
MRX/OS Control Program
and Data Management Services
Extended Reference Manual
:2200.002

0
0
3
-c
c
CD -c en,

0 '<
c. "' c
n CD ur 3

December 1972 Edition

Requests for copies of Memorex publications should be made
to your Memorex representative or to the Memorex branch
office serving your locality.

A reader's comment form is provided at the back of this
publication. If the form has been removed, comments may be
addressed to the Memorex Corporation, Publications Dept.,
8941 - 10th Ave. No. (Golden Valley) Minneapolis,
Minnesota 55427.

© 1972, MEMOREX CORPORATION

PREFACE

Thi~ M RX/OS Control Program and Data Management
Services are discussed in two separate documents,
each designed for a specific type of input/output
(1/0) level user. The Basic Reference manual contains
information at the logical 1/0 level of processing,
where the blocking and deblocking of data is done for
the user. This document, the Extended Reference
manual, is designed for the block and physical 1/0
level user. Block 1/0 level processing recognizes no
logiical records; therefore, all data is read or written as
a dlata block. The physical 1/0 level of processing
allows the user to do his own processing of data.

Chapter 7 of this document contains all the macros
required for block and physical 1/0 level processing.
Appendix B contains the expansions of these macros
with the standard system suffixes listed.

Related information may be found in the following
documents.

•~ MRX/OS Control Language Services,
Extended Reference

11 MRX/OS Control Program and Data
Management Services, Basic Reference

" MRX/OS Assembler Reference

iii

TABLE OF CONTENTS

Section Page

INTRODUCTION 1-1

Environment 1-1
Description 1-1
Input/Output Levels 1-1

General 1-1
Logical Input/Output 1-1
Block Input/Output 1-2
Physical Input/Output 1-2
Implementation l\llethod 1-2

2 DATA STRUCTURES 2-1

Files and Records 2-1
Labels 2-1

Tape Labels 2-1
Disc Label 2-2
Disc Storage Catalogs 2-3

Tables 2-12
File Description Table 2-12
Buffer Description Table 2-12

3 BLOCK INPUT/OUTPUT 3-1

Introduction 3-1
General Rules 3-1
Block Input/Output Coding 3-2

Block Reading 3-2
Block Writing 3-2
Block Positioning 3-3
Device Control Commands 3-3
Space Management and File Control 3-3

Processing Considerations 3-3
Priority 3-3
End Conditions 3-3
Processing Multi-Volume Files 3-4

Sense Information 3-4
Request Termination 3-4
Error Processing 3-4

4 PHYSICAL INPUT/OUTPUT 4-1

Introduction 4-1
Physical Input/Output Coding 4-1

Defining and OpEming Devices 4-1
Performing the Physical 1/0 Operation 4-1

v

Section

4 (cont)

5

6

7

TABLE OF CONTENTS (Continued)

Basic Method
Sharing a PCB
Sharing an EXCP

Overlapped Operation
Physical 1/0 Restrictions
Error Processing

Example of Physical 1/0 Program

CONTROL PROGRAM SERVICES

Introduction
Service Request Control
Inter Step and Control Language Communication
Finding Partition Size
Reading Data from //PAR Cards
Writing to the SYSOUT File

INTERACTION OF DATA MANAGEMENT AND THE CONTROL LANGUAGE

MACROS

Data Management
Block 1/0 Level Declarative Macro

DEFLB - Define File Label
Block 1/0 Level and Physical 1/0 Level Executive Requests

Space Management Macros
ALLOC -· Allocate Space
EXPND - Add Mass Storage Space
PURGE -· Release Disc File Space

File Control
OPEN - Open File for Data Transmission
CLOSE - Close File for Data Transmission
CLOVE - Close Volume

1/0 Service Macro
LABRTN - Return File Label Information

Block Input/Output Macros
Read
Write

Magnetic Tape and Disc
Line Printer
Card Punch
POSITN - Change Current Block Number
CNTR L - Hardware Control Operation
STATUS - Report of Status
TYPE - Device and File Type
RESET - Reset Exception Conditions

Physical Input/Output Macros
EXCP - Input/Output Action

vi

Page

4-1
4-1

4-3
4-3
4-3
4-3
4-3

5-1

5-1
5-1
5-1
5-1
5-2
5-2

6-1

7-1

7-1
7-2
7-2
7-2
7-2
7-3
7-5

7-6
7-6
7-7
7-8
7-9
7-9
7-10
7-10
7-11
7-12
7-12
7-12
7-12
7-13
7-15
7-15
7-21
7-22
7-22

Section

7 (cont)

TABLE OF CONTENTS (Continued)

Page

Command 7-23
COMMAND Ma1cro for Basic Data Channel (Unit Record Devices and
Magnetic Tape) 7.24
COMMAND Macro for DCABLE Operation 7-24
COMMAND Macro for a DCSEEK Operation 7-24
COMMAND Macro for a DCSRCH Operation 7-27
COMMAND Macro for a DCREAD 0Reration 7-28
COMMAND Macro for a DCWRIT or DCFWRIT Operation 7-29
COMMAND Macro for a RESTORE.Operation . 7-30
COMMAND Macro for a DCJUMP Operation 7-30

Control Program Macros
WAIT - Wait for Service Request Completion 7-30
Delay - Suspend Program Execution 7-31
INFORM - Service Request Completed 7-31
POST - Create Compressed Communication Byte 7-32
RPOST - Expand from Communication Byte 7-32

SETCOM - Transfer to Job Control Table 7-33
GETCOM - Transfer from Job Control Table Communication Area 7-33
ACCEPT - Read //PAR Card 7-34
DISPLAY - Write Message on SYSOUT 7-35
MEMLIM - Identify Partition Limit 7-35
SETI F - Post Code for Control Language Test 7-36

HALT - Terminate Program 7-36
EHAL T -- Term~nate Program 7-37
ABEND -- Terminate Program Abnormally 7-37
TIME - Retrieve Time of Day 7-37
SDATE -- Retrieve System Data 7-37
JDATE -- Retrieve Job Date 7-37

Console Communication Macros 7-37
CONSOLE - Transmit Message to Console and Optionally Receive Reply 7-38
MESSAGE - Set Up Message Format 7-38

Generation of an Output Message
Generation of a l={eply Buffer

7-38
7-38

APPENDIX A - PACK CATALOG AND CENTRAL CATALOG FORMATS A-1

APPENDIX B - SERVICE REQUEST MECHANISM AND MACRO EXPANSIONS B-1

APPENDIX C - ERROR RECOVERY C-1

APPENDIX D - GAP SPECIFICA.TIONS D-1

APPENDIX E - DISC TRACK FORMAT E-1

APPENDIX F INDEX - BLOCIK SIZE FOR INDEXED Fl LES F-1

vii

LIST OF FIGURES

Figure

2-1 Standard Tape Volume Label

2-2 Standard Tape File Label

2-3 Disc Label

3-1 Block 1/0 Program to Read Cards and Print

3-2 Block 1/0 Program to Read Cards into Disc File

4-1 Basic Method for Physical I /0

4-2 Sharing a PCB

4-3 Sharing an EXCP

4-4 Physical 1/0 Program to Read Cards and Print

7-1 Card Image/Storage Relationship

LIST OF TABLES

Table

2-1

2-2

2-3

2-4

2-5

2-6

2-7

2-8

2-9

2-10

2-11

3-1

6-1

7 1

7-2

7-3

7-4

7-5

Name Element Format

Attribute Element Format

Space Element and Space Element Continuation Format

Volume Element and Volume Element Continuation Format

File Description Table Format

Disc Device Format

Magnetic Tape Device Format

Unit Record Device Format

Buffer Description Table Format for Sequential Files

Buffer Description Table Format for Relativt? Files

Buffer Description Table Format for Indexed Files

Assumed Block Numbers

Summary of Data Management and Control Language Interaction

Returned Information Format

Status Word for Basic Data Channel Operations

Status Word For Disc Channel Operations

811 Significance

Peripheral Device Basic Hardware Operation Codes

viii

Page

2-2

2-2

2-3

3-5

3-6

4-2

4-2

4-2

4-4

7-11

Page

2-4

2-6

2-8

2-10

2-13

2-16

2-18

2-19

2-20

2-24

2-29

3-2

6-2

7-16

7-19

7-20

7-22

7-25

ENVIRONMENT

The logical, block and physical input-output facilities
and control program services described in this manual
are all available on the M RX/OS nominal system.* All
except for those flagged are also available on the
MRX/OS minimal system. t Since MRX/OS is a
disc-resident system, a minimum of one disc drive is
required for the system disc pack.

DESCRIPTION

The services described in this manual are those
provided by the central part of the operating
systemtt. Access to these services, which are mainly
concerned with input/output processing, is through
system macro instructions.

*The nominal system has a minimum main storage size of

24K bytes, including a system region of 10K bytes.

tThe minimal system has a minimum main storage size of

16K bytes, including a system region of SK bytes.

tt Other operating system services, such as job control, link
editing and library utilities, are described in separate
manuals.

1. INTRODUCTION

INPUT/OUTPUT LEVELS

GENERAL

An Assembly Language programmer may code his
input/output implementation at three different
levels: the logical, block, and physical levels. The
logical level is processed by the Data Management
system while the block and physical levels are
processed directly by the system's basic input/output
routines (upon which Data Management depends).

The logical level, the highest level, is the easiest to
use. The block level provides greater flexibility but is
still dependent on the standard system data file
structures. The physical level is the most involved,
regarding coding, but provides the greatest flexibility,
including independence from the system's file
structures.

LOGICAL INPUT/OUTPUT

Logical input/output coding (described in the Control
Program and Data Management Services, Basic
Reference and in Section 2 of this book) is normally
employed in situations where no special handling of a
condition such as end-of-file is required and the
amount of available storage space is not especially
restricted (though careful coding will still enable the
programmer to economize on storage space). The
chief advantage of logical input/output is the
simplicity of coding for most common input/output
applications.

1-1

BLOCK INPUT /OUTPUT

Block input/output coding (described in Section 3)
enables the programmer to create an object program
smaller than would result from logical input/output,
since the large general-purpose GET /PUT subroutines
are not included. When the user's input/output
application is limited to a certain particular type of
operation, block input/output produces a smaller,
more efficient program but involves more work in
writing the code. Block input/output is also necessary
in the case where some special handling of abnormal
conditions is required.

PHYSICAL INPUT /OUTPUT

Physical input/output coding (described in Section 4)
1s used where the user desires to create and process
his own special external data structures for some
spec 1 a I a ppl icat ion, or where some special
input/output device such as a plotter is being used.
(The standard system files may also be processed by
physical input/output if desired, though this would
rarely be done in practice.)

IMPLEMENTATION METHOD

Ultimately, whether logical, block, or physical 1/0 is
being used, all input/output implementation is
performed by the system's input/output drivers. The
basic mode of communication with the drivers is
always the same; it involves supplying them with a
"command program", which is a contiguous group of
command control blocks, each one calling for the
execution of a specific I /0 operation.

The physical input/output user must create these
command programs himself with physical
input/output macros, and issue do input/output
macros which instruct the system to execute them.
The block input/output user, on the other hand,
simply codes the appropriate block input/output
macro; in this case the system builds the command
program and executes it. At the logical input/output
level (data management) the system performs certain
pre- or post-processing of data connected with the
logical data file structure before or after it passes
control to the block input/output level for
implementation of the actual data transfer.

1 ·2

The structure of records;, labels, and files is discussed
in connection with their use. The Control Program
and Data Management Servi1ces, Basic Reference
discusses the general data structures. This manual
gives the specific description of labels and tables.

FILES AND RECORDS

Data Management supports reicords that have the
common stored data format, which include logical
record headers and may include space headers in each
block of data. If the block 1/0 user elects to use the
common stored data format, he must specify CSD =
YES on the Control Langua~1e //DEFINE card to
allocate a block size sufficieint for the required
headers. The control information (record headers and
space headers) is managed by Data Management for
logical 1/0 users. However, block 1/0 level or physical
1/0 level users must generate or process the control
information if the common stored data format is
used. The common stored data format is used only
for data located in mass storag1e; thus data stored on
unit record devices does not have this format; and
this format is not applied to such data by the block
1/0 level READ function (Section 7, Macros).

Records may be variable length or fixed length
limited only by file organizatiain and devices; that is,
only fixed-length records can be used for unit record
devices.

Three file organizations, which produce a variety of
applications, are available for the user: sequential,
relative, and indexed. At the logical 1/0 level, two
access methods are provided - sequential and
random. At the block 1/0 level, each access is by
specified block (random) or by implied next block
(sequential, by adding one to the access count).
Sequential access is provided for all three file
organizations; however, random access is limited to
relative or indexed files.

2. DATA STRUCTURES

A more detailed discussion of file and record
structures is in the Control Program and Data
Management Services, Basic Reference.

LABELS

Two types of identification are associated with a disc
pack or tape reel: external (such as a sticker) and
internal (labels). This section is concerned with the
internal identification, namely the labels.

The internal identification serves two purposes.

1. Labels protect files from careless mistakes
resulting from the user's disregard for external
labeling.

2. Labels specify the location of data on files and
store variable file information.

Tapes are identified by both volume and file labels;
the disc files have volume labels and central and/or
pack catalogs.

TAPE LABELS

The MRX 40 and 50 Systems have two types of tape
labels: volume labels and file labels.

The volume label is found at the beginning of a tape
reel and the file label at the beginning of a file. Tape
marks separate files and their associated labels on a
tape reel.

The volume label (Figure 2-1) is identified by the
characters, VOL, found in the first three positions.
The volume label number is always 1 for
compatibility with IBM. The volume serial number
occupies positions 4 through 9 and identifies the
volume; and a unique owner name and address code
identifies the installation.

2-1

BYTE 0

VOL
3 -----·-------- --·-------"-
4

VOLUME IDENTIFIER

9 ---------
10 -{! 11 STATE OF VOLUME
12 POINTER TO VTOC (VOLUME

TABLE OF CONTENTS) ONLY ON
21 CONVERTED IBM PACKS
22 DEVICE TYPE
23
24 PACK CATALOG ADDRESS 25
26

OWNER
(1-56 BYTES EBCDIC)

Figure 2-1. Standard Tape Volume Label

The standard tape file label (Figure 2-2) provides
information concerning the user's file such as creation
and expiration dates, file label number, file name, and
sequence number.

The label identification field identifies the type of
standard label with a three letter abbreviation. Three
types supported by the system are header labels
(HOR), end-of-file labels (EOF), and end-of-volume
labels (EOV). The file serial number found in
positions 22-27 is identical to the volume serial
number in the volume label. The volume sequence
number identifies the order of the volume of data
records in a multi-volume logical file. The block
count provides the number of physical records
written in a file at creation.

DISC LABEL

Disc files must be labeled with volume and actual file
identification (Figure 2-3). The disc pack volume
label is written by the Pack Initialize Utility Routine
(MRX/OS Utility Programs Reference). The volume
label identifies the volume; gives the state of the
volume - unrestricted (0), restricted (1), or locked
(2), - device type, owner; and gives the starting track
address of the pack catalog for this volume. The
actual file identification is found nn the disc catalogs.

2-2

BYTE 0 l"DR 1 LABEL IDENTIFICATION ~EOF
2 EOV
3 FILE LABEL NUMBER
4

FILE NAME

21

FILE SERIAL NUMBER

26
27

VOLUME SEQUENCE NUMBER

30
31

CREATION DATE

EXPIRATION DATE

52 53......,.. ~.._..,..____..~__,.__,._.__,............,,,...d

54

BLOCK COUNT

Figure 2-2. Standard Tape File Label

BYTE 0
1 VOL
2 _____ _
3
4

9

VOLUME LABEL Nunn_B_E_R __

VOLUME SERIAL NUIVIBER

10 -------------

40
41

OWNER NAME
AND

ADDRESS CODE
50 ____ _

51

Figure 2-3. Disc Label

DISC STORAGE CATALOGS

EQUALS 1

The space management routine~;, in performing their
functions, maintain the central catalog and pack
catalogs on disc. The pack catalog, existing on each
volume, contains an entry for each file occupying
space on the volume. The entry identifies the file and
describes the space occupied by the file.

The pack catalog entry is generally divided into the
following three elements, each having the form of a
common stored data format.

• Name element, to identify the file

• Attribute element, to detail various
characteristics of the file

• Space element, to define the space occupied
by the file

The central catalog, existing once for a system,
contains an entry for each file cataloged in the
system. The entry identi'fies the file and describes the
volumes occupied by the file. The central catalog also
consists of three elements:

• Name element, to identify the file

• Attribute element, to detail characteristics
of the file

• Volume element, to define the volumes
occupied by the file

Allowance is made in the catalog structure for
overflow from a pack catalog space element or central
catalog volume element. These elements are known as
element continuations: space element continuation
and volume element continuation.

Tables 2-1 through 2-4 explain format of the four
basic elements and the two element continuations. At
the beginning of each table is an illustration of the
specific element format. Appendix A contains
detailed discussion of the pack catalog and central
catalog formats.

2-3

Bytes

0

1 l t---· T
2,3 l
4-6

I

7-9

10

2-4

0

2

4

6

8

10

12

36

38

40

42

44

46

48

Bit

0,1

2-5

6,7

Table 2-1. Name Element Format

Standard Control Bytes

Next Name Element

._____s-
Previous Name Element

Name Length T

File Name and Qualifier

1-- Number of Pointers

Pointer Identification _J
Pointer

Pointer Identification ~
Pointer

Pointer Identification I
Pointer

Description

Data type (binary)

01 User data

10 System data

11 Both user and system data

Reserved, always 00002

Count of length bytes, always 1 o2

Relative record number within block, with value 0 to m-1 form records

Length bytes, giving length of the record (in bytes) with the measurement being exclusive of the control bytes

Thread to the next name element (in collating sequence). This thread is expressed in a BBR format, where BB
is the relative block number (value 1 ton for n blocks) and R is the relative record number (value 0 to m-1 for
the next name element's position within block BB. BBR=O for the thread in the last name element of the chain.

Thread to the previous name element within the catalog file. BBR=O for the first name element of the chain.

Name length, giving the count of bytes in the File Name and Qualifier field. The total count must
be even and not exceed 26.

Bytes

11-36

37

38,42,
46

39-41,
43-45,
47-49

Bit

T

Table 2-1. Name Element Format (Continued)

Description

File Name and Qualifier, containing a file name consisting of a maximum of 17 EBCDIC characters (alphabetic,
numeric, and dash), a period separator, and a qualifier consisting of a maximum of eight alphanumeric charac­
ters. For name elements related to a system catalog file, the EBCDIC requirement is lifted.

Number of element pointers which follow within the name element.

Pointer identification, expressed in hexadecimal within one byte and identifying the pointer, where *denotes
pertinent name elements within an entry in the pack catalog, and **denotes pertinent name elements within
an entry in the central catalog. Other pointers are pertinent in both the pack and central catalogs.

00

'10

20*

30**

40**

41**

50

51

60*

61*

70**

71**

80**

81**

Null pointer

Pointer to attribute element

Pointer to space element

Pointer to volume element

Pointer (from the indexed file's name element) to the name element of the information file

Pointer (from the information file's name element) to the name element of the indexed file

Pointer (from the lower paired file's name element) to the name element of the upper file

Pointer (from the upper paired file's name element) to the name element of the lower file

System pointer (from the pack catalog name element describing the pack catalog) to the
chain of available entry blocks within the pack catalog

System pointer (from the pack catalog name element describing the pack catalog) to the
chain of available continuation blocks within the pack catalog

System pointer (from the central catalog name element describing the central catalog) to
the chain of available entry blocks within the central catalog

System pointer (from the central catalog name element describing the central catalog) to
the chain of available continuation blocks within the central catalog

System pointer (from the name element of a SYSI N or subordinate scratch or temporary
file) to the name element of the next chronologically sequenced scratch or temporary file.
Scratch or temporary files are cataloged like any other file, in that they are entered by
collating sequence into the main chain of existing files. In addition, the scratch or temporary
file is linked in a secondary chain to the pertinent SYSIN entry through use of the forward
system pointer (identification of 80) and backward pointer (identification of 81).

System pointer (from the name element of a scratch or temporary file) to the name element
of previous scratch or temporary file or to the SYSIN entry at the front of the secondary
chain

Pointers (in BBR format) to the pertinent elements previously described.

2-5

Table 2-2. Attribute Element 1=ormat

0

2
Standard Control Bytes

4 PF I Pl I WV I FT r--- FO
L--_ ___.. __ __.__._...J. ________ L ______ _ fa.!!!!.:mrn;::!:.J ~._F_l __ t__c_o_..i___c_c__J, ______ s_p_re_a_d ___ --1

6 Block Size

8 Record Length

10 Relative Key Position

12 Key Size _J
!-------------------------

14 Highest Block Written

16

18 Reserved

20

22
Modification Security C1)de

24

26
Offset

28

Byte Bit Description
---·-~----- ---

0-3 Control bytes (defined in Table 2-1)
-·· --

4 0 Paired file flag. If PF=l, file is paired

1 Paired index (Pl)

0 Upper file

1 Lower file

I 2 Write verify (WV)
I

I 0 No write verify

1 Write verify

3,4 File type (FT)

00 Permanent

01 Scratch

10 Temporary

11 Work

5-7 File organization (FO)

000 General

001 Indexed

2-6

Table 2-2. Attribute Element Format (continued)

Byte Bit Description

010 Relative

100 Sequential

111 Information (for indexed file)

5 1 Central catalog (CF)

0 File is uncataloged

1 File is cataloged

2 Common stori:id data format (CD)

0 Not common stored data format

1 Common stored data format

3 Control character (CC)

0 ANSI control characters

1 Native device control characters

4-7 Spread factor for indexed files (SPREAD)

6,7 Block size (in bytes) of data block

8,9 Record length (in bytes) of a record within a data block

10, 11 Relative key position; pointer to the primary key in the data portion of a record. Position 0 refers to the first
byte followin~1 the control bytes.

12 Key size (in bytes) of the primary key

13-15 Highest block written, relative block number for the last block written in the file

16-21 Reserved

22-25 Modification security code

26··29 Offset; lower limit of relative record number at the time a relative file is created or, for a sequential file, the
relative block number for the first block of the highest volume written. In the information file's attribute
element for ani indexed file, the first two bytes have the count of directory blocks that have been allocated.
The other two bytes have the count of index blocks.

2-7

Table 2-3. Space Element and Space Element Continuation Format

*One per segment

0

2

4

6

8

10 LV

12

CE CB

1--~~~~~~--~~~~~·

14

16

tOne per segment

2-8

Standard Control Bytes

Continuation of Space Element

Segment Count

Space Element

Standard Control Bytes

Continuation of Space Element
........ ~~~~~-~~~~~~~~~~~~~~~~---1

Previous Space Element

Segment Sequence Number

Track Address

Track Count

Space Element Continuation

Byte Bit

0-3

4-6

~-

7-9*

~-

10 0

1

2

11-17;
11 *

18,19

20,21;
12, 13*

22,23;
14, 15*

24,25;
16,17*

Table 2-3. Space Element and Space Element Continuation Format (Continued)

Description

Con tr ol byte s (defined in Table 2-1)

Conti
for a

nuation
file

of space element, a thread (in BBR format) which points to the next space element continuation

Previ< >us spac e element is a thread (in BBR format) which points to the previous space element.
-

If LV =1, this is the last volume for a file

If CE =1, asp ace element continuation exists

If CB =1, each segment lower boundary is on a cylinder boundary
----·-

Not u sed

Segm ent cou nt, a count of space elements used by the file on this volume
-

Segm
existi

1ence number, giving relative segment number for each segment (shows relation to segments entsequ
ng on sa me or separate volumes)

Track
numb

Track

i; relative to beginning of segment. (All physical disc addresses are expressed in terms of track add res
er rathe r than cylinder and track within a cylinder.)

count C)f tracks in segment

*Byte position(s) unique to space element continuation table.

2-9

Table 2-4. Volume Element and Volume Element Continuation Format

0
Standard Control Bytes

2

4 Continuation of Volume Element

6 MD CE t-------------------------J.----L---
8 Segment Count
t---1

10 Volume Count .,__ __ --!

12

14 Volume Serial Number

16
t----------------------·---

18 File Name Entry in Pack Catalog

20 Device Type
-------------------------i

22 HW Reserved

*One per volume

Volume Element

0
Standard Control Bytes

2
t--1

4 Continuation of Volume Element

6

8

10 Volume Serial Number
t

12

14 File Name Entry in Pack Catalog

16 Device Type

18 HW Reserved

tone per volume

Volume Element Continuation

2-10

Byte Bit

0-3

4-6

7 0

1

8,9

10,11

12-17;
8-13*

18-20;
14-16*

21 ;17*

22;18* 0

23;19*

Table 2-4. Volume Element and Volume Element Continuation Format (Continued)

Description

Con trol bytE 1s (defined in Table 2-1)

Con tinuatio
file

n of volume element, a thread (in BBR format) which points to the next volume element continuation
for a

Moel ified VO

uded. incl

lfC E=1, vol

lume descriptions. If MD=1, central catalog is created and modified volume descriptions are

1ume element continuation exists

Seg ment colJI nt

Vol ume cou int

Voh Jme seri al number

File entry in pack catalog, a pointer to the file's entry in the specified volume's pack catalog (BBR format)

Devi ce type (0016 for MEMOREX 3664 Drive)

If H W=1, hig hest volume written

Rese rved

*Byte position(s) unique to volume element continuation table.

2-11

TABLES

Tables are primarily for storage information that is
easily referenced. The Data Management system has
two primary tables for information reference:

• File Description Table (FOT) created by
OPEN

• Buffer Description Table (BOT) created by
DEFSF, DEFRF, or DEFIF

FILE DESCRIPTION TABLE

A File Description Table (FOT) is built dynamically
during a job's execution time in the user area of
memory. An OPEN request causes an FDT to be
built, and a CLOSE request releases the FDT space.
The FDT is 60 bytes in length. The portion of the
FDT common to all files is 40 bytes in length, and
the remainder of the FDT which is device dependent
is 20 bytes in length.

The FDT is linked with block 1/0 requests through an
8-byte identification field; the identification field in
the FDT and the block 1/0 request must match. The
FDT contains a unit table ordinal through which 1/0
control routines find the unit table and execute the
1/0 request. Parameters in the F OT protect users
from overlapping each other's area on a shared device.
Table 2-5 gives the locations of the different
information fields of the FDT. Tables 2-6 through 2-8
give the device-dependent fields of the FOT.
Manipulation of FDT's in the user partition is
discussed in Control Language :Services, Extended
Reference.

2-12

BUFFER DESCRIPTION TABLE

A Buffer Description Table (BOT) is created by the
file definition macros (OEFSF, DEF RF, and DEFIF).
This main-memory table is used by the GET/PUT
logic to manage buffers and control logical records.
The BDT is responsible for recording location of 1/0
buffer(s) and record areas.

A BOT is created for each file organization:
sequential, relative, indexed. The three BOT format
tables follow with the appropriate field descriptions
(Tables 2-9 th rough 2-11) .

Byte

-10,-9

-8,-7

-6

-5,-4,-3

-2,-1

-10

-8

-6

-4

-2

0

2

4

10

12

14

16

18

20

22

24

26

28

30

OB

c us B

1---------

Table 2-5. File Description Table Format

Reserved

LOA

Label Ordinal

PFL

NFL

NC Device Type

Identification

UD L SF Last Block 1/0 Function

Current Block Number .

Return Code

Tag for CW

Block Size

Current CW Pointer

Status

RC

Device Dependent Fields*

*Refer to appropriate device table (Tables 2-6 through 2-8).

Bit Description

Reserv ed

Length (in byties) of FDT (LOA)

0 Ordina I bit (OB)

0 Label ordinal points to central catalog

1 Label ordinal points to Control Language job file

Label ordinal indicates the position of the label in the central catalog or the Control Language job file.

Previo us FDT address (PFL)

2-13

Table 2-5. File Description Table Format (Continued)

Byte Bit Description
~-

0,1 Next FDT address (NFL)
~-

2 1 User bit (UB) reserved for emulator set to zero when FDT is built

2 Freeze flag (FRE)

0 File is not frozen

1 File is reserved for a recycle of outstanding queue entry block (QEB)

7 Native character set flag (NC). If NC=1, first data byte is the command code.

3 0-7 Device type

4-11 File identification
I-·

12 1 Common stored data format bit (C)

0 Not common stored data format

1 Common stored data format

2,3 Usage flag (US)

00 Input

01 Update

10 Output

4 Bypass flag (B)

0 No bypass

1 Bypass, READ goes to EOF and WRITE is a NOP

5 Update flag (UO)

0 No update

1 Update

6 Lockout flag (L)

0 No lockout

1 Close with lock

7 Sequential file (SF)

0 Not sequential

1 Sequential

13 0-7 Last function processed in block 1/0

14-17 Block number after last function processed. If zerc1, current block number is unknown.

18 2 End condition bit (ENO) indicates the sensing of an end condition: EOF, EOA, or printer carriage channels
9 or 12.

--
19 Return code

2-14

Table 2-5. File Description Table Format (Continued)

Byte Bit Description

20 0 Error recovery processing flag (ERP)

0 Call error recovery when errors encountered

1 Do not call error recovery for errors

3 FDT restore (FR)

0 FDT not restored

1 F DT restored

4 Hold up flag (H)

0 File not in recovery

1 File in error recovery and following requests are held up until recovery complete

5 Block 1/0 internal flag (BB); set by block 1/0 to indicate that a RESET macro has passed through the file.
Bit is reset by driver.

21 Tag for co1mmand word (CW) address pointer
1--·

22,23 Byte size 1!or maximum size) of each record

24,25 A pointer to the current or last CW executed by this file

26,27 Status of l:ast 1/0 operation

28,29 Residual count (RC): the difference between bytes requested and bytes received

The device dependent portion of the FDT begins at byte 30.

2-15

Byte

30

31

32-35

36-39

40

40,41

42-43

2-16

30

32

34

36

38

40

42

44

46

48

Res. J

*Extent

Bit

0

1

2

3

4

5-7

0-5

6-7,
0-7

Table 2-6. Disc Device fol'mat

PF l PA l W --~serve~ I Number of Residual Blocks
-

Highest Block Written

-·--~---·------ --

Relative Block Number

-
Blks/T

_[____
Gap rack

Next Segment Link

UOR -----=-=1- Reserved
--

D

N umber of Contiguous Tracks
-----~-

Beginning Track Number

Description
--

Reserved
--·-- ------

Paired file flag (PF)

0 Not paired

1 Paired file
-

Paired file indicator (PA)

0 Upper portion of track used for this file

1 Lower portion of track used for this file

Write check flag (WF)

0 No write check

1 Write check of all writes
- --

Disc driver flag (DF)
---·~----- --

Reserved

--------- -
Residual block number, the number of blocks remaining to be up for a multiblock read request which crosses
tracks

Highest block number written for volume now mounted

Relative block number (calculated from beginning of file) of first block on presently mounted volume

Number of records on a disc track (BLK/TRACK)
-·

Gap in bytes between records for pack rotational speed variation

Next segment link (extent address)

Table 2-6. Disc Device Format (Continued)

Byte Bit Description

44 Unit ta ble ordinal (UORD) which indicates the unit table to which this segment is related

45 Reserv ed

46.47 Numb1 3r of contiguous tracks

48,49 Beginn ing track number for this extent (0-3999)

2-17

Byte

30-35
r-

36-39
r

44
t-

45
t-

46

47

.....

2-18

30

32

34

36

38

40

42

44

46

48

Bit

0

1

7

Table 2-7. Magnetic Tape Device Format

Sense

Relative Block Number

Description

Sense bytes of the uni tat the time of the last error

Relative block numbe r (calculated from beginning of file) of first block on presently mounted volume

Current unit table ord inal (UORD)

Unit ordinal of altern ate tape (ALT ORD)

Volume number

Label processing flag (LP)

0 No label pr

1

ocessing complete

ssing complete Label proce

Tape mark flag (TM); a tape mark precedes the first data record on the tape

Offset (0), an alterna te unit

Byte

30

31

30

32

48

Bit

Table 2-8. Unit Record Device Format

Description

Sense byte of the unit at the time of last error

Unit table ordinal (UORD)

2-19

2-20

Table 2-9. Buffer Description Table Format for Sequential Files

0 GET /PUT Address

2 NB

4

FTYP S __ LABL .~l_A_M_,_ __ R_T-L.'---·~----B_l_oc_k_i_n_g_F_a_ct_o_r _______ ._

Block Size

6

8

10

12

18

20

22

Record Size

STAG GP MOD STAG RA

Record Area Address

File Identification

STAG SA

Save Area Address
~----·--------------·--------------------------

24 Error Offset

26 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\:\\j\\\\\\:\\\\\\\\\\\(:\\\\\\\\\\\\:\\:\\i::\\\\\\\\\\\\\\:\\\:\\\j\\\\\\\\i[:\:\\\\\:\:\\:\\\\\\\\\\\\\:\\\\\:\\\\\\\j\\:::::::'\\\:\t:\\\\\\·\:\\:)\\\\(\\\\\\\\'.\\\,\\j\\j\\[\\j\\\\\\\\\\\\\\\\\\\\:\\\i~ STAG RAP

28 Record Address Pointer
1----------------------------~·--------------------1

30
Relative Record Number

32
!-------------------~---~-------------------------

34
Current Block Number

36

38 Logical Record Number

40 PU AB p Use

42
Work Area

44
1---1

46

Move Routine

54

Tabl11t 2-9. B1uffer Description Table Format for Sequential Files (Continued)

1
Block 1/0 Packet

66

68

Buffer 1 1/0 Packet

88

90

Buffer 2 1/0 Packet *

STAG EA

Error Address

*Optional

If buffer 2 is absent, bytes 90 through 93 end the BOT as follows:

Byte Bit Description

0,1 External addres:; of the GET/PUT module processing this file

2 0 Numbell' of buffers (NB)

0 One buffer

1 Two buffers

1,2 File type (FTYP)

00 Se1quential

01 R1~lative

10 Indexed

3 Shared buffer flag (S). If S=1, 1/0 buffers are shared with other files.

4,5 Label processin1~ (LABL)

00 N10 labels

2-21

Table 2-9. Buffer Description Table Format for Sequential Files (Continued)

Byte Bit Description
-·-

01 Nonstandard labels

10 Standard labels

6 Access method (AMI

0 Sequential

1 Random
--

7 Record type (RT)

0 Fixed length

1 Variable length
-

3 Blocking factor, number of records per block (0-255)
-·-·-

4,5 Block size (in bytes) of the 1/0 buffer(s), size must include record headers

6,7 Record size (in bytes) of maximum record excluding header

8 Segment tag for GET/PUT module (STAG GP MOD)

9 Segment tag for record area address (S TAG RA)

--
10,11 Record area address, first byte of record area

-
12-19 File identifier for data file (8 bytes EBCDIC)

-·--··-

21 Segment tag for save area address (S TAG SA)

22,23 Save area address, calling program's linkage and register save area

24,25 Error offset, offset (in bytes) to error address from beginning of BOT

27 Segment tag for record address pointer (S TAG RAP)

28,29 Record address pointer, first byte address of active record in active 1/0 data buffer

30-33 Relative record number, record number relative to first record in the file
I----- --·--·---

34-37 Current block number, physical block number present in active buffer
- --

38-39 Logical record number, number of active record in active buffer

40 0 If PU=1, the record address pointer has been updated following a PUT or reset to the first record in the active
buffer.

-----·--
1 Active buffer (AB)

0 First buffer

1 Second buffer
--

2 PUT flag (P). If P=1, record has been written in the active data buffer.

3 Unit record flag (UR). If UR=1, device is not disc or tape.

2-22

i

I

Table 2-9. Buffer Description Table Format for Sequential Files (Continued)

Byte Bit Description

5 Limits flag (L). If L=1, limits are defined for relative files

6 1/0 register flag {I)

0 Record area

1 1/0 register

7 Verify flag (V). l'f V=1, write verify is performed.

41 0 Skip flag (SK). If SK=1, error option is to skip error.

1 Ignore flag (IG). If IG=1, ignore option was selection.

2 Binary bit (B). If B=1, binary cards are to be read.

6,7 1/0 usage (USE)

00 Input

01 Update

10 Output

42-45 Work area

46-55 Move routine. Data movement routine consisting of a MOVL instruction followed by a BR instruction.

56-67 Block 1/0 packet used to issue service requests such as CLOVE, POSITION, and RESET.

68-69 Buffer 1/0 packet for 1/0 between the data file and the first 1/0 buffer.

90-111* Buffer 2 1/0 packet for 1/0 between the data file and the second 1/0 buffer. (Optional)
-

113* ,91 t Segment tag for error address (S TAG EA)

114-115*; Error address, address of error return
92~93t

*Byte positions unique to BOT for sequential files when buffer 2 is present.
tByte positions unique to BOT for sequential file when buffer 2 is absent.

2-23

Table 2-10. Buffer Description Table Format for Relative Files

0 GET/PUT Address

2t-_N_B~ __ F_T_Y_P_~_s_I_ LABL J_~~m:ij ___ . _____ B_lo_c_k_i_ng=--F_a_ct_o_r _______
1

4 Block Size
t-----------------· ---------------------------------,

6 Record Size

8t--_______ s_T_A_G_G_P_M_OD=======--~===~--~~====-----S_T_A_G_R_A ______ ~----,
10 Record Area Address

!----------------------···-----

12

File Identification

18

20 STAG SA

22

24

26 STAG RAP

28 Record Address Pointer

30
Helative Record Number

32
~--------------------·-------------------------.

34
Current Block Number

36
~--!

38

40 PU AB

42

44

46

:[---­
:[---

p

Logical Record Number

UR ~- 1 I ~__._I _sK__.___1_G _.____B_

Work Area

Move Routine

Block 1/0 Packet

aaT~-----
Buffer 1 1/0 Packet

2-24

Use

Table 2-10. Buf.fer Description Table Format for Relative Files (Continued)

91 }
"i' Buffer 2 1/0 Packet ~~

110 ~~-------I
112 ·ti!i!l!il!iili!!l!i!liiii!l!l:::i:l!l!lil!!i!\!il!li!!ll!ill!ilili\il:l:l\illllilill!lilli!l!!!!!tl!l!l!i!l!il!lil!l!!il\illil!iiliit ... lii!lli:::::l!lil!i:::::l!li:'"""'iiir~!l!ill""'ill!l!""'!~!!""':!:!:!..,lll!l!:.:.:.lll!!l:.:.:.'lill!.,..!!l!lli:::::l!!!!!i:::::l!li!:""':l!f""'!l\f""'llll!\"""il!li'""';!:!:!""'l!il _________ S_T_A_G_A_K ________ --t

*

114 Key Address Pointer

116
Limit X

118

120
LimitY *

122

124
Offset

126

128 :1:1:::1:1:1:1:1:1:1:1:1:1:1:1:1:1111111111111:11:111:1:111:1:1:1:1:::~::1:1~:1:1:1:111:1:1::\1m::1:1:1:1:1:1:1:111:1:1:1:1:1:1:1111i1:1~:1i1:1:1:1i1:1:1:1:1:i:1:::1:1:1:1:i:i:1:1:1~:1:~1:1:1111:1:11111:11 STAG EA

130 Error Address } *

*Optional

If buffer 2 is absent, bytes 90 through 109 end the BOT as follows:

92 Key Address Pointer

94
Limit X

96

98
Limit Y *

100

102
Offset

104

106 ~~-1=1=1=1=1=1=1=1=1=1=1=1=1=1=1=1=1=1=1=1~=1=1=1=1=1=1=1=1=1=1=1=1=1=1=1=1=1=~1~1 -----------------S-T_A_G--EA-----------------1

108 Error Address

*Optional

2-25

Table 2-10. Buffer Description Table Format for Relative Files (Continued)

Byte Bit Description

0,1 External address of the GET/PUT module processing this file
·----

2 0 Number of buffers (NB)

0 One buffer

1 Two buffers

------ ----------·
1,2 File Type (FTYP)

00 Sequential

01 Relative

10 Indexed
---·------

3 Shared buffer flag (S). If S=1, 1/0 buffers are shared with other files.

4,5 Label processing (LABL)

00 No labels

01 Nonstandard labels

10 Standard labels _____ ___,

6 Access Method (AM)

0 Sequential

1 Random

7 Record type (RT)

0 Fixed length

1 Variable length
-----------·--· - ---

____ __,
3 Blocking factor, number of records per block (0-255)

-- -
4,5 Block size (in bytes) of the 1/0 buffers, size must include record headers

- ---------·--------- ------
6,7 Record size (in bytes) of maximum record excluding header _____ ...;.._

8 Segment tag for GET/PUT module (STAG GP MODI
----- ·-

9 Segment tag for record area address (S TAG RA)

10,11 Record area address, first byte of record area
·-- -- . -------------·---- --· ----- ·---i

12-19 File identifier for data file (8 bytes EBCDIC)

21 Segment tag for save area address (ST AG SA)
----------------- -

22,23 Save area address, calling programs linkage and register save area
----------·-···-----·-

24,25 Error offset, offset (in bytes) to error address from beginning of BOT

27 Segment tag for record address pointer (S TAG RAP)
--·· - -

28,29 Record address pointer, first byte address of active record in active 1/0 data buffer

30.33 Relative record number, record number relative to the first record in the file

2-26

Byte Bit

34-37

38-39
1----

40 0

1

2

3

5

6

7

41 0

1

2

6,7

42-45

46-55

56-67

68-89

90-111*
t--·

113*,91t

114,115*;
92,93t

Table 2-10. Buffer Description Table Format for Relative Files (Continued)

Description

Curren t block number, physical block number present in active buffer

Logica I record number, number of active record in active buffer

If PU= 1, the re cord address pointer has been updated following a PUT or reset to the first record
buffer.

Active buffer (AB)

0 First buffer

1 Se co nd buffer

PUT fl ag (P). If P=1, record has been written in the active data buffer.

Unit r ecord fla g (UR). If UR=1, device is not disc or tape.

Limits flag (L) If L=1, limits are defined for relative files.

1/0 re, gister flag (I)

0

1

Verify

Skip fl

Ignore

Binary

1/0 Us

00

01

10

Reco rd area

1/0 r egister

flag (V)

ag (SK).

flag (IG

bit (8).

age (USI

lnpu

Upd<

Outi:

If V=1, write verify is performed.

If SK=1, error option is to skip error.

). If IG=1, ignore option was selected.

If 8=1, binary cards are to be read.

:)

t

~te

IUt

Work Area

in the active

Mover outine. Data movement routine consisting of a MOVL instruction followed by a BR instruction.

Block I 10 pack et used to issue service requests such as CLOVE, POSITION, and ADD KEY/DELETE KEYS.

Buffer 1 1/0 pa cket for 1/0 between the data file and the first 1/0 buffer.

Buffer 2 1/0 pc: 1cket for 1/0 between the data file and the second 1/0 buffer.

Segme nt tag to r key address pointer (ST AG AK)

Key acl dress po inter. First byte address of key address field for relative file.

2-27

Table 2-10. Buffer Description Table Format for Relative Files (Continued)

Byte Bit Description
~-------+------+---·--

116-119*;
94-97t

Limit X, lower limit for processing. Optional.

~-------+----t-------- - ------------- --!
120-123*;
98-101 t

Limit Y, upper limit for processing. Optional.

1-------+-------+---

124-127*;
102-105t

0ffset, lower limits defined when file was first created. Optional.

~------+-----+---- --- ------------ ·--!
129*;107t Segment tag for Error Address (S TAG EA)

~------+-----+----------------------------------

130, 131 *; Error address. Address of error return.
108,109t

*Byte positions unique to BOT for relative files when buffer 2 is present.
tByte positions unique to BOT for relative files when buffer 2 is absent.

2-28

2

2

2

2

2

3

0

2

4

6

8

0

2

8

0

2

4

6

8

0

2

6

8

3

34

3

3

4 0

2 4

4 4

4 6

';:;~

54

5 6

~~

6 6

68

".""'

Table 2-11. Buffer Description Table Format for Indexed Files

GET /PUT Address

NB l FTYP ~_._~_L_A_B_L~--'-~A_M___.~_R_T_.__~~~~~~~~B-lo_c_k_in_g~F_ac_t_o_r~~~~~~~--1
Block Size

Record Size

STAGG PMOO STAG RA

Record Area Address

File Identification

K STAG SA

Save Area Address

Error Offset

K 2 STAG RAP

Relative Address Pointer

Relative Record Number

Current Block Number 1

Logical Record Number

PU l AB l p PG IW Use

Work Area

Move Routine

j
Block 1/0 Packet

Buffer 1 1/0 Packet
I
I

2-29

Table 2-11. Buffer Description Table Format for Indexed Files (Continued)

110

112

114

11-6

118

120

122

124

126

128

130

132

134

144

146

148

150

170

172

178

C1

Key Size

Index Buffer 1/0 Packet

KEYADR1 Address Pointer

Index Buffer Block

Current Index Block-

l
Index Block Key Address Pointer

Directory to the Directory Block Address

Number of Directory Blocks

Physical Block Number

Compare Routine

KEY ADR2 Address Pointer

Buffer 2 1/0 Packet

Current Block Number 2

Directory to the Directory Block Ponnter

182 Error Address

*Optional

If buffer 2 is absent, bytes 150 through 157 end the BOT as shown:

2-30

STAG AK

STAG IKP

l

*

} *

Byte

0,1

2

3

4,5

6,7

8

9

10, 11

12-19

150

152

154

156

*Optional

Bit

0

1,2

3

4,5

I--·

6

7

Table 2-11. Buffer Description Table Format for Indexed Files (Continued)

External a

Number o·

0

1

File type (

00

01

10

Description

ddress o 'f the GET/PUT module processing this file

f buffers (NB)

One buffer

Two buffers

FTYP)

ential Sequ

Rela1 :ive

<ed

STAG HLDB

STAG EA

Shared bu· ffer flag (S). If S=1, 1/0 buffers are shared with other files.

Label proc _ABU essing (L

No lai 00

01

10

Access me

0

1

bels

Nons tandard labels

Stanc :lard labels

thod (AM)

ential Sequ

Rand om

Record ty pe (RT)

0 Fixec :I length

1 Varia ble length

Blocking f actor, nL 1mber of records per block (0-255)

Block size (in byte :i) of the 1/0 buffer(s), size must include record headers

Record siz e (in byt es) of maximum record excluding header

Segment t< ig for GI :T/PUT module (STAG GP MOD)

Segment t· ag for rec :ord area address (S TAG RA)

Record are a addres s, first byte of record area

File identi' fier for o 'lata file and information file (8 bytes, EBCDIC)

} *

2-31

Table 2-11. Buffer Description Table Format for Indexed File (Continued)

Byte Bit Descnption

20 Spread factor (K1),1ndicati ng how many passes made on each track
~ ----!------+-------------- - ···-· - -- ---

21 Segment tag for save area ad dress (STAG SA)

ogram's linkage and register save area

~-----1--------+-j -------------: 22,23 Save area address, calling pr

24,25 Error offset, offset (in bytes) to error address from beginning of BOT
~-----l-------+----- -

26 Number of blocks per track minus one (K2)

27 Segment tag for record addr ess pointer (ST AG RAP)

28,29 Record address pointP.r, first byte address of active record in active 1/0 data buffer

30-33 Relative record number, rec ord number relative to the first record in the file

34-37 Current block number 1, ph ysical block number prese~nt in data buffer 1

40 0 If PU=1, the index block ke v address pointer was updated by a DELR, PUT, or PUTU instruction in sequential
access mode.

·-

Active buffer (AB)

0 First buffe

1 Second buffer

2 PUT flag (P). If P=1. record has been written in the active data buffer

3 End-of-file flag (EOF). If E OF=1, the end-of-file has been reached.

4 Index sharing flag (IS). If IS =1, index buffer is shared with data buffer.

5 Index file flag (IF). If IF=1 , index block was just read or written.

6 1/0 register flag (I)

0 Record area

1 1/0 register

7 Verify flag (V). If V=1, wri te verify is performed.

41 Ignore flag (IG). If IG=1, ig nore option was selected.

3 Previous GET flag (PG). If P G=1, last operation was a GET.

4 Index write flag (IW). If IW =1, KEY is added or deleted in current index block.

6,7 1/0 usage (USE)

00 Input

01 Update

10 Output

42-45 Work Area

46-55 Move routine. Data moveme nt routine consisting of a MOVL followed by a BR instruction.

2-32

Byte Bit

56-67

68-89

90-111
t----

112

113

114,115

116
t----

117

118,119

120-123

124

125

126,127

128, 129

130, 131

132-135

136-145

146 0

1

147*

148, 149*

150-171 *

172-175*

1i7*;15H

178,179*;
152,153t

Tablo :2-11. Buffer Description Table Format for Indexed Files (Continued)

Description

Block I/ 0 packe t, used to issue service requests such as CLOVE, POSITION, and ADD KEY/DELETE KEYS.

Buffer 1 1/0 pac ket for 1/0 between the data file and the first 1/0 buffer.

Index b uffer 1/0 packet. 1/0 parameter packet for 1/0 between the information file and the index buffer.

Number of bloc ks per pass minus one (K3).

Segment tag for key address 1 pointer (STAG AK)
--

Key add ress 1 (K :·Ev ADR1) pointer, first byte address of key address 1 field
-

Current pass bou ndary counter (C1)

Current track bo undary counter (C2)

Index bu ffer size ',in bytes

Current i ndex bl ock number; physical block number present in index buffer.

Key size, size (in bytes) of primary key field

Segment tag for index block key address pointer (STAG I KP)

Index bl ock key address pointer, first byte address of active key in index buffer

Block ad dress of directory to the directory block

Number of direc tory blocks written

Physical block n umber of data block to be read or written

. Compare routine , data comparison consisting of a CMPX instruction followed by a BR instruction .

KEY AD

0

1

R2 flag

KEYA

KEYA

ff)

.DR2 not present

.DR2 present

Director y to the directory block flag (D)

0 Direct ory to the directory block in mass storage

1 Direct ory to the directory block in main storage

Segment tag for key address 2 (KEYADR2) pointer (STAG FK)

Key add ress 2 (k :EYADR2) pointer

Buffer 2 1/0 pac ket, parameter packet for 1/0 between data file and second 1/0 buffer

Current block m 1mber 2, physical block number present in data buffer 2

Segment tag for directory to the directory block pointer (STAG HLDB)

Director y to the directory block pointer, first byte address of main storage directory to the directory block

2-33

Table 2-11. Buffer Description Table Format for Indexed Files (Continued)

Byte Bit

181 * ;155t Segment tag for Error Address (S TAG EA)

182,183*; Error addres s, address of error return
156,157t

*Byte positions unique to BOT for indexed files when buffer 2 is present.
tByte positions unique to BOT for indexed files when buffer 2 is absent.

2-34

Description

INTRODUCTION

The block level of input/output processing may be
applied either to files which were previously
processed at the logical level* or to files intended for
use at the block level only. But whatever the
organization of the file being processed, the data is
referenced by key block number or as next data
block for the unit record devices.

The basic unit of data transfer at the block (and
physical) level is the block. Thus the
block-input/output user may only read or write a
whole block of data at a time (not individual records
within a block).

If the user is operating on files created specifically for
block input/output use, he is free to establish within
the blocks any arrangement or grouping of logical
records he wishes, and the blocking and deblocking of
these records must of coursei be performed by the
user himself. However, it should be noted that if he
wishes to operate on previously-created files which
were used for logical input/output, he must be aware
of the pre-established logical structure of the data
within the blocks.

*Sequential and relative files may easily be processed by
block input/output but it is not practical to apply block
input/output to indexed files.

3.BLOCKINPUT/OUTPUT

GENERAL RULES

Tape and disc files for block input/output processing
are created in the same way as those created for
logical input/output (that is, through Control
Language /IDE F statements external to the program
or ALLOC macros internally). These are standard
system file structures and the following rules of file
logic must be observed when processing them:

• A file must be opened before it may be
processed

• All blocks within a given disc file must be of
the same length

• Blocks must be at least two bytes long for
disc requests (printer and card punch
requests are two bytes long).

• Block numbers may go from 1 to 232.1 (disc
block is 224.1)

• All buffers must begin on word boundaries
for disc

• Read buffers will terminate on word
boundaries for disc

In addition, the following restrictions should be
noted:

• Processing across volume boundaries on
sequential files is not allowed without calling
CLOVE

• Multi-block reading will only ·be
implemented for files with blocks of an even
byte length

• Key fields are not supported for disc storage
and will be ignored if present

3-1

BLOCK INPUT/OUTPUT CODING

A set of system macro instructions is provided for
block input/output coding. The basic macros are
READ, WRITE, POSITN and CNTRL. With these
instructions blocks of data may be read and written,
files may be positioned to particular blocks in
preparation for processing, and certain hardware
commands not involving data transfer may be
performed. Other facilities that might be required are
provided by the STATUS macro, which allows file
status checking; the TYPE macro, which returns
device type; and the RESET macro, which enables
error conditions to be cleared (to allow for
continuation after an error).

A particular block of data within a file is referred to
by number. All files are ordered sequentially, with
the first block of the file being block number 1. As an
aid to processing files in a sequential manner, explicit
block numbers are not necessary. Any data request
with an implied block number causes the block
number to be updated. The block referred to by a
request is determined relative to an internal block
number maintained by the 1/0 control routines.

BLOCI< READING

The READ macro reads a block of data from a
specified file and stores it at a specified buffer
address. The number of the block to be read is
obtained either directly from the READ call (if
specified) or by adding 1 to the current block count
saved by the system. After the READ is executed the
updated block number will replace the old block
number in the file's block counter so that a
subsequent READ will automatically read the next
block.

If a POSITN macro (to the same file) is executed
immediately preceding a READ, the current block
number will be used without change. When a file is
opened for input (reading) its block counter is
initially set at 1.

BLOCK WRITING

The WRITE macro transfers a block of data from a
specified buffer address to a specified file. The
number of the block into which the data is to be
written is obtained either directly from the WRITE
call (if specified) or by adding 1 to the current block

Table 3-1. Assumed Blo<:k Numbers

Operational Sequence Effect
--

READ

l
Disc: Each Read causes a one-count increase in the block number

before the operation.
READ

All: Records are· read sequentially. -
READ

--

WRITE l Disc: Each Write causes a one-count increase in the block number
after the operation.

WRITE
All: Records are written sequentially.

WRITE

POSITN} POSITN} The block referred to by Positn is used for the Read or Write request.
or

READ WRITE

·--·-----

READ } Disc: The block written replaces the block just read. --
WRITE Reader/Punch: The block is written into the card just read (file open for update);

and the block is written into the next card (file open for output).

Mag Tape: The block is written after the block just read.
--

WRITE} Disc: The block number is increased after the WRITE operation and
not prior tei the Read operation. This avoids skipping the next

READ sequential block.

Reader/Punch: Card n is written. Card n+1 is then read.

Ma1.1 Taee: Invalid sequence.

3-2

count saved by the system. After the WRITE is
executed the updated block number will replace the
old block number in the file's block counter so that a
subsequent WRITE will automatically write into the
next block.

If a POSITN macro (to the same file) is executed
immediately preceding the WF! ITE the current block
number will be used without change.

If a READ macro immediately precedes a WRITE,
the current block number will be increased by 1 in
the normal way for a magnetic tape file but will not
be altered in the case of a disc file.

When a file is opened for output (writing), what
happens to the block counter depends on the type of
file. For scratch, temporary arnd work files, opening
the file sets the block counter to 1. For permanent
files, however, the block counter will not be altered
and will retain the value left in it on the previous use.
This enables data already contained on the file to be
saved between different job runs by adding new data
only to the end of the file (unless otherwise
specified).

Table 3-1 gives the assumed block numbers for the
READ, WRITE, and POSITN macros.

BLOCK POSITIONING

The current block number of a file may be preset by
a POSITN macro for subsequent reading or writing.
This macro sets the current block counter of a
specified file to a specified value.

DEVICE CONTROL COMMANIDS

Input/output device control commands, not involving
a data transfer, may be implemented by the CNTR L
macro. This macro transmits a specified command to
the device containing a sprecified file. Typical
commands transmitted by this macro are Skip to Top
of Form for line printer,. Rewind Tape for tape drive.

SPACE MANAGEMENT AND F:I LE CONTROL

Space management and file control for block
input/output are handled by Data Management
functions described in Section 2. For space
management ALLOC, EXPAND and PURGE are
used. For file control OPEN, CLOSE and CLOVE are
used.

PROCESSING CONSIDERATIONS

REQUEST OVERLAP

Multiple requests to the same file or the same device
can be issued. However, to avoid ambiguous results,
separate request blocks and data buffers must be
used. Requests will be honored in the order of receipt
within a file. Issuing multiple requests, with the aid of
the RETURN=YES operand in the requesting macros,
improves throughput by enabling the system to
overlap input/output set-up time with data
transmission.

PRIORITY

Input/output requests are processed by the system
according to the priority of the program which issues
them. This priority is specified in the Control
Language //JOB card and is set at the time the job is
initiated.

END CONDITIONS

End conditions are special boundary conditions
resulting in return indications to the user but not
considered as errors.

• End of File (EOF)

EOF is a logical boundary defined for input
files. Each device* capable of reading has a
defined end of file condition. EOF provides
a condition in the data stream which is
uniquely detectable by the system. After
EOF has been detected on disc, magnetic
tape, or the card reader, a RESET macro
must be issued before processing may
continue.

On the card readert, a data record beginning
with the characters /* is defined to be an
end-of-file condition. When EOF is detected,
the entire record will be transferred to the
user's buffer.

On magnetic tape the EOF condition is set
whenever a tapemark is detected.

* An exception to this is the card reader where the /* card is
used to indicate the EOR condition in the EBCDIC mode.
In the EBCDIC=NO mode, there is no EOF condition
detectable by an 1/0 driver because all data images are
considered to be legal data.

tThe operator-selected EOF option on IBM card readers is
not supported.

3-3

With disc, the EO F condition is set when a
block with a data-length specification of
zero has been read. Note that an embedded
EOF will not be detected, however, during a
multi-block read.

• End of Allocation (EOA)

EOA is a physical boundary applying only to
disc output files. An EOA indication is
returned any time a block is written into the
last allocated space for the file.

• End of Tape (EQT)

EQT is a physical boundary applying only to
magnetic tape output files. It signifies that
the end-of-tape reflective marker has been
sensed.

PROCESSING MUL Tl-VOLUME FILES

When processing sequential files occupying more than
one physical volume (disc and tape only), the block
input/output user must perform volume switching to
move from one volume to another.

At any given time, the File Description Table for a
sequential file* may only describe a single physical
volume, which limits the current range of processing
to the described volume. When, during processing, the
user encounters an EOV indication or wishes to
prematurely close the volume and switch to the next
volume he must issue a CLOVE (close volume) macro
to continue processing on the next consecutive
volume. CLOVE ensures that the next volume is
mounted, by issuing an operator message if necessary,
and then modifies the FDT to describe the next
volume.

If there are no more volumes to be processed, the
EOF/EOA bit (bit 2 of the return information) in the
CLOVE packet is set. The user is responsible for
testing this condition.

SENSE INFORMATION

The number of bytes of sense information varies with
the device. All the bytes for the device are maintained
in the File Description Table, and are updated
whenever an abnormal completion occurs for reasons

*An FDT for a relative file describes the whole file, therefore
eliminating the need for CLOVE in this case.

3-4

other than logical errors. A STATUS macro request
transfers this information from the File Description
Table to the user buffer (to the extent that user
buffer allows).

REQUEST TERMINATION

The user requesting a block 1/0 operation has two
options while a request is processed:

• to wait for the request to be completed.

• to return to do parallel processing after the
request is recognized and before the request
is processed to completion.

If the user elects to wait for the request to be
completed before continuing with processing, his
program will be suspended by the operating system
until the request has been terminated.

If the user has returned to do parallel processing, the
COMPLETE indicator in the parameter string is set
when the request is returned from the 1/0 control
routines.

ERROR PROCESSING

At the block input/output level, the system
automatically provides attempted recovery from
hardware device errors. If peripheral device error
recovery is successful, control is returned to the user
with no error indication.

In the case of an error return (where peripheral device
error recovery has been unable to correct the error),
the program (and the rest of the job) normally is
aborted. However, if ERRCOMP=YES is coded in the
request macro, control is returned to the user
together with return information (Appendix C) thus
enabling him to process the error condition himself.
It should be noted that before issuing another request
to the same file following an error return, the user
may fast have to reset the error condition with a
RESET macro (Appendix C).

Examples of block input/output are shown in Figures
3-1 and 3-2.

LABEL OPER'N

OPEN
OPEN

START READ

TBIT
BOV
WRITE
B

END CLOSE
CLOSE
HALT

* * * * * * * * * * *
CRDBUF WAS
CARDIN woo
PRINT woo

OPERANDS

IDENT=CARDIN,IOTYP=B,USAGE=I
IDENT=PRINT,IOTYP=B,USAGE=O
IDENT=CARDIN,DATABUF=CRDIMG

2,START+4
END
IDENT=PRINT,DATABUF=CRDBUF
START
I OENT=CARDIN,IOTYP=B
I DENT=PRINT,I OTYP=B

OPEN
FILES

READ
A

CARD

PRINT
CARD

IMAGE

YES

CLOSE
FILES

COMMENTS

OPEN CARD INPUT FILE
OPEN PRINTER OUTPUT FILE
READ A CARD

CHECK FOR END-OF-FILE IN REQ BLOCK
IF EOF, GO CLOSE FILES AND END PROGRAM
PRINT CONTENT OF A CARD
GO READ ANOTHER CARD
CLOSE CARD FILE
CLOSE PRINTER FILE
TERMINATE PROGRAM

* * * * * DATA AREA *
80 CARD/PRINT BUFFER
C'CARDIN I CARD FILE IDENT
C'PRINT PRINTER FILE IDENT

figure 3-1. Block 1/0 Program to Read Cards and Print

3-5

NO

3-6

OPEN
FILES (OISC FILE

OPENED FOR OUTPUT)

RESET
DISC BUFFER

INDEX

READ
A CARD

MOVE CARD
IMAGE TO

DISC BUFFER
(INDEXED)

INCREASE COUNT,
DISC BUFFER

INDEX

WRITE
BUFFER
TO DISC

(ONE BLOCK)

YES

NO

CLOSE DISC FILE
& REOPEN IT
FOR INPUT

READ A BLOCK
FROM DISC

RESET
DISC BUFFER

INDEX

MOVE ONE
CARD IMAGE

FROM DISC BUFFER
TO PRINT LINE

(INDEXED)

INCREASE COUNT,
DISC BUFFER

INDEX

Figure 3-2. Block 1/0 Program to Read Cards into Disc File

YES

CLOSE
FILES

LABEL OPER'N OPERANDS COMMENTS

OPEN IDENT=CFIL,IOTYP=B,USAGE=I OPEN CARD FILE
OPEN IDENT=DFIL,IOTYP=B,USAGE=O OPEN DISC FILE FOR OUTPUT
OPEN IDENT=PFIL,IOTYP=B,USAGE=O OPEN PRINTER FILE

START LODI 3,0 ZERO DISC BUFFER INDEX
CARD RD READ IDENT=CFI L,BUFADR=CBU F READ A CARD

MOVX DBUF(80, 3),CBUF(80) MOVE CARD IMAGE TO DISC BUFFER
TBIT :2,CARDRD+4 CHECK FOR END-OF-FILE
BOV RESET IF EOF, GO READ DISC FILE
ADDO 3,80 INCREMENT BUFFER INDEX
CMPD :3,800 CHECK IF BUFFER FULL
BNE :CARD RD IF NOT, GO READ ANOTHER CARD

DISCWR WRITE ii DENT=DF I L,BU FADR=D BU F ,RETU RN=YES WRITE 10-CARD BUFFER ON DISC FILE
B START GO READ ANOTHER 10 CARDS

RESET CLOSE II DENT=DFIL,IOTYP=B CLOSE DISC FILE
OPEN llDENT=DFIL,IOTYP=B,USAGE=I REOPEN DISC FILE FOR INPUT

DISC RD READ llDENT=DFIL,BUFADR=DBUF READ A BLOCK FROM DISC
TBIT :Z,DISCRD+4 CHECK FOR END-OF-FILE
BOV IEND IF EOF, GO END PROGRAM
LODI 3,0 ZERO DISC BUFFER INDEX
MOVX li>BUF(80),DBUF(80, 3) MOVE 'cARD IMAGE FROM DISC BUFFER TO PRINT

LINE
PRINT WRITE II DENT=PFI L,BU FAD R=PBU F PRINT A CARD IMAGE

ADDO :J,80 INCREMENT DISC BUFFER INDEX
CMPD :J,800 CHECK IF BUFFER HAS BEEN EMPTIED
BNE PRINT IF NOT, GO PRINT ANOTHER CARD IMAGE
B IOISCRD GO READ ANOTHER BLOCK FROM DISC FILE

END CLOSE IDENT=CFIL,IOTYP=B CLOSE CARD FILE
CLOSE I DENT=D Fl L,I OTYP=B CLOSE DISC FILE
CLOSE IDENT=PFIL,IOTYP=B CLOSE PRINTER FILE
HALT TERMINATE PROGRAM

* * * * * * * * * ii * * * * * * DATA AREA **·~*** * *
CBUF WAS no CARD BUFFER
DBUF WRS HOO DISC BUFFER
PBUF WAS no PRINT LINE
CFIL WDD G'CFIL CARD FILE IDENT
PFIL WDD G'PFIL PRINTER FILE IDENT
DFIL WDD G'DFIL DISC FILE IDENT

Figure 3-:i!:. Block 1/0 Program to Read Cards into Disc File (Continued)

3-7

4. PHYSICAL INPUT/OUTPUT

INTRODUCTION

The physical 1/0 interface givus the user ability to
utilize the device drivers to perform
hardware-dependent 1/0 operatie>ns.

Physical input/output is independent of the system's
file processing scheme. Whereas block input/output
deals with files, physical input/output deals directly
with hardware devices. Use of physical 1/0 assumes
the following:

• Devices to be used mw;t be defined by
Control Language //DEF statements

• Dev ices must be opened for data
transmission (by the OPENI macro)

• Error recovery wi 11 automatically be
prov i ded by the system (but may be
bypassed if desired)

PHYSICAL INPUT/OUTPUT CODING

DEFINING AND OPENING DEVICES

Each device to be used for a physical input/output
operation must first be assigned by the system. This is
done through a System Control Language //DEF
statement. An OPEN macro must also be coded in the
user program to return the assigned unit ordinal used
in building the PCB (next paragraph).

PERFORMING THE PHYSICAL 1/0 OPERATION

To perform a physical 1/0 operation, three entities
must be created in the user's prouram:

• a command program

• a physical command block (PCB)

• a "do 1/0" instruction (EXCP)

The command program does not consist of directly
executable codes but is a chain of "command words"
which will be operated on by the system's 1/0
processing routines. The program should be located in
a data area of the program and may be built by means
of COMMAND macros.

Examples of command word functions are these:

• print a record on a line printer

• select a stacker on a card reader

• seek on a disc file

• read a card record from a card reader

For every physical input/output operation a Physical
Control Block (PCB) is required. The PCB should be
located in a data area. The Physical Control Block
may be build by a PCB macro.

To initiate the execution of physical 1/0 command
programs a single action macro, EXCP, is required; it
must be coded in line with the program's executable
code. While the above general requirements are fixed,
there are several variations in the detailed
implementation, some of which allow more efficient
use of memory space than others. Efficient use of
device ·may be another consideration for not doing
this. First the basic method will be explained, and
then the more efficient methods will be described.

Basic Method

In the simplest situation, there is one PCB for each
command program and one EXCP for each PCB
(Figure 4-1). In this case, the address of the command
program may be assembled into the PCB by the
CPADR operand in the PCB macro, and the address
of the PCB may be assembled (by means of the PCB
operand) into the corresponding EXCP macro.

Sharing a PCB

When there are several command programs applying
to the same device, coding efficiency may be
improved by having these command programs all
share the same PCB (Figure 4-2). In this case the
address of the appropriate command program must
be dynamically supplied to the PCB before each
operation. This may be done by supplying the
appropriate command program address through the
related EXCP (by means of the CP operand) rather
than by presetting it into the PCB. Thus a group of
EXCP's may all specify the same PCB but different
command programs. Input/output operations to
different devices may be overlapped by coding
RETURN=YES in the appropriate EXCP instruction.

4-1

EXCP EXCP EXCP

PCB PCB PCB

CP

Figure 4-1. Basic Method for Physical 1/0

I EX~ I ~~~~ .. _---Ex_c_P _ .. ~~~~~~~Ex~cP

CP CP

Figure 4-2. Sharing a PCB

EXCP

CP CP

Figure 4-3. Sharing an EXCP

4-2

Sharing an EXCP

Sometimes it is possible to employ a single EXCP to
operate through a PCB on several command programs
or even to operate on several IPCB's (Figure 4-3).
When this is to be done, the user may set up a table
of command program addresses (and PCB addresses,
if there are multiple PCB's). The EXCP will then refer
to ·the address tables at execution time by indirect
addressing with the CPADR operand and PCBADR
operand.

OVERLAPPED OPERATION*

There is a PCB for each input/output device;
input/output operations to different devices may be
overlapped by coding RETURN=YES in the relevant
EXCP instruction(s). This causes control to be
retained by the requesting program (while the 1/0
operation itself is concurrently being processed by
the system), thus enabling initiation of another 1/0
operation before the first has been completed.

Beyond this, it is also possible to overlap requests to
the same device, but it should be remembered that a
separate PCB and data buffer will be required for
each such overlapped request. When multiple requests
are issued in this manner, throughput will be
improved since the system is able to overlap 1/0
set-up time with data transmission. (The system will
always service multiple requests tio the same device in
order of receipt.)

PHYSICAL REQUEST TERMINATION

When a physical 1/0 request is completed, several
values are returned to the calling program in the

* The effectiveness of overlapped coding is dependent on
the number of Queue Entry Blocks available in the
system, a SYSGEN variable.

command block (PCB):

• address of the last command word executed
or attempted to be executed

• hardware status indication

• residual byte count of last data operation

PHYSICAL 1/0 RESTRICTIONS

• Byte count must be less than 216.1 (65K)

• Multi-record read operations must not
attempt access to records across track
boundaries (disc).

• The user is responsible for validating a "read
count field" request (disc).

ERROR PROCESSING

System error recovery (Appendix C) is provided by
default just as it is at the block level. However, at the
physical level, system error recovery may be bypassed
by coding ERROPT=NO in the PCB macro. In any
case, an uncorrected error will always cause the
program to be aborted unless the operand
ER RCOMP=YES is coded in the EXCP macro making
the request. When ERRCOMP=YES is used, control is
returned to the user in the event of an error, together
with return information in the PCB so the user may
either ignore it or process the error himself.

EXAMPLE OF PHYSICAL 1/0 PROGRAM

Figure 4-4 shows a block diagram of a program to
read cards and print. A coding form illustrates the
code necessary for this physical 1/0 program.

4-3

4-4

OPEN
FILES

READ
A CARD

PRINT
EBCDIC

CONTENT
OF CARD

YES

Figure 4-4. Physical 1/0 Program to Read Cards and Print

CLOSE
FILES

.::::
0
-g

a
~
CD
3
.+
0
::D
CD
Ill a.
n
CD

a
Ill
CD
::s a.
4'
i'
n
0
a ;·
c
!

Assembler Coding Form Punching Instructions

::~1 I I I I I Program.,_~~~~~~~~~

Program~~~~~~~~~~

NAME OPERATION OPERAND IDENTIFICATION

START

1 2 3 4 5 6 7 8 9 10 11 12 1314 15 16. 1 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80.

5. CONTROL PROGRAM SERVICES

INTRODUCTION

The executive services are those implemented directly
by the Control Program itself to assist the user in
various areas, such as input/output request control
and communication between job steps.

SERVICE REQUEST CONTROL

Control over the issuance of service requests by the
user program may be aided by 1the WAIT, INFORM
and DELAY* macros. In one way or another, all of
these macros can detect completion of the user's
service requests.

WAIT simply suspends progra1m execution until
completion of the specified rnquest or requests.
WAIT is used to wait for anv one or all of the
outstanding service requests.

DE LAY enables th~ user to suspend execution for a
specific period of time with thei option of breaking
the delay (resuming execution) on the completion of
any service request.

INFORM offers the capabilitv of detecting the
completion of a service request in the interval
between the issuances of the INFORM and its actual
processing by the system. This capability, which is
not available with the WAIT macros, is implemented
with the aid of a user-supplied count of the number
of outstanding requests he has at the time of issuing
the INFORM. By comparing this count with its own
count of outstanding requests, the system can
determine whether any requests had been completed
in the time since INFORM was issued by the user. In
addition to this, INFORM always returns control
immediately to the user Ht has an implied
RETURN=YES operand) so that he may continue
processing and subsequently cheick completion of the
INFORM by testing the complete bit in the request
block.

INTER STEP AND CONTROL LANGUAGE
COMMUNICATION
User programs running as separate job steps in a

multi-step job have two ways of transferring data to
one another: The POST /RPOST pair of macrost and
the SETCOM/GETCOM pair of macros.

In addition, any program may influence the
subsequent course of the job by means of the SETI F
macro which posts information to be tested by an
//IF statement between later job steps.

The POST /RPOST pair of macros post and read a
single byte of data in the Job Control Table, whereas
the SETCOM/G ETCOM pair post and read a full eight
bytes.

FINDING PARTITION SIZE

When a program is being written which is expected to
run in partitions of various sizes, it would often be
advantageous to code the program in such a.way as to
occupy as much of the partition as is currently
available.

To achieve this flexibility, a dynamic determination
of current partition size is necessary; this is provided
by the M EM LIM macro.

MEMLIM informs the program of the·s.ize of the user'
portion of the partition in which it is currently
running by returning the starting address of the last
addressable 256-byte page, expressed as an absolute
address. In effect, MEMLIM returns the starting
address of the last usable page below the partition
space pool. For this reason, programs which make use
of M EM LIM should always specify a fixed-length
space pool through the appropriate Link Editor
directive, since otherwise the space pool will
automatically commence on the page boundary
following the space allocated to the program.

*DELAY is not available on the minimal system.

tPOST /RPOST conform to the I BM UPSI bit scheme.

5-1

READING DATA FROM //PAR CARDS

Data may be read from //PAR cards supplied in the
job control deck by means of the ACCEPT macro.
This macro transfers the contents of a single //PAR
card into a specified buffer. On the first execution of
ACCEPT, the first //PAR card is read; successive
executions automatically read the rest of the //PAR
cards consecutively. After the last //PAR card has
been read the next execution of an ACCEPT transfers
program control to a specified "end" address.

The user may also specify a particular //PAR card by
using the PARNUM keyword in the ACCEPT macro.

5-2

WRITING TO THE SYSOUT FILE

SYSOUT files are system output files, one of which is
created uniquely for each job*. Any user program
may write a one-line EBCDIC message on the
SYSOUT file for the job by means of the DISPL AV
macro. The location of the message buffer should be
specified on the related DISPLAY macro call.
DI SPLAY expands to in-line processing code,
including an embedded block 1/0 WRITE to the
SYSOUT file.

*The Control Language Services Reference manuals contain
further explanations.

6. INTERACTl~DN OF DATA MANAGEMENT
AND THE CONTROL LANGUAGE

Th rough the //DEFINE statement, a run-time
interaction between certain Data Management
services and Control Language services is provided.
This interaction gives the program independence from
reassembling to make changes th;at can then be made
at run-time through the control language statements.

Both the logical 1/0 level (described in Control
Program and Data Managem~ent Services, Basic
Reference) and the block 1/0 level require space
management. Users of the physical 1/0 level require
no space management. The Control Language and/or
the space management macros (ALLOC, EXPND, and
PURGE) can allocate, expand, or purge files.

If the Control Language is externally allocating a file,
the parameters are passed to thE~ ALLOC packet by
the Step Initiator. A file is allocated by either the
ALLOC macro or by the //DEFINE statement, not
both. The ALL OC macro uses the FILENAME, MSC,
and VOLUME parameters specified in the //DEFINE
statement to override the pa1rameter packet at
execution time.

A space management routine is called in response to a
service request from either the Control Language
processor or the user program. The Control Language
request for Al locate or Expand may be generated at
step initiation time using parameters given in the
//DEFINE statement. The Control Language request
for Purge may be generated at step termination time,
using parameters given in the pertinent files disc
catalog entry. The user program request for Allocate,
Expand, or Purge is generated at assembly time, using
parameters given as keyword in a macro call. The user
request may optionally make reference to
FILENAME, MSC, and VOLUME information given
in a //DEFINE statement. If so, at execution time,
the FILENAME and MSC parameters in the
/IDE FINE statement override the equivalent
parameters contained in the user request.
Table 6-1 summarizes the use of different Control
Language parameters as used by the Step Initiator,
OPEN, CLOVE, ALLOC, EXPND, and PURGE.
Further explanations of the Control Language can be
found in Control Language Services, Extended
Reference.

6-1

6-2

Table 6-1. Summary of Data Management and Control Language Interaction

Control Language Control Language ALLOC,. EXPND,
Keyword Parameter Step Initiator OPEN Macro CLOVE Macro PURGE Macros

IDENTIFIER Not used Must match file Must match file Must match file identifier
identifier in identifier in in macro.
OPEN macro. CLOVE macro.

FILENAME Used to search Override DEF LB Override DEF LB Override DEFLB informa-
central catalog to information. information. ti on.
determine volumes
of a cataloged file.

STATUS File usage checked Not used by OPEN Not used by CLOVE Not used by ALLOC,
for partition conflicts. EXPND, or PURGE
File type passed to
ALLOCATE packet*
if NUMBER is
specified.

MSC Not used by Step Override DEFLB Override DEFLB Override DEFLB informs-
Initiator information. information. tion.

DEVICE Used to allocate Not used by OPEN Not used by CLOVE Not used by ALLOC,
peripheral re- EXPNO, or PURGE
sources to files.

VOLUME Used to mount When volumes have Used to mount and Volume identifiers specify
(and IVOLUME packs or tape reels been mounted by verify successive which packs are to be
for OPEN) when possible and Step Initiator, they volumes of se- used for allocation or

verify the mount are verified by quential files. expansion. If omitted,
by comparison of comparison with shared resources are
volume with volume unit table volume used. PURGE uses
identifier in the identifier entries. volume identifiers for
volume label. When not mounted, purging uncataloged files.

OPEN mounts the
volume(s) and
verifies against
volume label.

SPREAD Passed to the Not used by OPEN Not used by CLOVE Not used by ALLOC,
ALLOCATE packet* EXPND, or PURGE

CONTIGUOUS Passed to the Not used by OPEN Not used by CLOVE Not used by ALLOC,
ALLOCATE packet* EXPND, or PURGE

LABEL Not used by Step Indicates type of Indicates type of Not used by ALLOC,
Initiator label processing label processing EXPND, or PURGE.

for the job. Con- for the job. Con-
trol Language trol Language
overrides program overrides program
specification. specification.

CSD Used to compute Not used by OPEN Not used by CLOVE Not used by ALLOC,
block size from EXPNO, or PURGE
SIZE and BLOCK
for ALLOCATE
when NUMBER is
specified.

NUMBER Used to compute Not used by OPEN Not used by CLOVE Not used by ALLOC,
number of blocks EXPND, or PURGE
from BLOCK and
NUMBER for
ALLOCATE
Also indicates
need of ALLOC.

*Parameters are passed to the ALLOCATE parameter packet by the Step Initiator; the Control Langu' ge is allocating
the file.

Table 6-1. Summary of Data Management and Control Language Interaction (Continued)

Control Language Control Language ALLOC, EXPND,
Keyword Parameter Step Initiator OPEN Macro CLOVE Macro PURGE Macros

SIZE Used to ciompute Not used by OPEN Not used by CLOVE Not used by ALLOC,
block size. Key EXPND, or PURGE
size portion is
passed to the
ALLOCATE
packet* for
indexed fliles.

BLOCK Used to c1::>mpute For tape files, Not used by CLOVE Not used by ALLOC,
block size for data Control Language EXPND, or PURGE
and index files. supplies block size.

Default value is
251 bytes.

LOCATION Passed to the Not used by OPEN Not used by CLOVE Not used by ALLOC,
ALLOCATE EXPND, or PURGE
packet* when
NUMBER is
specified.

ORGANIZA- Passed to the Not used by OPEN Not used by CLOVE Not used by ALLOC,
TION ALLOCATE EXPND, or PURGE

packet*

RETENTION Not used by Step Used to generate Used to generate Not used by ALLOC,
Initiator an expiration date an expiration date EXPND, or PURGE

for tape files. for tape files.

CATALOG Passed to the Not used by OPEN Not used by CLOVE Not used by ALLOC,
ALLOCATE EXPND, or PURGE
packet*

VERIFY Passed to the If the file was Not used by CLOVE Not used by ALLOC,
ALLOCATE cataloged with EXPND, or PURGE
packet* VERIFY=YES,

OPEN does not
interpret the param-
eter. If not, then
VERIFY=YES at
OPEN time will
temporarily over-
ride the catalog
attribute.

EXPAND Passed to the Not used by OPEN Not used by CLOVE Not used by ALLOC,
EXPAND packet EXPND, or PURGE

*Parameters are passed to thti ALLOCATE parameter packet by the Step Initiator; the Control Language is allocating the file.
**Parameter is passed to the E:XPAND parameter packet by the Step Initiator; the Control Language is expanding the file.

6-3

This section gives the specifications for the block and
physical 1/0 level functions of Data Management,
Block 1/0 action, Physical 1/0 action, and Control
Program Services. In general, all the macros have the
following format:

Name Operation Operand'

The name field is an optional field which contains a
1- to 8-character alphanumeric file address. The first
six characters must be unique to accommodate the
standard suffixes used by the system. These are
discussed in Appendix B of this manual. The names
ident, labadr, and tag are used as identifiers for the
software function specified in the operation field of
the macro prototype.

The operand field contains keyword parameters
which may be in any order separated by commas.
Optional parameters are denoted by brackets, [] .
Parameters with a choice of specifications are
denoted by braces, { } , and the default value is
underlined.

Fields are free-form and are separated by blanks;
thus, no imbedded blanks are allowed within the
parameter string. If more than one card is necessary, a
semicolon must appear after the last parameter on
each card except the last.

Symbolic address (as used in macro prototypes) is the
1- to 8-character symbol used to identify a coding
statement. The IDENT parameter is the symbolic
address of the 8-byte field containing the file
identifier (left-justified, blank 'filled). If the pertinent
file is defined in the Contrnl Language, the file
identifier referenced by IDENT must be identical to
the IDENT specified by the //DEFINE statement.
Unless otherwise stated numbers are assumed to be in
decimal with no leading zer~s.

DATA MANAGEMENT

In this section only the block and physical 1/0 level
of Data Management macros are given. This level of
macros include these:

7. MACROS

• Block 1/0 Level Declarative Macro
DEFLB

• Space Management Macros
ALLOC
EXP ND
PURGE

• File Control Macros
OPEN
CLOSE
CLOVE

• 1/0 Service Macro
LABRTN

• Block 1/0 Macros
READ
WRITE
POSITN
CNTRL
STATUS
TYPE
RESET

• Physical 1/0 Macros
EXCP
PCB

• Control Program Macros
WAIT
DELAY
INFORM
POST-
RPOST
SET COM
GETCOM
ACCEPT
DISPLAY
MEMLIM
SETIF
HALT
EHALT
ABEND
TIME
SDATE
JDATE

• Console Communication Macros
CONSOLE
MESSAGE

7-1

Appendix B details the service request mechanism
and details the expansion of these macros.

BLOCK 1/0 LEVEL DECLARATIVE MACRO

A block 1/0 level declarative macro, DEFLB, defines
the file label for Data Management.

DEFLB - Define File Label

The DEFLB macro generates file label data into a
main-memory buffer for creating and checking disc
file names. The Control Language may also be used to
create and check file names. The block 1/0 level space
management and file control macros use DEFLB. The
format is as follows:

Name Operation

labadr DEF LB

Fl LENAM=name

Operand

FILENAM=name
[MSC=code]

Specifies a 1- to 17-character alphanumeric file name.
The first character may be A-Z, 0-9, or $; A-Z, 0-9,
and dash are allowed as succeeding characters. Index
file names are created internally by adding an asterisk
at the end of the associated data file name.

MSC=code (Optional)

Designates a 4-byte EBCDIC modification security
code, which is used for work and permanent files. If
omitted, blanks are assumed.

BLOCK 1/0 LEVEL AND PHYSICAL 1/0 LEVEL
EXECUTIVE REQUESTS

The executive request macros generate requests for
space management, file control, file processing, and
file positioning at the block 1/0 level. These requests
specify a file identifier and a specific block of data
within the file. The file control and file processing
macros are also available at the physical 1/0 level,
specifying a unit identifier rather than a file
identifier.

Files which are open for block 1/0 level file
processing requests are described by a File
Description Table (FDT) created by OPEN. FDT
contains a physical description of the file, a 1- to
8-character file identifier, and current processing
information about the file (for example, current
block number and status of last request). File
processing and positioning requests are made by file
identifiers and controlled by the FDT.

Units which are open for physical 1/0 level processing
are assigned by the Control Language. The identifier
field in OPEN is used to find the correct Control

7-2

Language entry which gives the unit assignment. The
//DEFINE statement indicates physical 1/0 by stating
PIO in the file name field. Physical 1/0 requests are
made by a unit ordinal which has been returned to
the user after an OPEN.

Space Management Macros

The ALLOC, EXPND, and PURGE macros manage
space for all disc files. Usually these three functions
are generated through the Control Language and by a
space management utility program, which allows
changes without recompilation of the program;
however, a user program can directly manage file
space.

The allocation of paired files must be done through a
utility if not done directly from a user program. The
utility programs may also purge permanent and work
files if not done directly from the user program.

Space management is required for usage of block 1/0
level and logical 1/0 level interfaces. Users of physical
1/0 level require no space management.

Space is allocated in increments of tracks. Paired file
allocation of two files provides minimum arm
movement for file processing. A contiguous or
non-contiguous segment of space is allocated to.both
files starting at the chosen segment. Alternate tracks
from this space are then assigned to each of the two
files. File space allocated will be contiguous unless
contiguous space is unavailable, in which case up to
12 segments will be allocated. Other allocation
options are as fol lows:

• Multipack files (up to seven packs)

• Suppression of automatic segmentation

• Cylinder number specification

Each disc pack contains a volume label which is
created at disc initialization time. A M RX/OS utility
program may change the volume label and its
parameters.

In its device label each disc pack contains pack status
indication of one of the following conditions.

Pack Status

Nonrestricted

Restricted

Locked

Meaning

Any allocation request may
obtain space from this pack.

Only allocation requests with
packs specified by the Con­
trol Language may obtain
space from this pack.

No further allocation is
allowed on this pack.

Some disc drives are classified as shared resource
drives at initial program load time. The operator
mounts a set of packs on these drives, which will be
available for any allocation requests. The remaining
disc drives (non-shared-resource drives) are each
assigned by job control to a specific user partition for
the job step requesting the drives, and may be used
only by allocation requests associated with the job
step in the partition to which they were assigned.

ALLOC - Allocate Space

The ALLOC macro allocates space for user data files
and system data files. When volume identifiers have
not been specified through job control, space will be
allocated on nonrestricted packs mounted on shared
resource drives. When volume identifiers have been
specified through job control, the disc drives on
which they are mounted will have been assigned by
job control to the partition (or system function) of
the program calling .ALL.QC. Duplicate file names are
not allowed on the disc catalogs. The format is as
follows:

Operation

[tag] ALLOC

*For indexed files only.

BLKSIZ=n

Operand

BLKSIZ=n

[cAlrALOG= (~~s)]

[coN= (~~s) J
[cso= (~~s) J
[oATACYL={ ~~s }]
[ERRCOMP= (~~S)]

[FI LEORG=cod;;)
FILESIZ=n
[Fl LETYP=code]
[IDEl\IT=symbolic address]

[INDCYL= {~~S}]
INDSIZ=n*
KEYSIZ=n*
LABDEF1=symbolic address
[LABDEF2=symbolic address]

[LIST= (~~S }]
RECSIZ=n

[RETURN= { ~~S}]
[SPREAD=n] *-

[VERIFY= (~~S)]

Designates the number of 8-bit bytes per block for
the file. The value n ranges from 18 bytes through
32K bytes for magnetic tape and 7294 bytes for disc.

CATALOG={~~S} (Optional)

CATALOG=NO specifies that the file should not be
centrally cataloged. If omitted or CATALOG=YES,
the file is cataloged. The parameter is ignored for
scratch and temporary files.

CON=l~~Sl (Optional)

CON=YES specifies that contiguous space is to be
obtained. Absence of this parameter or CON=NO
allows segmentation.

CSD= l~~Sl (Optional)

CSD=YES (default case) specifies that the file will be
created with the common stored data format.
CSD=NO specifies that a data format other than CSD
will be used.

{
YES}

DATACYL= ~O (Optional)

DATACYL=n designates a cylinder number boundary
for the beginning of the data file. The value n ranges
from 1 to 199. DATACYL=YES ensures the file
beginning on some cylinder boundary; whereas
DAT ACY L=NO does not. If the parameter is
omitted, the data file will not necessarily begin on a
cylinder boundary.

(Optional)

ER RCOMP=YES specifies that the caller of the
request will examine return information on nonfatal
errors; therefore, nonfatal errors should not be
aborted by the system. Fatal errors such as illegal
instructions, irrecoverable memory parity errors,
privilege violations, and bound errors cause an
unconditional abort. If ER RCOMP=NO or is omitted,
no return information is examined.

Fl LEORG=code (Optional)

Determines the file organization. The possible codes
are as follows:

Code Organization

s
R

Sequential
Relative
Indexed

If the code is omitted, sequential file organization is
used.

7-3

FILESIZ=n

Indicates an estimate of the number of blocks
expected in the data file.

Fl LETYP=code (Optional)

Designates the file type. The possible codes are as
follows:

Code Type

s Scratch
T Temporary
w Work
p Permanent

If the code is omitted, the temporary file type is
used.

IDENT=symbolic address (Optional)

Designates the 8-character file identifier. It should be
identical to the operand of the IDENTIFIER
keyword in a Control Language DEFINE statement
specifying the volume on which to allocate the file. If
IDENT does not match the IDENTIFIER
specification (or if omitted) and the file is to be
centrally cataloged, the file will be allocated on
shared resources. IDENT is required if the LABDEF1
parameter is not specified.

/YES}
INDCYL=l~O (Indexed files only)

INDCYL=n specifies a cylinder number boundary for
the beginning of the index file. The value n ranges
from 1 to 199. INDCYL=YES ensures the file will
begin on some cylinder boundary; whereas
INDCYL=NO does not. If the parameter is omitted,
the index file will not necessarily begin on a cylinder
boundary.

INDSIZ=n (Indexed files only)

Specifies the estimated byte size of the index blocks.
The value of n ranges from 18 bytes to 7294 bytes.

KEYSIZ=n (Indexed files only)

Gives an estimate of the byte length of the primary
key for indexed files. The value of n ranges from 2
bytes to 100 bytes.

LABDEF1=symbolic address

Specifies the symbolic address of a file label area
which must correspond to the symbolic address
specified as the name field of the DEFLB macro.
LABDEF1 is required if the IDENT parameter is not
specified.

7-4

LABDEF2=symbolic address (Optional)

Specifies a second file label address for paired file
allocation requests. This option is available for
sequential and relative files only.

(Optional)

If LIST=YES, only the parameter packet is generated,
and the RETURN and ERRCOMP options are not
used. If LIST=NO, only the 2-byte standard executive
request instruction is generated. Loading of
general-purpose register 6 (R6) with the address of
the parameter packet and general-purpose register 7
(R7) with the save area address prior to issuing the
macro call is a user responsibility. If the LIST
parameter is omitted, both the execution request
instruction and the parameter packet are generated
following the macro call. Appendix B contains a
detailed discussion of the LIST parameter.

RECSIZ=n

Indicates the length of a logical record in bytes. The
value n ranges from 18 bytes through 32K bytes for
magnetic tape and 7294 bytes for disc. If omitted,
RECSIZ equals BLKSIZ.

RETURN=! ~~S l (Optional)

RETURN=YES specifies that the processor issuing
the executive request should be given control
(reactivated) as soon as the request is queued to its
destination routine. If R ETU RN=NO or if the
parameter is omitted, the calling processor is
reactivated when the request processing is complete
or terminates abnormally if ERRCOMP=YES.

SPREAD=n (Indexed files only)

Specifies the number of physical blocks separating
two logically consecutive blocks in the indexed data
f i I e. The number of blocks between logically
consecutive blocks is one less than the n value whose
range is 1 through 10. If this parameter is omitted,
the logically consecutive blocks are adjacent.

VERI FY=l~~S l (Optional)

VER I FY=YES specifies read after write verification
of all writes to this file. If omitted or if
VER I FY=NO, write verification will not be a
perm<inent file characteristic. The VERIFY=YES
option may be specified as a temporary override
throu19h logical level file definition macros or through
Control Language DEFINE statements .ai file open
time.

EXPND - Add Mass Storage Space

The EXPND macro obtains additional mass storage
space for sequential files. The file may be open but
cannot have input or update usage at the time of the
EXPND request. The format is as follows:

Name Operation

[tag] EXPND

CATALOG=l~~S)

Operand

(CATALOG={~~S))

(CON={~~S)]

(ERHCOMP={~~S)].
[FILESIZ=n]
[IDENT=symbolic address]
LABIDEF=symbolic address

(LIST= {~~S)]

[PAIRED={~~S}]

[RElrURN={~~S} j

(Optional)

CAT ALOG=NO specifies the "file is not centrally
cataloged. If the parameter is omitted or
CATALOG=YES, the file is centrally cataloged. The
parameter is ignored for scratch or temporary files.

(Optional)

CON=YES specifies addition of contiguous space. If
absent or CON=NO, segmentation is allowed within
the space added.

ER RCOMP=I ~~s) (Optional)

ER RCOMP=YES specifies that the caller of the
request will examine return information on nonfatal
errors; therefore, nonfatal errors should not be
aborted by the system. Fatal ~mors such as illegal
instructions, irrecoverable memory parity errors,
privilege violations, and bounds errors cause an
unconditional abort. If ERRCOMP=NO or if omitted,
no return information is examined.

FILESIZ=n (Optional)

Indicates the number of blocks to add to the file.

IDENT=symbolic address (Optional)

Specifies the 8-character file id•mtifier. If the file is
"

open at the time of expansion, it must match the
name specified by the IDENT parameter of the OPEN
macro. If the file is closed, it should match the
operand of the IDENTIFIER keyword in a Control
Language DEFINE statement specifying a volume
identifier for expansion. If IDENT does not match
the IDENTIFIER specification (or if omitted) and
the file is centrally cataloged, the expansion will be to
the shared device. IDENT is required if LABDEF is
not specified. I DENT may be omitted only for
cataloged files.

LABDEF=symbolic address

Specifies the symbolic address of a file label which
must be identical to the label address of the DEFLB
macro. This parameter is required if the IDENT
parameter is not specified.

(Optional)

If LIST=YES, only the parameter packet is generated,
and the RETURN and ERRCOMP options are not
used. If LIST=NO, only the 2-byte standard executive
request instruction is generated. Loading of R6 with
the address of the parameter packet and R7 with the
save area address prior to issuing the macro call is a
user responsibility. If the LIST parameter is omitted,
both the executive request instruction and the
parameter packet are generated following the macro
call. Appendix 8 contains a detailed discussion of the
LIST parameter.

(Optional)

PAIR ED=YES indicates the file is paired. If
PAIRED=NO or if the parameter is omitted, there is
no pairing of files.

RETURN=l~~S) (Optional)

RETURN=YES specifies that the processor issuing
the executive request should be given control
(reactivated) as soon as the request is queued to its
destination routine. If RETURN=NO or if the
parameter is omitted, the calling processor is
reactivated when the request processing is complete
or terminates abnormally if ERRCOMP=YES.

PURGE - Release Disc File Space

The PURGE macro releases the space allocated to a
disc file. For paired file allocation, both files are
pu~ged. The format is as follows:

7-5

Name Operation

[tag] PURGE

CATALOG= l~~S)

Operand

[CATALOG={~~5 }]

(ERRCOMP={~5 J }
[IDENT=symbolic address]
LABDEF=symbolic address

l LIST={~~S}]
[PAIRED=(~~$}]

[RETURN={~5 }]

(Optional)

CATALOG=NO specifies that the file is not centrally
cataloged. If the parameter is omitted or
CATALOG=YES, the file is cataloged. The parameter
is ignored for scratch and temporary files.

ERRCOMP=l~~S) (Optional)

ER RCOMP=YES specifies that the caller of the
request will examine return information on nonfatal
errors; therefore, nonfatal errors should not be
aborted by the system. Fatal errors such as illegal
instructions, irrecoverable memory parity errors,
privilege violations, and bounds errors cause an
unconditional abort. If ERRCOMP=NO or if omitted,
no return information is examined.

IDENT=symbolic address (Optional)

Specifies the 8-character file identifier. It must match
the operand of the IDENTIFIER keyword in a
Control Language DEFINE statement specifying the
volumes of the file purge. IDENT may be omitted
only for cataloged files. If omitted, Data Management
finds the file in the central catalog and then locates
the volumes.

LABDEF=symbolic address

Specifies the address of a file label, which must
correspond to the label address of the DEF LB macro.
This parameter is required if the IDENT parameter is
not specified.

(Optional)

If LIST=YES, only the parameter packet is generated,
and the RETURN and ERRCOMP options are not
used. If LIST=NO, only the 2-byte standard executive
request instruction is generated. Loading of R6 with
the address of the parameter packet and R7 with the

7-6

save area address prior to issuing the macro call is a
user responsibility. If the LIST parameter is omitted,
both the executive request instruction and the
parameter packet are generated following the macro
call. Appendix B contains a detailed discussion of the
LIST parameter.

(Optional)

PAI RED=YES indicates the file is paired. If the
parameter is omitted or PAIRED=NO, the file is not
paired.

RETURN=! ~~SI (Optional)

RETURN=YES specifies that the processor issuing
the executive request should be given control
(reactivated) as soon as the request is queued to its
destination routine. If RETURN=NO or is omitted,
the calling processor is reactivated when the request
processing is complete or terminates abnormally if
ER RCOMP=YES.

Fl LE CONTROL

The file control macros - OPEN, CLOSE, and
CLOVE - direct data transmission. OPEN and
CLOSE control a file or unit at the block or physical
1/0 level. CLOVE performs volume switching at the
block 1/0 level.

OPEN - Open File for Data Transmission

The OPEN macro makes the file or unit assessible for
data transmission. The format is as follows:

Name Operation

[tag] OPEN

~

(BUFADR=symbolic address]

[CONTROL={~A;IVE))
[ERRCOMP={~5 }]
IDENT=symbolic address

~OTYP={~}]
[LABDEF=symbolic address]

[LIST={~~S}]

(RETURN=(~5 })

[REWIND=(~~SJ]

[USAGE·{~}]

BUFADR=symbolic address (Optional)

Specifies the address of a buffer for use in initiating a
file. BUFADR is required when USAGE=O for block
1/0 level openings of a relative fil1e. The user generates
the desired data as dummy data i111 this buffer prior to
the OPEN request. The initialization is performed
only once. BUFADR is required if IOTYP=P.

O Unit ordinal -r-.,.._ ___ _l___~ Length

2 Unit Table Word 1
--~~~~~~~-

4 Unit Table Word 2
·~~--~~~~~~----!

6

8

10

Volume Id

/
ANS I

CONTROL= NATIVE (Optional)

CONTROL=NATIVE indicates that the control
characters are native to that particular device. ANSI
control characters are used if it is omitted or
CONTROL=ANS.

(Optional)

ER RCOMP=YES specifies that the caller of the
request will examine return information on nonfatal
errors; therefore, nonfatal errors should not be
aborted by the system. Fatal errors such as illegal
instructions, irrecoverable memory parity errors,
privilege violations, and bounds errors cause an
unconditional abort. If ERRORCOMP=NO or is
omitted, no return information is examined.

IDENT=symbolic address

Specifies the 8-character file identifier. IDENT must
be identical to the operand o·f the IDENTIFIER
keyword in a Control Language DEFINE statement.

IOTYP=\ ~ l (Optional)

Determines the type of 1/0. IOTYP=P for physical
open; IOTYP=B (block open) creates the FDT for
block 1/0. The default value is B. If IOTYP=P, then
BUFADR must be specified.

LABDEF=symbolic address

Specifies the address of a main-storage buffer that
contains a file label. The symbolic address should be

identical with the label address name specified in the
DEFL 8 macro. This parameter is ignored for files on
unit record or magnetic tape (tape labels are assigned
by the control language). For disc files, label
information may have been specified by Control
Language DEFINE statements which override
LABDEF information. For temporary or scratch files,
the file name is concatenated with the job name .

(Optional)

If LIST=YES, only the parameter packet is generated,
and the RETURN and ERRCOMP options are not
used. If LIST=NO, only the 2-byte standard executive
request instruction is generated. Loading of R6 with
the address of the parameter packet and R 7 with the
save area address prior to issuing the macro call is a
user responsibility. If the LIST parameter is omitted,
both the executive request instruction and the
parameter packet are generated following the macro
call. Appendix B contains a detailed discussion of the
LIST parameter.

(Optional)

RETURN=YES specifies that the processor issuing
the executive request should be given control
(reactivated) as soon as the request is queued to its
destination routine. If RETURN=NO or is omitted,
the calling processor is reactivated when the request
processing is complete or terminates abnormally if
ER RCOMP=YES.

REWIND=\~~Sl (Optional)

REWIND=NO indicates that no initial rewind of
magnetic tape files is to be performed. If
REW I ND=YES or is omitted, initial rewind is
performed.

USAGE={~} (Optional)

Specifies input (I), update (U), or output (0)
processing. Update usage is allowed for sequential
files only if the record type is fixed length and the
file is assigned to mass storage. The default value is I.

CLOSE - Close File for Data Transmission

The CLOSE macro removes the availability of the file
for data transmission. The format is as follows:

7-1

Name Operation

[tag] CLOSE

ERRCOMP=l~~Sl

Operand

(ERRCOMP=,·~~5)]
IDENT=symbolic address

~OTYP=t:}J

(LIST=,~~5}]
(LOCK=f ~~5}]

(RETURN=(~~S} J

f REWIND=t~~S}]

(Optional)

ER RCOMP=YES specifies that the caller of the
request will examine return information on nonfatal
errors; therefore, nonfatal errors should not be
aborted by the system. Fatal errors such as illegal
instructions, irrecoverable memory parity errors,
privilege violations, and bounds errors cause an
unconditional abort. If ERRCOMP=NO or is omitted,
no return information is examined.

IDENT=symbolic address

Specifies the 8-character file identifier. It must be
identical to the one specified in the OPEN macro.

(Optional)

Indicates the type of 1/0. IOTYP=P for physical
close. IOTYP=B (block close) releases the FDT. The
default value is B.

LIST=l~~S l (Optional)

If LIST=YES, only the parameter packet is generated,
and the RETURN and ERRCOMP options are not
used. If LIST=NO, only the 2-byte standard executive
request instruction is generated. Loading of R6 with
the address of the parameter packet and R7 with the
save area address prior to issuing the macro call is a
user responsibility. If the LIST parameter is omitted,
both the executive request instruction and the
parameter packet are generated following the macro
call. Appendix B contains a detailed discussion of the
LIST parameter.

LOCK=l~~Sl (Optional)

Specifies the disposition of the file. When

7-8

LOCK=YES is used, the FDT is flagged and OPEN
may not be executed again during the same job; files
assigned to magnetic tape are unloaded. When this
parameter is not used or LOCK=NO, the file may be
reopE!ned from within the same job; files assigned to
magnetic tape may be rewound.

RETURN=l~~Sl (Optional)

RETURN=YES specifies that the processor issuing
the executive request should be given control
(reactivated) as soon as the request is queued to its
destiriation routine. If RETURN=NO or is omitted,
the calling processor is reactivated when the request
processing is complete or terminates abnormally if
ERRCOMP=YES.

R Ew1 ND=I ~~s) (Optional)

R.EWI ND=NO specifies that magnetic tape files are
not rewound after closing. If the parameter is omitted
or REWIND=YES, the tapes are rewound/unloaded.

CLOVE - Close Volume

The CLOVE macro performs volume switching at the
block 1/0 level. It is used for sequential multivolume
files assigned to tape or disc. A user program may
close a volume at any time and switch to the next
sequential volume. CLOVE must be used when a
switch to the next volume is indicated by either an
EOF record or an end of space indicator from block
1/0.

CLOVE performs header and trailer label processing
on tapes, alternate unit processing on tapes, and disc
pack mounting and dismounting (via operator
control). The format is as fol lows:

Name Operation Operand

[tag] CLOVE [ERRCOMP=(~~5}]

IDENT=symbolic address

(LIST=(~~S}]

[RETURN=(~~S})

(Optional)

ER RCOMP=YES specifies that the caller of the
request will examine return information on nonfatal
errors; therefore, nonfatal errors should not be
aborted by the system. Fatal errors such as illegal
instructions, irrecoverable memory parity errors,
privilege violations, and bounds errors cause an
unconditional abort. If ERRCOMP=NO or is omitted,
no return information is examined.

IDENT=symbolic address

Specifies the 8-character file identifier.

LIST=\~~Sl (Optional)

If LIST=YES, only the parameter packet is generated,
and the RETURN and ERRCOMP options are not
used. If LIST=NO, only the 2-byte standard executive
request instruction is generated. Loading of R6 with
the address of the parameter pac:ket and R 7 with the
save area address prior to issuing the macro call is a
user responsibility. If the LIST parameter is omitted,
both the executive request instruction and the
parameter packet are generated following the macro
cali. Appendix B contains a detailed discussion of the
LIST parameter.

(Optional)

RETURN=YES specifies that the processor issuing
the executive request should be given control
(reactivated) as soon as the request is queued to its
destination routine. If RETURN=NO or if the
parameter is omitted, the calling processor is
reactivated when the request processing is complete
or terminates abnormally if ERRCOMP=YES.

1/0 SERVICE MACRO

Data Management also has available 1/0 service
macros which can report the status information of
various aspects of the file.

LABRTN - Return File Label Information

The LAB RTN macro returns the disc catalog
elements for uncataloged and cataloged files. The file
may be open or closed. LAB RTN searches the F OT
string in partition first; and i'f there is no FDT,
LAB RTN then searches the tcible created by the
Control Language DEFINE statement. If the IDENT
is found, then the proper disc file information is
returned in the buffer specified by the user in
INFOADR. If a LABRTN macro is issued against a
nondisc device and the IDENT specification matches
a Control Language //DEFINE statement for a
nondisc device, LAB RTN returns an error code and
returns the device type in the first byte of the user
buffer. The format is as follows:

Name Operation

[tag] LABRTN

Operand

[ELEMENT=l~~~:IBUTE l]
ALL

(ERRCOMP={~~S}]

IDENT=symbolic address
INFOADR=symbolic address

(LIST=(~~S}J

(RETURN=(~~S)]

{

NAME }
ELEMENT= ATTRIBUTE

ALL
(Optional)

Specifies that the name element, attribute element, or
both elements will be returned in the buffer specified
by INFOADR. If the parameter is omitted, the
NAME element is returned. If ELEMENT=ALL is
specified, the name and attribute elements are
returned respectively. For an indexed file, the data
portion of the file is returned first and then the index
portion of the file.

ER RCOMP=\ ~~s l (Optional)

ER RCOMP=YES specifies that the caller of the
request will examine return information on nonfatal
errors; therefore, nonfatal errors should not be
aborted by the system. Fatal errors such as illegal
instructions, irrecoverable memory parity errors,
privilege violations, and bounds errors cause an
unconditional abort. If ERRCOMP=NO or if omitted,
no return information is examined.

IDENT=symbolic address

Specifies the 8-character file identifier which was
used to open the file.

INFOADR=symbolic address

Specifies the address of a main-storage buffer where
the information is returned.

LIST=l~~SI (Optional)

If LIST=YES, only the parameter packet is generated,
and the RETURN and ERRCOMP options are not
used. If LIST=NO, only the 2-byte standard executive
request instruction is generated. Loading of R6 with
the address of the parameter packet and R7 with the
save area address prior to issuing the macro call is a
user responsibility. If the LIST parameter is omitted,
both the executive request instruction and the
parameter packet are generated following the macro
call. Appendix B contains a detailed discussion of the
LIST parameter.

7-9

Optional

RETURN=YES specifies that the processor issuing
the executive request should be given control
(reactivated) as soon as the request is queued to its
destination routine. If RETURN=NO or if the
parameter is omitted, the calling processor is
reactivated when the request processing is complete
or terminates abnormally if ERRCOMP=YES.

BLOCK INPUT/OUTPUT MACROS

READ

This macro transfers a block of data into the specified
buffer. If the location of the block is not explicitly
stated in the request, it will be generated by adding 1
to the block number last obtained (this applies to disc
and tape files only). If the preceding reference to this
file involved a WRITE or POSITN request, the
current block number is used without updating. When
the BLKNUM keyword is not used, the file is
addressed in a sequential manner.

Standard error recovery is provided, with
irrecoverable errors terminating the operation and
posting the return code in the request block.
Attempts to read outside of the portion of the file
which is currently accessible (current volume) will
result in an error.

Name Operation

[tag] READ

IDENT=symbolic address

Operand

IDENT=symbolic address
DATBUF=symbolic address
[DATSIZ=symbolic address]

(LIST=(~~S)]

(RETURN=(~5)]

[ERRCOMP=(~~S)]

(EBCDIC=i~~S}]

[OPER=SSn]
[BLKNUM=symbolic address]

(MULTBLK=(~~S}]

Specifies the address of a storage location containing
the file identifier - the name by which the file is
known to the program (as opposed to the external
catalog name specified through Control Language).
The file identifier must be eight bytes in length.

DATBUF=symbolic address

The address of the data buffer. Requests to disc

7-10

storage must specify a buffer which begins and ends
on waird boundaries even though the data count may
be odd.

DATSIZ=symbolic address Optional

An address pointer to the number of bytes in the
buffer. If this is omitted, the block size defined for
the file is used as the byte count. The buffer size may
be up to 65,535 bytes. Any DATSIZ value given
which is greater than the device record size will result
in a nonzero residual count returned at the end of the
operation.

LIST==/ ~~s j Optional

To be used when either the system linkage (service
request instruction) or the parameter table is to be
generated separately. LIST=NO generates the service
request only; LIST=YES generates the parameter
table (list) only. When no LIST operand is specified,
both the service request and the parameter table are
generated.

Optional

To be used when the user program wishes to be given
control immediately on recognition of the request,
but before completion (RETURN=YES). When
RETURN=NO is coded, or the default is taken,
control will only be returned on completion of the
request.

ER RCOMP=I ~~s j Optional

To be used when the user decides to retain control in
the event of an error (ERRCOMP=YES). When
ER RCOMP=NO is coded, or the default is taken, the
program will be aborted if an error occurs.

The following parameters apply to the card reader
only.

I
YESI EBCDIC= NO Optional

This determines the type of conversion to be
perfm·med on the data between card format and
memory format. If EBCDIC=YES, the translation is
made in accordance with the defined EBCDIC
formats. If EBCDIC=NO, the data on the card is
accepted in a binary format and is transferred to
storage without modification (card image storage
format, shown in Figure 7-1). If the parameter is
omitted the EBCDIC=Y·ES option is assumed.

0 2~

Figure 7-1. Card Image/Storage Relationship

OPER=SSn Optional

Selects a stacker for the card read, designated by n.
The value n is determined by the hardware device
being used. This parameter is ignored except for card
readers with multiple stackers. If it is omitted, the
normal stacker is used.

The following parameter applies to magnetic tape and
disc files only.

BLKNUM=address Optional

The address of a four-byt1e hexadecimal field
containing the block number to be read. If it is
omitted, the current block number of the file is
updated by 1 before the READ, unless the last
operation was a WRITE* or POSITN, in which case
the current block number is used. Block numbers up
to 232.1 are allowed, but attempts to read beyond
the, limits of a file (as defined by allocation) are
returned with return information noted.

Block numbers up to 232.1 are ;allowed, but attempts
to read beyond the limits of a file (as defined by
allocation) are returned with return information
noted.

MUL TBLK= \ ~~s j (Optional)

If this operand is specified, as many disc records as
the program buffer will hold will be loaded. Any
remaining buffer space will be noted in the residual
count field.

*READ after WRITE on magnetic tape is illegal.

WRITE

This macro transfers a block of data from the
specified buffer to an 1/0 device. The location on the
1/0 device where the data is to be placed may be
controlled by the BLKNUM keyword (disc), or the
current setting of the file block number will be used.
In either case, the file block number is updated after
the WRITE operation by adding 1 to the current
block number.

When writing to the line printer or card punch, the
first character of the user's buffer is used for carriage
or stacker control, and is deleted from the data line.
This feature may be overridden by the OPER option.
The first character of the buffer is still deleted from
the line.

Errors detected by the 1/0 routines initiate error
recovery procedures. If these fail to correct the error,
the return code is posted in the request block and the
operation is terminated.

Name Operation

[tag] WRITE

Operand

IDENT=symbolic address

DATBUF=symbolic address
[DATSIZ=symbolic address]

[LIST={~~S}]
[RETURN={~~S})
[ERRCOMP={~~S}]

(EBCDIC={~~S}]

[BLKNUM=symbolic address]

(OPER={~~;;})
SSn

7-11

IDENT=symbolic address

Specifies the address of a storage location containing
the file identifier - the name by which the file is
known to the program (as opposed to the external
catalog name specified through Control Language).
The file identifier must be eight bytes in length.

DATBUF=symbolic address

Specifies the address of the data buffer. Requests to
disc must specify a buffer which begins a word
boundary.

DATSIZ=symbolic address Optional

The address of the memory word which contains the
byte count of the buffer. If it is omitted, the block
size defined for the file is used as the byte count. The
buffer size may be up to 65,535 bytes.

Optional

To be used when either the system linkage (service
request instruction) or the parameter table is to be
generated separately. LIST=NO generates the service
request only; LIST=YES generates the parameter
table (list) only. When no LIST operand is specified,
both the service request and the parameter table are
generated.

RETURN=l~~s) Optional

To be used when the user program wishes to be given
control immediately on recognition of the request,
but before completion (RETURN=YES). When
RETURN=NO is added, or the default is taken,
control will only be returned on completion of the
request.

Optional

To be used when the user decides to retain control in
the event of an error (ERRCOMP=YES). When
ER RCOMP=NO is coded, or the default is taken, the
program wi 11 be aborted if an error occurs.

Magnetic Tape and Disc

BLKNUM=symbolic address Optional

The address of a four-byte hexadecimal field
containing the block number to be read. This
parameter is valid only for direct-access storage
devices. If it is omitted, the current block number of
the file is updated by 1 after the WRITE operation.

7-12

Block numbers through 232.1 are allowed, but
attempts to write beyond the limits of a file (as
defined by allocation) are returned with an error
indication.

Line Printer

OPER=SKnn Optional

Defines a carriage control tape channel to be used
when the data is written by a line printer. If the file is
not a printer file, the value of nn is converted to a
comparable ASA standard control character which
overlays the first character of the written block. If
the file is a printer file, this parameter overrides the
carriage operation specified by the first character of
the data record. Regardless of the method used, the
first character in the data buffer is deleted from the
print line.

OPER=SPnn Optional

Defines the number of print lines to be spaced after
printing. It is treated in a manner like that of the
OPER=SKnn parameter. From 1 to 15 lines may be
specified depending on hardware capabilities.

Card Punch

OPER=SSn Optional

Defines a stacker select operation to a card punch. If
this parameter is used, the first character in the data
buffer is written in the first position of the card. If
the parameter is not used, . the first character in the
data buffer is treated as a stacker select code and is
deleted from the punch data. The absence of multiple
stackers on the card punch has no effect on this
procedure.

EBCDIC=l~~Sl Optional

This determines the type of conversion to be
performed on the data between card format and
memory format. With EBCDIC=YES, the translation
is made in accordance with the defined EBCDIC
formats. With EBCDIC=NO, the data on the card is
treated as being in a binary format (card image) and is
transferred from storage without modification
(Figure 7-1). If the parameter is omitted the
EBCDIC=YES option is assumed.

POSITN - Change Current Block Number

The POSITN request is used to change the current
block number for the file. The subsequent READ or
WRITE macro begins processing at the new block
number. POSITN is only allowed for files assigned to
disc storage or magnetic tape.

A POSITN on a magnetic tape file will always cause
the tape to be physically repositioned, whereas with
disc files a physical seek operation will not be
performed unless explicitly requested by SEEK=YES.

~ Operation

[tag] POSITN

Operand

IDENT=symbolic address

{
BOV }

(BLKNUM= EOV)
symbol ic;address

[LIST={~;~s}]

[RETURN={~~sH

(ERRCOMP={~~S}]
[SEEK={YES} 1

' !NO

IDENT=symbolic address

Specifies the address of a storage location containing
the file identifier - the name by which the file is
known to the program (as opposed to the external
catalog name specified through Control Language).
The file identifier must be eight bytes in length.

{

BOV }
BLKNUM= EOV

symbolic address
Optional

Specifies the block number at which the file is to be
positioned. BOV indicates beginning of volume, EOV
indicates end of volume*. If a symbolic address is
coded this is taken as the addrnss of a four-byte field
containing the block number as an unsigned
hexadecimal number.

If this parameter is omitted, a position to BOV is
performed. Standard error recovery is provided, with
irrecoverable errors terminating the operation and
posting the exception indicator and return code in
the request block. A POSITN to block number 1 is a
request to position at the beginning of the file. A
POSITN to block number 0 will return an error. A
position to a block number above the highest block
currently mounted will also be returned with an
error; however, the file will be left positioned on the
last block of the volume or file.

Optional

To be used when either the system linkage (service
request instruction) or the parameter table is to be
generated separately. LIST=Nd generates the service

*For magnetic tape EOV indicates a position forward to the
first tapemark. For disc, BOV and EOV result in
positioning, across physical pack boundaries if necessary, to
the lowest (BOV) or highest (EOV)1 block number which is
currently described in the File Description Table.

request only; LIST=YES generates the parameter
table (list) only. When no LIST operand is specified,
both the service request and the parameter table are
generated.

Optional

To be used when the user program wishes to be given
control immediately on recognition of the request,
but before completion (RETURN=YES). When
RETURN=NO is added, or the default is taken,
control will only be returned on completion of the
request.

ER RCOMP= l~~S) Optional

To be used when the user devices to retain control in
the event of an error (ERRCOMP=YES). When
ER RCOMP=NO is coded, or the default is taken, the
program will be aborted if an error occurs.

The following description applies only to disc storage.

SEEK=l~~Sl Optional

This parameter causes the disc drive arm to be
physically positioned on the cylinder in which the
specified block number is to be found. If the
parameter is omitted, the seek operation will be
performed when the following READ or WRITE
macro is executed and the POSITN will merely
update the block number.

SEEK=YES should only be included when operating
on an unshared file; this is because the position of the
disc arm is not locked after a POSITN macro has been
executed, and with a shared file the arm could
therefore be repositioned by another user before data
transfer had begun. If the SEEK on POSITN
Gapability was not included in the operating system
(SYSGEN), this operand is ignored.

CNTR L - Hardware Control Operation

The CNTR L request is used to perform a specific
hardware control operation (this does not apply to
spooled files going to disc storage). The operations
al I owed are dependent upon the device type.
Standard error recovery is provided, with
irrecoverable and logical errors terminating the
operation and posting the return code in the request
block. Control of the internal block number is
maintained where possible, but if an operation is
performed which does not maintain the block
number, any subsequent request which needs a block
number will be terminated with an error.

7-13

Name Operation Operand

[tag] CNTRL IDENT==symbolic address

[LIST={~~S})
(RETURN={~~S})

(ERRCOMP={~~S} J
OPER=operation code

IDENT=symbolic address

Specifies the address of a storage location containing
the file identifier - the name by which the file is
known to the program (as opposed to the external
catalog name specified through Control Language).
The file identifier must be eight bytes in length.

Optional

To be used when either the system linkage (service
request instruction) or the parameter table is to be
generated separately. LIST=NO generates the service
request only; LIST=YES generates the parameter
table (list) only. When no LIST operand is specified,
both the service request and the parameter table are
generated.

Optional

To be used when the user program wishes to be given
control immediately on recognition of the request,
but before completion (RETURN=YES). When
RETURN=NO is added, or the default is taken,
control will only be returned on completion of the
request.

Optional

To be used when the user decides to retain control in
the event of an error (ERRCOMP=YES). When
ER RCOMP=NO is coded, or the default is taken, the
program will be aborted if an error occurs.

OPER=operation code

• Reader/Punch

OPER=SSn

7-14

Select stacker on a card reader/punch.
The numeric value of n is the stacker
number. This command may only follow
a READ to a file opened for modify
usage.

• Line Printer

OPER=SPnn

Space the printer form nn lines
immediately. From 1 to 15 lines may be
specified, depending on the hardware
capability.

OPER=SKnn

Skip to carriage control tape channel nn
immediately.

The permissible values of nn are 1
through 12, corresponding to channels 1
th rough 1 2 of the printer carriage
control.

• Magnetic Tape

OPER=REW

Rewind tape. The internal block number
will not be maintained.

OPER=RUN

Rewind and unload tape. The block
number will not be maintained.

OPER=ERG

Erase gap (write blank tape). The block
number will be maintained.
OPER=BSR

Backspace to interrecord gap. The block
number will be maintained.

OPER-FSR

Forward space to interrecord gap. The
block number will be maintained.

OPER=FSF

Forward space to tapemark (EOF). The
block number will not be maintained.

OPER=BSF

Backspace to tapemark (EOF) or to Load
Point if no tapemark is present. The
block number will not be maintained.

OPER=EOF

Write End-of-File mark (tapemark). The
block number will be maintained.

• Disc Files

OPER=EOF*

Write End-of-File mark (a record
containing a count field specifying a data
length of zero). When read, this record

*For disc, CNTR L will always write an EOF mark regardless
of whether the OPER=EOF operand is included or not.

will cause the system to set the EOF flag
in the request block and in the File
Description Table. The block number will
be maintained.

ST A TUS -· Report of Status

This request causes the system to pass information to
a specified data buffer regarding the status of the file
at the completion of the last operation to the file.

Name Operation

[tag] STATUS

IDENT=symbolic address

Operand

IDEN1r=symbolic address
BUFADR=symbolic address
BUFSIZ=symbolic address

(LIST={~~S})

[RETIJRN={~~S} l
[ERRICOMP={~~S})

Specifies the address of a storagEi location containing
the file identifier - the name by which the file is
known to the program (as opposed to the external
catalog name specified through Control Language).
The file identifier must be eight bytes in length.

BUFADR=symbolic address

Specifies the address of the data buffer.

BUFSIZ=symbolic address

Specifies the address of the memory word containing
the byte count of the buffer.

Optional

To be used when either the system linkage (service
request instruction) or the parameter table is to be
generated separately. LIST=NO generates the service
request only; LIST=YES gem~rates the parameter
table (list) only. When no LIST operand is specified,
both the service request and the parameter table are
generated.

RETURN=l~~S) Optional

To be used when the user program wishes to be given
control immediately on recognition of the request
but before completion (RETURN=YES). When
RETURN=NO is coded, or the default is taken,
control will only be returned on completion of the
request.

ERRCOMP=l~~S) Optional

To be used when the user decides to retain control in
the event of an error (ERRCOMP=YES). When
ER RCOMP=NO is coded, or the default is taken, the
program will be aborted if an error occurs.

Between 20 and 24 bytes of file status information
are available from the system, depending on the type
of device (Table 7-1). The BUFSIZ specification
determines how much of this information is to be
returned, starting from the top of the table (this
could be less than the total amount available, if
specified).

Table 7-2 gives the information for the status word of
the Basic Data Channel operation; Table 7-3 gives the
status word for Disc Channel operation.

TYPE - Device and File Type

This request causes the system to pass two bytes of
information to the data buffer regarding the type of
file and the type of device for which this file is
prepared.

Name Operation

[tag] TYPE

IDENT=symbolic address

Operand

IDENT=symbolic address
BUFADR=symbolic address

[LIST={~~S}]
[RETURN={~~S}]

[ERRCOMP={~~S}]

Specifies the address of a storage location containing
the file identifier - the name by which the file is
known to the program (as opposed to the external
catalog name specified through Control Language).
The file identifier must be eight bytes in length.

BUFADR=symbolic address

Specifies the address of the data buffer.

7-15

7-16

0

0 !ll\l\!!!!lll!\j~jj\\\j~ c
2

4

6

8

10

12

14

16

Disc:

18

20

22

PF

Magnetic Tape:

18

20

22

Unit Record:

2 3

us

PA WC

Table 7-1. Returned Information Format

4 5 6 7 0 2 3 4 5 6 7

_B~~~-~~~~~~~~~L_a_s_t_B_IO~F_u_n_c_ti_o_n~~~~·~~~~
Current Block Number

Error Field

Block Size

Pointer to Current Command Word

Status of Last 1/0 Operation

Residual Count

OF No. of Residual Blocks

Highest Block Written (per volume)

Sense

18'~~~~~~~~~~~s_e_n_s_e~- Unit Ordinal

Table 7-1. Returned Information Format (Continued)

Byte Bit(s) Field Name Definition

0 1 Common storied data format flag (C) 0 = not common stored data format

1 = common stored data format

2,3 Usage Flag (US) 00 = input

01 = update

10 = output

4 Bypass Flag (B;) 0 = no bypass

1 = bypass:
READ goes to EOF
WRITE is a NOP

5 Update Flag (US) 0 = not update mode

1 = update mode

6 Lockout Flag (L) 0 = no lockout

1 = file has been closed with lock

7 Sequential File Flag (SF) 0 = not sequential

1 = sequential

1 0-7 Last BIO Function Last function processed in BIO

2-5 0-7 Current Block Number (four bytes) Block number after last function processed. If zero, current
0-7 block number is unknown
0-7
0-7

6,7 0-7 Error F:ield When this field is non-zero, a RESET macro must be issued
before making another request to the file

8 0 System Error Pirocessing (EP) 0 = Call Error Recovery when an error is encountered

1 = Bypass Error Recovery

1,2 Not Used
I-·

3 FDT Restore (FR) 0 = FDT not restored

1 = FDT restored

4 Hold Up Flag (H) Set when file is in error recovery to prevent further requests
from being serviced

t-·

5-7 Not Used

9 0-7 Not Used

10,11 0-7 Block Size Number of bytes in a physical record

7-17

Table 7-1. Returned Information Furmat (Continued)

Byte Bit(S) Field Na me Definition

12,13 0-7 Current CW Pointer Address of the current or last command word executed on
this file

14,15 0-7 Status Status of last 1/0 operation (see Tables 7-2 and 7-3)

16,17 0-7 Residual Count (RC The difference between the number of bytes requested and
the number of bytes transferred

Disc

18 0 Not Used

1 Paired File Flag (P F) 0 = not paired

1 = paired
-

2 Paired File lndicat or (PA) 0 = first track of paired tracks

1 = second track of paired tracks

-
3 Write Check (WC) 0 = no write check

1 = write check on all writes
-

4 Disc Driver Flag Used internally by the driver only

-----1

5-7 Not Used

19 0-7 Residual Blocks Number of blocks remaining to be set up to1"a multiblock
read request which crosses tracks

-
20-23 0-7 Highest Block Writ ten (HBW) Highest block number written for volume now mounted

0-7
0-7
0-7

Magnetic Tape

118-231 Sense Sense bytes of the device at time of last error

Unit Record

18 0-7 Sense

I

Sense byte of the device at time of last error

19 0-7 Unit Ordinal (UOHD) Unit table ordinal

7-18

Table 7-2. Status Word for Basic Data Channel Operations

Byte Bit Set to 1 Meaning

0 0 Attention

1 Status Modifier

2 Control Unit End

~J Busy

4 Channel End

5 Device End

6 Unit Check

., Unit Exception

1 () Initial selection sequence error, caused by one of the following:

Unit not there

Parity error on bus out

Bad address

Unit off-line

'i Main storage buffer not exhausted

2 Wrong Address-In returned on initial selection or bad parity on 'ADDRESS IN'

3 No Request In on SIO Poll Sequence Request

4 Control check

5 Examine check (for data transfer only)

f) Invalid command or zero byte count

7 Unused

7-19

Table 7~3. Status Word for Disc Channel Operations

Byte Bit Set to 1 rv]eaning

·-~--··----

0 0 I FA status not val id or command early

1 IFA missed window or command early

2 IFAwindow

3 IFA track boundary

-
4 I FA read/write termination

5 I FA burst check error

6 IFA lost data

7 IFA no sync compare

--I-------

1 0 IFA 3rd rev sync find

1 Disc (not on line) or (seek incomplete and not file unsafe)

2 Disc (file unsafe) or (s13ek incomplete and not file unsafe)

3 Disc read only

4 Disc pack change

5 Disc end of cylinder

6 Disc write current sense or search fail (may be EOF)

7 Disc busy

All bits set Invalid function code in command program

-

7-20

Optional

To be used when either the system linkage (service
request instruction) or the parameter table is to be
generated separately. LIST=NO generates the service
request only; LIST=YES gene~rates the parameter
table (list) only. When no LIST operand is specified,
both the service request and th1! parameter table are
generated.

RETURN=! ~~S l Optional

To be used when the user program wishes to be given
control immediately on recognition of the request
but before completion (RETURN=YES). When
RETURN=NO is coded, or the default is taken,
control will only be returned on completion of the
request.

Optional

To be used when the userr decides to retain control in
the event of an error (ERRCOMP=YES). When
ERRCOMP=NO is coded, or the default is taken, the
program will be aborted if an error occurs.

The system responds to a TYPIE request by placing
two bytes of file information in the buffer in the
following format:

0 1 2 3 4 5 6 7 8 15

1~11 C I us I BI uol LI sL Device Type

The first byte of this word is the same as the first
byte returned by the STATUS macro. The second
byte is a value representing the device type as defined
following:

OF-2F input/output devices

20-3F

40-5F

60-7F

80-FF

input only devices

output only devices

input/output devices

communications devices

A more specific description of the bit significance in
the device type code is illustrated in Table 7-4.

RESET - Reset Exception Conditions

The RESET request allows a user to reset exception
conditions in the file description table. The exception
conditions lock out new 1/0 operations which would
overlay the exception status indications. Examples of
exception conditions are EOF and irrecoverable
hardware conditions.
Name Operation

[tag] RESET

IDENT=symbolic address

Operand

IDENT=symbolic address

[LIST={~~S}]
[RETURN={~~S}]

[ERRCOMP={~~S}]

Specifies the address of a storage location containing
the file identifier - the name by which the file is
known to the program (as opposed to the external
catalog name specified through Control Language).
The file identifier must be eight bytes in length.

Optional

To be used when either the system linkage (service
request instruction) or the parameter table is to be
generated separately. L IST=NO generates the service
request only; LIST=YES generates the parameter
table (list) only. When no LIST operand is specified,
both the service request and the parameter table are
generated.

Optional

To be used when the user program wishes to be given
control immediately on recognition of the request,
but before completion (RETURN=YES). When
RETURN=NO is coded, or the default is taken,
control will only be returned on completion of the
request.

ERRCOMP=l~~Sl Optional

To be used when the user decides to retain control in
the event of an error (ERRCOMP_=YES). When
ER RCOMP=NO is coded, or the default is taken, the
program will be aborted if an error occurs.

7-21

Table 7-4. Bit Significance

8 9 10 11 12 13 14 15 Bit assignment

0 0 0 0 x b a Card Reader/Punches

0 0 0 0 x b a Card Readers

0 0 0 0 x b a Card Punches

0 0 x x b a Line Printers

0 0 x x b a Magnetic Tape Units
1------------

0 0 x x x Disc Drives

0 0 0 0 x x x Communications Devices

x modifier bit

a = means hardware-buffered device

b means early termination (on channel end rather than device end)

PHYSICAL INPUT/OUTPUT MACROS

EXCP - Input/Output Action

Name Operation Operand

[tag] EXCP rpcs={@lregist~r number}]
~ symbol 1c address

rcP={@regist~r number} J
~ symbolic address
[uNORD=symbolic address]

[RETURN={~~S}]

[ERRCOMP=l~~s} J

This is the physical 1/0 action macro (the "do 1/0"
macro). Basically, it generates the service request
necessary to execute a command program in
conjunction with a Physical Control Block (PCB) and
for this purpose does not necessarily require any
operands. However, it should be noted that two
preconditions must be satisfied before the EXCP can
function properly:

• general register 6 must be loaded with a
pointer to the associated PCB

• the appropriate command program address
must be loaded into the PCB

If these two conditions are not already satisfied at the
time the macro is issued, the following optional
operands may be included in the macro for th is
purpose.

7-22

PCB=l@register number)
symbolic address

Optional

This operand specifies the address of the PCB. If the
parameter is omitted, the PCB location is assumed to
be R6. An alternate register or a symbolic address
may be designated to give the location of the PCB.
The use of this keyword causes the contents of R6 to
be destroyed.

GP= f@register number l
, \symbolic address

Optional

This operand specifies the address of the appropriate
command program. If this operand is omitted, the
command program address is assumed to be in the
PCB. If the keyword is used, a register (other than
R6) or a symbolic address may specify the location of
the command program to be executed. If the
keyword is specified, the address of the command
program is moved to the CPADR area in the PCB.

UNOHD=symbolic address Optional

The operand must point to a user location containing
the unit ordinal of the device on which the operation
is to be performed. This will normally be the same
address as the buffer specified in the physical OPEN
macro associated with the device, since OPEN returns
this value.

RETURN={ ~6S) Optional

To be used when the user program wishes to be
given control immediately on recognition of the
request, but before completion (RETURN=VES).
When RETURN=NO is coded, or the default is
taken, control will only be returned on completion
of the request.

ERRCOMP= { ~6S l Optional

To be used when the user decides; to retain control in
the event of an error (ERRCOMP=VES). When
ER RCOMP=NO is coded, or the default is taken, the
program will be aborted if an error occurs.

PHYSICAL CONTROL BLOCK

This is a data macro which generates the Physical
Command Block necessary for performing a physical
input/output operation.

Name Operation

[tag] PCB {CPADR=symbolic address]

[ERROPT={~~S}]

{
TAPE}

[DEVTYP= UREC]
DISC

[FUNC'TN={ASKATT }J
' REMOVE

ERROPT={~~Sl Optional

Determines whether system error recovery is to be
employed in the event that an error occurs when the
command program is executed (by an EXCP macro).

DEVTVP={~~C }

COMM

Optional

Determines how much space is to be reserved in the
generated PCB to receive sense information.

• MT reserves three words

• UR reserves one word

• DISC and COMM reserve no space

• Omitting the DEVTVP operand causes
reservation of three words

In the event that an uncorrectable error occurs, sense
information will always be returned to the PCB and

the user may then use this information for his own
error processing provided that ERRCOMP=YES was
coded in the corresponding EXCP macro.

CPADR=symbolic address Optional

This parameter specifies the location of the command
program to be used with this PCB. The symbolic
address should be the label used on the command
program. If this parameter is omitted, the PCB will be
assembled without a command program address; then
this address must therefore be supplied dynamically
at execution time by the corresponding EXCP macro.

FUNCTN={ AS KATT l
REMOVE

Optional

This optional parameter is used for executing
functions which do not require a command program.
When this parameter is coded the CPADR parameter
is not required and will be ignored if present.
FUNCTN=ASKATT causes the program to wait for
an asynchronous attention from the device (such as
disc pack change, line printer ready, magnetic tape
loaded). If no attention is received following a
FUNCTN=ASKATT request, the outstanding request
must be cleared before the end of the job by issuing a
F UNCTN=REMOVE request. FUNCTN=REMOVE
clears all ASKATT requests from the particular device
and returns them with an explanatory error code (see
Appendix C).

NOTE

Since the completion of a FUNCTN=ASKATT
request is dependent on outside action
(operator, hardware) care should be exercised
in its use (it is possible to give up control and
never regain it).

REMOVE and ASKATT functions cannot be chained.

COMMAND

This single macro will generate a command word (or
words)* for a physical input/output operation on
unit record, magnetic tape, disc or communications**
devices. Since the macro takes a wide variety of
possible forms according to the type of device and
operation for which it is being used, separate
descriptions are given for each of the different classes
as reflected in the value of the OPCODE operand.

*The generated word is not directly executable code and
must therefore be coded in a data area of the user's
program.

** Details in Telecommunications Reference manual.

7-23

COMMAND Macro for Basic Data Channel
(Unit Record Devices and Magnetic Tape)

This macro generates a command word for physical
input/output operations on card reader, card punch,
line printer, magnetic tape, etc. (devices connected to
the basic data channel). The generated command
word specifies the hardware operation to be executed
and, for commands that require data transfer, it
designates the storage area associated with the
operation. In addition, various operation modifiers
may be supplied.

Name Operatio~

[tag] COMMAND

OPCODE=X'nn'

OPCODE=X'nn'
[BUFADR=symbolic address]
[BUFSIZ=decimal number]

(cHAIN= {~~s }]

[s1ZERR= f ~~s}]
~KIP= f ~~S}]

This parameter is a two-digit hexadecimal code
specifying the hardware operation to be performed
(see Table 7-5), or a command program jump
command (0PCODE=X'08').

BUFADR=symbolic address Optional

Specifies the address of the data buffer.

BUFSIZ=decimal number Optional

Specifies the length of the data buffer in bytes. The
maximum allowable value is 65,535 bytes. BUFSIZ=O
is not valid at execution time.

CHAIN= { ~~S) Optional

Indicates that another command word follows
contiguously. Omission of this operand indicates that
this is the last (or only) command word in the
command program. CHAIN=NO represents the
command word being the tast one in the command
program.

SIZERR= { ~~S) Optional

Any difference between the length of the data record
processed at the hardware-software interface and the
size of the data buffer is detected by the 1/0 routines.
This "incorrect length indication" is normally treated
as an error condition and causes termination of a
command program at that point. The SIZERR=YES
operand (suppress length check) allows chaining to

7-24

proceed regardless. SIZER R=NO causes termination
of a command program at that point.

SKIP= {-~~S) Optional

SKIP==YES causes suppression of the transfer of data
into storage during this command word execution.
SKIP=,,NO causes the transfer of the data storage.

COMMAND
Macro for DCABLE Operation

Creates a command word for a physical disc
operation to return the disc drive cable address. When
an EXCP executes this command word it will read the
status of the physical device identified in the related
PCB and will place status indication in a two-byte
buffer specified by BUFADR.

Name Operation

[tag] COMMAND

OPCODE=DCABLE

Operand

OPCODE=DCABLE
BUFADR=symbolic address

(CHAIN= { ~~S))

Operation code for returning disc drive cable address.

BUFADR=symbolic address

Specifies the two-byte buffer area where the disc
drive cable address will be returned.

Optional

Indicates that another command word follows
contiguously in storage and is to be executed
immediately after this one. CHAIN=NO represents
the command word being the last one in the
command program.

COMMAND Macro for a DCSEEK Operation

Creates a command word for a physical disc seek
operation. When executed by an EXCP, this
command word will cause a disc seek to the cylinder
and track specified in a buffer pointed to by
BUFADR.

Name Operation

[tag] COMMAND

OPCODE=DCSEEK

Operand

OPCODE=DCSEEK
BUFADR=symbolic address

(CHAIN= { ~~S})

Operation code for a disc seek.

Table 7-5. Peripheral Device Basic Hardware Operation Codes

Device Operation OPCODE

Card Reader (8010) Read (and Feed):
EBCDIC mode 02
Card Image mode 22

Test 1/0 00
No Operation 03
Sense 04

Line Printer (6120, 6060) Write (no line spacing) 01

Write and Space
Space 1 line 09*

Space 2 Ii nes 11
Space 3 lines 19
Space 4 lines 21

Space 14 lines 71
Space 15 lines 79

Space Immediate:
Space 1 line OB*

Space 2 lines 13
Space 3 lines 1B
Space 4 lines 23

Space 14 lines 73
Space 15 lines 7B

Write and Skip:
Skip to Channel 1 (top of form) 89*

Skip to Channel 2 91
Skip to Channel 3 99
Skip to Channel 4 A1

Skip to Channel 11 D9
Skip to Channel 12 E1

Skip Immediate:
Skip to Channel 1 (top of form) 8B*

Skip to Channel 2 93
Skip to Channel 3 9B
Skip to Channel 4 A3

Skip to Channel 11 DB
Skip to Channel 12 E3

Test 1/0 00
No Operation 03
Sense 04

*These numbers in the series are being incremented by eight.

7-25

Table 7-5. Peripheral Device Basic Hardwar.a Operation Codes (Continued)

Device Operation OPCODE

-
_ ____,

Card Reader/Punch (8025) Read Only:
EBCDIC mode OA
Card Image mode 2A

~· ------
Feed and Select Stacker:

without offset 23
with offset A3

~·

Read, Feed and Select Stacker:
EBCDIC mode, without offset 02
EBCDIC mode, with offset 82
Card Image mode, without offset 22
Card Image mode, with offset A2

Punch, Feed and Select Stacker:
EBCDIC mode, without offset 01
EBCDIC mode, with offset 81
Card Image mode, without offset 21
Card Image mode, with offset A1

~· --
Test 1/0 00
No Operation 03
Sense 04

-----·- ·--

Magnetic Tape (3237) Write Forward 01
Read Forward 02
Rewind 07
Rewind and Unload OF

f--·

Backspace:
Block 27
File 2F

f--· - --
Forward Space:

Block 37
File 3F

f--·

Write Tapemark (End-of-File) 1F
Erase Gap 17

- -
Force Error Mode:

Set E3
Clear D3

f--·

Test 1/0 00 r No Operation X6
XO
XE

Sense 04 --

7-26

BUFADR=symbolic address

This specifies the address of a four-byte buffer which
is assumed to have been preset by the user with the
cylinder and track numbers to which the seek is to be
made. The buffer format: should be:

0 7 0

FBA Cylinder number

FBA+2 Track number

CHAIN= I ~~SI Optional

Indicates that another command word follows
contiguously in storage and is to be executed
immediately after this one. This parameter must be
included to reserve the unit until the subsequent data
transfer is complete. CHAIN==NO represents the
command word being the last G1ne in the command
program.

COMMAND Macro for a DCSRCH Operation

Creates a command word! for a physical disc search
operation. When executed by an EXCP, this
command word causes a disc search to be performed.
The search command allows the user to locate, on the
current track, the data he wishes to process. This is
done by analyzing the physical track records for type
and content, searching for the record specified by
BUFADR. When the specified record is found, the
next contiguous command word in the command
program is executed*. If the search fails to find the
specified record on the track, thu command program
is discontinued at this point and the abnormal
completion bit is set in the request block.

Operation Operand

7

[tag] COMMAND OPCODE=DCSRCH
BUFADR=symbolic address
BUFSIZ=decimal number

[FllELD= {~~NT}]
RNCNT

[CHAIN= f ~~5 }]
OPCODE=DCSRCH

Operation code for a disc search.

*ThiS";iiil normally be a DCREAD c:>r DCWRIT to read or
write the actual data record associat1ad with the search. The
search should always be made for ~1 field (usually a count
field) preceding the record to be processed. Appendix E
contains further information on the organization and
structure of physical disc records.

BUFADR=symbolic address

Specifies the address of a buffer containing the data
to be used in comparing to the field being searched.
This buffer must begin on a word boundary;

BUFSIZ=decimal number

Specifies the length of the field being searched for.

FIELD={~~CNT}
RNCNT

Optional

Specifies the type of field for which to search.
HA=home address, RZCNT=count field of record
zero and RNCNT=count field of record n. If this
parameter is omitted, HA is assumed. Following is a
table specifying the field to search in order to read or
write a desired field.

To Perform
this DCREAD This DCSRCH
or DCWRIT Operation is
Operation: First Required:

HA No search required

Data RNCNT

Key+ Data RNCNT

Count R(N-1)CNT or HA

Count+ Data R(N-1)CNT or HA

Count+ Key+ R(N-1) CNT or HA
Data

Note that, when searching in preparation for a write
operation, any fields that may be situated between
the search field and the field to be written must be
skipped using a OCR EAD without transfer.

Optional

Indicates that another command word follows
contiguously in storage and is to be executed
immediately after this one (almost always the case
with the DCSRCH). CHAIN=NO represents the
command word being the last one in the command
program.

7-27

COMMAND Macro for a DCREAD Operation

Creates a command word or chained group of
command words for a physical disc read operation.
When executed by an EXCP instruction, this
command word (or group of command words) will
cause a field (or number of fields) to be copied from
disc into the specified buffer (or buffers). A
multi-record data field read may be specified by
including a BUFSIZ parameter which is a multiple of
the DATSIZ parameter. However, when this is done,
no other fields may be read by the same macro.

Name Operation

[tag] COMMAND

OPCODE=DCREAD

Operand

OPCODE=DCREAD
HABUF=symbolic address,

HASIZ=decimal number
DAT BU F=symbol ic address,

DATSIZ=decimal number
KEYBUF=symbolic address,

KEYSIZ=decimal number
CNTBU F=symbolic address,

CNTSIZ=decimal number
[BUFSIZ=decimal number]

[SK IP= { ~~S }]

[CHAIN= { ~~S}]

[FIELD= l RZCNT} J
lRNCNT

Operation code for a disc read.

HABUF=symbolic address
HASIZ=decimal number

Optional

These two parameters are coded as a pair to indicate
that a home address field is to be read. HABUF
specifies the address of the buffer into which the
home address is to be placed and HASI Z specifies the
buffer length in bytes.

DATBUF=symbolic address
DATSIZ=decimal number

Optional

These two parameters are coded as a pair to indicate
that a data field is to be read. DATBUF specifies the
address of the buffer and DATSI Z specifies the length
of the buffer, except in the case of multi-record reads
(see BUFSIZ).

KEYBUF=symbolic address
KEYSIZ=decimal number

Optional

These two parameters are coded as a pair to indicate
that a data field is to be read. KEYBUF specifies the
address of the buffer, and KEYSIZ its length.

CNTBUF=symbolic address
CNTSIZ=decimal number

7-28

Optional

These two parameters are coded as a pair to indicate
that a count field is to be read. CNTBUF specifies the
address of the buffer, and CNTSIZ its length in bytes.

BUFSIZ,.,decimal number Optional

This parameter is to be coded for multi-record reads
only. It indicates the overall length of the data buffer
(DATBUF); it should be a multiple of the value of
DATSIZ.

SKIP= l.~~Sl Optional

When this parameter is included no data will be
transferred to memory so that fields may be skipped
and/or the cyclic burst bytes* of a record may be
checked. The SKIP=NO option (default) reads data
into the buffer area.

FIELD= IRZCNT l
RNCNT

Optional

This option gives the record in the count field.
FIELD=RZCNT is record 0 in the count field;
FIELD=,RNCNT is record n in the count field.

CHAIN=~ l~~S J Optional

Indicates that another command word follows
contiguously in storage and is to be executed
immediately after this one. CHAIN=NO (default)
represents the command word being the last one in
the command program.

The following table illustrates the valid combinations
of parameters which may be coded in a DCREAD
macro. (In all cases SKIP=YES may be included to
suppress data transfer.)

Multi-

Record
Operation Buffer (BUFSIZ)

Read Home HABUF No
Address

Read Data DATBUF Yes

Read Key KEYBUF+DATBUF No
and Data

Read Count CNTBUF No

Read Count CNTBUF+DATBUF No
and Data

Read Count, CNTBUF+KEYBUF No
Key and Data +DATBUF

"Appe,ndix E has further details.

COMMAND Macro for a DCWRIT or.
DCFWRIT Operation

Creates a command word or a chained group of
command words for a physical disc write operation.
When executed by an EXCP instruction, this
command word (or group of command words) will
cause data contained in the specified buffer (or
buffers) to be transferred to the specified field (or
fields) on disc.

Note that with physical write opeirations to disc it is
always necessary to specify the length of the variable
gap which is to be written preceding a count field, or
the fixed length gap preceding the home address field.

Name Operation

[tag] COMMAND OPCODE= (DCWRIT)
DCFWRIT

IDCWRIT l
OPCODE= DCFWR IT

HABUF=symbolic address,
HASl:Z=decimal number

DATBUF=symbolic address,
DATSIZ=decimal number

KEYBUF=symbolic address,
KEYSIZ=decimal number

CNTBLIF=symbolic address,
CNTSIZ=decimal number

[GAP=he,xadecimal number]

[CHAIN= (~~S lJ
[FIELD:= (RZCNT }]

RNCNT

Optional

Operation code for a disc write. OPCODE=DCWRIT
specifies a normal write operation.
OPCODE=DCFWR IT specifies a "format write": this
is the same as a normal writie except that, on
completion, the rest of the track (up to the index
mark) is filled with 1 's (equivalent to a continuous
gap).

HABUF=symbolic address
HASIZ=decimal number

Optional

These two parameters are to be coded as a pair to
indicate that a home addrress field is to be written.
HABUF specifies the address of the buffer containing
the data to be written into the home address, and
HASIZ specifies the buffer length in bytes.

DATBUF=symbolic address
DATSIZ=decimal number

Optional

These two parameters are to be coded as a pair to
indicate that an actual data record is to be written.
DATBUF specifies the address of the buffer
containing the data to be written, and DATSIZ
specifies its length in bytes.

KEYBUF=symbolic address
KEYSIZ=decimal number

Optional

These two parameters are to be coded as a pair to
indicate that a keyfield is to be written. KEYBUF
specifies the address of the buffer containing the data
to be written, and KEYSIZ specifies its length in
bytes.

CNTBUF=symbolic address
CNTSIZ=decimal number

Optional

These two parameters are to be coded as a pair to
indicate that a count field is to be written. CNTBUF
specifies the ·address of the buffer containing the data
to be written, and CNTSIZ specifies its length in
bytes. Note that whenever a count field is to be
written its associated variable gap length must be
calculated.

GAP=decimal number Optional

The value of this parameter represents the length in
bytes of an inter-field gap. The length of the gap will
be fixed except when a count field is being written,
in which case it must be calculated from the lengths
of the preceding key and data fields on the track (see
the following table). Appendix D gives the gap
specifications.

The following table illustrates the decimal number
values given for the gaps preceding these values.

Operation Buffer

Write home HABUF
address

Write data DATBUF

Write key KEYBUF+DATBUF
and data

Write Count CNTBUF

Write count CNTBUF+DATBUF
and data

Write count, CNTBUF+KEYBUF
key and data +DATBUF

K = length of preceding key field
D = length of preceding data field

Value to be
Coded in

GAP Operand

32

0

0

1,

> (K+D)x.043

I J

7-29

Optional

Indicates that another command word follows
contiguously in storage and is to be executed
immediately after this one. CHAIN=NO represents
the command word being the last in the command
program.

FIELD= IRZCNTI
RNCNT

Optional

This option gives the record in the count field.
FIELD=RZCNT is record 0 in the count field;
FIELD=RNCNT is record n in the count field.

COMMAND Macro for a RESTORE
Operation

Creates a physical command word which, when
executed by an EXCP, causes a disc restore operation.

Name Operation

[tag] COMMAND OPCODE=R ESTOR E

OPCODE=RESTORE

Operation code for a disc restore.

COMMAND Macro for a DCJUMP Operation

Creates a physical command word which, when
executed by an EXCP, causes the EXCP to next
execute the command word located at the address
specified by CWADR. This may be used to link
command programs.

Name Operation

[tag] COMMAND

CWADR=symbolic address

OPCODE=DCJUMP
CWADR=symbolic address

Specifies the address of the command word which is
to be executed immediately following this one.

CONTROL PROGRAM MACROS

WAIT - Wait for Service Request Completion

This macro is used to wait for the completion of one
or more outstanding service requests. Execution of
the requesting program will be suspended until
completion of the specified request(s) -IC·. Except for

7-30

the optional LIST and ERRCOMP, only one other
operand may be coded with this macro; depending
upon the particular parameter used, the macro will
wait for completion of:

• any one of the outstanding requests (MODE
=ANY)

• all of the outstanding requests (MODE =
ALL)

• a specific outstanding request (REOADR =
symbolic address)

Note that when the R EOCNT option is used the
WAIT macro is satisfied on any of the following
conditions:

• When the WAIT macro is issued and the
system detects that no requests are
outstanding.

• when the WAIT macro is issued and the
count of outstanding requests is not equal to
that specified by R EOCNT

• otherwise, when the first of any outstanding
request operations is completed

Name Operation

[tag] WAIT

MODE=IANYI
ALL

Operand

[MODE1~~~}]
[REQADR=symbolic address]
[REQCNT=symbolic address]

[usT={~~s ~ J
[ERRCOMP={~~S}]

Optional

This operand provides the option of waiting for the
completion of any one or all of the currently
outstanding requests.

REOADR=symbolic address Optional

This operand should be used when it is desired to
wait for the completion of a single specific request.
The symbolic address must be the address of the first
word in the request block (parameter list) of the
specific request to wait for (not service request
instruction itself).

REOCNT=symbolic address Optional

This operand specifies the location of a one-byte field
containing the hexadecimal count of the number of
requests known to be outstanding. Use of this
operand gives a wait for the completion of any service
request.

*If none of the specified requests is outstanding at the time
the WAIT is executed, control will be returned immediately
to the requesting program.

Optional

To be used when either the system linkage (service
request instruction) or the parameter table is to be
generated separately. L IST=NO uenerates the service
request only; LIST=YES generates the parameter
table (list) only. When no LIST operand is specified,
both the service request and the parameter table are
generated in line.

ER RCOMP=I ~~s j Optional

To be used when the user decides to retain control in
the event of an error (ERRCOMP=YES). When
ERRCOMP=NO is coded, or the default is taken, the
program will be aborted if an error occurs.

DE LAY - Suspend Program Executiont

This macro causes program execution to be
suspended for a specified period of time, with the
option of resuming on completion of any outstanding
service request. The period of suspension may be
specified either by the SECONDS operand or by the
CYCLES operand (one of which is always required).

Name Operation

[tag] DELAY

Operand

SECONDS=symbolic address
CYCL.ES=symbolic address

[BREAK= {~~5}]

[usT= {~~5} J
[ERHCOMP= {~~5}J

SE CON DS=symbol ic address Optional

Specifies the location of a one-word field containing
the desired delay in seconds (hexadecimal).

CYCLES=symbolic address Optional

Specifies the location (hexadecimal) of a one-word
field containing the desired delay in cycles (one cycle
= 50.2 milliseconds).

BREAK= {~~S} Optional

BREAK=YES indicates that prog1ram execution is to
be resumed immediately after any outstanding service
request is completed. When this operand is omitted or
BREAK=NO, the program will be resumed only when
the specified delay time has elapseid.

tNot available on minimal system.

Optional

To be used when either the system linkage (service
request instruction) or the parameter table is to be
generated separately. LIST=NO generates the service
request only; LIST=YES generates the parameter
table (list) only. When no LIST operand is specified,
both the service request and the parameter table are
generated.

ER RCOMP=I ~~s j Optional

To be used when the user decides to retain control in
the event of an error (ERRCOMP=YES). When
ER RCOMP=NO is coded, or the default is taken, the
program will be aborted if an error occurs.

INFORM - Service Request Completed

The INFORM macro informs the requesting program
that one of the program's outstanding service requests
has been completed. INFORM returns control
immediately to the user and subsequently indicates
that a service request has been completed by setting
the complete bit in the INFORM request block (bit 0
of the third byte of the parameter list). The REQCNT
operand points to a location containing a one-word
count of the number of service requests which are not
known to have been completed. The purpose of the
count specification is to indicate whether any of the
requests whose completion status is unknown have
already been completed by the time the INFORM
macro is executed (this will include the possibility of
a request being completed in the interval between the
issuance and actual processing of the INFORM). Thus
the INFORM macro is satisfied by any one of the
following conditions:

• when no service requests are outstanding

• when the number of outstanding requests is
less than that specified by R EQCNT

• when the first outstanding request is
completed

If when INFORM is issued, the number of
outstanding requests exceeds the REOCNT
specification, an error is assumed and the INFORM
request is completed as abnormal.

Name Operation Operand

[tag] INFORM REQCNT=symbolic address

[LIST={~~S}]

[ERRCOMP=~~~S ~]

7-31

REQCNT=symbolic address

Specifies the address of a one-byte location
containing the number of service requests that are not
known to have completed (outstanding).

Optional

To be used when either the system linkage (service
request instruction) or the parameter table is to be
generated separately. LIST=NO generates the service
request only; LIST=YES generates the parameter
table (list) only. When no LIST operand is specified,
both the service request and the parameter table are
generated.

ER ACOM P-1 ~~S l Optional

To be used when the user decides to retain control in
the event of an error (ERRCOMP=YES}. When
ER RCOMP=NO is coded, or the default is taken, the
program will be aborted if an error occurs.

POST - Create Compressed Communication Byte

This macro, in conjunction with RPOST, is used for
communication between user job steps. POST takes
the first eight bytes located at INFOADR and
interprets each byte to modify the corresponding bit
in a compressed communication byte located in the
Job Control Table*. At the start of a job the POST
communication byte is initialized to zero.

Name Operation

[tag] POST

INFOADR=symbolic address

Operand

INFOADR=symbolic address

[LIST= {~~S}]
[RETURN={~~S}]

[ERRCOMP={~~S}]

Specifies the location of an eight·byte buffer
containing the information to be posted. The buffer
should contain only EBCDIC O's, 1 's or X's. These
bytes will be interpreted as follows to modify the
corresponding eight bits in the communication byte:

EBCDIC 0 = reset bit to 0
EBCDIC 1 = set bit to 1
EBCDIC X =leave bit unchanged

*This scheme is compatible with IBM's UPSI bit mechanism.

7-32

Optional

To be used when either the system linkage (service
request instruction) or the parameter table is to be
generated separately. LIST=NO generates the service
request only; LIST=YES generates the parameter
table (list) only. When no LIST operand is specified,
both the service request and the parameter table are
generated.

RETURN=! ~~S l Optional

To be used when the user program wishes to be given
control immediately on recognition of the request,
but before completion (RETURN=YES). When
RETURN=NO is coded, or the default is taken,
control will only be returned on completion of the
request.

ER RCOMP-1 ~~S l Optional

To be used when the user decides to retain control in
the event of an error (ERRCOMP=YES). When
ER RCOMP=NO is coded, or the default is taken, the
program will be aborted if an error occurs.

RPOS1i - Expand from Communication Byte

This macro is used to read information, located in an
interjob step communication area, which was posted
there either by a POST macro in a previous job step
or by the SWITCH=parameter in a //SET Control
Language statement*. Each bit in the one-byte
communication area is expanded to an EBCDIC
equivalent and placed in the buffer specified by
INFOADR.

Operation

[tag] RPOST INFOADR=symbolic address

[LIST={~~S}]
[RETURN={ ~~S}]

[ERRCOMP={~~S}]

INFOADR=symbolic address

Specifies the location of an eight-byte buffer where
the interpreted information will be placed. Each bit
in the communication byte will be converted to an
EBCDIC byte as follows:

Binarv 0 = EBCDIC 0
Binary 1 = EBCDIC 1

Optional

To be used when either the system linkage (service
request instruction) or the parameter table is to be
generated separately. LIST=NO generates the service
request only; LIST=YES generates the parameter
table (list) only. When no LIST operand is specified,
both the service request and the! parameter table are
generated.

RETURN=\ ~~s) Optional

To be used when the user program wishes to be given
control immediately on recognition of the request,
bu before completion (R ETURN=YES). When
RETURN=NO is coded, or the default is taken,
control will only be retuirned on completion of the
request.

Optional

To be used when the user decides to retain control in
the event of an error (ERRCOMP=YES). When
ER RCOMP=NO is coded, or the default is taken, the
program will be aborted if an error occurs.

SETCOM - Transfer 'Ito Job Control Table

This macro, in conjunction with GETCOM, is used
for communication between user job steps. It
transfers, without modification, eight bytes of
information located in a user-specified buffer to an
eight-byte communication area in the Job Control
Table where it may be picked up by a G ETCOM in a
subsequent job step. At the start of a job the
communication area is initialized to all blanks.

Name Operation

[tag] SETCOM

INFOADR=symbolic address

Operand

INFOADR=symbolic address

[Ll:ST={~~S}]

[RE:TURN={~~S}]

[EFtRCOMP={~~S}]

Specifies the location of ain eight-byte buffer
containing the data to be transferred to the
communication area.

Optional

To be used when either the system linkage (service
request instruction) or the parameter table is to be
generated separately. LIST=NO generates the service
request only; LIST=Y ES generates the parameter
table (list) only. When no LIST operand is specified,
both the service request and the parameter table are
generated.

RETURN=\ ~~s) Optional

To be used when the user program wishes to be given
control immediately on recognition of the request
but before completion (RETURN=YES). When
RETURN=NO is coded, or the default is taken,
control will only be returned on completion of the
request.

ERRCOMP=l~~S) Optional

To be used when the user decides to retain control in
the event of an error (ERRCOMP=YES). When
ERRCOMP=NO is coded, or the default is taken, the
program will be aborted if an error occurs.

GET COM - Transfer from Job Control Table
Communication Area

This macro is used to obtain the information which
had been placed in an eight-byte communication area
by a SETCOM executed in a previous job step. The
content of the communication area, located in the
Job Control Table, is moved, without modification,
to an eight-byte buffer specified by INFOADR.

Name Operation

[tag) GETCOM

INFOADR=symbolic address

Operand

INFOADR=symbolic address

[LIST={~~S}]

[RETURN={~~S}]

[ER RCOMP={ ~~S}]

Specifies the location of an eight-byte user buffer
into which the contents of the communication area
will be moved.

7-33

Optional

To be used when either the system linkage (service
request instruction} or the parameter table is to be
generated separately. LIST=NO generates the service
request only; LIST=Y ES generates the parameter
table (list) only. When no LIST operand is specified,
both the service request and the parameter table are
generated.

RETURN=! ~~S} Optional

To be used when the user program wishes to be given
control immediately on recognition of the request,
but before completion (RETURN=YES). When
RETURN=NO is coded, or the default is taken,
control will only be returned on completion of the
request.

ER RCOMP=\ ~~s) Optional

To be used when the user decides to retain control in
the event of an error (ERRCOMP=YES). When
ER RCOMP=NO is coded, or the default is taken, the
program will be aborted if an error occurs.

ACCEPT - Read //PAR Card

This macro is used to obtain data contained on //PAR
cards supplied in the Control Language deck.
ACCEPT transfers the EBCDIC content of a single
//PAR card to the buffer specified by DATBUF1.

The particular //PAR card read by the ACCEPT is
determined by a pointer located in the Job Control
Table. At the start of the job step, this pointer is
initialized to point to the first //PAR card so that the
first ACCEPT executed in the step will read the first
//PAR card supplied with this step. Each time an
ACCEPT is executed the //PAR card pointer is
updated to the next consecutive card so that on the
next execution the next //PAR card will be read.

If, when an ACCEPT is executed, there are no more
//PAR cards left to be read, control will be
transferred to the location specified by the ENDADR
operand.

The optional operand PARNUM allows the //PAR
pointer to be set to any desired //PAR card by
specifying a user location containing a count (since
the //PAR cards are considered to be numbered 1
through n by implication). Each time an ACCEPT
macro with a PARNUM specification is executed, the

7-34

content of the user counter specified by PARNUM
will be incremented by 1 so that this same ACCEPT
may be re-executed to read the next //PAR card.

The format of the data transferred to the buffer
consists of a four-byte Common Stored Data Format
(CSDF) control header preceding the data from the
//PAR card, unless the optional operand CSD=NO is
included. The content of the //PAR card is always
stripped of characters through the first blank (so as
not to include "//PAR" itself) and is also stripped of
the sequence number field (columns 73 through 80)
unless the optional operand STR I P=NO is included.

Name Operation

[tag] ACCEPT

DATBUF1 =symbolic address

Operand

DATBUF1=symbolic address
[CSD=NO]
[STRIP=NO]
[PARNUM=symbolic address]
ENDADR=symbolic address

[LIST={~~S}]

[RETURN={~~S}J

[ERRCOMP={ ~~S}]

Specifies the location of the buffer into which the
data from the //PAR card will be transferred.

CSD=f\JO (Optional)

If this operand is used the parameter line will not be
preceded by the CSDF control header.

STRIP=NO (Optional)

If this operand is used the Sequence Number Field
(card columns 73 through 80) will not be stripped.

PARNUM=symbolic address (Optional)

Specifies the location of a one-word binary counter
whose value is to be used as a //PAR card pointer. A
value of 1 will cause the first //PAR card to be read,
and 2 the second, and so on. Each time the ACCEPT
is executed, the value of the counter will be increased
by 1.

ENDADR=symbolic address

This required operand specifies the program address
where control is to be transferred if all the //PAR
cards have been read (value of system's //PAR
counter greater than number of //PAR cards
supplied) or if the PARNUM specified is greater than
the number of //PAR cards supplied.

Optional

To be used when either the system linkage (service
request instruction) or the parameter table is to be
generated separately. LIST=NO generates the service
request only; LIST=YES generates the parameter
table (list) only. When no LIST operand is specified,
both the service request and the parameter table are
generated.

Optional

To be used when the user program wishes to be given
control immediately on recognition of the request,
but before completion (RETURN=YES). When
RETURN=NO is coded, or the default is taken,
control will only be returned on completion of the
request.

ER RCOMP=/ ~~s I Optional

To be used when the user decides to retain control in
the event of an error (ERRCOMP=YES). When
ER RCOMP=NO is coded, or the default is taken, the
program will be aborted i'f an errnr occurs.

DISPLAY - Write Messa'1e on SVSOUT

The DISPLAY macro is used for writing a one-line
message on the SYSOUT file. The address of the
message buffer, which must be aligned on a word
boundary, is specified by DATBUF. The format of
the buffer must be as follows:

0 Space for CSDF Control Header
(4 bytes)

2

4 ASA carriage control message byte 1
character

6 message byte 2 message byte 3

~~ ::::~

message byte n-1 message byte n

The first four bytes of the buffer are reserved for a
Common Stored Data Format (CSDF) control header
to be generated by the syst1~m. The fifth byte,
preceding the message, is an ASA carriage control
character* (not to be printed) and the message itself
is an EBCDIC character string up to 132 bytes in
length, starting in the sixth byte. If the message is
shorter than 132 bytes, a storage location containing
the length must be set up and the DATSIZ operand
must be included in the call.

*Details in Control Program and Oi1ta Management Services
- Basic Reference.

Name Operation

[tag] DISPLAY

DATBUF=symbolic address

Operand

DATBUF=symbolic address
[DATSIZ=symbolic address]

[ERR COMP=\ ~~s I J

Specifies the address of the first byte in the message
buffer. This will be the address of the space reserved
for the CSDF control header and the first byte of the
message itself (the ASA control character) should be
displaced 4 bytes from this address.

DATSIZ=symbolic address Optional

Specifies the address of a one-word location
containing the length of the message. If this operand
is omitted, the message length is assumed to be 132
bytes.

ER RCOMP=IYESI
NO

Optional

If ER RCOMP=YES is specified, the program is not
aborted. When ER RCOMP=NO is coded, or the
default is taken, the program will be aborted if an
error occurs.

MEMLIM - Identify Partition Limit

This macro returns the first byte address of the
highest addressable 256-byte page of storage available
to the problem program in the partition in which the
program is running. The returned address is expressed
as the absolute address of the first word of the last
addressable page. MEMLIM is intended for enabling
programs which are expected to run in partitions of
various different sizes to "spread themselves out" to
occupy as much space as is available (in the interest
of efficiency). In this situation, the partition space
pool should always be fixed by means of the
appropriate Linkage Editor directive.*

Name Operation

[tag] MEMLIM

Operand

INFOADR=symbolic address

[LIST={ ~~S}]

[RETURN={~~S}]

[ERRCOMP={~~S}]

*Linkage Editor portion of Program Library Services
Reference.

7-35

INFOADR=symbolic address

Specifies the location of a two-byte area where the
address of the highest addressable 256-byte page is to
be placed.

LIST=l~~Sl Optional

To be used when either the system linkage (service
request instruction) or the parameter table is to be
generated separately. LIST=NO generates the service
request only; LIST=YES generates the parameter
table (list) only. When no LIST operand is specified,
both the service request and the parameter table are
generated.

Optional

To be used when the user program wishes to be given
control immediately on recognition of the request
but before completion (RETURN=YES). When
RETURN=NO is coded, or the default is taken,
control will only be returned on completion of the
request.

ER RCOMP=l~~Sl Optional

To be used when the user decides to retain control in
the event of an error (ERRCOMP=YES). When
ER RCOMP=NO is coded, or the default is taken, the
program will be aborted if an irrecoverable error
occurs.

SETI F - Post Code for Control Language Test

This macro enables a program, running as one step of
a multi-step job, to post in the Job Control Table
(usually at step completion) a code which may be
tested by a Control Language //IF statement* in
order to govern the subsequent course of the job. The
code to be posted is one byte in length (EBCDIC
character); its address is specified by INFOADR.

Name Operation

[tag] SETIF

7-36

Operand

INFOADR=symbolic address

[LIST= {~~S}]
[RETURN={~~S}]

[ERRCOMP={~~S}]

INFOADR=symbolic address

Specifies the location of the one-byte (EBCDIC
character) of data to be posted in the IF code field of
the Job Control Table.

IYESl LIST= NO Optional

To be used when either the system linkage (service
request instruction) or the parameter table is to be
generated separately. LIST=NO generates the service
request only; LIST=YES generates parameter table
(list) only. When no LIST operand is specified, both
the service request and the parameter table are
generated.

Optional

To be used when the user program wishes to be given
control immediately on recognition of the request
but before completion (RETURN=YES). When
RETURN=NO is coded, or the default is taken,
control will only be returned on completion of the
request.

ER RCOMP=(~~s) Optional

To be used when the user decides to retain control in
the event of an error (ERRCOMP=YES). When
ER RCOMP=NO is coded, or the default is taken, the
program will be aborted if an error occurs.

HALT - Terminate Program

The HALT macro is used to perform normal
termination of a user's program step. This macro will
not result in a memory dump unless DUMP=YES has
been coded in the //EXECUTE statement associated
with the program. The format for HALT is as
follows:

Name Operation

[tag] HALT

;s;;control Language Services Reference.

EHAL T - Terminate Program

The EHAL T (error halt) macroi is used to request
termination of a user's job. This macro will not
automatically give a memory dump unless
DUMP=YES has been coded in the //EXECUTE
statement associated with the program. The format
for EHAL T is as follows:

Name Operation

(tag) EHALT

ABEND - Terminate Program Abnormally

The ABEND macro is used to request abnormal
termination of a job, and to pass a completion code
to Job Monitor for display. A dump will be given
unless DUMP=NO is specified on the //EXECUTE
statement. The completion codle is a 16-bit binary
value. The format for ABEND is as follows:

Name Operation

[tag] ABEND INFOADR=symbolic address

INFOADR=symbolic address

Specifies the first byte address of the area containing
the completion code.

TIME - Retrieve Time of Day

The TIME macro returns the current time of day in
the operand specified. The time of day is returned in
an unpacked decimal format: hhmmss, where hh is
the hour, mm is the minute, ancl ss is the second. The
format for TIME is as follows:

Name Operation Operand

[tag] TIME INFOADR=symbolic address

INFOADR=symbolic address

Specifies the first byte address of the area which
receives the time.

SDATE - Retrieve System IData

The SDATE (system date) macro returns the system
data in the operand specified. The date is returned in
one of two unpacked decimal formats: mmddyy or
yyjjj, where mm is the month, dd is the day, yy is the
year, and jjj is the Julian day. Tine format for SDATE
is as follows:

Name Operation Operand

tag SDATE INFOAD,R=symbolic address

MODE=f ~ J

INFOADR=symbolic address

Specifies the first byte address of the area that
receives the data.

MODE=I;)
Specifies the current date in the calendar (C) 6-byte
format mmddyy or the Julian (U) 5-byte format
yyjjj. The default value is C.

JDATE - Retrieve Job Date

The JDATE (job date) macro returns the date
provided for by a //SET statement. The date returned
will be the system date unless the //SET statement
has specified a job date. The date is returned in one
of two unpacked decimal formats: mmddyy or yyjjj,
where mm is the month, dd is the day, yy is the year,
and jjj is the Julian day. The format for JDATE is as
follows:

Name Operation

tag JDATE INFOADR=symbolic address

MODE= t ~}

INFOADR=symbolic address

Specifies the first byte address of the area which
receives the date.

MODE=I;)
Specifies the current date in the calendar (C) 6-byte
format mmddyy or Julian (J) 5-bit format yyjjj. The
default value is C.

CONSOLE COMMUNICATION MACROS

Two macros, CONSOLE (an active macro) and
MESSAGE (a data macro), are available for
communicating with the operator's console.

7-37

CONSOLE - Transmit Message to Console and
Optionally Receive Reply

The, CONSOLE macro enables programs to transmit
messages to the operator's cons.ole and optionally
receive replies. The main-storage format of the
message to be sent to the console must include two
fields, a control block which is not typed and the text
field which contains the actual message. The buffer
set up to receive a reply from the console (if any)
must contain a control block followed by the actual
buffer for the reply text. The format of CONSOLE is
as follows:

Name

[tag]

Operation Operand ---
CONSOLE DATBUF1 =symbolic

address

[DATBUF2=symbolic
address]

DATBUF1=symbolic address

Specifies the address of the message control block
which is followed by the message test.

DATBUF2=symbolic address (Optional)

Specifies the address of the reply control block which
is followed by the reply buffer area.

MESSAGE -Set Up Message Format

The MESSAGE macro, to be used in conjunction
with the CONSOLE macro, simplifies the generation
of messages by creating the correct format required
by CONSOLE. A tag is required for all MESSAGE
macros so that the corresponding CONSOLE macro
may locate it. Two formats exist for the MESSAGE
macro, one for generating an output message and one
for generating a reply buffer.

Generation of an Output Message

The format for generating an output message is as
follows:

Name

tag

7-38

Operation Operand

MESSAGE [DATBUF1 =symbolic address]

I DATSIZ1 =decimal number l
DATATXT=character string

[MODE={-5-l]

DATBUF1=symbolic address (Optional)

Enables a name to be attached to the beginning of the
message text field.

DATSIZ1=decimal number

Specifies the decimal length (in bytes) of the message
text. If no length is specified, the text length will be
used. If there is no message, a length of zero is
assumed. The maximum value of DATSIZ1 is 100.

DATATXT=character string

Specifies the actual message to be placed in the
messagn text field. It is created in EBCDIC and may
be up to 100 characters (bytes) long. The default is a
string of blanks, with length being determined by the
parameter DATSIZ1. The character string must be
coded in the form, C'message text'.

MODE==I ~ l (Optional)

Specifies whether the message is informative (I) or
directive (D). MODE=D indicates that the message
calls for some operator action. The default value of
MODE is I.

Generation of a Reply Buffer

The format for generating a reply buffer is as follows:

Name Operation Operand

tag MESSAGE [DATBUF2=symbolic address]

DATSIZ2=decimal number

DATBUF2=symbolic address (Optional)

Enables a name to be attached to the beginning of the
reply tHxt field.

DATSIZ2=decimal number

Specifies the decimal length in characters (bytes) of
the reply buffer to be generated. The reply field will
be assembled with blanks. The maximum value of
DATSI Z2 is 100.

A. PACK CATALOG AND CENTRAL

CATALOG FORMATS

The formats used by the pack catalog and central
catalog of the disc are discussed in the following
paragraphs.

PACK CATALOG

Figures A-1 through A-5 illustrate the use of the
name, attribute and space elements in generating the
pack catalog. The normal block: of the pack catalog is
128 bytes, and the continuation element is 64 bytes
for normal files and 128 bytes for a continuation to
the description of pack space, which is catalog blocks.

At disc initialization time, the pack catalog is created
with block formatting as follows (assuming the pack
contains the central catalog):

Block 1

Block 2

Block 3

Block 4

Entry that d1~scribes the pack
catalog itself

Entry that describes the space
available on the pack

Entry that de!scri bes the space
occupied by the! central catalog

First block of space available in
the pack catalog. Name element
fields are filled as follows:

Control bytes X'8200007C'

Next name X'000500'

Previous name X'OOOOOO'

Block 5-n · Remaining blocks of space are
constructed in the same format as
block 4 with proper linking
through the next name and
previous name fields.

During the process of allocating a data file, one of the
available blocks is removed from the string of
available pack catalog blocks and is linked into the
chain describing existing files. When space is needed
for a continuation element, another block is removed
from the available chain. Half of the block is used for
a continuation element and the other half is linked to
start the chain of available continuation space.

CENTRAL CATALOG

Figures A-6 through A-8 illustrate the use of the
name, attribute, and volume elements in constructing
entries for the central catalog. The normal block size
of the central catalog is 128 bytes, and the
continuation element is 64 bytes.

At disc initialization time, the first block is formatted
as shown in Figure A-7. Remaining blocks are
considered available and are linked as those in the
pack catalog.

A-1

0

33

34

63
64

127

A-2

CONTROL BYTES FOR NAME ELEMENT

FILE NAME: X'00014B'

POINTERS TO ATTRIBUTE ELEMENT, SPACE
ELEMENT AND AVAILABLE PACK CATALOG
BLOCKS, AVAILABLE PACK CATALOG
CONTINUATION ELEMENTS

CONTROL BYTES FOR ATTRIBUTE ELEMENT

CONTROL BYTES FOR SPACE ELEMENT

7 SEGMENTS WITH
UNUSED BYTES

AT THE END

------------~~--------~------~----·---------------------------------

Figura A-1. Block 1 - Pack Catalog Entry in Pack Catalog

NAME
ELEMENT

ATTRIBUTE
ELEMENT

SPACE
ELEMENT

0

21
22

127

CONTROL BYTES FOR NAME ELEMENT

Fl L E NAME: X'00024B'

POINTERS TO SPACE ELEMENT

CONTROL BYTES FOR SPACE ELEMENT

14 SEGMENTS WITH
UNUSED BYTES

AT THE END

Figure A-2. Block 2 - Space Entry in Pack Catalog

NAME
ELEMENT

SPACE
ELEMENT

A-3

0

25
26

55
56

127

A-4

CONTROL BYTES FOR NAME ELEMENT

FILE NAME: X'00034B'

POINTERS TO ATTRIBUTE ELEMENT
AND SPACE ELEMENT

!----------------·--·-----------------------

CONTROL BYTES FOR ATTRIBUTE ELEMENT

CONTROL BYTES FOR SPACE ELEMENT

8 SEGMENTS WITH
UNUSED BYTES

AT THE END

Figure A-3. Block 3 - Central Catalog Entry in Pack Catalog

NAME
ELEMENT

ATTRIBUTE
ELEMENT

SPACE
ELEMENT

0

49
50

79
80

127

CONTROL BYTES FOR NAME ELEMENT

POINTERS TO ATTRIBUTE ELEMENT,
SPACE ELEMENT, AND

ASSOCIATED NAME ELEMENT

CONTROL BYTES FOR ATTRIBUTE ELEMENT

CONTROLBYTESFORSPACEELEMENT

4'SEGMENTS WITH
UNUSED BYTES

AT THE END

Fig1LJre A-4. Block 4-n - Normal File Entry in Pack Catalog

NAME
ELEMENT

ATTRIBUTE
ELEMENT

SPACE
ELEMENT

A-5

0

CONTROL BYTES FOR SPACE CONTINUATION

63

Figure A-5. Pack Catalog Space Element Continuation

A-6

0

33
34

63
64

127

CONTROL BYTES FOR NAME ELEMENT

FILE NAME: X'00014B'

POINTERS TO ATTRIBUTE ELEMENT, VOLUME
ELEMENT, AVAILABLE CENTRAL CATALOG
BLOCKS, AND AVAILABLE CENTRAL CATALOG
CONTINUATION ELEMENTS

CONTROL BYTES FOR ATTRIBUTE ELEMENT

CONTROL BYTES FOR VOLUME ELEMENT

4 VOLUMES

Figure A-6. Block 1 - Central Catalog Entry in Central Catalog

NAME
ELEMENT

ATTRIBUTE
ELEMENT

VOLUME
ELEMENT

A-7

0

49
50

79
80

127

A-8

CONTROL BYTES FOR NAME ELEMENT

POINTERS TO ATTRIBUTE ELEMENT,
VOLUME ELEMENT, AND

ASSOCIATED NAME ELEMENT

CONTROL BYTES FOR ATTRIBUTE ELEMENT

---------------------·---------------------!

CONTROL BYTES FOR VOLUME ELEMENT

3 VOLUMES

Figure A-7. Block 2-n - Normal File Entry in Central Catalog

NAME
ELEMENT

ATTRIBUTE
ELEMENT

VOLUME
ELEMENT

0

CONTROL BYTES FOR VOLUME CONTINUATION

63

Figure A-8. Central Catalog Volume Element Continuation

A-9

IB. SERVICE REQUEST MECHANISM
AND MACRO EXPANSIONS

INTRODUCTION

There are essentially two types of system macro
instructions: action macros andl data macros. Action
macros, which expand into executable code, may be
further subdivided into user code macros and service
request macros. User code macros expand into code
which is primarily executed within the user's program
(except for possible nested service request macros).
Service request macros, on thE! other hand, link to
system routines for their implementation.

Examples:

GET, DISPLAY user codle macros

READ, G ETCOM service request macros

MESSAGE, COMMAND data macros

Most of the control program anid block input/output
macros are service request mac:ros whereas most of
the physical input/output macros are data macros.

The expansions of all service request macros contain a
service request machine instructiion.

SERVICE REQUEST INSTRUCTION

The Setvice Request instruction (mnemonic SR) is
the only means by which a user program* may
communicate with the operating system. In practice,
however, there is no need for the user to code this
instruction directly, since it will automatically be

*This same method is also often employed by system
programs to communicate with each other.

generated in the expansion of a service request macro
instruction. Figure B-1 illustrates the control path
between a user program and operating system.

SERVICE REQUEST MACRO EXPANSION
CONVENTIONS
The expansions of all* service request macros will
normally begin with the following standard three
words (with no LIST operand used):

Byte Byte ---------------~ 0 7 0 7

0 Service Request Instruction

2

4

Function Code l Length

Return Information

Any additional words in the expansion are uniqu~ly
defined for each macro.

SERVICE REQUEST INSTRUCTION (BYTES 0
AND 1)

Th is instruction establishes the link with the
operating system; it is defined as follows.

*Except for the physical input/output macro, EXCP.

B-1

USER I SYSTEM
PROGRAM

I
I OPERATING

SYSTEM

I CONTROL PROGRAM
RETURN a... -- ---------- ""' I

I
I
I
I
I
I
I
I
I

~
I

SERVICE REQUEST

SERVICE

-.--------·- __.. PROGRAM -..

I
I I

I
I
I

~

I I
I

PARAMETERS _.. ,..

I
I
I
I
I
I
I
I
I

Figure B-1. Service Request Linkage to System

8-2

Byte 0 Byte 1

---------------- --------------0 7 0 1 2 3 4 7

Service Request
Function Code

Fl EP

Service Request Function Code: SH = X'13'

I: parameter list location indicator

Request
Class

0 immediately following this instruction

at location whose address is contained in
register 6

R: Return indicator

0 return control only after request is completed

return control immediiately after request is
accepted

EP: User error processing indicator

0 user program to be aborted on occurrence of
an error

user to retain control .after an error

Request Class: Major class of service request

0 Debug Request (system only)

Restricted Request (system only)

2 Control Program Flequest

3 Block Input/Output Request

4 Illegal

5 Supervisor Request

6 Telecommunicatio1ns Request

7 Physical Input/Output Request

FUNCTION CODE (BYTE 2)

Function or operation code for th is request (see
individual expansions).

LENGTH (BYTE 3)

Number of words in this request block, excluding the
service request instruction (see individual
expansions).

RETURN INFORMATIOIN (BYT'ES 4 AND 5)

This word is an area where the~ system will return
information developed during the execution of the
request. On initial receipt of th 1e request the whole
word will be set to zero. The return information field
is defined as fol lows:

Byte 4 Byte 5 -------------- ------------0 1 2 3 7 0 7

IC I E le Nol Not Used L Return Code

Complete Bit (C)
This bit will be set by the system to indicate that the
request has been completed (normally or otherwise).

Error Flag (E)

When this bit is set an abnormal completion is
indicated in which case the remainder of the word
will contain information connected with the error. If
the error flag is not set, no further information will
be contained in this word (except in the case of
END). This bit may be set on completion even if the
EP bit is not set in the SR.

End Flag (END)

When set, this bit indicates that one of a number of
possible end conditions has been detected. The
particular end condition is specified by the return
code in byte 5, as follows:

00 Disc EOA (end of allocation)

01 Printer Channel 12

02 Disc EOF (end of file)

03 Card Reader EOF

04 Printer Channel 9

05 Printer Channels 9 and 12

Return Code

This eight-bit code contains specific information
about the error (return code, Table C-1, Appendix C).

OPTIONAL PARAMETERS

Three keyword parameters are usable by most block
1/0 level service request macros: RETURN,
ERRCOMP, and LIST. The LIST parameter gives the
option of separating the parameter packet and service
request instruction, or not doing so.

If LIST=YES, the RETURN and ERRCOMP
parameters cannot be used; if LIST=NO, the
RETURN and ERRCOMP parameters are the only
other parameters which can be used. However, if
LIST is omitted, these two parameters can be used
independently.

LIST

If LIST=YES, only the appropriate parameter packet
is generated. The LIST=YES option allows the
generation of the macro parameter packet only once
in the program.

B-3

If LIST=NO, only a 2-byte standard service request
instruction is generated. The user must load into
general-purpose register 6 (R6) the address of the
parameter packet to be referenced and into register 7
(R7) the address of the save area address prior to
issuing the LIST=NO option.

The 2-byte service request instruction has the
following format, where 05 defines the Data
Management expansions and 13 the function code.

13 05 J
Example:

1 2 l 4 5. &_ 1 es 10 11 121314 1s 1e 111 19-20-2i222i-i425262728_29 __ jQ3132.ii34JSis37J8li404142434

t:~~ _ ri:ii:~~~=: == :=~· ~:-
. [~~: , ~l,~~:.":_~=~~7":1/:~""~'f:E:!::·: ~::

C>.Utl. BAf'fo.~}l;;.,.IJ.~.KPLjL• , .• c.

t~:i:i:~ii~-:;~~~x~n-~v:= ~:> . : ·
]._0, . , .• .• _,_ o • , , , , '-··' , " , , •

With the LODD instruction, the user loads into R6
the address of a parameter packet which has been
specified elsewhere in the program (TAG 5), and the
save area address (SA VEIT) into R7.

With the· OPEN macro and a UST=NO parameter
specified, only the 2-byte executive request code is
generated.

At TAG 5, the OPEN parameter list is generated.

If the LIST option is omitted, the service request
instruction is generated followed by the appropriate
parameter list. The user must load the address of the
save area into R7 prior to issuing the call.

13 05 J
OPEN

Parameter
Packet

.-------.-~---~------------

B-4

The LIST default for the OPEN request results in the
generation of the service request instruction followed
by the! OPEN parameter packet.

RETURN

The RETURN parameter enables the user to request
that control be returned to his program immediately
after the service request has been received and
recognized by the system (but before the function it
re q u est s h as been com p I et e d). By cod i ng
R ETU R N=Y ES, the user may save time by
proceeding with his own processing while the system
is processing the service request. When
RETURN=YES is used, detection of request
completion becomes a user responsibility (he must
check the complete bit in the return information
word of the request parameter list). The RETURN
parameter is mostly applicable to input/output
servic:e requests, which are relatively slow to
complete. The default specification, RETURN=NO
may be coded explicitly if desired. (Note that there
are curtain service request macros on which the
RETURN parameter is not available.)

ERR COMP

The ERRCOMP parameter allows the user to retain
control when an error occurs which the system was
unable to correct. By coding ERRCOMP=YES the
user has the option of attempting to correct any
errors or of simply ignoring* them and continuing.
The default condition ERRCOMP=NO, which may be
coded explicitly if desired, results in a program abort
in the event of an error (which the system was unable
to correct).

STANDARD SYSTEM SUFFIXES

If the programmer wishes to reference a particular
word of a parameter packet, he may do so by adding
the standard system suffix to his tag name (name
symbol). If the tag name is six characters or less, the
standard suffix is appended to the tag name. If the
tag name is seven or eight characters, this (these) last
character(s) is (are) truncated and the standard suffix
is appended. For this reason the first six characters
must be unique. The standard suffixes are listed
alongside the macro expansion with the suffix across
from the appropriate parameter packet word.

*Occasionally, a condition may arise which is classified by
the system as an error but which does not affect the
outcome of the user program.

For an example: if the programmer wishes to
reference the word containing the file type of the
ALLOC macro, it is located in byte 5 which is
referenced by the F 1 suffix. If his tag name is JOB65,
the word may be referenced with JOB65F1.
However, if his tag name is MY JOB658, the reference
is MY JOB6F 1.

EXPANSION TABLES

The expansion of each mac:ro is detailed in the
following pages; generally there is a map of the bytes
as stored, followed by detailed assignments of bytes
and bits.

The macros are listed in these groupings:

• Data Management

ALLOCATE
EXPAND
PURGE
OPEN
CLOSE
CLOVE
LABRTN

• Block 1/0

STATUS/TYPE
CONTRL/POSITN
READ/WRITE
RESET

• Physical 1/0

EXCP
PCB
COMMAND (various applications)

• Control Program

WAIT
POST/RPOST
SETCOM/GETCOM
ACCEPT
DISPLAY
MEMLIM
INFORM
SETIF
DELAY
HALT
EHALT
ABEND
TIME
SDATE
JDATE

• Console Communications

CONSOLE

These expansion explanations show the parameter
tables or lists without the service request instruction
(for those macros including a service request). Byte
displacement shown at the side of the tables is
without the service request; considering the service
request, it is necessary to increase the displacement
count by 2.

Where applicable, bytes containing Segment Tags are
shown. This tag is mandatory in systems having more
than 64K bytes of storage, and may be implemented
in smaller systems. A programmer should be aware
that the showing of Segment Tags in these format
drawings does not necessarily imply that the tags will
be in the system he is using.

B-5

Table B-1. ALLOCATE Parameter Packet Format Suffixtt

0 Request Code Length
1----~--------------~-----------------.J..-------~------------------------------------1

FL

2 c
4 PF

Return Code

FT

CR

FO F1

6 IK DC IC SF lllllllllllllltllllllllllll FJ

8
Data Block Count BC

10

12 Data Block Size BS

14 Data Record Size RS

16 STAG LAB1

18 L1

20 STAG LAB2

22 L2

24 STAG IDENT

t 26 IDENT ADR IA

28 Index Block Size IB

30 Index Key Size IK

32 Data Cylinder Number DC

34 Index Cylinder Numbeir IC

36 Spread Factor SF

Byte Bit Description

0 Request code, 1 desi gnates ALLOCATE.

1 Length, number of words in the parameter packet (10 to 19 words)

2 0 Request complete in dicator (C)

0 Service request in process

1 Reque st complete

1-7 Return information

--~---~
3 Return code

4 0 Paired file (PF). PF =1 for paired file.

t Bytes 6 and 7 reflect which optional parameters are present. l·f a parameter is not present, as evidenced by the presence of a
zero in that parameter bit, the corresponding 2-byte word in bytes 16 through 37 is omitted, and those parameters that follow
are telescoped upward by one word. Four-byte parameters such as IDENT ADA with its segment tag and reserved byte, is
represented by two bits in the pattern. Both bits (IA) must be set if IDENT ADA is present.

tt The 2-character suffix for unique file identifier.

B-6

Tabl,9 B-1. ALLOCATE Parameter Packet Format (Continued)

Byte Bit Description

1 Uncataloged (UtC). UC=1 for not recording file in the central catalog.

2 Contiguous space (CS). CS=1 for contiguous space on each volume.

3 Cylinder boundary (CB). CB=1 for space segments starting on cylinder boundary.

4 Write verify (WV). WV=1 for write verification of files.

5 Common stored data format (CD). CD=1 for common stored data format.

5 3,4 File type (FT)

00 Permainent

01 Scratc:h

10 Temp1orary

11 Work

5-7 File organization (FO)

000 General

001 lndexod

010 Relative

100 Sequential

6 4,5 LAB1 ADR specified (L1=1)t

6,7 LAB2 ADR specified (L2=1)t

7 0,1 IDENT ADR specified (IA=1)t

2 Index block size specified (18=1)

3 Index key size specified (I K=1)

4 Data cylinder number specified (DC=1)

5 Index cylinder number specified (IC=1)

6 Spread factor spe.cified (SF=1)

8-11 Data block count, number of blocks for data file

12,13 Data block size, size (in bytes) of data block

14,15 Data record size, size (in bytes) of record

17* Segment tag for LAB1 ADR (STAG LAB1)

18,19* LAB1 ADR, address of label information for the primary data file LABDEF1, required if I DENT ADR is not
specified.

*Optional parameter.

tTwo fields are shown on format expansion 110 accommodate paired files.

B-7

Table B-1. ALLOCATE Parameter Packet Format (Continued)

Byte Bit Description

21* Segment tag for LAB2 ADR (STAG LAB2)

22,23* LAB2 ADR, address of label information for a paired file LABDEF2.

25* Segment tag for IDENT ADR (STAG IDENT)

26,27* IDENT ADR, address of file identifier as used by Control Language to identify volumes for use in allocation

28,29* Index block size, size (in bytes) of index file

30,31 * Index key size, size (in bytes) of key

32,33* Data cylinder number, cylinder number at which allocation of the data file starts

34,35* Index cylinder number, cylinder number at which allocation of index file starts

36,37* Spread factor, physical record interlace to be used in an indexed data file

*Optional parameter

B-8

t

Byte

0

i

2

3

4

5

6-8

Table B-2. EXPAND Parameter Packet Format

0 Request Code Length

2 c Return Information Return Code

4 PF UC cs L1 L1 IA IA

6 Data Block Count

8
1= = .. = ,, .. = .. ·=··""""'= !

'"''':' ::::::::::::::::::::.,::/·):> nrn: '''?'\,,,,,,,,,,,,,,<<t:t:::: ::un<l:r::rm:r :::c,,,:::\;:,,,,,, :::::\:\\ :.,:·'.:.,\,:.:,,:.i.'.:.,:,.:.,:,,:.,:·'.:.,:,,: .. :,,:.,:,:.,',,\.:,,:.,:.,:.,:.,: .. :·'.:.,:.:.:.,: .. :.,:.,: .. :·'.:.,\,:.,:,,:.:, s TAG LA s 1
10 ti/{{:):)::::·:::::::::::::){:}\{ ::·:·:·:·:·:·:":·:·:·:·: ... '. .. .;.;.: .. :;.;.;.·'=·'' ="="""""""":·:·:=·::::: ... :::::: ... : =.:.:.:.:.:.==-'--------------·-----------I

12

16

Bit

0

1-7

0-7

0

1

2

2,3
1--

4,5

LAB1 ADA

IDENT ADA

Description

Reques t code, 2 designates EXPND

Length, numbe r of words in parameter packet (7 to 9 words)

Reques t compl t~te indicator (C)

0

1

Return

Return

Paired if

Uncatal

t~rvice request in process s
R equest complete

informa ti on

code

ile (PF) ,. PF=1 for paired file

aged (U C), UC=1 for uncataloged file

STAG IDENT

Contigu ous Spa ce (CS), CS=1 if space on each volume is to remain contiguous.

LAB1 ADA spe 1cified (L1=1)t

IDENT ADA sp ecified (IA=1)t

Data bl ock cou nt, number of data blocks to add to the file

t Byte 5 reflects which optional parameters are present. If a parameter is not present, the corresponding 4-byte field in bytes 10
through 17 is deleted from the parameteir packet and the subsequent parameter words are moved upward. The 4-byte field is
represented by two bits in byte 5; both bits must be set (or cleared) to reflect the presence of the field.

tt The 2-character suffix for unique file identifier.

Suffixtt

FL

CR

F1

BC

L1

IA

8-9

Table B-2. EXPAND Parameter Packet Format (Continued)

Byte Bit Description
.........

11* Segment tag for LAB1 ADR (STAG LAB1)
I-·

12,13* LAB1 ADR, address of label information for the file. This parameter is required if IDENT ADR is not specified.

15* Segment tag for IDENT ADR (STAG IDENT)

16, 17* IDENT ADR, address of file identifier as used by Control Language. This parameter is required if the file is open
at the time of expansion.

*Optional parameter

B-10

t

Byte

0

1

2

3

4

5

7*

Table B-3. PURGE Parameter Packet Format

01--~--..~~~~~~R.equestC_o_d_e~~~~~~~~-+-~~~~~~~~~~L_e_n_g_th __ ~~~~~~~~--1
2 c

4

12

Bits

0

1-7

0

1

0,1

2,3

Return Information

L1 L1

IDENT ADR

Description

Request c ode, 3 d esignates PURGE

Length, n umber o f words in parameter packet (5 to 7 words)

Request c

0

omplete

Serv

indicator (C)

ice request in process

1 Req uest complete

Return in formati on

Return co de

Paired file (PF), P F=1 for paired files

Uncatalog ed (UC) 1
, UC=1 for uncataloged file

LAB1 AD R speci 'fied (L1=1)

IDENT A DR spec :ified (IA=1)

Segment tag for l .AB1 ADR (STAG LAB1)

Return Code

IA IA

STAG LAB1

Suffixtt

FL

CR

F1

L1

IA

8,9* LAB1 AD R, addr ess of label information for data file. This parameter is required if I DENT ADR is not specified.

11 * Segment tag for I DENT ADR

12, 13* IDENT A DR, add ress of file identifier as used by Control Language

t Byte 5 reflects which optional parameters are present. If a parameter is not present, the corresponding 4-byte field in bytes 6
through 13 is deleted from the parameter packet and the subsequent parameter words are moved upward. The 4-byte field is
represented by two bits in byte 5. Both bits must be set to reflect the presence of the field.

*Optional parameter.

tt The 2-character suffix for unique file identifier.

B-11

t

B-12

Table B-4. OPEN Parameter Packet Format

Length FL

c Return Information Return Code CR

.--c_c~~B_A~~~-T~-~~ u -~[R I -_L__..__~~--~~~-s~T_A_G_1_D_E_N_T~~~~~~-- BT

ID

STAG LAB ADA

LB

STAG BUF ADA

BF

Byte Bit Description

0 Request code, 4 designates OPEN

1 Length, number of words in parameter packet (4 to 8 words)
-

2 0 Request completion indicator (C)

0 Service request in process

1 Request complete

1-7 Return information
-

3 0-7 Return code

4 0 Control character (CC)

0 ANSI control characters

1 Device control characters

1 Buffer address (BA)

0 No buffer

1 Buffer present

2-3 Type of 1/0 (T)

00 Logical

01 Block

10 Physical

t Byte 4 reflects which optional parameters are present. If a parameter is not present, the corresponding 2-byte word in bytes 8
through 15 is deleted from the parameter packet and the subsequent parameter words are moved.

tt The 2-character suffix for unique file identifier.

Byte Bit

4-5

6

7

5

6,7

9*

10, 11 *

13*

14, 15*

*Optional parameter.

Table B-4. OPEN Parameter Packet Format (Continued)

Description

Us age (U)

00 Input

01 Update

10 Output

Re wind (R)

0 No rewind

1 Rewind

La bel (L)

0 No label

1 Label address

Seg

BD

Seg

LA

Seg

BU

ment tag for BDT or IDENT (STAG IDENT)

Tor IDENT, address of BDT or address of file identifier

ment tag for LAB ADR (STAG LAB ADR)

13 ADR, label address

ment tag for BUF ADR (STAG BUF ADR)

F ADR, buffer address

8-13

Table B-5. CLOSE Parameter Packet Format Suffixt

FL

Return Information Return Code CR

L T BT

BOT or IDENT ID

Byte Bit Description

0 Request code, 5 designates CLOSE

1 Length, number of words in parameter packet (4 words)

2 0 Request complete indicator (C)

0 Service request in process

1 Request complete

1-7 Return information

3 Return code

4 2 Lock (L)

0 No lock

1 Lock

3,4 Type of 1/0 (T)

00 Logical 1/0

01 Block 1/0

10 Physical 1/0

6 Rewind (R)

0 No rewind

1 Rewind

5 Segment tag for I DENT or BDT (5 TAG IC>ENT)

6,7 BOT or IDENT, address of BOT or address of file identifier

tThe 2-character suffix for unique file identifier.

B-14

Table B-6. CLOVE Parameter Packet Format

O,__·~~~~~~~~R_e_q_uestCod.1_e~~~~~~~~+-~~~~~~~~~-L_e_n~g~th~~·~~~~~~~--1

2 c I Return Information Return Code

4 ~\\\\\\\\\\\\\\t~\\i~\i~\~\\\\\~~\\\\\\\~\~\\\\\~\\\\\\~\\\\~\\\\\~\\I~\\\\ T STAG IDENT

6

Byte Bit

0

1

2 0

1-7

3

4 3,4

1---·

5

6,7

BOT or IDENT

Description

Reques t code, 6 designates CLOVE

Length , number of words in parameter packet (4 words)

Reques 1t complete indicator (C)

0 Service request in process

Request complete

Return information

Return 1code

Type o f 1/0 (T)

00

01

Logical 1/0

Block 1/0

Segmen t tag for BOT or IDENT (STAG IDENT)

BOT or IDENT, address of BOT or address of file identifier

tThe 2-character suffix for unique me identifier.

Suffixt

FL

CR

ID

B-15

Table B-7. LABRTN Parameter Packet Format Suffixt

0 Request Code Length FL

2 Return Code CR

4 STAG IDENT BT

6 ID

8 STAG BUFF

10 BUFF ADDRESS IN

Byte Bit Description

0 Request code, 7 designates LABRTN

1 Length, number of words in parameter packet (6 words)

2 0 Request completion indicator (C)

0 Service request in process

1 Request complete

1-7 Return information

3 Return code

4 5-7 Element field (ELEM)

000 Name element returned

001 Attribute element returned

010 Both elements returned

5 Segment tag for IDENT (STAG IDENT)

6,7 IDENT ADR, address of file identifier

9 Segment tag for buffer address (STAG BUFF)

10, 11 Address of buffer containing status information

tThe 2-character suffix for unique file identifier.

B-16

Table B-8. STATUS and TYPE Macros Parameter Packet Format

0 Request Codie Length FL

2 Return Information CR

4 \\!!l!ii\\l!l!l!l!l!l!lll!l!l!l!l!l!l!lll!l!l!l!l!l!lllllll~~!llll!lililllll!l!l~!l!l!l!lll!l!f:l!~lll!lilllllil!l!l!!llilil!lll!l!l!l!f:l~!l!ll!l:!llllllllllllillilllllllll~lllll~l~l~llll!lllllll!lllll!~lll!l![~!llllllllllll!lllllilll STAG

6 Pointer to File Identifier ID

8 .ilililililililiiiliiiiiiiiiiiiiiiiii!iiiiiliiilililililiiiiiliiilil:i1liiilililiiililililiiiiili~~iiiilli!ii!ilii:11:1:1:::111:1~111111111111~1111111:11~111:111111111:1:111!!ii!i!il~lliilll!li~1~ STAG

10 Buffer Address BA

STAG

14 Pointer to Byte Counter BS

Elyte Bit Description

0 0-7 Reques t Code: STATUS=40, TYPE=41)

1 0-7 Length , number of words in parameter: 08

2,3 0-15 Refurn Information

4 0-7 Not us ed

5 0-7 Segmen t Tag

6, 7 0-7 Pointer to file ID: Address of 8-byte file identifier

8 0-7 Not use d

9 0-7 Segmen t Tag
1---·

10, 11 0-7 Buffer Address: first byte address of user-specified buffer area

12 0-7 Not use d

13 0-7 Segmen t Tag
1---·

14, 15 0-7 Pointer 1to Byte Count: address of 2-byte area containing byte count (length of buffer)

*The 2-character suffix for the unique file identifier.

8-17

Table B-9. CNTRL/POSITN Macros Parameter Pac:ket Format Suffix*

0 Request Code Length FL

2 Return Information CR

4 Sub-Function Code STAG SF

6 Pointer to File ID ID

8 STAG

10 Pointer to Block Number BN

12 Residual Byte Count RC

Byte Bit Description
--

0 0-7 Request Code: CNTRL=03,POSITN=04

1 0-7 Length, number of words in the parameter packet, 07

3 0-7 Return Information

4 0-7 Sub-Function Code (the indicated bits are set for the function):

7 Select Stacker
6 Space l.ine Printer
5 Skip Line Printer Form
0-2 Rewind (000)

Rewind and Unload (001)
Erase gap (010)
Backspace Record (100)
Forward space a record (110)
Forward space a file (111)
Backspace a file (101)
Write End-of-File mark (011)

0-3 The value of nn when SS, SK, or SP is used
7 Beginning of volume
6 End of Volume
0 SEEK on position

5 0-7 Segment Tag

6,7 0-7 Pointer to File ID: address of 8-byte file identifier in FDT
0-7 _ ___,

8 0-7 Not used
--

9 0-7 Segment Tag

10,11 0-7 Pointer to Block No.: address of 4-byte block number (applies to POSITN)
0-7

12,13 0-7 Residual Byte Count: difference between number of bytes requested and number of bytes received.
0-7

*The 2-character suffix for unique file identifier.

B-18

Table 8··10. READ/WRITE Macros Parameter Packet Format

Length 0 Request Code
~----------·

FL

CR 2~---------- Return Information

4 Sub-Function Code I STAG
~----------~---·~--------~-------------------------t

SF

6 Pointer to File ID ID

STAG

10 Pointer to Block Number BN

12 Residual Byte Count RC

14 111111:1:11111:1:1:11111111111111111111:1111111:111~11111:11111:1:11111:11:!l!lll!l!il!iii!!!:1111:1111111:11111:1111:::111111:11::::11111:11:1::111:111111:111:11111:11:1::1:1111:11:11:11111111111:111111:111111111:1111111:1111111:111111:111!il,I STAG

BA

20 Pointer to Byte Count BS

Byte Bit Description

0 0-7 Function Code: READ=02, WRITE=01

1 07 Length, number of words in the parameter packet: 11

2,3 0-7 Return Information
0-7

I---·

4 0-7 Sub-Function Code (the indicated bits are set for the function):

7 Select Stacker
6 Space Line Printer
5 Skip Line Printer Form
4 EBCDIC=NO
0-3 The value of nn when SK or SP is used
0-2 The value of nn when SS is used

5 0-7 Segment Tag
1----

6,7 0-7 Pointer to File ID: address of 8-byte file identifier
0-7

8 0-7 Not used

9 0-7 Segment Tag

10,11 0-7 Pointer to Block No.: address of 4-byte area containing block number
0-7

I---·

12,13 0-7 Residual Byte Count: difference between number of requested bytes and number of bytes transferred
0-7

14 0-7 Not used

15 0-7 Segment Tag

*The 2-character suffix for unique file identifier.

B-19

Table B-10. READ/WRITE Macros Parameter Packet Format (Continued)

Byte Bit Description

16,17 0-7 Buffer Address: first byte address of user specified buffer area
0-7

18 0-7 Not used

19 0-7 Segment Tag

20,21 0-7 Pointer to Byte Count: address of 2-byte area containing the byte count (length of buffer)
0-7

Table B-11. RESET Macro Parameter Packet format

0 Request Code Length FL
1----------------------------~~~~------...L.----------~-------------------------------t

2 Return Information CR

4 STAG

ID

Byte Bit Description

0 0-7 Function Code: RESET=31

1 0-7 Length, number of words in the parameter packet: 04

2,3 0-7 Return Information

4 0-7 Not used

5 0-7 Segment Tag

6, 7 0-7 Pointer to File ID: address of 8-byte file iduntifier

*The 2-character suffix for unique file identifier.

B-20

Table B-12. EXCP Macro Expansion

The expansion of the E XCP ma<
n the ca

:ro does not include a parameter table (LIST=NO is implied) but it may, depending
on the operands coded i 111, contain executable code for request setup purposes:

No operands: SR

PCB=@register nu mber: MOVR Rn,6

SR

PCB=symbolic acl dress: LOO symbolic address,6

SR

CP=@register nu mber: STO 6(6).,Rn

SR

CP=symbolic add ress: MOVM symbolic address, 6(6)

SR

UNORD=symboli c addre ss: MOVB symbolic address, 0(6)

SR

UNOR D=@registe r numb Elr: STOB 0(6),Rn

SR

B-21

0*

2

4

6

8

10

12

14
l-----

16 I-
r- - - -

10 L ___ _

Tablo B-13. PCB Macro Parameter Packet Format

Unit Ordinal Length

Return Information

Pointer to CP or FC

Pointer to Current CW

Status

Residual Byte Count

Sense
-------------1

Sense I --------------,
- - - !!_e~ - - - - - - - - - - - - - __ _J

*This macro does not use the standard service request prefix.

Byte Bit Description

0 0-7 Unit Ordinal: Device identifier

1 0-7 Length, number of words in this block excluding Device ldent field

2,3 0-7 Return Information (same as for service requeS;t macros)
0-7

4 0 Error Recovery Flag (ERP)

0 = Call system error recovery when an error occurs

1 = Bypass error recovery

1 Not used

2 Command Program Flag

0 = Next word is address of command program to be executed

1 = Next word is function code to be executed

3-7 Not used

5 0-7 Not used

6,7 0-7 Pointer to CP or FC
0-7

If CP=O, pointer to command program

If CP=1, pointer to function code

8,9 0-7 Pointer to Current CW: Address of command word being executed
0~1

10,11 0-7 Status indication
0-7

B-22

Table B-13. PCB Macro Parameter Packet Format (Continued)

Byte Bit Description

12,13 0-7 Residual Byte Count: difference between number of bytes requested and number of bytes transferred

0-7

14,15, Sense bytes: variable number of sense bytes depending on device
16,17,

Oise= none
18,19

Unit Record = 2

Mag Tape= 6

Table B-14. COMMAND Macro Parameter Packet Format (Basic Data Channel)

Command Code

2 Byte Count

4 ii!!l!l!i!l!i!l!ll!!i/li!lilllil:/!lil!lilililililillliilllllililili!lill!lilliilililililililll!llllil!!!i!/i/!!i!il!;!l!lil!l11i/i!/l!i!l!li/i!!!li!!!i!llil!li/!!!i!!1li!!l!i!!!!i!1il!l!ii!!l!l!i!l!l!lil!lil!lil!!!i!llillil1~!!11!i!l!lil1!:] STAG

6 Buffer Address

*This macro does not use the standard service request prefix.

Byte Bit

0 0

1

2

3-7

8-15
1---·

2,3 0-7

4 0-7

5 0-7

6, 7 0-7

Chain
O=
1 =

Flag (C)
No CW follows this one
Another CW follows

ess Length Check (SL):

Description

if it is set, the CP will not be terminated when the transferred Su ppr
byte c ount differs from the specified byte count. Not used when C = 0.

Skip (SK): If it is set, data will not be transferred to memory on a data input operation.

Not u~ ;ed

Comrr 1and Code: The eight-bit hardware command code (OPCODE).

Byte C :ount: The length of the data buffer (BUFSIZ) in hexadecimal; length must be non-zero

Not w ;ed

Segme nt Tag

Buffer ·Address: the FBA address of the data buffer (BUFADR).

B-23

Table B-15. COMMAND Macro Parameter Packet Format (DCABLE)

2

0 2

STAG

*This macro does not use the standard service request prefix.

Byte Bit

0 0

1-7

1 0-7
l--· --

2,3 0-7

4 0-7

5 0-7
I-----,

6, 7 0-7

8-24

Chain Flag
ollows this one 0 =No CW f

1 "' Anothe r CW follows

Not used
-

Command Cod e: DCABLE=21

Byte Count: D CABLE=0002

Not used
--

Segment Tag

Description

--

Buffer Address : address of buffer into which the disc drive cable address is to be transferred.

Table B-16. COMMAND Macro Parameter Packet Format (DCSEEK)

6 Buffer Address

*This macro does not use the standard service request prefix.

Byte Bit Description

0 0 Chain Flag
0 =No CW follows this one
1 = Another CW follows

1-7 Not us;ed

1 0-7 Command Code: DCSEEK=20

2,3 0-7 Byte Count: DCSEEK=0004

4 0-7 Not u~;ed

5 0-7 Segment Tag

6, 7 0-7 Buffer Address: address of buffer containing cylinder and track numbers.

8-25

Table 8-17. COMMAND Macro Parameter Packet Format (DCSRCH)

0*1---_c___._ __ ~Rs _____ Ji!iii!'ii!ii:::::::[.!!::::i!!i::[:::::·:ii[:i:!:i:[j:··~:i:i!iii!i:i:Jiiiii[=_0 _____ __._ _____ 8 _____ _

2 Byte Count
~--~--~~~~~~~~~~~~~~~~~--t

4 STAG

B-26

6

*This macro does not use the standard service request prefix.

Byte Bit

0 0

1-3

1 0-7

2,3 0-7

4 0-7

5 0-7

6, 7

-
ag Chain Fl

O= No
1 =An

CW follows th is one
other CW follows

Description

Bit Ring
101 =
011 =
110 =

Sync: least-significant three bits of Bit Ring Sync Code
home address field
RO count field
RN count field

-

c :om man d Code: DCSRCH=08
-

Byte Cou
BC= 0
BC= 0

nt: Length of field for which search is being made
005 for home address
009 for count field

Not used
---------·------

s egment Tag

B uffer Ad dress: address of buffer containing field data for which search is being made

Table B-18. COMMAND Macro Parameter Packet Format (DCREAD)

(1) Read with Transfer

0
* c 1 BAS l;l~='=®=l=l=l=l=l=ffi=fil=IL-R~L-~~-o~~~~-'---~~~2~~~-1

2 Single Record Byte Count

STAG

6 Buffer Address

BL ______ , __ _ Overall Byte Count _ ___________ _J

*This macro does not use the standard service request prefix.

Byte Bit Description

0 0 Chain Flag
Cl= No CW follows this one
1' = Another CW follows

1-3 Bit Ring Sync: least-significant three bits of the Bit Ring Sync code:
001 = data field
010 =key field
011 = R0 count field
110 = Rn count field
101 = home address field
100 = control storage data

4-6 Not used

7 Repeat Flag
0 =Execute read command once
1 = repeat read command until overall byte count is satisfied

1 0-7 Command Code: READ WITH TRANSFER= 02

2,3 0-7 Sin1~le Record Byte Count: number of bytes to be transferred in each execution of the read
command. If R=O this will be the total number of bytes transferred.

4 0-7 Not used

5 0-7 Segment Tag

6, 7 0-7 Buffer Address: address of the buffer into which the data is to be pli')ced.
1---·

8,9 0-7 Overall Byte Count: total number of bytes to be transferred. Only present when R=1 for a
multi-record read.

(2) Read Without Transfer

0 c BAS 0 4

2 Byte Count

Command Code= 04 (Bits 0-7 of bvte 1)

B-27

B-28

Table B-19. COMMAND Macro Parameter Packet Format (DCWRIT and DCFWRIT)

0* c l BRS Command Code

2 Byte Count

4 Gap Length STAG

6 Buffer Address

*This macro does not use the standard service request prefix.

Byte Bit

0 0

1-3

4-7

1 0-7

2, 3 0-7

4 0-7

5 0-7

6, 7 0-7

Chain Flag
0 =No CW f
1 =Another

-
Description

allows this one
CW follows

Bit Ring Sync:
001 = Data f
010 = Key fi
011 =Ro co
110 =Rn co
101 =Home
100 = Contr

least-significant three bits of the Bit Ring Sync Code
ield
eld
unt field
unt field
address field

ol Storage data

Not used

Command Cod
01 =Write
10 =Format

e

Write

Byte Count: n umber of bytes of data tc1 be written (length of buffers).

Gap Length: o ne's complement of the length of the gap to be written preceding the field
itself.

Segment Tag

Buffer Address : address of the buffer containing the data to be written

0*

2

4

6

Table B·20. COMMAND Macro Parameter Packet Format (RESTORE)

*This macro does not use the stand;<ird service request prefix.

t---·

!.--.

Byte Bit

0 0

1-7

1 0-7

2-6 -

Chain Flag
0 =No CW follows this one
1 = Another CW follows

Not used

Command Code: RESTORE= 22

Not used

Description

Table B-21. COMMAND Macro Parameter Packet Format (DCJUMP)

*This macro does not use the standard service request prefix.

Byte Bit Description

0 0 Chain Flag
0 =No CW follows this one
1 = Another CW follows

1-7 Not used

1 0-7 Command Code: DCJUMP = 28

2-4 0-7 Not used

5 0-7 Segmi~nt Tag

6,7 0-7 Next CW Address: locations of the CW to be executed following this one

B-29

Table B-22. WAIT Macro Parameter Packet Format

0

2

Request Code -,----
1------------------------··--·--~·----~--------J_____ ______________________________________ ~ Length

Return Information

6 Request Block Address (Optional)

Byte Bit Description

0 0-7 Request Code: WAIT=03

1 0-7 Length, number of words in the parameter packet: 3 or4

2,3 0-7 Return Information
1--·

4 0-3 Not used

4 Count Flag: C•1 means wait for any request with count option

5 Not used

6 Wait - all flag (L)

L=1 means wait for all outstanding requests.

{ When L==O and A=O, wait is

1 Wait - any flag (A)
for specific request.

A=1 means wait is for any outstanding request.

5 0-1 Segment Tag

6, 7 0-7 Request Block Address: address of request block for wait-specific. Only present when
L.=O and A=O.

*The 2-character suffix for unique file identifier.

8-30

Suffix*

FL

CR

BT

BF

--

--

--

--1

--1

Table B-23. POST/RPOST Macros Parameter Packet Format

0 Request Code Length FL

2 Return Information CR

4 ilii1liii/il/fi!/!/ifi!lii!!i/!iflllilii!lil!i!1illiill!ii!ili!iiililili!i!ii!i!iil/i!l1i11ililll/lll')!lfl/:ll1111i!l/lilill111/lllil1li:.:.:.l~lli, ... iilll!i"""'ll!li1=ili!ii=il!i/!=ljil1l=iilll
1
. ..,jifif!: ... ::11111_111111=11:.11=11111~""!lilil.=if!lll:=::;111:=li:lii=liilil ~l! _________ s_T_A_G _________ --t

6 Buffer Address IN

Byte Bit Description

0 0-7 Re1quest Code: POST=43,RPOST=44

1 0-7 Length, number of words in the parameter packet: 04

2,3 0-7 Return Information

4 0-7 Not used

5 0-7 Seument Tag

6, 7 0-7 Bu'ffer Address: address of an 8-byte buffer. This will either contain the information to be
pos:ted (POST) or will receive the interpreted information from the system (RPOST).

*The 2-character suffix for unique file identifier.

Table B-24. SE'lr'COM/GETCOM Macros. Parameter Packet Format Suffix*

0

2

6

Byte

0

1

2,3

4

5

6,7

Bit

0-7

0-7

0-7

0-7

0-7

0-7

Request Code Length FL
~~~~~~~~~--'-~~~~~~~~~~~~~·~~~~~~~~---1 

Return Information CR 

STAG 

Buffer Address IN 

Description 

Rec 1uest Code: SETCOM=4 7 ,G ETCOM=48 

Len 19th, number of words in the parameter packet: 04 

Ret urn Information 

No1 :used 

Seg ment Tag 

Buf 
trar 

fer Address: address of an 8-byte buffer. This will either contain the information to be 
1sferred (SETCOM) or will receive Information from the system (GETCOM). 

*The 2-character suffix for unique file identifier. 

8-31 



Table B-25. ACCEPT Macro Parameter Packet Format Suffix** 

Ot-----------------R_e_q_u_e_st __ C_o~de __ ~--~~~------~~-------L-e_n_g_th __________________ ....... FL 

2 Return Information CR 

BT 

6 Buffer Address BF 

STAG 

EN 

STAG 

14L __ _ _ ____ _J IN 

B-32 

Byte Bit 

0 0-7 

1 0-7 

2,3 0-7 

4 0-4 

5 

6 

7 

5 0-7 

6, 7 0-7 

8 0-7 

9 0-7 

10, 11 0-7 

14* 0-7 

15* 0-7 

16*,17* 0-7 

Description 

Request C ode: 13 

Length, nu mber of words in the parameter packet: 6 or 8 

Return Inf ormation 

Not used 

Number Fl ag 
O= num ber not specified (current value of //PAR card pointer will be used) 

R card number is specified in word at displacement 16 1 =//PA 

Strip Flag 
0 =don 
1 =strip 

ot strip sequence number field (card cols 73-80) 
sequence number field 

Control He ader Flag 
O= don ot include CSDF control header 

de CSDF header ·1 = inclu 

Segment T ag 

Buffer Add ress: address of buffer into which data from //PAR card is to be transferred. 

Not used 

Segment T ag 

End Addre ss: address to which program control will be transferred when all //PAR cards 
ead. have been r 

Not used ( optional) 

Segment T ag (optional) 

Number A ddress (optional): address of one-word location containing the //PAR card number 

*Last four bytes will only be present when number flag (N) = 1. 

**The 2-character suffix for unique file identifier. 



Tabht B-26. MEMLIM Macro Parameter Packet Format Suffix* 

0 Request Codie Length FL 

2 Return Information CR 

4 ilililililililililil!l!l!lililili!ilil!lililililllllilll!llllllllll!lllllilll!lllililililililililili!ilili:!1ilil!lilil!l!l!li:l11111111r:11111111j111111111111~1!lil!llliillilil!lilil:1111111::ililililll!lillillll~lllll!lllllllillli!ll!l:J!l:ll STAG 

6 Buffer Address IN 

Byte Bit Description 

0 0-7 Request Code: M EM LI M=46 

1 0-7 Leng1th, number of words in the parameter packet: 04 

2,3 0-7 Return Information 

4 0-7 Not lllsed 

5 0-7 Segment Tag 

6,7 0-7 Buffer Address: Address of buffer into which last page address is to be placed. 

*The 2-character suffix for unique file identifier. 

Table 131-27. INFORM Macro Parameter Packet Format 

0 Request Code Length FL 
1--~~~~~~~~~ 

2 Return Information CR 

STAG 

6 Count Address IN 

Byte Bit Description 

0 0-7 Requ1est Code: INFORM=05 

1 0-7 Length, number of words in the parameter packet: 04 

2,3 0-7 Return Information 

4 0-7 Not UISed 
t---· 

5 0-7 Segment Tag 

6,7 0-7 Count address: address of a one-word location containing a count of the number of requests 
not known to have completed at this time. 

*The 2-character suffix for unique file identifier. 

B-33 



2 

4 

6 

L 

Byte 

0 

1 

2,3 

4 

5 

6,7 

Bit 

0-7 

0-7 

0-7 

0-7 

0-7 

0-7 

Table B-28. SETIF Macro Parameter Packet Format 

Description 

Re quest Code: SE TIF=45 

Le ngth, number o f words in the parameter packet: 04 
-

Re turn lnformatio n 

No t used 

Se gment Tag 

Bu ffer Address: a ddress of a one-byte buffer containing the data to be transferred. 

*The 2-character suffix for unique file identifier. 

B-34 

FL 

CR 

IN 



Tabht B-29. DELAY Macro Parameter Packet Format 

0 ..._ ______________ ~R_e~q_u_es_t_C __ ,o_d_e ________________ -L., ____________________ L_e_n_gt_h __________________ --1 

2 Return Information 

6 Delay Address 

Byte Bit Description 

0 0-7 Hequest Code: DELAY=04 

1 0-7 Length, number of words in the parameter packet: 04 

2,3 0-7 Heturn Information 

4 0-5 Not used 

6 Break Flag (B) 
0 =no delay break 
1 = delay to be broken on any service request completion 

7 lrype Flag (T) 

0 =delay in seconds 
1 = delay in cycles* 

5 0-7 Segment Tag 

Suffix** 

FL 

CR 

BT 

IN 

6,7 0-7 Delay Address: address of a one-word buffer containing the duration of the delay in seconds 
or cycles* (see Type Flag). 

*Cycle equals 50.2 milliseconds. 

**The 2-character suffix for unique file identifier. 

8-35 



Table B-30. HALT Macro Parameter Packet Format Suffix* 

-----,-
____ _l_ : ~·~---------R_e_q_u_es_t_C~o.de Length FL 

Return Information CR 

Byte Bit Description 

0 0-7 Request C ode: HAL T=64 
r--· 

1 0-7 Length, n umber of words in the parameter packet: 02 
r-----1------- ---------

2,3 0-7 Return In formation 

*The 2-character suffix for unique file identifier. 

Table B-31. EHAL T Macro Parameter Packet Format Suffix* 

0 Request Code ~ Length ___ __J_ _____ _ FL 

2 Return Information CR 

Byte Bit Description 

0 0-7 Request C ode: EHALT=65 
1------ i----

1 0-7 Length, n umber of words in the parameter packet: 02 

2,3 0-7 Return Inf ormation 

*The 2-character suffix for unique file identifier. 

B-36 



Tabne B-32. ABEND Macro Parameter Packet Format Suffix* 

0 Request Code Length FL 

2 Return Information CR 

4 

6 Buffer Address IN 

Byte Bit Description 

0 0-7 R equest Code: ABEND=75 

1 0-7 L ength, number of words in the parameter packet: 04 

2,3 0-7 R eturn Information 

5 0-7 5 egment Tag 

6,7 0-7 B uffer Address: address of location containing the completion code. 

*The 2-character suffix for unique file identifier. 

T.able B-33. TIME Macro Parameter Packet Format Suffix* 

0 Request Code Length FL 

2 Return Information CR 

STAG 

6 Buffer Address IN 

Byte Bit Description 

0 0-7 R equest Code: TIME=73 

1 0-7 L ength, number of words in the parameter packet: 04 

2,3 0-7 R eturn Information 

5 0-7 Se gment Tag 
1--· 

6,7 0-7 Bl Jffer Address: address of location containing the time 

*The 2-character suffix for unique filo identifier. 

B-37 



Table B-34. SOATE Macro Parameter Packet Format Suffix* 

0 Length 
Request Code ________ I_ 

----------------------·-·--- ----------------------; 
FL 

2 Return Information CR 

4 STAG BT 

6 Buffer Address IN 

Byte Bit Description 
I--------< 

0 0-7 Request Co de: SDATE=74 

1 0-7 Length, nur nber of words in the parameter packet: 04 
---+--

2,3 0-7 Return Inf ormation 
1--------j 

4 7 Date Flag 

0 = Calendar date 

1 = J ulian date 

5 0·7 Segment T ag 
t---·-----" ------- -------------------------------------------------------t---· 

6,7 0-7 Buffer Add ress: address of location containing the date 

*The.2-character suffix for unique file identifier. 

Table B-35. JDATE Macro Parameter Packet Format Suffix* 

0 Request Cod:---------I====~~----:-~ _____ L_en_g_t_h _________ ---. FL 

2 Return Information CR 

4 STAG BT 

6 Buffer Address IN 

-
Byte Bit Description 

0 0-7 Request Co de: JDATE=66 

1 0-7 Length, nu mber of words in the parameter packet: 04 

2,3 0-7 Return Info rmation 

4 7 Date Flag 

0 = c alendar date 

1 = Jl Jlian date 
-

5 0-7 Segment Ta g 

6,7 0-7 Buffer addr ess: address of location containing the date 

-
*The 2-character suffix for unique file identifier. 

8-38 



Table B-36. CONSOLE Macro Parameter Packet Format Suffix* 

0 Request C<>de Length FL 

2 Return Information CR 

4 

6 BF 

8 

10 Reply Address IN 

Byte Bit Description 
t---· 

0 0-7 Request Code: CONSOLE=01 

1 0-7 Length, number of words in the parameter packet: 04 (without reply) or 06 (with reply) 
t--· 

2,3 0-7 Return Information 
t---· 

5 0-7 Segment Tag 
t---· 

6,7 0-7 Buffer Address: address of location containing message 
1---· 

9 0-7 Segment Tag 

10, 11 0-7 Reply Address: address of location containing reply message. 

*The 2-character suffix for unique file identifier. 

B-39 





INTRODUCTION 

Of the various classes of possible errors associated 
with a service request, the operating system's error 
recovery program is concerned ·with only one 
particular class: the inpUJt/output hardware 
malfunctions. Attempted rocovery from these 
input/output hardware malfunctions will be 
performed for all levels of input/output coding by 
default; however, at the physical level it may be 
bypassed if specified. 

If an error proves to be irrecoverable, information 
describing the error is returned to the user's request 
or command block (Table C-1) and then, normally, 
the job is aborted. HowevElr, if the operand, 
ERRCOMP=YES had been coded in the original 
request, control is returned so that the user may 
either ignore the error or attempt to process it 
himself. 

In addition to its basic task of attempting to recover 
from errors, the error recovery program is also 
responsible for handling certain 1exceptional non-error 
situations, such as EOF detection and indication. 

TYPES OF ERROR 

The following major categories of error are handled 
by the error recovery program. 

INTERVENTION REQUIRED 

When operator intervention is required, a console 
message is issued. Once the operator has serviced the 
device, he responds to the message indicating either 
to continue processing or to return control to the 
user. The MRX/OS Messages manual contains the 
operator console messages. 

C. ERROR RECOVERY 

ERRORS REQUIRING RETRIES 

Input/output requests completed but including 
specific types of errors are retried a given number of 
times. If the error persists, a message is typed on the 
operator's console. Tlhe operator response indicates 
either to retry the request another specific number of 
times or to return the error condition indication to 
the user program. If one of the retries succeeds, a 
normal completion indication is returned to the user 
program as though no error had occurred. 

CONDITIONS OF UNCERTAINTY 

There are certain error conditions where the error 
recovery program is unable to perform accurate error 
recovery, or any error recovery at all; for example, 
not being sure where magnetic tape is positioned. 

Although the error recovery program checks all 
defined hardware conditions, it is not inconceivable 
that an undefined condition from a non-supported 
hardware device might arise; in this case the error 
recovery program is unable to process it. 

With regard to the first example, it should be noted 
that although the error recovery program checks all 
defined hardware conditions, it is not inconceivable 
that an undefined condition might arise; in this case 
the error recovery program is unable to process it. 

When error conditions of this kind occur, a message is 
typed on the operator's console. If the message 
requires a response and the operator chooses to 
continue, the user may either gain or lose 
information. If the message does not require a 
response, the request is routed back to the user with a 
return code. 

C-1 



IMMEDIATE IRRECOVERABLE CONDITIONS 

An example of an error so classified is that of 
magnetic tape running off the end of the reel. In 
situations such as this, a console message is typed and 
the request is routed back to the user with a return 
code. 

CONDITIONS THAT DO NOT REQUIRE 
RECOVERY 

Certain conditions routed to the error recovery 
program are considered to be normal completions and 
do not require the issuance of any return codes or 
error messages. Two examples are these: 

C-2 

• a parity error while spacing magnetic tape 
(no recovery is needed because tape is 
properly positioned) 

• detection of an end-of-file condition 

ERROR LOGGING 

Error logging is an integral part of the operating 
system. The error log file, which is built at system 
generation time, consists of forty-byte records (Table 
C-2). 

Records of error conditions and retries are 
maintained in the two error flag bytes and two error 
counters, respectively (located in the extension area 
of each unit table entry). The bits of the error flag 
bytes represent the error conditions that can occur. If 
multiple errors occur, bits are set as the error 
conditions are detected. 

The error counters are incremented by 1 whenever a 
retry error condition occurs. Each error counter can 
contain more than one error condition. 



Table C-1. 1/0 Error Recovery Information 

Hexadecimal PCB/Request Message 
Status FDT Block Return Code Console Must Error Log 

Completion Return Information Displayed Message No. of File be Record 

Condition Gode Information Field On Console Reply Retries* Reset Written 

EOA on this disc request 0 0 AOOO - - 0 N 

Channel 1 2 on the printer carriage 0 0 A001 - - 0 N N 
control tape 

This request was not processed be- -· Old C001 - - 0 y N 
cause an exception condition 
occurred on a previous request and 
the file has not been reset 

Disc EOF 0 0002 A002 - - 0 y N 

Unit down 5002 0002 C002 002 - 0 y N 

Card reader EOF 0 0003 A003 - - 0 y N 

Invalid function code in command 5003 - C003 - - 0 - N 
program 

Channel 9 on the printer carriage 0 0 A004 - - 0 N N 
control tape 

A Remove request removed this 5004 - C004 - - 0 - N 
request 

Length error. A record was read 0 0 C005 - - 0 N N 
which was longer than the buffer 
space provided for it 

Tape mark sensed on any Read 0 0006 A006 - - 0 y N 
operation not including Search 
command 

An ASKATT request is being re- 5006 - C006 - - 0 - N 
jected because an ASKATT is 
already pending against the device 

Error status indication returned 5010 0010 C010 - - 0 - N 
from an 1/0 operation 

Operation timed out 5011 0011 C011 011 N/Y 1 y y 

Unsolicited attention set 5012 0012 C012 012 - 1 y N 

Bad 1/0 status indication from Seek 5013 0013 C013 - - 0 y N 
or Restore 

No error recovery for device 503F 003F C03F - - 0 y N 

Invalid function code in BIO macro 5020 0 C020 - - 0 N N 

Invalid block number 5021 0 C021 - - 0 N N 

Invalid byte count 5022 0 C022 - - 0 N N 

Invalid CNTRL request 5023 0 C023 - - 0 N N 

No FDT 5024 - C024 - - 0 N N 

Usage error 5025 0 C025 - - 0 N N 

Operation to locked file 5026 0 C026 - - 0 N N 

Invalid sequence of operations to 5027 0 C027 - - 0 N N 
a device 

Subfunction field error 5028 0 C028 - - 0 N N 

Invalid position (to magnetic tape 5029 0 C029 - - 0 N N 
file that is not maintaining block 
numbers) 

EOF on a read to a bypassed file 0 0 A02A - - 0 N N 

Invalid unit ordinal on privileged 5030 - C030 - - 0 - N 
PIO request 

*Number of retries automatically performed by Error Recovery before completion is declared. 

C-3 



Table C-1. 1/0 Error Recovery Information (Continued) 

Hexadecimal PCB/Request Message 

Status FDT Block Return Code Console Must 
Error Log 

Completion Return Information Displayed Message No. of FilP. be Record 

Condition Code Information Field On Console Reply Retries Reset Written 

DISC 

Timeout 5041 0041 C041 041 - 10 y y 

Command reject 5042 0042 C042 042 - 0 y N 

Disc write current 5043 0043 C043 043 - 0 y y 

Seek incomplete 5044 0044 C044 044 - 10 y y 

Not on line 5045 0045 C045 045 YIN 1 y N 

File unsafe 5046 0046 C046 046 - 0 y y 

Pack change 5047 0047 C047 047 - 0 y N 

Status not val id 5048 0048 C048 048 - 0 y y 

Command early 5049 0049 C049 049 - 0 y y 
-

Unsolicited Attention 504A 004A C04A 04A - 1 y N 

Catastrophic error 5048 0048 C04B 04B YIN 0 y y 

Missed window 504C 004C C04C 04C - 10 y y 

IFAwindow 504D 004D C04D 04D - 10 y y 

Track boundary 504E 004E C04E 04E - 10 y N 
t--· 

Read Write terminate 504F 004F C04F 04F - 10 y y 

Burst check 5050 0050 C050 050 - 10 y y 
-

Lost data 5051 0051 C051 051 - 10 y y 

No sync compare 5052 0052 C052 052 - 10 y y 

Write operation issued to a drive 5053 0053 C053 053 YIN 1 y N 
in read only mode 

End of cylinder 5054 0054 C054 054 - 10 y y 

Busy 5055 0055 C055 055 - 10 y y 

Invalid seek address 5056 0056 G056 056 - 0 y N 

Search failed (arm mispositioned) 5058 0058 C058 058 - 5 y y 
-

Search failed (no record found) 5059 0059 C059 059 - 5 y N 

-
PRINTER 

Command reject 5064 0065 C064 - - 0 y N 
I-· 

110 Channel error 5065 0065 C065 065 YIN 1 y y 
t-

Data check 5066 0066 C066 - - 0 y y 
t-· 

Not ready 5067 0067 C067 067 Y/N 1 y N 
t-· 

Bus out check 5069 0069 C069 069 YIN 1 y y 

Catastrophic error 506A 006A C06A 06A YIN 1 y y 
r-· 

Both channel 9 and 12 on the 0 0 A06B - - 0 N N 
printer carriage control tape 

C-4 



Table C-1. 1/0 Error Recovery Information (Continued) 

Hexadecimal PCB/Request Message 
S1tatus FDT Block Return Code Console Must Error Log 

Completion Return Information Displayed Message No. of File be Record 
Condition Code Information Field On Console 

Reply Retries Reset Written 

CARD READER 

Catastrophic error 5070 0070 C070 070 YIN 0 y N 

Command reject 5071 0071 C071 - - 0 y N 

Not ready 5072 0072 C072 072 Y/N 1 y N 

Busy 5073 0073 C073 - - 10 y y 

Feed check or jam 5074 0074 C074 074 Y/N 1 y y 

Read check 5075 0075 C075 075 YIN 1 y y 

Data check (illegal EBCDIC char.) 5076 0076 C076 076 YIN 1 y N 

Time out 5077 0077 C077 - - 10 y y 

Unsolicited attention 5078 0078 C078 078 - 1 y N 

Initial selection error 5079 0079 C079 - - 10 y y 

CARD READER PUNCH 

Catastrophic error 51()80 0080 COBO 080 YIN 0 y N 

Command Reject 51()81 0081 C081 - - 0 y N 

Not ready 5082 0082 C082 082 YIN 1 y N 

Busy 5083 0083 C083 - - 10 y y 

Feed check or jam 5084 0084 C084 084 YIN 1 y y 

Data check (illegal EBCDIC char.) 51085 0085 C085 085 YIN 1 y N 

Read check 5086 0086 C086 086 YIN 1 y y 

Time out 5087 0087 C087 - - 10 y y 

Unsolicited attention 5088 0088 C088 088 - 1 y N 

Initial selection error 5089 0089 C089 - - 10 y y 

Punch check 5t08A 008A C08A OBA YIN 1 y y 

1 MAGNETIC TAPE 

Command reject (read reverse) 5tOA1 OOA1 COA1 - - 0 y N 

Command reject (protected tape) 5tOA1 OOA1 COA1 OA1 - ) y N 

Intervention required (without 5tOA2 OOA2 COA2 OA2 YIN 1 y y 
equipment check) 

Intervention required (with 50A3 OOA3 COA3 OA3 - 0 y y 
equipment check) 

1 Bus out check (on command) 5r0A4 OOA4 COA4 OA4 YIN 10 y y 

Bus out check (on data) 5rOA5 OOA5 COA5 OA5 YIN 10 y y 

Equipment check (Read Write reg.) 50A6 OOA6 COA6 OA6 YIN 10 y y 

Equipment check (Write register) 5rOA7 OOA7 COA7 OA7 YIN 1 y y 

Equipment check (Read register) on 50A8 OOA8 COA8 OAS YIN 1 y y 

data 

Equipment check (Read register) 50A8 OOA8 COA8 OAS - 0 y y 

on command 

Equipment check (Delay register) 60A9 OOA9 COA9 OA9 YIN 1 y y 

on data 

C-5 



Condition 

Equipment check (Delay register) 
on command 

Table C-1. 1/0 Error Recovery Information (Continued) 

Hexadecimal 
Status 

Completion 
Code 

50A9 

FDT 
Return 

Information 

OOA9 

PCB/Request 
Block Return 
Information 

Field 

COA9 

Message 
Code 

Displayed 
On Console 

OA9 

Console 
Message 
Reply 

No. of 
Retries 

0 

Must 
File be 
Reset 

y 

Error Log 
Record 
Written 

y 

Data check (Write) 50AA OOAA COAA OAA Y /N 10-5 Y Y 
r------~~~~~~~~~~~~~-t-~----~--+-~--~--it--~~~~-1---~~~-1-~~~~-1-~~~~-t-~~~~-i-~~~~....,-1 

Data check (Write File Mark) 50AB OOAB COAB OAB Y /N 10 Y Y 
t---~~~~··~~.~~~~~~~-t-~----~--+-~--~--it--~~~~-1---~~~-1-~~~~-t-~~~~-t-~~~~-r-~~~~....,-1 

Data check (multiple track error 50AC OOAC COAC OAC Y/N 10 Y Y 
on read) 

Data check (single track error on 
read) Includes preamble and post­
amble errors 

50AD OOAD COAD OAD Y/N 10 y y 

t--~~~~--~~~~~~~~-+~----~--+-~--~---lt--~~~~-+---~~~--1---~~~~-1-~~~~-+~~~~-+-~~------1 

Data check (phase track in error 
and VRC without Read Write 
register error) 

0 0 0 0 N y 

r-- --~~~~~~~~--t~~---~----1---~~~~1--~~~~-1---~~~-+-~~~~-1-~~~~-+~~~~-+-~~~~--

Data check (Erase) 50AE OOAE COAE OAE Y/N 1 Y Y 
1----~~~~-~~~~~~~~~-+-~--~~---1-~--~~1--~~~~-1---~~~-i-~~~~-1-~~~~-+~~~~-r-~~--~--

Ove r run 50AF OOAF COAF OAF Y/N 10 Y Y 
r--·~~~~~~--~~~~~~--t~~-~~---+-~--~~+---~~~-1---~~~-1--~~~~-t-~~~~--1~~~~-t-~~~~---1 

Word count zero (Write Command 50BO 0080 COBO 080 - 10 Y Y 
Count 'I 0) 

1----~~~~~~-~~~~~~~-+~--~~---+----~-----t---~--~~----~~~--1---~~~~-+-~~~~-+~~~~-+-·~~~~--1 

Not capable 50B 1 OOB 1 COB 1 OB 1 Y /N 1 Y N 
r--~~~~~~~~~~·~--~+--~~~~--+~--~~-+---~~~--+---~~~-1-~~~~-t-~~~~~1--~~~-t-~~~~--t 

Backspace into BOT 0 OOB2 AOB2 - - 0 Y N 

Reverse Ff ead command at BOT 50B4 OOB4 COB4 - - 0 Y N 
t--~~~~~~-~~~~~~~-+~----~---+-~--~~+-~~~~-+---~~~-+-~~~~-+-~~~~--1~~~~-+--~~~~--

E OT during any write operation 0 OOB5 AOB5 - - 0 Y N 
1----~~~~--~~~~~~~~--+~--~~----+-~--~~+-~~~~-----~~~-+-~~~~-+~~~~~1--~~~-+~~~~---1 

Unsolicited attention 50B6 OOB6 COB6 OB6 Y/N 1 Y N 
t---~~~----~~~~~~~~-t-~·~~~---1~--~~-+--~~~~+---~~~1--~~~~+-~~~~-+-~~~~+-~~~~--

Ti me out 50B7 OOB7 COB7 OB7 - 0 Y Y 
t---~~~~~~~~~~~~~--+~--~~---t-~--~~+---~~~-+--~~~-+-~~~~-+~~~~~1--~~~-+~~--~~ 

Undefined IOC error 5088 OOB8 COBB OBS N 0 Y N 
t--- ---+----~-----lf--~~~~----~~~--1---~~~~-+-~~~~-+~~~~-+-~~~~--1 

Internal recovery error No. 1 * 50B9 OOB9 COB9 OB9 N 10 Y Y 
t--~~~~~~~~~~--~~--t~--~~---1--~--~~+---~~~-+---~~~-1-~~~~-t-~~~~~1--~~~-1-~~~~--t 

Internal recovery error No. 2* 50BA OOBA COBA OBA N 0 Y Y 
t---·~~~~~~~~~~~~~--1~--~~---1-~--~~-+-~~~~-+--~~~-+-~~~~-+~~~~~+-~~~-+~~~~~~ 

Internal recovery error No. 3-~ 50BB OOBB COBB OBB N 0 Y N 
t---~~~--~--~~~~~~~---~~·~----1r----~~--t---~~~~+---~~~-t--~~~~-1-~~~~-t-~~~~-1-~~~~--t 

ISS channel error 50E1 OOE1 COE1 OE1 Y/N 10 Y Y 
t--~~~~--~~~~--~~~--i'----~~---1-~--~~-+-~~~~-+--~~~-+-~~~~--+~~~~~+-~~~--+~~~~~~ 

Wrong address-in channel error 50E2 OOE2 COE2 OE2 Y/N 10 Y Y 
t--~~~--·~~~~~~~~~-+--~~~~-~-+-· 

Control check channel error 50E3 OOE3 COE3 OE3 Y/N 10 Y Y 

Transmission check channel error 50E4 OOE4 COE4 OE4 Y/N 10 Y Y 

Zero byte count 50E5 OOE5 COE5 - - 0 Y N 

*Catastrophic error. 

C-6 



0 

2 

4 

6 

8 

10 

12 

14 

16 

18 

20 

22 

24 

26 

28 

30 

32 

34 

36 

38 

Bytes 

0 

1-12 

ERR 

Table C-2. Error Log Record 

DA 

DA 

DA 

DA 

DA 

DA 

ID 

TE/TIME 

TE/TIME 

TE/TIME 

TE/TIME 

TE/TIME 

TE/TIME 

~CE ADDR DEV 

s 
ER FL 

ERRO 

TATUS 

AG BYTE 0 

R COUNTER 1 

OR COL INTER 3 OR CYLINDER 

'0L ID \ 

\ 

\ 

fOL ID 

fOL ID 

SENSE 

'>ENSE 

SENSE 

DATE/TIME 

DATE/TIME 

DATE/TIME 

DATE/TIME 

DATE/TIME 

DATE/TIME 

PROCESSOR 

CMD IN ERROR 

STATUS 

ER FLAG BYTE 1 

ERROR COUNTER 2 

ERROR COUNTER 4 OR HEAD 

VOL ID 

VOL ID 

VOL ID 

SENSE 

SENSE 

SENSE 

R ECORD SEQ. NUMBER RECORD SEQ. NUMBER 

Mnemonics 

ID 

DATE/TIME 

Description 

Identification of the record. The value of this field is as follows: 

Hex Value 

01 
02 
03 
04 
05 
06 
07 

Explanation 

from disc error recovery 
from tape error recovery 
from card reader error recovery 
from card reader punch error recovery 
from printer error recovery 
from logical communications error recovery 

from error correction code feature (optional) 

The date and time which are supplied by the Exec are in a binary format as follows: 

Byte Explanation 

1 unused 
2 year 
3 month 
4 day 
5 hour 
6 minutes 
7-10 seconds 

11-12 hardware clock 

C-7 



Mnemonics 

13 PROCESSOR 

14 DEVICE ADDR 

15 CMD IN ERROR 

16-17 STATUS 

18-19 ER FLAG BYTE 0 & 1 

C-8 

Table C-2. Error Log Record (Continued) 

Description 

Processor state which the device 1Jses. The processor codes are as follows: 

Hex Code Processor 

08 zero 
04 one 
02 two 
01 three 

The physical device address. The physical device address for disc is the cable address (not the 
plug address). 

The command code that the drivt3r is attempting to execute when the error condition occurs. 

The two bytes of hardware status; indication. 

Flag bits set by error recovery modules when the different error conditions occur. The two 
flag bytes are described as follows: 

Flag Byte 0 

Bit 

0 

2 
3 
4 
5 
6 
7 

Flag Byte 1 

Bit 

0 

2 
3 
4 
5-7 

Flag Byte 0 

Bit 

0 

2 
3 
4 
5 
6 
7 

Magnetic Tape 

Explanation 

intervention required 
bus out check 
equipment check (register parity) 
equipment check (internal counter) 
data check 
over run 
word count zero 
prearnble/postamble error 

Explanation 

timeout error 
ISS channel error 
wron~1 address-in channel error 
control check channel error 
transmission check channel error 
unused 

Disc 

Explanation 

command early 
timeout 
disc arm mispositioning 
unused 
read/write terminate 
catastrophic error 
lost data 
no sync compare 



Bytes Mnemonics 

Table C-2. Error Log Record (Continued) 

Flag Byte 1 

Bit 

0 
1 
2 
3 
4 
5 
6 
7 

Flag Byte 0 

Bit 

0 
1 
2 
3 
4 
5 
6 
7 

Flag Byte 1 

Bit 

0-7 

Flag Byte 0 

Bit 

0 
1-4 
5 
6 
7 

Flag Byte 1 

Bit 

0 

2 
3 
4 
5 
6-7 

Description 

Explanation 

third revolution sync find 
seek incomplete 
file unsafe 
missed window 
burst check 
end of cylinder 
disc write current 
busy 

Card Reader and Reader Punch 

timeout 
busy 

Explanation 

ISS channel error 
catastrophic error 
punch check 
command reject 
read check 
card feed check or jam 

unused 

Printer 

timeout 
unused 

Explanation 

Explanation 

bus out check 
data check 
invalid sense information 

ISS error 
unused 

Explanation 

wrong address in initial selection Oil' address/status parity 
no request in SIO poll sequence request 
control check 
data transmission check 
unused 

Note: The printer hardware status bytes that are written in the error log file represent 
all of the conditions that occurred while printer error recovery was in progress 
for a given error. Therefore, if a channel error occurs during recovery procedures, 
it will appear in the two hardware status bytes. 

C-9 



Bytes 

20 

21 

22 

23 

24-29 

30-35 

36-37 

38-39 

C-10 

Mnemonics 

ERROR COUNTER 1 

ERROR COUNTER 2 

ERROR COUNTER 3 
or CYLINDER 

ERROR COUNTER 4 
or HEAD 

VOLID 

SENSE 

Table C-2. Error Log Record (Continued) 

Description 

The following errors use Counter 1: 

1. Card Reader and Card Reader Punch Error Recovery error conditions. 

2. Disc Error Recovery error conditions except search failures. 

~i. Magnetic Tape Error Recovery for user request error condition. 

The following errors use Counter 2: 

1. Disc Error Recovery for a search failure. 

2. Magnetic Tape Error Recovery for recording the number of erase operations 
performed during the recovery of a write operation. 

Error Counter 3 is incremented by the Magnetic Tape Error Recovery for positioning 
errors. Or, the disc's cylinder number is extracted from the seek argument of the first 
command word in a command program. If the first command word is not a seek, the 
cylinder number is not supplied. 

Magnetic Tape Error Recovery uses Counter 4 as a record counter. Bits 0-3 are used 
when positioning forward and bits 4-7 are used when positioning backward. The 
disc's head number is extracted from the seek argument of the first command word 
in a command program. If the first command word is not a seek, the head number is 
not supplied. 

Volume ID. This field applies only to disc. 

From one to six sense bytes depending on the type of device. See the associated hardware 
specification for the bit positions and their meanings. 

Unused. 

Record sequence number. 



D. GAP SPECIFICATIONS 

Table of Gap specifications to be used with the COMMAND/OPCODE=DCWRIT macro when working 
with fixed record lengtlhs (and no key fields). 

Record Size Number of 
in Bytes Records in Track GAP (Inverted Hex) 

3521 - 7294 1 None 
2299 - 3520 2 67 
1694 - 2298 3 9C 
1333 - 1693 4 86 
1093 - 1332 5 C5 
922 - 1092 6 DO 
794- 921 7 D7 
695- 793 8 DC 
616- 694 9 E1 
551 - 615 10 E4 
497- 550 11 E7 
451 - 496 12 E9 
412- 450 13 EB 
378- 411 14 ED 
348- 377 15 EE 
322- 347 16 FO 
299- 321 17 F1 
277- 298 18 F2 
259- 276 19 F3 
242- 258 20 F3 
227- 241 21 F4 
212- 226 22 F5 
200- 211 23 F5 
188- 199 24 F6 
177- 187 25 F6 
167- 176 26 F7 
158- 166 27 F7 
149- 157 28 F8 
140- 148 29 F8 
133- 139 30 F9 
126- 132 31 F9 
119 - 125 32 F9 
113 - 118 33 F9 
107 - 112 34 FA 
101 - 106 35 FA 
95- 100 36 FA 
81 - 94 37-39 FB 
62- 80 40-44 FC 
46- 6'1 45-49 FD 
33- 45 50-54 FE 
23- 32 55-59 FE 
13- 22 60-64 FE 
0- 12 65-73 FF 

D-1 





I 

F C C H H F S I B F C C H H R KO D F S I B F S I B F C C H B B C C B B CC B B cc 
.... Ll Li L1 

'I ' T 
RO DATA 

,,-

HOME RO COUNT 
FIELD ADDRESS FIELD 

G4 N 
9+4 (BURST) 

N VARIABLE =.. 
5+4 (BURST) c.:I Cl c.:I 

BYTES BYTES (8+4) TO 
FULL TRACK 

-------------------------
GAP BIT CONFIGURATION 

---
VARIABLE AREA VFO AREA 5 BYTES 

.J\ 

ONES ONES ONES ZEROS ZEROS 

11111111 1 1 1l1 1 1 1 11111111 000~000 000000·001 

' ' 

G BYTE 

H R K D D F S I B F S I B 
B B CC B B C C 

~ It. ·.- '1 

COUNT FIELD KEY 
FIELD 9+4 (BURSTI N N 

Cl 0 TO 255 (l2 
BYTES 

BYTES 

..... -----­--------------------------
AMAREA 
2 BYTES 

ONES ONES 
ONES 5 BITS MISSING 5 BITS MISSING 

CLOCK PULSES CLOCK PULSES 

~ ~~ 

F S I B 
B B c c 

.1. 

DATA 
.... 

FIELD 
7294 GO 

(MAX) 
BYTES 

---- -- ----- ..... ·-
BIT RING 

SYNC AREA 
1 BYTE 

SEE 
TRACK 

FORMAT 

1111111 11111111 111111 1 1 

F = FLA 
CC = CYL 
HH = HEA 

INDER NUMBER IN BINARY 
D NUMBER IN BINARY 

SYNC BYTE CONFIGURATIONS t/ 
R = TRACK RECORD NUMBER IN BINARY 
K = KEV FIELD LENGTH IN BINARY 
DD = DATA FIELD LENGTH IN BINARY 
FB FIRST (CYCLIC BURST) BYTE 
SB SECOND (CYCLIC BURST) BYTE 
IC INDICATOR BYTE 
BC BIT COUNT BYTE 
GO 41 BYTES+ 0.043 X (KL+ DL)* 
GZ 41 BYTES 

m G4 73 BYTES 
.:.. *BURST CHECK BYTES NOT INCLUDED 

HA 
SYNC 
BYTE 

00001101 

RO COUNT 
SYNC 
BYTE 

00001011 

RO DATA 
SYNC 
BYTE 

0 0 0 0 1 0 0 1 

RN COUNT 
SYNC 
BYTE 

00001110 

KEV 
SYNC 
BYTE 

0 0 0 0 1 0 1 0 

RN DATA 
SYNC 
BYTE 

0 0 0 0 1 0 0 1 

m . 
c 





F. INl)E)C-BLOCK SIZE FOR INDEXED FILES. 

There is a mm1mum index block size for every 
indexed file depending on key size and file size. The 
user may utilize any index block size larger than the 
minimum, if he has memory space for a larger index 
block. The larger the index block the better retrieval 
becomes on random processing. If the user goes 
below the minimum index block size there is the 
possibility of not being able to create the file size as 
planned. 

When planning the creation of indexed files, the user 
must decide whether he wants to process the 
directory-directory, which resides on mass storage, in 
a main memory buffer. This option speeds up random 
processing, but requires extra space for the buffer. If 
the mode of processing is with a main-memory buffer 
there is a well-defined optimum index block size 
which .minimizes memory space for the index buffer 
and directory-directory buffer. 

Once the user has determined his mode of processing, 
Table F-1 is used to determine minimum-keys/block 
and Table F-2 is used to determine optimum 
keys/block. Note that in using Table F-1 and Table 
F-2, the larger of the two values in the file size is the 
determining factor. Also note that these tables were 
computed for consistency for maximum key size and 
one million records as the uppe~r limit. There will be 
some index block sizes generated that exceed one 
track in number of bytes. This exceeds the system 
limit for block sizes. The user will have to choose a 
smaller key size or smaller file size. 

The keys/block is entered in the Control Language 
//DEFINE statement along with key size. The 
corresponding minimum or optimum index block size 
can be calculated from Table F-:3. The resulting index 
block size is then entered in the COBOL source 
program via the INDEX-BLOCK Clause. 

If the user has determined to calculate the optimum 
keys/block and optimum index block size, Table F-4 
is used to calculate the number of bytes for the 
main-memory buffer for the directory-directory 
entries. 

The user must be careful not to exceed the file 
maximum at creation time when using the optimum 
block size - when he utilizes the main-memory 
buffer to hold the directory-directory entries for 
random processing, the buffer would not be able to 
hold all the entries, thus writing over the user 
program. Thus, when choosing an index block size 
other than the optimum and the main-memory buffer 
is used to process the directory-directory entries, the 
buffer size should be the size of the index block, as 
the system checks for overflow at creation time. 

If the user wishes to calculate keys/block based on a 
different file maximum than given in Tables F-1 and 
F-2, the following algorithms, along with Table F-5, 
can be used to compute minimum and optimum 
keys/block. The constants Ko and Km are taken from 
Table F-5 based on key size. 

--(--3 IFSKso I Optimum (OKB) "-J Ko 

Minimum (MKB) =I~ I 

NOTE: 

FS = Maximum File Size 

I I Bound up if result not 
whole integer. 

F-1 



Table F-1. Minimum Keys/Block 

Key Size in Bytes 
11 16 21 26 36 51 

Blocks in File to to to to to to 
2 3 4 5 6 7 8 9 10 15 20 25 35 50 100 

0 - 5,000 13 14 14 14 15 15 15 15 15 16 16 16 16 17 17 

5,000 - 10,000 16 17 18 18 18 19 19 19 19 20 20 20 21 21 21 

10,000 - 1 5,000 19 20 20 21 21 21 22 22 22 23 23 23 23 24 24 

15,000 - 20,000 20 21 22 23 23 23 24 24 24 25 25 26 26 26 26 

20,000 - 25,000 22 23 24 24 25 25 25 26 26 27 27 27 28 28 28 

25,000 - 30,000 23 24 25 26 26 27 27 27 28 28 29 29 29 30 30 

30,000 - 35,000 25 26 27 27 28 28 28 29 29 30 30 31 31 31 32 

35,000 - 40,000 26 27 28 28 29 29 30 30 30 31 32 32 32 33 33 

40,000 - 45,000 27 28 29 30 30 31 31 31 31 32 33 33 34 34 34 

45,000 - 50,000 28 29 30 31 31 32 32 32 33 34 34 34 35 35 36 

50,000 - 60,000 29 31 32 32 33 34 34 :34 35 36 36 37 37 37 38 

60,000 - 70,000 31 :~2 34 34 35 35 36 36 36 37 38 38 39 39 40 

70,000 - 80,000 32 34 35 36 36 37 37 38 38 39 40 40 41 41 42 

80,000 - 90,000 34 35 36 37 38 38 39 39 40 41 41 42 42 43 43 

90,000 - 100,000 35 36 37 38 39 40 40 41 41 42 43 43 44 44 45 

100,000 - 125,000 37 39 40 41 42 43 43 44 44 45 46 47 47 48 48 

125,000 - 150,000 40 41 43 44 45 45 46 46 47 48 49 49 50 51 51 

150,000 - 175,000 42 44 45 46 47 48 48 49 49 50 51 52 53 53 54 

175,000 - 200,000 44 46 47 48 49 50 50 51 51 53 54 54 55 56 56 

200,000 - 250,000 47 49 51 52 53 54 54 55 55 57 58 58 59 60 61 

250,000 - 300,000 50 52 54 55 56 57 58 58 59 61 61 62 63 64 64 

300,000 - 350,000 52 55 57 58 59 60 61 62 62 64 65 65 66 67 68 

350,000 - 400,000 55 57 59 61 62 63 63 64 65 67 68 68 69 70 71 

400,000 - 450,000 57 60 62 63 64 65 66 67 67 69 70 71 72 73 74 

450,000 - 500,000 59 62 64 65 67 68 68 69 70 72 73 74 74 75 76 

500,000 - 600,000 63 66 68 69 71 72 73 73 74 76 77 78 79 80 81 

600,000 - 700,000 66 69 71 73 74 75 76 77 78 80 81 82 83 84 85 

700,000 - 800,000 69 72 74 76 78 79 80 81 81 84 85 86 87 88 89 

800,000 - 900,000 72 75 77 79 81 82 83 84 85 87 88 89 91 91 93 

900,000 - 1 ,000,000 74 78 80 82 84 85 86 87 88 90 92 93 94 95 96 

F-2 



Blocks in File 

0 .. 5,000 

5,000 - 10,000 

10,000 - 15,000 

15,000 - 20,000 

20,000 - 25,000 

25,000 - 30,000 

30,000 . 35,000 

35,000 - 40,000 

40,000 - 45,000 

45,000 - 50,000 

50,000 - 60,000 

60,000 - 70,000 

70,000 - 80,000 

80,000 - 90,000 

90,000 - 100,000 

100,000 - 125,000 

125,000 - 150,000 

150,000 - 175,000 

175,000 - 200,000 

200,000 - 250,000 

250,000 - 300,000 

300 ,000 - 350 ,000 

350,000 - 400,000 

400,000 - 450,000 

450,000 - 500,000 

500,000 - 600,000 

600,000 - 700,000 

700,000 - 800,000 

800,000 - 900,000 

900,000. 1,000,000 

2 

16 

20 

23 

26 

28 

29 

31 

32 

34 

35 

37 

39 

40 

42 

44 

47 

50 

52 

55 

59 

63 

66 

69 

72 

74 

79 

83 

87 

90 

93 

3 

17 

21 

24 

27 

29 

31 

32 

34 

35 

36 

39 

41 

42 

44 

46 

49 

52 

55 

57 

62 

66 

69 

72 

75 

78 

82 

87 

91 

94 

98 

4 

18 

22 

25 

28 

30 

32 

33 

35 

36 

37 

40 

42 

44 

45 

47 

51 

54 

57 

59 

64 

68 

71 

74 

77 

80 

84 

90 

94 

97 

101 

Table F-2. Optimum Keys/Block 

5 6 

18 18 

23. 23 

26 26 

28 29 

31 31 

32 33 

34 35 

36 36 

37 38 

38 39 

41 42 

43 44 

45 46 

47 47 

48 49 

52 53 

55 56 

58 59 

61 62 

65 67 

69 71 

73 74 

76 78 

79 81 

82 84 

87 89 

92 94 

96 98 

100 102 

103 105 

Key Size in Bytes 

7 8 

19 19 

23 24 

27 27 

29 29 

32 32 

34 34 

35 36 

37 37 

38 39 

40 40 

42 43 

44 45 

46 47 

48 49 

50 50 

54 54 

57 58 

60 61 

63 63 

68 68 

72 73 

75 76 

79 80 

82 83 

85 86 

90 91 

95 96 

99 100 

103 105 

107 108 

11 16 21 26 36 51 
to to to to to to 

9 1 0 1 5 20 25 35 50 1 00 

19 19 20 20 

24 24 25 25 

27 27 28 29 

30 30 31 32 

32 33 34 34 

34 35 36 36 

36 37 37 38 

38 38 39 40 

39 40 41 41 

41 41 42 43 

43 43 45 45 

45 46 47 48 

47 48 49 50 

49 50 51 52 

51 51 53 54 

55 55 57 58 

58 59 61 61 

61 62 64 65 

64 65 67 68 

69 70 72 73 

73 74 76 77 

77 78 80 81 

81 81 84 85 

84 85 87 88 

87 88 90 92 

92 93 96 97 

97 98 101 102 

102 102 105 107 

106 106 110 111 

109 110 113 115 

20 21 21 21 

25 26 26 26 

29 29 30 30 

32 32 33 33 

34 35 35 36 

37 37 37 38 

38 39 39 40 

40 41 41 42 

42 42 43 43 

43 44 44 45 

46 46 47 48 

48 49 49 50 

50 51 52 52 

52 53 54 54 

54 55 56 56 

58 59 60 61 

62 63 64 64 

65 66 67 68 

68 69 70 71 

74 74 75 76 

78 79 80 81 

82 83 84 85 

86 87 88 89 

89 91 91 93 

93 94 95 96 

98 100 101 102 

103 105 106 107 

108 110 111 112 

112 114 115 116 

116 118 120 121 

F-3 



F-4 

Table F-3. Optimum or Minimum Index Block Size 

Optimum block size 10 +I (10) (OK:) (KS+4) ) 

Minimum block size 10 + I 

OKB =- Optimum keys/block 

KS = Key size 

(10) (MKB) (KS+4l ) 

!} 

MKB = Minimum keys/block 

KS = Key size 

NOTE: I ) Round up if result not whole integer. 

Table F-4. Bytes Required in Buffer for Directory-Directory Entries 

U =[9(0BS-10)] = US sage 
10 

Number keys/primary index block =[K~~4] = NKP 

Number keys/directory block =[K~+82 ]= NKD 

Total number keys represented/ 
directory block = (NKP) (NKD) NKRD 

Number entries in I file size ) 
= --- = NKDD 

Directory-directory block NKRD 

Number of bytes required for 
buffer for directory-directory 
entries 

10 + (KS+2) (NKDD) 

NOTE: I)= Round up if result not whole integer. 

[ ]= Round down if result not wholi3 integer. 



KS 

2 
3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 
40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

1.2500 

1.0888 

.9877 

.9184 

.8681 

.8299 

.8000 

.7759 

.7562 

.7396 

.7256 

.7136 

.7031 

.6940 

.6859 

.6787 

.6722 

.6664 

.6612 

.6564 

.6520 

.6480 

.6443 

.6409 

.6378 

.6348 

.6321 

.6296 

.6272 

.6249 

.6228 

.6209 

.6190 

.6172 

.6156 

.6140 

.6125 

.6111 

.6097 

.6084 

.6072 

.6060 

.6049 

.6038 

.6028 

.6018 

.6009 

.6000 

.5991 

.5983 

Table F-5. Constants for Alternate Algorithm 

Km KS 

2.5000 52 

2.1776 53 

1.9753 54 

1.8367 55 

1.7361 56 

1.6598 57 

1.6000 58 

1.5518 59 

1.5124 60 

1.4792 61 

1.4512 62 

1.4272 63 

1.4062 64 

1 .. 3880 65 

1.3718 66 

1.3574 67 

1.3444 68 

1.3328 69 

1.3224 70 

1.3128 71 

1.3040 72 

1.2960 73 

1.2886 74 

1.2818 75 

1.2756 76 

1.2696 77 

1.2642 78 

1.2592 79 

1.2544 80 

1.2498 81 

1.2456 82 

1.2418 83 

1.2380 84 

1.2344 85 

1.2312 86 

1.2280 87 

1.2250 88 

1.2222 89 

1.2194 90 

1.2168 91 

1.2144 92 

1.2120 93 

1.2098 94 

1.2076 95 

1.2056 96 

1.2036 97 

1.2018 98 

1.2000 99 

1.1982 100 

1.1966 

Ko Km 

.5975 1.1950 

.5967 1.1934 

.5959 1.1918 

.5952 1.1904 

.5945 1.1890 

.5939 1.1878 

.5932 1.1864 

.5926 1.1852 

.5920 1.1840 

.5914 1.1828 

.5908 1.1816 

.5903 1.1806 

.5897 1.1794 

.5892 1.1784 

.5887 1.1774 

.5882 1.1764 

.5878 1.1756 

.5873 1.1746 

.. 5868 1.1736 

.. 5864 1.1728 

.. 5860 1.1720 
.5856 1.1712 

.5852 1.1704 

.. 5848 1.1696 

.. 5844 1.1688 

.. 5840 1.1680 

.. 5837 1.1674 

.5833 1.1666 

.. 5830 1.1660 

.. 5827 1.1654 

.5823 1.1646 

.5820 1.1640 

.5817 1.1634 

.5814 1.1628 

.5811 1.1622 

.5808 1.1616 

.5805 1.1610 

.5802 1.1604 

.5800 1.1600 

.5797 1.1594 

.5794 1.1588 

.5792 1.1584 

.5789 1.1578 

.5787 1.1574 

.5785 1.1570 

.5782 1.1564 

.5780 1.1560 

.5778 1.1556 

.5776 1.1552 

F-5 





INDEX 

ABEND macro 7-1,37;B-37 Buffer description table 
ACCEPT macro 5-2;7-1,34; general description 2-12 

B-32 indexed files 2-29-34 
Access relative files 2-24-28 

random 2-1 sequential files 2-20-23 
sequential 2-1 BU FSIZ parameter 7-15,24,27,28 

Action macros B-1 
Add mass storage space 7-5 Catalog elements 
ALLOC macro 3-1,3;6-1; attribute 2-3,6 

7-1,2,3;B-6 continuation 2-3;A-6,9 
Al locate space 7-3 name 2-3,4; 
Assumed block number 3-2 A-4,5 
Attribute element 2-3,6 space 2-3,8;A-3 

volume 2-3, 10 
BOT 2-12,20-34 CATALOG parameter 7-3,5,6 

sequential files 2-20-23 Central catalog 2-3;A-1 ;4,7 
relative files 2-24-28 CHAIN parameter 7-24,27, 
indexed files 2-29-34 28,30 

Bit significance 7-22 Change current block number 7-12 
BLKNUM parameter 7-11,12,13 Close file for data transmission 7-7 
BLKSIZ parameter 7-3 CLOSE macro 3-3;7-1,7; 
Block 1/0 B-14 

coding 3-2 Close volume 7-8 
declarative macro 7-1,2 CLOVE macro 3-1,3;6-1; 
device control commands 3-3 7-1,8;B-15 
error processing 3-4 CNTBU F parameter 7-28,29 
file control 3-3 CNTRL macro 3-2,3;7-1, 
general description 1-2 13;B-18 
macros CNTSIZ parameter 7-28,29 

CNTRL 7-1,13;B-18 COMMAND macro 7-24 
POSITN 7-1,12;B-18 basic data channel 7-24;B-23 
READ 7-1,10;B-19 DCABLE 7-24;B-24 
RESET 7-1,21 DCJUMP 7-30;B-29 
STATUS 7-1,15;B-17 DC READ 7-28;B-27 
TYPE 7-1,15;B-17 DCSEEK 7-24;B-25 
WRITE 7-1, 11 ;B-19 DCSRCH 7-27;B-26 

positioning 3-3 DCWRIT 7-29;B-28 
program 3-5,6 RESTORE 7-30;B-29 
reading 3-2 Command program 4-1 
request termination 3-4 Common stored data format 2-1 
rules 3-1 CON para meter 7-3,5 
sense information 3-4 Console communication macros 
space management 3-3 CONSOLE 7-1,37 ,38; 
writing 3-2 B-39 

BREAK parameter 7-31 MESSAGE 7-1,38 
BUFADR parameter 7-7, 15,24,27 CON SO LE macro 7-1,38;B-39 

lndex-1 



CONTROL parameter 7-7 Disc catalog 
Control program macros central 2-2,3;A-1, 

ABEND 7-1,37;B-37 4,7 
ACCEPT 7-1,34;8-32 pack 2-2,3;A-1,2 
DELAY 7-1,31 ;8-35 Disc track format E-1 
DISPLAY 7-1,35 DISPLAY macro 5-2;7-1,35 
EHALT 7-1,37;8-36 
GETCOM 7-1,33;8-31 EBCDIC parameter 7-10,12 
HALT 7-1,36;8-36 EHALT macro 7-1 ,37 ;8-36 
INFORM 7-1,31 ;8-33 ELEMENT parameter 7-9 
JDATE 7-1,37;8-38 End conditions 
MEMLIM 7-1,35;8-33 EOF 3-3 
POST 7-1,32;8-31 EOA 3-4 
RPOST 7-1,32;8-31 EQT 3-4 
SDATE 7-1,37;8-38 ENDADR parameter 7-34 
SETCOM 7-1,33;8-31 ER RCOMP parameter 3-4;7-3, 
SETIF 7-1,36;8-34 5 thru 10,12 
TIME 7-1,37;8-37 thru 15,21,23, 
WAIT 7-1,30;8-30 30 thru 36; 

Control program services 5-1 
B-4 

finding partition size 5-1 ER ROPT parameter 4-3;7-23 

inter-step and control language Error log record C-7 

communication 5-1 
Error logging C-2 

reading data from //PAR cards 5-2 Error processing 3-4 

$ervice request control 5-1 Error recovery 

writing to SYSOUT 5-2 types of errors C-1 

CP parameter 7-22 intervention required C-1 

CPAD R parameter 7-23 retries C-1 

Create communication byte 7-32 information C-3 

CSD parameter 7-3,34 uncertain conditions C-1 

CWADR parameter 7-30 irrecoverable conditions C-2 

CYCLES parameter 7-31 error logging C-2,7 
EXCP instruction 4-1 

Data macros 8-1 EXCP macro 7-1,22;8-21 

Data structures 2-1 Expand from communication byte 7-32 

DAT ACY L parameter 7-3 EXPND macro 3-3 ;6-1 ; 7 -1 , 

DAT A TXT parameter 7-38 
2,5;8-9 

DAT8U F parameter 7-10,12,28, 
FDT 29,35 

2-12,13 thru 

DATA8UF1 parameter 7-34,38 
19;3-4;7-2 

DAT ABU F2 parameter 7-38 FIELD parameter 7-27,28,30 

DATSIZ Parameter 7-10, 12,28, Fi le contro I 

29,35 general description 3-3 

DATSIZ1 parameter 7-38 macros 

DATSIZ2 parameter 7-38 CLOSE 7-1,6,7; 

Define file label 7-2 8-14 

Defining and opening devices 4-1 CLOVE 7-1,6,8; 

DEFL8 macro 7-1,2 B-15 

DELAY macro 5-1 ;7-1,31; OPEN 7-1,6;B-12 

B-35 File description table 2-12, 13 thru 

Device and file type 7-15 19;3-4;7-2 

Device control commands 3-3 File label (tape) 2-1,2 

DEVTYP parameter 7-23 File organization 2-1 
Fl LE NAM parameter 7-2 

lndex-2 



Fl LEORG parameter 7-3 LIST parameter 7-3 thru 10, 
Files 12 thru 15,21, 

indexed 2-1 30 thru 36;B-3 
relative 2-1 LOCK parameter 7-8 
sequential 2-1 Logical 1/0 1-1 

Fl LESIZ parameter 7-3',4,5 
FI LETYP parameter 7-3,4 Macro expansions B-1,5 
Fixed length records 2-1 Macros 
FU NCTN parameter 7-23 ABEND 7-1,37 ;B-37 

ACCEPT 5-2;7-1,34; 
GAP parameter 7-29 B-32 
Gap specification D-1 ALLOC 3-1,3;6-1; 
Generation of reply buffer 7-38 7-1,2,3;B-6 
GETCOM macro 5-1;7-1,33; CLOSE 3-3;7-1,7; 

B-31 B-14 
CLOVE 3-1,3;6-1; 

HABUF parameter 7-28,29 7-1,8;B-15 
HALT macro 7-1,36;B-36 CNTRL 3-2,3;7-1, 
Hardware control operation 7-13 13;B-18 
HASIZ parameter 7-28,29 COMMAND 4-1 ;7-24 thru 

30;B-23 thru 
IDENT parameter 7-3 thru 10, 29 

12 thru 15,21 CONSOLE 7-1,38;B-39 
Identify partition limit 7-35 DEF LB 7-1,2 
IN DCY L parameter 7-3,4 DELAY 5-1 ; 7 -1 , 31 ; 
Index block size F-1 B-35 
Indexed flies 2-1 DISPLAY 5-2;7-1,35 
IN DSIZ parameter 7-3,4 EHALT 7-1,37;B-36 
INFOADR parameter 7-9,32,33, EXCP 7-1,22;B-21 

36,37 EXPND 3-3;6-1 ;7-1, 

INFORM macro 5-1 ; 7 -1 ,31 ; 2,5;B-9 
B-33 GETCOM 5-1;7-1,33; 

Input/output action 7-22 B-31 

Input/output levels .HALT 7-1,36;B-36 
logical 1-1 INFORM 5-1 ;7-1,31; 
block 1-1,2 B-33 
physical 1-1,2 JDATE 7-1,37;B-38 

Interaction of Data Management LABRTN 7-1,9;B-16 
and Control Language 6-1 MEMLIM 5-1 ;7-1,35; 

1/0 service macro (LABRTl\I) 7-1,9;B-16 B-33 
I OTYP parameter 7-7,8 MESSAGE 7-1,38 

OPEN 3-3;6-1;7-1, 
JDATE macro 7-1,37;B-38 6;B-12 

KEY BU F parameter 
PCB 7-1,23;B-22 

7-28,29 POSITN 3-2,3;7-1, 
KEYSIZ parameter 7-3,4,28,39 12;B-18 

LABDEF parameter 7-5,6,7 
POST 5-1;7-1,32; 

B-31 
LABDEF1 parameter 7-3,4 PURGE 3-3;6-1;7-1, 
LAB DE F2 parameter 7-3,4 2,5;B-11 
Labels READ 3-2,3;7-1, 

tape 2-1,2 10;B-19 
disc 2-2,3 RESET 3-2,3,4; 

LABRTN macro 7-1,9;B-16 7-1,21 

lndex-3 



Macros (continued) Parameters (continued) 

RPOST 5-1;7-1,32; DATATXT 7-38 
B-31 DATACYL 7-3 

SDATE 7-1,37 ;B-38 DATBUF 7-10,12,28, 
SETCOM 5-1;7-1,33; 29,35 

B-31 DATBUF1 7-34,38 
SETIF 5-1;7-1,36; DATBUF2 7-38 

B-34 DATSIZ 7-10,12,28, 
STATUS 3-2; 7 -1 I 1 5; 29,35 

B-17 DATSIZ1 7-38 
TIME 7-1,37;B-37 DATSIZ2 7-38 
TYPE 3-2;7-1, 15; DEVTYP 7-23 

B-17 EBCDIC 7-10,12 
WAIT 5-1;7-1,30; ELEMENT 7-9 

B-30 ENDADR 7-34 
WRITE 3-2,3;7-1, EHRCOMP 3-4;7-3,5 

11 ;B-19 thru 10, 
MEM LIM macro 5-1 ;7-1,35; 12thru 15, 

B-33 21,23,30 
MESSAGE macro 7-1,38 thru 36;B-4 
MODE parameter 7-30,37,38 ERROPT 4-3;7-23 
MSC parameter 7-2 FIELD 7-27,28,30 
MU L TB L K parameter 7-11 FILE NAM 7-2 
Multi-volume file processing 3-4 FILEORG 7-3 

FILESIZ 7-3,4,5 
Name element 2-3,4;A-5 FILETYP 7-3,4 

FUN CTN 7-23 
OPCODE parameter 7-24,27 GAP 7-29 

thru 30 HABUF 7-28,29 
OPEN macro 3-3;6-1; HASIZ 7-28,29 

7-1,6;B-12 IDENT 7-3 thru 10, 
OPE R parameter 7-11,12,14 12 thru 15,21 

INDCYL 7-3,4 
Pack catalog 2-3;A-1,2 INDSIZ 7-3,4 
PAI RED parameter 7-5,6 INFOADR 7-9,32,33, 

Parameters 36,37 

BLKNUM 7-11,12,13 IOTYP 7-7,8 

BLKSIZ 7-3 KEYBUF 7-28,29 

BREAK 7-31 KEYSIZ 7-3,4,28,39 

BUFADR 7-7I15,24,27 LABDEF 7-5,6,7 

BUFSIZ 7-15,24,27, LABDEF1 7-3,4 
28 LABDEF2 7-3,4 

CATALOG 7-3,5,6 LIST 7-3 thru 10, 
CHAIN 7-24,27 ,28, 12 thru 15, 

30 21, 30 thru 
CNTBUF 7-28,29 36;B-3 
CNTSIZ 7-28,29 LOCK 7-8 
CON 7-3,5 MODE 7-30,37,38 
CONTROL 7-7 MSC 7-2 
CP 7-22 MULTBLK 7-11 
CPADR 7-23 OPCODE 7-24,27 
CSD 7-3,34 thru 30 
CWADR 7-30 OPER 7-11,12,14 
CYCLES 7-31 PAIRED 7-5,6 

lndex-4 



Parameters (continued) PURGE macro 3-3;6-1 ;7-1, 
PARNUM 5-2;7-34 2,5;B-11 
PCB 7-22 
RECSIZ 7-3,4 Random access 2-1 
REOADR 7-30 READ macro 3-2,3;7-1, 
REOCNT 7-30,32 10;B-19 
RETURN 4-1 ;7-3 thru Reading data from //PAR cards 5-2 

10,12 thru 15, Read //PAR card 7-34 
21,23,32 thru Records 
36;B-4 fixed length 2-1 

REWIND 7-7,8 variable length 2-1 
SECONDS 7-31 RECSIZ parameter 7-3,4 
SEEK 7-13 Relative files 2-1 
SIZE RR 7-24 Release disc file space 7-5 
SKIP 7-24,28 Report of status 7-15 
SPREAD 7-3,4 REOADR parameter 7-30 
STRIP 7-34 REOCNT parameter 7-30,32 
UNO RD 7-22 Request 
USAGE 7-7 overlap 3-3 
VERIFY 7-3,4 termination 3-4 

PARNUM parameter 5-2;7-34 Reset exception conditions 7-21 
PCB RESET macro 3-2,3,4; 

general description 4-1 7-1,21 
macro 7-1,23;B-22 Retrieve 
parameter 7-22 system date 7-37 

Peripheral device hardware codes 7-25 time of day 7-37 
Physical Return file label information 7-9 

command block 4-1 RETURN parameter 4-1 ;7-3 thru 
control block 7-23 10,12 thru 15, 
request termination 4-3 21,23,32 thru 

Physical 1/0 36;B-4 
coding 4-1 Returned information format 7-16 
error processing 4-3 REWIND parameter 7-7,8 
general description 1-2 RPOST macro 5-1 ; 7 -1 ,32; 
macros B-31 

EXCP 7-1,22;8-21 
PCB 7-1,23;8-22 SDATE macro 7-1,37;8-38 

operation 4-1 SECONDS parameter 7-31 
overlap 4-3 SEEK parameter 7-13 
program 4-4 Sense information 3-4 
request termination 4-3 Sequential 
restrictions 4-3 access 2-1 

POS I TN macro 3-2,3;7-1, files 2-1 
12;8-18 Service request mechanism 

Post code for Control Language 7-36 complete bit B-3 
POST macro 5-1 ;7-1,32; CONTROL 5-1 

B-31 end flag B-3 
Priority 3-3 error flag 8-3 

Processing considerations function code 8-3 

end conditions 3-3 instruction 8-1 

multi-volume files 3-4 length B-3 

priority 3-3 linkage B-2 

request overlap 3-3 return code 8-3 
return information 8-3 

lndex-5 



Set up message format 7-38 Tables 
SETCOM macro 5-1 ;7-1, FDT 2-12, 13 thru 

33;8-31 19;3-4;7-2 
SETIF macro 5-1;7-1,36; BOT 2-12,20 thru 

B-34 34 
Sharing Tape labels 

an EXCP 4-2,3 volume 2-1,2 
a PCB 4-1,2 file 2-1,2 

SIZER R parameter 7-24 Terminate program 7-36,37 
SKIP parameter 7-24,28 TIME macro 7-1,37;8-37 
Space element 2-3,8; TYPE macro 3-2;7-1, 15; 

A-3,A-6 B-17 
Space management 

general description 3-3 UNORD parameter 7-22 
macros USAGE parameter 7-7 

ALLOC 7-1,2,3; 
B-6 Variable length records 2-1 

EXPND 7-1,2,5; VER I FY parameter 7-3,4 
B-9 Volume element 2-3, 10;A-9 

PURGE 7-1,2,5; Volume label 
B-11 disc 2-2,3 

SPREAD parameter 7-3,4 tape 2-1 
Standard system suffixes B-4 
ST A TUS macro 3-2; 7 -1 I 1 5; Wait for service request 

B-17 completion 7-30 
Status word WAIT macro 5-1 ;7-1,30; 

data channel 7-19 B-30 
disc channel 7-20 WR: ITE macro 3-2,3;7-1, 

STRIP parameter 7-34 11 ;B-19 
Suspend program execution 7-31 Write message on SYSOUT 7-35 

Writing to SYSOUT file 5-2 

lndex-6 



I 
COMMENTS FORM 

MRX/OS Control Program and Data Management Services 
Extended Reference Manual (2200.002) 

Please send us your comments, to help us produce better publications. Use the space below to 
qualify your responses to the following questions, if you wish, or to comment on other aspects of 
the publication. Please use i;pecific page and paragraph/line references where appropriate. All 
comments become the property of the Memorex Corporation. 

Yes No 

• Is the material: 

Easy to understand? D D 

Conveniently organized? D D 

Complete? ... D D 

Well illustrated? D D 

Accurate? ... D D 

Suitable for its intended audience?. D D 

Adequately indexed? ........ D D 

• For what purpose did you use this publication? (reference, general interest, etc.) 

• Please state your department's function:-------------·------

• Please check specific criticism(s), give page number(s), and explain below:: 

O Clarification on page(s) ------------------------

0 Ad~tion on page~)------------------·------
0 Deletion on page(s) _________________________ _ 

D Error on page(s) ---------------------------



Business Reply Mail 

No Postage Necessary if Mailed in the United States 

Postage Will Be Paid By 

Memorex Corporation 

Midwest Operations - Publications 
8941 Tenth Avenue North 
Minneapolis, Minnesota 55427 

Thank you for your information ......... . 

Our goal is to provide better, more useful manuals, and your 
comments will help us to do so . 

. . . . . . . . . . Memorex Publications 

First Class 

Permit No. 14831 
Minneapolis, 
Minnesota 55427 


	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	5-01
	5-02
	6-01
	6-02
	6-03
	6-04
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	7-21
	7-22
	7-23
	7-24
	7-25
	7-26
	7-27
	7-28
	7-29
	7-30
	7-31
	7-32
	7-33
	7-34
	7-35
	7-36
	7-37
	7-38
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	B-19
	B-20
	B-21
	B-22
	B-23
	B-24
	B-25
	B-26
	B-27
	B-28
	B-29
	B-30
	B-31
	B-32
	B-33
	B-34
	B-35
	B-36
	B-37
	B-38
	B-39
	B-40
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	D-01
	D-02
	E-01
	E-02
	F-01
	F-02
	F-03
	F-04
	F-05
	F-06
	Index-1
	Index-2
	Index-3
	Index-4
	Index-5
	Index-6
	replyA
	replyB

