
7200 Processing Unit
Reference Manual
2903.002

Preliminary lnfc>rmation
This mainual precedes initial releaso publications and
thereforie may undergo substantial revision.

0
0
3
'C
c
(I) .,, ..

.. en
0 '<
C. UI c n CD en 3

Preliminary Edition October 1972

Requests for copies of Memorex publications should be made
to your Memorex representative or to the Memorex branch
office serving your locality.

A readers' comments form is provided at the back of this
publication. If the form has been removed, comments may be
addressed to the Memorex Corporation, Publications Dept.,

Santa Clara, California 95052.

© 1972, MEMOREX CORPORATION

7200 PROCESSING UNIT REFERENCE
(MRX/40 SYSTEM)

2903.002

This publication covers the 7200 Processing Unit (for
MR X/40 data-processing systems). It describes the
functional characteristics, data formats, operating
routines, and the System Control Panel. Each machine
instruction is detailed, with a brief e1xample.

The publication is intended to aid programmers, system
engineers, and data-processing managers and operators in
better understanding and using the system.

Appendices provide further detail!> of machine formats
and instructions.

September, 1972

iii

TABLE OF CC>NTENTS

Section Page Section Page

GENERAL DESCRIPTION 1-1 Compare Instructions 4-35
Control Instructions 4-41

Introduction 1-1 Data Conversion Instructions 4-42
Processor State Concept 1-1 Data Transfer Instructions 4-50

General 1-1 Shift Instructions 4-57
Consecutive-Cycle Mode 1-2 Floating-Point Instructions 4-62
Major-Cycle Timing 1-2 Data Format 4-62

Processing-Unit Organization 1-2 Normalization 4-63
Processor States 1-2 Zero Representation 4-63

Processor State 0 1-5 Arithmetic Exceptions 4-63
Processor State 2 1-5 Floating-Point Register 4-64
Processor State 3 1-6 System Instructions 4-70
Processor State 4 1-6 Extended File Register 4-70
Processor States 5, 6, and 7 1-6 Control Register (C) 4-73

Main Storage 1-6 Privileged Mode Register (PM) 4-75
Alterable Control Memory 1-6 Boundary Crossing Register (BC) 4-75
Arithmetic-Logical Unit 1-6 Register Option 4-75
Register File 1-6 Control Instructions 4-76

2 FUNCTIONAL CHARACTERISTICS 2-1
5 SYSTEM OPERATING PROCEDURES 5-1

Main Storage Addressing 2-1 Introduction 5-1

Binary Representation 2-1 Controls and Indicators 5-1

Arithmetic 2-1 Operator Group 5-1

Single-Precision Addition 2-3 Programmer Group 5-4

Single-Precision Subtraction 2-3 Maintenance Group 5-7
Double-Precision 2-3 System Activity Display Group 5-7

Information Formats 2-3 Communications Activity Group 5-8
Operating Procedures 5-8

3 INSTRUCTION TYPES 3-1 Modes of Operation 5-8
Breakpoint Facility 5-9

Generalized Instruction Formats 3-1 Switching Power On and Off 5-9
Addressing Modes 3-2 Loading Control Storage from Disc 5-10

Immediate Addressing 3-2 Power On Condition 5-10
Direct Addressing 3-2 Reset/Load Condition 5-11
Indirect Addressing 3-3 Loading Control Storage from
Implementation 3-3 Card Reader 5-11

Indexing 3-3 Power On Condition 5-11
Reset/Load Condition 5-12

4 MACHINE INSTRUCTIONS 4-1 Loading Main Storage from Disc 5-12
Loading Main Storage from

Introduction 4-1 Card Reader 5-13
Source and Object Format Interpretation 4-1 Reading Main Storaoe 5-13
General-Purpose Instructions 4-4 Preconditions 5-13

Arithmetic Instructions 4-4 Procedure 5-13
Bit-Oriented Instructions 4-18 Writing Main Storage 5-13
Boolean Logic Instructions 4-21 Preconditions 5-13
Branching Instructions 4-26 Procedure 5-14
0

v

TABLE OF CONTENTS (Continued)

Section Page Section Page

Reading Registers of Register Files 5-14 APPENDIX A - INSTRUCTION SUMMARY A-1
Preconditions 5-14 AND EXTENDED
Procedure 5-14 MNEMONIC CODES

Loading Registers of Register Files 5-14
Preconditions 5-14
Procedure 5-15

Reading Registers of Register Option 5-15 APPENDIX B - EBCDIC AND ASCII CODES B-1

Preconditions 5-15
Procedure 5-15

Loading Registers of Register Option 5-16 APPENDIX C - HEXADECIMAL ARITHMETIC C-1
Preconditions 5-16
Procedure 5-16

Reading Shared Resources Registers 5-16 APPENDIX D - MACHINE LANGUAGE D-1
Preconditions 5-16 INSTRUCTION TIMING
Procedure 5-16 FORMULAS

Executing Programs 5-16
Precondition 5-16
Procedure 5-16

LIST OF FIGURES

Figure Page

1-1 7200 Processing Unit Architecture 1-3

1-2 7200 Processing Unit Block Diagram 1-4

1-3 Register File Layout 1-8

1-4 Condition Register Assignments 1-8

2-1 Single-Precision Fixed-Point Format 2-3

2-2 Double-Precision Fixed-Point Format 2-4

3-1 Register-to-Register Instruction Addressing 3-4

3-2 Immediate-Register Instruction Addressing 3-5

3-3 Memory-to-Register Instruction Addressing 3-6

3-4 Direct-Register Instruction Addressing 3-6

3-5 Memory-to-Memory Instruction Addressing 3-7

3-6 Pre-Indexing with BCH Instruction 3-8

3-7 Post-Indexing with B Instruction 3-8

3-8 Memory-to-Memory Instruction with Post-Indexing 3-9

vi

Figure

4-1

4-2

4-3

4-4

4-5

4-6

4-7

5-1

5-2

5-3

5-4

5-5

Table

2-1

4-1

LIST OF FIGURES (Continued)

Floating-Point Data Format

Floating-Point Register Format

Extended Register File Structure

Register Option Address Structure

INP Instruction in Basic Data Channel Operation

OUT Instruction in Basic Data Channel Operation

Relationship, Line Parameter Table and Line Exit Jump Table

MRX/40 and 50 System Control Panel

Register File Address Format

Register File and Associated Register Addresses

Format: Registers of Register Option

Addresses: Registers of Register Option

LIST OF TJ~BLES

EBCDIC Character Codes

Extended Register File

vii

Page

4-63

4-64

4-71

4-76

4-85

4-85

4-87

5-2

5-15

5-18

5-19

5-19

Page

2-5

4-71

1.

INTRODUCTION

The MEMOREX 7200 Processing Unit is the major
component in an 1/0-oriented, business data-processing
system. Its basic repertoire of 159 instructions provides a
powerful facility for both business data-processing and
scientific problem-solving.

The 7200 is a byte (8 bit)-oriented processing unit. In
addition to single-precision operations in bytes and words
(1 6 bi ts), the basic instruction set accommodates
problems requiring double-precision (32-bit) solutions. An
optional set of ten floating-point instructions is available
to extend the scientific capabilities of the system.

A wide range of storage sizes, peripheral devices, and
integrated adapters affords maximum flexibility in
tailoring a system to meet a user's specific need. MRX/40
is supported by an unusually comprehensive operating
system developed by Memorex. This extensive
programming systems support permits the user to
concentrate on his application, rather than on the
functions of the system. The combination of hardware
and software capability provides a price/performance level
normally associated with more costly data processing
systems. The result is a more efficient and economical
data-processing system for the user.

Several characteristics ·distinguish the MRX/40 computer
systems:

• Advanced architecture

• Wide range of peripheral devices

• Extensive communications support

• Comprehensive programming systems support

~GENERAL DESCRIPTION

PROCESSOR STATE CONCEPT

GENERAL

Data processing systems divide their time between
input/output operations and arithmetic/logical functions.
This conflict of interest usually causes large periods of
svstem time to be dominated by input/output functions.
Obviously, while this domination exists, hardware such as
that dedicated to arithmetic/logical functions stands idle.
This results in uneconomical time-versus-hardware usage.

To avoid this uneconomical usage, the 7200 Processing
Unit divides its running time into segments called major
c:vcles. These time segments are cyclically assigned to one
of eight processor states.· For each state, a group of
hardware registers holds information relating to the
operation cµrrently being performed by that state. A
processor state and its associated group of registers, then,
constitute a resource that is "dedicated" to the solution
of a particular problem. In order to effect this solution,
each processor state shares with the ot~er states the use of
the common (or "shared") resources of the computer.

Because only one processor state is active for a given time
s1:1gment, the shared resources (principally, the
arithmetic/logical unit and main storage) need concentrate
on but one task during each major cycle.

By assigning specific types of tasks to individual processor
st:ates, as well as by allocating major cycles sequentially to
each state that is waiting to execute the next segment of
its task, and finally by never granting a. processor state
bNo consecutive major cycles if another state is awaiting
its turn, the processing unit ensures that the system will
ni:>t be bound up by either computation or input-output
a<:tivities.

1-1

Figure 1-1 shows the arrangement of the dedicated
resources with respect to major-cycle assignments. If all
processor states have tasks to do, the first major cycle is
given to state 0, the second to state 1, and so on. When
processor state 7 has had its turn (using major cycle 8),
the scanning sequence begins again: cycle 9 is assigned to
state 0, cycle 10 to state 1, and so on. If processor state 1
had no task to perform, state 2 would receive cycle 2,
with state 7 receiving cycle 7. Then, during the second
scan, state 2 would receive cycle 9.

In each scan, the 1/0 processor states are given
precedence. This is because those states communicate
with peripheral equipment, and normally handle that
communication on a "can't wait" basis. Processor states
that do not operate. under such time constraints are
assigned lower-order positions in the scanning sequence.

A software-controlled priority mode is provided for those
instances when an 1/0 processor state can't wait for its
normal turn in the sequence. If that situation occurs, the
Resource Allocation Network - which assigns the major
cycles - grants the 1/0 processor state an out-of-sequence
major cycle. This decision is made at the end of each
major cycle; the action is similar to that of a system
operating under a priority-interrupt scheme. It is this
tailoring of the Resource Allocation Network around the
1/0 requirements that makes the MRX/40 system so well
suited for file management and data inquiry-retrieval
applications.

CONSECUTIVE-CYCLE MODE

As implied earlier, the major cycles are equitably
distributed among the processor states requesting access
to shared resources. To prevent a monopoly of the shared
resources, the Resource Allocation Network does not
normally give two successive major cycles to the same
processor states.

For those relatively infrequent cases where only one
processor state is requesting access, the Resource
Allocation Network may be directed to give that state
consecutive cycles. This is accomplished through a bit in
the Control register.

Specific information for setting up the consecutive-cycle
mode is given under the discussion of the Control register
in Section 4.

The Job Accounting option keeps track of the number of
major cycles the Resource Allocation Network grants to
each of the processor states.

1-2

MAJOR-CYCLE TIMING

Every major cycle consists of a number of
200-nanosecond "minor cycles", during which time
individual micro instructions (µl's) are executed.
References to main storage are also made during the major
cycle.

The length of each major cycle - and consequently the
number of minor cycles contained within it - depends
upon whether or not a main storage refierence is made.
The resultant variations in major-cycle le!ngth are shown
below.

Length
Minor (Micro-

Function Cycles seconds)

Execute instructions 8 1.6

Read or write 9 1.8

Main Storage;
execute instruc-
tions

PROCESSING-UNIT ORGANIZATION

A simplified block diagram of the 7200 Processing Unit is
shown in Figure 1-2. The processor statns gain access to
the shared resources via the Resource Allocation Network,
the function of which was implied earlier. Descriptions of
other elements in the diagram follow. Information for the
systems programmer about the inter-relationships of these
components is contained in Section 4 of this manual.

PROCESSOR STATES

All eight processor states have equal capacity to perform
logical, arithmetic, and bit-manipulative operations.
Moreover, processor states 0 through 4 utilize special
hardware that enable them to accomplish specific tasks.
Because of this specificity, it is convenient to assign a
name to each processor state according to its prime
dedicated task:

• Processor State 0: Communications

• Processor State 1: Not assigned

• Processor State 2: Selector Channel

-w

Integrated
Adapters

Extended
Registers

Main
Storage

Registers

Major Cycle 1

Major Cycle 2

Major Cycle 3

Major Cycle 4-

Major Cycle 5

Major Cycle 6

Major Cycle 7

Major Cycle 8

IXA on 01
]!I 1

ABBREVIATIONS "ti :::c: m
(')

g l; ~I INTEGRATED 0
COMM Communications z COMM z z -1 FILE =

C/'l mo 1/0 = Input/Output 0 r :Il ADAPTER r IXA = Console Adapter m
ns = Nanosecond
RDR = Reader

DIRECT R/P = Reader Punch
BASIC DATA BASIC DATA ACCESS

COMMUNICATIONS CHANNEL CHANNEL STORAGE

OPERATING SYSTEM

~ . --. --;-- . --. ---r- . --. --r-· -- . ---,

•

I

COMMUNICATION~ I UNIT RECORD I DISC I
1/0 . • AND 1/0

ROUTINES I I MAGNETIC ROUTINES
TAPE
1/0

ROUTINES

GENERAL
REGISTERS

PROCESSOR
STATE 0

GENERAL
REGISTERS

PROCESSOR
STATE 1

GENERAL
REGISTERS

PROCESSOR
STATE 2

-

GENERAL
REGISTERS

PROCESSOR
STATE 3

CONTROL
PROGRAM

GENERAL
REGISTERS

PROCESSOR
STATE 4

..--·--- ----. ----·-
USER

PROGRAMS

GENE.RAL
REGISTERS

PROCESSOR
STATE 5

AND
TRANSIENT OPERATING

SYSTEM FUNCTIONS

GENERAL
REGISTERS

PROCESSOR
STATE 6

GEN.ERAL
REGISTE.RS

PROCESSOR
STATE 7

I

,. •• c:
;

.,,
a
I.
:::s
Cl

c
:::s
::;·

CONSOLE
KEYBOARD
PRINTER

7 (MAX) COMMUNICATIONS
CHANNELS. ADAPTERS ANO
MODEMS CAN BE INTEGRATED
WITH THE PROCESSOR STATE TO
FIT THE CUSTOMER'S NEEDS.

SELECTOR CHANNEL OPERATES• ,, ---------11
IN BURST MODE FOR INTEGRATED
ADAPTERS (CR, CR/P,) OR
EXTERNAL CONTROLLERS.

DATA AND CONTROL
LINES TO ONE OR
TWO DISC DRIVES.

j RESOURCE ALLOCATION ,__ _____ __.._ NETWORK .. i... _____ _

l t---~~~-------------~ l
I T
I I

PROCESSOR '12' II
STATED j'-V

t I
I I

J J
I I

I I

PROCESSOR l/;\j
STATE1 l\!11

I I
l J
I I
I

PROCESSOR I I
STATEZ 1©1

I I
I I

l J
T l

I I
PROCESSOR I r.;\I

STATE 3 l\.!11
I I

.~ l

TIMING
AND

CONTROL

MAIN
STORAGE

(M.S.)

UP-T064K
8-BIT BYTES

ALTERABLE
CONTROL
MEMORY
(A.C;M.)

ARITHMETIC·
LOGICAL UNIT

(A.L.U.)

T
i
I PROCESSOR
I STATE4

I

l

PROCESSOR I STATE &

I
I
r
I
I
I
I
L
I

I
I
I
I
I

PROCESSOR
STATE&

PROCESSOR
STATE 7

REGISTER FILE --------

(!)so REGISTERS SHARED BY ALL EIGHT PROCESSOR STATES, 1ii PER STATE:

1 EIGHT GENERAL.PURPOSE REGISTERS
1 ONE CONDITION REGISTER
1 ONE PROGRAM ADDRESS REGISTER

@SPECIAL INTERNAL REGISTERS FOR IMPLEMENTING 1/0 FUNCTIW&l

• Processor State 3: Disc

• Processor State 4: Executive

• Processor States 5, 6, 7: General Purpose

Processor State 0

This processor state contains an integrated
communications adapter (ICA) to provide serial data
communication over as many as 7 communications lines
for both synchronous and asynchronous terminals
utilizing switched networks and dedicated or local lines.
An integrated console adapter, for service to the console
keyboard/printer, is also attached to Processor State 0.

Each communications line is controlled by a line adapter
that is field-modifiable through interchangeable
printed-circuit boards to accommodate a wide variety of
customer applications.

The ICA can communicate with local or remote devices
operating with seven-level-plus-parity or eight-level codes
in the following speeds.

Asynchronous Synchronous
~-

Baud Characters/ Baud Characters/
(bits/sec) sec (bits/sec) sec

110 10 600 75
150 15 1200 150
300 30 1800 225
600 60 2000 250

1200 120 2400 300
3600 450
4800 800
9600 1200

Three methods of operation are provided:

1. Operating a local terminal over lines up to 50
feet in length (no modem required).

2. Communicating, via a common-carrier-provided
data set or customer-provided modem, with a
remote terminal using a compatible modem.

3. Communicating, via an internal modem and a
common-carrier-provided data access
arrangement, with a remote terminal using a
compatible modem.

The asynchronous line adapters are full-duplex, permitting
two-way simultaneous operation. In addition, when an
adapter is supplemented by a suitable modem, a
:;pl it-speed provision permits operating the primary
channel at 1200 baud and the secondary channel at 150

· baud. This mode allows either channel to be transmitting
while the other channel receives. Echoplex is also
supported; in this mode, the received message is
transmitted back to the sending station, allowing the
!iEmding terminal to monitor the performance of the
transmission line.

These line adapters feature the ability, under program
control, to determine the speed of a remote terminal, to
~ielect a speed, to automatically answer, or to indicate a
lost-data condition. Information may be coded in seven
levels plus programmable parity, or in eight levels.

The asynchronous line adapters provide a subset of EIA
standard R S-232-C interface (Data Transmission
Configuration Interface Type L).

The synchronous line adapters are half duplex. However,
when connected to a full-duplex facility, they permit
two-way alternate message transfer without line turn
around delay. Synchronous communications are provided
for Basic or Code Transparent EBCDIC or ASCII.

The synchronous line adapters provide a subset of EIA
s,ta nda rd R S-2 32-C interface (Data Transmission
Configuration Interface Type D).

Processor State 2

This processor state controls data transfers to and from
peripheral devices using integrated adapters, or to and
from external controllers via the selector channel feature.
An integrated card reader adapter (I RCA) provides
control for a 1000-, 600-, or 300-card-per-minute reader;
an integrated reader/punch adapter (I RPA) provides
control for a 500/120 card-per-minute reader/punch.

In addition to the adapters, Processor State 2 can handle
up to seven IBM* 360/3 70-compatible external
controllers via the selector channel option. Parity is
uenerated and checked for al I transmissions to or from the
uxternal controllers.

Processor State 2 is capable of various modes of data
transfer under control of different 1/0 Driver programs. It
also can handle active devices in a controlled order of
priority, as well as performing diagnostic testing
operations.

1-5

Processor State 3

This processor state contains an integrated file adapter
(IFA) with direct interface to the disc drives. It controls
communication between main storage and one or two
MEMOREX 3664 Disc Drives.

The I FA decodes commands to initiate these drive
functions:

• Positioning read/write heads to a specific
location on the disc surface (seek) and selecting a
read/write head

• Locating a particular record or part of a record
on the disc surface (search)

• Writing a record or part of a record

• Reading a record or part of a record

Seek operations may be performed concurrently. All
other operations are non-concurrent and may be
performed only on a selected drive.

Each record appears in fields of information separated by
g:tps. The disc processor can write count and data fields
and read count, key and data fields. Command chaining is
permitted; however, any attempt to read, write or search
across a track boundary will result in an error condition.
*Tradename - International Business Machines

Processor State 4

This processor state is used by the operating system to
monitor and control system operations. Unique functions
performed by the operating system in this state are as
follows:

1. Assigning the execution of programs to other
processor states.

2. Assigning 1/0 operations within those programs
to the cognizant 1/0 processor state.

3. Supplying time-of-day information when
requested by the various programs.

4. Periodically reading the interval timer, and
updating the time-of-day clock accordingly.

5. In i.t iating error-isolation and error-correction
routines when needed.

Items 2 and 3 are effected in response to the Service
Request, a processing-unit instruction issued by the

1-6

general-purpose processor state requesting the
information. (Certain instructions, including all of those
directly relating to 1/0, are "restricted", and cannot be
executed by the general-purpose states.)

Processor States 5, 6, and 7

These are general-purpose processor states which may be
assigned to execute user programs. Assigning one of these
to a user program dedicates eight general-purpose
registers, a condition register, and a prngram address
register for exclusive use of that program. The assigning of
general-purpose processor states to user programs is a
function of the system's control program.

MAIN STORAGE

The 7200 Processing Unit provides byte addressability for
up to 64K bytes of main storage (MS). Boundary
protection during write references to stornge is inherent
for processor states 5, 6, and 7. Minimum storage size
offered is 16K bytes.

ALTERABLE CONTROL MEMORY

The word-addressable ACM stores micro-instructions.
There are 65 micro-instructions, used to form
microprograms that implement execution of the
processing unit instructions, control integrated 1/0
adapters, and control of certain special operations such as
data entry or read-out from the System Control Panel.

ARITHMETIC-LOGICAL UNIT

Mathematical computations, Boolean functiions (masking,
for example), and data-shifting operations are handled by
the ALU. Shifts of up to 15 binary positions may be made
in a single pass through the 32-bit shift network. The
existing ALU hardware readi I y accommodates
double-precision and floating-point operations.

REGISTER FILE

All the registers associated with the variious processor
states are called, collectively, the register fih!.

The purpose of the register file is to hold information

pertinent to the operations currently being executed by
the processor states. As mentioned earlier, the
performance of a task by one processor state - executing
a user application program, for example, or transferring
100 words to a disc - involves many brief periods of
activity, each separated by wider spaces of dormancy
during which other states are active. During each active
period, the less time spent obtaining the operands, the
better. The register file offers just such a means of rapid
retrieval. Its access time is roughly one-seventh that of
main storage.

The register file is divided into two functional areas, as
shown in Figure 1-3, The first comprises the basic
registers, of which each processor state has a set. The
Basic register file is associated with the execution of
processor state programs; its component parts are as
follows:

• General Registers - used as the programmer
desires: as index, base, transient, or working
registers. (Exception: zero cannot be used as an
index register; specifying it as an index modifier
indicates no indexing.)

• Condition Register - records conditions resulting
from instruction execution (results equal, for
example). The specific conditions are detailed
below.

• Program Address Register - contains the address
of the instruction currently being executed by
the associated processor state.

All registers in the Basic register file are addressable. A
processor state may have access to any register within its
own set (represented by the columns under the processor
number in Figure 1-3) through use of the general··purpose
machine-language instructions.

The Extended register file contains the 1/0-related
registers, the common block registers, and internal control
registers which are used in con junction with
special-purpose functions, such as 1/0 data transfer and
operating system control. The Extended registers haive
limited addressability. Some are addressable only by
privileged instructions, and others only by restricted
instructions.

A complete description of the Extended registers - their
usage and functions - is in Section 4 under the heading
System Instructions.

The Condition register records conditions resulting from
the execution of both the b~sic instruction repertoire and

the optional floating-point instructions. Twelve bits
within the register record the resulting conditions. Figure
1-4 shows the conditions recorded for the basic
instructions and their positions within the register.

• Bit 0 This bit position set indicates that
arithmetic overflow occurred during an add,
subtract or divide instruction. Being set during a
Zero and Add, Add Packed Decimal or Subtract
Packed Decimal instruction, it indicates that
significant data within the field was lost. This bit
position is always cleared following a Compare
instruction.

• Bit 1 This bit position set following a Compare
instruction indicates that the first operand R 1 is
greater than the second operand R2, as explained
by the note in Figure 1-4. This position is'also set
for decimal arithmetic instructions when the
result is positive.

• Bit 2 This bit position set following a Compare
instruction indicates that the first operand R 1 is
less than the second operand R2 (note in Figure
1-4). This position is also set for decimal
arithmetic instructions when the result is
negative.

• Bit 3 This bit position set following a Compare
instruction indicates that the two operands
tested are identical. For decimal arithmetic
instructions, it indicates that the result is zero.
This position is also set for the non-decimal
arithmetic instructions when a carry-out from
adder bit position 0 occurs (link condition).

• Bit 4 This bit position is set during a packed
decimal instruction if an EBCDIC character other
than 0-9 is found in the unpacked field, or if a
hex representation other than a letter A through
F is found in the sign portion of the lowest-order
byte. This position is always cleared following a
Compare instruction.

• Bit 5 This bit position set following a Compare
instruction indicates that the first operand R 1 is
greater than the second operand R2 (note on
Figure 1-4).

• Bit 6 This bit position set following a Compare
instruction indicates that the first operand R 1 is
less than the second operand R2 (note on Figure
1-4).

• Bit 7 This bit position set following a Compare
instruction indicates that the two operands
tested are identical.

1-7

1-8

BASIC
REGISTER

FILE

OVERFLOW

PROCESSOR STATE NUMBER

0 2 3 4 5 6 7

0
1

2

3

4

5

6

7

8 GENERAL-PURPOSE
REGISTERS

._,CONDITION
i----+~-t---t-~-t---t-~-t---'f'~~PROGRAMADDRESS

Figure 1-3. Register File Layout

--~~~~~~-SEENOTE~~-----------

0 2 3 4 5 6 7 8

(CLEARED ON COMPARE)

9

EXTENDED
REGISTER

FILE

10 11

BOUNDARY ERROR

12

(STORAGE VIOLATION)

13 14

A>B; DECIMAL
RESULT IS POSITIVE

SERVICE REQUEST __ ___,

A<i; DECIMAL
RESULT IS NEGATIVE

A=B; LINK; DECIMAL
RESULT IS ZERO

INVALID DECIMAL
(CLEARED ON COMPARE)

A>B
A<B

A=B

NOTE

PARITY ERROR
IN MAIN STORAGE

INVALID
INSTRUCTION

BIT GROUPS 0-3 AND 4-7 ARE BOTH SET AFTER ANY OF THE COMPARE INSTRUCTIONS. INTERPRETATION, WHETHER LOGICAL (MAGNITUDE
ONLY) OR ARITHMETIC (SIGNED VALUES), DEPENDS UPON THE INSTRUCTION, AS FOLLOWS:

INSTRUCTION.

CMPX}
CBY
CBYM

CMPK
CMPF

CMP, CMPD, }
CMPI, CMPM,
CMPR, CMPT

PURPOSE

MAGNITUDE ONLY,
BYTE-ORIENTED

ARITHMETIC, PACKED DECIMAL
ARITHMETIC, FLOATING POINT

ARITHMETIC, WORD-ORIENTED

0-3

LOGICAL

ARITHMETIC

ARITHMETIC

Figure 1-4. Condition Register Anignments

4-7

U)GICAL

ARITHMETIC

UJGICAL

15

• Bits 8-11 Reserved

• Bit 12 This bit position is set when a processor
attempts to read from or write into main storage
beyond its boundary limits invoked at the time.

• Bit 13 This bit position is set during the
execution of a Service Request instruction.

• Bit ·14 This bit position is set whenever a parity
error is detected on a word (instruction or
operand) read from main storage.

• Bit 15 This bit position is set when an undefined
operation code is translated, or when an
unprivileged processor attempts to execute a
restricted or privileged instruction, or when a
privileged processor attempts to execute an
instruction that is restricted to another
processor.*

*The terms "privileged" and "restricted" are defined in Section 4.

Generally, the hardware writes into the Condition register
in 4-bit hexadecimal groups. For example, if the result of
a decimal arithmetic operation were positive, bit positions
1 and 5 would be set and positions 0, 2-4, 6 and 7 would
lbe cleared. Bit positions 8-15 would be unchanged. On the
1other hand, for a Compare instruction that resulted in
•~rithmetic and logical equality, 0-2 and 4-6 would be
deared, while 3 and 7 would be set. Bit positions 8-15
would be unchanged.

llt is important to note that in the second instance, bit
position 1 is cleared and no longer represents the result of
the decimal arithmetic operation. This means that the
Condition register must be examined before another
instruction that can affect it is executed, or the prior
c:ondition indication will be lost.

In the Instruction Descriptions, Section 4, any instruction
that affects the Condition register will stipulate which bits
a1re affected. It assumes, then, that other bits are
unchanged.

1-9

2. FUNCTI01NAL CHARACTERISTICS

MAIN STORAGE ADDRESSING

The MEMOREX processing unit is a 16-bit, fixed-point,
machine. The basic memory unit is an 8-bit byte; two
bytes are contained in each 16-bit main storage word. The
word and byte relationship, with their respective bit
positions, is shown below.

Upper byte
(Byte 0)

Lower byte
(Byte 1)

f o I 1 j 2 j 3 j 4 j s j 6 j 1 j s I 9l10j11j12 j 13 I 14 I 1s I
Word

For instructions, addressing must always be by words;
however, the instructions themselves may deal with
vvord-length (16-bit) or byte-length (8-bit) operands.

Though instructions vary in length, they must begin at a
word address in main storage. The lowest-order bit of
vvord addresses are not used; thus, all word addresses are
even.

Byte-length operands may be in either byte of a storage
word. There fore, in byte-oriented instructions the
lowest-order bit of the address is used to select the byte;
the upper byte with an even address and the lower byte
with an odd address.

BINARY REPRESENTATION

The arithmetic operands within the 7200 are either 16 or
~J2 bi ts represented in conventional signed binary
notation. The highest-order bit specifies the sign, while
the remaining bits specify the value of the operand.
Positive operands are represented in true binary form with
s1 0 in the sign-bit position. Negative operands are
represented in the two's complement form with a 1 in the
sign bit.

ARITHMETIC

The 7200 performs both single-precision (16-bit) and
double-precision (32-bit) addition and subtraction. The
single-precision, fixed-point data format contains a 15-bit
integer value and a sign bit (Figure 2-1).

2-1

p OS AND NEGATIVE LIMITS ITIVE

The largest positive number that can be expressed in a signed 16-bit word either in storage or in a register is +32,767:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Sign bit I 0 I 1 I 1 I 1 I 1 I 1 I , I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I
0 =plus_, ' ..__ -- 15 bits of magnitude-. ---equal to 32, 767

The two's complement representation for negative numbers is formed by inverting the positive binary representation and
adding one:

0 1 2 bit 13 14 15

Sign _____.o 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 = +32,767

bit+ 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Invert

1 Add 1

Sign______., 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 = -32,767
bit
1 =minus 2's complement

representation of -32,767

This ·32,767 value, is however, one less in absolute value than the largest negative number that can be expressed in a signed
16-bit word. The largest negative number is formed by adding (-1) to -32, 767.

Two's complement 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -32.767
representation

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 (+)-1

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -32,768

Sign bit (negative)_/ - -. . --
32,768

Although the same quantity of both positive and negative numbers can be represented in a signed 16-bit machine, the two's
complement usage causes the positive and negative range of numbers to be offset by one number:

Two's complement magnitude

- -Sign 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 +32,767'
bit

32,768
combinations

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 +1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +O ~

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -2 32,768
.. combinations

• J

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -32,768

As a result of the offset there is one positive and one negative number which cannot be represented in its opposite form. The
value zero can only be expressed as a positive number, which is apparent when we attempt to generate the two's complement
representation for positive zero.

magnitude

Sign 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
bit +O

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Invert

1 Add 1
+O

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The same is true with negative 32,768, which can only be expressed as a negative value in single-precision notation.

magnitude

-Sign 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -32,768
bit

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Invert

1
Add 1

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-32,768

2-2

0 1 2 3 ~~~~~~-13 14 15

+ I I I I I I I IT -SIGN---4
BIT

214 213 212 211 210 29 28 27 ~!6 25 24 23 22 21 20 .4~

~

15 BITS OF MAGNITUDE BINARY POINT

Figure 2-1. Single-Precision Fiixed-Point Format

SINGLE-PRECISION ADDITION

When both operands have like signs, the resulting sum
may be too large to express in fifteen bits of magnitude.
In this case a carry will propagate from the magnitude
field into the sign bit position, causing the sign to change
- this is overflow, recorded in the Condition register. In
this example two positive numbers are added, resulting in
a sum too large for the magnitude field. The resultant
overflow sum is an incorrect negative value.

carrv

+ 0

+ 0 0

- 1 0 0

0

() 0 0

0 0 0

magnitude

0 0 0

0

0 0

\ magnitude representation is
incorrect

The carry changed
the sign bit,
causing overflow

0

0 0

0 0

0 +28,438

(+)+10,675

+39,113

In this example, two positive numbers are added, resulting
in a sum too large for the magnitude field. The resultant
overflow sum is an incorrect negative value.

The addition of two operands with unlike signs cannot
generate overflow since the result is the difference
between the two, and it will be less than or equal to the
larger operand.

SINGLE-PRECISION SUBTRACTION

Single-precision subtraction of two operands with unlike
signs can result in overflow. Of course, overflow will only
occur when the result is too large to express in 15 bits of
magnitude. Overflow cannot occur when like-signed values
are subtracted, because the adder result is really the
difference between the two operands.

DOUBLE-PRECISION

Double-precision, fixed-point operands contain a 31-bit
integer value and one sign bit. A 32-bit operand resides in
two adjacent storage locations or two adjacent file
registers (Figure 2-2).

INFORMATION FORMATS

The 16-bit registers and main storage words within the
noo facilitate the usage of hexadecimal notation.
Hexadecimal numbering requires four binary places to
mpresent each of the 16 different symbols within the
system: decimal digits 0-9 and letters A-F. Thus, each
16-bit word or register can contain four hexadecimal
:symbols representing values from zero to 32, 76710.

The hexadecimal symbols are also used to represent
characters within the Extended Binary-Coded Decimal
Interchange Code (EBCDIC). Each EBCDIC character,
8 bits long, comprises two hexadecimal symbols. Although
8 bits provide 256 possible variations, not all are used.
The EBCDIC characters do represent the digits 0-9, letters
o·f the alphabet, all punctuation and arithmetic symbols
(s;uch as + - ; >=),and special graphic and control symbols
as shown in Table 2-1.

Each EBCDIC character (letter, digit or symbol) is repre­
se1nted in one byte (two hex symbols) as shown below.

!Hex c--,1 Hex411Hex 5--irHex E-,

11 1 o o o 1 o o o 1 o 1 1 1 1 ol
lo 2 3 4 5 6 1 o 1 2 3 4 5 6 1I
----Upper byte_:_JL_ Lower byte----'·

EBCDIC character D EBCDIC character ;

Since the decimal digits 0-9 can be represented in four
bits and each EBCDIC character requires an entire byte,
bits 0-3 are always 11112 (the hexadecimal character F)
for those digits. As an example; the number 25 repre­
sented in EBCDIC code occupies two bytes.

..-----Byte---.. .---Byte-----.

101234567012345671

1 1 1 1 0 0 1 0 1 1 1 1 0 1 0 1

L_F_JL2_JLF_JL.5__J

Tlhe numeric fields in EBCDIC, unpacked decimal fields,
rnquire a byte for each decimal digit. In an unpacked
dt!cimal field, bits 0-3 are always F 16 except in the byte
containing the least significant decimal digit of the field.

2-3

,,
•• c:
;
~

~
0
0 c:
a" .. ;, 16-BITWORD

i 0 2 3-----BITS--------12 13 14 15 0
i:
0
~ + ,, SIGN
)('

BIT l
- 230 217 216 215

-'a
0 ;· UPPER BITS .. ,,
0 ..
:I • ..

214

16-BITWORD

2------BITS-----11 12 13 14 15

213 212 211 210 29 28 27

LOWER BITS

26 25 2" 23 22 21 20

•
BINARY POINT

In that byte, bits Q.3 indicate the sign of the entire
decimal field. The hexadecimal letters used to indicate
the sign are these:

Plus: A,F, C, or E

Minus: B or D

An unpacked decimal field can be packed to occupy a
fewer number of bytes, by removing bits 0-3 of each
EBCDIC digit except in the one containing the sign. The
sign character is moved to the rightmost byte of the new
packed field. The example below shows the number
+18,63410 in an unpacked decimal field and then in a
packed decimal field.

F

rightmost

I byte

:=1 unpacked field

F 8 F 6 F 3 A 4J requires 5 bytes

+ 0-3 4-7 0-3 4-7 0-3 4-7 0-3 4-7 "plus" sign

rightmost
byte

8 6 3 4 A k-"plus" sign

packed field requires 3 bytes

If an unpacked field with an odd number of digits is
packed, no portion of the resulting packed field is unused.
If a even-number unpacked field is packed, the leftmost
four bits of the resulting packed field are zeros.

[~I SIGN j 1J
Unpacked field, even
number of digits

zero added

[0 3 ,,--7 , -SIG_N_

packed field, zero added
to fill out the byte

Table 2-1. EBCDIC Character Codes
(Bits4-7)

0 1 2 3 4 5 6 '7 8 9 A B c D E F
0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0 0000 NUL SOH STX ETX PF HT LC DEL SMM VT FF CR so SI

1 0010 OLE DC1 DC2 TM RES NL BS I l. CAN EM cc CU1 IFS IGS IRS IUS

2 0010 OS sos FS BYP LF ETB ESC SM CU2 ENO ACK BEL

3 0011 SYN PN RS UC EOT CU3 DC4 NAK SUB

4 0100 SP ¢ < (+ I

5 0101 & I $ *) ; ---,

6 0100 I
'

% - ?

-
(Bits 0-3) 7 0111 : # @

,
= "

-·
8 1000 a b c d e f g h i

9 1001 j k I m n 0 p q r

A 1010 s t u v w x y z

B 1011

c 1100 A B c D E F G H I

D 1101 J K L M N 0 p a R

E 1110 s T u v w x y z

F 1111 0 1 2 3 4 5 6 7 8 9
I

2-5

Every i~struction consists minimally of a two-byte (16-
bit) base instruction word. This base instruction word
comprises two parts: an 8-bit operatio.n code which tells
the computer what to do with data; and two fields that
specify, in general, the sending and receiving locations
of the operand or operands used in the instruction.

Often, the base instruction word is not sufficient to
provide all the information needed for certain operations.
In such instances, it is augmented! by adding a second,
or a third, and sometimes even a fourth word. The
repertoire, then, comprises 2-byte, 4-byte, 6-byte, and
8-byte instructions (two bytes in a word). This is the
first consideration in determining the instruction type.

An instruction operand may be located in one of three
places: in the instruction itself ("immediate" operand),
in a register ("register" operand), or in main storage
("memory" operand). Operand location provides the
second factor to be considered when determining the type
of an instruction. Considering byte length and operand
location, the repertoire may be divided into six basic
instruction types:

1. Register/Register (2-byte)

2. Immediate/Register (2-byte)

3. Memory/Register (4-byte)

4. Direct/Register (4-byte)

~ Memo~/Memo~(&by~)

6. Memory/Memo~, extended (8-byte)

These six types are explained below.

GENERALIZED INSTRUCTION FORMATS

Although a variety of formats are used to express the
159t instructions in the repertoire, better than 80% of
them fall into one of the six types listed above. The
following delineates the formats for these six basic types.

3. INSTRUCTION TYPES

1.

2.

Register/Register (2-byte instruction)

8 4 4

F

F: The basic operation code

R 1: A field specifying the location of the
first operand. (A register number.)

R2: A field usually specifying the location
of the results of the operation. If the
operation involves two operands, this
also specifies the location of the
second operand.

Immediate (2-byte instruction)

8 4 4

F

F: The basic operation code

I 1: A 4-bit quantity, the absolute value
of which is used as the first operand.

R2: A field usually specifying the location
of the results of the operation. If the
operation involves two operands, this
also specifies the location of the
second operand.

3. Memory/Register (4-byte instruction)

F

F: The basic operation code

M 1: An address specifying the location of
the first operand.

t Does not include 10 for the floating-point option.

3-1

4.

R 1: A regl$ter number, the contents of
which may be used to modify the
first operand address (see Indexing}.

R2: A field usually specifying the location
of the results of the operation. If the
operation involves two operands, this
also specifle$ the location of the
second operand.

Direct (4-byte Instruction}

'--~~~-F------------~R_1~~--~
11 ~

3-2

F: The basic operation code

I 1: A 1 &bit quantity, the absolute value
of whlcti is used as the flrn operand.

R 1: A ragl~er number, the contents of
wt,ich may be used to modify the
f'rst operand (see Indexing}.

R2; A field usually specifying the location
of the results of the operation. If the
operation involves two operands, this
also specifies the location of the
second operand.

5. Memory/Mem~ry (6-byte instruction)

F

F: The b8$iC operatiqn code

M 1 : The first operand address

M2: The JeCOncl operand addrus; usually
speclfie$ the location of the resu Its
of the operation.

R1, Two regfst~r numbers, the respective
R2: contents of which may be used to

modify the first operand address and
the second operand address (see In·
dexlng),

6. Memory/Memory, 8"tended (&byte instruc­
tion)

F l R1 I R2
Mi

M2

L1 l L2

This instruction type deals with fields of
operands, rather than single operand!;. F, R 1,
R2, Mt, and M2 are as explained under 5,
above. The field length, in bytes, of the first
operand is given by l 1; that of thei second
operand is given by l 2.

As stated above, the foregoing are generalized forma~s
only. Individual differences will be detailed in the
instruction descriptions.

ADDRESSING MODES

Three addressing modes are available by which to obtain
the operands used by an instruction: immediate, direct,
and indirect.

IMMEDIATE ADDRESSING

Immediate addressing covers those cases where the
operand is contained in the instruction word itself.
Examples of "immediate" operands are:

• raw data

• shift count

• skip count

• a hexadecimal value indicating a bit position
(in a register) that is to be tested, set, or
cleared.

• an External Register number

• a processor number

DIRECT ADDRESSING

Direct addressing means that the related field of the
instruction (R1 or Mt; R2 or M2) specifies an address at
which the operand may be found; the instruc:tion specifies
the location of the operand directly.

INDIRECT ADDRESSING

Indirect addressing means that the related field of the
instruction (R1 or M7; R2 or M2) specifies a location
that contains the address of the operand. That is, the
instruction specifies the location of the operand indirectly.

IMPLEMENTATION

Direct and indirect addressing are indicated by the
highest-order bits (designated "i") in the two R fields of
the base instruction word.

0 8 12 15

For example, if bit 8 is 0, the register indicated by the
lower three bits of the R 1 field (or the 16-bit address
stored in the M 1 field if this is a multi-word instruction)
contains the operand. On the other hand, if bit 8 is 1, the
indicated register contains the operand address; if this
were a multi-word instruction, M 1 would contain a 16-bit
memory location the contents of which would stipulate
the address of the operand. These rules apply equally to
the bit-12 address-mode designator.

Direct addresses may be even or odd, depending upon the
instruction. Indirect addresses must always be even;
whether the final operand address, located at the
"indirect" address, is even or odd depends upon the
instruction.

Figures 3-1 through 3-5 show the addressing schemes
available for each instruction type, using all possible
combinations of the two 'i' designators. Note that as
each format is titled, the basic instruction type name is
manifested for the case where both bit 8 and bit 12 are
0. In each example, when bit 8 or bit 12is 1, the additional
manipulation of indirect addressing is required.

These figures do not give the complete addressing story,
for there are still the indexing (or address modification)
situations to consider. This is the subject of the next
section, Indexing.

INDEXING

Indexing consists of adding to the value of an instruction's
M field (or the contents of the address specified therein)
the contents of the register indicated in the corresponding
R field of the base instruction word. Indexing cannot
apply to the 2-byte instructions because those instruc­
tions do not have an M field.

Indexing will occur in an instruction whenever the R field
for the indexable M address contains a register number
other than zero (that is, 1-7). If the R field (bits 9-11 for
R1; bits 13-15 for R2) contains a zero, no indexing for
the related M address field is performed.

The terms "pre-indexing" and "post-indexing" define at
what point in the instruction execution the indexing
occurs. If the register contents are added to the value of
the M field, it is called pre-indexing. If the register con­
tents are added to the contents of the address specified
by the M field, it is called post-indexing.

In the instruction repertoire, only one instruction (BCHJ
uses pre-indexing. Figure 3-6 shows how pre-indexing
applies to that instruction. Figure 3-7 shows a similar
instruction, 8, using post-indexing. Figure 3-8 uses one of
the previously defined examples to show another example
of post-indexing. In the Machine Instructions section,
indexing is always indicated when it is valid. Except for
the BCH instruction, which uses pre-indexing,
post-indexing is assumed when indexing is indicated.

It should be pointed out that, as the examples show, the
two indexing methods differ only for the indirect
;addressing mode. That is, post-indexing must .operate on
the contents of the M field for the direct addressing mode
(inasmuch as the "indirect" address doesn't exist), and
iin this respect is identical to pre-indexing.

The foregoing discussion has dwelt on address modification.
IBut indexing may also be used to modify an operand.
This fact bears repeating, for although indexing most
frequently refers to address modification, operand
modification is possible - albeit only for the second
e>perand of direct-type instructions as evidenced pre­
viously in Item 4, under Generalized Instruction Formats.

3-3

s12 13
21 210 I~

0 7 8 9 16

I MOVR I 0 I I ., sl 210 I 2 o I 6

REG-REG

0

1 ... ____ M_o_v_R ____ l ... o .. 1 __ 2 __ 1 1 .. f __ 6_ 1 .. ------.51 2000 l<ADDR) .. 2000·1--2,-0-·1

(ADDR)

0 7 8 9 11 12 13 16

._ ____ M_o_v_R ________ .._ _2 ___o s --~-------+-----------·sl 210 I
1000~

I ,, 12 13
21 1200 l<ADDR) • 1:too I 210 I

0 7 8 9 15 ~2~c:b I MOVR I 1 I 2 I 1 I & I .. sl 2600 f <ADDR)

Figure 3-1. Register-to-Register Instruction Addressing

3-4

An important indexing consideration is this possibility:
Indexing can attempt to produc:e an operand address
greater than the 16-bit capacity of the adder. This con­
dition occurs when the operand address, M, and the
modifying value in the indexing riegister result in a over­
flow sum greater than 65,535rn or FFFF 16· If such
happens, significance beyond 16 bits is lost; the remaining
16-bit sum is the operand address utilized by the instruc­
tion.

M Address 48,391 1011110100000111

Modifying Value 26, 124 0110011000001100

Attempted Operand 74,515 0010001100010011
Address

.....___--.....

Lost Bit resulting operand
address = 8979

Of course, this condition can alsCl occur when indexing
an operand itself (the I field) rcuther than the operand
address. No error indication is recorded when the above
condition occurs.

Figure 3-2. lmmediate-Regi1rt:er lnntruction Addressing

3-5

0 7 8 9 • 11 12 13 16

I LOO i 0 I 0 I 0 I &

I
210 I

1000 (ADDR)

MEM/REG
.. 1000 I 210 J

0 7 8 9 • 11 12 13 15

I
LOO i · I 0 I 1 I 6

I
•51 1200 l(ADDR) 210 I

1DDO(.DDRI

.. 1000 I 210

0 7 B g • 11 12 13 1&

I LOO i 1

I
0 I 0 I 5 I s I 210 I

1000 ~DORI
/ 1000 t 3600 I (ADOR) --t-36001 210 I

0 7 8 9 • 11 12 13 15

I I 1 I 0 I 1 I 5

I
ul 1200 l<ADDR) •11200 I 210 I

1000 (ADDR)

1//
10001 3800 l(ADDR)---+3600 I 210

*SEE SECTION ON INDEXING FOR CASES WHERE R1 ~ 0

Figura 3-3. Memory-to-Register Instruction Addressing

0 7 8 9 • 11 12 13 16

I LODD I 0 I 0 I 0 I 5 L 210

DIRECT/REGISTER

0 7 8 9 • 11 12 13 15

I LOUD I 0 I 0 I 1 I 5 I 218

.,_ ___ 5, 1200 l(ADDR)---•1>1Z8: I 210 I

•SEE SECTION ON INDEXING FOR CASES WHERE R1 ~ 0

Figure 3-4. Direct-Register Instruction Addressing

3-6

0 7 8 9 • 11 12 13 • 16

MOVM r 0 I 0 loJ 0

1000 (ADDR)

2000 (ADDR)

MEM/MEM l

0 7 8 9 • 11 12 13 • 15

MOVM T 0 l 0 T1T 0

1000(ADDR)

2000 (ADDA)

l

0 7 8 9 * 11 12 13 • 15

MOVM J1J 0 ToJ 0

1000 (ADDA)

2000 (ADDA)

l

0 7 8 9 • 11 12 13 • 15

MOVM J1T 0 J1T 0

1000 (ADDA)

2000 (ADDA)

l

*SEE SECTION ON INDEXING FOR CASES WHERE R1. R2 ,,_ 0

i-----.1000 I 210 I

-+ 1000 I 210 I

THIS EXAMPLE ALSO APPLIES TO THE
"MEMORY-TO-MEMORY EXTENDED"
INSTRUCTIONS. FOR THOSE 8-BYTE
INSTRUCTIONS, INDIRECT ADDRESSING
IS NOT ALLOWED FOR EITHER OPERAND.

¢

~
2000 I 210 I

-+ 2000 I 2500 I (ADDR)----ia

-+1000 I 1600 l(ADDR) • 1600

..

-+2000 I 2600 I (ADDR) -----

Figure 3-6. Memory-to-Memo11' Instruction Addressing

3-7

----------- 3

0 7 8 9 11 12 13 15 ...
BCH 0 3

1200 (ADDA) .,.... _ _. 1200+60=1260 (ADDA) __ ...,. .. RESUME PROGRAM AT ADDRESS 1260

0 7 8 9 11 12 13 15 ..

3-8

BCH 3

1200+60=1260(ADDR)----.... 1zoo Cfl 1200 (ADDA)

RESUME PROGRAM "T ADDRESS 3000

The BCH instruction causes an unconditional jump (or branch) to the address stipulated. If the R1 field were 0, 1200 would be
the new address (or, if Bit 8 were a 1, the new address would be stipulated by the contents of location 1200). Because R1 is not
0, the contents of the indicated register are added to the value of the M-field. The state of Bit 8 then indicates whether or not an
additional storage reference is needed to obtain the final "jump to" address.

E

E B

Figure 3-6. Pre-Indexing With BCH Instruction

B

8 [lc:D--i
lol l] :J !

___ 1_2_00_(.... A_D_D.L..,.R)___ ----__J------•11 1200 + 60 = 1260 (ADDR.)

~
RESUME PROGRAM AT ADDRESS 1260

i
3 I 60 I

1200 m---- 2340 + l. 2400

8

I 1 I 3 ~ 1200 (ADDR.) ..
i

RESUME PROGRAM AT ADDRESS 2400

THE B INSTRUCTION ALSO PERFORMS AN UNCONDITIONAL JUMP, BUT USES POST-INDEXING. NOTE THAT BAND BCH
(FIGURE 3-6) PERFORM IDENTICALL V WHEN BIT 8 IN BOTH INSTRUCTIONS IS A 0 (DIRECT ADDRESSING). THE INSTRUCTIONS
DIFFER, HOWEVER, WHEN BIT 8 IN BOTH IS A 1 (INDIRECT ADDRESSING).

Figure 3-7. Post-Indexing With B Instruction

0 7 8 9 11 12 13 16

MOVM 0 3 0 5 400

1200 (ADDR)

4000 (AODR) -------•1200 + 60 • 1260 (ADDR)

"----------·--+4808 + 481•4480 (ADOR) l l 12•0 I 211 I
-C!!!J/

________ .. 31 60

0 7 8 9 11 12 13 15

MOVM 3 5 !i 400

1200 (ADDR)

4000 (ADDR) 1200 ~2100 + 60 • 2160 (ADDR)

.._. ________ .,..41119 c::=:J-2400+40ll•210G(ADDR) l
1 2160 I ZID I

2811 ~
FOR OTHER VALUES OF THE ADDRESS·
MOOE DESIGNATORS (BITS 8 AND 12),
COMBINE THE APPROPRIATE PARTS
OF THESE EXAMPLES.

Figure 3-8. Memory-to-Memory lnstn1ction With Post-Indexing

3-9

4.

INTRODUCTION

The MRX/40/&0 System mechlne Instruction set Is
clvldld into two major CltllOl'ill: ...,.,,.....
Instructions and aysttm lnllt'UCtionl. GIMfll fll" 111
instructions art thl lnsttuctlons .,..... to tolve MOit data
proceulng problems uslnt I defined toftware IY~
........ Instructions ere specilllzed INtructlonl Ulld to
Interpret and alter a sottwere system.

Within lhlle two major categorill, the lnltructionl ..
divided into functlonll l'GUpl, lftCI ._ functionll "°"" .. lilted In alphlbetlal ordlr, • lhown In the
following tlble.

o..erat-Purpose Instructions Sysbm Instructions

Arithmetic
Bit-Oriented·
Boolean Logic
Branching
Compare
Control
Data Conversion
Data Transfer
·Shift
Optlonll: Floating Point

Control
1/0

The lnatructlont In eech funct._., group .. liltld
llphlbetlcally by mnemonic. This Nie holds for all In­
structions except for logicat pelrs • · groups of instruc·
tlonl - ·theie Instructions .. liltld llphlbetically
.coordlng ·to the first lnsti'Uctlon of tlwt pair. For lnltance,
PAK>< CPac:k) wlll be follOWld by UNPX CUnpeck), Md
SB (Skip a.ck UnCondltlontO will be followed by SF
CSldp Forwwd Uncondlton81).

Remember the fOllowlng ru._ when reeding the mechine
instruction dllcrlS;tlonl.

1. The addms of 1 memory field refers to the
leftmost bVte of that field.

2. A word Is •tined • two bytes; the bit
positions In •. word ... NffMilred left to rilht.
0-15.

MIACHINE INSTRUCTIONS

3. The operand fields of the instructions may be
fixed or variable in length. Fixed-length
operand fields may be one byte. one word (2
bytes). or two words (4 bytes in length.
Varlable·length f lelds may range from
Q.85,536 bytes.

4. Most instructions must addr• even bytes in
memory; the rest CM lddr• even or odd
bytes. The Instructions which can address
even or odd bytes .. identified by a bullet
following the Instruction name (such 81,

Compare PIM:ked Decimal e).

I. The effective add,.. of a field in memory
Is defined • the final address of the field
derived from all specified addressing tech­
niques. If no optional addressing techniques
are used, the effective address Is In the M
field, otherwise, the effective address is a
result of Indexing, Indirect addressing, or
both.

SOURCE AND OBJECT FORMAT INTERPRE·
TATION

The source and object formats of the operands are defined
wing the following symbols.

Op Cod• The operation codes are presented
In hexedecimal (00 through FF).

R

E

M

A generll register number. (). 7. The
r......, ruy be used 81 a sending or
receiving field (().7), or as an index
register C1·7 onlyt.

Extended reglster,0-16. (For RDX
-.cl WAX only.)

A memory addrtu, 0.8&,636.

4·1

L

@

()

4-2

An immediate value; the value
varies depending on the instruction.
The value may represent an amount
used in an arithmetic operation, a
shift count, a skip count, or a bit
number.

A field length, usually 0-255, but
longer for some instructions. For
certain instructions the length of
an operand field may be defined in
the instruction. The length specified
in the instruction overrides any
previous field length definition,
but is only in effect for that in­
struction.

An at-sign (@) in a source operand
indicates indirect addressing, an
optional feature. For the instruc­
tions in which a register is a send­
ing or receiving field, the at-sign
indicates indirect addressing for
R i or R2. If a field in memory is
the sending or receiving field, the
at-sign indicates indirect addressing
of Mi or M2.

Index registers and field lengths are
optional; they are enclosed in
parentheses in a source operand. A
source operand using both an
indexing and a field length
specification would be represented
like this: Mi (Li ,Ri). The comma
in the parentheses must not only be
coded when both the length and
index register are used, but also if
either one of them is used, as
follows: Mi(L1,) or MitRi). This
enables the assembler to distinguish
between the two specifications in
parentheses.

Bits 8 and. i 2 of the object instructions are used in almost
every instruction to convey information to the computer
concerning that instruction. If these bits are not inter­
preted in any way, they are shaded; otherwise, the
following symbols are used to define bits 8 aind i 2.

f

Indirect addressing indicator; for
direct addressing i=O, for indirect
addressing i=1. Indirect addressing
is indicated by the programmer.

A sub-function indicator; indicates
a function that the operation code
alone cannot do. Func1tion bits
are set by the assembler.

1,0 If bit 8 or i2 must be a i or a 0
for a particular instruc1tion, the
bit wil I be shown as a 1 or 0. These
bits are set by the assembler; if
the wrong bit state appea1rs in the
object instruction, a no-operation
occurs.

An R, M, I, or L in source operand i is ideintified as Ri.
M 1 • I i, or Li ; in source operand 2 they are identified as
R2, M2, 12, or L2. These symbols are numbered so that
they can be referred to easily (distinguishing between R i
and R2 in the same instruction) and to make clear the
location of these fields in the object format.

The two major operand fields must be separated by a
comma; no blanks are allowed anywhere i1n the operand
fields.

The following examples show how the source and object
formats of the machine instructions are illustrated in this
section. The at-sign and any designations in parentheses
(field length and index registers) are a1lmost always
optional; if any of these designations are not optional,
this fact will be noted. Data flow is usually operand i to
operand 2, unless stated otherwise.

EXAMPLE 1: Add Register-Register

ADDR @R1.,R2

Optional at-sign that turns on bit
12, indicating indirect addressing
of R2.

0 7 8 9 11 12 13 15

[____ o_P_co_D_E~---'-il~R_1 ---'~l~R2__.
Optional at-sign that turns on bit 8,
indicating indirect addressing of R 1 · R1 and R2 are in the same relative position in the object format.

The variations of this instruction are shown in the following diagram; depending on the use of indirect
addressing, data flow may be register to register, memo1ry to register, register to memory, or memory to
memory.

ADDA ~ ::t l

EXAMPLE 2: Move Memory-Memory

MOVM @M1(R1),@M2(R2)

Since each operand can be expressed
e1ither of two ways, there are
2 x 2 = 4 possible variations of th is
instruction.

i tptional index register associated
with M2.

·D 7 8 9 11 12 13 15
Optional at-sign that turns on bit ~---O-P_C_O_D_E ______ l_l ____ l __ I ___ _
12, indicating indirect addressing R 1 R2

of M2. Ml

M2
Optional index register associated
with M1·

ptionaf at-sign that turns on bit
8, indicating indirect addressing of

M1.

The variations of this instruction are shown in the following diagram. Data flow is always memory to
memory, but there are many ways in which the addressing options can be used.

MOVM ~
M2
@M2
M2(R2)
@M2(R2)

Since each operand can be ex­
pressed either of four ways, there
are 4 x 4 = 16 variations of th is
instruction.

4-3

GENERAL-PURPOSE INSTRUCTIONS

ARITHMETIC INSTRUCTIONS

Mnemonic Name

ADD Add Memory-Register
ADDO Add Direct
ADDI Add Immediate
ADDK Add Packed Decimal•
ADDM Add Memory-Memory
ADDA Add Register-Register
ADDT Add Two-Word

DIV Divide Memory-Register
DIVD Divide Direct
DIVI Divide Immediate
DIVK Divide Packed Decimal •
DIVM Divide Memory-Memory
DIVA Divide Register-Register

MPY Multiply Memory-Register
MPYD Multiply Direct
MPYI Multiply Immediate
MYPK Multiply Packed Decimal •
MPYM Multiply Memory-Memory
MPYR Multiply Register-Register

SUB Subtract Memory-Register
SUBD Subtract Direct
SUBI Subtract Immediate
SUBK Subtract Packed Decimal •
SUBM Subtract Memory-Memory
SUBR Subtract Register-Register
SUBT Subtract Two-Word

ZADK Zero and Add •

The following rules apply to binary addition and sub­
traction.

4-4

• The Overflow bit (bit O) in the Condition register
is set if the results of a binary add or subtract
exceed the limits of a signed one-word or
two-word result field. Specifically, overflow is
indicated if the resu Its are greater than 2n- l .1 or
if the results are less than -2n-1 (where n= 16 or
32 bits).

• The Link bit (bit 3) in the Condition register is
set if the results of a binary add or subtract
exceed the limits of an unsigned one-word or
two-word result field. Specifically, link is
indicated if the results are greater than 2n.1 for
an add (where n= 16 or 32 bits).

Add Memory - Register

0 1 8 9 11 1:Z 13 15

--~~-A2~~----1~i,~R-1---l~

Ml ~

FUNCTION: Performs a binary addition of a one-word
field in memory and a one-word field in a general regis­
ter or in memory.

OPERAND 1: A one-word field in memory. Addressing
options to the base address M 1 include indexing, in­
direct addressing, or a combination of both.

OPERAND 2: A one-word field in the general register
specified by R21 or in memory if indirect addressing is
used.

RESULTS: The sum resides at the operand 2 location.
The Condition register is affected as follow!;:

• Bit 0 (overflow) is set if the result is greater
than +32,767 or less than -32,768.

• Bits 1, 2, and 4-7 are cleared.

• Bit 3 (link) is set if the result is greater than
65,535.

EXAMPLE

''· ! : Iii l' !II .'1 It / i /: /'• /1, Ir /If /'f l!I ii I/ II 14]':!)I, .ll 111]9 -10 41 -47 43 4-4 4~ 46

The field identified by TAG(5) is added to the contents
of register 7; the sum will be in register 7.

Add Direct

:=
0

========s=2=========
1

=1:w·:1:~=
9

==R=1==·~. '1 ~

FUNCTION: Performs a binary addition of a one-word
immediate value and a one-word field in a general register
or in memory.

OPERAND 1: A 16-bit immediate signed value In the
second word of the instruction; the value may range from
-32, 768 to +32, 767.

Indexing may be specified for operand 1. In this case,
the value of operand 1 is derived by adding the I 1 value
and the general register contents specified by R 1; no check
for overflow or link is made during the indexing.

OPERAND 2: A one-word field in the general register
specified by R2, or in memory if indirect addressing is
used.

RESULTS: The sum resides at the operand 2 location.
The Condition register is affected as follows:

•

•

Bit 0 (overflow) is set if the result is greater
than +32,767 or less than -32,768.

Bits 1, 2, and 4-7 are cleared .

• Bit 3 (link) is set if the result is greater than
65,535.

EXAMPLE

The immediate value of 150 is modified by the contents
of register 2 and added to the contents of register 3; the
sum will be in register 3.

If register 2 contains a value of 4, and register 3 contains
a value o"f 10, the operation will add 150 + 4 + 10; the
result of 164 will be in register 3.

Add Immediate

ADDI l1 1@R2

0 7 8 11 12 13 15

32

FUNCTION: Performs a binary addition of a 4-bit
immediate value and a one-word field in a general regis­
ter or in memory.

OPERAND 1: A 4-bit unsigned value located in bits
8-11 of the instruction; the I 1 value may range from
0.15. The I 1 value is added to bit positions 12-15 of
operand 2; bits 0-11 are zeros.

OPERAND 2: A one-word field in the general register
specified by Ra, or in memory If indirect addressing is
used.

!~ESUL TS: The sum resides at the operand 2 location.
The Condition register is affected as follows:

• Bit 0 (overflow) Is set if the result is greater
than +32,767 or less than -32,768.

e Bits 1, 2, and 4-7 are cleared.

• Bit 3 (link) is set if the result is greater than
65,535.

EXAMPLE

11 'I Ill 11 I,' II 11 1'1 lh \I IH l'I /II /In/! II /'1 /Ii// /II l'I :10 31 J7]]]4 l'i]fj]} 1819 40 41 41 4)44 .-~ 46

The immediate value of 10 is added to the field at the
memory address specified in register 4; the sum will be at
this address.

t~dd Packed Decimal •

0 7 8 9 11 12 13 15

52 R2

M1

M2

L2

_!:UNCTION: Performs a signed decimal addition, pro­
ceeding from right to left, of the two packed decimal
fields in memory. The field lengths L1 and L2 may vary
from 0.255 bytes.

Q1PERAND 1: A packed decimal field in memory. The
field length, 0-255 bytes, is specified in the L1 field of
the instruction. The operand address indicated by M1 may
be indexed, but indirect addressing is not allowed. The
e1ffective address points to the most significant bytes of
the decimal field.

OPERAND 2: A packed decimal field in memory. The
field length, 0.255 bytes, is specified by the L2 value in
the instruction. The operand address indicated by M2 may
be indexed but indirect addressing is not allowed. The
e1ffective operand address points to the most significant
bytes of the decimal field.

4-5

RESULTS: The decimal sum resides at the operand 2
location. The following conditions can occur, depending
on the values of L1 and L2.

• If L 1 is greater than L2 and the difference
between L2 and L1 contains significant
data, bit 0 of the Condition register is set.

• If L1 = 0 and L2 = 0, bits 3 and 7 of the
Condition register are set.

• If L1 = 0, an add of zero is assumed.

• If L2 is greater than L1, zeros are used to
make up the difference in field lengths.

The Condition register is affected as follows:

• Bit 0 is set if significant data is lost; bits 1 ·7 are
cleared.

• Bits 1 and 5 are set if results are plus; bits 0, 2-4,
6 and 7 are cleared.

• Bits 2 and 6 are set if results are minus; bits 0, 1,
3-5, and 7 are cleared.

• Bits 3 and 7 are set if results are zero; bits 0-2
and 4-6 are cleared.

SPECIAL FEATURES

4-6

1. Validity of source packed digits is not
checked.

2. Invalid digits produce inconsistent results.

3. Negative zero cannot be produced unless
overflow occurs (bit 0 of Condition register
set).

4. Positive results receive a hexadecimal C sign,
negative results receive a hexadecimal D sign.

5. The effective addresses must not be absolute
address zero on machines with less than
66K, or they must. not be the first location
of the memory partition if the Relocation
and Protection feature is installed and READ
protection is invoked.

EXAMPLE

M 'I Ht 11 I/ I\ I I ''· 11. I/ 1~ l'I .'It /I / .'I JI /'i /I• /I /M /*4 ID II)7 1J J4 j~ 111]I Ill J'i .\(J 41 4/ 41 44 l'i lh

i,t.J.t>Jt . 'IF1.et.1>3.U.o,.n.1 n41..P1C1.t..,1)

A 10-byte packed field identified by FIELD2(10,6) is
added to a 1 2-byte packed field identified by
FIELD1 (12,6). Had the field lengths been reversed (that
is, trying to add the larger field to the smaller) and the
overlap contains significant (non-zero) bytes, bit 0 of the
Condition register is set to indicate lost data.

Add Memory - Memory

0 7 8 9 11 12: 13 15

62 I I Ri Ii~ Mi

M2

FUNCTION: Performs a binary addition of two one-word
fields in memory.

OPERAND 1: A one-word field in memory. Addressing
options to the base address M 1 include inde>dng, indirect
addressing, or a combination of both.

OPERAND 2: Same length and addressing options (to
base M2) as operand 1.

RESULTS: The sum resides at the operand 2 location.
The Condition register is affected as follows:

• Bit 0 (overflow) is set if the result is greater
than +32, 767 or less than -32, 768.

• Bits 1, 2 and 4-7 are cleared.

• Bit 3 (link) is set if the result is greater than
66,336.

EXAMPLE

I I 1 4 'J h I H 9 Ill II 17 I.I 1"1 l'i Iii 1/~ti l'I Ill 71 /1 II 7., l'i /11 11 1K }q JD JI]7]]]& l1i 16 JI JK]9 40 41 41 4344 4!t 46

jtfJ>.IA /t&,U .. (3).,.TlfG{.:J..)

The field identified by HERE(3) is added to the field
identified by T AG(2); the sum will be at: the address
represented by TAG(2).

Add Register - Register

0 7 8 9 11 12 13 16

22

FUNCTION: Performs a binary addition of two one-word
fields; either field may be in a general register or in
memory.

OPERAND 1: A one-word field in the general register
specified by R 1 • or in memory if indirect addressing is
used.

OPERAND 2: A one-word field in the general register
specified by R2, or in memory if indirect addressing is
used.

RESULTS: The sum resides at the operand 2 location.
The Condition register is affected as follows:

• Bit 0 (overflow) is set if the result is greater
than +32,767 or less than -32, 768.

• Bits 1, 2, and 4-7 are cleared.

• Bit 3 (link) is set if the result is more than
65,535.

EXAMPLE

1 1 J -4---~·-s- ,·-- 8 9 lo ,-, -1·1-11"14-l!i ·1611 18 19 7o 11n11.}4 1!i u; 1.1 1e -1!110 11 H jJ'-34 1 .. u . .11 le- 19 40 41 414144 4~ 4fi

1/9.b.M . . W~ ,l

The operand at the memory address specified in register 4
is added to the contents of register 1; the sum will be in
register 1.

Add Two-Word

9PERAND 1: A two word field in memory beginning at
the specified effective address. The most significant bits
are at this address.

Addressing options to the base address M 1 include in­
dexing, indirect addressing, or a combination of both.

9PE RAND 2: A two-word field located in two general
mgisters or in memory.

If direct addressing is used, the field is in the register
specified by R2 and the next highest register, R2+1; the
most significant bits are in the R2 register. (Note: If
rEtgister 7 is specified by R2, the field is in registers 7 and
0,, with the most significant bits in register 7.)

If indirect addressing is used, the field is in memory
bc!ginning at the address in the R2 register; the most
si!Jnificant bits are at this address.

RESULTS: The sum resides at the operand 2 location.
The Condition register is affected as follows:

• Bit 0 (overflow) is set if the result is greater
than +231.1 or less than -231.

• Bits 1, 2, and 4-7 are cleared.

• Bit 3 (link) is set if the result is greater than
+232.1,

E)(AMPLE:

F
~AMf OPIOATICI.. OPIOAND

---_-r-+-----· --
.1 4 'i Ii I I 9 10 II 111314 l!t 161.!.!11910111111141S261111 l9J0ll llll:MUJ631l83940414143'44S41i

ltf.PJ>.r . . . Tlf.6.(/J., • .S-. . ..•....•.... , ••.••.
••I •I•••, I•••• I••• o Io•• I• 4 •, i,

The field identified by TAG(1) is added to the contents of
reg1isters 5 and 6; the results will be placed in registers 5
and 6.

Divide Memory - Register

0 7 8 9 11 12 13 16 0 7 8 9 11 12 13 16

--~--7-.2~~-M~!-1r--R-,----,--,~R2--1 E~~-A9~~~M-i,-,~R-,---,--, -R-2~

FUNCTION: Performs a binary addition of a two-word
field in memory and a two-word field in two general
registers or in memory.

FUNCTION: Performs a binary division; the divisor is a
onu-word field in memory, and the dividend is a two-word
field in two general registers or in memory.

4-7

OPERAND 1: The divisor; a 16-bit signed value in memory
beginning at the specified effective address. The most
significant bits are at this address.

Addressing options to the base address M 1 include in­
dexing, indirect addressing, or a combination of both.

OPERAND 2: The dividend; a 32-bit signed value located
in two general registers or in memory.

If direct addressing is used, the field is in the register
specified by R2 and the next lowest register, R2-1; the
most significant bits are in the R2-1 register. (Note: If
register 0 is specified by R2, the field is in registers 7 and
0, with the most significant bits in register 7 .)

If indirect addressing is used, the field is in memory
beginning at an address two bytes less than the address in
the R2 register; the most significant bits are at this
address.
RESULTS: The quotient, a 16-bit signed value, resides
in the R2 register (direct addressing), or at the address
specified in the R2 register (indirect addressing). The re­
mainder, a 16-bit signed value resides in the R2-1 register
(direct addressing) or in memory beginning at an address
2 bytes less than the address specified in the R2 register
(indirect addressing); the remainder always has the same
sign as the dividend ..

The Condition register is affected as follows:

• Bit 0 (overflow) is set if the resulting
quotient is greater than +32, 767 or less
than -32,768.

• Bit 0 (overflow) is set if the divisor is O; the
operands are unchanged.

• If neither of the above conditions occurs, bit
0 is cleared.

EXAMPLE

The instruction specifies a binary divide in which the
divisor is a 16-bit signed value at the address specified by
AMT(1); the dividend is located in memory beginning at
an address two bytes less than the address in register 3.

As shown in the following illustration, the dividend is a
32-bit field located at an address two bytes less than the

4-8

address specified in register 3. Assuming that the address
in register 3 is 4080, the dividend actually begins at
address 4078.

4078 4079 4080 4081 n ~ividend ~ : J
Si! bit The address in register

3 points here.

After the division, the dividend is overlayed with the
remainder and quotient (each of these fields is signed).
Thus, the quotient is located at the addre1ss specified in
the R2 register - in this case at address 4080, and the
remainder at that address minus two bytes, 4078.

4078 4079 4080 4081

Remainder Quotient J
Sign bit Sign bit

Divide Direct

0 7 8 9 11 12 13 16

--~~-B-9~~--1-0-l~R-1--~

1, =====:]

FUNCTION: Performs a binary division; the divisor 'is a
one-word immediate value, and the dividend is a two-word
field in two general registers or in memory.

OPERAND 1: The divisor; a 16-bit immediate signed
value in the second word of the instruction; the I 1 value
may range from -32,768 to +32,767.

Indexing may be specified for operand 1. In this case,
operand 1 is derived by adding the I 1 value and the con­
tents of the general register specified by R 1; no check for
overflow or link is made during the indexing.

OPERAND 2: The dividend; a 32-bit signied value in two
general registers or in memory.

If direct addressing is used, the field is in the register
specified by R2 and the next lowest register, R2-1; the
most significant bits are in the R2-1 re~1ister. (Note: If
register 0 is specified by R2, the field is in registers 7 and
0, with the most significant bits in register 7 .)

If indirect addressing is used, the field is in memory
beginning at an address two bytes less than the address in
the R2 register; the most significant bits are at this
address.

RESULTS: The quotient, a 16-bit signed value, resides
either in the R2 register (direct addressing), or in memory
at the address in the R2 r_egister (indirect addressing). T~.~
remainder, a 16-bit signed value, resides in the R2-1
register (direct addressing), or in memory at an address
two bytes less than the address in the R2 register (indirect
addressing); the remainder always has the same sign as the
dividend.

The Condition register is affected as follows:

• Bit 0 (overflow) is set if the resulting
quotient is greater than +32, 767 or less
than -32,768.

• Bit 0 (overflow) is set if the divisor is 0;
the operands are unchanged.

• If neither of the above conditions occurs,
bit 0 is cleared.

EXAMPLE

FNAME OPERATION OfliAAND

4 1:1- ij I H '9 10 ,-, 1-i.1).)4·-,r; lb 1/ 18 1910 71 11 ;3·74 l':J.16 17.]8 /Y 30 JI -)1]J]4 1'>]6)I J8.J9 40-4} °47 434 •. ,!i 46

!Pzv.P. . jYJ.Oo.{AIJ.,,z
' ' I• I I •

The divisor is formed by adding the immediate value of
5300 to the contents of register 5. The dividend is in
registers 1 and 2. The quotient will be in register 2, the
remainder in register 1.

Divide Immediate

0 8 11 12 13 15

39

FUNCTION: Performs a binary divide; the divisor is a
4-bit immediate value, and the dividend is a two-word
field in two general registers or in memory.

OPERAND 1: The divisor is a 4-bit unsigned value in
bits 8-11 of the instruction; the I 1 value is always positive
and may range from 0-15.

OPERAND 2: The dividend; a 32-bit signed value located
in two general registers or in memory.

If direct addressing is used, the field is in the register
!>pacified by R2 and the next lowest register, R2-1; the
rnost significant bits are in the R2-1 register. (Note: If
register 0 is specified by R2 1 the field is in registers 7 and
0, with the most significant bits in register 7.)

If indirect addressing is used, the field is in memory
beginning at an address two bytes less than the address
iin the R2 register; the most significant bits are at this
address.

!~ESUL TS: The quotient, a 16-bit signed value, resides in
the R2 register (direct addressing), or in memory at the
address specified in the R2 register (indirect addressing).
The remainder, a 16-bit signed value, resides in the R2-1
register (direct addressing), or in memory at an address
two bytes less than the address in the R2 register (indirect
addressing); the remainder always has the same sign as the
dlividend.

The Condition register is affected as follows:

• Bit 0 (overflow) is set if the resulting
quotient is greater than +32,767 or less
than -32,768.

• Bit 0 (overflow) is set if the divisor is 0; the
operands are unchanged.

• If neither of the above conditions occurs,
bit 0 is cleared.

EXAMPLE

~ 1 1 1:i h • K 9 10 11 t,' 11 1.1 11i lfi 11 •a 19 lo 11-ii .. i1 ;i,, "" 16 n 1s <''I 10 11-illJJO~ JG 11 JaJ94Qi\~ij-4J-444i4s ~
NAOll OOERATION OPERANO

~I V:.l . I f. / . .f. l
' • • • • • > I• •I• I• , I

Tlhe divisor is the immediate value 14; the dividend is in
re·gisters 6 and 7. The quotient will be in register 7, and
the remainder in register 6.

Divide Packed Decimal •

0 7 8 9 11 12 13 15

7C R2

Ml

M2

L2

4-9

FUNCTION: Divides packed decimal fields in memory.
The field lengths may vary, as defined in the following
text.

OPERAND 1: The divisor; a packed decimal field in
memory that can range from 1-127 bytes. The length of
the divisor must always be less than that of the dividend.
If the L 1 value is greater than 127, or greater than or
equal to L2, the operation will not be performed, and an
overflow condition occurs. The results occur it the divisor
is zero, or the L1 value is zero.

OPERAND 2: The dividend; a packed decimal field in
memory that can range from 2-255 bytes. The dividend
field is overlaid by the quotient and remainder.

RESULTS: The signed quotient will be located at the
operand 2 address; thus the address of the quotient will be
the same as that of the dividend. The length of the
quotient is L2-L1. The signed remainder is also placed in
the operand 2 location, but it is right-aligned. The address
of the remainder is: quotient address + (L2·L1). The
length of the remainder is the same as the length of the
divisor.

The sign of the quotient is determined by the rules of
algebra. The sign of the remainder has the same value as
the dividend sign. Sign validity checking is not performed.
The following sign conventions apply (the numbers are
hexadecimal).

Plus= 0,2,4,6,7 ,8,A,C,E,F

Minus= 1,3,5,9,B,D

The preferred signs of X'C' for plus and X'D' for minus
will be generated. A minus zero quotient or remainder is
considered plus.

The operand fields remain unchanged if overflow occurs.

The operand fields may not overlap. Invalid digits cause
undefined results.

The following Condition register settings can occur:

Bits 0-7

1000 0000

0100 0100

4-10

Condition

Overflow, L 1~127;
L1 > L2; L1 =O; or,
divisor field contents
are zero.

The quotient is greater
than zero.

0010 0010

0001 0001

The quotient is less
than zero.

The quotient is equal
to zero.

EXAMPLE

I 2 3 4 ~ 8 1 I I 10 II IZ 1314 IS 16 !.!J~ 19 20 21222324 ZSH27 212930 JI 32 3334 35°-36 37 3839 404142434445 46-

. ~I.VA . ·-·- 'fili.JLS.C.'1..,.J..J.,1:0.T.At.fl.,..LJ _,

The TOTAL field is divided by the UNITS field. The
quotient will be located at the address of TOT AL (the
quotient length is 4 bytes). The remainder will be at the
address TOT AL +4.

Divide Memory - Memory

0 7 8 9 11 12 13 15

.-----69--1..---r1-R-1 ---, i~2
Ml

FUNCTION: Performs a binary division; the divisor is a
one-word field in memory, and the dividend iis a two-word
field in memory.

OPERAND 1: The divisor; a 16-bit signed value in a
one-word field in memory. Addressing options to the base
address M1 include indexing, indirect addressing, or a
combination of both.

OPERAND 2: The dividend; a 32-bit signed value in
memory beginning at an address two bytes less than the
specified effective address; the most significant bits are at
this beginning address. Addressing options to the base
address M2 include indexing, indirect addressing, or a
combination of both.

RESULTS: The quotient, a 16-bit signed value, resides at
the effective address of operand 2. The remainder, a
16-bit signed value, resides at an address two bytes less
than the effective address. The remainder always has the
same sign as the dividend.

The Condition register is affected as follows:

• Bit 0 (overflow) is set if the resulting
quotient is greater than +32, 767 or less
than -32,768.

• Bit 0 (overflow) is set if the divisor is zero;
the operands are unchanged.

• If neither of the above conditions exist,
bit 0 is cleared.

The Condition register is affected as follows:

• Bit 0 (overflow) is set ifthe resulting quotient
is greater than +32,767 or less than -32,768.

• Bit 0 (overflow) is set if the divisor is O;
EXAMPLE the operands are unchanged.

F
-

NAME OPERATION OPE A AND

J 4 !i Ii ,- R 9 10 II 11 IJ 14 l'i 16 11 18 19-70 21U13 14 2-~·16 1118 29 J(J-3il'2'i]j4 3!"1J6~-47-4J444°S4-6

. ~.I.f.h . . . ltt.e.1?£. C~J., .Ttf:G.(. f.).
• • • • • • , I•••• I•,', I•,,, I,,, I•,,, I

The dividend is identified by TAG(4) and the divisor is
identified by HERE(6). The quotient will be at the
address specified by TAG (4); the remainder will be at
that address minus two bytes.

Divide Register - Register

0 7 8 9 11 12 13 15

29

FUNCTION: Performs a binary division; the divisor is a
one-word field in a register or in memory, and the dividend
is a two-word field in two adjacent registers or in memory.

OPERAND 1: The divisor; a 16-bit signed value in the
general register specified by R 1 • or in memory if in­
direct addressing is used.

OPERAND 2: The dividend; a 32-bit signed value located
in two general registers or in memory.

If direct addressing is used, the field is in the register
specified by R2 and the next lowest register, R2·1; the
most significant bits are in the R2-1 register. (Note: If
register 0 is specified by R2, the field is in registers 7 and
0, with the most significant bits in register 7.)

If indirect addressing is used, the field is in memory
beginning at an address two bytes less than the address in
the R2 register; the most significant bits are at this
address.

RESULTS_,; The quotient, a 16-bit signed value, resides in
the R2 register (direct addressing), or at the address
specified in the R2 register (indirect addressing). The
remainder, a 16-bit signed value, resides in the R2-1
register (direct addressing) or in memory at an address
two bytes less than the address specified in the R2 register
(indirect addressing); the remainder always has the same
sign as the dividend.

• If neither of the above conditions occurs,
bit 0 is cleared.

!EXAMPLE

} 1 :I • !i Ii I II 9 HI II 17 11 M l!l 16 11 18 19 10 21217J14i;16 11 78 19 JO J1J1JJ-j4Js-JG-JIJilJ9 40 41 414344 4!i 46

~.IYJf . . 1.,.1.3. .

The least significant bits of the dividend are at the address
i;pecified in register 3, and the divisor is in register 1. The
quotient will be stored at the address in register 3; the
remainder is stored at that address minus two bytes.

Multiply Memory - Register

0 8 9 11 12 13 15

1=uNCTION: Performs a binary multiplication of a one­
word field in memory and a one-word field in a general
register or in memory.

9PERAND 1: The multiplier; a one-word field in memory.
Addressing options to the base address M 1 include in­
dexing, indirect addressing, or a combination of both.

OPE RAND 2: The multiplicand; a one-word field in the
gieneral register specified by R2, or in memory if in­
direct addressing is used.

Fl ESU L TS: The product, a 32-bit signed value, resides
~n two general registers or in memory.

H direct addressing is used, the field is in the register
specified by R2 and the next lowest register, R2-1; the
most significant bits are in the R2-1 register. (Note: If
r1egister 0 is specified by R2, the field is in registers 7 and
OI, with the most significant bits in register 7.)

l'f indirect addressing is used, the field is in memory
beginning at an address two bytes less than the address in
tlhe R2 register; the most significant bits are at this
address.

4-11

EXAMPLE

• 1 1 c \I-,--, , ,a-11· 11 ,114i;t,#;101i1l1i1• 1i 2i-11-11-1• 10--1-, -,-1 JJ-~ -n H ,, lil! •o u u u u 4\ u

WI r. r,h.u.c~ '-1.

The field at the address specified in register 1 is multiplied
by the field identified by @FRED(2). The 32-bit result
field will be in memory at an address two bytes less than
the address specified in register 1.

Multiply Direct

0 8 9 11 12 13 15

88

FUNCTION: Performs a binary multiplication of a
one-word immediate value and a one-word field in a
general register or in memory.

OPERAND 1: The multiplier; a 16-bit immediate signed
value in the second word of the instruction; the I 1 value
may range from -32, 768 to +32, 767.

Indexing may be specified for operand 1. In this case,
operand 1 is derived by adding the I 1 value and the
general register contents specified by R 1; no check for
overflow or link is made during the indexing.

OPERAND 2: The multiplicand; a one-word field in the
general register specified by R2, or in memory if indirect
addressing is used.

RESULTS: The product, a 32-bit signed value, resides in
two general registers or in memory.

If direct addressing is used, the field is in the register
specified by R2 and the next lowest register, R2-1; the
most significant bits are in the R2-1 register. (Note: If
register 0 is specified by R2 the field is in registers 7 and
0, with the most significant bits in register 7 .)

If indirect addressing is used, the field is in memory
beginning at an address two bytes less than the address in
the R2 register; the most significant bits are at this
address.

EXAMPLE:

1 1 J 4 ~ 6 I - I t 10- 11-!11J"l4 ""J; Ji-!lltlt lo 11 ·11-1J-14"l;-,&J,1-.-n JO]1 J1 lJ Jtl~ -16-)1 lll 39 4-0 -.. ·, •1- oil u 4~ -4'-

WI Y..P . -.l.H0.,,.1.1.

4-12

The value at the address in register 1 is multiplied by the
immediate value -16, 101. The 32-bit product is stored at
the address in register 1 minus two bytes .

Multiply Immediate

0 7 8 11 12 13 15

38

FUNCTION.: Performs a binary multiplication of a 4-bit
immediate value and a one-word field in a general register
or in memory.

OPERAND 1: The multiplier; a 4-bit unsigned field
located in bits 8-11 of the instruction. The I 1 value is
always positive and may range from 0-15.

OPERAND 2: The multiplicand; a one-word field in the
general register specified by R2, or in memory if indirect
addressing is used.

RESULTS: The product, a 32-bit signed value, resides in
two general registers or in memory.

If direct addressing is used, the field is in the register
specified by R2 and the next lowest register, R2-1; the
most significant bits are in the R2-1 register. (Note: If
register 0 is specified by R2, the field is in registers 7 and
0, with the most significant bits in register 7.)

If indirect addressing is used, the field is in memory
beginning at an address two bytes less than the address in
the R2 register; the most significant bits are at th is
address.

EXAMPLE

I I I 4 'h IR 'wf> ~;14 P1

0

1' 1118;/0 /lll~74"1hJllK1' lU q I/ I' 14 ""'•" IKl'l 4041 'I"""'"
tll.3,, ..

The value in register 6 is multiplied by the immediate
value represented by E03. The produc:t is stored in
registers 5 and 6.

Multiply Packed Decimal •

0 7 8 9 11 12 13 15

58 R2

M1

M2

L2

FUNCTION: Multiplies two packed decimal fields in
memory. The field lengths may varv, as defined in the
following text.

OPERAND 1: The multiplier; a packed decimal field in
memory that can range from 0-127 bytes. The length of
the multiplier must always be less than that of the
multiplicand. If the L1 value is greater than 127, or
greater than or equal to the L2 value, the operation will
not be performed and an overflow condition occurs. If L1
is zero, and L2 is not zero, a multiply by zero will be
performed.

OPERAND 2: The multiplicand; a packed decimal field in
memory that can range from 0-255 bytes. Since the
number o'f digits in the product is the sum of the digits in
the operands, the multiplicand must have at least enough
high-order zero bytes to equal the multiplier field length;
otherwise, an overflow condition occurs. This definition
of the multiplicand field ensures that no product overflow
can occur during the operation. At least one high-order
digit of the product field is always zero.

RESULTS: The product will be placed at the operand 2
address.

The sign of the product is determined by the rules of
algebra. Sign validity is not checked, therefore, the
following interpretations are made (the numbers are
hexadecimal).

Plus= 0,2,4,6,7,8,A,C,E,F

Minus== 1,3,5,9,B,D

The preferred signs of X'C' for plus and X'D' for negative
are generated for the product. A negative zero result is
considered plus.

The fields may not overlap. Digit validity is not checked;
undefined results will occur if non-decimal digits occur. If
an overflow condition occurs, the operartds remain
unchanged. If either operand (or both) contains all zeros,
the product field is set to zeros and a sign of plus (X'C') is
forced.

The following Condition register settings can occur:

Bits 0-7

1000 0000

0100 0100

Condition

Overflow: L 1 >127;
L1'~L2; or, less than
L1 bytes of high-order
zeros in the
multiplicand.

Product is greater than
zero.

0010 0010

0001 0001

!:XAMPLE

Product is less than
zero.

Product is equal to
zero.

i234~618910111213141516U1819202122--~iJ2a2930313733_34353&J)J8J940414243444546-

• · · · · · · ~Xk . . ~ !r.J.JldO..,..J..J,.r~B.U, . .t.).

FLDA is multiplied by FLDB and the results are located
at the F LOB address.

Multiply Memory - Memory

MPYM @M1(R1),@M2(R2)

0 7 8 9 11 12 13 16

~
68 I I R1 I I R2

M1

M2

FUNCTION: Performs a binary multiplication of two
oine-word fields in memory.

OPERAND 1: The multiplier; a one-word field in
memory. Addressing options to the base address M 1
include indexing, indirect addressing, or a combination of
both.

OPERAND 2: The multiplicand; a one-word field in
memory. Addressing options to the base address M2
include indexing, indirect addressing, or a combination of
both.

RESULTS: The product; a 32-bit signed value. The result
field begins at an address two bytes less than the specified
effective address of operand 2.

E)(AMPLE

~
NAM£ OPERATION OPERAND

~ 3--,.-s , 8 . 9 t-i"o-·1·1 ··1113-141;1~ 1-9 lo 11 ·11 1J 14 'lS- 7~ 11 J8 1!1 30 .l I]/]J]4 .l'I 11,] I 1R 39 411 41 41 ,, I '14 '1'1 ·1L

VflY.A.' . . . rA.e..P.C.r).,.TM(.z.).
•' '' • ' ' ''''' •' • 'I' I'• I' I '

The field identified by TOM(2) is multiplied by the field
idontified by FRED(5). The 32-bit product is stored at an
address two bytes less than the address specified by
TOM(2).

4-13

Multiply Register - Register

MPYR

0 7 8 9 11 12 13 15

28 I I
FUNCTION: Performs a binary multiplication of two
one-word fields; either field may be in a register or in
memory.

OPERAND 1: The multiplier; a one-word field in the
general register specified by R 1• or in memory if indirect
addressing is used.

OPERAND 2: The multiplicand; a one-word field in the
general register specified by R 1 • or in memory if indirect
addressing is used.

RESULTS: The product, a 32-bit signed value, resides in
two general registers or in memory.

If direct addressing is used, the field 1s m the register
specified by R 1 and the next lowest register, R 2· 1 ; the
most significant bits are in the R2-1 register. (Note: If
register 0 is specified by R2, the field is in registers 7 and
0, with the most significant bits in register 7.)

If indirect addressing is used, the field is in memory
beginning at an address two bytes less than the address in
the R2 register; the most significant bits are at this
address.

EXAMPLE:

1 , 1 4 · !i 1> 1 s g 10 11 1-1 u ,-4-1-~ 161 _i~ 111 10 11 n n 1• 1'1 ,,, n 1a 1q m 11 " 11 J4 1-.. lh • 1 18 19 to •1 41 41 u '~ u.

VtJIYJt . . ~s.1 1

The field in register 7 is multiplied by the field at the
address specified in register 5. The 32-bit product is stored
in registers 6 and 7 ..

Subtract Memory - Register

SUB @M 1 (R 1),@R2

0 7 8 9 11 12 13 15

E A3 I I R1 I I R2

M1

FUNCTION: Performs a binary subtraction of a one-word
field in memory from a one-word field in a general register
or in memory.

4-14

OPERAND 1: The subtrahend; a one-word field in
memory. Addressing options to the basei address M 1
include indexing, indirect addressing, or a combination of
both. This operand is subtracted from operand 2.

OPERAND 2: The minuend; a one-word field in the
general register specified by R 1 • or in memory if indirect
addressing is used.

RESULTS: The difference resides at the operand 2
location. The CO'ndition register is affected as follows:

• Bit 0 (overflow) is set if the result is i~reater than
+32, 767 or less than ·32, 768.

• Bits 1, 2 and 4-7 are cleared.

• Bit 3 (link) is set if the result is ~1reater than
65,535.

• Subtracting 800015 from 000015 results in
800015 and bit 0 is set.

EXAMPLE

11 !I I!. 11 1/ I! 11 ,., lh 11111 1'1 /H JI II JC]4 }j /I 11 JK l'l !O 11 I/ 1· 14 l't !11 \I 111 l'I 1(1'11 47 1\-14·1'1 ·11,

The field identified by TAG(5) is subtracted from the
contents of register 7. The result will be in register 7.

Subtract Direct

FUNCTION: Performs a binary subtraction of a one-word
immediate value from a one-word field in a general
register or in memory.

OPERAND 1: The subtrahend; a 16-bit immediate signed
value in bits 16-31 of the instruction. The I 1 value may
range from -32, 768 to +32, 767. This operand is
subtracted from operand 2.

Indexing may be specified for operand 1 .. In this case,
operand 1 is derived by adding the I 1 value and the
general register contents specified by R 1; no check for
overflow or link is made during the index iing.

OPERAND 2: The minuend; a one-word field in the
general register specified by R2 or in memory if indirect
addressing is used.

RESULTS: The difference resides at the operand 2
location. The Condition register is affected as follows:

• Bit 0 (overflow) is set if the result is less than
-32, 768 or greater than +32, 767.

• Bits 1, 2 and 4-7 are cleared.

• Bit 3 (link) is set if the result is greater than
65,535.

• Subtracting 800016 from 000015 results in
800016 and bit 0 is set.

EXAMPLE

&i:.RAND

co.NC.s) ,.~o.

The immediate value identified by CON(5) is subtracted
from the field in memory at the address specified in
register 0. The result will be at the address in register 0.

Subtract Immediate

0 7 8 11 12 13 15

33

FUNCTION: Performs a binary subtraction of a 4-bit field
from a one-word field in a general register or in memory.

OPERAND 1: The subtrahend; a 4-bit unsigned value
located in bits 8-11 of the instruction. This value may
range from 0-15. The I 1 value is subtracted from bits
12-15 of operand 2; bits 0-11 of operand 1 are zeros.

OPE RAND 2: The minuend; a one-word field in the
general register specified by R2, or in memory if indirect
addressing is used.

RESULTS: The difference resides at the operand 2
location. The Condition register is affected as follows:

• Bit 0 (overflow) is set if the result is less than
-32, 768, or greater than +32, 767.

• Bits 1, 2, and 4-7 are cleared.

• Bit 3 (I ink) is set jf the resu It is greater than
65,535.

EXAMPLE

; 'I Ill I! II I 11 1'1 It, 11 Iii l'I /II /I II) i /I I'• /1o); IK /'I Ill II I/ Jj J4 J~]I\ .II]8]9 40 41 41 4 J 44 4!1 4fi

The immediate value 14 is subtracted from bits 12-15 of
the field at the memory location specified in register 4.
The result will be at the address in register 4.

:Subtract Packed Decimal•

0 7 8 9 11 12 13 15

53

!FUNCTION: Performs a signed decimal subtraction of the
·two packed decimal fields in memory. The field lengths
IL1 and L2 may vary from 0-255 bytes.

qPERAND 1: The subtrahend; a packed decimal field in
memory which is subtracted from operand 2. The field
!length, 0-255 bytes, is specified by the L1 value in the
iinstruction. The address indicated by M2 may be indexed,
but indirect addressing is not allowed. The effective
operand address points to the most significant bytes of
1the decimal field.

pPERAND 2: The minuend; a packed decimal field in
memory. The field length, 0-255 bytes, is specified by the
L2 value in the instruction. The address indicated by M2
may be indexed, but indirect addressing is not allowed.
The effective operand address points to the most
significant bytes of the decimal field.

HESUL TS: The decimal difference resides at the operand
:2 location. The following conditions can occur, depending
on the values of L1 and L2.

• If L1 is greater than L2 and the difference
between L1 and L2 contains significant data, bit
0 of the Condition register is set.

• If L1 = 0 and L2 = 0, bits 3 and 7 of the
Condition register are set.

• If L 1 = 0, a subtract of zero is assumed.

• If L2 is greater than L1, zeros are used to make
up the difference in field lengths.

4-15

The Condition register is affected as follows:

• Bit 0 is set if significant data is lost; bits ·1-7 are
cleared.

• Bits 1 and 5 are set if results are plus; bits 0, 2-4,
6, and 7 are cleared.

• Bits 2 and 6 are set if results are minus; bits 0, 1,
3-5, and 7 are cleared.

• Bits 3 and 7 are set if results are zero; bits 0-2
and 4-6 are cleared.

SPECIAL FEATURES

1. Validity of source digits is not checked.

2. Invalid digits produce inconsistent results.

3. Negative zero cannot be produced unless
overflow occurs (bit 0 of Condition register).

4. Positive resu Its receive a hexadecimal C sign,
negative results receive a hexadecimal D.

5. The effective addresses of the source fields must
not be absolute address zero on machines with
less than 65K main storage, and the addresses
must not be the first location of the memory
partition assigned to the processor executing the
instruction if the Relocation and Protection
feature is installed and READ protection is
invoked.

EXAMPLE

l '• 1. 1 a 'I 10 11 111, II l'i 11, II 1!i \''/II 11 ///i /I /'1 /•. /1 /M / 11 Ill!\ l.' Ii 14 I'> th PIM l'i 1041 H t\4'41;, 4h

~ll4k . jF1£1-.. UCl, .Z..) 1 .F/6.~IJ.Z..(, ¥).

The field identified by FIELD1(8,2) is subtracted from
the field identified by FIE LD2(,4). The length of FIE LO 1
for this instruction is defined as 8 bytes; the length of
FIELD2 is assumed to be the length as defined previously
in the program. The result will be placed at the location
identified by FIE LD2(,4).

Subtract Memory - Memory

SUBM @M1(R1),@M2(R2)

0 7 8 9 11 1:2 13 16

63 I I R1 Ii~ R2

I
Ml

M2

4-16

FUNCTION: Performs a binary subtraction of two
one-word fields in memory.

OPERAND 1: The subtrahend; a one-word field in
memory. Addressing options to the base address M 1
include indexing, indirect addressing, or a cc1mbination of
both. This operand is subtracted from operand 2.

OPERAND 2: The minuend; same length and addressing
options (to base M2) as operand 1.

RESULTS: The difference resides at the operand 2
location. The Condition register is affected as follows:

• Bit 0 (overflow) is set if the result is greater than
+32, 767 or less than -32, 768.

• Bits 1, 2 and 4-7 are cleared.

• Bit 3 (link) is set if the result is greater than
65,535.

• Subtracting 800015 from 000015 results in
800015 and bit 0 is set.

EXAMPLE

" It. 1' 1'1 ! •JU 11 II I: !I /'1 }h /: /K /'I 111 II !/ II M !'i \h \/ IHI~ 40 41 414J44 4'1 41i

The field identified by F LDB(5) is subtracted from the
field identified by F LOA. The result will be at the address
represented by F LOA.

Subtract Register - Register

0 7 8 9 11 ·12 13 15

23 I I
FUNCTION: Performs a binary subtraction of two
one-word fields; either field may be in a genieral register or
in memory.

OPERAND 1: The subtrahend; a one-word field located in
the general register specified by R2, or in memory if
indirect addressing is used. This operand is subtracted
from operand 2.

OPERAND 2: The minuend; a one-word field located in
the general register specified by R 2 o.r in memory if
indirect addressing is used.

RESULTS: The difference resides at the operand 2
location. The Condition register is affected as follows:

• Bit 0 (overflow) is set if the result is less than
-32, 768 or greater than +32, 767 ..

• Bits 1, 2, and 4· 7 are cleared.

• Bit 3 (I ink) is set if the resu It is greater than
{)5,535.

• Subtracting 800016 from 000015 results in
800015 and bit 0 is set.

EXAMPLE

I 4 !a Ii I JI 9 Ill 11 1711 M 1', I/, 11111 1'1111 II /11114 l'i /I• JI IH-1 11 JO JI J] 33 H l'i .lb JI 3839 4041-4143-444!146 F NAME OPERATION OPERAND

. St(.U., ~.5.,0
, • • • • • • I I I , I

The field at the location specified in register 5 is
subtracted from the field in register 0. The result will be
placed in register 0.

Subtract· Two-Word

SUBT @M1(R1),@R2

0 7 8 9 11 12 13 15

E 73
Ii I R1

I I
R2

M1

FUNCTION: Performs a binary subtraction of a two-word
field in memory from a two-word field in two general
registers or in memory.

OPERAN'2__!,: The subtrahend; a two-word field in
memory beginning at the specified effective address. The
most significant bits are at this address.

Addressing options to the base address M 1 include
indexing, indirect addressing, or a combination of both.
This operand is subtracted from operand 2.

OPERAND 2: The minuend; a two-word field located in
two general registers or in memory.

If direct addressing is used, the field is in the register
specified by R2 and the next highest register, R2+1; the
most significant bits are in the R2 register. (Note: If
register 7 is specified by R 2• the field is in registers 7 and
0, with th~ most significant bits in register 7.)

If indirect addressing is used, the field is in memory
beginning at the address in the R2 register; the most
significant bits are at this address.

!~ESUL TS: The difference resides at the operand 2
location. The Condition register is affected as follows:

• Bit 0 (overflow) is set if the result is greater than
+231.1 or less than -231.

• Bits 1, 2, and 4-7 are cleared.

• Bit 3 (link) is set if the result is greater than
+232.1.

• Subtracting 8000000015 from 0000000015
resu Its in 8000000015 and bit 0 is set.

EXAMPLE

1 J 4 !.6 I fl 9 10 II n n M l!i 16 1/ 18 19 Ill JI n }"I 74l!a11i]I 78 7!:1 30 31 31 33J4]!a 36 JI 38 39 40 41 41 43444S 46 ~
NAME OPERATION Ol'ERANO

IS«BT . ' TA.6-.{s:)., ~ ' ' ' ' ' . ' ' ' ' . . ' ' .
, , , , , o o, I, I, , , I, I, •

A two-word field identified by TAG (5) is subtracted from
tlhe contents of registers 2 and 3. The resu It is held in
rngisters 2 and 3.

2'.ero and Add •

0 8 9 11 12 13 15

50

FUNCTION: Zeros out a field in memory, then performs
iii addition of a packed decimal field in memory and the
z1~ro field. The field lengths L1 and L2 may vary from
0·-255 bytes.

QPERAND 1: A packed decimal field in memory; the
fo~ld length, 0-255 bytes, is specified by the value in the
instruction. The address indicated by M1 may be indexed,
but indirect addressing is not allowed. The effective
adldress points to the most significant bytes of the decimal
fiold.

OPERAND 2: A field in memory ·that is zeroed out before
the addition. The field length, 0-255 bytes, is specified by
the L2 value of the instruction. The address indicated by
M:2 may be indexed, but no indirect addressing is allowed.
The effective address points to the most significant bytes
of the field.

RESULTS: The result field resides at the operand 2
location. The following conditions can occur, depending
on the values of L2 and L 1 ·

4-17

• If L 1 is greater than L2 and the difference
between L1 and L2 contains significant data, bit
0 of the Condition register is set.

• If L1 = 0 and L2 = 0, bits 3 and 7 of the
Condition register are set.

• If L 1 = 0, an add of zero is assumed.

• If L2 is greater than L1 zeros are used to make
up the difference in field lengths.

The Condition register is affected as follows:

• Bit O is set if significant data is lost; bits 1-7 are
cleared.

• Bits 1 and 5 are set if results are plus; bits 0, 2-4,
6, and 7 are cleared.

• Bits 2 and 6 are set if results are minus; bits 0, 1,
3··5, and 7 are cleared.

• Bits 3 and 7 are set if results are zero; bits 0-2
and 4·6 are cleared.

SPECIAL FEATURES

1. Validity of source digits is not checked.

2. Invalid digits produce inconsistent resu Its.

3. Negative zero cannot be produced unless
overflow occurs (bit 0 of Condition register).

4. Positive results receive a hexadecimal C sign,
negative results receive a hexadecimal D.

5. The effective addresses of the source fields must
not be absolute address zero on machines with
less than 65K bytes of main storage, and the
addresses must not be the first location of the
memory partition assigned to the executing
processor if the Relocation and Protection
feature is present and READ protection is
invoked.

EXAMPLE

1 , 1 • ~ " , R g 10 11 11 n 14 1!1 iii 11 1~ 19 10--11 1i-l11 .. -,!i 16 1i ia29 Jo l1·-n33 JC l~J1_Ji_ :ia39 40il 4z4J 444;-45

lz.lf-".it . . T~6.Z..(SO.,.'l.). 1 .T.ll.f.t.(./".f"'., 0) . ..

Initially, a 55-byte field identified by TAG 1(56,0) is
cleared to zero; then a 50-byte field identified by
TAG2(50,4) is added to it. (See Results description for
Condition register status.)

4-18

BIT-ORIENTED INSTRUCTIONS

Mnemonic Name

IBIT

ROFR
RONA

SBIT
RBIT

TBIT

TOFR
TONA

Invert Bit•

IBIT @M1(R 1Ll2
0 7 8 9

Invert Bit

Reverse Off-Bit
Reverse On-Bit

Set Bit e
Reset Bit •

Test Bit •

Test for Off-Bit
Test for On-Bit

11 12 13 15

BF ============i=i=i==R1==1~
M1 ~

FUNCTION: Invert (toggle) a bit in a one-byte field in
memory.

OPE RAND 1: A one-byte field in memory. Addressing
options to the base address M 1 include indexing, indirect
addressing, or a combination of both.

OPERAND 2: A 3-bit value in bits 13-15 of the
instruction. The I 2 value specifies the position of the bit
to be toggled and may range from 0-7; 0 specifies the
l.tftmost position and 7 the rightmost position.

RESULTS: The result field resides at 1the operand
location.

EXAMPLE

1 1 1 4 ~ & ' e 9 1n 11 1111 '" 1i, 16 '' 11 '' 10 1111n1• n 1& 11 11 n 30 JI J'l JJ M JS H 31 11 39 40 41ez43'445 u

"i .4.I T . . . ~.T.116. ("1.J. 1.3. :-

This instruction reverses the existing binary state of a
specific bit in memory. @TAG(4) points to an 8-bit byte
and 3 is the number of the bit (bits are numbered left to
right, 0-7).

Reverse Off-Bit

1 8 9 11 12 13 15

6F

FUNCTION: Scans a one-word field, left to right, for the
first off-bit (0-bit); turns that bit on; then increases
another one-word field by an amount equal to the
position (0-15) of the first 0-bit. If no 0-bit is found in the
first field, the second field is increased by a value of 16.
Either field may be in a general register or in memory.

OPERAND 1: A one-word field in the general register
specified by R 1 • or in memory if indirect addressing is
used. This field is scanned for the first 0-bit.

OPERAND 2: A one-word field in the general register
specified by R2, or in memory if indirect addressing is
used. The field is increased by a value equal to the
position of the first 0-bit in operand 1.

RESULTS; The results vary as described in the preceding
text; the location of the operands is not changed.

If the same register is specified for both operands, the
results are as shown, varying with the addressing mode of
the operands:

Operand 1 Operand 2 Results

Both in same mode Only the increased
value is returned,
with no alteration
of the off-bit.

Indirect Direct Both operands are
returned as normal.

Direct Indirect Operand 1 with the
first off-bit set is
returned in the
register specified in
Operand 1 ; then the
increased value is
written in memory
at the location
specified by this
newly altered
Operand 1.

EXAMPLE

I 2 l 4 -~,-·;-I 9 10- 1-1--1}_j_3 14 --,;1617 _!_! 19 i021-i21J-24- 2S 26 11 28 29 30 JI)1 J]]4 J!I 36 37 ll J9 40 41 0 U U 4S 46

~.o.r~. ~7.,.~

Register 7 contains the address of a 16-bit field which is
scanned from left to right for a 0-bit. If a 0-bit is found,
the relative position (0-15) determines the value to add to
a one-word field in register 2. After this value is increased,
the 0-bit is set to 1. If no 0-bit is found, register 2 is
increased by a value of 16.

Rteverse On-Bit

RONA @R1,@R2

0 7 8 9 11 12 13 16

[6D Ii I R1 I I R2

FUNCTION: Scans a one-word field, left to right, for the
first on-bit (1-bit); turns that bit off; then increases
another one-word field by an amount equal to the
position (0-15) of that first 1-bit. If no 1-bits are found in
the first field, the second field is increased by a value of
rn. Either field may be in a general register or in memory.

OPERAND 1: A one-word field located in the general
register specified by R 1 • or in memory if indirect
addressing is used. This field is scanned for the first 1-bit.

OPERAND 2: A one-word field located in the general
register specified by R 1 • or in memory if indirect
addressing is used. This field is increased by a value equal
to1 the position of the first 1-bit in operand 1.

RESULTS: The results vary as described in the preceding
text.

If the same register is specified for both operands, the
results are as shown, varying with the addressing mode of
the operands.

Operand 1 Operand 2 Results

Both in same mode Only the increased
value is returned,
with no alteration
of the first on-bit.

Indirect Direct Both operands are
returned as normal.

Direct Indirect Operand 1 with the
first on-bit reset is
returned in the
register specified
in Operand 1; then
the increased value
is written in
memory at the loca-
tion specified by the
newly-altered
Operand 1.

EXAMPLE

Re!Qister 4 contains the address of a 16-bit field which is
scanned for a 1-bit. If a 1-bit is found, the relative

4-19

position . (0-15) of that bit determines the value (0-15)
added to another one-word field at the location specified
in register 6. After this field is increased in value, the state
of the original bit is changed to a 0-bit. If no 1-bit is
found during the scan, the other field is increased by a
value of 16.

Set Bit •

0 7 8 9 11 12 13 16

.--~~-BC~----1~,---R1--l~

M1 =.==J
FUNCTION: Sets a bit (to 1) in a one-byte field in
memory.

OPERAND 1: A one-byte field in memory. Addressing
options to the base address M1 include indexing, indirect
addressing, or a combination of both.

OPERAND 2: A 3-bit value in bits 13-15 of the
instruction. The 12 value specifies the position of the bit
to be set and may range from 0-7; 0 specifies the leftmost
position and 7 the rightmost position.

RESULTS: The result field resides at the operand 1
location.

EXAMPLE

I 1 I" .,- ,; I H. 9 10 11.17-IJ 14 -,!. i!i"1l .!! 1910 71nn741!-i lh 111819 JO 11 17]] l• l'i J& 11 JI J9 4041 414\U4'i 46

15.B.IT. . . l@:"T.,1.6.(..()., 7

Turns on bit number 7 of an 8-bit byte at the location
specified by @TAG(2).

Reset Bit•

0 7 8 9 11 12 13 15

BO I I R1 I 1 I 12

FUNCTION: Resets a bit (to 0) in a one-byte field in
memory.

OPERAND 1: A one-byte field in memory. Addressing
options to the base address M1 include indexing, Indirect
addressing, or a combination of both.

OPERAND 2: A 3-bit value in bits 13-15 of the
instruction. The 12 value specifies the position of the bit
to be reset and may range from 0-7; 0 specifies the
leftmost position and 7 specifies the rightmost position.

4-20

RESULTS: The result field resides at the operand 1
location.

EXAMPLE

I 1 J 4 -!t--h I fl 9- 10 1·1-ll-1]-,4-~-~ ~jg -,0- ll n]] 74 ~ 1fi1il8-19 JO J1 Jl]3)4]~- 16 31 18 19 40 41 -.;-4i44 4~ 46

IA~.Hr. . 1'.T.lf'.cH . .t..>.1 .¥.

Bit number 4 of an 8-bit byte located at @TAG(2) in
memory is given the binary state of 0.

Test Bit •

0 7 8 9 11 12 13 15

r--~~-B-E~~--,-i~,~R-1-~

M1 ====:J
FUNCTJON: Tests a bit in a one-byte field in memory,
and transfers the bit state (1 or 0) tet bit 0 of the

, Condition register.

OPERAND 1: The one-byte field in memory. Addressing
options to the base address M 1 include indexing, indirect
addressing, or a combination of both.

OPERAND 2: A 3-bit value in bits 13-15 of the
instruction; the 12 value specifies the position of the bit in
operand 2 and may range from 0-7; 0 specifies the
leftmost position and 7 the rightmost position.

RESULTS: The result is reflected in the state of bit 0 in
the Condition register.

EXAMPLE

I l J 4 't h I M ~ 10 1 I 17 l I 1-1 10., lh 11 111 l'I /0 /1 l l JI 14 /!! 16 11 18 7!l 30 ! 1]1 1.1 :i4]~ 16] I 38 39 40 41 42 43 44 4!> 46

T.BIT . J O.J!.. (S-:). 1 • ~.

The binary state of bit 6 of an 8-bit byte at a location
specified by JOE(5) is reproduced in bit 0 of the
Condition register.

Test for Off-Bit

0 7 8 9 11 12 13 15

6E

FUNCTION: Scans a one-word field, left to right, for the
first off-bit (0-bit) and increases another one-word field
by an amount equal to the position o·f that first 0-bit
(0-15). The first 0-bit is not changed. If no 0-bits are

found in the first field, the second field is increased by a
value of 16. Either field may be in a general register or in
memory.

OPERAND 1: A one-word field in the general register
specified by R 1, or in memory if indirect addressing is
used. This field is scanned for the first 0-bit.

OPERAND 2: A one-word field in the general register
specified by R2, or in memory if indirect addressing is
used. This field is increased by an amount equal to the
position of the first 0-bit in operand 1.

RESULTS: The results vary as described in the preceding
text; the location of the operands is not changed.

EXAMPLE

, 1 1 4 .. ~- 6~ 1 A '} ,o· ,1-1·1·13 f41!11611~19i0-1i 1i n· -.i4-ii'2s-1/281930il~ Jti '.i1 i1~J9-.{)""4i414l4·4-~~is

TO.l'.A. . '-.:J. 1 .I.

A 16-bit field at a location specified in register 3 is
scanned le'ft to right (0-15) for a 0-bit. If none is found,
the value in register 1 is increased by 16. However, if a
0-bit is found, the relative position· (0· 15) of that bit
specifies the value added to register 1.

Test for On-Bit

0 7 8 9 11 12 13 15

6C

FUNCTION: Scans a one-word field, left to right, for the
first on-bit (1-bit) and increases another one-word field by
an amount equal to the bit position of the first 1-bit
(0-15). The first 1-bit is not changed. If no 1-bits are
found in the first field, the second field is increased by a
value of 16. Either field may be in a general register or in
memory.

OPERAND 1: A one-word field in the general register
specified by R1, or in memory if indirect addressing is
used. This field is scanned for the first 1-bit.

OPERAND 2: A one-word field in the general register
specified by R2, or in memory if indirect addressing is
used. This field is increased by an amount equal to the
position of the first 1-bit in operand 1.

RESULTS: The results vary as described in the preceding
text; the location of the operands is not changed.

EXAMPLE

~
- CINRATION .. IR-

1J4 't 1 I I 1011111JHl!tlltr~191011121l14n111121193031 J1lll41~Ji-40"i'jf14i~ci

'. T.().N.A. . . . ,,.t,.J ' ' ' . . . ' ' .
,._._ • o,, o , , o,, •, , a, o o, Io,•, I•,,,.,,, 1,,,, 1

A 16-bit field at the location specified in register 2 is
sc:anned left to right (0-15) for a 1-bit. If none is found,
the value in register 3 is increased by 16. If a 1-bit is
found, the relative position (0-15) of that bit corresponds
to1 the value added to register 3.

BOOLEAN LOGIC INSTRUCTIONS

Mnemonic

AND
ANDO
ANDI
ANDM
ANDA

EOR
EORD
EORI
EORM
EOHR

IOR
IORD
IORI
IORM
IORR

Name

Logical Product Memory - Register
Logical Pro9uct Direct
Logical Product Immediate
Logical Product Memory - Memory
Logical Product Register - Register

Exclusive OR Memory --- Register
Exclusive OR Direct
Exclusive OR Immediate
Exclusive 0 R Memory - Memory
Exclusive OR Register - Register

Inclusive OR Memory - Register
Inclusive OR Direct
Inclusive OR Immediate
Inclusive OR Memory - Memory
Inclusive OR Register - Register

Lo1gical Product Memory - Register

AND @M1(R1),@R2

0 7 8 9 11 12 13 15

E A5 Ii I R1 I I R2

M1

FUNCTION: Performs a logical product of a one-word
field in memory and a one-word field in a general register
or in memory. Corresponding bits in each operand are
compared. If both bits are 1, the corresponding resultant
bit is 1; in all other cases the resultant bit is 0.

OPERAND 1: A one-word field in memory. Addressing
op·cions to thEt base address M 1 include indexing, indirect
addressing, or a combination of both.

OPERAND 2: A one-word field in the general register
spec:ified by R2. or in memory if indirect addressing is
used.

4-21

RESULTS: The result field resides at the operand 2
location.

EXAMPLE

CIPUIATtOtl

I 1 J -4·- ,,,---,--.+t lo jj""JliJ14i;ii!!i! It 10 111213 1• l!i 16 21 2119 lO 31 31 Jl 34 l~ lli-Ji SI lt 4Di1-.;-4·34• q-4,

jA.N.P. . . TJ#.6.(3)., ~.S":

Performs a logical product between two 16·bit fields. The
results are stored at the address specified in register 5.

Logical Product Direct

ANDO l1(R1),@R2

0 7 8 9 11 ·12 13 18

f
85 I 0 I R1 I I R2

I 1

FUNCTION: Performs a logical product of a one-word
immediate value and a one-word field in a general register
or in memory. Corresponding bits in each operand are
compared. If both bits are 1, the corresponding resultant
bit is 1; in all other cases, the resultant bit is 0.

OPERAND 1: A 16-bit immediate value in the second
word of the instruction; the value may range from
0·65,535.

Indexing may be specified for operand 1. In this case,
operand 1 is derived by adding the I 1 value and the
contents of the general register specified by R 1; no check
for overflow or link is made during the indexing.

OPERAND 2: A one-word field in the general register
specified by R2, or in memory if indirect addressing is
used.

RESULTS: The result field resides at the operand 2
location.

EXAMPLE

OflUIATIO'ol OflRAND

1 1 34;·-e-~-i1lii""i41~ i9101'lii-2i'Z41~1671lillill 11. ii34J~ li l' n n· '° .. , ., •1 •!i ,,
jAHI~ . . . 'IM..JJ.,.@.J

A logical produqt operation is performed between the
immediate value 40, as modified by the contents of
register 3, and the 16-bit field at the address in register 1.
This address is also the address of the results.

Logical Product Immediate

0 7 8 11 12 13 15

35

4-22

FUNCTION: Performs a logical prodLI<:t of a 4-bit
immediate value and a one-word field in a general register
or in memory. Corresponding bits in each operand are
compared. If both bits are 1, the correspo11ding resultant
bit Is 1; in all other cases the resultant bit is O.

OPERAND 1: A 4-bit unsigned value in bits 8-11 of the
Instruction; the value may range from 0-15. The I 1 value
is compared to operand 2 in bit positions 12-15; bits 0-11
are zeros.

OPERAND 2: A one-word field located in the general
register specified by R2, or in memc1ry if indirect
addressing is specified.

RESULTS: The result field resides at 1the operand 2
location.

EXAMPLE

AKIU If., .t..

A logical product is performed on the immediate value 14
and bits 12·15 of the one-word field in 1register 2. This
register will hold the results; bits 0-11 will always be O's.

Logical Product Memory - Memory

ANDM @M 1(R1),@M2(R2)

0 7 8 9 11 12 13 15

65 I I Rl~ M1

M2

FUNCTION: Performs a logical product e>f two one-word
fields in memory. Corresponding bits in each operand are
compared. If both bits are 1, the correspcmding resultant
bit is 1; in all other cases the resultant bit iis 0.

OPERAND 1: A one-word field in memory. Addressing
options to the base address M 1 include indexing, indirect
addressing, or a combination of both.

OPERAND 2: A one-word field in memory. Addressing
options to the base address M2 include indexing, indirect
addressing, or a combination of both.

RESULTS: The result field resides at the operand 2
location.

EXAMPLE

-
I I :I 4 I 6 I I 9 10 h IJ 1J M If) 18 11 ~ 19 70 21 11111~161"/la-191011 J1 IJ J4- l~- 16]I lR 19 40 41 41 4.1 ·14 4':1 411

li.NJA . . . W,o.1.~.(1.1.,, .1.J./>./.I\.~

A logical product is performed between a 16-bit field at
the address identified by HOL0(7) and the 16-bit field at
the address specified by @SPIKE. The result is stored at
the @SPIKE address.

Logical Product Register - Register

0 7 8 9 11 12 13 15

c=.~-25----~'~i, __ R_1 ~'~'~R-2~
FUNCTION: Performs a logical product of two one-word
fie~ds; either field may be in a register or in memory.
Corresponding bits in each operand are compared. If both
bits are ·1, the corresponding resultant bit is 1; in all other
cases the resultant bit is 0.

OPERAND 1: A one-word field located in the general
register specified by R 1 • or in memory if indirect
addressing is used.

OPERAND 2: A one-word field located in the general
register specified by R2, or in memory if indirect
addressing is used.

RESULTS: The result field resides at the operand 2
location.

EXAMPLE

A logical product is performed between the 16-bit field at
the address specified in register 7 and the 16-bit field in
register 4. The results will be in register 4.

Exclusive OR Memory - Register

EOR @M1 (R1),@R2

0 7 8 9 11 12 13 15

A6 I I R1 I i I R2

M1

FUNCTION: Performs an exclusive OR of a one-word
field in memory and a one-word field in a general register
or in memory. Corresponding bits in each operand are
compared. If the bits are unlike, the corresponding
resultant bit is 1; if the bits are the same, the resultant bit
is 0.

OPERAND 1: A one-word field in memory. Addressing
options to the base address M 1 include indexing, indirect
addressing, or a combination of both.

OPERAND 2: A one-word field in the general register
specified by R2, or in memory if indirect addressing is
used.

RESULTS: The result field resides at the operand 2
location.

J=:XAMPLE

1 2 3 c !I s 1 a 9 10 11 12 tJ 14 1!1 1& 1 ·1.a 19 zo 21 22 n 14 1!116- zi z919J0jlj7 ·3·3-J4~J!i 16li 38 J9-it0'1 •14144-.. ~ 46

I

NAiii Of'EAATION Of'EAAND

. j.e.OA. T.11.6-.0) .1 .,.J. . . ,
1 & , , , 1, •,,,,I, ••••,•I••,, I•••, I• I• ••I

An exclusive OR is performed between a 16-bit field at
1the address identified by TAG(3) and the 16-bit field at
1the address specified in register 5. The address specified in
register 5 is also tha.t of the result.

!Exclusive 0 R Direct

EORD I 1(R1),@R2

0 ' 8 9 11 12 13 15

I

86 : I 0 I R1 ·1 i I R2

11

FUNCTION: Performs an exclusive OR of a one-word
immediate value and a one-word field in a general register
e>r in memory. Corresponding bits in each operand are
c:ompared. If the bits are unlike, the corresponding
resultant bit is 1; if the bits are the same, the resultant bit
is 0.

OPERAND 1: A 16-bit immediate value in the second
word of the instruction; the value may range from 0 to
€15,535.

Indexing may be specified for operand 1. In this case,
(Jlperand 1 is derived by adding the I 1 value and the
contents of the general register specified by R 1; no check
for overflow or link is made during the indexing.

~~PERAND 2: A one-word field in the general register
S1Pecified by R2, or in memory if indirect addressing is
used.

~tESUL TS: The result field resides at the operand 2
location.

EXAMPLE

~
NAME 09EAATION dPEAA.ND

7 :1 1 11 Ii I K !I- Ill 1i 17 I]. lt1 l!t II; 1}1ft119 -10 71n1.1 7'1 ·i~ 11i ?I 111 711 30JIJ1]"i~4 3!i)6 JI Ji]!J 41).41 47 ,i3 ... ,.~4; 46

eo~]) . . 61'".S-.()/ (2..).J • . .r..
' '• ' I • 'f' I I

A.n exclusive OR is performed between the value of
65,501(2) and the 16-bit field at the location specified in
rngister 5; this address is also the address of the result.

4-23

Exclusive OR Immediate

EORI f 11@R2

0 7 8 11 12 13 15

36

FUNCTION: Performs an exclusive OR between a 4-bit
immediate value held in the instruction and a one-word
field in a general register or in memory. Corresponding
bits in each operand are compared. If the bits are unlike,
the resultant bit is 1; if the bits are the same, the resultant
bit isO.

OPERAND 1: A 4-bit unsigned value located in bits 8-11
of the instruction; the value may range from o~ 15. The I 1
value is "OR"ed to operand 2 in bit positions 12-15; bits
0-11 are zeros.

OPERAND 2: A one-word field in the general register
specified by R2, or in memory if indirect addressing is
used.

RESULTS: The result field resides at the operand 2
location.

EXAMPLE

~~
AMI OPERAllON Ol'ERAND

I l I I 11 I 11 1'1 I II lit 11 /LI /I '1 }\ /1 /'1 /I I JH /'I Ill !I I/ \! l1 1'1 II l Ill I 111 ~I ,f} 11 11 10, II

eo~z . 1:1.,~1
. . ' . '

An exclusive OR is performed on the immediate value of
13 and the 16-bit field at the location specified in register
1; this address is also the address of the result.

Exclusive OR Memory - Memory

0 7 8 9 11 12 13 15

.----6-6 ---r--, i-.,...,-R-1,.., I R2

FUNCTION: Performs an exclusive OR of two one-word
fields in memory. Corresponding bits in each operand are
compared. If the bits are unlike, the corresponding
resultant bit is 1; if the bits are the same, the resultant bit
is 0.

OPERAND 1: A one-word field in memory. Addressing
options to the base address M1 include indexing, indirect
addressing, or a combination of both.

4-24

OPERAND 2: A one-word field in memory. Addressing
options to the base address M2 include indexing, indirect
addressing, or a combination of both.

RESULTS: The result field resides at the operand 2
location.

EXAMPLE

1 'I IU II 1/ ll II 1', 11, \/ IH 1'1 /II /I /Ir! 11/'1/h1/ 78 7!1 JO JI 17]J]4 l!i]Ii JI]83!1 4041 42 4J444!J 46

An exclusive OR is performed between a 16-bit field at
the address identified by TAG(2) and the 16-bit field at
the address identified by DON(4). The result is stored at
the address specified by DON(4).

Exclusive OR Register-Register

0 7 8 9 ·11 12 13 15

26

FUNCTION: Performs an exclusive OR of two one-word
fields; either field may be in a register 1or in memory.
Corresponding bits in each operand are compared. If the
bits are unlike, the corresponding resultant bit is 1; if the
bits are the same, the resultant bit is 0.

OPERAND 1: A one-word field in the !~eneral register
specified by R 1 • or in memory if indirec:t addressing is
used.

OPERAND 2: A one-word field in the !~eneral register
specified by R2, or in memory if indirec:t addressing is
used.

RESULTS: The result field resides at the operand 2
location.
EXAMPLE

I 1'• '!I 1, 1•,I•' l>tl•/ll.'1/,/!/l/':J/hJ//tll'llUll l/l!.l& ii..!hllJ8J9'1041414J444!146,

An exclusive OR is performed between two 16-bit fields,
one of which is at the address specified in register 4 and
the other in register 7. The result is placed in register 7.

Inclusive OR Memory-Register

0 7 8 9 11 12 13 15

-------A-7------....1-1-,--R-1-~

M1 ~

FUNCTION: Performs an inclusive OR of a one-word
field in memory and a one-word field in a general register
or in memory. Corresponding bits in each operand are
compared. If either of the bits is 1 or if both of the bits
are 1, the corresponding resultant bit is 1. If both bits are
0, the resultant bit is 0.

OPERAND 1: A one-word field in memory. Addressing
options to the base address M1 include indexing, indirect
addressing, or a combination of both.

OPERAND 2: A one-word field in the general register
specified by R2, or in memory if indirect addressing is
used.

RESULTS: The result field resides at the operand 2
location.

EXAMPLE

F OP<RATION OllRAND

'I HI 11 1/ 11 H 1'1 lh 11 1H 1'1111 /I/} /i /1 /'1 }h /I Ill /'I \fl 11_ lJ 11 \4 !'1 ll1]I IU l'J .'10 41 41 4144 4'i ·lfi

Io.A . ffJT.A-.5-CJ).,.~7
o I • • I, I I

An inclusive OR is performed on two '16-bit fields, one at
the address identified by @TAG(3) and the other at the
address specified in register 7. The results will be at the
address in register 7.

Inclusive OR Direct

IORD I 1(R1),@R2
0 8 9 11 12 13 15

E~8_7 ____ ~l_o~l~R_1 __ l._._l~R-2-t
I 1

FUNCTION: Performs an inclusive OR of a one-word
immediate value and a one-word field in a general register
or in memory. Corresponding bits in each operand are
compared .. If either of the bits is 1 or if both of the bits
are 1, the corresponding resultant bit is 1. If both bits are
0, the resultant bit is 0.

OPERAND 1: A 16-bit immediate value in the second
word of the instruction; the value may range from
0-65,535.

Indexing may be specified for operand 1. In this case,
operand ·1 is derived by adding the I 1 value and the
contents of the general register specified by R 1; no check
for overflow or link is made during the indexing.

OPERAND 2: A one-word field in the general register
specified by R2, or in memory if indirect addressing is
used.

RESULTS: The result field resides at the operand 2
location.

EXAMPLE

~ 1 J --!i Ii 1 I! 9 10 1)-!1\1 14 l!i .1611 18 19 /0 111J1J 14 J'i 11i 1118 }q ·10 ·11 JI ll]4 l'i Jti JI)A \q 40 41 41 43 U 4!i 46 ~
NAME OPERATION Of'ERAND

IOl{.,P, . . . l'l..t..O./ (.1.J.,.@.r.
• •'' • • • • o I• I• I• I• I I

A.n inclusive OR is performed on the immediate value
64,201, as modified by the contents of register 3, and the
116-bit field at the address specified in register 5. This
address is also the address of the result.

l1r1clusive OR Immediate

IORI l1,@R2

0 7 8 11 12 13 15

FUNCTION: performs an inclusive OR between a 4-bit
immediate value held in the instruction and a one-word
fo:ild in a general register or in memory. Corresponding
bits in each operand are compared. If either of the bits is
1 or both bits are 1, the corresponding resultant bit is 1. If
both bits are 0, the resultant bit is 0.

QPERAND 1: A 4-bit unsigned value located in bits 8-11
o1r the instruction; the value may range from 0-15. The 11
value is "OR"ed to operand 2 in bit positions 12-15; bits
0·· 11 are zeros.

OPERAND 2: A one-word field in the general register
specified by R2 or in memory if indirect addressing is
used.

RESULTS: The result field resides at the operand 2
location.

EXAMPLE

~l J 4 -~-·-6 1 II 9 IO 11 I/ 11 14 l!i 16 If Ill l'I 10 71 7}- 13 }4 /~1]!, II]11 19 :m JI :i}]))4 J~ Hi JI JB--39 4(j-4i .47 '1:1-14 '1!1 '16 ~
NAME Of'ERA.JION OPERAND

IO.A.I . 1.0., .1.
• < , •,,, I \I , , I,, I

An inclusive OR is performed on the immediate value 10
and bits 12· 15 of the one-word field in register 3. The
re!sult is stored in bits 12-15 in register 3; bits 0-11 are
unaffected.

Inclusive OR Memory - Memory

IORM @M1 (R1),@M2(R2)

0 7 8 9 11 12 13 15

l 67 I I R1 I I R2

M1

M2

4-25

FUNCTION: Performs an inclusive OR of two one-word
fields in memory. Corresponding bits in each operand are
compared. If either of the bits is 1 or both of the bits are
1, the corresponding resultant bit is 1. If both bits are 0,
the resultant bit is 0.

OPERAND 1: A one-word field in memory. Addressing
options to the base address M 1 include indexing, indirect
addressing, or a combination of both.

OPERAND 2: A one-word field in memory. Addressing
options to the base address M2 include indexing, indirect
addressing, or a combination of both.

RESULTS: The result field resides at the operand 2
location.

EXAMPLE

1 1 J • ·!1--,--,-----a ~-i lo-11-lliltili- 11 1 !.! -19 20 21 12 23 1• n 11 21- 21 n JO 31 n n ,. HHi1il114041·~-"...-..

IO.A.I/ ... • W,.e.A~(.(.).,.TA.6.C.1.)•

Performs an inclusive OR between two 16-bit fields.
@TAG(1) represents the address of the results.

Inclusive OR Register - Register

0 7 8 9 11 12 13 15

27

FUNCTION: Performs an inclusive OR of two one-word
fields; either field may be in a register or in memory.
Corresponding bits in each operand are compared. If
either of the bits is 1 or if both of the bits are 1, the
corresponding resultant bit is 1. If both bits are 0, the
resultant bit is 0.

OPERAND 1: A one-word field located in the general
register specified by R 1 • or in memory if indirect
addressing is used.

OPERAND 2: A one-word field in the general register
specified by R2, or in memory if indirect addressing is
used.

RESULTS: The result field resides at the operand 2
location.

EXAMPLE

~
NAMI .,.(OAllON OHOAND

I I 4 !i I> I " ! Ill II 11IJ 14 l!i •• -11~.i! 19--1U--1-.n 1i~/lilti0li-il.ili4JiJIJJj1~414344;;·-,I

IOltA. . ~S:, •· , ,
' ',, • • •' '''••I''• I' '

4-26

An inclusive 0 R is performed between a 16-bit field at the
address specified in register 5 and the 16-bit field in
register 6. Results are placed in register 6.

BRANCHING INSTRUCTIONS

Mnemonic

B
BA1
BA2
BCF
BCT
BCH
BOF
BON
BR
BRN
BRZ
BSl

Name

Branch Post-Indexing
Branch Add One
Branch Add Two
Branch if Condition Register False
Branch if Condition Register True
Branch Pre-Indexing
Branch if Bit Off
Branch if Bit On
Branch to Address in Register
Branch if Register Not Zero
Branch if Register Zero
Branch Subtract One

BS2 Branch Subtract Two
BSR

SB
SF
SCFB
SCFF
SCTB
SCTF
SRMB
SRMF
SRPB
SRPF
SRNB
SRNF
SRZB
SRZF

Branch

B
0

Branch and Save Return

Skip Back Unconditional
Skip Forward Unconditional
Skip if Condition False - Back
Skip if Condition False - Forward
Skip if Condition True - Back
Skip if Condition True - Forward
Skip if Register Minus - Back
Skip if Register Minus - Fo1rward
Skip if Register Plus - Back
Skip if Register Plus - Forward
Skip if Register Not Zero - Back
Skip if Register Not Zero - Forward
Skip if Register Zero - Back
Skip if Register Zero - Forward

7 8 9 11 12 16

--~~-ED~~---j~j~R-1-lffillillf4

Ml

FUNCTION: Branches unconditionally to a specified
memory location. This instruction differs from BCH
which uses pre-indexing; B uses post-indexing.

OPERAND 1: The single operand identifies the memory
location to which the program branches. Addressing
options to the base address Ml include indexing, indirect
addressing, or a combination of both.

EXAMPLE

I 1 J ,-;;5 ·, M 9 1oi~~ ii/01liliJ1411ii11.1tni0ilililii!~Hjl IUI 4011111114'~ ti

(I. r.A.6-.(.f)•.........•.. ' .•.

The program branches unconditionally to the address
identified by TAG(4).

Branch Add One

0 7 8 9 11 12 13 15

E4

FUNCTION: Tests a one-word field in a general register or
in memory for a zero value; if the field is zero, the next
instruction in the program is executed. If the field tested
is not zero, it is increased by a value of 1, and the program
branches to a specified memory location.

OPERAND 1: The memory location to which the
program branches if the tested field is not zero.
Addressing options to the base address M1 include
indexing, indirect addressing, or a combination of both.

OPERAND 2: The value tested; a one-word field in the
general register specified by R2, or in memory if indirect
addressing is used.

EXAMPLE'

, 1 l, i·-ii ;·-, 1 10--1illii141~-;-slti! i9io-li-11-i1-l•nl6lin-!i»-iilili~1•1•-iil9-1041--.14'3 . .,7'4o

j4.A./. . T.ll.6-.(.JJ.,.'1.z.

A 16-bit field at the address in register 2 is tested; if the
field is non-zero, a value of 1 is added to the field and the
program branches to the address identified by TAG(3). If
the field tested is zero, the program continues with the
next instruction.

Branch Add Two

0 7 8 9 11 12 13 16

ES I I

FUNCTION: Tests a one-word field in a general register or
in memory for a zero value; if the field is zero, the next

instruction in the program is executed. If the field tested
is not zero, it is increased by a value of 2, and the program
branches to a specified memory location.

OPERAND 1: The memory location to which the
program branches if the tested field is not zero.
Addressing options to the base address M 1 include
indexing, indirect addressing, or a combination of both.

pPERAND 2: The value tested; a one-word field in the
general register specified by R2, or in memory if indirect
addressing is used.

EXAMPLE

OHRATf9N

I 1 J 4 -i--fi/ I t-;i jQ 1i--1ilili1~~~ 19 lOm~1lill'iloJ1 Jlii3tJ;-':ii;3r1~'1'3'4~

. . . Ii.A-~ T.1'.l-.C.f.).,.-.1

A 16-bit field at the address in register 1 is tested; if the
field is non-zero, a value of 2 is added to this field and the
program branches to the address identified by TAG(4). If
the field is zero when the test is made, no branch is
performed and the program continues with the next
instruction.

1Branch on Condition Register False

0 7 8 9 11 12 16

E9

,FUNCTION: Branches to a specified memory location if a
designated Condition register bit is off. If the bit is on, the
inext instruction in the program is executed.

OPERAND 1: The memory location to which the
iprogram branches if the designated Condition register bit
is on. Addressing options to the base address M1 include
iindexing, indirect addressing, or a combination of both.

OPE RAND 2: A 4-bit value in bits 12-15 of the
1instruction. The 12 value specifies the position of the bit
to be tested in the Condition register and may range from
itl-15.

!EXAMPLE

.
I 1 ·JT'i-& -, I rgi i011lltlttiillt:f;tl910ililiJio nHUltH jQ~·JG- fr']lu· 10 .. -'1 43 ~

":c~ : : : : ':~"".~:':7:):,:':': : : : : : : : : : : . : .. _ ..
!Branches to the location specified by @TAG(7) if bit 11
i:>f the Condition register if off (0). If bit 11 is on (1), the
1next instruction is executed.

4-27

Branch on Condition Register True

BCT @M1 (R1),12
0 7 8 9 11 12 19

ES I 1 I R1 12

I M1

FUNCTION: Branches to a specified memory location if a
designated Condition register bit is on. If the bit is off, the
next instruction in the program is executed.

OPERAND 1: The memory location to which the
program branches if the designated Condition register bit
is on. Addressing options to the base address M1 include
indexing, indirect addressing, or a combination of both.

OPERAND 2: A 4-bit value in bits 12-15 of the
instruction. The 12 value specifies the position of the bit
to be tested in the Condition register and may range from
0-15.

EXAMPLE

Branches to the address identified by TAG (3) if bit 8 of
the Condition register is on (1). If the bit is off (0), no
branch is made and the next instruction is executed.

Branch Unconditional

0 7 8 9 11 12 15

FUNCTION: Branches unconditionally to a specified
memory location. This instruction differs from B which
uses post-indexing; BCH uses pre-indexing.

OPERAND: The memory location to which the program
jumps. Addressing options to the base address M 1 include
indexing, indirect addressing, or a combination of both.

EXAMPLE

4-28

Branches to the address identified by @TAG(5). The value
of TAG is added to the contents of register 5; the address
formed is the address of an address to whiich the program
will branch (this is th_e pre-indexing technique).

Branch if Bit Off

0 7 8 9 11 12 15

=======E=2======i ==i ==R=l=~
Ml ~

FUNCTION: Branches to a specified memory location if
the bit tested in a general register is off. llf the bit is on,
the next instruction in the program is executed.

OPERAND 1 : The operand is composed of two parts: the
general register tested is specified by R 1, and the 16-bit
value contained in M 1 is the memory addrnss to which the
program branches. Addressing options to the base address
M1 include indirect addressing, but not indexing.

OPERAND 2: A 4-bit value in bits 12-15 of the
instruction. The 12 value· specifies the position of the bit
to be tested in the general register and may range from
0-15.

EXAMPLE

I 1] 4 'I Ii I I !I 10 11 11 ll 1• l'i Iii -;, .!_! Ill lU }I 1111 }4 l'l--16 11 1119 JO]I 17 J.I)4 1~ Jb)I IR 19 40 41 41 41 44 4'i 46

1/oF . T;f.6(3), ./.'I _

Branches to the address identified by TAG(3) if bit 14 of
register 3 is off (0). If bit 14 is on, the ne:ict instruction is
executed.

Branch if Bit On

FUNCTION: Branches to a specified memory location if
the bit tested in a general register is on. If the bit is off,
the next instruction in the program is executed.

OPERAND 1: The operand is composed of two parts: the
general register tested is specified by R 1 .. and the 16-bit
value contained in M 1 is the memory addriess to which the
program branches. Addressing options to the base address
M1 include indirect addressing, but not indlexing.

OPERAND 2: A 4-bit value in bits 12-15 of the
instruction .. The 11 value specifies the position of the bit
to be tested in the general register and may range from
0-15.

EXAMPLE

-·-
I 1- l • I 6 I -I I 10 11 11 13 14 i& II I ~ It 10 II 1113 1' H 16 11 H H ~ 31 II)I 34 !!> 3' Ji jfJi-q-cl ti OJ \ts

. 18.od. TA.6.C.S'J "' .f

This instruction tests bit 9 in register 5. If bit 9 is on. the
program branches to the address identified by TAG.
Otherwise, no branch is made and the next instruction Is
executed.

Branch to Address in Register

0 7 8 • 11 12 16

EB

FUNCTION: Causes an unconditional branch to a
specified memory location.

OPERAND 1: The single operand for this instruction is a
memory address. If direct addressing is used, the address is
in the register specified by R 1 · If indirect addressing is
used, the address is located at the address specified in R 1 ·

EXAMPLE

4.A. 'I. '

Branches to the address specified ·1n register 4.

Branch if Register is Not Zero

BAN @M1(R1),@R2

0 7 8 9 11 12 13 16

E1 Ii I R1 Ii I R2

M1

FUNCTION: Branches to a specified memory location if
the general register tested does not contain all zeros. If the
register contains all zeros, the next instructi9n in the
program is executed.

OPERAND 1: The memory location to which the
program branches if the general register does not contain

all zeros. Addressing options to the base address M 1
Include indexing, indirect addressing, or a combination of
both.

OPERAND 2: The value tested; a one-word field in the
'general register specified by R 2, or in memory if indirect
addressing Is used.
!EXAMPLE

OHRATJON

I I 3 • I & I I I 10 II II 13 1' I& 16 I Ii 19 111 II 1113 i• n 16 II 18 19 30 31 31 33)4 II 3i-]I i1ii4o41'1 .~ii

· · · · · · . 16..t.N.. Tlf.6.C.L).1 • .r:_•.

The program branches to the address specified by TAG(2)
iif the contents of register 5 are not zeros; if the contents
are zeros, the next instruction is executed.

l~ranch if Register is Zero

HRZ @M1(R1),@R2

0 7 8 9 11 12 13 15

[EO Ii I Rl Ii I R2

M1

F:UNCTION: Branches to a specified memory location if
the general register tested contains all zeros. If the register
does not contain all zeros, the next instruction in the
program is executed.

OPERAND 1: The memory location to which the
~1rogram branches if the general register contains all zeros.
,t!~ddressing options to the base address M 1 include
indexing, indirect addressing, or a combination of both.

OPERAND 2: The value tested; a one-word field in the
general register specified by R2, or in memory if indirect
addressing is used.

E:XAMPLE

1-J- • I 6 1 I I .10 11 12 13 IC IS 16 II~ .1910 11-11131'IS18111118 3-0 JtJlii30Ji"35-]/ 1139 •O 41 0 OCUS •G t
NAME OPl•ATION OPl•ANO

. ti..tz TA.6-.,.1 . .•..•.•................
1 6 1.1,,, , , , , o I, 'Io o 1 •I a I l <I' I'' I• I' I''<' I'

T'he program branches to the address of TAG if the
contents of register 6 are all zeros; if the contents are not
all zeros, the next instruction is executed.

E~ranch Subtract One

851 @M1(R1),@R2
0 7 8 9 11 12 13 115

t E6 Ii I R1 I I R2

M1

4-29

FUNCTION: Tests a one-word field in a general register or
in memory for a zero value; if the field is zero, the next
instruction in the program is executed. If the field tested
is not zero, it is decreased by a value of 1, and the
program branches to a specified memory location.

OPERAND 1: The memory location to which the
program branches if the tested field is not zero.
Addressing options to the base address M 1 include
indexing, indirect addressing, or a combination of both.

OPERAND 2: The value tested; a one-word field in the
general register specified by R2 or in memory if indirect
addressing is used.

EXAMPLE

1 z 3-c~1~~.-!i-li-i1~19-202i-2213241!i-2s·,111nJOJ1J7_ii_:Mnl.i--J,- 11---"'~i+t4\ 45

!Js.1. T.A.~CJ:).,.z..

Tests a 16-bit field in register 2. If the field contains a
non-zero value, a branch is made to the address identified
by TAG(5), and the value in register 2 is decreased by 1.
If tile tested field is zero, the next instruction is executed.

Branch Subtract Two

0 7 8 9 11 12 13 15

E7

FUNCTION: Tests a one-word field in a general register or
in memory for a zero value; if the field is zero, the next
instruction in the program is executed. If the field tested
is not zero, it is decreased by a value of 2 and the program
jumps to a specified memory location.

OPERAND 1: The memory location to which the
program jumps if the tested field is not zero. Addressing
options to the base address M1 include indexing, indirect
addressing, or a combination of both.

OPERAND 2: The value tested; a one-word field in the
general register specified by R2 or in memory if indirect
addressing is used.

EXAMPLE

4-30

The field at the address in register 3 is testE!d. If the field
contains a non-zero value, a branch is made to the field
identified by TAG(6), and the value of the field identified
by @3 is decreased by 2. If the tested field is zero, the
next instruction is executed.

Branch and Save Return

BSA @M1(R1),@R2
0 8 9 11 12 13 15

--~~-EA~----,~,.--R-1--,~

M1 ~

FUNCTION: Branches unconditionally to a specified
memory address, storing the address of the next
instruction in a general register or in memory. The address
stored (return address) is the current program address plus
four bytes.

OPERAND 1: The memory location to which the
program branches. Addressing options to the base address
M1 include indexing, indirect addressing, or a
combination of both.

OPERAND 2: The general register specifiE!d by R2, <;>r the
memory field at the address in the R2 regi:ster if indirect
addressing is used, that contains the return aiddress.

EXAMPLE

Branches unconditionally to the address identified by
TAG(6) and stores the next instruction address (current
program address plus four bytes) into register 5. After the
instructions beginning at TAG(6) are executed, the
program continues with the instruction at the address in
register 5.

Skip Back-Unconditional

SB 11

0 8 15

BB

FUNCTION: Skips back in the program a specified
number of words.

OPERAND 1: An 8-bit unsigned value in bits 8-15 of the
instruction. This value specifies the number of words to
skip and may range from 0-255. When the instruction is

executed, the number of bvtu .. represented .b.y '111 ls
determined 01: Is. doubled)·. Thfsi b.ytia· vatue .J1, &lbtrsted
from the curr.ent program addrea.

Skips back unconditionally ih the· program: 62 words· '124
bytes).

Skip Forward:.UnconditioJllJ:

SF lt
Q·

BA.
"I I

: :: : .r, :· :::::J
FUNCT:ION: Skfps. forward' ln' tht1 :ptQgrem· •· 1P9Cifild:
number ·of words.

OPERAND· 1: An 8-bit unslgned VlfU(I io bits:8·16 of.the
instruction. This value specifies; thei number of words to
skip and may range from 0~2ss .. When the instruction is.
executed', the number of byt8S' rernesented· by l1 js ..

determined Ot is doubled)'. This byttt value is· ackfecf; to·
the current program address.

EXAMPLE

! I ,, I ., ~ " I ".!I , 111 fl "1:111 1'1 lfi ,, :~ il'l·/U II 1111 l·l l'i '*'JI /It /t Ill n II n"' l'i- u, .I' Jl."n ft'll U:U~··\" Hi

SF. . f; .

Skips forward unconditionally ·fn the: pr·ogram a· words (16
bytes).

Skip: on 'Condition False•81Ck

4B f '1 '2 l
FtJNCTtON:: Sldps back fni the, prci11ram t ..,_if ied
number .o.f 'Words· if the appropr.late:Condition. register 'b1t
is off. U the bit Is on, the ne>ct ·rn1tructlon Jn, the program.
is executed.

OPERAND:· t: . A 4-bit uns.fgned' value' .fin bits' 841 of: lhl
fnstructfon. This, value specffles, the number of 'word8 to,
sk fp, and' may range from: ,o~ 16·.

When the instruction is executed the number of bytes
represented by, t1 tldetermlned.Ot. ls.doubled). This byte
·value· i& subtractec:f' from the current program address.

OPSR'AND· 2: A 4-blt value In, bits 12· 16 of the
:Jnstructlom Thfs, value specifies the position of the bit
tested for off in the Condition· register and may range
fromo~i&.

EXAMPLE

1·
J - ': orUATION ' DPIRAND

, ,, i"4'i'iTI'i :io-i1l11Titl& .i&iil] i9.1i.iir111 ;.-111ili"ii·11-:i0li3til"iai1 iilii"'4ii14i"iri44r4i

ll: . . . , . , . ! S.t:-.1'~: ' • . ' /'.li,.I: , , .. , • , , , .

Hr ibit 3' .(equal bft); ln the Condition register Is. off, the
:1pro9,ram wm lkip. back In the: program 12: words (24
bytes): •. if bit 3 is. on, the next Instruction fn the program
lis. executed.

Qi 7 8 11 12 16

:[_____ 4_9 ___ ---'-__ ' 1 __ ..._ __ '2 __

FUNCTION: Sk.ips forward In the program a specified
~1umber of words if the appropriate Condition register bit
11~: off. ff the bit Is on, the next Instruction in the program
in executed.

OPER,AND· 1: A 4-blt unsigned value ln bits 8-11 of the
h1structlon. This vah.1e specifies the number of words to
slG ip and may range from 0-15. When the instruction is
e:"ecuted the' number of bytes represented by I 1 is
determined H1 is doubled)" This byte value Is added to
the current .pro.iram address.

OPERAND, 2: A 4-bit value in bits 12-16 of the
k15truction. The I 1 value specifies the position of the bit
tEtSted for off in the Condition reg,lster and may range
from0-16.

sXAMPLE

f ,· 3~1i ~, ~i 11 IJ 1• "' 11 Ii Ii 1110. 1111n141'i'lil1-iii it'io 31 31 3l :u n 3& 31 3t 3t io41 414i'ii'ii4i

. , . , . , , ls.c::.~)I . . ' ' lf', . .J· ... , •. , , . • . , . , . . . , , • , . , , •
If O (• t • r,I o • f ••I, • t I I,• I I••• I•••• I••• I•• o •I

'If bit 3. (equal: bid in the Condition register is off, the
program will skip forward In· the program five words (1Q,
~rtesl. l·f bit 31 Is on, the next Instruction in the program
is executed.

4-31

Skip on Condition True-Back

SCTB l1h

0 7 8 11 12 15

L.~~~--4-A~~·~---..i----1-1 __ ---..i __ ~1-2 __ __

FUNCTION: Skips back in the program a specified
number of words if the appropriate Condition register bit
is on. If the bit is off, the next instruction in the program
is executed.

OPERAND 1 : A 4-bit unsigned value in bits 8-11 of the
instruction. This value specifies the number of words to
skip and may range from 0-15. When the instruction is
executed the number of bytes represented by I 1 is
determined 01 is doubled). This byte value is subtracted
from the current program address.

OPERAND 2: A 4-bit value in bits 12-15 of the
instruction. This value specifies the position of the bit
tested for on in the Condition register and may range
from 0-15.

EXAMPLE

1 2] 4 -~--·fi--,- H 9 t-io·11 -11-13-,4··1;-16- !' .!! 19 ro-11 -12 n-14 n.- ,6 ,,---,8-19 :iO]I 11·-ll 14]~· :n. II 13-]CJ 40.U .. 2 4] 44 4h

I-Sc. 7:'8. . . Ttf.6-. 1 .0

Assume. that TAG is six words back in the program. If bit
0 (overflow bit) in the Condition register is on, the
program will skip six words (12 bytes) back to TAG. If bit
0 is off, the next instruction in the program is executed ..

Skip on Condition True-Forward

SCTF 11,li

0 7 8 11 12 15

48

FUNCTION: Skips forward in the program a specified
number of words if the appropriate Condition register bit
is on. If the bit is off, the next instruction in the program
is executed.

OPERAND 1: A 4-·bit unsigned value in bits 8·11 of the
instruction. This value specifies the number of words to
skip and may range from 0-15. When the instruction is
executed the number of bytes represented by I 1 is
determined o 1 is doubled). This byte value is added to
the current program address.

OPERAND 2: A 4-bit value in bits 12-15 of the
instruction. This value specifies the position of the bit

4-32

tested for on in the Condition register and may range
from 0-15.

EXAMPLE

I 1 3··-~~ !Di1 12 1l U tt II 11 ~ 1910 21 12 ll 242t11 21 21 29 JO 31 31l334l!iJI31 31lllO'1C2OoW41 ..

~e:rr. . . . jr.4.6-.,..o. ·~-~--·--·· • -· --·-~-·~-......... -· ·- .••

Assume that TAG is six words ahead of this instruction. If
bit 0 (overflow bit) in the Condition register is on, the
program will skip six words (12 bytes) forwa1rd to TAG. If
bit 0 is off, the next instruction in thn program is
executed.

Skip if Register Minus-Back

0 7 8 11 12 13 15

47

FUNCTION: Skips back in the program a specified
number of words if the register contents tested are minus.
If the register contents are plus, the next instruction in
the program is executed.

OPERAND 1: A 4-bit unsigned value in bits 8-11 of the
instruction. This value specifies the numb1:!r of words to
skip and may range from 0-15. When the instruction is
executed the number of bytes represented by I 1 is
determined (I 1 is doubled). This byte valuie is subtracted
from the current program address.

OPERAND 2: The value tested; a one-word field in the
general register specified by R2.

EXAMPLE

1 1 1 , ii 1 , " , 10 ,-1·11-1:1, .. 1'> 1&-_!_rr-~ 19 ,o-111illiili".ii1'1HiliOi1ilJ>l4M&-J1JBit4Gii414J4A "~-,

IJ.M.I . . r .If. 6-., .$.

Tests the contents of register 3. If negativ1e, skips back to
the instruction located at TAG; if positive or zero, the
next instruction is read. Note that the assembler
determines the number of words (0-15) to skip by the
location of TAG.

Skip if Register Minus-Forward

0 7 8 11 12 13 15

FUNCTION: Skips forward in the program a specified
number of words if the register contents tested are minus.
If the register contents are plus, the next instruction in
the program is executed.

OPERAND 1: A 4-bit unsigned value in bits 8-11 of the
instruction. This value specifies the number of words to
skip and may range from 0-15. When the instruction is
executed, the number of bytes represented by I 1 is
determined (I 1 is doubled). This byte value is added to
the current program address.

OPERAND 2: The value tested; a one-word field in the
general register specified by R2.

EXAMPLE

F
NAME Of'EAATION OPt:AAND

J 4 !> fi I H 9 10 11 11 ll 14 1!> 16-1/ 18 19 10 11 12iJ ?.fl~ 16 11-18-19 30 JI]1 JJ J,- J!J 36 JiliJg-4041 4}4'Jc44~

.S.Atff.F , T'1:6/J ,
t , 1 I I'• I I

Tests the contents of register 3. If negative, skips forward
to the instruction located at TAG; if positive or zero, the
next instruction is read. (The assembler determines the
distance of TAG from the SRMF instruction and uses this
value for I 1.)

Skip if Register Plus-Back

0 7 8 11 12 1~ 15

45 11 FJ R2

FUNCTION: Skips back in the program a specified
number of words if the register contents tested are plus. If
the register contents are minus, the next instruction in the
program is executed.

OPE.RAND 1: A 4-bit unsigned value in bits 8-11 of the
instruction. This value specifies the number of words to
skip and may range from 0-15. When the instruction is
executed, the number of bytes represented by I 1 is
determined (11 is doubled). This byte value is subtracted
from the current program address.

OPERAND 2: The value tested; a one-word field in the
general register specified by R2.

EXAMPLE

--···--------·------------------
! I] 1 '• 11 I H 9 10 11.2_ I] 14 1!, 16 II 18 19 20 11111114]!) 16 1118 19 J{) JI 32 33 34 35 36 31 38 39 40 41 42 •34' •S 'f

$Al'I. . . ~Gl.¥.,.~..>. •...................•

Assume that E04 is equated to -3. The program tests the
field at the address in register 5. If positive, the program
skips back three words (six bytes); if not positive, the
next instruction is executed.

Skip if Register Plus-Forward

0 7 8 11 12 13 15

44

~FUNCTION: Skips forward in the program a specified
inumber of words if the register contents tested are plus. If
ithe register contents are minus, the next instruction in the
program is executed.

OPERAND 1: A 4-bit unsigned value in bits 8-11 of the
instruction. This value specifies the number of words to
skip and may range from 0-15. When the instruction is
uxecuted, the number of bytes represented by I 1 is
determined U 1 is doubled). This byte value is added to
the current program address.

9PE RAND 2: The value tested; a one-word field in the
general register specified by R 2·

~;XAMPLE

~ I l .. .," I Ii 9 10 II 110··1' I~ l61/181910-11'i"il1l4~J031 iiJJ]4JSJ6JJ 3839404141434'454

~,(t',C . . . C.O.N . .r.,.fl~ ,
0 ••••I,••• I,•, I,•<, I

A.ssu me that CON 5 is equated to 11. The program tests
the field at the address in register 2. If positive, the
p1rogram skips forward 11 words (22 bytes); if not
positive, the next instruction is executed.

Slkip if Register Not Zero-Back

I~ 7 8 11 12 13 15

[~~~43~~-----l_1~~1~1~R-2_.
FUNCTION: Skips back in the program a specified
nLimber of words if the register contents tested are not
zero. If the register does contain all zeros, the next
in~struction in the program is executed.

OPERAND 1: A 4-bit unsigned value in bits 8-11 of the
inirtruction. This value specifies the number of words to
skip and may range from 0-15. When the instruction is

4-33

executed, the number of bytes represented by I 1 is
determined (I 1 is doubled). This byte value is subtracted
from the current program address.

OPERAND 2: The value tested; a one-word field in the
general register specified by R 2·

EXAMPLE

S~.N.I. ... 'l., . .z.

Tests the contents of register 2. If non-zero, the program
skips four words (eight bytes) back in the program; if
zero, executes next instruction.

Skip if Register Not Zero-Forward

0 7 8 11 12 13 15

--~---42---~-----11---[-)''j~ R2

FUNCTION: Skips forward in the program a specified
number of words if the register contents tested are not
zero. If the register does contain all zeros, the next
instruction in the program is executed.

OPERAND 1: A 4-bit unsigned value in bits 8-11 of the
instruction. This value specifies the number of words to
skip and may range from 0-15. When the instruction is
executed, the number of bytes represented by I 1 is
determined (I 1 is doubled). This byte value is added to
the current program address.

OPERAND 2: The value tested; a one-word field in the
general register specified by R2·

EXAMPLE

"""."''"
1 R- 9 10 n-li-1l14l!t -·sl1tl9 .. i0 11 l1 .. lil4li-1&1_1_iB29JOill1ili4U-1& J, ii Jt .. o.1142 43 •• o "'

SJt.11.F: . . . 'l.~..t. ... •
•I• • o • ••Io o' •I•• o •. • • t ••I

Tests the contents of register 2. If non-zero, the program
skips four words (eight bytes) forward; if zero, executes
next instruction.

Skip if Register Zero-Back

0 7 8 11 12 13 18

4-34

FUNCTION: Skips back in the program a specified
number of words if the register tested contains all zeros. If
the register does not contain all zeros, the ne)(:t instruction
in the program is executed.

OPERAND 1: A 4-bit unsigned value in bit!; 8-11 of the
instruction. This value specifies the number of words to
skip and may range from 0-15. When the instruction is
executed, the number of bytes represented by 11 is
determined 01 is doubled). This byte value is subtracted
from the current program address.

OPERAND 2: The value tested; a one-word field in the
general register specified by R 2·

EXAMPLE

1 J~1~ii._1]1i._1'&~-ll 111J 14 H 1t 11 ll 1t JO JI 31 ll JC JS lfi 31 11139 4Q-414°1'344"4s46-

. S.A.%..1. . T..1:6-.,.1..r. ••.

Tests the field at the address in register 5. If all zeros,
reads the instruction at location TAG; if not all zeros, the
next instruction is read. TAG must be withiin 15 words of
SRZB. (The assembler determines the distance of TAG
from the SRZB instruction and uses this value for 11.)

Skip if Register Zero-Forward

SRZF I 1.R2

0 8 11 12 13 15

40

FUNCTION: Skips forward in the program a specified
number of words if the register tested contains all zeros. If
the register does not contain all zeros, the n1ext instruction
in the program is executed.

OPERAND 1: A 4-bit unsigned value in bits 8-11 of the
instruction. This value specifies the number of words to
skip and may range from 0-15. When the instruction is
executed the number of bytes represented by I 1 is
determined (1 1 is doubled). This byte value is added to
the current program address.

OPERAND 2: The value tested; a one-word field in the
general register specified by R2.

EXAMPLE

...........

S.tlZ.1'. . T/U..JU. , . I./. . .

Tests the field at the address in register 1. If all zeros,
reads the instruction at location THERE; if not all zeros,
the next instruction is read. THERE must be within 15
words of SRZF. (The assembler determines the distance
of THERE from the SRZF instruction and uses this value
for I 1.)

COMPARE INSTRUCTIONS

Mnemonic Name

CBY
CBYM
CMP
CMPD
CMPI
CMPK
CMPM
CMPR
CMPT
CMPX

Compare Byte Memory - Register •
Compare Byte Memory - Memory•
Compare .Memory - Register
Compare Direct
Compare Immediate
Compare Packed Decimal •
Compare Memory - Memory
Compare Register - Register
Compare Two-Word
Compare Characters e

Compare Byte Memory - Register •

CBY @M 1 (R 1) ,@R 2

0 7 8 9 11 12 13

F9 I i (R1 I I
M1

16

R2

FUNCTION: Performs a magnitude-only comparison of a
one··byte field in memory and either the low-order byte of
a general register or a one-byte fiela in memory.

OPERAND 1: A one-byte field in memory. Addressing
options to the base address M 1 include indexing, indirect
addressing, or a combination of both.

OPERAND 2: A one-byte field (bits 8-15) in a general
register specified by R 2, or a one-byte field in memory if
indirect addressing is used.

RESULTS: Neither operand is changed. The Condition
register is affected as follows:

• Bits 0 and 4 are always cleared.

• If operand 1 is greater than operand 2, bits 1 and
5 are set and bits 2, 3, 6, and 7 are cleared.

• If operand 1 is less than operand 2, bits 2 and 6
are set and bits 1, 3, 5, and 7 are cleared.

• If operand 1 is equal to operand 2, bits 3 and 7
are set and bits 1, 2, 5, and 6 are cleared.

EXAMPLE

r
NAMI OPElllATION . OPIRAND

1 , 1-:~··-;-~o 11 1111 1• l!i ".!..!l.!!l •! 10 11 i1n10;-;s1;·,a-·-,;-ioii-iiJ1 ·], 11;, J!i 11 11 l!t •o ., •1 ,, .. •!. •b

I::::::: lc:.t:Y::::: ~~tf.~(:':>:~:f::::::::·:.·: :· :·:
Compares a one-byte operand identified by TAG(4) with
1the rightmost byte of register 6; the Condition register is
itet accordingly.

Compare Byte Memory ~ Memory •

0 7 8 9 11 12 13 16

68

F:UNCTION: Performs a magnitude-only comparison of
01ne-byte fields in memory.

OPERAND 1: A one-byte field in memory. Addressing
options to the base address M 1 include indexing, indirect
addressing, or a combination of both.

OPERAND 2: A one-byte field in memory. Addressing
options to the base address M2 include indexing, indirect
addressing, or a combination of both.

RESULTS: Neither operand is changed. The Condition
rngister is affected as follows.

• Bits 0 and 4 are always cleared.

• If operand 1 Is greater than operand 2, bits 1 and
5 are set and bits 2, 3, 6, and 7 are cleared.

• If operand 1 is less than operand 2, bits 2 and 6
are set and bits 1, 3, 5, and 7 are cleared.

• If operand 1 is equal to operand 2, bits 3 and 7
are set and bits 1, 2, 5, and 6 are cleared.

)-~1----at9+tGtt-illilil§"1611-~z011i21"J14.}0671i8-19J031·-31·3:i]4j~]6 JI 38 ·39· 40 41 41 4J 44 4~ <tfi t NAME Of'EAATION OPERANO

C.B.Ylf . . . T.tt;t;, C.V.).~.N.e.U.(. .z..). . . • , .
•, • • • • •••••I, •I,•, I,•,, I,,,,', I, I

Cc1mpares a one-byte operand at the address specified by
T t'G(4) with another at the address specified by
HE:RE(2). If the operand at TAG(4) is greater than the
other operand, bit 1 of the Condition register is turned

4-35

on; if less than the other, bit 2 of the Condition register Is
turned on; if they are equal, bit 3 of the Condition
register is turned on. (Only one of these bits In the
Condition register will be turned on; the others remain
off.)

Compare Memory - Register

CMP @M1(R1),@n2

0 7 8 9 11 12 13 16

t A1 Ii I R1 lil R2J
M1

FUNCTION: Performs a comparison of a one-word field
in memory and a one-word field in a general register or in
memory.

OPE RAND 1: A one-word field in memory. Addressing
options to the base address M1 include indexing, indirect
addressing, or a combination of both.

OPERAND 2: A one-word field in the general register
specified by R2, or in memory if indirect addressing is
used.

RESULTS: Neither operand is changed. The Condition
register is affected as follows.

Bits 0-3 reflect the arithmetic results of the compare
and bits 4-7 reflect the logical resu Its of the
compare, as specified below:

• Bits 0 and 4 are always cleared.

• If operand 1 is equal to operand 2, bits 3 and 7
are set and bits 1, 2, 5 and 6 are cleared.

• If operand 1 is arithmetically greater than
operand 2, bit 1 is set and bits 2 and 3 are
cleared.

• If operand 1 is arithmetically less than operand
2, bit 2 is set and bits 1 and 3 are cleared.

• If operand 1 is logically greater than operand 2,
bit 5 is set and bits 6 and 7 are cleared.

• If operand 1 is logically less than operand 2, bit 6
is set and bits 5 and 7 are cleared.

For arithmetic results, 7FFF16 is the largest
number and 800015 is the smallest number.

For logical results, FFFF 16 is the largest number
and 000015 is the smallest number.

4-36

EXAMPLE

I 1 Jc-; 1,--;l-t iQ ,,-17~,~-11-~ 19 lO -111111 l°41i , .. 11 18 19 JO 11 l1 lJ)4 1C, Jti]I JI J~ 40 41 41 4.144 .t'J .Sh

Chi>. Tll.6-.C..f')., IU . .

A 16-bit field at the address identified by TAG(5) is
compared to a 16-bit field at the address specified in
register 6; the Condition register is set accordingly.

Compare Direct

0 7 8 9 11 12 13 15

---~~-B-1~~~1-o~,~R1--I~

11 ====1
FUNCTION: Performs a comparison o·f a one-word
immediate value and a one-word field in a general register
or in memory.

OPERAND 1: A 16-bit immediate signed value in the
second word of the instruction; the value nnay range from
·32, 768 to +32, 767.

Indexing may be specified for operand ·1. In this case,
operand 1 is derived by adding the I 1 value and the
contents of the general register specified by R 1; no check
for overflow or link is made during the indEtxing.

OPERAND 2: A one-word field in the iieneral register
specified by R 1 • or in memory if indire<:t addressing is
used.

RESULTS: Neither operand is changed. The Condition
register is affected as follows.

Bits 0-3 reflect the arithmetic resu its of the compare
and bits 4-7 reflect the logical results of the
compare, as specified below:

• Bits 0 and 4 are always cleared.

• If operand 1 is equal to operand 2, bits 3 and 7
are set and bits 1, 2, 5 and 6 are cleared.

• If operand 1 is arithmetically nreater than
operand 2, bit 1 is set and bits 2 and 3 are
cleared.

• If operand 1 is arithmetically less than operand
2, bit 2 is set and bits 1 and 3 are cleared.

• If operand 1 is logically greater than operand 2,
bit 5 is set and bits 6 and 7 are cleaned.

• If operand 1 is logically less than operand 2, bit 6
Is set and bits 5 and 7 are cleared.

For arithmetic results, 7FFF 16 is the largest
number and 800015 is the smallest number.

For logical results, FFFF 16 is the largest number
and 000016 Is the smallest number.

EXAMPLE

1 1. J 4 S 6 1 I 9 10 II 11 ll 1' 1& 16 11~1910 -2i.iliJ24~iOJi"JiJjJ<)IJ&Ji-ja39ca4·1'17J~

c.IJ..J .I>: . • . -.t..r.IJ.(). u J ·1 .l..J. · . · · · · · · · ·

The value -2600 modified by the contents of register 5 is
compared with the value at the location specified in
register 3; the Condition register is set accordingly.

Compare Immediate

0 7 8 9 11 12 13 15

31

FUNCTION: Performs a comparison of a 4-bit immediate
value and a one-word field in a general register or in
memory.

OPERAND 1: A 4-bit signed value in bits 8-11 of the
instruction; the value may range from 0-15. The 4-bit
value is compared with operand 2 in bit positions 12-15;
bits 0-11 are zeros.

OPERAND 2: A one-word field located in the general
register specified by R2, or in memory if indirect
addressing is used.

RESULTS: Operand 2 is not changed. The Condition
register is affected as follows.

Bits 0-3 reflect the arithmetic results of the compare
and bits 4-7 reflect the logical resu Its of the
compare, as specified below:

• Bits 0 and 4 are always cleared.

• If operand 1 is equal to operand 2, bits 3 and 7
are set and bits 1, 2, 5 and 6 are cleared.

• If operand 1 is arithmetically greater than
operand 2, bit 1 is set and bits 2 and 3 are
cleared.

• If operand 1 is arithmetically less than operand
2, bit 2 is set and bits 1 and 3 are cleared.

• If operand 1 is logically greater than operand 2,
bit 6 is set and bits 6 and 7 are cleared.

• If operand 1 is logically less than operand 2, bit 6
is set and bits 5 and 7 are cleared.

For arithmetic results, 7FFF 16 is the largest
number and 800016 is the smallest number.

For logical results, FFFF 16 is the largest number
and 000015 is the smallest number.

EXAMPLE

1 1 J ·, ·t. - · .. -,-, g ·1-011·-11-1Jl41_!J_ 1611 ~ l!To--z, 1l-ii10il82i1819To-1I- 11-JJJ4l~ -1s·31·1e-·19- 40- 41 42-43~4.- 4~ 4s

Ch.I.I . . . /.I., .I.'- · .

Compares the immediate value 11 to the value at the
!location specified in register 6 and sets the Condit ion
register accordingly.

Compare Packed Decimal •

0 7 8 9 11 12 13 16

51

FUNCTION: Performs a comparison of packed decimal
iields in memory; the signs are compared first, then the
comparison proceeds digit-by-digit, left to right. The field
hmgths may vary from 0-255 bytes. The operation
continues until either of the following occurs: the
oiperands are found unequal or the greater of L 1 or L2 is
exhausted.

OPERAND 1: A packed decimal field in memory. The
fi:eld length, 0-255 bytes, is specified by the L1 value in
the instruction. Addressing options to the base address M1
include only indexing.

OPERAND 2: A packed decimal field in memory. The
field length, 0-255 bytes, is specified by the L2 value in
the instruction. Addressing options to the base address M2
include only indexing.

4-37

RESULTS: Neither operand lt changed. The following
conditions may occur, depending on the values of L1 and

L2:

• If L1 = L2, the operands are compared
digit-by-digit.

• If L1 is less than L2, the operands are compared
until L1 is exhausted, then zeros are compared to
operand 2.

• If L 1 is greater than L21 the operands are
compared until L2 Is exhausted, then zeros are
compared to operand 1.

• If L1 = 0 and L2 = 0, bits 3 and 7 of the
Condition register are set and bits 1, 2, 6, and 6
are cleared.

The Condition register is affected as follows:

• Bits 0 and 4 are always cleared.

• If operand 1 is greater than operand 2, bits 1 and
5 are set and bits 2, 3, 6, and 7 are cleared.

• If operand 1 is less than operand 2, bits 2 and 6
are set and bits 1, 3, 5, and 7 are cleared.

• If operand 1 is equal to operand 2, bits 3 and 7
are set and bits 1, 2, 5, and 6 are cleared.

CONSIDERATIONS:

1. Digit validity is not checked during the compare.

2. Invalid digits may produce inconsistent results
(invand digits are considered greater than valid
digits).

3. A minus zero field is less than a positive zero
field.

4. The compare is by sign first, and if it is like, then
the compare is made bit by bit, left to right. The
compare terminates as soon as an unequal
condition occurs, therefore the timing is affected
by data field contents as well as length. Timing
supplied (Appendix E) is for equal compare and
like signs.

EXAMPLE

~-~~-'+''~'-''-'"-"-"-'"-'"~"~··~-1·11~"'~''~"-'"-'"~"~"~"~~-'"'~"~"~1J_t1~~-H~1·~i~n~To-•·-·~-~·i_u•......,•~
C.h/'J;. . Tl/.6(,0,.ll,ll.U.1!(10.1 1 .)

4-38

Two packed decimal fields are compareel; the Condition
register is set accordingly. In this example, the field
represented by T AG(90, 1) is shorter than the other;
therefore, bytes 91 through 101 of th1e larger fi.e-ld,
HERE(101), will be compared to zeres if an inequ~ity
determination cannot be made before exhaustion of the
smaller field.

Since the signs are checked first, an ineq11Jality decision
would be made immediately if the signs are different.

Compare Memory - Memory

0 7 8 9 11 12 13 15

-----61-----,-1--R1-1~· R2

M1

FUNCTION: Performs a comparison of two one-word
fields in memory.

OPERAND 1: A one-word field in memo1ry. Addressing
options to the base address M1 include indexing, indirect
addressing, or a combination of both.

OPERAND 2: A one-word field in memory. Addressing
options to the base address M2 include indexing, indirect
addressing, or a combination of both.

RESULTS: Neither operand is changed. The Condition
register is affected as follows.

Bits 0-3 reflect the arithmetic results of the compare
and bits 4-7 reflect the logical resu Its of the
compare, as specified below:

• Bits 0 and 4 are always cleared.

• If operand 1 is equal to operand 2, bits 3 and 7
are set and bits 1, 2, 5 and 6 are cleared.

• If operand 1 is arithmetically ~treater than
operand 2, bit 1 is set and bits ~~ and 3 are
cleared.

• If operand 1 is arithmeticaHy less than operand
2, bit 2 is set and bits 1 and 3 are cleared.

• If operand 1 is logically greater than operand 2,
bit 5 is set and bits 6 and 7 are clearnd.

• If operand 1 is logically less than oporand 2, bit 6
is set and bits 5 and 7 are cleared.

For arithmetic results, 7FFF 16 is the largest
number and 800016 is the smallest number.

For logical results, FFFF 16 is the largest number
and 000016 is the smallest number.

EXAMPLE

F NAMI OPlRAflON OPERAND

; '• 1. , i 'I Ill 11 1111 11 l'i lh II 1t1 l'l /11i'In1:1 74 7'1/hll16-1!i ic)],--]1-j)-34·-~ JG-iiJ8394o•1-'U4J4~'6

C/lh'I . &/f.e,<~.(0.,.T4.G-.(0
' •' 1 • • • 1 • •I•• I, , I

A 16-bit value at the address specified by @HERE(4) is
compared to a 16-bit value at the address identified by
TAG(6); the Condition register is set accordingly.

Compare Register-Register

0 7 8 9 11 12 13 15

21

FUNCTION: Performs a comparison of two one-word
fields; either field may be in a register or in memory.

OPERAND 1: A one-word field located in the general
register specified by R 1, or in memory if indirect
addressing is used.

OPERAND 2: A one-word field in the general register
specified by R2 1 or in memory if indirect addressing is
used.

RESULTS: Neither operand is changed. The Condition
register is affected as follows.

Bits 0-3 reflect the arithmetic results of the compare
and bits 4-7 reflect the logical results of the
compare, as specified below:

• Bits 0 and 4 are always cleared.

• If operand 1 is equal to operand 2, bits 3 and 7
are set and bits 1, 2, 5, and 6 are cleared.

• If operand 1 is arithmetically greater than
operand 2, bit 1 is set and bits: 2 and 3 are
cleared.

• If operand 1 is arithmetically less than operand
2, bit 2 is set and bits 1 and 3 are cleared.

• If operand 1 is logically greater than operand 2,
bit 5 is set and bits 6 and 7 are cleared.

• If operand 1 is logically less than operand 2, bit 6
is set and bits 5 and 7 are cleared.

For arithmetic results, 7FFF16 is the largest
number and 800015 is the smallest number.

For logical results, FFFF 16 is the largest number
and 000015 is the smallest number.

EXAMPLE

I 1 '• 1, I I\ 'I 10 11I/1111 !'1 lh II IH 1'1111IIl'l'll111~ Jh 11IH19 1031 J1-333iJ!. J63TJ8~39-4041 42 4°3444!!4(~
NAMl OPERAflON OPERAND

CllPA. , 7/'~S
o o I O, , I 1 I , I

A. 16-bit field in register 7 is compared to a 16-bit field at
a location specified in register 5; the Condition register is
se1t accordingly.

Compare Two-Word

CMPT @M1 (R1),@R2
0 7 8 9 11 12 13 15

t 71 Ii I R1 Ii I R2

M1

FUNCTION: Performs a comparison of a two-word field
in memory and a two-word field in two general registers
or in memory.

Olf>ERAND 1: A two-word field in memory beginning at
the specified effective address. The most significant bits
ane at this address.

Addressing options to the base address M 1 include
indexing, indirect addressing, or a combination of both.

OPERAND 2: A two-word field located in two general
rei~isters or in memory.

If direct addressing is used, the field is in the register
spiecified by R2 and the next highest register, R2+1; the
most significant bits are in the R2 register. (Note: If
reuister 7 is specified by R2, the field is in registers 7 and
0 with the most significant bits in register 7.)

If indirect addressing is used, the field is in memory
beginning at the address in the R2 register; the most
significant bits are at this address.

!!_!:SUL TS: Neither operand is changed. The Condition
reuister is affected as follows.

Bits 0-3 reflect the arithmetic results of the
compare and bits 4-7 reflect the logical results of
the compare, as specified below:

4-39

• Bits 0 and 4 are always cleared.

• If operand 1 is equal to operand 2, bits 3 and 7
are set and bits 1, 2, 5 and 6 are cleared.

• If operand 1 is arithmetically greater than
operand 2, bit 1 is set and bits 2 and 3 are
cleared.

• If operand 1 is arithmetically less than operand
2, bit 2 is set and bits 1 and 3 are cleared.

• If operand 1 is logically greater than operand 2,
bit 5 is set and bits 6 and 7 are cleared.

• If operand 1 is logically less than operand 2, bit
6 is set and bits 5 and 7 are cleared.

For arithmetic results, 7F FF 16 is the largest
number and 800015 is the smallest number.

For logical results, FFFF15 is the largest number
and 000015 is the smallest number.

EXAMPLE

A 32-bit field at the address identified by TAG(4) is
compared to a 32-bit field in registers 1 and 2; the
Condition register is set accordingly.

Compare Characters •

0 7 8 9 11 12 13 15

55

FUNCTION: Performs a magnitude-only comparison of
two fields in memory. The field lengths may vary from
0-255 bytes. The comparison is byte·by-byte and proceeds
from left to right. The operation continues until either of
the following occurs: the operands are found unequal or
the greater of L1 or L2 is exhausted.

OPERAND 1: A field in memory. The field length, 0-255
bytes, is specified by the L1 value in the instruction.
Addressing options to the base address M1 include only
indexing.

4-40

OPERAND 2: A field in memory. The field length, 0-255
bytes, is specified by the L2 value in the instruction.
Addressing options to the base address M:z include only
indexing.

FJESUL TS: Neither operand is changed. The following
conditions may occur, depending on the values of L1 and
L2:

• If L1 = L2, the operands are compared
byte-for-byte.

• If L1 is less than L2, the operands are compared
until L1 is exhausted, then blanks arie compared
to operand 2.

• If L1 is greater than L2, the operands are
compared until L2 is exhausted, then operand 2
is compared to blanks.

• If Li = 0 and L2 '/: 0, blanks are compared to
operand 2.

• If L1 = 0 and L2 = 0, no compare is performed.

The Condition register is affected as follows:

• Bits 0 and 4 are always cleared.

• If operand 2 is greater than operand ·1, bits 1 and
5 are set and bits 2, 3, 6 and 7 are cle.ared.

• If operand 2 is less than operand 1, bits 2 and 6
are set and bits 1, 3, 5 and 7 are clear1ed.

• If operand 2 is equal to operand 1, or if
Ll =L2=0, bits 3 and 7 are set and bits 1, 2, 5 and
6 are cleared.

CONSIDERATIONS: Word compare is performed if, and
only if, the lengths L1 and L2 and the effoctive addresses
are even.

EXAMPLE

I 1 ,I 4 !I h I H !i 10 II 11 l:i 14 I~ Iii 1i Ill l'I /II /1 Jl II /ti l'J 71, 7118 l'l IO .II 3-1)3.)4]!I is]/ 18 .t!t 40 414·2--43444':1~

c.hlX TA.6 (.1.0.D. 1.l.) 1 H.4A.4..(..Z..o.o., Z.) . .

A 200-byte field identified by TAG (200, 1) is compared to
a 200-byte field identified by HERE(200,2). Comparison
proceeds byte-by-byte until inequality is dietermined or all
bytes have been compared and found equal. The
Condition register is set accordingly.

CONTROL INSTRUCTIONS

Mnemonic

NOP
RDX
SR

No Operation
Read Extended Register
Service Request

No Operation

NOP

0 7 16

FUNCTION: Performs no operation. This instruction has
no operands.

EXAMPLE

F•ME OPEA"110N <WEA•ND

~-6-,- i 9 10--1,-11-13 14 1!i 16 1/ 18 19 70 11 7-7-71--74]~ 16 }I 1819-Jo]I i'13314 t't lb]/ i8J9 40 41 41- 434-,-~ 4

/'/.():/'.
• • • • • • • •' • •' • • • • 1 • I ••I• I 1

This instruction occupies four bytes in the program.

Read Extended Register

0 8 9 11 12 13 16

c FO

FUNCTION: Reads a Group 11 extended register and
stores the information in a general register.

Extended Function Code: Bit 12 serves as an extension to
the basic function code and is 0 for this instruction; this
bit distinguishes between RDX and WRX.

OPERAND 1: The Group 11 extended register to be read.

OPERAND 2: The general register which is to receive the
contents of the extended register.

CONSIDERATIONS: Any attempt to access a Group I
register results in a trap to the Invalid Instruction routine.

EXAMPLE

1 ,·--3· 4-~ 9~11-iJ-)4_ 1_~-·l61/ i! 19 70 -i1--1i 1J 74 2S 76 21 28 29 JD 31 32 33 34 JS 36 31 38 39 40 41 42 43 44 4S 46

~.11.x. . . 0. 1 .:J.•..

Reads the extended register 0 and stores the contents in
general register 3.

~ktrvice Request

SR @11

0 7 8 15

[, ______ ~1_3 _________________ 1, ________ _.

FUNCTION: Provides an information byte called the
n:iquest index 01) to be interpreted by the operating
svstem (software). The request index byte has the
following format:

8 9

c

p bit

c: bit

E bit

Cllass

10 11 12

E Class

Indicates location of parameter string
(the @ sign in the source operand is used
to turn this bit on).

0 means immediately following service
request. 1 means at address contained in
register 6.

Indicates when control is to be returned
to requesting program.

0 means after service request is
completed.

means after service request is
recognized by the control program.

Indicates if the requesting program will
process exception completion of the
request.

0 means requesting program wi 11 not
process exception completion.

1 means requesting program wi 11 process
exception completion.

Denotes major class in which the service
request falls. Service requests fall into
the following seven major classes.

Class 0 Debugging service request.
Class 1 Restricted service request.
Class 2 Control program service

request.
Class 3 Block 1/0 service request.
Class 4 Physical 1/0 service re­

quest.
Class 5 Supervisor service request.
Class 6 Telecommunications ser­

vice request.

15

4-41

OPERAND 1: I 1 is the request index byte, which is
defined by the operating system.

RESULTS: Execution of a Service Request instruction
causes the following actions:

1. The Service Request bit (bit 13) of the executing
processor's Condition register is set.

2. The Busy and Active bits of Processor 4 are both
set.

3. The Busy and Active bits of the executing
processor are both reset.

NOTE

Any further effects of the SR instruction, beyond
those described above, result from processing by the
operating system software. For more information
on the SR instruction, refer to the Control Program
and Data Management Services, Extent:led Reference
Manual.

DATA CONVERSION INSTRUCTIONS

Mnemonic

CVB
CVBT
CVD
CVDT

EDTX

PAKX
UNPX

TRNX

Convert to Binary •
Convert to Binary Two-Word •
Convert to Decimal •
Convert to Decimal Two-Word •

Packed Decimal/Alpha Edit •

Pack •
Unpack •

Translate •

Convert to Binary •

0 7 B 9 11 12 13 16

.--~~-AA--~---1-i~,~R-1~1~

M1 ~
FUNCTION: Converts a 3-byte packed decimal field in
memory to a 2-byte binary field in a general register.

Extended Function Code: Bit 12 serves as an extension to
the basic function code and is 0 for this instruction; this
function bit distinguishes between CVB and CVBT.

OPERAND 1: A 3-byte packed decimal field in memory.
Addressing options to the base address Ml include
indexing, indirect addressing, or a combination of both

4-42

The effective address points to the most significant byte
of the field. The packed decimal field may hold five digits
and a sign.

OPERAND 2: The resultant 2-byte signed binary value in
the general register specified by R2. The binary value has
15 bits and a sign bit.

RESULTS: The result field resides at the operand 2
location. The Condition register is affected cis follows.

• Bit 0 (overflow) is set if results are ~1reater than
+32,767 or less than -32,767. (Note: -32,768 is
converted correctly but the overflow bit is set.)

• Bits 1-7 unchanged.

EXAMPLE

T.A.6.f.'I.).,.,• ~

TAG(4) identifies a 3-byte packed decimal field (five
digits plus sign) which is converted to a 16-bit (15 bits
plus sign) binary value and loaded into register 6.

The 3-byte packed field at the effective address of
TAG(4):

The resultant 2-byte binary field in register 6:

I 1 >I< FI
• Sign bit= O

Convert to Binary Two-Word •

0 8 9 11 12 13 15

----~-A-A~-----,-i~,--R-,-~

Ml ~
FUNCTION: Converts a 6-byte packed decimal field iu
memory to a 4-byte binary field in two general registers.

Extended Function Code: Bit 12 serves as an extension to
the basic function code and is 1 for this iinstruction; this
function bit distinguishes between CVB and CVBT.

OPERAND 1: A 16-byte packed decimal field in memory.
The packed decimal field can hold 11 digits and a sign.
Addressing options to the base address M1 include
indexing, indirect addressing, or· a combination of both.
The effective address points to the most significant byte
of the field.

OPERAND 2: The resultant 4-byte field in two general
registers that will hold a 32-bit (31 bits and a sign bit)
binary field. The binary field will be in the register
specified by R2 and the next highest register R2+1; the
most significant bits are in the R2 register. (Note: If
register 7 is specified by R2, the binary field is in registers
7 and 0, with the most significant bits in register 7.)

RESULTS: The result field resides at the operand 2
location. The Condition register is affected as follows:

• Bit 0 (overflow) is set if results are greater than
+2~J1.1 or less than -231.1. (Note: -231 is

converted correctly but the overflow bit is set.)

• Bits 1-7 are unchanged.

EXAMPLE

~~4 '.i fi' H9 10111713141S1611.18191011117JH2S16'117819JOl131lJl4lSl631J8l94041414JU4S46

. . . C..YJJ.T . . ,r.tl.G.(.JJ.,,.7

@TAG(3) identifies a 6-byte packed decimal field (11
digits plus sign) which is converted to a 32-bit (including
sign) binary value and loaded into register 7.

The 6-byte packed decimal field at the effective address of
@TAG(3):

~17 '. 418: 316: 417: o I

The resultant 4-bytE! binary field in register 7:

Convert to Decimal •

0 7 8 9 11 12 13 16

Ii I R1 I f I R2

I
M1

AB

,FUNCTION: Converts a 2-byte binary field in a general
1reglster to a 3-byte packed decimal field in memory.

!Extended Function Code: Bit 12 serves as an extension to
ithe basic function code and is 0 for this instruction; this
~Function bit distinguishes between CVD and CVDT.

pPERAND 1: The resultant 3-byte packed decimal field
iin memory which can hold five digits and a sign.
J!\ddressing options to the base address M 1 include
indexing, indirect addressing or a combination of both.
The effective address points to the most significant byte
of the field.

qPERAND 2: A 2-byte signed binary value in the general
register specified by R2. The binary value has 15 bits and
a sign bit.

f~ESUL TS: The result field resides at the operand 1
1,ocation.

EXAMPLE

! 1] 4 'l !1 I 11. g IU 11 ,--;-,-) 14_1_!1 1-fi 11.1a -,9 10 1111-n141i1fi 111819·3031-·ii3i]43!>-16iili39404! 4243444i"T&

r
NAMI Ol'ERATION Ol'ERAND

CV.I> . Ttf.6.U.J., . .z.
• •, •', I.,•, I, I,••, I

Ftegister 2 contains a 16-bit binary value which is
converted to a 3-byte packed decimal field and stored at
the location specified by TAG(1).

The 2-byte binary field in register 2:

Sign bit= 0

The resultant 3-byte packed field at the effective address
o1f TAG(1):

C1:mvert to Decimal Two-Word •

CVDT @M1(R1),R2

Cl 7 8 9 11 12 13 15

E
AB Ii I R1 I f I R2

M1

4-43

FUNCTION: Converts a 4·byte signed binary field located
in two general registers to a 6-byte packed decimal field
located in memory.

Extended Function Code: Bit 12 serves as an extension to
the basic function code and is 1 for CVOT instruction;
this function bit distinguishes between CVD and CVDT.

OPERAND 1: The resultant 6-byte packed decimal field
located in memory. The packed decimal field may hold 11
digits and a sign. Addressing options to the base address
M 1 include indexing, indirect addressing, or a
combination of both. The effective address points to the
most significant byte of the field.

OPERAND 2: A 4-byte signed binary value (31 bits and a
sign bit) located in two general registers. The binary field
is in the register specified by R2 and the next highest
register, R2+1; the most significant bits are in the R2
register. (Note: If register 7 is specified by R2 1 the field is
in registers 7 and 0 _with the most significant bits in
register 7.)

RESULTS: The result field resides at the operand 1
location.

EXAMPLE

I I 3 '1 'i Ii I II !I Ill \I 1/ 11 l•l 1; 11, 11 18 \'I 10 /I ll ll /·1 I'> It. 11 18 }'I !O l\ J'/ IJ J4 J!i Jti I tK I~ 4(} 41 4; 1 t U .ia, ~··

C YJ)T . ~F.J.~, 3 .

Registers 3 and 4 contain a 4-byte binary value which is
converted to 6-byte packed decimal (11 digits plus sign)
and stored at the location identified by DFLD.

The 4-byte binary field in registers 3 and 4:

The resultant 6-byte packed decimal field at the address
specified by DF LD:

EEi 7: 418: 316: 417: c I
Packed Decimal/Alpha Edit •

0

57

4-44

FUNCTION: This instruction moves the <:ontents of a
source field to a result field with editing symbols inserted
according to an edit mask. The first-byte address of the
mask field must be set in general registier 1 prior to
execution of the edit instruction. A more complete
description of the functions performed and details of the
edit mask follows this summary.

OPERAND 1: The field in memory to be edited. It must
~ a packed decimal field for numeric editing; for
alphanumeric editing it must be an EBCDIC field. For
numeric editing, the number of digits in the source field is
specified in L1; for alpha editing, no length is specified.
Addressing options t.o the base address M ·i include only
indexing.

OPERAND 2: The field in memory that will hold the
edited results. It will always be an EBCDIC field. For
numeric editing, the length in bytes of the· result field is
specified in L2. For alphanumeric editinu, L2 must be
zero. Addressing options to the base addrnss M2 include
only indexing.

RESULTS: An EBCDIC field at the operand 2 location.
Results depend on the type of editing and the contents of
the edit mask.

EXAMPLE

~ ., \ 11 ' . 1 I . . !\ ' . II I . , H ' ' - : " : ' . ,'_ ~· / ·1 '.. }\, II JH l'I 111 l1 ! } !I]4] ~' 16 11 lR l!I 4 0 4 1 41 4 3 44 4 'J 46

)e.orx TA.6-U) ,.H/:~£(6)

No length is specified because, in the example, the field to
be edited is assumed to be an alphanumeric field; as such,
both fields are EBCDIC.

The location TAG(5) contains the alphanumeric field to
be edited, and the field at the address HERE(6) receives
the editing symbols generated during the edit.

Detailed Description of Edit

The EDTX instruction performs both numeric editing and
alphanumeric editing.

The source field is moved to the result field with editing
symbols inserted according to the edit mask. The result
field is always an EBCDIC field. The sourc:e field must be
a packed decimal field when numeric editing is requested
(L2=0). The source field must be an EBCDIC field when
alphanumeric editing is requested (L2=0).

The editing function is terminated as dictated by the edit
mask. The length specifications (L1 andl L2} are used
when numeric editing is requested to unpack the source
(using UNPX) before actual editing begins.

Upon return from a numeric edit, general register 1
CC?ntains the byte address of the last nonsignificant (FO
\lalue) character. This address is used to store the float
character if desired. If there is no significant character
(source field has zero value), general register 1 will be set
to zero. This register will always be set to zero following
an alpha edit. The Condition register is set as follows
when numeric editing is requested.

• Bit 1 is set if the source field is positive.

• Bit 2 is set if the source field is negative.

• Bit 3 is set if all source digits are zero.

• Bit 4 is always cleared.

The Condition register is not used or modified when
alphanumeric editing is requested.

Edit Mask:

Editing is accomplished by means of an edit control
technique. The mask field, which is referenced (but not
changed) by the EDTX instruction, is used to control data
movement from the source field to the result field. The
mask field is made up of a string of one character (double
digit) edit operators and EBCDIC insert characters. The
edit operators are basically control functions directing the
edit microcode rather than the traditional mask used by
the edit microcode to drive the edit ii 1g function.

To facilitiate a clear understanding of the editing process,
the following microcode indicators are defined. These
indicators are internal to the microcode and not directly
accessible by the user. They are initialized by the
microcode as defined below. The edit mask operators
direct the resetting and use of these indicators.

There are two microcode indicators and one 8-bit value
field which the edit microcode requires to effect the
execution of the EDTX instruction:

SD Significance Digit indicator

Initially SD is set to zero and is set to
one when significance is detected (by
edit operator or by occurrence of a
non-zero digit in the sourc:e).

SG Sign Indicator

The SG indicator is set according to the
Condition register after the source has
been unpacked.

GT = Bit 1 set - source is positive
EQ = Bit 3 set - source is equal to zero
LT = Bit 2 set - source is negative

FI Fill Character (8-bit EBCDIC)

Initially set with EBCDIC space (40
hex). The fill character may be specified
via the Set Fill edit operator to any
EBCDIC value.

The edit operators within the mask field have the
following format:

0 3 4 7

v F

The first (zone) digit of each edit operator character is the
variant specifier, V. The second (numeric) digit is the
fiunction specifier, F. When used, V specifies either repeat
count of the function F or subcontrol information.
Otherwise V is ignored.

l'he edit operators divide into three functional categories:

1. Data Transfer

2. Data Insert

3. Control

Data transfer operators specify conditional and
unconditional transfer of data from the source field to the
rnsult field.

Data insert operators specify conditional and
unconditional insertion of characters into the result field
where there is no dependency or reference to the source
fi,eld.

Gontrol operators function as explicit edit performance
C()ntrols where there is ·no reference directly to the source
or result fields.

The function code F specifies the operation to be
p1erformed. These codes have a numerical 4-bit
hexadecimal assignment. Following is a list of the edit
operators with the F code divided into categories.

Category Operator F-Hex F-Binary Operator Description

Data MC 8 1000 Move character

Transfer MCS 9 1001 Move character suppress

Data IC 4 0100 Insert character

Insert ICS 5 0101 Insert character suppress

ISG 7 0111 Insert sign

TE 0 0000 Terminate edit

Control SSD 2 0010 Set significance (SD)

SFI 6 0110 Set fill (Fl)

4-45

The IC,. ICS, and SFI operators require one insert
character following the edit operator. The ISG operator
requires either one or two insert characters following the
ISG edit operator. In all cases the insert characters are
bypassed automatically by the microcode to obtain the
next edit operator.

Numeric Editing

The edit operators function as follows during a numeric
edit.

MC - Move Character (F = 8)

• If SD equals zero, perform the SSD operation
(absolute).

• Move a character from the unpacked source field
to the result field.

• V specifies a repeat count (0-15).

MCS - Move Character Suppress (F = 9)

• If SD equals one, perform the MC operation.

• If SD equals zero and the next source character
equals zero, move the fill character from FI to
the result field.

• If SD equals zero and the next source character is
non- zero, perform the MC op1eration (SD gets set
equal to one by MC).

• V specifies a repeat count (0-15).

IC - Insert Character (F = 4)

• Move the character following this edit operator
to the result field.

e V specifies a repeat count (0-15). The same
character will be inserted V+l number of times.

ICS - Insert Character Suppress (F = 5)

• If SD equals one, perform the IC operation.

• If SD equals zero, move the fill character from
F 1 to the result field.

• V specifies a repeat count (0-15). The same
character (fill character or insert character) will
be inserted V+1 number of times.

4-46

ISG - Insert Sign (F = 7)

• If SG = LT (negative source) and

V=O, move the character following this edit
operator to the result field;

V=l, move the character following the edit
operator to the result field;

V=2, move the two characters following this edit
operator to the result field.

• If SG = EQ or GT (positive source) and

V=O, move a+ (4E hex) to the result fiield;

V=l, move a space (40 hex) to the result field;

V=2, move two spaces to the result field.

• V is a sub-control function specifying the type of
sign inserted.

TE - Terminate Edit (F = 0)

• Immediately terminates the EDTX iinstruction.

• The Condition register has been set to EQ, GT,
or LT.

• General register 1 is set to the address -1 of the
significant character within the source. It is set to
zero if there 1s no significance found.

• V is not used.

SSD - Set Significance (F = 2)

V is a sub-control function specifying whetlher absolute or
conditional set significance is requested.

• V = 1, absolute set significance is performed:

1. Set SD equal to one.

2. Set current result field address -·1 in general
register 1 as float address.

• V = 0, conditional set significance is performed:

1. If SD equals one, this is a no operation.

2. If SD equals zero and SG=EQ, this is a no
operation.

3. If SD equals zero and SG=GT or LT (source
non-zero), perform the absolute set
significance.

SFI - Set Fill Character (F = 6)

• Set FI with the character following this edit .
operator in the mask field.

• Vis not used.

Unusual Conditions in Numeric Editing - The following
hexadecimal values are not legal numeric editing
functions. If encountered, the following results will be
obtained.

•

•

•

•

•

F = 1 A normal Terminate Edit (TE)
will be executed.

F = 3 A normal Set Significance (SSD)
will be executed.

F = C A normal Move Character (MC)
will be executed.

F = D A normal Move Character
Suppress (MCS) will be
executed.

F =A or E

1. If SD equals one, move source
character to result field.

2. If SD equals zero, perf0rm the
absolute Set Significance
operation, skip the next source
character.

3. Vis ignored.

e F = B or F

1. If SD equals one, move the source
character to the result field.

2. If SD equals zero and the source
character is non-zero, perform
the absolute Set Significance; skip
the next source character.

3. If SD equals zero and the source
character is zero, move the FI
value to the result field.

4. V is ignored.

Since the source field is unpacked into the result field,
right justified, the length specification L2 must be greater
than l1.

'1F L2. is equal to or less than L1, the source character
could possibly be replaced by editing insert characters but
unpredictable results would be obtained.

A~lphanumeric Editing

J:\~lphanumeric editing is performed when L2 :::i 0. The edit
operators generally used are TE, IC, and MC.

The SSO, Sf I, and ICS will function but are not generally
o·f use in alphanumeric editing. Following is a description
o'f the editing operations.

IVIC - Move Character (F = 8)

• Move a character from the source field to the
result field.

• V is a repeat count (0-15) •

• SD is not set.

IC: - Insert Character (F ::s 4)

• Same as for numeric editing.

IC:S - Insert Character Suppress (F = 6)

• Same as for numeric editing.
'

Tl: - Terminate Edit (F = 0)

• Immediately terminate the edit and return
control to the caller.

SSD - Set Significance (F = 2)

e If V = 1 and SD = 0, set SD = 1.

• The address of the last byte moved or inserted
into the result is placed in general register 1.

• If V = 0 or SD = 1, no operation.

SF:I - Set Fill (F = 6)

• Same as for numeric editing.

Un1usual Conditions in Alphanumeric Editing - The
foUowing hexadecimal values {)re not tegal in
alphanumeric editing functions. If encountered, the
following results will be obtained.

• F = 1 A normal Terminate Edit (TE)
will be executed.

4-47

•

•

•

F = 3 A normal Set Significance (SSD)
will be executed.

F = 7 The Insert Sign has no meaning
iin that the Condition register is
riot set in alphanumeric editing
and the SG does not contain a
meaningful value.

F = 9, C, or D
Treated as a normal Move
Character (MC).

• F =A, B, E, or F
One character is moved from
the source field to the result
field. V is ignored.

The condition register is not used or modified by
alphanumeric editing. General register 1 is set to zero
upon return from alphanumeric editing.

Pack •

0 B 9 11 12 13 15

58

FUNCTION: Converts a zoned decimal field to a packed
decimal field. Both fields must be in memory; the field
lengths may vary from 0-255. Packing proceeds from right
to left until the length of the result field (L2) is
exhausted.

OPERAND 1: The zoned decimal field; the length of the
field, in bytes, is specified by the L1 value in the
instruction. Addressing options to the base address M 1
include only indexing.

OPERAND 2: The resultant packed decimal field; the
length of the field, in bytes, is specified by the L2 value in
the instruction. Addressing options to the base address M2
include only indexing.

RESULTS: The packed field resides at the operand 2
location. The Condition register is affected as follows:

• Bit 0 is always cleared.

• Bit 4 (invalid) is set if an invalid decimal digit
(not 0-9) occurs in operand 1 or if the sign field
is not A-F; bits 1-3 are cleared. However, packing
continues until L2 is exhausted.

4-48

• No significance in the result (packed field) sets
bit 3, clears 1, 2 and 4.

• Significance and a sign of F, A, C or E sets bit 1
and clears 2-4.

• Significance and a sign of B or D sets bit 2 and
clears 1, 3 and 4.

CONSIDERATIONS

1. Zone of low order digit (sign) is the only one
validated.

2. Packing continues until the length L2 is
exhausted.

3. If the number of packed digits in the receiving
field (2L2-1) is greater than the number of digits
(L1) of the sending field, zero fill is provided.

4. If the number of packed digits (2L2-1) is less
than the number of digits (L1) of the sending
field, truncation occurs but the overflow bit is
not set.

5. The sign of the sending field (zone of the
rightmost byte) becomes the sign of the receiving
field.

6. A field may be packed to itself (if the receiving
field length L2 is at least as large as L1).

7. The packed result field always contains an odd
number of digits (including significant and
nonsignificant digits).

8. No significance in the result and a negative
sending field sign generates a hex C sign and the
setting of bit 3 of the Condition register.

9. If L1 or L2 is zero, bit 3 of the Condition
register is set and bits 0-2 and 4 are clleared.

EXAMPLE

Assume that the following unpacked field is at an address
identified by WFLD, and WFLD=300.

300 301 302 303 304

Unpacked
(L1 = 5)

The following instruction shows how the field WF LO may
be packed to itself; packing proceeds from right to left,
and the unused bytes are filled with zeros.

, 1 J .~ .. ~-,. i 10--ITii~ 1911.!.!19101112231•1•1t1111193031 l·2331t3SH3131J94QU424JUtS&I

I.A~.¥.. . . . ';lr.J.J/(.J'.,J.,Jl'-t.J>.f..r:,.)•....•

Packed
(L2 = 5)

The next instruction defines the result field as three bytes
in length; the unused bytes (bytes 300 and 301) remain as
they were in the original field.

Ol'UIAflON ONtlAHO

I i" 3 • I & ' • 9 10 " 11 13 •• II I& " I 19 10 II 1113 ,, n H 11 II 11 30 31 311! 3t ll H ,, 31 n •D II ti ., .. •I t6

Packed
(L2 = 3)

f.A.k.X . • . l,llr.JJ.U.,.'J~,JU".JJ).f..f.,)

SIGN RULES FOR PAKX AND UNPX.

1. Valid signs for unpacked fields in hexadecimal,
are: plus=F,A,C,E and minus=B,D.

2. Valid signs for packed fields, in hexadecimal, are
plus=F, A, C, E, 0, 2, 4, 6, 7, 8, and minus=B, D,
1, 3, 5, 9.

3. When packing is performed, the packed field will
accept any valid sign in the unpacked field.
Similarly, when unpacking, the unpacked field
will accept any valid sign in the packed field.

4. The preferred signs are, in hexadecimal: plus=C,
and minus=D. An arithmetic operation
performed on a packed field will change any sign
other than a preferred sign to the preferred C or
D.

Unpack •

UNPX M1 (L1,R1),M2(L2,R2)
0 7 8 9 11 12 13 16

59 1] R1]] R2

M1

M2

L1 J L2

FlUNCTION: Converts a packed decimal field to a zoned
ducimal field. Both fields must be in memory; the field
le1ngths may vary from 0-255. Unpacking proceeds from
ri11ht to left. The zoned decimal field must contain at least
as many bytes as there are significant digits in the packed
dEicimal field.

OIPERAND 1; The packed decimal field; the length of the
fiuld, 0-265 bytes, is specified by the L1 value in the
instruction. Addressing options to the base address M 1
include only Indexing.

OIPERAND 2: The resultant zoned decimal field; the
i;ngth of the field, 0-266 bytes, is specified in the L2 field
01: the instruction. Addressing options to the base address
M2 include only indexing.

RESULTS: The zoned decimal field resides at the operand
2 location. The Condition register is affected as follows:

t Bits 0 and 4 (invalid) are always cleared.

• If no significance results bit 3 is set, bits 1 and 2
are cleared.

• If significance results and the sign is F, A, C, E,
0, 2, 4, 6, 7 or 8 bit 1 is set and bits 2 and 3 are
cleared.

• If significance results and the sign is 8, D, 1, 3, 5,
or 9 bit 2 is set and bits 1 and 3 are cleared.

CONSIDERATIONS

1. No field validity checking is performed.

2. If the number of unpacked digits in the receiving
field (L2) is greater than the number of digits
(2L1-1) of the sending field, zero fill is provided.

3. If the number of unpacked digits (L2) is less than
the number of digits (2L1-1) of the sending field,
truncation occurs but the overflow bit is not set.

4. The sign of the sending field becomes the sign of
the receiving field. No preferred sign is generated.

6~ Unpacking a field to itself will result in a
transposition of the sign and least significant
digit, and an invalid result field if the field length
L2 is greater than 3.

6. If L1 or L2 is zero, bit 3 of the Condition
register is set and bits 0-2 and 4 are cleared.

4-49

EXAMPLE

The following instruction will unpack a field named BAL
and place it in a field named OUT; the length of the
packed field is 2 bytes, the unpacked field is 3 bytes.

I 1 l .-~-j; I 8 9 10 II 111)-14-·l!J i-6-11!~191011-121J·;-, J~iJii1"91Q)i-1]-jJ 14 l'i 16]I JBJ'J 4041 41 4104'> 46

tlH./'.X !IA.J...(.t.. 1 .).,.~.11.T(.3. 1) ..

The packed field - BAL:

Packed
(L1 =2)

The resultant unpacked field - OUT:

Unpacked
(L2 = 3)

The unpacked field need only be 2 bytes in length; the
next instruction defines OUT as 2 bytes long, while BAL
is the same length as in the first example.

. llN.PJC . . 8.1'~.(~ 1 .). 1 .0.ll.rf..1.,)

The resultant unpacked field - OUT:

Translate •

Unpacked
(L2 = 2)

TRNX M1(R1),M2(L2,R2)

0 7

56

M1

M2

0

8 9 11 12 13 15

FUNCTION: Performs a byte-by-byte translation of the
contents of a memory field, using a translate table. The
first byte of the translate table is located at the address
specified by the contents of general register 1. The table
has an assumed length of 256 bytes.

OPERAND 1: The field in memory that is to be
translated. Addressing options include indexing, but not
indirect addressing. The length of the M1 field is always
the same as the length of the M2 field.

4-50

OPERAND 2: The field in memory that will hold the
translated values at the conclusion of the operation.
Addressing options include indexing, but not indirect
addressing. The length (in bytes) of the M2 field is always
the same as the length of the M1 field.

Fl ELD LENGTH: From 1 to 256 byties may be
translated. Because the 8-bit L2 field cannot depict a
value greater than 255, the number of bytes translated by
this instruction is always one greater than the literal value
of the L2 field. If LrO, one byte will be translated; if
L2=255, 256 bytes will be translated.

RESULTS: The translated result field resides at the
operand 2 location.

EXAMPLE

I I j 4 ., fi I A g 10 11 17 I! '" ,., 11, 11 IR I'! /0 /1 n /! }4 ,., JI, 71 78 7'1 JO JI ·17)])4 l'i ,., ·11 !8 l~I •u 41 47 4] 14 4!> 4(,·

TANX . ~M~ (.r..J".I".,.I..) ,.T,f.6-.(.1.)

The 256 bytes identified by HERE (255,2) are translated
byte-by-byte and placed in a field identified by TAG(3).
Each byte value extracted from the HERE(255,2) field is
entered into the table with the TAG (3) address added to
it. Consequently, the table contains the addresses of the
translated values, and therefore can be used as an index to
them. (The address of the table is contained in register 1.)

DATA TRANSFER INSTRUCTIONS

Mnemonic

CLDR
CSTR

INV
INVD
INVI
INVM
INVR

LOO
LODB
LODD
LODI
LOOT

MOVB
MOVL
MOVM
MOVA
MOVX

PSTR

STO
STOB
STOT

Name

Condition Register Load
Condition Register Store

Inverse Move Memory - Register
Inverse Move Direct
Inverse Move Immediate
Inverse Move Memory - Memory
Inverse Move Register - Register

Load Memory - Register
Load Byte •
Load Direct
Load Immediate
Load Two-Word

Move Byte •
Move Long •
Move Memory - Memory
Move Register - Register
Move Characters •

Program Address Store

Store Memory - Register
Store Byte •
Store Two-Word

Condition Register Load

CLDR @R1

0 7 8 9 11 12 16

28

FUNCTION: Transfers the contents of a one-word
field in a general register or in memory to the
Condition register.

NOTE

Normally, bits in the Condition register are set or
cleared by hardware to show the results following
the execution of certain machine instructions (bits
0-7), or to identify a status condition that requires
executive-program action (bits 12-15), such as a
Bounds er tor. If any of the bits 12-15 in the field
being transferred are true (on), false status
conditions may be transmitted to the executive
program when the Condition register is loaded. This
caution does not apply if the field being transferred
was originally generated by the CSTR instruction.

OPERAND: A one-word value in the general register
specified by R 1, or in memory if indirect addressing is
used.

EXAMPLE

I 1 3- ~J?g+w11-11iJ14 .. 1-~-·s·;-, _l~-19 10 11 n-1)141~ lfi II 18 ·n :i-O i1- Ji]J 14 l'i JG JI Ill J9 40 41 41 4144 4~ 46

C..L.J>.,< . • . ~S: .

A 16-bit field located at the address specified in register 5
is transferred to the Condition register.

Condition Register Store

CSTR @R1

0 7 8 11 12 13 15

c=.~2_A~----Jl_1l_il~~~~iJ~~~=jj~fil~ill=j~lil~i~'-R-1~
FUNCT'ION: Transfers the contents of the Condition
register to a one-word field in a register or in memory.

OPERAND: A one-word value in the general register
specified by R 1, or in memory if indirect addressing is
used.

EXAMPLE

r OPEOATION OPEOAND

-. 9- jiJ--l1-lilJ"1!.'jfj--1J'!!l !9-2o i1-l21J1f2~3ti1iiJ4~-i& J1 3139 4041Cl4JU45 46

. C..S.TA . . . ~f.•
, , , , o, , • •,, 1' 'I•• I•'•• Io•, I,.,, I

The contents of the Condition register are transferred to
the location specified in register 6.

Inverse Move Memory - Register

INV @M1(R1),@R2

0 7 8 9 11 12 13 115

A4 Ii I R1 Ii I R2

M1

FUNCTION: Transfers the one's complement of a
one-word field in memory to a one-word field in a general
register or in memory.

OPERAND 1: The sending field; a one-word field in
memory. Addressing options to the base address M 1
include indexing, indirect addressing, or a combination of
both.

OPERAND 2: The receiving field; a one-word field in the
general register specified by R2, or in memory if indirect
addressing is used.

RESULTS: The result field resides at the operand 2
location.

EXAMPLE

1 / 1 • ~ Ii ,- 9 s 10 11 illlM--1~·15·ul-~ 19 lo 11n7J-,4-7il"G 111e zg J031 3,-·il-:M J~ JG ll illi . .to 41 •1 43 u 4""i45

!IN. v . . . ~A.r (f.)., .~.1 ...

The 16-bit field identified by DAT(4) is transferred in
one's complement format to the location specified in
register 1.

!Inverse Move Direct

llNVD I 1 (R1),@R2
0 7 8 9 11 12 13 16

84

1=uNCTION: Transfers the one's complement of a
one-word immediate value to a one-word field in a general
register or in memory.

OPERAND 1: A 16-bit immediate value in the second
word of the instruction·; the value may range from
0-65,535.

Indexing may be specified for operand 1. In this case,
operand 1 is derived by adding the I 1 value and the
c:ontents of the general register specified by R 1; no check
for overflow or link is made during the indexing.

pPERAND 2: A one-word field in the general register
specified by R2, or in memory if indirect addressing is
used.

4-51

RESULTS: The result field resides at the operand 2
location.

EXAMPLE

~ERA.NO

INV/> . 'S-.0.('1.).,6.7 '

The one's complement of the value formed by adding 650
to the contents of register 4 is transferred to the location
specified in register 7.

Inverse Move Immediate

0 7 8 9 11 12 13 15

34

FUNCTION: Transfers the one's complement of a 4-bit
immediate value to bits 12-15 of a one-word field in a
general register or in memory. Bits 0-11 of the one-word
field are always set to ones.

OPERAND 1: A 4-bit unsigned value in bits 8-11 of the
instruction; the value may range from 0-15.

OPERAND 2: A one-word field in the general register
specified by R2, or in memory if indirect addressing is
used.

RESULTS: The result field resides in bits 12-15 of
operand 2.

EXAMPLE

l\jAMI o.-~HATION Of'EAANO

: '> 1i 1 : ·,I HI 11 l) I l 11 1'1 111 ~I 111 1'1 /0 II IJ 11 "1 / 11)I,// 18 JIJ JO 11]/ B H]~]{. J: 18 Jg •O 41 Cl &JU 4!t .t6 F~ INV I . II., I 7
. . ' . . .

The one's. complement of 11 is transferred to bits 12-15
of a 16-bit field located at the address specified in register
7. Bits 0-11 in the 16-bit field are turned on; the result
field appears as follows: 1111111111110100.

Inverse Move Memory - Memory

INVM @M1 (R1),@M2(R2)

0 7 8 9 11 12 13 16

64 Ii I Rl I I R2

M1

M2

FUNCTION: Transfers the one's complement of a
one-word field in memory to another one-word field in·
memory.

4-52

OPERAND 1: The sending field; a one-word field in
memory. Addressing options to the base address M1
include indexing, indirect addressing, or a combination of
both.

OPERAND 2: The receiving field; a one-word field in
memory. Addressing options to the base address M2
include indexing, indirect addressing, or a combination of
both.

RESULTS: The result field resides at the? operand 2
location.

EXAMPLE

'I Ill I 1 1/ l. 11 "• 11, 11 IH l'I)!I /I n), /1 ,., /h JI JK }'l Ill 11 J] n']4 1~ 'Iii JI 38 19 40 41 414J44 4~ 46

IN v If T tf. 6- 0) I H.e..I{~ (. 1)

The one's complement of a 16-bit field located at an
address identified by TAG(6) is transferred to the field at
the address identified by HERE(7).

Inverse Move Register - Register

INVR @R1.@R2
0 8 9 11 12 13 15

24

FUNCTION: Transfers the one's complement of a
one-word field to another one-word field; either field may
be in a register or in memory.

OPERAND 1: The sending field; a one-word field located
in the general register specified by R 1 • or in memory if
indirect addressing is used.

OPERAND 2: The receiving field; a one-word field
located in the general register specified lby R2, or in
memory if indirect addressing is used.

RESULTS: The result field resides at the operand 2
location.

EXAMPLE

I, . .z.

The contents of register are converted to one's
complement format and stored in register 2.

Load Memory - Register

FUNCTION: Transfers the contents of a one-word field in
memory to a one-word field in a general register or in
memory.

OPERAND 1: The sending field; a one-word field in
memory. Addressing options to the base address M 1
include indexing, indirect addressing, or a combination of
both.

OPERAND 2: The receiving field; a one-word field in the·
general register specified by R2, or in memory if indirect
addressing is used.

RESULTS: The result field resides at the operand 2
location.

EXAMPLE

-· - . - - --- -·· ---
1] '.! 4 'i ti I H !I 10 11 17 IJ 1'1 1•, Iii\/ Ill l'l lU II 117114 }'1 lit /I 18]9 IU .II J] l.l].I]!! 11i JI 38 39 40 41 414J44 4!1 4~

1. o~. Ft.I> A-:(o.,.9s ...

FLDA(1) is the address of a 16-bit value which is
transferred to another location specified by the address in
register 5.

Load Byte •

LODB @M1(R1),@R2

0 7 8 9 11 12 13 15

F F7 Ii I R1 Ii I R2

M1

FUNCTION: Transfers a one-byte field in memory to bits
8-15 of a one-word field in a general register or to a
one-byte field in memory.

OPERAND 1: The sending field; a one-byte field in
memory. Addressing options to the base address M1
include indexing, indirect addressing, or a combination of
both.

OPERAND 2: The receiving field; a one-word field in the
general register specified by R2, or a one-byte field in
memory if indirect addressing is used. If the field is in a
general register, the byte is placed in bits 8-15 and bits 0-7
are zeroed out.

RESULTS: The result field resides at the operand 2
location.

NOW(3) yields the address of a one-byte field in memory
which is transferred to bits 8-15 of register 6.

Load Direct

0 7 8 9 11 12 13 15

80

FUNCTION: Transfers the contents of a one-word
immediate value to a one-word field in a general register
or in memory.

OPERAND 1: The sending field; a 16-bit immediate value
in the second word of the instruction; the value may range
from 0-65,535. If an address symbol is used in operand 1
(M1), the address of that field is used in the load
operation.

Indexing may be specified for operand 1. In this case,
operand 1 is derived by adding the I 1 value and the
contents of the index register specified by R 1; no check
for overflow or link is made during the indexing.

OPERAND 2: The receiving field; a one-word field in the
general register specified by R2, or in memory if indirect
addressing is used.

RESULTS: The result field resides at the operand 2
location.

EXAMPLE

' II 9 HI 11 I/ II 14 l'J It, 1118 19 /0 11 }]13-74 l'J 76112179 :10 JI 32 33 34 J'J 36)I 3839 4041 41431'4.f!a 46

I.. O.l>.P . . .S.T.0~£,.f

The address of the field named STORE (not the actual
field) is loaded into register 4.

Load Immediate

0 8 9 11 12 13 15

30

!FUNCTION: Transfers a 4-bit immediate value to bits
·12-15 of a one-word field in a general register or in
memory.

pPERAND 1: The sending field; a 4-bit unsigned value
located in bits 8-11 of the instruction; the value may
range from 0-15.

OPERAND 2: The receiving field; a one-word field
iocated in the general register specified by R2, or in
memory if indirect addressing is used.

4-53

RESULTS: The result field resides at the operand 2
location. The value from operand 1 is placed in bits 12-15
of operand 2; bits 0-11 of operand 2 are always zeroed
out.

EXAMPLE
r-------.--.------r-r---------------

I 1 1 4 'J 6·--, I 9 IO 1111iJli\!,-~~~-}Q 21 12 23 24 2S 26 21 21 29 JO 31 32 JJ 3t l!a JI 31 31 ll ilO 4142.U44 4!1 46

t.O~.L . . . l.'1. 1 .1•

The immediate value 14 is loaded into register 3. The
result in memory appears as follows: 0000000000001110.

Load Two-Word

LODT @M1(R1),@R2

0 7 8 9 11 12 13 15

70 I I R1 I if R2

M1

FUNCTION: Transfers the contents of a two-word field in
memory to a two-word field in a general register or in
memory.

OPERAND 1: The sending field; a two-word field in
memory beginning at the specified effective address. The
most significant bits are at this address.

Addressing options to the base address M 1 include
indexing, indirect addressing, or a combination of both.

OPERAND 2: The receiving field; a two-word field
located in two general registers or in memory.

If direct addressing is used, the field is in the register
specified by R2 and the next highest register, R2+1; the
most significant bits are in the R2 register. (Note: If
register 7 is specified by R2, the field is in registers 7 and
0 with the most significant bits in register 7 .)

If indirect addressing is used, the field is in memory
beginning at the address in the R2 register; the most
significant bits are at this address.

RESULTS: The result field resides at the operand 2
location.

EXAMPLE

Ol'EOATION Ol'IOAND

1 8 9 ,Q-l\\2-l]itfi"i6),t!!l ·19 20--21 12 13 24 2!i 26 21 11 29 JO ll J7 33 Jot JS JS 31 JI 39 40 41 U 43 U 4S 41

/..0.J).T. . 'Vf,U.£(7.).,.S':
· ·. • · •. • , .•• • •••• a, l •.• • .A-.

The 32-bit field identified by HERE(7) is loaded into
registers 5 and 6.

4-54

Move Byte •

0 8 9 11 n: 13 15

6A I I R1 Ii~ M1

M2

FUNCTION: Transfers a one-byte field in memory to
another one-byte field in memory.

OPERAND 1: The sending field; a one-byte field in
memory. Addressing options to the base address M1
include indexing, indirect addressing, or a combination of
both.

OPERAND 2: The receiving field; a one-word field in
memory. Addressing options to the base address M2
include indexing, indirect addressing, or a combination of
both.

RESULTS: The result field resides at the operand 2
location.

EXAMPLE

1 1 I t 'i .. ! II q ''1 II IJ I\ 14 l'i 111 11 11\ 1·1 .'ll l1 II Jt }4 l'J }h 11-}j-iq -10)1- 17 lJ-34)~ Jb]-/]8-39 40 41-42434~46

Wor1 . TJl.5.A.&.O.J,.11.u.~c."J ..

A byte at the address identified by THERE(1) is moved to
the location identified by HERE(4).

Move Long •

0 8 9 11 12 13 15 ----'T.'·
5A

FUNCTION: Moves a field in memory to another location
in memory. The length of both fields must be the same;
this length can vary from 0-65,535.

OPERAND 1: The sending field, moved one byte at a
time. The field length, 0-65,535 bytes, is specified by the
L1 value in the instruction. Addressing options to the base
address M 1 include only indexing. The effective address
points to the most significant byte of the fiuld.

OPERAND 2: The receiving field. The field length,
0-65,535 bytes, is specified by the L1 value in the

instruction. Addressing options to the base address M2
include only indexing. The effective address points to the
most significant byte of the field.

RESULTS: The result field resides at the operand 2
location. The sending field and receiving field may
overlap. If L1 = 0, no move of data is executed.

CONSIDERATIONS

A word move is performed if L1 is even and the
beginning addresses of both fields are even.

EXAMPLE

µ_!. ' ,--.-,-·, · • 9 10 lllTl3'41;·161~,.t,g--10-11-11n-i4·1-~1-, 11---,1a-1·9·-,-o-31-31-33-,. -15 -11 3-, 3-, u-4-0 4-, 42-0-.. -0-41

. ilf o.n.. . . . Tll.6-.(.z.0.().0.,.1.>.J.H~l!.r.1.'J

A 2,000-byte field identified by TAG (2000,6) is moved to
another memory location beginning at the address
represented by HER E(7).

Move Memory - Memory

0 7 8 9 11 12 13 16

60 I I R1 I I R2

M1

M2

FUNCTION: Transfers the contents of a one-word field in
memory to another one-word field in memory.

OPERAND 1: The sending field; a one-word field in
memory. Addressing options to the base address M1
include indexing, indirect addressing, or a combination of
both.

OPERAND 2: The receiving field; a one-word field in
memory. Addressing options to the base address M2
include indexing, indirect addressing, or a combination of
both.

RESULTS: The result field resides at the operand 2
location.

A 16-bit field identified by HOLD is moved to the field
identified by TOT(6).

Move Register - Register

0 7 8 9 11 12 13 15

20

FUNCTION: Transfers the contents of a one-word field to
another one-word field; either field may be in a general
register or in memory.

OPERAND 1: The sending field; a one-word field in the
general register specified by R 1, or in memory if indirect

addressing is used.

OPERAND 2: The receiving field; a one-word field in the
general register specified by R2, or in memory if indirect
addressing is used.

RESULTS: The moved value is at the operand 2 location.

EXAMPLE

1 2 J-~--1·a+g liill--i11l .. 14-1Sl611~- 20 2i _n_ 23 24 2!1 2& 11 ·21 29 JO 11 J2 11 l4 J~ 36 11--iili-4o 4142~

Wo.r.J(> . . . ~i., .'I. ..•....•..............•

A 16-bit field at the address specified in register 6 is
moved into register 4.

Move Characters •

0 7 8 9 11 12 13 15
.~~~~~~~~~~ ...---~~- -~~~---.

54

t=UNCTION: Transfers the contents of a field in memory
t•O another field in memory; the field lengths may vary
from 0-255 bytes.

9PERAND 1: The sending field. The field length 0-255
bytes, is specified by the L1 value in the instruction.
.Ll\ddressing options to the base address M 1 include only
indexing.

QPERAND 2: The receiving field. The field length, 0-255
bytes, is specified in the L2 field of the instruction.
~ddressing options to the base address M2 include only

indexing.

RESULTS: The result field resides at the operand 2
location. The following conditions may occur, depending

oir1 the values of L1 and L2.

• If Ll = L2, the number of bytes specified by L1
is transferred.

• If L1 is less than L2, the number of bytes
specified by L1 is transferred, ·then blanks are
used to fill operand 2.

4-55

• If L1 is greater than L2. the number of bytes
specified by L2 is transferred.

• If L1 = 0 and L2 'f 0, the number of bytes
specified by L2 is filled with blanks.

• If L1 = 0 and L2 = 0, no transfer is executed.

CONSIDERATIONS

A word move is performed if, and only if, the
lengths L 1 and L2 and the effective addresses M 1
+ (R 1) and M2 + (R2) are both even.

EXAMPLE

1 1 , -, ,,,,1g+;o "- 1111 .. " 1• ,, ,, ,, 10 "1113,.,, 1s,,,.,. 10" ,, 33 34,. 1• Ji-39394;,-.04243;44;--;,

~.O.YJC . . . T.C.T.A.J...U.~.,J.r/).I..S.tt.0.11.r.O.£,.J

The TOTAL field is moved to the DISKOUT field. Since
DISKOUT is larger than TOTAL, the rightmost 5 bytes of
DISKOUT are filled with blanks.

Program Address Store

PSTR @R1
0 B 9 11 12 13 15

3A

FUNCTION: Transfers the current program address to a
one-word field in a register or in memory.

OPERAN_Q_l: A one-word field in the general register
specified by R 1 • or in memory if indirect addressing is
used.

RESULTS: The current program address resides at the
operand 1 location.

~~

J 4--~-,-a191 ;·0-11-~1~920 212'l11 14 2!i 26 1111 29 lO JI 31 ii._)4 -)~-jli JI JI J<J 40 41 -., •1 44 10, u, F
NAMI Of'fRATIOH ~---~----------

f . .S.T .)! . • . ~s:
• • • • •I• •' •I•>•• I I• I •

Transfers the current value of the Program Address
register to the address specified in register 5.

Store Memory - Register

STO @M1 (R1),@R2

0 7 B 9 11 12 13 15

F FA I I R1 I I R2

M1

FUNCTION: Transfers the contents of a one-word field in
a general register or in memory to another one-word field
in memory.

OPERAND 1: The receiving field; a one-word field in
memory. Addressing options to the base address M1
include indexing, indirect addressing, or a combination of
both.

4-56

OPERAND 2: The sending field; a one-word field in the
general register specified by R2, or in memory if indirect
addressing is used.

RESULTS: The field is stored in the operand 1 location.

EXAMPLE

---:------+:+---------------- - -- ---- ------- ---- - -
I 2] 4 IJ 6 1 I 9 IO 11 12 ll U llJ 16 1118 1910 11121l 741S 2ti '1128 29 JO JI 37 31)4 J!> '.\6]I 38 39 4041U4]U4'l4l

j.s:r.o. TA-.6.C.1.). 1 .'/. •..•

The contents of register 4 are stored at a memory location
identified by TAG(1).

Store Byte •

0 7 8 9 11 12 13 15

=======F8======i==i =R=1==1·~
M1 -=.==J

FUNCTION: Transfers the contents of bits 8-15 of a
general register or a one-byte field in memory to a
one-byte field in memory.

OPERAND 1: The receiving field, a one··byte field in
memory. Addressing options to the base address M1
include indexing, indirect addressing, or a combination of
both.

OPERAND 2: The sending field; bits 8-15 of the general
register specified by R2, or a one-byte field in memory if
indirect addressing is used.

RESULTS: The stored byte resides at the operand 1
location.

EXAMPLE

I 1 J 4 !> Ii I II ':i I 0 I 1 I 1 I I I A I ') l !l I I 18 1fi JO J 1 1 } I ! l : J 'i }h 7 I Ill }q !fl I I l / I I 14 l'J 11> 11 \H !~I 4 U 4 I 4 2 4] 4 4 4 "i 41. 4 J

sro~ ~A.TA r.J). 1 'I

The contents of bits 8-15 of register 4 ate stored at a
memory location identified by DATA(3).

Store Two-Word

0 7 B 9 11 12 13 15

--~~~FB~~--,--,~R-1-·~

Ml -===:J
FUNCTION: Transfers the contents of a two-word field in
two general registers or in memory to a two-word field in
memory.

OPERAND 1: The receiving field; a two-word field in
memory. Addressing options to the base address M1
include indexing, indirect addressing, or a combination of
both.

OPERAND 2: The sending field; a two-word field in
general registers R2 (more-significant word) and R2+1
(less significant). If indirect addressing is used, the
registers contain the memory addresses of the words, in
the same relationship as for direct addressing. (Note: If
register 7 is specified as R2, the field is in register 7 and 0,
with 7 containing the more-significant word or address.)

RESULTS: The stored value resides at the operand 1
location.

EXAMPLE

~ .. 4--'J-6·181-~ lo l11i!J-·14-li161,7'119iii-11--21-1i 241'l-16-1i1819 Jo--1-1i11314-.1~ Jh H la 1•1 4041 41 4JU4'J 4fi

. sro.r. . . IJ.t:.1.C.2).,.9.l

A 32-bit field, the address of which is specified in register
7, is stored in memory at a location identified by DED(2).

SHIFT INSTRUCTIONS

Mnemoniq, Name

ARDI Arithmetic Right Double Shift -
Immediate

ARDR Arithmetic Right Double Shift -
Register

ARSI Arithmetic Right Single Shift -
Immediate

ARSR Arithmetic Right Single Shift -
Register

LLDI Logical Left Double Shift -
Immediate

LLDR Logical Left Double Shift -
Register

LLSI Logical Left Single Shift -
Immediate

LLSR Logical Left Single Shift -
Register

LRDI Logical Right Double Shift -
Immediate

LRDR Logical Right Double Shift -
Register

LRSI Logical Right Single Shift -
Immediate

LRSR Logical Right Single Shift -
Register

ALDI Rotating Left Double Shift -
Immediate

RLDR Rotating Left Double Shift -
Register

RLSI

RLSR

SHFK

Rotating Left Single Shift -
Immediate
Rotating Left Single Shift -
Register

Shift Packed Decimal •

'3~rithmetic Right Double Shift - Immediate

0 7 8 9 11 12 13 15

.E.UNCTION: Performs an arithmetic right shift of a
two-word field in two general registers. The sign (bit 0) of
the field is extended. The shift count is a 4-bit immediate
value.

OPERAND 1: The shift count; a 4-bit unsigned value
located in bits 8-11 of the instruction. The shift count
may range from 0-15.

9PERAND 2: A two-word field in two general registers:
the register specified by R2 and the next highest register,
l1t2+1. The most significant bits are in the R2 register.
(Note: If register 7 is specified as R2, the field is in
rngisters 7 and 0, with the most significant bits in register
7.)

EXAMPLE

! 1 J 4 '1 fi 1 8 !I 10 11 17 I! 14 l'j 16 II 18 19 70 111113 14 1~?6 }128 19 30]1)])] J4 l'i Iii JI JA 39 40 41 47 4J444'J 46

f

NAM(Ol'IRATIOH Ol'lRANO

IA ~P.I. . I J., .f" •
' •' > 0 • I I I

Shifts the data in registers 5 and 6 to the right 13 bit
positions. The sign is extended from bits 0-13 in register
51; data shifted out of register 6 is lost.

A~rithmetic Right Double Shift - by Register

Jl,RDR @R1,R2
0 7 8 9 11 12 13 15

f UNCTION: Performs an arithmetic right shift of a
two-word field in two general registers. The sign (bit O) of
the field is extended. The shift count is a 4-bit field in a
general register or in memory.

OPERAND 1: The shift count; a 4-bit unsigned value
located in the general register specified by R 1 • or in
memory if indirect addressing is used. The shift count
may range from 0-15.

9PERAND 2: A two-word field in two general registers:
tlhe register specified by R2 and the next highest register,

4-57

R2+1. The most significant bits are in the R2 register.
(Note: If register 7 is specified as R2, the field is in
registers 7 and 0, with the most significant bits in register
7.)

The data is shifted to the right the number of positions
specified by operand 1. The sign of the data is extended.
Any data shifted out of the R2+1 register is lost.

EXAMPLE

··---·· ... - . ---·------+-+-------------------·. ---µ,1 3 4 ~ii 1891011 121314 I!> 16 11181910211213142!>2611212930 JI 313334 J!iJliJI 3839 40414143444!146

1U.P.K. . . . @.l., . .s-. .

Shifts the data in registers 5 and 6 to the right; register 3
contains the address of a memory field that holds the shift
count. The sign is extended, and data shifted out of
register 6 is lost.

Arithmetic Right Single Shift - Immediate

FUNCTION: Performs an arithmetic right shift of a field
in a general register. The sign (bit 0) of the field is
extended. The shift count is a 4-bit immediate value.

OPERAND 1: The shift count; a 4-bit unsigned value
located in bits 8-11 of the instruction. The shift count
may range from 0-15.

OPERAND 2: A one-word field in the general register
specified by R2. The data is shifted to the right the
number of positions specified by operand 1. The sign of
the data is extended. Any data shifted out of the register
is lost.

EXAMPLE

--- --- - - ----·- -----1--- -- -------- ----------~----
' '1 l 4 !I 6 1 8 9 10 11121314 l!i 16 1118 19 lft 71227374 2!17£ 2121 29 JO JI 31 JJ]4]!1 J6:U 31139 40\1 42 43444!1 46

jA-.<.s.z . . . x. '.B. '.,, ..2.. ••.

Shifts the data in register 2 to the right 11 bit positions.
The sign is extended from bits 0-11; any data shifted out
of register 2 is lost.

Arithmetic Right Single Shift - by Register

0 7 8 9 11 12 13 15

4-58

FUNCTION: Performs an arithmetic right shift of a
one-word field in a general register. The sign (bit O) of the
field is extended. The shift count is a 4-bit field in a
general register or in memory.

OPERAND 1: The shift count; a 4-bit unsigned value
located in the general register specified by R 1, or in
memory if indirect addressing is used. The shift count
may range from 0-15.

OPERAND 2: A one-word field in the E1eneral register
specified by R2. The data is shifted to the right the
number of positions specified by operand 1. The sign of
the data is extended. Any bits shifted out of the register
are lost.

EXAMPLE

8f.£RAND

~~ 1 •," 'll 'I 111111)1\ll1', 11. ll1111'1/ll}l}7~1}41'i}l./1}81'1JOJI :UJ3]1t]!i]6JI 383340414243444!>46

,f,<SA . S-1 .'1.

Shifts the data in register 4 to the right; register 5 contains
the shift count. The sign is extended, and dlata shifted out
of register 4 is lost.

Logical Left Double Shift - Immediate

LLDI I 1,R2
0 8 9 11 12 13 15

5C

FUNCTION: Performs a left shift (zero fill from right) of
a two-word field in two general registers. The shift count
is a 4-bit immediate value.

OPERAND 1: The shift count; a 4-bit unsigned value
located in bits 8-11 of the instruction. The shift count
may range from 0-15.

OPERAND 2: A two-word field in two general registers:
the register specified by R2 and the next highest register,
R2+1. The most significant bits are in tlhe R2 register.
(Note: If register 7 is specified as R2, the field is in
registers 7 and 0, with the most significan1t bits in register
7.)

The data is shifted to the left the number of positions
specified by operand 1. Any data shifted out of the R2
register is lost.

EXAMPLE

1 ·, 1, I ~ 'I Ill I I 11 I ~ 11 11
1 11. 1 I I~ l'I Ill) 1)/) I / l ,., /I,) I /I\ /'I m 11 I/ 11 .tn l'i Ui 11 IK 19 40 4, 41 4 l 44 .t'J 46

Shifts the data in registers 0 and 1 to the left 10 bit
positions. Data shifted out of register 0 is lost.

Logical Left Double Shift - by Register

0 7 8 9 11 12 13 16

3C

FUNCTION: Performs a left shift (zero fill from right) of
a two-word field in two general registers. The shift count
is a 4-bit field in a general register or in memory.

OPERAND 1: The shift count; a 4-bit unsigned value
located in the general register specified by R 1 • or in
memory if indirect addressing is used. The shift count
may range from 0-15.

OPERAND 2: A two-word field in two general registers:
the register specified by R2 and the next highest register,
R2+1. The most significant bits are in the R2 register.
(Note: If register 7 is specified as R2, the field is in
registers 7 and 0, with the most significant bits in register
7.)

The data is shifted to the left the number of positions
specified by operand 1. Any data shifted out of the R2
register is lost.

EXAMPLf:.

R Ol'ERATION OPERAND

'I IU 11 11 11 11 1'1 II, 11 Ill l'I IH /!II I\ /.1 /'• }h /i /d /'I UJ \I 11 JI 14 l'i It. j.' lR I') 40 41 '114J44 4'> 4fi

I. L~~ ' !$.<!.I .J ' . ' ' ' '
, , I I I 1

Shifts the data in registers 3 and 4 to the left; the address
of the shift count is in register 2. Data shifted out of
register 3 is lost.

Logical Left Single Shift - Immediate

0 7 8 9 11 12 13 16

c 4C llij'.II . I 1 ~,i,:,:.::::!:i:i,:,i,i,i,i,i,~ R 2 _;:::::::::~::::.. I 1

FUNCTION: Performs a left shift (zero fill from right) of
a one-word field in a general register. The shift count is a
4-bit immediate value.

OPERAND 1: The shift count; a 4-bit unsigned value
located in bits 8-11 of the instruction. The shift count
may range· from 0-15.

OPERAND 2: A one-word field in the general register
specified by R2. The data is shifted to the left the number
of positions specified by operand 1. Any data shifted out
of the register is lost.

EXAMPLE

~
NAME OPEOATION Of'lRAND

} ' 4 'i ti I H 9 10 II 1] 1J 1-1 I~ lti-11 1119 JO II n 1111 /'i }b II 11:1n10 JI 11 ll]4 l'i lfi JI 38 19 40 41 41uu4'!1 41

IJ.i. .s..r ' 7, . .f' . ' ' ' . .
• • • I I I I

Shifts the data in register 5 to the left 7 bit positions.
Data shifted out of register 5 is lost.

Logical Left Single Shift - by Register

0 8 9 11 12 13 16

.EUNCTION: Performs a left shift (zero fill from right) of
a one-word field in a general register. The shift count is a
4··bit field in a general register or in memory.

OPERAND 1: The shift count; a 4-bit unsigned value in
the general register specified by R 1 • or in memory if
indirect addressing is used. The shift count may range
from 0-15.

OPERAND 2: A one-word field in the general register
specified by R2. The data is shifted to the left the number
of positions specified by operand 1. Any data shifted out
of the register is lost.

EXAMPLE

.. 1 1 4 ' h ' II 9 111 11 I} II M ,., 1611181;-,n 11n11,4~111e-i9 10-:il31~1ll4]!I 11.]/ 18-19"40"4141-4i444i4& ~
NAMl OPERATION OPERAND

~ t.S.t . rJ . .t.., 1 · .. ·
1 • o, o. • I.,., I• I• , I

Slhifts the data in register 7 to the left; the address of the
shift count is in register 2. Data shifted out of register 7 is
lc1st.

Logical Right Double Shift - Immediate

0 7 8 9 11 12 13 16

FUNCTION: Performs a right shift (zero fill from left) of
a two-word field in two general registers. The shift count
is a 4-bit immediate value.

qPERAND 1: The shift count; a 4-bit unsigned value
le>cated in bits 8-11 of the instruction. The shift count
may range from 0-15.

OPERAND 2: A two-word field in two general registers:
ti~e register specified by R2 and the next highest register,
Fl2+1. The most significant bits are in the R2 register.
(Note: If register 7 is specified as R2, the field is in
mgisters 7 and 0, with the most significant bits in register
7.)

4-59

The data is shifted to the right the number of positions
specified by operand 1. Any data shifted out of the R2+1
register is lost.

EXAMPLE

I 1 J 4 ·; h ,-/9··,0 II IJIJ 141; 'h ,-, 18 1g 10 11117}.14 1' 70 II l8 19 JO JI 31 JJ JI l'1J6JI JHJ0.4041 '1 4JU4S 06
jt.if..l>..l: . /()., /. ---~-----~--.-~~---~

Shifts the data in registers 1 and 2 to the right 10 bit
positions. Data shifted out of register 1 is lost.

Logical Right Double Shift - by Register

0 7 8 9 11 12 13 15 _c __ 3_D ----"--1 i__._l _R1=1ijji!j!l[R2

FUNCTION: Performs a right shift (zero fill from left) of
a two-word field in two general registers. The shift count
is a 4-bit field in a general register or in memory.

OPERAND 1: The shift count; a 4-bit unsigned value
located in the general register specified by R 1, or in
memory if indirect addressing is used. The shift count
may range from 0-15.

OPERAND 2: A two-word field in two general registers:
the register specified by R2 and the next highest register,
R2+1. The most significant bits are in the R2 register.
(Note: If register 7 is specified as R2, the field is in
registers 7 and 0, with the most significant bits in register
7.)

The data is shifted to the right the number of positions
specified by operand 1. Any data shifted out of the R2+1
register is lost.

EXAMPLE

l]] '1 5 6 1 -a i 10 11 17 13 14 l!i '6 11 18 19 70 71 11]J]4 l'i lb 11 78 /'I JO 11 17 1t 1• l'i 111 i 1 Ill 19 40 41 47 ~I 4111 ·1':1 4'1

i...AJM.7. / ·'I

Shifts the data in registers 4 and 5 to the right. The shift
count is at the memory address specified in register 7.
Data shifted out of register 5 is lost.

Logical Right Single Shift - Immediate

0 8 9 11 12 13 15

c~_4_D __ ___.l~l~~-l1~~';\:)~Jl~R2__,
FUNCTION_: Performs a right shift (zero fill from left) of
a one-word field in a value.

4-60

OPERAND 1: The shift count; a 4-bit unsigned value
located in bits 8-11 of the instruction. The shift count
may range from 0-15.

OPERAND 2: A one-word field in the ueneral register
specified by R2. The data is shifted to the right the
number of positions specified by operand 1. Any data
shifted out of the register is lost.

EXAMPLE

.. - . ~--------++---------------
! 7 l 4 !t 6 1 8 9 10 11111314 I!) 16 1718 1910 2122232425?62721 HlOJI 32133.t JS H31 3139 404142434'45 41

~S.I . . :1.,.2.•.•.............•

Shifts the data in register 2 to the right :3 bit positions.
Data shifted out of the register is lost.

Logical Right Single Shift - by Register

0 8 9 11 12 13 15

2D

FUNCTION: Performs a right shift (zero fill from left) of
a one-word field in a general register. The shift count is a
4-bit field in a general register or in memorv.

OPERAND 1: The shift count; a 4-bit unsigned value
located in the general register specified by R 1 or in
memory if indirect addressing is used. The shift count
may range from 0-15.

OPERAND 2: A one-word field in the neneral register
specified by R2. The data is shifted to the right the
number of positions specified by operand 1. Any data
shifted out of the register is lost.

EXAMPLE

t..l..sA. . ', . .J'.
I I .

Shifts the data in register 5 to the right; the shift count is
in register 3. Data shifted out of register 5 is lost.

Rotating Left Double Shift - Immediate

0 7 8 9 11 12 13 15

5E

FUNCTION: Performs a rotating left shift of a two-word
field in two general registers. The shift c:ount is a 4-bit
immediate value.

OPERAND 1: The shift count; a 4-bit unsigned value
located in bits 8-11 of the instruction. The shift count
may range from 0-15.

OPERAND 2: A two-word field in two general registers:
the register specified by R2 and the next highest register,
R2+1. The most significant bits are in the R2 register.
(Note: If register 7 is specified as R2, the field is in
registers 7 and 0, with the most significant bits in register
7.)

The data is shifted to the left the number of positions
specified by operand 1. Each bit shifted out of the left
end of the R2 register is brought back in the rlght end of
the R2+1 register. Bits shifted out of the lower register are
not lost.

EXAMPLE

if.t..~..Z 1,.1

Shifts the data in registers 6 and 7 to the left 8 bit
positions. Each bit shifted out of the left end of register 6
is brought back in the right end of register 7.

Rotating Left Double Shift - by Register

RLDR @R1,R2

0 8 9 11 12 13 15

3E I I
FUNCTIO~: Performs a rotating left shift of a two-word
field in two general registers. The shift count is a 4-bit
field in a general register or in memory.

OPERAND 1: The shift count; a 4-bit unsigned value
located in the general register specified by R 1 • or in
memory if indirect addressing is used. The shift count
may irange from 0-15.

OPERAND 2: A two-word field in two general registers:
the register specified by R2 and the next highest register,
R2+1. The most significant bits are in the R2 register.
(Note: If register 7 is specified as R2, the field is in
registers 7 and 0, with the most significant bits in register
7.)

The data is shifted to the left the number of positions
specified by operand 1. Each bit shifted out of the left
end of the R2 register is brought back in the right end of
the R2+1 register. Bits shifted out of the register are not
lost.

EXAMPLE

·-----·----·-------
• 1 l 4 !t fi 1R91011111314 l!:i I& 11181920 21221l242S1'2728H3031 323334 l!l38313839 40if.1 C243444S48

~.t...1.,(. 9.S., .~ ·•

Shifts the data in registers 2 and 3 to the left; the shift
c·ount is at the memory location specified in register 5.
Data shifted out the left end of register 2 is brought back
in the right end of register 3.

Ftotating Left Single Shift - Immediate

RLSI I 1,R2

0 7 8 9 11 12 13 15

FUNCTION: Performs a rotating left shift of a one-word
field in a general register. The shift count is a 4-bit
immediate value.

OPERAND 1: The shift count; a 4-bit unsigned value
located in bits 8-11 of the instruction. The shift count
may range from 0-15.

OPERAND 2: A one-word field located in the general
register specified by R2. The data is shifted to the left the
number of bit positions specified by operand 1. Bits
shifted out of the register are not lost; each bit shifted out
of the left end of the register is brought back in the right
end of the register.

EXAMPLE

Shifts the data in register 2 to the left 5 bit positions.
Data shifted out the left end of the register is brought
ba1ck in the right end; no bits are lost.

R1otating Left Single Shift - by Register

1() 7 8 9 11 12 13 15

FUNCTION: Performs a rotating left shift of a one-word
field in a general register. The shift count is a 4-bit field in
a g1eneral register or in memory.

OPERAND 1: The shift count; a 4-bit unsigned value
loc:ated in the general register specified by R 1 or in
mE~mory if indirect addressing is used. The shift count
mciy range from 0-15.

OPERAND 2: A one-word field in the general register
spucified by R2. The data is shifted to the left the number
of positions specified by operand 1. Each bit shifted out
thu left end of the register is brought back in the right
end. Bits shifted out of the register are not lost.

4-61

EXAMPLE

t 1 l ~ '-> h.1 8 g- 10111J-1]\~-!6'171119-1lJ-iln23242!i26172129lOJIJ233J4JS383731J94041U4JU4S46

jA.lS.Jt . . }1.1., . ..:(..•....................

Shifts the data in register 2 to the left; the shift count is at
the address specified in register 1. Data shifted out the left
end of the register is brought back in the right end of the
register.

Shift Packed Decimal

0 7 8 9 11 12 13 15

3B

FUNCTION: Shifts a packed decimal field in memory a
specified number of digits. The length of the packed
decimal field can be defined for each SHFK instruction.

OPERAND 1: The packed decimal field in memory. The
length of this field (in bytes) is in Ll; this value may range
from 0-255. Addressing options to the base address M 1
include only indexing.

OPERAND 2: The shift count is the 12 value in the
instruction, a signed value from -128 to +127. If a register
is specified in R2, the contents of the register are added to
the 12 value to form the shift count.

A right shift is indicated in the source statement by a
minus sign preceding the 12 value. A left shift requires no
sign preceding 12, although a plus sign may be used. The
shift count indicates the number of digits to be shifted.
Note, however, that the value of R2 could change the
shift direction, because the effective shift count
determines direction.

RESULTS: The Condition register is affected as follows:

• Bit 0 is set if any significance is shifted out in a
left shift; otherwise bit 0 is cleared.

• Bit 1 is set if the result is positive; otherwise bit 1
is cleared.

• Bit 2 is set if the result is negative; otherwise bit
2 is cleared.

• Bit 3 is set if all significance is shifted out,
resulting in zero, or if 12 = 0; otherwise bit 3 is
cleared.

4-62

EXAMPLE

.......
, 1 1--.~-fi , 8~9' to 11"1111~18 i9 lo.2i·n n 14 1~267118 .. iq JO-iliiliJilS-16 373a-194041-•1--u•~

SH.Fie . . TA.tj,. ('1.0., .Z.l,. -.J.'1.

The contents of location TAG are mod1ified by the
contents of register 2 to identify a 90-byte packed
decimal field, which is shifted 14 bit positions to the
right.

CONSIDERATIONS

1. Validity of digits is not checked.

2. Invalid digits are propagated.

3. The sign is not changed unless all significance is
right shifted out and the sign was originally
minus. Under these circumstances tlhe sign is
changed to a hexadecimal C (positive).

4. Maximum shift count is left 127 to right 128
digits if R2 = O; if R2;. 0, maximum ~;hift count
is left 32,767 to right 32,768 digits.

FLOATING-POINT INSTRUCTIONS

The optional floating-point instructions provide all the
versatility required in manipulating floating-point values
and expand the computational capacity of the processing
unit with a minimum expansion of execution time. These
ten instructions allow floating-point \falues to be
converted, compared, transferred, aind combined
arithmetically.

Mnemonic

ADDF
CMPF
DIVF
FLTF
INTF
LODF
MPYF
NEGF
STOF
SUBF

Add Floating Point
Compare Floating Point
Divide Floating Point
Convert Fixed to Flloat
Convert Float to Fixed
Load Floating Point Register
Multiply Floating Point
Negate Float Point Re1gister
Store Floating
Subtract Floating Point

The following discussion and figures explain particularities
of floating-point usage.

DATA FORMAT

The floating-point number consists of a 64-bit
fixed-length format as shown in Figure 4-1. Both the
exponent and the fraction are signed values.

The floating-point value is the product of its fraction,
and base 16 raised to the power of its exponent: fraction x
15exp. The seven bits of the exponent allow a range of
0-127. The exponent is expressed in "excess 64 (4016)"
notation, resulting in both a positive and negative range
as shown below.

exponent bits

2 3 4 5 6 7

excess 4016 causes +6310 or 3F16}
the sign bit of
positive exponent 1 0 0 0 0 0 1 +1
to be a one .. 1 0 0 0 0 0 0 = 0
and the sign bit 0 1 =

-1 I of negative e~ 0 0 = -2
to be a zero

0 0 0 0 0 0 1 = -6310 or 01161
0 0 0 0 0 0 0 = -6410

negative exponent
range

positive exponent -1+-6410 or
range -3F16 0016
0+6310 or
4016 7F16

The fractional portion of the floating-point number is
arways represented in positive notation (a 'rue fraction)
but with its true sign indicated in bit zero. The base point
is assumed to be at the left of the highest-order hex
digit of the fraction.

NORMALIZATION

A floating-point number is normalized when the highest­
order hex digit of the fraction is not zero. Floating-point
instructions do not normalize their operands before
execution; therefore, to avoid loss of significance, operands
should be normalized prior to a floating-point instruction.
However, all floating-point instructions except Compare
and Divide will perform correctly with unnormalized
operands and will produce normalized results.

ZIERO REPRESENTATION

To express a true floating-point zero, all 64 bits are zero.
Aliso, a zero fraction result, generated by a floating-point
operation, forces the exponent and the sign (bit 0) to
zeiro.

A zero participates normally in all arithmetic operations
e>c:cept a floating-point divide. Attempting to divide by a
true zero or with a zero fraction in the divisor causes an
arithmetic exception to be flagged in the Condition
register, and no actual division occurs.

ARITHMETIC EXCEPTIONS

C1onditions may occur during the execution of
floating-point instructions which cause exceptions to
normal completion. These arithmetic exceptions are
flagged in the Condition register. The possible arithmetic
e>c:ceptions and the instructions during which they may
cx:cur are as follows:

Exception Floating Point Instruction

Exponent Overflow Add, Subtract, Multiply,
and Divide

Exponent Underflow Add, Subtract, Multiply,
Divide, and load

Zero Divisor Divide

Integer Overflow Convert Float to Fixed

The user of floating-point instructions can detect arith­
m:itic exceptions by checking the Condition register after
execution, or by providing an arithmetic exception
address pointer within the instruction itself. With the
latter procedure, when an arithmetic exception occurs,
control is passed to the exception address; the normal
re;:id-next-instruction address than is placed in the
exception address general register.

0 1 ---------7 8·----------------· 63
SIGN BIT o~· ------------,1----------1 -----
FRACTION I
- = 1 I

+= 0 7 BITS -11.- 56 BITS--f,1-' ---~.-.. I
OF EX- L I
PONENT -RADIX (BASE) POINT FRACTION
INCLUDING OF FRACTION CAPACITY
SIGN 14 HEXA­

DECIMAL
DIGITS

Figure 4-1. Floating-Point Data Format 4-63

The floating-point arithmetic exceptions are denoted by
the setting of bit position 0 and the exception code, bit
positions 1-3 of the Condition register. A floating-point
Compare instruction sets bit groups 0-3 and 4-7 as shown
in the note of Figure 1-4. The following table gives all the
Condition register settings possible as a result of a
floating-point instruction, except for Compare
instructions.

Bit Positions Set

3

2

Condition Indicated

Result is zero

Result is less than
zero

Result is greater
than zero

0 Integer overflowon
a Convert Float
to Fixed instruc­
tion.

0 and 1 Exponent overflow

0 and 2 Exponent under­
flow

0 and 3 Zero divisor

FLOATING-POINT REGISTER

A floating-point register consists of four consecutive
registers in the basic register file for each of the eight
processor states. The register format is shown in Figure
4-2.

All floating-point instructions make reference to a
floating-point register implicitly. The floating-point
register is accessible only by micro-instructions.

0 1 .. 111111----bits ____...,.7 8 .. ~1---- bits ----1••15

s exponent 1
i

2 most-significant hex digits

next 4 hex digits

next 4 hex digits

4 least-significant hex digits

Figure 4-2. Floating-Point Register Format

4-64

Add Floating Point

FUNCTION: Performs an algebraic addition of a
four-word floating point value in memory and the
contents of the floating point register. Both operands may
be normalized or unnormalized before the addition.

First, the exponents of the two operands are compared; if
they do not agree, the smaller exponent is increased by
one each time its fraction is right shifted one hexadecimal
digit, until the two exponents agree. Ne>ct the fractions
are algebraically added to form an intermediate 15
hexadecimal digit sum with a possible over'flow carry.

If an overflow carry is used in generating the intermediate
sum, the sum is right shifted one hexade!cimal digit and
the exponent increased by one. If the increased exponent
is greater than +63, an exponent-overflow arithmetic
exception occurs.

After the intermediate sum is formed, either including the
carry maneuver or without, it is normalized. If the
normalizing causes an exponent less than -64, an
exponent-underflow arithmetic exception occurs. Finally,
the 15 hexadecimal digit intermediate sum is right shifted
to form the 14-digit resultant fraction, without rounding.

OPERAND 1: A four-word field in memory beginning at
the effective word address. The effective address points to
the most significant word of the four-word floating point
number. Addressing options to the base address Ml
include indexing, indirect addressing, or a combination of
both.

OPERAND 2: A one-word field in the general register
specified by R2. This field is the arithmetic exception
address to which control is transferred if arithmetic
exception occurs.

RESULTS: The sum resides in the floating point register
as a normalized numher. The Condition reHister is affected
as follows:

• Bit 1 is set if the normalized number-> 0.

• Bit 2 is set if the normalized number< 0.

• Bit 3 is set if the normalized number= 0.

• Bits 0 and 2 are set if exponent underflow occurs
during normalization. The sign and fraction of·
the resultant number are correct, but the
exponent is too large by a value of 128.

e Bits 0 and 3 are set if exponent overflow occurs
during the sum determination. The sign and
fraction of the resultant number are correct, but
the exponent is too small by a value of 128.

Floating
Point
Register

Four-word
Field in
Memory

0 1

0

0

Point O
Fl~ating I I
Register
Normalized

7 8

46 OA

3E 02

45 A2

Bit 1 of the Condition register is set (sum >O)

Compare Floating Point

15 16

0 7 8 9 11 12 13 15

87

FUNCTION: Performs an algebraic comparison between
the contents of the floating point register and a floating
point number in a four-word field in memory. Both
operands are assumed to be normalized. Invalid compare
results may occur if they are not. Operands with zero
fractions compare equal even thouglh the signs and
exponents may differ.

OPERAND 1: The four-word field in memory located at
the effective address. The effective address points to the
most significant word of the four-word memory field.
Addressing options to the base address M 1 include
indexing, indirect addressing, or a combination of both.

RESULTS: Neither operand is changed. The Condition
reg.ister is affected as follows:

• Bits 0 and 4 are <fleared.

2

E:XAMPLE

I l l 4 S I 1 I 9 10-11 11 13 14 1S 16 11 ~ 19 10 11-22 iJ 14 1S 1' 11 21 H JO JI J1 Jl Ji)!I Jti J1 ll 19·-·o-.-i 0 4] 44 4'.t '11

f

- .,........... ""'"""°

. 1# . .P.J>P. . • . "Jr.t..~.Jl.(l.).,AJ.
6 & • • ' ' o • • 0 • •' • • • o I•••, I,,,, 1,, I I

The field identified by FLDA(1) is added to the field in
the floating point register; results are in the floating point
rngister. General register 3 contains the arithmetic
exception address.

31 32 97 48 63
...... v .1'. .A ,- v

E 0 0 0 0 0 0 0 0 0 0
~ _?\.

'f ...- \f

8 0 0 0 0 0 0 u 0 0 0 0 **
.... ~ .~ ·,- y ...

1 002~~00~-o , ...
= ~OA2E x 15+6

= .A2E0000028 x 16+5

**
= .028 x 1s-2

• Bits 3 and 7 are set if the operands are equal. Bits
1, 2, 5, and 6 are cleared.

• Bits 2 and 6 are set if the operand in memory is
less than the contents of the floating point
register. Bits 1, 3, 5, and 7 are cleared.

• Bits 1 and 5 are set if the operand in memory is
greater than the contents of the floating point
register. Bits 2, 3, 6, and 7 are cleared.

EX:AMPLE

J'4T6-1--.19- ·u;-11-.. ,2 ·,314~-~-11 18 ,91011n13 14 ,~-16·1,-·za 1q -10.i1- n n ·14 11i 11i 11 1e 19 40 41"'4144 "" 41; F
NAME OPERATION OPERANO

jclY.PI' . . . l!.0.1-.P.O.).
, • • • • •, • • & •••.I,,• I I. I l

Th~~ four-word field identified by HOLD(1) is compared
to the contents of the floating point register; the
Condition register is set accordingly.

Di"ide Floating Point

4-65

FUNCTION: Divides the contents of the floating point
register (dividend) by a four-word floating point number
in memory (divisor) and places the quotient in the
floating point register. The quotient is a normalized value
and the remainder is not saved. The divisor and the
dividend must be normalized prior to the execution of the
DIVF instruction.

The floating point division consists of three operations:

1. Subtracting the divisor exponent from the
dividend exponent and adding 64 (4015) because
of the excess 64 exponent notation.

2. Division of the fractions with the resultant
quotient sign, following the rules for signed
numbers.

3. Quotient normalization.

An exponent-overflow arithmetic exception occurs if the
final quotient exponent exceeds +63 and an
exponent-underflow arithmetic exception occurs if the
final exponent is less than -64. Also, a division-by-zero
arithmetic exception occurs when a division with a zero
divisor is attempted. In this case the dividend in the
floating point register is unaltered.

OPERAND 1: A four-word field in memory beginning at
the effective word address. The effective address points to
the most significant word of the four-word floating point
number. Addressing options to the base address Ml
include indexing, indirect addressing, or a combination of
both.

OPERAND 2: A one-word field in the general register
specified by R2. This field is the arithmetic exception

Floating
point
register

Divisor
from
four­
word
field in
memory

0 1

0

0

7 8 15 16

39 30

30 60

address to which control is transferred if arithmetic
exception occurs.

RESULTS: The normalized quotient rnsides in the
floating point register. The Condition register is affected
as follows:

• Bit 1 is set if the normalized quotient>O.

• Bit 2 is set if the normalized quotient<O.

• Bit 3 is set if the normalized quotient= 0.

• Bits 0 and 2 are set if exponent underflow occurs
during normalization or exponent determination.
The sign and the fraction of the dividend are
correct, but the exponent is too large by a value
of 127.

• Bits 0 and 3 are set if exponent overflow occurs
during exponent determination. The sign and the
fraction of the dividend are correct, but the
exponent is too small by a value of 1 :H.

• Bits O and 3 are set if a division by zero is
attempted.

EXAMPLE

- 1 1] 4 ~ h I It q 111 11 1111 14 1'1 11, II _!_I l'l /0 /I 111114l!i16 i111~10]1 l} JI 14 I~ II, II IK l'I <11J 41 414JU4!:1 46

µ>Irr . '(R..fl.AH(Z.).,.I

This instruction divides the contents of the floating point
register by the value at the address identified by
OUAN(2). Register 1 contains the arithmetic exception
address.

.A. _l _l
1 1 '

47 48 63 31 32

0 0 0 0 0 0 0 0 0 0 0 0

J\ J..
·~ '4

** 0 0 0 0 0 0 0 0 Cl 0 0 0

~ _A _l , l ,

Quotient GI I I ~ ~--:J ~·f::ting o 3C . o o o o . O O O 0 0 0 0 0 ...
point 80 . .
register . _______ .__ _______ __.. ____ _..

1
... ---~---'4....-----

Bit 2 of the Condition Register is set (quotient< 0)

4-66

= +~3 x 15-7'

= +~~ x 15-:3:

= +.8 x 16-4

Convert Fixed to Float

FL TF @R1

0 7 8 9 11 12 15

82

FUNCTION: Converts a 16-bit signed integer value to a
normalized floating point number and places it in the
floating point register.

OPERAND 1: A one-word sending field in the general
register specified by R 1 or at the address specified by the
contents of R 1 if indirect addressing is used. This field
contains the signed integer value.

RESULTS: The Condition register is affected as follows:

• Bit 1 is set if the converted floating number >0.

• Bit 2 is set if the converted floating number <0.

• Bit 3 is set if the converted floating number= 0.

EXAMPLE

!rt.Tr. . . . ~'·

A positive fixed-point value in register 6 will be converted
to floating point and placed in the floating point register.

O I O 16 I F J Positive integer

0 1

~~
Positive Exponent

Sign

EXAMPLE

7 8 63

16 F xxxx .. ~ ... x
.. ~

Normalized fraction

l+Fl<:>ating
point
number

I 1 J -4---;-5--·, -R 9. J(j -l-~j4--~1G11ifii-1920- 11}17].14-]!J]6]j18-19 3-iiJ!iiJi J4 J~-J6:1-1 J8Jij. 4·t)4j-4J4J4;·454·6.

· V'°.t..Tr . . 19A'..t: ... · · · · · · · ·

In this example, a negative number at the address in
register 5 is converted from fixed to floating point.

-079A Negative integer

0 1 7 8 ~ 63

I ... 1_l __ ___,4 ... a ___ l_1_9_A __ x_x_x_x_x_._·_·_~ ... x h
.4" • + Floating
Negative Exponent Normalized fraction in point
sign positive notation number

Convert FI oat to Fixed

0 7 8 9 11 12 13 15

EUNCTION: Converts the floating-point number in the
fl1oating-point register to a 16-bit fixed point signed
integer value without rounding. Arithmetic exception
occurs if the floating point value is too large (greater than
+:32,767).

OPERAND 1: A one-word receiving field in the general
re~gister specified by R 1 • or in memory if indirect
addressing is used.

OPERAND 2: A one-word field in the general register
sp1E?cified by R2. This field is the arithmetic exception
address, to which control is transferred rather than to RNI
if the floating point number is out of the expressable
integer range.

RESULTS: The fixed point integer resides at the operand
1 location. The floating point register is unaffected. The
Condition register is affected as follows:

• Bit 0 is set if the floating point number is out of
the expressable integer-range arithmetic
exception.

• Bit 1 is set if the converted integer> 0.

1• Bit 2 is set if the converted integer< 0.

11 Bit 3 is set if the converted integer = 0.

EXAMPLE -·---

~] 4 !i ti I • 9 10 II 111314 I~ lh ,, 18 19 10 JI n n }4 ~ 26 II 18 19 JOJ1 31 JJ-34 1-S 16 JI Js 39 40 414143444!1 46 F
NAM• OOIAATION OllAAND

IN.Tr . !Jt.:r., .If 1
, , I I I I I

The~ value in the floating point register will be converted
to flxed point and placed in register 3. Register 7 contains
an arithmetic exception address.

0 1 7 8 63

~'--~~4_2 ______ _.,_s __ 2 __ 4~-a--x~,.-x_._· __ ·_·_·_· __ ·_·_x__,
1t1-" Negative floating
Negative sign point register

General
register 3

number - right shifted
two places because

4-67

Load Floating Point Register

0 7 8 9 11 12 13 15

84 I I

FUNCTION: Transfers a floating point number contained
in a four-word field in memory to the floating point
register and normalizes it. Arithmetic exception occurs if
exponent underflow is caused by the normalization.

OPERAND 1: A four-word field in memory located at the
effective word address. The effective address points to the
most significant word of the four-word floating point
number. The floating point number need not be
normalized. Addressing options to the base address M 1
include indexing, indirect addressing, or a combination of
both.

OPERAND 2: A one-word field in the general register
specified by R2. This field is the arithmetic exceptior:
address, to which control is transferred rather than to RN I
if exponent underflow occurs.

RESULTS: The Condition register is affected as follows:

• Bit 1 is set if the normalized number> 0.

• Bit 2 is set if the normalized number< 0.

• Bit 3 is set if the normalized number= 0.

• Bits 0 and 2 are set if exponent underflow occurs
during the normalization. In this case the sign
and fraction of the floating point number are
correct but the exponent is too large by a value
of 128.

EXAMPLE
.-----.,.-.,.--------r,-----·------------

, , 3 4 --;-·G 111 9~-11--1113141~~ 19-i0·1,221314-1;-2a·2-,Jli9J011u 1i.ii-1~ 16 11 Js J'J 40 41 47 4JU oi~ 46

jt.O.°".r. . . . T.ut~.(.1.l.1 .AJ. ...

The four-word floating point field identified by TEMP(1)

is loaded into the floating point register and normalized.
Register 5 contains the arithmetic exception address.

Multiply Floating Point

0 7 8 9 11 12 13 16

88

4-68

FUNCTION: Multiplies the contents of the floating point
register by a four-word floating point number in memory
(the multiplier). The fraction of the resulting product is
normalized and is only 14 hexadecimal digits in length;
therefore, maximum significance in the product can be
presented by starting with two normalized operands,
although it is not required.

The floating point multiplication consists of three
operations:

1. Adding the two exponents and subtracting 64
(4015) because of the excess 64 exponent
notation.

2. Multiplication of the fractions with the resultant
product sign following the rules of signed
numbers.

3. Product normalization.

An exponent-overflow arithmetic exception occurs if the
resultant product exponent is greater th;an +63 and an
exponent-underflow arithmetic exception occurs if the
resultant exponent is less than -64. Exponent overflow
does not occur when the intermediate exponent exceeds
+63 if the exponent is brought into range during
normalization.

OPERAND 1: A four-word field in memory beginning at
the effective word address. The effective address points to
the most significant word of the four-word floating point
number. Addressing options to the base address M 1
include indexing, indirect addressing, or a combination of
both.

OPERAND 2: A one-word field in the gener~I register
specified by R2. This field is the arithmetic exception
address to which control is transferred if arithmetic
exception occurs.

RESULTS: The normalized product reside!S in the floating
point register. A final fraction of zero generates a true
zero product. The Condition register is affected as
follows:

• Bit 1 is set if the normalized product>O.

• Bit 2 is set if the normalized product<O.

• Bit 3 is set if the normalized product= 0.

• Bits 0 and 2 are set if exponent underflow occurs
during normalization or exponent determination.
The sign and the fraction of the product are
correct, but the exponent is too large by a value
of 128.

• Bits 0 and 3 are set if exponent overflow occurs
during exponent determination. The sign and the
fraction of the product are correct, but the
exponent is too small by a value of 128.

EXAMPLE

I 1 3 4 ~- 6- ,-·~ g- l_O_!li_1_IJ_1°4 !!> 16111 ~ -,9 10 11 "ii"}j-}4··1;-i6'1""i-]ft"i9]Q_J_1 -J1-jj .. 34]!;)6-Ji ·11Jg 40 41 41 4j 44.4!> 46

ltf.1. V' . jH.O . .!.~-; A. 7 . ..

Floating
point
register

Multiplier
from four-word
field in
memory

0 1

0 49

1 44

7 8

2A

42

The' contents of the floating point register are multiplied
by the field identified by HOLD; the results will be in the
floating point register. Register 7 contains an arithmetic
exc1:iption address.

15 16 _A 31 32 _l 47 48
1'. 63

" 1

B 4 0 0 0 0 0 0 0 0 0 0

Ji. .J.. __), ..- ,
'

0 0 0 0 0 0 0 0 0 0 0 0
..... _l A

1 ' y

*

**

Product ~

~i~~~., i---i--4C-......---B-O --....-L-18 o I o o ~ o I o ~ o o I ...
Bit 2 of the Condition register is set (product< 0).

Negate Floating Point Register

NEGF

0 7 8 15

80. I:,:·,:::,:::·:~:::.·::;·:·,;:.;:,,;.:.;,::.,,/:;' .·•.,•:::l,::::·:·J:':,:'I:::' '::::::::,:::·:_ .. ·::·::::•••::.•:,::/:I

FUNCTION: Inverts the sign bit (bit 0) of the floating
point register. The rest of the floating point register is
unchanged. The Condition register is not affected. This
instruction has no operands.

EXAMPLE

=+1
09ERATION OPERAND

11 I ll '! HI 111/11 lf'i 111 lh 11111 1•111111 nn }!'i }!a 11. 1118 n JO JI 31)]]4-l!a Jti]I 1819 4041 o 43U4!> 46

£fT.r .. ·
• • o I• • I• I, I • • I

The sign bit in the Condition register is inverted; if the
sign is minus it will become plus, and vice versa.

Store Floating Point Register

* = +.2AB4 x 15+9 * * * = -.80268 x 15+C

* * = -.42 x 16+4

FUNCTION: Transfers the contents of the floating point
regii;ter to a four-word field in memory.

OPE~RAND 1: The four-word receiving field in memory
located at the effective word address. The effective
address points to the most significant word of the
memory field. Addressing options to the base address M1
include indexing, indirect addressing, or a combination of
both.

EXAMPLE ----·

F:
--·---+-+-1 '.'..',_.' _,_. ·~~~-~-~ :.!.. .. ~.~'.'_1 I'• /f, /I IH /'I Ill H :17 1:1 34 "! 1

1 ·11i JI 38 3!1 40 414l4344 4-!i 46

sror . rt..!(1)

This instruction transfers the contents of the floating
point register to the field identified by FLP(1).

Subtract Floating Point

0 7 8 9 11 12 13 15

E: __ B_5 __ __.l..___._l _R_1 __.l......,!i!!!~)i:"."""'-/.;:! _R_2 ~
M1

4-69

FUNCTION: Performs an algebraic subtraction of a
four-word floating point value in memory from the
contents of the floating point register. Both operands
need not be normalized before the subtraction.

The subtract operation is performed in the same manner
as the add except that the sign of the floating point
number in memory (subtrahend) is inverted first.

OPERAND 1: A four-word field in memory beginning at
the effective word address. The effective address points to
the most significant word of the four-word floating point
number. Addressing options to the base address M 1
include indexing, indirect addressing, or a combination of
both.

OPERAND 2: A one-word field in the general register
specified by R2. This field is the arithmetic exception

0 1 7 8

Floating
Point 46 DA
Register

Subtrahend 3E 02

15 16

address to which control is transferred if arithmetic
exception occurs.

RESULTS: The difference resides in the floating point
register as a normalized number. The Conclition register is
affected the same as for the ADDF . and the same
arithmetic exceptions are possible.

EXAMPLE

I': I•, i, I It 'I 111111)1l111'1ll1llllll'IJtlJl/}/!N/~1/hl/lll1'1]0ilJ1J]]•l]~-]631J8J9404104J444~46

lf't..J> If r.z.)., A'

The field identified by FLDA(2) is subtracted from the
contents of the floating point register; th«! results will be
in the floating point register. Register 6 contains an
arithmetic exception address.

31 32 47 48

2 E 0 0 0 0 0 0 () 0 0 0

8 0 0 0 0 0 0 0 () 0 0 0 **

Difference in

11 I
Floating
Point 45

_A2 ____ o~~F-----F~oa I ~ ...
Bit 1 of the Condition register is set (difference >oL

SYSTEM INSTRUCTIONS

System instructions are specialized instructions used to
interpret and alter the defined operating system. These
instructions are divided into two major groups, Control
and 1/0. For the system instructions, a distinction is also
made between privileged and restricted instructions.
Privileged instructions can be executed by a processor
only if the bit in the Privileged Mode register associated
with that processor is set. Restricted instructions can only
be executed by one of the dedicated processors 0-4, that
is, they are restricted to one of these processors. The
Control instructions include privileged and restricted
instructions; the 1/0 instructions are all restricted.

NOTE

In the discussion of System instructions, the term
"hardware" implies a combination of the hardware
logic components and the microprograms. It is the
conjunctive action of both of these elements that

4-70

• = -.OA2E x 16+6 * * *= - .. A:2DFFFFF x 16+5

** = -.028 x 16-2

determines the manner in which a given
processing-unit instruction will be executed.

EXTENDED FILE REGISTER

The system instructions manipulate and use the Extended
Register file. Figure 4-3 shows the brnakdown of the
Extended file. The Function (F) and Pµ registers are
under internal control. Processor state 4 can have access
to any register in both the Basic and the Extended
Register files - with the exception of the 1/0 registers,
which are reserved solely for the associated 1/0 processor
states.

The 1/0 register exist only for processor states 0 through
3; and then, only those actually needed are present. A
description of the 1/0 registers associated with each 1/0
processor state is found in the appropriate 1/0 instruction
description in this section.

The Common Block registers may be addressed by any
processor state, although some of them only if the

addressing state is in the "privileged" mode. Moreover,
some registers are for the read-only mode: Real-Time
Clock and Parity Error are examples .

Table 4-1 gives a brief description of the Extended file
renisters. It is followed by an in-depth discussion of the
Common Block register functions and usages.

Register
Number

00

01

02

03

REGISTER
FILE

EXTENDED

00

01 ._ ____________ __.._, _::::I ::::::::.:1 :µ } GROUP I

02

03

04

05

06

07

08

09

DA

OB

DC

l
OF

10

!
1F

Mnemonic
Title

F

p

__ ,_
BlJISY/ACTIVE

RE:AL·TIME CLOCK

TllE·BREAKER

PA,RITY ERROR

CCJ1NTROL

PRIVILEGED MODE

BOUNDARY CROSSING

CCJiNTROLSTORAGESCAN

Alli DRESS

DJl~TA

t
U~IASSIGNED

j

Figure 4-3. Extended Register File

Table 4-1. Extended R:egister File

Basic File

Name and Function

GROUP II
(COMMON BLOCK)

1/0 REGISTERS

Function Register -- contains the base instruction word (first two bytes) of
the instruction being executed by the associated processor state.

Micro Address Register - contains the control storage address of the first
micro-instruction (µI) to be executed during the next major cycle assigned
to the associated processor state. It also records certain conditions resulting
from the execution of µI '!i.

These "common block" registers are not specifically associated with a single processor state. As
a result, they may be addressed by any state.

B/A •

ATC

Busy/Active Register - indicates which processor states need a major cycle
(Busy), and which are cur1rently assigned a task to perform (Active).

Real-Time Clock - counts; up to 107.4 seconds for interval timing. Its count
is triggered every 1.6384 milliseconds by a 60-Hz (nominal) oscillator. Pro·
grams can periodically read (but not write into) this register to measure
intervals of time.

Certain operations, such a:s 1/0 transfers, require a definite am.aunt of time
to complete. If they are not complete within that time, chances are that a
malfunction occurred. The ATC can be used to "time" such operations.

4-71

Table 4-1. (Continued)

Register Mnemonic
Number Title Name and Function

04 T Tie Breaker Register - ensures that one program will not refer to a tabl,e
that is simultaneously being updated by another program - provided that
both programs utilize the Tie-Breaker register. It is set by software in-
dicating when certain data tables, each represented by a bit position in the
register, are being addressed.

05 PE Parity-Error Register - holds the last main storage address in which a piuity
error occurred. It is updated by the hardware and is usually addressed by
the Executive processor state for error logging.

06 c • Control Register (dual function) - the lower eight bits indicate whethe1r the
respective processor state may be allowed to take consecutive major cycles,
other conditions permitting. The upper eight bits indicate one of three
levels of priority for each of the four 1/0 processor states (2 bits each). The
register is set by software.

07 PM • Privileged-Mode Register - indicates whether each processor state is em-
powered to operate in the "privileged mode". It contains a bit position
representing each processor state.

The privileged mode allows a state to execute certain instructions which, if
executed indiscriminately, might cause hang-ups, invalid data, or other errors.

08 BC • Boundary Crossing Register - records those instances in which, under certain
conditions, the Executive processor state may read or write the registers of
another state. The BC register holds the address of the register, along with
the register set and the number of the processor state to be addressed.

09 css Control Storage Scan - checks the longitudinal parity of 256-word "pages"
in the CS. An exclusive OR performed on the contents of a CS page
should yield all 1 's in the register. Any attempt by software to write into
this register will clear it.

OA CONSOLE Address-Related Console Register - provides entry and display of register,
ADDRESS MS or CS addresses, in conjunction with the row of 16 illuminated Address

pushbuttons Of'! the System Control Panel.

OB CONSOLE Data-Related Console Register - provides entry and display of data to or
DATA from the entity addressed by means of the Address pushbuttons, in con-

junction with the row of 16 Data pushbuttons on the System Control
Panel. In addition, a rotary switch on the panel allows the display (but
not en try) of data stored in certain n onaddressabl e registers.

OC-OF l Unassigned

NOTE Busy-Active Register (B/ A)

The following tour registers in the Common Block
group of the Extended Regilster file are "limited
access" registers. This means that although they
may be read by any processor state, they can be
written into only by a privileged processor state, or
by the Executive processor state. Specific write
instructions for each register are given in the
separate discussions.

The bit assignments for the Busy/ActivE~ register are
shown below.

0 7 8

lo 2 3 4 5 6 1 I o
BUSY

15

234~
ACTIVE /

PROCESSOR ST ATE

4-72

When the Busy bit is 1, it indicates to the hardware
(RAN) that a given processor state needs a major cycle.
The "request" that sets Busy may come from the program
or from one of the switches on the System Control Panel.
(The use of these switches is discussed in Section 5.)
Moreover, if one of the four 1/0 processor states is
involved, its Busy bit may also be set by a request from an
1/0 device ..

The following instructions are available to the
programmer to set or clear bit positions in the B/A
register via the ALU inputs. Control Instructions has
complete descriptions of the instructions listed, and of the
meanings of the terms, "privileged" and "restricted".

SR Service Request: Turns on both the
Busy and Active bits for the Exec; turns
off both the Busy and Active bits for
the requesting processor state.

SBA Set Busy/Active Register: The processor
state executing this instruction must be
privileged. Turns on the B or A bit, or
both, for the desigm~ted processor state.

RBA Reset (clear) Busy/Active Register: The
processor state executing this instruction
must be privileged. Turns off the B or A
bit, or both, for the designated proc­
essor state.

WAX Write Extended Register: The processor
state executing this instruction must be
privileged. This instruction affects all
16 bits of the register. It must be used
with an appropriate mask to set (or
clear) the desired B/ A bit positions
without affecting the bits that are to
remain unchanged.

WAR Write Any Register: This instruction is
restricted to the Executive (processor
state 4). In other respects, its influence
on the B/ A register is identical to that
of WAX.

The Active bit is used for several purposes; these can be
segregated by processor states. The uses of Active for
these four groups is discussed in order of increasing
complexity.

States 5, 6, 7

When Busy and Active are set for these states, continuous
operation ensues. The program associated with each state

should be executed as rapidly as possible, within the
c:cmstrainst of Resource Allocation Network (RAN)
sequencing, so Busy will remain set for these states.

Ac:tive for these states is not set during the Trace mode,
us,ed for trouble-shooting or debugging a program. In this
mode it _is desired to have the processor state operate one
major cycle or one instruction at a time, rather than
operating continuously.

S1tates 2, 3

The Active bit for these states serves as an "envelope of
protection" against the setting of Busy when such setting
(aind clearing) must be under the exclusive control of the
processor state itself. Such a situation exists when doing a
data transfer, or when searching for a given record on a
di!>C or magnetic tape. During a Read data transfer, for
example, Busy is continually set and cleared. It is set
when data from the connected 1/0 device is available; it is
cluared when that data has been transferred, examined,
and stored.

For non-buffered devices, this on-off sequencing of Busy
is determined solely by the speed of the peripheral unit.
Fm the relatively long periods when Busy is off during
su1ch a transfer, some outside influence such as the Exec
or an Attention from another unit could - except for the
Ac:tive envelope - cause the 1/0 processor state to react
as if its Busy FF had been set because of the availability
of data from the connected equipment when, in fact, it
hadn't. The resulting "data" transferred would of course
be invalid.

When the STOP-STEP switch on the System Control
Panel is activated, no 1/0 transfers can be executed. This
switch is primarily a diagnostic tool. Its ramifications with
rm;pect to 1/0 requests are considered in a separate manual.

States 0, 4

To the Communications (state 0) or Executive (state 4)

processor, a set Active bit indicates that there is a job
waiting to be executed that is different from the task in
which it is currently engaged. When these states receive a
major cycle, the first thing they do is clear the Active bit.
At the conclusion of the current task, then, if Active is set
it had to be because a new request was initiated while the
processor was still performing the current assignment.

CONTROL REGISTER (C)

The Control register performs two functions:

1. It permits an 1/0 processor (states 0-3) to
override the normal RAN sequencing - that is,
to obtain priority for the next major cycle.

4-73

2. It permits any of the eight processors to
obtain consecutive major cycles as iong as
no other processor state is also waiting for
that "second" cycle (bits 8-15).

Bit positions in the Control register may be set or cleared
individually by the privileged SCN (set control) or RCN
(reset control) instructions. The WAR or WRX instruc­
tions may also be used, but as with the B/ A register,
these instructions require a mask to preserve the integrity
of the unchanged bits.

The bit assignments for the C-register are shown below.

STATE
NUMBER

0
0 1 2

Enable
Priority

(E)

RAN Concept

3 0 1 2

Invoke
Priority

(I)

7 8 15
3 0 1 2 3 4 5 6 7

Consecutive-Cycle
Enable

The resource allocation network (RAN) ensures that each
processor state receives its fair share of time with the
shared resources. The scanning period of the network is
based upon the cycle time of main storage (1.8
microseconds); under normal conditions, then, each state
will use the shared resources once every 14.4
microseconds (1.8 microseconds x 8 states).

But normal conditions do not always prevail. A given
high-performance disc, for example, may require
exchanging a data word with its processor state every 2.5
microseconds. Under these requirements, an obvious need
is for some scheme whereby the disc (or any other
peripheral device, for that matter) can "override" the
normal RAN sequence.

Any allocation scheme, to be the least bothersome to the
user, should consider of highest priority those devices
for which the recovery of lost data wou Id demand some
operator intervention - retyping the input data on a
keyboard terminal, for example, or reloading a card
deck. Of lower priority would be those devices from which
the computer could recover the data automatically -
rereading (or rewriting) a disc track or magnetic tape,
etc. Finally, of lowest priority would be the non-1/0
operations - arithmetic, comparing, shifting, etc. How
these various considerations are effected is the subject of
the following discussion.

The RAN essentially examines the Busy bits in the Busy/
Active register to see which processor states require access
to the shared resources, and then determines which state
shall be given the next time slice.

4-74

RAN Normal Sequence Concept

Scanning is performed in numerical sequence, with
highest preference given to processor state 0, lowest to
state 7. In this manner, the processor states with the
highest degree of "operator intervention", as described
above, are serviced first. To prevent the lower-numbered
processor states from monopolizing the shared resources,
however, the RAN incorporates logic that prevents a
lower-numbered state from receiving a second time slice
if higher-numbered states are still waiting. Thus, if 0, 4,
and 5 were waiting, state 0 would get the first slice, but
could not receive another until both 4 and 5 had had their
turn. In this manner, the shared resourc:es are utilized
most equitably.

RAN Override (Priority) Concep~

Suppose, now, that while processor state 0 were waiting
for 4 and 5 to be serviced so that it could receive another
time slice, it received indications that it could not wait for
normal sequencing. Under these conditions, an override
situation is needed, to negate the normal RAN sequence,
permitting state 0 to receive the third time slice at the
expense of any higher-numbered states (in this case, 5,
since 4 would have taken the second time slice).

Override, or priority. can be enabled by the control
program at the start of each 1/0 data transfer. (There are
no such priority provisions for the four non-1/0 processor
states.) The Control Word that precedes each 1/0 trans­
fer can specify one of three priority levels:

• Enable Priority
(processor's E­
bit = 1)

This level all<>ws an 1/0
processor state to secure an
out-of-sequence, time slice,
provided that no
Io we r-numbered processor
state is also in a priority
condition.*

*Priority Condition means that a state will receive an out-of­
sequence time slice as a result of one of these c:onditions:

• E-bit position set AND being in danger of losing
data,

• I bit position set.

This differs from Priority Mode, which simplly refers to having
either E or I set, without implying consequem override of the
RAN. That is, Condition is a dynamic situation, while Mode is a
statis situation. Moreover, a Priority Condition is not examined
to see which of the bit positions is set. Therefore, if state 0 had E
set and state 1 had I set, state 0 would receive the next available
time slice.

• Invoke Priority
(processor's 1-
bit = 1!)

• Revoke Priority
(processor's E­
and I-bits
both== 0)

Consecutive Cycles

This level allows an 1/0
processor state to secure
alternate time slices,
provided that no
lower-numbered processor
state is also in a priority
condition.

This level negates the Enable
or Invoke levels.

The action of bits 8-15 of the C-register in perr:nitting
consecutive cycles was mentioned in Section 1 . The mode
is useful when only one of the general-purpose processors
is actively engaged in a user's problem program, and
during periods when that program does not call for 1/0
activity. Then, in the relatively long gaps between the
times when the real-time clock input from the 60-Hz
oscillator turns on the Exec processor for system
monitoring, the active G-P state may obtain consecutive
major cycles.

This illustration sets forth just one -- albeit perhaps the
most frequently used - application of the consecutive­
cycle mode.

PRIVILEGED MODE REGISTER (PM)

The Privileged Mode register contains one bit for each of
the eight processor states. When set, that bit position
permits the associated processor to execute any of the
privileged Control instructions described in Section 4.

One of these privileged instructions is Set/Reset Privileged
Mode Register (SPMIRPM); this means that a processor
state cannot use this instruction to set itself to the
privileged mode. The Exec, however, may set itself
privileged by using the restricted Write Any Register
(WAR) instruction (with a suitable mask). It can then set
any other processor to the privileged mode, as the need
arises, by using SPM.

The bit assignments for the PM-register are shown below.

UNUSED 8 15

lo 2 a 4 s a 1

PROCESSOR STATE

13iOUNDARV CROSSING REGISTER (BC)

The BC Regi$ter is used whenever software directs the
Exec to write or read the register of another state.

Exception: Group 111 registers in the extended file cannot
be reached via this register.

The format of the register ·is identical to that of the
second word in the restricted Write/Read Any Register
WAR!RAR instruction:

7 8 10 11

STATE REGISTER NO.

{
0 = Basic register file set
1 = Extended Register file set

Execution of a properly formated WAR/RAR instruction
automatically writes the specified state set, and register
number into BC.

Because BC is an extended register, it may also be written
iinto by a privileged processor state executing the Write
Extended Register WRX instruction (with 08 as the
destination register). However, the exercise would be
futile if the intent was to read or write the register
specified by the newly entered contents of BC, because
only the Exec may cross processor-state boundaries.

HEGISTER OPTION

General

The Register Option (RO) encompasses registers added to
the processing unit hardware to implement the following
features:

• Basic Storage Protection (Bounds)

• Job Accounting

NOTE

The reading and writing of RO registers is presently
Ii m ited to the RRO!VVRO machine-language
instruction. This control instruction is privileged; in
practice this means that its execution is limited to
system programs. Later releases may include
instructions that read or write certain of these
registers in a non-privileged mode. Until such time,
however, an attempt to execute RRO!WRO by a
non-system program will result in an Invalid
Instruction indication in the Condition register of
the processor state attempting the execution.

4-75

The address structure of the register groups devoted to
each of the RO features is shown in Figure 4-4. The
method of coding hexadecimal address for RO registers
uses the format prescribed by the second word of the
RRO!WRO control instruction.

5

6

7

BASIC
STORAGE

(PROTECTl
FEATURE

*BOUNDARY
REGISTERS

05AO

05CO

05EO

~

116-BIT
REGISTER FOR
EACH OF THE
INDtCATED

PROCESSORS
(3 TOTAL)

00

0

2

3

4

5

6

7

07 08

JOB

r ACCOUNTING --,
FEATURE

JOB ACCOUNTING
REGISTERS

WORD 0 WORD 1

0060 I 0601

0620 0621

0640 0641

0660 0661 --0680 0681 --
06AO 06A1

06CO 06C1

06EO 06£1

-------------1 32-BIT
REGISTER FOR

EACH PROCESSOR
(8 TOTAL)

15

* I UPPER BOUNDARY l LOWER BOUND=;RY l
NO BOUNDARY PROTECTION WHEN

REGISTER CONTAINS FF0015

Figure 4-4. Register Option Address Structure

It should be pointed out that when a register set (or group)
-contains but one register, or when there is only one
register within a group that relates to a given processor
state (Bounds), that register number is always 0. The
"register 0 only" selection applies to groups 3, 4, 5, and
to groups 8 through F. An attempt to gain access to a
non-existing RO feature will result in the following action:

on read - all O's will be entered into the
"destination" (Operand 1) file register or memory
location.

on write - no operation

No flag will be set to indicate the addressing error.

Specific bit configurations for the registers are described
under the feature headings that follow.

Basic Storage Protect

This feature checks storage bounds on write (but not on
read) operations in main storage for general-purpose

4-76

processors 5, 6, and 7. As shown in Figure 4-4', the 16-bit
Bounds register for each of the three states provides an
8-bit "page" address (maximum page ntUmber, 255) for
both upper and lower bounds. (Each pag1e comprises 256
contiguous byte addresses.)

Protection is enforced except for the case where the
Bounds Register contents are F FOO, hexadecimal.

Job Accounting

The 32-bit Job Accounting Registers koep track of the
number of major cycles (time slices) that the Resource
Al location Network has granted to each of the eight
processor states. These registers are read only. Any
attempt to write into one of these registers will clear it.

Two Read Register Option (RRO) instruc1tions are required
to read both addresses (word 0, word 1) of a given
processor state's Job Accounting register.

CONTROL INSTRUCTIONS*

Mnemonic Name

CTB Clear Tie-Breaker Register (p)
TST Test and Set Tie-Breakeir Register (p)

BCM Branch to Control Memory (p)

RAR Read Any Register (r)
WAR Write Any Register (r)

RRO Read Register Option (JP)
WRO Write Register Option (p)

SAR Save All Registers (r)
RSAR Restore All Registers (r)

'i

SBA Set Busy-Active RegistE!r (p)
RBA Reset Busy-Active Register (p)

SCN Set Control Register (p)
RCN Reset Control Register (p)

SPM Set Privileged Mode Register (p)
RPM Reset Privileged Mode Register (p)

WRX Write Extended Register (p) * *

Clear Tie-Breaker Register

CTB 11
0 7 8 111 12 15

12

FUNCTION: A privileged instruction that resets a single
bit in the Tie-Breaker register.

OPERAND 1: A 4-bit unsigned value in bits 8-11 of the
instruction. This value specifies the position of the bit to
be reset in the Tie-Breaker register.

EXAMPLE

FNAMl Of'EAATION ~IAAND
1: 4 'h I H 9 10 11 11 n MI\ Iii 111H 1'111111 lll.1/4 "/Ii/I /K 1930 j1]i3334-,_ 3631 ll3S-•041 4143044;0S

c T8. . /0. · · · · ·
, , , , 0 , o, o,, , I,,, I• •I

Turns off bit 10 of the Tie-Breaker register.

NOTE
The CTB instruction is classified as a privileged
instruction, but becomes a general-purpose
instruction (privileged mode bit need not be set)
when the bit named in the operand is bit 15 of the
Tie-Breaker r~gister.

* p = privileged, r = restricted

**Read Extended Register is a General-Purpose Control

instruction.

Test and Set Tie-Breaker Register

TST 11
0 7 8 11 12

11

15

FUNCTION: A privileged instruction that tests and sets a
single bit in the Tie-Breaker register in order to resolve
synch ron i zati on problems resulting from parallel
processor execution. If the designated bit is clear, it will
be set and the Program Address register will be advanced
six bytes. If the designated bit is set, it will remain
unchangedl and the program will fall through to the next
instruction (the Program Address register will be advanced
by two bytes). A TST instruction would generally be
followed by a four-byte branch instruction.

OPERAND 1: A 4-bit value in bit positions 8-11 of the
instruction. This value specifies the bit position in the
Tie-Breaker register which is to be tested and set.

EXAMPLE

Fge CWEA•Tl<>N CWEA•ND

4 ·~·.f, I H ~~ 10 II 111"11<1 111 1111118 1'110 i'I I/)! 1'1 I'• i'lii'I i'll l!J JO JI J]Jil4J!t 36 J1 J8J9 4041 42 43444~46

T.ST . . I¥.
• •,, • o , 1 , , , I• I•••, J •, I , ',

Tests bit number 14 in the Tie-Breaker register. If this bit
is off, it us turned on and the address in the Program
Address register is increased by six bytes. If the tested bit
is on, the bit is not changed and the next instruction is
read.

NOTE

The TST instruction is classified as a privileged
instruction, but becomes a general-purpose
instruction (privileged mode bit need not be set)
when the bit named in the operand is bit 15 of the
Tie-Breaker register.

Branch to Control Memory

BCM R1"2

0 7 8 9 11 12 13 15

FUNCTION: A privileged instruction that transfers
control to the control memory address contained in a
g1meral register.

OPERAND 1: The control memory address located in the
QE!neral register specified by R 1 ·

OPERAND 2: A 3-bit value in bit positions 13-15 of the
in~truction. This operand is optional; when used it
transfers information to the control memory routine to
Which control is transferred.

E:XAMPLE

] I 4 !i 'ji / II. !i 10 II 1111 14 Iii Iii 11 \~ l'I }O 11 IJ]] }4 /I, /I, 7118 741JO1131lJ14 l!i 16 JI]8 J940-ii~it14J4-44;'6 ~
H•ME CWl .. TIDN Of'EA•HD

. je Ch. . .!"1 .f · · · · · • · · · · •
, , 4 I I•, , Io•• I• I

Jumps to the control memory address specified in register
5. Information contained in register 6 (parameters, etc.) is
transferred to the control memory routine.

Read Any Register

FE I f I R1 I I R2 t
·~-------------------1.,.....s_,_s _____ 1_1,.-12-,-_13 _____ 1-,5

FUNCTION: A restricted instruction that allows the
EJ<ecutive processor (4) to read the contents of any file
register for any of the eight processor states, with the
e.>c:ception of the Group 111 extended (1/0) registers for
states 0 through 3.

E>ctended Function Code: Bit 8 serves as an extension to
the basic function code and is a 0 for this instruction; this
bit distinguishes between RAR and WAR.

OPERAND 1: The address of the file register to be read is
specified by the 11 value (bits 16-31 of the instruction).
The 11 value may optionally be modified by the contents
of the R 1 register, thus the effective register address= I 1

+ (R 1).

4-77

OPERAND 2: A one-word receiving field in the general
register specified by R2, or in memory if indirect
addressing is used.

The format of the 12 portion of the instruction is as
follows:

Bit 23 indicates the register-file set:

0 = Basic Register

1 = Extended Register

Bits 24-26 indicate a processor state, 0-7.

Bits 27-31 indicate a register number in the ranges shown
below:

Basic Registers - 00-1 F

Extended Registers - 00-0F

Bits 16-22 are ignored by the hardware, but should be
zeros.

EXAMPLE

---·-----1--J-------. --,--,-, - ---- .. -·-·- .. - .. ------ -- . -

I.'. J ... • •. •• 1. 8 9 a_;~IJ. 14 I> 16 II 18 ;;~-~-~~·.:-.@~.IB.19 JO JI JI l<0 J< 1' J6 JI JI J9 40 41 II 4JU4' '6

Reads a register in the register file addressed by TAG(3),
and stores the contents of the register in the memory
location specified in register 6.

Write Any Register

0 7 8 9 11 12 13 16

E:=--~,i-f l_R_1_~
FUNCTION: A restricted instruction that allows the
Executive processor (4) to write into any file register for
any of the eight processor states, with the exception of
the Group Ill extended (1/0) registers for states 0 through
3.

Extended Function Code: Bit 8 serves as an extension to
the basic function code and is a 1 for this instruction; this
bit distinguishes between RAR and WAR.

OPERAND 1: The address of the file register into which

4-78

the data is to be written is specified by the 12 value (bits
16-31 of the instruction). The I 1 value may optionally be
modified by the contents of the Rl register, thus the
effective register address= I 1 + (R 1).

OPERAND 2: A one-word sending fielld in the general
register specified by R2, or in memory if indirect
addressing is used.

The format of the I 2 portion of the instruction is as
follows:

Bit 23 indicates the register-file set:

0 = Basic Register

1 = Extended Register

Bits 24-26 indicate a processor state, 0-7.

Bits 27-31 indicate a register number in the ranges shown
below:

Basic Registers - 00-1 F

Extended Registers - 00-0F

Bits 16-22 are ignored by the hardwarn, but should be
zeros.

EXAMPLE

I l 1 4 '1 f. I. 8 9 10 11 11-11-14 1'1 i611~·,g-}o-212211241!1761111 H lO JI J1 :IJ J.C 35 JS 31 3139 4041 CJ 4J44H ti

IJ.'A Jt j • .u.,.>.(t;.)., .d>.J:' .•....•..••• ·-· •••

The contents of a memory location ~1pecified by the
address in register 5 are written in the register with the
register address specified by R FLD(6).

Read Register-Option Register

,..--0 __________ 1_e __ e ___ 111 12 13 15

t-------F_D ____ --Ll_f~l--R_1_~
11 ~

FUNCTION: A privileged instruction that reads the
contents of a two-byte field from a regi!;ter-option (RO)
register and transfers the contents to a general register or a
memory location.

Extended Function Code: Bit 8 serves as an extension to
the basic function code and is 0 for this instruction; this
bit distinguishes between RRO and WRO.

OPERAND 1: The address of the register-option register
to be read is specified by 11 (bits 16-31 of the
instruction). The I 1 value may optionally be modified by
the contents of the R 1 register, thus the effective register
address= 11 + (R 1).

OPERAND 2: A one-word receiving field in the general
register specified by R2, or in memory if indirect
addressing is used.

The format of the I 1 portion of the instruction is as
follows:

Bits 20-23 specify the RO group, as follows:

Hex
Value

0

2

3

4

5

6

7

8/9

A/B

CID

E/F

Meaning

Segment Tag

Protection Matrix

Segment Relocation
Table

Address Mode

Parity Error Tag

Bounds

Job Accounting

Not used

Main Storage Data

Error Log

Generated Check
Bits

Read Check Bits

Structure

32 4-bit registers for
each proc.

2 16-bit registers for
each proc.

16 24-bit registers

1 16-bit register

1 16-bit register

3 16-bit regs. (procs.
5, 6, 7)

2 16-bit registers for
each proc.

1 16-bit
register
in each
group

Bits 24-26 specify a processor state, 0-7.

Bits 27-31 specify a register number as defined below:

Reg. No.
Group or Range Remarks

0 0-1F 32 registers/processor

1,, 2, 6 0-1 Reg. O=word, Reg. 1 =word 1

3,, 4, 5, 8 - F 0 One register per group

Se1e the Register Option discussion in Section 1, General
Description, for add iti ona I information on the
re,gister-option registers. ·

Write Register-Option Register

FUNCTION: A privileged instruction that writes the
contents of a one-word field, located in a general register
01r in memory, into a specified register-option (RO)
re1gister.

Extended Function Code: Bit 8 serves as an extension to
the basic function code and is a 1 for this instruction; this
biit distinguishes between R RO and WRO.

OPERAND 1: The address of the register-option register
into which the data is to be written is specified by the 12
value (bits 16-31 of the instruction). The 12 value may be
OIPtionally modified by the contents of the R 1 register,
thus the effective register address= 12 + (R2).

OPERAND 2: A one-word sending field in the general
rngister specified by R2, or in memory if indirect
addressing is used.

The format of the 12 portion of the instruction is as
follows:

26 27
PROC.
NO.

Biits 20-23 specify the RO group:

Bits 24-26 specify a processor state, 0-7.

I
REGISTER

NO.
I• 4

Bits 27-31 specify a register number as defined·:

4-79

31

I

See the Register Option discussion in Section 1, General
Description, for additional information on register-option
registers.

Save All Registers

0 7 8 9 11 12 13 16

~-----M~1;~'--R_1_~'-i~'-'2_or_R~21

FUNCTION: A restricted instruction that stores in
memory the contents of all general registers, the
Condition register, and the Program Address register for
the processor specified. This instruction may be executed
only by the Executive processor state.

Extended Function Code: Bit 8 serves as an extension to
the basic function code and is 0 for this instruction; this
bit distinguishes between SAR and RSAR.

OPERAND 1: The starting address of the save area in
memory where the register contents are to be stored.
Addressing options to the base address M 1 include only
indexing.

OPERAND 2: The processor number as specified by 12, or
contained in the general register specified by R2 if bit 12
(i) is on. Bit 12 does not indicate indirect addressing for
this instruction. If bit 12 is on, the value in bits 13-15 is
considered a register number containing the processor
number. If bit 12 is off, the value in bits 13-15 is
considered to be an immediate value which is the
processor number.

EXAMPLE

Loads a save area beginning at SAVE(3) into the general,
Condition, and Program Address registers of Processor 5.

Restore All Registers

0 7 8 9 11 12 13 15 EF•-__ M_._l

1

_f ...__l _R1 __ .._I _i j ___ 12_o_r R_2--.1

FUNCTION: A restricted instruction that loads the
contents of a save area in memory into the general

4-80

registers, Condition register, and the Program Address
register of the processor specified. After 1the registers have
been loaded, the Microprogram Address register of the
specified processor will be cleared to facmtate resumption
of execution with the next sequential instruction. This
ins~ruction may be executed only by the Executive
processor state.

Extended Function Code: Bit 8 serves as an extension to
the basic function code and is 1 for this instruction; this
bit distinguishes between SAR and ASAR.

OPERAND 1: The starting address of the save area in
memory from which the registers are loaded. Addressing
options to the base address M 1 include only indexing.

OPERAND 2: The processor number as specified by 12 or
contained in the general register specified by R2 if bit 12
(i) is on. Bit 12 does not indicate indirect addressing for
this instruction. If bit 12 is on, the valuie in bits 13-15 is

. considered a register number containing the processor
number. If bit 12 is off, the value in bits 13-15 is con­
sidered to be an immediate value which is the processor
number.

EXAMPLE

-----·~----
1/14'ih111'1 \0111/IJUl'ilt1 1/18Ml0,llll1]/4/;1611l8-·JgJ(j)131:1JJ4J!iJ631JIJ94041424J444~46

Loads Program Address register, Condition register, and
general registers for Processor 1 with information taken
from a save area identified by SAVE(2). The 16-bit field
at SAVE(2) is loaded into register 0, the second into
register 1, and so on until words 9 and 110 are loaded into
the Condition and Program Address registers, respectively.

Set Busy I Active Register

0 8 9 11 12 13 15

10

FUNCTION: A privileged instruction that sets a busy
and/or active bit in the Busy/Active register for the
processor designated by I 1 or R 1 ·

Extended Function Code: Bit 12 serves .as an extension to
the basic function code and is 0 for this instruction; this
bit distinguishes between SBA and RBA.

OPERAND 1: The processor number, 0-7. Indirect
addressing indicates that the processor number is in the
register specified by R 1. Direct addressing indicates that
the processor number is the I 1 value in the instruction.

OPERAND 2: A 2-bit designator in bits 14 and 15 used to
specify the bit or bits to be set.

• Bit 15=1 means set Busy bit.

• Bit 14=1 means set Active bit.

• Bits 14 and 15=1 means set both bits.

EXAMPLE

I] J 4 ~--6-,-8 9 ·10)j-i]IJ14-~16~{i1112i3-z;f~)oJ132i3~36i1i8Ji.404li24J,t44s46

ls..8.A. 13.,. J. . . . • • . . • . • • . • . .•

Turns on the Busy bit for Processor 3. (If a 2 had been
specified as operand 2, the Active bit for Processor 3
would be turned on; if a 3 had been specified, both the
Busy and Active bits would be turned on.)

Reset Busy/Active Register

RBA l1h or @R112
0 7 8 9 11 12 13 16

10

FUNCTION: A privileged instruction that resets the bµsy
and/or active bit in the Busy/Active register for the
processor designated by I 1 or R 1 ·

Extended Function Code: Bit 12 serves as an extension to
the basic function code and is 1 for this instruction; this
bit distinguishes between SBA and RBA.

OPERAND 1: The processor number, 0-7. Indirect
addressing indicates that the processor number is in the
register specified by R 1 · Direct addressing indicates that
the processor number is the I 1 value in the instruction.

OPERAND 2: A 2-bit designator in bits 14 and 15 used to
specify the bit or bits to be reset.

• Bit 15=1 means reset Busy bit.

• Bit 14=1 means reset Active bit.

• Bits 14= 1 and 15= 1 means reset both bits.

EXAMPLE

I 1 3 4. -~ 6"", "1119 IO 1l !1-1i"14~ IG"i1 18 ,·9 10 i"1 ii "1l-14-"i'J-i6 i1-i81"9JOJ1"31il 34]~-J631i839404-;-4i4i44·4~-46

~..b.A. . 3.,.1.

The Busy bit for Processor 3 is turned off. (If a 2 had
been specified as operand 2, the Active bit for Processor 3
would be turned off; if a 3 had been specified, both the
Active and Busy bits for Processor 3 would be cleared.)

Set Control Register

0 7 8 9 11 12 13 15

14

.FUNCTION: A privileged instruction that sets specified
lbits in the Control register for the processor designated by

11 or R1.

Extended Function Code: Bit 12 serves as an extension to
the basic function code and is 0 for this instruction; this

lbit distinguishes between SCN and RCN.

OPERAND 1: The processor number, 0-7. Indirect

;addressing indicates that the processor number is in the
register specified by R 1. Direct addressing indicates that
the processor number is the I 1 value in the instruction.

OPERAND 2: A 3-bit designator in bits 13-15 used to

:specify the bits to set.

• Bit 13= 1 means set Enable Priority bit.

• Bit 14=1 means set Invoke Priority bit.

• Bit 15=1 means set Consecutive Cycle bit.

EXAMPLE

;I , "''"""°" Ol'••••o
I I} 14 '• ll I 119 1011-\1IJ"-j4"1!ii6-1ff_!.!11970J177j374··1~761178-i9-J03i"J73)),i).;Jr.J13il9-i04!424Jii4i"46.

jscN. . 3'.,.1

Turns on the Consecutive Cycle bit for Processor 2: lA 2
in operand 2 would turn on the Invoke Priority bit; a 4
would turn on the Enable Priority bit.)

!Reset Control Register

l~CN 11.!2 or @R1,l2

0 7 8 9 11 12 13 16

14 j i I 11 or R 1 I f j 12

!~UNCTION: A privileged instruction that resets specified
bits in the Control register for the processor designated by

11 or R1.

Extended Function Code: Bit 12 serves as an extension to
the basic function code and is 1 for this instruction; this
lbit distinguishes between SCN and RCN.

OPERAND 1: The processor number, 0-7. Indirect
addressing indicates that the processor number is in the
register specified by R 1. Direct addressing indicates that
the processor number is the I 1 value in the instruction.

OPERAND 2: A 3-bit designator in bits 13-15 used to

:specify the bits to reset.

• Bit 13=1 means reset Enable Priority bit.

• Bit 14=1 means reset Invoke Priority bit.

• Bit 15=1 means reset Consecutive Cycle bit.

4-81

EXAMPLE

1 / 1 4 -~-·-5 ·,- ·R g 1-0--,1- 11iJ-,-4-1·~· 1s~1011i21J 14 l!i 26 2111 n JO JI 31 n J4 » JI l' JI 39 40 ., •1.., ... o ..

IA.c.N 1.2.,.1•...........

The Consecutive Cycle bit for Processor 2 is turned off.
(A 2 in operand 2 turns off the Invoke Priority bit; a 4
turns off the Enable Priority bit.)

Set Privileged Mode Register

SPM 11"2 or @R1"2

0 7 8 9 11 12 13 15

15

FUNCTION: A privileged instruction that sets the bit in
the Privileged Mode register associated with the processor
specified by I 1 or R 1 ·

Extended Function Code: Bit 12 serves as an extension to
the basic function code and is 0 for this instruction; this
bit distinguishes between SPM and RPM.

OPERAND 1: The processor number, 0-7. Indirect
addressing indicates that the processor number is in the
register specified by R 1. Direct addressing indicates that
the processor number is the 11 value in the instruction.

OPERAND 2: A 2-bit designator in bits 14 and 15 used to
specify the bit to set.

• Bit 14 is reserved for future use.

• Bit 15=1 means set Privileged Mode bit.

EXAMPLE

I 1] 4 !t I 1 I 9 10 11 11 13 1• l!t 16 I ~ 19 10 21 u 1l 14 n. n·man·MJ1 J1i3Ml!.-H-]-, ii-,,-- 40 41 41 •3 •• 4'.:ri 4,

f,s.IA j3.,./

Turns on the Privileged Mode bit for Processor 3.

NOTE

A processor can only execute the SPM instruction if
the privileged mode bit is set for that processor.
Initial setting of the privileged mode bit can be
accomplished with a WAR instruction.

Reset Privileged Mode Register

0 7 8 9 11 12 13 15

15
12 '

FUNCTION: A privileged instruction that resets the bit in
the Privileged Mode register associated with the processor

4-82

specified by I 1 or R1.

Extended Function Code: Bit 12 serves a~: an extension to
the basic function code and is 1 for this instruction; this
bit distinguishes between SPM and RPM.

OPERAND 1: The processor number, 0-7. Indirect
addressing indicates that the processor number is in the
register specified by R 1 · Direct addressing indicates that
the processor number is the 11 value in th«! instruction.

OPERAND 2: A 2-bit designator in bits 14 and 15 used to
specify the bit to reset.

• Bit 14 is reserved for future use

• Bit 15=1 means reset Privileged Mode bit

EXAMPLE

1i-J,.!t1111t 1011-i2.ii141i-~1920-n11n1•1!1161Plll9JOJ111i1-lt~-ii--i1-l9co.•1•2uu•'.:ri.u.

~,~ ~-·'·

The Privileged Mode bit for Processor 3 is turned off.

Write Extended Register

WRX E1,R2

0 8 11 12 13 15

FO E1 I f I R2

FUNCTION: A privileged instruction that writes the
contents of the general register into a Group 11 extended
register.

Extended Function Code: Bit 12 serves as an extension to
the basic function code and is 1 for this instruction; this
bit distinguishes between ROX and WRX.

OPERAND 1: The Group 11 extended register to be
loaded is specified by R 1 ·

OPERAND 2: The general register which contains the
data to be transferred is specified by R2.

CONSIDERATIONS: Any attempt to access a Group
extended register will result in a trap1 to the Invalid
Instruction routine.

EXAMPLE

I i-J4S6Ji1t'Ji1112il14~ ~ i9-iQ._i1i2 13 2" 2!t 16 27 28 H JO Ji- il }3 Ji-)~· lfi JI 111 l!I 4Q- 41 41-4144 4~ 41i

!v.Jtx. 1.z,. 7

Writes the contents of general registe1r 7 into extended
register 2.

1/0 INSTRUCTIONS

Each of the three 1/0 processor states has an associated
1/0 driver to implement all 1/0 activity delegated by the
Executive program. Conceptually, the 1/0 driver is the 1/0
processor. The driver is a series of machine instructions
designated by the operating system for the associated
processor state.

Implementation

All 1/0 control and data transfer is via the extended
registers of the three 1/0 states. Machine language
instructions are tailored to implement the requirements of
three major classes of 1/0 operation:

• Communications Processor State 0

• Selector Channel Processor State 2

• Disc Processor State 3

Communications

Two 1/0 instructions provide for communications 1/0.
WRC is used for setting up the channel for a data transfer,
and RDC implements the input or output transfer.

Selector Channels

Three 1/0 instructions provide for basic data channel
operations: INP, OUT, and SIO. INP and OUT prepare the
channel for a data transfer, and perform the transfer
under software control. SIO can set up the channel,
perform a hardware-controlled transfer and ending
sequence, and process asynchronous status.

Disc

Three 1/0 instructions provide for disc operations: INP,
OUT, and DIO. INP and OUT perform certain preparatory
functions such as Seek, while DIO implements
time-dependent operations - searching count fields and the
actual input or output transfer.

1/0 Instruction List*
Mnemonic Name -----

DIO Disc 1/0

INP Input from 1/0 Register
OUT Output from 1/0 Register

RDC Communications 1/0
WRC Communications Output

SIO System 1/0

*All 1/0 instructions are restricted to one of the dedicated
processors, 0-3.

[

Disc Input/Output

DIO @R1,R2
0 1 8 9 11 12 13 15

F2 Ii I R1 I 0 I R2

FUNCTION: Operates on a variable length command
packet or several such packets located at the address
specified by R2 to effect a variety of disc channel
operations including buffered data transfer (input or
output). This is a restricted instruction limited to
Processor 3.

OPERAND 1: A one-word field containing the first word·
address of the command packet. The command packet
address is in the general register specified by R 1 for direct
addressing, or in the memory location specified by the
contents of R 1 for indirect addressing.

OPERAND 2: At the end of the operation, the status of
the last operation to be performed is transferred to a
6-byte table. The table starting address is contained in the
general register specified by R2. The table has the
following format:

0

Current Command Program Address

Status of Last Hardware Operation

Last Byte Address (+1 or +2) Transferred*

*+1 if byte count is even.
+2 if byte count is odd.

Command Packets

15

The DIO instruction operates on the following packets:

Command

Home Address Search (03) Packet

7 8

08

Tag

Buffer Address (Home Argument)

Flag

C2

H2

Home
Address
Argument

C1

H1

15

4-83

Command
Packet Count Field Search (08)

0 1 2 3 4 7 ~8;.._~~~--~~~~-1-5~

08

Tag

Buffer Address (Count Field Argument)

Flag

C2

H2

Count
Field
Argument

Key Length

02

Read (02)
0 1 2 3 4 6 7 8

Buffer Address

Overall Byte Count

Read Without Transfer (04)

0 1 2 3 4 7 8

Write (01) or Format Write (10)

C1

H1

Record Number

01

02

TAG

04

01234 7_.;8 ___ _

01 or 10

Variable Gap TAG

Buffer Address

15

15

15

BRS (Bit Ring Sync) - determines the type of field
(home address, count, key or data) to be read or written.

000 - Special Home Address
001 - Data Field
010 - Key Field
011 - Ro Count Field
100 - Control Storage Data
101 - Home Address Record
110 - Rn Count Field
111 - Special Data

Ro is the first record on a track, Rn is any record after the
first record on the same track.

4-84

Byte Count - Specifies the number ,of bytes in the
command argument (search packet), or the total number
of bytes to be read or written.

Tag - Adds base register displacemenit to the buffer
address.

Buffer Address - Specifies the startinu address of the
argument (search packet), or the starting address which
will be used to store data from the disc, or where data to
be recorded on the disc is located. Buffer address must be
stored in an even memory location.

Flag - Indicates track usage and condition.

C1, C2 - Specifies the cylinder address. Cl is always set
to zero; C2 can have a value between 000 and 202.

H1, H2 - Specifies the head address. H 'I is always set to
zero; H2 can have a value between 00 and 19.

Key Length - Specifies the number of bytes in the key
field. If no key field is included, key len~1th must be set to
zero.

Overall Byte Count - Specifies total length of all data
fields to be read during respective read (multiple of byte
count when R=1). When R=O this word must not be used
and must not be included in the command packet.

Variable Gap - Specifies the one's complement of the hex
number of supplementary gap bytes which must precede
the next count field to be written. IFA logic
aut'>matically generates 41 gap bytes for every type of
data field. The following table specifiE!S the number of
additional gap bytes which must be appended by the
command after writing each data field.

Type of Field

Ro Count, Ro Data,
Rn Data, Rn Key

Home Address*

Special Home Address*,
Special Data

Rn Count

Entry

FF 16 (O bytes)

DF15 (3210 bytes)

Not Defined

0.043 x (Key Length +
Data Length) not in~
eluding Burst Check
Bytes

*In the event of Home Address error, a gap length of 205 bytes
will be inserted by the utility program.

R (Repetitive Read Indicator) - If 0 = n10 multiple read; if
1 =multiple read requested.

C (Chain) - If this bit = 1, 010 will expect to find
another command packet immediately following the first
command packet. After executing the first command, the
microprogram will proceed to execute the second
command. Chaining will continue until 010 reaches a
command packet with a chain bit = 0, which the micro­
program will assume to be the last packet to be executed.
Whenever a packet in the chain does not complete success­
fully, the chain is terminated and the status of the
command packet being executed is returned to Shared
Resources.

NOTE

A complete discussion of disc addressing, track
formats and other pertinent information can be
found in the publication Memorex 3664 Disc
Storage Drive Reference.

EXAMPLE

I 1 l-C ·-;; Sl-ai 9 10---.-.-oliJt.l;-tG. II IB 19 10-;I Ii 1i.14-1> 1ti /I l8 /g JU ;·, 11 ll-~J> lti J' JI 19 40 41 '1 4J U •> 4b

~ . .Z'.O. . . .r.,.'I . .

Register 5 contains a pointer to a set of 1/0 commands
which are to be executed. After execution, the three-word
end-operation status is stored at the location specified in
register 4.

Input from 1/0 Register

7 8 11 12 13 15

F5

FUNCTION: Reads the contents of the Group Ill
extended register specified by R 1 and transfers it to the
general register specified by R2 or to a memory location if
indirect addressing is used. This is a restricted instruction
limited to the 1/0 processors (0-3).

OPERAND 1: The data is read from the extended (Group
111) register specified by the R 1 value.

OPERAND 2: For direct addressing, the receiving field is
the general register specified by R2. For indirect
addressing, the receiving field is at the memory location
specified by the contents of this register.

Application

The INP instruction is used by the disc and BOC (basic
data channel) processors for setting up an operation in
preparation for the actual data transfer.

Basic Data Channel Operations - For BOC operations in
INP instruction is executed in Processor 2. The extended
registers of Processor 2 have dedicated hardware functions
such that the particular register number specified by field
R1 determines the hardware significance of the input
word transferred. Figure 4-5 shows the relationship
be·tween the R 1 value, the extended register number, and
the hardware significance of the input word.

Disc Channel Operations - For disc operations, the I NP
instruction is executed in Processor 3. Here the receiving
field is determined by R2; the value of the R 1 field is
immaterial since the source of the word transferred is
always the same. The nature of the word depends upon
th1~ value of the R 1 field in the previously executed OUT
ins:truction.

EXAMPLE

~ 1 4 !i- fi 1 e. 9 ul·11111J,-4 1-~16111" 19 10 ,-1- 11 ·11·74-,;]0,11-19 10 J1- H n J4 -1;- Jli 11 1119 .to .t1•i43 44 •~ 46 F
NAME OPE.RATION OPUIAND

'ii:NI>. . . • . '1. 1 .1.
•. o o ' ' '' 0 ' '' I ' 'I' I' •'I

The contents of extended register 4 are transferred to
general register 7.

Output to 1/0 Register

0 7 8 11 12 13 15

c·~~~F6~~-r-~R-1-----.l-r-l~R2----.

FUNCTION: Transfers the contents of the general register
specified by R2, or the contents of a memory location if
indlirect addressing is used, to the group II I extended
register specified by R 1 · This is a restricted instruction
limited to the 1/0 processors (0-3).

OPERAND 1: The data is transferred to the Group 111
extended register specified by the R 1 value.

OPERAND 2: For direct addressing, the sending field is
the~ general register specified by R2; for indirect
addressing, the sending field is the memory location
spe~cified by the contents of this register.

Application

The OUT instruction is used by the disc and BOC (basic
data channel) processors for setting up an operation in
pre!paration for the actual data transfer.

4-85

R1 Extended Regis·ter No. Contents of Input Word

16-bit Mode -- _.,......_ - ----0 7 8 15

0,4,8,C 10,14,18,1C l Bus in Register I Bus In Register ~ J-

Byte-vMode

0 7 8 15

1,5,9, D 11. 15, 19, 1D I Tag In Lines I Tag Out Register ~
0 15

2,6,A,E 12, 16, 1A, 1 E I Channel Control Register ~
0 15

3, 7,B, F 13, 17, 1B, 1F I Byte Count Register ~
Figure 4-5. INP Instruction In Basic Data Channel Operation

Extended Register Hardware Interpretation
R1 Number (Hex) of Output Word

0 7 8 15

1 11 I I Tagout Register ~
0 15

2 12 I Channel Control Register ~
0 15

4 14 I Bus Out Register ~
0 15

8 18 I Byte Count Register ~
0 15

F 1F I All Registers ~
Figure 4-6. OUT Instruction In Basic Data Channel Operation

Basic Data Channel Operations - For BDC operations the
OUT instruction is executed in Processor 2. The Group 111
extended registers of Processor 2 have dedicated hardware
fu net ions such that the particular register number
specified by field R 1 determines the hardware significance
of the output word. Figure 4-6 shows the relationship
between the R 1 value, extended register number, and the
hardware interpretation of the output word.

4-86

Disc Channel Operations - For disc operations, the OUT
instruction is executed in Processor 3. The Group 111
extended registers of Processor 3 have dedicated functions
such that the particular register numbEir specified by field
R1 determines the hardware significance that will be
assumed for the output word. The following material
shows the relationship between the extended register
number and the hardware interpretation of the output
word.

Extended Register 10

0

r- Not used
L__, __

Extended Register 11

0

I Command

+ 0 0 0 1 Set Hd Adv
0 0 0 2 Restore
0 0 1 0 Reset Hd Reg
0 0 2 0 = Start Seek
0 0 4 0 ... Reset Attn

12 13 15

Drive
No.

15

I

0 2 x x = Latch, where X X = 8 bits for bus lines
0 0 x x = Pulse, where X X = 8 bits for bus lines
0 4 x x Set Hd Reg, where X X = Hd No.
0 8 x x = Set Cyl Reg, where X X •CAR No.

Extended Register 12

This register causes a request status indication from the
IFA. The output word is immaterial in this case since the
hardware will always return a status word to be picked up
by an ~NP instruction. Significance of the status word is as
shown in the following table.

8000

4000

IFA Status Not Valid OR Command Early

IFA Missed Window OR Command Early

2000 IFA Window

1000 IFA Track Boundary

0800 IFA Read/Write Termination

0400 I FA Burst Check Error

0206 IF A Lost Data

0207 IFA No Sync Compare

0080 IFA 3rd Rev Sync Find

0040 Disc (Not On Line) OR (Seek Incomplete
and Not File Unsafe)

0020 Disc (File Unsafe) OR (Seek Incomplete
and Not File Unsafe)

0010 Disc Read Only

0008 Disc Pack Change

0004 Disc End of Cylinder

0002 Disc Write Current Sense or No Search
Find*

0001 Disc Busy

*No Search Find will exist only when the command word
in error is a Search command word.

Ext1mded Register 13

This register causes a request attention and physical
address from the IFA. The output word is immaterial in
this case since the hardware will always return the
foll 1owing word to be picked up by an I NP instruction.

15

Cylinder Number

................. '"'""' ----~
Attention Bits

Extended Registers 14, 15

Noit used for OUT instruction (see DIO instruction).

EXAMPLE

F NAME OPCRATION OPERAND

} 4 'i fi ,-a 9 10 i1 11-1:1 14 l'i 11, ,-, 18 19 20 1111 /] -74 1~ 16 1-1 18 19 JO '.II 11 JJ ·14 .l'i .lh J1 l8 1~ 40 41 414144 4~ 411

().CIT . . . f,.,.
• • • '• • I , I,, I , I

Tho contents of general register 6 are transferred to
extended register 5.

Communications Input/Output

RDC

FUNCTION: Each time processor state 0 is turned on
(Busy bit set), the Communications 1/0 driver executes
thE! RDC instruction to determine whether the Busy bit
was set by the Executive program (output) or by one of
tho communication lines (input). If there is no interface
request (that is, no call-in on any of the communications
lines), general register 5 is set to other than zero and
ex 1ecution falls through to the next instruction in the
driver.

If there is an interface request, R DC places the line
address in general register 2 and input information in
geineral register 3, and then inspects the line address table
(the starting address of which had previously been put in
general register 4) to determine whether or not a line
parameter table is assigned to that line. If there is no line
parameter table, it indicates that activity on that line was
neither expected nor should be acknowledged; general
re19ister 5 is reset, and execution then falls through to the
ne,xt instruction in the driver.

If a line parameter table is assigned, the address of that
table is placed in general register 5, and further analysis is
PE!rformed to determine whether the request is to be
handled by software or whether buffered data transfer
(input or output) is indicated, in which case the ADC will
implement the actual transfer by operating on the linP

4-87

parameter table. If the interface request requires software
processing, ADC will first determine the type of request
and then transfer control to the appropriate software
routine. The address of the routine is obtained from a
jump table pointed to by one of the words in the
parameter table.

Assuming that control is not transferred to a software
routine, ADC will continue to service buffered data
transfer requests in a multiplexed mode until control is
diverted to a software routine.

The RDC instruction is a restricted instruction limited to
Processor 0.

Line Address Table

A 32-byte table containing a one-word address pointer to
a line parameter table for each line address. If the pointer

LPTA

I

LINE PARAMETER TABLE

INPUT BYTE COUNT
(IBC)

INPUT, CURRENT BYTE ADDA.
(ICBA)

STATUS (PARITY ERROR)

BUFFER TERMINATOR LIST
ADDR. (BTLA)

OUTPUT BYTE COUNT
{OBC)

OUTPUT, CURRENT BYTE
ADDR. (OCBA)

JUMP TABLE ADDR.
(JTA) I

4

BTL I BYTES

L_.J

OBC = 0

THE LINE ADDRESS TABLE (SEE TEXT) POINTS TO A DIFFERENT
LINE PARAMETER TABLE ADDRESS (LP"f A) FOR EACH COMMUN·
ICATION LINE.

*THESE TWO ROUTINES CHECK WORD 3 OF THE PARAMETER
TABLE TO SEE IF A PARITY ERROR OCCURRED.

is zero, a line parameter table has not been provided for
that line address.

Line Parameter Table (Unit Table Extensiion)

A block of information concerning a particular line
address. Thus, it is possible for each line to be uniquely
implemented. One of the words in each parameter table is
a pointer to a line exit jump table (Figure 4-12).

A 12-byte table containing one-word address pointers to
software routines for each line exitcondition. The pointer
to the line exit jump table contained in the line parameter
table may be changed to a different line exit jump table,
or any element of a Hne exit jump table may be changed
to meet a line-modem situation.

The interrelationship of the Line Parameter table and the
Line Exit Jump table is shown in Figure 4-7.

LINE EXIT JUMP
TABLE

ADDA. OF "NO rNPUT BFR" J
ROUTINE

ADDA. OF "INPUT BFR J
TERMINATED" ROUTINE ------
ADDA. of "INPUT BFR J FULL" ROUTINE

ADDA. OF "OUTPUT BFR J EMPTY" ROUTINE

ADDA. OF "UNSOLICITED J STATUS" ROUTINE

ADDA. OF "SOLICITED J STATUS" ROUTINE

JTA

*

*

Figure 4-7. Relationship, Line Parameter Table and Exit Jump Table

4-88

Communications Output

WRC
0 7 8 9 11 12 13 16

F4

FUNCTION: Transfers the contents (data or ICA
command) of the general register specified by R2 to the
Ii n e address specified by R 1 · Th is is a restricted
instruction limited to Processor 0.

OPERAND 1: The destination of the ICA command
format (or data) is the line address contained in the
general register specified by R 1 ·

OPERAND ~ The command (or data) to be transferred is
contained in the general register specified by R2.

Application

The WRC instruction is designed for putting out a single
ICA command (or data) format to a communications line
in preparation for a data transmission to be implemented
by the RDC instruction.

ICA Command Format: The general format of the output
word transferred by the WRC instruction is shown in the
first illustration. The specific variations of the word are
shown in following illustrations.

0 1 2 3 15

I 8 I I I
B is a broadcast designator; broadcast= 1, not

broadcast=O. When this bit is a 1, the command
word is "broadcast" to all channels.

is an identifier; its value, 0-3, determines the
significance of bits 3-15.

If I = 0, (Input Request), the word has the following
format.

0 1 2 3 15

[Tl 0 I No significance I
If I = 1, (Output Character), the word has the following

format.

0 1 2 3 5 6 7 8 15
Character

Bits 6-7 define the contents of bits 8-15 according to the
following table. .I. Character

0 Data character

Control character

2 Dial digit

3 Reserved

If I = 2 (port command), the word has the following
format.

0 1 2 3 5 6 7 8 9 10 11 12 13 15

BC

Each of the bits 6-12 has an assigned meaning, as listed.

Bit Command Code

6 Return unsolicited status, bit = 1

7 Return solicited status, bit= 1

8 Clear link commands, bit= 1

9 8-level = 1; 7-level +parity= 0

10 Odd parity = 1; even parity = 0

11 Echoplex: invoke= 1; revoke= 0

12 Speed: split= 1; not split= 0

BC is a baud code; the values of BC (0-7) have the
meanings listed.

BC Baud Code

0 Not used

Not used

2 1200 baud, sync

3 1200 baud, 120 cps

4 600 baud, 60 cps

5 300 baud, 30 cps

6 150 baud, 15 cps

7 110 baud, 10 cps

If I = 3 (Link Command), the word has the following
format.

0 1 2 3 5 6 11 12

~ 3 f J I Reserved I cc

Bits 12-14 define a command code; the meanings assigned
to the possible values (0-7) are listed.

cc Command Code

0 Data terminal ready

Request to send

2 Transmit space clamp

3 Secondary request to send

4 Off hook

5 Dial request

6 Half duplex

7 Not loop test

4-89

A is an action bit: action if 1, no action if 0.

EXAMPLE

I 1 1-4-~ ' I I t 10 11 111] 14 Ht 16 I ~ 19 10 n 1113 14 1;-·1-s21H19iOlillii""~JiH-3138-j9-4Q41-.14i444546

. l/JA.c. ~ •. 'f

The command (or data) in register 4 is transferred to the
line address in register 2.

System Input/Output

0 7 8 9 11 12 13 15

Fl

FUNCTION: Operates on a four-word command packet
specified by R 1 and a one-word flag and address operand
contained in the general register specified by R2 in order
to effect one of the following:

1. Basic Data channel set-up, selection sequence,
hardware controlled data transfer (input or
output), and an ending sequence.

2. Process Basic Data channel asynchronous status
(polling sequence).

This is a restricted instruction limited to Processor 2.

OPERAND 1: A one-word field containing the first word
address of a four-word command packet. The operand is
in the general register specified by R 1 for direct
addressing, or in the memory location specified by the
contents of R 1 for indirect addressing. If in the flag byte
in operand 2, bit 0=1 (polling sequence), operand 1 is
ignored.

OPERAND 2: A one-word operand located in the general
register specified by R2. The operand has the following
format.

0 1 7 8

Not Used Device Address

Flag Byte Address Byte

I 0 = Device selection, data transfer, and ending
...___ sequence.

1 = Asynchronous status (polling sequence).

If bit 0 • 0, bits 8-15 contain the address of the byte to be
selected. When bit 0 • 1, the device address is ignored.

4-90

15

Bits 8-15 contain the address of the devic:e to be selected
if bit O=O. When bit O= 1, the device addre!;s is ignored.

Command Packet

The format of the command packet which the SIO
instruction expects to find at the location specified by R 1
is:

0 2

s
C L S

I

8 15

Command

Byte Count

Bit 0 is a chaining indicator used by software. Bit 1 is a
suppress incorrect length indicator used by software. Bit 2
is a skip data-transfer bit used by the SIO to perform
input operations without transferring data; if bit 2=0,
normal input is assumed, if bit 2=1, input without transfer
is assumed. Bits 8-15 contain the command byte issued to
the device selected. The command byte codes are
IBM-compatible, with the following exception: if a
command code is non-zero (bits 8-12 non-zero) and bits
13-15 are zero, an invalid command status indication is
returned.

If the command is not the exception e1bove and a data
transfer is initiated, bit 15 indicates whether the operation
is read or a write: O=read, 1=write.

The second word of the command packet holds a 16-bit
byte count which must be non-zero, otherwise an invalid
command status is returned. The non-zero count is
required for all commands, including TEST 1/0 and
control commands, which do not include a data transfer.
For commands which require a data transfer, the byte
count allows transfers of 1-65,535 bytes.

The last word of ·the command packet contains the
first-byte address of the data field in main storage.

Application

The SIO instruction has two basic uses as follows:

1. Initiating and performing hardware controlled
data transfer.

2. Processing asynchronous status.

The user defines the purpose of SIO via the flag byte of
operand 2. The results of an SIO can be determined by
examining the returned information as described below. If
bit 0 of the flag byte is 0:

• General register 0 contains the command packet
address.

• General register 1 contains the residual count of
the data transfer.

• General register 2 contains 8 bits of device status
and 7 bits of channel status.

If bit 0 of the flag byte is 1:

• General register 0 contains zero.

• General register 1 contains the address of the
device which responded to the asynchronous
status sequence, or zero if none of the devices
responded.

• General register 2 contains 8 bits of device status
and 7 bits of channel status.

Status information returned in general register 2 is
explained in the table (right). The on condition (bit=1)
for each bit indicates the status described.

EXAMPLE

-·- -· -1--1------- . . ·-·-- - ----- - ---·-· -- ···-- -
I 1 J 4 ~ 6 1 8 9 10 11 12 13 14 l!i lfi II 18 19 10 JI 12 73 14 1!i 1fi JI 18 1'1 JO ll 31 JJ 34 1!i J6)I ll H 40 ti 41 ~ 144 4!i 46

S .. l.O.. '1 1 .3.

The flag byte in register 3 is examined and if bit 0 is off
(0):

1. The device address (bits 8-15 of register 3) is
selected.

2. The six byte 1/0 command word pointed to by
the address in register 4 is read and executed.

3. After execution (channel end or error condition)
registers 0, 1, and 2 contain the result of the
operation.

If bit 0 of the flag byte in register 3 is on (1):

1. The REQUEST IN tag line is examined.

2. If REQUEST IN is down, an immediate exit is
made indicating this fact.

3. If REQUEST IN is up, the device address and
status are returned in general registers 1 and 2,
respectively.

General Register 2
Bit Number Unit Status Information

0 Attention

1 Status Modifier

2 Control Unit End

3 Busy

4 Channel End

5 Device End

6 Uriit Check

7 Unit Exception

Channel Status Information

8 Initial Selection Sequence
Error:

• Device off-I ine

• Bus out parity error

• Program Address error

9 Invalid Command Word

10 Channel Address/Status Check

• Wrong address-in on initial
selection

• Address or status parity
invalid

11 No "Request In" (poll sequence)

12 Control Check

13 Transmission Check (invalid
parity on sense, control, or
data bytes)

14 Short Buffer

15 Unused

4-91

5. SYSTEM OPE:RATING PROCEDURES

INTRODUCTION

This section provides the operator and programmer with
inforrnation for using the System Control Panel to operate
the system. It describes the function of controls and
indicators associated with the operator group, pro­
grammer group, system activity display group, and
communication activity display group; plus step-by-step
procedures for the most commonly used operator and
programmer operations executed by the panel. Description
of controls, indicators, and procedures associated with
the maintenance group portion of the panel are specifically
excluded from this section because their use is restricted
to properly-qualified maintenance personnel only.

The System Control Panel is illustrated in Figure 5-1.

CONTROLS AND INDICATORS

Controls and indicators on the System Control Panel are
divided into five groups:

• Operator Group

• Programmer Group

• Maintenance Group

• System Activity Display Group

• Communications Activity Display Group

The following paragraphs provide a functional description
for each control and indicator on the panel. The de·
scroptions are arranged by panel group, starting with the
bottom right control in each group and proceeding left­
ward and upward.

NOTE

All pushbuttons are of the momentary-action type
unless otherwise specified.

OPERATOR GROUP

EMERGENCY PULL Knob

Wh1en pulled, instantly removes all power from system
except AC power to, and power from, the +24 VDC
control supply (does not go through normal power-down
sequence which is the case when using POWER OFF
puslhbutton).

5-1

MAINTENANCE
GROUP

SYSTEM ACTIVITY
DISPLAY GROUP

PROGRAMMER
GROUP

OPERATOR
GROUP

COMMUNICATIONS
ACTIVITY GROUP

5-2

I
Ms•••1~J§J§]§EJ~~§]~§j~ cw._,,, aVTE D IYTE 1 IMOA IMOA TE.MP IXTEN0£0 CHECK TA CMECI< ONT CHECK ATA CH£ NT CHECK

NOCIUOA ACTMT'f DIUt.AY

[QJ[IJ[]][]_JGJ[[][[J[[] =i
PAOClllOfl CONTROL H\ICf PflOC..:ICMI HllOCIUOfl HLECT ·w· •----- atOPllTIP D 0 I ~ ~ ~ ~ ±j . ,.....,

-L-fr . '
IMAICPONrilT -----

I

I

® '©'~@®
l•lfMPotNTMODllll.ICT

..... WRlfl

®
IYITlllil ttflflt DATA DAU

B B B B . . of' I'° "I'° 'I 'II PMYltCAL

L __ __J

COfllSOll ADOllHI
COMIOLE AODRIH ltlG<llTIJI DllPU1'

CL ...
MOllTltltlLtCT

.. • , 12 u • " n " "
., .. " .. " ADDtlHI

'ij)" ~~~o 0 0 0 ~~Q
..

)000000 0 0 () 0 0 0 0 0
CONIOll DATA

COtdOU OATA RIGllTUI DIP\.AY CLIEA"
"EGllTl:llKLICT

lt 11 Q II .. " .. II> ,, N " ., II OllA '"ill' = 101010101 0 0 () 0 mmQ Cll A,.

ITC '"

~· 0 0 0 0 0 0 0 0 0 0 0 0 0 ,,,t &IJll

co,;::1 CONIOlt '"' lC ,.,.=-,,.. IYITIM CONTftOl CONIOU
CONSOLI llitODE 111.ECT

ltlHT IJOft.tGI NC.ICT -··w--RILOCiUI ITOPllflP

D D B NOllMAL R ll -:1 :·.:~' . ::::· J

"'" IMAICPOINl
.. o-wA Cl·WR

..... M.Alillllll PAUU IHAKIR LOAD .OWIR '°WIR EMEfllG£NCV
lllHU/lOAD TllT DtlAIU:: ••oc 110 YOLWI Ht.IC' AUTOt.OAD ON ""' -L

D D D D D ®-~ D D J [] 0
. t . . . I . ' I . .. ti " ti

1t•c1rn:D DATA

~uNUMttlfl>D,U;-----

t--·CUAA TO antO

t-uc1rvio u.---
9'0H.ILDUICJOfJl

--
Sl!COHOAltY MCltvlD
LM ltGIW. DITICTOR

DATA HT Rl!ADT ----
MtGtNIMCAfOll

........

t=igure 5-1. M RX/ 40 and 50 System Control Panel

I CAUTION l
The EMERGENCY PULL knob is not meant for
normal "power-off" sequencing. Whenever this
switch is used to remove power from the system,
power cannot be reapplied until a mechanical
interlock within the cabinet is released. (This is a
maintenance activity.) Thus the EMERGENCY
PULL knob is intended to be used only in
emergency situations (circumstances involving a
safety hazard). Its use can cause equipment damage.

POWER OFF Pushbutton/Indicator

Turns system power off when POWER MODE switch is in
LOCAL. This switch assures proper power-down
sequencing. (POWER OFF has no effect while POWER
MODE switch is in REMOTE.)

NOTE

POWER OFF will be lit unless one of the fol­
lowing conditions exist: no primary power is
available, the main disconnect switch is off, the
EMEBGENCY PULL knob has been pulled, or
power is on (that period between the completion
of a power-up sequence and the initilization of a
power-down sequence).

POWER ON Pushbutton/Indicator

Turns system power on when the POWER MODE switch
in the maintenance group is in LOCAL. This switch
assures proper power-up sequencing. (POWER ON has no
effect while POWER MODE switch is in REMOTE.)

NOTE

Upon completion of the power-up sequence, a
Reset/Load sequence is automatically initiated,
provided the maintenance mode has not been
selected. Moreover, at completion of the
Reset/Load sequence, an Autoload sequence is
automatically initiated. Further detail is provided in
the procedures for loading CS and MS in either the
operator or program mode.

AUTOLOAD Pushbutton

Causes main storage to be loaded, starting at a location
determined by the microprogram subroutine with data
obtained either from disc drive zero (when LOAD
SELECT switch is in PRIMARY) or from cards (when
LOAD SELECT switch is in ALTERNATE.)

LOAD SELECT Switch

Deitermines input media used during a Reset/Load and/or
Autoload sequence. Down position (PRIMARY) selects
di!ic as input medium. Up position (ALTERNATE) selects
ca1rds as input media. In the case where a system is
configured to have both a card reader and a reader/punch,
tht:! alternate source may be either and is field selectable.

NOTE
During an Autoload sequence, the PRIMARY
position of this switch causes the first microprogram
loader instruction to come from control storage
address 011315 and the ALTERNATE position
causes the first microprogram loader instruction to
come from control storage address 011215.*

SPEAKER Volume Control

Adjusts volume of the speaker contained in the panel
enclosure. This speaker is driven by the circuits associated
with bit positions 13, 14, and 15 of the CONSOLE DATA
REGISTER DISPLAY indicators.

NOTE

The relative loudness levels of these bits on the
speaker are these: bit 14 will be twice as loud
as bit 13 and bit 15 twice as loud as bit 14.

1/0 FAULT Pushbutton/Indicator

1/0 FAULT will light if any of the following conditions
oc:cur.

1. Channel 1 Transmission Parity Error

2. Channel 2 Transmission Parity Error

3. Channel 1 Control Check Error

4. Channel 2 Control Check Error

5. Burst Check Error (during a Reset/Load
operation from disc).

6. Failure of disc heads to retract during power­
down sequence.

Pressing 1/0 FAULT extinguishes the indicator. (Refer to
individual 1/0 fault indications in the System Activity
Display Group, further in this section.)

*At present, there is no microprogram starting at address 011216
to load CS from cards; consequently, CS can be loaded only via
disc drives.

5-3

PROC FAULT Pushbutton/Indicator

PROC FAULT will light if any of the following con­
ditions occur.

1. Control Storage Parity Error

2. Main Storage Parity Error

3. DC Voltage Fault

4. Over-temperature condition

Pressing PROC FAULT extinguishes the indicator except
in the case of a DC Voltage Fault or an Over-temperature
condition. In this case, the cause must first be corrected
for the switch to have effect.

ALARM (located behind Panel)

Furnishes an audible signal when the LAMP TEST push­
button is pressed or when any of the following conditions
exist:

1. Blower failure within the computer

2. DC voltage fault

3. Failure of disc heads to retract during a
power-down sequence

NOTE

When blower failure or DC fault conditions
exist for approximately 60 seconds, the power­
down sequence is automatically initiated.

If the heads fail to retract from a disc during
the power-down sequence, DC voltages will be
removed within the computer. The power-down
sequence will stop at that point until the problem
is corrected.

ALARM DISABLE Pushbutton/Indicator

Pressing this pushbutton, if the audible alarm Is on,
causes the alarm to stop and the ALARM DISABLE to
light. When the alarm condition is corrected, ALARM
DISABLE will extinguish.

LAMP TEST Pushbutton

Pressing this switch causes all indicators to light and the
alarm to sound. Releasing the switch returns them to
their prior state.

5-4

RESET Load Pushbutton

Causes data to be read from either cards or disc and to be
transferred either to control storage and first-level decode
address table and/or to main storage; the routing depends
on the setting of the CONSOLE MODE SELECT selector
(CS-WR or MS-WR) and the operating mode that has been
selected. Selection of cards or disc as inpiut medium is
determined by position of the LOAD SEILECT switch.
(See the procedures for LOAD ING CONTROL
STORAGE FROM CARD READER for explicit
instructions regarding the use of this pushbutton.)

Upon completion of a Reset/Load operati,on from disc,
an Autoload operation will automatically be initiated
providing Maintenance Mode has not been SE!lected.

PROGRAMMER GROUP

NOTE

Controls within this group are conditioned by
the PROGRAM MODE pushbutton/indicator
except where otherwise designated.

CONSOLE MODE SELECT Selector

Selects basic mode of operation for panel:

RO-RD - register option read

RO-WR - register option write

RF-WR - register file write

RF-RD - register file read

OFF - select switch disabled

MS-RD main storage read

MS-WR - main storage write

CS-RD - control storage and first level decode
address table read or scan (enabled in Maintenance
Mode only)

CS-WR - control storage write (enabh!d in Main­
tenance Mode only except during a Heset/Load
operation)

CONSOLE RUN Pushbutton

Initiates the function selected on the CONSOLE MODE
SELECT selector in a manner determined by the CON­
SOLE CONTROL SELECT switch.

CONSOLE CONTROL SELECT Switch

Three-position switch governing the way in which a
selected console control operation is executed:

STOP/STEP stop and step

NORMAL run continuously

BREAKPOINT run as far as breakpoint
(applies to CS-RD, CS-WR,
MS-RD, and MS-WR only).

CONSOLE MAIN STORAGE Switch

NOTE

This switch has no effect unless the Relocation
and Protection feature is installed.

This switch determines whether the contents of the
S-Register are interpreted as a system or physical main
storage address when an MS read or write operation is
occurring in the Console Control Mode. When it is in the
RELOCATE (up) position, the contents o·f the S-Register
are interpreted as a system main storage address and are
converted by the relocation mechanism into a physical
main storage address. When it is in the OFF (down)
position, the contents of the S-Regijster are directly
interpreted as a physical main storage address and bypass
the relocation mechanism.

SYSTEM RESET Pushbutton

The SYSTEM RESET pushbutton clears the following
registers:

1. EXTENDED REGISTER Fl LE

Group I: Pµ of al I processor states.

Group II: Busy/Active, Tie-Breaker,
Control, Privileged, Boundary­
Crossing, Control Storage Scan,
Console Address, and Console
Data.

2. SHARED RESOURCE REGISTERS

Aµ, Bµ, D, Sµ, Fµ.-1, Fµ-2, and Forced
Carry Register.

PROGRAM MODE Pushbutton/Indicator

Pressing this switch enables those switches located in the
programmer group area of the panel. The pushbutton is
lit when Program Mode is selected.

CONSOLE DATA REGISTER SELECT Selector

Sellects one of eleven registers to be displayed by the
CONSOLE DATA REGISTER DISPLAY indicators.
(Does not affect the pushbutton function.)

NOTE

Only the DAT A and B/ A positions are enabled
when Program Mode is selected. Al I other
positions of this switch require Maintenance
Mode to be effective.

tFµ2 Micro-Command Function register,
rank 2

tFµ1 Micro-Command Function
rank 1

tRTC Real-Time Clock register

tcss Control Storage Scan register

B/A Busy/Active register

DATA Systems Control Panel Data

to Main Storage Data register

t Aµ ALU Feeder register Aµ

tsµ ALU Feeder register Bµ

tSUM Output of ALU (sum of A and B
plus the forced-carry register)

tBC Boundary-Grossing register

register,

register

(those marked t enabled in Maintenance Mode only)

CLEAR DAT A Pushbutton

Cli~ars contents of Console Data register.

CONSOLE DATA REGISTER DISPLAY Pushbutton/
Indicators

Twenty pushbutton/indicators horizontally located as 5
groups of 4 bits each. These groups function as follows:

1. Pushbutton/Indicators: XO - X3 (not
functional for 7200)

5.5

2. Pushbutton/Indicators: 00 - 15

Pressing these pushbuttons will cause
corresponding bits to be set in the Console
Data Register only. However, the indicators
will be on for corresponding bit positions
that are set, and off for corresponding bit
positions that are clear, at Fµ2, Fµ 1, ATC,
CSS, B/A, DATA, D, Aµ, Bµ, SUM or BC
outputs as determined by the CONSOLE
DATA REGISTER SELECT selector.

The digital inputs to the Console Data
register display lamp drivers in bit positions
13, 14, and 15 are also used as inputs to the
panel speaker drivers.

CONSOLE ADDRESS REGISTER SELECT Selector

Selects one of four registers to be displayed by the
CONSOLE ADDRESS REGISTER DISPLAY indicators.
(Does not affect the pushbutton function.)

NOTE

Only the Sand ADDRESS positions are enabled
when Program Mode is selected. The remaining
two positions of this switch require Maintenance
Mode to be effective.

S Main Storage Address register

Sµ Control Storage Address register
(enabled in Maintenance mode only)

ADDRESS Console Address register

PE Main Storage Parity Error Address regis·
ter (enabled in Maintenance mode only)

CLEAR ADDRESS Pushbutton

Clears contents of Console Address register.

CONSOLE ADDRESS REGISTER DISPLAY Pushbutton/
Indicators

Twenty pushbutton/indicators horizontally located as 5
.groups of 4 bits each. These groups function as follows:

5-6

1. Pushbutton/Indicators: XO - X3 (not
functional for 7200)

2. Pushbutton/indicators: 00 - 15

Pressing these pushbuttons will cause
corresponding bits to be set in the Console
Address Register only. Howt!ver, the
indicators will be on for corresponding bit
positions that are set, and off for
corresponding bit positions that are clear in
the Sµ, S, Console Address and PIE registers
as determined by the CONSOLE ADDRESS
REGISTER SELECT selector.

BREAKPOINT MODE SELECT Switches

1. WRITE DATA Switch

When up (on), causes breakpoint s:top at end
of each main storage reference1 cycle in
which data was written at a breakpoint
address.

2. READ DATA Switch

When up (on), causes breakpoint stop at the
end of each main storage reference cycle in
which data was read at the !breakpoint
address.

3. READ INSTR Switch

When up (on), causes a breakpoint stop
immediately after the machine! language
instruction is read at the breakpoint address.

4. RELOCATE/PHYSICAL Sw1itch (not
functional for 7200)

BREAKPOINT ADDRESS SELECT Selectors

Five selectors which provide a hexadecimal stop address
for processor state(s) operating in the brnakpoint mode.
Also applies to console mode, MS-RD, IVIS-WR, CS-RD,
and CS-WR selections.

PROCESSOR SELECT Selector

Selects one of the eight processor state!i to execute in
the mode selected by the correspondin~t PROCESSOR
CONTROL SELECT switches.

PROCESSOR RUN Pushbutton

Starts the processor state selected by tht! PROCESSOR
SELECT selector.

PROCESSOR CONTROL SELECT Switches

Eight three-position switches which place individual
processor states in one of three modes:

1. STOP/STEP - Stop and step selected proc­
essor state.

2. NORMAL - Allow selected processor state
to run continuously.

3. BREAKPOINT - Allow selected processor
state to run until a breakpoint-comparison
equality occurs.

MAINTENANCE GROUP

Except for the MAINTENANCE MODE pushbutton,
controls and indicators in the maintenance group are not
described in this manual because their use is restricted to
maintenance personnel only. The MAINTENANCE
MODE pushbutton, used to enable controls of the
maintenance group, must be in the off state (Maintenance
Mode not selected) to enable operation of the operator
group controls.

SYSTEM ACTIVITY DISPLAY GROUP

PROCESSOR STATE Indicators

Dynamically indicate which processor states are executing
maior cycles.

Sta1tus Indicators

Twelve indicators that each light for a particular status.

MS PARITY BYTE 0 - Displays state of parity bit
of upper byte (bits 0 through 7) of the last word
read out of MS. (Not enabled if ECC is present.)

MS PARITY BYTE 1 - Displays state of parity bit
of lower byte (bits 8 through 15) of the last word
read out of MS. (Not enabled if ECC is present.)

MS PARITY ERROR - Displays state of MS
Parity Error flip-flop. Indicator is on if flip­
flop is set and off if flip-flop is cleared.

CS PARITY ERROR - indicates parity error
in CS or first-level decode address table.

D.C. FAULT - Indicates that one or more DC
power supplies in system is not within allowable
output range. Remains on until condition is
corrected.

OVER TEMP. - Indicates a blower failure con­
dition within cabinet.

HEADS EXTENDED - Indicates that heads in
one or more disc files fail to retract during the
power-down sequence.

BURST CHECK - Indicates detection of a burst
check error during a Reset/Load sequence from
the disc fire.

CHANNEL 1 DATA CHECK - Indicates state
of Channel 1 Transmission flip-flop.

5-7

CHANNEL 1 CNTRL. CHECK - Indicates
state of Channel 1 Control Check flip-flop.

CHANNEL 2 DATA CHECK - Indicates state
of Channel 2 Transmission flip-flop.

CHANNEL 2 CNTRL. CHECK - Indicates state
of Channel 2 Control check flip-flop.

COMMUNICATIONS ACTIVITY GROUP

These indicators show the adapter/modem status for the
communications channels and the integrated communi­
cations adapter as follows.

5-8

RECEIVED DATA (BB) - ON condition in­
dicates line is in the spacing condition (binary
zero). OFF condition indicates line is in the
marking condition (binary one).

TRANSMITTED DATA (BA) - ON condition
indicates line is in the spacing condition (binary
zero). OFF condition indicates line is in the
marking condition (binary one).

CLEAR TO SEND (CB) - ON condition, to­
gether with ON condition on circuits CA, CC,
and CD, indicates channel is in a transmit con­
dition.

RECEIVED LINE SIGNAL DETECTOR (CF) -
ON condition indicates that the modem is
receiving a signal which meets its suitability
criteria for demodulation.

SECONDARY RECEIVED LINE SIGNAL
DETECTOR (SCF) - ON condition indicates the
proper reception (where applicable) of the
SECONDARY CHANNEL signal. Used to indicate
the circuit assurance status and to signal a reverse
channel interrupt condition.

DAT A SET READY (CC) - ON condition in­
dicates that the modem is connected to a
communication channel and, for an auto-answer
network, has completed the transmission of the
answer tone. For a private line network, the ON
condition indicates that the modem is ready.

OFF HOOK (OH) - For an outgoing call, ON
condition indicates that a call is being placed. (Dial
digits are generated by pulsing this signal.)

RING INDICATOR (CE) - ON condition in­
dicates that a ringing signal is being received via
the communication channel.

NOTE

Since under normal operation the
communications handler will answer a
call at the first generation of the ringing
signal, ON condition implies either a
malfunction or that the communi­
cations channel is not enabled.

ENABLE (EN) - ON condition indicates the line
adapter is enabled and is therefore not in the system
reset or loop test mode.

OPERATING PROCEDURES

The following paragraphs contain procedures which may
be executed from the System Control Panel. These pro­
cedures enable loading control or main storage from either
a disc or card reader, reading from or writing into main
storage or registers within register files or register options,
and executing programs in .the program mode.

MODES OF OPE RATION

The System Control Panel enables the system to operate
in one of two fundamental control modes: processor
control and console control. These two modes are not
mutually exclusive from the hardware point of view, but
should be clearly distinguished and kept separate in
operating practice. This separation is nf!lcessary since the
console mode can directly alter the contents of storage
and registers and in this way could completely disrupt
processor mode operations.

The processor control mode is selected basically by the
eight PROCESSOR CONTROL SELECT switches, the
PROCESSOR SELECT selector, and the PROCESSOR
RUN pushbutton. This mode enables the operator, in
connection with programmed operations, to directly
control execution of instructions by all eight processor
states. Thus, individual processors states may be switched
on and off or may be made to run one instruction at a
time (STOP/STEP) mode), etc. Except for the internal
effects of the programs themselves, the processor mode
does not allow the contents of storage to be altered.

The console control mode is selected basically by the
CONSOLE CONTROL SELECT switch, the CONSOLE

MODE SELECT selector, and the CONSOLE RUN push­
button. This mode does not involve any actual execution
of instructions by a processor state, but allows any
individual cell of main or control storage or any of the
hardware registers to be displayed or altered under either
hardware or software control. The panel is allocated major
cycles just as through it were a ninth processor,

Each of the fundamental control modes us influenced by
the three operating modes: operator mode, program
mode, and maintenance mode. These modes each deter­
mine a certain level of operating capability available to
the operator.. The operator mode, selected when neither
the PROGRAM MODE or MAINTENANCE MODE push­
button is activated, restricts the operator to use of the
operator group controls only. This group allows the
operator to turn on and turn off the system, perform
reset/load and autoload operations, and detect fault and
status conditions. These operations are always available
to the operator regardless of whether the system is in
the processor mode or console mode. The program mode,
selected by the PROGRAM MODE pushbutton, enables
an operator to use the controls of the programmer group
as well as those of the operator group. This additional
capability allows the operator to place the system in
either the processor control or console control mode,
thus enabling operations associated with these two con­
trol modes to be carried out. The maintenance mode,
selected by the MAINTENANCE MODE pushbutton,
allows still more capability than when operating in eittier
the processor control or console control mode. Nor­
mally, this extended capability is required only by main­
tenance personnel when troubleshooting the system;
therefore, procedures initiated by controls of the main­
tenance group are not included in this manual.

BREAKPOINT FACILITY

The breakpoint facility provides a way of terminating
processor mode or console mode operations at a specific
point in either main storage or control storage (including
the first-level decode address table). This facility may be
invoked if the select.ed processor is started either from
the panel (PROCESSOR RUN pushbutton) or by internal
operations, or if the computer is already executing in­
structions. During processor mode operations, the break­
point operation is initiated by setting one of the PROC­
ESSOR CONTROL SELECT switches to BREAKPOINT.
The processor then proceeds until the storage location
selected on the BREAKPOINT MODE SELECT selectors
is reached, at which point the processor stops. This
breakpoint stop is interpreted in one of three ways, as
selected by a corresponding BREAKPOINT MODE switch:
READ INSTR, READ DATA, and WRITE DATA. Having

activated the READ INSTR switch will stop the proc­
esso1r after it reads the instruction at the breakpoint
address. Having activated the READ DATA switch will
stop the processor after it reaches the operand at the
breakpoint address. Having activated the WRITE DATA
switch will stop the processor after it stores the operand
at the breakpoint address.

NOTE

Word mode addressing will not result in a
breakpoint stop where the rightmost byte
(odd-numbered) address of the referenced word is
designated in the BREAKPOINT ADDRESS
switches. An example is the case of MS-RD or
MS-WR operations which will not perform a
breakpoint stop if the rightmost byte address is
designated by the BREAKPOINT ADDRESS
SELECT switches.

A b1reakpoint stop activated by the READ INSTR switch
wil I load only the first two bytes of an instruction. Thus,
the computer treats the reading of the M1, M2, L1, and
L2 portion of 4-, 6-, and 8-byte instructions as operands
for breakpoint purposes.

For Console Mode operations (when the CONSOLE CON­
TROL SELECT switch is set to BREAKPOINT), the
breakpoint stop will always occur at the end of the
storage reference cycle in which data is read or written
at the breakpoint address.

NOTE

The breakpoint facility is not available for CS
references in either the operator or program
mode. However, the facility is available for MS
references if performed in the program mode.

SWITCHING POWER ON AND OFF

To turn the processing unit on, ensure that the LOCAL/
REMOTE switch is in the LOCAL position, then simply
pres:; the POWER ON pushbutton. Upon completion of
the power-up sequence, the POWER ON indicator will
light.

The internal power-up switching sequence for the com­
pute'i" and disc drives is performed by the hardware.

To turn the processing unit off, press and hold the
POWER OFF pushbutton for about 2 seconds. The
POWER OFF indicator will light. (The delayed action of
this switch is designed to prevent turning off power in­
adve!rtentl y.)

5-9

NOTE

The procedures which follow require that the
processing unit not be in the Maintenance Mode -
evidenced when the MAINTENANCE MODE
indicator is not lit. Normally, access to controls of
the maintenance group by operator and programmer
personnel is not permitted. If the Maintenance
Mode has been selected, however (MAINTENANCE
MODE indicator lit), programmer access must be
made for the sole purpose of negating this mode.
Gain access by raising the front cover concealing
maintenance group controls. Press the
MAINTENANCE MODE pushbutton; when the
associated indicator goes off, the mode has been
changed.

, LOADING CONTROL STORAGE FROM DISC

Loading control storage (CS) from the disc via the Panel
formed in one of two ways: from a power on condition or
by using the RESET/LOAD pushbutton. Essentailly, the
power on condition loads CS when power is initially
applied to the system (pressing the POWER ON push­
button); using the RESET/LOAD pushbutton loads CS in
the same manner as pressing the POWER ON pushbutton
but it is after power has been applied. Each of the two
ways depends in which operating mode the Panel has been
placed: operator mode or program mode. Generally, the
operator mode provides the maximum amount of internal
hardware control with the least amount of operator
intervention. In contrast, the program mode requires a
greater amount of operator intervention but provides a
greater amount of flexibility in using the panel controls.

Power On Condition

Operator Mode

STEP 1

STEP 2

STEP 3

5-10

Set the LOAD SELECT switch to
PRIMARY (for disc load).

Select one and only one, of the disc
drives as logical drive 0 by partially
inserting plug 0 into the drive select
slot. (Do not insert plug all the way
in at this time.)

Mount disc pack and enable power
to disc drive 0 by pressing the
START switch. (Ensure that the
READ ONLY switch is set.)

STEP4

STEP 5

STEP6

Program Mode

STEP 1

STEP 2

STEP3

STEP4

STEP 5

STEP6

STEP 7

Press the POWER ON pushbutton.
Upon completion of the power-up
sequence and th1! First Seek
operation (about 1 minute) drive
number 0 in the select plug will
light.

Set the PROGRAM MODE
pushbutton to the oft position.

Complete selection of disc drive 0
by fully inserting plug 0. When
drive heads have beein restored and
the power-on sequence has been
completed, CS load will begin. Disc
data will be loaded in sequential
locations starting at address 000015
into both CS and the F RJ Decode
Address Table, automatically
followed by a load of MS.

Set the CONSOLE MODE SELECT
selector to OFF and the CONSOLE
DATA REGISTER SELECT
selector to DATA.

Set the LOAD SELECT switch to
PRIMARY (for disc load).

Select one, and only one, of the
disc drives as logical drive O by
partially inserting plug 0 into the
drive select slot. (Do not insert plug
all the way in at this time.)

Mount disc pack and enable ·power
to disc drive 0 by pressing the
START switch. (Ensure that the
READ ONLY switch is set.)

Press the POWER ON pushbutton.
Upon completion of the power-up
sequence and the First Seek
operation (about 11 minute) drive
number 0 in the select plug will
light.

Set the PROGRAM MODE
pushbutton to the on position.

Complete selection of disc drive 0
by fully inserting plug 0. When
drive heads have been restored and
the power on sequence has been

completed, CS load will begin. Disc
data will be loaded in sequential
locations starting at address 000015
into both CS and the F RJ Decode
Address Table, automatically
followed by a load of MS.

Reset/Load Condition

Operator Mode

STEP 1

STEP 2

STEP 3

STEP4

Program Mode

STEP 1

STEP 2

STEP 3

STEP4

Set the PROGRAM MODE
pushbutton to the off position.

Set the LOAD SELECT switch to
PRIMARY (for disc load).

Place disc pack on the disc drive
and enable power to the drive
selected as logical 0 by pressing the
START switch. (Ensure that the
READ ONLY switch is pressed.)

Press the RESET/LOAD
pushbutton. Disc data will be
loaded in sequential locations
starting at address 000015 into
both CS and F RJ Decode Address
Table automatically followed by a
load of MS.

Set the PROGRAM MODE
pushbutton to the on position.

Set the CONSOLE MODE SELECT
selector to OFF and the CONSOLE
DATA REGISTER SELECT
selector to DATA.

Set the LOAD SELECT switch to
PRIMARY (for disc load).

Place disc pack on the disc drive
and enable power to the drive
selected as logical 0 by pressing the
START switch .. (Ensure that the
READ ONLY switch is pressed.)

STEP 5 Press the RESET/LOAD
pushbutton. Disc data will be
loaded in sequential locations
starting at address 000015 into
both CS and the F RJ Decode
Address Table, automatically
followed by a load of MS.

!LOADING CONTROL STORAGE FROM CARD
!~EADER

Loading control storage (CS) from cards can be performed
in one of two ways: from a power on condition or by
using the RESET/LOAD pushbutton. Essentially, the
power-on condition loads CS when power is initially
c:1pplied to the system (pressing the POWER ON push­
button); using the RESET/LOAD pushbutton loads CS in
the same manner as pressing the POWER ON pushbutton
but it is after power is already on. Each of the two ways
depends in which operating mode the panel has been
placed: operator mode or program mode. Generally, the
operator mode provides the maximur:n amount of internal
hardware control with the least amount of operator
intervention. In contrast, the program mode requires
E1reater amount of operator intervention but offers greater
amount of flexibility in using the Panel controls.

Power On Condition

Operator Mode

STEP 1

STEP 2

STEP 3

STEP4

Set the LOAD SELECT switch to
ALTERNATE (for card reader
load).

Press the POWER ON pushbutton.

Set the PROGRAM MODE
pushbutton to the off position.

Place microprogram card deck in
the card reader and press the
START pushbutton on the card
reader. Card data will be loaded in
sequential locations starting at
address 000016 into both CS and
the F RJ Decode Address Table.

5-11

Program Mode

STEP 1

STEP 2

STEP3

STEP4

STEP 5

Set the LOAD SELECT switch to
ALTER NA TE (for card reader
load).

Press the POWER ON pushbutton.

Set the PROGRAM MODE
pushbutton to the ON position.

Set the CONSOLE MODE SELECT
selector to OFF and the CONSOLE
DATA REGISTER SELECT
selector to DATA.

Place microprogram card deck on
the card reader and press the
START pushbutton on the card
reader. Card data will be loaded in
sequential locations starting at
address 000015 into both CS and
the FRJ Decode Address Table,
automatically followed by a load of
MS.

Reset/Load Condition

Operator Mode

STEP 1

STEP 2

STEP 3

STEP4

Program Mode

STEP 1

5-12

Set the PROGRAM MODE
pushbutton to the OFF position.

Set the LOAD SELECT switch to
ALTERNATE (for card reader
load).

Place microprogram card deck in
the card reader and press the
START pushbutton on the card
reader.

Press the RESET/LOAD
pushbutton. Card data will be
loaded in sequential locations
starting at address 000015 into
both CS and the F RJ Decode
Address Table.

Set the PROGRAM MODE
pushbutton to the ON position.

STEP 2

STEP3

STEP4

STEP 5

Set the CONSOLE MODE SELECT
selector to OFF and the CONSOLE
DATA REGISTE:R SELECT
selector to DATA.

Set the LOAD SELECT switch to
ALTERNATE (for card reader
load).

Place microprogram card deck in
the card reader and press the
ST ART pushbutton on the card
reader.

Press the RESET/LOAD
pushbutton. Card data will be
loaded in sequential locations
starting at address 000015 into
both CS and the F RJ Decode
Address Table.

LOADING MAIN STORAGE FROM DISC

Loading main storage (MS) from the disc c.an be accom­
plished in one of three ways: from a power ion condition,
by using the RESET /LOAD pushbutton, or by using the
AUTOLOAD pushbutton. An MS load occurs auto­
matically, if CS was loaded from a power on or reset/
load condition, after the CS and F RJ decode address
table is loaded. Therefore, only the procedure for per­
forming an MS load using the AUTOLOAD pushbutton
(in either the program mode or operator mode) is given
here.

NOTE

Control storge must have been previouisly loaded to
perform this operation.

STEP 1

STEP 2

STEP3

Set LOAD SELECT switch to
PRIMARY (for disc loa1d).

Place disc pack on the disc drive
selected as logical 0 and apply
power by pressing the START
switch. (Ensure that the READ
ONLY switch is pressed.)

Press AUTOLOAD pushbutton.
Disc data will be loaded into MS in
sequential locations starting at
address 000016·

LOADING MAIN STORAGE FROM CARD READER

At the present time, MS cannot be loaded from the card
reader in either the operator or program mode.

READING MAIN STORAGE

Preconditions t

NOTE

Control storage must have been previously loaded
to perform this operation.

1. PROGRAM MODE pushbutton/indicator
switch on.

2. CONSOLE MODE SELECT selector at
MS-RD.

3. CONSOLE CONTROL SELECT switch at
STOP/STEP.

4. CONSOLE ADDRESS REGISTER SELECT
selector at ADDRESS.

5. CONSOLE DATA REGISTER SELECT
selector at DATA.

Procedure

STEP 1

STEP2

STEP 3

STEP4

Press CLEAR ADDRESS push­
button.

Set the address of the main storage
location to be read via the CON­
SOLE ADDRESS REGISTER
DISPLAY pushbuttons.

Press the CONSOLE RUN push­
button. Contents of selected lo­
cation will be displayed in the
CONSOLE DATA REGISTER DIS­
p LAY indicators.

To read up to an address, enter
address into BREAKPOINT AD­
DRESS SELECT selectors. Position
CONSOLE CONTROL SELECT
switch at BREAKPOINT and press
CONSOLE RUN pushbutton.

STEP5

STEP6

To step through individual storage
locations, repeat Step 4, except
position CONSOLE CONTROL
SELECT switch at STOP/STEP.
Contents of each storage location
will be displayed in sequence each
time CONSOLE RUN pushbutton
is pressed.

To dynamically read a storage
location in the normal (continuous)
mode, enter the word address of
the location into the CONSOLE
ADDRESS REGISTER DISPLAY
pushbuttons with bit position 15
set. Set the CONSOLE CONTROL
SELECT switch at the NORMAL
Position and press the CONSOLE
RUN pushbutton. The contents
of the storage location entered in
the CONSOLE ADDRESS REGIS­
TER DISPLAY pushbuttons will
be continuously displayed in the
CONSOLE DATA REGISTER
DISPLAY indicators.

WRITING MAIN STORAGE

NOTE

Control storage must have been previously loaded
to perform this operation.

Preconditions

1. PROGRAM MODE pushbutton/indicator
on.

2. CONSOLE MODE SELECT selector at
MS-WR.

3. CONSOLE CONTROL SELECT switch at
STOP/STEP.

4. CONSOLE ADDRESS REGISTER SELECT
selector at ADDRESS.

5. CONSOLE DATA REGISTER SELECT
selector at DATA.

t In all procedures listed, preconditions must be satisfied before
the procedure can be executed.

5-13

Procedure

STEP 1

STEP 2

STEP3

STEP4

STEPS

STEP 6

STEP7

Press CLEAR ADDRESS and
CLEAR DAT A pushbuttons.

Set the address of the main storage
location to be written via the
CONSOLE ADDRESS REGISTER
DISPLAY pushbuttons.

Set the data to be written on the
CONSOLE DATA REGISTER
DISPLAY pushbuttons.

Press the CONSOLE RUN push­
button. Contents of the CONSOLE
DATA REGISTER DISPLAY will
be written at the address specified
in the CONSOLE ADDRESS REG­
ISTER DISPLAY.

To write the data register contents
into all storage locations, set
CONSOLE CONTROL SELECT
switch to the NORMAL position
and press the CONSOLE RUN
pushbutton.

To write a block ot data, enter
starting address of block via the
CONSOLE ADDRESS REGISTER
SELECT pushbuttons and ending
address via the BREAKPOINT AD­
DRESS SELECT selectors. Position
CONSOLE CONTROL SELECT
switch at BREAKPOINT and press
the CONSOLE RUN pushbutton.
Contents of the data register will
be written in sequence in all lo­
cations within the block.

To write data into individual
storage locations within the block,
repeat Step 6, except set the CON­
SOLE CONTROL SELECT switch
at STOP/STEP. Contents of the
data register will be written in
individual locations in the sequence,
each time the CONSOLE RUN
pushbutton is pressed.

READING REGISTERS OF REGISTER FILES

5-14

NOTE

Control storage must have been previously loaded
to perform this operation.

Preconditions

1. PROGRAM MODE pushbutton/indicator
on.

2. CONSOLE MODE SELECT selector at RF­
RD.

3. CONSOLE CONTROL SELECT switch at
STOP/STEP.

4. CONSOLE ADDRESS REGISTER SELECT
selector at ADDRESS.

5. CONSOLE DATA REGISTER SELECT
selector at DATA.

Procedure

STEP 1

STEP 2

STEP3

STEP4

Press CLEAR ADDRESS push­
button.

Set processor state number and
number of the register in basic file
or extended file (Group I or 11 t) via
the CONSOLE ADDRESS REGIS·
TER SELECT pushbuttons as
shown in Figure 5-2. The! addresses
of basic file and extended file,
Groups I and 11 are listed! in Figure
5-3.

Press CONSOLE RUN pushbutton.
Contents of selected register will be
displayed in the bits 00 through 15
indicators of the CONSOLE DATA
REGISTER DISPLAY.

To dynamically read a register in
the normal (continuous) mode, re­
peat Steps l through 3, 1except set
the CONSOLE CONTROL SE­
LECT switch at the NORMAL posi­
tion. The CONSOLE DATA REG­
ISTER DISPLAY indicators will
continuously display thie ragister
contents as the running processor
alters the contents.

t The Group 111 r:egisters of the extended register file may not be
addressed by this mechanism.

LOADING REGISTERS OF REGISTER FllLES

Preconditions

NOTE

Control storage must have been previously loaded
to perform this operation.

1. PROGRAM MODE pushbutton/indicator
on.

2. CONSOLE MODE SELECT selector at RF­
WR.

3. CONSOLE CONTROL SELECT switch at
STOP/STEP.

4. CONSOLE ADDRESS REGISTER SELECT
selector at ADDRESS.

5. CONSOLE DATA REGISTER SELECT
selector at DATA.

Procedure

STEP 1

STEP2

STEP 3

STEP4

Press CLEAR ADDRESS and
CLEAR DATA pushbuttons.

Set processor state number and
number of the register in basic file
or extended file (Group I or llt) via
the CONSOLE ADDRESS
REGISTER DISPLAY pushbuttons
as shown in Figure 5-2. The
addresses of the basic files and
extended file registers are listed in
Figure 5-3.

Set data to be loaded via the 00
through 15 pushbuttons of the
CONSOLE DATA REGISTER DIS­
PLAY.

Press CONSOLE RUN pushbutton.
Contents of the CONSOLE DATA
REGISTER DISPLAY will be load·
ed into the selected processor regis­
ter.

o 1 2 3 415 6 r 1 I a 9 10 11I12 13 14 15

I O O O O O I O O I E I ~~~· I Re~~~er
E = extended register designator (signifies extended

register when set, basic register when clear).

Figure 5-2. Register File Address Format

READING REGISTERS OF REGISTER OPTION

Preconditions

NOTE

Control storage must have been previously loaded
to perform this operation.

1. PROGRAM MODE pushbutton/indicator
on.

2. CONSOLE MODE SELECT selector at RO­
AD.

3. CONSOLE CONTROL SELECT switch at
STOP/STEP.

4. CONSOLE ADDRESS REGISTER SELECT
selector at ADDRESS.

5. CONSOLE DATA REGISTER SELECT
selector at DAT A.

Procedure

STEP 1

STEP 2

Press CLEAR ADDRESS button.

Set feature number, processor state
number, and register number via
the CONSOLE ADDRESS REGIS­
TER DISPLAY pushbuttons as
shown in Figure 5-4. There are two
basic register address formats, de­
pending on the feature selected.

tThe 1/0 registers of the extended register file may not be
addressed by this mechanism.

STEP3

The first format is used to address
feature registers associated with
particular processor states. This
format requires specifying the
feature number only. Addresses of
all registers in the register option
are shown in Figure 5-5.

Press CONSOLE RUN pushbutton.
Contents of selected register wi II be
displayed in the CONSOLE DATA
REGISTER DISPLAY indicators.
(Contents of 4-bit registers will be
right-justified.)

5-15

LOADING REGISTIERS OF REGISTER OPTION

Preconditions

NOTE

Control storage must have been previously loaded to
perfrom this operation.

1. PROGRAM MODE pushbutton/indicators
on.

2. CONSOLE MODE SELECT selector at RO­
WR.

3. CONSOLE CONTROL SELECT switch at
STOP/STEP.

4. CONSOLE ADDRESS REGISTER SELECT
selector at ADDRESS.

5. CONSOLE DATA REGISTER SELECT
selector at DAT A.

Procedure

STEP 1

STEP 2

STEP 3

STEP4

Press CLEAR ADDRESS and
CLEAR DATA pushbuttons.

Set feature number, processor
state number, and register number
via the CONSOLE ADDRESS REG­
ISTER DISPLAY pushbuttons as
shown on Figure 5-4. Addresses of
all registers of the option are I isted
in Figure 5-5.

Set the data to be loaded via the
CON SO LE DATA REGISTER
DISPLAY pushbuttons. (Data to be
set into 4-bit registers should be
right-justified in the display.)

Press CONSOLE RUN pushbutton.
Contents of the CONSOLE DATA
REGISTER DISPLAY will be
loaded into the selected register.

READING SHARED RESOURCES REGISTERS

5-16

Preconditions: PROGRAM MODE indicator on.

Procedure

STEP 1

STEP 2

Press CL EAR ADDRESS and
CLEAR DATA pushbuttons.

NOTE

Only the S and ADDR po:sitions of the
CONSOLE ADDRESS REGISTER
SELECT selector and the B/A and
DATA positions of the~ CONSOLE
DATA REGISTER SELECT selector
may be enabled in the priogram mode.

Set either CONSOLE ADDRESS
REGISTER SELECT or CONSOLE
DATA REGISTER SELECT
selector to the register to be read.
The contents of the register
selected will be dynamically
displayed in either the CONSOLE
ADDRESS or CONSOLE DATA
REGISTER DISPLAY indicators.

EXECUTING PROGRAMS

Precondition: PROGRAM MODE indicator on.

Procedure

STEP 1 Use the previously described
Loading-Register-of-Register-File
procedure to load specified main
storage starting address into the
P-Register (R9) of the processor to
be run.

CONSOLE ADAS REG

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 0 0 0 Proc
No.

CONSOLE DATA REG

MS Starting Address

0 1 o o , I

0

0

0

I 0

NOTE

If it is specified that the processor should start at a
particular location other than micro-program
position 000015 in control storage, use the
procedure in STEP 2 to load the address of this
location into Pµ via the CONSOLE DATA
REGISTER DISPLAY pushbuttons.

STEP 2 Use the Loading-Register-of­
Register-File procedure to load
000015 into the P -Register
(extended R 1) of the processor t to
be run:

CONSOLE ADRS REG

2 3 4 5 6 7 s 9 10 11 12 13 14 15

0 0 0 0 0 0 Proc 0 0 0 0
No.

CONSOLE DATA REG
15

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I
t If no other processor states are in use (executingµ! subroutines),

the SYSTEM RESET button may be used instead to clear Pµ
(it clears the P µ of all processor states).

STEP 3

STEP 4*

Se I ect processor state on the
PROCESSOR SELECT selector.

Se I ect mode of operation on
appropriate PROCESSOR
CONTROL SELECT SELECT
switch.

STEP 5*

STEP6

If processor state is set to the
breakpoint mode, select breakpoint
address on BREAKPOINT
ADDRESS SELECT selectors and
select type of breakpoint on READ
INSTR, READ DATA, or WRITE
DAT A switches.

Press PROCESSOR RUN
pushbutton. Selected processor
state will execute machine-language
instructions commencing at
location contained in its P-Register.
(If the PROCESSOR CONTROL
SELECT switch is set to the
STOP/STEP position, only one
machine language instruction is
executed each time the
PROCESSOR RUN pushbutton is
pressed. The STOP/STEP position
also disables 1/0-originated start
signals (REQUEST and
ATTENTION) for processor states
0 through 3.)

NOTE

Selecting the breakpoint mode for processor state 4
will stop and lock out all processor 4 start signals
except those originating from the panel.

STEP7 Repeat steps 1 through 6 for other
processors to be run.

t·Steps 4 and 5 may be executed after Step 6 for Program stop/
step or breakpoint operations.

'5-17

5-18

0 2 3 4 6 6 7 8 9 10 11 12 13 14 16

0 0 0 0 0 0 0 E

1

0 • BASIC REGISTER FILE ~>-------
1 • EXTENDED REGISTER FILE I

0 - PROCESSOR STATE 0
1 - PROCESSOR STATE 1
2 - PROCESSOR STATE 2
3 - PROCESSOR STATE 3
4 - PROCESSOR STATE 4
5 - PROCESSOR STATE 5
6 - PROCESSOR ST A TE 6
7 - PROCESSOR STATE 7

'

Proc
No.

Register
No.

BASIC REGISTER FILE EXTENDED REGISTER FILE
~

00 - GENERAL PURPOSE 0 00 - F I GROUP I • + 01 - p
07 - GENERAL PURPOSE 7 02 - BUSY I ACTIVE
08 - CONDITION 03 - REAL TIME CLOCK
09 - PROGRAM ADDRESS 04 - TIE-BREAKER
OA • TRANSIENT (TO) 05 - PARITY ERROR

+ + 06 - CONTROL
OF • TRANSIENT (T5) 07 - PRIVILEGED
1A - TRANSi ENT (T6) 08 - BOUNDARY CROSSING GROUP II .. + 09 - CONTROL STORAGE SCAN
1F - TRANSIENT (T21) OA- CONSOLE ADDRESS

OB - CONSOLE DATA
oc - UNASSIGNED

~- + UNASSIGNED

Figure 5-3. Register File and Associated Register Addresses

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

E o o o GROUP o o o l ~ 0 0 0 0 I

Figure 5-4. Format: Registers of Register Option

ALL REGISTER ADDRESSES IN HEXADECIMAL FORM.

2
0
~
u
w
Ow
a: a:
a..::>
~ enc cw
mu.

I

BOUNDS
REG.

(GROUP
5)

05AO

OSCO

05EO

,,--

c:>
2
j::
2 = ow
ua:
U::>
Ct­
mC
ow .., u.

I

JOB
ACCOUNTING

RE:G. FILE
(GlflOUP 6)

WOii WD1

0600 0601
t-------t-· - - --I

0620 0621
t---

0640 0641
r--- --

0660 0661
·--- - _ ____,

0680 0681
--1

06AO 06A1
------- ·---- ---j

06CO 06C1

06EO 06£1

Figure 5-5. Addresses: Registt'rs of Register Option

ADDRESS MODE, PE TAG, MS
DATA, LOG, GENERATED CHECK
BITS, AND READ CHECK BITS
REGISTERS

5-19

APPENDICES

A. IN~)TRUCTION SUMMARY
and EXTENDED MNEMONIC CODES

The following symbols are used to define the source operands of the instruction set.

R A general register number, 0-7. The register may be~ used as a sending or receiving field (0-7), or
as an index register (1-7 only).

E Extended register, 0-15. (For ROX and WRX only.)

M A memory address, 0-65,535.

An immediate value; the value varies depending oni the instruction. The value may represent an
amount used in an arithmetic operation, a shift count, a skip count, or a bit number.

L Field length, 0-255 (for MOVL: 0-65,535), an optional feature. For certain instructions the
length of an operand field may be defined in the instruction. The length specified in the
instruction overrides any previous field length definition, but is only in effect for that
instruction.

@ An at-sign in a source operand indicates indire1[:t addressing, an optional feature. For the
instructions in which ai register is a sending or receiving field, the at-sign indicates indirect
addressing for R 1 or R2. If a field in memory is the sending or receiving field, the at-sign
indicates indirect addressing of Ml or M2.

() Index registers and field lengths are option.al; they are enclosed by parentheses in a source
operand. A source operand using both an indexing and a field length specification would be
represented like this: Ml (L1,R1). The comma in the parentheses must not only be coded when
both the length and index register are used, but also if either one of them is used, as follows:
M 1(L1 ,) or Ml (,R 1). This enables the assembler to distinguish between the two specifications
in parentheses.

• A bullet following an instruction name indicates the operands are byte-addressable; all other
operands are word-addressable only.

A-1

GENERAL-PURPOSE INSTRUCTIONS

ARITHMETIC

Mnemonic Name Code Length Operands

ADD Add Memory - Register A2 4 @M 1(R1),@R2
ADDD Add Direct B2 4 l1(R1),@R2
ADDI Add Immediate 32 2 l1,@R2
ADDK Add Packed Decimal• 52 8 M1 (L1,R1),M2(L2,R2)
ADDM Add Memory - Memory 62 6 @M 1(R1 ll,@M2(R2)
ADDA Add Register - Register 22 2 @R1 1@R:z
ADDT Add Two-Word 72 4 @M1(R 1]1,@R2
DIV Divide Memory - Register A9 4 @M1(R1L@R2
DIVD Divide Direct B9 4 l1(R1),@R2
DIVI Divide Immediate 39 2 l1,@R2
DIVK Divide Packed Decimal • 7C 8 M1 (L1,R1),M2(L2,R2)
DIVM Divide Memory - Memory 69 6 @M1 (R1),@M2(R2)
DIVA Divide Register - Register 29 2 @R1,@R2
MPV Multiply Memory - Register AS 4 @M1(R1),@R2
MPYD Multiply Direct BS 4 l1(R1),@R2
MPYI Multiply Immediate 38 2 l1,@R2
MPYK Multiply Packed Decimal • SB 8 M1 (L1,R1),M2(L2,R2)
MPYM Multiply Memory - Memory 68 6 @M1 (R1),@M2(R2)
MPYR Multiply Register - Register 28 2 @R1,@R2
SUB Subtract Memory - Register A3 4 @M1 (R1),@R2
SUBD Subtract Direct B3 4 l1(R1),@H2
SUBI Subtract Immediate 33 2 l1,@R2
SUBK Subtract Packed Decimal • 53 8 M1(L1,R1)1M2(L2,R2)
SUBM Subtract Memory - Memory 63 6 @M1 (R1),@M2(R2)
SUBR Subtract Register - Register 23 2 @R1 1@R~!
SUBT Subtract Two-Word 73 4 @M1 (R1),@R2
ZADK Zero and Add• 50 8 M1 (L1 ,R·1),M2(L2,R2)

BIT-ORIENTED INSTRUCTIONS

Mnemonic Name Code Length Operands ---
IBIT Invert Bit • BF 4 @M1 (R1 Ll2
ROFR Reverse Off-Bit 6F 2 @R1,@R2
RONR Reverse On-Bit 6D 2 @R1,@R2
SBIT Set Bit• BC 4 @M1(R1U2
RBIT Reset Bit• BD 4 @M1(R1)h
TBIT Test Bit• BE 4 @M1(R1)h
TOFR Test for Off-Bit 6E 2 @R1,@R2
TONA Test for On-Bit 6C 2 @R1,@R2

BOOLEAN LOGIC INSTRUCTIONS

Mnemonic Name Code Length Operands

AND Logical Product Memory - Register A5 4 @M1 (R1),@R2
ANDO Logical Product Direct B5 4 l1(R1),@R2
ANDI Logical Product Immediate 35 2 l1,@R2
ANDM Logical Product Memory - Memory 65 6 @M1 (R1),@M2(R2)
ANDA Logical Product Register - Register 25 2 @R1,@R2

A-2

BOOLEAN LOGIC INSTRUCTIONS (Continued)

Mnemonic Name Code Length Operands

EOR Exclusive OR Memory - Register A6 4 @M1 (R1),@R2

EORD Excl~sive OR Direct B6 4 l1<R1),@R2

EORI Exclusive OR Immediate 36 2 l1 1@R2
EORM Exclusive OR Memory - Memory 66 6 @M1 (R1),@M2(R2)

EORR Exclusive OR Register - Register 26 2 @R1,@R2

IOR Inclusive OR Memory - Register A7 4 @M1 <R1),@R2

IORD Inclusive OR Direct B7 4 l1<R1),@R2
IORI Inclusive OR Immediate 37 2 l1 1@R2
IORM Inclusive OR Memory - Memoiry 67 6 @M1 (R1),@M2(R2)

IORR Inclusive 0 R Register - Register 27 2 @R1,@R2

BRANCHING INSTRUCTIONS

B Branch (post-indexing) ED 4 @M1 <R1)

BA1 Branch Add One E4 4 @M1(R1),@R2

BA2 Branch Add Two E5 4 @M1 (R1),@R2

BCF Branch on Condition Register False E9 4 @M1 (R1),12

BCT Branch on Condition Register True EB 4 @M1 <R1),12

BCH Branch Unconditional (pre-indexing) EC 4 @M1 <R1)

BOF Branch if Bit Off . E2 4 @M1(R1),12

BON Branch if Bit On E3 4 @M1(R1)h

BR Branch to Address in Register EB 2 @R1

BRN Branch if Register is Not Zero El 4 @M1 (R1),@R2

BRZ Branch if Register is Zero EO 4 @M1 (R1),@R2

BS1 Branch Subtract One E6 4 @M1(R1),@R2

BS2 Branch Subtract Two E7 4 @M1 <R1),@R2

BSR Branch and Save Return EA 4 @M1(R1),@R2

SB Skip Back - Unconditional BB 2

SF Skip Forward - Unconditional BA 2 1
SCFB Skip on Condition False - Back 4B 2 1• 12
SCFF Skip on Condition False - Forward 49 2 1h
SCTB Skip on Condition True - Back 4A 2 1h
SC.TF Skip on Condition True - Forward 48 2 , .12
SRMB Skip if Regi.ster Minus - Back 47 2 1.R2
SRMF Skip if Register Minus - Forward 46 2 1•R2
SRPB Skip if Register Plus - Back 45 2 1•R2
SRPF Skip if Register Plus - Forward 44 2 1•R2
SRNB Skip if Register Not Zero - Back 43 2 1.R2
SRNF Skip if Register Not Zero - Forward 42 2 1•R2
SRZB Skip if Register Zero - Back 41 2 l1,R2
SRZF Skip if Register Zero - Forward 40 2 l1,R2

COMPARE INSTRUCTIONS

Mnemonic Name Code Length Operands

CBY Compare Byte Memory - Register •1 F9 4 @M1 (R1),@R2

CBYM Compare Byte Memory - Memory e1 6B 6 @M1 <R1),@M2(R2)

CMP Compare Memory - Register A1 4 @M1 (R1),@R2

CMPD Compare Direct Bl 4 l1(R1),@R2

CMPI Compare Immediate 31 2 l1,@R2
CMPK Compare Packed Decimal • 51 8 M 1 (L1,R1),M2(L2,R2)

A-3

COMPARE INSTRUCTIONS (Continued)

Mnemonic Name Code Length Operands

CMPM Compare Memory - Memory 61 6 @M1 (R1),@M2(R2)
CMPR Compare Register·- Register 21 2 @R1,@R2
CMPT Compare Two-Word 71 4 @M1 (R1),@R2
CMPX Compare Characters • 55 8 M1 (L1,R1),M2(L2,R2)

CONTROL INSTRUCTIONS (General Purpose Control instructions can be used at any time without pr,econditions;
compare with System Control instructions.)

NOP No Operation EE 4
ROX Read Extended Register FO 2 E1,R2
SR Service Request 13 2 @11

DATA CONVERSION INSTRUCTIONS

CVB Convert to Binary • AA 4 @M1 (R1),R2
CVBT Convert to Binary Two-Word• AA 4 @M1 (R1),R2
CVD Convert to Decimal• AB 4 @M1 (R1),R2
CVDT Convert to Decimal Two-Word• AB 4 @M1(R1),R2
EDTX Packed Decimal/Alpha Edit• 57 8 M1 (L1,R1 LM2(L2,R2)
PAKX Pack• 58 8 M1 (L1,R1),M2(L2,R2)
UNPX Unpack• 59 8 M1 (L1,R1),M2(L2,R2)
TRNX Translate• 56 8 M1(R1),M2H-2,R2)

DATA TRANSFER INSTRUCTIONS

GLOR Condition Register Load 2B 2 @R1
CSTR Condition Register Store 2A 2 @R1
INV Inverse Move Memory - Register A4 4 @M1 (R1),@R2
INVD Inverse Move Direct B4 4 l1(R1),@R2
INVI Inverse Move Immediate 34 2 l1,@R2
INVM Inverse Move Memory -_Memory 64 6 @M1 (R1),@M2(R2)
INVR Inverse Move Register - Register 24 2 @R1,@R2
LOO Load Memory - Register AO 4 @M1 (R1),@R2
LODB Load Byte• F7 4 @M1 (R1),@R2
LODD Load Direct BO 4 I 1(R1),@R2 Ctr

M1 (R1),@R2
LODI Load Immediate 30 2 l1 1@R2
LOOT Load Two-Word 70 4 @M1 (R1),@R2

MOVB Move Byte• 6A 6 @M1 (R1),@M2(R2)

MOVL Move Long• 5A 8 M1 (L1,R1)1M2(R2)
MOVM Move Memory - Memory 60 6 @M1 (R1),@M2(R2)

MOVR Move Register - Register 20 2 @R1,@R2

MOVX Move Characters • 54 8 M1 (L1 ,R1)1M2(L2,R2)
PSTR Program Address Store 3A 2 @R1
STO Store Memory - Register FA 4 @M1(R1),@R2

STOB Store Byte• FB 4 @M1(R1),@R2

STOT Store Two-Word FB 4 @M1 (R1),@R2

A-4

SHIFT INSTRUCTIONS

Mnemonic Name Code Length Operands

ARDI Arithmetic Right Double Shift - Immediate 5F 2 l1,R2
ARDA Arithmetic Right Double Shift - by 3F 2 @R1,R2

Register
ARSI Arithmetic Right Single Shift -- Immediate 4F 2 l1,R2
ARSR Arithmetic Right Single Shift - by 2F 2 @R1,R2

Register
LLDI Logical Left Double Shift - Immediate 5C 2 l1,R2
LLDR Logical Left Double Shift - by Register 3C 2 @R1,R2
LLSI Logical Left Single Shift - Immediate 4C 2 l1,R2
LLSR Logical Left Single Shift - by Register 2C 2 @R1,R2
LRDI Logical Right Double Shift - Immediate 5D 2 l1,R2
LRDR Logical Right Double Shift - by Register 3D 2 @R1,R2
LRSI Logical Right Single Shift - lmmediiate 4D 2 l1,R2
LRSR Logical Right Single Shift - by Regiister 2D 2 @R1,R2
RLDI Rotating Left Double Shift - Immediate 5E 2 l1,R2
RLDR Rotating Left Double Shift - by Register 3E 2 @R1,R2
RLSI Rotating Left Single Shift - Immediate 4E 2 l1,R2
RLSR Rotating Left Single Shift - by Register 2E 2 @R1,R2
SHFK Shift Packed Decimal • 3B 6 M1 (L1,R1)"2(R2)

FLOATING POINT INSTRUCTIONS (OPTIONAL~

ADDF Add Floating Point 86 4 @M1 (R1),R2
CMPF Compare Floating Point 87 4 @M1 (R1)
DIVF Divide Floating Point 89 4 @M1 (R1),R2
FLTF Convert IFixed to Float 82 2 @R1
INTF Convert !Float to Fixed 81 2 @R1,R2
LODF Load Floating Point Register 84 4 @M1 (R1),R2
MPYF Multiply Floating Point 88 4 @M1(R1),R2
NEGF Negate Floating Point Register 80 2
STOF Store Floating Point Register BA 4 @M1 (R1)
SUBF Subtract Floating Point 85 4 @M1 (R1),R2

SYSTEIVI INSTRUCTIONS

CONTROL INSTRUCTIONS

CTB Clear Tie-Breaker Register 12 2 I 1
TST Test and Set Tie-Breaker Register 11 2 I 1
BCM Branch to Control Memory EF 2 R1"2
RAR Read Any Register FE 4 l1(R1),@R2
WAR Write Any Register FE 4 l1(R1),@R2
RRO Read Register - Option Register FD 4 l1(R1),@R2
WRO Write Register - Option Register FD 4 l1(R1),@R2
SAR Save All Registers FF 4 M1(R1) 1 l2 or

M1(R1),@R2
ASAR Restore All Registers FF 4 M1 (R1),12 or

M1 (R1),@R2

A-5

SBA
RBA
SCN
RCN
SPM
RPM
WAX

1/0 INSTRUCTIONS

DIO
INP
OUT

ADC
WAC
SIO

Set Busy/Active Register
Reset Busy/Active Register
Set Control Register
Reset Control Register
Set Privileged Mode Register
Reset Privileged Mode Register
Write Extended Register

Disc Input/Output
Input from 1/0 Register
Output to 1/0 Register

Communications Input/Output
Communications Output

System Input/Output

EXTENDED MNEMONIC CODES

10
10
14
14
15
15
FO

F2
F5
F6

F3
F4

F1

2
2
2
2
2
2
2

2
2
2

2
2
2

11"2 or@R1"2
l1,l2 or@R 1h
11"2 or@R1h
11"2 or@R 1"2
l1"2or@R 1"2
11"2 or@R 1,12

E1,R2

@R1,R2
l1 1 @R2
l1,@R2

The assembler provides extended mnemonic codes which allow unconditional skips, and conditional skip:s
and branches to be written in a symbolic form that is easier to use than the machine-oriented form:s
specified for skips and branches. There are two reasons why these extended instructions are easier to us1!
than the standard instructions:

1. Extended mnemonic codes for skip instructions do not have an F or B, as in SRPF, to denote the
direction of the skip. Instead, the assembler determines the direction by the memory address or
immediate value in the operand, for example: SAP THERE or S -8.

2. Extended mnemonic codes for branch and skip instructions that involve condition register testing
specify the condition in the mnemonic, such as SOV for skip if overflow. The standard machine
instruction names the direction and the bit status in the mnemonic, and the actual bit number
tested in the operand. Thus, the extended instruction SOV 4 is the same as the standard
instruction SCTF 4,0.

An extended mnemonic code does not correspond to one specific function code in the repertoire of
machine instructions.

The extended instructions and the standard machine instruction(s) they replace are presented in th1~

following tables:

• Address-Coded Skips

• After Arithmetic Instructions

• After Compare Instructions-Arithmetic Test

• After Compare Instructions-Logical Test

• After Decimal Instructions

• After PAKX Instruction

• After TBIT Instruction

• Condition Register Test
Just as for the standard instructions, indirect addressing and indexing are always optional for the extended
instructions.

A-6

ADDRESS CODED SKIPS

Extended Code Machine Instruction Meaning

s M1 or I 1 SF I 1 Skip forward or backward
SB I 1

SRZ M1,R2 or l1,R2 SRZF l1,R2 Skip if reg. is zero, forward
SRZB l1,R2 or backward

SRN M1,R2 or l1,R2 SRNF l1,R2 Skip if reg. is non-zero for-
SRNB l1,R2 ward or backward

SRP M1,R2 or l1,R2 SRPF l1,R2 Skip if reg. is plus, forward
SRPB l1,R2 or backward

SRM M1,R2 or l1,R2 SRMF l1,R2 Skip if reg. is minus, forward
SRMB l1,R2 or backward

For S, the I 1 value = -255 through +255; for all other extended mnemonics in this category, 11
= -15 through +15.

For SF and SB the I 1 value = 0-255; for all 01ther regular instructions in this category I 1 0-15.

AFTER ARITHMETIC INSTRUCTIONS

BOV @M1 (R1) BCT @M1(R1),0 Branch if overflow

BNV @M1(R1) BCF @M1 (R1),0 Branch if no overflow

BCV @M1 (R1) BCT @M1 (R1),3 Branch if carry

BNC @M1(R1) BCF @M1 (Rl),3 Branch if no carry

sov Ml or I 1 SCTF 11,0 Skip if overflow
SCTB 11,0

SNV M1 or I 1 SCFF 1, ,o Skip if no overflow
SCFB 11,0

SCY M1 or '1 SCTF 1,,3 Skip if carry
SCTB 1, ,3

SNC M1 or I 1 SCFF 1,,3 Skip if no carry
SCFB 11,3

'1 -15 through + 15 for the extended instructions. ,, 0-15 for the : .:tgular instructions.

AFTER COMPARE· INSTRUCTIONS - ARITHMIETIC TEST

The arithmetic test tests the result of a signed arithmetic compare between operand 1 and operand
2. In the following table, 1 and 2 under Meaning refer to the signed values of operands 1 and 2:

Extended Code Machine Instruction Meaning

BGT @M1(R1) BCT @M1(R1),1 Branch if 1< GT>2

BLT @M1 (R1) BCT @M1 (R1),2 Branch if 1< L T>2

BGE @M1(R1) BCF @M1 (R1),2 Branch if 'KGE>2

A-7

A-8

Extended Code Machine Instruction Meaning

BLE @M1(R1) BCF @M1tR1),1 Branch if K LE>2

BEO @M1 (R1 i BCT @M1 (R1),3 Branch if 1< E0>2

BNE @M1 (R1) BCF @M1 (R1),3 Branch if KNE>2

SGT M1 or 11 SCTF I 1, 1 Skip if KGT>2
SCTB I 1, 1

SLT M1 or 11 SCTF 11,2 Skip if 1<LT>2
SCTB 11,2

SGE M1 or 11 SCFF 11,2 Skip if 1<GE>2
SCFB 1,,2

SLE M1 or I 1 SCFF I 1, 1 Skip if 1<LE>2
SCFB I 1, 1

SEO M1 or 11 SCTF 1,,3 Skip if 1< E0>2
SCTB 11,3

SNE M1or1 1 SCFF 11,3 Skip if KNE>2
SCFB 1,,3

11 = -15 through +15 for extended instructions.

I 1 = 0-15 for regular instructions.

AFTER COMPARE INSTRUCTIONS- LOGICAL TEST

The logical test tests the results of an unsigned arithmetic (logical) compare between operand 1 and operand
2. In the following table, 1 and 2 under Meaning refer to the unsigned values of operands 1 and 2. COMPX
and all variations of the CBY instruction always yield a logical result.

Extended Code Machine Instruction Meaning

BLGT @M1(R1) BCT @M1 (R1),5 Branch if 1< GT>2

BLLT @M1(R1) BCT @M1 (R1),6 Branch if 1< L T>2

BLGE @M1 (R1) BCF @M1 (R1),6 Branch if 1<GE>2

BLLE @M1(R1) BCF @M1 (R1),5 Branch if 1< LE>2

BLEO @M1(R1) BCT @M1 (R1),7 Branch if 1< E0>2

BLNE @M1 (R1) BCF @M1 (R1),7 Branch if 1< N E>2

SLGT M1 or 11 SCTF 11,5 Skip if 'KGT>2
SCTB 11,5

SLLT M1 or 11 SCTF 11,6 Skip if 1<LT>2
SCTB 11,a

SLGE M1 or 11 SCFF 11,6 Skip if 1<GE>2
SCFB 11,a

SLLE M1 or 11 SCFF 11,5 Skip if 1<LE>2
SCFB 11,5

AFTER COMPARE INSTRUCTIONS - LOGICAL TEST (Continued)

Extended Code Machine Instruction Meaning

SLEO M1 or 11 SCTF 1.,,1 Skip if 1<E0>2
SCTB 1,,1

SLNE M1 or 11 SCFF 1,,1 Skip if 'KNE>2
SCFB 11,7

I '.I = -15 through +15 for the extended instructions.

I 1 = 0-15 for the regular instructions.

AFTER DECIMAL INSTRUCTIONS

BKP @M1(R1) BCT @M1 (R1),1 Branch if plus

BKM @M1 (R1) BCT @M1 (R1),2 Branch if minus

BKZ @M1(R1) BCT @M1 (R1),3 Branch if zero

SKP M1 or 11 SCTF 11,1 Skip if plus
SCTB 11,1

SKM M1 or I 1 SCTF 11,2 Skip if minus
SCTB 11,2

SKZ M1 or I 1 SCTF 11,3 Skip if zero
SCTB 11,3

11 = -15 through +15 for the extended instructions.

11 = 0-15 for the regular instructions.

AFTER PAKX INSTRUCTION

BID @M1(R1) BCT @M1 (R1),4 Branch if invalid digit

BNI @M1(R1) BCF @M1 (R1),4 Branch if no invalid digit

SID M1 or11 SCTF 11,4 Skip if invalid digit
SCTB I 1,4

SNI M1 or I 1 SCFF 11,4 Skip if no invalid digit
SCFB I 1,4

t 1 = -15 through +15 for the extended instructions.

11=0-15 for the regular instructions.

AFTER TBIT INSTRUCTION

BBS @M1 (R1) BCT @M1 (R1),0 Branch if bit is set

BBR @M1 (R1) BCF @M1 (R1),0 Branch if bit is reset

SBS M1 or 11 SCTF 11,,0 Skip if bit is set
SCTB 11,,0

SBR M1 or 11 SCFF 111,0 Skip if bit is reset
SCFB 111,0

11 = ~15 through +15 for the extended instructions.

I 1 = 0-15 for the regular instructions.

A-9

A-10

CONDITION REGISTER TEST

Extended Code

SCF

SCT

Machine Instruction

SCFF
SCFB

SCTF
SCTB

'1h
'1h
'1h
'1h

11 = -15 through +15 and 12 = 0-15 for the extended instructions.

11 and 12 .,. 0-15 for the regular instructions.

Meaning

Skip if bit spec. by 12 is c:>ff

Skip if bit spec. by 12 is ion

B. El~CDIC and ASCII CODES

EBCDIC ASCII* EBCDIC ASCII*
Hex Hex Hex Hex
Code Graphic Card Code Code Code Graphic Card Code Code

00 NUL 12-0-1-8-9 00 2F BEL 0-7-8-9 07
01 SOH 12+9 01 30 12-11-0-1-8-9
02 STX 12·2-9 02 31 1-9
03 ETX 12-3-9 03 32 SYN 2-9 16
04 PF 12-4-9 33 3-9
05 HT 12-5-9 09 34 PN 4-9

06 LC 12-6-9 35 RS 5-9 1E

07 DEL 12-7-9 7F 36 UC 6-9
08 12-8-9 37 EQT 7-9 04
09 12-1-8-9 38 8-9
OA SMM 12-2-8-9 39 1-8-9
OB VT 12-3-8-9 OB 3A 2-8-9
oc FF 12-4-8-9 oc 38 3-8-9
OD CR 12-5-8-9 OD 3C DC4 4-8-9 14
OE so 12-6-8-9 OE 30 NAK 5-8-9 15
OF SI 12-7-8-9 OF 3E 6-8-9
10 DLE 1 2-11-1-8-9 10 3F SUB 7-8-9 1A
11 DC1 11-1-9 11 40 SP No punches 20
12 DC2 11-2-9 12 41 12-0-1-9
13 DC3 11-3-9 13 42 12-0-2-9
14 RES 11-4-9 14=DC4 43 12-0-3-9
15 NL 11-5-9 44 12-0-4-9
16 BS 11-6-9 08 45 12-0-5-9
17 IL 11-7-9 46 12-0-6-9
18 CAN 11-8-9 18 47 12-0-7-9
19 EM 11-1-8-9 19 48 12-0-8-9
1A cc 11-2-8-9 49 12-1-8
1B 11-3-8-9 4A ¢ 12-2-8
1C IFS 11-4-8-9 4B • 12-3-8 2E
1D IGS 11-5-8-9 1D 4C < 12-4-8 3C
1E IRS 11-6-8-9 4D (12-5-8 28
1F IT8(1US) 11-7-8-9 1F 4E + 12-6-8 28

20 OS 11-0-1-8-9 4F I 12-7-8
21 sos 0-1-9 50 & 12 26
22 FS 0-2-9 1C :51 12-11·1-9
23 0-3-9 !52 12-11-2-9
24 BYP 0-4-9 !53 12-11-3-9
25 LF 0-5-9 OA !54 12-11-4-9
26 EOB/ETB 0-6-9 17=ETB !55 12-11-5-9
27 ESC/PRE 0-7-9 1B=ESC !56 12-11-6-9
28 0-8-9 !57 12-11-7-9
29 0-1-8-9 !58 12-11-8-9
2A SM 0-2-8-9 !59 11-1-8
28 0-3-8-9 !5A ! 11-2-8 21
2C 0-4-8-9 !;8 $ 11-3-8 24
2D ENO 0-5-8-9 05 !iC * 11-4-8 2A
2E ACK 0-6-8-9 06 !>D) 11-5-8 29

*MAX/OS uses a seven-bit ASCII code.

B-1

EBCDIC ASCII EBCDIC ASCII

Hex Hex Hex t-lex

Code Graphic Card Code Code Code Graphic Card Code C()de

5E I 11-6-8 3B 95 n 12-11-5 €iE

5F . ., 11-7-8 5E=1, 96 0 12-11-6 EiF

60 - 11 2D 97 p 12-11-7 70

61 I 0-1 2F 98 q 12-11-8 n
62 11-0-2-9 99 r 12-11-9 72
63 11-0-3-9 9A 12-11-2-8
64 11-0-4-9 9B 12-11-3-8

65 11-0-5-9 9C 12-11-4-8
66 11-0-6-9 9D 12-11-5-8
67 11-0-7-9 9E 12-11-6-8
68 11-0-8-9 9F 12-11-7-8
69 0-1-8 AO 11-0-1-8
6A 12-11 Al 11-0-1
68 ' 0-3-S 2C A2 s 11-0-2 '.73
6C % 0-4-8 25 A3 t 11-0-3 74
60 - 0-5-8 5F A4 u 11-0-4 75
6E > 0-6-8 3E A5 v 11-0-5 76
6F ? 0-7-S 3F A6 w 11-0-6 77
70 12-11-0 A7 x 11-0-7 '78

71 12-11-0-1-9 AS y 11-0-8 '79
72 12-11-0-2-9 A9 z 11-0-9 7A
73 12-11-0-3-9 AA 11-0-2-S
74 12-11-0-4-9 AB 11-0-3-8
75 12-11-0-5-9 AC 11-0-4-8
76 12-11-0-6-9 AD 11-0-5-8
77 12-11-0-7-9 AE 11-0-6-8
78 12-11-0-8-9 AF 11-0-7-8
79 1-8 BO 1 2-11-0-1-8
7A : 2-8 ':lA Bl 12-11-0-1
7B # 3-8 23 82 12-11-0-2
7C @ 4-S 40 B3 12-11-0-3
70 ' 5-S 27 84 12-11-0-4
7E = 6-S 30 85 12-11-0-5
7F II 7-S 22 06 12-11-0-6
so 12-0-1-8 B7 12-11-0-7
81 a 12-0-1 61 BS 12-11-0-S
S2 b 12-0-2 62 89 12-11-0-9
S3 c 12-0-3 63 BA 12-11-0-2-S
84 d 12-0-4 64 BB 12-11-0-3-S
S5 e 12-0-5 65 BC 12-11-0-4-S
S6 f 12-0-6 66 BD 12-11-0-5-S
S7 g 12-0-7 67 BE 12-11-0-6-S
8S h 12-0-8 6S BF 12-11-0-7-S
S9 i 12-0-9 69 co 12-0
SA 12-0-2-S Cl A 12-1 41

88 12-0-3-8 C2 B 12-2 42

SC 12-0-4-8 C3 c 12-3 43

SD 12-0-5-8 C4 D 12-4 44

SE 12-0-6-8 cs E 12-5 45
SF 12-0-7-8 C6 F 12-6 46

90 12-11-1-8 C7 G 12-7 47

91 j 12-11-1 6A cs H 12-8 48

92 k 12-11-2 6B C9 I 12-9 49
93 I 12-11-3 6C CA 12-0-2-S-9

94 m 12-11-4 60 CB 12-0-3-8-9

B-2

EBCDIC ASCII EBCDIC ASCII
Hex Hex Hex Hex

Code Graphic Card Code Code Code Graphic Card Code Code

cc 12-0-4-8-9 E6 w 0-6 57
CB 12-0-5-8-9 E:7 x 0-7 58
CE 12-0-6-8-9 EB y 0-8 59
CF 12-0-7-8-9 E9 z 0-9 5A
DO 11-0 EA 11-0-2-8-9
D1 J 11-1 4A EB 11-0-3-8-9
D2 K 11-2 48 EC 11-0-4-8-9
D3 L 11-3 4C ED 11-0-5-8-9
D4 M 11-4 4D EE 11-0-6-8-9
D5 N 11-5 4E EF 11-0-7-8-9
06 0 11-6 4F FO 0 0 30
D7 p 11-7 50 F1 1 1 31
DB a 11-8 51 F2 2 2 32
D9 R 11-9 52 F3 3 3 33
DA 12-11-2-8-9 F4 4 4 34
DB 12-11-3-8-9 F5 5 5 35
DC 12-11-4-8-9 F6 6 6 36
DD 12-11-5-8-9 F7 7 7 37
DE 12-11-6-8-9 F8 8 8 38
DF 12-11-7-8-9 F9 9 9 39
EO 0-2-8 FA 12-11-0-2-8-9
E1 11-0-1-9 FB 12-11-0-3-8-9
E2 s 0-2 53 FC 12-11-0-4-8-9
E3 T 0-3 54 FD 12-11-0-5-8-9
E4 u 0-4 55 FE 12-11-0-6-8-9
E5 v 0-5 56 FF 12-11-0-7-8-9

SYMBOLS UNIQUE TO ASCII
I

Graphic Hex Code

DC4 14 ,-,
5E

[5B
\ 5C

1 5D
- 5F

\ 60
(7B
I 7C

} 7D

"-' 7E

B-3

C. HE}U~DECIMAL ARITHMETIC

HEXADECIMAL-DECIMAL CONVERSION

HEX. DEC. HEX. DEC. HEX. DE.C. HEX. DEC. HEX. DEC.

1 1 10 16 100 266 1000 4096 10000 65536
2 2 20 32 200 512 2000 S192 20000 131072
3 3 30 4S 300 76S 3000 122S8 30000 196608
4 4 40 64 400 1024 4000 163S4 40000 262144

5 5 50 80 500 1280 5000 204SO 50000 3276SO
6 6 60 96 600 1536 6000 24576 60000 393216
7 7 70 112 700 1792 7000 28672 70000 458752
s s so 128 800 2048 8000 32768 80000 524288

9 9 90 144 900 2304 9000 36864 90000 589824
A 10 AO 160 AOO 2560 AOOO 40960 AOOOO 655360
B 11 BO 176 BOO 2816 BOOO 45056 BOOOO 720896
c 12 co 192 coo 3072 cooo 49152 coooo 786432

D 13 DO 20S DOO 3328 DOOO 5324S 00000 S5196S
E 14 EO 224 EOO 3584 EOOO 57344 EOOOO 917504
F 15 FO 240 FOO 3840 FOOO 61440 FOOOO 983040

MUL TIPLICATllON

2
3 9
4 c
5 5 F 14 19
6 6 12 1S 1E
7 7 15 1C 23 2A
8 8 10 1S 20 2S 30
9 9 12 1B 24 2D 36
A A 14 1E 2S 32 JC 46 50
B B 16 21 2C 37 42 40 58
c c 18 24 30 3C 48 54 60 6C 84
D D 1A 27 34 41 4E 5B 68 715 SF
E E 1C 2A 38 46 54 62 70 11: 9A AS
F F 1E 2D JC 4B 5A 69 78 87 A5 B4

2 3 4 5 6 7 8 9 A B c 0 E F

C-1

D. MACHINE U~NGUAGE INSTRUCTION
TIMING FORMULAS

This appendix lists formulas for calculating execution
times of machine language instructions. Instructions
are I isted by hexade!cimal operation code and
assembler mnemonic. In most cases, times are
dependent on the type of addressing (direct/indirect)
used for instruction operands. Formulas for each of
the addressing combinations possible are listed in the
headings: 1 refers to operand 1 with direct
addressing, 2 to operand 2 with direct addressing, @1
to operand 1 with indirect addressing, and @2 to
operand 2 with indirect addressing. A legend of
meanings of symbols used in the formulas is at the
end of this appendix.

D-1

Hex
Code Mnemonic 1-2 @1-2 1-@2 @1-@2

10 SBA T1+6T2 T1+6T2

10 RBA T1+6T2 T1+6T2

11 TST T1+3M2 T1+4T2 T1+4T2 Tl+ 5T2

(Unprivileged (Unprivileged (Privileged (Privileged
Bit Set) Bit Not Set) Bit Set) Bit Not Sot)

12 CTB T 1 + 3T 2 (Unprivileged) T 1 + 4T 2 (Privileged)

13 SR Tl+ 2T2

14 SCN Tl+ 7T2 Tl+ 8T2
(processors 4-7) (processors 0-3)

14 RCN Tl+ 7T2 Tl+ 8T2
(processors 4-7) (processorn 0-3)

15 SPM Tl+ 3T2 T1+6T2
(Unprivileged (Privileged
Mode) Mode)

15 RPM T 1 +3T2 T1+6T2
(Unprivileged (Privileged
Mode) Mode)

20 MOVR T1 + T2 2T1 2T1 + T2 3T1

21 CMPR T1 + T2 2T1 2T 1 + 2T2 3T1 + T2

22 ADDR T 1 t T2 2T1 3T 1 + T2 4T1

23 SUBR Tl+ T2 2T1 3T 1 + T2 4T1

24 INVR T1 + T2 2T1 2T1+T2 3T1

25 ANDR Tl +T2 2T1 3T 1 + T2 4T1

26 EORR T1 + T2 2T1 3T 1 + T2 4T1

27 IORR Tl +T2 2T1 3T1 + T2 4T1

28 MPYR 2T1+7T2+K1 3T1+6T2+K1 5T1+5T2+K1 6T1+4T2+K1

29 DIVR T1+5T2+K2 2T1+4T2+K2 5T1+3T2+K2 6T 1+2T2+K2

2A CSTR Tl +T2 2T1

28 CLDR Tl +T2 2T1

2C LGSS Tl +T2 2T1 + T2

20 LGSS- T1+2T2 2T1+2T2

2E ROSS T1 + T2 2T1 + T2

0-2

Hex
Code Mnemonic 1-2 @1-2 1-@2 @1-@2

2F ARSS- T1+3T2 2T1+3T2

30 LODI T1+2T2 2T1 + T2

31 CMPI T1+2T2 2T1+2T2

32 ADDI T1 +2T2 3T1 + T2

33 SUBI T1 +2T2 3T1 + T2

34 INVI T1 +2T2 2T1 + T2

35 ANDI T1+2T2 3T 1 + T2

36 EORI T1+2T2 3T1 + T2

37 IORI T1+2T2 3T1 + T2

38 MPYI 2T1+8T2+K1 5T1+5T2+K1

39 DIVI T1+6T2+K2 5T1+3T2+K2

3A PSTR lr1 +T2 2T1

38 SHFK See special formula at end

3C LGDS T1+5T2 ~ff 1 + 5T2

3D LGDS-
<(al Note A: T 1+T2 if shift

T 1+5T2 Cl) 2T 1+5T2 Cl) count= 0 0 0 z z NoteB: 2T1+T2ifshift 3E RODS T1 +5T2 ~~T 1 + 5T 2 Cl)
Cl) count= 0 VJ

3F ARDS- T1+5T2 2T1+5T2

40 SRZ+ T1+3T2

41 SRZ- T1+3T2

42 SRN+ T1+3T2

43 SRN- T1+3T2

44 SRP+ T1+3T2

45 SRP- T1+3T2

46 SRM+ T1+3T2
T 1 + T 2 if skip not taken

47 SRM- T1+3T2

48 SCR,T+ T1+3T2

49 SCR,F+ T1+3T2

4A SCR,T- T1+3T2

48 SCR,F- T1+3T2

D-3

Hex
Code Mnemonic 1-2 @1-2 1-@2 @1-@2

4C LGSS,I T1 +T2

40 LGSS,1- T1+2T2

4E ROSS,I T1 +T2

4F ARSS,1- T1+3T2

50 ZADK

51 CMPK

52 ADDK

53 SUBK

54 MOVX

55 CMPX See special formulas at end

56 TRNX

57 EDTX

58 PAKX

59 UNPX

5A MOVL

5C LGDS,I T1+5T2

50 LGDS,1- T1+5T2

5E RODS,I T1+5T2
T 1 + T 2 if shift count = 0

5F ARDS,1- T1 +5T2

60 MOVM 5T1 6T1 6T1 7T1

61 CMPM 5T1 + T2 6T1 + T2 6T1 + T2 7T1+T2

62 ADDM 6T1 7T1 7T1 8T1

63 SUBM 6T1 7T1 7T1 8T1

64 INVM 5T1 6T1 6T1 7T1

65 ANDM 6T1 7T1 7T1 8T1

66 EORM 6T1 7T1 7T1 8T1

67 IORM 6T1 7T1 7T1 8T1

68 MPYM 8T1+4T2+K1 9T1+4T2+K1 9T1+4T2+K1 10T1+4T2+K1

69 DIVM 8T1+2T2+K2 9T1+2T2+K2 9T1+2T2+K2 10T 1+2T2+K2

D-4

Hex
Code Mnemonic 1-2 @1-2 1-@2 @1-@2

6A MOVB 5T1 6T1 6T1 7T1

6B CBYM 5T1 + T2 6T1 + T2 6T1 + T2 7T 1 + T2

6C TONA T1+2T2 2T1+2T2 3T1+2T2 4T1+2T2

60 RONA T1+3T2 3T1+2T2 3T1+3T2 5T1+2T2

6E TOFR T1+2T2 2T1+2T2 3T1+2T2 4T1+2T2

6F ROFR T1+3T2 3T1+2T2 3T1+3T2 5T1+2T2

70 LOOT 4T1 5T1 6T1 7T1

'71 CMPT 3.5T1+T2 4.5T1+T2 5T1+T2 6T1+T2
(average) (av1:irage) (average) (average)

'72 ADDT 4T1 + T2 5T·.1 + T2 8T1 9T1

73 SUBT 4T1 + T2 5T11 + T2 8T1 9T1

AO LOO 3T1 4T1 4T1 5T1

A1 CMP 3T1 4T1 4T 1 + T2 5T 1 + T2

A2 ADD 3T1 4T1 5T1 6T1

A3 SUB 3T1 4T1 5T1 6T1

A4 INV 3T1 4T1 4T1 5T1

A5 AND 3T1 4T1 5T1 6T1

A6 EOR 3T1 4T1 5T1 6T1

A7 IOR 3T1 4T1 5T1 6T1

AB MPV 4T1+6T2+K1 5T1+6T2+K1 7T1+4T2+K1 8T1+4T2+K1

A9 DIV 3T1+4T2+K2 4T1+4T2+K2 7T1+2T2+K2 8T1+2T2+K2

AA CVB 4T1+46T2 5T1+46T2

AA CVBT 6T1+90T2 7T1+90T2

AB cvo 6T1 + KJ 7T1 + K3

AB CVDT 9T1+38T2+K3 10T 1+38T2+K3

BO LODD 2T1 + T2 3T1

81 CMPO 2T1 + T2 3T1 + T2

B2 ADDO 2T1 + T2 4T1

B3 SUBD 2T1 + T2 4T1

0-5

Hex
Code Mnemonic 1-2 @1-2 1-@2 @1-@2

84 INVD 2T1 + T2 3T1

85 ANDO 2T1 + T2 4T1

86 EORD 2T1 +T2 4T1

87 IORD 2T1 + T2 4T1

BB MPYD 3T1+7T2+K1 6T1+4T2+K1

B9 DIVD 2T1+ST2+K2 6T1+2T2+K2

BA SUN+ T1+2T2

BB SUN- T1+2T2

BC SBIT 4T1 5T1

BO RBIT 4T1 5T1

BE TBIT 3T1 + T2 4T1 + T2

BF IBIT 4T1 5T1

EO JRZ 2T1 3T1 3T1 4T1

E1 JRN 2T1 3T1 3T1 4T1

E2 JOF 2T1 3T1

E3 JON 2T1 3T1

E4 jA1 2T1 3T1 4T1 5T1 2T1 if
jump

E5 JA2 2T1 3T1 4T1 5T1 not
taken

E6 JS1 2T1 3T1 4T1 5T1

E7 JS2 2T1 3T1 4T1 5T1

ES JCR,T 2T1 3T1

E9 JCR,F 2T1 3T1

EA JSR 2T1 + T2 3T1 + T2 3T1 4T1

EB JUNR T1 +T2 2T1

EC JUN 2T1 3T1

ED JUMP 2T1 3T1

EE NOP T1 +T2 T1 +T2 T1 +T2 T1 +T2

EF JCM T1 +T2

FO ROX T1+3T2

D-6

Hex
Code Mnemonic 1-2 @1-2 1-@2 @1-@2

FO WAX T1+4T2

F1 S10

F2 D10

F3 ADC

F4 WAC T1+2T2

F5 INP T1+5T2 2T1+5T2

F6 OUT T1+4T2 2T1+4T2

F7 LODB 3T1 4T1 4T1 5T1

FS STOB 3T1 4T1 4T1 5T1

F9 CBY 3T1 + T2 4T1 + T2 4T1 +T2 5T1 + T2

FA STO 3T1 4T1 4T1 5T1

FB STOT 4T1 5T1 6T1 7T1

FD ARO 3T1+3T2 4T1+3T2

FD WRO 3T1+3T2 4T1+2T2

FE RAR 2T 1+3T2 3T1+3T2

FE WAR 2T1+3T2 3T1+3T2

FF SAR 12T1+22T2

FF ASAR 12T1+24T2

D-7

SPECIAL FORMULAS

ZADK L2~L1 (6+4L 1*ig)T1 + [11+(10+6L 1-2L2}ig] T 2

L2>L1 [6+(l2+3L1)ig]T1+[15+(10+L2+3L1)ig]T2

CMPK L2~L1 (5+is+2ig+L2+L 1)T1+(3+5ig+3L1)T2

L2>L1 (6+2ig+L2+L 1)T1+(8+3L2)T2

ADDK L2~L1 (6+3L 1*ig)T1 + [10+(10+5L 1-2L2)ig]T 2

L2>L1 [6+(L2+2L 1)ig]T1+[14+(10+2L 1+L2)ig] T 2

if recomplement add:

(3L 1+1)T1+(5L 1+7)T 2

SUBK same as ADDK

MOVX L22'L1 (5+L 1)T1+3T2 (word move)*

(6+2L 1)T1+(2+i7)T 2 (byte move)*

L2<L1 (5+L2+L 1)T1+3T 2

CMPX L22°L1 (4+L2)T 1 +(3+L2+ .SL 1)T2 (word compare)*

(4+2L2)T 1+(3+2L2+L 1)T2 (byte compare)*

L2<L1 (4+L 1)T1+(3+L1+.5L2)T2 (word compare)*

(4+2L 1)T1+(3+2L1+L2)T2 (byte compare)*

TRNX (7+3L 1)T1+(4+L 1)T2

EDTX Numeric Edit
(L210)

(4+Lm+L2+L 1)T1+(13+3C1+6C2+C3+2C4+3C5

+7.5C5)T 2+[1.5L 1+1)T1+(5.5L 1-1.5i7+i5+9)T 21 ig

Alpha Ed!t
(L2 = 0)

(4+Lm+2C1+C4)T 1+(S+2c,+C3+2C4)T 2

PAKX 4T 1+7T 2+[(3L l+i3)T 1+(10L 1+i3-1)T21 ig

UNPX 4T 1+7T2+[(L 1+L2*i3)T 1+(5.5L 1-1.5i7+i5+9)T2] ig

MOVL (5+L2)T 1+2T2 (word move)*

(5+2L2)T 1+2T2 (byte move)*

SHFK [3+(7L2+2i15+2i 15) isl T 1

+[7+(8+15L2-(5+i15H12+(3+2i15+7i12H14)i3] T 2

D-8

LEGEND

7300 7200

T 1 =memory reference cycle time JJµ s 1.Sµs
1.0 µ s with ECC ECC not available

T 2 = non-memory reference cycle time .Hµs 1.6µs

NOTE

The above times will be increased by .2 p. s if the computer is used for
special purposes which require the machine to be run in a single processor
state only.

~~ I lengths as specified in the machine language

Lm length of edit mask including new fill characters, characters to be inserted and all the edit
operators.

C1 count of source characters (digits) moved to result via the MC or MCS operators.

C2 count of source digits suppressed by fill.

C3 count of IC and ICS operators in edit mask.

C4 count of mask characters inserted or suppressed in result via 10 and ICS operators.

C5 count of SSD and SFI operators in edit mask.

C5 count of ISG operators in edit mask.

io o if 1=0
1 if 1~0

i1 0 if 120
1 if 1< 0

i2 = 0 if 2~0
1 if 2<0

i3 = 0 if 1 and 2 have like signs
1 if 1 and 2 have unlike signs

i4 = number of one-bits in smaller of f 1 I or I 2 I
i5 = 16 - bit# of MSB in smaller of I 1 I or I 2 I
i5 = number of non-zero digits unpacked

i7 = 0 if L1 is even
1 if L1 is odd

D-9

D-10

is 0 if L2=0
1 if LUO

ig 0 if Ll=O
1 if L1=IO

LEGEND (Continued)

i10 sign extended shift count from 6th byte of instruction

i12 smaller of i 11 and (2L-1)

i14 0 if i12=0
1 if i12;i!O

i15 O if i11 >o left shift
1 if i11< 0 right shift

i15 0 if result of shift:IO
1 if result of shift=O

i17 number of one-bits in f 2 I
i18 o if i11=o

1 if i17"1-0

i19 0 if single precision (CVD)
1 if double precision (CVDT)

i20 bit position of MSB in 2

INDEX

INSTRUCTIO~J INDEX

BY MNEMONIC CODE

Mnemonic Operation Page J Mnemonic Operation Page
Code Code Number Code Code Number

ADD A2 4.4 CMPR 21 4-39
ADDO 82 4-4 CMPT 71 4-39
ADDF 86 4-64 CMPX 55 4-40
ADDI 32 4-5 CSTR 2A 4-51
ADDK 52 4-5 CTB 12 4-76
ADDM 62 4-6 CVB/CVBT AA 4-42
ADDR 22 4-7 CVD/CVDT AB 4-43
ADDT 72 4-7
AND A5 4-21 010 F2 4-83
ANDO B5 4-22 DlV A9 4-7
ANDI 35 4-22 DIVD B9 4-8
ANDM 65 4-22 DIVF 89 4-65
ANDR 25 4-23 DIVI 39 4-9
ARDI 5F 4-57 DIVK 7C 4-9
ARDR 3F 4-57 DIVM 69 4-10
ARSI 4F 4-58 DIVR 29 4-11
ARSR 2F 4-58

EDTX 57 4-44
B ED 4-26 EOR A6 4-23
BA1 E4 4-27 EORD 86 4-23
BA2 E5 4-27 EORI 36 4-24
BCF E9 4-27 EORM 66 4-24
BCH EC 4-28 EORR 26 4-24
BCM EF 4-77
BCT EB 4-28 FLTF 82 4-67
BOF E2 4-28
BON E3 4-28 IBIT BF 4-18
BR EB 4-29 INP F5 4-85
BRN E1 4-29 INTF 81 4-67
BRZ EO 4·29 INV A4 4-51
BS1 E6 4-29 INVD B4 4-51
BS2 E7 4-30 INVI 34 4-52
BSR EA 4-30 INVM 64 4-52

INVR 24 4-52
CBY F9 4-35 IOR A7 4-24
CBYM 6B 4-35 IORD 87 4-25
CLDR 28 4-51 IORI 37 4-25
CMP Al 4-36 IORM 67 4-25
CMPD 81 4-36 IORR 27 4-26
CMPF 87 4-65
CMPI 31 4-37 LLDI 5C 4-58
CMPK 51 4-37 LLDR 3C 4-59
CMPM 61 4-38 LLSI 4C 4-59

Mnemonic Operation Page Mnemonic Operation Page

Code Code Number Code Code Number

LLSR 2C 4-59 SCN 14 4-81

LOD AO 4-52 SCFB 4B 4-31

LODB F7 4-53 SCFF 49 4-31

LODD BO 4-53 SCTB 4A 4-32

LODF 84 4-68 SCTF 48 4-32

LODI 30 4-53 SF BA 4-31

LODT 70 4-54 SHFK 3B 4-62

LRDI 5D 4-59 SIO Fl 4-90

LRDR 3D 4-60 SPM 15 4-82

LRSI 4D 4-60 SR 13 4-41

LRSR 2D 4-60 SRMB 47 4-32

SRMF 46 4-32

MOVB 6A 4-54 SRNB 43 4-33

MOVL 5A 4-54 SRNF 42 4-34

MOVM 60 4-55 SRPB 45 4-33

MOVR 20 4-55 SRPF 44 4-33

MOVX 54 4-55 SRZB 41 4-34

MPV A8 4-11 SRZF 40 4-34

MPYD B8 4-12 STO FA 4-56

MPYF 88 4-68 STOB F8 4-56

MPYK 5B 4-12 STOF 8A 4-69

MPYI 38 4-12 STOT FB 4-56

MPYM 68 4-13 SUB A3 4-14

MPYR 28 4-14 SUBD B3 4-14
SUBF 85 4-69

NEGF 80 4-69 SUBI 33 4-15

NOP EE 4-41 SUBK 53 4-15
SUBM 63 4-16

OUT F6 4-85 SUBR 23 4-16
SUBT 73 4-17

PAKX 58 4-48
PSTR 3A 4-56 TBIT BE 4-20

TOFR 6E 4-20

RAR FE 4-88 TONR 6C 4-21

RBA 10 4-81 TRNX 56 4-50

RBIT BD 4-20 TST 11 4-77
RCN 14 4-81
RDC F3 4-87 UNPX 59 4-49

RDX FO 4-41
RLDI SE 4-60 WAR FE 4-78

RLDR 3E 4-61 WRC F4 4-89

RLSI 4E 4-61 WRO FD 4-78
RLSR 2E 4-61 WAX FO 4-82
ROFR 6F 4-18
RONA 6D 4-19 ZADK 50 4-17

RPM 15 4-82
RRO FD 4-78
ASAR FF 4-80

SAR FF 4-80
SB BB 4-30
SBA 10 4-80
SBIT BC 4-20

2

BY OPERATION CODE

Operation Mnemonic Page Operation Mnemonic Page
Code Code Number Code Code Number

10 SBA/RBA 4-79/4-81 4D LRSI 4-60
11 TST 4-77 4E RLSI 4-61
12 CTB 4 •. 75 4F ARSI 4-58
1 ;3 SR 4A1 50 ZADK 4-17
14 SCN/RCN 4-81 51 CMPK 4-37
15 SPM/RPM 1.4-82 52 ADDK 4-5
20 MOVA 4-55 53 SU8K 4-15
21 CMPR 4-39 54 MOVX 4-55
22 ADDA 4-57 55 CMPX 4-40
23 SU8R 4-16 56 TRMX 4-50
24 INVA 4-52 57 EDTX 4-44
25 ANDA 4-23 58 PAKX 4-48
26 EORR 4-24 59 UNPX 4-49
27 IORR 4-26 5A MOVL 4-54
28 MPYR 4-14 58 MPYK 4-12
29 DIVA 4-11 5C LLDI 4-58
2A CSTR 4-51 5D LRDI 4-59
.28 CL.:DR 4-51 5E ALDI 4-60
2C LLSA 4-59 5F AADI 4-57
20 LRSA 4-60 60 MOVM 4-55
2E ALSR 4-61 61 CMPM 4-38
2F AASR 4-58 62 ADDM 4-6
30 LODI 4-53 63 SU8M 4-16
31 CMPI 4-37 64 INVM 4-52
32 ADDI 4-5 65 ANDM 4-22
33 SUBI 4-15 66 EOAM 4-24
34 INVI 4-52 67 IOAM 4-25
35 ANDI 4-22 68 MPYM 4-13
36 EOAI 4-24 69 DIVM 4-10
37 IORI 4-25 6A MOVB 4-54
38 MPYI 4-12 68 C8YM 4-35
39 DIVI 4-9 6C TONA 4-21
3A PSTA 4-56 60 RONA 4-19
38 SHFK 4-62 6E TOFR 4-20
3C LLDA 4-59 6F AOFA 4-18
3D LADA 4-60 70 LOOT 4-54
3E ALDA 4-61 71 CMPT 4-39
3F ARDA 4-57 72 ADDT 4-7
40 SRZF 4-34 73 SU8T 4-17
41 SRZ8 4-34 7C DIVK 4-9
42 SRNF 4-34 80 NEGF 4-69
43 SAN8 4-33 81 INTF 4-67
44 SRPF 4-33 82 FLTF 4-67
45 SRPB 4-33 84 LODF 4-68
46 SRMF 4-32 85 SU8F 4-69
47 SRMB 4-32 86 ADDF 4-64
48 SCTF 4-32 87 CMPF 4-65
49 SCFF 4-31 88 MPYF 4-68

4A SCT8 4-32 89 DIVF 4-65
48 SCF8 4-31 SA STOF 4-69
4C LLSI 4-59 AO LOO 4-52

3

Operation Mnemonic Page Operation Mnemonic Page

Code Code Number Code Code Number

Al CMP 4-36 FA STO 4-56

A2 ADD 4-4 FB STOT 4-56

A3 SUB 4-14 FD RRO/WRO 4-79

A4 INV 4-51 FE RAR/WAR 4-77/4-78
A5 AND 4-21 FF SAR/ASAR 4-80

A6 EOR 4-23
A7 IOR 4-24
AB MPV 4-11
A9 DIV 4-7
AA CVB/CVBT 4-42
AB CVD/CVDT 4-43
BO LODD 4-53
B1 CMPD 4-36
B2 ADDO 4-4
B3 SUBD 4-14
84 INVD 4-51
B5 ANDO 4-22
B6 EORD 4-23
B7 IORD 4-25
BS MPYD 4-12
B9 DIVD 4-8
BA SF 4-31
BB SB 4-30
BC SBIT 4-20
BD RBIT 4-20
BE TBIT 4-20
BF IBIT 4-1B
EO BRZ 4-29
E1 BRN 4-29
E2 BOF 4-2B
E3 BON 4-2B
E4 BA1 4-27
E5 BA2 4-27
E6 BS1 4-29
E7 BS2 4-30
EB BCT 4-2B
E9 BCF 4-27
EA BSR 4-30
EB BR 4-29
EC BCH 4-2B
ED B 4-26
EE NOP 4-41
EF BCM 4-77
FO RDX/WRX 4-41/4-B2
F1 SIO 4-90
F2 DIO 4-B3
F3 RDC 4-B7
F4 WAC 4-89
F5 INP 4-85
F6 OUT 4-85
F7 LODB 4-53
F8 STOB 4-56
F9 CBY 4-35

4

COMMENTS FORM

7200 Processing Unit Reference Manual -- 2903.002

Please send us your comments, to help us produc1~ better publications. Use the space below to
qualify your responses to the following questions, rn you wish, or to comment on other aspects of
the publication. Please use specific page and paragraph/line references where appropriate. All
comments become the property of the Memorex Corporation.

• Is the material: Yes No

Easy to understand? 0 0

Conveniently organized? 0 0

Complete? 0 0

Well illustrated? 0 0

Accurate? 0 0

Suitable for its intended audience? 0 0

Adequately indexed? D 0

• For what purpose did you use this publication (reference, general interest, etc.)?

• Please state your department's function: .

I

Please use the space below to describe any specific comments which you feel will help us to
produce a better publication.

Business Reply Mail

No Postage Necessary if Mailed in the United States

Postage Will Be Paid By

Memorex Corporation

Santa Clara Publications
Department 9722 - M/S 00-21
1200 Memorex Drive
Santa Clara, California 95052

First Cla!is

Permit No. 250
Santa Clara
California 95050

...

.

Thank you for your information

Our goal is to provide better, more useful manuals, and your
comments will help us to do so .

............. Memorex Publications

	0001
	0002
	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	4-39
	4-40
	4-41
	4-42
	4-43
	4-44
	4-45
	4-46
	4-47
	4-48
	4-49
	4-50
	4-51
	4-52
	4-53
	4-54
	4-55
	4-56
	4-57
	4-58
	4-59
	4-60
	4-61
	4-62
	4-63
	4-64
	4-65
	4-66
	4-67
	4-68
	4-69
	4-70
	4-71
	4-72
	4-73
	4-74
	4-75
	4-76
	4-77
	4-78
	4-79
	4-80
	4-81
	4-82
	4-83
	4-84
	4-85
	4-86
	4-87
	4-88
	4-89
	4-90
	4-91
	4-92
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	A-00
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	B-01
	B-02
	B-03
	B-04
	C-01
	C-02
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	I-00
	I-01
	I-02
	I-03
	I-04
	replyA
	replyB

