
MRX/OS Disc Sort
Reference Manual
2200.009

0
0
3
-c
c
CD .,, ...

... (,n
0 '<
Q. tn c n CD
·Cir 3

November 1972 Edition

Requests for copies of Memorex publications should be made
to your Memorex representative or to the Memorex branch
office serving your locality.

A reader's comment form is provided at the back of this
publication. If the form has been removed, comments may be
addressed to the Memorex Cor.poration, Publications Dept.,
8941 - 10th Ave. No. (Golden Valley) Minneapolis,
Minnesota 65427.

C 1972, MEMOREX CORPORATION

PREFACE

This manual is a reference for programmers using the MRX/OS Disc Sort program (SORT).
Chapters 1-3 describe the function of the SORT program and the Control Language
statements by which a sort run is defined. Chapters 4-5 describe the internal phases of
SORT, and how the user may write modification routines for the SORT program. A sample
program appears in Appendi)(: D.

Additional information on Control Language can be found in the publication MAX/OS
Control Language Services, E:xtended Reference. File organization is fully discussed in the
publication M RX/OS Control Program and Data Management, Basic Reference.

TABLE OF CONTENTS

Section Page

1 INTRODUCTION 1-1

Functions of Disc Sort 1-1
Outline of Control Language for Sort 1-1
Relationship to System 1-1
System Fl equ irements 1-1

2 FILES 2-1

File Organization 2-1
File Structure 2-1

Data Files 2-1
Tag Files 2-1
ADDBOUT Files 2-3

File Assinnment 2-4
Input Files 2-4
Output Files 2-5
Intermediate Files 2-5
Scratch Files 2-6
List Files 2-6

3 SORT CONTROL LANGUAGE 3-1

Introduction 3-1
Sort Actions 3-2
Sort Fields 3-6
UsHr Collating Sequence 3-11
File Attributes 3-12

4 SORT PA:OGRAM - INTERNAL LOGIC 4-1

Control Section 4-1
Definition Phase 4-1
I nterna I Sort Phase 4-1
I ntermediiate Merge Phase 4-3
Final Merge Phase 4-3

iii

TABLE OF CONTENTS (Continued)

Section Page

5 USER MODIFICATION ROUTINES 5-1

Introduction 5-1

General Calling Sequence for Subroutines 5-2

$STM1 Call 5-3

$STM2 Call 5-3

$STM3 Call 5-4

Return Conditions 5-4

6 PERFORMANCE CHARACTERISTICS 6-1

GLOSSARY

APPENDIX A COLLATING SEQUENCES A-1

APPENDIX B EXAMPLE OF TOURNAMENT METHOD B-1

APPENDIX C SAMPLE OUTPUT C-1

APPENDIX D SAMPLE SORT JOB D-1

APPENDIX E ERROR RECOVERY AND DIAGNOSTICS E-1

iv

LIST OF FIGURES

Figure

1 -1 Input to the! Disc Sort Program

2-1 Tag Record

2-2 Format A for Tag Files

2-3 Format B for Tag Files

2-4 Format A for ADD ROUT Files

2-5 Format B for ADDROUT Files

4-1 SORT Program Flow

5-1 Argument List

5-2 Save Area

5-3 $STM1 Call

5-4 $STM2 Call

5-5 $STM3 Call

5-6 Return Condition

LIST OF TABLES

Table

3-1

6-1

File Attributes Requirement$

Partition Size

v

Page

1-2

2-2

2-2

2-3

2-3

2-4

4-2

5-2

5-2

5-3

5-3

5-4

5-4

Page

3-13

6-1

1. INTRODUCTION

FUNCTIONS OF DISC SORT

The MRX/OS Disc Sort program (SORT) provides the user with the capability to sort a
randomly ordered file or me!rge two or more presorted files. A file may be sorted in
ascending or descending order according to key fields within the record. The key fields are
defined by the user according to position within the record, length, and type of field
(EBCDIC, ANSI, packed decimal, zoned, binary, user, tag-along, select, reject, and force).

SORT accepts a variety of data file organizations (sequential, relative, and indexed) as input
files from disc, tape, or cards. From these input files, records are sorted in the specified
sequence and written as tag files, address files, or data files. The sort may be performed as a
full sort or a tag sort. With the use of the ACTION=RETRIEVE option full records may be
retrieved from the input file for a full record output file after a tag sort was performed. The
user may write his own subroutines with the usage of the User Modification Routines. A
predetermined value may be forced into a record by using TYPE=FORCE.

OUTLINE OF CONTROL LANGUAGE FOR SORT

A sort job is specified to the SORT program through the use of Control Language
statements. Specifications that are unique to SORT are defined by //PAR statements. Figure
~ -1 illustrates the use of Control Language for a sort job.

RELATIONSHIP TO SYSTEM

SORT uses the input/output facilities of M RX/OS for file assignment and release and the
input/output facilities at both the logical 1/0 and the block 1/0 level.

SYSTEM REQUIREMENTS

In addition to the minimum hardware requirements for M RX/OS, a user partition of at least
8000 bytes and at least one disc drive must be available for execution of the SORT program.
A larger user partition and/or additional disc drives will lead to a more efficient sort of a
given file.

1-1

These statements name the
job and call the SORT program.

//PARAMETER statements define
the sort specifications to the SORT
program. The main function of these
statements is listed to the right.

//DEFINE statements identify files
as input, output, intermediate, or
temporary. They also provide file
name, volume code, status, and so
forth.

A //DATA statement names, and must
precede, each file used as input from the
job str·eam to the SORT program. The
number of input files depends on the type
of sort or merge being performed.

End of data.

End of job.

J //JOB
\ //EXECUTE PGM=SORT

//PAR ACTION=

//PAR FIELD=

//PAR UCOLL=

//PAR ID=

//DEFINE

//DATA

(Input File)

/*

//EOJ

NOTES ON CONTROL LANGUAGE

1. The following statements must be used once, and only once: //JOB,/*, and //EOF.

Defines type of sort - full,
tag, or ADDROUT, plus other
specifications.

Describes sort key fields as
to type of data, sequence,
length, etc.

Defines a user collating
sequence.

Defines file attributes, such as
presorted or unsorted, file
size, etc.

2. //DEFINE is required and may be used more than once, depending on the number of files in the sort run.

3. //PAR statements have both mandatory and optional specifications. The default values are provided in the text
describing these statements.

Figure 1-1. Input to the Disc Sort Program

1-2

29 FILES

The SORT program accepts a variety of file organizations and file assignments. From these
various input files, records are sorted in the specified sequence and written as tag files,
address files, or data files.

FILE ORGANIZATION

SORT accepts any data file organization supported by the Data Management system.
Sequential, relative, and indexed files are described in the publication Control Program and
Data Management Services, Basic Reference.

FILE STRUCTURE

The output files of the SORT program may be data files, tag files, or address files
(ADDROUT). Each of these file structures are discussed in the following paragraphs.

DATA FILES

Data files contain entire records, as opposed to address records. These files may be disc,
tape, or unit record flies. Disc files or magnetic tape files may have either fixed or variable
length records. Maximum record size is 32K bytes. Records can be blocked up to 255
records per block. The minimum block size is 18 bytes.

The data records are stored in a standard data format as described in the publication Control
Program and Data Management Services, Basic Reference.

TAG FILES

If the TAGSORT option from the ACTION statement is selected, SORT creates a tag file
composed of data blocks containing tag records. The tag record consists of a record address
and optional sort, tag-along,, or forced fields.

2-1

The data blocks contain fixed length tag records, the length of which is determined by the
sum of the sort key fields* plus four bytes. Within the tag record, the first four bytes
contain the corresponding data record address. The remainder of the tag record contains
sort key fields, optional tag-along fields, and optional forced fields (Figure 2-1). The order
of these fields following the record address is determined by the order specified in the
FIELD statement.

RECORD

ADDRESS

SORT FIELDS

TAG-ALONG FIELDS

FORCED FIELDS

Figure 2-1. Tag Record

The tag records may have one of two formats depending upon the type of record address
desired. The RECADD parameter of the ACTION statement determines whether Format A
(containing the logical record number) or Format B (containing the logical block number
and record number) will be used. These formats are shown in Figures 2-2 and 2-3.

If RECADD=LOGREC, Format A is used for the tag record in the data block. In this
format, the 4-byte logical record number corresponds to the appropriate record in the input
data file. The sort key fields and their accompanying tag-along fields and forced fields
follow the logical record number with each field beginning on an even byte boundary. If
these fields have an odd number of bytes, padding with blanks is performed.

J
~ORD ADDRESS OF
LOGICAL RECORD NUMBER 1

SORT KEY Fl ELDS
TAG-ALONG FIELDS
FORCED FIELDS
----·--·----------t
RECORD ADDRESS OF
LOGICAL RECORD NUMBER 2
--------------1
SORT KEY FIELDS

-------------1 L
AG ALONG FIELDS

CED FIELDS

Figure 2-2. Format A for Tag Files

TAG RECORD 1

TAG RECORD2

*Each field is adjusted to an even number of bytes. The block is padded to 18 bytes in length if the block is too short.

2-2

However, if RECADD=BLKREC, Format Bis used.

RECORD t\DDRESS:
LOGICAL IBLOCK NUMBER

ANDIRECORDNUMBER1

SORT KEV FIELDS
TAG-ALONG FIELDS
FORCED FIELDS

RECORD ,(!~DDRESS:
LOGICAL l~LOCK NUMBER

ANC1 RECORD NUMBER 2

SOIRT KEV Fl ELDS
TAG-ALONIG FIELDS
FORCED FIELDS

Figure 2-3. Format B for Tag Files

TAG RECORD 1

TAG RECORD2

The 3-byte logical block number in Format B locates the block in the input data file, and
the 1-byte record number locates the corresponding data record in that block. The sort key
fields, tag-along fields and forced fields are the same as in Format A.

ADDROUT FILES

A special case of tag file output is the ADD ROUT file, in which the sort keys have been
dropped, leaving only data record addresses. The ADDROUT record has two formats
depending upon the record address type.

If R ECADD=LOG REC (in the ACTION statement), the 4-byte logical record number
appears as illustrated by Format A (Figure 2-4).

RECORD ADDRESS OF
LOGICAL RECORD NUMBER 1

RECORD ADDRESS OF
LOGICAL RECORD NUMBER 2

-- --
Figure 2-4. Format A for ADDROUT Files

2-3

If RECADD=BLKREC, Format B (Figure 2-5) is used with a 3-byte logical block number
and a 1-byte record number within that block.

RECORD ADDRESS:
LOGICAL BLOCK NUMBER

AND l RECORD NUMBER 1

RECORD ADDRESS:
LOGICAL BLOCK NUMBER

AND l RECORD NUMBER 2

Figure 2-5. Format B for ADDROUT Files

FILE ASSIGNMENT

The SORT program uses five basic file assignments.

1. Input files

2. Output file

3. Intermediate files

4. Scratch fi I e

5. List file

File assignments are specified by the identifier parameter (ID=) of the //DEFINE statement.
(For a complete description of the //DEFINE statement refer to the MRX/OS Control
Language Services, Extended Reference.) The file identifiers are also used to identify the file
in the ID parameter for the SORT file attributes. (File attributes are described in Chapter 3
of this manual.) The following paragraphs define and describe the file identifiers.

iNPUT FILES

Input to the SORT run may be a single unsorted file or two to seven presorted files. An
input file may be on any input device supported by Data Management. A maximum of seven
presorted input files may be merged in one run.

2-4

The file identifiers are defined as follows:

Identifier

SRTINP

SRTPI 1

SRTPl2

SRTPl3

SRTPl4

SRTPl5

SRTPl6

SRTPl7

Description

Unsorted input file

First presorted input file

Second presorted input file

Third presorted input file

Fourth presorted input file

Fifth presorted input file

Sixth presorted input file

Seventh presorted input file

The user must assign files by using the Control Language //DEFINE statement. For
example, the following statements specify the presorted input files named TUESDAY and
SUNDAY.

(//DEF I D=SRTPl2,FI LE=TUESDAY,ST A=(P ,I),VOL=ABC003,SIZ=128

(//DEF ID=SRTPI 1,FI LE=SUN DAY ,STA=(P,I),VOL =ABC001,SIZ=128

OUTPUT FILES

The user designates an output file by using a Control Language //DEFINE statement with
SRTOUT as the file identifier. An output file may be assigned to any output device
supported by Data ManagE~ment. Output files assigned to unit record devices include a
control character which is supplied by the SO RT program. This control character is the first
byte of each record.

The following Control Language //DEFINE statement specifies an output file named
WEEKLY.

(/DEF I D=SRTOUT ,FI LE=WEEKL Y ,STA=(P,O) ,VOL=ABC008,SIZ=128

INTERMEDIATE FILES

SORT normally assigns two intermediate files, SRTWKA and SRTWKB to on-line shared
devices. The intermediate files, which are scratch files, have block and record sizes which are
dependent upon the input record file size and the SORT action required. The number of
blocks allocated to the intermediate file is approximately 1.5 times the number of blocks in
the input file.

2-5

To improve efficiency of the sort run, the user may force assignment of intermediate files to
nonshared disc packs by using the following Control Language statements, where xxxxxx
and zzzzzz are the volume identifiers of the nonshared packs.

(//DEFINE I D=S RTWKA, FIL =DUMMY, VOL =xxxxxx,DEV=D ISC

(//DEF I NE ID=SRTWKB,F I L=DUMMY ,VOL=zzzzzz,DEV=DISC

SCRATCH FILES

SORT allocates a scratch file with eighteen 256-byte blocks. This file contains interphase
information that is necessary for the sort run.

UST FILES

A LIST file must be assigned in a //DEFINE statement when ACTION=DUMP is specified.
The following Control Language statement specifies a printer output to accommodate the
specified dump option.

(DEFINE ID=LIST,DEV=PRINTER

2-6

3. SORT CONTROL LANGUAGE

INTRODUCTION

The SORT program is called into execution by the //EXECUTE PGM=SORT Control
Language statement. Following the EXECUTE statement is a series of control statements
(//PAR) which define the characteristics of the particular SORT run.

The SO RT run is defined by the following identifier parameters:

Identifier Parameter

ACTION

FIELD

UCO LL

ID

Characteristic

Sort actions

Sort fields

User collating sequence

File attributes

The associated parameters follow the identifier parameter which is necessary for associated
parameters. At least one FIELD statement is always required. The other identifier parameter
should be given once; if more than one parameter appears, the final value overrides the
preceding values.

In most cases (exceptions iin the ID parameters), the SORT program interrogates only the
first character of each parameter. Thus, the example:

r/PA R FIELD= 7, LEN GTH=2, TYPE=BI NA RY ,SEQU ENCE=DESCEND

may be abbreviated as:

(//PAR F=7,L=2,T=B,S=D

In the //PAR statement, the keywords are separated by commas. All the identifier
parameters may appear on a single //PAR card; for example:

(//PAR ACTI ON=T AGSO RT ,FIE LD=6,LEN GTH=5, I D=SRTI NP

3-'1

However, if more than one //PAR card is necessary or desired, a new //PAR card follows
without any ending punctuation on the first card; for example:

(/iF'AR ACTION=TAGSORT

(!/PAR FIELD=6,LENGTH=5

FAR ID=SRTINP ---

In the following text, optional entries are denoted by brackets,[] ; parameters with a choice
of specification are denoted by braces, { } , with the default case being underlined.

SORT ACTIONS

The ACTION identifier parameter statement defines the different sort actions. If
ACTION=FULLSORT and there are no associated parameters (MESSAGE, ERROR, etc.),
the ACTION statement. is not required. The ACTION statement must be included if
associated parameters are desired. The format of the ACTION statement is as follows:

FULLSORT
TAGSORT
ADD ROUT*
RETRIEVE*

ACTION= MERGE
SEQUENCE
ESTIMATE
GENERATE
DUMP

[MESSAGE= { ~it~ILED}]
[ERROR= {g~~p}]
[OVERFLOW= 1~60PIJ
[VERIFY= { ~~S}]
[START=n]
[OUIT=n]
[PRESORT=n]

[
RECADD= ILOGRECIJ

BLKREC

*Limited to random access devices

3-2

FULLSORT
TAGSORT
ADD ROUT*
RETRIEVE*

ACTION= MERGE
SEQUENCE
ESTIMATE
GENERATE
DUMP

The ACTION parameter specifies the sorting process to be performed.

(Optional)

If ACTION=FULLSORT, SORT produces, from an unsorted data file, an output file having
ordered full data records. If the ACTION statement is omitted, FULLSORT is the default
case.

If ACTION=TAGSORT, an output tag file is produced from an unsorted disc file. The tag
records are carried throughout the sort run.

If ACTION=ADDROLJT, SORT performs a tag sort from an unsorted disc file, but drops all
the sort fields from the final output records. Consequently, a file of data file record
addresses is produced.

If ACTION=RETRIEVE, SORT performs a tag sort from an unsorted disc file, and carries
the tag records throughout the intermediate stages of the sort. When the tag records are in
order, SORT retrieves the data file records from the input file and produces the final output
file in the same order as the tag file. The RETRIEVE option is not valid for indexed files.

If ACTION=MERGE, two or more presorted data files are merged into one output file.

If ACTION=SEQUENCE, a sequence check of one or more input files is performed and
records out of sequence are reported.

If ACTION=ESTIMATE, an estimate of the amount of time required to sort the input data
file (SRTI NP) is produced. (Time estimates are automatically supplied for both FULLSORT
and RETRIEVE options.)

If ACTION=GENERATE, a test file described by FIELD statements is generated on file
SRTOUT. The sort process is not begun, as this option is for checkout and demonstration
purposes.

If ACTION=DUMP, a formatted listing of sort fields of each record of SRTINP described by
FIELD statements is produced. This option is for checkout and demonstration purposes. A
LIST file must be specified in a //DEFINE statement for use with the DUMP option.

*Limited to random access devices

3-3

{

BRIEF }
MESSAGE= DETAILED

NONE
(Optional)

The MESSAGE option determines what kind of message format will be used. Appendix C
illustrates the difference between brief and detailed listings. If MESSAGE=BRIEF, messages
are written in brief listing format; this is the default case. If MESSAGE=DETAI LED,
messages are written in detailed listing format. If no messages are desired,
MESSAGE=NONE suppresses all messages.

ERROR=m~} (Optional)

The ERROR option enables continuance of processing if an 1/0 error is detected. If
ERROR=STOP, the sort run is terminated when an 1/0 error is detected; this is the default
case. If a read or write error is detected, the record block in question is dropped if
ERROR=DROP. If ERROR=GO, the error is ignored, and the block is accepted as correct.
(Appendix E explains error procedures.)

OVERFLOW= {~~OP} (Optional)

The OVERFLOW option allows continuance of sorting when intermediate file storage is
insufficient. If there is insufficient intermediate file storage to accommodate all input
records, the sort run is terminated when OVER F LOW=STOP (this is the default case).
Whereas if OVERFLOW=GO, as muny records as possible are sorted. (Appendix E explains
error procedures.)

VERIFY= { ~~S} (Optional)

The VERIFY option specifies write verification for SRTOUT files. VERIFY=YES indicates
write verification. If VER I FY=ND or if omitted, no write verification is performed.

START=n (Optional)

This optional parameter gives the logical record number of the first record to be sorted. The
default value is one. This option is not available for indexed files.

OUIT=n (Optional)

This optional parameter gives the logicc:tl record number of the last record to be sorted. The
default is the last record in the input file. This option is not available for indexed files.

3-4

PRESORT=n (Optional)

This parameter, which can be used only in conjunction with ACTION=MERGE, gives the
number of presorted input fiiles.

RECADD= {LOG REC}.
BLKREC

(Optional)

This optional parameter allows the user to specify the type of record address format to be
used in tag or ADDROUT files. (The formats are described under File Structure in Chapter
2.) The ACTION statemeint must equal TAGSORT or ADDROUT if the RECADD
parameter is used.

If RECADD=LOGREC, Format A containing the logical record number is used. This is the
default case for' input fill es with either relative file organization, or sequential file
organization and fixed length records.

NOTE

R ECADD=LOG REC is invalid for input files with sequential file
organization and variable length records.

If RECADD=BLKREC, Format B containing the logical block number and record number is
used. This is the default case for input files with sequential file organization and variable
length records.

3-5

EXAMPLES

1. In this example a full sort will be performed according to the sort
key fields specified. No messages will be produced.

FR ACTION=FULLSORT,MESSAGE=NONE, ••.

2. In this example a tag sort will be performed according to the sort key
fields specified. Format B containing the logical block number and
record number will be used.

(ttPAR ACTION=TAGSORT,RECADD=BLKREC, ...

3. In this example three presorted files will be merged according to the
sort key fields.

(ttPAR ACTION=MERGE,PRESORT=3, ...

SORT FIELDS

The FIELD identifier parameter statement is used to define sort key fields, but may also be
used to define fields that do not influence the record sequence. At least one sort key field
must be described; a maximum of 15 fields may be described with a combined length of not
more than 256 bytes. Individual key fields must not exceed 255 bytes. Keys are described in
declining order of importance (primary key described first, secondary next, etc.). Sort field
descriptions apply to all input files in a merge or combine operation. The format of the
t= IE LD statement is as follows: ·

FIELD=p
LENGTH=n

EBCDIC
ANSI
DECIMAL
ZONED

TYPE= BINARY
USER
TAGALONG
SELECT
REJECT
FORCE

[SEQUENCE= l~~~~~~o)]
[VALUE=v]

[DISPOSITION= l~~~l J

3-6

FIELD=p

The FIELD parameter gives the leftmost byte position of the sort field relative to the
beginning of the record.

LENGTH=n

The LENGTH parameter gives the number of bytes in the field.

EBCDIC
ANSI
DECIMAL
ZONED

TYPE= BINARY
USER

TAGALONG}
SELECT
REJECT
FORCE

S:EQUENCING
(Optional)

NON-SEQUENCING

The TYPE parameter specifies the type of field that is being used as a sort key. Both
sequencing and non-sequencing options are available.

For the sequencing options, the TYPE= value is one of the following types of sequence
characters.

Value

EBCDIC

ANSI

DECIMAL

ZONED

BINARY

USER

Description

EBCDIC collating sequence; default case

ANSI collating sequence

Packed decimal

Zoned decimal

Binary value; field must begin on an even-byte boundary
and have a length of 2 or 4 bytes.

User collating sequence must be provided

If TYPE=TAGALONG and ACTION=TAGSORT, the field is not included in the
sequencing, but is to be carried in the tag record. (See Example 2 in the following text.)

If TYPE=SELECT, the user defines a field whose contents determine whether the record is
entered into the sort (Example 3). If the field matches the EBCDIC character or characters
specified by the associated VALUE parameter, the record is entered into the sort. If not, the
record is bypassed.

3-7

If TYPE=REJECT, the user specifies records to be bypassed if the defined field matches the
character(s) specified by the VALUE parameter (Example 3). If the values do not match,
the record is entered into the sort.

If TYPE=FORCE, a value must be specified in the VALUE parameter. When
ACTION=TAGSORT, the character string specified in the VALUE parameter is inserted in
the current position of the tag record that is being built (Example 4). The field position has
no real meaning in this case. If the LENGTH parameter is not equal to the number of
characters in the VALUE parameter, truncation or padding occurs on the right. When
ACTION=FULLSORT, the character string given in the VALUE parameter is inserted in the
·field positions defined by the FIELD and LENGTH parameters (Example 5).

I ASCEND)
SEQUENCE= DESCEND (Optional)

This optional parameter specifies whether the sort key field is sorted in ascending or
descending sequence. The default case is ascending sequence.

VALUE=v (Optional)

This optional parameter gives the EBCDIC character string to be used as a record selection
criterion or to be inserted in the record (Example 3). A value is required when
TYPE=SELECT, REJECT, or FORCE.

DISPOSITION= I .KEEP)
DROP

(Optional)

The DISPOSITION parameter, valid only for ACTION=TAGSORT, determines whether a
field is to be retained or not (Example 6). If DISPOSITION=KEEP, SORT keeps this field in
the output file record; this is the default case. If DISPOSITION=DROP, the field is dropped
from the output file record.

EXAMPLES

1. The sort key field for this example is the 9-digit social security number starting in
position 1.

('/PAR FIELD=1,LENGTH=9

1 10
Record f 1 545463661 I s

L _____ Social security number

3-8

2. When the TAGALONG option is selected, the designated field is taken from the input
record and transferred tio the output tag record in the order specified by the //PAR card.

(I/PAR ACTION=T AGSO RT ,FIE LD=6,LENGTH=5,F IE LD= 12,LENGTH=2, TYPE= T AGALONG

1 6 11 12 14
Input _! __ ~_2.._l _ ___,,,,,I _R_A_I =:::l

Output tag record

' " ' ' ,, '
,,,__ __ .~~')6...i-.-~-6_74_2_.___~

t Tag-along field

Sort key field

-- Record address

3. When the SELECT option is used, only the records with matching values in the VALUE
parameter and the selected field are accepted. When the REJECT option is selected, the
record is bypassed if these fields match.

1 16 21
Record rr:----i·-s1-z2-s --.-I -)

Accept Record (//PAn FIELD=16,LENGTH=5,TYPE=SELECT,VALUE=SIZ25

Bypass Record (I /PAR FIELD= 16, LENGTH=5, TYPE= REJECT, VALUE=SI Z25

4. When the FORCE option is selected and ACTION=TAGSORT, the characters given in
the VALUE parameter are inserted into the output record at the current position of the
tag record. The FIELD parameter has no effect; and the LENGTH parameter specifies
how many positions in the forced field.

(1 /PAR ACTION= T AGSO RT ,FI ELD= 10, LE NGTH=4

FIELD=15,LENGTH==4,TYPE=FORCE,VALUE=5678

'14 15

,- - - (from VALUE=5678

9 I 13

Forced field

Sort kc!y field

Record Address

3-9

5. When the FORCE option is selected and ACTION=FULLSORT, the characters given by
the VALUE parameter are inserted into the output record in the positions specified by
FIELD and LENGTH.

(!/PAR ACTION=FULLSORT,FIELD=1,LENGTH=4

//PAR FIELD=8,LENGTH=4,TYPE=FORCE,VALUE=1972

1 5 8 12
Input Record ~ I 0136 MAY I 1969 I

I I
I I
I I

r- - - (From VALUE=1972)

I
12

Forced Field

- Sort Key Field

6. When the DISPOSITION option is selected, a field that is being used for the sort itself
may be dropped from the final output tag record.

(t IP AR ACTI ON=T AG SORT, FIELD= 1, LENGTH=5, FIE L 0=6, LENGTH=3,DISPOSITION=DROP

('IP AR FI ELD=9, LENGTH=4, TYP E=T AGALONG

1 6 9 13
Input Record / I 01563 1 MAR I 1912 I

'
........ " ' ' 1 5--. 10 'a 14

Output Tag Record ~ 01563
L, __________ _

1972

Tag-along

Sort key field

Record address

3-10

USER COLLATING SEQUENCE

If TYPE=USER was specified in the FIELD statement, the user must supply a collating
sequence. The format of the UCOLL statement is as follows:

[UCOLL=(C1 ,C2, ,CM)]

UCO LL=(C1 ,C2, .•.• , CM) (Optional)

The UCOLL statement gives the hexadecimal values (ascending sequence) of characters in a
user collating sequence. Anv code not specified is assigned the highest-order value in the
sequence. A pair of values se1Parated by a dash indicates a range of values.

In the following example, the 10-character sort key field beginning in position 20 will be
sorted according to a user-specified sequence designated by the UCOLL statement.

(t /PAR ACTI ON=M E RGE,P RESO RT=2, FIE LD=10, LENGTH=10

(ttPAR FIELD=20,LENGTH=10,TYPE=USER

('/PAR UCOLL=(OO-CO,FO-F9,C1-EF ,FA-FF)

3-11

FILE ATTRIBUTES

A file attribute statement must be supplied for each input file except a disc file with fixed
length records that is either described in the Central Catalog, or that uses the common
stored data format. The file attribute statement is optional for output files.

The file attribute statement must begin with the identifier parameter, I D=SRTxxx. The
format of the statement is as follows:

ID=

SRTINP
SRTPI 1
SRTPl2

SRTPl7
SRTOUT

LABEL= NONSTANDARD
{

STANDARD }

UNLABELED

REWIND= l~~Sl
NUMBER=n

TYPE= I ~~~l~BLE I
SIZE=n

BLKFAC=n

BLKSIZ=n

cso= l~~s)

3-12

Table 3-1 gives the file attribute requirements for files according to device type.

ID=

Table 3-1. File Attributes Requirements

~ Magnetic Unit
Disc Tape Record r
- ---

ID x x x
I-· --LABEL x

--+--·
REWIND x

1---·

NUMBER x1 x x
~·

TYPE x x
I---------.:.-+-·

SIZE x
BLKFAC x2

J-.

BLKSIZ xJ
--

CSD x

1NUMBER is not required for a file residing on a single disc pack. However, if
NUMBER is provided, it supersedes the highest block written in estimating the
number of records tio provide in the intermediate file allocation.

SRTINP
SRTPl1
SRTPl2

2BLKFAC is not required when TYPE=VARIABLE.

3BLKSIZ is required only when TYPE=VARIABLE.

SRTPl7
SRTOUT

The ID parameter identifies the input file(s) or output file. The file identifiers are defined
as follows:

Identifier Description

SRTINP Unsorted input file

SRTPl1 First presorted input file

SRTPl2 Second presorted input file

SRTPl3 Third presorted input file

SRTPl4 Fourth presorted inP.ut file

SRTPl5 Fifth presorted input file

Identifier

SRTPl6

SRTPl7

SRTOUT

{
STANDARD }

LABEL= · NONSTANDARD
UNLABELED

Description

Sixth presorted input file

Seventh presorted input file

Output file

The LABEL parameter gives the type of labels for a magnetic tape file. If
LABEL=STANDARD, standard tape labels are used; this is the default case. If
LABEL =NONSTANDARD, nonstandard tape labels are used. If LABEL=UNLABELED, no
tape labels are used.

REWIND= { ~~S l
The REWIND parameter specifies whether magnetic tape files are to be rewound or not.
REWIND=YES (the default case) specifies the file will be rewound. However, REWIND=NO
specifies that no initial rewind be performed for the input files nor any rewind after
completion of writing for an output file.

NUMBER=n

The NUMBER parameter gives an estimate of the number of records in a file.

{
FIXED l

TYPE= VARIABLE

The TYPE parameter specifies the type of record to be used. If TYPE=FIXED, fixed length
records are used; this is the default case. If TYPE=VAR IAB LE, variable length records are
used.

SIZE=n

The SIZE parameter gives the record size (in bytes).

BLKFAC=n

The BLKFAC parameter specifies the number of records per block (blocking factor). The
default value is 1.

3-14

BLKSIZ=n

The BLKSIZ parameter specifies the block size (in bytes) of the file (includes the four bytes
for control headers).

CSD= { ~~S}

The CSD parameter specifies the use of the common stored data format*. If CSD=YES (the
default case), data has the common stored data format. If CSD=NO, it designates IBM
format For U tape file.

EXAMPLE

//PAR I D=SRTI NP ,NUMBE R=500,SIZE=25,B LKFAC=25

The SRTINP file contains 500 records of 25 bytes each, blocked 25 records per block.

*Common stored data format is described in the Control Program and Data Management Services, Basic Reference manual.

4. SORT PROGRAM - INTERNAL LOGIC

The following material is prnsented to aid the programmer writing modification routines for
SORT. Modification routines are discussed in Chapter 5. The SORT program consists of a
Control Section and four phases. The Control Section is main-memory resident for the
duration of the sort run; the individual phases - Definition, Internal Sort, Intermediate
Merge, and Final Merge - are called into execution as they are needed. Figure 4-1 ·illustrates
the relationships of the different phases and the Control Section.

CONTROL SECTION

The Control Section for SO RT consists of calls to the four phases, subroutines common to
all phases, and control information such as pointers to file descriptions, to 1/0 buffers, and
to the sort area.

DEFINITION PHASE

The Definition Phase performs the following preliminary functions.

1. Interprets sort parameters designated in the SORT control
statements or in a SORT subroutine call.

2. Allocates available storage to 1/0 buffers, a sort area, and control
information.

3. Chooses thu intermediate file block size and order of merge
depending upon input file characteristics and the amount of available
storage.

4. Generates field-dependent code.

5. Assigns intermediate files.

6. Opens input and intermediate files.

INTERNAL SORT PHASE

The Internal Sort phase performs the initial sort of the input file and distributes ordered
strings of records onto the intermediate files.

4-1

INPUT DATA

CONTROL CARDS
FOR JOB

DEFINITION PHASE

INTERPRET PARAMETERS
ALLOCATE STORAGE
ASSIGN FILES
OPEN INPUT FILES
GENERATE FIELD-DEPENDENT CODE

INTERNAL SORT PHASE

INITIAL SORT (OF INPUT FILE WHICH
MAY BE FROM TAPE, DISC, OR CARDS)
DISTRIBUTE ORDERED STRINGS

INTERMEDIATE MERGE PHASE

\
\

\
\

\
\

\

/
/ /

.,,,,."" /
/ /

V' /

or

MERGE RECORD STRINGS

FINAL MERGE PHASE
1--~~~~~~--1tf

MERGE RECORDS INTO
FINAL OUTPUT FILE

OUTPUT
FILES

PRINT FILE

Figure 4-1. SORT Program Flow

4-2

/
/

/
/

A replacement tournament sort method is used in the SORT program. With this method,
input records are paired against each other with the winner advancing to the next round of
the tournament. (A winner is a record which takes precedence over its opponent in the
sorting sequence.) The tournament winner is written on an intermediate file as the next
record in an ordered string of records. The next input record replaces the winner in the
tournament, and the tournament is repeated. However, it is not necessary to repeat all
comparisons of the records in the tournament. Only those comparisons involving the
winning record need be repeated, thus holding: the number of comparisons to a minimum.
Once the tournament has been initialized, only one comparison in each round of the
tournament need be performed for each input record. An example of the tournament
method can be found in App 1endix B.

At the option of the user, eiither full data records or tag records may be carried throughout
the Internal Sort and Intermediate ·Merge phases. With the use of the ACTION=RETRIEVE
parameter, full records can be retrieved from the input file for a foll record output after a
tag record sort has been performed. Generally, this option is efficient for large sized records.

INTERMEDIATE MERGE PHASE

The Intermediate Merge phase merges strings of records from one section o-f the
intermediate files into longe~r strings on an alternate section of the intermediate files. A
replacement tournament similar to that used in the Internal Sort phase is used. The merge
process continues with the intermediate file sections alternating as input and output files
until conditions are proper for the Final Merge phase.

FINAL MERGE PHASE

The Final Merge phase produces the final output file. The procedure for this phase varies
according to the type of sort specified by the ACTION parameter.

ACTION=TAGSORT, ADD ROUT OR RETRIEVE

If tag records were used in the Intermediate Merge phase, the full records may be retrieved
from the input file in the sorted sequence and written on the final output file
(ACTION=RETRIEVE). The tag records themselves may make up the final output file when
ACTION=TAGSORT. A spec:ial case of the tag file output occurs when ACTION=ADD ROUT;
all the sort key fields are dropped leaving only the ordered input file record addresses on the
output file.

ACTION=FULLSORT

If full records were retained through the Intermediate Merge phase (ACTION=FULLSORT),
strings of records from the intermediate file are merged into one ordered string on the final
output file.

4-3

5. USER MODIFICATION ROUTINES

INTRODUCTION

One, two, or three modification subroutines may be provided by the user. These routines
allow records to be inserted, deleted, or modified at various times during the sort process.
Interfaces for user modification subroutines are provided in the internal sort and final merge
phases. The first user modification location ($STM1) is in the internal sort phase and allows
unsorted input records to be processed before they enter the sort. The second ($STM2) and
third ($STM3) user modification locations are in the final merge phase. $STM2 allows
records from a presorted merge file to be processed prior to merging, and $STM3 allows
sorted records to be processed prior to their being written into the output file.

A cataloged procedure will be provided for the user to link his modification routines with
SORT modules. The modified SORT program is then available for the user to execute at
will.

The linking procedure call for the modification routines is:

//CALL PRO=SORTMOD,NAME=n,MODLIB=m,LODLIB=i,VOL=v,MSC=c

The parameters of this call are defined as:

NAME=n Name to be given to the modified SORT program; that is, the name the
program will be called in an //EXECUTE statement.

MODLIB=m !DENT of the file containing the user modification routines in object
program form. Program name and primary entry point of user mods 1, 2,
and 3 must be $STM 1, $STM2, and $STM3. (Program name and entry point
have the same name.)

LODLI B=i I DENT of a file which is to contain the linked SORT program.

VOL=v Volume ID for MODLIB and LODLIB.

MSC=c Modification security code, if any, for MODLIB

The linked program may then be used exactly as SORT is used except that the name used in
the EXECUTE statement must be the name of the modified SORT program.

Record modification or insertion is invalid for ACTION=ADDROUT or RETRIEVE.

5-1

GENERAL CALLING SEQUENCE FOR SUBROUTINES

The cataloged procedure used in linking the modification routines has the following general
calling sequence for each user subroutine.

LODD L-address, AREG

LO DD S-address, SR E G

BSR UM-entry,@SREG

• The L-address is the address of the argument list, which has the
following general format illustrated in Figure 5-1.

LIST 0006

+2 A-ADDRESS

+4 B·ADDRESS

+6 C-ADDRESS

Figure 5-1. Argument List

• A-address, B-address, and C-address are the addresses of parameter
values A, B, and C respectively. A is the code describing the entry
conditions; B is the data item or field in question; and C is the length
(in bytes) of that item.

• AREG is currently defined as General Purpose Register 6 (R6).

• S-address is the address of a save area which is used for program
linkage. The format of the save area is illustrated in Figure 5-2.

SAVE AREA RETURN ADDRESS

+2 ADDRESS OF PREVIOUS SAVE AREA

+4 RETURN STATUS

Figure 6-2. Save Area

• SREG is currently defined as General Purpose Register 7 (R7).

• UM-entry is the user modification routine entry point.

5-2

$STM1 CALL

The $STM 1 call allows the user to exit from the SORT program to his own routine during
the input phase of the Internal Sort (just prior to entering the record into the sort
tournament). At this point the user may inspect the record and decide whether to accept it,
modify it, delete it, or insert another record. Figure 5-3 lists the different entry conditions
for the $STM 1 call.

A-ENTRY CODE* B·C>AT A ITEM C-ITEM LENGTH ENTRY CONDITION
- ""

0010 - - INITIALIZATION

0012
i:UT-RECORD

RECORD LENGTH INPUT RECORD IN STORAGE

0013 - END OF INPUT

*Codes are in hexadecimal format.

Figure 5-3. $STM1 Call

$STM2CALL

The $STM2 call allows the user to inspect records from the presorted strings of the
Intermediate Merge phase. !Records may be accepted, modified, deleted, or inserted at this
exit point. Figure 5-4 gives the entry conditions for the $STM2 call.

A-ENTRY CODE B-DATA ITEM C·ITEM LENGTH ENTRY CONDITION
1--· -----

0020 NUMBER OF - INITIALIZATION

PRESORTED

INPUT' Fl LES

xx22* PRESORTED LErmTH OF PRESORTED INPUT RECORD

INPUT RECORD RECORD IN STORAGE

xx23* -- - END OF INPUT ON FILE xx*

*xx is the file ordinal. The prescirted input file associated with fite identifier SRTPl1 is file ordinal number 01;
SRTPl2 is 02; etc.

Figure 5-4. $STM2 Call

5-3

$STM3CALL

The $STM3 call allows the user to inspect records in the sorted strings just prior to output.
Records may be aecepted, modified, deleted, or inserted at this exit point. Figure 5-5 gives
the entry conditions for the $STM3 call.

A-ENTRY CODE B-DATA ITEM C-ITEM LENGTH ENTRY CONDITION

0040 - - INITIALIZATION

0042 OUTPUT FILE LENGTH OF RECORD HAS BEEN SELECTED
RECORD FOR OUTPUT

0043 - - OUTPUT RECORDS HAVE ALL
BEEN PROCESSED

Figure 5-5. $STM3 Call

RETURN CONDITIONS

The user modification routine returns the status in byte 5 of the save area (Figure 5-2). In
addition, the 8-address and the C-address (Figure 5-1) may be altered to describe a record to
be inserted in the input stream. Or C itself may be altered to reflect a modification of record
B; if so, C must not exceed the maximum record length allowed for the file. Status values
are described in Figure 5-6.

RETURN STATUS CODE* RETURN CONDITION

00 NORMAL RETURN; ACCEPT INPUT RECORD AS IS, OR OUTPUT
RECORD HAS BEEN PROCESSED WITHOUT CHANGE IN THE
RECORD LENGTH

01 RECORD HAS BEEN MODIFIED WITH A RESULTING CHANGE IN
RECORD LENGTH. EITHER THE VALUE OF C HAS BEEN MODI-
FIEDOR THE C·ADDRESS WAS CHANGED TO POINT TO THE NEW
LENGTH OF THE RECORD. THE NEW LENGTH CANNOT EXCEED
THE MAXIMUM RECORD LENGTH FOR THE FILE.

02 INSERT A RECORD IN THE INPUT STREAM; B-ADDRESS AND C-
ADDRESS ARE MODIFIED TO DESCRIBE THE RECORD TO BE
INSERTED.

04 DELETE THE CURRENT RECORD FROM THE INPUT STREAM OR
FROM THE OUTPUT FILE.

10 TERMINATE THE SORT RUN.

*Codes are in hexadecimal format.

Figure 5-6. Return Conditions

5-4

6. PERFORMANCE CHARACTERISTICS

SORT performance on a given file improves as additional main storage is made available.
Additional mass storage may also improve performance. A partition size larger than the
minimum 8000 bytes allows SORT to handle larger record and block sizes. Table 6-1 gives
estimates of the minimum partition size required to perform a full record sort on various
record sizes and blocking factors.

Table 6-1. Partition Size

Minimum
Record Size Blocking Factor Partition Size

100 6 BK bytes
7 9K bytes

200 2 SK bytes
3 9K bytes

400 2 10K bytes
3 12K bytes

500 1 10K bytes
2 12K bytes

1000 1 14K bytes
2 16K bytes

The estimates do not include, memory requirements for the following:

• a large numbor of sort key fields (8 or more)

• user collating sequence

• user modification routines

• indexed file input or output

6-1

A. COLLATING SEQUENCES

STANDARD COLLATING SEQUENCE (EBCDIC:)

Code Character Meaning_ Code Character Meaning

00 NUL Null 1C CU1 Customer Use 1

01 SOH Start of Heading 1D IFS Interchange File

02 STX Start of Text 10 IFS Interchange File Separator

03 ETX End of Text 1E IRS Interchange Record Separator

04 PF Punch Off 1F IUS Interchange Unit Separator

05 HT Horizontal Tab 20 DS Digit Select

06 LC Lower Case 21 sos Start of Significance

07 DEL Delete 22 FS Field Separator

OA SMM Start of Manual Message 24 BYP Bypass

OB VT Vertical Tab 25 LF Line Feed

oc FF Form Feied 26 ETB End of Transmission Block

OD CR Carriage Return 27 ESC Escape

OE so Shift Out 2A SM Set Mode

OF SI Shift In 2B CU2 Customer Use 2

10 DLE Data Link Escape 2D ENO Enquiry

12 DC1 Device Control 1 2E ACK Acknowledge

13 DC2 Device Control 2 2F BEL Bell

14 TM Tape Mark 32 SYN Synchronous Idle

15 RES Restore 34 PN Punch On

16 NL New Line 35 RS Reader Stop

17 BS Backspace 36 UC Upper Case

18 IL Idle 37 EQT End of Transmission

19 CAN Cancel 3B CU3 Customer Use 3

1A EM End of Medium 3C DC4 Device Control 4

18 cc Cursor Control 3D NAK Negative Acknowledge

3F SUB Substitute

A-'I

Code Character Code Character Code Character

40 Space 84 d C7 G

4A ct SS e ca H

48 . (period) 86 f C9

4C < 87 9 DO }

40 88 h 01 J

4E + 89 02 K

4F 03 L

50 & 91 j 04 M

SA I 92 k OS N

S8 $ 93 06 0

SC * 94 m 07 p

SD 9S n 08 Q

SE 96 0 09 R

SF -, 97 p

98 q E2 s
60 99

E3 T
r

61 I E4 u

68 , (comma) ES v
A2 s

6C % E6 w
A3 t

60 _ (underscore) E7 x
A4 u

6E > EB y
AS v

6F ? E9 z
A6 w

7A FO 0
A7 x

78 # F1 1
AS y

7C @ F2 2
A9 z

70 F3 3
C1 A

72 = F4 4
C2 8

7F ,, FS s
C3 c

81 a C4
F6 6

D
82 b cs E

F7 7

83 c C6 F
F8 8

F9 9

A-2

ANSI COLLATING SEQUENCE

Code Character Meanin~ Code Character Meaning

00 NUL Null 11 DC1 Device Control 1

01 SOH Start of Heading 12 DC2 Device Control 2

02 STX Start of Text 13 DC3 Device Control 3

03 ETX End of Text 14 DC4 Device Control 4

04 EQT End of Transmission 15 NAK Negative Acknowledge

05 ENO Enquiry 16 SYN Synchronous Idle

06 ACK Acknow~edge 17 ETB End of Transmission Block

07 BEL Bell 18 CAN Cancel

08 BS Backspac::e 19 EM End of Medium

09 HT Horizontal Tabulation 1A SUB Substitute

OA LF Line Feed 1B ESC Escape

OB VT Vertical Tabulation 1C FS File Separator

oc FF Form Feied 1D GS Group Separator

OD CR Carriage Return 1E RS Record Separator

OE so Shift Out 1F us Unit Separator

OF SI Shift In

10 DLE Data Link Escape

A-3

Code Character Code Character Code Character

20 SP (Space
3F ? 5F (Underline)

21
40 @ 60 ' (Grave Accent)

22 " (Ouotativn
A 61 41 a

Marks)
42 8 62 b

23 # 63 43 c c
24 $ 64 d 44 D
25 % 65 e 45 E
26 &

F 66 f 46
27 ' (Apostrophe)

47 G 67 g
28

48 H .68 h
29

49 69
2A * 4A J 6A j
28 + 48 K 68 k
2C , (Comma)

4C L 6C
20 - (Hyphen) 40 M 60 m
2E . (Period) 4E N 6E n
2F I 4F 0 6F 0

30 0 50 p 70 p
31 1 51 a 71 q

32 2 52 R 72 r
33 3 53 s 73 s
34 4 54 T 74 t

35 5 55 u 75 u
36 6 56 v 76 v
37 7 57 w 77 w
38 8 58 x 78 x
39 9

59 y 79 y
3A 5A z 7A z
38 58 [78 { {
3C < 5C \ 7C I (Vertical line)
30 = 70 } 50
3E > 5E " (Circumflex) 7E ,-.J (Overline)

7F DEL (Delete)

A-4

B. EXAMPLE OF T'OURNAMENT METHOD

Assume an input file of 10 records, and a sort area which can hold 4 records at a time. In
this example each record iis represented by a number indicating its rank in the sorting
sequence. The records are:

9, 3, 5, ·10, 4, 1, 2, 6, 8, ·1

To initialize the tournament, the first four records are read into the sort area, all
comparisons are made, and the winner (record 3) is written on an intermediate file.

INTERNAL SORT PHASE

Round 1 Round 2 Winner Intermediate File

9

-3] 3

3 3

5

10] 5

The next input record, 4, replaces record 3 in the tournament. Each input record is
compared with the previous winner to see if it precedes or follows the winner in sequence.
Since record 4 follows record 3 in the sort sequence it is eligible to complete in the current
tournament.

Round 1 Round 2 Winner Intermediate File --

4 3,4

5
~1--___ 5 __ __,

B-1

Only comparisons involving the winning record, record 3, were repeated. Record 4 is the
winner and follows record 3 on the intermediate file.

Record 1 replaces the record 4 in the tournament. Since record 1 precedes record 4 in the
sort sequence, it is marked ineligible for the current tournament, and its opponent (record
9) wins the round by default. In the example record 1 is marked with an X to denote
ineligibility, and record 1 remains ineligible until all entries in the tournament are ineligible,
at which time a new tournament begins producing a new string.

Round 1 Round 2 Winner Intermediate File

9

~
9

5 3,4,5

5

~ 5

The next input record, 2, is marked ineligible, and record 10 wins by default.

Round 1 Round 2 Winner Intermediate File

9

=~
9

9 3,4,5,9

X2

-~ 10

The tournament continues with another ineligible record, 6, entering the tournament. Since
both record 6 and record 1 are ineligible, record 10 wins the tournament by default.

In actual practice, the comparison between record 6 and record 1 is performed at this time,
and the winner advances to round 2 where it is marked ineligible. This technique eliminates
the need to reinitialize the entire tournament when all records are ineligible.

B-2

Round 1 Round 2 Winner Intermediate File

X6
Xl

10 3,4,5,9, 10

X2 -tl ___ 10 __ __,

Record 8 replaces record 10 in the tournament. Now .all records are ineligible. The first
string of records terminates and another string begins.

Round 1 Round 2 Winner

X6
-1 ___)<_!_
~-

X1

X2 -;J ____ x_2 __ _

The last input record, 7, rep~aces record 1.

Round 1 Round 2 Winner

X6

-~
X6

X2

X2
X2

Intermediate File

String 1

3,4,5,9, 10

String 2

1

Intermediate File

String 1 String 2 .._....___ --
3,4,5,9, 10 1,2

Since there are no more input records, the entry for record 2 is marked with a Z to mark it
empty. Record 8 wins the rncord by default.

B-3

Round 1 Round 2 Winner Intermediate File

X6

--~
X6

String 1 String 2

X6
~
3, 4, 5, 9, 10 1, 2, 6

z

~~ XB

The tournament continues until all records have been processed.

z
X7

X7 String 1 String 2
,..-"-..

X7 3, 4, 5, 9, 10 1, 2, 6, 7

z
XB

XB

x

~
x

String 1 String 2
~~

XB 3,4,5,9,10 1,2,6,7,8

z

~
xa

Note that each of the two strings on the intermediate file has more records than the sort
area holds at one time. Since there are only two strings, SO RT may now enter the final
merge phase.

B-4

FINAL MERGE PHASE

A two-way merge is used. The tournament is merely a comparison of records from each of
two strings.

String 1
~
3, 4, 5, 9, 10

String :2
___....,._--..
1, 2, 6, 7, 8

The tournament is initialized with a record from each string.

3

1]1----1_ 1

The winning record, 1, is written on the final output file. Record 2 replaces record 1 in the
tournament.

3

2] 2 1, 2

Record 2 is replaced by record 6 and the tournament continues:

3

6]-·_3_ 1, 2, 3

Record 4 replaces record 3, aind so forth.

4

tl 4 1, 2, 3, 4

5 -:J...___5_ 1, 2, 3, 4, 5

6 1, 2, 3, 4, 5, 6

B-5

9

~ 7 1, 2, 3, 4, 5, 6, 7

9

~ 8 1, 2, 3, 4, 5, 6, 7, 8

9

~~ 9 1, 2, 3, 4, 5, 6, 7, 8, 9

10

~ 10 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

B-6

C. SAMPLE OUTPUT

DETAILED LISTING

A sample detailed output listing follows:

BEGIN SORT RUN 10/28/7:2 10:55:20

FILE ID ---
SRTINP
SRTOUT
SRTWKA
SRTWKB

RECORD
SIZE ---
rno
1100
1100
rno

BLOCK
SIZE

208
208
208
208

BEGIN INTERNAL SORT 10:55:35

RECORDS IN = 9500
RECORDS OUT = 9500
STRINGS OUT = 182

BEGIN INTERMEDIATE MERGE

PASS 1

RECORDS IN
RECORDS OUT
STRINGS OUT

PASS2

10:58:02

= 9500
= 9500
= 37

RECORDS IN = 9500
RECORDS OUT = 9500
STRINGS OUT = 8

PASS3

RECORDS IN
RECORDS OUT
STRINGS OUT

= 9500
= 9500
= 2

C-1

NUMBER
OF RECORDS

9500
9500
5700
5700

BEGIN FINAL MERGE 11 :03:00

RECORDS IN = 9500
RECORDS OUT = 9500

END SORT RUN 10/28/72 11 :05:05

BRIEF LISTING

BEGIN SORT RUN 10/29/72 13:00:25

RECORDS IN = 15231
RECORDS OUT = 11029

END SORT RUN 10/29/72 13:13:01

C-2

D. SAMPLE SORT JOB

This example sorts a file named ROSEBUD having 9500 records of 100 bytes each blocked
2 records to a block and produces an output file named BLOOM. The sort key fields are:

1. Bytes 4-8, EBCDIC, ascending sequence

2. Bytes 9-10, !binary, ascending sequence

3. Bytes 1-3, EBCDIC, descending sequence.

Control statements are:

//JOB----
//EXEC
//PAR
//PAR
//PAR
//DEF
II
//DEF
II

PGM=SORT,TIME=30
ACTION=FULLSORT
FIELD=4,LENGTH=5,FIElD=9,LENGTH=2,TYPE=BINARY
Fl ELD=~ ,LENGTH=3,SEQUENCE=DESCEND
I D=S RT IN P, FI L =ROSEBUD ,ST A= (P, I),
DEV=DISC,VOL=MSC194,SIZ=100,BLK=2
ID=SRTOUT,FIL=BLOOM,STA=(P,0),
DEV=D ISC, VO L=MSC201,S I Z= 100,B LK=2,N UM=9500

An abbreviated form of the same parameter set is:

//PAR A=F ,F=4,L=5,F=9,L=2,T=B,F=1,L=3,S~D

D-1

E. ERROR RECOVERY AND DIAGNOSTICS

This appendix gives the error recovery procedures and the diagnostic messages for the SORT
program.

OPERATING ERRORS

Three types of errors rnav occur after the working environment is established by the
definition phase and actual sorting has begun; these are:

1. File limit exceeded

2. lrrecoverabl 1e 1/0 error

3. Sequence check error

FILE LIMIT EXCEEDED

If the number of records to be sorted is significantly greater than estimated, the
intermediate file allocation will be inadequate. Whenever the intermediate file allocation is
exceeded, the SORT program acts according to the OVERFLOW option of the ACTION
statement. If STOP is selected, the sort run terminates immediately. However, if GO is
selected, the sort process continues on the partial input file. The user may sort the
remainder of the input file later and merge the output files from the partial sorts into one
sorted file.

IRRECOVERABLE 1/0 ERROFI

The SORT program reacts to 1/0 errors according to the ERROR option given by the user
in the ACTION statement. STOP causes the sort run to terminate immediately; DROP
causes SORT to drop the rec::ord block in question and proceed to the next block. GO causes
SORT to accept the record block as valid and resume normal processing.

SEQUENCE CHECK ERROR

When ACTION=SEOUENCE is specified, SORT sequence checks a file without any sorting
being performed. The sort fields of each input record are compared with the corresponding
fields of the preceding record. If a record is out of order, the record number is noted on the
user's standard output listin!~, and the sequence check continues.

E-1

INPUT PARAMETER ERRORS

The definition phase of the SORT program analyzes input parameters for validity and
consistency. Any discrepancies are noted by diagnostic messages. After all parameter input
has been analyzed, the sort run is terminated if any error was detected.

DIAGNOSTIC MESSAGES

SORT writes a message on the system output file for each error it detects in the control
statements and for each operating error. If a control statement parameter error is detected,
the sort run terminates after all control statements have been analyzed for errors. If an
operating error, the message type determines the viability of the sort run.

All messages have the following standard form.

STaabbbc dd---d
aa SO RT phase identifier

OF Definition
IS Internal sort
IM Intermediate merge
FM Final merge
SQ Sequence check
SC SORT conclusion

bbb Message code
c Message type

0 Information
2 Warning
4 Error, processing continues
8 Error, run terminates

dd---d Message text

E-2

Message Description
~f--==·======-============:======================r======================================~

STDF1018 statement id STATEMENT INVALID

STDF1048 statement id STATEMENT, parameter
name PARAMETER, keyword KEYWORD
INVALID

STDF1068 statement id STATEMENT, parameter
name PARAMETER, keyword VALUE INVALID

STDF1078 TOO MANY FIELD STATEMENTS

STDF1088 FIELD STATEMENT, TOTAL KEY
LENGTH EXCEEDS 256

STDF1098 FIELD STATEMENT, number
POSITION INVALID

STDF1108 FIELD STATEMENT, number
POSITION, LENGTH INVALllD

STDF1118 TOTAL VALUE LENGTH LIMIT
EXCEEDED

STDF1128 NO SORT KEY FIELD DEFINED

STDF1138 TOO MANY INPUT FILES

STDF1148 USER COLLATING SEQUENCE
REQUIRED

STDF1158 UCOLL STATEMIENT INVALID

STDF1168 UCOLL STATEMENT, number
VALUE INVALID

STDF1178 UCOLL STATEMENT, TOO MANY
ENTRIES

STDF1258 INPUT FILE RECORD LENGTH
UNDEFINED

E-3

Statement identifier is not a val id identifier
{ACTION, FIELD, UCOLL, ID)

Keyword in the identified parameter and
statement is invalid

non-numeric keyword encountered when
should have been numeric

More than 15 sort fields specified for input file

Only 256 bytes may be specified for the sort
key fields

Leftmost byte position of sort key field exceeds
record size; all or part of key field would be
positioned beyond the end of specified record
size.

No length parameter given for specified field,
or length exceeds record size.

More than 256 value characters present in sort
field definitions.

At least one sort key field must be defined with
TYPE=EBCDIC, ASCII, USER, DECIMAL, or
BINARY.

Maximum of eight input files allowed.

Sort field defined with TYPE=USER, but no·
UCOLL statement specified.

UCO LL statement not in the form
UCOLL=(x1 ,x2,x3, ... ,xn)

Number value not in range of 00 to FF

More than 256 values present in UCOLL
statement

Record length is not defined for input file.

Message Description
======================================*====================================

STDF1268 file id BLOCKSIZE <BLOCKING
FACTOR* RECORD SIZE

STDF1218 ID STATEMENT, ID PARAMETER,
file id KEYWORD INVALID

STDF1228 SORT RUN TERMINATED DUE TO
ERROR IN SORT FIELD DESCRIPTION TABLE

STDF1238 SORT RUN TERMINATED DUE TO
INADEQUATE RUN ENVIRONMENT

STDF1248 file id FILE-LABRTN ERROR code

STDF1318 ALLOCATION ERROR code ON
SRTOUT

STDF1998 SORT RUN TERMINATED DUE
TO ERRORS IN PARAMETER INPUT

STDF1988 SORT RUN TERMINATED DUE
TO ERROR IN FILE CONTROL TABLES

STIS201c INPUT ERROR ON FILE file id,
STI MJ01 c ST ATUS=code

STIMJ02c OUTPUT ERRo'R ON FILE
STFM402c file id, ST ATUS=code

STIS203c INSUFFICIENT Fl LE STORAGE,
number RECORDS IN SORT

E-4

File block size is not compatible with record
size and blocking factor defined for the file.

File identifier is not one of the following
SRTINP, SRTPl1, SRTPl2, SRTPl3, SRTPl4,
SRTPl5, SRTPl6, SRTPl7, or SRTOUT

Indicates internal operating error.

There is insufficient storage available is the
partition to al locate tables, buffers, and
record areas for the sort run.

The LAB RTN service request is used to get
1/0 file characteristic. An error code of 6 is
returned for nondisc files; this is accepted by
SO RT. Any other error code implies that the
file is not available or that an 1/0 error
occurred while searching for the file definition
data.

An error code other than 6 or 8 was returned
from an attempt to allocate SRTOUT.

One or more parameter errors were detected.

Indicates internal operating error.

Irrecoverable error detected while reading the
file; SORT drops record if c=2, accepts it if
c=4, or terminates run if c=8 according to the
ERROR option specified in the ACTION
statement.

Irrecoverable error detected while writing the
file; SORT drops record if c=2, ignores error
if c=4, or terminates run if c=8 according to
the ERROR option specified in the ACTION
statement.

Message gives the number of input records that
can be sorted in the intermediately available
file storage; SORT sorts these records if c=4
or terminates sort run if c=8 according to the
OVERFLOW option of the ACTION statement.

I

Message Description
~-

STIS2988 SORT RUN TERMINATED DUE TO The user modification routine in the internal
USER MOD 1 REPLY sort phase returned a run termination code.

STIS2998 SORT RUN TERMINATED DUE TO Estimate of input records was inadequate.
INTERMEDIATE FILE OVERFLOW

STFM4968 SORT RUN TERMINATED - NO Either the input file was empty or a user
INPUT RECORDS modification routine deleted all input

records.

STFM4978 SORT RUN TERMINATED DUE TO The user modification routine for input in
USER MOD 2 REPLY the merge phase returned a run termination

code.

STFM4988 SORT RUN TERMINATED DUE TO The user modification routine for output in
USER MOD 3 REPLY the final merge phase returned a run

termination code.

STFM4998 SORT RUN TERMINATED DUE TO The number of records in the output file
OUTPUT FILE EXCEEDING ALLOCATED exceeded the estimate.
AREA

STSQ8012 OUT OF SEQUENCE RECORD, A sequence error was detected in the
LOGICAL RECORD NUMBER=record number sequence check procedure.

STSC9998 SORT RUN TERM~NATED DUE TO An 1/0 error occurred in one of the sort
IRRECOVERABLE 1/0 ERROR or me~ge phases.

E-5

GLOSSARY

ADDROUT Sort option giving the disc addresses of the records rather than the
records themselves.

Forced Field Record field that is added to the tag record.

Full Record Sort A sorting technique in which the entire data record is transferred in all
phases of sorting and merging operations.

Merge Process by which several strings of logical records are collated to form
one striing.

Sort Process by which logical records are sequenced according to a given
value.

Sort Key

String

Tag Record

Tag Sort

Tag~Along Field

Field in a record which is used as a basis for determining the sequence
of reco1rds in the output file.

A group of sequenced records stored on mass storage.

A subs1et of a logical record; combination of sort keys, data record
addressies, optional tag-along fields, and optional forced fields.

A sorting technique in which only the tag record is sorted after the
initial neading of the input file.

Record field that is not included in sequencing but is included in the tag
record.

Glossary-1

INDEX

ACTION identifier parameter 3-1,2 Fl E LO identifier parameter 3-1,6,7
ACTION parameter 4-3;5-1 Fields
ACTION statement 2-1,2,3 Forced 2-1,2
Address files 2-1 Sort 2-1,2
ADDROUT file 2-1;3-5 Tag-along 2-1,2
ADDROUT option 3-2,3,5;4-3; File assignment 2-4

5-1 ;Glossary-1 File attributes 3-1, 12
ANSI collating sequence 4-3 File identifiers 2-5
ANSI option 3-6,7 SRTINP 2-5;3-12, 13
Argument list 5-2 SRTPl1 2-5;3-12, 13

SRTPl2 2-5;3-12, 13
Bl NARY option 3-6,7 SRTPl3 2-5;3-12, 13
BLKFAC parameter 3-12, 13, 14 SRTPl4 2-5;3-12,13
BLKREC option 2-3,4;3-2,4 SRTP15 2-5;3-12, 13
BLKSIZ parameter 3-12, 13, 15 SRTPl6 2-5;3-12,13
Block size 2-1 SRTPl7 2-5;3-12, 13
Brief listing C-2 SRTOUT 2-5;3-3, 12, 13
BRIEF option 3-2,4 File limit exceeded E-1

File organizations 1-1 ;2-1
Collating sequence A-1 File structure 2-1

ANSI A-3 Files 2-1
EBCDIC A-1 Address 2-1
Standard A-1 ADD ROUT 2-1,3

Control character 2-5 Data 2-1
Control language for SO RT 1-1 Input 2-4
Control section 4-1 Intermediate 2-4,5
CSD parameter 3-12, 13, 15 List 2-4,6

Output 2-4,5
Data files 2-1 Scratch 2-4,6
DECIMAL option 3-6,7 Tag 2-1,2
Definition phase 4-1 Final merge phase 4-1,3
Detailed listing C-1 Fixed length record 2-1 ;3-14
DETAILED option 3-2,4 FIXED option 3-12, 14
Diagnostics E-1,2,3,4,5 FORCE option 1-1;3-6,7
DISPOSITION parameter 3-6,8 Forced field 2-1,2;G lossary-1
DUMP option 3-2,3 Format A for ADDROUT 2-3

files
EBCDIC collating sequence A-1 Format A for tag files 2-2
EBCDIC option 3-6,7 Format B for ADD ROUT 2-4
ERROR parameter 3-2,4 files
Error recovery E-1 Format B for tag files 2-3
ESTIMATE option 3-2,3 Full record sort Glossary-1
//EXECUTE statement 3-1 FU LLSORT option 3-2,3;4-3

Functions of Disc Sort 1-1

lndex-1

GENERATE option 3-2,3 UNLABELED 3-12; 14

USER 3-6,7, 11
ID identifier parameter 3-1, 12, 13 VARIABLE 3-12, 14
Input files 2-4 ZONED 3-6,7
Input parameter error E-2
Input to SORT 1-2 Output files 2-4,5
Intermediate files 2-4,5 OVERFLOW parameter 3-2,4
Intermediate merge phase 4-1,3
Internal sort phase 4-1 Parameters
Irrecoverable 1/0 error E-1 ACTION 4-3;5-1

BLKFAC 3-12, 13, 14
LABEL parameter 3-12, 13, 14 BLKSIZ 3-12, 13, 15
LENGTH parameter 3-6,7 CSD 3-12, 13, 15
List files 2-4,6 DISPOSITION 3-6,8
LOG REC option 2-2,3;3-2,4 ERROR 3-2,4

FIELD 3-1,6,7
Merge Glossary-1 ID 3-1, 12, 13
MERGE option 3-2,3 LABEL 3-12, 13, 14
MESSAGE parameter 3-2,4 LENGTH 3-6,7

MESSAGE 3-2,4
Non-sequencing type 3-7 NUMBER 3-12, 13, 14
Nonstandard tape labels 3-14 OVERFLOW 3-2,4
NONSTANDARD option 3-12, 14 PRESORT 3-2,4
NUMBER parameter 3-12, 13, 14 QUIT 3-2,4

REWIND 3-12, 13, 14
Operating errors C-1 SEQUENCE 3-6,8
Options SIZE 3-12,13,14

BINARY 3-6,7 START 3-2,4
BL KR EC 2-3,4;3-2,4 TYPE 3-6, 7 I 12, 13 r 14
BRIEF 3-2,4 UCO LL 3-1, 11
DECIMAL 3-6,7 VALUE 3-6,8
DETAILED 3-2,4 VERIFY 3-2,4
DUMP 3-2,3 Partition size 6-1
EBCDIC 3-6,7 Performance characteristics 6-1
ESTIMATE 3-2,3 PRESORT parameter 3-2,4
FIXED 3-12, 14
FORCE 1-1 ;3-6,7 QUIT parameter 3-2,4
FULLSORT 3-2,3;4-3
GENERATE 3-2,3 RECADD parameter 2-2,3,4;3-2,4
LOG REC 2-2,3;3-2,4 Record address 2-1,2
MERGE 3-2,3 Record size 2-1
NONSTANDARD 3-12, 14 REJECT option 3-6,7
RECADD 2-2,3,4;3-2,4 Relationship to system 1-1
REJECT 3-6,7 RETRIEV~. option 1-1 ;3-2,3;
RETRIEVE 1-1 ;3-2,3; 4-3;5-1

4-3;5-1 Return conditions 5-4
SELECT 3-6,7 REWIND parameter 3-12,13,14
SEQUENCE 3-2,3
STANDARD 3-12, 14
TAGALONG 3-6,7 Sample output C-1
TAGSORT 2-1;3-2,3,5;4-3 Save area 5-2

lndex-2

Scratch files 2-4,6 $STM1 Call 5-1,3
SELECT option 3-6,7 $STM2 call 5-1,3
Sequence check error 5-1 $STM3 call 5-1,4
SEQUENCE option 3-2,3 String Glossary-1
SEQUENCE parameter 3-6,8 Subroutine calling sequence 5-2
Sequencing type 3-7 System requirements 1-1
SIZE parameter 3-12, 13, 14 Tag files 2-1 ;3-5
SORT 1-1 Tag record 2-1,2;
Sort Glossary-1 Glossary-1
Sort action 3-1,2 Tag.sort Glossary-1
Sort field 2-1,2;3-1,6 Tag-along field 2-1,2;
SORT job D-1 Glossary-1
Sort key Glossary-1 TAGALONG option 3-6,7
SO RT language 3-1 TAGSORT option 2-1 ;3-2,3,5;
SORT program 4-1 4-3
SO RT program flow 4-2 Tournament method B-1
SRTINP 2-5;3-3, 12, 13 TYPE parameter 3-6 I 7 I 12 I 13 I 14
SRTOUT 2-5;3-3, 12, 13
SRTPl1 2-5;3-12, 13 UCO LL identifier parameter 3-1, 11
SRTPl2 2-5;3-12, 13 UNLABELED option 3-12,14
SRTPl3 2-5;3-12, 13 Unlabeled tapes 3-14
SRTPl4 2-5;3-12, 13 User collating sequence 3-1, 11
SRTP15 2-5;3-12, 13 User modification routine 1-1 ;4-1 ;5-1
SRTPl6 2-5;3-12, 13 USER option 3-6,7,11
SRTPl7 2-5;3-12, 13
SRTWKA 2-5 VALUE parameter 3-6,8
SRTWKB 2-5 Variable length record 2-1 ;3-14
Standard collating sequence A-1 VARIABLE option 3-12,14
STANDARD option 3-12, 14 VERIFY parameter 3-2,4
Standard tape labels 3-14
START parameter 3-2,4 ZONED option 3-6,7

lndex-3

COMMENTS FORM

.. 1 M.R·X-/•O•S--D.is•c•S•o•r•t•R•e•fe•r•e•n•ce .. M•a•n•u•al•(•2•2•0•0•.0•0•9•)

Please send us your comments, to help us produce better publications. Use the space below to
qualify your responses to the following questions, if you wish, or to comment on other aspects of
the publication. Please use SIPecific page and paragraph/line references where appropriate. All
comments become the property of the Memorex Corporation.

Yes No

• Is the material:

Easy to understand? a 0

Conveniently organized? D D

Complete? I S I Ill I a D

Well illustrated? I I I 0 I D D

Accurate? .. I I I I D a
Suitable for its intended audience?. a a

Adequately indexod? ., •• 0 • . . . D D

• For what purpose did you use this publication? (reference, general interest, etc.)

• Please state your department's function: -------·-----------

• Please check specific criiticism(s), give page number(s), and explain below:

a Clarification on page(s) ------------------------

0 Addition on page{s) -------·---------

0 Deletion on page(:s) -------·

D Error on page(s) ---------------------------

Business Reply Mail

No Postage Necessary if Mailed in the United States

Postage Will Be Paid By

Memorex Corporation

Midwest Operations - Publications
8941 Tenth Avenue North
Minneapolis, Minnesota 55427

Thank you for your information

Our goal is to provide better, more useful manuals, and your
comments will help us to do so .

. Memorex Publications

First Class

Permit No. 14831
Minneapolis,
Minnesota 55427

	0001
	0002
	001
	002
	003
	004
	005
	006
	1-01
	1-02
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	4-01
	4-02
	4-03
	4-04
	5-01
	5-02
	5-03
	5-04
	6-01
	6-02
	A-1
	A-2
	A-3
	A-4
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	C-1
	C-2
	D-1
	D-2
	E-1
	E-2
	E-3
	E-4
	E-5
	E-6
	Glossary-1
	Glossary-2
	Index-1
	Index-2
	Index-3
	Index-4
	replyA
	replyB

