERFACE

- Short description of the type, macro, or
function.

- If it is provided as a macro, that fact is
stated here.

The declaration for fcn appears here, providing information
about fcn's return type and the type(s) of its argument(s).
For example:

double fcn(double argument);

If a header file must be included in order for fcn to be used,
the line

'include (appropriate header file name>

appears before the function declaration. Such a line must
appear in the source line prior to the use of fcn. See the
discussion of including header files, below.

v.lO.lS.8S © 1985 MetaWare Incorporated

Introduction page 1-3
DESCRIPTION

fen is described here; what it does, what it returns, what
argument(s) are valid, what action(s) are taken when
certain errors occur.

CAUTIONS

If fen is potentially dangerous, the pitfalls are pointed out.
SURPRISES

Any unexpected or counter-intuitive aspects are mentioned
here.

SYSTEM DEPENDENCIES

Any system-specific aspect(s) of fen are discussed here.
SEE ALSO

Related functions are listed here.
EXAMPLE

An example appears here.

Contents. Here is a summary of the header files treated.

assert.h defines a macro that emits diagnostic messages
when specified conditions are not met.

ctype.h defines macros for character handling.

limits.h defines macros specifying constraints on numeric
representations.

math.h declares mathematical functions.

setjmp.h declares functions for setting up non-local jumps.

stdargs.h defines macros for accessing a variable number of
parameters to a function.

stdefs.h provides popular definitions for inclusion by other
header files.

stdio.h declares input-output functions.

v .10 .15.85 © 1985 MetaWare Incorporated

Introduction page 1-4

stdlib.h declares functions of general utility. Among them
are functions for converting strings to other values,
for communicating with the host environment, for
managing memory, and for generating
pseudo-random integers.

string.h declares functions that manipulate strings and
character arrays.

time.h declares functions useful for determining and
manipulating the date and time.

Including Header Files. The header files contain
declarations for the functions provided by the High C ™ Library.
If a C program uses a library function, including the appropriate
header file in the source file declares the function. (See the
'include preprocessor directive in the High C Language
Reference Manual.)

However, the standard C language permits references to
functions that are not declared within the compilation unit
containing the reference. This is possible because a function
may be compiled separately from a compilation unit in which it
is called, and a resolution between the function call and the
function can be made at link time.

The return type of such a function is assumed to be into
The library has been carefully designed so that any library
function taking arguments of scalar type and returning either
nothing or a result of an integral type can be called without
being declared.

A danger inherent in this capability is that functions that do
not satisfy the above constraints can also be called without
being declared, but since the constraints are assumed (by the
compiler) to hold, unexpected behavior may result at run time.
To correctly use a function that does not satisfy the above
constraints, either include the header file that contains its
declaration (safe) or duplicate the declaration (unreliable).

v.IO.lS.8S © 1985 MetaWare Incorporated

Introduction page 1-5

Despite C's function-calling flexibility, it is a good idea to
include the header file anyway. Such inclusion provides
compile-time protection against passing the wrong number or
type of arguments to these functions.

Unlike functions, references to types and macros must be
resolved during compilation. If a type or macro provided by
this library is used in a program, either the header that defines
it must be included or the definition must be duplicated in the
source code.

In the INTERFACE section of each function description, the line

'include <header file name>

appears if the function cannot be safely called without either
including the header or duplicating some of the text from the
header. This may be because the function does not satisfy the
constraints mentioned above, or because the function takes or
returns an argument of a type declared in a header file.

Header files may be included in any order, and they may be
included more than once with no ill effects.

Parameter Passing. The ANSI standard C language
provides a syntax for function declarations that allows the type
and number of arguments to be checked against the type and
number of declared parameters. Such a declaration is called a
prototype.

Arguments to a function that is thus declared must be
compatible with the types of the declared parameters, in the
same sense that the right part of an assignment expression
must be compatible with its left part. The arguments are
passed with the same conversions that occur with assignment
- i.e. no conversion if the types are the same, and otherwise
some arithmetic conversion may occur, such as from ints to
floats.

An argument to a function that is called without being
declared or that is declared without a prototype has the

v.lO.l5.85 © 1985 MetaWare Incorporated

Introduction page 1-6

following conversion performed upon it: if the argument is a
signed char or signed short, it is converted to signed int; if
it is an unsigned char or unsigned short, it is coerced to
unsigned int; if it is a float, it is coerced to double;
otherwise no conversion occurs.

The header files use prototypes to declare library functions.
The library is designed as much as possible to allow library
functions to be called without being declared, which has an
impact on the declarations of some functions.

A number of library functions take characters as
arguments, but the corresponding parameters are declared as
int rather than char. This is because chars are widened to
ints when passed to non-prototype functions. If such a
parameter .£ were declared of type char and the function were
called without being declared, .£ would be passed as an int
and the behavior would be undefined. For consistency, all
such functions take ints rather than chars, even if they are
likely to be used only if the appropriate header is included.

Likewise, functions that return character values are
declared to return ints so they can be used without being
declared, since undeclared functions are assumed to return
into In addition, a number of such functions must be able to
return EOF, a macro declared in stdio.h that expands to an int
literal.

Library functions that are implemented as macros are
documented using the syntactic form of functions. The
documentation uses the parameter and return types that would
be appropriate if the macro were a true function, even though
macros are not typed.

Macros. A number of macros are provided in the library.
These fall into two categories: (1) those that implement a
provided function, and (2) those that expand to constant or
variable references. For one of these macros to be used, the

v.1O.lS.8S © 1985 MetaWare Incorporated

Introduction page 1-7

header file containing its definition must be included in the
source file being compiled.

Macros in the second category require more discussion,
since several functions are provided with two implementations:
one as a macro and one as a function. This is mentioned in the
description of each such function.

In the usual case the effect of a function is identical to the
effect of the corresponding macro. A function call evaluates
each argument exactly once, however, while a macro may
evaluate its arguments more than once. Therefore, the effect
of a function call may differ from the effect of the
corresponding macro expansion if an argument has side
effects. For each macro provided, if any arguments may be
multiply evaluated, that fact is documented.

In a given instance, it may be desirable to choose a true
function over a macro, or vice versa. To access a provided
macro, it is merely necessary to include the header file. If the
header file is not included, a reference to the function name
references the true function.

It may be desirable to include the header file and still
reference the function instead of the macro, since each header
file typically provides a number of functions. Consider the line:

,under <function_name>

It removes the definition of <function_name> as a macro, so
that all subsequent instances of <function_name> refer to the
function. The macro is irretrievable (short of duplicating the
definition). Such a line must also appear in the source file any
time a name defined as a macro (perhaps in an included file)
must be redefined as a macro or declared as a name of an
object in the program.

If a macro has parameters, substitution on that macro
occurs only if it appears immediately followed by the
parenthesized parameter list. Thus, surrounding the name
with parentheses disables the substitution and forces a call to
the function. For example, getc(F) invokes a macro but

v.10.15.85 © 1985 MetaWare Incorporated

Introduction page 1-8

(qetc) (F) calls a function. This allows those functions with
arguments to be called while the corresponding macros retain
their definition.

Naming Conventions. This is an ANSI standard C library.
The names of the functions, function parameters, types, and
macros are those dictated by the standard. Any functions,
types, and macros in the library that are not required by the
standard have names that begin with underscore ("_").

Terms. The following terms are used in several places in
this manual. The final few are names from the C library that
are referred to in several subsequent manual sections.

ANSI refers to the American National Standards Institute,
which is responsible for the standard C language
and library definition, currently in draft form.

null pointer
is any pointer that compares equal with O.

NUL is not a macro, but a name for the character '\0',
the string termination character, whose value is the
integer zero. Note that NUL is different from NULL, a
macro that expands to a representation of the null
pointer; see stdefs.h.

string refers to a pointer to the first character of a
sequence of characters terminated with NUL.

whitespace
refers to a set of characters including tabs, spaces,
and newlines. It is that set of characters tested for
by the function isspace provided by header file
ctype.h.

Sign refers to a plus or minus sign: '+' or '-'.

Digit t refers to any decimal digit: ' 0' through '9'.

Odigit t refers to any octal digit, i.e. any Digit except '8' and
'9'.

v.10.1S.8S © 1985 MetaWare Incorporated

Introduction page 1-9

Hexdigit t refers to any hexadecimal digit, which is a Digit or
any of the characters I a I through I f I (or I A I through
I F I - casing is not significant in numbers) having
values 10 through 15 respectively.

t Following Ada, sequences of digits may contain internal,
non-consecutive underscores. Underscore (I_I) is
allowed as a separator to make large numbers more
readable. It is not allowed as the first or last
character.

size t is a macro that expands to the integral type of the
result of the sizeof operator. It is defined in
stdefs.h, stdio.h, stdlib.h, and string.h.

errno is a variable of type int that is set to a positive
integer error code by some library functions when an
error occurs during their execution. It is set to zero
at program start up. It is never set to zero by any
library fUnction. A program that uses err no for error
checking should set it to zero before a call to a
library fUnction and inspect it prior to a subsequent
call to a library function. errno is declared in
stdefs.h.

NULL is a macro that expands to a value that is
assignment-compatible with any pointer type and
compares equal with the constant zero. It is
therefore suitable as a representation of the null
pOinter. Note that NULL is not appropriate as the
terminating character of a string, as the size of a
pOinter is not necessarily the same as the size of the
character NUL. NULL is defined in stdefs.h, stdio.h,
stdlib.h.

v.IO.lS.85 ~ 1985 MetaWare Incorporated

Introduction page 1-10

Regular Expressions. The library contains functions that
handle sequences of characters that must be of particular
forms. A simple example is a digit sequence. There are an
infinite number of such sequences, but the "regular
expression" "Digit*" describes them all quite succinctly.
Regular expressions are used in the manual to describe the
forms sequences may take.

Regular expressions provide a way to specify the order and
number of (in this case) characters in sequences. Within a .
regular expression, a quoted character (' a ') represents the
character (a). Names can be given to regular expressions, and
names can be used in regular expressions that are either
pre-defined (such as Digit and whitespace, defined above) or
are themselves names of regular expressions.

The order in which characters appear in a regular
expression is the order in which the characters must appear in
the described sequence. When a name appears, it is
equivalent to the regular expression it represents.

The descriptive power of these expressions comes from
modifiers that act on the elements (characters and names) of
an expression. The modifiers are *, ?, I, and - , where *
means zero or more, ? means zero or one,· I means
alternation, and - means set subtraction. The modifiers are
not quoted. Parentheses are used for grouping.

For example, '* '* is a regular expression describing a
sequence composed of zero or more asterisks.

A name N followed by a right arrow (-» followed by a
regular expression E terminated with a semicolon defines N to
represent E, as illustrated here:

Name -> Regular_expression;

v.lD.15.85 © 1985 MetaWare Incorporated

Introduction page 1-11

Thus we can precisely define Digits, Odigits, and Hexdigits:

Digit -> '0' 1 '1' 1 '2' 1 ' 3 ' 1 ' 4 ' 1

Digits
Odigit
Odigits
Hexletter

'5' 1 '6' 1 '7' 1 '8' 1 '9' ;
-> Digit ('_'? Digit)*;
-> Digit - '8' - '9' ;
-> Odigit (' '? Odigit)*;
-> 'a' 1 'b'-I 'c' 1 'd' 1 Ie'

'A' 1 'B' 1 'C' 1 '0' 1 'E'
Hexdigit -> Digit 1 Hexletter;
Hexdigits -> Hexdigit ('_'? Hexdigit)*;

If'
'F'

For example, a digit sequence optionally prefixed by a sign
could be named Integer and described by

Integer -> ('+' I'-')? Digit+;

and the format sequence that is printf's first argument and
fprintf's second argument can be described by

Format -> (any-'%' 1 Conversion_spec)*;

Here, any refers to any character. Conversion specification
(Conversion_spec) is described next by a copy of a small piece
of Section stdio.h which describes the function fprintf.

ConverSion_spec

-> '%' Flag* Field_width? Precision? Size? C_char;
Flag -> I_I 1 '+' 1 ' , 1 lUI 1 'a' ,
Field width -> «Digit-'O' I_I?) Digits) 1 '*'
Precision ->" (Digits 1 '*');
Size -> 'hI 1 'I' 1 'L'
C char -> 'd' 1 Ii' 1 '0' lUI 'x'

'X' 1 If' 1 Ie' 'E' 'g'
'G' I 'c' I IS' 'pI In'
'%'

The following are valid calls to printf: the string that is the
first argument to printf is a valid format string.

printf("Hello world.");
printf("Hello %s.", "world");
printf("%d * %hd = %ld" , 2, 3, 6);
printf("%05d * %.5f = %+/107. *LG" , 2, 3.14, 6.28);

v.10.15.85 © 1985 MetaWare Incorporated

Introduction page 1-12

printf("I am behind you %d%%.", 1000);

The following are not valid calls to printf: the string that is
the first argument to printf is not a valid format string.

printf("Hello world.%"); /* Missing C char. */
printf("Hello %k.", "world"); /* k not a ~ char. */
printf("%d * %h = %hld" , 2, 3, 6); /* h not a */

/* C char. Also, only one of h or * /
/* I-can be generated from Size. */

printf("%105d * %f.5 = %7+f10.*LG", 2, 3.14, 6.28);
/* Size (1) must follow Field width (05). */
/* C char (f) must follow Precision (.5). */
/* FIeld width (7) must follow Flags(+#O). */

printf("I am behind you %d%%%.", 1000);
/* Missing C_char. */

v.lO.lS.8S © 1985 MetaWare Incorporated

assert.h

2
assert.h

page 2-1

The header file assert.h defines one macro, assert,
described on the next page, which puts diagnostics into a
program. If a user-defined macro NDEBUG is defined at the point
of inclusion of the header file assert.h, assert has no effect.

v.lO.15.85 © 1985 MetaWare Incorporated

assert.h page 2-2

assert - Abort if an assertion is false.
- Provided as a macro only.

INTERFACE

'include (assert.h>
void assert(int expression);

DESCRIPTION

Does nothing If expression evaluates to non-zero (true). If
expression evaluates to zero and NDEBUG is not 'defined,
the name of the file and number of the source line where
the assertion appears is written on standard error, and the
abort function is called; see stdlib.h.

EXAMPLE

'include (stdio.h>
'include (assert.h>
main() {
,define C ARRAY END (25)

int i ;; 0, no z = 1;
char c_array[C_ARRAY_END];

while (no z) {
assertfi (C ARRAY END); !* Line 64. *!
c array[i] =-getchar();
no z = (c array[i++] != 'z');
} -

Let us suppose the above program is in file Iwork! junk.c,
and the assert function call appears on line 64. If during
execution of the above while loop.!. becomes greater than
24, the program aborts after printing the following on the
standard error file.

Assertion failed in file !work! junk.c at line 64.

v.lO.15.85 © 1985 MetaWare Incorporated

ctype.h

3
ctype.h

page 3-1

The header file ctype.h provides a number of macros that
can be used for character handling.

is a I n u m - Test for alphanumeric character.
- Provided as a macro only.

INTERFACE

,include <ctype.h>
int isalnum(int c);

DESCRIPTION

Returns nonzero if .£ is a letter or digit; zero otherwise.

isalpha - Test for alphabetic character.
- Provided as a macro only.

INTERFACE

'include <ctype.h)
int isalpha(int c);

DESCRIPTION

Returns nonzero if .£ is a letter; zero otherwise.

v.lD.lS.8S © 1985 MetaWare Incorporated

ctype.h

iscntrl - Test for control character.
- Provided as a macro only.

INTERFACE

'include <ctype.h>
int iscntrl(int c);

DESCRIPTION

page 3-2

Returns nonzero if c is a control character; zero otherwise.
A control characterls any character in the ASCII character
set whose hexadecimal value is between 0 and 1 F
inclusive, or 7F. If the value is greater than 7F, i.e. if the
high bit is on, zero is returned.

isdigit - Test for numeric character.
- Provided as a macro only.

INTERFACE

#include <ctype.h>
int isdigit(int c);

DESCRIPTION

Returns nonzero if .£ is a Digit; zero otherwise.

isgraph - Test for visible character.
- Provided as a macro only.

INTERFACE

#include <ctype.h>
int isgraph(int c);

DESCRIPTION

Returns nonzero if c is a printing character other than
space; zero otherwise.

v.lO.lS.8S © 1985 MetaWare Incorporated

ctype.h page 3-3

islower - Test for lowercase alphabetic character.
- Provided as a macro only.

INTERFACE

'include (ctype.h>
int islower(int c);

DESCRIPTION

Returns nonzero if .£ is a lowercase letter; zero otherwise.

isprint - Test for printing character.
- Provided as a macro only.

INTERFACE

'include (ctype.h>
int isprint(int c);

DESCRIPTION

Returns nonzero if £. is a printing character including space;
zero otherwise.

ispunct - Test for punctuation character.
- Provided as a macro only.

INTERFACE

'include (ctype.h>
int ispunct(int c);

DESCRIPTION

Returns nonzero if £. is a printing character that is not a
Digit, letter, or space; zero otherwise.

v.10.15.85 © 1985 MetaWare Incorporated

ctype. h page 3-4

iss pac e - Test for whitespace character.
- Provided as a macro only.

INTERFACE

'include <ctype.h>
int isspace(int c);

DESCRIPTION

Returns nonzero if .£ is a space (' '), form feed (' \ f '),
horizontal tab ('\h'), newline ('\n'), carriage return ('\r'),
or vertical tab (' \ v'); zero otherwise.

is up per - Test for uppercase alphabetic character.
- Provided as a macro only.

INTERFACE

,include <ctype.h>
int isupper(int c);

DESCRIPTION

Returns nonzero if .£ is an uppercase letter; zero otherwise.

isxdigit - Test for hexadecimal numeric character.
- Provided as a macro only.

INTERFACE

'include <ctype.h>
int isxdigit(int c);

DESCRIPTION

Returns nonzero if .£ is a hexadecimal digit; zero otherwise.

v.lO.lS.8S © 1985 MetaWare Incorporated

ctype.h page 3-5

tolower - Convert uppercase to lowercase.
- Provided as a macro only.

INTERFACE

,include (ctype.h)
int tolower(int c);

DESCRIPTION

Converts an uppercase letter to a lowercase letter. If ~ is an
uppercase letter, tolower returns the corresponding
lowercase letter; otherwise~.

c is evaluated more than once.

tolower (c) is a version of tal ower that can be used when ~
is known to be an uppercase character. When tolower is
used, ~ is evaluated exactly once.

to Up per - Convert lowercase to uppercase.
- Provided as a macro only.

INTERFACE

'include (ctype.h)
int toupper(int c);

DESCRIPTION

Converts a lowercase letter to an uppercase letter. If ~ is a
lowercase letter, toupper returns the corresponding
uppercase letter; otherwise Q.

£,is evaluated more than once.

toupper(x) is a version of toupper that can be used when ~
is known to be a lowercase character. When toupper is
used, ~ is evaluated exactly once.

v.10.1S.8S © 1985 MetaWare Incorporated

limits.h

4
lilTIits. h

page 4-1

The header file limits.h defines a number of macros that
specify constraints on numerical representations. The macros,
their values, and a description of their meanings follow.

v.lO.lS.8S © 1985 MetaWare Incorporated

limits.h page 4-2

/* CHARACTERISTICS OF INTEGRAL TYPES. */

/* Maximum number of bits for sm~llest object (byte): */
,define CHAR_BIT 8

/* Maximum value for an object of type char: */
,define CHAR_MAX 255

/* Minimum value for an object of type char: */
,define CHAR_MIN a
/* Maximum value for an object of type signed char: */
,define SCHAR_MAX +127

/* Minimum value for an object of type signed char: */
'define SCHAR_MIN -128

/* Maximum value for an object of type unsigned char: */
'define UCHA~MAX 255

/* Maximum value for an object of type short: */
,define SHRT_MAX +32 767

/* Minimum value for an object of type short: */
{/define SHRT_MIN -32 768
/* Maximum value for an object of type signed short: */
,define USHRT_MAX 65 535

/* Minimum value for an object of type int: */
{/define INT_MAX +32 767
/* Minimum value for an object of type int: */
{/define INT _MIN -32 768

/* Maximum value for an object of type unsigned int: */
#define UINT_MAX 65 535

/* Maximum value for an object of type signed long: */
#define LONG_MAX +2 147 483_647

/* Minimum value for an object of type signed long: */
#define LONG_MIN -2_147 483_648
/* Maximum value for an object of type unsigned long: */
#define ULONG_MAX 4 294 967 295

v.10.1S.85 © 1985 MetaWare Incorporated

limits.h page 4-3
/* CHARACTERISTICS OF FLOATING-POINT TYPES. */

/* Note that the internal representation of a floating
point number in binary means that numbers such as
LDBL DIG, FLT DIG, DBL DIG, etc., are intrinsically
inaccurate. For example, for double, between 15.6
and 16.9 significant digits can be represented,
depending upon the value actually represented. The
value of DBL DIG should not be construed to mean that
every DBL DIG-digit floating-point number can be
stored with complete accuracy in a double. */

/* Radix of double exponent representation: */
Ddefine DBL_RADIX 2

/* double addition rounds (1) or chops (0): */
Idefine DBL_ROUNDS 1

/* Maximum exponent power of 10 that can be represented
in a double: */

Ddefine DBL~AX_EXP +308

/* Minimum exponent power of 10 that can be represented
in a double: */

Ddefine DBL_MIN_EXP -307

/* Maximum number of decimal digits of floating-point
precision in a double: */

Ddefine DBL_DIG 16

/* Radix of float exponent representation: */
Ddefine FLT_RADIX 2

/* float addition rounds (1) or chops (0): */
Ddefine FLT_ROUNDS 1

1* Maximum exponent power of 10 that can be represented
in a float: */

Ddefine FLT_MAX_EXP +38

1* Minimum exponent power of 10 that can be represented
in a float: *1

Ddefine FLT~IN_EXP -38

v.10.15.85 ~ 1985 MetaWare Incorporated

limits.h page 4-4

/* Maximum number of decimal digits of precision in a
float: */

,define FLT_DIG 7

/* Radix of long double exponent representation: */
'define LDBL_RADIX 2
/* long double addition rounds (1) or chops (0): */
,define LDBL_ROUNDS 1
/* Maximum exponent power of 10 that can be represented

in a long double: */
,define LDBL~AX_EXP +4 932
/* Minimum exponent power of 10 that can be represented

in a long double: */
,define LDBL_MIN_EXP -4 932
/* Maximum number of decimal digits of precision in a

long double: */
,define LDBL_DIG 19

v.lO.lS.8S © 1985 MetaWare Incorporated

math.h

5
math. h

page 5-1

The header file math.h declares the mathematical
functions described below.

err no. Some of the functions reference the int variable
err no, which is declared in stdefs.h. errno is set to a positive
integer error code by some library functions when an error
occurs during their execution. It is set to zero on program start
up. It is never set to zero by any library function. To reference
~ from a program, either the header file stdefs.h must be
included, or ~ must be declared to be external (extern int
errno ;).

When an argument to a function is outside of the domain
over which the function is (mathematically) defined, errno is
set to ED OM (described below). When the result of a function is
too large in magnitude to fit in a double, err no is set to ERANGE
- described below. Each function description below specifies
the return value when a domain or range error occurs. When
appropriate, that value is HUGE_VAL- described below.

SYSTEM DEPENDENCIES

Under MS-DOS, when an 8087 is present, the value
returned when a domain or range error occurs may not be as
documented below. The 8087 uses the IEEE standard,
generating the values Infinity and NAN (Not A Number) when
error conditions occur. Furthermore, the behavior of a function
when given an input of Infinity or NAN is undefined, but
generally results in a NAN.

Infinity and NAN are special numbers that flag an error
condition throughout a computation. If at any point during a
computation an error condition causes Infinity or NAN to be
generated, whether as intermediate or final results, the final

v.1D.15.85 © 1985 MetaWare Incorporated

math.h page 5-2

result is one of these special numbers. If NAN is an operand in
any arithmetic operation, NAN is the result. If Infinity is an
operand in any arithmetic operation, Infinity or NAN is the
result. The library function printf prints" Infini ty" and "NAN"
for those two numbers, but there is no explicit way to test for
them (though with the 80(2)87 "x != x" is true if x is NAN).

Future versions of the library may offer a choice between
ANSI and IEEE standard error handling.

EDOM
INTERFACE

A macro used to flag mathematical
domain errors. -- -

. 'include <math. h>

DESCRIPTION

Expands to an integer constant that is the error code for a
domain error. Several functions described below set errno
to EDOM when an argument is not in the mathematical
domain over which the function is defined.

ERA N G E - A macro used to flag mathematical range
errors.

INTERFACE

'include <math.h>

DESCRIPTION

Expands to an integer constant that is the error code for a
range error. Several functions described below set errno to
ERANGE when a result is not in the range of (too large in
magnitude to fit in) the return type of the function.

v.lO.lS.85 © 1985 MetaWare Incorporated

rna th. h page 5-3

HUG E_V A L - A macro used upon error as a return
value from several mathematical
functions.

INTERFACE

,include <math.h>

DESCRIPTION

Expands to a double constant that is the largest positive
floating-point value that fits in a double. Several functions
described below return HUGE VAL when a valid result cannot
be produced.

abs - Absolute value of an integer.
- Provided as a macro and as a function.

INTERFACE

linclude <math.h>
int abs(int i);

DESCRIPTION

Returns the absolute value of i.
CAUTIONS

Arguments outside the range of int return undefined
results.

SURPRISES

abs(-32_768) returns -32_768, as there is no corresponding
positive integer.

SEE ALSO

fabs for the absolute value of reals.

v.10.15.85 © 1985 MetaWare Incorporated

math.h page 5-4

acos - Arc cosine.
INTERFACE

double acos(double x);
DESCRIPTION

Returns the principal value of the arc cosine of x in the
range [0.0,1r], where ~ is in radians. ~ must be in the range
[-1.0,1.0]. If ~ is out of range, errno is set to EDOM and 0.0 is
returned.

SEE ALSO

cos for the cosine of an angle.

asin - Arc sine.

INTERFACE

double asin(double x);
DESCRIPTION

Returns the principal value of the arc sine of x in the range
[0.0,1r], where ~ is in radians. ~ must be in the range
[-1.0,1.0]. If ~ is out of range, errno is set to ED OM and 0.0 is
returned.

SEE ALSO

sin for the sine of an angle.

v.IO.IS.8S © 1985 MetaWare Incorporated

math.h

atan - Arc tangent.

INTERFACE

double atan(double x);
DESCRIPTION

page 5-5

Returns the principal value of the arc tangent of ~ in the
range [-7r/2.0, 7r/2.0] , where ~ is in radians.

SEE ALSO

tan for the tangent of an angle.

atan2 for the arc tangent of the angle defined by a point.

v.IO.IS.8S © 1985 MetaWare Incorporated

math.h page 5-6

atan2 - Arc tangent of the angle defined by a point.

DESCRIPTION

Returns the principal value of the arc tangent of 't!~ in the
range (-7r,7r], where yJ~ is in radians. The signs of y and ~
determine the quadrant of the point ~,y. A line is described
by that point and the origin. The result of atan2(y,x) is the
smallest angle from the ~ axis to that line, some or all of
which angle lies in the first quadrant. The range of the
result can be further broken down according to the signs of
y and ~ as follows:

for y ~ 0.0, ~ ~ 0.0, the result is in the range [0.0,'1r12.0].
for y ~ 0.0, ~ < 0.0, the result is in the range [7r/2.0,7r].
for y < 0.0, ~ < 0.0, the result is in the range [-7r,-7r/2.0).
for y.. < 0.0, ~ ~ 0.0, the result is in, the range [-7r/2.0,0.0].

If both arguments are 0.0, errno is set to EDOM and 0.0 is
returned.

SEE ALSO

atan for the arc tangent of an angle.

tan for the tangent of an angle.
EXAMPLE

'include <stdio.h>
'include <math.h>
main() {

double y,x;
y = 1.55741;
x = 1.0;
printf("%e %e", atan2(y, x), atan2(-y, x»;
printf("%e %e", atan2(y,-x), atan2(-y,-x»;
}

prints

1.000001e+OO -1.000001e+OO 2. 141592e+00 -2. 141592e+OO

v.lO.IS.85 © 1985 MetaWare Incorporated

math.h

cei I - Ceiling function.

INTERFACE

double ceil(double x);

DESCRIPTION

Returns the smallest integer not less than ~.
SEE ALSO

floor for the floor function.

cos - Cosine.
INTERFACE

double cos(double x);

DESCRIPTION

page 5-7

Returns the cosine of x where x is in radians. NAN is
returned if I~I > HUGE_VAL.

SEE ALSO

acos for the arc cosine of an angle.

cosh - Hyperbolic cosine.

INTERFACE

double cosh(double x);

DESCRIPTION

Returns the hyperbolic cosine of~. If the magnitude of ~ is
too large, such that cosh<'~) cannot be represented, errno
is set to ERANGE and cosh returns HUGE VAL. -- -

v.10.15.85 © 1985 MetaWare Incorporated

math.h page 5-8

exp - Exponential (eX).

INTERFACE

double exp(double x);
DESCRIPTION

Returns eX. If ~ is too large, such that eX cannot be
represented, errno is set to ERANGE and the return value of
exp has magnitude HUGE_VAL and has the same sign as~. if
x is too small, such that eX cannot be represented, errno is
set to ERANGE and 0.0 is returned. --

SEE ALSO .

pow for raising a number to a power.

ldexp for multiplying a number by a power of 2.

fabs - Absolute value of a double.
INTERFACE

double fabs(double x);
DESCRIPTION

Returns the absolute value of x.
SEE ALSO

abs for the absolute value of an integer.

floor - Floor function.

INTERFACE

double floor(double x);
DESCRIPTION

Returns the largest integer not greater than ~.
SEE ALSO

ceil for the ceiling function.

v.lO.15.85 © 1985 MetaWare Incorporated

math.h page 5-9

fmod - Floating-point remainder.

INTERFACE

double fmod(double x, double y);

DESCRIPTION

Returns the floating-point remainder of EY. It returns a
value r with the same sign as ~ such that ~ == i * Y + r for
some integer .1, where I r I < IYI·

CAUTIONS

If E Y cannot be represented, the result is undefined.

v.lO.lS.8S © 1985 MetaWare Incorporated

math.h page 5-10

frexp - Break a double into fraction and
exponent.

INTERFACE

double frexp(double value, int *exp);
DESCRIPTION

Returns a double ~ with magnitude in the range [0.5 .. 1.0]
and stores an int in the object referenced by exp such that
value equals ~ times 2.0 raised to the power stored in *exp.
If value is 0.0, both the return value. and the value stored in
*exp are set to 0.0.

SEE ALSO

modf for decomposing a double into integral and fractional
parts.

EXAMPLE

'include <stdio.h>
'include <math.h>
main() {

int exp;
double x;
x = frexp(2.4, &exp);
printf("%e %d", x, exp);
}

prints

6.000000e-Ol 2

v.1O.15.85 ~ 1985 MetaWare Incorporated

math.h

Idexp - Multiply by a power of two.

INTERFACE

double Idexp(double x, int exp);
DESCRIPTION

page 5-11

Returns x * 2exp• If the result would exceed HUGE VAL in - -
magnitude, errno is set to ERANGE and the return value has
magnitude HUGE_VAL and has the same sign as ~.

SEE ALSO

pow for raising a number to a power.

exp for raising e to a power.

log - Natural logarithm: base e.

INTERFACE

double log(double x);
DESCRIPTION

Returns the logarithm of x to the base e. If x :5 0.0, errno is
set to EDOM and -HUGE VALIS returned. - --

SEE ALSO

10g10 for the common (base 10) logarithm.

exp for raising e to a power.

v.10.1S.8S ~ 1985 MetaWare Incorporated

math.h

log10 - Common logarithm: base ten.

INTERFACE

double 10glO(double x);
DESCRIPTION

page 5-12

Returns the logarithm of ~ to the base 10. If ~ s; 0.0, errno
is set to EDOM and -HUGE VAL is returned.

SEE ALSO

log for the natural (base e) logarithm.

modf - Break a double into integer and fractional
parts.

INTERFACE

double modf(double value, double *iptr);
DESCRIPTION

Returns the fractional part of value. The integral part of
value is stored in the object pointed to by iptr.

SEE ALSO

frexp for breaking a double into a fraction and exponent.
EXAMPLE

Hinclude <stdio.h>
Hinclude <math.h>
maine) {

double x, i;
x = modf(2.4, &i);
printf("%e %e", x, i);
}

prints

4.000000e-Ol 2.000000e+OO

v.1O.15.8S © 1985 MetaWare Incorporated

math.h page 5-13

pow - Raise a double to a power.
INTERFACE

double pow(double x, double y);

DESCRIPTION

Returns ~y. If ~ = 0.0 and y"::5 0.0, err no is set to EDOM and
0.0 is returned. If ~ < 0.0 and y is not an integral number,
errno is set to EDOM and -HUGE VAL is returned. If I xyl >
HUGE_VAL, the return value of pow has magnitude HUGE_VAL
and has the same sign as ~y.

SEE ALSO

exp for raising e to a power.

Idexp for multiplying a number by a power of 2.

sin - Sine.

INTERFACE

double sin(double x);
DESCRIPTION

Returns the sine of x, where x is in radians. NAN is
returned when I~I > HUGE_VAL.

SEE ALSO

asin for the arc sine.

sinh - Hyperbolic sine.

INTERFACE

double sinh(double x);
DESCRIPTION

Returns the hyperbolic sine of~. If the magnitude of ~ is too
large, such that sinh(~) cannot be represented, ~is set
to ERANGE and the return value of sinh has magnitude
HUGE_VAL and has the same sign as ~.

v.IO.lS.8S © 1985 MetaWare Incorporated

math.h

sqrt - Square root.

INTERFACE

double sqrt(double x);

DESCRIPTION

page 5-14

Returns the non-negative square rootof~. If ~ < 0.0, errno
is set to ED OM and 0.0 is returned.

tan - Tangent.

INTERFACE

double tan(double x);

DESCRIPTION

Returns the tangent of ~, where ~ is in radians. NAN is
returned when I~I > HUGE_VAL.

SEE ALSO

atan for the arc tangent of an angle.

atan2 for the arc tangent of the angle defined by a point.

tanh - Hyperbolic tangent.

INTERFACE

double tanh(double x);

DESCRIPTION

Returns the hyperbolic tangent of~: sinh(~) I cosh(~). If
the magnitude of ~ is too large, such that sinh(~) or cosh(~)
cannot be represented, errno is set to ERANGE and the return
value of tanh has magnitude HUGE_VAL and has the same
sign as~.

SEE ALSO

sinh for the hyperbolic sine of an angle.

cosh for the hyperbolic cosine of an angle.

v.IO.15.85 © 1985 MetaWare Incorporated

setjrnp.h

6
setjrnp.h

page 6-1

The header file setjmp.h defines a type and two functions
for setting up and executing non-local jumps.

j m p_b u f - A type used by set jmp and long imp.

INTERFACE

linclude <setjmp.h)

DESCRIPTION

An array type that can hold the information needed to
restore a calling environment.

Ion gj m p - Execute a non-local jump.
INTERFACE

'include <setjmp.h)
void longjmp(jmp_buf env, int val);

DESCRIPTION

Restores (jumps to) the calling environment referenced by
~. env must have been initialized by a previous call to
setjmp(env). ~ references the calling environment exist
ing at the pOint of the most recent call to set imp (env).

longjmp does not return in the classic sense. Completion of
a longjmp call appears to be a return of the corresponding
call to setjmp (that is, the most recent call to setjmp with the
same argument env). Such a "return" from longjmp (which
appears to be a return from setjmp) returns non-zero. If val
is zero, the "return" value from long.imp is one; otherwise it
is val. As the return value from an actual call to setjmp is
zero, the apparently equivalent kinds of "returns" from

v.lO.l5.85 © 1985 MetaWare Incorporated

setjmp.h page 6-2
set jmp can be distinguished. (This protocol is patterned
after that of the "fork" call of UNIX).

Calling long jmp has an indeterminate effect on any
variables of storage class register declared within the
function containing the corresponding setjmp, but has no
effect on any other objects.

CAUTIONS

If env has not been initialized by set,jmp, or if the routine in
which the call to set,jmp occurred has returned before the
supposedly corresponding call to longjmp, the behavior is
undefined. The use of an uninitialized or dangling
environment reference will result in attempting to execute
in an environment that is in a shambles.

SEE ALSO

setjmp to save a reference to the current calling
environment for a subsequent non-local jump.

EXAMPLE

This example illustrates the use of long,jmp and set,jmp.

'include <setjmp.h)
jmp buf Buf; int loopcnt;
static void loop(j) {

if (++loopcnt < j) loop(j);
else 10ngjmp(Buf,1);
/* Call to longjmp discards j invocations */
/* of loop() and returns to the switch. */
}

void main () {
int j;
for (j = 1; j <= 10; j++) {

loopcnt = 0;
switch(setjmp(Buf» {

case 0: loop(j); break;

v.1O.IS.85

case 1: printf("%d ",loopcnt); break;
default: printf("ERROR!");
}

~ 1985 MetaWare Incorporated

setjmp.h

prints

1 2 3 4 5 6 7 8 9 10

page 6-3

setjrnp - Save a reference to the current calling
environment for a subsequent non-local
jump.

INTERFACE

,include (setjmp.h)
int setjmp(jmp_buf env);

DESCRIPTION

Saves the information required for a return to the current
calling environment in env for use by long imp. setjrnp
returns zero.

CAUTIONS

Correctly paired, setjmp and longjmp are fairly innocuous. If
they are incorrectly paired, the behavior is undefined and
may result in jumping to a non-existent environment.

SURPRISES

A call to set jmp may not appear as an argument to a
function call.

SEE ALSO

longjmp to execute a non-local jump.
EXAMPLE

See the example for long jmp below.

v.lO.IS.8S ~ 1985 MetaWare Incorporated

signal.h

7
signal.h

page 7-1

Under MS-DOS, the High C Library does not provide
implementations of the functions in header signal.h. The
header file is provided so type checking may be done.

Header file signal.h declares two functions and defines
several macros for handling signals.

S I GAB RT - A macro used as an argument to signal
and kill.

INTERFACE

linclude <signal.h)

DESCRIPTION

Expands to the signal number corresponding to an
abnormal termination. It may be used as the first argument
to signal or the second argument to kill.

S I G F P E - A macro used as an argument to signal
and kill.

INTERFACE

'include <signal.h)

DESCRIPTION

Expands to the signal number corresponding to an
erroneous arithmetic operation. It may be used as the first
argument to signal or the second argument to kill.

v.IO.IS.8S © 1985 MetaWare Incorporated

signal.h

SIGILL
INTERFACE

page 7-2

- A macro used as an argument to signal
and kill.

,include <signal.h>

DESCRIPTION

Expands to the signal number corresponding to detection
of an invalid function image. It may be used as the first
argument to signal or the second argument to kill.

SIGINT - A macro used as an argument to signal
and kill.

INTERFACE

'include <signal.h>

DESCRIPTION

Expands to the signal number corresponding to receipt of
an interactive attention signal such as Control C. It may be
used as the first argument to signal or the second
argument to kill.

S I G S E G V - A macro used as an argument to signal
and kill.

INTERFACE

'include <signal.h>
DESCRIPTION

Expands to the signal number corresponding to an invalid
access to a data object. It may be used as the first
argument to signal or the second argument to kill.

v.10.15.85 © 1985 MetaWare Incorporated

signal.h page 7-3

S I GTE R M - A macro used as an argument to signal
and kill.

INTERFACE

'include <signal.h>
DESCRIPTION

Expands to the signal number corresponding to a
termination request sent to the program. It may be used as
the first argument to signal or the second argument to
kill.

S I G _D F L - A macro used as an argument to signal.

INTERFACE

linclude <signal.h>
DESCRIPTION

Expands to a constant expression of type "void
(*function) ()" (pointer to a function returning void), that is
distinct from all values obtainable by declaring such a
function, and is distinct from SIG_IGN and SIG_ERR. It is used
as the second argument to signal to specify that a given
signal is to be handled in an implementation-defined default.
manner.

S I G _E R R - A macro used as an argument to signal.

INTERFACE

'include <signal.h>
DESCRIPTION

Expands to a constant expression of type "void
(*function) ()" (pointer to function returning void), that is
distinct from all values obtainable by declaring such a
function, and is distinct from SIG_IGN and SIG_DFL. It is used
as a return value from signal to indicate that signal was
unable to correctly perform its function.

v.10.15.85 ~ 1985 MetaWare Incorporated

signal. h page 7-4

S I G_I G N - A macro used as an argument to signal.

INTERFACE

'include (signal.h)

DESCRIPTION

SIG _ IGN expands to a constant expression of type "void
(*function) ()" (pointer to function returning void), that is
distinct from all values obtainable by declaring such a
function, and is distinct from SIG_DFL and SIG_ERR. It is used
as the second argument to signal to specify that a given
signal is to be ignored.

kill - Send a signal.

INTERFACE

'include (signal.h)
int kill(int pid, int sig);

DESCRIPTION

Sends the signal sig to the executing program specified by
pid. If pid is zero, sig is sent to the program that called
kill. See SYSTEM DEPENDENCIES for the meanings of other
values for pid.

CAUTIONS = SURPRISES

In the current version of the library on MS-DOS, kill does
not send a signal.

SYSTEM DEPENDENCIES

Under MS-DOS, kill prints a message on standard error
and returns -1.

SEE ALSO

signal to set up a signal handler.

v.lD.lS.8S © 1985 MetaWare Incorporated

signal.h

signal
INTERFACE

- Set up a signal handler.

#include (signal.h)

page 7-5

void (*signal(int sig, void (*fune)(int»)(int);

DESCRIPTION

Arranges for fune to be used as the signal handler for the
signal sig. If fune is SIG_IGN, the signal is ignored. If func is
SIG_DFL, the signal is handled in the default manner. (Since
signal has not been implemented on MS-DOS, there is no
default manner; see the header file for the default on other
systems.) Otherwise, fune should point to a function to be
called when sig is received.
When a signal sig is received, if the signal handler for sig is
not SIG_IGN or SIG_DFL, it is handled as follows. First, the
signal handler for sig is reset to the default - which is
equivalent to executing signal(sig,SIG DFL). Next, the
signal handler for sig is called with sig as its argument -
the equivalent of (*fune)(sig) is executed. If fune returns,
i.e. if fune does not call abort, exit, or longjmp, then if sig
was SIGFPE, the behavior is undefined; otherwise execution
resumes at the point at which the signal was received.
How the various signals can arise is discussed under ~
DEPENDENCIES below.
At program start-up time, the equivalent of
signal (sig ,SIG DFL) is executed for each signal.

CAUTIONS = SURPRISES

In the current version of the library on MS-DOS, signal does
not set up a signal handler.

SYSTEM DEPENDENCIES

Under MS-DOS, signal prints a message on standard error
and returns a painter to the library function exit.

SEE ALSO

kill to send a signal.

v.lD.15.85 © 1985 MetaWare Incorporated

stdarg.h

8
stdarg.h

page 8-1

Header file stdarg.h provides a type and several macros for
handling varying numbers and types of arguments to a given
function.

A function may be called with varying numbers of argu
ments of varying types. The macros defined in stdarg.h assist
in advancing through the actual sequence of arguments in
order, first to last, one byone.

To use the variable argument macros, the function must
have at least one declared argument whose name and type
are known. For example, the functions

void f(x), ff(x,y,z, ...); int fff(x,y), *ffff(a, ...);

meet the requirements, while
char *g(), gg(...);

do not. The rightmost named argument is used as a starting
place for advancing through the sequence.

va_list
INTERFACE

- A type used by the varying-argument
macros.

'include <stdarg.h)
DESCRIPTION

Expands to a type suitable for holding the information
needed by the varying-argument macros. The function
using the macros must declare a variable of this type. See
the example provided in the description of va argo

v.lO.lS.8S © 1985 MetaWare Incorporated

stdarg.h page 8-2

va_start - Initialize a va list.
- Provided as a macro only.

INTERFACE

'include <stdarg.h)
void va_start{va_list ap,parmN);

DESCRIPTION

Initializes ,IDl, using parmN, which must be the rightmost
named argument of the function whose unnamed
arguments are desired, such that the va arg macro can
return the first unnamed argument. va start must be
called before va argo

parmN is evaluated more than once.
SEE ALSO

va arg to reference the next argument in sequence.

va end to terminate va list processing.
EXAMPLE

See the exam pie for va argo

v.ID.15.85 © 1985 MetaWare Incorporated

stdarg.h page 8-3

va_arg - Reference the next argument in a
sequence of unnamed arguments.

- Provided as a macro only.
INTERFACE

linclude (stdarg.h)
void va arg(va list ap,type);I* Substitute a type *1

- - 1* specifier for type.*1
DESCRIPTION

Returns the value of the next, as yet unreferenced (by
va arg), argument of the function whose rightmost named
argument was previously passed to va start. va start
must be called before the first call to va argo The first call to
va arg returns the value of the argument following the
rightmost named argument (that passed to va start).
Subsequent calls to va arg return the values of
corresponding subsequent arguments. type must be a type
specifier such that a pointer to an object of that type can be
obtained by appending a "*" to type. The type specifier
should agree with the type of the corresponding argument
(as widened by default function-call conversion).

type is evaluated more than once. This should be
harmless, as a type specifier should not have side effects.

CAUTIONS

va arg assumes that ~ has been initialized by va start.
Calling va arg(ap, type) when va start has not been called
correctly results in an indeterminant return value.

va arg has no knowledge of the number of actual
arguments available for referencing. Calling va arg after all
arguments have been referenced (by va arg) results in an
indeterminant return value.

SEE ALSO

va start to initialize a va list.

va end to terminate va list processing.

v.lO.lS.8S © 1985 MetaWare Incorporated

stdarg.h

va_arg - Continued.

EXAMPLE

'include <stdarg.h>
,define MAXARGS 100

void out(int n-ptrs, char *strings[]) {
int i = 0;
if (n-ptrs < 0) return;

page 8-4

while (i < n-ptrs) printf("%s", strings[i++]);
}

void collect args(int n args, ...) {
va list ap; -
char *args[MAXARGS];
int ptr no = 0;
if (n args > MAXARGS) n_args = MAXARGS;
va start(ap,n args);
while (ptr no-< n args)

args[ptrno++]-= va arg(ap, char *);
va end(ap);- -
outen args, args);
} -

maine) {
collect args(3,"This ", "strikes me as ",

- "a little wierd.\n");

prints

This strikes me as a little wierd.

v.ID.IS.8S © 1985 MetaWare Incorporated

stdarg.h

va_end - Terminate va list processing.
- Provided as a macro only.

INTERFACE

Dinclude (stdarg.h)
void va_end(va_Iist ap);

DESCRIPTION

page 8-5

Cleans up the processing of unnamed arguments so that a
normal return may occur from a function using the variable
argument macros. va end must be called after all
arguments have been accessed. Under some systems
va end expands to nothing, so it has zero cost; for
portability it is best to always use va end. See SYSTEM
DEPENDENCIES.

SYSTEM DEPENDENCIES

Under MS-DOS va end is an empty macro.
SEE ALSO

va start to initiate va list processing.

va arg to reference the next argument in sequence.
EXAMPLE

See the example for va argo

v.lO.15.85 © 1985 MetaWare Incorporated

stdefs.h

9
stdefs.h

page 9-1

The header file stdefs.h defines useful macros, some of
which are defined in other header files as well, and declares a
variable in which library errors are flagged.

errno - An int used to record error numbers.
INTERFACE

'include <stdefs. h)
DESCRIPTION

A variable of type int set to a positive integer error code by
some library functions if an error occurs during their
execution. It is set to zero on program start up. It is never
set to zero by any library functions. A program that uses
errno for error checking should set it to zero before a call to
a library function and inspect it prior to a subsequent call to
a library function.

NULL - A macro used to represent the null pointer.

INTERFACE

linclude <stdefs. h)
DESCRIPTION

Expands to a value that is assignment-compatible with any
pointer type and compares equal with the constant zero. It
is therefore suitable as a representation of the null pointer.
Note that NULL is not appropriate as the terminating
character of a string, as the size of a pointer is not
necessarily the same as the size of the character NUL.

NULL is also defined in stdio.h and stdlib.h.

v.lO.15.85 © 1985 MetaWare Incorporated

stdefs.h page 9-2

ptrd iff_t - A macro used as a type specifier.

INTERFACE

linclude <stdefs.h>
DESCRIPTION

Expands to the integral type of the result of subtracting two
pointers.

size_t - A macro used as a type specifier.

INTERFACE

linclude <stdefs.h>
DESCRIPTION

Expands to the integral type of the result of the sizeof
operator.

size t is also defined in stdio.h, stdlib.h, and string.h.

v.lO.lS.8S © 1985 MetaWare Incorporated

stdio.h

10
stdio.h

page 10-1

The header file stdio.h declares functions, macros, a type,
and a variable useful for performing input and output (1/0).

Streams. Input and output may be performed to and from
various physical devices: the console, various disk drives, tape
drives, the printer, etc. To provide a consistent interface to
devices that have varying properties, input and output are
mapped to logical data streams. These streams are
associated with files, which may correspond to external
storage (as in a disk file) or may not (as in the console or
printer).

A stream . is an ordered sequence of bytes. It may be
buffered, which means that bytes are typically read (written) in
standard amounts from (to) an external device into a buffer
and read (written) in arbitrary amounts from (to) the buffer to
(from) objects in a program. The buffer may be designated as
an object of the program or it may be automatically allocated
by the library.

If a file can support positioning requests, a file pointer
associated with a stream maintains a record of the current
position in the file through read, write, and positioning
requests. If a file cannot support positioning requests, all input
and output is done at the end of the stream. Aside from
positioning, logical streams hide any differences among the
various types of input and output devices.

Opening a file associates a stream with the file, positioning
the file pointer at the beginning of the file (if the file can support
a file pointer). It may involve creating the file, which causes
any previous contents to be deleted.

Closing a file disassociates the stream from the file. If an
output stream is buffered (see below), the buffer is flushed into

v.10.1S.8S © 1985 MetaWare Incorporated

stdio.h page 10-2

the stream when the file is closed. The file may be
subsequently reopened. All files are closed if the function main
returns or if the function exit is executed. At program startup
three files are opened automatically: see the stdin, stdout,
and stderr macros below.

Errors. A number of 110 functions return values that make
it possible to distinguish failure from success. For example,
fputc returns its input value if it succeeds in putting the
character in the stream, and EOF if it fails.

In the case of a function that writes to a buffered output
stream, a return value denoting success means that either it
has successfully written to the external storage or that it has
successfully written to the stream's buffer. This means that
such a function can return information to the effect that it has
successfully written characters, but a subsequent write error
may prevent those characters from being successfully written
to external storage.

If a write error does occur, ~ and the stream's end of
file flag (each discussed below) are set. The one case where it
is impossible to return information about write failures is if the
failure occurs when a stream's buffer is being flushed at
program termination.

If an application requires certainty about the success of a
write, it should call fflush to explicitly flush the buffer. If no
errors have been reported previously and fflush returns a
value denoting success, all output has been successfully
written to external storage, i.e. all output has been accepted by
the operating system for writing - however, external events
could cause the operating system to fail to perform the actual
physical 110.

End of file. Associated with each stream is an end-of-file
flag. The end-of-file flag gets set when a read request occurs
and the file pointer is already positioned at the end of the file.
Thus it is not always the case that when the file pointer is
positioned at the end of a file, the end-of-file flag has been set

v.lO.lS.8S © 1985 MetaWare Incorporated

stdio.h page 10-3

for the stream. If the end-of-file flag is set for a stream (see
feaf), a read request results in no characters being read
(assuming fseek has not moved the file pointer from the end of
the file - fseek does not clear the end-of-file flag).

An error flag is also associated with each stream. If a read
error or write error has occurred on the stream, the error flag is
set. Both the end-of-file and error flags are sticky, that is, they
are not cleared by subsequent calls to library functions, except
clearerr and rewind, whose functions are specifically to clear
them.

Text and binary streams. A stream can be designated as
a text stream or a binary stream.

Transformations may be performed upon the bytes making
up a text stream (which are assumed to represent characters)
upon input or output, in the case that the external
representation of a character sequence does not match the C
language representation of that sequence.

A binary stream has the characteristic that no conversions
are performed on data upon input or output: a sequence of
bytes stored on an external device matches exactly storage
internal to a program containing the result of reading that
sequence of bytes, which again exactly matches external
storage containing the result of writing that sequence of bytes.
See the System Dependencies paragraph below for specific
information about text and binary streams on this system.

errno. Many of the functions declared in stdio.h reference
the int variable errno, which is declared in stdefs.h. ~ is
set to a positive integer error code by some library functions
when an error occurs during their execution. It is set to zero on
program start up. It is never set to zero by any library function.
To reference errno from a program, either the header file
stdefs.h must be included, or err no must be declared to be
external (extern int errno ;).

v.10.15.85 © 1985 MetaWare Incorporated

stdio.h page 10-4

System Dependencies. Under MS-DOS, line terminators
are represented in files by a carriage return followed by a
linefeed (\r\n). The C language expects a single character
line terminator (\n). If a stream is designated as a text stream,
\r\n is converted to \n upon input, and \n is converted to \r\n
upon output. Single linefeeds must not occur in the external
representation of a text stream. If a stream is designated as a
binary stream, no such conversions occur.

Under MS-DOS, many editors and system utilities treat the
character Control Z (ASCII 26) as an end-of-file indicator.
Accordingly, if a Control Z is encountered in an input text
stream, it indicates end-of-file: no further characters are read
from the stream. The Control Z itself is ignored (in the sense
that it is read by library input functions, but is not returned by
them - fgetc(F) returns EOF if F is a text stream whose file
pointer points at Control Z). Control Z is not treated in any
special manner by binary streams.

A stream is designated as a text or binary stream when the
file associated with the stream is opened. See fopen for a
complete description. A function setmode is provided for
changing the designation of a stream at any point. Streams not
explicitly designated as text or binary by the ~ argument to
fopen, and streams that are not explicitly created by a call to
fopen or freopen (such as stdin), are designated as one or the
other according to the default value in the int variable fmode.
See the description of setmode for information about fmode.

If data are read from a binary stream and written to a text
stream, the resulting file will contain an extra carriage return
preceding each end-of-line. Conversely if data are read from a
text stream and written to a binary stream, the resulting file will
contain no carriage returns preceding each end-of-line.

An input text stream whose associated file is a device, such
as the keyboard, that does not support file positioning converts
carriage returns to linefeeds and ignores linefeeds.

v.1O.15.a5 © 1985 MetaWare Incorporated

stdio.h page 10-5

FILE - A type used to control a stream.

INTERFACE

Dinclude (stdio.h)
DESCRIPTION

A struct type that can contain the information required to
control a stream. Details are given in the header file.

A variable of type FILE * is commonly used to designate a
particular stream.

B U F S I Z - A macro used to specify the size of a
buffer.

INTERFACE

Dinclude (stdio.h)
DESCRIPTION

Expands to the size (in bytes) of the buffers used by
streams.

EOF - A macro used as an end-of-file indicator.

INTERFACE

'include (stdio.h)
DESCRIPTION

Expands to a negative integer used to indicate end-of-file.

L_t m p n am - A macro that specifies the size of a
temporary filename.

INTERFACE

//include (stdio. h)
DESCRIPTION

Expands to the size (in bytes) of an array large enough to
hold a temporary filename generated by a call to tmpnam.

v.lO.lS.8S © 1985 MetaWare Incorporated

stdio.h page 10-6

NULL - A macro used to represent the null
pointer.

INTERFACE

,include <stdio.h>
DESCRIPTION

Expands to a value that is assignment-compatible with any
pointer type and compares equal with the constant zero. It
is therefore suitable as a representation of the null pointer.
Note that NULL is not appropriate as the terminating
character of a string, as the size of a pointer is not
necessarily the same as the size of the character NUL.

NULL is also defined in stdefs.h and stdlib.h.

SEEK_CUR,
SEEK_END,
SEE K_S E T - Macros used as an argument to fseek.

INTERFACE

'include <stdio. h>
DESCRIPTION

Each expands to an integer to be used as the third
argument to fseek to indicate from where fseek should
seek. -- --

SEE~ CUR indicates the current position of the file pointer.

SEEK END indicates the end of the file.

SEEK_SET indicates the beginning of the file.

v.W.lS.8S © 1985 MetaWare Incorporated

stdio.h

size_t
INTERFACE

page 10-7

- A macro used as a type specifier.

'include (stdio.h)
DESCRIPTION

Expands to the integral type of the result of the sizeof
operator.

size t is also defined in stdiefs.h, stdlib.h, and string.h.

stdin,
stdout,
stderr
INTERFACE

- Macros that designate the standard input,

- standard output, and

- standard error streams, respectively.

,include (stdio.h)

DESCRIPTION

Each expands to an expression that points to a FILE
variable that is initialized at program start up to control a
particular stream.

stderr is associated with the standard error file, which is
initialized as write-only and writes to the screen.

stdin is associated with the standard input file, which is
initialized as read-only and reads from the keyboard.

stdout is associated with the standard output file, which is
initialized as write-only and writes to the screen.

stderr is by default an unbuffered file, while stdin and
stdout are by default unbuffered if they reference the
keyboard and screen respectively, otherwise they are by
default buffered. The defaults can be overridden by calls to
setbuf.

These streams are designated as text or binary streams
according to the (link-time) value of fmode. See fopen,

v.lO.IS.8S © 1985 MetaWare Incorporated

stdio.h page 10-8

setmode, and the discussion under the System
Dependencies paragraph for more complete information
on text and binary streams.

S Y 8_0 PEN - A macro that specifies the maximum
number of open files.

INTERFACE

/Iinclude (stdio. h)
DESCRIPTION

Expands to the maximum number of files that may be open
at one time, including the standard files mentioned below
and two that are reserved for internal use. This is
independent of any system limit on the maximum number
of open files.

TM P_MAX - A macro that controls tmpnam.
INTERFACE

Hinclude (stdio.h)

DESCRIPTION

Expands to the minimum number of unique file names that
tmpnam generates.

v.lO.15.85 © 1985 MetaWare Incorporated

stdio. h page 10-9

c I ear err - Clear end-of-file and error flags of a file.
- Provided as a macro and as a function.

INTERFACE

'include (stdio.h)
void clearerr(FILE *stream);

DESCRIPTION

Resets the end-of-file and error flags for the stream
associated with stream. These flags are cleared only when
the file is opened, or by explicit calls to clearerr and
rewind.

SEE ALSO

feof to test for end-of-file.

ferror to test for a read or write error on a file.

fclose - Close a file.
INTERFACE

'include (stdio.h)
int fclose(FILE *stream);

DESCRIPTION

Causes stream to be disassociated from the file it has
controlled, and the file to be closed. If the file is open for
writing and is buffered, any data in the buffer associated
with stream is written to the file. If the buffer was
automatically allocated, as opposed to being explicitly
associated with stream via setbuf, it is deallocated. fclose
returns zero if the operation is successful. If the fclose
operation fails, errno is set such that a call to perror will
result in an error message describing the reason for the
failure, and the (non-zero) value of errno is returned.
fclose also returns non-zero if the file was already closed.

v.10.1S.8S © 1985 MetaWare Incorporated

stdio.h

fclose
CAUTIONS

page 10-10

- Continued.

If neither fclose nor fflush has been called on a buffered
output stream and the program terminates abnormally
(without returning from main or calling exit, as for example
by an interrupt from the keyboard), the data in the
associated buffer at program termination (if any) is not
written to the file.

SEE ALSO

fopen to open a file.

setbuf to associate a particular buffer with a stream.

fflush to flush a stream's buffer without closing the file.

EXAMPLE

The program fragment below attempts to open file1 for
reading. It later attempts to close file1 prior to opening
file2 for writing (using the same FILE variable).

#include (stdio.h>
Hdefine FAILURE (-1)
FILE *FP;
if «FP = fopen("file1", "r"» == NULL) {

perror("fopen of file1");
return FAILURE;
}

if (fclose(FP) != 0)
perror("fclose of file1");

if «FP = fopen("file2", "W"» == NULL) {
perror("fopen of file2");
return FAILURE;
}

v .10.15.85 © 1985 MetaWare Incorporated

stdio.h page 10-11

feof - Test for end-of-file.
- Provided both as a macro and a function.

INTERFACE

Hinclude (stdio.h)
int feof(FILE *stream);

DESCRIPTION

Returns non-zero if the end-of-file indicator for the file
associated with stream is set, zero if it is clear.

SEE ALSO

ferror to test for a read or write error on a file.

clear err to clear end-of-file and error flags of a file.

ferror - Test for a read or write error on a file.
- Provided both as a macro and a function.

INTERFACE

linclude (stdio.h)
int ferror(FILE *stream);

DESCRIPTION

Returns non-zero if the error indicator for the file
associated with stream is set, zero if it is clear.

SEE ALSO

feof to test for end-of-file.

clearerr to clear end-of-file and error flags of a file.

v.10.15.85 © 1985 MetaWare Incorporated

stdio.h page 10-12

fflush - Flush a file's buffer.
INTERFACE

'include (stdio.h)
int fflush(FILE *stream);

DESCRIPTION

Causes any data in the buffer of the output stream
associated with stream to be written to the associated file.
(The buffer is automatically flushed when full and at normal
program termination.) fflush returns zero when
successful. If ·the file was not open for writing or a write
error occurs, errno is set such that a call to perror will result
in an error message, and the (non-zero) value of errno is
returned.

CAUTIONS

If neither fflush nor fclose has been called on a buffered
output stream and the program terminates abnormally
(without returning from main or calling exit, as for example
by an interrupt from the keyboard), the data in the
associated buffer at program termination (if any) is not
written to the file.

SEE ALSO

fclose to close a file.

v.lO.15.85 © 1985 MetaWare Incorporated

stdio.h page 10-13

fgetc - Get a character from a file.
INTERfACE

'include (stdio.h)
int fgetc(FILE *stream);

DESCRIPTION

Returns the next character from the input stream stream.
The associated file pointer (if one is defined) is advanced
one character. If the stream is at end-of-file or a read error
occurs, EOF is returned.

SYSTEM DEPENDENCIES

If stream is a text stream, the MS-DOS line terminator (\r\n)
is converted into the C line terminator (\n). In addition, a
Control Z (\032) is interpreted as an end-of-file indicator,
and EOF is returned. If stream is a binary stream, no such
conversion occurs, and Control Z encountered in the input
stream is not interpreted specially but returned as is.

SEE ALSO

getc to get a character from a file.

get char to get a character from standard input.

fgets to get a line of text from a file.

gets to get a line of text from standard input.

fputc to write a character to a file.

putc to write a character to a file.

put char to write a character to standard output.

fputs to write a string to a file.

puts to write a string to standard output.

ungetcto push a character back into an input stream.

v.10.1S.85 © 1985 MetaWare Incorporated

stdio.h page 10-14

fgetc - Continued.

EXAMPLE

The program below copies file1 character-by-character to
file2 and to standard output. This example illustrates the
use of fgetc, fputc, and put char. Similar examples are
given under the EXAMPLE sections of getc and getchar,
pOinting out the differences between the functions.

'include <stdio.h)
Idefine FAILURE (-1)
maine) {

FILE *FP1, *FP2;
if «FP1 = fopen("file1", "r"» == NULL) {

perror("fopen of file1");
return FAILURE;
}

if «FP2 = fopen("file2", "w"» == NULL) {
perror("fopen of file2");
return FAILURE;
}

while (feof(FP1»
fputc(putchar(fgetc(FP1», FP2);

v.IO.IS.8S © 1985 MetaWare Incorporated

stdio.h page 10-15

fgets Read a line of text from a file.
INTERfACE

Hinclude <stdie.h>
char *fgets(char *s, int n, FILE *stream);

DESCRIPTION

Reads a line of text from the file associated with stream into
the string 2" appending a final NUL. No more than !},-l

characters are read. No characters are read after a
newline is encountered. The newline becomes the last
{non-NUL} character stored. No characters are read after
end-of-file is encountered.

fgets returns 2, if successful. If end-of-file is encountered
before any characters have been read, the array is
unchanged and fgets returns NULL. If a read error occurs,
the array contents are indeterminate and fgets returns
NULL. feef and ferrer can be used to distinguish between
end-of-file and error.

CAUTIONS

fgets(s, n, stream) should never be called with!! greater
than the length of the string 2,.

SURPRISES

fgets and gets are inconsistent: both functions return after
encountering a newline, but fgets stores the newline while
gets discards it.

SYSTEM DEPENDENCIES

It stream is a text stream, MS-DOS line terminators (\r\n)
are converted into C terminators (\n). In addition, a Control
Z (\032) is interpreted as an end-ot-file indicator, and EOF is
returned. If stream is a binary stream, no such conversion
occurs, and Control Zs encountered in the input stream are
not interpreted specially but returned as is.

v.IO.15.85 © 1985 MetaWare Incorporated

stdio.h page 10-16

fgets - Continued.
SEE ALSO

fgetc, getc, getchar, gets, fputc, putc, putchar, fputs,
puts, ungetc.

For short descriptions of all of the listed functions, see the
SEE ALSO section for fgetc.

EXAMPLE

The program below copies file11ine by line to file2. This
example illustrates the use of fgets, fputs, and fopen.
#include <stdio.h>
#define FAILURE (-1)
#define LINESIZE (80)
main() {

FILE *FP1, *FP2;
char line[LINESIZE];
if «FP1 = fopen("file1", "r"» == NULL)

perror("fopen of file1");
return FAILURE;
}

if «FP2 = fopen("file2", "w"» == NULL)
perror("fopen of file2");
return FAILURE;
}

while (fgets(line, LINESIZE, FP1»
/* fgets returns NULL (FALSE) when it */
/* cannot get any more characters. */

fputs(line, FP2);

v.1O.lS.8S © 1985 MetaWare Incorporated

stdio.h page 10-17

fopen - Open a file.
INTERFACE

#include <stdio.h>
FILE *fopen(char *pathname, char *type);

DESCRIPTION

Opens the file named by the string pathname. A FILE
variable is associated with the file and a painter to it is
returned. This file variable controls the newly created input
or output stream associated with the file. If the file cannot
be opened a null painter is returned.

The string ~ indicates how the file is to be opened. It
must contain one (and only one) of "r", "w", or "a", and can
also contain any combination of "+", "b", "t", and "u".

The meanings of the ~ strings are as follows:

"r" open existing file for reading.
"w" create file for writing. If file exists, truncate it.
"a" open or create file for appending to end of file.
"r+" open existing file for update.
"w+" create file for update. If file exists, truncate it.
"a+" open or create file for update, writing to end of file.

If the string contains "u", or if the file being opened
references the keyboard or screen, the resulting stream is
unbuffered, that is, each read or write request results in a
system call to perform 110. Otherwise, upon the first read
or write request an automatically allocated buffer is
associated with the stream and 110 is done in BUFslz-byte
blocks. Prior to the first read or write request, setbuf can
be called to associate a particular buffer with the stream
and avoid any automatic allocation.

If the string contains "b" the resulting stream is binary,
while if instead the string contains "t" the result is a text
stream. See the SYSTEM DEPENDENCIES section on the
distinction between text and binary streams. If the string

v.10.15.85 © 1985 MetaWare Incorporated

stdio.h page 10-18

contains both "t" and "b", the last one in the string takes
precedence. If the string does not contain "t" or "b", a
default is chosen. The default depends on the variable

fmode; for a description of fmode, see setmode.

If a non-existent file is opened with type "r" the open fails.
If an existing file is opened with type "w", its contents are
destroyed. If a file is opened with type "a", all writing is
done at the end of the file, irrespective of the position of the
file pointer at the time of the write request, and the buffer is
flushed after each write. The file pointer can be positioned
using fseek or rewind for read requests in the case of a file
with type "a+".

If a file is open for update ~ contains "+"), both reading
and writing are allowed. When switching between reading
and writing on a stream, a call to fseek or rewind is required
on buffered files to clear or flush the buffer.

CAUTIONS

If type contains "w" and pathname contains an existing file
name, that file is destroyed.

SYSTEM OEPENDENCIES

If stream is a text stream, MS-DOS line terminators (\r\n)
are converted into C terminators (\n). In addition, a Control
Z (\032) is interpreted as an end-of-file indicator, and EOF is
returned. If stream is a binary stream, no such conversion
occurs, and Control Zs encountered in the input stream are
not interpreted specially but returned as is.

Due to these conversions, input from an unbuffered text
stream is extremely slow. Where speed is important, we
recommend that input text streams be buffered.

SEE ALSO

freopen to open a file using an existing FILE variable.

fclose to close a file.

v.10.15.85 © 1985 MetaWare Incorporated

stdio.h page 10-19

setbuf to associate a particular buffer with a stream.

setmode to make a stream into a text stream or a binary
stream, or to set the default for files opened without such a
specification.

EXAMPLE

See the example for fgets.

fpri ntf - Print on a file.
INTERFACE

'include <stdio.h>
int fprintf(FILE *stream, char *format, ...);

DESCRIPTION

Writes to the file associated with stream according to the
format string format.

format contains conversion specifications that specify how
to represent subsequent arguments in print. Any charac
ters that are not elements of conversion specifications are
simply printed out unchanged. The representation of each
argument following format is printed out at the point in the
string where its conversion specification appears. The
conversion specifications act as place-holders for a
printable representation of the corresponding argument.
format is printed with each specification replaced by the
representation of its argument.

If the number of actual arguments is fewer than the num
ber of arguments specified by format, fprintf traipses
merrily through memory printing whatever it finds in its
presumed argument list according to the specification in
the format string. If the number of arguments passed in is
greater than the number specified by format, the excess
arguments are evaluated by the standard function call
mechanism, but otherwise ignored.

v.lO.lS.8S © 1985 MetaWare Incorporated

stdio.h page 10-20

fpri ntf - Continued.

Conversion specifications are of the following form:

'%' Flag* Field_width? Precision? Size? C _char

where

Flag
Field width
Precision
Size
C char

-> ' -' I '+' I ' , I 'II' I ' 0' ;
-> «Digit - '0' , I?) Digits)
-> '.' (Digits I '*');
-> ' h' I '1' I ' L ' ;
-> ' d ' I 'i' I ' a ' I 'u ' I 'x'

If' I Ie' I 'E' I 'g' I 'G'
IS' I 'pI I In' I '%';

I '*';

'X'
'c'

(See the introduction for an explanation of this regular
expression notation.)

'%' sets off a conversion speqification from ordinary
characters.

Each conversion takes place in a field of some number of
characters. The minimum size of the field can be specified
by the Field_width. If no Field_width appears, the field is
the size of the result of the conversion. If the result of the
conversion contains fewer characters than the Field width
specifies, the extra space is padded with spaces or zeros.
If Field_width is not an integer but is '*', the value of
Field_width is to be taken from an int argument that
precedes the argument to be converted. If there are more
characters resulting from a conversion than specified by
Field_width, the field is expanded so that they all get
printed - Field_width never causes truncation.

The Precision specification's meaning varies from one
conversion type to the next, but generally specifies a
maximum or minimum number of significant characters to
appear. Precision differs from Field_width in that
Field_width can cause padding to occur, but can never
affect the "value" of the result, while Precision affects the
characters produced by converting some argument (for

v.lO.15.85 © 1985 MetaWare Incorporated

stdio.h page 10-21

I I

'+'

, ,

example, Precision can cause string truncation, or affect
the number of characters to appear after the decimal point
in a double conversion). If Precision is not an integer but is
" *", the value of Precision is to be taken from an int
argument that precedes the argument to be converted. If
both Field width and Precision are specified by asterisks,
the Field_;idth argument comes first, then the Precision
argument, then the argument to be converted. A negative
Precision is taken as if Precision were missing.

The Size specification is used to specify the size of an
argument whose type comes in more than one size, i.e. int
versus long into The Size specification is mentioned below
in the description of each conversion that it can affect. If a
size is specified for a conversion that it cannot affect, it is
ignored.

Finally the conversion character (C_char) specifies the type
of conversion; both the type of the argument to be convert
ed and the format of the converted result (modified, of
course, by Flags, Field_width, Precision, and Size).

The meaning of the flag characters are:

The result of the conversion is left-justified within the
field. Any padding appears on the right. If '-' does not
appear, the result is right justified.

The result of a signed conversion begins with a plus or
minus sign. Negative values are printed beginning with
a minus sign, and positive values are printed beginning
with a plus sign. If neither '+' nor' 'appear, negative
values begin with a minus sign, and positive values
begin with the first digit of the result.

The result of a signed conversion begins with a space or
minus sign. Negative values are printed beginning with
a minus sign, and positive values are printed beginning
with a space. If both the ' , flag and the '+' flag
appear, the ' 'flag is ignored. If neither '+' nor ' ,
appear, negative values begin with a minus sign, and

v.10.15.85 © 1985 MetaWare Incorporated

stdio.h page 10-22

positive values begin with the first digit of the result.

fpri ntf - Continued.

'II' The result is to be converted to an alternate form,
specified below in the description of each conversion
character. If no alternate form is mentioned in such a
description, the flag has no effect on that conversion.

'0' Padding is by zeros. If the '0' flag does not appear,
padding is by spaces. If padding is by zeros, the sign (or
space, if the' 'flag appears), if any, precedes the zer
os. If padding is by spaces, the spaces precede the
sign. If the result is left-justified (' -' appears), padding
is by spaces on the right and the '0' flag has no effect.

The meanings of the conversion characters are:

, d', 'i' The argument A is an int that is printed out as a
signed decimal number. Precision specifies the
minimum number of digits to appear. If the value can be
represented in fewer than Precision digits, it is
expanded with leading zeros. The default precision is
one. If Precision is zero and A is zero, the converted
value consists of no characters. (This is independent of
any padding specified by Field_width.) The 'h' size
specification means A is a short int and '1' means it is
a long into

, a ' The argument A is an int that is printed out as an un
signed octal number. Precision specifies the minimum
number of digits to appear. If the value can be repre
sented in fewer than Precision digits, it is expanded
with leading zeros. The default precision is one. If
Precision is zero and A is zero, the converted value
consists of no characters. (This is independent of any
padding specified by Field_width.) The 'hI size
specification means A is a short int and '1' means it is
a long into If the 'II' flag appears, '0' is prepended to
the result if it is not zero.

v.1O.15.85 © 1985 MetaWare Incorporated

stdio.h page 10-23

fpri ntf - Continued.

'u' The argument A is an int that is printed out as an
unsigned decimal number. Precision specifies the
minimum number of digits to appear. If the value can be
represented in fewer than Precision digits, it is
expanded with leading zeros. The default precision is
one. If Precision is zero and A is zero, the converted
value consists of no characters. (This is independent of
any padding specified by Field_width.) The 'h' size
specification means A is a short int and '1' means it is
a long into

, x " 'X' The argument A is an int that is printed out as an
unsigned hexadecimal number. The letters abcdef are
used for 'x' conversion, while ABCDEF are used for 'X'
conversion. Precision specifies the minimum number
of digits to appear. If the value can be represented in
fewer than Precision digits, it is expanded with leading
zeros. The default precision is one. If Precision is zero
and A is zero, the converted value consists of no char
acters. (This is independent of any padding specified by
Field_width.) The 'h' size specification means A is a
short int and '1' means it is a long into If the 'II' flag
appears, Ox is prepended to the result (OX for' X').

'f' The argument A is a double (or a float, which is
converted to double when passed as a parameter) that
is printed out in decimal notation. If A is negative there
is a leading minus. The integral portion of the number
appears, then a decimal point, then Precision digits
after the decimal point. If Precision is not specified, it
defaults to six. If Precision is explicitly zero, no decimal
point appears. If the number has no integral portion and
Precision is not zero, a '0' is printed out before the
decimal point. If the 'II' flag appears, a decimal point is
always printed, even if it is not followed by any digits. If
Precision is zero and '/I' appears, a decimal paint is

v.IO.15.85 © 1985 MetaWare Incorporated

stdio.h page 10-24

printed. The 'L' size specification means A is a long
double.

fprintf - Continued.

'e', 'E' The argument A is a double (or a float, which is
converted to double when passed as a parameter) that
is printed out in decimal notation. If A is negative there
is a leading minus. One digit appears before the
decimal point, Precision digits after the decimal point,
then an e (or an E if the conversion char is 'E'), followed
by the sign of the exponent, followed by the exponent.
At least two digits are printed for the exponent. If
Precision is not specified, it defaults to six. If Precision
is explicitly zero, no decimal point appears. If the 'II'
flag appears, a decimal point is always printed, even if it
is not followed by any digits. If Precision is zero and 'II'
appears, a decimal point is printed. The 'L' size
specification means A is a long double.

'g', 'G' The argument A is a double (or a float, which is
converted to double when passed as a parameter) that
is printed out in style 'f', ' e " or 'E' with precision
specifying the number of significant digits. Note that if
Precision is zero, the converted value consists of no
characters. (This is independent of any padding
specified by Field_width.) Style 'f' is used unless the
exponent to be printed is less than -4 or greater than
precision. In that case, style 'e' is used for 'g' and
style 'E' is used for 'G'. Trailing zeros are removed
from the result. A decimal point only appears if it is
followed by a digit. If the 'II' flag appears, a decimal
point is always printed, even if it is not followed by any
digits, and trailing zeros are not removed. The 'L' size
specification means A is a long double.

'c' The argument is an int, the least significant character
of which is printed.

v.lD.15.85 © 1985 MetaWare Incorporated

stdio.h page 10-25

fpri ntf - Continued.

's' The argument is a (char *) string. Characters from the
string are printed until either a NUL is encountered (which
is not printed), or Precision characters have been
printed. If Precision is not explicitly set, characters are
printed until a NUL is found.

, p , The argument is taken to be a pointer to an object. The
action taken is system dependent - see the SYSTEM

DEPENDENCIES section below.

'n' The argument is a pOinter to an integer into which is
written the number of characters printed thus far by the
current call to fprintf.

'%' A % is printed.

If a conversion specification is invalid, that is, if the
conversion character is not one of those listed above, errno
is set and that conversion is ignored - no argument is con
verted and the would-have-been corresponding argument
corresponds to the next conversion specification.

If the arguments passed in do not match those specified by
format, the behavior is undefined.

fprintf returns the number of characters printed, or a
negative number if a write error occurs.

CAUTIONS

The number of arguments passed to fprintf must equal (or
exceed) the number specified by format, or garbage may
be printed.

The types of the arguments to fprintf must match the
types specified by format, or garbage may be printed.

v.lO.lS.8S © 1985 MetaWare Incorporated

stdio.h page 10-26

fprintf - Continued.

SYSTEM DEPENDENCIES

For a '%p' conversion specification, the argument is taken
to be a pointer to an object. The value of the pointer (which
is the address of the object) is printed in hexadecimal; the
segment is printed in four hex digits, then a colon, then the
offset in four hex digits.

If stream is a text stream, C line terminators (\n) are
converted into MS-DOS terminators (\r\n). If stream is a
binary stream, no such conversion occurs.

SEE ALSO

fprintf to print on a file.

printf to print on standard output.

sprintf to print on a string.

vfprintf to print on a file using the variable argument
macros.

vprintf to print on standard output using the variable
argument macros.

vsprintf to print on a string using the variable argument
macros.

fscanf to read values from a file.

scanf to read values from standard input.

sscanf to read values from a string.

v.1O.15.85 © 1985 MetaWare Incorporated

stdio.h

fpri ntf - Continued.

EXAMPLE

Hinclude <stdio.h>
Hdefine FAILURE (-1)
main() {

FILE *FP;
char s[14] = "like this one";
int i = 10, x = 255;
double d = 3.1415927;

page 10-27

if «FP = fopen("example", "w")) == NULL) {
perror("example");
return FAILURE;
}

fprintf(FP,"fprintf prints strings (%s),\n", s);
fprintf(FP,"decimal numbers(%d),", i);
fprintf(FP," hex numbers(%04X),\n", x);
fprintf(FP,"floating-point numbers (%+.4e)\n", d);
fprintf(FP,"and percent signs(%%).");
}

prints

fprintf prints strings (like this one),
decimal numbers (10), hex numbers (OOFF),
floating point numbers (+3. 1416e+00),
and percent signs (%).

on file example.

v.lO.IS.8S © 1985 MetaWare Incorporated

stdio.h page 10-28

fputc - Write a character on a file.
INTERFACE

'include (stdio.h)
int fputc(int c, FILE *stream);

DESCRIPTION

Writes the character £ (the least significant byte of the int
£) on the file associated with stream at the current position
of the file pointer (if one is defined), and advances the file
pointer (if any). fputc returns the character £ unless a write
error occurs, in which case it returns EOF.

SURPRISES

fputc takes .£ as an int rather than a char parameter and
returns an int rather than a char to conform to the
conventions discussed in the Parameter Passing section
of the introduction. If an object of type char is passed to
fputc, it is automatically coerced to type into

SYSTEM DEPENDENCIES

If stream is a text stream, a C line terminator (\n) is
converted into an MS-DOS line terminator (\r\n). If stream is
a binary stream, no such conversion occurs.

SEE ALSO

fgetc, getc, getchar, fgets, gets, putc, putchar, fputs,
puts, ungetc.

For short descriptions of all of the listed functions, see the
SEE ALSO section for fgetc.

EXAMPLE

See the example for fgetc.

v.lO.lS.8S © 1985 MetaWare Incorporated

stdio.h page 10-29

fputs - Write a string to a file.

INTERFACE

#include (stdio.h)
int fputs(char *5, FILE *stream);

DESCRIPTION

Writes the string..§. on the file associated with stream at the
current position of the file pointer (if one is defined), and
advances the file pointer (if any). The terminating NUL is not
written. fputs returns zero if the operation is successful. If
the fputs operation fails, errno is set such that a call to
perror will result in an error message describing the reason
for the failure, and the (non-zero) value of errno is returned.

SURPRISES

fputs and puts are inconsistent: fputs writes exactly the
string..§., while puts writes..§. followed by a newline.

SYSTEM DEPENDENCIES

If stream is a text stream, C line terminators (\n) are
converted into MS-DOS terminators (\r\n). If stream is a
binary stream, no such conversion occurs.

SEE ALSO

fgetc, getc, getchar, fgets, gets, fputc, putc, put char,
puts, ungetc.

For short descriptions of all of the listed functions, see the
SEE ALSO section for fgetc.

EXAMPLE

See the example for fgets.

v.IO.15.85 © 1985 MetaWare Incorporated

stdio.h page 10-30

tread - Read from a file.
INTERfACE

linclude (stdie.h)
int fread(veid *ptr, size_t size, int nelem, FILE

*stream) ;
DESCRIPTION

Reads nelem elements of size bytes each from the input
stream associated with stream into the segment of memory
beginning at the location referenced by ptr. The file
pointer, if one is defined, is advanced by the number of
bytes read. If a partial element is read (due either to a read
error or reaching end-of-file), its value is indeterminate.
fread returns the number of elements read, not counting
any partial element.

If the return value of fread is less than nelem, either a read
error has occurred or end-of-file has been encountered. If a
read error has occurred, the position of the file pointer is
indeterminate and the error flag is set for the stream. If
end-of-file has been encountered and no bytes were read,
the end-of-file flag is set for the stream. feef and/or ferrer
must be used to distinguish an error from end-of-file.

The first read or write request on a buffered stream causes
a buffer to be allocated for the stream unless setbuf has
previously been called to associate a buffer with the
stream.

CAUTIONS

fread assigns nelem * size bytes (or as many bytes as it
was able to read) into the segment of memory that begins
at the location referenced by ptr.

v.IO.IS.8S © 1985 MetaWare Incorporated

stdio.h page 10-31

tread - Continued.

SYSTEM DEPENDENCIES

If stream is a text stream, MS-DOS line terminators (\r\n)
are converted into C terminators (\n). In addition, a Control
Z (\032) is interpreted as an end-of-file indicator, and EOF is
returned. If stream is a binary stream, no such conversion
occurs, and Control Zs encountered in the input stream are
not interpreted specially but returned as is.

SEE ALSO

fwrite to write to a file.

setbuf to associate a particular buffer with a stream.
EXAMPLE

The program below copies file1, a block at a time, to
file2. Th~s example illustrates the use of fread and fwrite.

Hinclude <stdio.h>
Hdefine FAILURE (-1)
ndefine BLOCKSIZE (512)
main() {

FILE *FP1, *FP2;
char buf[BLOCKSIZE];
int i;
if «FP1 = fopen("file1", "r")) == NULL) {

perror("fopen of filel");
return FAILURE;
}

if «FP2 = fopen("file2", "w")) == NULL) (
perror("fopen of file2");
return FAILURE;
}

while «i = fread(buf, 1, BLOCKSIZE, FPl)) != 0)
fwrite(buf, 1, i, FP2);

v.lD.lS.8S © 1985 MetaWare Incorporated

stdio.h page 10-32

freopen - Open a file using an existing FILE variable.

INTERfACE

'include <stdio.h>
FILE *freopen(char *pathname,char *type,FILE *stream);

DESCRIPTION

Closes the file associated with stream, then opens the file
named by the string pathname and associates stream with it.
The ~ argument is used as in fopen. Failure to close the
file originally associated with stream is ignored. If freopen is
successful, it returns stream. If the open fails, it returns
NULL.

The rationale behind freopen is that a new file can be
associated with a stream without informing all those having
copies of the stream value. For example, it provides a way
to disassociate stdout from the console and associate it
with a chosen file.

SEE ALSO

fopento open a file.

setbuf to associate a particular buffer with a stream.

fclose to close a file.
EXAMPLE

The program below fragment first attempts to open filel
for writing. If the open succeeds, it associates a number of
file pointers with file!. The subsequent call to freopen
attempts to close filel and open file2 using the same
FILE variable. That causes all file pointers previously
associated with filel to reference file2. If the pair of calls
fclose/fopen were used in the place of freopen, each file
pointer would have to be individually updated.

v.lD.lS.8S ~ 1985 MetaWare Incorporated

s tdio . h page 10-33

freopen - Continued.

#include (stdio.h>
#define FAILURE (-1)
maine) {

FILE *Current_file, *Log file, *In file,
*Out file, *Err-file; -

if «Current file = fopen(IIfilel",IIwll» == NULL)
perror(IIfopen of filel");
return FAILURE;
}

Log_file = out_file = Err_file = Current_file;

if «Current file =
freopen(IIfile2","w",Current_file) == NULL)

perror("freopen of file2");
return FAILURE;

fscanf - Read values from a file.
INTERfACE

#include (stdio.h>
int fscanf(FILE *stream, char *format, ...);

DESCRIPTION

Reads from the file associated with stream according to the
format string format, assigning values from the file into
objects pointed to by subsequent arguments to fscanf.

format logically consists of an arbitrary sequence of three
types of elements: conversion specifications, whitespace
characters, and non-whitespace characters. A conversion
specification causes characters in the input stream to be
read and converted to a specified type, in the manner
described below. In most cases there should be a
corresponding argument to fscanf that is a pOinter to an
object of that type. Any whitespace character in format that
is not a part of a conversion specification causes input to be

v.10.1S.8S © 1985 MetaWare Incorporated

stdio.h page 10-34

consumed up to the next non-whitespace character. Any
non-whitespace character in format that is not a part of a
conversion specification must match the next character in
the input stream. If such a character does not match the
next input character, fseanf returns.

In most cases a conversion specification in format is
associated with a subsequent argument to fseanf. The
correspondence between conversion specifications and
arguments is simple: the first conversion specification that
expects an argument corresponds to the first argument
following format, the second conversion specification that
expects an argument corresponds to the second argument
following format, etc. If the number of actual arguments is
fewer than the number of arguments specified format,
fseanf traipses merrily through memory assuming that
whatever it finds is a pointer to the type of object required
by the specification in format, and assigning into that
object. If the number of arguments passed in is greater
than the number specified by format, the excess
arguments are evaluated by the standard function call
mechanism but otherwise ignored.

Conversion specifications are of the following form.

'%' '*' Field width? Size? C char

where

Field width -) Digits;
Size -) 'h' I '1'
C char -) 'd' I 'i'

'f' I 'e'
's' I 'p'

'L' ;
'0' I 'u'
'E' I 'g'
'n' I '%'

'x' I 'X'
'G' I 'e' , [, ;

(See the introduction for an explanation of this regular
expression notation.)

, %' sets off a conversion specification from ordinary
characters.

v.1O.15.85 © 1985 MetaWare Incorporated

stdio.h page 10-35

fscanf - Continued.

'*' causes the conversion of the next value in the input
stream to occur as normal, but the assignment of the
resulting value is suppressed. All the computation (and
concomitant reading of input) is done, but the result is
ignored. No argument corresponds to a conversion
specification containing ,* '.
The input value to be converted generally extends from the
next input character to the first character in the input
stream that cannot be a part of that value. Except for the
'c' and '[' conversions, leading whitespace is skipped.
For example, if format specifies that a decimal integer is to
be found in the input stream, first all whitespace is skipped,
then all characters that can be part of a decimal integer (all
Digits) are read. The conversion ends with the first
character that can not be part of a decimal integer
(including whitespace characters), and that character
remains unread, available as the first character of the next
input value. Field_width can be used to impose a
maximum on the number of characters that make up an
input value.

It is possible for an input value to consist of zero characters
for some conversions, e.g. a decimal integer is expected
and the next character in the input is 'k'. The C library
standard (as defined by ANSI) does not specify what should
occur in this case. What does occur is this: an appropriate
value (discussed in the description of each such conversion
below) is assigned and fscanf goes on to the next element
of the format string.

The Size specification is used to specify the size of the
receiving object in the case of an argument that points to a
type that comes in more than one size, i.e. int versus long
into The Size specification is mentioned in the description
below of each conversion that it can affect. If Size is spe
cified for a conversion that it cannot affect, it is ignored.

v.lO.15.85 © 1985 MetaWare Incorporated

stdio.h

fscanf - Continued.

page 10-36

Finally, the conversion character (C_char) specifies the type
of value expected in the input stream (implicitly specifying
the type of the object pointed to by the corresponding
argument).

The meanings of the conversion characters are:

, d' A decimal integer of the form
('+' I '-')? Digits
is expected. The corresponding argument A should be
a pointer to into The 'h' size specification means A is a
pointer to short int and '1' means it is a pointer to
long into Following the sign (if any), if the next
character in the input is not a decimal digit, zero is
assigned to the object pointed to by A.

, i ' An integer of the form
('+' I '_I)? ('0' ('x' I 'X')?)? Hexdigits
is expected. The corresponding argument A should be
a pointer to into Following the optional sign, if the input
begins with Ox or ox, the value is taken to be a
hexadecimal number; otherwise, if the input begins with
, 0', the value is taken to be an octal number; other-
wise, it is taken to be a decimal number. The 'h' size
specification means A is a pointer to short int and '1'
means it is a pointer to long into Following the sign (if
any) and the prefix (0, Ox, or OX) if present, if the next
character in the input is not a digit of the appropriate
base, zero is assigned to the object pointed to by A.

, 0 ' An octal integer of the form
Odigits
is expected. The corresponding argument A should be
a pointer to into The 'h' size specification means A is a
pointer to short int and '1' means it is a pointer to
long into If the next character in the input is not an
octal digit, zero is assigned to the object pointed to by A.

v.1O.lS.8S © 1985 MetaWare Incorporated

stdio.h

fscanf - Continued.

'u' An unsigned decimal integer of the form
Digits

page 10-37

is expected. The corresponding argument A should be
a pointer to unsigned into The 'h' size specification
means A is a pointer to unsigned short int and '1'
means it is a pointer to unsigned long into If the next
character in the input is not a decimal digit, zero is
assigned to the object pointed to by A.

'x', 'X'
A hexadecimal integer of the form
Hexdigits
is expected. The corresponding argument A should be
a pointer to into The 'h' size specification means A is a
pointer to short int and '1' means it is a pointer to
long into If the next character in the input is not a
hexadecimal digit, zero is assigned to the object pointed
to by A.

'f', 'e', 'E', 'g', 'G'
A floating point number of the form
Sign? Digits ('.' Digits)? « 'E' I 'e') Sign? Digits)?
is expected. The corresponding argument A should be
a pointer to float. If the' l' size specification is used,
A should be pointer to double. If the ' L ' size
specification is used, A should be a pointer to long
double. If a conflicting character appears in the input
before a floating point value is found, zero is assigned to
A.

, c ' One character is expected. The corresponding
argument A should be a pointer to char. Whitespace is
not skipped in this case. To read the next
non-whitespace character use '%1s'. If aField_width is
given, Field width characters are read; A should point
to a character array large enough to hold them. No NUL
is appended.

v.10.15.85 © 1985 MetaWare Incorporated

stdio.h

fscanf - Continued.

page 10-38

I S I A character string is expected. The corresponding
argument should be a pointer to a character array large
enough to accept the string and a NUL that is
automatically appended to the result. The string is
terminated in the input by any whitespace character. It
is advisable to use Field width with this specification,
as otherwise the array may be overrun for some input.
Field_width does not include the automatically
appended NUL.

I P I A pointer is expected. The corresponding argument
should be a pointer to a pointer to void. See section
SYSTEM DEPENDENCIES below.

I n I The argument is a pointer to il1t into which is written the
number of characters read thus far by the current call to
fscanf. No input is consumed.

I % I A % is expected. No assignment occurs.

I [' A string that is not delimited by whitespace is expected.
The corresponding argument A should be a pointer to a
character array. The left bracket is followed by a set of
characters, then a right bracket. If the first character in
the set is not a circumflex (), input characters are
assigned to the array pointed to by A as long as they are
in the set. If the first character is a circumflex,
characters are assigned until a character from the set is
encountered. A NUL is appended to the string. It is
advisable to use Field_width with this specification, as
otherwise the array may be overrun for some input.

If conversion terminates on a conflicting input character,
that character is left unread in the input. Trailing
whitespace is left unread unless matched in the format
string.

v.W.IS.8S © 1985 MetaWare Incorporated

stdio.h page 10-39

fscanf - Continued.

If a conversion specification is invalid, that is, if the
conversion character is not one of those listed above, errno
is set and that conversion is ignored - no input is read and
no argument is assigned into.

If the arguments passed do not match those specified by
format, the behavior is undefined.

fscanf returns the number of input values assigned, or EOF
if end-of-file is encountered before the first conflict or
conversion. If no conflict occurs, fscanf returns when the
end of the format string is encountered.

CAUTIONS

If fewer arguments are passed to fscanf than specified by
format, the behavior is undefined.

fscanf interprets each argument that follows format as a
pointer to the type specified by the corresponding
conversion specification. If an argument is not the
expected pointer, it is nonetheless treated as if it were,
potentially causing some arbitrary place in memory to be
overwritten with the result of the conversion. If the incorrect
argument is not the same size as a pointer, subsequent
arguments may be miSinterpreted as well.

SYSTEM OEPENOENCIES

For a '%p' conversion, a pointer is expected. The
corresponding argument A should be a pointer to a pointer
to void. Four hexadecimal digits are read, which are taken
to be the segment value, then a colon is read, then four hex
digits, which are taken to be the offset. This address is then
assigned into the pointer pOinted to by A. This conversion
is only guaranteed to work on a value that is output from
one of the printf functions' conversion of a pOinter (also
'%P') during the same run of a program.

v.10.1S.85 © 1985 MetaWare Incorporated

stdio.h page 10-40

fscanf - Continued.
If stream is a text stream, MS-DOS line terminators (\r\n)
are converted into C terminators (\n), and Control Z ('032')
is interpreted as an end-of-file indicator. If stream is a
binary stream, no such conversion occurs, and Control Z is
not interpreted specially.

SEE ALSO

fprintf, printf, sprintf, vfprintf, vprintf, vsprintf,
fscanf, scanf, sscanf.

See the SEE ALSO section of fprintf for a description of the
listed functions.

EXAMPLE

,include <stdio.h>
,define FAILURE (-1)
main() {

FILE *FP;
char sl[ll], s2[19] = "but missed eleven.";
int i, j;
if «FP = fopen("input", Urn»~ == NULL) {

perror("fopen of input");
return FAILURE;
}

fscanf (FP ,"%llc%d %%%d %C z]z", sl, &i, &j, s2);
printf("lls%d, %s%s" , sl, i,

j == 11 ? "11, " : "", s2);
}

Given that file input contains

scanf read 10 %11 and then quit.z and garbage?

this program prints the following to standard output.
scanf read 10, 11, and then quit.

But if input contains

scanf read 10 11 who cares what is out here

(note: not %11), this program prints the following instead.

scanf read 10, but missed eleven.

v.1O.lS.8S © 1985 MetaWare Incorporated

stdio.h page 10-41

fseek - Seek to somewhere in a file.
INTERFACE

Hinclude (stdio.h)
int fseek(FILE *stream, long offset, int ptrname);

DESCRIPTION

Moves the file pointer for the file associated with stream to
offset bytes from one of three positions specified by
ptrname. If ptrname has the value of the macro SEEK_SET,
the file pointer is moved to offset bytes from the beginning
of the file. If ptrname equals SEEK_CUR, the file pointer is
moved to offset bytes from the current position of the file
pointer. If ptrname equals SEEK_END, the file pointer is
moved to offset bytes from the end of the file. offset may
be positive or negative. fseek returns zero unless the
request is invalid.

A seek past the end of a file or a negative seek past the
beginning of a file constitutes a valid request. The results
are implementation defined: see SYSTEM DEPENDENCIES.

SYSTEM DEPENDENCIES

Under MS-DOS, after seeking outside of the limits of a file,
whether past the end or negatively past the beginning, a
read request reads no characters. After seeking
negatively past the beginning of a file, a subsequent write
request fails. After seeking past the end of a file, a
subsequent write writes at the seek position. From the
original end of the file (when the seek occurred) to the seek
position (where the write occurred), the content of the file is
arbitrary.

SEE ALSO

ftell to obtain the value of a file pointer.

rewind to seek to the beginning of a file.

v.lD.lS.8S © 1985 MetaWare Incorporated

stdio.h page 10-42

fseek - Continued.

EXAMPLE

The program below copies the second line of file1 to
file2, then to file3. This example illustrates the use of
fseek and ftell. -- --
ninclude (stdio.h)
ndefine FAILURE (-1)
ndefine BLOCKSIZE (512)
main() {

FILE *FPl, *FP2, *FP3;
char buf[BLOCKSIZE];
int i;
long place_mark;

FILE *open(char *f,char *mode)
FILE *FP;
if «FP = fopen(f,mode» == NULL) perror(f);
return FP;
}

if « (FPl = open("file1", "r"» == NULL) II
«FP2 = open("file2" ,"w"» == NULL) II
«FP3 = open("file3","w"» == NULL»

return FAILURE;

fgets(line, BLOCKSIZE, FP1);
place mark = ftell(FP1);
if (fgets(line, BLOCKSIZE, FP1»

fputs(line, FP2);
fseek(FP1, place mark, SEEK SET);
if (fgets(line, BLOCKSIZE, FP1»

fputs(line, FP3);

v.W.lS.8S © 1985 MetaWare Incorporated

stdio.h page 10-43

ftell - Get the current value of a file pointer.

INTERFACE

Dinclude (stdio.h)
long ftell(FILE *stream);

DESCRIPTION

Returns the value of the file pointer for the file associated
with stream. The value is a byte offset from the beginning of
the file.

SEE ALSO

fseek to move a file pointer to some position within a file.

rewind to seek to the beginning of a file.
EXAMPLE

See the example for fseek.

v.10.1S.8S © 1985 MetaWare Incorporated

stdio.h page 10-44

fwrite - Write to a file.
INTERfACE

,include <stdio.h)
int fwrite(void *ptr, size t size, int nelem,

FILE *stream); -
DESCRIPTION

Writes nelem elements of size bytes each to the output
stream associated with stream from the segment of
memory beginning at the location referenced by ptr. If a
write error occurs, fwri te returns having written fewer than
nelem elements. The file pointer (if one is defined) is
advanced by the number of bytes written. fwrite returns
the number of elements actually written. If a write error
occurs, the position of the file pointer (if any) is
indeterm inate. .

The first read or write request on a buffered stream causes
a buffer to be allocated for the stream unless setbuf has
previously been called to associate a buffer with the
stream.

CAUTIONS

fwrite writes nelem * size bytes from the segment of
memory beginning at the location referenced by ptr.

SYSTEM DEPENDENCIES

If stream is a text stream, C line terminators (\n) are
converted into MS-DOS terminators (\r\n). If stream is a
binary stream, no such conversion occurs.

SEE ALSO

fread to read from a file.

setbuf to associate a particular buffer with a stream.

EXAMPLE

See the example for fread.

v.IO.IS.8S © 1985 MetaWare Incorporated

stdio.h page 10-45

gete - Get a character from a file.
- Provided both as a macro and a function.

INTERFACE

#include <stdio.h>
int getc(FILE *stream);

DESCRIPTION

Is equivalent to fgetc; see fgetc.

When used as a macro, stream is evaluated more than
once.

SEE ALSO

fgetc, getchar, fgets, gets, fputc, putc, putchar, fputs,
puts, ungetc.

For short descriptions of all of the listed functions, see the
SEE ALSO section for fgetc.

EXAMPLE

The program below copies file1 character by character to
file2 and to standard output. This example illustrates the
use of getc and putc. Similar examples are given under the
EXAMPLE sections of fgetc and getchar, pOinting out the
differences between the functions.

#include <stdio.h>
#define FAILURE (-1)
main() {

FILE *FP1, *FP2;
if «FPl = fopen("file1", Urn)) == NULL) {

perror("fopen of file1");
return FAILURE;
}

if «FP2 = fopen("file2", "w")) == NULL) {
perror("fopen of file2");
return FAILURE;
}

while (feof(FP1) == 0)
putc(putchar(getc(FPl)), FP2);

v.10.15.85 © 1985 MetaWare Incorporated

stdio.h page 10-46

get c h a r - Get a character from standard input.
- Provided both as a macro and a function.

INTERfACE

int getchar(void);
DESCRIPTION

Is equivalent to fgetc(stdin); see fgetc.

The macro getchar() expands to getc(stdin), which itself
may be a macro.

SEE ALSO

fgetc, getc, fgets, gets, fputc, putc, putchar, fputs, puts,
ungetc.

For short descriptions of all of the listed functions, see the
SEE ALSO section for fgetc.

EXAMPLE

The program below copies standard input character by
character to file1 and to standard output. Similar
examples are given under the EXAMPLE sections of fgetc and
getc, pointing out the differences between the functions.

Hinclude (stdio.h>
flundef getchar
flundef putchar
Hdefine FAILURE (-1)
maine) {

FILE *FP1;
if «FP1 = fopen("file1", "w"» == NULL) {

perror("fopen of file1");
return FAILURE;
}

while (feof(stdin) == 0)
fputc(putchar(getchar(», FP1);

v.IO.15.85 © 1985 MetaWare Incorporated

stdio.h page 10-47

gets - Get a line of text from standard input.

INTERFACE

char *gets(char *s);
DESCRIPTION

Reads a line of text from the stream stdin into the string~,
appending a final NUL. No characters are read after
end-of-file or a newline is encountered. The newline, if any,
is discarded.

gets returns ~ if successful. If end-of-file is encountered
before any characters have been read, the array is
unchanged and gets returns NULL. If a read error occurs,
the array contents are indeterminate and gets returns NULL.

CAUTIONS
Gare should be taken, when gets is called, that ~ is large
enough to contain all input up to a newline.

SURPRISES

gets and fgets are inconsistent: both functions return after
encountering a newline, but fgets stores the newline while
gets discards it.

SEE ALSO

fgetc, getc, getchar, fgets, fputc, putc, putchar,
fputs, puts, ungetc.

For short descriptions of all of the listed functions, see the
SEE ALSO section for fgetc.

EXAMPLE
The program below copies a line from standard input to
standard output. It illustrates the use of gets and puts.
'include <stdio.h>
Idefine LINESIZE (256)
main() {

char line[LINESIZE];
if (gets(line»

puts (line) ;

v.lO.15.85 © 1985 MetaWare Incorporated

stdio.h page 10-48

perror - Print error message.

INTERFACE

char *perror(char *s);
DESCRIPTION

Prints the string ~, then ": ", then an error message string
associated with the current value of errno, and finally a
newline, on the standard error file. perror returns the error
message string. If ~ is NULL, nothing is printed out.

EXAMPLE

The program fragment below attempts to open file1, and
complains if the open fails.

'include <stdio.h>
,define FAILURE (-1)
main() {

FILE *FP1;
if «FP1 = fopen("file1", "W"» == NULL) {

perror("file1");
return FAILURE;
}

v.1D.1S.8S ~ 1985 MetaWare Incorporated

stdio.h

printf - Print on standard output.

INTERFACE

int printf(char *format, ...);
DESCRIPTION

page 10-49

Is equivalent to fprintf(stdout, format ,00'); see fprintf.
CAUTIONS

The number of arguments to printf must equal or exceed
the number specified by format, or garbage may be printed.

The types of the arguments to printf must match the
types specified by format, or garbage may be printed.

SEE ALSO

fprintf, printf, sprintf, vfprintf, vprintf, vsprintf,
fscanf, scanf, sscanf.

See the SEE ALSO section of fprintf for a description of the
listed functions.

EXAMPLE
A similar example is given in the EXAMPLE section of fprintf,
painting out the similarity between the two functions.

'include (stdio.h)
maine) {

char s[14] = "like this one";
int i = 10, x = 255;
double d = 3.1415927;
printf("printf prints strings (%s),\n", s);
printf("decimal numbers (%d),", i);
printf(" hex numbers (%04X),\n", x);
printf("floating-point numbers (%+.4e)\n", d);
printf("and percent signs (%%).");
}

prints the following on standard output:

printf prints strings (like this one),
decimal numbers (10), hex numbers (OOFF),
floating-point numbers (+3.1416e+00),
and percent signs (%).

v.10.1S.8S © 1985 MetaWare Incorporated

stdio.h page 10-50

pute - Write a character to a file.
- Provided both as a macro and a function.

INTERFACE

linclude (stdio.h)
int putc(int c, FILE *stream);

DESCRIPTION

Is equivalent to fputc; see fputc.

When pute is used as a macro, stream is evaluated more
than once.

SURPRISES

pute takes .£ as an int rather than a char parameter and
returns an int rather than a char to conform to the
conventions discussed in the Parameter Passing section
of the introduction. If an object qf type char is passed to
pute, it is automatically coerced to type into

SYSTEM DEPENDENCIES

If stream is a text stream, a C line terminator (\n) is
converted into an MS-DOS line terminator (\r\n). If stream is
a binary stream, no such conversion occurs.

SEE ALSO

fgete, gete, getehar, fgets, gets, fpute, put char, fputs,
puts, ungete.

For short descriptions of all of the listed functions, see the
SEE ALSO section for fgetc.

EXAMPLE

See the exam pie for gete.

v.lO.lS.8S © 1985 MetaWare Incorporated

stdio. h page 10-51

put c h a r - Write a character on standard output.
- Provided both as a macro and a function.

INTERFACE

int putchar(int c);
DESCRIPTION

Is equivalent to fputc(c, stdout; see fputc.

The macro putchar (c) expands to putc (c ! stdout)! which
itself may be a macro.

SURPRISES

putchar takes .£ as an int rather than a char parameter and
returns an int rather than a char to conform to th~
conve,ntions discussed in the Parameter Passing section
of the introduction. If an object of type char is passed to
put char, it is automatically coerced to type into

SYSTEM DEPENDENCIES

If stream is a text stream, a C line terminator (\n) is
converted into an MS-DOS line terminator (\r\n). If stream
is a binary stream, no such conversion occurs.

SEE ALSO

fgetc, getc, getchar, fgets, gets, fputc, putc, fputs,
puts, ungetc.

For short descriptions of all of the listed functions, see the
SEE ALSO section for fgetc.

EXAMPLE

See the exam pie for fgetc.

v.lD.lS.8S © 1985 MetaWare Incorporated

stdio.h page 10-52

puts - Write a string to a file.
INTERFACE

int puts(char *s);
DESCRIPTION

Writes the string .§. on the stream associated with stdout,
and appends a newline. The t~rminatingNuL is not written.
puts returns zero if the operation is successful. If the puts
operation fails, ~ is set such that a call to perror will
result in an error message describing the reason for the
failure, and the (non-zero) value of errno is returned.

SURPRISES

puts and fputs are inconsistent: fputs writes exactly the
string~, while puts writes.§. followed by a newline.

SYSTEM DEPENDENCIES

If stream is a text stream, C line terminators (\n) are
converted into MS-DOS terminators (\r\n). If stream is a
binary stream, no such conversion occurs.

SEE ALSO

fgetc, getc, get char, fgets, gets, fputc, putc, putchar,
fputs, ungetc.

For short descriptions of all of the listed functions, see the
SEE ALSO section for fgetc.

EXAMPLE

See the example for gets.

v.lO.lS.8S © 1985 MetaWare Incorporated

stdio.h page 10-53

remove - Delete a file.

Hinclude (stdio.h)
int remove(char *pathname);

DESCRIPTION

Removes the file named by the string pathname. remove
returns zero if the operation is successful. If the remove
operation fails, errno is set such that a call to perror will
result in an error message describing the reason for the
failure, and the (non-zero) value of errno is returned.

CAUTIONS

If remove is called on an open file, the behavior is
implementation defined and the return value may be
meaningless; see SYSTEM DEPENDENCIES.

SYSTEM DEPENDENCIES

Under MS-DOS if remove is called on an open file, the file is
removed after it has been closed.

SEE ALSO

rename to change the name of a file.

fclose to close a file.
EXAMPLE

The program below opens a temporary file. Later, it closes
it and removes it. This example illustrates the use of remove
and tmpnam.
Hinclude (stdio.h)
Hdefine FAILURE (-1)
maine) {

FILE *FPl;
char tmp[L tmpnam];
if «FPl = -fopen(tmpnam(tmp), "w+")) == NULL)

perror("fopen of temporary file ll
);

return FAILURE;
}

fclose(FPl);

v.10.1S.8S © 1985 MetaWare Incorporated

stdio.h page 10-54

if (remove(tmp»
perror("remove of temporary file");

rename - Change the name of a file.

INTERFACE

int rename(char *old, char *new);

DESCRIPTION

Changes the name of the file named by the string old to the
name contained in the string new. There will no longer be a
file whose name is contained in the string old.

rename returns zero if the operation is successful. If the
rename operation fails, errno is set such that a call to perror
will result in an error message describing the reason for the
failure, and the (non-zero) value of errno is returned.

CAUTIONS

If rename is called on an open file, the behavior is
implementation defined and the return value may be
meaningless; see SYSTEM DEPENDENCIES.

SYSTEM DEPENDENCIES

If an existing file is named by new, rename fails.

rename should not be called on an open file. If there is no
file named by new and rename is called when the file named
by old is open, after program termination there will be no
file old, and there will be a file new whose contents are what
old contained before it was opened.

SEE ALSO

remove to delete a file.

v.IO.IS.8S © 1985 MetaWare Incorporated

page 10-55 stdio.h

rewind - Seek to the beginning of a file.

INTERFACE

Hinclude <stdio.h>
void rewind(FILE *stream);

DESCRIPTION

Is equivalent to fseek(stream,O,SEEK SET) followed by
clearerr(stream) except that no value is returned. See
fseek and clearerr.

SEE ALSO
fseek to move a file pointer to some position within a file.
ftell to obtain the value of a file pointer.
clear err to clear end-of-file and error flags of a file.

EXAMPLE
The program below copies file1, a block at a time, to
file2, then to file3.

'include <stdio.h>
ndefine FAILURE (-1)
,define BLOCKSIZE (512)
maine) {

FILE *FP1, *FP2, *FP3;
char buf[BLOCKSIZE];
int i;
FILE *open(char *f,char *mode) {

FILE *FP;
if «FP = fopen(f,mode» == NULL) perror(f);
return FP;
}

if (1 (FP1 = open("file1" ,"r"» II
1 (FP2 = open("file2" , "w"» II
!(FP3 = open("file3","w"») return FAILURE;

while «i = fread(buf, 1, BLOCKSIZE, FP1» != 0)
fwrite(buf, 1, i, FP2);

rewind(FP1);
while «i = fread(buf, 1, BLOCKSIZE, FP1» 1= 0)

fwrite(buf, 1, i, FP3);

v.10.15.85 © 1985 MetaWare Incorporated

page 10-56 stdio.h

scanf - Read values from standard input.

INTERfACE

int scanf(char *format, ...);
DESCRIPTION

Is equivalent to fscanf(stdin, format, ...); see fscanf.
CAUTIONS

If fewer arguments are passed to scanf than format
specifies, arbitrary places in memory are overwritten with
the results of the specified conversions.

scanf interprets each argument that follows format as a
pointer to the type specified by the corresponding
conversion specification. If an argument is not the
expected pOinter, it is nonetheless treated as if it were,
potentially causing some arbitrary- place in memory to be
overwritten with the result of the conversion. If the incorrect
argument is not the same size as a pointer, subsequent
arguments may be misinterpreted as well.

SEE ALSO

fprintf, printf, sprintf, vfprintf, vprintf, vsprintf,
fscanf, sscanf.

See the SEE ALSO section of fprintf for a description of the
listed functions.

EXAMPLE

A similar example is given in the EXAMPLE section of fscanf,
showing the slight difference between the two functions.

Hinclude (stdio.h)
maine) {

char sl[ll], s2[19] = "but missed eleven.";
int i, j;
scanf("%llc%d %%%d %C z]z", sl, &i, &j, s2);
printf("lls%d, %s%s" , sl, i,

j == 11 ? "11, " : "", s2);

v.lO.IS.8S © 1985 MetaWare Incorporated

stdio.h page 10-57

scant - Continued.

Given that the input from standard input is

scanf read 10 %11 and then quit.z and garbage?

this program prints the following to standard output.

scanf read 10, 11, and then quit.

But if the input is

scanf read 10 11 who cares what is out here

(note: not %11), this program prints the following instead.

scanf read 10, but missed eleven.

v.10.1S.85 © 1985 MetaWare Incorporated

stdio.h page 10-58

setbuf - Specify a buffer for a stream.
INTERFACE

'include (stdio.h>
void setbuf(FILE *stream, char *buf);

DESCRIPTION

Causes the BUFSIZ byte segment of memory beginning with
the location referenced by buf to be used by the stream
stream instead of an automatically allocated buffer. If buf is
NULL, 110 on the stream is unbuffered.

If buffered 110 has been done on the stream at the time
setbuf is called, the contents of the buffer in use are copied
into buf, and the buffer in use is deallocated if it was
automatically allocated.

CAUTIONS

Library functions that perform 110 assume that the buffer
associated with a stream is BUFSIZ bytes in length. If setbuf
is called with a buf argument that points to a smaller buffer,
the behavior is undefined.

If the buffer that buf references is deallocated before the
file is closed, havoc may be wreaked.

If buf points to non-static storage, fclose should be
explicitly called on stream before the block containing the
declaration of the buffer is exited. Normal program
termination involves closing all open files, which in turn
involves flushing the buffers of all buffered files that are
open for writing or update. If the buffer referenced by buf is
not static and the block in which it is declared is exited
before fclose is called on stream, the buffer may be
overwritten before it is flushed.

SEE ALSO

fopento open a file.

fclose to close a file.

v.1D.15.85 © 1985 MetaWare Incorporated

stdio.h page 10-59

spri ntf - Print on a string.

INTERFACE

int sprintf(char *s, char *format, ...);
DESCRIPTION

Is equivalent to fprintf(f, format , ...) except that the output
is written on the string 2. rather than on the file associated
with.f.; see fprintf.

CAUTIONS

The number of arguments to sprintf must equal or exceed
the number specified by format, or garbage may be printed.

The types of the arguments to sprintf must match the
types specified by format, or garbage may be printed.

SEE ALSO

fprintf, printf, vfprintf, vprintf, vsprintf, fscanf,
scanf, sscanf.

See the SEE ALSO section of fprintf for a description of the
listed functions.

v.lO.15.85 © 1985 MetaWare Incorporated

stdio.h page 10-60

spri ntf - Continued.

EXAMPLE

A similar example is given in the EXAMPLE section of fprintf,
showing the slight difference between the two functions.

'include (stdio.h)
main() {

char String[200];
char *S = String;
char s[14] = "like this one";
int i = 10, x = 255, n;
double d = 3.1415927;
sprintf(S, "sprintf prints strings (%s),%n",s,&n);
SP += n; /* The next call to sprintf must be */

/* passed the address of the NUL */
/* written by the last call. */

sprintf(S, "\ndecimal numbers (%d),%n", i, &n);
SP += n;
sprintf(S, " hex numbers (%04X),\n%n", x, &n);
SP += n;
sprintf(S, "percent signs (%%) , and\n%n", &n);
SP += n;
sprintf(S, "floating-point numbers (%+.4e).", d);
}

The program above writes

sprintf prints strings (like this one),
decimal numbers (10), hex numbers (OOFF),
percent signs (%), and
floating-point numbers (+3.1416e+00).

into String. What are here shown as separate lines are
demarcated by the character' \n' in String, and there is a
NUL after the final period.

v.1O.15.85 © 1985 MetaWare Incorporated

stdio.h

sscanf
INTERFACE

page 10-61

- Read values from a string.

int sscanf(char *s, char *format, ...);
DESCRIPTION

Is identical to fscanf(f, format ,m) except that the input is
read from the string §. rather than from the file associated
with f; see fscanf.

CAUTIONS

If fewer arguments are passed to sscanf than specified by
format, arbitrary places in memory are overwritten with the
results of the specified conversions.

sscanf interprets each argument that follows format as a
pointer to the type specified by the corresponding
conversion specification. If an argument is not the
expected pointer, it is nonetheless treated as if it were,
potentially causing some arbitrary place in memory to be
overwritten with the result of the conversion. If the incorrect
argument is not the same size as a pointer, subsequent
arguments may be misinterpreted as well.

SEE ALSO

fprintf, printf, sprintf, vfprintf, vprintf, vsprintf,
fscanf, scanf, vfscanf, vscanf, vsscanf.

See the SEE ALSO section of fprintf for a description of the
listed functions.

EXAMPLE

A similar example is given in the EXAMPLE section of fscanf,
showing the slight difference between the two functions.

v.10.15.85 © 1985 MetaWare Incorporated

stdio.h

sscanf - Continued.

ninclude <stdio.h>
maine) {

char 51[11];
char 52[19] = "but missed eleven.";
char 53[19] = "but missed eleven.";

page 10-62

char inputl[39] = "scanf read 10 %11 and quit.za";
char input2[39] = "it read 9, 10 11 and quit.za";
int i, j = 2, k = 2;
fscanf(inputl, "%11c%d %%%d %C z]z" ,51 ,&i ,&j ,52);
printf("11s%d, %s%s\n", 51, i,

j == 11 ? "11, " : "", 52);
fscanf(input2, "%llc%d %%%d %C z]z" ,sl,&i &k,s3);
printf("lls%d, %s%s\n", 51, i,

k == 11 ? "11, " : "", 53);

prints the following on standard output:

scanf read 10, 11, and then quit.
it read 9, 10, but missed eleven.

tmpfile - Create a temporary file.

INTERFACE

/Iinclude <stdio. h>
FILE *tmpfile(void);

DESCRIPTION

Creates a file and returns a pointer to its contrOlling FILE
variable. The file is removed when if is closed or when the
program terminates. The file is opened for update. If the
file cannot be created, NULL is returned.

CAUTIONS

If the program terminates abnormally, the file may not be
removed.

SEE ALSO

tmpnam to generate a temporary file name.

v.lO.lS.8S © 1985 MetaWare Incorporated

stdio.h page 10-63

t m p n am - Generate a temporary file name.

INTERFACE

char *tmpnam(char *s);

DESCRIPTION

Generates a string that can be used as a temporary file
name. tmpnam generates a different file name each time it is
called. Aside from being names that are unlikely to clash
with file names generated by humans, there is nothing
temporary about the files - they must still be opened,
flushed, removed, etc., by standard library calls.

If .§. is not NULL, tmpnam writes on and returns the string.§.. If.§.
is NULL, tmpnam writes the file name in an internal static
string and returns it. Subsequent calls to tmpnam overwrite
that string.

The macro TMP MAX specifies the minimum number of
names tmpnam must generate before repeating any.

CAUTIONS

If .§. is not NULL, tmpnam writes on whatever it points to, up to
the number of bytes specified by L tmpnam.

SYSTEM DEPENDENCIES

Under MS-DOS, tmpnam does not generate unique names
across program executions. Two runs of a program that
calls tmpnam generate identical file names.

SEE ALSO

rename to rename a file.

tmpfile to create and open a temporary file.
EXAMPLE

See the example for remove.

v.IO.15.85 © 1985 MetaWare Incorporated

stdio.h page 10-64

ungetc - Push character back into an input stream.
INTERFACE

'include (stdio.h>
int ungetc(int c, FILE *stream);

DESCRIPTION

Pushes the character .£ (the least significant byte of the int
9 back into the input stream stream. The character is
returned by the next read on stream, assuming that fseek
(or rewind) is not called first. fseek and rewind erase all
memory of pushed-back characters.

ungetc does not change the external storage associated
with stream. ungetc works on buffered streams, pushing
the character back into the buffer. The effect of calling
ungetc on an unbuffered stream is to cause the stream to
become buffered.

ungetc uses whatever space is available in the buffer to
store pushed-back characters. The maximum number of
characters that can be successfully pushed back is BUFSIZ
(if the buffer was empty), the minimum is none (if the buffer
was full). If any characters have been read or fseek or
rewind has been called since a call to ungetc, at least one
character can be successfully pushed back.

ungetc returns the character pushed if successful, or EOF if it
could not push the character back into the stream.

SURPRISES

ungetc takes .£ as an int rather than a char parameter and
returns an int rather than a char to conform to the
conventions discussed in the Parameter Passing section
of the introduction. If an object of type char is passed to
ungetc, it is automatically coerced to type into

v.lO.lS.8S © 1985 MetaWare Incorporated

stdio.h page 10-65

ungetc - Continued.

CAUTIONS

Calling ungetc on an unbuffered file causes the file to
become buffered.

SEE ALSO

fgetc, getc, getchar, fgets, gets, fputc, putc, putchar,
fputs, puts.

For short descriptions of all of the listed functions, see the
SEE ALSO section for fgetc.

EXAMPLE

The program below copies file1 to file2, removing
occurrences of "ab".

Hinclude (stdio.h)
ndefine FAILURE (-1)
main() (

FILE *FP1, *FP2;
int c;

FILE *open(char *f,char *mode) {
FILE *FP;
if «FP = fopen(f,mode)) == NULL) perror(f);
return FP;
}

if«(FP1 = open("file1","r")) == NULL) II
«FP2 = open("file2","w")) == NULL))
return FAILURE;

while (!feof(FP1)) {
if «c = fgetc(FP1)) != 'a')

putc(c, FP2);
else /* c == 'a' */
if «c = fgetc(FP1)) != 'b') (

ungetc(c, FP1);
putc('a', FP2);

} } }

v.lO.15.85 © 1985 MetaWare Incorporated

stdio.h

vfpri ntf
INTERFACE

page 10-66

Print on a file, using the variable argument
macros.

linclude (stdio.h)
int vfprintf(FILE *stream,char *format,va_list arg);

DESCRIPTION

Is equivalent to fprintf(stteam, format,arg) where arg has
been initialized by the macro va start (and possibly
subsequent va arg calls). See fprintf in this section on
the effect of vfprintf and Section stdarg.h on how to use
the variable argument macros.

SEE ALSO

fprintf, printf, sprintf, vprintf, vsprintf, fscanf, scanf,
sscanf.

See the SEE ALSO section of fprintf for a description of the
listed functions.

vpri ntf
INTERFACE

- Print on standard output, using the
variable argument macros.

int vprintf(char *format, va_list arg);
DESCRIPTION

Is equivalent to printf(format ,arg) where arg has been
initialized by the macro va start (and possibly subsequent
va arg calls). See fprintf in this section on the effect of
vprintf and Section stdarg.h on how to use the variable
argument macros.

SEE ALSO

fprintf, printf, sprintf, vfprintf, vsprintf, fscanf,
scanf, sscanf.

See the SEE ALSO section of fprintf for a description of the
listed functions.

v.IO.15.85 © 1985 MetaWare Incorporated

5 tdio. h page 10-67

vs p ri n tf - Print on a string, using the variable
argument macros.

INTERFACE

int vsprintf(char *s, char *format, va_list arg);
DESCRIPTION

Is equivalent to sprintf(s, format ,arg) where arg has been
initialized by the macro va start (and possibly subsequent
va arg calls). See sprintf in this section on the effect of
vsprintf and Section stdarg.h on how to use the variable
argument macros.

SEE ALSO

fprintf, printf, sprintf, vfprintf, vprintf, fscanf,
scanf, sscanf.

See the SEE ALSO section of fprintf for a description of the
listed functions.

_setmode - Make a stream into a text stream or a
binary stream, or set the default for files
opened without such a specification.

INTERFACE (Extra-ANSI.)

#include (stdio.h)
void _setmode(FILE *stream, int mode);

DESCRIPTION

Some systems make a distinction between text streams
and binary streams. On such systems, character
sequences in text streams may be converted to other
sequences on input or output, while for binary streams, 110
performs no conversions. For information on the
conversions performed on text streams, see the beginning
of this section, under System Dependencies.

v.1O.1S.85 © 1985 MetaWare Incorporated

stdio. h page 10-68

_setmode - Continued.

setmode has two distinct functions. It can be used to
change the text/binary mode of stream, or it can be used to
set the variable fmode. fmode is used to designate a
stream as text or binary if no explicit designation is given
when the stream is created, that is, when a file is opened.
See fopen for how to explicitly designate the text/binary
mode of a stream when it is created.

Several macros are provided as valid values for mode.

If stream is not NUll, it is assumed to point to a stream,
which becomes a text stream if mode is _TEXT, or becomes
a binary stream if mode is _BINARY.

If stream is NUll, the variable fmode is set to mode. If fopen
or freopen is called without specifying that the stream being
returned is text or binary, the text/binary mode of the
stream is set according to the value of fmode. Changing
the value of fmode has no effect on existing streams. The
text/binary mode of the streams opened automatically at
program startup (stdin, stdout, and stderr) can be
specified by linking fmode in with an appropriate value.
Values formode and their usage are:

All FILES TEXT all streams default to text. - - -
_All_FILES_BINARY all streams default to binary.

USER FILES TEXT all streams· default to text except
those automatically provided at start
up (stdin, stdout, and stderr).

_USER_FILES_BINARY all streams default to binary except
those automatically provided at start
up (stdin, stdout, and stderr).

STOERR TEXT stderr defaults to text. - -
_STOERR_BINARY stderr defaults to binary.

v .10.15.85 © 1985 MetaWare Incorporated

stdio.h page 10-69

_setmode - Continued.

STDIN AND STDOUT TEXT stdin, stdout default to text.

_STDIN_AND_STDOUT_BINARY stdin, stdout default to binary.
CAUTIONS

If stream is not NULL but is not a valid FILE pOinter, some
arbitrary place in memory is written on.

Buffered output streams cannot be successfully changed
arbitrarily between text and binary modes. To change the
mode of an output stream in midstream, call fflush on the
stream prior to calling setmode on it.

SEE ALSO

fopen to open a file.

freopen to open a file using an existing FILE variable.
EXAMPLE

The program below copies a line from standard input to
standard output, without doing any text conversions.

Hinclude (stdio.h)
main() {

char line [256] ;
setmode(stdin, BINARY);

-setmode(stdout,- BINARY);
If (gets(line)) -

puts(line);

v.IO.lS.8S © 1985 MetaWare Incorporated

stdlib.h

11
stdlib.h

page 11-1

The header file stdlib.h declares a type, defines two
macros, and declares a number of functions of general utility.
Among them are functions for converting strings to numeric
values, for communicating with the host environment, for
managing memory, and for generating pseudo-random
integers.

errno. stdlib.h contains a function strtol that references
the variable errno, which is declared in stdefs.h. err no is set
to a positive integer error code by some library functions and
system calls when an error occurs during their execution. It is
set to zero at program start up. It is never set to zero by any
library function. To reference ~ from a program, either the
header file stdefs.h must be included, or errno must be
declared to be external ("extern int errno;"). --

one xi t_t - A type used by the function onexi t.

INTERFACE

linclude <stdlib.h>
DESCRIPTION

onexi t t is the type of both the argument to and the value
returned by the function onexi t.

v.10.ls.as © 1985 MetaWare Incorporated

stdlib.h page 11-2

NULL - A macro used to represent the null pointer.
INTERFACE

'include (stdlib. h)

DESCRIPTION

NULL expands to a value that is assignment-compatible with
any pointer type and compares equal with the constant
zero. It is therefore suitable as a representation of the null
pointer. Note that NULL is not appropriate as the
terminating character of a string, as the size of a pointer is
not necessarily the same as the size of the character NUL.

NULL is also defined in stdefs.h and stdio.h.

size_t - A macro used as a type specifier.

INTERFACE

/Iinclude (stdlib. h)

DESCRIPTION

size t expands to the integral type of the result of the
sizeof operator.

size t is also defined in stdefs.h, std/io.h, and string.h.

v.1O.lS.8S ~ 1985 MetaWare Incorporated

page 11-3 stdlib.h

abort - Terminate a program abnormally.

INTERfACE

void abort(void);
DESCRIPTION

Causes the program to terminate. Open streams are not
closed and temporary files are not removed. -1 is returned
to the calling environment of the program.

SEE ALSO

exit to terminate a program normally.
EXAMPLE

The program fragment below aborts the program with a
message if all is not okay.

'include <stdlib.h>

if (all != okay) {
fprintf(stderr, "Too messed up to continue.\n")
abort();
}

v.IO.lS.8S © 1985 MetaWare Incorporated

stdlib.h

atof
INTERFACE

- ASCII to floating-point.

'include (stdlib.h>
double atof(char *nptr);

DESCRIPTION

page 11-4

Returns the result of converting a prefix of the string nptr to
a floating-paint number. Recognizes strings of the form

Whitespace? Sign? Digits ('.' Digits)?
«'e' I 'E') Sign? Digits)?

(See the introduction for an explanation of this regular
expression notation.)

The first character that is not in the above sequence ends
the conversion. If the string is empty, if no Digits are found
in the sequence, or if the only Digits found follow the 'e' or
'E', at of returns zero. If the value cannot be represented,
the result is undefined.

SEE ALSO

atoi for ASCII to into
atol for ASCII to long into
strtod for string to double.
strtol for string to long int .

EXAMPLE

The program below computes the area of a circle with
diameter 1.0. This example illustrates the use of atof. A
similar example is given in the EXAMPLE section ofStrtod,
pointing out the differences between the functions.

linclude <stdlib.h>
maine) {

char piE] = "3.141593";
char diam[] = "1.0";
double area;
double diameter = atof(diam);
area = (atof(pi)*diameter*diameter) 14.0;
}

v.lO.lS.8S © 1985 MetaWare Incorporated

stdlib.h page 11-5

atai - ASCII to into
INTERFACE

int atoi(char *nptr);
DESCRIPTION

Converts a prefix of the string nptr to an integer, and
returns that value. It recognizes strings of the form

Whitespace? Sign? Digits

(See the introduction for an explanation of this regular
expression notation.)

The first character that is not in the above sequence ends
the conversion. If the string is empty or no Digits are found
in the sequence, atoi returns zero. If the value cannot be
represented, the result is undefined.

SEE ALSO

atof for ASCII to floating-point.
atol for ASCII to long into
strtod for string to double.
strtol for string to long into

EXAMPLE

The program below computes the number of miles that
, would be covered if one went 60 miles per hour for a day.
This example illustrates the use of atoi and atol. A similar
example is given in the EXAMPLE section of strtol, pointing
out the differences between the functions.

linclude <stdlib.h>
main() {
Idefine secs-per_hr (3600)

char seconds[] = "86400";
char mph[] = "60";
long miles;
miles = atoi(mph)*atol(seconds)/secs-per_hr;
}

v.IO.15.85 © 1985 MetaWare Incorporated

stdlib.h

atol
INTERFACE

- ASCII to long into

linclude (stdlib.h)
long int atol(char *nptr);

DESCRIPTION

page 11-6

Converts a prefix of the string nptr to an integer, and
returns that value. It recognizes strings of the form

Whitespace? Sign? Digits

(See the introduction for an explanation of this regular
expression notation.)

The first character that is not in the above sequence ends
the conversion. If the string is empty or no Digits are found
in the sequence, atol returns zero. If the value cannot be
represented, the result is undefined.

SEE ALSO

atoi for ASCII to into

atof for ASCII to floating-point.

strtod for string to double.

strtol for string to long into
EXAMPLE

See the example for atoi.

v.10.1S.8S ~ 1985 MetaWare Incorporated

stdlib.h page 11-7

calloc - Dynamically allocate zero-initialized
storage for objects.

INTERFACE

'include <stdlib.h>
void *calloc(unsigned int nelem, size_t elsize);

DESCRIPTION

Returns a pointer to the lowest byte of newly allocated
space for nelem objects of elsize bytes each. The space is
initialized to all zeros. If the space cannot be allocated,
ealloe returns NULL.

SEE ALSO

malloe to dynamically allocate uninitialized storage.

realloe to change the size of previously dynamically
allocated storage.

free to free dynamically allocated storage.

v.IO.IS.8S © 1985 MetaWare Incorporated

stdlib.h page 11-8

exit - Terminate a program normally.
INTERFACE

void exit(int status);
DESCRIPTION

Causes the program to terminate. Any functions registered
with one xi t are called in reverse order of registration.
Subsequently, open streams are closed and temporary files
are removed. status is returned to the calling environment
of the program.

SEE ALSO

abort to terminate a program abnormally.

onexi t to register functions for execution at program
termination time.

EXAMPLE

The program fragment below terminates the program if
everything is finished.

'include <stdlib.h>

if (everything == finished)
exit(l);

v.W.lS.8S © 1985 MetaWare Incorporated

stdlib.h

free

INTERFACE

page 11-9

Free storage allocated by calloc, malloc,
or realloc.

void free(void *ptr);
DESCRIPTION

Takes a pointer to the lowest byte of dynamically allocated
storage - a pointer that was returned by calloc, malloc, or
realloc: the storage is made available again for allocation
by one of these functions.

CAUTION

If the freed storage is referenced, the resulting behavior is
undefined, and quite likely undesirable. Likewise, if the
argument to free is not a pointer previously allocated by
calloc, malloe, or realloe, the behavior is undefined.

SEE ALSO

malloe to dynamically allocate uninitialized storage.

realloe to change the size of previously dynamically
allocated storage.

ealloe to dynamically'allocate zero-initialized storage.

v.ID.IS.8S © 1985 MetaWare Incorporated

stdlib.h page 11-10

getenv - Search for an environment variable.
INTERFACE

char *getenv(char *name);
DESCRIPTION

Searches the host environment list for a character
sequence of the form "variable=value", where "variable"
matches name. If a match is made, a pointer to the
character sequence "value" is returned, otherwise NULL is
returned.

EXAMPLE

The following program fragment stamps the date (if
defined) on the output.

'include <stdlib.h>
char *s;

if «s = getenv("DATE"» != NULL)
printf("%s\n", s);

malloe - Dynamically allocate uninitialized storage.
INTERFACE

linclude <stdlib.h>
void *malloe(size_t size);

DESCRIPTION

Returns a pointer to the lowest byte of size bytes of newly
allocated storage. If the space cannot be allocated, malloe
returns NULL.

SEE ALSO

ealloe to dynamically allocate zero-initialized storage.

realloe to change the size of previously dynam ically
allocated storage.

free to free dynamically allocated storage.

v.1O.15.85 © 1985 MetaWare Incorporated

stdlib.h

onexit

INTERFACE

page 11-11

- Register functions for execution at
program termination time.

linclude <stdlib.h>
onexit_t onexit(onexit_t (*func(void»;

DESCRIPTION

Registers the function fcn pointed to by func to be called at
program termination, in reverse order of registration. fcn
takes no parameters and returns a value of type onexi t t.
Because it is called after all functions (including main) have
returned, fcn must reference only static objects.

There are some constraints that must be observed in order
for onexit to function properly, and that cannot be checked
by a compiler. There is no limit to the number of functions
that may be registered with onexi t. However: 1) For each
function to be registered, a distinct static variable of type
onexit t must be declared. 2) Within the body of each
function to be registered there must be a return statement
that returns such a static object. 3) The return value of
the call onexit(func) must be assigned into exactly that
object that is returned by fcn. 4) No function may be
registered more than once. 5) No two registered functions
may return the same object. See the example below.

The requirement that fcn return the right value is an integral
part of the implementation of onexit, as whatever fen
returns, right or wrong, will be called as a function, and the
return value of that will be called, and so on, until the value
returned by the first call to onexit is encountered. This
allows for an arbitrary number of registered functions
without wasting space.

v.lO.l5.85 © 1985 MetaWare Incorporated

stdlib.h

onexit
CAUTION

page 11-12

- Continued.

If a function to be registered fails to return the required
value (see above), or if the result of the call to onexit is not
assigned into the appropriate object, undesirable behavior
will occur (most likely, a series of arbitrary values will be
taken to be pointers to functions, and those "functions" will
be called).

If a function is registered more than once, or two registered
functions return the same value, undesirable behavior will
occur (most likely, the program will go into a loop endlessly
calling registered functions).

SEE ALSO

exit to terminate a program normally.
EXAMPLE

'include <stdlib.h>
linclude <stdio.h>
onexit t f return;
onexit-t fT){ printf("f was called. \n");

- return f_return;
}

onexit t 9 return;
onexit-t gT){ printf("g was called. \n");

- return g_return;
}

onexit t h return;
onexit-t hT){ printf("h was called. \n");

- return h_return;
}

maine) {
f return = onexit(f);
g-return ~ onexit(g);
h-return = onexit(h);
printf(IILast statement in main.\n");
}

v.ID.IS.8S © 1985 MetaWare Incorporated

stdlib.h
prints

Last statement in main.
h was called.
g was called.
f was called.

page 11-13

rand - Pseudo-random number generator.

INTERfACE

int rand(void);
DESCRIPTION

Returns a pseudo-random integer. The sequence
computed by rand has a period of 232.

ANSI has specified the implementation, adhered to by this
library, for rand and srand, as follows:

static unsigned long int next = 1;
int rand() {

next = next * 1 103 515 245 + 12 345;
return (unsigned int)(next/65_536) % 32_768;

void srand(unsigned int seed) {
next = seed;

SEE ALSO

srand to seed the rand function.

EXAMPLE

#include <stdlib.h>
main() {
if (rand / 2)

printf("Heads\n")
else

printf("Tails\n");

v.10.1S.8S © 1985 MetaWare Incorporated

stdlib.h

realloc
INTERFACE

page 11-14

- Reallocate storage allocated by calloc or
malloc.

'include <stdlib.h>
void realloc(void *ptr, size_t size);

DESCRIPTION

Changes the size of the object pointed to by ptr, making it
size bytes. ptr must be a pointer previously returned by
calloc, malloc, or realloc. The contents of the storage are
unchanged up to the smaller of size and the original size of
the object.. If the space cannot be allocated, realloc
returns NULL, and the original object is unchanged. Newly
allocated storage (if any) is uninitialized.

SEE ALSO

malloc to dynamically allocate uninitialized storage.

calloc to dynamically allocate zero-initialized storage.

free to free dynamically allocated storage.

srand

INTERFACE

- Seed the pseudo-random number
generator.

void srand(unsigned int seed);
OESCRIPTION

Uses its argument as a seed for the sequence of
pseudo-random numbers generated by rand. If rand is
called before any calls to srand, the seed used is 1 .

SEE ALSO

rand to generate pseudo-random numbers.

v.lO.lS.85 © 1985 MetaWare Incorporated

stdlih.h page 11-15

strtod - String to double.

INTERFACE

'include (stdlib.h>
double strtod(char *nptr, char **endptr);

DESCRIPTION

Converts a prefix of the string nptr to a floating-point
number, and returns that value. A pointer into nptr,
pointing at the place where the conversion left off, is placed
in the pointer referenced by endptr. strtod recognizes
strings of the form

Whitespace? Sign? Digits ('.' Digits)?
«'e' I 'E') Sign? Digits)?

(See the introduction for an explanation of this regular
expression notation.)

The first character that is not in the above sequence ends
the conversion. If endptr is not NULL, a pointer to that
character is stored in the object endptr points to. If the
string is empty, no Digits are found in the sequence, orthe
only Digits found follow the 'e' or 'E', strtod returns zero.
If the value cannot be represented, the result is undefined.

SEE ALSO

atoi for ASCII to into

atol for ASCII to long into

atof for ASCII to floating-point.

strtol for string to long into

v.10.15.85 © 1985 MetaWare Incorporated

stdlih.h

strtod
EXAMPLE

page 11-16

- Continued.

The program below computes the area of circles with
va~ious diameters. A similar example is given in the EXAMPLE

section of atof, pointing out the differences between the
functions.

'include <stdlib.h>
main() {
Ide fine INPUTS (5)

char diameters[] = "1.03 67.94 9.2032e27 4 8e-32";
char *diameter = diameters;
double pi = 3.141593;
double diam;
double area[INPUTS-1];
int i = 0;
while (*diameter) { /* while not at end of string * /

diam = strtod(diameter, &diameter);
area[i++] = pi * diam * diam / 4.0;
}

v.lO.lS.8S © 1985 MetaWare Incorporated

stdlib.h page 11-17

strtol - String to long.

INTERfACE

'include <stdlib.h>
long strtol(char *nptr, char **endptr, int base);

DESCRIPTION

Converts a prefix of the string nptr to a long int, and
returns that value. A pointer into nptr, pointing at the place
where the conversion left off, is placed in the pointer
referenced by endptr. strtol recognizes strings of the form

Whitespace? Sign? ('0' ('x' I 'X'»? Digits

(See the introduction for an explanation of this regular
expression notation.)

Ox or OX can appear in the string only if base is 16 or o. The
first character that is not in the above sequence ends the
conversion. If endptr is not NULL, a pointer to that character
is stored in the object endptr points to. If the string is empty
or no Digits are found in the sequence, strtol returns
zero. If the value cannot be represented, the result is
undefined.

If base is between 2 and 36, it is used as the base for
conversion. If base is 16, Ox or OX can prefix the digit
string. If base is 0, nptr itself determines which of 3 bases
are used for conversion. Following the sign (if any), a
leading Ox or OX indicates a hexadecimal number: base 16
is used. Otherwise, a leading a indicates an octal number:
base 8 is used. Otherwise base 10 is used. If base > 10
then alphabetic characters are available for use as Digits
(as for hexadecimal numbers, carried to the logical limit).
For example, in base 17, 16 is expressed as g or G, etc.

If the number is too large in magnitude to be expressed as
a long int, errno is set to ERANGE and LONG -.MAX or LONG_MIN
is returned, depending on the sign of the input.

v.ID.IS.8S © 1985 MetaWare Incorporated

stdlib.h

strtol - Continued.

SEE ALSO

atoi for ASCII to into

atol for ASCII to long into

at of for ASCII to floating-point.

strtod for string to double.
EXAMPLE

page 11-18

The following program computes the number of miles that
would be covered if one went 60 miles per hour for a week,
a day, an hour, a minute, and a second. A similar example
is given in the EXAMPLE section of atoi, pointing out the
differences between the functions.

linclude <stdlib.h>
main() {
Idefine secs-per_hr (3600)
Idefine INPUTS (5)

char sec_list[] = "604800 86400 07020 Ox3c 1";
char *second-ptr = sec_list;
long seconds;
char mph[] = "60";
long miles[INPUTS-l];
int i = 0;
while (*second-ptr) {/* while not at end of string * 1

seconds = strtol (second -ptr, &second -ptr, 0);
miles[i++] = seconds*atoi(mph)/secs per hr;
} - -

v.10.1S.8S © 1985 MetaWare Incorporated

stdlib.h

system
INTERFACE

page 11-19

Pass a command to the operating system.

lnt system(char *string);

DESCRIPTION

Passes the string string to be executed as a command by
a command processor provided by the host environment. If
string is NULL, a return value of zero indicates that there is
no command processor.

SYSTEM DEPENDENCIES

Under MS-DOS, system has no effect and always returns
zero. It is provided solely in the interest of compatibility with
other systems.

v.10.15.85 © 1985 MetaWare Incorporated

string.h

12
string.h

page 12-1

The header file string.h defines two macros and declares a
number of functions for manipulating strings and arbitrary
areas of memory. The functions designed to manipulate
strings take strings as parameters. The functions designed to
manipulate arbitrary areas of memory take (void *) pointers to
any type of object as parameters. Many of these functions are
provided as macros as well.

size_t - A macro used as a type specifier.
INTERFACE

'include <string. h)
DESCRIPTION

Expands to the integral type of the result of the sizeof
operator.

size t is also defined in stdefs.h, stdlio.h, and stdlib.h.

_M AX S T R I N G - A macro denoting the maximum
length of a string.

INTERFACE

,include <string.h)
DESCRIPTION

Expands to the maximum length a string may attain.

v.1D.15.85 © 1985 MetaWare Incorporated

string.h

memchr
INTERFACE

page 12-2

Find a character in an area of memory.

'include (string. h>
void *memchr(void *s, int c, size_t n);

DESCRIPTION

Finds the first occurrence of the character .£ (the least
significant byte of the int E> in the .!! bytes starting at the
location referenced by~. A pointer to the character is
returned if it is found; NULL is returned if it is not.

SURPRISES

memchr takes .£ as an int rather than a char parameter to
conform to the conventions discussed in the Parameter
Passing section of the introduction. If an object of type
char is passed to memchr, it is automatically coerced to type
into

SEE ALSO

strchr to find the first occurrence of a character in a string.

strrchr to find the last occurrence of a character in a string.

strpbrk to find the first occurrence of any character from
one string in another.

strcspn to determine the length of the prefix of a string not
containing any characters from another string.

strspn to determine the length of the prefix of a string
composed of characters from another string.

v.1O.lS.8S ~ 1985 MetaWare Incorporated

string.h

memchr
EXAMPLE

page 12-3

Continued.

The function below returns a pointer to the first instance of
the string 2. in the.!} bytes starting at the location referenced
by ptr.

Hinclude <string.h>
char *find string(char *s, void *ptr, int n) {

void *start = ptr;
void *char one;
int len = str1en(s);

Hdefine BYTES LEFT «n-1en)-(start-ptr»
do { -

char one = memchr(start,*s,BYTES LEFT);
if (strcmp(s,char one) == 0) -

return char one;
start = char one + 1;
} while (char one != NULL);

return NULL; -

v.10.15.85 © 1985 MetaWare Incorporated

string.h page 12-4

me m c m p - Compare two areas of memory.
- Provided as a macro and as a function.

INTERFACE

'include <string.h>
int memcmp(void *51, void *52, size_t n);

DESCRIPTION

Compares.!! bytes starting at the location pointed to by 51 to
!! bytes starting at the location pointed to by 52. The bytes
are treated as characters - the comparison is
lexicographical. If 51'S bytes compare greater than 52'S, a
value greater than zero is returned. If the two areas
compare equal, zero is returned. If 51'S bytes compare less
than 52'S, a value less than zero is returned.

SEE ALSO

strcmp to compare one string to another.

strncmp to compare some characters from one string to
some characters from another.

EXAMPLE

The program below compares filel and file2.
'include <string.h>
'include <stdio.h>
Ide fine EQUAL (1)
Idefine UNEQUAL (0)
'define FAILURE (-1)
'define TRUE (1)
#define CHUNK (5000)
maine) {

FILE *Fl, *F2;
char first[CHUNK], second[CHUNK];
char *filel = first, *file2 = second;
size_t n, m;

/* Open the files to be compared. If the files */
/* cannot be opened, return an error code to the */
/* calling environment. */

v.lO.lS.8S © 1985 MetaWare Incorporated

string. h page 12-5

if «F1 = fopen("file11,lr")) -- NULL) {
perror("File1");
return FAILURE;
}

if «F2 = fopen("file21,lr")) -- NULL) {
perror("File2");
return FAILURE;
}

while (TRUE) {

v.10.1S.8S

/* Try to read a CHUNK of characters from */
/* each file. If there are not that many */
/* left, fread returns the number it reads. */
n = fread(file1, 1, CHUNK, F1);
m = fread(file2, 1, CHUNK, F2);
if (n != m) {

printf("Files are not of equal length.");
return UNEQUAL;
}

if (n == 0) {
/* End of file reached. All comparisons */
/* from previous iterations were equal. */
printf("Files are identical.");
return EQUAL;
}

/* Compare character sequences just read. */
/* Return if they are not the same. */
if (memcmp(filel,file2,n)) {

printf("Files are not identical.");
return FAILURE;

© 1985 MetaWare Incorporated

string.h page 12-6

memcpy - Copy from one place in memory to
another.

- Provided as a macro and as a function.
INTERFACE

'include <string.h>
void *memcpy(void *s1, void *s2, size_t n);

DESCRIPTION

Copies .!! bytes from the location referenced by s2 to the
location referenced by s1. s2 is returned. memcpy copies
from left to right (low addresses to high addresses). If s2 <
s1 < s2 + .!!' that is, if the source and destination areas
overlap, with the destination area beginning within the
source area, use rmemcpy.

When used as a macro, s1 is evaluated more than once.
CAUTIONS

memcpy writes on .!! bytes.

If the source and destination areas overlap such that s2 <
s1 < s2 + .!!' part of the source area (that part from s1 to s2
+ .!J) will have been overwritten by the copy before itself
being copied. Use rmemcpy to avoid that.

SURPRISES

memcpy copies the second argument to the first.
SEE ALSO

memcpy to copy from one place in memory to another, from
left to right (low to high addresses).

rmemcpy to copy from one place in memory to another,
from right to left (high to low addresses).

strcpy to copy one string onto another, from left to right
(low to high addresses).

rstrcpy to copy one string onto another, from right to left
(high to low addresses).

v.lO.15.85 © 1985 MetaWare Incorporated

string. h page 12-7

memcpy - Continued.

strncpy to copy some characters from one string onto
another, from left to right (low to high addresses).

rstrncpy to copy some characters from one string onto
another, from right to left (high to low addresses).

memset to copy one character into an area of memory.
EXAMPLE

,include <string.h>
'include <stdio.h>
main () {

char arrayl[SO] =
"l234567890abcdefghijklmnopqrstuvwxyz";

char array2[SO] =
"l234567890abcdefghijklmnopqrstuvwxyzll;

char *sourcel = &arrayl[lO], *destl = arrayl;
char *source2 = &array2[lO], *dest2 = array2;
int i;
memcpy (dest2, source2, 27);

rmemcpy(destl, sourcel, 27);
for (i = 0; i <=37; i++)

putchar(arrayl[i] == '\O'? '®' arrayl[i]);
putchar('\n');
for (i = 0; i <= 37; i++)

putchar(array2[i] == '\O'? '®' array2[i]);
}

prints

abcdefghijklmnopqrstuvwxyz®rstuvwxyz®®
uvwxyz®rstuvwxyz®rstuvwxyz®rstuvwxyz®®

v.10.1S.8S © 1985 MetaWare Incorporated

string.h page 12-8

me m set - Duplicate one character across an area of
memory.

- Provided as a macro and as a function.
INTERFACE

'include <string.h>
void *memset(void *s, int c, size_t n);

DESCRIPTION

Copies the character .£ (the least significant byte of the int
.9 into each ·of .!l bytes starting at the location pointed to by
s. s is returned.

When used as a macro, .§. is evaluated more than once.
CAUTIONS

memset writes on .!l bytes.
SURPRISES

memset copies the second argument to the first.

memset takes .£ as an int rather than a char parameter to
conform to the conventions discussed in the Parameter
Passing section of the introduction. If an object of type
char is passed to memset, it is automatically coerced to type
into

SEE ALSO

memcpy to copy from one place in memory to another.

strcpy to copy the characters from one string into another.

strncpy to copy some characters from one string into
another.

EXAMPLE

The function below writes NULS on each character in sl that
is not in s2. This example illustrates the use of Hset,
strspn, and strcspn.

v.lO.lS.8S © 1985 MetaWare Incorporated

string. h page 12-9

memset - Continued.

#include <string.h>
void strip (char *s1, char *s2) {

int i;
while (*s1 != 0) { /* not the end of s1, so */

/* Set s1 to point at the first charac-*/
/* ter from s1 that is not in s2. */

v.lO.15.85

s1 += strspn(s1, s2);
/* Set i to the length of the prefix of */
/* s1 containing no characters from s2. */
/* Write NUL on each such character. */

memset(s1, 0, i = strcspn(s1, s2));
/* Set s1 to point at the character */
/* after the last NUL just written. */

s1 += i;
}

© 1985 MetaWare Incorporated

string.h

strcat
INTERrACE

page 12-10

- Concatenate two strings.
- Provided as a macro and as a function.

linclude (string.h)
char *strcat(char *sl, char *s2);

DESCRIPTION

Appends a copy of the string s2 to the string sl. The first
character of s2 writes over the NUL that ends s1. sl is
returned.

When used as a macro, sl and s2 are evaluated more than
once.

CAUTIONS

strcat writes until the end of string s2 is encountered,
without regard for the size of sl.

SEE ALSO

strncat to append up to n characters from one string onto
another.

strncat to append one string onto another, up to a limit of
n characters total.

strcats to concatenate n strings, up to a limit of m
characters total.

EXAMPLE

The program below collects all lines in fi1e1 that begin with
"a", up to a 5000 character limit, into a buffer lines and
prints the buffer. This example illustrates the use of strcat
and strncat.

v.lO.15.85 ~ 1985 MetaWare Incorporated

string.h

strcat - Continued.

Hinclude (string.h)
'include (stdio.h)
,define LINESIZE (256)
Hdefine OUTPUTLIMIT (5000)
Hdefine TRUE (1)
ndefine FAILURE (-1)
main() {

FILE *F1;

page 12-11

char lines[OUTPUTLIMIT] ="" line[LINESIZE], *s;
int i = OUTPUTLIMIT, j = 0;
if «F1 = fopen("file1","r"» == NULL) (

perror("File1");
return FAILURE;
}

while (TRUE) (
/* Read a line and point s at it. */

s = fgets(line, LINESIZE, Fl);
/* If no line was read, we're done. */

if (s == NULL) break;
/* if the line does not start */
/* with a, read the next line. */

if (line[O] == 'a')
/* Append to lines as much of */
/* the line as will fit. */

if (i ((j = strlen(line») {
strncat(lines, line, i);
break;
}

else {
strcat(lines, line);
i -= j;
}

/* Print the lines. */
puts(lines);
}

v.10.15.85 © 1985 MetaWare Incorporated

string.h

strchr
INTERFACE

page 12-12

Find the first occurrence of a character in
a string.

char *strchr(char *s, int c);
DESCRIPTION

Finds the first occurrence of the character £ (the least
significant byte of the int.£) in the string~. A pointer to the
character is returned if it is found; NULL is returned if not.
NUL is a valid value for c and results in a pointer to the end of
the string (to the terminating NUL) being returned.

SURPRISES

strchr takes .£ as an int rather than a char parameter to
conform to the conventions discussed in the Parameter
Passing section of the introduction. If an object of type
char is passed to strchr, it is automatically coerced to type
into

SEE ALSO

memchr, strrchr, strpbrk, strcspn, strspn.

For short descriptions of all of the listed functions, see the
SEE ALSO section for memchr.

v.lO.lS.8S © 1985 MetaWare Incorporated

string.h

strchr
EXAMPLE

page 12-13

- Continued.

The function below returns a pointer to the first instance of
the characters that make up stringl, i.e. stringl less its
terminating NUL, in the string string2. This example
illustrates the use of memchr and strncmp.
Hinclude (string.h>
Hinclude (stdio.h>
char *find_string(char *stringl, void *string2) {

void *start = string2 ;
void *first char;
int len = strlen(stringl);
do {

first char = strchr(start,*stringl);
if (strncmp(s,first char,len) == 0)

return first char;
start = first char + 1;
} while (first char != NULL);

return NULL; -

v.lO.15.85 © 1985 MetaWare Incorporated

page 12-14 string.h

strcmp - Compare one string to another.
- Provided as a macro and as a function.

INTERFACE

,include <string.h>
int strcmp(char *s1, char *s2);

DESCRIPTION

Compares the string s1 to the string s2. If the first string
compares greater than the second, a value greater than
zero is returned. If the two strings compare equal, zero is
returned. If the first string compares less than the second,
a value less than zero is returned. If two strings of unequal
length compare equal to the extent of the shorter string, the
longer is lexicographically greater, e.g. "abc" compares
greater than "ab".

SEE ALSO

memcmp to compare two areas of memory.

strncmp to compare some characters from one string with
some characters from another.

EXAMPLE

The program below compares file1 and file2line by line.

'include <string.h>
,include <stdio.h>
maine) {
,define EQUAL (1)
,define UNEQUAL (0)
,define FAILURE (-1)
,define TRUE (1)
,define LINESIZE (256)

v.1O.lS.8S © 1985 MetaWare Incorporated

string.h

strcmp - Continued.

page 12-15

FILE *F1, *F2;
char line1[LINESIZE], line2[LINESIZE], *sl, *s2;
int i = 1;

/* Open the files to be compared. If the */
/* files cannot be opened, return an error */
/* code to the calling environment. */

if «F1 = fopen("file1","r")) == NULL) (
perror("file1");
return FAILURE;
}

if «F2 = fopen("file2","r")) == NULL) (
perror("file2");
return FAILURE;
}

while (TRUE) (
/* Read a line from each file. */

sl = fgets(line1, LINESIZE, F1);
s2 = fgets(line2, LINESIZE, F2);

/* A NULL return from fgets means end-of- */
/* file was found. If both strings are */
/* NULL, the files are equal, if only one */
/* is NULL, they are not equal. */

if «sl == NULL) I I (s2 == NULL)) {
if (sl == s2) break;
printf("Files diverge at line %d.", i);
return UNEQUAL;
}
/* Compare the strings. */

if (strcmp(line1,line2)) (
printf("Files diverge at line %d.", i);
return UNEQUAL;
}

else i++;
}

printf("Files are identical.");
return EQUAL;
}

v.10.1S.85 © 1985 MetaWare Incorporated

string.h

strcpy

INTERFACE

page 12-16

- Copy the characters of one string into
another.

- Provided as a macro and as a function.

linclude <string.h>
char *strcpy(char *sl, char *s2);

DESCRIPTION

Copies the characters of string s2 into string sl, including
the terminating NUL. sl is returned. strcpy copies from left
to right: low addresses to high addresses. If s2 < sl < s2
+ n, that is, if the source and destination areas overlap,
with the destination area beginning within the source area,
use rstrcpy.

When used as a macro, sl and s2 are evaluated more than
once.

CAUTIONS

strcpy writes until the end of string s2 is encountered,
without regard for the length of sl.

If the source and destination areas overlap such that s2 <
sl < s2 + !!, part of the source area (that part from sl to s2
+ !y will have been overwritten by the copy before itself
being copied.

SURPRISES

strcpy copies the second argument to the first.
SEE ALSO

memcpy, rmemcpy, rstrcpy, strncpy, rstrncpy, memset.

For short descriptions of all of the listed functions, see the
SEE ALSO section for memcpy.

v.lO.lS.8S ~ 1985 MetaWare Incorporated

string.h page 12-17

strcpy - Continued.

EXAMPLE

The function below returns the last word of the string line in
the string word. This example illustrates the use of strcpy
and strrchr.

Hinclude <string.h>
char *last word (char *line, char *word)

char *5;
/* Find the last space in line. */

s = strrchr(line, , I);
/* If not found,line itself is the last word, */

if (5 == NULL) 5 = line;
/* else the last word starts after the space. */

else 5++;
/* Copy the word into word. */

return strcpy(word, 5);
}

v.lO.1S.8S © 1985 MetaWare Incorporated

string.h page 12-18

st res p n - Determine the length of the prefix of a
string not containing any characters from
another string.

INTERFACE

'include <string.h>
size_t strcspn(char *sl, char *s2);

DESCRIPTION

Returns the length of that segment of the string sl that
begins at the beginning of the string and is made up entirely
of characters that do not occur in the string s2. NUL is not
considered a part of s2 for this purpose.

SEE ALSO

memchr, strchr, strrchr, strpbrk, strspn.

For short descriptions of all of the listed functions, see the
SEE ALSO section for memchr.

EXAMPLE

See the example for memset.

v.lO.lS.8S © 1985 MetaWare Incorporated

string.h page 12-19

strlen Find the length of a string.
Provided as a macro and as a function.

INTERFACE

'include <string. h>
size_t strlen(char *s);

DESCRIPTION

Returns the number of characters in the string ~, not
counting the terminating NUL.

EXAMPLE

The function below copies the individual words of the line
line, to a buffer, NUL terminating each copy. The words are
indexed by an array pword of pointers. The number of
words found is returned. This example illustrates the use of
str len, strncpy, and strpbrk.

'include <string.h>
int *wordi fy (char * line, char *word, char **pword) {

char *s = line;
int i = 0, j;
/* While not at the end of the string */
while (s != NULL) {

pword[i++] = 'word;
/* Find the end of a word. */

s = strpbrk(line, " H);
/* Find the length of the word. */

j = (s == NULL? strlen(line) : s - line);
/* Copy the word. */

strncpy(word,line,j);
word[j] = 0;
word += j + 1;
line += j + 1;
}

return i-I;
}

v.IO.15.85 © 1985 MetaWare Incorporated

string.h page 12-20

strncat - Append characters of one string onto
another, up to a limit.

INTERFACE

linclude (string.h>
char *strncat(char *sl, char *s2, size_t n);

DESCRIPTION

Appends up to ,!!-1 non-NUL characters from the string s2 to
the string sl. The first character of s2 writes over the NUL
that ends s1. The result is always NUL terminated.

SEE ALSO

strncat, strcats, strcat.

For short descriptions of all of the listed functions, see the
SEE ALSO section for strcat.

EXAMPLE

See the example for strcat.

v.1O.lS.8S ~ 1985 MetaWare Incorporated

string. h page 12-21

s t r n em p - Compare some characters of one string to
some characters of another.

INTERFACE

'include (string.h>
int strncmp(char *s1, char *s2, size_t n);

DESCRIPTION

Compares the string s1 to the string s2. No more than ,!}

characters are compared. If the first !l characters from the
first string (or the entire string, if it contains less than n
characters) compare greater than the corresponding
characters from the second, a value greater than zero is
returned. If the two sets of characters compare equal, zero
is returned. If the first set of characters compares less than
the second, a value less than zero is returned. If two strings
of unequal length compare equal to the extent of the
shorter string and the length of the shorter string is less
than ,!}, the longer is lexicographically greater, e.g. "abc"
compares greater than "ab".

SEE ALSO

memcmp to compare two areas of memory.

strcmp to compare one string to another.
EXAMPLE

See the example for strchr.

v.1O.1S.85 © 1985 MetaWare Incorporated

string.h page 12-22

strncpy - Copy a number of characters from one
string into another.

INTERFACE

'include (string.h)
char *strncpy(char *sl, char *s2, size_t n);

DESCRIPTION

Copies exactly .!! characters from the string s2 to the string
sl. If a NUL terminates s2 before n characters have been
copied, sl is NUL padded:lf no NUL is encountered before n
characters have been written into g, the resulting
character array is not NUL terminated. sl is returned.
strncpy copies from left to right (high addresses to low
addresses). If s2 < sl < s2 + !l, that is, if the source and
destination areas overlap, with the destination area
beginning within the source area, use rstrncpy.

CAUTIONS

strncpy writes on .!! bytes.

After a call to strncpy, it may not be safe to pass sl to
functions that expect a string, as it may not be terminated
with a NUL.

If the source and destination areas overlap such that s2 <
sl < s2 + !l, part of the source area (that part from sl to s2
+ !J) will have been overwritten by the copy before itself
being copied.

SURPRISES

strncpy copies the second argument to the first.
SEE ALSO

memcpy, rmemcpy, strcpy, rstrcpy, rstrncpy, memset.

For short descriptions of all of the listed functions, see the
SEE ALSO section for memcpy.

EXAMPLE

See the example for strlen.

v.lO.lS.8S © 1985 MetaWare Incorporated

string.h

strpbrk
INTERFACE

page 12-23

Find the first occurrence of any character
of one string in another.

char *strpbrk(char *s1, char *s2);
DESCRIPTION

Finds the first occurrence of any character from the string
s2 in the string s1. A pointer to the character is returned if it
is found; NULL is returned if it is not.

SEE ALSO

memchr, strchr, strrchr, strcspn, strspn.

For short descriptions of all of the listed functions, see the
SEE ALSO section for memchr.

EXAMPLE

See the example for strlen.

v.lo.IS.85 © 1985 MetaWare Incorporated

string.h

strrchr
INTERFACE

page 12-24

- Find the last occurrence of a character in
a string.

char *strrchr(char *s, int c);
DESCRIPTION

Finds the last occurrence of the character .£ (the least
significant byte of the int 9 in the string pointed to by~. A
pointer to the character is returned if· it is found; NULL is
returned if it is not. NUL is a valid value for c and results in a
pointer to the end of the string (pointing to the terminating
NUL) being returned.

SURPRISES

strrchr takes c as an int rather than a char parameter to
conform to the conventions discussed in the Parameter
Passing section of the introduction. If an object of type
char is passed to strrchr, it is automatically coerced to
type into

SEE ALSO

memchr, strchr, strpbrk, strcspn, strspn.

For short descriptions of a" of the listed functions, see the
SEE ALSO section for memchr.

EXAMPLE

See the example for strcpy.

v.lO.lS.8S © 1985 MetaWare Incorporated

string.h

strspn

INTERFACE

page 12-25

- Determine the length of the prefix of a
string composed entirely of characters
from another string.

'include <string.h>
size_t strspn(char *s1, char *s2);

DESCRIPTION

Returns the length of that segment of the string s1 that
begins at the beginning of the string and is made up entirely
of characters that occur in the string s2. NUL is not
considered part of s2 for this purpose.

SEE ALSO

memchr, strchr, strrchr, strpbrk, strcspn.

For short descriptions of all of the listed functions, see the
SEE ALSO section for memchr.

EXAMPLE

See the exam pie for memset.

v.IO.IS.8S © 1985 MetaWare Incorporated

string.h page 12-26

strtok - Divide a string into tokens.

INTERFACE

char *5trtok(char *51, char *52);

DESCRIPTION

Treats the string 51 as a series of tokens. The tokens are
made up of characters not contained in the string 52, and
are separated by one or more characters that are in 52, i.e.
52 defines the token delimiters.

The first call to 5trtok finds the first token, writes a NUL into
51 at the end of the token, and returns a pointer to the first
character of the token - i.e. a substring consisting of the
token is created and returned.

Each subsequent call to 5trtok(NULL,52) (note that the first
argument is the null pOinter) causes a pointer to the next
NUL terminated token to be returned in the same manner.

The token separator string 52 may change from call to call.

If 5trtok is called and no token is found, NULL is returned.
CAUTIONS

strtok writes on s1.

v.lO.15.85 © 1985 MetaWare Incorporated

string.h

strtok - Continued.

EXAMPLE

'include (string.h>
linclude (stdio.h>
maine) (

char sentence[80] =

page 12-27

"fwThisfruisb frabucompleteOsentenceO\n by itself. \n";
char separator[12] = "fwy\n Oru b";
printf("%s ", strtok(sentence,separator);
printf("%s ", strtok(NULL,separator);
printf("%s ", strtok(NULL,separator);
printf("%s ", strtok(NULL,separator);
printf("%s", strtok(NULL,separator);
printf("%s", strtok(NULL, "bits of icy leaf\n");
}

prints

This is a complete sentence.

v.10.15.85 © 1985 MetaWare Incorporated

string.h page 12-28

_rmemcpy - Copy from one place in memory to
another. (Extra-ANSI.)

INTERFACE

- Provided as both macro and
function.

linclude (string.h)
void *_rmemcpy(void *sl, void *s2, size_t n);

DESCRIPTION

Copies n bytes from the location referenced by s2 to the
location referenced by sl. s2 is returned. rmemcDY copies
from right to left (high addresses to low addresses). If sl <
s2 < sl + .!1 that is, if the source and destination areas
overlap, with the source area beginning within the
destination area, use memcpy.

When used as a macro, sl is evaluated more than once.
CAUTIONS

rmemcpy writes on .!! bytes.

If the source and destination areas overlap such that sl <
s2 < sl + .!!' part of the source area (that part from s2 to sl
+ !y will have been overwritten by the copy before being
itself copied.

SURPRISES

rmemcpy copies the second argument to the first.
SEE ALSO

memcpy. strcpy. rstrcpy. strncpy. rstrncpy, memset.

For short descriptions of all of the listed functions, see the
SEE ALSO section for memcpy.

v.IO.IS.85 © 1985 MetaWare Incorporated

string.h

_rmemcpy - Continued.

EXAMPLE

#include <string.h>
#include <stdio.h>
main () {

page 12-29

char arrayl[50] = "abcdefghijklmnopqrstuvwxyz";
char array2[50] = "abcdefghijklmnopqrstuvwxyz";
char *sourcel = arrayl, *destl = &arrayl[9];
char *source2 = array2, *dest2 = &array2[9];
rmemcpy(destl, sourcel, 27);

puts(arrayl);
fill char(&array2[27],23,'\O'); 1* for puts *1

memcpy(dest2, source2, 27);
puts(array2);
}

prints

abcdefghiabcdefghijklmnopqrstuvwxyz
abcdefghiabcdefghiabcdefghiabcdefghi

v.10.15.85 © 1985 MetaWare Incorporated

string. h page 12-30

_rst rc py - Copy one string onto another. (Extra-ANSI.)

- Provided as a macro and as a function.
INTERFACE

'include <string.h)
char *_rstrcpy(char *sl, char *s2);

DESCRIPTION

Copies the string s2 into the string sl , including the NUL that
terminates s2. sl is returned. rstrcpy copies from right to
left (high addresses to low addresses). If sl < s2 < sl + n,
that is, if the source and destination areas overlap, with the
source area beginning within the destination area, use
strcpy.

When used as a macro, sl and s2 are evaluated more than
once.

CAUTIONS

rstrcpy writes until the end of string s2 is encountered,
without regard for the length of s1.

If the source and destination areas overlap such that sl <
s2 < sl + .!}, part of the source area (that part from s2 to sl
+ !y will have been overwritten by the copy before being
itself copied.

SURPRISES

rstrcpy copies the second argument to the first.
SEE ALSO

memcpy, rmemcpy, strcpy, strncpy, rstrncpy, memset.

For short descriptions of all of the listed functions, see the
SEE ALSO section for memcpy.

v.lO.IS.8S © 1985 MetaWare Incorporated

string.h page 12-31

_rstrcpy - Continued.

EXAMPLE

Hinclude (string.h)
Hinclude (stdio.h)
main () {

char stringl[50] = "abcdefghijklmnopqrstuvwxyz";
char string2[50] = "abcdefghijklmnopqrstuvwxyz";
char *sourcel = stringl, *destl = &stringl[9];
char *source2 = string2, *dest2 = &string2[9];
rstrcpy(destl, sourcel);

puts(stringl);
fill char(&string2[27],23,'\O'); /* for puts */

strcpy(dest2, source2);
puts(string2);
}

prints

abcdefghiabcdefghijklmnopqrstuvwxyz
abcdefghiabcdefghiabcdefghiabcdefghi

v.lO.lS.8S © 1985 MetaWare Incorporated

string.h page 12-32

_rstrncpy - Copy a number of characters from one
string into another. (Extra-ANSI.)

INTERFACE

'include (string.h)
char *_rstrncpy(char *sl, char *s2, size_t n);

DESCRIPTION

Copies exactly !! characters from the string s2 into sl. If a
NUL terminates s2 before n characters have been copied, sl
is NUL padded. "ifno NUL is-encountered before !!characters
have been written into sl, the resulting character array is
not NUL terminated. sl is returned. rstrncpy copies from
right to left (low addresses to high addresses). If sl < s2 <
sl + ,!}, that is, if the source and destination areas overlap,
with the source area beginning within the destination area,
use strncpy.

CAUTIONS

rstrncpy writes on ,!} bytes.

After a call to rstrncpy, it may not be safe to pass sl to
functions that expect a string, as it may not be terminated
with a NUL.

If the source and destination areas overlap such that sl <
s2 < sl + ,!}, part of the source area (that part from s2 to sl
+ D) will have been overwritten by the copy before being
itself copied.

SURPRISES

rstrncpy copies the second argument to the first.
SEE ALSO

memcpy, rmemcpv, strcpy, rstrcpy, strncpy, memset.
For short descriptions of all of the listed functions, see the
SEE ALSO section for memcpy.

v.IO.15.85 © 1985 MetaWare Incorporated

string. h page 12-33

_rstrncpy - Continued.

EXAMPLE

Hinclude (string.h)
Hinclude (stdio.h)
main () {

char string1[50] = "abcdefghijklmnopqrstuvwxyz";
char string2[50] = "abcdefghijklmnopqrstuvwxyz";
char *source1 = string1, *dest1 = &string1[9];
char *source2 = string2, *dest2 = &string2[9];
rstrncpy(dest1, source1, 14);

puts(string1);
strncpy(dest2, source2, 14);
puts(string2);
}

prints

abcdefghiabcdefghijklmnxyz
abcdefghiabcdefghiabcdexyz

v.lO.15.85 ~ 1985 MetaWare Incorporated

string.h page 12-34

_strcats - Concatenate strings, up to a limit of n
characters. (Extra-ANSI.)

INTERFACE

linclude <string.h>
char *_strcats(size_t n, char *sl, char *s2, ...);

DESCRIPTION

Concatenates strings s2 and subsequent arguments to the
end of string sl, appending up to n characters to sl. The
final parameter must be NULL. The resulting string sl has a
total of up to n-l non-NUL characters. The first character of
s2 writes over the NUL that ends sl, and similarly for each
subsequent argument. The resultiS always NUL terminated.

SEE ALSO

strneat, strneat, streat.

For short descriptions of all of the listed functions, see the
SEE ALSO section for streat.

EXAMPLE

linclude <string.h>
linclude <stdio.h>
main () {

char sl[65] = "This ";
char s2[] = "string ";
char s3[] = "contains ";
char s4[] = "fifty";
char s5[] = "characters ";
char s6[] = "more ";
char s7[] = "or ";
char s8[] = "less";
char s9[] = ".\n";
char slO[] = "More in faet than ean be printed.";
strcats(65,sl,s2,s3,s4,s5,s6,s7,s8,s9,slO,NULL);

putS(Sl) ;
}

prints

This string contains fifty characters more or less.
More in fact

v.lO.lS.8S © 1985 MetaWare Incorporated

string. h page 12-35

_s t r n cat - Append characters of one string into
another, up to a total limit.

INTERFACE

,include (string.h)
char *_strncat(char *s1, char *s2, size_t n);

DESCRIPTION

Appends characters from the string s2 to the string s1. The
resulting string s1 has a total of up to n-1 non-NUL
characters. The first character of s2 writes overthe NUL that
ends s1. The result is always NUL terminated.

strncat differs from strncat in that the third argument to
strncat is the maximum length for the result s1, while the

third argument to strncat is the maximum number of
characters to be appended to s1.

SEE ALSO

strncat, strcats, strcat.

For short descriptions of all of the listed functions, see the
SEE ALSO section for strcat.

EXAMPLE

'include (string.h)
'include (stdio.h)
main () {

char stringl[50] = "This string contains forty"
"characters. ";

char string2[50] = "Plus ten. "
"This sentence will be ignored.";

strncat(stringl, string2, 50); .
puts(stringl);
}

prints

This string contains forty characters. Plus ten.

v.lO.1S.8S © 1985 MetaWare Incorporated

time.h

13
tiIlle.h

page 13-1

The header file time.h declares several types and defines a
macro, as well as a number of functions for manipulating
representations of time.

clock_t - A type used to represent a time.

INTERfACE

'include <time.h>
DESCRIPTION

An arithmetic type that can represent the time of day.

time_t - A type used to represent a date and time.

INTERfACE

linclude <time.h>
DESCRIPTION

An arithmetic type that can represent time and date.

tm
INTERfACE

- A type used to represent the components
of a date and time.

'include <time.h>
DESCRIPTION

A struct type that holds individual components of time
and date, such as hour, minute, year, and month. The
components may differ from system to system; see time.h
for details.

v.10.15.85 © 1985 MetaWare Incorporated

time. h page 13-2

C L K_T C K - A macro used to convert from the time
units provided by the operating system to
seconds.

INTERfACE

'include <time.h)
DESCRIPTION

Expands to the number per second of the smallest time
units available from the operating system.

ascti me - Convert a tm struct to printable form.

INTERfACE

linclude <time.h)
char *asctime(struct tm *timeptr);

DESCRIPTION

Converts the time represented by the contents of the
struct referenced by timeptr into a static string of 26
characters, and returns the string. The form of the string is
illustrated by

Tue Jun 09 04:23:191985

which is terminated with a newline followed by a NUL.

CAUTION

The same static string is overwritten by each call to
asctime and ctime.

SEE ALSO

ctime to convert a time t value to printable form.

v.W.lS.8S ~ 1985 MetaWare Incorporated

time. h page 13-3

asctime - Continued.
EXAMPLE

This example illustrates the use of all of the functions
provided in time.h.

Hinclude <time.h>
Hinclude <stdio.h>
main () (

time t t1,t2;
long- int 1;

1 = clock() 1 ClK TCK;
printf("%ld seconds = %ld hours and %ld minutes",

1, 1/3600, (1%3600)/60);
printf(" past midnight");

time(&t1) ;
printf("Greenwich time: %sll,asctime(gmtime(&t1»);
printf("local time : %s",ctime(&t1»;

for (1 = 0; 1 < 500_000; 1++) ; 1* Waste time. *1

time(&t2);
printf("New local time: %S",

asctime(10caltime(&t1»);
printf("Difference between the two local times ");
printf("(in seconds): %.Of\n", difftime(t2,t1»;
}

A sample run of the above produced the following output.

46596 seconds = 12 hours and 56 minutes past midnight
Greenwich time: Fri May 17 19:56:36 1985
local time -- : Fri May 17 12:56:36 1985
New local time: Fri May 17 19:56:55 1985
Difference between the 2 local times (in seconds): 19

v.10.l5.85 © 1985 MetaWare Incorporated

time.h page 13-4

clock - Time since midnight.

INTERFACE

'include <time.h>
cloc~t clock(void);

DESCRIPTION

Returns CLK_TCK *, the number of seconds since midnight.
SEE ALSO

time for the time and date.
EXAMPLE

See the example for asctime.

ctime - Convert a time t value to printable form.

INTERFACE

'include <time.h>
char *ctime(time_t *timer);

DESCRIPTION

Converts the time represented by timer into a static string
of 26 characters, and returns the string. The form of the
string is the same as that for asctime.

CAUTION

The same static string is overwritten by each call to ctime
and asctime.

SEE ALSO

asctime to convert a tm struct to printable form.
EXAMPLE

See the example for asctime.

v.lO.lS.8S © 1985 MetaWare Incorporated

time.h page 13-5

difftime Find the difference between two times.

INTERFACE

'include <time.h>
double difftime(time_t time2, time_t timel);

DESCRIPTION

Returns time2 - timel expressed in seconds.
EXAMPLE

See the example for asctime.

gmtime - Convert a time t value to a tm struct,
adjusted to Greenwich Mean time.

INTERFACE

'include <time.h>
struct tm *gmtime(time_t *timer);

DESCRIPTION

Converts the time represented by timer into a struct
containing the individual components of the time and date,
expressed as Greenwich Mean time. A pointer to the
struct is returned.

CAUTION

The struct is overwritten by each call to gmtime and
local time.

SEE ALSO

local time to convert a time t value to a tm struct.
EXAMPLE

See the example for asctime.

v.lO.15.85 © 1985 MetaWare Incorporated

time.h page 13-6

10 c a I tim e - Convert a time t value to a tm struct.
INTERFACE

'include <time.h>
struct tm *localtime(time_t *timer);

DESCRIPTION

Converts the time represented by timer into a struct
containing the individual components of the time and date.
A pointer to the struct is returned.

CAUTION

The struct is overwritten by each call to local time and
gmtime.

SEE ALSO

gmtime to convert a time t value to a tm struct, adjusted to
Greenwich Mean time.

EXAMPLE

See the example for asctime.

time - What time is it?

INTERFACE

'include <time.h>
time_t time(time_t *timer);

DESCRIPTION

Returns the current time and date, to the best of the
system's knowledge and approximation, in a form that is
understood by the other functions provided in time.h. If
timer is not NULL, the return value is also stored in the
object it points to.

SEE ALSO

clock to find out the time since midnight.
EXAMPLE

See the example for asctime.

v.IO.IS.8S © 1985 MetaWare Incorporated

More Feedback, Please
(After some use.)

We would greatly appreciate your ideas regarding im
provement of the language, its compiler, and its documen
tation. Please take time to jot down your ideas on this page
(front and back) and on additional sheets as necessary as you
use the software. Then, after you have some significant
experience with the software, please mail the results to:

MetaWare TN Incorporated
412 Liberty Street

Santa Cruz, CA 95060

MetaWare may use or distribute any information you supply
in any way it believes appropriate without incurring any obli
gation whatever. You may, of course, continue to use that
information. If you wish a reply, please provide your name and
address. Thank you in advance, The Authors.

Page Comment

v.09.15.85 o 1983-85 MetaWare Incorporated

More Feedback, Please
Page Comment

v.09.15.85 c 1983-85 MelaWare Incorporated

Index: High C 1M Library Reference page(s)

v.l0.15.85

abort 11-3
abs 5-3
acos 5-4
ANSI 1-8
asctime 13-2
asin 5-4
assert 2-2
assert.h 2
atan 5-5
atan2 5-6
atof 11-4
atoi 11-5
at01 11-6
Binary Streams, Text and 10-3
BUFSIZ 10-5
(C library Manual) Organization 1-1
ca110c 11-7
ceil 5-7
Characteristics of Integral Types. 4-2
Characteristics of Floating-Point Types ... 4-3
CHAR BIT 4-2
CHAR-MAX 4-2
CHAR-MIN 4-2
clearerr 10-9
ClK TCK 13-2
clock 13-4
clock t 13-1
Contents 1-3
Conventions, Naming 1-8
cos 5-7
cosh 5-7
ctime 13-4
ctype.h 3
DBl DIG 4-3
DBl -MAX EXP 4-3
DBl -MIN-EXP .. 4-3
DBl -RADIx. • 4-3
DBl -ROUNDS .. 4-3
Dependencies, System (I/O, stdio.h) 10-4

(math.h) 5-1
di fftime•..... 13-5
Digit• , ... 1-8, 1-11
Digits • 1-11
EDOM 5-2
End of File 10-2
EOF 10-5
ERANGE•........ 5-2
Errors (I/O)•.......... 10-2
errno 1-9, 5-1, 9-1, 10-2, 10-3, 11-1

errno may be set by the following functions:
acos, asin, atan2, cosh, exp, Idexp, log,
10glD, pow, sinh, sqrt, tanh, strtol, fclose,
fflush, fprintf, fputs, fscanf, printf, puts,
remove, rename, scanf, sprintf, sscanf,
vfprintf, vprintf, vsprintf.

© 1985 MetaWare Incorporated

Index: High C" Library Reference page(s)

v.lO.lS.85

exit .••...................•......... 11-8
exp•........................... 5-8
Expressions, Regular•............. 1-10
fabs 5-8
fclose•.......... 10-9
feof ..•............................. 10-11
ferror•...•.•....... 10-11
fflush•.•.......... 10-12
fgetc 10-13
fgets 10-15
FILE 10-5
File, End of 10-2
File List, Header .. 1-3
Files, Including Header , 1-4
files 10-1
Floating-Point Types, Characteristics of .. 4-3
floor 5-8
FLT DIG•.... 4-4
FLT-MAX EXP .. 4-3
FLT-MIN-EXP .. 4-3
FLT-RAOlx , 4-3
FLT-ROUNOS , 4-3
fmod , 5-9
fopen 10-17
fprintf 10-19
fputc 10-28
fputs 10-29
fread . 10-30
free 11-9
freopen 10-31
frexp , 5-10
fscanf 10-33
fseek 10-41
ftell . 10-43
fwrite 10-44
getc 10-45
getchar 10-46
getenv 11-10
gets 10-47
gmtime 13-5
Header File List. .. 1-3
Header Files, Including ' 1-4
Hexdigit (s) 1-9, 1-11
Hexletter ' 1-11
HUGE VAL ; .. 5-3
Incr"uding Header Files. 1-4
Index here
Integral Types, Characteristics of , 4-2
Infini ty 5-1
Introduction .. 1-1
INT MAX 4-2
INT-MIN 4-2
isalnum 3-1
isalpha 3-1
iscntr I 3-2

© 1985 MetaWare Incorporated

Index: High C 1M Library Reference page(s)

v.10.1S.85

isdigi t 3-2
isgraph 3-2
islower 3-3
isprint 3-3
ispunct•.............. 3-3
isspace 3-4
isupper 3-4
isxdigi t 3-4
(110) Errors 10-2
(liD, stdio.h) System Dependencies 10-4
jmp buf•.................. 6-1
kill 7-4
LDBL DIG•........•..... 4-4
LDBL -MAX EXP 0 • • • • • • • • • • • • • • • • •• 4-4
LDBL -MIN-EXP 0 • • • • • • • • • • • • •• 4-4
LDBL -RADIX. .. 4-3
LDBL -ROUNDS • 4-3
Idexp 5-11
Library Manual) Organization, (C 1-1
limits.h•...................... 4
List, Header File • . • 1-3
localtime•.......•.............. 13-6
log••.............. 5-11
10glO••...•.............. 5-12
longjmp•.............. 6-1
LONG MAX••.............. 4-2
LONG-MIN .••....••...••.............. 4-2
L tmpnam .•......••..••.............. 10-5
Macros•.....•.............. 1-6
malloc•.............. 11-10
Manual) Organization, (C Library 1-1
math.h 5
(math.h) System Dependencies•.. 5-1
memchr ... 0 •••••••••• 0 0 •••••••••••••• 12-2
memcmp ...•..... . •.... 0 • • • • • • •••••••• 12-4
memcpy ..••..........• 0 • • • • • • • • • • • ••• 12-6
memset ...•....•. . . . • . • •....•.. 12-8
modf•...... ~ • . . • • . • . . • . . • 5-12
Naming Conventions .•.• o 0 •••••••••••••• 1-8
NAN • •••••••••••••••••••••••••••••••• 5-1
NDEBUG ..•.•.•...• 0 •••••••••••••••••• 2-1
NUL .••••••..••..•..•.•.............. 1-8
NULL .••......••.• 0 ••• 0 1-9, 9-1, 10-6, 11-2
null pointer • 0 0 0 ••• 0 •• 0 0 ••••• 0 0 • 0 • • •• 1-8
Odigit(s) .•• 0 •• 0 0 • 0 •• 0 •••••••••• 0 1-8, 1-11
onexit . 0 0 0 • 0 • 0 ••• 0 • 0 0 • 0 ••• 0 ••••••••• 11-11
onexit t • 0 ••••••••••• 0 •••••••••••••• 11-1
Organization, (C Library Manual) .••••..• 1-1
Parameter Passing . • • • . • • • .. I-S
Passing, Parameter •.. o •••••••••••• 0 0 •• 1-5
perror •. 0 • 0 0 • 0 •• 0 0 • 0 0 • • • • • •••••••••• 10-48
pow•• 0 0 •• 0 0 • 0 0 •• 0 0 ••••••••••••••• S-13
printf •..••••••.•••••••••••••••.•••• 10-49
ptrdiff t. • • . • • • • • • • • • • • . . • . . . • . . • • •. 9-2
putc 0 • -: •••••••••••••••••••••• 0 •••••• 10-50

© 1985 MetaWare Incorporated

Index: High C" Library Reference page(s)

v.1O.IS.8S

putchar ••••••..••••••...•••.••••.... 10-51
puts •••••.••.••.•.••••.••••••••..•.. 10-52
rand ••••••••••••••....•••••.•••.•••• 11-13
realloc •••••••••..•••••••••..••••••• 11-14
Regular Expressions •••.•••.••.••••••.• 1-10
remove ••••••.••.••••••••••••••••••.. 10-53
rename ••.••••.••••.••••••••••••••••. 10-54
rewind •••••..•••••••••.••••.••••••.. 10-55
scanf ••• " .•••••••.•••••••.••..••••••• 10-56
SCHAR MAX ••••••.••••.•••••••••••..••. 4-2
SCHAR-MIN ••••••••••••••••.••••••••••• 4-2
SEEK CUR •••••••••.•••••••••••••••••• 10-6
SEEK-END ..•..••••.•••..•.••. ••..••.. 10-6
SEEK-SET ••••••..••••.•••.•..•••.••.. 10-6
setbuf •••.•...••••••.•••..••••.••.•. 10-58
setjmp ••••••..•••.••.•••••.••••••..• 6-3
setjmp.h 6
SHRT MAX ••••..••.•.••••.•••..••••••• 4-2
SHRT-MIN .•••••...•..••••••..•••.•••• 4-2
SIGABRT 7-1
SIGfPE •.•.••••••...•.•••••..•••••••• 7-1
SIGILL••••••••••..•.•••••••.•.•• 7-2
SIGINT •••••••••••••••••••••.•••••••• 7-2
Sign ••••••••..•••••••••.•.•.••••••.. 1-8
signal ..•...•••••••••.•••••••••.•••• 7-5
signal.h•...... 7
SIGSEGV .•••••••••.••..•••••••••••.•• 7-2
SIGTERM ••.••.•....•..•••..•.••.••.•. 7-3
SIG DfL ...•••.••••••••.••••.•••..... 7-3
SIG-ERR .•.••••.••.••.••.•••.•••••... 7-3
SIG-IGN •.••..••••••••.•..•••••••••.. 7-4
sin -: • • • • . . • • . • • • . . • • . • • • • • • . . . • • . • .. 5-13
sinh ••....••..•.•.•.•••••••.••••••.• 5-13
size t•...••• 1-9, 9-2, 10-7, 11-2, 12-1
sprintf ...•...... ~•............. 10-59
sqrt ...•..••..•....•.....•...•..•... 5-14
srand•••••...•.••.•••••... 11-14
sscanf . . . • • • . . • • • • • . • • • . 10-61
stdarg.h 8
stdefs.h 9
stderr .•...••.•...•......•.••.•..... 10-7
stdin••.•••.•...•....•••...... 10-7
stdio.h 10
stdlib.h 11
stdio.h) System Dependencies, (1/0, 10-4
stdout •.........•.•••....•..•••••... 10-7
strcat .••.......•...•.•..••••....... 12-10
strchr ••.••••...•.....•......••..••. 12-12
strcmp •..•.........•.....•••••..•... 12-14
strcpy••.......••.••...... 12-16
strcspn•••..... 12-18
Streams ...•..........•.•............ 10-1
Streams, Text and Binary ..•............ 10-3
string••...••..•....•.. 1-8
string.h 12

© 1985 MetaWare Incorporated

Index: High C 111 Library Reference page(s)

v.10.15.85

strlen 12-19
strncat 12-20
strncmp 12-21
strncpy 12-22
strpbrk 12-23
strrchr 12-24
strspn 12-25
strtod 11-15
strtok 12-26
strtol 11-17

. system 11-19
System Dependencies (liD, stdio.h)•. 10-4

(math.h) , 5-1
SYS OPEN 10-8
tan -: , 5-14
tanh , 5-14
Terms 1-8
Text and Binary Streams 10-3
time 13-6
tlme.h .. , 13
time t 13-1
tm .-. 13-1
tmpfile 10-62
tmpnam 10-63
TMP MAX 10-8
tolower 3-5
toupper 3-5
Types, Characteristics of Integral. 4-2
Types, Characteristics of Floating-Point.. 4-3
UCHAR MAX. .. 4-2
UINT MAX 4-2
ULONG MAX .. 4-2
ungetc 10-64
USHRT MAX. .. 4-2
va arg 8-3
va-end 8-5
va-list 8-1
va-start 8-2
vfprintf 10-65
vprintf 10-66
vsprintf•........ 10-67
whitespace .. 1-8

MAXSTRING 12-1
-rmemcpy 12-28
-rstrcpy 12-30
-rstrncpy 12-32
- setmode 10-67
-strcats 12-34
=strncat 12-35

© 1985 MetaWare Incorporated

Ackno w ledgfllen t8
The authors of these manuals and designers of the High C

language would like to thank the C standards committee,
whose drafts of the C standard helped illuminate many dark
areas of the language and assisted greatly in "chunking" the
language concepts.

Paul Redmond's feedback was invaluable as he put dBase
III through High C for Ashton-Tate. In the process he helped us
polish the compiler in many ways.,

David Shields' efforts in working with us were also very
beneficial. He put tens of thousands of lines of C source code
through High C, transliterated from the SETLversion of the
Ada-Ed compiler at New York University.

Professor William McKeeman and his research group at
the Wang Institute of Graduate Studies supplied us with a
collection of "gray expressions" that helped us verify the
compiler.

The support of others who must needs remain nameless at
this time is also appreciated.

Most of all we acknowledge that we are not self-made, but
God-made. And we thank God for building into us the talents
that made it possible for us to create High C. Praise God, from
whom all blessings flow.

Ad majorem Dei gloriam (A.M.D.G.).

v.09.15.85 c 1983-85 MetaWare Incorporated

This ends the

High C ™

Library Reference Manual

© Copyright 1985 MetaWare™ Incorporated

v.IO.15.8S © 1985 MetaWare Incorporated

