Publications Bulletin

2200.005-0001
4/2/73

Release 2 Update Package for:

~ MRX/OS Program Library Services
Reference Manual
2200.005

This bulletin advises of changes that have occurred to the Program Library Services
Reference Manual since the March 1973 edition was issued. New and replacement
pages are provided where required. ‘

Pages Action
v and vi Replace
2-7 thru 2-44 Replace
3-1 thru 3-4 Replace
3-19 thru 3-28 Replace
4-3 thru 4-6 Replace
A-3 and A4 Replace
A-7 and A-8 Replace
Appendix B Replace
Index Replace

Technical changes to text, tables, and figures are marked with a vertical bar in the
outer margin.

Pages containing non-technical changes (page layout, spelling corrections) are indicated
by a bar opposite the page number. '

Please file this bulletin with the publication to retain a record of changes.

Sequence Number: M105

XskalOsIA

wa)sAg 19indwo)

s}onpoid

TABLE OF CONTENTS

Section

1

INTRODUCTION

Coding
Compilation
Linkage Editing
Library Processing
Loading

LIBRARIAN

Introduction
Library Description
Library Structure
Data Structure
Library Utility Program (LIBUTIL)
Control Language Requirements
Data Separator Statement
Programming Considerations
Keyword-Operand Descriptions
Function Keyword (COMMAND or COM)
Input Library (ILIB)
Output Library (OLIB)
Member Name (MEM)
Member Type (MTYPE)
Member Selection (SELECT)
Listing (LIST)
Listing Title (TITLE)
Initial Page Number (INITPG)
Page Size (PGSIZE)
Line Spacing (SPACE)
Version Number (VERSION)
Sequence Field Definition (SEQPOS)
Sequence Renumbering (NEWSEQ)
Sequence Checking (SEQCHK)
Dump Qutput Format (MODE)
Update Mode (UMODE)
Primary Input File (IFIL)
Output Data File (OFIL)
Patch Library (ULIB)
Work Library (WLIB)
Command Descriptions
Print Table of Contents (PTOC)
Sample PTOC Listing

Page

1-1

[G G G
[1 ' 1 1
NN == -

2-1

2-1

2-1
2-2
2-4
2-4
2-4
2-5
2-6
2-6
2-6
2-6
2-7
2-8

29

29

2-10
2-10
2-10
2-10
2-10
2-11
2-11
2-1
2-12
2-12
2-12
212
2-13
2-13
2-13
2-16

TABLE OF CONTENTS (Continued)

Section

2 (Cont) Copy Library Member (COPY)
Delete Library Member (DELETE)
Compress Library (PACK)
Assign New Member Name (RENAME)
Punch Encoded Member (DUMP)
l.oad Dumped Member (LOAD]
Modify Load Member (PATCH)
Patching Relocatable Load Modules
PATCH Examples
Print Symbolic Member (PRINT)
Punch Symbolic Member (PUNCH)
Create or Modify Symbolic Member (UPDATE)
Pointer Directives
Pointer by Relative Record Number
Copy Directive

3 LINKAGE EDITOR

Functional Description
Module Linkage and Editing
Additional Input Sources
Storage Reservation
Overlay Program Creation
Special Processing and Error Diagrosis
Load Module Attribute Assignmerit
Input Structure
Basic Input
Secondary Input
Library Search Domain
Entry Point Search Domain
Object Modules
Language Processor Relationships
Assembler
coBOL
FORTRAN
RPG |1
Output
Absolute Load Modules
Relocatable Load Modules
Load Module Creation
Control Language Statement Descriptions
File Definition
List File
input File

vi

Page

2-19
2-21
2-23
2-26
2-29
2-32
2-34
2-35
2-36
2-38
2-39
2-41
2-43
2-43
2-47

3-1

3-1
3-2

3-2
3-2

3-3
3-3
3-4
34
3-5

36
3-6
3-6
3-7
3-7

3-8
3-8
3-9
39
39
39

The ident operand must be the same as that specified by the ID keyword of the //DEFINE
statement for that library. SYSIN and SYSOUT are illegal operands. |f omitted, the
standard default, OUTPUT, is assumed.

The type operand is optional and can be one of the following:

ALL — Specifies that any type of member can be included on the library.
Block size must be 256 bytes. This is the default.

ENC — Specifies that only object modules or load modules are on the
library. Block size must be 256 bytes.

SYM — Specifies that only source, macro, or procedure members are on the
library. Minimum block size is 84 bytes; maximum is 512 bytes. Block size
greater than 128 bytes makes procedure members inaccessible to Control
Language Services.

OLIB applies to the COPY, DELETE, LOAD, PACK, RENAME, and UPDATE commands.

MEMBER NAME (MEM)

The MEM keyword is used to specify member names and types, and protection of an
already existing member of the same name and type, for all LIBUTIL functions that involve
named members. In addition, MEM can be used in conjunction with the SELECT keyword
to include or exclude a given set of members when an entire library is being processed. MEM
is specified once for each member; the number of MEM keywords allowed for each
command is summarized in Table 2-1.

The MEM keyword includes from one to five operands, as follows:
MEM=([input member name] [,type] [,output member name] [,type] [,P])

Input member name is a 1- to 8-character alphanumeric field that specifies the member
identification as listed in the library catalog. This operand is required when the MEM
keyword is used with the COPY, DELETE, DUMP, PACK, PATCH, PRINT, PUNCH, and
RENAME commands. It is optional for the UPDATE commands. When it is omitted with
the UPDATE command, a new member is created from the data in the accompanying
directive file.

Qutput member name is a 1- to 8-character alphanumeric field that specifies the new name
under which the member is to be listed in the library catalog. It is required for the
RENAME and UPDATE commands and is optional for COPY and PACK. For RENAME,
the catalog entry of the input member name will be marked deleted and replaced by the
output member name, unless protection is specified. For COPY, PACK, and UPDATE, any
member on the output file having the same name as the specified output member name has
its catalog entry deleted, provided it is of the same type, unless protection is specified. For
COPY and PACK, omission of the output member name implies that the input member
name is used as the output member name.

2-7

Member type may be specified with input and output member names when they are used.
The valid types are as follows:

SRC Source member
PRO Control Language procedure member
MAC Unassembled macro member

OBJ Object member
REL Relocatable load member

ABS Absolute load member

When this operand is omitted, the MTYPE keyword operand must be supplied. However,
the value specified for member type with the MEM keyword overrides the value specified by
MTYPE.

Example:

In this example, MTYPE identifies ALT1, ALT2, and ALT3 as source type (SRC). The final
line is not overridden by MTYPE, since macro type (MAC) is specified for both ALT4 and
ALT41.

//PAR MTYPE=SRC,COMMAND=COPY,
//PAR MEM=ALT1,MEM=ALT2,MEM=ALTS3,
//PAR MEM=(ALT4,MACALT41,MAC,P)

Protection of an existing member on a library can be specified by including the character P
as the last operand for MEM. When P is included, the presence on the output library of a
member with a name and type identical to that specified by the output member name
operand results in program abort. When P is omitted, the new member will be added
unconditionally, and any identically named merber of the same type will be marked as
deleted.

Examples of MEM keyword-operand configurations are shown below:

MEM=MYNAME
MEM=(OLDNAME,SRC)
MEM=(OLDNAME, NEWNAME)
MEM=(, NAMEONE ,MAC,P)
MEM=(OLD,PRO,NEW,PRO)
MEM=(ALTER,OBJ,,,P)

MEMBER TYPE (MTYPE)

This keyword-operand specifies a default for th: member type wherever it has not been
specified in the MEM parameter. The MTYPE keyword applies to all commands except
PTOC and LOAD. MTYPE must be supplied if rnember type is omitted after any explicit
member name specification, and applies to all member names for which a member type is

2-8

not specified. However, where member type is given with the member name operand, the
MTYPE operand has no effect.

The operands for the MTYPE keyword are the same as those specified for the member type
operands of the MEM keyword.

MEMBER SELECTION (SELECT)

The SELECT keyword specifies that either an inclusive or an exclusive operation is
requested. There are two operands for this keyword: | (inclusive) which specifies that only
the members named are to be included, and E (exclusive) which means only the named
members are excluded. When this keyword is not coded, the default depends upon the use
of the MEM keyword-operand. If the MEM keyword has been specified, the default is |
(inclusive). However, if the MEM parameter has not been specified, the default is E
(exclusive); that is, no members are excluded. This keyword applies only to COPY and
PACK commands.

LISTING (LIST)

The LIST keyword-operand specifies whether a listing of messages, updated elements, and
other information is to be performed as a result of LIBUTIL processing. There are two
operands for this keyword, YES and NO. The default is YES.

YES specifies that a complete listing is to be produced. NO specifies that a partial listing will
be produced including the title line and a summary of parameters received, with a function
complete message and/or coded error messages. A Control Language //DEFINE statement
must be included in the step, containing ID=LIST as its file identifier and DEV=PRT for
device specification regardless of how LIST is coded.

This keyword is applicable to all LIBUTIL functions. LIST=NO is illegal for PTOC and
PRINT commands.

LISTING TITLE (TITLE) ‘

The TITLE keyword-operand specifies a title line, given as a literal string constant, which is
to appear on each page of the output listing preceding all detail lines. The literal string must
be enclosed in apostrophes, and must be contained on one card not to exceed 50 characters.
When this parameter is not coded, a line containing the system date and time and the
LIBUTIL function appears as a header. When the parameter is coded, the system page
header is not printed. This keyword applies to all of the LIBUTIL commands.

Example:

TITLE='PROCEDURES STORED ON LIBRARY 17’

2-9

INITIAL PAGE NUMBER (INITPG)

This keyword-operand specifies a decimal value as the initial page number of the output
listing designated with the LIST keyword. The INITPG operand is a 1- to 3-digit value in the
range of 1 to 999. If INITPG is not specified, 1 is the default. INITPG can be designated for
any command except PTOC.

PAGE SIZE (PGSIZE)

The PGSIZE keyword defines the maximum number of lines to be printed per page on the
output listing. All header, title, and blank lines are included in the count. The PGSIZE
operand applies to all of the LIBUTIL commands.

This operand is a 1- to 2-digit decimal value in the range 1 to 99. When this parameter is not
specified, a default value of 60 is assumed.

LINE SPACING (SPACE)

The SPACE keyword specifies the line spacing for the output listing specified ID=LIST. The
operand can be 1, 2, or 3, meaning single, double, or triple spaced detail lines. Single spacing
is provided when SPACE is not specified. This keyword applies to all LIBUTIL commands
except PTOC.

VERSION NUMBER (VERSION)

This keyword specifies the numeric value that is to be stored in the library catalog entry as
the version identifier for the output member. The version identifier is used only for
convenience in identifying modules from a listing and does not modify the file identifier.

The operand of the VERSION keyword is a four character numeric field. This keyword
applies only to the RENAME and UPDATE commands. When this keyword is not coded,
the default value used is a 0000 character field for initial creation of the member. For all
other uses of UPDATE and for the RENAME cormmand, the default is the value already in
the version identifier of the library catalog member entry. The version number for members
involved in the COPY, PACK, and PATCH commands reverts to zero.

SEQUENCE FIELD DEFINiTION (SEQPOS)

The SEQPOS keyword-operand defines the starting position and length of the sequence field
in the card records of the library member being processed. This keyword includes two
operands, both of which must be specified wheriever SEQPOS is used. The format is as

follows:

SEQPOS=(n,m)

2-10

Operand n is a two-digit decimal value that specifies the starting position of the sequence
field in the card record. Operand m is a one-digit value from 1 to 8 specifying the length of
the sequence field. The starting position (operand n) plus the length of the sequence field
(operand m) minus 1 must not be coded such that the sequence field extends beyond the
record limit.

This keyword applies to the PUNCH and UPDATE command only. If not specified, the
default is SEQPOS=(73,8). The SEQPOS operand is ignored unless NEWSEQ or SEQCHK is
coded.

SEQUENCE RENUMBERING (NEWSEQ)

The NEWSEQ keyword-operand specifies a sequence field renumbering operation as part of
LIBUTIL processing. Renumbering generates sequential numbers in the positions defined as
the sequence field by the SEQPOS parameter. The format is as follows:

YES
NEWSEQ=1 (n,m)
NO

The operand YES specifies that renumbering will occur with the values 100 for the initial
number in the sequence and 100 as the increment for each succeeding record. In the format
(n,m), operand n specifies an initial value of the sequence counter in the range 1 to 9999,
while operand m supplies the increment for each succeeding record in the range 1 to 9999.
Operand NO specifies no renumbering is to occur, and is the default. NEWSEQ applies only
to the UPDATE and PUNCH commands.

SEQUENCE CHECKING (SEQCHK)

The SEQCHK keyword-operand specifies a sequence check which verifies the ascending
order of the output sequence field. The operands are YES and NO. When YES is coded, the
sequence check will be performed. Any discrepancies will be flagged on the output listing.
This check results in program abort if a sequencing violation is found.

When NO is coded, the sequence check will be omitted. The default is NO. This keyword
applies only to the UPDATE command.

DUMP OUTPUT FORMAT (MODE)

This keyword applies to the DUMP command only. It specifies the format in which a load
or object member of a library is to be dumped to punched cards. There are two operands for
this keyword: R and M. MODE=R specifies that the object member is to be dumped in
reloadable format, which ailows the member to be reloaded with the LIBUTIL LOAD
command. MODE=M specifies that the object member is to be dumped in machine loadable
format. M is valid only for absolute load modules. {It allows users to punch out stand alone
programs which can be reset loaded.) Members dumped in this mode cannot be reloaded
with the LOAD command. The default is reloadable format.

2-11

UPDATE MODE (UMODE)

The UMODE keyword specifies the update method to be used, and has two operands, SEQ
and REL. UMODE=SEQ designates that the sequence numbers on the symbolic statements
are used in the UPDATE. UMODE=REL spacifies that the relative record numbers
associated with the file as shown on the previous UPDATE or PRINT listing are used. The
default is REL. UMODE applies only to the UPDATE command and is explained in detail in
conjunction with that command.

PRIMARY INPUT FILE (IFIL)

The IFIL keyword-operand designates the primary input data file to be used in LIBUTIL
processing by the LOAD, PATCH, or UPDATE commands only. It does not apply to the
other LIBUTIL commands. The operand is a 1- to 8-character alphanumeric value and must
be specified as the 1D of a //DEFINE statement within the step.

For the LOAD function, the named file contains the dumped members to be reloaded. In
the PATCH function, the file contains the object patches and directives for the named
member. With UPDATE, the file contains the source changes and/or directives to the named
member. When IFIL is not specified, the default SEQIN is used; the //DEFINE statement
must still be included.

OUTPUT DATA FILE (OFIL)

This keyword specifies the output data file to be used for the DUMP and PUNCH
commands only. The operand is a 1- to 8-character alphanumeric value that must match the
operand of the ID keyword of a /DEFINE Control Language statement in the step.

The named file will receive the encoded member being dumped, or the card images of the
symbolic member being punched. When OFIL is not specified, the default SEQOUT is used.

In this event, ID=SEQOUT must be specified on the //DEFINE statement.

PATCH LIBRARY (ULIB)

This keyword-operand specifies the library containing the member to be modified by the
PATCH function. This keyword does not apply to any other LIBUTIL functions. The
operand is a 1- to 8-character alphariumeric value, and must be specified as the operand of
the ID keyword on a //DEFINE Control Language statement within the step. When this
keyword is omitted, the default UPDATE is used. A //DEFINE statement must be included
for the update library, whether or not the default is used.

2-12

WORK LIBRARY (WLIB)

The WLIB keyword specifies the primary library work file used by the LIBUTIL PACK
function only. This keyword does not apply to any of the other LIBUTIL commands. The
operand is a 1- to 8-character alphanumeric value and must be designated as the I1D operand
of a //DEFINE statement within the step. When WLIB is not specified for the PACK
command, the default WORK will be used. The //DEFINE statement for this file must still
be included in the step whether or not the default is used.

COMMAND DESCRIPTIONS

All LIBUTIL commands perform general Librarian Utility functions for the programmer.
They may, however, optionally be directed to handle more detailed operations by specifying
particular keywords in the request for the function. For example, deletion-flagging can be
caused directly or indirectly by the DELETE, UPDATE, LOAD, COPY, and RENAME
commands. The following paragraphs discuss each LIBUTIL command, its functions and
capabilities, the applicable keywords, and examples of use. Commands have been grouped
more or less by the library types to which they apply. The first group, consisting of PTOC,
COPY, DELETE, PACK, and RENAME, apply to all types of libraries; the second group,
consisting of DUMP, LOAD, and PATCH, apply to the encoded type of library; and the
third group, consisting of PRINT, PUNCH, and UPDATE, apply to symbolic type libraries.
I_ibrarian error codes are listed in Appendix B.

Table 2-1 lists all of the keywords used to specify the various LIBUTIL operands and the
functions to which they apply. Use of a keyword with a command to which it does not
apply results in the Librarian issuing a warning code and continuing. No error action is
taken. Once the warning code is issued, the keyword is ignored.

The keywords that apply to all of the LIBUTIL functions are: COMMAND, LIST, PGSIZE,
and TITLE.

PRINT TABLE OF CONTENTS (PTOC)

The PTOC function displays the contents of the named library directory on a print file list.
The list shows names and characteristics of each member in the library. Members will be
displayed in chronological order of creation date and time. Deleted members of the file will
always be included in a PTOC listing and will be marked deleted. A LIST file must be
specified for this function, either by LIST=YES or by default. The listing will be single
spaced.

The content of the //PAR statement used for the PTOC function is:

COMMAND=PTOC
[,1LIB=library identifier]
[,LIST=YES]
[,PGSIZE=lines per page]
[, TITLE="literal string’]

Table 2-1. Summary Table of LIBUTIL Keywords by Command*

Keyword @ Default Entries by Command
o . |2 |B
COMMAND 4| (218 |8 z g |8 |2 |8
or COM None @ 8 g 8 9 ;E 2:. E E 2 HI:J %
IFIL SEQIN (0] 0 (o}
ILIB INPUT (o] (0] (¢] (0] (o] (o]
INITPG 1 (o) (o) [9) (o) 0 o) o) 0
LIST YES (¢] (o) o (6] Q (o] (0] @ o] @ (o] (0] (8]
MEM None 0® R@ R@ ()® R@ R@ R@ R© R@
MODE R
MTYPE None o (o jo o |o o] o |o |o
NEWSEQ NO (6] (o]
OFIL SEQOUT O- (o]
oLiB OUTPUT (o) (o] (0] 0 (o)
PGSIZE 60 (¢] (0] (0] o] Q o} o] 0] (0] [0} 0]
SELECT I/E @ (0] 0
SEQCHK NO (o]
SEQPOS (73,8) 0o (0]
SPACE 1 (Single space) | O (¢] (o] (0] (0] o (0] (0] (o] (o]
TITLE System date, (o] (0] (o] (o] (0] (o} (0] (6] Q o (0]
time, com-
mand, and
page number
uLiB UPDATE o}
UMODE REL (0]
VERSION 0000 (o] (o]
WLIB WORK 0
Key: R Required Keyword
o Optional Keyword
blank Keyword does not apply to the command

*Circled numbers in the table refer to the following notes.

NOTES

® e

Keywords and COMMAND or COM operands must be spelled as they appear in this table.
LIST=YES required, either specified or accepted as default.

Optional keyword. When coded, input-member name must always be included. Output-member name may be
omitted. If member type is omitted, MTYPE must be coded. Protection is always optional. Up to ten
occurrences of MEM are allowed.

Required keyword. Input-member-name must be coded. Member type may be coded; if omitted, MTYPE
must be coded. Output-member-name and type do not apply. Protection is always optional. Up to ten
occurrences of MEM are allowed except for PATCH, which allows only one.

2-14

NOTES (Continued)

@ Required keyword. Input- and output-member-names must be coded. Member types may be coded; if
omitted, MTYPE must be coded. Protection always optional. Up to ten occurrences of MEM are allowed.

Required keyword. Input-member-name and type omitted if module is being created. OQutput-member-
name must be coded. Qutput-member type may be coded; if omitted MTYPE must be coded. Protection
is always optional. Multiple occurrences of MEM are not allowed.

Q e

Default is | {inclusive) includes members named when MEM is coded; E {exclusive) excludes members
named (none) when MEM is not coded.

®

Default to 0000 (zeros) applies only when member is first created. Default for all other cases of UPDATE
and for RENAME is to the value already in the version identifier field of the library directory member
entry.

The default values listed in Table 2-2 should be used whenever possible for the PTOC
function.

Table 2-2. Default Values for LIBUTIL PTOC Function

Keyword Default

ILIB INPUT

LIST YES (LIST=NO is illegal for this function)
PGSIZE 60

TITLE System header line

The following are examples of //PAR statements that request the LIBUTIL PTOC function:
Example 1:

In this example the table of contents of the library specified by ID=INPUT on the //DEF
statement in the step will be printed.

//PAR COMMAND=PTOC
Example 2:

In this example the table of contents of the library specified by ID=0OWNLIB will be
printed 50 lines per page.

//PAR COMMAND=PTOC,PGSIZE=50,ILIB=OWNLIB

2-15

The following examples show the Control Language statements for a job step which uses the
PTOC function:

Example 3:

In this example the table of contents of the library ORDENT7 will be listed.

//JOB
/IEX

//PAR
//DEF
//DEF
//EQJ

Example 4:

NAME=SAMPLE

PGM=LIBUTIL

COMMAND=PTOC
ID=INPUT,FIL=ORDENT7,STA=(P,I)
ID=LIST,DEV=PRINTER

In this example the table of contents of the library ORDENT71 will be displayed. The
listing will have the title ORDER ENTRY LIBRARY 7 printed at the top of each page.
The ID listed as OUTPUT might be specified when the PTOC is an additional function
in the same step that has just created a library using another LIBUTIL function.

//J0B
//EX

//PAR
//PAR
//DEF
//DEF
//EOJ

NAME=SAMPLE

PGM=LIBUTIL
COMMAND=PTOC,ID=0OUTPUT,
TITLE='ORDER ENTRY LIBRARY 7’
ID=LIST,DEV=PRINTER
ID=0OUTPUT,FIL=ORDENT71,STA=(P,1)

Sample PTOC Listing

The listing produced by the PTOC function begins with a system header line, with a title
embedded in it if one is specified, followed by a line showing the library name and type. A
sample appears below.

PTOC FUNCTION: DATE=73027 TIME=205423. (up to 50 character title) PAGE:001
FILE LABEL: $OSRSDNTLIB /ALL

DATE is the Julian date (year and day) used by the operating
system.

TIME is the system time in the format hhmmss for hours, minutes,
and seconds.

FILE LABEL is the name of the library specified as the FIL operand
on the //DEF card specifying the input library for the function.

Library type (ALL in the sample) follows the slash.

2-16

Then follows a string of equal signs, followed by a line of column headers as shown below.

MEMBER NAME TYPE VERSION YR/DAY HH MM SS USER DATA SUB-DIV TOP OF SUB-DIV

° MEMBER NAME is the cataloged name of the member.

) TYPE is one of the six valid types described with the MEM keyword
operand.

° VERSION is the version number specified by the user or supplied by

the Librarian as specified for the VERSION keyword-operand.

° YR/DAY and HH MM SS are the creation date and time when the
member was entered on the library.

° USER DATA consists of the user extension words (bytes 32-41) of
the member definition block for load modules (Appendix A).

° SUB-DIV: refers to the data subdivisions of load and object modules
specified in the member definition block (Appendix A). The
numbers of the subdivisions correspond to the order in which their
block numbers appear in the member definition block.

SUB-DIV 1 Bytes 20-23
SUB-DIV 2 Bytes 24-27
SUB-DIV 3 Bytes 28-31
SUB-DIV 4 Bytes 32-35 of the member definition

block for object modules only

(] TOP OF SUB-DIV specifies the beginning library block number of
the subdivision in decimal notation. Where the block number is zero,
no subdivision is present. Although the length of the last subdivision
of the last member on the PTOC listing is not shown, the
programmer can obtain the approximate number of available blocks
remaining on the library by subtracting the last subdivision block
number from the total blocks allocated to the library.

Figure 2-2 is an example of a PTOC listing showing absolute load members and object

rmembers. The letter D preceding a member name indicates that the catalog entry for the
member has been marked deleted.

2-17

8l-¢

PTOC FUNCTION: DATE=73027 TIME=205423.

FILE LABEL: $OSRSDNTLIB JALL
MEMBER NAME TYPE VERSION YR/DAY HHMMSS
$OSYSTAB ABS 00000 73/027 16:33:55
$OSYSYB1 ABS 00000 73/027 16:34:00
$OSYSTB2 ABS 00000 73/027 16:34:04
$I0DRV ABS 00000 73/027 16:34:13
$TPCDRVD ABS 00000 73/027 16:34:17
$TPCDRVC ABS 00000 73/027 16:34:20
$TPCDRVS ABS 00000 73/027 16:24:24
$DMCV09 OBJ 00000 73/002 10:13:27
$ERDCIC OBJ 00000 73/002 10:17:06

D $ERRP53 0BJ 00000 73/002 10:17:06
SERRES OBJ 00000 73/002 10:17:06

USER DATA
0290 OF00 0000

007C OF00 0290

0150 OF00 030C

070C 0000 045C

006A 0C00 0C32

00B4 0C00 0C32

Figure 2-2. Sample PTOC Listing

0000

0290

030C

045C

0C32

0000

0000

0000

SUB-DIV
01
02
03
01
02
03
01
02
03
01
0z
03
01
02
03
01
02
03
01
02
03
01
02
03
04
01
02
03
04
01
02
03
04
01
02
03
04

PAGE: 001

TOP OF SUB-DIV
00000000
00000004
00000000

00000008

00000027

00000961
00000966

00000968
00000970
00000972
00000000
00000974
00000976
00000978

00001024
00001026
00001028
00001030

COPY LIBRARY MEMBER (COPY)

The COPY function places the active (non-deleted) members of one library on another
library. Individual members of the library being copied may be specifically included with or
excluded from the COPY function. The receiving library may be either a library already in
use, or a newly allocated library, but the block size of both the input and output libraries
must be identical. Whenever members of a library are being copied to a library already in
use, they are placed on that library following all members of the receiving library. If a
member on the receiving library bears the same name and type as that of a copied member,
and protection has not been specified, the pre-existing member is marked for deletion,
leaving the copied member as current. Deleted members of the library being copied are
never included in the COPY function.

A library may be created with the COPY function as a backup for the original library.
Members being copied may be renamed by specifying a different output member name for
that member when it is copied. In such a case, the candidate for deletion on the receiving
library is the member bearing the same name and type as specified by the output member
name, subject to the protection specification.

The content of the //PAR statement for the COPY function is:

COMMAND=COPY

[,ILIB=input library identifier]

[,OLIB=output library identifier]

[,LMEM=(input member name[,type] [,output member name] [,type] [,P])]
[MTYPE=member type]

[SELECT= {L}j

_[YES
[,LIST= {NO]

[,INITPG=initial page number]
[,PGSIZE=lines per page]

1

[,SPACE= {2 }]
3

[, TITLE='literal string’]

The COMMAND=COPY keyword-operand is required. All other keywords are optional, with
default provided except for MEM and MTYPE.

The default values listed in Table 2-3 should be used whenever possible for the COPY
function.

The MEM keyword is used to specify the names of input members to be either included or
excluded in the copy function, as specified with the SELECT keyword or its default. When
the output member name is specified, it will be used in place of the input member name for
that copied member only, on the receiving library. |f a member on the output library has
the same name and type as a member being copied (as specified by the output member
name or, in its absence, the input member name), the existing member will be marked for
deletion unless the protection key, P, is specified. If this situation occurs and protection is
specified, the program abarts.

2-19

Table 2-3. Default Values for LIBUTIL COPY Function

Keyword Default

ILIB INPUT

OLIB ouThrUT

SELECT | when MEM is coded; otherwise E
LIST YES

INITPG 1

PGSIZE 60

SPACE 1 (single space)

TITLE System header line

Multiple MEM keywords, one for each specified member, may be used. When type is
omitted from the MEM operand for any named member, the MTYPE keyword-operand
must be specified. Since MTYPE can be specifiec only once, all members whose types are
omitted from the MEM operand must be the same. To reduce coding and overhead, MTYPE
should be used in place of type whenever a number of members are being specified with the
same member type. LIST specifies whether or nct the names of copied members are to be
listed, as they are copied. ID=LIST must appear on a //DEF statement in any library utility
run, since the Librarian always attempts to print the function requests and its responses.

The following are examples of //PAR statements that request the LIBUTIL COPY function.
Example 1:

In this example all non-deleted members of the library specified with ID=INPUT on a
//DEF statement in the step will be copied to the library specified with ID=OUTPUT.

//PAR COMMAND=COPY
Example 2:
In the next example members of the library specified by ID=INPUT, except deleted
members and the source members specified to be excluded, are copied to the library
specified by ID=QUTPUT.
//PAR COMMAND=COPY MEM=RA1,MEM=FA2,
//PAR MEM=RA18 MEM=RX2,MEM=RQ3,
//PAR SELECT=EMTYPE=SRC

The following examples illustrate the Control Language statements of a step which uses the
COPY functions. '

2-20

Example 3:

In this.example all non-deleted members of library LIB620 will be copied to library LIB621.
No list of copied members will be produced, although the Librarian will record parameters
received.

//J0B NAME=SAMPLE

//EX PGM=LIBUTIL

//PAR COMMAND=COPY,LIST=NO

//DEF ID=INPUT,FIL=LIB620,STA=(P,I)
//DEF ID=OUTPUT,FIL=LIB621,STA=(P,0)
//DEF ID=LIST ,DEV=PRT

//EOJ

Example 4:

In the final example members of library PAYLIB3 will be copied to library PERS27, except
source members PAY6 and PAY 32 which are excluded. A listing showing names of each
copied member will be made.

//JOB NAME=SAMPLE

//EX PGM=LIBUTIL

//PAR COMMAND=COPY,MEM=(PAYG,SRC},
//PAR MEM=(PAY32,SRC)SELECT=E

//DEF ID=LIST,DEV=PRINTER

//DEF ID=INPUT,FIL=PAYLIB3,STA=(P,I)
//DEF ID=CUTPUT,FIL=PERS27,STA=(P,0)
//EOQJ

DELETE LIBRARY MEMBER (DELETE)

The DELETE function flags the library directory entries of named members as deleted.
Members marked as deleted are ignored in all LIBUTIL functions except that names of
deleted members will appear on the listing displayed by the PTOC function.

The areas of the library and its directories occupied by deleted members remain unavailable,
unless a PACK function is performed to remove the deleted members and compress the
library or a COPY is executed to build a new library that excludes the deleted members.

The content of the //PAR statement used for the DELETE function is:

COMMAND=DELETE
,MEM=(member name[,typel)
[,OLIB=library identifier]

[MTYPE=member type]

[LIST= '\N'ES}J

[,INITPG=initial page number]
{continued next page)

2-21

[,PGSIZE=lines per page]
1
L ,SPACE={2}]

3
[,TITLE=literal string’]

The default values listed in Table 2-4 should be used whenever possible for the DELETE
function.

Table 2-4. Default Values for LIBUTIL DELETE Function

Keyword Default

OLIB OUTPUT

LIST YES (does not include the deleted members
in tha listing)

INITPG 1

PGSIZE 60

SPACE 1

TITLE System header line

The MEM keyword is required and uses only two operand fields for the DELETE function.
The operands are the name of the member to be marked as deleted, and its type. MTYPE is
used only when the type is omitted from MEM, and is then required.

The following are examples of //PAR statements that request the LIBUTIL DELETE
function.

Example 1:

In this example, the source member ADMIN7 wi!l be marked deleted from the library
specified with ID=OUTPUT on the //DEF staterrent.

//PAR COMMAND=DELETE,
//PAR MEM=(ADMIN7,SRC)

Example 2:

In this example object members COR16, COR23, COR39, and COR57 will be marked
deleted from the library specified by ID=MYFILE in the step.

//PAR COMMAND=DELETE MTYPE=0BJ,

//PAR MEM=COR16,MEM=COR23,MEM=COR39,
//PAR MEM=COR57,0LIB=MYFILE

2-22

The following examples show Control Language statements for a job step using the
DELETE function.

Example 3:

In this example, two cataloged procedures, ADD and SUBT, are marked deleted in library
A120. Names of members will be listed as they are deleted. The ID might be specified as
PART1 instead of OUTPUT for convenience in a multi-function step.

//JOB NAME=SAMPLE

//IEX PGM=LIBUTIL

//PAR COMMAND=DELETE,OLIB=PART1,
//PAR MEM=ADD,MEM=SUBT ,MTYPE=PRO
//DEF ID=PART1,FIL=A120,STA=(P,0)
//DEF ID=LIST,DEV=PRINTER

//EQJ

Example 4:

In this example, source members CHECK4 and CHECK 12 will be marked deleted in library
CHECKING. There is no listing of members as they are deleted, though the Librarian will
list a summary of parameters received.

//JOB NAME=SAMPLE

//EX PGM=LIBUTIL

//DEF ID=LIST,DEV=PRT

//DEF ID=OUTPUT FIL=CHECKING,STA=(P,0)
//PAR COMMAND=DELETE,LIST=NO,

/[PAR MEM=(CHECK4,SRC),MEM=(CHECK12,SRC)
//EOJ

COMPRESS LIBRARY (PACK)

The PACK function compresses a library, removing areas previously assigned to members
that have been marked for deletion as a result of other LIBUTIL functions. When a member
is to be removed from a library, its entry in the library catalog is marked deleted, making
the space it occupies inaccessible.

PACK copies all non-deleted members from the specified library to a named intermediate
file but does not copy deleted members. The program then reinitializes the library specified
by OLIB and copies those members back to the output file, including or excluding
(according to the SELECT keyword or its default) members named with MEM keywords.
Thus the space formerly occupied by deleted members becomes available for use, and is
located at the end of the library. Members copied back under the SELECT=| option assume
a sequence on the output library corresponding to the order of their appearance on //PAR
cards. The intermediate file used in the PACK may be specified as a permanent file and may
be retained as backup. This backup may be critical in case of an 1/O error or system crash
occurring while the PACK function is in progress, since the input/output file, having been
reinitialized at the beginning of the copy back portion of the step, may not be left in a

2-23

usable state by such an event. The intermediate file specified by WLIB is initialized during
the PACK function; therefore, an existing library with usable information in it should not
be used for WLIB.

The content of the //PAR statement used for the PACK function is:

COMMAND=PACK

[,OLIB=input/output library identifier]

[WLIB=intermediate work library]

[MEM=(input member name[type] [,output member name] [,type] [,P])]

[LMTYPE=member type]

[SELECT= {:5]]
_JYES

[.LisT={¥ES))

[,INITPG=initial page number]

[,PGSIZE=lines per page]

1

[,SPACE= {2}]
3

[, TITLE=literal string’]

The default values listed in Table 2-5 should be used whenever possible for the PACK
function.

Table 2-5. Default Values for LIEUTIL PACK Function

Keyword Default

oLIB OUTPUT

wLiB WOFK

SELECT | whan MEM is coded; otherwise E

LIST YES (list the names of compressed members on
the L.IST output file in addition to the usual
listing)

INITPG 1

PGSIZE 60

SPACE 1 (single space)

TITLE System header line

2-24

The MEM keyword is used to specify the names of members to be included in or excluded
from the output file of the PACK function. It may also be used to rename members on the
output library. If the new name and its type match the name and type of a member already
copied from the intermediate file during the same PACK operation, the earlier member is
marked for deletion. However, if protection was specified, the Librarian aborts the run.
Member names on the intermediate library are the input library names. Multiple MEM
keywords may be used.

MTYPE is used to specify member type for all member names for which type is omitted.
MTYPE should be used in place of type on MEM whenever there are a number of members

of one type being specified. Only one MTYPE keyword-operand may be used.

LIST=YES calls for listing the names of copied members as the Librarian copies them onto
the intermediate file, and listing the names of the members retained on the compressed
output library (copied back from the intermediate library). This listing indicates the
progress of the run and the state of the two libraries, should the run be interrupted by an
1/0 failure or other circumstance.

The following examples show the Control Language statements of a job step which uses the
PACK function.

Example 1:

In this example all non-deleted members of library BILLM6 are copied to library BILM61,
and back to BILMG6. Deleted entries in the library catalog are removed. Since LIST=NO
is specified, names of members copied to BILM61 and back to BILMG6 are not listed. This
coding is not advised for PACK, for the reasons stated in the preceding paragraph.

//JOB NAME=SAMPLE

/[EX PGM=LIBUTIL

//IPAR COMMAND=PACK,LIST=NO

//DEF ID=OUTPUT,FIL=BILM6,STA=(P,0)
//DEF ID=WORK,FIL=BILM61,STA(P,0)
//DEF ID=LIST,DEV=PRT

//EOJ

Example 2:

In this example all non-deleted members of library INV60 are copied to library INV70.
The named members only, and their directory entries, are copied from INV70 back to
library INV60. - The original and final sequence of non-deleted members on INV60 can
be seen by a sample Librarian listing for this run. Note the members copied out to
INV70 but not copied back to INV60 due to the SELECT default (inclusive). Note also
that where an output member name is specified (BALT in the example), that name is
shown on the listing as the member copied back.

//lJOB NAME=EXAMPLE

//EX PGM=LIBUTIL

//PAR COMMAND=PACK

//PAR MEM=B1,MEM=B2,MEM=(B3,,BALT),

2-25

//PAR MEM=B4, MEM=B7, MEM=BS,

//PAR MEM=B9,MEM=B12,MTYPE=SRC
//DEF 1D=LIST ,DEV=PRINTER

//DEF ID=0OUTPUT,FIL=INV60,STA=(P,0)
//DEF ID=WORK,FIL=INV70,STA=(P,0)
//EOQJ

Sample Pack Listing

B3 SRC SAViD ON WLIB
B9 ABS SAVEED ON WLIB
B13 SRC SAVED ONWLIB
SRC1 SRC SAVED ON WLIB
B1 SRC SAVEED ON WLIB
B9 SRC SAVED ON WLIB
B4 SRC SAVED ON WLIB
B8 SRC SAVED ON WLIB
B7 SRC SAViED ON WLIB
B8 SRC SAVED ON WLIB
B8 oBJ SAVEZD ON WLIB
B12 SRC SAVizD ON WLIB
B1 SRC PACKED INTO OLIB
B2 SRC PACKED INTO OLIB
BALT SRC PACKED INTO OLIB
B4 . SRC PACKED INTO OLIB
B7 SRC PACKED INTO OLIB
B8 SRC PACKED INTO OLIB
B9 SRC PACKED INTO OLIB
B12 SRC PACKED INTO OLIB

ASSIGN NEW MEMBER NAME (RENAME)

The RENAME function assigns a new name to a member of a specified library. The catalog
entry of the old member name is marked deletecl and a new catalog entry created for the
new name. The data for the member in the library remains unchanged and available for use.
The space in the catalog occupied by the old member name is unavailable until a PACK or
COPY function is performed, replacing the contents of the library directory. Until that
time, the old name is still shown in PTOC lists, preceded by the letter D, along with the new
one.

The content of the //PAR statement used for the RENAME function is:

COMMAND=RENAME

,MEM=(old member name, [type] ,new member name, [type] [,P])
[,OLIB=library identifier]

[LMTYPE=member type]

[,VERSION=version number]

[,LIST= '?\l(gs ,]

(continued next page)

2-26

[,INITPG=initial page number]
[,PGSIZE=lines per page]

1
[,SPACE= {2 }]
3
[,TITLE="literal string’]

The default values listed in Table 2-6 should be used whenever possible for the RENAME
function.

Table 2-6. Default Values for LIBUTIL RENAME Function

Keyword Default

oLiB OUTPUT

VERSION Entry currently in version field of old
member entry

LIST YES

INITPG 1

PGSIZE 60

SPACE 1 (single space)

TITLE System header line

The MEM keyword is required and specifies the old member name (to be deleted) and the
new member name. If P is not coded, a new member name and type identical with a
non-deleted member name and type on the library will cause the entry already on the
library to be marked deleted. If P is coded and the preceding situation occurs, the run aborts
without performing the RENAME. VERSION may be used for convenience of identifying a
member on a listing, but is not part of the name. If not specified, the version of the old
member will be used. ‘

The following are examples of //PAR statements that request the LIBUTIL RENAME
function.

Example 1:
In this example, source member A of the library specified by ID=OUTPUT on a //DEFINE
Control Language statement in the step will be renamed A7. However, if source member
A7 already exists on that library, it will be protected, the RENAME will have no effect,

and the run will abort. A7 will have the same version number as A.

//PAR COMMAND=RENAME ,MEM=(A,SRC,A7,SRC,P)

2-27

Example 2:

In this example, member RES of the library specified with ID=OUTPUT is renamed BLK,
VERSION 04. An existing source member named BLK is not protected.

//PAR COMMAND=RENAME,
//PAR MEM(RES,SRC,BLK,SRC),VERSION=04

The following examples show the Control Lanjuage statements of a job step using the
RENAME function.

Example 3:

In this example four macro members of library MACROFIL are renamed. Version numbers
on all the new member names will be the same as those on the old members. Existing mem-
bers of the macro type with the names CHG1, CHG16, CHR7, and CHR11 are not protected.

//JOB NAME=SAMPLE

/[EX PGM=LIBUTIL

//PAR COMMAND=RENAME ,MTYPE=MAC,

//PAR MEM=(MAC1,,CHG1),MEM=(MAC16,,CHG16),
/[PAR MEM=(MAR7,,CHR7),MEM=(MAR11,,CHR11)
//DEF 1D=LIST,DEV=PRINTER

//DEF ID=OUTPUT,FIL=MACROFIL,STA=(P.O)
//EQJ

Example 4:

In this example the members SAV and SAV2 of library SPC123 are renamed BRS6 and
BRS5 with a version number 27. Member names are not listed in the course of the RE-
NAME execution. The ID of SPC123 is INPUT6 instead of the default OUTPUT. An
existing source member named BRS6 would be protected, but one named BRS5 would
not.

//JOB NAME=SAMPLE

//EX PGM=LIBUTIL

//PAR COMMAND=RENAME,OLIB=INPUTS,
//PAR MEM=(SAV,SRC,BRS6,SRC,P),

//PAR MEM=(SAV2,SRC,BRS5,SRC),

//PAR VERSION=27,LIST=NO

//DEF ID=INPUT6,FIL=SPC123,STA=(P,0)
//DEF ID=LIST,DEV=PRT

//EOJ

2-28

PUNCH ENCODED MEMBER (DUMP)

The DUMP function converts the members of a relocatable or absolute load or object library
to a sequential punched card deck. Members may be dumped in either LIBUTIL reloadable
or machine loadable format (see Appendix D). A member may be dumped in machine
loadable format only if it is an absolute load module, a stand alone program which can be
reset loaded. Each member dumped in reloadable format is preceded by a unique member
identification card (or card image). Each member dumped in machine loadable format is
preceded by a separator card.

The content of the //PAR statement for the DUMP function is:

COMMAND=DUMP

MEM=(input member name[,type])
[,ILIB=input library identifier]
[,OFIL=output dumped file identifier]
[,LMTYPE=member typel

[,MODE= {m]

[,LIST= {\N"ES]]

[,INITPG=initial page number]
[,PGSIZE=lines per page]

1

[,SPACE= { 2 }J
3

[, TITLE="literal string’]

The default values listed in Table 2-7 should be used whenever possible with the DUMP
function.

Table 2-7. Default Values for LIBUTIL DUMP Function

Keyword Default
iLIB INPUT

OFIL SEQOUT

MODE R

LIST YES

INITPG 1

PGSIZE 60

SPACE 1 (single space)
TITLE - System header line

2-29

The COMMAND=DUMP keyword-operand is required. In addition, the MEM keyword must
be used to specify the names of the members of the library to be dumped. The MTYPE
keyword is used only when the type operand of one or more MEM keywords is omitted, and
then it is required. ILIB specifies the library from which members are to be dumped. OFIL
designates the file to which the members are to be dumped. OFIL designates the file to
which the members are to be dumped. MODE specifies reloadable or machine loadable
dump format. Machine loadable (M) format is valid only for stand-alone programs (those
that do not require the operating system) which are stored as absolute load modules and
may be reset loaded on the MRX/40 and 50 Systems.

The MODE=R member identification card has the following format:

Column Contents
1 Hexadecimal DD, dump output identifier
2 Hexadecimal FF, member identification card code
3-6 Text header (common stored data format header)
7-14 Member name

15 Member Type

16 Reserved

17-18 Attribute field

19-20 Version

21 Number of user extension words

22 Number of sub-division links

23-25 Creation date

26-29 Creation time

30-49 User extensions

50-76 Reserved

77-80 Sequence number

Information in the identification card is obtained from the library directory (Appendix A).

The MODE=M member separator card contains zeros in all 80 columns. It is ignored when
the deck is loaded, and simply provides a means of separating decks.

The following are examples of //PAR statements that request the LIBUTIL DUMP function.
Example 1:

In this example, object member AGR will be dumped in reloadable format from the
library specified by ID=INPUT to the file specified by ID=SEQOUT.

//PAR COMMAND=DUMP,MEM=(AGR,0OBJ)
Example 2:
In this example an absolute load module, BR620. is dumped in machine loadable format

from the library specified by ID=INPUT to the file specified by ID=SEQOUT. BR620 must
be a stand-alone program that can be initiated via reset-load.

2-30

//PAR COMMAND=DUMP ,MEM=(BR620,ABS),
//PAR MODE=M

The following examples show the Control Language statements for steps which use the
DUMP function of LIBUTIL.

Example 3:

In this example five relocatable load members of library BUSAD236 will be dumped in
LIBUTIL reloadable format onto a punched card file. Their names will not be listed as
they are dumped, but they will appear in the summary list of parameters received.

//JOB NAME=SAMPLE

//EX PGM=LIBUTIL

//DEF ID=LIST DEV=PRT

//DEF ID=SEQOUT DEV=READPUNCH
//DEF ID=INPUT,FIL=BUSAD236,STA=(P,0)
//PAR LIST=NO,COMMAND=DUMP,

//PAR MEM=AD6,MEM=AD7,MEM=ADS,
//PAR MEM=AD9,MEM=AD10,MTYPE=REL
/[EOQJ

Example 4:

In a system with a reader-punch as the input reader, punching must be done via SYSCRD,
as in this example. Absolute load member SHOP6 and object member SHOPG are dumped
from library SHOPCHART?2 to a punched card file. The names of both members are listed
as they are dumped.

//J0B NAME=SAMPLE

/[EX PGM=LIBUTIL

//PAR COMMAND=DUMP,ILIB=OUTPUT,

//PAR MEM=(SHOP6,ABS),MEM=(SHOP6,0BJ)
//DEF 1D=LIST,DEV=PRINTER

//DEF ID=SEQOUT,DEV=SYSCRD

//DEF ID=OUTPUT,FIL=SHOPCHART2,STA=(P,0)
//DATA FIL=SYSCRD

(Blank cards)

//EOJ

2-31

LOAD DUMPED MEMBER (LOAD)

The LOAD function restores one or more members dumped with MODE=R to a library. The
card deck, magnetic tape, or sequential disc file previously generated by the DUMP function
is used as input to recreate the member via the LOAD function. There is no protection of
existing members on the library from being deletad by loading members of the same name
and type. Name and type of the input members are derived from the member identification
cards provided when the members were dumped.

Members can be renamed before the LOAD function by changing the name in the
identification card. Members dumped in machine-loadable format cannot be reloaded on a

library using the LOAD function.

The content of the //PAR statement for the LOAD function is:

COMMAND=LOAD
[,IFIL=input file identifier]
[,OLIB=output file identifier]

(,LIST= lNO

YES}]

[,INITPG=initial page number]
[,PGSIZE=lines per page]

1
[,SPACE= I 2
3

b

[, TITLE=literal string’]

The default values listed in Table 2-8 should be used whenever possible with the LOAD

function.

Table 2-8. Default Values for LIEUTIL LOAD Function

Keyword Default

IFIL SEQIN

oLis OUTPUT

LIST YES

INITPG 1

PGSIZE 60

SPACE 1 (single space)
TITLE System header line

2-32

The COMMAND=LLOAD keyword-operand is required. IFIL specifies the input file (card,
tape, disc) containing the dumped members to be loaded and recreated. OLIB specifies the
library onto which those members will be loaded. The recreated members and their
directory entries are loaded at the end of the library, immediately following the last member
of that library. Any member already on the library is marked for deletion if it bears the
same name and type as an incoming member being loaded. The data separator statement
{/*L1B) must not appear between members to be loaded by one LOAD command.

The following are examples of //PAR statements that request the LIBUTIL LOAD function:
Example 1:

In this example the members on the file specified with ID=SEQIN will be loaded onto the
library specified with ID=OUTPUT.

//PAR COMMAND=LOAD
Example 2:

In this example the members of the file specified with ID=SEQIN will be loaded onto the
library specified with ID=LODLIB.

//PAR COMMAND=LOAD,OLIB=LODL.IB

The following examples show the Control Language statements of job steps using the LOAD
function.

Example 3:

In this example members A and B in the card reader file, SEQIN, are loaded onto the library
LODLIB27. The header line is specified by the programmer. The listing will be double-
spaced and will identify each member by name and type as it is loaded. The data separator
statement, /*LLIB, is not required at the end of the file, but is required to separate sets of data
for different commands in the same data file.

//J0B NAME=SAMPLE

//EX PGM=LIBUTIL

//DEF ID=LIST,DEV=PRINTER

//DEF ID=SEQIN,FIL=RELOAD

//DEF ID=OUTPUT,FIL=LODLIB27,STA=(P,0)
//PAR COMMAND=LOAD,SPACE=2,

//PAR TITLE="LODLIB27 LOAD’

//DATA FIL=RELOAD

(Dumped deck of member A)
(Dumped deck of member B)
/*LIB

/-)(-
//EQJ

Example 4:

In this exafnple the members of a tape file, R726L0OD3 with volume identifier 1473 are
loaded onto disc file ARCHR3. Member names will not be listed as they are loaded, but
the Librarian will produce a listing acknowledging the LOAD command and function
complete.

//JOB NAME=SAMPLE

//EX PGM=LIBUTIL

//PAR COMMAND=LOAD,LIST=NO

//DEF ID=SEQIN,FIL=R726L0D3,DEV=TAPE16,VOL=1473
//DEF ID=OUTPUT,FIL=ARCHR3,STA=(P,0)

//DEF ID=LIST,DEV=PRT

//EOJ

MODIFY LOAD MEMBER (PATCH)

The PATCH function is used to modify absolute and relocatable load members of libraries.
Each modification processed becomes a permanert change to the member module. That is,
the modification is done in place in the library and the original member data is no longer
available. The PATCH routine can also be directed to verify the contents of the module
prior to modification. (See the Linkage Editor section of this manual, Section 3, for the
structure of a load module.)

The contents of the //PAR statement for the PATCH function are:

COMMAND=PATCH
,MEM=(input member name[,type])

_|ABS
[.MTYPE= { REL]]

[,ULIB=update library identifier]
[,IFI L=input file identifier]

[,LIST= ‘ \N(gs }]

[,INITPG=initial page number]
[,PGSIZE=lines per page]
1
[,SPACE={ 2 }]
3
[,TITLE=literal string’]

The default values in Table 2-9 should be used whenever possible for the PATCH function.

2-34

Table 2-9. Default Values for LIBUTIL PATCH Function

Keyword Default
uLIB UPDATE

IFIL SEQIN

LIST YES

INITPG 1

PGSIZE 60

SPACE 1 (single space)
TITLE System header line

The COMMAND=PATCH keyword-operand is required. The MEM keyword must also be
included, specifying the member to be patched. The member type must be specified, either
with the MTYPE keyword or as an operand to the MEM keyword. The only valid member
types for the PATCH command are ABS and REL. Members of these types are produced by
the Linkage Editor.

The PATCH directives are presented as data to the PATCH routine in the data files specified
by the IFIL keyword. The general format is:

command displacement text

A single space precedes and follows the displacement field. Multiple text sub-fields are
separated by commas, a comma following each sub-field except the last. The text is coded as
hexadecimal data and must be specified in words (2 hexadecimal characters per byte, 2
bytes per word).

The displacement must be coded as a hexadecimal value equal to the displacement from the
beginning of the load module relative to zero. If the displacement specified is outside of the
text for the named member, the utility will be terminated with an error code.

There are two commands, VER and REP. VER directs the PATCH routine to verify that the
contents of the member beginning at the designated displacement is equal to the specified
text. An unequal compare will result in termination of the utility. REP directs the PATCH
routine to replace the contents of the member beginning at the designated displacement
with the specified text. Separate formats are provided for relocatable and absolute member
patches.

Patching Relocatable Load Modules

Patch words for relocatable members can be specified for Absolute Text Word Attribute (A)
or Relocatable Text Word Attribute (R). If R is specified, the relocatable program loader
will perform relocation adjustment at load time. The format for relocatable member patches
is as follows:

2-35

{VER
REP

. A A A
, displacement text, { R } Jtext, ! R‘ , ... text, {R}

One word or several consecutive words of text beginning at the same displacement may be
specified with each command. A comma follows each text word and each attribute code
except the last. The following examples illustrate the format.

VER 016E FOFO,A
REP O16E F1F1,A,0645,R

Patching Absolute Load Modules
In the format for absolute members, consecutive patch words from a single displacement are

separated by commas. No attribute codes are provided for patches to absolute members.
The format for absolute member patches is as follows:

{VER
REP

} displacement text, . . .,text

This provides for one or more consecutive words of text beginning at one displacement, for
example:

VER O16E FOFO
REP 016E ECO00,0644

PATCH Examples

The following are examples of //PAR statements that request the LIBUTIL PATCH
function.

Example 1:
In this example absolute member STORBG, located on the library specified by ID=UPDATE
will be patched using the directives and data in the data file specified by ID=SEQIN on its
//DEFINE statement.
//PAR COMMAND=PATCH,MEM=(STORG,ABS)

Example 2:
In this example a relocatable member of the library specified with ID=OUTPUT on its
//DEFINE statement will be patched. The member name is PARTS. The data file is
specified with ID=SEQIN on its //DEFINE statement. A listing will be produced showing

the input parameters, but not the patch directives serformed.

//PAR COMMAND=PATCH,ULIB=OUTPUT,
//PAR MEM=(PARTS,REL},LIST=NO

2-36

The following examples show the Control Language statements of a step that uses the
PATCH function. :

Example 1:

In this example absolute member PRO7 of library LOADLIB is patched via the directives
in the data file PATCHLOAD. A listing showing input parameters and patch directives will
be produced.

//JOB NAME=SAMPLE

//EX PGM=LIBUTIL

//DEF ID=LIST ,DEV=PRT

//DEF ID=UPDATE,FILE=LOADLIB,STA=(P,0)
//DEF ID=SEQIN,FIL=PATCHLOAD

//PAR COMMAND=PATCH,MEM=(PRO7,ABS)
//DATA FIL=PATCHLOAD

(Patch directives)

/*LIB
/*
//EOJ

Example 2:

In this example NUM7, a relocatable member of library LODLIB12, is patched using
directives in data file SETUP. A listing showing the input parameters will be produced,
but the patch directives performed will not be listed.

//JOB NAME=SAMPLE

//EX PGM=LIBUTIL

//PAR MEM=(NUM7,REL),
//PAR LIST=NO,

//PAR COMMAND=PATCH,
//PAR ULIB=IN3,

//PAR IFIL=BLDUP

//DEF ID=IN3,FIL=LODLIB12,STA=(P,0)
//DEF ID=BLDUP,FIL=SETUP
//DEF ID=LIST,DEV=PRT
//DATA FIL=SETUP

(Patch directives)
/*LIB

/*
//EQJ

2-37

PRINT SYMBOLIC MEMBER (PRINT)

The PRINT function prints the named members of a symbolic (source, macro, or procedure)
library, with data of the member displayed in alphanumeric character representation. Any
bit combinations not equivalent to a printable EBCDIC character will be shown as blank on
the listing.

The printed output consists of the LIBUTIL header (system date, time, LIBUTIL function,
member identification, and page number) or the optional user-specified header, and the data
of the member.

The listing produced by the PRINT function will be output by the //DEF Control Language
statement specifying ID=LIST. LIST=YES must be used with the PRINT command, either
specified on a //PAR statement or by default.

The content of the //PAR statement of the PRINT function of LIBUTIL is:

COMMAND=PRINT
,MEM=(member name [type])
[,1LIB=library identifier]
[LMTYPE=member type]
[,LIST=YES]

[,INITPG=initial page number]
[,PGSIZE=lines per page]

1
[,SPACE= {2 }]
3
[,TITLE="literal string’]

The default values listed in Table 2-10 shouid be used whenever possible for the PRINT
function.

Table 2-10. Default Values for LIBUTIL PRINT Function

Keyword Default

iLIB INPUT

LIST YES (LIST=NO is illegal for PRINT)
INITPG 1

PGSIZE 60

SPACE 1 (sirigle space)

TITLE System header line

2-38

The COMMAND=PRINT keyword-operand is required. The MEM keyword must aiso be
used for each member to be printed. Multiple MEM keywords are used to print more than
one member. The MTYPE keyword is used only when type is omitted from MEM, and then
is required.

The following examples show the Control Language statements of steps that use the PRINT
function.

Example 1:

In this example six members, GR631—GR636, of library GRAIN76 will be printed double-
spaced. There will be 50 lines to the page. The LIBUTIL header will be used.

//JOB NAME=SAMPLE

//EX PGM=LIBUTIL

//DEF I1D=LIST DEV=PRINTER

//DEF ID=INPUT, FIL=GRAIN76,STA=(P,1)
//PAR COMMAND=PRINT,PGSIZE=50,SPACE=2,
//PAR MEM=GR631,MEM=GR632,

//PAR MEM=GR633, MEM=GR634,

//PAR MEM=GR635MEM=GR636,MTYPE=SRC
//EOJ

Example 2:

In this example four procedure members of library EXCHANGEG1 will be printed single-
spaced. There will be 60 lines to a page. Pages will be numbered from 600. The header
to be printed is specified by the programmer.

//JOB NAME=SAMPLE

//EX PGM=LIBUTIL

//PAR COMMAND=PRINT ,MTYPE=PRO,

//PAR TITLE="EXCHANGE INFORMATION FILE 73,
//PAR MEM=STOCK1,MEM=SECURG,INITPG=600,
//PAR MEM=BOND29,MEM=YIELD17

//DEF ID=LIST,DEV=PRINTER

//DEF ID=INPUT FIL=EXCHANGE®61,STA=(P,I)
//EQJ

PUNCH SYMBOLIC MEMBER (PUNCH)

The PUNCH function produces a punched card deck or a tape consisting of the card images
of a symbolic type (source, macro, or cataloged procedure) member in a library. The output
card deck may be resequenced.

2-39

The content of the //PAR statement for the PUNCH function is:

COMMAND=PUNCH
,MEM=(member name[,type])
[,OFIL=punch file identifier]
[LMTYPE=type]
[,SEQPOS=(start,length)]

_ |} {initial number, increment)
[NEWSEQ= l NO]
_|YES
[,LIST= NO }]

[,INITPG=initial page number]
[,PGSIZE=lines per page]

1
[,SPACE= { 2 }]
3
[,TITLE="literal string’]

The default values listed in Table 2-11 should be used whenever possible for the PUNCH
function.

The COMMAND=PUNCH keyword-operand is required. The MEM keyword must be used
for each member to be punched. MTYPE is used only when type is omitted from MEM and
then is required. MTYPE or type with MEM may specify SRC, MAC, or PRO only. The
remaining member types (OBJ, ABS, and REL) ars illegal for PUNCH.

For resequencing, the start and length of the sequencing field is specified with SEQPOS. The
sequence field chosen can be anywhere in the record and can be from 1 to 8 bytes. Neither
specification need coincide with the sequence field with which the member was created. The
default is column 73, length 8 positions. NEWSE Q specifies the new sequencing values by
initial number and increment. If unspecified, renumbering will not occur.

Table 2-11. Default Values for LIEUTIL PUNCH Function

Keyword Default

ILIB INPUT

OFIL SEQOUT
SEQPOS T (73,8)

NEWSEQ NO

LIST YES

INITPG 1

PGSIZE 60

SPACE 1 (single space)
TITLE System header line

2-40

The following examples show the Control Language statements of steps that use the PUNCH
function.

Example 1:

In this example four cataloged procedures, AUTO, AUTO7, AUTO18, and AUTO26 from
library AUTOFIL20 are punched on a reader-punch. Renumbering does not occur. Mem-
ber names are not listed as they are punched.

//JOB NAME=SAMPLE

//EX PGM=LIBUTIL

//PAR COMMAND=PUNCH,MEM=AUTO7,
//PAR MEM=AUTO18,MEM=AUTO026,

//PAR MEM=AUTO,MTYPE=PRO,LIST=NO
//DEF ID=LIST,DEV=PRINTER

//DEF ID=SEQOUT,DEV=READPUNCH
//DEF ID=INPUT, FIL=AUTOFIL20,STA=(P,I)
//EQJ

Example 2:

In this example source member ORD®6 is transferred from library ORDERLOG to a card
image file on magnetic tape specified by ID=PUNCH2. Renumbering is in columns 75-80
beginning with number 1 and incrementing by 10.

//JOB NAME=EXAMPLE

//EX PGM=LIBUTIL

//DEF ID=INPUT,FIL=ORDERLOG,STA=(P,I)
//DEF 1D=PUNCH2,DEV=TAPES8

//DEF I1D=LIST,DEV=PRT

//PAR COMMAND=PUNCH,

//PAR OFIL=PUNCH2,MEM=(ORD6,SRC},
//PAR SEQQUT=(75,6),NEWSEQ=(1,10)
/[EQJ

CREATE OR MODIFY SYMBOLIC MEMBER (UPDATE)

The UPDATE function is used to create new symbolic (source, macro, and procedure)
members in a library and to modify symbolic members from an existing library.
Modification may consist of adding symbolic statements to a member, deleting statements
from a member, or combining parts of two or more members within a library. The UPDATE
function may use distinct libraries or the same library when modifying a member, producing
as output a new member in the output library. Separate //DEFINE cards for ID=ILIB and
ID=OLIB are still required even though the same filename is used for both. When the update
output library is the same as the input library, the update is not made in place, but it marks
the input member for deletion and creates a new member at the high end of the library.

2-41

The content of the //PAR statement for the UPDATE command is as follows:

COMMAND=UPDATE
,MEM=([input member name] ,[type] ,outout member name, [type] [,P])

SEQ
,UMODE= {REL
SRC
[,MTYPE=4{ PRO =]
MAC

[,ILIB=input library identifier]
[,IFIL=input file identifier]
[,OLiB=output library identifier]
[,SEQPOS=(start,length}]
L . ‘
[NEWSEQ= [(initial number,lncrement)v;]
NO J
- _ |YES
[,SEQCHK= {NO }J
[,VERSION=version number]
_}YES
C.LIST={no }]
[,INITPG=initial page number]
[,PGSIZE=lines per pagel]

1
[,SPACE= ‘ 2 }]
3
[,TITLE=literal string’}

The default values listed in Table 2-12 should be used whenever possible for the UPDATE
function.

The COMMAND=UPDATE keyword-operand is required. The UMODE keyword-operand
specifies the update method to be used. UMODE=SEQ designates that sequence numbers on
the source statements are used in the update, while UMODE=REL specifies that the relative
record numbers given on the previous UPDATE or PRINT listing of the member are used.
The relative record numbers on the UPDATE listing are not the same as the line numbers on
an assembly listing.

The MEM keyword must be specified for the UPDATE function, and must always include
an output member name. When the input mermber name is omitted, creation of a new
member (from IFIL) occurs, subject to protectior if specified. Otherwise, the input member
name specifies an input library member to be processed. Only SRC, PRO, or MAC are legal
for the type operand of MEM or MTYPE.

The UPDATE modification process is governed by directive statements. These directives,

which for convenience are called pointer directives and copy directives, allow the user to
delete from, copy, and insert information into library members.

2-42

Table 2-12. Default Values for LIBUTIL UPDATE Function

Keyword Default

UMODE REL

ILIB INPUT

IFIL SEQIN

OLIB OUTPUT

SEQPOS (73,8)

NEWSEQ NO

SEQCHK NO

VERSION Entry currently in version field of old
member entry

LIST YES

INITPG 1

PGSIZE 60

SPACE 1 (single space)

TITLE System header line

For ease of reference, the following narrative in some instances describes the update process
as a series of actions on the input library member, although in fact it is not itself modified.
All actions on the input library member are a copy from or a failure to copy from
(“delete’).

Pointer Directives

The pointer'directive, identified by a minus sign in column one followed by one blank,
directs the UPDATE program to copy or delete statements from the named member on the
primary input library, and to move an internal record pointer for the input library member.
One value specified on the directive instructs the program to copy the input member
through the specified record; two values separated by a comma instructs the program to
delete the records in the inclusive range of the values. The internal record pointer is moved
to the record following the last value on the directive.

Pointer by Relative Record Number

When relative record number mode is selected, either by default or by UMODE=REL, the
UPDATE program copies and deletes according to the relative position of the record in the
input member. Any data following the directive in the input data stream is then added to
the output library member until another directive is encountered. When no additional
directives are present in the input data stream and the record pointer is not at the end of the
input member, the program copies the remaining records from the input member.

2-43

For example, if a user wants to copy records one through four of an existing member, insert
two lines of code, and copy the remaining records from the existing member, he must
specify a directive for the first four records and include the input data. He need not specify
a directive for the balance of the existing member, since the pointer rests at input member
record five and the program copies the remaining records. The input would appear as shown
below:

//DATA FIL=X

-4 (Copy records 1-4)

Data item 1 Add code to

Data item 2 output member

/*LIB (Copy records 5 through end of input library member)

If two values separated by a comma are specified, the UPDATE program ignores the records
included in the range of values and sets the record pointer to the record following the last
value. In effect, these records are deleted from the member on the output library. As in the
previous example, assume that the user wants to copy the first four records. However,
instead of simply adding the two new lines of coce, he wants to replace existing records five
and six with the new code and copy the remaining records from the input member. He
could accomplish this with the following input:

//DATA FIL=X

- 5,6 {Copy records 1-4, delete records 5-6)

Data item 1 Add code to

Data item 2 output members

/*LIB (Copy records 7 through end of input library member)

In another situation, given the same input member, the user may wish to copy records one
through four, insert two lines of code, copy records five through 12, delete records 13
through 15, copy records 16 through 25, replace record 26 with one line of code, and copy
the remaining input member records. The directives and data could appear as follows:

//DATA FIL=X

-4 (Copy records 1-4)

Data item 1 { Add code to }

Data item 2 output member

- 13,15 (Copy records 5-12, delete records 13-15)
- 26,26 (Copy records 16-25, delete record 26)
Data item 3 (Add line of code)

/*LIB (Copy remaining records)

2-44

3. LINKAGE EDITOR

FUNCTIONAL DESCRIPTION

Linkage Editor input may consist of a combination of object modules, load modules, and
directives. The primary function of the Linkage Editor is to combine these modules into one
or more output load modules, in accordance with the requirements stated on directives.
Although this linking or combining of modules is its primary function, the Linkage Editor
also:

] Edits modules by replacing, deleting, and rearranging control sections
as specified by directives.

° Accepts additional input modules from data sets other than the
Primary Input Module, either automatically, or upon request.

° Reserves storage for the COMMON control sections generated by the
assembler and the FORTRAN compiler.

) Creates overlay programs (multiple load modules) in a structure
defined by directives.

° Provides special processing and diagnostic output options.

° Assigns module attributes that describe the structure, content, and
logical format of the output load module.

MODULE LINKAGE AND EDITING

Linkage Editor processing allows the programmer to divide his program into several
modules, each containing one or more control sections. The modules can be separately
assembled or compiled. The Linkage Editor combines these modules into one or more load
modules with contiguous storage addresses, and resolves all references between modules in
the input. The output modules are always placed in a library. The editing functions of the
Linkage Editor facilitate program modification. When the functions of a program are
changed, the programmer can modify and compile only the affected control sections instead
of the entire source module. He can replace, delete, or move control sections through use of
the SEG directive.

ADDITIONAL INPUT SOURCES

Standard subroutines can be included in the output module, thus reducing the work in
coding programs. The programmer can specify that a subroutine be included at a particular
time during the processing of his program by using a SEG directive. When the Linkage
Editor processes a module or a directive file which contains this statement, the module
containing the subroutine is retrieved from the indicated input source, and made a part of
the output module.

3-1

Symbols that are still undefined after all input modules have been processed cause the
automatic library search mechanism to search for entry points that will resolve these
references. When a module name is found containing the entry point which matches the
unresolved symbol, the Linkage Editor processas the module and makes it part of the
output program.

STORAGE RESERVATION

The linkage Editor processes common contro! sections generated by FORTRAN and the
Assembler. The common areas are collected by the Linkage Editor, and a reserved main
storagje area is provided within the output modules.

OVERLAY PROGRAM CREATION

To minimize main storage requirements, the programmer can organize his program into an
overlay structure by dividing it into segments according to the functional relationships of
the control sections. Two or more segments that need not be in main storage at the same
time can be assigned the same relative storage addresses, and can be loaded at different
times.

The programmer uses SEG directives to specify the relationship of segments within the
overlay structure. The segments of the prograrn are placed in a library so that loader
requests can load them separately when the program is executed. Each load module is
placed in the library under a unigue member name.

SPECIAL PROCESSING AND ERROR DIAGNOSIS

The programmer can specify special processing options that negate automatic library call or
the effect of minor errors. In addition, the Linkage Editor can produce a module map or
cross-reference table that shows the arrangement of control sections in the output module
and indicates how they communicate with one another. A list of the directives processed
can also be produced.

Throughout processing, errors and possible error conditions are printed on the output
listing. Fatal errors cause the Linkage Editor to terminate and produce no output module.
Additional diagnostic data is automatically loggec by the Linkage Editor. The data indicates
the disposition of the load module in the output module library.

LOAD MODULE ATTRIBUTE ASSIGNMENT

When the Linkage Editor generates a load module, it places an entry for the module in the
directory of the user-defined library. This entry contains attributes that describe the
structure, content, and logical format of the load module. The control program uses these
attributes to determine what a module contains and how it is to be loaded. Some module
attributes can be specified by the programmer; others are specified by the Linkage Editor as
a result of information gathered during processing.

3-2

INPUT STRUCTURE

The Linkage Editor receives its input in the form of object modules produced by language
processors, primary relocatable load modules produced by previous executions of the
Linkage Editor, and directive* sets in card-image format. The input can be divided into two
classifications, basic and secondary.

BASIC INPUT

Basic input consists of either a Linkage Editor directive set or the primary object module.
When there is no directive set, the basic input is a primary object module. The //DEF card**
with ID=INPUT names the library file that contains the primary object module, and the
operand for the PGM keyword of the //PAR card specifies the cataloged member name of
the primary object module.

When the basic input is a directive set, a //DEF card with ID=DIR names a sequential data
file on disc storage that contains the directive set. The data file must be in common stored
data format, either spooled input or a file created by a utility program. The PGM parameter
of the //PAR card specifies the name of the directive set to be used; it must match a name
supplied on a NAME directive. The primary input module is identified by the first module
name encountered in the highest level SEG directive in the basic input directive set. As in
the previous situation, the //DEF card with ID=INPUT names the library file that contains
the primary input module. The primary input module can be either an object module or a
load module.

SECONDARY INPUT

Secondary input consists of all object and/or primary relocatable load modules required to
become part of the program being link-edited. A primary relocatable load module is one
which has a Composite Entry Point List associated with it on a library. It is specified either
by external references from the primary object or secondary input modules, or by operand
specification of a SEG directive.

An external reference is always made to the symbolic name of an entry point which must be
included in the Entry Point List of some object or load module within the Library Search
Domain. When the referenced entry point is located, the module in which it is defined is
collected into the program being formed. The USE directive assists in the resolution of
duplicate entry points.

A SEG directive term may specify either an entire object or load module, or may reference a
single control section (CSECT) within a module. The library containing the module must
always be included in the current Library Search Domain.

*Directives are discussed in detail later in this section, under the heading Linkage Editor Directives.

**Control Language requirements are discussed in detail later in this section, under the heading Contro/ Language Statement
Descriptions.

3-3

LIBRARY SEARCH DOMAIN

In order to locate a required module, the Linkage Editor searches a set of libraries called the
Library Search Domain. The specification of this domain may be accomplished in several
ways, depending on the LSD parameter of the //PAR card. The library specified by
ID=INPUT must contain the Primary Input Module and is always searched first, regardless
of the LSD parameter.

The remainder of the domain is searched according to the following conditions:

® If the LSD=NC option is specified, all modules intended to be
included in the program must reside on the same library as the
primary input module.

° If one or two libraries are specified by LSD=(libname1,libname2),
these libraries are searched in the order specified.

° If the LSD parameter is omitted or if AUTO is specified, the system
library ($SYSOBJLIB) containing required system subroutines is
searched. Note that if $SYSOBJLIB is to be included in a specified
library search domain with another library other than that specified

~ by ID=INPUT, it must be coded as an operand to the LSD keyword.

Whenever a required module, explicitly defined as a SEG term, is not found within the
current Library Search Domain, as defined above, an error message will be displayed and no
output module will be produced. In the event that duplicate modules or.entry points exist
within the current domain, the Linkage Editor will always use the first located in the search
hierarchy of modules and libraries specified by tha Entry Point Search Domain (described in
the following paragraph) and the library search domain. Such duplicates are noted on the
link-edit map, but are not treated as errors.

ENTRY POINT SEARCH DOMAIN

The list of load modules to be searched by the Linkage Editor in resolving the external
references of a designated load module is called the Entry Point Search Domain (EPSD).

An EPSD should be specified, via the USE directive, whenever externals could be satisfied
by more than one entry point within the link-edit map in which a module is to be collected.
That is, whenever duplicate entry points exist within a structure and one of them is
referenced in a given load module, that module should have an EPSD specified for it.
Otherwise the Linkage Editor uses the first satisfactory entry point that it encounters in its
search and indeterminate results may occur. The order in which USE directives are entered
for a given module specifies the search sequence within the domain.

3-4

EXPRESSIONS

The operand of the SEG directive is in the form of a logical expression composed of a single
term or a combination of terms and operators. Spaces may occur any place after the
beginning of the operand expression. The operand may not extend into the sequence field
of the card (character positions 73-80). Continuation is specified by coding a semicolon into
any column preceding column 73 on a card. Scanning continues with the next card, which
should not contain a label or a directive. The MRX Assembler does not allow continuation
on SEG statements presented to it embedded in assembly language code. The operand
expression specifies the desired memory occupation by use of three operators: the plus, the
comma, and the parentheses. These designate inclusion, exclusion, and level of occupation,
respectively. The operators have the following meanings in SEG directive expressions:

+ plus Inclusion Operator: Terms separated by a plus sign are
considered to be included sequentially in memory in the
order encountered. This results in simultaneous memory
occupation of the modules named by these terms.

, comma Exclusion Operator: Terms separated by a comma are
considered to occupy the same memory area. This results
in exclusive overlays which are separate load modules.

() parentheses Grouping or Load Module Operator: The operators for
SEG directives have a priority analogous to mathematical
symbols. That is, commas are evaluated before pluses, as
multiplication is done before addition. Enclosing an
expression in parentheses, however, causes evaluation of
the enclosed expression prior to evaluating the remaining
expression outside the parentheses. In three instances,
enclosing expressions within parentheses produces a
separate load module: a simple expression (single term)
enclosed, a complex expression enclosed in double
parentheses, and an enclosed complex expression with a
comma preceding the left parenthesis. A complex
expression enclosed in parentheses and preceded by a plus
does not .cause creation of a separate load module, but
does cause grouping of the terms within the parentheses
prior to evaluation of the remaining expressions.

The creation of load modules can be illustrated with a few examples. In the examples,
diagrams show the level of overlays; that is, which load modules are overlaid by other
modules. The space occupied by a module is dependent, of course, on the length of the
module. Assume four modules, A, B, C, and D. The following examples show the level of
occupation of memory, depending on the arrangement of the operators in the SEG
statement.

3-19

Example 1:

This statement produces a single load module named ALPHA, composed of the modules
A, B, C, and D, as illustrated in the diagram.

ALPHA SEG A+B+C+D

A Modules A, B, C, and D will el be loaded together when the
load module ALPHA is called. None of the modules can be

B loaded separately, since only one load module is produced.

C

D

Example 2:

This statement produces a root load module named BETA, comprising modules A, B, and
D, and an overlay module C, as shown in the diagram.

BETA SEG A+B,C+D
A L.oad module C is link-edited to overlay module B. Module
D is link-edited so that it will be loaded with modules A and
B B, but will occupy space following the area in whieh load module
' C C will be loaded.

1 '

1 1
D

Example 3:

In this statement, modules C+D are enclosed with parentheses and preceded by a comma.
Therefore, a load module, named C, will be produced for this expression, as well as a load
module named GAMMA, consisting of modules A and B. Load module C will overlay
Module B, as shown in the diagram.

GAMMA SEG A+B,(C+D)

A

B C

3-20

Example 4:

In this statement, two load modules are produced, as in the previous statement, the first
named DELTA and the second named C. However, the level of storage occupation differs
from the previous example in that the load module C will overlay the area occupied by
modules A and B of load module DELTA, as illustrated in the diagram.

DELTA SEG (A+B),(C+D)

A

SEG TERMS

Each term of a SEG operand expression consists of from one to three names. These are a
control section name, a module name, and a library name. Either a control section name or
a module name, or both, must be included as a term of every SEG operand expression.
When more than one of these names appears in a single expression, the names are separated
by the / character on the SEG card.

Control Section Name

A control section name consists of the name of the actual control section or common block
as submitted to or generated by a language processor or translator. A control section name
must be specified whenever a module name is not included. If specified, the control section
name always occurs first in the expression. When both are used, the control section name is
followed by a slash and then the module narne. A control section name is a 1- to 8-character
alphanumeric string. The first character must be alphabetic. This name must be prefixed by
the # character to identify it.

Module Name

A module name may define the name of an object or load module to be found in the
currently specified Library Search Domain or the name of a SEG directive previously
encountered in the same object module or directives set in which the reference is made. A
module name must be specified whenever a control section name is not included. When both
are used, the control section name occurs first, followed by a slash and then the module
name. This term is a 1- to 8-character alphanumeric field. The first character must be
alphabetic.

Library Name

A library name specifies the library in which the control section and/or module named in
the expression must be located. This term is always optional. Library name defines an
exception or override to the normal Library Search Domain. However, the library name
specified must be included in the Library Search Domain for the program being generated.
When used, the library name follows the module name in the expression. The library name is
preceded by a slash. Library name is a 1- to 17-character alphanumeric field with no
embedded special characters except dash. The first character may be $ for system files and
libraries only. The library name must be the name of a library specified as the operand of
the LSD keyword on the //PAR card.

Terms on a SEG directive may occur in any of the following forms:

#csname — The csname entry specifies & control section or common block
name defined in the current module making the reference.

modname — Modname specifies a module name implying all control sections
or common blocks contained or defined w:thin it.

#csname/modname — This form designates a specific control section or
common block of the named module. In this form modname must be an
object module, since the Relocation Dictionary is required to locate the
named control section. Modname cannot be a load module or SEG directive.

modname/libraryname — This configuration specifies a module that must be
located in a specific library of the Library Search Domain. The normal
hierarchy of search is overridden, and only the specified library is searched.

#csname/modname/libraryname — This combination designates that a
specific control section or common block of the named object module must
be located in the named library. Only this library, which must be included in
the Library Search Domain, will be searched. The normal search hierarchy is
ignored.

COMMON ALLOCATION

All common control sections of the same name (whether labeled or ‘blank’) declared via the
Assembler COM instruction, are mapped into the same allocated storage area. Space for a
common section will be allocated whenever the first declaration of that common occurs,
except in the case of ‘blank’ common which is always allocated at the end of the module
(high order addresses).

Duplicate common definitions with different sizes may exist in independently compiled or
assembled programs. However, at link-edit time, only one storage area, with the maximum
declared size, is allocated. This is true even though multiple allocations of the common
block have been specified in SEG directives.

3-22

A labeled common control section may be preset by declaring a CSECT of the same name.
Each declaration of that CSECT name presets the area. Therefore, it is extremely important
when more than one CSECT is used to preset the common area, that the programmer use
caution in specifying linkages to obtain the desired results. In addition, it is recommended
that the common area be specified in a resident area that will not be overlaid by other load
modules. A blank common is created by use of the COM statement with no label; it has no
relationship to a blank CSECT. Blank common cannot be preset; that is, a blank control
section declared directly or indirectly cannot be used to preset common.

Each CSECT (not declared common) specified in a SEG directive causes storage to be
" allocated, even though the same CSECT name may be specified more than once in the SEG
operand.

Example:

In this example control section, #MS (not declared common) is allocated in two overlay
areas, #M2+#M3 and #M3+#M6.

A SEG #M1+(#M2+#M3),(# Ma+#M5), (#M3+#M6)

The memory occupation can be illustrated by the following diagram.

#m1
#Mm2 #ma
#m3
#m3 #Mms
#me6
SAMPLE SEG STATEMENTS

The following are examples of SEG statements used to obtain the memory configurations
diagrammed. ’

In the diagrams, the topmost level indicates the root or main module. Boxes in the same
vertical plane as the root module indicate segments that are loaded with the root module.
They are not separate modules and therefore cannot be loaded separately. Modules
appearing to either side of the root module represent overlays. They are loaded at the
relative location calculated by the Linkage Editor. The portions of the root module, or
other modules, that they overlay is dependent upon their length. The diagrams use dotted
lines to show the locations at which they are loaded relative to the root module.

3-23

Example 1:
SEG Statement: [label} SEG A+B,C
In this example, module A is the root or main segment. Module C overlays B in one memory

area. Module B is loaded with root A. Module C is a separate overlay load module, designated
by the comma preceding it.

A

B c

Alternate SEG Statement: [label] SEG A+(B,C)

In this sample statement, the parentheses act as ¢ logical grouping operator and are re-
dundant. The preceding description applies.

Example 2:
SEG Statement: [label] SEG A+(B),C
In this example, module A is the desired root or main segment. Modules B and C are to

overlay one another in the same memory area. Meither B nor C is loaded simultaneously
with the root A, because of the parentheses surrounding B and the comma preceding C.

B Cc

Alternate SEG Statements: X SEG B,C
[label] SEG A+(X)

In this alternate example, SEG X defines modules B and C as separate load modules over-
laying the same area in memory. Neither B nor C is loaded simultaneously with the root

A. The load module shown as B in the illustration will be named X on the library.

Note: Forward SEG references to the label fields of other SEG statements are not allowed.
Therefore SEG X must occur prior to the SEG that references it.

Example 3:
SEG Statement: [tabel] SEG A+B+(C+D,E),(F+(G),H)
In this sample, modules C and D are loaded with the root, A and B. Module E overlays

D. Sub-complex F (modules F, G and H) overlav C and D. Modules E, F, G, and H are
all separate load modules.

3-24

A

B

C F

E —_—— _— ——— -
b H
G
Alternate SEG Statements: X SEG C+D,E

Y SEG (F)+(G) H
[label] SEG A+B+X,Y

In this alternate example, SEG X defines sub-complex C containing modules C, D and E
with module E as a separate load module. Modules C and D, as specified, will load with
root A and B and are not available as separate load modules.

SEG Y defines sub-complex F containing three separate load modules, G, G and H.
Note: Forward SEG references to the label field of following SEG statements are not

allowed. SEG statements X and Y, therefore, must occur physically before the SEG
statement in which they are referenced.

Example 4:
Overlay Region 1
SEG Statement: [label] SEG A+B+((C)+(D),E),(F+(G),H)

Overlay Overlay
Region Region
2 3

In this example, modules A and B are the root or main segment with two overlays, sub-
complexes C and F. Sub-complex C includes module C plus overlays D and E, and sub-
complex F includes module F plus overlays G and H.

A
B
Overlay
C F Region
1
E D Overlay G H Overlay
Region Region
2 3

3-25

Alternate SEG Statements:’ Vv SEG Cc+(D),E
w SEG F+(G),H
[labell SEG A+B+(V),W

In this alternate example, SEG V defines sub-cornplex C containing overlays D and E
in addition to module C.

SEG W defines sub-complex F containing overlavs G and H in addition to module F.

Parentheses around V, a simple expression, in the last SEG statement causes the sub-
complex defined by V to be treated as a separate load module. C is, therefore, a
separate load module, as are D (in parentheses) and E (preceded by a comma).

Since the sub-complex defined by W is preceded by a comma in the last SEG state-
ment, F is a separate load module. G and H are separate load modules by virtue of
their specification in SEG W.

The last SEG statement specifies the final structure with V and W supplying the sub-
complex definition provided on the named statements.

Modules shown as C and F in the diagram will be named V and W respectively on the
library, because of their position in their respective SEG statements. Root module A
will be named by the label on the last SEG staternent. Overlays D, E, G, and H will
be cataloged in the library under their given namzss.

Note: SEG statements V and W must physically precede the statement in whith they
are referenced.

Alternate SEG Statements: \Y) SEG C+(D),E
W SEG F+(G) H
X SEG VW
[label] SEG A+B+X

Parentheses around either V in SEG X or Cin SEG V or X in the last statement could
be used to designate module C as a separate load module.

SEG V defines sub-complex C including load modules C, D, and E with D and E as
overlays.

SEG W defines sub-complex F including load modules F, G, and H with overlays
G and H.

SEG X defines the relationship between V and W occupying the same memory areas as
overlay sub-complexes.

The last SEG statement specifies the final structure with X supplying the sub-complex
definitions provided on the named statements.

3-26

Module F in the diagram will be named W on the library. Naming of module C depends
on the option chosen above.

Since a comma precedes W in SEG X, parentheses around F would be redundant.

SEG statements V and W must precede SEG X which references them. SEG X must
occur physically before the last SEG statement.

Alternate SEG Statements: D SEG D,E
G SEG G,H
X SEG (C)+(D)
F SEG F+(G)
SEG X,F
[label] SEG A+B+Z

In this example, SEG D specifies the relationship between D and E as overlays. E is
defined as a load module.

SEG G specifies the relationship between G and H as overlays. H is defined as aload
module.

SEG X defines sub-complex C as containing load modules C and the contents of SEG D
as a load module.

SEG F defines sub-complex F as containing module F and the contents of SEG G as a
load module.

SEG Z specifies the relationship of SEG X to SEG F as overlays. The content of SEG F
is defined as a load module.

The last SEG statement specifies the final structure with Z bringing the sub-complex
definitions provided on the named SEG statements.

All modules on the library will be named as shown in the diagram.

LINK-EDIT MAP

The Linkage Editor creates a listing that includes a heading line, a list of the Linkage Editor
Directives included in the input, and a list of the load modules produced, including the
name of each load module, its relative relocatable load address, its byte size, and the relative
address of its entry point. Under each load module is listed the other control sections,
object modules, and other load modules included in the named load module, together with
common block names, control section names, and entry points, and their associated
addresses. Externals in each module are also listed, showing the external name, the name of
the load module containing the entry point that satisfies the external, and the relative
address of the entry point.

3-27

TITLE LINE

The title line of the map appears as follows:
**LINKAGE EDITOR LEVEL-x mmddyy hhmmss
X Level designation of the Linkage Editor in use at the site.
mmddyy Current system date (month, day, year).

hhmmss System time (hours, minutes. seconds).

DIRECTIVE LIST

The directive list includes all directives supplied to the Linkage Editor, whether included in
a directive set or embedded in the object module. It is essentially a list of the directive card
images.

LOAD MODULE LIST

The load modules are listed as follows:

LOAD MODULE= xxxxxxxx BSADR= nnnn SIZE=bbbb ENTRY POINT= aaaa

22227722 nnnn
CM name addr
CS name addr
EP name addr
PE name addr
EX name addr modname

xxxxxxxx Name of the load module, as specified by the PGM or XQT
parameter or by SEG statements.

nnnn Relocatable load address, relative to a zero base.

bbbb Composite length of the load module in bytes (described under
the heading Executable Program Length).

aaaa Relative relocatable address of the primary entry point of the
load module (the first entry point if no primary entry point is
specified). Compilers generate primary entry points according
to their own rules,

22277777 Name of an input object rmodule which has been included in

the load module, and in which the items following the name
are found.

3-28

The content of the FETCH macro is as follows:

MOD= symbolic location

[label] FETCH " of module name

or

ENTRY= symbolic location
of entry point

_YES
[,ERRCOMP— [NO]]

_| YES
[ust={{&]]

MOD= specifies the address (symbolic location) of the 8-byte field which contains the
EBCDIC name of the module to be brought into main storage. This keyword is required for
FETCH by module name only, and excludes the use of the ENTRY keyword. The module
named at the specified address must reside on the library named as the operand of the LIB
keyword on the //EXECUTE statement when the program is executed or on the system load
library, $SYSLODLIB.

ENTRY= specifies the address (symbolic location) of the 8-byte field in main storage which
contains the EBCDIC name of the entry point requested. The module containing that entry
point will be located and loaded into the program partition of main storage. That module
must have been link-edited as one of the segments or overlays of the program currently in
execution. This keyword is required for FETCH by entry point, and excludes the use of the
MOD keyword.

ERRCOMP=YES specifies that control is to be returned to the requesting program if the
service request macro completes with errors. ERRCOMP=NO specifies that control is to be
retained by the system in the event of an error, and results in program abort. This keyword
is optional; the default is NO. Error completion codes are shown in the macro expansion,
Appendix F.

LIST= controls generation of the Service Request and of the parameter string for the macro.
YES generates an object string for the macro, but no SR instruction. General register 6 must
contain the address of the parameter string when the program is executed. NO generates an
SR instruction with no parameter string. Omission of the. LIST keyword generates an SR
instruction with the macro expansion (parameter string) in line, immediately following the
SR.

NOTE

Unlike most service request macros, the RETURN keyword is not valid with
the FETCH macro. Use of RETURN=YES produces an execution error.

4-3

SAMPLE FETCH MACRO
The following is an example of a FETCH macro.
LEAPG FETCH ENTRY=BALI3,ERRCOMP=YES

This example will result in a search of the Composite Entry Point List for the module
containing the entry point specified beginning at symbolic location BAL13. That module
will be loaded into the program partition in which the program is currently executing, at the
relative load address specified by the Linkage Editor. Control will be transferred to the
newly loaded module at the entry point specified at BAL13. Error completion processing
will be handled by the program. This macro call will generate both the Service Request and
the macro expansion in-line.

LOAD MACRO

The LOAD macro transfers the program load maodule specified in the macro, or containing
the entry point designated in the macro, into the program partition of main storage. The
module is loaded at the relative load address specified either by the Linkage Editor or by the
macro. Control is returned to the point of call after the LOAD is completed or immediately
after the macro is accepted by the system. The address of the primary entry point of the
newly loaded module or of the named entry point is returned in the SR packet. If
RETURN=YES is coded, the problem program must check the completion status indicator
to determine when the LOAD is completed so that the entry point address can be
referenced.

The LOAD macro is used primarily for the following purposes:

® To bring fixed data modules, such as translation tables or prepared
messages, into dynamically variable storage or overlay areas.

® To load a program segment at the address specified by the Linkage
Editor and transfer control at some other point in the problem
program. The user must, of course, code the instructions to transfer
control to the loaded program.

Any relocatable references to a module that is loaded at a relative address other than that
assigned by the Linkage Editor are invalid.

4.4

The content of the LOAD macro is as follows:

(_symbolic location
llabell ~ LOAD MOD=3Y T o

{4 or
ENTRY=symbollc Io_catlon
\ of entry point

[_symbolic Iocation]
LOADADR= ¢ | 5ad address

r _ YES]
:ERRCOMP—[NOl

[er_| YES
_,LIST—‘ NO

[~ _ YES]
JRETURN—INO l

MOD-= specifies the start address (symbolic location) of a 10-byte field, of which the first 8
bytes contain the EBCDIC name of the module to be loaded. The last two bytes will receive
the primary entry point returned by the Loader. MOD= is required for LOAD by module
name only, and precludes the use of the ENTRY keyword. :

ENTRY= specifies the start address (symbolic location) of a 10-byte field, of which the first
8 bytes contain the EBCDIC name of the entry point which must reside in one of the
defined segments or overlays of the program making the call. The last two bytes of the area
will receive the named entry-point address returned by the loader. Use of the ENTRY
keyword precludes use of the MOD keyword.

LOADADR-= designates the main storage address (symbolic location) at which the requested
module is to be loaded. Whenever this keyword-operand is omitted, the requested module
will be loaded at the relative address originally specified by the Linkage Editor.

ERRCOMP=YES specifies that control is to be returned to the requesting program if the
service request macro completes with errors. ERRCOMP=NO specifies that control is to be
retained by the system in the event of an error, and results in program abort. This keyword
is optional; the default is NO. Error completion codes are shown in the macro expansion,
Appendix F.

LIST= controls generation of the Service Request and of the parameter string for the macro.
YES generates an object string for the macro, but no SR instruction. General register 6 must
contain the address of the parameter string when the program is executed. NO generates an
SR instruction with no parameter string. Omission of the LIST keyword generates an SR
instruction with the macro expansion (parameter string) in line, immediately following the
SR.

RETURN=YES specifies that control is to be returned to the point of call immediately after
the LOAD request is recognized by the system and queued. RETURN=NO results in return
of control only after the LOAD macro has completed processing, and the proper module is
loaded. The problem program is placed in a wait state until completion. The default is NO.

4-5

The address of the proper entry point will be returned with the packet upon completion of
the request. If RETURN=YES was coded, the problem program is responsible for checking
the completion indicator (Cl) bit in the packet to verify completion of the request.

SAMPLE LOAD MACRO
The following is an example of a LOAD macro.
LOAD MOD=PROG16A,RETURN=NO,LIST=NO,LOADADR=CATT

In this example the private library (if any) and $5YSLODLIB will be searched for a module
named in the field whose symbolic address is PROG16A. The module will be loaded at
symbolic location CATT. Error processing will be handled by the system. This macro will
generate only the Service Request in-line. Another LOAD macro in the problem program
must set up the parameter list and the problem program must load general register 6 with
the address of the parameter list prior to execution of the macro illustrated here. Control
will be returned after the request has been compieted and the module has been loaded. This
macro has no label.

4.6

CATALOG BLOCK

Catalog Block

8 Control Header
-6
-4 Sequential Catalog Link
-2
0 Block Number Next
2 Member
4 Block Offset Link
6
8 Creation Date
10 Creation Time
12
14
16 Member Name
18
20
22 Type
24 Attributes
26 Version
28 No. Extents l No. Subdivisions
3
3(2) Subdivision Link
34 Additional Member
| Entries I
! l
Name _l_3ltes Description
~ontrol Header 8-~-5 Common stored data format standard record header.
Sequential Catalog 4 - -1 Points to next catalog block in this library; last link is zero.
Link
Next Member Link 0-5
Block Number 0-3 The associated catalog block number which contains the next
member entry in the chain.
Block Offset 4-5 The byte displacement within the block.
6 Reserved for system use.
Creation Date 7-9 Date member enters the library; form yyijjj, packed decimal:

YY year
iii Julian date

A-3

Name

Creation Time

Member Name

Type

Attributes

Version

No. Extents

No. Subdivisions

Subdivision Link

Bytes

10-13

14-21

22

23

24.25

26-27

28

29

30-33

Description

Time member enters the library; form hhmmss, packed decimal:

hh Hour
mm Minute
ss Second

Member identification; 1-8 alphanumeric characters, left justified,
blank filled.

Code which indicates the type of member:

Bit 0 Source member

Bit 1 Unused

Bit 2 Object member

Bit 3 Absolute |pad member
Bit 4 Relocatable load member
Bit b Macro memnber

Bit 6 Procedure member

Bit 7 Unused

Reserved for system use.

Code to define characeristics which are unigue within each
type.

Optional version identifier for the member.

Number of user words which may be attached to the entry; range
1-10.

Number of subdivision descriptors contained in this entry;
range 1-5.

Initial block number of subdivision.

A-4

MEMBER DEFINITION BLOCK (MDB) FOR LOAD MODULES

oo P NO

10

14
16
18
20
22
24
26
28
30
32
34
36
38
40
42

Name

MDB Switches

Member Definition Block for Load Modules

MDB Switches
MDB Size
Member Name
Type l Reserved
Attributes
Version
Extents (=6) l Subdivisions (=3)
CEPL Subdivision Block No.
TEXT Subdivision Block No.
RCS Subdivision Block No.
Load Module Size (bytes) Available
Reserved I Tag user extension
Relative L.oad Address } bytes at time
Primary Entry Point member is
FDT Byte Offset stored
Total Size Commitment (bytes)
_l§_y_t<§ Bits Description
0 0 Indicates member could not be found in the
library search.
0 1 Member found but store was requested in an
ADD mode.
0 2 1/0O error during library function.
0 3 Reserved for system use.
0 4 O indicates REPLACEMENT mode store.
1 indicates ADD mode store.
0 5 Delete member when found.
0 6-7 Reserved for system use.
1 0-7 Reserved for system use.

Name

MDB Size

Member Name

Type

Reserved

Attributes

Version

Extents

Subdivisions

CEPL Subdivision
Block No.

TEXT Subdivision
Block No.

RCS Subdivision
Block No.

Load Module Size

Reserved

Tag

Bytes

23

4-11

12

13

14-15

16-17

18

19

20-23

24-27

28-31

32-33
34

35

Bits

0-7

0-7

0-7

0-7

0-7

0-7

0-7

0-7

0-7

0-7

0-7

0-7

0-7

Description

Length of MDB in bytes, not including MDB Switches
or Size cells.

Memiber identification; 1-8 alphanumeric characters,
left justified, blank filled.
Code which indicates the type of member:

Bit0 Source member

Bit 1 Unused

Bt 2 Object member

Bit 3 Absolute load member
Bit4 Relocatable load member
Bitb Macro member

Bit6 Procedure member

Bit?7 Unused

Reserved for system use.

Code to define the characteristics unique to each
type; bit 0 indicates member deleted.

Optional version identifier for the member.

Number of user words which may be attached to the
entry; maximum = 6 words.

Number of subdivision descriptors which are con-
tained in this entry.

Maximum = 4 subdivision descriptors.

Initial block number of the Composite Entry Point
List subdivision.

Initial block number of the TEXT subdivision.
Initial block number of the Relocation Control
Stream subdivision.

Size in bytes of the load module.

Reserved for system use.

Reserved for future use for extended addressing.

A-8

B. LIBRARIAN EXECUTION-TIME ERROR MESSAGES

There are two types of SYSOUT error messages: those issued directly by the Librarian
(LIBUTIL) program, and those issued directly from the system message library.

MESSAGES ISSUED BY THE LIBUTIL PROGRAM
The LIBUTIL program execution-time error messages are all printed on the device specified

by the DEV= parameter on the //DEF statement that reads //DEF ID=LIST, DEV=. All
message error codes begin in print position 2. They have the following fields:

pp [ss|eee|t

Where: pp is always LB, specifying the error as a LIBUTIL error.

sS is either ER or WA, where ER specifies fatal errors and WA specifies
warning errors.

eee is a 3-digit error number specifying the error within the type (ER or
WA).
t is a single digit which is either 2 to specify warning or 8 to specify

fatal error conditions.

After the error code, the following text appears for all messages having the ER specification
in the ss field:

LIBRARIAN ERROR CODE
The following text appears after all the error codes have the WA specification in the ss field:
LIBRARIAN WARNING CODE

For a description of the error code, refer to the explanation of error codes listed below.

ERROR CODE EXPLANATION OF ERROR CODE
LBERO0O0O18 An invalid or unsupported parameter has been specified.
LBER0028 The number of MEM parameters exceeded the maximum.
LBERO0O038 An invalid or unsupported comn:and is specified.

B-1

ERROR CODE

LBER0048

LBERO00O58

LBEROOGS

LBEROO78

LBER0088

LBER0098

LBERO108

LBERO118

LBERO128

LBERO138

LBERO148

LBERO158

LBERO168

LBERO178

LBERO188

LBERO198

LBERO0208

LBERO0218

LBERO0228

EXPLANATION OF ERROR CODE
The member type in the MEM parameter is invalid.

An FDT could not be found for a required file ident that should have been
specified.

The member to be patched was rot relocatable (REL) or absolute (ABS).
The patch directives operator is other than VER or REP and is not supported.

The input member that was requested to be printed or punched has a first
segment link of zero where the link to the source file should be.

The input member that was requested to be printed or punched cannot be found
on ILIB by library search.

The input member that was requested dumped cannot be found on ILIB by
library search.

The load input member identification card specifies a segment number that is
greater than the maximum segment number for this library.

The load input member identification card is out of place.
Input/output error.

A segment in the data input to b2 loaded is greater than the highest segment
for the present member as specified by the member identification card.

A segment specified in the data input to be loaded is a duplicate of the member
being loaded.

No patch is in the patch directive.
An invalid hexadecimal digit is in the patch directive.

A patch verification directive failed to compare equally with the specified
relocation attribute.

The input member in an inclusive copy cannot be found on ILIB by library
search.

The output member in an inclusive copy was found on OLIB by library search
and is protected by the MEM parameter.

The member that was requested patched cannot be found in the ULIB by
library search.

In a patch directive, the displacement was to an odd address.

B-2

ERROR CODE EXPLANATION OF ERROR CODE

LBERO0238 In a patch directive, the relocation attribute is invalid.
LBERO0248 A patch verification directive failed to compare equally with the specified text.
LBERO0258 In an update function, the input member cannot be found on the ILIB by

library search.

LBER0268 In an update function, the output member specified was found on the ILIB
by library search and is protected by the MEM parameter.

LBERO278 The copy member requested during an update function could not be found by
library search.

LBER0288 An insert was requested during an update but no input member was specified
by the MEM parameter.

LBER0298 The Mth parameter in an update insert or copy directive is less than the Nth
parameter in that same directive.

LBERO308 The Nth parameter in an update insert directive is less than the present record
position.
LBER0318 During an update, an insert or copy directive exceeded the file size. The N or

M was greater than the last record number on that particular fite.

LBER0328 The input member that was to be deleted cannot be found by the library search.

LBERO338 The input member to be renamed cannot be found on the ULIB by the library
search,

LBERO0348 The output member name, the name which the input member name will be re-

named to, already exists in the ULIB and is protected by the MEM parameter.

LBERO358 The first segment link in the member to be updated, the input member, is zero.
It should contain the relative block of the beginning of the source segment.

LBERO368 An invalid patch directive has been specified.

LBERO0378 An invalid member type code is in an existing library.

LBERO388 A patch directive displacement has exceeded the member size.

LBER0398 The number of sub-parameters exceeds the maximum,

LBER0408 The insert directive in the update function has an invalid N specified, either:

o N =0 or unspecified which has no meaning in an insert directive,
o N =1 and the input member position is past 1.

B-3

ERROR CODE
LBER0418
LBER0428
LBER0438
LBER0448
LBER0458
LBER0468
LBER0478
LBER0488
LBER0498
LBERO508
LBERO518
LBER0528
LBER0538
LBER0548
LBER0558
LBERO0568

LBERO578

LBERO0588

LBER0598
LBER0608
LBERO618

LBER0628

LBER0638

EXPLANATION OF ERROR CODE
A sub-parameter length exceeds the maximum,
A right parenthesis is missing from a sub-parameter specification.
A PAR card was not ended by a blank or comma.
A parameter length exceeds the maximum.
A literal string length exceeds the maximum.
A right-most quote-in a literal string is missing.
The keyword length exceeds the rnaximum.
An equal sign is missing in the keyword scan.
An invalid SORTKEY parameter s specified.
An invalid SELECT parameter is <pecified.
An invalid MODE parameter is specified.
An invalid SEQCHK parameter is specified.
An invalid LIST parameter is specified.
Alphanumeric data was found in all numeric parameters.
An invalid SPACE parameter is specified.
The MEM parameter does not contain a member name.

A sequence step-down has occurrcd in the specified field when a sequence
check was requested.

The sequence field length plus the field position is greater than the IFIL
block size. :

The sequence field length exceeds the maximum.
The |ILIB block size is not equal to the OLIB block and a copy is requested.
The member type specified is not compatible with the library function requested.

MODE=F but the member type is not ABS, or the member type is ABS, but the
sub-division two (text) is zero.

Multiple members have been specified for the UPDATE function.

B-4

ERROR CODE EXPLLANATION OF ERROR CODE

LBER0648 A type 1 member. MEM=(input-member,member-type) is specified and is
" illegal. UPDATE needs an output member name.

LBER0658 No member is specified for the UPDATE function.

LBER0668 A library block size exceeds the maximum buffer size.

LBER0678 Null input to update create mode.

LBERO0688 Invalid UMODE specification.

LBER0698 N, M of updated directive is not sequential.

LBERO708 N or M of update directive exceeds length of sequence field specified in SEQPOS.
LBERO718 Null input to load function.

LBERO0728 The OLIB type parameter is invalid (i.e., is not SYM, ENC or ALL).
LBERO738 The numeric parameter is larger than 5 digits.

LBERO748 The output library block SIZE= parameter is less than the minimum 84 bytes.
LBERO758 The library type is invalid on an existing library.

LBWAO0O012 Excessive parameters were specified and ignored.

LBWAO0022 An inconsistent sequence type barameter was specified.

LBWAO0032 An inconsistent list type parameter was specified.

LBWAQO042 Duplicate specifications of INITPG.

LBWAO0O052 Duplicate specifications of LIST,

LBWA0062 Duplicate specifications of MODE.

LBWAOO072 Duplicate specifications of MTYPE.

LBWAO0082 Dupilicate specifications of NEWSEQ.

LBWAO0092 Duplicate specifications of OFIL.

LBWAO102 Duplicate specifications of OLIB.

LBWAO112 Duplicate specifications of PAGSIZ.

LBWAO122 Duplicate specifications of SELECT.

ERROR CODE EXPLANATION OF ERROR CODE

LBWAO132 Duplicate specifications of SEQCHK.

LBWAO142 Duplicate specifications of SEQPOS.

LBWAO152 Duplicate specifications of SORTKEY.

LBWAO162 Duplicate specifications of SPACE.

LBWAO172 Duplicate specifications of TITLE.

LBWAO182 Duplicate specifications of ULIB,

LBWAQ192 Duplicate specifications of VERSION.

LBWAO0202 Duplicate specifications of WLIB.

LBWAO0212 Duplicate specifications of COMMAND.

LBWAOQ222 Duplicate specifications of IFIL.

LBWAQ232 Duplicate specifications of ILIB.

LBWAO242 SELECT=1 and no members supplied. SELECT=E is defaulted too.
LBWAO0252 Plus or minus sign in position 1 ¢f update directive assumed to be data.
LBWAO0262 Duplicate specification of UMOLE.

MESSAGES ISSUED FROM THE SYSTEM MESSAGE FILE

The following messages can appear on the SYSOUT file; they are issued from the system
message file SMSGLIB. Each message is preceded by three asterisks, a 4-digit, system-
oriented hexadecimal status code and an 8-character error code that has the following
format:

pp|ss|eee|t

Where: pp is always LB, specifying the error as a LIBUTIL error.

S5 is variously OP, TR, ST, or SE specifying the module within the
LIBUTIL program that issued the message.

eee is a 3-digit number 001 through 006.

t is a single digit which is always 8 meaning that all the errors are
fatal errors.

The message text follows the error code. The text of the message ends with four asterisks.

HEX STATUS
MESSAGE COMPLETION ERROR
ID CODE CODE
e 2F01 LBOP00O18
wrx 2F02 LBOP0028
Ha 2F03 LBOP0038
e 2F04 LBTR0048
FEE 2F05 LBSTO058
wE 2F06 LBSE0068

MESSAGE TEXT

INVALID LIBRARY DEFINITION****

One of the following conditions has been

detected:

e The file is not sequential.

® The library index block is not in the
proper format.

o The library type does not match the
type specified in the library OPEN
packet.

THE FDT FOR THIS LIBRARY COULD NOT
BE FOUND IN THE FDT CHAIN****

Either the system failed to open the library or
the partition was destroyed.

INCONSISTENT USAGE SPECIFICATION IN

FDT****

One of the following conditions has been

detected:

° Library was opened with undefined
USAGE= keyword specified.

'Y Library has been opened for 1/0.

° Library has been opened for input and
HBW=0.

1/0 ERROR ON LIBRARY****
A disc 1/0 error has occurred on a library.

END OF ALLOCATION REACHED DURING
ATTEMPTED STORING OF A MEMBER
ENTRY****

End of disc allocation has occurred for this
library.

MEMBER TYPE, FOUND IN MDB FOR
SEARCH OR STORE, IS INVALID FOR

THE SUBJECT LIBRARY ****

The member type requested, searched, or stored
is not compatible with the subject library. For
example, a SRC (source) member was requested,
searched, or stored in a library whose type was
ENC (encoded) only. If a SRC member was
requested, searched, or stored in a SYM
(symbolic) or ALL type library, no error would
have occurred.

INDEX

Absolute load module

Block size constraints
BOUND keyword
Bound register

Catalog block

Catalog ordinals
Checkout debugging
Coding

COMMAND keyword
Common allocation
Compilation

Composite entry point list
Composite length

Control Language requirements

for Librarian

for Linkage Editor
COPY command
Create symbolic member

Data separator

DELETE command
Directive set

Directives, linkage editor
Directory, library

DUMP command
Dumped output format
Duplicate entry points

END directive
ENTRY directive
Entry point list
Entry point search domain
description
specified by USE directive
ERROR keyword
Error messages
for Librarian
for Linkage Editor
for Loader
Executable program
Expressions in SEG directives
External references

FETCH macro

1-1,3-8

2-2
3-15
3-16

2-1,A-3
A-1

4-1

1-1

2-6
3-22
1-1

A-8
3-32

24
39
2-19
2-41

24
2-21
33
3-16
2-2
2-29
2-11
3-4

3-18
3-16
A-6,D-1

34
3-17
3-14

B-1
C-1
H-1
1-1
3-19
34

4-2

Identification card, member
IFIL keyword

1LIB keyword

Index table

INITPG keyword

Keyword-operands
for LIBUTIL
for Linkage Editor

Library

description

structure
Library block size
Library compression
Library directory
Library macros
Library member
Library member protection
Library overhead

source libraries

encoded libraries
Library search domain
Library structure
Library types
Library utility
LIBUTIL
LIBUTIL keyword summary
Linkage Editor

general

description
Linkage editor input
Linkage editor output
Link-edit map
List file, linkage editor
LIST operand, LIBUTIL
LOAD command
Loader
Loader macro expansion
LOAD macro
Load module

absolute

relocatable
LSD keyword
LST keyword

Index-1

2-30
2-12
2-6
A-1
2-10

2-6
3-10

2-1

21

22
2-23
2-1

G-1
1-2,2-1
2-8

5-1
5-2
3-4
21

24
24
2-14

1-1
3-1.
3-3
3-7
3-27
3-9

2-32
4-1
F-1
4-2

1-1,3-8
1-1,3-8
3-11
313

MDB layout
Member definition block
for load modules
for object modules
Member identification card
Member, library
Member separator card
Member type
in catalog block
in MDB
mixing on libraries
valid codes
MEM keyword
Memory occupation
Mixing member types
MODE keyword
Modify symbolic member
Module linking
MTYPE keyword

NAME directive
NEWSEQ keyword

Object modules

Object module structure
OFFSET keyword

OFIL keyword

OLIB keyword

ORG keyword

Operators in SEG directives

PACK command
PATCH command
PGM keyword
PGSIZE keyword
POOLSIZ

keyword

use in MDB
Presetting common
Primary input file
Primary input module
PRINT command
PRIV keyword
Privileged task
Program generation
Protection of member
PTOC

command

sample listing
PUNCH command
Punch symbolic member
Punch encoded member

A-5A-7

A7
A-5
2-30
1-2,21
2-30

A4
A-6,A-9
2-2
2-8
2-7
3-19
2-2
2-11
2-41
3-1
2-8

3-16
2-11

3-5
D-1
3-12
2-12

3-12
3-19

2-23
2-34
311
2-10

313
A-10
3-23
2-12
33

2-38
3-156
3-15
1-1

2-8

2-13
2-16
2-39
2-39
2-29

Redefining primary entry points 3-16

Relocatable load module
Relocatable object module
Relocation control stream
Relocation group dictionary
RENAME command
Renaming library members
with COPY command
with PACK command
with RENAME command

SEG directive
SEG terms

control section name

library name

module name
SELECT keyword
Separator card

data

member
SEQCHK keyword
SEQPOS keyword

Sequence field

Service request expansion
SI.ZE keyword

Source module

SPACE keyword

SEH keyword

Standard subroutine use

Text string group
TITLE keyword

UL.IB keyword
UMODE keyword
UPDATE command
UPDATE directives
pointer directives
copy directives
USE directive

VERSION keyword

WLIB keyword
Work library

XQT keyword

Index-2

1-1,3-8
1-1

A-8
A-6,D-4
2-26

2-19
2-25
2-26

3-18

3-21
3-22
3-21
29

2-4
2-30
2-11
2-10
2-10
E-1
3-14
1-1
2-10
313
3-1

D-2
2-9

2-12
2-12
2-41
243
2-47
317
2-10

213
213

3-11

	000
	005
	006
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	2-39
	2-40
	2-41
	2-42
	2-43
	2-44
	3-01
	3-02
	3-03
	3-04
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	4-03
	4-04
	4-05
	4-06
	A-03
	A-04
	A-07
	A-08
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	Index-1
	Index-2

