
MRX/OS Control Language Services
Extended Reference IVlanual
2200.004

December 1972 Edition

Requests for copies of Memorex publications should be made
to your Memorex representative or to the Memorex branch
office serving your locality.

A reader's comment form is provided at the back of this
publication. If the form has been removed, comments may be
addressed to the Memorex Corporation, Publications Dept.,
8941 - 10th Ave. No. (Golden Valley) Minneapolis,
Minnesota 55427.

@ 1972, MEMOREX CORPORATION

PREFACE

This document is intended for programmers using the Control Language Services provided
for the Memorex Operating System. Included in this manual are descriptions of the Control ,
Language, files and devices, and cataloged procedures.

Related information can be found in the following documents.

• M RX/OS Control Program and Data Management Services, Basic
Reference

• M RX/OS Control Program and Data Management Services, Extended
Reference

• M RX/OS Operating Procedures

iii

TABLE OF CONTENTS

Section

1 INTRODUCTION

Definitions
Job and Job StE'P
Control Language Statements
Job Queuing

Input Data Spooling
Output Data Spooling

Program Description
Input Reader
Job Initiator
Step Initiator
Problem Program

·Step Terminator
Job Terminator
Control Flow

2 CONTROL LANGUAGE

Language Description
Format

Identifier Field
Command Field
Keyword-Operand Field
Comment Field
Sequence Field

Format Notation
Statement Specifications

Job Level Statements
JOB Statement

Sample //JOB Statement
//E OJ Statement
COMMENT Statement

Step Level Statements
EXECUTE Statement

Sample ExE~cute Statement
PAR Statement

Sample //PAR Statements
DEF I NIE Statement

Scratch Files
Temporairy Files
Work Files
Permanent Files

Sample //DEFINE Statements

v

Bulletin: 2200.004-0001
Date: 4/2/73

Page

1-1

1-1
1-1
1-1
1-3
1-3
1-3
1-4
1-6
1-8
1-8
1-11
1-11
1-11
1-15

2-1

2-1
2-2
2-3
2-4
2-5
2-6
2-6
2-7
2-8
2-8
2-8
2-10
2-10
2-10
2-11
2-11
2-13
2-14
2-14
2-15
2-17
2-17
2-17
2-18
2-21

Bulletin: 2200.004-0001
Date: 4/2/73

Section

3

TABLE OF CONTENTS (Continued)

Disc Allocation Keywords
Sample //DEFINE Statement for Disc Space Allocation

Disc File Expansion Keyword
Sample /IDE FINE Statement for Expansion
Summary of //DEFINE Statement Keywords

ROUTE Statement
Al location and Expansion Keywords
Spooling Information Keywords

SET Statement
Sample //SET Statements

TELL Statement
Sample //TELL Statements

I nterstep Level Statements
I F Statement

Sample //IF Statement
Procedure-Oriented Statements

DECLARE Statement
CALL Statement

Required Run-Time Variables
Default Values to be Overridden
Sample //CA LL Statements

Data Level Statements
DAT A Statement

Sample //DAT A Statements
Data Delimiter Statement

Job Stream Conventions

FILES AND DEVICES

General Description
Special Files

SYSIN (System Input File)
SYSOUT (System Output File) .
$LODLIB (Private Load Library)
Checkout (Checkout Debugging Directives)

Device Assignment and File Definition
Unit Record Devices
Magnetic Tape Devices

Standard Labeled Tapes
Input
Output

Non-Standard Labeled Tapes
Input
Output

Unlabeled Tapes
Input
Output

vi

Page

2-22
2-26
2-26
2-26
2-27
2-27
2-28b
2-28c
2-28d
2-29
2-30
2-31
2-31
2-31
2-32
2-33
2-33
2-34
2-35
2-35
2-35
2-36
2-37
2-40
2-41
2-41

3-1

3-1
3-1
3-1
3-2
3-2
3-2
3-3
3-3
3-3
3-4
3-4
3-4
3-4
3-4
3-5
3-5
3-5
3-5

TABLE OF CONTENTS (Continued)

Section Page

3 (cont) TeJecommunication'. Devices 3-5
3-5
3-6
3-6
3-6
3-6
3-6
3-7
3-7
3-8

4

Direct Access Storage Devices (Disc)
Shared Drive
Unshared Drive
Files-

Dhfo File Organization
Disc Space Allocation

Disc File Expansion
Logical Input/Output
Physical Input/Output

CATALOGED PROCEDURES 4-1

General Description 4-1
Writing a Cataloged Procedure 4-1
Cataloging a Procedure 4-3
Using Cataloged Priocedures 4-3

APPENDIX A - SUMMARY OF CONTROL LANGUAGE STATEMENTS A-1

APPENDIX B - TABLE OF CONTROL LANGUAGE STATEMENT
KEYWORD CHARACTERISTICS B-1

APPENDIX C - TABLE OF REQL)IRED AND OPTIONAL KEYWORDS
BY CONTROL LANGUAGE STATEMENT C-1

APPENDIX D - SYSTEM CONTROL INTERFACE D-1

APPENDIX E - PARTITION LAYOUT AND USAGE E-1

APPENDIX F - INDEX - BLOCK SIZE FOR INDEXED FILES F-1

APPENDIX G - CONTROL LANGUAGE STATEMENTS FOR 2 SAMPLE
JOBS G-1

APPENDIX H - VARIABLE REPLACEMENT RULES H-1

vii

Bulletin: 2200.004-0001
Date: 4/2/73

LIST OF FIGURES

Figure

1-1 Control Language Services

1-2 Job Queuing

1-3 Input Data Spooling

1-4 Input Reader

1-5 Job Initiator

1-6 Step Initiator

1-7 Program Execution

1-8 Step Terminator

1-9 Job Terminator

1-10 Control Language Services Contro I Flow

2-1 Indexed File with Spread Factor of 4

2-2 Sample Job with Card Reader Control by the Program

2-3 Sample Job Stream

LIST OF TABLES

Table

2-1

2-2

Sharing of Permanent Files

Summary of //DEFINE Statement Keywords

viii

Page

1-2

1-4a

1-5

1-7

1-9

1-10

1-12a

1-13

1-14

1-15

2-25

2-38

2-41

Page

2-18

2-28

1. INTRODUCTION

Control Language Services is the control and interface program for jobs executing under
control of Memorex Operating System. It performs these basic functions: interprets and
processes control language statements; inputs jobs and data from the system input reader;
builds a list of jobs to be initiated (job queue); enters all jobs into the system; allocates
devices and files; prints a copy of control language statements, error and system messages,
and job accounting information. Figure 1-1 is a functional diagram of the Control Language
Services.

DEFINITIONS

The following paragraphs describe terms used in discussing the Control Language Services
programs and operation.

JOB AND JOB STEP

A job, by definition, is one or a group of related job steps to be executed in a program
partition. A step is the execution of a single user program, which may include subroutines
and other programs linked or called for execution.

CONTROL LANGUAGE STATEMENTS

Control language statements direct the execution of a job and of steps within a job. A //JOB
statement defines the beginning of a job; an //EOJ statement defines its end; an
//EXECUTE statement defines the beginning of a step within a job. The following is an
example of the basic required statements for the execution of a job consisting of two job
steps:

//JOB NAME=PAYROLL
//EXECUTE PGM=ACCT

} File definitions and other
optional statements

//EXECUTE PGM=COST

} File definitions and other
optional statements

//EOJ

1-1

//EX

//JOB

//EOJ

//DATA

//DEFINE

MHX/OS

PROGRAM
PARTITION

READER
READER-PUNCH

FUNCTIONS:

NOTE: REPRESENTATION OF JOBS DOES
NOT SHOW ACTUAL STATEMENTS

1 JOB INTERFACE TO THE MRX/40 AND 50 OPERATING SYSTEM

1 SYSTEM JOB HANDLER

1 CONTROL LANGUAGE STATEMENT PROCESSOR

figure 1-1. Control Language Services

1-2

PRINTER

JOB QUEUING

Bulletin: 2200.004-0001
Date: 4/2/73

Job queuing (Figure 1-2) is a feature of Control Language Services which provides for the
entry of jobs from the system card reader into the job queue (reserved area on the disc) to
await initiation and processing. A system input file (SYSI N) is created for each job and
contains the control language statements for that job. The job which has the highest priority
in the job queue, and is allowed to run in the partition, will be initiated first. Priority and
partition are specified on the //JOB statement or assumed by default. Where priorities are
equal, jobs run on a first-in - filrst-out basis.

The maximum number of entries in the job queue is specified during system generation
(SYSGEN). Whenever more jobs are placed in the card reader hopper than will fit in the job
queue, the remainder of the jobs in the hopper wait until interjob time (between jobs), at
which point additional entries can be made in the job queue.

INPUT DATA SPOOLING

Input data spooling, a "featurn of Control Language Services (Figure 1-3) provides for the
creation of sequential disc data files from card images as they are encountered in the card
input stream. When input data spooling is performed, jobs which follow the data statement
in the card reader are placed in the job queue. If data spooling is not performed, that is, the
programmer specifies the system card reader as his input device, any following jobs in the
card reader cannot be placed in the job queue until the job with card reader control has
completed its processing. That job which selects the system card reader for its input device
will be selected for initiation in the same manner as all other jobs in the job queue - by
partition and priority.

OUTPUT DATA SPOOLING

Output spooling is an option that may be selected at SYSGEN time. If the spooling option
is selected, the files to be spooled are queued on the output spool queue at step termination,
or the files may be queued by the SPOOLQ macro (refer to MRX/OS Control Program and
Data Management Services, Basic Reference manual). SYSOUT is queued at job termination.

If the spooling option is not sielected at SYSG EN time, the //ROUTE statement is treated as
if it were a //DEFINE statement; and a physical device (if available) is assigned. No Control
Language Services errors result when a //ROUTE statement is encountered in a system that
does not have the spooling option, unless an error would have occurred if the option were
selected.

The output scheduled for a spooled device is determined by job priority, current form type,
and job name. Therefore, print/punch files of a job will not necessarily be output
contiguously on the same spooled device. However, continuity can be achieved by
specifying a specific device with the same form type for all files.

1-3

Bulletin: 2200.004-0001
Date: 4/2/73

PROGRAM DESCRIPTION

Control Language Services consists of several modules stored on the system resident pack.
Logically, these modules include:

• Input Reader

• Job Initiator

• Step Initiator

• Step Terminator

• Job Terminator

When required, modules are transferred into the problem program partition for execution
between jobs and job steps. A minimum main storage partition of BK bytes, which includes
space for necessary control tables, is required for the modules.

In a two-partition system, Control Language Services executes in alternate partitions as the
jobs terminate in them, whereas in a one-partition system, jobs are initiated serially.

1-4

JOB2

FUNCTIONS:

1 JOBS ARE LISTED ON THE JOB QUEUE FOR INITIATION AND PROCESSING AS THEY ARE READ IN FROM
THE SYSTEM CARD READER

1 JOBS ARE THREADED TO THE OTHER JOBS OF THE SAME PRIORITY

1 THE FIRST JOB READ AT INITIAL PROGRAM LOAD TIME ALLOWED TO RUN IN THE PARTITION WILL BE
INITIATED REGARDLESS OF PRIORITY

1 ALL OTHER JOBS ARE INITIATED BY PRIORITY IN THE PARTITION IN WHICH THEY ARE ALLOWED
TO RUN

1 JOBS OF EQUAL PRmRITY ARE INITIATED ON A FIRST·IN·FIRST·OUT BASIS IN THE PARTITION IN
WHICH THEY ARE ALLOWED TO RUN

1 JOB1 READ, QUEIUED AND INITIATED

JOB2 READ AND QUEUED

JOB3 READ AND QUEUED

JOBN READ AND QUEUED, HIGHEST PRIORITY WILL BE INITIATED BEFORE JOB2 OR JOB3
PROVIDED JOBN IS IN THE QUEUE BEFORE NEXT JOB INITIATION

NOTE: REPRESENTATION OF JOBS DOES
NOT SHOW ACTUAL STATEMENTS

Figure 1-2. Job Queuing

1-4a

Bulletin: 2200.004-0001
Date: 4/2/73

JOB1 PAI = 4 TYP = 0

JOB2 PAI= 7 TYP= 1

JOB3 PRl=4 TYP=O

JOBN PAI= 9 TYP = 0

JOB1

//EOJ

/*

//DATA FIL•2

JOBN

//EOJ

JOBN-1

//EOJ

/*

//DATA FIL=SVSCRD

/

//EOJ

/*

nL=B

//EOJ.

JOB2 ~ _..____s //EOJ

/*

//DATA FIL=A

FUNCTIONS:

1 READS DATA FROM WITHIN JOBS AND WRITES THIS DATA
ONTO DISC

1 ALLOWS LATER JOBS TO BE QUEUED

1 JOB1, JOBJ, AND JOBN REQUEST SPOOLING
JOB2 AND JOBN-1 HAVE NO DATA ENTERED WITH THEM
JOBN-2 HAS CONTROL OF CARD READ

1 JOBS 1, 2, 3, and N-2 WILL BE QUEUED

FILES A, B SPOOLED

JOB N-2 GETS CONTROL OF CARD READER UNTIL ITS CARD
DATA FILE IS PROCESSED AND THE JOB IS TERMINATED.
ONLY THEN CAN JOBS N-1 AND N BE QUEUED, AND FILE 2
SPOOLED.

NOTE: REPRESENTATION OF JOBS DOES
NOT SHOW ACTUAL STATEMENTS

Figure 1-3. Input Data Spooling

1-5

Bulletin: 2200.004-0001
Date: 4/2/73

DATA FILES

FIL=A

FIL=2

FIL=B

Bulletin: 2200.004-0001
Date: 4/2/73

INPUT READER

This module of Control Language Services is loaded into the problem program partition at
interjob time. As its name implies, the Input Reader reads jobs from the system card reader.
Upon reading the first statement of a job (//JOB c:ard), space for the system input (SYSI N)
and the system output (SYSOUT) files are allocated. As each control language statement is
read, it is output to SYSIN, thus building that file. (Explanation of these files is in Section 3
of this document.) The Input Reader requires a partition of at least 8192 bytes, but does
not use more storage even if available.

Cataloged procedures which consist of control language statements cataloged on a library
file, are merged with the job, if called. (See Section 4 for a discussion of cataloged
procedures.)

A Control Language Services routine called Statement Interpreter is loaded with the Input
Reader. The Statement Interpreter performs syntax checking on control statements input
from the system card reader as well as those cataloged procedures which may have been
merged.

Data files in the job stream are also read by the Input Reader, if data spooling is to be
performed.

When all the control statements for a job (including cataloged procedures) have been read
and found to be error free, the job is placed on the job queue to wait for initiation. The
Input Reader will continue to process jobs until the job queue is filled, the card reader
hopper is empty, or a job specifies control of the system card reader. The first job in after
autoload, however, is initiated immediately.

After it has stopped reading jobs from the system card reader, the Input Reader searches the
job queue for a job to be initiated in the partition. The Input Reader selects from the entries
in the job queue as follows:

1. Jobs assignable to run in the partition.

2. Within those jobs, the jobs of the highest priority.

3. Within those jobs, the first job entered into the job queue
(first-in, first-out).

As soon as a job has been selected for initiation, the Input Reader releases control of the
partition. A request is made to the Relocating Program Loader to load the Job Initiator.

If syntax errors are detected within a job, the control statements that have been written on
SYSI N are transferred to the SYSOUT file. Those statements which contain errors are
written with the error indication immediately following the statement. The format of this
output is: the statement in error, followed by a flag indicator in the form of a question
mark (?),and an error code followed by a description.

Exampl~: //DEEF
?

nnn UNRECOGNIZABLE COMMAND

1-6

MAX/OS

i//EDJ
I

(//EXEC PROGRAM
PARTITION

INPUT
READER

NOTE: REPRESENTATION OF JOBS DOES
NOT SHOW ACTUAL STATEMENTS

FUl~CTIONS:

1 FIEADS CONTROL LANGUAGE STATEMENTS
1 MERGES CATALOGED PROCEDURES
1 EIUILDS JOB QUEUE
1 PILLOCATES AND BUILDS SYSIN
1 P1LLOCATES SYSOUT
1 READS DATA INPUT STREAM
1 B·UILDS SPOOLED FILES FROM DATA IF SPOOLING IS REQUIRED
1 BUILDS DEBUG FILES IF REQUIRED
1 R:EJECTS JOBS WHICH HAVE CONTROL LANGUAGE ERRORS,

BUILDS AND PRINTS SYSOUT FOR REJECTED JOBS
1 SELECTS A JOB FOR INITIATION
1 CALLS JOB INITIATOR VIA LOADER

Figure 1-4. Input Reader

1-7

JOB QUEUE

SYSIN

SYSOUT

DATA FILES

Bulletin: 2200.004-0001
Date: 4/2/73

The remainder of the statements for that job are processed and written on the SYSOUT file
along with information on detected errors for each statement. The Input Reader then prints
these statements from the SYSOUT file up to the last statement containing an error. SYSI N
and SYSOUT are closed and purged and the next job is read by Input Reader.

JOB INITIATOR

Following the selection of a job to be initiated in a partition, the Job Initiator receives
control from the Input Reader. Date and switches are initialized. Job Initiator then opens
the SYSI N and SYSOUT files for the job, causing file description tables to be created for
them. Entries are made for the job in its Job Control Table (JCT), located near the end
(high addresses) of the partition.

Jobs are selected for initiation by TYPE and PRIORITY in queued systems. The TYPE
designates whether the job is eligible to run in the partition; and of those eligible, the one
with the highest priority will be initiated first. When priorities are equal, initiation is on a
first in-first out basis.

Job Initiator requires at least 4096 bytes to initiate a job.

The Job Initiator then releases control of the partition and a request is made to the
Relocating Program Loader to load the Step Initiator module of Control Language Services.

STEP INITIATOR

Whenever a job step is to be executed in a partition, the Step Initiator is loaded into the
partition and control is passed to it.

The Step Initiator processes all of the statements of a step from an //EXECUTE to the
following //EXECUTE, //IF, or //EOJ. Pointers to //DEF and //PAR statements (which
define data files and supply parameters) as well as information from control statements,
contained on.the SYSIN file, are moved to the Job Control Table. The Step Initiator out
puts //TELL messages to the operator's console as it encounters them in the job stream and
waits for response whenever PAUSE=YES is coded.

For a program requesting restart, a flag is set in the //DEFINE record for this file if the file
has been allocated. If an "already exists" error occurs, Step Initiator ignores the error when
restart is specified. When REST A RT=nnn is coded, the checkpoint number is set in the Job
Control Table (JTCCH KP).

In the processing of /IDE FINE statements, Step Initiator outputs mount messages for
volumes required but not yet mounted; locates files which do not require allocation; selects
devices for unit record and tape assignments; and requests disc space through the
ALLOCATE routine. (See the Control Program and Data Management Services, Extended
Reference manual for a description of the ALLOCATE macro.) Usage conflicts for files
(requests for conflicting use of non-shared and shared devices) are also cleared.

1-8

Bulletin: 2200.004-0001
Date: 4/2/73

Once all statements of a step have been processed the BEGIN PGM program-name message is
displayed on the console, cind the program named in the //EXECUTE statement is loaded
and control is passed to that program. When it has completed execution, the Step
Terminator is loaded and control is passed to it. If further errors are encountered during
step initiation, Step Initiator will cause the job to be aborted and SYSOUT listing to be
provided.

After the step has been terminated by the Step Terminator, the Step Initiator again is
loaded and receives control to process the statements of the next step. If the next control
language statement is an //IF statement, either the next sequential statement is processed or
the step named on the //IF statement is processed. The result of a test determines which of
these paths will be taken. (The //IF statement is discussed in Section 2 of this document.)

1-Ba

PROGHAM
PARTITION

___________ , ____

MRX/OS

JOB
INITIATOR

FUNCTIONS

1 PERFORMS JCT ENTRIES
1 OPENS AND READS SVSIN
1 OPENS A SVSOUT FILE FOR THE JOB
1 INITIALIZES DATE TO SYSTEM DATE, AND SWITCHES TO ZERO
1 CALLS STEP INITIATOR VIA THE RELOCATING PROGRAM LOADER

Figure 1-5. Job Initiator

1-9

MAX/OS

STftP
INITIATOR

READER
READER-PUNCH

FUNCTIONS:

PRINTER

1 READS STATEMENTS FROM SYSIN (SUCH AS, DEFINE AND SET)

1 ASSIGNS 1/0 DEVICES TO THE STEP IN THE PARTITION

1 PERFORMS TAPE AND DISC VOLUME MOUNTING

1 ALLOCATES DISC SPACE REQUESTED ON DEF STATEMENTS

1 PRINTS TELL STATEMENTS ON OPERATOR'S CONSOLE

1 RE-INITIALIZES DATE TO JOB DATE AND/OR SWITCHES
(FROM SET STATEMENTS)

1 INITIALIZES TIME STEP IS ALLOWED TO RUN

1 OPENS DEBUG FILE

1 CALLS STEP TERMINATOR IF ANY ERBOR IS ENCOUNTERED
AND FLUSHES JOB TO SYSOUT FOR PIUNTING

1 CALLS THE PROGRAM FROM THE LOAD LIBRARY VIA THE
RELOCATING PROGRAM LOADER OR CALLS THE JOB
TERMINATOR IF NO STEPS REMAIN

Figure 1-6. Step Initiator

1-10

Bulletin: 2200.004-0001
Date: 4/2/73

If the next statement is an //EXECUTE, the statement is processed by the Step Initiator as
previously described. When the next statement is an //EOJ, a request is made to the
Relocating Program Loader to load the Job Terminator module of Control Language
Services.

PROBLEM PROGRAM

The problem program is the program named on the //EXECUTE statement. Step Initiator
requests the loading of the program into the partition and passes control to this problem
program.

The program is responsible fo1r opening and closing the files it will use, and for calling the
Relocating Program Loader to load additional segments of the program. When the program
has completed execution, its final service request is a HALT, EHAL T, or ABEND. HALT is
for normal step termination" An EHAL T is for job termination. ABEND requests an
abnormal termination of a job. These service requests cause the Relocating Program Loader
to load the Step Terminator and pass control to that Control Language Services module.

STEP TERMINATOR

Whenever the problem program in a step has completed execution (that is, goes to HALT or
EHAL T or ABEND), the Step Terminator is loaded. The Step Terminator checks for any
open data files. All files opened by the program must be closed by the program at the end of
each job step. Failure to do so results in abnormal termination of the step and job (with the
exception of SYSCHK).

If the program terminates abnormally and the step is eligible for restart, the operator is
asked to allow an immediate restart at the last checkpoint taken by the program. If the
operator reply is YES, the Step Terminator sets the immediate restart bit (bit 1 of JTCLS)
in the Job Control Table and loads the RESTART program.

All scratch files are purged (de-allocated) by the Step Terminator unless an immediate
restart is in progress or abnormal termination is occurring and the user program issued the
CH KPT macro. All peripheral devices assigned to the step are released for use by following
steps or by the other partition.

The Step Terminator closes the DEBUG file and private load library, if used by the step. Job
accounting information is placed on the SYSOUT file and the Step Initiator is loaded.

Step Terminator also searches the SYSI N file for a file to be spooled; and if found, it queues
the file on the output writer queue.

JOB TERMINATOR

Whenever an //EOJ Control !Language Statement is read by the Step Initiator, the Job
Terminator is loaded into the partition.

1-11

Bulletin: 2200.004-0001
Date: 4/2/73

Job Terminator closes and purges the SYSI N file. The SYSOUT file is updated with job
accounting information and is printed. If termination is normal or is abnormal with no
checkpoints taken, user temporary files are purged. If termination is abnormal and
checkpoints have been taken, purging of temporary files including SYSI N is bypassed. If
spooling was not selected at SYSGEN time, SYSOUT is printed and purged. If spooling was
selected, SYSOUT is queued for printing by the output writer.

All other files {work and permanent) remain on the packs until they are de-allocated via the
Purge utility or Purge macro. {The Purge utility is described in the Utility Programs
Reference manual; the Purge macro is described in Control Program and Data Management
Services, Extended Reference manual.)

When all termination activities have been completed, Job Terminator releases control of the
partition. The Input Reader is then loaded into the partition and control is passed to it.

1-12

FUNCTIONS:

MAX/OS

PROB'iLEM
PROGRAM

READER
REAOER-IPUNCH

1 EXECUTES THE PROBLEM PROGRAM

PRINTER

1 ACCEPTS PARAMETER STATEMENTS FROM SYSIN FILE

1 DISPLAYS MESSAGES ON SYSOUT FILE

Bulletin: 2200.004-0001
Date: 4/2/73

DATA FILES

1 OPENS ANO CLOSES ALL DATA FILES USING INFORMATION SUPPLIED BY DEFINE STATEMENTS

1 READS OR WRITES DATA ON ALL ASSIGNED 1/0 DEVICES

1 ALSO READS DATA FROM SPOOLED DATA FILES CREATED BY INPUT READER

1 PROGRAMS WITH AN OVERLAY STRUCTURE CALL PROGRAM SEGMENTS FROM LOAD LIBRARY
VIA PROGRAM LOADER

1 EXECUTES ANY DEB:UG INSTRUCTIONS PLACED IN PARTITION

1 AT TERMINATION (llBNORMAL OR NORMAL) OF PROGRAM, STEP TERMINATOR IS CALLEO
VIA THE RIELOCATllrn PROGRAM LOADER

Figure 1-7. Program Execution

1-12a

MAX/OS

STEP
TERMINATOR

REA DEF~
READER-PU::..J

FUNCTIONS:

PRINTER

1 DEASS"6NS DEVICES WHICH STEP INITIATOR ASSIGNED TO
THIS STEP

1 PURGIES ANY SCRATCH FILES USED BY THIS STEP

1 CLOSES DEBUG FILE AND PRIVATE LOAD LIBRARY, IF USED

1 CHECKS FOR ANY FILES OPENED BUT NOT CLOSED BY
PROGFIAM; IF ANY, ABNORMALLY TERMINATES STEP AND JOB

1 PLACES ACCOUNTING INFORMATION ON SYSOUT FILE

1 CALLS STEP INITIATOR VIA THE RELOCATING PROGRAM LOADER
TO DETERMINE WHETHER A FOLLOWING STEP IS TO BE INITIATED
BY STEP INITIATOR, OR THE JOB IS TO BE TERMINATED BY JOB
TERMINATOR

Figure 1-8. Step Terminator

1-13

SYSIN FILES

SYSOUT FILES

Bulletin: 2200.004-0001
Date: 4/2/73

PROGRAM
PARTITION

MRXiOS

JOB
TERMINATOR

FUNCTIONS:

• CLOSES AND PURGES SYSIN FILE

• WRITES JOB ACCOUNTING INFORMATION TO SYSOUT

e CALLS INPUT READER VIA THE RELOCATING PROGRAM LOADER

e PURGES TEMPORARY FILES FOR NORMAL TERMINATION OR ABNORMAL
TERMINATION WITH NO CHECKPOINTS TAKEN

• PRINTS AND PURGES SYSOUT IF SPOOLING OPTION NOT AVAILABLE

e QUEUES SYSOUT FOR PRINTING BY OUTPUT WRITER IF SPOOLING
OPTION IS AVAILABLE

Figure 1-9. Job Terminator

1-14

CONTROL FLOW

Figure 1-10 shows the flow of control in the partition among the program and the modules
of Control Language Services.

YES

START

INPUT
READER

JOB
INITIATOR

STEP
INITIATOR

PROBLEM
PROGRAM

STEP
TERMINATOR

JOB
TERMINATOR

Figure 1-10. Control Language Services Control Flow

1-15

2. CONTROL l.AN~GUAGE

LANGUAGE DESCRIPTION

Bulletin: 2200.004-0001
Date: 4/2/73

The Control Language provides the programmer with a direct interface to Control Language
Services. The ~anguage is composed of the following statements which control job step,
interstep, and procedure-oriented activities for the job; input data to the system; and
provide comments.

Level Statement Description

JOB //JOB Identifies the job.

STEP //EXECUTE Specifies the program to be executed.

STEP //PAR Specifies information to be passed to the
executing program.

STEP //DEFINE Specifies physical and logical qualities
of a file.

STEP //ROUTE Specifies allocation information when
spooling option is selected, or specifies
physical qualities of unit record device
when spooling option not selected.

STEP //SET Alters the job date and setting of bits in
the program option switch table.

STEP //TELL Output message on operator's console.

INTERSTEP //IF Tests and transfers control to a subsequent
step as a result of the test.

PROCEDURE //DECLARE Identifies first statement of cataloged
procedure.

//CALL Used to merge cataloged control language
statements (procedures) into the control
language statements of a job.

DATA //DATA Identifies that which follows as a data file.
Specifies file name and attributes.

DATA /* Data delimiter. Identifies the end of a data file.

JOB //EOJ Identifies the end of a job.

JOB '*·(comment) Comments card.

2-1

FORMAT

All command statements for the control language have the same basic format containing five
fields:

ldentH~r~-m~m_a_n_d~~K~ey_w~o-rd_-_o_p_e_ra_n_d~~C~o_m_m_e_n_t~~s_e_q_u_e_n_ce~-
The following general rules apply:

1. Each statement must begin on a new card.

2.. The identifier field must begin in character position 1 of each
statement.

3. The command field must begin in character position 3.

4. All fields must be separated by at least one blank character, except
that no space is allowed between the identifier and command fields.

5. The keyword-operand and comment fields are free form.

6. Keyword-operands are separated by commas. No blank characters are
allowed, except on //PAR and //TELL statements.

7. The keyword-operand field may be continued on more than one card
except for the //PAR and //TELL statements.

8. A comma followed by a blank indicates that the keyword-operand
field is continued on the next card.

9. On continuation cards the keyword-operand field must not begin
before character position 4. The identifier field is repeated, but the
command field is not.

10. The sequence field occupies the last eight character positions of the
card.

2-2

IDENTIFIER FIELD

The identifier field ijndicates that the statement is a directive to the Control Language
Services. The identifier is required on all control statements, including all continuations.

The following rules apply to1 the identifier field:

1. The // identifier must appear in character positions 1 and 2 for all
control statements (including continuations) except the data
delimiter and the comment statement.

2. The data delimiter identifier is/* (slash, asterisk, blank) which must
appear in character positions 1, 2, and 3. Anything other than a
blank in character position 3 will cause the card to be treated as data.
Continuation is not applicable for this statement.

3. The comment statement identifier is * and must appear in character
position 1. Continuation is not applicable for this statement.

2-3

Bulletin: 2200,004-0001
Date: 4/2/73

COMMAND FIELD

The commands recognized by Control Language Services function is required. The following
rules apply to the command field:

1. The commands recognized by Control Language Services must
appear in one of the following spelled out or abbreviated forms.

Level Command Abbreviation

Job I //JOB None
//EOJ None

//EXECUTE //EXEC or //EX
//PAR None

Step
//DEFINE //DEF
//ROUTE //RTE
//SET None
//TELL //TEL

lnterstep //IF None

Procedure I //DECLARE //DEC
//CALL //CAL

Data //DATA //DAT

Note that there are no commands for the data delimiter and the
comment statement.

2. The command field must begin in character position 3.

3. The command field is not repeated for statement continuations.

4. No space is allowed between the identifier field and the command
field.

5. At least one space is required between the command field and any
following field.

2-4

KEYWORD-OPERAND FIELD

Bulletin: 2200.004-0001
Date: 4/2/73

The .keyword-operand field lists the specifications which support the job processing features
of the command as required at run time. The following rules apply to the keyword-operand
field.

1. The keyword-operand field must be separated from both the
preceding and the following fields by at least one blank space.

2. The field is free form with no fixed starting position, although each
operand or variable symbol is limited to 17 characters maximum.

3. Each keyword-operand must consist of a descriptive keyword and an
operand or variable symbol, separated by an equal sign (except on
//PAB card~;, which do not undergo syntax check).

Example: LOC=YES

4. Keyword-operands can be separated only by commas (no blanks).

Example: CAT=NO, VOLUME=65A R22, VE R=YES

5. If the operand portion of the keyword-operand contains more than
one entry, the multiple items are separated by commas, and the
entire operand is enclosed by parentheses.

Example: ST A TUS=(P ,0)

6. The keyword-operand field may occupy multiple cards. Th.e
continuation of the field must be shown by a comma followed by a
blank. The field may not extend past column 72. The only valid
characters in column 72 is a blank or a comma.

7. For continuation, the field can only be divided after a complete
keyword-op 1erand. The continued line must contain the identifier but
must not contain the command.

Example: //DEF
II
II
II
II
II

ID=FI L 128,FI L=PROG6382,
NU M= 1450 ,CSD=N 0 ,SI Z=50,
BLK=1 O,LOC=YES,ORG=I,
SP R EAD=4,ST A=(P ,0) I
CAT=NO,VOL=65AR22,
VER=YES

8. The number of specifications which may be placed on a record is
limited only by the number of character positions not committed to
other fields (identifier on all statements, command on the first
record of a statement, and sequence field on all statements). Either
single or multiple specifications may be included on any record of a
statement.

2-5

Bulletin: 2200.004-0001
Date: 4/2/73

9. The order of the keyword-operands on the statement is optional.
There are no positional keyword-operands in the control language
except on the //JOB and //CALL statements.

Example: //DEF ID=FIL 128,FIL=PROG6382,NUM=1450

This statement could be written .with the keyword-operands in any
order, such as:

//DEF FIL=PROG6382,ID=FIL 128,NUM=1450

or

//DEF NUM=1450,FIL=PROG6382,ID=FIL 128

COMMENT FIELD

The comment field is used to record additional information concerning the programu the
statement, or any documentation the programmer wishes to provide. The field is optional
for al I statements.

Although there is no specified format for this field, the following rules apply to its general
use:

1. The field is free form in that it occupies no specified character
positions on the card. Its only restriction is that it must be separated
from both the preceding and following fields by at. least one blank
character.

2. No continuation of comments is allowed.

3. For the comment statement, the comment field may begin in any
character position after the * identifier.

SEQUENCE FIELD

The sequence field is used to indicate the order in which statements are expected to appear
in a job. The following rules apply to the sequence field:

1. The field occupies the last eight character positions of each card.

2. The field must be preceded by one or more blank characters.

3. All members of the EBCDIC code set can be used for the values in
the sequence field.

4. Control Language Services will check ascending sequence and issue
warning diagnostics for exceptions.

2-6

FORMAT NOTATION

In the following paragraphs of this section, each control language statement is discussed.
The statement formats are given using all acceptable forms on each command and keyword.
The following rules are used in statement formating in this section:

1. All forms of the command are given. Any .form may be used in
coding.

Example: //EXECUTE
//EXEC
//EX

2. All referiences to alphanumeric fields, whether they be 8 or 17
charactE~rs maximum length, have the following restrictions.
Alphabetic and numeric characters comprise the field, no embedded
blanks are allowed. The dollar sign ($) is valid. (Data Management
allows the dollar sign only as the first character of a file name;
certain svstem files are preceded with the $ to identify them as
system files.) The dash (-) is the only other special character that
may be used within these alphanumeric fields.

Example: NAME=STEP2-A
LIB=$UTIL-LIBRARY

3. Braces { } , indicate that the user has a choice of terms; the default
case is underlined.

Example: CLS= I ~6s)
4. All forms of optional keyword-operands or optional operands are

enclosed by brackets [] .

Example: [MSC=code]

5. Parentheses () are used to enclose multiple operands associated with
one keyword. The parentheses are not required if only one of the
op1erands is specified for use.

Example: STATUS=(type,usage)

2-7

STATEMENT SPECIFICATIONS

The keyword-operands for control statements are defined by the control language, where
each command is associated with specific keywords. The paragraphs which follow describe
the keyword-operand specifications for each of the control language statements. The
following appendices may be used along with the discussion of each statement.

• Appendix A - Summary of Contn:>I Language Statements

• Appendix B -· Table of Control Language Statement Keyword
Characteristics

• Appendix C - Table of required and Optional Keywords by Control
Language Statement

JOB LEVEL STATEMENTS

The job level statements are used to begin and end the command sequence of a job, and to
provide commentary documentation. These statements include:

• //JOB

• //EOJ

• * (comment statement)

JOB STATEMENT

//JOB INAMEl NAM =job-name [I ~~~R l =user-identification]

[TYPE l J TYP =partition-number

[I PRIORITY l J PR 1 =job-priority-number

[(~~~o) = I ~~s) J
The //JOB statement is required to begin the command sequence for a job. This statement
describes the job to Control Language Services; assigns a name to the job; identifies the user;
specifies the partition in which the job may run; and indicates the priority to be assigned to
the job in the job queue. It also specifies whether the job is available for initiation, or is
being held pending later release by the operator. If any error is present, the job card is not
recognized and Control Language Services skips for job card.

2-8

{
NAME) . NAM =Job-name

Bulletin: 2200.004-0001
Date: 4/2/73

(required)

The system requires a name by which it can recognize and refer to a job. This information is
supplied by the NAME keyword and is used in creating the job queue entry. In addition,
NAME is used to qualify scratch and temporary files; SYSIN and SYSOUT files; and
spooled data files.

The operand must be unique (only one job of a name may be in the system at one time).
The operand given with the NAME keyword must be a 1-to-8 character alphanumeric value.
This keyword-operand is required and must appear on the first card.

{
USER l .d .1. . USE =user-1 19nt1 1cat10n

Installations have the option of requmng user identification to the system for job
accounting purposes. If this information is not required, the USER keyword is optional; it
may be included in the statement merely as added documentation. The choice of requiring
user identification is made at system generation (SYSGEN) time. It may be reversed on any
following generation of the system.

The operand is a 1-to-4 character alphanumeric field. There is no default.

{
TYPE) . . b TYP · =part1t1on-num er (optional)

The partition in which a job is allowed to run may be selected by the programmer, using the
TYPE keyword. The kevword may be used to reflect partition size, partition dedication, or
job requirements. Partitions are defined at SYSGEN time or at IPL time.

The operands are 1 and 2 specifying partition 1 or 2, respectively. The system default is
zero, which means that the job can run in either partition.

{
PRIORITY) . b . . b PR 1 =10 -pr1or1ty-num er (optional)

The system provides the ability to designate the order in which jobs run within a partition.
The PRIORITY keyword is used to define that order .

• Jobs are selected from the queue first by the TYPE keyword (jobs eligible to be initiated in
1tlw· partition) and then according to the PRIOR ITV keyword (highest priority job within a
partition). Within a partition, jobs of the same priority are selected for initiation on a
first-in, first-out basis.

The operand is a 1-digilt numeric field of values from 1 to 9. The highest priority is
designated by the largest number. A default is set by the installation at SYSGEN time.

2-9

IHOLDI = I YESI
HLD NO

(optional)

Control Language Services allows the operator to control the release of a job from the job
queue. This control is provided by the HOLD keyword.

When HOLD=YES is encountered, a message is displayed on the operator's console
informing the operator that the named job is being held in the job queue. After the operator
has released the job, it will be selected for initiation according to the operands of the TYPE
and PRIORITY keywords specified. If type and priority are not specified, the installation
defaults are used and the job will be selected on a first-in, first-out basis as per those values.

When HOLD=NO is specified, or the HOLD keyword is not specified, the job will be
selected for initiation without operator intervention. The same conditions for job selection
apply.

Sample //JOB Statement

The following is an example of a //JOB statement. The required keyword, NAME, and some
optional keyword-operands are used.

//JOB NAM E=JOB6A2,TYP=2,P R 1=8,HOLD=NO

In this example, the job name is JOB6A2, which must be unique. The job is allowed to run
in partition 2 at a priority of 8. This job will not be held in the job queue for operator
release. Because the USER keyword-operand is omitted, it is assumed that the installation
does not require user identification. If USER is required, the job will be rejected by the
Input Reader Module of Control Language Services.

EOJ STATEMENT

//EOJ

The //EOJ statement is required to terminate the command sequence for a job. There are no
keyword-operands associated with this statement, but the comment and sequence fields may
be used.

COMMENT STATEMENT

·*comment

The comment statement is provided to allow the programmer to include comments in the
job stream. It is never required. The comment statement may occur any place within a job.

The comment statement is identified by * in character position 1; the actual comment may
begin in any character position thereafter. Since there are no command and

2-10

Bulletin: 2200.004-0001
Date: 4/2/73

keyword-operand fields associated with this statement, the comment can occupy the
remainder of the card except for the sequence field (last eight character positions).

Sample Comment Statement

*OUTPUT IS PROCESSED BY JOB REPORT 62

STEP LEVEL STATEMENTS

The statements at the step level specify the program to be executed and indicate the
run-time environment for that program. These statements include:

• //EXECUTE

• //PAR

• //DEFINE

• //SET

• //TELL

EXECUTE STATEMENT

//EXECUTE
//EXEC
//EX PG M=program-name

[I NAME l J NAM =step-name

[I LIBRARY l . J LI
8

=load-library-name

[I TIME l . J TIM =minutes

[/DUMP l = { ~~S } J
DMP COND

[{ ~~=uG) = (~~s) J
[{=~~TART l = { ~~S }J

nnn

The //EXECUTE statement is the first statement of every step. It identifies the program to
be executed, names the job step, and specifies the library on which that program resides.
Also indicated are the time that the step is to be allowed to run and the conditions under
which a dump is to be made.

2-11

Bulletin: 2200.004-0001
Date: 4/2/73

PGM =program-name (required)

This keyword specifies the name of the program to be executed. The program name is a 1-
to 8-character alphanumeric field, which is the same name as that by which the program is
cataloged on the library. If RESTART=nnn option is specified, PGM=RESTART must be
specified.

I NAME) NAM =step-name (optional)

The system allows job steps to be named and identified by the NAME keyword. If the step
is to be referenced by the GO keyword of a preceding //IF statement, this keyword-operand
is required. (The //IF statement is described later in this section.) The operand is a 1- to
8-character alphanumeric field.

!LIBRARY) . LI
8

=load-library-name

This keyword specifies the library on which the program to be executed resides. It is
required whenever the program resides on a private load library rather than on the standard
system load library ($SYSLODLIB). The operand is a 1- to 17-character alphanumeric field.

If the library is centrally cataloged, no //DEFINE statement is required for the library.
Otherwise the //DEFINE statement must be included with ID=$LODLIB.

!TIME) .
TIM =mmutes (optional)

This keyword-operand gives the maximum time, in minutes, that the step is allowed to run.
If the operand defined is executed, the step will be terminated abnormally and the job will
be aborted.

A 4-digit numeric field is used for this operand. Maximum time that can be specified is 1440
minutes, which allows the step to run indefinitely. If 1439 minutes is specified, the step will
be allowed to run for 23 hours 59 minutes before being aborted. The default is set by the
installation at SYSGEN time.

I DUMP) = { ~~S }
DMP COND

(optional)

The system allows the conditions for making a main storage dump to be specified. When
DUMP=YES, a dump of the user partition is made at the end of the step regardless of the
termination status (normal or abnormal). When DUMP=NO, the dump is not made
regardless of the termination status. If the keyword is not specified or if DUMP=COND, a
dump will be made upon abnormal termination of the step, but not upon normal
termination.

2-12

I DEBUG I = I YES I
DEB NO

' -

Bulletin: 2200.004-0001
Date: 4/2/73

(optional)

This keyword* allows the pro1grammer to call the Debug routine for use in his program. This
utility provides for snapshot dumps and optional step termination at specified breakpoints.

When DEBUG=YES, Control Language Services opens the Debug directive file created with
a Control Language //DATA statement. Control Language Services will also inform the
Relocating Program Loader that the Debug utility is to receive control over processing.
When DEBUG=NO, the program is not run in Debug mode. The default is NO.

I
RESTART I= {YES}
RES NO

nnn
(optional)

This keyword indicates a step's eligibility for restart t after abnormal termination. RES= YES
allows immediate restart if a step terminates abnormally; RES=NO does not.

The nnn operand is a 1- to 3··digit decimal number indicating location for deferred restart
attempt. The nnn value is taken from the console run sheet or the SYSOUT listing of the
previous run of this step. If a deferred restart is being attempted, PGM=RESTART must be
specified in addition to the RESTART keyword specification in the //EXEC statement.

Whenever RESTART is spedfied in the //EXEC statement, a //DEFINE statement with
I D=SYSCH K for the checkpoint file must also be included in the Control Language
statements.

Sample Execute Statement

The following is an example o-f an //EXECUTE statement. The required keyword, PGM, and
some optional keyword-operands are used.

//EXEC
II

PGM=LOD618,DEBUG=YES,LI B=U LI 820,
NAM=STEP32,TIM=80

In this example, the program LOD618 will be executed from the library named U LI 820.
The step name is STEP32 and may be branched to by a preceding //IF statement. The
program will be allowed to run 80 minutes before being aborted. The Debug routine will run
with this step. Breakpoints given in the Debug data directive file that apply to this step will
be activated. Since DUMP is not specified, a dump will be taken on abnormal termination,
but not on normal termination of the step.

*All programmers using the DEBUG keyword must be familiar with the Debug routine and the contents of the Debug
directive file. This information is available in the Control Program and Data Management Services, Basic Reference

manual.

tRestart information is discussed in tho MRX/OS Control Program and Data Management Services, Basic Reference
manual.

2-13

Bulletin: 2200.004-0001
Date: 4/2/73

PAR STATEMENT

Run time parameters are supplied to system programs and user programs through //PAR
statements. The parameters listed on //PAR statements are read by Control Language
Services and transferred to the SYSIN file. //PAR statement parameters which are included
in the job stream for the execution of a system program (such as the COBOL Compiler) are
read by the system program itself. Those parameters supplied by //PAR statements to be
used by the problem program require an ACCEPT macro to be read from the SYSIN file.
(Appendix D contains a brief description of the ACCEPT macro; further details can be
found in the Control Program and Data Management Services, Extended Reference manual.)

The specified parameters in the //PAR statement may have the same form as other control
language statements, using keyword-operands, or they may take any other form acceptable
to the program using them. Regardless of the form of the parameters, the identifier,
command, and sequence fields must conform to the format specifications of all other
control language statements. The //PAR statement may be continued, but each statement
must begin with //PAR.

Sample //PAR Statements

The following examples show //PAR statements which might be included in the control
language statements of a step:

//PAR OP=SMAP,KEY=124311,DECK=YES
//PAR BRANCH=ABK,
//PAR PAY:TYPE42/CONT
//PAR SPECIAL-ORDINARY

In these examples, keyword and other operand forms are used. The program executed in th~
step uses the ACCEPT macro to obtain the //PAR statement from the SYSIN file and
processes the operands internally.

NOTE

A special restriction applies to //TELL and //PAR statements: No more than
17 characters may appear in consecutive columns without a delimiter (blank,
comma, equal sign).

2-14

DEFINE STATEMENT

//DEFINE
//DEF

:geNT =file-identifier !
IDENTIFIER}

FILENAME)-
FIL -name

s

[I STATUS l = J:.
STA W J

~[£])

2-15

Bulletin: 2200.004-0001
Date: 4/2/73

Bulletin: 2200.004-0001
Date: 4/2/73

The unshaded areas in the preceding representation of the DEFINE statement apply to all
file and device use, and disc space allocation. The shaded areas apply to disc space allocation
and disc file expansion. Exceptions are noted in the text.

The //DEFINE statement is the run-time interface between Data Management and Control
Language Services. The program is independent of the name of the file to be processed as
well as the volume or device on which the file resides. Control Language Services performs
all device assignments for steps and allocates space for new disc files from //DEFINE
statements.

The //DEFINE statement specifies the files to be used and the device and volume
requirements of a step. This statement may indicate the type of file, specify the use of a
permanent file, define the attributes of the data file, and establish a logical relationship with
the internal file definition of the program. The //DEFINE statement is required for a
specific device or volume requested, and for file allocation.

Before coding //DEFINE statements, the programmer must be familiar with the contents of
the MRX/OS Control Program and Data Management Services, Basic Reference manual for
logical 1/0 processing and the MRX/OS Control Program and Data Management Services,
Extended Reference manual for physical and block 1/0 processing. For the proper use of
//DEFINE statements for telecommunications, the user should refer to the MRX/OS
Telecommunications Reference manual.

{

IDENTIFIER}
: ~ENT =file-identifier (required)

The operand of this keyword supplies a logical name to the data file. That is, I DENTI Fl ER
specifies the name by which the program will open, close, and transfer data to or from a
data file. This file identifier must be unique within a job step.

The operand is a 1- to 8-character alphanumeric (including $ and dash) field. SYSIN and
SYSOUT ar~ illegal operands for the IDENTIFIER· keyword. This keyword-operand is
required on all //DEFINE statements.

I FILENAME)-
FIL -name (required for disc and tape)

This operand supplies label information. If the file is being allocated, the FILENAME
operand will become the catalog name for disc data files, or the label entry for tape files.

The operand is a 1- to 17-character alphanumeric field. The first character may be A-Z, 0-9,
or $. lmbedded dashes are allowed, but not imbedded blanks in the succeeding characters.
This keyword-operand is required for all tape and disc files, but does not apply to unit
record fl I es.

2-16

For all physical 1/0, thie FILENAME operand must be PIO. For telecommunication lines,
except PIO, FILENAME=TP is used. Since the PIO specification requires the exclusive use
of the device/volume requested, this specification is not legal for shared devices.

Fl LENAME=DUIVIMY indicates that label information and allocation attributes will be
specified within the prog1ram. FILENAME=NULL specifies an optional file.

ISTATUSI =1~1 l.STATUSl=(P {L }) STA W or 'STA ' O
p -

·(optional, disc only)

This keyword is used to specify the type of disc file used. The first operand specifies the
type as scratch (S), temporary (T), work (W), or permanent (P). The second optional
operand specifies usage for permanent files only. This usage may be specified as input (I),

update (U), or output (0). The default for the first operand, which specifies type, is T. If
the first operand is specified as P and the second operand is not specified, the default for it
is 0.

Detailed description of the file types and usage is given in Control Program and Data
Management Services, Bcusic Reference manual. A brief description follows.

Scratch Files

Scratch files are allocated in a step and may be used only for the duration of that step. They
are automatically purged at step termination. These files are always listed on the central
catalog; therefore, CATALOG=NO is an illegal keyword-operand. Scratch files may never be
shared.

Temporary Files

Temporary files are allocated in a step and may be used for the duration of the job. They
are automatically purged at job termination. These files are always listed on the central
catalog; therefore, CATALOG=NO is an illegal keyword-operand. Temporary files may
never be shared.

Work Files

Work files are allocated permanently. They are not automatically purged, the Purge utility is
used to perform this function. Work files may never be shared.

2-17

Permanent Files

Permanent files are allocated permanently. They are not automatically purged; the Purge
utility is used to perform this function. Permanent files may be shared, depending upon the
usage operand specified for the file (Table 2-1):

• Input - when a usage of input is specified, the file may be opened
only for input in that step. This file may be shared with programs
requesting it for update or input in the other partition.

• Update - when a usage of update is specified, the file may be opened
for input or update in that step. This file may be shared only with
programs requesting it for input in the other partition.

• Output - when a usage of output is specified, the file may be opened
for input, update, or output in that step. This file may never be
shared with a program in another partition.

Table 2-1. Sharing of Permanent Files

//DEFINE
Allowable Shared Usage

File Usage INPUT OUTPUT UPDATE
=

INPUT Yes No Yes

UPDATE Yes No No

OUTPUT No No No

MSC=code (optional)

This keyword allows a modification security code to be specified for a permanent or work
disc file. The code is used by Data Management to exclude unauthorized access to the file.

This keyword applies to both allocation and use of disc data files. The operand is a
4-character EBCDIC code. Embedded blanks and the characters (), = & may not be used.
The default code is blanks.

2-18

g~~IC = (name, 1quantity) I E) {name }

address(es)

Bulletin: 2200.004-0001
Date: 4/2/73

(optional)

This operand specifies the generic name and quantity or the device address(es) to be used
for the file. The generic names of devices for M RX/OS are listed below. The default is
DEV=DISC.

DISC
TAPES (800 bpi)
TAPE16 (1600 bpi)
CAD or READER
CRDPCH,RDRPUN,READPUNCH, or READERPUNCH
PAT or PRINTER (600 or 1200 lpm)

SYSCRD is used to specify the system card reader whether it be a reader or reader-punch
(see //DATA Statement Fl L=SYSCRD).

In addition, the following generic names are used for telecommunication lines. Note that the
last two characters are equipment types, defined in the Telecommunications Reference
manual.

TP80
TP84
TP86
TP88
TPBA
TPA4
TPA6

The user may specify the device requirements by.

1. Generic name only; quantity of 1 is implied.

2. Generic name and quantity (quantity greater than 1 applies only to
tape, disc:, and TCOM; maximum quantity of 2 for tape).

Example: DEV=(TAPE8,2)

3. Address of a device as specified in the unit table.

Example: DEV=101

4. Addresses of the devices requested as specified in the unit tables.

Example: DEV=(302,303)

Specifying devices by de!vice address instead of generic name allows two files to be applied
to the same device.

2-19

Bulletin: 2200.004-0001
Date: 4/2/73

I VOLUME I \volume-id I
VOL = {volume-id,volume-id, ...)

This specifies the volume identifier for file location. VOLUME is a required entry for disc
files that are not listed on the central catalog. For tape files, VOLUME is required for the
first or only volume of all files. In the case of multi-volume files, Data Management will
write this volume identifier on each reel. In the case of multi-volume disc files, the user must
specify the volume identifier. This keyword does not apply to unit record files.
VOL=WORK may be used to specify a disc or tape volume with no volume identifier.

This operand is a 1- to 6-character field. It is an alphanumeric value given as the volume
identifier.

csD=\ ~~s I (optional)

This specifies whether or not data in the file is to be written in common stored data format.
YES indicates that common stored data format is used; NO specifies that the data is not in
common stored data format. The default is CSD=YES. If the common stored data format is
used, four bytes are added to the record size for the control header.

(optional)

This specifies the type of file organization as sequential (S), relative ·(R), or indexed (I). The
system default is sequential file organization. (See the Control Program and Data
Management Service, Basic Reference manual for additional discussion of file organizations.)

(optional, tape only)

This specifies the type of tape label processing. The LABEL operand (valid for tape only) on
the //DEFINE statement overrides any label specification for that file in the Buffer
Description Table created by the Data Management DEFSF macro. The options are:
standard labeled (S), nonstandard labeled (N), unlabeled (U), bypass label (B), and ignore
tape label (I). (Refer to Section 3 of this manual and the Control Program and Data Manage
ment Services, Basic Reference manual for further details.)

2-20

(
RETENTION I- b RET -num er

Bulletin: 2200.004-0001
Date: 4/2/73

(optional, tape only)

This designates the number of days a tape file is to be retained before it is allowed to be
purged. Data Management uses this information to calculate the expiration date to be stored
on the file label. RETENTION is ignored for input files.

The operand for RETENTION is a 1- to 3-digit numeric field. The system default (zeros) is
used when this keyword is not given. In that case, the expiration date on that file will be the
same as the creation date.

(
BUFFER I . BUF =(number,s1ze) (optional, TCOM only)

This keyword specifies partition space required for buffers. It has a two-part operand. The
first is the number of buffars to be created for this line, and the second operand is the size
of each buffer.

The number operand is a 1- to 3-digit numeric field with a value in the range of 1 to 999.
The size operand is a 1- to fi-digit numeric field with a value in the range of 1 to 49999.

The buffers created with this keyword-operand are located in the partition space pool of the
program partition in which the job runs and must not exceed the space available in the pool.

Sample //DEFINE Statements

The following are examples of //DEFINE statements that provide for device assignment and
for the use of already allocated disc files.

Sample 1: //DEF ID=SM220,DEV=PRT

In this example, a printer ~s assigned to the current job step. The file is called SM220 in the
program.

Sample 2: //DEF I D=CLASS1 ,Fl L=DA 1143,VOL=136921,RET=3,
// DEV=T APE8,CSD=YES

In this example, a tape unit is assigned to the step with a tape volume label, 136921, and
tape file label, DA 1143. The tape file is assumed to have standard labels. The data is in a
common stored data format on an 800 bpi unit. The volume is to be retained for 3 days.
The program calls the file CLASS 1.

Sample 3: //DEF Fl L=MASTER6803,ID=SOURCE2,STA=(P,0),
// MSC=HR32

2-21

Bulletin: 2200.004-0001
Date: 4/2/73

In this example, a permanent cataloged disc file is to be used. The file resides on shared
resources but will not be shared because its usage is specified as output. The file is called
SOURCE2 in the program. The catalog entry is MASTER6BQ3 with a modification security
code of H R32. (The order of listed keyword-operands is free form.)

DISC ALLOCATION KEYWORDS

The following paragraphs describe additional //DEFINE statement keywords that are
applicable to disc space allocation. VER I FY=YES may also be used for disc 1/0 to override
the use of VER=NO at allocation. The SIZE and BLOCK keywords may also be used for the
tape files, as noted in the discussion of those keywords below.

I NUMBER) In)
NUM = (n,e) (required, disc allocation only)

This keyword-operand specifies the number of logical records for which space is to be
allocated in a new file and optionally followed by the number of logical records to be stored
in the catalog for dynamic expansion. If this operand is not given, or is zero, space
allocation will not occur. If the expansion factor is omitted, zero is stored in the catalog.
Dynamic expansion of sequential files occurs only at the logical 1/0 level.

The n and e operands are 1- to 6-digit numeric values. Use of the NUMBER keyword
excludes the use of EXPAND in the same //DEFINE statement.

I~:~ E) =(record-size [,key-size]) (optional, disc allocation and tape 1/0)

This specifies the number of bytes per logical record for all file organizations and the
number of bytes in the key for indexed files. For variable length records, the record size
given is the. maximum record size. If CSD=NO is not specified, the record size is
incremented by four by the system.

Record size is a 1- to 4-digit numeric value in the range of 1 to 9999. Key size is a 1- to
3-digit numeric value in the range of 1 to 255.

This keyword may also be used for tape files. When specified in the //DEFINE statement
and also within the program data transfer request, the specification within the program
overrides the //DEFINE statement value.

The default for this keyword is 252 bytes, and applies to both tape and disc. {If CSD=YES
the effect is a total record size of 256 bytes.)

2-22

I :t~C K l =(records per block [,keys per block) l (optional, disc allocation, disc
expansion, tape 1/0)

This specifies the blocking factor to be used in all disc file organizations. Also the number of
keys in each key inde>C information block may be specified for indexed files. For variable
length records, the data blocking factor designates the minimum number of records per
block.

The operands for this keyword are the number of records in the disc data block and
optionally the number of kevs in the index block. Both operands of this keyword are 1- to
3-digit numeric fields. The value of each operand is in the range of 1 to 255. The default for
disc is 1 record per block.

The keyword may also be used for tape files. In this case, only the first operand (number of
records) is used. When specified both in the //DEFINE statement and also within the
program data transfer request, the value given within the program overrides the //DEFINE
statement value. The default for tape is 1 record per block.

A more detailed explanation of this keyword is given in Control Program and Data
Management Services, Basic Reference manual.

I
LOCATION l = {YES}
LOC NQ

n
(optional, disc allocation, disc expansion)

This defines the cylinder boundary for direct access storage space allocation. The numeric
value is valid only if the VOLUME keyword is coded. The default is NO. The operand
meanings are:

1. LOCATiON=n specifies the cylinder number on which the file is to
begin. The opE~rand n is a 1- to 3-digit numeric value, with a range of
1 to 202.

2. LOCATiON=YES specifies that the file is to begin on a cylinder
boundary selected by Data Management.

3. LOCATION=l\10 allows the file to begin at any point on the pack.

I
CATALOGl=IYESl
CAT NO

(optional, disc allocation)

This specifies whether or not the FILENAME and LOCATION of the file will be placed in
the central catalog. CATALOG=YES specifies that the file entry will be placed on the
system central catalog as well as the pack catalog. CAT ALOG=NO specifies that the file will
not be entered on the central icatalog. When CATALOG=NO is used, the VOLUME keyword
is required.

2-23

Bulletin: 2200.004-0001
Date: 4/2/73

CAT ALOG=NO applies only to work and permanent files at allocation time, and is illegal
for scratch and temporary files. The system default is CATALOG=YES.

I v ER I FY) = I y ES)
VER NO

(optional, disc allocation, disc 1/0)

This specifies burst-check. At allocation time, this option is recorded in the catalog entry.
VER I FY=YES specifies that all writes to the file will be verified. VER I FY=NO specifies
that no burst-check will occur. If this keyword is omitted, the system default
(VER I FY=NO) will be used.

If VERI FY=NO is given at allocation time, the user may override this by specifying
VERIFY=YES in the //DEFINE statement for the execution of a particular job step. This
override will not, however, become a permanent characteristic of the file.

CONTIGUOUS NO
{

YES }

I CON) = (! ~~) ' I !f p)) (optional, disc allocation, disc expansion)

This keyword-operand applies to both disc space allocation and disc file expansion. It
specifies whether the space request is for a segmented or unsegmented block of disc space,
and if specified, whether the space may occupy more than one pack. Extent and pack are
coded as SX (single extent), MX (multiple extent}, SP (single pack}, and MP (multiple pack).
Any combination of extent and pack is allowed. CON=YES means (SX,SP); and CON=NO
means (MX,MP}.

The CONTIGUOUS option applies only to the current space request. File expansion always
results in the addition of a segment (represented by an extent in the FDT for that file}:·it
will not necessarily yield a totally contiguous file, even if CON=YES was coded for both
allocation and expansion.

I SPREAD)=
SPR . n (index files only)

This specifies the spread factor, or the frequency with which consecutive logical records of a
file are written on a track. Use of the spread factor allows for faster sequential processing of
records since disc access time is not lost in retrieving following records (Figure 2-1 }.

Operand n is a 1- to 2-digit numeric value in the range of 1 to 10 specifying a spread of 0-9.
When this keyword is not used for an indexed file, logically sequential blocks of records are
physically adjacent on a track.

2-24

Physical

Block No. 1 '.2 3

Logical

Block No. 1 5 9

4 5 6 7 8 9 10 11 12

13 2 6 10 14 3 7 11 15

Figure 2-1. Indexed File with Spread Factor of 4

13

4

Bulletin: 2200.004-0001
Date: 4/2/73

14 15 16

8 12 16

{
IVOLUME}
IVOL =vo~ume-identifier
IVO

(index files only)

This specifies the volume on which the key index information file is to reside. If the
IVOLUME keyword is not used for indexed files, the key index information file will be
placed on the first volume specified in the VOLUME keyword-operand. The operand is a 1-
to 6-character alphanume!ric field.

{
I LOCATION} {NO 'f
ILOC = YES
ILO n ,

(index files only)

This specifies the cylinder boundary for the beginning of space allocation for the key index
information file. It is ignored if IVOL is not used.

There are three operands for this keyword; the default is NO:

1. I LOCATI ON=n specifies the cylinder number on which the key
index information file is to begin. The operand n is a 1- to 3-digit
numeric value with a range of 1 to 202.

· 2. I LOCATION=YES specifies that the key index file is to begin on a
cylinder boundary selected by Data Management Services.

3. I LOCATI ON=NO allows the file to begin at any position on the
pack.

2-25

Bulletin: 2200.004-0001
Date: 4/2/73

Sample //DEFINE Statement for Disc Space Allocation

The following is an example of a //DEFINE statement that will result in the allocation of
disc space:

//DEF ID=GATHER1 ,Fl L=SLID321 BG,STA=(P,0),
II NUM=1450,SIZ=100,BLK=10,
II ORG=S,CON=YES

In this example, space will be allocated for 1450 records of 100 bytes each, blocked 10
logical records to a physical block. The file will be a sequentially organized permanent
cataloged file in common stored data format, and will reside on shared disc (as defined at
Initial Program Load time).

The file is cataloged as SLI D321 BG with a blank modification security code and is known in
the program as GATHER 1. Since the STATUS keyword specifies output, a request for the
same file by another partition (while the step in the first requesting partition is executing)
will cause the step in the second requesting partition to suspend initiation until the first step
has terminated. At that time, the requested file is available for use by the step in the second
partition, and initiation is continued.

DISC Fl LE EXPANSION KEYWORD

I EXPAND)=
EXP n

(expansion of sequential files only)

This specifies the number of records by which an already allocated sequential file is to be
expanded. This expansion takes place during step initiation. When the EXPAND keyword is
used, the BLOCK keyword is required if its value is other than one (default for block
keyword). The blocking factor specifies the same value as that given for that keyword when
the file was allocated. The CONTIGUOUS and LOCATION keywords may also be used for
file expansion. These keywords will apply only to the expanded area.

This operand is a 1- to 6-digit numeric value. Use of this keyword excludes the use of the
NUMBER keyword in the same //DEFINE statement.

Sample //DEFINE Statement for Expansion

The following is an example of a //DEFINE statement that will result in the expansion of an
already allocated disc file:

//DEF Fl L=PAY473ROLL,ID=PAY3,EXP==800
II BLK=40,CON=YES,STA=(P,O),MSC=14WR,
II VOL=BLY632

2-26

Bulletin: 2200.004-0001
Date: 4/2/73

In this example, an alreadv allocated disc file is expanded 800 records, blocked 40. The
blocking factor must be the same as that of the existing file. The file is listed on the pack
catalog of volume BLY632 as PAY473ROLL, with a modification security code of 14WR.
The request is for contiguous space. The file being expanded is permanently allocated, with
usage as output. The file will be called PAY3 in the program.

Summary of //DEFINE StattC!ment Keywords

Table 2-2 gives a summary of //DEFINE Statement keywords according to 1/0 level and
device category.

ROUTE STATEMENT

//ROUTE
//RTE

{

IDENTIFIER}
IDENT =file-identifier
ID

[I
FILENAME)=I name)J
FIL NULL

[I
DEVICE) =
DEV

PRINTER
PRT
READERPUNCH J
READPUNCH
RDRPUN
CRDPCH
device address

[I
VOLUME) I volume-identifier) J
VOL = (volume-id,volume-id, ...)

[1 ~~~TIGUOUS l={~r, ~~ 1 . 1 ~p 1)} J •

l1~~~CK)=n]*
[~~:~E)=n}

[I
SPOOLl=IYES)J *
SPL NO

[/~~~BER H ~n,e)) J •
[UCS= {~~:e,FOLD,VER) }] ***

(name,NOFOLD,NOVER)

[\ HOLD)= I YES J **
HLD NO

[I
SAVE)=IYES]**
SAV NO

[
I
COPY) = -] * *
COP nn

[! FORMS)]*** FOR =form-type

*Disc file allocation and disc file expansion parameters.
**Keyword passes information to th•~ spooling function.

***Parameters for both spooler and urnit record device.

2-27

Bulletin: 2200.004-0001
Date: 4/2/73

Q) c:
- 0
U: ·;;; I
.~ ~ \
0 x w

I

I

I

~Device
'catetory

Keyword
.:i..i

ID

FIL

STA

MSC

DEV

VOL

CSD

ORG

LAB

RET

BUF

NUM

SIZ

BLK

LOC

CAT

VER

CON

SPR

IVOL

ILOC

EXP

Key: blank =
R =
0 =
I =

Notes: 1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

Table 2-2. Summary of //DEFINE Statement Keywords*

Logical and Block 1/0 Physical I /0

Card Reader Disc Space Disc File
Punch or Disc File Allocation Expansion All
Printer Tape TCOM 1/0 Only and 1/0 and 1/0 Devices

R R R R R R R

R1 R2 R R R R3

115 04 04 04 ·---1------ --
05 0 05

R R R 05 05 05 R

R 07 0 .
8 Os Og

010 0

115 0 12 0 12 012
--+------

0 115 115 115

0
-

R11 115

115 I R I

0 13 R
·--i 1------
0 13 R R

-
0

0

014 0 0 14 -
0 0

-
0

0

0
- --i

I I R
-----I

Ignored
Required
Optional
Illegal

Not used for unlabeled tape

FIL=TP

FIL=PIO

Required if not temporary

Required if used at allocation and not used with LABDEF on the OPEN

Required if specific drive desired

Required if not cataloged.

Required if non-shared packs desired

Required for disc volume mounting

Input tapes only

Required on first //DEF for logical TCOM

Required if not sequential

Applies to tape when not specified in the OPEN request for the file

Use disc-write·-check for this step; override VER=NO at allocation for this step only

Results are unpredictable.

2-28

Bulletin: 2200.004-0001
Date: 4/2/73

The //ROUTE statement allows a file to be spooled for output or to provide information for
the unit record device such as UCS and FORMS.

{
IDENTIFIER}
:gENT =file-identifier (required)

This operand establishes the logical relationship between the program's internal file
definition and the external specifications of the //ROUTE statement.

The operand is a 1- to B-character alphanumeric (including$ and dash) field.

I FILENAME)= I name)
FIL NULL

(optional)

This operand supplies label information. The FILENAME operand must be identical to the
entry in the central catalog. If the file is being allocated, the FILENAME operand will
become the name in the catalog. FI L=N U LL may be used to specify an optional file. An
input request for an optional file results in end of file; an output request is ignored. If
Fl LENAME is not specified, Control Language Services creates a default filename which is a
3-byte day of year, 6-byte time of day, and a 1- to 8-byte identifier.

I DEVICE)=
DEV

PRINTER
PRT
READERPUINCH
READPUNCIH
RDRPUN
CRDPCH
device addres1s

(optional)

This operand specifies the generic name or device address to be used for the output file for
the spool function. Valid generic names are PRINTER, PRT, READERPUNCH,
READPUNCH, CRDPCH. The default is DEV=PRINTER. If spooling was not selected at
SYSGEN time, this is the device that will be assigned at Step Initiation.

\
VOLUME) \ volume-identifier)
VOL = (volume-id,volume-id, ...) (optional)

This operand specifies the volume serial number(s) on which the data set is located or to be
allocated. The operand is a 1- to 6-character alphanumeric field.

2-28a

Bulletin: 2200.004-0001
Date: 4/2/73

ALLOCATION AND EXPANSION KEYWORDS

The following paragraphs describe the parameters necessary for the· spool file allocation
and/or expansion.

(optional)

This operand specifies whether allocation or expansion request is for contiguous space; and
if specified, whether the space may occupy more than one pack. Extent and pack are coded
as SX (single extent), MX (multiple extent), SP (single pack), and MP (multiple pack). Any
combination of extent and pack is allowed. CON=YES means (SX, SP); and CON=NO
means (MX, MP).

I SPOOL) = I y ES)
SPL NO

(optional)

This keyword specifies whether output'to be spooled or not. SPL=YES specifies spooling.
SPL=NO specifies that the output goes directly to a peripheral device. Unless the default has
been changed at SYSGEN time, the default is SPL=YES.

I BLOCK)=
BLK n (optional)

This operand specifies the number of logical records per block. The value of each operand is
in the range of 1 to 255. The default value is 1.

I SIZE)=
SIZ n (optional)

This operand specifies the number of bytes per logical record. Record size is a 1- to 4-digit
numeric value with a range of 1 to 9999. The defau It value is 134.

NOTE

The user is encouraged to use even-byte record size to allow output writer to
use multiple block reads.

2-28b

I NUMBER I I n I
NlJM = · (n,e)

Bulletin: 2200.004-0001
Date: 4/2173

(optional)

This keyword specifies the number of logical records for which space is to be allocated and
optionally the number of logical records to b'e stored in the catalog for dynamic expansion.

The n and e operands are 1- to 6-digit numeric values. Unless specified otherwise at
SYSGEN time, the default value is NUM=(1000,500). ·

SPOOLING INFORMATION KEYWORDS

The following paragraphs describe additional //ROUTE statement keywords that are used to
pass information to the spo1e>ling function ·or provide UCS or FORMS information to the
unit record device. ·

{
name }

UCS= (name,FOLD,VER)
(name,NO FOLID,NOVE R)

(optional)

This keyword specifies the 2- to 4-character name of the Universal Character Set residing on
$NLJCLIB which is to be loaded prior to printing. The FOLD and VER options are available.
Default values are a SYSGEN name, NOFOLD, and NOVER. If SPL=NO, the Step Initiator
issues UCS mount req~ests and loads the UCS buffer;· whereas if SPL=YES, the information
is passed to the spooler. See the MRX/OS Utilities Reference manual for a detailed
description of UCS.

I HOLD I= I YES I
HLO NO

(optional)

This keyword specifies whether the file is to be (HOLD=YES) or is not to be (HOLD=NO)
placed on the spooler hold queue at step termination. Default is HOLD=NO.

I SAVE I= I YES I
SAV NO

(optional)

This keyword specifies whether the file is to be (SAVE=YES) or is not to be (SAVE=NO)
purged after it has been printed or punched. Default is SAVE=NO and the file is purged
after output completion.

I COPY I
COP =nn (optional)

This operand specifies a 1- or 2-digit decimal number which specifies the number of copies
to be printed or punched. Default value is 1. -

Bulletin: 2200.004-0001
Date: 4/2/73

I FORMS) FOR =form-type (optional)

This operand specifies a 1- to 6-character alphanumeric form type which the operator will
be requested to mount prior to printing or punching. Default is standard forms.

If SPL=NO, the Step Initiator issues forms mount requests; whereas if SPL=YES, the
information is passed to the spooler.

SAMPLE //ROUTE STATEMENTS

The following example assigns the READPUNCH to the job identified by ID=JOB18. The
default filename is created. Since SPOOL was not specified the default is YES. Before
punching the operator will be requested to use form 18.

Sample 1: //RTE ID=JOB18,DEV=READPUNCH,FORMS=18

In the following example the MASTERFILE will be allocated in noncontiguous space on
volume BL Y635 with blocking factor of 10. The number of logical records is 1500 with 500
reserved for dynamic expansion. The file is to be saved after printing.

Sample 2: //RTE
II

ID=JOB20,FIL=MASTERFI LE,VOL=BLY635,
BL K = 10 ,NU M= (1500 ,500) ,SAVE= YES

SET STATEMENT

//SET I DATE) .
DAT =Job-date

and/or

!SWITCH) . .
SWI =sw1tch-settmg

The operating system permanently allocates space in the partition for a job control table.
This table contains, among other things, a job date and a program option switch byte. The
problem program has access to these fields which enable the programmer to obtain the date
for processing and/or output, and to test the setting of the option switch.

At the beginning of the job, the job date field is set equal to the system date, and the bits of
the program option switch byte are set to zero. The //SET statement enables the user to
modify the contents of these two fields in the Job Control Table. Either the job date or the
switches, or both, may be altered by one //SET statement. The effect of a //SET statement
remains until //EOJ is encountered or until another //SET statement with the same keyword
occurs within the job. Any number of //SET statements may be included within a job.

2-28d

DA TE=job-date

Bulletin: 2200.004-0001
Date: 4/2/73

(optional)

This keyword-operand specifies the date to be used for date-dependencies in the job. The
job date that is set need not be the current date. The operand field is a 6-digit numeric value
in the form mmddyy: mm is the month with a value in the range of 01 to 12, dd is the day
of the month with a value in the range of 01 to 31, yy is the decade and year with a value in
the range of 00 to 99.

Example: DATE=012472

2-28e

NOTE

A Julian date will be calculated by the system and will be returned when it is
requested using a JDATE macro in a program. (Refer to Appendix D and the
Control Program and Data Management Services, Basic Reference manual for
further discussion of the JDATE macro.)

SWITCH=switch-setting (optional)

This allows the programmer to control the eight switch bits of the program option switch
(POST) byte in the Job Control Table (JCT). The switches are set and changed by either the
//SET control language statement or the POST macro and may be used for any purpose in
the program. The switches are tested within the program via the RPOST macro. (See
Appendix D of this manual and the Control Program and Data Management Services,
Extended Reference manual for details on these macros.)

The operand is an 8-character field. Each character is specified as either a zero, a one, or an
X. The value 1 sets the corresponding switch bit on in the POST byte of the JCT. The value
0 turns the switch bit off. The X leaves the switch bit as it was previously set within the job.

Example: SWI =0100X 1 XX

Sample //SET Statements

The following are examples of //SET statements.

Example: //SET DATE=032172

In this example, the existing JDATE entry of the JCT will be changed to 032172. The
SWITCH keyword-operand has been omitted and the POST byte of the JCT will not be
affected by this //SET statement.

Example: //SET DATE=032173,
II SWl=X0100XX1

In this example the .JDATE entry of the JCT will be changed to 032173. The POST byte of
the JCT is also changed. The first, sixth, and seventh bits retain the values set in them before
this //SET statement is processed. The second, fourth, and fifth bits are turned off by being
set to zeros. The third and eighth bits are turned on, by being set to ones.

2-29

Bulletin: 2200.004-0001
Date: 4/2/73

TELL STATEMENT

//TELL
//TEL

This statement designates information to be typed on the operator's console during the
initiation of a job step. The PAUSE=YES keyword-operand will cause Control Language
Services to wait for an operator response before continuing initiation.

Continuation of this statement is not allowed. However, multiple //TEL statements may be
used. The commend field is not allowed.

OP=message (required)

The operand of this keyword is the message to be printed on the operator's console. The
entire EBCDIC code set is available for use in the operand. The contents of the operand will
be typed on the operator's console as specified between the equal sign of the keyword and
either the sequence field of the statement or the PAUSE=YES or PAU=YES
keyword-operand.

Example: OP=EMPTY READER PUNCH HOPPER

I
PAUSE l =I YESl
PAU NO

(optional)

PAUSE=YES indicates that the Control Language Services will wait for an operator
response. The operator replies GO to continue processing or STOP to abort the job. When
PAUSE=NO is specified or when this keyword is not coded, initiation will not be
interrupted for operator response. The default is NO.

In order to ·write a multi-line message on the operator's console and then interrupt the
initiation of the step for a response, PAUSE=YES is specified only on the last //TELL
statement.

Special consideration must be given to the information that may be included in a //TELL
statement. An equal sign within a message can cause Control Language Service errors. For
example,

//TELL OP=PGM=XYZ,FIL=ABC

will cause an error. However, this may be circumvented by using the following format.

//TE LL OP=* PGM=XYZ,F I L=ABC

2-30

Sample //TELL Statements

The following are examples of //TELL statements.

Example: //TEL OP=PLEASE CALL BOB MILLER,EXT394
//TEL OP=IF THIS JOB ABORTS

Bulletin: 2200.004-0001
Date: 4/2/73

In this example, a multi-line message is typed on the operator's console and initiation of the
step will not be interrupted ..

Example: //TEL OP=EMPTY CARD READER HOPPER,PAU=YES

In this example a single lin1e message is typed on the operator's console. After the message is
typed, initiation of the step will be suspended until the operator replies either GO to
continue initiation or STOP to abort the job.

Example: //TEL OP=REMOVE PRINTED OUTPUT FROM PRINTER
//TEL OP=EMPTY READER AND PUNCH OUTPUT
//TEL PAU=YES,OP=CALL EXT 472 ON JOB COMPLETION

In this example, the three line message is typed on the operator's console before initiation
of the step is interrupted. Initiation will resume when the operator replies to the PAU=YES
keyword-operand with GO; termination will occur when the operator responds with STOP.

NOTE

A special restriction applies to //TELL and //PAR statements: No more than
17 characters may appear in consecutive columns without a delimiter (blank,
comma, equal sign)..

INTERSTEPLEVELSTATEMENTS

Between steps, the //IF statement may be used to affect the conditional execution of the
following job steps.

IF STATEMENT

//IF ICODEl
COD =value

GO= I step-name l
EOJ

The //IF statement provides for testing the condition code set by the program in the Job IF
Code (JTI FC) byte contained in the job control table (JCT). As a result of the test in the
m F statement, the job will either continue with the next control statement or will skip (in a
forward direction only) to a named //EXECUTE or to end of job. Only one code condition
is tested in an //IF statement. However, any number of these statements may be used
between steps.

2-31

!CODE)
COD =value (required)

This 1-byte operand field specifies a value to be compared to the JTI FC byte of the JCT.
The operand may contain any EBCDIC character. If the value given as the operand of the
CODE keyword is equal to the value in the JTI FC byte, Control Language Services will
initiate the step named as the operand of the GO keyword.

The value in the JTI FC byte is specified in the program, via the SETI F macro. (Refer to
Appendix D of this manual and Control Program and Data Management Services, Extended
Reference manual for a detailed description of this macro.)

GO= I step-name)
EOJ

(required)

The operand of the GO keyword specifies either the name of a following step or EOJ. If the
condition code in the JCT (JTI FC byte) is equal to the operand of the CODE keyword, a
forward jump will be made to the named step if GO=step-name, or to the end of job if
GO=EOJ. The step-name specified must be identical to a NAME operand of a following
//EXECUTE statement within the job. An unnamed step may not be referenced. If the GO
keyword names a step which is not a forward reference, all remaining steps are skipped.

The GO operand is a 1- to 8-character alphanumeric field. This keyword-operand is required.

Sample //I F Statement

The following is an example of an //IF statement.

//IF CODE=M,GO=EOJ

In this example, if the value in the JTI FC byte of the JCT, set by the SETI F macro in the
program, is equal to M, the remaining steps in the job will be skipped. If the value in JTI FC
is not equal to M, the next control language ·statement in the job will be processed.

2-32

PROCEDURE·OR~ENTED STATEMENTS

To eliminate the duplication of writing control language statements for each step, these
statements may be cataloged as a source library member. This member is known as a
cataloged procedure. (Cataloged procedures are described in Section 4 of this document.)
The statements that identify, communicate with, and cause the merging of a cataloged
procedure are known as procedure-oriented statements. There are two of these:

//CALL (Requests the merging of a cataloged procedure from the procedure
source library into the control language statements of a job step, and
passHs values to the procedure for variables identified in the //DECLARE
statement.)

//DECLARE (Identifies variables used within the control language statements of a
cataloged procedure.)

Cataloged procedures consist of a //DECLARE as the first statement followed by step or
interstep control language statements (//EXECUTE, //PAR, //DEFINE, //SET, //TELL and
//IF). No other control! language statements except comments are allowed.

DECLARE STATEMENT

//DECLARE
//DEC [Required run-time variables]

[Run-time default variables]

The //DECLARE statement is required as the first statement of every cataloged procedure
having defaults. ~t may identify variables to be supplied to the procedure.

The Control Language statements within a cataloged procedure may include both constants
and run-time variables. Constants are keyword-operands that remain unchanged for all
executions of the procedure. Run-time variables are keyword-operands that may change
with succeeding executions of the procedure. Run-time variables must be declared as
keywords in the //DECLARE statement.

An ampersand (&) preceding an operand within a cataloged procedure identifies that
operand as a run-time variable.

The keywords listed on the //DECLARE statement identify two classes of run-time
variables. Keywords which are listed with no operands on the //DECLARE statement; these
keywords must be specified with operands in the //CALL statement each time the cataloged
procedure is called into execution. Keywords listed with operands on the //DECLARE
statement supply default values for operands not specified at the time the procedure is
called. These default values are set at the time the procedure is cataloged.

2-33

Sample //DECLARE Statement

//DEC

//DEF

II

A,B,C,D=DISC

I D=&A,F I L=&B,

VOL=&C,DEV=&D

In the above example of a cataloged procedure: Keywords A, B, and C are listed on the
//DECLARE statement with no operands. These ioperands, therefore, must be specified in
the //CALL statement each time the procedure is called into execution. Keyword Dis listed
with the default operand DISC. If this operand is not overridden by a specification in the
//CALL statement at the time this procedure is called into execution, &D in the //DEF
statement will be replaced with the operand DISC.

CALL STATEMENT

//CALL
//CAL IPROC) PRO =procedure-name

[I LIBRARY) J LI 8 =library-name

[Required run-time variables]
[Default values to be overridden]

This statement names the cataloged procedure to be merged with the control language
statements of a job. Run-time variables for that procedure are also given on the //CALL
statement.

All required keywords (specified with the keyword only and no operand on the procedure
//DECLARE statement) must be given on the //CALL statement. In addition, any
//DECLARE default values to be overridden (specified with the keyword and operand on
the //DECLARE statement) may also be given on the //CALL statement.

I PROC) PRO =procedure-name (required)

This keyword-operand is required. It specifies the name of the cataloged procedure to be
merged with the control language statements of a job. The operand is a 1- to 8-character
alphanumeric field and must be identical to the member name of the procedure on the
source library.

Example: PROC=RECON3

2-34

{
LIBRARY l . LIB =hbrary-name

Bulletin: 2200.004-0001
Date: 4/2/73

This keyword is required whenever the procedure resides on a private library rather than on
the system procedure library ($SYSPROCLIB). It specifies the library on which the
cataloged procedure resid1~s. The operand is a 1- to 17-character alphanumeric field. First
character may be A-Z, 0-9, or $. No embedded blanks or special characters except dashes are
allowed.

The PROC keyword and the LIBRARY keyword (if specified) must precede the required
run-time variables and default values specified on the //CALL statement. They must also be
in the order: P ROC, LIB.

If the LIB keyword is not coded, the first run-time variable may not begin with LIB.

Required Run-Time Variables

The required run-time variables supply the values for the run-time variables listed on the
//DECLARE statement with keywords and no operands. If //CALL names a variable that is
non-existent, it is ignored.

Default Values to be Overriidden

These entries provide values which override default values specified in the //DECLARE
statement with keyword operand.

Sample //CALL Statement~•

The following are examples of //CALL statements.

Sample 1: //CALL PROC=PAWN3B, LI B=P ROCLI B 1

In this example, PAWN3B is the cataloged procedure on library PROCLIB1 which will be
merged with the Control Language statements of the step. The //DECLARE statement
contains no required variables, and there are either no defaults given or all defaults are
accepted for this execution of the procedure.

Sample 1: //CP~LL PROC=SEND241,SOURCE=FIL 42,
II SPOT=467,LINES=20

In this example, the cataloged procedure is called SEND241 and resides on $SYSPROCLIB,
the system library for cataloged procedures. Defaults are being overridden, or entries are
required for LINES, SOURCE, and SPOT (listed on the //DEC statement with no operands).

2-35

Sample 3:

//JOB
//EX
//CALL
II
//EOJ

At run time those operands in the procedure identified by an
ampersand (&), will be replaced by run-time variables. These
run-time variables are listed on the //CALL statement, or as
default values on the //DEC statement. Operands provided by
//DECLARE and/or //CALL statements, when substituted into
the Control Language statement of the cataloged procedure must
not cause format errors in statement of test procedures. The
format of the //CALL and //DECLARE statements is the same as
that described under FORMAT previously in this section.

NAME=PAYROLL
PGM=P R 146G-A,TI M E=75
PROC=PAYPROC1 ,LI B=PAYPROK,A=PROC1234,
B=FI L 147,C=AQ1439,D=(P,0)

The procedure PAYPROC1 contains the following code:

PAYPROC1
//DEC A,B,C,D,E=DISC
//DEF ID=&A,FI L=&B,
II VOL=&C,STA=&D,DEV=&E,
II NUM=1600,SIZ=128,BLK=1

At run time the operands are substituted into the //DEFINE statement, and it reads as
follows:

//DEF
II
II

I D=P ROC1234,F I L=F IL 147,
VOL =AO 1439 ,ST A= (P ,0), DEV= DI SC,
NUM=1600,SI Z=128,B LK=1

DATA LEVEL STATEMENTS

All data is entered into the system through the data level statement within the job. The data
level statements are //DATA and/* (data delimiter).

The user may enter data to the system in one of two ways: either by spooling the data to a
sequential disc file to be read by one or more of the job steps, or by temporarily dedicating
the system reader to his job through the use of SYSCRD. In either case, he must precede the
//DATA statement with a //DEF statement to identify the file in each step that uses it.
Spooling is generally preferred on two counts: it does not tie up the system reader which
temporarily prevents the entry of other jobs, and it provides input data files which may be
read by more than one job step. (However, in an environment using the reader-punch as
primary input device, the SYSCRD file preloaded with blank cards is the user's only means
of punching cards.)

2-36

DATA STATEMENT

//DATA I Fl LENAME I I SYSCRD I
Fl L = data-file-name

[cLs= (~~s)J
[l lBLOcKl . J

18
LK =blocking factor for spooled data

[I NUMBER I J INUM =number of records

[(~~~T1Guous) =I ~~s) J

Bulletin: 2200.004-0001
Date: 4/2/73

The //DAT A statement is used to identify the data file which follows. Within a job, data
files always precede the //EOJ statement. If the data is spooled more than one data file may
be included in a job. //DAT A statement is required for each data file in the job. A spooled
data file is reusable; it may be read by more than one step of a job.

When spooling data, the data file(s} may appear any place in a job, following a complete
statement, after the //JOB card and before the //EOJ card. The Fl LENAME keyword names
the file to be built.

Only one SYSCRD //DATA statement specifying FIL=SYSCRD can be used in a job. This
//DAT A statement and its associated data file must immediately precede the //EOJ
statement. Multiple data files are entered, in this case, by coding data delimiters following
each set of data cards that the job processes as a file (Figure 2-2). Control of the card reader
will be given to the job using the data file for the duration of the job. When the data
delimiter is encountered, the card reader file is closed by the program. In order to read each
additional set of data (following a data delimiter) the program must again issue an open
request for the card reader, using the IDENT specified in the //DEFINE statement for that
file, and must again close the file when the data delimiter is read.

The data delimiter, /* (slash, asterisk, blank), must be used to end each data file including
the last data file within the job; except when CLS=YES is specified, /*CLS is the data
delimiter. The //EOJ card immediately follows the last data delimiter in the job.

When the data cards are to be read directly from the system card reader by the program, the
data· file must immediately precede the //EOJ card; FILENAME=SYSCRD must also be
given in the //DATA statement. In this situation, the card reader is controlled by the
program, until the job has processed the data and has terminated. Only then is control of
the card reader returned to the system so that Control Language Services can read and
initiate additional jobs.

2-37

//JOB
//EX
//DEF DEV=SYSCRD,ID=T
//DATA FIL=SYSCRD

-----Data

/*

-----Data

/*

-----Data

/*

/*
//EOJ

Data

Sample Job

Shows four sets of data to be read by the
program directly from the card reader.

Only one //DATA statement is used,
specifying Fl L=SYSCRD, /* indicates
the end of a data file.

At the end of job, control of the card
reader will be returned to the system.

Figure 2-2. Sample Job with Card Reader Control by the Program

I FILENAME l I SYSCRD l
FIL = data-file-name (required)

This keyword specifies the name of the file to be built from the cards which follow. If
data-file-name is used, this operand must be the same as that coded for the Fl LENAME
operand of a //DEFINE statement within the job. If SYSCRD is used, the preceding
//DEFINE statement uses DEV=SYSCRD rather than file-name.

When FILENAME=SYSCRD is used, control of the system card reader is passed to the job
until all following data has been processed and the job has completed execution. The
data-file-name operand is a 1- to 17-character alphanumeric field. First character may be
A-Z, 0-9, or$. No embedded blanks or special characters except dashes are allowed.

2-38

Bulletin: 2200.004-0001
Date: 4/2/7.3

(optional)

The system allows control language statements to be placed in data files. Whenever this is
done, as when creating procedure files, the CLS keyword is required. The CLS
keyword-operand has no mieaning when FIL=SYSCRD is used.

CL.S=YES indicates that the control statement identifier (//) may be found in columns 1
and 2 of the records. The /*CLS data delimiter is the only statement that will stop
placement of cards in the data file. All cards between the //DATA and /*CLS statements are
spooled.

CLS=NO specifies that there are no control statements in the file. The first statement with
the // or /* identifier beginning in column 1 is assumed to be a control language statement
and will terminate the file. The default is CLS=NO.

I BLOCK) . BL K =blockmg-facto1r for spooled data (optional)

This operand specifies the blocking factor to be used in data spooling. It indicates the
number of logical records to be placed in each physical block. The BLK keyword has no
meaning when FIL=SYSCRD is used. The default is BLOCK=1.

I NUMBER l =
NUM n (optional)

This keyword is used to specify the number of logical records for which space is to be
allocated for the spooled data file. If this operand is not given, the default value NUM=1000
is assumed. This parameter has no meaning if FIL=SYSCRD.

The NUMBER operand is a 1- to 5-digit numeric value. The maximum value of operand n is
32,767.

I CONTIGUOUS l =I YES l
CON NO (optional)

This keyword specifies wht~ther the space request is for a segmented or contiguous block of
disc space for the spooled data file. CON=YES specifies that contiguous disc space is
required. CON=NO indicates that segmented disc space is acceptable for this request. The
default is NO. This parameter has no meaning if Fl L=SYSCRD.

2-39

Sample //DATA Statements

Sample 1:

Example of data entry under program control of system card reader:

//JOB
//EX
//DEF

NAME=SAMPLE
PGM=LI BUTI L
ID=SEQIN,DEV=SYSCRD

(other //DEF and //PAR statements for program)

//DATA FIL=SYSCRD

/*
//EOJ

Sample 2:

(input data)

Example of spooled data file, read by both steps of a two step job:

//JOB
//EX
//DEF

//EX
//DEF

NAME=GEMINI
PGM=FIRST
ID=INPUT,Fi L=PROC1630

(other //DEF and //PAR statements as required)

PGM=SECOND
ID=PRIME,FI L=PR0Cl630

(other //DEF and //PAR statements as required)

//DATA Fl L=PROC1630,CLS=YES,NUM=35,CON=YES

/*cLS
//EOJ

(input data)

2-40

DATA DELIMITER STATEMENT

/*

Bulletin: 2200.004-0001
Date: 4/2/73

/* (slash, asterisk, blank) is the data delimiter. This statement is required at the end of each
data file.

There is no command for this statement and it has no keywords. The comment field may be
used beginning in cardl column 4. Any character other than blank in card column 3 will
cause the card to be treated as data and not as a data delimiter with the exception of /*CLS.

If CLS=YES in the //DATA statement, all cards between the //DATA and /*CLS cards are
considered to be data.

JOB STREAM CONVENTIONS

A sample job stream is illustrated in Figure 2-3. Another sample may be found in Appendix
G. Control language statements are listed as they might appear in a job. Within a job step the
//EXECUTE statement must appear first. Other statements in the step may be in any order,
but should be grouped by command. All statements in a job step are processed by Control
Language Services prior to th1e program being loaded. Note the job stream conventions used.

Appendix G contains two sample jobs that include a variety of Control Language statements
and appropriate keyword-operands to run these particular jobs.

STEP

INTER-STEP

STEP

JOB

STEP

USER DATA

//JOB

//EXECUTE

//SET

//TELL

*(comment)

//PAR

//DEFINE

//ROUTE

//IF

{ //EXE~UTE

{ //EXE~UTE

rAT~

/*

//EOJ

Required as first statement

Each step begins with an //EXECUTE

*(comment) may precede the first
//EXECUTE

Required as data delimiter

Required as last statement

Figure 2-3. Sample Job Stream

2-41

3. FILES AND DEVICES

GENERAL DESCRIPTION

The assignment of all devices and the allocation of disc space may be performed via the
Control Language Services program. The step-level control language statement which
requests a device, volume, or file is the //DEFINE statement.

Space allocation and disc file use occur through the control language statement interface to
Data Management Service's. Internal allocation and use of disc files, completely within the
program, and without the! use of a //DEFINE statement, can only occur for cataloged files
residing on shared disc. This technique is intended for use by system programs. It is,
however, available for use in application programs.

SPECIAL Fl LES

Control Language Services allocates space for the system files used by job steps. These files
are the system input file, called SYSIN, and the system output file, called SYSOUT. Space is
allocated and these files are built for every job by Control Language Services. These files do
not require a //DEFINE statement. Files requested as a result of LIB=keyword and/or
DEBUG=YES parameters on the //EXECUTE statement are also handled by Control
Language Services. A //DEFINE statement, however, is required for the CHECKOUT file
created as a result of DEBUG=YES keyword-operand on a //EX statement. A //DEFINE
statement is also required whenever an uncataloged private load library is used.

SVSIN (SYSTEM INPUIT FILE)

Every job has a uniquely named system input file, allocated as a temporary cataloged file by
the Input Reader, and built by the Input Reader and Job Initiator modules of Control
Language Services. SYSI N contains all of the control language statements for a job including
those which are merged from cataloged procedures. It is from this file that the job and its
steps will be initiated at run time. SYSIN is built and used exclusively by the system.

The //PAR statements which are part of the job are placed on the SYSI N file. They are
accessed during program processing by the ACCEPT macro. (See Appendix D of this
document, and the Control Program and Data Management Services, Extended Reference
manual for further details on the ACCEPT macro.) SYSI N is automatically purged by Job
Terminator.

Data cards in the job are placed on a separate data file, specified on the //DAT A statement,
or are read by the program directly from the system card reader for processing. No
relationship should be formed between this data file and the SYSIN file.

3-1

In the event of a system crash or other condition preventing normal job termination,
replying N to the retain job queue question causes IPLMON to purge all outstanding SYSIN,
SYSOUT, and spooled data files.

SYSOUT {SYSTEM OUTPUT FILE)

Each job has a uniquely named system output file, which is created during job processing.
The SYSOUT file is allocated as a temporary cataloged file by the Input Reader module of
Control Language Services, SYSOUT contains a copy of the control language statements
read and processed by Job Initiator and Step Initiator. Error and system messages, and job
accounting information are also written to SYSOUT. The problem program may write
messages on the SYSOUT file by using the DISPLAY macro. (See Appendix D of this
document, and the Control Program and Data Management Services, Extended Reference
manual for a description of the DISPLAY macro.)

At job termination, the SYSOUT file will be printed and automatically purged by the Job
Terminator. If no printer is available the operator will be informed and the file will be
printed when a subsequent job termination occurs and a printer is available.

In the event of a system crash or other condition preventing normal job termination,
replying N to the retain job queue question causes IPLMON to purge all outstanding SYSIN,
SYSOUT, and spooled data files.

$LODLIB {PRIVATE LOAD LIBRARY)

Control Language Services will request program loading from a private load library when
specified by the LIB=keyword on the //EXECUTE statement. If the private load library is
cataloged, no //DEFINE statement is required. However, if the library is not listed on the
central catalog, a //DEFINE statement specifying ID=$LODLIB must be provided. The Step
Initiator routine of Control Language Services opens the library for input, and Step
Terminator automatically closes it at the end of the step.

CHECKOUT {CHECKOUT DEBUGGING DIRECTIVES)

When DEBUG=YES is specified on a //EXECUTE statement, the Step Initiator routine of
Control Language Services will automatically open the associated debug directive data file
entered with the job. A //DEFINE statement specifying ID=CHECKOUT and FILENAME
with the same operand as given on the //DAT A statement of the debug directive file must be
included with the control language statements o·f the step. This file is automatically closed
by the Step Terminator of Control Language Services at the end of the step.

3-2

DEVICE ASSIGNMENT Al\ID FILE DEFINITION

The //DEFINE statement includes all of the keywords necessary to describe the attributes
of a file and of the device on which it resides. The level of involvement of the Control
Language Services depends upon the type of file used.

The following sections discuss the categories of devices available on the M RX/40 and 50
Systems. Devices and files for logical and block 1/0 are described by device type. Files to be
manipulated by physical 1/0 are discussed collectively under that heading in this section.

UNIT RECORD DEVICES

In order to make a file on a unit record device available for use by a program executing in a
partition, Control Languaoe Services must assign the device to a job step. A unit record
device must be assigned for the exclusive use of a single step in a partition. The unit record
devices available for use with the M RX/40 and 50 Systems are card readers, card
reader-punches, and lline printers.

The assignment of a unit rncord device to a job step requires that a //DEFINE statement for
the file be included in the control language statements of the step. The identifier (name by
which the file is known in the program) and the device must be designated on the //DEFINE
statement for the file. Anv other information given on the statement will be ignored since it
would not apply to unit irecord devices. Specifically, filename, which applies to all other
categories of files, has no meaning for unit record equipment and is ignored, except in the
cases of FIL=PIO, FIL=DUMMY, and FIL=NULL.

NOTE

In a system using reader-punch for the system reader, a //DEFINE statement
specifying DEVIClE=CRDPCH is illegal. Punching may be done only by
specifying F!L=SYSCRD in the //DATA statement and following it with the
estimated number of blank cards required for punching and using
DEV=SYSCRD on the associated //DEFINE statement.

MAGNETIC TAPE DE\flCES

Volume control and device assignment for files that reside on magnetic tape are performed
by Control Language Services. Magnetic tape units must be assigned for the exclusive use of
a single job step in a partitiion.

Tapes used for input may have standard or non-standard labels, or they may be unlabeled.
Tapes used for output must either have standard labels or be unlabeled.

Labels on input tapes maiy be bypassed or ignored. Label bypass results in the tape being
positioned to the first data block past any standard label. The program must correctly
position the tape past any non-standard labels. When labels are to be ignored, no tape

3-3

positioning or label checking takes place. The program must position the tape to the first
data block. The option to ignore or bypass labels is selected by the LABEL keyword of the
//DEFINE statement.

For a detailed description of the format and content of standard and non-standard labels
refer to Control Program and Data Management Services, Extended Reference manual.

STANDARD LABELED TAPES

A standard labeled tape contains a volume label to identify the tape reel and a file label to
identify the data file. The /IDE FINE statement keywords that correspond to these labels are
VOLUME and FILENAME respectively.

Input

When a standard labeled tape is opened for input, the volume identifier given· in the
//DEFINE statement is compared to the volume serial number contained in the volume label
of the first or only reel of the file. The file is opened only if these are equal. If not equal, a
message is issued instructing the operator to mount another tape and retry, or abort the job.

Output

When a standard labeled tape is opened for output, the volume identifier specified in the
//DEFINE statement identifies the tape reel in a mount message to the operator.. This
volume identifier is also compared to the volume label (volume serial number) normally
written previously by a utility routine. If these items are equal the file is opened and the file
label is written, using the operand of the FILENAME keyword in the //DEFINE statement
as the file name for this label. If these items are not equal or there is no volume label on the
tape, a message indicating this is sent to the operator. The operator is instructed to mount
another tape and retry, or supply the necessary information for Data Management to create
the standard label. The volume number of the first volume becomes the serial of all the
volumes of that file.

NON-STANDARD LABELED TAPES

Non-standard labeled tapes do not contain volume labels. The volume identifier given in the
//DEFINE statement for these tapes is used only for mount messages. File labels specified in
the //DEFINE statement are not compared.

Input

When a non-standard labeled tape is opened for input a check is made to determine that the
tape mounted does not contain a standard label. If a standard labeled tape has been
mounted, a message is issued instructing the operator to mount the correct volume and
retry, or to abort the job.

3-4

Output

Non-standard labels may not be used for output. An attempt to open a non-standard labeled
tape for output results in an error message and abnormal termination of the job.

UNLABELED TAPES

The volume identifier givein in the //DEFINE statement for unlabeled tapes is used only for
mount messages. File labels specified in the //DEFINE statement are not compared.

Input

When an unlabeled tape is opened for input a check is made to ensure that the tape
mounted does not contain a standard label. If a standard labeled tape was mounted, a
message is issued instructing the operator to mount the proper input tape and retry, or abort
the job.

Output

When an unlabeled tape is opened for output a check is made to ensure that the reel
mounted is truly unlabell~d. If a standard labeled tape was mounted, the label will be
overwritten if it has expired. If the label has not expired, a message is issued instructing the
operator to override the expiration date, mount another tape and retry, or abort the job.

TELECOMMUNICATION DEVICES

The use of telecommunications within a job step requires the assignment of each line used
by the program. The keyword-operands of the //DEFINE statement have the following
significance. The I DE NTI FIE R keyword specifies the logical terminal name. This is the
name defined in the TRMDEV macro. (See Telecommunications Reference manual for the
description of this macro and for a complete discussion of telecommunications.) The
DEVICE keyword specifiE~s the terminal line to be enabled. The FILENAME keyword is
always given as TP unless physical 1/0 is to be used; then FI L=PIO is specified. The number
and size of buffers for each line is specified with NUMBER and SIZE keywords respectively.

DIRECT ACCESS STORAGE DEVICES (DISC)

At Initial Program Load (IPL) time, disc drives may be specified as either shared or unshared
for that installation. This ifunction is performed by the SHARE and UNSHARE directives as
described in the MRX/OS Operating Procedures manual. The IPL commands amount to an
override of the SYSGEN selection.

Once the status of a disc drive has been specified as shared or unshared, it will remain that
way until overridden by nHw directives at a subsequent IPL time.

3-5

SHARED DRIVE

A shared disc drive is one that is available for simultaneous use by both partitions. The share
command may be issued only at IPL time or when the system is cycled down.

UNSHARED DRIVE

An unshared disc drive is one that is available exclusively to one job step at any given time.
Packs on these drives may be mounted at step initiation and CLOVEd (closed for the
purpose of mounting the next volume of the file) during a step.

FILES

Disc files may be shared, that is, the file may be opened simultaneously by job steps in
either partition. In order for a file to be shared, it must reside on a shared disc drive and be
defined in the status keyword of the //DEFINE statement as either a permanent input or
permanent update file. (Refer to Section 2 of this document for shared file restrictions.)

DISC FILE ORGANIZATION

The ORGANIZATION keyword of the //DEFINE statement specifies the organization of
the file as sequential, relative or indexed.

A sequential file which occupies more than one volume (multi-volume file), may use one or
more disc drive units. If only one disc is used, a CLOVE macro will allow the mounting of
the next volume of the file. If more than one disc drive is used, one drive must be requested
for each volume of the file. This is accomplished by specifying multiple operands in the
VOLUME and DEVICE keywords of the //DEFINE statement. In this case, volumes may be
mounted on any combination of shared and unshared disc drives. Volume switching is
performed by the system.

Indexed and relative multi-volume files, unlike sequential files, must have all volumes of the
file mounted for the duration of the step. These volumes must be mounted exclusively on
either shared or unshared devices. A combination of shared and unshared devices is not
allowed.

DISC SPACE ALLOCATION

The allocation of disc space is performed by the system for all types of files (scratch,
temporary, work and permanent) using information supplied on the //DEFINE statement.

Scratch and temporary files must always be centrally cataloged (CAT=NO is illegal), but
permanent and work files may be cataloged or uncataloged.

3-6

Volume identifiers must always be specified for uncataloged files but are optional for
cataloged files. If a volume identifier is supplied, the space will be allocated on the pack(s)
specified. If a volume identifier is not specified (legal only for cataloged files) the space will
be allocated on a shared volume.

The identifier and filename must be given with every space allocation request. If a
modification security code is to be required for use of the file in any subsequent step, it
must be specified at allocation time. Also at allocation time, the number and size of records
and the number of records per block must be given. This information is used to determine
the amount of disc space which must be allocated. If relative or indexed file organization is
to be used, it must be specified, and if the data is not to be in common stored data format,
that too must be specified.

DISC FILE EXPANSION

The EXPAND keyword of the //DEFINE statement is used to specify the number of records
by which an already allocated sequential file is to be expanded. The NUMBER keyword,
which is used to specify tlhe number of records for which space will be allocated in a new
file, cannot be specified in the same //DEFINE statement that contains an EXPAND
keyword-operand.

The IDENTIFIER and FILENAME keywords must be specified in the //DEFINE statement
for every file that is to be expanded.

The BLOCK keyword which specifies the number of records per block, and the STATUS
keyword which specifies type and usage must be the same as that specified at allocation.

The programmer may request contiguous space for the expanded area. Expansion of a file
automatically creates a separate segment for the expanded area (causing an EXTENT to be
added to the FDT for the file). The CONTIGUOUS keyword-operand on the //DEFINE
statement for expansion of a file references the expanded area only, and is not related to the
allocation of the original file, whether contiguous or segmented.

LOGICAL INPUT/OUTPUT

The DEVICE keyword on the //DEFINE statement initiates device assignment. A specific
unit may be chosen by coding the physical address as the operand of the DEVICE keyword,
or a generic device name may be specified which enables Control Language Services to select
an available unit. If a device has already been defined, a subsequent //DEFINE statement
referring to the same device by hardware address will be assigned to that same device.
However, a subsequent //DEFINE statement using the generic name will force Control
Language Services to assign another device of the same type.

The VOLUME keyword on the //DEFINE statement specifies the required disc pack and is a
required keyword for an uncataloged file. The operand of this keyword will be used in the
mount message requestin1g the pack. For cataloged files, Control Language Services will
create the mount message using the volume identification specified in the central catalog.
The VOLUME keyword is optional for these files.

3-7

The IDENTIFIER and FILENAME keywords are required for logical 1/0. IDENTIFIER
specifies the logical file name (name by which the file is known to the program).
Fl LENAME specifies the name of the file on the central or pack catalog.

PHYSICAL INPUT /OUTPUT

The disc device units to be used for physical 1/0 must be assigned for the exclusive use of a
single job step in a partition. Devices assigned for physical 1/0 cannot be shared.

One //DEFINE statement is required for each device to be assigned for physical 1/0. This
define statement must contain the IDENTIFIER, VOLUME, and DEVICE keywords. These
keywords specify the logical file name, the disc pack, and the disc drive respectively. The
FILENAME keyword must also be specified in the //DEFINE statement and must have as
its operand PIO for physical input/output. There is no protection against the PIO user. For
example, a user performing physical output to the printer can interfere with output
proceeding to the printer from the other partition.

3-8

4. CATALOGED PROCEDURES

GENERAL DESCRIPTION

A cataloged procedure is one or more control language statements placed on a source library
as a member. The LIBUTI L program performs the function of placing the cataloged
procedure on the source library. The //CALL statement within a job performs the function
of merging the cataloged procedure with the control language statements of the job.

Appendix H gives rules governing variable replacement in procedures.

WRITING A CATALOGED PROCEDURE

The first statement of a cataloged procedure is the //DECLARE control language statement.
The default values for run-time variables are specified by coding keyword and associated
operand.

The //CALL statement is used to request that the named cataloged procedure be merged
with the control language statements of the job. All of the run-time variable symbols
specified as keywords without operands on the //DECLARE statement of the procedure
may be given as keywords with operands on the //CALL statement will include only the
name of the cataloged procedure requested, as the operand of the PROC keyword and
possibly the name of the library on which the procedure resides, as the operand of the LIB
keyword.

Following the //DECLARE statement, the step-level control language statements may be
included in the procedure. The //JOB, //EOJ, //DATA, /* (data delimiter), and //CALL
statements are not allowed.

All run-time variables in tlhe control language statements of a cataloged procedure have an
ampersand (&) immediately preceding the operand. The ampersand identifies the operand as
a variable to be replaced at run time. Note that the ampersand is a reserved character in this
language, reference to it anywhere is interpreted as the lead character of a variable.

Example: //DEC
//DEF

PROGFIL
ID=FI L 128,FI L=&PROGFI L

In this example, the identifier is FIL 128. The name of the file will be given as the operand
of the keyword PROGFllL on the //CALL statement. PROGFIL is entered without an
operand on the //DECLARE statement so there is no default value.

4-1

When PROGFIL is given as a keyword with no operand on the //DECLARE statement, it
must appear as a keyword-operand on the //CALL statement. If an operand for PROGFIL
appears on both statements, the operand given on the //CALL statement is used at run time.

Examples: PROCED1
//DEC PROGFIL,SOURCE=FIL1482

In this example PROGFI Lis specified as a required run-time variable in the called procedure
PROCED1; whereas, SOURCE is optional.

//CALL P ROC=P ROCE D 1,LI B=P ROCLI B,P ROG FI L=B 1423

In this example 81423 is given as the run-time variable for PROGFIL; the default for
SOURCE is accepted.

Where PROGFI Lis given as a keyword-operand on the //DECLARE statement, a default has
been established. The keyword is optional on the //CALL statement, and, if it is omitted,
the value given as the operand on //DECLARE statement will be used.

Examples: SPECIAL1
//DEC PROGFI L=B1432,SOURCE=FI L1482
//DEF ID=FI L128,FI L=&PROGFI L
//PAR LINES=30,PAGES=60,GROUP=&SOURCE

This example sets two default values, PROGFIL and SOURCE.

//CALL PROC=SPECIAL 1,LI B=PROCLI B,SOU RCE=FI L679

This example accepts the default for PROGFIL and overrides the default for SOURCE.

//CALL PROC=SPECIAL 1,LI B=PROCLI B,PROGFI L=140271,
II SOURCE=FIL679

This example overrides the defaults for both PROGFIL and SOURCE.

//CALL PROC=SPECIAL 1,LI B=PROCLIB,PROGFI L=140271

This example overrides the default for PROGFIL and accepts the default for SOURCE.

//CALL PROC=SPECIAL 1,LI B=PROCLI B

This example accepts the default for both PROGFIL and SOURCE.

4-2

CATALOGING A PROCEDURE

A cataloged procedure is entered into the system in the form of a data file which is normally
placed on the source library specified as $SYSPROCLIB. It may, however, be placed on a
private load library provided that the library is both shared and cataloged, and the //CALL
statements contains a LIBRARY keyword-operand. In this case, the LIB keyword-operand
is required on the //CALL statement to indicate which library the called procedure is
located on. The data file (which consists of the procedure) is identified by the //DATA
statement, which includes the name of the file being created, specified as the FILENAME
keyword-operand. CLS=YES must be specified on the //DATA statement, to inform the
system that control language statements are included in the data file. A data file may
contain only one set of control language statements to be cataloged. Therefore, only one
//DECLARE statement may be included in a single data file.

In order to execute a cataloged procedure, it must be a member of a source library. A
procedure is placed on a library via the UPDATE command of the LI BUTI L program. The
methods for creating a library and the operation of the LI BUTI L routine are discussed in
detail in the Program Library Services Reference manual. Any programmer cataloging
procedures on libraries must be familiar with the contents of that manual.

An example of a cataloged procedure may be found in Appendix G.

USING CATALOGED PROCEDURES

The method for including a cataloged procedure in a job is to reference that procedure on a
//CALL control language statement. The name of the cataloged procedure to be called must
be specified on the //CALL statement and must be identical to the member name specified
to LIBUTIL when the procedure was placed on the library.

The //CALL statement must give values for all variable symbols required by the procedure.
The //CALL statement also specifies any default operands to be overridden. All other
variable symbols specified on control language statements of the procedure, but not
included on the //CALL statement, must be keywords for which default values have been
specified on the //DECLARE statement. The following example shows a job calling a
cataloged procedure:

Example: //JOB NAME=JOB128,TYPE=1,USE=AZ1Q,PRl=4
//CALL PRO=PROC1621,LIB=PROCLIB,LINES=60,
II DATE=010173,SOURCE=PAYROLL 1,
II OBJECT=PAYROLL2
//EOJ

4-3

The following example shows a procedure that could be referenced by JOB 128:

//DECLARE SOU RCE,OBJECT,LI NES=55,DATE
//EX PGM=COBOL
//SET DATE=&DATE
//PAR SMOD=&SOURCE,OMOD=&OBJECT
//PAR LINES=&LINES
//DEF-----
//DEF - - - - -

This example specifies DATE, SOURCE, OBJECT, and LINES as variable symbols. DATE,
SOURCE, and OBJECT must be given values on the //CALL statement whenever the
procedure PROC1621 is called. A default is supplied for LINES, and may be overridden on
the //CALL statement. Only the //SET and //PAR statements of this procedure reference
variable symbols.

4-4

Bulletin: 2200.004-0001
Date: 4/2/73

A. SUMMARY OF CONTROL LANGUAGE STATEMENTS

JOB LEVEL STATEMENTS

Within a job, all control language statements are allowed. The following are required:

//JOB First statement of every job.

//EXECUTE The first command following the //JOB statement, whether in line or as the first executable
//EXEC command (following //DECLARE) of a called procedure.
//EX

//EOJ Last statement of every job.

STEP LEVEL STATEMENTS

//EXECUTE The first executable statement of every step; identifies the program to be executed.
//EXEC
//EX

The following statements m ay also b e included:

//PAR

//DEFINE
//DEF

//ROUTE
//fffE

1---
//SET

//TELL
//TEL

//CALL

*
--·

Within a step, the following

//JOB

//DATA
//DAT

/*

//DECLARE
//DEC

//IF

//EOJ

Specifies

Specifies

Allows o

run-time parameters to the program.

devices, volumes, and files requested by the step.

utput spooling or unit record device allocation.

job date and/or POST byte switch settings. Specifies

Places m essages on the operator's console.

Merges C :ontrol Language statements from a cataloged procedure.

Com men t statement.

state me nts are not allowed:

First sta tement of every job.

the following data file. Defines
and //EC

If data is spooled, it may appear anywhere between //JOB

Specifies

Oesignat
specifica

)J. If not spooled, it must immediately precede the //EOJ.

the end of a card file.

es the following control statements as a cataloged procedure, provides the
tion statement for the procedure.

Provide for branching based on condition code test.

Last stat ement of every job.

INTERSTEP LEVEL STATEMENTS

The only Control Language Statements occurring between steps are:

//IF Provide for forward branching based on condition code test.
1--·--------+---1

Comment statement.

A-1

CATALOGED PROCEDURES

Within a cataloged procedure, the following control language stateme nt is required:

//DECLARE Specifies all keywords to be provided in ca lling the procedure; required as first statement of
//DEC a cataloged procedure.

The following statements may also be included:

//EXECUTE The first executable statement of every st ep, identifies the program to be executed.
//EXEC
//EX

//PAR Specifies run-time parameters to the progr

//DEFINE Specifies devices, volumes, and files reque sted by the step.
//DEF

//SET Specifies job date and/or POST byte switc h settings.

//TELL Places messages on the operator's console.
//TEL

//IF Provide for forward branching based on co ndition code test.

* Comment statement.

The following statements are not allowed:

//JOB First statement of every job.

//DATA Identifies the following data file.
//DAT

/* Specifies the end of a card file.

//CALL Calls a cataloged procedure.
//CAL

//EOJ Last statement of every job.

DATA LEVEL STA TEMENTS

A data file identified with the CLS=YES keyword on its //DATA stat ement may contain any control language statement, except
I /DAT A statement, any control language statement except
with FIL=SYSCRD.

/* (data delimiter) which terminates all data files. If CLS=NO on the
*(comment), will terminate the data file. CLS=YES has no meaning

A-2

B. TABLE OF COINTROL LANGUAGE STATEMENT

KEYWORD CHARACTERISTICS

//JOB Statement

Operand Field

Keyword Size Content Default Remarks
I---·

NAME= 1 to 8 Alphanumeric* None - required Specifies name of job as known to
NAM= entry system. NAME keyword must appear

on first card of statement. Jobs
must have unique names.

USER= 1to4 Alphanumeric* None Installation option. Required if
USE= option selected at SYSGEN time.

Identifies the user to system.

TYPE= 1 0 0 Specifies partition in which is allowed
TYP= 1 to run:

2
0 indicates either partition

1 indicates partition 1

2 indicates partition 2

as created at SYSGEN time or as
modified by console command.

PRIORITY= 1 1-9 SYSGEN default As specified at SYSGEN time. Specifies
PAI= specified by the order in which the jobs run in the

installation partition. Highest priority is 9.

HOLD= - YES No HOLD=YES causes the job to remain in
HLD= NO the job queue until the operator releases

it for initiation.

HOLD=NO causes the job to be initiated
according to its type and priority.

//EOJ Statement

C No keywords ---i---_..____L ____ __.___ ___ _ Specifies end of job.

Comment (*) Statement

[~~~~I J~ __ *_i_n_c_o_l_u_m_n_1 ______________ E_n_t_e_~_c_o_m_m_en_t_s_i_n-to-jo_b_s-tr_e_a_m_. ____ _
followed by
user comment

*No embedded blanks or special characters except dash; alphabetic, numeric, and dollar sign in first character position.

B-1

Bulletin: 2200.004-0001
Date: 4/2/73

//EXECUTE Statement

Operand Field

Keyword Size Content Default Remarks
1-~------1-------+-----------+----~------lf-------------~---~-~

PGM=

NAME=
NAM=

1 to 8

1to8

Alphanumeric*

--t-
Alphanumeric*

None - required
entry

Specifies the name by which the program
to be executed is cataloged on the load
library.

----f-----·----------~-~

None Required if step is to be named; when
ever step is to be the argument of GO
keyword in the //IF statement.

Specifies name by which step is known
to system.

1-----~--1--------+- --r----·--------+----·---------------
LIBRARY=
LIB=

1 to 17 Alphanumeric* Standard system
library

Specifies name of library in which
loadable program code resides.

1--------1--------+-·------··---t--·----------'--------------------
TIME=
TIM=

DUMP=
DMP=

DEBUG=
DEB=

4 Numeric value SYSGEN default
in minutes

YES
NO
COND

YES
NO

specified by
installation

Dump only for
abnormal
termination

No

Values in the range of 1 to 1440. Key
word specifies time in minutes the step
is allowed to run. Value 1440 allows
step to run indefinitely. Value 1439
allows step to run 23 hours 59 minutes
before abort.

DUMP=YES causes a main storage
dump at end of step regardless of
terminated status.

DUMP=NO results in no dump being
taken regardless of terminated status.

DUMP=CON results in a dump only
for abnormal termination.

Specifies if program is to run in Debug
mode.

!----------+------·---+--·-----------+----------f--- --

RESTART=
RES=

//PAR Statement

Application
Dependent

Immediate YES None Specifies if the program can be im-
- NO mediately restarted. The nnn specifies
Deferred
1-3

Example:

Numeric

//PAR COMMAND=UPDATE,
//PAR MTYPE=MAC,
//PAR MEM=(,,EMULATE),
//PAR MEM=(,,EMUCOM),
//PAR MEM=(,,EMUEOU),
//PAR OLIB=(Ll83,SYM),
//PAR NEWSE0=(1000,100)

location of deferred restart.

None Contents of statement is application
dependent.

*No embedded blanks or special characters except dash; first character alphabetic, numeric, or dollar sign.

B-2

//DEFINE Statement

Operand Field

Keyword

IDENTIFIER=
IDENT=
ID=

FILENAME=
FIL=

STATUS=
STA=

MSC=

DEVICE=
DEV=

VOLUME=
VOL=

CSD=

ORGANIZATION=
ORG=

LABEL=
LAB=

Size

1to8

1 to 17

4

1 to 6

1

1

Content

Alphanumeric*

Alphanumeric*

s
T
w
p
(P,I)
(P,U)
(P,O)

EBCDIC

Name
(name , quantity)
address
(address, ... ,

address)

Alphanumeric*
vol id
(valid, ... ,

YES
NO

I
R
s

s
N
u
B
I

vol id)

Default

None - required
entry

None - required
entry if labeled

T

0 for P only

Blanks

(DISC,1)

Disc:
central catalog

Tape:
none required
entry

Yes

s

Bulletin: 2200.004-0001
Date: 4/2/73

Remarks

Establishes logical relationship between
program file definition and physical
characteristics of file. Keyword specifies
name by which file is known in step.

Cataloged name or label entry for the
file. PIO for physical 1/0. TP for
telecommunications. DUMMY for in
ternal handling. NULL for optional
file.

Applies only to disc.
Type is Scratch, Temporary,
Work, or Permanent. Input, Output,
or Update usage is specified for
permanent files only.

Modification security code. Used by
Data Management to exclude un
authorized use of file.

Specifies generic name, and quantity
(default quantity is 1) , or unit
address(es) for devices.

Identifies the disc pack or tape reel.
Tape: required
Disc: required for files not listed,

or to be listed on central catalog

Specifies that common stored data
format is (YES) or is not (NO) used
on tape input, or disc files. Note: adds
4 to size if operand is YES.

I is indexed
R is relative
S is sequential

For tape files only:
S is standard
N is non-standard
U is unlabeled
8 is bypass
I is ignored

N, 8, and I can be used for tape input
files only.

' 1No embedded blanks or special characters except dash; first character alphabetic, numeric, or dollar sign.

8-3

Bulletin: 2200.004-0001
Date: 4/2/73

!IDE FINE Statement (Continued)

Operand Field

Keyword Size Content

RETENTION= 1to3 Numeric
RET=

BUFFER= Number Numeric
BUF= 1 to 3

Size:
1 to 5

Default

0

None - required
for each logical

//DEFINE Statement - Disc Space Allocation/Expansion

NUMBER= 1to6
NUM=

SIZE= -
SIZ=

--
BLOCK= 1to3
BLK=

LOCATION= -
LOC=

CATALOG= -
CAT=

VERIFY= -
VER=

CONTIGUOUS= -
CON=

SPREAD= 1to2
SPR=

N umeric

r ngth
(r ength,

Disc
ecord le
ecord I
ey Ieng k th)

T ape
ecord le r

D isc

ngth

d k
(ck,
ata bloc
data blo
ey bloc
alues in

k k)

v the
ange of r 1 to 255

1 - to 3-d
umeric

igit
n

y

N
ES
0

YES
0 N

YES
0 N

-

(I~: H:p))
N
1

umeric
to 10

None - required
to al locate a new
disc file.

252

1

No

Yes

t----

No

No

-t----
1

B-4

Remarks

Specifies the number of days a tape file
is to be retained.

Logical TCOM only. Specifies buffers
in partition. Number range of 1 to 999.
Size range of 1 to 49999.

USE ONLY TO ALLOCATE A NEW
DISC FILE. Number of records for
which space is to be allocated;
optionally the number of records
for dynamic expansion.

Number of bytes per logical record
(maximum for variable length).

For indexed files, number of bytes
in the key.

Specifies blocking factor. For variable
length records, specifies minimum
number o~ records.

Specifies cylinder number on which file.
is to begin, or that file is to (YES) or is
not required to (NO) begin on cylinder
boundary.

Specifies that file is to be (YES) or is
not to be (NO) cataloged (central
catalog). No is illegal for temporary
and scratch files.

Specifies that write-disc-check is to be
(YES) or is not to be (NO) used after
each WRITE or PUT.

Specifies that allocation or expansion
space is (YES) or is not (NO) to be

contiguous; and whether it may be on
single pack or multiple packs.

Indexed files only. Frequency with
which consecutive logical records
occur on track.

Bulletin: 2200.004-0001
Date: 4/2/73

//DEFINE Statement - Disc Space Allocation/Expansion (Continued)

Operand Field

Keyword Size Content Default Remarks

t--·

I VOLUME= 1to6 Alphanumeric* First volume Indexed files only. Volume on which

IVOL= of file key index resides.

IVO

I LOCATION= - 1- to 3-digit No Indexed files only. Specifies cylinder
ILOC= numeric number on which key index is to begin
ILO YES (valid only if IVOL is used), or that key

NO index is to (YES) or is not required to
(NO) begin on cylinder boundary.

EXPAND= 1to6 Numeric None Number of records by which to expand
EXP= an existing sequential file; libraries

cannot be expanded. See Table 2-2.

//ROUTE Statement

IDENTIFIER= 1to8 Alphanumeric None - required Establishes logical relationship between
IDENT= entry program file definition and external
ID=• characteristics of file.

FILENAME= 1 to 17 Alphanumeric 3-byte day of year, Catalog name of file. FIL=NULL
FIL.= or NULL 6-byte time of day, specifies an optional file.

1- to 8-byte
identifier

1----·

DEVICE= - PRINTER PRINTER Specifies the generic name or device
DEV= PAT address of the output file for the

READPUNCH spool function.
READERPUNCH
RDRPUN
device address

VOLUME= 1 to 6 Alphanumeric None Specifies the volume serial number(s)
VOL= for the data set.

//ROUTE Statement - Disc Space Allocation/Expansion

SPOOL= - YES YES Specifies the file to be spooled (YES)
SPL= NO or to go directly to the device (NO).

NUMBER= 1to6 Nuimeric (1000,500) Number of records for which space is
NUM= to be allocated; optionally the number

of records for dynamic expansion.
1--- ---· --- ---- ~ ----·-------· ·-------· ---I

SIZE= - Disc record 134 Number of bytes per logical record.
SIZ= length

*No embedded blanks or special characters except dash; first character alphabetic, numeric, or dollar sign.

8-5

Bulletin: 2200.004-0001
Date: 4/2/73

//ROUTE Statement - Disc Space Allocation/Expansion (Continued)

Operand Field
.---·

Keyword Size Conte nt

BLOCK= 1 to 3 Disc data block
BLK=

CONTIGUOUS= - YES

.(~p))
CON=

({~~)
//ROUTE Statement - Spooling Information

UCS= - name
(name, FOLD,
VER)
(name,NOFOLD,
NOVER)

t--·----------t--·

HOLD= - YES
HLD= NO

t--·-----------t--·

SAVE= - YES
SAV= NO

--------t---

COPY= 1 or 2 Decimal number
COP=

FORMS= 1to6 Alphanumeric
FOR=

//SET Statement

DATE= 6 mmddyy
DAT=

Default

1

NO

(SYSGEN name,
NO FOLD,
NOV ER)

NO

NO

1

Standard forms

System date
(at beginning
of job)

Remarks

Specifies blocki_ng factor.

Specifies that allocation or expansion
space is (YES) or is not (NO) to be
contiguous; and whether it may be on
single pack or multiple pack.

Specifies Universal Character Set. See
MRX/OS Utilities Reference manual
for FO LO and VER options.

Specifies whether file is or is not to be
placed on the spooler hold queue. --Specifies whether the file is to be or is
not to be purged after it has been
printed or punched. ---Specifies the number of copies to be
printed or punched.

--
Specifies the form type for the operator
to mount prior to printing or punching.

Specifies month, day and year. Set for
duration of job or until another //SET
DATE.

---- -~-----+-------------+--------------------1

SWITCH= 8 0
SWI= 1

x

//TELL Statement

OP= - message

--·-- 1-- -

PAUSE= - YES
PAU= NO

Zeros
(at beginning
of job)

None - required
entry.

No

8-6

Zeros change corresponding bit positions
to zeros. Ones change corresponding
bit positions to ones. X's leave corres
ponding bit positions unchanged. Set
for the duration of job or until another
//SET SWITCH. Switches are set to
zeros at beginning of job.

Message to console operator.

---1

Specifies initiation of step is (YES) or
is not (NO) to be suspended until
response is received from the console
operator.

//I IF Statement

Operand Field

Keyword Size Content Default

CODE= 1 Any EBCDIC None - required
COD= character entry

GO= 1to8 Alphanumeric* None - required
entry

//DECLARE Statement

Procedure
dependent

Example:

//CALL

II
II

Procedure

//DECLARE
//EX
II

P'ROC=XAMPLE,
LI B=PROC1,
PNAM=XYZ,
MIN=5

"'XAMPLE"
might be:
PNAM,MIN=10
PGM=&PNAM,
TIME=&MIN

None

//CALL Statement

PROC= 1 to 8 Alphanumeric* None - required
PRO'= entry

LIBRARY= 1 to 17 Alphanumeric* &SYSPROCLI B
LIB=

Example:

//CALL PROC=EMUGEN,LI B=EMUPROCLI B,
MACVOL=$SYSPK,

11 OBJVOL=EMUVOL,OBJLIB=EMUOBJLIB,
LODVOL=$SYSPK,

I I LODLI B=$SYSLODLI B,SYSVOL=$SYSPK,
NUM=2000

Remarks

Bulletin: 2200.004-0001
Date: 4/2/73

Value to be tested for, set in previous
program by SETI F service request.

Name of step to be skipped to if con-
dition CODE value is met. EOJ if
skipping all remaining steps of job.

Refer to DEC and CALL statements in
Sections 2 and 4.

Name of the procedure to be included
with the control language statements
of this job. PROC must be the first
entry.

Specifies the private library on which
the cataloged procedure resides.

*No embedded blanks or special characters except dash; first character alphabetic, numeric, or dollar sign.

B-7

Bulletin: 2200.004-0001
Date: 4/2/73

//DAT A Statement

Keyword Size

Operand Field

Content Default Remarks

11-~~~~~~-----+-~~~----t---~~----------.i--------~-------1----------------------------~~--1

FILENAME=
FIL=

1 to 17 Alphanumeric* None - required
entry

Names the file to be built from records
which follow. Specifies filename used
on input //DEFINE statement.
Fl L=SYSCRD if data read by program
directly from card reader.

1-----------1--------1---·-----·-------;-----------·-----+-----------·---------
CLS= YES

NO
No Keyword specifies there are (YES) or

are not (NO) control language statements
in following data file. Has no meaning
when FIL=SYSCRD is used.

1-----------+----·----+-----···---------t-----·-------~----------------·----

BLOCK=
BLK=

1 to 2 Value in the
range 1 to 12

Specifies blocking factor used in data
spooling. Ignored when FIL=SYSCRD.

1-----------+-----·-1--------------+--------------~--------------------~--
NUMBER=
NUM=

1 to 5 Nu meric value 1000 Specifies number of logical records for
which space will be allocated. Maximum
is 32,767. Ignored when FIL=SYSCRD.

1-----------+------1----------------+--·----------+-----------------------
CONTIGUOUS=
CON=

YES
NO

No Keyword specifies that there is (YES) or is
not (NO) the requirement of contiguous
space. Ignored when Fl L=SYSCRD.

*No embedded blanks or special characters except dash; first character alphabetic, numeric, or dollar sign.

Statement: /* (data delimiter)

No Keywords

8-8

J

Bulletin: 2200.004-0001
Date: 4/2/73

Co TABLE OF REQUIRED AND OPTIONAL KEYWORDS

BY CONTROL LANGUAGE STATEMENT

JOB LEVEL STATEMENTS

Statement Keywor d

//JOB NAME::
NAM=

USER=
USE=

TYPE=
TYP=

PRIORI TY=
PAI=

HOLD=
HLD=

//EOJ None

*(comment) None

STEP LEVEL STATEMENTS

//EXECUTE
//EXEC
//EX

//PAR

~-

//DEFINE
//DEF
for file
and device
use

PGM=

NAME=
NAM=

LIBRA RY=
LIB=

TIME=
TIM=

DUMP=
DMP=

DEBUG
DEB=

REST A RT
RES=

Applica tion
ent depend

IDENTI FIER=
ID=

FILEN AME=
FIL=

Required
or

Optional Notes

Required

Required/ Installation option.
Optional Required if installation requires at SYSGEN time.

Optional if installation does not require it.

Optional

Optional

Optional

Required End of job

Optional

Required

Optional No default

Optional No default

Optional

Optional

Optional

Optional PGM=RESTART must be speicifed in //EXEC statement;
may specify either immediate or deferred restart.

·-t-- --.---

Optional No default; no continuation. Multiple statements acceptable.

·-+--- --------!---

Required

--+------ ------

Required Required for disc and tape; DUMMY, NULL, PIO can all
refer to unit record.

C-1

Bulletin: 2200.004-0001
Date: 4/2/73

Statement

//DEFINE
//DEF
(for disc
space
allocation
and
expansion)

Required
or

Keyword Optional

STATUS= Optional
STA=

t----------i

MSC= Optional

DEVICE= Optional
DEV=

VOLUME= Optional
VOL=

CSD= Optional

ORGANIZATION= Optional
ORG=

LABEL=
LAB=

RETENTION=
RET=

BUFFER=
BUF=

NUMBER=
NUM=

Optional

Optional

Optional

Required to
allocate a
new disc file.

>---------~

SIZE=
SIZ=

BLOCK=
BLK=

LOCATION=
LOC=

Required for
disc if NUM
is used.
Optional for
tape.

Optional

Optional

Notes

Disc files only; usage for permanent files only.

Tape and disc files

Tape c:ind disc files

Tape files only

Tape files only

Logical TCOM only. Requires 1 per line.

Use indicates space to be allocated.
EXP may not be used

Keysi2:e for indexed disc files only.

Applies to tape and disc files. Key block for indexed disc
files only.

~-------------1-----------t---------------------------------1

ORGANIZATION= Optional
ORG=

>------------ t---- ---- ----- -!------------------------------------

CATALOG=
CAT=

Optional

~-------------1----------- -------------------------------11
VERIFY=
VER=

Optional

1--------------+--------------+--------------------~----------<1

CONTIGUOUS=
CON=

Optional Allocation and expansion

~-----------+---------!--------------------------------

SPREAD=
SPA=

Optional Indexed files only

1------------- ----------- ----------------------------------
!VOLUME=
IVOL=

Optional Indexed files only

~------------ ------- ----------+--------------------------------
I LOCATION=
ILOC=

Optional Indexed files only

C-2

Statement Keyword

//DEFINE EXPAND=
(disc file EXP=
expansion)

//ROUTE IDENTIFIER=
RTE= IDENT=

ID=

FILENAME=
FIL=

DEVICE:=
DEV=

VOLUME=
VOL=

CONTIGUOUS=
CON=

BLOCK=
BLK=

SIZE=
SIZ=

SPOOL=
SPL=

NUMBER=
NUM=

ucs=

HOLD=
HLD=

SAVE=
SAV=

COPY=
COP=

FORMS=
FOR=

//SET DATE=
DAT=

SWITCH==
SWI=

//TELL= OP=
//TEil==

PAUSE=
PAU=

Required
or

Optional

Required to
expand an
existing disc
file.

Required

Optional

Optional

Optional

Optional

Optional

Optional

Optional

Optional

-

Optional

Optional

Optional

Optional

Optional

Optional

Optional

- ----

Required

Optional

Notes

Bulletin: 2200.004-0001
Date: 4/2/73

Use requires BLOCK equal to value specified at file allocation.
Excludes NUMBER keyword.

NULL specifies optional file.

-·----
No continuation; multiple statements acceptable.

C-3

Bulletin: 2200.004-0001
Date: 4/2/73

PROCEDURE LEVEL STATEMENTS

Statement Keyword

//DECLARE Procedure
//DEC dependent

//CALL PROC=
//CAL PRO=

LIBRARY=
LIB=

Procedure
dependent

INTERSTEP LEVEL STATEMENTS

//IF CODE=
COD=

GO=

DATA LEVEL STATEMENTS

//DATA
//DAT

FILENAME""
FIL=

Required
or

Optional

-

Required

Optional

-

Required

Required

Required

CLS= Optional

Notes

Statement may contain no keywords. Operands are required
only to specify defaults.

Required for all keywords listed on procedure //DECLARE
without operands. Otherwise, used with operands only to
override defaults.

-

No meaning when Fl L=SYSCRD used.
1----------t----------+---------------------------1

BLOCK= Optional No meaning when FIL=SYSCRD used.
BLK=

!----------- -----------4----·-------------------·---:--
NUMBER= Optional Default= 1000. No meaning when FIL=SYSCRD used.
NUM=

CONTIGUOUS=
CON:.:

Optional No meaning when Fl L=SYSCRD used.

/* None
(Delimiter)

C-4

D. SYSTEM CONITROL INTERFACE

Control functions are provided for programs through Control Program service request
macros. These macros arn used in problem programs to obtain information from system and
job tables, to access data that is set at run time with control language statements, to make
the contents of the //PAR: statement available to the executing program, and to write on the
job's system output (SYSOUT) file.

The following paragraphs describe the Control Program service request macros referenced in
this document. All programmers using these service requests must be familiar with the
format and further explanation of the macros located in the Control Program and Data
Management Services, Basic and Extended Reference manuals.

HALT, EHAL T, AND ABEND MACROS

The problem program signals the system that it has completed its processing, and causes the
Step Terminator to be loaded by executing a HALT or EHAL T service request macro. The
HALT macro is used to perform normal termination of a user job step; the E HALT macro
requests termination of a step and causes the remaining steps of a job to be skipped. The
ABEND macro requests abnormal termination of a job and passes a completion code to
Control Language Services for display.

When an error occurs (such as an 1/0 error, memory parity error, or attempt to write
beyond the end of a program area), the program terminates abnormally. The Step
Terminator is then loaded by the Control Program and receives control of the partition. A
memory dump may occur, depending upon the dump keyword of the //EXECUTE
statement.

SDATE AND JDATE MACROS

The //SET control language statement may be used to specify the job date. This date is then
used for date dependencies within the job. If the job date is not given with a //SET
statement, the system datie is used for these job dependencies.

The system date and the job date may be sent to the user program through the use of
SD ATE (system date) and· JDATE (job date) macros respectively. The user may specify
either the calendar date format or the Julian date format to be sent to his program. (Refer
to Control Program and Data Management, Basic Reference manual for detailed description
of these macros and formats.) If the job date has not been defined by a //SET statement it
will be set to the system date by the operating system.

D-1

Bulletin: 2200.004-0001
Date: 4/2/73

POST AND RPOST MACROS

The //SET control language statement may be used to specify the contents of the switch
communication byte (eight switches available to the problem program for communication
between steps). The POST macro can be used to change the contents of the switch
communication byte from within the problem program. The RPOST macro is provided to
test the switch communication byte as set by previous POST macros or //SET control
language statements.

SETIF MACRO

The //IF control language statement tests the code condition of the JTI FC byte in the job
control table (JCT) and conditionally executes job steps based upon the results. The SETI F
macro is used to set this byte in the JCT to a code which may be tested by the //IF
statement.

ACCEPT MACRO

The //PAR control language statement enters run-time parameters for a problem program
into the job's system input (SYSI N) file. The ACCEPT macro provides the problem program
with the ability to read the steps //PAR statements into the program from the SYSIN file.

Each execution of the ACCEPT macro loads a single input line into the specified program
buffer. The line is transferred into the buffer in EBCDIC. The macro updates a pointer in
the requester's JCT so that subsequent ACCEPT macro requests will acquire the next
consecutive parameter line. When accepting one line past the last parameter line, control is
passed to the location specified in the ACCEPT macro (or the problem program may specify
the relative parameter line number for that step).

DISPLAY MACRO

The DISPLAY macro allows the problem program step to write messages directly onto the
job's SYSOUT file. The message may be any length up to 132 EBCDIC characters. By using
this macro, the problem program can indicate progress and internal program conditions on
the SYSOUT file, which is printed at the end of the job.

MEMLIM MACRO

The M EM LIM macro returns the address of the last addressable 256-byte memory page (256
bytes) of the partition making the request. The value returned points to the beginning of the
last memory page of the problem program area.

The size of the problem program area, and therefore the address returned from a M EM LIM
request, can vary depending upon the size and starting address of the partition and upon the
specifications given to the Linkage Editor when the relocatable program load module is
constructed.

D-2

E. PARTITION LAYOUT AND USAGE

GENERAL DESCRIPTION

A partition is an area of main memory used for execution of problem programs. Two
partitions (maximum) are defined at system generation time (SYSGEN). The sizes of the
partitions may be change!d from the console at IPL time, or by a subsequent SYSGEN. The
Console Command program is used to adjust partition size at Initial Program Load (IPL)
time. The procedures for this and other console operator activities are discussed in the
MRX/OS Operating ProcE,dures manual.

The layout of the partition at program load time is shown in Figure E-1. The fixed areas
(position and size) of the partition are:

SLA - Standard Linkage Area

TCT - Task Control Table

JCT - Job Control Table

FDT SYSI 1\1 - File Description Table for the system input file

FDT SYSOUT - !File Description Table for the system output file

Other areas shown in the partition layout are:

FDT PRIVATE LOAD LIBRARY - Present only when the program specified on
the //EXECUTE statement resides on a library other than the standard system load
library ($SYSLODLIB).

FDT DEBUG - Present whenever DEBUG=YES is specified on the //EXECUTE
statement.

PROGRAM AREA - This portion of the partition varies with each step and is the
size of the longest program module (offset by the root, if there are overlays to the
main program). llf POOLSIZ is defined at the time the program modules are
link-edited, the problem program area may be longer.

PARTITION SPACE POOL - Contains: file description tables for all additional
simultaneously open files, the check out debugging table when FDT DEBUG occurs,
telecommunications buffers and tables when the step uses telecommunications,
unused space not dedicated to any of the above listed uses.

E-1

0 .--. 32

n-376

n-318

SLA

PROGRAM AREA

PARTITION
SPACE
POOL

FDT DEBUG

n-258 FDT PRIVATE LOAD LIBRARY

n-198 FDT SYSOUT
------------------------------11

n-138 FDT SYSIN

n-42 JCT
-----------------------------------11

n TCT

Figure E-1. Partition at Program Load Time

E-2

PAGE
BOUNDARY

STANDARD LINKAGE AREA (SLA)

The Standard Linkage Area (SLA) occupies the first 32 bytes of the partition. This area
immediately precedes the problem program or the executing Control Language Services
module. The SLA provides for communication of parameters between system routines.

Use of the SLA is an established system convention for Memorex Operating Systems. This
standard method makes the interfaces between the operating system and the executing
program identical to the iinterface between a subroutine and the higher level calling program.

The Standard Linkage Arna contains the program return address, status information, and the
register save area. The lavout of the SLA and a description of its contents is given later in
this appendix.

TASK CONTROL TABLE (TCT)

The Task Control Table (TCT) occupies the last 46 bytes of the partition. Space for the
TCT is permanently allocated and is available at IPL time. The Task Control Table contains
information on threading, task status, mode, service requests, and error recovery. The TCT
also includes a register save area and pointers to other tables in the partition. The
information in the TCT is set and used by System Control program to coordinate system
task execution. System tasks are initiated to process block 1/0, supervisor service requests,
and error recovery.

The layout of the Task Control Table and a description of its fields is given later in this
appendix.

JOB CONTROL TABLE (JCT)

The Job Control Table (JICT) occupies space immediately preceding the Task Control Table
(TCT) in the partition. Space for the JCT is permanently allocated in the partition and is
available at IPL time. The length of the Job Control Table is 96 bytes. The JCT contains
information on the partition, the job, the currently active step, and pointers to Control
Language statemen1ts. Control information also indicates whether the problem program, or
the Control Language Services program is active in the partition.

The information in the JCT is set and modified by the following system programs:

• Control Language Services

• System Control Program

• Relocating1 Program Loader

• Data Manaigement Services

E-3

• Debug Program

• Dump Program

FILE DESCRIPTION TABLES (FDT)

A File Description Table is created in the partition for each file that is used in a job step. An
FDT is built as a result of an OPEN request for a file. A request to CLOSE a file, except
close with lock and close spooled file, releases the F DT space to the partition space pool. An
FDT exists for every simultaneously open file. FDT's for files closed with lock and for
closed spooled files are released at step termination.

The File Description Table contains details on the location, status, organization, and
condition of the file; information on the 1/0 performed on the file; and pointers to
preceding and following FDT's. Information is placed in the FDT's from SYSIN, the central
and pack catalogs, the unit tables, and problem programs. Entries in the FDT's are made by
System Control program, Block 1/0, Data Management, OPEN, CLOVE, and CLOSE.

The FDT is 60 bytes in length. The common area of the FDT, is 40 bytes in length. This
portion of the table applies to all types of files and contains general information. The
remainder of the FDT is 20 bytes in length and is device dependent. Refer to Control
Program and Data Management Services, Basic Reference manual for format and content of
the FDT.

CHECKOUT DEBUGGING TABLE (FDT DEBUG)

A checkout debugging table is created for each step that requests the Debug routine. When
the Step Initiator encounters DEBUG=YES on an //EXECUTE statement, the debug status
bit is set in the JCT. The Debug routine receives control after the program is loaded and
builds the checkout debugging table for the step. This table includes a header for the
program and an entry for each breakpoint requested for the step. Refer to Control Program
and Data Management Services, Extended Reference manual for format and content of the
debug table.

PROBLEM PROGRAM AREA

The problem program area immediately precedes the partition space pool. The space
allocated for the problem program is determined by the Relocating Program Loader. This
space includes the SLA which is a permanent 32 byte offset of the program. The end of the
program, like the end of the partition, is a hardware page boundary (256 byte increments).
If the length of the program plus the SLA does not end at a page boundary, the area will be
extended to the next page boundary by the loader.

The size of the problem program segment that occupies main memory at any given time will
be affected by the coding techniques and the language processor used. For assembly
language programs, the use of logical telecommunications and logical data management

E-4

facilities result in the ass;embly of necessary buffers and tables as a part of the program
segment.

PARTITION SPACE POOL

The partition space pool. extends from the end of thE;? area allocated for the problem
program to the beginning of the FDT's for files built at job and step initiation times. The
partition space pool cannot be accessed by the program directly. It is available for use only
by Checkout Debugging, Telecommunications, and Data Management.

The size of the partition space pool is dependent upon the size of the partition, the amount
of space allocated for problem program execution, and the space required for tables at the
end of the partition. The partition space pool must be large enough to contain:

• An F OT for each simultaneously open file that was opened by the
program (excludes F DT's for files opened by the Step and Job
Initiator, such as SYSIN, SYSOUT, DEBUG, PRIVATE LOAD
LIBRARY).

• The debu~1 directive tables for all modules in the step, if Debug is
used.

• All of the buffers and tables required for the entire step, if
telecommunications is used. (Refer to Telecommunications
Reforence manual for these requirements.)

l"ABLE AREA

System and Control Language Services Tables for the partition immediately follow the
partition space pool. These tables are the TCT, JCT, and FDT's for those files opened for
the job by the Job Initiator and Step Initiator.

As shown in Figure E-2, the tables area always includes at least two FDT's. These are
required for SYSI N and SYSOUT which are opened at job initiation time. If opened at step
initiation time, one, two, or no additional FDT's will be built, for Debug and/or a private
load library. These must be specified in the control language statements for the step.

If either Debug or a private load library is used, but not both, 60 additional bytes will be
available in the partition space pool. When neither Debug nor a private load library is used,
an additional 120 bytes are available in the space pool.

Debug and private load library files, when used, remain open for the duration of the step
and must not be closed by the problem program. The SYSIN and SYSOUT files also remain
open. Therefore, the spacie used by their FDT's is never available for use for other file FDT's
in a step.

E-5

HARDWARE
PAGE
BOUNDARY

0

32

SLA

PROGRAM AREA

---------------------------1

-----·-----------------------11
FDT CARD

-----·------------------------
FDT DISC

------·------------------------11

FDT PUNCH

TCOM TABLES AND BU HERS

n-318 CHECKOUT DEBUGGING TABLES
-----·----------~

n-258 FDT DEBUG

n-198

n-138

n-42

-----··-----------------------
FDT SYSOUT

---------------·----------~

FDT SYSIN

JCT

TCT

Figure e~2. Partially FilleclPartition Space Pool

E-6

PARTITION
SPACE
POOL

PARTITION SPACE MP~NAGEMENT

The main storage- area in the partition space pool is managed by the System Control
program. Requests for space in the pool are made by Data Management OPEN and CLOVE,
Checkout Debugging, and Telecommunications. Space is returned to the pool via a request
to System Control.

When the amount of space in the pool is near that required for FDT's, Checkout Debugging
tables, and telecommunications buffers for the step, the programmer must be concerned
with management of the space pool. When there is insufficient space in the pool to fill a
request, OPEN or CLOVE requests return the error to the caller, other requests abort the
job. If the requirement is for Telecommunications, this will happen at the beginning of the
program when that space is requested. An unfilled request for space for Checkout
Debugging will abort the job after the module is loaded and its requirements cannot be met.
However, when a file is to be opened, late in the execution of a step, and its FDT cannot be
accommodated in the pairtition space pool, the job is aborted.

The following paragraphs discuss, by topic, details about the entries in the space pool and
how that space is managed. Optimization techniques are also included.

SPACE REQUESTS

Requests to obtain space in the pool are filled from the highest available location in the
pool. This allows the largest possible block of contiguous space to exist in the pool near the
end of the problem program area. A request to return space to the pool releases the space
where it occurs and threads that space to the already available pool space. The pool is not
reconfigured after a request to release space. That is, space fragments will occur in the pool.
When an area is released that is contiguous with already available pool space, the two areas
form a single block of available space in the pool.

CHECKOUT DEBUGGING

Checkout Debugging requires space in the pool for a header and for each breakpoint in a
program (including those in overlays not resident in the partition). (The Control Program
and Data Management Se,rvices, Extended Reference manual describes the operation and use
of the Checkout Dt~bugging routine.)

When Checkout Debum1ing is used, the number of breakpoints requested must be
determined by the size of the partition available and other space requirements of the
program. Once a section of code is actually debugged, the debug directive file should be
removed and the //EXECUTE statement should specify DEBUG=;=NO. A program requiring a
larger number of files simultaneously open or a larger telecommunications capability can be
accommodated only when Debug is used judiciously.

E-7

TELECOMMUNICATIONS

Telecommunications requires table space for the task, and for each line, terminal, size of
buffer, and buffer assigned to a step. In addition all buffer space defined for
telecommunications is taken from the partition space pool. (Refer to telecommunications
tables in the Telecommunications Reference manual.)

For telecommunications, buffer size should be usable. More than two buffers per line (one
for input and one for output) is wasted in the system and should not be used. The number
of terminals also greatly effects the space requirement for telecommunications in the pool.

REDUCING THE SIZE OF THE SPACE POOL

The size of the partition space pool can be reduced by the programmer, increasing the size
of the problem program area allocated. This is done by supplying a value for the POOLSIZ
parameter at the time the program is link-edited. When this parameter is supplied to the
Linkage Editor it specifically defines the largest amount of space required for all entries
which will simultaneously occupy the partition space pool.

The space occupied by the tables area at the end of the partition plus that specified as
POOLSIZ will be added, and rounded to the next higher page boundary (unless that sum
can be evenly divided by 256, the size of a page). The program/partition space pool
boundary is set at that address. The program has access to the area between the actual end
of the program and the end of the allocated problem program area. The programmer obtains
the information as to the bounds set by the loader in allocating that space, through the
MEMLIM macro. The program can then calculate the remaining space and use it to optimize
program operation. (The MEMLIM macro is described briefly in Appendix A. Refer to
Control Program and Data Management Services, Extended Reference manual for detailed
information.)

The Linkage Editor POOLSIZ parameter is intended for use by system programs, but is
available to application programs as well. Use of these implied techniques requires a clear
understanding of the operation of the partition space pool and of each system program
obtaining space from the pool (Telecommunications, Checkout Debug, and Data
Management). The programmer must also be completely familiar with the operation of
Linkage Editor. (See the Program Library Services Reference manual, Linkage Editor
section for a further description of POOLSIZ.)

E-8

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

Mnemonic

RETURN

PREVIOUS

STATUS

REGISTER 0

REGISTER 1

REGISTER 2

REGISTER 3

REGISTER 4

Bytes

0, 1

2,3

4,5

6,7

8,9

10,11

12,13

14,15

Standard Linkage Area (SLA)

RETURN

PREVIOUS

STATUS

REGISTER 0

REGISTER 1

REGISTER 2

REGISTER 3

REGISTER 4

Register
Save
Area ------

REGISTER 5

REGISTER 6

REGISTER 7

SR Cl EP

Code

SR Class)

Length Halt
----------------------~ Request

Packet

} Reserved

Bits Description

0-7 Return address in the calling program
Points to Halt Request Packet (byte 22 of SLA)

0-7 Address of save area in calling program (higher level program)
Zero if no higher level program exists
Always zero for SLA

0-7 Used for communication between calling program and called program
Always zero for SLA

0-7 Contents of Register 0
Saved by-called program in execution

0-7 Contents of Register 1
Saved by called program in execution

0-7 Contents of Register 2
Saved by called program in execution

0-7 Contents of Register 3
Saved by called program in execution

0-7 Contents of Register 4
Saved by called program in execution

E-9

Mnemonic Bytes Bits Description

REGISTER 5 16,17 0-7 Contents of Register 5
Saved by called program in execution

REGISTER 6 18,19 0-7 Contents of Register 6
Saved by called program in execution

REGISTER .7 20,21 0-7 Contents of Register 7
Saved by called program in execution

SR 22 0-7 Service Request (SR)
Function Code
Function Code=1316 for SR

23 0 Location of parameter string
0 String immediately follows SR
1 String address contained in Register 6

Always zero for SLA

Cl 23 Indicates when control is to be returned to requester
0 Control returned after SR is complete
1 Control returned after SR is recognized by System Control Program

Always zero for disc HALT packet

EP 23 2 Indicates if requester will perform exception processing
0 Requester will not process exception completion of this request
1 Requester will process exception completion of this request

Always zero for disc HALT packet

Reserved 23 3 Reserved for system use

CLASS 23 4-7 Major class in which the SR falls
Class=2 for Halt Bequest Packet, Unrestricted System Control Service
Request

CODE 24 0-7 Particular Service Request within a class
Code=4016 for HALT

Length 25 0-7 Specifies length (in words) of the parameter string for this request
Length=2 for this packet

c 26 0 0 Service Request has not completed
Service Request has completed

ERR 26 0 No error condition
An error condition has occurred

END 26 2 0 File End Condition has not occurred
File End Condition has occurred

Reserved 26 3-7 Reserved for system use

RETURN CODE 27 0-7 Further describes ERROR and END conditions

Reserved 28-31 0-7 Reserved for system use

E-10

0

2
4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

TTsns

GJ]llDcl IN

ID1

TASK CONTROL TABLES (TCT)

TTFTH

TTBTH

TTBLK

TD AC AG SU WD wx I WA

DL l DB l DT PR AB PD IC TTPRI

ID2

TTFDT

TT JCT

TTWOUE

TTCOEB

TTRO

TTR1

TTR2

TTR3

TTR4

TTR5

TTR6

TTR7

TTCRG

TTPRG

TTCMCB

TTEPT

TT DES

E-11

Mnemonic Bytes Bits Description
·--1

TTFTH 0,1 0-7 Forward thread
Used for general threading

TTBTH 2,3 0-7 Backward thread
Used for DELAY threading

TTBLK 4,5 0-7 Blocking pointer value
Used for blocking condition information

TTSRS 6 0-7 Count of outstanding SR's

TTTD 7 0 Indicates TCT table (if set)

TTAC 7 1 Indicates that the task is active (if set)

TTAG 7 2 Indicates that the task is assigned to a processor (if set)

TTSU 7 3 Indicates task suspension (if set)

TTWD 7 4 Indicates a WAIT blocking condition (if set)

Reserved 7 5 Reserved for system use

TTWX 7 6 Indicates WAIT for completion of any outstanding SR's (if set)

TTWA 7 7 Indicates WAIT for completion of all SR's (if set)

TTTS 8 0 Indicates termination sequence (if set)

Reserved 8 1 Reserved for system use

TTDC 8 2 Indicates cycle-down at a displaced Debug instruction (if set)

TTIN 8 3 Indicates that INFORM mode is requested (if set)

Reserved 8 4 Reserved for system use

TTDL 8 5 Indicates task is in a DELAY blocking condition (if set)

TTDB 8 6 Indicates DELAY "break"; the completion of any outstanding
SR will satisfy the DELAY (if set)

TTDT 8 7 Indicates the type of DELAY

0 means delay in seconds
1 means delay in 1 /60 seconds

TTPR 9 0 Indicates privileged mode (if set)

TTAB 9 1 Indicates that this task is being aborted (if set)

TTPD 9 2 Indicates a partition (not system) TCT (if set)

TTIC 9 3 Indicates instruction cycle-down mode (if set)

ITPRI 9 4.7 Indicates task priority

TTID1

} 10} 0-7

}
/ Task identification fields

TTID2 11 0-7 If TTPDBIT=O

< TTI 01 and TTI 02 provide for system task identification

If TTPDBIT=1

\ TTID2 provides PIO for partition task identification

E-12

Mnemonic Bytes Bits Description

TTFDT 12,13 0-7 Pointer to first FDT associated with the tasks instance of
execution

TT JCT 14;15 0-7 Pointer to an associated JCT

TTWOUE 16,"17 0-7 Provides a task OEB request queue

TTCOEB 18,'19 0-7 Pointer to the current QEB

TTRO 20,:21 0-7 Save area for Register 0

TTR1 22.:23 0-7 Save area for Register 1

TTR2 24,:25 0-7 Save area for Register 2

TTR3 26,:27 0-7 Save area for Register 3

TTR4 28,29 0-7 Save area for Register 4

TTR5 30,:J1 0-7 Save area for Register 5

TTR6 32,:J3 0-7 Save area for Register 6

TTR7 34,:J5 0-7 Save area for Register 7

TTCRG 36,:J7 0-7 Save area for Condition Register

TTPRG 38,:l9 0-7 Save area for Program Register

TTCMCB 40,41 0-7 Pointer to Communications Master Control Block

TTEPT 42,43 0-7 Program entry point

TTDES 44,45 0-7 Program descriptor

E-13

0

2

4

6

8

10

12

14

.___ _______ ~

.___ _______ ~

JOB CONTROL TABLE: (JCT)

JSTAT PIO

JTPSP

JTFAD

JTPRO

JTCEP

JTDBCT

JTDBI
.__-------~--·~~-·-----------------------1

16 FC l LENGTH

===·-••tii\j.- JTLPK

24

26

28

30

32

34

36

38

40

42

44

46

48

50

52

54

56

58

60

62

NAM EA DR

LODA DR
---------~

JTCOM

JTPOST JTIFC

JTCLS JTPRI

JTNAM

JTSTP

.___------------------~--------------~

JTACC

---------~--·~----------------------~

JTSTIM

JTETIM

E-14

64

66

68

70

72

74

76

78

80

82

84

86

88

90

92

94

JTLIM
t-----~~~~~~--~--

------~~~~~~--~~
JTJCS

JTOEF

JTPAR
~---~~~~~~--~--

JTSWI
1-----~~~~~~--~--

JTCHKP
t----~~~~~~--~--

m m

d d

v JOA TE

t------~~~~~~--~--

t------~~~~~~--~--

JTCOMA

E-15

Mnemonic Bytes Bits Description

JSTAT 0 0-7 Used to convey information among systems programs.
0-3 Modified by System Control Program, Control Language

Services, and computer operator.
Used by Relocating Program Loader, System Control
Program and Control Language Services

0 0 User Active

0 Job Monitor Active

0 2 User Blocked

0 3 Job Monitor Blocked

0 4 Private Library Indicator (Loader)

0 5 Halt Job at Step End

0 6 SystE!m Card Reader Assigned

0 7 Operator Attention

0 Debug Mode

1,2 Dump Indicator
00 = Dump if abnormal
01 = Never dump
10 = Always dump

3 Private Library Indicator (Master)

PID 4-7 Partition Identifier.
Set by System Control Program.
Used by Control Language Services and Program Loader.

JTPSP 2,3 0-7 Partition Space.
Pointer to the first entry in the chain of available memory space.
Modified by System Control Program and Program Loader.
Used by Control Language Services, Data Management Services,
Program Loader, and System Control Program.

JTFAD 4,5 0-7 First Address Available to Loader.
Conveys to the Program Loader the first memory location where
the program may be loaded.
Modified by Control Language Services.
Used by Program Loader.

JTPRO 6,7 0-7 Program Load Address.
Gives the address of the beginning of the problem program.
Set and used by Program Loader.

JTCEP 8-11 0-7 Composite Entry Pointer.
Disc block pointer to the Load Library block at which the
Composite Entry Point List begins.
Set and used by Program Loader.

JTDBCT 12,13 0-7 Debug Control Table Pointer.
Pointer to storage address of Debug Control Table.
Set and used by Debug program.

E-16

Mnemonic Bytes Bits Description

JTDBI 14,15 0-7 Debug Instruction.
First two bytes of the instruction overlaid by the Debug
service request.
Set by Debug program.
Used by System Control Program.

JTLPK 16-27 0-7 Loader Packet.
Required for calling Program Loader.
Modified by Control Language Services, System Control
Program, and Program Loader.
Used by System Control Program and Program Loader;
and divided as follows:

FC 16 0-7 Function Code 1015

LENGTH 17 0-7 Length of this Packet 7 words

c 18 0 Request Complete Indicator
0 Request has not completed

Request has completed

A 18 Completion Status Indicator
0 Normal Completion
1 Abnormal Completion

END 18 2 END bit
0 File End Condition has not occurred

File End Condition has occurred

Reserved 18 0-7 Reserved for system use

RETURN 19 0-7 Return Code
1 1/0 Error
2 Cannot locate module via Entry Point List
3 Cannot locate module via library catalog
4 Module exceeds Partition limits
5 Invalid Load Address

Reserved 20 0-7 Reserved for system use.
21 0-4

SFC 21 5-7 Subfunction Code
0 Load by Entry Point

Load by Entry Point at Load Address
2 Load by Module Name
3 Load by Module Name at Load Address
4 Fetch by Entry Point
5 Illegal
6 Fetch by Module Name
7 JMSI Fetch Request (Control Language Services only)

Reserved 22,23 0-7 Reserved for system use.

NAMEADR 24,25 0-7 Address pointing to 8 byte Module or Entry Point Name.

Reserved 26,27 0-7 Reserved for system use.

LOADADR 28,29 0-7 Relative load address (if SFC = 1 or 3 only).

JTC:OM 30,31 0-7 Completion Code.
Conveys completion status of problem program.
Set by System Control Program.
Used by Control Language Services, Dump, and System
Control Program.

E-17

Bulletin: 2200.004-0001
Date: 4/2/73

Mnemonic

JTPOST

JTIFC

JTCLS

JTPRI

JTNAM

JTSTP

JTACC

JTSTIM

JTETIM

JTLIM

JTJCS

JTDEF

JTPAR

Bytes Bits

32 0-7

33 0-7

34 0

1

3-7

35 0-7

36-43 0-7

44-51 0-7

52-55 0-7

56-59 0-7

60-63 0-7

64,65 0-7

66,67 0-7

68,69 0-7

70,71 0-7

Description

Program Option Switch Table.
Provides inter-program switch testing and setting capabilities.
Set by Problem Program and Control Language Services.
Used by Problem Program.

Job IF Code.
Any EBCDIC value that is set by a Problem Program via an
SR.
Tested by the Control Language //IF statement.

Internal switch for Job Initiator abort condition.

Immediate restart requested.

Job Class.
Used to indicate in which partition the user wants a job to run.
Set and used by Control Language Services.

Job Priority.
Conveys priority of job, 1-9, as specified on the //JOB
statement. Set and used by Control Language Services.

Eight character job name (left justified space filled if less than
eight characters) specified on the //JOB statement.
Set by Control Language Services.
Used by Data Management and Control Language Services.

Eight character step name (left justified space filled if less
than eight characters) specified on the //EXECUTE statement.
Set and used by Control Language Services.

Account Number.
Specified as user account number on //JOB statement.
Used for accounting purposes. Set and used by Control
Language Services.

Step Start Time.
Packed decimal form HHMMSS.
Set and used by Control Language Services.

Step Elapsed Time.
Packed decimal form HHMMSS.
Set and used by Control Language Services.

Step Time Limit.
Maximum number of minutes the user wishes to allow his
program to run.
Set by Control Language Services.
Modified and used by System Control Program.

Next Job Control Statement.
Block number of next record in SYSIN.
Set and used by Control Language Services.

First DEFINE.
Block number of first DEF record in the SYSIN file for a step.
Set by Control Language Services.
Used by Data Management and Control Language Services.

Next Parameter.
Block number of next PAR record in the SYSIN file for a step.
Set by Control Language Services.
Used by System Control Program.

E-18

Mnemonic Bytes Bits Description

JTSWI 72 0 EOF switch for Accept macro.

1 ABORT switch for Accept macro.

2-7 Reserved for system switches.

73 0-7 Reserved for system switches.

JTCHKP 74,75 0-7 Checkpoint Number.

JDATE 76-84 0-7 Job Date.
Date specified for this job (need not be current date) used
for date-dependencies in problem program.
Form MMDDYYJJJ
MMDDYY set by Control Language Services from system data or
from DATE keyword of //SET statement if specified.
JJJ calculated from //SET statement.
Used by problem program.
Divided as follows:

76,77 P.7 Calendar Month.

78,79 0-7 Calendar Day.

80,81 0-7 Calendar Year.

82-84 0-7 Julian Date.

Reserved 85 0-7 Reserved for system use.

JTCOMA 86-95 0-7 Communications Area.
Provides for communication between steps.
Cleared by the Job Initiator module of Control Language Services.
Set and used by executing program via SR.

E-19

F. INDEX-BLOCK SIZE FOR INDEXED FILES

CALCULATING BY TABLIE

Bulletin: 2200.004-0001
Date: 4/2/73

The minimum index block size and optimum block size may be calculated by Table~ F-1
through F-4. Refer to thE~ MRX/OS Control Program and Data Management Services,
Extended Reference manual for the layouts of the index portion of indexed files.

MINIMUM INDEX BLOCK

There is a minimum index block size for every indexed file depending on key size and file
size. The user may utilize any index block size larger than the minimum, if he has memory
space for a larger index block. The larger the index block the better retrieval becomes on
random processing. If the user goes below the minimum index block size there is the
possibility of not being able to create the file size as planned.

OPTIMUM INDEX BLOCK

When planning the creation of indexed files, the user must decide whether he wants to
process the directory-directory, which resides on mass storage, in a main memory buffer.
This option speeds up random processing, but requires extra space for the buffer. If the
mode of processing is with a main-memory buffer there is a well-defined optimum index
block size which minimizes memory space for the index buffer and directory-directory
buffer.

Once the user has determined his mode of processing, Table F-1 is used to determine
minimum-keys/block and Table F-2 is used to determine optimum keys/block. Note that in
using Table F-1 and Table F-2, the larger of the two values in the file size is the determining
factor. Also note that these tables were computed for consistency for maximum key size
and one million records as the upper limit. There will be some index block sizes generated
that exceed one track in number of bytes. This exceeds the system limit for block sizes
(limit is 7294 bytes). The user will have to choose a smaller key size or smaller file size.

PROGRAMMING CONSIDERATIONS

The keys/block is entered in the Control Language //DEFINE statement along with key size.
The corresponding minimum or optimum index block size can be calculated from Table F-3.
The resulting index block si2:e is then entered in the source program.

If the user has determined to calculate the optimum keys/block and optimum index block
size, Table F-4 is used to calculate the number of bytes for the main-memory buffer for the
directory-directory entries.

F-1

Bulletin: 2200.004-0001
Date: 4/2/73

The user must be careful not to exceed the file maximum at creation time when using the
optimum block si.ze - when he utilizes the main-memory buffer to hold the
directory-directory entries for random processing, the buffer would not be able to hold all
the entries, thus writing over the user program. Thus, when choosing an index block size
other than the optimum and the main-memory buffer is used to process the
directory-directory entries, the buffer size should be the size of the index block, as the
system checks for overflow at creation ti me.

EXAMPLES

The following examples illustrate how to calculate the minimum index block size, the larger
than minimum index block size, and the optimum index block size.

MINIMUM INDEX BLOCK SIZE

The minimum index block size can be calculated with the following steps.

1. In Table F-1 locate the number of records in the file and the key
size. For example, if the number of records is 20,000 and the key
size is 10, the minimum keys per block is 24.

2. The keys/block is entered in the Control Language //DEFINE
statement along with the key size.

3. The corresponding minimum index block size is calculated from
Table F-3 using the minimum block size formula. For this example
with minimum keys/block of 24 and key size of 1 O; the minimum
index block size is 384 bytes.

4. The minimum index block size is then entered into the source
program.

LARGER THAN MINIMUM INDEX BLOCK SIZE

Similar to the minimum index block size, an index block that is larger than the minimum
may be calculated with the same steps. The difference is found in estimating the keys/block,
it must be greater than or equal to the minimum keys/block selected.

OPTIMUM INDEX BLOCK SIZE

The optimum index block size can be calculated with the following steps.

1. In Table F-2 locate the number of records in the file and the key
size. For example, if the number of records is 20,000 and the key
size is 10, the optimum keys per block is 30.

F-2

Bulletin: 2200.004-0001
Date: 4/2/73

2. The keys/block is entered in the Control Language //DEFINE
statement along with the key size.

3. The corresponding optimum index block size is calculated from
Table F-3 uising the optimum block size formula. For this example
with optimum keys/block of 30 and key size of 30, the optimum
index block size is 475 bytes.

4. The optimum index block size is then entered into the source
program.

5. For optimum keys/block and optimum index block size, Table F-4 is
used to calculate the main-storage buffer for the directory-to-the
directory entries. For this example, the number of bytes required for
the buffer for the directory-to-the-directory is 250.

F-2a

Bulletin: 2200.004-0001
Date: 4/2/73

Records in File

0- 5,000

5,000 - 10,000

10,000 - 15,000

15,000 - 20,000

20,000 - 25,000

25,000 - 30,000

30,000 - 35,000

35,000 - 40,000

40,000 - 45,000

45,000 - 50,000

50,000 - 60,000

60,000 - 70,000

70,000 - 80,000

80,000 - 90,000

90,000 - 100,000

100,000 - 125,000

125,000 - 150,000

150,000 - 175,000

175,000 - 200,000

200,000 - 250,000

250,000 - 300,000

300,000 - 350,000

350,000 - 400,000

400,000 - 450,000

450,000 - 500,000

500,000 - 600,000

600,000 - 700,000

700,000 - 800,000

800,000 - 900,000

900,000 - 1,000,000

2 3

13 14

16 17

19 20

20 21

22 23

23 24

25 26

26 27

27 28

28 29

29 31

31 32

32 34

34 35

35 36

37 39

40 41

42 44

44 46

47 49

50 52

52 55

55 57

57 60

59 62

63 66

66 69

69 72

72 75

74 78

Table F-1. Minimum Keys/Block

Key Size in Bytes

4 5 6 7 8 9 10

14 14 15 15 15 15 15

18 18 18 19 19 19 19

20 21 21 21 22 22 22

22 23 23 23 24 24 24

24 24 25 25 25 26 26

25 26 26 27 27 27 28

27 27 28 28 28 29 29

28 28 29 29 30 30 30

29 30 30 31 31 31 31

30 31 31 32 32 32 33

32 32 33 34 34 34 35

34 34 35 35 36 36 36

35 36 36 37. 37 38 38

36 37 38 38 39 39 40

37 38 39 40 40 41 41

40 41 42 43 43 44 44

43 44 45 45 46 46 47

45 46 47 48 48 49 49

47 48 49 50 50 51 51

51 52 53 54 54 55 55

54 55 56 57 58 58 59

57 58 59 60 61 62 62

59 61 62 63 63 64 65

62 63 64 65 66 67 67

64 65 67 68 68 69 70

68 69 71 72 73 73 74

71 73 74 75 76 77 78

74 76 78 79 80 81 81

77 79 81 82 83 84 85

80 82 84 85 86 87 88

F-2b

11 16 21 26 36 51
to to to to to to
15 20 25 35 50 100

16 16 16 16 17 17

20 20 20 21 21 21

23 23 23 23 24 24

25 25 26 26 26 26

27 27 27 28 28 28

28 29 29 29 30 30

30 30 31 31 31 32

31 32 32 32 33 33

32 33 33 34 34 34

34 34 34 35 35 36

36 36 37 37 37 38

37 38 38 39 39 40

39 40 40 41 41 42

41 41 42 42 43 43

42 43 43 44 44 45

45 46 47 47 48 48

48 49 49 50 51 51

50 51 52 53 53 54

53 54 54 55 56 56

57 58 58 59 60 61

61 61 62 63 64 64

64 65 65 66 67 68

67 68 68 69 70 71

69 70 71 72 73 74

72 73 74 74 75 76

76 77 78 79 80 81

80 81 82 83 84 85

84 85 86 87 88 89

87 88 89 91 91 93

90 92 93 94 95 96

Table F-2. Optimum Keys/Block

Key Size in Bytes
1--·

Records in File

2 3 4 5 6 7 8 9 10

0- 5,000 16 17 18 18 18 19 19 19 19

5,000- 10,000 20 21 22 23 23 23 24 24 24

10,000 - 15,000 23 24 25 26 26 27 27 27 27

15 ,000 - 20 ,000 26 27 28 28 29 29 29 30 30

20,000 - 25,000 28 29 30 31 31 32 32 32 33

25,000 - 30,000 29 31 32 32 33 34 34 34 35

30,000 - 35,000 31 32 33 34 35 35 36 36 37

35,000 - 40,000 32 :34 35 36 36 37 37 38 38

40,000 - 45,000 34 ;35 36 37 38 38 39 39 40

45,000 - 50,000 35 :36 37 38 39 40 40 41 41

50,000 - 60,000 37 ;39 40 41 42 42 43 43 43

60,000 - 70,000 39 41 42 43 44 44 45 45 46

70,000 - 80,000 40 42 44 45 46 46 47 47 48

80,000 - 90,000 42 44 45 47 47 48 49 49 50

90,000 - 100,000 44 46 47 48 49 50 50 51 51

100,000 - 125,000 47 49 51 52 53 54 54 55 55

125,000 - 150,000 50 fi2 54 55 56 57 58 58 59

150,000 - 175,000 52 55 57 58 59 60 61 61 62

175,000 - 200,000 55 57 59 61 62 63 63 64 65

200,000 - 250,000 59 €•2 64 65 67 68 68 69 70

250,000 - 300,000 63 66 68 69 71 72 73 73 74

300,000 - 350,000 66 619 71 73 74 75 76 77 78

350 ,000 - 400 ,000 69 72 74 76 78 79 80 81 81

400,000 - 450,000 72 75 77 79 81 82 83 84 85

450,000 - 500,000 74 78 80 82 84 85 86 87 88

500,000 - 600,000 79 82 84 87 89 90 91 92 93

600,000 - 700,000 83 87 90 92 94 95 96 97 98

700,000 - 800,000 87 91 94 96 98 99 100 102 102

800,000 - 900,000 90 94 97 100 102 103 105 106 106

900,000 - 1,000,000 93 98 101 103 105 107 108 109 110

F-3

11 16
to to
15 20

20 20

25 25

28 29

31 32

34 34

36 36

37 38

39 40

41 41

42 43

45 45

47 48

49 50

51 52

53 54

57 58

61 61

64 65

67 68

72 73

76 77

80 81

84 85

87 88

90 92

96 97

101 102

105 107

110 111

113 115

Bulletin: 2200.004-0001
Date: 4/2/73

21 26 36 51
to to to to
25 35 50 100

20 21 21 21

25 26 26 26

29 29 30 30

32 32 33 33

34 35 35 36

37 37 37 38

38 39 39 40

40 41 41 42

42 42 43 43

43 44 44 45

46 46 47 48

48 49 49 50

50 51 52 52

52 53 54 54

54 55 56 56

58 59 60 61

62 63 64 64

65 66 67 68

68 69 70 71

74 74 75 76

78 79 80 81

82 83 84 85

86 87 88 89

89 91 91 93

93 94 95 96

98 100 101 102

103 105 106 107

108 110 111 . 112

112 114 115 116

116 118 120 121

Bulletin: 2200.004-0001
Date: 4/2/73

Table F-3. Optimum or Minimum Index Block Size

Optimum block size 10 +I (10) (OKgB) (KS+4) I
OKB = Optimum keys/block

KS = Key size

Minimum block size 10 + I 1101 (MK~ (KS+41 I
MKB = Minimum keys/block

KS = Key size

NOTE: 11 Round up if result not whole integer.

Tabla F-4. Bytes Required in Buffer for Directory-Directory Entries

Usage =[g(o~~-101] = US

Number keys/primary index block =[K~~4] = NKP

Number keys/directory block =[K~~J= NKD

Total number keys represented/
directory block = (NKP) (NKD) = NKRD

Number entries in =lfile size)= NKDD
Directory-directory block NKRD

Number of bytes required for
buffer for directory-directory
entries

10 + (KS+2) (NKDD)

NOTE:/)= Round up if result not whole integer.

[]= Round down if result niot whole integer.

F-4

CALCULATING BY FORMULA

Bulletin: 2200.004-0001
Date: 4/2/73

If the user wishes to iealculcite keys/block based on a different file maximum than given in
Tables F-1 and F-2, the following algorithms, along with Table F-5, can be used to compute
minimum and optimum keys/block. The constants Ko and Km are taken from Table F-5
based on key size.

--{'3 ~Kso } Optimum (OKB) "'J Ko

Minimum(MKB) ={~}

FS = Maximum File Size

NOTE: { } = Ftound up if result not whole integer.

F-5

Table F-6. Constants for Alternate Algorithm

KS Ko Km KS Ko Km

2 1.2500 2.5000 52 .5975 1.1950

3 1.0888 2.1776 53 .5967 1.1934

4 .9877 1.9753 54 .5959 1.1918

5 .9184 1.8367 55 .5952 1.1904

6 .8681 1.7361 56 .5945 1.1890

7 .8299 1.6598 57 .5939 1.1878

8 .8000 1.6000 58 .5932 1.1864

9 .7759 1.5518 59 .5926 1.1852

10 .7562 1.5124 60 .5920 1.1840

11 .7396 1.4792 61 .5914 1.1828

12 .7256 1.4512 62 .5908 1.1816

13 .7136 1.4272 63 .5903 1.1806

14 .7031 1.4062 64 .5897 1.1794

15 .6940 1.3880 65 .5892 1.1784

16 .6859 1.3718 66 .5887 1.1774

17 .6787 1.3574 67 .5882 1.1764

18 .6722 1.3444 68 .5878 1.1756

19 .6664 1.3328 69 .5873 1.1746

20 .6612 1.3224 70 .5868 1.1736

21 .6564 1.3128 71 .5864 1.1728

22 .6520 1.3040 72 .5860 1.1720

23 .6480 1.2960 73 .5856 1.1712

24 .6443 1.2886 74 .5852 1.1704

25 .6409 1.2818 75 .5848 1.1696

26 .6378 1.2756 76 .5844 1.1688

27 .6348 1.2696 77 .5840 1.1680

28 .6321 1.2642 78 .5837 1.1674

29 .6296 1.2592 79 .5833 1.1666

30 .6272 1.2544 80 .5830 1.1660

31 .6249 1.2498 81 .5827 1.1654

32 .6228 1.2456 82 .5823 1.1646

33 .6209 1.2418 83 .5820 1.1640

34 .6190 1.2380 84 .5817 1.1634

35 .6172 1.2344 85 .5814 1.1628

36 .6156 1.2312 86 .5811 1.1622

37 .6140 1.2280 87 .5808 1.1616

38 .6125 1.2250 88 .5805 1.1610

39 .6111 1.2222 89 .5802 1.1604

40 .6097 1.2194 90 .5800 1.1600

41 .6084 1.2168 91 .5797 1.1594

42 .6072 1.2144 92 .5794 1.1588

43 .6060 1.2120 93 .5792 1.1584

44 .6049 1.2098 94 .5789 1.1578

45 .6038 1.2076 95 .5787 1.1574

46 .6028 1.2056 96 .5785 1.1570

47 .6018 1.2036 97 .5782 1.1564

48 .6009 1.2018 98 .5780 1.1560

49 .6000 1.2000 99 .5778 1.1556

50 .5991 1.1982 100 .5776 1.1552

51 .5983 1.1966

F-6

G. CONTROL. LANGUAGE STATEMENTS
FOR 2 SAMPLE JOBS

This appendix presents two jobs, a sample call on a COBOL compile-link-and-go procedure
plus the job which entered that procedure on its library. They are working jobs actually
executed in a particular installation, but they do not necessarily represent the only or ideal
way to perform a compile-and-go task. Obviously, they are not meant to be comprehensive
samples of all the CLS features, either. However, at least one of each control language
statement type appears here, and the jobs do serve as an illustration of the power of the
Control Language.

The PROCI N example shows the CLS required to enter a procedure in a private library. The
member name, as identified in the MEM operand on the //PAR card, is the name by which
the procedure may be called. The procedure code is loaded to a spooled data file
PROCEDUR (choice of name is arbitrary, so long as it corresponds to a foregoing //DEF),
referenced through the SEOIN //DEF required by the librarian. The LIST //DEF, also
required by the librarian, identifies the list output device as a printer. The third //DEF
identifies the library file on disc to which the procedure is to be entered. Since a private
library has been specified here, the call must name that library with a LIB keyword-operand.
If the user wished to make the procedure available to all systems users, he could replace this
//DEF with a //DEF for the standard system load library, $SYSLODLIB. Another
possibility here would be to dedicate the system reader by use of SYSCRD, and avoid
spooling. In this case the SEOIN //DEF and the //DATA cards would read:

//DEF ID=SE()IN,DEV=SYSCRD

//DATA Fl L=SYSCRD

(The /*LIB is required in any case, being the librarian terminator.)

As to the procedure itself, note the use of ampersands throughout the code, to show the
occurrence of run-time variables. Each of these variables ·is formally identified in the
//DECLARE at the head of the procedure. All are shown with default values except PGM:
this implies that the PGM value must be supplied in the call, whereas the others may be
defaulted. The comment cards indicate the significance of the variables. Note also the use of
//IF statements to abort rest of job if fatal errors should occur in the compile step (compiler
would set if-code of "F''') or in the link-edit step (linkage editor would set if-code of "F").

Job CALL 1 is a sample icall on the procedure. Its PROC and LIB keywords are coded first
on the //CALL, as required by the Job Monitor, PROC=CBLEEX identifying the procedure
by its library member name, and LI B=COBOLSRC identifying the private library in which it
appears. (As noted earlie!r, if the $SYSLODLIB had been chosen, the LIB keyword-operand
could be omitted here.)

G-1

PGM=EXT001 is coded as required, being used in the procedure to identify both input and
output member name to the compiler. The SYSRES VOLID DEV100 is used to replace the
default (RLS100) held by the procedure. Similarly, SPTV03 is specified as the volume used
for 1/0 files and for COBOL work files. Note, however, that by omission of the SIZE,
SRCF IL, SVOL, and DUMP keyword-operands on the //CALL, the user selects the working
defaults on the procedure, taking 1000 as maximum number of source statements, selecting
his source from the COBS RC library on SPTV01, and choosing DMP=NO on the execute of
the "go" step.

By coding a //TELL with PAU=YES after his call, the user ensures that execution of his
go-step will not proceed until the operator has responded to his //TELL message, which
requests use of 3-part paper. In like manner, the user may append additional //PAR cards,
//DEF cards, etc., to be applied to the last named step of a //CALL.

G-2

//JOB NAME=PROCIN
//EX PGM=LIBUTIL
//PAR COM=UPDATE,MTYPE=PRO,MEM=CBLEEX,OLIB=COBSRC
//DEF ID=LIST,DEV=PRT
//DEF ID=COBSRC,FIL=COBOLSRC,STA=(P,O)
//DEF ID=SEOIN,FIL=PROCEDUR
//DATA Fl L=PROCEDUR,CLS=YES
//DECLARE PGM,VOL=SPTV01,SRCFI L=COBSRC,SVOL=SPTV01,CBWRK=SPTV01,
II SYSRS=R LS100,DUMP=NO

if

*
*
*
*

PROCEDURE: CBLEEX
I.E. COBOL COMPILATION

LINK EDIT
EXECUTE

VARIABLES REQUIRED DEFAULT

PGM YES NONE
VOL NO SPTV01
SRCFIL NO COBSRC
SVOL NO SPTV01
CBWRK NO SPTV01
SYSRS NO RLS100
DUMP NO NO

DESCRIPTION

PROGRAM AND SOURCE MEM
ALLOC OF 1/0 Fl LES
SOURCE FILE NAME
VOLUME FOR ABOVE
ALLOC OF COBOL WORK
SYSRES VOL ID
DUMP PARM ON //EX

-------------------·-------------------------------------
//EX
//PAR
//DEF
II
//DEF
//DEF
//DEF
//DEF
//DEF
//DEF
//DEF
//DEF
//IF
//EX
//PAR
//DEF
//DEF
I/DEF
II
//DEF
//IF
//EX
//DEF
/*LIB
/*
//EOJ

PGM=COBOL
OBJECT=YES,DMAP=YES,PMAP=YES,XREF=YES,OMEM=&PGM,IMEM=&PGM
ID=OUTPUT,FIL=SPT~-CB-OBJ-MOD,STA=T,NUM=1000,SIZ=256,

BLK=1,CSD=NO,VOL=&VOL,CON=YES
ID=INPUT,FIL=&SRCFIL,STA=(P,l),VOL=&SVOL,CAT=NO
ID=LIST,DEV=PRT
I D=MRSI Fl L,FI L=DUMMY,VOL=&CBWRK
ID=MRELFI L,FI L=DUMMY,VOL=&CBWRK
ID=MRTEXT01,FIL=DUMMY,VOL=&CBWRK
ID=MRVIRTAL,FIL=DUMMY,VOL=&CBWRK
I D=MRXRFFI L,FI L=DUMMY,VOL=&CBWRK
ID=MRERRFIL,FIL=DUMMY,VOL=&CBWRK
CODE=F,GO=EOJ
PGM=LNKEDT
PGM=&PGM,LST=XREF
ID=LI 81 ,Fl L=$SYSOB~ILI B,STA=P.VOL=&SYSRS
ID=INPUT,FI L==SPT-CB-OBJ-MOD,VOL=&VOL
I D=OUTPUT,FI L=SPT--CB-REL-MOD,NUM=1000,SIZ=256,BLK=1,
CSD=NO,CON=YES,VOL=&VOL
I D=LIST,DEV=PRT
CODE=F,GO=EOJ
PGM=&PGM,LI B=SPT -·CB-REL-MOD,DMP=&DUMP
I D=$LODLI B,FI L=SPT-CB-REL-MOD,VOL=&VOL

G-3

SAMPLE PROCEDURE-CALL, AS SUBMITTED

//JOB
//CALL
//TELL
//EOJ

NAME=CALL1
PROC=CBLEEX,LIB=COBOLSRC,PGM=EXT001,VOL=SPTV03,CBWRK=SPTV03,SYSRS=DEV100
PAU=YES,OP=READY PRINTER WITH 3-PART PAPER AND REPLY "GO"

G-4

SAMPLE PROCEDURE-CALL, AS LISTED ON SYSOUT

JOB CALL 1 ENTERED SYSTEM ON 110972/72314 AT 070227 BY $JMOIR 6.2 - 09/20/72
//JOB NAME=CALL 1
JMJl0960 070308 JOB CALL1 QUEUED
JMJI0980 070316 JOB CALL1 INITIATED
//CALL PROC=CB LE EX, LI B==COBOLSRC,PGM= EXT001, VOL=SPTV03,CBWR K=SPTV03,SYSRS=DEV100

*
*

PROCEDURE: CBLEEX
I.E. COBOL COMPILATION

LINK EDIT
EXECUTE

* ·---------------·-------------
VARIABLES R:EQUIRED DEFAULT DESCRIPTION

·----------------------·------------------------------------
PGM YES NONE PROGRAM AND SOURCE MEM

* SIZE 1\10 1000 MAX# OF SOURCE STATEMENTS
VOL f\10 SPTV01 ALLOC OF 1/0 FILES
SRCFIL 1\10 COBSRC SOURCE Fl LE NAME

* SVOL 1\10 SPTV01 VOLUME FOR ABOVE
* CBWRK 1\10 SPTV01 ALLOC OF COBOL WORK
* SYS RS 1\10 RLS100 SYSRES VOL ID

DUMP 1\10 NO DUMP PARM ON //EX

//EX PGM=COBOL
//PAR OBJECT=YES,DMAP=YIES,PMAP=YES,XREF=YES,
//PAR OMEM=EXT001,IMEM=EXT001,MAXSIZ=1000
//DEF ID=OUTPUT,FIL=SPT-CB-OBJ-MOD,STA=T,NUM=1000,SIZ=256,
II BLK=1,CSD=NO,VOL=SPTV03
JMSI0230 ALLOCATED SPT -CB-OBJ-MOD WITH BLK SIZE 0256
//DEF ID=INPUT,FIL=COBSRC,STA=(P,l),VOL=SPTV01,CAT=NO
//DEF ID=LIST,DEV=PRT
//DEF ID=MRSIFIL,FIL=DUMMY,VOL=SPTV03
//DEF ID=MRELFI L,FI L=DUMMY,VOL=SPTV03
//DEF ID=MRTEXT01,FI L=DUMMY,VOL=SPTV03
//DEF ID=MRVIRTAL,FI L=DUMMY,VOL=SPTV03
//DEF ID=MRXPRFI L,FI L=DUMMY,VOL=SPTV03
//DEF ID=MRERRFI L,FI L=DUMMY,VOL=SPTV03
JMST0210 PURGED MRERRFIL
JMST0210 PURGED MRSIFIL
JMST0210 PURGED MRTEXT01
JMST0210 PURGED MRVIRTAL
JMST0210 PURGED MRXRFFIL
JMST0210 PURGED MRELFIL
JMST0190 PGM NAME: COBOL
JMST0160 STEP START TIME

IF CODE:
07:03:49

JMST0170 STEP STOP TIME 07:05:53
JMST0150 STEP ELAPSED TIME 00:02:04
//IF CODE=F,GO=EOJ
//EX PGM=LNKEDT
//PAR PGM=EXT001,l.ST=XRIEF
//DEF ID=LIB1,FIL=$SYSOBJLIB,STA=P,VOL=DEV100
//DEF ID=INPUT,FI L=SPT-CB-OBJ-MOD,VOL=SPTV03

COMPLETION CODE: 0

//DEF ID=OUTPUT,FI L=SPT-OB-REL-MOD,NUM=1000,SIZ=256,BLK=1,
II CSD=NO,VOL=SPTV03
JMSI0230 ALLOCATED SPT -CB-REL-MOD
//DEF ID=LIST,DEV=PRT
JMST0210 PURGED LNKEDTVTFLE
JMST0190 PGM NAME: LNKEDT
JMST0160 STEP START TIME
JMST0170 STEP STOP TIME
JMST0150 STEP ELAPSED TIME
//IF CODE=F,GO=EOJ

IF CODE:
07:06:14
07:06:38
00:00:24

WITH BLK SIZE 0256

COMPLETION CODE: 0

//EX PGM=EXT001,LIB=SPT-CB-REL-MOD,DMP=NO

G-5

//DEF ID=$LODLIB,FIL=SPT-CR-REL-MOD,VOL=SPTV0~{

//TELL PAU=YES,OP=READY PRINTER WITH 3-PART PAPER AND REPLY "GO"
JMST0190 PGM NAME: EXT001 IF CODE: COMPLETION CODE: 0
JMST0160 STEP START TIME 07:06:47
JMST0170 STEP STOP TIME 07:06:51
JMST0150 STEP ELAPSED TIME: 00:00:04
//EOJ

PURGED SPT -CR-OBJ-MOD
PURGEDSPT-CR-REL-MOD

JMJTOOOO
JMJTOOOO
JOB CALL1 COMPLETED ON 110972/72314 AT 070701 RY $JMJ1 6.2 - 09/20/72

G-6

H. VARIABLE REPLACEMENT RULES

LONGEST VARIABLES REPLACED FIRST

All variables supplied on either the //CALL or the //DEC are placed in a variable table.
Entries in this table are made in the order of diminishing length: for example, VARI will
appear in the table prior to VAR or CAT. A field in a procedure which contains
&VAR I LOG is capable oif being replaced by a value attached to any of seven variables (V,
VA, VAR, etc.); but will be only replaced by the value attached to the longest of the
variables. Thus, one should insure that each of the variables in a procedure is not a beginning
portion of some other variable within the same procedure.

EXAMPLE

//CALL PROC=TEST,VAR=SYSTEM

PROCEDURE - TEST:

HDEC VARERR=TEST

//EXEC PGM=UTI L63

//PAR FILE=&V.ARERRLOG,OPT=FULL

RESULTING CONTROL LAl\IGUAGE:

//EXEC PGM=UTI L63

//PAR Fl LE=TESTLOG,OPT=FULL

The caller had presumablv intended the //PAR to appear as follows:

//PAR Fl LE=SYSTEMERRLOG,OPT=FULL

This would, indeed, have been the result if the variable, VAR ERR, had not also been in the
replacement table; or if the table had been ordered by increasing lengths rather than by
diminishing lengths.

H-1

VARIABLES TERMINATED BY A COMMA, BLANK, OR EQUAL SIGN

A variable that is terminated by an equal sign will be entered in the replace table along with
its associated value. A variable that is terminated by a comma or a blank is not entered in
the replace table, because it has no associated value to be used in the replacement
procedure. A comma as a variable delimiter indicates that more variables exist and the
PROC scanning routine proceeds to look for the next variable. If a blank delimits a variable,
then no more variables are expected and the PROC scanning routine terminates its search
for more variables.

EXAMPLES

1) //CALL PROC=TEST,VAR=SYS,VOL=YPAK

Two variables, VAR and VOL, are entered in the replace table.

2) //DEC VAR,DEV=DISC,VOL

A variable, DEV, is entered in the replace table.

3) //CALL PROC=TEST,VAR ,VOL=DEV100

No variables are entered in the replace table. The blank stops the scan so that
VOL=DEV100 is not found.

4) //CALL PRO=TEST,VOL=DEV100,VAR,D=DOG

Two variables, VOL and D, are entered in the replace table.

Currently, no diagnostic appears for a variable that does not have a value associated with it.

VALUES TERMINATED BY A COMMA OR A BLANK

The PROC scan routine searches for values in the following manner. The cursor is positioned
to the column immediately following the equal sign. The scan routine then moves the cursor
to the first non-blank character which is the start of the value character string. The value
character string is terminated by a blank or a comma whichever occurs first. A comma as an
ending delimiter indicates that further variables are expected. A space indicates that no
further variables are to be processed.

EXAMPLES

1) //DEC VAR=SYS,VOL=YPAK

Two values, SYS and YPAK, are entered in the replace table.

H-2

2) //CALL PRO=TEST,VAR= SYS,VOL= YPAK

Two values, SYS and YPAK, are entered in the replace table.

3) //DEC VAR=SYS ,VOL=SYSPAK

One value, SYS, is entered in the replace table. The blank terminates the scan so that
the variable, VOL, is not found.

4) //DEC VAR=SY:S,VOL= ,D=DISC,TYP

Three values, SYS, the null string, and DISC, are entered in the replace table.

SIZE LIMITATIONS

REPLACE TABLE

The replace table is 512 bytes long and is filled according to the following formula:

In

512 ~ ATS :~ (Xi +Yi + 4)
i:=1

where n number of variables having associated value

x = length of variable character string

y = length of value character string

ATS = replace table size

An overflowed replace table produces the message, TOO MANY PROC VARIABLES.

SCAN BUFFER

The scan buffer is used to hold the scanned variable or value. Its size is 17 bytes. Therefore,
a variable or value is restricted to seventeen characters.

H-3

CONTINUATION STATEMENTS

The PROC routine will build a continuation statement when the substitution of values for
variables causes the length of the original statement to exceed 71 column positions. A
comma or blank is used as a separation point for moving characters to a continuation
statement.

EXAMPLE

//DEF

//DEF

c
0
L
1

F==EXTRALONGFI LENAME

ID=I DENT,VOL=SYSRES,FI L=&F

c
0
L
6
5

The substitution of the value, EXTRALONGFILENAME, for the variable, &F,would cause
the //DEF statement to go beyond column 71 so the following two statements are
produced.

//DEF ID=IDENT,VOL=SYSRES

II Fl L = EXTRALONGFI LENAME

If the portion of the original statement that is being moved to a continuation statement is
comments, then a * statement is built rather than a // statement.

The continuation statements for //PAR, //TELL, and * are //PAR, //TEL, and *
respectively.

H-4

INDEX

ABEND
ACCEPT macro
Allocate routine
/* statement

BLOCK (BLK) parameter

BUFFER(BUF)paramebr

//CALL statement

CATALOG (CAT) parameter

Cataloged procedures

CHECKOUT
Checkout debugging
CHECKOUT file
CLS parameter

CODE (COD) parameter

Command field
Comment field
* (comment) statement

CONTIGUOUS (CON) parameter

Continuation, statement
Control flow
Control Language definitions
Control Language Services
Control Language statements

/*

/* CLS
//CALL.

* (comment)

//DATA

1-11 ;D-1
0-2
1-8
2-1,41 ;A-2;
B-8;C-4

2-23,27 ,28,
28b,39;B-3,
6,8;C-2,3,4
2-21,28;
B-3;C-2

2-1,33,34;
4-1 ;A-2;
B-7;C-4
2-23,28;
B-4;C-2
1-6;4-1
thru 4-4
3-2
E-7
3-1
2-37,39;
B-8;C-4
2-31,32;
B-7;C-4
2-4
2-6
2-1,8, 10;
A-2;B-1 ;C-1
2-24,27 ,28,
28b,39;B-4,6,8;
C-2,3,4
2-5
1-15
1-1
1-2;E-3
1-l;A-1,2;
B-1,2;
C-1,2
2-2,41;
A-2;B-8;C-4
2-41
2-1,33,34;
4-1 ;A-2;
B-7;C-4
2-1,8,10;
A-2;B-1 ;C-1
2-1,37;
A-1,2;
B-8;C-4

Bulletin: 2200.004-0001
Date: 4/2/73

Control Language statements (continued)
//DECLARE 2~1,33;4-1;

A-1 ;B-7 ;C-4
//DEFINE 1-8;2-1,11,15,

28;A-1,2;
B-3;C-1

//EQT 1-1,8, 11;
2-1,8,10;
A-2;B-1 ;C-1

//EXECUTE 1-1,8, 11;
2-1, 11;
A-1,2;
B-1 ;C-1

//IF 1-8;2-1,31;
A-1,2;
B-7;C-4

//JOB 1-1;2-1,8;
A-1 ;B-1 ;C-1

//PAR 1-8 ;2-1 , 11 , 14;
A-1 ;B-2;C-1

//ROUTE 2-1,4,27,41;
A-1 ;B-5;C-3

//SET 2-1,11,28d;
A-1,2;
B-6;C-3

//TELL 1-8;2-1,11,
30;B-6;C-3

Control program E-3
COPY parameter 2-27,28c;

B-6;C-3
CSD parameter 2-20,28;

B-3;C-2

Data delimiter 2-41
Data level 2-1,36;

A-2;C-4
Data Management E-3
//DAT A statement 2-1,37;

A-1,2;
B-B;C-4

DATE (DAT) parameter 2-28e;B-6;
C-3

Debug E-1
DEBUG file 1-11
DEBUG (DEB) parameter 2-13;B-2;

C-1
Debug program E-4
//DECLARE statement 2-1,33;

4-l;A-1;
B-7;C-4

Default values 2-35

lndex-1

Bulletin: 2200.004-0001
Date: 4/2/73

//DEFINE (DEF) statement 1-8;2-1, 11, HOLD(HLD)parame~r 2-10,27,28c;

15,28;A-1, B-1,6;
2;B-3;C-1 C-1,3

Device assignment 3-3
disc 3-5 Identifier field 2-3

magnetic tape 3-3 IDENTIFIER (IDENT or ID) 2-16,27,28,

telecommunication 3-5 parameter 28a;B-3,5;

unit record 3-3 C-1,3

DEVICE (DEV) parameter 2-19,27,28, //IF statement 1-8;2-1,31;

28a;B-3,5;C-2, A-1,2;

3 B-7;C-4

Devices 3-1 I LOCATION (ILOC or ILO) parameter 2-25,28;

Disc al location 2-22;3-6 B-5;C-2

Disc device 3-5 Index block size F-1

Disc file expansion 2-26;3-7 Input data spooling 1-3,5

Disc file organization 3-6 Input reader 1-3,6,7

DISPLAY macro D-2 I nterstep level 2-1,31;

DUMP (DMP) parameter 2-11, 12; A-1 ;C-4

B-2;C-1 !VOLUME (IVOL or IVO) parameter 2-25,28;

Dump program E-4 B-5;C-2

EHALT 1-11 ;D-1 JCT 1-8
//EOJ statement 1-1,8, 11; JDATE macro D-1

2-1,8, 10; Job 1-1
A-2;B-1; Job control table 1-8;E-1,
C-1 3,14

EXPAND (EXP) parameter 2-26,28; Job initiator 1-3,8,9
B-5;C-3 Job level 2-1,8;

//EXECUTE (EXEC or EX) statement 1-1,8,11; A-1 ;C-1
2-1, 11; //JOB statement 1-1;2-1,8;
A-1,2; A-1 ;B-1 ;C-1
B-1 ;C-1 Job step 1-1

Job terminator 1-3, 11, 14
File definition 3-3 Job stream conventions 2-41
File Description Table E-1,4 Job queuing 1-3,4a
File sharing 2-18
Fl LENAME(FI L) parameter 2-16,27 ,28, Keyword operand field 2-5

28a,38;
B-3,5,6,8; LABEL (LAB) parameter 2-20,28;

C-1,3,4 B-3;C-2

Files 3-1,6 Language description 2-1

CHECKOUT 3-1 Language format 2-2

disc 3-6 Levels 2-1

SYSIN 3-1 data 2-1,36;

SYSOUT 3-1,2 A-2;C-4

Format rotation 2-7 interstep 2-1,31;

FORMS (FOR) parameter 2-27,28d; A-1 ;C-4
B-6;C-3 job 2-1,8;

A-1 ;C-1

GO parameter 2-31,32; procedure 2-1,33;
B-7;C-4 A-2;C-4

step 2-1, 11;
HALT 1-11 ;D-1 A-1;C-1

lndex-2

Bulletin: 2200.004-0001
Date: 4/2/73

LIBRARY (LIB) parameter 2-11, 12,34, Parameters (Continued)

35;B-2,7; DEVICE 2-19,27,28,

C-1,4 28a;B-3,5;
LI BUTI L program 4-3 C-2,3
LOCATION (LOC) parameter 2-23,28; DUMP 2-11,12;

B-3;C-2 B-2;C-1

$LODLIB 3-2 EXPAND 2-26,28;

Logical 1/0 3-7 B-5;C-3
FILENAME 2-16,27 ,28,

Magnetic tape device 3-3 28a,38;

MEMLIM macro D-2 B-3,5,6,8;

MSC parameter 2-18,28; C-1;3,4

B-3;C-2 FORMS 2-27,28d;
B-6;C-3

NAME (NAM) parameter 2-8,9, 11, GO 2-31,32;

12;B-1,2; B-7;C-4

C-1 HOLD 2-10,27,28c;

Non-standard labeled tape 3-4 B-1,6;

NUMBER (NUM) parameter 2-22,27 ,28, C-1,3

28c,39; IDENTIFIER 2-16,27,28,

B-3,5,6,8; 28a;B-3,5;

C-2,3,4 C-1,3
I LOCATION 2-25,28;

OP parameter 2-30;B-6; B-5;C-2
C-3 I VOLUME 2-25,28;

ORGANIZATION (ORG) B-5;C-2
parameter 2-20,28; LABEL 2-20,28;

B-3,4;C-2 B-3;C-2
Output data spooling 1-3 LIBRARY 2-11, 12,34,35;

B-2, 7 ;C-1,4
//PAR statement 1-8;2-1,11, LOCATION 2-23,28;

14;A-1 ;B-2; B-3;C-2
C-1 MSC 2-18,28;

Parameters B-3;C-2

BLOCK 2-23,27,28, NAME 2-8,9,11,12;

28b,39;B-3, B-1,2;C-1

6,8;C-2,3,4 NUMBER 2-22,27,28,

BUFFER 2-21,28; 28c,39;B-3,

B-3;C-2 5,6,8;

CATALOG 2-23,28; C-2,3,4

B-4;C-2 OP 2-30 ;B-6 ;C-3

CLS 2-37,39; ORGANIZATION 2-20,28;

B-8;C-4 B-3,4;C-2

CODE 2-31,32; PAUSE 1-8;2-30;

B-7;C-4 B-6;C-3

CONTIGUOUS 2-24,27 ,28, PGM 2-11,12;B-1;

28b,39;B-4, C-1
6,8,C-2,3,4 PRIORITY 2-9 ;B-1 ;C-1

COPY 2-27,28c; PROC 2-34;B-7;C-4
B-6;C-3 RESTART 2-11, 13;

CSD 2-20,28; B-2;C-1
B-3;C-2 RETENTION 2-21,28;

DATE 2-28e;B-6;C-3 B-3;C-2
DEBUG 2-13;B-2;C-1 SAVE 2-27,28c;

B-6;C-3

lndex-3

Bulletin: 2200.004-0001
Date: 4/2/73

Parameters (Continued)

SIZE

SPOOL

SPREAD

STATUS

SWITCH

TIME

TYPE
ucs

USER

VERIFY

VOLUME

Partition layout

Partition space pool
PAUSE (PAU) parameter

Permanent files
PGM parameter

Physical 1/0
POST macro
PRIORITY (PRI) parameter

Private load I ibrary
PROC (PRO) parameter

Procedure level

Program description
Program execution

Relocating program loader
Replacement rules
Required run-time variables
RESTART parameter

RETENTION (RET) parameter

//ROUTE statement

RPOST macro

2-22,27,28,
28b;B-3,5;C-2,
3
2-27,28b;
B-5;C-3
2-24,28;
B-4;C-2
2-17,28;
B-3;C-2
2··27,29;
B-6;C-3
2-11,12;
B-2;C-1
2-9 ;B-1 ;C-1
2-27,28c;
B-6;C-3
2-8,9;
B-1 ;C-1
2-24,28;
B-4;C-2
2-20,27,28,
28a;B-3,5;
C-2,3
E-1,2

E-1,5,6
1-8;2-30;
B-6;C-3
2-18
2-11, 12;
B-1 ;C-1
3-8
D-2
2-9;8-1;
C-1
3-2;E-1
2-34;8-7;
C-4
2-1,33;
A-2;C-4
1-4
1-12a

1-6;E-3
1-1-1
2-35
2-11, 13;
B-2;C-1
2-21,28;
B-3;C-2
2-1,4,27,41;
A-1 ;B-5;C-3
0-2

Sample jobs G-1
SA VE parameter 2-27,28c;

B-6;C-3
Scratch files 2-17
SDATE macros D-1

//SET statement 2-1, 11,28d;
A-1,2;
B-6;C-3

SETIF macro D-2
Sequence field 2-6

Shared drive 3-6
SIZE (SIZ) parameter 2-22,27 ,28,

28b;B-3,5;
C-2,3

Space request E-7
SPREAD (SPR) parameter 2-24,28;

B-4;C-2
SPOOL (SPL) parameter 2-27,28b;

B-5;C-3
Spooling

input data 1-3,5
output data 1-3

Standard labeled tapes 3-4
Standard linkage area E-1,3,9
Statement continuation 2-5
Statement interpreter 1-6
Statement specification 2-8
STATUS (ST A) parameter 2-17,28;

B-3;C-2
Step initiator 1-3,8, 10
Step level 2-1, 11;

A-1 ;C-1
Step terminator 1-3,11,13
SWITCH (SWI) parameter 2-27,29;

B-6;C-3
SYSCRD 2-19,37
SYSIN file 1-8, 11 ;3-1
SYSOUT file 1-8, 11;

3-1,2
$SYSPROCLI B 4-3
System control interface D-1
System input file 3-1
System output file 3-2

Task control table E-1,3,11
Telecommunications E-8
Telecommunication device 3-5
//TELL statement 1-8;2-1,11,

30;B-6;C-3
Temporary files 2-17
TIME (TIM) parameter 2-11,12;

B··2;C-1
TYPE (TYP) parameter 2-9;8-1;

C-1

lndex-4

UCS parameter 2-27 ,28c;B-6;
C-3

Uni'lt record devices 3-3
Unlabeled tape 3-5
Unshared drive 3-6
USER (USE) parameter 2-8,9;

B-1 ;C-1

VER I FY (VER) parameter

VOLUME (VOL) parameter

Work files

lndex-5

Bulletin: 2200.004-0001
Date: 4/2/73

2-24,28;
B-4;C-2
2-20,27 ,28,
28a;B-3,5;
C-2,3

2-17

COMMENTS FORM

MRX/OS Control Language Services Extended Reference Manual (2200.004)

Please send us your comments, to help us produce better publications. Use the space below to
qualify your responses to the following questions, if you wish, or to comment on other aspects of
the publication. Pleasie use specific page and paragraph/line references where appropriate. All
comments become the property of the Memorex Corporation.

Yes No

• Is the material:

Easy to understand? a a
Conveniently organized? a a
Complete? ... a a
Well illustrated? a a
Accurate? ... a a
Suitable for its intended audience?. a a

Adequately index1ed? • • • • • • • II
D D

• For what purpose did you use this publication? (reference, general interest, etc.)

• Please state your department's function: -------------------

• Please check specific criticism(s), give page number(s), and explain below:

D Clarification on page(s) -----------------------

0 Ad~tion on pageb)-----------------------~

0 Deletion on page(s) -------------------------

0 Error on page(s) ---------------------------

Business Reply Mail

No Postage Necessary if Mailed in the United States

Postage Will Be Paid By

Memorex Corporation

Midwest Operations - Publications
8941 Tenth Avenue North
Minneapolis, Minnesota 55427

Thank you for your information

Our goal is to provide better, more useful manuals, and your
comments will help us to do so .

. Memorex Publications

First Class

Permit No. 14831
Minneapolis,
Minnesota 55427

	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	1-03
	1-04
	1-04a
	1-05
	1-06
	1-07
	1-08
	1-08a
	1-09
	1-10
	1-11
	1-12
	1-12a
	1-13
	1-14
	1-15
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-28a
	2-28b
	2-28c
	2-28d
	2-28e
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	2-39
	2-40
	2-41
	2-42
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	4-01
	4-02
	4-03
	4-04
	A-01
	A-02
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	C-01
	C-02
	C-03
	C-04
	D-01
	D-02
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	E-10
	E-11
	E-12
	E-13
	E-14
	E-15
	E-16
	E-17
	E-18
	E-19
	E-20
	F-01
	F-02
	F-02a
	F-02b
	F-03
	F-04
	F-05
	F-06
	G-01
	G-02
	G-03
	G-04
	G-05
	G-06
	H-01
	H-02
	H-03
	H-04
	Index-1
	Index-2
	Index-3
	Index-4
	Index-5
	Index-6
	replyA
	replyB

