
MRX/OS Program Library Services
Reference Manual
2200.005

0
0
3
-c
c
(I) .,, ...

.. (J)
0 '< c. tn c n (I)

ur 3

March 1973 Edition

Requests for copies of Memorex publications should be made
to your Memorex representative or to the Memorex branch
office serving your locality.

A reader's comment form is provided at the back of this
publication. If the form has been removed, comments may be
addressed to the Memorex Corporation, Publications Dept.,
8941 - 10th Ave. No. (Golden Valley) Minneapolis,
Minnesota 55427.

©1973, MEMOREX CORPORATION

PREFACE

Program Library Services encompass three main system products, the Librarian utility
program (LI BUTI L), the Linkage Editor, and the Relocating Program Loader. Each of these
system programs is discussed in a separate section of this manual. Control Language
statements used to request the programs are designated, and the //PAR cards for LIBUTIL,
directives for the Linkage Editor, and macros for the Relocating Program Loader are
discussed in detail.

Job stream examples are supplied with each product description. Library overhead is
discussed in Section 5. Table formats and error codes are specified in the appendices.

Other Memorex manuals with which the user should be familiar are:

M RX/OS Control Program and Data Management Services, Extended
Reference

M RX/OS Control Language Services, Extended Reference

M RX/OS Assembler Reference

ii ii

TABLE OF CONTENTS

Section

1

2

INTRODUCTION

Coding
Compilation
Linkage Editing ·
Library Processing
Loading

LIBRARIAN

Introduction
Library Description
Library Structure
Data Structure
Library Utility Program (LI BUTI L)

Control Language Requirements
Data Separator Statement
Programming Considerations

Keyword-Operand Descriptions
Function Keyword (COMMAND or COM)
Input Library (I LIB)
Output Library (0 LIB)
Member Name (MEM)
Member Type (MTYPE)
Member Selection (SELECT)
Listing (LIST)
Listing Title (TITLE)
Initial Page Number (INITPG)
Page Size (PGSIZE)
Line Spacing (SPACE)
Version Number (VERSION)
Sequence Field Definition (SEQPOS)
Sequence Renumbering (~JEWSEQ)
Sequence Checking (SE OCH K)
Dump Output Format (MODE)
Update Mode (UMODE)
Primary Input File (I Fl L)
Output Data File (OFI L)
Patch Library (U LIB)
Work Library (WLI B)

Command Descriptions
Print Table of Contents (PTOC)

Sample PTOC Listing

v

Page

1-1

1-1
1-1
1-1
1-2
1-2

2-1

2-1
2-1
2-1
2-2
2-4
2-4
2-4
2-5
2-6
2-6
2-6
2-6
2-7
2-8
2-9
2-9
2-9
2-10
2-10
2-10
2-10
2-10
2-11
2-11
2-11
2-12
2-12
2-12
2-12
2-13
2-13
2-13
2-16

TABLE OF CONTENTS (Continued)

Section Paige

2 (Cont) Copy Library Member (COPY) 2-'19
Delete Library Member (DELETE) 2-21
Compress Library (PACK) 2-23
Assign New Member Name (RENAME) 2-26
Punch Encoded Member (DUMP) 2-29
Load Dumped Member (LOAD) 2<32
Modify Load Member (PATCH) 2<34

Patching Relocatable Load Modules 2<35
PATCH Examples 2<36

Print Symbolic Member (PRINT) 2-:m
Punch Symbolic Member (PUNCH) 2<39
Create or Modify Symbolic Member (UPDATE) 2-41

Pointer Directives 2-43
Pointer by Relative Record Number 2-43

Copy Directive 2-47

3 LINKAGE EDITOB 3-'I

Functional Description 3-'I
Module Linkage and Editing 3-'1
Additional Input Sources 3-'1
Storage Reservation 3-2
Overlay Program Creation 3-2
Special Processing and Error Diagnosis 3-2
Load Module Attribute Assignment 3-2

Input Structure 3-3
Basic Input 3-3
Secondary Input 3-:3

Library Search Domain 3-4
Entry Point Search Domain 3-4

Object Modules 3-5
Language Processor Relationships 3-5

Assembler 3-6
COBOL 3-6
FORTRAN 3-6
RPG II 3-7

Output 3-7
Absolute Load Modules 3-8
Relocatable Load Modules 3-8
Load Module Creation 3-8

Control Language Statement Descriptions 3-9
File Definition 3-9

List File 3-9
Input File 3-9

vi

TABLE OF CONTENTS (Continued)

Section Page

3 (Cont) Output File 3-9
Directive File 3-10

Parameter Specifications 3-10
PGM Keyword 3-11
XQT Keyword 3-11
LSD Keyword 3-11
ORG Keyword 3-12
OFFSET Keyword 3-12
POOLS I Z Keyword 3-13
SRH Keyword 3-13
LST Keyword 3-13
SIZE Keyword 3-14
ERROR Keyword 3-14
PR IV Keyword 3-15
BOUND Keyword 3-15

Linkage Editor Directives 3-15
NAME Directive 3-16
ENTRY Directive 3-16
USE Directive 3-17
END Directive 3-18
SEG Directive 3-18

Expressions 3-19
SEG Terms 3-21

Control Section Name 3-21
Module Name 3-21
Library Name 3-22

Common Allocation 3-22
Sample SEG Statements 3-23

Link-Edit Map 3-27
Title Line 3-28
Directive List 3-28
Load Module List 3-28
Sample Map 3-29

Executable Program Length 3-32
Job Stream Examples 3-33

4 RELOCATING PROGRAM LOADER 4-1

Introduction 4-1
Macro Specifications 4-2

Macro Format 4-2
FETCH Macro 4-2

Sample FETCH Macro 4-4
LOAD Macro 4-4

Sample LOAD Macro 4-6

vii

TABLE OF CONTENTS (Continued)

Section Page

5 LIBRARY OVERHEAD 5 .. 1

Introduction 5-1
Source Category 5·· 1
Encoded Category 5-2
Estimating Module Size 5-3

APPENDIX A - LIBRARY TABLE FORMATS Ai-1

APPENDIX B - LIBRARIAN EXECUTION-TIME ERROR MESSAGES B-1

APPENDIX C - LINKAGE EDITOR OBJECT-TIME ERROR MESSAGES C-1

APPENDIX D - OBJECT MODULE STRUCTURE D-1

APPENDIX E - SERVICE REQUEST EXPANSION E-1

APPENDIX F - MACRO EXPANSION FOR LOADER SERVICE REQUEST F-1

APPENDIX G - LIBRARY MACROS G-1

APPENDIX H - SYSTEM LOADER ERROR MESSAGES H-1

viii

LIST OF FIGURES

Figure

2-1

2-2

3-1

3-2

Library Structure

Sample PTOC Listing

Sample Link-Edit Map

Storage Occupation for Sample Program

LIST OF TABLES

Table

2-1 Summary Table of LIBUTI L Keywords by Command*

2-2 Default Values for LI BUTI L PTOC Function

2-3 Default Values for LI BUTI L COPY Function

2-4 . Default Values for LI BUTI L DELETE Function

2-5 Default Values for LI BUTI L PACK Function

2-6 Default Values for LI BUTI L RENAME Function

2-7 Default Values for LI BUTI L DUMP Function

2-8 Default Values for LI BUTI L LOAD Function

2-9 Default Values for LI BUTI L PATCH Function

2-10 Default Values for LIBUTI L PRINT Function

2-11 Default Values for LI BUTI L PUNCH Function

2-12 Default Values for LI BUTI L UPDATE Function

ix

Page

2-3

2-18

3-30

3-32

Page

2-14

2-15

2-20

2-22

2-24

2-27

2-29

2-32

2··35

2-38

2-40

2-43

1. INTRODUCTION

All programs intended to execute under the Memorex Operating System must be processed
by the Linkage Editor, must be entered on libraries, and must be loaded by the Relocating
Program Loader. The relationship of these programs to each other and to the rest of the
operating system can best be described by defining their roles in program generation.
Program generation comprises five basic steps, each of which produces a uniquely structured
physical module. A module in any of the five forms may be an entire program or a part of a
program, such as a subroutine or overlay. The five bask steps of program generation are
coding, compilation, linkage-editing, library processing, and loading.

CODING

The coding process results in a collection of statements in whatever programming language is
used. This collection of statements, when named, is called a source module. It is acceptable
as input to either the library utility UPDATE function or the intended language processor.

COMPILATION

Compilation is the process of translating a source module into an intermediate form of
machine language and codes that allow linking these modules together. These modules,
which are the output of all language processors, are called relocatable object modules.

LINKAGE EDITING

The Linkage Editor creates loadable, executable programs, using as input one or more object
modules and/or relocatable load modules. The Linkage Editor resolves all cross references
between the modules and combines them into one or more load modules. An executable
program consists of one or more load modules. A load module is that portion of an
executable program that is processed and loaded by a single request to the Relocating
Program Loader. The number of load modules comprising an executable program depends
entirely upon the overlay structure specified by the programmer. Two types of load
modules can be produced.

• Absolute load modules are link-edited to execute at a fixed main
storage location, and will always be loaded at that location. They are
portions of the Operating System Control Programs and Transient
Service Routines.

• Relocatable load modules are link-edited to execute at a base of
relative zero and may be loaded and executed at any main storage
location. At load time, the Relocating Program Loader modifies all
address references to reflect actual load addresses.

1-1

LIBRARY PROCESSING

The Linkage Editor calls the Librarian to catalog and write load modules on user-specified
libraries. The libraries are partitioned sequential data files; a library may contain a variable
number of "members", each cataloged by name and type. Members may be load modules,
unlinked object modules, source language programs, procedures, macros, or other types of
data. The Librarian provides routines that allow the user to perform library maintenance
functions, such as patching load modules, copying members from one library to another,
modifying source members and so on.

LOADING

The Relocating Program Loader retrieves load modules from a user-specified library. The
modules are loaded into main storage at the proper location for execution, and address
references are modified as required.

1-2

2. LIBRARIAN

INTRODUCTION

A library in the context of this manual is a1 partitioned data file that consists of a group of
program modules, procedures, or other types of data, called members. The Librarian is a
collection of routines that support the creation, maintenance, and processing of libraries.
These routines allow the system to open, search, and close libraries and to store members in
libraries. They also provide a utility program (LI BUTI L) that enables customer programmers
to perform various library maintenance functions such as adding members to libraries,
modifying existing members, deleting members, copying, dumping, printing, and punching
members of a library. The LIBUTIL program executes in a user partition of 8192 bytes, or
larger.

LIBRARY DESCRIPTION

Libraries are sequentially organized and occupy space on a single disc volume. The space
need not consist of contiguous tracks. Space for a library is allocated through Control
Language //DEF I NE statements. Unlike other sequential files, space for a library cannot be
expanded after allocation. Six types of library members are supported, divided into two
categories: symbolic and encoded. The first category, called symbolic, includes the
following members:

• Source input to a language processor (assembler or compiler)

• Unassembled macros

• Control Language procedures

The second category, called encoded, includes these members:

• Unlinked object modules

• Relocatable load modules

• Absolute load modules

LIBRARY STRUCTURE

Along with the data for each member, each library includes a directory that contains the
identification and location of each member in the library as well as descriptive information
about each member.

Members are added sequentially to the end of a library. When no more space is available, no
additional members can be added. However, a member that is no longer needed may be
deleted from a library; its directory entry is flagged to indicate that the member is inactive.

2-1

The space occupied by the deleted member and its directory entry does not become
available until the library is compressed.

The library directory consists of a catalog ordinal table and a catalog. The catalog ordinal
table occupies the first blocks of the library and contains information about the library,
including the type of library, and pointers to the current catalog block, and the highest
block written. The catalog consists of one or more blocks that contain member entries. Each
entry includes the member name, version, type, date and time of creation, and starting
locations of its data subdivisions. Member entries may vary in length, but all catalog blocks
are the same length as the allocated block size of the file. Therefore the number of member
entries per catalog block is variable. As each member enters the library, the Librarian
constructs its catalog entry in the current catalog. After a member has been stored, and its
member entry made in the catalog, if there is not enough space in the current catalog block
for the maximum sized member entry, a new catalog block is built into the next avaiilable
area in the library. Thus the member catalog occupies only the space required for current
members. The data for each member follows the catalog block in which the member entry
appears. Figure 2-1 illustrates the structure of a library. Appendix A describes the catalog
ordinal table and the catalog in detail.

DATA STRUCTURE

All blocks in a library are the same length as specified when the file is allocated. Other
system products impose certain restrictions on block size, according to the type of library.

• Encoded libraries require a fixed block size of 256 bytes

• Symbolic libraries must have a block size of at least 84 bytes, but
symbolic libraries used for storing Control Language procedures must
not exceed. a block size of 128 bytes. Block size for symbolic
libraries used for source members depends on the requirements of
the particular language processor. On the minimum system, such
libraries must have a block size of 84 bytes for assemblers and
compilers.

Different types of members can be mixed on the same library. However, the user must
exercise care .when doing so, because of the size constraints and Control Language
restrictions (see Programming Considerations in this section). For example, the LI BUTI L
program does not prohibit placing a Control Language procedure member on a library
whose block size exceeds 128 bytes, but the Control Language Services cannot retrieve a
procedure from such a library.

The data formats used in constructing libraries vary according to the member type. Some
members use a four byte record header (not common stored data format) while others are
without headers.

Each module or subdivision of a module terminates with a data block written with ai zero
length data field (EOF indicator).

2-2

Catalog
Ordinal
Table

Catalog
Block

Data
Blocks

Catalog
Block

Data
Blocks

Contains pointers to catalog blocks.

Contains as many member entries as
will fit, in sequential order of

entry into library.

Data for each member follows in
sequential order of entry into catalog.

Beginning address for a specific
member or subdivision is reflected in

catalog entry.

Subsequent catalog blocks used only
when preceding catalog block is filled.

Figure 2-1. Library Structure

2-3

LIBRARY UTILITY PROGRAM (LIBUTIL)

The library utility program (LI BUTI L) provides commands for the creation and
maintenance of libraries. It is invoked as a separate job step through Control Lanuuage
Services and executes in a program partition of BK bytes.

CONTROL LANGUAGE REQUIREMENTS

A single multi-functioned program, LI BUTI L, is specified as the operand for the PGM=
keyword on the //EXECUTE statement. LI BUTI L commands and all other parameters are
submitted in keyword-operand form on a //PAR statement. LI BUTI L allows three formats
for the keyword-operands:

keyword=operand
keyword=(operand1, ... ,operandn)
keyword='literal string'

Parameters must be separated from each other by a comma, and no parameter may be
divided between two //PAR cards. When two or more //PAR statements are included for a
single command, a comma must follow the last parameter on all but the last card. When
only the first operand of a group within parentheses is specified, the parentheses may be
omitted. Any omitted operands prior to the last specified within parentheses must be
represented by commas. For example, KEYWORD=(,, operand3,operand4). In this manual,
optional parameters are denoted by brackets, [] . When a choice of operands is avai~able,
they are enclosed in braces, { }

Many //PAR statements requesting separate commands may be stacked to perform multiple
functions in a single job step. Although there are some restrictions on the number of
keywords allowed for certain functions, there are no restrictions on the number or
combinations of .functions that may be requested. Similarly, there are no restrictions on the
number of libraries referenced by a single step. Each command is treated as a logiically
independent. substep by the Librarian, its libraries opened and closed in the substep .. The
Ill B and OLI B keywords, described under the heading Keyword-Operand Descriptions in
following text facilitate specifying many libraries within the same step.

DATA SEPARATOR STATEMENT

Library utility commands can be stacked in the same job step. In addition, data streams for
the commands can use distinct data files or can be stacked behind a single //DAT A card.
The data separator statement enables the library utility to determine the end of data
supplied for each command. The format of this statement is as follows, beginning in column
one:

/*LIB

2-4

Sets of data stacked behind a single //DAT A statement must be in the same order as the
commands with which they are associated. Each set except the last must be terminated by
the /*LIB statement. The last set does not require a /*LIB statement, but it is allowed. The
/*LIB statement is applicable to the LOAD, PATCH, and UPDATE commands.

Example:

//JOB NAM=SAMPLE

//EX PGM=LIBUTI L

//DEF ID=LIST,DEV=PRT

//DEF ID=SEQIN,FIL=CHANGES

•
(Other required //DEF cards)

•
//PAR COM=LOAD, ...
//PAR COM=PATCH,MEM=(XYZ,REL), .. .
//PAR COM=PATCH,MEM=(ABC,REL), .. .
//PAR COM=UPDATE, ...

•
(Other optional //PAR cards)

•
//DATA FIL=CHANGES

•
(Member decks for loading)

•
/*LIB

•
(Patch directives for member XYZ)

•
/*LIB

•
(Patch directives for member ABC)

•
/*LIB

•
(Directives and/or data for UPDATE)

/*LIB

/*
//EOJ

•

PROGRAMMING CONSIDERATIONS

Although the librarian routines themselves are general-purpose, the manner in which a
library is to be used in the system may impose some restraints. For example, libraries
containing Control Language procedures or system macros must be cataloged on the system
central catalog when they are allocated, and must be mounted on drives declared to be
shared at execution time. Other libraries may be cataloged or uncataloged and may be

:2-5

mounted on shared or unshared devices. Control Language //DEFINE statements for
I D=$LODLI B are required for execution of programs on uncataloged load libraries but no
//DEF statement is required for those on cataloged load libraries.

KEYWORD-OPERAND DESCRIPTIONS

Each LI BUTI L function, named with the COMMAND keyword, is designed for a specific
task. However, additional processing may be included with the function by using optional
keyword parameters. For example, when copying a library, partial packing of the librarv can
be accomplished by including or excluding certain members with the SELECT keyword, and
renaming can be performed with the MEM keyword. Most keywords have default values,
and need be coded only when a value other than the default is required. The following
paragraphs describe the uses of the keyword-operands; the LI BUTI L functions are described
under the heading Command Descriptions later in this section.

FUNCTION KEYWORD (COMMAND OR COM)

The COMMAND= keyword specifies the LIBUTIL function to be performed. COMMAND
can be abbreviated to COM. The following commands are recognized by LI BUTI L:

PTOC
COPY
DELETE
PACK

RENAME
DUMP
LOAD
PATCH

PRINT
PUNCH
UPDATE

This parameter must be specified; there is no default. Each of the functions is described in
detail under the heading Command Descriptions.

INPUT LIBRARY (I LIB)

The I LIB keyword-operand designates the library to be processed by LI BUTI L as the
primary input library. The operand must be the same as that specified by the ID keyword of
the //DEFINE statement for that library. SYSIN and SYSOUT are illegal operands for this
keyword. If omitted, the standard default INPUT is used. This keyword applies to the
COPY, DUMP, PTOC, PRINT, PUNCH and UPDATE commands.

The library specified by I LIB must have been initialized by the Librarian as a result of a
command employing the OU B parameter, or as an output library as a result of a call from
programs such as the Assembler or Linkage Editor.

OUTPUT LIBRARY (OLIB)

The 0 LIB keyword-operand specifies the identification and type of output library to be
generated or modified by LI BUTI L processing. It has the following format:

OU B=(ident [,type])

2-6

The ident operand must be the same as that specified by the ID keyword of the //DEFINE
statement for that library. SYSI N and SYSOUT are illegal operands. If omitted, the
standard default, OUTPUT, is assumed.

The type operand is optional and can be one of the following:

ALL - Specifies that any type of member can be included on the library.
Block size must be 256 bytes. This is the default.

ENC - Specifies that only object modules or load modules are on the
library. Block size must be 256 bytes.

SYM - Specifies that only source, macro, or procedure members are on the
library. Minimum block size is 84 bytes; maximum is 512 bytes. Block size
greater than 128 bytes makes proc:edure members inaccessible to Control
Language Services.

OLIS applies to the COPY, DELETE, LOAD, PACK, RENAME, and UPDATE commands.

MEMBER NAME (MEM)

The MEM keyword is used to specify member names and types, and protection of an
already existing member of the same name and type, for all LIBUTI L functions that involve
named members. In addition, MEM can be used in conjunction with the SELECT keyword
to include or exclude a given set of members when an entire library is being processed. MEM
is specified once for each member; the number of MEM keywords allowed for each
command is summarized in Table 2-1.

The MEM keyword includes from one to five operands, as follows:

MEM=([input member name] [,type] [,output member name] [,type] [,P])

Input member name is a 1- to 8-character alphanumeric field that specifies the member
identification as listed in the library cata~og. This operand is required when the MEM
keyword is used with the COPY, DELETE, DUMP, PACK, PATCH, PRINT, PUNCH, and
RENAME commands. It is optional for the UPDATE commands. When it is omitted with
the UPDATE command, a new member is created from the data in the accompanying
directive file.

Output member name is a 1- to 8-character alphanumeric field that specifies the new name
under which the member is to be listed in the library catalog. It is required for the
RENAME and UPDATE commands and is optional for COPY and PACK. For RENAME,
the catalog entry of the input member name will be marked deleted and replaced by the
output member name, unless protection is specified. For COPY, PACK, and UPDATE, any
member on the output file having the same name as the specified output member name has
its catalog entry deleted, provided it is of the same type, unless protection is specified. For
COPY and PACK, omission of the output member name implies that the input member
name is used as the output member name.

2-7

Member type may be specified with input and output member names when they are used.
The valid types are as follows:

SRC Source member

PR 0 Control Language procedure member

MAC Unassembled macro member

OBJ Object member

REL Relocatable load member

ABS Absolute load member

When this operand is omitted, the MTYPE keyword operand must be supplied. However,
the value specified for member type with the MEM keyword overrides the value specified by
MTYPE.

Example:

In this example, MTYPE identifies AL T1, AL T2, and AL T3 as source type (SRC). The final

line is not overridden by MTYPE, since macro type (MAC) is specified for both AL T4 and

ALT41.

//PAR MTYPE=SRC,COMMAND=COPY,

//PAR MEM=AL T1,MEM=,ALT2,MEM=ALT3,

//PAR MEM=(AL T4,MAC,AL T41,MAC,P)

Protection of an existing member on a library can be specified by including the character P
as the last operand for MEM. When P is included, the presence on the output library of a
member with a name and type identical to that specified by the output member name
operand results in program abort. When P is omitted, the new member will be added
unconditionally, and any identically named member of the same type will be marked as
deleted.

Examples of M EM keyword-operand configurations are shown below:

MEM=MYNAME
MEM=(OLDNAME,SRC)
MEM=(OLDNAME,,NEWNAME)
MEM=(,,NAMEONE,MAC,P)
MEM=(OLD,PRO,NEW,PRO)
M EM=(A L TE R ,OBJ,,,P)

MEMBER TYPE (MTYPE)

This keyword-operand specifies a default for the member type wherever it has not been
specified in the MEM parameter. The MTYPE keyword applies to all commands except
PTOC and LOAD. MTYPE must be supplied if member type is omitted after any explicit
member name specification, and applies to all member names for which a member type is

2-8

not specified. However, where member type is given with the member name operand, the
MTYPE operand has no effect.

The operands for the MTYPE keyword are the same as those specified for the member type
operands of the MEM keyword.

MEMBER SELECTION (SELECT)

The SELECT keyword specifies that either an inclusive or an exclusive operation is
requested. There are two operands for this keyword: I (inclusive) which specifies that only
the members named are to be included, and E (exclusive) which means only the named
members are excluded. When this keyword is not coded, the default depends upon the use
of the MEM keyword-operand. If the MEM keyword has been specified, the default is I
(inclusive). However, if the MEM parameter has not beeo specified, the default is E
(exclusive); that is, no members are excluded. This keyword applies only to COPY and
PACK commands.

LISTING (LIST)

The LIST keyword-operand specifies whether a listing of messages, updated elements, and
other information is to be performed as a result of LIBUTI L processing. There are two
operands for this keyword, YES and NO. The default is YES.

YES specifies that a complete listing is to be produced. NO specifies that a partial listing will
be produced including the title line and a summary of parameters received, with a function
complete message and/or coded error messages. A Control Language //DEFINE statement
must be included in the step, containing I D=LIST as its file identifier and DEV=PRT for
device specification regardless of how LIST is coded.

This keyword is applicable to all LIBUTI L functions. LIST=NO is illegal for PTOC and
PRINT commands.

LISTI NG TITLE (TITLE)

The TITLE keyword-operand specifies a title line, given as a literal string constant, which is
to appear on each page of the output listing preceding all detail lines. The literal string must
be enclosed in apostrophes, and must be contained on one card not to exceed 50 characters.

When this parameter is not coded, a line containing the system date and time and the
LI BUTI L function appears as a header. When the parameter is coded, the system page
header is not printed. This keyword applies to all of the LI BUTI L commands.

Example:

TITLE='PROCEDURES STORED ON LIBRARY 17'

2-9

INITIAL PAGE NUMBER (INITPG)

This keyword-operand specifies a decimal value as the initial page number of the output
listing designated with the LIST keyword. The IN ITPG operand is a 1- to 3-digit value in the
range of 1 to 999. If INITPG is not specified, 1 is the default. INITPG can be designated for
any command except PTOC.

PAGE SIZE (PGSIZE)

The PGSI ZE keyword defines the maximum number of lines to be printed per page on the
output !is.ting. All header, title, and blank lines are included in the count. The PGSIZE
operand applies to all of the LIBUTI L commands.

This operand is a 1- to 2-digit decimal value in the range 1 to 99. When this parameter is not
specified, a default value of 60 is assumed.

LINE SPACING (SPACE)

The SPACE keyword specifies the line spacing for the output listing specified ID=LIST. The
operand can be 1, 2, or 3, meaning single, double, or triple spaced detail lines. Single spacing
is provided when SPACE is not specified. This keyword applies to all LI BUTI L commands
except PTOC.

VERSION NUMBER (VERSION)

This keyword specifies the numeric value that is to be stored in the library catalog entry as
the version identifier for the output member. The version identifier is used only for
convenience in identifying modules from a listing and does not modify the file identifier.

The operand of the VE RSI ON keyword is a four character numeric field. This keyword
applies only ·to the RENAME and UPDATE commands. When this keyword is not coded,
the default value used is a 0000 character field for initial creation of the member. For all
other uses of UPDATE and for the RENAME command, the default is the value already in
the version identifier of the library catalog member entry. The version number for members
involved in the COPY, PACK, and PATCH commands reverts to zero.

SEQUENCE FIELD DEFINITION (SEQPOS)

The SEOPOS keyword-operand defines the starting position and length of the sequence field
in the card records of the library member being processed. This keyword includes two
operands, both of which must be specified whenever SEOPOS is used. The format is as
follows:

SEOPOS=(n,m)

2-10

Operand n is a two-digit decimal value that specifies the starting position of the sequence
field in the card record. Operand m is a one-digit value from 1 to 8 specifying the length of
the sequence field. The starting position (operand n) plus the length of the sequence field
(operand m) minus 1 must not be coded such that the sequence field extends beyond the
record limit.

This keyword applies to the PUNCH and UPDATE command only. If not specified, the
default is SEQPOS=(73,8). The SEOPOS operand is ignored unless NEWSEQ or SEQCHK is
coded.

SEQUENCE RENUMBERING (NEWSEQ)

The N EWSEQ keyword-operand specifies a sequence field renumbering operation as part of
LI BUTI L processing. Renumbering generates sequential numbers in the positions defined as
the sequence field by the SEQPOS parameter. The format is as follows:

{
YES}

NEWSEQ= ~nom)

The operand YES specifies that renumbering will occur with the values 100 for the initial
number in the sequence and 100 as the increment for each succeeding record. In the format
(n,m), operand n specifies an initial value of the sequence counter in the range 1 to 9999,
while operand m supplies the increment for each succeeding record in the range 1 to 9999.
Operand NO specifies no renumbering is to occur, and is the default. N EWSEQ applies only
to the UPDATE and PUNCH commands.

SEQUENCE CHECKING (SEOCHK)

The SE OCH K keyword-operand specifies a sequence check which verifies the ascending
order of the output sequence field. The operands are YES and NO. When YES is coded, the
sequence check will be performed. Any discrepancies will be flagged on the output listing.
This check results in program abort if a sequencing violation is found.

When NO is coded, the sequence check willl be omitted. The default is NO. This keyword
applies only to the UPDATE command.

DUMP OUTPUT FORMAT (MODE)

This keyword applies to the DUMP command only. It specifies the format in which a load
or object member of a library is to be dumped to punched cards. There are two operands for
this keyword: R and M. MODE=R specifies that the object member is to be dumped in
reloadable format, which allows the member to be reloaded with the LIBUTI L LOAD
command. MODE=M specifies that the object member is to be dumped in machine loadable
format. M is valid only for absolute load modules. (It allows users to punch out stand alone
programs which can be reset loaded.) Members dumped in this mode cannot be reloaded
with the LOAD command. The default is reloadable format.

2-11

UPDATE MODE (UMODE)

The UMODE keyword specifies the update method to be used, and has two operands,, SEQ
and REL. UMODE=SEQ designates that the sequence numbers on the symbolic statements
are used in the UPDATE. UMODE=REL specifies that the relative record numbers
associated with the file as shown on the previous UPDATE or PR I NT listing are usecl. The
default is REL. UMODE applies only to the UPDATE command and is explained in detail in
conjunction with that command.

PRIMARY INPUT FILE (IFIL)

The IF IL keyword-operand designates the primary input data file to be used in LI BUTI L
processing by the LOAD, PATCH, or UPDATE commands only. It does not apply to the
other LIB UTI L commands. The operand is a 1- to 8-character alphanumeric value and must
be specified as the ID of a //DEFINE statement within the step.

For the LOAD function, the named file contains the dumped members to be reloaded. In
the PATCH function, the file contains the object patches and directives for the named
member. With UPDATE, the file contains the source changes and/or directives to the named
member. When IFIL is not specified, the default SEQIN is used; the //DEFINE statHment
must still be included.

OUTPUT DATA FILE (OFIL)

This keyword specifies the output data file to be used for the DUMP and PUNCH
commands only. The operand is a 1- to 8-character alphanumeric value that must match the
operand of the ID keyword of a /IDE FINE Control Language statement in the step.

The named file will receive the encoded member being dumped, or the card images of the
symbolic member being punched. When OFI Lis not specified, the default SEQOUT is used.

In this event,· ID=SEQOUT must be specified on the //DEFINE statement.

PATCH LIBRARY (ULIB)

This keyword-operand specifies the library containing the member to be modified by the
PATCH function. This keyword does not apply to any other LI BUTI L functions. The
operand is a 1- to 8-character alphanumeric value, and must be specified as the operand of
the ID keyword on a //DEFINE Control Language statement within the step. When this
keyword is omitted, the default UPDATE is used. A //DEFINE statement must be included
for the update library, whether or not the default is used.

2-12

WORK LIBRARY (WLIB)

The WLI B keyword specifies the primary library work file used by the LI BUTI L PACK
function only. This keyword does not apply to any of the other LI BUTI L commands. The
operand is a 1- to 8-character alphanumeric value and must be designated as the ID operand
of a //DEFINE statement within the step. When WLIB is not specified for the PACK
command, the default WORK will be used. The //DEFINE statement for this file must still
be included in the step whether or not the default is used.

COMMAND DESCRIPTIONS

All LI BUTI L commands perform general Librarian Utility functions for the programmer.
They may, however, optionally be directed to handle more detailed operations by specifying
particular keywords in the request for the function. For example, deletion-flagging can be
caused directly or indirectly by the DELETE, UPDATE, LOAD, COPY, and RENAME
commands. The following paragraphs discuss each LI BUTI L command, its functions and
capabilities, the applicable keywords, and examples of use. Commands have been grouped
more or less by the library types to which they apply. The first group, consisting of PTOC,
COPY, DELETE, PACK, and RENAME, apply to all types of libraries; the second group,
consisting of DUMP, LOAD, and PATCH, apply to the encoded type of library; and the
third group, consisting of PRINT, PUNCH, and UPDATE, apply to symbolic type libraries.
Librarian error codes are listed in Appendix B.

Table 2-1 lists all of the keywords used to specify the various LI BUTI L operands and the
functions to which they apply. Use of a keyword with a command to yvhich it does not
apply results in the Librarian issuing a warning code and continuing. No error action is
taken. Once the warning code is issued, the keyword is ignored.

The keywords that apply to all of the LIBUTIL functions are: COMMAND, LIST, PGSIZE,
and TITLE.

PRINT TABLE OF CONTENTS (PTOC)

The PTOC function displays the contents of the named library directory on a print file list.
The list shows names and characteristics of each member in the library. Members will be
displayed in chronological order of creatio.n date and time. Deleted members of the file will
always be included in a PTOC listing and will be marked deleted. A LIST file must be
specified for this function, either by LIST=YES or by default. The listing will be single
spaced.

The content of the //PAR statement used for the PTOC function is:

COMMAND=PTOC
[,I LI B=library identifier]
[,LIST=YES]
[,PGSIZE=lines per page]
[,TITLE='literal string']

2-13

Table 2-1. Summary Table of LIBUTI L Keywords by Command*

Keyword Ci)

COMMAND
or COM

Default

None<D

IFIL SEQIN

>
Q.

0
(J

·---r·

w
1-
w
...I
w
Cl

a.
:2:
:::>
Cl

ILIB INPUT 0 0

Cl
<(
0
...I

0

Entries by Command

~
()
<(
a.

:::x::
()
I
<(
a.

0

1-z
cc
a.

0

()
0
la.

0

:::x::
()
z
:::>
a.

0

w
:2:
<(
z
w
cc

w
I
<(
Cl
a.
:::>

0

0

INITPG 1 0 0 0 0 0 0 0 O O O

LIST YES 0 0 0 0 0 0 0@ 0@ 0 0 0
1--M-E-M~--~1--N-on-e~~--~o~G)~-~~--R~@)::-t-~-i-o-:::G);:-t-R-:::@):-+~R-@)-4-+-~-+-R-@)~4-;-R-<ID-5-1-R-(§)-6

1------··--+---~-~--t----·-·--t-----l----+----l----+----+---+----<---+---•

MODE R 0
1--------+----------t----------t----~---~---r----1i-----+---+---+---+--·-

MTYPE None 0 0 0 0 0 0 O O O
1---------+--------+---~-----+-·---1---+---+---+----+--+---+--+---i

NEWSEQ NO O O
1---------+--------+---~-·--t----~1---+---+---+----+--+---+--+---i

OFIL SEQOUT 0 O

OLIB OUTPUT 0 0 0 0 O

1---P_G_s_1z_E __ -+-_6_0~~-~--r-o~ _ ___,_o __ -+-o--+_o_-+-_o _____ o __ +--_o __ +_o_-+-o_--+_o_-+-_o~-·

SELECT l/E (j) 0 0
1--------+---------+----<-----1-----i----t----t-----+------+---+---+---+-~i

SEQCHK NO O
---+--------+--·--+-·--t-----+----r---r---+-----~---+----+---+---~i

SEQPOS (73,8) O O

SPACE 1 (Single space) 0 0 0 0 O O O O O O
1--------+--------+----+·----+-·-·-lf---+---~---i-----~---I---+--+---~

TITLE System date, 0 0 0 0 0 0 0 0 Q O O
time, com-
mand, and
page number

ULIB UPDATE 0
1--------+--------+----+·----1r-----1---+---+---i----~---+---+---+---t

UMODE REL 0

VERSION 0000@ 0 0
t-------+-----~-+---~·----+-----~l---+----+---+----~--+----+--+---1

WLIB WORK 0

Key: R Required Keyword

0 Optional Keyword

blank Keyword does not apply to the command

*Circled numbers in the table refer to the following notes.

NOTES

G) Keywords and COMMAND or COM operands must be spelled as they appear in this table.

@ LIST==YES required, either specified or accepted as default.

G) Optional keyword. When coded, input-member name must always be included. Output-member name may be
omitted. If member type is omitted, MTYPE must be coded. Protection is always optional. Up to ten
occurrences of MEM are allowed.

@ Required keyword. Input-member-name must be coded. Member type may be coded; if omitted, MTYPE
must be coded. Output-member-name and type do not apply. Protection is always optional. Up to ten
occurrences of MEM are allowed except for PATCH, which allows only one.

2-14

NOTES (Continued)

@ Required keyword. Input- and output-member-names must be coded. Member types may be coded; if
omitted, MTYPE must be coded. Protection always optional. Up to ten occurrences of MEM are allowed.

@ Required keyword. Input-member-name and type omitted if module is being created. Output-member
name must be coded. Output-member type may be coded; if omitted MTYPE must be coded. Protection
is always optional. Multiple occurrences of MEM are not allowed.

(-j) Default is I (inclusive) includes members named when MEM is coded; E (exclusive) excludes members
named (none) when MEM is not coded.

@ Default to 0000 (zeros) applies only when member is first created. Default for all other cases of UPDATE
and for RENAME is to the value already in the version identifier field of the library directory member
entry.

The default values listed in Table 2-2 should be used whenever possible for the PTOC
function.

Table 2-2. Default Values for LIBUTIL PTOC Function

Keyword Default

ILIB INPUT

LIST YES (LIST=NO is illegal for this function)

PGSIZE 60

TITLE System header line

The following are examples of //PAR statements that request the LI BUTI L PTOC function:

Example 1:

In this example the table of contents of the library specified by ID=INPUT on th~ //DEF

statement in the step will be printed.

//PAR COMMAND=PTOC

Example 2:

In this example the table of contents of the library specified by ID=OWNLIB will be
printed-50 lines per page.

//PAR COMMAND=PTOC,PGSIZE=50,I LIB=OWNLIB

2-15

The following examples show the Control Language statements for a job step which use!S the
PTOC function:

Example 3:

In this example the table of contents of the library ORDENT7 will be listed.

//JOB NAME=SAMPLE

//EX PGM=LIBUTI L

//PAR COMMAND=PTOC
//DEF ID=INPUT,FI L=ORDENT7,STA=(P,I)

//DEF ID=LIST,DEV=PRINTER

//EOJ

Example 4:

In this example the table of contents of the library ORDENT71 will be displayed. The

listing will have the title ORDER ENTRY LIBRARY 7 printed at the top of each page.

The ID listed as OUTPUT might be specified when the PTOC is an additional function

in the same step that has just created a library using another LIBUTI L function.

//JOB NAME=SAMPLE

//EX PGM=LIBUTIL
//PAR COMMAND=PTOC,I D=OUTPUT,
//PAR TITLE='ORDER ENTRY LIBRARY 7'
//DEF ID=LIST,DEV=PRINTER
//DEF ID=OUTPUT,FI L=ORDENT71,STA=(P,I)

//EOJ

Sample PTOC Listing

The listing produced by the PTOC function begins with a system header line, with a title
embedded in it if one is specified, followed by a line showing the library name and type. A
sample appears below.

PTOC FUNCTION: DATE=73027 TIME=205423. (up to 50 character title) PAGE:001
FILE LABEL: $0SRSDNTLIB /ALL

• DATE is the Julian date (year and day) used by the operating
system.

• TIME is the system time in the format hhmmss for hours, minutes,
and seconds.

• FILE LABEL is the name of the library specified as the FIL operand
on the //DEF card specifying the input library for the function.

• Library type (ALL in the sample) follows the slash ..

2-16

Then follows a string of equal signs, followed by a line of column headers as shown below.

====================================
MEMBER NAME TYPE VERSION YR/DAY HH MM SS USER DATA SUB·DIV TOP OF SUB-DIV

• MEMBER NAME is the cataloged name of the member.

• TYPE is one of the six valid types described with the MEM keyword
operand.

• VERSION is the version number specified by the user or supplied by
the Librarian as specified for the VERSION keyword-operand.

• YR/DAY and HH MM SS are the creation date and time when the
member was entered on the library.

• USER DAT A consists of the user extension words (bytes 32-41) of
the member definition block for load modules (Appendix A).

• SUB-DIV refers to the data subdivisions of load and object modules
specified in the member definition block (Appendix A). The
numbers of the subdivisions correspond to the order in which their
block numbers appear in the member definition block.

SUB-DIV 1

SUB-DIV 2

SUB-DIV 3

SUB-DIV 4

Bytes 20-23

Bytes 24-27

Bytes 28-31

Bytes 32-35 of the member definition
block for object modules only

• TOP OF SUB-DIV specifies the beginning library block number of
the subdivision in decimal notation. Where the block number is zero,
no subdivision is present. Although the length of the last sub~ivision
of the last member on the PTOC listing is not shown, the
programmer can obtain the approximate number of available blocks
remaining on the library by subtracting the last subdivision block
number from the total blocks allocated to the library.

Figure 2-2 is an example of a PTOC listing showing absolute load members and object
members. The letter D preceding a membe!r name indicates that the catalog entry for the
member has been marked deleted.

2-17

PTOC FUNCTION: DATE=73027 TIME=205423. PAGE: 001
FILE LABEL: $0SRSDNTLIB /ALL

=- ======================================
MEMBER NAME TYPE VERSION YR/DAY HHMM'SS USER DATA SUB·DIV TOP OF SUB-DIV
$0SYSTAB ABS 00000 73/027 16:33:55 0290 OFOO 0000 0000 0000 01 00000000

02 00000004
03 00000000

$0SYSVB1 ABS 00000 73/027 16:34:00 007C OFOO 0290 0290 0000 01 00000000
02 00000008
03 00000000

$0SYSTB2 ABS 00000 73/027 16:34:04 0150 OFOO 030C 030C 0000 01 00000000
02 00000010
03 00000000

$10DRV ABS 00000 73/027 16:34:13 070C 0000 045C 045C 0000 01 00000000
02 00000013
03 00000000

$TPCDRVD ABS 00000 73/027 16:34:17 006A OCOO OC32 OC32 0000 01 00000000
02 00000023
03 00000000

~
$TPCDRVC ABS 00000 73/027 16:34:20 0084 OCOO OC32 OC32 ·0000 01 00000000 - 02 00000025

co 03 00000000
$TPCDRVB ABS 00000 73/027 16:34:24 OOB4 OCOO OC32 OC32 0000 01 00000000

02 00000027
03 00000000

$DMCV09 OBJ 00000 73/002 10:13:27 01 00000959
02 00000961
03 00000966
04 00000000

$ERDC1C OBJ 00000 73/002 10:17:06 01 00000968
02 00000970
03 00000972
04 00000000

D$ERRP53 OBJ 00000 73/002 10:17:06 01 00000974
02 00000976
03 00000978
04 00000000

$ERR ES OBJ 00000 73/002 10:17:06 01 00001024
02 00001026
03 00001028
04 00001030

Figure 2-2. Sample PTOC Listing

COPY LIBRARY MEMBER (COPY)

The COPY function places the active (non-deleted) members of one library on another
library. Individual members of the library being copied may be specifically included with or
excluded from the COPY function. The receiving library may be either a library already in
use, or a newly allocated library, but the bl,ock size of both the input and output libraries
must be identical. Whenever members of a library are being copied to a library already in
use, they are placed on that library following all members of the receiving library. If a
member on the receiving library bears the same name and type as that of a copied member,
and protection has not been specified, the pre-existing member is marked for deletion,
leaving the copied member as current. Deleted members of the library being copied are
never included in the COPY function.

A library may be created with the COPY function as a backup for the original library.
Members being copied may be renamed by specifying a different output member name for
that member when it is copied. In such a case, the candidate for deletion on the receiving
library is the member bearing the same name and type as specified by the output member
name, subject to the protection specification.

The content of the //PAR statement for the COPY function is:

COMMAND=COPY
[,I LIB=input library identifier]
[,OU B=output library identifier]
[,MEM=(input member name[,type] [,output member name] [,type] [,P])]
[,MTYPE=member type]

[,SELECT= I ~)J
' .

[,LIST= I ~~s) J
[,IN ITPG=initial page number]
[,PGSIZE=lines per page]

[.SPACE= u}]
[,TITLE='literal string']

The COMM AN D=COPY keyword-operand is required. All other keywords are optional, with
default provided except for MEM and MTYPE.

The default values listed in Table 2-3 should be used whenever possible for the COPY
function.

The MEM keyword is used to specify the names of input members to be either included or
excluded in the copy function, as specified with the SELECT keyword or its default. When
the output member name is specified, it will be used in place of the input member name for
that copied member only, on the receiving library. If a member on the output library has
the same name and type as a member being copied (as specified by the output member
name or, in its absence, the input member name), the existing member will be marked for
deletion unless the protection key, P, is specified. If this situation occurs and protection is
specified, the program aborts.

2-19

Table 2-3. Default Values for LIBUTIL COPY Function

Keyword Default

ILIB INPUT

OLIS OUTPUT

SELECT I when MEM is coded; otherwise E

LIST YES

INITPG 1

PGSIZE 60

SPACE 1 (single space)

TITLE System header line

Multiple MEM keywords, one for each specified member, may be used. When type is
omitted from the MEM operand for any named member, the MTYPE keyword-operand
must be specified. Since MTYPE can be specified only once, all members whose typE~s are
omitted from the MEM operand must be the same. To reduce coding and overhead, MTYPE
should be used in place of type whenever a number of members are being specified with the
same member type. LIST specifies whether or not the names of copied members are to be
listed, as they are copied. I D=LIST must appear on a //DEF statement in any library utility
run, since the Librarian always attempts to print the function requests and its responses.

The following are examples of //PAR statements that request the LIBUTl'l COPY function.

Example 1:

In this example all non-deleted members of the library specified with ID=INPUT on a

//DEF statement in the step will be copied to the library specified with ID=OUTPUT.

//PAR COMMAND=COPY

Example 2:

In the next example members of the library specified by ID=INPUT, except deleted

members and the source members specified to be excluded, are copied to the library

specified by ID=OUTPUT.

//PAR COMMAND=COPY,MEM=RA 1,MEM=RA2,
//PAR MEM=RA 18,MEM=RX2,MEM=RQ3,

//PAR SELECT=E,MTYPE=SRC

The following examples illustrate the Control Language statements of a step which us1es the
COPY functions.

2-20

Example 3:

In this.example all non-deleted members of library LIB620 will be copied to library LIB621.
No list of copied members will be produced, although the Librarian will record parameters
received.

//JOB NAME=SAMPLE
//EX PGM=LIBUTIL
//PAR COMMAND=COPY,LIST=NO
//DEF ID=INPUT,FIL=LIB620,STA=(P,I)
//DEF ID=OUTPUT,FI L=LIB621,STA=(P,0)
//DEF ID=LIST,DEV=PRT
//EOJ

Example 4:

In the final example members of library PAYLIB3 will be copied to library PERS27, except
source members PA Y6 and PA Y32 which are excluded. A listing showing names of each
copied member will be made.

//JOB NAME=SAMPLE
//EX PGM=LIBUTI L
//PAR COMMAND=COPY,MEM=(PAY6,SRC),
//PAR MEM=(PAY32,SRC),SELECT=E
//DEF ID=LIST,DEV=PRINTER
//DEF ID=INPUT,FI L=PAYLIB3,STA=(P,I)
//DEF ID=OUTPUT,FI L=PERS27,STA=(P,O)

//EOJ

DELETE LIBRARY MEMBER (DELETE)

The DELETE function flags the library directory entries of named members as deleted.
Members marked as deleted are ignored in all LI BUTI L functions except that names of
deleted members will appear on the listing displayed by the PTOC function. ·

The areas of the library and its directories occupied by deleted members remain unavailable,
unless a PACK function is performed to remove the deleted members and compress the
library or a COPY is executed to build a new library that excludes the deleted members.

The content of the //PAR statement used for the DELETE function is:

COMMAND=DELETE
,M EM=(member name [,type])
[,O LI B=I ibrary identifier]
[,MTYPE=member type]

[,UST= l~~Sl]
[,INITPG=initial page number]

(continued next page)

2-21

[,PGSIZE=lines per page]

[,SPACE= { i}]
[,TITLE='literal string']

The default values· 1isted in Table 2-4 should be used whenever possible for the DEILETE
function.

Table 2-4. Default Values for LIBUTIL DELETE Function

Keyword Default

-

OLIB OUTPUT

LIST YES (does not include the deleted members
in the listing)

INITPG 1

PGSIZE 60

SPACE 1

TITLE System header line

.
The MEM keyword is required and uses only two operand fields for the DELETE function.
The operands are the name of the member to be marked as deleted, and its type. MTYPE is
used only when the type is omitted from MEM, and is then required.

The following are examples of //PAR statements that request the LIBUTIL DELETE
function.

Example 1:

In this example, the source member ADMIN7 will be marked deleted from the library

specified with ID=OUTPUT on the //DEF statement.

//PAR COMMAND=DELETE,

//PAR MEM=(ADMIN7,SRC)

Example 2:

In this example object members COR16, COR23, COR39, and COR57 will be marked

deleted from the library specified by ID=MYFILE in the step.

//PAR COMMAND=DELETE,MTYPE=OBJ,

//PAR MEM=COR 16,MEM=COR23,MEM=COR39,
//PAR MEM=COR57 ,OLIB=MYF I LE

2-22

The following examples show Control Language statements for a job step using the
DELETE function.

Example 3:

In this example, two cataloged procedures, ADD and SUBT, are marked deleted in library
A 120. Names of members will be listed as they are deleted. The ID might be specified as

PART1 instead of OUTPUT for convenience in a multi-function step.

//JOB
//EX
//PAR
//PAR
//DEF
//DEF

//EOJ

Example 4: -

NAME=SAMPLE
PGM=LIBUTI L
COMMAND=DELETE,OLI B=PART1,
M EM=ADD ,M EM=SUBT ,MTYPE=PRO
ID=PART1 ,Fl L=A 120,STA=(P,O)
ID=LIST ,DEV=PR INTER

In this example, source members CHECK4 and CHECK12 will be marked deleted in library

CHECKING. There is no listing of members as they are deleted, though the Librarian will

list a summary of parameters received.

//JOB NAME=SAMPLE
//EX PGM=LIBUTI L
//DEF ID=LIST,DEV=PRT

//DEF ID=OUTPUT,FIL=CHECKING,STA=(P,O)
//PAR COMMAND=DELETE,LIST=NO,
//PAR MEM=(CHECK4,SRC),MEM=(CHECK 12,SRC)
//EOJ

COMPRESS LIBRARY (PACK)

The PACK function compresses a library, removing areas previously assigned to members
that have been marked for deletion as a result of other LI BUTI L functions. When a member
is to be removed from a library, its entry in the library catalog is marked deleted, making
the space it occupies inaccessible.

PACK copies all non-deleted members from the specified library to a named intermediate
file but does not copy deleted members. The program then reinitializes the library specified
by OU B and copies those members back to the output file, including or excluding
(according to the SELECT keyword or its default) members named with MEM keywords.
Thus the space formerly occupied by deleted members becomes available for use, and is
located at the end of the library. Members copied back under the SELECT=I option assume
a sequence on the output library corresponding to the order of their appearance on //PAR
cards. The intermediate file used in the PACK may be specified as a permanent file and may
be retained as backup. This backup may be critical in case of an 1/0 error or system crash
occurring while the PACK function is in progress, since the input/output file, having been
reinitialized at the beginning of the copy back portion of the step, may not be left in a

2-23

· usable state by such an event. The intermediate file specified by WLI B is initialized during
the PACK function; therefore, an existing library with usable information in it should not
be used for WLI B.

The content of the //PAR statement used for the PACK function is:

COMMAND=PACK
[,O LI B=input/output library identifier]
[,WLI B=intermediate work library]
[,MEM=(input member name[type] [,output member name] [,type] [,P])]
[,MTYPE=member type]

[,SE LE CT= I ~ l J

[,LIST= l~~Sl]
[,INITPG=initial page number]
[,PGSIZE=lines per page]

[,SPACE; U} J

[,TITLE='literal string']

The default values listed in Table 2-5 should be used whenever possible for the PACK
function.

Table 2-5 .. Default Values for LIBUTIL PACK Function

Keyword Default

OLIS OUTPUT

WLIB WORK

SELECT I when MEM is coded; otherwise E

LIST YES (list the names of compressed members on
the LIST output file in addition to the usual
listing)

INITPG 1

PGSIZE 60

SPACE 1 (single space)

TITLE System header line

2-24

The MEM keyword is used to specify the names of members to be included in or excluded
from the output file of the PACK function. It may also be used to rename members on the
output library. If the new name and its type match the name and type of a member already
copied from the intermediate file during the same PACK operation, the earlier member is
marked for deletion. However, if protection was specified, the Librarian aborts the run.
Member names on the intermediate library are the input library names. Multiple MEM
keywords may be used.

MTYPE is used to specify member type for all member names for which type is omitted.
MTYPE should be used in place of type on MEM whenever there are a number of members
of one type being specified. Only one MTYPE keyword-operand may be used.

LIST=YES calls for listing the names of copied members as the Librarian copies them onto
the intermediate file, and listing the names of the members retained on the compressed
output library (copied back from the intermediate library). This listing indicates the
progress of the run and the state of the two libraries, should the run be interrupted by an
1/0 failure or other circumstance.

The following examples show the Control Language statements of a job step which uses the
PACK function.

Example 1:

In this example all non-deleted members of library Bl LM6 are copied to library Bl LM61,

and back to BILM6. Deleted entries in the library catalog are removed. Since LIST=NO

is specified, names of members copied to Bl LM61 and back to Bl LM6 are not listed. This

coding is not advised for PACK, for the reasons stated in the preceding paragraph.

//JOB NAME=SAMPLE

//EX PGM=LIBUTIL

//PAR COMMAND=PACK,LIST=NO

//DEF ID=OUTPUT,FI L=BI LM6,STA=(IP,O)

//DEF ID=WOR K,FI L=BI LM61,STA(P,O)

//DEF ID=LIST,DEV=PRT

//EOJ

Example 2:

In this example all non-deleted members of library INV60 are copied to library INV70.

The named members only, and their directory entries, are copied from INV70 back to

library INV60. The original and final sequence of non-deleted members on INV60 can

be seen by a sample Librarian listing for this run. Note the members copied out to

INV70 but not copied back to INV60 due to the SELECT default (inclusive). Note also

that where an output member name is specified (BAL Tin the example), that name is

shown on the listing as the member copied back.

//JOB NAME=EXAMPLE

//EX PGM=LIBUTI L
//PAR COMMAND=PACK

//PAR MEM=B1,MEM=B2,MEM=(B3,,BALT),

2-25

//PAR MEM=B4,MEM=B7 ,MEM=B8,

//PAR MEM=B9,MEM=B 12,MTYPE=SRC

//DEF ID=LIST,DEV==PRINTER

//DEF ID=OUTPUT,FIL=INV60,STA=(P,O)

//DEF ID=WOR K,FI L=INV70,STA=(P,0)

//EOJ

Sample Pack Listing

B3 SAC SAVED ON WLIB

B9 ABS SAVED ON WLIB

B13 SAC SAVED ON WLIB

SRC1 SAC SAVED ON WLIB

B1 SAC SAVED ON WLIB

B9 SAC SAVED ON WLIB
B4 SAC SAVED ON WLI B
B8 SAC SAVED ON WLIB
B7 SAC SAVED ON WLIB

BB SAC SAVED ON WLIB
B8 OBJ SAVED ON WLIB

B12 SAC SAVED ON WLIB
B1 SAC PACKED INTO OLIB
B2 SAC PACKED INTO OLIB
BALT SAC PACKED INTO OLIB
B4 SAC PACKED INTO OLIB
B7 SAC PACKED INTO OLIB
B8 SAC PACKED INTO OLIB

B9 SAC PACKED INTO OLIB
B12 SRC PACKED INTO OLIB

ASSIGN NEW MEMBER NAME (RENAME)

The RENAM.E function assigns a new name to a member of a specified library. The catalog
entry of the old member name is marked deleted and a new catalog entry created for the
new name. The data for the member in the library remains unchanged and available for use.
The space in the catalog occupied by the old member name is unavailable until a PACK or
COPY function is performed, replacing the contents of the library directory. Until that
time, the old name is still shown in PTOC lists, preceded by the letter D, along with the new
one.

The content of the //PAR statement used for the RENAME function is:

COMMAND=RENAME
,MEM=(old member name, [type] ,new member name, [type] [,P])
[,OLI B=library identifier]
[,MTYPE=member type]
[,VERSION=version number]

r ,LIST= I ~6s) J
(continued next page)

2-26

[,IN ITPG=initial page number]
[,PGSIZE=lines per page]

c,sPAcE=U}J
[,TITLE='literal string']

The default values listed in Table 2-6 should be used whenever possible for the RENAME
function.

Table 2-6. Default Values for LIBUTIL RENAME Function

Keyword Default

OLIB OUTPUT

VERSION Entry currently in version field of old
member entry

LIST YES

INITPG 1

PGSIZE 60

SPACE 1 (single space)

TITLE System header line

The MEM keyword is required and specifies the old member name (to be deleted) and the
new member name. If P is not coded, a new member name and type identical with a
non-deleted member name and type on the library will cause the entry already on the
library to be marked deleted. If P is coded and the preceding situation occurs, the run aborts
without perf~rming the RENAME. VERSION may be used for convenience of identifying a
member on a listing, but is not part of the name. If not specified, the version of the old
member will be used.

The following are examples of //PAR statements that request the LIBUTIL RENAME
function.

Example 1:

In this example, source member A of the library specified by ID=OUTPUT on a //DEFINE

Control Language statement in the step will be renamed A7. However, if source member

A7 already exists on that library, it will be protected, the RENAME will have no effect,

and the run will abort. A7 will have the same version number as A.

//PAR COMMAND=RENAME,MEM=(A,SRC,A7,SRC,P)

2-27

Example 2:

In this example, member RES of the library specified with ID=OUTPUT is renamed BLK,

VERSION 04. An existing source member named BLK is not protected.

//PAR COMMAND=RENAME,
//PAR MEM(RES,SRC,BLK,SRC),VERSION=04

The following examples show the Control Language statements of a job step using the
RENAME function.

Example 3:

In this example four macro members of library MACRO Fl Lare renamed. Version numbers
on all the new member names will be the same as those on the old members. Existing mem

bers of the macro type with the names CHG1, CHG16, CHR7, and CHR11 are not protected ..

//JOB NAME=SAMPLE

//EX PGM=LIBUTI L

//PAR COMMAND=R ENAME,MTYPE=MAC,

//PAR MEM=(MAC1 ,,CHG1),MEM=(MAC16,,CHG16),

//PAR MEM=(MAR7,,CHR7),MEM=(MAR 11,,CHR 11)

//DEF ID=LIST,DEV=PRINTER

//DEF ID=OUTPUT,FIL=MACROFIL,STA=(P,0)

//EOJ

Example 4:

In this example the members SAV and SAV2 of library SPC123 are renamed BRS6 and

BRS5 with a version number 27. Member names are not listed in the course of the RE

NAME execution. The ID of SPC123 is INPUT6 instead of the default OUTPUT. An

existing source member named BRS6 would be protected, but one named BRS5 would

not.

//JOB NAME=SAMPLE
//EX PGM=LIBUTIL
//PAR COMMAND=RENAME,OLIB=INPUT6,
//PAR MEM=(SAV;SRC,BRS6,SRC,P),
//PAR MEM=(SAV2,SRC,BRS5,SRC),

//PAR VERSION=27,LIST=NO
//DEF ID=INPUT6,FIL=SPC123,STA=(P,0)

//DEF ID=LIST,DEV=PRT

//EOJ

2-28

PUNCH ENCODED MEMBER (DUMP)

The DUMP function converts the members of a relocatable or absolute load or object library
to a sequential punched card deck. Members may be dumped in either LI BUTI L reloadable
or machine loadable format (see Appendix D). A member may be dumped in machine
loadable format only if it is an absolute load module, a stand alone program which can be
reset loaded. Each member dumped in reloadable format is preceded by a unique member
identification card (or card image). Each member dumped in machine loadable format is
preceded by a separator card.

The content of the //PAR statement for the DUMP function is:

COMMAND=DUMP
,MEM=(input member name[,type])
[,I LI B=input library identifier]
[,OFI L=output dumped file identifier]
[,MTYPE=membeir type]

[,MODE= I ~l]
[,UST=l~6Sl]
[,INITPG=initial page number]
[,PGSIZE=lines per page]

[,SPACE= { ~}]
[,TITLE='literal string']

The default values listed in Table 2-7 should be used whenever possible with the DUMP
function.

Table 2-7. Default Values for LIBUTIL DUMP Function

Keyword Default

ILIB INPUT

OFIL SEOOUT

MODE R

LIST YES

INITPG 1

PGSIZE 60

SPACE 1 (single space)

TITLE System header line

2-29

The COMMAND=DUMP keyword-operand is required. In addition, the MEM keyword must
be used to specify the names of the members of the library to be dumped. The M~fYPE
keyword is used only when the type operand of one or more MEM keywords is omitted, and
then it is required. I LIB specifies the library from which members are to be dumped. OF IL
designates the file to which the members are to be dumped. OFI L designates the file to
which the members are to be dumped. MODE specifies reloadable or machine loadable
dump format. Machine loadable (M) format is valid only for stand-alone programs (those
that do not require the operating system) which are stored as absolute load modules and
may be reset loaded on the M RX/40 and 50 Systems.

The MODE=R member identification card has the following format:

Column

1
2
3-6
7-14

15
16
17-18
19-20
21
22
23-25
26-29
30-49
50-76
77-80

Contents

Hexadecimal DD, dump output identifier
Hexadecimal FF, member identification card code
Text header (common stored data format header)
Member name
Member Type
Reserved
Attribute field
Version
Number of user extension words
Number of sub-division links
Creation date
Creation time
User extensions
Reserved
Sequence number

Information in the identification card is obtained from the library directory (Appendix A).

The MODE=M member separator card contains zeros in all 80 columns. It is ignored when
the deck is loaded, and simply provides a means of separating decks.

The following are examples of //PAR statements that request the LIBUTI L DUMP function.

Example 1:

In this example, object member AGR will be dumped in reloadable format from the

library specified by ID=INPUT to the file specified by ID=SEOOUT.

//PAR COMMAND=DUMP,MEM=(AGR,OBJ)

Example 2:

In this example an absolute load module, BR620, is dumped in machine loadable format

from the library specified by ID=INPUT to the file specified by ID=SEOOUT. BR620 must

be a stand-alone program that can be initiated via reset-load.

2-30

//PAR COMMAND=DUMP,MEM=(BR620,ABS),
//PAR MODE=M

The following examples show the Control Language statements for steps which use the
DUMP function of LIBUTI L.

Example 3:

In this example five relocatable load members of library BUSAD236 will be dumped in
LI BUTI L reloadable format onto a punched card file. Their names wil I not be listed as
they are dumped, but they will appear in the summary list of parameters received.

NAME=SAMPLE //JOB
//EX
//DEF
//DEF

PGM=LIBUTIL
ID=LIST,DEV=PRT
ID=SEOOUT,DEV=R EADPUNCH

//DEF ID=INPUT,FI L=BUSAD236,STA=(P,O)
//PAR LIST=NO,COMMAND=DUMP,
//PAR MEM=AD6,MEM=AD7,MEM=AD8,
//PAR MEM=AD9,MEM=AD10,MTYPE==REL
//EOJ

Example 4:

In a system with a reader-punch as the input reader, punching must be done via SYSCRD,
as in this example. Absolute load member SHOP6 and object member SHOP6 are dumped
from library SHOPCHART2 to a punched card file. The names of both members are listed
as they are dumped.

//JOB NAME=SA.MPLE
//EX PGM=LIBUTIL
//PAR COMMA.ND=DUMP,ILIB=OUTPUT,
//PAR MEM=(SHOP6,ABS),MEM=(SHOP6,0BJ)
//DEF ID=LIST,DEV=PRINTER
//DEF ID=SEOOUT,DEV=SYSCRD
//DEF ID=OUTPUT,FI L=SHOPCHART2,STA=(P,0)
//DATA. FIL=SYSCRD

(Blank cards)

//EOJ

2-31

LOAD DUMPED MEMBER (LOAD)

The LOAD function restores one or more members dumped with MODE=R to a library. The
card deck, magnetic tape, or sequential disc file previously generated by the DUMP function
is used as input to recreate the member via the LOAD function. There is no protection of
existing members on the library from being deleted by loading members of the same name
and type. Name and type of the input members are derived from the member identification
cards provided when the members were dumped.

Members can be renamed before the LOAD function by changing the name in the
identification card. Members dumped in machine-loadable format cannot be reloaded on a
library using the LOAD function.

The content of the //PAR statement for the LOAD function is:

COMMAND=LOAD
[,I Fl L=input file identifier]
[,OLIB=output file identifier]

c ,LIST= I ~6s) J
[,IN ITPG=initial page number]
[,PGSIZE=lines per page]

[,SPACE= {i}]
[,TITLE='literal string']

The default values listed in Table 2-8 should be used whenever possible with the LOAD
function.

Table 2-8. Default Values for LI BUTI L LOAD Function

Keyword Default
-

IFIL SEQIN

OLIB OUTPUT

LIST YES

INITPG 1

PGSIZE 60

SPACE 1 (single space)

TITLE System header line

2-32

-----------------------------------·--·------------------

The COMMAND=LOAD keyword-operand is required. I Fl L specifies the input file (card,
tape, disc) containing the dumped members to be loaded and recreated. 0 LIB specifies the
library onto which those members will be loaded. The recreated members and their
directory entries are loaded at the end of the library, immediately following the last member
of that library. Any member already on the library is marked for deletion if it bears the
same name and type as an incoming member being loaded. The data separator statement
(/*LIB) must not appear between members to be loaded by one LOAD command.

The following are examples of //PAR statements that request the LIBUTI L LOAD function:

Example 1:

In this example the members on the file specified with ID=SEOIN will be loaded onto the
library specified with ID=OUTPUT.

//PAR COMMAND=LOAD

Example 2:

In this example the members of the file specified with ID=SEQIN will be loaded onto the

library specified with ID=LODLIB.

//PAR COMMAND=LOAD,OLIB=LODLIB

The following examples show the Control Language statements of job steps using the LOAD
function.

Example 3:

In this example members A and Bin the card reader file, SEQIN, are loaded onto the library
LODLIB27. The header line is specified by the programmer. The listing will be double

spaced and will identify each member by name and type as it is loaded. The data separator

statement, /*LIB, is not required at the end of the file, but is required to separate sets of data
for different commands in the same data file.

//JOB NAME=SAMPLE

//EX PGM=LI BUTI L
//DEF ID=LIST,DEV=PRINTER

//DEF ID=SEOIN,FIL=RELOAD
//DEF ID=OUTPUT,FIL=LODLIB27,STA=(P,0)

//PAR COMMAND=LOAD,SPACE=2,

//PAR TITLE='LODLIB27 LOAD'

//DATA FIL=RELOAD

(Dumped deck of member A)

(Dumped deck of member B)

/*LIB

/*
//EOJ

2-33

Example 4:

In this example the members of a tape file, R726LOD3 with volume identifier 1473 are

loaded onto disc file ARCHR3. Member names will not be listed as they are loaded, but
the Librarian will produce a listing acknowledging the LOAD command and function

complete.

//JOB NAME=SAMPLE
//EX PGM=LIBUTI L
//PAR COMMAND=LOAD,LIST=NO
//DEF ID=SEOIN,FI L=R726LOD3,DEV=TAPE16,VOL=1473

//DEF ID=OUTPUT,FIL=ARCHR3,STA=(P,O)

//DEF ID=LIST,DEV=PRT

//EOJ

MODIFY LOAD MEMBER (PATCH)

The PATCH function is used to modify absolute and relocatable load members of libraries.
Each modification processed becomes a permanent change to the member module. That is,
the modification is done in place in the library and the original member data is no longer
available. The PATCH routine can also be directed to verify the contents of the module
prior to modification. (See the Linkage Editor section of this manual, Section 3, for the
structure of a load module.)

The contents of the //PAR statement for the PATCH function are:

COMMAND=PATCH
,MEM=(input member name[,type])

[,MTYPE= I~~~ l J
[,U LI B=update library identifier]
[,IF I L=input file identifier]

[,LIST=/ ~~s) J
[,INITPG=initial page number]
[,PGSIZE=lines per page]

[.SPACE={ i}]
[,TITLE='literal string']

The default values in Table 2-9 should be used whenever possible for the PATCH func:tion.

2-34

T'able 2-9. Default Values for LIBUTIL PATCH Function

Keyword Default

ULIB UPDATE

IFIL SEQIN

LIST YES

INITPG 1

PGSIZE 60

SPACE 1 (single space)

TITLE System header line

The COMMAND=PATCH keyword-operand is required. The MEM keyword must also be
included, specifying the member to be patched. The member type must be specified, either
with the MTYPE keyword or as an operand to the MEM keyword. The only valid member
types for the PATCH command are ABS and REL. Members of these types are produced by
the Linkage Editor.

The PATCH directives are presented as data to the PATCH routine in the data files specified
by the I Fl L keyword. The general format is:

command displacement text

A single space precedes and follows the displacement field. Multiple text sub-fields are
separated by commas, a comma following each sub-field except the last. The text is coded as
hexadecimal data and must be specified in words (2 hexadecimal characters per byte, 2
bytes per word).

The displacement must be coded as a hexadecimal value equal to the displacement from the
beginning of the load module relative to zero. If the displacement specified is outside of the
text for the named member, the utility will be terminated with an error code.

There are two commands, VER and REP. VER directs the PATCH routine to verify that the
contents of the member beginning at the designated displacement is equal to the specified
text. An unequal compare will result in termination of the utility. REP directs the PATCH
routine to replace the contents of the member beginning at the designated displacement
with the specified text. Separate formats are provided for relocatable and absolute member
patches.

Patching Relocatable Load Modules

Patch words for relocatable members can be specified for Absolute Text Word Attribute (A)
or Relocatable Text Word Attribute (R). If R is specified, the relocatable program loader
will perform relocation adjustment at load time. The format for relocatable member patches
is as follows:

2-35

I~~;} displacement text, {~},text, (~}, ... ,text,(~ J

One word or several consecutive words of text beginning at the same displacement may be
specified with each command. A comma follows each text word and each attribute c:ode
except the last. The following examples illustrate the format.

VER 016E FOFO,A

REP 016E F1 F1,A,0645,R

Patching Absolute Load Modules

In the format for absolute members, consecutive patch words from a single displacement are
separated by commas. No attribute codes are provided for patches to absolute members.
The format for absolute member patches is as follows:

I~~~} displacement text, ... ,text

This provides for one or more consecutive words of text beginning at one displacement, for
example:

VER 016E FOFO

REP 016E EC00,0644

PATCH Examples

The following are examples of //PAR statements that request the LI BUTI L PATCH
function.

Example 1:

In this example absolute member STOR6, located on the library specified by ID=UPDATE

will be patched using the directives and data in the data file specified by ID=SEOIN on its

//DEFINE statement.

//PAR COMMAND=PATCH,MEM=(STOR6,ABS)

Example 2:

In this example a relocatable member of the library specified with ID=OUTPUT on its

//DEFINE statement will be patched. The member name is PARTS. The data file is

specified with ID=SEOIN on its //DEFINE statement. A listing will be produced showing

the input parameters, but not the patch directives performed.

//PAR COMMAND=PATCH,ULIB=OUTPUT,

//PAR MEM=(PARTS,REU,LIST=NO

2-36

The following examples show the Control Language statements of a step that uses the
PATCH function.

Example 1:

In this example absolute member PR07 of library LOADLIB is patched via the directives
in the data file PATCHLOAD. A listing showing input parameters and patch directives will

be produced.

//JOB NAME=SAMPLE

//EX PGM=LIBUTIL

//DEF ID=LIST,DEV=PRT

//DEF ID=UPDATE,FILE=LOADLIB,STA=(P,O)

//DEF ID=SEOIN,FIL=PATCHLOAD

//PAR COMMAND=PATCH,MEM=(PR07,ABS)

//DATA FIL=PATCHLOAD

(Patch directives)

/*LIB

/*
//EOJ

Example 2:

In this example NUM7, a relocatable member of library LODLIB12, is patched using

directives in data file SETUP. A listing showing the input parameters will be produced,
but the patch directives performed will not be listed.

//JOB NAME=SAMPLE
//EX PGM=LIBUTI L
//PAR MEM=(NUM7,REL),

//PAR LIST=NO,
//PAR COMMAND=PATCH,
//PAR ULIB=IN3,
//PAR IFI L=BLDUP

//DEF ID=IN3,FIL=LODLIB12,STA=(P,0)

//DEF ID=BLDUP,FI L=SETUP

//DEF ID=LIST,DEV=PRT

//DATA FIL=SETUP

(Patch directives)

/*LIB

/*
//EOJ

2-37

PRINT SYMBOLIC MEMBER (PRINT)

The PR I NT function prints the named members of a symbolic (source, macro, or procedure)
library, with data of the member displayed in alphanumeric character representation. Any
bit combinations not equivalent to a printable EBCDIC character will be shown as blank on
the listing.

The printed output consists of the LI BUTI L header (system date, time, LI BUTI L function,
member identification, and page number) or the optional user-specified header, and the data
of the member.

The listing produced by the PRINT function will be output by the //DEF Control Lan~1uage
statement specifying ID=LIST. LIST=YES must be used with the PRINT command, either
specified on a //PAR statement or by default.

The content of the //PAR statement of the PRINT function of LIBUTI Lis:

COMMAND=PRINT
,MEM=(member name [type])
[,I LI B=library identifier]
[,MTYPE=member type]
[,LIST=YES]
[,INITPG=initial page number]
[,PGSIZE=lines per page]

[,SPACE= u}]
[,TITLE='literal string']

The default values listed in Table 2-10 should be used whenever possible for the PH I NT
function.

Table 2-10. Default Values for LIB.UTIL PRINT Function

Keyword Default

I===

ILIB INPUT

LIST YES (LIST=NO is illegal for PRINT)

INITPG 1

PGSIZE 60

SPACE 1 (single space)

TITLE System header line

2-38

The COMMAND=PRINT keyword-operand is required. The MEM keyword must also be
used for each member to be printed. Multiple MEM keywords are used to print more than
one member. The MTYPE keyword is used only when type is omitted from MEM, and then
is required.

The following examples show the Control Language statements of steps that use the PR I NT
function.

Example 1:

In this example six members, GR631-GR636, of library GRAIN76 will be printed double

spaced. There will be 50 lines to the page. The LIBUTI L header will be used.

//JOB NAME=SAMPLE

//EX PGM=LIBUTI L

//DEF ID=LIST,DEV=PRINTER

//DEF ID=INPUT,FI L=GRAIN76,STA=(P,I)

//PAR COMMAND=PRINT,PGSIZE=50,SPACE=2,

//PAR MEM=GR631,MEM=GR632,

//PAR MEM=GR633,MEM=GR634,

//PAR MEM=GR635,MEM=GR636,MTYPE=SRC

//EOJ

Example 2:

In this example four procedure members of library EXCHANGE61 will be printed single
spaced. There will be 60 lines to a page. Pages will be numbered from 600. The header
to be printed is specified by the programmer.

//JOB NAME=SAMPLE
//EX PGM=LIBUTI L

//PAR COMMAND=PRINT,MTYPE=PRO,

//PAR TITLE='EXCHANGE INFORMATION FILE 73',

//PAR MEM=STOCK 1,MEM=SECUR6,I NITPG=600,

//PAR MEM=BOND29,MEM=YIELD17

//DEF ID=LIST,DEV=PRINTER
//DEF ID=INPUT,FI L=EXCHANGE61,STA=(P,I)
//EOJ

PUNCH SYMBOLIC MEMBER (PUNCH)

The PUNCH function produces a punched card deck or a tape consisting of the card images
of a symbolic type (source, macro, or cataloged procedure) member in a library. The output
card deck may be resequenced.

2-39

The content of the //PAR statement for the PUNCH function is:

COM MAN D=PUNCH
,M EM=(member name [,type])
[,OF I L=punch file identifier]
[,MTYPE=type]
[,SEOPOS=(start,length)]

[NEWSEQ= I (initial number, increment) I]
' NO

[,LIST= I ~~s l J
[,IN ITPG=initial page number]
[,PGSIZE=lines per page]

[,SPACE= u }]
[,TITLE='literal string']

The default values listed in Table 2-11 should be used whenever possible for the PUNCH
function.

The COMMAN D=PUNCH keyword-operand is required. The MEM keyword must be used
for each member to be punched. MTYPE is used only when type is omitted from MEM and
then is required. MTYPE or type with MEM may specify SRC, MAC, or PRO only .. The
remaining member types (OBJ, ABS, and REL) are illegal for PUNCH.

For resequencing, the start and length of the sequencing field is specified with SEQPOS. The
sequence field chosen can be anywhere in the record and can be from 1 to 8 bytes. Neither
specification need coincide with the sequence field with which the member was created. The
default is column 73, length 8 positions. NEWSEQ specifies the new sequencing valu1es by
initial number and increment. If unspecified, renumbering will not occur.

Table 2-11. Default Values for LIBUTI L PUNCH Function

Keyword Default

ILIB INPUT

OFIL SEOOUT

SE OP OS (73,8)

NEWSEQ NO

LIST YES

INITPG 1

PGSIZE 60

SPACE 1 (single space)

TITLE System header line

2-40

The following examples show the Control Language statements of steps that use the PUNCH
function.

Example 1:

In this example four cataloged procedures, AUTO, AUT07, AUT018, and AUT026 from
library AUTOFI L20 are punched on a reader-punch. Renumbering does not occur. Mem
ber names are not listed as they are punched.

//JOB

//EX

//PAR

//PAR

//PAR

//DEF
//DEF

//DEF

//EOJ

Example 2:

NAME=SAMPLE

PGM=LIBUTI L

COMMAND=PUNCH,MEM=AUT07,

MEM=AUT018,MEM=AUT026,

MEM=AUTO,MTYPE=PRO,LIST=NO
ID=LIST,DEV=PRINTER

ID=SEOOUT,DEV=READPUNCH
ID=INPUT,FIL=AUTOFIL20,STA=(P,I)

In this example source member ORD6 is transferred from library ORDER LOG to a card
image file on magnetic tape specified by ID=PUNCH2. Renumbering is in columns 75-80

beginning with number 1 and incrementing by 10.

//JOB NAME=EXAMPLE

//EX PGM=LIBUTI L

//DEF ID=INPUT,FIL=ORDERLOG,STA=(P,I)

//DEF ID=PUNCH2,DEV=TAPE8

//DEF ID=LIST,DEV=PRT
//PAR COMMAND=PUNCH,

//PAR OFIL=PUNCH2,MEM=(ORD6,SRC),

//PAR SEOOUT=(75,6),NEWSE0=(1,10)
//EOJ·

CREATE OR MODIFY SYMBOLIC MEMBER (UPDATE)

The UPDATE function is used to create new symbolic (source, macro, and procedure)
members in a library and to modify symbolic members from an existing library.
Modification may consist of adding symbolic statements to a member, deleting statements
from a member, or combining parts of two or more members within a library. The UPDATE
function may use distinct libraries or the same library when modifying a member, producing
as output a new member in the output library. Separate //DEFINE cards for ID=ILIB and
I D=OLI B are still required even though the same filename is used for both. When the update
output library is the same as the input library, the update is not made in place, but it marks
the input member for deletion and creates a new member at the high end of the library.

2-41

The content of the //PAR statement for the UPDATE command is as follows:

COMMAND=UPDATE
,MEM=([input member name] ,[type] ,output member name,[type] [,P])

!SEQ I ,UMODE= REL

[,MTYPE= { ~:g }]
MAC

[,I LI B=input library identifier]
[,I Fl L=input file identifier]
[,O LI B=output library identifier]
[,SE OPOS= (start, length)]

[,NEWSEO= I ~~tial number,increment)l]

[,SEOCHK= 1~6Sl]
[,VERSION=version number]

[,LIST= I ~6s I J
[,IN ITPG=initial page number]
[,PGSIZE=lines per page]

[,SPACE= { ~}]
[,TITLE='literal string']

The default values listed in Table 2-12 should be used whenever possible for the UPDATE
function.

The COM MAN D=UPDATE keyword-operand is required. The UMODE keyword-op1erand
specifies the update method to be used. UMODE=SEQ designates that sequence numbers on
the source statements are used in the update, while UMODE=REL specifies that the relative
record numbers given on the previous UPDATE or PRINT listing of the member are used.
The relative record numbers on the UPDATE listing are not the same as the li.ne numbers on
an assembly listing.

The MEM keyword must be specified for the UPDATE function, and must always include
an output member name. When the input member name is omitted, creation of a1 new
member (from IF IL) occurs, subject to protection if specified. Otherwise, the input member
name specifies an input library member to be processed. Only SRC, PRO, or MAC am legal
for the type operand of M EM or MTYPE.

The UPDATE modification process is governed by directive statements. These directives,
which for convenience are called pointer directives and copy directives, allow the user to
delete from, copy, and insert information into library members.

2-42

Table 2-12. Default Values for LIBUTI L UPDATE Function

Keyword Default

UMODE REL

ILIB INPUT

IFIL SEQIN

OLIB OUTPUT

SEQPOS (73,8)

NEWSEQ NO

SEQCHK NO

VERSION Entry currently in version field of old
member entry

LIST YES

INITPG 1

PGSIZE 60

SPACE 1 (single space)

TITLE System header line

For ease of reference, the following narrative in some instances describes the update process
as a series of actions on the input library member, although in fact it is not itself modified.
All actions on the input library member are a copy from or a failure to copy from
("delete").

Pointer Directives

The pointer directive, identified by a minus sign in column one followed by one blank,
directs the UPDATE program to copy or delete statements from the named 'member on the
primary input library, and to move an internal record pointer for the input library member.
One value specified on the directive instructs the program to copy the input member
through the specified record; two values separated by a comma instructs the program to
delete the records in the inclusive range of the values. The internal record pointer is moved
to the record following the last value on the directive.

Pointer by Relative Record Number

When relative record number mode is selected, either by default or by UMODE=REL, the
UPDATE program copies and deletes according to the relative position of the record in the
input member. Any data following the directive in the input data stream is then added to
the output library member until another directive is encountered. When no additional
directives are present in the input data stream and the record pointer is not at the end of the
input member, the program copies the remaining records from the input member.

2-43

For example, if a user wants to copy records one through four of an existing member, iinsert
two lines of code, and copy the remaining records from the existing member, he must
specify a directive for the first four records and include the input data. He need not specify
a directive for the balance of the existing member, since the pointer rests at input member
record five and the program copies the remaining records. The input would appear as shown
below:

//DATA FIL=X
- 4
Data item 1
Data item 2
/*LIB

(Copy records 1-4)

I Add code to)
output member

(Copy records 5 through end of input library member)

If two values separated by a comma are specified, the UPDATE program ignores the records
included in the range of values and sets the record pointer to the record following the last
value. In effect, these records are deleted from the member on the output library. As in the
previous example, assume that the user wants to copy the first four records. However,
instead of simply adding the two new lines of code, he wants to replace existing records five
and six with the new code and copy the remaining records from the input member. He
could accomplish this with the following input:

//DATA FIL=X
- 5,6
Data item 1
Data item 2
/*LIB

(Copy records 1-4, delete records 5-6)

I Add code to)
output members

(Copy records 7 through end of input library member)

In another situation, given the same input member, the user may wish to copy records one
through four, insert two I in es of code, copy records five through 12, delete records 13
through 15, copy records 16 through 25, replace record 26 with one line of code, and copy
the remaining input member records. The directives and data could appear as follows:

//DATA FIL=X
- 4
Data item 1
Data item 2
- 13, 15
- 26,26
Data item 3
/*LIB

(Copy records 1-4)

I Add code to)
output member

(Copy records 5-12, delete records 13-15)
(Copy records 16-25, delete record 26)
(Add line of code)
(Copy remaining records)

2-44

The pointer directive can also be used to add data at the beginning of the output library
member (before copying anything from the input member). Initially, the internal record
pointer precedes the first record of the input member and is not moved until a directive is
encountered. (If no directive is encountered before the end of the input data stream, a
directive to copy the remainder of the input member is implicit.) Data can be added to the
output library member after the last record copied from the input member by specifying a
value on the pointer directive equal to the last relative record number in the input member.
The following data stream illustrates these two capabilities. Assume the input member
contains 50 records and the last five records are to be deleted.

//DATA Fl L=X

Data item 1 }

Data item n

- 46,50

Data ~tern n+ 1 l
Data item n+m
/*LIB

Pointer by Sequence Number

(Add data to beginning of output member)

(Copy input member through record 45, delete remaining
records)

(Add data to end of output member)

When sequence number mode is selected (by UMODE=SEO), the UPDATE program
performs the same kinds of copy, insert, and delete operations as it does for relative record
number mode, except that a sequence number field is used to identify records. The internal
pointer is m·oved accordingly. Certain basic differences in operation should be noted. The
chief difference is that sequence numbers are not necessarily consecutive; that is, the user
may have specified an increment greater than one for the sequence field. Therefore, the user
must exercise special care when specifying values for the directives.

There is no requirement that sequence numbers specified on the directive statement match
any sequence numbers in the input member. The only requirements are that the sequence
number field in the input data stream must be in the same position as it appears in the input
member and that no sequence number in a directive may be higher than the highest
sequence number in the input member. For example, assume an input member with 100
records, sequence beginning at 10 with an increment of 10, to which we want to add two
lines of data between sequence numbers 40 and 50, delete sequence number 60, and replace
sequence numbers 110 and 120 with one line of data. The input data stream could appear in
a number of ways, as illustrated below.

//DATA FIL=X
- 40
Data item 1
Data item 2
- 60,60
- 110, 120

Data item 3
/*LIB

(Copy first four records)
(Add data items)

_(Copy record 50, delete record 60)
(Copy records 70-100, delete
records 110, 120)
(Add data item)
(Copy remainder of input member)

2-45

//DATA Fl L=X
- 49
Data item 1
Data item 2
- 55,65
- 102,129

Data item 3
/*LIB

As can be seen in the example, sequence numbers in the directives need not match thosei in
the input member. The user can specify sequence numbers in a range which includes the
sequence numbers affected and obtain the same results as if he named the specific sequence
numbers involved.

An additional form of the directive can be specified for sequence number mode only. The
format is as follows:

* (Minus sign, space, asterisk)

This directive instructs the update program to add the data, in the input data stream
following the directive, to the output library member in the proper collating sequence. The
program replaces any records in the input member that have matching sequence numbers in
the input data stream and copies unmatched records.

To illustrate this capability, assume an input library member of 50 records with a sequence
field beginning with 05 and a sequence increment of 5. The following data stream will
produce the results shown.

//DATA FIL=X
*

Data seq. number 5
Data seq. number 12
Data seq. number 15
Data seq. number 17
Data seq. number 25
/*LIB

Data Stream Output Member Input Member

A seq. number 5 -A seq. number 5 F seq. number 5 (replaced)
B seq. number 12~ G seq. number 10 G seq. number 10
C seq. number 15 ~ B seq. number 12 H seq. number 15 (replaced)
D seq. number 17 ~ C seq. number 15 I seq. number 20
E seq. number 25". D seq. number 11/ J seq. number 25 (replaced)

"'-I seq. number 20 K seq. number 30
E seq. number 25 .

K seq. n~umber 30 }/

M seq. number 250

M seq. number 250

The sequence field comparison is active only for the data immediately following the -*
directive. Other types of directives can be present after the data, and the new directives can
be followed by data that does not have a sequence number.

2-46

Copy Directive

The copy directive enables the user to copy entire members, combine two or more
members, or move statements from one or more members to another member in the same
library. Unlike the pointer directive, no internal position pointer is moved as a result of the
directive. However, if a primary input member is specified with the MEM keyword, the
implicit directive to copy the remaining records from the position of the internal position
pointer through the end of the primary input library member is effective. Therefore if
remaining records from the primary input member are not wanted on the output member, a
pointer directive deleting the unwanted records must be included before the data separator
statement for the command.

The copy directive is identified by a plus sign in column one and a blank in column two.
There are three forms of the directive:

• + n,m,input-member-name[,type] [,library-id]
This form specifies that records from relative record number or
sequence number n through m, inclusive, are to be copied from the
named input member to the output member named in the MEM=
operand. When copying by sequence numbers (UMODE=SEO), n and
m are inclusive bounds. If either does not exist on the input member,
the next sequence number higher than n or next sequence number
lower than m found on the member are used. The value specified for
m must not exceed the highest relative record or sequence number in
the input member. Member type is not required if the MTYPE
operand is specified. Library-id is the identifier of the library on
which input member name is cataloged, and is required when the
input member is not on the primary input library specified by I LI 8.
When type is omitted and library-id is present, the input member
name and library-id must be separated by two commas.

• + n,input-member-name[,type] [,library-id]
This form specifies that relative record or sequence number n
through the end of the member are to be copied. Specifications for
type and library-id are the same as for the preceding form.

• + input-member-name[,type] [,library-id]
This form specifies that the entire member is to be copied. The same
rules for type and library-id apply as specified for the preceding
forms.

2-47

Example of use of copy directives:

//JOB NAME=SAMPLE
//EX PGM=LIBUTI L
//PAR COMMAND=UPDATE,MEM=(,,NEWONE,SRC),OLIB=(INPUT,SYM)

//PAR COMMAND=UPDATE,MEM=(NEWONE,SRC,SCNDRY,SRC)
//PAR COMMAND=UPDATE,MEM=(,,TERTIARY,SRC)

//DEF ID=LIST,DEV=PRT
//DEF ID=INPUT ,Fl L=SRC01,STA=(P,0)

//DEF ID=OUTPUT,FIL=SRC02,STA=(P,0)

//DEF ID=SEQIN,FIL=SRCFILE

//DATA FIL=SRCFILE
* SAMPLE INPUT DATA CARD 001

* SAMPLE CONTINUES CARD 002

* LAST SAMPLE CARD CARD 003

/*LIB
* THIS PROGRAM DEMONSTRATES INPUT

* TO SOME SOURCE EDITOR
* INSERT THESE FOUR CARDS
* AHEAD OF EXISTING CARDS

/*LIB
*** I WISH TO INTRODUCE SOME INFO
*** FROM THE CARD INPUT STREAM

+ 1,4,SCNDRY,SRC,OUTPUT
+ 1,2,NEWONE,SRC,INPUT
** ADD THIS CARD
** ALSO THIS ONE
+ 3,3,NEWONE,SRC,INPUT

/*
//EOJ

The results of this job will be the following:

Member NEWONE

Card 001
Card 002
Card 003

Member SCNDRY

Card 006
Card 007
Card 008
Card 009
Card 001
Card 002
Card 003

2-48

CARD 006

CARD 007
CARD 008
CARD 009

CARD 222
CARD 223

CARD 333
CARD 334

Member TERTIARY

Card 222
Card 223
Card 006
Card 007
Card 008
Card 009
Card 001
Card 002
Card 333
Card 334
Card 003

3. LINKAGE EDITOR

FUNCTIONAL DESCRIPTION

Linkage Editor input may consist of a combination of object modules, load modules, and
directives. The primary function of the Linkage Editor is to combine these modules into one
or more output load modules, in accordance with the requirements stated on directives.
Although this linking or combining of modules is its primary function, the Linkage Editor
also:

• Edits modules by replacing, deleting, and rearranging control sections
as specified by directives.

• Accepts additional input modules from data sets other than the
Primary Input Module, either automatically, or upon request.

• Reserves storage for the COMMON control sections generated by the
assembler and the FORTRAN compiler.

• Creates overlay programs (multiple load modules) in a structure
defined by directives.

• Provides special processing and diagnostic output options.

• Assigns module attributes that describe the structure, content, and
logical format of the output load module.

MODULE LINKAGE AND EDITING

Linkage Ed.itor processing allows the programmer to divide his program into several
modules, each containing one or more control sections. The modules can be separately
assembled or compiled. The Linkage Editor combines these modules into one or more load
modules with contiguous storage addresses, and resolves all references between modules in
the input. The output modules are always placed in a library. The editing functions of the
Linkage Editor facilitate program modification. When the functions of a program are
changed, the programmer can modify and compile only the affected control sections instead
of the entire source module. He can replace, delete, or move control sections through use of
the SEG directive.

ADDITIONAL INPUT SOURCES

Standard subroutines can be included in the output module, thus reducing the work in
coding programs. The programmer can specify that a subroutine be included at a particular
time during the processing of his program by using a SEG directive. When the Linkage
Editor processes a module or a directive file which contains this statement, the module
containing the subroutine is retrieved from the indicated input source, and made a part of
the output module.

3-1

Symbols that are still undefined after all input modules have been processed causE~ the
automatic library search mechan.ism to search for entry points that will resolve these
references. When a module name is found containing the entry point which matches the
unresolved symbol, the Linkage Editor processes the module and makes it part o·f the
output program.

STORAGE RESERVATION

The Linkage Editor processes common control sections generated by FORTRAN and the
Assembler. The common areas are collected by the Linkage Editor, and a reserved main
storage area is provided within the output modules.

OVERLAY PROGRAM CREATION

To minimize main storage requirements, the programmer can organize his program into an
overlay structure by dividing it into segments according to the functional relationships of
the control sections. Two or more segments that need not be in main storage at the same
time can be assigned the same relative storage addresses, and can be loaded at different
times.

The programmer uses SEG directives to specify the relationship of segments within the
overlay structure. The segments of the program are placed in a library so that loader
requests can load them separately when the program is executed. Each load module is
placed in the library under a unique member name.

SPECIAL PROCESSING AND ERROR DIAGNOSIS

The programmer can specify special processing options that negate automatic library c:all or
the effect of minor errors. In addition, the Linkage Editor can produce a module map or
cross-reference table that shows the arrangement of control sections in the output module
and indicates how they communicate with one another. A list of the directives proc:essed
can also be produced.

Throughout processing, errors and possible error conditions are printed on the output
listing. Fatal errors cause the Linkage Editor to terminate and produce no output module.
Additional diagnostic data is automatically logged by the Linkage Editor. The data indicates
the disposition of the load module in the output module library.

LOAD MODULE ATTRIBUTE ASSIGNMENT

When the Linkage Editor generates a load module, it places an entry for the module iin the
directory of the user-defined library. This entry contains attributes that describe the
structure, content, and logical format of the load module. The control program uses these
attributes to determine what a module contains and how it is to be loaded. Some module
attributes can be specified by the programmer; others are specified by the Linkage Editor as
a result of information gathered during processing.

3-2

INPUT STRUCTURE

The Linkage Editor receives its input in the form of object modules produced by language
processors, primary relocatable load modules produced by previous executions of the
Linkage Editor, and directive* sets in card-image format. The input can be divided into two
classifications, basic and secondary.

BASIC INPUT

Basic input consists of either a Linkage Editor directive set or the primary object module.
When there is no directive set, the basic input is a primary object module. The //DEF card**
with I D=I NPUT names the library file that contains the primary object module, and the
operand for the PGM keyword of the //PAR card specifies the cataloged member name of
the primary object module.

When the basic input is a directive set, a //DEF card with I D=DI R names a sequential data
file on disc storage that contains the directive set. The data file must be in common stored
data format, either spooled input or a file created by a utility program. The PGM parameter
of the //PAR card specifies the name of the directive set to be used; it must match a name
supplied on a NAME directive. The primary input module is identified by the first module
name encountered in the highest level SEG directive in the basic input directive set. As in
the previous situation, the //DEF card with ID=INPUT names the library file that contains
the primary input module. The primary input module can be either an object module or a
load module.

SECONDARY INPUT

Secondary input consists of all object and/or primary relocatable load modules required to
become part of the program being link-edited. A primary relocatable load module is one
which has a Composite Entry Point List associated with it on a library. It is specified either
by external references from the primary object or secondary input modules, or by operand
specification of a SEG directive.

An external reference is always made to the symbolic name of an entry point which must be
included in the Entry Point List of some object or load module within the Library Search
Domain. When the referenced entry point is located, the module in which it is defined is
collected into the program being formed. The USE directive assists in the resolution of
duplicate entry points.

A SEG directive term may specify either an entire object or load module, or may reference a
single control section (CSECT) within a module. The library containing the module must
always be included in the current Library Search Domain.

*Directives are discussed in detail later in this section, under the heading Linkage Editor Directives.

**Control Language requirements are discussed in detail later in this section, under the heading Control Language Statement
Descriptions.

3-3

LIBRARY SEARCH DOMAIN

In order to locate a required module, the Linkage Editor searches a set of libraries called the
Library Search Domain. The specification of this domain may be accomplished in several
ways, depending on the LSD parameter of the //PAR card. The library specified by
I D=I NPUT must contain the Primary Input Module and is always searched first, regardless
of the LSD parameter.

The remainder of the domain is searched according to the following conditions:

• If the LSD=NO option is specified, all modules intended to be
included in the program must reside on the same library as the
primary input module.

• If one or two libraries are specified by LSD=(libname1 ,libname2),
these libraries are searched in the order specified.

• If the LSD parameter is omitted or if AUTO is specified, the system
library ($SYSOBJLIB) containing required system subroutines is
searched. Note that if $SYSOBJLI B is to be included in a specified
library search domain with another library other than that specified
by ID=INPUT, it must be coded as an operand to the LSD keyword.

Whenever a required module, explicitly defined as a SEG term, is not found within the
current Library Search Domain, as defined above, an error message will be displayed aind no
output module will be produced. In the event that duplicate modules or entry points exist
within the current domain, the Linkage Editor will always use the first located in the search
hierarchy of modules and libraries specified by the Entry Point Search Domain (described in
the following paragraph) and the library search domain. Such duplicates are noted on the
link-edit map, but are not treated as errors.

ENTRY POINT SEARCH DOMAIN

The list of load modules to be searched by the Linkage Editor in resolving the external
references of a designated load module is called the Entry Point Search Domain (EPSD).

An EPSD should be specified, via the USE directive, whenever externals could be satisfied
by more than one entry point within the link-edit map in which a module is to be collected.
That is, whenever duplicate entry points exist within a structure and one of them is
referenced in a given load module, that module should have an EPSD specified for it.
Otherwise the Linkage Editor uses the first satisfactory entry point that it encounters in its
search and indeterminate results may occur. The order in which USE directives are entered
for a given module specifies the search sequence within the domain.

3-4

The Linkage Editor resolves externals according to the following hierarchy:

1. Entry points of the load module containing the external references
are searched first.

2. Modules listed in any specified EPSD of the module containing the
external reference are searched. Modules in the domain are searched
for the entry point in the order in which their USE directives were
included in the directive set.

3. Remaining modules already collected in the link-edit are searched for
a matching entry point.

4. The library search domain specified by the LSD keyword is searched.

When a required entry point is not located within the hierarchy above, a field of'****' will
be displayed on the cross-reference list entry for the desired external, and the execution will
proceed according to the ERROR keyword on the //PAR statement. There is no other
notification of this condition other than the asterisks.

OBJECT MODULES

An object module is the output of a single execution of a language processor. It consists of
the text, relocation dictionary, and entry point list of one or more Control Sections or
Common Blocks. The information required by the Linkage Editor to resolve the
cross-references between different object and load modules is contained in the dictionaries
and entry point lists. The text consists of the actual instructions and data fields of the
object module with embedded relocation information. A fourth type of information,
Linkage Editor SEG directives, may also be a part of an object module. These specify the
desired physical organization, segmentation, and overlay structure to be used by the Linkage
Editor in constructing the output program.

Object modules are always placed in either a permanent library or a temporary
"Compile-Link-and-Execute" library, and are physically constructed according to the rules
for libraries discussed in Section 2 of this document and the associated appendices.

The text, dictionaries, entry points, and directives are described within the library directory
entry for that module as sub-sets. Object module sub-sets are called the Entry Point List, the
Text String Group, the Relocation Group Dictionary, and Directives. These are described
and illustrated in Appendix D.

LANGUAGE PROCESSOR RELATIONSHIPS

The Linkage Editor produces executable programs from previously constructed load
modules and from object modules generated by the language processors. In order to do this,
the Linkage Editor makes use of control sections, entry points, external references, and
common areas. The following paragraphs define these items in terms of the source language
statements used to create them.

3-5

ASSEMBLER

In the Assembler language, control section, entry point, external reference and common
area correlate directly to Assembler Language statements as described below.

A control section is defined by a CSECT statement, and is delimited by either an END
statement or another CSECT statement. (Any assembly of executable code without a
CSECT or COM statement is still considered to be a control section with a blank CSECT
name. The MRX/OS Assembler Reference manual discusses this in detail.)

An entry point is defined with an ENTRY statement.

A primary entry point is specified by the END operand, otherwise it is the first entry point
in the object module.

An external reference to a control section or to an entry point is specified with an EXTR N
statement.

A common area (common control section or common block) is specified with a COM
statement.

The Assembler allows the user to embed SEG directives in his source code and simply copies
them to the object modules. All SEG directives must immediately precede the Assembler
END statement.

COBOL

A separate control section is produced for the Linkage Section, the Working Storage
Section, the Literal Pool, the Display Buffer, one for each File Description, and for the
Procedure Division. In a segmented COBOL program, a new control section is produced for
each segment created, and the compiler generates a SEG directive. COBOL control sections
are always named.

One entry point is generated at the head of the procedure division for· each COBOL
program.

An external reference is created by the compiler whenever a CALL statement is used, or the
need for a MEMOREX-supplied run-time routine is detected.

Object code and/or run time routines may cause common areas to be included in the
link-edit map.

FORTRAN

Control sections, entry points, external references, and common areas are specified with
FORTRAN source statements, as described below.

3-6

A control section is defined with a SUBROUTINE, FUNCTION, or BLOCK DATA
statement that specifies the control section name. If the first statement of a FORTRAN
routine is not one of these, it is assumed to begin the main routine of the program. This
statement automatically defines a control section named either MAIN, or the name specified
on the NAME directive for the routine. The control section delimiter is an END statement.

An entry point is defined with an ENTRY statement.

An external reference is created for each EXTERNAL statement, and for each reference
{implicit) to a subroutine or function of a user program. Each call to a FORTRAN run-time
subroutine generated by the compiler also produces an external reference.

A common area is specified with a COMMON statement. Both named and blank common
areas are permitted.

RPG II

The RPG 11 compiler generates the required control sections, entry points, externals, and
common areas required to link-edit an RPG 11 object program.

A single control section is generated for each RPG 11 object program. No segmentation is
provided in the program.

Object code and/or run time routines may cause common areas to be included in the
link-edit map.

An R LAB L statement generates an entry point.

An EXIT statement produces an external reference to a subroutine, while a U LABL
statement generates an external reference for data. An external reference is also generated
when the need for a run-time routine is detected.

Note: Some RPG 11 run-time routines are themselves segmented. SEG statements specifying
their structure are generated in the problem program by the compiler.

OUTPUT

Output generated by the Linkage Editor is of two types. The first is the load module which
is always placed in a library as a named member; the second type consists of informational
and diagnostic output generated as a sequential data set to be printed.

The load modules generated by the Linkage Editor are either absolute or relocatable. The
absolute load module is intended for resident and non-resident portions of the Memorex
Operating system (MAX/OS) and for stand-alone utilities and maintenance routines. The
relocatable load module is intended to be run in the program partition, under Control
Language Services and M RX/OS.

3-7

ABSOLUTE LOAD MODULES

An absolute load module is composed of one or two data subsets: the Composite Entry
Point List for root modules only, and text for all modules. The text is the actual main
storage image of the text including the main storage address at which the module is to be
executed. The Linkage Editor will already have added the given load address to relocatable
terms.

Absolute Load Modules cannot be link-edited and collected into another program at a later
date.

RELOCATABLE LOAD MODULES

A relocatable load module is composed of two or three data subsets. The first subset is a
text image of the main storage occupation of the module, except that all referencies to
addresses within the program are relative to an assigned load address of zero.

The second subset is the Composite Entry Point List, contained in root modules only, and
includes the entry points of all of the object and load modules that are collected into the
program load module. The third subset is the Relocation Control Stream which is a
"bit-map" of all the relative addresses that exist in the text, and is one-eighth the length of
tha text.

LOAD MODULE CREATION

The Linkage Editor assigns consecutive relative. addresses to all control sections and res:olves
all references between control sections in its processing. Object modules produced by SE~veral
different language processors may, therefore, be used to form one load module.

Each module to be processed by the Linkage Editor can be made up of one or more control
sections, and has an origin that was assigned during assembly, compilation, or a previous
execution of the Linkage Editor. In order to produce an executable output load modul1e, the
Linkage Editor assigns relative main storage addresses to each control section by assigning an
origin to the first control section encountered. Addresses relative to that origin are then
assigned to all other control sections to be included in the output load modules. The value
assigned as the origin of the control section is used to relocate each address-dependent item
in the control section.

The Linkage Editor also resolves external references in input modules. Cross-references
between control sections in different modules are symbolic and must be resolved relative to
the addresses assigned to the load module. The Linkage Editor calculates the new address of
each relocatable expression in the control section and determines the assigned origin of the
item to which it refers.

3-8

The Linkage Editor calculates composite lengths for each load module and lists them on the
link-edit map. The manner in which they are calculated is described in this section under the
heading Executable Program Length in the discussion of the Link Edit Map.

CONTROL LANGUAGE STATEMENT DESCRIPTIONS

The Linkage Editor is requested through Control Language Services and executes as a
separate job step in the program partition. The program is specified with the
PGM=LNKEDT keyword-operand on the //EXECUTE statement. The remaining keywords
of the //EXECUTE statement apply, as described in the Control Language Services,
Extended Reference, and are the same as those provided for any problem program.

FILE DEFINITION

All files to be used by the Linkage Editor must be specified on //DEFINE statements in the
job step. //DEFINE statements must be included to designate ID=LIST, ID=INPUT, and
ID=OUTPUT. In addition, a fourth file, ID=DIR, must be defined whenever a Linkage
Editor directive file is used. The following paragraphs describe the four files. Additional
//DEFINE statements are required if uncataloged library files are included in the Library
Search Domain.

LIST FILE

A list file, I D=LIST, must be specified to receive the printed output produced by the
Linkage Editor. The type of listing is specified to the Linkage Editor by the LST keyword
on the //PAR statement (see Parameter Specifications). This file is in addition to any output
that may be printed on the SYSOUT file by the Linkage Editor.

INPUT FILE

An input file, I D=I NPUT, must be specified. This file must be the library that contains the
primary object module to be link-edited. Other object and load modules to be included in
the link-edit may also be included on the library. The LSD keyword on the //PAR statement
is used to specify other libraries in which members to be link-edited may be located. Each
such library, if uncataloged, must be explicitly defined.

OUTPUT FILE

An output file, I D=OUTPUT, must be specified to receive the output load modules of the
link-edit as cataloged entries. Several keywords described in the following discussion of the
//PAR statements specify parameters of the output file.

3-9

DIRECTIVE FILE

The directive file, I D=DI R, must be defined whenever a sequential file of card images which
are Linkage Editor directives is used. This file is called the Directive File and may contain
one or more directive sets.

PARAMETER SPECIFICATIONS

The //PAR statements presented to the Linkage Editor contain parameters in
keyword-operand form. The format is identical with that used for all other
keyword-operands of the Control Language and includes the following forms:

keyword=operand

keyword=(operand1, ... ,operandn)

The keyword-operands of the //PAR statement specify the primary object module to be
link-edited and provide optional processing information to the LN KE DT program. At least
one //PAR statement must be included with every execution of the Linkage Editor. Each
keyword-operand, except the last one on each //PAR card, is followed by a comma .. A
keyword-operand cannot be split between two //PAR cards; it must be wholly contained on
a single card. Multiple //PAR cards are allowed.

Example: //PAR PGM=ACCT27,PRIV=NO
//PAR LST=XREF

The content of the //PAR statement used for the LNKEDT program is:

PGM=input name
[,XQT=execute name]

[.LSD= rn~:~yl [,library2])} J .
[ORG=IREL lJ ' absolute storage location in hexadecimal
[,POO LSI Z=partition space pool size]

[.sRH=G~:} J
[.LST= I~~~~} J
[,SIZE=maximum allocation]

[ERROR={~~~EF}J I SIZE
NO

[,PRIV= \ ~6s}]
[,BOUND=\ ~65 }]
[,OF FSET='nnn']

3-10

The following paragraphs describe these keywords. The keywords may appear in any order
on the //PAR statements used. In the event that duplicate keywords are specified, the last
one encountered is used.

PGM KEYWORD

This keyword-operand specifies the cataloged name of the primary object module to be
link-edited or, if there is a directive set, the name of the directive set as specified on a
NAME directive. The operand is an alphanumeric string of 1 to 8 characters, with no
embedded blanks or special characters except dash. This keyword is required.

XQT KEYWORD

The XQT keyword-operand specifies the member name under which the main or root load
module generated by this execution of the Linkage Editor will be cataloged in the output
library (ID=OUTPUT on //DEFINE). This is the name by which the program will be
executed (PGM keyword on the //EXECUTE statement).

The operand is a 1- to 8-character alphanumeric string with no embedded blanks or special
characters except dash. If the XQT keyword is not supplied, the operand of the PGM
keyword on the //PAR statement will be used as the default.

LSD KEYWORD

This keyword-operand specifies how the Linkage Editor will establish the Library Search
Domain and hierarchy for locating the load modules required for the current execution. The
domain always includes the library specified by I D=I NPUT. It is always first in the search
hierarchy.

There are three operands which may be used for this keyword. They are AUTO, NO, and a
list of one or two library names. When the LSD keyword is not coded, AUTO is assumed as
the default.

The AUTO operand specifies that after the primary input library (I D=I NPUT on //DEF) has
been searched, $SYSOBJ LIB, the system object library which contains the subroutines
supplied with the operating system, will be searched.

The NO operand specifies that the Linkage Editor will search only the primary input library
for externals.

A list of one or two library names may be supplied as the operand of the LSD keyword.
When this is done, this list is used in place of $SYSOBJLI B. The libraries are searched in the
order listed. The names must be enclosed in parentheses and separated by a comma. For
example, LSD=(MAI N LI B,RUN LI 8).

3-11

When uncataloged libraries are included in the list of library names, a //DEFINE ca1rd for
each such library must be included in the job stream. The //DEFINE card must identi'fy the
uncataloged file as ID=LIB1 or ID=LIB2, depending on the position of the uncatalog«~d file
in the LSD parameter. For example, if LSD=(MAINLIB,SUBLIB) and SUBLIB is
uncataloged, a //DEF card with ID=LIB2 must be present. No //DEF cards are required for
these libraries when only cataloged files are included in the list.

If $SYSOBJLIB is to be searched along with another library, it must be included as one of
the libraries in the list. Any library name specified on a SEG directive is searched for and
must contain the module or CSECT which it modifies. That library must be specified either
by I D=INPUT or by listing it as an operand to the LSD keyword. The library specified by
ID=INPUT is otherwise always searched before $SYSOBJLIB or other libraries specified as
operands to the LSD keyword.

ORG KEYWORD

This keyword specifies whether the load modules generated are to be relocatable or
absolute. Either of two operands may be used with this keyword. They are REL or an
absolute storage location. When ORG is not coded, REL is assumed as the default.

REL specifies that the Linkage Editor is to generate relocatable load modules whic:h are
allocated from a relative address to zero. This is the type of load module which is normally
loaded into the program partition.

An absolute storage location is designated as a 1- to 4-digit hexadecimal*' value enclo:sed in
apostrophes. It specifies that the load modules generated are to be absolute (not relocatable)
and are to be allocated from the absolute main storage location specified. This option is
intended for use only by the System Generation Procedure when building the operating
system, and for stand-alone utilities and maintenance routines.

OFFSET KEYWORD

The OFFSET keyword-operand specifies a hexadecimal value that controls the output of an
absolute load module to a library. The specified value is interpreted as a displacemient in
bytes from the normal beginning of the load module and prevents writing the first n bytes
of the load module to the library.

The format of the parameter is as follows:

OF FSET='nnnn'

'nnnn' is a one to four digit hexadecimal number enclosed in apostrophes and must be an
even number, since it represents a word address. This keyword is legal only when generating
absolute load modules. ·

3-12

POOLSIZ KEYWORD

The POOLSIZ keyword-operand specifies that the program, when executed, will require
only a specified amount of its partition to be available for File Description Tables, TCOM
buffers, and Checkout Debugging directives. That amount of space is specified as the
operand to this keyword. The operand is a 1- to 4-digit hexadecimal value enclosed in
apostrophes.

When POOLSIZ is coded, the amount of space specified by the operand is returned to the
partition Space Pool. However, since the Space Pool must start on a 256 byte hardware page
boundary, up to 255 bytes more space than was actually specified may be available in the
Space Pool. The balance of the partition is available to the program for its use. Exact limits
of the area can be determined via the MEMLIM macro.*

If POOLSIZ is not coded, the program is not allowed to reference any unused area of the
partition. The Relocating Program Loader will allocate only the space required for the
program itself, and will return any excess to the Partition Space Pool for use by system
routines.

SRH KEYWORD

This keyword-operand has the effect of modifyilng the search for entry points. There are
three operands for this keyword: YES, NO, and ABS. YES is the default and specifies that
the normal search is to use the specification given with the LSD keyword.

NO causes externals to be satisfied only if the modules are specifically included in the map
via SEG directives. No library search will be made.

ABS causes only entry points in absolute load modules to be considered in satisfying
externals. This feature is intended for systems use only, and should not be coded for
problem programs except for stand-alone utilities and maintenance routines.

LST KEYWORD

The LST keyword-operand specifies the characteristics of the printed output (I D=LIST)
produced by the Linkage Editor. There are two operands for this keyword, NORM and
XREF.

NORM specifies that the normal print format be displayed. This includes the following:

• A header line with a Linkage Editor identification message, time, and
date.

• A list of all load modules generated, according to their memory
allocation.

• Any errors encountered in processing.

*MEMLIM is described in the MRX/OS Control Program and Data Management Services, Extended Reference manual.

3-13

When LST is not coded, LST=NORM is assumed as the default.

XRE F specifies that in addition to the items listed for NORM, the following will allso be
displayed.

• A list of all Linkage Editor directives encountered.

• A list of all modules collected as primary and secondary input.

• A list of all load modules generated, according to their memory
allocation, and the relative address assignments of all the input
modules and control sections.

• A cross-reference list of all externals and entry points as called by,
and referenced from, all object modules included in the output
program.

SIZE KEYWORD

This keyword-operand specifies the maximum allocation which the output program should
require. If the generated output program exceeds this size, an error message will be
displayed and the load modules optionally marked as containing an error (see EFtROR
keyword following).

The operand is a 1- to 4-digit hexadecimal number enclosed in apostrophes. This valuei must
not exceed a value of 65K (decimal). When this keyword is omitted, no checks are made
regarding size, except that the size of the total allocation will not exceed 65K decimal.

ERROR KEYWORD

The ERROR keyword-operand specifies the types of errors that will cause the IF code to be
set (refer to. the //IF statement in the MAX/OS Control Language Services, Ext1ended
Reference manual). The code will be set to F (EBCDIC) when the error condition specified
by ERROR exists.

ALL specifies that any non-fatal error conditions which occur during processing of the
program wi II cause the IF code to be set.

NO specifies that no non-fatal error condition will cause the IF code to be set. Fatal errors
prohibit the Linkage Editor from generating an output module.

UN DEF specifies that if an external remains unsatisfied, the IF code will be set.

SIZE specifies that if the program generated has exceeded limits specified by the SIZE
parameter, the IF code will be set.

3-14

This keyword is designed for use in a link-edit and execute situation. When the user
constructs his job stream for such a situation, it is recommended that the code be tested by
an //IF statement before attempting to execute the link-edited program.

PRIV KEYWORD

This keyword-operand allows the generated program to be initiated as a privileged task. It
allows execution of the privileged instruction set and Class I service requests. There are two
operands for this keyword, YES and NO. The default is NO.

YES specifies that the program is being link-edited as a privileged task. This operand is
intended for use by system programs, compilers, utilities, and maintenance routines.

NO specifies that the program is link-edited as a non-privileged task and is used for most
problem programs. Whenever PR IV=NO is specified or PR IV is not coded, the BOUND=NO
keyword-operand is illegal and must not be used.

BOUND KEYWORD

This keyword specifies where the Bound Register is to be set when the program being
link-edited is executed. There are two operands for this keyword, YES and NO. The default
is YES.

YES specifies that the generated program will run with the Bound Register set to the end of
the problem program area. When POOLSIZ is coded this will be the start of the partition
space pool as specified.

NO specifies that the generated program will run with the Bound Register set to the end of
the partition. This setting does not protect the system tables (FDT's, JCT, and TCT) in the
partition. BOUND=NO should be coded only for system programs and other routines which
do not depend upon protection of the system tables or which must alter them.

UNKAGE EDITOR DIRECTIVES

The directives ar~ statements introduced as input to the Linkage Editor in symbolic card
format. They specify explicit memory allocation of the desired output program, additional
input to the Linkage Editor, names and entry points of output load modules, and the
modules to be searched in satisfying the externals of a specific input module.

All directives may be introduced as a sequential data file of card images residing on disc
(spooled input) in common stored data format and specified by I D=DI R on a //DEF card.
The SEG directive only may optionally be included as a part of any object module.

The Linkage Editor directives have the following general format:

label directive operand 1, ... ,operandn

3-15

Label specifies a name by which the directive may be referenced. It is a 1- to 8-character
alphanumeric string. This field, if present, must begin in column one and must be
terminated by a blank. The first character must be alphabetic or a #character. The # in the
first character position identifies a CSECT name. Every SEG directive defines a primary
resident load module that, if cataloged, is given the name of the SEG statement. There~fore,
care must be taken in naming the SEG directives as well as in arranging them to produce the
required overlay structure.

The directive may begin in any column following the blank that terminates the label field
or, if there is no label field, may begin in any column except column one. It must be
terminated by a blank. The Linkage Editor directives are: NAME, ENTRY, SEG, USE, and
END.

The operand fields are defined separately for each directive. Blanks within the operand
fields are completely ignored by the Linkage Editor; the blanks preceding and following the
directive are the only ones considered. Continuation of an operand field is indicated by the
use of a semicolon. It may appear at any place in the operand field. Columns 73-80 of the
card image are not included in the operand field; they may be used as a sequence field.

NOTE

The M RX Assembler does not accept continuation on SEG statements
presented to it embedded in assembly language code.

NAME DIRECTIVE

The NAME directive specifies the beginning of a directive set within a directive file!, and
designates the following directives as comprisin·g the map of the named program. It must be
the first directive in the set. The directive set is terminated by an END directive. The NAME
directive may appear only in a directive file and may not be coded within an object
program. The content is:

label NAME

Label is the name specified as the operand of the PGM keyword on the //PAR statement
and designates the basic input module or directive set.

ENTRY DIRECTIVE

The ENTRY directive provides the ability to redefine the Primary Entry Points of any load
modules to be generated. This directive may be used to specify a new Primary Entry Point
for either an entire program or a sub-complex. The ENTRY directive always appears after
the SEG directive that defines the program or sub-complex which it will modify, and before
another SEG directive is encountered. The ENTRY directive may be used only in a diriective
file and may not be coded in an object module.

3-16

The form of the ENTRY directive is:

label ENTRY operand

Label is the name of the load module.

Operand has the form: symbol [+'hexadecimal literal']

In the operand, symbol is the name of an entry point or control section presently part of
the program. The optional hexadecimal literal is the offset from the named entry point. The
hexadecimal value, if present, must be enclosed in apostrophes.

Example:

In this example, the location of the Primary Entry Point for the load module named PROFIT

is changed to 2F (hexadecimal) locations beyond the entry point named PROFIT12.

PROFIT ENTRY PROFIT12+'2F'

USE DIRECTIVE

The USE directive is used in defining the Entry Point Search Domain for a given module. It
provides the ability to control and direct the Linkage Editor entry point search while
resolving the external references of a given load module. The sequential order of the USE
directives for a module determines the search hierarchy of the Entry Poirtt Search Domain.

This directive is required only if duplicate entry points exist. This occurs when a request has
been made (via the SEG directive) to allocate an object module more than once. The USE
directive may be used only within a directive file where any number of USE directives may
be used. The USE directive may not be coded in an object module.

The content of the USE directive is:

label2 USE label3

L.abel2 specifies the name of the load module containing the externals to be selectively
resolved, as specified on the SEG statement. Label2 must have been previously defined.

L.abel3 must be the name (label field) of a SEG statement naming the load module whose
entry points are to be used while resolving externals declared in the module designated by
label2, as specified on a SEG statement. Label3 must have been previously defined. Neither
label2 nor label3 can be sub-complex names; they must be names of SEG statements
resulting in load modules.

Example:

In the example, the load module named FMOD3 will be searched for entry points to satisfy

the external references in load module AMOD before any other modules in the Library

Search Domain are searched.

AMOD USE FMOD3

3-17

END DIRECTIVE

The END directive terminates a directive set within the file specified by I D=DI R. The END
directive must always be the last statement of a directive set and may appear only in a
directive file and not within an object module.

The statement has only one field, the directive. There are no label or operand designations.
The directive may begin in any column other than column one.

SEG DIRECTIVE

The SEG directive is used to specify additional input to the Linkage Editor as well as the
physical organization of input modules and control sections of the output program. The
relationships of load modules to be generated in an overlay program and their physical
organization is defined via the SEG directive. Previously designated search hierarchies for
resolving external references may also be overridden by the SEG directive specifying the
library in which the module or control section must be located.

SEG directives may appear anywhere between a NAME directive and an END directive, with
one restriction. Any SEG directive which references the label field of another SEG dirnctive
as an operand must physically follow the referenced SEG statement. This requirement
occurs because the Linkage Editor does not look ahead among the SEG directiveis for
undefined terms. When a module name referenced as an operand is not located as a SEG
statement label in a backward search, the Linkage Editor searches the appropriate library or
libraries for the module.

Example:

In this example the sub-complex defined by SEG A is referenced in SEG B, and the sub

complex defined by SEG Bis referenced in SEG C. The reference to Din SEG C will

not bring the sub-complex defined by SEG D, but will cause the module D to be collected.

Module D, however, is not prohibited from containing a SEG statement of the same name,

in effect causing a forward reference.

Within any given execution of the Linkage Editor, nested sub-complex definition within

modules is allowed to 4 levels. SEG statements that exist within a module are counted as

one of those 4 levels.

A

B

c
D

SEG

SEG

SEG

SEG

M1,M2,M3

G+A

D+B

M4,M5

3-18

EXPRESSIONS

The operand of the SEG directive is in the form of a logical expression composed of a single
term or a combination of terms and operators. Spaces may occur any place after the
beginning of the operand expression. The operand may not extend into the sequence field
of the card (character positions 73-80). Continuation is specified by coding a semicolon into
any column preceding column 73 on a card. Scanning continues with the next card, which
should not contain a label or a directive. The M RX Assembler does not allow continuation
on SEG statements presented to it embedded in assembly language code. The operand
expression specifies the desired memory occupation by use of three operators: the plus, the
comma, and the parentheses. These designate inclusion, exclusion, and level of occupation,
respectively. The operators have the following meanings in SEG directive expressions:

+plus Inclusion Operator: Terms separated by a plus sign are
considered to be included sequentially in memory in the
order encountered. This results in simultaneous memory
occupation of the modules named by these terms.

, comma Exclusion Operator: Terms separated by a comma are
considered to occupy the same memory area. This results
in exclusive overlays which are separate load modules.

() parentheses Grouping or Load Module Operator: The operators for
SEG directives have a priority analogous to mathematical
symbols. That is, commas are evaluated before pluses, as
multiplication is done before addition. Enclosing an
expression in parentheses, however, causes evaluation of
the enclosed expression prior to evaluating the remaining
expression outside the parentheses. In three instances,
enclosing expressions within parentheses produces a
separate load module: a simple expression (single term)
enclosed, a complex expression enclosed in double
parentheses, and an enclosed complex expression with a
comma preceding the left parenthesis. A complex
expression enclosed in parentheses and preceded by a plus
does not cause creation of a separate load module, but
does cause grol:Jping of the terms within the parentheses
prior to evaluation of the remaining expressions.

The creation of load modules can be illustrated with a few examples. In the examples,
diagrams show the level of overlays; that is, which load modules are overlaid by other
modules. The space occupied by a module is dependent, of course, on the length of the
module. Assume four modules, A, 8, C, and D. The following examples show the level of
occupation of memory, depending on the arrangement of the operators in the SEG
statement.

3-19

Example 1:

This statement produces a single load module named ALPHA, composed of the modules

A, B, C, and D, as illustrated in the diagram.

ALPHA SEG A+B+C+D

A

B

c

D

Example 2:

Modules A, B, C, and D will bll be loaded together when the

load module ALPHA is called. None of the modules can be

loaded separately, since only one load module is produced.

This statement produces a root load module named BETA, comprising modules A, B, and

D, and an overlay module C, as shown in the diagram.

BETA SEG A+B,C+D

A

B
I C
I
I I

[~J
Example 3:

Load module C is. link-edited to overlay module B. Module

Dis link-edited so that it will be loaded with modules A and

B, but will occupy space following the area in whieh load module

C wi II be loaded.

In thi.s statement, modules C+D are enclosed with parentheses and preceded by a comma.
Therefore, a load module, named C, will be produced for this expression, as well tis a load

module named GAMMA, consisting of modules A and B. Load module C will overlay
Module B, as shown in the diagram.

GAMMA SEG A+B,(C+D)

A

B C

D

3-20

Example 4:

In this statement, two load modules are produced, as in the previous statement, the first

named DEL TA and the second named C. However, the level of storage occupation differs

from the previous example in that the load module C will overlay the area occupied by

modules A and B of load module DEL TA, as illustrated in the diagram.

DEL TA SEG (A+B),(C+D)

A

c
B

D

SEG TERMS

Each term of a SEG operand expression consists of from one to three names. These are a
control section name, a module name, and a library name. Either a control section name or
a module name, or both, must be included as a term of every SEG operand expression.
When more than one of these names appears in a single expression, the names are separated
by the I character on the SEG card.

Control Section Name

A control section name consists of the name of the actual control section or common block
as submitted to or generated by a language processor or translator. A control section name
must be specified whenever a module name is not included. If specified, the control section
name always occurs first in the expression. When both are used, the control section name is
followed by a slash and then the module name. A control section name is a 1- to 8-character
alphanumeric string. The first character must be alphabetic. This name must be prefixed by
the # charac~er to identify it.

Module Name

A module name may define the name of an object or load module to be found in the
currently specified Library Search Domain or the name of a SEG directive previously
encountered in the same object module or directives set in which the reference is made. A
module name must be specified whenever a control section name is not included. When both
are used, the control section name occurs first, followed by a slash and then the module
name. This term is a 1- to 8-character alphanumeric field. The first character must be
alphabetic.

3-21

Library Name

A library name specifies the library in which the control section and/or module namud in
the expression must be located. This term is always optional. Library name defines an
exception or override to the normal Library Search Domain. However, the library name
specified must be included in the Library Search Domain for the program being generated.
When used, the library name follows the module name in the expression. The library name is
preceded by a slash. Library name is a 1- to 17-character alphanumeric .field with no
embe~ded special characters except dash. The first character may be $for system files and
libraries only. The library name must be the name of a library specified as the operand of
the LSD keyword on the //PAR card.

Terms on a SEG directive may occur in any of the following forms:

csname - The csname entry specifies a control section or common block
name defined in the current module making the reference.

modname - Modname specifies a module name implying all control sections
or common blocks contained or defined within it.

#csname/modname - This form designates a specific control section or
common block of the named module. In this form modname must be an
object module, since the Relocation Dictionary is required to locate the
named control section. Modname cannot be a load module or SEG directive.

modname/libraryname - This configuration specifies a module that must be
located in a specific library of the Library Search Domain. The normal
hierarchy of search is overridden, and only the specified library is searched.

#csname/modname/libraryname - This combination designates that a
specific control section or common block of the named object module must
be located in the named library. Only this library, which must be included in
the Library Search Domain, will be searched. The normal search hierarchy is
ignored.

COMMON ALLOCATION

All common control sections of the same name (whether labeled or 'blank') declared via the
Assembler COM instruction, are mapped into the same allocated storage area. Space for a
common section will be allocated whenever the first declaration of that common occurs,
except in the case of 'blank' common which is always allocated at the end of the module
(high order addresses).

Duplicate common definitions with different sizes may exist in independently compilc:?d or
assembled programs. However, at link-edit time, only one storage area, with the maximum
declared size, is allocated. This is true even though multiple allocations of the common
block have been specified in SEG directives.

3-22

A labeled common control section may be preset by declaring a CSECT of the same name.
Each declaration of that CSECT name presets the area. Therefore, it is extremely important
when more than one CSECT is used to preset the common area, that the programmer use
caution in specifying linkages to obtain the desired results. In addition, it is recommended
that the common area be specified in a resident area that will not be overlaid by other load
modules. A blank common is created by use of the COM statement with no label; it has no
relationship to a blank CSECT. Blank common cannot be preset; that is, a blank control
section declared directly or indirectly cannot be used to preset common.

Each CSECT (not declared common) specified in a SEG directive causes storage to be
aUocated, even though the same CSECT name may be specified more than once in the SEG
operand.

Example:

In this example control section, #M3 (not declared common) is allocated in two overlay

areas, #M2+#M3 and #M3+#M6.

A SEG #M1+(#M2+#M3),(#M4+#M5),(#M3+#M6)

The memory occupation can be illustrated by the following diagram.

#Ml

#M2 #M4
#M3

#M3 #M5
#M6

SAMPLE SEG STATEMENTS

The following are examples of SEG statements used to obtain the memory configurations
diagrammed.

In the diagrams, the topmost level indicates the root or main module. Boxes in the same
vertical plane as the root module indicate segments that are loaded with the root module.
They are not separate modules and therefore cannot be loaded separately. Modules
appearing to either side of the root module represent overlays. They. are loaded at the
relative location calculated by the Linkage Editor. The portions of the root module, or
other modules, that they overlay is dependent upon their length. The diagrams use dotted
lines to show the locations at which they are loaded relative to the root module.

3 .. 23

Example 1:

SEG Statement: [label] SEG A+B,C

In this example, module A is the root or main segment. Module C overlays B in one memory
area. Module Bis loaded with root A. Module C is a separate overlay load module, designa1ted

by the comma preceding it ..

Alternate SEG Statement: [label] SEG A+(B,C)

In this sample statement, the parentheses act as a logical grouping operator and are re

dundant. The preceding description applies.

Example 2:

SEG Statement: [label] SEG A+(B),C

In this example, module A is the desired root or main segment. Modules Band Care to

overlay one another in the same memory area. Neither B nor C is loaded simultaneously

with the root A, because of the parentheses surrounding Band the comma preceding C.

Alternate SEG Statements: x
[label]

SEG

SEG

B,C
A+(X)

In this alternate example, SEG X defines modules Band C as separate load modules over

laying the same area in memory. Neither B nor C is loaded simultaneously with tlie root

A. The load module shown as B in the illustration will be named X on the library.

Note: Forward SEG references to the label fields of other SEG statements are not allowed.

Therefore SEG X must occur prior to the SEG that references it.

Example 3:

SEG Statement: [label] SEG A+B+(C+D,E),(F+(G),H)

In this sample, modules C and Dare loaded with the root, A and B; Module E overlays
D. Sub-complex F (modules F, G and H) overlay C and D. Modules E, F, G, and Hare
all separate load modules.

3-24

A

B

~--- ____ : ~~[]--~----~
Alternate SEG Statements: x

y

[label]

SEG

SEG

SEG

C+D,E
(F)+(G),H

A+B+X,Y

In this alternate example, SEG X defines sub-complex C containing modules C, D and E

with module E as a separate load module. Modules C and D, as specified, will load with

root A and Band are not available as separate load modules.

SEG Y defines sub-complex F containing three separate load modules, G, G and H.

Note: Forward SEG references to the label field of following SEG statements are not

allowed. SEG statements X and Y, therefore, must occur physically before the SEG

statement in which they are referenced.

Example 4:

I

SEG Statement: [label] SEG

Overlay Region 1

A+B+((C)+(D),E),(F+(G),H)

Overlay

Region

2

-
Overlay

Region

3

In this example, modules A and Bare the root or main segment with two overlays, sub

complexes C and F. Sub-complex C includes module C plus overlays D and E, and sub

complex F includes module F plus overlays G and H.

A

B
Overlay

c F Region

J
1

E D Overlay ~ G J H
Region

2

Overlay
Region

3

Alternate SEG Statements:' v
w
[label]

·SEG

SEG

SEG

C+(D),E

F+(G),H

A+B+(V),W

In this alternate example, SEG V defines sub-complex C containing overlays D and E

in addition to module C.

SEG W defines sub-complex F containing overlays G and H in addition to module F.

Parentheses around V, a simple expression, in the last SEG statement causes the sub

complex defined by V to be treated as a separate load module. C is, therefore, a

separate load module, as are D (in parentheses) and E (preceded by a comma).

Since the sub-complex defined by Wis preceded by a comma in the last SEG state

ment, Fis a separate load module. G and Hare separate load modules by virtue of

their specification in SEG W.

The last SEG statement specifies the final structure with V and W supplying the sub

complex definition provided on the named statements.

Modules shown as C and F in the diagram will be named V and W respectively on the
library, because of their position in their respective SEG statements. Root module A

will be named by the label on the last SEG statement. Overlays D, E, G, and H will

be cataloged in the library under their given names.

Note: SEG statements V and W must physically precede the statement in whith they

are referenced.

Alternate SEG Statements: v SEG C+(D),E

w SEG F+(G),H

x SEG V,W

[label] SEG A+B+X

Parentheses around either Vin SEG X or C in SEG V or X in the last statement could

be used to designate module Casa separate load module.

SEG V defines sub-complex C including load modules C, D, and E with D and E as

overlays.

SEG W defines sub-complex F including load modules F, G, and H with overlays

G and H.

SEG X defines the relationship between V and W occupying the same memory areas as

overlay sub-complexes.

The last SEG statement specifies the final structure with X supplying the sub-complex

definitions provided on the named statements.

3-26

Module Fin the diagram will be named Won the library. Naming of module C depends

on the option chosen above.

Since a comma precedes W in SEG X, parentheses around F would be redundant.

SEG statements V and W must precede SEG X which references them. SEG X must

occur physically before the last SEG statement.

Alternate SEG Statements: D SEG D,E

G SEG G,H

x SEG (C)+(D)

F SEG F+(G)

z SEG X,F

[label] SEG A+B+Z

In this example, SEG D specifies the relationship between D and E as overlays. E is

defined as a load module.

SEG G specifies the relationship between G and H as overlays. H is defined as a foad

module.

SEG X defines sub-complex C as containing load modules C and the contents of SEG D
as a load module.

SEG F defines sub-complex F as containing module F and the contents of SEG G as a

load module.

SEG Z specifies the relationship of SEG X to SEG F as overlays. The content of SEG F

is defined as a load module.

The last SEG statement specifies the final structure with Z bringing the sub··complex

definitions provided on the named SEG statements.

All modules on the library will be named as shown in the diagram.

LINK-EDIT MAP

The Linkage Editor creates a listing that includes a heading line, a list of the Linkage Editor
Directives included in the input, and a list of the load modules produced, including the
name of each load module, its relative relocatable load address, its byte size, and the relative
address of its entry point. Under each load module is listed the other control sections,
object modules, and other load modules included in the named load module, together with
common block names, control section names, and entry points, and their associated
addresses. Externals in each module are also listed, showing the external name, the name of
the load module containing the entry point that satisfies the external, and the relative
address of the entry point.

3-27

TITLE LINE

The title line of the map appears as follows:

**LINKAGE EDITOR LEVEL-x mmddyy hhmmss

x Level designation of the Linkage Editor in use at the site.

mmddyy Current system date (month, day, year).

hhmmss System time (hours, minutes, seconds).

DIRECTIVE LIST

The directive list includes all directives supplied to the Linkage Editor, whether included in
a directive set or embedded in the object module. It is essentially a list of the directive card
images.

LOAD MODULE LIST

The load modules are listed as follows:

LOAD MODULE= xxxxxxxx BSADR= nnnn SIZE= bbbb ENTRY POINT= aa1aa
zzzzzzzz nnnn

CM name addr
CS name addr
EP name addr
PE name addr
EX name addr mod name

xxxxxxxx Name of the load module, as specified by the PGM or XQT
parameter or by SEG statements.

nnnn Relocatable load address, relative to a zero base.

bbbb Composite length of the load module in bytes (described under
the heading Executable Program Length).

aaaa Relative relocatable address of the primary entry point of the
load module (the first entry point if no primary entry point is
specified). Compilers generate primary entry points according
to their own rules.

zzzzzzzz Name of an input object module which has been included in
the load module, and in which the items following the name
are found.

3-28

CM name A labeled or unlabeled common block.

CS name A named or unnamed control section.

EP name A named or unnamed entry point. If duplicate entry points are
encountered, the word DUPLICATE appears on the right side
of the listing on the same line as the entry point name.

PE name Primary entry point of the load module.

EX name An external name.

addr Relative relocatable address at which the named item appears
in the module, except for EX, where it is the relative
relocatable address of the entry point in the module satisfying
the external. If an external remains unsatisfied, four asterisks
will appear in place of an address.

modname Name of the load module which now contains the entry point
satisfying the external (not necessarily the name of the object
module in which it was found).

SAMPLE MAP

The map in Figure 3-1 is an example of a link-edit map produced from link-editing an RPG
11 program. In the example, only SEG statements are shown, since the RPG 11 compiler
automatically produces SEG directives and no further external directive file has been
specified. The last SEG statement has no l.abel; therefore the name of the primary load
module defaults to the name specified for the PGM parameter (FPT002 in the example).

l\lot all object modules in the example are shown on the SEG directives; some are included
as a result of searching library $SYSOBJLI B for entry points to satisfy externals.

The SEG statements produce modules that occupy main storage space according to the
diagram in Figure 3-2.

The sizes shown on the listing in Figure 3-1 for modules $RGRER, $RGRCL, $RGRMR,
and $RGRNT are the actual sizes of these modules. The size shown for load module
FPT002 is the composite length of the program, including load module FPT002 and the
longest overlay, $RGRMR.

Note the unresolved external $WRTBUF iin module $DMGPF of load module FPT002.
Since the sample map is not intended to reflect an actual program, the unresolved external is
included for illustrative purposes only.

3-29

**LINKAGE EDITOR LEVEL.P 020973 064935

AAAAAAAA SEG ($RGRNT/$SVS08JLIB),;
($RGRMR/$SVS08JLI 8) ,($R GRCL/$SVS08JLI 8) ,;
($RGRER/$SVS08JLl8)
SEG $RGREX/$SVS08JLl8+AAAAAAAA+FPT002

LOAD MODULE = $RGRER BSA DR= 0856 SIZE •0412 ENTRY POINT• 0856
$RGRER 0856

CM $RGCOM 0000
CM $RGCM2 OOEE
cs 0856
EP 0856 DUPLICATE
EP $RGCOM 0000 DUPLICATE
EP $RGCM2 OOFE DUPLICATE
EX $RGRTN 0176 FPT002

LOAD MODULE = $RGRCL BSADR= 0856 SIZE =046A ENTRY POINT• 0856
$RGRCL 0856

CM $RGCOM 0000
CM $RGCM2 OOEE
cs 0856
EP 0856 DUPLICA.TE
EP $RGCOM 0000 DUPLICA,TE
EP $RGCM2 OOEE DUPLICA1TE
EX $RGCL 01F2 FPT002

LOAD MODULE = $RGRMR BSADR= 0856 SIZE =070C ENTRY POINT• 0856
$RGRMR 0856

CM $RGCOM 0000
CM $RGCM2 OOEE
cs 0856
EP 0856 DUPLICATE
EP $RGCOM 0000 DUPLICATE
EP $RG413 0878
EP $RGORS OE8E
EP $RGOSP 125A
EX $RGRT 0156 FPT002
EX $RGMI 092C FPT002

LOAD MODULE = $RGRNT BSADR= 0856 SIZE =053C ENTRY POINT• 0856
$RGRNT 0856

CM $RGCOM 0000
CM $RGCM2 OOEE
cs 0856
EP $RGRNT 0856
EP $RG300 OD88
EP 0856
EP $RGCOM 0000
EP $RGCM2 OOEE
EX $RGORS OE8E $RGRMR

LOAD MODULE= FPT002 BSAIOR• 0000 SIZE •29AC ENTRY POINT• 1262
$RGREX 0000

CM $RGCOM 0000
CM $RGCM2 OOEE
cs 0140
EP 0140 DUPLICATE
EP $RGCOM 0000 DUPLICATE
EP $RGXLM 091C
EP $RGCL 01F2
EP $RGRT 0156
EP $RGRIN 0176

Figure 3-1. Sample Link-Edit Map

3-30

EP $RGEXC 0140
EP $RGMI 092C
EX $RG300 OD88 $RGRNT
EX $DMGPF 20E2 FPT002
EX $DMGPR 2252 FPT002
EX $DMOCC 23E2 FPT002
EX $RG413 0878 $RGRMR

FPT002 1262
cs FPT002 1262
cs $RGCOM 0000
PE FPT002 1262
EX $RGEXC 0140 FPT002
EX $RGPRX 2454 FPT002
EX $RGOFP 2504 FPT002

$DMGPF 20E2
cs $DMGPF 20E2
EP $DMGPF 20E2
EX $WRTBUF ****

$DMGPR 2252
cs $DMGPR 2252
EP $DMGPR 2252

$DMOCC 23E2
cs $DMOCC 23E2
EP $DMOCC 23E2
EP $DMOCC1 23E4

$RGPRX 2454
CM $RGCOM 0000
cs 2454
EP 2454 DUPLICATE
EP $RGCOM 0000 DUPLICATE
EP $RGPRX 2454

$RGOFP 25D4
CM $RGCOM 0000
cs 25D4
EP 25D4 DUPLICATE
EP $RGCOM 0000 DUPLICATE
EP $RGOFP 25D4

Figure 3-1. Sample Link-Edit Map (Continued)

3-31

FPT002

{Object
module

$RGREX)

Relative address 0000

Relative address 0856

1$RGRER 1- -1$RGRCL_1 _-_-_i ______ !-_ I $RGRMR 1---1 $RGRNT I
Relative address 1262

FPT002
(Including

object module
FPT002 and

modules linked
as a result

of satisfying
externals)

-------Relative address 29AC

Figure 3-2. Storage Occupation for Sample Program

EXECUTABLE PROGRAM LENGTH

An important programming consideration is the composite length of load modules produced
by the Linkage Editor and shown on the link-edit map. The length shown on the map for
the root load module consists of the length of the root module plus the length of the longest

· string of overlay load modules possible in main storage at the same time, if the overlays
extend beyond the root module. The length shown for each overlay load module consists of
its length plus the length of any logically dependent overlays, if they extend beyond the
initial overlay. This can be shown by the following illustration.

Executable

program

length=

520 bytes

130 ~tes ,- -

A

212 bytes

B
100 bytes

c
70 bytes

3-32

E
58 bytes

F
60 bytes

G

60 bytes --i 90~ms I

In the illustration, the actual size is shown for each segment. However, the composite
lengths of the load modules are shown in the following chart. For illustrative purposes,
length values are shown in decimal; on the link-edit map they appear in hexadecimal
notation.

Load ModuJe

A (A+B+C)
D
E(E+F+G)
H

Load Module Size

382 bytes
30

178
90

Composite Length

520 bytes (A+B+E+F+H)
30 bytes

208 bytes (E+F+H)
90 bytes

The composite length shown for load module A is 520 bytes. The lengths for C and Gare
not included, since the areas they occupy are overlaid by load modules extending beyond
them. The composite length shown for load module E is 208 bytes; H is included because it
is linked to overlay the area occupied by G and extends beyond G. The length shown for
load module D is 30 bytes and for H is 90 bytes, since neither of these modules have
dependent overlays.

Load module A is the primary load module. Therefore, execution of this program requires a
partition of at least 520 bytes, plus sufficient space for the partition space pool and
partition tables. '

JOB STREAM EXAMPLES

The following examples show sample Control Language statements used in three executions
<>f the Linkage Editor.

Example 1 : Basic Execution

In this example, an execution of the Linkage Editor is requested. No directive file

is specified. The program to be link-edited is member TRANS1 located on library

PROJLI B. All control sections and modules required to create the load modules

must reside on either PROJLIB or $SYSOBJLIB. The executable load program

created will be placed on the system load library, $SYSLODLIB.

//JOB NAME=SAMPLE

//EX PGM=LNKEDT
//DEF ID=LIST,DEV=PRINTER

//DEF ID=INPUT,FIL=PROJLIB,STA=(P,I)
//DEF ID=OUTPUT,FIL=$SYSLODLIB,STA=(P,0)
//PAR PGM=TRANS1

//EOJ

3-33

Example 2: Basic Execution with a Directive Set

In this example, an execution of the Linkage- Editor is requested usinu a directive file.

The program to be link-edited is MFTR6 located on library PROJLIB. All control

sections and modules required to create the load modules must reside on either

PROJLIB or $SYSOBJLIB. The Linkage Editor directives are located in MFTR2.

The executable load program to be produced will reside on PROJLODLIB.

//JOB
//EX
//DEF
//DEF

//DEF
//DEF

NAME=SAMPLE2
PGM=LNKEDT
ID=LIST,DEV==PRT
ID=INPUT,FI L=PROJLIB,STA=(P,I)

ID=OUTPUT,FI L=PROJLODLIB,STA=(P,0)

ID=DI R,FI L=MFTR2

//PAR PGM=MFTR6,LST=XREF

//DATA FIL=MFTR2

MFTR6 NAME

MFTRA SEG #M4+M5,M6

MFTRB SEG # M7+(#M8),#M9,#M 10

MFTR6 SEG # M1+#M2+(MFTRA),MFTRB,#M3

MFTR6 ENTRY STRTMAIN

/*
//EOJ

END

The following diagram specifies the modules created for MFTR6, and shows the

overlay structure that results.

LOAD MODULE MFTR6

CSECT M1 I CSECT M2

LOAD MODULE MFTRA ~
CSECT M4 OBJECT MODULE MS

LOAD MODULE~
OBJECT MODULE M6

LOAD MODULE MFTRB

CSECT M7

LOAD MODULE MB I
CSECT MS

LOAD MODULE M9 I
CSECT M9

LOAD MODULE M10

CSECT M10

LOAD MODULE M3

CSECT M3

3-34

Example 3: Compile-Link-and-Execute

This example includes a compile step, a link-edit step, and an execute step.

//JOB NAME=SAMPLE3
//EX PGM=COBOL
//DEF I D=INPUT,FI L=$SYSSRCLIB,STA=(P,I)
//DEF ID=OUTPUT,FI L=LNKLI B 1,NUM=1000
//DEF ID=LIST,DEV=PRINTER
//PAR IMEM=PROG14,0MEM=PROG14,LIST=YES
//EX PGM=LNKEDT
//DEF ID=INPUT,FIL=LNKLIB1
//DEF ID=OUTPUT,FIL=LNKLIB2,STA=T,NUM=1000,BLK=l,SIZE=256,
//DEF ID=LIST,DEV=PRT
//PAR PGM=PROG14,XQT=PROG14,LST=XREF,SIZE='4000'
//EX PGM=PROG14,LIB=LNKLIB2
//EOJ

Example 4: Compile-Link-and-Execute Using a Cataloged Procedure Cataloged Procedure

The following cataloged procedure specifies the same COBOL compile step, link-edit
step, and execute step as Example 3. The operands which may (or must) be specified
on the //CALL statement are designated on the //DECLARE statement of the cataloged
procedure. The //DEF card for ID=$LODLIB is required, since LNKLIB2 is uncataloged
in this example.

//DEC LANG=COBO L,SRCFI L=$SYSSRCLIB,
II SRC=EXNAME,LELST=NORM,
II MAXSIZ=8K,CMPLST=YES
//EX PGM=&LANG
//DEF I D=INPUT,FI L=&SRCFI L,STA=(P,I)
//DEF ID=OUTPUT,FI L=LNKLIB1 ,NUM=1000
//DEF ID=LIST,DEV=PRINTER
//PAR IMEM=&SRC,OMEM=&SRC,LIST=&CMPLST
//EX. PGM=LNKEDT
//DEF ID=INPUT,FIL=LNKLIB1
//DEF ID=OUTPUT,FIL=LNKLIB2,STA=(P,O),CAT=NO,NUM=1000,BLK=l,SIZE=256,
II VOL=VOLA
//DEF ID=LIST,DEV=PRINTER
//PAR PGM=&SRC,XOT=&SRC,LST=&LELST
//PAR SIZE=&MAXSIZ
//EX PGM=&SRC,LIB=LNKLIB2
//DEF ID=$LODLIB,FI L=LNKLIB2,STA=(P,0)

A call to the above cataloged procedure could appear as follows. The operands
on the //CALL statement must include SRC and EXNAME, specified on the
//DECLARE as required each time the procedure is requested.

//JOB NAME=SAMPLE4
//CALL PRO=CMPXQT,SRC=PROG 14,EXNAME=PROG 14,
II LINES=2000,LELST=XREF,MAXSIZ=16K
//EOJ

3-35

4. RELOCATING PROGRAM LOADER

INTRODUCTION

The Relocating Program Loader (hereafter called the Loader) transfers program load
modules from the system and private load libraries, on direct access storage, into a program
partition of main storage for execution under the Memorex Operating System. The Loader
is a system ($NUCLI B resident) module which operates as a System Supervisor Service
Program in the system resident area of main storage.

The program load modules transferred into the partition by the Loader are either
relocatable or absolute, and are produced by the Linkage Editor from object modules
generated by the language processors. In order to be loaded for execution in the program
partition, all program load modules must reside on direct access storage libraries.

· Modules which reside on other media, such as cards or magnetic tape, must be placed in a
library via the LI BUTI L routine.

The Loader is invoked in each of the following circumstances:

• By the System Control Program at system initialization, to load the
Input Reader module of Control Language Services.

• By the Step Initiator module of Control Language Services es a direct
result of an //EXECUTE statement, to load the program named on
that statement.

• By a Service Request from a currently executing program, or load
another of its segments or overlays into its assigned area of the
program partition.

• By the System Control Program at the end of each step, to load the
Step Terminator module of Control Language Services.

Before control is passed to any module of a program, the Loader determines whether
Checkout Debugging has beeri requested. When DEBUG=YES is specified on the
//EXECUTE statement for the program, the Loader calls the Debug routine to initialize the
module as specified in the Debug Directive File for the program. Then the Loader passes
control to the program. (The Debug routine is described in the MRX/OS Control Program
and Data Management Services, Basic Reference manual. The MRX/OS Control Language
Services, Extended Reference manual discusses the DEBUG keyword, and describes the
Checkout Debugging table and partition space requirements.)

4-1

MACRO SPECIFICATIONS

The primary functions of the Relocating Program Loader are available for problem program
use via the FETCH and LOAD macros. The following paragraphs describe the format used in
coding the macros, and discuss each of the macros and their keyword operands. The format
of the Service Request and of the macro expansion for these functions are provid1~d in
Appendices E and F respectively.

MACRO FORMAT

In general all macros used in the Memorex Operating System have the same format, as
follows:

name operation keyword-operand (s)

The name field is optional. It contains a 1- to 8-character alphanumeric value which specifies
the tag for the macro. No embedded blanks are allowed in this or any other field. The name
field, when it is used, begins in column 1 of the punched card. It is separated from the
following field on the card by one or more blank characters.

The operation field is required and specifies the macro requested. This field is separated
from both the preceding and the following fields on the card by one or more blank
characters. If the name field is not used, the operation field may begin in column 2 or any
following column on the card.

The operand field is required and contains the parameter keywords used with the operation
specified in the macro call. Keywords may be listed in any order, separated by commas.
Optional parameters are denoted by brackets, [] . Parameters with a choice of specifications
are denoted by braces, { } . The operand field is separated from the preceding field by one
or more blank characters. Addresses (symbolic locations) used as operands conform to the
rules for symbolic addresses as described in the MRX/OS Assembler Reference manual.

FETCH MACRO

The FETCH macro transfers the program load module specified in the macro, or containing
the entry point designated in the macro, into the program partition of main storage. The
module is always loaded into the partition at the relative load address specified by the
Linkage Editor. Control is always transferred to the module being loaded, either at the
primary entry point defined at link-edit for FETCH by module name, or at the entry point
specified in the macro for FETCH by entry point.

4-2

The content of the FETCH macro is as follows:

[label] FETCH MOD= symbolic location
of module name

or

ENTRY= symbolic lo~ation
of entry pomt

[,ERRCOMP; 1~~5)]
[,LIST; (~~s)]

MOD= specifies the address (symbolic location) of the 8-byte field which contains the
EBCDIC name of the module to be brought into main storage. This keyword is required for
FETCH by module name only, and excludes the use of the ENTRY keyword. The module
named at the specified address must reside on the library named as the operand of the LIB
keyword on the //EXECUTE statement when the program is executed or on the system load
library, $SYSLODLIB.

ENTRY= specifies the address (symbolic location) of the 8-byte field in main storage which
contains the EBCDIC name of the entry point requested. The module containing that entry
point will be located and loaded into the program partition of main storage. That module
must have been link-edited as one of the segments or overlays of the program currently in
execution. This keyword is required for FETCH by entry point, and excludes the use of the
MOD keyword.

ER RCOMP=YES specifies that control is to be returned to the requesting program if the
service request macro completes with errors. ER RCOMP=NO specifies that control is to be
retained by the system in the event of an error, and results in program abort. This keyword
is optional; the default is NO. Error completion codes are shown in the macro expansion,
Appendix F.

LIST= controls generation of the Service Request and of the parameter string for the macro.
YES generates an object string for the macro, but no SR instruction. General register 6 must
contain the address of the parameter string when the program is executed. NO generates an
SR instruction with no parameter string. Omission of the LIST keyword generates an SR
instruction with the macro expansion (parameter string) in line, immediately following the
SR.

NOTE

Unlike most service request macros, the RETURN keyword is not valid with
the FETCH macro. Use of RETURN=YES produces an execution error.

4-3

SAMPLE FETCH MACRO

The following is an example of a FETCH macro.

LEAP6 FETCH ENTRY=BAL 13,ERRCOMP=YES

This example will result in a search of the Composite Entry Point List for the module
containing the entry point specified beginning at symbolic location BAL 13. That module
will be loaded into the program partition in which the program is currently executing, at the
relative load address specified by the Linkage Editor. Control will be transferred to the
newly loaded module at the entry point specified at BAL 13. Error completion proce!ssing
will be handled by the program. This macro call will generate both the Service Request and
the macro expansion in-line.

LOAD MACRO

The LOAD macro transfers the program load module specified in the macro, or containing
the entry point designated in the macro, into the program partition of main storage .. The
module is loaded at the relative load address specified either by th€' Linkage Editor or by the
macro. Control is returned to the point of call after the LOAD is completed or immediately
after the macro is accepted by the system. The address of the primary entry point of the
newly loaded module or of the named entry point is returned in the SR packet. If
RETURN=YES is coded, the problem program must check the completion status indicator
to determine when the LOAD is completed so that the entry point address can be
referenced.

The LOAD macro is used primarily for the following purposes:

• To bring fixed data modules, such as translation tables or prepared
messages, into dynamically variable storage or overlay areas.

• To load a program segment at the address specified by the Linkage
Editor and transfer control at some other point in the problem
program. The user must, of course, code the instructions to transfer
control to the loaded program.

Any relocatable references to a module that is loaded at a relative address other than that
assigned by the Linkage Editor are invalid.

4-4

The content of the LOAD macro is as follows:

[label] LOAD MOD=symbolic location
of module name

or
ENTRY=symbolic lo~ation

of entry point

[
LOADADR=symbolic location]

' of load address

[ERRCOMP= l~~m
[usT= / ~~5}]
[RETURN=/ ~~s lJ

MOD= specifies the start address (symbolic location) of a 10-byte field, of which the first 8
bytes contain the EBCDIC name of the module to be loaded. The last two bytes will receive
the primary entry point returned by the Loader. MOD= is required for LOAD by module
name only, and precludes the use of the ENTRY keyword.

ENTRY= specifies the start address (symbolic location) of a 10-byte field, of which the first
8 bytes contain the EBCDIC name of the entry point which must reside in one of the
defined segments or overlays of the program making the call. The last two bytes of the area
will receive the named entry-point address returned by the loader. Use of the ENTRY
keyword precludes use of the MOD keyword.

LOADADR= designates the main storage address (symbolic location) at which the requested
module is to be loaded. Whenever this keyword-operand is omitted, the requested module
will be loaded at the relative address originally specified by the Linkage Editor.

ER RCOMP=YES specifies that control is to be returned to the requesting program if the
service request macro completes with errors. ER RCOMP=NO specifies that control is to be
retained by the system in the event of an error, and results in program abort. This keyword
is optional; the default is NO. Error completion codes are shown in the macro expansion,
Appendix F.

LIST= controls generation of the Service Request and of the parameter string for the macro.
YES generates an object string for the macro, but no SR instruction. General register 6 must
contain the address of the parameter string when the program is executed. NO generates an
SR instruction with no parameter string. Omission of the LIST keyword generates an SR
instruction with the macro expansion (parameter string) in line, immediately following the
SR.

RETU RN=YES specifies that control is to be returned to the point of call immediately after
the LOAD request is recognized by the system and queued. RETURN=NO results in return
of control only after the LOAD macro has completed processing, and the proper module is
loaded. The problem program is placed in ·a wait state until completion. The default is NO.

4-5

The address of the proper entry point will be returned with the packet upon completiion of
the request. If RETURN=YES was coded, the problem program is responsible for che!cking
the completion indicator (Cl) bit in the packet to verify completion of the request.

SAMPLE LOAD MACRO

The following is an example of a LOAD macro.

LOAD MOD=PROG16A,RETURN=NO,LIST=NO,LOADADR=CATT

In this example the private library (if any) and $SYSLODLI B will be searched for a module
named in the field whose symbolic address is PROG 16A. The module will be loaded at
symbolic location CATT. Error processing will be handled by the system. This macro will
generate only the Service Request in-line. Another LOAD macro in the problem program
must set up the parameter list and the problem program must load general register Ei with
the address of the parameter list prior to execution of the macro illustrated here. Control
will be returned after the request has been completed and the module has been loaded. This
macro has no label.

4-6

5. LIBRARY OVERHEAD

~NTRODUCTION

This section provides formulas for estimating library storage overhead in blocks. Overhead
estimates are described for two categories of library member types: source, comprising
source, macro, and procedure members; and encoded, comprising object, relocatable load,
and absolute load modules.

SOURCE CATEGORY

The formula for estimating overhead for members in the source category is as follows:

c
OV = I +ME + EOF x C

OV Overhead in blocks.

Index blocks of 434 bytes divided by the block size of the library
file, including the common stored data format (CSD) header (if
used), rounded up.

C Number of members to be contained in the file.

ME Number of member entries per catalog block, calculated by the
formula:

Block size-79 (rounded down) + 1
34

Remaining space at the end of each block less than 70 bytes is not
used; the first eight bytes of each catalog block are used for header
information.

The value MCE is rounded up to the next higher number.

EOF Number of end of file blocks per member; members in the source
category require only one.

Example:

Assume an allocated block size of 80 bytes, blocked one record per block, in CSD, with 7
members.

5-1

I = ~344 rounded up =: 6 index blocks

84-78
ME=~ rounded down+ 1=1 catalog block per member

EOF = 1 end of file block per member

OV = 6 + ~ + 1 x 7 = 20 blocks library overhead

ENCODED CATEGORY

The formula for estimating overhead for members in the encoded category is the same as for
the source category. However, values for the variables are different.

Formula:

c
OV = I + ME + EOF x c

Index blocks of 434 bytes divided by block size (:restricted to 256
bytes) rounded up= 2.

ME Number of entries per catalog block of 256 bytes, calculated by the
formula 256-78 (rounded down) +1 resulting in a value of 3 for

estimating J8rposes. Entries are variable in length up to 70 bytes;
remaining space less than 70 bytes is not used; the first eight bytes
of each catalog block are used for header informati,on.

C Number of members to be contained in the file. The value M~ is

rounded up to the next higher number.

EOF = Number of end-of-files per program module per member. OBJ code
has at least three data subsets, each requiring one end-of-file block
per member:

• Text
• Relocation Group Dictionary
• Entry Point List

OBJ code may also have an optional subset requiring a fourth
end-of-file block per member:

• SEG Statements

5-2

Example:

REL code has three subsets for root modules, each requiring one
end-of-file block per member:

• Text
• Relocation Control Stream
• Composite Entry Point List

REL code has two subsets for overlay modules each requiring one
end-of-file block per member:

• Text
• Relocation Control Stream

ABS code has two subsets for root modules, each requiring one
end-of-file block per member:

• Text
• Composite Entry Point List

ABS code has one subset for overlay modules, requiring one
end-of-file block per member:

• Text

Assume a library containing seven members, all object type with SEG statements.

I = 2 index blocks

c 7
ME ="Jrounded up= 3 catalog blocks

EOF ·= 4 per member

Therefore, 2 + 3 + 4 x 7 = 33 blocks estimated library overhead.

ESTIMATING MODULE SIZE

If disc file space is limited, or if the user wants to optimize his use of disc space, a trial
compilation or assembly is recommended before a library is permanently allocated.

5-3

A. LIBRARY TABLE FORMATS

The following diagrams show the formats of the Index Table, the Catalog Block and the
Member Definition Block.

INDEX TABLE

There are 64 catalog ordinals in the index table. The block size for the library determines
how many blocks are required for the table. Each additional block contains control header,
catalog ordinals, and space headers.

Index Table

0 Control Header
2
4 Block ID

6
8

Highest Block Written

10
12
14
16

18
20
22
24
26
28
30
32

}
Current

34 Catalog
36 Link
38
40
42
44
46
48
50 Block Number

}
Initial

52 Catalog
54 Block Offset Ordinals

A-1

Name

Control Header

Block ID

Highest Block Written

Type

Block Number

Block Offset

Block Number

Block Offset

Bytes Description

0-3 Common stored data format standard rncord header.

4-5 Indicator which identifies block as inde;(table of library.

6-9 Specifies the highest block written in the library.

10-26 Reserved for system use.

27 Optional indicator for control of library processing; hexadecimal

value specifies type of library.

38 Encoded

86 Symbolic

FF All

28-31 Reserved for system use.

32-35

36-37

38-49

50-53

54-55

Block number of currently active catalog.

Byte displacement within the block.

Reserved for system use.

Initial block number of the catalog associated with this member

chain.

Byte displacement within the block.

A-2

CATALOG BLOCK

Catalog Block

-8 Control Header
-6

-4 Sequential Catalog Link
-2
0

2
4
6

8

. -~~~~--~~~~~B-lo_c_k~N.lumbe_r~~~~~~~~~---1} Next
~ Member

Block Offset Link

Type

10
12
14
16

18

20
22
24

26

28

30

32
34

No. Extents

Name

Control Header

Sequential Catalog

Link

Bytes

-8 - -5

-4 -- -1

Next Member Link 0-5

Block Number 0-3

Block Offset 4-5

Creation Date

Creation Time

Member Name

Attributes

Version

Subdivision Link

Additional Member

Entries

No. Subdivisions

Description

Common stored data format standard record header.

Points to next catalog block in this library; last link is zero.

The associated catalog block number which contains the next

member entry in the chain.

The byte displacement within the block.

6 Reserved for system use.

Creation Date 7-9 Date member enters the library; form yyjjj, packed decimal:

VY year
jjj Julian date

A-3

Name

Creation Time

Member Name

Type

Attributes

Version

No. Extents

No. Subdivisions

Subdivision Link

Bytes

10-13

14-21

22

Description

Time member enters the library; form hhnnmss, packed decimal:

hh Hour

mm Minute

ss Second

Member identification; 1-8 alphanumeric characters, left justified,
blank filled.

Code which indicates the type of member:

Bit 0 Source member

Bit 1 Unused

Bit 2 Object member

Bit 3 Absolute load member
Bit 4 Relocatable load member
Bit 5 Macro member
Bit 6 Procedure member

Bit 7 Unused

23 Reserved for system use.

24-25

26-27

28

29

30-33

Code to define characteristics which are unique within each

type.

Optional version identifier for the membe!r.

Number of user words which may be attaiched to the entry; range
l-10.

Number of subdivision descriptors contained in this entry;

range 1-5.

Initial block number of subdivision.

A-4

MEMBER DEFINITION BLOCK (MOB) FOR OBJECT MODULES

0
2
4
6
8

10
12
14

16

18

20
22
24
26

28

30

32

34

Name

MOB Switches

MOB Size

Member Name

Member Definition Block for Object Modules

MOB Switches

MOB Size

Member Name

Type I Reserved

Attributes

Version

Extents (=0) I Subdivisions (=3 or 4)

EPL Subdivision Block No.

TEXT Subdivision Block No.

RGD Subdivision Block No.

DIR Subdivision Block No. (optional)

Bytes Bits Description

0 0 Indicates member could not be found in the library

search.

0 Member found but store was requested in an ADD
mode.

0 2 1/0 error during library function.

0 3 Reserved for system use.

0 4 0 indicates REPLACEMENT mode store.

1 indicates ADD mode store.

0 5 Delete member when found.

0 6-7 Reserved for system use.

0-7 Reserved for system use.

2-3 0-7 Length of MOB in bytes, not including MOB cells.

4-11 0-7 Member identification; 1-8 alphanumeric characters,

left justified, blank filled.

A-5

Name Bytes Bits Description

Type 12 0-7 Code which indicates the type of member:

BitO Source membE~r

Bit 1 Unused
Bit 2 Object membE!r

Bit 3 Absolute load member

Bit 4 Relocatable load member

Bit 5 Macro member

Bit 6 Procedure member

Bit 7 Unused

Reserved 13 0-7 Reserved for system use.

Attributes 14-15 0-7 Code to define the characteristics unique to each

type; bit 0 indicates member deleted.

Version 16-17 0-7 Optional version identifier for the member.

Extents 18 0-7 Number of user words which may be attached to

the entry; maximum= 6 words.

Subdivisions 19 0-7 Number of subdivision descriptors which are con-

tained in this entry. Maximum= 3 subdivision

descriptors.

EPL Subdivision 20-23 0-7 Initial block number of the Entry Point List

Block No. subdivision.

TEXT Subdivision 24-27 0-7 Initial block number of the TEXT subdivision.

Block No.

RGD Subdivision 28-31 0-7 Initial block number of tlhe Relocation Group

Block No. Dictionary subdivision.

DIR Subdivision 32-35 0-7 Initial block number of the optional Directive

Block No. subdivision.

A-6

MEMBER DEFINITION BLOCK (MOB) FOR LOAD MODULES

0
2
4

6
8

10
'12

14
'16

18
20
22
24
26
28

30

32
34
36
38
40

42

Name

MOB Switches

Member Definition Block for Load Modules

Type

Extents (=6)

1---·

Reserved
1---·

Bytes

0

0

0

0

0

0

0

M DB Switches

MOB Size

Member Name

r= Reserved

Attributes

Version

] Subdivisions (=3)

CEPL Subdivision Block No.

TEXT Subdivision Block No.

RCS Subdivision Block No.

Load Module Size (bytes)

r= Tag
Relative Load Address
Primary Entry Point

F OT Byte Offset

Total Size Commitment (bytes)

Bits Description

Available

user extension
bytes at ti me
member is

stored

0 Indicates member could not be found in the

library search.

Member found but store was requested in an

ADD mode.

2 1/0 error during library function.

3 Reserved for system use.

4 0 indicates REPLACEMENT mode store.

1 indicates ADD mode store.

5 Delete member when found.

6-7 Reserved for system use.

0-7 Reserved for system use.

A-7

Name Bytes Bits Description

MDB Size 2-3 0-7 Length of MDB in bytes, not including MDB Swiitches

or Size cells.

Member Name 4-11 0-7 Member identification; 11-8 alphanumeric charac1ters,

left justified, blank filled.

Type 12 0-7 Code which indicates th1~ type of member:

Bit 0 Source member

Bit 1 Unused

Bit 2 Object member

Bit 3 Absolute load member

Bit 4 Relocatable load member

Bit 5 Macro member

Bit 6 Procedure member

Bit 7 Unused

Reserved 13 0-7 Reserved for system use ..

Attributes 14-15 0-7 Code to define the characteristics unique to each

type; bit 0 indicates member deleted.

Version 16-17 0-7 Optional version identifier for the member.

Extents 18 0-7 Number of user words which may be attached to the
entry; maximum= 6 words.

Subdivisions 19 0-7 Number of subdivision descriptors which are con-

tained in this entry.

Maximum = 4 subdivision descriptors.

CEPL Subdivision 20-23 0-7 Initial block number of the Composite Entry Point

Block No. List subdivision.

TEXT Subdivision 24-27 0-7 Initial block number of the TEXT subdivision.

Block No.

RCS Subdivision 28-31 0-7 Initial block number of the Relocation Control

Block No. Stream subdivision.

Load Module Size 32-33 0-7 Size in bytes of the load module.

Reserved 34 0-7 Reserved for system use ..

Tag 35 0-7 Reserved for future use for extended addressing.

A-8

Name Bytes Bits Description

i:~elative Load Address 36-37 0-7 Relative load address of load module.

Primary Entry Point 38-39 0-7 Relative load address of primary entry point.

FDT Byte Offset 40-41 0-7 Value specified by the POOLSIZ parameter.

Total Size 42-43 0-7 Composite length of load module.

Commitment

A-9

B. LIBRARIAN EXECUTION-TIME ERROR MESSAGES

There are two types of SYSOUT error messages: those issued directly by the Librarian
(LI BUTI L) program, and those issued directly from the system message library.

MESSAGES ISSUED BY THE LIBUTIL PROGRAM

The LI BUTI L program execution-time error messages are all printed on the device specified
by the DEV= parameter on the //DEF statement that reads //DEF I D=LIST, DEV=. All
message error codes begin in print position 2 .. They have the following fields:

I pp J ss I eee I t l
Where: pp is always LB, specifying the error as a LI BUTI L error.

ss is either ER or WA, where ER specifies fatal errors and WA specifies
warning errors.

eee is a 3-digit error number specifying the error within the type (ER or
WA).

t is a single digit which is either 2 to specify warning or 8 to specify
fatal error conditions.

After the error code, the following text appears for all messages having the ER specification
in the ss field:

LIBRARIAN ERROR CODE

The following text appears after all the error codes have the WA specification in the ss field:

LIBRARIAN WARNING CODE

For a description of the error code, refer to the explanation of error codes listed below.

EBROR CODE EXPLANATION OF ERROR CODE

LBER0018 An invalid or unsupported parameter has been specified.

LBER0028 The number of MEM parameters exceeded the maximum.

LBER0038 An invalid or unsupported command is specified.

B-1

ERROR CODE

LBER0048

LBER0058

LBER0068

LBER0078

LBER0088

LBER0098

LBER0108

LBER0118

LBER0128

LBER0138

LBER0148

LBERO'l58

LBER0168.

LBER0178

LBER0188

LBER0198

LBER0208

LBER0218

LBER0228

EXPLANATION OF ERROH CODE

The member type in the MEM parameter is invalid.

An FDT could not be found for a required file ident that should have been

specified.

The member to be patched was not relocatable (REL) or absolute (ABS).

The patch directives operator is other than VER or REP and is not supported.

The input member that was requested to be printed or punched has a first

segment link of zero where the link to the source file should be.

The input member that was requested to be printed or punched cannot be found

on I LIB by library search.

The input member that was requested dumped cannot be found on I LIB by

library search.

The load input member identification card specifies a segment number that iis

greater than the maximum segment number for this library.

The load input member identification card is out of place.

Input/output error.

A segment in the data input to be loaded is greater than the highest segment
for the present member as specified by the member identification card.

A segment specified in the data input to be loaded is a duplicate of the member
being loaded.

No patch is in the patch directive.

An invalid hexadecimal digit is in the patch directive.

A patch verification directive failed to compare equally with the specified

relocation attribute.

The input member in an inclusive copy cannot be found on I LIB by library

search.

The output member in an inclusive copy was found on OLIB by library search

and is protected by the MEM parameter.

The member that was requested patched cannot be found in the ULIB by

library search.

In a patch directive, the displacement was to an odd address.

B-2

ERROR CODE

LBER0238

LBER0248

LBER0258

LBER0268

LBER0278

LBER0288

LBER0298

lBER0308

LBER0318

LBER0328

LBER0338

LBER0348

LBER0358

LBER0368

LBER0378

LBER0388

LBER0398

LBER0408

EXPLANATION OF ERROR CODE

In a patch directive, the relocation attribute is invalid.

A patch verification directive failed to compare equally with the specified text.

In an update function, the input member cannot be found on the I LIB by

library search.

In an update function, the output member specified was found on the I LIB

by library search and is protected by the MEM parameter.

The copy member requested during an update function could not be found by

library search.

An insert was requested dudng an update but no input member was specified

by the MEM parameter.

The Mth parameter in an update insert or copy directive is less than the Nth

parameter in that same directive.

The Nth parameter in an update insert directive is less than the present record

position.

During an update, an insert or copy directive exceeded the file size. The Nor

M was greater than the last record number on that particular me.

The input member that was to be deleted cannot be found by the library search.

The input member to be renamed cannot be found on the U LIB by the library

search.

The output member name, the name which the input member name will be re

named to, already exists in the ULIB and is protected by the MEM parameter.

The first segment link in the member to be updated, the input member, is zero.

It should contain the relative block of the beginning of the source segment.

An invalid patch directive has been specified.

An invalid member type code is in an existing library.

A patch directive displacement has exceeded the member size.

The number of sub-parameters exceeds the maximum.

The insert directive in the update function has an invalid N specified, either:

o N = 0 or unspecified whiclh has no meaning in an insert directive,

o N = 1 and the input member position is past 1.

B-3

ERROR CODE

LBER0418

LBER0428

LBER0438

LBER0448

LBER0458

LBER0468

LBER0478

LBER0488

LBER0498

LBER0508

LBER0518

LBER0528

LBER0538

LBER0548

LBER0558

LBER0568

LBER0578

LBER0588

ILBER0598

LBER0608

LBER0618

LBER0628

LBER0638

EXPLANATION OF ERROR CODE

A sub-parameter length exceeds the maximum.

A right parenthesis is missing from a sub-parameter specification.

A PAR card was not ended by a blank or comma.

A parameter length exceeds the maximum.

A literal string length exceeds the maximum.

A right-most quote in a literal string is missing.

The keyword length exceeds the maximum.

An equal sign is missing in the keyword scan.

An invalid SORTKEY parameter is specified.

An invalid SELECT parameter is specified.

An invalid MODE parameter is specified.

An invalid SEOCHK parameter is specified.

An invalid UST parameter is specified.

Alphanumeric data was found in all numeric parameters.

An invalid SPACE parameter is specified.

The MEM parameter does not contain a member name.

A sequence step-down has occurred in the specified field when a sequence

check was requested.

The sequence field length plus the field position is greater than the I Fl L

block size.

The sequence field length exceeds the maximum.

The I LIB block size is not equal to the 0 LIB block and a copy is requested.

The member type specified is not compatible with the library function reque1sted.

MODE,=F but the member type is not ABS, or the member type is ABS, but the

sub-division two (text) is zero.

Multiple members have been specified for the UPDATE function.

B-4

ERROR CODE

LBER0648

LBER0658

LBER0668

LBER0678

LBER0688

LBER0698

LBER0708

LBER0718

LBER0728

LBER0738

LBER0748

LBER0758

LBWA0012

LBWA0022

LBWA0032

LBWA0042°

LBWA0052

LBWA0062

LBWA0072

LBWA0082

LBWA0092

LBWA0102

LBWA0112

LBWA0122

EXPLANATION OF ERROR CODE

A type 1 member. MEM=(input-member,member-type) is specified and is
illegal. UPDATE needs an output member name.

No member is specified for the UPDATE function.

A library block size exceeds the maximum buffer size.

Null input to update create mode.

Invalid UMODE specification.

N, M of updated directive is not sequential.

N or M of update directive exceeds length of sequence field specified in SEQPOS.

Null input to load function.

The OLIB type parameter is invalid (i.e., is not SYM, ENC or ALL).

The numeric parameter is larger than 5 digits.

The output library block SIZE= parameter is less than the minimum 84 bytes.

The library type is invalid on an exiisting library.

Excessive parameters were specified and ignored.

An inconsistent sequence type parameter was specified.

An inconsistent list type parameter was specified.

Duplicate specifications of INITPG.

Duplicate specifications of LIST.

Duplicate specifications of MODE.

Duplicate specifications of MTYPE.

Duplicate specifications of NEWSEQ.

Duplicate specifications of OFI L.

Duplicate specifications of OU B.

Duplicate specifications of PAGSIZ.

Duplicate specifications of SELECT.

8-5

ERROR CODE EXPLANATION OF ER ROB CODE

LBWA0132 Duplicate specifications of SEOCHK.

LBWA0142 Duplicate specifications of SEOPOS.

LBWA0152 Duplicate specifications of SORTKEY.

LBWA0162 Duplicate specifications of SPACE.

LBWA0172 Duplicate specifications of TITLE.

LBWA0182 Duplicate specifications of ULIB.

LBWA0192 Duplicate specifications of VERSION.

LBWA0202 Duplicate specifications of WLI B.

LBWA0212 Duplicate specifications of COMMAND.

LBWA0222 Duplicate specifications of I Fl L.

LBWA0232 Duplicate specifications of I LIB.

LBWA0242 SELECT=I and no members supplied. SELECT=E is defaulted too.

LBWA0252 Plus or minus sign in position 1 of update directive assumed to be data.

LBWA0262 Duplicate specification of UMODE.

MESSAGES ISSUED FROM THE SYSTEM MESSAGE FILE

The following messages can appear on the SYSOUT file; they are issued from the system
message file $MSG LIB. Each message is preceded by three asterisks, a 4-digit, system
oriented hexadecimal status code and an 8-character error code that has the following
format:

I PP I ss I eee I t l
Where: pp is always LB, specifying the error as a LI BUTI L. error.

ss is variously OP, TR, ST, or SE specifying the module within the
LI BUTI L program that issued the message.

eee is a 3-digit number 001 through 006.

t is a single digit which is always 8 meaning that all the errors are
fatal errors.

8-6

The message text follows the error code. The text of the message ends with four asterisks.

MESSAGE

ID

HEX STATUS

COMPLETION

CODE

2F01

2F02

2F03

2F04

2F05

2F06

ERROR

CODE

LBOP0018

LBOP0028

LBOP0038

LBTR0048

LBST0058

LBSE0068

B-7

MESSAGE TEXT

INVALID LIBRARY DEFINITION****

One of the following conditions has been

detected:

• The file is not sequential.
• The library index block is not in the

proper format.

• The library type does not match the
type specified in the library OPEN

packet.

THE FDT FOR THIS LIBRARY COULD NOT
BE FOUND IN THE FDT CHAIN****

Either the system failed to open the library or

the partition was destroyed.

INCONSISTENT USAGE SPECIFICATION IN
FDT****
One of the following conditions has been
detected:
• Library was opened with undefined

USAGE= keyword specified.

• Library has been opened for 1/0.
• Library has been opened for input and

HBW=O.

1/0 ERROR ON LIBRARY****

A disc 1/0 error has occurred on a library.

END OF ALLOCATION REACHED DURING

ATTEMPTED STORING OF A MEMBER
ENTRY****

End of disc allocation has occurred for this

library.

MEMBER TYPE, FOUND IN MOB FOR

SEARCH OR STORE, IS INVALID FOR

THE SUBJECT LIBRARY****

The member type requested, searched, or stored

is not compatible with the subject library. For

example, a SRC (source) member was requested,

searched, or stored in a library whose type was

ENC (encoded) only. If a SRC member was

requested, searched, or stored in a SYM

(symbolic) or ALL type library, no error would

have occurred.

C. LINKAGE EDITOR OBJECT-TIME ERROR MESSAGES

The following Linkage Editor messages are printed at object time on the printer output
printer listing. Each message text is preceded by an 8-character error code that has the
following format:

Where: pp is always LE meaning Linkage Editor.

ss is always Ps where P signifies pass and s is the pass number (1-4) that
is supplied when the message is printed.

eee is a 3-digit error number specifying the error within the Linkage
Editor.

t is a 1-digit number specifying the type of error where:

0 nonfatal, information message
8 fatal message

The xxxxxxxx in the message text is replaced by a 1-8 character label or name when the
message is printed.

ERROR CODE

LEPS0008

LEPS0018

LEPS0028

LEPS0038

LEPS0048

LEPS0058

LEPS0068

MESSAGE TEXT

VIRTUAL TABLE ACCESS.

Any 1/0 error on disc file used for internal storage (IDENT=VTFLE).

PARAMETER ERROR.

Any invalid keyword or keyword operand submitted on //PAR card.

PROGRAM EXCEEDS 65K.

INVALID SEGMENTATION xxxxxxxx.

Logical contradiction in structure defined by SEG cards.

OBJECT TEXT ERROR xxxxxxxx.
Bad output from compiler or language processor. (Run job step again with
DUMP= YES.)

UNDEFINED TERM xxxxx.xxx.

Label or operand of an ENTRY /USE directive is undefined.

INVALID INPUT MODULE xxxxxxxx.

Improper use of relocatable load modules.

C-1

ERROR CODE

LEPS0078

LEPS0088

LEPS0108

LEPS0118

LEPS0128

LEPS0138

LEPS0148

LEPS0158

LEPS0168

LEPS20170

LEP10180

LEP20190

MESSAGE TEXT

SYNTAX ERROR.

Improper syntax in operands of directives.

COMMON ALLOCATION ERROR xxxxxxxx.

An attempt was made to expand labeled common after it was allocated.

EXPRESSION STACK OVERFLOW.

Currently active SEG terms > 80.

UNABLE TO LOCATE xxxxxxxx.

Unable to find module or control section specified in a SEG term or unable

to find directive set specified in PGM= parameter.

INVALID CSECT ORIGIN xxxxxxxx.

Attempted to preset labeled common at an address other than the one already

allocated.

MISSING CSE CT xxxxxxxx.

Missing control section.

DUPLICATE TERM xxxxxxxx.

The duplicate term name is xxxxxxxx.

SEGMENTATION EXCEEDS 04 LEVELS.

More than 4 concurrently active (nested) object modules contain SEG directives.

UNABLE TO CATALOG xxxxxxxx.

Error returned from LI BSTR; probably end of allocation or other 1/0 error.

PROGRAM EXCEEDS SIZE.

Primary load module size exceeds the SIZE parameter.

UNDEFINED LIBRARY.

Library name specified in SEG term was not included in LSD= keyword.

Library will default to INPUT library.

NULL LOAD MODULE.

User built load module containing no object text. CSECT's were allocated

and entry points established but the load module is not cataloged. User
cannot attempt load of "dummy" load module.

C-2

D. OBJECT MODULE STRUCTURE

The following paragraphs and diagrams show the structure of the Entry Point List, Text
String Group, and Relocation Group Dictionary in the object module.

ENTRY POINT LIST

The Entry Point List consists of one twelve-byte entry for each entry point defined in the
module. The Entry Point List is physically the first block of the object module.

0
2
4
6
8

10
12

Name

CSECT R.l.D.

Entry Point Name 0-6

CSECT R.l.D. 8

Type 9

Displacement 10-11

Entry Point List

First Entry Point Name

l
Displacement

Additional 12-Byte
Entry Point

Speci·fications

Type

Description

Eight byte EBCDIC character string.

Relocation Identifier (ordinal) of the 'CSECT' item (in the

Relocation Group Dictionary) under which this entry point

occurs.

Value indicating type of name:

1 = Basic entry point

4 = Primary entry point

Offset in bytes from start of 'CSECT' to this entry point.

D-1

TEXT STRING GROUP

Text String Groups are strings of instructions and data which form the actual pro~Jram.

Text String Groups are grouped according to Control Section with each byte/word ac:com
panied by a relocation attribute code. If the byte pair is to be modified, the Relocation
Identifier (attribute code) specifies which 'CSECT', 'COMMON', or 'EXTERNAL' is to be
used for the modification.

A Text String Group is composed of a Group Header and one or more Text Entries, formats
specified in the following:

Group Header

0

2

4

D_. -------=--=---=--=--=Gro=up s~·ze Group Origin Point

One or More Text Entries

I I
I I
I I

0

2

4
~·
I
I
I

Name

Group R.l.D.

Group Size

Group Origin Point

Bytes

0

(of Group

Header)

(of Group

Header)

2-3

(of Group

Header)

Text Entry

-~~~~~~~~~-R-ep_e_a_t_C~unt Text Word

Any Additional Text

Words this R.l.D. I

Description

I
I

Ordinal in Relocation Group Dictionary of the Control

Section (CSECT) under which following Text is generated,

value of which is used to modify Group Origin Point.

Total number of Text bytes, this grnup.

Current displacement from beginning of CSECT to be used as

relative starting address for following Text items.

D-2

Name

Text R.l.D.

Repeat Count

Text Word

Bytes

0

(of Text

Entry)

(of Text

Entry)

2-3

(of Text

Entry)

Description

Ordinal in Relocation Group Dictionary of CSECT, COMMON,

or EXTERNAL symbol value by which the following Text

word(s)/byte(s) must be modified.

Values:

1-25210 (1-FC15) Identify a CSECT, COMMON, or EXTERNAL;

applied to a full word.

0 = Number in Repeat Count; specifies absolute words.

25510(FF16) ==Number in Repeat Count specifies absolute

bytes.

25410 (FE15) Following absolute byte; left adjusted in word;

to be propagated as indicated in Repeat Count.

25310 (FD15) Following bytes indicated by Repeat Count are
segment tags to be modified by the Relocating Program;

loader to reflect actual memory allocation provided by the

system (not generated by any compilers for this release).

Count, less one, of immediately following Text words/bytes

which share the relocation attribute specified by TEXT R.l.D.

For Text R.l.D. = 1-25210, a 16-bit unsigned integer intended

as a positive offset from the value derived from Text R.l.D.

For Text R.l.D. = 0, 253-25510, see Text R.l.D. for description.

Following is a sample block showing two Text String Groups.

D-3

E. SERVICE REQUEST EXPANSION

0 Function Code

Name Bits

Function 0 0-7

0

Cl

EP 2

3

Class 4-7

Service Request

Cl Class

Description

Function code mnemonic for all Service Requests is SR.

Indicates the location of the parameter string (LIST

keyword):

0 immediately following the SR

at the address contained in R6

Indicates when control is to be returned to the requester

(RETURN keyword, LOAD macro):

0 after the SR (LOAD) is completed

after the SR is recognized by Control Program

Indicates if the requester will process exception completion

of the request (ERRCOMP keyword):

0 requester will not process exception completion

(will be processed by Step Terminator)

1 = requester wi II process exception completion

ResE~rved for system use.

Denotes major class in which the SR falls:

0 Debugging request

Restricted Service Request issued only by

systems programs

2 Request for Control Program service

3 BIO Service Request

4 PIO Service Request

5 Supervisor Service Request, providing functions

such as Data Management and Library Services

6 TCOM Service Request

7 UNIT PIO Service Request

E-1

F. MACRO EXPANSION FOR LOADER SERVICE REQUEST

0
2
4
6
8

10
12

Name

FC

Length

c

A

Completion Code

SFC

Bytes Bits

0 0-7

0-7

2 0

2

2 2-7

3 0-7

4 0-7

5 0-4

5 5-7

Loader Service Request

Description

Function code= 1016.

Length of macro expansion packet including this word:

7 words if SFC=1 or SFC=3; otherwise 5 words.

Request complete indicator.

Abnorma~ completion indicator.

Reserved for system use.

Completion code:

01 1/0 error
02 Cannot locate entry point

03 Cannot locate module

04 Program exceeds partition limits

05 Invalid load address

Reserved for system use.

Reserved for system use.

Subfunction code:

0 LOAD by entry point

1 LOAD by entry point at load address

2 LOAD by module name

3 LOAD by module name at load address

4 FETCH by entry point

5 IUegal
6 FETCH by module name

7 JMSI FETCH request (Reserved for use by

Control Language Services)

F-1

Name Bytes Bits Description

6 0-7 Reserved for system use.

Tag 1 7 0-7 Reserved to provide for upwards compatibility to machine

enhancements, particularly the Hardware Relocation

Feature, without program modification.

Name Address 8,9 0-7 Address pointer to the 8-byte module name or entry

point name.

10 0-7 Reserved for system use; occurs only if SFC=1 or SFC==3.

Tag 2 11 0-7 Reserved to provide for upwards compatibility to machine

enhancements, particularly the Hardware Relocation

Feature, without program modification; occurs only if

SFC=1 or SFC=3.

Load Address 12, 13 0-7 Relative load address; occurs only if SFC=1 or SFC=3.

F-2

G. LIBRARY MACROS

The following library macros operate in the System Resident area and are used exclusively
by the system to access and manipulate libraries. These macros are not supported for use in
problem programs.

LIBOPEN

LIBSRCH

LIBSTOR

LIBCLOSE

Opens libraries for the system.

Provides the location of a specific member in a partitioned
data file.

Requests storage or modification of information in the library
directory.

Provides for the creation or modification of a catalog entry in
the directory of the partitioned data file.

The following buffered library generator macros are supplied only as in-line code to the
Linkage Editor, the Relocating Program Loader, and the language processors and translators
(Assembler, COBOL, FORTRAN, and RPG II). These macros are not available for use in
problem programs.

LGOPENSEG Opens a segment.

LBCLOSEG Closes a segment.

LGPUTITM Writes a variable length item.

LGSTRING Starts a text string for a language processor.

LGPUTTXT Inserts items in the text string group for a language processor.

G-1

H. SYSTEM LOADER ERROR MESSAGES

The System Loader issues only SYSOUT file error messages. Each message is preceded by 3
asterisks, a 4-digit hexadecimal system-oriented code, and an 8-character error code that has
the following format:

I PP I ss I eee I t I
Where: pp is always OS meaning operating system.

ss is always LD meaning Loader subprogram error.

eee is a 3-digit error number specifying the error within the Loader
program.

t is a 1-digit number specifying the type of error. Loader errors
are all type 8, which is fatal.

The message text follows the error code. The text of the message ends with 4 asterisks.

ERROR

MESSAGE CODE MESSAGE TEXT

ID

OSLD0018 DISC ERROR OR UNEXPECTED EOF
*** (LOADER) ****

OSLD0028 UNABLE TO FIND ENTRY-POINT-NAME
*** (LOADER) ****

OSLD0038 UNABLE TO FIND MODULE-NAME
*** (LOADER) ****

OSLD0048 PROGRAM EXCEEDS PARTITION SIZE
*** (LOADER) ****

OSLD0058 OVERLAY EXCEEDS PARTITION
*** LIMITS (LOADER) ****

Either overlay is too big or start address is
not within limits.

H-1

INDEX

Absolute load module 1-1,3-8 Identification card, member 2-30
IF IL keyword 2-12

Block size constraints 2-2 IL I B keyword 2-6
BOUND keyword 3-15 Index table A-1
Bound register 3-15 IN ITPG keyword 2-10

Catalog block 2-1,A-3 Keyword-operands

Catalog ordinals A-1 for LIBUTIL 2-6

Checkout debugging 4-1 for Linkage Editor 3-10

Coding 1-1
COMMAND keyword 2-6 Library

Common allocation 3-22 description 2-1

Compilation 1-1 structure 2-1

Composite entry point list A-8 Library block size 2-2

Composite length 3-32 Library compression 2-23

Control Language requirements Library directory 2-1

for Librarian 2-4 Library macros G-1

for Linkage Editor 3-9 Library member 1-2,2-1

COPY command 2-19 Library member protection 2-8

Create symbolic member 2-41 Library overhead
source libraries 5-1

Data separator 2-4 encoded libraries 5-2
DELETE command 2-21 Library search domain 3-4
Directive set 3-3 Library structure 2-1
Directives, linkage editor 3-15 Library types 2-7
Directory, library 2-2 Library utility 2-4
DUMP command 2-29 LIBUTIL 2-4
Dumped output format 2-11 LI BUTI L keyword summary 2-14
Duplicate entry points 3-4 Linkage Editor

general 1-1
END directive 3-18 description 3-1
ENTRY directive 3-16 Linkage editor input 3-3
Entry point list A-6,D-1 Linkage editor output 3-7
Entry point search domain Link-edit map 3-27

description 3-4 List file, linkage editor 3-9

specified by USE directive 3-17 LIST operand, LIBUTI L 2-9

ERROR keyword 3-14 LOAD command 2-32

Error messages Loader 4-1

for Librarian B-1 Loader macro expansion F-1

for Linkage Editor C-1 LOAD macro 4-2

for Loader H-1 Load module

Executable program 1-1 absolute 1-1,3-8

Expressions in SEG directives 3-19 relocatable 1-1,3-8

External references 3-4 LSD keyword 3-11
LST keyword 3-13

FETCH macro 4-2

lndex-1

MDB layout A-5,A-7 Redefining primary entry points 3-16
Member definition block Relocatable load module 1-1,3-8

for load modules A-7 Relocatable object module 1-1
for object modules A-5 Relocation control stream A-8

Member identification card 2-30 Relocation group dictionary A-6,D-4
Member, library 1-2,2-1 RENAME command 2-26

Member separator card 2-30 Renaming library members

Member type with COPY command 2-19

in catalog block A-4 with PACK command 2-25

in MDB A-6,A-9 with RENAME command 2-26

mixing on libraries 2-2
valid codes 2-8 SEG directive 3-18

MEM keyword 2-7 SEG terms

Memory occupation 3-19 control section name 3-21

Mixing member types 2-2 library name 3-22

MODE keyword 2-11 module name 3-21

Modify symbolic member 2-41 SELECT keyword 2-9
Module linking 3-1 Separator card

MTYPE keyword 2-8 data 2-4
member 2-30

NAME directive 3-16 SEQCHK keyword 2-11
NEWSEQ keyword 2-11 SEQPOS keyword 2-10

Sequence field 2-10
Object modules 3-5 Service request expansion E-1
Object module structure D-1 SIZE keyword 3-14
OFFSET keyword 3-12 Source module 1-1
OF IL keyword 2-12 SPACE keyword 2-10
OLIB keyword 2-6 SRH keyword 3-13
ORG keyword 3-12 Standard subroutine use 3-1
Operators in SEG directives 3-19

Text string group D-2
PACK command 2-23 TITLE keyword 2-9
PATCH command 2-34
PGM keyword 3-11 U LIB keyword 2-12
PGSIZE keyword 2-10 UMODE keyword 2-12
POOLSIZ UPDATE command 2-41

keyword 3-13 UPDATE directives
use in MDB A-10 pointer directives 2-43

Presetting common 3-23 copy directives 2-47
Primary input file 2-12 USE directive 3-17
Primary input module 3-3
PR I NT command 2-38 VERSION keyword 2-10
PR IV keyword 3-15
Privileged task 3-15 WL I B keyword 2-13
Program generation 1-1 Work library 2-13
Protection of member 2-8
PTOC XQT keyword 3-11

command 2-13
sample listing 2-16

PUNCH command 2-39
Punch symbolic member 2-39
Punch encoded member 2-29

lndex-2

COMMENTS FORM

MRX/OS Program Library Services Reference Manual (2200.005)

Please send us your comments, to help us produce better publications. Use the space below to
qualify your responses to the following questions, if you wish, or to comment on other aspects of
the publication. Please use specific page and paragraph/line references where appropriate. All
comments become the property of the Memorex Corporation.

Yes No

• Is the material:

Easy to understand? 0 0

Conveniently organized? 0 0

Complete? ... 0 0

Well illustrated? 0 0

Accurate? ... a 0

Suitable for its intended audience? . 0 0

Adequately indexed? a a

• For what purpose did you use this publication? (reference, general interest, etc.)

• Please state your department's function: -------------------

• Please check specific criticism(s), give page number(s), and explain below:

O Clarification on page(s) -----------------------

0 Addition on page(s) -------·

0 Deletion on page~)--------~----------------

0 Error on page(s) --------------------------

Business Reply Mail

No Postage Necessary if Mailed in the United States

Postage Will Be Paid By

Memorex Corporation

Midwest Operations - Publications
8941 Tenth Avenue North
Minneapolis, Minnesota 55427

Thank you for your information

Our goal is to provide better, more useful manuals, and your
comments will help us to do so .

. Memorex Publications

First Class

Permit Nlo. 14831
Minneapolis,
Minnesota 55427

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	1-01
	1-02
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	2-39
	2-40
	2-41
	2-42
	2-43
	2-44
	2-45
	2-46
	2-47
	2-48
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	5-01
	5-02
	5-03
	5-04
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	C-01
	C-02
	D-01
	D-02
	D-03
	D-04
	E-01
	E-02
	F-01
	F-02
	G-01
	G-02
	H-01
	H-02
	Index-1
	Index-2
	replyA
	replyB

