7200 Processing Unit

Reference Manual

2903.002

Preliminary Information

This manual precedes initial release publications and
therefore may undergo substantial revision.

Y EE @IS

walsAg 1aindwion

sjonpolid

Preliminary Edition October 1972

Requests for copies of Memorex publications should be made
to your Memorex representative or to the Memorex branch
office serving your locality.

A readers’ comments form is provided at the back of this
publication. If the form has been removed, comments may be
addressed to the Memorex Corporation, Publications Dept.,
Santa Clara, California 95052.

© 1972, MEMOREX CORPORATION

7200 PROCESSING UNIT REFERENCE
(MRX/40 SYSTEM)

2903.002

PREFACE

This publication covers the 7200 Processing Unit (for
MR X/40 data-processing systems). It describes the
functional characteristics, data formats, operating
routines, and the System Control Panel. Each machine
instruction is detailed, with a brief example.

The publication is intended to aid programmers, system
engineers, and data-processing managers and operators in

better understanding and using the system.

Appendices provide further details of machine formats
and instructions.

September, 1972

iii

TABLE OF CONTENTS

Section
1 GENERAL DESCRIPTION

Introduction
Processor State Concept
General
Consecutive-Cycle Mode
Major-Cycle Timing
Processing-Unit Organization
Processor States
Processor State 0
Processor State 2
Processor State 3
Processor State 4
Processor States 5, 6, and 7
Main Storage
Alterable Control Memory
Arithmetic-Logical Unit
Register File

2 FUNCTIONAL CHARACTERISTICS

Main Storage Addressing
Binary Representation
Arithmetic
Single-Precision Addition
Single-Precision Subtraction
Double-Precision
Information Formats

3 INSTRUCTION TYPES

Generalized Instruction Formats
Addressing Modes
Immediate Addressing
Direct Addressing
Indirect Addressing
Implementation
Indexing

4 MACHINE INSTRUCTIONS

Introduction

Source and Object Format Interpretation

General-Purpose Instructions
Arithmetic Instructions
Bit-Oriented Instructions
Boolean Logic Instructions

Branching Instructions
!

Page
1-1
1-1
1-1

11
1-2

1-6
1-6

241

2-1

2-1
2-1
2-3
23
2-3
2-3

31

3-1
3-2
3-2
3-2
33
3-3
33

4-1

4-1
4-1
44
4-4
4-18
4-21
4-26

Section

Compare Instructions

Control Instructions

Data Conversion Instructions

Data Transfer Instructions

Shift Instructions

Floating-Point Instructions

Data Format

Normalization

Zero Representation

Arithmetic Exceptions

Floating-Point Register
System Instructions

Extended File Register

Contro! Register (C)

Privileged Mode Register (PM)

Boundary Crossing Register (BC)

Register Option

Control Instructions

SYSTEM OPERATING PROCEDURES

Introduction

Controls and Indicators
Operator Group
Programmer Group

Maintenance Group
System Activity Display Group
Communications Activity Group
Operating Procedures
Modes of Operation
Breakpoint Facility
Switching Power On and Off
Loading Control Storage from Disc
Power On Condition
Reset/L.oad Condition
Loading Control Storage from
Card Reader
Power On Condition
Reset/Load Condition
Loading Main Storage from Disc
Loading Main Storage from
Card Reader
Reading Main Storage
Preconditions
Procedure
Writing Main Storage
Preconditions
Procedure

Page

4-35
4-41
4-42
4-50
4-57
4-62
4-62
4-63
4-63
4-63
4-64
4-70
4-70
4-73
4-75
4-75
4-75
4-76

5-1

5-1
5-1
5-1
5-4
5.7
5-7
5-8
5-8
5-8
5-9
5-9
5-10
5-10
5-11

5-11
5-11
5-12
5-12

5-13
5-13
5-13
5-13
5-13
5-13
5-14

Figure

1-1
1-2
1-3

21
2-2
3-1
32
33
34
35
3-6
37
3-8

TABLE OF CONTENTS (Continued)

Section Page
Reading Registers of Register Files 5-14
Preconditions 5-14
Procedure 5-14
Loading Registers of Register Files 5-14
Preconditions 5-14
Procedure 5-15
Reading Registers of Register Option 5-15
Preconditions 5-156
Procedure 5-156
Loading Registers of Register Option 5-16
Preconditions 5-16
Procedure 5-16
Reading Shared Resources Registers 5-16
Preconditions 5-16
Procedure 5-16
Executing Programs 5-16
Precondition 5-16
Procedure 5-16

Section Page

APPENDIX A — INSTRUCTION SUMMARY A-1
AND EXTENDED
MNEMONIC CODES

APPENDIX B — EBCDIC AND ASCII CODES B-1

APPENDIX C — HEXADECIMAL ARITHMETIC C-1

APPENDIX D — MACHINE LANGUAGE D-1
INSTRUCTION TIMING
FORMULAS

LIST OF FIGURES

7200 Processing Unit Architecture

7200 Processing Unit Biock Diagram
Register File Layout

Condition Register Assignments
Single-Precision Fixed-Point Format
Double-Precision Fixed-Point Format
Register-to-Register Instruction Addressing
Immediate-Register Instruction Addressing
Memory-to-Register Instructioﬁ Addressing
Direct-Register Instruction Addressing
Memory-to-Memory Instruction Addressing
Pre-Indexing with BCH Instruction
Post-Indexing with B Instruction

Memory-to-Memory Instruction with Post-indexing

vi

Page

1-3

Figure
4-1
4-2
4-3
4-4
4.5
4-6
4-7
51
52
5-3
5-4
55

Table

21
41

LIST OF FIGURES {Continued)

Floating-Point Data Format

Floating-Point Register Format

Extended Register File Structure

Register Option Address Structure

INP Instruction in Basic Data Channel Operation
OUT Instruction in Basic Data Channel Operation
Relationship, Line Parameter Table and Line Exit Jump Table
MR X/40 and 50 System Control Panel

Register File Address Format

Register File and Associated Register Addresses
Format: Registers of Register Option

Addresses: Registers of Register Option

LIST OF TABLES

EBCDIC Character Codes

Extended Register File

vii

Page
4-63
4-64
4-7
4-76
4-85
4-85
4-87
5-2

5-16
5-18
5-19
5-19

Page

2-5
4-71

1.

INTRODUCTION

The MEMOREX 7200 Processing Unit is the major
component in an 1/O-oriented, business data-processing
system. Its basic repertoire of 159 instructions provides a
powerful facility for both business data-processing and
scientific problem-solving.

The 7200 is a byte (8 bit)-oriented processing unit. In
addition to single-precision operations in bytes and words
(16 bits), the basic instruction set accommodates
problems requiring double-precision (32-bit) solutions. An
optional set of ten floating-point instructions is available
to extend the scientific capabilities of the system.

A wide range of storage sizes, peripheral devices, and
integrated adapters affords maximum flexibility in
tailoring a system to meet a user’s specific need. MRX/40
is supported by an unusually comprehensive operating
system developed by Memorex. This extensive
programming systems support permits the user to
concentrate on his application, rather than on the
functions of the system. The combination of hardware
and software capability provides a price/performance level
normally associated with more costly data processing
systems. The result is a more efficient and economical
data-processing system for the user.

Several characteristics-distinguish the MRX/40 computer
systems:

e Advanced architecture

Wide range of peripheral devices

¢ Extensive communications support

Comprehensive programming systems support

- GENERAL DESCRIPTION

PROCESSOR STATE CONCEPT

GENERAL

Data processing systems divide their time between
input/output operations and arithmetic/logical functions.
This conflict of interest usually causes large periods of
system time to be dominated by input/output functions.
Obviously, while this domination exists, hardware such as
that dedicated to arithmetic/logical functions stands idle.
This results in uneconomical time-versus-hardware usage.

To avoid this uneconomical usage, the 7200 Processing
Unit divides its running time into segments called major
cycles. These time segments are cyclically assigned to one
of eight processor states.- For each state, a group of
hardware registers holds information relating to the
operation currently being performed by that state. A
processor state and its associated group of registers, then,
constitute a resource that is “‘dedicated” to the solution
of a particular problem. In order to effect this solution,
each processor state shares with the other states the use of
the common (or ‘‘shared’’) resources of the computer.

Because only one processor state is active for a given time
segment, the shared resources (principally, the
arithmetic/logical unit and main storage) need concentrate
on but one task during each major cycle.

By assigning specific types of tasks to individual processor
states, as well as by allocating major cycles sequentially to
each state that is waiting to execute the next segment of
its task, and finally by never granting a processor state
two consecutive major cycles if another state is awaiting
its turn, the processing unit ensures that the system will
not be bound up by either computation or input-output
activities.

1-1

Figure 1-1 shows the arrangement of the dedicated
resources with respect to major-cycle assignments. If all
processor states have tasks to do, the first major cycle is
given to state 0, the second to state 1, and so on. When
processor state 7 has had its turn (using major cycle 8),
the scanning sequence begins again: cycle 9 is assigned to
state 0, cycle 10 to state 1, and so on. |f processor state 1
had no task to perform, state 2 would receive cycle 2,
with state 7 receiving cycle 7. Then, during the second
scan, state 2 would receive cycle 9.

In each scan, the 1/0 processor states are given
precedence. This is because those states communicate
with peripheral equipment, and normally handle that
communication on a ‘‘can’t wait”’ basis. Processor states
that do not operate under such time constraints are
assigned lower-order positions in the scanning sequence.

A software-controlled priority mode is provided for those
instances when an 1/0 processor state can’t wait for its
normal turn in the sequence. If that situation occurs, the
Resource Allocation Network — which assigns the major
cycles — grants the |/O processor state an out-of-sequence
major cycle. This decision is made at the end of each
major cycle; the action is similar to that of a system
operating under a priority-interrupt scheme. It is this
tailoring of the Resource Allocation Network around the
1/0 requirements that makes the MRX/40 system so well
suited for file management and data inquiry-retrieval
applications.

CONSECUTIVE-CYCLE MODE

As implied earlier, the major cycles are equitably
distributed among the processor states requesting access
to shared resources. To prevent a monopoly of the shared
resources, the Resource Allocation Network does not
normally give two successive major cycles to the same
processor states.

For those relatively infrequent cases where only one
processor state is requesting access, the Resource
Allocation Network may be directed to give that state
consecutive cycles. This is accomplished through a bit in
the Control register.

Specific information for setting up the consecutive-cycle
mode is given under the discussion of the Control register
in Section 4.

The Job Accounting option keeps track of the number of

major cycles the Resource Allocation Network grants to
each of the processor states.

1-2

MAJOR-CYCLE TIMING

Every major cycle consists of a number of
200-nanosecond “minor cycles”, during which time
individual micro instructions (ul's) are executed.
References to main storage are also made during the major
cycle.

The length of each major cycle — and consequently the
number of minor cycles contained within it — depends
upon whether or not a main storage reference is made.
The resultant variations in major-cycle length are shown
below.

Length
Minor (Micro-
Function Cycles | seconds)
Execute instructions 8 1.6
Read or write 9 1.8

Main Storage;
execute instruc-
tions

PROCESSING-UNIT ORGANIZATION

A simplified block diagram of the 7200 Processing Unit is
shown in Figure 1-2. The processor states gain access to
the shared resources via the Resource Allocation Network,
the function of which was implied earlier. Descriptions of
other elements in the diagram follow. Information for the
systems programmer about the inter-relationships of these
components is contained in Section 4 of this manual.

PROCESSOR STATES

All eight processor states have equal capacity to perform
logical, arithmetic, and bit-manipulative operations.
Moreover, processor states O through 4 utilize special
hardware that enable them to accomplish specific tasks.
Because of this specificity, it is convenient to assign a
name to each processor state according to its prime
dedicated task:

® Processor State 0: Communications
® Processor State 1: Not assigned

® Processor State 2: Selector Channel

€1l

e1np0eMyoay Jun Buissedo.d 0OZL °i-L einbiy

R
XA 1828 |88 ABBREVIATIONS
8 32ml |313] intesrateD
Integrated g| cowm 223 |2z FILE Joum -z Communications
m 5 = nput/Outpu
Adapters = » » ADAPTER IXA = Console Adapter
ns = Nanosecond
RDR = Reader
DIRECT R/P = Reader Punch
Extended BASIC DATA BASIC DATA ACCESS
Registers COMMUNICATIONS CHANNEL CHANNEL STORAGE
: OPERATING SYSTEM
“ . L . . 1 . . U S E R -
Main CDMMUNICATIUNSI UNIT RECORD DISC CONTROL
Storage 1/0 AND 1/0 PROGRAM P R O G R A M S
ROUTINES MAGNETIC ROUTINES .
e
ROUTINES TRANSIENT OPERATING
SYSTEM FUNCTIONS
GENERAL GENERAL GENERAL GENERAL GENERAL - GENERAL GENERAL GENERAL
Registers REGISTERS REGISTERS REGISTERS REGISTERS REGISTERS REGISTERS REGISTERS REGISTERS
PROCESSOR
STATE D
Major Cycle 1
PROCESSOR
STATE 1
Major Cycle 2
PROCESSOR
STATE 2
Major Cycle 3
PROCESSOR
STATE 3
Major Cycle 4-
PROCESSOR
STATE4
Major Cycle 5
PROCESSOR
STATE S
Major Cycle 6
PROCESSOR
STATE 6
Major Cycle 7
PROCESSOR
STATE?7
Major Cycle 8

1al

wsabe;q »o0ig 3u() Buissedoay 00ZL ‘2-1 einbiy

CONSOLE
KEYBOARD

PRINTER

PROCESSOR|
STATE 0 |@
l

|

——

PROCESSOR

stater 1Q2)
|

1

L

.
PROCESSOR|
STATE 2 I@l

4+

7 (MAX) COMMUNICATIONS —
CHANNELS. ADAPTERS AND —9
MODEMS CAN BE INTEGRATED < '
WITH THE PROCESSOR STATE TO : {
FIT THE CUSTOMER’S NEEDS. ——
SELECTOR CHANNEL OPERATES ¢
IN BURST MODE FOR INTEGRATED
ADAPTERS (CR,CR/P,)OR
EXTERNAL CONTROLLERS.

DATA AND CONTROL

LINES TO ONE OR

TWO DISC DRIVES.

T

states 1@

|
{
|
PROCESSOR
|
|

RESOURCE ALLOCATION
NETWORK
h
TIMING
AND
CONTROL
ALTERABLE
CONTROL
MEMORY
(A.CM)
MAIN
STORAGE
(MsS.)
UP-TO 64K ARITHMETIC-
8-BIT BYTES LOGICAL UNIT
{(ALU)

®

PROCESSOR
STATE4

L

|

: PROCESSOR
STATE §

|

|

—— ——

|

| PROCESSOR
STATE 6

|

|

l__~—__

|

‘ PROCESSOR
| STATE?
|
I

!
l

(1)80 REGISTERS SHARED BY ALL EIGHT PROCESSOR STATES, 10 PER STATE:

o EIGHT GENERAL-PURPOSE REGISTERS
o ONE CONDITION REGISTER
o ONE PROGRAM ADDRESS REGISTER

@SPECIAL INTERNAL REGISTERS FOR IMPLEMENTING 1/0 FUNCTIQAS

REGISTER FILE

]

@ Processor State 3: Disc
o Processor State 4: Executive

e Processor States 5, 6, 7: General Purpose

Processor State 0

This processor state contains an integrated
communications adapter (ICA) to provide serial data
communication over as many as 7 communications lines
for both synchronous and asynchronous terminals
utilizing switched networks and dedicated or local lines.
An integrated console adapter, for service to the console
keyboard/printer, is also attached to Processor State 0.

Each communications line is controlled by a line adapter
that is field-modifiable through interchangeable
printed-circuit boards to accommodate a wide variety of
customer applications.

The ICA can communicate with local or remote devices
operating with seven-level-plus-parity or eight-level codes
in the following speeds.

Asynchronous Synchronous
Baud Characters/ | Baud Characters/
(bits/sec) sec (bits/sec) sec

110 10 600 75

150 15 1200 150

300 30 1800 225

600 60 2000 250

1200 120 2400 300

3600 450

4800 800

9600 1200

Three methods of operation are provided:

1. Operating a local terminal over iines up to 50
feet in length (no modem required).

2. Communicating, via a common-carrier-provided
data set or customer-provided modem, with a
remote terminal using a compatible modem.

3. Communicating, via an internal modem and a
common-carrier-provided data access
arrangement, with a remote terminal using a
compatible modem.

The asynchronous line adapters are full-duplex, permitting
two-way simultaneous operation. In addition, when an
adapter is supplemented by a suitable modem, a
split-speed provision permits operating the primary
channel at 1200 baud and the secondary channel at 150

~ baud. This mode allows either channel to be transmitting

while the other channel receives. Echoplex is also
supported; in this mode, the received message is
transmitted back to the sending station, allowing the
sending terminal to monitor the performance of the
fransmission line.

These line adapters feature the ability, under program
control, to determine the speed of a remote terminal, to
select a speed, to automatically answer, or to indicate a
lost-data condition. Information may be coded in seven
levels plus programmable parity, or in eight levels. '

The asynchronous line adapters provide a subset of EIA
standard RS-232-C interface (Data Transmission
Configuration Interface Type L).

The synchronous line adapters are half duplex. However,
when connected to a full-duplex facility, they permit
two-way alternate message transfer without line turn
around delay. Synchronous communications are provided
for Basic or Code Transparent EBCDIC or ASCII.

The synchronous line adapters provide a subset of EIA
standard RS-232-C interface (Data Transmission
Configuration Interface Type D).

Processor State 2

This processor state controls data transfers to and from
peripheral devices using integrated adapters, or to and
from external controllers via the selector channel feature.
An integrated card reader adapter (IRCA) provides
control for a 1000-, 600-, or 300-card-per-minute reader;
an integrated reader/punch adapter (IRPA)} provides
control for a 500/120 card-per-minute reader/punch.

In addition to the adapters, Processor State 2 can handle
up to seven IBM?* 360/370-compatible external
controllers via the selector channel option. Parity is
generated and checked for all transmissions to or from the
external controllers.

Processor State 2 is capable of various modes of data
transfer under control of different 1/O Driver programs. It
also can handle active devices in a controlled order of
priority, as well as performing diagnostic testing
operations.

1-5

Processor State 3

This processor state contains an integrated file adapter
(IFA) with direct interface to the disc drives. It controls
communication between main storage and one or two
MEMOREX 3664 Disc Drives.

The IFA decodes commands to initiate these drive
functions:

o Positioning read/write heads to a specific
location on the disc surface (seek) and selecting a
read/write head

e Locating a particular record or part of a record
on the disc surface (search)

o Writing a record or part of a record
e Reading a record or part of a record

Seek operations may be performed concurrently. All
other operations are non-concurrent and may be
performed only on a selected drive.

Each record appears in fields of information separated by
gaps. The disc processor can write count and data fields
and read count, key and data fields. Command chaining is
permitted; however, any attempt to read, write or search
across a track boundary will result in an error condition.
*Tradename — International Business Machines

Processor State 4

This processor state is used by the operating system to
monitor and control system operations. Unigue functions
performed by the operating system in this state are as
follows:

1. Assigning the execution of programs to other
processor states.

2. Assigning 1/0O operations within those programs
to the cognizant 1/0 processor state.

3. Supplying time-of-day information when
requested by the various programs.

4. Periodically reading the interval timer, and
updating the time-of-day clock accordingly.

5. Initiating error-isolation and error-correction
routines when needed.

Items 2 and 3 are effected in response to the Service
Request, a processing-unit instruction issued by the

1-6

general-purpose processor state requesting the
information. (Certain instructions, including all of those
directly relating to 1/0, are ‘‘restricted”, and cannot be
executed by the general-purpose states.)

Processor States 5, 6, and 7

These are general-purpose processor states which may be
assigned to execute user programs. Assigning one of these
to a user program dedicates eight general-purpose
registers, a condition register, and a program address
register for exclusive use of that program. The assigning of
general-purpose processor states to user programs is a
function of the system’s control program.

MAIN STORAGE

The 7200 Processing Unit provides byte addressability for
up to 64K bytes of main storage (MS). Boundary
protection during write references to storage is inherent
for processor states 5, 6, and 7. Minimum storage size
offered is 16K bytes.

ALTERABLE CONTROL MEMORY

The word-addressable ACM stores micro-instructions.
There are 65 micro-instructions, used to form
microprograms that implement execution of the
processing unit instructions, control integrated 1/0
adapters, and control of certain special operations such as
data entry or read-out from the System Control Panel.

ARITHMETIC-LOGICAL UNIT

Mathematical computations, Boolean functions (masking,
for example), and data-shifting operations are handled by
the ALU. Shifts of up to 15 binary positions may be made
in a single pass through the 32-bit shift network. The
existing ALU hardware readily accommodates
double-precision and floating-point operations.

REGISTER FILE

All the registers associated with the various processor
states are called, collectively, the register file.

The purpose of the register file is to hold information

pertinent to the operations currently being executed by
the processor states. As mentioned earlier, the
performance of a task by one processor state — executing
a user application program, for example, or transferring
100 words to a disc — involves many brief periods of
activity, each separated by wider spaces of dormancy
during which other states are active. During each active
period, the less time spent obtaining the operands, the
better. The register file offers just such a means of rapid
retrieval. Its access time is roughly one-seventh that of
main storage.

The register file is divided into two functional areas, as
shown in Figure 1-3. The first comprises the basic
registers, of which each processor state has a set. The
Basic register file is associated with the execution of
processor state programs; its component parts are as
follows:

o General Registers — used as the programmer
desires: as index, base, transient, or working
registers. (Exception: zero cannot be used as an
index register; specifying it as an index modifier
indicates no indexing.)

® Condition Register — records conditions resulting
from instruction execution (results equal, for
example). The specific conditions are detailed
below.

® Program Address Register — contains the address
of the instruction currently being executed by
the associated processor state.

All registers in the Basic register file are addressable. A
processor state may have access to any register within its
own set (represented by the columns under the processor
number in Figure 1-3) through use of the general-purpose
machine-language instructions.

The Extended register file contains the 1/O-related
registers, the common block registers, and internal control
registers which are used in conjunction with
special-purpose functions, such as /0 data transfer and
operating system control. The Extended registers have
limited addressability. Some are addressable only by
privileged instructions, and others only by restricted
instructions.

A complete description of the Extended registers — their
usage and functions — is in Section 4 under the heading
System Instructions.

The Condition register records conditions resulting from
the execution of both the basic instruction repertoire and

the optional floating-point instructions. Twelve bits
within the register record the resulting conditions. Figure
1-4 shows the conditions recorded for the basic
instructions and their positions within the register.

e Bit O This bit position set indicates that
arithmetic overflow occurred during an add,
subtract or divide instruction. Being set during a
Zero and Add, Add Packed Decimal or Subtract
Packed Decimal instruction, it indicates that
significant data within the field was lost. This bit
position is always cleared following a Compare
instruction.

e Bit 1 This bit position set following a Compare
instruction indicates that the first operand R1 is
greater than the second operand R2, as explained
by the note in Figure 1-4. This position is’also set
for decimal arithmetic instructions when the
result is positive. ’

¢ Bit 2 This bit position set following a Compare
instruction indicates that the first operand R1 is
less than the second operand R2 (note in Figure
1-4). This position is also set for decimal
arithmetic instructions when the result is
negative.

e Bit 3 This bit position set following a Compare
instruction indicates that the two operands
tested are identical. For decimal arithmetic
instructions, it indicates that the result is zero.
This position is also set for the non-decimal
arithmetic instructions when a carry-out from
adder bit position 0 occurs {link condition).

e Bit 4 This bit position is set during a packed
decimal instruction if an EBCDIC character other
than 0-9 is found in the unpacked field, or if a
hex representation other than a letter A through
F is found in the sign portion of the lowest-order
byte. This position is always cleared following a
Compare instruction.

e Bit 5 This bit position set following a Compare
instruction indicates that the first operand R1 is
greater than the second operand R2 (note on
Figure 1-4).

e Bit 6 This bit position set following a Compare
instruction indicates that the first operand R1 is
less than the second operand R2 (note on Figure
1-4).

e Bit 7 This bit position set following a Compare
instruction indicates that the two operands
tested are identical.

1-7

PROCESSOR STATE NUMBER

0 1 2 3 4 5 6 17

0
1
2
3 | 8 GENERAL-PURPOSE EXTENDED
BASIC) REGISTERS REGISTER
REGISTER FILE
FILE 5
6
7
CONDITION
PROGRAM ADDRESS
Figure 1-3. Register File Layout
SEE NOTE
|
0 1 2 3 4 5 6 7 8 o | w0 | 1|12 3] 4] s
OVERFLOW BOUNDARY ERROR _l
(CLEARED ON COMPARE) (STORAGE VIOLATION)
A>B; DECIMAL RVICE REQUEST
RESULT IS POSITIVE SERVICE REQU
, PARITY ERROR]
A<B; DECIMAL - 1 IN MAIN STORAGE
RESULT IS NEGATIVE INVALID
A=B; LINK; DECIMAL INSTRUCTION
RESULT IS ZERO
INVALID DECIMAL
(CLEARED ON COMPARE)
A>p —
A<B
A=B

NOTE

8IT GROUPS 0-3 AND 4-7 ARE BOTH SET AFTER ANY OF THE COMPARE INSTRUCTIONS. INTERPRETATION, WHETHER LOGICAL (MAGNITUDE

ONLY) OR ARITHMETIC (SIGNED VALUES), DEPENDS UPON THE INSTRUCTION, AS FOLLOWS:

INSTRUCTION PURPOSE 03

CMPX MAGNITUDE ONLY, LOGICAL
cBY BYTE-ORIENTED

CBYM

CMPK ARITHMETIC, PACKED DECIMAL ARITHMETIC
CMPF ARITHMETIC, FLOATING POINT

CMP, CMPD, ARITHMETIC, WORD-ORIENTED ARITHMETIC
CMPI, CMPM,

CMPR, CMPT

Figure 1-4. Condition Register Assignments

1-8

47

LOGICAL

ARITHMETIC

LDGICAL

o Bits 8-11 Reserved

® Bit 12 This bit position is set when a processor
attempts to read from or write into main storage
beyond its boundary limits invoked at the time.

e Bit 13 This bit position is set during the
execution of a Service Request instruction.

~® Bit-14 This bit position is set whenever a parity
error is detected on a word (instruction or
operand) read from main storage.

e Bit 15 This bit position is set when an undefined
operation code is translated, or when an
unprivileged processor attempts to execute a
restricted or privileged instruction, or when a
privileged processor attempts to execute an
instruction that is restricted to another
processor. ™

*The terms “privileged’’ and “restricted’’ are defined in Section 4.

Generally, the hardware writes into the Condition register
in 4-bit hexadecimal groups. For example, if the result of
a decimal arithmetic operation were positive, bit positions
1 and 5 would be set and positions 0, 2-4, 6 and 7 would
be cleared. Bit positions 8-15 would be unchanged. On the
other hand, for a Compare instruction that resulted in
arithmetic and logical equality, 0-2 and 4-6 would be
cleared, while 3 and 7 would be set. Bit positions 8-15
would be unchanged.

It is important to note that in the second instance, bit
position 1 is cleared and no longer represents the result of
the decimal arithmetic operation. This means that the
Condition register must be examined before another
instruction that can affect it is executed, or the prior
condition indication will be lost. '

In the /nstruction Descriptions, Section 4, any instruction
that affects the Condition register will stipulate which bits
are affected. It assumes, then, that other bits are
unchanged.

19

2. FUNCTIONAL CHARACTERISTICS

MAIN STORAGE ADDRESSING

The MEMOREX processing unit is a 16-bit, fixed-point,
machine. The basic memory unit is an 8-bit byte; two
bytes are contained in each 16-bit main storage word. The
word and byte relationship, with their respective bit
positions, is shown below.

Lower byte

Upper byte
(Byte 1)

(Byte 0)

01112 (3|4(5(6]7}8]19[10(11112]13|14]15

Word

For instructions, addressing must always be by words;
however, the instructions themselves may deal with
word-length (16-bit) or byte-length (8-bit) operands.

Though instructions vary in length, they must begin at a
word address in main storage. The lowest-order bit of
word addresses are not used; thus, all word addresses are
even.

Byte-length operands may be in either byte of a storage
word. Therefore, in byte-oriented instructions the
lowest-order bit of the address is used to select the byte;
the upper byte with an even address and the lower byte
with an odd address.

BINARY REPRESENTATION

The arithmetic operands within the 7200 are either 16 or
32 bits represented in conventional signed binary
notation. The highest-order bit specifies the sign, while
the remaining bits specify the value of the operand.
Positive operands are represented in true binary form with
@ 0 in the sign-bit position. Negative operands are
represented in the two’s complement form with a 1 in the
sign bit. :

ARITHMETIC

The 7200 performs both single-precision (16-bit) and
cdouble-precision (32-bit) addition and subtraction. The
single-precision, fixed-point data format contains a 15-bit
integer value and a sign bit (Figure 2-1).

21

2-2

POSITIVE AND NEGATIVE LIMITS

The largest positive number that can be expressed in a signed 16-bit word either in storage or in a register is +32,767:
3 4 5 6 7 8 9 10 11 12 13 14 15

Signbi L01111l1l1|1lililll1l Lfofo o]0
0 = plus -.__J == 15 bits 0f Magnitude cemp "
equal to 32,767

The two’s complement representation for negative numbers is formed by inverting the positive binary representation and
adding one: .

0o 1 2 bit 13 14 15
Sign /"0 111 1T 1 1T 1T 1t 1 T 1111 = +32,767
bit + 10 0 o o 0o o 0o 0o 0 0000 OO Invert
1 Add 1
Sign/1 I 0o 0 0 0 O OOO O O 0O O 0 1 = -32,767
" bit — i
1 = minus 2's complement

representation of —32,767

This -32,767 value, is however, one less in absolute value than the largest negative number that can be expressed in a signed
16-bit word. The largest negative number is formed by adding (-1) to -32,767.

Two’s complement 110 0 0 0 0 0 O 0 0 0O 0 0 0 O 1 -32.767
fepresentation I T T T T T T T S S T RS TN T B +)-1
1o o o o o o oo o000 o000 -3278

Sign bit (negative)—/ 32,768

Although the same quantity of both positive and negative numbers can be represented in a signed 16-bit machine, the two’s
complement usage causes the positive and negative range of numbers to be offset by one number:

Two's complement magnitude
—
Sign of*r + 1 1t 1 1 1 1 1 1 1 1 1 1 1 +32,767
bit
32,768
r combinations
0 1 +1
0 0 0 +0J
LU I D I R I AR N E A R R A R D B | -1
1t 11T 111 11T 1T 11 1 —2}32.768
combinations
1710 0 0 0 0 0 0 00O 0 0 O O O O -32768

As a result of the offset there is one positive and one negative number which cannot be represented in its opposite form. The
value zero can only be expressed as a positive number, which is apparent when we attempt to generate the two’s complement
representation for positive zero.

magnitude
/N\—/—_\~
Sign ojo o 0o 0 0 0 0 0 0O O O 0 O OO
bit +0
LI U T R R R N N N R N O D I R R R Ty
1 Add1t
+0

0 0 0 0O 0O OO O O 0 O0OTU O OO

The same is true with negative 32,768, which can only be expressed as a negative value in single-precision notation.

magnitude
Sign 110 0 0 0 0 OO OO OO O O OO -32,768
bit Invert
o+ 1+ 1+ 1 1 1+ 1 1 1 1 1 1 11 : Add 1
—32,768

110 0 0 0 0 00 O OO O O O OO0

13 14 15

+

214 913 212 211 210 29 28 o7

26 25 24 23 22 21 L0

~BINARY POINT

15 BITS OF MAGNITUDE

Figure 2-1. Single-Precision Fixed-Point Format

SINGLE-PRECISION ADDITION

When both operands have like signs, the resulting sum
may be too large to express in fifteen bits of magnitude.
In this case a carry will propagate from the magnitude
field into the sign bit position, causing the sign to change
— this is overflow, recorded in the Condition register. In
this example two positive numbers are added, resulting in
a sum too large for the magnitude field. The resultant
overflow sum is an incorrect negative value.

carry magnitude
+ 0|11 0111100010110 +28,438

+ 0|01 010011701100 1t 1(++10675

1l]o0 0110001100100 1 +3,13
——E i s

magnitude representation is
incorrect

The carry changed
the sign bit,
causing overflow

In this example, two positive numbers are added, resulting
in a sum too large for the magnitude field. The resultant
overflow sum is an incorrect negative value.

The addition of two operands with unlike signs cannot
generate overflow since the result is the difference
between the two, and it will be less than or equal to the
larger operand.

SINGLE-PRECISION SUBTRACTION

Single-precision subtraction of two operands with unlike
signs can result in overflow. Of course, overflow will only
occur when the result is too large to express in 15 bits of
magnitude. Overflow cannot occur when like-signed vatues
are subtracted, because the adder result is really the
difference between the two operands.

DOUBLE-PRECISION

Double-precision, fixed-point operands contain a 31-bit
integer value and one sign bit. A 32-bit operand resides in
two adjacent storage locations or two adjacent file
registers (Figure 2-2).

INFORMATION FORMATS

The 16-bit registers and main storage words within the
7200 facilitate the usage of hexadecimal notation.
Hexadecimal numbering requires four binary places to
represent each of the 16 different symbols within the
system: decimal digits 0-9 and letters A-F. Thus, each
16-bit word or register can contain four hexadecimal
symbols representing values from zero to 32,7674.

The hexadecimal symbols are also used to represent
characters within the Extended Binary-Coded Decimal
Interchange Code (EBCDIC). Each EBCDIC character,
8 bits long, comprises two hexadecimal symbols. Although
8 bits provide 256 possible variations, not all are used.
The EBCDIC characters do represent the digits 0-9, letters
of the alphabet, all punctuation and arithmetic symbols
{such as + - ;>=), and special graphic and control symbols
as shown in Table 2-1.

Each EBCDIC character (letter, digit or symbol) is repre-
sented in one byte (two hex symbols) as shown below.

—— Hex C Hex 4 Hex 5 Hex E
1 I I

110 001 0O0O0O0OT11TO0OTI1TTI1T 1T 1O

7

01 2 3 45 6 7,0 1 2 3 4 5 6
L— Upper byte——-Jl-—- Lower byte

EBCDIC character D EBCDIC character ;

Since the decimal digits (-9 can be represented in four
bits and each EBCDIC character requires an entire byte,
bits. 0-3 are always 11115 (the hexadecimal character F)
for those digits. As an example; the number 25 repre-
sented in EBCDIC code occupies two bytes.

Byte I Byte
01234566 7012345®6 7
11110010111 10101

I R M

The numeric fields in EBCDIC, unpacked decimal fields,
require a byte for each decimal digit. In an unpacked
decimal field, bits 0-3 are always Fq1g except in the byte
containing the least significant decimal digit of the field.

2-3

e

1BWI0 JUIOG-PEXI] UOISINIG-8IqnoQg *Z-Z e:nbid

SIGN

2
]

BINARY POINT

16- BIT WORD 16-BIT WORD
1 BITS 12 13 14 15 0 1 2 BITS 1M 122 13 14 15
230 2171216 |215 (2143213 |212)2111210 | 29 | 28 | 27 | 26 | 25 | 28 | 23 | 22| 21 | 20
UPPER BITS LOWER BITS

In that byte, bits 0-3 indicate the sign of the entire
decimal field. The hexadecimal letters used to indicate
the sign are these:

Plus: AF,C,orE

Minus: BorD

An unpacked decimal field can be packed to occupy a
fewer number of bytes, by removing bits 0-3 of each
EBCDIC digit except in the one containing the sign. The
sign character is moved to the rightmost byte of the new
packed field. The example below shows the number
+18,6349¢ in an unpacked decimal field and then in a
packed decimal field.

[F1F8F6F3A4

rightmost
' byte

unpacked field

requires 5 bytes

0-3 4-7 0-3 4-7 0-3 4-7 0-3 4-7 "plus’ sign

rightmost

e

|1 86 34 a

''plus’’ sign

packed field requires 3 bytes

If an unpacked field with an odd number of digits is
packed, no portion of the resulting packed field is unused.
If a even-number unpacked field is packed, the leftmost
four bits of the resulting packed field are zeros.

zero added

0 3

F 3 SIGN | 7 7 | SIGN

Unpacked field, even
number of digits

packed field, zero added
to fill out the byte

Table 2-1. EBCDIC Character Codes

(Bits 4-7)

0 1 2 3 4 5 6 7 8 9 A B C D E F

0000 | 00010010/ 0011{ 0100 }{0101}0110|0111 | 1000 [1001 | 1010 {1011 |1100 |1101 {1110 {1111
0 0000 [NUL [SOH |STX |ETX| PF | HT | LC |DEL SMM|VT | FF |CR |SO {sI
1 0010 |[DLE {DC1 |DC2 | TM |RES | NL [BS | IlL. [CAN|EM [CC |[CU1|IFS [IGS [IRS [IUS
2 0010 | DS |SOS | FS BYP | LF |ETB |ESC SM | Ccu2 ENQ | ACK | BEL
3 0011 SYN PN RS UC |EOT | CU3 | DC4 | NAK sSuB
4 0100 | SP ¢ < { + !
5 0101 | & I $ *) B L
6 0100 / , % — ?

(Bits 0-3) 7 0111 # @ ! = "

8 1000 a b c d e f '] h i
9 1001 i k ! m n o p q r
A 1010 s t u v w X y z
B 1011 |
Cc 1100 A B Cc D E F G H |
D 1101 J K L M N o} P Q R
E 1110 S T V) \" W X Y z
F 1111 }0 1 2 3 4 5 6 7 8 9

Every instruction consists minimally of a two-byte (16-
bit) base instruction word. This base instruction word
comprises two parts: an 8-bit operation code which tells
the computer what to do with data; and two fields that
specify, in general, the sending and receiving locations
of the operand or operands used in the instruction.

Often, the base instruction word is not sufficient to
provide all the information needed for certain operations.
In such instances, it is augmented by adding a second,
or a third, and sometimes even a fourth word. The
repertoire, then, comprises 2-byte, 4-byte, 6-byte, and
8-byte instructions (two bytes in a word). This is the
first consideration in determining the instruction type.

An instruction operand may be located in one of three
places: in the instruction itself (“immediate’’ operand),
in a register (‘‘register’” operand), or in main storage
{“memory’’ operand). Operand location provides the
second factor to be considered when determining the type
of an instruction. Considering byte length and operand
location, the repertoire may be divided into six basic
instruction types:

1. Register/Register (2-byte)

2. Immediate/Register (2-byte)

3. Memory/Register {4-byte)

4. Direct/Register (4-byte)

5. Memory/Memory (6-byte)
6. Memory/Memory, extended (8-byte)

These six types are explained below.

GENERALIZED INSTRUCTION FORMATS

Although a variety of formats are used to express the
15971 instructions in the repertoire, better than 80% of
them fall into one of the six types listed above. The
following delineates the formats for these six basic types.

3. INSTRUCTION TYPES

1. Register/Register {2-byte instruction)
8 4 4
F R 1 » R 2

F: The basic operation code

Ry: A fiéld specifying the location of the
first operand. (A register number.)

Ro: A field usually specifying the location
of the results of the operation. If the
operation involves two operands, this
also specifies the location of the
second operand.

2. Immediate (2-byte instruction)

8 4 ‘ 4
F I |2

F: The basic operation code

19: A 4-bit quantity, the absolute value
of which is used as the first operand.

Rg: A field usually specifying the location
of the results of the operation. If the
operation involves two operands, this
also specifies the location of the
second operand.

3. Memory/Register (4-byte instruction)

F " Rq ‘ Ry
M1

F: The basic operation code

M4: An address specifying the location of
the first operand.

tDoes not include 10 for the floating-point option.

Ry: A register number, the contents of
which may be used to modify the
first operand address (see Indexing).

Ro: A field usually specifying the location
of the results of the operation. If the
operation involves two operands, this
also specifies the location of the
second operand.

Direct (4-byte instruction)

F Ry Ro

I

F: The basic operation code

I4: A 16-bit quantity, the absolute value
of which is used as the first operand.

Rq: A register number, the contents of
which may be used to modify the
first operand (see Indexing).

Rg: A field usually specifying the location
of the results of the operation. If the
operation involves two operands, this
also specifies the location of the
second operand.

Memory/Memory {6-byte instruction)

3-2

F: The basic operation code
M4: The first operand address

Mg: The second operand addrass; usually
specifies the location of the resuits
of the operation.

Rq, Two register numbers, the respective

Ro: contents of which may be used to
modify the first operand address and
the second operand address (see In-
dexing),

Memory/Memory, extended (8-byte instruc-
tion)

This instruction type deals with fields of
operands, rather than single operands. F, Ry,
Ro My, and M are as explained under 5,
above. The field fength, in bytes, of the first
operand is given by Ly; that of the second
operand is given by L 5.

As stated above, the foregoing are generalized formats

only. Individual differences will be detailed in the
instruction descriptions.

ADDRESSING MODES
Three addressing modes are available by which to obtain

the operands used by an instruction: immediate, direct,
and indirect,

IMMEDIATE ADDRESSING
Immediate addressing covers those cases where the

operand is contained in the instruction word itself.
Examples of “‘immediate’’ operands are:

e rawdata

o shift count

e skip count

e a hexadecimal value indicating a bit position
(in a register) that is to be tested, set, or
cleared.

e an External Register number

® a processor number

DIRECT ADDRESSING

Direct addressing means that the related field of the
instruction (R or My; R or M) specifies an address at
which the operand may be found; the instruction specifies
the location of the operand directly.

INDIRECT ADDRESSING

Indirect addressing means that the related field of the
instruction (Ry or My, Rp or Mo) specifies a location
that contains the address of the operand. That is, the
instruction specifies the location of the operand indirectly.

IMPLEMENTATION

Direct and indirect addressing are indicated by the
highest-order bits (designated “i’’) in the two R fields of
the base instruction word.

()] 8 12 15
i Ry i R2

For example, if bit 8 is 0, the register indicated by the
lower three bits of the Ry field (or the 16-bit address
stored in the My field if this is a multi-word instruction)
contains the operand. On the other hand, if bit 8 is 1, the
indicated register contains the operand address; if this
were a multi-word instruction, My would contain a 16-bit
memory location the contents of which would stipulate
the address of the operand. These rules apply equally to
the bit-12 address-mode designator.

Direct addresses may be even or odd, depending upon the
instruction. Indirect addresses must always be even;
whether the final operand address, located at the
“indirect” address, is even or odd depends upon the
instruction.

Figures 3-1 through 3-5 show the addressing schemes
available for each instruction type, using all possible
combinations of the two ‘i’ designators. Note that as
each format is titled, the basic instruction type name is
manifested for the case where both bit 8 and bit 12 are
0. In each example, when bit 8 or bit 12is 1, the additional
manipulation of indirect addressing is required.

These figures do not give the complete addressing story,
for there are still the indexing (or address modification)
situations to consider. This is the subject of the next
section, Indexing.

INDEXING

Indexing consists of adding to the value of an instruction’s
M field (or the contents of the address specified therein)
the contents of the register indicated in the corresponding
R field of the base instruction word. Indexing cannot
apply to the 2-byte instructions because those instruc-
tions do not have an M field.

Indexing will occur in an instruction whenever the R field
for the indexable M address contains a register number
other than zero (that is, 1-7). If the R field (bits 9-11 for
Rq; bits 13-16 for Rp) contains a zero, no indexing for
the related M address field is performed.

The terms “’pre-indexing’”” and ‘post-indexing’’ define at
what point in the instruction execution the indexing
occurs. If the register contents are added to the value of
the M field, it is called pre-indexing. If the register con-
tents are added to the contents of the address specified
by the M field, it is called post-indexing.

In the instruction repertoire, only one instruction (BCH)
uses pre-indexing. Figure 3-6 shows how pre-indexing
applies to that instruction. Figure 3-7 shows a similar
instruction, B, using post-indexing. Figure 3-8 uses one of
the previously defined examples to show another example
of post-indexing. In the Machine Instructions section,
indexing is always indicated when it is valid. Except for
the BCH instruction, which uses pre-indexing,
post-indexing is assumed when indexing is indicated.

It should be pointed out that, as the examples show, the
two indexing methods differ only for the indirect
addressing mode. That is, post-indexing must operate on
the contents of the M field for the direct addressing mode
{inasmuch as the “indirect’” address doesn’t exist), and
in this respect is identical to pre-indexing.

The foregoingdiscussion has dwelt on address modification.
But indexing may also be used to modify an operand.
This fact bears repeating, for although indexing most
frequently refers to address modification, operand
modification is possible — albeit only for the second
operand of direct-type instructions as evidenced pre-
viously in ltem 4, under Generalized Instruction Formats.

3-3

210

] 78 9 1213 15
[MOVR 0 2 0 5 } psl 210
REG-REG
0 7.8 9 | 111213 15 \
[MOVR 0 2 1 5 } :5| 2000 J(ADDR) ———p 2000 210
»2] 1800 Jianom)
0 78 9 11213 15 |
l MOVR 1 2 0 5 J —»s5] 210
| J |
1wo0] 210
:zl 1200 JaDoR——1200] 210
R—
0 7 8 8 1112 13 15 1
r MOVR 1 2 1 5 | »5] 2600 J(ADDR) ——p2500] 210
4 /|

34

Figure 3-1. Register-to-Register Instruction Addressing

An important indexing consideration is this possibility:
indexing can attempt to produce an operand address
greater than the 16-bit capacity of the adder. This con-
dition occurs when the operand address, M, and the
modifying value in the indexing register result in a over-
flow sum greater than 65,536¢q or FFFFqg. If such
happens, significance beyond 16 bits is lost; the remaining
16-bit sum is the operand address utilized by the instruc-

tion.

M Address

Modifying Value

48,391

26,124

1011110100000111

0110011000001100

Attempted Operand 74,515 1] 0010001100010011

Address

T S ———

Lost Bit resulting operand
address = 8979

Of course, this condition can also occur when indexing
an operand itself (the / field) rather than the operand
address. No error indication is recorded when the above
condition occurs.

7 88| 1M1213 15 {
Lon! 10 0 5 I___._.,;,I 10
IMMEDIATE/REGISTER
7 8 9| 111213 16 v
LoD! 10 1 5 |..‘._._...sv 2000 {(ADDR)———p 2000 10

Figure 3-2, immadiate-Register Ingtruction Addressing

0 7 8 8 » 111213 15 .
r LoD o|l o 0 5 l »5] 210
{ 1000 (ADDR) |
PR
MEW/REG »>1000] 210
0 7 8 9 « 111213 15
LoD 0 0 1 5 |————»5 (Aoom —_— 120
1000 (ADDR) |
—[]
0 7 8 0 # 1112 13 16
| LoD 1 0 0 5 s 210
| 1000 (ADDR)
»1000 | 3600 §(ADDR) —3800] 210
0 789 % 111213 15 |
r 1 0 1 5 |-———->s 1200 (Anum———-—-—-wzool 210
1000 (ADDR) I

“SEE SECTION ON INDEXING FOR CASES WHERE Ry ¥ 0

—» 1000 3600 J(ADDR)—» 3600

Figure 3-3. Memory-to-Register Instruction Addressing

/

210

e

(ADDR)} ———p 1200 210

] 7 8 9 & 111213 15
r LODD 0 0 0 5 —»5) 210
| 210
DIRECT/REGISTER

0 7 8 9 # 1112 13 15

r LODD 0 0 1 5 fp———s] 1200
R
210 |

—

*SEE SECTION ON INDEXING FOR CASES WHERE R1 £ 0

36

Figure 3-4, Direct-Register Instruction Addressing

THIS EXAMPLE ALSO APPLIES TO THE
“MEMORY-TO-MEMORY EXTENDED"
INSTRUCTIONS. FOR THOSE 8-BYTE
INSTRUCTIONS, INDIRECT ADDRESSING

0 7 8 8 % 11213 * 15 IS NOT ALLOWED FOR EITHER OPERAND.
MOVM 0 0 0 0
1000 (ADDR) —— 1] 210
2000 (ADDR)
[=
MEM/MEM
> 2000 210
0 7 8 9 % 11 12 13 * 15
MOVM 0] 1 0
1000 (ADDR) e ——p 1000] 210
2000 (ADDR)
> znool 2500 | (ADDR) ————» 2500
0 7 8 9 & 11 12 13 * 15
MOVM 1 0 0 0
1000 (ADDR) -———>1oun| 1600 J(ADDR) ———» 1600] 210
2000 (ADDR) \
[» 2000 210
0 7 8 0 % 1112 13 * 15
MOVM 1 0 1 0
1000 (ADDR) f—————>1000 | 1600 | (ADDR) ———— 1600 § 210
R
2000 (ADDR)
:znool 2600 J (ADDR) —————>» 2500] 210

% SEE SECTION ON INDEXING FOR CASES WHERE Rq, Rz ¢ 0

Figure 3-6. Memory-to-Memory Instruction Addressing

37

0 78 9 12 13 15
I BCH 0 3
l 1200 (ADDR) 1200 + 60 = 1260 (ADDR) ~—————» RESUME PROGRAM AT ADDRESS 1260
» 3 60
0 7 8 9 112 13 15
| BCH 1 3
I 1200 (ADDR) 1200 + 60 = 1260 (ADDR) et 1260 §| 3000
_ ﬁ

RESUME PROGRAM AT ADDRESS 3000

The BCH instruction causes an unconditional jump (or branch) to the address stipulated. If the Ry field were 0, 1200 wouid be
the new address (or, if Bit 8 were a 1, the new address would be stipulated by the contents of location 1200). Because R is not
0, the contents of the indicated register are added to the value of the M-field. The state of Bit 8 then indicates whether or not an
additional storage reference is needed to obtain the final “jump to” address.

Figure 3-6. Pre-Indexing With BCH instruction

I“J

3]

|

1200 (ADDR)

> 1200 + 60 = 1260 (ADDR.)

RESUME PROGRAM AT ADDRESS 1260

v

7]

-
L

1200 (ADDR.)

> } o 120 [30— 2o 20

RESUME PROGRAM AT ADDRESS 2400

THE B INSTRUCTION ALSO PERFORMS AN UNCONDITIONAL JUMP, BUT USES POST-INDEXING. NOTE THAT B AND BCH
(FIGURE 3-8) PERFORM IDENTICALLY WHEN BIT 8 IN BOTH INSTRUCTIONS IS A 0 (DIRECT ADDRESSING). THE INSTRUCTIONS
DIFFER, HOWEVER, WHEN BIT 8 IN BOTH IS A 1 (INDIRECT ADDRESSING).

Figure 3-7. Post-Indexing With B Instruction

>3 60

0 7 8 9 1 12 13 16
r
MOVM 0 0 e B 400
1200 (ADDR) —-—-—l J
’ .
4000 (ADDR) - 1200 + 60 = 1260 (ADDR)
v
+ 4000 + 400 = 4400 (ADDR)
s
- 3 60
————
0 7 8 9 1M 12 13 15
r MOVM 1 1 bt §i 400
|) 1200 (ADDR)
E——— v
I 4000 (ADDR) » 1200 2100 f—p 2100 + 60 = 2160 (ADDR)
A es——
% 4000 2400 2400 + 400 = 2800 (ADDR)
emse—

FOR OTHER VALUES OF THE ADDRESS-
MODE DESIGNATORS (BITS 8 AND 12),
COMBINE THE APPROPRIATE PARTS

OF THESE EXAMPLES.

2800

Figure 3-8. Memory-to-Memory Instruction With Post-Indexing

2160 210

=

4. MACHINE INSTRUCTIONS

INTRODUCTION

The MRX/40/60 System machine instruction set is
divided into two major categoriss: general-purposs
instructions and system instructions. General-purpece
instructions are the instructions needsd to solve most data
processing problems using a defined software system,
System instructions are specislized instructions used to
interpret and aiter a software system.

Within thess two major categories, the instructions are
divided into functional groups, and thess functional
groups are listed in siphabetical order, as shown in the
following table.

General-Purposs Instructions Systam Instructions

Arithmetic Control
Bit-Oriented /0
Boolean Logic

Branching

Compare

Control

Data Conversion

Data Transfer

-Shift

Optional: Floating Point

The instructions in each functionasl group are listed
asiphabstically by mnemonic. This rule holds for all in-
structions except for logical pairs or groups of instruc-
tions — these instructions are listed alphabetically
according to the first instruction of the pair. For instance,
PAKX (Pack) will be followsd by UNPX (Unpack), and
SB (Skip Back Unconditional) will be followed by SF
(Skip Forward Unconditonal). :

Remamber the following rules when reading the machine
instruction descriptions.

1. The sddress of a memory field refers to the
leftmast byte of that field.

2. A word is defined s two bytes; the bit
positions in » word are numbered left to right,
0-15.

3. The operand fields of the instructions may be
fixed or variable in length. Fixed-length
operand fields may be one byte, one word (2
bytes), or two words (4 bytes in length.
Variable-length fields may range from
0-65,535 bytes.

4. Most instructions must address even bytes in
memory; the rest can address even or odd
bytes. The instructions which can address
even or odd bytes are identified by a bullet
following the instruction name (such as,
Compare Packed Decimal o).

5. The effective address of a field in memory
is defined as the final address of the field
derived from all specified addressing tech-
niques. If no optional addressing techniques
are used, the effective address is in the M
field, otherwise, the effective address is a
result of indexing, indirect addressing, or
both.

SOURCE AND OBJECT FORMAT INTERPRE-
TATION

The source and object formats of the operands are defined
using the following symbols.

The operstion codes are presented
in hexadecimal (00 through FF).

Op Code

R A general register number, 0-7. The
register may be used as a sending or
receiving field (0-7), or as an index
register {1-7 only).

E Extended register,0-16. (For RDX
snd WRX only.)

M A memory address, 0-65,535.

41

4-2

()

An immediate value; -the value
varies depending on the instruction.
The value may represent an amount
used in an arithmetic operation, a
shift count, a skip count, or a bit
number.

A field length, usually 0-255, but
longer for some instructions. For
certain instructions the length of
an operand field may be defined in
the instruction. The length specified
in the instruction overrides any
previous field length definition,
but is only in effect for that in-
struction.

An at-sign (@) in a source operand
indicates indirect addressing, an
optional feature. For the instruc-
tions in which a register is a send-
ing or receiving field, the at-sign
indicates indirect addressing for
Rq or Rg. If a field in memory is
the sending or receiving field, the
at-sign indicates indirect addressing
of M1 or M2.

Index registers and field lengths are
optional; they are enclosed in
parentheses in a source operand. A
source operand using both an
indexing and a field length
specification would be represented
like this: M1(L1,R1). The comma
in the parentheses must not only be
coded when both the length and
index register are used, but also if
either one of them is used, as
follows: M1({L4,) or Mq(,Ry). This
enables the assembler to distinguish
between the two specifications in
parentheses.

Bits 8 and 12 of the object instructions are used in almost
every instruction to convey information to the computer
concerning that instruction. If these bits are not inter-
preted in any way, they are shaded; otherwise, the
following symbols are used to define bits 8 and 12.

i Indirect addressing indicator; for
direct addressing i=0, for indirect
addressing i=1. Indirect addressing
is indicated by the programmer.

f A sub-function indicator; indicates
a function that the operation code
alone cannot do. Function bits
are set by the assembler.

1,0 Ifbit8or 12 mustbealora0
: for a particular instruction, the
bit will be shown as a 1 or 0. These
bits are set by the assembler; if
the wrong bit state appears in the
object instruction, a no-operation

occurs.

An R, M, |, or L in source operand 1 is identified as Rq,
Mj, 14, or Lq; in source operand 2 they are identified as
Rg, My, 19, or Lo. These symbols are numbered so that
they can be referred to easily (distinguishing between R4
and Ro in the same instruction) and to make ciear the
location of these fields in the object format.

The two major operand fields must be separated by a
comma; no blanks are aliowed anywhere in the operand
fields.

The following examples show how the source and object
formats of the machine instructions are illustrated in this
section. The at-sign and any designations in parentheses
(field length and index registers) are almost always
optional; if any of these designations are not optional,
this fact will be noted. Data fiow is usually operand 1 to
operand 2, unless stated otherwise.

EXAMPLE 1: Add Register-Register

ADDR @R1,@R;

Optional at-sign that turns on Pit 0 ;8 e " o1z s -
12, indicating indirect addressing
of Ry. OP CODE i Rq i Ro

Optional at-sign that turns on bit 8,
indicating indirect addressing of R1. R4 and Ry are in the same relative position in the object format.

The variations of this instruction are shown in the following diagram; depending on the use of indirect
addressing, data flow may be register to register, memory to register, register to memory, or memory to

memory.
Rq Ro Since each operand can be expressed
ADDR either of two ways, there are
@R4 @R9y 2 x 2 = 4 possible variations of this
instruction.

EXAMPLE 2: Move Memory-Memory

MOVM @M(R1),@M2(Ro)
A
Optional index register associated
with Mo,
0 » 7 8 9 1M1 12 13 15
Optional at-sign that turns on bit . i
12, indicating indirect addressing OF CODE : R ! R2
of Mo, M
M2

Optional index register associated
with M].

(Lptional at-sign that turns on bit
8, indicating indirect addressing of
Mj.

The variations of this instruction are shown in the following diagram. Data flow is always memory to
memory, but there are many ways in which the addressing options can be used.

M1 Moy Since each operand can be ex-

MOVM % @M1 @M2 pressed either of four ways, there
M1(Rq) S Ma(R2) are 4 x 4 = 16 variations of this
@M1(Rq) @Ma(Ro) instruction.

4.3

GENERAL-PURPOSE INSTRUCTIONS

ARITHMETIC INSTRUCTIONS

Mnemonic Name

ADD Add Memory-Register
ADDD Add Direct

ADDI Add Immediate
ADDK Add Packed Decimal ®
ADDM Add Memory-Memory
ADDR Add Register-Register
ADDT Add Two-Word

DIV Divide Memory-Register

DIVD Divide Direct

DIvi Divide Immediate

DIVK Divide Packed Decimal e
DivMm Divide Memory-Memory
DIVR Divide Register-Register

MPY Multiply Memory-Register
MPYD Multiply Direct

MPY| Multiply Immediate
MYPK Multiply Packed Decimal @
MPYM Multiply Memory-Memory
MPYR Multiply Register-Register

SuB Subtract Memory-Register
SUBD Subtract Direct

SuBi Subtract Immediate
SUBK Subtract Packed Decimal e
SuBM Subtract Memory-Memory
SUBR Subtract Register-Register
SUBT Subtract Two-Word

ZADK Zero and Add e

The following rules apply to binary addition and sub-
traction.

o The Overflow bit (bit 0) in the Condition register
is set if the results of a binary add or subtract
exceed the limits of a signed one-word or
two-word result field. Specifically, overflow is
indicated if the results are greater than 2M1q or
if the results are less than -2"1 (where n=16 or
32 bits).

e The Link bit (bit 3) in the Condition register is
set if the results of a binary add or subtract
exceed the limits of an unsigned one-word or
two-word result field. Specifically, link is
indicated if the results are greater than 2"-1 for
an add {where n=16 or 32 bits).

4-4

Add Memory — Register

ADD @Mq(R9),@Ry

4] 7 8 9 11 5

2 13 1
A2 il Ry || Ry

FUNCTION: Performs a binary addition of a one-word
field in memory and a one-word field in a general regis-
ter or in memory.

OPERAND 1: A one-word field in memory. Addressing
options to the base address M4 include indexing, in-
direct addressing, or a combination of both.

OPERAND 2: A one-word field in the general register
specified by Ry, or in memory if indirect addressing is

used.

RESULTS: The sum resides at the operand 2 location.
The Condition register is affected as follows:

e Bit O (overflow) is set if the result is greater
than +32,767 or less than -32,768.

® Bits 1,2, and 4-7 are cleared.

e Bit 3 (link) is set if the result is greater than
65,535.

EXAMPLE

3
NAME orERATION QwERAND

4 21 20 25 5 e 2K NS0 4 1838 35 06 57 TH 19 30 41 42 43 44 45 46

77— r)f.é[:),.?

The field identified by TAG(5) is added to the contents
of register 7; the sum will be in register 7.

Add Direct

ADDD '1(R1),@R2

B2

FUNCTION: Performs a binary addition of a one-word
immediate value and a one-word field in a general register
or in memory.

OPERAND 1: A 16-bit immediate signed value in the
second word of the instruction; the value may range from
-32,768 to +32,767. :

Indexing may be specified for operand 1. In this case,
the value of operand 1 is derived by adding the |4 value
and the general register contents specified by R1;nocheck
for overflow or link is made during the indexing.

OPERAND 2: A one-word field in the general register
specified by Ro, or in memory if indirect addressing is
used.

RES'ULTS: The sum resides at the operand 2 location.
The Condition register is affected as follows:

e Bit 0 (overflow) is set if the result is greater
than +32,767 or less than -32,768.

o Bits 1, 2, and 4-7 are cleared.

o Bit 3 (link) is set if the result is greater than
65,535.

EXAMPLE

Name GPERATION opLAAND

v b 1 b e 0 g 228 s e 2 g8 0 1 g U e i 3 M9 30 41 8) 4384 45 4G

w220 . /150CR) ,AR3

The immediate value of 150 is modified by the contents
of register 2 and added to the contents of register 3; the
sum will be in register 3.

If register 2 contains a value of 4, and register 3 contains

a value of 10, the operation will add 150 + 4 + 10; the
result of 164 will be in register 3.

Add Immediate

ADDI 17,@Ry

OPERAND 2: A one-word field in the general register
specified by Rg, or in memory If indirect addressing is
used.

RESULTS: The sum resides at the operand 2 location.
The Condition register is affected as follows:

@ Bit 0 (overflow) Is set if the result is greater
than +32,767 or less than -32,768.

e Bits 1, 2, and 4-7 are cleared.

¢ Bit 3 (link) is set if the result is greater than
65,5635.

EXAMPLE

Nami aperation OPERAND

o o e ot bl gy 272420 2 20 2B 74 30 31 37 31 34 3% 36 3) 3939 40,41 42 43 44 85 46

worr . 10., 09

The immediate value of 10 is added to the field at the
memory address specified in register 4; the sum will be at
this address.

Add Packed Decimal e
ADDK Mq(L{,Rq).Ma(Lo,Ro)

11 122 13 156

52

Lq Lo

FUNCTION: Performs a signed decimal addition, pro-
ceeding from right to left, of the two packed decimal
fields in memory. The field lengths L1 and Lo may vary
from 0-255 bytes.

OPERAND 1: A packed decimal field in memory. The

32 4 il Ry

FUNCTION: Performs a binary addition of a 4-bit
immediate value and a one-word field in a general regis-
ter or in memory.

0PERAN[_)___1: A 4-bit unsigned value located in bits
811 of the instruction; the 11 value may range from
0-15. The |4 value is added to bit positions 12-15 of
operand 2; bits 0-11 are zeros.

field length, 0-255 bytes, is specified in the L field of
the instruction. The operand address indicated by M4 may
be indexed, but indirect addressing is not allowed. The
effective address points to the most significant bytes of
the decimal field.

OPERAND 2: A packed decimal field in memory. The
field length, 0-255 bytes, is specified by the Lo value in
the instruction. The operand address indicated by Mo may
be indexed but indirect addressing is not allowed. The
effective operand address points to the most significant
bytes of the decimal field.

4-5

RESULTS: The decimal sum resides at the operand 2
location. The following conditions can occur, depending
on the values of L4 and L.

e If L is greater than Lo and the difference
between Lo and L¢ contains significant
data, bit 0 of the Condition register is set.

® if Ly =0and Ly =0, bits 3 and 7 of the
Condition register are set.

e IfLq=0,anadd of zero is assumed.

e If Lo is greater than L1, zeros are used to
make up the difference in field lengths.

The Condition register is affected as follows:

® Bit 0 is set if significant data is lost; bits 1-7 are
cleared.

® Bits 1 and 5 are set if results are plus; bits 0, 2-4,
6 and 7 are cleared.

® Bits 2 and 6 are set if results are minus; bits 0, 1,
3-5, and 7 are cleared.

® Bits 3 and 7 are set if results are zero; bits 0-2
and 4-6 are cleared.

SPECIAL FEATURES

1. Validity of source packed digits is not
checked.

2. Invalid digits produce inconsistent results.

3. Negative zero cannot be produced unless
overflow occurs (bit 0 of Condition register
set).

4. Positive results receive a hexadecimal C sign,
negative results receive a hexadecimal D sign.

5. The effective addresses must not be absolute
address zero on machines with less than
66K, or they must not be the first location
of the memory partition if the Relocation
and Protection feature is installed and READ
protection is invoked.

4.6

EXAMPLE

name OPERATION orEAAND

Voo d o Wl e o e e G e g T 37 33 34 30 1 17 S N 30 41 42 3148 35 Bk

UL . | |Frecoa(iro0,8)., FIELD/C2,6)

A 10-byte packed field identified by FIELD2(10,5) is
added to a 12-byte packed field identified by
FIELD1(12,6). Had the field lengths been reversed (that
is, trying to add the larger field to the smaller) and the
overlap contains significant (non-zero) bytes, bit 0 of the
Condition register is set to indicate lost data.

Add Memory — Memory

ADDM @M1(Rq),@M5(R)

o 7 8 9 1 12 13 156

62 i| Ry |i] Ry

FUNCTION: Performs a binary addition of two one-word
fields in memory.

OPERAND 1: A one-word field in memory. Addressing
options to the base address My include indexing, indirect

addressing, or a combination of both.

OPERAND 2: Same length and addressing options (to
base M) as operand 1.

RESULTS: The sum resides at the operand 2 location.
The Condition register is affected as follows:

e Bit 0 (overflow) is set if the result is greater
than +32,767 or less than -32,768.

® Bits 1, 2 and 4-7 are cleared.

® Bit 3 (link) is set if the result is greater than
65,335.

EXAMPLE

NAME orEmATION OrFERAND

G4 3 A 8w o AL 11 12 0818 14 16 1ITEII 20 20 22 78 24 75 76 21 78 79 30,31 37 33 34 b 16 37 4 I 40 &1 47 4344 4 A6

WOQA . WERLE(3)., TACCR) . . .

The field identified by HERE(3) is added to the field
identified by TAG(2); the sum will be at the address
represented by TAG(2).

Add Register — Register

ADDR @R{,@Rj

o 7 8 @ 11 12 13 15

22 il Ry |i| R

FUNCTION: Performs a binary addition of two one-word
fields; either field may be in a general register or in
memory.

OPERAND 1: A one-word field in the general register
specified by R4, or in memory if indirect addressing is
used.

OPERAND 2: A one-word field in the general register
specified by Rp, or in memory if indirect addressing is

used.

RESULTS: The sum resides at the operand 2 location.
The Condition register is affected as follows:

e Bit 0 (overflow) is set if the result is greater
than +32,767 or less than -32,768.

e Bits 1, 2, and 4-7 are cleared.

e Bit 3 (link) is set if the result is more than
65,535.

EXAMPLE

NAME OPERATION OPERAND

12 374 s 6 o afal 0 vi 2 131 1 06 v el 19 70 21 222220 25 26 70 28 20 3031 3233 W 3% w3/ 1839 60 01 47 4344 85 46

OPERAND 1: A two word field in memory beginning at
the specified effective address. The most significant bits
are at this address.

Addressing options to the base address M1 include in-
dexing, indirect addressing, or a combination of both.

OPERAND 2: A two-word field located in two general
registers or in memory.

If direct addressing is used, the field is in the register
specified by Ry and the next highest register, Ro+1; the
most significant bits are in the Ry register. (Note: If
register 7 is specified by Ry, the field is in registers 7 and
0, with the most significant bits in register 7.)

If indirect addressing is used, the field is in memory
beginning at the address in the Ro register; the most

significant bits are at this address.

RESULTS: The sum resides at the operand 2 location.
The Condition register is affected as follows:

e Bit O (overflow) is set if the result is greater
than +231.1 or less than -231,

e Bits 1, 2, and 4-7 are cleared.

e Bit 3 (link) is set if the result is greater than

+232,,
EXAMPLE:
NAME OPERATION OPERAND
L2, 4 8 6 7 1910 1 1203 14 3h 16 17118119 20 20 22 20 24,25 26 27 28 29 30 31 32 33 34 35 35 37 38 39 4p 41 42 4344 45 46
U227 | TASCLD, S

....... AIDR .. . | PY,.1

The operand at the memory address specified in register 4
is added to the contents of register 1; the sum will be in
register 1. '

Add Two-Word
ADDT @Mq(Rq),@Ro

[} 7 8 9 1M 12 13 16

The field identified by TAG(1) is added to the contents of
registers 5 and 6; the results will be placed in registers 5
and 6.

Divide Memory — Register
DIV @M¢(R4),@R2

0 11 12 13 16

72 il rRy |i| Rmo

A9 7[?19121 [i] Ry

M4

FUNCTION: Performs a binary addition of a two-word
field in memory and a two-word field in two general
registers or in memory.

FUNCTION: Performs a binary division; the divisor is a
one-word field in memory, and the dividend is a two-word
field in two general registers or in memory.

4.7

OPERAND 1: The divisor; a 16-bit signed value in memory
beginning at the specified effective address. The most
significant bits are at this address.

Addressing options to the base address M1 include in-
dexing, indirect addressing, or a combination of both,

OPERAND 2: The dividend; a 32-bit signed value located
in two general registers or in memory.

If direct addressing is used, the field is in the register
specified by Ro and the next lowest register, Ro-1; the
most significant bits are in the Ro-1 register. (Note: If
register 0 is specified by Ry, the field is in registers 7 and
0, with the most significant bits in register 7.)

If indirect addressing is used, the field is in memory
beginning at an address two bytes less than the address in
the Ro register; the most significant bits are at this
address.

RESULTS: The quotient, a 16-bit signed value, resides
in the Ry register (direct addressing), or at the address
specified in the Ro register {indirect addressing). The re-
mainder, a 16-bit signed value resides in the Ro-1 register
(direct addressing) or in memory beginning at an address
2 bytes less than the address specified in the Ry register
(indirect addressing); the remainder always has the same
sign as the dividend.

The Condition register is affected as follows:
e Bit 0 (overflow) is set if the resulting
quotient is greater than +32,767 or less

than -32,768.

e Bit O (overflow) is set if the divisor is O; the
operands are unchanged.

o [If neither of the above conditions occurs, bit

0 is cleared.
EXAMPLE
NAME OFERATION OPERAND
V23 44 B 1 al9]0 1L 121310 15 V6 17118018 70 712273 74 15 6 27 70,7930, 31 3293 M 3 % 37 30 3 041 4T 45 18
WLV . . | #AZCL)., 88l

The instruction specifies a binary divide in which the
divisor is a 16-bit signed value at the address specified by
AMT(1); the dividend is located in memory beginning at
an address two bytes less than the address in register 3.

As shown in the following illustration, the dividend is a
32-bit field located at an address two bytes less than the

48

address specified in register 3. Assuming that the address
in register 3 is 4080, the dividend actually begins at
address 4078.

4078 4079 4080 4081

Dividend

1 L 1.

’

Sign bit The address in register

3 points here,

After the division, the dividend is overlayed with the
remainder and quotient (each of these fields is signed).
Thus, the quotient is located at the address specified in
the Rg register — in this case at address 4080, and the
remainder at that address minus two bytes, 4078.

4078 4079 4080 4081

Remainder Quotient
3 3
Sign bit Sign bit
Divide Direct
DIVD 14(R),@Rp
(1] 7 8 9 1 12 13 156
B9 0 Rq i Ry

I1

FUNCTION: Performs a binary division; the divisor is a
one-word immediate value, and the dividend is a two-word
field in two general registers or in memory.

OPERAND 1: The divisor; a 16-bit immediate signed
value in the second word of the instruction; the |1 value
may range from -32,768 to +32,767.

Indexing may be specified for operand 1. In this case,
operand 1 is derived by adding the 14 value and the con-
tents of the general register specified by Rq; no check for
overflow or link is made during the indexirg.

OPERAND 2: The dividend; a 32-bit signed value in two
general registers or in memory.

If direct addressing is used, the field is in the register
specified by Ro and the next lowest register, Ro-1; the
most significant bits are in the Ro-1 register. (Note: If
register 0 is specified by R, the field is in registers 7 and
0, with the most significant bits in register 7.)

If indirect addressing is used, the field is in memory
beginning at an address two bytes less than the address in
the Ro register; the most significant bits are at this
address.

RESULTS: The quotient, a 16-bit signed value, resides
either in the Ry register {direct addressing), or in memory
at the address in the Ry register (indirect addressing). The
remainder, a 16-bit signed value, resides in the Ro-1
register {direct addressing), or in memory at an address
two bytes less than the address in the Ro register (indirect
addressing); the remainder always has the same sign as the
dividend.

The Condition register is affected as follows:
® Bit 0 (overflow) is set if the resulting
quotient is greater than +32,767 or less

than -32,768.

o Bit 0 (overflow) is set if the divisor is 0;
the operands are unchanged.

e If neither of the above conditions occurs,
bit O is cleared.

EXAMPLE

NAME OPEHATION OFERAND

to s a6 r wlale 10700 6 v el 19 20 2022 2320 25 26 2228 g 0 10 3233 34 35 36 37 3839 40 41 47 43 44 45 56

Lrv2 . |PB300RRSI.,2 ...

The divisor is formed by adding the immediate value of
5300 to the contents of register 5. The dividend is in
registers 1 and 2. The quotient will be in register 2, the
remainder in register 1.

Divide Immediate

DIVl 14,@R,y

39 I il Ry

FUNCTION: Performs a binary divide; the divisor is a
4-bit immediate value, and the dividend is a two-word
field in two general registers or in memory.

OPERAND 1: The divisor is a 4-bit unsigned value in
bits 8-11 of the instruction; the |4 value is always positive
and may range from 0-15.

OPERAND _2: The dividend; a 32-bit signed value located
in two general registers or in memory.

If direct addressing is used, the field is in the register
specified by Ry and the next lowest register, Ro-1; the
most significant bits are in the Ry-1 register. (Note: If
register O is specified by Ry, the field is in registers 7 and
0, with the most significant bits in register 7.)

If indirect addressing is used, the field is in memory
beginning at an address two bytes less than the address
in the Ro register; the most significant bits are at this
address.

RESULTS: The quotient, a 16-bit signed value, resides in
the Ry register (direct addressing), or in memory at the
address specified in the Ry register {indirect addressing).
The remainder, a 16-bit signed value, resides in the Ro-1
register (direct addressing), or in memory at an address
two bytes less than the address in the Ry register (indirect
addressing); the remainder always has the same sign as the
dividend.

The Condition register is affected as follows:
e Bit 0 (overflow) is set if the resulting
quotient is greater than +32,767 or less

than -32,768.

e Bit O (overflow) is set if the divisor is 0; the
operands are unchanged.

o If neither of the above conditions occurs,
bit O is cleared.

EXAMPLE

NAME OPERATION OPERAND

v sonr wdolo v vvi s e vilialve 20 207723 24 2526 20 28 29 4o 11 323336 35 36 3/ 35,39 4041 42 4344 85 46

RIve . 2% 7

The divisor is the immediate value 14; the dividend is in
registers 6 and 7. The quotient will be in register 7, and
the remainder in register 6.

Divide Packed Decimal ¢

DIVK Mq(Lq,Rq).MalLo,R5)

7C

4.9

FUNCTION: Divides packed decimal fields in memory.
The field lengths may vary, as defined in the following
text.

OPERAND 1: The divisor; a packed decimal field in
memory that can range from 1-127 bytes. The length of
the divisor must always be less than that of the dividend.
If the L4 value is greater than 127, or greater than or
equal to Lo, the operation will not be performed, and an
overflow condition occurs. The results occur if the divisor
is zero, or the L value is zero.

OPERAND 2: The dividend; a packed decimal field in
memory that can range from 2-255 bytes. The dividend
field is overlaid by the quotient and remainder.

RESULTS: The signed quotient will be located at the
operand 2 address; thus the address of the quotient will be
the same as that of the dividend. The length of the
quotient is Lo-Lq. The signed remainder is also placed in
the operand 2 location, but it is right-aligned. The address
of the remainder is: quotient address + (Lo-L4). The
length of the remainder is the same as the length of the
divisor.

The sign of the quotient is determined by the rules of
algebra. The sign of the remainder has the same value as
the dividend sign. Sign validity checking is not performed.
The following sign conventions apply (the numbers are
hexadecimal).

Plus=0,2,4,6,78,A,C,EF

Minus = 1,3,5,9,B,D
The preferred signs of X'C’ for plus and X'D’ for minus
will be generated. A minus zero quotient or remainder is
considered plus.

The operand fields remain unchanged if overflow occurs.

The operand fields may not overlap. Invalid digits cause
undefined results.

The following Condition register settings can occur:

Bits 0-7 Condition

1000 0000 Overflow, L1>127;
L1 > L2; L1=0; or,
divisor field contents
are zero.

0100 0100 The quotient is greater

than zero.

4-10

0010 0010 The quotient is less
than zero.
0001 0001 The quotient is equal

to zero.

EXAMPLE

NAME OPERATION OPERAND

1234 5. 687 878110 11 12131 15 18 17)18119 20 21 22 73 24 75 28 27 28 28 30 31 32 33 34 35 36 37 38 39 40 41 A2 43 44 45 45

WA . . 'ﬂM/IJC«,_t)A,IQMLL'&,J). ‘e

The TOTAL field is divided by the UNITS field. The
quotient will be located at the address of TOTAL (the
quotient length is 4 bytes). The remainder will be at the
address TOTAL +4.

Divide Memory — Memory

DIVM @M4(R1),@M2(R>)

69 i Rq i Ro

FUNCTION: Performs a binary division; the divisor is a
one-word field in memory, and the dividend is a two-word
field in memory.

OPERAND 1: The divisor; a 16-bit signed value in a
one-word field in memory. Addressing options to the base
address M include indexing, indirect addressing, or a
combination of both.

OPERAND 2: The dividend; a 32-bit signed value in
memory beginning at an address two bytes less than the
specified effective address; the most significant bits are at
this beginning address. Addressing options to the base
address Mo include indexing, indirect addressing, or a
combination of both.

RESULTS: The quotient, a 16-bit signed value, resides at
the effective address of operand 2. The remainder, a
16-bit signed value, resides at an address two bytes less
than the effective address. The remainder always has the
same sign as the dividend.

The Condition register is affected as follows:
e Bit 0 (overflow) is set if the resulting

quotient is greater than +32,767 or less
than -32,768.

e BjitO (overfloW) is set if the divisor is zero;
the operands are unchanged.

e If neither of the above conditions exist,
bit 0 is cleared.

EXAMPLE

NAME OPERATION OPERAND

vz 34 s 6 7 8|9fe v 13 e s w6 116l 1 70 212223 24 26 26 21 28 2530 31 32,33 34 35 36 37 3639 40 41 42 4144 45 36

PrvA .. | \HERECE), TR6CH).

..........................

The dividend is identified by TAG(4) and the divisor is
identified by HERE(6). The quotient will be at the
address specified by TAG(4); the remainder will be at
that address minus two bytes.

Divide Register — Register
DIVR @Rq,@R,

[} 7 8 9 1 12 13 15

29 il Ry |i] Ra

FUNCTION: Performs a binary division; the divisor is a
one-word field in a register or in memory, and the dividend
is a two-word field in two adjacent registers or in memory.

OPERAND 1: The divisor; a 16-bit signed value in the
general register specified by R4, or in memory if in-
direct addressing is used.

OPERAND 2: The dividend; a 32-bit signed value located
in two general registers or in memory.

If direct addressing is used, the field is in the register
specified by Ry and the next lowest register, Ry-1; the
most significant bits are in the Ro-1 register. {(Note: If
register O is specified by Ry, the field is in registers 7 and
0, with the most significant bits in register 7.)

If indirect addressing is used, the field is in memory
beginning at an address two bytes less than the address in
the Ry register; the most significant bits are at this
address.

RESULTSJ The quotient, a 16-bit signed value, resides in
the Ro register (direct addressing), or at the address
specified in the Ry register (indirect addressing). The
remainder, a 16-bit signed value, resides in the Ro-1
register (direct addressing) or in memory at an address
two bytes less than the address specified in the R2 register
(indirect addressing); the remainder always has the same
sign as the dividend.

The Condition register is affected as follows:

o Bit 0 (overflow) is set if the resulting quotient
is greater than +32,767 or less than -32,768.

e Bit O (overflow) is set if the divisor is O;
the operands are unchanged.

e if neither of the above conditions occurs,
bit O is cleared.

EXAMPLE

NAME OPERATION OPERAND

V23 a s s o wlef o v i7 3 ia s 6 O] 18 20 21 22 70 20 2576 22 76 25 30 31 37 3334 35 36 37 3638 40 41 42 4344 45 46

Dzie . | [/,83

The least significant bits of the dividend are at the address
specified in register 3, and the divisor is in register 1. The
quotient will be stored at the address in register 3; the
remainder is stored at that address minus two bytes.

Multiply Memory — Register

MPY @M(Rq),@Ry

0

7 8 9 1
A8 [i] rRe [i] mo
My

FUNCTION: Performs a binary muitiplication of a one-
word field in memory and a one-word field in a general
register or in memory.

OPERAND 1: The multiplier; a one-word field in memory.
Addressing options to the base address M4 include in-
dexing, indirect addressing, or a combination of both.

S_)PERAND 2: The multiplicand; a one-word field in the
general register specified by Rp, or in memory if in-
clirect addressing is used.

[_%ESULTS: The product, a 32-bit signed value, resides
in two general registers or in memory.

If direct addressing is used, the field is in the register
specified by Ry and the next lowest register, Ry-1; the
most significant bits are in the Ro-1 register. {Note: If
register O is specified by Ro, the field is in registers 7 and
0, with the most significant bits in register 7.)

If indirect addressing is used, the field is in memory
beginning at an address two bytes less than the address in
the Ry register; the most significant bits are at this
address.

4-11

EXAMPLE

Ay orEnATION orEnAND

C 3 3 O 7 a] 9] ve 1 1z i3 e us 16 U111 70 712223 24 2526 2178 23 30 31 3233 M 3 36 31 T I 4041 47 4144 43 46

APy . . [IFREDCR., O/ .

The field at the address specified in register 1 is multiplied
by the field identified by @FRED(2). The 32-bit result
field will be in memory at an address two bytes less than
the address specified in register 1.

Multiply Direct

MPYD 11(Rq).@R,

] 11 122 13 15

7 8 9
B8 [o] ry [i] R
h

FUNCTION: Performs a binary multiplication of a
one-word immediate value and a one-word field in a
general register or in memory.

OPERAND 1: The multiplier; a 16-bit immediate signed
value in the second word of the instruction; the 14 value
may range from -32,768 to +32,767.

Indexing may be specified for operand 1. In this case,
operand 1 is derived by adding the Iq value and the
general register contents specified by Rq; no check for
overflow or link is made during the indexing.

OPERAND 2: The multiplicand; a one-word field in the
general register specified by Rp, or in memory if indirect
addressing is used.

RESULTS: The product, a 32-bit signed value, resides in
two general registers or in memory.

If direct addressing is used, the field is in the register
specified by Ro and the next lowest register, Ro-1; the
most significant bits are in the Ro-1 register. (Note: If
register O is specified by Ro the field is in registers 7 and
0, with the most significant bits in register 7.)

If indirect addressing is used, the field is in memory
beginning at an address two bytes less than the address in
the Ro register; the most significant bits are at this
address.

EXAMPLE:

e orenaTion OPERAND

V2 s e s 6 0 a9Taa (V03 Te 7 06 Vi val1a 20 20 2223 24 25,26 30 20 2830 31 37 333 3 36 37 1839 404} 42 410005 46

Whyp . \|-t6lo,0

..... P T

412

The value at the address in register 1 is multiplied by the
immediate value -16,101. The 32-bit product is stored at
the address in register 1 minus two bytes.

Multiply Immediate

MPYl 14,@R,
[} 7 8 1 12 13 15

38 I i R2

FUNCTION: Performs a binary multiplication of a 4-bit
immediate value and a one-word field in a general register
or in memory.

OPERAND 1: The multiplier; a 4-bit unsigned field
located in bits 8-11 of the instruction. The 4 value is
always positive and may range from 0-15.

OPERAND 2: The multiplicand; a one-word field in the
general register specified by Ro, or in memory if indirect
addressing is used.

RESULTS: The product, a 32-bit signed value, resides in
two general registers or in memory.

If direct addressing is used, the field is in the register
specified by Ry and the next lowest register, Ry-1; the
most significant bits are in the Ro-1 register. (Note: If
register 0 is specified by Ro, the field is in registers 7 and
0, with the most significant bits in register 7.)

If indirect addressing is used, the field is in memory
beginning at an address two bytes less than the address in
the Ro register; the most significant bits are at this
address.

EXAMPLE

NAME oremaTion OPLRAND

'
Vot oo mfafo s o na v 16 i sl e 20 20 22 20 74 25 2k 20 28 29 30 1) 47 10 d6 T 00 tH A0 A0 41 42 4148 45 4

Wwerr . | lFas,é ..

The value in register 6 is multiplied by the immediate
value represented by EQ3. The product is stored in
registers 5 and 6.

Muitiply Packed Decimal e

MPYK Mj(L¢,R1),Ma(Ly,Ro)
o 7

5B

13 15

FUNCTION: Multiplies two packed decimal fields in
memory. The field lengths may vary, as defined in the
following text.

OPERAND 1: The multiplier; a packed decimal field in
memory that can range from 0-127 bytes. The length of
the multiplier must a/ways be less than that of the
multiplicand. If the L value is greater than 127, or
greater than or equal to the Lo value, the operation will
not be performed and an overflow condition occurs. If L4
is zero, and Lo is not zero, a multiply by zero will be
performed.

OPERAND 2: The multiplicand; a packed decimal field in
memory that can range from 0-255 bytes. Since the
number of digits in the product is the sum of the digits in
the operands, the muitiplicand must have at least enough
high-order zero bytes to equal the multiplier field length;
otherwise, an overflow condition occurs. This definition
of the multiplicand field ensures that no product overflow
can occur during the operation. At least one high-order
digit of the product field is always zero.

RESULTS: The product will be placed at the operand 2
address. .

The sign of the product is determined by the rules of
algebra. Sign validity is not checked, therefore, the
foliowing interpretations are made (the numbers are
hexadecimal).

Plus =0,2,4,6,7,8,A,C,EF
Minus = 1,3,6,9,8,D

The preferred signs of X'C’ for plus and X'D’ for negative
are generated for the product. A negative zero result is
considered plus.

The fields may not overlap. Digit validity is not checked;
undefined results will occur if non-decimal digits occur. If
an overflow condition occurs, the operarids remain
unchanged. If either operand (or both) contains all zeros,
the product field is set to zeros and a sign of plus (X'C’) is
forced. '

The following Condition register settings can occur:

Bits 0-7 Condition

1000 0000 Overflow: Lq2>127;
L12L2; or, less than
L1 bytes of high-order
zeros in the
multiplicand.

0100 0100 Product is greater than

Zero.

0010 0010 Product is less than

zero.
0001 0001 Product is equal to
zero.
EXAMPLE

12345 6.1 8]9110 111213 14 15 18 t7(18] 19 20 21 22 73 24 25 26 27 28 29 30 31 37 33 34 35 36 37 30 39 40 41 42 43 44 45 4b

AAAAAAA PV | LDACS, L), FLDBCS, L) ...

FLDA is multiplied by FLDB and the results are located
at the FLDB address.

Multiply Memory — Memory

MPYM @M;(R4),@Ma(Ry)
0 7 8 9 1M1 12 13 16
68 i| Ry [R

FUNCTION: Performs a binary multiplication of two
one-word fields in memory.

QPERAND 1: The multiplier; a one-word field in
memory. Addressing options to the base address Mg
include indexing, indirect addressing, or a combination of
both.

OPERAND 2: The multiplicand; a one-word field in
memory. Addressing options to the base address M,
include indexing, indirect addressing, or a combination of
both.

RESULTS: The product; a 32-bit signed value. The result
field begins at an address two bytes less than the specified
effective address of operand 2.

EXAMPLE

NAME OPERATION OPERAND

L2 3 4% 6 7 8[9]0 111213 14 15 18 1718119 20 2122 25 26 2576 2) 28 28 30 81 32 33 34 9 6 10 W 39 40 41 42 430445 24

....... APYA .. . | |FREDCSD ., T C2). . . .

The field identified by TOM(2) is multiplied by the field
identified by FRED(5). The 32-bit product is stored at an
address two bytes less than the address specified by
TOM(2).

4-13

Multiply Register — Register

MPYR @R,@R,
0 7 8 9 11 12 13 15

28 i R1 i R2

FUNCTION: Performs a binary multiplication of two
one-word fields; either field may be in a register or in
memory.

OPERAND 1: The multiplier; a one-word field in the
general register specified by R4, or in memory if indirect
addressing is used.

OPERAND 2: The multiplicand; a one-word field in the
general register specified by R4, or in memory if indirect
addressing is used.

RESULTS: The product, a 32-bit signed value, resides in
two general registers or in-memory.

If direct addressing is used, the field is in the register
specified by Rq and the next lowest register, Ro-1; the
most significant bits are in the Rp-1 register. (Note: If
register O is specified by Ro, the field is in registers 7 and
0, with the most significant bits in register 7.)

If indirect addressing is used, the field is in memory
beginning at an address two bytes less than the address in
the Ry register; the most significant bits are at this
address.

EXAMPLE:

nAME PENATION orenanD

L2 3 4 6 89000 11 1713 v 1 V6 A B 19 20 21 7223 20 75 2 21 28 79 W0 1 42 1134 1h th v T8 9 4041 87 4404 85 W

pere. . 07

The field in register 7 is multiplied by the field at the
address specified in register 5. The 32-bit product is stored
in registers 6 and 7.

Subtract Memory — Register

SUB @M1(R1).,@R,

0 7 8 9 1M 12 13 16

A3 ||| Ry i Ro

FUNCTION: Performs a binary subtraction of a one-word
field in memory from a one-word field in a general register
or in memory.

4-14

OPERAND 1: The subtrahend; a one-word field in
memory. Addressing options to the base address Mj
include indexing, indirect addressing, or a combination of
both. This operand is subtracted from operand 2.

OPERAND 2: The minuend; a one-word field in the
general register specified by R4, or in memory if indirect
addressing is used.

RESULTS: The difference resides at the operand 2
location. The Condition register is affected as follows:

o Bit 0 (overflow) is set if the result is greater than
+32,767 or less than -32,768.

e Bits 1, 2 and 4-7 are cleared.

e Bit 3 (link) is set if the result is greater than
65,535.

® Subtracting 80007 from 00001g results in
8000¢ and bit O is set.

EXAMPLE

mAME orERATION OPIRAND

R AR £ R TR RN AL D R R R L A RO A M A A FU R LA IR LR

548 | |7#6C5),7

The field identified by TAG(5) is subtracted from the
contents of register 7. The result will be in register 7.

Subtract Direct

suBD |1(R1),@R2

[} 7 8 9 i1 12 13 15

B3 fo R1 i Ry

h

FUNCTION: Performs a binary subtraction of a one-word
immediate value from a oneword field in a general
register or in memory.

OPERAND 1: The subtrahend; a 16-bit immediate signed
value in bits 16-31 of the instruction. The 14 value may
range from -32,768 to +32,767. This operand is
subtracted from operand 2.

Indexing may be specified for operand 1. In this case,
operand 1 is derived by adding the |4 value and the
general register contents specified by Rq; no check for
overflow or link is made during the indexing.

OPERAND 2: The minuend; a one-word field in the
general register specified by Ry or in memory if indirect
addressing is used.

RESULTS: The difference resides at the operand 2
location. The Condition register is affected as follows:

o Bit 0 (overflow) is set if the result is less than
-32,768 or greater than +32,767.

® Bits 1, 2 and 4-7 are cleared.

e Bit 3 (link) is set if the resuit is greater than
65,635.

e Subtracting 80004 from 0000¢g results in
80001g and bit O is set.

EXAMPLE

EXAMPLE

NAME OPERATION Srenano

o2t a w6t wfalno v s il e 20 20 22 23 24 26 26 20 28 24 30 3132 3334 35 36 30 3839 4041 42 43 44 4545

Susd .| [conls) , 00

The immediate value identified by CON(5) is subtracted
from the field in memory at the address specified in
register 0. The result will be at the address in register 0.

Subtract Immediate

SUBI 11,@Ry
0 7 8 11 12 13 15

33 I i| Ry

FUNCTION: Performs a binary subtraction of a 4-bit field
from a one-word field in a general register or in memory.

OPERAND 1: The subtrahend; a 4-bit unsigned value
located in bits 8-11 of the instruction. This value may
range from 0-15. The I value is subtracted from bits
12-15 of operand 2; bits 0-11 of operand 1 are zeros.

OPERAND 2: The minuend; a one-word field in the
general register specified by Ro, or in memory if indirect
addressing is used.

RESULTS: The difference resides at the operand 2
location. The Condition register is affected as follows:

o Bit O (overflow) is set if the result is less than
-32,768, or greater than +32,767.

e Bits 1, 2, and 4-7 are cleared.

® Bit 3 (link) is set if the result is greater than
65,535.

NAME OPERATION OPERAND

Pl o LU AL N 22 25 2 5 2 70 a0 880 33 BTy 36 32 0839 40 41 42 4344 45 4G

susgr . ||rv.,09

The immediate value 14 is subtracted from bits 12-15 of
the field at the memory location specified in register 4.
The result will be at the address in register 4.

Subtract Packed Decimal e

SUBK Mq(L1,Rq),Ma(Lo,Rg)
0 7 8
53

jFUNCTION: Performs a signed decimal subtraction of the
two packed decimal fields in memory. The field lengths
L4 and Lo may vary from 0-255 bytes.

QPERAND 1: The subtrahend; a packed decimal field in
memory which is subtracted from operand 2. The field
length, 0-255 bytes, is specified by the Lq value in the
instruction. The address indicated by M9 may be indexed,
but indirect addressing is not allowed. The effective
operand address points to the most significant bytes of
the decimal field.

QPERAND 2: The minuend; a packed decimal field in
memory. The field length, 0-255 bytes, is specified by the
l.g value in the instruction. The address indicated by My
may be indexed, but indirect addressing is not allowed.
The effective operand address points to the most
significant bytes of the decimal field.

!RESU LTS: The decimal difference resides at the operand
2 location. The following conditions can occur, depending
on thevalues of L and Lj.

e If Lq is greater than L, and the difference

between L1 and Lo contains significant data, bit
0 of the Condition register is set.

®If Ly = 0 and Ly = 0, bits 3 and 7 of the
Condition register are set.

e |f Lq =0, asubtract of zero is assumed.

e If Ly is greater than L1, zeros are used to make
up the difference in field lengths.

4-15

The Condition register is affected as follows:

e Bit O is set if significant data is lost; bits 1-7 are
cleared.

@ Bits 1 and 5 are set if results are plus; bits 0, 2-4,
6, and 7 are cleared.

o Bits 2 and 6 are set if results are minus; bits 0, 1,
3-6, and 7 are cleared.

® Bits 3 and 7 are set if results are zero; bits 0-2
and 4-6 are cleared.

SPECIAL FEATURES
1. Validity of source digits is not checked.
2. Invalid digits produce inconsistent results.

3. Negative zero cannot be produced unless
overflow occurs (bit O of Condition register).

4. Positive results receive a hexadecimal C sign,
negative results receive a hexadecimal D.

5. The effective addresses of the source fields must
not be absolute address zero on machines with
less than 65K main storage, and the addresses
must not be the first location of the memory
partition assigned to the processor executing the
instruction if the Relocation and Protection
feature is installed and READ protection is
invoked.

EXAMPLE

NAME CRENATION orEmAND

R R AR P R T Ty E R R R I o L R R L LR TR LR TR T

S7F -7 IR \Freedrr CE,2), FlIEcO2(,).

The field identified by FIELD1(8,2) is subtracted from
the field identified by FIELD2(,4). The length of FIELD1
for this instruction is defined as 8 bytes; the length of
FIELDZ is assumed to be the length as defined previously
in the program. The result will be placed at the location
identified by FIELD?2(,4).

Subtract Memory — Memory

SUBM @M1(R1),@M2(R2)

(4] 7 8 9 1 12 13 15
63 i R1 i R2

4-16

FUNCTION: Performs a binary subtraction of two
one-word fields in memory.

OPERAND 1: The subtrahend; a oneword field in
memory. Addressing options to the base address M
include indexing, indirect addressing, or a combination of
both. This operand is subtracted from operand 2,

OPERAND 2: The minuend; same length and addressing

options (to base M) as operand 1.

RESULTS: The difference resides at the operand 2
location. The Condition register is affected as follows:

e Bit O (overflow) is set if the result is greater than
+32,767 or less than -32,768.

o Bits 1, 2 and 4-7 are cleared.

o Bit 3 (link) is set if the result is greater than
65,535.

e Subtracting 8000¢g from 0000¢g results in
80004 and bit O is set.

EXAMPLE

nam orRATION orenaND

v afa] P o VT A 22 Y s 2 B R 2 VLt) 16 040 41 42 4348 45 M6

susn . | |FeoBCs) Fiog

The field identified by FLDB(5) is subtracted from the
field identified by FLDA. The result will be at the address
represented by FLDA.

Subtract Register — Register

SUBR @R1,@R2

1] 7 8 9 11 12 13 15

23 il Ry |i] Ry

FUNCTION: Performs a binary subtraction of two
one-word fields; either field may be in a general register or
in memory.

OPERAND 1: The subtrahend; a one-word field located in
the general register specified by Ro, or in memory if
indirect addressing is used. This operand is subtracted
from operand 2.

OPERAND 2: The minuend; a one-word field located in
the general register specified by Ro or in memory if
indirect addressing is used.

RESULTS: The difference resides at the operand 2
location. The Condition register is affected as follows:

e BitO (ovefflow) is set if the result is less than
-32,768 or greater than +32,767.

o Bits 1, 2, and 4-7 are cleared.

e Bit 3 (link) is set if the result is greater than
65,535.

e Subtracting 800015 from 00001 results in
800014 and bit 0 is set.

EXAMPLE

NAME OPERATION OPERAND

t o s 6or]9 112 1o v i v sl a0 2022 24 20 % M 27 28 24 3031 32 33 14 14 3 31 3639 a0 41 42 43 44 45 46

RESULTS: The difference resides at the operand 2
location. The Condition register is affected as follows:

e Bit O (overflow) is set if the result is greater than
+231.1 or less than -231.

e Bits 1, 2, and 4-7 are cleared.

® Bit 3 (link) is set if the result is greater than
+2321,

e Subtracting 8000000075 from 0000000044
results in 80000000 ¢ and bit 0 is set.

EXAMPLE

NAME OPERATION OPERAND

123 4 6 6 0 a]9]io 121314 s 16 UIIB[18 20 20 22 21 26 2526 24 7 79 30,31 32 33 34 3h 36 3/ 36 30 40,41 42 4344 &5 46

E2.7 3 (@f,o .. .

The field at the location specified in register 5 is
subtracted from the field in register 0. The result will be
placed in register 0.

Subtract Two-Word

SUBT @M;(R¢),@R2

0 7 8 9 11 12 13 15

73 i

FUNCTION: Performs a binary subtraction of a two-word
field in memory from a two-word field in two general
registers or in memory.

OPERAL\I_D 1: The subtrahend; a two-word field in
memory beginning at the specified effective address. The
most significant bits are at this address.

Addressing options to the base address My inciude
indexing, indirect addressing, or a combination of both.
This operand is subtracted from operand 2.

OPERAND 2: The minuend; a two-word field located in
two general registers or in memory.

If direct addressing is used, the field is in the register
specified by Rg and the next highest register, Ro+1; the
most significant bits are in the Ry register. (Note: If
register 7 is specified by Ro, the field is in registers 7 and
0, with the most significant bits in register 7.)

If indirect addressing is used, the field is in memory
beginning at the address in the Ry register; the most
significant bits are at this address.

\su87 . . . | |tA46LSI, A ...

A two-word field identified by TAG(5) is subtracted from
the contents of registers 2 and 3. The result is held in
registers 2 and 3.

Zero and Add e

ZADK M4(L1,Rq1),Ma(Lg,Ro)

[9 1 12 13 15

50

Ly Lo

FUNCTION: Zeros out a field in memory, then performs
an addition of a packed decimal field in memory and the
zero field. The field lengths Ly and Ly may vary from
0-255 bytes.

OPERAND 1: A packed decimal field in memory; the
field length, 0-255 bytes, is specified by the value in the
instruction. The address indicated by Mq may be indexed,
but indirect addressing is not allowed. The effective
address points to the most significant bytes of the decimal
field.

OPERAND 2: A field in memory that is zeroed out before
the addition. The field length, 0-255 bytes, is specified by
the Lo value of the instruction. The address indicated by
My may be indexed, but no indirect addressing is allowed.
The effective address points to the most significant bytes
of the field.

RESULTS: The result field resides at the operand 2

location. The following conditions can occur, depending
on the values of Lo and L.

4-17

e If Lq is greater than Ly and the difference
between L1 and Lo contains significant data, bit
0 of the Condition register is set.

® if Ly = 0 and Ly = 0, bits 3 and 7 of the
Condition register are set.

e IfL4=0,anadd of zero is assumed.

e If Lo is greater than L4 zeros are used to make
up the difference in field iengths.

The Condition register is affected as follows:

® Bit 0 is set if significant data is lost; bits 1-7 are
cleared.

e Bits 1 and 5 are set if results are plus; bits 0, 2-4,
6, and 7 are cleared.

® Bits 2 and 6 are set if results are minus; bits 0, 1,
3-5, and 7 are cleared.

o Bits 3 and 7 are set if results are zero; bits 0-2
and 4-6 are cleared.

SPECIAL FEATURES

1. Validity of source digits is not checked.
2. Invalid digits produce inconsistent results.

3. Negative zero cannot be produced unless
overflow occurs (bit 0 of Condition register).

4. Positive results receive a hexadecimal C sign,
negative results receive a hexadecimal D.

5. The effective addresses of the source fields must
not be absolute address zero on machines with
less than 65K bytes of main storage, and the
addresses must not be the first location of the
memory partition assigned to the executing
processor if the Relocation and Protection
feature is present and READ protection is
invoked.

EXAMPLE

BIT-ORIENTED INSTRUCTIONS

Mnemonic Namg
IBIT Invert Bit
ROFR Reverse Off-Bit
RONR Reverse On-Bit
SBIT Set Bit o
RBIT Reset Bit e
TBIT Test Bit o
TOFR Test for Off-Bit
TONR Test for On-Bit

Invert Bit o

IBIT @M4(Rq).15

[} 7 8 15

9 1 12 13
BF i| R 1] 1

My

NaAME OPERATION OPERAND

v 2 v 4 s 6 s Rlafuw v iz isa s o6 bfiE]19 20 20 7273 74 75 26 20 26 2 30 31 3233 34 3536 11039 404142 AJAN 5 46

TAS2(50.,4),T464(885,0)

cleared to zero; then a 50-byte field identified by
TAG2(50,4) is added to it. (See Results description for
Condition register status.)

4-18

FUNCTION: Invert (toggle) a bit in a one-byte field in
memory.

OPERAND 1: A one-byte field in memory. Addressing
options to the base address M include indexing, indirect
addressing, or a combination of both.

OPERAND 2: A 3-bit value in bits 13-15 of the
instruction. The |5 value specifies the position of the bit
to be toggled and may range from 0-7; O specifies the
leftmost position and 7 the rightmost position.

RESULTS: The result field resides at the operand 1
location.

EXAMPLE

NAME orEmATION OPERAND

17 345 6 v alalia oz isa s ve il 1e 70 20 7223 20 75 76 27 20 28 30,91 32,33 %0 35 36 37 3835 40 41 42 4344 45 06

r(ur‘ |\ Prasce).,x

................................

This instruction reverses the existing binary state of a
specific bit in memory. @TAG(4) points to an 8-bit byte
and 3 is the number of the bit (bits are numbered left to
right, 0-7).

Reverse Off-Bit

ROFR @Rq,@R,

[} 7 8 9 11 12 13 15
6F i Rq i Ry

FUNCTION: Scans a one-word field, left to right, for the
first off-bit (0-bit); turns that bit on; then increases
another one-word field by an amount equal to the
position (0-15) of the first 0-bit. If no 0-bit is found in the
first field, the second field is increased by a value of 16.
Either field may be in a general register or in memory.

OPERAND 1: A one-word field in the general register
specified by Rq, or in memory if indirect addressing is
used. This field is scanned for the first O-bit.

OPERAND 2: A one-word field in the general register
specified by Rg, or in memory if indirect addressing is
used. The field is increased by a value equal to the
position of the first 0-bit in operand 1.

RESULTS: The results vary as described in the preceding
text; the location of the operands is not changed.

If the same register is specified for both operands, the
‘results are as shown, varying with the addressing mode of
the operands:

Operand 1 Operand 2 Results

Both in same mode Only the increased
value is returned,
with no alteration

of the off-bit.

Indirect Direct Both operands are

returned as normal.

Direct Indirect Operand 1 with the
first off-bit set is
returned in the
register specified in
Operand 1; then the
increased value is
written in memory
at the location
specified by this
newly altered
Operand 1.

EXAMPLE

NAME OPERATION OPERAND

v 2 3 4 5 6 0 #)9f 0 11121314 15 16 1718 19 20 20 22 20 24 25 26 27,20 29 30 31 3233 34 35 36 37 3039 40 41 42 43 44 45 46

........................

Register 7 contains the address of a 16-bit field which is
scanned from left to right for a 0-bit. If a 0-bit is found,
the relative position (0-15) determines the value to add to
a one-word field in register 2. After this value is increased,
the 0-bit is set to 1. If no 0-bit is found, register 2 is
increased by a value of 16.

r(.Ofk. I N

Reverse On-Bit

RONR @R{,@Rj

0 7 8 9 1 12 13 16

6D i Ry [i][Rz

FUNCTION: Scans a one-word field, left to right, for the
first on-bit (1-bit); turns that bit off; then increases
another one-word field by an amount equal to the
position (0-15) of that first 1-bit. If no 1-bits are found in
the first field, the second field is increased by a value of
16. Either field may be in a general register or in memory.

OPERAND 1: A oneword field located in the general
register specified by R4, or in memory if indirect
addressing is used. This field is scanned for the first 1-bit.

OPERAND 2: A one-word field located in the general
register specified by Rq, or in memory if indirect
acldressing is used. This field is increased by a value equal
to the position of the first 1-bit in operand 1.

RESULTS: The results vary as described in the preceding
text.

If the same register is specified for both operands, the
results are as shown, varying with the addressing mode of
the operands.

Operand 1 Operand 2 Results

Only the increased
value is returned,

with no alteration
of the first on-bit.

Both in same mode

Both operands are
returned as normal.

Indirect Direct

Operand 1 with the
first on-bit reset is
returned in the
register specified

in Operand 1; then
the increased value
is written in
memory at the loca-
tion specified by the
newly-altered
Operand 1.

Direct Indirect

EXAMPLE

NAME OPERATION OPERAND

23 4 5 67 8]8]10 1 1713 V& 15 16 11[18]19 20 71 4273 24 25,2 27 78 23 30,31 32 33 34 35 36 31 3833 40 41 47 4384 45 4

RoNR .. | 104,06

........................... [

Register 4 contains the address of a 16-bit field which is
scanned for a 1-bit. If a 1-bit is found, the relative

4.19

position {0-15) of that bit determines the value (0-15)
added to another one-word field at the location specified
in register 6. After this field is increased in value, the state
of the original bit is changed to a O-bit. If no 1-bit is
found during the scan, the other field is increased by a
value of 16.

Set Bit e

SBIT @Mq(Ry),15
0 7 8 9 1
BC i| Ry
M4

1 13 15

12
[1] 1

FUNCTION: Sets a bit (to 1) in a one-byte field in
memory.

OPERAND_1: A onebyte field in memory. Addressing
options to the base address M4 include indexing, indirect
addressing, or a combination of both.

OPERAND 2: A 3-bit value in bits 13-15 of the
instruction. The Iz value specifies the position of the bit
to be set and may range from 0-7; O specifies the leftmost
position and 7 the rightmost pesition.

RESULTS: The result field resides at the operand 1
location.

EXAMPLE

NAME OPERATION orERAND

12 4 a5 6 0 wf9fn iz 13 1 b 16 4] iE] 19 20 7072 73 78 7% 76 2126 29 30 1032 33 34 5 36 V1 3 3 4D 41 42 4304 45 46

sarr . l@.msc.z).,.z L

Turns on bit number 7 of an 8-bit byte at the location
specified by @TAG(2).

Reset Bit

RBIT @Mq(Ry),lp

] 7 8 9 n

BD III R4

15

12 13
1] 1.

FUNCTION: Resets a bit (to 0) in a one-byte field in
memory.

OPERAND 1: A one-byte field in memory. Addressing
options to the base address M4 include indexing, indirect
addressing, or a combination of both.

OPERAND 2: A 3-bit value in bits 13-15 of the
instruction. The 15 value specifies the position of the bit
to be reset and may range from 0-7; O specifies the
leftmost position and 7 specifies the rightmost position.

4-20

RESULTS: The result field resides at the operand 1
location.

EXAMPLE

NAME OPERATION OPERAND

12 3 4 s b ¢ |9k 11273 va 15 16 1]18]19 70 21 2273 20 75 76 20 26 28 50 31 32 3334 5 36 37 3899 a0 41 87 4348 45 45

RELT . | PTAsC2).,9

Bit number 4 of an 8-bit byte located at @TAG(2) in
memory is given the binary state of 0.

Test Bit o

TBIT @M (Rq),Ip
] 7 8 9 1 12 13
BE ||| R1 |1| P
My

15

FUNCTION: Tests a bit in a one-byte field in memory,
and transfers the bit state (1 or 0) to bit O of the
Condition register.

OPERAND 1: The one-byte field in memory. Addressing
options to the base address M4 include indexing, indirect
addressing, or a combination of both.

OPERAND 2: A 3-bit value in bits 13-15 of the
instruction; the I value specifies the position of the bit in
operand 2 and may range from 0-7; O specifies the
leftmost position and 7 the rightmost position.

RESULTS: The result is reflected in the state of bit 0 in
the Condition register.

EXAMPLE

NAME OPERATION QrERAND

12 a s 6 wlafo e 23y v ub] e 1 2228 20 25 26 27 28 78 30 1132 337 36 36 37 3839 40 41 42 4348 45 46

78I . | WoECS),6

The binary state of bit 6 of an 8-bit byte at a location
specified by JOE(5) is reproduced in bit 0 of the
Condition register.

Test for Off-Bit

TOFR @Rq,@Ry
0 7 8 9 1 12 13 15
6E il Ry |i| R2

FUNCTION: Scans a one-word field, left to right, for the
first off-bit (0-bit) and increases another one-word field
by an amount equal to the position of that first 0-bit
(0-15). The first O-bit is not changed. If no O-bits are

found in the first field, the second field is increased by a
value of 16. Either field may be in a general register or in
memory.

OPERAND 1: A one-word field in the general register
specified by R4, or in memory if indirect addressing is
used. This field is scanned for the first 0-bit.

OPERAND 2: A one-word field in the general register
specified by Ro, or in memory if indirect addressing is
used. This field is increased by an amount equal to the
position of the first 0-bit in operand 1.

RESULTS: The results vary as described in the preceding
text; the location of the operands is not changed.

NAME OPERATION OPERAND
v 23 o 5 e ve 1071213 T s 16 17] 16| 19 70 21 22 23 4 25 26 27 2029 30,31 32 33,34 35 36 37 3839 041 42 4144 855
TOFAR .. | |®S,.0

A 16-bit field at a location specified in register 3 is
scanned left to right (0-15) for a 0-bit. If none is found,
the value in register 1 is increased by 16. However, if a
0-bit is found, the relative position (0-15) of that bit
specifies the value added to register 1.

Test for On-Bit

TONR @R{,@Rj
/] 7 8 9 1" 12 13 15

6C i] Ry |i] Ra

FUNCTION: Scans a one-word field, left to right, for the
first on-bit (1-bit) and increases another one-word field by
an amount equal to the bit position of the first 1-bit
(0-15). The first 1-bit is not changed. If no 1-bits are
found in the first field, the second field is increased by a
value of 16. Either field may be in a general register or in
memory.

OPERAND 1: A one-word field in the general register
specified by R4y, or in memory if indirect addressing is
used. This field is scanned for the first 1-bit.

OPERAND 2: A one-word field in the general register
specified by Ro, or in memory if indirect addressing is
used. This field is increased by an amount equal to the
position of the first 1-bit in operand 1.

RESULTS: The results vary as described in the preceding
text; the location of the operands is not changed.

EXAMPLE

AN OFERATION OPERAND

roar .. | @z,5

1023 46 6 7 8]8710 11120314 15 15 ¢ ITSN1lnuununllnmn 3233 34 35 3637 3038 4D 41 42 4340 05 4B

A 16-bit field at the location specified in register 2 is
scanned left to right (0-15) for a 1-bit. If none is found,
the value in register 3 is increased by 16. If a 1-bit is
found, the relative position (0-15) of that bit corresponds
to the value added to register 3.

BOOLEAN LOGIC INSTRUCTIONS

Mnemonic Name
AND Logical Product Memory — Register
ANDD Logical Product Direct
ANDI Logical Product Immediate
ANDM Logical Product Memory — Memory
ANDR Logical Product Register — Register
EOR Exclusive OR Memory -- Register
EORD Exclusive OR Direct
EORI Exclusive OR Immediate
EORM Exclusive OR Memory — Memory
EORR Exclusive OR Register — Register
IOR Inclusive OR Memory — Register
IORD Inclusive OR Direct
IORI Inclusive OR Immediate
IORM Inclusive OR Memory — Memory
IORR Inclusive OR Register — Register

Lagical Product Memory — Register

AND @M;(R4),@Ry
0 7 8 9 1 12 13 15

A5 [i] r |i| Ry

FUNCTION: Performs a logical product of a one-word
field in memory and a one-word field in a general register
or in memory. Corresponding bits in each operand are
compared. |f both bits are 1, the corresponding resultant
bit is 1; in all other cases the resultant bit is 0.

OPERAND 1: A one-word field in memory. Addressing
options to the base address M include indexing, indirect
addressing, or a combination of both.

OPERAND 2: A one-word field in the general register

sp—_e(:ified by Ro, or in memory if indirect addressing is
used,

421

RESULTS: The result field resides at the operand 2
location.

EXAMPLE

Mame orEnaTION OPERAND

U2 34 5 & 7 al9] e 1L 13 e vs 6 V10|19 20 71 7 73 74 15 76 27 20 75 30 31 3733 94 35 36 37 3439 4D 41 &z a3 dadsus

....... AND. . . | |[TA6C20. .88

results are stored at the address specified in register 5.

Logical Product Direct

ANDD 11(R4),@R2
0 7 8 9 1 12 13 1B
BS [of R [i] Ra
h

FUNCTION: Performs a logical product of a one-word
immediate value and a one-word field in a general register
or in memory. Corresponding bits in each operand are
compared. If both bits are 1, the corresponding resuitant
bit is 1; in all other cases, the resultant bit is 0.

OPERAND 1: A 16-bit immediate value in the second
word of the instruction; the value may range from
0-65,535.

Indexing may be specified for operand 1. in this case,
operand 1 is derived by adding the 14 value and the
contents of the general register specified by R4; no check
for overflow or link is made during the indexing.

OPERAND 2: A oneword field in the general register
specified by Ro, or in memory if indirect addressing is
used.

RESULTS: The result field resides at the operand 2
location.

prt Al bl eed.)
NAME OPERATION . OPERAND
1 2.3 4 % 6 1 w[9010 1 121314 15 16 VIl 18] 19 20 21 7225 24 26 76 21 20 79 30 31 12 33 94 35 36 31 I 404142 344 45 46
NDD . . . 70(..!),0/

immediate value 40, as modified by the contents of
register 3, and the 16-bit field at the address in register 1.
This address is also the address of the results.

Logical Product Immediate

ANDI 14,@R,

0 7 8 11 122 13 16

35 Iy i| Rg

4-22

FUNCTION: Performs a logical product of a 4-bit
immediate value and a one-word field in a general register
or in memory. Corresponding bits in each operand are
compared. If both bits are 1, the corresponding resultant
bit is 1, in all other cases the resultant bit is 0.

OPERAND 1: A 4-bit unsigned value in bits 8-11 of the
Instruction; the value may range from 0-15. The I value
is compared to operand 2 in bit positions 12-15; bits 0-11
are zeros.

OPERAND 2: A oneword field located in the general
register specified by Rg, or in memory if indirect
addressing is specified.

RESULTS: The result field resides at the operand 2
location.

EXAMPLE

NAME osERATION osEnaND

12 185 6 7 nfadin iz vn s v te vl 1970 2 22 2474 45 76 70 28 29 30 11 w2 55 36 3 36 37 3839 40,41 42 4344 16 46

#vor . | |re, 2

A logical product is performed on the immediate value 14
and bits 12-15 of the one-word field in register 2. This
register will hold the results; bits 0-11 will always be 0's.

Logical Product Memory — Memory

ANDM @M 4(Rq),@M5(R3)
[} 7 8 9 1M1 12 13 15

65 il Ry [i] Ra

FUNCTION: Performs a logical product of two one-word
fields in memory. Corresponding bits in each operand are
compared. If both bits are 1, the corresponding resultant
bit is 1; in all other cases the resultant bit is 0.

OPERAND 1: A oneword field in memory. Addressing
options to the base address M include indexing, indirect
addressing, or a combination of both.

OPERAND 2: A oneword field in memory. Addressing
options to the base address Mo include indexing, indirect
addressing, or a combination of both.

RESULTS: The result field resides at the operand 2
location.

EXAMPLE
T oHUATION OPLRAND
t 2 38 8 6 1 8]9]10 b 1313 W 15 16 V16019 20 21 227326 25 76 71 78 79 3031 32 33 34 3 36 17 W 19 40 41 42 €1 14 8% 4b
AADA .. .| 1#0£0C2),05P14E

A logical product is performed between a 16-bit field at
the address identified by HOLD(7) and the 16-bit field at
the address specified by @SPIKE. The result is stored at
the @SPIKE address.

Logical Product Register ~ Register

OPERAND 2: A one-word field in the general register
specified by Rp, or in memory if indirect addressing is
used.

RESULTS: The result field resides at the operand 2
location.

EXAMPLE
ANDR @R{,@Ry
NANE oreRATION oreRaND
0 L. 12 13 15 1, 734 5 67 61810 v1 1213 14 16 16 17]18] 1920 21 22,23 24 75,26 20 29 75 3031 32 3334 3% 36 37 18 39 40 41 42 43 445 46
25 i Rq i 7 EOR ... | A6L3),88 ..

FUNCTION: Performs a logical product of two one-word
fields; either field may be in a register or in memory.
Corresponding bits in each operand are compared. If both
bits are 1, the corresponding resultant bit is 1; in all other
cases the resultant bit is 0.

OPERAND 1. A oneword field located in the general
register specified by R4, or in memory if indirect
addressing is used.

OPERAN‘D 2: A oneword field located in the general
register specified by Rop, or in memory if indirect

addressing is used.

RESULTS: The result field resides at the operand 2
location.

EXAMPLE

NAME OPERATION OFERAND

1,234 5 6 7 skalro 11 121314 16 16 |}{| 1920 2122737425 26 2 26 28 30 31 32 33 34 1 46 J) IA 19 4081 47 61408586

....... a2 .. | 07,9

the address specified in register 7 and the 16-bit field in
register 4. The results will be in register 4.

Exclusive OR Memory — Register

EOR @M4(R¢),@Ry
0 7 8 9 11 12 13 15
A6 i Ry |i] R

FUNCTION: Performs an exclusive OR of a one-word
field in memory and a one-word field in a general register
or in memory. Corresponding bits in each operand are
compared. If the bits are unlike, the corresponding
resultant bit is 1; if the bits are the same, the resultant bit
is 0.

OPERAND 1: A one-word field in memory. Addressing
options to the base address M4 include indexing, indirect
addressing, or a combination of both.

An exclusive OR is performed between a 16-bit field at
the address identified by TAG(3) and the 16-bit field at
the address specified in register 5. The address specified in
register 5 is also that of the result.

Exclusive OR Direct

EORD 14(R1),@R5
0 9 8 9 1M1 12 13 16

B6 [0 Ry | Ro

FUNCTION: Performs an exclusive OR of a one-word
immediate value and a one-word field in a general register
or in memory. Corresponding bits in each operand are
compared. If the bits are unlike, the corresponding
resultant bit is 1; if the bits are the same, the resultant bit
is 0.

OPERAND 1: A 16-bit immediate value in the second
word of the instruction; the value may range from 0 to
€5,535.

Indexing may be specified for operand 1. In this case,
operand 1 is derived by adding the I¢ value and the
contents of the general register specified by R; no check
for overflow or link is made during the indexing.

OPERAND 2: A one-word field in the general register
specified by Ro, or in memory if indirect addressing is
used.

RESULTS: The result field resides at the operand 2
location.

EXAMPLE

NAME OPERATION GPERAND

1214 s 1wl i i 0z e v v il 10 70 2020 93 90 5 26 20 2w 20 03052 39 35 3631 330 4041 42 434646 45

cord . |lessorcar, 0.

An exclusive OR is performed between the value of
65,501(2) and the 16-bit field at the location specified in
register 5; this address is also the address of the result.

4-23

Exclusive OR Immediate

EORI 11,@R3

0 7 8 i1 12 13 15

36 I4 i RZ

FUNCTION: Performs an exclusive OR between a 4-bit
immediate value held in the instruction and a one-word
field in a general register or in memory. Corresponding
bits in each operand are compared. |f the bits are unlike,
the resultant bit is 1; if the bits are the same, the resuitant
bit is 0.

OPERAND 1: A 4-bit unsigned value located in bits 8-11
of the instruction; the value may range from 0-15, The |4
value is “OR"’ed to operand 2 in bit positions 12-15; bits
0-11 are zeros.

OPERAND 2: A oneword field in the general register
specified by Ro, or in memory if indirect addressing is
used.

RESULTS: The result field resides at the operand 2
location.

EXAMPLE

nami OPERATION oPERAND

I T R I A A T LU LR LR

EoRI 13,0/

An exclusive OR is performed on the immediate value of
13 and the 16-bit field at the location specified in register
1; this address is also the address of the result.

Exclusive OR Memory — Memory

EORM @M(R1).@Ma(RJ)
o 7

8 9 11 12 13 15
66 i Ry |i Ry
My
M2

FUNCTION: Performs an exclusive OR of two one-word
fields in memory. Corresponding bits in each operand are
compared. If the bits are unlike, the corresponding
resultant bit is 1; if the bits are the same, the resultant bit
is 0.

OPERAND 1: A one-word field in memory. Addressing
options to the base address M4 include indexing, indirect
addressing, or a combination of both.

4-24

OPERAND 2: A one-word field in memory. Addressing
options to the base address M5 include indexing, indirect
addressing, or a combination of both.

RESULTS: The result field resides at the operand 2
location.

EXAMPLE

NaME ORERATION OPERAND

Ve v e bl o v v i V] 19 0 2020 2 22 75 26 20 78 20 30 00 32 39 34 18 36 17 3839 40 a1 42 43 48 45 45

EoRN . | |T#46(2),00M (%)

An exclusive OR is performed between a 16-bit field at
the address identified by TAG(2) and the 16-bit field at
the address identified by DON(4). The result is stored at
the address specified by DON(4),

Exclusive OR Register-Register

EORR @R4,@R5
[\] 7 8 9 ‘1N 12 13 15
26 i R4 i R2

FUNCTION: Performs an exclusive OR of two one-word
fields; either field may be in a register or in memory.
Corresponding bits in each operand are compared. If the
bits are unlike, the corresponding resultant bit is 1; if the
bits are the same, the resultant bit is 0.

OPERAND 1: A one-word field in the general register
specified by R4, or in memory if indirect addressing is
used.

OPERAND 2: A one-word field in the general register
specified by Ro, or in memory if indirect addressing is
used.

RESULTS: The result field resides at the operand 2
location.

EXAMPLE

Nam OPtRATION OPERAND

Ve FuAl Y 2 20 g e ae B 20 N W 583 4 36 47 38 39 AD 41 42 43 44 48 46

EORR . 1., 7

An exclusive OR is performed between two 16-bit fields,
one of which is at the address specified in register 4 and
the other in register 7. The result is placed in register 7.

Inclusive OR Memory-Register

IOR @M4(R4),@R,
0 7 8 9 1 12 13 15

A7 i] Ry |i] Ry

FUNCTION: Performs an inclusive OR of a one-word
field in memory and a one-word field in a general register
or in memory. Corresponding bits in each operand are
compared. If either of the bits is 1 or if both of the bits
are 1, the corresponding resultant bit is 1. If both bits are
0, the resultant bit is 0.

OPERAND 1: A one-word field in memory. Addressing
options to the base address M include indexing, indirect
addressing, or a combination of both.

OPERAND 2: A one-word field in the general register

specified by Rop, or in memory if indirect addressing is
used.

RESULTS: The result field resides at the operand 2
location. ’

EXAMPLE

NAME OPERATION oreRanD

B0 A0 2020 25 4 2% 2 22 JH M 43 32 11Ut ik 37 819 9041 42 4348 45 36

DR K KNI TATE N URY)

Z0R . 8r46¢3).,67

An inclusive OR is performed on two 16-bit fields, one at
the address identified by @TAG(3) and the other at the
address specified in register 7. The results will be at the
address in register 7.

Inclusive OR Direct

IORD 1(R4),@R,
0 8 9 1 12 13 15

7
B7 ol Ry [i]| Ry
I
FUNCTION: Performs an inclusive OR of a one-word
immediate value and a one-word field in a general register
or in memory. Corresponding bits in each operand are
compared. If either of the bits is 1 or if both of the bits
are 1, the corresponding resultant bit is 1. If both bits are
0, the resultant bit is O.

OPERAND 1: A 16-bit immediate value in the second
word of the instruction; the value may range from
0-65,635.

Indexing may be specified for operand 1. In this case,
operand 1 is derived by adding the 14 value and the
contents of the general register specified by Rq; no check
for overflow or link is made during the indexing.

OPERAND 2: A one-word field in the general register
specified by Rg, or in memory if indirect addressing is
used.

RESULTS: The result field resides at the operand 2
location.

EXAMPLE
NAME OPERATION OPEAAND
V2 3w 60 ala i v T e o V0] 19 a0 2y 77 70 20 74 26 20 36 79 10,00 303000 1 36 17 309 4000 42 4348 5 85
LORD . . . | |64.200.03).,88
An inclusive OR is performed on the immediate value

64,201, as modified by the contents of register 3, and the
16-bit field at the address specified in register 5. This
address is also the address of the result.

Inclusive OR Immediate

I0Rl 14,@Ry

0 7 8 11 12 13 16

37 I i| Ry

FUNCTION: performs an inclusive OR between a 4-bit
immediate value held in the instruction and a one-word
field in a general register or in memory. Corresponding
bits in each operand are compared. If either of the bits is
1-or both bits are 1, the corresponding resultant bit is 1. If
both bits are 0, the resultant bit is 0.

OPERAND 1: A 4-bit unsigned value located in bits 8-11
of the instruction; the value may range from 0-15. The |4
value is ““OR’’ed to operand 2 in bit positions 12-15; bits
0-11 are zeros.

OPERAND 2: A one-word field in the general register
specified by Ro or in memory if indirect addressing is
used.

RESULTS: The result field resides at the operand 2
location.

EXAMPLE

NAME OPERATION OPERAND

vz 3 ao e v slsla vz iia vt vlvelian 20 2273 20 sn 7n 21 76 29 30 30 32 333 35 % 31 3839 40 81 42 43 4445 46

rosrz . 10,3

An inclusive OR is performed on the immediate value 10
and bits 12-15 of the one-word field in register 3. The
result is stored in bits 12-15 in register 3; bits 0-11 are
unaffected.

Inclusive OR Memory — Memory

IORM @M¢(R1),@M53(R>)

0 7 8 9 " 12 13 15

67 i| Ry |i| R

4-25

FUNCTION: Performs an inclusive OR of two one-word
fields in memory. Corresponding bits in each operand are
compared. |f either of the bits is 1 or both of the bits are
1, the corresponding resultant bit is 1. If both bits are 0,
the resultant bit is 0.

OPERAND 1: A one-word field in memory. Addressing
options to the base address M4 include indexing, indirect
addressing, or a combination of both.

OPERAND 2: A one-word field in memory. Addressing
options to the base address M5 include indexing, indirect
addressing, or a combination of both.

RESULTS: The result field resides at the operand 2
location.

EXAMPLE

NAME OPLRATION OPERAND

2345 61 8lsfig 1 1213015 16 VRS 20 212223 24 25,78 27 28 29 30,31 32 33 34 35 36 37 W I 4041 A2 4344 a8 M

ZOARA . . | WEALECRD., TA6C1).

.........................

Performs an inclusive OR between two 16-bit fields.
@TAG(1) represents the address of the results.

Inclusive OR Register — Register

IORR @R;,@R,
0 7 8 9 1 12 13 15

27 il Ry |i] R

FUNCTION: Performs an inclusive OR of two one-word
fields; either field may be in a register or in memory.
Corresponding bits in each operand are compared. |f
either of the bits is 1 or if both of the bits are 1, the
corresponding resultant bit is 1. If both bits are 0, the
resultant bit is 0.

OPERAND 1: A one-word field located in the general
register specified by R4, or in memory if indirect
addressing is used.

OPERAND 2: A one-word field in the general register

specified by Rp, or in memory if indirect addressing is
used.

RESULTS: The result field resides at the operand 2
location.

EXAMPLE

pren orERATION orERAND

o s n o afaf v v s us wevs 6 vl 0e 2 71 72 23 4 75 78 17 20 7 30,30 32 39 34 35 38 37 4 99 4041 4Z A1 404541

TORR . C

4-26

An inclusive OR is performed between a 16-bit field at the
address specified in register 5 and the 16-bit field in
register 6. Results are placed in register 6.

BRANCHING INSTRUCTIONS

Mnemonic Name
B Branch Post-Indexing
BA1 Branch Add One
BA2 Branch Add Two
BCF Branch if Condition Register False
BCT Branch if Condition Register True
BCH Branch Pre-Indexing
BOF Branch if Bit Off
BON Branch if Bit On
BR Branch to Address in Register
BRN Branch if Register Not Zero
BRZ Branch if Register Zero
BS1 Branch Subtract One
BS2 Branch Subtract Two
BSR Branch and Save Return
SB Skip Back Unconditional
SF Skip Forward Unconditional
SCFB Skip if Condition False — Back
SCFF Skip if Condition False — Forward
SCTB Skip if Condition True — Back
SCTF Skip if Condition True — Forward
SRMB Skip if Register Minus — Back
SRMF Skip if Register Minus — Forward
SRPB Skip if Register Plus — Back
SRPF Skip if Register Plus — Forward
SRNB Skip if Register Not Zero — Back
SRNF Skip if Register Not Zero — Forward
SRZB Skip if Register Zero — Back
SRZF Skip if Register Zero — Forward
Branch
B @M, (R])
] 7 8 9
ED |i|
M4

FUNCTION: Branches unconditionally to a specified
memory location. This instruction differs from BCH
which uses pre-indexing; B uses post-indexing.

OPERAND 1: The single operand identifies the memory
location to which the program branches. Addressing
options to the base address My include indexing, indirect
addressing, or a combination of both.

pt AL~

NAME OPIRATION OPERAND
v 2 3 a5 e o wsf v vz as v i e v e 20 21 2273 76 28 % 20 20 1 30,31 32304 35 % 30 AW 041 42 3445
....... B . TAGCY)
....... T

The program branches unconditionally to the address
identified by TAG(4).

Branch Add One

BA1 @M4(R¢),@R,y
(1] 7 8 9 11 12 13 15
E4 il R1 i R2

FUNCTION: Tests a one-word field in a general register or
in memory for a zero value; if the field is zero, the next
instruction in the program is executed. If the field tested
is not zero, it is increased by a value of 1, and the program
branches to a specified memory location.

OPERAND 1: The memory location to which the
program branches if the tested field is not zero.
Addressing options to the base address My include
indexing, indirect addressing, or a combination of both.

OPERAND 2: The value tested; a one-word field in the
general register specified by Ro, or in memory if indirect
addressing is used.

EXAMPLE
NAME OPEMATION OPERAND
v2oa 4 %R T el 8]0 Vi VT A 0 v 16 TILTB]18 20 #1 72 73 24 25,26 20 28,29 36,31 W33 30 % 36 37 I 40 41 42 430 W @
847 TA6. (.J).,.Ql

A 16-bit field at the address in register 2 is tested; if the
field is non-zero, a value of 1 is added to the field and the
program branches to the address identified by TAG(3). If
the field tested is zero, the program continues with the
next instruction.

Branch Add Two

BA2 @M;(R),@Ry
] 7 8 9 1 12 13 15

E5 il Ry i Ra

FUNCTION: Tests a one-word field in a general register or
in memory for a zero value; if the field is zero, the next

instruction in the program is executed. If the field tested
is not zero, it is increased by a value of 2, and the program
branches to a specified memory location.

OPERAND 1: The memory location to which the
program branches if the tested field is not zero.
Addressing options to the base address Mg include
indexing, indirect addressing, or a combination of both.

QPERAND 2: The value tested; a one-word field in the
general register specified by Rg, or in memory if indirect
addressing is used.

(b am——
NAME OPERATION OPERAND
V2 3 a6 6 T 8100 12 Tt 18 1S 20 31 770 30 7526 27 70 78,03 31335 J6.3_ 09 041 47 41405 ki
A2 | |TA6CY), 8
............. P

A 16-bit field at the address in register 1 is tested; if the
field is non-zero, a value of 2 is added to this field and the
program branches to the address identified by TAG(4). If
the field is zero when the test is made, no branch is
performed and the program continues with the next
instruction.

Branch on Condition Register False

BCE @M(Rq).1 |
0 7 8 9 RTERET) 15

! E9 il Ry Iy

FUNCTION: Branches to a specified memory location if a
designated Condition register bit is off. If the bit is on, the
next instruction in the program is executed.

OPERAND 1: The memory location to which the
program branches if the designated Condition register bit
is on. Addressing options to the base address My include
indexing, indirect addressing, or a combination of both.

OPERAND 2: A 4-bit value in bits 12-15 of the
instruction. The |9 value specifies the position of the bit
to be tested in the Condition register and may range from
0-16.

EXAMPLE
NAME OPERATION OPEMAND
102 34 5 6 7 8{9]10 11 1243 14 15 16 171 19 20 21 22 20 24 25 26 27.28 25 30 31 32 33 34 35 36 37 3839 mun}suuu
....... X I U7 X3 5 7 A

Branches to the location specified by @TAG(7) if bit 11
of the Condition register if off (0). If bit 11 is on (1), the
next instruction is executed.

4-27

Branch on Condition Register True

BCT @M4(Rq).l3
0

E8 il Ry Iy
M4

FUNCTION: Branches to a specified memory location if a
designated Condition register bit is on. If the bit is off, the
next instruction in the program is executed.

OPERAND 1: The memory location to which the
program branches if the designated Condition register bit
is on. Addressing options to the base address M include
indexing, indirect addressing, or a combination of both.

OPERAND 2: A 4-bit value in bits 12-16 of the
instruction. The |5 value specifies the position of the bit
to be tested in the Condition register and may range from
0-15.

EXAMPLE

Namg OPERATION OPERAND

1.2 34 5 6 7 B|9)in 111203 14 1516 1{18] 19 20 212273 24 75 76 27 28 79 30 31 3233 M 3 35 3 38 39 40 &1 47 4144 35 48

Zer . (lrdscs) & . -

Branches to the address identified by TAG(3) if bit 8 of
the Condition register is on (1). If the bit is off (0), no
branch is made and the next instruction is executed.

Branch Unconditional

BCH @M;(R4)
0 7 8 9

EC i

FUNCTION: Branches unconditionally to a specified
memory location. This instruction differs from B which
uses post-indexing; BCH uses pre-indexing.

OPERAND: The memory location to which the program
jumps. Addressing options to the base address M1 include

indexing, indirect addressing, or a combination of both.

EXAMPLE

name OPERATION orEnanD

© 23 875 6 7 A8 0 7 17 v3 14 Vs 16 V]V 18 70 21 2273 24 25 26 27 78 79 30 31 37 13 1 35 16 37 3819 40 A1 47 4344 &5 4%

ey . .. ||1®raec.

...........................

Branches to the address identified by @ TAG(5). The value
of TAG is added to the contents of register 5; the address
formed is the address of an address to which the program
will branch (this is the pre-indexing technique).

Branch if Bit Off

BOF @M{(R¢).l5
1] 7 8 9 m 12 15

E2 |.|

FUNCTION: Branches to a specified memory location if
the bit tested in a general register is off. |f the bit is on,
the next instruction in the program is executed.

OPERAND 1: The operand is composed of two parts: the
general register tested is specified by R4, and the 16-bit
value contained in M4 is the memory address to which the
program branches. Addressing options to the base address
Mj include indirect addressing, but not indexing.

OPERAND 2: A 4-bit value in bits 12-15 of the

instruction. The |9 value specifies the position of the bit
to be tested in the general register and may range from
0-15.

EXAMPLE

namt orERATION orEnaND

vz 3 a5 b v wfale vz va s o [0l 09 20 20 22 70 e 276 22 76 28 30 31 12 15 38 5 36 31 59 40 41 42 4144 35 46

WorF . THA6.(3),.09 . .

Branches to the address identified by TAG(3) if bit 14 of
register 3 is off (0). If bit 14 is on, the next instruction is
executed.

Branch if Bit On

BON @Mq(R4),l2

0 7 8 9 1" 12 16
E3 i Ry o
My

FUNCTION: Branches to a specified memory location if
the bit tested in a general register is on. If the bit is off,
the next instruction in the program is executed.

OPERAND1: The operand is composed of two parts: the
general register tested is specified by R4, and the 16-bit

- value contained in Mq is the memory address to which the

program branches. Addressing options to the base address
M include indirect addressing, but not indexing.

OPERAND 2: A 4-bit value in bits 12-15 of the
instruction. The 14 value specifies the position of the bit
to be tested in the general register and may range from
0-15.

EXAMPLE

NAME OPERATION . OPERAND
DROERNTIEN £ ITNEXEXIRENTAE [T (R e D K EEEERA L XU
....... 80N ... (746080,

This instruction tests bit 9 in register 5. If bit 9 is on, the
program branches to the address identified by TAG.
Otherwise, no branch is made and the next instruction is
executed.

Branch to Address in Register

BR @Rj
° 7 8 9
EB i

FUNCTION: Causes an unconditional branch to a
specified memory location. '

OPERAND 1: The single operand for this instruction is a
memory address. |f direct addressing is used, the address is
in the register specified by Rq. If indirect addressing is
used, the address is located at the address specified in Ry,

—————

AW OPERATION OPENAND
% 2 3 45 6 1 8[D[10 11 121314 15 16 U118 20 21 2273 24 257 20 28 29 30 30 12 33 14 15 36 37 3699 A0 41 42 4344 45 16
....... F. . S N

Branches to the address specified in register 4.

Branch if Register is Not Zero

BRN @M(R1),@R;
0 7 6 9 " 122 13 15
E1 i| Ry |i| Ry
My

FUNCTION: Branches to a specified memory location if
the general register tested does not contain all zeros. If the
register contains all zeros, the next instruction in the
program is executed.

OPERAND 1: The memory location to which the
program branches if the general register does not contain

all zeros. Addressing options to the base address Mj
include indexing, indirect addressing, or a combination of
both,

OPERAND 2: The value tested; a one-word field in the
general register specified by Ro, or in memory if indirect
addressing is used.

EXAMPLE

NAME OPEMATION orERAND

....... Ban. .. |lraecz>, s

1.2 345 6 7 $]8Ft0 11 1213 16 15 16 ﬂllnﬂﬂﬁllﬂ?ﬁﬂ“”?ﬂh 329334 35 36 37 1038 4041 4243 44 45 46

The program branches to the address specified by TAG(2)
if the contents of register 5 are not zeros; if the contents
are zeros, the next instruction is executed.

Branch if Register is Zero

BRZ @M;(R4),@R;

0 1M 122 13 18

7 8 9
EO [i] mr |i] mo
M,

FUNCTION: Branches to a specified memory location if
the general register tested contains all zeros. |f the register
does not contain all zeros, the next instruction in the
program is executed.

QOPERAND 1: The memory location to which the
E.rogram branches if the general register contains all zeros.
Addressing options to the base address Mj include
indexing, indirect addressing, or a combination of both.

(_)PERAND 2: The value tested; a one-word field in the
general register specified by Ro, or in memory if indirect
addressing is used.

EXAMPLE

NAME OPERATION OPERAND

v 2 3 4 s 6.7 8|8]10 11 121314 15 16 17} 1819 20 2122 23 24 25 28 21 28 29 30 3t 32 33 3 35 36 31 3839 40 41 47 43 4445 45

....... RZ . . YA 6 .«

The program branches to the address of TAG if the
contents of register 6 are all zeros; if the contents are not
all zeros, the next instruction is executed.

Branch Subtract One

BS1 @M¢(Rq).@R3
4]

7 8 ¢ 1M 122 13 16

Ry [i] Ro

EG i

4-29

FUNCTION: Tests a one-word field in a general register or
in memory for a zero value; if the field is zero, the next
instruction in the program is executed. |f the field tested
is not zero, it is decreased by a value of 1, and the
program branches to a specified memory location.

OPERAND 1: The memory location to which the
program branches if the tested field is not zero.
Addressing options to the base address M include
indexing, indirect addressing, or a combination of both.

OPERAND 2: The value tested; a one-word field in the
general register specified by Ro or in memory if indirect
addressing is used.

EXAMPLE

NAME OPERATION OPERAND

RN £ CXDEXERD {(Wuﬂu 207122232075 28 271 20 79 30,31 3733 34 35 3637 3 B 40 41 42 434445 4%

XA TAECCEI A . ..

Tests a 16-bit field in register 2. If the field contains a
non-zero value, a branch is made to the address identified
by TAG(5), and the value in register 2 is decreased by 1.
If the tested field is zero, the next instruction is executed.

Branch Subtract Two

BS2 @M4(R),@Ry

0 7 8 9
E7 il ry |i] Ro
My

FUNCTION: Tests a one-word field in a general register or
in memory for a zero value; if the field is zero, the next
instruction in the program is executed. If the field tested
is not zero, it is decreased by a value of 2 and the program
jumps to a specified memory location.

OPERAND 1: The memory location to which the
program jumps if the tested field is not zero. Addressing
options to the base address M include indexing, indirect
addressing, or a combination of both.

OPERAND 2: The value tested; a one-word field in the
general register specified by Ry or in memory if indirect
addressing is used.

EXAMPLE

NANE OPERATION SrEnanp

a2 can e vl e 20 20 2273 24 74 7w 2728 283031 32 3334 35 36 37 3839 4001 47 41035

B85z . ||raece), 88

4-30

The field at the address in register 3 is tested. |f the field
contains a non-zero value, a branch is made to the field
identified by TAG(6), and the value of the field identified
by @3 is decreased by 2. If the tested field is zero, the
next instruction is executed.

Branch and Save Return

BSR @M1(R¢),@R5

[} 7 8 9 1 122 13 15
EA Li] Ry [Ry

FUNCTION: Branches unconditionally to a specified
memory address, storing the address of the next
instruction in a general register or in memory. The address
stored (return address) is the current program address plus
four bytes.

OPERAND 1. The memory location to which the
program branches. Addressing options to the base address
My include indexing, indirect addressing, or a
combination of both.

OPERAND 2: The general register specified by Ro, or the
memory field at the address in the Ry register if indirect
addressing is used, that contains the return address.

EXAMPLE

Namg orERATION orERaND

LN 0 WL dh 10 IR 19 40 4 A2 434445 8

sk . ||mrece), s

Branches unconditionally to the address identified by
TAG(6) and stores the next instruction address (current
program address plus four bytes) into register 5. After the
instructions beginning at TAG(6) are executed, the
program continues with the instruction at the address in
register 5.

Skip Back-Unconditional

SB 14
0 7 8 15

BB I

FUNCTION: Skips back in the program a specified
number of words.

OPERAND 1: An 8-bit unsigned value in bits 8-15 of the
instruction. This value specifies the number of words to
skip and may range from 0-255. When the instruction is

executed, the number of bytes represented by iy is
determined (ly is doubled). This byte value is subtracted
from the current pragram address.

e———————
WARL OPERATION: i AN
e bk mos s kil m o o ok n % iy B9 T s B, 0000 0 TR G
- WAL LR)
s 2 e

Skips back unconditionally in the program 62 words (124
" bytes).

Skip Forward-Unconditional

SF Iy |

o 7 8 -
f BA i }

EUNCTION: Skips forward in the program a specified
number of words.

OPERAND 1: An 8-bit unsigned value in bits 8-15 of the
instruction. This value specifies the number of words to
skip and may range from: 0-255. When the instruction is
executed, the number of bytes represented by Iy is
determined (I is doubled). This byte value is added to
the current program address.

EXAMPLE

3 NAME [| orenaviow | orERAND:

AN U L U A RN UL e R Ty
b

sF/ . L s

Skips forward unconditionally in the program 8 words (16
bytes}.
Skip on Condition False-Back

SCFB Iyl
° ' 7 ® " 12 1"
‘ 4B | 1 I 72

FUNCTION: Skips back in the program a specified
number of words if the appropriate Condition register bit
is off. If the bit is on, the next instruction in the-program
is executed,

OPERAND 1: A 4-bit unsigned value in bits 811 of the
Instruction. This value specifies the number of words to
skip-and may range from Q-15.

When the instruction is executed the number of bytes
represented by by is determined {} ¢ is doubled). This byte
value Is subtracted from the current program address.

OPERAND 2: A 4-bit value In bits 12-16 of the
Instruction. This value specifies the position of the bit
tested for off in the Condition register and may range
from 0-16.

EXAMPLE

L2 iy

.

1# bit 3 {equal bit) in the Condition register is off, the
program will skip back in the program 12 words (24
bytes). If bit 3 is on, the next instruction in the program
Is executed.

$kip on Condition False-Forward

$CFF '51,'[2
o 7 8 1 12 1]

49 I 112

FUNCTION: Skips forward in the program a specified
number of words if the appropriate Condition register bit
is off. If the bit is on, the next instruction in the program
in executed.

COPERAND 1: A 4-bit unsigned value In bits 8-11 of the
instruction. This value specifies the number of words to
skip and may range from 0-15. When the instruction is
executed the number of bytes represented by lq is
determined (I is doubled). This byte value is added to
the current program address.

OPERAND _2: A 4-bit value In bits 12-16 of the
instruction. The l4 value specifies the position of the bit
tested for off in the Condition register and may range
from:0-16.

EXAMPLE

[
4 aa oPERATION osenanD
4 2 5 A & 67 Rfofio 11 i i3 vh 15 16 V019 20 21 7273 78 15, 20 70 78 30 01 91 .94 96,96 37 0 ad 41 4TI WAL G

e b;cfﬁ....’,.,.3.....‘....

If bit 3 {equal bit) in the Condition register is off, the
program will skip forward in the program five words (10
bytes). If bit 3 is on, the next instruction in the program
is executed.

4-31

Skip on Condition True-Back

SCTB Iq.lp

0 7 8 1 12 15

4A 3 ip

FUNCTION: Skips back in the program a specified
number of words if the appropriate Condition register bit
is on. If the bit is off, the next instruction in the program
is executed.

OPERAND 1: A 4-bit unsigned value in bits 8-11 of the
instruction. This value specifies the number of words to
skip and may range from 0-15. When the instruction is
executed the number of bytes represented by |y is
determined (lq is doubled). This byte value is subtracted
from the current program address.

OPERAND 2: A 4-bit value in bits 12-15 of the
instruction. This value specifies the position of the bit
tested for on in the Condition register and may range
from 0-15.

EXAMPLE

Name OPERATION orERAND

1.2 3 4 5 & 1 A]8[10 111213 4 15 16 16119 70 21 22 723 74 25 75 21 78 79 3031 37 13 34 35 3 11 W19 40 44 A7 4304 4% 4%

scrg .. | 1ra6,0

Assume that TAG is six words back in the program. If bit
0 (overflow bit) in the Condition register is on, the
program will skip six words (12 bytes) back to TAG. If bit

0 is off, the next instruction in the program is executed.

Skip on Condition True-Forward

tested for on in the Condition register and may range
from 0-15.

SAANVTLE
AN QPERATION OPERAND
L2 3 4 5 & 7 B18)10 11 121304 18 96 D] 18818 20 21 72 23 24 26 28 27 28 29 30 31 32 33 34 35 35 37 30 M 40 41 42 434445 48
scre. . 6,0
....... B N [

Assume that TAG is six words ahead of this instruction. If
bit O (overflow bit) in the Condition register is on, the
program will skip six words (12 bytes) forward to TAG. If
bit 0 is off, the next instruction in the program is
executed.

Skip if Register Minus-Back

SRMB 11.,R5

0 7 8 " 12 13 15
a7 Iy

FUNCTION: Skips back in the program a specified
number of words if the register contents tested are minus.
If the register contents are plus, the next instruction in
the program is executed.

OPERAND 1: A 4-bit unsigned value in bits 8-11 of the
instruction, This value specifies the number of words to
skip and may range from 0-15. When the instruction is
executed the number of bytes represented by Iq is
determined (l4 is doubled). This byte value is subtracted
from the current program address.

OPERAND 2: The value tested; a one-word field in the
general register specified by Ro.

EXAMPLE
SCTF I4.0p —
0 7 8 " 12 15
18 |1 |2) 1":“: i alile ﬁ:;:'l‘:y:s 361 —J wany n:‘::n 20 75 3031 3193 W 35 36 3/ 3839 A0 AT A7 A3MA 454
SARAZ L WTAELS
FUNCTION: Skips forward in the program a specified 1 o

number of words if the appropriate Condition register bit
is on. If the bit is off, the next instruction in the program
is executed.

OPERAND 1: A 4-bit unsigned value in bits 8-11 of the
instruction. This value specifies the number of words to
skip and may range from 0-15. When the instruction is
executed the number of bytes represented by 14 is
determined (I is doubled). This byte value is added to
the current program address.

OPERAND 2: A 4-bit value in bits 12-15 of the
instruction. This value specifies the position of the bit

4-32

Tests the contents of register 3. If negative, skips back to
the instruction located at TAG; if positive or zero, the
next instruction is read. Note that the assembler
determines the number of words (0-15) to skip by the
location of TAG.

Skip if Register Minus-Forward

SRMF 14,R5

o 7 8 1

46 Iy

13 15

FUNCTION: Skips forward in the program a specified
number of words if the register contents tested are minus.
If the register contents are plus, the next instruction in
the program is executed.

OPERAND 1: A 4-bit unsigned value in bits 8-11 of the
instruction. This value specifies the number of words to
skip and may range from 0-15. When the instruction is
executed, the number of bytes represented by I is
determined (lq is doubled). This byte value is added to
the current program address.

OPERAND 2: The value tested; a one-word field in the
general register specified by Ro.

EXAMPLE

NAME OPERATION OPERAND
v 2 3 a6 6 0 al9 e 17300 s o6 18] 19 20 71 2273 24 25 76 20 78 29 30,31 32 3336 3 36 37 38,39 40,41 42 43 4445 4
SAMF . | |[T#6,3 .

....................

Tests the contents of register 3. If negative, skips forward
to the instruction located at TAG; if positive or zero, the
next instruction is read. (The assembler determines the
distance of TAG from the SRMF instruction and uses this
value for 14.)

Skip if Register Plus-Back

SRPB I4,Rp
0 7 8 " 122 1 15
45 |1 R2

FUNCTION: Skips back in the program a specified
number of words if the register contents tested are plus. If
the register contents are minus, the next instruction in the
program is executed.

OPERAND 1: A 4-bit unsigned value in bits 8-11 of the
instruction. This value specifies the number of words to
skip and may range from 0-15. When the instruction is
executed, the number of bytes represented by Iq is
determined (14 is doubled). This byte value is subtracted
from the current program address.

OPERAND 2: The value tested; a one-word field in the
general register specified by Ro.

EXAMPLE

NAME orERATION OPERAND

v 2 3t w o |90 0 1703 187w 16 1] 18] 15 20 21 2223 24 2576 21 28 75 30 31 32.33 34 35 36 37 3839 A0 41 42 43 44 45 4§

SAPZ .

Assume that EQ4 is equated to -3. The program tests the
field at the address in register 5. If positive, the program
skips back three words (six bytes); if not positive, the
next instruction is executed.

Skip if Register Plus-Forward

SRPF 11.Ra

o 7 8
| 44 I

FUNCTION: Skips forward in the program a specified
number of words if the register contents tested are plus. |f
the register contents are minus, the next instruction in the
program is executed.

OPERAND 1: A 4-bit unsigned value in bits 8-11 of the
instruction. This value specifies the number of words to
skip and may range from 0-15. When the instruction is
executed, the number of bytes represented by 14 is
determined (14 is doubled). This byte value is added to
the current program address.

g)PERAND 2: The value tested; a one-word field in the
general register specified by Ro.

EXAMPLE

MHAME OPERATION OPERAND

— RS Y O — -
V2 e s bt wl9lhe 17 314 18 16 1]va] 19 70 2 2223 78 2525 20 78 79 36, 31 32,3334 35 9637 36,39 40,41 42 4344 45 4

RPFE ..l lcoNs, B2

Assume that CON5 is equated to 11. The program tests
the field at the address in register 2. If positive, the
program skips forward 11 words (22 bytes); if not
positive, the next instruction is executed.

Skip if Register Not Zero-Back

SRNB 14,R

0 7 8
43 Iq

FUNCTION: Skips back in the program a specified
number of words if the register contents tested are not
zero. If the register does contain all zeros, the next
instruction in the program is executed.

OPERAND_1: A 4-bit unsigned value in bits 8-11 of the

ingtruction. This value specifies the number of words to
skip and may range from 0-15. When the instruction is

4-33

executed, the number of bytes represented by 1q is
determined (4 is doubled). This byte value is subtracted
from the current program address.

OPERAND 2: The value tested; a one-word field in the
general register specified by Ro.

EXAMPLE

NAME OPERATION OPERAND

t 2 34 s 61 a{9fhovi 171314 15 16 17{1al19 20 24 2223 24 25 76 27,28 29 30 31 32 33 34 35 36 37 3839 40 41 47 %3 44 45 86

SANE . 1Y,

Tests the contents of register 2. If non-zero, the program
skips four words (eight bytes) back in the program; if
zero, executes next instruction.

Skip if Register Not Zero-Forward

SRNF 14,Ry

0 7 8 n

42 I

FUNCTION: Skips forward in the program a specified
number of words if the register contents tested are not
zero. If the register does contain all zeros, the next
instruction in the program is executed.

OPERAND 1: A 4-bit unsigned value in bits 8-11 of the
instruction. This value specifies the number of words to
skip and may range from 0-15. When the instruction is
executed, the number of bytes represented by Iq is
determined (14 is doubled). This byte value is added to
the current program address.

OPERAND 2: The value tested; a one-word field in the
general register specified by Ro.

EXAMPLE

NAME OPERATION orERAND

s 23 6 s 61 Ble 1o \v 173 ta ts o6 171181970 20 2223 74 25 76 77 78 29 30 3\ 37 33 34 35 36 1/ 3818 40,41 42 43 44 45 &

SR4F .| |v,2

Tests the contents of register 2. If non-zero, the program
skips four words (eight bytes) forward; if zero, executes
next instruction.

FUNCTION: Skips back in the program a specified
number of words if the register tested contains all zeros. If
the register does not contain all zeros, the next instruction
in the program is executed.

OPERAND 1: A 4-bit unsigned value in bits 8-11 of the
instruction. This value specifies the number of words to
skip and may range from 0-15. When the instruction is
executed, the number of bytes represented by Iy is
determined (14 is doubled). This byte value is subtracted
from the current program address.

OPERAND 2: The value tested; a one-word field in the
general register specified by Ro. ‘

EXAMPLE

maME ortRATION oFERAND

L3 A8 & nieleo 11121310 1 16 1710019 20 717223 24 25,26 21 78 29 30,31 37 33 34 35 36 37 3839 40 41 42 43 44 48 46

SRZ2 .. | |TA6,05

Tests the field at the address in register 5. If all zeros,
reads the instruction at location TAG; if not all zeros, the
next instruction is read. TAG must be within 15 words of
SRZB. (The assembler determines the distance of TAG
from the SRZB instruction and uses this value for 19.)

Skip if Register Zero-Forward

SRZF 1¢,Ro
0 7 8 1"

40 I

FUNCTION: Skips forward in the program a specified
number of words if the register tested contains all zeros. If
the register does not contain all zeros, the next instruction
in the program is executed.

OPERAND 1: A 4-bit unsigned value in bits 8-11 of the
instruction. This value specifies the number of words to
skip and may range from 0-15. When the instruction is
executed the number of bytes represented by 11 is
determined (I is doubled). This byte value is added to
the current program address.

OPERAND 2: The value tested; a one-word field in the
general register specified by Ry.

Skip if Register Zero-Back EXAMPLE
SRZB 11,R,
0 7 8 1 23NN 8T 8|90 10 (1 122 16 18 6 D[VRliS 20 71 72 73 24 79 7 1) 78 35 0 31 379334 3 W 1/ 1839 40 41 47 11441 4t
41 |1 ,,,,,,, SRZF .. | |\TmERE,8/

4-34

Tests the field at the address in register 1. If all zeros,
reads the instruction at location THERE; if not all zeros,
the next instruction is read. THERE must be within 16
words of SRZF. (The assembler determines the distance
of THERE from the SRZF instruction and uses this value
for |1.)

COMPARE INSTRUCTIONS

Mnemonic Name
cBY Compare Byte Memory — Register ®
CBYM Compare Byte Memory — Memory @
CMP Compare Memory — Register
CMPD Compare Direct
CMPI Compare Immediate

CMPK Compare Packed Decimal ®

CMPM Compare Memory — Memory
CMPR Compare Register — Register
CMPT Compare Two-Word

CMPX Compare Characters ¢

Compare Byte Memory — Register e

CcBY @M](R1),@R2

0 7 8 9 "n 122 13 185
F9 il Ry |i| Ry

EXAMPLE

NAME OPERATION] OPERAND

cay. ... \|\rascy), 6

153 ¢ 5 6 7 88|10 11121314 15 161 L]nmn 2221242576 21 78 75 30,31 3733 34 15 36 3/ 3839 60 4 42 614448 4b

Compares a one-byte operand identified by TAG(4) with
the rightmost byte of register 6; the Condition register is
set accordingly.

>ompare Byte Memory — Memory e

SBYM @M¢(R4),@M3(R9)

0 7 8 9 11 12 13 16
6B i Ry |i Ry
My
M3

EUNCTION: Performs a magnitude-only comparison of
one-byte fields in memory.

OPERAND 1: A onebyte field in memory. Addressing
options to the base address M4 include indexing, indirect

addressing, or a combination of both.

OPERAND 2: A one-byte field in memory. Addressing

FUNCTION: Performs a magnitude-only comparison of a
one-byte field in memory and either the low-order byte of
a general register or a one-byte fiela in memory.

OPERAND 1: A one-byte field in memory. Addressing
options to the base address My include indexing, indirect
addressing, or a combination of both.

OPERAND 2: A onebyte field (bits 8-15) in a general

register specified by Ro, or a one-byte field in memory if
indirect addressing is used.

RESULTS: Neither operand is changed. The Condition
register is affected as follows:

o Bits 0 and 4 are always cleared.

e |f operand 1 is greater than operand 2, bits 1 and
5 are set and bits 2, 3, 6, and 7 are cleared.

o If operand 1 is less than operand 2, bits 2 and 6
are set and bits 1, 3, 5, and 7 are cleared.

e If operand 1 is equal to operand 2, bits 3 and 7
are set and bits 1, 2, 5, and 6 are cleared.

options to the base address My include indexing, indirect
addressing, or a combination of both.

RESULTS: Neither operand is changed. The Condition

register is affected as follows.
e Bits 0 and 4 are always cleared.

o If operand 1 is greater than operand 2, bits 1 and
5 are set and bits 2, 3, 6, and 7 are cleared.

o If operand 1 is less than operand 2, bits 2 and 6
are set and bits 1, 3, 5, and 7 are cleared.

e |f operand 1 is equal to operand 2, bits 3 and 7
are set and bits 1, 2, 5, and 6 are cleared.

EXAMPLE

NAME orERATION OPERAND

1,234 567 8]9]10 11121318 1S 16 V18115 70 21 7273 24 26,26 27 2B 24 30 31 32 33 34 3 3637 3838 40 41 42 4348 45 16

CEYA .. . | |TACLI) HERECR).

Compares a one-byte operand at the address specified by
TAG(4) with another at the address specified by
HERE(2). If the operand at TAG(4) is greater than the
other operand, bit 1 of the Condition register is turned

4-35

on; if less than the other, bit 2 of the Conditlon register Is
turned on; if they are equal, bit 3 of the Condition
register is turned on. (Only one of these bits in the
Condition register will be turned on; the others remain
off.)

Compare Memory — Register

CMP @Mq(Rq),@RH,
) 7 8 @ 1 12 13 15

A1l li]l Ry [i] Ry

FUNCTION: Performs a comparison of a one-word field
in memory and a one-word field in a general register or in
memory.

OPERAND 1: A one-word field in memory. Addressing
options to the base address My include indexing, indirect
addressing, or a combination of both.

OPERAND 2: A oneword field in the general register
specified by Ro, or in memory if indirect addressing is
used.

RESULTS: Neither operand is changed. The Condition
register is affected as follows.

Bits 0-3 reflect the arithmetic results of the compare
and bits 4-7 reflect the logical results of the
compare, as specified below:

e Bits 0 and 4 are always cleared.

e |If operand 1 is equal to operand 2, bits 3 and 7
are set and bits 1, 2, 5 and 6 are cleared.

e If operand 1 is arithmetically greater than
operand 2, bhit 1 is set and bits 2 and 3 are

cleared.

o |f operand 1 is arithmetically less than operand
2, bit 2 is set and bits 1 and 3 are cleared.

e If operand 1 is logically greater than operand 2,
bit 5 is set and bits 6 and 7 are cleared.

e Ifoperand 1 is logically less than operand 2, bit 6
is set and bits 5 and 7 are cleared.

For arithmetic results, 7FFFqg is the largest
number and 80004¢ is the smallest number.

For logical results, FFFF g is the largest number
and 00004 is the smallest number.

4-36

EXAMPLE

A orERaTiON orERaND

12 345 6 1 al8lie iy 2300 vs o8 v7]i 18 20 71 7273 24 2 26 70 78 79 10 31 32 33 I ¥ 16 3/ 18 19 40 A1 47 6144 35 34

....... cAr .. | |rascs), 6

A 16-bit field at the address identified by TAG(5) is
compared to a 16-bit field at the address specified in
register 6; the Condition register is set accordingly.

Compare Direct

CMPD 14(R4),@R;
(1] 7 8 9 1 12 13 15

B1 0 R1 i R2

I

FUNCTION: Performs a comparison of a one-word
immediate value and a one-word field in a general register
or in memory.

OPERAND 1: A 16-bit immediate signed value in the
second word of the instruction; the value may range from
-32,768 to +32,767.

Indexing may be specified for operand 1. In this case,
operand 1 is derived by adding the |4 value and the
contents of the general register specified by R4; no check
for overflow or link is made during the indexing.

QPERAND 2: A one-word field in the general register
specified by R4, or in memory if indirect addressing is
used.

RESULTS: Neither operand is changed. The Condition
register is affected as follows.

Bits 0-3 reflect the arithmetic resuits of the compare
and bits 4-7 reflect the logical results of the
compare, as specified below:

e Bits 0 and 4 are always cleared.

o |f operand 1 is equal to operand 2, bits 3 and 7
are set and bits 1, 2, 5 and 6 are cleared.

o If operand 1 is arithmetically greater than
operand 2, bit 1 is set and bits 2 and 3 are
cleared.

e If operand 1 is arithmetically less than operand
2, bit 2 is set and bits 1 and 3 are cleared.

e If operand 1 is logically greater than operand 2,
bit 5 is set and bits 6 and 7 are cleared.

e Ifoperand 1 is logically less than operand 2, bit 6
Is set and bits 5 and 7 are cleared.

For arlthmetic results, 7FFFqg is the largest
number and 80001¢ is the smallest number.

For logical results, FFFF g is the largest number
and 00001¢ Is the smallest number.

EXAMPLE

NAME GPERATION OPERAND

v o2 34 8 6 7 B{8]10 10 1213 14 15 16 17[18119 20 21 22 23 24 25 26 27 28 26 30 31 32 33 34 3 3B 37 3B 3 40 41 42 4344 45 48

....... cAPD .| |-2500ls) 88

The value -2600 modified by the contents of register 5 is
compared with the value at the location specified in
register 3; the Condition register is set accordingly.

Compare immediate

CMPI 14,@Ry
1} 7

31

1M 12 13 15

FUNCTI(_)E: Performs a comparison of a 4-bit immediate
value and a one-word field in a general register or in
memory.

OPERAND 1: A 4-bit signed value in bits 8-11 of the
instruction; the value may range from 0-15. The 4-bit
value is compared with operand 2 in bit positions 12-15;
bits 0-11 are zeros.

OPERAND 2: A oneword field located in the general
register specified by Rg, or in memory if indirect
addressing is used.

RESULTS: Operand 2 is not changed. The Condition
register is affected as follows.

Bits 0-3 reflect the arithmetic results of the compare
and bits 4-7 reflect the logical results of the
compare, as specified below:

e Bits 0 and 4 are always cleared.

e If operand 1 is equal to operand 2, bits 3 and 7
are set and bits 1, 2, 5 and 6 are cleared.

o If operand 1 is arithmetically greater than
operand 2, bit 1 is set and bits 2 and 3 are
cleared.

e if operand 1 is arithmetically less than operand
2, bit 2 is set and bits 1 and 3 are cleared.

e If operand 1 is logically greater than operand 2,
bit 5 is set and bits 6 and 7 are cleared.

o If operand 1 is logically less than operand 2, bit 6
is set and bits 5 and 7 are cleared.

For arithmetic results, 7FFFqg is the largest
number and 8000 ¢ is the smallest number.

For logical results, FFFF g is the largest number
and 00004¢ is the smallest number.

EXAMPLE

naME OPERATION DPERAND

v2 0 4y .7 8]0 11 12 1314 18 i6 [0l 13 70 21 2223 2425 26 21 28 79 30 31 37 33 34 15 36 37 38 39 40 41 42 4344 45 46

CAPL .. M1, 06 .

Compares the immediate value 11 to the value at the
location specified in register 6 and sets the Condition
register accordingly.

>ompare Packed Decimal e

SMPK Mq(L{,R1),Ma(Lp,Rp)

0

51

FUNCTION: Performs a comparison of packed decimal
fields in memory; the signs are compared first, then the
comparison proceeds digit-by-digit, left to right. The field
lengths may vary from 0-265 bytes. The operation
continues until either of the following occurs: the
aperands are found unequal or the greater of L1 or Loy is
exhausted.

OPERAND 1: A packed decimal field in memory. The
field length, 0-2565 bytes, is specified by the Lq value in
the instruction. Addressing options to the base address M4
include only indexing.

OPERAND 2: A packed decimal field in memory. The
field length, 0-255 bytes, is specified by the Lo value in
the instruction. Addressing options to the base address Mo
include only indexing.

4-37

RESULTS: Neither operand is changed. The following
conditions may occur, depending on the values of Lq and
L2:

e If Ly = Lp the operands are compared
digit-by-digit.

e If Ly is less than Ly, the operands are compared
until Lq is exhausted, then zeros are compared to
operand 2.

o If Lq is greater than L5, the operands are
compared until Ly Is exhausted, then zeros are
compared to operand 1.

® If Ly = 0 and Ly = 0, bits 3 and 7 of the
Condition register are set and bits 1, 2, 5, and 6
are cleared.

The Condition register is affected as follows:
e Bits 0 and 4 are always cleared.

o |If operand 1 is greater than operand 2, bits 1 and
5 are set and bits 2, 3, 6, and 7 are cleared.

e If operand 1 is less than operand 2, bits 2 and 6
are set and bits 1, 3, b, and 7 are cleared.

e If operand 1 is equal to operand 2, bits 3 and 7
are set and bits 1, 2, 5, and 6 are cleared.

CONSIDERATIONS:

1. Digit validity is not checked during the compare.

2. Invalid digits may produce inconsistent resuits
(invalid digits are considered greater than valid
digits).

3. A minus zero field is less than a positive zero
field.

4. The compare is by sign first, and if it is like, then
the compare is made bit by bit, left to right. The
compare terminates as soon as an unequal
condition occurs, therefore the timing is affected
by data field contents as well as length. Timing
supplied (Appendix E) is for equal compare and

like signs.
EXAMPLE
NAWE OPERATION WERARD
Al v o s Aol s sz e e 8303y 123330 B I W WO 2 RS E
CHAPA . | |TH6(T0,.1), RERL(CLO.1,). . . .

4-38

Two packed decimal fields are compared; the Condition
register is set accordingly. In this example, the field
represented by TAG(80,1) is shorter than the other;
therefore, bytes 91 through 101 of the larger field,
HERE(101), will be compared to zeros if an inequality
determination cannot be made before exhaustion of the
smaller field.

Since the signs are checked first, an inequality decision
would be made immediately if the signs are different.

Compare Memory — Memory

CMPM @M4(R4),@M2(R4)
) 7 8 9 1 12 13 15
81 i| Ry [i] Ry
My
M2

FUNCTION: Performs a comparison of two one-word
fields in memory.

OPERAND 1: A one-word field in memory. Addressing
options to the base address M1 include indexing, indirect
addressing, or a combination of both.

OPERAND 2: A one-word field in memory. Addressing
options to the base address M3 include indexing, indirect
addressing, or a combination of both.

RESULTS: Neither operand is changed. The Condition
register is affected as follows.

Bits 0-3 reflect the arithmetic results of the compare
and bits 4-7 reflect the logical results of the
compare, as specified below:

o Bits 0 and 4 are always cleared.

e If operand 1 is equal to operand 2, bits 3 and 7
are set and bits 1, 2, 5 and 6 are cleared.

e If operand 1 is arithmetically greater than
operand 2, bit 1 is set and bits 2 and 3 are
cleared.

o If operand 1 is arithmetically less than operand
2, bit 2 is set and bits 1 and 3 are cleared.

e |f operand 1 is logically greater than operand 2,
bit 5 is set and bits 6 and 7 are cleared.

e If operand 1 is logically less than operand 2, bit 6
is set and bits 5 and 7 are cleared.

For arithmetic results, 7FFFg is the largest
number and 80004 is the smallest number.

For logical results, FFFFqg is the largest number
and 00004g is the smallest number.

EXAMPLE

NAME OPERATION OPERAND

al 9 t tvinan v ol s 21 2229 20 0 0 20225 30 3Y 17733 34 3 6 313839 40 41 42 63 44 45 46

CAPA . CHERE(H), TA6C6).

A 16-bit value at the address specified by @HERE(4) is
compared to a 16-bit value at the address identified by
TAG(6); the Condition register is set accordingly.

Compare Register-Register

CMPR ®R4,@Ry
0 7 8 8 1M 12 13 15

21 i| Ry [i| Ro

FUNCTION: Performs a comparison of two one-word
fields; either field may be in a register or in memory.

OPERAND 1: A one-word field located in the general
register specified by R4y, or in memory if indirect
addressing is used.

OPERAND 2: A one-word field in the general register
specified by Rg, or in memory if indirect addressing is
used.

RESULTS: Neither operand is changed. The Condition
register is affected as follows.

Bits 0-3 reflect the arithmetic results of the compare
and bits 4-7 reflect the logical results of the
compare, as specified below:

e Bits 0 and 4 are always cleared.

@ |f operand 1 is equal to operand 2, bits 3 and 7
are set and bits 1, 2, 5, and 6 are cleared.

o If operand 1 is arithmetically greater than
operand 2, bit 1 is set and bits 2 and 3 are
cleared.

e If operand 1 is arithmetically less than operand
2, bit 2 is set and bits 1 and 3 are cleared.

e |f operand 1 is logically greater than operand 2,
bit 5 is set and bits 6 and 7 are cleared.

o Ifoperand 1 is logically less than operand 2, bit 6
is set and bits 5 and 7 are cleared.

For arithmetic results, 7FFFqg is the largest
number and 80004 is the smallest number.

For logical results, FFFF g is the largest number
and 00004¢ is the smallest number.

EXAMPLE

NAME OPERATION OPERAND

1 s v wle] v s 6 Ll e 20 22 2424 0 26 20 78 29 3031 3733 34 35 36 37 38 99 40 41 47 43 44 45 4

CAPR . 7,05

A 16-bit field in register 7 is compared to a 16-bit field at
a location specified in register 5; the Condition register is
set accordingly.

Compare Two-Word

CMPT @M1(R1),@R2

0 7 8 9 12 13 16

71 1i] my "li[R

My

FUNCTION: Performs a comparison of a two-word field
in memory and a two-word field in two general registers
or in memory.

OPERAND 1: A two-word field in memory beginning at
the specified effective address. The most significant bits
are at this address.

Addressing options to the base address Mg include
indexing, indirect addressing, or a combination of both.

OPERAND 2: A two-word field located in two general
registers or in memory.

If direct addressing is used, the field is in the register
specified by Rp and the next highest register, Ry+1; the
most significant bits are in the Ro register. (Note: If
register 7 is specified by Ry, the field is in registers 7 and
0 with the most significant bits in register 7.)

If indirect addressing is used, the field is in memory
beginning at the address in the Ro register; the most
significant bits are at this address.

RESULTS: Neither operand is changed. The Condition
register is affected as follows.
Bits 0-3 reflect the arithmetic results of the
compare and bits 4-7 reflect the logical results of
the compare, as specified below:

4-39

e Bits 0 and 4 are always cleared.

e If operand 1 is equal to operand 2, bits 3and 7
are set and bits 1, 2, b and 6 are cleared.

o if operand 1 is arithmetically greater than
operand 2, bit 1 is set and bits 2 and 3 are
cleared.

o If operand 1 is arithmetically less than operand
2, bit 2 is set and bits 1 and 3 are cleared.

e If operand 1 is logically greater than operand 2,
bit 5 is set and bits 6 and 7 are cleared.

e If operand 1 is logically less than operand 2, bit
6 is set and bits b and 7 are cleared.

For arithmetic results, 7FFFqg is the largest
number and 80004 is the smallest number.

For logical results, FFFF g is the largest number
and 000014¢ is the smallest number.

EXAMPLE

namp OPERATION OPERAND

A G R L R N R L R W TR L DL R N LI R R R O I B LR AR LR O

cAPT . TAG(Y),./

A 32-bit field at the address identified by TAG(4) is
compared to a 32-bit field in registers 1 and 2; the
Condition register is set accordingly.

Compare Characters e

CMPX Mq(Lq,Rq),Ma(L2,Ro)

0 7 8 9 1 12 13 15

55

FUNCTION: Performs a magnitude-only comparison of
two fields in memory. The field lengths may vary from
0-255 bytes. The comparison is byte-by-byte and proceeds
from left to right. The operation continues until either of
the following occurs: the operands are found unequal or
the greater of L4 or Lo is exhausted.

OPERAND 1: A field in memory. The field length, 0-255
bytes, is specified by the L4 value in the instruction.
Addressing options to the base address My include only
indexing.

440

OPERAND 2: A field in memory. The field length, 0-255
bytes, is specified by the Lo value in the instruction.
Addressing options to the base address M5 include only
indexing.

BESULTS: Neither operand is changed. The following
conditions may occur, depending on the values of Lq and
Lot

e If Ly = Lg, the operands are compared
byte-for-byte.

® If Ly is less than Lo, the operands are compared
until L4 is exhausted, then blanks are compared
to operand 2,

e If Ly is greater than Ly, the operands are
compared until Ly is exhausted, then operand 2

is compared to blanks.

e If Ly =0 and Ly # 0, blanks are compared to
operand 2.

e If Ly =0and Ly = 0, no compare is performed.
The Condition register is affected as follows:
o Bits 0 and 4 are always cleared.

o If operand 2 is greater than operand 1, bits 1 and
5 are set and bits 2, 3, 6 and 7 are cleared.

o |f operand 2 is less than operand 1, bits 2 and 6
are set and bits 1, 3, 5 and 7 are cleared.

e If operand 2 is equal to operand 1, or if
L1=L2=0, bits 3 and 7 are set and bits 1, 2, 5 and
6 are cleared.

CONSIDERAT!IONS: Word compare is performed if, and
only if, the lengths Lq and L2 and the effective addresses
are even.

EXAMPLE

NAME orsmaTION orERAND

V2 3 a s 6t mlsl oo i ua e i el v gz 2000 20 76 20 28 29 10 3 32 3375 35 96 31 38 39 a0 a1 47 434046 4

CAPK . TA6C200.,.1). ,#ERL(200,2). .

A 200-byte field identified by TAG(200,1) is compared to
a 200-byte field identified by HERE(200,2). Comparison
proceeds byte-by-byte until inequality is determined or all
bytes have been compared and found equal. The
Condition register is set accordingly.

CONTROL INSTRUCTIONS

Mnemonic Name
NOP No Operation
RDX Read Extended Register
SR Service Request

No Operation

NOP

(] 7 18

FUNCTION: Performs no operation. This instruction has
no operands.

EXAMPLE

NAME OPERATION OPERAND
12 3 a 6 6 7 8[8]0 11 1213 18 15 16 11 18] 19 70 21 2273 74 25 25 21 78 9 30,31 12 39 % 15 38 1/ 3839 4D 41 42 4346 45 ¢

This instruction occupies four bytes in the program.
Read Extended Register

RDX Eq,Rg

0 7 8 9 1 12 13 18

FO Rq f R2

FUNCTION: Reads a Group Il extended register and
stores the information in a general register.

Extended Function Code: Bit 12 serves as an extension to
the basic function code and is O for this instruction; this
bit distinguishes between RDX and WRX.

OPERAND 1: The Group Il extended register to be read.

OPERAND 2: The general register which is to receive the
contents of the extended register.

CONSIDERATIONS: Any attempt to access a Group |
register results in a trap to the Invalid Instruction routine.

EXAMPLE

NAME OPERATION OPERAND

I -
1234 5 & 1 8]9110 11121314 15 16 17]18]19 20 21 22 23 24 25 26 27 26 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46

ox . |2

Reads the extended register O and stores the contents in
general register 3.

Service Request

SR @l

)] 7 8 15

13 I

FUNCTION: Provides an information byte called the
F@quest index (I7) to be interpreted by the operating
system (software). The request index byte has the
following format:

8 9 10 11 12 15
P (o E Class
P bit Indicates location of parameter string

(the @ sign in the source operand is used
to turn this bit on).

0 means immediately following service
request. 1 means at address contained in
register 6.

Cbit Indicates when control is to be returned
to requesting program.

0 means after service request is
completed.

1 means after service request is
recognized by the control program.

E bit Indicates if the requesting program will
process exception completion of the
request.

0 means requesting program will not
process exception completion.

1 means requesting program will process
exception completion.

Class Denotes major class in which the service
request falls. Service requests fall into
the following seven major classes.

Class 0 Debugging service request.

Class 1 Restricted service request.

Class 2 Control program service
request.

Class 3 Block 1/0 service request.

Class 4 Physical 1/0O service re-
quest.

Class 5 Supervisor service request,

Class 6 Telecommunications ser-
vice request.

4-41

OPERAND 1: 14 is the request index byte, which is
defined by the operating system.

RESULTS: Execution of a Service Request instruction
causes the following actions:

1. The Service Request bit (bit 13) of the executing
processor’s Condition register is set.

2. The Busy and Active bits of Processor 4 are both
set.

3. The Busy and Active bits of the executing
processor are both reset.
NOTE

Any further effects of the SR instruction, beyond
those described above, result from processing by the
operating system software. For more information
on the SR instruction, refer to the Control Program
and Data Management Services, Extended Reference
Manual.

DATA CONVERSION INSTRUCTIONS

Mnemonic Name
cvB Convert to Binary e
CVBT Convert to Binary Two-Word e
CvD Convert to Decimal e
CvDT Convert to Decimal Two-Word e
EDTX Packed Decimal/Alpha Edit e
PAKX Pack e
UNPX Unpack e
TRNX Translate e

Convert to Binary e

cvB @M1(R1),R2
0

7 8 9 1M1 12 13 15
AA i R1 f R2
My

FUNCTION: Converts a 3-byte packed decimal field in
memory to a 2-byte binary field in a general register.

Extended Function Code: Bit 12 serves as an extension to
the basic function code and is O for this instruction; this
function bit distinguishes between CVB and CVBT.

OPERAND 1: A 3-byte packed decimal field in memory.
Addressing options to the base address My include
indexing, indirect addressing, or a combination of both

4.42

The effective address points to the most significant byte
of the field. The packed decimal field may hold five digits
and a sign.

OPERAND 2: The resultant 2-byte signed binary value in
the general register specified by Ry. The binary value has
156 bits and a sign bit.

RESULTS: The result field resides at the operand 2
location. The Condition register is affected as follows.

o Bit 0 (overflow) is set if results are greater than
+32,767 or less than -32,767. (Note: -32,768 is
converted correctly but the overflow bit is set.)

® Bits 1-7 unchanged.

EXAMPLE

A orERaTION orERAND

v 2 3« v 6 1 afafio nn iz v s s 1l val1g 20 202223 2425 76 27 18 79 30 31 32 35 34 15 36 37 3839 4 41 42 43045 4

CVE .. | |TAGLHI 6 N

.........................

TAG(4) identifies a 3-byte packed decimal field (five
digits plus sign) which is converted to a 16-bit (15 bits
plus sign) binary value and loaded into register 6.

The 3-byte packed field at the effective address of
TAG(4):

| 1 |

The resultant 2-byte binary field in register 6:

T -
7 F|F F
1 |

A

Sign bit=0

Convert to Binary Two-Word e
CVBT @M;(R¢),Rq

0 7 8 9 1 12 13 1
AA [i] Ry [f] Ry
M1

5

FUNCTION: Converts a 6-byte packed decima! field in
memory to a 4-byte binary field in two general registers.

Extended Function Code: Bit 12 serves as an extension to
the basic function code and is 1 for this instruction; this
function bit distinguishes between CVB and CVBT.

OPERAND 1: A B-byte packed decimal field in memory.
The packed decimal field can hold 11 digits and a sign.
Addressing options to the base address M include
indexing, indirect addressing, or'a combination of both.
The effective address points to the most significant byte
of the field.

OPERAND 2: The resultant 4-byte field in two general
registers that will hold a 32-bit (31 bits and a sign bit)
binary field. The binary field will be in the register
specified by Rg and the next highest register Ro+1; the
most significant bits are in the Ry register. (Note: If
register 7 is specified by Ry, the binary field is in registers
7 and 0, with the most significant bits in register 7.)

RESULTS: The result field resides at the operand 2
location. The Condition register is affected as follows:

e Bit O (overflow) is set if results are greater than

+231.1 or less than -231.1. (Note: -231 is
converted correctly but the overflow bit is set.)

® Bits 1-7 are unchanged.

EXAMPLE

NAME orERATION OPERAND
vz 34 s 6 v Aol iz 131 18 16 el 19 20 717223 24 25 28 71 26 79 o 31 32 33 T 35 35 37 38 35 40,41 47 43 44 45 46
Va7 ... | ®rAcCsd.,7 . ..

@TAG(3) identifies a 6-byte packed decimal field (11
digits plus sign) which is converted to a 32-bit (including
sign} binary value and'loaded into register 7.

The 6-byte packed decimal field at the effective address of
@TAG(3):
T T [
o 2 1 417 4 18 3 6 4 7 0
1 1] 1] [

The resultant 4-byte binary field in register 7:

T T 1 T
7 FlF FIF FIlF F
| 1 i |

Sign bit=0

Convert to Decimal e

CvD @M¢(Rq),Rp

0 7 8 9 1M1 12 13 16

FUNCTION: Converts a 2-byte binary field in a general
register to a 3-byte packed decimal field in memory.

Extended Function Code: Bit 12 serves as an extension to
the basic function code and is O for this instruction; this
function bit distinguishes between CVD and CVDT.

OPERAND 1: The resultant 3-byte packed decimal field
in memory which can hold five digits and a sign.
Addressing options to the base address Mq include
indexing, indirect addressing or a combination of both,
The effective address points to the most significant byte
of the field.

OPERAND 2: A 2-byte signed binary value in the general
register specified by Ro. The binary value has 15 bits and
asign bit.

RESULTS: The result field resides at the operand 1
location.

EXAMPLE

nANE orERATION OPERAND

U 4 Sp—— S UM
v 23 s o aYSTho v a0y v vs 16 (7[1a] 9 20 21 22 23 7 75,26 21 28 20 30,31 32 .34 36 36 37 3833 4001 4243 W 45 06

cvo . |rascra,a .

Register 2 contains a 16-bit binary value which is
converted to a 3-byte packed decimal field and stored at
the location specified by TAG(1).

The 2-byte binary field in register 2:

1 I
7 F|F F

1 l

A

Sign bit=0

The resultant 3-byte packed field at the effective address
of TAG(1):

Convert to Decimal Two-Word e

CVDT @M;(R4),Ry

0 7 8 9 11 12 13 15

AB 1] m ff] Ry

AB].l R1

4-43

FUNCTION: Converts a 4-byte signed binary field located
in two general registers to a 6-byte packed decimal field
located in memory.

Extended Function Code: Bit 12 serves as an extension to
the basic function code and is 1 for CVDT instruction;
this function bit distinguishes between CVD and CVDT.

OPERAND 1: The resultant 6-byte packed decimal field
located in memory. The packed decimal field may hold 11
digits and a sign. Addressing options to the base address
Mq include indexing, indirect addressing, or a
combination of both, The effective address points to the
most significant byte of the field.

OPERAND 2: A 4-byte signed binary value (31 bitsand a
sign bit) located in two general registers. The binary field
is in the register specified by Rp and the next highest
register, Ro+1; the most significant bits are in the Ry
register. (Note: If register 7 is specified by Ro, the field is
in registers 7 and 0 with the most significant bits in
register 7.)

RESULTS: The result field resides at the operand 1
location.

EXAMPLE

Name OFERATION orERaND

V234G W

V7 140 1w TITIBEI 20 70 2220 24 4% /b 2128 24 i 11 32 1336 3 36 1 1K 49 ag a1 4 14 8a an 4

cvor . rﬂu,z. .

Registers 3 and 4 contain a 4-byte binary value which is
converted to 6-byte packed decimal (11 digits plus sign)
and stored at the location identified by DFLD.
The 4-byte binary field in registers 3 and 4:
| | I 1
7 F|F F|F F|F F
1] ! |

Sign bit =0

The resultant 6-byte packed decimal field at the address
specified by DFLD:

1 T I { | 1
0 211 4|7 4|8 3|6 4|7 C

' L 1 1 1
Packed Decimal/Alpha Edit o
EDTX M](L],R1),M2(L2,R2)
(1] 7 8 9 11 12 13 16

57

L2

4-44

FUNCTION: This instruction moves the contents of a
source field to a result fieid with editing symbols inserted
according to an edit mask. The first-byte address of the
mask field must be set in general register 1 prior to
execution of the edit instruction. A more complete
description of the functions performed and details of the
edit mask follows this summary.

OPERAND 1: The field in memory to be edited. It must
be a packed decimal field for numeric editing; for
alphanumeric editing it must be an EBCDIC field. For
numeric editing, the number of digits in the source field is
specified in Lq; for alpha editing, no length is specified.
Addressing options to the base address My include only
indexing.

OPERAND 2: The field in memory that will hold the
edited results. It will always be an EBCDIC field. For
numeric editing, the length in bytes of the result field is
specified in Lp. For alphanumeric editing, Ly must be
zero. Addressing options to the base address My include
only indexing.

RESULTS: An EBCDIC field at the operand 2 location.
Results depend on the type of editing and the contents of
the edit mask.

EXAMPLE

Name et RATION OPERAND
alaf RRLRNRE

\ELTX

S n 21 24 T 32 136 I 36 37 18 39 40 41 82 43 84 45 46

TAG(S) , HERE(E)

No length is specified because, in the example, the field to
be edited is assumed to be an alphanumeric field; as such,
both fields are EBCDIC.

The location TAG(5) contains the alphanumeric field to
be edited, and the field at the address HERE(6) receives
the editing symbols generated during the edit.

Detailed Description of Edit

The EDTX instruction performs both numeric editing and
alphanumeric editing.

The source field is moved to the resuit field with editing
symbols inserted according to the edit mask. The result
field is always an EBCDIC field. The source field must be
a packed decimal field when numeric editing is requested
(Lo=0). The source field must be an EBCDIC field when
alphanumeric editing is requested (Lo=0).

The editing function is terminated as dictated by the edit
mask. The length specifications (L1 and L) are used
when numeric editing is requested to unpack the source
(using UNPX) before actual editing begins.

Upon return from a numeric edit, general register 1
contains the byte address of the last nonsignificant (FO
value) character. This address is used to store the float
character if desired. If there is no significant character
(source field has zero value), general register 1 will be set
to zero. This register will always be set to zero following
an alpha edit. The Condition register is set as follows
when numeric editing is requested.
e Bit 1 is set if the source field is positive.

@ Bit 2 is set if the source field is negative.
e Bit 3 is set if all source digits are zero.

e Bit 4 is always cleared.

The Condition register is not used or modified when
alphanumeric editing is requested.

Edit Mask

Editing is accomplished by means of an edit control
technique. The mask field, which is referenced (but not
changed) by the EDTX instruction, is used to control data
movement from the source field to the result field. The
mask field is made up of a string of one character (double
digit) edit operators and EBCDIC insert characters. The
edit operators are basically control functions directing the
edit microcode rather than the traditional mask used by
the edit microcode to drive the editing function.

To facilitiate a clear understanding of the editing process,
the following microcode indicators are defined. These
indicators are internal to the microcode and not directly
accessible by the user. They are initialized by the
microcode as defined below. The edit mask operators
direct the resetting and use of these indicators.

There are two microcode indicators and one 8-bit value
field which the edit microcode requires to effect the
execution of the EDTX instruction:

SD Significance Digit indicator

Initially SD is set to zero and is set to
one when significance is detected (by
edit operator or by occurrence of a
non-zero digit in the source).

SG Sign Indicator

The SG indicator is set according to the
Condition register after the source has
been unpacked.

GT = Bit 1 set — source is positive

EQ = Bit 3 set — source is equal to zero

LT = Bit 2 set — source is negative

F1 Fill Character (8-bit EBCDIC)

Initially set with EBCDIC space (40
hex). The fill character may be specified
via the Set Fill edit operator to any
EBCDIC value.

The edit operators within the mask field have the
following format:

The first (zone) digit of each edit operator character is the
variant specifier, V. The second (numeric) digit is the
function specifier, F. When used, V specifies either repeat
count of the function F or subcontrol information.
Otherwise V is ignored.

The edit operators divide into three fuhctional categories:

1. Data Transfer
2. Data Insert
3. Control

Data transfer operators specify conditional and
unconditional transfer of data from the source field to the
result field.

Data insert operators specify conditional and

unconditional insertion of characters into the result field
where there is no dependency or reference to the source

field.

Control operators function as explicit edit performance
controls where there is no reference directly to the source
or result fields.

The function code F specifies the operation to be
performed. These codes have a numerical 4-bit
hexadecimal assignment. Following is a list of the edit
operators with the F code divided into categories.

Category Operator F-Hex F-Binary Operator Description

Data MC 8 1000 | Move character

Transfer MCS 9 1001 Move character suppress

Data iC 4 0100 | Insert character

Insert ICS 5 0101 Insert character suppress
ISG 7 0111 Insert sign
TE 0 0000 | Terminate edit

Control SsD 2 0010 | Set significance (SD)
SFI 6 0110 | Set fill (FI)

4-45

The IC, ICS, and $SFI| operators require one insert
character following the edit operator. The ISG operator
requires either one or two insert characters following the
ISG edit operator. in all cases the insert characters are
bypassed automatically by the microcode to obtain the
next edit operator.

Numeric Editing

The edit operators function as follows during a numeric
edit.

MC — Move Character (F = 8)
e |If SD equals zero, perform the SSD operation
(absolute).

o Move a character from the unpacked source field
to the result field.

e V specifies a repeat count (0-15).
MCS — Move Character Suppress (F = 9)

e If SD equals one, perform the MC operation.

e If SD equals zero and the next source character
equals zero, move the fill character from FI to
the result field.

e |f SD equals zero and the next source character is
non- zero, perform the MC operation (SD gets set
equal to one by MC).

e V specifies a repeat count (0-15).

IC — Insert Character (F = 4)

e Move the character following this edit operator
to the result field.

e V specifies a repeat count (0-15). The same
character will be inserted V+1 number of times.

ICS — Insert Character Suppress (F = 5)
o If SD equals one, perform the IC operation.

o If SD equals zero, move the fill character from
F1 to the result field.

o V specifies a repeat count (0-15). The same

character (fill character or insert character) will
be inserted V+1 number of times.

4-46

I1SG — Insert Sign (F = 7)

o IfSG = LT (negative source) and

V=0, move the character following this edit
operator to the result field;

V=1, move the character following the edit
operator to the result fieid;

V=2, move the two characters following this edit
operator to the result field.

e If SG = EQ or GT (positive source) and
V=0, move a + (4E hex) to the result field;
V=1, move a space (40 hex) to the result field;
V=2, move two spaces to the result field.

® V is a sub-control function specifying the type of
sign inserted.

TE — Terminate Edit (F = 0)
e Immediately terminates the EDTX instruction.

e The Condition register has been set to EQ, GT,
or LT.

o General register 1 is set to the address -1 of the

significant character within the source. It is set to
zero if there is no significance found.

e V is not used.
SSD — Set Significance (F = 2)

V is a sub-control tunction specifying whether absolute or
conditional set significance is requested.

® V =1, absolute set significance is performed:
1. Set SD equal to one.

2. Set current result field address -1 in general
register 1 as float address.

¢ V =0, conditional set significance is performed:
1. If SD equals one, this is a no operation.

2. If SD equals zero and SG=EQ, this is a no
operation.

3. If SD equals zero and SG=GT or LT (source
non-zero), perform the absolute set
significance.

SF| — Set Fill Character (F = 6)

e Set Fl with the character following this edit
operator in the mask field.

e V is not used.

Unusual Conditions in Numeric Editing — The following
hexadecimal values are not legal numeric editing
functions. If encountered, the following results will be
obtained.

° F=1 A normal Terminate Edit (TE)
will be executed.

° F=3 A normal Set Significance (SSD)
will be executed.

. F=C A normal Move Character (MC)
will be executed.

. F=D A normal Move Character
Suppress (MCS) will be

executed.
[F=AorE
1. If SD equals one, move source

character to result field.

2. If SD equals zero, perfurm the
absolute Set Significance
operation, skip the next source
character.

3. V is ignored.
) F=BorF

1. If SD equals one, move the source
character to the result field.

2. If SD equals zero and the source
character is non-zero, perform
the absolute Set Significance; skip
the next source character.

3. If SD equals zero and the source
character is zero, move the Fl
value to the result field.

4, V is ignored.
Since the source field is unpacked into the result field,

right justified, the length specification Lo must be greater
than Lq.

If Ly is equal to or less than L4, the source character
oould possibly be replaced by editing insert characters but
unpredictable results would be obtained.

Alphanumeric Editing

Alphanumeric editing is performed when Ly = 0. The edit
operators generally used are TE, IC, and MC,

The SSD, SFI, and ICS will function but are not generally
of use in alphanumeric editing. Following is a description
of the editing operations.

MC - Move Character (F = 8)

® Move a character from the source field to the
result field.

e Vs a repeat count (0-15).
® SD is not set.
IC — Insert Character (F = 4)
. & Same as for numeric editing.
ICS — Insert Character Suppress (F = b)
® Same as for'numeric editing.
TE — Terminate Edit (F = 0)

® Immediately terminate the edit and return
control to the caller.

SSD — Set Significance (F = 2)
e IfV=1andSD=0,setSD=1.

® The address of the last byte moved or inserted
into the result is placed in general register 1.

® IfV=0o0rSD =1, no operation.
SFI — Set Fill (F =6)

® Same as for numeric editing.
Unusual Conditions in Alphanumeric Editing — The
following hexadecimal values are not legal in
alphanumeric editing functions. |f encountered, the

following results will be obtained.

. F=1 A normal Terminate E€dit (TE)
will be executed.

447

° F =3 A normal Set Significance (SSD)
will be executed.

. F =7 The Insert Sign has no meaning
in that the Condition register is
not set in alphanumeric editing
and the SG does not contain a
meaningful value.

° F=9,C,orD
Treated as a normal Move
Character (MC).

° F=A,B E,or F
One character is moved from
the source field to the result
field. V is ignored.

The condition register is not used or modified by
alphanumeric editing. General register 1 is set to zero
upon return from alphanumeric editing.

Pack e

PAKX Mq(Lq,Rq)Ma(Lg,Rp)

11 12 13 15

58

Ly Lo

FUNCTION: Converts a zoned decimal field to a packed
decimal field. Both fields must be in memory; the field
lengths may vary from 0-255. Packing proceeds from right
to left until the length of the result field (Lg) is
exhausted.

OPERAND 1: The zoned decimal field; the length of the
field, in bytes, is specified by the Lq value in the
instruction. Addressing options to the base address Mq
include only indexing.

OPERAND 2: The resultant packed decimal field; the
length of the field, in bytes, is specified by the L, value in
the instruction. Addressing options to the base address Mo
include only indexing.

RESULTS: The packed field resides at the operand 2
location. The Condition register is affected as follows:

e Bit O is always cleared.
e Bit 4 (invalid) is set if an invalid decimal digit
{not 0-9) occurs in operand 1 or if the sign field

is not A-F; bits 1-3 are cleared. However, packing
continues until Lo is exhausted.

4-48

e No significance in the result (packed field) sets
bit 3, clears 1, 2 and 4.

@ Significance and a sign of F, A, C or E sets bit 1
and clears 2-4.

® Significance and a sign of B or D sets bit 2 and
clears 1, 3 and 4.

CONSIDERATIONS

1. Zone of low order digit (sign) is the only one
validated.

2. Packing continues until the length Lo is
exhausted.

3. If the number of packed digits in the receiving
field (2Lo-1) is greater than the number of digits
(L4) of the sending field, zero fill is provided.

4. If the number of packed digits (2L5-1) is less
than the number of digits (Lq) of the sending
field, truncation occurs but the overflow bit is
not set.

5. The sign of the sending field (zone of the
rightmost byte) becomes the sign of the receiving
field.

6. A field may be packed to itself (if the receiving
field length Lo is at least as large as L1).

7. The packed result field always contains an odd
number of digits (including significant and
nonsignificant digits).

8. No significance in the result and a negative
sending field sign generates a hex C sign and the
setting of bit 3 of the Condition register.

9. If Ly or Ly is zero, bit 3 of the Condition
register is set and bits 0-2 and 4 are cleared.

EXAMPLE

Assume that the following unpacked field is at an address
identified by WFLD, and WFLD=300.
300 301 302 303 304

1 1 1 A T

F 1 F 6 F 2 F 3 C 9

[L 1 L -
Unpacked
Ly =5)

The following instruction shows how the field WFLD may
be packed to itself; packing proceeds from right to left,
and the unused bytes are filled with zeros.

L] OPERATION OPERAND
w2 30 Ts v alsTo v i3 v s e v el 20 7 77 73 24 76 78,27 18,25 30,31 12,39 34,35 % 37 3899 40 41 42 23 445 18
PAKX . . . FAD (S,). , MEALES,).

300 301
T

0 0 0 0 1 6 2 3 9 c

A] ' 1 L

Packed
(Ly =5}

The next instruction defines the result field as three bytes
in length; the unused bytes (bytes 300 and 301) remain as
they were in the original field.

NAME orERATION OMERAND

....... PAKK . .| WELDCS,) WFLD(S,).

v 234 9 67 afsfig 234506 ”1;”“1“”‘"“""””“ 3133 34 35 36 37 3035 40 41 42 4344 ¢ 46

300 301 302 303 304

1 L ¥ T]

Packed
(L2 = 3)

SIGN RULES FOR PAKX AND UNPX

1. Valid signs for unpacked fields in hexadecimal,
are: plus=F,A,C,E and minus=B,D.

2. Valid signs for packed fields, in hexadecimal, are
plus=F, A, C, E, 0, 2, 4,6, 7, 8, and minus=8, D,
1,3,5,9.

3. When packing is performed, the packed field will
accept any valid sign in the unpacked field.
Similarly, when unpacking, the unpacked field
will accept any valid sign in the packed field.

4. The preferred signs are, in hexadecimal: plus=C,
and minus=D. An arithmetic operation
performed on a packed field will change any sign
other than a preferred sign to the preferred C or

D.
Unpack e
UNPX Mj(Lq,Rq),Ma(Lg,Ro)
0 7 8 9 1M1 12 13 15
59 Rq R2
M4
Mo
Ly Lo

FUNCTION: Converts a packed decimal field to a zoned
decimal figld. Botix fields must be in memory; the field
lengths may vary from 0-256. Unpacking proceeds from
right to left. The zoned decimal field must contain at least
as many bytes as there are significant digits in the packed
decimal field.

OPERAND 1: The packed decimal field; the length of the
field, 0-265 bytes, is specified by the L4 value in the
instruction. Addressing options to the base address M
include only indexing.

OPERAND_2: The resultant zoned decimal field; the
length of the field, 0-265 bytes, is specified in the Lo field
of the instruction. Addressing options to the base address
My include only indexing.

RESULTS: The zoned decimal field resides at the operand
2 location. The Condition register is affected as follows:

Bits 0 and 4 {invalid) are always cleared.

o If no significance results bit 3 is set, bits 1 and 2
are cleared.

¢ If significance results and the sign is F, A, C, E,
0, 2, 4,6, 7 or 8 bit 1 is set and bits 2 and 3 are
cleared.

o If significance results and the signis B, D, 1, 3, 5,
or 9 bit 2 is set and bits 1 and 3 are cleared.

CONSIDERATIONS

1. No field validity checking is performed.

2. If the number of unpacked digits in the receiving
field (Lj) is greater than the number of digits
(2L4-1) of the sending field, zero fill is provided.

3. If the number of unpacked digits (Lp) is less than
the number of digits (2L.1-1) of the sending field,
truncation occurs but the overflow bit is not set.

4. The sign of the sending field becomes the sign of
the receiving field. No preferred sign is generated.

5. Unpacking a field to itself will resuit in a
transposition of the sign and least significant
digit, and an invalid result field if the field length
Ly is greater than 3.

6. If Ly or Ly is zero, bit 3 of the Condition
register is set and bits 0-2 and 4 are cleared.

4-49

EXAMPLE

The following instruction will unpack a field named BAL
and place it in a field named OUT; the length of the
packed field is 2 bytes, the unpacked field is 3 bytes.

MAME orERATION orERAND

v2a e s 60 sfalo nr2 131 s i vilialie 20 21 7273 20 75 76 27 78 29 30 31 3233 14 35 16 31 3830 60 41 42 4148 45 45

UNPX .. [:u,ca,.).,.o.arc.v.,). ..

The packed field — BAL:

O] g
(L1 =2)

The resultant unpacked field — QUT:

Unpacked

[Fo[ral] oo

The unpacked field need only be 2 bytes in length; the
next instruction defines OUT as 2 bytes long, while BAL
is the same length as in the first example.

NAME OPERATION OPERAND

12 305 6 7 8910 1) 121310 15 46 1718[19 20 21 2273 74 28 76 22 78 23 30 11 17 34 38 I8 36 47 M W a0 414z 5. s 0

...... Aenrx . ||8Aaca,)., 0arcz,)y .

The resultant unpacked field — QUT:

Fo2les]

Unpacked
(‘Lz = 2)

Translate e

TRNX M{(Rq).My(Lg,Ro)

1] 11 12 13 15

56

My
0 f Loy
FUNCTION: Performs a byte-by-byte translation of the
contents of a memory field, using a transiate table. The
first byte of the translate table is located at the address

specified by the contents of general register 1. The table
has an assumed length of 256 bytes.

OPERAND 1: The field in memory that is to be
translated. Addressing options include indexing, but not
indirect addressing. The length of the M field is always
the same as the length of the M field.

4-50

OPERAND 2: The field in memory that will hold the
translated values at the conclusion of the operation.
Addressing options include indexing, but not indirect
addressing. The length (in bytes) of the My field is always
the same as the length of the M field.

FIELD LENGTH: From 1 to 256 bytes may be
translated. Because the 8-bit Ly field cannot depict a
value greater than 255, the number of bytes translated by
this instruction is always one greater than the literal value
of the Lo field. If Lo=0, one byte will be translated; if
L9=255, 256 bytes will be translated.

RESULTS: The translated result field resides at the
operand 2 location.

EXAMPLE

NAME oPtRATION OPERAND

t o2 3 a s & 7 RIS[0 g e e v A 20 21 27 75 24 25 76 27 78 23 30 41 92 33 14 34 0 V38 M 4 A1 42 43 94 45 4G

TRAX . WERE (XSS, 2),TA6(3)

The 256 bytes identified by HERE(255,2) are translated
byte-by-byte and placed in a field identified by TAG(3).
Each byte value extracted from the HERE(255,2) field is
entered into the table with the TAG(3) address added to
it. Consequently, the table contains the addresses of the
translated values, and therefore can be used as an index to
them. (The address of the table is contained in register 1.)

DATA TRANSFER INSTRUCTIONS

Mnemonic Name
CLDR Condition Register Load
CSTR Condition Register Store
INV Inverse Move Memory — Register
INVD Inverse Move Direct
INVI Inverse Move Immediate
INVM Inverse Move Memory — Memory
INVR Inverse Move Register — Register
LOD Load Memory — Register
LODB Load Byte e
LODD Load Direct
LODI Load Immediate
LODT Load Two-Word
movs Move Byte e
MOVL Move Long e

MOVM Move Memory — Memory
MOVR Move Register — Register
MOVX Move Characters e
PSTR Program Address Store
STO Store Memory — Register
STOB Store Byte o

STOT Store Two-Word

Condition Register Load

CLDR @R

0 7 8 9 n

28 i| Ry

FUNCTION: Transfers the contents of a one-word
field in a general register or in memory to the
Condition register.

NOTE

Normally, bits in the Condition register are set or
cleared by hardware to show the results following
the execution of certain machine instructions (bits
0-7), or to identify a status condition that requires
executive-program action (bits 12-15), such as a
Bounds error. If any of the bits 12-15 in the field
being transferred are true (on), false status
conditions may be transmitted to the executive
program when the Condition register is loaded. This
caution does not apply if the field being transferred
was originally generated by the CSTR instruction.

OPERAND: A one-word value in the general register
specified by R4, or in memory if indirect addressing is
used.

MAME OPERATION OPERAND
1.2 30 5 6 7 89|10 11 17 1314 15 16 17]18]19 70 21 7273 24 25 26 24 28 70 30 31 32 34 34 Vi 36 3/ 16 49 40 41 42 434445 45
....... | |lclok .. K N

A 16-bit field located at the address specified in register 5
is transferred to the Condition register.

Condition Register Store

CSTR @R1
1] 7 8 1 12 13 15
2A

FUNCTION: Transfers the contents of the Condition
register to a one-word field in a register or in memory.

OPERAND: A one-word value in the general register
specified by Ry, or in memory if indirect addressing is
used.

NAME OPERATION OPEAAND
v 2 34 56 1 8[8]10 111213 1 15 16 vilie{ 18 70 71222374 7526 21,2075 30,31 32 30 34 3 36 37 1839 40 41 42 4344 45 46
lesra .. | |1®6 ...
. P T T T I 0 O

The contents of the Condition register are transferred to
the location specified in register 6.

Inverse Move Memory — Register

INV @M(Rq),@R,

0 7 8 9 11 122 13 1B
A4 i R] i R2

FUNCTION: Transfers the one's complement of a
one-word field in memory to a one-word field in a general
register or in memory.

OPERAND 1: The sending field; a one-word field in

. memory. Addressing options to the base address M4

include indexing, indirect addressing, or a combination of
both.

OPERAND 2: The receiving field; a one-word field in the
general register specified by Ry, or in memory if indirect
addressing is used.

RESULTS: The result field resides at the operand 2
location.

EXAMPLE

NAME OFERATION OPERAND

vy e s s 0 wfs]o v iz v e nf el 18 20 212273 2475 26 20 70 29 3031 3733 34 34 36 3/ 3839 40 41 47 43 40 45 46

TNV .. | DDAr (), 8

The 16-bit field identified by DAT(4) is transferred in
one’s complement format to the location specified in
register 1.

Inverse Move Direct

INVD |1(R1),@Rz

1] 1 12 13 16

B4

FUNCTION: Transfers the one's complement of a
one-word immediate value to a one-word field in a general
tregister or in memory.

OPERAND 1: A 16-bit immediate value in the second
word of the instruction; the value may range from
(-65,635.

Indexing may be specified for operand 1. In this case,
operand 1 is derived by adding the 1¢ value and the
contents of the general register specified by R¢; no check
for overflow or link is made during the indexing.

OPERAND 2: A one-word field in the general register

specified by Rop, or in memory if indirect addressing is
used.

4-51

RESULTS: The result field resides at the operand 2
location.

EXAMPLE

NAME OFERATION OPERAND

] v g vs s il il v 212273 7075 76 7726 29 031 32 33 4 35 36 37 3839 40 41 A7 43 44 45 46
NV . ¢s50(%),87

The one’s complement of the value formed by adding 650
to the contents of register 4 is transferred to the location
specified in register 7.

Inverse Move Immediate

INVI 19,@R,

[i] 11 12 13 15

34

FUNCTION: Transfers the one’s complement of a 4-bit
immediate value to bits 12-15 of a one-word field in a
general register or in memory. Bits 0-11 of the one-word
field are always set to ones.

OPERAND 1: A 4-bit unsigned value in bits 8-11 of the
instruction; the value may range from 0-15.

OPERAND 2: A one-word field in the general register
specified by Rg, or in memory if indirect addressing is

used.

RESULTS: The result field resides in bits 12-15 of
operand 2.

EXAMPLE

OPERAND 1: The sending field; a one-word field in

memory. Addressing options to the base address M
include indexing, indirect addressing, or a combination of
both.

OPERAND 2: The receiving field; a one-word field in
memory. Addressing options to the base address Mo
include indexing, indirect addressing, or a combination of
both.

RESULTS: The result field resides at the operand 2
location.

EXAMPLE

Namt OPLHATION oPERAND

Ve 1z 01w I 0 120 75 2% 2 b 21 B 29 3031 323334 15 W3/ 38 39 40 41 42 43 44 45 46

Iavs . TAG6CE) , HERECT)

The one’s complement of a 16-bit field located at an
address identified by TAG(6) is transferred to the field at
the address identified by HERE(7).

Inverse Move Register — Register

INVR @R,@R;

24 i Ry |i| Ry
FUNCTION: Transfers the one's complement of a

one-word field to another one-word field; either field may
be in a register or in memory.

OPERAND 1: The sending field; a one-word field located
in the general register specified by Rq, or in memory if
indirect addressing is used.

OPERAND 2: The receiving field; a one-word field

Nam oPtRATION OPERAND

TV vt D[]0 20 22 2524 2% M 20 28 24 30 11 37 3334 35 36 37 16 19 4Q 4) 47 43 44 45 4§

T80 /1,81

The one’s complement of 11 is transferred to bits 12-15
of a 16-bit field located at the address specified in register
7. Bits 0-11 in the 16-bit field are turned on; the result
field appears as follows: 1111111111110100.

Inverse Move Memory — Memory

INVM @M1(R¢),@M5(R5)
0 7 8 9 11 12 13 16
64 il ”Ry |i] Ry
My
M2

FUNCTION: Transfers the one's complement of a

one-word field in memory to another one-word field in-

memory.

4-52

located in the general register specified by Ro, or in
memory if indirect addressing is used.

RESULTS: The result field resides at the operand 2
location.

EXAMPLE

NamE oFtRATION orERAND

oo ol e o ol e v s as a2 8 29 30 0 4 1 T4 b 36 37 3839 40 41 42 4344 15 46

IAvR . /,2

The contents of register 1 are converted to one's
complement format and stored in register 2.

Load Memory — Register

LOD @M, (Rl),@R2

o 7 8 9 1" 122 13 15

A0 i

FUNCTION: Transfers the contents of a one-word field in
memory to a one-word field in a general register or in
memory.

OPERAND 1: The sending field; a one-word field in
memory. Addressing options to the base address M
include indexing, indirect addressing, or a combination of
both.

OPERAND 2: The receiving field; a one-word field in the
general register specified by Ro, or in memory if indirect
addressing is used.

RESULTS: The result field resides at the operand 2
location.

EXAMPLE

Load Direct

LODD 1(R¢),@R5 or M1(R4),@R5

o 7 8 8 1m 12

3 1
BO o] ry [i] m2

I

NAME OPERATION OPERAND

t 2t a s 6 wfalne vz ay e v v/ ua 19 a0 20 22,24 20 5 26 41 28 29 40 41 32 39 34 35 36 31 3839 80 41 42 83 44 45 86

Lob . | [Froscr)., 65

FLDA(1) is the address of a 16-bit value which is
transferred to another location specified by the address in
register 5.

Load Byte e

LODB @Mq(R4),@R,

/] 7 8 9 17 122 13 15
F7 il Ry ‘.L Ry

FUNCTION: Transfers the contents of a one-word
immediate value to a one-word field in a general register
or in memory.

OPERAND 1: The sending field; a 16-bit immediate value
in the second word of the instruction; the value may range
from 0-65,5635. If an address symbol is used in operand 1
(Mq), the address of that field is used in the load
operation.

Indexing may be specified for operand 1. In this case,
operand 1 is derived by adding the 1q value and the
contents of the index register specified by Rq; no check
for overflow or link is made during the indexing.

OPERAND 2: The receiving field; a one-word field in the
general register specified by Ro, or in memory if indirect
addressing is used.

RESULTS: The result field resides at the operand 2
location.

EXAMPLE

My

FUNCTI%I_: Transfers a one-byte field in memory to bits
8-15 of a one-word field in a general register or to a
one-byte field in memory.

OPERAND 1: The sending field; a one-byte field in
memory. Addressing options to the base address M
include indexing, indirect addressing, or a combination of
both.

OPERAND 2: The receiving field; a one-word field in the
general register specified by Rg, or a one-byte field in
memory if indirect addressing is used. If the field is in a
general register, the byte is placed in bits 8-15 and bits 0-7
are zeroed out.

RESULTS: The result field resides at the operand 2
location.

EXAMPLE

NAME orERATION OFERAND

$ 23 4% 8 0 mlaro v 12713 v s 6 17) i8] 1920 207273 24 25 26 27 28 75 3031 37 93 34 3 36 37 3895 40 41 42 43 4% 45 46

o2s . | Wowcsd, e

NOW(3) vields the address of a one-byte field in memory
which is transferred to bits 8-15 of register 6.

NAME OPERATION OPERAND

12 34 5w afafun e ia s ik 1] 18{19 20 20 7 23 74 75 26 21 2028 30 31 32 33 14 35 36 3/ 3839 40 41 42 6344 45 46

LorD .. STORE, %

The address of the field named STORE (not the actual
field) is loaded into register 4.

Load Immediate

LODI 14,@R,

0 7 1 12 13 15

30

FUNCTION: Transfers a 4-bit immediate value to bits
12-16 of a one-word field in a general register or in
memory.

OPERAND 1: The sending field; a 4-bit unsigned value
located in bits 8-11 of the instruction; the value may
range from 0-15.

OQPERAND _2: The receiving field; a one-word field

located in the general register specified by Ro, or in
memory if indirect addressing is used.

4-53

RESULTS: The result field resides at the operand 2
location. The value from operand 1 is placed in bits 12-15
of operand 2; bits 0-11 of operand 2 are always zeroed
out.

EXAMPLE

HAME OPERATION OPERAND

17 145 6 1 afa o 111213 14 15 18 17] 5119 70 29 2223 24 26 26 21 28 29 30, 31 32 33 34 35 3 31 3018 40 41 42 4344 45 45

o2 . |lew, s

....................

The immediate value 14 is loaded into register 3. The
result in memory appears as follows: 0000000000001110.

Load Two-Word

LODT @M;(R),@Ry
0 7 8 9
70 li] m
My

11 L

122 13 1
[1] R

FUNCTION: Transfers the contents of a two-word field in
memory to a two-word field in a general register or in
memory.

OPERAND 1: The sending field; a two-word field in
memory beginning at the specified effective address. The
most significant bits are at this address.

Addressing options to the base address My include
indexing, indirect addressing, or a combination of both.

OPERAND 2: The receiving field; a two-word field
located in two general registers or in memory.

If direct addressing is used, the field is in the register
specified by Ro and the next highest register, Ro+1; the
most significant bits are in the Ro register. (Note: If
register 7 is specified by Ry, the field is in registers 7 and
0 with the most significant bits in register 7.)

If indirect addressing is used, the field is in memory
beginning at the address in the Ro register; the most
significant bits are at this address.

RESULTS: The result field resides at the operand 2
location.

EXAMPLE

NAME OPEMATION OPERAND

DR (1 CEDEEITND |s‘|7)’ﬂyl'uszé’nnun1515112! 29 30 31 32 33 34 35 35 37 3839 4041 62 A344 46,48

LosT . . ERECTD. & . o

The 32-bit field identified by HERE(7) is loaded into
registers 5 and 6.

4-54

Move Byte o

MOVB @M1(Rq),@M5(R5)
1] 7 8 9 1 12 13 15
6A i| Ry i| Ry
M
M2

FUNCTION: Transfers a one-byte field in memory to
another one-byte field in memory.

OPERAND 1: The sending field; a one-byte field in

memory. Addressing options to the base address My
include indexing, indirect addressing, or a combination of
both.

OPERAND 2: The receiving field; a one-word field in
memory. Addressing options to the base address M,
include indexing, indirect addressing, or a combination of
both.

RESULTS: The result field resides at the operand 2
location.

EXAMPLE

NAME orenaniOl ~ OPERAND

o2 bt s ow o wlal et s s e ol 21 2 1 28 g5 20 20 28 79 30 31 52 33 34 3% 35 17 38 39 40 41 42 43 44 45 46

ove . | |7#ERECI), #ERECY). .

A byte at the address identified by THERE({1) is moved to
the location identified by HERE(4).

Move Long e
MOVL Mq(Lq,Rq),M2(R3)

0 15

A

FUNCTION: Moves a field in memory to another location
in memory. The length of both fields must be the same;
this length can vary from 0-65,535.

OPERAND 1: The sending field, moved one byte at a
time. The field length, 0-65,535 bytes, is specified by the
L4 value in the instruction. Addressing options to the base
address M4 include only indexing. The effective address
points to the most significant byte of the field.

OPERAND 2: The receiving field. The field length,
065,535 bytes, is specified by the L4 value in the

instruction. Addressing options to the base address M2
include only indexing. The effective address points to the
most significant byte of the field.

RESULTS: The result field resides at the operand 2
location. The sending field and receiving field may
overlap. If L1 = 0, no move of data is executed.

CONSIDERATIONS

A word move is performed if L is even and the
beginning addresses of both fields are even.

EXAMPLE

NAME OPERATION OPERAND

v 7 3 a8 6 1 af9] 10 1121314 1518 (/1819 70 21 2223 24 25,26 21 28 29 0,31 32 33 34 35 3637 30 39 4D 41 4Z 434445 46

THC.(2000,6) HERACTY.

..........................

another memory location beginning at the address
represented by HERE(7).

Move Memory — Memory

MOVM @M¢(Rq),@M5(R5)

0 7 8 9 11 122 13 16
60 i Ry |i Ry
M
M2

FUNCTION: Transfers the contents of a one-word field in
memory to another one-word field in memory.

OPERAND 1: The sending field; a one-word field in
memory. Addressing options to the base address My
include indexing, indirect addressing, or a combination of
both.

OPERAND 2: The receiving field; a one-word field in
memory. Addressing options to the base address Moy
include indexing, indirect addressing, or a combination of
both.

RESULTS: The result field resides at the operand 2
location.

EXAMPLE

HAME OPERATION OPERAND

S [B S
L2 3 45 B 7 BIB)10 11 121314 15 16 17]18]19 20 21 22 23 74 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46

Wova .. | Word, Torce)

identified by TOT(6).
Move Register — Register
MOVR @Rq,@R,

0 7 8 9 1 12 13 16

20 il Ry |i| R

FUNCTION: Transfers the contents of a one-word field to
another one-word field; either field may be in a general
register or in memory.

OPERAND 1: The sending field; a one-word field in the
general register specified by R4, or in memory if indirect
addressing is used.

OPERAND 2: The receiving field; a one-word field in the
general register specified by Ro, or in memory if indirect
addressing is used.

RESULTS: The moved value is at the operand 2 location.

EXAMPLE

NAME OPERATION OPERAND

V2 3705 6 7 af8 10 10 1213 e 18 16 t7|1a19 70 212273 24 26 26 27 28 20 30,31 323334 35 36 37 38 38 40 41,42 43 M 45 46

....... Hove .. (86,4

A 16-bit field at the address specified in register 6 is
moved into register 4.

Move Characters o

MOVX Mq(Lq,Rq).Ma(Lo,R9)

0 15

54

L

FUNCTION: Transfers the contents of a field in memory
to another field in memory; the field lengths may vary
from 0-255 bytes.

OPERAND 1: The sending field. The field length 0-255
bytes, is specified by the Lq value in the instruction.
Addressing options to the base address M4 include only
indexing.

OPERAND 2: The receiving field. The field length, 0-2565
bytes, is specified in the Lo field of the instruction.
Addressing options to the base address Mo include only
indexing.

RESULTS: The result field resides at the operand 2
location. The following conditions may occur, depending
on the values of Lq and Lo.

e If L = Ly, the number of bytes specified by L4
is transferred.

e If Lq is less than Lp, the number of bytes

specified by Lq is transferred, then blanks are
used to fill operand 2.

4-55

e If L4 is greater than Ly, the number of bytes
specified by Lo is transferred.

o If Ly =0 and Ly # 0, the number of bytes
specified by Lj is filled with blanks.

e IfLy=0and L, =0, no transfer is executed.

CONSIDERATIONS

A word move is performed if, and only if, the
tengths Lq and Lo and the effective addresses M1
+ (R 1) and Mg + (Rp) are both even.

EXAMPLE

NamE OPERATION OPERAND

12 3475 6 7 85|10 11 1213 14 15 16 1118|1920 21 22 73 24 15,26 27 28 28 30 313233 34 35 36 37 3835 A0_A1 A2 43 44 45 45
VWOYX .. | ToTALCLO,) ,DISA0UTCL.L,).

DISKOUT is larger than TOTAL, the rightmost 5 bytes of
DISKOQUT are filled with blanks.

Program Address Store

PSTR @Ry
¢ 7
3A

11 12 13 15

FUNCTION: Transfers the current program address to a
one-word field in a register or in memory.

specifi_e.& by'-R1, or in memory if indirect addressing is
used.

RESULTS: The current program address resides at the
operand 1 location.

EXAMPLE

NAME orEmATION OPERAND

'\ 23 4 % 6 1 819000 11 1203 14 15 16 17]18] 13 20 21 7279 74 75 26 27 78 29 30 31 32 34 34 35 36 31 I8 39 40 41 42 4146 b 46

....... PSTR .. | 1Ps ..

Transfers the current value of the Program Address
register to the address specified in register 5.

Store Memory — Register
STO @M¢(Rq),@Rq

0 7 8 9 11 12 13 156
FA | i |
My

FUNCTION: Transfers the contents of a one-word field in
a general register or in memory to another one-word field
in memory.

OPERAND 1: The receiving field; a one-word field in
memory. Addressing options to the base address Mj
include indexing, indirect addressing, or a combination of
both.

4-56

OPERAND 2: The sending field; a one-word field in the
general register specified by R2, or in memory if indirect
addressing is used.

RESULTS: The field is stored in the operand 1 location.

EXAMPLE

NAME OPERATION OrERAND

\ 2345 6 7 8]9]10 11 1203 18 15 16 18] 19 20 21 7223 24 7576 27 78 25 30,31 32 33 34 36 36 31 36 39 a0 41 42 4344 4 4p
....... 7o . .V TAECI). Y

The contents of register 4 are stored at a memory location
identified by TAG(1).

Store Byte e

STOB @M;(R¢),@R,
0 7 8 9 11 12 13 15
F8 li] » Ji] ®y
M1

FUNCTION: Transfers the contents of bits 8-15 of a
general register or a one-byte field in memory to a
one-byte field in memory.

OPERAND 1: The receiving field, a one-byte field in
memory. Addressing options to the base address My
include indexing, indirect addressing, or a combination of
both.

OPERAND 2: The sending field; bits 8-15 of the general
register specified by Ry, or a one-byte field in memory if
indirect addressing is used.

RESULTS: The stored byte resides at the operand 1
location.

EXAMPLE

NAME OPERATION orERAND

4.4
HIPIB) WS 021 27 28 2% 5 26 20 20 29 30 4% 82 44 44 45 36 47 3K 59 4 81 47 47 48 a4 an A7

1 7 34y 6 1 Rfalo iz rias g

sros . ATACI), 4

The contents of bits 8-15 of register 4 are stored at a
memory location identified by DATA(3).

Store Two-Word

STOT @M¢(R1).@R,
0 7 8 9 11 12 13 15
FB i Ry |i| Ry
M4

FUNCTION: Transfers the contents of a two-word field in
two general registers or in memory to a two-word field in
memory.

OPERAND 1: The receiving field; a two-word field in
memory. Addressing options to the base address M4
include indexing, indirect addressing, or a combination of
both.

OPERAND 2: The sending field; a two-word field in
general registers Ry (more-significant word) and Ro+1
(less significant). If indirect addressing is used, the
registers contain the memory addresses of the words, in
the same relationship as for direct addressing. (Note: If
register 7 is specified as Ro, the field is in register 7 and 0,
with 7 containing the more-significant word or address.)

RESULTS: The stored value resides at the operand 1
location.

EXAMPLE

NAME OPERATION OPERAND

v 2 374 % 6.7 als}10 v 124314 18 16 17|18 19 20 2 22 23 24 75,26 27 78 29 3031 32,33 38 55 36 3 3839 40 41 42 4394 45 ap

....... sroer ... |Darc2 82

A 32-bit field, the address of which is specified in register
7, is stored in memory at a location identified by DED{2).

SHIFT INSTRUCTIONS

Mnemonic Name

ARDI Arithmetic Right Double Shift —
Immediate

ARDR Arithmetic Right Double Shift —

. Register

ARSI Arithmetic Right Single Shift —
Immediate

ARSR Arithmetic Right Single Shift —
Register

LLDI Logical Left Double Shift —
Immediate

LLDR Logical Left Double Shift —
Register

LLSI Logical Left Single Shift —
Immediate

LLSR Logical Left Single Shift —
Register

LRDI Logical Right Double Shift —
Immediate

LRDR Logical Right Double Shift --
Register

LRSI Logical Right Single Shift —
Immediate

LRSR Logical Right Single Shift —
Register

RLDI Rotating Left Double Shift -
Immediate

RLDR Rotating Left Double Shift —
Register

RLSI Rotating Left Single Shift —

Immediate

RLSR Rotating Left Single Shift —
Register

SHFK Shift Packed Decimal o

Arithmetic Right Double Shift — Immediate

ARDI 14,Ry

0

5F

FUNCTION: Performs an arithmetic right shift of a
two-word field in two general registers. The sign (bit 0) of
the field is extended. The shift count is a 4-bit immediate
value.

OPERAND 1: The shift count; a 4-bit unsigned value
located in bits 8-11 of the instruction. The shift count
may range from 0-15.

OPERAND 2: A two-word field in two general registers:
the register specified by Ro and the next highest register,
Ro+1. The most significant bits are in the Ry register.
(Note: If register 7 is specified as Ry, the field is in
registers 7 and 0, with the most significant bits in register
7.)

EXAMPLE

NAME OFERATION orgaanD

t 23 ¢ 56 1 alafi0 rn vz iva v 16 r[val 19 20 21 22 73 720 75 76 2/ 28 29 30 31 3233 34 35 16 17 3839 a0 41 42 43 a8 a5 26

MRII . t3,5

Shifts the data in registers 5 and 6 to the right 13 bit
positions. The sign is extended from bits 0-13 in register
B; data shifted out of register 6 is lost.

Arithmetic Right Double Shift — by Register

ARDR @R1,Ry

0 7 8 9

3F i

FUNCTION: Performs an arithmetic right shift of a
two-word field in two general registers. The sign (bit 0) of
the field is extended. The shift count is a 4-bit field in a
general register or in memory.

OPERAND 1: The shift count; a 4-bit unsigned value
located in the general register specified by Rq, or in
memory if indirect addressing is used. The shift count
may range from 0-15.

OPERAND 2: A two-word field in two general registers:
the register specified by Ro and the next highest register,

4-57

Rop+1. The most significant bits are in the Ro register.
(Note: If register 7 is specified as Ry, the field is in
registers 7 and 0, with the most significant bits in register
7.)

The data is shifted to the right the number of positions
specified by operand 1. The sign of the data is extended.
Any data shifted out of the Rp+1 register is lost.

EXAMPLE

NAME OPERATION OPERAND

v 2 3 0 s 5 1 a]s] 10 11 12 v 4 15 16 11|18 19 20 21 72 73 24 25 26 71 28 29 30 31 32 33 34 38 36 3/ 38 39 4g 41 42 43 a4 45 46

428 .. | @3,8 ..
Shifts the data in registers 5 and 6 to the right; register 3
contains the address of a memory field that holds the shift

count. The sign is extended, and data shifted out of
register 6 is lost.

Arithmetic Right Single Shift — Immediate

ARSI 14,Rg

0

4F

FUNCTION: Performs an arithmetic right shift of a field
in a general register. The sign (bit 0) of the field is
extended. The shift count is a 4-bit immediate value.

OPERAND 1: The shift count; a 4-bit unsigned value
located in bits 8-11 of the instruction. The shift count
may range from 0-15.

OPERAND 2: A one-word field in the general register
specified by Ro. The data is shifted to the right the
number of positions specified by operand 1. The sign of
the data is extended. Any data shifted out of the register
is lost.

EXAMPLE

NAME OPERATION orERAND

V2 34 5 6 1 8]8]40 11 1213 14 15 16 1| 6] 19 20 71 2273 24 75 26 2728 29 30 31 32 33 34 34 35 37 38 39 40 A1 42 43 4a a5 45
‘ ’
MASL . | X'B 4.

Shifts the data in register 2 to the right 11 bit positions.
The sign is extended from bits 0-11; any data- shifted out
of register 2 is lost.

Arithmetic Right Single Shift — by Register

ARSR @R¢,Ry

[2F i

4-58

FUNCTION: Performs an arithmetic right shift of a
one-word field in a general register. The sign (bit 0) of the
field is extended. The shift count is a 4-bit field in a
general register or in memory.

OPERAND 1: The shift count; a 4-bit unsigned value
located in the general register specified by R4, or in
memory if indirect addressing is used. The shift count
may range from 0-15.

OPERAND 2: A one-word field in the general register
specified by Ro. The data is shifted to the right the
number of positions specified by operand 1. The sign of
the data is extended. Any bits shifted out of the register
are lost.

EXAMPLE

NaME OPERATION Brerann

Vol o e ol e a2 2020 gm0 28 9 3031 52 3334 3536 37 38 33 40 41 42 5344 45 46

task e

Shifts the data in register 4 to the right; register 5 contains
the shift count. The sign is extended, and data shifted out
of register 4 is lost.

Logical Left Double Shift — Immediate

LLDI 14,Ry

0 7

| 5C

FUNCTION: Performs a left shift (zero fill from right) of
a two-word field in two general registers. The shift count
is a 4-bit immediate value.

9 "

OPERAND 1: The shift count; a 4-bit unsigned value
located in bits 8-11 of the instruction. The shift count
may range from 0-15.

OPERAND 2: A two-word field in two general registers:
the register specified by R and the next highest register,
Ro+1. The most significant bits are in the Ry register.
(Note: If register 7 is specified as Rp, the field is in
registers 7 and O, with the most significant bits in register
7.)

The data is shifted to the left the number of positions
specified by operand 1. Any data shifted out of the Ry
register is lost.

EXAMPLE

Nam OPERATION OPERAND

3ot o) e v s i DRl 021 22 280 25 A 21 28 3 W HY U XA T TG TH 19 60 41 42 43 44 45 46

Lo . |lre,0

Shifts the data in registers 0 and 1 to the left 10 bit
positions. Data shifted out of register O is lost.

Logical Left Double Shift — by Register
LLDR @Rq,Rs

0 7 8 @
3C i

15

FUNCTION: Performs a left shift (zero fill from right) of
a two-word field in two general registers. The shift count
is a 4-bit field in a general register or in memory.

OPERAND _1: The shift count; a 4-bit unsigned value
located in the general register specified by R4, or in
memory if indirect addressing is used. The shift count
may range from 0-15.

OPERAND 2: A two-word field in two general registers:
the register specified by Rg and the next highest register,
Ro+1. The most significant bits are in the Ry register.
(Note: If register 7 is specified as Ro, the field is in
registers 7 and 0, with the most significant bits in register
7.)

The data is shifted to the left the number of positions
specified by operand 1. Any data shifted out of the Ry

register is lost.

EXAMPLE

EXAMPLE

NAME OPERATION OPERAND
L2 3 4 s 6 s wfofie n s v v i v el 19 20 202201 20 4 20 20 28 29 50,31 3233 34 1 46 31 3819 40 A1 &2 414448 4
TAVAK W SN 7,8 ...

Shifts the data in register 5 to the left 7 bit positions.
Data shifted out of register 5 is lost.

Logical Left Single Shift — by Register

LLSR @R1,Ry

0 7 8 9

2C i

15

FUNCTION: Performs a left shift (zero fill from right) of
a one-word field in a general register. The shift countis a
4-bit field in a general register or in memory.

CPERAND 1: The shift count; a 4-bit unsigned value in
the general register specified by Rq, or in memory if
indirect addressing is used. The shift count may range
from 0-15.

OPERAND 2: A one-word field in the general register
specified by Ro. The data is shifted to the left the number
of positions specified by operand 1. Any data shifted out
of the register is lost.

EXAMPLE

NAME OPERATION OPERAND

v o wf L s i vl a2 a2 2808 2 a0 20 28 2 0 117 383 1S 46 37 T 19 40 41 A2 4384 45 46

LL2R . | 102,38
Shifts the data in registers 3 and 4 to the left; the address

of the shift count is in register 2. Data shifted out of
register 3 is lost.

Logical Left Single Shift — Immediate

NAME orEAATION OPERAND

R U —_— [— [———
U2 3 48w v wfafin 12 1414 v 16 1/}18] 19 20 21 27 73 74 25 26 27 28 29 30,31 32,31 34 35 3 37 38 39 40,41 42 2344 45 46

L LSR . 92,7

Shifts the data in register 7 to the left; the address of the
shift count is in register 2. Data shifted out of register 7 is
lost.

Logical Right Double Shift — Immediate

LRDI 14,Rp
LLsl 14.Ro 0 , "
[7 15 5D
4c FUNCTION: Performs a right shift (zero fill from left) of

FUNCTION: Performs a left shift (zero fill from right) of
a one-word field in a general register. The shift count is a
4-bit immediate value.

OPERAND 1: The shift count; a 4-bit unsigned value
located in bits 8-11 of the instruction. The shift count
may range from 0-15.

OPERAND 2: A one-word field in the general register
specified by Ro. The data is shifted to the ieft the number
of positions specified by operand 1. Any data shifted out
of the register is lost.

a two-word field in two general registers. The shift count
is a 4-bit immediate value.

OPERAND 1: The shift count; a 4-bit unsigned value
located in bits 8-11 of the instruction. The shift count
may range from 0-15.

OPERAND 2: A two-word field in two general registers:
the register specified by Ry and the next highest register,
Ro+1. The most significant bits are in the Ry register.
(Note: If register 7 is specified as Rp, the field is in
registers 7 and 0, with the most significant bits in register
7.)

4-59

The data is shifted to the right the number of positions
specified by operand 1. Any data shifted out of the Ry+1
register is lost.

EXAMPLE

NAME OPERATION orERAND

023 85 no afafwo w23 e s 6 10]16[18 20 21227320 2526 2/ 28 20 30 31 37 33 30 3 36 37 30 38 4D 41 47 4344 45 46

lLgDL . 10,0

Shifts the data in registers 1 and 2 to the right 10 bit
positions. Data shifted out of register 1 is lost.

Logical Right Double Shift — by Register

LRDR @Ry,R,

1] 7 8 9

3D i

FUNCTION: Performs a right shift (zero fill from left) of
a two-word field in two general registers. The shift count
is a 4-bit field in a general register or in memory.

OPERAND 1: The shift count; a 4-bit unsigned value
located in the general register specified by R4, or in
memory if indirect addressing is used. The shift count
may range from 0-15.

OPERAND 2: A two-word field in two general registers:
the register specified by Ry and the next highest register,
Ro+1. The most significant bits are in the Ry register.
(Note: If register 7 is specified as Ro, the field is in
registers 7 and 0, with the most significant bits in register
7.)

The data is shifted to the right the number of positions
specified by operand 1. Any data shifted out of the Ro+1
register is lost.

EXAMPLE

NAME OPERATION OPERAND

2034 5 6 7 A{8[10 11 12 13 14 16 16 118119 2 20 22 73 26 2576 20 2B M 40 Vi 2 3¢ 34 e dh 10 I8 19 a0 41 47 4348 a5 46

cr22 . |87,y .

Shifts the data in registers 4 and 5 to the right. The shift
count is at the memory address specified in register 7.
Data shifted out of register 5 is lost.

Logical Right Single Shift — lmmediate

LRSI I4,Rg

]

4D ,

FUNCTION: Performs a right shift (zero fill from left) of
a one-word field in a value.

4-60

OPERAND 1: The shift count; a 4-bit unsigned value
located in bits 8-11 of the instruction. The shift count
may range from 0-15.

OPERAND 2: A one-word field in the general register

specified by Ro. The data is shifted to the right the
number of positions specified by operand 1. Any data
shifted out of the register is lost.

EXAMPLE

NAME OPERATION OPERAND

1,2 34 5 6 1 8|9 10 111213 14 15 16 17| 18119 20 2122 73 24 25 2% 77 28 28 30 31 32 33 34 35 35 37 38 39 A0 41 42 43 44 45 48

KRSZ . |, . .

Shifts the data in register 2 to the right 3 bit positions.
Data shifted out of the register is lost.

Logical Right Single Shift — by Register

LRSR @R4,Rp

0 7 8 9

2D i

15

FUNCTION: Performs a right shift (zero fill from left) of
a one-word field in a general register. The shift count is a
4-bit field in a general register or in memory.

OPERAND 1: The shift count; a 4-bit unsigned value
located in the general register specified by Rq or in
memory if indirect addressing is used. The shift count
may range from 0-15.

OPERAND 2: A one-word field in the general register
specified by Rp. The data is shifted to the right the
number of positions specified by operand 1. Any data
shifted out of the register is lost.

EXAMPLE

HAME OPERATION OPERAND

v 2 18 o o wf9fog n1z 03 va o v 1ifeal 1920 212223 26 25 26 27 28 29 30 31 32 33 3¢ 35 36 37 3839 40 41 42 43 44 45 36

LASR . 8,8

Shifts the data in register 5 to the right; the shift count is
in register 3. Data shifted out of register 5 is lost.

Rotating Left Double Shift — Immediate

RLDI 14,Ry

o

5E

FUNCTION: Performs a rotating left shift of a two-word
field in two general registers. The shift count is a 4-bit
immediate value.

OPERAND 1: The shift count; a 4-bit unsigned value
located in bits 8-11 of the instruction. The shift count
may range from 0-15.

OPERAND 2: A two-word field in two general registers:
the register specified by Ry and the next highest register,
Ro+1. The most significant bits are in the Ry register.
(Note: If register 7 is specified as Rp, the field is in
registers 7 and 0, with the most significant bits in register
7.

The data is shifted to the left the number of positions
specified by operand 1. Each bit shifted out of the left
end of the Ry register is brought back in the rfght end of
the Ro+1 register. Bits shifted out of the lower register are
not lost.

EXAMPLE

NAME OPERATION OPERAND

vz 3 4 b6 1 a]d i 1 w13 1 16 | iefis 70 712223 2425 26 71 20 79 30,31 37 13 3438 36 37 30 3% 4041 42 4144 45 46

tcoz (2,6

Shifts the data in registers 6 and 7 to the left 8 bit
positions. Each bit shifted out of the left end of register 6
is brought back in the right end of register 7.

Rotating Left Double Shift — by Register
RLDR @R4,Rg

(1} 7 8 9
3E i Rq
FUNCTION: Performs a rotating left shift of a two-word

field in two general registers. The shift count is a 4-bit
field in a general register or in memory.

OPERAND 1: The shift count; a 4-bit unsigned value
located in the general register specified by Rq, or in
memory if indirect addressing is used. The shift count
may range from 0-15.

OPERAND 2: A two-word field in two general registers:
the register specified by Ry and the next highest register,
Ro+1. The most significant bits are in the Ry register.
(Note: If register 7 is specified as Ry, the field is in
registers 7 and O, with the most significant bits in register
7.)

The data is shifted to the left the number of positions
specified by operand 1. Each bit shifted out of the left
end of the Ry register is brought back in the right end of
the Ro+1 register. Bits shifted out of the register are not
lost.

EXAMPLE

NAME OPENATION orEnanD

t 2 3 a5 62 890 11171314 15 16 vil1a]19 20 71 2273 24 25,76 27 2 20 30 31 3233 34 35 3037 3839 A0 A1 42 43 44 45 48

ReDA .. |18, 2.

..........................

Shifts the data in registers 2 and 3 to the left; the shift
count is at the memory location specified in register 5.
Data shifted out the left end of register 2 is brought back
in the right end of register 3.

Rotating Left Single Shift — Immediate

RLSI |1,R2
0 7

4E

FUNCTION: Performs a rotating left shift of a one-word
field in a general register. The shift count is a 4-bit
immediate value.

QOPERAND 1: The shift count; a 4-bit unsigned value
located in bits 8-11 of the instruction. The shift count
may range from 0-15.

OPERAND 2: A one-word field located in the general
register specified by Ro. The data is shifted to the left the
number of bit positions specified by operand 1. Bits
shifted out of the register are not lost; each bit shifted out
of the left end of the register is brought back in the right
end of the register.

EXAMPLE

NAME OPLRATION OPERAND

v 2 i e s o k[3]h0 o a2 a1 is 16 vl ia] 18 70 21 22 23 24 25 26 21 28 29 30 31 32 33 34 35 36 97 39.39 4041 42 4344 4546

WResr o | |,R2 ...

Shifts the data in register 2 to the left 5 bit positions.
Data shifted out the left end of the register is brought
back in the right end; no bits are lost.

Rotating Left Single Shift — by Register

RLSR @Rq,Ry

0 7 8 9
2E i

15

FUNCTION: Performs a rotating left shift of a one-word
field in a general register. The shift count is a 4-bit field in
ageneral register or in memory.

OPERAND 1: The shift count; a 4-bit unsigned value
located in the general register specified by Rq or in
memory if indirect addressing is used. The shift count
may range from 0-15.

OFPERAND 2: A one-word field in the general register
specified by Ro. The data is shifted to the left the number
of positions specified by operand 1. Each bit shifted out
the left end of the register is brought back in the right
end. Bits shifted out of the register are not lost.

4-61

EXAMPLE

NAME OPERATION QPERAND

V20 0w a]o] 0 o VIR TV T T el s 7 21 70 73,20 2576 27 78 79 30,31 32,39 34 35 36 37 303 4041 47 4344 45 48

RLSAR . B, A .

..........................

the address specified in register 1. Data shifted out the left
end of the register is brought back in the right end of the
register.

Shift Packed Decimal

SHFK M1(L1,R1),|2(R2)

0

38

L4 Iy

FUNCTION: Shifts a packed decimal field in memory a
specified number of digits. The length of the packed
decimal field can be defined for each SHFK instruction.

OPERAND 1: The packed decimal field in memory. The
length of this field (in bytes) is in L4; this value may range
from 0-255. Addressing options to the base address M
include only indexing.

OPERAND_2: The shift count is the |y value in the
instruction, a signed value from -128 to +127. If a register
is specified in Ry, the contents of the register are added to
the 15 value to form the shift count.

A right shift is indicated in the source statement by a
minus sign preceding the | value. A left shift requires no
sign preceding lo, although a plus sign may be used. The
shift count indicates the number of digits to be shifted.
Note, however, that the value of Ry could change the
shift direction, because the effective shift count
determines direction.

RESULTS: The Condition register is affected as follows:

e Bit 0 is set if any significance is shifted out in a
left shift; otherwise bit O is cleared.

e Bit 1is set if the result is positive; otherwise bit 1
is cleared.

e® Bit 2 is set if the result is negative; otherwise bit
2 is cleared.

e Bit 3 is set if all significance is shifted out,

resulting in zero, or if 15 = 0; otherwise bit 3 is
cleared.

4-62

EXAMPLE

NamE OPEMATION orEnaND

V2 T4 % 6 7 69070 (1171116 v v VI[6[19 70 21 72,23 2 25,76 21 2,29 30 1 52 33 L 55 36 37 W3 43 41 47 43 400506
SHFA .. . | \746.0(20,2),-44

The contents of location TAG are modified by the
contents of register 2 to identify a 90-byte packed
decimal field, which is shifted 14 bit positions to the
right.

CONSIDERATIONS

1. Validity of digits is not checked.
2. Invalid digits are propagated.

3. The sign is not changed unless all significance is
right shifted out and the sign was originaily
minus. Under these circumstances the sign is
changed to a hexadecimal C {positive).

4. Maximum shift count is left 127 to right 128
digits if Ry = 0; if Ry # 0, maximum shift count
is left 32,767 to right 32,768 digits.

FLOATING-POINT INSTRUCTIONS

The optional floating-point instructions provide all the
versatility required in manipulating floating-point values
and expand the computational capacity of the processing
unit with a minimum expansion of execution time. These
ten instructions allow floating-point values to be
converted, compared, transferred, and combined
arithmetically.

Mnemonic Name

ADDF Add Floating Point
CMPF Compare Floating Point
DIVF Divide Floating Point
FLTF Convert Fixed to Float
INTF Convert Float to Fixed
LODF Load Floating Point Register
MPYF Multiply Floating Point
NEGF Negate Float Point Register
STOF Store Floating

SUBF Subtract Floating Point

The following discussion and figures explain particularities
of floating-point usage.

DATA FORMAT

The floating-point number consists of a 64-bit
fixed-length format as shown in Figure 4-1. Both the
exponent and the fraction are signed values.

The floating-point value is the product of its fraction,
and base 16 raised to the power of its exponent: fraction x
16%%XP, The seven bits of the exponent allow a range of
0-127. The exponent is expressed in “excess 64 (401g)"
notation, resulting in both a positive and negative range
as shown below,

exponent bits

12346567

excess 401 causes 111111 1= +63190r3Fqg
the sign bit of
positive exponent 100000 1= #1
tobeaone——— ——p1 0 0 0 0 0 0= O
and the sign bit o111t 11 1= -1
of negative exponent /"0 11111 0= -2
to be a zero
000O0O0O 1= -6319g0r014g
0 00O0O0O0O0-= -6499
negative exponent
range
positive exponent -1-»-641q or
range _3F 00
06319 or 16 76
4016 7F16

The fractional portion of the floating-point number is
always represented in positive notation (a true fraction)
but with its true sign indicated in bit zero. The base point
is assumed to be at the left of the highest-order hex
digit of the fraction.

NORMALIZATION

A floating-point number is normalized when the highest-
order hex digit of the fraction is not zero. Floating-point
instructions do not normalize their operands before
execution; therefore, to avoid loss of significance, operands
should be normalized prior to a floating-point instruction.
However, all floating-point instructions except Compare

ZERO REPRESENTATION

To express a true floating-point zero, all 64 bits are zero.
Also, a zero fraction result, generated by a floating-point
operation, forces the exponent and the sign (bit 0} to
zero.

A zero participates normally in all arithmetic operations
except a floating-point divide. Attempting to divide by a
true zero or with a zero fraction in the divisor causes an
arithmetic exception to be flagged in the Condition
register, and no actual division occurs.

ARITHMETIC EXCEPTIONS

Conditions may occur during the execution of
floating-point instructions which cause exceptions to
normal completion. These arithmetic exceptions are
flagged in the Condition register. The possible arithmetic
exceptions and the instructions during which they may
occur are as follows:

Exception Floating Point Instruction

Add, Subtract, Multiply,
and Divide

Exponent Overflow

Add, Subtract, Multiply,
Divide, and Load

Exponent Underflow

Zero Divisor Divide

Convert Float to Fixed

Integer Overflow

The user of floating-point instructions can detect arith-
metic exceptions by checking the Condition register after
execution, or by providing an arithmetic exception
address pointer within the instruction itself. With the
latter procedure, when an arithmetic exception occurs,
control is passed to the exception address; the normal

and Divide will perform correctly with unnormalized read-next-instruction address than is placed in the
operands and will produce normalized results. exception address general register.
0 1 -»7 8 T » 63
SIGN BIT OF ; H 77
FRACTION —¥1 | 1.
.=) I S f f
= ——T T —
+=0 7BITS fL 56 BITS— —
e —RADIX (BASE) POINT FRACTION
. OF FRACTION CAPACITY
INCLUDING 4 HEXA
SIGN 1 i
DECIMAL
DIGITS
4-63

Figure 4-1. Floating-Point Data Format

The floating-point arithmetic exceptions are denoted by
the setting of bit position O and the exception code, bit
positions 1-3 of the Condition register. A floating-point
Compare instruction sets bit groups 0-3 and 4-7 as shown
in the note of Figure 1-4. The following table gives all the
Condition register settings possible as a result of a
floating-point instruction, except for Compare
instructions.

Bit Positions Set Condition Indicated

3 Result is zero

2 Result is less than
zero

1 Result is greater
than zero

0 Integer overflow on

a Convert Float
to Fixed instruc-

tion.
Oand 1 Exponent overflow
Oand 2 Exponent under-
flow
Oand 3 Zero divisor

FLOATING-POINT REGISTER

A floating-point register consists of four consecutive
registers in the basic register file for each of the eight
processor states. The register format is shown in Figure
4-2,

All floating-point instructions make reference to a

floating-point register implicitly. The floating-point
register is accessible only by micro-instructions.

0 14q——bis—Pp7 8« bits P15

T
S exponent L 2 most-significant hex digits

next 4 hex digits

next 4 hex digits

4 jeast-significant hex digits

Figure 4-2, Floating-Point Register Format

4-64

Add Floating Point

ADDF @M¢(Rq),Rp

86 i

FUNCTION: Performs an algebraic addition of a
four-word floating point value in memory and the
contents of the floating point register. Both operands may
be normalized or unnormalized before the addition.

First, the exponents of the two operands are compared; if
they do not agree, the smaller exponent is increased by
one each time its fraction is right shifted one hexadecimal
digit, until the two exponents agree. Next the fractions
are algebraically added to form an intermediate 15
hexadecimal digit sum with a possible overflow carry.

If an overflow carry is used in generating the intermediate
sum, the sum is right shifted one hexadecimal digit and
the exponent increased by one. If the increased exponent
is greater than +63, an exponent-overflow arithmetic
exception occurs.

After the intermediate sum is formed, either including the
carry maneuver or without, it is normalized. if the
normalizing causes an exponent less than -64, an
exponent-underflow arithmetic exception occurs. Finally,
the 15 hexadecimal digit intermediate sum is right shifted
to form the 14-digit resultant fraction, without rounding.

OPERAND 1: A four-word field in memory beginning at
the effective word address. The effective address points to
the most significant word of the four-word floating point
number. Addressing options to the base address Mq
include indexing, indirect addressing, or a combination of
both.

OPERAND 2: A one-word field in the general register
specified by Ro. This field is the arithmetic exception
address to which control is transferred if arithmetic
exception occurs.

RESULTS: The sum resides in the floating point register

as a normalized numher. The Condition register is affected
as follows:

e Bit 1 is set if the normalized number 0.
e Bit 2 is set if the normalized number< 0.

o Bit 3 is set if the normalized number = 0.

e Bits 0 and 2 are set if exponent underflow occurs
during normalization. The sign and fraction of :
the resultant number are correct, but the
exponent is too large by a value of 128.

o Bits 0 and 3 are set if exponent overflow occurs
during the sum determination. The sign and
fraction of the resultant number are correct, but
the exponent is too small by a value of 128.

EXAMPLE

NAsE CPERATION OPERAND

L2348 61 al8fi10 1112031415 16 uLT;:ounnu:unnnnmn 3733 34 35 36 37 10 38 40,41 42 43 44 45 46

....... ADDF . . . LA RS ..

The field identified by FLDA(1) is added to the field in
the floating point register; results are in the floating point
register. General register 3 contains the arithmetic
exception address.

0 1 7 8 15 16 31 32 97 48 63
N A
A\ N \'}
Floating
Point 0 46 OA 2E00 0000 0000 *
Register '\‘ '\ '\f
Four-word | O 3E 02 8000 000V 0000 "
i i A A A
Fieid in N N \
Memory
N A A
Floating ¥ \ v
Point 0 45 A2 E000 0028 0000 e
Register
N . N A A
ormalized)\ \'y ¥
* e
Bit 1 of the Condition register is set (sum >0) = .0A2E x 166 = .A2E0000028 x 16*°
* %
=.028 x 1672

Compare Floating Point

CMPF @M (R4)

87 i

FUNCTION: Performs an algebraic comparison between
the contents of the floating point register and a fioating
point number in a four-word field in memory. Both
operands are assumed to be normalized. Invalid compare
results may occur if they are not. Operands with zero
fractions compare equal even though the signs and
exponents may differ.

OPERAND 1: The four-word field in memory located at
the effective address. The effective address points to the
most significant word of the four-word memory field.
Addressing options to the base address Mq include
indexing, indirect addressing, or a combination of both.

RESULTS: Neither operand is changed. The Condition
register is affected as follows:

e Bits 0 and 4 are cleared.

e Bits 3and 7 are set if the operands are equal. Bits
1, 2,5, and 6 are cleared.

@ Bits 2 and 6 are set if the operand in memory is
less than the contents of the floating point
register. Bits 1, 3, 5, and 7 are cleared.

® Bits 1 and 5 are set if the operand in memory is
greater than the contents of the floating point
register. Bits 2, 3, 6, and 7 are cleared.

EXAMPLE

NAME orenATION orERAND

V2 345 6 7 8]9] 0 0 121318 16 16 18] 15 70 212223 24 2676 20 28 29 30 31 37 3338 38 % 51 1839 40 41 42 4 44 45 a5
ICAPF . . #0.L0.C1). ...

The four-word field identified by HOLD(1) is compared
to the contents of the floating point register; the
Condition register is set accordingly.

Divide Floating Point
DIVF @M1(R1),R2

0 7 8 9
89 [i] Ry
My

1" 12 13 15
Ro

4-65

FUNCTION: Divides the contents of the floating point
register (dividend) by a four-word floating point number
in memory (divisor) and places the quotient in the
floating point register. The quotient is a normalized value
and the remainder is not saved. The divisor and the
dividend must be normalized prior to the execution of the
DIVF instruction.

The floating point division consists of three operations:

1. Subtracting the divisor exponent from the
dividend exponent and adding 64 (401g) because
of the excess 64 exponent notation.

2. Division of the fractions with the resultant
quotient sign, following the rules for signed
numbers.

3. Quotient normalization.

An exponent-overflow arithmetic exception occurs if the
final quotient exponent exceeds +63 and an
exponent-underflow arithmetic exception occurs if the
final exponent is less than -64. Also, a division-by-zero
arithmetic exception occurs when a division with a zero
divisor is attempted. In this case the dividend in the
floating point register is unaltered.

OPERAND 1: A four-word field in memory beginning at
the effective word address. The effective address points to
the most significant word of the four-word floating point
number. Addressing options to the base address My
include indexing, indirect addressing, or a combination of
both.

OPERAND 2: A one-word field in the general register
specified by Ro. This field is the arithmetic exception

address to which control is transferred if arithmetic
exception occurs.

RESULTS: The normalized quotient resides in the
fioating point register. The Condition register is affected
as follows:

e Bit 1 is set if the normalized quotient ;>0.
e Bit 2 is set if the normalized quotient<0.

e Bit 3is set if the normalized quotient = 0.

o Bits 0 and 2 are set if exponent underflow occurs
during normalization or exponent determination.
The sign and the fraction of the dividend are
correct, but the exponent is too large by a value
of 127.

e Bits 0 and 3 are set if exponent overflow occurs
during exponent determination. The sign and the
fraction of the dividend are correct, but the
exponent is too small by a value of 127.

e Bits 0 and 3 are set if a division by zero is
attempted.

EXAMPLE

naAME OrERATION oPERAND

12 3 a s bt alalin v ara s o g 10 2 22787828 76 20 78 28 30 11 W 31 M I 11 G 18081 a7 A3 A48 46

DIvFE . rl.a.dﬁ(z).,./. s

This instruction divides the contents of the floating point
register by the value at the address identified by
QUAN(2). Register 1 contains the arithmetic exception
address.

4 63
0 1 7 8 15 16 A 31 32 A 47 48 A

. Y ') |
Floating
point *
register 0 39 30 0000 0000 0000
Divisor '\‘ "\ J\‘
from
four- »
word 0 3D 60 0000 0000 0000
field in
memory A‘ A‘ 1‘

.\

_ N —N \
Quotient
placed "
in floating *
point Y 3C 80 0000 0000 0000
register \ A A

| |) | N
» *_l-*
=+3x16~7 =+8x 1674
- %)
Bit 2 of the Condition Register is set (quotient < 0) =+6x16~3

4-66

Convert Fixed to Float

FLTF @R,
[1] 7 8 9 1 12

82 i| Ry

FUNCTION: Converts a 16-bit signed integer value to a
normalized floating point number and places it in the
floating point register.
OPERAND 1: A one-word sending field in the general
register specified by Rq or at the address specified by the
contents of R4 if indirect addressing is used. This field
contains the signed integer value.
RESULTS: The Condition register is affected as follows:
e Bit 1 is set if the converted floating number >0.
e Bit 2 is set if the converted floating number <0.

e Bit 3 is set if the converted floating number = 0.

EXAMPLE

NAME OPERATION oPERAND

V2034 % 6 7 81800 1 1213 18 15 16 C]16] 19 20 20 22 23 24 25 26 2078 25 30, 31 32 23 18 I8 th 11 339 40 41 47 4344 45 4

A positive fixed-point value in register 6 will be converted
to floating point and placed in the floating point register.

0|0]6|F Positive integer

01 7 8 '\‘ 63
0 42 6 F XXXX...... x [Floating
Ny point
» number
Positive Exponent Normalized fraction
Sign
EXAMPLE

NAME OPERATION oPERAND

1 2 34 5 5 2 w]9] 10 111713 14 15 16 U[R]18 20 2172 73 24 75 76 27 28 29 3031 3233 34 3 36 37 3830 40 a1 42 43 41 45 46

..................

In this example, a negative number at the address in
register 5 is converted from fixed to floating point.

Convert Float to Fixed

INTF @Rq,Rg

0 7 8 9

81 i

15

FUNCTION: Converts the floating-point number in the
floating-point register to a 16-bit fixed point signed
integer value without rounding. Arithmetic exception
occurs if the floating point value is too large (greater than
+32,767).

OPERAND 1: A one-word receiving field in the general
register specified by Rq¢, or in memory if indirect
addressing is used.

OPERAND 2: A one-word field in the general register
specified by Rg. This field is the arithmetic exception
address, to which control is transferred rather than to RNI
if the floating point number is out of the expressable
integer range.

RESULTS: The fixed point integer resides at the operand
1 location. The floating point register is unaffected. The
Condition register is affected as follows:

@ Bit 0 is set if the floating point number is out of
the expressable integer-range arithmetic
exception.

® Bit 1 is set if the converted integer> 0.

@8 Bit 2 is set if the converted integer <O0.

® Bit 3 is set if the converted integer = 0.

EXAMPLE

NamE oreaTiON orenanD
12 3 4w s o el 1T v i v[1e 18 20 21 22 2320 25 26 21 26 2930 31 32 3394 35 36 31 3839 40 41 42 43 44 45 46

IATE . IR3., A7

The value in the floating point register will be converted
to fixed point and placed in register 3. Register 7 contains
an arithmetic exception address.

o1 7 8 63

1 42

B 248 X X........ X j
\ Negative floating

’

-) Negative sign point register
F18]6]|6 = -079A Negative integer number — right shifted
two places because
01 7 8 N 63 of exponent
A Converted

1 43 7 9 A XXXXX........ X integer
. Floating General F nB Converted integer ?n 2's
Negative Exponent Normalized fraction in point register 3 complement notation be-
sign positive notation number cause of sign bit

4-67

Load Floating Point Register

LODF @M¢(Rq),Ry
(4] 7 8 9

84 i

FUNCTION: Transfers a floating point number contained
in a four-word field in memory to the floating point
register and normalizes it. Arithmetic exception occurs if
exponent underflow is caused by the normalization.

OPERAND 1: A four-word field in memory located at the
effective word address. The effective address points to the
most significant word of the four-word floating point
number. The floating point number need not be
normalized. Addressing options to the base address M4
include indexing, indirect addressing, or a combination of
both.

OPERAND 2: A one-word field in the general register
specified by Ro. This field is the arithmetic exceptior
address, to which control is transferred rather than to RNI
if exponent underflow occurs.

RESULTS: The Condition register is affected as follows:

@ Bit 1is set if the normalized number> 0.

® Bit 2 is set if the normalized number < 0.

e Bit 3is set if the normalized number = 0.

o Bits 0 and 2 are set if exponent underflow occurs
during the normalization. In this case the sign
and fraction of the floating point number are
correct but the exponent is too large by a value

of 128.

EXAMPLE

NAME OPERATION OPERAND

U2 3 e AL 00 11213 v 6 V6 1] 1018 70 7 7273 74 25,46 27 7,79 30 31 32 33,34 35 36 31 1839 4041 42 43eads 35

...... ’Aam. N rearcnr,as oo T

The four-word floating point field identified by TEMP(1)
is loaded into the floating point register and normalized.
Register 5 contains the arithmetic exception address.

Multiply Floating Point

MPYF @M1(R1),R2

0 7 8 9 16

88 [i]

4-68

FUNCTION: Multiplies the contents of the floating point
register by a four-word floating point number in memory
(the multiplier). The fraction of the resulting product is
normalized and is only 14 hexadecimal digits in length;
therefore, maximum significance in the product can be
presented by starting with two normalized operands,
although it is not required.

The floating point multiplication consists of three
operations:

1. Adding the two exponents and subtracting 64
(404g) because of the excess 64 exponent
notation.

2. Multiplication of the fractions with the resultant
product sign following the rules of signed
numbers.

3. Product normalization.

An exponent-overflow arithmetic exception occurs if the
resultant product exponent is greater than +63 and an
exponent-underflow arithmetic exception occurs if the
resultant exponent is less than -64. Exponent overflow
does not occur when the intermediate exponent exceeds
+63 if the exponent is brought into range during
normalization.

OPERAND 1: A four-word field in memory beginning at
the effective word address. The effective address points to
the most significant word of the four-word floating point
number. Addressing options to the base address M
include indexing, indirect addressing, or a combination of
both.

OPERAND 2: A one-word field in the general register
specified by Ry. This field is the arithmetic exception
address to which control is transferred if arithmetic
exception occurs.

RESULTS: The normalized product resides in the floating
point register. A final fraction of zero generates a true
zero product. The Condition register is affected as
follows:

o Bit 1is set if the normalized product>0.

o Bit 2is set if the normalized product<0.

® Bit 3 is set if the normalized product = 0.

e Bits 0 and 2 are set if exponent underflow occurs
during normalization or exponent determination.
The sign and the fraction of the product are

correct, but the exponent is too large by a value
of 128.

e Bits 0 and 3 are set if exponent overflow occurs
during exponent determination. The sign and the
fraction of the product are correct, but the
exponent is too small by a value of 128.

The contents of the floating point register are multiplied
by the field identified by HOLD; the results will be in the
floating point register. Register 7 contains an arithmetic
exception address.

EXAMPLE
1.2 3 & 5 61 A|9] w11 1213 14 v 16 1] 18] 19 20 21 22 23 2425 76 21 7829 30 91 37 33 34 35 36 3/ 38 33 40 41 42 43 44 48 45
APYF .. | Woed, A7 .. .
01 7 8 15 16 31 32 N 47 48 63

Floating N \] N

point

register 0 49 2A B40O 0000 0000
A A A
AN N |

Mutltiplier

from four-word | 1 44 42 0000 0000 0000

field in

memory ﬂNf j‘ h‘

Product

placed J\J k‘ l‘

in floating

point register 1 4C BO 2680 0000 0000

normalized ’\r \ J\‘

Bit 2 of the Condition register is set {product< 0).

x =+.2AB4x 1619 «++=_B0268 x 16*C

wr =—42x 16+4

* *

* % *

Negate Floating Point Register

NEGF

0 7 8 15

80

FUNCTION: Inverts the sign bit (bit 0} of the floating
point register. The rest of the floating point register is
unchanged. The Condition register is not affected. This
instruction has no operands.

EXAMPLE

NAME OPERATION QPERAND

t o n | el vz v s il e a0 20222320 25 20 20 28 79 30 813230 36 36 36 31 3839 40 41 42 43 44 45 86

WEGF

The sign bit in the Condition register is inverted; if the
sign is minus it will become plus, and vice versa.

Store Floating Point Register

STOF @M¢(R)

0 7 8 9 1 12 15
8A il Ry

FUNCTION: Transfers the contents of the floating point
register to a four-word field in memory.

OPERAND 1: The four-word receiving field in memory
located at the effective word address. The effective
address points to the most significant word of the
memory field. Addressing options to the base address M
include indexing, indirect addressing, or a combination of
both. :

EXAMPLE

vamt APEMATION oPERAND

v vt v ol e 02 a0 A 2 78 20 0T 2 3330 3 37 3839 40 8) 42 4344 45 46

S Tor FLPCr) L

This instruction transfers the contents of the floating
point register to the field identified by FLP(1).

Subtract Floating Point

SUBF @Mj(Rq),Ry
0 7 8 9

85 [i]

4-69

FUNCTION: Performs an algebraic subtraction of a
four-word floating point value in memory from the
contents of the floating point register. Both operands
need not be normalized before the subtraction.

The subtract operation is performed in the same manner
as the add except that the sign of the floating point
number in memory (subtrahend) is inverted first.

OPERAND 1: A four-word field in memory beginning at
the effective word address. The effective address points to
the most significant word of the four-word floating point
number. Addressing options to the base address Mg
include indexing, indirect addressing, or a combination of
both.

OPERAND 2: A one-word field in the general register
specified by Ro. This field is the arithmetic exception

address to which control is transferred if arithmetic
exception occurs.

RESULTS: The difference resides in the floating point
register as a normalized number. The Condlition register is
affected the same as for the ADDF .and the same
arithmetic exceptions are possible.

EXAMPLE

NAME OPERATION orenanD

v a v v 6 el v 92 400 s ar 2 2 3031 52 33 31 35 36 31 38 39 40 41 47 4344 45 46

lsuarF \FapACz)., Aé

R

The field identified by FLDA(2) is subtracted from the
contents of the floating point register; the results will be
in the floating point register. Register 6 contains an
arithmetic exception address.

0 1 15 16 \ 31 32 ‘\ 47 48 '\l 63
Floating
Point 1 46 DA 2EO00O0 0000 0000 *
Register l\ 4\ '\l
Subtrahend 1 3E 02 8000 0000 0000 *
Difference in N 4N
Floating '\'
Point 1 45 A2 DFFF FFDS8 0000 il

J\|

?\,

Bit 1 of the Condition register is set (difference >>0).

x=_.0A2Ex 16"6 ... _ A2DFFFFF x 16%2
ve=_.028x 1672

SYSTEM INSTRUCTIONS

System instructions are specialized instructions used to
interpret and alter the defined operating system. These
instructions are divided into two major groups, Control
and 1/0. For the system instructions, a distinction is also
made between privileged and restricted instructions.
Privileged instructions can be executed by a processor
only if the bit in the Privileged Mode register associated
with that processor is set. Restricted instructions can only
be executed by one of the dedicated processors 0-4, that
is, they are restricted to one of these processors. The
Control instructions include privileged and restricted
instructions; the 1/0 instructions are all restricted.

NOTE

In the discussion of System instructions, the term
“hardware’’ implies a combination of the hardware
logic components and the microprograms. It is the
conjunctive action of both of these elements that

4-70

determines the manner in which a given
processing-unit instruction will be executed.

' EXTENDED FILE REGISTER

The system instructions manipulate and use the Extended
Register file. Figure 4-3 shows the breakdown of the
Extended file. The Function (F) and Py registers are
under internal control. Processor state 4 can have access
to any register in both the Basic and the Extended
Register files — with the exception of the |/O registers,
which are reserved solely for the associated 1/O processor
states.

The 1/0 register exist only for processor states O through
3; and then, only those actually needed are present. A
description of the 1/O registers associated with each 1/O
processor state is found in the appropriate 1/O instruction
description in this section.

The Common Block registers may be addressed by any
processor state, although some of them only if the

addressing state is in the ‘‘privileged’’ mode. Moreover, Table 4-1 gives a brief description of the Extended file
some registers are for the read-only mode: Real-Time registers. It is followed by an in-depth discussion of the
Clock and Parity Error are examples.

Common Block register functions and usages.

00
GROUP I
01 /i
02 BUSY/ACTIVE \
03 REAL-TIME CLOCK
04 TIE-BREAKER
05 PARITY ERROR
06 CONTROL
07 PRIVILEGED MODE
“Egl'fz“ 08 BOUNDARY CROSSING
EXTENDED 09 CONTROL STORAGE SCAN GROUP Il
0A ADDRESS (COMMON BLOCK)
0B DATA
0c
UNASSIGNED
OF
10
1/0 REGISTERS
- 1F
Figure 4-3. Extended Register File
Table 4-1. Extended Register File
Basic File

Register Mnemonic

Number Title Name and Function

00 F Function Register - contains the base instruction word (first two bytes) of
the instruction being executed by the associated processor state.

01 P Micro Address Register — contains the control storage address of the first
micro-instruction (/_11) to be executed during the next major cycle assigned
to the associated processor state. It also records certain conditions resulting
from the execution of Ml'sa.

These ‘“‘common block’’ registers are not specifically associated with a single processor state. As
a result, they may be addressed by any state.

02 B/A ® Busy/Active Register — indicates which processor states need a major cycle
(Busy), and which are currently assigned a task to perform (Active).

03 RTC Real-Time Clock — counts up to 107.4 seconds for interval timing. Its count

is triggered every 1.6384 milliseconds by a 60-Hz (nominal) oscillator. Pro-
grams can periodically read (but not write into) this register to measure
intervals of time.

Certain operations, such as 1/O transfers, require a definite amount of time
to complete. If they are not complete within that time, chances are that a
malfunction occurred. The RTC can be used to “‘time’’ such operations.

4-71

Table 4-1. (Continued)

Register
Number

Mnemonic
Title

Name and Function

04

05

07

0A

0B

0C—OF

T

PE

PM o

BC o

Css

CONSOLE
ADDRESS

CONSOLE
DATA

Tie Breaker Register — ensures that one program will not refer to a table
that is-simultaneously being updated by another program — provided that
both programs utilize the Tie-Breaker register. It is set by software in-
dicating when certain data tables, each represented by a bit position in the
register, are being addressed.

Parity-Error Register — holds the last main storage address in which a parity
error occurred. It is updated by the hardware and is usually addressed by
the Executive processor state for error logging.

Control Register (dual function) — the lower eight bits indicate whether the
respective processor state may be allowed to take consecutive major cycles,
other conditions permitting. The upper eight bits indicate one of three
levels of priority for each of the four 1/O processor states (2 bits each). The
register is set by software.

Privileged-Mode Register — indicates whether each processor state is em-
powered to operate in the privileged mode’’. It contains a bit position
representing each processor state.

The privileged mode allows a state to execute certain instructions which, if

executed indiscriminately, might cause hang-ups, invalid data, or other errors.

Boundary Crossing Register — records those instances in which, under certain
conditions, the Executive processor state may read or write the registers of
another state. The BC register holds the address of the register, along with
the register set and the number of the processor state to be addressed.

Control Storage Scan — checks the longitudinal parity of 266-word ‘‘pages’’
in the CS. An exclusive OR performed on the contents of a CS page
should yield all 1's in the register. Any attempt by software to write into
this register will clear it.

Address-Related Console Register — provides entry and display of register,
MS or CS addresses, in conjunction with the row of 16 illuminated Address
pushbuttons on the System Control Panel.

Data-Related Console Register — provides entry and display of data to or
from the entity addressed by means of the Address pushbuttons, in con-
junction with the row of 16 Data pushbuttons on the System Control
Panel. In addition, a rotary switch on the panel allows the display (but
not entry} of data stored in certain nonaddressable registers.

Unassigned

The following four registers in the Common Block
group of the Extended Regilster file are “limited
access’’ registers. This means that although they
may be read by any processor state, they can be
written into only by a privileged processor state, or

NOTE

Busy-Active Register (B/A)

shown below.

0 7 8

The bit assignments for the Busy/Active register are

15

fo 1 23456 7[01234567

by the Executive processor state. Specific write BUSY ACTIVE
instructions for each register are given in the

separate discussions.

4.72

PROCESSOR STATE

When the Busy bit is 1, it indicates to the hardware
(RAN) that a given processor state needs a major cycle.
The “‘request’’ that sets Busy may come from the program
or from one of the switches on the System Control Panel.
(The use of these switches is discussed in Section 5.)
Moreover, if one of the four 1/O processor states is
involved, its Busy bit may also be set by a request from an
1/0 device.

The following instructions are available to the
programmer to set or clear bit positions in the B/A
register via the ALU inputs. Control [Instructions has
complete descriptions of the instructions listed, and of the
meanings of the terms, “'privileged’’ and “‘restricted"’.

SR Service Request: Turns on both the
Busy and Active bits for the Exec; turns
off both the Busy and Active bits for
the requesting processor state.

SBA Set Busy/Active Register: The processor
state executing this instruction must be
privileged. Turns on the B or A bit, or
both, for the designated processor state.

RBA Reset (clear) Busy/Active Register: The
processor state executing this instruction
must be privileged. Turns off the B or A
bit, or both, for the designated proc-
essor state.

WRX Write Extended Register: The processor
state executing this instruction must be
privileged. This instruction affects all
16 bits of the register. It must be used
with an appropriate mask to set (or
clear) the desired B/A bit positions
without affecting the bits that are to
remain unchanged.

WAR Write Any Register: This instruction is
restricted to the Executive (processor

state 4). In other respects, its influence
on the B/A register is identical to that
of WRX.

The Active bit is used for several purposes; these can be
segregated by processor states. The uses of Active for
these four groups is discussed in order of increasing
complexity.

States 5, 6, 7

When Busy and Active are set for these states, continuous
operation ensues. The program associated with each state

should be executed as rapidly as possible, within the
constrainst of Resource Allocation Network (RAN)
sequencing, so Busy will remain set for these states.

Active for these states is not set during the Trace mode,
used for trouble-shooting or debugging a program. In this
mode it is desired to have the processor state operate one
major cycle or one instruction at a time, rather than
operating continuously.

States 2, 3

The Active bit for these states serves as an “‘envelope of
protection’’ against the setting of Busy when such setting
(and clearing) must be under the exclusive control of the
processor state itself. Such a situation exists when doing a
data transfer, or when searching for a given record on a
disc or magnetic tape. During a Read data transfer, for
exampleé, Busy is continually set and cleared. It is set
when data from the connected 1/O device is available; it is
cleared when that data has been transferred, examined,
and stored.

For non-buffered devices, this on-off sequencing of Busy
is determined solely by the speed of the peripheral unit.
For the relatively long periods when Busy is off during
such a transfer, some outside influence such as the Exec
or an Attention from another unit could — except for the
Active envelope — cause the |/O processor state to react
as if its Busy FF had been set because of the availability
of data from the connected equipment when, in fact, it
hadn’t. The resulting ‘“data’’ transferred would of course
be invalid.

When the STOP-STEP switch on the System Control
Panel is activated, no 1/0 transfers can be executed. This
switch is primarily a diagnostic tool. Its ramifications with
respect to 1/0 requests are considered in a separate manual.

States 0, 4

To the Communications (state 0) or Executive (state 4)
processor, a set Active bit indicates that there is a job
waiting to be executed that is different from the task in
which it is currently engaged. When these states receive a
major cycle, the first thing they do is clear the Active bit.
At the conclusion of the current task, then, if Active is set
it had to be because a new request was initiated while the
processor was still performing the current assignment.

CONTROL REGISTER (C)

The Control register performs two functions:

1. It permits an |/O processor (states 0-3) to
override the normal RAN sequencing — that is,
to obtain priority for the next major cycle.

4-73

2. It permits any of the eight processors to
obtain consecutive major cycles as long as
no other processor state is also waiting for
that ““second” cycle (bits 8-15).

Bit positions in the Control register may be set or cleared
individually by the privileged SCN (set control) or RCN
(reset control) instructions. The WAR or WRX instruc-
tions may also be used, but as with the B/A register,
these instructions require a mask to preserve the integrity
of the unchanged bits.

The bit assignments for the C-register are shown below.

0 7 8 15
STATE 012301 23}j01t23465E%6:7
NUMBER
Enable Invoke Consecutive-Cycle
Priority Priority Enable
(E) m

RAN Concept

The resource allocation network (RAN) ensures that each
processor state receives its fair share of time with the
shared resources. The scanning period of the network is
based upon the cycle time of main storage (1.8
microseconds); under normal conditions, then, each state
will use the shared resources once every 144
microseconds (1.8 microseconds x 8 states).

But normal conditions do not always prevail. A given
high-performance disc, for example, may require
exchanging a data word with its processor state every 2.5
microseconds. Under these requirements, an obvious need
is for some scheme whereby the disc (or any other
peripheral device, for that matter) can “‘override’’ the
normal RAN sequence.

Any allocation scheme, to be the least bothersome to the
user, should consider of highest priority those devices
for which the recovery of lost data would demand some
operator intervention — retyping the input data on a
keyboard terminal, for example, or reloading a card
deck. Of lower priority would be those devices from which
the computer could recover the data automatically —
rereading (or rewriting) a disc track or magnetic tape,
etc. Finally, of lowest priority would be the non-1/0
operations — arithmetic, comparing, shifting, etc. How
these various considerations are effected is the subject of
the following discussion,

The RAN essentially examines the Busy bits in the Busy/
Active register to see which processor states require access
to the shared resources, and then determines which state
shall be given the next time slice.

4.74

RAN Normal Sequence Concept

Scanning is performed in numerical sequence, with
highest preference given to processor state 0, lowest to
state 7. In this manner, the processor states with the
highest degree of “‘operator intervention’’, as described
above, are serviced first. To prevent the lower-numbered
processor states from monopolizing the shared resources,
however, the RAN incorporates logic that prevents a
lower-numbered state from receiving a second time slice
if higher-numbered states are still waiting. Thus, if O, 4,
and 5 were waiting, state 0 would get the first slice, but
could not receive another until both 4 and 5 had had their
turn. In this manner, the shared resources are utilized
most equitably.

RAN Override (Priority) Concept

Suppose, now, that while processor state 0 were waiting
for 4 and 5 to be serviced so that it could receive another
time slice, it received indications that it could not wait for
normal sequencing. Under these conditions, an override
situation is needed, to negate the normal RAN sequence,
permitting state 0 to receive the third time slice at the
expense of any higher-numbered states (in this case, 5,
since 4 would have taken the second time slice).

Override, or priority, can be enabled by the control
program at the start of each 1/0O data transfer. (There are
no such priority provisions for the four non-1/0O processor
states.) The Control Word that precedes each 1/0 trans-
fer can specify one of three priority levels:

e Enable Priority This level allows an 1/0
(processor’s E- processor state to secure an
bit = 1) out-of-sequence time slice,

provided that no
lower-numbered processor
state is also in a priority
condition.*

* Priority Condition means that a state will receive an out-of-
sequence time slice as a result of one of these conditions:

° E-bit position set AND being in danger of losing
data,

° | bit position set.

This differs from Priority Mode, which simply refers to having
either E or | set, without implying consequent override of the
RAN, That is, Condition is a dynamic situation, while Mode is a
statis situation. Moreover, a Priority Condition is not examined
to see which of the bit positions is set. Therefore, if state 0 had £
set and state 1 had / set, state 0 would receive the next available
time slice.

e Invoke Priority This level allows an 1/0
(processor’s |- processor state to secure
bit = 1) alternate time slices,

provided that no
lower-numbered processor
state is also in a priority
condition.

This level negates the Enable
or Invoke levels.

o Revoke Priority
(processor’s E-
and I-bits
both = 0)

Consecutive Cycles

The action of bits 8-15 of the C-register in permitting
consecutive cycles was mentioned in Section 1. The mode
is useful when only one of the general-purpose processors
is actively engaged in a user's problem program, and
during periods when that program does not call for |/O
activity. Then, in the relatively long gaps between the
times when the real-time clock input from the 60-Hz
oscillator turns on the Exec processor for system
monitoring, the active G-P state may obtain consecutive
major cycles.

This illustration sets forth just one - albeit perhaps the
most frequently used — application of the consecutive-
cycle mode,

PRIVILEGED MODE REGISTER (PM)

The Privileged Mode register contains one bit for each of
the eight processor states. When set, that bit position
permits the associated processor to execute any of the
privileged Control instructions described in Section 4.

One of these privileged instructions is Set/Reset Privileged
Mode Register (SPM/RPM); this means that a processor
state cannot use this instruction to set itself to the
privileged mode. The Exec, however, may set itself
privileged by using the restricted Write Any Register
(WAR) instruction (with a suitable mask). It can then set
any other processor to the privileged mode, as the need
arises, by using SPM.

The bit assignments for the PM-register are shown below,

UNUSED 8 15

0 1t 2 3 4 5 6 7

PROCESSOR STATE

BOUNDARY CROSSING REGISTER (BC)

The BC-Register is used whenever software directs the
Exec to write or read the register of another state.

Exception: Group 111 registers in the extended file cannot
be reached via this register,

The format of the register is identical to that of the
second word in the restricted Write/Read Any Register
WAR/RAR instruction:

7 8 10 11 15

E |07 00-1F

STATE REGISTER NO.

0 = Basic register file set
1 = Extended Register file set

Execution of a properly formated WAR/RAR instruction
automatically writes the specified state set, and register
number into BC,

Because BC is an extended register, it may also be written
into by a privileged processor state executing the Write
Extended Register WRX instruction (with 08 as the
destination register). However, the exercise would be
futile if the intent was to read or write the register
specified by the newly entered contents of BC, because
only the Exec may cross processor-state boundaries.

REGISTER OPTION

General

The Register Option (RO) encompasses registers added to
the processing unit hardware to implement the following
features:

e Basic Storage Protection (Bounds)

e Job Accounting

NOTE

The reading and writing of RO registers is presently
limited to the ARROMRO machine-language
instruction. This control instruction is privileged; in
practice this means that its execution is limited to
system programs. Later releases may include
instructions that read or write certain of these
registers in a non-privileged mode. Until such time,
however, an attempt to execute RRO/MWRO by a
non-system program will result in an /nvalid
Instruction indication in the Condition register of
the processor state attempting the execution.

4-75

The address structure of the register groups devoted to
each of the RO features is shown in Figure 4-4. The
method of coding hexadecimal address for RO registers
uses the format prescribed by the second word of the
RRO/WRO control instruction.

BASIC 108
STORAGE
ACCOUNTING
PROTECT r |
[FEATURE] FEATURE
JOB ACCOUNTING
REGISTERS
WORDO WORD 1
*BOUNDARY 0 0060 | 0601
REGISTERS] w20 | ozt
5 05A0 2 0640 | 0641
6 05¢0 3 0660 | 0661
7 0SEQ 4 0680 0681
—— 5 06A0 | O06A1
116-BIT p
REGISTERFOR © | 98¢0 | O6C
EACH OF THE 7 0GE0 | OGET
INDICATED —
PROCESSORS —
(3TOTAL) 132-8IT
REGISTER FOR
EACH PROCESSOR
(8 TOTAL)
00 07 08 15

* UPPER BOUNDARY

LOWER BOUNDARY I

NO BOUNDARY PROTECTION WHEN
REGISTER CONTAINS FF0045

Figure 4-4. Register Option Address Structure

It should be pointed out that when a register set (or group)
contains but one register, or when there is only one
register within a group that relates to a given processor
state (Bounds), that register number is always 0. The
“register 0 only’’ selection applies to groups 3, 4, 5, and
to groups 8 through F. An attempt to gain access to a
non-existing RO feature will result in the followingaction:

on read — all 0's wil be entered into the
“destination’” (Operand 1) file register or memory
location.

on write — no operation
No flag will be set to indicate the addressing error.

Specific bit configurations for the registers are described
under the feature headings that follow.

Basic Storage Protect

This feature checks storage bounds on write (but not on
read) operations in main storage for general-purpose

4-76

processors 5, 6, and 7. As shown in Figure 4-#, the 16-bit
Bounds register for each of the three states provides an
8-bit “page’”’ address (maximum page number, 255) for
both upper and lower bounds. (Each page comprises 256
contiguous byte addresses.)

Protection is enforced except for the case where the
Bounds Register contents are FF00, hexadecimal.

Job Accounting

The 32-bit Job Accounting Registers keep track of the
number of major cycles (time slices) that the Resource
Allocation Network has granted to each of the eight
processor states. These registers are read only. Any
attempt to write into one of these registers will clear it.

Two Read Register Option (RRQO) instructions are required
to read both addresses (word 0, word 1) of a given
processor state’s Job Accounting register.

CONTROL INSTRUCTIONS*

Mnemonic Name
CcTB Clear Tie-Breaker Register (p)
TST Test and Set Tie-Breaker Register (p)
BCM Branch to Control Memory (p)
RAR Read Any Register (r)
WAR Write Any Register (r)
RRO o Read Register Option (p)
WRO Write Register Option (p)
SAR Save All Registers (r)
RSAR Restore All Registers (r) _
SBA Set Busy-Active Register (p)
RBA Reset Busy-Active Register (p)
SCN Set Control Register (p)
RCN Reset Control Register (p)
SPM Set Privileged Mode Register (p)
RPM Reset Privileged Mode Register (p)
WRX Write Extended Register (p)™**

Clear Tie-Breaker Register

CTB Iy
4] 7 8 " 12 15

12 I

FUNCTION: A privileged instruction that resets a single
bit in the Tie-Breaker register.

OPERAND 1: A 4-bit unsigned value in bits 8-11 of the
instruction. This value specifies the position of the bit to
be reset in the Tie-Breaker register.

EXAMPLE

NAME OPERATION OPERAND

L sovaq o roukal i voa v s v il v 2 2270 20 m 26 20 6 29 30 3V 3733 34 18 36,37 3835 40 41 47 43 44 45 45

[ro¥- 3 . 10 ..o,

Turns off bit 10 of the Tie-Breaker register.

NOTE
The CTB instruction is classified as a privileged
instruction, but becomes a general-purpose
instruction (privileged mode bit need not be set)
when the bit named in the operand is bit 15 of the
Tie-Breaker register.

*p = privileged, r = restricted
**Read Extended Register is a General-Purpose Control
instruction.

Test and Set Tie-Breaker Registef

TST 1y

0 7 8 1"

1 It

FUNCTION: A privileged instruction that tests and sets a
single bit in the Tie-Breaker register in order to resolve
synchronization problems resulting from parallel
processor execution. If the designated bit is clear, it will
be set and the Program Address register will be advanced
six bytes. If the designated bit is set, it will remain
unchanged and the program will fall through to the next
instruction (the Program Address register will be advanced
by two bytes). A TST instruction would generally be
followed by a four-byte branch instruction.

OPERAND 1: A 4-bit value in bit positions 8-11 of the
instruction. This value specifies the bit position in the
Tie-Breaker register which is to be tested and set.

EXAMPLE

NAME OPERATION OrERAND

v 2 s a s 6 s wie | iz e e 6 ufiel g0 202273 20 2026 77 24 29 30 31 32,33 14 3 3630 3833 40 41 42 4344 45 45

7S7 .Y

Tests bit number 14 in the Tie-Breaker register. If this bit
is off, it is turned on and the address in the Program
Address register is increased by six bytes. If the tested bit
is on, the bit is not changed and the next instruction is
read.

NOTE

The TST instruction is classified as a privileged
instruction, but becomes a general-purpose
instruction (privileged mode bit need not be set)
when the bit named in the operand is bit 15 of the
Tie-Breaker register.

Branch to Control Memory
BCM R1,|2

0

EF

FUNCTION: A privileged instruction that transfers
control to the control memory address contained in a
general register.

OPERAND 1: The control memory address located in the
general register specified by R.

OPERAND 2: A 3-bit value in bit positions 13-15 of the
instruction. This operand is optional; when used it
transfers information to the control memory routine to
which control is transferred.

EXAMPLE

NAME OPERATION oPERAND

Voov s i s a3l n s e v vl i 0 20 2273 26 24 20 78 29 3030 37 33 3 35 36 3/ 3839 4041 42 434445 46
teclt, R
Jumps to the control memory address specified in register
5. Information contained in register 6 (parameters, etc.) is
transferred to the control memory routine.

Read Any Register

RAR 11(Rq),@Ry
M 1 12 13 16

7 8 9 1
FE [¢] r [i] mo
It

FUNCTION: A restricted instruction that allows the
Executive processor {4) to read the contents of any file
register for any of the eight processor states, with the
exception of the Group Ill extended (1/O) registers for

~ states O through 3.

Extended Function Code: Bit 8 serves as an extension to
the basic function code and is a 0 for this instruction; this
bit distinguishes between RAR and WAR.

OPERAND 1: The address of the file register to be read is
specified by the Iq value (bits 16-31 of the instruction).
The 14 value may optionally be modified by the contents
of the Rq register, thus the effective register address = |14
+(Rq).

4-77

QOPERAND 2: A one-word receiving field in the general
register specified by Ro, or in memory if indirect
addressing is used.

The format of the |y portion of the instruction is as
follows:
2627 31

PROC REGISTER
NO.l NP.

16 23 24

Bit 23 indicates the register-file set:
0 = Basic Register
1= Extended Register
Bits 24-26 indicate a processor state, 0-7.

Bits 27-31 indicate a register number in the ranges shown
below:

Basic Registers — 00-1F

Extended Registers — 00-OF
Bits 16-22 are ignored by the hardware, but should be
zeros.

EXAMPLE

NAME orERATION OPERAND

123 4 6 6 7 8[9[10 11 (2130a 15 16 (811920 21 2223 28 29,26 2 26 29 30,31 32 31 % 35 36 17 1039 40 41 42 434445 46

e RAR | |TAcC3)., P86 .

Reads a register in the register file addressed by TAG(3),
and stores the contents of the register in the memory
location specified in register 6.

Write Any Register

WAR |1(R1),@R2

0 1M 12 13 18

7 8 9
FE 1¢] mry
h

FUNCTION: A restricted instruction that allows the
Executive processor {4) to write into any file register for
any of the eight processor states, with the exception of
the Group 11l extended (1/0) registers for states 0 through
3.

Extended Function Code: Bit 8 serves as an extension to
the basic function code and is a 1 for this instruction; this
bit distinguishes between RAR and WAR.

OPERAND 1: The address of the file register into which

4.78

the data is to be written is specified by the |5 value (bits
16-31 of the instruction). The |4 value may optionally be
modified by the contents of the R register, thus the
effective register address = 19 + (Rq).

OPERAND 2: A one-word sending field in the general
register specified by Rgp, or in memory if indirect
addressing is used.

The format of the I, portion of the instruction is as

follows:
16 22 23 24 26 27 _ 31
PROC REGISTER
NO. |}|0.
1

Bit 23 indicates the register-file set:
0 = Basic Register
1 = Extended Register

Bits 24-26 indicate a processor state, 0-7.

Bits 27-31 indicate a register number in the ranges shown
below:

Basic Registers — 00-1F
Extended Registers — 00-OF

Bits 16-22 are ignored by the hardware, but should be
Zeros.

EXAMPLE

nAME OPERATION orEnAND

02 0 4 s h 1 a]9f e v 12y v s i6 il val 197G 71 7223 74 76 26 27 28 29 3031 3213 34 35 36 37 3838 40 41 42 42 44 45 4%

WAR . | RFLPC6), 88 ..

The contents of a memory location specified by the
address in register 5 are written in the register with the
register address specified by RFLD(6).

Read Register-Option Register

RRO 11(Rq),@R3

FD £ Ry

FUNCTION: A privileged instruction that reads the
contents of a two-byte field from a register-option (RO)
register and transfers the contents to a general register or a
memory location.

Extended Function Code: Bit 8 serves as an extension to
the basic function code and is 0 for this instruction; this
bit distinguishes between RRO and WRO.

OPERAND 1: The address of the register-option register
to be read is specified by Ig (bits 16-31 of the
instruction). The |1 value may optionally be modified by
the contents of the Rq register, thus the effective register
address = 19 + (Rq).

OPERAND 2: A one-word receiving field in the general
register specified by Rp, or in memory if indirect
addressing is used.

The format of the 14 portion of the instruction is as
follows:

20 23 24 26 27 31
REG. OPTION PROC. REGISTER

GROUP NO. NO.
1 1 1 1 1 | I B |

Bits 20-23 specify the RO group, as follows:

Hex
Value Meaning Structure
0 Segment Tag 32 4-bit registers for
each proc.
1 Protection Matrix 2 16-bit registers for
each proc.
2 Segment Relocation 16 24-bit registers
Table
3 Address Mode 1 16-bit register
Parity Error Tag 1 16-bit register
5 Bounds 3 16-bit regs. (procs.
5,6,7)
6 Job Accounting 2 16-bit registers for
each proc.
7 Not used
8/9 Main Storage Data \
A/B Error Log 1 16-bit
register
C/D Generated Check r in each
Bits group
E/F Read Check Bits

Bits 24-26 specify a processor state, 0-7.

Bits 27-31 specify a register number as defined below:

16 19 20

Reg. No.

Group or Range Remarks
0 0-1F 32 registers/processor
1,2,6 0-1 Reg. O=word, Reg. 1=word 1

3,4,5,8—F 0 One register per group

See the Register Option discussion in Section 1, General
Description, for additional information on the
register-option registers.

Write Register-Option Register

WRO 11(Rq1),@R,

(] 7 8 9 1 12 13 1%

FD

FUNCTION: A privileged instruction that writes the
contents of a one-word field, located in a general register
or in memory, into a specified register-option (RO)
register.

Extended Function Code: Bit 8 serves as an extension to
the basic function code and is a 1 for this instruction; this
bit distinguishes between RRO and WRO.

OPERAND 1: The address of the register-option register
into which the data is to be written is specified by the |9
value (bits 16-31 of the instruction). The |5 value may be
optionally modified by the contents of the R4 register,
thus the effective register address = |5 + (Ro).

OPERAND 2: A one-word sending field in the general
register specified by Rg, or in memory if indirect
addressing is used.

The format of the Iy portion of the instruction is as
follows:

23 24 26 27

31

REGISTER
NO.

PROC.
NO.
1

REG. OPTION
GROUP .

Bits 20-23 specify the RO group:
Bits 24-26 specify .a processor state, 0-7.

Bits 27-31 specify a register number as defined

4-79

See the Register Option discussion in Section 1, General
Description, for additional information on register-option
registers.

Save All Registers
SAR M1(R1),|2 or M1(R1),@R2

0 7 8 9 1 12 13 15
FF f| Ry |i]|1p0rRy
M4

FUNCTION: A restricted instruction that stores in
memory the contents of all general registers, the
Condition register, and the Program Address register for
the processor specified. This instruction may be executed
only by the Executive processor state.

Extended Function Code: Bit 8 serves as an extension to
the basic function code and is O for this instruction; this
bit distinguishes between SAR and RSAR.

OPERAND 1: The starting address of the save area in
memory where the register contents are to be stored.
Addressing options to the base address My include only
indexing.

OPERAND 2: The processor number as specified by 15, or
contained in the general register specified by Ro if bit 12
(i) is on. Bit 12 does not indicate indirect addressing for
this instruction. If bit 12 is on, the value in bits 13-15 is
considered a register number containing the processor
number. If bit 12 is off, the value in bits 13-15 is
considered to be an immediate value which is the
processor number.

EXAMPLE

registers, Condition register, and the Program Address
register of the processor specified. After the registers have
been loaded, the Microprogram Address register of the
specified processor will be cleared to facilitate resumption
of execution with the next sequential instruction. This
insgruction may be executed only by the Executive
processor state.

Extended Function Code: Bit 8 serves as an extension to
the basic function code and is 1 for this instruction; this
bit distinguishes between SAR and RSAR.

OPERAND 1: The starting address of the save area in
memory from which the registers are loaded. Addressing
options to the base address M include only indexing.

OPERAND 2: The processor number as specified by 19 or
contained in the general register specified by Ro if bit 12
(i) is on. Bit 12 does not indicate indirect addressing for
this instruction. If bit 12 is on, the value in bits 13-15 is

.considered a register number containing the processor

number. If bit 12 is off, the value in bits 13-15 is con-
sidered to be an immediate value which is the processor
number.

EXAMPLE

NamE OPERATION OPERAND

Vo v a s w o k| 9lon vgn s o] v 20 21 7223 20 25776 27 76 79 30 31 37 3334 35 36,37 3839 40 41 42 43 44 85 48

RsAR . ISAVECRY,... . ..

NAME OPERATION OPERAND

1 23«5 6 7 al9[i0 111203 14 116 vj1al 1970 21 2223 74 2526 21 28 23 30,31 3233 4 78 36 37 30 35 40 41 42 4344 45 45

....... Isak .. ||savecsy, s .

..........................

Loads a save area beginning at SAVE(3) into the general,
Condition, and Program Address registers of Processor 5.

Restore All Registers

RSAR Mq(Rq),1p or M{(R¢),@Ro
0 7 8 9 1 12 13 15
FF f R4 l i |I2 or Ry
Mq

FUNCTION: A restricted instruction that loads the
contents of a save area in memory into the general

4-80

Loads Program Address register, Condition register, and
general registers for Processor 1 with informatior taken
from a save area identified by SAVE(2). The 16-bit field
at SAVE(2) is loaded into register 0, the second into
register 1, and so on until words 9 and 10 are loaded into
the Condition and Program Address registers, respectively.

Set Busy/Active Register

SBA |1,|2 or @R4lg
0 7 8 9 1 12 13 15
10 i

|1 OI’R1 f |2

FUNCTION: A privileged instruction that sets a busy
and/or active bit in the Busy/Active register for the
processor designated by 1 or Ry.

Extended Function Code: Bit 12 serves as an extension to
the basic function code and is O for this instruction; this
bit distinguishes between SBA and RBA.

OPERAND 1: The processor number, 0-7. Indirect
addressing indicates that the processor number is in the
register specified by R4. Direct addressing indicates that
the processor number is the 14 value in the instruction.

OPERAND 2: A 2-bit designator in bits 14 and 15 used to
specify the bit or bits to be set.

o Bit 15=1 means set Busy bit.
e Bit 14=1 means set Active bit.

e Bits 14 and 15=1 means set both bits.
EXAMPLE

NAME OPERATION OPERAND

\ 23 4 4 61 8[9]10 vt 1213 18 15 16 vi]16{ 19 20,21 2273 24 25,26 77 28 38 3031 92,33 345 36,37 30,38, 4041 42 43 44 45 46
e lS&A4

Turns on the Busy bit for Processor 3. (If a 2 had been
specified as operand 2, the Active bit for Processor 3
would be turned on; if a 3 had been specified, both the
Busy and Active bits would be turned on.)

Reset Busy/Active Register
RBA |1,|2 or @R1|2

0 7 8 9 1 12 13 15

10 i

14 or R] f Iy

FUNCTION: A privileged instruction that resets the busy
and/or active bit in the Busy/Active register for the
processor designated by 11 or Rq.

Extended Function Code: Bit 12 serves as an extension to
the basic function code and is 1 for this instruction; this
bit distinguishes between SBA and RBA.

OPERAND 1: The processor number, 0-7. Indirect
addressing indicates that the processor number is in the
register specified by R4. Direct addressing indicates that
the processor number is the 14 value in the instruction.

OPERAND 2: A 2-bit designator in bits 14 and 15 used to
specify the bit or bits to be reset.

e Bit 15=1 means reset Busy bit.
e Bit 14=1 means reset Active bit.

® Bits 14=1 and 15=1 means reset both bits.
EXAMPLE

NAME OPERATION OPERAND

t 23 4 6 s w8 i vi 170314 vs 16 17] 18] 18 70, 21 22 23 74 25 76 77 78 79 3039 32.33,34_35 36,31 3839 40 41 42 43 44 4545

‘FUNCTION: A privileged instruction that sets specified
bits in the Control register for the processor designated by
11 or Ry.

Extended Function Code: Bit 12 serves as an extension to
the basic function code and is 0 for this instruction; this
bit distinguishes between SCN and RCN.

OPERAND 1: The processor number, 0-7. Indirect
addressing indicates that the processor number is in the
register specified by Rq. Direct addressing indicates that
the processor number is the 14 value in the instruction.

OPERAND 2: A 3-bit designator in bits 13-15 used to
specify the bits to set.

o Bit 13=1 means set Enable Priority bit.

® Bit 14=1 means set Invoke Priority bit.
e Bit 15=1 means set Consecutive Cycle bit.

EXAMPLE

NAME OPERATION OPERAND

Voo o ko sl 06 T NTI i ws 76 07|18 20 1 22,79 78 76 76 71 2678 30,30 32 334 35 36 37 98 4041 24T AEAG

P’C/V‘., 2,00 o e

Turns on the Consecutive Cycle bit for Processor 2. (A 2
in operand 2 would turn on the Invoke Priority bit; a 4
would turn on the Enable Priority bit.)

Reset Control Register

RCN 14,19 or @Ry,lp

] 7 8 9 11 12 13 15

14 i [lqorRy |] 1o

k34 .. |2, ...

..........................

The Busy bit for Processor 3 is turned off. (If a 2 had
been specified as operand 2, the Active bit for Processor 3
would be turned off; if a 3 had been specified, both the
Active and Busy bits for Processor 3 would be cleared.)

Set Control Register

SCN |1,|2 or @R1,|2
[7 8 9 1 12 13 15
14 i

lq or R1 f |2

?FUNCTION: A privileged instruction that resets specified
bits in the Control register for the processor designated by
I9 or Ry.

Extended Function Code: Bit 12 serves as an extension to
the basic function code and is 1 for this instruction; this
bit distinguishes between SCN and RCN.

OPERAND 1: The processor number, 0-7. Indirect
addressing indicates that the processor number is in the
register specified by Rq. Direct addressing indicates that
the processor number is the 14 value in the instruction.

OPERAND 2: A 3-bit designator in bits 13-15 used to
specify the bits to reset.

@ Bit 13=1 means reset Enable Priority bit.
e Bit 14=1 means reset Invoke Priority bit.
) Bit 15=1 means reset Consecutive Cycle bit.

4-81

EXAMPLE

nAE OPERATION OMERAND

SRR Y U —) E—
2 34 5 6 7 8i9l0 v1 1213 04 15 46 17118119 20 21 22 23 24 25 26 21 20 28 30, 31 37 33 34 3§ 36 37 38 38 40 41 47 424445 46

- A I A RN

The Consecutive Cycle bit for Processor 2 is turned off.
(A 2 in operand 2 turns off the Invoke Priority bit; a 4
turns off the Enable Priority bit.)

Set Privileged Mode Register
SPM 14,15 or @Rq,lp

0 7 8 9 1 12 13 15

15 i fiqorry | £ l

FUNCTION: A privileged instruction that sets the bit in
the Privileged Mode register associated with the processor
specified by Iq or Rq.

Extended Function Code: Bit 12 serves as an extension 1o
the basic function code and is 0 for this instruction; this
bit distinguishes between SPM and RPM.

OPERAND 1: The processor number, 0-7. Indirect
addressing indicates that the processor number is in the
register specified by R. Direct addressing indicates that
the processor number is the 14 value in the instruction.

OPERAND 2: A 2-bit designator in bits 14 and 15 used to
specify the bit to set.

e Bit 14 is reserved for future use.
o Bit 15=1 means set Privileged Mode bit.

EXAMPLE

HAME OPERATISN orEnaNe

L2348 87 §fSH0 11 1213 14 15 16 1718019 20 20 2223 24 25 26 27.28 29 30,31 37 33 M 35 36 37 3639 40 41 &7 4344 48 4G

NOTE
A processor can only execute the SPM instruction if
the privileged mode bit is set for that processor.
Initial setting of the privileged mode bit can be
accomplished with a WAR instruction.

Reset Privileged Mode Register

RPM 11,19 or @R1,|2

0 7 8 9 1 o1z 13 18
15 i

lq0r R1 f Ip

FUNCTION: A privileged instruction that resets the bit in
the Privileged Mode register associated with the processor

4-82

specified by 14 or Ry.

Extended Function Code: Bit 12 serves as an extension to
the basic function code and is 1 for this instruction; this
bit distinguishes between SPM and RPM.

OPERAND 1: The processor number, 0-7. Indirect
addressing indicates that the processor number is in the
register specified by Rq. Direct addressing indicates that
the processor number is the 14 value in the instruction.

OPERAND 2: A 2-bit designator in bits 14 and 15 used to
specify the bit to reset.

e Bit 14 is reserved for future use

e Bit 156=1 means reset Privileged Mode bit

NAME OPERATION OPERAND
1 73 T8 w7 8]0 10 17 13 1h 15 v vi]ve] 19 20 20 7722 74 28,26 70 28 29 30 31 32 13 34 3 36 37 3039 4041 42 4380 45 4t
RAA . s e

The Privileged Mode bit for Processor 3 is turned off.
Write Extended Register
WRX Eq,Rp

[} 7 8 " 12 13 15

FO Eq f| Ry

FUNCTION: A privileged instruction that writes the
contents of the general register into a Group |l extended
register.

Extended Function Code: Bit 12 serves as an extension to
the basic function code and is 1 for this instruction; this
bit distinguishes between RDX and WRX.

OPERAND 1: The Group |l extended register to be
loaded is specified by Rq.

OPERAND 2: The general register which contains the
data to be transferred is specified by Ro.

CONSIDERATIONS: Any attempt to access a Group |
extended register will result in a trap to the lInvalid
Instruction routine.

s sy

NAME OPERATION OPERAND
V2 3 A8 6 7 8|8 10 11 1213 14 15 16 V/|10] 19 20 7172 73 74 25,76 27 7879 3031 32 33 34 35 36 30 I8 39 4641 42 414 45 86
....... WAX ... 2,7 oo

Writes the contents of general register 7 into extended
register 2.

I/O INSTRUCTIONS

Each of the three |/O processor states has an associated
1/0 driver to implement all 1/O activity delegated by the
Executive program. Conceptually, the 1/0 driver is the 1/O
processor. The driver is a series of machine instructions
designated by the operating system for the associated
processor state.,

Implementation

All 1/O control and data transfer is via the extended
registers of the three 1/0 states. Machine language
instructions are tailored to implement the requirements of
three major classes of 1/0 operation:

@ Communications Processor State 0
e Selector Channel Processor State 2

e Disc Processor State 3
Communications

Two 1/Q instructions provide for communications 1/0.
WRC is used for setting up the channel for a data transfer,
and RDC implements the input or output transfer.

Selector Channels

Three 1/O instructions provide for basic data channel
operations: INP, OUT, and SI10. INP and OUT prepare the
channel for a data transfer, and perform the transfer
under software control. SIO can set up the channel,
perform a hardware-controlled transfer and ending
sequence, and process asynchronous status.

Disc

Three 1/O instructions provide for disc operations: iNP,
OUT, and DI10. INP and OUT perform certain preparatory
functions such as Seek, while DIO implements
time-dependent operations - searching count fields and the
actual input or output transfer.

1/0 Instruction List*

Mnemonic Name
DIO Disc I/0
INP Input from 1/0O Register
ouT Output from 1/O Register
RDC Communications /0
WRC Communications Output
SIO System /O

"All 1/O instructions are restricted to one of the dedicated
processors, 0-3,

Disc Input/Output

DIO @R¢,Ry
[}

F2 i| Ry {0]| Ry

FUNCTION: Operates on a variable length command
packet or several such packets located at the address
specified by Ry to effect a variety of disc channel
operations including buffered data transfer (input or
output). This is a restricted instruction limited to
Processor 3.

OPERAND 1: A one-word field containing the first word
address of the command packet. The command packet
address is in the general register specified by R for direct
addressing, or in the memory location specified by the
contents of R for indirect addressing.

OPERAND 2: At the end of the operation, the status of
the last operation to be performed is transferred to a
6-byte table. The table starting address is contained in the
general register specified by Rg. The table has the
following format:

o] 15

Current Command Program Address

Status of Last Hardware Operation

Last Byte Address (+1 or +2) Transferred*

- *+1 if byte count is even,
+2 if byte count is odd.

Command Packets

The DIO instruction operates on the following packets:

Command
Home Address Search (03) Packet
012 3 8 16
c| BRs 08
Byte Count
Tag

Buffer Address (Home Argument)

Home
Address
Argument
P Flag c1
c2
H2

0 1 2 3

Command
Count Field Search (08) Packet

15

Cc BRS

Byte Count

Tag

Buffer Address (Count Field Argument)

Count
Field
Argument
[Flag c1
Cc2 H1
H2 Record Number
Key Length L D1
D2
Read (02)
0 1 2 3 4 6 7 8 15
: 02
Byte Count
: TAG
Buffer Address
Overall Byte Count
Read Without Transfer (04)
0 1 2 3 4 7 8 15
04
Byte Count
Write (01) or Format Write (10)
01 2 3 4 7 8 15
01or 10
Byte Count
Variable Gap TAG

Buffer Address

BRS (Bit Ring Sync) — determines the type of field
(home address, count, key or data) to be read or written.
000 — Special Home Address
001 — Data Field
010 — Key Field
011 — Rg Count Field

100 — Control

Storage Data

101 — Home Address Record
110 — R, Count Field
111 — Special Data

Rg is the first record on a track, Ry, is any record after the
first record on the same track.

4-84

Byte Count — Specifies the number of bytes in the
command argument (search packet), or the total number
of bytes to be read or written.

Tag — Adds base register displacement to the buffer
address.

Buffer Address — Specifies the starting address of the
argument (search packet), or the starting address which
will be used to store data from the disc, or where data to
be recorded on the disc is located. Buffer address must be
stored in an even memory location.

Flag — Indicates track usage and condition.

C1, C2 — Specifies the cylinder address. C1 is always set
to zero; C2 can have a value between 000 and 202.

H1, H2 — Specifies the head address. H1 is always set to
zero; H2 can have a value between 00 ancl 19.

Key Length — Specifies the number of bytes in the key
field. If no key field is included, key length must be set to
zero.

Overall Byte Count — Specifies total length of all data
fields to be read during respective read (multiple of byte
count when R=1). When R=0 this word must not be used
and must not be included in the command packet.

Variable Gap — Specifies the one’s complement of the hex
number of supplementary gap bytes which must precede
the next count field to be written. IFA logic
automatically generates 41 gap bytes for every type of
data field. The following table specifies the number of
additional gap bytes which must be appended by the
command after writing each data field.

Type of Field Entry
Rg Count, Rg Data, FF 6 (0 bytes)
Ry, Data, R, Key
Home Address” DF 1 (3210 bytes)
Special Home Address®, Not Defined
Special Data
Ry, Count 0.043 x (Key Length +

Data Length) not in-
cluding Burst Check
Bytes

*In the event of Home Address error, a gap length of 205 bytes
will be inserted by the utility program.

R (Repetitive Read Indicator) — If 0 = no multiple read; if
1 = multiple read requested.

C (Chain) — If this bit = 1, DIO will expect to find
another command packet immediately following the first
command packet. After executing the first command, the
microprogram will proceed to execute the second
command. Chaining will continue until DIO reaches a
command packet with a chain bit = 0, which the micro-
program will assume to be the last packet to be executed.
Whenever a packet in the chain does not complete success-
fully, the chain is terminated and the status of the
command packet being executed is returned to Shared
Resources.

NOTE

A complete discussion of disc addressing, track
formats and other pertinent information can be
found in the publication Memorex 3664 Disc
Storage Drive Reference.

EXAMPLE

NAME OPERATION OPERAND

12 3 4 5 6 7 8)8)10 11 1213 10 15 16 17]va] 19 20 21 2223 24 24 26 27 28 28 sy 31 12 33 34 15 36 47 3809 40 €1 42 4344 4% b
....... ro ... |¥,4

Register 5 contains a pointer to a set of 1/0 commands
which are to be executed. After execution, the three-word
end-operation status is stored at the location specified in
register 4.

Input from 1/O Register

INP Ry,@Rj
[} 7 8 1 12 13 15

F5 Ry i| Ry

FUNCTION: Reads the contents of the Group Il
extended register specified by R4 and transfers it to the
general register specified by Ro or to a memory location if
indirect addressing is used. This is a restricted instruction
limited to the 1/0 processors (0-3).

OPERAND 1: The data is read from the extended (Group
11) register specified by the R value.

OPERAND 2: For direct addressing, the receiving field is
the general register specified by Rp. For indirect
addressing, the receiving field is at the memory location
specified by the contents of this register.

Application

The INP instruction is used by the disc and BDC (basic
data channel) processors for setting up an operation in
preparation for the actual data transfer.

Basic Data Channel Operations — For BDC operations in
INP instruction is executed in Processor 2. The extended
registers of Processor 2 have dedicated hardware functions
such that the particular register number specified by field
Ry determines the hardware significance of the input
word transferred. Figure 4-5 shows the relationship
between the R4 value, the extended register number, and
the hardware significance of the input word.

Dis¢ Channel Operations — For disc operations, the INP
instruction is executed in Processor 3. Here the receiving
field is determined by Ry; the value of the Rq field is
immaterial since the source of the word transferred is
always the same. The nature of the word depends upon
the value of the R4 field in the previously executed OUT
instruction.

EXAMPLE

NAME OFERATION orERaND
- s e ——— - e - L
1.2 3 a5 62 nialan 1 121314 1596 1] 18119 20 712223 24 25 26 27 20 29 30,3+ 32 33 34 3 36 3/ 3839 40 41 42 4348 84 46

(IAP

The contents of extended register 4 are transferred to
general register 7.

Output to 1/0 Register

OUT R¢,@Ry

F6 Ry i| Ry

FUNCTION: Transfers the contents of the general register
ﬁecified by Ro, or the contents of a memory location if
indirect addressing is used, to the group Il extended
register specified by Rq. This is a restricted instruction
limited to the 1/0 processors (0-3).

OPERAND 1: The data is transferred to the Group IlI
extended register specified by the R4 value.

OPERAND _2: For direct addressing, the sending field is
the general register specified by Ro; for indirect
addressing, the sending field is the memory location
specified by the contents of this register.

Application

The OUT instruction is used by the disc and BDC (basic
data channel) processors for setting up an operation in
preparation for the actual data transfer.

4-85

Ry Extended Register No, Contents of Input Word
16-bit Mode
—
0 7 8 15
0,4,8,C 10, 14, 18, 1C Bus in Register Bus In Register
Byte Mode
0 7 8 15
1,5,9,D 11, 15,19, 1D Tag In Lines Tag Out Register
0 15
2,6,AE 12, 16, 1A, 1E Channel Control Register
] 15
3,7,8,F 13,17,18B, 1F Byte Count Register
Figura 4-5. INP Instruction In Basic Data Channel Operation
Extended Register Hardware Interpretation
R4 Number (Hex) of Qutput Word
0 7 8 15
1 1 Tagout Register
0 15
2 12 Channel Control Register
0 15
4 14 Bus Out Register
0 15
8 18 Byte Count Register
0 15
F 1F All Registers

Figure 4-6. OUT Instruction In Basic Data Channel QOperation

Basic Data Channel Operations — For BDC operations the
OUT instruction is executed in Processor 2. The Group 111
extended registers of Processor 2 have dedicated hardware
functions such that the particular register number
specified by field Ry determines the hardware significance
of the output word. Figure 4-6 shows the relationship
between the R4 value, extended register number, and the
hardware interpretation of the output word.

4-86

Disc Channel Operations — For disc operations, the OUT
instruction is executed in Processor 3. The Group Ii!
extended registers of Processor 3 have dedicated functions
such that the particular register number specified by field
R1 determines the hardware significance that will be
assumed for the output word. The following material
shows the relationship between the extended register
number and the hardware interpretation of the output
word.

Extended Register 10

0 12 13 15

Not used Drive
No.

Extended Register 11

0 15
Command
+ |
0 0 0 1 = Set Hd Adv
0 0 0 2 = Restore
0 0 1 0 = Reset Hd Reg
0 0 2 0 = Start Seek
0 0 4 0 = Reset Attn
0 2 X X = Latch, where X X = 8 bits for bus lines
0 0 X X = Puise, where X X = 8 bits for bus lines
0 4 X X = Set Hd Reg, where X X = Hd No.
0 8 X X = Set Cy! Reg, where X X = CAR No.

Extended Register 12

This register causes a request status indication from the
IFA. The output word is immaterial in this case since the
hardware will always return a status word to be picked up
by an INP instruction. Significance of the status word is as
shown in the following table.

8000 IFA Status Not Valid OR Command Early
4000 IFA Missed Window OR Command Early
2000 IFA Window

1000 IFA Track Boundary

0800 IFA Read/Write Termination

0400 IFA Burst Check Error

0206 IFA Lost Data

0207 IFA No Sync Compare

0080 IFA 3rd Rev Sync Find

0040 Disc {Not On Line) OR (Seek Incomplete
and Not File Unsafe)

0020 Disc (File Unsafe) OR (Seek Incomplete
and Not File Unsafe)

0010 Disc Read Only
0008 Disc Pack Change
0004 Disc End of Cylinder

0002 Disc Write Current Sense or No Search
Find*

0001 Disc Busy

*No Search Find will exist only when the command word
in error is a Search command word.

Extended Register 13

This register causes a request attention and physical
address from the IFA. The output word is immaterial in
this case since the hardware will always return the
following word to be picked up by an INP instruction.

0 12 3 45 6 7 8 15
112;3)14]5]61]7

Cylinder Number

~ -
i A

Attention Bits

Extended Registers 14, 15

Not used for OQUT instruction (see DIO instruction).

EXAMPLE

Hame OPERATION OPERAND

12 4 a6 1 |9 00 1 12131 1o C[18[19 20 20 22 21 70 25 26 2428 29 0 %1 32 33 14 36 3607 38 39 40,41 47 434445 a6

our ... | 5,6 .

extended register 5.

Communications Input/Output

RDC

0 7

F3

16

FUNCTION: Each time processor state 0 is turned on
(Busy bit set), the Communications 1/O driver executes
the RDC instruction to determine whether the Busy bit
was set by the Executive program (output) or by one of
the communication lines (input). If there is no interface
request (that is, no call-in on any of the communications
lines), general register 5 is set to other than zero and
execution falls through to the next instruction in the
driver.

If there is an interface request, RDC places the line
address in general register 2 and input information in
general register 3, and then inspects the line address table
(the starting address of which had previously been putin
general register 4) to determine whether or not a line
parameter table is assigned to that line. If there is no line
parameter table, it indicates that activity on that line was
neither expected nor should be acknowledged; general
register b is reset, and execution then falls through to the
next instruction in the driver.

If a line parameter table is assigned, the address of that
table is placed in general register 5, and further analysis is
performed to determine whether the request is to be
handled by software or whether buffered data transfer
(input or output) is indicated, in which case the RDC will
implement the actual transfer by operating on the line

4-87

parameter table. If the interface request requires software
processing, RDC wili first determine the type of request
and then transfer control to the appropriate software
routine. The address of the routine is cbtained from a
jump table pointed to by one of the words in the
parameter table.

Assuming that control is not transferred to a software
routine, RDC will continue to service buffered data
transfer requests in a multiplexed mode until control is
diverted to a software routine.

The RDC instruction is a restricted instruction limited to
Processor 0.

Line Address Table

A 32-byte table containing a one-word address pointer to
a line parameter table for each line address. If the pointer

LINE PARAMETER TABLE

is zero, a line parameter table has not been provided for
that line address.

Line Parameter Table (Unit Table Extension)

A block of information concerning a particular line
address. Thus, it is possible for each line to be uniquely
implemented. One of the words in each parameter table is
a pointer to a line exit jump table (Figure 4-12).

A 12-byte table containing one-word address pointers to
software routines for each line exit condition. The pointer
to the line exit jump table contained in the line parameter
table may be changed to a different line exit jump table,
or any element of a line exit jump table may be changed
to meet a line-modem situation.

The interrelationship of the Line Parameter table and the
Line Exit Jump table is shown in Figure 4-7.

LINE EXIT JUMP
TABLE

ADDR. OF “NO INPUT BFR JTA

INPUT BYTE COUNT 1BC=0
- /00
INPUT, CURRENT BYTE ADDR. \’o
(ICBA) (S

STATUS (PARITY ERROR)

BUFFER TERMINATOR LIST
ADDR. (BTLA)

OUTPUT BYTE COUNT 0BC=0

/'LBTL J BYTES

h 4

ROUTINE

ADDR. OF “INPUT BFR
TERMINATED” ROUTINE

ADDR. of “INPUT BFR
FULL” ROUTINE

ADDR. OF “OUTPUT BFR

{oBC)

OUTPUT, CURRENT BYTE
ADDR. (0CBA)

— re— ——

JUMP TABLE ADDR.
WTA)

> EMPTY” ROUTINE

ADDR. OF "UNSOLICITED
STATUS” ROUTINE

STATUS” ROUTINE

I ADDR. OF “SOLICITED

THE LINE ADDRESS TABLE (SEE TEXT) POINTS TO A DIFFERENT
LINE PARAMETER TABLE ADDRESS (LPTA) FOR EACH COMMUN-
ICATION LINE. .

*THESE TWO ROUTINES CHECK WORD 3 OF THE PARAMETER
TABLE TO SEE IF A PARITY ERROR OCCURRED.

Figure 4-7. Relationship, Line Parameter Table and Exit Jump Table

4-88

Communications Qutput

WRC R1,R2
0

Fa

FUNCTION: Transfers the contents (data or ICA
command) of the general register specified by Ry to the
line address specified by Rq. This is a restricted
instruction limited to Processor 0.

OPERAND 1: The destination of the ICA command
format (or data) is the line address contained in the
general register specified by Rj.

OPERAND 2: The command {or data) to be transferred is
contained in the general register specified by Ro.

Application

The WRC instruction is designed for putting out a single
ICA command (or data) format to a communications line
in preparation for a data transmission to be implemented
by the RDC instruction.

ICA Command Format: The general format of the output
word transferred by the WRC instruction is shown in the
first illustration. The specific variations of the word are
shown in following illustrations.

0o 1 2 3 15
B I

B is a broadcast designator; broadcast=1, not
broadcast=0. When this bit is a 1, the command
word is ““broadcast’’ to all channels.

I is an identifier; its value, 0-3, determines the
significance of bits 3-15.

If | = 0, (Input Request), the word has the following
format.
0 1 2 3 15
No significance

B 0

If | = 1, (Output Character), the word has the following
format.

8 15
Character

Bits 6-7 define the contents of bits 8-15 according to the
following table.

I Character

0 Data character

1 Control character
2 Dial digit

3 Reserved

If | = 2 (port command), the word has the following
format.

01 2 3 5 6 7 8 910 11 12 13 15

BC

B 2

Each of the bits 6-12 has an assigned meaning, as listed.

Bit Command Code

6 Return unsolicited status, bit = 1

7 Return solicited status, bit = 1

8 Clear link commands, bit = 1

9 8-level = 1; 7-level + parity =0
10 Odd parity = 1; even parity = 0
11 Echoplex: invoke = 1; revoke =0
12 Speed: split = 1; not split=0

BC is a baud code; the values of BC (0-7) have the
meanings listed.

BC Baud Code

0 Not used

1 Not used

2 1200 baud, sync

3 1200 baud, 120 cps

4 600 baud, 60 cps

5 300 baud, 30 cps

6 150 baud, 15 cps

7 110 baud, 10 cps
If 1 = 3 (Link Command), the word has the following
format.
0 1 2 3 5 6 1112 14 15
B3 b Reserved cc A

Bits 12-14 define a command code; the meanings assigned
to the possible values (0-7) are listed.

cc Command Code

0 Data terminal ready

1 Request to send

Transmit space clamp
Secondary request to send
Off hook

Dial request

Half duplex

N o o s W N

Not loop test

4-89

A is an action bit: action if 1, no action if 0.

——————
NAME OPERATION OPERAND

V2 37486 1 8900 11 1213 ve 15,06 178|139 70 21 7273 76 75,16 27 20 9 30 31 32 33 435 36 37 34 39 40 A1 42 4340 45 46
...... WARC. ... | 1R,% .

The command (or data) in register 4 is transferred to the
line address in register 2.

System Input/Output

SI0 @Rq,R,

o 7 8 9 1 12 13 15

F1 i| Ry Rg

FUNCTION: Operates on a four-word command packet
specified by Rq and a one-word flag and address operand
contained in the general register specified by Ry in order
to effect one of the following:

1. Basic Data channel set-up, selection sequence,
hardware controlled data transfer (input or
output), and an ending sequence.

2. Process Basic Data channel asynchronous status
(polling sequence).

This is a restricted instruction limited to Processor 2.

OPERAND 1: A one-word field containing the first word
address of a four-word command packet. The operand is
in the general register specified by R4 for direct
addressing, or in the memory location specified by the
contents of R¢ for indirect addressing. If in the flag byte
in operand 2, bit 0=1 (polling sequence), operand 1 is
ignored.

OPERAND 2: A one-word operand located in the general
register specified by Ro. The operand has the following
format.

Not Used Devico Address

o~ ~
Flag Byte Address Byte

0 = Davice selection, data transfer, and ending
sequence.
1 = Asynchronous status (polling sequence).

If bit 0 = 0, bits 8-15 contain the address of the byte to be
selected. When bit O = 1, the device address is ignored.

4-90

Bits 8-15 contain the address of the device to be selected
if bit 0=0. When bit 0=1, the device address is ignored.

Command Packet
The format of the command packet which the SI10
instruction expects to find at the locaticn specified by R

is:

15

Command

- | =

Byte Count

First Byte Address (FBA)

Bit 0 is a chaining indicator used by software. Bit 1 is a
suppress incorrect length indicator used by software. Bit 2
is a skip data-transfer bit used by the SIO to perform
input operations without transferring data; if bit 2=0,
normal input is assumed, if bit 2=1, input without transfer
is assumed. Bits 8-15 contain the command byte issued to
the device selected. The command byte codes are
IBM-compatible, with the following exception: if a
command code is non-zero (bits 8-12 non-zero) and bits
13-15 are zero, an invalid command status indication is
returned.

I the command is not the exception above and a data
transfer is initiated, bit 15 indicates whether the operation
is read or a write: O=read, 1=write.

The second word of the command packet holds a 16-bit
byte count which must be non-zero, otherwise an invalid
command status is returned. The non-zero count is
required for all commands, including TEST /O and
control commands, which do not include a data transfer.
For commands which require a data transfer, the byte
count allows transfers of 1-65,535 bytes.

The last word of 'the command packet contains the
first-byte address of the data field in main storage.

Application
The SIO instruction has two basic uses as follows:

1. Initiating and performing hardware controlled
data transfer.

2. Processing asynchronous status.

The user defines the purpose of SIO via the flag byte of
operand 2. The results of an SIO can be determined by
examining the returned information as described below. If
bit O of the flag byte is O:

o General register O contains the command packet
address.

o General register 1 contains the residual count of
the data transfer.

o General register 2 contains 8 bits of device status
and 7 bits of channel status.

If bit O of the flag byte is 1:
o General register 0 contains zero.

e General register 1 contains the address of the
device which responded to the asynchronous
status sequence, or zero if none of the devices
responded.

e General register 2 contains 8 bits of device status
and 7 bits of channel status.

Status information returned in general register 2 is
explained in the table (right). The on condition (bit=1)
for each bit indicates the status described.

EXAMPLE

If bit O of the flag byte in register 3 is on (1):

1. The REQUEST IN tag line is examined.

2. If REQUEST IN is down, an immediate exit is
made indicating this fact.

3. If REQUEST IN is up, the device address and
status are returned in general registers 1 and 2,

respectively.

NAME OPERATION OrERAND

v 2 3 46 5 1 a[8]0 i 212 va 1 16 14 a19 70 21 2273 20 75 76 21 28 29 30 3¢ 3213 3 V4 3 37 3N 1 sg a1 42 6344 4> a5

sro 1,2

The flag byte in register 3 is examined and if bit 0 is off
{0):

1. The device address (bits 8-15 of register 3) is
selected.

2. The six byte 1/0 command word pointed to by
the address in register 4 is read and executed.

3. After execution (channel end or error condition)
registers 0, 1, and 2 contain the result of the
operation.

General Register 2
Bit Number Unit Status Information
0 Attention
1 Status Modifier
2 Control Unit End
3 Busy
4 Channel End
5 Device End
6 Unit Check
7 Unit Exception
Channel Status Information
8 ' Initial Selection Sequence
Error:
o Device off-line
o Bus out parity error
® Program Address error
9 Invalid Command Word
10 Channel Address/Status Check
® Wrong address-in on initial
selection
® Address or status parity
invalid
11 No “’Request In’’ (poll sequence)
12 Control Check
13 Transmission Check (invalid
parity on sense, control, or
data bytes)
14 Short Buffer
15 Unused

4-91

5. SYSTEM OPERATING PROCEDURES

INTRODUCTION

This section provides the operator and programmer with
information for using the System Control Panel to operate
the system. it describes the function of controls and
indicators associated with the operator group, pro-
grammer group, system activity display group, and
communication activity display group; plus step-by-step
procedures for the most commonly used operator and
programmer operations executed by the panel. Description
of controls, indicators, and procedures associated with
the maintenance group portion of the panel are specifically
excluded from this section because their use is restricted
to properly-qualified maintenance personnel only.

The System Control Panel is illustrated in Figure 5-1.

CONTROLS AND INDICATORS

Controls and indicators on the System Control Panel are
divided into five groups:

® Operator Group

e Programmer Group

e Maintenance Group
® System Activity Display Group
e Communications Activity Display Group

The following paragraphs provide a functional description
for each control and indicator on the panel. The de-
scriptions are arranged by panel group, starting with the
bottom right control in each group and proceeding left-
ward and upward.

NOTE

Al pushbuttons are of the momentary-action type
unless otherwise specified.

OPERATOR GROUP
EMERGENCY PULL Knob

When pulled, instantly removes all power from system
except AC power to, and power from, the +24 VDC
control supply (does not go through normal power-down
sequence which is the case when using POWER OFF
pushbutton).

MAINTENANCE
GROUP

SYSTEM ACTIVITY
DISPLAY GROUP

e e A o e

T o2 s 67

PROGRAMMER
GROUP

ACCESBON CONTROL BELECT PROCESSOR
o B
sTop/eTER 7 Py 3 .
I - —]
homes U U 3 U U !
l ACORRSS ELECY _I AKPOWT MODE SELEC
U > “““
PHYBICAL
IOLE ADDRESS: AEG:8TEN DISPLA CLEAR
" " s

O Of-s
@)
O«

O O]

O Ol
O Of-
O Ols
Oe
OO:

©)

OPERATOR
GROUP

an 1
BANLE (e SELECY AUTOLO:

foooo (-0 do

COMMUNICATIONS
ACTIVITY GROUP

5-2

Figure 5-1. MRX/40 and 50 System Control Panel

" The EMERGENCY PULL knob is not meant for
normal “power-off’’ sequencing. Whenever this
switch is used to remove power from the system,
power cannot be reapplied until a mechanical
interlock within the cabinet is released. (This is a
maintenance activity.) Thus the EMERGENCY
PULL knob is intended to be used only in
emergency situations {circumstances involving a
safety hazard). Its use can cause equipment damage.

POWER OFF Pushbutton/Indicator

Turns system power off when POWER MODE switch is in
LOCAL. This switch assures proper power-down
sequencing. (POWER OFF has no effect while POWER
MODE switch is in REMOTE.)

NOTE

POWER OFF will be lit unless one of the fol-
lowing conditions exist: no primary power is
available, the main disconnect switch is off, the
EMERGENCY PULL knob has been pulled, or
power is on (that period between the completion
of a power-up sequence and the initilization of a
power-down sequence).

POWER ON Pushbutton/Indicator

Turns system power on when the POWER MODE switch
in the maintenance group is in LOCAL. This switch
assures proper power-up sequencing. (POWER ON has no
effect while POWER MODE switch is in REMOTE.)

NOTE

Upon completion of the power-up sequence, a
Reset/Load sequence is automatically initiated,
provided the maintenance mode has not been
selected. Moreover, at completion of the
Reset/Load sequence, an Autoload sequence is
automatically initiated. Further detail is provided in
the procedures for loading CS and MS in either the
operator or program mode.

AUTOLOAD Pushbutton

Causes main staorage to be loaded, starting at a location
determined by the microprogram subroutine with data
obtained either from disc drive zero (when LOAD
SELECT switch is in PRIMARY) or from cards (when
LOAD SELECT switch is in ALTERNATE.)

LOAD SELECT Switch

Determines input media used during a Reset/Load and/or
Autoload sequence. Down position (PRIMARY) selects
disc as input medium. Up position (ALTERNATE) selects
cards as input media. In the case where a system is
configured to have both a card reader and a reader/punch,
the alternate source may be either and is field selectable.

NOTE
During an Autoload sequence, the PRIMARY
position of this switch causes the first microprogram
loader instruction to come from control storage
address 011345 and the ALTERNATE position
causes the first microprogram loader instruction to
come from control storage address 01124g."

SPEAKER Volume Control

Adjusts volume of the speaker contained in the panel
enclosure. This speaker is driven by the circuits associated
with bit positions 13, 14, and 15 of the CONSOLE DATA
REGISTER DISPLAY indicators.

NOTE
The relative loudness levels of these bits on the
speaker are these: bit 14 will be twice as loud
as bit 13 and bit 15 twice as loud as bit 14.
1/0 FAULT Pushbutton/Indicator

I/0 FAULT will light if any of the following conditions
oceur.,

-

Channel 1 Transmission Parity Error
2. Channel 2 Transmission Parity Error
3. Channel 1 Control Check Error
4. Channel 2 Control Check Error

5. Burst Check Error (during a Reset/Load
operation from disc).

6. Failure of disc heads to retract during power-
down sequence.

Pressing 1/0 FAULT extinguishes the indicator, (Refer to
individual 1/0O fault indications in the System Activity
Display Group, further in this section.)

* At present, there is no microprogram starting at address 011216
to load CS from cards; consequently, CS can be loaded only via .
disc drives.

5-3

PROC FAULT Pushbutton/Indicator

PROC FAULT will light if any of the following con-
ditions occur.

1. Control Storage Parity Error
2. Main Storage Parity Error

3. DC Voltage Fault

4. Over-temperature condition

Pressing PROC FAULT extinguishes the indicator except
in the case of a DC Voltage Fault or an Over-temperature
condition. In this case, the cause must first be corrected
for the switch to have effect.

ALARM (located behind Panel)

Furnishes an audible signal when the LAMP TEST push-
button is pressed or when any of the following conditions
exist:

1. Blower failure within the computer
2. DCvoltage fault

3. Failure of disc heads to retract during a
power-down sequence

NOTE

When biower failure or DC fault conditions
exist for approximately 60 seconds, the power-
down sequence is automatically initiated.

If the heads fail to retract from a disc during
the power-down sequence, DC voltages will be
removed within the computer. The power-down
sequence will stop at that point until the problem
is corrected.

ALARM DISABLE Pushbutton/Indicator

Pressing this pushbutton, if the audible alarm s on,
causes the alarm to stop and the ALARM DISABLE to
light. When the alarm condition is corrected, ALARM
DISABLE will extinguish.

LAMP TEST Pushbutton

Pressing this switch causes all indicators to light and the

alarm to sound. Releasing the switch returns them to
their prior state.

5-4

RESET Load Pushbutton

Causes data to be read from either cards or disc and to be
transferred either to control storage and first-level decode
address table and/or to main storage; the routing depends
on the setting of the CONSOLE MODE SELECT selector
(CS-WR or MS-WR) and the operating mode that has been
selected. Selection of cards or disc as input medium is
determined by position of the LOAD SELECT switch.
(See the procedures for LOADING CONTROL
STORAGE FROM CARD READER for explicit
instructions regarding the use of this pushbutton.)

Upon completion of a Reset/Load operation from disc,

an Autoload operation will automatically be initiated
providing Maintenance Mode has not been selected.

PROGRAMMER GROUP
NOTE

Controls within this group are conditioned by
the PROGRAM MODE pushbutton/indicator
except where otherwise designated.

CONSOLE MODE SELECT Selector

Selects basic mode of operation for panel: '
RO-RD — register option read
RO-WR - register option write
RF-WR — register file write
RF-RD — register file read
OFF — select switch disabled
MS-RD — main storage read
MS-WR — main storage write
CS-RD — control storage and first level decode
address table read or scan (enabled in Maintenance
Mode only)
CS-WR — control storage write {enabled in Main-
tenance Mode only except during a Reset/Load
operation)

CONSOLE RUN Pushbutton

Initiates the function selected on the CONSOLE MODE

SELECT selector in a manner determined by the CON-
SOLE CONTROL SELECT switch.

CONSOLE CONTROL SELECT Switch

Three-position switch governing the way in which a
selected console control operation is executed:

STOP/STEP stop and step

NORMAL run continuously

BREAKPOINT run as far as breakpoint
(applies to CS-RD, CS-WR,
MS-RD, and MS-WR only).

CONSOLE MAIN STORAGE Switch
NOTE

This switch has no effect unless the Relocation
and Protection feature is installed.

This switch determines whether the contents of the
S-Register are interpreted as a system or physical main
storage address when an MS read or write operation is
occurring in the Console Control Mode. When it is in the
RELOCATE (up) position, the contents of the S-Register
are interpreted as a system main storage address and are
converted by the relocation mechanism into a physical
main storage address. When it is in the OFF (down)
position, the contents of the S-Register are directly
interpreted as a physical main storage address and bypass
the relocation mechanism.

SYSTEM RESET Pushbutton

The SYSTEM RESET pushbutton clears the following
registers:

1. EXTENDED REGISTER FILE

Group I: P[.L of all processor states.
Busy/Active, Tie-Breaker,
Control, Privileged, Boundary-
Crossing, Control Storage Scan,
Console Address, and Console
Data.

Group If:

2. SHARED RESOURCE REGISTERS

Ay, By, D, Sy, Fu-1, Fu-2, and Forced
Carry Register.

PROGRAM MODE Pushbutton/Indicator
Pressing this switch enables those switches located in the

programmer group area of the panel. The pushbutton is
lit when Program Mode is selected.

CONSOLE DATA REGISTER SELECT Selector
Selects one of eleven registers to be displayed by the

CONSOLE DATA REGISTER DISPLAY indicators.
(Does not affect the pushbutton function.)

NOTE
Only the DATA and B/A positions are enabled
when Program Mode is selected. All other

positions of this switch require Maintenance
Mode to be effective.

TFy2 Micro-Command Function register,
rank 2

TF#1 Micro-Command Function register,
rank 1

tRTC Real-Time Clock register
tCSS Control Storage Scan register
B/A Busy/Active register
DATA Systems Control Panel Data register
1D Main Storage Data register
Tay ALU Feeder register A

By ALU Feeder register Bu

tSUM Output of ALU (sum of A and B
plus the forced-carry register)

tBC Boundary-Crossing register

(those marked 1 enabled in Maintenance Mode only)

CLEAR DATA Pushbutton
Clears contents of Console Data register.

CONSOLE DATA REGISTER DISPLAY Pushbutton/
Indicators

Twenty pushbutton/indicators horizontally located as 6
groups of 4 bits each. These groups function as follows:

1. Pushbutton/indicators: X0 — X3 (not
functional for 7200)

5-5

2. Pushbutton/Indicators: 00 — 15

Pressing these pushbuttons will cause
corresponding bits to be set in the Console
Data Register only. However, the indicators
will be on for corresponding bit positions
that are set, and off for corresponding bit
positions that are clear, at Fu2, Fu1, RTC,
CSS, B/A, DATA, D, Ay, By, SUM or BC
outputs as determined by the CONSOLE
DATA REGISTER SELECT selector.

The digital inputs to the Console Data
register display lamp drivers in bit positions
13, 14, and 15 are also used as inputs to the
panel speaker drivers.

CONSOLE ADDRESS REGISTER SELECT Selector
Selects one of four registers to be displayed by the

CONSOLE ADDRESS REGISTER DISPLAY indicators.
{Does not affect the pushbutton function.)

NOTE

Only the S and ADDRESS positions are enabled
when Program Mode is selected. The remaining
two positions of this switch require Maintenance
Mode to be effective.

S Main Storage Address register

Sy Control Storage Address register
(enabled in Maintenance mode only)
ADDRESS Console Address register

PE Main Storage Parity Error Address regis-
ter (enabled in Maintenance mode only)

CLEAR ADDRESS Pushbutton

Clears contents of Console Address register.

CONSOLE ADDRESS REGISTER DISPLAY Pushbutton/
Indicators

Twenty pushbutton/indicators horizontally located as 5
.groups of 4 bits each. These groups function as follows:

1. Pushbutton/Indicators: X0 — X3 (not
functional for 7200)

5-6

2. Pushbutton/indicators: 00 — 15

Pressing these pushbuttons will cause
corresponding bits to be set in the Console
Address Register only. However, the
indicators will be on for corresponding bit
positions that are set, and off for
corresponding bit positions that are clear in
the Sy, S, Console Address and PE registers
as determined by the CONSOLE ADDRESS
REGISTER SEL ECT selector.

BREAKPOINT MODE SELECT Switches
1. WRITE DATA Switch

When up (on), causes breakpoint stop at end
of each main storage reference cycle in
which data was written at a breakpoint
address.

2. READ DATA Switch

When up (on), causes breakpoint stop at the
end of each main storage reference cycle in
which data was read at the breakpoint
address.

3. READ INSTR Switch
When up (on), causes a breakpoint stop

immediately after the machine language
instruction is read at the breakpoint address.

4, RELOCATE/PHYSICAL Switch (not
functional for 7200)

BREAKPOINT ADDRESS SELECT Selectors

Five selectors which provide a hexadecimal stop address
for processor state(s) operating in the breakpoint mode.
Also applies to console mode, MS-RD, MS-WR, CS-RD,
and CS-WR selections.

PROCESSOR SELECT Selector

Selects one of the eight processor states to execute in
the mode selected by the corresponding PROCESSOR
CONTROL SELECT switches.

PROCESSOR RUN Pushbutton

Starts the processor state selected by the PROCESSOR
SELECT selector.

PROCESSOR CONTROL SELECT Switches

Eight three-position switches which place individual
processor states in one of three modes:

1. STOP/STEP — Stop and step selected proc-
essor state.

2. NORMAL — Allow selected processor state
to run continuously.

3. BREAKPOINT — Allow selected processor
state to run until a breakpoint-comparison
equality occurs.

MAINTENANCE GROUP

Except for the MAINTENANCE MODE pushbutton,
controls and indicators in the maintenance group are not
described in this manual because their use is restricted to
maintenance personnel only. The MAINTENANCE
MODE pushbutton, used to enable controls of the
maintenance group, must be in the off state (Maintenance
Mode not selected) to enable operation of the operator
group controls.

SYSTEM ACTIVITY DISPLAY GROUP
PROCESSOR STATE Indicators

Dynamically indicate which processor states are executing
major cycles.

Status Indicators
Twelve indicators that each light for a particular status.

MS PARITY BYTE 0 — Displays state of parity bit
of upper byte (bits O through 7) of the last word
read out of MS. (Not enabled if ECC is present.)

MS PARITY BYTE 1 — Displays state of parity bit
of lower byte (bits 8 through 15) of the last word
read out of MS. (Not enabled if ECC is present.)

MS PARITY ERROR — Displays state of MS
Parity Error flip-flop. Indicator is on if flip-
flop is set and off if flip-flop is cleared.

CS PARITY ERROR — indicates parity error
in CS or first-level decode address table.

D.C. FAULT — Indicates that one or more DC
power supplies in system is not within allowable
output range. Remains on until condition is
corrected.

OVER TEMP. — Indicates a blower failure con-
dition within cabinet.

HEADS EXTENDED -- Indicates that heads in
one or more disc files fail to retract during the
power-down sequence.

BURST CHECK — Indicates detection of a burst
check error during a Reset/Load sequence from
the disc file.

CHANNEL 1 DATA CHECK — Indicates state
of Channel 1 Transmission flip-flop.

CHANNEL 1 CNTRL. CHECK - Indicates
state of Channel 1 Control Check flip-fiop.

CHANNEL 2 DATA CHECK — Indicates state
of Channel 2 Transmission flip-flop.

CHANNEL 2 CNTRL. CHECK - Indicates state
of Channel 2 Control check flip-flop.

COMMUNICATIONS ACTIVITY GROUP

These indicators show the adapter/modem status for the
communications channels and the integrated communi-

cations adapter as follows.

RECEIVED DATA (BB) — ON condition in-
dicates line is in the spacing condition (binary
zero). OFF condition indicates line is in the
marking condition (binary one).

TRANSMITTED DATA (BA) — ON condition
indicates line is in the spacing condition (binary
zero). OFF condition indicates line is in the
marking condition (binary one).

CLEAR TO SEND (CB) — ON condition, to-
gether with ON condition on circuits CA, CC,
and CD, indicates channel is in a transmit con-
dition.

RECEIVED LINE SIGNAL DETECTOR (CF) —
ON condition indicates that the modem is
receiving a signal which meets its suitability
criteria for demodulation.

SECONDARY RECEIVED LINE SIGNAL
DETECTOR (SCF) — ON condition indicates the
proper reception (where applicable} of the
SECONDARY CHANNEL signal. Used to indicate
the circuit assurance status and to signal a reverse
channel interrupt condition.

DATA SET READY (CC) — ON condition in-
dicates that the modem is connected to a
communication channel and, for an auto-answer
network, has completed the transmission of the
answer tone. For a private line network, the ON
condition indicates that the modem is ready.

OFF HOOK (OH) — For an outgoing call, ON
condition indicates that a call is being placed. (Dial
digits are generated by pulsing this signal.)

5-8

RING INDICATOR (CE) — ON condition in-
dicates that a ringing signal is being received via
the communication channel.

NOTE

Since under normal operation the
communications handler will answer a
call at the first generation of the ringing
signal, ON condition implies either a
malfunction or that the communi-
cations channel is not enabled.

ENABLE (EN) — ON condition indicates the line
adapter is enabled and is therefore not in the system
reset or loop test mode.

OPERATING PROCEDURES

The following paragraphs contain procedures which may
be executed from the System Control Panel. These pro-
cedures enable loading control or main storage from either
a disc or card reader, reading from or writing into main
storage or registers within register files or register options,
and executing programs in the program mode.

MODES OF OPERATION

The System Control Panel enables the system to operate
in one of two fundamental control modes: processor
control and console control. These two modes are not
mutually exclusive from the hardware point of view, but
should be clearly distinguished and kept separate in
operating practice. This separation is necessary since the
console mode can directly alter the contents of storage
and registers and in this way could completely disrupt
processor mode operations.

The processor control/ mode is selected basically by the
eight PROCESSOR CONTROL SELECT switches, the
PROCESSOR SELECT selector, and the PROCESSOR
RUN pushbutton. This mode enables the operator, in
connection with programmed operations, to directly
contro! execution of instructions by all eight processor
states. Thus, individual processors states may be switched
on and off or may be made to run one instruction at a
time (STOP/STEP) mode), etc. Except for the internal
effects of the programs themselves, the processor mode
does not allow the contents of storage to be altered.

The console control mode is selected basically by the
CONSOLE CONTROL SELECT switch, the CONSOLE

MODE SELECT selector, and the CONSOLE RUN push-
button. This mode does not involve any actual execution
of instructions by a processor state, but allows any
individual cell of main or control storage or any of the
hardware registers to be displayed or altered under either
hardware or software control. The panel is allocated major
cycles just as through it were a ninth processor.

Each of the fundamental control modes is influenced by
the three operating modes: operator mode, program
mode, and maintenance mode. These modes each deter-
mine a certain level of operating capability available to
the operator. The operator mode, selected when neither
the PROGRAM MODE or MAINTENANCE MODE push-
button is activated, restricts the operator to use of the
operator group controls only. This group allows the
operator to turn on and turn off the system, perform
reset/load and autoload operations, and detect fault and
status conditions. These operations are always available
to the operator regardless of whether the system is in
the processor mode or console mode. The program mode,
selected by the PROGRAM MODE pushbutton, enables
an operator 1o use the controls of the programmer group
as well as those of the operator group. This additional
capability allows the operator to place the system in
either the processor control or console control mode,
thus enabling operations associated with these two con-
trol modes to be carried out. The maintenance mode,
selected by the MAINTENANCE MODE pushbutton,
allows still more capability than when operating in either
the processor control or console control mode. Nor-
mally, this extended capability is required only by main-
tenance personnel when troubleshooting the system;
therefore, procedures initiated by controls of the main-
tenance group are not included in this manual.

BREAKPOINT FACILITY

The breakpoint facility provides a way of terminating
processor mode or console mode operations at a specific
point in either main storage or control storage (including
the first-level decode address table). This facility may be
invoked if the selected processor is started either from
the panel (PROCESSOR RUN pushbutton) or by internal
operations, or if the computer is already executing in-
structions. During processor mode operations, the break-
point operation is initiated by setting one of the PROC-
ESSOR CONTROL SELECT switches to BREAKPOINT.
The processor then proceeds until the storage location
selected on the BREAKPOINT MODE SELECT selectors
is reached, at which point the processor stops. This
breakpoint stop is interpreted in one of three ways, as
selected by a corresponding BREAKPOINT MODE switch:
READ INSTR, READ DATA, and WRITE DATA. Having

activated the READ INSTR switch will stop the proc-
essor after it reads the instruction at the breakpoint
address. Having activated the READ DATA switch will
stop the processor after it reaches the operand at the
breakpoint address. Having activated the WRITE DATA
switch will stop the processor after it stores the operand
at the breakpoint address.

NOTE

Word mode addressing will not result in a
breakpoint stop where the rightmost byte
(odd-numbered) address of the referenced word is
designated in the BREAKPOINT ADDRESS
switches. An example is the case of MS-RD or
MS-WR operations which will not perform a
breakpoint stop if the rightmost byte address is
designated by the BREAKPOINT ADDRESS
SELECT switches.

A breakpoint stop activated by the READ INSTR switch
will load only the first two bytes of an instruction. Thus,
the computer treats the reading of the M4, Mo, L4, and
Lo portion of 4-, 8-, and 8-byte instructions as operands
for breakpoint purposes.

For Console Mode operations (when the CONSOLE CON-
TROL SELECT switch is set to BREAKPOINT), the
breakpoint stop will always occur at the end of the
storage reference cycle in which data is read or written
at the breakpoint address.

NOTE

The breakpoint facility is not available for CS
references in either the operator or program
mode. However, the facility is available for MS
references if performed in the program mode.

SWITCHING POWER ON AND OFF

To turn the processing unit on, ensure that the LOCAL/
REMOTE switch is in the LOCAL position, then simply
press the POWER ON pushbutton. Upon completion of
the power-up sequence, the POWER ON indicator will
light.

The internal power-up switching sequence for the com-
puter and disc drives is performed by the hardware.

To turn the processing unit off, press and hold the
POWER OFF pushbutton for about 2 seconds. The
POWER OFF indicator will light. (The delayed action of
this switch is designed to prevent turning off power in-
advertently.)

5-9

NOTE

The procedures which follow require that the
processing unit not be in the Maintenance Mode —
evidenced when the MAINTENANCE MODE
indicator is not lit. Normally, access to controls of
the maintenance group by operator and programmer
personnel is not permitted. If the Maintenance
Mode has been selected, however (MAINTENANCE
MODE indicator lit), programmer access must be
made for the sole purpose of negating this mode.
Gain access by raising the front cover concealing
maintenance group controls. Press the
MAINTENANCE MODE pushbutton; when the
associated indicator goes off, the mode has been
changed.

" LOADING CONTROL STORAGE FROM DISC

Loading control storage (CS) from the disc via the Panel
formed in one of two ways: from a power on condition or
by using the RESET/LOAD pushbutton. Essentailly, the
power on condition loads CS when power is initially
applied to the system (pressing the POWER ON push-
button); using the RESET/LOAD pushbutton loads CS in
the same manner as pressing the POWER ON pushbutton
but it is after power has been applied. Each of the two
ways depends in which operating mode the Panel has been
placed: operator mode or program mode. Generally, the
operator mode provides the maximum amount of internal
hardware control with the least amount of operator
intervention. In contrast, the program mode requires a
greater amount of operator intervention but provides a
greater amount of flexibility in using the panel controls.

Power On Condition

Operator Mode
STEP1 Set the LOAD SELECT switch to
PRIMARY (for disc load).
STEP 2 Select one and only one, of the disc
drives as logical drive O by partially
inserting plug O into the drive select
slot. (Do not insert plug all the way
in at this time.)
STEP 3 Mount disc pack and enable power
to disc drive O by pressing the
START switch. (Ensure that the
READ ONLY switch is set.)

5-10

STEP 4

STEP S

STEP 6

Program Mode

STEP 1

STEP 2

STEP3

STEP 4

STEP 5

STEP 6

STEP 7

Press the POWER ON pushbutton.
Upon completion of the power-up
sequence and the First Seek
operation (about 1 minute) drive
number 0 in the select plug wiil
light.

Set the PROGRAM MODE
pushbutton to the off position.

Complete selection of disc drive O
by fully inserting piug 0. When
drive heads have been restored and
the power-on sequence has been
completed, CS load will begin. Disc
data will be loaded in sequential
locations starting at address 000016
into both CS and the FRJ Decode
Address Table, automatically
followed by a load of MS.

Set the CONSOLE MODE SELECT
selector to OFF and the CONSOLE
DATA REGISTER SELECT
selector to DATA.

Set the LOAD SELECT switch to
PRIMARY (for disc load).

Select one, and only one, of the
disc drives as logical drive 0 by
partially inserting plug O into the
drive select slot. (Do not insert plug
all the way in at this time.)

Mount disc pack and enable power
to disc drive O by pressing the
START switch. {(Ensure that the
READ ONLY switch is set.)

Press the POWER ON pushbutton.
Upon completion of the power-up
sequence and the First Seek
operation (about 1 minute) drive
number O in the select plug will
light.

Set the PROGRAM MODE
pushbutton to the on position.

Complete selection of disc drive O
by fully inserting plug 0. When
drive heads have been restored and
the power on sequence has been

completed, CS load will begin. Disc
data will be loaded in sequential
locations starting at address 000045
into both CS and the FRJ Decode

Address

Table, automatically

followed by a load of MS.

Reset/l.oad Condition

Operator Mode

STEP 1

STEP 2

STEP3

STEP 4

Program Mode

STEP 1

STEP 2

STEP 3

STEP 4

Set the PROGRAM MODE
pushbutton to the off position.

Set the LOAD SELECT switch to
PRIMARY (for disc load).

Place disc pack on the disc drive
and enable power to the drive
selected as logical O by pressing the
START switch. (Ensure that the
READ ONLY switch is pressed.)

Press the RESET/LOAD
pushbutton. Disc data will be
loaded in sequential locations
starting at address 000045 into
both CS and FRJ Decode Address
Table automatically followed by a
load of MS.

Set the PROGRAM MODE
pushbutton to the on position.

Set the CONSOLE MODE SELECT
selector to OFF and the CONSOLE
DATA REGISTER SELECT
selector to DATA.

Set the LOAD SELECT switch to
PRIMARY (for disc load).

Place disc pack on the disc drive
and enable power to the drive
selected as logical O by pressing the
START switch. (Ensure that the
READ ONLY switch is pressed.)

STEP S Press the RESET/LOAD
pushbutton, Disc data will be
loaded in sequential locations
starting at address 00004g into
both CS and the FRJ Decode
Address Table, automatically

followed by a load of MS.

LOADING CONTROL STORAGE FROM CARD
READER

L.oading control storage (CS) from cards can be performed
in one of two ways: from a power on condition or by
using the RESET/LOAD pushbutton. Essentially, the
power-on condition loads CS when power is initially
applied to the system (pressing the POWER ON push-
button); using the RESET/L OAD pushbutton loads CS in
the same manner as pressing the POWER ON pushbutton
but it is after power is already on. Each of the two ways
depends in which operating mode the panel has been
placed: operator mode or program mode. Generally, the
operator mode provides the maximum amount of internal
hardware control with the least amount of operator
intervention. In contrast, the program mode requires
greater amount of operator intervention but offers greater
amount of flexibility inusing the Panel controls.

Power On Condition

Operator Mode

STEP 1 Set the LOAD SELECT switch to
ALTERNATE (for card reader
load).

STEP 2 Press the POWER ON pushbutton.

STEP 3 Set the PROGRAM MODE
pushbutton to the off position.

STEP 4 Place microprogram card deck in

the card reader and press the
START pushbutton on the card
reader. Card data will be loaded in
sequential locations starting at
address 0000¢g into both CS and
the FRJ Decode Address Table.

Program Mode

STEP 1

STEP 2

STEP 3

STEP 4

STEP 5

Set the LOAD SEL ECT switch to
ALTERNATE (for card reader
load).

Press the POWER ON pushbutton.

Set the PROGRAM MODE
pushbutton to the ON position.

Set the CONSOLE MODE SELECT
selector to OFF and the CONSOLE
DATA REGISTER SELECT
selector to DATA.

Place microprogram card deck on
the card reader and press the
START pushbutton on the card
reader. Card data will be loaded in
sequential locations starting at
address 000044 into both CS and
the FRJ Decode Address Table,
automatically followed by a load of
MS.

Reset/Load Condition

Operator Mode

Program Mode

5-12

STEP 1

STEP 2

STEP 3

STEP 4

STEP 1

Set the PROGRAM MODE
pushbutton to the OFF position.

Set the LOAD SELECT switch to
ALTERNATE (for card reader
load).

Place microprogram card deck in
the card reader and press the
START pushbutton on the card
reader.

Press the RESET/LOAD
pushbutton. Card data will be
loaded in sequential locations
starting at address 0000qg into
both CS and the FRJ Decode
Address Table.

Set the PROGRAM MODE
pushbutton to the ON position.

STEP 2

STEP 3

STEP 4

STEP5

Set the CONSOLE MODE SELECT
selector to OFF and the CONSOLE
DATA REGISTER SELECT
selector to DATA.

Set the LOAD SELECT switch to
ALTERNATE (for card reader
load).

Place microprogram card deck in
the card reader and press the
START pushbutton on the card
reader.

Press the RESET/LOAD
pushbutton. Card data will be
loaded in sequential locations
starting at address 0000¢g into
both CS and the FRJ Decode
Address Table.

LOADING MAIN STORAGE FROM DISC

Loading main storage (MS) from the disc can be accom-
plished in one of three ways: from a power on condition,
by using the RESET/LOAD pushbutton, or by using the
AUTOLOAD pushbutton. An MS load occurs auto-
matically, if CS was loaded from a power on or reset/
load condition, after the CS and FRJ decode address
table is loaded. Therefore, only the procedure for per-
forming an MS load using the AUTOLOAD pushbutton
(in either the program mode or operator mode) is given

here.

NOTE

Control storge must have been previously loaded to
perform this operation.

STEP 1

STEP 2

STEP 3

Set LOAD SELECT switch to
PRIMARY (for disc load).

Place disc pack on the disc drive
selected as logical O and apply
power by pressing the START
switch. (Ensure that the READ
ONLY switch is pressed.)

Press AUTOLOAD pushbutton.
Disc data will be loaded into MS in
sequential locations starting at
address 0000+¢.

LOADING MAIN STORAGE FROM CARD READER

At the present time, MS cannot be loaded from the card
reader in either the operator or program mode.

READING MAIN STORAGE

Preconditions’

NOTE

Control storage must have been previously loaded
to perform this operation.

1. PROGRAM MODE pushbutton/indicator
switch on.

2. CONSOLE MODE SELECT selector at
MS-RD.

3. CONSOLE CONTROL SELECT switch at
STOP/STEP.

4. CONSOLE ADDRESS REGISTER SELECT
selector at ADDRESS.

5. CONSOLE DATA REGISTER SELECT
selector at DATA.

Procedure

STEP 1 Press CLEAR ADDRESS push-
© button.

STEP 2 Set the address of the main storage
location to be read via the CON-
SOLE ADDRESS REGISTER
DISPLAY pushbuttons.

STEP 3 Press the CONSOLE RUN push-
button. Contents of selected lo-
cation will be displayed in the
CONSOLE DATA REGISTER DIS-
PLAY indicators.

STEP 4 To read up to an address, enter
address into BREAKPOINT AD-
DRESS SELECT selectors. Position
CONSOLE CONTROL SELECT
switch at BREAKPOINT and press
CONSOLE RUN pushbutton.

STEP S To step through individual storage

locations, repeat Step 4, except
position CONSOLE CONTROL
SELECT switch at STOP/STEP.
Contents of each storage location
will be displayed in sequence each
time CONSOLE RUN pushbutton
is pressed.

STEP 6 To dynamically read a storage

location in the normal (continuous)
mode, enter the word address of
the location into the CONSOLE
ADDRESS REGISTER DISPLAY
pushbuttons with bit position 15
set. Set the CONSOLE CONTROL
SELECT switch at the NORMAL
Position and press the CONSOLE
RUN pushbutton. The contents
of the storage location entered in
the CONSOLE ADDRESS REGIS-
TER DISPLAY pushbuttons will
be continuously displayed in the
CONSOLE DATA REGISTER
DISPLAY indicators.

WRITING MAIN STORAGE

NOTE

Control storage must have been previously loaded

to perform this operation.

Preconditions

1.

Tin all procedures listed, preconditions must be satisfied before

PROGRAM MODE pushbutton/indicator
on.

CONSOLE MODE SELECT selector at
MS-WR.

CONSOLE CONTROL SELECT switch at
STOP/STEP.

CONSOLE ADDRESS REGISTER SELECT
selector at ADDRESS.

CONSOLE DATA REGISTER SELECT
selector at DATA.

the procedure can be executed.

5-13

Procedure

STEP 1

STEP 2

STEP 3

STEP4

STEPS

STEP 6

STEP 7

Press CLEAR ADDRESS and
CLEAR DATA pushbuttons.

Set the address of the main storage
location to be written via the
CONSOLE ADDRESS REGISTER
DISPLAY pushbuttons.

Set the 'data to be written on the
CONSOLE DATA REGISTER
DISPLAY pushbuttons.

Press the CONSOLE RUN push-
button. Contents of the CONSOLE
DATA REGISTER DISPLAY will
be written at the address specified
in the CONSOLE ADDRESS REG-
ISTER DISPLAY.

To write the data register contents
into all storage locations, set
CONSOLE CONTROL SELECT
switch to the NORMAL position
and press the CONSOLE RUN
pushbutton.

To write a block ot data, enter
starting address of block via the
CONSOLE ADDRESS REGISTER
SELECT pushbuttons and ending
address via the BREAKPOINT AD-
DRESS SELECT selectors. Position
CONSOLE CONTROL SELECT
switch at BREAKPOINT and press
the CONSOLE RUN pushbutton.
Contents of the data register will
be written in sequence in all lo-
cations within the block.

To write data into individual
storage locations within the block,
repeat Step 6, except set the CON-
SOLE CONTROL SELECT switch
at STOP/STEP. Contents of the
data register will be written in
individual locations in the sequence,
each time the CONSOLE RUN
pushbutton is pressed.

READING REGISTERS OF REGISTER FILES

5-14

Control storage must have been previously loaded

NOTE

to perform this operation.

Preconditions

1. PROGRAM MODE pushbutton/indicator

on.

2. CONSOLE MODE SELECT selector at RF-

RD.

3. CONSOLE CONTROL SELECT switch at
STOP/STEP.

4, CONSOLE ADDRESS REGISTER SELECT
selector at ADDRESS.

5. CONSOLE DATA REGISTER SELECT
selector at DATA.

Procedure
STEP 1

STEP 2

STEP 3

STEP 4

T The Group Il registers of the extended register file may not be

Press
button.

CLEAR ADDRESS push-

Set processor state number and
number of the register in basic file
or extended file (Group | or 17) via
the CONSOLE ADDRESS REGIS-
TER SELECT pushbuttons as
shown in Figure 5-2. The addresses
of basic file and extended file,
Groups | and Il are listed in Figure
5-3.

Press CONSOLE RUN pushbutton.
Contents of selected register will be
displayed in the bits 00 through 15
indicators of the CONSOLE DATA
REGISTER DISPLAY.

To dynamically read a register in
the normal (continuous) mode, re-
peat Steps 1. through 3, except set
the CONSOLE CONTROL SE-
LECT switch at the NORMAL posi-
tion. The CONSOLE DATA REG-
ISTER DISPLAY indicators will
continuously display the register
contents as the running processor
alters the contents.

addressed by this mechanism.

LOADING REGISTERS OF REGISTER FILES

Preconditions

NOTE

Control storage must have been previcusly loaded
to perform this operation.

1. PROGRAM MODE pushbutton/indicator NOTE

on.
Control storage must have been previously loaded
2. CONSOLE MODE SELECT selector at RF- to perform this operation.
WR.
1. PROGRAM MODE pushbutton/indicator
3. CONSOLE CONTROL SELECT switch at on.
STOP/STEP.
2. CONSOLE MODE SELECT selector at RO-
4. CONSOLE ADDRESS REGISTER SELECT RD.
selector at ADDRESS.

3. CONSOLE CONTROL SELECT switch at
5. CONSOLE DATA REGISTER SELECT STOP/STEP.
selector at DATA.
4, CONSOLE ADDRESS REGISTER SELECT
' selector at ADDRESS.
Procedure
5. CONSOLE DATA REGISTER SELECT
STEP 1 Press CLEAR ADDRESS and selector at DATA.
CLEAR DATA pushbuttons.

STEP 2 Set processor state number and
number of the register in basic file
or extended file (Group | or I11) via

the CONSOLE ADDRESS Procedure
REGISTER DISPLAY pushbuttons
as shown in Figure 5-2. The STEP 1 Press CLEAR ADDRESS button.
addresses of the basic files and
extended file registers are listed in STEP 2 Set feature number, processor state
Figure 56-3. number, and register number via
the CONSOLE ADDRESS REGIS-
STEP 3 Set data to be loaded via the 00 TER DISPLAY pushbuttons as
through 15 pushbuttons of the shown in Figure 5-4. There are two
CONSOLE DATA REGISTER DIS- basic register address formats, de-
PLAY. pending on the feature selected.
STEP 4 Press CONSOLE RUN pushbutton.
Contents of the CONSOLE DATA
REGISTER DISPLAY will be load- tThe 1/0 registers of the extended register file may not be
ed into the selected processor regis- addressed by this mechanism.
ter.
01 2 3 4 |5 6' 7 Ig 9 10 11}12 13 14 15 The first format is used to address
1 - feature registers associated with
Proc. Register particular processor states. This
0 000O0j0O|E No. No. format requires specifying the
feature number only. Addresses of
E = extended register designator (signifies extended all registers in the register option
register when set, basic register when clear). are shown in Figure 5-5.

Figure 5-2. Ragister File Address Format
STEP 3 Press CONSOLE RUN pushbutton.

READING REGISTERS OF REGISTER OPTION Contents of selected register will be
displayed in the CONSOLE DATA
REGISTER DISPLAY indicators.
(Contents of 4-bit registers will be
Preconditions right-justified.)

5-16

LOADING REGISTERS OF REGISTER OPTION

Preconditions

1.

NOTE
Control storage must have been previously loaded to

perfrom this operation.

PROGRAM MODE pushbutton/indicators
on,

2. CONSOLE MODE SELECT selector at RO-
WR.

3. CONSOLE CONTROL SELECT switch at
STOP/STEP.

4. CONSOLE ADDRESS REGISTER SELECT
selector at ADDRESS.

5. CONSOLE DATA REGISTER SELECT
selector at DATA.

Procedure

STEP 1 Press CLEAR ADDRESS and

CLEAR DATA pushbuttons.

STEP 2 Set feature number, processor

state number, and register number
via the CONSOLE ADDRESS REG-
ISTER DISPLAY pushbuttons as
shown on Figure 5-4. Addresses of
all registers of the option are listed
in Figure 5-5.

STEP 3 Set the data to be loaded via the

CONSOLE DATA REGISTER
DISPLAY pushbuttons. (Data to be
set into 4-bit registers should be
right-justified in the display.)

STEP 4 Press CONSOLE RUN pushbutton.

Contents of the CONSOLE DATA
REGISTER DISPLAY will be
loaded into the selected register.

READING SHARED RESOURCES REGISTERS

5-16

Preconditions: PROGRAM MODE indicator on.

Procedure

STEP 1

STEP 2

Press CLEAR ADDRESS and
CLEAR DATA pushbuttons.

NOTE

Only the S and ADDR positions of the
CONSOLE ADDRESS REGISTER
SELECT selector and the B/A and
DATA positions of the CONSOLE
DATA REGISTER SELECT selector
may be enabled in the program mode.

Set either CONSOLE ADDRESS
REGISTER SELECT or CONSOLE
DATA REGISTER SELECT
selector to the register to be read.
The contents of the register
selected will be dynamically
displayed in either the CONSOLE
ADDRESS or CONSOLE DATA
REGISTER DISPLAY indicators.

EXECUTING PROGRAMS

Precondition:

Procedure

STEP 1

0 1 2 3}4

PROGRAM MODE indicator on.

Use the previously described
Loading-Register-of-Register-F ile
procedure to load specified main
storage starting address into the
P-Register (R9) of the processor to
be run.

CONSOLE ADRS REG
6 6 7|8 9 10 11|‘I2 13 14 15

0 0 0 OfoO

0 0 O Proc o1 0 0 1
No.

CONSOLE DATA REG

MS Starting Address 15

NOTE STEP 5* If processor state is set to the
breakpoint mode, select breakpoint
address on BREAKPOINT
ADDRESS SELECT selectors and
select type of breakpoint on READ
INSTR, READ DATA, or WRITE

DATA switches.

If it is specified that the processor should start at a
particular location other than micro-program
position 000045 in control storage, use the
procedure in STEP 2 to load the address of this
location into Pu via the CONSOLE DATA
REGISTER DISPLAY pushbuttons.

STEP 2

Use the Loading-Register-of-
Register-File procedure to load
000046 into the P -Register
{extended R1) of the processorT to
be run:

STEP 6

Press PROCESSOR RUN
pushbutton. Selected processor
state will execute machine-language
instructions commencing at
location contained in its P-Register.
(If the PROCESSOR CONTROL

SELECT switch is set to the
STOP/STEP position, only one
machine language instruction is
executed each time the

CONSOLE ADRS REG
0 1 2 3|4 6 6 7|8 2 10 11|12 13 14 15

o 0 o ° 0 0 1 Proc 1o 0 0 0 1 PROCESSOR RUN ppshbutton is
No. pressed. The STOP/STEP position
also disables 1/O-originated start
CONSOLE DATA REG signals (REQUEST and
15 ATTENTION) for processor states
© 0 000O0OOTO O OO OOTG O OO0 O 0 through 3.)

NOTE

T1f no other processor states are in use (executingll) subroutines),
the SYSTEM RESET button may be used instead to clear PU
(it clears the P|. of all processor states).

Selecting the breakpoint mode for processor state 4
will stop and lock out all processor 4 start signals
except those originating from the panel.

STEP 3 Select processor state on the
PROCESSOR SELECT selector. STEP7 Repeat steps 1 through 6 for other
processors to be run.
STEP 4* Select mode of operation on

appropriate PROCESSOR
CONTROL SELECT SELECT *Steps 4 and 5 may be executed after Step 6 for Program stop/
switch. step or breakpoint operations.

'5-17

5-18

012 3|as e 7]s 9 101112131415
» Proc Register
o0 o0 ofofoofe| T o

0 = BASIC REGISTER FILE
1 = EXTENDED REGISTER FILE

PROCESSOR STATE 0
PROCESSOR STATE 1
PROCESSOR STATE 2
PROCESSOR STATE 3
PROCESSOR STATE 4
PROCESSOR STATE 5
PROCESSOR STATE 6
PROCESSOR STATE 7

NOD_DWN=O
.

BASIC REGISTER FILE

- GENERAL PURPOSE 0

- GENERAL PURPOSE 7
- CONDITION

- PROGRAM ADDRESS
TRANSIENT (T0)

- TRANSIENT (T5)
- TRANSIENT (T6)

34-5 34288348

- TRANSIENT (T21)

f¢83588838888828

EXTENDED REGISTER FILE

F GROUP |
P

BUSY/ACTIVE

REAL TIME CLOCK
TIE-BREAKER

PARITY ERROR
CONTROL
PRIVILEGED
BOUNDARY CROSSING
CONTROL STORAGE SCAN
CONSOLE ADDRESS
CONSOLE DATA
UNASSIGNED

GROUP 11

UNASSIGNED

Figure 5-3. Register File and Associated Register Addresses

6 0 0 O GROUP

Figure 5-4. Format: Registers of Register Option

1m 12 1

14

15

0 o0 9

ALL REGISTER ADDRESSES IN HEXADECIMAL FORM.

=
=3 (L]
E =
& z
Quw ow
L [y
=] [
Qi < =
g o <€
<€ W ow
o u b=t
] |
I r]
Jos
ACCOUNTING
REG. FILE
(GROUP 6)
wDo wo1
0600 | 0601
0620 | 0621 |
BOUNDS [1
REC. 0640 o6a1_|
(GROUP | 0660 0661
5 0680 | 0681
05A0 | 06A0 | O0GA1
oAt |
05C0 | 06C0 | 06C1
0560 | O06E0 | OGE1

Figure 5-5. Addresses: Registers of Register Option

ADDRESS MODE, PE TAG, MS
DATA, LOG, GENERATED CHECK
BITS, AND READ CHECK BITS
REGISTERS

APPENDICES

A. INSTRUCTION SUMMARY
and EXTENDED MNEMONIC CODES

The following symbols are used to define the source opérands of the instruction set.

R

A general register number, 0-7. The register may be used as a sending or receiving field (0-7), or
as an index register (1-7 only).

Extended register, 0-16. (For RDX and WRX only.)
A memory address, 0-65,535.

An immediate value; the value varies depending on the instruction. The value may represent an
amount used in an arithmetic operation, a shift count, a skip count, or a bit number.

Field length, 0-255 {for MOVL: 0-65,635), an optional feature. For certain instructions the
length of an operand field may be defined in the instruction. The length specified in the
instruction overrides any previous field length definition, but is only in effect for that
instruction.

An at-sign in a source operand indicates indirect addressing, an optional feature. For the
instructions in which a register is a sending or receiving field, the at-sign indicates indirect
addressing for R4 or Ro. If a field in memory is the sending or receiving field, the at-sign
indicates indirect addressing of M4 or M.

Index registers and field lengths are optional; they are enclosed by parentheses in a source
operand. A source operand using both an indexing and a field length specification would be
represented like this: Mq(Lq1,R¢). The comma in the parentheses must not only be coded when
both the length and index register are used, but also if either one of them is used, as follows:
Mq(Lq,) or M1(,R1). This enables the assembler to distinguish between the two specifications
in parentheses. '

A bullet following an instruction name indicates the operands are byte-addressable; all other
operands are word-addressable only.

A-1

GENERAL-PURPOSE INSTRUCTIONS

A-2

ARITHMETIC

Mnemonic

ADD
ADDD
ADDI
ADDK
ADDM
ADDR
ADDT
Div
DIVD
DIvi
DivK
DIVM
DIVR
MPY
MPYD
MPY|
MPYK
MPYM
MPYR
SuUB
SUBD
SueBl
SUBK
SUBM
SUBR
SUBT
ZADK

Name

Add Memory — Register
Add Direct

Add Immediate

Add Packed Decimal @

Add Memory — Memory
Add Register — Register
Add Two-Word

Divide Memory — Register
Divide Direct

Divide Immediate

Divide Packed Decimal o
Divide Memory — Memory
Divide Register — Register
Multiply Memory — Register
Multiply Direct

Multiply Immediate
Multiply Packed Decimal e
Multiply Memory — Memory
Multiply Register — Register
Subtract Memory — Register
Subtract Direct

Subtract Immediate
Subtract Packed Decimal @
Subtract Memory — Memory
Subtract Register — Register
Subtract Two-Word

Zero and Add e

BIT-ORIENTED INSTRUCTIONS

Mnemonic

IBIT
ROFR
RONR
SBIT
RBIT
TBIT
TOFR
TONR

Name

Invert Bit
Reverse Off-Bit
Reverse On-Bit
Set Bit e

Reset Bit o
Test Bit o

Test for Off-Bit
Test for On-Bit

BOOLEAN LOGIC INSTRUCTIONS

Mnemonic

AND
ANDD
AND!
ANDM
ANDR

Name

Logical Product Memory — Register
Logical Product Direct

Logical Product Immediate

Logical Product Memory — Memory
Logical Product Register — Register

Code Length Operands

A2 4 @M1(R1),@R2

B2 4 11({R1),@Ry

32 2 11.@R,

52 8 Mq(L¢,R1),Ma(Lo,Ro)
62 6 @M(R1),@M5(R5p)

22 2 @R1,@R9

72 4 @M1(R1),@R,

A9 4 @M(R¢).@Ry

B9 4 |1(R1),@R2

39 2 |1,@R2

7C 8 Mq(Lq,R1),Ma(Lo,R9)
69 6 @M (R1),@M5(R5)

29 2 @R4,0R-

A8 4 @M¢(R4),@Rp

B8 4 11(Rq),@R,

38 2 |1,@R2

5B 8 M1(L1,R1),M2(L2,R2)
68 6 @M4(R4),@M5(R5)
28 2 @R4,@0R9

A3 4 @M1(R1),@R5

B3 4 ||(R1),@R2

33 2 |1,@R2

53 8 M1(Lq,R1),Ma(Lo,Rp)
63 6 @M¢{R1),@M25(R>)
23 2 ©®R¢,@Ro

73 4 @M4(R1),@Rp

50 8 M1(L1,R1),M2(L2,R2)
Code Length Operands

BF 4 @M¢(R4),1o

6F 2 @R1,@Ry

6D 2 @R1,@Ry

BC 4 @M1(Rq).12

BD 4 @M1(R1)‘,|2

BE 4 @M](R1),,|2

6E 2 @R¢,@Ry

6C 2 ©@R1,@Ry
Code Length Operands

A5 4 @M1(R1),@Ry

B5 4 11(R¢),@Ry

35 2 11,@Ry

65 6 @M1(R1),@M2(R2)
25 2 @R{,@Ry

BOOLEAN LOGIC INSTRUCTIONS (Continued)

Mnemonic Name Code Length Operands
EOR Exclusive OR Memory — Register A6 4 @M¢(R4),@Ry
EORD Exclusive OR Direct B6 4 11(Rq),@R,y
EORI Exclusive OR Immediate 36 2 11,.@Ry
EORM Exclusive OR Memory — Memory 66 6 @M1(R4).@M2(R9)
EORR Exclusive OR Register — Register 26 2 @R4,@Rj
I0R Inclusive OR Memory — Register A7 4 @M1(R1).@Ry
IORD Inclusive OR Direct B7 4 11(R4).@R,

I0RI Inclusive OR Immediate : 37 2 11,@R9
IORM Inclusive OR Memory — Memory 67 6 @M¢(R1),@M5(R)
IORR Inclusive OR Register — Register 27 2 @R4,@Ry

BRANCHING INSTRUCTIONS

B Branch (post-indexing) ED 4 @M1(Rq)

BA1 Branch Add One E4 4 @M¢(R1),@Rp

BA2 Branch Add Two E5 4 @M1(R4),@Ry

BCF Branch on Condition Register False E9 4 @M¢(Rq),lo

BCT Branch on Condition Register True E8 4 @M¢(Rq),lo

BCH Branch Unconditional (pre-indexing) EC 4 @M4(Rq)

BOF Branch if Bit Off . E2 4 @M4(R1).12

BON Branch if Bit On E3 4 @Mq(Rq).12

BR Branch to Address in Register EB 2 @Ry

BRN Branch if Register is Not Zero E1 4 @M1(Rq),@Rp

BRZ Branch if Register is Zero EO 4 @M1(Rq),@Rp

BS1 Branch Subtract One £6 4 @M1(R4),@Ry

BS2 Branch Subtract Two E7 4 ®M1(R¢),@Ry

BSR Branch and Save Return EA 4 @M4(R4),@Ry

SB Skip Back — Unconditional BB 2 I

SF Skip Forward — Unconditional BA 2 I

SCFB Skip on Condition False — Back 4B 2 4,1

SCFF Skip on Condition False — Forward 49 2 11,12

SCTB Skip on Condition True — Back 4A 2 11.12

SCTF Skip on Condition True — Forward 48 2 1112

SRMB Skip if Register Minus — Back 47 2 11.Ro

SRMF Skip if Register Minus — Forward 46 2 11,Ro

SRPB Skip if Register Plus — Back 45 2 11.Rg

SRPF Skip if Register Plus — Forward 44 2 11.Ro

SRNB Skip if Register Not Zero — Back 43 2 11.Ro

SRNF Skip if Register Not Zero — Forward 42 2 11,Ro

SRZB Skip if Register Zero — Back 41 2 11,.Ro

SRZF Skip if Register Zero — Forward 40 2 i1,Ro
COMPARE INSTRUCTIONS

Mnemonic Name Code Length Operands

CBY Compare Byte Memory — Register @ F9 4 @M1(R1),@Rp

CBYM Compare Byte Memory — Memory @ 6B 6 @M1(R4),@M5(Rg)

CMP Compare Memory — Register A1l 4 @M¢(Rq),@Ry

CMPD Compare Direct - B1 4 11(R1),@R,

CMPI Compare Immediate 31 2 11,.@R9

CMPK Compare Packed Decimal o 51 8 M1(L1,R1),M2(L2,R2)

A-3

A-4

COMPARE INSTRUCTIONS (Continued)

Mnemonic

CMPM
CMPR
CMPT
CMPX

Name

Compare Memory — Memory
Compare Register — Register
Compare Two-Word
Compare Characters o

Code Length
61 6
21 2
71 4
55 8

Operands

@M4(R¢),@M5(R>)
@R1,@R2
@M1(Rq),@R,
M1(Lq,R1).Ma(Lo,Rp)

CONTROL INSTRUCTIONS (General Purpose Control instructions can be used at any time without preconditions;

NOP
RDX
SR

compare with System Control instructions.)

No Operation
Read Extended Register
Service Request

DATA CONVERSION INSTRUCTIONS

cve

CVBT
CvD

CvDT
EDTX
PAKX
UNPX
TRNX

Convert to Binary e

Convert to Binary Two-Word e
Convert to Decimal @

Convert to Decimal Two-Word e
Packed Decimal/Alpha Edit
Pack e

Unpack ®

Translate @

DATA TRANSFER INSTRUCTIONS

CLDR
CSTR
INV
INVD
INVI
INVM
INVR
LOD
LODB
LODD

LODI
LODT
mMovs
MOvL
MOVM
MOVR
MOVX
PSTR
STO
STOB
STOT

Condition Register Load
Condition Register Store

Inverse Move Memory — Register
Inverse Move Direct

Inverse Move Immediate

Inverse Move Memory — Memory
Inverse Move Register — Register
Load Memory — Register

Load Byte o

Load Direct

Load Immediate

Load Two-Word

Move Byte ®

Move Longe

Move Memory — Memory
Move Register — Register
Move Characters e
Program Address Store
Store Memory — Register
Store Byte @

Store Two-Word

EE
FO
13

AA
AA
AB
AB
57
58
59
56

28
2A
A4
B4
34

24
A0
F7
B8O

30
70
6A
A
60
20
54
3A
FA
F8
FB

A DADDHBNONDANN WS dDDH s

E B BNONOOOOODN

E1.Rp
@|1

@M(Rq),Ro
@M1(R1),R2
@M1(Rq).Ry

@M1 (R1),R2
Mq(L1.Rq),M2(L2.R))
M1(Lq1,Rq),Ma(L2,R9)
Mq(L1,R1),Ma(Lo,Rp)
M1(R4).Ma(L2,R2)

@R1

@R,
@M¢(R1),@Ry
11(R1),@R2
11.@Rp
@M1(R4),@M2(R3)
@R{,@Ry
@M¢(R1),@Ry
@M1(R4).@Rp
11(R1),@Rg or
M1(R1),@R2
11,@Rp
@M(Rq),@Ry
@M1(R1),@M5(R3)
M1(L49,R7).M2(R2)
@M1(R1),@Ma(R2)
@R1,@Ry
M1(Lq,R9).Ma(L2,R2)
@R
@M1(R1),@R2
@M1(R1),@Ry
@M1(R1),@Rp

SHIFT INSTRUCTIONS

" Mnemonic

ARDI
ARDR-

ARSI
ARSR

LLDI
LLDR
LLSI
LLSR
LRDI
LRDR
LRSI
LRSR
RLDI
RLDR
RLSI
RLSR
SHFK

Name

Arithmetic Right Double Shift — Immediate
Arithmetic Right Double Shift — by
Register

Arithmetic Right Single Shift - Immediate
Arithmetic Right Single Shift — by
Register

Logical Left Double Shift — Immediate
Logical Left Double Shift — by Register
Logical Left Single Shift — Immediate
Logical Left Single Shift — by Register
Logical Right Double Shift — Immediate
Logical Right Double Shift — by Register
Logical Right Single Shift — Immediate
Logical Right Single Shift — by Register
Rotating Left Double Shift — immediate
Rotating Left Double Shift — by Register
Rotating Left Single Shift — Immediate
Rotating Left Single Shift — by Register
Shift Packed Decimal ®

FLOATING POINT INSTRUCTIONS (OPTIONAL)

ADDF
CMPF
DIVF
FLTF
INTF
LODF
MPYF
NEGF
STOF
SUBF

Add Floating Point

Compare Floating Point
Divide Floating Point

Convert Fixed to Float
Convert Float to Fixed

Load Floating Point Register
Multiply Floating Point
Negate Floating Point Register
Store Floating Point Register
Subtract Floating Point

SYSTEM INSTRUCTIONS

CONTROL INSTRUCTIONS

cTB
TST
BCM
RAR
WAR
RRO
WRO
SAR

RSAR

Clear Tie-Breaker Register

Test and Set Tie-Breaker Register
Branch to Control Memory

Read Any Register

Write Any Register

Read Register — Option Register
Write Register — Option Register
Save All Registers

Restore All Registers

Code

5F
3F

4F
2F

5C
3C
4C
2C
5D
3D
4D
2D
5E
3E
4E
2E
3B

86
87
89
82
81
84
88
80
8A
85

12
1

EF
FE
FE
FD
FD
FF

FF

Length

N

DNNNNNNNMNMNNNNN

HERANDEPPLNONNDLD

DA DBBDHBDNNN

H

O‘Eerands

11,Ro
@Rq.Ry

11.Rg
@R1,Rp

11,Rg
@R1,Rp
11.Ry
@Rq,Rp
11.Ro
@R1.Rp
11,Ro
@R¢,Rg
11,.Ro
@Rq,Rp
11.Rg
@R¢,Rp

Mj(L1,Rq).12(R2)

@M¢(Rq),Rq
@M 1(R1)
@M¢(R1),Rp
@R,
@R¢,Ry

@M (Rq},R9
@M1(R1),R2

@M1(Ry)
®M1(Rq),Ry

I

h

Rq.lo
11(R1),@R9
|1(R1),@R2
|1(R1),@R2
11(R1),@R2
Mq(Rq),15 or
M¢(R¢),@R,y
M1(Rq),1p or
M](R]),@Rz

A5

SBA Set Busy/Active Register 10 2 11,19 or @Ry,l5
RBA Reset Busy/Active Register 10 2 I1,19 or @Ry,l9
SCN Set Control Register 14 2 11,12 or @R4,15
RCN Reset Control Register 14 2 1,19 0r @Ry,15
SPM Set Privileged Mode Register 15 2 1,12 or @R 4,15
RPM Reset Privileged Mode Register 15 2 I1.19 or @Ry,l5
WRX Write Extended Register FO 2 Eq1.Ro

1/0 INSTRUCTIONS
DIO Disc Input/Output F2 2 @R4.,Ry
INP Input from 1/O Register F5 2 11.@R,
ouT Output to 1/O Register F6 2 11.@R5
RDC Communications Input/Output F3 2
WRC Communications Qutput F4 2 R1,Ro
SIO System Input/Output F1 2 @R4,Rq

EXTENDED MNEMONIC CODES

The assembler provides extended mnemonic codes which allow unconditional skips, and conditional skips
and branches to be written in a symbolic form that is easier to use than the machine-oriented forms
specified for skips and branches. There are two reasons why these extended instructions are easier to use
than the standard instructions:

1. Extended mnemonic codes for skip instructions do not have an F or B, as in SRPF, to denote the
direction of the skip. Instead, the assembler determines the direction by the memory address or
immediate value in the operand, for example: SRP THERE or S -8.

2. Extended mnemonic codes for branch and skip instructions that involve condition register testing
specify the condition in the mnemonic, such as SOV for skip if overflow. The standard machine
instruction names the direction and the bit status in the mnemonic, and the actual bit number
tested in the operand. Thus, the extended instruction SOV 4 is the same as the standard
instruction SCTF 4,0.

An extended mnemonic code does not correspond to one specific function code in the repertoire of
machine instructions.

The extended instructions and the standard machine instruction(s) they replace are presented in the
following tables:

e Address-Coded Skips

e After Arithmetic Instructions

o After Compare Instructions-Arithmetic Test
e After Compare Instructions-Logical Test

o After Decimal Instructions

o After PAKX Instruction

o After TBIT Instruction

e Condition Register Test
Just as for the standard instructions, indirect addressing and indexing are always optional for the extended
instructions.

A-6

ADDRESS CODED SKIPS

Extended Code Machine Instruction Meaning

S My or Iy SF I Skip forward or backward
SB I

SRZ M3,Rp or 14,Rp SRZF 11.Ro Skip if reg. is zero, forward
SRZB 11.Rg or backward

SRN M¢,Rg or 14,Rp SRNF 11.Ro Skip if reg. is non-zero for-
SRNB 11.Ro ward or backward

SRP Mq,Ry or 14,Ry SRPF 11.Ro Skip if reg. is plus, forward
SRPB 11.Ro or backward

SRM M1,Ro or 14,Ro SRMF 11.Ro Skip if reg. is minus, forward
SRMB 11.Ro or backward

For S, the I4 value = -265 through +255; for all other extended mnemonics in this category, |4
= -15 through +15.

For SF and SB the |q value = 0-265; for all other regular instructions in this category Iq = 0-15.

AFTER ARITHMETIC INSTRUCTIONS

BOV @M1(R4) BCT @M¢(R4),0 Branch if overfiow
BNV @M4(R4) BCF @M1(R1),O Branch if no overflow
BCY @M(Rq) BCT @M1(R4),3 Branch if carry
BNC @M4(R4) BCF @M1(Rq),3 Branch if no carry
SOV M1 or 14 SCTF 11.0 Skip if overflow
SCTB 14,0
SNV My or Iy SCFF 11,0 Skip if no overflow
SCFB 11,0
SCY M3 or 14 SCTF 1.3 Skip if carry
SCTB 1.3
SNC My or 14 SCFF 11,3 Skip if no carry
SCFB 11.3
{1 = -16 through +15 for the extended instructions.

14 = 0-16 for the ::gular instructions.

AFTER COMPARE' INSTRUCTIONS — ARITHMETIC TEST

The arithmetic test tests the result of a signed arithmetic compare between operand 1 and operand

2. In the following table, 1 and 2 under Meaning refer to the signed values of operands 1 and 2.

Extended Code Machine Instruction Meaning
BGT @M¢(R4) BCT @M(Rq)1 Branch if 1I<GT>2
BLT @M (Rq) BCT @Mq(R¢),2 Branch if 1KLT>2
BGE @M4(R4) BCF @M¢{R4).2 Branch if KGE>2

A-7

Extended Code Machine Instruction Meaning

BLE @M4(R¢) BCF @M¢(R1),1 Branch if IKLE>2

BEQ @M1(Rq} BCT ®M4(R4),3 Branch if IKEQ>2

BNE @Mq(R¢) BCF @M¢(R4),3 Branch if IKNE>2

SGT Mj or Iy SCTF 1.1 Skip if IKGT>2
SCTB 1.1

SLT Mq or I4 SCTF 14,2 Skip if IKLT>2
SCTB 11.2

SGE My or 14 SCFF 11,2 Skip if IKGE>2
SCFB 14,2

SLE Mq or I4 SCFF 141 Skip if IKLE>2
SCFB 14,1

SEQ My or 4 SCTF 1.3 Skip if IKEQ>2
SCTB 1.3

SNE Mq or 4 SCFF 14,3 Skip if IKNE>2
SCFB 11,3

14 =-15 through +15 for extended instructions.

11 = 0-15 for regular instructions.

AFTER COMPARE INSTRUCTIONS — LOGICAL TEST

The logical test tests the results of an unsigned arithmetic (logical) compare between operand 1 and operand
2. In the following table, 1 and 2 under Meaning refer to the unsigned values of operands 1 and 2. COMPX
and all variations of the CBY instruction always yield a logical result.

Extended Code Machine Instruction Meaning
BLGT @M4(R¢) BCT @M¢(Rq),5 Branch if 1I<GT>2
BLLT @M(R¢) BCT @M¢(R1),6 Branch if 1<LT>2
BLGE @M(Rq) BCF @M(R),6 Branch if 1KGE>2
BLLE @M1(Rq) BCF @M¢(R4).5 Branch if ICLE>2
BLEQ @M (R4) BCT @M4(Ry),7 Branch if 1<EQ>2
BLNE @M1(R¢) BCF @M4(R¢),7 Branch if ICNE>2
SLGT M1 oriq SCTF 1.5 Skip if KGT>2
SCTB 11,6

SLLT Mq or Iy SCTF 11,6 Skip if IKLT>2
SCTB 11,6

SLGE Mq or Iy SCFF 11,6 Skip if KGE>2
SCFB 11,6

SLLE Mj or 1y SCFF 11,5 Skip if 1IKLE>2

SCFB 11,5

AFTER COMPARE INSTRUCTIONS — LOGICAL TEST (Continued)

Extended Code Machine Instruction
SLEQ Mg or |4 SCTF .7
SCTB 1.7

SLNE Mq or i SCFF 14,7
SCFB 1.7

14 = -16 through +15 for the extended instructions.

I1 = 0-15 for the regular instructions.

AFTER DECIMAL INSTRUCTIONS

BKP @M1 (Rq) BCT @M4(Rq),1
BKM @M1(R4) BCT @M (R4),2
BKZ @Mq(R¢) BCT @M4(R¢).3
SKP My or Iq SCTF 1

SCTB 1,1
SKM M1 or |1 SCTF |1,2

SCTB 11,2
SKz My or Iq SCTF 11.3

SCTB .3

14 = -15 through +15 for the extended instructions.

14 = 0-15 for the regular instructions.

AFTER PAKX INSTRUCTION

BID @M;(Ry) BCT @M(Rq),4
BNI @W(Rq) BCF ®M4(R).4
SID My or I SCTF 11,4

SCTB 9.4
SNI My or Iq SCFF 17,4

SCFB lq.4

14 = -15 through +15 for the extended instructions.

11 = 0-15 for the regular instructions.

AFTER TBIT INSTRUCTION

BBS @M¢(R1q) BCT @M4(R¢),0
BBR @M1(Rq) BCF ®M1(R4),0
SBS Mq or 1y SCTF 11,0

SCTB 14,0
SBR M1 orlq SCFF |[1,0

SCFB 14,0

11 =-15 through +15 for the extended instructions.

I4 = 0-15 for the regular instructions.

Meaning

Skip if IKEQ>2

Skip if IKNE>2

Branch if plus
Branch if minus
Branch if zero

Skip if plus
Skip if minus

Skip if zero

Branch if invalid digit
Branch if no invalid digit

Skip if invalid digit

Skip if no invalid digit

Branch if bit is set
Branch if bit is reset

Skip if bit is set

Skip if bit is reset

A-9

A-10

CONDITION REGISTER TEST

Extended Code Machine Instruction
SCF M1t ' SCFF I1.1o
I |2 SCFB 1.0o

SCT M|, SCTF PP
Ih |2 SCTB .12

{4 = -15 through +15 and I = 0-15 for the extended instructions.

11 and l5 = 0-15 for the regular instructions.

Meaning

Skip if bit spec. by 19 is off

Skip if bit spec. by lpis on

B. EBCDIC and ASCII CODES

EBCDIC AsCIl* EBCDIC ASCII*
Hex Hex Hex Hex
Code Graphic Card Code Code Code | Graphic Card Code Code
00 NUL 12-0-1-8-9 00 2F BEL 0-7-8-9 07

01 SOH 12-1-9 01 30 12-11-0-1-8-9

02 STX 12-2-9 02 31 1-9

03 ETX 12-3-9 03 32 SYN 2-9 16
04 PF 12-4-9 33 39

05 HT 12-5-9 09 34 PN 4-9

06 LC 12-6-9 35 RS 5-9 1E
07 DEL 1279 7F 36 ucC 6-9

08 12-8-9 37 EOT 7-9 04
09 12-1-8-9 38 89

0A SMM 12-2-8-9 39 1-8-9

0B vT 12-3-8-9 0B 3A 2-8-9

oc FF 12-4-8-9 ocC . 3B 3-8-9

oD CR 12-5-8-9 oD 3C DC4 4-8-9 14
OE S0 12-6-8-9 OE 3D NAK 5-8-9 15
OF SI 12-7-8-9 OF 3E 6-8-9

10 DLE 12-11-1-8-9 10 3F sSuB 7-8-9 1A
11 DC1 11-1-9 11 40 sP No punches 20
12 DC2 11-2-9 12 41 12-0-1-9

13 DC3 11-3-9 13 42 12-0-2-9

14 RES 11-4-9 14=DC4 43 12-0-3-9

15 NL 11-5-9 44 12-0-4-9

16 BS 11-6-9 08 45 12-0-5-9

17 IL 11-7-9 46 12-0-6-9

18 CAN 11-8-9 18 47 12-0-7-9

19 EM 11-1-8-9 19 48 12-0-8-9

1A cC 11-2-8-9 49 12-1-8

1B 11-3-8-9 an | ¢ 12-2-8

1C IFS 11-4-8-9 4B » 12-3-8 2E
1D 1GS 11-5-8-9 1D 4C < 12-4-8 3C
1E IRS 11-6-8-9 4D { 12-5-8 28
1F ITB(IUS) 11-7-8-9 1F 4E + 12-6-8 2B
20 DS 11-0-1-8-9 4F 1 12-7-8

21 SOS 0-1-9 50 & 12 26
22 FS 0-2-9 1C 51 12-11-1-9

23 0-3-9 52 12-11-2-9

24 BYP 0-4-9 53 12-11-3-9

25 LF 0-5-9 0A 54 12-11-4-9

26 EOB/ETB 0-6-9 17=ETB 55 12-11-5-9

27 ESC/PRE 0-7-9 1B=ESC 56 12-11-6-9

28 0-8-9 57 12-11-7-9

29 0-1-8-9 58 12-11-8-9

2A SM 0-2-8-9 59 11-1-8

2B 0-3-8-9 BA ! 11-2-8 21

2C 0-4-8-9 5B $ 11-3-8 24
2D ENQ 0-5-8-9 05 5C * 11-4-8 2A
2E ACK 0-6-8-9 06 5D) 11-56-8 29

*MRX/OS uses a seven-bit ASCIl code.

B-1

B-2

EBCDIC ASCII EBCDIC ASCII
Hex Hex Hex Hex
Code Graphic Card Code Code Code | Graphic Card Code Code
5E : 11-6-8 3B 95 n 12-11-5 6E
bF i | 11-7-8 BE=T"1 96 (o] 12-11-6 6F
60 - 11 2D 97 p 12-11-7 70
61 / 0-1 2F 98 q 12-11-8 71
62 11-0-2-9 99 r 12-11-9 72
63 11-0-3-9 9A 12-11-2-8
. 64 11-0-4-9 9B 12-11-3-8
65 11-0-5-9 9C 12-11-4-8
66 11-0-6-9 aD 12-11-5-8
67 11-0-7-9 9E 12-11-6-8
68 11-0-8-9 9F 12-11-7-8
69 0-1-8 A0 11-0-1-8
6A 12-11 A1l 11-0-1
6B ’ 0-3-8 2C A2 S 11-0-2 73
6C % 0-4-8 25 A3 t 11-0-3 74
6D - 0-5-8 b5F A4 u 11-0-4 75
6E > 0-6-8 3E Ab v 11-0-5 76
6F ? 0-7-8 3F A6 w 11-0-6 77
70 12-11-0 A7 X 11-0-7 78
71 12-11-0-1-9 A8 y 11-0-8 79
72 12-11-0-2-9 A9 z 11-0-9 7A
73 12-11-0-3-9 AA 11-0-2-8
74 12-11-0-4-9 AB 11-0-3-8
75 12-11-0-5-9 AC 11-0-4-8
76 12-11-0-6-9 AD 11-0-5-8
77 12-11-0-7-9 AE 11-0-6-8
78 12-11-0-8-9 AF 11-0-7-8
79 1-8 BO 12-11-0-1-8
7A : 2-8 SA B1 12-11-0-1
7B # 3-8 23 B2 12-11-0-2
7C @ 4-8 40 B3 12-11-0-3
m | 5-8 27 B4 12-11-0-4
7E = 6-8 3D B5 12-11-0-5
7F " 7-8 22 B6 12-11-0-6
80 12-0-1-8 B7 12-11-0-7
81 a 12-0-1 61 B8 12-11-0-8
82 b 12-0-2 62 B9 12-11-0-9
83 c 12-0-3 63 BA 12-11-0-2-8
84 d 12-0-4 64 BB 12-11-0-3-8
85 e 12-0-5 65 BC 12-11-0-4-8
86 f 12-0-6 66 BD 12-11-0-5-8
87 g 12-0-7 67 BE 12-11-0-6-8
88 h 12-0-8 68 BF 12-11-0-7-8
89 i 12-0-9 69 Cco 12-0
8A 12-0-2-8 C1 A 121 41
8B 12-0-3-8 C2 B 12-2 42
8C 12-0-4-8 C3 (o 12-3 43
8D 12-0-5-8 ca4 D 124 44
8E 12-0-6-8 Cb E 125 45
8F 12-0-7-8 Cé F 12-6 46
90 12-11-1-8 C7 G 12-7 47
91 i 12-1141 6A Cc8 H 12-8 48
92 k 12-11-2 6B Cc9 | 12-9 49
93 | 12-11-3 6C CA 12-0-2-8-9
94 m 12-11-4 6D CB 12-0-3-8-9

EBCDIC ASCH EBCDIC ASCII
Hex Hex Hex Hex
Code Graphic Card Code Code Code Graphic Card Code Code
cC 12-0-4-8-9 E6 w 0-6 57
cB 12-0-5-8-9 E7 X 0-7 58
CE 12-0-6-8-9 E8 Y 0-8 59
CF 12-0-7-8-9 E9 4 09 BA

DO 11-0 EA 11-0-2-8-9
D1 | J 111 4A EB 11-0-3-8-9
D2 K 11-2 4B EC 11-0-4-8-9
D3 L 11-3 4C ED 11-0-5-8-9
D4 M 114 4D EE 11-0-6-8-9
D5 N 115 4E EF 11-0-7-8-9
D6 (0] 11-6 4F FO 0 0 30
D7 P 11-7 50 F1 1 1 31
D8 Q 11-8 51 F2 2 2 32
D9 R 11-9 52 F3 3 3 33
DA 12-11-2-8-9 F4 4 4 34
DB 12-11-3-8-9 F5 5 5 35
DC 12-11-4-8-9 F6 6 6 36
DD 12-11-5-8-9 F7 7 7 37
DE 12-11-6-8-9 F8 8 8 38
DF 12-11-7-8-9 F9 9 9 39
EC 0-2-8 FA 12-11-0-2-8-9
E1 11-0-1-9 FB 12-11-0-3-8-9
E2 S 0-2 53 FC 12-11-0-4-8-9
E3 | T 0-3 54 FD 12-11-0-5-8-9
E4 U 04 55 FE 12-11-0-6-8-9
E5 \") 0-5 56 FF 12-11-0-7-8-9
SYMBOLS UNIQUE TO ASCH
Graphic Hex Code
DC4 14
[5B
\ 5C
] 5D
- 5F
\ 60
{ 78
' 7C
} 7D
[aY) 7E

B-3

C. HEXADECIMAL ARITHMETIC

HEXADECIMAL-DECIMAL CONVERSION

HEX. DEC. || HEX. DEC. || HEX. DEC. HEX. DEC. [L HEX. DEC.
T
1 1 10 16 100 266 1000 4096 | 10000 65536
2 2 20 32 200 512 2000 8192 20000 131072
3 3 30 48 300 768 3000 12288 30000 196608
4 4 40 64 400 1024 4000 16384 40000 262144
5 5 50 80 500 1280 5000 20480 50000 327680
6 6 60 96 600 1636 6000 24576 60000 393216
7 7 70 112 700 1792 7000 28672 70000 458752
8 8 80 128 800 2048 8000 32768 80000 524288
9 9 90 144 900 2304 9000 36864 [90000 589824
A 10 A0 160 A00 2560 A000 40960 A0000 655360
B " BO 176 80O 2816 B0OOO 45056 B000O 720896
Cc 12 co 192 Coo 3072 C000 49162 C0000 786432
D 13 DO 208 D00 3328 D000 53248 DO0000 851968
E 14 EO 224 E0O 3684 EO00 57344 EO0000 917504
F 15 FO 240 FOO 3840 F000 61440 F0000 983040

MULTIPLICATION

TMOpDOXPDOONSITT B WON =
TMUOWD ORXRNODOTHWN=

C1

D. MACHINE LANGUAGE INSTRUCTION

TIMING FORMULAS

This appendix lists formulas for calculating execution
times of machine language instructions. Instructions
are listed by hexadecimal operation code and
assembler mnemonic. In most cases, times are
dependent on the type of addressing (direct/indirect)
used for instruction operands. Formulas for each of
the addressing combinations possible are listed in the
headings: 1 refers to operand 1 with direct
addressing, 2 to operand 2 with direct addressing, @1
to operand 1 with indirect addressing, and @2 to
operand 2 with indirect addressing. A legend of
meanings of symbols used in the formulas is at the
end of this appendix.

D-1

Hex

Code Mnemonic 1-2 @1-2 1-@2 @1-@2
10 SBA Tq+6T9 Ty +6Ty
10 RBA Tq+6T, Tq+6Ty
11 TST T1+3My Tq+4Ty Ty +4Ty T, +5Ty
{Unprivileged (Unprivileged (Privileged {Privileged
Bit Set) Bit Not Set) Bit Set) Bit Not Set)
12 CcTB T4 + 3T7 (Unprivileged) Tq +4To (Privileged)
13 SR Tq1+2T9
14 SCN T +7T, T;+8T,
(processors 4-7) (processors 0-3)
14 RCN Tq+7Ty T, +8Ty
(processors 4-7) (processors 0-3)
15 SPM T1+3Ty Ty +6Ty
(Unprivileged (Privileged
Mode) Mode)
15 RPM T +3Ty Tq+6Ty
{Unprivileged (Privileged
Mode) Mode)
20 MOVR T1+To PAR) 2T+ Ty 3T,
21 CMPR T +Ty 2T, 2T + 2Ty 3T+ Ty
22 ADDR T +To 2T, 3T+ Ty 4T,
23 SUBR T+ Ty 2T, 3T+ Ty 4T
24 INVR Ty +Ty 2T, 2T+ Ty 3T,
25 ANDR Ty +Ty 2T4 3T+ Ty 4T4
26 EORR T1+Ty 2T, 3T+ Ty 4T
27 IORR Ti+Ty 2Ty 3T+ Ty 4T,
28 MPYR 2T1+7To+K 3T1+6To+K4 5T1+5To+K4 6T1+4To+K4
29 DIVR T1+6To+Ky 2T(44To+Ky BT+3Tp+Ky BT +2T5+Ky
2A CSTR T +Ty 214
2B CLDR T1+To 2T,
2C LGSS T1+To 2T+ Ty
2D LGSS— Ty+2T5 2T + 2T,
2E ROSS T1+To 2T+ Ty

Hex

Code Mnemonic 1-2 @1-2 1-@2 @1-@2
2F ARSS— Ty +3T, 2T +3To

30 LODI Tq+2T9 2T+ Ty

31 CMPI Tq+2Ty 2T + 2T,

32 ADDI Ty +2Ty 3T+ Ty

33 SuBI Tq+2Tp 3T+ Ty

34 INVI T1+2Ty 2T 1+ Ty

35 ANDI T1+2Ty 3T1+Ty

36 EORI T +2Ty 3T+ Ty

37 IORI Tq+2T, 3T+ Ty

38 MPYI 2T 1+8T+K BT +5T+Ky

39 DIvI T1+6To+Ky 5T¢+3T7+Kop

3A PSTR Ty+Ts 2T,

3B SHFK See special formula at end

3C LGDS T4 +5Ty 2T +5T

3D LGDS— T, +5T, j‘g 2Ty + 5Ty g Note A: IJ ::tzj) shift
3E RODS T1+5T, | E 2Ty +5T, g Note B: 5;1 :tTg(‘)f shift
3F ARDS— Ty +5Ty 2T+ 56Ty

40 SRZ+ Ty +3T,

41 SRZ- Ty +3Ty

42 SRN+ Ty +3Ty

43 SRN— Ty +3T,

44 SRP+ Tq+3T,

45 SRP—- Ty +3Ty

46 SRM+ T +3Ty ' Tq +To if skip not taken

47 SRM— Ty +3Ty

48 SCR,T+ Ty +3T,

49 SCR,F+ Ty +3T,

aA SCR,T— Ty +3T,

48 SCR,F— Ty +3Ty

D-3

Hex

D-4

Code Mnemonic 1-2 @1-2 1-@2 @1-@2
4C LGSS,I T1+To

4D LGSS,1— Tq+2Ty

4E ROSS,| T1+Ty

4F ARSS,1— Tq + 379

50 ZADK

51 CMPK

52 ADDK

53 SUBK

54 MOV X

55 CMPX See special formulas at end

56 TRNX

57 EDTX

58 PAKX

59 UNPX

5A MOVL

5C LGDS,! Ty +5Ty

5D LGDS, |- Ty +5Ty

5E RODS, | T, +5T, Tq +To ifshiftcount=0

5F ARDS, |- Ty +5Ty

60 MovMm 5T, 6T 6T, AR

61 CMPM 5T+ Ty 6Ty + Ty 6T+ Ty 1T+ Ty
62 ADDM 674 7Tq My 8T,

63 SUBM 6T 7T, M 8Ty

64 INVM 5T, 6T 6T, AR}

65 ANDM 6T 7T, AR 8T

66 EORM 6T FAR FAR 8T,

67 IORM 6Ty 7Ty 7T, 8Ty

68 MPYM 8T1+4Ty+K4 9T +4To+Ky 9T +4To+K4 10T1+4Ty+K4
69 DIVM 8T1+2T9+Kg 9T3+2To+Ky 9T1+2Tp+Ky 10T4+27p+K,

Hex

Code Mnemonic 12 @1-2 1-@2 @1-@2

6A MOVB 5T4 6T, 6T 7Ty

6B CBYM 5Ty + Ty 6T +To 6T + Ty T+ Ty

6C TONR Ty +2Ty 2Tq + 2Ty 3T + 2Ty 4T + 2Ty
6D RONR Ty + 3T2’ 3Tq +2T, 3T + 3Ty 5Tq + 2T,
6E TOFR Ty +2T, 2Ty +2T5 3Ty + 2T, 4Tq + 2Ty
6F ROFR Ty +3T, 3Ty +2Ty 3T + 3Ty 5Ty + 2T,
70 LODT 47, 5Ty 6T, 7T

71 CMPT 3.5T1+To 4.5T1+To 5T1+To 6T1+To

(average) (average) (average) (average)

72 ADDT 4T1 +Tg 5T+ Ta 8T 9Ty

73 SUBT 4T+ Ty 5Ty + Ty 8Ty T4

A0 LOD 3T, 4T, 4T, 5Ty

A1 cMP 3T, 474 4T1+ Ty 5T1+T2
A2 ADD 3T4 4T, 5T4 6T,

A3 suB 3T, 4T, 5T, 6Tq

A4 INV 3T4 4T, 414 5Ty

A5 AND 3Ty 4T, 5T 6Tq

A6 EOR 3T, 4Ty 5T 6Tq

A7 IOR 3T, 474 5Ty 6Ty

A8 MPY 4T +6To+Kq BT{+6To+Ky TTq+4To+Kq 8T1+4To+K,
A9 DIV 3T+4To+Ky 4TH4To+Ky 7T{+2Tp+Ky 8T1+2To+Ky
AA cvB 4T+46T, 5T1+46To

AA CVBT 6T1+90To 7T1+90T,
AB CVD 6Ty + K3 7Ty + K3

AB cvDT 9T(+38To+Kg 10T{+38To+Kg
BO LODD 2T+ Ty 3Ty

B1 CMPD 2T+ Ty 3T 1+ Ty

B2 ADDD 2T+ Ty 4Ty

B3 SUBD 2T+ Ty 4T,

D-5

Hex

D-6

Code Mnemonic 1-2 @1-2 1-@2 @1-@2

B4 INVD 2T, +Tg 3T,

B5 ANDD 2Ty + Ty 4T,

B6 EORD 2T+ Ty 4T,

B7 IORD 2T+ Ty 4T,

B8 MPYD 3T+7T+Ky 6T +4To+K

B9 DIVD 2T +5To+Ky 6T1+2To+Ky

BA SUN+ Ty +2Ty

BB SUN— Ty +2T,

BC SBIT 4T, 5T4

BD RBIT 4T, 5T,

BE TBIT 3T +Ty 4T+ T,

BF IBIT 4T, 5T4

E0 JRZ 2Ty 3Ty 3Ty 4T,

E1 JRN 2T, 3T, 3T, 4T,

E2 JOF 2T, 3Ty

E3 JON 2T, 3T,

E4 JA1 2T4 3T4 4T, 5T4 2Ty if

jump
E5 JA2 2T, 3T, 4T, 5T4 not
taken

E6 Js1 2T, 3T4 4T, 5T4

E7 Js2 2T, 3T, 4T, 5T

E8 JCR,T 2Ty 3T,

E9 JCR,F 2T, 3Ty

EA JSR 2T+ T, 3T+ Ty 3Ty 4T,

EB JUNR T1+To 2T4

EC JUN 2T, 3T4

ED JUMP pa 3T,

EE NOP Ty+Ty Ty+To Ty +To Ty +T,

EF JcMm T1+Ty

FO RDX Ty +3T,

Hex

Code Mnemonic 1-2 @1-2 1-@2 @1-02
FO WRX Ty +4Tp

F1 S10

F2 D10

F3 RDC

F4 WRC Ty +2To

F5 INP Tq+6Ty 2T + 5T,

F6 ouT Tq+4Ty 2T +4T,

F7 LODB 374 4T 4T, 5T,

F8 STOB 3T 4T, 474 5T,

F9 CcBY 3T+ Ty 4T+ To 4T+ Ty 5T +To
FA STO 3T, 4T, 4T, 5T

FB STOT 4Ty 5T4 6T, 7T

FD RRO 3T +3T» 4T + 3T

FD WRO 3T, +3Ty 4T + 2T
FE RAR 2T + 3Ty 3Tq + 3T,

FE WAR 2T + 3T, 3T +3To
FF SAR 12T1+22T,

FF RSAR 12T1+24T,

D-7

D-8

ZADK

CMPK

ADDK

SUBK

MOVX

CMPX

TRNX

EDTX

PAKX

UNPX

MOvVL

SHFK

L2<L1
L2>L1
L2<e
L2>u1
L2<L1

L2>L1

SPECIAL FORMULAS

(6+4L1%ig) T1+[11+(10+6L1-2L2)ig] T
[6+(L2+3L1)ig] Tq+{15+(10+L2+3L1)ig] To
(5+ig+2ig+L2+L 1) T +(3+5ig+3L1)To
(6+2ig+L2+L1)T1+(8+3L2)TH

(6+3L1+%ig) T4 +[10+(10+5L1-2L.2)ig] To

[6+(L2+2L1)ig] T+[14+(10+2L1+L2)ig] T,

if recomplement add:

same as ADDK

L2211

L2<L1

L22L1

L2<L1

Numeric Edit
(L2#0)

Alpha Edit
(L2=0)

(BL1+1)T1+(BL1+7)T;

(5+L1)T1+3Ty (word move)*
(6+2L1)T1+(2+i7)To (byte move)™
(5+L2+L1)T+3T5

(4+L2)T1+(3+L2+.5L1)Ty (word compare)*
(4+2L2)T1+(3+2L2+L1)To (byte compare)*
(4+L1)T¢+(3+L1+.5L2)Ty (word compare)*
(4+2L1)T1+(3+2L1+L2)T, (byte compare)*

(7+3L1)T1+{4+L1)T,

(4+L+L2+L1)T1+(13+3C+6C+C3+2C,4+3Cg

+7.5Cg)To+[1.5L1+1)T1+(5.5L1-1.5i7+ig+9) Tol ig

(4+L+2C1+C4) T #(5+2C1+C3+2C4) Ty
4T+7To+[(3L1+ig) T1+(10L1+ig-1)Tolig

4T +7To+[(L1+L2%ig) T1+(5.5L1-1.6i7+ig+9) Tol ig
(6+L2)T1+2T5 (word move)*

(5+2L2)T1+2To (byte move)*
[3+(7L.2+2i15+2i16)igl T1

+{7+(8+1 5L2'(5+i15)i12+(3+2i1 5+7i12)i14)i8] Ty

LEGEND

7300 7200
T1 = memory reference cycle time Qus 1.8us
1.0 u s with ECC ECC not available
To = non-memory reference cycle time Bus 16us

NOTE
The above times will be increased by .2 pi s if the computer is used for
special purposes which require the machine to be run in a single processor
state only.
K1 = (i1+i2+33+i4+2i5)T2
Ko = [(B1+i1+i) Tqlig

K3 = [44+2ip+i17+3i1g(15+16i1g-igp)] T2

::; lengths as specified in the machine language
Lm = length of edit mask including new fill characters, characters to be inserted and all the edit
operators.
C1 = count of source characters (digits) moved to result via the MC or MCS operators.
Co = count of source digits suppressed by fill.
C3 = countof IC and ICS operators in edit mask.
C4 = count of mask characters inserted or suppressed in result via 10 and ICS operators.
Cg = count of SSD and SF! operators in edit mask.
Cg = count of ISG operators in edit mask.
ig = 0if 1=0
1if 170
ii = 0if 120
1if1<0
ip = 0if 220
1if2<0

ig = 0if 1 and 2 have like signs
1 if 1 and 2 have unlike signs

ig = number of one-bits in smaller of |1 I or |2|
ig = 16 - bit # of MSB in smaller of |1] or | 2|

ig = number of non-zero digits unpacked

0if L1 is even
1if L1is odd

D-9

0-10

i10
i1
i12

4

i15

16

i17

i1g

o

120

LEGEND (Continued)

0if L2=0
1if L2#0

0if L1=0
1if L170

sign extended shift count from 6th byte of instruction
i10+(2)
smaller of i1 and (2L-1)

0ifiq9=0
1ifiqo#0

0ifig1>0 left shift
1ifi11<0 right shift

0 if result of shift#0
1 if result of shift=0

number of one-bits in |2 l

0ifig7=0
1ifiq970

0 if single precision (CVD)
1 if double precision (CVDT)

bit position of MSB in 2

INDEX

INSTRUCTION INDEX

BY MNEMONIC CODE

Mnemonic Operation Page Mnemonic Operation Page
Code Code Number Code Code Number

ADD A2 4.4 CMPR 21 4-39
ADDD B2 4-4 CMPT 71 4-39
ADDF 86 4-64 CMPX 55 4-40
ADDI 32 4-5 CSTR 2A 4-51
ADDK 52 4-5 CcTB 12 4-76
ADDM 62 4-6 CVB/CVBT AA 4-42
ADDR 22 4-7 CvD/CVDT AB 4-43
ADDT 72 4-7
AND A5 4-21 DIO F2 4-83
ANDD BS 4-22 DIV A9 4-7
ANDI 35 4.22 DIVD B9 4-8
ANDM 65 4-22 DIVF 89 4-65
ANDR 25 4-23 DIVI 39 49
ARDI 5F 4-57 DIVK 7C 4-9
ARDR 3F 4-57 DIVM 69 4-10
ARSI 4F 4-58 DIVR 29 4-11
ARSR 2F 4-58

EDTX 57 4-44
B ED 4-26 EOR A6 4-23
BA1 E4 4-27 EORD B6 4-23
BA2 ES 4-27 EORI 36 4-24
BCF E9Q 4-27 EORM 66 4-24
BCH EC 4-28 EORR 26 4-24
BCM EF 4-77
BCT EB 4-28 FLTF 82 4-67
BOF E2 4-28
BON E3 4-28 18IT BF 4-18
BR EB 4-29 INP F5 4-85
BRN E1 4-29 INTF 81 4-67
BRZ EO 4-29 INV A4 4-51
BS1 E6 4-29 INVD B4 4-51
BS2 E7 4-30 INVI 34 4-52
BSR EA 4-30 INVM 64 4-52

INVR 24 4-52
cBY F9 4-35 IOR A7 4-24
CBYM 6B 4-35 IORD B7 4-25
CLDR 2B 4-51 IORI 37 4-25
CMP At 4-36 IORM . 67 4-25
cmPD B1 4-36 IORR 27 4-26
CMPF 87 4-65
CMP! 31 4-37 LLDI 5C 4-58
CMPK 51 4-37 LLDR 3C 4-59

CMPM 61 ‘ 4.38 LLSI 4C 4-59

Mnemonic Operation Page Mnemonic Operation Page

Code Code Number Code Code Number
LLSR 2C 4-59 SCN 14 4-81
LOD A0 4-52 SCFB 4B 4-31
LODB F7 4-53 SCFF 49 4-31
LODD BO 4-53 SCTB 4A 4-32
LODF 84 4-68 SCTF 48 4-32
LODI 30 4-53 SF BA 4-31
LODT 70 4.54 SHFK 3B 4-62
LRDI 5D 4-59 SIO F1 4-90
LRDR 3D 4-60 SPM 15 4-82
LRSI 4D 4-60 SR 13 4-41
LRSR 2D 4-60 SRMB 47 i 4-32

SRMF 46 4-32
MOVB 6A 4-54 SRNB 43 4-33
MOVL bA 4-54 . SRNF 42 4-34
MOVM 60 4-55 SRPB 45 4-33
MOVR 20 4-55 SRPF 44 4-33
MOV X 54 4-55 SRZB 41 4-34
MPY A8 4-11 SRZF 40 4-34
MPYD B8 4-12 STO FA 4-56
MPYF 88 4-68 STOB F8 4-56
MPYK 5B 4-12 STOF 8A 4-69
MPYI 38 4-12 STOT FB 4-56
MPYM 68 4-13 suUB A3 4-14
MPYR 28 4-14 SUBD B3 4-14
SUBF 85 4-69
NEGF 80 4-69 SuBl 33 4-15
NOP EE 4-41 SUBK 53 4-15
SUBM 63 4-16
ouT F6 4-85 SUBR 23 4-16
SUBT 73 4-17
PAKX 58 4-48
PSTR 3A 4-56 TBIT BE 4-20
TOFR 6E 4-20
RAR FE 4-88 TONR 6C 4-21
RBA 10 4-81 TRNX 56 4-50
RBIT BD 4-20 TST 1 4-77
RCN 14 4-81
RDC F3 4-87 UNPX 59 4-49
RDX FO 4-41
RLDI bE 4-60 WAR FE 4-78
RLDR 3E 4-61 WRC F4 4-89
RLSI 4E 4-61 WRO FD 4-78
RLSR 2E 4-61 WRX FO 4-82
ROFR 6F 4-18
RONR 6D 4-19 ZADK 50 4-17
RPM 15 4-82
RRO FD 4-78
RSAR FF 4-80
SAR FF 4-80
SB BB 4-30
SBA 10 4-80
SBIT BC 4-20

BY OPERATION CODE

Operation Mnemonic Page Operation Mnemonic Page
Code Code Number Code Code Number
10 SBA/RBA 4-79/4-81 4D LRSI 4-60
11 TST ‘ 4-77 4E RLSI 4-61
12 CT8 4.76 4F ARSI 4.58
13 SR 4-41 50 ZADK 4-17
14 SCN/RCN 4-81 51 : CMPK 4-37
15 SPM/RPM .4-82 52 ADDK 4-5
20 MOVR 4-55 53 SUBK 4-15
21 CMPR 4-39 54 MOVX 4-55
22 ADDR 4-57 55 CMPX 4-40
23 SUBR 4-16 56 TRMX 4-50
24 INVR 4-52 57 EDTX 4-44
25 ANDR 4-23 58 PAKX 4-48
26 EORR 4-24 59 UNPX 4-49
27 IORR 4-26 BbA MOVL 4-54
28 MPYR 4-14 5B MPYK 4-12
29 DIVR 4-11 5C LLDI 4-58
2A CSTR 4-51 5D LRDI 4-59
2B CLDR 4-51 6E RLDI 4-60
2C LLSR 4-59 5F ARDI 4-57
2D LRSR 4-60 60 MOVM 4-55
2E RLSR 4-61 61 CMPM 4-38
2F ARSR 4-58 62 ADDM 4-6
30 LODI 4-53 63 SUBM 4-16
31 CMPI 4-37 64 INVM 4-52
32 ADDI 4.5 65 ANDM 4-22
33 SuBI 4-15 66 EORM 4-24
34 INVI 4-52 67 IORM 4-25
35 ANDI 4-22 68 MPYM 4-13
36 EORI 4-24 69 DIVM 4-10
37 IORI 4-25 6A MovsB 4.54
38 MPYI 4-12 6B CBYM 4-35
39 ' DIVI 4-9 6C TONR 4-21
3A PSTR 4-56 6D RONR 4-19
38 SHFK 4-62 6E TOFR 4-20
3C LLDR 4-59 6F ROFR 4-18
3D LRDR 4-60 70 LODT 4-54
3E RLDR 4-61 71 CMPT 4-39
3F ARDR 4-57 72 ADDT 4-7
40 SRZF 4-34 73 SUBT 4-17
41 SRZB 4-34 7C DIVK 4-9
42 SRNF 4-34 80 NEGF 4-69
43 SRNB 4-33 81 INTF 4-67
44 SRPF 4-33 82 FLTF 4-67
45 SRPB 4-33 84 LODF 4-68
46 SRMF 4-32 85 SUBF 4-69
47 SRMB 4-32 86 ADDF 4-64
48 SCTF 4-32 87 CMPF 4-65
49 SCFF 431 . 88 MPYF 4-68
4A SCTB 4-32 89 DIVF 4-65
4B SCFB 4-31 8A STOF 4-69
4C - LLSI 4-59 AO LOD 4-52

Operation
Code

A1l
A2
A3
A4
A5
A6
A7
A8
A9
AA
AB
BO
B1
B2
B3
B4
B5
B6
B7
88
89
BA
BB
BC
BD
BE
BF
EO
E1
E2
E3
E4
E5
E6
E7
E8
E9
EA
EB
EC
ED
EE
EF
FO
F1
F2
F3
F4
F5
F6
F7
F8
F9

Mnemonic
Code

CMP
ADD
SuB
INV
AND
EOR
IOR
MPY
DIV
CVB/CVBT
CVvD/CVDT
LODD
CMPD
ADDD
SuUBD
INVD
ANDD
EORD
IORD
MPYD
DIVD
SF

SB
SBIT
RBIT
TBIT
I1BIT
BRZ
BRN
BOF
BON
BA1
BA2
BS1
BS2
BCT
BCF
BSR
BR
BCH

B

NOP
BCM
RDX/WRX
SIo
DIO
RDC
WRC
INP
ouT
LODB
STOB
CBY

Page
Number

4-36
4-4

4-14
4-51
4-21
4-23
4-24
411
4-7

4-42
4-43
4-53
4.36
4-4

4-14
4-51
4-22
4.23
4-25
412
4.8

4-31
4-30
4-20
4-20
4-20
4-18
4-29
4-29
4-28
4-28
4-27
4-27
4-29
4-30
4.28
4.27
4-30
4-29
4-28
4-26
4-41
4.77

4-41/4-82

4-90
4-83
4-87
4-89
4-85
4-85
4-53
4-56
4-35

Operation
Code

FA
FB
FD
FE
FF

Mnemonic
Code

STO

STOT
RRO/WRO
RAR/WAR
SAR/RSAR

Page
Number

4-56
4-56
4-79
4-77/4-78
4-80

o e e e e e e e e e e e e e e ——— — —— —— — e e — — —— — —— — —— . —— —— o — — o — - - —— o —— ————

COMMENTS FORM

7200 Processing Unit Reference Manual -- 2903.002

Please send us your comments, to help us produce better publications. Use the space below to
qualify your responses to the following questions, if you wish, or to comment on other aspects of
the publication. Please use specific page and paragraph/line references where appropriate. All
comments become the property of the Memorex Corporation.

® |s the material: Yes No
Easy tounderstand? oL (] O
Conveniently organized? O (]
Complete? e O (]
Well illustrated?o) [m]
Accurate? e e e e e e e e e e e e e e e e e O]
Suitable for its intended audience? 0O D
Adequately indexed?] (]

® For what purpose did you use this publication (reference, general interest, etc.)?

o Please state your department’s function:

Please use the space below to describe any specific comments which you feel will help us to
produce a better publication.

Business Reply Mail

Memorex Corporation

Santa Clara Publications
Department 9722 — M/S 00-21
1200 Memorex Drive

Santa Clara, California 95052

% No Postage Necessary if Mailed in the United States
@ Postage Wilt Be Paid By

Thank you for your information.............

Our goal is to provide better, more useful manuals, and your
comments will help us to do so.

............. Memorex Publications

First Class

Permit No. 250
Santa Clara
California 95050

	0001
	0002
	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	4-39
	4-40
	4-41
	4-42
	4-43
	4-44
	4-45
	4-46
	4-47
	4-48
	4-49
	4-50
	4-51
	4-52
	4-53
	4-54
	4-55
	4-56
	4-57
	4-58
	4-59
	4-60
	4-61
	4-62
	4-63
	4-64
	4-65
	4-66
	4-67
	4-68
	4-69
	4-70
	4-71
	4-72
	4-73
	4-74
	4-75
	4-76
	4-77
	4-78
	4-79
	4-80
	4-81
	4-82
	4-83
	4-84
	4-85
	4-86
	4-87
	4-88
	4-89
	4-90
	4-91
	4-92
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	A-00
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	B-01
	B-02
	B-03
	B-04
	C-01
	C-02
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	I-00
	I-01
	I-02
	I-03
	I-04
	replyA
	replyB

