
MRX/OS Asse1mbler
Reference Manual
2202.001-01

0
0
3 ,,
c ...
CD .,, (,/)

0 '<
c. "' c ...
n CD ur 3

December 1972 Edition

This edition (2202.001-01) is a major revision of, and obsoletes,

the previous preliminary edition (2202.001).

Requests for copies of Memorex publications should be made
to your Memorex representative or to the Memorex branch
office serving your locality.

A reader's comment form is provided at the back of this
publication. If the form has been removed, comments may be
addressed to the Memorex Corporation, Publications Dept.,
8941 10th Ave. No. (Golden Valley) Minneapolis,
Minnesota 55427

© 1972, MEMOREX CORPORATION

PREFACE

This reference publication is intended for programmers using the M RX/OS Assembler
Language. This publication describes how to write assembler source statements, including
assembler instructions, macro instructions, and conditional assembly statements. These
instructions are summarized in Appendix E. Machine instructions and extended mnemonic
codes are summarized in Section 3, and additional reference tables appear in Appendixes B,
C, and D. The machine instructions are described in detail in the publication 7200 or 7300
Processing Unit Reference.

iii

TABLE OF CONTENTS

Section

2

INTRODUCTION

Function of thei Assembler
Relationship to the Operating System
System Requirements

WRITING SOURCE STATEMENTS

Page

1-1

1-1
1-2
1-2

2-1

Character Set 2-1
Basic Format of Source Statements 2-3
Terms and Expressions 2-3

Terms 2-4
Constants 2-5

String Constants 2-5
Character String Constant 2-5
Hexadecimal String Constant 2-6
Packed Decimal String Constant 2-6
Zoned Decimal String Constant 2-6
lnteg1ar String Constant 2-6

Arithmetic Constants 2-7
Decimal Arithmetic Constant 2-7
Hexadecimal Arithmetic Constant 2-8

Symbols 2-8
Ordinarv Symbols 2-9
Variable Symbols 2-10

Concatenation of Variable Symbols 2-10
Sequenc:e Symbols 2-11

Location Counter Reference 2-11
Symbol Length Attribute 2-12
Literals 2-13

Expressions 2-14
Evaluation of Expressions 2-15
Absolute and Relocatable Expre~ssions 2-17

Absolut,e Expressions 2-17
Relocatable Expressions 2-18
Examples of Absolute and Relocatable Expressions 2-18

Coding Form 2-18
Name Field 2-10
Operation Field 2-20
Operand Field 2-20
Comment Field 2-20
Identification-Sequence Field 2-20
Statement Continuation 2-21

v

TABLE OF CONTENTS (Continued)

Section Page

3 MACHINE INSTRUCTIONS 3-1

Source Statements 3-1
Instruction Alignment and Checking 3-1
Operands and Suboperands 3-1
Name and Length Attributes 3-2
Notation Used to Describe Machine Instructions 3-2
Summary of Machine Instructions 3-3

General-Purpose Instructions 3-5
System Instructions 3-9

Summary of Extended Mnemonics 3-10
Extended Mnemonic Codes 3-11

4 ASSEMBLER INSTRUCTION SOUl~CE STATEMENTS -
OVERVIEW 4-1

5 PROGRAM SECTIONING AND LINKING STATEMENTS 5-1

CSECT - Identify Control Section 5-1
Symbolic Linkage Statements - ENTRY and EXT RN 5-2
ENTRY - Identify ENTRY Point SYMBOL 5-2
EXTRN - Identify External Symbol 5-3
COM - Define Common Control Section 5-4
Reserved Symbolic Segment Name -· $SYSEG 5-6

6 PROGRAM CONTROL STATEMENTS 6-1

ORG - Set Location Counter 6-1
END - End Assembly 6-3
PUNCH - Write to File 6-3
L TORG - Begin Literal Pool 6-4
ICTL - Input Format Control 6-4
ISEQ - Input Sequence Checking 6-5
ALIGN - Align Location Counter 6-6

7 LINKAGE-EDITOR MAP DIRECTIVE - SEG 7-1

8 SYMBOL AND DATA DEFINITION STATEMENTS 8-1

EOU - Equate 8-1
WDD and BDD - Word and Byte Defined Data 8-2
WAS and B RS - Word and Byte Reserve Storage 8-5
FORM - Define Data Format 8-7
FORM - Instruction Statement 8-7

Padding and Truncation Rules for Form Statements 8-8

vi

Section

9

10

TABLE OF CONTENTS (Continued)

LISTING CONTROL STATEMENTS

TITLE-· Identify Listing
EJECT - Start New Page
SPACE -- Insert Blank Lines
PRINT-· Print Optional Data

MACRO LANGUAGE AND CONDITIONAL ASSEMBLY
STATEMENTS

Page

9-1

9-1
9-2
9-2
9-3

10-1

Macro Language 10-1
Macro Definiition 10-1

Header Statement 10-2
Prototype Statement 10-2
Model Statements 10-3
Termination Statement 10-5

Macro Instruction 10-5
Positional Operands 10-6
Keyword Operands 10-6
Special Characters in a Macro Instruction 10-7

Escape Character 10-7
Ampersand 10-7
Apostrophe 10-8
Parentheses 10-8
Comma 10-8
Semicollon 10-8
Blank 10-9

Sublists in Macro Instructions 10-9
Sublists in Model Statements 10-9
Substring Notation 10-10
Concatenation of Variable Symbols 10-11
Nesting of Macros 10-12
MNOTE - Generate Error Messagie 10-12
MEXIT - Alternate Termination for Macro Definition 10-13
System Variable Symbols - &SYSNDX and &SYSECT 10-13

&SYSNDX 10-13
&SYSECT 10-15

Conditional Assembly Statements 10-15
Set Statements 10-16

SET A - Assign Arithmetic Value to Set Symbol 10-16
SETC - Assign Character Value to Set Symbol 10-18

GBLA and GBLC - Global Arithmetic and Character Set
Symbols 10-20
ADO - lteraitive Return 10-20

vii

TABLE OF CONTENTS (Continued)

Section

10 (cont) Nesting of ADO Statements
AGO - Unconditional Branch
ANOP - Label Definition

Count and Number Attributes
Count Attribute
Number Attribute

11 CONTROL LANGUAGE STATEMENTS

Page

10-22
10-23
10-23
10-24
10-24
10-25

11-1

APPENDIX A - EBCDIC REPRESENTATION A-1

APPENDIX B - OBJECT FORMATS OF MACHINE INSTRUCTIONS B-1

APPENDIX C - ALPHABETICAL LIST OF MNEMONICS C-1

APPENDIX D - HEX CODE TO MNEMONIC CODE D-1

APPENDIX E - SUMMARY OF ASSEMBLER STATEMENTS E-1

APPENDIX F - MACRO EXAMPLE F-1

APPENDIX G - ASSEMBLER ERROR MESSAGES G-1

viii

LIST OF FIGURES

Figure Page

2-1 Character Usage 2-2

2-2 Source Statement Format 2-3

2-3 Types of Terms; 2-4

2-4 Character Constants 2-5

2-5 Truncation and Padding of String Constant Values 2-7

2-6 Examples of Assembled Constants 2-8

2-7 Concatenation of Variable Symbols 2-10

2-8 Examples of Length Attributes 2-12

2-9 Examples of Literals 2-13

2-10 Examples of Duplicate Literals 2-14

2-11 Types of Operators 2-16

2-12 Source Code Form 2-19

5-1 Example of EXTRN and ENTRY 5-3

5-2 Example of the COM Statement 5-5

8-1 Examples of EOU Statements 8-2

8-2 Examples of WDD and BDD Statements 8-3

8-3 Example of an ORG Statement with WDD and BRS 8-6

8-4 Examples of Padding and Truncation for Form Statements 8-9

10-1 Macro Definition 10-4

10-2 Macro Instruction - Positional Opera1nds 10-6

10-3 Macro Instruction - Keyword Operands 10-7

10-4 Examples of Substring Notation 10-11

10-5 Concatenation of Variable Symbols 10-11

10-6 Nesting of Macros 10-12

10-7 Using &SYSND.X with Inner and Outer Macros 10-14

10-8 Examples of &SYSN DX 10-14

10-9 Example of &SYSECT 10-15

10-10 Example of the AGO Statement 10-24

10-11 Examples of the Count Attribute 10-25

11-1 Example of Control Language Statements 11-4

11-2 Example of Control Language Statements 11-5

11-3 Example of Control Language Statements 11-6

11-4 Placing Files on Disk - Example 11-6

ix

l. INTRODUCTION

FUNCTION OF THE ASSEMBLER

The M RX/OS Assembler consists of a language and an assembler program. The language is a
set of codes and coding rules for writing a source program. The assembler program translates
the source program into an object program that can be executed by the system. The object
program produced by the assembler is in the form of relocatable object modules. This
translation process is called an assembly.

Two types of source statements can be expressed in the assembler language, machine
instructions and assembler instructions.

The machine instruction source statements provide mnemonic codes for all machine
instructions in the M RX 40/50 instruction set. Extended mnemonic codes are also provided
for the skip and branch instructions. Section 3 of this manual describes the general format
of the machine instructions .. A complete descriptiion of the machine instructions, addressing
techniques, and data representation is in the manual 7200 or 7300 Processing Unit
Reference.

The assembler instruction source statements spec:ify auxiliary functions to be performed by
the assembler program. These functions include:

• Checking and documenting programs

• Controlling address assignment

• Segmenting programs

• Defining data and symbols

• Generating macro and form instructions

• Controlling the assembly process through conditional assembly
statements

The macro facility enables the programmer to dHfine and use macro instructions. A macro
instruction is represented by an operation code which, in turn, stands for a sequence of
statements that accomplish the desired function.

Conditional assembly statements affect the order of source statement assembly and macro
generation, or the content of generated statements.

1-1

A listing of the source program statements and the resulting object program statements may
be produced with programmer control of form and content. A cross-reference list of symbol
definitions and references is also produced unless suppressed by the programmer. Errors
detected during assembly are indicated in the program listing. Warning errors may be
suppressed.

RELATIONSHIP TO THE OPERATING SYSTEM

The assembler program is a component of the M FIX 40/50 operating system and operates
under its control. The operating system provides the assembler program with input/output,
segment loading, library, and other services needed for its proper functioning. The assembler
program is called through Control Language statements and resides in a user partition during
execution.

SYSTEM REQUIREMENTS

The M RX 40/50 System equipment configuration required to execute the assembler
program is as follows.

• 16K bytes of main storage, of which at least BK bytes must be
available to the assembler (additional storage, up to 24K, will
increase the performance of the assembler)

• One source input device or data set

• One list device or data set

• One operator console

• One 660 disc storage drive

• The standard instruction set

1-2

2. WRITING SOUR~C:E ST ATEMENITS

To write source statements, the programmer should be familiar with the following topics:

• Character set

• Basic format of source statements

• Types o·f terms and expressions

• Coding form

CHA.RACTE R SET

Source statements may contain the following characters:

Letters A through Z, and $

Digits 0 through 9

Special + * ~~
Characters - (;

I) II

. 'blank
=I#@<>

The EBCDIC formats and ca1rd punch codes for tlhese characters are listed in Appendix A.
Any of the 256 punch combinations may appear inside a character constant, in comments,
or in macro instruction operands. The meanings of these characters, and combinations of
these characters, are explained in Figure 2-1.

2-1

Character Explanation Example

A through Z, and $ Used in symbols and character string constants C' ACCOUNT NO.'

0 through 9 Used in numeric constants and symbols TAG3,5825
-

Operand or suboperand separator HERE.THERE
- .

= Indicates a literal term or a keyword parameter =A+2
value

C' Defines a character constant (all characters to C'ABC'
the next apostrophe)

X' Defines a hexadecimal string constant (all hexa- X'1AFEE'
decimal characters to the next apostrophe)

P' Defines a packed decimal string constant (all P'425'
characters to the next apostrophe)

Z' Defines a zoned decimal string constant (all Z'-44'
characters to the next apostrophe)

I' Defines an integer string constant (all 1'4286'
characters to the next apostrophe)

" Defines a hexadecimal arithmetic constant "FF1A

Define relational (EO, GT, LT, NE, LE, GE) A<EO>B
<> and logical (NOT, AND, OR, EOR) operations A<AND>B

r----
L' Defines a reference to a symbol length L'SYMX

attribute

* Location counter reference or multiplication *+4
indicator 12*20

I Division indicator (Note that 1 /2=0 because 10/0
division always results in an integer, not a TAG/B
fraction.)

+ Addition Indicator TAG+12

Subtraction Indicator TAB-4

& Defines a variable symbol &TAC

() Separates an address-modifying index from the PAG(R2)
rest of the address, delimits sublisted operands,
or encloses operands or suboperands

Used for sequence symbols and concatenation .LAST

* Used for macro definition comments .*COMMENT

The character following this symbol is to be
evaluated for its literal value, not for its special

C'24# ;4'

function. In the example, the symbol following
the #sign is a semicolon, not a continuation
indicator.

; Continuation indicator THE STATEMENT IS;

@ Indirect Addressing @REG1,@TAG1

blank field separator ADDA 3,4

Figure 2-1. Character Usage

2-2

BASIC FORMAT OF SOURCE STATEMENTS

Source program statements have the fields outlined in Figure 2-2.

Name Opera ti on

Any symbol Machine ins·
or blank assembler in

macro instn
FORM instr

truction,
struction,
Jction, or
uction

Operand

Single expression,
several expressions,
or blank

Figure 2-2. Source Statement Format

Comment
-------1

Informational material
or blank

The name field entry is a symbol used to identify a statement. The name field is necessary
for certain statements, or when the statement is referred to in another statement, such as in
a Branch instruction.

The operation field entry is a predefined mnemoinic code (or mnemonic) which identifies
the function of a machine, macro, assembler, or FORM instruction. Mnemonics are designed
to be easily learned and remembered; for example, ADDR for Add Register-Register, or
EQU for an Equate assembler instruction.

The operand field entry defines or identifies the data involved in the operation. Most
statements have one or more operands, although some statements have no operands at all.
Each operand has one or moire terms, which may be used in a combination to form one or
more expressions. (Refer to immediately followiing text for a discussion of terms and
expressions.) An operand field may not have more than 35 terms. Operands of machine
statements generally represent storage locations., general registers, immediate data, or
constant values. Operands of assembler statements provide the information necessary for the
assembler to perform the desi!gnated operation.

The optional comment field contains any informational material the programmer wishes to
add.

TERMS AND EXPRESSIONS

A term is a symbol, character, or number that represents a value; an expression is a single
term or a combfnation of terms. An expression iis used in the operand field of a source
statement. The following text fully defines terms and expressions.

2-3

TERMS

Every term represents a value; the value may be assigned by the assembler program (symbol,
symbol length attribute, location counter reference) or may be inherent in the term itself
(constant, literal).

An arithmetic combination of terms is reduced to a single arithmetic value by the assembler.
An arithmetic value is represented as a 16-bit binary value in two's complement form. A
logical value has a range of 0 through 65,535; and an arithmetic value has a range of -32,768
through 32, 767. Limitations on the value of an expression depend on its use. For example, a
term designating a general register must have a value between 0-7 inclusively; a term
representing an address must not exceed the size of storage.

A term is absolute if its value does not change upon program relocation. It is relocatable if
its value changes upon program relocation.

The terms used in assembler statements are outlined in Figure 2-3. An explanation of each
type of term and the rules for its use are provided in the following text.

Constants

Symbols

Location
Counter

String Constants

Arithmetic
Constants

Ordinary Symbols

Variable Symbols

Sequence Symbols

Reference *-20

Symbol
Length
Attribute

Literals

L'TAB1

=HERE

Character String
Com.tant

Hexadecimal String
Constant

Packed Decimal
String Constant

Zoned Decimal
String Constant

lnteuer String
Com.tant

Decimal Arithmetic
Con~tant

Hexadecimal Arithmetic
Constant

Symbolic Parameter

System Variable Symbols

Set Symbols

Figure 2-3. Types of Terms

2-4

C'ABC'

X'C49FE'

P'-244'

Z'246'

l'-323'

2316

"2FA

&TAB1

&SY SN DX

&TAB3

CONSTANTS

Constants are terms whose values are inherent in the terms themselves. They specify
machine values or bit configurations directly, rather than by equating the values to symbols
and then using symbolic references. Constants represent such program elements as
immediate data, masks, registers, addresses, and address increments.

Constants are string or arithmetic. String constants are of variable size; arithmetic constants
are 16 bits long. Examples of all types of constants are presented in Figure 2-6.

String Constants

A string constant can only be used as a single term expression, or in a relational expression.
In a relational expression, both terms must be of the same type (character, hexadecimal,
etc.}, for example: C'ABCE'< L T>C'&P1'.

Character String Constant

A character string constant is written as the letter C followed by a character string enclosed
in apostrophes, for example: C'STRING'. To represent the literal value of an apostrophe, an
ampersand, a semicolon, or a pound sign as part of the character constant, the character
must be immediately preced13d by an escape character, which is the pound sign. The length
of a character constant is equal to the number of characters in the constant, excluding the
escape characters, which do niot appear in storage.

Examples of character constants are shown in Figure 2-4. In the last example of Figure 2-4,
the generated code is: THIS CHARACTER STRING HAS MANY SPECIAL CHARACTERS
IN IT:#;'&.

OPERAND

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 :34 35 36 37 38 39 40 41 42 43 44 45 46 4 7 48 49 50 51 52 53 54 55 56 5 7 58 59 60 61 62 63 64 65 66 67 68 69 70 71 '

• .'Ill_t_S~ ~ A ~~A6.E.' ~ ' . ~ L ~ • L. L L L ' ~ L_~ L • ' L-L---'- ' L

J. • J. L.. - J_ -'- _ • J. l J L __ J l ..l • ; 1- 1 • .L ...L ,._ .L- J, .l ... - .. L J _ __L.._ ___ l.______L__---L..__....J. 1._ ~!~--I l J

'1' ltl..S. _C,\lAR.A.C...T.ER. ~:r.R..tN.~i .. L _.____,_ L--'--"---'---'---~-~ ' ' ' ' '-·· L

' .C.O'-lTI..tlU.El>.'' ' L L L L .. ·' .. LL -'-·--·~···-'-·~---L.~.-· ' • ' ••• ' '

l J I -'- _.1._ _ _l__ .J L---~---.l 1 I I 1 .._ ___ L L I 1 J._ . ..L ,\ ___ _.L __ 1 ,1.__...J.....___l __ .L_L_____L._j_ ___ L l l l I

__ ' .T ~ -'.AA.e AC_:T JiJ~ ~"1' lt.1N44' .;_is._ :tto:t .. tD.N~Tl .NU .E.D.'.

-·' :til'" :s:ritl.H6. i\~a.:&~ MA:N:~: sr&-U:~L: ~t~~:Ali~: i~t·tXT~:4t~-;-:i'#t':

Figure 2-4. Charac:ter Constants

2-5

If the following characters are not preceded by an escape character in a character constant,
they have the meaning given below:

Character Mean~

A character constant is continued on the next line

Encloses the characters of a character constant

& Variable symbol

Next character retains its literal value

Hexadecimal String Constant

A hexadecimal string constant is written as the letter X followed by a string of hexadecimal
digits enclosed in apostrophes, such as: X'C49F E'. Each hexadecimal digit is translated into
its four-bit equivalent. The maximum size of a hexadecimal string constant is limited to the
maximum number of digits that can be contained on two coding lines. If an odd number of
digits is specified, the leftmost four bits in the leftmost byte are set to zero. The implied
length of the constant is half the number of hexadecimal digits in the constant, rounded to
the next higher integer.

Packed Decimal String Constant

A packed decimal string constant is written as the letter P followed by a signed integer
number enclosed in apostrophes, such as: P'-244'. If the sign is omitted, the number is
assumed to be positive. Each pair of decimal digits is translated into one byte. The rightmost
byte of a packed field contains the rightmost digit and the sign. Signs generated are "C15"
for plus, and "D15" for minus. The maximum length of a packed decimal string constant is
limited to the number of digits that can be contained on two coding lines.

Zoned Decimal String Constant

A zoned decimal string constant is written as the letter Z followed by a signed integer
number enclosed in apostroph,es, for example: Z'246'. If the sign is omitted, the number is
assumed to be positive. Each decimal digit is translated into one byte. The rightmost byte
contains the sign and the rightmost digit. Signs generated are "C15" for plus, and "D 15" for
minus. The maximum length of a zoned decimal string constant is limited to the number of
digits that can be contained on two coding lines.

Integer String Constant

An integer string constant is written as the letter I followed by a signed integer number
enclosed in apostrophes, such as: l'-246'. If the sign is omitted, the number is assumed to be
positive. An integer string constant is translated into its four-byte binary equivalent. Integer
constants consist of 1-10 digits with a value ranging from -231 to 231-1. The constant is
word aligned when used in a WDD statement or a literal.

2-6

When string constants define data in storage, t1runcation and padding of their values is
performed according to the rules presented in Figure 2-5.

Explicit Length= Explicit Length> Explicit Length<
Constant Implicit Length Implicit Length Implicit Length

Character C' ABC'(3)=ABC Left justify. Left justify.
Blanlk fill on right. Truncate on right.

C'ABC' Warning message is given.
C'ABC'(4)=ABC

C'ABC'(2)=AB

Hexadecimal Right justify. Right justify. Right justify.
Zero fi II on left if the Zero fill on left. Truncate on left.

Xr10A' constant contains an Warning message is given.
odd number of digits. X'1 OA'(3)=0001 OA

X'10A'(1)=QA
X'10A'(2)=010A

Packed Right justify. Right justify. Right justify.
Decimal Zero fill on left if the Zero fill on left. Truncate on left.

constant contains even Warning message is given.
P'-24' number of digits. P'-24' (3)=00024D

P'-24'(1)=4D
P'-24'(:2)=024D

Zoned Z'123'1:3l=F1 F2C3 Right justify. Right justify.
Decimal Zero fill on left. Truncate on left.

Warning message is given.
Z'123' Z'123'(4)=FOF1 F2C3

F'123'(2)=F2C3

Integer Right justify. Right justify. Right justify.
Propagate sign on left. Propagate sign on left. Truncate on left.

l'-758' Sign is lost.
I'-758'(4)=FF FF F DOA 1'-75:8'(6)= Warning message is given.

FFFFFFFFFDOA
1'-758'(1)=QA

Figure 2-5. Truncation and Padding of String Constant Values

Arithmetic Constants

Arithmetic constants can b1e used in multi-term expressions. An arithmetic constant is
assembled as its two-byte binary equivalent. The maximum size of an arithmetic constant is
216-1. If arithmetic constants are used in statements where an explicit size is specified,
truncation and padding follow the same rules as those for an integer string constant.

Decimal Arithmetic Constaint

A decimal arithmetic constant is written as an unsigned integer number of 1-5 digits, for
example: 20.

2-7

Hexadecimal Arithmetic Constant

A hexadecimal arithmetic constant is written as quotation marks followed by a string of 1-4
hexadecimal digits, for example: "2FA. Each hexadecimal digit is assembled as its four-bit
binary equivalent.

Type Example Generated Hexadecimal Code

Character String C'F12AY9•' C6F1F2C1E8F95C

C'$Z#'# # 5' 5BE97D7BF5

C'B' C2

Hexadecimal String X'C49FE' OC49FE

X'F2' F2

x·c· oc

Packed Decimal String P'14' 014C

P'925860' 0925860C

P'-2' 20

P'-2596' 02596D

Zoned Decimal String Z'14' F1C4

Z'925860' F9F2F5F8F6CO

Z'-2' D2

Z'-2596' F2F5F9D6

Integer String 1'14' 00 00 00 OE

1'925860' 00 OE 20 A4

l'-2' FFFFFFFF

l'-2596' FFFFF5DC

Decimal Arithmetic 14 OOOE

302 012E

57399 E037

Hexadecimal Arithmetic "14 0014

"F2A OF2A

"E09F E09F

Figure 2-6. Examples of Assembled Constants

SYMBOLS

A symbol is a character or combination of characters used to represent locations or arbitrary
values. Symbols, through their use in name fields and operands, provide the programmer
with an efficient way to name and reference a program element. A symbol is defined when
it appears in the name field of a source statement.

2-8

In general, symbols must conform to these rules:

1. The symbol must not have more th.an eight characters.

2. The first character must be a letter, a period, a dollar sign, or an
ampersand (&).

3. The remainin!l characters may be digits, letters, or dollar signs. If the
first character is a period or an ampersand, the second character must
be a letter or a dollar sign.

4. The first blank after the start of a symbol terminates that symbol.

5. Symbol definitions cannot be continued.

The assembler has three types of symbols: ordinarv symbols, variable symbols, and sequence
symbols. Sequence symbols and variable symbols are used only for the macro language and
for conditional assembly.

Ordinary Symbols

An ordinary symbol consists of 1-8 alphanumeric characters, the first of which must be a
letter or a dollar sign. Ordinary symbols identify program locations or arbitrary values. The
value of an ordinary symbol may be absolute or relocatable. Examples of ordinary symbols
are:

BETA

X242

$ENTRYP1

An ordinary symbol that names an instruction, a storage area, a data definition, or a control
section is the address of the leftmost byte of the identified field. Address values are
relocatable terms. The value of an address symbol must not exceed 216-1.

An ordinary symbol may bei defined only once in an assembly. That is, each symbol used as
the name of a statement must be unique within that assembly. However, a symbol may be
used more than once in the name field of a COM or CSECT assembler statement, because
the coding of a control section may be suspended and then resumed at a subsequent point.
Some statements require that a symbol in the operand field be previously defined.

During assembly, the assembler assigns a length attribute to all ordinary symbols. The length
attribute of a symbol is the l1ength, in bytes, of the storage field whose address is represented
by the symbol. For example, a symbol naming an instruction that occupies four bytes of
storage has a length attribute of four.

2-9

Variable Symbols

A variable symbol is a symbol that is assigned different values by the programmer or the
assembler. The three types of variable symbols are:

1. Symbolic parameters - used only in macro definitions; values are
assigned by macro instructions.

2. System variable symbols - used only in macro definitions; values are
assigned by the assembler.

3. Set Symbols - used anywhere in the source program; values are
assigned by SET or GBL statements.

Variable symbols consist of an ampersand (&) followed by one to seven alphanumeric
characters, the first of which must be a letter or a dollar sign. Examples of variable symbols
are:

&BETA

&X24

&P1

Concatenation of Variable Symbols

When a variable symbol is assembled, the current value assigned to the variable symbol is
substituted for the variable symbol. If a variable symbol is immediately preceded or
followed by other characters or by another variable symbol, concatenation of the variable
symbol with another variable symbol or character occurs. To concatenate a variable symbol
with a letter, digit, period, or left parenthesis that follows the symbol, a period must
immediately follow the variable symbol, for example: &VAL.8. The period merely indicates
the end of the variable symbol and does not appear in the generated code. The size of a
concatenated symbol is limited only by the maximum statement size. However, the
generated symbol is limited by the rules which pertain to the generated name, operation, or
operand field. See Figure 2-7 for examples of the concatenation of variable symbols.

Assume that the following values have been assigned to these variable symbols:

Initial Cod~

&Pl&P2
&Pl.8
&P3.R7
B.&P2
&Pl
703&P2

&Pl = ROP
&P2 = 5
&P3 =@

Generated Code

ROP5
ROP8
@R7
8.5
ROP
7035

Figure 2-7. Concatenation of Variable Symbols

2-10

Sequence Symbols

Sequence symbols consist of a period followed by one to seven alphanumeric characters, the
first of which must be a letter or a dollar sign. Sequence symbols can be used in the name
field of any statement except MACRO, GBLA, and GBLC, and in the operand field of only
ADO or AGO statements. The programmer can use sequence symbols to vary the sequence
in which statements are processed by the assembler. Examples of sequence symbols are:

.LAST

.HERE

LOCATION COUNTER REFERIENCE

A location counter assigns storage addresses to program statements. It is the assembler's
equivalent of the instruction counter in the computer. As each machine instruction or data
area is assembled, the location counter is first adjusted to the proper boundary for the item
(if adjustment is necessary)' and then incremented by the length of the assembled item.
Thus, it always points to thi:? next available location. If the statement is named by a symbol,
the value of the symbol is the value of the location counter before addition of the length.

The assembler maintains a location counter for each control section of the program and
manipulates each location counter as previously described. Source statements for each
section are assigned addresses from the location counter for that section. The location
counter for a given control siection assigns locations in storage without regard to assignments
made within other control se!ctions.

Thus, if a program has multiple control sections, all statements identified as belonging to the
first control section will be assigned from the location counter for section 1; the statements
for the second control section will be assigned from the location counter for section 2, etc.
This procedure is followed whether the statements from different control sections are
interspersed or written in control section sequencH.

The location counter setting is controlled by using the ORG and ALIGN assembler
statements. The counter affected by an 0 RG statement is the counter for the control
section in which it appears. lrhe maximum value for the location counter is 216-1.

The programmer can refer to the current location counter by using an asterisk in the
operand field. The asterisk represents the value of the current location counter at the start
of the current statement. This value is relocatable.

An example of the use of the location counter is:

NAME OPERATION OPERAND

2-11

If the location counter is at 0100 when this statement is encountered, the following data is
generated:

Location

0100
0102
0104

SYMBOL LENGTH ATTRIBUTE

Value

0100
0100
0100

The length attribute of a symbol may be used as a term by writing L' followed by the
symbol, for example: L'SYMX. The length attribute of SYMX is then substituted for the
term. The length attribute of an ordinary symbol is the length, in bytes, of the storage field
whose address is represented by the symbol.

_The length attribute of * is invalid. If the operand of an EQU statement is an asterisk or an
arithmetic constant, the symbol defined by the EOU statement has a length attribute of
one. In any other context, the length attribute of an arithmetic constant is two. Examples
of symbol length attributes are shown in Figure 2-8.

NAME OPERATION OPERAND

'·"' •• > .> __ L__.<_ __ .L_~ _i_ _ __L ~-- .L--L--~--"-~--~--"---~-~--~--·~--'--~-~-·
ON,.S.T.AN.T.). ' >..L-"--~--+--L--<----1---.L .. L ' ._ ---'---' ,_ ·---• __ ,_ __ .L--.L~ __ J __ ..L

J -1 .L ,_ .L ,_ .L .L L _ __J_ _____ .,.1. __L... _ -'---~-.L ___ .J_ .L __ .1._ ___ -I. L _J .-1.- _ _J_ ·-'- _ _.__ -.-1- -~-----1 ·-..!-~-,_____,_____..._______._

S:6.*.l.D .. 1 > • • ; L-'-- c ___ L_J,_,,L_~- -'--~--'--'- .i __ .__ J.~ _ _..L _, _ _ i__ L L ,l,_

c.o.tts.l:ANJ. .lit .£.Q.Lt .~1T.AT.E.11£.Nl'.). 1 _L_i__J._ _ _L _ _L

..._ __ __._ •· J.._ -1-_l .l J --.1. _..1_ l-J. l ,__ j_ ___ _J ___ l. J .L _ _. J. L __J_ ____ ..L.... __ J.._ __ ___._ __ ..l ___ ..._ ___ .J.-------t.~-'-

,s:t:~ltc.1":iol! ~is. ~'i i~V:-ris :Loli&l. -:--:=-:
I .1. -'- -'- .L •. l 1 L .J. ,...__..J._ ____ _.___ . .L_ . .L .• -'- J_ ___ .J....___._________._ ___ L __ __i._____._ ____ __ _._~ __ _J._ __ .._ __ ~..J___.&._ ___1...

.c.rR .R.~f.~1N. .E&U. ...ST.AT.E..HE.N~ll _ ·-~-- .L J _ _._

Figure 2-8. Examples of Length Attributes

2-12

LITERALS

A literal term is used to introduce data into a program. The formats of a literal term are as
follows.

=a

=a(b,c)

=a(b)

=a(,c)

Where:

a = Data value to be generated (required); any legal expression
eixcept another literal term.

b = Length specification (in bytes): a positive absolute expres
sion. If omitted, the length specification is the implied size
of the expression.

c l=tepetition factor; a positive absolute expression. If omitted,
a repetition of 1 is assumed. If the size or length is specified
symbolically, the symlbol must have been previously defined.

Examples of literals are shown in Figure 2-9.

==C'ABD'

=C'ABD'(4,3)

=A+B/2+4

=P'-446'(6)

=X'FF00'(,3)

Invalid: literal cannot define another literal.

Valid: same as =C'ABD ABO ABO'

Valid: implied length is the length of symbol A; implied
repetition fa1ctor is 1.

Valid: specified lenigth is 6; implied repetition factor is 1.

Valid: implied leng1th is 2; specified repetition factor is 3.

Figure 2-9. Examples of l.iterals

The assembler generates the literal data, stores this data in a literal pool, and places the
address of the stored data in the operand field of the statement using the literal. The
position of the literal pool may be controlled by the programmer with the L TORG
assembler statement. l·f L TORG is not specified at the end of a control section, the literal
pool for that segment is placeid at the end of the fiirst control section.

A literal can be defined at any point in a program by specifying the literal in the operand of
the statement in which it is used. In contrast, data definition statements define and label
data, and then the label is useid to specify the data.

A literal may not be combined with any other term, nor may a literal be used as a receiving
field of a statement that modifies storage.

Literals are relocatable, because the address of the literal, not the literal itself, is assembled
into the statement using the literal.

2-13

If duplicate literals are specified within one literal pool, only one literal is stored. Literals
are duplicate if their final specifications, size, and repetition factors are identical on a
character-by-character basis. A literal may be a duplicate even when it appears to be
different (see examples in Figure 2-10). A literal is a duplicate if it contains no forward
references and the expressions evaluate to the same value as the corresponding expressions
of an existing literal.

A literal which contains a reference to the location counter is stored even if it duplicates
another literal (see examples). If an expression used in a literal term contains a forward
reference to a symbol, the symbol is assumed to represent a two-byte value.

Examples of duplicate literals are shown in Figure 2-10.

EXPRESSIONS

=C' ABC'(4,3)
=C'ABC'(4,3)

=C'ABC'

=X'C1C2C3'

=A+B

=B+A

=C<EO>D

=1

=*+10

=*+10

Only one literal is stored.

Both literals are stored.

Only one literal is stored if A and Bare predefined symbols.

Only one literal is stored if C is defined to be equal to D, so that the

expression is equal to 1 .

Both literals are stored

Figure 2-10. Examples of Duplicate Literals

An expression is defined as one or more terms linked by arithmetic, relational, or logical
operators. Expressions may be single term or multi-term (see examples below).

Single Term Expressions Multi-Term Expressions

29 SYMX+40

"FO A+B/2+10

SYMX (X< OR >"FOFO)< EQ >(SP2<0R >"FOFO)

* (((A+4)/2+1)*2< AND >"OOFF) < EQ >24)

L'SYMX *+L'BETA

P'-240' A+B< LE> SUM

2-14

During assembly, all expre:ssions are resolved to a single value. Figure 2-11 provides an
explanation of all types of operators.

The rules for coding expressiions within an operand field are as follows.

1. An expression may not start with an arithmetic, relational, or logical
operator. However, an expression may begin with a unary operator:
positive sign (+),negative sign (-),or logical complement(< NOT>).
A unary operntor indicates the state of the numbers it precedes (such
as negative, positive, or complement), rather than indicating an
arithmetic operation (such as addition or subtraction).

2. An expression may not contain two terms in succession.

3. An expression may not contain two operators in succession, except
for the logical operator < NOT>, which may follow the logical
operators <AND>, <OR>, and <EOR>.

4. A multi-term expression may not contain a literal.

5. In a multi-term expression, string constants are restricted to
relational operations.

EVALUATION OF EXPRESSIONS

A single term expression has the value of the term involved.

A multi-term expression is rnduced to a single arithmetic value as follows.

1. Each term is given its value.

2. Operations are performed from left to right using the following rules
of precedence:

a. Unary arithmetic operatioins: positive (+)and negative(-).

b. Arithmetic multiplication (*)and division (/).

c. Arithmetic addition {+)and subtraction {-).

d. Relational operations (<EO>, <NE>, <LT>, <GT>,
<LE>, and <GE>}.

e. Unary logical complement (<NOT>).

f. Logical product (<AND>).

g. Logical addition (<OR>) and subtraction(< EOR >).

2-15

3. The expression is computed to 32 bits, and then truncated to 16 bits
or less, depending on its contextual use.

4. Division always yields an integer result. For example, 1/2*10 yields a
zero result, whereas 1O*1 /2 yields 5. Division by zero is permitted
and yields a zero result.

5. A relational operation yields a binary result of 0 or 1. If string
constants are used in relational operations, both relational terms
must be of the same type; thus, P'246' < EO> Z'246' is illegal.

6. Logical operations are performed on a bit-by-bit basis equivalent to a
masking operation. A non-zero value is considered true and a zero
value is considered false.

Arithmetic Operators

Operator Meaning Example

+ Addition A+B

Subtraction 10-C

* Multiplication D*16

I Division 25/X

Relational Operators

Operator Meaning Example

<EO> Equal to A<EO>B

<NE> Not equal to A<NE>B

<LT> Less than 17<LT>&P1

<GT> Greater than 69<GT>TAB

<LE> Less than or equal to 73<LE>M

<GE> Greater than or equal t•::> "3F<GE>&TAB1

Logical Operators

Operator Meaning Example

<NOT> Logical complement (one's <NOT>A
complement)

<AND> Logical product A<AND>B

<OR> Logical addition (inclusive or) A<OR>B

<EOR> Logical subtraction (exclusive or) A<EOR>W

Figure 2-11. Types of Operators

2-16

Parentheses are used in the normal role of arithmetic grouping to change the order of
evaluation. Parenthesized parts of an expression are evaluated before the rest of the terms in
the expression. In the case of nested parentheses, the innermost parentheses are evaluated
first. For example, the expression ((A+4)2+1)*8 is evaluated as follows, if A=10 and 8=3.

1. A+4 14 giving (14/2+1)*8

2. 14/2 7 giving, (7+1)*8

3. 7+1 8 giving 8*8

4. 8*8 24 giving 24

ABSOLUTE AND RELOCATABLE EXPRESSIONS

An expression is absolute ii: its value is unaffected by program relocation. It is relocatable if
its value is changed by program relocation.

Absolute Expressions

An absolute expression mav contain relocatable terms (RT) alone, or in combination with
absolute terms (AT), provided the following condlitions are met.

1. The relocatable terms must be paired or used in a relational
operation. The terms in a pair miust have opposite signs, but do not
have to be contiguous, as in the example: RT +AT-RT. Each pair
must be relocated to the same location counter.

2. A relocatable term or expression must not enter into a
multiplication, division, or logical operation. For example:
RT-RT*10 is invalid, while (RT-RT)*10 is valid.

3. The result of a relational operation is absolute regardless of the
relocatabilitv of the terms or expressions used in the operation.

4. Relocatable terms or expressions used in a relational operation are
considered absolute. The relocatability attribute is disregarded. Thus
RT< LT> RT is valid even if the two terms or expressions do not
appear in thH same control section.

5. If an expression that enters into a relational operation has multiple
relocation attributes, an error indlicator is given and the operation is
performed as if the value of the expression were absolute, for
example: RT<EO>RT1+RT2.

2-17

Relocatable Expressions

A relocatable expression reduces to a single relocatable value. A relocatable expression may
contain relocatable terms alone, or in combination with absolute terms, provided the
following conditions are met.

1. All the relocatable terms but one must be paired, or be involved in a
relational operation.

2. The leftover relocatable term must not be directly preceded by a
minus sign.

3. No relocatable term may enter into a multiplication, division, or
logical operation.

Examples of Absolute and Relocatable Expressions

The following examples illustrate absolute and relocatable expressions. A is an absolute
term; BR 1 and CR 1 are relocatable terms within the current control section. XR2 is a
relocatable term in a control section different from that in which BR1 and CR1 are defined.
Examples of absolute and relocatable expressions are:

Absolute Expressions Relocatable Expressions

A-BR1+CR1 A* A+ BR 1+XR2-C R 1

A BR1

BR1+A-CR1 BR1+CR1-*

BR 1+(XR2<LT>CR1)+A-CR1 (BR1 < EQ > XR2)*10+CR1

CODING FORM

Figure 2-12 illustrates a source code form provided for convenience to the programmer and
the keypunch operator. Since assembler statements are free form, the various fields (name,
operation, operand, and comment) need not begin in any specified column. The only
restrictions are that the fields appear in the sequence shown, be separated by one or more
spaces, and the name field begin in column 1. If the name field is omitted, the operation
field can begin in any column after column 1.

All statements are contained in columns 1 through 72. Columns 73 through 80 are reserved
for identification and statement sequencing. Thus, column 1 is called the begin column and
column 72 the end column. The standard begin and end columns can, however, be altered
by the ICTL assembler statement. (This statement is described in Chapter 6. Program
Control Statements.)

2-18

.,,
.s·
c
Cil

~
~
en
0
c

~ iii
~

<O ~
i3..
CD .,,
0 ...
3

Assembler Coding Form Punching Instructions Date..__ ______ Page __ of __ _

:~1 I I I I I Programmer __________ ~

Program. ____________ _

NAME OPERATION OPERAND IDENTIFICATION

t-
1 3 4 5 7 8 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

~---~ ~--'---+-t--~~--~~~-~~--+--+-~~-~..___~~~~~~~~~~~

f----'--'-~

_..._____._ ... L --'----+-----'-~~_.._~~~- ·-'-
-~~~~~~-~~-~~~~~-~~~-'--~t--~~~'---'~~~----i

i---------'---~-~~~+--r---~~~~-~~~,___,1----'~-~~~~~~~~~~~~~~~~~~~~~~~~..___..___~~~~

1-· ••

. -+--+- -

•-+---1

~ -~ ~~- t-+-~ -~ ~

f---'-~~~-~-. -~ ++-'- ~ ~

f---'- ~-~ ~ -~--------+-+· •. - •

~-~--~ ~-'--l-+ -~-~

I-'--~~...__ _...__"""-++-~-- --1..._l....~---+----+-~~~~~-.......L..---L..-.J-.._.,L.__J..._ _ _._ _ _._ ...l---'--~---L---1--L-~~~ -l....l-.-J..-. •. ..1..-.J...-~~-.L---'---L----L..- . ..t.

--'-

~___~ _..._ __ .J __ .1...._ L---1... •• ~--~~---'--''----'l--'---'~'--'---'----'----'-----t

1 2 3 4 5 6 7 8 9 10 11 12 1314 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

NAME FIELD

If the name field is included, it must begin in the begin column (column 1). If the name
field is omitted, the begin column must be blank. A name cannot be more than eight
characters long after substitution, and cannot be continued on the next line.

OPERATION FIELD

The operation field begins after the first blank column. More than one blank column can
separate the name field and the operation field; however, within the operation field, blanks
are not allowed. The operation field after substitution cannot be more than eight characters.
It cannot be continued.

OPERAND FIELD

Operands identify or describe data used in a statement. An operand may be actual data, a
storage address, a register number, a field length, mask, etc. A comma must separate
operands; embedded blanks or spaces are not allowed, except in strings.

COMMENT FIELD

To include comments on the same line as an existing statement, the programmer must begin
the comment at least one space after the operand field. A comment cannot extend past the
end column (column 72). An asterisk (*) or a period and asterisk (.*) starting in the begin
column indicate a comment statement. The asterisk is used for commentary notes on the
source program; the period and asterisk are used for comments in a macro definition.
Comments do not affect the assembled program, but are printed in the assembly listing.

The following example illustrates the name, operation, operand, and comment fields. LOAD
REGISTER on the first line is a comment because a space separates it from the last operand.
The asterisk on the second line in column 1 specifies that all characters on that line are
comments.

NAME OPERATION OPERAND

1 2, 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 3(! 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

.aG.l.N. Ol>._ AC?·~!· ~L.OAJ>. .R,E.G.l.ST.EA .
l__J:_JWJt :TA& 'L; ' • '.~.' •

IDENTIFICATION-SEQUENCE FIELD

The identification-sequence field is used for identification or sequencing of statements. This
optional field is normally contained in positions 73-80. The contents of the field appear in
the source listing. The programmer may verify the statement sequence by the use of the
ISEQ assembler statement (discussed in Chapter 6).

2-20

STATEMENT CONTINUATION

A semicolon (;) indicates that a statement is continued to the next line. The first non-blank
character in the next line is the start of the continuation line. Therefore, a blank cannot be
the first character of a continuation line. Only on1e continuation line is allowed for source
statements, except for macro instructions, prototype statements, and GBL statements. Any
characters after a semicolon are ignored by the assembler and considered as comments. A
semicolon preceded by an escape character retaiins its literal value. The first non-blank
character of a continuation line cannot be a semicolon; nor can a continuation line be
entirely blank.

The operands in the following example are two character constants: ACCOUNT; and
TOTAL EQUALS THE FOLLOWING. The first se!micolon retains its literal value because it
is preceded by an escape character. The second semicolon indicates to the assembler that the
second operand is continued on the next line beginning with the first non-blank character.
HEADINGS, which appears a1fter the semicolon, is a comment. Note that the blank between
TOT AL and EQUALS must be coded on the first line, not in the continuation line.

NAME OPERATION OPERAND

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40. 41 42 43 44 45 46 47 48 49 50

GI.K . . nJ>. ~ ... Jc~~.ALC.O~U.N,T~ ;~•.,e,. :r.o.T.A.L, .;.tf.l:..AD.lH.GS.
•-' '-·~- L. ~ IE.,_QLlAL.S, .THE P._LO,LL.O.W:tNG.: .• l ... ' .L .. J.~ ..•

2-21

3. MACHINE INSTRUCTIONS

SOURCE STATEMENTS

Machine instruction source statements consist of:

• Name field (optional)

• Mnemonic operation code

• Operand field

• Comment field (optional)

An example of a machine instruction source statement is given below. (The data flow of
most machine instructions is operand 1~operand 2.)

NAME OPERATION OPERAND

-!---+-- ~--- ---- _ _____,,___.____

1 l J 4 ~ fi I 8 9 10 11 ll'~16 17 18 19 20 21 22 l3 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

NAM 1.2.. J....OD. ArtO.llNT!Rlt,,k.t IHI.S. S"E.T.S .UP. JU

INSTRUCTION ALIGNMENT AND CHECKING

All machine instructions are aligned by the assembler on even-byte boundaries. The
assembler advances the current location counter the amount necessary to ensure correct
alignment of the assembled instructions. The contents of the area between the prealignment
location counter and the postalignment location counter is unchanged. All expressions that
specify storage addresses are checked to ensurn appropriate alignment for the instruction
format in which they are usied.

OPERANDSANDSUBOPERANDS

Machine instructions have 0, 1, or 2 operands. Operands are written as a single operand, or
as an operand with 1 or 2 suboperands. The possible formats of an operand are shown
below.

op

op(subop)

op(,subop)

op(subop,subop)

3-1

Operands specify immediate values, memory locations, or general register numbers, while
suboperands specify explicit lengths or index registers.

If indexing is not desired for an instruction, the suboperand used for indexing is omitted.
General register zero cannot be used by machine instructions as an index. Its specification as
an index is flagged as an error.

The at-sign (@) in the first character position of an operand specifies indirect addressing of a
memory address or general register, as in the following example.

NAME OPERATION OPERAND

-------1 -+---------------+~- . . - -···- ---
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

LO.l\. i)A.D DA~Si C.l\EGJ L)_,, .<iPLG.~

NAME AND LENGTH ATTRIBUTES

Any machine instruction statement may be named by a symbol, to which other assembler
statements can refer. The value attribute of the symbol is the address of the leftmost byte
assigned to the assembled instruction.

The length attribute may be 2, 4, 6, or 8, depending upon how many bytes are used for an
instruction.

The length field of 6 or 8 byte instruction formats can be explicit or implied. To imply a
length, the length suboperand is omitted. The omission indicates that the length field is
either the length attribute of the expression specifying the effective address, or the length of
the literal.

The length attribute of an expression is the length attribute of the leftmost (or only) term in
the expression.

NOTATION USED TO DESCRIBE MACHINE INSTRUCTIONS

The source formats of the operands are defined using the following symbols.

Op Code

R

E

M

The operation codes are presented in hexadecimal (00 through FF).

Absolute expression specifying a general register number, 0-7. The register
may be used as a sending or receiving field (0-7), or as an index register
(1-7 only).

Absolute expression specifying an extended register, 0-15 (for ROX and
WRX only).

Absolute or relocatable expression that specifies a memory address,
0-65,535.

3-2

An absolute expression specifying an immediate value; the value varies
depending on the instruction. The value may represent an amount used in
an arithmetic operation, a shift count, a skip count, or a bit number.

L Absolute eJ<pression specifying a field length, usually 0-255, but longer for
some instructions. For certain instructions the length of an operand field
may be defined in the instruction. The length specified in the instruction
overrides any previous field length definition, but is only in effect for that
instruction ..

@ An at-sign (@) in a source operand indicates indirect addressing, an
optional feature. For the instructions in which a register is a sending or
receiving field, the at-sign indicates indirect addressing for R 1 or R2. If a
field in memory is the sendin{I or receiving field, the at-sign indicates
indirect addressing of M 1 or M2.

() I nde>c registers and field lengths are optional; they are enclosed in
parentheses in a source operand. A source operand using both an indexing
and a fluid length specification would be represented like this:
M 1 (L.1, R 1). The comma in the parentheses must not only be coded when
both the length and index register are used, but also if the second operand
is used, as follows: M1(L1) or M1(,R1). This enables the assembler to
distinguish between the two specifications in parentheses.

• A bullet following a mn 1emonic indicates the operands are
byte-addressable; all other operands are word-addressable only.

An R, M, I, or Lin source operand 1 is identified as Ri, M1, 11, or L1; in source operand 2
they are identified as R2, M2, 12, or L2.

The two major operand fields must be separated by a comma; no blanks are allowed
anywhere in the operand fa~lds.

Remember that the at-sign and any designations in parentheses (field length and index
registers) are almost always optional; if any of 1these designations are not optional, this fact
will be noted. Data flow is usually op_erand 1 to operand 2, UQJ~ss stated otherwise.

> r- ---- ·-·--·------·-·N·--··-"~

SUMMARY OF MACHINE INSTRUCTIONS

The M RX 40/50 System machine instruction set is divided into two major categories:
General-Purpose instructions and System instruc:tions. General-purpose instructions are the
instructions needed to solv13 most data processin!~ problems using a defined software system.
System instructions are specialized instructions used to interpret and alter a software
system.

3-3

The General-Purpose instructions may be used at any time; the System instructions require
certain preconditions and cautions. For information on using the System instructions refer
to the publication 7200 or 7300 Processing Unit Reference.

Within these two major categories, the instructions are divided into functional groups, and
these functional groups are listed in alphabetical order, as shown in the following table.

General Purpose Instructions

Arithmetic
Bit-Oriented
Boolean Logic
Branching
Compare
Control
Data Conversion
Data Transfer
Shift
Optional: Floating Point

System Instructions

Control
1/0

The instructions in each functional group are listed alphabetically by mnemonic. This rule
holds for all instructions except for logical pairs or groups of instructions - these
instructions are listed alphabetically according to the first instruction of the pair. For
instance, PAKX (Pack) will be followed by UNPX (Unpack), and SB (Skip Back
Unconditional) will be followed by SF (Skip Forward Unconditional).

3-4

GENERAL-PURPOSE INSTRUCTIONS

Arithmetic

Mnemonic Name Code Lgth Operands

ADD Add Memory-Register A2 4 @M1 (R1),@R2

ADDO Add Direct B2 4 I 1 (Rl),@R2

ADDI Add Immediate 32 2 l1,@R2

ADDK Added Packed Decimal• 52 8 M1 (L1 ,Rl),M2(L2,R2)

ADDM Add Memory-Memory 62 6 @M1 (R1),@M2(R2)

ADDA Add Register-Register 22 2 @R1,@R2

ADDT Add Two-Word 72 4 @M1(R1),@R2

DIV Divid13 Memory-Register A9 4 @M1 (R1),@R2

DIVD Divide Direct B9 4 l1(R1),@R2

DIVK Divide Packed Decimal • 7C 8 M1 (L1,R1),M2(L2,R2)

DIVI Divide Immediate 39 2 l1,@R2

DIVM Divid1~ Memory-Memory 69 6 @M1 (R1),@M2(R2)

DIVR Divide Register-Register 29 2 @R1,@R2

MPY Multiply Memory-Register A8 4 @M1 (Rl),@R2

MPYD Multiply Dirnct B8 4 11 (R1),@R2

MPYI Multiply Immediate 38 2 l1,@R2

MPYK Multiply Packed Decimal• 5B 8 M1 (L1,R1),M2(L2,R2)

MPYM Multiply Memory-Memory 68 6 @M1 (R1),@M2(R2)

MPYR Multiply Register-Register 28 2 @R1,@R2

SUB Subtract Memory-Register A3 4 @M1 (R1),@R2

SUBD Subtract Direct B3 4 I 1 {R1),@R2

SUBI Subtract Immediate 33 2 l1,@R2

SUBK Subtract Packed Decimal • 53 8 M1 (L1,R1),M2(L2,R2)

SUBM Subtract Memory-Memory 63 6 @M1 (R1),@M2(R2)

SUBR Subtract Register-Register 23 2 @R1,@R2

SUBT Subtract Two-word 73 4 @M1 (R1),@R2

ZADK Zero and Add Decimal • 50 8 Ml (L1 ,R1),M2{L2,R2)

B~t-Oriented Instructions

IBIT Invert Bit• BF 4 @M1(R1l"2
ROFR Reverse Off-Bit 6F 2 @R1,@R2

RONR Reverse On-Bit 60 2 @R1,@R2

SBIT Set Bit• BC 4 @M1 (R1),12
RBIT Reset Bit• BD 4 @M1(R1)"2
TBIT Test Bit • BE 4 @M1(R1)h
TOFR Test for Off-Bit 6E 2 @R1,@R2

TONR Test for On-Elit 6C 2 @R1,@R2

Boolean Logic Instructions

AND Logical Product Memory-Register A5 4 @M1 (R1),@R2
ANDO Logical Product Direct 85 4 I 1 (R1),@R2

3-5

Boolean Logic Instructions (Continued)

Mnemonic Name Code Lgth Operands

ANDI Logical Product Immediate 35 2 l1 1 @R2
ANDM Logical Product Memory-Memory 65 6 @M1 (R1),@M2(R2)

ANDA Logical Product Register-Register 25 2 @R1,@R2

EOR Exclusive OR Memory-Register A6 4 @M1 (R1),@R2

EORD Exclusive OR Direct B6 4 l1(R1),@R2
EORI Exclusive OR Immediate 36 2 l1,@R2
EORM Exclusive OR Memory-Memory 66 6 @M1 (R1),@M2(R2)

EORR Exclusive OR Register-Register 26 2 @R1,@R2

IOR Inclusive OR Memory-Register A7 4 @M1 (R1),@R2

IORD Inclusive OR Direct B7 4 l1(R1),@R2
IORI Inclusive OR Immediate 37 2 l1,@R2
IORM Inclusive OR Memory-Memory 67 6 @M1 (R1),@M2(R2)

IORR Inclusive OR Register-Register 27 2 @R1,@R2

Branching Instructions

B Branch (post-indexing) ED 4 @M1 (R1)

BA1 Branch Add One E4 4 @M1 (R1),@R2
BA2 Branch Add Two E5 4 @M1 (R1),@R2

BCF Branch on Condition Register False E9 4 @M1 (R1),12

BCT Branch on Condition Register True ES 4 @M1(R1)"2

BCH Branch Uncond. (pre-indexing) EC 4 @M1 (R1)

BOF Branch if Bit Off E2 4 @M1 (R1),12
BON Branch if Bit On E3 4 @M1 (R1),12
BR Branch to Address in Register EB 2 @R1

BRN Branch if Register is Not Zero E1 4 @M1 (R1),@R2
BRZ Branch if Register is Zero EO 4 @M1 (R1),@R2

BS1 Branch Subtract One E6 4 @M1 (R1),@R2

BS2 Branch Subtract Two E7 4 @M1 (R1),@R2

BSA Branch and Save Return EA 4 @M1 (R1),@R2

SB Skip Back - Uncond. BB 2 I 1
SF Skip Forward - Uncond. BA 2 I 1
SCFB Skip on Condition False - Back 4B 2 11,li
SCFF Skip on Condition False - Forward 49 2 11"2
SCTB Skip on Condition True - Back 4A 2 11,li
SCTF Skip on Condition True - Forward 48 2 11 "2
SRMB Skip if Reg. Minus - Back 47 2 l1,R2
SRMF Skip if Reg. Minus - Forward 46 2 l1,R2
SRPB Skip if Reg. Plus - Back 45 2 l1,R2
SRPF Skip if Reg. Plus - Forward 44 2 l1,R2
SRNB Skip if Reg. Not Zero - Back 43 2 l1,R2
SRNF Skip if Reg. Not Zero - Forward 42 2 l1,R2
SRZB Skip if Reg. Zero - Back 41 2 l1,R2
SRZF Skip if Reg. Zero - Forward 40 2 l1,R2

3~6

Compare Instructions

Mnemonic Name Code Lgth Operands

CBY Compare Byte Memory-Register• F9 4 @M1(R1),@R2

CBYM Compare Byte Memory-Memory • 6B 6 @M1 (R1),@M2(R2)

CMP Compare Memory-Register A1 4 @M1 (R1),@R2

CMPD Compare Direct B1 4 l1(R1),@R2

CMPI Compare I mme!diate 31 2 l1 1@R2

CMPK Compare Packeid Decimal • 51 8 M1 (L1,R1),M2(L2,R2)

CMPM Compare Memory-Memory 61 6 @M1 (R1),@M2(R2)

CMPR Compare Register-Register 21 2 @R1,@R2

CMPT Compare Two-Word 71 4 @M1 (R1),@R2

CMPX Compare Charncters • 55 8 M1 (L1 ,R1),M2(L2,R2)

Control Instructions

General Purpose Control instructions can be used at any time without preconditions; compare with System

Control instructions.

NOP No Operation EE 4 Blank or @M1 (R1),R2

ROX Read Extended Register FO 2 E1,R2

SR Service Request 13 2 @11

Data Conversion Instructions

CVB Convert to Binary • AA 4 @M1 (R1),R2

CVBT Convert to Binary Two-Word • AA 4 @M1 (R1),R2

CVD Convert to Decimal • AB 4 @M1 (R1),R2

CVDT Convert to Decimal Two-Word • AB 4 @M1 (R1),R2

EDTX Packed Decimal/Alpha Edit• 57 8 M1 (L1,R1),M2(L2,R2)

PAKX Pack• 58 8 M1 (L1,R1),M2(L2,R2)

UNPX Unpack• 59 8 M1 (L1,R1),M2(L2,R2)

TRNX Translate• 56 8 M1(R1),M2(L2,R2)

Data Transfer Instructions

CLDR Condition Register Load 2B 2 @R1

CSTR Condition Register Store 2A 2 @R1

INV Inverse Move Memory-Register A4 4 @M1 (R1),@R2

INVD Inverse Move Direct B4 4 11 (R1),@R2

INVI Inverse Move Immediate 34 2 l1 1@R2

INVM Inverse Move Memory-Memory 64 6 @M1 (R1),@M2(R2)

INVR Inverse Move Register-Register 24 2 @R1,@R2

LOD Load Memory-IRegister AO 4 @M1 (R1),@R2

LODB Load Byte• F7 4 @M1 (R1),@R2

LODD Load Direct BO 4 l1(R1),@R2

LODI Load Immediate 30 2 l1,@R2

LOOT Load Two-Word 70 4 @M1 (R1),@R2

MOVB Move Byte• 6A 6 @M1 (R1),@M2(R2)

3-7

Data Transfer Instructions (Continued)

Mnemonic Name Code Lgth Operands

MOVL Move Long• 5A 8 M1 (L1 ,R1),M2(R2)

MOVM Move Memory-Memory 60 6 @M1 (R1),@M2(R2)

MOVR Move Register-Register 20 2 @R1,@R2

MOVX Move Characters • 54 8 M1 (L1 ,R1),M2(L2,R2)

PSTR Program Address Store 3A 2 @R1

STO Store Memory-Register FA 4 @M 1(R1),@R2

STOB Store Byte• F8 4 @M1 (R1),@R2

STOT Store Two-Word FB 4 @M1 (R1),@R2

Shift Instructions

ARDI Arithmetic Right Double Shift - 5F 2 l1,R2
Immediate

ARDR Arithmetic Right Double Shift - 3F 2 @R1,R2
By Register

ARSI Arithmetic Right Single Shift - 4F 2 l1,R2
Immediate

ARSR Arithmetic Right Single Shift - 2F 2 @R1,R2
By Register

LLDI Logical Left Double Shift - Immediate 5C 2 l1,R2
LLDR Logical Left Double Shift - By Register 3C 2 @R1,R2

LLSI Logical Left Single Shift - Immediate 4C 2 l1,R2
LLSR Logical Left Single Shift - By Register 2C 2 @R1,R2

LRDI Logical Right Double Shift - Immediate 5D 2 l1,R2
LRDR Logical Right Double Shift - By Register 3D 2 @R1,R2

LRSI Logical Right Single Shift - Immediate 4D 2 l1,R2
LRSR Logical Right Single Shift - By Register 2D 2 @R1,R2

RLDI Rotating Left Double Shift - 5E 2 l1,R2
Immediate

RLDR Rotating Left Double Shift - 3E 2 @R1,R2
By Register

RLSI Rotating Left Single Shift - Immediate 4E 2 l1,R2
RLSR Rotating Left Single Shift - By Register 2E 2 @R1,R2

SHFK Shift Packed Decimal • 3B 6 M1 (L1 ,R1),12(R2)

Floating Point Instructions (Optional)

ADDF Add Floating Point 86 4 @M1 (R1),R2

CMPF Compare Floating Point 87 4 @M1 (R1)
DIVF Divide Floating Point 89 4 @M1 (R1),R2

FLT Convert Fixed to Float 82 2 @R1
FLTT Convert Fixed to Float Two Word 82 2 @R1
INT Convert Float to Fixed 81 2 @R1.R2
INTT Convert Float to Fixed Two Word 81 2 @R1,R2

LODF Load Floating Point Register 84 4 @M1 (R1),R2
MPYF Multiply Floating Point 88 4 @M1 (R1),R2
NEGF Negate Floating Point Register 80 2

3-8

Floating Point Instructions (Optional) (Continued)

Mnemonic Name Code Lg th Operands -----
STOF Store Floating Point Register 8A 4 @M1 (R1)

SUBF Subtract Floating Point 85 4 @M1 (R1),R2

SYSTEM INSTRUCTION:S

Privileged and restricted classes; cionsult 7200 or 7300 Proc:essing Unit Reference manual for information

on the use of these system instruc:tions

Control Instructions

Mnemonic Name Code Lg th Operands -----
CTB Clear Tie-Break1er Register 12 2 I 1

TST Test and Set Ti1?-Breaker Register 11 2 '1
BCM Branch to Control Memory EF 2 R1"2
RAR Read Any Register FE 4 l1(R1),@R2

WAR Write Any Regi:ster FE 4 l1(R1),@R2

RRO Read Register - Option Register FD 4 l1(R1),@R2

WRO Write Register - Option Register FD 4 11 (R1),@R2

SAR Save All RegistEirs FF 4 M1 (R 1),12 or M1 (R1),@R2

RSAR Restore All Reg1isters FF 4 M1(R 1)"2 or M1(R1),@R2

SBA Set Busy/Active Register 10 2 l1,l2 or @R1h

RBA Reset Busy/Active Register 10 2 11"2 or @R1,l2

SCN Set Control Re~1ister 14 2 l1hor@R1h

RCN Reset Control Register 14 2 11"2 or@R 1"2

SPM Set Privileged Mode Register 15 2 11.12 or@R1h

RPM Reset Privileged Mode Register 15 2 11"2 or@R1h

WRX Write Extended Register FO 2 E1,R2

I /0 Instructions

DIO Disc Input/Output F2 2 @R1,R2

INP. Input from 1/0 Register F5 2 l1,@R2

OUT Output to 1/0 Register F6 2 l1 1@R2

RDC Communications Input/Output F3 2

WRC Communications Output F4 2 R1,R2

SIO System Input/Output F1 2 @R1,R2

3-9

SUMMARY OF EXTENDED MNEMONICS

The assembler provides extended mnemonic codes which allow unconditional skips, and
conditional skips and branches to be written in a symbolic form that is easier to use than
standard machine instructions. The assembler translates the extended mnemonic codes into
machine instruction object code.

Extended mnemonic codes for skip instructions do not specify the forward (F) or backward
(B) direction of the skip. Thus, the extended mnemonic, S, can be used instead of the SF or
SB machine instruction. The assembler determines the direction of the skip for the S
instruction from the memory address or immediate value in the operand. For example, S
DOG skips to the address, DOG, whether DOG is before or after the present location
counter.

Extended mnemonic codes for branch and skip instructions that test the condition register
specify the condition in the mnemonic itself rather than in the operand for example. SOV
ADD RS skips to ADD RS if overflow has occurred. The standard machine instruction names
the direction and the bit status in the mnemonic, and the actual bit number tested in the
operand. Thus, the extended mnemonic SOV 4 is the same as the standard instruction SCTF
4,0. (Bit 0 of the condition register is the overflow bit.)

The extended mnemonic codes are grouped as follows:

• Address Coded Skips

• After Arithmetic Instructions

• After Compare Instructions - Arithmetic Test

• After Compare Instructions - Logical Test

• After Decimal Instructions

• After PAKX Instruction

• After TBIT Instruction

• Conditional Register Test

Just as for the standard instructions, indirect addressing and indexing are optional for the
extended mnemonic codes.

3-10

EXTENDED MNEMONIC CODES

Address-Coded Skips

Extended Code Machine Instruction

s M1 or 11 SF I 1
SB I 1

SRZ M1,R2 or 11,R2 SRZF l1,R2
SRZB l1,R2

SRN M1,R2 or l1,R2 SRNF l1,R2
SRNB

SRP M1,R2 or l1,R2 SRPF l1,R2
SRPB l1,R2

SRM M 1 , R 2 or I 1 , R 2 SRMF l1,R2
SRMB l1,R2

Meaning

Skip forward or backward

Skip if reg. is zero, forward or
backward

Skip if reg. is non-zero forward or
backward

Skip if reg. is plus, forward or
backward

Skip if reg. is minus, forward or
backward

For S, the 11 value = -255 through +255; for all other exte1nded mnemonics in this category, I 1 = -15

through +15.

For SF and SB, the 11 value= 0-255; for all other regular iinstructions in this category I 1 = 0-15.

After Arithmetic Instructions

BOV @M1(R1) BCT @M1(R1),0 Branch if overflow

BNV @M1(R1) BCF @M1 (R1),0 Branch if no overflow

BCV @M1 (R1) BCT @M1 (Rl),3 Branch if carry

BNC @M1(R1) BCF @M1 (R1),3 Branch if no carry

sov M1 or 11 SCTF 11,0 Skip if overflow
SCTB 11,0

SNV M1 or I 1 SCFF . 11,0 Skip if no overflow
SCFB 11,0

SCY M1 or 11 SCTF 11,3 Skip if carry
SCTB 11,3

SNC M1 or 11 SCFF 11,3 Skip if no carry
SCFB 11,3

I 1 = -15 through +15 for the extended instructions. I 1 = 0-15 for the regular instructions.

After Compare Instructions - Arithmetic Test

The arithmetic test tests the result of a signed arithmetic c:ompare between operand 1 and operand 2. In
the following table, 1 and! 2 undeir Meaning refer to the siuned values of operands 1 and 2.

Extended Code Machine Instruction Meaning

BGT @M1 (R1) BCT @M1 (R1),1 Branch if 1 GT 2

BLT @M1(R1) BCT @M1(R1),2 Branch if 1 LT 2

BGE @M1(R1) BCF @M1(R1),2 Branch if 1 GE 2

BLE @M1 (R1) BCF @M1(R1),1 Branch if 1 LE 2

BEQ @M1(R1) BCT @M1 (R1),3 Branch if 1 EO 2

BNE @M1(R1) BCF @M1 (R1),3 Branch if 1 NE 2

3-11

After Compare Instructions - Arithmetic Test (Continued)

Extended Code Machine Instruction Meaning

SGT M1 or I 1 SCTF I 1, 1 Skip if 1 GT 2
SCTB I 1, 1

SLT M1 or 11 SCTF 11,2 Skip if 1 LT 2
SCTB 11,2

SGE M1 or 11 SCFF 11,2 Skip if 1 GE 2
SCFB 11,2

SLE Ml or I 1 SCFF I 1, 1 Skip if 1 LE 2
SCFB I 1. 1

SEO M1 or I 1 SCTF 11,3 Skip if 1 EO 2
SCTB 11,3

SNE M1 or 11 SCFF 11,3 Skip if 1 NE 2
SCFB 11,3

I 1 = -15 through +15 for extended instructions. I 1 = 0-15 for regular instructions.

After Compare Instructions - Logical Test

The logical test tests the results of an unsigned arithmetic (logical) compare between operand 1 and operand

2. In the following table, 1 and 2 under Meaning refer to the unsigned values of operands 1 and 2. CMPX

and all variations o~ the CBY instruction always yield a logical result.

Extended Code Machine Instruction Meaning

BLGT @M1 (R1) BCT @M1(R1),5 Branch if 1 GT 2

BLLT @M1 (R1) BCT @M1 (R1),6 Branch if 1 LT 2

BLGE ®M1 (R1) BCF @M1 (R1),6 Branch if 1 GE 2

BLLE @M1 (R1) BCF @M1 (R1),5 Branch if 1 LE 2

BLEQ @M1 (R1) BCT @M1 (R 1),7 Branch if 1 EO 2

BLNE @M1 (R1) BCF @M1 (R1),7 Branch if 1 NE 2

SLGT M1 or 11 SCTF 1,,5 Skip if 1 GT 2
SCTB 1,,5

SLLT M1 or 11 SCTF 11,6 Skip if 1 LT 2
SCTB 1,,6

SLGE M1or11 SCFF 1,,6 Skip if 1 GE 2
SCFB 11,6

SLLE M1 or I 1 SCFF 11,5 Skip if 1 LE 2
SCFB 1,,5

SLEO M1 or 11 SCTF 11,7 Skip if 1 EO 2
SCTB 11,7

SLNE M1 or I 1 SCFF 11,7 Skip if 1 NE 2
SCFB 11,7

11 = -15 through +15 for the extended instructions. I 1 = 0-1 5 for the regu I ar instructions.

After Decimal Instructions

BKP @M1 (R1) BCT @M1(R 1),1 Branch if plus

BKM @M1 (R1) BCT @M1(R1),2 Branch if minus

3-12

After Decimal Instructions (Continued)

Extended Code Machine Instruction Meaning

BKZ @M1 (R1) BCT @M1 (R1),3 Branch if zero

SKP M1 or 11 :SCTF 11,l Skip is plus
:SCTB I 11

SKM M1 or 11 SCTF 11,2 Skip if minus
SCTB 11,2

SKZ M1 or 11 SCTF 11,3 Skip if zero
SCTB 11,3

11 = -15 through +15 for the exte·nded instructions. I 1 = 0-15 for the regular instructions.

After PAKX Instruction

BID @M1 (R1) IBCT @M1(R1),4 Branch if invalid digit

BNI @M1 (R1) IBCF @M1 (R1),4 Branch if no invalid digit

SID M1 or 11 SCTF 11,4 Skip if invalid digit
SCTB I 1,4

SNI M1 or I 1 SCFF 11,4 Skip if no invalid digit
SCFB 11,4

11 = -15 through +15 for the extended instructions. 11 = 0-15 for the regular instructions.

After TB IT Instruction

BBS @M1(R1) IBCT @M1 (R1),0 Branch if bit is set

BBR @M1 (R1) IBCF @M1(R1),0 Branch if bit is reset

SBS M1 or I 1 SCTF 11,0 Skip if bit is set
SCTB 11,0

SBR M1 or I 1 SCFF 11,0 Skip if bit is reset
SCFB 11,0

I 1 = -15 through +15 for the extended instructions. I 1 = 0-15 for the regular instructions.

Condition Register Test

SCF SCFF I 1,I Skip if bit spec. by 12 is off
SCFB I 1,I

SCT SCTF I 1,I Skip if bit spec. by 12 is on
SCTB I 1,I

I 1 = -15 through + 15 and I 2 = 0-15 for the extended instructions. I 1 and I 2 = 0-15 for the regular

instructions.

3-13

4. ASSEMBLER INSTRUCTION SC>URCE
STATEMENTS - 10VERVIEW

Assembler statements are requests to the assembler to perform certain operations during the
assembly. Some statements, such as WOO and BOD, generate data, while others, such as
EQU and SPACE, are effective only at assembly time. A summary of assembler statements
can be found in Appendix E.

Assembler instruction sourcie statements consist of:

• Name field (usually optional)

• Mnemonic operation code

• Operand field (optional for some !>tatements)

• Comment field (optional)

An example of an assembler instruction source statement is:

NAME OPERATION OPERAND

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

N.Af\El. .DJ).~ i,(1/1,,.,JL L_ .~~.EN.EJlAT.E.m .&IJ .ZEl\OS. : L ~

The following is a list of assembler statements with a short explanation for each statement.

Program Sectioning and Linking Statements

CSECT Identifies the beginning or continuation of a control section

ENTRY Identifies relocatable symbols defined in the current program that are
used in another program

EXTRN Identifies relocatable symbols used in the current program that are
defined in another program

COM Identifies the beginning or continuation of a common control section

Program Control Statements

ORG Sets the ~ocation counter

END Ends the assembly

PUNCH Writes data in ai user-defined file

4-1

L TORG Assembles literals in a pool

ICTL Specifies nonstandard input format

ISEQ Checks the lines of code for the correct sequence

ALIGN Sets the current location counter to a storage boundary

Linkage Editor Map Address Directive Statement

SEG Defines load-module segment

Symbol and Data Definition Statements

EQU Defines a symbol and assigns values and attributes to it

WDD Defines word aligned data (in bytes)

BOD Defines byte aligned data (in bytes)

WRS Reserves word aligned storage (in words)

BRS Reserves byte aligned storage (in bytes)

FORM Defines bit-oriented formats (in storage bytes)

Listing Control Statements

TITLE Identifies the listing

EJECT Starts a new page

SPACE Inserts blank lines

PRINT Specifies the details to be printed

Macro Definition Statements

MACRO Begin macro definition

MEXIT Conditional exit from macro definition

MEND End macro definition

M NOTE Macro message

4-2

Conditional Assembly Stat«~ments

SETA Assigns arithmetic values to set symbols

SETC Assigns character values to set symbols

GBLA Defines a SET.A symbol as global

GBLC Defines a SETC symbol as global

ADO Sets up a source statement generation loop

AGO Specifies a branch to another statement

ANOP Specifies an assembly no-operation statement

4-3

5. PROGRAM SECTIONING ANID LINKING STATEMENTS

The programmer can divide a lengthy or complex program into control sections to make it
more manageable and easier to debug. Each section is assigned a unique name·. The operating
system treats each section as an independent, relocatable routine that can be executed alone
or linked with others.

During assembly, the assembler creates an index of all assigned control section names. At
load time, the Linkage Editor uses the index to I ink the various control sections into a single
storage module, from which the connected sections can be executed as a complete program.

The assembler mnemonics and functions of the program sectioning and linking statements
are:

CSECT Identifies the beginning or continuation of a control section.

ENTRY Identifies relocatable symbols defined in the current program that are used
in another pro!gram.

EXTRN Identifies relo1catable symbols used in the current program that are defined
in another pro!gram.

COM Identifies the beginning or continuation of a common control section.

(The reserved symbolic segment tag, $SYSEG, is also explained in this section.)

CSECT - IDENTIFY CONTROL SECTION

The CSECT statement identifies the beginning or continuation of a control section. The
format of the CSECT statement is:

Name Operation . Operand

Symbol or CSE CT Not used - ignored by the
blank assembler

If a symbol appears in the name field, it is the name of the control section; otherwise, an
unnamed control section is defined. The symbol in the name field represents the address of
the first byte of the control section. It has a length attribute of 1.

To preclude the generation of an unnamed CSECT section; the CSECT statement must
precede all statements exc1ept the following: macro and FORM definitions, listing control
statements, conditional assembly statements, llCTL and ISEQ statements, EXTRN and
ENTRY statements, PUNCH statements, and comments.

5-1

If the assembler encounters a statement other than these before a CSECT statement, an
unnamed CSECT statement is generated.

All statements following the CSECT statement are assembled as part of that control section
until another CSECT or COM statement is encountered. A control section can be
interrupted and then resumed by inserting another CSECT statement with the same name,
as in the following example. Control section ONE includes all code between the first ONE
CSECT card and the TWO CSE CT card plus all code following the second ONE CSECT card.
Unnamed control sections can also be resumed.

ONE CSE CT

f Control' section ONE

TWO CSE CT

f Control section TWO

ONE CSE CT

f Control section ONE

SYMBOLIC LINKAGE STATEMENTS - ENTRY AND EXTRN

The symbolic linkage statements, ENTRY and EXT RN, allow a symbol to be defined in one
program and referred to in another program. The program defining the symbol uses the
ENTRY statement; the program referencing the symbol uses the EXTRN statement. In both
instances, the assembler provides the linkage editor with the information to resolve the
symbolic linkage.

ENTRY - IDENTIFY ENTRY POINT SYMBOL

The ENTRY statement specifies which relocatable symbols defined in the current program
can be accessed by other programs. The format of the ENTRY statement is:

Name Operation Operand

Sequence ENTRY One or more relocatable
symbol symbols separated by comma
or blank

The symbols in the operand field may be used as operands by other programs. Control
sections named in CSECT or COM statements are automatically considered entry points and
do not have to be listed in an ENTRY statement. In the following example, the ENTRY
statement identifies SUB1 and SUB2 as entry points to the program:

5-2

NAME OPERATION OPERAND

--- -----r-1---------·_..__ _____ --------------------------
! 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

lE..ttT.RV. . Sll8J.,.S.U.&l.

EXTRN - IDENTIFY EXTERNAL SYMBOL

The EXTRN statement identifies relocatable symbols that can be used in the current
program, although they are d«~fined elsewhere. The format of the EXT RN statement is:

Name Operation Operand

Sequence EXT RN One or more relocatable
symbol symbols separated by commas
or blank

Symbols named in the operand field cannot appear in an ENTRY statement in the same
program. The combined tota~ of control section and external symbols in the same program
cannot exceed 252.

The example in Figure 5-1 shows how two programs, PROGA and PROGB, use EXTRN and
ENTRY, so PROGA can use symbols defined in PROGB. EXTRN in PROGA identifies
FETCH as a symbolic addrnss that is defined in another program. ENTRY in PROGB
defines FETCH as an entry point in PROGB. Thus PROGA can use FETCH as an operand
without first defining it.

NAME OPERATION OPERAND

1 2 3 4 5 6 7 8 9 10 11 12 13 14_ 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

P.R0.6.A
l 1- _.J_ , J. ' --.J._ .L- .. _ _l, _ _L__ __ _.._ '. _j_ L .. I----· _J .__ __L.__._.L__ _._ _ _..J_ __ ---'-----L-. _.J __ -L..__t_

•
I._ l._ ' .. ___!___.1-L __ J_ __ [_ ___J_ ___l...- J._ .. i J.,. __ J_ __ ~___J_______._ _ _1. __ ...J....._~

__ F.&T.C.tl ,

.J I ·-'·---L--L----L- .. 1 _j__ L .. _.L . ..!. .1. _L. ____ J. __ J_ .J. __ ..1.. __ _l_~ _ ___L--1...__j_

.... -- ..._ - - _J. ~

&~.&t ''

Figure 5-1. Example of EXTRN and ENTRY

5-3

COM - DEFINE COMMON CONTROL SECTION

The COM statement identifies the beginning or continuation of a common control section.
The format of the COM statement is:

Name Operation Operand
-

Symbol COM Not used - ignored by
or blank the assembler

If a symbol appears in the name field, it is the name of the common storage area; otherwise,
an unnamed common storage area is defined. An unnamed COM control section does not
have the same name as an unnamed CSECT section. If two COM statements with the same
name appear in the same program, the second is a continuation of the first. When COM
statements are assembled, the common location assignment starts at zero. The symbol in the
name field represents the address of the first byte of the control section. It has a length
attribute of 1.

Since a COM control section's primary function is to define the structure of a storage area
used by more than one program, no binary data c:an be generated by statements within the
COM section. However, pertinent storage information such as address assignment,
relocatability, and length attributes are retained and assembled in the normal way, without
binary output.

Data can be stored in a common storage area during assembly only by a CSECT control
section in a different assembly, in which case the CSECT control section must use the same
name as the common area defined and reserved by COM statements. After the programs are
assembled and the Linkage Editor has performed the necessary linkage, data can be
retrieved, stored, checked, and manipulated in the common area by any cognizant program
currently being executed.

No more than one CSECT control section may be included in a set of COM control sections
identified by the same name in the same load module.

The example in Figure 5-2 shows how two programs communicate information through the
common area. Each program must know the other's plan for structuring and using the
common storage area. If program PROGA is to pass information to PROGB, PROGB must
know the location in COMMON to which PROGA will pass the data. In this example,
information is passed through COMMON at location TAGE. In PROGA, the statement STO
T AG5, R2 stores the contents of register 2 at location T AG5. After the branch is made to
FETCH, PROGB loads the contents from TAGE (which is the same location as TAG5 in
PROGA) into its register and checks to see if it is equal to the hexadecimal constant: 'AF'.
If a true comparison is found, a branch is made to PROGC. Note that when the Linkage
Editor is called to link the programs at load time, each program is linked to COMMON.

5-4

NAME OPERATION OPERAND

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

:kO.&A

NAME

C.S.E.GT ·'
_EST.kY . .

xrl\N

•
• -1 • .J -l L J I

~NJt ...

OPERATION

-:· :F:p:• .c:~ '.i> .
. C.8J

1.i.''' 31 : ..
~

OPERAND

1 2 3 4 5 6 7 8 9 10 11 12 13~ .. !.~ .• ~ . ..17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

P.ROG& CS,EG.T '·' -- . -' ~-L L -'--· _c_L '--' -'--~- •

- e.NT.RV. . ' L _, __ , -•- • l ' -'- "

EXT.RN . . _. ·"-- i .L ,

• l ,.. -'---• •

• • .J L I I • l 1 •

LO.J>.8.,, .__ _ AG.EL'RI . ..
C.8.'I. ·-·.. =Jt'.Ar.'.,.kt

.EelR.OJiG.
' •

Fflgure 5-2. Example of the COM Statement

5-5

RESERVED SYMBOLIC SEGMENT NAME - $SYSEG

The reserved symbolic segment name, $SYSEG, is a relocatable segment designator which
makes extended addressing possible. A reserved name has a special meaning to the system
and should not be used as a symbol for any purpose other than its special meaning.

Symbolic segment tags are used for address referencing across program (or storage)
segments. However, a user whose program is limited to one segment need not use segment
tags. To make all system interfaces (1/0 requests and service requests) compatible, addresses
specified in these interfaces must have an associated segment tag.

When .a single-segment program is written, the assembler assigns the global system name,
$SYSEG, to the first (and only) segment in the program. $SYSEG is automatically entered
in the symbol table by the assembler, and thus becomes a reserved identifier.

The name $SYSEG is used as a default value in all system macros containing address
parameters. The user must concern himself with $SYSEG only if he is coding system
interfaces directly without using the regular system macros.

$SYSEG cannot be used in a multi-term expression. It can only be used as an operand in a
BDD, WDD, or FORM instruction. If it is used in a FORM instruction, the size of the
corresponding definition field must be 8 bits in length and start on a byte boundary. The
length attribute of $SYSEG is 1.

5-6

6. PROGRAM CONTROL STATEMENTS

The assembler mnemonics and functions of the program control statements are:

ORG Sets the location counter

END Ends the assembly

PUNCH Writes data in a user-defined sequential disk file.

L TORG Inserts the accumulated literal pool, starting at the current location
counter.

ICTL Specifies nonstandard input format.

ISEQ Checks the lines of code for the corre~ct sequence.

ALIGN Sets the current location counter to a storage boundary address.

ORG - SET LOCATION COUNTER

The ORG statement alters the setting of the location counter. The format of the ORG
statement is:

Name Operation Operand

Sequence ORG Relocatable expression or
symbol blank
or blank

Symbols in the expression must be previously defined. The unpaired relocatable symbol
must be defined in the same control section in which the ORG statement appears. The
location counter is se'ft to the value of the expression in the operand, or to its previous high
count, if the operand field is blank.

Since the location counter points to a storage location that is to receive the next line of
assembled code, altering its setting permits a pro~1rammer to return to a previous location in
his program and change its contents. In this way,, an area can be redefined during assembly,
changing data definitions to meet various requirements in the program.

An example of an ORG statement is:

NAME OPERATION OPERAND

_________ _,_-1-----------+------------------------
1 2 3 4 5 6 7 8 9 10 11 12 ~ 17 18 19 20 21 22 23 24 25 26 27 2B 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

•. FIRST

6-1

If the location named TAG is twelve bytes from the beginning of the control section, this
statement sets the location counter to OOOC. Statements that follow the ORG statement are
then assembled beginning at address OOOC. The information previously assembled at these
locations is lost, although the name tags remain unchanged and cannot be duplicated.

The ORG statement can also be used in direct reference to the location counter. The format
of the operand is * -n or *+n. The asterisk specifies the present location counter, and n
specifies the number of bytes. The following statement decreases the present location
counter by 60:

NAME OPERATION OPERAND

-----1--· ------··----·. ----t--t------ ·-·--·---------------------------------
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

An ORG statement without an operand returns the location counter to its previous high
count, as in the following statement. If the counter has already reached its previous high, an
ORG without an operand has no effect.

NAME OPERATION OPERAND

---- ------+-+------ - ----·I--·--·-·-··-·--·-------··---------------·---·---··--------
1 2 3 4 5. 6 7 8 9 10 11. 12 13 14 15 16 11 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

.THl\b. 0.1\.6.

The following example shows an ORG with a location counter reference and an ORG
without an operand. If the location counter is 0050 when ORG *-20 is encountered, the
count is decreased by 20 bytes to 003C. Then if the ORG without an operand is
encountered before the counter reaches its previous high of 0050, the count is returned to
0050.

NAME OPERATION OPERAND

---------+--- --··- ----··----·-·----!- -- - ------·----·------------------
1 2 3 4 5 6 1· 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 3'J 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

•

0.1\G . *.-.~
•
•
•

I- - •-

For an example of an application of the ORG statement, refer to Figure 8-3 in Chapter 8.

6-2

END - END ASSEMBLY

The END statement terminates the assembly of a program. The format of the END
statement is:

Name Opeffation Operand

Blank END Ordinary symbol or blank

An ordinary symbol in the operand field specifies the point to which control is to be
transferred when loading is complete. The ordinary symbol must identify a symbolic address
in the current assembly. Substitution is invalid on the END statement. Continuation is
ignored on the END statement.

PUNCH - WRITE TO FILE

The PUNCH statement writes data in a user-defined sequential disk file. The format of the
PUNCH statement is:

Name Operation Operand

Sequence PUNCH Not usi~d
symbol
or blank

The PUNCH statement precedes the line of code that is to be written in the file. The line of
code can be in any format and it cannot be continued. In the following example, //DEF
ID=INPUT,FIL=CAT is written in a file defined by the user:

NAME OPERATION OPERAND

--- -
1 2 3 4 5 6 7 8 9 10 1112131415 lEi 11 18 19 20 21 22 23 24 25 26 27.211 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 4 7 48 49 50

LintF~ ii>
PJlN.~ ...

ri. =~GAT
-' • L .L •• ..L. .• ...L .. L. ..

= llP.11T 1 .F~l . ~ l I l

. ·' , L .J.. ___ J. l .. I

Variable symbols in the line of code are resolved before the record is written to the file. If
substitution results in a record that exceeds the standard statement size (columns 1 through
72) or nonstandard size specified by an ICTL statement, excess characters are truncated on
the right.

The PUNCH statement does not lend itself to a fixed field format, because as values of
various lengths are substituti~d for a variable symbol, the position of the subsequent fields is
shifted.

In the following example, values are substituted for the variable symbols $TAG and $VAL
before the record is written.

6-3

NAME OPERATION OPERAND

--;---t-------- - ------ --- ----- -------

1 l 3 ~ 5 6 l 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

AKE .I.S.
P.UKC.M . ..
TA.6. .V.A

If $TAG is equal to AB and $VAL is equal to 75, the record written in the file is: NAME IS
AB VALUE IS 75.

If $TAG is equal to C'TH IS IS A MESSAGE' and $VAL is equal to 10, the record written in
the file is: NAME IS C'THIS IS A MESSAGE' VALUE IS 10.

Notice that the statement VALUE IS ... is moved to the right to make room for the first
statement NAME IS

A fixed field format may be established by using a variable symbol with as many characters
(including the ampersand) as the substituted value.

L TORG - BEGIN LITERAL POOL

The L TORG statement assembles previously defined literals into a single area called a literal
pool. All preceding literals, back to the beginning of the program, or back to the last
L TORG statement, are assembled at the next word boundary. If a L TORG statement is not
used, all literals are assembled after the first control section. Literals that appear after the
last L TORG statement are also assembled after the first control section.

The format of the L TORG statement is:

Name Operation

Symbol LTORG
or blank

Operar

Not us
~
:J

A symbol in the name field represents the address of the first byte of the literal pool. The
length attribute of the symbol is 1.

ICTL - INPUT FORMAT CONTROL

The ICTL statement specifies that statements in a program begin and end in columns other
than the standard columns 1 and 72. The format of the ICTL statement is:

Name Operation Operand

Not used ICTL Two decimal arithmetic
constants separated by
a comma

6-4

Both decimal constants are required. The first constant specifies the beginning column
(1-40). The second specifies the end column (41-120). A comma must separate the two
constants.

If the source program does not contain an ICTL statement, the standard format (columns 1
and 72) is used. Because system macros are always processed in the standard format, they
are not affected by the I CT L :statement.

Since the ICTL statement establishes a new format, it must be the first statement in the
program and can be used only once. The ICTL statE~ment cannot be continued.

The following statement establishes column 10 as the begin column and column 90 as the
end column.

NAME OPERATION OPERAND

1 2 3 4 5 6 7 8 9 10 11 12 13~17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

_ ~- -~~ ~~- -~-r- lk_TJ.L
1---<--~~~--....___._. __ t--- i •-- • • _, I _ _____.__ - • l- • _j • .1--_ ____J_ __ __t______J______J, ___ _L,. __ _1. ___ ..J._ ___ _l ·---1 L 1 I -1 1 .J. l _J ___ 1 ___ J.. ___ ..__ _ _J_ ___ _J_ __ __L_ _ _J__ _ _J___L

ISEQ - INPUT SEQUENCE CHECKING

The ISEQ statement specifiE~s that all subsequent statements are to be checked or not
checked for correct sequence. The format of the ISEQ statement is:

Name Operation Operand

Blank ISEQ Blank, or two decimal arithmetic
constants, separated by a comma

If the operand field is used, both decimal constants must be specified. The first constant
specifies the column number of the leftmost character of the sequence field; the second
constant specifies the column number of the rightmost character of the sequence field. A
comma must separate the two operands.

Sequence checking begins with the first line following the ISEQ statement and continues up
to an ISEQ statement without an operand. Chec:king can be resumed with another ISEQ
statement. If each succeeding sequence field is n'ot higher in value than that of the preceding
statement, a sequence error message is generated. A sequence error does not terminate the
assembly.

The columns identified by the ISEQ statement must be between columns 73-80 if the
standard begin and end columns are used, or outside the begin and end columns defined by
an I CT L statement.

6-5

Sequence checking is only performed on statements contained in the source program. Macro
definitions in a macro library or lines generated by a macro instruction are not checked.
Lines with a blank sequence field are always considereq to be in the correct order.

The operand field of an ISEQ statement may not contain a reference to a variable symbol.
The ISEQ statement cannot be continued.

ALIGN - ALIGN LOCATION COUNTER

The ALIGN statement sets the value of the location counter to an address determined by a
value in the operand field; the assembler updates the counter to the next highest address
which is a multiple of the expressed value in the operand. The format of the ALIGN
statement is:

Name Operation Operand

Symbol ALIGN Absolute
or blank arithmetic: expression

The operand can be an expression to be evaluated by the assembler; however, all symbols
must be previously defined.

In the following example, the location counter is ·set to the next highest multiple of 4
addresses. If the location counter is at 1009 when the statement is encountered, it is set to
100C. However, if the location counter is already set to an address which is a multiple of the
operand value (1008, 100C, 1010, etc.), the counter is not changed. After alignment, the
address of the location counter is assigned the symbolic name in the name field. In the
example, FOUR 1 is equal to 1 OOC. The length attribute is always 1.

NAME OPERATION OPERAND

-----1,.--f-------+--'~--------------- --~-----------

1 2 3 4 5 6 I 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 ?4 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

F.O,UJ\.I AL.l.&N . ~ .

I- -~

If the counter is set to an address exceeding 65,5351 o, an error message is generated and
alignment occurs. The location counter is set to the value exceeding 65,53510. An address
of 65,6001 o will set the location counter to 641 o.

6-6

7. LINKAGE-EDIT~OR MAP DIRECTIVE - SEG

The Linkage Editor map directive, SEG, may be used as an assembly language statement.
The assembler does not process the statement, but simply writes the directives, in their
source form, on the output file.

All SEG statements in an assembly must immediately precede the END statement. The only
statements that can appeair between the SEG statement and the END statement are the
conditional assembly statements SETA, SETC, ADO, AGO, ANOP, and macro instructions
generating these statements. A SEG statement cannot be continued and no substitution is
performed.

The function and format of the SEG statement is described in the publication MRX/OS
Program Library Services Fleference.

7-1

8. SYMBOL AND DATA DEFINITION STATEMENTS

The assembler mnemonics and functions of the symbol and data definition statements are:

EQU Defines a symbol and assigns values and attributes to it.

WDD Defines word-aligned data (in bytes).

BOD Defines byte-aligned data (in bytes).

WRS Reserves word-aligned storage (in words).

BRS Reserves byte-aligned storage (in bytes).

FORM Defines bit-oriented data formats (in storage bytes).

EQU - EQUATE

The EQU statement assigns values and attribU1tes to a symbol. The format of the EQU
statement is:

Name Operation Opeirand

Ordinary EQU Expression
or variable
symbol

The expression in the operand field can be absolute or relocatable; however, all symbols in
the expression must be previously defined.

The symbol in the name field is given the same length, value, and relocatability attributes as
the expression in the operand field. The leng1th attribute of the symbol is that of the
leftmost (or only) term of the expression. When that term is a location counter reference (*)
or an arithmetic constant, the length attribute is 1. The value attribute of the symbol is the
value of the expression. When the newly defined symbol is referenced in later statements, it
has all the attributes assigned by the EQU statement.

The EQU statement can 1~quate symbols to register numbers, immediate data or other
arbitrary values, as shown in the first two exampiles of Figure 8-1.

The EQU statement can also equate symbols to frequently used or complex expressions, so
that the programmer can use the symbol rather than an entire expression, as shown in the
last two examples of Figurie 8-1. Note that all svmbols in the expression must be previously
defined.

8-1

NAME

--·· AEG.IS
- -'-- .1 ~ ~ -L .J. , L

S~G -• _L ·-·--

, .lHKEJ>.

FlE:&
CONF.

OPERATION OPERAND

------------+--t------- --- ------

'I .I.N,Olt.RE..CT .. L.A&.E.L'' ,
H.AR.AC.T.E.R. .C.O.ttST.AJtr:
:+:u/c : , . ·- . "

(c:a·..-A>:;: 1:*14 > :+:ss-:Nl\ll

Figure 8-1. Examples of EQU Statements

WOO AND BOD - WORD AND BYTE DEFINED DATA

The WDD and BDD statements define aligned data in storage. The WDD statement aligns the
data constant defined in the operand at word boundaries; the BDD statement aligns data at
byte boundaries. Both statements have the same basic format:

Name Operation Operand

Any symbol WDD or BDD One or more operands
or blank separated by commas

The name field reflects the address after alignment.

Operands must be separated by commas and have the format:

a

a(b,c)

a(b)

a(,c)

Where:

a = A data value to be generated (required); any valid ex
pression. If the data value is a forward symbolic refer
ence, and no explicit size is coded, it is assumed to be
a two-byte value.

b A length specification (in bytes); a positive predefined
absolute expression. If omitted, the length specification
is the implied size of the expression. If the explicit size
of a forward symbolic reference is one byte, and if the
symbol resolves to an arithmetic or string of more than
one byte, a warning diagnostic is issued.

c = A repetition factor; a positive predefined absolute ex
pression. If omitted, a repetition of one is assumed.

8-2

Locations Oontents

OOFC xx xx xx indicates that the contents are
OOFE 00 00 residual data
0100 00 00
0102 00 00

010C 00 00

TAG, then is equal to OOFE. However, if TAG BOD 0(4,2), 0(4,2) is specified rather than
TAG WDD 0(4,2),0(4,2) aind the location counter points to OOFD, the first zero byte is
stored at address OOF D and the last byte at addre~ss 010C. TAG is equal to OOF D.

)

If multiple operands are specified, each operand is word-aligned for the WDD statement, or
byte-aligned for the BOD statement, as in the example:

Statement

WDD TAG1,X'13',X'05',TAG2

Where:

TAG1 = a two-byte relocatable tag

xx = contents are residual data

TAG2 = a two-byte relocatable tag

Generated Data

TAG1
13 xx
05 xx
TAG2

Word 1
Word 2
Word 3
Word 4

WRS AND BRS - WORD AND BYTE RESERVE STORAGE

The WRS and B RS statements reserve storage without preset data. The format of the WRS
and BRS statement is:

Name Operation Operand

Any symbol WRS or BRS Absolute
or blank arithmetic expression

The symbol in the name field is the address of the first byte, and has the length attribute
(number of bytes) of the storage area.

8-5

The operand of the WRS statement specifies the number of words to reserve; the operand of
the B RS statement specifies the number of bytes. Symbols used in the operand field must
be previously defined, and when evaluated must equal a positive, absolute arithmetic value.
If the operand is zero, the location counter is aligned on the specified word or byte
boundary.

In the following example, WRS and BRS each reserve 800 bytes of storage. The first byte of
the WBUFF area begins on a word boundary, while no distinction between odd or even
address bytes is made for BBU FF.

NAME OPERATION OPERAND

-------->--+-------·------------ - -- ------·-----------·-· --····- -
1 2 3 4 5 6 7 8 9 10 11 12 13. 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

.U.Ff.

In Figure 8-3 the example shows the use of an ORG statement in conjunction with WOO
and BRS. After the second ORG statement, the value of TAG1(29,1) is: CONTENTS OF
ABCD ARE INVALID.

NAME OPERATION OPERAND

1 2 3 4 5 6 7 a s 10 11 12 13 14 15 16 11 18 19 20 21 22 23 24 2s 2G 21 28 29 ~o 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

WDD.
8.1\.S.

DJ>.

,\
.1:.0.RG.

r W.bb.
ORG .

•
•
. •

•

C. f .G.ONtENT.S .O.F. I . .
.'t.
• • • I -'- J 1 I -1 -' _J_ L l ..l J

C. '.A.k.E. .l.N V.AL.U .•. I .

Figure 8-3. Example of an ORG Statement with WOO and BRS

8-6

FORM - DEFINE DATA FORMAT

The FORM definition statement defines a symbolic name to be used as a mnemonic in the
operation field of a subsequent statement, and specifies the size (in bits) and storage
alignment of each operand to be used with the mnemonic. The format of the FORM
definition statement is:

Name Operation Operand

Ordinary FORM One or more positive arithmetic
symbol expressions separated by commas

The name field which is required, defines the mnemonic operation code for a FORM
instruction statement. Expressions in the operand field must equal a number between 1 and
255. Symbols in the operand field must be previously defined.

The FORM definition statement in the followin!~ example defines a mnemonic, STAR, and
specifies that its first operand is assigned four biit positions; the second, four also; and the
third, eight bit positions.

NAME OPERATION OPERAND

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

~.TAk . F.O"~ }l.,)1.,,3.

FORM - INSTRUCTION STATEMENT

The FORM instruction statiement specifies the data to be generated according to the format
defined by the corresponding FORM definition statement. The format of the FORM
instruction statement is:

Name Operation Operand

Any symbol FORM name Exp,exp, ... ,exp
or blank

The FORM name in the operation field must be~ previously defined in a FORM definition
statement.

I

The operand field may contain any valid expressions, separated by commas. No alignment is
performed before data genuration. The values specified in the operand field of the FORM
instruction are matched by position to the fields defined in the operand of the
corresponding FORM definition statement.

Missing operands (signified by contiguous commas) are replaced with zeros. If the number
of operands in the instruction does not match the number specified in the definition, an
error message is generated.

8-7

If the symbol in the name field of a FORM definition is a mnemonic used in more than one
type of instruction, the assembler assigns attributes to the instruction according to the
following hierarchy:

1. Machine and assembler instructions.

2. User macros and user FORM instructions within user macros.

3. User FORM instructions outside macros.

4. System macros and FORM instructions within system macros.

For example, if the programmer codes the following statements, the assembler treats the
statement &A EOU "A as an assembly language statement (1. above) rather than a FORM
instruction.

NAME OPERATION OPERAND

------1---+-------------- --- -- --- ----- ---------------- ----------
1 2 3 4 5 6 _ 7 8 9 10 11 12 13 14 i:, lG 17 18 19 20 21 22 23 24 25 26 21 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

f.0.f\.M
E.Q.t.l

If the value of an expression is relocatable and not $SYSEG, the following conditions must
be met; or a relocation error occurs and the expression is made absolute:

1. The size of the corresponding FORM definition field must be 16 bits
in length.

2. The field must begin on a word boundary.

If the operands of a FORM instruction statement do not use a complete byte, the remainder
of the byte is unchanged. For example, the FORM definition statement, SIGN FORM 1,5,3
specifies that 9 bit positions are required for the operands. When a FORM instruction, such
as .A 1 SIGN A< EO >8,"8,0 calls this definition, the assembler uses two full bytes, but the
last 7 bit positions of the second byte are zeros.

If $SYSEG is used as an operand in a FORM instruction, the size of the corresponding
FORM definition field must be 8 bits and start on a byte boundary.

PADDING AND TRUNCATION RULES FOR FORM STATEMENTS

Padding and truncation is done according to the following rules:

1. Hexadecimal values are right-justified with zero fill on the left. If the ·
actual data is larger than the defined field, the data is truncated on
the left.

8-8

2. Alphanumeric character constants are left-justified with blank fill on
the right. If the actual data is larger than the defined field, the data is
truncated on the right.

3. Packed decimal values are right-justified with zero fill on the left. If
the actual data is larger than the defined field, the data is truncated
on the left.

4. Zoned decimal values are right-jus1tified with zero fill on the left. If
the actual data is larger than the defined field, the data is truncated
on the left.

5. Integer string values and arithmetic values are right- justified with the
sign propagated on the left. If tlhe actual data is larger than the
defined field, the data is truncated on the left and the sign is lost.

The examples in Figure 8-4 illustrate certain padding and truncation rules. The first operand
of TAB 1, a hexadecimal 5 (0101), is truncated on the left and the two rightmost bits (01)
are inserted in the 2-bit field defined by 2 in the FORM definition statement. If the value
attribute of B in the second operand is less than C, the single bit position established in the
corresponding definition statE~ment is set to a binary 1. If B is greater than C, the bit is set to
a binary 0.

The first A character constant (1100 0001 in EBCDIC) in the second TABLE statement is
truncated on the right, and the remaining two IHftmost bits (11) are assigned to location
TAB2. Note, however, that a1ll eight bits (1100 0001) of the second A character constant in
the fourth operand position are retained at location T AB2+1.

NAME OPERATION OPERAND

- ------
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

Figure 8-4. Examples of Padding and Trunca1tion for Form Statements

The following examples show a possible use of the FORM statement - redefining
instructions to create a new language closer to English. In the first example, the "MOVE"
instruction generates a MOVIVI machine instruction, using a FORM statement and a series of
Equates. This corresponds to: MOVM BUFFER:B(R2),@BUFFERA(R3). Assuming that
BUFFERA is at address 63FA, the code generated is:

602B

63FA

63FC

8-9

NAME OPERATION OPERAND

The next example shows a BRANCH FORM statement used alone to generate a BR machine
instruction, or together with ROUTINE to generate a BSR machine instruction. Assuming
that SUBROUT1 is at 2F3A, the code generated is:

EA07

2F3A

The last statement of this example, BRANCH REGISTER,R7, generates the code: EB07.

NAME OPERATION OPERAND

---- ___ __.___.,__
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

E.QU ..
E..ClU .
E.GU.l ..
F.O,RM

.OA.H. ..
1lAN.CJI. .
,O.UT.l.N.E

£QU -
.RAN.GM. .

x. I. EA_'. __ , '-- --• . --~-'-~--,_ . _ _,_ ___ _.___,___ _ _,__~~----'---~---'----'--~---"-----'-
7.. • ' -' - J _, ___ L_____L_ _ ___.._..L __ ~.- •l.. __ __J.__--1. __ ~ _ __._ ___ ...1,_ _ __J_ __ _.__. ___ _i_ _ _J_ ___ _..1 ___ .J.. __ L __ L____.i._ __ _L ___ _J_ ___ .L----1.

_ ,
1 .E.B. I, , ._ _, __ , -~-'--• ,_ ___ , _, _ _.___ , ____ L ___ ,_ --'--'---'-----'--~----'---'----'----'----'-----'----'-

_, 11::: :-~~-: :-:~-=~=-==--=:===~====
V .E.JlT Ji

1
.1\. 7. -'--~ _._ __ .______.__~-~-~--'----~~·---'----~--'- -~-~----'--

.U.B .l\.OLl.T. L ' ' ' , _, ' -'---~---'----' --·--~----'------'--~~--'----'----'----'----'-----'-----'--

l\E&.l:sT.ER:;:.l i-~-:-:.-__ : ___ -:-_-:_:~: :-~:~-::_::=::~~-::--::

A detailed example of the FORM instruction can be found in Appendix F.

8-10

If the length specification or the repetition factor is zero, no data is generated, but the
location counter is aligned on the specified word or byte boundary.

Examples of WDD and BDD statements are shown in Figure 8-2. In the last example, if M =
N, the term 35 is generated. If M = N, no data is generated, but the location counter is set
on a word address, which is ~1iven the name NAM4.

NAME OPERATION OPERANO

--------->--+--- --------------
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Hi 17 18 19 2.0 21 22 23 24 25 26 27 2:3 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

WJ)_)~ ~ I ,, I .V~!LllE, .l~L'J(I).

-8.))Jt

J>».
1Jj):J>:

=x.• _-.~.& •.
• l • - ~ • ' .I - - •

7.C., .JH. I.), ..

3i. c:a,l't<:a~~~:N:>:

F:igure 8·2. Examples of WDI) and BOD Statements

The value attribute of the symbol in the name field is the address of the leftmost byte after
alignment. The length attribute is the length in bvtes (specified or implied) of the first (or
only) data field in the operand.

Omitted operands, signified by a comma without a data value, indicate a zero byte or word.
The last data value in a string of multiple operands must be a specified data value, not an
omitted operand.

Consider the following example. Notice that an arithmetic constant, such as 45, uses two
bytes.

Statement Generated Data

WDD ,12,, ,45 00 00 Word 1
00 oc- Word 2
00 00 Word 3
00 00 Word 4
00 20 Word 5

'

If the data value is a relocatable expression other than $SYSEG, the length specification and
the repetition factor have the following restrictions:

1. The length attribute must be resolved to two bytes. If the length is
not specified, two bytes are assumed.

2. Alignment must be on a word boundary.

For $SYSEG, the length attribute is 1 and alignment must be on an odd boundary.

8-3

Literals (which are always relocatable) in a WDD or BDD statement require special
consideration. If a literal term is used in the WDD or BDD statement, the implied length and
repetition attributes are (2, 1). If other specifications are included, they refer to the literal
term itself, but not to the symbol defined in the name field. Consider this statement:

NAME OPERATION OPERAND

----------1 r-t- ---- - ---------1 I--t------- ------
1 2 3 4 5 G 7 8 9 10 11 1? 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 3 7 38 39 40 41 42 43 44 45 46 4 7 48 49 50

~I. W.DJ>. = .C. ' Ar.CD. '. C.S., ~). -'- -

! ,_ L - _J I

The length attribute of the literal C'ABCD'(5,2) is 10; but the length attribute of the
symbol 81 is 2, because the operand is a relocatable term. In all other cases, the symbol in
the name field receives the length attribute of the first data field in the operand.

If the location counter (*) is referenced in the operand field, the value attribute of the
symbol in the name field replaces the operand. For example, TAG WDD *, *, * generates
three words of data, each assigned the value attribute of TAG. If TAG is equal to to 1004,
then 1004 1004 1004 is generated.

For example, the following statement specifies that two 8-byte fields of all zeros are to be
generated. TAG represents the address of the first byte of generated data.

-
NAME OPERATION OPERAND

-------- r-- I- - --- -----1 r--t--------------- ----- - ---------· ---
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 fi3 44 45 46 47 48 49 50

TAG. WI>l>. "(.'I. ,cl.), J '(,'/,, ,3..)'
'- ·-

If the location counter is pointing to OOFE, TAG is equal to OOFE and the storage locations
are as follows. (The last byte is 0100 or TAG+15.)

Locations Contents ----

OOFE 00 00

l
0100 00 00
0102 00 00
0104 00 00

First operand

0106 00 00

l 0108 00 00
010A 00 00
010C 00 00

Second operand

If the location counter is pointing to an odd-byte address when a WDD statement is
encountered, the assembler automatically updates the counter to the next word boundary
and does not affect the contents of the odd-byte address.

In the preceding example, if the location counter is pointing to OOFD, the assembler updates
the counter to OOFE and the contents of OOFD are unchanged. The storage locations are as
follows.

8-4

9. LISTING CONTROL STATEMENTS

The listing control statements control the printing of the lines of code generated by the
assembler. The statements themselves are used only for the source listing and are not carried
over to the object program.

The assembler mnemonics and functions of the listing control statements are:

TITLE Identifies the listing.

EJECT Starts a new page.

SPACE Inserts blank lines.

PRINT Specifies the dE~tails to be printed.

TITLE, SPACE, and EJECT statements do not appear in the source listing.

TITLE - IDENTIFY LISTING

The TITLE statement specifies the program ID and the heading to be printed on each page
of the listing. The format of the TITLE statement is:

Name Operation Operand

Symbol TITLE Charaicter string constant
or blank

The first symbol (except a sequence symbol) in the name field of any TITLE statement is
printed in the program ID area at the top of each page of the entire listing. The name field
of all other TITLE statements must contain a sequence symbol or a blank.

The character string in the operand field specifiies the heading for each page. Any variable
symbols in the character string are resolved. The resolved character string must not be more
than 90 characters.

When the TITLE statement appears in a source1 program, the assembler ejects the current
page and prints the specified title on the top of the next page. This title is printed on the
top of each page until another TITLE statement appears.

In the following example, PGM1 and FIRST SUBROUTINE is printed on all sheets of the
listing until another TITLE statement appears:

9-1

NAME OPERATION OPERAND

----------+---+--------~--+----------------------------
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

P.&JtL~-L~- [ITLE. L ' - c I .FI.RS1: S~UBJlOJA.TIN.~ 1. • - '

Assume that this heading has been printed on six sheets, and the following TITLE statement
is encountered while the sixth sheet is being printed.

NAME OPERATION OPERAND

--------+-+--------+-+-------------------------------
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

i--~SECl>. ITI.TJ..E.. ~ .
1---~- •--•--. ~--'--

The assembler halts the printing and ejects the sixth sheet. The new heading, SECOND
SUBROUTINE, is printed on the seventh sheet. Printing then continues with the seventh
sheet. Note that a sequence symbol in the name field does not change the program ID.

EJECT- START NEW PAGE

The EJECT statement ejects the remainder of the page and resumes the printing at the top
of the next page. The format of the EJECT statement is:

Name Operation Operand

Sequence EJECT Not used - ignored by the
symbol or assembler
blank

The EJECT statement can be used to separate routines in a program listing. Two successive
EJECT statements leave the remainder of the current sheet plus the entire next sheet blank.
A TITLE statement immediately followed by an EJECT statement produces a page that is
blank except for the heading specified in the TITLE statement.

SPACE - INSERT BLANK LINES

The SPACE statement inserts one or more blank lines in a listing. The format of the SPACE
statement is:

Name Operation Operand

Sequence SPACE Absolute
symbol arithmetic expression
or blank

9-2

The assembler evaluates the expression in the operand field to determine the number of
lines to leave blank. Symbols in the expression must be previously defined. If the number of
lines to be left blank excE~eds the number left on the current page, the SPACE statement
functions as an EJECT statement, and the next line is printed on the top of the next page.
An example of a SPACE statement is:

NAME OPERATION OPERAND

1 2 3 4 5 6 7 8 9 10 11 1~ 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

EllSl:_~-~- -~AGL_ ~--L-- < Q~~TL~~~___.__

PRINT- PRINT OPTIONJ~l DATA

The PRINT statement controls the extent of the printing. The PRINT statement cannot
appear within a macro. The! format of the PRINT statement is:

Name Operation Operand

Sequence PRINT One to four operands
symbol separated by commas
or blank

The operands, which may appear in any order,, specify the amount of data to be printed.
The two choices for each operand are:

1.

2.

3.

4.

ON
OFF

GEN

NOGEl\l

DATA
NODATA

COND
NOCOND

A listing is printed.
No listing is printed.

All statements generatE~d from a macro instruction
are printed.
Only the macro instruc:tion is printed.

Generated data is printed in full.
Only the leftmost eight bytes of generated data are
printed.

Conditional statement~; are printed.
Conditional statement~; are not printed.

The operand cannot cont:.in a variable symbol. Each condition specified by the operands
remains in force until it is changed by another PRINT statement. A program can contain
any number of PRINT statements. If a PRINT statement does not appear in a program, or
until it does appear, the assembler assumes the following conditions: PRINT
ON,NODATA,GEN,NOCOND.

9-3

For example, the following statement requests the assembler to assemble 256 bytes of
zeros:

NAME OPERATION OPERAND

--·~~--~~~~~~~---+-!--~~~~~

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

If the operand DATA is included in the last PRINT statement, the listing contains all 256
bytes of zeros. If the last PRINT statement included the operand NODATA, only eight
bytes of zeros are listed.

If the operands of a PRINT statement are contradictory (such as OFF and DATA), the
assembler determines the printing according to the following priority:

1. ON or OFF

2. GEN or NOGEN

3. DATA or NODATA, and COND or NOCOND

When NOCOND is specified, conditional statements with errors are printed unless OF.F is in
force, or the statement occurs in a macro when NOGEN is in force.

Note that the line numbers generated will not be in sequence when NOGEN or NOCOND is
specified. Jumps in the line numbers indicate that statements were not listed due to NOGEN
or NOCOND. However, if the suppressed statements contain errors, the error messages still
refer to lines which do not appear in the listing.

9-4

10. MACRO LANGUAGE AND C:ONDITIONAL
ASSEMBLY ST A TEMENTS

The macro language and conditional assembly statements are so closely related that it is
difficult to explain either concept by itself. Thus, this section is divided into two
subsections. The first explains the basic structurn and application of the macro language.
Sufficient information is supplied to write a simple macro definition and instruction. The
second subsection deals with specific conditional assembly statements and their use within
more complex macros and assemblies.

MACRO LANGUAGE

The macro language provides a convenient way to generate a desired sequence of assembler
statements many times in one or more programs. The principal features are the macro
definition and the macro instruction. The macro definition is a composite piece of coding
which serves as a prototype for generating sourc1e statements. The macro instruction is a
single statement which calls the macro definition for assembly and assigns values to the
variable symbols in the macro definition.

The macro definition is written only once; the macro instruction is written each time a
programmer wants to generate the desired sequence of statements. This facility can help
simplify the coding of a program and reduce the chance of coding errors.

Macro definitions must appHar in a source prog1ram before all PUNCH statements and
statements pertaining to th1e first control section; consequently, only EJECT, PRINT,
SPACE, TITLE, ICTL, ISEQ, and comment statements can validly precede the first macro
definition. All of these statements except ICTL can appear between macro definitions.

A macro definition cannot appear within a macro definition; however, one macro can call
another macro.

MACRO DEFINITION

A macro definition has four parts: ·

1. Header statement

2. Prototype statiement

3. Model statements

4. Termination statement

10-1

HEADER STATEMENT

The header statement identifies the beginning of a macro definition. It must be the first
statement of a macro definition. The format of the header statement is:

Name Operation Operand

Blank MACRO Blank - ignored by the assembler

PROTOTYPE STATEMENT

The prototype statement specifies the mnemonic operation code and the format of macro
instructions that call the macro definition. The prototype statement must be the second
statement of every macro definition. The format of the prototype statement is:

Name Operation Operand

Symbolic Mnemonic 0 - 35 symbolic parameters
parameter operation
or blank code

The name field may be blank, or it may contain a symbolic parameter.

The mnemonic operation code in the operation field is the macro name used to call the
macro definition for assembly. This code must not be used in another macro definition, nor
can it be a recognized mnemonic of a machine or assembler instruction.

The operand field may contain 0 through 35 symbolic parameters, separated by commas.
The first four characters of a symbolic parameter should not be &SYS. Comments can
appear only if symbolic parameters are present.

The symbolic parameters in the name field and the operand field represent variable values
that are supplied by the programmer when he calls the macro for assembly. Subsequent
model statements use these symbolic parameters.

The operands in a prototype statement can be positional or keyword. Keyword and
positional operands cannot both be used in the same prototype statement.

Positional operands require that the operands of a macro instruction be written in the same
order as the corresponding symbolic parameters of the prototype statement. Positional
operands cannot have a default value and must begin with an ampersand (&) followed by
one to seven alphanumeric characters, the first of which must be alphabetic. Examples of
positional operands are &PAR1, &P, &P2.

10-2

Keyword operands may appear in any order in the macro definition and the macro
instruction, because the parameters are recogni~~ed by the keyword, not by the order or
position of the symbolic parameter in the prototype statement. Keyword operands may be
assigned default values. A default value must be a standard value, not a variable symbol.
Keyword operands are similar to positional operands, except that keyword operands are
immediately followed by an equal sign and optionally followed by a standard value. If a
value is not assigned, the default value is null. Examples of keyword operands are:
&PAM 1 =22,&P=C' ABCD',&PAM3=.

The length of a prototype s;tatement can be any number of lines. Continued lines must end
with a semicolon. A semicol1on may not be the first character of a continuation line.

MODEL STATEMENTS

Model statements are the macro definition statements from which the assembler language
statements are generated. Zero or more model statements may follow the prototype
statement. In the use of special characters, modE~I statements must follow the same rules as
macro instruction operands. The rules pertaining to special characters in macro instructions
are discussed under Special Characters in a Macro Instruction later in this chapter. Model
statements must also follow the normal continuation line rules, and statements generated
from model statements must not require moire than 160 characters. Only generated
statements appear in the list~ng. The format of th~~ model statement is:

Name Operation Operand

Any symbol Instruction or Any symbols or terms
or blank variable symbol

The name field may be blank, or may contain a symbol. Because a sequence symbol inside a
macro definition is local to that definition, the same sequence symbol can be used in
another macro or outside the macro definition. However, within the same macro definition,
a sequence symbol can be generated only once. Thus, a sequence symbol may be used in
more than one model statement, provided that th1e statements which duplicate it are skipped
due to conditional assembly. Note that because prototype statements are not generated, the
symbol in the name field of a prototype statement can be duplicated and generated in a
model statement. The characters * and. *or a se!quence symbol cannot be substituted for a
variable symbol in the begin position of a mod1el statement. If the model statement is an
inner macro instruction, the name field must follow the rules for macro instructions.

A variable symbol can be concatenated with other characters in the name field.

The operation field may contain a machine instiruction, an assembler instruction, a macro
instruction, a form instruction, or a variable symbol. However, the following assembler
instruction mnemonics cannot be used in the operation field of a model statement:
MACRO, PRINT, ISEQ, ICTL, and END. Variable symbols cannot be used to generate an
ADO, AGO, ANOP, SETA, :SETC, PUNCH, MEXIT, GBLA, GBLC, MNOTE, CSECT, COM,
MACRO, SEG, PRINT, ISEQ, ICTL, or END mnemonic, or macro instruction mnemonic
operation codes.

10-3

The operand field may contain ordinary, variable, or sequence symbols, or other terms,
depending upon the instruction in the operation field. A symbolic parameter in the operand
field of a model statement must first be defined in the prototype statement. Comments can
appear after the last operand. No substitution is made for variable symbols in a comment.

A model statement may be a comment statement. An asterisk in the begin column indicates
that the entire line is a comment statement. The assembler converts a model comment
statement into an assembler language comment statement.

The programmer may also write comment statements in a macro definition which are not to
be generated. These statements must have a period in the begin column, immediately
followed by an asterisk and the comment (.*comment).

The line following a PUNCH model statement is the only exception to model statement
format rules. Format rules do not apply because the line contains output data, and all
characters between the begin and end positions are in free format. Substitution is performed
for all variable symbols between the begin and end positions.

Relationship of Model and Prototype Statements: Figure 10-1 illustrates the relationship
between model statements and the prototype statement. Notice that the symbolic
parameters &TAG1, &TAG2, &TAG3, and &TAG4 are defined in the prototype statement
before they are used in the model statements.

... ... <

".F\

NAME OPERATION

J ___ .L _ ___j_ ___ L___ __ l __ .L _._ __ , ___ ,,_ __ ~--'-~J __ _L ___ _l__ __ _i_ __ _L __ L_ . ..L

J_ --1-- .. L_L__ -'-- _J_ __ _L_ J ____ 1 .1. _l_ _ __L _ _l,__ ..J...

•. J. 1 I l 1 J I L !_ _ .J._ J l_ L J_ J._·_ ••• L ___ _j_ __ _j__ _ _L_.L. L l. J._.___L. _.l_ ___ L___L

·--...._,,
,,"°;""'-... ,,

'.' ':".
'

' _L L -L --' -~:J!::-'-· ~- -~ -~- ---L ... L - ~ ' --- • ---•-- -• - ,_ --'-- _L

o 71"' p,y""'~·~• ... :-,·~" ' • ~~- L.. •- __ _l_ _,_ __ L o _, __ _J_ __ ' .L • L __J_

.l A 1 < I j J ___ J_ I _J __ J_ _____ _L __ L .1. _J_ ____ L __ L_. __ .l .L __ J_ __ J_ J_ ' .t ____ _l ___ L _ _J_ ___ L-.L

P. i ~J. J..p . ' ,J t)J,-; '/ ~ J,_ b\j_~}. _ -'---'----L _, _ , , _ -'---•~-~-~---'--- ~ ---'-~- '--'----•--~~•--L .. ,
__ l _j_ __ 1 I A -1.-J. -'-. l_ -·'- ·--~ ~---.1----__J,__ __ _L_ ___ _L____....l. J • -1-- J. L _ ..L _ _J_ __ 1 _ _i._ __ .L.. ___ ..J. ___ _____L ___ --'------.1.. ••. .J_

"' /" f c::_

,
Figure 10-1. Macro Definition

l_ ~ ·-~ ~·
i-·· .'

10-4

' /;

TERMINATION STATEMENT

The termination statement specifies the end of a macro definition. It can appear only once
within a macro definition and must be the last statement of the definition. The format of
the termination statement is:

Name Operation Operand

Sequence MEND Blank - ignored by the assembler
symbol or
blank

MACRO INSTRUCTION

The macro instruction performs the following fuinctions:

1. Calls the macro definition for assE~mbly.

2. Assigns valu1es to the symbolic parameters in the macro definition.

The macro instruction closely parallels the prototype statement. The values in the macro
instruction are equated to the symbolic parame1ters in the prototype statement. The format
of the macro instruction is:

Name Operation Operand

Ordinary Mnemonic 0 - 35 operands
symbol, operation
sequence code
symbol,
or blank

The name field may be blank, or it may contain an ordinary symbol or a sequence symbol.
An ordinary symbol is defined in the assembly ionly if a symbolic parameter is both in the
name field of the prototype statement and in the name field of a model statement. If the
model statement which has the symbolic parame!ter in its name field is skipped as a result of
conditional assembly, the statement is not generated. Consequently, the ordinary symbol in
the name field of the macro instruction is also not generated.

10-5

A sequence symbol in the name field of the macro instruction is never carried over to the
name field of the generated model statement. This sequence symbol can only be used in the
operand field of an AGO statement - never as the second operand of an ADO statement.

The mnemonic operation code in the operand field must be previously defined in a macro
definition or in the system macro library.

The number of operands in the operand field may not exceed the number of operands in the
prototype statement. An operand can have up to 127 characters.

POSITIONAL OPERANDS

If the prototype statement has positional operands, the operands of the macro instruction
correspond to the symbolic parameters in the prototype statement, and the operand values
are applied to the symbolic parameters in sequence. If the macro instruction has fewer
operands than the prototype statement, the unmatched symbolic parameters in the
prototype are assigned null values, not blanks. Two contiguous commas in the operand field
indicate an omitted operand, which is also assigned a null value. The examples in Figure
10-2 illustrate positional operands.

Prototype: &LABEL POS &TAB1,&TAB2,&TAB3 Values: &TAB1 = 42

Instruction: .FIRST POS 42, 15,63 &TAB2 = 15

&TAB3 = 63

Instruction: .SEC POS 16,,2 Values: &TAB1 = 16

&TAB2 = null

&TAB3 = 2

Figure 10-2. Macro Instruction - Positional Operands

KEYWORD OPERANDS

If the prototype statement has keyword operands, the macro instruction must also have
keyword operands. The instruction keyword, which is all characters before the equal sign,
must directly match the keyword in the prototype operand, except that the instruction
keyword operand is not preceded by an ampersand. The value following the equal sign in
the macro instruction is assigned to its corresponding symbolic parameter. Symbolic
parameters not matched by a macro instruction operand retain their default value. The
examples in Figure 10-3 illustrate keyword operands.

10-6

Prototype: &LBL KEV &PARM1•5,&PARM2•,&PARM3=C'VALUE' Values: &PARM1•100

Instruction: .THO KEV l>ARM3=C'PRICE' ,PARM1•'100 &PARM2 •null

&PARM3 • C'PRICE'

Instruction: .FOUR KEV PARM1=ABCD,PARM2•"78 Values: &PARM1 • ABCD

&PARM2 • "78

&PARM3 • C'VALUE'

Figure 10~3. Macro Instruction - Keyword Operands

SPECIAL CHARACTERS IN A MACRO INSTRUCTION

A macro instruction operand may consist of any combination of up to 127 characters,
provided the syntactical rules for the following special characters are observed. These
characters have special meanings in a macro instruction operand.

• escape charac:ter (#) • comma

• ampersand • semicolon

• apostrophe • blank

• parentheses

Escape Character

The first character after an escape character retains its literal value. Therefore, if a special
character is to retain its literal value, it must be preceded by an escape character. For
example, the following operand field has three op1erands:

#(C#.B,#,#,. ,XYZ ------
1 2 3

Escape characters are part of: the operand value and are carried over to the model statements.

Ampersand

An ampersand followE~d by a letter indicates the start of a variable symbol. During assembly,
the current value is substituted for all variable symbols found in a macro instruction. In the
following example, only &V1 is substituted.

C'A~-i.V1 #&V2',C' #&V3 i/:&V4',AB+X'&V1

10-7

Apostrophe

An apostrophe immediately preceded by the letter C signifies the start of a character string
constant. The character string constant extends to the next apostrophe. Parentheses,
commas, and blanks lose their special meanings when they are enclosed in a character string
constant, as in the example:

C' A,BC(539'

The comma, blanks, and left parenthesis are part of the character string constant. In any
other context, the apostrophe retains its literal value.

Parentheses

An operand beginning with a left parenthesis and ending with a right parenthesis signifies an
operand sublist. Within a sublist, the comma is a suboperand separator, not an operand
separator. Special characters, other than the comma, retain their special meanings within a
sublist. Parentheses that do not specify an operand sublist retain their literal value.
Examples of operands with parentheses are:

Comma

A,(B,C)

A(B,C)

(A+B)/2(H,4)

Two operands: [A] [(B,C)]

One operand - operand does not begin with a left
parenthesis

One operand - operand does not begin and end
with matching parentheses

The comma separates operands or suboperands, unless the comma is inside a character string
constant, preceded by an escape character, or follows a left parenthesis that is not the
opening parenthesis of a sublist. In these three cases, the comma retains its literal value.
Examples of operands with commas are:

A,B,C Three operands: [A] [B] [C]

A #,B #,C One operand: comma preceded by #

B(C,4+K One operand: comma preceded by (

Semicolon

The semicolon indicates line continuation. Characters following a semicolon are considered
comments. The semicolon cannot be the first character of a continuation line. The current
line continues with the first nonblank character of the next line, as in the following
example:

10-8

Blank

A,BHCD,52,;HERE
CON

HERE is a comment. The four operands are:
[A] [BHCD] [52] and [CON].

A blank signifies the end of the operand field. Characters following a blank are considered
comments.

SUBLISTS IN MACRO INSTRUCTIONS

To group a number of suboperands as a sin!]le symbolic parameter value, the macro
instruction operand is. written as a sublist. A sublist consists of one or more suboperands
separated by commas and enclosed in parentheses. Each suboperand has form identical to an
operand. The entire sublist including the parentheses is considered one macro instruction
operand.

Omitted suboperands have a null value. Howeve1r, the operand () is considered a character
string, not a sublist with alll the suboperands omitted. The operand limit of 127 characters
applies to the entire sublist. Examples of valid sublists are:

(A,2,4, 16) Four suboperands

(A+40, B (2,6), (N ,M) ,240/C+ X) Four suboperands

SUBLISTS IN MODEL STATEMENTS

In a macro instruction opEffand, a sublist can assign a set of values to a single symbolic
parameter of the macro definition. Any model statement may reference the entire symbolic
parameter, but only a SET A, SETC, or ADO stat1~ment can reference the suboperands of the
symbolic parameter.

The format used to reference a suboperand is: symbolic parameter (n).

The subscript n is an arithmetic set expression that refers to the position of the suboperand
being referenced. For example, &LIST(2) references the second suboperand of the symbolic
parameter, &LIST.

If the sublist (A,,C20,'192',(N,M)) is a macro instruction operand corresponding to the
symbolic parameter &Fl ELD, the values assigned to the suboperands are:

FIEL D(O) =null

FIELD(1)=A

FIE LD(2) = null

FIELD(3) = C20

10-!~

FIEL D(4) = '192'

FIELD(5) = (N,M)

FIELD(6) through FIELD(n) =null

A subscripted reference to an omitted sublist element, such as FIE LD(2) above, is assigned a
null value. If the macro instruction operand is a simple operand, rather than a sublist, the
macro instruction can refer to the operand value by the symbolic parameter without a
subscript, or by the symbolic parameter with a subscript of 1. All other subscripted
references have a null value.

Suboperands of sublists within a sublist (for example, N in FIE LD(5) above) cannot be
referenced in a model statement.

SUBSTRING NOTATION

Substring notation allows the programmer to reference part of a macro instruction operand
or a character string constant. Substring notation consists of a symbolic parameter or a
character string constant, immediately followed by two arithmetic set expressions separated
by a comma and enclosed in parentheses, as in the examples:

&NAME(2,4)

C' AB24CFG'(&P1 ,2)

The first expression indicates the position of the first character to be included in the
substring. The second expression indicates the number of consecutive characters (beginning
with the character indicated by the first expression) to be included in the substring.

If the substring specifies more characters than are in the macro instruction operand or in the
character string constant, only the number of available characters are supplied. If the
starting character is outside the range of the string, a null character is supplied.

Substring notation has the following limitations:

1. Substrings can only be specified for character string constants and
macro instruction operands.

2. A substring of a sublist cannot be specified.

3. A substring reference can only be used as a term in a conditional
assembly statement.

Consider the example in Figure 10-4.

10-10

Prototype: &LABEL WRITE &P1,&P2,&P3 Values: &P1 • 24

Instruction: .Fl RST WRITE 24,C' ABCDE' ,734A &P2(3,3) • ABC

&P3(1,2) • 73

Finure 10-4. Examples of Substring Notation

CONCATENATION OF VARIABLE SYMBOLS

Variable symbols in model statements can be concatenated so that the name field, operation
field, or operand field cain be modified by a macro instruction. Thus, the mnemonic
instruction DIV can become DIVA, DIVB, or DIVC, and the operand FIELD can become
Fl ELDA, FIELDS, or FIE LDC.

The example in Figure 10-5 illustrates concatienated operation codes and operands in a
macro definition.

NAME OPERATION OPERAND

--~~~~---+--~~~---4--1-~~~~~--~~~~~~~~~~~~~~~

1 2 3 4 5 6 7 8 9 10 11 -~ 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

MACRO INSTRUCTION ___ ,_ -~--' ~-•--'--· _L_ • _L i ~-·--'- .L. "

--w : ~~1-fD:Z:vD>£: :r_lf:ta:uf,a-;1t.3:-~~~A •. R: . ·-~~__:~_::-_:_~:-:-:~-~-: ::
MACRO EXPANSION _._ "_, _, , , " , '--~--'--'---~---~--· , , __ ~ ~--"---' · ·---'----'-----'--~-~--" , __ _._

1 J J l • - __ ____.__ __ _!.__J,_ _ _l_ __ _j_ J I

,.,0, • L

J__ ,_J__ L .• - ~ _ l _ l.-~---__._ __ • -- _ _J__ _ 1 .l,._ 1 .. _._ __ • J_ __ t___--.L-----'-- _L_____._ __ _L .•• ~__,_ __ J_ __ _J__ l. i -·- 1. .J 1. J ' _l _ •• 1 ••• L •• _J __ J J. __ _I_ J l

1 2 3 4 5 6 7 8 9 10 11 12 1314 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 ._...._._ __ _._..._.__._.__.__.__.__.___.__--'-..L-l.-'-~-'-........a_.__..._...__._...._..__._~_..__.___._ _._....___.__._...__..__._...__.

Figure 10-5. Concatenation1 of Variable Symbols

10-11

NESTING OF MACROS

A model statement in a macro definition may be a macro instruction that calls another
macro. Model statements used as macro instructions are called inner macro instructions.
Macro instructions not used as model statements are called outer macro instructions.

Rules for inner macro instructions are the same as for outer macro instructions. Symbolic
parameters in an inner macro instruction are replaced by the corresponding characters of the
outer macro instructions. Sublists of an outer macro instruction cannot be passed as a
sublist to an inner macro instruction.

An outer macro instruction is a first level macro instruction. The first inner macro
instruction is a second level instruction, the second inner macro instruction is a third level,
and so on. Five levels of macro instructions are allowed. Within each level, any number of
macro instructions may be used.

Figure 10-6 demonstrates the inner and outer macro instructions and the various levels of
instructions.

Source

Prrram/MACRO /MACHO/MACRO
READ COMPUTE DIVIDE
Model Model Model

READ Model Model Model

J

~ COMPUTE Modet Model

\ Model \~1vmE, Ml)ND
\ Model \ Model '\

END \ \ MEND ',

\ \ '
\ \ '
'- - Outer macro '- - - - Inner macro ' - - - - Inner macro

instruction
(first level)

instruction
(second level)

instruction
(third level)

Figure 10-6. Nesting of Mt1cros

MNOTE - GENERATE ERROR MESSAGE

The MNOTE statement is used only in a macro definition to generate an error message. The
format of the MNOTE statement is:

Name Operation Operand

Sequence MNOTE Severity code, message or
symbol or message only
blank

10-12

The severity code may be W - warning error, or F - fatal error. If the first character is not a
W or an F followed by a comma, the statement is treated as a warning error.

The message may be any EBCDIC characters. The line may not be continued, and no
substitution is performed. Examples of MNOTE statements are:

Statement

MNOTE W,message

MNOTE F ,messag1e

MNOTE Fmessage

MNOTE message

Generated Message

W MNOTE *message*

F MNOTE *message*

W MNOTE *Fmessage*

W MNOTE *message*

MEXIT - ALTERNATE TERMINATION FOR MACRO DEFINITION

The MEXIT statement indicates an alternate termination point for a macro definition. The
format of the MEXIT statement is:

Name Operation Operand

Sequence IVIEXIT Blank - ignored by the assembler
symbol or
blank

When an MEX IT statement is processed, the next statement processed by the assembler is
the statement immediately following the macro instruction that called the macro. If MEXIT
is skipped due to conditional assembly, MEXIT is ignored. The MEXIT statement cannot
replace MEND as the final statement of a macro diefinition.

SYSTEM VARIABLE SYMBOLS - &SYSNDX AND &SYSECT

The system variable symbols, &SYSNDX and &SYSECT, are automatically assigned values
by the assembler. ThE~se symbols can be used only in the name, operation, and operand
fields of statements in macro definitions. They may not be defined as symbolic parameters,
nor can they be assigned values by SET statements.

&SVSNDX

Assigned an original value of 0001 for the first macro instruction processed, &SYSNDX is
increased by 1 for each iinner or outer macm that is processed. Thus, the value of
&SYSN DX represents the current number of mac:ro cal Is processed up to and including the
current call.

10-13

The value of &SYSN DX always remains constant within a macro level, regardless of how
many inner macros are called. When the assembler returns to a given macro (from an inner
macro), the value of &SYSNDX in effect is the value it had when the macro was first called.

Figure 10-7 illustrates the changing value of .&SYSNDX. The numbers to the left of the
model statements indicate the value of &SYSNDX as each statement is processed.

The variable symbol &SYSNDX can be concatenated with other characters to form unique
names in statements generated from the same model statements. Thus duplicate names can
be avoided when a macro is cal led more than once.

&SYSN DX as an arithmetic term in a SETA expression produces an arithmetic value. In
other contexts, the value of &SYSN DX is a four digit number, including leading zeros.

The example in Figure 10-8 shows how &SYSNDX can be used. All statements in the
example are part of the same macro, which is called by the eighth macro instruction
processed during the assembly.

Source
Program

READ

l
END

MACRO MACRO

READ /;COMPUTE
Model 2 Model

1 Model 2 Model
Model 2 Model
COMPUTE - MEN.D

1 Model
1 Model
1 WRITE •'*MACRO

Model WRITE
Model Model

1 Model Model
MEND Model

MEND

The numbers to the left of the statements indicate the value of &SYSNDX at that particular
point in the program.

Figure 10-7. Using &SYSNOX with Inner and Outer Macros

Model Statements:

&SET1 SETA &SYSNDX+10 Values: &SYSNDX+10 = 8 + 10 = 18 (in the SETA statement)

&SET2 SETC &SYSNDX &SYSNDX = 0008 (in the SETC statement)

L&SYSNDX FORM 2,6 L&SYSNDX = L0008 (in the concatenated symbol)

Figure 10-8. Examples of &SYSNDX

10-14

&SYSECT

The variable symbol &SYSECT represents the name of the control section in which a macro
instruction appears. The value assigned to &SYSECT is the name of the last CSECT or COM
statement that precedes the current macro ins1truction. If no CSECT or COM statement
appears before the macro instruction, &SYSECT has the value of two blanks.

In any given macro definition, the value of &SYSECT is constant, that is, the name of the
last CSECT or COM statement before the macro instruction. During nested macro calls,
&SYSECT in an inner model statement refers to the last active CSECT or COM statement in
the next outer macro definition. Note the value of &SYSECT in Figure 10-9.

Source Program

FIRST COM

!

Figure 10-9. Example of &SYSECT

CONDITIONAL ASSEMBLY STATEMENTS

Conditional assembly al lows the programmer to specify assembler language statements
which may or may not be! assembled, depending upon conditions evaluated at assembly
time. These conditions are usually tests of valw~s, which may be defined, set, changed, or
tested during assembly. Thus, different sequences of statements can be generated from the
same macro definition ..

Almost all conditional assembly statements can be used inside or outside macros, although
their primary use is inside macros. The macro language itself can be considered a type of
conditional assembly.

The conditional assembly statements are:

SETA Assig1ns arithmetic values to set symbols.

SETC Assig1ns character values to set symbols.

GBLA Defines a SETA statement: as global.

10-15

GBLC

ADO

AGO

ANOP

SET STATEMENTS

Defines a SETC statement as global.

Sets up a source statement generation loop.

Specifies a branch to another statement; skipped statements
are not assembled.

Specifies an assembly no-operation statement.

The SET statements assign arithmetic and character values to set symbols which can then be
referenced in subsequent source statements. When the defined symbol appears in a
subsequent statement, the assembler replaces the symbol with the assigned value.

If two SET statements assign different values to the same set symbol, the last value assigned
to the symbol is the value currently in effect.

SET statements can appear within or outside a macro definition; however, a set symbol
defined within a macro is local to that macro unless it is specifically declared global.

A set symbol defined outside a macro can be referenced for its assigned value from
anywhere in the source program. The same variable symbol may not be used as a symbolic
parameter and as a set symbol within the same macro definition; nor can the same variable
symbol be used in a SETA and a SETC statement, if the symbols are defined within the
same scope.

SETA - ASSIGN ARITHMETIC VALUE TO SET SYMBOL

The SET A statement assigns arithmetic values to set symbols. The format of the SET A
statement is:

Name Operation Operand

Set symbol SETA Arithmetic set expression

The set symbol in the name field may not be generated as a result of substitution, that is,
the name field must be explicitly coded.

The expression in the operand field is evaluated as a 16-bit arithmetic value which is
assigned to the set symbol in the name field.

10-16

An arithmetic set expression may consist of one term or an arithmetic combination of
terms. The procedure used to evaluate an arithmetic set expression is the same as that used
to evaluate arithmetic expressions in assembler language statements. The only difference
between the two expressions lies in the terms that are allowed. The terms that may be used
in an arithmetic set expression are:

Arithmetic Terms

Arithmetic constants
SET A symbols
&SYSN DX refereinces
Count attribute references
Number attribute references

Character Terms

Symbolic parameters, including
sublist and substring
references

SETC symbols, including
substring references

Substrings of chara1cter constants
&SYSECT references
Character constants

Example

2463 or "FOF2
~~S1

~~SYSNDX

K'&P1
N'&P2

Example

&P3(&P1)

&S
C' ABCDE'(2,3)
&SYSECT
G'ABC'

Any character term e><cept a character constant may appear as a single term, or be used as
an operand in arithmetic and logical operations, provided the resultant character string
contains only numeric characters. When used in this context, the value of the character
string, that is, its decimal equivalent, may not exceed 65,535.

Any character term may be used as an operand in a relational operation. In this context, the
term is always treated as a character constant, even if it consists solely of numeric
characters.

Since conditional assembly statements represent 1the tools for source statement generation,
they cannot themselves be 1the object of substitution, nor may they be concatenated. For
example, if the character constant C'&P1' appears as a term in an arithmetic set expression,
its value is &P1 regardless of the actual value of &P1.

10-17

The following are examples of valid SET A statements if &Pl and &P2 are symbolic
parameters with values (64,4,ABC) and AB246C, respectively.

&Sl SETA 8

&S2 SETA "4A

&S3 SETA &S1+&S2

&S4 SETA &Pl (1)+&P2(&P1 (2),2)

&S5 SETA (&Pl (3) <EO>C' ABCDE'(1,3)+&P2(4, 1))/2

&S6 SETA &P2(3,3) < EQ >C'246'+N'&P1

Examples of invalid arithmetic set expressions are:

A+2

=C'AB'

2+L'BETA

&P1(1) <E0>64

P'-240'

C'ABC'

&P1&P2

Reference to ordinary symbol

Literal term

Length attribute reference

&Pl (1) is considered a character string, the second
operand in the relation must be coded as a character
term, that is, C'64'

String constant other than a character constant

Character constant not used in a relation

Concatenation of symbols

SETC - ASSIGN CHARACTER VALUE TO SET SYMBOL

The SETC statement assigns a character value to a set symbol. The assigned character value
can be passed with the set symbol to another statement operand. The format of the SETC
statement is:

Name Operation Operand

Set Symbol SETC Character term or
arithmetic set expression

The set symbol in the name field may not be generated as a result of substitution, that is,
the name field must be explicitly coded.

10-18

The operand field may c:ontain an arithmetiG set expression or one of the following
character terms:

Term

Symbolic parameter, including sublist

and substring references

SETC symbol, including substring
references

Substring of a character constant

&SYSECT reforencB

Character constant

&SYSNDX referenc:e

Example

&PARM2(3)

&SET1

C'ABCDE'(2,3)

&SYSECT

C'ABCD'

&SYSNDX

Only one operand is allowi9d. The maximum size of an assigned character value is 16 bytes.
If a larger value appears, only the leftmost 16 bytes are assigned by the assembler.

When &SYSN DX is used as a single character tE~rm, the value is a string of four characters,
including leading zeros. If the operand speciified is an arithmetic set expression, the
arithmetic value is converted to a 16-bit constant

Examples of valid SETC operands are:

C'24BK'

&P1

&P1 (2,4)

&P1&P2(2,1)

&SETC

&SYSECT

&SYSNDX

(&SYSN DX+1 O-&P1 (2,4)/2) * &P2(2) < EQ >C'F ID'

Examples of invalid SETC operands are:

X'124' String constant other than a character constant

C'AB2'+4 Character constant used as arithmetic operand

ALPHA Ordinary symbol

L'ALPHA Length attribute

10-19

GBLA AND GBLC - GLOBAL ARITHMETIC AND CHARACTER SET SYMBOLS

Local set symbols are made global (ayailable outside the macro) by a GBLA or GBLC
statement. The format of the GBLA or GBLC statement is:

Name Operation Operand

Blank GBLA and 1-35 set symbols,
GBLC separated by commas

Global statements must appear immediately after a prototype statement or after another
global statement. Any number of continuation lines may be used.

When a set symbol is declared global, its assigned value is available to statements in the main
program, but not to other macro definitions. To be available to other macro definitions, the
set symbols must also be declared global in those macro definitions.

If set symbols have not been assigned values outside this macro definition or by a previous
call to this definition, the global statement assigns an initial value of 0 to SETA symbols and
a null character value to SETC symbols. If the set symbols have an assigned value, the global
statements do not affect the value of the set symbols.

ADO - ITERATIVE RETURN

The ADO statement sets up a loop between the ADO statement and a subsequent statement
identified in the ADO statement. The format of the ADO statement is:

Name Operation Operand

Sequence ADO Positive arithmetic set
symbol, set expression, sequence symbol
symbol, or
blank

The sequence symbol in the name field can only be referenced by an AGO statement.

The operand field must have two operands, separated by a comma. The first operand is a
positive arithmetic set expression that indicates the number of iterations to be executed.
The second operand is a sequence symbol that specifies the last statement of the loop. This
sequence symbol must appear in the name field of a statement that follows, not precedes,
the ADO statement. The sequence symbol cannot be in the name field of another ADO
statement, a macro instruction, or an AGO statement.

If the set expression is equal to zero, control is transferred to the statement named in the
second operand, and no intervening code is included. However, if the first operand is a
positive number, the assembler subtracts 1 from the first operand and includes in the
assembly all the code from the ADO statement to the statement named in the. second
operand. If the first operand is zero after the subtraction, the assembler does not return to
the ADO statement but processes the next statement. If the first operand is not zero after
the subtraction, the assembler again subtracts 1 from the first operand and repeats the loop.

10-20

Notice that when the first operand initially is zero, the jump is made to the statement
named in the second operand. When the first operand is not initially zero, the indicated
number of loops is performed and a jump is made to the first statement after the statement
named in the second operand. llf the first operand is invalid, the value is set to 1.

The name field may contain a sequence symbol, a set symbol, or a blank. If the name field
contains a set symbol, the symbol is initially assigned a value of 1. For each iteration, this
value increases by one while the first operand of ADO decreases by one. Thus, in the
following example, after 10 iterations, the first operand is 0 and &COUNT is 10.

NAME OPERATION OPERAND

1234 5 6 7 8 9 101112~1718192021222324252627.2fl29303132333435363738394041424344454647484950

(.C.OUKT. AD.O. 1~, .•. E.fll)J_ -~-~- L L i ___ ~ - < ' L l ' '· ,

·-· _, --- -

l -L- _ _j__ l _ _i J. _J. - i •. i .i __ L __ L J ____ .1. _____ _L __ _l _ _L_ __ L....,_----'-----_J ___ _t_____.._L___L___ __ L _ _.J._ __ ..J_

The preceding statement performs a function eqU1ivalent to the following three statements.
During the first iteration, &COUNT equals 1 and the first operand (10) is decreased by one.
After 10 iterations, &.COUNT equals 10 and the first operand equals 0. Control is then
transferred to the first staterrient following the .END statement.

NAME OPERATION OPERAND

-~~~-->-+-~~~~---t-t--~~~~~~-~~~~~~~~--~~~~~~~

1 2 3 456789101112131415Hi17181920 2122232425262728293031323334353637 3839 4041424344454647484950

. C.0.tUlT
,__ _ _J_ ___ _._ ___ ..._ ____ _

OUNT.

SLEJ:A ~ _ rja: __ ,_~ __ _.__.__._~--~- ~_.___~~~-~--'----~-, __ , _ , ___ , , . ,. , ,_ ..

SE.~A ~ ~-~-~r-~ltui¥.~:L ~ ~--~-=--: ~-~--:-~~~-~:-~-~~:_: __ :_~-:~_:_::::
L _j_ ___ l__ ..!.. J -..! .• ..1. _ _L __ .l_ ___ ..J. ___ L__ _ _j_ _ _l_____L______L_ __ L__J_______i______t_L__J____J. ___ _J

The ADO statement can be used to include or exclude code from the assembly, depending
upon the value of the first operand, as in the following example. If the variable symbol
&LABEL is equal to YES, the first operand of the ADO statement is 1, and all intervening
code is included in the assembly. If, however, &LABEL is not equal to YES, the first
operand is zero and all intervening code is excluded.

NAME OPERATION OPERAND

.--l. _...1... ____ _ ~--"-

J_ _._ __ _J_ __ _l____l_ __ _J________j_ _ _j_ _ ___l_,

10-21

NESTING OF ADO STATEMENTS

As many as six ADO statements can occur within a primary ADO loop. Such nesting of
ADO statements increases the total number of iterations in geometric progression. If five
iterations are performed by an outer ADO loop,, an inner ADO with five iterations increases
the number of iterations to 25. An inner ADO statement cannot reference a statement
outside one referenced by the outer ADO.

The following statements produce a 5 x 5 matrix containing all products of the ordinary
numbers 1 through 5.

NAME OPERATION OPERAND

------+-+----
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 4 7 48 49 50

iiJ$~~~ '-:··•: '=-:~=-~~: :,:_:~=~~~~:-~:-:

During the first iteration of the outer ADO (named &COL), &COL equals 1 and &ROW
increases by 1 with each iteration of the &ROW ADO statement until &ROW equals 5.
During this first iteration, the statement .END WDD &COL *&ROW produces the values 1,
2, 3, 4, and 5, as shown in the first column of values in this matrix.

First Pass of the Outer ADO

&COL

1 2 3 4 5

1 1
2 2

&ROW 3 3
4 4
5 5

During the second iteration of the outer ADO, &COL equals 2 and &ROW again equals 1
through 5. The second column of values is produced.

Second Pass of the Outer ADO

&COL

1 2 3 4 5

1 1 2
2 2 4

&ROW 3 3 6
4 4 8
5 5 10

10-22

This process continues until the outer ADO has performed five iterations, at which time the
5 x 5 matrix contains the following values:

&COL

1 2 3 4 El

1 1 2 3 4 fi
2 :2 4 6 8 10

&ROW 3 :3 6 9 12 15
4 4 8 12 16 20
5 !5 10 15 20 25

AGO - UNCONDITIONAL BRANCH

The AGO statement transfers control to a statement named in its operand field. Statements
between the AGO statemen1t and the statement to which the jump is made are not included
in the assembly. The format of the AGO statement is:

Name

Sequence
symbol or
blank

Operation

AGO

OpE!rand

Sequence symbol

The sequence symbol in th1e operand field must: appear in the name field of a statement
following, not preceding, th1e AGO statement. An AGO statement can transfer control out
of an ADO loop. If an AGO statement transfers c:ontrol into the range of an ADO loop, the
source statements are processed as if no ADO loop exists.

The AGO statement cannot jump into or out of a macro. An example of the AGO statement
appears with the description of the ANOP stateme!nt in the following text.

ANDP - LABEL DEFINITION

The ANOP statement identifies a statement area to which a jump can be made. Because the
ANOP statement is used for name field identification only, it has no operands and no
operation is performed. The format of the ANOP statement is:

Name Operation Operand

Sequence ANOP Not used - ignored
symbol by the assembler

If the programmer wants to use an ADO or AGO statement to branch to another statement,
he must place a sequence symbol in the name field of the statement he wishes to branch to.
However, if the name field already has an ordinary symbol or a variable symbol, a sequence
symbol cannot be placed in the name field. To solve this problem, the programmer can place
an ANOP statement before the statement he wishes to branch to, and branch to the ANOP

10-23:

statement. This arrangement has the same effect as branching to the statement immediately
after the ANOP statement.

In Figure 10-10, the AGO statement performs an unconditional branch to the ANOP
statement. All intervening code is excluded from the assembly.

NAME OPERATION OPERAND

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

A~kO .
•
•
• • 1 • ' •

.G.O .. • H.E.R.E.
•
•
•

~---'---'----'- ._ .L

•. tLE.R.E. .rtO.P ..

•
•

Figure 10-10. Example of the AGO Statement

COUNT AND NUMBER ATTRIBUTES

Count and number attributes are unique to macro instruction operands. These attributes can
be referred to only in set expressions used as operands in conditional assembly statements
within macro definitions.

COUNT ATTRIBUTE

The count attribute is a value equal to the number of characters in the macro instruction
operand after substitution of variable symbols in the operand. All characters in the operand,
including escape characters, are included in this count. If the operand is a sublist, the count

attribute includes the embracing parentheses and the commas within the sublist. The count
attribute of an omitted operand is zero.

If an operand contains variable symbols, the characters that replace the variable symbol,
rather than the variable symbols, determine the count attribute.

The notation for the count attribute is K' immediately followed by the symbolic parameter
that corresponds to the operand.

10-24

The examples in Figure 10-11 illustrate the preceding rules.

Symbolic Paramete1:

&PAR

&PAR1

&PAR2

&PAR3

Macro Instruction Count
Operand Attribute

ALPHA K'&PAR

(JUNE,JULY,AUGUST) K'&PAR1

2(10,12) K'&PAR2

C'AB#'#3' K'&PAR3

Fig11Jre 10-11 Examples of the C:ount Attribute

Count Value

5

18

8

9

To reference the count attribute of a suboperand, K' followed immediately by a subscripted
symbolic parameter must bie used, as in the example: K'&PAR(3). K'&PAR(3) refers to the
count attribute of the third suboperand of the symbolic parameter &PAR.

NUMBER ATTRIBUTE

The number attribute is a vailue equal to the number of suboperands in an operand sublist. If
the operand in the macro instruction is not a sublist, the value of the number attribute is
one. The number attribute of an omitted operand is zero.

The notation for the number attribute is N' immediately followed by the symbolic
parameter that corresponds to the operand, as in the example: N'&PAR.

In the following macro instruction, the count attribute of the operand is 19, while the
number attribute is 3:

NAME OPERATION OPERAND

-~-------t--jl----------+--4------------------------

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

_ RE.r,ao . _,

The following example has three operands, each with a number attribute of 1; their count
attributes, however, are 5, 6~ and 4, respectively.

NAME OPERATION OPERAND

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 .28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

---·-~ .. -~--" "-- JtE.rJlOL -'~L-+-J..N!JlT,__,~OLILT:P.UJ: •. Ll~J:_' ' ' L .• ' • '~_._~~~--'--
L .-.&..----!---·- __ _. ___ ._ __ _..__ _ _J_ ____ .J._._ l J._ __ _J_ __ L ___ j_ ___ _J_ __ L_._J.-_ --' --L.-----'----------1------'-___j_ _ _____L.----'-----_.J._--1- 1 __ _,1.__ j_ __ _L_____.1.__ _ _J_ _ __J___J_ __ J_

10-25

11. CONTROL LANGUAGE ST A'fEMENTS

The Control Language for the assembler must pnovide the following four basic services:

1. Call the assumbler into execution

2. Specify the assembly options

3. Define source input, object output, source output, and macro library
input files

4. Obtain the source program from the card reader, library member, or
spooled input

The Control Language statements for the assembler are explained below. For the exact
format of the statements, consu It the M RX/OS Control Language Services, Extended
Reference manual.

Control
Language
Statement

//EXEC PGM=

//PAR

//PAR IMEM=

Parameter

ASM

Keyword options

Input-member-name

11-1

Description

Calls the assembler into execution.

Specifies the assembly options in
free form.

Specifies the name of the input source
module on the library. If omitted, the
source is assumed to be a non
partitioned sequential data file (such
as a spooled input file).

Control
Language
Statement

//PAR OMEM1=

//PAR OMEM2=

//PAR MAXSIZ=

//PAR LIST=

//PAR XREF=

//PAR ERROR=

//PAR OBJECT=

Parameter

Output-member-name

Punch-indicator

1-5 decimal digits

l~~sl

{

YES \
NO ~
CON DJ

Description ~;!']
/t

,/'
/

Specifies the name 6rthe relocatable
object module on the library. If
omitted and OBJECT=YES or COND,
the assembly is aborted.

1-10 alphabetic characters to indicate
that PUNCH output is expected. If
omitted, no PUNCH output is produced.

Specifies the approximate number of
source lines generated in the program.
If omitted, the default value is the
SYSGEN parameter, usually 1000.

Specifies whether the source program is
to be I isted:

YES List source program
NO Omit listing

If omitted, the default parameter is
YES.

Specifies whether a cross-reference list
is to be generated:

YES Generate cross-reference list
NO Omit cross reference list

Specifies whether warning errors are to
be listed:

YES List warning errors
NO Omit listing

If omitted, the default parameter is YES.
Fatal errors are always listed.

Specifies under what conditions a relocatable
object module is to be generated:

YES Module is generated unconditionally
NO Module is not generated
COND Module is generated if no fatal

error occurred

If omitted, the default parameter is YES.
If the option, YES or COND, is selected,
the OMEM1 option must be specified.

11-2

Control
Language
Statement

//DEF ID=

//DEF ID=

//DEF ID=

//DEF ID=

//DEF ID=

//DEF ID=

Parameter

File identifier

INPUT

OUTPUT2

LIST

MACILIB

Description

Defines the source input, object output,
source output, list output, and macro
library input files.

_.Source input file

6
-~;:,?~ "

Relocatable output file: must 6e 252 ··;;}/)
by~. The file must be a

-part1t1oned data file. The device must
be disc. CSD=YES

Source punch file identifier: must be
80 bytes, blocked 1. The file must be
a non-partitioned sequential data set.
CSD=YES

List output file: must be 132 bytes,
blocked 1. The file must be a sequential
data set. CSD=NO. The file is written
with the first character being a "native"
mode control character for a printer.

Macro library input: the file must be a
partitioned data set, CSD format, 80
byte record~, blogJ<ed 1.

r:/ .·/ / I/ ,1··

r /

,j1JAACLIB isnot,_spgi ifi d. the default file name is $SYSMACLIB. The INPUI and_L,!§T .•
files must always be defim~d the OUTPUT1 aruL.QUI£.UI2J~.~aaL.Qll:ti.onal. DEF,INE
tatemen s may a so me udre keyword parameters to identify the file name or the device

with which the file is associated.

If the source program is to be read from the card reader, the source program card deck must
be preceded by a //D ~.JAELb.~.§.Y§m statement and terminated by a /* card.

< ..

11-3

The cards in Figure 11-1 illustrate the Control Language statements to specify:

• Source input from cards

• Relocatable output to a specified library member

• List output to printer

• Cross-reference output

/*

//DATA FIL=SVSCRD

//PAR OMEM1=PRG2,XREF=VES

//DEF ID=LIST,DEV=PRINTER

Figure 11-1. Example of C'- I language Statements

11-4

The cards in Figure 11-2 illustrate the Control Language statements to specify:

• Source input from spooled input file

• Relocatable output to a specifiied library member

• List outp1Ut to printer

• Cross-reference output

/*

Source
Program

//C>ATA FIL=name

//PAR OMEM1=PRG2,XREF•YES

//DEF ID=LIST,DEV=PRINTER

//EXEC PGM=ASM

Figure 11-2. Example of Contr1[)I Language Statements

The cards in Figure 11-3 illustrate the Control Language statements to specify:

• Source input from a library file

• Relocatable output to a specified library member

• List output to printer

• Cross-reference output

//EOJ

//PAR OMEM1•PRG2,XREF•VES

//DEF ID=OUTPUT1,FIL-SLIB

//DEF ID•LIST,DEV•PRINTER

//DEF ID•INPUT,FIL•MVSOURCEFIL,STA•(P,I)

//EXEC PGM=ASM

Figure 11-3. Example of Control Language Statements

To place the intermediate files on non-shared resource discs, any or all of the cards in Figure
11-4 may be included in the job control stream:

//DEF ID=MRELFIL,FILnDUMMV,VOL=userpack

//DEF ID=MRMRGFIL,FIL=DUMMY ,VOL=userpack

//DEF ID=MRSRTFIL,FIL=DUMMV ,VOL•userpack

//DEF I D•M RTEXT01,FI L•DUMMY ,VOL=userpack

//DEF I D=M RVI RT AL ,Fl L=DUMMY ,VOL•userpa~k

//DEF ID=MRXRFFIL,FIL=DUMMY,VOL=userpack

Figure 11-4. Placing Files on Disk - Example

11-6

The file M RTEXT01 has the highest traffic and would be the best candidate for
performance enhancement. The file MRXRFFIL is used in macro generation and cross
reference generation programs. The files MRSRTFIL and MRMRGFIL are used for cross
reference. The file M RV I RT AL is used primarily for symbol table overflow. The file
MRELFIL is used for error output.

11-7

A. EBCDIC REPRESENTATION

EBCDIC EBCDIC

Hex Hex

Code Graphic Card Code Code Graphic Card Code

00 NUL 12-0-1-8-9 2F BEL 0-7-8-9
01 SOH 12-1-9 30 12-11-0-1-8-9
02 STX 12-2-9 31 1-9
03 ETX 12-3-9 32 SYN 2-9
04 PF 12-4-9 33 3-9
05 HT 12-5-9 34 PN 4-9
06 LC 12-6-9 35 RS 5-9
07 DEL 12-7-9 36 UC 6-9
08 12-8-9 37 EQT 7-9
09 12-1-8-9 38 8-9
OA SMM 12-2-8-9 39 1-8-9
OB VT 12-3-8-9 3A 2-8-9
oc FF 12-4-8-9 38 3-8-9
OD GR 12-5-8-9 3C DC4 4-8-9
OE so 12-6-8-9 3D NAK 5-8-9
OF SI 12-7-8-9 3E 6-8-9
10 DLE

.
12-11-1-8-9 3F SUB 7-8-9

11 DC1 11-1-9 40 SP No punches
12 DC2 11-2-9 41 12-0-1-9
13 DC3 11-3-9 42 12-0-2-9
14 RES 11-4-9 43 12-0-3-9
15 NL 11-5-9 44 12-0-4-9
16 BS 11-6-9 45 12-0-5-9
17 IL 11-7-9 46 12-0-6-9
18 CAN 11-8-9 47 12-0-7-9
19 EM 11-1-8-9 48 12-0-8-9
1A cc 11-2-8-9 49 12-1-8
18 11-3-8-9 4A ¢ 12-2-8
1C IFS 11-4-8-9 48 - 12-3-8
10 IGS 11-5-8-9 4C < 12-4-8
1E IRS 11-6-8-9 4D (12-5-8
1F ITB(IUS) 11-7-8-9 4E + 12-6-8
20 DS 11-0-1-8-9 4F : 12-7-8
21 sos 0-1-9 50 & 12
22 FS 0-2-9 51 12-11-1-9
23 0-3-9 52 12-11-2-9
24 BYP 0-4-9 53 12-11-3-9
25 LF 0-5-9 54 12-11-4-9
26 EOB/ETB 0-6-9 55 12-11-5-9
27 ESC/PRE 0-7-9 56 12-11-6-9
28 0-8-9 57 12-11-7-9
29 0-1-8-9 58 12-11-8-9
2A SM 0-2-8-9 59 11-1-8
28 0-3-8-9 5A I 11-2-8
2C 0-4-8-9 58 $ 11-3-8
2D ENO 0-5-8-9 5C * 11-4-8
2E ACK 0-6-8~9 5D) 11-5-8

A-1

EBCDIC EBCDIC

Hex Hex

Code Graphic Card Code Code Graphic Card Code

5E , 11-6-8 95 n 12-11-5
5F 11-7-8 96 0 12-11-6
60 - 11 97 p 12-11-7
61 I 0-1 98 q 12-11-8
62 11-0-2-9 99 r 12-11-9
63 11-0-3-9 9A 12-11-2-8
64 11-0-4-9 9B 12-11-3-8
65 11-0-5-9 9C 12-11-4-8
66 11-0-6-9 9D 12-11-5-8
67 11-0-7-9 9E 12-11-6-8
68 11-0-8-9 9F 12-11·7-8
69 0-1-8 AO 11-0-1-8
6A 12-11 Al 11-0-1
6B , 0-3-8 A2 s 11-0-2
6C % 0-4-8 A3 t 11-0-3
6D - 0-5-8 A4 u 11-0-4
6E > 0-6-8 A5 v 11-0-5
6F ? 0-7-8 A6 w 11-0-6
70 12-11-0 A7 x 11-0-7
71 12-11-0-1-9 AS y 11-0-8
72 12-11-0-2-9 A9 z 11-0-9
73 12-11-0-3-9 AA 11-0-2-8
74 12-11-0-4-9 AB 11-0-3-8
75 12-11-0-5-9 AC . 11-0-4-8
76 12-11-0-6-9 AD 11-0-5-8
77 12-11-0-7-9 AE 11-0-6-8
78 12-11-0-8-9 AF 11-0-7-8
79 1-8 BO 12-11-0-1-8
7A 2-8 B1 12-11-0-1
7B # 3-8 B2 12-11-0-2
7C @ 4-8 B3 12-11-0-3
7D

,
5-8 B4 12-11-0-4

7E = 6-8 B5 12-11-0-5
7F

,,
7-8 B6 12-11-0-6

flO 12-0-1-8 B7 12-11-0-7
S1 a 12-0-1 BS 12-11-0-S
82 b 12-0-2 89 12-11-0-9
S3 c 12-0-3 BA 12-11-0-2-S
84 d 12-0-4 BB 12-11-0-3-8
S5 e 12-0-5 BC 12-11-0-4-8
S6 f 12-0-6 BD 12-11-0-5-8
87 g 12-0-7 BE 12-11-0-6-8
SS h 12-0-S BF 12-11-0-7-8
S9 i 12-0-9 co 12-0
SA 12-0-2-S C1 A 12-1
SB 12-0-3-S C2 B 12-2
SC 12-0-4-8 C3 c 12-3
SD 12-0-5-S C4 D 12-4
SE 12-0-6-8 C5 E 12-5
BF 12-0-7-S C6 F 12-6
90 12-11-1-S C7 G 12-7
91 j 12-11-1 C8 H 12-S
92 k 12-11-2 C9 I 12-9
93 I 12-11-3 CA 12-0-2-S-9
94 m 12-11-4 CB 12-0-3-S-9

A-2

EBCDIC
Hex

-I
EBCDIC

Hex
Code Graphic Card Code Code Graphic Card Code

cc 12-0-4-8-9 E6 w 0-6
CB 12-0-5-8-9 E7 x 0-7
CE 12-0-6-8-9 EB y 0-8
CF 12-0-7-8-9 E9 z 0-9
DO 11-0 EA 11-0-2-8-9
D1 J 11-1 EB 11-0-3-8-9
D2 K 11-2 EC 11-0-4-8-9
D3 L 11-3 ED 11-0-5-8-9
D4 M 11-4 EE 11-0-6-8-9
D5 N 11-5 EF 11-0-7-8-9
D6 0 11-6 FO 0 0
D7 p 11-7 F1 1 1
DB Q 11-8 F2 2 2
D9 R 11-9 F3 3 3
DA 12-11-2-8-9 F4 4 4
DB 12-11-3-8-9 F5 5 5
DC 12-11-4-8-9 F6 6 6
DD 12-11-5-8-9 F7 7 7
DE 12-11-6-8-9 F8 8 8
DF 12-11-7-8-9 F9 9 9
EO 0-2-8 FA 12-11-0-2-8-9
E1 11-0-1-9 FB 12-11-0-3-8-9
E2 s 0-2 FC 12-11-0-4-8·9
E3 T 0-3 FD 12-11-0-5-8-9
E4 u 0-4 FE 12-11 ·0-6·8-9

E5 v 0-5 FF 12-11-0-7-8-9

A-3

B. OBJECT FORMATS OF MACHINE INSTRUCTIONS

The notation used to describe tine source and object format in Appendixes A and B is as follows (a =
absolute, r = relocatable expression).

Op Code Hexadecimal 00-FF

R General register, 0-7. (a)

E Extended register, 0-15. (a)

M Memory address, 0-65,535. (a or r)

L

•

Immediate value-arithmetic value, shift count, skip count, or bit number. (a)

Field length, 0-25!> (for MOVL, 0-65,535). (a)

Parentheses enclosie index registers and field lengths, both of which are optional.

A bullet followin~1 an instruction name indicates the operands are byte-addressable; other
operands are word··addressable only.

Bits 8 and 12 of the object instructions are used in almost every instruction to convey information to the
computer concerning that instruction. If these bits are not interpreted in any way, they are shaded;
otherwise, the following symbol~• are used to define bits, 8 and 12.

Indirect addressing1 indicator; for direct addressing i=O, for indirect addressing i=1. Indirect
ad~ressing is indicated by the programmer.

f A sub-function indicator; indicates a function that the operation code alone cannot do.
These function bits are set by the assembler,,

1,0 If bit 8 or 12 must be a 1 or a 0 for a particular instruction, the bit will be shown as a 1 or
0. These bits are set by the assembler; if the wrong bit state appears in the object instruction,
a no-operation occurs.

B-1

TWO BYTE INSTRUCTIONS

Op Mnemonic Word/Operand
Code Code Description Format

22 ADDR Add Register-Register
23 SUBR Subtract Register-Register
29 DIVR Divide Register-Register
28 MPYR Multiply Register-Register
25 ANDR Logical Product Register-Register
26 EORR Exclusive OR Register-Register 0 7 8 9 11 12 13 15

27 IORR Inclusive OR Register-Register
COpCode I I I I I 21 CMPR Compare Register-Register i R1 R2

20 MOVR Move Register-Register
24 INVR Inverse Move Register-Register Source Operands: @R1,@R2
6F ROFR Reverse Off-Bit
6D RONA Reverse On-Bit
6E TOFR Test for Off-Bit
6C TONA Test for On-Bit

32 ADDI Add Immediate
33 SUSI Subtract Immediate
39 DIVI Divide Immediate
38 MPYI Multiply Immediate
35 ANDI Logical Product Immediate 0 7 8 11 12 13 15

36 EORI Exclusive OR Immediate
Cop Code I I I I 37 IORI Inclusive OR Immediate. 11 R2

31 CMPI Compare Immediate
30 LODI Load Immediate Source Operands: l1,@R2
34 INVI Inverse Move Immediate

F5 INP Input from I /0 Register
F6 OUT Output to 1/0 Register

0 7 8 9 11 12 13 15

81 INT Convert float to fixed
Cop Code I I I f I I 81 INTT Convert float to fixed R1 R2

two-word
Source Operands:· @R1,R2

0 7 8 9 11 12 13 15

82 FLT Convert fixed to float c OpCode I i I I fllll 82 FLTT Convert fixed to float R1

two-word
Source Operands: @R1

B-2

Op Mnemonic Word/Operand
Code Code Description Format

5F ARDI Arithm. Right Double Shift
Immediate

4F ARSI Arithm. Right Single Shift
Immediate

5C LLDI Logical Left Double Shift
Immediate

4C LLSI Logical Left Single Shift
Immediate

5D LRDI Logical Right Double Shift
Immediate

4D LRSI Logical Right Sin1gle Shift
Immediate

5E RLDI Rotating Left Double Shift
Immediate 0 7 8 11 12 13 15

4E RLSI Rotating Left Single Shift [I I I
Immediate Op Code I 1 R2

47 SRMB Skip if Register is Minus
Backward

46 SRMF Skip if Register is Minus Source Operands: l1,R2

Forward
43 SRNB Skip if Register Nlot Zero

Backward
42 SRNF Skip if Register Not Zero

Forward
45 SRPB Skip if Register is Plus

Backward
44 SRPF Skip if Register is; Plus

Forward
41 SRZB Skip if Register is; Zero

Backward
40 SRZF Skip if Register is; Zero

Forward

3F ARDR Arithm. Right Double Shift
By Register

2F ARSR Arith. Right Single Shift
By Register

3C LLDR Logical Left Double Shift
By Register

2C LLSR Logical Left Single Shift
By Register 0 7 8 9 11 12 13 15

3D LRDR Logical Right Double Shift [I i I I I By Register Op Code R1 R2

2D LRSR Logical Right Single Shift
By Register

Souirce Operands: @R1,R2 3E RL.DR Rotating Left Dc1uble Shift
By Register

2E RL.SR Rotating Left Single Shift
By Register

F2 DIO Disk 1/0
F1 SIO System 1/0

B-3

Op
Code

EB
2B

BB
BA

4B

49

4A

48

13

10
10
14
14
15

15

12
11

Mnemonic
Code

BR
CLDR

SB
SF

SCFB

SCFF

SCTB

SCTF

SR

RBA
SBA
RCN
SCN
RPM

SPM

CTB
TST

Description

Branch to Address in Register
Condition Register Load

Skip Unconditional Backward
Skip Unconditional Forward

Skip on Condition Register
False - Back

Skip on Condition Register
False - Forward

Skip on Condition Register
True - Back

Skip on Condition Register
True - Forward

Service Request

Reset Busy I Active Register
Set Busy/Active Register
Reset Control Register
Set Control Register
Reset Privileged Mode

Register
Set Privileged Mode Register

Clear Tie-Breaker Register
Test and Set Tie-Breaker

Register

Word/Operands
Format

0 7 8 9 11 12 15

C_op c_ode ----L.-1 """"---1 R_1 ~11..._ll~•
Source Operands: @R1

0 7 8 15

C_o_pc_od_e __ ~l _____ 11 ____ ~~1
Source Operands: I 1

0 7 8 11 12 15

Op Code I 1 12

Source Operands: 11,12

0 7 8 9 15 c OpCode I I I 1

Source Operand: @11

0 7 8 9 11 12 13 15

C_OpCod_e ____.__I _____ I R1~.li I 1
_____ 1 1_2 I

Source Operands: @R1,l2 or 11,12

0 7 8 11 12 15

C_op Cod_e ---'-I _11---""'1~11=-•
Source Operand: 11

B-4

Op
Code

EF
F4

FO
FO

F3

80

2A
3A

Mnemonic
Code

BCM
WRC

ROX
WRX

RDC

NEGF

CSTR
PSTR

Description

Branch to Control Memory
Communications Output

Command

Read Extended !Register
Write Extended Register

Communicatiorn; 1/0

Negate Floatin~1 Point

Condition Regis1ter Store
Program Addre~;s Store

Word/Operand
Format

0

L OpCode

Source Operands: R1 ,R2

0

L
Op Code

Source Operands: E1,R2

0

L OpCode

Source Operands: none

0

7 8 9 11 12 13 15

7 8 11 12 13 15

E1 I f I R2

7 8 15

111•1111

7 8 11 12 13 15

L,_op_Code ~l1~!]=;\~l="--I ~I R____.1

Source Operand: @R1

B-5

FOUR BYTE INSTRUCTIONS

Op Mnemonic
Code Code Description

A2 ADD Add
72 ADDT Add Two-Word
A3 SUB Subtract
73 SUBT Subtract Two-Word
A9 DIV Divide
AB MPV Multiply
A5 AND Logical Product
A6 EOR Exclusive OR
A7 IOR Inclusive OR
F9 CBY Compare Byte •
Al CMP Compare
71 CMPT Compare Two-Word
AO LOD Load, Memory-Register
F7 LODB Load Byte Memory-Register •
70 LODT Load Two-Word
FA STO Store Register-Memory
F8 STOB Store Byte Register-Memory •
FB STOT Store Two-Word
A4 INV Inverse Move Memory-Register
E4 BAl Branch Add 1
E5 BA2 Branch Add 2
El BRN Branch if Register is Not Zero
EO BRZ Branch if Register is Zero
E6 BSl Branch Subtract 1
E7 BS2 Branch Subtract 2
EA BSR Branch and Save Return
EE NOP No Operation

B2 ADDD Add Direct
B3 SUBD Subtract Direct
B9 DIVD Divide Direct
BB MPYD Multiply Direct
85 ANDD Logical Product Direct
B6 EORD Exclusive OR Direct
87 IORD Inclusive OR Direct
81 CMPD Compare Direct
BO LODD Load Direct
84 INVD Inverse Move Direct

84 LODF Load floating point
86 ADDF Add floating point
85 SU8F Subtract floating point
88 MPYF Multiply floating point
89 DIVF Divide floating point

0

Word/Operand
Format

7 8 9

I i I EOpCode
M1

Source Operands: @M1 (R1),@R2

0 7 8 9 EOpCode llllill:11~111
'1

Source Operands: l1(R1),@R2

0 7 8 9

E I I Op Code i

M1

Source Operands: @M1 (R1),R2

B-6

11 12 13 15

R1 I I R2

I

11 12 13 15

R1 I I R2

I

11 12 13 15

R1 11111111111111111 R2

Op Mnemonic Word/Operand
Code Code Description Format

E9 BCF Branch on Condition 0 7 8 9 11 12 15
Register - False

E Op Code I I R1 I 12

I

E8 BCT Branch on Condition
Register - True M1

E2 BOF Branch if Bit is Off
E3 BON Branch if Bit is On Sourc1~ Operands: @M1 (R1),12

AA CVB Convert to Binary • 0 7 8 9 11 12 13 15
AA CVBT Convert to Binary

E I I I f I Two-Word o Op Code R1 R2
AB CVD Convert to Decimal •

M1 AB CVDT Convert to Decimal
Two-Word •

Sourct~ Operands: @M1 (R1 LR2

BF IBIT Invert Bit • 0 7 8 9 11 12 13 15
BD RBIT Reset Bit •

E Op Code I I R1 I 1 I 12

I

BC SBIT Set Bit •
BE TBIT Test Bit It Ml

Sourc1~ Operands: @M1(R1),l2

ED B Branch-Post Indexing 0 7 8 9 11 12 15
EC BCH Branch-Pre I ndex:ing

E Op Code
87 CMPF Compare floatin~1 point
BA STOF Store floating point

I I
Sourc1~ Operands: @M1 (R1)

FE RAR Read Any Registier 0 7 8 9 11 12 13 15
FE WAR Write Any Register

E I I I I R2

I
FF RSAR Restore Al I Registers Op Code f R1

FF SAR Save All Register:s
FD RRO Read Register Options I 1

FD WRO Write Register Options Sourci~ Operands: I 1 (R1),@R2

8-7

SIX BYTE INSTRUCTIONS

Op Mnemonic
Code Code Description

62 ADDM Add Memory-Memory
63 SUBM Subtract Memory-Memory
69 DIVM Divide Memory-Memory
68 MPYM Multiply Memory-Memory
65 ANDM Logical Product Memory-

Memory
66 EORM Exclusive OR Memory-

Memory
67 IORM Inclusive OR Memory-

Memory
6B CBYM Compare Byte Memory-

Memory •
61 CMPM Compare Memory-Memory
6A MOVB Move Byte Memory-Memory •
60 MOVM Move Word Memory-Memory
64 INVM Inverse Move Memory-

Memory

3B SHFK Shift Packed Decimal •

0

Op Code

Word/Operand
Format

7 8 9

I iI
M1

M2

11 12 13

R1 I i l

0 7 8 9 11 12 13

15

R2

15

~0-p-Co-:~~~~~-'-2 -R-1-12_~~~-l~l~R2----t

EIGHT BYTE INSTRUCTIONS

Op
Code

52
53
51
55
54
58
59
50
57

7C
58

56

5A

Mnemonic
Code

ADDK
SUBK
CMPK
CMPX
MOVX
PAl<X
UNPX
ZADK
EDTX

DIVK
MPYK

TRNX

MOVL

Description

Add Packed Decimal •
Subtract Packed Deci mat •
Compare Packed Decimal •
Compare Characters •
Move Characters •
Pack •
Unpack •
Zero and Add Decimal •
Packed Decimal/ Alpha

Edit •
Divide Packed Decimal •
Multiply Packed Decimal •

Translate •

Move Long •

Word/Operand
Format

0 7 8 9

Op Code

M1

M2

L1

Source Operands: M1 (L1 ,R1),M2(L2,R2)

0 7 8 9

Op Code

0 7 8 9

Op Code

M1

M2

L1

Source Operands: M1 (L1 ,R1),M2(R2)

8-9

11 12 13 15

R2

L2

11 12 13 15

11 12 13 15

R2

C. ALPHABETICAL LIST OF MNE~MONICS

This appendix lists all machine mnemonic codes and extended mnemonic codes in alphabetical order. Also
included are the hexadecimal function codes, the instruction size in bytes, and the configuration of the
source operand. An asterisk in the function code column indicates an extended mnemonic code. The
symbols used in the operand configuration are the same as in the preceding lists.

Mnemonic
Code

ADD

ADDO

ADDF

ADDI

ADDK

ADDM

ADDA

ADDT

AND

ANDO

ANDI

ANDM

ANDR

ARDI

ARDR

ARSI

ARSR

B

BA1

BA2

BBR

BBS

BCF

BCH

BCM

BCT

BCV

BEQ

BGE

BGT

BID

BKM

BKP

BKZ

BLE

BLEQ

BLGE

Ope!ration

~~

A2

B2

86
~J2

Ei2

62

22
-n
A5

B5

~JS

65

25

E>F

~JF

4F

2F

ED

E4

E5

~-

~-

E9

EC

EF

ES
n

if

if

it

if

if

if

if

;•

,.
;+

Instruction
Size (Bytes)

C-1

4

4

4

B
()

4

4

4

4

4

4

4

4

4

\

Operand Configuration

@M1 (R1),@R2

11 (R1),@R2

@M1 (Rf),R2

l1,®R2

M1 (L1 ,R1),M2(L2,R2)

@M1 (R1),@M2(R2)

@R1,®R2

@M1 (R1),@R2

@M1 (R1),@R2

l1(R1),@R2

l1,®R2

@M1 (R1),@M2(R2)

@R1,@R2

l1,R2

@R1,R2

l1,R2

@R1,R2

@M1 (R1)

@M1(R1),@R2

@M1 (R1),@R2

@M1 (R1)

@M1 (R1)

@M1 (R1)"2
@M1(R1)

R1,R2

@M1 (R1)"2
@M1 (R1)

@M1(R1)

@M1 (R1)

@M1 (R1)

@M1(R1)

@M1 (R1)

@M1 (R1)

@M1(R1)

@M1 (R1)

@M1(R1)

@M1 (R1)

Mnemonic Operation Instruction
Code Code Size (Bytes) Operand Configuration

BLGT * @M1 (R1)

BLLE * @M1 (R1)

BLLT * @M1 (R1)

BLNE * @M1 (R1)

'B.lT * @M1 (R1)

BNC * @M1 (R1)

BNE * @M1 (R1)

BNI * @M1 (Rl)

BNV * @M1 (R1)

BOF E2 4 @M1(R1)"2
BON E3 4 @M1 (R1)"2
BOV * @M1 (R1)

BR EB 2 @R1

BRN El 4 @M1 (Rl),@R2

BRZ EO 4 @M1(R1),@R2

BS1 E6 4 @M1 (R1),@R2

BS2 E7 4 @M1(R1),@R2

BSR EA 4 @M1 (R1),@R2

CBY F9 4 @M1 (R1),@R2

CBYM 6B 6 @M1 (R1),@M2(R2)

CLDR 2B 2 @R1

CMP Al 4 @M1 (R1),@R2

CMPD Bl 4 11 (R1),@R2

CMPF 87 4 @M1 (R1}

CMPI 31 2 l1,@R2

CMPK 51 8 M1 (L1,R1),Ml (L2,R2)

CMPM 61 6 @M1 (R1),@M2(R2)

CMPR 21 2 @R1,@R2

CMPT 71 4 @M1 (R1),@R2

CMPX 55 8 M1 (L1,R1),M2(L2,R2)

CSTR 2A 2 @R1

CTB 12 2 I 1

CVB AA 4 @M1 (R1),R2

CVBT AA 4 @M1 (R1),R2

CVD AB 4 @M1 (R1),R2

CVDT AB 4 @M1 (R1),R2

DIO F2 2 @R1,R2

DIV A9 4 @M1 (R1),@R2

DIVD B9 4 l1(R1),@R2

DIVF 89 4 @M1 (R1),R2

DIVI 39 2 l1,@R2

C-2

Mnemonic Operration Instruction
Code Code Size (Bytes) Operand Configuration ---- -----
DIVK 7C 8 M1 (L1,R1),M2(L2,R2)

DIVM 69 6 @M1 (R1),@M2(R2)

DIVR 29 2 @R1,@R2

EDTX 57 8 M1 (L1,R1),M2(L2,R2)

EOR A6 4 @M1 (R1),@R2

EORD B6 4 11 (R1),@R2

EORI 36 2 l1,®R2

EORM 66 61 @M1 (R1),@M2(R2)

EORR 26 2 @R1,®R2

FLT/Fl TT 82 2 @R1

IBIT B:F 4 ®M1(R1)h

INP F5 "• '-· l1,®R2

INT/INTT 81 2 @R1,R2

INV Jl\4 "1f @M1 (R1),@R2

INVD 84 4 l1(R1),@R2

INVI 34 .. ,
.t.. l1,®R2

INVM 6i4 fi @M1 (R1),@M2(R2)

INVR 2~4
... ,
"'· @R1,@R2

IOR A7 ~~ @M1 (R1),@R2

IORD B7 4 11 (R1),@R2

IORI 37
.. ,
"'· l1,®R2

IORM 67 u @M1 (R1),@M2(R2)

IORR 27 '> 4. @R1,@R2

LLDI EiC 2 l1,R2

LLDR ~IC ')
4. @R1,R2

LLSI 4C 2 l1,R2

LLSR ~!C =~ @R1,R2

LOD AO 4 @M1 (R1),@R2

LODB F7 4 @M1 (R1),@R2

LODD BO 4 l1(R1),@R2

LODF 84 4 @M1 (R1),R2

LODI ~JO 2 l1,@R2

LOOT 70 4 @M1 (R1),@R2

LRDI fiD 2 l1,R2

LRDR 30 2 @R1,R2

LRSI 40 2 l1,R2

LRSR 20 :2 @R1,R2

MOVB UA 15 @M1 (R1),@M2(R2)

MOVL !iA :B M1 (L1,R1),M2(R2)

MOVM f)Q 16 @M1 (R1),@M2(R2)

MOVR 20 :2 @R1,@R2

C-3

Mnemonic Operation Instruction
Code Code Size (Bytes) Operand Configuration

MOVX 54 8 M1 (L1,R1),M2(L2,R2)

MPV AS 4 @M1 (R1),@R2

MPYD BS 4 l1(R1),@R2

MPYF 88 4 @M1 (R1),R2

MPYI 38 2 l1 1@R2

MPYK SB 8 M1 (L1 ,R1),M2(L2,R2)

MPYM 68 6 @M1(R1),@M2(R2)

MPYR 28 2 @R1,@R2

NEGF 80 2 blank

NOP EE 4 blank or @M 1 (R 1),@R2
OUT F6 2 l1,@R2

PAKX 58 8 M1 (L1 ,R1),M2(L2,R2)

PSTR 3A 2 @R1

RAR FE 4 M1(R1),@R2

RBA 10 2 @R1h or 11,12

RBIT BO 4 @M1 (R1),12

RCN 14 2 @R1h 0 r 11h

RDC F3 2

ROX FO 2 E1,R2

RLDI SE 2 l1,R2

RLDR 3E 2 @R1,R2

RLSI 4E 2 l1,R2

RLSR 2E 2 @R1,R2

ROFR 6F 2 @R1,@R2

RONR 60 2 @R1,@R2

RPM 15 2 @R1h 0 r l1h

RRO FD 4 M1(R1),@R2

RSAR FF 4 M1 (R1),@R2

s * M1 or 11

SAR FF 4 M1(R1),@R2

SB BB 2 '1
SBA 10 2 @R1,l2 or 11,12

SBIT BC 4 @M1(R1)h

SBR * M1 or 11

SBS * M1 or 11
SCF * M1h or l1h

SCFB 4B 2 '1h
SCFF 49 2 '1h
SCN 14 2 @R1h 0 r '1h

SCT * M1h or l1h

SCTB 4A 2 '1h

C-4

Mnemonic Op1~ration I nstiruction
Code Code Size (Bytes) Operand Configuration --- -----

SCTF 48 '2 11"2
SCY ·It M1 or 11
SEO ·It

M1 or I 1

SF IBA :2 I 1

SGE ·It
M1 or I 1

SGT ·It M1 or 11
SHFK 38 16 M1 (L1,R1),12(R2)

SID ·It M1 or 11
SIO Fl :2 @R1,R2

SKM ·It
M1 or I 1

SKP
,.

M1 or I 1

SKZ ·It
M1 or I 1

SLE •It M1 or 11
SLEQ ·It

M1 or I 1

SLGE •It
M1 or I 1

SLGT ·It M1 or 11
SLLE

,.
M1 or 11

SLLT ilt
M1 or I 1

SLNE •* M1 or I 1

SLT •* M1 or 11
SNC ilt

M1 or I 1

SNE ilt
M1 or I 1

SNI •JI<
M1 or I 1

SNV ;~

M1 or I 1

sov '~ M1 or 11
SPM '15 :2 @R 1"2or11"2

SR '13 :2 @11

SRM •t M1,R2 or l1,R2

SRMB 47 :2 l1,R2

SRMF 46 :2 l1,R2

SRN
,.

M1,R2 or 11"2

SRNB 43 :2 11"2
SRNF 42 :2 l1,R2

SRP
,.

M1,R2 or 11"2

SRPB 45 ':2 l1,R2

SRPF 44 '2 l1,R2

SRZ ·~ M1,R2 or 11"2

SRZB 41 2 l1,R2

SRZF 40 2 l1,R2

STO FA 4 @M1 (R1),@R2

STOB FB 4 @M1 (R1),@R2

C-5

Mnemonic Operation Instruction
Code Code Size (Bytes) Operand Configuration

STOF BA 4 @M1(R1)

STOT FB 4 @M1 (R1),@R2

SUB A3 4 @M1 (R1),@R2

SUBD B3 4 11 (R1),@R2

SUBF 85 4 @M1 (R1),R2

SUBI 33 2 l1,@R2

SUBK 53 8 M1 (L1,R1),M2(L2,R2)

SUBM 63 6 @M1 (R1 L@M2(R2)

SUBR 23 2 @R1,@R2

SUBT 73 4 @M1 (R1),@R2

TBIT BE 4 @M1(R1).i2

TOFR 6E 2 @R1,@R2

TONA 6C 2 @R1 1@R2

TRNX 56 8 M1 (R1),M2(L2,R2)

TST 11 2 I 1

UNPX 59 8 M1 (L1 ,R1),M2(L2,R2)

WAR FE 4 M1 (R1),@R2

WRC F4 2 R1,R2

WRO FD 4 M1 (R1),@R2

WRX FO 2 E1,R2

ZADK 50 8 M1 (L1,R1),M2(L2,R2)

C-6

D. HEX CODE TO MNEMONIC CODE

10 SBA/RBA 42 SRNF 6A MOVB 87 IORD
11 TST 43 SRNB 68 CBYM BS MPYD
12 CTB 44 SRPF 6C TONR 89 DIVD
13 SR 45 SRPB 60 RONR BA SF
14 SCN/RCN 46 SRMF 6E TOFR BB SB
15 SPM/RPM 47 SRMB 6F ROFR BC SBIT
20 MOVR 48 SCTF 70 LOOT BD RBIT
21 CMPR 49 SCFF 71 CMPT BE TBIT
22 ADDR 4A SCTB 72 ADDT BF IBIT
23 SUBR 48 SCFB 73 SUBT EO BRZ
24 INVR 4C LLSI 7C DIVK E1 BRN
25 ANDR 40 LRSI 80 NEGF E2 BOF
26 EORR 4E RLSI 81 INT/INTT E3 BON
27 IORR 4F ARSI 82 FLT/FL TT E4 BA1
28 MPYR 50 ZADK 84 LODF E5 BA2
29 DIVR 51 CMPK 85 SUBF E6 BS1
2A CSTR 52 ADDK 86 ADDF E7 BS2
28 CLDR 53 SUBK 87 CMPF ES BCT
2C LLSR 54 MOVX S8 MPYF E9 BCF
20 LRSR 55 CMPX S9 DIVF EA BSR
2E -RLSR 56 TRNX SA STOF EB BR
2F ARSR 57 EDTX AO LOO EC BCH
30 LODI 58 PAKX A1 CMP ED B
31 CMPI 59 UNPX A2 ADD EE NOP
32 ADDI 5A MOVL A3 SUB EF BCM
33 SUBI 5B MPYK A4 INV FO RDX/WRX
34 INVI 5C LLDI A5 AND F1 SIO
35 ANDI 50 LRDI A6 EOR F2 010
36 EORI 5E RLDI A7 IOR F3 RDC
37 IORI 5F ARDI A8 MPV F4 WRC
38 MPYI 60 MOVM A9 DIV F5 INP
39 DIVI 61 CMPM AA CVB/CVBT F6 OUT
3A PSTR 62 ADDM AB: CVD/CVDT F7 LODB
38 SHFK 63 SUBM BO LODD F8 STOB
3C LLDR 64 INVM 81 CMPD F9 CBY
3D LRDR 65 ANDM 82 ADDO FA STO
3E RLDR 66 EORM B3 SUBD FB STOT
3F ARDR 67 IORM 84 INVD FD RRO/WRO
40 SRZF 68 MPYM 85 ANDO FE RAR/WAR
41 SRZB 69 DIVM B6 EORD FF SAR/ASAR

D-1

E. SUMMARY OF ASSEMBLER STAlEMENTS

Name Operation Operand

Sequence symbol, set symbol, ADO Arithmetic set expression,
or blank sequence symbol

Sequence symbol or blank AGO Sequence symbol

Symbol or blank ALIGN Absolute, resolved arithmetic
expression

Sequence symbol ANOP Not used - ignored by the
assembler

I--·

Symbol or blank BOD One or more operands
separated by commas

I--·

Symbol or blank BRS Absolute, arithmetic
expression

Symbol or blank COM Not used - ignored by the
assembler

Symbol or blank CSE CT Not used - ignored by the
assembler

Sequence symbol or blank EJECT Not used - ignored by the
assembler

Blank END Ordinary symbol or blank

Sequence symbol or blank ENTRY One or more relocatable symbols
separated by a comma

1--.

Ordinary or variable sy~bol EOU Expression

Sequence symbol or blank EXTRN One or more relocatable symbols
separated by a comma

1---·
Ordinary symbol FORM One or more positive arithmetic

expressions separated by commas

Symbol or blank Form nam1~ Exp ,exp,. . . ,exp

Blank GBLA 1-35 set symbols separated by
commas

Blank GBLC 1-35 set symbols separated by
commas

Blank ICTL Two decimal arithmetic constants
separated by a comma

E-1

Name Operation Operand

Blank ISEQ Blank, or two decimal arithmetic
constants separated by a comma

Symbol or blank LTORG Not used

Blank MACRO Not used - ignored by the
assembler

Sequence symbol or blank MEND Not used - ignored by the
assembler

Sequence symbol or blank MEXIT Not used - ignored by the
assembler

Sequence symbol or blank MNOTE Severity code, message or
message only

Sequence symbol or blank ORG Relocatable expression or blank

Sequence symbol or blank PRINT One-to-four operands separated
by commas

Sequence symbol or blank PUNCH Not used

Set symbol SETA Arithmetic set expression

Set Symbol SETC Character term or arithmetic
set expression

Sequence symbol or blank SPACE Absolute arithmetic expression

Symbol or blank TITLE Character string constant

Symbol or blank WDD One or more operands separated
by commas

Symbol or blank WRS Absolute arithmetic expression

E-2

F. MACRO EXAN\PLE

The example in Figures F-1 through F-3 demonstrates the use of the FORM instruction, but
may serve as a model for many macro language and conditional features. It shows the
comprehensive definition for a system macro, and two MACRO instructions for that macro.
Two are included because the definition generate:s some code unique to the first call.

The formal parameter list of the definition identifies expected parameters from the call:
IDENT, LABDEF, REWIND, USAGE, CONTROL, and LIST. Three of these (REWIND,
USAGE, and CONTROL) have default values provided in the definition. The other three
remain null in value, if the call does not provide an explicit value for them.

By using relational expressions in SET A statemEmts, the macro definition provides for the
setting of many counters according to the parameter values provided. Hence, the first call in
the example, whose parameter string is: IDENT=FILE1,USAGE=O, sets the counter &UO
(line 00039) because USAGE=O was coded.

Because of the default value YES for REWIND, counter &RY (line 00042) is also set. The
default ANS for CONTROL sets counter &CCA {line 00045). Conversely, counters &LY
(line 00021), &LN (line 00025), and &LB (line 00037) are zero, because the LABDEF and
LIST parameters were not giiven values by the macro call.

Note how the definition explicitly checks for faillure to provide the I DENT parameter (lines
00048-00053). If the user does not provide it in the call, its count is zero (K'&IDENT),
&I ONO is set to 1, and the ADO statement (line 00050) generates the fatal MNOTE
message. In the call examples, IDENT=FILE1, the count (K'&IDENT) is 5 and &IDNO is
not set. By similar means, the definition checks to ensure that specifications for the other
parameters are correct.

When all the incoming parameter values are verified and the appropriate conditional
counters are set or reset, the macro generates the 1/0 packet with a FORM statement to
designate the principal options.

In line 00003, the macro dE?clares the count field (&DMOCCNT) as global, and tests it for a
zero (default) value. If it is zero, line 00005 sets it to 1. In this way, the macro determines
whether the call is the first call within the assembly. This allows the once-only definition of
the FORM instruction: $DMF RM, consisting of e1ight one-bit fields (line 00007). (Also note
the use of the same code to generate an external for $DMOCC (line 00006), an external
subroutine.)

F-1

The FORM reference is generated through the $F1 SETC (line 00069), which creates the
character string $DMFRM to be used at line 00072. In the operand fields of the FORM
reference, SET A references pick up the counters established by earlier conditional
instructions.

In the first call shown, USAGE=O sets &U0=1 and REWIND=YES (default) sets &RY=1.
Since the operand string of the &F 1 statement was &CCN,O,O,O,&VO,&VV,&RY,&LB, the
$DMFRM generates 0,0,0,0,1,0,1,0 as shown: in the call expansion. In the second call,
USAGE=U sets &UV=1, REWIND=YES (default) sets &RY=1, and the $DMF RM generates
0,0,0,0,0,1,1,0.

PRINT FUNCTION: DATE=72304 TIME=074604.
OPE NL MAC LISTING

00001 MACRO
00002 &TAG OPE NL &IDENT=,&LABDEF=,&REWIND=Y.ES,&USAGE•1,&CONTROL=ANS,&LIST=
00003 GBLA &DMOCCNT
00004 ADO &DMOCCNT < EQ > 0, .DMOPIO SET GLOBAL FORM
00005 &DMOCCNT SETA 1 AND EXTERNAL
00006 EXTRN &DMOCC FIRST TIME
00007 &DMFRM FORM 1,1,1,1,1,1,1,1
00008 .DMOPIO ANOP
00009 ADO K'&TAG <EO>O, .DMOP15 SET 6 BYTE
00010 &TAG1 SETC C'DM' TAG FOR LABEL
00011 &TG SETC &SYSNDX
00012 AGO .DMOP25 PREFIX ON FIELDS OF
00013 .DMOP15 ANOP THE LIST
00014 &TG SETC C'
00015 ADO K'&TAG <LE >6, .DMOP20
00016 &TAG1 SETC &TAG
00017 AGO .DMOP25
00018 .DMOP20 ANOP
00019 &TAG1 SETC &TAG(1,6)
00020 .DMOP25 ANOP
00021 &LY SETA &LIST <EO>C'YES' LIST=YES
00022 ADO &LY,.DMOP30
00023 AGO .DMOP50
00024 .DMOP30 ANOP
00025 &LN SETA &LIST< EQ>C'NO' LIST=NO OR OMITTED
00026 &TAG LODD OPED&SYSNDX,@7 SET RETURN INTO SAVE AREA
00027 ADO &LN, .DMOP40
00028 BCH @$DMOCC REG 6 ALREADY POINTS TO PACKET
00029 AGO .MEXIT
00030 .DMOP40 ANOP
00031 BSR @$DMOCC,6 SET REG 6 AT PACKET
00032 AGO .DMOP55
00033 .DMOP50 ANOP
00034 &TAG ALIGN 2
00035 .DMOP55 ANOP

Figure F-1. Macro Definition

F-2

*CHANGE MADE l?ER PTR 333 06/16/72 O,JS
&LB SETA K'&LABDEF<GE> 1
&UI SETA &USAGE<EO>C'1'
&UO SET A &USAGE <EO>C'O'
&UU SETA &USAGE<EO>C'U'
&USG SETA &Ul+&Uo+&UU NI: 1
&RY SETA &REWIND<EO>C'YES'
&RN SETA &REWIND<EO>C'l\10'
&REW SETA &RY+&RN<NE>1
&CCA SETA &CONTROL<EO>C'ANS'
&CCN SETA &CONTROL<EO>C'NATIVE'
&CNTRL SETA &CCA+&CCN<NE>'I
&IDNO SETA K'&IDENT<L T>1
&ERR SETA 0

&ERR
.DMOP60

ADO &IDNO, .DMOP60
MNOTE
SETA
ANOP
ADO

F,***IDENT KEYWORD MISSING***
1

&USG, .DMOP65

SET COUNTERS
DEPENDING
ON
KEYWORD
SPECIFICATIONS

FATAL IF IDENT MISSING

00036
OOO:rl
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052
00053
00054
00055
00056
00057
00058
00059
00060
00061
00062
00063
00064
00065
00066
00067
00068
00069
00010
00071
00072
00073
00074

&ERR
MNOTE
SETA

F,***USAGE=&USA1GE INCORRECT SPECIFICATION***
1

.DMOP65 ANOP
ADO &REW, .DMOP70
MN OT IE

&ERR SETA
F,***REWIND=&RE,NIND INCORRECT SPECIFICATION***
1

.DMOP70 ANOP
ADO &CNTRL, .DMOP73
MNOTIE

&ERR SETA
F,***CONTROL=&CONTROL INCORRECT SPECIFICATION***
1

.DMOP73

.DMOP75
&F1

ANOP
ADO
AGO
ANOP
SFTC

&ERR, .DMOP75
.MEXIT

C'&DMERM'
WOO "7 LENGTH OF PACKET (WORDS)
BOD ro~ OPEN

&TAG1.BT81TG &F1 &CCN,O,O,O,&UO,&UU,l~RY,&LB OPTION BITS
&TAG1 .ER8cTG WOO "O ERROR RETURNED HERE

BOD X'OO' N/ A
00075 BOD &SYSEG
00076 &TAG1.BD&TG WIDD &IDENT
00077 BOD X'OO'
00078 BOD &SYSEG
00079 ADO &LB, .DMOP80
00080 **** CHANGE 06/21/72 PIR 4351 DJS
00081 &TAG1 .LB&TG WDD &LABDEF
00082 AGO .MEXIT
00083 .DMOP80 ANOP
00084 **** CHANGE 06/~!1/72 PTR 4351 DJS
00085 &TAG1.LB&TG WDD "O
00086 .MEXIT ANOP
00087 OPED&SYSNDX EQU *
00088 MEND
LBIN0010 LIBRARY FUNCTION COMPLETE

Figure F-1. Macro Definition (Continued)

F-3

SEGMENT TAG
PIR TO BOT
N/A
SEGMENT TAG
LABEL PARAMETER

CODED
RETURN HERE

0224 OPE NL IOENT=FILE1 USAGE-0

0227A EXT RN &DMOCC FIRST TIME
0228A $DMFRM FORM 1,1111111

052E BOOF0544 0239A LODD OPED0002@7 SET RETURN INTO SAVE AREA
0532 EA860000 0242A BSR @$0MOCC 6 SET REG 6 AT PACKET

0245A * CHANGE MADE PER PTR 333 06/16n2 DJS
0536 0007 0270A woo "7 LENGTH OF PACKET (WORDS)
0538 04 0271A BOD X'04' OPEN
0539 OA 0272A DMBT0002 &DMFRM 0 ,0 .o .o, 1,0, 1,0 OPTION BITS
053A 0000 0273A DMER0002 woo "O ERROR RETURNED HERE
053C 00 0274A BOD X'OO' N/A
0530 00 0275A BOD $SVSEG SEGMENT TAG
053E 0082 0276A DMBD0002 woo FILE1 PTR to BOT
0540 00 0277A BOD x·oo· N/A
0541 00 0278A BOD $SYSEG SEGMENT TAG

0281A ****CHANGE 06/21/72 PTR 351 DJS
0542 0000 0282A DMLB0002 woo "O

0544 0284A OPED0002 EOU RETURN HERE

Figure F-2. Macro Instruction and Expansion (Call 1)

0408 OPE NL IOENT=FILE1,USAGE=U
05A4 BOOF05BA 0420A LODD OPE00005, *7 SET RETURN INTO SAVE AREA
05A8 EA860000 0423A BSR @$DMOCC,6 SET REG 6 AT PACKET

0426A * CHANGE MADE PER PTR 333 06/16n2 DJS
05AC 0007 0451A woo "7 LENGTH OF PACKET (WORDS)
05AE 04 0452A BOO X'04' OPEN
05AF 06 0453A DMBT0005 &OMFRM 0.0.0.0.0, 1, 1.o OPTION BITS
05BO 0000 0454A OMER0005 woo "O ERROR RETURNED HERE
05B2 00 0455A BOD x·oo· N/A
0583 00 0456A BOD $SYSEG SEGMENT TAG
0584 0082 0457A OMBD0005 woo FILE1 PTR TO BOT
0586 00 0458A BOD x·oo· N/A
0587 00 0459A BOO $SYSEG SEGMENT TAG

0462A **** CHANGE 06/21/72 PTR 351 DJS
C5B8 0000 0463A DMLB0005 woo "O

05BA 0465A OPED0005 EOU * RETURN HERE

Figure F-3. Macro Instruction and Expansion (Call 2)

F-4

G. ASSEMBLER ERROR MESSAC;ES

The Assembler issues two types of errors. They are source error diagnostic messages and
source error abort messages. Also listed in this section are the system messages that cause
the Assembler to abort.

ASSEMBLER SOURCE ERROR DIAGNOSTIC MESSAGES

The assembler source errors are printed at the end of the listing.

The messages have the following format:

LINE
NUMBER

nnnn

where:

nnnn

t

aappnnn

ERROR
TYPE

t

text * insert * text

ERROR
CODE

aappnnn

MESSAGE TEXT

text * insert * text

is a 4-digit decimall number that refers to the line in the
source listing where the error occurred.

is either W designating the error as warning or F desig
nating the error as fatal.

is a 7-character error code where aa is always AS
specifying the Ass~~mbler as the source of the error,
pp is a 2-di·git decimal number indicating the pass of
the Assembler during which the error occurred, and
nnn is a 3-digit decimal number specifying the error
within the pass.

is the text of the message. If the text contains an insert,
an asterisk precedes and follows the insert. An insert
contains the erronieous character and all characters back
to the beginning o·f the invalid term. For example, if
the listing contains an invalid variable symbol, such as
&SPAM, the insert will contain the characters &8.

The error messages and thei1r explanations follow.

G-1

LINE ERROR ERROR
NUMBER TYPE CODE MESSAGE TEXT

nnnn F AS02001 OPERAND SIZE OR NUMBER OF TERMS
EXCEEDS MAXIMUM.
This message indicates internal stack overflow.
To correct the condition, reduce the number
of terms in the expression or number of
operands.

nnnn F AS02002 UNMATCHED RIGHT PARENTHESIS.

nnnn F AS02003 UNMATCHED LEFT PARENTHESIS.

nnnn F AS02004 EXPRESSION OR SUBLIST CONTAINS AN
INVALID COMMA.

nnnn F AS02005 INVALID SYNTAX*· .. insert ... *
An invalid element or combination of
elements appear.

nnnn F AS02006 INVALID USE OF INDIRECTION.
*· .. Insert ... *
The use of the indirect operator,@, is
invalid.

nnnn F AS02007 INVALID EXPRESSION*· .. insert ... *
The syntax does not follow the rules for
coding expressions.

nnnn F AS02008 INVALID USE OF LITERALS*· .. insert ... *
The use of the literal operator,=, is invalid
in this statement.

nnnn F AS02009 INVALID USE OF PARENTHESIS
*· .. insert ... *

nnnn F AS02010 CHARACTER STRING INVALID WITH
+ - •OR I OPERATOR *· .. insert ... *
Arithmetic operations are invalid with strings.

nnnn F AS02011 I NV ALI D SUBLIST *· .. insert ... *
The use of the sublist is invalid in this
statement.

nnnn F AS02012 RELOCATABLE TERM USED IN MUL Tl-
PLICATION, DIVISION OR LOGICAL
OPERATION *· .. insert ... *
The location counter, *, may not enter into
the above mentioned operations.

nnnn F AS02013 MAY NOT FOLLOW A LOGICAL, RELA-
TIONAL OR ARITHMETIC OPERATOR
*· .. insert ... *
The unary operator NOT may not fol low
the above mentioned operators.

G~2

LINE
NUMBER

ERROR
TYPE

ERROR
CODE MESSAGE TEXT

NOTE: AS02014 and AS0:2015 are reserved for future use.

nrnnn F AS02016 SYMBOL TOO LONG *· .. insert .. ·*
The name entry or a symbolic operand
may not exceed 8 characters.

nnnn F AS02017 11\JVALID HEXADECIMAL CONSTANT
*· .. insert ... *
P.~ hexadecimal constant may only contain
digits 0-9 and characters A-F.

nnnn F AS02018 OPERAND SIZE OR NUMBER OF TERMS
EXCEEDS MAXIMUM*· .. insert ... *
This message indicates internal stack over-
flow. To correct the condition, reduce the
number of terms in the expression or tha
number of operands.

nnnn F AS02019 ll\IVALID OPERATOR*· .. insert .. ·*
The operator or symbol is not in the
language.

nnnn F AS02020 11\JVAL ID CHARACTER*· .. insert ... *
The character is not in the language or is
contextually incorrect.

nnnn F AS02021 11\JVALID CONTINUATION*· .. insert .. ·*
The usage of the semicolon is contextually
invalid.

nnnn F AS02022 11\JVALI D SYMBOL*· .. insert .. ·*
The length attribute operand may only be
symbolic.

nnnn F AS02023 11\JVALI D STRING *· .. insert ... *
An invalid string structure appeared.

NOTE: AS02024 is reserved for future use.

nnnn F AS02025 !INVALID STRING*· .. insert .. ·*
Same as AS02023 above.

nnnn w AS02026 OPERAND TRUNCATED -TOO LONG
*· .. insert ... *
The number of digits exceeds the maximum
allowed. For a decimal integer, 5 is the maxi-
mu·m. For an integer string, 10 is the maxi-
mum. For a hexadecimal constant, 4 is the
maximum.

nnnn w AS02027 VALUE TRUNCATED - EXCEEDS PER-
MISSIBLE MAGNITUDE*· .. insert ... *
t~ decimal integer may not exceed 65,535.
An integer string may not exceed 268,435,455.

G-3

LINE ERROR ERROR
NUMBER TYPE CODE MESSAGE TEXT

nnnn F AS02028 OPERAND ENTRY MISSING.
The operation code in this statement
requires an operand field entry.

nnnn w AS02029 CONTINUATION LINE IS BLANK.

nnnn F AS02030 TOO MANY CONTINUATION STATEMENTS.
In a normal statement, only one continued
statement is allowed.

nnnn F AS02031 VARIABLE SYMBOL MUST START WITH &
FOLLOWED BY A-Z OR$.

nnnn F AS02032 LEFT PARENTHESIS MAY NOT BE
IMMEDIATELY PRECEDED BY A
VARIABLE SYMBOL.

nnnn F AS02033 VARIABLE SYMBOL MUST START WITH &
FOLLOWED BY A-Z OR$.

nnnn F AS02034 VARIABLE SYMBOL TOO LONG.
The variable symbol is greater than 7 characters
excluding the ampersand sign .

nnnn w AS02035 . *COMMENT VALID ONLY WITH A MACRO.

nnnn F AS02036 CHARACTER THAT FOLLOWS. OR & MUST
BE A-Z OR$.
Period or & is followed by a numeric or an
illegal character in the name field.

nnnn w AS02037 NAME ENTRY TOO LONG.
In an ordinary symbol, only 8 characters are
al lowed and in a sequence or variable symbol
only 7 characters are allowed.

nnnn w AS02038 INVALID CHARACTER IN NAME ENTRY.
Only characters allowed are A-Z, 0-9 and $.
For a sequence or variable symbol, the first
character must be . or & respectively.

nnnn F AS02039 OPERATION ENTRY MISSING.
An operation entry is required in every state-
ment.

nnnn F AS02040 NAME ENTRY CANNOT BE CONTINUED.

nnnn F AS02041 NAME ENTRY MUST BE FOLLOWED BY A
SPACE.
The space is the delimiter of each field in the
M RX Assembler.

G-4

LINE ERROR ERROR
NUMBER TYPE CODE MESSAGE TEXT

nnnn F AS02042 OPERATION ENTRY MUST BE FOLLOWED
BY A SPACE.
The space is the delimiter of each field in the
M RX Assembler.

nnnn F AS02043 OPERATION CODE CANNOT BE CONTINUED.

nnnn F AS02044 INVALID CHARACTER IN OPERATION
ENTRY.
Only valid characters are A-Z, 0-9, & and $.

nnnn F AS02045 OPERATION ENTRY TOO LONG.
Only 8 characters are allowed if there is no
substitution in the operation entry.

nnnn w AS02046 INVALID ISEQ PARAMETERS - COMMAND
IGNORED.
1. The parameter value is within the begin

and end limits in the statement.
"I i. .• The length of the sequence field is zero.
~L The length of the sequence field is greater

than 8 characters.

nnnn w AS02047 MISPLACED ICTL STATEMENT.
An I CT L statement must be the first statement
of an assembly.

nnnn w AS02048 STATEMENT VAL ID ONLY WITHIN A
MACRO.
The following operation codes are allowed
within a macro definition:

GBLA
GBLC
MACRO
MEND
MNOTE
MEXIT

nnnn w AS02049 INVALID OR MISPLACED INSTRUCTION IN
MACRO DEFINITION.
The following operation codes are not allowed
within a macro definition:

PRINT
ISEQ
MACRO

Also GBLA, GBLC must immediately follow the
macro definition prototype.

nnnn F AS02051 INVALID CONTINUATION.
The continued statement has a continuation
character as the first nonblank character.

G-5

LINE ERROR ERROR
NUMBER TYPE CODE MESSAGE TEXT

nnnn w AS02052 END STATEMENT SUPPLIED BY ASSEMBLER.
End of input detected but no end card received.

nnnn w AS02053 NAME FIELD OF MEND STATEMENT MAY
ONLY CONTAIN A SEQUENCE SYMBOL.

nnnn w AS02054 NAME FIELD OF MACRO DEFINITION
HEADER MUST BE BLANK.
The name of the operation code MACRO
must be blank.

nnnn F AS02055 REQUIRED OPERAND ENTRY MISSING.
The operation code in the statement requires
an operand field entry.

nnnn F AS02056 SYMBOLIC PARAMETER CANNOT BE
USED AS A GBLA OR GBLC OPERAND.

nnnn F AS02057 SET SYMBOL MAY NOT BE DEFINED AS
BOTH SETA AND SETC.

nnnn F AS02058 END QUOTE MISSING.

nnnn F AS02059 MACHINE AND ASSEMBLER OPERATION
CODES MAY NOT BE USED AS MACRO
INSTRUCTION.

nnnn w AS02060 MULTIPLE DEFINITION OF MACRO
INSTRUCTION.
Macro instruction has been previously defined.

nnnn w AS02061 NAME ENTRY OF MACRO PROTOTYPE
STATEMENT MUST BE BLANK OR A
VARIABLE SYMBOL.

nnnn F AS02062 MORE THAN 35 SYMBOLIC PARAMETERS.
Only 35 symbolic parameters are allowed.

.nnnn w AS02063 NAME ENTRY OF MACRO INSTRUCTION
MAY NOT BE A VARIABLE SYMBOL.

nnnn w AS02064 STATEMENT OUT OF SEQUENCE.

nnnn w AS02065 INVALID ISEQ SYNTAX.
In an ISEQ statement the name entry must be
blank and the parameters must be separated by
a comma and must be terminated by a space.

nnnn w AS02066 INVALID ICTL SYNTAX.
In an I CT L statement the name entry must be
blank.

G-6

LINE ERROR ERROR
NUMBER TYPE CODE MESSAGE TEXT

nnnn w AS02067 NAME FIELD OF GBLA AND GBLC
STATEMENTS MUST BE BLANK.

nnnn F AS02068 OPERAND SYNTAX ERROR.
.An invalid character is in the operand field
or invalid termination of a sublist, etc.,
appears in the operand field.

nnnn F AS02069 OPERAND LENGTH ERROR.
The maximum number of characters allowed
per operand is 127.

nnnn F AS02070 MORE THAN 35 OPERANDS.
Only 35 operands are allowed in a macro
prototype or a GB LA or GB LC statement or
a macro definition instruction statement.

nnnn w AS02071 NAME ENTRY MAY' NOT BE A SEQUENCE
SYMBOL.

nnnn w AS02072 NAME FIELD MUST CONTAIN A SET
SYMBOL.

nnnn w AS02073 SET SYMBOL MAY NOT BE DEFINED AS
BOTH SETA AND SETC.

nnnn Wor F AS02074 IMNOTE *· .. insert .. ·*
.An MNOTE Assembler instruction has been
1encountered. The MNOTE message is output
to the error file and processing continues.

nnnn w AS02075 VALUE OF OPERAND EXCEEDS 65535.
.A number being converted from EBCDIC to
lt>inary has a value greater than +65535. The 5
!least-significant digits are converted to binary
;and only the least-significant 16 bits of the
result are retained.

nnnn F AS02076 INVALID ADO EXPRESSION.
The expression in the operand field of this
.ADO instruction did not resolve to an
iinteger of value between 0 and 65535. The
.ADO statement is not processed.

nnnn F AS02077 IMPROPER ADO TERMINATION.
1. The sequence symbol in the name field

of this ADO statement terminates the
currently active ADO loop. The currently
active ADO loop is unstacked and the
ADO statement is not processed.

G-7

LINE ERROR ERROR
NUMBER TYPE CODE MESSAGE TEXT

2. The sequence symbol in the name field
of this macro instruction terminates the
currently active ADO loop. The
currently active ADO loop is unstacked.

3. A MEXIT or MEND instruction has been
encountered, and the currently active
ADO loop is at the current macro nesting
level. The currently active ADO loop is
unstacked.

nnnn F AS02078 SECOND ADO OPERAND MISSING.
The sequence symbol is missing from the
operand field of this ADO statement. The
ADO statement is not processed.

nnnn F AS02079 BACKWARD BRANCH IN ADO OR AGO.
The statement which contains the sequence
symbol referred to in this ADO or AGO
statement precedes the current statement.
The ADO or AGO statement is not
processed.

nnnn F AS02080 INVALID CONTINUATION.
1. Substitution into a source statement

cannot be completed without generating
more than one continuation line. Sub-
stitution is discontinued.

2. Substitution into a form reference
cannot be completed without generating
more than one continuation line. The
statement is not processed.

nnnn F AS02081 DUPLICATE DEFINITION OF VARIABLE
SYMBOL.
1. A variable symbol defined in a macro

instruction is already in the local symbol
table at the current macro nesting level.

2. &SYSECT or &SYSNDX is already in the
local symbol table at the current macro
nesting level.

The value already in the symbol table is
retained.

nnnn F AS02082 DUPLICATE FORM DEFINITION.
More than one definition was encountered
for the current form. The form definition
is dropped.

G-8

LINE ERROR ERROR
NUMBER TYPE CODE MESSAGE TEXT

nnnn F AS02083 11\JVALID SEQUENCE SYMBOL.
1. Sequence symbol does not start with a

period .followed, by a letter or$.
2. Sequence symbol is not 1-8 characters

fol lowed by a space.
The instruction is replaced with ERR.

nnnn F AS02084 INVALID FORM SYNTAX.
The form reference contains a keyword
parameter or a sublist parameter. The form
rnference is dropped.

nnnn F AS020B5 UNDEFINED SET SYMBOL OR SYMBOLIC
PARAMETER.
1. Set symbol or symbolic parameter is

not found in symbol table. Substitute
null value for missing value.

2. Global set symbol is not found in
symbol table. The ADO statement is
not processed.

3. Global set symbol is not found in
symbol table. The SET A or SETC
statement is not processed.

nnnn F AS02086 INVALID SUBSTITUTION OF SEMICOLON.
The first character of the value assigned to a
Viariable symbol is a semicolon, and the
character which would immediately precede it
in the substitution record is not an escape
character (). Substitute null for the value.

nnnn F AS02087 UNDEFINED MACRO.
1. The operation code in a statement

created by substitution is neither an
ordinary instruction nor a form
instruction.

2. The operation code in this statement
is neither an ordinary instruction nor
a form instruction, nor can it be found
in the macro library.

The instruction is replaced by ERR.

nnnn F AS02088 INVALID NAME ENTRY.
1. Symbol in the name field of record

created by substitution is either too
long or contains an invalid character.

2. Name field of form definition is either
an instruction mnemonic or it is not an
ordinary symbol.

G-9

LINE ERROR ERROR
NUMBER TYPE CODE MESSAGE TEXT

3. Statement has nonblank name field.
4. Statement has nonblank name field

which is not a sequence symbol.
5. Statement has nonblank name field

which is not an ordinary symbol or
a sequence symbol.

6. Name field of ADO statement contains
an ordinary symbol.

7. Name field of SET A statement does not
contain a SET A symbol.

8. Name field of a SETC statement does
not contain a SETC symbol.

For conditions 1, 3, 4, 5, and 6, the name
field is ignored. For condition 2, form
definition is not processed. For conditions
7 and 8, SET A and SETC statements are
not processed.

nnnn F AS02089 ADO OR AGO OPERAND MUST BE A
SEQUENCE SYMBOL.
The ADO or AGO statement is not processed.

nnnn F AS02090 &SYSNDX NOT IN SYMBOL TABLE.
Assembler logic error. The SET A and SETC
statement is not processed.

nnnn F AS02091 MORE THAN FIVE LEVELS OF MACRO
NESTING.
The instruction is replaced by ERR.

nnnn F AS02092 OPERAND LENGTH ERROR.
Length of operand or suboperand exceeds.
127 bytes. The operand is replaced by null.

nnnn F AS02093 TOO MANY OPERANDS.
1. More operands are in a macro call than

there are parameters in the prototype.
2. AGO, SETA, or SETC statement

contains more than one operand.
3. ADO statement contains more than

two operands.
The extra operands are ignored.

nnnn F AS02094 MACRO DEFINITION ERROR.
Macro instruction is replaced by ERR.

nnnn F AS02095 TOO MANY LEVELS OF ADO NESTING.
The ADO statement is not processed.

G-10

LINE ERROR ERROR
NUMBER TYPE CODE MESSAGE TEXT

nnnn F AS02096 INNER ADO LOOP MUST BE COMPLETELY
CONTAINED WITHIN THE OUTER ADO
LOOP.
Processing of the outer ADO loop is discontinued.

nnnn w AS02097 INVALID PRINT OPERAND.
1. The operand field is terminated by a comma

or semicolon.
,.~

i. .• One of the operands is not "OFF, ON,
NOGEN,GEN,NODATA,DATA,
NOCOND, OR COND."

The remainder of the operand is ignored and the
assembly process continues, using the last valid
operand processed for each option.

nnnn F AS02098 MACRO INSTRUCTION MAY NOT HAVE
BOTH POSITIONAL AND KEYWORD
PARAMETERS.
The macro instruction is not processed.

nnnn F AS02099 MACRO INSTRUCTION USED AS FORM
NAME.
The name field of a form definition which
was created by substitution contains a
mnemonic that has been identified as a
macro instruction. The form definition ·
is not processed.

nnnn F AS02100 INVALID SET EXPRESSION.
1. The operand field of SET A instruction

contains a nonnumeric character. ,.,
i. .• The value of a SETA expression exceeds

65,535.
~L The operand field of a SET A or SETC

instruction contains a sublist or a
sequence symbol.

The SET A or SETC instruction is not processed.

nnnn F AS02101 BEFERENCE TO UNDEFINED SET SYMBOL.
This is an Assembler logic error.

nnnn F AS02102 INVALID SUBSTITUTION.
1. The symbol whose value is to be used in

substitution is not a SET A, a SETC, a
symbolic parameter, or &SYSNDX. This
is an Assembler logic error. The value is
replaced by null. ,.,

.t. •• The name field of a statement created by
substitution contains a sequence symbol.
The name field of the statement is ignored.

G-11

LINE ERROR ERROR
NUMBER TYPE CODE MESSAGE TEXT

nnnn F AS02103 REFERENCE TO &SYSNDX VALID ONLY
WlTHIN A MACRO.
The SET A or SETC statement is not processed.

nnnn F AS02104 REFERENCE TO UNDEFINED FORM.
Reference to a form instruction whose definition
has not yet appeared in the generated source.
The instruction is replaced by ERR.

nnnn w AS02105 UNDEFINED KEYWORD OPERAND.
1. The macro instruction has more operands

than the macro prototype has parameters.
2. The macro instruction has at least one

operand whose name does not match any
of the prototype's keyword parameters.

The extra operands are ignored.

nnnn F AS02106 REFERENCE TO UNDEFINED SEQUENCE
SYMBOL.
The ADO or AGO statement is not processed.

nnnn F AS02107 INVALID SUBSTITUTION INTO OPERATION
ENTRY.
The instruction in this substitution record was
one which may not be created by substitution.
The instruction is not processed.

nnnn F AS02108 MORE THAN 35 SUB-OPERANDS.
Th is is an Assembler logic error.

nnnn F AS02109 OPERATION ENTRY MISSING.
1. The statement created by substitution is

all blank after the name field.
2. The statement created by substitution

has a continuation character immedi-
ately after the name field.

The instruction is replaced by ERR.

nnnn F AS02110 INVALID OPERATION ENTRY.
1. The operation code in the statement

created by substitution is more than
eight characters long.

2. The operation field in the statement
created by substitution contains an
invalid character.

3. The operation code in the statement
created by substitution is continued
on the second line of the statement.

The instruction is replaced by ERR.

G·12

LINE ERROR ERROR
NUMBER TYPE CODE MESSAGE TEXT

nnnn F AS02111 REFERENCE TO DOUBLY-DEFINED
SEQUENCE SYMBOL.
The ADO or AGO statement is not processed.

nnnn F AS02112 INSTRUCTION NOT VALID AFTER SEG
STATEMENT.
The instruction is not processed.

nnnn w AS02114 SPECIFIED SUBSTRING - LENGTH TOO
LARGE.

NOTE: AS02115 reserved for future use.

nnnn F AS02116 INVALID USE OF SEQUENCE SYMBOL.

NOTE: AS02117 reserved for future use.

nnnn F AS02118 INVALID USE OF CHARACTER STRING.

NOTE: AS02119 reserved for future use.

NOTE: AS02120 reserved for future use.

NOTE: AS02121 and AS02122 reserved for future use.

nnnn F AS02123 EXPRESSION CONTAINS INCOMPATIBLE
OPERAND TYPES.

nnnn F AS02124 EVALUATOR - STACK OVERFLOW.

nnnn F AS02125 MULTIPLICATION OR DIVISION OVERFLOW.

nnnn F AS02126 UNDEFINED SEQUENCE SYMBOL OR
VARIABLE SYMBOL.

nnnn F AS02127 INVALID SUBSTRING OR SUBLIST
REFERENCE.

nnnn F AS03001 OPERAND SIZE OR NUMBER OF TERMS
EXCEEDS MAXIMUM.
This message indicates internal stack overflow.
To correct the condition, reduce the number
of terms in the expression or number of oper-
ands.

nnnn F AS03002 UNMATCHED RIGHT PARENTHESIS.

nnnn F AS03003 UNMATCHED LEFT PARENTHESIS.

nnnn F AS03004 EXPRESSION OR SUBLIST CONTAINS AN
INVALID COMMA.

G-13

LINE
NUMBER

ERROR
TYPE

ERROR
CODE

NOTE: AS03005 reserved for future use.

nnnn F AS03006

nnnn F AS03007

nnnn F AS03008

nnnn F AS03009

nnnn F AS03010

nnnn F AS03011

nnnn F AS03012

nnnn F AS03013

MESSAGE TEXT

INVALID USE OF INDIRECTION
*· .. insert ... *
The use of the indirect operator,@, is invalid.

INVALID EXPRESSION *· .. insert ... *

The syntax does not follow the rules for
coding expressions.

INVALID USE OF LITERALS*· .. insert .. ·*
The use of the literal operator, =, is invalid in
th is statement.

INVALID USE OF PARENTHESIS
*· .. insert ... *

CHARACTER STRING INVALID WITH
+ - *'OR I OPERATOR*· .. insert ... *
Arithmetic operations are invalid with strings.

INVALID SUBLIST*· .. insert ... *
The use of the sublist is invalid in this
statement.

RELOCATABLE TERM USED IN MULTI
PLICATION, DIVISION OR LOGICAL
OPERATION*· .. insert ... *
The! location counter, *,may not enter into
the above mentioned operations.

MAY NOT FOLLOW A LOGICAL, RELA
TIONAL OR ARITHMETIC OPERATOR
*· .. insert ... *
The unary operator NOT may not follow the
above mentioned operators.

NOTE: AS03014 and AS03015 are reserved for future use.

nnnn ·F AS03016

nnnn F AS03017

G-14

SYMBOL TOO LONG *· .. insert ... *
A name entry or a symbolic operand may not
exceed 8 characters.

INVALID HEXADECIMAL CONSTANT
*· .. insert ... *
A hexadecimal constant may only contain
digits 0-9 and characters A-F.

LINE ERROR ERROR
NUMBER TYPE CODE MESSAGE TEXT

nnnn F AS03018 OPERAND SIZE OR NUMBER OF TERMS
EXCEEDS MAXIMUM *· .. insert ... *
This message indicates internal stack overflow.
To correct the condition, reduce the number
of terms in the expression or the number of
operands.

nnnn F AS03019 INVALID OPERATOR*· .. insert ... *
The operator or symbol is not in the language.

nnnn F AS03020 INVALID CHARACTER*· .. insert ... *
The character is not in the language or is
contextually incorrect.

nnnn F AS03021 INVALID CONTINUATION*· .. insert .. ·*
The usage of the semicolon is contextually
invalid.

nnnn F AS03022 INVALID SYMBOL*· .. insert ... *
The length attribute operand may only be
symbolic.

nnnn F AS03023 INVALID STRING*· .. insert ... *
An invalid string structure appeared.

NOTE: AS030024 is reserved for future use.

nnnn F AS03025 INVALID STRING*· .. insert ... *
Same as AS03023 above.

nnnn w AS03026 OPERAND TRUNCATED - TOO LONG
*· .. insert ... *
The number of digits exceeds the maximum
allowed. For a decimal integer, 5 is the
maximum. For an integer string, 10 is the
maximum. For a hexadecimal constant, 4
is the maximum.

nnnn w AS03027 VALUE TRUNCATED - EXCEEDS PER-
MISSIBLE MAGNITUDE*· .. insert ... *
A decimal integer may not exceed 65,535.
An integer string may not exceed 4,294,967 ,295.

NOTE: AS03028 and AS03029 are reserved for future use.

nnnn w AS03030 INVALID USE OF NAME ENTRY.

G-15

LINE ERROR ERROR
NUMBER TYPE CODE MESSAGE TEXT

nnnn F AS03031 INVALID FORM DEFINITION.
A form reference cannot be used as an operand
entry.

nnnn F AS03032 INVALID USE OF $SYSEG.
$SYSEG is invalid in an evaluated expression.

nnnn F AS03033 RELOCATABLE TERM INVALID WITH
UNARY OPERATOR.
A relocatable term may not be used in con-
junction with a NOT operator.

nnnn F AS03034 INVALID USE OF STRING CONSTANT.
A string constant may not be used as a term
in conjunction with an arithmetic or logical
operator.

nnnn F AS03035 RELOCATABLE TERM INVALID WITH*/
OR LOGICAL OPERATOR*· .. insert ... *
A relocatable term may not be used in con-
junction with a multiplication, division, or
logical operation.

nnnn F AS03036 INVALID SYNTAX.
The operand structure does not follow the
rules of the language.

nnnn F AS03037 MORE THAN SIX RELOCATABLE TERMS.
An expression may not contain more than six
unresolved relocatable terms.

NOTE: AS03038 is reserved for future use.

nnnn F AS03039 INVALID STRING*· .. insert ... *
Both strings in a relational or logical operation
must be the same type.

nnnn F AS03040 OPERAND SIZE OR NUMBER OF TERMS
EXCEEDS MAXIMUM *· .. insert ... *
The expression size is too large to be evaluated.

nnnn F AS03041 MULTIPLICATION OR DIVISION OVER~
FLOW *· .. insert ... *
Either division overflow has occurred or the
second term of a multiplication or division
operation exceeds a 16-bit value.

NOTE: AS03042 is reserved for future use.

G-16

LINE
NUMBER

nnnn

nnnn

ERROR
TYPE

F

F

ERROR
CODE

AS03043

AS03044

NOTE: AS03045 is reserved for future use.

MESSAGE TEXT

RELOCATABLE TERM INVALID WITH
RELATIONAL OPERATOR *· .. insert ... *
A relocatable term may not be used in con
junction with a relational operator.

UNDEFINED SYMBOLIC OPERAND.
The reference is not used as a label within
th is program.

NOTE: AS03046 through AS03050 are reserv•~d for future use.

nnnn F AS03051 DUPLICATE DEFINITION OF NAME
ENTRY. *· .. insert .. ·*
The name field entry definitions must be
unique. All duplicates are discarded.

nnnn F AS03052 ENTRY POINT DEFINITION IS NOT
RELOCATABLE *· .. insert ... *
The entry point definition must resolve
to a relocatable term.

nnnn F AS03053 CSECT NAME IS ALREADY DEFINED,
BUT NOT AS CSECT *· .. insert ... *
Control section names must not appear as
ordinary name field entries.

nnnn F AS03054 COM NAME IS ALREADY DEFINED,
BUT NOT COM *· .. insert ... *
COM names must not appear as ordinary
name field entries.

NOTE: AS03055 is the same as AS03052.

NOTE: AS03056 through AS03058 are reserved for future use.

nnnn F AS03059

nnnn F AS03060

nnnn F AS03061

G-17

DUPLICATE FORM DEFINITION.*· .. insert .. ·*
The form definition name entry is previously
defined.

INVALID SYNTAX IN STORAGE
RESERVATION.
The operand of a reserve storage instruction
must be preresolved, absolute, positive arithme
tic expression. Only one operand is allowed.

INVALID SYNTAX IN DATA DEFINITION.
The syntactical structure of the data definition
operand is invalid.

LINE ERROR ERROR
NUMBER TYPE CODE MESSAGE TEXT

nnnn F AS03062 INVALID USE OF INDIRECTION.
An indirect operator is invalid in data
definition operands.

nnnn F AS03063 INVALID USE OF LITERAL.
The literal operator is invalid in size or
repetition field of a data definition operand.

nnnn F AS03064 INVALID SIZE SPECIFICATION.
The? size operand of data definitions must
be preresolved absolute expression.

nnnn F AS03065 INVALID REPETITION FACTOR.
The repetition factor of a data definition
operand must be a preresolved absolute
expression.

nnnn F AS03066 VALUE OF LOCATION COUNTER
EXCEEDS 65,535.

nnnn w AS03067r TRUNCATION OCCURRED.
Tht~ implied size of the value operand is
greater than the explicit size operand in a
data definition.

NOTE: AS03068 through AS03069 are reserved for future use.

nnnn F AS03070 INVALID USE OF $SYSEG.
The data following $SYSEG definition must
be two bytes long, word aligned, and relocatable.

nnnn F AS03071 REQUIRED OPERAND ENTRY MISSING.
This instruction requires an operand and none
was supplied.

nnnn F AS03072 INVALID SUBLIST.
The syntax indicates a suboperand, but the
instruction does not allow suboperands.

nnnn F AS03073 INVALID USE OF LITERAL.
The instruction does not allow a literal as an
operand, but one was coded.

nnnn F AS03074 INVALID USE OF INDIRECTION.
The instruction does not allow indirection,
but indirection was coded.

G-18

LINE ERROR ERROR
NUMBER TYPE CODE MESSAGE TEXT

nnnn F AS03075 INVALID EXPRESSION.
The expression coded does not fall within the
tv'pes allowed.
1. A string type was used where only

arithmetic type expressions are allowed.
2. An unresolved expression was coded on

an instruction which required expressions
to be predefined.

3., A relocatable expression is coded where
only absolute are allowed.

nnnn w AS03076 NAME FIELD OF ORG STATEMENT MAY
ONLY CONTAIN A SEQUENCE SYMBOL.

nnnn w AS03077 INVALID RELOCATION.
1. An absolute value was coded where a

relocatable value was required.
2. The relocation identifier does not

match the relocation identifier for the
control section in effect; e.g., trying to
ORG to another CSECT or COM section.

nnnn F AS03078 l\IAME ENTRY REQUIRED ON AN EQU
STATEMENT.

nnnn w AS03079 TOO MANY OPERANDS.
More than the maximum number of operands
allowable for this instruction were coded. The
values of the first operands were used.

nnnn F AS03080 ONLY SINGLE TERM RELOCATABLE
EXPRESSIONS ARE VALID.

nnnn F AS03081 COMBINED CSECT, COM AND EXTRN
COUNT EXCEEDS 252.
The binary generated will probably not be
uiseless. Reduce the number of EXTE R Ns
and CSECTs and COMs and reassemble.

nnnn w AS03082 INVALID NAME ENTRY.
The name entry was coded where none was
ail lowed. The name entry has not been entered
into the symbol table. Any reference to it will
result in an undefined reference.

nnnn F AS03083 HEFERENCE TO INVALID FORM DEFINITION.
11 • The operation entry matches something other

than a FORM definition.
')
.,j., There was no such entry .
:~. No operand was coded on the reference.

G-19

LINE ERROR ERROR
NUMBER TYPE CODE MESSAGE TEXT

nnnn F AS03084 OPERAND SIZE EXCEEDS 255 BITS.
A FORM definition was coded with an operand
which did not resolve to an absolute value less
than 255.

nnnn F AS03085 DUPLICATE DEFINITION OF NAME ENTRY.

nnnn F AS03086 NAME ENTRY REQUIRED ON A FORM
DEFINITION.

nnnn F AS03087 CSECT NAME MAY NOT DUPLICATE COM
NAME.
The name entries of CSECT and COM state-
ments cannot duplicate each other in the same
assembly.

nnnn w AS03088 ONLY ONE TITLE STATEMENT IN A
PROGRAM MAY HAVE A NONBLANK
NAME FIELD.

nnnn F AS03089 INVALID PRIME ENTRY POINT.
1. The operand of an END statement does

not resolve to an even boundary.
2. The operand does not reference a

relocatable value.

nnnn F AS04001 INVALID FORM DEFINITION.
A form reference cannot be used as an operand
entry.

nnnn F AS04002 INVALID USE OF $SYSEG.
$SYSEG is invalid in an evaluated expression.

nnnn F AS04003 RELOCATABLE TERM INVALID WITH
UNARY OPERATOR.
A relocatable term may not be used in
conjunction with a NOT operator.

nnnn F AS04004 INVALID USE OF STRING CONSTANT.
A string constant may not be used as a term
in conjunction with an arithmetic or logical
operator.

nnnn F AS04005 RELOCATABLE TERM INVALID WITH*/
OR LOGICAL OPERATOR *· .. insert .. ·*
A relocatable term may not be used in conjunc-
tion with a multiplication, division, or logical
operation.

nnnn F AS04006 INVALID SYNTAX.
The operand structure does not follow the rules
of the language.

G-20

LINE
NUMBER

nnnn

ERROR
TYPE

F

ERROR
CODE

AS04007

NOTE: AS04008 is reserved for future use.

nnnn F AS04009

nnnn F AS04010

nnnn F AS04011

NOTE: AS04012 is reserved for future use.

nnnn F AS04013

nnnn F AS04014

NOTE: AS04015 reserved for future use.

nnnn

nnnn

nnnn

nnnn

w

w

w

F

AS04016

AS04017

AS04018

AS04019

G-21

MESSAGE TEXT

MORE THAN SIX RELOCATABLE TERMS.
An expression may not contain more than six
unresolved relocatable terms.

INVALID STRING *· .. insert ... *
Both strings in a relational or logical operation
must be the same type.

OPERAND SIZE OR NUMBER OF TERMS
EXCEEDS MAXIMUM *· .. insert ... *
The expression size is too large to be evaluated.

MULTIPLICATION OR DIVISION OVERFLOW
;•, .. insert .. ·*
Either division overflow has occurred or the
second term of a multiplication or division
operation exceeds a 16-bit value.

!RELOCATABLE TERM INVALID WITH
!RELATIONAL OPERATOR *· .. insert .. ·*
A relocatable term may not be used in conjunction
with a relational operator.

UNDEFINED SYMBOLIC OPERAND.
The reference is not used as a label within this
program.

TRUNCATION OCCURRED.
The value coded exceeded the match field on a
IFORM definition. Normal rules of truncation
are followed.

TOO MANY OPERANDS.

IREOUIRED OPERAND ENTRY MISSING.
!Fewer operands were coded in a form reference
than were coded in the FORM definition.

llNVALID RELOCATION-VALUE TREATED
AS ABSOLUTE.
1. The receive field was not 16 bits or was

not on an even byte boundary. The number
of relocation identifiers was greater than one.

:2. For $SYSEG, the receive field was not 8 bits
long, or was not on a byte boundary.

LINE
NUMBER

nnnn

ERROR
TYPE

F

ERROR
CODE

AS04020

NOTE: AS04021 is reserved for future use.

nnnn w AS04022

nnnn w AS04023

nnnn w AS04024

NOTE: AS04025 is reserved for future use.

nnnn w AS04026

nnnn w AS04027

nnnn F AS04028

NOTE: AS04029 is reserved for future use.

nnnn w AS04030

nnnn F AS04031

nnnn F AS04032

G-22

MESSAGE TEXT

INVALID SYNTAX.
The syntax of a F 0 RM reference operand may
have had one of the following errors:
1. Indirection coded
2. A sublist coded
3. No operand was coded.

TITLE OPERAND MUST BE A CHARACTER
STRING.

LENGTH OF TITLE OPERAND EXCEEDS 90
CHARACTERS.
The operand is truncated on the right to 90
bytes and then used.

SPACE OPERAND MUST BE A RESOLVED
ARITHMETIC EXPRESSION.

FORWARD REFERENCE TO STRING EQUATE
- IMPLICIT STRING - LENGTH IS 2 BYTES.
A data definition operand referencing a forward
string equate is implicitly resolved to two bytes.
Truncation or padding may have occurred.

TRUNCATION OCCURRED.
The implicit size of the value operand is greater
than the explicit size operand in data definitions.

INVALID RELOCATION - VALUE TREATED
AS ABSOLUTE.
A relocatable value must be on word boundary
and two bytes in length. The number of relocation
factors in an expression must be resolved to one.

NOP SUBSTITUTED FOR INVALID
OPERATION CODE.

TOO MANY OPERANDS OR SUBOPERANDS.
Refer to the MRX/OS Assembler Reference
manual to determine the maximum number of
operands.

INVALID INDIRECTION OR LITERAL USAGE.

LINE ER.FlOR ERROR
NUMBER TYPE CODE MESSAGE TEXT ----

nnnn w AS04033 LITERAL POOL SIZE EXCEEDS MEMORY
LIMITS.
The current literal pool is located at an address
greater than 65,535. Binary generation is
suppressed.

nnnn w AS04034 INVALID USE OF STRING CONSTANT.
A string constant may have been used as an
address or as a register designator.

nnnn F AS04035 LOSS OF SIGNIFICANCE.
An immediate operand cannot contain the
amount coded.

nnnn F AS04036 INVALID RELOCATION.
More than one relocatable value remains after
evaluation.

nnnn F AS04037 REQUIRED SUBOPERAND MISSING.
An instruction which must have a certain
minimum of operands or suboperands has
been coded without one or more of them.

nnnn F AS04038 VALUE NOT WITHIN RANGE OF
DESIGNATED FIELD.
The resolved value exceeds the maximum
value, permitted.

nnnn w AS04039 EXPLICIT USE OF REGISTER ZERO AS
AN INDEX.
Register zero has no effect as an index register,
but it was coded as an index.

nnnn w AS04040 TRUNCATION OCCURRED.
A string constant used in a direct instruction
exceeds 2 bytes. Normal rules of truncation
are used.

nnnn w AS04041 WORD BOUNDING REQUIRED.
The instruction functions only on even bounded
addresses, but an odd address was coded.

nnnn w AS04042 RELOCATABLE TERM USED - ABSOLUTE
VALUE REQUIRED.

nnnn w AS04043 EDIT LENGTH L2 MUST BE GREATER THAN
L 1 UNLESS L2 IS ZERO.

nnnn w AS04044 INVALID USE OF $SYSEG.
$SYSEG is not allowed as an operand or sub-
operand of any machine instruction.

G-23

LINE ERROR ERROR
NUMBER TYPE CODE MESSAGE TEXT

nnnn F AS04045 INVALID ENTRY POINT.
The entry point did not resolve to a relocatable
value. Note that the line number is associated
with the END statement because the fact cannot
be discovered when the ENTRY instruction was
encountered.

nnnn F AS04046 MORE THAN 175 SEG DIRECTIVES
ENCOUNTERED - FIRST 175 USED.

G-24

ASSEMBLER ABORT MESSAGES

The M RX/OS Assembler abort messages are printed as the final line(s) of the listing. The
assembly is aborted when any of these messages appear. The messages and their explanations

· are given below. The format of the messages is exactly as presented.

MESSAGES

ERROR IN PHASE CALL.
Assembler in error.

ERROR IN 1/0 HANDLING.

INPUT BLOCK SIZE EXCEEDS MEMORY AVAILABLE.
The partition size is too small to handle the larger input block size. Increase the partition
size for this input file. In BK, the maximum input block size allowed is B6 bytes.

PARTITION-SIZE LESS THAN BK BYTES.
The Assembler requires a minimum of BK bytes to run.

SYMBOL TABLE ERROR.
Assembler in error.

SYSTEM MACRO BLOCK SIZE TOO LARGE (GREATER THAN B6 BYTES).

END OF INPUT OCCURRED WHILE P.ROCESSING A MACRO - MEND STATEMENT
MISSING.
Either an end of input or an END statement was detected while a macro definition was
being processed.

FATALERRORINICTLSTATEMENTPARAMETER.
In an ICTL statement, the first parameter is less than 1 or greater than 40, or the second
parameter is less than 40 or greater than 120.

~~~~M~~~~R ERROR IN COLUMN xx IN STATEMENT* ... insert ... * 

PARAMETER CARD ERROR - JOB ABORTED. 
On a //PAR statement, either a parameter or a delimiter is in error. The contents of the 
//PAR statement, but not the characters //PAR, are 'printed as an insert between the 
asterisks. The column number, xx, indicates the erroneous character, column 1 being the 
first character between the asterisks. Several parameter or delimiter errors may be listed in 
succession before the PARAMETER CARD ERROR message. 

FATALERRORINICTLSTATEMENTSYNTAX. 
The ICTL statement parameters must be separated by a comma and terminated by a space. 

G'."25 



SPECIFIED IMEM NOT FOUND IN LIBRARY. 
Either the member name does not exist or the wrong library name was used. 

MEND STATEMENT MISSING IN SYSTEM MACRO. 
While processing a system macro definition an end of input was detected, but not a MEND 
statement. Check if the system macro library has been destroyed or if just one macro was 
incorrectly written on it. 

BINARY REQUESTED - BUT OMEM1 NOT SUPPLIED. 
A member name must be provided so that the binary may be entered in the object library 
under that name. 

OPERAND MISSING IN ICTL STATEMENT. 
An ICTL statement requires an operand entry. 

SYSTEM MESSAGES 

The following system messages cause the assembler to abort. 

ERROR CODE 

5021 

21nn 

24nn 

MESSAGE TEXT 

ILLEGAL BLOCK NUMBER. 
If the assembly process has not reached the print phase, the most 
probable cause is too small an allocation of MAXSIZ. Another 
possible cause is too small a file allocated for OMEM2. 

If the assembly process has reached the print stage, the most 
probable cause is that the binary file (OUTPUT1) has been filled. 

These errors are probably caused by an error in the Control Language 
statements. 

These errors are probably caused by an error in the Control Language 
statements. Error 2109 indicates too large a MAXSIZ as a probable 
cause. Error 240B indicates that one or more of the user-supplied 
files is noncontiguous. The file with multiple extents must be 
recreated as a contiguous file. 

G-26 



INDEX 

Abort messages G-25 Coding form 
Absolute format of 2-18 

expressions, definition of 2-17 statement continuation 2-21 
terms, definition of 2-4 COM statement 5-4 

Addressing in machine instructions 3-2,3-3 Comments 2-20 
ADO statement 10-20 Common control sections (see 
AG 0 statement 10-23 COM statement) 
ALIGN statement 6-6 Conditional assembly statements 
Alignment ADO 10-20 

of data 8-2 AGO 10-23 
of machine instructions 3-1 ANOP 10-23 

Alphabetical list of machine GBLA 10-20 
instructions C-1 GBLC 10-20 

ANOP statement 10-23 SETA 10-16 
Arithmetic SETC 10-18 

constants 2-7 Constants 
operators 2-16 arithmetic 2-7 
set expressions 10-16 string 2-5 

Assembler instructions Continuation of statements 2-21 
definition 1-1 Control language for assembler 11-1 
overview 4-1 Control sections 
summary E-1 and location counter 2-11 

Assembly options 11-1 assembler statements for 5-1 
Count attribute of macro instruc-

BOD statement 8-2 tion operand 10-24 
Begin-end columns Cross reference list, suppressing 11-2 

alteration of 6-4 CSECT statement 5-1 
description 2-18 

BRS statement 8-5 Data definition statements 8-1 
Byte reserve storage 8-5 Diagnostic messages G-1 
Byte defined data 8-2 

EBCDIC table A-1 
Calling assembler 11-1 EJECT statement 9-2 
Card codes A-1 END statement 6-3 
Character ENTRY statement 5-2 

codes A-1 EOU statement 8-1 
set 2-1 Error messages 
set expression 10-18 abort messages G-25 
string constants 2-5 diagnostic messages G-1 

system messages G-26 

lndex-1 



Expressions Location counter 
absolute 2-17 and A LI G N statement 6-6 
definition 2-14 and 0 R G statement 6-1 
evaluation of 2-15 and WDD and BOD statements 8-4 
relocatable 2-18 description 2-11 

Extended mnemonics 3-10 reference (asterisk) 2-11 
EXTRN statement 5-3 Logocal operators 2-16 

LTORG statement 6-4 
FORM definition statement 8-7 
FORM instruction statement 8-7 Machine instructions 
GB LA statement 10-20 alphabetical list C-1 
GB LC statement 10-20 definition 1-1 
General purpose machine instruc- hex code to mnemonic D-1 
tions 3-3,3-5 object formats B-1 

Global arithmetic and character summary 3-1 
set symbols 10-20 Macro language 

Hex codes of machine instruc- concatenation of variable 

tions D-1 symbols 10-11 

Hexadecimal string constants 2-6 count attribute 10-24 
example F-1 

ICTL statement 6-4 file definition 11-1 
Identification-sequence field 2-20 general description 10-1 
Index registers 3-2,3-3 macro definition 10-1 
Input format control 6-4 macro instruction 10-5 
Integer string constants 2-6 MEX IT statement 10-13 
ISEO statement 6-5 MNOTE statement 10-12 

nesting of macros 10-13 
Job control language (see number attribute 10-25 

Control language) sublists in macro instructions 10-9 
sublists in model statements 10-9 

Linkage editor substring notation 10-10 
and control sections 5-1 system variable symbols 
and symbol linkage 5-2 (&SYSNDX, &SYSECT) 10-13 
map directive (SEG) 7-1 Messages, error G-1 

Linking statements 5-1,5-2 Mnemonic definition (FORM) 8-7 
Listing control statements 

EJECT 9-2 Name field, description 2-3 
PRINT 9-3 Notation used to describe 

SPACE 9-2 machine instructions 3-2 
TITLE 9-1 Number attribute of macro 

Literal pools instruction operand 10-25 

and L TOR G statement 6-4 
description 2-13 Object formats of machine instruc-

Literals tions B-1 

description 2-13 Object program 
in WDD and BOD statements 8-3 definition 1-1 

file definition 11-1 

lndex-2 



Operand field, description 2-3,2-20 Source statements (continued) 
Operating system, relationshiip to terms 2-3,2-4 
assembler 1-2 SPACE statement 9-2 

Operation codes (hex) for String constants 
machine instructions D-1 character 2-5 

Operation field, description 2-3,2-20 hexadecimal 2-6 
Operators 2-16 integer 2-6 
Ordinary symbols 2-9 packed decimal 2-6 
ORG statement 6-1 zoned decimal 2-6 

Symbol definition statements 8-1 
Packed decimal string constants 2-6 Symbol length attribute 2-12 
PRINT statement 9-3 Symbolic linkage statements 5-2 
Program Symbols 

control statements 6-1 definition 2-8 
listing 1-2,9-1 ordinary 2-9 
sectioning 5-1 rules for using 2-9 
termination 6-3 sequence 2-11 

PUNCH statement 6-3 variable 2-10 

Registers 3-2,3-3 SYSEG reserved name 5-6,8-3 

Relational operators 2-16 System 

Relocatable machine instructions 3-,3,3-9 

expressions, definition of 2-18 messages G-26 

symbols, identificatio:n of 5-1,5-2 requirements for assembler 1-2 

terms, definition of 2-4 TITLE statement 9-1 
Reserving storage 8-5 Termination of assembly 6-3 

Terms 
SE G statement 7-1 constants 2-5 
Segment names (see SYSEG) definition 2-3,2-4 
Sequence checking statements 6-5 literals 2-13 
Sequence symbols 2-11 location counter reference 2-11 
Set symbols 10-16 symbols 2-8 
SET A statement 10-16 symbol length attribute 2-12 
SETC statement 10-18 
Source program Variable symbols 2-10 

definition 1-1 
file definition 11-1 WDD statement 8-2 
listing control 9-1, 11-2 Word defined data 8-2 

Source statements Word reserve storage 8-5 
basic format 2-3 Writing to disk file 6-3 
character set 2-1 WRS statement 8-5 
coding form 2-18 
expressions 2-3,2-14 Zoned decimal string constants 2-6 

lndex-3 



COMMENTS FORM 

I MAX/OS Assembler Reference Manual (2202.001-01) 

Please send us your comments, to help us produce better publications. Use the space below to 
qualify your responses to the following questions, if you wish, or to comment on other aspects of 
the publication. Please use s;pecific page and paragraph/line references where appropriate. All 
comments become the property of the Memorex Corporation. 

Yes No 

• Is the material: 

Easy to understand? I I I I I a a 
Conveniently orgainized? a a 
Complete? ... a a 
Well illustrated? a a 
Accurate? ... a a 
Suitable for its intended audience?. a a 
Adequately index1ed? I I I I I I I I a a 

• For what purpose did you use this publication? (reference, general interest, etc.) 

• Please state your department's function: -------------------

• Please check specific criticism(s), give page number(s), and explain below: 

O Clarification on page(s) -----------------------
0 Ad~tion on page(s) ________________________ _ 

0 Del~ion on page(s)-----------------------~ 

0 Error on page(s) ---------------------------



Business Reply Mail 

No Postage Necessary if Mailed in the United States 

Postage Will Be Paid By 

Memorex Corporation 

Midwest Operations - Publications 
8941 Tenth Avenue North 
Minneapolis, Minnesota 55427 

Thank you for your information ......... . 

Our goal is to provide better, more useful manuals, and your 
comments will help us to do so . 

. . .. . . . . . . . Memorex Publications 

First Class 

Permit No. 14831 
Minneapolis, 
Minnesota 55427 


	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	01-01
	01-02
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	04-01
	04-02
	04-03
	04-04
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	07-01
	07-02
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	09-01
	09-02
	09-03
	09-04
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	10-21
	10-22
	10-23
	10-24
	10-25
	10-26
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	A-01
	A-02
	A-03
	A-04
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	D-01
	D-02
	E-01
	E-02
	F-01
	F-02
	F-03
	F-04
	G-01
	G-02
	G-03
	G-04
	G-05
	G-06
	G-07
	G-08
	G-09
	G-10
	G-11
	G-12
	G-13
	G-14
	G-15
	G-16
	G-17
	G-18
	G-19
	G-20
	G-21
	G-22
	G-23
	G-24
	G-25
	G-26
	Index-1
	Index-2
	Index-3
	replyA
	replyB

