
Publications Bulletin
2200.005-0001
4/2/73

Release 2 Update Package for:

MRX/OS Program Library Services
Reference Manual
2200.005

This bulletin advises of changes that have occurred to the Program Library Services
Reference Manual since the March 1973 edition w'as issued. New and replacement
pages are provided where required.

v and vi
2-7 thru 2-44
3-1 thru 3-4
3-19 thru 3-28
4-3 thru 4-6
A-3 and A-4
A-7 and A-8
Appendix B
Index

Action

Replace
Replace
Replace
Replace
Replace
Replace
Replace
Replace
Replace

Technical changes to text, tables, and figures are marked with a vertical bar in the
outer margin.

Pages containing non-technical changes (page layout, spelling corrections) are indicated
by a bar opposite the page number.

Please file this bulletin with the publication to retain a record of changes.

Sequence Number: M105

.,, ...
0 c.
c g.
tn

0
0
3
'C
c ;-...

TABLE OF CONTENTS

Section

1

2

INTRODUCTION

Coding
Compilation
Linkage Editing
Library Processing
Loading

LIBRARIAN

Introduction
Library Description
Library Structure
Data Structure
Library Utility Program (LI BUTI L)

Control Language Requirem1ents
Data Separator Statement
Programming Considerations

Keyword-Operand Descriptions
Function Keyword (COMMAND or COM)
Input Library (I LIB)
Output Library (OU B)
Member Name (MEM)
Member Type (MTYPE)
Member Selection (SELECT)
Listing (LIST)
Listing Title (TITLE)
Initial Page Number (IN ITPG)
Page Size (PGSIZE)
Line Spacing (SPACE)
Version Number (VERSION)
Sequence Field Definition (SEQPOS)
Sequence Renumbering (NEWSEQ)
Sequence Checking (SE OCH K)
Dump Output Format (MODE)
Update Mode (UMODE)
Primary Input File (IFIL)
Output Data File (OFI L)
Patch Library (U LIB)
Work Library (WLI B)

Command Descriptions
Print Table of Contents (PTOC)

Sample PTOC Listing

v

Page

1-1

1-1
1-1
1-1
1-2
1-2

2-1

2-1
2-1
2-1
2-2
2-4
2-4
2-4
2-5
2-6
2-6
2-6
2-6
2-7
2-8
2-9
2-9
2-9
2-10
2-10
2-10
2-10
2-10
2-11
2-11
2-11
2-12
2-12
2-12
2-12
2-13
2-13
2-13
2-16

TABLE OF CONTENTS (Continued)

Section Page

2 (Cont) Copy Library Member (COPY) 2-19
Delete Library Member (DELETE) 2-21
Compress Library (PACK) 2-23
Assign New Member Name (REl\JAME) 2-26
Punch Encoded Member (DUMP) 2-29
Load Dumped Member (LOAD l 2-32
Modify Load Member (PATCH) 2-34

Patching Relocatable Load Modules 2-35
PATCH ExampJes 2-36

Print Symbolic Member (PRINT) 2-38
Punch Symbolic Member (PUNCH) 2-39
Create or Modify Symbolic Member (UPDATE) 2-41

Pointer Directives 2-43
Pointer by Relative Record Number 2-43

Copy Directive 2-47

3 LINKAGE EDITOH 3-1

Functional Description 3-1
Module Linkage and Editing 3-1
Additional Input Sources 3-1
Storage Reservation 3-2
Overlay Program Creation 3-2
Special Processing and Error Diagnosis 3-2
Load Module Attribute Assignment 3-2

Input Structure 3-3
Basic Input 3-3
Secondary Input 3-3

Library Search Domain 3-4
Entry Point Search Domain 3-4

Object Modules 3-5
Language Processor Relationships 3-5

Assembler 3-6
COBOL 3-6
FORTRAN 3-6
RPG II 3-7

Output 3-7
Absolute Load Modules 3-8
Relocatable Load Modules 3-8
Load Module Creation 3-8

Control Language Statement Descriptions 3-9
File Definition 3-9

List File 3-9
Input File 3-9

vi

The ident operand must be the same as that specified by the ID keyword of the //DEFINE
statement for that library. SYSI N and SYSOUT are illegal operands. If omitted, the
standard default, OUTPUT, is assumed.

The type operand is optional and can be one of the following:

ALL - Specifies that any type of member can be included on the library.
Block size must be 256 bytes. This is the default.

ENC - Specifies that only object modules or load modules are on the
library. Block size must be 256 bytes.

SYM - Specifies that only source, macro, or procedure members are on the
library. Minimum block size is 84 bytes; maximum is 512 bytes. Block size
greater than 128 bytes makes proc:edure members inaccessible to Control
Language Services.

OLIB applies to the COPY, DELETE, LOA.D, PACK, RENAME, and UPDATE commands.

MEMBER NAME (MEM)

The MEM keyword is used to specify member names and types, and protection of an
already existing member of the same name and type, for all LI BUTI L functions that involve
named members. In addition, MEM can be used in conjunction with the SELECT keyword
to include or exclude a given set of members when an entire library is being processed. MEM
is specified once for each member; the number of MEM keywords allowed for each
command is summarized in Table 2-1.

The MEM keyword includes from one to five operands, as follows:

MEM=([input member name] [,type] [,output member name] [,type] [,P])

Input member name is a 1- to 8-character alphanumeric field that specifies the member
identification as listed in the library catalog. This operand is required when the MEM
keyword is used with tht3 COPY, DELETE, DUMP, PACK, PATCH, PRINT, PUNCH, and
RENAME commands. It is optional for the UPDATE commands. When it is omitted with
the UPDATE command, a new member is created from the data in the accompanying
directive file.

Output member name is a 1- to 8-character alphanumeric field that specifies the new name
under which the member is to be listed in the library catalog. It is required for the
RENAME and UPDATE commands and is optional for COPY and PACK. For RENAME,
the catalog entry of the input member name will be marked deleted and replaced by the
output member name, unless protection is specified. For COPY, PACK, and UPDATE, any
member on the output file having the same name as the specified output member name has
its catalog entry deleted, provided it is of the same type, unless protection is specified. For
COPY and PACK, omissiion of the output member name implies that the input member
name is used as the output member name.

2-7

Member type may be specified with input and output member names when they are used.
The valid types are as follows:

SRC Source member

PRO Control Language procedure member

MAC Unassembled macro member

OBJ Object member

REL Relocatable load member

ABS Absolute load member

When this operand is omitted, the MTYPE keyword operand must be supplied. However,
the value specified for member type with the MEM keyword overrides the value specified by
MTYPE.

Example:

In this example, MTYPE identifies AL Tl, AL T2, and AL T3 as source type (SAC). The final

line is not overridden by MTYPE, since macro type (MAC) is specified for both AL T4 and

AL T41.

//PAR MTYPE=SRC,COMMAND=COPY,

//PAR MEM=AL T1,MEM=ALT2,MEM=ALT3,

//PAR MEM=(AL T4,MAC,AL T41,MAC,P)

Protection of an existing member on a library can be specified by including the character P
as the last operand for MEM. When P is included, the presence on the output library of a
member with a name and type identical to that specified by the output member name
operand results in program abort. When P is omitted, the new member will be added
unconditionally, and any identically named mer1ber of the same type will be marked as
deleted.

Examples of MEM keyword-operand configurations are shown below:

MEM=MYNAME
MEM=(OLDNAME,SRC)
MEM=(OLDNAME,,NEWNAME)
MEM=(,,NAMEONE,MAC,P)
MEM=(OLD,PRO,NEW,PRO)
MEM=(AL TE R,OBJ,,,P)

MEMBER TYPE (MTYPE)

This keyword-operand specifies a default for th1~ member type wherever it has not been
specified in the MEM parameter. The MTYPE keyword applies to all commands except
PTOC and LOAD. MTYPE must be supplied if member type is omitted after any explicit
member name specification, and applies to all m1~mber names for which a member type is

2-8

not specified. However, where member type is given with the member name operand, the
MTYPE operand has no effect.

The operands for the MTYPE keyword are the same as those specified for the member type
operands of the MEM keyword.

MEMBER SELECTION (SELECT)

The SELECT keyword specifies that either an inclusive or an exclusive operation is
requested. There are two operands for this keyword: I (inclusive) which specifies that only
the members named are to be included, and E (exclusive) which means only the named
members are excluded. When this keyword is not coded, the default depends upon the use
of the MEM keyword-op1erand. If the MEM keyword has been specified, the default is I
(inclusive). However, if the MEM parameter has not been specified, the default is E
(exclusive); that isu no members are excluded. This keyword applies only to COPY and
PACK commands.

LISTING (LIST)

The LIST keyword-operand specifies whether a listing of messages, updated elements, and
other information is to be performed as a result of LIBUTI L processing. There are two
operands for this keyword, YES and NO. The default is YES.

YES specifies that a complete listing is to be produced. NO specifies that a partial listing will
be produced including the title line and a summary of parameters received, with a function
complete message and/or coded error messages. A Control Language //DEFINE statement
must be included in the step, containing I D=LIST as its file identifier and DEV=PRT for
device specification regardless of how LIST is coded.

This keyword is applicable to all LIBUTI L functions. LIST=NO is illegal for PTOC and
PRINT commands.

LISTING TITLE (TITLE)

The TITLE keyword-operand specifies a tide line, given as a literal string constant, which is
to appear on each page of the output listing preceding all detail lines. The literal string must
be enclosed in apostroph€'s, and must be contained on one card not to exceed 50 characters.

When this parameter is not coded, a line containing the system date and time and the
LI BUTI L function appears as a header. When the parameter is coded, the system page
header is not printed. This keyword applies to all of the LI BUTI L commands.

Example:

TITLE='PROCEDURES STORED ON LIBRARY 17'

2-9

INITIAL PAGE NUMBER (INITPG)

This keyword-operand specifies a decimal value as the initial page number of the output
listing designated with the LIST keyword. The IN ITPG operand is a 1- to 3-digit value in the
range of 1 to 999. If IN ITPG is not specified, 1 is the default. IN ITPG can be designated for
any command except PTOC.

PAGE SIZE (PGSIZE)

The PGSIZE keyword defines the maximum number of lines to be printed per page on the
output lis_ting. All header, title, and blank lines are included in the count. The PGSI ZE
operand applies to all of the LI BUTI L commands.

This operand is a 1- to 2-digit decimal value in the range 1 to 99. When this parameter is not
specified, a default value of 60 is assumed.

LINE SPACING (SPACE)

The SPACE keyword specifies the line spacing for the output listing specified I D=LIST. The
operand can be 1, 2, or 3, meaning single, double, or triple spaced detail lines. Single spacing
is provided when SPACE is not specified. This keyword applies to all LI BUTI L commands
except PTOC.

VERSION NUMBER (VERSION)

This keyword specifies the numeric value that is to be stored in the library catalog entry as
the version identifier for the output member. The version identifier is used only for
convenience in identifying modules from a listing and does not modify the file identifier.

The operand of the VE RSI ON keyword is a four character numeric field. This keyword
applies only ·to the RENAME and UPDATE commands. When this keyword is not coded,
the default value used is a 0000 character field for initial creation of the member. For all
other uses of UPDATE and for the RENAME cor1mand, the default is the value already in
the version identifier of the library catalog member entry. The version number for members
involved in the COPY, PACK, and PATCH commands reverts to zero.

SEQUENCE FIELD DEFINITION (SEOPOS)

The SEOPOS keyword-operand defines the starting position and length of the sequence field
in the card records of the library member beinq processed. This keyword includes two
operands, both of which must be specified whenever SEOPOS is used. The format is as
follows:

SEOPOS=(n,m)

2-10

Operand n is a two-digit decimal value that specifies the starting position of the sequence
field in the card record. Operand m is a one-digit value from 1 to 8 specifying the length of
the sequence field. The starting position (operand n) plus the length of the sequence field
(operand m) minus 1 must not be coded such that the sequence field extends beyond the
record Ii m it.

This keyword applies to the PUNCH and UPDATE command only. If not specified, the
default is SEOPOS==(73,8). The SEOPOS operand is ignored unless NEWSEQ or SEOCHK is
coded.

SEQUENCE RENUMBERING (NEWSEQ)

The NEWSEQ keyword-operand specifies a sequence field renumbering operation as part of
LI BUTI L processing. Renumbering generates sequential numbers in the positions defined as
the sequence field by the SEOPOS parameter. The format is as follows:

{
YES}

NEWSEO= ~nom)

The operand YES specifies that renumbering will occur with the values 100 for the initial
number in the sequence and 100 as the increment for each succeeding record. In the format
(n,m), operand n specifies an initial value of the sequence counter in the range 1 to 9999,
while operand m supplies the increment for each succeeding record in the range 1 to 9999.
Operand NO specifies no renumbering is to occur, and is the default. N EWSEQ applies only
to the UPDATE and PUNCH commands.

SEQUENCE CHECKING (SEClCHK)

The SE OCH K keyword-operand specifies a sequence check which verifies the ascending
order of the output sequence field. The operands are YES and NO. When YES is coded, the
sequence check will be performed. Any discrepancies will be flagged on the output listing.
This check results in program abort if a sequencing violation is found.

When NO is coded, the sequence check will be omitted. The default is NO. This keyword
applies only to the UPDATE command.

DUMP OUTPUT FORMAT (MODE)

This keyword applies to the DUMP command only. It specifies the format in which a load
or object member of a library is to be dumped to punched cards. There are two operands for
this keyword: R and M. MODE=R specifies that the object member is to be dumped in
reloadable format, which allows the member to be reloaded with the LI BUTI L LOAD
command. MODE=M specifies that the object member is to be dumped in machine loadable
format. M is valid only for absolute load modules. (It allows users to punch out stand alone
programs which can be reset loaded.) Members dumped in this mode cannot be reloaded
with the LOAD command. The default is reloadable format.

2-11

UPDATE MODE (UMODE)

The UMODE keyword specifies the update method to be used, and has two operands, SEQ
and REL. UMODE=SEQ designates that the sequence numbers on the symbolic statements
are used in the UPDATE. UMODE=REL spiecifies that the relative record numbers
associated with the file as shown on the previous UPDATE or PR I NT listing are used. The
default is REL. UMODE applies only to the UPDATE command and is explained in detail in
conjunction with that command.

PRIMARY INPUT Fl LE (I Fl L)

The IF IL keyword-operand designates the primary input data file to be used in LI BUTI L
processing by the LOAD, PATCH, or UPDATE commands only. It does not apply to the
other LI BUTI L commands. The operand is a 1- to 8-character alphanumeric value and must
be specified as the ID of a //DEFINE statement within the step.

For the LOAD function, the named file contains the dumped members to be reloaded. In
the PATCH function, the file contains the object patches and directives for the named
member. With UPDATE, the file contains the source changes and/or directives to the named
member. When IFI Lis not specified, the default SEOIN is used; the //DEFINE statement
must still be included.

OUTPUT DATA FILE (OFIL)

This keyword specifies the output data file to be used for the DUMP and PUNCH
commands only. The operand is a 1- to 8-character alphanumeric value that must match the
operand of the ID keyword of a //DEFINE Control Language statement in the step.

The named file will receive the encoded member being dumped, or the card images of the
symbolic member being punched. When OFI Lis not specified, the default SEQOUT is used.

In this event,· ID=SEQOUT must be specified on the //DEFINE statement.

PATCH LIBRARY (ULIB)

This keyword-operand specifies the library containing the member to be modified by the
PATCH function. This keyword does not apply to any other LI BUTI L functions. The
operand is a 1- to 8-character alphanumeric value, and must be specified as the operand of
the ID keyword on a //DEF I NE Control Language statement within the step. When this
keyword is omitted, the default UPDATE is used. A //DEFINE statement must be included
for the update library, whether or not the default is used.

2-12

WORK LIBRARY (WLIB)

The WLIB keyword specifies the primary library work file used by the LIBUTIL PACK
function only. This keyword does not apply to any of the other LI BUTI L commands. The
operand is a 1- to 8-character alphanumeric value and must be designated as the ID operand
of a //DEFINE statement within the step. When WLIB is not specified for the PACK
command, the default WORK will be used .. The //DEFINE statement for this file must still
be included in the step wlhether or not the default is used.

COMMAND DESCRIPTIONS,

All LI BUTI L commands perform general Librarian Utility functions for the programmer.
They may, however, optionally be directed to handle more detailed operations by specifying
particular keywords in the request for the function. For example, deletion-flagging can be
caused directly or indirectly by the DELETE, UPDATE, LOAD, COPY, and RENAME
commands. The following paragraphs discuss each LI BUTI L command, its functions and
capabilities, the applicable keywords, and examples of use. Commands have been grouped
more or less by the library types to which they apply. The first group, consisting of PTOC,
COPY, DELETE, PACK, and RENAME, apply to all types of libraries; the second group,
consisting of DUMP, LOAD, and PATCH, apply to the encoded type of library; and the
third group, consisting of PRINT, PUNCH, and UPDATE, apply to symbolic type libraries.
Librarian error codes are listed in Appendix B.

Table 2-1 lists all of the keywords used to specify the various LI BUTI L operands and the
functions to which they apply. Use of a keyword with a command to which it does not
apply results in the Librarian issuing a warning code and continuing. No error action is
taken. Once the warning code is issued, the keyword is ignored.

The keywords that apply to all of the LIBUTI L functions are: COMMAND, LIST, PGSIZE,
and TITLE.

PRINT TABLE OF CONTENTS (PTOC)

The PTOC function displays the contents of the named library directory on a print file list.
The list shows names and characteristics of each member in the library. Members will be
displayed in chronological order of creatio.n date and time. Deleted members of the file will
always be included in a PTOC listing and will be marked deleted. A LIST file must be
specified for this function, either by LIST=YES or by default. The listing will be single
spaced.

The content of the //PAR statement used for the PTOC function is:

COMMAND=PTOC
[,I LI B=library identifier]
[,LIST=YES]
[,PGSIZE=lines pe,r page]
[,TITLE='literal string']

2-13

Table 2-1. Summary Table of LI BUTI L. Keywords by Command*

---------------------------~--~--~~----·~---
Keyword<D Default Entries by Command

l=:===-=========l=============::t====::;,==.-==~~===-=·=:;====r=~===r====:;;=:=====;:::====:;:===::::::;:====:;====I

COMMAND
or COM None<D

>-
0.
0
u

w
1-
w
...J
w
Q

a..
~
:::>
Cl

Cl
<(
0
...J

::r:
u
I
<(
a..

1-
2
a:
a..

u
0
l
a..

::r:
u z
:::>
a..

w
~
<(
z
w
a:

w
I
<(
Cl
a..
:::>

r------·------+----------+----+--- ----+---+--- ---+---+-------+---+--------

1 FIL SEOIN 0 0 O
t----·------1-----------+-----·t-·---1---·--+---+-- ---1----+-------+---1-----1----1----1

ILIB INPUT 0 0 0 0 0 0
t----·--·------+------·-----+----·1----+-----t----r- --+----+-----t-----t---t------tr----t

INITPG 1 0 0 0 0 0 0 0 0 0 0
l---·--------1----------+-----t---+--------<---+-- --+----t----,--t----1---t------tr-----1

LIST YES 0 0 0 0 0 0 o@ o@ 0 0 a
M~-M-----+-N--on-e----+-o--:=®:o-t-~@ R © () ® R © R@ R © R ® R@

t------------1-----------+---+----1---+-----I-- ---t---+-----+---+------t---t-----t
MODE R 0

t-----------1-----------+-----+--1-----·-t---+------+----+------lr----+---+-----+----I

MTV PE None 0 0 0 0 0 0 O 0 O
r-------------+----------+-----t--- ·- ·----·-·-4-----+-- ----+----+----1------+---+----+---I

NEWSEQ NO O O
t-----------+--------·-+-·--. 1---- -- -···--t---+-- ---t---+----+---+---1---+--~

OFIL SEOOUT 0 0
i-----------------·-+---~---~------~--+---+----+-----+---+----+-----1r----o

OLIS OUTPUT 0 0 0 0 O
t-----------+--------·-+----~---+-----+----1-----+---+-----+---+-----tc----t-----t

PGSI Z E 60 0 0 0 0 0 0 0 0 0 0 0
t---------+------=,.-----+---t-----1-----+---+------+---+----+---+----1>---+----1

SELECT l/E (i) 0 0
!-----·----+---------·-----+----· ------ ----·---4----+-- -------+----1----1---1-----11----

SE QCH K NO 0
t----·------+--·----------+----t------1--·---+----+-- ---+----+----1-----1----1---1---1

SEQPOS (73,8) O O
l---·------1----------1----- -------+---+-- ----t---+----+-----1----1-----r----

SPACE 1 (Single space) 0 0 0 0 0 0 0 O O O
t----·------t-----------1-------t------------------i----t----+---+----lr----+----t

TITLE System date, 0 0 0 0 0 0 0 0 Q 0 0
time, com-
mand, and
page number

1-----------+------------+---1-------+---+-----+----+----+-----+---+-----+---~

ULIB UPDATE 0
1-----------1------------+----·-~·--l-----+---+---+---1-----t-----+---+----1---1

UM ODE REL O
t-------·--+--------- t----··1--- ---·--- ···-----;--- --+----+-----+-----t---t----ir----

VERSION 0000@ 0 O
t-----------+--------·-+----t-----t-----+-----t-----t---+----+---+-----t---t-----t

WLIB WORK C)

=-=============================~===-===~====~

Key: R Required Keyword

0 Optional Keyword

blank Keyword does not apply to the command

*Circled numbers in the table refer to the following notes.

NOTES

G) Keywords and COMMAND or COM operands must be spelled as they appear in this table.

@ LIST=YES required, either specified or accepted as default.

G) Optional keyword. When coded, input-member name must always be included. Output-member name may be
omitted. If member type is omitted, MTYPE must be coded. Protection is always optional. Up to ten
occurrences of MEM are allowed.

@ Required keyword. Input-member-name must be coded. llt1ember type may be coded; if omitted, MTYPE
must be coded. Output-member-name and type do not apply. Protection is always optional. Up to ten
occurrences of MEM are allowed except for PATCH, which allows only one.

2-14

NOTES (Continued)

@ Required keyword. Input- and output-member··names must be coded. Member types may be coded; if
omitted, MTYPE must be coded. Protection always optional. Up to ten occurrences of MEM are allowed.

@ Required keyword. Input-member-name and type omitted if module is being created. Output-member
name must be coded. Output-member type may be coded; if omitted MTYPE must be coded. Protection
is always optional. Mulltiple occurrences of MEM are not allowed.

G) Default is I (inclusive) includes members named when MEM is coded; E (exclusive) excludes members
named (none) when MEM is not coded.

@ Default to 0000 (zerosl1 applies only when member is first created. Default for all other cases of UPDATE
and for RENAME is to the value already in the version identifier field of the library directory member
entry.

The default values listed in Table 2-2 should be used whenever possible for the PTOC
function.

'Table 2-2. Default Values for LIBUTI L PTOC Function

Keyword Default

ILIB INPUT

LIST YES (LIST=NO is illegal for this function)

PGSIZE 60

TITLE System header line

The following are examples of //PAR statements that request the LIBUTIL PTOC function:

Example 1:

In this example the table of contents of the library specified by ID=INPUT on th~ //DEF

statement in the step will be printed.

//PAR COMMAND=PTOC

Example 2:

In this example the table of contents of the library specified by ID=OWNLIB will be

printed 50 lines per page.

//PAR COMMAND=PTOC,PGSIZE=50,I LIB=OWN LIB

2-15

The following examples show the Control Language statements for a job step which uses the
PTOC function:

Example 3:

In this example the table of contents of the librarv ORDENT7 will be listed.

//JOB NAME=SAMPLE

//EX PGM=LIBUTIL

//PAR COMMAND=PTOC

//DEF ID=INPUT,FI L=ORDENT7,STA=(P,I)

//DEF ID=LIST,DEV=PRINTER

//EOJ

Example 4:

In this example the table of contents of the librar/ ORDENT71 will be displayed. The
listing will have the title ORDER ENTRY LIBRARY 7 printed at the top of each page.

The ID listed as OUTPUT might be specified when the PTOC is an additional function

in the same step that has just created a library using another LIBUTI L function.

//JOB NAME=SAMPLE

//EX PGM=LIBUTI L
//PAR COMMAND=PTOC,ID=OUTPUT,

//PAR TITLE='ORDER ENTRY LIBRARY 7'
//DEF ID=LIST,DEV=PRINTER
//DEF ID=OUTPUT,FI L=ORDENT71,STA=(P,1)

//EOJ

Sample PTOC Listing

The listing produced by the PTOC function begins with a system header line, with a title
embedded in it if one is specified, followed by a line showing the library name and type. A
sample appears below.

PTOC FUNCTION: DATE=73027 TIME=20542:3. (up to 50 character title) PAGE:001
FILE LABEL: $0SRSDNTLIB /ALL

• DATE is the Julian date (year and day) used by the operating
system.

• TIME is the system time in the format hhmmss for hours, minutes,
and seconds.

• FILE LABEL is the name of the library specified as the FIL operand
on the //DEF card specifying the input library for the function.

• Library type (ALL in the sample) -follows the slash.

2-16

Then follows a string of equal signs, followed by a line of column headers as shown below.

=====================================

MEMBER NAME TYPE VERSION YR/DAY HH MM SS USER DATA SUB-DIV TOP OF SUB-DIV

• MEMBER NAME is the cataloged name of the member.

• TYPE is one of the six valid types described with the MEM keyword
operand.

• VERSIOl\I is the version number specified by the user or supplied by
the Librarian as specified for"the VERSION keyword-operand.

• YR/DAY and HH MM SS are the creation date and time when the
member was entered on the library.

• USER DAT A consists of the user extension words (bytes 32-41) of
the member definition block for load modules (Appendix A).

• SUB-DIV refers to the data subdivisions of load and object modules
specified in the member definition block (Appendix A). The
numbers of the subdivisions correspond to the order in which their
block numbers appear in the member definition block.

SUB-DIV 1

SUB-DIV 2

SUB-DIV 3

SUB-DIV 4

Bytes 20-23

Bytes 24-27

Bytes 28-31

Bytes 32-35 of the member definition
block for object modules only

• TOP OF SUB-DIV specifies the beginning library block number of
the subdivision in decimal notation. Where the block number is zero,
no subdivision is present. Although the length of the last sub~ivision
of the last member on the PTOC listing is not shown, the
programmer can obtain the approximate number of available blocks
remaining on the library by subtracting the last subdivision block
number from the total blocks allocated to the library.

Figure 2-2 is an example of a PTOC listing showing absolute load members and object
members. The letter D preceding a member name indicates that the catalog entry for the
member has been marked deleted.

2-17

PTOC FUNCTION: DATE=73027 TIME=205423. PAGE: 001
FILE LABEL: $0SRSDNTLIB /ALL

===--===
MEMBER NAME TYPE VERSION YR/DAY HH MM.'SS USER DATA SUB-DIV TOP OF SUB-DIV
$0SVSTAB ABS 00000 73/027 16:33:55 0290 OFOO 0000 0000 0000 01 00000000

02 00000004
03 00000000

$0SYSVB1 ABS 00000 73/027 16:34:00 007C OFOO 0290 0290 0000 01 00000000
02 00000008
03 00000000

$OSYSTB2 ABS 00000 73/027 16:34:04 0150 OFOO 030C 030C 0000 01 00000000
02 00000010
03 00000000

$10DRV ABS 00000 73/027 16:34:13 070C 0000 045C 045C 0000 01 00000000
02 00000013
03 00000000

$TPCDRVD ABS 00000 73/027 16:34:17 006A OCOO OC32 OC32 0000 01 00000000
02 00000023
03 00000000

':"'
$TPCDRVC ABS 00000 73/027 16:34:20 OOB4 OCOO OC32 OC32 ·0000 01 00000000 - 02 00000025

00 03 00000000
ift-rJ-"'V•l""\A\ IR """"' 00000 ..,,..,,n.,..,,

~5:24:24 008-1 ocoo 0C32 OC32 0000 o~ 00000000 '1)1r"'unvtc11 ,..u.;i ,..,,
02 00000027
03 00000000

$DMCV09 OBJ 00000 73/002 10:13:27 01 00000959
02 00000961
03 00000966
04 00000000

$ERDC1C OBJ 00000 73/002 10:17:06 01 00000968
02 00000970
03 00000972
04 00000000

D$ERRP53 OBJ 00000 73/002 10:17:06 01 00000974
02 00000976
03 00000978
04 00000000

$ER RES OBJ 00000 73/002 10:17:06 01 00001024
02 00001026
03 00001028
04 00001030

Figure 2-2. Sample PTOC Listing

COPY LIBRARY MEMBER l!COPY)

The COPY function places the active (non-deleted) members of one library on another
library. Individual members of the library being copied may be specifically included with or
excluded from the COPY function. The receiving library may be either a library already in
use, or a newly allocated library, but the block size of both the input and output libraries
must be identical. Whenever members of a library are being copied to a library already in
use, they are placed on that library following all members of the receiving library. If a
member on the receiving library bears the :same name and type as that of a copied member,
and protection has not been specified, the pre-existing member is marked for deletion,
leaving the copied member as current. Deleted members of the library being copied are
never included in the COPY function.

A library may be created with the COPY function as a backup for the original library.
Members being copied may be renamed by specifying a different output member name for
that member when it is copied. In such a case, the candidate for deletion on the receiving
library is the member bearing the same nam~ and type as specified by the output member
name, subject to the protiection specification.

The content of the //PAR: statement for the COPY function is:

COMMAND=COPY
[,I LI B=input library identifier]
[,OLI B=output library identifier]
[,MEM=(input member name[,type] [,output member name] [,type] [,P])]
[,MTYPE=member type]

[,SELECT= { ~)J

[,LIST= {~6S)J
[,IN ITPG=initial page number]
[,PGSIZE=lines pHr page]

[,SPACE= u}]
[,TITLE='literal string']

The COMMAND=COPY keyword-operand is required. All other keywords are optional, with
default provided except for MEM and MTYPE.

The default values listed in Table 2-3 should be used whenever possible for the COPY
function.

The MEM keyword is used to specify the names of input members to be either included or
excluded in the copy funiction, as specified with the SELECT keyword or its default. When
the output member name is specified, it will be used in place of the input member name for
that copied member only, on the receiving library. If a member on the output library has
the same name and type as a member being copied (as specified by the output member
name or, in its absence, tlhe input member name), the existing member will be marked for
deletion unless the protection key, P, is specified. If this situation occurs and protection is
specified, the program aborts.

2-19

Table 2-3. Default Values for LIBUTIL COPY Function

Keyword Default

ILIB INPUT

OLIB OUTPUT

SELECT I when MEM is coded; otherwise E

LIST YES

INITPG 1

PGSIZE 60

SPACE 1 (single space)

TITLE System header line

Multiple MEM keywords, one for each specified member, may be used. When type is
omitted from the M EM operand for any named member, the MTYPE keyword-operand
must be specified. Since MTYPE can be specified only once, all members whose types are
omitted from the MEM operand must be the samH. To reduce coding and overhead, MTYPE
should be used in place of type whenever a number of members are being specified with the
same member type. LIST specifies whether or not the names of copied members are to be
listed, as they are copied. ID=LIST must appear on a //DEF statement in any library utility
run, since the Librarian always attempts to print tl1e function requests and its responses.

The following are examples of //PAR statements that request the LIBUTIL COPY function.

Example 1:

In this example all non-deleted members of the library specified with ID=I NPUT on a

//DEF statement in the step will be copied to the library specified with ID=OUTPUT.

//PAR COMMAND=COPY

Example 2:

In the next example members of the library specified by ID=INPUT, except deleted

members and the source members specified to be excluded, are copied to the library

specified by ID=OUTPUT.

//PAR COMMAND=COPY,MEM=RA 1,MEM=FtA2,
//PAR MEM=RA18,MEM==RX2,MEM=R03,

//PAR SELECT=E,MTYPE=SRC

The following examples illustrate the Control Language statements of a step which uses the
COPY functions.

2-20

Example 3:

In this.example all non-deleted members of library LIB620 will be copied to library LIB621.
No list of copied members will be produced, although the Librarian will record parameters
received.

//JOB NAME=SAMPLE
//EX PGM=LIBUTI L
//PAR COMMAND=COPY,LIST=NO
//DEF ID=INPUT,FIL=LIB620,STA=(P,I)
//DEF ID=OUTPUT,FI L=LIB621,STA=(P,O)
//DEF ID=LIST,DE:V=PRT
//EOJ

Example 4:

In the final example members of library PAYLIB3 will be copied to library PERS27, except
source members PA Y6 and PA Y32 which are excluded. A listing showing names of each
copied member will be made.

//JOB NAME=SAMPLE
//EX PGM=LIBUTI L
//PAR COMMAND:=COPY,M~M=(PAY6,SRC),

//PAR MEM=(PAV:32,SRC),SELECT=E
//DEF ID=LIST,DEV=PRINTER
//DEF ID=INPUT,FI L=PAYLIB3,STA=(P,I)
//DEF ID=OUTPUT,FI L=PERS27,STA=(P,O)

//EOJ

DELETE LIBRARY MEMBEFl (DELETE)

The DELETE function flags the library directory entries of named members as deleted.
Members marked as deleted are ignored in all LI BUTI L functions except that names of
deleted members will appear on the listing displayed by the PTOC function. ·

The areas of the library and its directories occupied by deleted members remain unavailable,
unless a PACK function iis performed to remove the deleted members and compress the
library or a COPY is executed to build a new library that excludes the deleted members.

The content of the //PAR statement used for the DELETE function is:

COMMAND=DELETE
,MEM=(member name[,type])
[,O LI B=library identifier]
[,MTYPE=member type]

r ,LIST= I ~~s) J
[,INITPG=initial page number]

(continued next page)

2-21

[,PGSIZE=lines per page]

[,SPACE={i}]
[,TITLE='literal string']

The default values· listed in Table 2-4 should be used whenever possible for the DELETE
function.

Table 2-4. Default Values for LIBUTIL DELETE Function

Default

OUTPUT

YES (does not include the deleted members
in th1~ listing)

60

Systum header line

The MEM keyword is required and uses only two operand fields for the DELETE function.
The operands are the name of the member to be marked as deleted, and its type. MTYPE is
used only when the type is omitted from MEM, and is then required.

The following are examples of //PAR statements that request the LIBUTIL DELETE
function.

Example 1:

In this example, the source member ADMIN7 will be marked deleted from the library

specified with ID=OUTPUT on the //DEF staterr:ent.

//PAR COMMAND=DELETE,

//PAR MEM=(ADMIN7,SRC)

Example 2:

In this example object members COR16, COR23, COR39, and COR57 will be marked

deleted from the library specified by ID=MYFILE in the step.

//PAR

//PAR

//PAR

COM MAN D=D EL ET E,MTYPE=OBJ,

MEM=COR 16,MEM=COR23,MEM=CO R39,

MEM=COR57,0LIB=MYFI LE

2-22

The following examples show Control Language statements for a job step using the
DELETE function.

Example 3:

In this example, two cataloged procedures, ADD and SUBT, are marked deleted in library

A 120. Names of members will be listed as they are deleted. The ID might be specified as

PART1 instead of OUTPUT for convenience in a multi-function step.

//JOB
//EX
//PAR
//PAR
//DEF
//DEF

//EOJ

Example 4:

NAME=SAMPLE
PGM=LIBUTI L
COMMAND:=DE LETE,O LI B=PART1 I

MEM=ADD,MEM=SUBT,MTYPE==PRO
ID=PART1 ,Fl L=A 120,STA=(P,O)
ID=LIST,DEV=PRINTER

In this example, source members CHECK4 and CHECK12 will be marked deleted in library

CHECKING. There is no listing of members as they are deleted, though the Librarian will

list a summary of parameters received.

//JOB NAME=SAMIPLE

//EX PGM=LIBUTI L

//DEF ID=LIST,DEV=PRT

//DEF ID=OUTPUT,FIL=CHECKING,STA=(P,O)
//PAR COMMAND==DELETE,LIST=NO,

//PAR MEM=(CHECK4,SRC),MEM=(CH ECK 12,SRC)
//EOJ

COMPRESS LIBRARY (PACK:)

The PACK function compresses a library, removing areas previously assigned to members
that have been marked for deletion as a result of other LI BUTI L functions. When a member
is to be removed from a library, its entry in the library catalog is marked deleted, making
the space it occupies inaccessible.

PACK copies all non-deleted members from the specified library to a named intermediate
file but does not copy deleted members. The program then reinitializes the library specified
by OU B and copies those members back to the output file, including or excluding
(according to the SELECT keyword or its default) members named with MEM keywords.
Thus the space formerly occupied by deleted members becomes available for use, and is
located at the end of the library. Members copied back under the SELECT=I option assume
a sequence on the output library corresponding to the order of their appearance on //PAR
cards. The intermediate fne used in the PACK may be specified as a permanent file and may
be retained as backup. This backup may be critical in case of an 1/0 error or system crash
occurring while the PACK function is in progress, since the input/output file, having been
reinitialized at the beginning of the copy back portion of the step, may not be left in a

2-23

usable state by such an event. The intermediate file specified by WU B is initialized during
the PACK function; therefore, an existing library with usable information in it should not
be used for WU B.

The content of the //PAR statement used for the PACK function is:

COMMAND=PACK
[,OU B=input/output library identifier]
[,WU B=intermediate work library]
[,MEM=(input member name[type] [,output member name] [,type] [,P])]
[,MTYPE=member type]

[,SE LE CT= I ~ l]
[,LIST= l~~Sl]
[,INITPG=initial page number]
[,PGSIZE=lines per page]

[,SPACE= U} J

[,TITLE='literal string']

The default values listed in Table 2-5 should be used whenever possible for the PACK
function.

Keyword

OLIB

WLIB

SELECT

LIST

INITPG

PGSIZE

SPACE

TITLE

Table 2-5. Default Values for LIE::UTIL PACK Function

Default

=c==i=====o=·----==============:I

OUTPUT

WOFIK

I whim MEM is coded; otherwise E

YES (list the names of compressed members on
the LIST output file in addition to the usual
listing)

60

1 (single space)

Systom header line

2-24

The MEM keyword is useid to specify the names of members to be included in or excluded
from the output file of tlhe PACK function. It may also be used to rename members on the
output library. If the new name and its type match the name and type of a member already
copied from the intermediate file during the same PACK operation, the earlier member is
marked for deletion. However, if protection was specified, the Librarian aborts the run.
Member names on the intermediate library are the input library names. Multiple MEM
keywords may be used.

MTYPE is used to specif:y member type for all member names for which type is omitted.
MTYPE should be used i1n place of type on MEM whenever there are a number of members
of one type being specified. Only one MTYPE keyword-operand may be used.

LIST=YES calls for listing the names of copied members as the Librarian copies them onto
the intermediate file, and listing the names of the members retained on the compressed
output library (copied !back from the intermediate library). This listing indicates the
progress of the run and the state of the two libraries, should the run be interrupted by an
1/0 failure or other circumstance.

The following examples show the Control Language statements of a job step which uses the
PACK function.

Example 1:

In this example all non-deleted members of library Bl LM6 are copied to library Bl LM61,

and back to Bl LM6. Deleted entries in the library catalog are removed. Since LIST=NO

is specified, names of members copied to Bl LM61 and back to Bl LM6 are not listed. This

coding is not advised for PACK, for the reasons stated in the preceding paragraph.

//JOB NAME=SAMPLE

//EX PGM=LIBUTIL

//PAR COMMAND=PACK,LIST=NO

//DEF ID=OUTPUT,FI L=BI LM6,STA=(P,0)

//DEF ID=WORK,FIL=BILM61,STA(P,O)

//DEF ID=LIST,DEV=PRT

//EOJ

Example 2:

In this example all non-deleted members of library INV60 are copied to library INV70.

The named members only, and their directory entries, are copied from INV70 back to

library INV60. The original and final sequence of non-deleted members on INV60 can

be seen by a sample Librarian listing for this run. Note the members copied out to

INV70 but not copied back to INV60 due to the SELECT default (inclusive). Note also

that where an output member name is specified (BAL Tin the example), that name is

shown on the listing as the member copied back.

//JOB NAME=EXAMPLE

//EX PGM=LIBUTI L

//PAR COMMAND=PACK

//PAR MEM=B1,MEM=B2,MEM=(B3,,BAL T),

:2-25

//PAR M EM=B4 ,M EM=B7 ,M EM=B8,

//PAR MEM=B9,MEM=B 12,MTYPE=SRC

//DEF ID=LIST ,DEV=PR INTER

//DEF ID=OUTPUT,FIL=INV60,STA=(P,O)

//DEF ID=WOR K,F I L=INV70,STA=(P,0)

//EOJ

Sample Pack Listing

83 SRC SAVl:D ON WLIB

89 ABS SAV!:D ON WLIB

813 SRC SAVED ON WLIB

SRC1 SRC SAVED ON WLIB
81 SRC SAVED ON WLl8

89 SRC SAVl:D ON WLI B
84 SRC SAV!:D ON WLIB
88 SRC SAVt:D ON WLl8
87 SRC SAVi:D ON WLI B
88 SRC SAVi:D ON WLIB
88 OBJ SAV::D ON WLI 8
812 SRC SAV1:D ON WLIB
81 SRC PACKED INTO OLIS
82 SRC PACKED INTO OLl8
8ALT SRC PACKED INTO OLIS
84 SRC PACKED INTO OLl8
87 SRC PACKED INTO OLIS
88 SRC PACKED INTO OLl8

89 SRC PACKED INTO OLIS

812 SRC PACKED INTO OLl8

ASSIGN NEW MEMBER NAME (RENAME)

The RENAME function assigns a new name to a member of a specified library. The catalog
entry of the old member name is marked deleted and a new catalog entry created for the
new name. The data for the member in the librarv remains unchanged and available for use.
The space in the catalog occupied by the old member name is unavailable until a PACK or
COPY function is performed, replacing the contents of the library directory. Until that
time, the old name is still shown in PTOC lists, preceded by the letter D, along with the new
one.

The content of the //PAR statement used for the nENAME function is:

COMMAND=RENAME
,MEM=(old member name,[type] ,new member name,[type] [,P])
[,O LI B=I ibrary identifier]
[,MTYPE=member type]
[,VERSION=version number]

[,LIST= I ~~s) J
(continued next page)

2-26

[,INITPG=initial page number]
[,PGSIZE=Hnes pe!r page]

c,sPACE=U}J
[,TITLE='literal string']

The default values listed in Table 2-6 should be used whenever possible for the RENAME
function.

Table 2-6. Default Values for LIBUTIL RENAME Function

Keyword Default

OLIB OUTPUT

VERSION Entry currently in version field of old
member entry

LIST YES

INITPG 1

PGSIZE 60

SPACE 1 (single space)

TITLE System header line

The MEM keyword is required and specifies the old member name (to be deleted) and the
new member name. If P is not coded, a new member name and type identical with a
non-deleted member name and type on the library will cause the entry already on the
library to be marked deleted. If Pis coded and the preceding situation occurs, the run aborts
without perf~rming the RtENAME. VERSION may be used for convenience of identifying a
member on a listing, but is not part of the name. If not specified, the version of the old
member wi 11 be used.

The following are examples of //PAR statements that request the LIBUTIL RENAME
function.

Example 1:

In this example, source member A of the library specified by ID=OUTPUT on a //DEFINE

Control Language statement in the step will be renamed A7. However, if source member

A7 already exists on that library, it will be protected, the RENAME will have no effect,

and the run will abort. A7 will have the same version number as A.

//PAR COMMAND,=RENAME,MEM=(A,SRC,A7,SRC,P)

2-27

Example 2:

In this example, member RES of the library specified with ID=OUTPUT is renamed BLK,

VERSION 04. An existing source member named BLK is not protected.

//PAR COMMAND=RENAME,

//PAR MEM(RES,SRC,BLK,SRC),VERSION=04

The following examples show the Control Language statements of a job step using the
RENAME function.

Example 3:

In this example four macro members of library MACROFIL are renamed. Version numbers

on all the new member names will be the same as those on the old members. Existing mem

bers of the macro type with the names CHG1, CHG16, CHR7, and CHR11 are not protected.

//JOB NAME=SAMPLE

//EX PGM=LIBUTI L

//PAR COMMAND=RENAME,MTYPE=MAC,

//PAR MEM=(MAC1 ,,CHGl),MEM=(MAC16,,C:HG16),

//PAR MEM=(MAR7,,CHR7),MEM=(MAR11,,CHR11)

//DEF ID=LIST,DEV=PRINTER

//DEF ID=OUTPUT,FIL=MACROFIL,STA=(P 0)

//EOJ

Example 4:

In this example the members SAV and SAV2 of library SPC123 are renamed BRS6 and

BRS5 with a version number 27. Member names are not listed in the course of the RE

NAME execution. The ID of SPC123 is INPUT6 instead of the default OUTPUT. An

existing source member named BRS6 would be p;·otected, but one named BRS5 would

not.

//JOB NAME=SAMPLE

//EX PGM=LIBUTI L

//PAR COMMAND=RENAME,OLIB=INPUT6,

//PAR MEM=(SAV ,SRC,BRS6,SRC,P),

//PAR MEM=(SAV2,SRC,BRS5,SRC),

//PAR VERSION=27,LIST=NO

//DEF ID=INPUT6,F I L=SPC123,STA=(P,O)

//DEF ID=LIST,OEV=PRT

//EOJ

2-28

PUNCH ENCODED MEMBER (DUMP)

The DUMP function converts the members of a relocatable or absolute load or object library
to a sequential punched c:ard deck. Members may be dumped in either LI BUTI L reloadable
or machine loadable format (see Appendix D). A member may be dumped in machine
loadable format only if it is an absolute load module, a stand alone program which can be
reset loaded. Each memb1~r dumped in reloadable format is preceded by a unique member
identification card (or card image). Each member dumped in machine loadable format is
preceded by a separator card.

The content of the //PAR statement for the DUMP function is:

COMMAND=DUIVIP
,MEM=(input member name[,type])
[,I LI B=input library identifier]
[,OFI L=output dumped file identifier]
[,MTYPE=member type]

[,MODE= I~) J

[,UST= I ~6s)J
[,INITPG=initial page number]
[,PGSIZE=lines per page]

[,SPACE= { i}]
[,TITLE='literal string']

The default values listed in Table 2-7 should be used whenever possible with the DUMP
function.

Table 2-7. Default Values for LIBUTIL DUMP Function

Keyword Default

ILIB INPUT

OFIL SEOOUT

MODE R

LIST YES

INITPG 1

PGSIZE 60

SPACE 1 (single space)

TITLE System header line

2-29

The COMMAND=DUMP keyword-operand is required. In addition, the MEM keyword must
be used to specify the names of the members :>f the library to be dumped. The MTYPE
keyword is used only when the type operand of one or more MEM keywords is omitted, and
then it is required. I LIB specifies the library from which members are to be dumped. OF IL
designates the file to which the members are to be dumped. OF IL designates the file to
which the members are to be dumped. MODE specifies reloadable or machine loadable
dump format. Machine loadable (M) format is valid only for stand-alone programs (those
that do not require the operating system) which are stored as absolute load modules and
may be reset loaded on the M RX/40 and 50 SystEms.

The MODE=R member identification card has thE· following format:

Column

1
2
3-6
7-14

15
16
17-18
19-20
21
22
23-25
26-29
30-49
50-76
77-80

Contents

Hexadecimal DD, dump output identifier
Hexadecimal FF, member identification card code
Text header (common stored data format header)
Member name
Member Type
Reserved
Attribute field
Version
Number of user extension words
Number of sub-division links
Creation date
Creation time
User extensions
Reserved
Sequence numbHr

Information in the identification card is obtained from the library directory (Appendix A).

The MODE=M member separator card contains i:eros in all 80 columns. It is ignored when
the deck is loaded, and simply provides a means of separating decks.

The following are examples of //PAR statements that request the LIBUTI L DUMP function.

Example 1:

In this example, object member AGR will be dumped in reloadable format from the

library specified by ID=INPUT to the file specifa!d by ID=SEQOUT.

//PAR COMMAND=DUMP,MEM=(AGR,OBJ)

Example 2:

In this example an absolute load module, BR620. is dumped in machine loadable format

from the library specified by IO=INPUT to the file specified by ID=SEQOUT. BR620 must

be a stand-alone program that can be initiated via reset-load.

2-30

//PAR COMMAND=DUMP,MEM=(BR620,ABS),

//PAR MODE=M

The following examples show the Control Language statements for steps which use the
DUMP function of LI BUTI L.

Example 3:

In this example five relocatable load members of library BUSAD236 will be dumped in
LI BUTI L reloadable format onto a punched card file. Their names will not be listed as
they are dumped, but they will appear in the summary list of parameters received.

//JOB
//EX
//DEF
//DEF
//DEF
//PAR
//PAR

//PAR

//EOJ

Example 4:

NAME=SAMPLE
PGM=LIBUTI L
ID=L.IST,DEV=PRT

ID=SEOOUT,DEV=READPUNCH
ID=INPUT,FI L=BUSAD236,STA=(P,0)
LIST=NO,OOMMAND=DUMP,
M EM=AD6,M EM=AD7 ,M EM=AD8,

MEM=AD9,MEM=AD10,MTYPE==REL

In a system with a reader-punch as the input reader, punching must be done via SYSCRD,
as in this example. Absolute load member SHOP6 and object member SHOP6 are dumped

from library SHOPCHART2 to a punched card file. The names of both members are listed
as they are dumped.

//JOB NAME=SAMPLE
//EX PGM=LIBUTIL
//PAR COMMAND=DUMP,ILIB=OUTPUT,
//PAR MEM=(SHOP6,ABS),MEM=(SHOP6,0BJ)
//DEF ID=L.IST,DEV=PRINTER
//DEF ID=SEOOUT,DEV=SYSCRD
//DEF ID=OUTPUT,FI L=SHOPCHART2,STA=(P,0)
//DATA FIL=SYSCR:D

(Blank cards)

//EOJ

:2-31

LOAD DUMPED MEMBER (LOAD)

The LOAD function restores one or more member; dumped with MODE=R to a library. The
card deck, magnetic tape, or sequential disc file previously generated by the DUMP function
is used as input to recreate the member via the LOAD function. There is no protection of
existing members on the library from being deleted by loading members of the same name
and type. Name and type of the input members are derived from the member identification
cards provided when the members were dumped.

Members can be renamed before the LOAD ·function by changing the name in the
identification card. Members dumped in machine·foadable format cannot be reloaded on a
library using the LOAD function.

The content of the //PAR statement for the LOAD function is:

COMMAND=LOAD
[,IFIL=input file identifier]
[,OLIB=output file identifier]

c ,LIST= I ~6s l J
[,INITPG=initial page number]
[,PGSIZE=lines per page I

[,SPACE= u}]
[,TITLE='literal string']

The default values listed in Table 2-8 should b€ used whenever possible with the LOAD
function.

Table 2-8. Default Values for LIBUTIL LOAD Function

Keyword Default
-------- -----------·- =====o=========t

IFIL SEOIN

OLIB OUTPUT

UST YES

INITPG

PGSIZE 60

SPACE 1 (single space)

TITLE System header line

2-32

The COMMAND=LOAD keyword-operand is required. I Fl L specifies the input file (card,
tape, disc) containijng the dumped members to be loaded and recreated. 0 LIB specifies the
library onto which those members will be loaded. The recreated members and their
directory entries are loadE~d at the end of the library, immediately following the last member
of that library. Any member already on the library is marked for deletion if it bears the
same name and type as an incoming member being loaded. The data separator statement
(/*LIB) must not appear between members to be loaded by one LOAD command.

The following are examples of //PAR statements that request the LIBUTIL LOAD function:

Example 1:

In this example the members on the file specified with ID=SEOIN will be loaded onto the

library specified with ID=OUTPUT.

//PAR COMMAND=LOAD

Example 2:

In this example the members of the file specified with ID=SEOIN will be loaded onto the

library specified with ID=LODLIB.

//PAR COMMAND=LOAD,OLIB=LODLIB

The following examples slhow the Control Language statements of job steps using the LOAD
fonction.

Example 3:

In this example members A and B in the card reader file, SEOI N, are loaded onto the library
LODLIB27. The header line is specified by the programmer. The listing will be double

spaced and will identify each member by name and type as it is loaded. The data separator

statement, /*LIB, is not required at the end of the file, but is required to separate sets of data

for different commands in the same data file.

NAME=SAMPLE
PGM=LIBUTIL
ID= LIST ,D EV=PR INTER

//JOB

//EX
//DEF

//DEF
//DEF

ID=SEQIN,F=I L=RELOAD

ID=OUTPUT,FI L=LOD LI B27,STA=(P,0)

//PAR COMMAND=LOAD,SPACE=2,

//PAR TITLE='LOIDLIB27 LOAD'

//DATA FIL=RELOAD

(Dumped deck of member A)

(Dumped deck of member B)

/*LIB

/*
//EOJ

2-33

Example 4:

In this example the members of a tape file, R726LOD3 with volume identifier 1473 are

loaded onto disc file ARCHR3. Member names will not be listed as they are loaded, but

the Librarian will produce a listing acknowledging the LOAD command and function

complete.

//JOB NAME=SAMPLE

//EX PGM=LIBUTI L

//PAR COMMAND=LOAD,LIST=NO
//DEF ID=SEOIN,FI L=R726LOD3,DEV=TAPE 16,VOL=1473

//DEF ID=OUTPUT,FIL=ARCHR3,STA=(P,0)

//DEF ID=LIST,DEV=PRT

//EOJ

MODIFY LOAD MEMBER (PATCH)

The PATCH function is used to modify absolute and relocatable load members of libraries.
Each modification processed becomes a permanent change to the member module. That is,
the modification is done in place in the library and the original member data is no longer
available. The PATCH routine can also be directed to verify the contents of the module
prior to modification. (See the Linkage Editor section of this manual, Section 3, for the
structure of a load module.}

The contents of the //PAR statement for the PATCH function are:

COMMAND=PATCH
,M EM=(input member name [,type] }

[,MTYPE= I ~:~) J
[,U LI B=update library identifier]
[,I Fl L=input file identifier]

[,LIST= I ~6s) J
[,INITPG=initial page number]
[,PGSIZE=lines per page]

[,SPACE= g}]
[,TITLE='literal string']

The default values in Table 2-9 should be used whenever possible for the PATCH function.

2-34

Table 2-9. Default Values for LIBUTIL PATCH Function

Keyword Default

ULIB UPDATE

IFIL SEQIN

LIST YES

INITPG 1

PGSIZE 60

SPACE 1 (single space)

TITLE System header line

The COMMAND=PATCH keyword-operand is required. The MEM keyword must also be
included, specifying the member to be patched. The member type must be specified, either
with the MTYPE keyword or as an operand to the MEM keyword. The only valid member
types for the PATCH command are ABS and REL. Members of these types are produced by
the Linkage Editor.

The PATCH directives are presented as data to the PATCH routine in the data files specified
by the I Fl L keyword. The general format is:

command displaciement text

A single space precedes and follows the displacement field. Multiple text sub-fields are
separated by commas, a comma following each sub-field except the last. The text is coded as
hexadecimal data and must be specified in words (2 hexadecimal characters per byte, 2
bytes per word).

The displacement must bi:? coded as a hexadecimal value equal to the displacement from the
beginning of the load module relative to zero. If the displacement specified is outside of the
text for the named member, the utility will be terminated with an error code.

There are two commands, VER and REP. VER directs the PATCH routine to verify that the
contents of the member beginning at the designated displacement is equal to the specified
text. An unequal compare will result in termination of the utility. REP directs the PATCH
routine to replace the contents of the member beginning at the designated displacement
with the specified text. Sieparate formats are provided for relocatable and absolute member
patches.

Patching Relocatable Load Modules

Patch words for relocatablle members can be specified for Absolute Text Word Attribute (A)
or Relocatable Text Word Attribute (R). l·f R is specified, the relocatable program loader
will perform relocation adjustment at load time. The format for relocatable member patches
is as follows:

2-35

m;} displacement text./~) .text. I~} text. I~}

One word or several consecutive words of text beginning at the same displacement may be
specified with each command. A comma follows each text word and each attribute code
except the last. The following examples illustrate the format.

VER 016E FOFO,A

REP016E F1F1,A,0645,R

Patching Absolute Load Modules

In the format for absolute members, consecutive patch words from a single displacement are
separated by commas. No attribute codes are prnvided for patches to absolute members.
The format for absolute member patches is as follows:

/ ~~:} displacement text, ... ,text

This provides for one or more consecutive words of text beginning at one displacement, for
example:

VER 016E FOFO

REP 016E EC00,0644

PATCH Examples

The following are examples of //PAR stateme11ts that request the LIBUTIL PATCH
function.

Example 1:

In this example absolute member STOR6, located on the library specified by ID=UPDATE

will be patched using the directives and data in the data file specified by ID=SEOIN on its

//DEFINE statement.

//PAR COMMAND=PATCH,MEM=(STOR6,AB~;)

Example 2:

In this example a relocatable member of the librar'f specified with I D=OUTPUT on its

//DEFINE statement will be patched. The member name is PARTS. The data file is

specified with ID=SEOIN on its //DEFINE statemtmt. A listing will be produced showing

the input parameters, but not the patch directives :>erformed.

//PAR COMMAND=PATCH,ULIB=OUTPUT,

//PAR MEM=(PARTS,RELLLIST=NO

2-36

The following examples show the Controll Language statements of a step that uses the
PATCH function.

Example 1:

In this example absolute member PR07 of library LOADLIB is patched via the directives
in the data file PATCH LOAD. A listing showing input parameters and patch directives will

be produced.

//JOB NAME=SAIVIPLE
//EX PGM,=LIBUTIL

//DEF ID=LIST,DEV=PRT

//DEF ID=UPDATE,FI LE= LOAD LI B,STA=(P,0)

//DEF ID=SEOIN,F=IL=PATCHLOAD

//PAR COM MAN D:=PATCH ,M EM=(PR07 ,ABS)

//DATA FIL=PATCHLOAD

(Patch directives)

/*LIB

/*
//EOJ

Example 2:

In this example NUM7, a relocatable member of library LODLIB12, is patched using

directives in data file SETUP. A listing showing the input parameters will be produced,
but the patch directives performed will not be listed.

//JOB NAME=SAMPLE
//EX PGM=LIBUTI L
//PAR MEM=(NUM7,REL),

//PAR LIST=NO,

//PAR COMMAND==PATCH,
ULIB=IN3, //PAR

//PAR
//DEF

//DEF

IFIL==BLDUP

ID=IN3,FIL=LODLIB12,STA=(P,0)

ID=BLDUP,FI L=SETUP

//DEF ID=LIST,DEV=PRT

//DATA FIL=SETUP

(Patch directives)

/*LIB

/*
//EOJ

2-37

PRINT SYMBOLIC MEMBER (PRINT)

The PAI NT function prints the named members of a symbolic (source, macro, or procedure)
library, with data of the member displayed in alphanumeric character representation. Any
bit combinations not equivalent to a printable EBCDIC character will be shown as blank on
the listing.

The printed output consists of the LI BUTI L header (system date, time, LI BUTI L function,
member identification, and page number) or the optional user-specified header, and the data
of the member.

The listing produced by the PRINT function will be output by the //DEF Control Language
statement specifying ID=LIST. LIST=YES must be used with the PRINT command, either
specified on a //PAR statement or by default.

The content of the //PAR statement of the PRINT function of LIBUTI Lis:

COMMAND=PRINT
,M EM=(member name [type])
[,I LI B=library identifier]
[,MTYPE=member type]
[,LIST=YES]
[,INITPG=initial page number]
[,PGSIZE=lines per page]

[,SPACE= u}]
[,TITLE=='literal string']

The default values listed in Table 2-10 should be used whenever possible for the PR I NT
function.

Table 2-10. Defauh Values for LIHUTI L PRINT Function

Keyword Default

ILIB INPUT

LIST YES (LIST=NO is illegal for PRINT)

INITPG

PGSIZE 60

SPACE 1 (single space)

TITLE System header line

2-38

The COMMAND=PRINT keyword-operand is required. The MEM keyword must also be
used for each member to be printed. Multiple MEM keywords are used to print more than
one member. The MTYPE keyword is used only when type is omitted from MEM, and then
is required.

The following examples show the Control Language statements of steps that use the PR I NT
function.

Example 1:

In this example six members, GR631-GR636, of library GRAIN76 will be printed double

spaced. There will be 50 lines to the page. The LI BUTI L header will be used.

//JOB NAME=SAMPLE

//EX PGM=LIBUTIL

//DEF ID=L.IST,DEV=PRINTER

//DEF ID=INPUT,FIL=GRAIN76,STA={P,I)

//PAR COMMAND=PRINT,PGSIZE=50,SPACE=2,

//PAR MEM=GR6~11,MEM=GR632,

//PAR MEM=GR63:3,MEM=GR634,

//PAR MEM=GR6~l5,MEM=GR636,MTYPE=SRC

//EOJ

Example 2:

In this exampie four procedure members of library EXCHANGE61 will be printed single

spaced. There will be 60 lines to a page. Pages will be numbered from 600. The header

to be printed is specified by the programmer.

//JOB NAME=SAMPLE

//EX PGM=LIBUTI L

//PAR COMMAND=PRINT,MTYPE=PRO,

//PAR TITL.E='EXCHANGE INFORMATION Fl LE 73',

//PAR MEM=STOCK1,MEM=SECUR6,INITPG=600,

//PAR MEM=BOND29,MEM=YIELD17

ID=L.IST,DEV=PR INTER //DEF
//DEF
//EOJ

ID=INPUT,FI L=EXCHANGE61,STA=(P,I)

PUNCH SYMBOLIC MEMBEFl (PUNCH)

The PUNCH function produces a punched card deck or a tape consisting of the card images
of a symbolic type (source, macro, or cataloged procedure) member in a library. The output
card deck may be resequenced.

2-39

The content of the //PAR statement for the PUNCH function is:

COM MAN D=PUNCH
,MEM=(member name[,type])
[,OF I L=punch file identifier]
[,MTYPE=type]
[,SEQPOS=(start,length)]

[,NEWSEQ= I ~~tial number, increment))]

[,LIST= \~gs)J
[,INITPG=initial page number]
[,PGSIZE=lines per page!

[,SPACE= { ~ }]
[,TITLE='literal string']

The default values listed in Table 2-11 should be used whenever possible for the PUNCH
function.

The COMMAND=PUNCH keyword-operand is r(quired. The MEM keyword must be used
for each member to be punched. MTYPE is used only when type is omitted from MEM and
then is required. MTYPE or type with MEM may specify SRC, MAC, or PRO only. The
remaining member types (OBJ, ABS, and REL) am illegal for PUNCH.

For resequencing, the start and length of the sequencing field is specified with SEQPOS. The
sequence field chosen can be anywhere in the record and can be from 1 to 8 bytes. Neither
specification need coincide with the sequence field with which the member was created. The
default is column 73, length 8 positions. NEWSEQ specifies the new sequencing values by
initial number and increment. If unspecified, renui11bering will not occur.

Table 2-11. Default Values for LI E;UTI L PUNCH Function

Keyword Default

ILIB INPUT

OFIL SEQOUT

SEQPOS (73,8)

NEWSEQ NO

LIST YES

INITPG

PGSIZE 60

SPACE 1 (single space)

TITLE System header line

2-40

The following examples show the Control Language statements of steps that use the PUNCH
function.

Example 1:

In this examp~e four cataloged procedures, AUTO, AUT07, AUT018, and AUT026 from
library AUTOFI L20 are punched on a reader-punch. Renumbering does not occur. Mem
ber names are not listed as they are punched.

//JOB NAME=SAMPLE

//EX PGM=LIBUTI L

//PAR COMMAND,=PUNCH,MEM=AUT07,

//PAR MEM=AUT018,MEM=AUT026,

//PAR MEM=AUTO,MTYPE=PRO,LIST=NO

//DEF ID=L.IST,DEV:::::PRINTER

//DEF ID=SEOOUT,DEV=READPUNCH
//DEF ID=INPUT,FI L=AUTOFI L20,STA=(P,I)

//EOJ

Example 2:

In this example source member ORD6 is transferred from library ORDER LOG to a card
image file on magnetic tape specified by ID=PUNCH2. Renumbering is in columns 75-80

beginning with number 1 and incrementing by 10.

//JOB

//EX

//DEF

//DEF

//DEF
//PAR

//PAR

//PAR
//EOJ·

NAME=EXAMPLE

PGM=LIBUTI L

ID= IN PUT, FI L =ORDER LOG ,STA= (P, I)

ID=PUNCH2,DEV=TAPE8

ID=LIST,DEV=PRT
COMMAND:=PUNCH,

OFI L=PUNCH2,MEM=(ORD6,SRC),

SEOOUT=(i'5,6),NEWSEO=(1, 1 O)

CREATE OR MODIFY SYMBOLIC MEMBER (UPDATE)

The UPDATE function is used to create new symbolic (source, macro, and procedure)
members in a library and to modify symbolic members from an existing library.
Modification may consist of adding symbolic statements to a member, deleting statements
from a member, or combining parts of two or more members within a library. The UPDATE
function may use distinct libraries or the same library when modifying a member, producing
as output a new member in the output library. Separate //DEFINE cards for I D=I LIB and
I D=OLI B are still required even though the same filename is used for both. When the update
output library is the samei as the input library, the update is not made in place, but it marks
the input member for dele,tion and creates a new member at the high end of the library.

2-41

The content of the //PAR statement for the UPDATE command is as follows:

COMMAND=UPDATE
,MEM=([input member name] ,[type] ,outout member name,[type] [,P])

!SEQ) ,UMODE= REL

[,MTYPE= { ~~g }]
MAC

[,I LIB=input library identifier]
[,I Fl L=input file identifier]
[,O LI B=output library identifier]
[,SEOPOS=(start,length)]

[NEWSEQ= I (initial number,increment)]
' NO

[,SE OCH K= l~~S}]
[,VERSION=version number]

c ,LIST= I ~6s) J
[,IN ITPG=initial page number]
[,PGSIZE=lines per page]

[,SPACE={~}]
[,TITLE='literal string']

The default values listed in Table 2-12 should be used whenever possible for the UPDATE
function.

The COM MAN D=UPDATE keyword-operand is required. The UMODE keyword-operand
specifies the update method to be used. UMODE=-=SEQ designates that sequence numbers on
the source statements are used in the update, while UMODE=REL specifies that the relative
record numbers given on the previous UPDATE or PR I NT listing of the member are used.
The relative record numbers on the UPDATE listing are not the same as the li.ne numbers on
an assembly listing.

The MEM keyword must be specified for the UPDATE function, and must always include
an output member name. When the input mer1ber name is omitted, creation of a new
member (from IF IL) occurs, subject to protection if specified. Otherwise, the input member
name specifies an input library member to be processed. Only SRC, PRO, or MAC are legal
for the type operand of MEM or MTYPE.

The UPDATE modification process is governed by directive statements. These directives,
which for convenience are called pointer directives and copy directives, allow the user to
delete from, copy, and insert information into library members.

2-42

Table 2-12. Default Values for LIBUTIL UPDATE Function

Keyword Default

UMODE REL

ILIB INPUT

IFI L. SEQIN

OLIB OUTPUT

SEQPOS (73,8)

NEWSEQ NO

SE QC HK NO

VERSION Entry currently in version field of old
member entry

LIST YES

INITPG

PGSIZE 60

SPACE 1 (single space)

TITLE System header Ii ne

For ease of reference, the~ following narrative in some instances describes the update process
as a series of actions on the input library member, although in fact it is not itself modified.
All actions on the input library member are a copy from or a failure to copy from
("delete").

Pointer Directives

The pointer directive, identified by a minus sign in column one followed by one blank,
directs the UPDATE pronram to copy or delete statements from the named member on the
primary input library, and to move an internal record pointer for the input library member.
One value specified on the directive instructs the program to copy the input member
through the specified rec:ord; two values separated by a comma instructs the program to
delete the records in the inclusive range of the values. The internal record pointer is moved
to the record following the last value on the directive.

Pointer by Relative Record Number

When relative record number mode is selected, either by default or by UMODE=REL, the
UPDATE program copies and deletes according to the relative position of the record in the
input member. Any data following the directive in the input data stream is then added to
the output library member until another directive is encountered. When no additional
directives are present in the input data stream and the record pointer is not at the end of the
input member, the program copies the remaining records from the input member.

2-43

For example, if a user wants to copy records one through four of an existing member, insert
two lines of code, and copy the remaining records from the existing member, he must
specify a directive for the first four records and include the input data. He need not specify
a directive for the balance of the existing member, since the pointer rests at input member
record five and the program copies the remaining records. The input would appear as shown
below:

//DATA FIL=X
- 4
Data item 1
Data item 2
/*LIB

(Copy records 1-4)

I Add code to)
output member

(Copy records 5 through end of input library member)

If two values separated by a comma are specified, the UPDATE program ignores the records
included in the range of values and sets the record pointer to the record following the last
value .. In effect, these records are deleted from the member on the output library. As in the
previous example, assume that the user wants to copy the first four records. However,
instead of simply adding the two new lines of code, he wants to replace existing records five
and six with the new code and copy the remaining records from the input member. He
could accomplish this with the following input:

//DATA FIL=X
- 5,6
Data item 1
Data item 2
/*LIB

(Copy records 1-4, delete records 5-6)

I Add code to)
output members

(Copy records 7 through end of input library member)

In another situation, given the same input member, the user may wish to copy records one
through four, insert two lines of code, copy records five through 12, delete records 13
through 15, copy records 16 through 25, replace record 26 with one line of code, and copy
the remaining input member records. The directiv13s and data could appear as follows:

//DATA FIL=X
- 4
Data item 1
Data item 2
- 13, 15
- 26,26
Data item 3
/*LIB

(Copy records 1-4)

I Add code to)
output member

(Copy records 5-12, delete records 13-15)
(Copy records 16-25, delete record 26)
(Add line of code)
(Copy remaining records)

2-44

3. LINKAGE EDITOR

FUNCTIONAL DESCRIPTION

Linkage Editor input may consist of a combination of object modules, load modules, and
directives. The primary function of the Linkage Editor is to combine these modules into one
or more output load modules, in accordance with the requirements stated on directives.
Although this linking or combining of modules is its primary function, the Linkage Editor
also:

• Edits modules by replacing, deleting, and rearranging control sections
as specified by directives.

• Accepts additional input modules from data sets other than the
Primary Input Module, either automatically, or upon request.

• Reserves storage for the COMMON control sections generated by the
assembler and the FORTRAN compiler.

• Creates overlay programs (multiple load modules) in a structure
defined by directives.

• Provides special processing and diagnostic output options.

• Assigns module attributes that describe the structure, content, and
logical format of the output load module.

MODULE LINKAGE AND EDITING

Linkage Ed.itor processing allows the programmer to divide his program into several
modules, each containini~ one or more control sections. The modules can be separately
assembled or compiled. The Linkage Editor combines these modules into one or more load
modules with contiguous storage addresses, and resolves all references between modules in
the input. The output modules are always placed in a library. The editing functions of the
Linkage Editor facilitatei program modification. When the functions of a program are
changed, the programmer can modify and compile only the affected control sections instead
of the entire source module. He can replace, delete, or move control sections through use of
the SEG directive.

ADDITIONAL INPUT SOURICES

Standard subroutines can be included in the output module, thus reducing the work in
coding programs. The programmer can specify that a subroutine be included at a particular
time during the processing of his program by using a SEG directive. When the Linkage
Editor processes a module or a directive file which contains this statement, the module
containing the subroutinei is retrieved from the indicated input source, and made a part of
the output module.

3-1

Symbols that are still undefined after all input modules have been processed cause the
automatic library search mechanism to search for entry points that will resolve these
references. When a module name is found containing the entry point which matches the
unresolved symbol, the Linkage Editor process,es the module and makes it part of the
output program.

STORAGE RESERVATION

The Linkage Editor processes common control sections generated by FORTRAN and the
Assembler. The common areas are collected by the Linkage Editor, and a reserved main
stora~1e area is provided within the output modules.

OVERLAY PROGRAM CREATION

To minimize main storage requirements, the pro~1rammer can organize his program into an
overlay structure by dividing it into segments according to the functional relationships of
the control sections. Two or more segments that need not be in main storage at the same
time can be assigned the same relative storage addresses, and can be loaded at different
times.

The programmer uses SEG directives to specify the relationship of segments within the
overlay structure. The segments of the program are placed in a library so that loader
requests can load them separately when the pmgram is executed. Each load module is
placed in the library under a unique member namn.

SPECIAL PROCESSING AND ERROR DIAGNOSIS

The programmer can specify special processing options that negate automatic library call or
the effect of minor errors. In addition, the Linkage Editor can produce a module map or
cross-reference table that shows the arrangement of control sections in the output module
and indicates how they communicate with one another. A list of the directives processed
can also be produced.

Throughout processing, errors and possible error conditions are printed on the output
listing. Fatal errors cause the Linkage Editor to terminate and produce no output module.
Additional diagnostic data is automatically loggec by the Linkage Editor. The data indicates
the disposition of the load module in the output nodule library.

LOAD MODULE ATTRIBUTE ASSIGNMENT

When the Linkage Editor generates a load module, it places an entry for the module in the
directory of the user-defined library. This entry contains attributes that describe the
structure, content, and logical format of the load module. The control program uses these
attributes to determine what a module contains and how it is to be loaded. Some module
attributes can be specified by the programmer; others are specified by the Linkage Editor as
a result of information gathered during processing.

3-2

INPUT STRUCTURE

The Linkage Editor receives its input in the form of object modules produced by language
processors, primary relocatable load modules produced by previous executions of the
Linkage Editor, and directive* sets in card-image format. The input can be divided into two
classifications, basic and st~condary.

BASIC INPUT

Basic input consists of either a Linkage Editor directive set or the primary object module.
When there is no directive set, the basic input is a primary object module. The //DEF card**
with I D=I NPUT names the library file that contains the primary object module, and the
operand for the PGM keyword of the //PAR card specifies the cataloged member name of
the primary object moduli~.

When the basic input is a directive set, a //DEF card with I D=DI R names a sequential data
file on disc storage that contains the directive set. The data file must be in common stored
data format, either spooled input or a file created by a utility program. The PGM parameter
of the //PAR card specifi1es the name of the directive set to be used; it must match a name
supplied on a NAME directive. The primary input module is identified by the first module
name encountered in the highest level SEG directive in the basic input directive set. As in
the previous situation, the //DEF card with I D=I NPUT names the library file that contains
the primary input module. The primary input module can be either an object module or a
load module.

SECONDARY INPUT

Secondary input consists of all object and/or primary relocatable load modules required to
become part of the program being link-edited. A primary relocatable load module is one
which has a Composite Entry Point List associated with it on a library. It is specified either
by external references from the primary ob.iect or secondary input modules, or by operand
specification of a SEG directive.

An external reference is always made to the symbolic name of an entry point which must be
included in the Entry Point List of some object or load module within the Library Search
Domain. When the referenced entry point is located, the module in which it is defined is
collected into the program being formed. The USE directive assists in the resolution of
duplicate entry points.

A SEG directive term may specify either an entire object or load module, or may reference a
single control section (CSECT) within a module. The library containing the module must
always be included in the current Library Search Domain.

*Directives are discussed in detail later in this section, under the heading Linkage Editor Directives.

**Control Language requirements a1re discussed in detail later in this section, under the heading Control Language Statement
Descriptions.

3-3

LIBRARY SEARCH DOMAIN

In order to locate a required module, the Linkage Editor searches a set of libraries called the
Library Search Domain. The specification of this domain may be accomplished in several
ways, depending on the LSD parameter of the //PAR card. The library specified by
I D=I NPUT must contain the Primary Input Module and is always searched first, regardless
of the LSD parameter.

The remainder of the domain is searched accordin 1g to the following conditions:

• If the LSD=NO option is specified, .all modules intended to be
included in the program must rnside on the same library as the
primary input module.

• If one or two libraries are specified by LSD=(libname1 ,libname2},
these libraries are searched in the order specified.

• If the LSD parameter is omitted or if AUTO is specified, the system
library ($SYSOBJLIB) containing required system subroutines is
searched. Note that if $SYSOBJLI 8 is to be included in a specified
library search domain with another library other than that specified
by I D=I NPUT, it must be coded cis an operand to the LSD keyword.

Whenever a required module, explicitly defined as a SEG term, is not found within the
current Library Search Domain, as defined above, an error message will be displayed and no
output module will be produced. In the event that duplicate modules or entry points exist
within the current domain, the Linkage Editor will always use the first located in the search
hierarchy of modules and libraries specified by th1~ Entry Point Search Domain (described in
the following paragraph} and the library search domain. Such duplicates are noted on the
link-edit map, but are not treated as errors.

ENTRY POINT SEARCH DOMAIN

The list of load modules to be searched by the Linkage Editor in resolving the external
references of a designated load module is called the Entry Point Search Domain (EPSD).

An EPSD should be specified, via the USE directive, whenever externals could be satisfied
by more than one entry point within the link-edit map in which a module is to be collected.
That is, whenever duplicate entry points exist within a structure and one of them is
referenced in a given load module, that module should have an EPSD specified for it.
Otherwise the Linkage Editor uses the first satisfactory entry point that it encounters in its
search and indeterminate results may occur. The order in which USE directives are entered
for a given module specifies the search sequence within the domain.

3-4

EXPRESSIONS

The operand of the SEG directive is in the form of a logical expression composed of a single
term or a combination of terms and operators. Spaces may occur any place after the
beginning of the operand expression. The operand may not extend into the sequence field
of the card (character positions 73-80). Continuation is specified by coding a semicolon into
any column preceding column 73 on a card. Scanning continues with the next card, which
should not contain a label or a directive. The M RX Assembler does not allow continuation
on SEG statements presented to it embedded in assembly langua~e code. The operand
expression specifies the d«~sired memory occupation by use of three operators: the plus, the
comma, and the parentheses. These designate inclusion, exclusion, and level of occupation,
respectively. The operators have the following meanings in SEG directive expressions:

+plus Inclusion Operator: Terms separated by a plus sign are
considered to be included sequentially in memory in the
order encountered. This results in simultaneous memory
occupation of the modules named by these terms.

, comma Exclusion Operator: Terms separated by a comma are
considered to occupy the same memory area. This results
in exclusive overlays which are separate load modules.

() parentheses Grouping or Load Module Operator: The operators for
SEG directives have a priority analogous to mathematical
symbols. That is, commas are evaluated before pluses, as
multiplication is done before addition. Enclosing an
E!Xpression in parentheses, however, causes evaluation of
the enclosed expression prior to evaluating the remaining
expression outside the parentheses. In three instances,
enclosing expressions within parentheses produces a
separate load module: a simple expression (single term)
enclosed, a complex expression enclosed in double
parentheses, and an enclosed complex expression with a
c:omma preceding the left parenthesis. A complex
expression enclosed in parentheses and preceded by a plus
does not cause creation of a separate load module, but
does cause gro1:1ping of the terms within the parentheses
prior to evaluation of the remaining expressions.

The creation of load modules can be illustrated with a few examples. In the examples,
diagrams show the level of overlays; that is, which load modules are overlaid by other
modules. The space occupied by a module is dependent, of course, on the length of the
module. Assume four modules, A, B, C, and D. The following examples show the level of
occupation of memory, depending on the arrangement of the operators in the SEG
statement.

3:-19

Example 1:

This statement produces a single load module named ALPHA, composed of the modules

A, B, C, and D, as illustrated in the diagram.

ALPHA SEG A+B+C+D

A

B

c

D

Example 2:

Modules A, B, C, and D will i:JJI be loaded together when the

load module ALPHA is called. None of the modules can be

loaded separately, sin•:e only one load module is produced.

This statement produces a root load module narred BETA, comprising modules A, B, and

D, and an overlay module C, as shown in the dia~1ram.

BETA SEG A+B,C+D

EA___.____
3

I C
I
I I

[~J
Example 3:

Load module C is. link-edited to overlay module B. Module

Dis link-edited so that it will be loaded with modules A and

B, but will occupy space following the area in whieh load module

C wi II be loaded.

In thi.s statement, modules C+D are enclosed with parentheses and preceded by a comma.
Therefore, a load module, named C, will be produced for this expression, as well as a load

module named GAMMA, consisting of modules A and B. Load module C will overlay
Module B, as shown in the diagram.

GAMMA SEG A+B,(C+D)

E: c

D

3-20

Example 4:

In this statement, two load modules are produced, as in the previous statement, the first

named DEL TA and the second named C. However, the level of storage occupation differs

from the previous example in that the load module C will overlay the area occupied by

modules A and B of load module DEL TA, as illustrated in the diagram.

DEL TA SEG (A+B),(C+D)

SEG TERMS

Each term of a SEG operand expression consists of from one to three names. These are a
control section name, a module name, and a library name. Either a control section name or
a module name, or both,. must be included as a term of every SEG operand expression.
When more than one of these names appears in a single expression, the names are separated
by the I character on the SEG card.

Control Section Name

A control section name consists of the namE~ of the actual control section or common block
as submitted to or generated by a language processor or translator. A control section name
must be specified whenever a module name is not included. If specified, the control section
name always occurs first iin the expression. When both are used, the control section name is
followed by a slash and then the module name. A control section name is a 1- to 8-character
alphanumeric string. The first character must be alphabetic. This name must be prefixed by
the # charac~er to identify it.

Module Name

A module name may define the name of an object or load module to be found in the
currently specified Library Search Domain or the name of a SEG directive previously
encountered in the same object module or directives set in which the reference is made. A
module name must be specified whenever a control section name is not included. When both
are used, the control section name occurs first, followed by a slash and then the module
name. This term is a 1- to 8-character alphanumeric field. The first character must be
alphabetic.

3-21

Library Name

A library name specifies the library in which the control section and/or module named in
the expression must be located. This term is always optional. Library name defines an
exception or override to the normal Library Search Domain. However, the library name
specified must be included in the Library Search Domain for the program being generated.
When used, the library name follows the module name in the expression. The library name is
preceded by a slash. Library name is a 1- to 17-character alphanumeric .field with no
embedded special characters except dash. The fir~;t character may be $for system files and
libraries only. The library name must be the name of a library specified as the operand of
the LSD keyword on the //PAR card.

Terms on a SEG directive may occur in any of the following forms:

csname - The csname entry specifies c: control section or common block
name defined in the current module making the reference.

modname - Modname specifies a module name implying all control sections
or common blocks contained or defined wthin it.

#csname/modname - This form designates a specific control section or
common block of the named module. In this form modname must be an
object module, since the Relocation Dictionary is required to locate the
named control section. Modname cannot be a load module or SEG directive.

modname/libraryname -- This configuration specifies a module that must be
located in a specific library of the Library Search Domain. The normal
hierarchy of search is overridden, and only the specified library is searched.

#csname/modname/libraryname - This combination designates that a
specific control section or common block of the named object module must
be located in the named library. Only this library, which must be included in
the library Search Domain, will be searched. The normal search hierarchy is
ignored.

COMMON ALLOCATION

All common control sections of the same name (whether labeled or 'blank') declared via the
Assembler COM instruction, are mapped into thn same allocated storage area. Space for a
common section will be allocated whenever the first declaration of that common occurs,
except in the case of 'blank' common which is always allocated at the end of the module
(high order addresses).

Duplicate common definitions with different sizes may exist in independently compiled or
assembled programs. However, at link-edit time, only one storage area, with the maximum
declared size, is allocated. This is true even though multiple allocations of the common
block have been specified in SEG directives.

3-22

A labeled common control section may be preset by declaring a CSECT of the same name.
Each declaration of that CSECT name presets the area. Therefore, it is extremely important
when more than one CSECT is used to preset the common area, that the programmer use
caution in specifying linkages to obtain the desired results. In addition, it is recommended
that the common area be specified in a resident area that will not be overlaid by other load
modules. A blank common is created by use of the COM statement with no label; it has no
relationship to a blank CSECT. Blank common cannot be preset; that is, a blank control
section declared directly or indirectly cannot be used to preset common.

Each CSE CT (not declarnd common) specified in a SEG directive causes storage to be
allocated, even though the same CSECT name may be specified more than once in the SEG
operand.

Example:

In this example control section, #M3 (not declared common) is allocated in two overlay

areas, #M2+#M3 and #M3+#M6.

A SEG #M1+(#M2+#M3),(#M4+#M5),(#M3+#M6)

The memory occupation can be illustrated by the following diagram.

#M1

#M2 #M4

#M3

#M3 #M5

#M6

SAMPLE SEG STATEMENTS

The following are examples of SEG statements used to obtain the memory configurations
diagrammed.

In the diagrams, the topmost level indicates the root or main module. Boxes in the same
vertical plane as the root module indicate segments that are loaded with the root module.
They are not separate modules and therefore cannot be loaded separately. Modules
appearing to either side of the root module represent overlays. They are loaded at the
relative location calculated by the Linkage Editor. The portions of the root module, or
other modules, that they overlay is dependent upon their length. The diagrams use dotted
lines to show the locations: at which they are loaded relative to the root module.

3-23

Example 1:

SEG Statement: [label] SEG A+B,C

In this example, module A is the root or main se!)ment. Module C overlays Bin one memory
area. Module B is loaded with root A. Module C is a separate overlay load module, designated

by the comma preceding it.

Alternate SEG Statement: [label] SEG A+(B,C)

In this sample statement, the parentheses act as c: logical grouping operator and are re

dundant. The preceding description applies.

Example 2:

SEG Statement: [label) SEG A+(B),C

In this example, module A is the desired root or main segment. Modules Band Care to

overlay one another in the same memory area. l\leither B nor C is loaded simultaneously
with the root A, because of the parentheses surrounding Band the comma preceding C.

Alternate SEG Statements: x
[label]

SEG

SEG

B,C
A+(X)

In this alternate example, SEG X defines modules Band C as separate load modules over

laying the same area in memory. Neither B nor C is loaded simultaneously with tlie root

A. The load module shown as B in the illustration will be named X on the library.

Note: Forward SEG references to the label fields of other SEG statements are not allowed.

Therefore SEG X must occur prior to the SEG that references it.

Example 3:

SEG Statement: [label] SEG A+B+(C+D,E),(F+(G),H)

In this sample, modules C and Dare loaded with the root, A and B: Module E overlays
D. Sub-complex F (modules F, G and H) overlav C and D. Modules E, F, G, and Hare

al I separate load modules.

3-24

A

B

Alternate SEG Statements: x
y

[label]

SEG

SEG

SEG

C+D,E

(F)+(G),H

A+B+X,Y

In this alternate example, SEG X defines sub-complex C containing modules C, D and E

with module E as a separate load module. Modules C and D, as specified, will load with

root A and Band are not available as separate load modules.

SEG Y defines sub-complex F containing three separate load modules, G, G and H.

Note: Forward SEG references to the label field of following SEG statements are not

allowed. SEG statements X and Y, therefore, must occur physically before the SEG

statement in which they are referenced.

Example 4:

I

SEG Statement: [label] SEG

Overlay Region 1

A+B+((C)+(D) ,E) ,(F+(G) ,H)

Overlay

Region

2

-
Overlay

Region

3

In this example, modules A and Bare the root or main segment with two overlays, sub

complexes C and F. Sub-complex C includes module C plus overlays D and E, and sub

complex F includes module F plus overlays G and H.

A

B

l
Overlay

c F Region

I ~-
1

E Overlay l G J H
Region

2

3-25

Overlay

Region

3

Alternate SEG Statements: v
w
[label]

SEG

SEG

SEG

C+(D),E

F+(G),H

A+B+(V),W

In this alternate example, SEG V defines sub-complex C containing overlays D and E

in addition to module C.

SEG W defines sub-complex. F containing overlavs G and H in addition to module F.

Parentheses around V, a simple expression, in th•! last SEG statement causes the sub

complex defined by V to be treated as a separatE load module. C is, therefore, a

separate load module, as are D (in parentheses) and E (preceded by a comma).

Since the sub-complex defined by Wis preceded by a comma in the last SEG state

ment, F is a separate load module. G and H are ~;eparate load modules by virtue of

their specification in SEG W.

The last SEG statement specifies the final structure with V and W supplying the sub

complex definition provided on the named statements.

Modules shown as C and F in the diagram will be named V and W respectively on the

library, because of their position in their respective SEG statements. Root module A

will be named by the label on the last SEG statement. Overlays D, E, G, and H will

be cataloged in the library under their given nam~s.

Note: SEG statements V and W must physically precede the statement in which they

are referenced.

Alternate SEG Statements: v
w
x
[label]

SECi

SEG

SEG

SEG

C+(D),E

F+(G),H

V,W

A+B+X

Parentheses around either V in SEG X or C in SEG V or X in the last statement could

be used to designate module Casa separate load module.

SEG V defines sub-complex C including load modules C, D, and E with D and E as

overlays.

SEG W defines sub-complex F including load modules F, G, and H with overlays

G and H.

SEG X defines the relationship between V and W occupying the same memory areas as

overlay sub-complexes.

The last SEG statement specifies the final structure with X supplying the sub-complex

definitions provided on the named statements.

3-26

Module Fin the diagram will be named Won the library. Naming of module C depends

on the option chosen above.

Since a comma precedes W in SEG X, parentheses around F would be redundant.

SEG statements V and W must precede SEG X which references them. SEG X must

occur physically before the last SEG statement.

Alternate SEG Statements: D SEG D,E

G SEG G,H

x SEG (C)+(D)

F SEG F+(G)

z SEG X,F

[label] SEG A+B+Z

In this example, SEG D specifies the relationship between D and E as overlays. E is

defined as a load module.

SEG G specifies the rnlationship between G and H as overlays. H is defined as a load
module.

SEG X defines sub-complex C as containing load modules C and the contents of SEG D

as a load module.

SEG F defines sub-complex F as containing module F and the contents of SEG Gas a

load module.

SEG Z specifies the relationship of SEG X to SEG F as overlays. The content of SEG F

is defined as a load module.

The last SEG statement specifies the final structure with Z bringing the sub-complex

definitions provided on the named SEG statements.

All modules on the library will be named as shown in the diagram.

LINK-EDIT MAP

The Linkage Editor creates a listing that includes a heading line, a list of the Linkage Editor
Directives included in thei input, and a list of the load modules produced, including the
name of each load module, its relative relocatable load address, its byte size, and the relative
address of its entry point. Under each load module is listed the other control sections,
object modules, and other load modules included in the named load module, together with
common block names, control section names, and entry points, and their associated
addresses. Externals in each module are also listed, showing the external name, the name of
the load module containing the entry point that satisfies the external, and the relative
address of the entry point.

3-27

TITLE LINE

The title line of the map appears as follows:

**LINKAGE EDITOR LEVEL-x mmddyy hhmmss

x Level designation of the Linkage Editor in use at the site.

mmddyy Current system date (month, day, year).

hhmmss System time (hours, minutes,. seconds).

DIRECTIVE LIST

The directive list includes all directives supplied to the Linkage Editor, whether included in
a directive set or embedded in the object module. It is essentially a list of the directive card
images.

LOAD MODULE LIST

The load modules are listed as follows:

LOAD MODULE= xxxxxxxx BSADR= nnnn SIZE= bbbb ENTRY POINT= aaaa
zzzzzzzz nnnn

CM name addr
CS name addr
EP name addr
PE name addr
EX name addr mod name

xxxxxxxx Name of the load module. as specified by the PGM or XQT
parameter or by SEG statements.

nnnn Relocatable load address, relative to a zero base.

bbbb Composite length of the locid module in bytes (described under
the heading Executable Pro~1ram Length).

aaaa Relative relocatable addres~; of the primary entry point of the
load module (the first entrv point if no primary entry point is
specified). Compilers generate primary entry points according
to their own rules.

zzzzzzzz Name of .an input object module which has been included in
the load module, and in which the items following the name
are found.

3-28

The content of the FETCH macro is as follows:

[label] FETCH symbolic location MOD==
of module name

or

ENTRY= symbolic location
of entry point

[.ERRCOMP= l~~S)]
[,LIST= (~~s)]

MOD= specifies the address (symbolic location) of the 8-byte field which contains the
EBCDIC name of the module to be brought into main storage. This keyword is required for
FETCH by module name only, and excludes the use of the ENTRY keyword. The module
named at the specified address must reside on the library named as the operand of the LIB
keyword on the //EXECUTE statement when the program is executed or on the system load
library, $SYSLODLIB.

ENTRY= specifies the address (symbolic location) of the 8-byte field in main storage which
contains the EBCDIC name of the entry point requested. The module containing that entry
point will be located and loaded into the program partition of main storage. That module
must have been link-edited as one of the segments or overlays of the program currently in
execution. This keyword is required for FETCH by entry point, and excludes the use of the
MOD keyword.

E.R RCOMP=YES specifies that control is to be returned to the requesting program if the
service request macro completes with errors. ER RCOMP=NO specifies that control is to be
retained by the system in the event of an error, and results in program abort. This keyword
is optional; the default is NO. Error completion codes are shown in the macro expansion,
Appendix F.

LIST= controls generation of the Service Request and of the parameter string for the macro.
YES generates an object string for the macro, but no SR instruction. General register 6 must
contain the address of the parameter string when the program is executed. NO generates an
SR instruction with no parameter string. Omission of the. LIST keyword generates an SR
instruction with the macro expansion (parameter string) in line, immediately following the
SR.

NOTE

Unlike most service request macros, the RETURN keyword is not valid with
the FETCH macro. Use of RETU RN=YES produces an execution error.

4-3

SAMPLE FETCH MACRO

The following is an example of a FETCH macro.

LEAP6 FETCH ENTRY=BAL 13,ERRCOMP=YES

This example will result in a search uf the Composite Entry Point List for the module
containing the entry point specified beginning at symbolic location BAL 13. That module
will be loaded into the program partition in which the program is currently executing, at the
relative load address specified by the Linkage Editor. Control will be transferred to the
newly loaded module at the entry point specified at BAL 13. Error completion processing
will be handled by the program. This macro call will generate both the Service Request and
the macro expansion in-line.

LOAD MACRO

The LOAD macro transfers the program load module specified in the macro, or containing
the entry point designated in the macro, into the program partition of main storage. The
module is loaded at the relative load address specified either by the Linkage Editor or by the
macro. Control is returned to the point of call after the LOAD is completed or immediately
after the macro is accepted by the system. The address of the primary entry point of the
newly loaded module or of the named entry point is returned in the SR packet. If
RETURN=YES is coded, the problem program must check the completion status indicator
to determine when the LOAD is completed :m that the entry point address can be
referenced.

The LOAD macro is used primarily for the following purposes:

• To bring fixed data modules, such as translation tables or prepared
messages, into dynamically variable storage or overlay areas.

• To load a program segment at thn address specified by the Linkage
Editor and transfer control at some other point in the problem
program. The user must, of coursH, code the instructions to transfer
control to the loaded program.

Any relocatable references to a module that is loaded at a relative address other than that
assigned by the Linkage Editor are invalid.

4-4

The content of the LOAD macro is as follows:

[label] LOAD MOD=symbolic location
of module name

or
ENTRY=symbolic lo~ation

of entry point

[
LOADADR=symbolic location]

' of load address

[,ERRCOMP= l~~S)J
[usT= (~~s}]
[RETURN= (~6s)]

MOD= specifies the start address (symbolic location) of a 10-byte field, of which the first 8
bytes contain the EBCDIC name of the module to be loaded. The last two bytes will receive
the primary entry point returned by the Loader. MOD= is required for LOAD by module
name only, and precludes the use of the ENTRY keyword.

ENTRY= specifies the start address (symbolic location) of a 10-byte field, of which the first
8 bytes contain the EBCDIC name of the entry point which must reside in one of the
defined segments or overlays of the program making the call. The last two bytes of the area
will receive the named entry-point address returned by the loader. Use of the ENTRY
keyword precludes use of the MOD keyword.

LOADADR= designates the main storage address (symbolic location) at which the requested
module is to be loaded. Whenever this keyword-operand is omitted, the requested module
will be loaded at the relative address originally specified by the Linkage Editor.

ER RCOMP=YES specifies that control is to be returned to the requesting program if the
service request macro completes with errors. ER RCOMP=NO specifies that control is to be
retained by the system in the event of an error, and results in program abort. This keyword
is optional; the default is NO. Error completion codes are shown in the macro expansion,
Appendix F.

LIST= controls generation of the Service Request and of the parameter string for the macro.
YES generates an object string for the macro, but no SR instruction. General register 6 must
contain the address of th€! parameter string when the program is executed. NO generates an
SR instruction with no parameter string. Omission of the LIST keyword generates an SR
instruction with the macro expansion (parameter string) in line, immediately following the
SR.

RETURN=YES specifies tlhat control is to be returned to the point of call immediately after
the LOAD request is recognized by the system and queued. RETURN=NO results in return
of control only after the LOAD macro has completed processing, and the proper module is
loaded. The problem program is placed in a wait state until completion. The default is NO.

4-5

The address of the proper entry point will be returned with the packet upon completion of
the request. If RETURN=YES was coded, the problem program is responsible for checking
the completion indicator (Cl) bit in the packet to verify completion of the request.

SAMPLE LOAD MACRO

The following is an example of a LOAD macro.

LOAD MOD=PROG16A,RETURN=:NO,UST=NO,LOADADR=CATT

In this example the private library (if any) and $SYSLODLI B will be searched for a module
named in the field whose symbolic address is PROG16A. The module will be loaded at
symbolic location CATT. Error processing will be handled by the system. This macro will
generate only the Service Request in-line. Another LOAD macro in the problem program
must set up the parameter list and the problem program must load general register 6 with
the address of the parameter list prior to execution of the macro illustrated here. Control
will be returned after the request has been completed and the module has been loaded. This
macro has no label.

4-6

CATALOG BLOCK

Catalog Block

-8 Control Header
-6

-4 Sequential Catalog Link
-2

0
2
4
6

8

l-~~-~~-~~~~~-B_l_o_ck~N._u_m_b_e_r~~~~~~~~~---1} Next Member
Block Offset Link ·.····· ·.·.·, ·.·.·.·.· :·'.·::::::·:· ·~r

;~:~;~;~\~~\\~)~'.;~;:::::::::: . ~~~~\j\~\~~~\j\ :\\\\~j :\\\\l\\\1\\~\\\j\\~\\\\ .~::~;::::: :: ;::: ;:;::·: ·: ·:·:·: .. ::: :: : . :·: ·:. :·: ·:·: ·: ·:·: ·: :\\~j\\\\\\\\~1

Type

10
12
14

16
18
20
22
24
26
28

30

32
34

No. Extents

Name

Control Header

Sequential Catalog

Link

Bytes

-8 ·- -5

-4 ·- -1

Next Member Link 0-5

Block Number 0-3.

Block Offset 4-5

Creation Date

Creation Time

Member Name

Attributes

Version

T
Subdivisiion Link

Additional Member

Entries

No. Subdivisions

Description

Common stored data format standard record header.

Points to ne><t catalog block in this library; last link is zero.

The associated catalog block number which contains the next

member entry in the chain.

The byte displacement within the block.

6 Reserved for system use.

Crea ti on Date 7-9 Date member enters the library; form yyjjj, packed decimal:

VY year

jjj Julian date

A-3

Name

Creation Time

Member Name

Type

Attributes

Version

No. Extents

No. Subdivisions

Subdivision Link

Bytes

10-13

14-21

22

Description

Time member enters the library; form hhmmss, packed decimal:

hh Hour

mm Minute

ss Second

Member identification,: 1-8 alphanumeric characters, left justified,

blank filled.

Code which indicates the type of member:

Bit 0 Source member

Bit 1 Unused

Bit 2 Object member

Bit 3 Absolute load member
Bit 4 Relocatable load member
Bit 5 Macro member
Bit 6 Procedure member

Bit 7 Unused

23 Reserved for system u:;e.

24-25

26-27

28

29

30-33

Code to define charac::eristics which are unique within each

type.

Optional version identifier for the member.

Number of user words which may be attached to the entry; range

l-10.

Number of subdivision descriptors contained in this entry;

range 1-5.

Initial block number of subdivision.

A-4

MEMBER DEFINITION BLOCK (MOB) FOR LOAD MODULES

0

2
4

6
8

10

12
14
16

18

20
22
24
26

28

30

32
34
36
38
40

42

Name

MDB Switches

Member Definition Block for Load Modules

I---·

I---·

I---·

I---·
Type

I---·

I---·
Extents (==6)

I---·

I---·

1----·

~-

1----·

Reserved
I-·

t---·

I---·

I---·

.....___,

Byties

0

0

0

0

0

0

0

MDB Switches

MDB Size

Member Name

J Reserved

Attributes

VE~rsion

] Subdivisions (=3)

CEPL Subdivision Block No.

TEXT Subdivision Block No.

RCS Subdivision Block No.

Load Module Size (bytes)

I Tag
Relative Load Address
Primary Entry Point

F DT Byte Offset

Total Size Commitment (bytes)

Bits Description

Available

user extension
bytes at ti me
member is

stored

0 Indicates member could not be found in the

library search.

Member found but store was requested in an

ADD mode.

2 1/0 error during library function.

3 Reserved for system use.

4 0 indicates REPLACEMENT mode store.

1 indicates ADD mode store.

5 Delete member when found.

6-7 Reserved for system use.

0-7 Reserved for system use.

A-7

Name Bytes Bits Description

MOB Size 2-3 0-7 Length of MOB in bytes, not including MOB Switches

or Size cells.

Member Name 4-11 0-7 Member identification; 1-8 alphanumeric characters,

left justified, blank filled.

Type 12 0-7 Code· which indicates the type of member:

Bit 0 Source member
B;t 1 Unused

B•t 2 Object member

Bit 3 Absolute load member
B;t 4 Relocatable load member
s;t 5 Macro member

B:t 6 Procedure member

Bt7 Unused

Reserved 13 0-7 Reserved for system use.

Attributes 14-15 0-7 Cod£· to define the characteristics unique to each

type: bit 0 indicates member deleted.

Version 16-17 0-7 Optii)nal version identifier for the member.

Extents 18 0-7 Number of user words which may be attached to the
entrv; maximum = 6 words.

Subdivisions 19 0-7 Number of subdivision descriptors which are con-

tained in this entry.

Maximum = 4 subdivision descriptors.

CEPL Subdivision 20-23 0-7 Initial block number of the Composite Entry Point

Block No. List !iUbdivision.

TEXT Subdivision 24-27 0-7 Initial block number of the TEXT subdivision.

Block No.

RCS Subdivision 28-31 0-7 lniticil block number of the Relocation Control

Block No. Stream subdivision.

Load Module Size 32-33 0-7 Size in bytes of the load module.

Reserved 34 0-7 Reserved for system use.

Tag 35 0-7 Reserved for future use for extended addressing.

A-8

B. LIBRARIAN EXECUTION-TIME ERROR MESSAGES

There are two types of SYSOUT error messages: those issued directly by the Librarian
(LI BUTI L) program, and those issued directly from the system message library.

MESSAGES ISSUED BY THE LIBUTIL PROGRAM

The LI BUTI L program execution-time error messages are all printed on the device specified
by the DEV= parameter on the //DEF statement that reads //DEF I D=LIST, DEV=. All
message error codes begin in print position 2. They have the following fields:

Where: pp is always LB, specifying the error as a LI BUTI L error.

ss is either ER or WA, where ER specifies fatal errors and WA specifies
warning errors.

eee is a 3-di~Jit error number specifying the error within the type (ER or
WA).

t is a single digit which is either 2 to specify warning or 8 to specify
fatal error conditions.

After the error code, the following text appears for al I messages having the ER specification
in the ss field:

LIBRARIAN ERROR CODE

The following text appears after all the error codes have the WA specification in the ss field:

LIBRARIAN WABNING CODE

For a description of the error code, refer to the explanation of error codes listed below.

ERROR CODE EXPLANATION OF ERROR CODE

LBER0018 An invalid or unsupported parameter has been specified.

LBER0028 The number of MEM parameters exceeded the maximum.

t

LBER0038 An invalid or unsupported command is specified.

B-1

ERROR CODE

LBER0048

LBER0058

LBER0068

LBER0078

LBER0088

LBER0098

LBER0108

LBEROl 18

LBER0128

LBER0138

LBER0148

LBER0158

LBER0168

LBER0178

LBER0188

LBER0198

LBER0208

LBER0218

LIBER0228

EXPLAl'\ATION OF ERROR CODE

The member type in the MEM parameter is invalid.

An FDT could not be found for a required file ident that should have been

specified.

The member to be patched was riot relocatable (REL) or absolute (ABS).

The patch directives operator is other than VER or REP and is not supported.

The input member that was requested to be printed or punched has a first

segment link of zero where the link to the source file should be.

The input member that was requested to be printed or punched cannot be found

on I LIB by library search.

The input member that was requested dumped cannot be found on I LIB by

library search.

The load input member identific.3tion card specifies a segment number that is

greater than the maximum segment number for this library.

The load input member identific.Hion card is out of place.

Input/output error.

A segment in the data input to h~ loaded is greater than the highest segment
for the present member as specified by the member identification card.

A segment specified in the data i 1put to be loaded is a duplicate of the member
being loaded.

No patch is in the patch directive).

An invalid hexadecimal digit is in the patch directive.

A patch verification directive faiied to compare equally with the specified

relocation attribute.

The input member in an inclusivH copy cannot be found on ILIB by library

search.

The output member in an inclusive copy was found on OLIB by library search

and is protected by the MEM parameter.

The member that was requested patched cannot be found in the U LIB by

library search.

In a patch directive, the dfsplace,11ent was to an odd address.

B-2

ERROR CODE

LBER0238

LBER0248

LBER0258

LBER0268

LBER0278

LBER0288

LBER0298

LBER0308

LBER0318

LBER0328

LBER0338

LBER0348

LBER0358

LBER0368

LBER0378

LBER0388

LBER0398

LBER0408

EXPLANATION OF ERROR CODE

In a paitch directive, the relocation attribute is invalid.

A patch verification directive failed to compare equally with the specified text.

In an update function, the input member cannot be found on the I LIB by

library search.

In an update function, the output member specified was found on the I LIB

by library search and is protected by the MEM parameter.

The copy member requested during an update function could not be found by

library search.

An insiert was requested duriing an update but no input member was specified

by the MEM parameter.

The Mth parameter in an update insert or copy directive is less than the Nth

parami~ter in that same directive.

The Nth parameter in an update insert directive is less than the present record
position.

Durin£1 an update, an insert or copy directive exceeded the file size. The Nor

M was greater than the last record number on that particular me.

The input member that was to be deleted cannot be found by the library search.

The input member to be renamed cannot be found on the ULIB by the library

search ..

The output member name, the name which the input member name will be re

named to, already exists in the ULIB and is protected by the MEM parameter.

The first segment link in the! member to be updated, the input member, is zero.

It should contain the relative block of the beginning of the source segment.

An invalid patch directive has been specified.

An invalid member type code is in an existing library.

A patc:h directive displacement has exceeded the member size.

The number of sub-parameters exceeds the maximum.

The insert directive in the update function has an invalid N specified, either:

o N = 0 or unspecified which has no meaning in an insert directive,

o N = 1 and the input member position is past 1.

B-3

ERROR CODE

LBER0418

LBER0428

LBER0438

LBER0448

LBER0458

LBER0468

LBER0478

LBER0488

LBER0498

LBER0508

LBER0518

LBER0528

LBER0538

LBER0548

LBER0558

LBER0568

LBER0578

LBER0588

LBER0598

LBER0608

LBER0618

LBER0628

LBER0638

EXPLANATION OF ERROR CODE

A sub-parameter length exceeds the maximum.

A right parenthesis is missing from a sub-parameter specification.

A PAR card was not ended by a blank or comma.

A parameter length exceeds the maximum.

A literal string length exceeds the maximum.

A right-most quote in a literal string is missing.

The keyword length exceeds the maximum.

An equal sign is missing in the kevword scan.

An invalid SORTKEY parameter s specified.

An invalid SELECT parameter is ~pecified.

An invalid MODE parameter is specified.

An invalid SEQCHK parameter is specified.

An invalid LIST parameter is specified.

Alphanumeric data was found in c1ll numeric parameters.

An invalid SPACE parameter is specified.

The MEM parameter does not contain a member name.

A sequence step-down has occurrc·d in the specified field when a sequence

check was requested.

The sequence field length plus the field position is greater than the I Fl L

block size.

The sequence field length exceeds the maximum.

The I LIB block size is not equal to the OLIB block and a copy is requested.

The member type specified is not compatible with the library function requested.

MODE=F but the member type is not ABS, or the member type is ABS, but the

sub-division two (text) is zero.

Multiple members have been specified for the UPDATE function.

8-4

ERROR CODE

LBER0648

LBER0658

LBER0668

LBER0678

LBER0688

LBER0698

LBER0708

LBER0718

LBER0728

LBER0738

LBER0748

LBER0758

LBWA0012

LBWA0022

LBWA0032

LBWA0042°

LBWA0052

LBWA0062

LBWA0072

LBWA0082

LBWA0092

LBWA0102

LBWA0112

LBWA0122

EXPLANATION OF ERROR CODE

A type 1 member. MEM=(input-member,member-type) is specified and is
illegal. UPDATE needs an output member name.

No member is specified for the UPDATE function.

A library block size exceeds the maximum buffer size.

Null input to update create mode.

Invalid UMODE specification.

N, M of updated directive is not sequential.

N or M of update directive e>:ceeds length of sequence field specified in SEQPOS.

Null input to load function.

The OL.IB type parameter is invalid (i.e., is not SYM, ENC or ALL).

The numeric parameter is lar!~er than 5 digits.

The output library block SIZE= parameter is less than the minimum 84 bytes.

The library type is invalid on an existing library.

Excessive parameters were specified and ignored.

An inconsistent sequence type parameter was specified.

An inconsistent list type parameter was specified.

Duplicate specifications of IN ITPG.

Duplicate specifications of LIST.

Duplicate specifications of MODE.

Duplicate specifications of MTYPE.

Duplicate specifications of NEWSEQ.

Duplicate specifications of OFI L.

Duplicate specifications of OLIB.

Duplicate specifications of PAGSIZ.

Duplicate specifications of SELECT.

B-5

ERROR CODE EXPLANATION OF ERROR CODE

LBWA0132 Duplicate specifications of SEOCHK.

LBWA0142 Duplicate specifications of SEOPOS.

LBWA0152 Duplicate specifications of SORTKEY.

LBWA0162 Duplicate specifications of SPACE.

LBWA0172 Duplicate specifications of TITLE.

LBWAOl82 Duplicate specifications of ULIB.

LBWA0192 Duplicate specifications of VERSION.

LBWA0202 Duplicate specifications of WLI B.

LBWA0212 Duplicate specifications of COMMAND.

LBWA0222 Duplicate specifications of I Fl L.

LBWA0232 Duplicate specifications of I LI 8.

LBWA0242 SELECT=! and no members supplied. SELECT=E is defaulted too.

LBWA0252 Plus or minus sign in position 1 d update directive assumed to be data.

LBWA0262 Duplicate specification of UMODE.

MESSAGES ISSUED FROM THE SYSTEM MESSAGE FILE

The fol lowing messages can appear on the SYSOUT file; they are issued from the system
message file $MSG LIB. Each message is preceded by three asterisks, a 4-digit, system
oriented hexadecimal status code and an 8-character error code that has the following
format:

I PP I ss I eee I t J

Where: pp is always LB, specifying the errnr as a LI BUTI L error.

ss is variously OP, TR, ST, or SE specifying the module within the
LI BUTI L program that issued ·:he message.

eee is a 3-digit number 001 through 006.

t is a single digit which is always 8 meaning that all the errors are
fatal errors.

B-6

The message text fol lows the error code. The text of the message ends with four asterisks.

MESSAGE

ID

HEX STATUS

COMPLETION

CODE

2F01

2F02

2F03

2F04

2F05

2F06

ERROR

CODE

LBOP0018

LBOP0028

LBOP0038

LBTR0048

LBSE0068

8-7

MESSAGE TEXT

INVALID LIBRARY DEFINITION****

One of the following conditions has been

detected:

• The file is not sequential.
• The library index block is not in the

proper format.

• The library type does not match the
type specified in the library OPEN

packet.

THE FDT FOR THIS LIBRARY COULD NOT

BE FOUND IN THE FDT CHAIN****

Either the system failed to open the library or

the partition was destroyed.

INCONSISTENT USAGE SPECIFICATION IN
FDT****
One of the following conditions has been
detected:
• Library was opened with undefined

USAGE= keyword specified.

• Library has been opened for 1/0.
• Library has been opened for input and

HBW=O.

1/0 ERROR ON LIBRARY****

A disc 1/0 error has occurred on a library.

END OF ALLOCATION REACHED DURING

ATTEMPTED STORING OF A MEMBER
ENTRY****

End of disc al location has occurred for this

library.

MEMBER TYPE, FOUND IN MDB FOR

SEARCH OR STORE, IS INVALID FOR
THE SUBJECT LIBRARY****

The member type requested, searched, or stored

is not compatible with the subject library. For

example, a SRC (source) member was requested,

searched, or stored in a library whose type was

ENC (encoded) only. If a SRC member was

requested, searched, or stored in a SYM

(symbolic) or ALL type library, no error would

have occurred.

INDEX

Absolute load module 1-1,3-8 Identification card, member 2-30
IF I L keyword 2-12

Block size constraints 2-2 I LIB keyword 2-6
BOUND keyword 3-15 Index table A-1
Bound register 3-15 IN ITPG keyword 2-10

Catalog block 2-1,A-3 Keyword-operands

Catalog ordinals A-1 for LIBUTIL 2-6

Checkout debugging 4-1 for Linkage Editor 3-10

Coding 1-1
COMMAND keyword 2-6 Library

Common allocation 3-22 description 2-1

Compilation 1-1 structure 2-1

Composite entry point list A-8 Library block size 2-2

Composite length 3-32 Library compression 2-23

Control Language requirements Library directory 2-1

for Librarian 2-4 Library macros G-1

for Linkage Editor 3-9 Library member 1-2,2-1

COPY command 2-19 Library member protection 2-8

Create symbolic member 2-41 Library overhead
source libraries 5-1

Data separator 2-4 encoded libraries 5-2

DELETE command 2-21 Library search domain 3-4

Directive set 3-3 Library structure 2-1

Directives, linkage editor 3-15 Library types 2-7

Directory, library 2-2 Library utility 2-4

DUMP command 2-29 LIBUTIL 2-4

Dumped output format 2-11 LI BUTI L keyword summary 2-14

Duplicate entry points 3-4 Linkage Editor
general 1-1

END directive 3-18 description 3-1

ENTRY directive 3-16 Linkage editor input 3-3

Entry point list A-6,D-1 Linkage editor output 3-7

Entry point search domain Link-edit map 3-27

description 3-4 List file, linkage editor 3-9

specified by USE directive 3-17 LIST operand, LI BUTI L 2-9

EHROR keyword 3-14 LOAD command 2-32

Error messages Loader 4-1

for Librarian 8-1 Loader macro expansion F-1

for Linkage Editor C-1 LOAD macro 4-2

for Loader H-1 Load module

Executable program 1-1 absolute 1-1,3-8

Expressions in SEG directives 3-19 relocatable 1-1,3-8

External references 3-4 LSD keyword 3-11

LST keyword 3-13

FETCH macro 4-2

lndex-1

MOB layout A-5,A-7 Redefining primary entry points 3-16
Member definition block Relocatable load module 1-1,3-8

for load modules A-7 Relocatable object module 1-1
for object modules A-5 Relocation control stream A-8

Member identification card 2-30 Relocation group dictionary A-6,D-4
Member, library 1-2,2-1 RENAME command 2-26
Member separator card 2-30 Renaming library members

Member type with COPY command 2-19

in catalog block A-4 with PACK command 2-25

in MOB A-6,A-9 with RENAME command 2-26

mixing on libraries 2-2
valid codes 2-8 SEG directive 3-18

MEM keyword 2-7 SEG terms

Memory occupation 3-19 control section name 3-21

Mixing member types 2-2 library name 3-22

MODE keyword 2-11 module name 3-21
Modify symbolic member 2-41 SELECT keyword 2-9
Module linking 3-1 Separator card

MTYPE keyword 2-8 data 2-4
member 2-30

NAME directive 3-16 SE OCH K keyword 2-11
NEWSEQ keyword 2-11 SE OPOS keyword 2-10

Se ~uence field 2-10
Object modules 3-5 Se!·vice request expansion E-1
Object module structure D-1 SIZE keyword 3-14
OFFSET keyword 3-12 Source module 1-1
0 FI L keyword 2-12 SPACE keyword 2-10
OLIB keyword 2-6 SRH keyword 3-13
ORG keyword 3-12 Standard subroutine use 3-1
Operators in SEG directives 3-19

Text string group D-2
PACK command 2-23 TITLE keyword 2-9
PATCH command 2-34
PGM keyword 3-11 Ul.IB keyword 2-12
PGSIZE keyword 2-10 UMODE keyword 2-12
POOLSIZ UPDATE command 2-41

keyword 3-13 UPDATE directives
use in MOB A-10 pointer directives 2-43

Presetting common 3-23 copy directives 2-47
Primary input file 2-12 USE directive 3-17
Primary input module 3-3
PR I NT command 2-38 VERSION keyword 2-10
PR IV keyword 3-15
Privileged task 3-15 WL I B keyword 2-13
Program generation 1-1 Work library 2-13
Protection of member 2-8
PTOC XClT keyword 3-11

command 2-13
sample listing 2-16

PUNCH command 2-39
Punch symbolic member 2-39
Punch encoded member 2-29

lndex-2

	000
	005
	006
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	2-39
	2-40
	2-41
	2-42
	2-43
	2-44
	3-01
	3-02
	3-03
	3-04
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	4-03
	4-04
	4-05
	4-06
	A-03
	A-04
	A-07
	A-08
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	Index-1
	Index-2

