
MRX/OS COBOL Level 1
Reference Manual
2202.002

0
0

·3
'C
c
(I) .,, ...

... en
0 '< a. tn c
(') (I)

CZ 3

November 1972 Edition

Requests for copies of Memoreic PJ.iblications should be made
to your· Memorex representative or to the Memorex branch
office serving your locality.

A reader's comment form is provided at the back of this
publication. If the form has been removed, commentJ may be
addressed to the Memorex Co1rparation, Publications Dept.,
8941 - 10th Ave. No. CCiolden Valley) Mlnneapalis,
Minnesota 55427.

@ 1972, MEMOREX CORPORATION

PREFACE

This document describes the Memorex implementation of American National Standard
(ANS) COBOL, and all Memorex extensions to that standard.

In this document the term MRX COBOL means the Memorex implementation of ANS
COBOL and all extensions t10 it. There are two types of extensions. ·

1. Those that represent features not specified by ANS COBOL
I

2. Those that represent an easing of the strict ANS COBOL rules and
allow for greater programming convenience

\

All such extensions are printed on a shaded background for the convenience of users who
wish strict conformance with the standard. Use of features that are extensions to the
standard may result in incompatibilities between the implementation represented by this
document and other implementations.

A knowledge of basic data processing techniques is necessary for the understanding of this
document. In addition, thE~ following manuals (referred to in this publication) provide
information necessary for effective usage of M l~X COBOL.

• Program Libr·ary Services Referjitnce manual

• Control Program and Data Management Servjces, Basic and Extended
Reference manuals

iii

ACKNOWLEDGMENT

The following extract from USA Standard COBOL, X3.23-1968, is presented for the
information and guidance of the user.

"Any organizatie>n interested in using the COBOL specifications as the basis
for an instruction manual or for any other purpose i'S free to do so. However,
all such organizations are requested to reproduce this section as part ·of the
introduction to the document. Those usinu a short passage, as in a book
review, are requested to mention 'COBOL' in acknowledgment of the source,
but need not quote this entire section.

"COBOL is .an industry language and is not the property of any company or
group of companies, or of any organization 01r group of organizations.

"No warranty, e·xpressed or implied, is made by any contributor or by the
COBOL Committee as to the accuracy and functioning of the programming
system and language. Moreover, no responsibility is assumed by any
contributor, or by the committee, in connection therewith.

"Procedures havE~ been established for the maintenance of COBOL. Inquiries
concerning the procedures for proposing changes should be directed to the
Executive Committee of the Conference on Data Systems Languages.

"The authors and copyright holders of the c1::>pyrighted material used herein:

FLOW-MATIC (Trademark of Sperry Rand Corporation),
Programming for the UNIVAC® I a:nd 11, Data Automation
Systems Copyrighted 1958, 1959, by Sperry Rand
Corporation; I BM Commercial Translator, Form No.
F28-80'13, copyrighted 1959 by IBM; FACT, DSI
27 A5260-2760, copyrighted 1960 by Minneapolis-Honeywell

have specifically authorized the use of this material in whole or in part, in
the COBOL specifications. Such authorization extends to the reproduction
and use of COBOL specifications in programming manuals or similar
publications."

iv

FEATURES OF MRX COBOL

In 1959, a group of computer professionals, representing the U.S. Government,
manufacturers, universities, and users, formed the Conference On DAta SYstems Languages
(CODASYL). At the first meeting, the conference agreed upon the development of a
common language for the programming of commercial problems. The proposed language
would be capable of continu~ous change and development, it would be problem-oriented and
machine-independent, and it would use a synta>< closely resembling English, avoiding the use
of special symbols as much as possible. The COmmon Business Oriented Language (COBOL)
which resulted met most of these requirements.

As its name implies, COBOL. is especially efficient in the processing of business problems.
Such problems involve relatively little algebraic or logical processing; instead, they usually
manipulate large files of similar records in a relatively simple way. This means that COBOL
emphasizes the description and handling of data items and input/output (1/0) records.

In the years since 19!59, COBOL has undergone considerable refinement and
standardization. Now, an extensive subset for a standard COBOL has been approved by
ANSI (American National Standards Institute), an industry-wide association of computer
manufacturers and users; this standard is called American National Standard (ANS) COBOL.

This document describes the MRX/40 and 50 OS COBOL (hereafter called MAX COBOL),
which complies with the spe4~ifications of ANS COBOL and includes a number of Memorex
extensions to it as well. The compiler supports the following standard levels of the
processing modules defined in STANDARD COBOL.

• Low nucleus - defines the permissible character set and the basic
elements of the language contained in each of the four COBOL
divisions: Identification Division, Environment Division, Data
Division, and Procedure Division.

• Medium table handling - allows the definition of tables and
references to them through subscripts an.d indexes.

• Low sequential access - allows the records of a file to be read or
written in a serial manner.

• Low random access - al lows the records of a file to be read or
written in a manner specified by the programmer.

• High segmentation - allows large programs to be split into segments
that can be assigned to permanent or overlayable areas within a user's
partition.

• Null sort - specifies that the COBOL Sort feature is not included in
MAX COBOL.

• Null report writer - specifies that the COBOL Report Writer feature
is not included in MRX COBOL.

v

Bulletin: 2202.002-0001
Date: 3/19/73

• Low library - supports the retrieval of prewritten source program
entries from a user library for inclusion in a COBOL program. The
copy feature is not implemented as an integral part of the COBOL
compiler; this feature is available to the user as a feature of the
Opera1ting System Librarian UPDATE utility.

• MAX COBOL Extensions

1. Double or single quotes

2. Linkage Section

3. Comment lines (* or I in column 7)

4. FILLER at the group level

{

COMP-3 }
5. USAGE PACKED

BINARY

6. INDEX-BLOCK SIZE clause

7. Index File organization

8. TO is optional on EQUAL TO relational operator

• Standard COBOL features not in M RX COBOL - Switches in
Special-Names Section

• MRX COBOL features from higher levels of standard COBOL

1. Nucleus

a. Single digit level number

b. Level numbers from 1 to 49

c. ACCEPT ... FROM

d. DISPLAY ... UPON

e. Compare operands which are unequal in length
(nonnumeric compare)

f. Plural form of figurative constants

g. Data-name may begin with numeric digit

h. Symbolic Relational Operators

2. Sequential and Random Access

a. RESERVE ALTEFlNATE AREAS

b. Data-name in VALUE clause of File Description (FD)
entry

vi

c. NO REWIND in OPEN

d. READ ... INTO

e. WRITE ... FROM

f. NO REWIND/LOCK in CLOSE

g. Data-name in AFTER ADVANCING clause

3. Table Handling

a. OCCURS ... DEPENDING ON

vii

TABLE OF CONTENTS

Section Page

1 INTRODUCTION 1-1

Input to COBOL Compiler 1-1
Source Program 1-1
Compiler Options 1-1

Output from COBOL Compiler 1-3
Object Program 1-3
Listings 1-4

COBOL Program Flow 1-5

2 FORMAT NOTATION 2-1

3 STRUCTURE OF COBOL 3-1

Organization of the CO BO L Program 3-1
Structure of the COBOL Program 3-1
CO BO L Character Set 3-2

Computer Characters 3-3
Alphanumeric Characters 3-3
Alphabetic Characters 3-3
Numeric Characters 3-3
Word Characters 3-3
Punctuation Characters 3-3
Special Characters 3-4
Editing Characters 3-4
Arithmetic Expression Characters 3-5
Relation Condition Characters 3-5

Character Strings 3-5
Word 3-5

Reserved Word 3-5
l<ey Word 3-5
Optional Word 3-5
Connective 3-6

Name 3-6
Data-Name 3-6
Identifier 3-6
Procedure-Name 3-6
File-Name 3-6
Mnemonic-Name 3-6
Index-Name 3-7
System-Name 3-7
Program-Name 3-7

be

TABLE OF CONTENTS (Continued)

Section Page

Constants 3-7
Literals 3-7

Numeric Literals ~1-7
Nonnumeric Literals :i-8

Figurative Constants :-t-8
Picture Character String ~1-9
NOTE Character String 3-9

Special Registiers ~1-9

4 USE OF COBOL CODING FORM 4-1

Sequence Numbers 4-1
Continuation of Lines 4-1
Continuation of Nonnumeric Literals 4-1
Continuation of Words and Numeric Literals 4-1
Area A and Area B 4-1

Division Header 4-3
Section Header 4-3
Paragraph-Names and Paragraphs 4-3
Level Indicators and Level Numbers 4-3
Blank Lines 4-3
Comment Lines 4-4

5 IDENTIFICATION DIVISION fi-1

Organization of the Identification Division fi-1
Program-ID Paragraph fi-1

6 ENVIRONMENT DIVISION E>-1

Organization of the Environment Division E>-1
Configuration Section E>-1

Source-Computer Paragraph ()-2

Object-Computer Paragraph ()-2

Special-Names Paragraph f)-3
Maximum Configuration Section E>-4

Input-Output Section 6-4
File-·Control Paragraph B-4

SE LECTClause f)-5
ASSIGN Clause B-5
RESERVE Clause 6-6
FILE-LIMIT Clause 6-7
ACCESS MO DE Clause 6-8
PROCESSING MODE Clause 6-8
ACTUAL KEY Clause 6-8

x

Section

7

TABLE OF CONTENTS (Continued)

Relative Files
Indexed Files

FORWARD KEY Clause
INDEX-BLOCK Clause
Fl LE-CONTROL Clause Restrictions
Maximum Fl LE-CONTROL Paragraph

1-0 Control Paragraph
RERUN Clause
SAME AREA Clause
Maximum 1-0-CONTROL Paragraph

Maximum Input-Output Section
Maximum Environment Division

DATA DIVISION

Organization of the! Data Division
Data Division Entries

Concept of Le!vels
Level Numbers
Level Indicator

File Section
File Description Entry
Record Description Entry

Working-Storage Section
Data Item Description Entries
Record Description Entries

Linkage Section
File Description Entry - Details of Clauses

File Description
Block Contains Clause
Record Contains Clause
Data Records Clause
Label Records C~ause
Value of Clause
Maximum File Description Entry

Data Description
Data Description Entries
Data Item Description Entries
Record Description Entries

Data Description Entry Clauses
Level Number
Data-Name or Filler Clause
Redefines Clause
Blank When Zero Clause
Justified Clause

xi

Page

6-8
6-10
6-13
6-13
6-14
6-15
6-15
6-15
6-16
6-16
6-17
6-18

7-1

7-1
7-2
7-2
7-3
7-3
7-3
7-3
7-4
7-4
7-4
7-4
7-4
7-5
7-5
7-5
7-6
7-6
7-7
7-7
7-8
7-8
7-8
7-9
7-9
7-9
7-9
7-10
7-10
7-16
7-16

TABLE OF CONTENTS (Continued)

Section Page

Occurs Clause 7-17
Picture Clause 7-17

Symbols Used in the Picture Clause 7-17
Repetition of Symbols 7-19
Character String and Item Size 7-20
Five Categories of Data 7-20

Alphabetic Items 7-21
Alphanumeric Items 7-21
Num1~ric Items 7-21

External Decimal 7-21
Binary 7-23
Internal Decimal 7-23

Alphanumeric Edited Items 7-23
Numeric Edited Items 7-24

Three Classes of Data 7-24
Editing Rules 7-25

Simple Insertion Editing 7-25
Special Insertion Editing 7-26
Fixed Insertion Editing 7-26
Floating Insertion Editing 7-27
Zero Suppression and Replacement Editijng 7-28

Picture Clause Restrictions 7-29
Synchronized Clause 7-31

Slack Bytes 7-31
lntra··Record Slack Bytes 7-32
lnter .. Record Slack Bytes 7-34

Synchronized Clause Restrictions 7-34
Usage Clause 7-34
Value Clause 7-36
Maximum Record or Data Item Description Entry 7-38

8 PROCEDURE DIVISION 8-1

Organization of the Procedure Division 8-1
Statements 8-2

Compiler Directing Statements 8-2
Conditional Statements 8-2
Imperative Statements 8-2

Sentences 8-3
Conditions 8-4

Test Conditions 8-4
Class Condition 8-4
Relation Condition 8-5

Comparison of Numeric Operands 8-6
Comparison of Nonnumeric Operands 8-6

xii

TABLE OF CONTENTS (Continued)

Section Page

Comparisons Involving Index-Names and/or Index Data Items 8-7
Permissible Comparisons of Subject and Object Operands 8-7

Conditional Statements 8-8
If Statement 8-9

Imperative Statements 8-10
Arithmetic Statements 8-10

Giving Option 8-11
Rounded Optijon 8-11
Size Error Option 8-11
Overlapping Operands 8-11
Add Statement 8-11
Subtra~t State?ment 8-12
Multiply Statement 8-14
Divide Statement 8-16

Procedure Branching Statements 8-18
Go To Statement 8-18
Alter Statement 8-20
Perform Statement 8-21
Stop Statement 8-28
Exit Statement 8-28

Data Manipulation Statements 8-29
Move Statement 8-29
Examine Statement 8-33

Input-Output Statements 8-34
Open Statement 8-35
Seek Statement 8-36
Start Statement 8-36
Read Statement 8-37
Write Statement 8-39
Rewrite Statement 8-41
Delete Statement 8-42
Accept Statement 8-43
Display Statement 8-44
Close· Statemeint 8-45

Subprogram Linkage Statements 8-48
Call Statement 8-48

Program Termination Considerations 8-51
Exit Program Statement 8-52
Stop Run Statement 8-52

Compiler-Directing Statements 8-52
Enter Statement 8-52
Note Statement 8-53

xiii

Section

9

TABLE OF CONTENTS (Continued)

SPECIAL FEATURES

Table Handling
Table Definition
References to Table-Items

Subscripting
lndE~xin~1

Restrictions on Indexing and Subscripting
Examples of Subscripting and Indexing

Data Division Considerations for Table Handling
Occurs Clause
Usage Clause

Procedure Division Considerations for Table Handling
Relation Condition
Set Statement

Segmentation
Organization

Fixed Portion
Independent Segments

Segment Cllassification
Segmentation Control
Structure eif Program Segments

Segment-Limit
Restrictions on Program Flow

Alter Statement
Perform Statement

Sol.Jrce Progrnm Library Facility

APPENDIX A - GLOSSARY OF COBOL TERMS

APPENDIX B - EBCDIC COLLATING SEQUENCE

APPENDIX C - MAX COBOL RESERVED WORDS

APPENDIX D - ANS STANDARD CONTROL CHARACTERS

APPENDIX E - RECORDING MODES

APPENDIX F - FILE PROCESSING SUMMARY

APPENDIX G - INDEX - BLOCK SIZE FOR INDEXED FILES

APPENDIX H - COBOL ERROR MESSAGES

xiv

Page

!9-1

!9-1
!9-1
!9-3
!9-3
!9-5
!9-6
9-6
!9-7
!9-8
!9-10
!9-11
9-11
!9-12
!9-13
9-13
!9-13
!9-13
!9-14
9-14
!9-14
9-15
!9-15
!9-15
!9-15
9-16

.A-1

B-1

C-1

D-1

E-1

F-1

G-1

H-1

LIST OF FIGURES

Figure Page

1-1 COBOL Compiler Program Flow 1-6

6-1 Random Access of a Relative File 6-9

6-2 Sequential Access c:>f an Indexed File 6-11

6-3 Random Access of an Indexed File 6-12

6-4 Fl LE-CONTROL Clause, Restrictions 6-14

7-1 Data Items Redefined Within an Area 7-12

7-2 Data Items Rearranged Within an Area 7-13

7-3 Internal Representation of Numeric Items 7-22

7-4 Class and Category of Elementary and Group Data Items 7-24

7-5 Examples of Simple Insertion Editing 7-25

7-6 Examples of Special Insertion Editing 7-26

7-7 Editing Sign Contriol Symbols and Results 7-27

7-8 Examples of Fixed Insertion Editing 7-27

7-9 Examples of Floating Insertion Editing 7-28

7-10 Zero Suppression and Replacement Editing 7-29

7-11 Insertion of Slack Bytes Between Occ:urrences 7-33

8-1 Allowable Forms of the Class Test 8-5

8-2 Relational Operators and Their Meanings 8-5

8-3 Examples of Comparisons of Numeric Operands 8-6

8-4 Examples of Comparisons of Nonnumeric Operands 8-7

8-5 ADD Statement E>camples 8-13

8-6 SUBTRACT Statement Examples 8-15

8-7 MULTIPLY Statement Examples 8-17

8-8 DIVIDE Statement Examples 8-19

8-9 MOVE Statement Examples 8-32

8-10 Examples of Data Examination 8-34

8-11 CLOSE Option and File Type Comparison 8-47

8-12 Effect of Program Termination Statements Within Main Programs
and Subprograms 8-51

9-1 Example of Table Indexing 9-7

9-2 Index-Names and Index Data Items - Permissible Comparisons 9-11

xv

LIST OF TABLES

Table

8-1

8-2

Permissible Comparisons of Subject and Olbject Operands

Permissible Moves

xvi

Page

8-8

8-31

1. INTRODUCTION

COBOL is a programming language which is essentially machine independent. A program
written in COBOL (source program) follows a set of formatting rules. This source program is
input to the COBOL compiler where it is translated into a series of machine instructions
which can be executed by the computer. The COBOL compiler is itself a program within the
operating system. The output resulting from the compiler's translation is a relocatable
object program.

INPUT TO COBOL COMPILER

Input to the COBOL compiler consists of the COBOL source program and the compiler
options. The compiler options direct the compiler as to the type of output desired as well as
certain input options.

SOURCE PROGRAM

The COBOL source program may be presented to the COBOL compiler by one of three
means:

1. Directly from the card reader

2. . From a spoole~d file on disc

3. From a user's source image library on disc (partitioned data set)

The user supplies the source program either directly with the compilation request in the
form of cards, or indicates the source image library from which the source is to be read.
Wh•m the source program is supplied by the card reader, the user has the option (using
MRX/OS Control Language Services), prior to compilation, of spooling the source cards to
disc. When a source image library is specified as the means of supplying the source program,
the user must have previously placed the source program in the library.

COMPILER OPTIONS

These options will direct the compiler in its execution and speCify the content and format
of its output.

The options are supplied to the compiler via a //PAR control language statement, which is
read by the compiler from the SYSI N file. The //PAR card keywords, as they relate to
COIBOL, and the resultant actions are listed in the following table.

1-1

Bulletin: 2202.002-0001
Date: 3/19/73

//PAR STATEMENT Keywords

Keyword Parameters Default Explanation

OBJECT= YES YES OBJECT=YES or omission of
NO keyword specifies output of

relocatable object module.
OBJECT=NO suppresses output.

IMEM• input-name none An alphanumeric string of 1-8
characters specifying the cataloged
name of the COBOL source program
to be compiled. If this keyword is
not specified, the source program is
presumed to be on the card reader
or input spool file.

OMEM= output- PROGRAM- An alphanumeric string of 1-8
name ID if characters specifying the name

OBJECT= under which the relocatable
YES object program will be cataloged

in the library.

If OMEM is not specified and
OBJECT=NO, a relocatable object
module will not be produced. If
OMEM is not specified and OBJECT=
YES, the PROGRAM-ID is used for
the catalog name of the relocatablu
object module.

RMARG• nnn SYSGEN A 2 to 3 digit number specifying the
value right margin column, 41-120, at which

the compiler will stop processing the
source input records.

SPACE= nn 01 A 1 or 2 digit number specifying single
oir double spacing on the source listing.

nn 1 or 01 single space

2 or 02 double space

MAXSIZ= nnnnn SYSGEN A 1 to 5 digit number specifying the
value approximate maximum number of

cards in the source program.

LIST= YES YES LIST=NO suppresses source program
NO listing. LIST=YES or omission of

keyword supplies source program
listing.

ERROR= YES YES ER ROR=YES or omission of keyword
NO supplies error message listing of warning

errors. ERROR=NO suppresses listing.
Fatal errors are listed regardless of
option.

1-2

Keyword

XREF=

DMAP=

PMAP=

SUBCK=

DAT ACK=

QUOTE=

Parameters

YES
NO

YES
NO

YES
NO

YE:S
NO

YES
NO

QUOTE
A POST

OUTPUT FROM COBOL COMPILER

Default

NO

NO

NO

NO

NO

APO ST

Bulletin: 2202.002-0001
Date: 3/19/73

Explanation

XREF=YES specifies printing · ..
a cross-reference list. XREF=NO
or omission of keyword suppresses
listing.

DMAP=YES specifies printing Data
Map. DMAP=NO or omission of
keyword suppresses map.

PMAP=YES specifies printing pro­
cedure map. PMAP=NO or omission
of keyword suppresses map.

SUBCK=YES specifies generation of
object code to confirm that the resolved
sobscript value does not exceed the
number of entries in the associated
tables. SUBCK=NO or omission of
keyword suppresses generation of
object code.

DATACK=YES specifies generation
of object code ta check that only
numeric digits are contained in
external decimal and packed decimal
fields used in the IF and arithmetic
verbs.

This parameter specifies whether the
double quotation.mark, QUOTE, or
the apostrophe, APOST, is to be used
as the quote character during com­
pilation.

The compiler output consists> of the relocatable object program and its listings. The object
program output is optional; it may be suppressed by a keyword parameter (compiler option)
on the //PAR card. A summary listing will always be produced. Other categories of listings
may be selected or suppressed from the output by keyword parameters on the //PAR card.

OBJECT PROGRAM

The object program output will be sent to a w;er library with the member name (by which
the program is cataloged on the library), supplied by the user in the compilation options.

LISTINGS

With the exception 10f a program summary listing which is always produced, the entries in
the listing are optional as selected by keyword parameters on the //PAR card. The format
and content of each is as follows:

• Summarv· - consists of general compiiler statistics and a memory map
layout.

The general compiler statistics are: date of compilation, number of
fatal errors, and options used in compilation. These are
self-explanatory.

The memory map layout provides the user with a convenient index
of his memory dump. Its contents and format are as follows:

ENTRY POINT LIST

MEMORY LAYOUT

EXTERNALS LIST

NIAME

l\IAME

NAME

Relative address

• Source listing - consists of source image and generated line numbers.
An S in print position 1 denotes a sequence error in columns 1-6 of
the sourc:e card.

• Data map - consists of definition name, ~ine number and relative
address, iin the order of appearance in the source program.

• Cross relerence list - consists of file name, index name, data name,
and proc:edure name lists. Each list iis in ascending alphabetical order
with its reference line numbers in ascending numerical order. In
addition •. the relative address of each name (excluding procedure
names) i!; given.

• Procedure map - consists of the entire instruction set generated by
each source line. The line number is printed once at the beginning of
each set.

• Error listing - consists of the following information:

1. Line number where the error occurrnd

2. t=, U, or W indicating fatal, ANS, or warning errors
f'espectively

1-4

3. Error identification number

4. Clause - clause first code

5. Short but comprehensive explanation of the error code

6. A total count of each type of error (F, U and W)

COBOL PROGRAM FLOW

Figure 1-1 summarizes the flow of a COBOL program from the time the compiler receives it
to the time it is sent out in some form. ·

1-5

COBOL
Source
Program

One of
three
input types

Source
Program

Spooled

Source
Program

User
Library

Source

I
Compiler
Options

I

I
I

I
I

I

I
I

I

I
I

I

I

1f
I

I

,-----+
I
I

User
Library

Object
Program

1----_J
COBOL

Compiler

+
I

~
SYSIN
Options

I

IE,;;, L.t - - I
ri.:;c:tdur;MaP" I I /c,,;; Rafe.;;;.. - -, I I

0a7aMa"p- - I 11-J
~- - - --, I LJ
1 Source List I lJ

I ~mmarv Paa• I l I
.._I __ ... ,- - - r'

Note: Optional items denoted by dotted lines.

Figure 1-1. COBOL Compiler Program Flow

2. FORMAT NOT),TION

Throughout this publication, the format of COBOL statements is presented in a uniform
system of notation. The following system of notation is used to describe the format of
COBOL statements.

• Upper case characters that are underlined are reserved key words and
are required.

• Upper case characters that are not underlined are reserved optional
words. They rnay be used for thE~ sake of readabi I ity.

• Lower case characters represent information supplied by the
programmer.

• Square brackets [] indicate that the contents enclosed are optional
, and may be included in the source program as necessary.

• Braces { } indicates that a selection of one of the options contained
within must be made.

• Ellipsis ... indicates that the preceding unit may occur once or any
number of times in succession.

• Plus sign (+) and minus sign (-) when appearing in formats, although
not underlined, are required when such formats are used.

• Punctuation and special characters (with the exception of the
previously mentioned) are required where shown.

• A period or comma, when used, must not be preceded by a space but
must be followed by a space.

• A left parenthesis must not be followed immediately by a space; a
right parenthesis must not be preceded immediately by a space.

• At least one space must appear between two successive words or
literals. Two or more successive spaces are treated as a single space,
except within nonnumeric literals.

• An arithmetic operator must always be preceded by a space and
followed by a space.

• Extensions to ANS COBOL and all references to such extensions
have a shaded background.

2-'I

3. STRUCTURE OF COBOL

COIBOL is a structured language. The programmer must write his individual problem
program within a framework of words that have a particular meaning to the COBOL
compiler. The result is the pEtrformance of a standard action on specific units of data.

ORGANIZATION OF THE COBOL PROGRAM

A COBOL source program consists of four major divisions. Each is identified by a division
header in the proper order and sequence as shown in the following paragraphs:

1. IDENTIFICATION DIVISION -- names the program

2. ENVIRONMENT DIVISION -- specifies equipment configuration
and 1/0 media.

3. DATA DIVISION - defines the characteristics of data to be
processed by the object program.

4. PROCEDURE DIVISION - describes the procedure used in
manipulating the data.

NOTE

In all formats within this publication, the required clauses and optional
clauses (when written) must appear in the sequence given in the format,
unless the associated rules explicitly state otherwise.

STRUCTUREOFTHECOBOLPROGRAM

The structure of a basic COBOL program would appear as follows:

IDENTIFICATION DIVISION.
PROGRAM~ID.program-name.

[AUTHOR.[comment-entry] ...]
[INSTAL LATION.[comment-entry] •..]
[DATE WRITTEN.[comment-entry] ...]
[SECURITY.[comment-entry] ...]
[REMARKS.[comment-entry] ...]

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOU ACE-COMPUTER .entry
OBJECT-COMPUTE A.entry
[SPECIAL-NAM ES.entry]
[INPUT-OUTPUT SECTION.
FILE-CONTROL. f entrvt ...
(1-0-CONTROL.entry]]

3-1

Bulletin: 2202.002-0001
Date: 3/19/73

DATA DIVISION.
[FILE SECTION.
(file description entry
(record description entry) ... J ...]

[WORKING-STORAGE SECTION.
[data item descripti4ln entry] ...
[record description ,entry] ...] ,_,

COBOL CHARACTER SET
••

The basic indivisible unit of the COBOL Language is the character. The complete character
set for MRX COBOL consists of the following 47 characters.

Character

0-9

A-Z

+

*

I

$

>

<
=

Digit

Letter

Space

Plus sign

IVlinus sign (or hyphen)

Asterisk

Stroke (vir~Jule, slash)

Currency sign

Comma

Period

Apostrophe (quotation mark)

Left parenthesis

Right parenthesis

Greater than

Less than

Equals

Characters are further classified in an array of subsets. A character may be defined as being
part of one or more of the following listed subsets.

3-2

COMPUTER CHARACTERS

A computer character is a character that belongs to the Extended Binary Coded Decimal
Interchange Code (EBCDIC) set.

ALPHANUMERIC CHARACTERS

An alphanumeric character is any character in tlhe computer's character set.

ALPHABETIC CHARACTERS

An alphabetic character is a character that belongs to the following set of letters: A~ B, C, D,
E, F, G, H, I, J, K, L, M, N, 0, P, Q, R, S, T, U, V, W, X, Y, Z, and the space.

NUMERIC CHARACTERS

A numeric character is a character that belongs to the following set of digits: 0, 1, 2, 3, 4, 5,
6, 1u 8, and 9.

WORD CHARACTERS

The characters used in words in a COBOL source program are as follows:

• 0 through 9

• A through Z

• - (hyphen)

PUNCTUATION CHARACTERS

A punctuation character is a character belongin~1 to the following set.

Character

Space

Comma

Period

Quotation mark

Left parenthesis

Right parenthesis

3-3

Bulletin: 2202.002-0001
Date: 3/19/73

SPECIAL CHARACTERS

A special character is a character that belongs to the following set.

Character

+

*

I

$

<

>

=

EDITING CHARACTERS

Plus sign

Minus sign

Asterisk

Stroke (vir~tule, slash)

Currency sign

Comma (decimal point)

Period (decimal po,int)

Quotation mark

Left parenthesis

Right parenthesis

Less than

Greater than

Equals

An editing character is a single character or a fixed two-character combination belonging to
the following set.

Character

B

0

+

CR

DB

z
*

$

Space

Zero

Plus

Minus

Credit

Debit

Meaning

Zero suppn!ssion

Check protiection

Currency sign

Comma (decimal point)

Period (decimal point)

3-4

ARITHMETIC EXPRESSION CHARACTERS

Bulletin: 2202.002-0001
Date: 3/19/73

MRX COBOL does not implement the use of a minus sign (-) preceding a variable or left
parenthesis within an arithmetic expression. Arithmetic expressions are limited to those
expressions used to specify relative indexing. Tlhe characters used are as follows:

Character

+

RELATION CONDITION CHAR,ACTERS

Meaning

Addition

Subtraction

Relational operj:ltors can be used in place of the relational characters.

Examples: G REA TE R, LESS, EQUAL TO

CHARACTER STRINGS

A character string is a set of contiguous characters which form a word, a name, a constant, a
PICTURE in the Data Division, or a NOTE in the Procedure Division.

It is delimited by a space, a period, a comma, or a right parenthesis.

WORD

A sequence of not more than 30 characters chosen from the word character set. A word
may not begin or end with a hyphen. ·

RESERVED WORD

A word that has a preassigned meaning to the COBOL compiler. It may not appear as a user
defined word unless it is a nonnumeric literal enclosed by quotation marks.

l<EYWORD

A word that is required when it appears in a COBOL entry.

OPTIONAL WORD

An optional word that may appear at the user's discretion for the sake of readability.
Misspelling of an optional word or its replacement by another word is not allowed.

3-5

C:ONNECTIVE

A comma used to link two or more subscripts or index expressions in a subscript data name
reference. This is the only connective included in M FlX COBOL.

NAME

There are seven typ~; of names ·used in a MR X COBOL program: data-names,
procedure-names,,· .file-names,· mnemonic-names, index-names, ·system-names and
program-names.

DATA-NAME

A word that contains at ~east one alphabetic charactE" (not necessarily the first). It names an
e1ntry in the Data Divisicm. All data names must be unique as qualification is not included in
MRX COBOL.

IDENTIFIER

An identifier is a data-name, followed, as required, by the syntactically correct combination
of subscripts or indexes necessary to make unique re·ference to a data item.

PROCEDURE-NAME

May be a paragraph name or a section name used to refer to that paragraph or section in the
source program. It may be composed o·f solely numeric characters. If so, data names are
E.~uivalent only if they are composed of the same number of digits and have the same value.
No name can be both a data-name and a procedure-name.

i=llE-NAME

A file-name is a word with at least one alphabetic 1:haracter that names a file described in
the Data Division. It is formed according to the rules for formation of a data-name.

MNEMONIC-NAME

A mnemonic-name is a word, supplied by the programmer, that is associated in the
Environment Division with a specific implementor-name. An implementor-name is a
reserved word that refers to a particular feature available on a Memorex computer system.
Mnemonic-names are formed according to the rules for formation of a data-name ..

3-6

INDEX-NAME

An index-name is a word with at least one alphabetic character that names an index
associated with a specific table. It is formed according to the rules for form~tion of a
data-name.

SYS'TEM-NAME

A system-name is a word that specifies the external name of a file, a device class, and an
organization method. The external name consists of from one to eight alphanumeric
characters. The first character must be alphabetic.

PROGRAM-NAME

A program-name is a word that identifies a COBOL source program. The program-name
consists of alphanumeric characters, the first of which must be alphabetic.

CONSTANTS

A constant is a unit of data whose value is not subject to change. The two types of constants
are:

• Literals

• Figurative constants

LITERALS

A literal is a string of characters whose value is implied by the ordered set of characters of
which the literal is composed. Every literal belongs to one of two types: numeric or
non numeric.

Numeric Literals

A numeric literal is defined as a stri~g of characters chosen from the digits 0 through 9, the
plus sign, the minus sign, and the decimal point.

3-"7

The rules for formation of a numeric literal are as follows:

• It must contain from 1 to 18 digits.

• It must not contain more than one sign character. If a sign is used; it
must appear as the leftmost character of the literal. If the literal is
unsigned, the literal is positive.

• It must not contain more than one decimal point. The decimal point
is treated as an assumed decimal point and may appear anywhere
within the literal except as the ri!~htmost character. If the literal
contains no decimal point, it is an integer.

The value of a numeric literal is the algebraic quantity represented by the characters in the
numeric literal.

If a literal conforms to the rules for formation of a numeric literal but is enclosed by
quotation marks, it is a nonnumeric literal, and it is treated as such by the compiler.

Nonnumeric Literals

A nonnumeric literal is a string of 1 to 120 alphanumeric characters bounded by quotation
marks. Any character in the alphanumeric character set may be included in the literal with
the exception of the quotation mark, which has the special purpose of enclosing the
character string.

The value of a non numeric literal is the string of characters itself, excluding the quotation
marks. Any spaces enclosed in the quotation marks are part of the nonnumeric literal and,
therefore, are part of the value.

FIGURATIVE CONSTANTS

A figurative constant is a reserved word that reprnsents a numeric value, a character, or a
string of characters. Such words must not be enclosed in quotation marks when used as
figurative constants.

A figurative constant can be used wherever a literal appears in a format. However, when the
literal is restricted to numeric characters only, all fi1gurative constants except zero are illlegal.

3-8

The figurative constants and their meanings are as follows:

Figurative Constant

ZERO
ZEROS
ZEROES

SPACE
SPACES

HIGH-VALUE
HIGH-VALUES

LOW-VALUE
LOW-VALUES

QUOTE
QUOTES

PICTURE CHARACTER STRING

Meaning

Represents the value 0, or one or more occurrences·
of the character 0, depending on context.

Represents one or more blanks or spaces.

Represents one or more occurrences of the chara~ter
that has the highest value in the computer's collating
sequence. The character for HIGH-VALUE is the
hexadeci ma J FF.

Represents one or more occurrences of the character
that has the lowE~st value in the computer's collating
sequence. The character for LOW-VALUE is the hexa­
decimal 00.

Represents one or more occurrences of the quotation
mark ·character. The word QUOTE cannot be used in
place of a quotation mark to enclose a nonnumeric
literal.

A PICTURE character string consists of certain combinations of characters in the COBOL
character set used as symbols. The allowable combinations are explained under the
PICTURE Clause in Section I'.

NOTE CHARACTER STRING

A NOTE character string may consist of any combination of the characters from the
computer's character set. NOTE is described under NOTE Statement in Section 8.

SPECIAL REGISTERS

The compiler generates storage areas that are primarily used to store information produced
with the use of special COBOL features; these storage areas are called special registers.

3-9

The word TALLY is the name of a special register whose implicit description is that of an
integer of five digits without an operational sign and whose implicit USAGi E is
COMPUTATIONAL.

The primary use of the TALLY register is to hold information produced by the EXAMINE
statement. References to TALLY may appear wherever an elementary data item of integral
value may appear (refer to the EXAMINE Statement in Section 8).

3-10

4. USE OF COBOL CODING FORM

The reference format provides a standard method for writing COBOL source programs. The
format is 'described in terms of character positions in a line on an 1/0 medium. Punched
cards are the initial input medium to the COBOL compiler. The compiler accepts source
programs written in reference format (Figure 4-1) and produces an output listing of the
source program in the same reference format.

SEQUENCE NUMBERS

A sequence number, consisting of six digits in the sequence area, is used to numerically
identify each card image to be compiled by the COBOL compiler. The use of sequence
numbers is optional, but if 1~resent they must be in ascending order. A card out of sequence
will be flagged with an S preceding the sequence number in the source listing output. A card
with a blank sequence number is not checked for sequence purposes.

CONTINUATION OF LINES

Any sentence or entry that requires more than one line is continued by starting subsequent
lines in Area B (which starts in column 12). These subsequent lines are called continuation
lines. The line being continued is called the continued line. If the sentence or entry occupies
more than two lines, all lines other than the first and last are both continuation and
continued lines.

CONTINUATION OF NONNUMERIC LITERALS

When a nonnumeric literal is continued from one line to another, a hyphen is placed in
column 7 of the continuation line, and a quotation mark preceding the continuation of the
literal may be placed anywhere in Area B. All spaces at the end of the continued line and
any spaces following the initial quotation mark of the continuation line and preceding the
final quotation mark are considered part of the literal. ·

CONTINUATION OF WORDS AND NUMERIC LITERALS

A word or numeric literal cannot be broken in such a way that part of it appears on a
continuation line.

AREA A AND AREA B

Area A (columns 8 through 11) is reserved for the beginning of division headers,
section-names, paragraph-names, level indicators, and certain level numbers. Area B occupies
columns 12 through the right margin (RMARG) and is used for statements and sentences of
the main COBOL program.

4-1

Punching Instructions

::111·111
Date. _______ Page __ of __ _

COBOL Coding Form Programmer __________ ~

Program'-----------~

SEQUENCE ..:
! A B COBOL STATEMENT IDENTIFICATION

CPAGEI ISERIALI u

1 2 3 4 5 6 1 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

. . .

.1.. . I I .
--'- _i_

__. I I

--'- . _J_ -'-

~

--- -' l ... L . I --...l I

I . -'-

. _._ .
--'-

--'- L
I I I . ' -'- -'-

--'-

L .
--'- --'- I

. _._ .

_L

_L

__._ l,.d _ _.,_

. _L _L I

I

1 2 3 4 5 6 1 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 434445 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 616263 64 65 66 67 68 69 70 71 72 73 74 75, 76 17 78 79 80

DIVISION HEADER

The division header must be the first line in a division. The division header starts in Area A
with the division-name, followed by a space, the word DIVISION, and a period. :\:l\f;\\\\\\jb,ll\·

EBll~!i4!~~~~~~~~~!!~~!~~!!~!1!!~!!!~1--1

SECTION HEADER

The name of a section starts in Area A of any line following the division header. The
section-name is followed by a space, the word SECTION, and a period. If program
segmentation is desired, a space and a priority number may follow the word SECTION. No
other text may appear on the same line as the SHction-header.

PARAGRAPH-NAMES AND PARAGRAPHS

The name of a paragraph starts in Area A of any line following the division header. It is
followed by a period and a space.

A paragraph con~ists of one or more sentencE~s. The first sentence in a paragraph begins
anywhere in Area B of either the same line as paragraph-name or the line immediately
following. Each successive line in the paragraph starts anywhere in Area B.

LEVEL INDICATORS AND LEVEL NUMBERS

In those Data Division entries that begin with a file description level indicator (FD), the
level indicator begins in Area A followed in Area 8 by its associated file-name and
appropriate descriptive information.

In those data description entries that begin with a level number 1 or 77, the level number
begins in Area A followed in Area 8 by its associated data-name and appropriate descriptive
information.

In those data description entries that begin with level numbers 2 through 49, the level
number may begin anywhern in Area A or Area 8, followed in Area 8 by its associated
data··name and descriptive information.

BLANK LINES

A blank line is one that contains nothing but spaces from column 7 through the right margin
(RMARG) inclusively. A blank line may appear anywhere in the source program, except
immediately preceding a continuation line.

4-3

COMMENT LINES

4-4

5. IDENTIFICATION DIVISION

The Identification Division is the first division and must be included in every COBOL source
program. The Identification Division assigns a name to the source program, the resultant
output listing, and possibly the object program. In addition, the user may include the date
the program is written, the author of the program, and other such information as desired,
described in the following paragraphs.

ORGANIZATION OF THE IDENTIFICATION DIVISION

The Identification Division must begin with the reserved words IDENTIFICATION
DIVISION followed by a period and a space. Each comment-entry may be any combination
of the characters from the EBCDIC set, organized to conform to sentence and paragraph
structure.

Fixed paragraph-names identify the type of information contained in the paragraph. The
name of the program must be given in the first paragraph, which is the PROGRAM-ID
paragraph. The other paragraphs are optional; they may be included in this division at the
user's discretion, in order of presentation shown by the following format:

IDENTIFICATION DIVISION.

PROGRAM-ID. program-name.

[AUTHOR. [comment-entry] ...]

[INSTALLATION. [comment-entry] ...]

[DATE-WRITTEN. [comment-entry] ...]

[SECURITY. [comment-entry] ...]

[REMARKS. [comment-entry] ...]

PROGRAM-ID PARAGRAPH

The following text defines the PROGRAM-ID paragraph. While the other paragraphs are not
defined, each general format is formed in the same manner.

The PROGRAM-ID paragraph gives the name by which a program is identified. Its format is:

PROGRAM-ID. program-name.

The program-name must begin with an alphabetic character followed by up to 29
alphanumeric or hyphen (-) characters. Only the first six characters of program-name are
used as the identifying name of the program. The use of a hyphen within these six character
positions is illegal.

The PROGRAM-ID paragraph must contain the name of the program and must be present in
every program. The program··name identifies the source program, all listings pertaining to a
particular program, and possibly the object program.

5-11

Following is an example of a PROGRAM-ID paragraph:

SEQUENCE .,.:

(PAGEi (SERIAL) 8 A
B COBOL STATEMENT

1 2 3 4 5 6 7 B 9 10 11 12 13 14 15 16 17 HI 19 20 212223 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 4344 45 4·5 47 48 4!1 50

- .I.I> •. T.~:r.DATA ,,_ -~---' ... -~--~-"--'-~~---~--~-~~-~-=

Note that only the first six characters, TESTDA, are! used to identify the program.

5-2

6. ENVIRONMENT DIVISION

The Environment Division specifies a standard method of expressing those aspects of a data
processing problem that are dependent upon the physical characteristics of a specific
computer. This division allows specification of the configuration of the compiling computer
and the object computer. In addition, information relating to input-output control, special
hardware characteristics, and control techniquE~s can be given.

The Environment Division must be included in every COBOL source program as the second
division.

ORGANIZATION OF THE ENVIRONMENT DIVISION

The Environment Division must begin with thE~ reserved words ENVIRONMENT DIVISION
followed by a period and a space.

Two sections make up the Environment Division: the Configuration Section and the
Input-Output Section. The following is a general outline of the sections and paragraphs in
the Environment Division. The order of presentation in the source program is also defined.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. source-computer-entry

OBJECT-COMPUTER. object-computer-entry

[SPECIAL-NAM ES. spHcial-names-entry]

[INPUT-OUTPUT SECTION.

Fl LE-CONTROL. file-control-entry ...

[l-0-CONTROL. input-output-control-entry ...]] .

CONIFIGURATION SECTION

The Configuration Section begins with the reserved words CONFIGURATION SECTION
followed by a period and a space.

This section describes the characteristics of the source computer and the object computer,
and is divided into three paragraphs: the SOURCE-COMPUTER paragraph, the
OBJECT-COMPUTER paragraph, and the SPECIAL-NAMES paragraph.

6-'I

SOURCE-COMPUTER PARAGRAPH

The SOU ACE-COMPUTER paragraph identifies the computer on which the source program
is to be compiled. Its format is:

SOURCE-COMPUTER. computer-name.

Computer-name must conform to the rules for formation of a data-name.

The SOU ACE-COMPUTER paragraph serves for documentation purposes only. An example
of a SOURCE-COMPUTER paragraph is as follows:

SEQUENCE ..:

IPAGEI ISERIALI 8 A
B COBOL STATEMENT

1 2 3 4 !i 6 7 8 9 10 11 12 13 14 15 16 11 18 19 20 21 22 23 24 25 26 27 2iL2!1 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

.0, .E.·-.C.0.11.P.QT.~.R •. ltRX.-.'tJ..' L .L •• ' ' ••• ~ .. L LL~--~--~~-=

OBJECT-COMPUTER PARAGRAPH

The OBJECT-COMPUTER paragraph identifies the computer on which the program is to be
executed. Its format is:

OBJECT-COMPUTER. computer-name

[MEMORY SIZE integer
{

WORDS }]
CHARACTERS

MODULES

[SEGMENT-LIMIT IS priority-number].

Computer-name must conform to the rules for formation of a data-name.

If the configuration implied by computer-name comprises more or less equipme.nt than is
actually needed by the object program, the descriptive clauses following computer-iname
permit the specification of the required configuration.

With the exception of the SEGMENT-LIMIT clause (described in Section 9),. the
OBJECT-COMPUTER paragraph serves for documeintation purposes only. An example of an
OBJECT-COMPUTER paragraph is as follows:

SEQUENCE ..:
~---.iZ A

IPAGEI ISERIALI 8
B COBOL STATEMElff

1 2 3 4 5 6 7 8 9 10 11 12 1:! 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

_ ~T-LC .. Or\PJlTL.L llkX:;~h~~_.___.__.__.~.-~~~-~-~__.___.__=

6-2

SPECIAL~NAMES PARAGRAPH

Bulletin: 2202.002-0001
Date: 3/19/73

The SPECIAL-NAMES paragraph provides a means of relating implementor-names to
user-specified mnemonic-names. Its format is:

SPECIAL 0 NAMES [implementor-name!§ mnemonic-name] ...

[CURRENCY SIGN !§.literal]

[DECIMAL-POINT IS COMMA].

The SPECIAL-NAMES paragraph is required if mnemonic-names, the DECIMAL-POINT
clause, or the CURRENCY SIGN clause are used. Otherwise, the paragraph is optional. If
the paragraph is specified, it must appear in the order shown.

Implementor-name may be chosen from the following list:

• SYSIN

• SYSOUT

• CONSOLE

The literal which appears in the CURRENCY SIGN IS literal clause is used in the PICTURE
clause to represent the currency symbol. The literal is limited to a single character, but must
not be one of the following:

• . Digits 0 through 9

• . Alphabetic characters A, B, C, D~ P, R, S, V, X, Z, or the space

• Special characters * + - , . () < > =

If this clause is not present, only the$ can be used as the currency symbol in the PICTURE
clause.

The DECIMAL POINT IS COMMA clause means that the function of comma and period are
exchanged in the PICTURE dause character string and in numeric literals.

An example of a SPECIAL-NAMES paragraph is as follows:

SEQUENCE .,:

IPAGEI ISERIALI 8 A
B COBOL STATEMENT

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

~.....__._ _ _.___._ __ ~ ~lsi.fit~w&=--... ~~_A_~~~=::=~-=~~=
--L-+--,__.__._·-~-- t!ll.EJIC.~fm .. S l&N _,_IJi__.!_._~~---'----'--~-._.__._ _,. _.L_ _ _.___._ __ ,_---'---L. _.____._

__ _.__~ ._ n£C1ML___~_._OlHJL_ __ .l.:i_L_OMA.L__~-'--'-~~J__;_-,__.___.__~

MAXIMUM CONFIGURATION SECTION

If the user chooses to specify all options are available in the Configuration Section, the
general format would appear as follows:

CONFIGURATION SECTION.

SOU ACE-COMPUTER. computer-name.

OBJECT -COMPUTE: R. computer-name.

[
MEMORY SIZE integer { ~~:~!CTERS} J

~ODULES

[SEGMENT-LIMIT IS priority-number].

[SPECIAL-NAMES. [implementor-name IS mnemc1nic name] ...

[CURRENCY SIGN IS literal]

[DECIMAL POINT IS COMMA].]

INPUT-OUTPUT SECTION

The Input-Output Sectiion begins with the reser\l'ed words INPUT-OUTPUT SECTllON
followed by a period and a space.

The Input-Output Section deals with the information needed to control transmission and
handling of data between external media and the object program. This section is divided
into two paragraphs: the FILE-CONTROL paragraph and the 1-0-CONTROL paragraph.

FILE-CONTROL PARAGRAPH

The Fl LE-CONTROL paragraph names each file, identifies the file medium, and allows
particular hardware assignments. The general format is as follows:

Fl LE-CONTROL.

SELECT Clause

ASSIGN Clause

[RESERVE Clause]

[Fl LE-LIMIT Clause]

[ACCESS MODE Clause]

[PROCESSING MODE Clause]

[ACTUAL KEY Clause]

flll~•I
6-4

The FILE-CONTROL paragraph begins with the reserved word FILE-CONTROL followed
by a period and a space. The clauses must appear, in the order shown.

SELECT Clause

The SELECT clause is used to name each file in a program. The format is as follows:

SELECT file-name

Each file-name described in the Data Division must be named once and only once in the
Fl LE-CONTROL paragraph following the key word SELECT. Each selected file must have a
file description entry in the Data Division.

ASSIGN Clause

The ASSIGN clause is used to assign a file to an external medium. The format is as follows:

ASSIGN TO [integer] system-name-1 [system-name-2] ...

[FOR MULTIPLE (REEL) J
UNIT

Integer indicates the number of input-output units of a given number to be assigned to the
file-name. The compiler, however, determines the number of units to be assigned, so the
integer option has the function of a comment.

System-name specifies the 1external name of a file, a device class, and an organization
method. Only system-name-1 is processed. All other system-names, if present, are treated as
comments.

System-name has the following structure:

name[-organization] [-class]

Name consists of from one to eight alphanumeric characters, the first of which must be
alphabetic, and represents the external name of the file. It is the name specified as the file
identifier on the //DEFINE statement (described in the MRX/OS Control Language
Services, Extended Reference manual).

Organization is a one-character field that specifies the file organization. The file organization
codes are as follows:

• S - sequential files

• R - relative files

5 .. 5

If organization is not specified, a sequential organization is assumed.

Class is a one-character field that represents the dev~ce class. The class codes are:

• D -· disc: devices

• T - tape devices

• U -·unit record devices

If class is not specified, a disc device is assumed.

The FOR MULTIPLE REEL/UNIT clause is applic:able whenever the number of tape units
or mass storage devices assigned might be less than the number of reels or units in thei file.
The system, however, will automatically handle volume switching for sequentially accessed
files, giving this clause the function of a comment i1: specified. All volumes must be mounted
for randomly accessed files.

An example of an ASSIGN clause is as follows:

SE OU ENCE ..:

(PAGEi (SERIAL) 8 A
B COBOL STATEMENT

--1----1--}----

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627281!93031323334353637 3839 404142434445464748,~950

!,LE.cT: .F.l.LL'itll:X~UG,Nu_:r:_Q_~S~Yi:lL~l-.D. -

RESERVE Clause

The RESERVE clause allows the user to modify the number of input-output areas allocated
by the compiler. The format is as follows:

RESERVE I intc3ger l
NO t ALTERNATE IAREJ\ l

AREAS

A minimum of one bu'ffer is required for a file. The ALTERNATE AREAS option reserves
an addition area for the file in addition to the ori1ginal area. Integer must be unsigned and
have a value of 1. Therefore, if this clause is specified, one additional buffer may be
assigned.

If NO is specified, no additional buffer areas are reserved aside from the minimum of one.
Similarly, if the clause is omitted, no additional buffer areas are reserved aside from the
minimum of one.

The RESERVE clause may be specified only for a sequential or relative file that is acc:essed
in sequential mode.

6-6

An example of a RESERVE clause is as follows:

SEQUENCE ._;

(PAGE) (SERIAL) 8 A
B COBOL STl\TEMENT

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Hi 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

f--..-'---1------"---~-1-- -~-"~- t-· J_~ __ J, .• '

--L----"-·-t- < ~1-- ~~ L--~--~~-L

t--...L--..1.-f----'- _...L__ --r--..J..__ _ _J_ __ _.___ __L __ I __ l __ _L ___ L

FILE-LIMIT Clause

Thu FI LE-LIM IT clause specifies the address range of a mass storage file. The format is as
follows:

{

Fl LE-LIMIT IS }
~nteger-1 TH RU integer-2

Fl LE-LIMITS ARE

I nt•~ger-1 represents the logical beginning of the mass storage file. I nteger-2 represents the
logical end of the mass storage file. Neither integer-1 nor integer-2 may exceed the value of
232.1. I nteger-2 may not be! less than integer-1. The value of integer-1 must be greater than
zero.

For a relative file processed in random access moqe, the Fl LE-LIMIT clause specifies that
logical records are obtained or placed randomly in the mass storage file within the limits
specified. The contents of the ACTUAL KEY data items that are not within these limits
cause the execution of the INVALID KEY clause on READ, WRITE, and SEEK statements.

For a relative file processed sequentially integer-1 specifies the first record to be read or
written. Sequential processing of records continues through integer-2. If the file limit clause
is omitted processing begins at the first record and continues in sequence till EOG in the
case of read, or end of reserved area in the case of write.

If specified for a sequential or ·}\pf!lll\:',~i,\!\li,::·the clause is treated as a comment.

When a file is initially created a permanent bias is set by Data Management. The bias set is
the value of integer minus 1. l'n subsequent references to the file, an actual key set by the
programmer specifies the desired record. The bias will be subtracted from this actual key
(by the operating system) giving the relative record position on the file, and the operating
system will position to that record.

The limits specified by the value of integer-2, less the value of integer minus 1 must be
within the limits of the allocated space. At later accesses to the file, it is not required that
the file-limits be equivalent to the file-limits specified at creation time. It is required,
however, that the lower limit specified is not less than the permanent bias of the file.

6-7

ACCESS MODE Clause

The ACCESS MODE clause defines the manner in which records of a file are to be accessed.
The format is as follows:

ACCESS MODE IS I SEQUENTIAL l
. - RANDOM

If this clause is not specified, sequential access is assumed.

If ACCESS IS SEQUENTIAL, records are placed or obtained sequentially. That is, the next
logical record is made available from the file when the READ statement is executed, or the
next logical record is placed into the file when a WRITE statement is executed. ACCESS IS
SEQUENTIAL may be applied to files assigned to tape, unit-record, or mass storage devices.

For ACCESS IS RAN DOM, storage and retrieval are based on an actual key associated with
each record (refer to ACTUAL KEY Clause in folllowing text). When the RANDOM option
is specified, the file must be assigned to a mass storage device. ACCESS IS RAN DOM may
be specified when file organization is relative or indexed.

PROCESSING MODE Clause

This clause is used to indicate that the logical proc«~ssing is sequential. The entry is optional;
it serves the function oif documentation only. The format is as follows:

PROCESSING MOOE IS SEQUENTIAL __ ._....,,_..,_ . ·.· .· .·.

ACTUAL KEY Clause

An ACTUAL KEY clause specifies a key that is used by the system to locate a logical rncord
in a relative or:.iddQxed fUe •.. The format is as follows:

ACTUAL KEY IS data-name

Relative Files

The ACTUAL KEY clause is required for a relative file only when it is accessed randomly.

Data-name must be an unsigned integer numeric item defined in the File, Working-Storage,
or :Linkage::section. Therefore, data-name must be an elementary item. The numeric value of
data-name must not exceed 231-1, or left truncation will occur on the significant digits.

The contents of data-name is used to locate a speci·fic relative position within the file when a
SEEK statement is executed, or if no SEEK statement is executed, when a READ or a
WRITE statement is executed. The relative position located corresponds directly to the
numeric value contairn~d in data-name less the value of the file-bias recorded at generation
time.

6-8

If the value contained in data-name is not wiithin the limit specified by the Fl LE-LIMITS
clause, the imperative statement following INVALID KEY will be executed. (INVALID
KEY is described in Procedure Section.)

Example:

.At file creation time, the h>wer file limit is set to 1; the upper limit is set to 300. These
limits allow the user to specify up to 300 records.

The lower file limit minus 1 becomes the permanent file bias and is used in conjunction with
the actual key to locate a particular record within a file.

Figure 6-1 shows how the actual key is used to locate a record during a read operation.

Steps to Locate a Record

Step 1. The user sets the actual key.

ACTUAL KEY IS DN2

where DN2 • 200

Step 2. Operating system computes the relative record position 1of the
record to be read.

ACTUAL KEY 200

·File bias (1 - 1 • O) -0

Relative record 200
position

Step 3. Operating system retrieves relative record 200.

Relative Record Position

~~

I ...

1

2

3

~~

200

..;L, ,...,

l--f~
Figure 6-1. Random Access ofa Relative File

6-9

Bulletin: 2202.002-0001
Date: 3/19/73

6-10

Steps to Update a Recoll'd

Step 1. User sets actual key ..

ACTUAL KEV IS AKEY

where AKEY= AAAM

Step 2. User issues a read c<J1mmand.

Step 3. The operating system retrieves
the record which in this case
is Record 3.

Step 4. User modifies the record
and issues a REWRITE
command.

Step 5. The operating system updates
the record!.

Figure 6-2. Sequential Access of an Indexed File

6-11

Index File

AAAA

Record 1

AAAB

Record 2

AAAM

R d3 ecor --
AABC

1---------i

Record 4

Data File

Record 1

Record 2

Record 3
...._
~

Record 4

Steps to Locate a Record

Step 1. User sets actual key.
Key

ACTUAL KEY IS AABB

-

_,-----. Step 2. Operating system locates key Pointeir to
value in index file. data fille _ __.,

Step 3. Operating system retrieves
record 100 by pic:king up
the pointer to thEt data
file located in the1 index
file.

Figure 6-3. Random Access of an Indexed File

6-12

Index File

AABB
1---------1

Record 100 1-

Data File

Record 1

Record 2

Record 100 1.-

6-13

F~ LE-CONTROL Clause Hestrictions

Some of the clauses of the FILE-CONTROL paragraph are restricted in their use, and cause
program errors if used incorrectly. Figure 6-4 shows these clauses and restrictions in the
form of a matrix. Note, for example, that the FILE-LIMITS clause is illegal when specified
for a unit record device.

SELEC' TCla lJIS8S

MULTIPLE REE L

MULTIPLE UNI' T

RESERVE

FILE-LIMITS

ACCESS IS SEQ UENl 'IAL*

ACCESS IS RAN DOM

PROCESSING IS SEQ UENTIAL**

ACTUAL KEY

FORWARD KEV

INDEX-BLOCK SIZE

Organizatio n

Sequential*

Relative

Indexed

*Default is sequentia1I
**Treated as comments

Key Attributes

Hardware Access
Device Organization Mode

Disc Tape UR Seq Rel Ind Seq Ran

I 0 I - - - - -

0 I I - - - - -

0 0 0 0 0 I 0 I

0 I I I 0 I 0 0

0 0 0 0 0 0 - -
0 I I I 0 0 - -
0 0 0 0 0 0 0 0

0 I I I 0 0 0 R

0 I I I I 0 0 I

0 I I I I R 0 0

KEY

0 0 0 I "" Illegal

0 I I R = Required

0 I I 0 • Optional

- • Not applicable

Figure 6-4. FILE-CONTROL Clause, Restrictions

6-14

Maximum FILE-CONTROL Paragraph

If the user chooses to specify all optiom; available, the resultant structure of the
Fl LE-CONTROL paragraph would appear as follows:

Fl LE-CONTROL.
SELECT file-name
ASSIGN TO [integer] system-name-1 [systam-name-2]. ..

rOR MULTIPLE l~~~~l]
RESERVE lintegerl ALTERNATE IAREA l- ·

HQ AREAS
FILE-LIMIT IS . .
FILE-LIMITS ARE mteger-1 THAU integer-2

[ACCESS MOD.EIS ISEQUENTIALIJ
- RANDOM

[PROCESSING MODIE IS SEQUENTIAL)
[ACTUAL KEY IS data-name]
[FORWARD KEY.!§ data-name]
[INDEX-BLOCK SIZE!§ integer-1 CHARACTERS].

1-0 CONTROL PARAGRAPH

The 1-0-CONTROL paragraph begins with the reserved word 1-0-CONTROL followed by a
period and a space.

The 1-0 CONTROL paragraph specifies the points at which rerun is to be established and
the memory area which is to lbe shared by different files.

The 1-0-CONTROL paragraph is optional. If used, the clauses must be in the specified order·
as follows:

1-0-CONTROL.
[[RERUN Clause] .. .
[~ AR EA Clause]]

REFIUN Clause

The presence of a RERUN clause specifies that checkpoint records are to be taken. A
checkpoint record is a recording of the status of a problem .program and main storage
resources at desired intervals. The contents of core storage are recorded on an external
storage device at the time of the checkpoint and can be read back into core storage to
restart the program from that point. The format is:

RE RUN ON system-name
EVERY integer RECORDS OF file-name

The RERUN clause specifies that checkpoint records are to be written on the unit specified
by system-name for every integer records of file-name that are processed. The value of
integer must not exceed 66,5:35.

6-15

Bulletin: 2202.002-0001
Date: 3/19/73

The system-name entry in this clause is used to specify the external medium of the1 file
where the checkpoint r1ecords will be written. Thu structure of the system-name entry is
identical to the structure of the name entry that appears in the ASSIGN clause. The
system-name entry 1cannot duplicate any name entry previously used in an ASSIGN clause.

The name specified in the system-name entry for the checkpoint file must be the reserved
identifier SYSCH K. The file organization used with this clause must be sequential and the
class must not be unit-record.

it is possible to includt3 several RERUN clauses within a single program. When multiple
RERUN clauses are used, all checkpoint records are written on the SYSCHK file.

The integer entry is used to specify the number of READ, WRITE, DELETE, and
REWRITE statements that occur in a single file. When the count of the READ, WRITE,
DELETE, and REWRITE statements for a particular file equals the number specified in the
integer entry for this clause, a checkpoint record is written.

When the checkpoints a1re written on disc, only tho checkpoint immediately precedin~J the
checkpoint being taken is saved. For example, ch•~ckpoint 1 is written on disc and saved,
checkpoint 2 is then written on disc and saved. When checkpoint 3 is then written,
checkpoint 1 is deleted and only checkpoint 2 remains on the disc.

When the checkpoints are written on tape, all checkpoints are saved.

After a checkpoint has been written, a message is printed on the operator console speci'Fying
the jobname and chec:kpoint number just completed. Refer to the MRX/OS Control
Program and Data Management Basic Reference manual for further details.

Restart Considerations

The following conditions regarding restart procedures should be considered.

• The positioning of card input, card output, and printer files can be
handled by the Checkpoint/Restart program if the spooling
capabilities of M RX/OS are utilized.

• Tape filus can be restarted, and they will be positioned.

• Mass storage files whiere the file organization is defined as
SEQUENTIAL can be restarted, and they will be positioned.

• Mass storage files where the file organization is defined as
RELATIVE can be restarted, but they are not positioned.

6-16

Restrictions and Limitations

Bulletin: 2202.002-0001
Date: 3/19/73

The following conditions regarding the restrictions and limitations of the checkpoint/restart
feature should be considered.

• On a deferred restart, no positioning is performed on the //PAR
statement.

• Mass storage files where the file organization is defined as
RELATIVE aind the access mode is defined as RANDOM can be
restarted, but any update records that have been made to the file
must be handled by the user. They will not be handled by the
Checkpoint/ Restart program.

• Mass storage files where the file organization is defined as INDEX
that are being created or updated cannot be restarted.

SAME AREA Clause

The SAME AREA clause specifies that two or more files are to use the same memory area
during processing. Its format is as follows:

SAME AREA FOR file-name-1 file-name-2 .. ,

The area being shared includes all storage areas (including alternate areas) assigned to the
files specified; therefore, it is not valid to have more than one of the files open at the same
time.

More than one SAME AREA clause may be included in a program; however, a file-name
must not appear in more than one SAME AREA clause, or more than once in a given SAME
AR EA clause.

Maximum 1-0-CONTROL Paragraph

If the user wishes to specify all options available, the resultant structure of the
1-0-CONTROL paragraph would appear as follows:

1-0-CONTROL.
[RERUN ON system-name
EVERY integer RECORDS OF file-name] ...

[SAME AREA FOR file-name-1 file-name-2) ...

6-16a

MAXIMUM INPUT-OUTPUT SECTION

If the user specified all the options available in the FILE-CONTROL and 1-0-CONTROL
paragraphs, an Input-Output Section is created that appears as follows:

[INPUT-OUTPUT SECTION.

Fl LE-CONTROL.

SELECT file·name

ASSIGN TO [integer] system-name-1 [system-name-21

[FOR MULTIPLE I~~~~ lJ
[RESERVE I ~~eger) AL TE RN ATE I ::~:s lJ
[

FILE-LIMIT IS J
FILE-LIMITS ABE integer-1 THR!:J. integer-2

[ACCESS MODE IS I SEQUENTIAL l J
- RANDOM

[PROCESSING MODE IS SEQUENTIAL]

[ACTUAL KEY IS data-name]

[FORWARD KEY IS data-name]

[INDEX-BLOCK SIZE IS integer~1 .CHARACTERS] .]

[l-0-CONTROL.

[RERUN ON system~name

EVERY integ4~r RECORDS OF file-name].~.

[SAME AREA FOR file-name-1 file-name-2] ...] .]

6-17

Bulletin: 2202.002-0001
Date: 3/19/73

MAXIMUM ENVIRONMENT DIVISION

If the user wishes to specify all options available the resultant structure of the Environment
Division would app1ear as follows:

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. computer-name
OBJECT -COMPUTER. computer-name

I MEMORY SIZE integer{~~=~:CIERs}] L MODULES_
[SEGMENT-LIMIT IS priority-number.]

[SPECIAL-NAME~ [implementor-name IS mnemo1nic name] .••
[CURRENCY SIGN IS literal]
[DECIMAL-POINT IS COMMA].]

INPUT-OUTPUT SECTION.
[FILE-CONTROL~

SELECT file-name
ASSIGN TO [integer]system-name-1 [system-narne-2) ••.

[FOR MUl TIPL&_ I~~~; lJ
[RESERVE I integer' ALTERNATE !AREA IJ

NO AREAS

[
FILE-LIMIT IS . . J
FILE-LIMITS AIRE mteger-1 THAU mteger-2

[ACCESS MODE !.SI SEQUENTIAL l l
RANDOM

[PROCESSING MODE IS SEQUENTIAL]
[ACTUAL KEY IS data-name]

-[l-0-CONTROL.
[RERUN ON system-name

EVERY integer RECORDS OF file-name] •..
[SAME AREA F:oR file-name-1 file-name-2) ...] •

6-18

7. DATA DIVISION

The Data Division describes the data that the object program will accept as input,
manipulate or create. Data falls into two categories:

• Data contained in files. This type of data enters or leaves the internal
memory of the computer from a specified area or areas.

• Data developed internally. Tlhis type of data is placed into
intermediate or working storage.

The Data Division must be included in every COBOL source program as the third division.

ORGANIZATION OF THE DATA DIVISION

Three sections make up the Data Division: the File Section, the Working-Storage Section,
and the :~i.m~!l,i·~Uigpj. Each of these sections in the Data Division is optional.

The File Section defines the format of data files stored on an external device. Each file is
defined by a file description (FD) followed by a record description or a series of record
descriptions.

The Working-Storage Section describes records, data items and constants which are not part
of external files. This data is developed and processed internally. The Working-Storage
Section may specify both logical records and noncontiguous items .

.

!:_,!_i_:.!_i,!_i.l.~_1.·.·.~-~ •. ~_:_.:_,:.1_,_:_~,[s,,~-·-·-~·:··-··_:_ •. m_~,·-•.:_:_o.·!····.·.·.····:,l.i•.-~ .•. s_ •.•. ·_:_!_i_ru_:_~_:_.:_:_\,!_:. __ ._ .. 1_:·1····_:,:_:_·_!_: •. _ .. :_·.,: .•. ·.': .. :······,:_::_;,,:_:_• •.. : .• _a,~,·-·."_~_!,:_i_.,·• ,:_•~_:,.·_•,·_.!_:_!.·_·:_,·;··.:,,_u_!",.i_:,"_i_·,· .•. i,;,~,·_:_i,n .• _:,~_._r,u,i,.i,u_ •.•.•. ~,· •. :_~,;,~,· .. _!,,_._~,:_:_•,'_i_n,·_':_'._:_:_!_:·,•.~.~,:_·.•,!,!,~,·,r,s,!,:,.,;(,.=.:,•,:e,·•,., .•. :,::~,e,•,is::,~_._:,t_ •. :, •• ,._ .. i•,_._1,:,r:r:i:';!:1,:_:_·~,l:, •..• ,:_·_:,•_:_._ •. ',:i,,.,:',e •.. ~::,r. __ •• _,[_'._n.:_:._.j.!_ •. !~ .. 1_a_i_

~ :::::::::::::::::::::::::::::~:::::::::::::~:;:::::::~:::~:~:~:~:~:::~:~=~=~:::::~=~:~:~=~=~=:~~:~=~=~:~:~:==~~~:::~=~(~:~::~:;~~~~:~:=~i~~~~:~):~~~~~~)~~~)~]~~~j~~~~~~r~~?~~~~~~~)~)~]J{~~~{~:~~?{~~~~;~~:\:::!:!:~ :::::::~==:~:~:::::::~:::::::=::::::::::=:=====:=:=:::::::::::::::::::::::::::::::::::=:::::::=::::=:·::;.·.;.·.·.·.· ·.·

The fixed names of these sections and the order of presentation are shown by the following
formait:

DATA DIVISION.
[FILE SECTION.

{file description entry
f record description entry } ... } ...]

[WORKING~STORAGE SECTION.
[data item description erntry] ...

I~--
7-1

DATA DIVISION ENTRIES

Each Data Division entrv begins with a ~evel indicator or a level number, followed by a
space, the name of a data item, and a sequence of independent clauses describing· the data
item. The last clause is always terminated by a period followed by a space.

There are two types of Data Division entries: those which begin with a level indicator and
those which begin with a level number.

CONCEPT OF LEVELS

A level concept is inherent in the structure of a logical record. This concept arises from the
need to specify subdivision of a record for the purpose of data reference. Once a subdivision
has been specified, it may be further subdivided to permit more d~tailed data referral.

The most basic subdivision of a record (that which is not further subdivided) is called an
elementary item, consequently, a record is said to consist of a sequence of elementary items,
or the record itself may be an elementary item.

In order to refer to a s1~t of elementary items, the! elementary items are combined iinto
groups. Each group consists of a named sequence of one or more elementary items. Grouips,
in turn, may be combined into two or more groups. Thus, an elementary item may belong
to more than one group.

In the following example, the group items MARRIED and SINGLE are themselves part iof a
larger group named HETI RED-EMPLOYEES:

SEQUENCE .,:
I A 8 COBOL STATEMENT

(PAGEi (SERIAL! l:S
~~~~.~~~-~~~~~~~~~~ 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28~ 30 31 32 33 34 35 36 ~7 38 39 40 41 42 43 44 45 46 47 48 4!~ 

11--~_.__._-----+--1~_.__ ..... -...~c ..... I._RIL.lllLllE ..... l>.,,_-_,__E. ......... ftf_.L_Qll.E_'~~,___. __ ~~~~~..__._~~-L--L 
·~-'--'-11-+-'-__.__._-~,.___.__.......,._.l_.R._t __ E..._D~ -~--,...~ _.___._ 

~~~,_,_JlO~llALE.:lLL_ .. L-< .PIG~U.lE. :':':It~.-~ 
~_.___._...__...._~~0L~_f :£JlALE~lL.__ .P.I CTU.R.e. .!. (__) _ ~

7-2

LEVEL NUMBERS

A system of level numbers shows the organization of elementary and group items.

Since records are the most inclusive data items, levels for record numbers start at 1 or 01.
Less inclusive data items are assigned higher (not necessarily successive) level numbers not
greater in value than 49. Separate entries are written in the source program for each level
number used.

A group includes all group and elementary items following it until a level number
numerically less than or equal to the level number of that group is encountered. The level
number of an item (either an elementary item or a group item) immediately following the
last elementary item of a group must be numerically equal to a previously stated group level
number.

No true concept of levels eixists for entries that specify noncontiguous Working-Storage
items, which are not subdivisions of other items, and are not themselves subdivided, have
been assigned the special level number 77. Level numbers 01 and 77 must begin in Area A,
followed in Area B by associated data names and appropriate descriptive information.

Successive data description entries may have the same format as the first such entry and
may be indented according to level number. Indentation is useful for documentation
purposes and does not affect the action of the compiler.

LEVEL INDICATOR

The file description level indicator (FD) is used to specify the beginning of a file description
entry in the File Section.

FILE SECTION

The File Section contains a description of all externally stored data (FD) used in the
program.

The File Section must begin with the header Fl LE SECTION followed by a period. The File
Section contains file description entries, each followed by its associated record description
entry (or entries). The format is as follows.

Fl LE SECTION.
{file description entry
{record description entry } ... }

FILE DESCRIPTION ENTRY

In a COBOL program, the File Description entry represents the highest level of organization
in the File Section. The File Description entry provides information about the physical
structure and identification of a file, and gives the record-name(s) associated with that file.

7-:3

RECORD DESCRIPTION ENT.RV

The Record Description entry consists of a set of data description entries which describe the
particular record(s) contained within a particular file.

WORKING-STORAGE SECTION

The Working-Storage Section may contain descriptions of records which are not part of
external data files but am developed and processed internally.

The Working-Storage Se,ction mu~t begin with the section header WORKING-STORAGE
SECTION followed by a period. The Working-Storage Section contains data description
entries for noncontiguous items and record description entries, in that order. The format is
as follows.

WORKING-STORAGE SECTION.
[data item description entry] ...
[record description entry] ...

DATA ITEM DESCRIP'TION ENTRIES

Noncontiguous items in Working-Storage that bear no hierarchical relationship to one
another need not be g1rouped into records, provided they do not need to be fur1ther
subdivided. Instead, they are classified and defined as noncontiguous elementary items.
Each of these items is defined in a separate clause that begins with the special level number
77.

BECORD DESCRIPTION ENTRIES

Data elements in Working-Storage that bear a de,finite hierarchical relationship to one
another must be grouped! into records structured by !level number.

7-4

FILE DESCRIPTION ENTRY - DETAILS OF Cl AUSES

The file description may consist of level indicator (FD), followed by file-name, followed by
a series of independent clauses. The entry itself is terminated by a period.

FILE DESCRIPTION

The file description furnishes· information concerning the physical structure, identification,
and record nam.es pertaining to a given file. Its general format is as follows:

FD file-name
[BLOCK CONTAINS Clause]
[RECORD CONTAINS Clause]
[DATA RECORDS Clause]
LABEL RECORDS Clause
[VALUE OF Clause].

The level indicator, FD, identifies the beginning of a file description and must precede the
file-name.

The clauses which follow the name of the file are optional in many cases, and their order of
appearance is immaterial.

BLOCK CONTAINS CLAUSE

The BLOCK CONTAINS clause specifies the size of a physical record. Its format is as
follows:

. I CHARACTERS I
BLOCK CONTAINS integer RECORDS

This clause is required exceot when a physical record (BLOCK) contains one and only one
complete logical record. If the clause is omitted it is assumed that records are blocked one
record per block.

When the RECORDS option is used, the compiler assumes that the block size provides for
integer records of maximum size plus additional space for any required control bytes.
Integer must be a positive integer not greater than 255.

When the CHARACTERS option is used, the physical record size is specified in standard
data format, that is, in terms of the number of bytes occupied internally. This is not
necessarily the same as the number of charac1ters used to represent the item within the
physical record. The number of bytes occupied internally by a data item is included as part
of the discussion of the USAGE clause in this section.

When the CHARACTERS option is used, integer represents the exact size of the physical
record and must include slack bytes contained in the physical record. Each logical record

7-5

contains a 4-byte control header which is transparent to the user, but must be taken into
account when the CHAIRACTE RS option is used. The integer specified must include the
4-byte control header. Integer must be a positive integer not larger than 214_1.

MRX COBOL does not allow logical records that extend across physical records.

RECORD CONTAINS CLAUSE

The RECOR.D CONTAINS clause specifies the size of data records. Its format is as follo1ws:

RECORD CONTAINS [integer-1 TO] integer-2 CHARACTERS

lnteger-1 and integer-2 must be positive integers not larger than 214_1. lnteger-2 must be
greater than integer-1.

Since the size of each data record is completely defined within the record description entry
(which follows), th~s clause is never required. When present, however, the following rules
apply:

• lnteger-2 may not be used by itself unless all of the data records in
the file have the same size. In this case, integer-2 represents the exact
number of characters in the data record. If integer-1 and integer-2 are
both shown, they refer to the minimum number of characters in the
smallest size data record and the maximum number of characters in
the largest size data record, respectively.

• The size is specified in terms of the number of characters in standard
data format (refer to BLOCK CONTAINS clause). The size of a
record is determined by the sum of the number of characters in all
fixed length elementary items plus the sum of the maximum number
of characters in all variable length items subordinate to the record.

• The 4-byte record header should not be included as part of the
record size.

Whether this clause is specified or omitted, the rncord lengths are determined from the
record descriptions .. When a data item description entry within a record containin!J an
OCCURS clause with th«~ DEPENDING ON option, the compiler uses the maximum value of
the variable to calculate the record length.

DATA RECORDS CLAUSE

The DATA RECORDS clause identifies the data rec:ords in a file by name. This clause sc~rves
only as documentation. Its format is as follows:

I RECORD IS)
DATA RECORD!~ARE data-name-1 [data-name-2) ...

Both data-name-1 and data-name-2 are the names of data records and must have 01 level
numbers.

7-6

The presence of more than one data-name indicates that the file contains more than one
data record format. The multiple record descriptions for a given file will occupy the same
storage area. The order in which they are listed is not significant.

LA'BEL RECORDS CLAUSE

The LABEL RECORDS clause specifies whether labels are present. Its format is as follows:

I RECORD IS l I OMITTED l
LABEL RECORDS ARE STANDARQ

The L~BEL RECORDS clause is required in every FD.

The OMITTED option specifies that either explicit labels do not exist for the file or the
existing labels are nonstandard and the user wants to process them as data records. The
OMITTED option should be specified for files assigned to unit record devices. It may be
specified for files assigned to magnetic tape units.

The ST AN DAR D option specifies that labels exist for the file, and that these labels conform
to system specification. The STANDARD option should be specified for files assigned· to
disc units. It may be specified for files assigned to magnetic tape units.

VALUE OF CLAUSE

Thei VALUE OF clause particularizes the description of an item in the label records
associated with a file. Its format is as follows:

. I data-name-1 l VALUE OF implementor-name-1 IS
1
•

1 1 ---- itera-

[implementor-name-2 IS l ~:~;~~-~m•-2 1 J ...
A figurative constant may be substituted for any literal in the format. Implementor-names
are standard label-field names. The following implementor-names are used to define field
values in standard labels:

ID - a 17-byte alphanumeric, left justified, identification code

RETENTION-PERIOD - a 4-digit numeric, right-justified code indicating
the length of time a file is to be kept

MODIFICATION-CODE - a 4-character alphanumeric, right-justified code
used for access information.

This serves as documentation only since labels are specified by the //DEFINE statement in
Control Language.

7-7

MAXIMUM FILE DE$CRIPTION ENTRY

A file description entry including all options available would appear as follows:

FD file-name

[
. (CHARACTERS)] BLOCK CONTJ~INS mteger RECORDS

[RECORD CONTAINS [integer-1 TO] integer-2 CHARACTERS]

(
RECORD IS I

[DATA flECORDS ARE data-name-1 [data-name-2] ...]

(
RECORD IS I (OMITTED I

[

LABEL f!.E~OROS ARE STANDIA:a~a-name- 1) J
VALUE OF implementor-name-1 IS literal-1 .

r (data-name-2 l J ~mplernentor-name-2 IS literal-2 ...

Clauses within the fHe description entry may appear in any order.

DATA DESCRIPTION

In COBOL, the terms USE!d in connection with data description are as follows:

• Data description entry

• Data item description entry

• Record description entry

DATA DESCRIPTION ENTRIES

A data description entry specifies the characteristics of a particular item of data. The general
format is:

(
data-name I level-number
FILLER

[REDEFINES Clause]
[BLANK WHEN Zl;EQ Clause]
[JUSTIFIED Clausi?]
[OCCURS Clause]
[PICTURE Clause]
[SYNCHRGNIZED Clause]
[USAGE Clause]
[VALUE Clause] .

The maximum length for a data description entry iis 16,383 bytes. A data description entry
is used for record description entries in the File, Working-Storage, and ·:·~~'iii.I: Sections and
for data item descriptic1n entries, in the Working-Storage and ·;,f:o~lll Sectfons. When used,
the following rules appl,~: . · .· ··

7-8

• Level-number may be any number from 1-49 or 77.

• The clauses may be written in any order with two exceptions: the
data-name or FILLER clause must immediately follow the
level-number; the REDEFINES clause, when used, must immediately
follow the data-name clause.

• The PICTURE clause must be specified for every elementary item,
with the exception of index data items.

• Each entry must be terminated by a period.

• Successive data description entries may have the same format as the
first or may be indented according to level number. 01 and 77 must
start in Area A followed in Area B by record name or item name and
appropriate descriptive information.

DATA ITEM DESCRIPTION ENTRIES

A data item description entry is a data description entry that defines a noncontiguous data
item. It consists of a level number (77), a data-name, plus any associated data description
entries. Data item description entries are valid in the Working-Storage, and ~'-i§ili.9."::·sections.

RECORD DESCRIPTION ENTR~ES

A record description entry consists of a set o·f data description entries which describe the
characteristics of a particula1r record. Each data description entry consists of a level-number
followed by a data-name if rnquired, followed by a series of independent clauses as required.
A record description entry has a hierarchical structure and, therefore, the clauses used with
an entry may vary considerably, depending upon whether or not it is followed by
subordinate entries. The structures of a record description is defined in Concepts of Levels
in the beginning of this section. The elements allowed in a record description are shown in
the data description entry general format.

DATA DESCRIPTION ENTRY CLAUSES

The data description entry consists of a level number, followed by a data-name, followed by
a series of independent clauses. The clauses may be written in any order, with two
exceptions: data-name or FILLER must immediately follow level-number; the REDEFINES
clause, when used, must immediately follow the data-name. The entry must be terminated
by a period.

LEVEL NUMBER

The level number shows the hierarchy of data within a logical record. In addition it is used
to identify entries for noncontiguous working-storage items. A level number is required as
the first element in each data description entry.

7-9

Data description entries subordinate to an FD entry may have level numbers with the values
01-49. A single digit level number is written either as a space followed by a digit or as a zero
followed by a digit.

The level number 01 identifies the first entry in each record description. Multiple levnl 01
entries subordinate to a FD level indicator in the File Section represent implicit
redefinitions of the same area.

A special level number has been assigned to certain entries where there is no real concept of
level: level number 77 is assigned to identify noncontiguous data items in Working-Storage
and ·mJJ,111, items.

DATA-NAME OR FILL.ER CLAUSE

A data-name specifies the name of the data being described. The word FILLER specifies an
elementary or ::url\1@.":: item of the logical record that cannot be referred to directly. The
general format of the clause is as follows:

I data-name l
level-number £.!!-LEA

In the File, Working-Storage, or:J.111111:: Sections a data-name or the key word Fl l.LER
must be the first word following the···lev.el number in each data description entry. The key
word FILLER may bei used to name an elementary or'i\grg·gg,.item in a record. Under no
circumstances can a FILLER item be referred to directly.',.,.,

Data-names must be unique; a name cannot be both a data-name and a procedure-name.

REDEFINES CLAUSE

The REDEFINES clause allows the same computer storage area to c.ontain different data
items. The format is as follows:

level-number data-name-1 REDEFINE~ data-name-2

When used, the RE DEFINES clause must immediately follow data-name-1. The level
numbers of data-name-1 and data-name-2 must be identical.

This clause must not be used in level 01 entries in the Fiile Section. Implicit redefinition is
provided when more than one level 01 entry follows a file description entry.

Redefinition starts at data-name-2 and ends when a level number numerically less than or
1~ual to that of data-name-2 is encountered. Between the data descriptions of data-name-2
and data-name-1, them may be no entries having level numbers numerically lower. Example:

7-10

In this case, B is data-name-1, and A is data-name-2. When B redefines A, the redefinition
includes all of the items subordinate to A (A-1, A-2, and A-3).

Multiple redefinitions of the same storage area are permitted, but each of these definitions
must use the data-name of the entry that originally defined the area. Between redefined
entries there can be no intervening entries that define new storage areas.

For example, in the following program segment, B, C, and D redefine A.

SEQUENCE t-=
--...,.---z A

IPAGEI ISERIALI 8
B COBOL S'fAl'EMENT

7-11

Data items within an area can be redefined without their lengths being changed, as shown by
the statements and resulting storage layout in Figure 7-1.

SE OU ENCE .,:

(PAGEi (SERIAL! 8 A
B COBOL STATEMEN1r

SALARY SO-SEC-NO MONTH

_____...__...--....-----------------_/'~----------------------~

WAGE MAN-NO VEAR ..,.....____.........__...-.... __________ ./'...._____..----------~
NAME-1

Figure 7 -1. Data Items Rede1fimtd Within an Area

7-12

Data items can also be rearranged within an area, as shown by the statements and resulting
storage layout in Figure 7-2.

SEQUENCE ._;
t--·--..----11Z A

IPAGEI (SERIAL) 8
B COBOL STATEMENT

..... _ -----------------
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

NAME-2

NAME-1

-··A--·-----&--__.. l ____ _.L_ __ _,t_ ..• 1.--A.-~-....L~ I --·l-.. L ... -L....--L._L.--'---4----L-._L.--L-J...----'--'---.L--..l....---J.-.. ,_~~-L.-.A-~..J..

SALARY SO-SEC-NO

MAN-NO WAGE

MONTH

~

YEAR _______ __________ ---..... _ _. _ ---~

Figure 7-2. Data Items Rearranged Within an Area

7-13

When an area is redefined, all descriptions of the arna remain in effect. Thus, if Band Care
two separate items that share the same storage area due to redefinition, the procedure
statements MOVE X TO B or MOVE Y TO C could be executed at any point in the
program. In the first case, B would assume the value of X and take the form specified by the
description of B. In the second case, the same physical area would receive Y according to
the description of C. It should be noted, however, that if both of the foregoing stateme~nts
are executed successively in the order specified, the value Y will overlay the value X.
However, redefinition in itself does not cause any data to be erased and does not supersede a
previous description.

The usage of data items within an area can be redefined.. Altering the usage of an area
through redefinition doe:; not cause any change in existing data. Consider the example:

SEQUENCE ..,:

IPAGEI (SERIAL) 8 A
B COBOL STATEMENT

1 2 3 4 5 6 1 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 4SI SO

-'-~ _, ·-~--L-.•--~---'- L •• L~~--· ~--'-~.I.WtE.~'tf, JLSAGL _ __.I>~
--'---t--.--.-~------.--W.,, U..E. .l.~. . 8 ...• J • •. L .• - L ·-·-'--~-- •--···· L -···---'·· ~---'-- ~. ~~--'---'---'-- __.___L-L_ _ __,___,__,__,_

'-~-~--+---'--'---+--Y"'"---- ~-JlE.J>_.E.ElJlE,SL .8, .. P.lGilJ.RL.L~'L'f_._'fL!~_JLSA&E.___, ___ _._ _ _J __ _L__.

-~-- ~--- _ -~- ._+-+·--,t---L---'--,....._._,.__..cA___._U,T.Al'L_OliAL~_. _ . ..c ~--"---·~--L--~-~_.___.___.__,__.__,_ _ __._~--~-J.
I -·--~ ~-~- _......._.__.__I'...._·_.·-· • -~-L_L_, __ ._ '-~--'--~lG.l:f.LkE. _JS.'ti'f~i_ .J.l.SM:~--'--L--'--L-J.
-·--- -~- ~l\P__.U.J:ATl..0.ftfd.,, . , __ ,__._._ ·~~~-~-L-_.____._

Assuming that B is on a word boundary, the bit configuration of the value 8 is 1111 0000
1111 1000, because B is a DISPLAY item. Redefining B does not change its appearance in
storage. Therefore, a great difference results from the two statements ADD B TO A and
ADD C TO A. In the former case, the value 8 is added to A, because Bis a display item. In
the latter case, the value -3,848 is added to A, because C is a binary item (USAGE IS
COMPUTATIONAL).

Moving a data item to a second data item that redefines the first one (for example, MOVE B
TO C when C redefines B), may produce results that are not those expected by the
programmer. The same is true of the reverse (MOVE B TO C when B redefines C).

A REDEFINES clausu may be specified for an item within the scope of an area being
redefined, that is, an item subordinate to a redefined item. The following example would
thus be a valid use of the REDEFINES clause:

7-14

SEQUENCE ._:

(PAGEi ISERIALI § A
B COBOL STATEMEN'f

Following is a list of restrictions on the use of HEDEFINES:

• The entries giving the new description of the storage area must not
contain any VALUE clause.

• The data description entry for data-name-2 cannot contain a
REDEFINES or an OCCURS clause, nor can data-name-2 be
subordinate to an entry which contains a REDEFINES or an
OCCURS clause.

• An item subordinate to data-name-2 may contain an OCCURS clause
without the DEPENDING ON option. Data-name-1 or any items
subordinate to data-name-1 may contain an OCCURS clause without
the DEPENDING ON option. Neither data-name-2 nor data-name-1
nor any of their subordinate items may contain an OCCURS clause
with the DEPENDING ON option. When data-name-1 has a level
number other than 01, it must specify a storage area of the same size
as data-name-2. For data-name-1 containing an OCCURS clause, the
size of the storage area is computed by multiplying the length of one
occurrence by the number of occurrences.

• When the SYNCHRONIZED clause is specified for an item that also
contains a REDEFINES clause, the data item that is redefined must
have the proper boundary a~ignment for the data item that
REDEFINES it. For example, if the programmer writes:

02 A PICTURE X(4).
02 B REDEFINES A PICTURE S9(8) COMP SYNC.

he must ensure that A begins on a full word boundary.

• When the SYNCHRONIZED clause is specified for a computational
item that is the first elementary item subordinate to an item that
contains a REDEFINES clause, the computational item must not
require the addition of slack bytes.

7-15

BLANK WHEN ZERO CLAUSE

The BLANK WHEN ZERO clause permits the blanking of an item when its value is zero.
The format is as follows:

When the BLANK WHEN ZERO clause is used, tlhe item will contain nothing but spaces if
the value of the item is zero, except if CHECK PROTECT is specified, BLANK WHEN
ZERO is ignored.

The BLANK WHEN ZERO clause can be used onlv for an elementary item whose PICTURE
is specified as numeric or numeric edited and USAGE is DISPLAY. When the BLANK ·
WHEN ZERO clause is used for an item whose PICTURE is numeric, the category of the
item is considered to be numeric edited ..

Use of the BLANK WHEN ZERO clause is illegal when specified for data items having any
of the following characteristics:

• PICTURE is alphanumeric, alphabetic, or alphanumeric edited

• USAGE is COMPUTATIONAL,iij~ll!lllll~l:li!liltl~!or INDEX

• Subordinate to a value description entry containing a VALUE clause

• Group item

• Specified in an OCCURS clause with the DEPENDING ON option

JUSTIFIED CLAUSIE

The JUSTIFIED clause is used to override normal positioning of data within a receiving
alphabetic or alphanumeric data item.

{
JUSTIFIED! RIGHT
JUST

The standard rule for positioning data within an alphabetic or alphanumeric elementary
item is as follows:

• The sending data is moved to th1~ receiving character positions and
aligned at the leftmost character position in the data item with space
fill or truncation to the right.

When the receiving data item is described with the JUSTIFIED clause the positioning of
data is as follows:

7-16

• When the sending data item is larger than the receiving data item, the
leftmost characters are truncated.

• When the receiving data item is larger than the sending data item, the
data is aligned at the rightmost character position in the data jtem
with space fill to the left.

The JUSTIFIED clause can be specified only at the elementary item level. Use of the
JUSTI Fl ED clause is illegal when specified for data items having any of the following
characteristics:

• PICTURE is numeric, alphanumeric edited, or numeric edited

• Group item

• Subordinate to a data description entry containing a VALUE clause

OCCURS CLAUSE

The OCCURS clause eliminates the need for separate entries for repeated data and supplies
information required for the application of subscripts or indexes. The OCCURS clause is
discussed in Section 9.

PICTURE CLAUSE

The PICTURE clause describes the general characteristics and editing requirements of an
elementary item. The format is as follows:

{
PICTURE I . PIC IS character-string

A PICTURE clause can be used only at the elementary item level.

A character-string consists of certain allowable combinations of characters in the COBOL
character set used as symbols. The allowable combinations determine the category of the
elementary item. The maximum number of symbols allowed in the character-string is 30.

The PICTURE clause must be specified for every elementary item except an index data
item, for which this clause is prohibited from being used.

SYMBOLS USED IN THE PICTURE CLAUSE

The allowable symbols, used to describe an elementary item, and their functions are:

7-17

• A - Each 'A' in the character-string represents a character position
which can contain only a letter of the alphabet or a space.

• B ·- Each 'B' in the character-string represents a character position
into which the space character will be inserted.

• S -- The letter 'S' is used in a character-string to indicate the presence
of an operational sign and must bn written as the leftmost character
in the PICTURE. The ·'S' is not counted in determining the size of
the elementary item.

• V - The 'V' is used in a character-string to indicate the location of
the assumed decimal point and may appear only once in a
character-string. The 'V' does not represent a character position and
therefore is not counted in the size of the elementary item. When the
assumed decimal point is to the right of the rightmost symbol in the
string, the 'V' is redundant.

• P ·- The 'P' indicates an assumed decimal scaling position and is used
to specify the location of an assumed decimal point when the point
is not within the number that appears in the data item. The scaling
position character 'P' is not counted in the size of the data item.
However, scaling position characters are counted in determining the
maximum number of digit positions (18) in numeric edited items, or
items which appear as operands in arithmetic statements. The scaling
position character 'P' can appear only to the left or right of other
characters as a continuous string of 'P's within a PICTURE
description; since the scaling position character 'P' implies an
assumHd decimal point (to the left ot 'P's if 'P's are leftmost
PICTURE characters or to the right ot 'P's if 'P's are rightmost
PICTURE characters), the assumed decimal point symbol 'V' is
redundant as either the leftmost or rightmost character within such a
PICTURE description. The sign character Sand the assumed decimal
point V are the only characters which may appear to the left of a
leftmost string of P's.

• X - Each 'X' in the character-string is used to represent a character
position which contains any allowable character from the EBCDIC
character set.

• Z - Each 'Z' in a character-strin~1 is used to replace leftmost leading
numeric character positions, that 1:::ontain zero, with space characters.
Each ;Z' is counted in the size o·f the item.

• 9 - Each '9' in the character-string represents a character position
which can contain only a numeric character (0-9).

7-18

• 0 - Each 'O' (zero) in the character-string represents a character
position into which the numeral zero will be inserted. The 'O' is
counted in the size of the item.

• , - Each ',' (comma) in the character-string represents a character
position into which the character ',' will be inserted. This character
position is counted in the size of the item. The insertion character','
must not be the last character in the PICTURE character-string.

• . - When the character'.' (period) appears in the character-string it is
an editing symbol which represents the decimal point for alignment
purposes and in addition, represents a character position into which
the character '.'will be inserted. The character '.' is counted in the
size of the item. For a given program the functions of the period and
comma are exchanged if the clause DECIMAL-POINT IS COMMA is
stated in the SPECIAL-NAMES paragraph. In this exchange, the rules
for the period apply to the comma and the rules for the comma
apply to the period wherever they appear, in a PICTURE clause. The
insertion character'.' must not be the last character in the PICTURE
character-string.

• +, -, CR, DB - These symbols are used as editing sign control
symbols. When used, they represent the character position into
which the editing sign control symbol will be placed. The symbols
are mutually exclusive in any one character-string and each character
used in the symbol is counted in determining the size of the
data-item.

• * - Each '*' (asterisk) in the character-string represents a leading
numeric character position into which an asterisk will be placed
when the contents of that position is zero. Each '*'is counted in the
size of the item.

• $ - The '$' (currency symbol) in the character-string represents a
character position into which a currency symbol is to be placed. The
currency symbol in a character-string is represented by either the
symbol specified by '$' or by the single character specified in the
CURRENCY SIGN clause in the SPECIAL-NAMES paragraph. The
currency symbol is counted in the size of the item.

REPETITION OF SYMBOLS

An integer which is enclosed in parentheses following one of the symbols:

A,X9PZ*BO+-$

7-19

indicates the number of consecutive occurrences of the symbol. For example, iif the
programmer writes

A(40)

the (40) indicate forty consecutive appearances of the symbol A.

NOTE

The following symbols may appear only once in a given PICTURE clause:

S V . CR DB

CHARACTER STRllNG AND ITEM SIZE

In the processing of data through COBOL statements, the size of an elementary item is
determined through the number of character positions specified in its PICTURE character
string. In storage, however, the size is determined by the actual number of bytes the item
occupies, as determined by its PICTURE character string, and also by its USAGE (see
USAGE Clause near the end of this section).

Normally, when an arithmetic item is moved from a longer field into a shorter one, the
compiler will truncate the data (on the left) to the number of characters represented in the
PICTURE character string of the shorter item.

For example, if a sending field with PICTURE 5£19999, and containing the value +12:345, is
moved to a receiving field with PICTURE S99, the data is truncated to +45.

FIVE CATEGORIES OF DATA

There are five categories of data that can be described with a PICTURE clause. They are:

7-20

• Alphabetic

• Numeric

• Alphanumeric

• Alphanumeric edited

• Numeric edited

J\lphabetic Items

An alphabetic item is one whose PICTURE character string contains only the symbol A. Its
contents, when represent1~d in standard data format, must be any combination of the 26
letters of the Roman alphabet and the space from the COBOL character set. Each alphabetic
character is stored in a separate byte.

Alphanumeric Items

An alphanumeric item is one whose PICTUBE character string is restricted to combinations
of the symbols A, X, and 9. The item is treated as if the character string contained all X's.
Its contents, when represented in standard data format, may be any of the allowable
characters from the EBCrnC set.

A PICTURE character string which contains all A's or all 9's does not define an
alphanumeric item.

Numeric Items

A numeric item is one whose PICTURE: character string can only contain a valid
combination of the following characters:

9,V,P,S

The contents of a numeric item, when represented in standard data format, must be a
combination of the Arabic numerals 0-9 and must include an operational sign.

There are three types of numeric items: external decimal, binary, and internal decimal.

External Decimal

External Decimal corresponds to the form in which information is represented initially for
card input or finally for printed or punched output. Decimal numbers in the zoned decimal
format are external decimal items. Each digit of a number is represented by a single byte,
with the four low-order bits of each eight-bit byte containing the value of the digit. The four
high-order bits of each byte are zone bits; the zone bits of the least significant byte

7-21

represent the sign of the item. Examples of external decimal items and their internal
representation are shown nn Figure 7-3. The maximum length of an external decimal item is
18 digits. USAGE IS DISPLAY is used in conjunction with external decimal items.

Item Value Description

External Decimal -1234 DISPLAY
PICTURE 9999

+1234 DISPLAY
PICTURE $99199

Binary -1234 COMPUTATION.AL
PICTURE 59999

•·codes used in this column are1 as follows.
Z = zone, equivalent to 'hexadecimal F, bit configuration 1111

Hexadecimal numbers and their equivalent meanings are:
F = nonprirnting plus sign
C internal equivalent of plus sign, bit configuration 1100
D internal equiv·alent of minus sign, bit configuration 1101

S = sign position of a numeric field; internally.
1 • in this positio1n means the number is negative
0 = in this positio1n means the number is positive

Internal Representation*

Z1 Z2 Z3 I F4 I -byte

Z1 Z2 Z3 I D1 I -byte

Note that, internally. the D4,
which represents the -4, is the
same bit configuration as the
EBCDIC character M.

1111 1011

' s

Note that, internally. negatiive binary
numbers appear in two's complement
form.

Figure 7 -3. Internal Repn11entation of Numeric Items

7-22

Binairy

A binary item has a decimal equivalent that consists of numeric characters 0 through 9, plus
a sign. It occupies two bytes or four bytes, corresponding to specified decimal lengths in the
PICTURE, of 4 digits and 8 digits, respectively. The leftmost bit of the storage area is the
operational sign.

The PICTURE character string for a binary item may not contain the character P. The
character V is legal only if it is the rightmost character of the PICTURE string. Binary items
must be nonscaled integer numeric items and are always signed. Binary items with a
PICTURE specifying 1 through 4 digits will be treated as if the PICTURE had specified 4
digits. Binary items with a PICTURE specifying 5 through 8 digits will be treated as if the
PICTURE had specified 8 digits. A warning message will be given for binary item
descriptions, if the PICTURE does not specify 4 or 8 digits. USAGE IS COMPUTATIONAL
or USAGE IS[!!g:~:ltl!l:li!: must be specified for binary data items. An example of binary item
and its internaf ... repre.se·n.tation is shown in Figure 7-3.

Alphanumeric Edited Items

An alphanumeric edited item is one whose PICTURE character string is restricted to certain
combinations of the following symbols:

A,X,9,B,O

To qualify as an alphanumeric edited item, one of the following conditions must be true:

• The character string must contain at least one B and at least one X.

• The character string must contain at least one 0 (zero) and at least
one X.

• The character string must contain at least one 0 (zero) and at least
one A. Its contents, when represented in standard data format, are
allowable characters chosen from the EBCDIC set.

USAGE IS DI SPLAY is used in conjunction with alphanumeric edited items. The maximum
number of bytes allocated is '144.

Numeric Edited Items

A numeric edited item is one whose PICTURE character string is restricted to certain
combinations of the symbols:

B p v z 0 9 I • * + - CR DB $

The allowable combinations are determined from the· order of precedence. of symbols and
editing rules. The maximum number of digit positiions that may be represented in the
character string is 18. The contents of the character positions that represent a digit, in
standard data format, must be one of the numerals.

USAGE IS DISPLAY is used in conjunction with numeric edited items. The maximum
number of bytes allocated is 144.

THREE CLASSES OF DATA

The five categories of data items are grouped into three classes: alphabetic, numeric, and
alphanumeric. For alphabc~tic and numeric, the class and the category are synonymous. The
alphanumeric class includus the categories of alphanumeric (without editing), alphanumeric
edited, and numeric edited.

Every elementary item belongs to one of the three classes and to one of the five categoriE~s.
The class of a group item is treated at object time as alphanumeric regardless of the class of
the elementary items subordinate to that group item.

Figure 7-4 summarizes thn relationships of the class and category for elementary and group
data items.

Level of Item Class Category
'==--:===============:±::::-==================

Alphabetic Alphabetic
t---· -

Elementa1ry Numeric Numeric

Alphanumeric Alphanumeric
Alphanumeric Edited
Numeric Edited
-

Group Alphanumeric Alphabetic
Numeric
Alphanumeric
Alphanumeric Edited
Numeric Edited

Fiuure 7·4. Class and Category of Elementary and Group Data Items

7-24

EDITING RULES

The general methods of performing editing in the PICTURE clause are by insertion, or by
suppression and replacement. There are four types of insertion editing available. They are:

• Simple insertion

• Special insertion

• Fixed insertion

• Floating insertion

There are two types of suppression and replacement editing:

• Zero suppression and replacement with spaces

• Zero suppression and replacement with asterisks

The type of editing which may be performed upon an item is dependent upon the category
to which the item belongs .. The following list specifies which type of editing may be
performed upon a given category:

Category

Alphabetic

Numeric

Alphanumeric

Alphanumeric Edited

Numeric Edited

Simple Insertion Editing

Type of Editing

None

None

None

Simple Insertion, 0 and 8

All

The',' (comma), '8' (space), and 'O' (zero) are used as the insertion characters. The insertion
characters are counted in the size of the item and represent the position in the item into
which the character will be inserted.

Figure 7-5 shows examples of simple insertion editing.

Source PICTURE Source Value Edit PICTURE Edited Result

9(5) 01234 99,999 01,234

X(9) CITYSTATE XXXXBXXXXX CITY AST ATE

X(10) FMLASTNAME XBXBXXXXXXXX FAMALASTNAME

X(5) A3629 XBXXXX AA3629

9(5) 00000 99,999 00,000

Fi11ure 7-5. Examples of Simple Insertion Editing

7-25

Special Insertion Editing

The '.' (period) is used as the insertion character. In addition to being an insertion character
it also represents decimal point for alignment purpose:s. The insertion character used for the
actual decimal point is counted in the size of the item. The use of the assumed decimal
point, represented by thH symbol 'V' and the actual decimal point, represented by the
insertion character, in the same PICTURE character-string is disallowed. The result of
special insertion editing is the appearance of the insertion character in the item, in the same
position as shown in the character-string.

Figure 7-6 shows examples of special insertion editing.

Source PICTURE Source Value Edi PICTURE Edited Result

V9{6) J\000135 .99
1---·

99 99 .000135

9999V99 001~9 99 99 .. 99 0013.59
---+-·

9999V99 000~8 99. 99 99 04.2800

9V9 ~ 99. 9.9 19 002.80

9999V9 125~ 99 99, 9.99 01.256.30

Figure 7-6. Examplles of Special Insertion Editing

Fixed Insertion Editing

The currency symbol and the editing sign control symbols, '+', '-', 'CR', 'DB', are the
insertion characters. Only one currency symbol and only one of the editing sign control
symbols can be used in a given PICTURE character-·string. When the symbols 'CR' or 'DB'
are used, they represent two character positions in dE~terminijng the size of the item and they
must represent the rightmost character positions o·f the item. The symbol '+' or '-', when
used, may occupy the leftmost or the rightmost character position of the item. The
currency symbol must be the leftmost character po~sition of the item except that it can be
preceded by either a '+' or a '-' symbol. Fixed insertion editing results in the inserition
c:haracter occupying the same character position in the edited item as it occupied in the
PICTURE character-string. Editing sign control symbols produce the following results, as
shown in Figure 7-7, depending upon the value of th1~ data item.

Figure 7-8 shows examples of fixed insertion editing.

7-26

Editing Symbol in Result
PICTURE Character-String Positive or Zero Data Item Negative

+ + -

Space -

CR 2 Spaces CR

DB 2 Spaces DB

Figure 7-7. Editing Sign Control Symbols and Results

Source PICTURE Source Value Edit PICTURE Edited Result

99V99 0~3 $99.99 $01.23
-

S99V99 -0~3 +99.99 -01.23

S99V99 +o~3 +99.99 +01.23

S99V99 -0~3 -99.99 -01.23
I-·

S99V99 +o~3 ·99.99 6.01.23

S9999 3921 9999- 39216.

999V99 12~5 $999.99CR $123.45.oA
-

S999V99 -12~5 $999.99CR $123.45CR

999V99 12~5 $999.99DB $123.45.oA

S999V99 -12~5 $999.99DB $123.45DB

Figure 7-8. Examples o·f Fixed Insertion Editing

Floating Insertion Editing

The currency symbol and editing sign symbols'+' or'-' are the insertion characters and they
are mutually exclusive as floating insertion characters in a given PICTURE character-string.

Floating insertion editing is indicated in a PICTURE character-string by using a string of at
least two of the allowable insertion characters to represent the leftmost numeric character
positions into which the insertion characters can be floated. Any of the simple insertion
characters embedded in the string of floating insertion characters or to the immediate right
of this string are part of the floating string.

In a PICTURE character-string, there are only two ways of representing floating insertion
editing. One way is to represent any or all of the leading numeric character positions on the
left of the decimal point by the insertion character. The other way is to represent all of the
numeric character positions in the PICTURE character-string by the insertion character.

7-27

The result of floating insertion editing depends upon the representation in the PICTUFtE
character-string. If the insertion characters are only to the left of the decimal point, tlhe
result is a single insertion character that will be placed in the character position immediately
preceding the decimal point, or the first nonzero digit in the data represented by tlhe
insertion symbol string, whichever is further to the left in the PICTURE character-string.

If all numeric character positions in the PICTURE character-string are represented by the
insertion character, the result depends upon the value of the data. If the value is zero the
entire data item will contain spaces. If the value is nc)t zero, the result is the same as when
the insertion character is only to the left of the decimal point.

To avoid truncation, the minimum size of the PICTURE character-string for the receiving
data item must be the number of characters in the sending data item, plus the number of
fixed insertion characters being edited into the receiviing data item, plus one for the floating
character.

Figure 7-9 shows examples of floating insertion editinn.

Source PICTU RE Source Value E di ·tPICTURE Edited Result
-

99V99 12~ :S$$$.99 $12.34

9999 1234 :S$$$.99 $234.00

V9999 x234 :S$$$.99 $.12

S99V99 +1*4 ----.99 12.34

S9V999 -~34 ·---.99 -1.23

9V999 ~34 :$$99.99 $0123

9999 0000 ·-·- 6AAA

Figure 7-9. Examples of Floatin!~ Insertion Editing

Zero Suppression and Replacement Editing

The suppression of !leading zeros in numeric character positions is indicated by the use of
the alphabetic character 'Z' or the character '*' (asterisk) as suppression symbols in a
PICTURE character-string. These symbols are mutually exclusive in a given PICTURE
character-string. Each suppression symbol is counted! in determining the size of the item. If
'Z' is used, the replacement character will be the space and if the asterisk is used, the
replacement character wiU be '*'.

Zero suppression and replacement is indttcated in a PICTURE character-string by using a
string of one or more of the allowable symbols to represent leading numeric character
positions which are to be replaced when the associated character position in the dlata
contains a zero. Any of the simple insertion characters embedded in the string of symbols or
to the immediate right of this string are part of the string.

7-28

In a PICTURE character-string, there are only two ways of representing zero suppression.
One way is to represent any or all of the leading numeric character positions to the left of
the decimal point by suppression symbols. The other way is to represent all of the numeric
character positions in the PICTURE character-string by suppression symbols.

If the suppression symbols appear only to the left of the decimal point, any leading zero in
the data item which corresponds to a symbol in the string is replaced by the replacement
character. Suppression terminates at the first nonzero digit in the data item or at the
decimal point, whichever is e111countered first.

If all numeric character positions in the PICTURE character-string are represented by
suppression symbols and thE~ value of the data is not zero, the result is the same as if the
suppression characters were only to the left of the decimal point. If the value is zero, the
entire data item will be spaces if the suppression symbol is 'Z'. If the suppression symbol is
'*' and the data is zero, the entire data item will be '*' except for the actual decimal point
which will be printed.

When the asterisk is used as the zero suppression symbol and the clause BLANK WHEN
ZERO also appears in the same entry, the zero suppression editing overrides the function of
BLANK WHEN ZERO.

The symbols '+', '-', '*', 'Z', and the currency symbol, when used as floating replacement
characters, are mutually exclusive within a given character-string.

Figure 7-10 shows examples of zero suppression and replacement editing.

Source PICTURE Source Value Edit PICTURE Edited Result

99V99 1~4 ****.99 **10.34

99V99 1~34 ZZZZ.99 .6.A10.34

99V99 OOAJO ZZZZ.99 MAA.oo

99V99 OOAJO zzzz.zz 6.6M6M

99V99 OOAJO ****.** ****.**
-

9999V999 1034J\i67 zzzz.zz 1034.56

99V99 1~ Z999.99 A010.34

9V99
<M>A1

$*,***.99CR $***** .oo.M

Figure 7-10. Zero Suppression and Replacement Editing

PICTURE CLAUSE RESTRICTIONS

In general, usage of the PICTURE clause is restricted as follows:

7-29

• Illegal when specified for a data item having USAGE IS IN DEX

• Illegal when specified for a group item

• Required for elementary item whose USAGE is not INDEX

Use of any of the following clauses is illegal when specified for an item having an
alphanumeric PICTURE specification:

• BLANK WHEN ZERO

• USAGE IS COMPUTATIONAL, C:llel,~llif.!~~11:t,3~:.:or INDEX

o VALUE IS numeric literal

Use of any of the following clauses is illegal when specified for an elementary item having an
alphabetic PICTURE specification:

• BLANK WHEN ZERO

• USAGE IS COMPUTATIONAL or IDflf:llaml;:J"1(.if:\lf:Ntw~l·:

e VALUE IS numeric literal

Use of any of the following clauses is illegal when specified for an elementary item having a
numeric PICTURE specification:

• JUSTIFIED

• VALUE IS nonnumeric literal

Use of any of the following clauses is illegal when specified for an elementary item having an
alphanumeric edited PICTURE specification:

e BLANK WHEN ZERO

• JUSTIFIED

o USAGE IS COMPUTATIONAL or:l\llllllJtil!l!il,lllf:l:·:;-:ll!i'

e VALUE IS numeric literal

Use of any of the following clauses is illegal when specified for an elementary item having a
numeric edited PICTURE specification:

• JUSTI F~ED

o USAGE IS COMPUTATIONAL ori§BJllllJl·t,'llJll!I::,

• VALUE IS numeric literal

7-30

SYNCHRONIZED CL ALISE

The SYNCHRONIZED clause specifies the alignment of an elementary item on a word
boundary in core storage. The effect of this is to ensure efficiency in the performance of
arithmetic operations on binary data. The format is as follows:

I SYNCHRONIZEDI
SYNC [

LEFT J
RIGHT

If either the LE FT or RIG HT option is specified it is treated as a comment.

The SYNCHRONIZED clause may appear only at the elementary level. The length of the
item synchronized will not be affected by the use of this clause ..

When the SYNCHRONIZED clause is specified for an item within the scope of an OCCURS
clause, each occurrence of the item is synchronized.

When the item is aligned, the character position between the last item assigned and the
current item is known as "slack byte". This unused character position is included in the size
of any group to which the elementary item preceding the synchronized elementary item
belongs.

When a COMPUTATIONAL item is SYNCHRONIZED, it is aligned on a word boundary.
When a D ISP LAY or ::l:jg_:o,g::p::D.lllil!fllJJ;j'@.\\fi)(li[(]m~:,: item is SYNCHRONIZED, the
SYNCH RON I ZED clause is ti~eateci'-~s .. a· ~~-~-me~~t~·
When the SYNCHRONIZED clause is specified for an item that also contains a REDEFINES
clause, the data item that is redefined must have the proper boundary alignment for the data
item that REDEFINES it. For example, if the programmer writes:

02 A PICTURE X(4).
02 B REDEFINES A PICTURE S9(8) COMP SYNC.

he must ensure that A begins on a word boundary.

When SYNCHRONIZED is not specified for binary items, no space is reserved for slack
bytes. However, when computation is done on these fields, the compiler generates the
necessary instructions to move the items to a work area which has the correct boundary
necessary for computation.

SLACK BYTES

There are two types of slack bytes: intra-record slack bytes and inter-record slack bytes. An
intra-record slack byte is an unused character position preceding a synchronized item in the
record, or an unused character position added between table entries containing
synchronized items. An inter-record slack byte is an unused character position added
between blocked logical records.

7-31

Intra-Record Slack Bytes

For an output file, or in the Working-Storage Section, the compiler inserts intrarecord slack
bytes to ensure that aH SYNCHRONIZED items are on their proper boundaries. For an
input file, the compiler expects intra-record slack bytes to be present when necessary to
assure the proper alignment of a SYNCHRONIZED iitem.

Because it is important for the user to know the len!}th of the records in a file, the algoriithm
the compiler uses to determine whether a slack byte is required is as follows:

The total number of bytes occupied by all elementary data items preceding
the synchronized binary item are added to~1ether, including any slack bytes
previously added. If this sum is even, no slack byte is added. If the sum is an
odd number, one slack byte is added.

This intra-record slack byte is added to each record immediately following the elementary
item preceding the synchronized binary item. It is defined as if it were an item with a level
number equal to that of the elementary item that immediately precedes the
SYNCHRONIZED item,. and is included in the size of the group which contains it.

For example:

01 FIELD-A.
02 FIELD-B
02 FIELD-C.

03 FIELD-D
[03 Slack-Byte
03 FIELD-E

01 FIELD-L.
02 FIELD-M
02 FIELD-1\1
[02 Slack-Byte
02 FIELD-0.

03 FIELD-P

PICTURE X95).

PICTURE XX.
PIC X. Inserted by compiler]
PICTURE SH(8) COMP SYNC.

PICTURE X(5).
PICTURE XX.
PIC X. Inserted by compiler]

PICTURE SB(8) COMP SYNC.

Slack bytes may also be added by the compiler when a group item is defined with an
OCCURS clause and contains within it a synchronized data item with USAGE defim~d as
COMPUTATIONAL.

To determine whether a slack byte is to be added, the compiler calculates the size o·f the
group, including all. the necessary intra-record slack bytes. If this sum is an even number of
bytes, no slack byte is added. If the sum is an odd number of bytes, one slack byte will be
added at the end of each occurrence of the group containing the OCCURS clause.

For example, a record is defined as follows:

7-32

01 WORD-RECORD
02 WORK-CODE PICTURE X.
02 COMP-TABLE OCCURS 10 TIMES.

03 COMP-TYPE PICTURE XX.
[03 I A-Slack byte PIC X. Inserted by compiler]
03 COMP-HRS PICTURE S9(4) COMP SYNC.
03 COMP-NAME PICTURE X(6).

In order to align COMP-HRS upon its proper boundary, the compiler has added one slack
byte. However, without further adjustments, the second occurrence of COMP-TABLE
would now begin on a word boundary, making the insertion of a slack byte unnecessary.
This would create a table entry with a size different from that of the first entry, and create
addressing problems.

In order to make all table entries the same size, the compiler must add an inter-record slack
byte at the end of the group, as though the record had been written:

01 WORK-RECORD.
02 WORK-CODE PIC X.
02 COMP-TABLE OCCURS 10 TIMES

03 COMP-TYPE PIC XX.
[03 IR·Slack byte PIC X. Inserted by compiler]
03 COMP-HRS PIC S9(3) COMP SYNC.
03 COMP-NAME PIC X(6).

[03 IR-Slack byte PIC X. Inserted by compiler]

Using this description, the s•~cond (and each succeeding) occurrence of COMP-TABLE
begins on a byte boundary and has the same storage layout as the first. Figure 7-11 shows
the storage layout for the first and the second occurrences of COMP-TABLE.

,--- First Occurrence of COMP-TABLE -If ___ Second Occurrence of COMP-TABLE

UI ; * 0 w $ w ; 0.. Cl) > 0.. UJ
* Cl)

>. 0
c,> > .a cc .a

~ .a cc '.Cl
lo:- :i;: i COMP-NAME -n ~ ::i;: COMP-NAME

~ CL. ca 0.. Q. u D. a: :e :! ca .!!
0 iii iii :!: Ill :;

0 cc 0
~ 0 0 i: u CJ u ~ CJ

l _L l l l 1 l l
I I I T I T

w w w w w w w w w w w w w

W ... Word boundary

* = Slack byte inserted between occurrences

Figure 7-11. Insertion of Slack.~vtes Between Occurrences

Each succeeding occurrence within the table will now begin at the same relative position to
word boundaries as the first.

7-33

~ u
ca
iii

~

l
w

Inter-Record Slack Bytes

If the file contains blocked logical records, the logical records must contain an even number
of bytes, including all intra-record slack bytes created. It is the user's responsibility to insure
that the logical record length is equal to an even numlber of bytes. An inter-record slack byte
may be specified by writing a FILLER at the end of the record.

SYNCHRONIZED CLAUSE l~ESTRICTIONS

Use of the SYNCHRONIZED clause is illegal when specified for a data item having anv of
the following characteristics:

• USAGE IS INDEX

• Group item

• Subordinate to a VALUE clause

USAGE CLAUSE

The USAGE clause specifies the format of a data it1~m in the computer storage. The format
is as follows:

[USAGE IS]

The USAGE clause can be written at any level. If the USAGE clause is written at a gmup
level, it applies to each elementary item in the group. The USAGE clause of an elementary
item cannot contradict the USAGE clause of a group to which the item belongs. If the
USAGE clause is not specified for an elementary item, or for any group to which the item
belongs, it is assumed that the USAGE is DISPLAY.

This clause specifies the manner in which a data item is represented in the storage of a
computer. It does not affect the use of the data it1~m, although the specifications for some
statements in the Procedure Division may restrict the usage of the operands referred to. The
USAGE clause may affect the radix or type of character representation of the item.

The DISPLAY option specifies that the item is stored in character form, one characte!r per
byte. DISPLAY is used in conjunction with alphabetic, alphanumeric, external dedmal,
alphanumeric edited, and numeric edited items. The allowable characters used to reprnsent
these items can be found in the discussion of the PICTURE Clause.

7-34

The COMPUTATIONAL option specifies an integer binary data item occupying two or four
bytes, corresponding to specified digit lengths of 1-48 and 5-8, respectively. For example, an
item whose PICTURE is S9(5) and whose USAGE is COMPUTATIONAL has an internal
length of 4 bytes.

The PICTURE of a COMPUTATIONAL item may contain only 9's, the operational sign
character S, and the character V only if the V is the rightmost character of the picture
strin!J·

NOTE

Regardless of the PICTURE specified for a COMPUTATIONAL item, this
compiler will treat the item as if the PICTURE were specified as S9(4) and
S9(8), respectively.

~~e 00MP~yAffit~~AL~3 option ··$pe9lfi$$_.· th•t. t~e i~~m Js•· stored in. fil~li!/!·i!,~q:im~1
format:. tw,p:digiij per· byte, With the Jow .. order four bits Of the rightmost. by~~ ·t9rit~iO.l(l~
~~ . . ···.

1'£:~dlll~D~l:lflf~rfi11Jfr,t~~~~v9'$ aQd. ~~e<qppr~&n~·
A COMPUTATIONAL or •c$l!f?tJT:lf:flC).ifJ_A\.~,i:~ item represents a value to be used in
c9rYlplJtaiiQf}s.c:u1.d 111ust be numeric. If a group item is described as COMPUTATIONAL or
illM~·u0£:11;:t:~,~'l::~h4iit is the elementary items in the group which have this USAGE. The
group item. itself canrl"ot be used in computations (see discussion of numeric data items in
the PICTURE Clause in this section).

USAGE IS INDEX is discussed! in Table Handling at the beginning of Chapter 9.

Use of the USAGE IS COMPUTATIONAL od!tllll1§,°_:1·"i1:::·:111·1-1111:~!lll·lilf,l''clauses is
illegal! when specified for data items having any of the following characteristics:

• BLANK WHEl\I ZERO

• JUSTIFIED

• PICTURE is alphabetic, alphanumeric, alphanumeric edited, or
numeric edited

• VALUE IS alphanumeric literal

• Subordinate to a VALUE clause

Use of the USAGE IS IN DEX clause is illegal when specified for data items having any of
the following characteristics:

• BLANK WHEN ZERO

• JUSTIFIED

7-35

• PICTURE

• SYNCHRONIZED

• VALUE

• Subordinate to a VALUE Clause

VALUE CLAUSE

The VALUE clause defines the initial value of we>rking-storage items. The format is as
follows:

VALUE IS literal!

A figurative constant may be substituted wherever a literal is specified.

The VALUE clause must not be stated for any item whose size, explicit or implicit, is
variable.

Rules governing the use of the VALUE cllause differ with the particular section of the Data
Division in which it is specified:

• In the File Section and the :11:n;lll!;lllt~ll:~= the VALUE clause must not be used. ··.·.···.··.··.· · .. ·.·.· ·

• In the Working-Storage Section, the VALUE clause may be used to
specify the initial value of any data item. It causes the item to
assume the specified value at the start of execution of the object
program. If the VALUE clause is not used in an item's description,
the initial VALUE is unpredictable.

The VALUE clause must not be specified in a data description entry that contains an
OCCURS clause or in e:m entry that is subordinatH to an entry containing an OCCURS
clause.

Within a given record description, the VALUE clause must not be used in a data description
entry following a data description entry which contains an OCCURS clause with a
DE PEN DI NG ON phrase.

The VALUE clause must not be specified in a data description entry which contains a
REDE Fl NES clause or in an entry which is subordinate to an entry containin!J a
REDEFINES clause.

7-36

If the VALUE clause is used in an entry at the group level, the literal must be a figurative
constant or a nonnumeric literal, and the group area is initialized without consideration for
the USAGE of the items contained within this group. The VALUE clause then cannot be
specified at subordinate levels within this group ..

The VALUE clause cannot be specified for a group containing items with descriptions
including JUSTIFIED, SYNCHRONIZED, or USAGE (other than USAGE IS DISPLAY)
clauses.

The VALUE clause must not conflict with the other clauses in the data description of the
item or in the data description within the hierarchy of the item. If the category of an
elementary item is specified as numeric or alphabetic, it does not contradict the
alphanumeric category of group items.

The following rules apply:

• If the item is numeric, the literal in the VALUE clause must be a
numeric literaf. If the literal defines the value of a Working-Storage
item, the literal is aligned according to the rules for numeric moves,
except that the literal must not have a value that would require
truncation of nonzero digits.

• If the item is alphabetic or alphanumeric, the literal in the VALUE
clause must b«~ a nonnumeric literal. The literal is aligned according
to the alignment rules (see JUSTIFIED Clause in this section) except
that the number of characters in the literal must not exceed the size
of the item.

• The numeric literal in a VALUE clause of an item must have a value
that is within the range of values indicated by the PICTURE clause
for that item. For example, for PICTURE 99PPP, the literal must be
within the range 1000 through 99000 or zero. For PICTURE PPP99,
the literal mus1t be within the range .00000 through .00099.

~ If the item is numeric edited or alphanumeric edited, the literal in
the VALUE clause must be a nonnumeric literal already in edited
form. The editing characters in a P~CTURE clause are ignored in

· determining the initial appearance of the item described, but they are
included in determining the size of the item.

7-37

MAXIMUM RECORD OR DATA ITEM DESCRIPTION ENTHV

A record or data itiem description entry including all options available would appear as
follows (the OCCURS clause is discussed in Chapter 91

):

I data-name-1 l
le~el number· !:ILLER

[REDEFINES data-name-2]
[BLANK WHEN ;ZERO]

[l~IFIEDI RIGHT]

[OCCURS Clause]

[l:TURE) 1s character string J
[I SYNCHRONIZED) [LEFT J J

SYNC RIGHT

USAGE IS

INDEX
DISPLAY
COMP
COMPUTATIONAL
SfNARY
COMP~.3 .. = -~=> .· . . .~:.:
COIViPUTATt0NAL·3
PACKED

[VALUE IS literal]

7-38

8. PROCEDURE DIVISION

The Procedure Division must: be included in every COBOL source program. It contains the
specific instructions for solving a data processing problem. These instructions are written in
procedures.

ORGANIZATION OF THE PROCEDURE DIV~SION

The Procedure Division contains procedures. A procedure is composed of a paragraph, or a
group of successive paragraphs, or a section, or a group of successive sections within the
Procedure Division. If one paragraph is in a section, then all paragraphs must be in sections.
A procedure-name is a word used to refer to a paragraph or section in the source program in
which it occurs. It consists of a paragraph-name or a section-name.

The end of the Procedure Division and the physical end of the program is that physical
position in a COBOL source program after which no further procedures appear.

The Procedure Division must begin with the header PROCEDURE DIVISION followed by a

...... ----
A section consists of a section header followed by one or more successive paragraphs. A
section ends immediately before the next section-name or at the end, of the Procedure
Division.

A paragraph consists of a paragraph-name followed by one or more successive sentences. A
paragraph ends immediately before the next paragraph-name or section-name or at the end
of the Procedure Division.

A sentence consists of one or more statements and is terminated by a period followed by a
space.

A statement is a syntactically valid combination of words and symbols beginning with a
COBOL verb.

The term 'identifier' is defined as the word or words necessary to make unique reference to
a data item.

The structure of the Procedure Division is as follows:

TOCEDURE DIVISION.,f~ll'lill~tJI
section-name SECTION priority .

{paragraph-name. f sentence } ... } ... } ...

8-1

STATEMENTS

There are three types of statements in COBOL: com1Piler directing statements, conditional
statements, and imperativE~ statements.

COMPILER DIRECTING STATEMENTS

A compiler directing statement directs the compiler to take a specific action. The statements
consist of a compiler directing verb and its operands. The compiler directing verbs are
ENTER and NOTE.

CONDITIONAL STATEMENTS

A conditional statement causes the program to select alternate paths of control depending
upon the truth value of a test.

COBOL statements used as conditional statements are:

IF
ADD
SUBTRACT
MULTIPLY
DIVIDE

GO

READ

READ
WRITE
QE~.ETE

ili~~Tf

(ON SIZE ERROR)

(DEPENDING ON)

(AT END)

(INVALID KEY)

The options in parentheses cause otherwise imperative statements to be treated as
conditionals at executioin time. A discussion of th1~se options is included as part of the
description of the associated imperative statement.

IMPERATIVE STATEMENTS

An imperative statement indicates a specific action to be taken by the object program. An
imperative statement is any statement that is neither a conditional statement nor a
oompiler-directing statement. An imperative statement may consist of a sequence of
imperative statements.

COBOL verbs used in imperative statements are grouped into the following categories and
subcategories:

8-2

Arithmetic

ADD
SUBTRACT
MULTIPLY
DIVIDE

Procedure Branching

GOTO
ALTER
PERFORM
EXIT
STOP

Data Manipulation

MOVE
EXAMINE

Input/Output

ACCEPT
CLOSE
DISPLAY
OPEN
READ
WRITE
SEEK

•1
Table Handling (discussed in Section 9)

SET

_,
SENTENCES

A compiler directing sentence is a single compiler directing statement terminated by a
period, followed by a space.

An imperative sentence is an imperative statement or a series of imperative statements
terminated by a period, followed by a space.

A conditional sentence is a conditional statement optionally preceded by an imperative
statement terminated b'1' a period, followed by a space.

CONDITIONS

A condition is one of the following:

• Relation condition

• Class condition

• NOT condition

The construction (NOT condition) where condition is one of the conditions listed above, is
not permitted if the condition itself contains a NOT.

TEST CONDITIONS

A test condition is an expression that, taken as a whole, may be either true or false,
depending on the circumstances existing when the expression is evaluated.

There are two types of simple conditions which, when preceded by the word IF, constiitute
one of the two types of tests: class test, and relation test.

The construction - NOT condition - may be used in any simple test condition to make~ the
relation specify the opposite of what it would express without the word NOT. For example,
NOT AGE GREATER THAN 21 is the opposite of AGE GREATER THAN 21.

Each of the previously mentioned tests, when used within the IF statement, constitutes a
conditional statement.

CLASS CONDITION

The class test determines whether data is alphabe!tic or numeric. The format for a class
condition is as follows.

identifier IS[NOT] I NUMERIC I
-- ALPHABETIC

The operand being tested must be implicitly or explicitly described as USAGE DISPLAY.

A numeric data item consists of the digits 0 through 9, with or without an operational sign.

An alphabetic data item consists of the space character and the characters A through Z.

The identifier being teS1ted is determined to be alphiabetic only if the contents consist of any
combination of the alphabetic characters A through Z and the space.

8-4

Bulletin: 2202.002-0001
Date: 3/19/73

If the PICTURE in the record description of the identifier being tested does not contain an
operational sign, the identifier being tested is determined to be numeric only if the contents
are numeric and an operational sign is not present.

The NUMERIC.test cannot be used with an identifier describ~d as alphabetic.

The ALPHABETIC test cannot be used with an identifier described as numeric.

Figure 8-1 shows allowable forms of the class.te~rt.

Identifier Type Allowable Class Test

Alphabetic ALPHABETIC NOT ALPHABETIC
-----1

Alphanumeric ALPHABETIC NOT ALPHABETIC

NUMERIC NOT NUMERIC

Numeric · NUMERIC NOT NUMERIC

Fngure 8-1. Allowable For.ms of the Class Test

RELATION CONDITION

A relation condition causes a comparison of two operands, each of which may be an
identifier or a literal. Comparison of two numeric operands is permitted regardless of the
format as specified in individual USAGE clauses. However, for all other comparisons, the
operands must have the same usage.

The general format for a relation condition is as follows:

I identifier-1}
fiteral-1

relational-operator I identifierr-2}
literal-2

The first operand (identifier-1 or literal-1) is called the subject of the condition; the second
operand (identifier-2 or literal-2) is called the object of the condition. The subject and the
object may not both be literals. '

. . .

The relational operator specifies the type of comparison to be made in a relation condition.
The meaning of the relational operators is as shown in Figure 8-2. Notice that either the
symbol or the word is allowable for the conditions greater than, less than, and equal to.

Relational Operatoll' Meaning

IS [NOT] GREATER 'll'HAN Greater than or not greater than

IS [NOT) >

IS (NOT] LESS THAN Less than or not less than

IS [NOT)<

IS [NOT] EQUAL TOt Equal to or not equal to

IS [NOT]•

tTO Is optional on EQUAL TO reOational operator.

Figure 8-2. Relational Operators and Their Meanings

8-5

COMPARISON OF NUMERIC OPERANDS

For operands whose category is numeric, a comparir.on is made with respect to the algebraic
value of the operands. The length of the operandi;, in terms of number of digits, is not
significant. Zero is considered a unique value regardl1~ss of the sign.

Comparison of these operands is permitted regardless of the manner in which their USAGE
is described. Unsigned numeric operands are considered positive for purposes of comparison.

Figure 8-3 shows examples of the compar~son of numeric operands.

Subjt !Ct

0 [iliJ ~
iI2J ~

2 0 0 ~
Cil ill
0 ill

!] @
[il il!J

Object Result of Comparison

12 3Isl ol 21 ol 236.60 is greater than 23.5020
M

le 2 I 31 el 262 ils greater than 62.36
••

12 ololo,121 2000.0 is less than 2000.2

lo oiol +I -2.0 is less than +0.0
-

lo ol+) Oequ1lsO

lo 2 I 3_!J 46 is Ins than 0239

[iliJ 036 equals 38

Figure 8-3. Examples of Comparisons of l\lumeric Operands

COMPARISON OF NONNUIVIERIC OPERANDS

F=or nonnumeric operands, or one numeric and one nonnumeric operand, a comparison is
made with respect to a ~ipecified collating sequence of characters. Refer to Appendix B for
the collating sequence.

The size of an operand is the total number of characters in the operand. Numeric and
nonnumeric operands may be compared only when their usage is the same, implicitly or
explicitly.

The operands may be equal in size .Qr qrje.Q'"'-1.itt:.i'li~~i For equal length operands, charac:ters
in corresponding character positions of the. iw()' o~~erands are compared starting from the
high-order end through the low-order end. If all pairn of characters compare equally through
the last pair, the op 1erands are considered equal when the low-order end is reached. The first
pair of unequal characters to be encountered is compared to determine their relative
position in the collating sequence. The operand that 1contains the character that is
positioned higher in the c:ollating sequence is considered to be the greater operand.

8-6

-Jllll..~.i.~.~.1.i.J.:.t.l.!.i.~.~.i.~.r.;.1.·.1.§R.'..:.:.:.:.111.r.i.:.l.i.i.1.i.'.:.:.1.6.:.'.:.i.:.e.fi·,·:.!.:.le.l.r.!.': .. •.l~ .. t.~~ .. :.r.:.~~ .. !~ .. 1 . ~ ·.·.·.·,•.•,•,'.:·:·:·:·:·::::::::.::::::·:·.·:·

Figure 8-4 shows examples of the comparison of nonnumeric operands.

Subject Object Result of Comparison

~1 8 1 4 1 3 1 lclDls! 4 l3 I CD843 is equal to CD843

~14101 0~EJ 8340 is greater than 8340
t--

CiliE Cilill 840 is less than 841

r----

[ili!DIE I @ulvlwl BCDE is less than TUVW
t--

~IPlalRI ~~ NOPQR is greater than BCD
I-·

~IGIMIAIKle[~] [C(AIGIMIAlelAI IAGMAKBA is greater than IAGMABA
f---

~IKIMIAIAIAIKI ~J IKIMIAIAIAILI IJKMMAK is less than IJKMMAL

[iliEJ ffiE I Fl Gl DEF is less than DEFG
1------

~EJ ~IFIAI DEF is equal to DEF.6.

-·
Figure 8-4. Examples of Comparisorns of Nonnumeric Operands

COMPARISONS INVOLVING INDEX~NAMES ANDIOIR INDEX DATA ITEMS

The comparison of two index-names is equivalent to the comparison of their corresponding
occurrence numbers.

In the comparison of an index data item with an index-name or with another index data
item, the actual values are compared without conversion.

The comparison of an index-name with a numeric item is permitted if the numeric item is an
integer. The numeric integer is treated as an occurrence number. No other comparisons
involving an index-name or index data item are allowed (see Table Handling in Chapter 9).

!PERMISSIBLE COMPARISONS Ot= SUBJECT AND OBJECT OPERANDS

Table 8-1 lists all permissible ciomparisons of subject and object operands.

Following is a partial list of abbreviations and their explanations as used in Table 8-1.

• NN, comparison is made as described for nonnumeric operands

• NU, comparison is made as described for numeric operands

8-7

• 10, comparison is made as described fo1r two index-names

• IV, comparison is made as described for index data items

• A blank in any column signifies an illegal comparison.

Table 8-1. Permissible Comparisons of Subject and Object Operands

GR AL AN

Group (GR) NN NN NN

Alphabetic (AL) NN NN NN

Alphanumeric (AN) NN NN NN

Alphanumeric Edited (ANE) NN NN NN

FC* ZR
ANE: NNL NL

NN NN NN

NN NN NN

NN NN NN

NN NN NN

ED Bl ID

NN

NN

NN

NN

IN IOI

1--------------·---+---+----+--l-----t---+------ir---+---+---+----ir----i
Numeric Edited (NE)

Figurative Constant (FC)*

Nonnumeric Literal (NNl)

Figurative Constant Zero (ZR)

Numeric Literal (NL)

External Decimal (ED)

Binary (Bl)

NN

NN

NN

NN

NN NN NN

NN NN NN

NN NN NN

NN NN NN

NN NN NN

NN

NU NU NU 10**

NN NU NU NU NU 10**

NU NU NU NU 10**
• ·····,·.···.·.·.·.:·:·.·.·.·.·,·.· .·.:-:-:·:·:-:-·-·.· ••• • ·:;.·.·.·,·.·.·.·.··.· ;.:-:-:-:·:·:·.·.·-:-:-: .·.;.;.;.:-:· .·.·.·.··-.;.····· :·.;>:;:::;:; :=:-::;.:-:-;:.:.:- :;:·:;:; :;:;:;:;:;::::::·:-:.:-:;:· ;: :;::;:::::;:;:;:;:;:;:;: ;:;:, ;:::;:;:::;:::::::::: ::.:-:-:·:·:-:-:-:·:::::;:::: .:::::::;::::::::::: ..•. :.::::::~:::::::::;:;: -t: ·::::~::::·:;:

: ::t:::::::::rmitiii···'.:_ .. -~.--·.',_·,;_,,'.'_,··.·.'.:.'.,·_·,·.:.-.','..',•.·,:.·,·.'.,~.'.,;.'.,'..'._'. .. _' .. '. .. _'.·\ ... ·.'.-.~.'. ... :_\,1_·,,,\,a_·,,·.:,'..'._-_'..l, •. ·,,·.:,'.\,_:,._·.·.\.\.'.\.·;:·. ,\.'.\.:.:.,,\.,:._,\:.,:\.\:.::.,\.;'.!:.\·· ... ?;·.:;;' .. :: .. ;·_,;=.=-:.·:.'~·;·,~. ·.: .. :·'.:.:._;;·:.,:··.:·;_•_:_:\.-.'~,'.'.,::.:·,\.:_,:.,:,,:_,·.·.:. :.,:_·_:.:_:.:_;'..: _,\·.\\.',-,::_:,\.:,:.\, :.,:.,:_,:,:.:,\.·,·.\,._:.,_:_,_,:_,:_,._•_\.\. t::: :::::::::::::.::::::::::::: ::: iitnrn m:iof\\\\\\ ::::lla:::t=:: :::itnr .aot:~r ::::::::::::::•::::••:• ==-== ,~= =-"""'"""'1=~4"='-w=""'· "'."·:·:·:·:-:·:•:".'." :·:·:·: ·:·:·:·:::::·:::::::::::::,: .,.-: .-.:.:·:·:::::::::::: ::::::::;::::':: ,::::·:·: ·: }:{•:::::::::::::: ::::;::::::::::::::::::::

ame (IN) 10** 10** 10** 10** 10 IV

I Index Data Item (IOI)

*Includes all figurative constants except zero.

**Valid only if the numoric item is an integer.

CONDITIONAL STATEMENTS

IV IV

Conditional statements evaluate conditions which cause the object programs to choose
between alternate paths of control. Only the IF statement is discussed in this section.
Discussion of the other conditional statements is included as part of the description o1~ the
associated imperative statements.

8-8

IF S'TATEMENT

The IF statement causes a condition to be evaluated. The subsequent action of the object
program depends on whether the value of the condition is true or false. The form~t of the
I F statement is:

1 F condition I statement· 1 I ELSE I statement-2 I
- NEXT SENTENCE -- NEXT SENTENCE

Statement-1 and statement-2 are imperative statements.

The phrase ELSE NEXT SENTENCE may be omitted if it immediately precedes the
terminal period of the sentence.

When an IF statement is executed, the following action is taken:

• The condition is evaluated to be true or false.

• If true, the statements immediately following the condition
(represented by statement-1) are executed; control then passes
implicitly to the next sentence.

• If false, either the statements following the ELSE are executed or, if
the ELSE clause is omitted, the next sentence is executed.

Example:

SEQUENCE .,:

!PAGEi (SERIAL) 8 A B COBOL STATEMENT

·~~~~~~~~~~~~~~

1 2 :1 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

In the program segment shown when CODE 1 equals 5, the following steps are executed:

• Add 1 to CTR.

• Move CTR to TEMP.

• The next sentence, DIVIDE BALANCE BY 2 GIVING NEW-BAL, is
executed.

8-9

H CODE 1 does not 1equal 5, the following steps are e!xecuted.

• Subtract 1 from CTR.

• Move CTR to PERM.

• The next: sentence, DIVIDE BALAl\ICE BY 2 GIVING NEW-BAL, is
executed

When an IF statement is executed and the NEXT SENTENCE option is present, control
passes explicitly to the next sentence depending on the truth value of the condition and the
placement of the NEXT SENTENCE clause in the statement.

IMPERATIVE STATEMENTS

An imperative statement unconditionally causes a specified function to occur at progran:
execution time. Imperative statements discussed in this section are:

• Arithmetic

• Procedure Branching

• Data Manipulation

• Input/Output

ARITHMETIC STATEMENTS

Arithmetic statements are used in computations and specify four operations:

e ADD

• SUBTRACT

• MULTIPLY

e DIVIDE

Each type of arithmetic statement includes options common to all four operations. They
are: GIVING, ROUNDED, and SIZE ERROR. In addition, the data descriptions of the
operands need not be the same; any necessary conversion and decimal point alignment is
supplied throughout the calculation. The maximum size of each operand is 18 decimal
digits.

8-10

GIVING OPTION

If the GIVING option is specified, the value of the identifier that follows the word GIVING
is set equal to the calculated result of the arithmetic operation. This identifier, since it is not
involved in the computation, may be a numeric edited item.

ROUNDED OPTION

If, a"fter decimal point alignment, the fractional result of an arithmetic operation is greater
than the number of places pirovided for the fraction by the resultant-identifier, truncation
occurs to the size of the resultant-identifier. When rounding is requested, the absolute value
of the resultant-identifier is increased by one (1) whenever the most significant digit of the
excess is greater than or equal to five (5).

When the low-order integer positions in a resultant-identifier are represented by the
character P in the picture for that resultant-identifier, rounding or truncation occurs relative
to the right-most integer position for which storage is allocated.

SIZE ERROR OPTION

If, after decimal point alignment, the value of a result exceeds the largest value that can be
contained in the associated resultant-identifier, a size error condition exists. Division by zero
always causes a size error condition. The size error condition applies only to the final results
of an arithmetic operation and does not apply to intermediate results, except in the
MULTIPLY and DIVIDE statements, in which case the size error condition applies to the
intermediate results as well. If the ROUNDED option is specified, rounding takes place
before checking for size error. When such a size error condition occurs, the subsequent
action depends on whether or not the SIZE ERROR option is specified.

If the SIZE ERROR option i~s not specified and a size error condition occurs, the value of
the resultant-identifier may bei unpredictable.

If the SIZE ERROR option is specified and a size error condition occurs, then the value of
the resultant-identifier affected by the size error is not altered. After execution of this
operation, the imperative-statement in the SIZE ERROR option is executed.

OVERIL APPING OPERANDS

When a sending and a receiving item in an arithmetic statement or MOVE statement share a
part of their storage areas, the result of the execUJtion of such a statement is undefined.

ADD STATEMENT

The ADD statement causes two or more numeric operands to be summed and the result to
be stored. It has two formats which are:

8-11

Format 1:

ADD I identifier-11 [identifier-2 J ...
literal-1 literal-2

TO identifier-m[ROUNDED]

[ON SIZE ERROR imperative-statement]

Format 2:

I iderntifier-11 [identifier-2] [identifier-3-1 ...
literal-1 literal-2 literal-3 _

GIVING identifier-m[ROUNDED] [ON ~ilZE

ER HOR imperative-statement]

In formats 1 and 2 each identifier must refer to an 1elementary numeric item, except that the
identifier appearing to the right of the word GIVING may refer to a numeric editedl data
item.

Each literal must be a numeric literal.

The maximum size of each operand is eighteen (18) decimal digits. The composiite of
operands, which is that data item resulting from the superimposition of all operands,
excluding the data item that follows the word GIVING, aligned on their decimal points,
must not contain more than eighteen digits. Them may not be more than 20 operands in a
single ADD statement including the identifier m.

If format 1 is used, the value of the operands pmceding the word TO are added togiether,
then the sum is added to the current value in id1?ntifier-m, and the result is stored in the
resultant identifier-m.

If format 2 is used, the values of the operands preceding the word GIVING are added
together, then the sum is stored as the new value of resultant identifier-m.

The compiler incusres that enough places are ca1rried so as not to lost significant digits
during execution.

Figure 8-5 shows examples of the ADD statement.

SUBTRACT ST ATEMENl'

The SUBTRACT statement is used to subtract one, or the sum of two or more numeric data
items from an item, and sets the value of an item equal to the results. It has two formats
which are:

Format 1:

SUBTRACT llitE!ral-1 l [literal-2 J
identifier-1 · identifier-2 · · ·

FR:OM identifier-m [ROUNDED]

[ON SIZE ERROR imperative-statument]

8-12

'Tl
cS'
c
iil
m
?i
> c
c
~
Ci
3
CD

= ..
m
~
3
"O
ii
Ill

Statement

ADD QUANT-1 TO QUANT-2

ADD 4.3 1'0 QUANT-3

ADD QUANT-1 QUANT-2 GIVING.
TOTAL

ADD QUANT-i QUANT-2 GiViNG
TOTAL ROUNDED

ADD -47 .1 to QUANT-3

Conditions Before
Execution

QUANT-1 =

OUANT-2=

I 2 Is I 1 I
1013141

r-r-i
LITERAL 4.3 = l.!l!J
auANT-3= I 1 Isl o I
QUANT-1 = I 1131 sl
OUANT-2 I 2 J 416 J

TOTAL = I 41 s I s ls l
I

QUANT-1 = 1131 al
QUANT-2= 214161

TOTAL = 41 s I a I

Conditions After
Execution

QUANT-1 =

1 LITERAL 4.3 = ~ *

auANT-1 = I 1 I 3 I s 1 *
QUANT-2 = I 2 I 4 h I *

auANT-1 = I 1 I 31 s l *
QUANT-2= I 214161*

LITERAL -47.1 = 4 I 711 1-1 LITERAL -47 .1 =I 41 1l1 I -I *
auANT-3 = I o I 1 I 4 l 1 l 2 l s I + l

Result of
Addition

QUANT-3 = I 1 I 9 l 3 I

TOTAL = I 1 I s 1 21 a I
F<

t---------------+---------------------i----··-·------------+--------------~

ADD QUANT-4 QUANT-5 GIVING
QUANT-6 ROUNDED ON SIZE
ERROR GO TO ERR

* = Unchanged

QUANT-4=

QUANT-5 =

QUANT-6=

l 2141 o I
I 1 l 41 1 I oI 2 I
Is Isl s I

QUANT-4=

QUANT-5 =
I 21 4 lo I*
I 11411!0121

auANT -s = I a I s I s I *
Result exceeds capacity of QUANT -6.
Statement at ERR is executed.

Format 2:

SUBTRACT I litE!ral l [literal-2 J
identifier-1 identifier-2 · · ·

FROM I literal-m l
--- identifier-m

GIVING identifier-n [ROUNDED]

[ON SIZE ERROR imperative-statement]

Each identifier must refer to a numeric elementary item except in format 2, where the
identifier that appears to the right of the word GIVING may refer to a numeric edited data
item. Each literal must be a numeric _literal.

The maximum size of each operand is eighteen (18) decimal digits. The compos.ite of
operands, which ~s that data item resulting from the superimposition of all operands,
excluding the identifie!r that follows the word GIVING, aligned on their decimal points,
must not contain morn than eighteen digits. There may not be more than 20 operands in a
single SUBTRACT statement including identifier-rr1.

In format 1, all literals; or identifiers preceding the word FROM are added together and this
total is subtracted from identifier-m and the difference is stored as the new value of
identifier-m.

In format 2, all literals or identifiers preceding the word FROM are added together, the sum
is subtracted from literal-m or identifier-m and the result of the subtraction is stored as the
new value of identifier-n.

The compiler insures that enough places are carried so as not to lose significant digits during
execution.

Figure 8-6 shows examples of the SUBTRACT statc~ment.

MULTIPLY STATEMENT

The MULTIPLY statement causes a numeric data item to be multiplied and sets the value of
a data item equal to the result. It has two formats which are:

Format 1:

I identifier-11
MUL TIPL V

1
• I

1
BY identifier-2 [ROUNDED]

1te!ra - -

[ON SIZE ERROR imperative-statement]

Format2:

MUL TIPL y I i~entifier-11 BY I i~entifier-2 l
hte·ral 1 - hteral-2

§!YING identifier-3 [ROUNDEQ]

[ON SIZE ERROR imperative-statement]

8-14

'T1
cS'
c
c;
CC)

~
c:n c
m
-t
:JJ

~
-t

i
CD.
3
CD

= ...
m
)C
GI
3

'CS

i

Statement

SUBTRACT QUANT-1 FROM QUANT-2

SUBTRACT 267 .4 FROM OUANT-3

SUBTRACT 267 .4 FROM QUANT-3
ROUNDED

SUBTRACT OUANT-1 FROM
QUANT-2 GIVING RESULT

SUBTRACT -40 FROM QUANT -4
GIVING QUANT-5 ROUNDED

* = Unchanged

Conditions Before
Execution

QUANT-1 = 2lsI1lo I
QUANT-2= s J 2I 1 Io I
Literal 267 .4 = 2Jsl1I4l

QUANT-3= 3lsl1I

Literal 267 .4 = 2lsl1I4I

OUANT-3= 3lsl1I

QUANT-1 = [ill]
QUANT-2 = i 2! a 31 o I
RESULT• I o l 1 ol o I
Literal -40 = 1410 - I
OUANT-4= l2ls 41°1- I
QUANT-5 = 131a11 I+ I

Conditions After Result of
Execution Subtraction

l2!s11!ol* l 2!1!olol I QUANT-1 = QUANT·2""
Fi

I ol 91 sl Literal 267 .4 = I 2 I s I 7 r 4 I * QUANT-3=
•

utera1 2s1 .4 = I 2 ·1 s I 1 I 4 I * QUANT-3= I 1 I oi ol

QUANT-1 = ~* RESULT= I 2l 1 I 6 I 6I

QUANT-2 = !21a13!ol*

I 2 I 2 Is I- I Literal -40 = 14 1°1-1 * QUANT-5 =

l
QUANT-4= l2lsl4Isl-I*

Each identifier must refer to a numeric elementary item, except in format 2, where the
identifier that appears to the right of the word GIVING may refer to a numeric edited! data
item.

Each literal must be a numeric literal.

The maximum size of each operand is eighteen (18) decimal digits.

When format 1 is used, the value of identifier-1 or literal-1 is multiplied by the value of
identifier-2. The value of the multiplier (identifier-2) is replaced by this product.

When format 2 is used, the value of identifier-1 or literal-1 is multiplied by identifier-2 or
literal-2 and the result iis stored in identifier-3.

Figure 8-7 shows examples of the MULTIPLY statument.

DIVIDE STATEMENT

The DIVIDE statement divides one numeric data item into another and sets the valU1e of a
data item equal to the results. It has two formats which are:

Format 1:

I identiifier-1 l
DIVIDE literai-

1
INTO identifier-2 [ROUNDED]

[ON ~SIZE ERROR imperative-statement]

Format 2:

DIVIDE lidentifier-1l llNTOl lidentifier-2l
literal-1 BY literal-2

.GIVING identifier-3

[ROUNDED] [ON SIZE ERROR imperative-statement]

Each identifier must refer to a numeric elementary item, except, in format 2 where the
identifier that appears; to the right of the word GIVING may refer to a numeric edited data
item.

Each literal must be a numeric literal.

The maximum size of each operand is eighteen (18) decimal digits. The maximum size of
the resulting quotient, after decimal point alignment is 18 decimal digits.

Division by zero always resu Its in a size error condition.

When format 1 is used, the value of identifier-·1 or literal-1 is divided into the value of
identifier-2. The value of the dividend (identifier-2) is replaced by the quotient.

8-16

Conditions Before Conditions After RfJSUlt of
Statement Execution Execution Modification

MULTIPLY BASE BY PERCENT BASE= I 1 I 0 I 2 I 1 I BASE= l1lol2l 1l * DISCOUNT= 131 ol s I

'1i =· c
"" CD
Ol:I

GIVING DISCOUNT

I
PERCENT= I 0I 3 1° I I PERCENT =l ol 31 oj *

' c

DISCOUNT= I 91 0 I 1 I
~
s:
c [iliJ QUANT-1 =~ * I 1 I gl s I MULTIPLY QUANT-1 BY 4.88 QUANT-1 = REBATE=
r-
-I
::;

cp r-- <
...... tu ..

I»

GIVING REBATE ROUNDED

I dslsl 14Islsl*
I

Literal 4.88 = Literal 4.88 =
'

REBATE a lslslsi ..
CD
3
l'D :s
m
)(
I»
3 ,,
ii'
Ill

[iliJ QUANT-2=~ * I 21 sf o I* MULTIPLY QUANT-2 BY 4.88 QUANT-2 = OVFLOW=
GIVING OVFLOW ON SIZE •
ERROR GO TO ERR Literal 4.88 = 14IslsJ Literal 4.88 = 14fslsl * Result exceeds size of OVFLOW.

(

Statement at ERR is executed.
OVFLOW= I 2! sf o I

MULTIPLY 20 BY QUANT-3 Literal 20 = ~ Literal 20 = ~ * QUANT-3= l ol sl 41 o I
QUANT-3= lolol3l2I

* = Unchanged

When for'llat 2 is used, the value of identifier-1 or literal-1 is divided by or into identifier-2
or literal-2 and the result is stored in identifier-3.

Figure 8-8 shows examples of the DIVIDE statement.

PROCEDURE BRANCHINIG STATEMENTS

Statements, sentences, and paragraphs in the Procedure Division are ordinarily executed
sequentially. The procedure branching statements (GO TO, ALTER, PERFORM, STOP, and
EXIT) allow alterations in this sequence.

GO TO STATEMENT

The GO TO statement causes control to be transferred from one part of the Procedure
Division to another. It has two formats which are:

GO TO procedure-name-1

GO TO procedurn-name-1 [procedure-name-2)

procedurn-name-n DEPENDING ON identifier

Each procedure-name is the name of a paragraph or section in the Procedure Division of the
program.

Identifier is the name of a numeric elementary it«~m described as an integer. When format 2
is used, there may not be more than 100 procedum-names specified.

Whenever a GO TO statement, represented for format 1, is executed, control is trans:ferred
to procedure-name-1 o-r to another procedure-name if the GO TO statement has been altered
by an ALTER statement. (ALTER statement is described later in this section.)

When, in format 1, the GO TO statement is referred to by an ALTER statement, the
following rules apply:

• The GO TO statement must have a paragraph-name.

• The GO TO statement must be the only statement in the paragraph.

A GO TO statement represented by format 2 causes control to be transferred to one of the
specified procedures named procedure-name-1, procedure-name-2, etc., depending on the
values of identifier b•~ing 1, 2, ... , n. If the value of identifier is anything other than the
positive or unsigned integers 1, 2, ... , n, then the GO TO statement has no effect.

Example:

When the following GO TO statement is executed., control will be transferred to
STATE-TAX, FED-TAX, or SOC-SEC depending on the value of OED-TYPE.

8-18

Conditions Before Conditions After I Statement Execution Execution Result of Division

.,,
=· c

~ [!] * FRACTION"" I ol 9l 3 I DIVIDE 3 INTO QUANT-1

I
Literal 3 = Literal 3 =

GIVING FRACTION
QUANT-1 = [![!] QUANT-1 = [!ill*
FRACTION= I 1l 3I3!

"'t
CD
co
~
0

[![!] [!] * I ol 9131 DIVIDE QUANT-1 BY 3 GIVING QUANT-1 = Literal 3 = FRACTION=
I

FRACTION
Literal 3 = ~ QUANT-1 = [il!] *

s
0

FRACTION= I 1 J 313l ,.t
m

r:p en : - ,,.. CD - 3
ID
:I
m

ITl []] * 1°1 913 13 1 .DIVIDE 3 INTO QUANT-1 Literal 3 = Literal 3 = RESULT=
GIVING RESULT

QUANT-1 = [filj
I

QUANT-1 = [ill]*
RESULT= lololol2I -·)C

Ill

3
'tS

f
[ill] [ill]* I 0J 9I 31 DIVIDE QUANT-1 BY 3 QUANT-1 = QUANT-1 = RESULT=

GIVING RESULT ROUNDED
Literal·3 = [!] Literal 3 = [!] *
RESULT= I 113131

DIVIDE 3 BY QUANT-1 Literal 3 = []] Literal 3 = []] * RESULT= lfil *
GIVING RESULT ON SIZE

QUANT-1 = [ili] QUANT-1 = [iliJ *
I

Result remains unchanged.
ERROR GO TO ERR.

RESULT= [ili] Statement at ERR is executed.

...

* = Unchanged

SEQUENCE .,:

(PAGEi (SERIAL) 8 A
B COBOL STATEMENT

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 !iO

-~-.L.-~ T:t_o_~iA:[t_-:r A1.E.lL-~TAX J_S~O~~_L.-~. '· -~-~--'-~-~=
---I---'--~~--~~ e.EJH>~Itl& ___ .ort .. b .. tll~J:.~'f.t.E.,_._. -~----~ _ ... __ ~~_J__._ -~~-~~·~·_, _ _J_

The following program segment is equivalent to the above GO TO statement.

IF OED-TYPE IS EOUAL TO 1 GO TO STATE-TAX.

IF OED-TYPE IS EOUAL TO 2 GO TO FED-TAX.

IF OED-TYPE IS EClUAL TO 3 GO TO SOC-SPEC ELSE NEXT SENTENCE.

ALTER STATEMENT

The ALTER statement modifies a predetermined sequence of operations. The format is as
follows:

ALTER procedure-name-1 TO [PROCEED TO] proc:edure-name-2

Procedure-name-1 is the name of a paragraph that contains only one sentence consisting of a
GO TO statement wnthout the DEPENDING ON option.

Procedure-name-2 is the name of a paragraph or section in the Procedure Division.

During execution of the object program, the ALTER statement modifies the GO TO
statement in the paragraph named procedure-name-1, replacing the object of the GO TO by
procedure-name-2.

Example:

CHANGE-GO.
GO TO BYPASS-REPORT.

PROCESS-TRANS.

BYPASS-REPORT.

ALTER CHANGE-GO TO REPORT.

REPORT.

8-20

When CHANGE-GO is executed the first time, control is passed to BYPASS-REPORT. In
BYPASS-REPORT, the ALTER statement when executed, modifies the GO TO statement
in CHANGE-GO. When CHANGE-GO is executed the second time, control is transferred to
REPORT.

A GO TO statement in a section whose priority is greater than or equal to 50 must not be
referred to by an ALTER statement in a section with a different priority (see Segmentation
in Section 9). All other uses of the ALTER statement are valid and are performed even if
the GO TO to which the ALTER refers is in an overlayable fixed segment.

PERFORM STATEMENT

The PERFORM statement is used to depart from the normal sequence of execution, execute
one or more procedures a specified number of times and return control to the normal
sequence.

The PERFORM statement has two formats which are:

Format 1:

PER FORM procedure-naime-1 [TH RU procedure-name-2]

Format 2:

PERFORM procedure-name-1 [THAU procedure-name-2]

I identifier-·11 TIMES
ihteger-1 ---

Each procedure-name is the name of a section or paragraph in the Procedure Division.

ldentifier-1 represents a numeric elementary item with no positions to the right of the
assumed decimal point, described in the Data Division.

When the PERFORM statement is executed, control is transferred to the first statement of
the procedure named procedure-name-1. An automatic return to the statement following
the PERFORM statement is established as follows:

• If procedure-name-1 is a paragraph-name and procedure-name-2 is
not specified, then the return is after the last statement of
procedure-name-1 .

• If procedure-name-1 is a section-name and procedure-name-2 is not
specified, then the return is after the last statement of the last
paragraph in procedure-name-1.

• !f procedure-name-2 is specified and it is a paragraph-name, then the
return is after the last statement of the paragraph.

• If procedure-name-2 is specified and it is a section-name, then the
return is after the last sentence of the last paragraph in this section.

8-2'1

There is no necessary relationship between procedure-name-1 and procedure-name-2 except
that a consecl!tive sequence of operations is to be executed beginning at the procedure
named procedure-name- ~1 and ending with the execution of the procedure named
procedure-name-2. l'f there are two or more direct paths to the return point, then
procedure-name-2 may be the name of a paragraph consisting of the EXIT statement, to
which all these paths must lead. The execution of the EXIT statement in this case, returns
control to the statement following the PERFORM statement..

If control passes to these procedures by means other than a PERFORM statement, control
passes through the iast statement of the procedure to the following statement as if no
PERFORM statement mentioned these procedures.

If a sequence of statements referred to by a PERFORM statement includes another
PERFORM statement, the sequence of procedures associated with the included PERFOHM
must itself either be totally included in, or totally excluded from the logical sequence
referred to by the first PERFORM. Thus, an active PERFORM statement, whose execution
begins within the range of another active PER FORM statement, must not allow control! to
pass through the exit of the original PERFORM. Two or more active PERFORM statements
may not have a common 1exit.

Format 1 is the basic PERFORM statement. A procedure referred to by this type of
PERFORM statement is executed once and then control passes to the statement following
the PER F 0 RM statement.

Format 2 is the TIMES option. When the TIMES option is used the procedures are
performed the number of times specified by the initial value of identifier-1 or integer-1, for
that execution. When the PERFORM statement is executed, the value of integer-1 must be
positive.

H the initial value of identifier-1 is negative or zero, control passes immediately to the
statement following the PERFORM statement. Following the execution of the procedures
the specified number of times, control is transf,erred to the statement following the
PERFORM statement.

During execution o1f the PERFORM statement, reference to identifier-1 will not alter the
number of times the procedures are to be executed from that which was indicated by the
initial value of identifier-1.

If integer-1 or identifier-1 is greater than 4 digits, significance may be lost. The maximum
value is 216-1.

A PERFORM statement that appears in a section whose priority is less than the segment
Hmit, can have within its; range only the following:

• Sections each of which has a priority number less than 50.

• Sections wholly contained in a single segment whose priority number
is greater than 49. (See Segmentation in Section 9.)

8-22

A PERFORM statement that appears in a section whose priority number is equal to or
greater than the segment limit, can have within its range only the following:

• Sections each of which has the ·same priority number as that
containing the PERFORM statement.

• Sections with a priority number that is less than the segment limit.
(See Segmentation in Section 9.)

When a procedure-name in a segment with a priority number greater than 49 is referred to
by a PERFORM statement contained in a segment with a different priority number, the
segment referred to is made available in its initial state for each execution of the PERFORM
statement. (See Segmentation in Section 9.)

Following are examples of the PERFORM statement.

Example 1: Basic PERFORM Without Procedure-Name-2

SEQUENCE ._:
t---.,....----1! A B COBOL STATEMENT

(PAGEi (SERIAL) C:S
·------

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728293031323334353637 3839 4041424344454647484950

8-23

In example 1, the statement PERFORM CALCULATE executes the three statements
contained in the paragraph CALCULATE. The instructions are executed in the following
sequence:

MULTIPLY AMOUNT BY 300 GIVING TOTAL-AMOUNT.

ADD 10TOTOTAL
MOVE TOTAL TO NEW-TOTAL.
SUBTRACT TOTAL FROM NEW-TOTAL.
ADD 100 TO TOTAL.
GO TO CONT-PROC.

Example 2: Basic PERFORM With Procedure-Name-2

SEQUENCE t-=

!PAGE) !SERIAL) 8 A
B COBOL STATEMENT

---1---_......_,1-----+------------

PERIFORM
CALCULATE

1 2 3 4 5 6 7 8 9 10 11 12 13 1~. 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50__....__..._...._.__...__.... _ __..__.__ _,_ ---'" i.......L.

8-24

In example 2 the statement PERFORM MOVl:MENT THAU COMPUTATION executes six
statements in the three paragraphs entitled MOVEMENT, NEW-RECORD, and
COMPUTATION. The instructions are executed in the following sequence:

MOVE NEW-ACCT-NO TO ACCT-NO.

MOVE BALANCE TO NEW-BALANCE.

MOVE TCODE TO NEW-CODE.

MOVE 2 TO NEW-LL-CODE.

MOVE DATE-1 TO NEW-DATE.

ADD AMOUNT TO BALANCE.

SUBTRACT 35 FROM LOWER-LIMIT.

WRITE OUT-RECORD.

GO TO OUTPUT-ROUTINE.

PERFORM
MOVEMENT
THRU
COMPUTATION.

The procedures referred to by the PERFORM statement are executed once. Control then
passes to the statement following the PERFORM statement.

Example 3: Total Exclusion

In the following illustration of total exclusion, EXTRA-TOTAL is located completely
outside the performed sequence ABC TH RU XYZ.

PERFORM-A. PERFORM ABC THRU XYZ.

ABC ..

PERFORM EXTRA-TOTAL

XYZ ...

EXTRA-TOTAL .

MORE-INPUT

8-25

Sequence performed by

PERFORM ABC THRU XYZ

Example 4: Total Inclusion

In the following illustratiion of total inclusion, COMPUTE-TAX is located completely inside
the performed sequence DED-1 THRU END-1.

PERFORM-B. PERFORM DED-1 THAU END-11.

DED-1.

COMPUTE-TAX ..

MOR E-CJ~LCU LATI ON.

PEFI FOR:M COMPUTE-TAX.

END-1.

SUBROUTINE-A.

Example 5: Overlapping Performed Sequences

Sequence performed by
PERFORM DED-1 THRU
END-1.

PERFORM-C. PERFORM TEST-1 THAU ZERO-DIFFERENCE.

PERFORM-D. PERFORM MOVE-BALANCE THRU BALANCE-TEST.

TEST-1.. .

ADDITION.

MOVE-BALANCE.

ZERO-DIFFEHENCE.

OVER-DRAFT. .

BALANCE-TEST.

8-26

Seqwmce performed by

PERFORM TEST-1 THAU
ZERO-DIFFERENCE.

Sequence performed by
PER FORM MOVE-BALANCE
THRU BALANCE-TEST.

Example 6: PERFORMS With a Common End Point

PERFORM-1. PERFORM TEST-CODE THAU EXIT-POINT.

SENTENCE-1.

TEST-CODE.
IF TCODE IS EQUAL TO 12 GO TO PATH-B.

IF TCODE IS EQUAL TO 15 GO TO PATH-C.
IF TCODE IS EQUAL TO 16 GO TO EXIT-POINT.

PATH-A.

GO TO EXIT-POINT.

PATH-B.

GO TO EXIT-POINT.

PATH-C.

EXIT-POINT. EXIT.

In example 6 the original PERFORM statement named PERFORM-1 executes the set of
procedures from TEST-CODE through EXIT-POINT. Within these procedures the testing of
TCODE results in the execution of one of four different paths: PATH-A, PATH-B, PATH-C,
and EXIT-POINT.

When TCOOE equals 12, PATH-Bis taken. At the end of PATH-8, a return is to be made to
the statement (SENTENCE-1) following the original PERFORM statement. This is
accomplished by the statement GO TO EXIT-POINT. EXIT-POINT is the paragraph-name
of the EXIT associated with the original PERFORM statements.

When TCODE equals 15, PATH-C is taken. At the end of PATH-C, a return is to be made to
the statement. (SENTENCE-1) following the original PERFORM statement. Since the
paragraph following the end of PATH-C is the EXIT-POINT paragraph containing the EXIT
sentence, there is no need to use the sentence GO TO EXIT-POINT to return to the original
PERFORM statement.

When TCODE equals 16, an immediate return is to be made to the statement
(SENTENCE-1) following the original PERFORM statement. This is accomplished by the
statement GO TO EXIT-POINT. EXIT-POINT is the paragraph-name of the EXIT associated
with the original PERFORM statement.

When TCODE is not equal to 12, 15, or 16, then PATH-A is taken. At the end of PATH-A, a
return is to be made to the statement (SENTENCE-1) following the original PERFORM
statement. This is accomplished by the statement GO TO EXIT-POINT. EXIT-POINT is the
paragraph name of the EXIT associated with the original PER FORM statement.

8-27

Bulletin: 2202.002-0001
Date: 3/19/73

Example 7: PERFORM With TIMES Option

The procedure ADDITION-ROUTINE is executed three times.

PERFORM ADDITION-ROUTINE 3 TIMES.

ADDITION-FIOUTINE • .

TEST-ROUTINE.

STOP STATEMENT

The STOP statement cc1uses a permanent or tempC1rary suspension of the execution of the
object program. Its format is as follows:

STOP {literal I
-- RUN

The literal may be m~meric or nonnumeric or rnay be any figurative constant. Signed
numeric literals cause the development o·f a low-order sign overpunch.

If the RUN option is used, the execution of the object pro1gram is terminated, and control is
returned to the system.

If the literal option is used, the literal is communiicated to the operator. The program may
be resumed only by opEtrator intervention (key in a RETURN on the console). Continuation
of the object program then begins with the executioin of the next statement in sequence!.

If a STOP statement with the RUN option appears in an imperative sentence, it must appear
as the only or last statement in a sequence of imperative statements. All files should be
closed before a STOP RUN statement is issued.

EXIT STATEMENT

The EXIT statement pmvides a common end point for a series of procedures. The format is
as follows:

EXIT [PROGRJ\M].

8-28

The EXIT sentence must be preceded by a paragraph-name and must be the only sentence in
the paragraph.

It is sometimes necessary to transfer control to the end point of a series o·f procedures. This
is normally done by transferring control to the next paragraph or section, but in some cases
this method does not produce the required result. For instance, the point to which control
is to be transferred may be at the end of a range of procedures governed by a PERFORM.
The EXIT statement is provided to enable a procedure-name to be associated with such a
point.

If control reaches an EXIT paragraph and no associated PERFORM statement is active,
control passes through the EXIT point to the first sentence of the next paragraph.

--llll•tlill•Altlllftill :;::::· ::::::;:::·:·:;:;;;:::::::;:;:;:::::;:;: ·:·:···:·:·:···:·:·:;:;:;::::::: ;:·:::::::::::::::::;::::;:-:·:·:;:·:·:·:···:· ·.·.···:·:·:·:·:.:-:.:-:···:·:····-:-:.:;:;:;:;:;:::::;:-:·:·: ·.·-:-:-··:-:-·-:-:-:-:-:·:·:·:·:···:-::·:·:·:-:-:-:-·-:··

DATA MANIPULATION STATEMENTS

Movement and inspection of data are implicit in the functioning of the COBOL statements
MOVE and EXAMINE.

MOVE STATEMENT

The MOVE statement transfors data, in accordance with the rules of editing, to one or more
data areas. The format is as follows:

MOVE I identifier-1 I TO 'd "f' 2 ['d 'f' 31 a ent1 1er- ,1 ent1 1er- ...
-- literal -

ldentifier-1 and literal represc~nt the sending area; identifier-2 and identifier-3 represent the
receiving areas.

The data designated by the literal or identifier-1 is moved first to identifier-2, then to
identifier-3. The notes referring to identifier-2 also apply to the other receiving areas. Any
subscripting or indexing associated with the receiving area is evaluated immediately before
the data is moved to the respective data item.

Any move in which the sending and receiving items are both elementary items is an
elementary move. Every elementary item belongs to one of the following categories:
numeric, alphabetic, alphanumeric, numeric edited, alphanumeric edited. These ·categories
are described in the PICTURE clause. Numeric literals belong to the category numeric, and
nonnumeric literals belong to the category alphanumeric. The figurative constant ZERO
belongs to the category numeric. The figurative constant SPACE belongs to the category
alphabetic. All other figurativ•~ constants belong to the category alphanumeric.

8-29

The following rules apply to an elementary move between these categories:

• The figurative constant SPACE, a numeric edited, alphanumeric
edited, or alphabetic data item, must not be moved to a numeric or
numeric edited data item.

• A numeric literal, the figurative constant ZERO, a numeric data item
or a numeric edited data item must not be moved to an alphabetic
item.

• A numeric literal, or a numeric data item whose implicit decimal
point is not immediately to the right of the least significant digit,
must not be moved to an alphanumeric or alphanumeric edited data
item.

Any necessary conversion of data from one form of internal representation to another takes
place during the legal el 1ementary moves, along with any editing specified for the receiving
data item. The following rules apply to legal elementary moves:

• When an alphanumeric edited, alphanumeric, or alphabetic item is a
receiving item, justification and any necessary space-filling takes
place as defined under the JUSTIFIED clause. If the size of the
sending item is greater than the size of the receiving item, the excess
characters are truncated after the receiving item is filled. If the
sending item has an operational sign, the absolute value is used.

• When a numeric or numeric edited itiem is a receiving item, alignment
by dlecimal point and any necessarv zero-filling takes place, except
where zeros are replaced because of editing requirements. If the
receiving item has no operational :sign, the absolute value of the
sending item is used. If the sending item has more digits to the left or
right of the decimal point than the receiving item can contain, the
excess digits are truncated. When a data item described as
alphanumeric is the sending item, it is moved as though it was
described as an unsigned numeric integer item. If the sending item
contains any nonnumeric characters, the results are undefined.

• When a receiving field is described as alphabetic and the sending data
item contains any nonalphabetic characters, the results are
undefined.

• When the sending and receiving operands of a MOVE statement share
a part of their storage (that is, when the operands overlap), the result
of the execution of such a statement is unpredictable.

An index data item cannot appear as an operand of a MOVE statement.

8-30

Any move that is not an elementary move is treated exactly as if it were an alphanumeric to
alphanumeric elementary move, except that there is no conversion of data from one form of
internal representation to another.

There are certain restrictions on elementary moves. These restrictions are listed in Table 8-2.

Figure 8-9 shows examples of the MOVE statement.

Table 8-2. Permassible Moves

GR

Group (GR) y

Alphabetic (AL) y

Alphanumeric (AN) y

External Decimal (ED)

Binary (Bl)

Numeric Edited (NE) Y

Alphanumeric Edited (ANE) Y

ZERO (numeric or alpha- Y
numeric)

SPACE (AL) Y

HIGH-VALUE, LOW-VALUE, Y
QUOTE

Numeric Literal v©
Nonnumeric Literal Y

Y - YES
N - NO

AL

y

y

y

N

N

N

y

N

y

N

N

y

0Move without conversion Uik13 AN to AN).

AN ED

y v©
y N

y v©
v® y

y y

y N

y N

y v®
y N

y N

v® y

y v©

@only if the decimal point is at the right of the least significant digit.

@Numeric move.

©The alphanumeric field is treated as an ED (integer) field.

Bl NE

v0 v0
N N

-v© v©
y y

y y

N N

N N

v@ v®
N N

N N

y y

v© v©

@The literal must consist only c1f numeric characters and is treated as an ED integer field.

8-31

ANE ID

v© v©
y N

y v©
v®I y

v© y

y N

y N

y v®
y N

y N

v© y

y v®

MOVE Statement Item Item PICTURE Value Before Execution Value After Execution

MOVE ZEROS TO FIELD-A FIELD-A 9999 I 0 I 1 I 2 I 3 I I
0 I 0 1° I 0 I

MOVE FIELD-1 TO FIELD-2 FIELD-1 xxx I Al el cJ I Al el cl

FIELD-2 xx xx I xlvl wlKI IA! el clAI

MOVE FIELD-3 TO FIELD-4 FIELD-3 xxx I Aj el c I I Al el cl

FIELD-4 xx 0!J [ili] Ill
CD a.
E
w x

I Al el cl DI I 1 I 2! 3\AI MOVE '123' TO FIELD-5 FIELD-5 xx xx
w ..
c
CD
E = ..

MOVE ACCOUNT-NO TO PR- ACCOUNT-NO xx xx I Al 1 I 213] I AJ 1 j 3j 31
ACCT-NO.

l
PR-ACCT-NO XBXXX I AIAI cl DI el I A IA! 1 i 2 I 31

I I 1l2l 3l4Islsl MOVE 125.7 TO DOLLARS DOLLARS 9999V99 lol1!2jsJ1lol

r
I MOVE AMOUNT TO PR-AMOUNT AMOUNT

I

9999V99 I I 1 l2 lslsT3 l9 l I l1l2 Jslsl 3 l9 I
I I

,....

PR-AMOUNT $9,999.99 lsl31313131-13131 Isl 1!. I 21 slsl .13191

MOVEAMT1TQPRAMOUNT1 I AMT 1 9999V99 lololololol3l ... ---- -

I l I AIAIAI s I 21 3 1-1 11 9 1 IAIAIAIAIAI s!. j 0 1 3 1 PR-AMOUNT-1 $$.$$$.99

ca
en N
w M
> 00 0
::!!:

qi
00

f
:I
al u:

I
MOVE Fl ELD-6 TO FIELD-7 FIELD-6

J

999 I 1IsI1 I

I

I 1 I sl 1 I
FIELD-7 xx xx I Al 0 1 2 1 4 I I 1Isl1 IAI

EXAMINE STATEMENT

The EXAMINE statement replaces and/or counts the number of occurrences of a given
character in a data item. The format is as follow::;:

EXAMINE identifier

{

UNTIL FIRST}
TALL YING ALL literal-1

LEADING

[REPLACING BY literal-2]

IALL I . LEADING
REPLACING Fl RST literal-3 BY literal-4

UNTIL FIRST

The description of the identifier must be such that usage is displayed either explicitly or
implicitly.

Each literal must consist of a single character belonging to a class consistent with that of
identifier. If identifier is numeric, each literal must be an unsigned integer or the figurative
constant ZERO.

Examination proceeds as follows:

• For nonnumeric data items, examination starts at the left-most
characters and proceeds to the right. Each character in the data item
specified by the identifier is examined in turn.

• If a data item referred to by the EXAMINE statement is numeric, it
may consist of numeric characters and may possess an operational
sign. Examination starts at the left-most character (excluding the
sign) and proceeds to the right. Each character except the sign is
examined in turn. Regardless of where the sign is physically located,
it is completely ignored by the EXAMINE statement.

The TALLYING option creates an integral count which replaces the value of a special
software register called TALLY whose implicit description is that of an unsigned integer of
five digits. The count represents the number of:

• Occurrences o1f literal-1 when the ALL option is used.

• Occurrences o·f literal-1 prior to encountering a character other than
literal-1 when the LEADING option is used.

• Characters not equal to literal-1 encountered before the first
occurrence of ~iteral-1 when the UNTIL FIRST option is used.

When either of the REPLACING options is used, the replacement rules are as follows:

• When the ALL option is used, then literal-2 or literal-4 is substituted
for each occurrence of literal-1 or literal-3.

• When the LEADING option is usedl, the substitution of literal-2 or
literal-4 terminates as soon as a character other than literal-1 or
literal-3 or the right-hand boundary of the data item is encountered.

• When the UNTIL FIRST option is used, the substitution of literal-2
or literal-4 terminates as soon as literal-1 or literal-3 or the right-hand
boundarv of the data item is encountered.

• When the first option is used, the? first occurrence of literal-3 is
replaced by literal-4.

Specific EXAMINE statements showing the effect of each statement on the associated data
item and TALLY are shown in Figure 8-10.

EXAMINES

EXAMINE ITEM-1 T

EXAMINE ITEM-1 T
REP LACI NG BY 0

EXAMINE ITEM-1 R
"*"BY SPACE

EXAMINE ITEM-1 R
"*"BY"$"

tatement

ALL YING ALL 0

ALL YING ALL 1

EPLACING LEADING

EPLACING FIRST

ITEIVl-1
(Before)

101010

101010

**7000

-
0 11.94

Figure 8-10. Examples of Data Examination

INPUT-OUTPUT STATEMENTS

Resulting
Data Value of

(After) TALLY

101010 3

000000 3

687000 NA

$*1.94 NA

The flow of data through the computer is governed by the operating system. The COBOL
statements discussed in this section are used to initiate the flow of data to and from files
stored on external media, and to govern low-volume information that is to be obtained from
or sent to input/output devices such as a card reader or console typewriter.

The Operating System is a physical record processing system. That is, the unit of data made
available by a READ or passed along by a WRITE is a physical record. However, the COBOL
user need be concerned only with the use of individual logical records. The operating system
provides such operations as the movement of data into buffers and/or internal storage,
validity checking, error correction (where feasible), unblocking and blocking, and voilume
switching procedures.

Discussions in this section use the terms volume and reel. The term volume applies to all
input/output devices. The term reel applies only to tape devices. Treatment of mass storage
devices in the sequential access mode is logically equivalent to the treatment of tape files.

8-34

OPEN STATEMENT

The OPEN statement initiates processing of files. It performs checking and/or writing of
labels and other input-output operations.

The format is as follows:

{

INPUT file-name [WITH NO REWIND] }
OPEN OUTPUT file-name [WITH NO REWIND] ...

1-0 file-name

At IE~ast one of the options: INPUT, OUTPUT, or 1-0 must be specified.

The 1-0 option pertains only to mass storage files.

The file-name must be defined by a file descript~on entry in the Data Division.

An OPEN statement must be specified for all files. The OPEN statement for a file must be
executed prior to the first READ, SEEK, WRITE, ::g:§l!@j:,.OO!§j~!!':i:l:.lll'll~·!:l:!:lli:i:i:::gj§!iliilll::
statement for that file. A second OPEN statement for a file cannot be executed prior to the
execution of a CLOSE statement for that file. The OPEN statement does not obtain or
release the first data record. A READ or WRITIE statement must be executed to accomplish
this.

The NO REWIND option doe~s not apply to unit record or disc files.

For tape files, the following rules apply:

1. When the NO REWIND option is specified, execution of the OPEN
statement does not cause the file to be repositioned. The file must
have been previously positioned at its beginning.

2. Without the NO REWIND option specified, execution of the OPEN
statement causes the file to be positioned at its beginning.

The 1-0 option permits the opening of a mass storage file for both input and output
operations. Since this option implies the existence of the file, it cannot be used if the mass
storage file is being initially created.

A file may be opened as INIPUT, OUTPUT or 1-0 in any order (with intervening CLOSE
statements without the UNIT or REEL option).

8-35

SEEK STATEMENT

The SEEK statement initiates the accessing of a mass storage data record for subsequent
reading or writing. The format is as follows:

SEEK file-name RECORD

A SEEK statement pertains only to relative files in the random access mode and may be
executed prior to the execution of a READ or WRITE statement.

The file-name must be defined by a file description entry in the Data Division.

The SEEK statement uses the contents of the data-name in the ACTUAL KEY clause for
the location of the record to be accessed. At thH time of execution the contents of the
ACTUAL KEY data item for the particular mass storage file is checked for validity. lif the
key is invalid, the next READ or WRITE statement on the associated file will give control to
the imperative-statement in the INVALID KEY option.

Two SEEK statements for the same relative file may logically follow each other. Any
validity check associated with the first SEEK statement is negated by the execution of the
second SEEK statement.

If the contents of the ACTUAL KEY are altered between the SEEK statement and the
subsequent READ or WRITE statement, any validity check associated with the SEEK
statement is negated, and the READ or WRITE statement is processed as if no SEEK
statement preceded it.

8-36

READ STATEMENT

For sequential file processing, the READ statement makes available the next logical record
from an input file and allows performance of a specified imperative statement when end of
file is detected.

For random file processing, the READ statement makes available a specific record from a
mass storage file and allows performance of a specified imperative statement if the contents
of the associated ACTUAL KEY data item are found to be invalid.

The format of the READ statement is as follows:

~EAD ~ile-name RECORD [INTO identifier] I ~NTV~~~D KEYi
1mperat1ve-statement

An OPEN statement must be executed for the file prior to the execution of the first READ
for that file.

When a READ statement is executed, the next logical record in the named file becomes
accessible in the input area defined by the associated record description entry.

The record remains in the input area until the next input/output statement for that file is
executed. No reference can be made by any statement in the Procedure Division to
information that is not actually present in the current record. Thus, it is not permissible to
refer to the nth occurrence of data that appears fewer than n times. If such a reference is
made, no assumption should be made about the results in the object program.

8-37

Bulletin: 2202.002-0001
Date: 3/19/73

When a file consists of more than one type of logical record, these records automatically
share the same storage area; this is equivalent to an implicit redefinition of the area. Only
the information that is present in the current record is accessible.

Fl LE-NAME must be dE!fined by a file description e:ntry in the Data Division.

INTO IDENTIFIER OPTION makes the READ sta1tement equivalent to a READ statement
plus a MOVE statement. Identifier must be the name of a Working Storage Section or

:::=::ifiilfiin:::::Hli!i:entry, or an output record of a previously opened file. When this option is
used, the current record becomes available in the input area, as well as in the area spec:ified
by the identifier. Data will be moved into identifier in accordance with the COBOL rules for
moving group items.

AT END OPTION must be specified for all files in the sequential access mode. If, during the
execution of a READ ~;tatement, the logical end o·f the file is reached, control is passc?d to
the imperative-statement specified in the AT END phrase. After execution of: the
imperative-statement associated with the AT END phrase~ a READ statement for that file
must not be given without prior execution of a CLOSE statement, followed by an OPEN
statement for that 1file.

If, during the processing of a multivolume file in the sequential access mode, end-of-volume
is recognized on a REAID, the following operations are carried out:

• The standard ending volume label procedure.

• A volume switch.

• The standard beginning volume label procedure.

• The first data record of the new volume is made available.

INVALID KEY OPTION: If ACCESS IS RANDOM is specified for the file, the contents of
the ACTUAL KEY for the file must be set to the desired value before the execution e>f the
READ statement.

For a randomly accesst!d file, the READ statement implicitly performs the functions of the
SEEK statement, unles:s a SEEK statement for the 1file has been executed prior to the READ
statement.

The INVALID KEY option must be specified for files in the random access mode. The
imperative-statement following INVALID KEY is executed when the contents of the
ACTUAL KEY field an? invalid.

The key is considered invalid under the following cionditions:

1. For a rnlative file that is accessed randomly, when the value specified
by ACTUAL KEY is outside the limits specified in the Fl LE-LIMITS
clause.

8-38

2.

WRITE STATEMENT

Bulletin: 2202.002-0001
Date: 3/19/73

The WRITE statement releases a logical rece>rd for an output file. It can also be used for
vertical positioning of a print file. For mass storage files, the WRITE statement also allows
the performance of a specified imperative statement if the file .. limit is exceeded. For
randomly accessed files thE~ WRITE statement also allows the performance of a specified
imperative statement if the contents of the associated ACTUAL KEY data item are found to
be invalid.

The WRITE statement has two formats which are:

Format 1: WRITE record-na~e [FROM identifier-1]

[I BEFORE IJ . . I identifier-1 LIN ES l
AFTER ADVANCING integer LINES

Format 2: WRITE record-name [FROM identifier-1]

INVALID KEY imperative-statement

An OPEN statement for a file must be executed prior to executing the first WRITE
statement for that file.

For files in both the sequential and random access modes, the logical record released is no
longer available after the WRITE statement is executed.

RECORD NAME is the name of a logical record in the File Section of the Data Division.

When the FROM option is written, the WRITE statement is equivalent to the statement
MOVE identifier-1 to record-name followed by the statement WRITE record-name. Moving
takes place according to the COBOL rules for the MOVE statement. ldentifier-1 should be
defined in the Working Storage Section, theijj~,i~~Jl::;~!l'e]"~"or in another FD.

Format 1 is used only with standard sequential files.

If the sequential file is a printer or card punch the user must reserve the first character in
each logical record for the control character. It is the user's responsibility, unless the
ADVANCING option is specified, to insure the correct control character is set in the first
character before the WRITE is issued. Refer to Appendix D for a list of· ANS control
characters.

The ANS control character will be converted by the system into the correct device ·
dependent control function.

It is the user's responsibility to see that the appropriate channels are punched on the
carriage control tape.

8-39

When the ADVANCING option is specified, the compiler will generate the appropriate
control character in thei first character position of the record. This control character will be
one of the ANS Standard Control Characters.

When identifier-2 is used in the ADVANCING option, it must be the name of an unsigned
numeric elementary item described. as an integer. The maximum size of the item is two
digits thus allowing a va'lue range from 0 to 99.

When identifier-2 is specified, the printer page is advanced the number of lines equal to the
value in the identifier.

When integer is used in the ADVANCING option, it must be an unsigned integer from 0 to
99. When integer is specified, the printer page is advanced the number of lines equal t1:> the
value of the integer ..

If the BEFORE ADVANCING option is used, the record is written before the printer page is
advanced according to the preceding rules.

If the AFTER ADVANCING option is used, the rncord is. written after the printer page is
advanced according to the preceding rules.

NOTE

DISPLAY and WRITE AFTER ADVANCING statements cause the printer
to space before printing. However, a WRITE BEFORE ADVANCING
statement causes the printer to space after printing. Therefore, it is possible
that mixed DISPLAY, WRITE AFTER ADVANCING and WRITE BEFORE
ADVANCING within the same program may cause overprinting.

Format 2 is used for randomly or sequentially accessed mass storage files.

If ACCESS IS RANDOM is specified for the file, the contents of the ACTUAL KEY field
for the file must be set to the desired value before the execution of a WRITE statement.

The INVALID KEY phrase must be specified for a file that resides on a mass storage device.
Control is passed to the imperative-statement following INVALID KEY when the following
conditions exist:

1. For a mass storage file in the sequential access mode opened as
OUTPUT, when an attempt is made to write beyond the limit of the
file.

2. For a relative file opened as 1-0 or OUTPUT, if access is random and
a record is being added to the file, when the record address specified
in the .ACTUAL KEY field is outside the limits of the file, as
spec:ifiecl by the FILE-LIMITS claus1?.

8-40

For randomly accessed files, the WRITE statement performs the function of a SEEK
statement, unless a SEEK statement for this record is executed prior to the WRITE
statement.

After the recognition of an end-of-volume on a multivolume OUTPUT or 1-0 file in the
sequential access mode, the WRITE statement performs the following operations:

1. The standard ending volume label procedure.

2. A volume sw~tch.

3. The standard beginning volume label procedure.

8-4'1

8-42

ACCEPT STATEMENT

The ACCEPT statement causes low volume data to be transferred from an appropriate
hardware device. The format is as follows:

ACCEPT identifier [FROM mnemonic-name]

Identifier may be either a fixed-length group item or an elementary alphabetic,
alphanumeric, or external decimal item. The data is read and the appropriate number of
characters is moved into the area reserved for identifier. No editing or error checking of the
incoming data is done.

Mnemonic-name may assume either the meaning SYSIN or CONSOLE. Mnemonic-name
must be specified in the SPECIAL NAMES paragraph of the Environment Division. If the
FROM option is not specified, CONSOLE is assumed.

For an ACCEPT with the FROM mnemonic-name for CONSOLE or if the FROM option is
not specified, the following actions are taken:

• A system generated message code is automatically displayed followed
by the literal "AWAITING REPLY" ..

• Program execution is suspended. When a console input message,
preceded by the same message code as in point 1 above, is identified
by the control program, execution of the ACCEPT statement is
resumed and the message is moved to the specified identifier and left
justified, regardless of the PICTURE. If the field is not filled, the low
order positions may contain invalid data. Depressing RETURN from
the console will terminate the ACCEPT statement.

Identifier must not exceed 100 character positions when accepting from the CONSOLE.

If mnemonic-name is associated with SYSIN, an input record size is the size of the //PAR
Control Language statement minus 14 bytes. The maximum //PAR statement is assumed
128 bytes. The following three examples of tht~ //PAR statement reflect an 80-column card,
96-column card and 128 byte terminal entry. (The //PAR statement is defined in the
MRX/OS Control Language Reference manual.)

8-4~J

1-6 7 -----72 73--80
//PARb. data - up to 66 bytes sequence no.

1-6 7 -----88 :B9--96
//PARb. data - up to 82 bytes sequence no.

1-6 7 ,----120 121-128
//PAR.6. data - up to 114 bytes ·sequence no.

The size of the input rncord is the data only. The first 6 bytes (//PAR.6.) and last 8 bytes,
sequence number are dn::>pped. ·

If the size of the accepting data item is less than the input data record, the input data record
will be truncated on the right. If the size of the acc•~pting data item is greater than the input
data record size, as many input records as necessary are read until the storage area alloc:ated
to the data item is filled. If the accepting data item is greater than one input data record,
but is not an exact multiple of the input data record size, the remainder of the last input
record is not accessible.

DISPLAY STATEMENT

The DISPLAY statem1~nt causes low volume data to be transferred to an appropriate
hardware device. The format is as follows:

DISPLAY 1 li1teral- l l [literal-2 J ...
identifier-1 identifier-2

[_UPO~! mnemonic-name]

Mnemonic-name must be specified in the SPECIAL NAMES paragraph of the Environment
Division. Menmonic-name may be associated only with the reserved words CONSOLE and
SYSOUT. When th•~ UPON option is omitted, CONSOLE is assumed.

Identifiers described as USAGE COMPUTATIONAL, and ,::111iiiil:!!fill'lflii,::, are
converted automaticallv to external format, as follows:

•

• No other data items require conversiion .

If a figurative constant is specified as one of the ()perands, only a single occurrence of the
figurative constant is displayed.

8-44

Bulletin:. 2202.002-0001
Date: 3/19/73

When a DISPLAY statement contains more than one operand, the data contained in the first
operand is stored as the first set of characters, and so on, until the output record is filled.
This operation continues until all information is displayed. Data contained in an operand
may extend into su~,sequent records.

The DISPLAY and WRITE AFTER ADVANCING statements all cause the printer to space
before printing. However, a WRITE BEFORE ADVANCING statement causes the printer to
space after printing. Therefore, it is possible that mixed DISPLAY statements, WRITE
AFTER ADVANCING statements within the same program may cause overprinting.

A maximum logical record size is assumed for each device. For CONSOLE (the system
logical console device), the maximum is 100 characters. For SYSOUT (the system logical
output device), the maximum is 120 characters.

If the total character count of all operands is less than the maximum, the remaining
character positions are padded with blanks. If the count exceeds the maximum size,
operands are continued ·in the next record. As many records as necessary are written to
display all the operands specified. Those operands pending at the time of the break are split
between lines if necessary a

CLOSE STATEMENT

The CLOSE statement terminates the processing of reels, units, and files, with optional
rewind and/or lock where applicable.

CLOSE fl -n me [REE!:.] f WITH,. NO R'EWIND l·J:

1
e a UNIT L LOCK

The file must have been previously opened before a CLOSE statement can be executed.

The ~•tatement applies to the following categories of input and output files:

• Unit record volume. A file allocated on a medium for which
rewinding, units, and reels have no meaning.

• Sequential single-volume tape~ A sequential file that is contained
entirely on one reel.

• Sequential mu~tivolume tape. A sequential file that may be contained
on more than c>ne reel.

• Sequential single-volume disc. A sequential file that is contained
entirely on one unit.

• Sequential multivolume disc. A sequential file that may be contained
on more than one unit.

• Random. A random access file that is contained on one or more mass
storage units.

8-45

The results of executing each close option for each type of file are summarized in Figure
8-11. Definitions of the symbols used in the figure are given below. Where the definition
depends on whether the file is an input or output file, alternative definitions are given.
Otherwise, a definition applies to input, output, and input-output files.

Following are the definitions of the symbols used in Figure 8·· 11:

• S - Standard close non-tape file

System cle>sing procedures are performed.

• T - Standard close tape file

Files Opened as INPUT: If the file is positioned at its end and there
is an ending label record, the standard ending label record procedures
are performed. System closing procedures are then performed.

If the file is positioned at its end and there is no ending label record,
system clo1sing procedures are performed.

If the file is not positioned at its end, system closing procedures are
performed.

Files Opened at OUTPUT: If an tmding label record has been
described for the file, it is constructed and written on the output
tape. Systiem closing procedures are then performed.

• R - newiind

The current volume is positioned at its beginning.

• A - Previ1lUS volumes unaffected

All volumes prior to the current volume have been processed
according to standard volume switch procedures except those
volumes controlled by a prijor CLOSE REEL/UNIT statement.

• B - No rewind

The current volume is left in its current positiion.

• E - Standard file lock

The compiler ensures that this file cannot be opened again during
this execU1tion of the object program.

• F - Standard close reel

Files Opened as INPUT: The following operations are performed:

8-46

a. A volume switch.

b. The standard beginning volume label procedure.

c. Makes the next data record on the new volume (reel)
available to be read.

Files Opened as OUTPUT: The following operations are performed:

a. The standard ending volume label procedure.

b. A volume switch.

c. The standard beginning volume label procedure.

• C - Standard close unit

Files Opened as INPUT or 1-0: The volume is switched and the first
data record on the new volume is made available.

Files Opened as OUTPUT: A volume switch is performed.

e X - Illegal

This is an illegal combination of a close option and a file type.

Subprogram linkage statiements are special statements that permit communication between
object programs. These statements are CALL and EXIT PROGRAM.

CALL STATEMENT

The CALL statement permits communication between a COBOL object program and one or
more COBOL subprograms or other language subpro!~rams. Its format is:

CALL literal [_USIN§ identifier-1 [identifier-2] ...]

Literal is a nonnumeric literal which names the program being called. The program in which
the CALL statement appears is the calling program. Literal must conform to the rules for
formation of a program-name. The first eight characters of literal are used to make the
correspondence between the called and calling program.

When the called program is to be entered at the be1ginning of the Procedure Division, literal
must specify the program-name in the PROGRAM-ID paragraph of the called program. The
called program must have a USING clause as part o'f its Procedure Division header if there is
a USING clause in the CALL statement that invoked it.

The identifiers specified in the USING option of the CALL statement indicate those data
items available to a calling program that may be reforred to in the called program.

When the called subprogram is a COBOL program, each of the operands in the USING
option of the calling program must be defined as a data item in the File Section,
Working-Storage Section, or Linkage Section.

Names in the two USllNG lists (that of the CALL in the main program and that o·f the
Procedure Division header in the subprogram) are paired in a one-for-one correspondence.

There is no necessary relationship between the actual names used for such paired names, but
the data descriptions must be equivalent. When a group data item is named in the USING
list of a Procedure Division header, names subordlinate to it in the subprogram's Linkage
Section may be employc~ in subsequent subprogram procedural statements.

The USING option should be included in the CALL statement only if there is a USING
option in the Procedurn Division header of the callled program. The number of operands in
the USING option of the CALL statement should be the same as the number of operands in
the USING option of the Procedure Division header. If the number of operands in the
USING option of the CALL statement is greater than the number in the USING option in
the called program# only those specified in the USING option of the called program may be
referred to by the called program.

The execution of a CALL statement causes control to pass to the called program. The~ first
time a called program is entered, its state is that of a fresh copy of the program. Each
subsequent time a callE~d program is entered, the state is as it was upon the last exit from
that program. Thus, the reinitialization of the following items is the responsibility of the
programmer:

8-48

• GO TO statements which have been altered

• TALLY

• Data items

• PERFORM statements

If a branch is made out of the range of a PERFORM, after which an exit is made from the
program, the range of the PERFORM is still in effect upon a subsequent entry.

Called programs may contain CALL statements. However, a called program must not
contain a CALL statement that directly or indirectly calls the calling program. A called
program may be segmented.

The USING option makes the data items defined in a calling program available to a called
program. The number of operands in the USING option of a called program must be less
than or equal to the number of operands in the corresponding CALL statement of the
invoking program or the resullts are unspecified.

The USING option appears in two formats which are:

Format 1 (Within a Calling Program):

CALL literal [USING identifier-1 [identifier-2] ...]

Format 2 (Within a Called Program):

PROCEDURE DIVISION. [USING identifier-1 [identifier-2) ...] .

The USING option must be present in the Procedure Division header if the object program
is to function under the conltrol of a CALL statement, and the CALL statement contains a
USING option.

Each of the operands in the USING option of the CALL statement must have been defined
as a data item in the File, Working-Storage or Unkage Section and must have a level-number
of 0·1 or 77.

Each of the operands in the USING option of the Procedure Division header must have been
defined as a data item in the Linkage Section of the program in which this header occurs,
and must have a level number of 01 or 77. The compiler aligns each level-01 item on a word
boundary; however, it is the programmer's responsibility to ensure proper alignment of 77
levels.

When the USING option is present, the object program operates as though each identifier in
the Procedure Division had been replaced by the corresponding identifier from the USING
option in the CALL statement of the calling program. That is, corresponding identifiers
refer to a single set of data which is available to the calling program. The correspondence is
positional and not by name.

8-49

The following is an example of a calling program with the USING option:

SEQUENCE ..,:
t--·--...----tz A

(PAGE) (SERIAL) 8
B COBOL STATEMENT

1234567 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29~ 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 5!._

-f.--.-.--'-+--1-'•AL._l!!...-.µ_.li..I.G,A.I.~QILJ~ 1 V.I S I OlL'--L--L-_.___,_ _ _.__ ... ~~~~,___.___._~
~------+--f.'L-LIUl...,....__µ_,,.._ ·~.l.Dd'-·-- ~LP.ft..0.6,~-~L-L-.L__.__, ~~~~-~~ .

• _-L.--L....--L______L._.._.L._. -·L--'--~--,__ __ .._ __ _.L_....J_ __ L.....,.__..l _ _L __ ..L .. _ .i.__J___,L,__..L_ __ _.___J_______..J. ___ L_ ~-~-'---~~~~~~~_J._

" -+--'-~-+-+-'--'-~----~--'--'~---L--~____.__.___,,__.L.-.J-_.....L.-~~--....L.... _.___~___i._.__..l._,__.~'--"L--'---'--

~k_~~-~~L-~'O .R.J>. -.1~L .-L-H_,__._i_L-J__.__.__L

The following is an example of a called subprogram associated with the preceding cal~ing
program:

SEQUENCE ..,:
1----....----12 A

(PAGE) (SERIAL) 8
B COBOL STATEMENT

123456 15 16 17 18 19 20 21 22 23 24 25 26 27 28 ~iO 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 ~

.~._...._._ .. l.GAI..tl>lLJ>~ l\LI..S.tOJN. . ._._ __ . __ ~.-L- .___ ~~-~__.___._ _ _..__.__~~-L--.L-'--1.
RA.tt-.I.J) .•.. S.UB.f>J\O.G~, .. _ _.

.
--'---'-- __.__...__. _ ___.___L __ L_l_ •. _.l...... •• .A., •.• .J._ --..L--1...~~--'~'--''---'---'--~-''--'---~~~~~_L_.__J,-.L.---J................l....-_~_,__.__,_

--~~-L--... _ _.__ ___ _.__ __ .l _. ____ _____ 1.. L - -'·---...L ... -l.-...........L..-----1..---'--~--------~~--L---'-''--~~~-~~-'-~ -'--~~~--L..-~__.t.___L _ _,__.

o..t. EJtttlle. _])~LV1~.LO.li__H.Sc!,_N.&_~AY.Rl.C .•

8-50

Processing begins in CALLPROG, which is the calling program. When the statement: CALL
"SUBPROG" USING RECORD-1. is executed, control is transferred to the first statement
of the Procedure Division in SU BP ROG, which is the called program. In the calling program,
the operand of the USING option is identified as RECORD-1.

When SUBPROG receives control, the values within RECORD-1 are made available to
SUBPROG; in SUBPROG, however, they are referred to as PAYREC. Note that the
PICTURE clauses for the subfields of PAYREC (described in the Linkage Section of
SUBPROG), are the same as those for RECORD-1.

When processing within SUBPROG reaches the EXIT PROGRAM statement, control is
returned to CALLPROG at the statement immediately following the original CALL
statement. Processing then continues in CALLPROG.

In any given execution of these two programs, if the values within RECOR D-1 are changed
between the time of the first CALL and the second, the values passed at the time of the
second CALL statement will be the changed, not the original, values. If the programmer
wishes to use the original values, then he must ensure that they have been saved.

PROGRAM TERMINATION COl\~SIDERATIONS

The two ways to terminate a program in COBOL source language are:

• EXIT PROGRAM

• STOP RUN

Figure 8-12 shows the effects of each program termination statement based on whether"it is
issued within a main program or a subprogram.

Termination
Statement

EXIT
PROGRAM

STOP RUN

Main Program Subprogram

Return to system and cause Return to invoking program
ond of job step.

Heturn to system and cause Return to system and cause
end of job step. end of job step.

Figure 8-12. Effect of Program Termination Statements Within
Main Programs and Subprograms

8-51

A main program is the hi!Jhest level COBOL program invoked by another COBOL program.
(Programs written in the other languages that follow COBOL linkage conventions are
considered COBOL programs in this sense.)

If program segmentation iis used, the programmer must divide the entire Procedure· Division
into named sections. (See Segmentation in Section 9.)

Execution begins with the first statement of the Procedure Division. Statements are then
executed in the order in which they are presented for compilation, except where the rules in
this section indicate some other order.

EXIT PROGRAM STATEMEl\IT

This form of the EXIT statement marks the logical end of a called program.

EXIT PROGRAM.

The EXIT statement must be preceded by a paragraph-name and be the only statement in
the paragraph.

If control reaches an EXIT PROGRAM statement while operating under the control of a
CALL statement, control returns to the point in the calling program immediately following
the CALL statement.

If control reaches an EXIT PROGRAM statementand no CALL statement is active, control
returns to the system which initiates an end of job step (same as STOP RUN).

STOP RUN STATEMENT

The STOP RUN statement causes execution of the object program to be terminated and
control transferred to the system.

COMPILER-DIRECTING STATEMENTS

Compiler-directing statements are special statements that provide instructions for the
COBOL compiler. The compiler-directing statements are ENTER and NOTE.

ENTER STATEMENT

The ENTER statement provides a means of allowing the use of more than one language in
the same program. The format is as follows:

ENTER language-name [routine-name].

The ENTER statement serves only as documentation, as this compiler does not allow
another source languagu in the program.

8-52

NOTE STATEMENT

The NOTE sentence allows the programmer to write commentary which is produced on the
listing but not compiled. The format is as follows:

~OTE character-string.

Any combination of the ch.aracters from the computer's character set may be included in
the character-string.

If a NOTE sentence is the first sentence of a paragraph, the entire paragraph is considered to
be part of the character-string. Proper format rules for paragraph structure must be
observed.

If a NOTE sentence appears as other than the first sentence of a paragraph, the commentary
ends with the first instance of a period followed by a space.

8-5~1

9. SPECIAL FEATURES

MAX COBOL provides three special features which are table handling; segmentation and the
source program library facility.

TABLE HANDLING

Tables of data are common components of business data processing problems. Although the
items that make up a table could be described as contiguous data items, there are two
reasons why this approach is not satisfactory. First, from a documentation standpoint, the
underlying homogeniety of the items would not be readily apparent; and second, the
problem of making available an individual element of such a table would be severe when
there is a decision as to which element is to be made available at object time.

Tables composed of contiguous data items are defined in COBOL by including the OCCURS
clause in their data description entries. This clause specifies that the tiem is to be repeated as
many times as stated. The item is considered to be a table-element and its name and
description apply to each repetition or occurrence. Since each occurrence of a table-element
does not have assigned to it a unique data-name, reference to a desired occurrence may be
made only by specifying the data-name of the table element together with the occurrence
number of the desired table element. The occurrence number is known as a subscript, and
this technique of specifying individual table elements is called subscripting.

In order to facilitate such operations as table searching and manipulating specific items, a
technique called Indexing is also available. Both subscripting and indexing are discussed
below.

The number of occurrences of a table-element may be specified to be fixed or variable. If
the occurrence number is given in the source program as fixed, the actual data that is
entered into the table at object time may still comprise a variable number of occurrences of
the table elements. Thus, not every table element need contain valid data.

TABLE DEFINITION

To define a one-dimensional table, the programmer uses an OCCURS clause ~s part of the
data description of the tablE~-element, but the OCCURS clause must not appear in the
description of group items which contain the table-element. Example 1 shows a
one-dimensional table defined by the item TABLE-ELEMENT.

9-1

Example 1:

SEQUENCE .,:

(PAGEi (SERIAL) 8 A
n COBOL STATEMENT

In Example 2, TABLE-ELEMENT defines a one-dimensional table, but DOG does not since
there is an OCCURS clause in the description of the 1group item (TABLE-ELEMENT) which
contains DOG.

Example 2:

SEQUENCE .,:

(PAGEi (SERIAL) 8 A
B COBOL STATEMENT

1 2 3 4 5 6 1 8 9 10 11 12 13 H 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

-t----ff"'r"-'--''--iIJi~=iliAifiT. .o.ckfitt,L.7.LfIHE_S,k, ~
~.__.__,,~~0Jz~~~_!_.i~~~-L-...._._~__,__.___,_ __ ~_._~___..__._ _ ____.__i_--'---L-~

,____.__..._~~__,,__ll__~_£(L{ __ ._,__L_._._-'-'-'-~-~~-L-1--~~~~~~~~~~__.~~-'-

~n both examples, the complete set of occurrences of TABLE-ELEMENT has been assigned
the name TABLE-1. However, it is not necessary to give a group name to the table, unh~ss it
is desired to refer to the complete table as a group item. ·

None of the three one-dimensional tables which appear in the following two examples have
a group name.

Example 3:

SEQUENCE .,:

(PAGEi (SERIAL! 8 A
B COBOL STATEMENT

LL •.. L _.__.J-~--.J._~.L-L..--J,. -'--~~~~~~-· __._~ __ _L--....,. _ __.. ____ _..L._.~-~~--L- . ..1.

~----~BAl.E..R.._ ··-·-~-·'-·--~-~____,_~_..____,___._ -~-~ _.__ ~ ·--~---· -~-~~~-~--_,_
--~~.HAR L.l.E__Jt~CJLL-> .~ -1lllES~ __ _._._~__J~~--'--~~ ~_.
~Q_&_ ___ ~,, __ ,_._L,__1~---~--'--~~~~~~_._ •----•--•--L--~-- --~--'-----'--~ -· --·- _J.

9-2

Example 4:

SEQUENCE ...:

(PAGEi (SERIALI 8 A
B COBOL STATEMENT

Defining a one-dimensional table within each occurrence of an element of another
one-dimensional table gives rise to a two-dimensional table. To define a two-dimensional
table, then, an OCCURS clause must appear in the data description of the element of the
table, and in the description of only one group item which contains that element. Thus, in
Example 5, DOG is an element of a two-dimensional table; it occurs 5 times within each
element of the item BAKER which itself occurs 20 times. BAKER is an element of a
one-dimensional table.

Example 5:

SE OU ENCE ...:

t-(P-AG_E_I...., ..-(SE-R-IA-ILI 8 A
B COBOL STA'll'EMENT

REFERENCES TO TABLE-ITEMS

Whenever the user refers to a table-element, or to an item within a table-element, the
reference must indicate which occurrence of the element is intended. For access to a
one-dimensional table the occurrence number of the desired element provides complete
information. For tables of more than one dimension, an occurrence number must be
supplied for each dimension of the table. In Example 5 then, a reference to the 4th BAKER
or the 4th CHARLIE would be complete, whereas a reference to the 4th DOG would not.
To refer to DOG, which is an element of a two-dimensional table, the user must refer to, for
example, the 4th DOG in the 5th BAKER.

SUBSCRIPTING

One method by which occurrence numbers may be specified is to append one or more
subscripts to the data-name. A subscript is an integer whose value specifies the occurrence
number of an element within the group item that has the next lower level-number. The
subscript can be represented either by a positive integer numeric literal, by a data-name
which is defined as a numeric elementary integer, or by the special register TALLY. In any

9-3

case, the subscript, enclosed in parentheses, is writt13n immediately following the name of
the table element. A table element must include as many subscripts as there are dimensions
in the table whose element is being referred to. That is, there must be a subscript for each
OCCURS clause in tlhe hierarchy containing the data-name, including the data-name itself.

Example 6:

In example 6, references to BAKER and CHARLIE require only one subscript, reference!s to
DOG, EASY, and FOX irequire two, and references to GEORGE, HARRY, and JIM require

three.

data-name (subscript[,Asubscript) [,A.subscript))

The subscript, or set of subscripts, that identifies the table element is enclosed in
parentheses immediately following the space that terminates data-name, which is the name
of the table element. When more than one subscript appears within a pair of parenthHses,
the subscripts must be separated by commas. A space must follow each comma, but no
space may appear betw1~en the left parenthesis and the left-most subscript or between the
right-most subscript and the right parenthesis.

Restrictions on the use oif a data-name as a subscript are:

1. Data-name must be a numeric elementary item that represents a
positive integer.

2. The nam13 itself may not be subscripted.

3. Data-name cannot be an index data item (item with USAGE IS
INDIEX).

9-4

When more than one subscript is requiredl they are written (separated by a comma and a
space) in order corresponding to the occurrence numbers in successively less inclusive
dimensions of the data organization. If a multi-dimensional table is thought of as a series of
nested tables and the most inclusive or outermost table in the nest is considered to be the
major table with the innermost or least inclusive table being the minor table, then the
subscripts are written from left to right in the order major, intermediate, and minor. Thus,
in Example 6, a reference to HARRY (18, 2, 7) means the HARRY in the 7th GEORGE, in
the 2nd DOG, in the 18th BAKER.

A reference to an item must not be subscripted if the item is not a table.-element or an item
or condition-name within a table-element.

The lowest permissible subscript value is 1. The highest permissible subscript value in any
particular case is the maximum number of occurrences of the item as specified in the
OCCURS clause.

When a data-name is used as a subscript, it may be used to refer to items within many
different tables. These tables need not have elements of the same size. The data-name may
also appear as the only subscript with one item and as one of two or three subscripts with
another item. Also, it is permissible to mix literal and data-name subscripts, for example,
HABRY (12, NEWKEY, 2).

INDEXING

References can be made to individual elements within a table of elements by specifying
indexing for that reference.

An index is assigned to a given level of a table by using an INDEXED BY clause in the
definition of the table. A name given in the INDEXED BY clause is known as an index-name
and is used to refer to the assigned index. An index-name must be initialized by a SET
statement before it is used in a table reference. An index may be modified only by a SET
statement. Data items described by the USAGE IS INDEX clause permit storage of the
values of index-names as data without conversion. Such data items are called index data
items.

Direct indexing is specified by using an index-name in the form of a subscript. The format is
as follows:

data-name (index-name-11[.~index-name-2] [,.6index-name-3])

Relative indexing is specified when the terminal space of the data-name is followed by a
parenthesized group of items: the index-name, followed by a space, one of the operators+
or-, another space, and an unsigned integral numeric literal. The format is as follows:

data-name (index-name-1 [f ± J integer] [,~index-name[(±}integer]]

[,~index-name-3[f ± J integer]])

9-5

RESTRICTIONS ON INDEXING AND SUBSCRIPTING

Tables may have one, two, or three dimensions. Therefore, references to an element in a
table may require up to tlhree subscripts or indexes.

1. A data-name must not be subscripted or indexed when the data name
is itself be!ing used as an index or subscript.

2. Subscripting and indexing must not be used together in a single
reference.

3. Wherever subscripting is not permitte<:t indexing is not permitted.

4. The ieommas shown in the formats for indexes and subscripts are
required.

5. The synta1x rules for indexing are the same as those for subscripting.

EXAMPLES OF SUBSCRIPTING AND INDEXING

For a table with three levels of indexing, the following Data Division entries would result in
a storage layout as shown in Figure 9-1.

SEQUENCE ~

t-(P-AG_E.....,I r--ISE-R-IAL-11 8 A
B COBOL STATEMENT

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728293031323334353637 3839 4041424344454647484950

-+-----¥"'~--fll__.__.__~,:r.Y.:'~T_AlLf.t_L _ _.__.L_,___._ _ _,_:~_.__.. _ _,__._. ·-•--'--~--'--'--~--L--"---'--L-.L--'--'--:
--~"[.1._:_L,OJlL _ _._O_.__~~-Jllk.S __ . .! _ _.l'J.ltt_.s_.__irtD.£.X.EJ) '---1.

__.__..._........_~LY->-=J-. -'-~-'-. ._L.. ___ ._ __ _.__,__,_ _ _.___._._ __ _. --L- .._ _ _.__,_ __ '--'- ..L__J____..._ _ _,__,___.__. '---1.

4,__3.__._ __ A&L_~_,_GLOJ)._E,_Jlt..~U.~_J:l__1IJ1E._~, _ _l.HJ),f.X~L-.l-
A,.GE ·-...1..--... ...L..J..._.......J..__l_ __ .J. _-1..__L...-L-........J___._ ___ J....___.L_J.._. ~ ~

__..._~~--1-~-'--J~ _, _Jl~_.f__._~_,lN.F 0 I CliC._CJAA.S,_,_~ TI H.E._$_,_ I NJ> E XE.)L
. -~-'-- ~E~--"--'-· ~-'---'--·-'---1----'----'---L-.L--1._..L.___..L_.l..--L--.l.....-...l..- l___.J,--1... _ __J__t. __ ,.L._...i._.1 __ _.t.__;L--.J...

-~-"----'--- _,_u _ _.__._ __ _,_t.I.G.TIAR.E .'f. (1:l~CLSA,&E,_j)_LS_J~,LA~_h_i _ _,__,_,_

PARTY-TABLE contains three levels of indexing. Reference to elementary items within
PARTY-TABLE is made by use of a name that is subscripted or indexed. A typical
Procedure Division statement might be:

MOVE M-F-INFO (PARTY, AGE, M-F) to M-F-RECORD.

9-6

Byte
8 bytes. No.

AGE-CODE (1, 1) { M-F-INFO (1, 1, 1)

M-F-INFO (1, 1, 2)

0

8

PARTY-CODE (1) AGIE-CODE (1, 2) { M-F-INFO (1,2, 1)

M-F-INFO (1, 2, 2)

16

24

AGE-CODE (1, 3) {
M-F-INFO (1. 3, 1)

M-F-INFO (1. 3, 2)

32

40

AGE-CODE (2, 1) {
M-F-INFO (2. 1, 1)

M-F-INFO (2, 1, 2)

48

56

PARTY-TABLE PARTY-CODE (2) AGE·CODE (2, 2) {
M-F-INFO (2, 2, 1)

M-F-INFO (2, 2, 2)

64

72

AGl:-CODE (2, 3) {
M-F-INFO (2, 3, 1)

M-F-INFO (2, 3, 2)

80

88

AGl:.cooE (3, 1) {
M-F-INFO (3, 1, 1)

M-F-INFO (3, 1, 2)

96

104

PARTY-CODE (3) AGE-CODE (3, 2) {
M-F-INFO (3, 2, 1)

M-F-INFO (3, 2, 2)

112

120

AGE-CODE (3, 3) {
M-F-INFO (3, 3, 1)

I----·

M-F-INFO (3, 3, 2)

128

136

..... v
..,,

. Occurs 3 Times Oiccurs 3 Times Occurs 2 Times

Figure 9-1. Example of Table Indexing

DATA DIVISION CONSIDERATIONS FOR TABLE HANDLING

The OCCURS and USAGE dauses are included as part of the record description entries in a
program utilizing the table handling feature.

9-7

Bulletin: 2202.002-0001
Date: 3/19/73

OCCURS CLAUSE

The OCCURS clause elnminates the need for separate entries for repeated data and supplies
information required for the application of subscripts or indexes. The clause has two
formats which are:

Format 1:

Format 2:

.!)CCURS integer-2 TIMES
[INDEXED BY index-name-1 [index-name-2] ...]

!)CCURS integer-11·0 integer-:2 TIMES
[DEPENDING ON data-name-1]
I.INDEXED BY index-name-1 [index-name-2]. ••]

The data description of data-name-1 must describe a positive integer.

In Format 1, integer-2 represents the exact numbe,r of occurrences. It must be greater than
zero.

In Format 2, the DEPENDING ON option is used. This indicates that the subject o1f this
entry has a variable number of occurrences. This does not mean that the length of the
subject is variable, but rather that the number of times the subject may be repeated is
variable, the number 01: times being controlled by the value of data-name-1 at object time.

In Format 2, integer-·1 represents the minimum number of occurrences, and integer-2
represents the maximum number of occurrences. lnteger-1 may be zero or any positive
integer. lnteger-2 must be greater than zero, and also greater than integer-1. lnteger-2 must
be less than 16,384. The! value of data-name-1 must not exceed integer-2.

Data-name-1, the object of the DEPENDING ON option:

• Must be des!=ribed as a positive integer

• Must not exceed integer-2 in value

• Must not be subscripted (that is, must not itself be the subject of, or
an entry within, a table)

• Must, if it appears in the same record as the table it controls, appear
before the variable portion of the record

The subject of an OCCURS clause is the data-name of the entry that contains this OCC:U RS
clause. The subject o1f an OCCURS clause must be subscripted or indexed whenever
referenced. When subscripted, the subject refers to one occurrence within the table.

The OCCURS clause may not be specified in a data description entry that has a level-01 or
level-77 number, or an untry that describes an item whose size is variable.

The DEPENDING option is only required when the end of the occurrences cannot
otherwise be determined. Unused character positicms resulting from the DEPENDING ON

9-8

The total number of index-names for a program must not exceed 255.

An INDEXED BY phrase is required if the subject of this entry (or an item within it) is to
be referred to by indexing. The index-name identified in this clause is not defined elsewhere
since its allocation and format are dependent on the system. Not being data, it cannot be
associated with any data hierarchy.

There are two types of indexing: direct indexing and relative indexing.

Direct indexing: If a data-name is used in the procedure text with index-names, the
data-name itself must be the subject of an ll\IDEXED BY option, or be subordinate to a
group(s) that is the subject of the INDEXED BY opt~on.

The following example:

A (I NDEX-1, INDEX.·2, INDEX-3)

implies that A belongs to a structure with three levels of OCCURS options, each with an
INDEXED BY option.

Relative Indexing: The index-name is followed by a space, followed by one of the operators
+ or -, followed by another space, followed by an unsigned numeric literal. The numeric
literal is considered to be an occurrence number, and is converted to an index value before
being added to, or subtracted from, the corresponding index-name.

Given the following example:

A (Z + 1, J + 3, K + 4)

where:

table element indexed by Z has an entry length of 100

table element indexed by J has an entry length of 10

table element indexed by K has. an entry length of 2

the resulting address will be computed as follow:s:

1
Conversion of integers to

index values

9-9

An index-name must be initialized through a SET statement before it is used. Each
index-name is a word in length and contains a binary value that represents an actual
displacement from the beginning of the table that corresponds to an occurrence number in
the table. The value is calculated as the occurrence number minus one, multiplied by the
length of the entry that is indexed by this index-name.

For example, if the programmer writes:

A OCCURS 15 TIMES INDEXED BY Z PICTURE IS X(10)

on the fifth occurrence of A, the binary value contained in Z will be:

z = (5 - 1) * 10 = 40

Any entry which contains or has a subordinate entry which contains Format 2 cannot be
the object of the REDEFINES clause.

The VALUE clause must not be stated in a data description entry which contains an
OCCURS clause or in an entry which is subordinate to an entry containing an OCCURS
clause.

USAGE CLAUSE

The USAGE clause spedfies the format of a data ~tern in the computer storage. The format
is as follows:

The USAGE clause can be written at any level. If the USAGE clause is written at a group
level, it applies to each elementary item in the group. The USAGE clause of an elementary
item cannot contradict the USAGE clause of a group to which the item belongs.

An elementary item described with the USAGE IS INDEX clause is called an inde><: data
item and can be used to save index-name values for future reference. An index data item
must be assigned an index-name value (that is (occurrence number - 1) * entry length}
through the-SET statement. Such a value corresponds to an occurrence number in a table.

If a group is described with the USAGE IS INDEX clause, the elementary items in the !~roup
are all index data items. The group itself is not an index data item and cannot be used in
SET statements or in a relation condition.

An index data item can be referred to directly only in a SET statement or in a relation
condition. An index data item can be part of a group which is referred to in a MOVE or
input-output statement, in which case no conversion will take place.

The SYNCH RONI.ZED, JUSTIFIED, PICTURE, VALUE and BLANK WHEN ZERO clauses
cannot be used to describe group or elementary items described with the USAGE IS 11\JDEX
clause.

9-10

PROCEDURE DIVISION CONSllDERATIONS FOR TABLE HANDLING

The SET statement may be used to facilitate table handling. In addition, there are special
rules involving table handling elements when they are used in relation conditions.

RELATION CONDITION

The result of the comparison of two index-names and/or index data items is the same as if
the corresponding occurrence numbers are compared.

In the comparison of an index-name and a data item (other than an index data item) or
literal, the occurrence number that corresponds to the value of the index-name is compared
to the data item or literal.

In the comparison of an index data item and an index-name or another index data item, the
actual values are compared without conversion.

The result of the comparison of an index data item with any data item not specified above is
illegal and the result is unpredictable.

Figure 9-2 shows permissible comparisons for index-names and index data items.

~ Data-Name Numeric
t

d

Index (numeric Literal
d Index-Name Data Item integer only) (integer only)

Index-Name Compare Compare Compare Compare
1Dccurrence without occurrence occurrence
inumber conversion number with number with

data-name literal

Index-Data Item Compare Compare Illegal Illegal
without without
1:onversion conversion

Data-Name Compare Illegal
(numeric occurrence
integer only) number with

data-name See Table 8-1 for
permissible comparisons

Numeric Compare Illegal
Literal occurrence
(integer only) 111umber with

loteral

Figure 9-2. I index-Names and Index Data Items - Permissible Comparisons

9-11

SET STATEMENT

The SET statement establishes reference points for table-handling operations by setting
index-names associated w~th table elements. It has two formats which are:

Format 1:

Format 2:

SET I index-name-1 [index-name-2] .. · j TO
-- identifier-1 [identifier-2] ...

{

index-name-3}
identifier-3

literal-1

SEI index-name-4 [index-name-5] ...

IJ:!PM l lidentifier-41
DOWN BY literal-2

Al I references to index-name-1, identifier-1, and index-name-4 apply equally to
index-name-2, identifier-2, and index-name-5, respectively.

All identifiers must name either index data items, or elementary i~ems described as an
integer, except that identifier-4 must not name an index data item. When a literal is used, it
must be a positive integer. Index-names are considered related to a given table and are
defined by being specified in the INDEXED BY clause.

There may not be more than 20 operands in a SET statement.

The maximum value of literal-1 or literal-2 is 216_1. Thus a literal with more than 4 diigits
may lose significance.

In Format 1, the following action occurs:

• lndex-name-1 is set to a value that corresponds to the same
occurrence number to which either index-name-3, identifier-3, or
literal-1 corresponds. If identifier<l is an index data item, or if
index-narne-3 is related to the same table as index-name-1, no
conversion takes place.

• If identifier-1 is an index data item, it may be set equal to either the
contents of index-name-3 or identifier-3 where identifier-3 is also an
index data item. Literal-1 cannot be used in this case.

• If identifier-1 is not an index data item, it may be set only to an
occurrence number that corresponds to the value of index-name-3.
Neither identifier-3 nor literal-1 can be used in this case.

• The proc:ess is repeated for subseqwmt index-names or identifiers, if
specified. Each time the value of index-name-3 or identifier-3 is used,
it i·s used as it was at the beginning o·f the execution of the statement.
Any subscripting or indexing associated with an identifier is
evaluated immediately before the value of the respective data item is
changed.

9-12

In Format 2, the contents of index-name-4 are incremented (UP BY) or decremented
(DOWN BY) by a value that corresponds to the number of occurrences represented by the
value of literal-2 or identifier-4. This process is repeated for subsequent index-names. Each
time the value of identifier-4 is used, it is used as it was at the beginning of the execution of
the statement.

SEGMENTATION

COBOL segmentation is a facility that provides a means of specifying object program
overlay requirements to the compiler.

COBOL segmentation deals only with segmentation of procedures. As such, only the
Procedure Division and the Environment Division are considered in determining
segmentation requirements for an object program.

ORGANIZATION

Although it is not mandatory, the Procedure Division for a source program is usually written
as a consecutive group of sections, each of which is composed of a series of closely related
operations that are designed to collectively perform a particular function. However, when

segmentation is used, the entire Procedure Division must be in sections. In addition, each
section must be classified as belonging either to the fixed portion or to one of the
independent segments of the object program.

FIXED PORTION

The fixed portion is defined as that part of the object program which is logically treated as
if it were always in memory. This portion of the program is composed of two types of
segments: permanent segments and overlayable fixed segments.

A permanent segment is a segment in the fixed portion which cannot be overlayed by any
other part of the program. An overlayable fixed segment is a segment in the fixed portion
which, although logically treated as if it were always in memory, can be overlayed, if
necessary, by another segment to optimize memory utilization. However, such a segment, if
called for by the program, is always available in its last used state.

Also, depending on the availability of memory, the number of permanent segments in the
fixed portion can be varied usiing a special facility called SEGMENT-LIMIT.

INDEPENDENT SEGMENTS

An independent segment is defined as part of tho object program which can overlay, and can
be overlayed by, either an overlayable fixed segment or another independent segment. An
independent segment is effectively in its initial state each time the segment is made available
to the program.

9-13

SEGMENT CLASSIFICATION

Sections which are to be segmented are classified, using a system of priority-numbers and
the following criteria:

• Logic Requirements - Sections which must be available for reference
at all times, or which are referred to very frequently, are normally
classified as belonging to one of the perrnanent segments; sections
which are used less frequently are normally classified as belonging
either to one of the overlayable fix,ed segments or to one of the
independent segments, depending on logic requirements.

• Frequency of Use - Generally, the more frequently a section is
referred to, the lower its priority-number; the less frequently it is
referred to, the higher its priority-number.

• Relationship to Other Sections -- Sections which frequently
communiicate with one another should be given the same
priority-numbers.

SEGMENTATION CONTROL

The logical sequence of the program is the same as the physical sequence except for specific
transfers of control. The compiler will provide transfers to maintain the logic flow of the
source progn;im. The compiler will also insert instructions necessary to load and/or initialize
a segment when necessary. Control may be transferred within a source program to any
paragraph in a section; that is, it is not mandatory to transfer control to the beginning of a
section.

Sections of a given segm~:mt may be scattered throughout the source program.

STRUCTURE OF PROGRAM SEGMENTS

Program segments are made up of sections classified according to priority numbers.

PRIORITY NUMBERS

Section classification is accomplished by means of a system of priority-numbers. The
priority-number is included in the section header. The format is as follows:

section-name _SECTION [priority-number].

The priority-number must be an integer ranging in value from 0 through 99. If the
priority-number is omitted from the section header, the priority is assumed to be 0.

All sections which have! the same priority-number constitute a program segment with that
priority. Segments with priority-number 0 through 49 belong to the fixed portion o·f the
object program. Segments with priority-number 50 through 99 are independent segments.

9-14

SEGMENT-LIMIT

Ideally, all program segments having priority-numbers ranging from 0 through 49 should be
specified as permanent segments. However, when insufficient memory is available to contain
all permanent segments plus the largest overlayable segment, it becomes necessary to
decrease the number of permanent segments. The SEGMENT-LIMIT feature provides the
user with a means by which . he can reduce the number of permanent segments in his
program, while still retaining the logical properties of fixed portion segments
(priority-numbers 0 through 49).

The SEGMENT-LIMIT clause appears in the OBJECT-COMPUTER paragraph (Environment
Division) and has the following format:

[SEGMENT-LIMIT IS priority-number]

Priority-number must be an integer ranging in value from 1 through 49.

When the SEGMENT-LIMIT clause is specified, only those segments having
priority-numbers from 0 up to, but not including, the priority number designated as the
segment-limit, are considered as permanent segments of the object program. Those segments
having priority-numbers from the segment-limit through 49 are considered as overlayable
fixed segments.

When the SEGMENT-LIMIT clause is omitted, all segments having priority-numbers from 0
through 49 are considered as permanent segments of the object program. ·

RESTRICTIONS ON PROGRAM HOW

When segmentation is used, the following restrictions are placed on the ALTER and the
PERFORM statements.

AL TE: R STATEMENT

A GO TO statement in a section whose priority is equal to or higher than 50 must not be
referred to by an ALTER statement in a section with a different priority.

All other uses of the ALTER statement are valid and are performed even if the GO TO to
which the ALTER refers is in a segment of the program that has not yet been called for
execution.

PERFORM STATEMENT

A PERFORM statement that appears in a section whose priority-number is less than the
segment-limit, can have within its range only the following:

• Sections each of which has a priority-number less than 50.

9-1 fi

• Sections wholly contained in a single segment whose priority-number
is greater than 49.

A PERFORM statement that appears in a section whose priority-number is equal to or
greater than the segment-11imit, can have within its range only the following:

• Sections each of which has the same priority-number as that
containin~1 the PERFORM statement.

• Sections with a priority-number that i·s less than the segment-limit.

When a procedure-name in a segment with a priority-number greater than 49 is referred to
by a PERFORM statement contained in a segment with a different priority-number, the
segment referred to i·s·ma1de available in its initial state for each execution of the PERFOIRM
statement.

SOURCE PROGRAM LIBRARY FACILITY

Prewritten source program entries can be included in a source program. Thus, an installation
can use standard file descriptions, record descriptions, or procedures, without recording
them. These entries and procedures are contained in user-created libraries; they are included
in a source program by means of a COPY statement.

The system UPDATIE function must be used to perform the COPY functions. (Refer to
MRX/OS Program Library Services Reference manual for a description of the Librarian
UPDATE.)

9-16

A. GLOSSARY OF COBOL TERMS

The terms in this appendix are defined in accordance with their meaning as used in this
document describing COBOL and may not have the same meaning for other languages.

Notes affixed to some of the definitions have the following meanings:

(1) The definition agrees with the I FIP-ICC Vocabulary of Information
Processing.*

(2) The definition is more restrictive than the corresponding definition
in the I FIP-ICC Vocabulary of Information Processing.

(3) The definition is more inclusive than the corresponding definition in
the I FIP-ICC Vocabulary of Information Processing.

(4) The definition disagrees with the IFIP-ICC Vocabulary of
Information Processing.

Access, Random - An access mode in which specific logical records are obtained from or
placed in a mass storage file in a non-sequential manner.

Access, Sequential - An access mode in which a logical record read from or written to a file
has an implicit logical predecessor and an implicit logical successor. The first access to a file
acc,~sses a record that has no implicit logical predecessor; each successive access refers to the
implicit logical successor of the previously accessed logical record. The
predecessor/successor relationships of a record are established when the record is written to
a file.

Actual Decimal Point - (See Decimal Point, Actual)

Actual Key - (See Key, Actual)

Alphabetic Character - (See Character, Alphabetic)

Alphanumeric Character - (See Character, Alphanumeric)

Assumed Decimal Point - (See Decimal Point, Assumed)

* lntftrnational Federation for Information Processing - International Computation Center Vocabulary for Information
Procening, 1st English Language Edi1tion, 1966, North-Holland Publishing Company, Amsterdam.

A-1

Block (3) - A physical unit of data that is convenient to a particular computer for storage
on an input or output device. The term is synonymous with physical record. The block is
normally composed of one or more logical reco1rds. The size of a block has no direct
relationship to the size of the file within which tht~ block is contained or to the. size of the
logical record(s) that am contained within the block.

Character (1) - The basic indivisible unit of the lan{1uage.

Character, Alphabetic (~~) - A character that belongs to the following set of letters:

A, B, C, D, E, F,. G, H, I, J, K, L, M, N, 0, P,, Q, R, S, T, U, V, W, X, Y, Z
and the space.

Character, Alphanumeriic (1) - Any character in the computer's character set.

Character, Editing -- A single character or a fixed two-character combination belonging to
the following set:

Character

B
0
+

CR
DB
z
*
$

Space
Zero
Plus
Minus
Credit
Debit

Meaning

Zero suppress
Check protect
Currency sign
Comma (decimal point)
Period (decimal point)

Character, Numeric (1) ·-A character that belongs to the following set of digits:

0, 1,2,3,4,5,e., 7,8,9

Character, Punctuation -- A character that belongs to the following set:

Character Meaning

Comma
Period

":\it\\\,fil: Quotation mark
(Left parenthesis
) Right parenthesis

Space

A-2

Character, Special (1) - A character that belongs to the following set:

Character

+

*
I
$

~··)·

Meaning

Plus sign
Minus sign
Asterisk
Stiroke (virgule, slash)
Currency sign
Comma (decimal point)
Period (decimal point)
Quotation mark
Left parenthesis
Right parenthesis

Characters, Standard - A character-string that comprises a data item whose size is measured
in accordance with standard data format.

Character Set (1) - The complete COBOL character set consists of the characters listed
below:

Character

0, 1, ... ,9
A,B, ... ,Z

+

*
I
$

~··)

Meaning

Digit
Letter
Space (blank)
Plus sign
Minus sign (hyphen)
Asterisk
Stroke (virgule, slash)
Currency sign
Comma (decimal poiint)
Peraod (decimal point)
Quotation mark
Left parenthesis
Riglht parenthesis

Character-String - Contiguous characters which form a literal, a word, a PICTURE in the
Data Division, or a NOTE in the Procedure Division. The rules governing the construction of
each of the above types of character-strings differ, and are explained in other chapters.

Class Condition - (See Condition, Class)

Clause - A clause is an ordered set of consecutive COBOL words whose purpose is to
specify an attribute of an entry.

Clause, Data - A clause that appears in a data description entry in the Data Division and
provodes information describing a particular attrobute of a data item.

A-3

Clause, Environment - .A clause that appears as part of an Environment Division entry.

Clause, File - A clause that appears as part of a file description (FD) in the Data Division.

COBOL Object Program - (See Object Program, COBOL)

COBOL Source Program - (See Source Program, COBOL)

Collating Sequence - (See Sequence, Collating)

Comment - An annotation in the Identification Division or Procedure Division of a source
program.

Compile Time - (See Turne, Compile)

Compiler Directing Stat·ement - (See Statement, Compiler Directing)

Condition - A simple condition, or a syntactically correct combination of simple conditions
and logical operators, for which a truth value can be determined.

Condition, Class - ThE~ proposition, for which a truth value can be determined, that the
content of an item is wholly alphabetic or is wholly numeric.

Condition, Invalid Key - A condition in which, at object time, a specific value of the actual
key associated with a mass storage file is determined to lie outside the limits of the file being
accessed.

Condition, Relation - The proposition, for which .a truth value can be determined, that the
value of a data item has a specific relationship to the value of another data item. (See
Operator Relational.)

Condition, Simple -- Any single condition chosen from the set:

Relation condition
Class conditijon

Conditional Statement ·- (See Statement, Conditional)

Conditional Variab~e - (See Variable, Conditionai)

CONFIGURATION SECTION - (See Section, Con-figuration)

Connective - A word or a punctuation character that is used to link two or more ope1rands
written in a series. (Thi~ comma is the only connective allowed, and may only appear within
a subscript.)

Constant, Figurative (f~ - A reserved word that represents a numeric value, a character, or a
string of characters.

Constant, Literal - (SeE~ Literal)

A-4

Contiguous Items - (See Items, Contiguous)

Counter (3) - A data item used for storing numbers or number representations in a manner
that permits these numbers to be increased or decreased by the value of another number, or
to be changed or reset to zero or to an arbitrary positive or negative value.

Data Clause - (See Clause, Data)

Data Description Entry - (See Entry, Data Description)

Data Item (1) - Any elementary item, a named group of elementary items within a record,
or a record.

Data Item, Index (4) - A data item in which the value associated with an index-name can be
stored as data without conversion.

Data-Name (1) - A word that contains at least one alphabetic character and that names an
entry in the Data Division. When used in the General Formats, 'data-name' represents a
word which can neither be subscripted nor indexed, unless specifically permitted by the
rules for that format.

Data-Name, Indexed (1) - An identifier that is composed of a data-name, followed by one
or more index-names enclosed in parentheses.

Data-Name, Subscripted (1) - An identifier that is composed of a data-name followed by
one or more subscripts enclosed in parentheses.

Decimal Point, Actual (2) - The physical representation of the decimal point position in a
data item. Either of the decimal point characters, period (.) or comma (,) may be used for
this representation.

Decimal Point Assumed - A decimal point position which does not involve the existence of
an actual character in a data item. The assumed decimal point has logical meaning but no
physical representation.

Division - One or more sections or paragraphs that are formed and combined in accordance
with a specific set of rules. There are four (4) divisions in a COBOL program:

IDENTIFICATION
ENVIRONMENT
DATA
PROCEDURE

Division Header - (See Header, Division)

Editing Character - (See Character, Editing)

Element, Table - (See Item, Elementary)

A-!5

End of Procedure Division - The physical positio111 in a COBOL source program after which
no further procedures appear.

Entry (4) - Any descriptive set of consecutive clauses terminated by a period and written in
the Identification Division, Environment Division, or Data Division of a COBOL source
program.

Entry, Data Description - An entry in the Data Division that is composed of a level number
followed by a data-name (if required) and a set of data clauses (as required).

Entry, File Description - An entry in the File Sectiion of the Data Division that is composed
of the level indicator FD, followed by a file-name, and then followed by a set of file dauses
as required.

Entry, Object of -- A set of operands and reserved words, within a Data Division entry, that
immediately follows the subject of the entry.

Entry, Subject of - An operand or reserved word that appears immediately following the
level indicator or the level number in a Data Division entry.

Environment Clause - (See Clause, Environment)

Execution Time - (See Time, Object)

Figurative Constant - (See Constant, Figurative)

File - A collection of records.

File Clause - (See Clause, File)

File Description Entry - (See Entry, File Description)

File Limit - A set of logical- boundary locations for a particular mass storage file that are
within the physica~ boundary locations of a mass storage medium.

File, Mass Storage (2) - A collection of records that is assigned to a mass storage medium.

File-Control - The name of an Environment Divisiion paragraph in which the data file!i for a
given source program are declared.

File-Name - A word with at least one alphabetic character that names a file described in the
Data Division.

Format (1) - A specific arrangement of a set of data.

Format, Reference - A format provides a standard method for describing COBOL source
programs.

A-6

Format, Standard Data - The concept used in describing the characteristics of data in a
COBOL Data Division. The characteristics or properties of the data are expressed in a form
oriented to the appearance of the data on a printed page of infinite length and breadth,
rather than a form oriented to the manner in which the data is stored internally in the
computer, or on a particular external medium. ·

Header, Division - COBOL words that indicate the beginning of a particular division. The
division headers are:

IDENTIFICATION DIVISION
ENVIRONMENT DIVISION
DATA DIVISION
PROCEDURE DIVISION

Header, Paragraph - A rese1ved word, immediately followed by a period, that precedes and
identifies all entries in the Identification and Environment Division. The paragraph headers
are:

In the Identification Division:

PROGRAM-ID.
AUTHOR.
INSTALLATION.
DATE-WRITTEN.
SECURITY.
REMARKS.

In the Environment Division:

SOURCE-COMPUTER.
OBJECT-COMPUTER.
SPECIAL-NAMES.
FILE-CONTROL.
1-0 CONTROL.

Header, Section - A combination of words that precedes and identifies each section in the
Environment, Data and Procedure Divisions.

In the Environment and Data Divisions, the permissible section headers are composed of
reserved words.

In the Environment Division:

CONFIGURATION SECTION.
INPUT-OUTPUT SECTION.

In the Data Division:

FILE SECTION.
WORKING-STORAGE SECTION.

:1t11~1:11111::1:11111~:111~.:il
A-7

In the Procedure Division, the section header is composed of a section-name followed by the
reserved word SECTION, an optional priority number and a period.

High Order End - The leftmost character of a string of characters.

Identifier (3) - The data-name, followed, as required, by the syntactically c:orrect
combination of subscripts and indexes necessary to make unique reference to a data item.

Imperative Statement - (See Statement, Imperative)

Implementor-Name - A reserved word that refers to a particular feature availablE! on a
MEMOREX computer system.

Index (4) - A computer storage position or regiister, the contents of which represent the
identification of a particular element in a table.

Index-Name - A word with at least one alphabeti1c character that names an index associated
with a specific table.

Index Data Item -- (Se~e Data Item, Index)

INPUT-OUTPUT SECTION - (See Section, Input-Output)

Integer - A numeric literal or a numeric data item that does not include any character
positions to the right of the assumed decimal point. Where the term 'integer' app1ears in
general formats, integer must be a numeric data item, and must be unsigned . ..
Invalid Key Condution - (See Condition, Invalid Key)

1-0 CONTROL - The name of an Environment Division paragraph in which object program
requirements for rerun points, sharing of same areas by several data files, and multiple file
storage on a single input-output device are specified.

Items, Contiguous - Data items that are described by consecutive entries in th1~ Data
Division, and that bear a definite hierarchic relationship to each other.

Item, Elementary - A data item that is described as not being further logically subdivided.

Item, Group - A named contiguous set of elementary or group items.

~:~ie~~;:n~~a~~:~shipAt~~~~!~ei~~~~- the Working-Storage or·-that bears

Item Nonnumeric - A data item whose description permits its contents to be composed of
any combination of characters taken from the computer's character set. Certain cat1egories
of nonnumeric items may be formed from more restricted character sets.

Item, Numeric - A data item whose description restricts its contents to a value repre!sented
by characters chosen from the digits 0 through 9, with or without an operational sign.

A-8

Key (1) - One or more data items, the contents of which jointly serve to identify the
location o·f a record or the ordering of data.

Key, Actual (2) - A key that directly expresses the physical location of a logical record on a
mass storage medium.

Key, Forward - A key used with an indexed file when it is accessed sequentially.

Key Word - (See Word, Key)

level Indicator - Two alphabetic characters that identify a specific type of file or a position
in a hierarchy.

level-Number - Two characters that in the case of the numbers 1 to 49, indicate the
hierarchical structure of a logical record, or, in the case of the number 77 identify special
properties of a data descriptiion entry.

Literal (1) - A string of characters whose value is implied by the ordered set of characters
comprising the string.

Literal, Nonnumeric (2) - A string of characters bounded by quotation marks. The string of
characters may include any character in the computer's character set, with the exception of
the quotation mark.

literal, Numeric (2) - A literal composed of one or more numeric characters not bounded
by quotation marks. It may contain either a decimal point, that cannot be the rightmost
character, or an algebraic sign, that must be the leftmost character, or both.

literal Constant - (See Literal)

Logical Record - (See Record, Logical)

low Order End - The rightmost character of a string of characters.

Mass Storage - A storage medium on which data may be organized and maintained in both
a sequential and nonsequential manner.

Mass Storage File - (See File, Mass Storage)

Mass Storage File Segment - A part of a mass storage file whose beginning and end is
defined by the FILE-LIMITS clause in the Environment Division.

Mnemonic-Name - A word, supplied by the programmer, that is associated in the
Environment Division with a specific implementor-name.

Noncontiguous Item - (See Item, Noncontiguous)

Nonnumeric Item - (See Item, Nonnumeric)

A-9

Nonnumeric Lite1·al - (See Literal, Nonnumeric)

Numeric Character - (See Character, Numeric)

Numeric Item - (See lltem, Numeric)

Numeric Literal-· (Se1e Literal, Numeric)

OBJECT-COMPUTER (2) - The name of an Environment Division paragraph which
describes the computer environment within which the object program is executed.

Object of Entry - (Se1a Entry, Object of)

Object Program, COBOL (2) - The set of compL1ter instructions that are an output of the
compilatiol) of a COBOL source program.

Object Time - (See Time, Object)

Operand - Any lower case word (or words) that appear in a statement or entry format in
this publication.

Operation Sign - (See Sign, Operational)

Operator, Relational -- A reserved word or a group of consecutive reserved words used in
the construction of a relation condition. The permissible operators and their meaning are:

Relational Ope!rator

IS [NOT] GREATER
THAN

IS [NOT] LESS THAN

IS [NOT] EQUAL TO

Meaning

Greater than or not
greater than

Less than or not less than

Equal to or not equal to

Optional Word - (See Word, Optional)

Paragraph - A para~1raph-name (in the Procedure Division) followed by one or more
sentences, or a paragraph-header (in the Identification or Environment Divisions) followed
by one or more entries.

Paragraph-Name -- A word that begins and idenfrfies a paragraph in the Procedure Division.

Paragraph Header - (See Header, Paragraph)

Physical Record - (Set! Block)

Priority-Number -- A 111umber, ranging in value frllm 0 to 99, that classifies source priogram
sections in the Procedure Division in order to guidu object program segmentation.

A-10

Procedure - A paragraph or group of logically successive paragraphs, or a section or group
of logically successive sections, within the Procedure Division.

Procedure-Name - A word used to refer to a paragraph or section in the source .program in
which it occurs. It consists of a paragraph-name or a section-name.

Program-Name - A word thait identifies a COBOL source program.

Punctuation Character - (See Character, Punctuation)

Random Access - (See Access, Random)

Record - (See Record, Logical)

Record Description - The total set of data description entries associated with a particular
record.

Record, Logical (1) - The most inclusive data item.

Record, Physical - (See Block)

Record-Name (2) - A data-name that names a record.

Reference Format - (See Format, Reference)

Registers, Special - Compiler generated storage areas whose primary use is to store
information produced in con.iunction with the use of specific COBOL features.

Relation - (See Operator, Relational)

Relation Character - (See Character, Relation)

Relation Condition - (See Condition, Relation)

Relational Operator - (See Operator, Relational)

Reserved Word - (See Word, Reserved)

Section - A set of one or more paragraphs or entries, the first of which is preceded by a
section header.

Section, Configuration - A section of the Environment Division that describes overall
specifications of source and object computers.

Section, File - The section of the Data Division that contains file description entries.

Section Header - (See Header, Section)

A-11

Se·ction, Input-Output - The section of the Environment Division that names the files and
the external media required by an object program. It also provides information required for
transmission and handlin~t of data during execution of the object program.

Section, Linkage - The section of the Data Division that describes data made available fr.om
another program.

Section, Working-Storage - The section of the Data Division that describes working storage
data items, composed either of noncontiguous items or of working storage records or of
both.

Section-Name - A word that identifies a section written in the Procedure Division. (See
Word.)

Sentence - A sequence of one or more statements, the last of which is terminated by a
period followed by a space.

Sequence, Collating (1) - The MRX defined sequence in which the characters that are
acceptable to a computer are ordered for purposes of comparison.

Sequential Access - (See Access, Sequential)

Sign, Operational - .An algebraic sign, associated with a numeric literal, to indicate whether
the item is positive or negative.

Simple Condition - (See Condition, Simple)

SOURCE COMPUTER - The name of an Environment Division paragraph which describes
the computer environment within which the source program is compiled.

Source Program, COBOL. - A program coded in COBOL language that must be translated
into machine language before use.

Special Character - (See Character, Special)

Special Registers - (See Begisters, Special)

SPECIAL-NAMES - The name of an Environment Division paragraph in which
implementor-names are rnlated to user specified mnemonic-names.

Standard Characters - (Siee Characters, Standard)

Standard Data Format - (See Format, Standard Data)

Statement - A syntactically valid combination cif words and symbols written in the
Procedure Division beginning with a verb.

Statement, Compiler Directing - A statement, begunning with a compiler directing ve~rb,
that causes the compiler to take a specific action during compilation.

A-12

Statement, Conditional - A conditional statement specifies that the truth value of a
condition is to be determined and that the subsequent action of the object program is
dependent on this truth value.

Statement, Imperative - A statement that begins with an imperative verb and specifies an
unconditional action to be taken. An imperative statement may consist of a sequence of
imperative statements.

Subject of Entry - (See Entry, Subject of)

Subscript (1) - An integer whose value identifies a particular element in a table.

Subscripted Data-Name - (See Data-Name, Subscripted)

System Name - A word that specifies the external name of a file, a device, and an
organization method.

Table (1) - A set of logically consecutive items of data that are defined in the Data Division
by means of the OCCURS clause.

Table Element - (See Item, Elementary)

Time, Compile - The time at which a COBOL source program is translated, by a COBOL
compiler, to a COBOL object program.

Time, Execution - (See Time, Object)

Time, Object - The time at which an Object Program is executed.

Truth Value - The representation of the result of the evaluation of a condition in terms of
one of two values:

True
False

Unit - A single lower-case word or a group of lower-case words and one or more reserved
words enclosed in brackets or braces.

Variable - A data item whose value may be changed by execution of the object program.

Variable, Conditional - A data item consisting of one or more values which has a
condition-name assigned to it.

Verb - A word that expresses an action to be taken by a COBOL compiler or object
program.

Word (2) - A word is a sequence of not more than 30 characters. Each character is selected
from the set A through Z, 0 through 9, and - e>ccept that the '-' may not appear as the first
or last character in a word. A word is delimited by separators.

A-13

Word, Key (2) - A reserved word whose presence is required when the format in which the
word appears is used in a source program.

Word, Optional (2) - A reserved word that is included in a specific format only to improve
the readability of the language and whose presence is optional to the user when the format
in which the word appears is used in a source program.

Word, Reserved (1) -· Om~ of a specified list of words which may be used in COBOL source
programs, but which must not appear in the programs as user-defined words.

WORKING-STORAGIE SECTION - (See Section, Working-St1orage)

A-14

B. EBCDIC COLLATllNG SEQUENCE

The EBCDIC collating sequence in ascending order is as follows.

Character Meaning

Space

Period or decimal point

< Less than symbol

Left parenthesis

+ Plus symbol

$ Currency symbol

* Asterisk

Right parenthesis

Semicolon

Hyphen or minus symbol

I Stroke, virgule, or dash .

Comma

> Greater than symbol

Equal sign

" Quotation mark

A through Z Alphabeit

0 through 9 Numerals

B-'I

C. MRX COBOL RESERVED WORDS

ACCEPT
ACCESS
ACTUAL
ADD
ADDRESS
ADVANCING
AFTER
ALL
ALPHABETIC
ALTER
ALTERNATE
AND
ARE
AREA
AREAS
ASCENDING
ASSIGN
AT
AUTHOR

BEFORE
BEGINNING
BINARY
BLANK
BLOCK
BY

CALL
CF
CH
CHARACTERS
CLOCK-UNITS
CLOSE
COBOL
CODE
COLUMN
COMMA
COMP
COMP-1
COMP-2
COMP-3
COMPUTATIONAL
COM PUT ATIONAL-1
COM PUT A TIONAL-2
COMPUTATIONAL-3

C-1

COMPUTE
CONFIGURATION
CONSOLE
CONTAINS
CONTROL
CONTROLS
COPY
CORR
CORRESPONDING
CURRENCY

DATA
DATE-COMPILED
DATE-WRITTEN
DE
DECIMAL-POINT
DECLARATIVES
DELETE
DEPENDING
DESCENDING
DETAIL
DEVICE
DISPLAY
DIVIDE
DIVISION
DOWN

EDITION
ELSE
END
EN D-COMPI LAT ION
END-PROGRAM
ENDING
ENTER
ENVIRONMENT
EQUAL
ERROR
EVERY
EXAMINE
EXIT

FD
FILE
Fl LE-CONTROL
FILE-LIMIT

Fl LE-LIMITS
FILLER
FINAL
FIRST
FOOTING
FOR
FORWARD
FROM

GENERATE
GIVING
GO
GREATER
GROUP

HEADING
HIGH-VALUE
HIGH-VALUES

1-0
1-0 CONTROL
ID
mENTIFICATION
IF
IN
INDEX
INDEX-BLOCK
INDEXED
INDICATE
INITIATE
INPUT
INPUT-OUTPUT
INSTALLATION
INTO
INVALID
IS

JUST
JUSTIFIED

KEY
KEYS

LABEL
LAST
LEADING
LEFT
LESS
LIMIT
LIMITS

C-2

LINE
LINE-COUNTER
LINES
LINKAGE
LOCK
LOW-VALUE
LOW-VALUES

MEMORY
MODE
MODIFICATION-CODE
MODULES
MOVE
MULTIPLE
MULTIPLY

NEGATIVE
NEXT
NO
NOT
NOTE
NUMBER
NUMERIC

OBJECT-COMPUTER
OCCURS
OF
OFF
OMITTED
ON
OPEN
OPTIONAL
OR
OUTPUT

PACKED
PAGE
PAGE-COUNTER
PERFORM
PF
PH
PIC
PICTUBE
PLUS
POSITION
POSITIVE
PROCEDURE
PROCEED
PROCESSING

PROGRAM SET
PROGRAM-ID SIGN
PURGE SIZE

SORT
QUOTE SOURCE
QUOTES SOU ACE-COMPUTER

SPACE
RANDOM SPACES
RD SPECIAL-NAM ES
READ STANDARD

RECORD START

RECORDS STATUS

REDEFINES STOP

REEL SUBTRACT

RELEASE SUM

REMARKS SYNC

RENAMES SYNCHRONIZED

REPLACING SYSIN

REPORT SYSOUT

REPORTING

REPORTS TALLY
RERUN TALLYING
RESERVE TAPE
RESET TERMINATE

RETENTION-CYCLE THAN
R ETE NTI ON-PER I 0 D THROUGH
RETURN THAU
REVERSED TIMES

REWIND TO
REWRITE TYPE

RF
RH UNIT

RIGHT UNTIL

ROUNDED UP
RUN UPON

USAGE

SAME USE

SD USING
SEARCH
SECTION VALUE
SECURITY VALUES
SEEK VARYING
SEGMENT-LIMIT
SELECT WHEN
SENTENCE WITH
SEQUENTIAL

C-3

WORDS
WORKING-STORAGE
WRITE

C-4

ZERO
ZEROES
ZEROS

Da ANS STANDARD CONTROL CH-ARACTERS

The control character is passed as the first character of the data record. This character
defines the operation on thE~ carriage control tape channel of a printer or the stacker select
on a punch. Following is a list of characters and the corresponding operation:

Character Operation

(blank) Space one line before printing

0 Space two lines before printing

Space three lines before printing

+ Suppress space before printing

1 Skip to channel 1 before printing

2 Skip to channel 2 before printing

3 Skip to channel 3 before printing

4 Skip to channel 4 before printing

5 Skip to channel 5 before printing

6 Skip to channel 6 before printing

7 Skip to channel 7 before printing

8 Skip to channel 8 before printing

9 Skip to channel 9 before printing

A Skip to channel 10 before printing

B Skip to channel 11 before printing

c Skip to channel 12 before printing

v Select stacker 1

w Select stacker 2

D-1

E. RECORDING MODES

The recording mode is determined by the compiler through a scan of each record
description and is not a specification by the user. A discussion of recording mode is
provided to give a clearer understanding of the file structure. The recording mode may be F
(fixed), V (variable), P (packed), or S (segmented).

RECORDING MODE F

All of the records in a file are the same length and each is wholly contained in one block.
Blocks may contain more than one record, and there is a fixed number of records per block.

RECORDING MODE V

The records are variable in length, and each record is wholly contained in one block. Blocks
may contain more than one record and the blocks are variable in length (variable length
records on tape).

RECORDING MODE P

The records are variable length and each record is wholly contained within a block. The
block which has a fixed length, contains a variable number of records. The records are
packed back to back from the beginning of the block (variable length records on disc).

RECORDING MODES

The records are variable length and each record is wholly contained within the block. The
block which has a fixed length, is divided in equal size segments. Each segment is the size of
the ~argest record. The block contains one variable length record in each of its segments.

STANDARD SEQUENTIAL FILES

For standard sequential files, the compiler determines the recording mode for a given file to
be:

F If all the records are defined as being the same size.

V If the records are defined variable in size and the file is a tape file.

P If the records are defined as variable in size and the file a mass
storage file.

RELATIVE Fl LES

For relative files, th1e compiler determines the recordling mode for a given file to be:

F If all the records are defined as being the same size.

S If the rec:ords are defined as variable in size.

Files assigned to unit record devices, and files with indexed organization will be recordod in
F mode only.

E-2

F. FILE PROCESSING SUMMARY

In COBOL, all aspects of the total data processing problem that depend on the physical
characteristics of a specific computer are given in one portion of the source program known
as the Environment Division. Thus, a change in computers entails major changes in this
division only.· The primary functions of the Environment Division are to describe the
computer system on which the object program is run and to establish the necessary links
between the other divisions of the source program and the characteristics of the computer.

The exact contents of the Environment Division depends on the method used to process
files in the COBOL program. Before the language elements used in the Environment Division
can be discussed meaningfully, some background in the file processing techniques available
to the COBOL user must be given. (A detailed discussion of file processing appears in the
MRX/OS Control Program and Data Management Services, Extended Reference manual.)

Each combination of data organization and access method specified in the COBOL language
is defined as a file-processing technique. The file-processing technique to be used for a
particular file is determined by the data organization of that file and whether the access
method is sequential or random.

DATA ORGANIZATION

Three types of data organization are available to the M RX COBOL user: sequential, relative,

and ii!!ilillll~lli

The means of creating or retrieving logical records in a file depends on the type of
organization used. Each type of data organization is incompatible with the others.
Organization of an input file must be the same as the organization of the file when it was
created.

Files organized sequentially may contain variable length records.

Files with a relative organization may functionally contain variable length records; the
physical allocation however, is fixed length and based on the largest record specified.

SEQUENTIAL DATA ORGANIZATION

When sequential data organijzation is used, the logical records in a file are positioned in an
established sequence. The sequence is established as a result of writing the records to the

F-'1

file. Sequential data organization must be used for tape and unit record files and maiy be
used for mass storage files. No key is associated witlh records in a sequentially organized file.

RELATIVE DATA ORGA~llZATION

Relative data organization is characterized by the use of the relative addressing scheme.
When this scheme ns us1ed, the position of the logical records in a file is determined relative
to the first record of th«~ file starting with the initial value of 1.

The relative record address is transformed into a direct block address and a relative pos:ition
within the block. An ACTUAL KEY containing thE! value of the record number requested Is
used to identify randomly accessed records. Files with relative data organization must be
assigned to mass storage! devices.

ACCESS METHODS

Two access methods are available to users of M RX COBOL: sequential access and random
access.

Sequential access i~; the method of reading and writing records of a file in a serial manner;
the order of reference is implicitly determined by the position of a record in the file.

Random access is the oiethod of reading and writing records in a programmer-speGified
manner; the control of successive references to the file is expressed by specifically defined
keys supplied by the us1~r.

ACCESSING A SEQUENTllAL FILE

A standard sequential file may be accessed only sequentially, that is, records are read or
written in order.

F-2

ACCESSING A RELATIVE FILE

A relative file may be accessed either sequentially or randomly. Records may be created,
retrieved, or added sequentially or randomly.

SEQUENTIAL ACCESS

The ACTUAL KEY clause is not required when a relative file is accessed sequentially.

When a relative file is created sequentially, the records are written in order, that is, the
creation process corresponds exactly to the creation of a sequential file.

When a relative file is being read sequentially, the records are made available in the physical
order of the record positions, position 1 through position of last record allocated. All
records, including records existing from a previously created file, as a result of a random
creation process, are made available.

There is no explicit way of updating a record in a relative file. When a relative file is accessed
sequentially, a READ followed by a WRITE is considered an update; the record-position
used for the WRITE is the same as the record-position used for the READ. Subsequent
WRITE statements will write records into consecutive record positions.

RANDOM ACCESS

When accessing a relative file randomly, the ACTUAL KEY clause is required. The system
uses the ACTUAL KEY to determine the relative position of the record to be accessed.

When a relative file is created randomly, records are written into positions specified by the
ACTUAL KEY.

To retrieve, or write a record randomly, the ACTUAL KEY must contain the position of the
record relative to the beginning of the file. The first position in the file has a value of one.

Since dummy records are not provided by the system, no distinction can be made between
the update and the write process. Only the write process exists. (Writing a record may be
considered an update if the record is written into a position containing a previously written
record, or a user-supplied dummy record.)

F-4

Bulletin: 2202.002-0001
Date: 3/19/73

G. INDEX - BLOCK SIZE FOR INDEXED FILES

CALCULATING BY TABLE

The minimum and optimum index block size may be calculated by Tables G-1 through G-4.
Refer to the M RX/qs Control Program and Data Management Services, Extended
Reference manual for the layouts of the index portion of indexed files.

MINIMUM INDEX BLOCK

There is a minimum index block size for every indexed file depending on key size and file
size. The user may utilize any index block size larger than the minimum, if he has memory
space for a larger index block. The larger the index block the better retrieval becomes on
random processing. If the user goes below the minimum index block size there is the
possibility of not being able to create the file size as planned.

OPTIMUM INDEX BLOCK

When planning the creation of indexed files, the user must decide whether he wants to
process the directory-directory, which resides on mass storage, in a main memory buffer.
This option speeds up random processing, but requires extra space for the buffer. If the
mode of processing is with a main-memory buffer there is well-defined optimum index
block size which minimizes memory space for the index buffer and directory-directory
buffer.

Once the user has determined his mode of processing, Table G-1 is used to determine
minimum-keys/block and Table G-2 is used to determine optimum keys/block. Note that in
using Table G-1 and Table G-2, the larger of the two values in the file size is the determining
factor. Also note that these tables were computed for consistency for maximum key size
and one million records as the upper limit. There will be some index block sizes generated
that exceed one track in number of bytes. This exceeds the system limit for block sizes. The
user will have to choose a smaller key size or smaller file size.

PROGRAMMING CONSIDERATIONS

The keys/block is entered in the Control Language //DEFINE statement along with key size.
The corresponding minimum or optimum index block size can be calculated from Table
G~3. The resulting index bl~ock size is then entered in the COBOL source program via the
INDEX-BLOCK Clause.

If the user has determined to calculate the optimum keys/block and optimum index block
size, Table G-4 is used to ca~culate the number of bytes for the main-memory buffer for the
directory-directory entries.

G-'I

Bulletin: 2202.002-0001
Date: 3/19/73

The user must be careful not to exceed the file ma>eimum at creation time when using the
optimum block soze - when he utilizes thei main··memory buffer to hold the
directory-directory entries for random processing, the buffer would not be able to hold all
the entries, thus writinu over the user program. Thus, when choosing an index block size
other than the optimum and the main-memory buffer is used to process the
directory-directory entries, the buffer size should be the size of the index block, as the
system checks for overfk>w at creation ti me.

EXAMPLES

The following examples illustrate how to calculate the minimum index block size, the larger
than minimum inde:>< blc•ck size, and the optimum i111dex block size.

MINIMUM INDEX BLOCK :SIZE

The minimum index block size can be calculated with the following steps.

1. In Table F-1 locate the number of records in the file and the key
size. For example, if the number 01f records is 20,000 and the key
size is 10, the minimum k1eys per blo1ck is 24.

2. The keys/block is entered in the Contrnl Language //DEFINE
statemenit along with the key size.

3. The corresponding minimum inde>c block size is calculated from
Tab~e F-3 using the minimum block size formula. For this example
with minimum keys/block of 24 and key size of 10; the minimum
index block size is 384 bytes.

4. The minimum index block size i~s then entered into the source
program.

LARGER THAN MINIMUM INDEX BLOCK SIZE

Similar to the minimum index block size, an inde>c block that is larger than the minimum
may be calculated with the same steps. The difference is found in estimating the keys/block:
it must be greater than or equal to the minimum keys/block selected.

OPTIMUM INDEX BLOCK SIZE

The optimum index block size can be calculated with the following steps.

1. In Tablu F-2 locate the number of records in the file and the key
size. For example, if the number of records is 20,000 and the key
size is 10, the optimum keys per block is 30.

G-2

Bulletin: 2202.002-0001
Date: 3/19/73

2. The keys/b~ock is entered in the Control Language //DEFINE
statement along with the key size.

3. The corresponding optimum index block size is calculated from
Table F-3 using the optimum block size formula. For this example
with optimum keys/block of 30 and key size of 30, the optimum
index block :size is 475 bytes.

4. The optimum index block size is then entered into the source
program.

5. For optimum keys/block and optimum index block size, Table F-4 is
used to calculate the main-storage buffer for the directory to the
directory enll:ries. For this example, the number of bytes required for
the buffer for the directory to the directory is 250.

Table G-1. Minimum Keys/Block

Key Size in Bytes
11 16 21 26

Records in File to to to to
2 3 4 5 6 7 8 9 10 15 20 25 35

i--·

0-5,000 13 14 14 14 15 15 15 15 15 16 16 16 16

5,000 ·· 10,000 16 17 18 18 18 '19 19 19 19 20 20 20 21

10,000 - 15,000 19 20 20 21 21 21 22 22 22 23 23 23 23

15,000 - 20,000 20 21 22 23 23 23 24 24 24 25 25 26 26

20,000 - 25,000 . 22 23 24 24 25 25 25 26 26 27 27 27 28

25,000 - 30,000 23 24 25 26 26 27 27 27 28 28 29 29 29

30,000 - 35,000 25 26 27 . 27 28 28 28 29 29 30 30 31 31

35,000 - 40,000 26 27 28 28 29 29 30 30 30 31 32 32 32

40,000 - 45,000 27 28 29 30 30 :n 31 31 31 32 33 33 34

45,000 - 50,000 28 29 30 31 31 32 32 32 33 34 34 34 35

50,000 - 60,000 29 31 32 32 33 :w 34 34 35 36 36 37 37

60,000 - 70,000 31 32 34 34 35 =~5 36 36 36 37 38 38 39

70,000 - 80,000 32 34 35 36 36 :n 37 38 38 39 40 40 41

80,000 - 90,000 34 35 36 37 38 38 39 39 40 41 41 42 42

90,000 - 100,000 35 36 37 38 39 40 40 41 41 42 43 43 44

100,000 - 125,000 37 39 40 41 42 43 43 44 44 45 46 47 47

125,000 . 150,000 40 41 43 44 45 45 46 46 47 48 49 49 50

150,000 - 175,000 42 44' 45 46 47 48 48 49 49 50 51 52 53

175,000 - 200,000 44 46 47 48 49 £>0 50 51 51 53 54 54 55

200,000- 250,000 47 49 51 52 53 54 54 55 55 57 58 58 59

250,000 - 300,000 50 52 54 55 56 £>7 58 58 59 61 61 62 63

300,000 - 350,000 52 55 57 58 59 Em 61 62 62 64 65 65 66

350,000. 400,000 55 57 59 61 62 63 63 64 65 67 68 68 69

400,000 . 450,000 57 60 62 63 64 65 66 67 67 69 70 71 72

450,000 . 500,000 59 62 64 65 67 f,S 68 69 70 72 73 74 74

500,000 - 600,000 63 66 68 69 71 72 73 73 74 76 77 78 79

600,000. 700,000 66 69 71 73 74 75 76 77 78 80 81 82 83

700,000 . 800,000 69 72 74 76 78 79 80 81 81 84 85 86 87

800,000 · 900,QOO 72 75 77 79 81 82 83 84 85 87 88 89 91

900,000 - 1,000,000 74 78 80 82 84 85 86 87 88 90 92 93 94

G-2a

36
to
50

17

21

24

26

28

30

31

33

34

35

37

39

41

43

44

48

51

53

56

60

64

67

70

73

75

80

84

88

91

95

---i
51
to
100

17

21

24

26

28

30

32

33

34

36

38

40

42

43

45

48

51

54

56

61

64

68

71

74

76

8'1

85

89

93

96

Recor ds in File

0 0. 5,00

5,000-

'IO,OOO

15,000

20,000

25,000

30,000

35,000

40,000

45,000

50,000

60,000

70,000

80,000

90,000

rno,ooo
'125,00

150,000

175,000

200,000

250,000

300,000

350,000

400i000

450,00(

500,000

f>00,000

700,000

800,00<

900,000

10,000

-15,000

- 20,000

. 25,000

. 30,000

. 35,000

-40,000

-45,000

-50,000

-60,000

- 70,000

. 80,000

-90,000

. 100,000

. 125,000

0 -150,000

- 175,000

- 200,000

- 250;000

. 300,000

. 350,000

. 400,000

. 450,000

) ~ 500,000

. 600,000

. 700,000

. 800,000

) - 900,000

-1,000,000

2 3

16 17

20 21

23 24

26 27

28 29

29 31

31 32

32 34

34 35

35 36

37 39

39 41

40 42

42 44

44 46

47 49

50 52

62 55

55 57

59 62

63 66

66 69

69 72

72. 75

74 78

79 82

83 87

87 91

90 94

93 98

Table G-2. Optimum Keys/Block

Key Size in Bytes

4 5 6 7 8 9 10

18 18 18 '19 19 19 19

22 23 23 :23 24 24 24

25 26 26 :27 27 27 27

28 28 29 :29 29 30 30

30 31 31 :32 32 32 33

32 32 33 :34 34 34 35

33 34 35 :35 ~6 36 37

35 36 36 :37 37 38 38

36 37 38 38 39 39 40

37 38 39 40 40 41 41

40 41 . 42 42 ·43 43 43

42 43 44 44 45 45 46

44 45 46 46 47 47 48

45 47 47 48 49 49 50

4.7 48 . 49 so 50 51 51

51 52 53 54 54 55 55

54 55 56 !57 58 58 59

57 58 59 60 61 61 62

59 61 62 63 63 64 65

64 65 67 138 68 69 70

68 69 71 n 73 73 74

71 73 74 ".75 .'76 77 78

74 76 78 ".79 80 81 81

77 79 81; 82 83 84, 85

80 82 84 85. 86 . 87. 88 ·,

84 87 89 ·90. 91· '. 92 9;3·

90 92 94 95 96 9,7 98

94 96 98 99 100 102 102

97 100 102 103 105 106 106

101 103 105 107 108 109 110 -

11 16
to to
15 20

20 20

25 25

28 29

31 32

34 34

36 36

~7 38

39 4Q

41 41

42 43

45 45

47 48

49 50

51 52
. 53 54

57 58

61 ' 61

64 65

67 68

72 73

76 77

80. 81

84 85

87 88
~go 92

96. 97

101 102

105 107

. 110 111

113 115

Bulletin: 2202.002-0001
Date: 3/19/73

--
21 26 36 51
to to to to
25 35 50 100

20 21 21 21

25 26 26 26

29 29 30 30

32 32 33 33

34 35 35 36

37 37 37 38

38 39 39 40

40 41 41 42

42 42 43 43

43 44 44 45

46 46 47 48

48 49 49 50

50 51 52 52

52 53 54 54

54 55 56 56

58 59 60 61

62 63 64 64

65 66 67 68

68 69 70 71

74 74 75 76

78 79 80 81

82 83 84 85

86 87 88 89

89 91 91 93

93 94 95 96

98 100 1'01 102

103 105 106 107

108 110 111 112

112 114 115' 116

116 118 120 121

Bulletin: 2202.002-0001
Date: 3/19/73

Table G-3. Optimum or Minimum index Block Size

Optimum block size = 10 + { (lO) (O~B) (KS+4) }

OKB • Optimum keys/block

KS • Key size

Minimum block size = 10 + { (lO) (MK~ (K5+4) l
MKB .. Minimum keys/block

KS • Key size

NOTE: { I • Roond up if result not whole integer.

l'able G-4. Byt81 Required In Buffer for Directory-Directory Entries

Numbtn keys/primary index block -[US J • NKP
KS+4

Numbtn keys/directory block ·[K~+S2}· NKD

·rotal number keys represented/
directury block = (NKP) (NKO) • NKRD

Numbtn entries in ·{!.!!.u!!!}- Nl<'DD
Direct1ory-directory block NKRD '

Numbfn of bytes required for
buffer for directory-directory • 10 + (KS+2) (NKOO)
on tries

NOTE: {I· Round up If result not whole integer.

[]· Round down if result not whcile integer.

G-4

CALCULATING BY FORMULA

Bulletin: 2202.002-0001
Date: 3/19/73

If the user wishes to calculate keys/block based on a different file maximum than given in
Tables G-1 and G-2, the following algorithms, .along with Table G-5, can be used to compute
minimum and optimum keys/block. The constants Ko and Km are taken from Table G-5
based on key size.

--{" 3 IFSKso } Optimum (OKB) "-J Ko

Minimum (MKB) ={~}

FS = Maximum File Size

NOTE: {} = Round up if result not whole integer.

G-!>

Table G-6. Constants for Alternate Algorithn'

KS Ko Km KS Ko Km

2 1.2500 2.600() 52 .5975 1.1950

3 1.0888 2.1776 53 .5967 1.1934

4 .9877 1.9753 54 .5959 1.1918

5 .9184 1.8367 55 .5962 1.1904

6 .8681 1.7361 !56 .5945 1.1890

7 .8299 1.6598 57 .5939 1.1878

8 .8000 1.6000 58 .5932 1.1864

9 .7759 1.5518 59 .5926 1.1852

10 .7562 1.5124 60 .5920 1.1840

11 .7396 1.4792 61 .5914 1.1828

12 .7256 1.4512 62 .5908 1.1818

13 .7136 1.4272 63 .5903 1.1806

14 .7031 1.4062 64 .5897 1.1794

15 .694() 1.3880 65 .5892 1.1784

16 .6859 1.3718 66 .5887 1.1774

17 .6787 1.3574 67 .5882 1.1764

18 .6722 1.3444 68 .5878 1.1756

19 .6664 1.3328 69· .5873 1.1746

20 .6612 1.3224 70 .5868 1.1736

21 .6564 1.3128 71 .5864 1.1728

22 .6520 1.3040 72 .5860 1.1720

23 .6480 1.2960 73 .5856 1.1712

24 .6443 1.2886 74 .5852 1.1704

25 .6409 1.2818 7E't .5848 1.1696

26 .6378 1.2756 76 .5844 1.1688

27 .6348 1.2696 77 .5840 1.1680

28 .6321 1.2642 78 .5837 1.1674

29 .6296 1.2592 7EI .5833 1.1666

30 .6272 1.2544 80 .5830 1.1660

31 .6249 1.2498 81. .5827 1.1654

32 .6228 1.2456 82 .5823 1.1646

33 .6209 1.2418 8.:1 .5820 1.1640

34 .6190 1.2380 84 .5817 1.1634

35 .6172 1.2344 85 .5814 1.1628

36 .6156 1.2312 86 .5811 1.1622

37 .6140 1.2280 87 .5808 1.1616

38 .6125 1.2250 0a .5805 1.1610

39 .6111 1.2222 8!~ .5802 1.1604

40 .6097 1.2194 90 .5800 1.1600

41 .6084 1.2168 9'1 .5797 1.1594

42 .6072 1.2144 9:l .5794 1.1588

43 .6060 1.2120 93 .5792 1.1584

44 .6049 1.2098 94 .5789 1.1578

45 .6038 1.2076 95 .5787 1.1574

46 .6028 1.2056 96 .5785 1.1570

47 .6018 1.2036 9·7 .5782 1.1564

48 ',6009 1.2018 98 .5780 1.1560

49 .6000 1.2000 99 .5778 1.1656

50 .5991 1.1982 10IO .5776 1.1552

51 .5983 1.1966
i.---

G-6

H. COBOL ERROR MESSAGES

The COBOL compiler issues two types of error messages. They are source error diagnostic
messages that are printed at the end of the COBOL compilation listing and object time error
messages that are listed on the SYSOUT file.

COBOL SOURCE LISTING ERROR MESSAGES

The COBOL source error messages are printed at the end of the compilation section o·f the
COBOL listing. These messages are of two types: COBOL compiler errors, and errors made ·
by the COBOL programmer. In the event that a COBOL compiler error occurs, contact a
systems engineer.

COBOL COMPILER ERRORS

Only three diagnostic messages are issued by the compiler to warn the user of errors within
the COBOL compiler. These messages are listed below.

ERROR CODE

CBOX001

CBOX002

CBOX003

MESSAGE TEXT

ERROR IN INPUT RECORD (CHECK PHASE AND
ERROR NBRS).

MESSAGE IS NOT AVAILABLE FOR THIS PASS
OR PHASE.

***COMPILER ERROR: CODE=ppnn ***

where:

pp is a one or two digit pass number

nn specifies the compiler error condition
within the pass

These codes do not appear in this manual. They are for MRX
internal use only.

H-il

Bulletin: 2202.002-0001
Date: 3/19/73

-COBOL PROGRAMMING E:RRORS

COBOL programming t!rrors are printed at the Eind of the COBOL source listing. The
messages have the following format:

LINE
NUMBER

nnnn

where:

nnnn

t

aappnnn

aaa ... a

ER HOR
TYPE

t

ERROR
CODE

aappnnn

text . . text {
global insert }
predeterm 1 ned 1 nsert

ClAUSE
NAME

aaaaaaaa ... a

MESSAGE TEXT

{
global insert } t t

text predetermined insert ex

is a 4-digit decimal number specifying the
line in the source listing where the error
occurred. For //PAft statements, nnnn is
the number of the //PAR statement in the
SYSOUT file ..

is variously W, F, or U designating the type
of error as warning, fatal, or USASI.

is a 7-charactt!r error code where aa is always
CB specifying the COBOL compiler as the
source of the error, pp is variously 01 through
09 specifying the pass within the compiler,
and nnn is a ~'·digit decimal number specifying
the error within the pass.

is a clause name of 1 to 14 alphanumeric
characters speicifying the clause in error. Not
all messages are preceded by a clause entry.

is the text of the message. Some messages
have words or phrases inserted in them at
the time the eirror occurs. The inserted text
is preceded and followed by a single asterisk.
In messages having global variable inserts, a
series of blank spaces preceded and followed
by an asterisk is shown in the list of messages.
In messages having specific, predetermined
variables, the variables are listed one below
the other and are preceded and followed by
braces.

H-2

Bulletin: 2202.002-0001
Date: 3/19/73

LINE ER ROA EAAOA CLAUSE
NUMBER TYPE CODE NAME MESSAGE TEXT

nnnn F CB01001 FORMAT ERROR --CONTINUATION
CANNOT START PRIOR TO B MARGIN~

nnnn F CB01002 CONTINUATION NOT VALID --CON-
TINUATION IGNORED.

nnnn F CB01003 DELIMITER NOT FOLLOWED BY SPACE-· I SPACE ASSUMED.

nnnn F CB01004 INCORRECT SUBSCRIPT.

Left parenthesis must be followed either by
a data-name or a numeric literal.

nnnn F CB01005 ILLEGAL ELEMENT.

An illegal element is any combination of
characters that is not legal in COBOL.

nnnn u CB01006 ';'NOT IMPLEMENTED IN THIS LEVEL
OF COMPI LEA.

nnnn F CB01007 NON-COBOL CHARACTER NOT WITHIN
QUOTES -- ELEMENT DROPPED.

nnnn F CB01008 OPENING QUOTES NOT PRECEDED BY A
SPACE -- PREVIOUS ELEMENT DROPPED.

nnnn F CB01009 DELIMITER MISSING.

A delimiter, such as a comma, is missing in a
subscript. Or the delimiting apostrophe of an
alphanumeric literal is missing.

nnnn F CB01010 NONINTEGER NUMERIC LITERAL USED
AS INDEX.

A numeric literal used as a subscript must be
an unsigned integer.

nnnn F CB01011 END COMPILE CARD MISSING.

nnnn F CB01012 DUPLICATE LEFT PARENTHESIS --
SECOND ONE DROPPED.

nnnn u CB01013 BLANK CANNOT FOLLOW LEFT
PARENTHESIS.

nnnn F CB01014 ALPHA LITERAL EXCEEDS 120 -- EXCESS
IS TRUNCATED.

nnnn F CB01015 ALPHA LITERAL NOT TERMINATED
CORRECTLY.

nnnn F CB01016 ALPHA LITERAL WITH NO DATA.

nnnn F CB01017 NUMERIC LITERAL EXCEEDS 18 DIGITS.

Bulletin: 2202.002-0001
Date: 3/19/73

LINE ERROR ERROR
NUMBER TYPE CODE

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

F

F

F

u

w

F

w

u

F

F

F

F

F

F

F

F

u

u

CB01018

CB01i019

CB01020

CB01021

CB01022

CB01023

GB01024

CB01025

CB01026

CB01027

CB01028

CB01029

CB01030

CB01031

CB01032

CB01033

CB01034

CB01035

CLAUSE
NAME

H-4

MESSAGE TEXT

PROGRAMMER-ASSIGNED WORD EXCEEDS
:JO CHABACTERS.

*IS ILLEGAL IN THIS DIVISION.

* *IS RESERVED FOR A HIGHER LEVEL
COMPILER.

TERMll\IATING PERIOD MISSING ON LAST
CARD.

//PAR ERROR -- INVALID DELIMITER IN
COLUMN* *
nnnn is the //PAR statement in the SYSOUT file.

//PAR ERROR -- UNDEFINED KEYWOFtD
IN COLUMN* *
nnnn is the //PAR statement in the SYSOUT file.

//PAR ERROR -- R MARGIN MUST BE
BETWEEN 41-120, COLUMN* *
nnnn is the //PAR statement in the SYSOUT file.

BLANK CANNOT PRECEDE A RIGHT
PARENTHESIS.

FORMAT ERROR -- EXPECT DATA IN
MARGIN B.

EXPECTING IDENTIFICATION DIVISION --
FOUND * *

EXPECTING KEYWORD -- FOUND* *

IDENTIFICATION DIVISION MISSING OR
OUT OF SEQ.

DIVISION HEADER DUPLICATE OR OUT
OF SEQ.

'ENVIRONMENT DIVISION.' HEADE I~
MISSING OR OUT OF SEQ -- ASSUMED TO
EXIST HERE.

KEYWORD EXPECTED IN MARGIN A.

DIVISION HEADERS MUST END WITH
'DIVISION.'.

PARAGRAPH HEADER MUST BE IM­
MEDIATELY TERMINATED BY A PERIOD.

PARAGRAPH HEADER DUPLICATE OR
OUT OF SEQ.

LINE ERROR
NUMBER TYPE

nnnn F

ERROR
CODE

CB01036

CLAUSE
NAME

H-4a

Bulletin: 2202.002-0001
Date: 3/19/73

MESSAGE TEXT

INVALID PROGRAM-ID.

The PROGRAM-ID does not adhere to the
rules for PROGRAM-I D's.

LINE ERROR ERROR CLAUSE
NUMBER TYPE CODE NAME MESSAGE TEXT

nnnn F CB01040 OPENING QUOTE MISSING --ASSUMED TO
EXIST.

nnnn F CB01041 'PROCEDURE DIVISION.' HEADER
MISSING OR OUT OF SEQ -- ASSUMED
TO EXIST HERE.

nnnn F CB01042 ALL SECTION HEADERS MUST END WITH
'SECTION.'.

nnnn F CB01043 PICTURE STRING MISSING.

nnnn F CB01044 'DATA DIVISION.' HEADER MISSING OR
CB01045 OUT OF SEQ --ASSUMED TO EXIST HERE.

nnnn F CB01045 PICTURE STRING EXCEEDS 30
CHARACTERS.

nnnn F CB01046 PROGRAM-ID INVALID OR MISSING.

The PROGRAM-ID is either missing or has
previously been determined invalid by
message CB01036.

nnnn u CB01048 PUNCTUATION MARKS MUST NOT BE
PRECEDED BY A SPACE.

nnnn F CB01049 * *IS ILLEGAL IN CONTEXT.

nnnn F CB01050 PERIOD MISSING.

nnnn w CB01051 //PAR ERROR -- INVALID NUMERIC,
COLUMN* *

nnnn F CB01052 //PAR ERROR -- INVALID MEMBER
NAME, COLUMN * *

nnnn F CB01053 //PAR ERROR -- MISSING MEMBER
NAME, COLUMN * *

nnnn F CB01054 INVALID NUMERIC LITERAL* *

nnnn u CB02001 HEADERS MUST BEGIN IN AREA A.

nnnn u CB02002 FORMAT ERROR -- ILLEGAL ELEMENT
IN COLUMNS 8-11.

nnnn u CB02004 COMMA NOT ALLOWED AS PUNCTUATION
THIS LEVEL COBOL.

nnnn F CB02006 EXPECTING KEY ELEMENT-- FOUND
* *

nnnn w CB02007 NUGATORY OR MISPLACED TERMINAL
PERIOD.

H-5

LINE ERROR E:RROR CLAUSE
NUMBER TYPE CODE NAME MESSAGE TEXT

nnnn u CB02008 'INPUT-OUTPUT SECTION.' HEADER
MISSING.

nnnn u CB02009 'FILE-CONTROL.' HEADER MISSING.

nnnn u CB02Qi10 'I INPUT-OUTPUT SECTION.' AND 'Fl LE-
CONTROL.' HEADERS MISSING.

nnnn u CB02011 ClAUSE OUT OF ORDER.

nnnn F CB02012 HEADER DUPLICATE OR OUT OF ORDER.

nnnn F CB02013 SELECT CLAUSE MISSING.

nnnn u CB02014 Fl LE-CONTROL ENTRY MISSING.

nnnn F CB02015 ASSIGN CLAUSE MISSING, ILLEGAL, OR
OUT OF ORDER.

nnnn u CB02016 TERMINAL PERIOD MISSING.

rmnn u CB02017 '1-0-CONTROL.' HEADER MISSING.

nnnn F CB02018 'INPUT-OUTPUT SECTION.' AND 'FILE-
CONTROL.' HEADERS AND SELECT
CLAUSE MISSING.

nnnn u CB020'19 'CONFIGURATION SECTION.' HEADEn
MISSING.

nnnn F CB020W INVALID NUMERIC LITERAL -- CHECK
DECIMAL-POINT IS COMMA CLAUSE.

nnnn F CB02021 IMPLEMENTOR NAME OUT OF OR DE Fr --
INOT PROCESSED.

nnnn F cso20:?2 CLAUSE OUT OF ORDER -- CLAUSE
onOPPED.

nnnn u CB02m!3 'SPECIAL-NAMES.' HEADER MISSING.

nnnn u CB02024 'CONFIGURATION SECTION.' HEADER
MISSING --ATTEMPT PROCESSING
SELECT CLAUSE.

nnnn u CB020~!5 CONFIGURATION SECTION ENTRY
MISSING.

nnnn F CB0202'.6 DUPLICATE CLAUSE* *

nnnn F CB0202~8 IMPLEMENTOR NAME ILLEGAL OR
MISSING.

nnnn F CB0203;Q ILLEGAL OR MISPLACED ELEMENT* *

H-6

LINE ERROR ERROR CLAUSE
NUMBER TYPE CODE NAME

nnnn u CB02031

nnnn u CB02032

nnnn u CB02033

nnnn u CB02034

nnnn F CB02035

nnnn F CB02036

nmm F CB02037

nnnn F CB02038

nnnn F CB02039

nnnn F CB02040

nnnn F CB02041

nnnn F CB02042

nnrm u CB02044

nnnn F CB02045

nnnn u CB02046

nnnn u CB02047

nnrm u CB02048

nnnn u CB02049

H-7

Bulletin: 2202.002-0001
Date: 3/19/73

MESSAGE TEXT

'SOURCE-COMPUTER.' HEADER ILLEGAL
OR MISSING.

SOURCE-COMPUTER NAME ILLEGAL OR
MISSING.

'OBJECT-COMPUTER.' HEADER ILLEGAL
OR MISSING.

OBJECT-COMPUTER NAME ILLEGAL OR
MISSING.

INCOMPLETE CLAUSE * *

NUMERIC LITERAL MUST BE AN UN-
SIGNED INTEGER.

DATA NAME CANNOT BE SUBSCRIPTED.

ILLEGAL LENGTH OF CURRENCY-SIGN
LITERAL.

ILLEGAL CHARACTER USED AS
CURRENCY-SIGN LITERAL.

MEMORY SIZE MUST BE UNSIGNED
LITERAL.

SEGMENT-LIMIT MUST BE AN UNSIGNED
INTEGER IN THE RANGE OF 1-49.

PREVIOUS CLAUSE INCOMPLETE.

'CONFIGURATION SECTION.' AND
'INPUT-OUTPUT SECTION.' HEADERS
MISSING.

REQUIRED ELEMENT MISSING -- FOUND
* *

TERMINAL PERIOD MISSING ON PARA-
GRAPH AND/OR SECTION NAME.

FIRST SECTION OF PROCEDURE
DIVISION MISSING -- IS REQUIRED.

LEVEL INDICATOR MUST START IN
COLUMNS 8-11.

TERMINAL PERIOD OF PRECEDING
STATEMENT MISSING.
This error applies to the Environment
Division.

LINE ERROR ERROR CLAUSE
NUMBER TYPE CODE NAME MESSAGE TEXT

nnnn F CB02Cl50 ILLEGAL OR MISSING ELEMENT
PRECEDING* '*'

nnnn u CB02051 'CONFIGURATION SECTION.' AND
'SOURCE-COMPUTER.' HEADERS MISSING.

nnnn u CB02052 'CONFIGURATION SECTION.', 'SOURCE-
COMPUTER.' AND 'OBJECT-COMPUTER.'
HEADERS MISSING.

nnnn u CB02053 'OBJECT-COMPUTER.' AND 'INPUT-
OUTPUT SECTION.' HEADERS MISSll\IG.

onnn u CB02054 'OBJECT-COMPUTER.' AND 'SPECIAL··
NAMES.' HEADERS MISSING.

nnnn F CB02055 ILLEGAL ELEMENT IN STATEMENT;• *

nnnn u CB02056 FORMAT ERROR -- ILLEGAL ELEMENT IN
COLUMNS 8-11.

nnnn u CB02059 REDEFINES CLAUSE MUST BE Fl AST IN
DATA DESCRIPTION.

nnnn F CB02060 ILLEGAL LEVEL NUMBER --TREATED AS
LEVEL 50.

nnnn u CB02061 'FILE SECTION.' HEADER MISSING.

nnnn F CB02062 ILLEGAL CLAUSE * *

nnnn u CB02063 SECTION HEADER MISSING --WORKING-
STORAGE ASSUMED.

nnnn F CB02064 RECORD DESCRIPTION FOR LAST FD
ENTRY MISSING.

nnnn F CB02066 DATA ITEM DESCRIPTION ENTRY NOT
ALLOWED UNDER AN FD-ENTRY.

nnnn F CB02067 LAST FD ENTRY INCOMPLETE.

nnnn F CB02068 FD CLAUSE NOT ALLOWED IN RECORD
DESCRIPTION ENTRY.

nnnn F CB02069 FILE-NAME ILLEGAL OR MISSING.

nnnn F CB02070 FD LEVEL INDICATOR MISSING.

nnnn F CB02071 ILLEGAL LEVEL NUMBER IN RECORD
DESCRIPTION ENTRY.

nnnn F CB02072 LEVEL NUMBER MISSING -- RECORD
DESCRIPTION ENTRY NOT PROC'ESSED.

H-8

LINE ERROR ERROR CLAUSE
NUMBER TYPE CODE NAME MESSAGE TEXT

nnnn F CB02074 FD ENTRY ILLEGAL OUTSIDE FILE
SECTION -- FILE DESCRIPTION NOT
PROCESSED.

nnnn F CB02075 FD CLAUSE MISPLACED -- SKIP TO NEXT
CONTROL.

nnnn F CB02077 LABEL CLAUSE OF FD ENTRY MISSING.

nnnn F CB02078 EXPECTED DATA-NAME -- FOUND* *

nmm F CB02079 'FILE SECTION.' HEADER DUPLICATED --
HEADER IGNORED.

nnrm F CB02080 'FILE SECTION.' HEADER DUPLICATED --
WORKING-STORAGE ASSUMED.

nmm F CB02081 Fl LE SECTION OUT OF ORDER -- MUST
BE FIRST SECTION OF DATA DIVISION.

nnnn F CB02082 FILE SECTION DUPLICATED -- SECTION
IGNORED.

nnnn F CB02084 'WORKING-STORAGE SECTION.' HEADER
DUPLICATED -- HEADER IGNORED.

nnnn F CB02085 WORKING-STORAGE SECTION MUST
PRECEDE LINKAGE SECTION.

nmm F CB02086 WORKING-STORAGE SECTION
DUPLICATED -- SECTION IGNORED.

nnnn F CB02087 'LINKAG!= SECTION.' HEADER
DUPLICATED -- HEADER IGNORED.

nnnn F CB02088 DUPLICATE IMPLEMENTOR NAME* *

nnnn F CB02089 PICTURE STRING ERROR AT CHARACTER
POSITION* *

nnnn F CB02092 THE PICTURE HAS NO DATA LENGTH.

nnnn F CB02093 DATA LENGTH OF A NUMERIC CANNOT
EXCEED 18 DIGITS.

nnnn F CB02094 DATA LENGTH OF AN ALPHA CANNOT
EXCEED 16383 BYTES.

nnnn F CB02095 ELEMENT LENGTH OF EDITED DATA
CANNOT EXCEED 144 BYTES.

nnnn F CB02101 TERMINAL PERIOD AND PARAGRAPH
NAME MISSING.

nnnn F CB02102 NUMERIC PARAGRAPH NAME MUST BE
AN UNSIGNED INTEGER.

H-9

LINE ERROR ERROR
NUMBER TYPE CODE

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

nnnn

F

F

F

F

F

F

F·

F

F

F

F

F

w

F

F

u

F

F

F

F

CB02103

CB02104

CB02105

CB02107

CB02108

CB02109

CB02110

CB02111

CB02112

C:B02'113

CB02'114

CB02'116

C:B03001

CB03002

CB03003

CB03004

CB03005

CB03006

CB03007

CB03008

CLAUSE
NAME

H-10

MESSAGE TEXT

PRIORITY NUMBER MUST BE AN UN­
SIGNED INTEGER LESS THAN 100.

PARAGRAPH NAME MISSING.

EXIT statement is not followed by a
paragraph. EXIT must be only statement in
paragraph.

ILLEGAL ELEMENT IN SUBSCRIPT LIST--
F=OUND * *

INCOMPLETE SUBSCRIPT LIST --
F=OUND * *

NUMERIC LITERAL USED IN SUBSCRIPT
MUST BE AN UNSIGNED INTEGER.

TOO MANY SUBSCRIPT ELEMENTS.

ILLEGAL ARITHMETIC OPERATOR IN
SUBSCRIPT* *

FUGHT PAREN MISSING ON SUBSCRIPT.

IF STATEMENT MUST BE FOLLOWED BY
.l\N ELSE STATEMENT OR A TERMINAL
PERIOD.

ELSE STATEMENT DOES NOT HAVE A
CORRESPONDING IF.

ILLEGAL USE OF NESTED IF STATEMENT.

PRIORITY-NUMBER MUST NOT EXCEED
2 DIGITS.

* *IN DATA RECORDS CLAUSE NOT
DEFINED AT LEVEL 01.

Fl LE-NAME* *REFERENCED AS
DATA-NAME.

INVALID SYSTEM-NAME * *

FILE-NAME* *REFERENCED AS
PROCEDURE-NAME.

Fl LE-NAME * * REFERENCED AS
MNEMONIC-NAME.

NUMERIC LITERAL * *TOO SMALL.

NUMERIC LITERAL* *TOO LARGE.

LITERAL* *MUST BE AN UNSIGNED
INTEGER.

LINE ERR.OR ERROR CLAUSE
NUMBER TYPE CODE NAME MESSAGE TEXT

nnnn F CB03009 MISSING NUMERIC LITERAL.

nnnn w CB03010 DUPLICATE DATA-RECORD NAME* *

nnnn F CB03011 INDEX-NAME CANNOT BE SUBSCRIPTED --
SUBSCRIPT DROPPED.

nnnn F CB03012 DATA-NAME* *REFERENCED AS
FILE-NAME.

nnnn F CB03013 INDEXING CANNOT BE MIXED WITH
SUBSCRIPTING.

nnnn F CB03014 ILLEGAL RELATIVE SUBSCRIPT.

nnnn F CB03015 MORE THAN 255 INDEXES DEFINED.

nnnn u CB03016 DATA-NAME* *REFERENCED AS
PROCEDURE-NAME.

nnnn F CB03017 DATA-NAME* *REFERENCED AS
MNEMONIC-NAME.

nnnn F CB03018 INDEX-NAME * *REFERENCED AS
FILE-NAME.

nnnn u CB03019 INDEX-NAME * *REFERENCED AS
PROCEDURE-NAME.

nnnn F CB03020 INDEX-NAME * *REFERENCED AS
MNEMONIC-NAME.

nnnn F CB03021 MNEMONIC-NAME* *REFERENCED
AS FILE-NAME.

nnnn F CB03022 MNEMONIC-NAME* *REFERENCED
AS DATA-NAME.

nnnn u CB03023 MNEMONIC-NAME * *REFERENCED
AS PROCEDURE-NAME.

nnnn F CB03024 REFERENCE TO UNDEFINED FILE-
NAME* *

nnnn F CB03025 REFERENCE TO UNDEFINED DATA-
NAME* *

nnn111 F CB03026 REFERENCE TO UNDEFINED
MNEMONIC-NAME * *

nnnn F CB03027 MULTIPLE DEFINITION OF* *
FIRST DEFINITION USED.

nnnn F CB03028 INDEX-NAME * *NOT A VALID
Fl RST SUBSCRIPT.

H-11

LINE ERROR ERROR CLAUSE
NUMBER TYPE CODE NAME MESSAGE TEXT

nnnn F CBQ3.Q29 liNDEX NAME* *NOT A VALID
SECOND SUBSCRIPT.

nnnn F CB03:030 INDEX-NAME * *NOT A VALID THIRD
SUBSCRIPT.

nnnn F CB03t031 !INDEX-NAME * *REFERENCED AS
DATA-NAME.

nnnn F CB031032 IDATA-NAME * *ALSO REFERENCED
AS PROCEDURE.

nnnn u CB031033 !INDEX-NAME * *ALSO DEFINED .AS
!PROCEDURE.

nnnn u CB03034 MNEMONIC-NAME* *ALSO DEFINED
.AS PROCEDURE.

nnnn u CBO~I035 FILE-NAME* *ALSO DEFINED AS
!PROCEDURE.

nnnn F CB0~~001 RELATIVE ORGANIZATION I LLEGA.L
'WITH * { UNIT RECORD DEVICE. } *

MAGNETIC TAPE DEVICE. .

nnnn F CB04002 INDEXED ORGANIZATION ILLEGAL.
WITH * { UNIT RECORD DEVICE. l *

MAGNETIC TAPE DEVICE.. ·

nnnn w CB04003 MULTIPLE REEL INCONSISTENT
WITH * { MASS STORAGE DEVICE.}*

UNIT RECORD DEVICE. .

nnnn w CB04004 MULTIPLE UNIT INCONSISTENT
WITH * {MAGNETIC TAPE DEVICE.}*

UNIT RECORD DEVICE. .

nnnn F CB04006 ACCESS MODE RANDOM IS ILLEGAL
{MAGNETIC TAPE DEVICE. }

WITH * UNIT RECORD DEVICE. *.
SEQUENTIAL ORGANIZATION.

nnnn w CB04008 FILE-LIMITS CLAUSE IS INVALID
{MAGNETIC TAPE DEVICE. }

* UNIT RECORD DEVICE. *
WITH INDEXED ORGANIZATION. .

SEQUENTIAL ORGANIZATION.

nnnn F CB04009 ACTUAL KEY CLAUSE IS REQUIRED WITH
RAN DOM ACCESS.

nnnn w CB04010 ACTUAL KEY CLAUSE IS INVALID
{MAGNETIC TAPE. DEVICE. }

WITH* UNIT RECORD DEVICE. *.
SEQUENTIAL ORGANIZATION.

H-12

LINE ERROR ERROR CLAUSE
NUMBER TYPE CODE NAME MESSAGE .TEXT

nnnn w CB04011 FORWARD KEY CLAUSE IS INVALID

{MAGNETIC TAPE DEVICE. }
UNIT RECORD DEVICE.

WITH * SEQUENTIAL ORGANIZATION. *.
RELATIVE ORGANIZATION.
RANDOM ACCESS.

nnnn w CB04012 ALTERNATE AREAS ARE NOT AVAILABLE
WITH* {INDEXED ORGANIZATION.}*

RAN DOM ACCESS. .

{RELATIVE ORGANIZATION)
nnnn F CB04013 RERUN * INDEXED ORGANIZATION *ILLEGAL

UNIT RECORD DEVICE
WHEN USED FOR THE RERUN FILE.

nnnn F CB04014 INDEX-BLOCK SIZE IS REQUIRED WITH
INDEXED ORGANIZATION.

nnnn w CB04015 INDEX-BLOCK SIZE IS ILLEGAL
{UNIT RECORD DEVICE. }

WITH * MAGNETIC TAPE DEVICE. *
RELATIVE ORGANIZATION. .
SEQUENTIAL ORGANIZATION.

nnnn F CB04021 BLANK CLAUSE ILLEGAL WITH
ALPHANUMERIC ITEM.
ALPHABETIC ITEM.
ALPHANUMERIC EDITED ITEM.

* COMP-3/PACKED USAGE. *
COMP/BINARY USAGE.
INDEX !)SAGE.
OCCURS DEPENDING ON.
GROUP ITEM.

nnnn F CB04021 JUSTIFIED CLAUSE ILLEGAL WITH
NUMERIC ITEM.
ALPHANUMERIC EDITED ITEM.
NUMERIC EDITED ITEM.

* COMP-3/PACKED USAGE. *
COMP/BINARY USAGE.
INDEX USAGE.
OCCURS DEPENDING ON.
GROUP ITEM.

nnnn F CB04021 SYNCH RO- CLAUSE ILLEGAL WITH
NIZED * {INDEX USAGE.}*

GROUP ITEM. .

nnnn F CBQ4021 VALUE CLAUSE ILLEGAL WITH
{INDEX USAGE.}

* OCCURS. *.
REDEFINES.

nnnn F CB04021 REDEFINES CLAUSE ILLEGAL WITH OCCURS
DEPENDING ON.

H-13

LINE ERROR ERROR CLAUSE
NUMBER TYPE CODE NAME MESSAGE TEXT

nnnn F CB04021 OCCURS CLAUSE ILLEGAL WITH 01 OR 77 LEVEL.

nnnn F CB04021 PICTURE CLAUSE ILLEGAL WITH
~· {INDEX USAGE.} *

GROUP ITEM. .

nnnn F CB04022 * JUSTIFIED *CLAUSE ILLEGAL WHEN SUBORDINATE rANK }

~i:~i~RO- TO ITEM WITH VALUE.

nnnn F CB04022 VALUE CLAUSE ILLEGAL WHEN SUBORDINATE

{REDEFINES.}
TO ITEM WITH * OCCURS. *.

VALUE.

nnnn F CB04023 USAGIE COMP OR COMP-3 IS ILLEGAL WITH
{ALPHANUMERIC ITEM. }

~· ALPHABETIC ITEM. *
ALPHANUMERIC EDITED ITEM. .
NUMERIC EDITED ITEM. .

nnnn F CB04024 USAGE COMP, COMP-3, OR INDEX IS ILLEGA.L
WHEN SUBORDINATE TO ITEM WITH
VALUE CLAUSE.

nnnn F CB04025 VALUE NUMERIC LITERAL ILLEGAL WITH

{ALPHANUMERIC ITEM. 'f ALPHABETIC ITEM.
* ALPHANUMERIC EDITED ITEM. *.

NUMERIC EDITED ITEM. '
GROUP ITEM. ;

nnnn F CB04026 VALUIE . J!~LPHANUMERIC LITERAL ILLEGAL
{NUMERIC ITEM. }

WITH * COMP-3/PACKED USAGE. *·.
COMP/Bl NARY USAGE.

nnnn F CB04027 FIGURATIVE CONSTANT OF
'ZERO' IS ILLEGAL WITH

{ALPHABETIC ITEM. }
* ALPHANUMERIC EDITED ITEM. *.

NUMERIC EDITED ITEM.

nnnn F CB04028 OCCURS DEPENDING ON ILLEGAL
WHEN SUBORDINATE TO ITEM WITH

* {REDEFINES}* CLAUSE
OCCURS ·

nnnn F CB04029 PICTURE REQUIRED FOR ELEMENTARY
ITEM.

nnnn u CB04030 REDEFINES CLAUSE INVALID FOR 01 RECORD
DESCRIPTION -- REDEFINES CLAUSE
IGNORED.

H-14

UNE ERROR ERROR CLAUSE
NUMBER TYPE CODE NAME MESSAGE TEXT

nnnn F CB04031 OCCURS THIS ITEM WOULD REQUIRE OVER 3
LEVELS OF SUBSCRIPTING -- OCCURS
CLAUSE DROPPED.

nnnn F CB0403:2 OCCURS MORE THAN ONE DEPENDING ON IN
THE SAME RECORD IS NOT ALLOWED --
IGNORED.

nnnn F CB04033 USAGE ELEMENTARY ITEM USAGE IN-
CONSISTENT WITH USAGE OF
DOMINANT GROUP -- GROUP USAGE
ASSUMED.

nnnn F CB04034 VALUE CLAUSE CANNOT BE SPECIFIED IN A
RECORD WHEN DEPENDING ON OPTION
WAS SPECIFIED.

nnnn u CB0403!i VALUE CLAUSE INVALID FOR ITEMS IN
FILE SECTION OR LINKAGE SECTION.

mmn w CB04038 VALUE Fl LE LABEL ID EXCEEDS 17 CHARAC-
TEAS -- FIRST 17 CHARACTERS USED.

nnnn w CB04039 VALUE MODIFICATION-CODE LITERAL EXCEEDS
4 CHARACTERS -- Fl AST 4 CHARAC-
TEAS USED.

nnnn w CB04040 VALUE NUMERIC LITERAL FOR

{LABEL ID }
* RETENTION-PERIOD *MUST BE

MODIFICATION CODE
POSITIVE INTEGER --VALUE DROPPED.

nrmn w CB04041 VALUE NUMERIC LITERAL FOR
* {RETENTION-PERIOD } *EXCEEDS

MODIFICATION-CODE
4 DIGITS -- FIRST 4 DIGITS ARE USED.

nnnn w CB04042 VALUE FIGURATIVE CONSTANT SPECIFIED FOR
RETENTION-PERIOD IS ILLEGAL-- ONLY
ZERO ALLOWED.

nnnn u CB04043 ILLEGAL LEVEL NUMBER HIERARCHY
WITHIN RECORD DESCRIPTION.

nnnn w CB04044 LABEL VALUE SPECIFIED FOR FILE
WITH LABEL OMITTED.

nnnn F CB04045 FIRST LEVEL NUMBER OF RECORD
DESCRIPTION MUST BE 01.

nnnn F CB04046 FIRST LEVEL NUMBER FOLLOWING 77
MUST BE 01.

nnnn F CB04047 77 ILLEGAL IN FILE SECTION --
CHANGED TO 49.

H-15

LINE ERROR ERROR CLAUSE
NUMBER TYPE CODE NAME MESSAGE TEXT

nnnn F CB04048 77 MUST PRECEDE RECORD -- CHANGED
T049.

nnnn w CB04049 PICTURE SIZE OF THIS BINARY ITEM IS CHANGED

TO * {:} * DIGITS.

nnnn F CB04050 PICTURE SIZE OF TH IS Bl NARY ITEM EXCEEDS
8 DIGITS -- CHANGED TO 8.

nnnn w CB04051 PICTURE BINARY ITEM IS NOT A SIGNED INTEGER.

nnnn w CB04052 LITERAL VALUE* {LEFT } *
RIGHT

TRUNCATED TO PICTURE SIZE --
SIGNIFICANT DIGITS ARE LOST.

nnnn w CB04053 ITEM IS UNSIGNED -- SIGN OF VALUE
CLAUSE LITERAL IS DROPPED.

nnnn F CB04054 VARIABLE PORTION OF RECORD MUST
BE AT END OF. RECORD.

nnnn F CB05001 DUPLICATE SYSTEM ID'S IN SELECT
SENTENCE -- SENTENCE IGNORED.

nnnn F CB05002 SYSTEM ID CANNOT BE SPECIFIED AS A
FILE AND AS A RERUN DEVICE --
IGNORED.

nnnn F CB05003 FILE SPECIFIED IN SAME AREA CLAUSE
MORE THAN ONCE -- LAST SPECIFICATION
USED.

nnnn F CB05004 NUMBER OF Fl LES EXCEEDS THE MAXI-
MUM OF 16.

nnnn F CB05005 NO FILE DESCRIPTION TO MATCH
SELECT ENTRY.

nnnn F CB05006 INVALID ACTUAL KEY -- KEY DROPPED.

nnnn F CB05007 INVALID FORWARD KEY -- KEY DROPPED.

nnnn F CB05008 DATA-NAME CANNOT BE SUBSCRIPTED --
SUBSCRIPT DROPPED.

nnnn F CB05009 SUBSCRIPT ERROR -- SUBSCRIPT DROPPED.

nnnn F CB05010 ACTUAL KEY MISSING.

nnnn F CB05011 SUBSCRIPT CANNOT BE AN OCCURRING
ITEM -- SUBSCRIPT DROPPED.

nnnn F CB05012 FORWARD KEY MUST BE PRESENT
WITH A START VERB.

H-16

LINE ERROR ERROR CLAUSE
NUMBER TYPE CODE NAME MESSAGE TEXT

nnnn F CB05013 DATA-NAME IS NOT A RECORD AREA --
DATA-NAME DROPPED.

nnnn F CB05014 CLOSE UNIT INVALID FOR RANDOM ACCESS
MODE.

nnnn F CB05014 READ ATEND INVALID FOR RANDOM
ACCESS MODE.

nnnn F CB05014 START CLAUSE INVALID FOR RANDOM
ACCESS MODE.

nnnn F CB05015 SEEK CLAUSE REQUIRES ACCESS MODE
RANDOM CLAUSE.

nnnn F CB05016 SEEK CLAUSE INVALID FOR INDEX
ORGANIZATION.

nnnn F CB05017 DELETE CLAUSE INVALID FOR RELATIVE
ORGANIZATION.

nnnn F CB05017 REWRITE CLAUSE INVALID FOR RELATIVE
ORGANIZATION.

nnnn F CB05017 START CLAUSE INVALID FOR RELATIVE
ORGANIZATION.

nnnn F CB05018 DELETE CLAUSE INVALID FOR SEQUENTIAL
ORGANIZATION.

nnnn F CB05018 OPEN 1/0 INVALID FOR SEQUENTIAL
ORGANIZATION.

nnnn F CB05018 READ INVALID KEY INVALID FOR SEQUENTIAL
ORGANIZATION.

nnnn F CB05018 SEEK CLAUSE INVALID FOR SEQUENTIAL
ORGANIZATION.

nnnn F CB05018 REWRITE CLAUSE INVALID FOR SEQUENTIAL
ORGANIZATION.

nnnn F CB05018 START CLAUSE INVALID FOR SEQUENTIAL
ORGANIZATION.

{UNIT }
nnnn F CB05019 CLOSE * NO REWIND *INVALID FOR UNIT

REEL
RECORD Fl LES.

nnnn F CB05019 DELETE CLAUSE INVALID FOR UNIT RECORD
FILES.

nnnn F CB05019 OPEN * t ~g REWIND}* INVALID FOR UNIT

RECORD FILES.

H-17

LINE ERROR ERROR CLAUSE
NUMBER TYPE CODE NAME MESSAGE TEXT

nnnn F CB05019 READ INVALID KEY INVALID FOR UNIT
FtECORD Fl LES.

nnnn F CB05019 SEEK CLAUSE INVALID FOR UNIT RECORD
FILES.

nnnn F CB05019 WRITE INVALID KEY INVALID FOR UNIT
Fl ECORD Fl LES.

nnnn F CB05019 REWRITE CLAUSE INVALID FOR UNIT RECORD
FILES.

nnnn F CB06019 START CLAUSE INVALID FOR UNIT RECORD
FILES.

nnnn F CB05020 CLOSE UNIT INVALID FOR TAPE FILES.

nnnn F CB05I020 DELETE CLAUSE INVALID FOR TAPE FILES.

nnnn F CB06I020 OPEN 1/0 INVALID FOR TAPE FILES.

nnnn F CB06020 READ INVALID KEY INVALID FOR TAPE FILES.

nnnn F CB05020 SEEK CLAUSE INVALID FOR TAPE FILES.

rNVALID KEY}
nnnn F CB06020 WRITE .. f BEFORE *INVALID FOR

AFTER
TAPE FILES.

nnnn F CB05020 REWRITE CLAUSE INVALID FOR TAPE FILES.

nnnn F CB05020 START CLAUSE INVALID FOR TAPE FILES.

nnnn F CB05021 CLOSE •• {NO REWIND}* INVALID FOR MPSS
REEL ~

STORAGE FILES.

nnnn F CB05021 OPEN NO REWIND INVALID FOR MASS
STORAGE FI LES.

nnnn F CB05021 WRITE ~· {BEFORE}* INVALID FOR MASS
AFTER

STORAGE FILES.

nnnn F CB05022 t=I AST ELEMENTARY ITEM OF A RE··
DEFINES MUST HAVE EVEN ADDRESS
WHEN SYNCHRONIZED.

nnnn u CB05023 l=tEDEFINES LENGTH IS NOT EQUAL. TO
THE REDEFINED LENGTH --THE LARGER
IS USED.

nnnn w CB05024 INTRA-BECORD SLACK BYTE INSERTED
PRIOR TO THIS ITEM.

H-18

LINE ERROR ERROR CLAUSE
NUMBER TYPE CODE NAME MESSAGE TEXT

nnnn F CB05025 RECORD SIZE EXCEEDS 16383 -- 16383
IS USED.

nnnn w CB05026 RECORD SIZE IS LESS THAN STATED
MINIMUM -- COMPUTED SIZE USED.

nnnn w CB05027 RECORD SIZE IS GREATER THAN STATED
MAXIMUM -- COMPUTED SIZE USED.

nnnn F CB05028 INVALID DATA-NAME SPECIFIED IN THE
USING STATEMENT.

nnnn F CB05029 FORWARD KEY AND ACTUAL KEY ARE
NOT EQUAL IN LENGTH -- ACTUAL KEY
LENGTH USED.

nnnn F CB05030 INDEXED FILES CANNOT HAVE
VARIABLE LENGTH RECORDS.

nnnn w CB05031 BLOCK SIZE MUST BE AN EVEN NUMBER
OF BYTES -- ONE BYTE ADDED.

nnnn F CB05032 ACCESS MODE MUST BE SEQUENTIAL --
STATEMENT DROPPED.

nnnn F CB05033 A VALUE CLAUSE CANNOT BE SUB-
ORDINATE TO ANOTHER VALUE
CLAUSE -- SECOND DROPPED.

nnnn F CB05034 REDEFINED ITEMS MUST HAVE EQUAL
LEVEL NUMBERS -- REDEFINES IGNORED.

nnrm F CB05035 REDEFINES A'REA MUST IMMEDIATELY
FOLLOW THE REDEFINED AREA --
REDEFINES l~NORED.

nnnn u CB05036 THE REDEFINED ITEM CANNOT BE
SUBORDINATE TO OR HAVE AN
OCCURS CLAUSE.

nnnn u CB05037 THE REDEFINED ITEM CANNOT BE
SUBORDINATE TO OR HAVE A RE-
DEFINES CLAUSE.

nnnn F CB05038 REDEFINED ITEM CANNOT HAVE AN
OCCURS DEPENDING ON CLAUSE
SUBORDINATE TO IT -- IGNORED.

nnnn w CB05039 LEFT TRUNCATION WILL OCCUR ON
ALIT OR GROUP ITEM LITERAL.

nnnn w CB05040 RIGHT TRUNCATION WILL OCCUR ON
ALIT OR GROUP ITEM LITERAL.

nnnn F CB05041 ID LABEL DATA-NAME INVALID --
DROPPED.

H-19

Bulletin: 2202.002-0001
Date: 3/19/73

LINE ERROR ERROR CLAUSE
NUMBER TYPE CODE NAME MESSAGE TEXT

nnnn F CB05042 RETENTION PERIOD LABEL DATA·NAME
INVALID -- DROPPED.

nnnn F CB05043 MODIFICATION CODE DATA-NAME
INVALID -- DROPPED.

nnnn F CB0!5044 THE BLOCK SIZE IS NOT LARGE ENOUGH
TO FIT ONE RECORD.

nnnn F CB0!5045 BLOCKING FACTOR EXCEEDS 255
RECORDS.

nnnn w CBO!i046 INTER-RECORD SLACK BYTE INSEIRTED
PRIOR TO THIS RECORD.

nnnn w CB0!>047 INTRA-·RECORD SLACK BYTE INSERTED
FOLLOWING THIS GROUP.

nnnn F CBOfi048 INVALID DATA NAME SUBSCRIPT.

Subscript not defined as a numeric integer.

nnnn F CBOEi049 THIS LEVEL MUST BE SUBORDINAlrE
TO THE ABOVE DEPENDING ON.

nnnn F CBOEi050 INVALID DEPENDING ON ID.

nnnn F CBOE1051 INVALID KEY MISSING.

nnnn w CBQ5.Q52 ACTUALKEYCANNOTEXCEED8
IDIGITS -- POSSIBLE TRUNCATION.

nnnn F CB05053 WORKING-STORAGE EXCEEDS 65Kl3.

nnnn F CB05054 RESIDENT LITERAL POOL EXCEEDS
f35KB.

nnnn F CB05055 MORE THAN 255 77 AND 01 RECORD
LEVELS IN LINKAGE SECTION.

nnnn F CB05056 BE RUN SYSTEM ID REPLACED WITH
SYSCHK.

nnnn F CB05057 BLOCK SIZE EXCEEDS 7294 CHARACTERS.

nnnn F CB05058 BLOCK SIZE LESS THAN 18 CHARACTERS.

nnnn F CB05059 DATA-NAME MUST BE SUBSCRIPTED··
SUBSCRIPT DROPPED.

nnnn w CB06001 EXIT PROGRAM OR STOP RUN NOT
SPECIFIED.

nnnn F CB06Ct02 SUBSCRIPT NOT IN RANGE OF TABLE.

nnnn F CB06CI03 INDEX DATA ITEM OR INDEX NAME
REFERENCE ILLEGAL.

nnnn F CB06004 INDEX DATA ITEM ILLEGAL.

H-20

Bultetin: 2202.002-0001
Date: 3/19/73

LINE ERROR ERROR CLAUSE
NUMBER TYPE CODE NAME MESSAGE TEXT

nnnn F CB06005 DATA-NAME CANNOT BE JUSTIFIED.

nnnn u CB06006 SYSOUT CANNOT BE USED IN ACCEPT
STATEMENT--CONSOLE ASSUMED.

nnnn u CB06007 INTERMEDIATE RESULTS CANNOT
EXCEED 18 DIGITS.

nnnn F CB06008 RECEIVING FIELD MUST NOT BE A
LITERAL OR FIGURATIVE CONSTANT.

nnnn w CB06009 EXTERNAL NAME MUST NOT EXCEED
8 CHARACTERS --TRUNCATED TO 8.

nnnn w CB0601CJJ SYSIN CANNOT BE USED IN DISPLAY
STATEMENT -- CONSOLE ASSUMED.

nnnn F CB06011 NUMERIC LITERAL MUST BE AN INTEGER
IN EXAMINE STATEMENT.

nnnn F CB06012 NUMERIC LITERAL MUST BE UNSIGNED
IN EXAMINE STATEMENT.

nnnn w CB06013 LITERAL MUST BE 1 CHARACTER IN
EXAMINE STATEMENT.

nnnn w CB06014 POSSIBLE TRUNCATION -- IDENTIFIER
MUST BE 3 CHARACTERS OR LESS.

nnnn F CB06015 ALPHABETIC TEST CANNOT BE USED
WITH NUMERIC ITEM.

nnnn F CB06016 LITERALS OR INDEX NAMES ILLEGAL
IN CLASS CONDITION.

nnnn F CB06017 NUMERIC LITERAL MUST BE UNSIGNED
IN SET STATEMENT.

nnnn F CB06018 DATA-NAME MUST BE DISPLAY.

nnnn F CB06019 DATA-NAME MUST BE NUMERIC.

nnnn F CB06020 DATA-NAME MUST BE INTEGER.

nnnn F CB06021 MAXIMUM NUMBER OF OPERANDS
EXCEEDED FOR STATEMENT.

n111nn F CB06022 NESTED CONDITIONALS NOT ALLOWED
IN THIS LEVEL COBOL.

nnnn F CB06023 CLASS OF LITERAL INCONSISTENT
WITH THAT OF IDENTIFIER.

nnnn F CB06024 ILLEGAL COMPARISON IN CONDITIONAL
STATEMENT.

Refer to the description of permissible
comparisons in the MRX/OS COBOL
Reference manual.

H-21

LINE ERROR ERROR CLAUSE
NUMBER TYPE CODE" NAME MESSAGE TEXT

nnnn F CB06025 NIUMERIC ITEM MUST BE INTEGER.

nnnn F CB06026 ILLEGAL RECEIVING DATA ITEM IN
MOVE STATEMENT.

Refer to the description of permissible moves
in the MRX/OS COBOL Reference manual.

nnnn F CB06027 RECEIVING DATA ITEM MUST BE
INTEGER.

nnnn F CB06028 POSSIBLE TRUNCATION OF NUMERIC
DATA ITEM OR NUMERIC LITERAL.

nnnn F CB06029 DATA-NAME CANNOT BE USED TO SET
INDEX WHEN UP OR DOWN SPECIFIED.

nnnn F CB06030 PROCEDURE NAME IS MULTIPLY
DEFINED.

nnnn u CB06031 NUMERIC LITERAL CANNOT BE ZERtO
llN SET STATEMENT.

nnnn F CB06032 NOT RELATION AND NOT CONDITION
ILLEGAL IN CONDITIONAL STATEMENT.

nnnn w CB06033 NUMERIC TEST CANNOT BE USED WITH
AN ALPHABETIC ITEM.

nnnn F CB06034 ILLEGAL COMBINATION IN SET
STATEMENT.

nnnn F CB06035 POSSIBLE TRUNCATION -- DATA LENGTH
MUST BE 2 DIGITS OR LESS.

nnnn w CB06036 EXIT STATEMENT MUST BE ONLY STATE-
MENT IN PARAGRAPH -- PERTAINS TO
PREVIOUS PARAGRAPH.

nnnn F CB06037 LITERAL POOL ALLOCATION EXCEEDS
615KB FOR THIS SEGMENT.

nnnn F CB06038 BEFERENCE TO UNDEFINED PROCEDURE
NAME.

nnnn F CB06039 DATA-NAME MUST BE NUMERIC -- BLANK
WHEN ZERO ILLEGAL.

nnnn F CB06040 DISPLAY BUFFER ALLOCATION EXCEEDS
€i5KB.

nnnn w CB07001 MESSAGE IS NOT AVAi LABLE FOR lrH IS
PASS OR PHASE.

nnnn w CB07002 POSSIBLE TRUNCATION.

nnnn w CB07003 NUGATORY ROUNDING.

H-22

LINE ERROR ERROR CLAUSE
NUMBER TYPE CODE NAME MESSAGE TEXT

nnnn w CB07004 NUGATORY SIZE ERROR.

nnnn CB07005 ((RESERVE FOR FUTURE MESSAGE)).

nnnn CB07006 ((RESERVE FOR FUTURE MESSAGE)).

nnnn CB07007 ((RESERVE FOR FUTURE MESSAGE)).

nnnn w CB07008 ALTERABLE PERFORM EXIT-- GO TO
GENERATED.
An alterable paragraph (contains only a
GO TO statement) is the exit paragraph
of a PERFORM statement. This will
result in the generation of a GO TO
instead of a PERFORM.

nnnn F CB07009 ALTER REFERENCE TO A SECTION --
STATEMENT DROPPED.

nnnn F CB07010 REFERENCE TO AN UNALTERABLE
PARAGRAPH --STATEMENT DROPPED.

nnnn F CB07011 ALTER STATEMENT USED ACROSS
INDEPENDENT SEGMENTS -- STATEMENT
DROPPED.

CB07012 ((RESERVE FOR FUTURE MESSAGE)).

nnrm F CB07013 MAXIMUM NUMBER OF EXTERNAL-
NAMES EXCEEDED -- TOO MANY
CALL STATEMENTS USED.

nnnn F CB07014 RESIDENT LITERAL POOL EXCEEDS
65KB.

nnnn F CB07015 ILLEGAL USE OF PERFORM STATEMENT
ACROSS SEGMENTS -- PERFORM STATE-
MENT DROPPED.

nnnn w CB090Q1 NUMBER OF REFERENCES EXCEEDS
21,588 -- REMAINING REFERENCES
IGNORED.

H-23

COBOL SYSOUT FILE EHROR MESSAGES

There are four COBOL error messages that can appear on the SYSOUT file after the Control
Language Services statement in error. Each message is preceded by an 8-digit error code that
has the following format: ·

where:

PP is always CB, specifying the COBOL compiler as the source of the error.

SS is always 00 specifying the root of the COBOL. compiler as the source of the
error.

EEE is a 3-digit E!rror number specifying the error number within the root.

T is a 1-digit number specifying the type of error. COBOL compiler errors
listed in this file are all type :S, which is fatal.

The message text follows the error code.

ERROR CODE

CB000018

CB000028

CB000038

CB000048

MESSAGE TEXT

COMPILER ABORT.
This message is printed in the SYSOUT file when
CBOX003 message is issued. As with the CBOX003
error, you should contact a systems engineer when
this error occurs.

LIST FILE NOT DEFINED, ABORT.
The I D=LIST keyword parameter specification is
missing from the //DEF statement.

INPUT BUFFER TOO LARGE, CANNOT COMPILE.
Not enough memory space was available for the
input buffer. Either increase the size of the partition
or decrease the block size of the input file.

IMEM NOT DEFINED, AIBORT.
The IMEM= keyword parameter specified on the
//PAR statement cannot be found in the input
library.

H-24

OBJECT-TIME ERROR MESSAGES

COBOL messages that appear in the SYSOUT file specify compiler errors that occur during
execution. When any of the first three errors listed below are encountered, the compiler will
print the message in the SYSOUT file and continue processing. When the last error is
encountered, the compiler will print the message in the SYSOUT file and terminate the
current program by returning control to the calling program. The calling program can be
either another COBOL program or the resident operating system.

ERROR CODE LINE NUMBER ERROR TYPE MESSAGE TEXT

CBOE0018 nnnnn Object Error DATA CHECK

CBOE0028 nnnnn Object Error SUBSCRIPT RANGE ERROR

CBOE0038 nnnnn Object Error PARAMETER LIST TOO
SHORT

CBOE0048 nnnnn Object Error PROGRAM DROP-OFF

The COBOL compiler supplies the line number (nnnnn) when it prints the message in the
SYSOUT file. The line number refers to the line in the source listing where the error
occurred.

H-2!5

INDEX

ACCEPT statement 8-43
Access methods

random access
and the ACCESS MODE
clause 6-8
and the ACTUAL KEY
clause 6-8,F-3,F-4
and the READ statement 8-37
of indexed files 6-8,F-3
of relative files 6-8,F-3

sequential access
and the ACCESS MODE
clause 6-8
and the ACTUAL KEY
clause 6-8,F-4
and the READ statement 8-37
and the ST A RT statement 8-36
of indexed files 6-8,F-3
of relative files 6~8,F-3

of sequential files 6-8,F-2
ACCESS MODE clause 6-8
ACTUAL KEY clause 6-8
ADD statement 8-11
Alignment, of elementary items 7-31
Alphabetic

characters, defined 3-3
items, in PICTURE clause 7-21

Alphanumeric
characters, defined 3-3
edited items, in PICTURE
clause 7-23
items, in PICTURE clause 7-21

ALTER statement 8-20
ALTERNATE AREAS option of
RESERVE clause 6-6
Area A, definition 4-1
Area B, definition 4-1
Arithmetic expression characters 3-5
Arithmetic statements

ADD 8-11
DIVIDE 8-16
GIVING option 8-11.
MULTIPLY 8-14
overlapping operands 8-11
ROUNDED option 8-11
SIZE ERROR option 8-11
SUBTRACT 8-12

Bulletin: 2202.002-0001
Date: 3/19/73

ASSIGN clause 6-5
Asterisk

in PICTURE clause 7-19
used for comments 4-4

AUTHOR paragraph 5-1
Binary items, in PICTURE
clause 7-23
BINARY option of USAGE clause 7-34
Blank lines, description 4-3
BLANK WHEN ZERO clause 7-16
Blanks 3-3,3-4
BLOCK CONTAINS clause 7-5
Block size, for indexed files G-1

Cataloging
of object program 1-2, 1-3
of source program 1-1,1-2

CALL statement 8-48
Character set

alphabetic characters 3-3
alphanumeric characters 3-3
arithmetic expression characters· 3-5
computer characters 3-3
editing characters 3-4
list 3-2
numeric characters 3-3
punctuation characters 3-3
relation condition characters 3-5
special characters 3A
word characters 3-3

Character strings
constant 3-7
definition 3-5
name 3-6
NOTE in Procedure Division 3-9
PICTURE in Data Division 3-9
word 3-5

Checkpoint records 6-15
CLOSE statement 8-45
Comment lines, description 4-4
Comparisons (see Relation
condition)
Compiler

input 1-1
options 1-1
output 1-3

Compiler directing sentences 8-3
Checkpoint/Restart program 6-16,6-16a

lndex-1

Compiler-directing statements Dau1-name clause 7-10
ENTER 8-52 Dat21-names, definition 3-6
NOTE 8-53 Data1 organization

COMPUTATIONAL option of indexed files
USAGE clause 7-34 access methods 6-8,F-3
COMPUTATIONAL-3 option of and the ACTUAL KEY
USAGE clause 7-34 clause 6-8
Computer characters 3-3 and the DELETE clause 8-42~
Conditional statements 8-2 and the FORWARD KEY
Conditions clause 6-13:

class condition 8-4 and the INDEX-BLOCK
NOT condition 8-4 clause 6-13:
relation condition 8-5 and the ST ART clause 8-3€1
test conditions 8-4 and the R EWA I TE clause 8-41

Configuration section 6-1 definition F-2
Connective, definition 3-6 relative files
Constants access methods F-3

Literals 3-7 and the ACCESS MODE ·

Figurative constants 3-8 clause 6-8
Continuation and the ACTUAL KEY

of lines 4-1 clause 6-8
of nonnumeric literals 4-1 and the Fl LE-LIMIT clause 6-7
of words and numeric literals 4-1 and the SEEK clause 8-3€i

Control characters D-1 definition F-2
CR symbol, in PICTURE clause 7-19 sequential files
Cross reference list access methods 6-8,F-2

description 1-4 and the ACCESS MODE
suppression of 1-3 clause 6-8

CURRENCY SIGN IS clause 6-3 definition F-1
Currency symbol, in PICTURE DATA RECORDS clause 7-6
clause 7-19 DATE-WRITTEN paragraph 5-1

DB symbol, in PICTURE clause 7-19
Data description Decimal items, description 7-21

data description entries, Decimal point
definition 7-8 in character set 3-4
data description entry clauses 7-9 in PICTURE clause 7-18
data item description entries, DECIMAL POINT IS COMMA
definition 7-9 clause 6-3
record description entries, Definitions, in glossary A-1
definition 7-9 DE L.ETE statement 8-42
maximum record or data item DISPLAY option of USAGE
description entries 7-38 clause 7-34

Data division 7-1 DISPLAY statement 8-44
Data item DIVIDE statement 8-1 fi

description 7-8 Divi:;ion header, definition 4-3
format 7-34

Data manipulation statements EBCDIC, table B-1
EXAMINE 8-33 Editing· characters
MOVE 8-29 in PICTURE clause 7-17

Data map list 3-4
description 1-4 Editing, in PICTURE clause
suppression of 1-3 fi:xed insertion 7-2£)

lndex-2

Bulletin: 2202.002-0001
Date: 3/19/73

floating insertion 7-27 Imperative statements
simple insertion 7-25 arithmetic 8-10
special insertion 7-26 data manipulation 8-29
zero suppression 7-28 definition 8-10
replacement editing 7-28 input/output 8-34

Elementary item, description 7-24 procedure branching 8-18
ELSE statement (see IF statement) subprogram linkage 8-48
ENTER statement 8-52 INDEX-BLOCK clause 6-13,G-1
Environment division INDEX option of USAGE clause 7-34

description 6-1 Indexed files (see Data organization)
maximum use 6-18 Indexing, in tables 9-5

Error messages H-1 Index-names, definition 3-7
EXAMINE statement 8-33 Input-output section
EXIT PROGRAM statement 8-52 description 6-4
EXIT statement 8-28 maximum use 6-17
External decimal items, in Input-output statements
PICTURE clause 7-21 ACCEPT 8-43

CLOSE 8-45
Figurative constants 3-8 DELETE 8-42
Fl LE-CONTROL paragraph DISPLAY 8-44

clause restrictions 6-14 OPEN 8-35
description 6-4 READ 8-37
maximum paragraph 6-15 REWRITE 8-41

File description entry SEEK 8-36
definition 7-3 START 8-36
description 7-5 WRITE 8-39
maximum use 7-8 INSTALLATION paragraph 5-1

Fl LE-LIMIT clause 6-7 1-0 CONTROL
File-names, definition 3-6 description 6-15
File organization (see Data maximum paragraph 6-16a
organization) Item size 7-20
File processing summary F-1 Internal decimal items, in
File section, description 7-3 Pl CTU RE clause 7-23
Fl LLER clause 7-10
Fixed insertion editing 7-26 JUSTIFIED clause 7-16
Floating insertion editing 7;.27
FOR MULTIPLE REEL/UNIT Keyword, definition 3-5
option of ASSIGN clause 6-5
Format notation 2-1 LABEL RECORDS clause 7-7
FORWARD KEY clause 6-13 Labels

LABEL RECORDS clause 7-7
GIV~NG option 8-11 VALUE OF clause 7-7
Glossary of COBOL terms A-1 Level.
GO TO statement 8-18 concept of, in Data Division 7-2
Group item, description 7-24 indicators 7-3

numbers 7-3
HIGH-VALUE figurative constants 3-9 in data description entries 7-9

Linkage section 7-4
Identification division, definition 5-1 Listings
Identifier, definition 3-6 error messages H-1
IF statement 8-9 source program listing 1-4

lndex-3

suppressing source listing
Literals

Nonnumeric literals
Numeric literals

LOW-VALUE figurative c:onstant

MEMORY SIZE clause
Messages, error
Mnemonic-names, definitiion
MOVE statement
MULTIPLY statement

Names, definitions
data-names
file-names
index-names
mnemonic-names
procedure-names
program-names
system-names

NO REWIND option of OPEN
statement
NOTE statement
Numeric

characters
edited items, in PICTURE
clause
items, in PICTURE clause

binary
external deci ma I
internal decimal

OBJECT-COMPUTER paragraph
Object program, location
OCCURS clause

in the Data Division
used in table handling

OPEN statement
Optional word, definition
Organization of source program
Overlapping operands

1-2

3-8
3-7
3-9

6-2
H-1
3-6
8-29
8-14

3-6
3-6
3-7
3-6
3-6
3-7
3-7

8-35
8-53

3-3

7-24

7-23
7-21
7-23

6-2
1-2, 1-3

7-17,7-38
9-8
8-35
3-5
3-1
8-11

Packed decimal 7-34
PACKED option of USAGE clause 7-34
Paragraphs, definition 4-3
PARAMETER statement 1-1
PERFORM statement 8-21
PICTURE clause 7-17
Priority numbers, in SECTION
statement
Procedure branching stat1~ments

ALTER
EXIT

9-14

8-20
8-28

GOTO
PERFORM
STOP

Procedure division
Procedure map

description
suppression of

Procedure-names, definition
PROCESS! NG MODE clause
Program flow, COBOL
PROGRAM-ID paragraph,
definition
Program-names, definition
Program termination
Punctuation characters

Quotation marks
defined in character set
Emclosing non-numeric literals

QUOTE figurative constant

8-18
8-21
8-28
8-1

1-4
1-3
3-6
6-8:
1-51

5-1
3-7'
8-51
3-3

3-3,3-4
3-S:
3-9

Random access (see Access methods)
READ statement 8-3:7
Reading/writing files (see Input-
output statements)
RECORD CONTAINS clause
Rec:ord description entries
Rec::ording modes
REDEFINES clause
Relation condition

c:haracters
c:omparison of nonnumeric

7-6i
7-4
E-11
7-10

3-Ei

operands 8-6
c:omparison of numeric operands 8-6
c:omparisons of index names
and/or index data items
permissible comparisons of
subject and object operands
used in table-handling

Relative fi'les (see Data
organization)
RE MAR KS paragraph
Replacement editing
RERUN clause
RESERVE clause
Reserved words

8-7'

8-7'
9-11

5-1
7-28
6-15
6-Ei

definition 3-5
list C-1

Rewind (see OPEN statement)
REWRITE statement 8-41
ROUNDED option 8-11
Right margin (RMARG)
specification 1-2

lndex-4

SAME AR EA clause 6-16a
Section header, definition 4-3
SECURITY paragraph 5-1
SEEK statement 8-36
SEGMENT LIMIT clause 9-15
Segmentation

and the ALTER statement 9-15
and the PER FORM statement 9-15
fixed portion 9-13
independent segments 9-13
organization of Procedure
Division 9-13
segment classification 9-14
segmentation control 9-14
SEGMENT LIMIT clause 9-15
structure of program segments 9-14
priority numbers 9-14
restrictions on program flow 9-15

SELECT dause 6-5
Sentences, definition 8-3
Sequence numbers 4-1
Sequential access (see Access
methods)
Sequential files (see Data
organization)
SET statement

used in table handling 9-12
Simple insertion editing 7-25
SIZE ERROR option 8-11
Slack bytes

inter-record 7-34
intra-record 7-32

Slash (stroke), used for comments 4-4
SOU ACE-COMPUTER paragraph 6-2
Source program

error messages H-1
input to compiler 1-1
library facility 9-16
listing, description 1-4
location 1-1,1-2

Spaces, in character set 3-3,3-4
Spacing

on source listing 1-2
SPACE figurative constant 3-9

Special characters 3-4
Special features

segmentation 9-13
source program library 9-16
table handling !}-1

Special insertion editing 7-26
SPECIAL·NAMES paragraph 6-3
Special registers 3-9
ST A RT statement 8-36

Bulletin: 2202.002-0001
Date: 3/19/73

Statements
compiler directing 8-2
conditional 8-2
imperative 8-2

STOP statement 8-28
Structure of source program 3-i
Subprogram linkage statements

CALL 8-48
EXIT PROGRAM 8-52

Subscripting
in tables 9-3
subscript checking 1-3

SUBTRACT statement 8-12
Suppression and replacement
editing 7-28
Symbols

repetition of 7-19
used in PICTURE clause 7-17

SYNCHRONIZED clause 7-31
System-names, definition 3-7

Table handling
Data Division considerations

OCCURS clause 9-8
USAGE clause 9-10

defining a table 9-1
indexing 9-5
Procedure Division considerations

relation condition 9-11
SET statement 9-12

references to table items 9-3
subscripting 9-3

TA l LY register 3-10,8-33

USAGE clause
description 7-34
used in table handling 9-10

USING clause
in a CALL statement 8-48
in the Procedure Division header 8-1,8-49

VALUE clause 7-36
VALUE OF clause 7-7

Word
connective 3-6
definition 3-3
keywords 3-5
optional words 3-5
reserved words

definition 3-5
list C-1

lndex-5

Working-storage section 7-4
WR I TE statement 8-39
Writing/reading files (see Input-
output statements)

ZERO figurative constant 3-9
Zero suppression and replacement
editing 7-28

lndex-6

COMMENTS FORM

MRX/OS COBOL Reference Manual (2202.002)

Please send us your comments, to help us produce better publications. Use the space below to
qualify your responses to the following questions, if you wish, or to comment on other aspects of
the publication. Please use specific page and paragraph/line references where appropriate. All
comments become the property of the Memorex Corporation.

Yes No

• Is the material:

Easy to understand? a a
Conveniently organized? a a
Complete? a a
Well illustrated? a a
Accurate? a a
Suitable for its intended audience? . a a
Adequately inde>ced? a a

• For what purpose did you use this publication? (reference, general interest, etc.)

• Please state your department's function:

• Please check specific criticism(s), give page number(s), and explain below:

O Clarification on page(s) ------------------------

0 Ad~tion on pageb)~----~~-~-~-----------~

0 Dcletion o~ pageb)~----~-----------------~

0 Error on page(s) -------------------------

Business Reply Mail

No Postage Necessary if Mailed in the United States

Postage Will Be Paid By

Memorex Corporation

Midwest Operations - Publications
8941 Tenth Avenue North
Minneapolis, Minnesota 5f>427

Thank you for your information

Our goal is to 1provide better, more useful manuals, and your
comments will help us to do so •

. Memorex Publications

First Class

Permit No. 14831
Minneapolis,
Minnesota 55427

Publications Bulletin
2202.002-0001
3/19/73

R•tlease 2 Update Package for:

MRX/OS COBOL Level 1
Reference Manual
2202.002

This bulletin advises of changes that have occurred to the COBOL Reference Manual
since the November 1972 edition was issued. New and replacement pages are pro­
vided where required.

Pages Action ---
Front Cover Replace
v and vi Replace
1-1 thru 1-4 Replace
3-1 thru 3-6 Replace
6-3 and 6-4 Replace
6-9 and 6-1 () Replace
6-15 and 6-116 Replace
6-16a Add
6-17 and 6-118 Replace
8-5 and 8-6 Replace
8-27 and 8-~~8 Replace
8-37 th ru 8-40 Replace
8-45 and 8-46 Replace
9-7 and 9-8 Replace
G-1 thru G-E> Replace
H-1 thru H-4 Replace
H-4a Add
H-7 and H-8 Replace
H-19 thru H-22 Replace
lndex-1 thru lndex-6 Replace

Technical changes to text, tables,, and figures are m•ukedl with a vertical bar in the ·
outer margin.

Pages containing non-technical changes (page layout, spelling corrections) are indicated
by a bar opposite the page number.

Please file this bulletin with the publication to retain a record of changes.

Sequence Number: M101

.,, ..
0
c.
c n ,...
en

0
0
3
-c
c ,...
CD ..
en
'<
CJ) ,...
CD
3

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	2-01
	2-02
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	4-01
	4-02
	4-03
	4-04
	5-01
	5-02
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-16a
	6-17
	6-18
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	7-21
	7-22
	7-23
	7-24
	7-25
	7-26
	7-27
	7-28
	7-29
	7-30
	7-31
	7-32
	7-33
	7-34
	7-35
	7-36
	7-37
	7-38
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-18
	8-19
	8-20
	8-21
	8-22
	8-23
	8-24
	8-25
	8-26
	8-27
	8-28
	8-29
	8-30
	8-31
	8-32
	8-33
	8-34
	8-35
	8-36
	8-37
	8-38
	8-39
	8-40
	8-41
	8-42
	8-43
	8-44
	8-45
	8-46
	8-47
	8-48
	8-49
	8-50
	8-51
	8-52
	8-53
	8-54
	9-01
	9-02
	9-03
	9-04
	9-05
	9-06
	9-07
	9-08
	9-09
	9-10
	9-11
	9-12
	9-13
	9-14
	9-15
	9-16
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	B-01
	B-02
	C-01
	C-02
	C-03
	C-04
	D-01
	D-02
	E-01
	E-02
	F-01
	F-02
	F-03
	F-04
	G-01
	G-02
	G-02a
	G-03
	G-04
	G-05
	G-06
	H-01
	H-02
	H-03
	H-04
	H-04a
	H-05
	H-06
	H-07
	H-08
	H-09
	H-10
	H-11
	H-12
	H-13
	H-14
	H-15
	H-16
	H-17
	H-18
	H-19
	H-20
	H-21
	H-22
	H-23
	H-24
	H-25
	H-26
	Index-1
	Index-2
	Index-3
	Index-4
	Index-5
	Index-6
	replyA
	replyB
	updateMar73

