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7300 Processing Unit Design Description 

Volume 2, Shared Resources 

This volume provides Memorex Field Engineers with detailed operating principles of the 
7300 Processing Unit's shared resources. The information is presented in two sections. 
Section 2, Principles oif Logic Operation, describes the hardware making up the shared 
resources - main storage, control storage, arithmetic-logic unit, timing, and control - plus 
the basic and extended register files and System Control Panel. Section 3, 
Micro-Instruction Repertoire, contains a detailed description of each micro-instruction by 
means of a narrative mcplanation and hardware execution flow diagram. This section also 
describes how micro-instructions are used to implement machine-language instructions and 
gives directions for reading the micro-instruction assembler listing. Hardware descriptions 

are keyed to corresponding drawings in the 7200/7300 Logic Diagrams Manuals, and 
thus provides the Field Engineer with a comprehensive maintenance package. 

This volume is part of a four volume set comprising the 7300 Processing Unit Design 
Description Manual. The set of four volumes is assembled as a continuum of section 
numbers containing the following information: 

Volume 1, Overniew (2501.001) 

Section 1. A general description of the 7~300 Processing Unit. 

Volume 2, Shared Resources (2501.002) 

Section 2. 

Section 3. 

A detailed description of maiin storage, control, timing and 
arithmetic parts of the 7300 Processing Unit. 

A detailed description of the formats, characteristics and 
implementation of the micro instructions associated with the 7300 
Processing Unit. 

Volume 3, Dedicated Resources (2501.003) 

Section 4. 

Section 5. 

Section 6. 

A detailed description of the two basic data (selector) channels 
for the 7300 Processing Unit. 

A detailed description of the Integrated Communications 
Adapter (ICA) for the 7300 Processing Unit. 

A detailed description of th1~ Integrated File Adapter (I FA) 
for the 7300 Processing Unit. 

Volume 4, Power System (2501.004) 

Section 7. A deitailed description of the 7300 Processing Unit power system. 

NOTE 

Because Volume 1 provides; an overview of the 7300 
Processing Unit, it should always be used as an 
introduction to the other volumes in the set. 

iii 
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2. PRINCllPLES OF L.OGIC OPERATION 

INTRODUCTION 

This section contains a detailed logic description of the 
shared resources portion of the MEMOREX 7300 
Processing Unit. The section begins with an over-all block 
diagram description of the shared resources, discussing the 
principal data paths and explaining some of the basic 
concepts of time slicing and machine lainguage instruction 
implementation by micro instructions. Following the 
block diagram description is a comprehensive analysis of 
each functional part of the shared resources. 
Supplementing the narrative description are in-text logic 
drawings illustrating each functional part, and portion 
thereof. These drawings are based on the logic diagrams 
contained in the 7300 Processing Unit Support Diagrams 
manual. For ease in correlating the in-teixt drawings to the 
logic diagrams, each drawing references the physical 
module (PC board) on which the IO!Jic shown in that 
drawing is contained, both by a dashed rectangle to 
indicate the module t;>oundary and thEi module number. 
The module number is of the form 1AXX and is (usually) 
located in the lower right corner of each module 
boundary. 

NOTE 

Signal names prefixed w~th a + or - in the 
in-text drawings are identical to correspond­
ing signal names shown in the logic diagrams, 
where the + or - represents the polarity of 
the signal in the active state. Signal names 
without such a prefi'x represent a combina­
tion of individual signals, where the polarity 
of the signal is not conveyed. 

BLOCK DIAGRAM DESCRIPTION 

The shared resources encompasses all logic shared by the 
eight processor states during their operation. It includes 
elements for assigning time slices, reading and executing 
Micro Instructions (µl's), reading and writing file regis­
ters, accessing Main Storage (MS), and communicating 
with the four 1/0 processors and the System Control 
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Panel. (When enabled for operation, the Panel is granted 
time slices just as if it was a ninth processor.) As dis­
cussed in Chapter 1, the shared resources consists of 
four major parts: the Arithmetic-Logical Unit (ALU), 
MS, Control Storage (CS), and Timing and Control logic. 
For purposes of discussing the operation of the shared 
resources, however, it is useful to also discuss operation 
of the Basic Register File (BR F) and Extended Register 
File (ERF) portions of the dedicated resources because 
of their intimate relationship with the shared resources. 
The shared resources plus the combination of BR F and 
ER F are referred to as the Central Processing Unit 
(CPU). 

A block diagram of the CPU is shown in Figure 2-1. 
This block diagram is similar to the CPU block diagram, 
drawing 503247, in the logic diagram manual but has 
been simplified by removing some of the auxiliary 
elements such as (most) register fan-in and MS and CS 
parity check circuits. Three of the four major elements 
(ALU, MS, and CS) are indicated by dashed line boxes. 
In addition, the BRF and ERF (both Groups I and II) 
are similarly designated. The block diagram will be dis­
cussed by describing each data path shown on the dia­
gram and its relationship to other such paths during 
execution of µl's during one time slice. The numbers 
appearing in parentheses in text refer to a corresponding 
data path in Figure 2-1. 

TIME SLICE ALLOCATION 

Assignment of a time slice to a particular processor state 
actually begins at E560 of the previous time slice. (The 
notation E560 means 60 nanoseconds into minor cycle E5 
of the major cycle.) At this time, priority is granted to the 
processor state under consideration. This sequence of 
events begins when the processor's Busy flip-flop in the 
Busy/Active (B/A) register of the ERF Group II is set. 
Setting this flip-flop essentially informs the shared 
resources that the processor under consideration has been 
assigned a task to perform and, consequently, will need a 



time slice to perform this task. Setting the Busy flip-flop 
can be done by software, under program control, via the 
ALU fan-in (1) or by manual control from the Panel (2). 
In addition, each of the four 1/0 processors can issue a 
request to set the Busy flip-flop (3) when they are ready 
to perform an 1/0-related operation. The Busy flip-flop 
output is routed to the Resync register in the Resource 
Allocation Network (RAN) via path (4). The Resync 
register functions as a job queue register by holding all 
requests for time slices from the various processors until 
granted by the RAN. The requests are fed to the priority 
network, which assigns priority to each request. Normally, 
the priority network assigns time slices to each processor 
in a cyclic fashion: 0 through 7, 0 through 7, and so forth. 
The four 1/0 processors, however, operate in a real-time 
environment; consequently, their needs for time slices are 
often critical to avoid loss of data transmitted to or from 
an 1/0 device. Therefore, these processors can override the 
normal cyclic assignment of time slices by setting a 
corresponding bit in the Priority register (5). This register 
enables the affected 1/0 processor to secure an 
out-of-sequence time slice according to one of two 
schemes: Enable Priority (secure a time slice when 
needed) or Invoke Priority (secure alternate time slices 
whether needed or not). At E560, the priority network is 
sampled and the number of the processor granted the next 
time slice is fed to the Read register (6). 

A-PORTION READ OPERATIONS 

The Read register contents are used to select the Pµ and 
FRFregisters in the Group I ERF to obtain housekeeping 
information required to begin the present time slice. This 
housekeeping information consists of the present M LI 
being executed, contained in FR F· and the address of the 
first µI of that MLI to be executed during this time slice, 
contained in Pµ. Normally, this housekeeping information 
will reflect where the last time slice .assigned to this pro-· 
cessor left off, that is, the M LI will remain the same and 
the starting µI address will be one greater than that of the 
last µI executed during the last time slice (unless a jump 
or skip occurred at the end of the last time slice). Under 
some circumstances, however, the starting µI address will 
have been modified between the time slices due to a 
boundary-crossing operation. This operation allows pro­
cessor state 4 (Executive) to access registers associated 
with the present processor state, making it possible for 
processor state 4, during its assigned time slice, to load a 
different starting µI address into the present processor's 
Pµ. 

The housekeeping Read operations take place during the 
R portion of a time slice, which overlaps minor cycles E6 
and E7 of the previous time slice. These timing relation­
ships are shown in Figure 2-2. For convenience, the R por­
tion is considered to consist of two 100-nanosecond 
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minor cycles: RO and R1. During RO, the processor 
number in the Read register is routed to the Group I ERF 
via (7), and the starting µI address is read from Pµ and 
clocked into the Sµ register at E680 (8). The Sµ register 
holds the address of the next µI to be read from CS. 
During R1, the MLI contained in FRF is read and trans­
ferred to the shared resources F register (9). Meanwhile, 
the starting µI address clocked into Sµ at E680 has 
already accessed CS to read the first µI to be executed 
during the new time slice (10). This operation also takes 
place during RO, and at EOOO the starting µI is clocked in 
FJL (11) for translation and subsequent execution during 
EO. 

· BE!cause of the overlapping facility of shared resources, 
the next µI in a sequence is (usually) read from CS during 
the minor cycle that the present µI is being executed. This 
can be seen from the previous paragraph where the first µI 
of the next time slice is being read at RO (E6) simultane­
ous with translation/execution of the next to last µI of 
the present time slice during E6 (RO). In general, this 
overlapped operation holds true for most µl's that take 
only one minor cycle to execute. Therefore, a single one­
minor-cycle-execute µI actually takes two minor cycles to 
implement: one minor cycle to read the µI from CS and 
one minor cycle to execute. If the µI is a Register File 
Write (and ALU propagation requirements are met), the 
execute portion (store into file register) does indeed take 
place dur.ing the second minor cycle. However, if the µI is 

a Register File Read, the execute portion actually extends 
into a third minor cycle. 

This timing relationship for successive Register File Read 
µl's executed during one time slice is shown in Figure 
2-3. The top portion of this figure shows the logic 
elements through which the Register File Read ul must 
pass during its implementation. As can be seen, the route 
traversed by the µI consists of two 
register-to-storage-to-register paths. The first path begins 
with Sµ through a fan-in to CS through a fan-out to Fµ. 
This path is used to read the µI from CS at the location 
specified by the address in Sµ, and route it to Fµ. The 
time required to traverse this path is 120 nanoseconds, 
from the time that Sµ is clocked with the µI address 
(CLKSµ at t) to the time that Fµ is clocked with the µI 
read from CS (CLKFµ at t+120). The second path begins 
with Fµ through a fan-in to the register file through a 
fan-out to Aµ and Bµ. This path is used to translate the 
µ.I in Fµ, access the register in either the BRF or ERF 
defined by theµ I, and process the register contents in the 
ALU via Aµ and/or Bµ. The time required to traverse 
this path is also 120 nanoseconds, from the time that Fµ 
is clocked with the µI (CLKFµ at time t) to the time 
that Aµ and/or B,.t are clocked with the register contents 
(CLKAµ/Bµ, at t+120). If the µI being executed is the 
first one in a time slice, the two aforementioned paths are 
preceded by a third path from the Read register in the 
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RAN to Pµ in the Group I EBF to Sµ. This path, which 
starts at E560, when the processor number is clocked into 
the Read register, also takes 1 :20 nanoseconds to traverse. 

Since A"'" and/or Bµ are not loaded with data until 240 
nanoseconds after the µI address has been loaded into Sµ, 
execution of a single Register File Read µI actually takes 
two complete minor cycles plus part of a third and a 
fourth minor cycle. This can be seen from the bottom 
part of Figure 2-3, which shows the times at which Sµ, 
Fµ, and Aµ/Bµ are clocked for each µI of a time slice. 
Using J I N (the first µI executed in the time slice) as an 
example, its total execution time exwnds through minor 
cycles E6 and E7 of the previous time slice and through 
EO and E1 of the present time slice, starting with CLSK 
at E680 and ending with CLKAµ/B~- at E 120. The relative 
times at which the same clocking operations occur for 
successive µl's, however, is only 100 nanoseconds. For 
example, CLKSµ for µI N occurs at E680 and CLKSµ for 
µI N+1 occurs at E780, 100 nanoseconds later. In this 
sense, then, execution of a µI is considered to take only 
100 nanoseconds since an operation performed on µI N, 
for example, can be followed by the same operation per­
formed on µI N+1 only 100 nanoseconds later. This so­
called pipeline effect extends throu1gh the whole time 
slice, so that operations associated with µl's begun near 
the end of the ti me slice assigned to processor X can act­
ually extend into the beginning of the next time slice 
assigned to processor Y. 

Returning to Figure 2-1, the µI address in Sµ used to read 
the µI presently in Fµ is automatically updated by the 
Sµ+1 adder. This adder adds +·t to the contents of Sµ and 
routes it back to Sµ to form the address of the next µI to 
be read from CS. This is the normal manner in which the 
next µI address is formed since for ar:iv one sequence, µl's 
are arranged in consecutive order in CS. However, there 
are several other ways of loading Sµ with the address of 
the next µI, depending on several factors such as execu­
tion of a Branch µI, storing data into Pµ, and operating in 
the consecutive cycle (CC) mode. These alternate loads of 
Sµ are discussed in the following paragraphs. If the µI 
being executed is a Blockpoint (BP) µI, its address up­
dated by +1 will be fed to Pp for use as the anticipated 
starting µI address for the next time slice (12), subject to 
the boundary-crossing operation discussed above. In addi­
tion, the updated address is sent to Pb (13) for certain 
conditions when the anticipated starting µI address cannot 
be sent to Pp. 

The µI in Fµ is now ready for execution. From this point 
on, the paths traversed by the µI will depend on the type 
of µI, as discussed in the following paragraphs. 

MAJOR CYCLE EXECUTION 

BRF Read 
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A BRF Read µI selects a register of the BRF by a combin­
ation of the processor number obtained from the RAN 
Read register (14) and the register number obtained from 
the µI via the register file fan-in (15). The contents of the 
selected register are routed to the Aµ and/or Bµ registers 
of the ALU (16) for processing defined by the µI opera­
tion code. The contents may also be routed to the S regis­
ter (38) or D register (41) via the Aµ register fan-in. 

BRF Write 

A BRF Write µI selects a register of the BRF in which to 
write data from some shared resources register (usually 
the Aµ, Bµ, or D register) or logical/arithmetic combina­
tion of the contents of such registers, as defined by the µI 
operation code. The register is selected in the same man­
ner as for a BRF Read µI: processor number from Read 
register (14) and register number from the µI (15). Upon 
selecting the register, the contents to be written are gated 
through the ALU fan-in logic to the BRF (17). 

ERF Group I Read 

The ERF Group I read µl's do not read Pµ or FRF 
directly; instead, they read the contents of the Buffer 
registers (Sµ/Pp and F) that reflect the most recent con­
tents of Pµ and FR F, assuming that Pp has not been up­
dated by a blockpoint µI. The contents of Sµ/Pp (the 
notation Sµ/Pp indicates that status bits 0 and 1 are read 
from Sµ and CS address bits 2 through 15 are read from 
Pp) or F are routed to the ERF fan-in Aµ/Bµ via paths 
(69) and (70). They are gated through the fan-in by cor­
responding enables and sent to the Aµ and Bµ registers. 

ERF Group I Write 

Like the ERF Group I read µl's, the ERF Group I write 
µl's access Pµ and FR F through their buffers, Sµ/Pp and F 
(and Fb). If Pµ is to be written, data is routed from the 
ALU fan-in to Pp via Sµ and/or Pp (19). Then at the end 
of the time slice, the data in Pp is written into Pµ as part 
of the WO cycle housekeeping operation. If FRF is to be 
written, data is routed from the ALU fan-in to F/Fb (20). 
Then at the end of the time slice, the data in Fb is written 
into FRF as part of the W1 cycle housekeeping operation 
(21). 

ERF Group II Read and Write 

The ERF Group II register is selected by a combination of 
processor number and register number, similar to that for 
a BRF register. If a Read operation is specified, the 
contents of the selected register are fed to the ALU via 
the ERF Group II fan-in and the ERF input Aµ/Bµ fan-in 
(22). If a Write operation is specified, the data to be 

written is sent from the ALU via the ALU fan-in (23). 



ERF Group Ill Read and Write 

These ul's are programmed as part of an 1/0 data transfer 
operation, since the ERF Group Ill registers associated 
with the four 1/0 processors are located in the 
corresponding adapters. The Group 111 register is selected 
by the µI through the register file fan-in (24). Data 
received from a Group Ill register is put in to the ERF 
input Aµ/Bµ fan-in (25). Data transmitted to a Group 111 
register is sent out via the ALU fan-in (26). 

Arithmetic µI'S 

Arithmetic µl's comprise those executed by the ALU. 
They include Sum, Compare, Skip, Bit Sense, and 
Shift µI's. The Sum µI's add the contents of Aµ and Bu 
and route the sum to the ALU fan-in (27). The Compare 
µI's compare the contents of Aµ and Bµ for less than, 
equal, and greater than conditions by the compare 
network (28). The results are used to generate 
corresponding compare status bits which are sent to the 
ALU fan-in (29) for storage in a designated register. The 
Skip µI's determine conditions for skipping the next µI 
by the skip evaluate logic (30) and Aµ=O logic (31). The 
Bit Sense µI's scan the contents of Aµ for a designated 
bit (32). When found, a number equal to the number of 
bit positions scanned without a find is added to the con­
tents of Bµ (33). The result is then stored back in Bµ (33). 
In addition, the bit in Aµ providing the find may also be 
toggled. The Shift µI routes the contents of Aµ and Bµ to 
Aµ buffer and Bµ buffer (34), then shifts the contents of 
the two buffer registers by a specified amount. The 
shifted result is stored back in Aµ and Bµ (37). 

MS Reference µl's 

Both read and write references to MS require loading an 
address into the Sµ register from the Aµ register fan-in 
(38). This address is sent to MS via the Register Option 
(39). If an MS read is specified, the data is read from MS 
and routed to the F RJ decode address table (AT) pointer 
logic and to the ALU via path (40). If an MS write is 
specified, the word to be stored is loaded in the D register 
(41) and routed to MS via the Register Option (42). 

FNJ and FRJ µl's 

The FNJ (Function Jump) and FRJ (Format Jump) µl's 
are executed as part of the process of reducing the 
number of possibleµ I routines required to implement a 
MU down to one particular routine applicable to that 
MU only. The scheme for accomplishing this reduction is 
shown in Figure 2-4. Implementing a MU requires three 
sequences: Read Next Instruction (RN I) sequence, 
Format Jump (FRJ) sequence, and Function Jump (FNJ) 
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sequence. The RNI sequence is used to read the MU from 
MS and isolate it to a group of several M LI 's sharing 
common characteristics by performing an F RJ, or 
first-level, decode. This decode is performed by executing 
an 1=RJ µ.I, and determines the format of the MU; that is, 
its type (register/register, memory/register, memory/ 
memory, and so forth) and the addressing mode specified 
(direct or indirect). Figure 2-4 shows the sequences 
associated with a ADD R M LI (function code of 22). The 
ADDR M LI belongs to a class of M Li's identified as 
register/register MLl's, meaning that the operands process­
ed by these MLl's are obtained either from a file register 
(direct accessing) or from MS at a location specified by 
the contents of a file register (indirect addressing). All 
M Li's with function codes of 20 through 29 belong to this 
class of M Li's. For the example shown in Figure 2-4, both 
operands required by the ADD R M LI are to be obtained 
by direct addressing (D/D). 

Upon executing the F RJ µI, a branch is made to an area 
of CS determined by the F RJ decode to begin the F RJ 
sequence. Note from the figure that any of four different 
F R.J sequences for the register /register class of M LI 's 
could have been entered, depending on the type of 
operand addressing specified. The FRJ sequence reads the 
first operand and prepares to enter the FNJ sequence by 
performing an FNJ, or second-level, decode. This decode 
is performed by executing an F NJ µI, and picks out the 
ADDR MU from the rest of the register/register MLl's by 
identifying its function (add register to register) and 
causes a branch to another area of CS containing µl's 
required to implement the move register to register func­
tion. Note again from the figure that any one of 10 differ­
ent FNJ sequences could have been entered, depending on 
the function of the M LI. The FNJ sequence reads the 
second operand, performs the required additiqn, stores 
the result, and branches back to the RN I sequence to read 
the next M LI. 

Execution of both the FRJ and FNJ µl's form a branch 
address to branch to the start of the F RJ and F NJ 
sequences. Formation of the F RJ branch address, shown 
in Figure 2-1, is accomplished by developing an 
intermediate address tha points to the required F RJ 
branch address stored in the F RJ decode address table 
(AT). This pointer address is developed by feeding the 
ML.I read from MS (43) to the pointer logic. The resultant 
FRJ branch address is read from the AT, combined with 
the contents of F, and routed to Pp (44). Formation of 
the FNJ branch address is performed directly by the jump 
decode logic. This logic, which is also used to form branch 
addresses for other jump µl's, is fed with bits from both 
the MU in F (45) and the FNJ µI in Fµ (46). The FNJ 
branch address is formed by a combination of these bits 
and fed to Sµ (68) and/or Pp (47). 
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Micro-Instructions Requiring Constants 

A number of µl's require certain constants for their execu­
tion. These constants are generated by the constant 
generator, either by itself or with other logic. Among the 
constants generated are -1, 0, and +1 generated in con­
junction with the Forced Carry Register for the load S 
µl's; 3 and 0 16 for the CORC µI; and certain word-, 
byte-, and nybl-length constants for the load Bµ, enter Bµ, 
and DIG µI's. The generated constants are fed to the Bµ 
register (48). 

W-PORTION WRITE OPERATIONS 

At the end of the time slice assigned to the processor 
state, the starting µI address in Pp and the M LI in F/Fb 
must be written back into Pµ and FR F of the processor 
state's Group I ER F to enable resumption of the micro­
program when the next time slice is assigned to the pro­
cessor state. These operations take place at WO (EO) and 
W1 (E1), respectively, as shown in Figure 2-3. The Pµ and 
FR F registers are selected by the processor number, now 
contained in the Write register of the RAN (49). This 
register number was transferred from the Execute register 
during E5 (50). At WO, the starting µI address is written 
back into Pµ. This address comes from either Pp (51 ), if 
the BP µI was executed at EO through E6, or from Pb 
(52), if the BP µI was executed at E7. The contents of Pb 
are used for the latter situation because Sµ has already 
been loaded with the starting µI address for the new time 
slice; consequently, the updated BP address cannot be 
routed to Pp via Sµ. Instead, it is fed directly to Pb after 
being updated. At W1, the MU is written back into FRF 
from Fb (21 ). (The contents of Fb must be used since F 
already contains the M LI for the next time slice.) If the 
processor is enabled for Consecutive Cycle (CC) opera­
tion, the starting µI address in Pp is routed back to Sµ 
(53) to enable the processor to continue running during 
the next time slice. 

SYSTEM CONTROL PANEL OPERATIONS 

Several operations initiated by the System Control Panel 
are shown in Figure 2-1. The reset/load operation is 
initiated by the Panel (54) to load CS with µl's from 
either a disc or card device (55). Breakpoint comparisons 
are made by comparing an address selected by the Panel 
breakpoint selectors (56) with a µI address in Sµ (57) or 
an MS address in S (58). A starting µI address can be 
manually set into Sµ from the Panel (59). Address-related 
information may be displayed on the Panel by means of 
the address display fan-in via paths (60), (61 ), and (62). 
Likewise, data-related information can be shown by 
means of the data display fan-in and Console display 
fan-in via paths (63) through (67 ). 
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DETAILED LOGIC ANALYSIS 

TIMING 

All timing needed by the various parts of the system, 
including all 1/0 processors, is derived from timing logic in 

the shared resources. A block diagram of this timing ioglc 
is shown in Figure 2-5. The master clock, from which all 
subsequent timing is derived, is a 10-megahertz crystal 
oscillator. This master clock feeds pulses to a 
100-nanosecond delay line. This delay line is tapped at 
10-nanosecond intervals and the resultant outputs fed to 
several long pulse and short pulse circuits. Each type of 
circuit is nearly identical and generate its respective out­
put once every 100 nanoseconds (one minor cycle). The 
long pulse circuit generates write signals which are 45 to 
60 nanoseconds wide. The short pulse circuit generates 
control timing pulses of 20 to 30 nanoseconds for a 
number of purposes: 1) register clock signals, 2) inputs to 
the real time clock (ATC) generator, 3) initiate E pulses 
via the E timing generator logic, and 4) furnish basic clock 
signals to the 1/0 processors. The E pulses are nominally 
100 nanoseconds wide and are generated once during 
every major cycle. They are generated by means of a gray 
code counter whose binary outputs are ANDed together 
as required to generate each E pulse. 

Basic Timing 

Logic for the basic timing is shown in Figure 2-6. The 
10-megahertz master clock output is adjusted by a 
potentiometer for a pulse width of 30 nanoseconds, as 
shown in Figure 2-7. This figure shows typical pulses 
generated by the basic timing over a period of 200 
nanoseconds (two minor cycles). (Times for all pulses 
generated by the basic timing logic are found in Section 6 
of the 7200/7300 Processing Unit Maintenance manual.) 
The adjusted master clock output is fed to a delay line, 
which contains 10 taps. Each tap provides a delay of 10 
nanoseconds from the previous tap, therefore, a total 
delay of 100 nanoseconds from the previous tap, there­
fore, a total delay of 100 nanoseconds can be realized 
from the delay line. These taps are connected to the 
inputs of two types of pulse generate circuits, identified as 
long pulse circuits and short pulse circuits. 

Each long pulse circuit consists essentially of two 
networks which feed the pre-set and pre-clear sides of a 
type D flip-flop producing pulses of 40 to 60 
nanoseconds. Each network contains a potentiometer for 
independent adjustment of the leading and trailing edges 
of the flip-flop output. An emitter-follower is used to feed 
each network from the particular delay line tap for 
delay line isolation and impedance matching purposes. 



There are three such long pulse circuits, used to generate 
NORMWR, LATEWR, AND BRFWRITE. Normally, the 
starting µI address and M LI are written into Pµ and FR F 
of the active processor during the W portion of the time 
slice. For this purpose, NORMWR is used. During an 
invoke condition, however (after ani IVK µI has been 
executed), the starting µI address and M LI are written 

into the Pµ and FR F of another processor, specified by 
the contents of the Boundary Crossing (BC) register. For 
this purpose, LATEWR is used. Signal LATEWR is gener­
ated about 15 nanoseconds later than NORMWR to 
accommodate the extra time needed by the µI translation 
logic. Signal BRFWRITE is used to write into any register 
of the Basic Register File (BR F). 

.......i----------..~ REGISTER CLOCK 

1-----------•e. ATC GENERA TOR 

(1A12) 

----------------------· r---------------1 I 
I ----------• 
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I CTR 
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Figure 2-5. Timing Block Diagram 
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Each short pulse circuit consists essentially of two RC 
networks which generate pulses of 20 and 30 nanoseconds 
in width. Each network is adjustable providing 
independent adjustment of the output pulse leading and 
trailing edges. The output pulse is fed through several 
inverter drivers to provide the high fan-out requirements 
of these pulses. There are eight short pulse circuits, which 
generate TXXX signals and register clock signals. The 
TXXX signals are 20 and 30 nanoseconds wide, and are 
generated at intervals of 20 nanoseconds. The signal name 
identifies when it occurs during the 100 nanosecond 
period, i.e., TX20 indicates a signal generated 20 
nanoseconds after TXOO. These signals are used in their 
generated form for purposes of initiating operations at 
specific points within a minor cycle. For this purpose, 
they are usually combined with an E pulse, which defines 
the particular minor cycle. They are also used to generate 
E pulses via the E timing logic and clock pulses for use by 
the 1/0 processors. The register clock signals are either 20 
or 30 nanoseconds wide and are used to preset, preclear, 
or enter data into a register at a specific time during a 
minor cycle. For this purpose, they am usually combined 
with a register clock enable signal which defines the condi­
tion under which data can be entered into the register 
(usually resulting from translating a particular µI). 

TX00-2 

30T 
CC-FIF 

20T 

10T 

OOT 

ON-TIME 
CTR 

ON-TIME 
E- PULSE 

GEN 

TX40-3 

E Pulse Timing 

Logic for the E pulse timing is shown in Figure 2-8. The 
logic consists of two ranks of E pulse generators driven by 
corresponding ranks of a gray code counter. The two E 
pulse generator ranks produce a series of overlapping 
pulses nominally 100 nanoseconds in width called E 
pulses. Each pulse overlaps the preceding pulse by 50 
nanoseconds (nominal)*. The on-time (OT) rank generates 
pulses that each start at the beginning of a minor cycle, 
i.e., pulse E1 XX-0 starts at the beginning of minor cycle 
E1. The early time (ET) rank generates pulses that each 
start 50 nanoseconds preceding the corresponding on time 
E pulse i.e., E1XX-E starts 50 nanoseconds before 
E1 XX-0 or in the middle of minor cycle EO. Waveform 
for typical on time and early time E pulses are shown in 
Figure 2-9. These E pulses are used in their generated 
form for combining with TXXX pulses of the basic timing 
to initiate operations as discussed in the previous para­
graph. The E pulses are also used in combined forms with 
each other to generate pulses, two or more minor cycles 
wide. For example, E1/2XX-E is two minor cycles in 

*The overlap actually ranges between 40 and 60 nanoseconds, due 
to flip-flop and gate delays. 
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width, starting at E050 (E1 XX-E start time) and ending at 
E250 (E2XX-E end time). Pulse E12!>6 is active for minor 
cycles E1, E2, E5, and E6, and inactive for the remaining 
minor cycles. 

All E pulses are derived from two ranks of a gray code 
counter, an on time (OT) rank and an early time (ET) 
rank. Each rank consists of four flip-flops, numbered 0 
through 3, that are interconnected so as to generate a gray 
code output*. Outputs from each o'f the flip-flops com­
prising the on time counter are shown in the upper part of 
Figure 2-9. The counter is initiated at EOOO by TXOO 
from the basic timing. The early time counter generates 
the same counts as the on time counter, but starting 50 
nanoseconds earlier. The BCD equivalent of each count 
produced by the on time counter and the corresponding E 
pulse generated is listed in Table 2-1. 

Major Cycle Duration 

The number of E pulses generated per major cycle 
depends on whether the processor state is operating in the 
Consecutive Cycle (CC) mode and/or if it is making a 

reference to Main Storage (MS). If the processor state is 
making an MS reference, the major cycle timing is also 
influenced by which features of the Register Option (RO) 
that require additional propagation time are present. This 
information is tabulated to the right of the table in Table 
2-1. If the processor state is not making an MS reference, 
the only variable is whether or not the processor is operat­
ing in the CC mode. If not, the major cycle time is 800 
nanoseconds, formed by generation of E pulses EOXX-0 
through E7XX-O in sequence. If operating in the ECC 
mode, the major cycle time is increased to 1000 nano­
seconds by the addition of E pulses E8XX-O and 
E9XX-O. These two pulses are generated by the output 
from on time counter flip-flop 30. This flip-flop is 
enabled only if operating in the CC mode by signal 
CC-F/F, as shown in Figure 2-8. When a BCD count of 
either 4 if not in the CC mode, or 8 if in the CC mode is 
reached, the counter recycles itself back to 0 to start 
another series of E pulses. 

*A gray code is a binary code in which only one bit position 
changes state ("O" or "1 ") each time the counter is advanced. 

Table 2-1. On."rime Gray-Code Counter Tirning and Major Cycle Durations 

Counter Flip-Flops 
BCD E-Pulse 

30T 20T 10T OOT Result Generated 

0 0 0 0 0 EOXX-0 

0 0 0 0 0 EOXX-0' 

0 0 0 0 0 EOXX-0" 

0 0 0 1 1 E1XX-O 

0 0 1 1 3 E2XX-O 

0 0 1 0 2 E3XX-O 

0 1 1 0 6 E4XX-O 

0 1 1 1 7 E5XX-O 

0 1 0 1 5 E6XX-O 

0 1 0 0 4 E7XX-O 

1 1 0 0 12 ESXX-0 

1 0 0 0 8 E9XX-O 

LEGEND 
CC, BP, R/P, ECC - Major cyclu duration if operating in consec-cycle mode; 
Basic Protect, Relocation and Protect, and ECC features not present. 
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If the processor state is making an MS reference, the vari­
ables include not only whether or not operating in the CC 
mode, but which features of the RO that require addi­
tion al time for propagation are present also. These 
features include the Basic Protection (BP), Relocation and 
Protection ( R/P), and the Error Correction Code (ECC) 
feature. If R/P, but not the ECC feature, is present, the 
major cycle timing is increased by 100 nanoseconds from 
a non-MS reference cycle to either 900 or 1100 nano­
seconds, depending on whether or not the CC mode is 
enabled. This increase of 100 nanoseconds is provided by 
generating a second EO pulse called EOXX-0'. Pulse 
EOXX-0' allows for the extra time required by the MS 
address to propagate through either the BP or R/P feature. 
If both the R/P and the ECC feature are present, the cycle 
time is increased by 200 nanoseconds from a non-MS 
reference cycle to either 1000 or 1200 nanoseconds. This 
increase of 200 nanoseconds is provided by generating not 
only pulse EOXX-0', but a third EO pulse also, called 
E 0 XX-0". Pulse EOXX-0" allows for the extra ti me 
required by the ECC feature to check and correct, if 
necessary, data read from an MS location. (The operation 
of MS requires reading data from a MS location during 
both a read and a write operation; therefore, extra time 
must be allowed for ECC operation during both a read 
and a write operation.) It should be pointed out that the 
extra 100 nanoseconds added by pulse EOXX-0' is added 
regardless of whether the BP or R/P feature of the RO is 
present (since either one or the other must be present) 
even though the BP feature does not require the increased 
access ti me. 

Pulses EO' and EO"* are generated during operations 
collectively referred to as long access operations, and are 
initiated by the long access logic shown in Figure 2-10. 
Generation of either just EO', or both EO' and EO", is 
determined by the adjustment of a delay network. This 
network is initially clocked at either E650 if not in CC 
mode, or E850, if in CC mode, by NCE70RE9. The out­
put delay is adjusted on the basis of which RO features 
are present in the system, such that the output goes low at 
either E070, if either the BP or R/P, but not the ECC 
feature is present; or at E070', if either the BP or R/P, and 
ECC features are present. These delays are shown in 
Figure 2-11, along with subsequent timing, for both possi­
bilities: BP or R/P but no ECC (solid lines) and BP or R/P, 
and ECC (dashed lines). The delay network output is 
clocked into a flip-flop at E720 to generate signal TIMER. 
This signal is combined with FXEQ-3, indicating that an 
MS reference is to be made (load SµI) and master enable 
EN LG ACC. The result is LONGACC, which goes low at 
E040 (worst case). As shown in Figure 2-10, this signal is 
used to block clocking of Fµ and Sµ with the next µI and 
following µI address. This is necessary to inhibit reading 
or executing a µI during the period that EO' and EO" are 
active. In addition, LONGACC is gated to two flip-flops 
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that control the setting and clearing of the counter flip­
flops. The output of the On Time flip-flop sends a high to 
the pre-clear input of the OOT flip-flop in the on time 
counter. The result of this high pre-clear is to. delay the 
flip-flop from setting for eithe; 100 or 200 nanoseconds. 
This action effectively generates pulse EO' and EO" by 
extending the EO pulse width from 100 to either 200 or 
300 nanoseconds. The high output from the Early Time 
flip-flop to the pre-clear input of the 1 ET flip-flop in the 
early time counter produces a similar action to delay the 
early time E1 pulse by the required amount. 

It is important to note that the train of E pulses gen­
erated, including the inserting of EO' and EO" pulses, is 
completely under hardware control (except for adding ES 
and E9 if in the CC mode). In addition, every major cycle 
will contain eight distinct E pulses, even though the inter­
vals of these pulses may vary as previously drscussed. If 
the program being executed determines that it does not 
need the remaining minor cycles in a time slice, it cannot 
truncate the unneeded portion of the time slice. Instead, 
it must cycle through the rest of the time slice by per­
forming NOP's until the end of the time slice. This is 
(usually) done by inserting non-blockpoint or resync µI's 
(either the SYNC µI itself or one that performs a resync as 
part of its execution) to account for the unused trailing 
portion of such major cycles. In this respect, the timing is 
completely synchronous in that every time slice will run 
to completion even if the program being executed during 
the time slice does not. 

The 1/0 processor clock logic consists of five buffer 
drivers that are driven by basic timing pulses TXOO, T?<20, 
TX40, TX60, and TX80 respectively, as shown in Figure 
2-5. These buffer drivers, in turn, generate CLOCK-00, 
CLOCK-20, CLOCK-40, CLOCK-60, and CLOCK-80, 
which are routed to the four 1/0 processors. 

Real Time Clock Pulse Generator 

The real-time clock (ATC) pulse generator generates two 
waveforms, one used to increment the ATC register and 
the other sent to both the Integrated Communications 
Adapter (ICA) and the Busy/Action (B/A) register. Each 
waveform is derived from clock pulse TX60 from the 
basic timing logic by means of appropriate countdown 
logic. A block diagram of the RTC pulse generator is 
shown in Figure 2-12. The basic timing initiate pulse, 
designated RTCINPUT, is fed to a divide-by-4 network 

*To avoid possible confusion in the following discussion, it should 
be pointed out that pulses EO' and EO" are not generated as such. 
In reality, they represent pulse EO extended in time by either 100 
or 200 nanoseconds (both on-time EO and early-time E1 pulses are 
extended). The result is a long EO pulse of either 200 nanoseconds 
( EO plus EO') or 300 nanoseconds ( EO plus EO' and EO") in length 
nominally. It is useful, however, to think in terms of adding the 
EO' and EO" pulses to retain the idea that all E pulses are nomin­
ally 100 nanoseconds wide. 
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consisting of two flip-flops connected in cascaded fashion. 
This results in a waveform repetition rate of 400 nano­
seconds. This waveform, in turn, is fed through three 
divided-by-16 networks in serial fashion. Each network 
consists of a four-bit up/down counter that overflows 
when a count of 16 is reached. The resultant output is a 
waveform with a 1.6384 millisecond repetition rate (600 
Hz) that is fed to the RTC register as RTCASYNC. This 
signal is also fed to a divide-by-10 network to generate 
RTC-SPEC at 16.384 millisecond intervals (60 Hz). This 
signal is fed to the processor 4 Busy flip-flop in the B/ A 
register for purposes of waking up processor 4 at these 
intervals. The signal is used also in the ICA for character 
framing during synchronous transmission and for generat­
ing dial digits in the auto-call logic. 

RESOURCE ALLOCATION 

The resource allocation logic detects and stores requests 
for time s I ices from the eight processors that 

. communicate with the shared resources and the System 
Control Panel. It then allocates time slices to each 
processor or the Panel on the basis of its needs. A block 
diagram of the resource allocation logic is shown in Figure 
2-13. As shown, the logic consists of the Busy I Active 
( B/ A) register, Console Busy flip-flop, Resource 
Allocation Network (RAN), and Consecutive Cycle (CC) 
logic. Requests from each processor are stored in 
corresponding flip-flops of the B/A register (register 02 of 
the ERF). The left-most eight flip-flops comprise the busy 
portion of the register; the remaining eight flip-flops make 
up the active portion. The Busy and Active flip-flops of 
each processor perform related functions during execution 
of a processor task. The Active flip-flop is set by software 
alone when the program determines that a particular 
processor should perform a particular task. The flip-flop is 
set at the beginning of the task and remaons set until the 
task is completed. The Busy flip-flop can be set by either 
hardware or software, and informs shared resources that 
another time slice is needed by the processor to execute 
another portion of its assigned task. Requests from the 
Panel are handled in an analogous manner, by setting the 
Console Busy flip-flop. This flip-flop is set under hardware 
control only. 

Upon being set, the Busy or Console Busy flip-flop output 
is entered in the task queue with other Busy flip-flop 
outputs for assignment of time slices in accordance with 
the priority level of the request. The task queue is defined 
as those processors which have requested time slices and 
are waiting for them to be granted. The task queue is 
entered by setting corresponding Resync flip-flops in the 
RAN, whose outputs are assigned priority in a cyclic 
fashion by the priority encoder. For proc1~ssors 0 through 
3, recognizing requests in this cyclic fashion (called the 
scanner mode), may be altered by setting the 
corresponding Priority flip-flop. 
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The Priority flip-flop may be set for either of two 
conditions: enable and invoke. The enable condition sets 
the flip-flop when the corresponding 1/0 processor 
determines that it is about to lose data if it cannot obtain 
a ti me slice expeditiously. The enable condition, there­
fore, enables a processor to obtain an out-of-sequence 
time slice. The invoke condition assures that a processor 
will unconditionally be granted every other time slice, 
wlhether it really needs them or not (provided conditions 
of higher priority are not present). Both priority condi­
tions are initiated by software, which sets a corresponding 
enable override or invoke priority bit position in the 
individual processor's Control register. 

The processor state number assigned the next time slice is 
routed to the Read register. This register initiates the RO 
and R 1 cycles of the time slice to read the starting µI 
addresses and present MU from Pµ and FRF• 
respectively, in the ERF. From the Read register, the 
pri::>cessor number is routed to the Execute register, and 
th1m to the Write register near the end of the time slice . 
The Write register initiates the WO and W1 cycles of a time 
slice, which stores away the anticipated starting µI address 
for the next time slice and the present MU for starting 
the next time slice assigned to the processor. In addition, 
the Read and Execute register contents are routed to the 
Read/Execute compare circuits of the Consecutive Cycle 
(CC) logic. These contents are evaluated for equality, 
which they will be if no other processor is in the queue 
and the present processor requests a second time slice. 
The Read register contents are also used to determine if 
so"ftware has enabled the processor to operate in the CC 
mode. This is done by comparing the processor number in 
th1e Read register with the corresponding CC bit of the 
Control register. If the CC bit is set, the Clear CC flip-flop 
is not set. The flip-flop output is combined with that from 
the Read/Execute compare circuits to generate signals 
required by the processor to operate in the CC mode. 

If neither a processor nor the Panel has requested a time 
slice, the resource allocation logic schedules a null 
condition during the following time slice(s). The null 
condition inhibits clocking Sµ with an updated µI address 
and disables the output from Control Storage (CS) which 
effectively loads NOP µl's into Fµ. A refresh request from 
M:S will also generate a null condition if the refresh was 
scheduled for the previous major cycle but was pre­
empted by a MS access request. During the next (present) 
cycle, the refresh request will lock out another MS access 
request (if generated) by setting up a null condition. 

Busy I Active Register 

Tlhe Busy/Active (B/A) register consists of 16 flip-flops, 
divided into two groups of eight flip-flops each. Flip-flops 
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0 through 7 comprise the Busy flip-flops for the eight pro­
cessors; flip-flops 8 through 15 make up the Active flip­
flops for each processor. Because of the differences in pro­
cessors, their Busy flip-flops are set and cleared under 
different conditions. All Busy flip-flops, however, are 
similar in that they are set or cleared by either an asyn­
chronous (forced) or synchronous (clocked) input to the 
flip-flop. The forced inputs occur as a result of beginning 
or ending an input data transfer from a processor to the 
shared resources. Requests for such data transfers occur 
either under program control, from the requesting pro­
cessor, or under manual control from the System Control 
Panel. The clocked inputs to the Busy flip-flops are gen­
erated under program control by the Executive processor. 

The Busy flip-flops for both processor 0 (communications 
processor) and processor 4 (Executive processor) are 
shown in Figure 2-14. The "normal" method of setting 
these two flip-flops is by the REO signal, indicating that 
an external event under hardware control wants a time 
slice for the processor. For processor 0, R EQ is generated 
by the communications adapter signifying that it is ready 
to either send or receive data. For processor 4, R EQ is 
generated after initialization of an Autoload operation, 
and at 16.384-millisecond intervals thereafter by the real­
time clock (ATC) to wake up the Executive processor. 

Setting the Busy flip-flop for processor 0 is inhibited if 
the corresponding PROCESSOR CONTROL SELECT 
switch on the Panel is set to STOP /STEP (SWSTOP is 
high). Signal SWSTOP enables a processor task to be 
executed in the stop/step mode from the System Control 
Panel. For processor 4, setting the Busy flip-flop via R EQ 
is inhibited if the INHIBIT REQ signall is present. This 
inhibit signal is generated whenever the Busy flip-flop is 
under control of a Breakpoint operation from the Panel 
and provides a software debug facility for system pro­
grammer use. 

The Panel may also turn on (initiate) ci processor under 
manual control. This is accomplished by setting the 
PROCESSOR SELECT selector to either the 0 or 4 
position and pressing the PROCESSOR RUN pushbutton. 
This action generates SWSELGO and GO FF, respectively. 
This manner of setting the Busy flip-flop is disabled if the 
switches are set when the processor is executing during 
minor cycles E6 through E9. 

Occurrence of a CS parity, MS parity, 01r outbound error 
condition during the last time slice of a task sets the Busy 
flip-flop for one more time slice. This is necessary for two 
reasons ( 1) the error might occur at E7 so that no more 
time would be available in the time slice to form the trap 
address, or (2) unaware of the occurrence of an error con­
dition, the microprogram might stop as a result of clearing 
the Busy flip-flop during the major cycle in which the 
error condition occurred. The problem is overcome by 
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forcing the processor to run for one more time slice and 
forming the trap address at E7 of this forced time slice. 
Setting the Busy flip-flop for this condition is accomplish­
ed by START, which specifies the present processor exe­
cuting a task, and TRAP-1 which specifies occurrence of 
the error condition. 

Setting and clearing the Busy flip-flops for processors 0 
and 4 (as well as for the other six processors) is 
accomplished under software control by means of the 
clocked input to the flip-flops. This is done at t80 of any 
minor cycle, providing ENCLKB/A is present. This clock 
enable is generated for any register file write µ,I when the 
destination is register 2 (the Busy I Active register) of the 
ERF. Unlike the other six processors, there are inhibiting 
conditions that may prevent software from setting the 
Busy flip-flop at ENCLKB/A time. Namely, the Busy flip­
flops for processors 0 and 4 can be cleared at ENCL KB/ A 
tiime only if the corresponding Active flip-flop has been 
previously cleared. In other words, these Busy flip-flops 
may not be cleared at ENCLKB/ A time if the correspond­
ing Active flip-flop is still set. 

Clearing of the Busy flip-flops for processors 0 and 4 is 
accomplished when the PROCESSOR CONTROL 
SELECT switch of the Panel is set to STOP/STEP. In this 
mode, the selected processor runs for only one MLI or 
only one major cycle as determined by the setting of the 
CYCLE STEP switch. For whichever setting is selected, 
indication that one major cycle or one M LI has been 
executed is provided by RNl-TX. Signal STATE is 
included to insure that the Busy flip-flop is not cleared 
before the processor has been assigned a time slice during 
step mode operation from the Panel. The Busy flip-flop is 
also cleared under Panel control when the PROCESSOR 
CONTROL SELECT switch is set to BKPT (signal 
SWBKPT). This signal is ANDed with BKPT-TX, which is 
g1enerated when any of the three BREAKPOINT MODE 
SELECT switches (READ INSTR, READ DATA, and 
WRITE DATA) is activated. These switches define the 
tvpe of breakpoint action selected: read the MU at the 
location specified by the breakpoint address (READ 
11\JSTR switch), read the operand at the location specified 
by the breakpoint address (READ DATA switch), or store 
the operand at the location specified by the breakpoint 
address (WRITE DATA switch). The breakpoint stop will 
occur at the end of the major cycle in which the break­
point occurred. 

Upon completion of a one-word transfer, the Busy 
fllip-flop is cleared by the CIO signal. This signal is 
generated when a CIO µI compare condition is not met, 
indicating that additional words have yet to be 
t11ansferred. The two CIO µ,l's compare the last byte 



address with the current byte address. Signal CIO is 
generated for either an Aµ=Bµ or an AµJBµ condition, 
depending on the predetermined µI program. 

The Busy flip-flop for processors 1, 2, and 3 is shown in 
Figure 2-15. As shown, the flip-flops for these three 
processors are set via the forced set input by means of the 
same conditions as for processors 0 and 4. In addition, 
these flip-flops can also be forced to a set condition by an 
ATTN signal from the processor. This signal is related to 
the R EQ signal in that it informs the shared resources that 
the corresponding processor wants a time slice. It differs 
from REQ, however, in that it is generated for a condition 
not associated with the operation currently being 
executed by the processor. Therefore, ATTN is inhibited 

from setting the Busy flip-flop until the corresponding 
Active flip-flop is cleared, meaning that the present 
operation has been completed and the operation that 
generated ATTN can now be executed. In addition, ATTN 
cannot set the Busy flip-flop during times E6 through E9 
to eliminate timing problems associated with CC and stop/ 
step operations at these times. 

Setting the Busy flip-flops for processors 1, 2, and 3, via 
thu clocked input, is done by means of software, the same 
as for the Busy flip-flops of processors 0 and 4. The ALU 
input must be enabled by both ENCLKB/A and the fact 
that either the Busy flip-flop is already set or the 
corresponding Active flip-flop is cleared. 
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A diagram of the Busy flip-flops associated with 
processors 5, 6, and 7 is shown in Figure 2-16. Because 
these processors are general-purpose processors, the 
corresponding Busy flip-flops do not require either the 
REQ or ATTN forced set inputs. The only forced set 
inputs are those required for generating a trap address and 
selecting the processor from the Panel. The flip-flop is set 
or cleared under program control at ENCLKB/A time. 
Unlike the Communications and Executive processors, the 
general-purpose processors can be cleared under software 
control regardless of the state of the corresponding Active 
flip-flop. The Busy flip-flop is cleared via the forced clear 
inputs for an RN I and breakpoint condition initiated by 
the Panel. The RNI condition is implemented in a manner 
similar to that for processors 0 through 4, except that the 
action of the STOP/STEP switch is mani'fested by clearing 
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tlhe corresponding Active flip-flop to generate ACTIVE. 
This differs from that for processors 0 through 4 where 
tlhe STOP/STEP switch input was supplied directly to the 
forced clear logic. 

The Active flip-flops for all eight processors are very 
similar as shown in Figure 2-17. All eight flip-flops are set 
and cleared at ENCLKB/A time under program control. In 
a:ddition, the Active flip-flops for general-purpose 
processors 5, 6, and 7 can be set and cleared via the Panel 
by means of the force set and force clear inputs. This is 
clone by means of the corresponding PROCESSOR 
CONTROL SELECT switches, which set a flip-flop when 
set to the NORMAL (run) position or clear a flip-flop 
when set to the STOP/STEP position. 
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Resource Allocation Network 

Scanner and Priority Logic 

The Resource Allocation Network (RAl\I) assigns time 
slices to each requesting processor in accordance with its 
needs and its position in the queue reilative to other 
requesting processors. The network consists of two 
sections: the scanner and priority logic, wlhich grants time 
slices to a particular processor; and the time slice control 
logic, which sets up conditions to perform R (read rµ, and 
F registers), E (execute µl's), and W (write Pµ and F 
registers) cycles during the processor's assigned time slice. 
A block diagram of the scanner and priority logic is shown 
in Figure 2-18. The logic consists of eight Resync 
flip-flops (one per processor), four Priority flip-flops (one 
for each of processors 0 through 3), and a priority 
encoder. The eight Resync flip-flops grant time slices to a 
requesting processor on a cyclic bas~s, wherein all 
requesting processors are granted one time slice in 
succession starting with the lowest numbered processor. 
Each Resync flip-flop is set at EH>O time if its 
corresponding Busy flip-flop is set, meaning that the 
processor wants a time slice. The clock signal which sets 
each Resync flip-flop is ANDed with INH RSYN signals 
from each higher-numbered Resync flip-flop. These signals 
inhibit a Resync flip-flop from being set again until all 
higher numbered processors have been granted their time 
slices. 

This method of granting time slices is referred to as the 
scanner mode, since the logic simply scans all processors 
requesting time slices and grants them in a cyclic 
sequence. Under certain conditions, however (such as 
imminent loss of data from an 1/0 device), the normal 
scanner mode can be overridden by a priority mode to 
grant a processor an out-of-sequence time slice if 
necessary. This is accomplished by the Priority flip-flops. 
Only processors 0 through 3 are provided with this 
override capability since they are used with 1/0 devices 
where rapid and timely data transfers are vital. These 
Priority flip-flops can be set by either one of two priority 
levels: enable priority and invoke priority. The enable 
priority level is implemented under software control by 
setting the EP (Enable Priority) bit position of the 
Control register in the ERF for that particular processor 
(CONTR-00 for processor 0, CONTR-0'1 for process 1, 
and so forth). This level allows an 1/0 processor to secure 
an out-of-sequence time slice if there is danger of losing 
data, provided that no lower numbered processor is also in 
an enable priority state. Indication of possible data loss is 
provided by the PRI signal from each 1/0 processor, 
which is ANDed with the corresponding CONTR bit. The 
invoke priority level is also implemented under software 
control by setting the IP (Invoke Priority) bit of the Con-
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trol register in the ER F for that particular processor 
(CONTR-04 for processor 0, CONTR-05 for processor 1, 
and so forth). This level assures an 1/0 processor of at 
least one alternate time slice, (even though there is not 
necessarily danger of losing data) provided that no lower 
numbered processor is also in a priority mode. If neither 
EP or IP bit positions for a processor is set, the processor 
reverts to the scanner mode previously discussed. 

The outputs of both the Resync and Priority flip-flops are 
fed to the priority encoder. 'This circuit makes the final 
determination of priority by generating the number of the 
processor assigned highest priority in BCD form. This 
BCD number, represented in the block diagram as outputs 
A, B, and C, are fed to the R, E, and W cycle logic. If no 
processor is requesting a time slice, output D goes high to 
generate either a null condition or allow the Panel to gain 
access to the system. The null condition schedules NOP 
operations during the interval that no processor is 
requesting time slices, unless the Panel desires entry to the 
system. For this condition, the Panel is treated by the 
priority logic as a ninth processor, with the lowest 
priority. 

The REFRESH. signal fed to the priority encoder is used 
to resolve a conflict between simultaneous requests for a 
refresh cycle and an MS access cycle. If a refresh request 
occurs in the absence of an MS access request, the refresh 
operation takes place in MS transparent to the rest of 
shared resources. However, if the refresh request occurs 
simultaneous with an MS access request, the refresh 
request is pre-empted by the MS access request. During 
the following major cycle, however, the refresh request 
pre-empts all other operations performed during that 
major cycle by setting up a null condition. This null 
condition effectively blocks the next processor in the 
queue from getting a time slice until the following major 
cvcle, even if that processor was not going to access MS. 
Logic for generating this null condition is shown in Figure 
2·19; associated timing is shown in Figure 2-115 located 
in the paragraph titled Main Storage. As the timing of 
Figure 2-115 shows, the Refresh Request flip-flop is set at 
EO to generate REFRESH when the refresh counter 
rnaches a count of 52. If an MS access request is not 
present (signal ACCESSEN is low), the refresh operation 
takes place on schedule and the Refresh Request flip-flop 
is cleared at E3. For this situation, the fact that 
RIEF RESH blocked other requests into the priority 
encoder while it was high had no effect since the signal 
dropped before E560, the processor committed time. If 
an MS access request is present (ACCESS EN is high), the 
Hefresh Request flip-flop remains set past E3 to block all 
outputs from the priority encoder (outputs go high). At 
E560, the Null State flip-flop is set, which sets the Null 
flip-flop at E620 and finally causes ENCLKSM to go low. 
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Table 2-2. Priority Logic Operations 

Scanner (Revok1e Priority) Mode 

1) all processon> requesting (all Busy FF's seit) 

0, 1 f 2, 3, 4, 5, 6, 7 I 0, 1, 2, • o • 

2) processors 0, 1, and 7 requesting 

0,1,7,0,1,7, ... 

clear Busy 7 FF 

0, 1, 0, 1, 0, 1, ..• 

1) Processors 1 through 7 requesting; proce5:sor 0 in enable priority mode 

1, 2, 3, 4, 5, 0, 6, 7' 1, 2, 3, 4, 5, 0, 6, 7 

,...-~ 

PRl-0 Set PRl-0 Set 

2) processors 2 through 7 requesting; proces:sors 0 and 1 in enable priority mode 

2,3,4,5,1,6, 7,2,3,0,4,5,6, 7 

,.--"-\ 
PRl-1 Set PRl-0 Set 

Invoke Priority Mode --------
1) processors 0, 1, and 2 requesting; processor 1 in invoke priority mode 

1, 0, 1, 2, 1, 0, 1, 2, ... 

2) processors 0, 1, 2, and 3 requesting; proc1essors 2 and 3 in invoke priority mode 

2, 3, 2, 3, 2, :3, ... 

Inhibiting this signal sets up the requir·ed null condition 
for the following r:najor cycle by preventing updated µ.I 
addresses from being clocked into S µ,,, The result is to 
prevent execution of a microprogram during the next 
major cycle (N+1) by issuing NOP's from CS. The refresh 
operation, therefore, can be performed during major cycle 
N+1. At E560 of this major cycle, the Null State flip-flop 
is cleared and ENCLKSM goes high. Execution of µl's for 
the processor that would normally have run during time 
slice N+1 will instead be performed during time slice N+2. 

Because priority assigned to a processor depends on many 
different conditions (relative position of processor in 
queue, whether enable or invoke priority control bits are 
set, and so forth), it is useful to present several different 
examples showing how the priority encode logic operates 
under different conditions. These examples are listed in 
Table 2-2. The two examples shown when operating in the 
scanner mode grant time slices to eac:h processor in a 
sequential manner. The sequence is interrupted only when 
a Busy flip-flop is cleared (or set); however, the 
interruption does not alter the cyclic nature of granting 
time slices. The two examples shown when granting in the 
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enable priority mode indicate how a processor can obtain 
an out-of-sequence time slice when its PR 1 signal is active, 
providing that priority is enabled for that processor via 
software. The two examples for the invoke priority mode 
show how processors 2 and 3 can lock out any other 
requesting processors in a lower priority mode, even 
processors 0 and 1, whose relative positions in the queue 
are higher. 

Ti me Slice Control Logic 

Logic to perform the R, E, and W portions of the active 
processor's time slice is shown in Figure 2-20. These 
portions of a time slice are initiated by corresponding 
registers, which are clocked with the encoded processor 
state number at the times necessary to start these 
portions. The Read register, clocked at E560 of the 
previous time slice, initiate signals to read the contents of 
P µ and F for the active processor. (Time E560 is 
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considered to be the processor committE'd time, at which 
time the priority encoder logic is committed to grant a 
time slice to a particular processor. This c:ommittal time is 
fin contrast to any time preceding this point, during which 
the priority logic may change or abort a processor 
request.) These two operations occur during two minor 
cycles, identified as RO and R 1. (Recall that these two 
minor cycles do not exist as such. They occur during E6 
and E7 of the previous time slice.) This is done by routing 
the three READ signals to the ERF group I select logic. 

The Execute register, clocked with thu processor state 
number at EOOO, is used for two purposes: (1) Its 
contents are routed to the execute decoder logic, which 
decodes the processor number in BCD form to set one of 
eight Execute flip-flops. The flip-flop, in turn, generates 
two outputs designated DISPL VS and STATE. Signal 
DISPL VS is used to light the corresponding PROCESSOR 
ACTIVITY DISPLAY indicator on the Panel. Signal 
STATE is used by the Busy register to conditionally set or 
clear a particular Busy flip-flop. In addition, the Execute 
flip-flops associated with processors 0 through 3 generate 
an EXCT signal, which is returned to the corresponding 
1/0 processor as an acknowledge that it is starting a time 
slice. (2) The Execute register contents are also fed to the 
Consecutive Cycle (CC) logic to make the Read register/ 
Execute register comparison required as a prerequisite to 
starting consecutive-cycling. 

The Write register, clocked at E560, initiates the W 
portion of a time slice required to store the next µI in Pµ 
and the M LI presently being executed in F. This is 
accomplished in a manner similar to the Read register, by 
sending WRITE address signals to the EIRF group I select 
~ogic. These signals select Pµ and F associated with the 
active processor for storing the above quantities. 

Time Slicing 

Normal Operation 

Normal time slicing consists of granting time slices to 
processors in order of their priority, as discussed in the 
previous paragraphs. This normal condition is illustrated 
in Figure 2-21, which shows granting of time slices for 
processors 0, 1, and 6. The timing assumes an initial 
starting condition where no processorn were executing 
prior to requests from processors 0, 1, and 6. The first 
time slice, therefore, is set up as a null since processor 0 
(the first processor to be granted a time slice) will not 
begin executing until the following time slice (recall that 
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priority for a particular processor is always determined 
one time slice before the processor begins executing). The 
requests from all three processors set their corresponding 
Biusy flip-flop simultaneously at E080. 

At E160, the Busy flip-flop contents are clocked into 
Resync flip-flops 0, 1, and 6 in the scanner and priority 
laigic. The requests are scanned by the logic, which 
dBtermines that processor 0 will be granted the first time 
slice. The processor number is sent to the Read register at 
E560 in preparation for initiating the RO and R 1 cycles of 
processor O's time slice. These cycles read the address of 
the first µI to be executed during the time slice from Pµ 
and the MLI, of which the µI is a part, from FRF· At 
E600, the Resync flip-flop for processor 0 is cleared to 
re1move this processor from the job queue (since its 
rnquest for a time slice has been honored). Clearing of the 
Resync flip-flop at this time is a reflexive action and 
o~curs during E6 of every time slice, as shown in Figures 
2··21 and 2-22. The State 0 flip-flop is set at EOOO. At the 
same time, the processor number in the Read register is 
transferred to the Execute register. At this point, the 
e:icecute time slice for processor 0 begins. 

P1rocessor 0 reads the first µI from CS at the address 
specified by (Sµ) during EO, and executes this µI at EO 
and the beginning of E1. At E160 of the processor 0 
execute time slice, the Resync flip-flops of the scanner 
aind priority logic are again scanned to note that pro­
ciessors 1 and 6 are still waiting for time slices. The prior­
ity encoder determines that processor 1 will get the next 
time slice and at E560, the encoded processor number is 
clocked into the Read register. At this time also, the 
encoded number for processor 0 is clocked into the Write 
rngister from the Execute register to initiate the WO and 
W2 cycles for processor 0. During these cycles, the address 
of the first µI to be executed during the next time slice 
assigned to processor 0 is transferred from Pb or Pp to Sµ 
and the MLI currently being executed is stored into FRF· 
From this point on, processors 1 and 6 time slices are 
handled in exactly the same way as for processor 0, as will 
tiime slices for all subsequent processors that may enter 
the queue. During normal operation, therefore, the only 
difference in granting time slices to a requesting processor 
is the processor number, which determines its position in 
tlhe job queue. 

Consecutive Cycle Operation 

Consecutive cycle (CC) operation is a means of increasing 
processing efficiency when only one processor is 
requesting time slices. During normal operation, one 
processor requesting time slices can execute only during 
every other time slice. The reason is due to the overlap of 
n and W cycles of successive time slices, as shown in 
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Figure 2-23. Assume that processor 0 is the only processor 
requesting time slices. Upon completion of the last µ) at 
E7, it stores the address of the first µI to be executed 
during its next assigned time slice in Pµ during WO and the 
present MU in FRF during W1. If another processor was 
requesting time slices, it would have already read its 
starting µI address and M LI from Pµ and FR F cycles 
before, during the RO and R 1 cycles of the next assigned 
time slice. Since only one processor ijs requesting, it 
cannot retrieve this information until tlhe following RO 
and R 1 cycles. Therefore, the time slice following the one 
that processor 0 was assigned must be nulled out. This 
null is implemented by issuing NOP's from CS. The result 
is only a 50% utilization of shared resources (only every 
other time slice can be used) when only one processor is 
requesting. 

Timing for one processor requesting a time slice and not 
enabled; for CC generation is shown in Figure 2-24. The 
first time slice is a null to allow priority to set up 
conditions so that processor 0 can execute during the next 
time slice. During the next time slice, processor 0 executes 
the µ I's while priority determines if there are any other 
processors requesting time slices. Since there are no 
others, it prepares to grant a second time slice to 
processor 0 by clocking processor number 0 into the 
execute register a second time. Prior to beginning this 
second time slice, however, the processor is interrogated 
to see whether it has been enabled for CC operation. The 
CC mode of operation depends on two conditions being 
present: ( 1 ) no other processor is requesting ti me slices, 
and (2) the CC bit in the Control Register corresponding 
to the single processor is set. lnterrogatirng for these two 
conditions is performed by the logic of Figure 2-25. This 
logic checks for the first condition by comparing the 
contents of the Read and Execute registers of the time 
slice control logic at E6 for equality. During normal 
operation (more than one processor requesting), the 
contents of these registers will not be the same at E6 since 
the Read register will already have been loaded with the 
number of the next processor in the queue. During CC 
operation, however, only one processor is in the queue so 
the Read register contents will not have been changed. 
The second condition is checked by the CC Clear flip-flop, 
which sets by ANDing the processor number in the Read 
register with the corresponding CC bit in the Control 
register. If both conditions are present, s;ignal RD=EXEC 
is generated. A second signal, CC-El\JABLE is also 
generated. This signal indicates only that the processor is 
enabled for CC and not necessarily that it is the only one 
in the queue. For this present example, CC-ENABLE is 
high si nee processor 0 is not enabled for CC. The signal 
generates ABANDCC at E640, which sets the Null 
flip-flop in the priority logic. Setting this flip-flop blocks 
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accesses to CS for all of the next time slices, which sets up 
the required null time slice. 

Enabling a single processor to operate in the CC mode is 
accomplished by three operations: ( 1) At the end of the 
time slice, Sµ is loaded with the contents of Pp instead of 
Pp,. Since Pp contains the starting µI address for the 
present processor, assuming that it could not get another 
time slice until some later time, the processor can resume 
e:l{ecution during the following time slice at the same 
point that it left off during the present time slice. Reading 
this starting µI address from Pp and the resultant µI from 
CS is performed during two extra minor cycles inserted 
between E7 of the present time slice and EO of the 
following time slice, designated ES and E9. During EB, the 
contents of Pp are routed back to Sµ. During E9, theµ I 
located in CS at the address contained in Sµ is read for 
e:l{ecution during the following EO. (2) T~e read Pµ and F 
operation associated with the R portion of the following 
time slice is inhibited, to prevent reading the sta.rting µI 
address and M LI read by the same processor at the 
beginning of the present time slice. This is done by 
inhibiting selection of the Group I ER F containing Pµ and 
FRF· (3) Sµ is blocked during E6 and E7 and Fµ is 
blocked during ES and E9. These blocks are necessary to 
prevent erroneous µI addresses from making CS references 
prior to the correct starting µI address being loaded into 
Sµ at ES. The sequence of events for implementing these 
operations is described in the following paragraphs. 

,Ll\ssume now that processor 0 is the only processor 
mquesting time slices and is also enabled for CC. Timing 
for this example is shown in Figure 2-26. Like Figure 
2-24, it is assumed that no processor was executing before 
a request was made by processor 0 for time slices. 
Therefore, the first time slice shown is a null. The 
S4~quence of events during this null time slice is the same 
as that for Figure 2-23. At EO of the next time slice, the 
CC Clear flip-flop is set. Essentially, this flip-flop is used 
to get out of the CC mode when the CC bit in the Control 
n::?gister is cleared. Therefore, it is set when the processor 
enters the CC mode and remains set until the CC bit is 
cleared. When set, the CC-CLEAR output from the clear 
siide goes low, as shown in Figure 2-25. Since this flip-flop 
is clocked at E060 of every time slice, it also serves the 
purpose of snapshotting the CC bit every time slice. This 
is the only time during a time slice that the CC bit is 
srnapshotted and commits the time slice to react 
accordingly. In other words, even if the CC bit was to be 
cleared before the end of the time slice, the time slice 
would be committed to the CC mode even if not really 
necessary. 

At E6, the Null flip-flop is set and the CC flip-flop, which 
is normally set if not in the CC mode, is cleared. Logic for 
these flip-flops and associated logic generating other 
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signals necessary for CC generation is shown in Figure 
2-27. Corresponding timing for these signals is shown in 
Figure 2-2B. The two flip-flops are set and cleared, 
respectively, at E620 upon occurrence of a low 
RD=EXEC signal. (Recall from Figure 2-24 that this signal 
will be low for a single processor enabled for CC.) 

Setting the Null flip-flop generates BLOCKS, which 
blocks clocking of Sµat E680 and E780. The clear side of 
this flip-flop is also used to set the Null· .... CS flip-flop, 
which generates NULL-CS. This signal is sent to CS to 
effectively shut off CS during EB and E9. The result is to 
clock "O's" into Fµ at EBOO and E900. Clearing the CC 
flip-flop generates the following four signals which 
perform the indicated operations: (1) Signal SELPMORF is 
driven high to inhibit selection of the IC element 
containing Pµ and FRF in the ERF. Since the same 
processor is executing, nothing is needed for another 
processor from the ER F. (2) Signal CONCYCLE is 
generated to hold SELFH/PL low. This is done for the 
special case when a CIO µI is executed in CC as part of an 
1/0 data transfer loop, and the condition for exiting from 
the loop is met. For this situation, the address of the next 
µI is put into Pµ as part of the µI execution. Therefore, it 
must be loaded into Sµ from Pµ. This is accomplished by 
signal CIOEXIT in Figure 2-27. If the exit condition is 
met, CIOEXIT drives SELPMORF low to enable selection 
of Pµ by SELFH/PL to load Sµ. (3) Signal CC-F/F is 
generated to prevent the excursions counter from 
recycling back to EO after generating E7. The result is to 
add minor cycles EB and E9 to the timing chain. (4) 
Signal ENPP-SM is generated to enable gating the 
contents of Pp, containing the startingµ I address of the 
next time slice back to Sµ,. This address gating takes place 
during EB. At this point, processor 0 can begin executing 
another time slice. Successive time slices will be executed 
in exactly the same manner until a condition arises to 
remove the processor from the CC mode. These 
conditions are (1) the processor's CC bit is cleared, (2) 
another processor requests time slices, or (3) the 
processor's Busy flip-flop is cleared. 

Removing a single processor from the CC mode by 
clearing the CC bit position is accomplished by the CC 
Clear flip-flop, the same as for a single processor which 
began executing with its CC bit initially cleared. At E640, 
the evaluation is made to determine if the CC bit of a 
single processor is still set. If not, the Read Null flip-flop 
of the RAN is set via ABANDCC to null out the following 
time slice. A special case is stopping the CC-enabled 
processor completely because its Busy flip-flop is cleared. 
Clearing the Busy flip-flop indicates that the task 
performed by the processor is completed. Stopping the 
processor is done by means of ABANDCC, as shown in 
Figure 2-25. Clearing the Busy flip-flop, however, is done 
at E7 which occurs after ABANDCC will have been 
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generated by the CC-ENABLE signal. For this case, 
therefore, ABANDCC is generated at E840 by BUSY, 
which indicates that the present processor has completed 
its task. Generating ABANDCC in this manner prevents 
the processor from being trapped in a condition in which 
it could not turn itself off. The result is to generate a null 
during the following time slice to allow the next processor 
in the queue (if any) to read up its starting µI address. The 
processor whose Busy flip-flop has cleared is removed 
from the queue by clearing its Resync flip-flop in the 
priority logic at the next E 1, as shown in Figure 2-22. 

A request from a second processor for time slices removes 
the single processor enabled for CC from the CC mode by 
preventing RD=EXEC from being generated. This prevents 
thu Null and CC flip-flop from being set, which inhibits 
thu associated CC mode signals. A special situation arises, 
however, when the second processor is of lower priority 
than the one enabled for CC. Under this condition, the 
processor enabled for CC will run for one additional time 
slice after the lower priority processor enters the queue. 
The reason is that the CC snapshot logic will have 
determined that the processor enabled for CC should 
execute in the CC mode before the scanner and priority 
logic recognizes that another processor has entered the 
queue. This situation is shown in the timing of Figure 
2-29. Assume that initially, only processor 0 is requesting. 
The first time slice is a null to set up processor 0, enabled 
for CC operation, to run during the next time slice. 
During this next time slice, processor 6, not enabled for 
CC, enters the queue at E160. At E050, however, the CC 
snapshot logic has already determined that processor 0 
will run in the CC mode for the present time slice. One 
minor cycle later, at E160, the scanner and priority logic 
determines that both processor 0 and 6 are in the queue. 
Since this determination is not made until after the CC 
snapshot decided that processor 0 could run in the CC 
mode (only processor in queue and CC bit set), the logic 
assumes that both processors 0 and 6 have just entered the 
quEiue and are to be granted priority. In accordance with 
these processor numbers, the result is that processor 0 is 
granted a second time slice solely on the basis of its 
position in the queue. After completion of this time slice, 
the CC snapshot logic is disabled and priority is granted in 
the normal manner so that processors 0 and 6 get 
alternate time slices. (The above sequence of events is 
modified somewhat if the processor running in CC is also 
in the invoke priority mode. Under these circumstances, 
the· RAN will prevent the second processor from entering 
the queue even for alternate time slice. This level of prior­
ity - CC mode and invoke priority mode - is the highest 
lev13I of priority available to a processor and assures that 
any of processors 0 through 3 in this mode will absolutely 
lock out the other three processors for as long as the 
present processor is in this mode.) 
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As discussed previously, the Resync flip-flop for a 
processor granted a time slice is normally cleared at E6 to 
remove the processor from the queue. The flip-flop stays 
cleared until all lower-numbered processors in the queue 
are serviced. One exception to clearing the Resync 
flip-flop at E6 is the case of a processor whose Busy 
flip-flop was cleared at E7. In this case, the Resync 
flip-flop is cleared at the next E 1. A second exception is 
the case of two or more processors in the queue, one of 
which is in the priority mode. For this situation, the 
Resync flip-flop of the processor enabled for priority 
must be cleared prior to E560 to avoid locking out all 
processors not enabled for priority. Timing for this 
condition is shown in Figure 2-30. Assume that processors 
0 and 6 are in the queue and processor 0 is in the priority 
mode (Priority flip-flop set). At E160 of the null time 
slice, the Resync flip-flop for processor 0 is set to initiate 
the execute time slice. Because processor 0 is in a priority 
condition, its Resync flip-flop is set again at the next 
E160. This second resync request must be cleared before 
E560 to avoid generating ABANDCC because both Read 
and Execute registers contain the same processor number 
(0). If ABANDCC were to be generated in this manner, it 
would simulate the same condition as a single processor 
requesting, not enabled for CC, by generating a null 
during the next time slice. The effect would be to lock 
out all requests for these processors in the queue not in a 
priority condition. This effect is inhibited by clearing the 
Resync flip-flop for processor 0 at E3 via CLR R ESYNC, 
as shown in Figure 2-22. The signal is generated by 
CC-CLEAR, indicating the processor is not enabled for 
CC, and ENCLR PRI. Signal ENCLR PRI, in turn, is 
generated if the present processor executing (EXCTING 
PROC # ) is in a priority condition (PRIORITY FF). 
Signal EXCTING PROC # obtained from the execute 
decoder of the scanner and priority logic and PRIORITY 
FF is obtained from the corresponding processor Priority 
flip-flop. 

CONTROL 

The following paragraphs discuss various control circuits 
that are directly related to, but do not logically fit into 
other sections of the shared resources information. These 
are: skip control, branch control, cycle delay logic, and 
system reset logic. The skip control logic evaluates skip 
conditions and implements the skip operation for the 
eight skip µl's, identified as the 5,X,X µl's. Four of the 
eight skips (5,X,O µl's) enable a skip depending on the 
results of an operand in Aµ. The other four skips (5,X, 1 
µl's) effect a skip depending on the results of a compare 
between Aµ and Bµ. The branch control logic specifically 
deals with generating a final branch address for the FNJ, 
FRJ, FZJ, RNI, and JMP µl's. These branch µl's form 
their address from the contents of Sµ and a partial branch 
address formed by branch address translation peculiar to 
each branch µI. In addition, this logic implements the 
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branch-to-next-CS module anomaly associated with all 
branch µl's. 

The cycle delay logic is used to delay execution of a SUM, 
DSUM, CMP, or CMU (2,X) µI for one minor cycle if 
programmed immediately following any µI that feeds data 
into either Aµ or Bµ. Data loaded into Aµ or Bµ by such a 
µI takes almost one cycle to propagate through the ALU'. 

Therefore, the results of such a µI are not available for the 
2,X µI to process until one minor cycle after the µI that 
loaded Aµ or Bµ. The system reset logic performs a 
System Reset on the system initiated by a power-on 
condition, performing a Reset/Load or Autoload 
operation, or pressing the SYSTEM RESET pushbutton 
on the System Control Panel. 

Skip Control 

A simplified diagram of the skip control logic is shown in 
Figure 2-31. The results of the Aµ/Bµ compares made in 
the ALU are fed to the skip evaluation logic. This logic 
combines the Aµ/Bµ compare results with the skip µI 
sub-operation codes (bit positions So and S1) to 
determine if the skip condition defined for the skip ul 
was met. The skip evaluation logic is enabled by the Not 
Skip flip-flop. This flip-flop is normally in a set condition 
to block the µI following the skip µI from being clocked 
into F µ if the skip condition is met. This action 
essentially skips the next µI by setting up a null condition 
for the next minor cycle. The flip-flop is cleared for 100 
nsec during the skipped µI minor cycle, however, to 
enable the µI following the skipped µI to be clocked into 
Fµ. Timing for this sequence of events is shown in Figure 
2-32. This figure shows the skip µI (NI) being skipped 
during E3, and the µI following NI (Nl+1) being executed 
at E4. The flip-flop is cleared by SKIP from the skip 
generate logic as a result of a low output from the skip 
evaluate logic and the rest of the skip µI operation code 
bits (5, X, 0 or 5, X, 1). These outputs are also sent to the 
clock Fµ logic to inhibit ENCLKFM at the start of E3. At 
the end of E3, the Not Skip flip-flop is set again which 
disables the skip evaluate logic. This allows the Nl+1 µI 
to be clocked into Fµ for translation and subsequent 
execution. 

Execution of a skip µI at E7 differs from execution at EO 
through E6 because the following µI to be skipped will 
not appear until the next assigned time slice. If the 
processor is not operating in the Consecutive Cycle (CC) 
mode, this next time slice will not be granted until several 
other processors have been allocated their requested time 
slices. It is necessary, therefore, to store away skip status 
information in a register until the next assigned time slice. 
This is done by routing SKIP from the skip generate logic 
to the Skip Status flip-flop, which is set at EOOO. The out­
put of this flip-flop, in turn, is stored in the Skip Status 
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register during WO. This register is addressed and written 
into by the same signals that store the starting µI address 
in Pµ, via the ERFG1, SELFH/PL, and EFIRH/WL sig­
nals. Timing for this skip status write operation is shown 
in part a of Figure 2-33. During RO of the next time slice, 
the skip status information is read ,from the register and 
routed to the Null CS flip-flop which, in turn, is set by 
skip status at E680. This flip-flop is used to skip the NI µI 
at EO by preventing it from being read from CS. (This µI 
skip differs from the case discussed in the previous para­
graphs in that the abort can be effected before the µI is 
even read from CS. For the previous case, the µI to be 
skipped had already been read from CS before the skip 
evaluation logic detected that a skip should be made.) If 
the skip µI is executed at E7 by a processor running in the 
CC mode, it is not necessary to store skip status informa­
tion since the next time slice assigned to the processor will 
follow the present time slice. Timing for this situation is 
shown in part b of Figure 2-33. Signal SKIP is generated 
as before to set the Skip Status flip-flop. Since EO of the 
next ti me slice must be delayed two minor cycles when 
operating in the CC mode to accommodate EB and E9, 
the Skip flip-flop is set for this case at E800. The 
Null ... CS flip-flop is set, in turn, at E880 to block reading 
of NI from CS during E9. 

NULL 

(0) 

Pµ FRF 

Branch Control 
The branch control logic operates on two classes of partial 
branch* µl's: the FNJ, FRJ, FZJ, RNI µl's and the JMP 
µI. The main difference between the two classes of µl's is 
how much of Sµ is used to form the branch address. The 
first class of partial branches uses only bits 2 and 3 of Sµ 
with bits 4 through 15 derived from a corresponding jump 
address generated by the particular µI. The JMP µI uses 
bits 2 through 7 of Sµ with bits 8 through 15 generated 
by the JMP µI. In both cases, the S µ bits are under 
hardware control as opposed toµ I control. Furthermore, 
the branch control logic determines how the branch 
address will be used to form a starting µI address (since 
all branch µl's are blockpoint µl's). Specifically, this 
means using either Pp as a holding register if the branch 
µI is executed during EO through E6, or Pp if the µI is 
executed at E7. Depending on whether P0 or Pb is used as 
a holding register, the branch-to-next-CS storing unit* 
anomaly may result. This anomaly causes the oranch to 

*Partial branch µI's are so identified because, at the most, they 
replace only 14 of the 16 address bits in Sµ (bits 0 and 1 are not 

. changed). This is in contrast to the full branch µl's (CLR, STA, 
STB, and AND when X designates Pµ). This group of µl's replaces 
all 16 bits of Sµ when the X designator of these µl's specifies Pµ 
since Sµ is in the same path. 
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take place within the same 4096-word unit in which the 
branch µI is located, except for the following two cases in 
which case the branch is made to the following unit: (1) If 
the branch µI occupies the last location of a unit, or (2) If 
the branch µI occupies the next-to-last location of a unit 
and is executed at any time other than E6 or E7. 

In addition to the above anomaly, the JMP µI has a 
second anomaly associated with it that allows a branch to 
the next 256-word page within a unit: (1) If the JMP µI 
occupies the last location of a page, or (2) If the JMP µI 
occupies the last location of a page and is executed at any 
time other than E6 or E7. 

It should be noted that normal implemenation of the par­
tial branch µl's do not make use of these anomalous char­
acteristics. The anomalies "fall out" of the hardware 
design by default rather than by intent. 

Generation of the branch address for the first class of 
branch µl's is illustrated in Figures 2-34, 2-35, and 2-36 
using the FNJ µI as an example. These three figures show 
execution of the FNJ µI at E4, E6, and E7, respectively. 
As will be seen, the branch address and starting µI address 
formed will differ according to the time that the µI is 
executed. For all three examples, the FNJ µI is assumed 
to be located in the next to last address (FFE) of 
4096-word CS unit 0. Referring to Figure 2-34, the 
address of the FNJ µI to be executed at E4 is clocked in 
Sµ at E280 and the JLI read from CS during E3. At E380, 
Sµ is clocked with address OFFF (OFFE+1). Bits 2 and 3 
of this updated address, in turn, are clocked into Pp at 
E480 to form bits 2 and 3 of the starting µI address. 
These two bits are enabled to Pp by E7, indicating the 
enable is active during every minor cycle except E7. Bits 2 
and 3 also clocked into Sµ at E480, but after being 
updated a second time to form address 1 NNN. This 
indicates that the resultant jump will be made to some 
address in module 1. What has been clocked into Pp, 
however, is address ONNN meaning that for blockpoint 
purposes the resultant jump will be made to the same 
address as in Sµ but in unit 0. Bits 4 through 15 of the 
jump address are formed by a translation of bits from 
both the FNJ µI and the M LI in the F register as discussed 
in the paragraph titled Jump Decode. These twelve bits 
are clocked into both Pp and Sµ by the enable shown in 
Figure 2-34. Note that these enables clock the jump 
address in two parts: bits 4 through 7 and bits 8 through 
15. The µI normally executed at E5 is inhibited by block­
ing it from going into Fµ. Instead, the µI at jump address 
1 NNN is read and then executed at E6. 

*CS storage units are 4096-word portions of CS located on bound­
aries of 010 (000016), 409610 (100016), 819210 (2000

16
). and 

so forth. 

Execution of the FNJ µI at E6 and E7, shown in Figures 
2-35 and 2-36, differs from that executed at E4 in that 
the µI to which the jump is made is not executed until the 
next time slice. In Figure 2-35, the jump will be to address 
NNN in the same unit since the address clocked into Pp 
does not get updated a second time by the Sµ+1 logic. At 
E680, instead, the starting µI address for the following 
time slice (XXXX) is gated into Sµ. This µI is then exe­
cuted at EO of the next time slice. Figure 2-36, is similar 
to Figure 2-35 except that bits 2 and 3 cannot be routed 
into Sµ even after the first Sµ+1 update. Therefore, they 
are routed to Pb along with bits 4 through 1 5. At E780, 
they are clocked into Pp along with the rest of the jump 
address from the FNJ translation logic. Note that bits 2 
and 3 are enabled from Pb specifically at E7, in contrast 
to the two preceding examples where the bits were 
enabled from Sµ by E7. 

In contrast to the preceding class of branch µl's, the JMP 
µI not only can jump to the next unit but also to the next 
256-word page within a unit if located at address FFE and 
executed at any time other than E6 or E7. This condition 
arises from the fact that a JMP µI jump address is formed 
using bits 2 through 7 of Sµ instead of just bits 2 and 3. 
Therefore, the page address (bits 4 through 7) can be up­
dated by the Sµ + 1 logic as well as the unit address. This 
page updating facility is shown in Figures 2-37 and 2-38, 
which illustrate execution of the JMP µ I at E4 and E7, 
respectively. Both examples assume the JMP µI is located 
in address OOFE, the second to the last address of CS page 
0. Execution of the JMP µI at E4 is similar to that of the 
FNJ µI at E4, except that only bits 8 through 15 of Pp 
and Sµ are loaded with the translated jump address from 
the JMP µI. Bits 2 through 7 of Pp are loaded with the 
bits 2 through 7 of the JMP µI address updated once by 
thn Sµ+1 logic (OOFE+1=00FF). Since only one update of 
this address is not sufficient to advance to the next page, 
thn address in Pp causes a jump to address NN in the same 
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Figure 2-34. FNJ Li.I at Location ~FE, E.xecuted at E4 
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page (page 0). The resultant jump address. in Sµ, however, 
represents bits 2 through 7 after having been updated 
twice by the Sµ+1 (OOFE+2=0100). This causes a jump to 
address NN in the next page (page 1 ). The JMP µI exec­
uted at E7 is similar to the FNJ µI executed at E7 in that 
Pb must be used to hold the updated bits 2 through 7 
from Sµ. Since these bits can be updated only once, the 
jump is confined to the same CS page. 

Cycle Delay Logic 

The cycle delay logic is shown in Figure :2-39. Essentially, 
the logic consists of the Cycle Delay flip-flop, which is set 
at tOO for 100 nanoseconds by any µI that feeds Aµ. 
and/or Bµ. These µl's are the Load S (3,X), Load Bµ 
(6,X), EBU and EBL (A and B), D-A (C,X), Load Aµ 
(D,X), and the Sense (E,X, 1) µl's. Setting this flip-flop 
generates 1 ST CYCLE from the set side and 2ND CYCLE 
from the clear side. As shown in the timing of Figure 
2-40, signal 1 ST CYCLE rematns high for 100 
nanoseconds followed by 2ND CYCLE, which goes high 
after 100 nanoseconds. This figure shows two examples of 
a 2,X µI (a SUM µI) following a load Ap. µI (a LAW µI). 
Part a of the figure shows the SUM µI immediately 
following the LAW µI; part b shows the SUM µI separated 
from the LAW by a non-load Aµ/Bµ µI (a LOW µI). As 
shown in both examples, the Cycle Delay flip-flop is set at 
E100 and remains set while the operand loaded in Aµ 
propagates through the ALU. In part a enable RF-WR 
used to write the sum of Aµ and Bµ into register X (that 
is, the register selected by the µI X-field) is inhibited by 
the high 1 ST CYCLE signal during E1. This signal goes 
llow at E200 to allow the sum to be writt•en into register X 
during E2. Since the SUMµ I has overlapped into E2, it is 
necessary to delay all following µl's on 1the time slice for 
one minor cycle. This is done by routing 1ST CYCLE to a 
NOR gate, which blocks ENCLKSM for one minor cycle, 
and to an AND gate, which generates BLKFM for one 
minor cycle. These inhibit conditions prevent the NI µI 
from being clocked into Fµ and the address for the Nl+1 
gl from being clocked into Sµ for one minor cycle. Signal 
E671 DL inhibits the Cycle Delay flip-flop from blocking 
Sµ at either E6 or E7 to allow the starting µI address for 
the following time slice to be clocked into Sµ. Part b of 
the figure shows the Cycle Delay flip-flClp being set again 
at E100 to block RF-WR. This time, however, a LOW µI is 
being executed during E1. Since the LOW µI does not 
feed data into Aµ or Bµ, the operand in Aµ is able to 
propagate freely through the ALU. At E2, the SUM µI is 
executed to store the resultant sum of Aµ and Bµ. at 
E250. For this case, then, the SUM takE~s only one minor 
cycle to execute. 

2-47 

System Reset Logic 

The system can be reset to an initial condition (master 
cle!ared) in one of four ways: from a power-on condition, 
prnssing the SYSTEM RESET pushbutton on the System 
Cointrol Panel, initiating a Reset/Load operation by 
pmssing the RESET LOAD pushbutton on the Panel, or 
i ni.tiating an Autoload operation by pressing the 
AUTOLOAD pushbutton on the Panel. When initiated in 
one of the ways described above, the system reset 
sequence performs the following operations: 

1. The output of the ALU is cleared. 

2. The eight P µ registers within the Extended 
Register File, Group I, are cleared. 

3. The Busy/Active, Tie-Breaker, Control, Privileged 
Mode, Boundary-Crossing, CS Scan, Panel 
Address, and Panel Data registers within the 
Extended Register File, Group 11 are cleared. 

4. The Aµ, Bµ, D and Forced Carry registers within 
the ALU are cleared. 

5. A clear signal is transmitted to the Extended 
Register File, Group Ill. (For the effects of this 
signal within the integrated adapters, see the 
appropriate 1/0 processor document.) 

6. The Resource Allocation Network (RAN) is 
forced to issue Null cycles only. 

7 · The gray code counter is forced to issue ten 
minor cycles per major cycle. 

8. The Sµ, Fµ-1, and Fµ-2 registers are cleared. 

9. The RTC increment pulses are disabled at the set 
input of the Busy flip-flop for processor state 4, 
(Bit position 04 of the Busy/Active register). 

10. The logical inter-lock which is set by a 
breakpoint stop operation with processor state 4 
(and when set, disables the output of the Busy 
flip-flop for processor state 4 from appearing at 
the input of the RAN) is cleared. 

11. In the presence of the Register Option (RO) 
Relocation and Protection feature, the 
Addressing Mode register is cleared. 

The system reset sequence lasts 0.4 to 0.6 milliseconds if 
initiated from a Reset/Load or Autoload operation, as 
long as the pushbutton is held pressed if initiated from the 
SYSTEM RESET pushbutton, or until the POWER ON 
indicator lights if initiated by a power-on condition. 
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Figure 2-39. Cycle Delay Logic 

A block diagram of the system reset logic is shown in 
Figure 2-41. Depending on how the system reset sequence 
is initiated, one of three signals will be generated: 
SW-AUTO if initiated by an Autoload operation, MC-LO 
if initiated by either a power-on condition or a 
Reset/Load operation, or SW-MC if initiated from the 
SYSTEM RESET pushbutton. The SW-AUTO and SW-MC 
signals are fed through flip-flops to eliminate switch 
bounce. The resultant three signals are then fed to a NOR 
gate, which feeds two one-shots to generate system reset 
signals MC-ALU, MC-10, MC-1, MC-2, and MC-3. 

The MC-ALU signal is fed to the ALU enable logic to 
generate SEL-ZR-0 and SEL-ZR-1. These select signals, in 
turn, are fed to the ALU fan-in to effectively gate an 
output of all "O's" on the 16 lines from the ALU. These 
"O's" are then routed to the Group II registers of the ER F 
and to the Sµ register, where they are clocked into the 
registers to clear them. The clock and clock enable signals 
for the ERF Group II registers are generated by MC-1, and 
the clock enable signal for the S register by MC-2. The 
Aµ, Bµ, Fµ, D, and Fµ-1 and Fµ-2 registers are also 
cleared by means of MC-1. These registers, however, differ 
from the ER F Group 11 and Sµ register in that they can be 
cleared directly by a forced clear input to each register 
stage flip-flop. Clearing these registers is accomplished by 
clear signals CLRFM, ENRDR, ENRAM, and ENRBM. 
The Force Carry register is cleared in a similar manner. 

The gray code counter is forced to issue a count of ten 
minor cycles (EO to E9) by simulating a Consecutive 
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Cycle (CC) condition. This is done by combining MC-2 
with STATEN from the Null flip-flop (which will be set 
during a system reset condition) to clear the Consecutive 
Cycle flip-flop. The high output from the clear side 
(CC-F /F) is sent to the counter, which interprets the 
signal as a request for CC operation. The result is to 
enable the ES and E9 stages of the counter to generate the 
ten minor cycles. 

The Pµ registers associated with all eight processor states 
are cleared by MC-3, which travels through three stages of 
inversion to generate SELFH/PL and EF1 RF/WL. Both of 
these signals are low; therefore, Pµ is selected to be 
written. Since there is no data on the lines which fed Pµ, 
the registers are filled with "O's". Each of the eight 
registers is selected in sequence by MC-2, which is 
combined with E timing pulses from the gray code 
counter to generate the three Pµ select signals (ERFG1) in 
a cyclic manner. 

The RAN is forced to issue null cyclic by means of MC-4, 
which sets the Null State flip-flop in the RAN. Setting this 
flip-flop, in turn, sets the Null flip-flop which sets up the 
null conditions (block clocking of Sµ and inhibit accesses 
to CS). 

If the Relocation and Protection feature of the RO is 
present, the Addressing Mode register is cleared by MC-3. 
This signal generates register write enables ADDWR-0 and 
ADDWR-1 in combination with timing pulse E5 to write 
"O's" into the register. 
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The RTC increment pulses used to set the Busy flip-flop 
associated with processor state 4 in the B/ A register are 
prevented from doing so during a system reset condition 
by clearing the Request 4 flip-flop. This flip-flop is set 
during an autoload sequence to give control of the 
autoload routine to processor state 4 by setting the Busy 
4 flip-flop on the B/A register via R E0-4. During a system 
reset, however, the flip-flop is cleared to prevent the Busy 
4 flip-flop in the B/A register from being set by RE0-4 
until completion of the system reset sequence. 

Idle and Resync Conditions 

Several of the µl's require either idling through the minor 
cycle following their execution, or through the rest of the 
time slice so that the next µ.I is executed at EO. Micro 
instructions which fall into the former category are the 
FNJ; JMP; and CLR, STA, STB and AND if X specifies 
Pµ. These µl's cause either a partial branch (FNJ and JMP 

l's) or a full branch (CLR, STA, STB, and AND if X 
specifies Pµ) to a new µI address. The µI located in CS at 
this new address is read during the minor cycle following 
the one in which the branch µI was executed. Since this 
following minor cycle would normally have been used to 
execute the µI following the branch µI if the branch had 
not taken place, clocking this following µI into Fµ must 
be inhibited since the branch did take place. This inhibit 
operation is provided by generating BLOCKFM for one 
minor cycle. 

Logic for generating BLOCKFM is shown in Figure 2-42. 
Operation code translation signals for the partial and full 
jump µl's are fed to gates 1, 2, and 3. During the execute 
minor cycle of these µl's, enable signal IDLE-F/F is high. 
The result is to generate BLOCKFM for one minor cycle, 
which inhibits ENCL KFM. Timing for signal BLOCKFM, 
as well as other signals associated with the idle operation, 
is shown in part a of Figure 2-43. (This figure assumes 
execution of the branch µI at EO; however, the relative 
times shown are the same if the µI 1is executed at any 
minor cycle EO through E6.) Simultaneous with 
generating BLOCKFM, signal IDLE is also generated by 
the same translation signals via gates 4, 5, and 6. Signal 
IDLE sets the Idle flip-flop by means of gate 7 at E100 
(first TXOO after IDLE if not E7), causing iDLE-F/F to go 
low. As a consequence, gates 1, 2, and 3 are disabled 
which drops BLOCKFM and, in turn, causes ENCLKFM 
to go high again. Dropping BLOCKFM after one minor 
cycle is necessary so that the µI read from the branch 
address, and all subsequent µl's, can be clocked in Fµ. 
Signal IDLE remains high through El, however, since no 
new µI was loaded into Fµ at E100 due to Fµ being 
blocked. If an FNJ or JMP µI is being executed, Pp must 
be inhibited from being updated by the branch address +1 
since the starting µI address formed by an FNJ or JMP µI 
is the branch address itself. This is accomplished by 
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inhibiting ENCLKPP at El via gate 8 for an FNJ µI and 
via gate 9 for a JMP µI. This action retains the branch 
address clocked into Pp at EO as the starting µI address. 
At E200, the Idle flip-flop is cleared due to the low on the 
flip-flop clear output fed back to gate 10. The result is to 
cause both IDLE-F/F and ENCLKPP to go high once 
again. 

As can be seen from Figure 2-43, branch µl's executed at 
EO through E6 take 200 nanoseconds to execute: 100 
nanoseconds to form the branch address and 100 
nanoseconds to read the µI from CS at the location 
specified by the branch address. If the branch µI is 
executed at E7, however, the total execution time is only 
100 nanoseconds, since the µ I specified by the branch 
address will not be read out until RO of the next time slice 
assigned to the processor. In this respect, then, the branch 
µI acts like an ordinary blockpoint µI and blocking of Fµ 
is not required. In fact, Fµ must be clocked at EO to 
enable the first µI of the next time slice to be executed. 
This is accomplished by nullifying the effect of 
BLOCKFM by E0/8XX-E, which forces ENCLKFM high 
at E750. During EO of the next time slice, BLOCKFM 
goes low when the first µI of the next time slice is loaded 
into Fµ. 

In contrast to the branch µl's, which require idling 
through just one minor cycle, the FRJ, RNI 1, RNl2, 
CIOI, CI02, ROM, SYNC, and FZJ (if Aµ is O) µl's 
result in an idle through the remainder of the time slice so 
that the next µI is not executed until the next EO. These 
µl's are called resync µl's, because they resynchronize µI 
execution back to EO. These µI's achieve resynchroniza­
tion by blocking Fµ for the remainder of the time slice via 
gates 10, 11, and 12 of Figure 2-42. These gates do not 
have to be enabled by IDLE-F/F as do those for the par­
tial branch µl's since BLOCKFM will remain high through 
EO of the next time slice. As for the branch µl's, however, 
the effect of BLOCKFM is negated at EO by the action of 
E0/8XX-E to force ENCLKFM at E650. Timing of 
BLOCKFM for a resync µI is shown in part b of Figure 
2-4:3. One minor cycle later, the Idle flip-flop is set via 
gates 13, 14, and 15 for the purpose of inhibiting 
ENCLKPP. For resync, clocking of Pp must be inhibited 
after the minor cycle in which the resync µI is executed to 
avoid continuously updating Pp by every update of Sµ 
throughout the remainder of the time slice. At the end of 
the time slice the Idle flip-flop is cleared and ENCLKPP is 
allowed to go high updating Pp as required during the 
next time slice. 

CONTROL STORAGE 

The Control Storage (CS) section is an alterable 14-bit, 
word-oriented solid-state memory capable of storing 5120 
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words (basic size). The CS stores all µI's used by the pro­
cessing unit. These µl's execute MLl's under program con­
trol and perform functions initiated by the System Con­
trol Panel and peripheral devices such as Reset/Load and 
Auto Load. The CS also stores verification and diagnostic 
routines used during checkout and maintenance 
operations. A block diagram of the CS is shown on Figure 
2-44. 

CS Operation 

The CS section is a rapid-access semi-conductor mem­
ory that stores 14-bit words in bipolar random-access 
memory (RAM) integrated circuits (IC's). It is organ­
ized on the basis of 4096-word stora!Je units and is 
expandable in increments of 1024 words to a maxi­
mum of 16,384 words (addressing limit). At present, 
the system is provided with a basic CS of 5120 (5 K) 
words (one 4096-word storage unit plus a 1024-word 
portion of a second unit) with an 8192-word (BK) CS 
offered as an optional feature. Each storage unit con­
sists o"f 224 RAM IC's and corresponding address select 
logic. Each IC stores 256 bits, and is interconnected 
with other IC's so that each stores one bit of 256 
words. Each word, therefore, is partially stored on 14 
IC's, one bit per IC. This partial storage of words, 14 
bits wide is referred to as page storage. A page is a 
block of 256 words. Since each storage unit consists 
of 4096 words, each unit consists of 16 pages 
(4096/256). 

A physical representation of the paging concept is il­
lustrated in Figure 2-45, which illustrates the pages 
making up two storage units. Note that the 14 bits of 
a word are numbered 0 through 8 and 11 through 15, 
with bit positions 9 and 10 not used. The 16 pages 
can be thought of as 16 loaves of bread, each loaf 
consisting of 14 slices. Each slice represents one RAM 
chip. Address ranges per page run in ascending order 
by page number, as shown in the figurn. (For example, 
page 0 stores 256 words at addresses 000016 through 
OOFF16 page 1 stores 256 words at addresses 010016 
through 01FF 16, and so forth.) 

Each CS module stores two bits of each word. The 
modules for the 8K CS contain 64 IC's each for 
storing two bits of 8192 words. The 64 IC's are ar­
ranged in two groups of 32 IC's each, wherein each 
group stores one bit of two storage units (32 x 256 = 
8192). The modules for the 5K CS contain 40 IC's 
each for storing two bits of 5120 word. Each group of 
20 IC's stores one bit of one storage unit (16 x 256 = 
4096) plus one bit of a 1024-word portion of a 
second storage unit (4 x 256 = 1024). The total bits 
stored by each group then is 4096 + 1024 or 5120 
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bits. In essence, each 5K CS module for a 5K CS is 
an 8K CS module "depopulated" by the number of 
IC's required to reduce the number of words stored. 

Words are addressed in CS by the upper 14 bits of the 
SJt register, as shown in Figure 2-46. (The register is 
actually 16 bits in length; however, bits 0 and 1 are 
µI status bits and do not pass through the CS address 
logic.) As the figure shows, bits 2 and 3 select one of 
the four storage units, bits 4 through 7 select one of 
the 16 pages comprising each unit, and bits 8 through 
Hi select one of the 256 words in each page. Selection 
of a storage unit and addressing one of the 256 words 
in a page is accomplished via corresponding Sµ register 
bits directly. However, selection of a particular page is 
performed by an intermediate coding of bits 4 through 
7 to generate page select (SE LP) signals. These SE LP 
signals are divided into three groups: SELPX-0, 
SELPX-1, and SELPX-2. The SELPX-0 signals select 
bits 0 through 3, the SE LPX-1 signals select bits 4 
through 8 and bit 11 of the data word, and the 
SE LPX-2 signals select bits 12 through 15. The X val­
ue designates one of 16 page numbers (016 through 
F16). Each SELP signal is generated by a combination 
of Sµ register bits 5, 6, and 7, and either an EN RD­
CS or ENWR-CS enable signal derived from Sµ register 
bit 4 in conjunction with other signals that define 
whether a read (EN RD-CS) or write (ENWR-CS) opera­
tion is to be performed. Logic for generating these 
enable signals is shown in Figure 2-47. Signal EN RD­
CSO will be generated whenever SM-CS04 is low, 
e>:cept when any of the following inhibiting conditions 
is present: 

1. A parity error has been detected in the µI read 
from CS. This causes SWCS-OFF to go low. 

2. The next µI is to be skipped, the processor state 
is operating in the Consecutive Cycle mode, or 
the CS has been disabled by the CS DISABLE 
switch on the System Control Panel. 

For the above three conditions, NULL-CS is forced low. 
1111 the case of a skipped µI, it is still necessary for the 
processor state to idle through one minor cycle. This is 
accomplished by a NOP condition, wherein the CS is 
inhibited from transferring a µ,I to the Fµ register. The 
effect is to write all "O's" into Fµ. The Consecutive Cycle 
mode also requires a NOP condition during E8 and E9 
tiime. (These times would normally be EO and E1 for the 
next time slice, when Fµ would be loaded with the first 
and second µI's of the next assigned processor state. 
Since the same processor state will be granted the 
following time slices, these loads must be aborted.) Signal 
ENRD-CS1 is generated in a similar manner to ENRD-CSO 
except that ENRD-CS1 is enabled when SM-CS04 is high. 
This enables ENRD-CSO to select pages 016 through 716 
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and ENRD-CS1 to select pages 815 through F15· When 
either of these enables is present, data is read from the 
location addressed by bits 8 through 15 of the S register. 

Signal ENWR-CSO is generated when SM .. CS04 is low and 
WRITE-CS is present. Signal WRITE-CS is generated by 
the System Control Panel during a CS load operation. 
Signal ENWR-CS1 is generated in like manner, except that 
SM-CS04 is high. As with the two ENRD-CS signals, 
ENWR-CSO selects pages 015 through 715, and 
ENWR-CS1 selects pages 815 through Fm. Either of these 
two signals is used to generate a second write enable 
signal, WRITECS, through a NOR gate. When either 
ENWR-CSO. or ENWR-CS1 is present, along with 
WR ITECS, the data present on the N~ .. cs input lines is 
stored in the location specified by bits 08 through 15 of 
the Sµ, register. 

Correlation of the SELP signals with the data bit groups 
they select, and the Sµ register bits and ENRD-CS and 
ENWR-CS signals which generate eaclh SELP signal, is 
shown in Table 2-3. 

MICRO-INSTRUCTION TRANSLATION AND 
ADDRESS UPDATE 

The µI translation and address update logic reads a µI 
from CS at the location specified by the contents of Sµ 
and decodes it to generate the enables required to execute 

· the µI. Upon making the CS read access, the contents of 
Sµ are updated to form the address of the next µI in the 
program. A block diagram of the µ.I translation and 
address update logic is shown in Figurn 2-48. Depending 
on the µI routine, the next µI address will be: 

1. Incremented by one by the Sµ+1 network 

2. A jump address generated by the jump decode 
logic 

3. A beginning address set from the System Control 
Panel, or 

4. A jump address derived from the Aµ and Bµ 
registers through the ALU fan-out logic, 

Within a particular time slice, the CS reads µl's as 
addressed by the contents of the Sµ rngister. If ending a 
time slice for a particular processor, 1the address of the 
beginning µ.I to be executed during the next time slice 
available for the active processor mU1st be stored in a 
designated location in the Extended Register File (ERF). 
At these times, the updated µI address is routed to either 
the Pp register or Pb register for storage in the ERF via 
the ERF write logic. 
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Micro-Instruction Decoding 

Fµ Register 

The F µregister holds the µI read from CS in preparation 
for translation by the first-level and second-level µI 
translation networks, and other decoding circuits. The 
register consists of two ranks, each rank 16 bits in length. 
Use of the double rank is necessary due to the high 
fan-out requirements of most of the µI bits. A typical 
stage of the Fµ register is shown in Figure 2-49. This 
figure shows the two ranks associated with the bit 00 
stage, together with their interconnections. Each rank 
is double-gated to assume definite set and clear 
conditions. 

Depending on the state of data bit CS DAT AOO, the 
·flip-flop is set or cleared upon activating clock pulse 
CLKFM when enabled by ENCLKFM. Enable ENCLKFM 
is generated constantly, except for certain conditions 
when clocking Fµ must be inhibited. During certain idle 
1i::onditions, the enable is inhibited by BLOCKFM. This 
~signal is generated when executing either a ROM, SYNC, 
FRJ, RNI, µI; or a Load S µI executed at any time other 
than EO. These µl's result in idling through the rest of 
the major cycle so that the next µI in the sequence 
starts at the beginning of the next time slice. Clocking 
of Fµ, therefore, is inhibited for the remainder of the 
present time slice. Indication of a parity error in Fµ 
(PE-FM) or a long MS access (LONGACC) also inhibits 
ENCLKFM. Signal LONGACC indicates the addition of 
timing pulses EO', or EO' and EO", required for the 
extra propagation time needed by the Register Option 
(RO) during MS references. Adding these pulses essen­
tially sets up a hold condition during which Fµ must 
be inhibited from clocking-in the next µI. Execution 
of a FZJ (0,3) µI when the jump condition (Aµ is 0) 
is met returns control to the RN 12 subroutine. This 
situation causes an idle condition through the rest of 
the major cycle. Meeting the conditions for a skip 
when executing a skip (5,X,X) µI inhibits ENCLKFM 
for one minor cycle. This causes the following µI 
would normally be executed is not aborted, however . 

The enable signal is specifically generated during E8 and 
E9 during consecutive cycle operation to perform NOP's 
during these minor cycles (transfer "O's" to Fµ ). This 
prevents Fµ from being loaded with spurious µI's during 
these minor cycles. 

Routing of bits from F µ to the various translation 
networks is shown in Figure 2-50. Bits contained in rank 1 
of Fµ are identified as FM 1 bits; those in rank 2 of Fµ as 
FM2 bits. In addition, some bits of each rank pass through 
another stage of buffering before being used. In such 
cases, the bits carry another identifier. For example, bits 
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4, 5, and 11 of the Fµ-2 rank are directly interpreted by 
the µI translation logic as sub-operation c:odes So, S1, and 
S2. However, they are also routed to the set P logic 
through another stage of buffering. These bits are 
designated as bits 104 and 105 to differentiate from bits 
004 and 005 coming directly from the Fµ-2 ranks. Note 
that bits 9 and 10 of the Fµ register are not used since the 
µI is only 14 bits in length. From the Fµ-1 and Fµ-2 ranks 
of the Fµ register, the µI bits are routed to the µI 
translation network for decoding the various bit fields of 
the µI, and to various other translation circuits for 
specialized decoding of certain µI bits for particular 
applications. Each of these translation networks shown in 
Figure 2-50 is discussed in more detail in the following 
paragraphs. 

Micro .. lnstruction Translation 

Translation of the µI function code and designators is 
accomplished by the µI translation logic. This logic, 
shown in block diagram form in Figure 2-51, consists of 
two parts: a first-level translation network and a 
second-level translation network. The first-level network 
translates bits of the Fµ register used to form the µI to 
generate the function (F) code, sub-operation (S) code, 
and a and b designators. The F code valwas are collectively 
referred to as FXEO-X/X signals and FXEO-X signals. The 
FXEO-X/X signals represent an ORed combination of two 
adjacent Fµ code values. (For example, FXE0-2/3 
represents an F code of either 2 or 3.) 

The FXEO-X represents a single F code value (i.e., 
FXE0-3 means an F code value of 3). The FXEO-X/X 
signals are routed to the second-level translation network, 
and the FXEO-X signals are combined with S code signals 
and the a and b designators to generate enable signals for 
specific µl's. 

The second-level translation network decodes the 
FXEQ-X/X signals into particular F code values via the 
microcode bits 00-03 logic. These F codes are combined 
with additional S code values decoded by the micro 
instruction bits 04-05 logic to form signals which are used 
to set control flip-flops and execute other enable signals 
used by a particular µI. Generally speaking, the output 
signals generated by the second-level translation logic are 
of a more specialized nature, such as register enables for 
executing operations associated with individualµ l's. This 
is in contrast to output signals from the first-level 
translation, which generates basic F and S codes, and 
signals applicable to a large number of µl's requiring 
similar operations (such as all µl's which generate a 
jump address). Each of the particular µI enable signals 
will be discussed in greater detail in the description of 
that section of logic used to implement the particular 
µI. 

Jump Decode 

The jump decode logic performs a second-level jump 
address decode of the FNJ (0, 1) µI and a jump address 
decode of the JMP (9) µI. Formation of the FNJ jump 
address is cal led a second-level decode because of its 
re'lationship to the first-level jump address decode of the 
FBJ (0,2) µI when implementing MLl's via µl's (see the 
pa1ragraph titled Implementing MLl's by µl's). Jump 
adldresses formed by the jump decode logic for both the 
FNJ and FRJ µl's are routed to the Sµregister in place of 
the normal updated µI address to cause a jump to a new 
sequence of /.d's in CS. 
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Fiormation of the FNJ jump address is performed in one 
o1r two ways, depending on the value of bit 06 of the FNJ 
µII (Fµ 06). If Fµ,06 is 0, the jump address is formed as 
shown in part a of Figure 2-52: bits 4 through 9 of the 
jump address are made up of bits 7 and 11 through 15 of 
the FNJ µI in the Fµ register, bits 10 through 13 of the 
jump address are made up of bits 4 through 7 of the M LI 
o1f which the FNJ µI is a part and bits 14 and 15 are 
forced to zero. If Fµ 06 is 1, the jump address is 
formed as shown in part b of Figure 2-52: jump 
address bits 4 through 9 are made up of bits 7 and 11 
through 15 of the FNJ µI (the same as for the 
F NJ/ F µ06=0 I). However, jump address bits 10 
through 15 are forced to zero, except for bit 12 
which is made up of bit 8 of the M LI. Formation of 
the JMP jump address is accomplished by transferring 
the jump address contained in bits 4 through 7 and 12 
through 15 of the JMP µI to bits 8 throuflh 15 of the 
n1aw jump address as shown in part c of Figure 2-52. 

For all three jump addresses, bits 0 through 3 are not 
altered from what they were before the jump address 
was formed. Bit positions 0 and 1 contain µI status 
information and are not used as part of the µI 
address. Bits 2 and 3, which define which 4096-word 
portion in CS is to be selected, remain unchanged also. 
In addition, bits 4 through 7 of the JMP µI address 
rnmain unchanged by the JMP µI (although they are 
incremented as necessary by the normal Sµ + 1 opera­
tion). Since all 12 bits of the jump address are re­
tained, each of the branch µl's allow jumping through 
a 4096-word portion of CS. However, the µl's are 
usually implemented to jump only within a 256-word 
page. The JMP µI can jump to any location within a 
page (or 4096-word portion); however, the two FNJ 
µl's can jump only in certain increments because some 
of their jump address bits are preset by hardware. The 
FNJ/Fµ06=0 µI can jump only in 4-address incre­
mented, starting at 0000* (0000, 0004, 0008, and so 
forth). The FJN/Fµ06=1 µI can jump only in 12-
add ress increments, starting on 64-word boundaries 

*All addresses represented in hexadecimal form. 
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(0004, OOOC, 0044, 004C, and so forth). All three 
jump addresses are loaded both into the Sµ register 
(next CS address) and Pp register (blockpoint address). 
However, if either µI occurs during E6 or E7 time, the 
jump address goes only to the Pp register (and then to 
Pµ) for use as the starting µI address for the proc­
essor's next time slice. (For details of the timing 
involved for this situation, see the paragraph, Branch 
Control.) 

Referring to Figure 2-52 it can be seen that jump address 
bits 4 through 9 (JMP-04 through JMP-09) are formed in 
the same manner for the FNJ/Fµ06=0 and FNJ/Fµ06=1 
µl's, i.e., they both are formed by bits 7, 11, 12, 13, 14, 
and 15 of the jump µI. Bits JMP-10 through JMP-15, 
however are formed in a manner peculiar to that 
particular jump µI. Simplified logic showing the deviations 
of these jump address bits is shown in Figure 2-53. Bits 
JMP-08, JMP-09, JMP-14 and JMP-15 are formed in two 
different ways, depending on whether the µI is a FNJ or 
JMP. Bits JMP-10 through JMP-13 am formed in three 
different ways, depending on whether the µI is a 
FNJ/Fµ06=0, FNJ/Fµ06=1, or JMP. For a JMP µI, bits 
JMP··08 through JMP-15 are generated by appropriate Fµ 

.:~GED Fµ BITS 

7 11 12 13 

00 01 02 03 04 05 06 07 

A. FNJ JUMP ADDRESS, Fµ 06 • 0 

-=ANG ED Fµ BITS 

7 11 12 13 

register bits when enabled by FM1-000. This bit is a 1 for 
the JMP µI, since the JMP F code is 915 (10012). 

For both FNJ/Fµ06=0 and Fµ06=1, µl's bits JMP-08 
JMP-09' JMP-14, and JMP-15 are derived in the same 
manner. Bits JMP-08 and JMP-09 are generated by Fµ 
register bits 14 and 15 when enabled by FMt-000. This 
bit is a 0 for the FNJ µI, since the FNJ F code is 015 
(00002). Bits JMP-14 and JMP-15 are forced to 1 (which 
forces address bits 14 and 15 in the sµ register to 0) by 
the absence of an enable signal to make them 0. For a 
FNJ/Fµ06=0 µI (identified as FNJ 0 in the~ 
sponding enable gates in Figure 2-53), bits JMP-10 
through JMP-13 are generated from Fµ register bits 4 
through 7. These bits are enabled by FM1-000 • 
FM1-006, where FM1-000 defines the FNJ µI and 
FM1-006 defines bit Fµ 06 as 0. For a FNJ/Fµ06=1 
µI (identified as FNJ 1 in the corresponding enable 
gates in Figure 2-53), bits JMP-12 is generated from 
bit 8 of the M LI (contained in the F register) and bit 
JMP-13 is set to 1 (via bit 6 itself of the FNJ/Fµ06=1 
µI). These two jump address bits are enabled by 
FM1-000 • FM1-006. Bits JMP-10 and JMP-11 of the 
FNJ/Fµ06-1 µI are forced to 1 by the absence of an 
enable signal to make them 0. This forces address bits 
10 and 11 in the Sµ register to 0. 
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Figure 2-52. FNJ and JMP .Jump Address Formats 
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Figure 2-53. Generation of FNJ and JMP Addresses 
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Micro-Instruction Address Update 

Sµ Fan-In 

The Sµ fan-in logic selects the 14-bit CS address to be 
loaded in the Sµ register from a number of sources, as 
controlled by corresponding enable signals. A simplified 
diagram of the logic is shown in Figure 2-54. 

Note that the signal fan-in for bits 2 and 3 of the µI 
address is different from that for bits 4 through 15. 
During the time slice, the Sµ register is normally fed with 
the updated µI address from the Sµ+1 logic via the Sµ+1 
bits. This logic adds one to the present µ,I address to form 
the next µ,I address. This updated address is gated directly 
through the Sµ fan-in logic in the abs1ence of an enable 
signal for some other input to the Sµ. fan-in. During a 
FNJ or JMP µI, however, a new jump address is loaded 
into the Sµ register via the JMP bits. This jump address 
affects only bits 4 through 15 of the µI address; 
therefore, the JMP bits do not appear ais inputs to the bit 
2 and 3 stages of the Sµ fan-in logic. These JMP bits are 
enabled by ENJP-SM. The ALU inpU1ts represent data 
from either the Aµ or Bµ register to be stored in the 
active processor's assigned Pµ register in the Extended 
Register File (ERF), as the starting address for the 
active processor's next time slice. This data will be 
transferred to the Sµ register for either a ST A or STB 
µI when the µI X-field specifies the Pµ register, and 
the µI is being executed at some time other than E6 
or E7. 

Since the STA and STB µl's are both blockpoint 
instruction!;, a Sµ•Pp transfer will take place to transfer 
the Sµ register contents to Pp for storage in the assigned 
Pµ register. The ALU inputs also represe1nt the contents of 
the Bµ register used to access the CS during a ROM µI, as 
follows: B•Sµ•CS .. CS Scan register. If beginning a new 
time slice, the starting address for the new time slice will 
normally come from the processor's Pµ register, via the 
PU bits. However, if no other processor has requested a 
time slice, the present processor may run in consecutive 
cycles (CC) if its CC bit is set. For this case, the next µI 
address is read from the Pp register, which holds the µI 
address updated by the last blockpoint µI. (This address 
would normally be stored in the processor's Pµ. register for 
use as the starting µI address for the processor's next time 
slice. However, since the processor wm run through the 
next time slice in CC, there is no need to go through this 
extra step of storing the contents of Pp in Pµ). Inputs 
from either the Pµ register or Pp register are enabled by 
ENPM-SM. The SETS bits represent a CS address set by 
the System Control Panel which defines the starting 
address of a Panel function. These functions allow data to 

be read from or written into CS in individual locations or 
in blocks during the maintenance mode or to initially load 
1tie CS via the Reset/Load routine. The address generated 
by the System Control Panel is only 12 bits in length (bits 
4 through 15); therefore, all panel function sequences 
must be located in the first 4096-word portion of CS. 
(At present, only seven of the 12 SETS lines have 
been assigned address functions: 7, 10, 11, 12, 13, 14, 
and 15. The remaining five lines are tied to a logic 
"1" to simulate 0 inputs to the corresponding bit 
positions of Sµ.) 

SµRegister 

The S µ register is a 16-bit register that contains the 
address of the next µI to be read from CS. This address is 
contained in the lower 14 bits (bits 2 through 15) of the 
mgister. The upper two bits (bits 0 and 1) normally 
contain the two µI status bits: Overflow (OV) and Link 
(ILK). This format of Sµ is shown in part a of Figure 2-55. 
Under certain conditions, however, the upper two bits 
ciontain other information as shown in parts b and c of 
Figure 2-55. During a CS breakpoint operation initiated 
from the System Control Panel (provided that Sµ is not 
solected for display by the Console Address register 
indicators), bits 0 and 1 are forced to 0 so that only the 
14-bit CS address is used for breakpoint comparison 
purposes. This format is shown in part b of Figure 2-55. 
(If Sµ is selected for display, then bits 0 and 1 do 
participate in the breakpoint comparison.) During a 
Reset/Load operation, bit 0 indicates that a burst check 
error occurred and bit 1 indicates that either the CS load 
is complete (bit 1 clear) or that the F RJ decode address 
tl1ble (AT) load is being loaded (bit 1 set). This format of 
S µ is shown in part c of Figure 2-55. In addition, bits 8 
through 15 of Sµ are specifically interpreted as an AT 
address during the AT load portion of a Reset/Load 
01Peration and the AT read/write portion .of a CS 
mad/write operation. 

Simplified logic showing details of the 14-bit portion of 
Sµ is shown in Figure 2-56. (Details of the 2-bit portion 
are discussed in the paragraph titled Status Logic and the 
paragraph titled Disc CS Load.) Each bit stage consists of 
a flip-flop clocked at t80 of every minor cycle when 
ENCLKSM is present. This enable is generated constantly, 
e'ccept upon occurrence of a specific condition to inhibit 
the enable. Signal BLKSMS inhibits the enable for all but 
one minor cycle (EO) of a time slice during a CS read or 
C:S write operation initiated from the System Control 
Panel. These operations access CS only once during each 
time slice assigned to the Panel; therefore, only one µI 
address update and consequent clocking of the updated 
address back into Sµ is allowed per time slice. Signal 
BLOCKS inhibits ENCLKSM during (1) an MS access, (2) 
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a null condition (none of the eight processors has 
requested a time slice), or (3) E6 and E7 if a processor is 
operating in the Consecutive Cycle (CC) mode. An access 
to MS increases the cycle time from 800 to 900 or 1000 
nanoseconds to allow for address propagation through the 
Register Option. This extra time essentially sets up a hold 
condition during which Sµ must be blocked. During a null 
condition, clocking Sµ with a new µI address would be 
meaningless if no processor was running to execute the µI. 
During CC operation, Sµ must be blocked during E6 and 
IE7 to prevent clocking in addresses that would normally 
be those of the first and second µl's to be executed by the 
next processor assigned a time slice. Since the present 
processor will continue executing, the next µI address 
must come from Pp. Blocking Sµduring E6 and E7 allows 
this address to be obtained from Pp. Signal EXCEPT is 
ANDed with BLOCKS to override BLOCKS during a CS 
load operation to clear Sµ to address 000015. 

Signals 2,X+4,X+C,X, and SH I FT blocks Su for one of the 
following conditions: (1) Execution of a SUM, DSUM, 
CMP, or CMU (2,X) µI, when preceded by a Feeder Load 
ul. For this condition, the 2,X µI must be delayed one 
minor cycle to allow the Feeder Load µI operand to 
propagate through the ALU. (2) Execution of a SOW or 
SDB (4,X) or D ..... A (C,X) µI if part of an MS read 
operation. For this condition, the 4,X or C,Xµ I cannot be 
executed until E5, at which time the data read from MS is 
available. (3) Execution of a shift µI. A shift µI takes two 
minor cycles to execute; therefore, clocking the address of 
the next ul address into Sµ must be delayed for one minor 
cycle. For the last two conditions, b~ocking of Sµ is 
overriden if the µI is executed at E6 or E7 by E67 ID L. 
This allows the addresses of the first and second µl's of 
the next time slice to be clocked into Sµ to begin this 
time slice in the normal manner. 

The address bits from Sµ are fanned out to several 
destinations. All 14 bits are routed to the Sµ+1 logic for 
address updating, and to CS via the SM-CS signals to read 
the next µI. In addition, all 14 bits are sent to FRJ decode 
logic to form jump addresses as discussed in the paragraph 
titled Jump Decode. Bits 2 and 3 of the address are routed 
to the CS loader logic via SM-LD. These bits are used 
during the Reset/Load routine to inform the loader that 
all n X 1024 words of a CS unit have been loaded. 
Bits 4 through 15 of the addrnss am routed to the 
Console Data register in the System Control Panel for 
purposes of displaying the address during maintenance 
operations (bits 2 and 3 are also sent to the Console 
Data register after they pass through the CS loader 
logic.) 

Sµ+1 Logic 

The Sµ+1 logic updates (increments by one) the present 
µI address, and routes the updated address back to the Su 

n~gister as the next µI address. Since individual µI's for a 
given sequence are stored in consecutive locations in the 
CS, this update process enables reading all µl's of a 
particular sequence. A portion of the Sµ+1 logic, that 
used to update bits 2 and 3 of the µI address, is shown in 
Figure 2-57. Essentially, the Sµ+1 consists of an 
exclusive-OR gate for each bit stage, which functions as a 
siimple counter whenever a group carry-in signal (GX-CIN) 
is present. There are four such group carry-in signals: 
GO-CIN for bits 2 and 3 of the Su register (the two MSB's 
of the J,.tl address), G1-CIN for bits 4 through 7, G2-CIN 
for bits 8 th rough 11, and G3-C IN for bits 12 through 15. 
The G3-CIN signal is always enabled, since this 
lowest-order bit group will always be counting. Each 
higher-order bit group, however, will be counting 
depending on the ability of a next lower-order bit group 
t10 satisfy an address update within its group without 
having to propagate a carry into the next higher-order 
group. For that reason, GO-CIN, G1-CIN and G2-CIN are 
generated by group propagate signals (GX-PROP) from a 
lower-order group: G2-CIN by G3-PROP, G1-CIN by 
Ci3-PROP, and G2-PROP, and GO-CIN by G3-PROP, 
C]2-PROP, and G1-PROP. Looking at the µI address 
update example in Figure 2-57, the µI address at time tis 
to be incremented by one to form the next µI address at 
time t'. At time t, bits 2 and 3 of the Sµ register equal 
'''O" and "1", respectively, to generate inputs to the 
exclusive-OR gates of each stage which are low (L) and 
high (H), respectively. Since all lower-order bits of the Sµ 
register equal one, the three GX-PROP signals are low as 
shown. This condition produces a high GO-Cl N signal as 
the other input to the two exclusive-OR gates. The 
resulting outputs from each exclusive-OR gate are routed 
back to the set side of each Sµ register flip-flop to set the 
bit 2 stage and clear the bit 3 stage. The resultant change 
on the outputs of these two flip-flops after updating is 
shown in the dashed portion of the µI address. The three 
low CX-PROP signals cause G1-CIN and G2-CIN to go 
high along with GO-Cl N. These high carry-in signals, along 
with G3-CIN (which always remains high) cause bit groups 
4-7, 8-11, and 12-15 to be incremented by one also, to 
form the complete new updated µI address at time t* as 
shown in Figure 2-57. The updated result is fed both to 
the S~ register ·and the Pb register. 

Pb Register 
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The Pb register is a buffer register that stores the starting 
address for the active processor's next time slice in Pµ for 
1:::ertain conditions when the starting address normally 
1obtained from Pp is no longer available. These abnormal 
1:::onditions are discussed in the paragraph titled Storing of 
Startingµ! Address. 
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C. CS READ OR CS WRITE FORMAT 

Figure 2-55. S µ Register 1=ormats 

Pp Register 

The Pp register holds a µI address formed during the 
active processor's present time slice for use as the starting 
address for the processor's next time slice. The register is 
loaded from a number of sources through the Pp fan-in 
logic, as shown in Figure 2-58. The fan-in logic consists of 
14 stages, one for each of the 14 µI address bits. Note 
that the stages for bits 2 and 3 (part a) are different 
from those for bits 4 through 15 (part b ). Normally, 
Pp receives the starting address from the Sµ register 
after having been updated by the Sµ+1 logic. This 
transfer is enabled by the absence of any other enable 
signal and occurs during execution of a blockpoint 
(BP) µI. Certain error conditions, such as a CS Parity 
Error or Bounds Error will alter normal program oper­
ation by jumping to an error recovery routine. 
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(Generation of starting addresses for these routines is 
discussed in the paragraph titled Set Pp Logic.) These 
error conditions will force a particular 12-bit starting 
address for the next time slice into the Pp register via 
the SETP bits. These bits are enabled by ENSPECPP 
which is generated for these conditions by a TRAP sig­
n a I. Enable ENSPECPP is also generated during 
execution of a FRJ, FZJ, RNl1, or RNl2 µI. These 
four µl's cause a programmed jump (as opposed to the 
unconditional error recovery jumps) to another part of 
the MU routine at the start of the next time slice. 
Depending on the µI, the enable gates in the 14 FRJ 
bits (bits 2 through 15) to form the corresponding 
jump address. 

The JMP bits form a 12-bit jump address when executing 
a JMP µI. This address can be formed in different ways, 
depending on when the µI is executed in the time slice. 
The JMP bits, therefore, are gated by two different 
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enables: ENJP-PPO for bits 4 through 7 and ENJP-PP1 for 
enables 8 through 15. (See the paragraph titled Storing of 
Starting µI Address for a more detailed discussion.) The 
14 ALU inputs represent data from within the Aµ or B µ 
register to be stored in the active proce1ssor's assigned Pµ 
register in the ERF. This data will be t1ransferred directly 
to the Pp register for either a STA or STB µI when theµ I 
X-field specifies the Pµ. register, andl the µ.I is being 
executed at E6 or E7 time. (If executed this late in a time 
slice, the STA and STB blockpoint instruction will not be 
able to execute a Sµ Pp transfer; therefore the address 
must be loaded into Pp directly.) The IFRJ inputs to the 
bit 2 and 3 stages of the Pp fan-in logic and their 
corresponding enable, ENFRJ-PP, are not used at present. 
These bits would normally be used to select one of the 
four possible CS modules to which a jump would be made 
when executing a FRJ µI. Since only one CS module is 
used at present, these three lines are tied to +5 vdc which 
effectively removes them from the fan-in logic. 

The selected output, from the Pp fan··in logic is fed to 
the set side of the Pp register in true form and to the 
clear side in complement form. The data is stored in 
the register upon occurrence of clock enable ENCLKPP 
and clock signal CLKPP. The stored data is fed to the 
ERF write logic. 

ERF Write Fan-In 

The ER F write fan-in logic provides data inputs to 
FR F and Pµ registers, which comprise the Group I 
ERF, for storage therein. Generally, data is stored in 
Pµ during WO unless the last µI performed in the 
time slice was a CIO µI and the condition for exiting 
from the 1/0 routine was not met. This condition sup­
presses the Pp Pµ transfer, causing the routine to be 
repeated. In a similar manner, data stored into FRF 
during WI is conditioned by occurrence of the Fb 
register clock signal, as discussed in the paragraph 
entitled Fb and F Registers. The data to be stored will 
be the result of either or both of the following opera­
tions: (1) store data in F or Pµ, or (2) store M LI and 
next µI address in FR F and Pµ, respectively. Although 
similar in execution, these two operations result from 
different conditions. The second operation always 
occurs during a major cycle, to enable continuing with 
the present processor's program during the next 
assigned time slice. The first operation is a function 
only of a particular µI routine, and may or may not 
occur during every major cycle .. 

A diagram of the ERF write fan-in logic is shown in 
Figure 2-59. This logic is fed with all 16 bits that will 
be stored in both FR F and Pµ at the end of a time 
slice. Data to be stored in FRF comes from the Fb 
register and ALU fan-out logic. The Fb register con­
tains the MLI presently being executed. Inputs from 
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the ALU fan-out represents data to be stored in FR F 
as a result of a Register File Write µI when FRF is 
specified as the storage register. Data to be stored in 
Pµ consists of the two status bits, Overflow and Link, 
and the 14-bit next µI address updated by a BP µI. 
This address is derived from either Pp, Pb, or a com­
bination thereof, as determined by the type of BP 
operation performed and at what time in the time 
slice. Since data from both Pp and Pb is combined, 
the corresponding enables are divided so that the 
upper 8 bits going to Pµ (two status bits and bits 2 
through 7 of the next µI address) and the lower 8 bits 
(bits 8 through 15 of the next µI address) can be 
gated separately. 

Storing of Starting p.I Address 

Storing the starting µI address (that is, the address of the 
first µI to be executed during the active processor's next 
assigned time slice) in the processor's assigned Pµ register 
enables the processor to continue executing its task during 
the next assigned time slice. This starting µI address is 
formed by the last blockpoint (BP) µI executed during the 
present time slice. Usually, this address is formed by 
adding +1 to the BP µI address so as to form the address 
of the next sequential µI in the M LI being executed. In 
some cases, however, the starting µI address will be a 
branch address to cause a jump to a different µI routine. 
Branch µl's are also BP µl's, so they enable the jump 
address to be stored in Pµ. Generally speaking, there are 
four different conditions that govern how the starting µI 
address is formed and how it is stored in Pµ. These are: 
(1) execution of a non-branch BP µI at EO through E6, (2) 
execution of a non-branch BP µI at E7, (3) execution of a 
branch BP µI at EO through E6, and (4) execution of a 
branch BP µI at E7. 

Forming the starting µI address by executing a 
non-branch BP µI at either EO through E6 or E7 differs 
mainly in the register used to hold the address until it is 
sent to Pµ. Execution of a non-branch BP µI during EO 
through E6 loads the starting µI address (BP µI address 
+1) into the Pp register during the minor cycle that the µI 
is executed. Timing for such a situation, that of BP µI 
executed at E4, is shown in part a of Figure 2-60. The 
address for the BP µI (104) is clocked into Sµ at E280. 
During E3, the µI is read from CS and the contents of S,..t 
are updated by 1 and clocked back into Sµ at E380. At 
E480, The BP address +1 (105) is clocked into Pp for 
storing into Pµ at WO. Execution of a non-branch µI at 
E7 is similar to that executed at EO through E6 in that the 
starting µI address is formed in the same way. For this 
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*THESE LINES NOT 
USED AT PRESENT. 

**DESIGNATED -ENJP-PPO 
FOR BITS 4 THROUGH 
7 AND -ENJP ... PP1 
FOR BITS 8 THROUGH 15. 
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*X IS 0 FOR OVERFLOW, ltNK, 
AND BITS 2 .... 7; XIS 
1 FOR BITS 9.,.15 



BP 
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.-----E-2------.------E-3----..,.----~ 

6. 
CLKSM 

(104+1..-Sµ) 

6. 
CLKPP 

(105 ... Pp) 

A. NON-BRANCH BP µI EXECUTED AT E4 TIME 

BP 
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CLKPB 
(107+1..-pb) 

B. NON-BRANCH BPµ I EXECUTED AT E7 TIME 

Figure 2-60. Use of Pp and Pb to Hold Starting µ.I Address 

situation, however, the starting µ. I address must be 
clocked into Pb immediately after being updated by the 
Sµ +1 logic. This is because Sµ. is no longer available to 
route the updated address from the Sµ. +1 logic to Pp. By 
the time that the BP address has been updated, Sµ. has 
been loaded with the first µ.I address for the following 
time slice. This situation is shown in part b of Figure 2-60. 
The BP µ.I address (107) is clocked into Sµ. at E580 in 
preparation for executing the µI at E7. At E680, 
however, Sµ, is loaded with the address of the first µI to 
be executed during the following time slice (300). 
Therefore, the starting µI address (108) must be held in 
Pb until it can be stored in Pµ at WO. 

Use of the Pp and Pb registers for form the starting µI 
address for non-branch BP µ.l's is shown in Figure 2-61. 
This figure shows the contents of Pp and Pb being fed 
through the ER F write fan-in logic by means of enables 
generated for the non-branch BP µI's, as shown in the top 
half of Table 2-4. For all non-branch BP /..ti's except the 
SUM, DSUM, CMP, and CMU µl's, the starting µI address 
is formed exactly as discussed in Figure 2-61: 
BP+1-Pp-Pµ if executed at EO through E6 or 
BP+1-Pb-Pt.t if executed at E7. (The Cl01 and Cl02 
µl's are the only exceptions that they cannot be executed 
at E7.) The SUM, DSUM, CMP, and CMU (2,X) µl's differ 
from the other non-branch BP µl's in that they sometimes 
use Pb as a holding register if executed at E6 as well as at 
E7. The criterion which determines if Pb instead of Pp is 
to be used is whether the µI preceding the 2,X µI was one 
which altered the contents of Aµ and Bµ. As discussed in 
the paragraph titled Cycle Delay Logic, the Cycle Delay 
flip-flop is set if such is the case and the 2,X µI executed 
at E6 also extends into E7 as well. Timing for a SUM µI 
executed at E6 for both the above conditions, shown in 
Figure 2-62, illustrates the difference in using either Pp or 
Pb as the holding register. 

Part a of this figure shows a SUM µI executed at E6 
preceded by a LOW µI at E5. Since a LDW µI does not 
alter the contents of Aµ and Bµ., the SUM µI can be 
executed in one minor cycle. Since the µ.I following the 
SUM is not a blockpoint (NBP) µI, the Pp register is fed 
with the updated SUM µI address which forms the starting 
µI address. The contents of Pp are routed to the ER F 
fan-in logic via the EN PPG I enables at E780. Part b of 
Figure 2-62 shows a SUM µI executed at E6 preceded by a 
LAW µ.I at E5. Since a LAW does alter the contents of Aµ 
and Bµ., the Cycle Delay flip-flop is set to inhibit clocking 
the sum of Aµ and Bµ to register X until E7. The logic 
that generates enables ENPPGI and ENPBGI to gate Pp 
and Pb data through the ERF write fan-in logic is fed with 
inputs from the Fµ translation logic. Since the SUM µI 
still resides in Fµ at E7, the ENPPGI and ENPBGI logic 
assumes that a new one-cycle BP µ.I was executed at E7, 
and that its updated address (105+1) is now in Pb and 
should be routed to Pµ. What is in Fµ, however, is- not a 
new BP µI executed at E7 but the SUM µI begun at E6. 
Therefore, the contents of Pb must reflect the updated 
SUM address (104+1 ), which is made available at E6. As a 
consequence, Pb must be clocked with this address at 
E580 to produce a meaningful starting µI address to be 
sent to the ERF fan-in at E780. 
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ThEi branch BP µI's differ from non-branch BP µI's in that 
they form the starting µ.I address as a result of a branch to 
a new address. These µl's generate ERF fan-in enables as 
shown in the bottom half of Table 2-4. The CLR, STA, 
STB, and AND (1,X) µl's when X specifies Pµ. form the 
starting µI address by routing a 14-bit branch address (bits 
2 through 15) from the ALU to both Sµ and Pp if 
executed at EO through E5 or to Pb only if executed at 
E6 or E7. (If executed at EO through E5, the branch 
address formed becomes both the jump address to branch 



to a new subroutine during the current time slice and the 
starting µI address for the next assigned time slice.) The 
1,X µl's are normally considered non-branch (register file 
write) µl's. They act as branch µl's, however, when the 
µI X-field specifies Pµ as a file register in which to store 
data. For this special case, the path to store data in Pµ is 
through S~. Since Sµ is effectively loaded with a new 
address, the µI essentially becomes a branch µI. the 
contents of the Pp are then routed to the ER F fan-in logic 
via the ENPPGI enables at E780. Since the starting µI 
address formed by these BP µl's does not involve an 
address update through Sµ, the address can always be 
held in Pp until the end of the time slice. The FJN, FRJ, 
FZJ, RNI and JMP µl's differ from the 1,X µl's in that 
they do use a portion of S µ to form the jump address 
and, therefore, the starting µI address. For the FRJ, FZJ, 
and FNI µl's, bits 2 and 3 of Sµ are used along with the 
jump address formed as bits 4 through 15. These two bits 
from Sµ, which enable a jump to another 4096-word CS 
module, aire actually the result of an Sµ+1 update. Since 
the two bits always go to Pp regardless of when in the 
time slice the µl's are executed, (either from Sµ or from 
Pb) the resultant 14-bit address can always be obtained 
from Pp via ENPPGI enables. For the JMP µI, bits 2 

JMP 

SETP 

FRJ 

JMP, FNJ 

RNl1, RNl2, FZJ 
-----·-+ 

FRJ -----·-+ 
Sµ ALL OTHER DP's 

EXEC AT EO..-.E6 
..... .... 

AND 1,X AT --+j 
E7 IF X=Pµ [ ~-..-_. 

ENCtKPP 

BITS 2 AND 3 FOR __..-
FNJ, FRJ, FZJ, RNl1, 
RNl2, AND JMP EXEC 
AT E7 FOR MODULE 
NO.UPDATE 

1---

1,X EXCEPT X=Pµ _ __...: 
Sµ+1 -__......, 

AND 2,X IF2 
CYCLE AND EXEC. 
AT E6 AND 4,X; 
JMP; ROM; SYNC; 
SKIP; AND FN.I 
AT E7 l 

ENCLKPB 

through 7 of Sµ are used in connection with bits 8 
through 15 from F µ to form the jump address. Bits 2 
through 7 are derived from the Sµ+1 logic to enable a 
jump not only to a different 4096-word module in CS 
but also to a different 256-word page within the 
module. These upper six bits of the jump address are 
treated in the same was as the upper six bits of the 
updated address of a non-branch BP µI; that is, the 
bits are routed to Pp if the JMP µI is executed at EO 
through E6 or to Pb if executed at E7. 

The difference between using Pb for a JMP µI as 
compared with using it for the non-branch BP µl's is that 
only the upper half of the register is used. Therefore, a 
JMP µI executed at E7 requires only that the upper half 
of Pb be enabled through the ERF fan-in logic. This is 
implemented by generating enable ENPBG1-0 only. The 
lower half of the jump address than is enabled through the 
ERF fan-in logic from Pp via ENPPG1-1. 

Set Pp Logic 

The Set PP logic generates starting addresses of the RNI 
and storage error routines stored in CS upon detection 
that such a routine must be executed. These addresses are 

ENPPG1·0 

ENPBG1·0 ERF 
WRITE 
FAN-IN 

+ l 0~1 ______ ,_~---1 .. _ 

.... l ~·· ..... 

-----~....-~--.... ,... a-15 

ENPPG1·1 

ENPBG1·1 

.... Pµ 

F1igure 2-61. Derivation of Starting µI Address 
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Figure 2-62. Execution of Sum µI at E6 if Cycle Delay Flip-Flop is Set 

fed to the Pp register in place of the normal updated µI 
address from the Sµ +1 logic. A simplified diagram of the 
set Pp logic is shown in Figure 2-63. Although the Pp 
register is loaded with a 12-bit jump address (bits 4 
through 15), only 5 of these 12 bits are set to a particular 
value corresponding to the RNI or error recovery jump 
address. These 5 bits are 10, 11, 12, 14, and 15, as shown 
in Figure 2-63. Figure 2-63 also shows the state of these 
five bits when generating a corresponding jump address. 
These five bits form the following addresses in 
hexadecimal form: 
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RNl-000015 

RNI 1-000215 

RNl2-000915 

Bounds - 001015 

MS PE - 001815 

CS PE - 002815 

(Note than Figure 2-63 defines each address in 
complement form, as indicated by the SETP address 
designation.) 



Table 2-4. Generation of Enables for Starting µ.1 Address 

Executed at Pp/Pb Enables ERF Write Enables 

BP µI EO-+-E6 E7 ENCLKPP ENCLKPB ENPPG1-0 ENPPG1-1 ENPBG1-0 ENPBG1-1 

NON-BRANCH µ.I 

(CLR +STA+ STB +AND)· X f Pµ +SOW x x x x 
+SOB+ IOR + EOR +Skips+ ROM +SYNC x x x x 

CI01 + CI02 x G) x x x 

SUM + DSUM + CMP + CMU ~ x x x 7 
x x x 

BRANCHµI 

(CLR + ST A + STB + AND) · X = Pµ x x x x x 
+ FNJ + FRJ + FZJ + RNl1 + RNl2 

JMP x x x x 
x x x x 

©cannot execute at E7. 



The three RNI routines enable a processor to obtain the 
address of the next MU in the task program it is 
executing. Initially, the RNIO routine provides a starting 
point for a processor beginning a new task. When starting 
the task, the processor jumps to address 000015 under 
control of the operating system which has written address 
000015 into the processor's Pµ register. 

A µI is located at this address which instructs the 
processor where it will find the address of the first M LI in 
the task program. During execution of this MLI, the 
address of the next MU in the program will be developed 
as a normal part of the MU and stored in some transient 
register. Upon completion of the M LI, the last µI wi II 
usually specify a jump back to000215 (RN11 routine) to 
read out this next MU address and begin its execution. 
For certain M Li's, however, there is not enough time 
during their execution to develop the next M LI address. 
Under these conditions, the last µI will specify a jump 
back to 000915 (RNl2 sequence). This routine has 
already found the next M LI address in anticipation of 
such a problem, and can furnish this address immediately. 
This prevents any loss of time that could result if the 
address update had to be developed as a separate step, 
apart from normal MLI execution. The jump back to 
either 000215 or 000915 is implemented by the RNl1 
(8,0) and RNl2 (8,1) µl's, respectively. 

The remaining three addresses generated by the set P logic 
result from an MS parity error (PE), CS PE, or 
out-of-bounds condition. For each type of condition, the 
error routine sets an applicable bit in the condition 
register of the processor experiencing the error. This bit 
informs the operating system that an error occurred and 
to take appropriate corrective action. In the case of an MS 
parity and bounds error, the condition is recoverable in 
that only the processor in which the error occurred is shut 
down (except if the Executive processor experienced an 
MS parity error). For these cases, the error routines are 
referred to as traps since the error condition can be 
isolated to a particular processor without interferring with 
the rest of system operation. A CS parity error, however, 
is critical to overall system performance since it indicates 
a µI parity error. Since all processors share in the use of 
µ1 's, they can all be adversely affected. The only 
recourse, therefore, is to shut down the entire system. 

Referring to the logic of Figure 2-63, starting addresses 
for the RNI 1 and RNl2 routines are formed by a 
translation of the corresponding µI function codes. The 
RNIO starting address is generated as a result of no other 
address being generated, which will be the case when the 
processor initially jumps to this address to begin a task 
program. The bounds error, MS PE, and CS PE trap 

addresses are generated upon detection of the 
corresponding error condition. Signal CS PE is generated 
when a parity error is detected in the present µI being 
executed. The bounds error-trap address is generated upon 
detection of the OUTBOUND signal from the bounds 
control logic in the Register Option. The bounds control 
logic limits the address range in MS into which each 
processor may read or write, thus providing data 
protection. If this range is exceeded by a processor 
accessing MS, OUTBOUND is generated which sets the 
Bounds Error flip-flop. The MS PE flip-flop is set for 
three conditions: OUTRANGE, ECC ERR, and BTYE 
PE. Signal OUTRANGE indicates a reference to MS 
has been made to a storage module that is not present 
in the system. Signal ECC ERROR signifies an irrecov­
erabl1~ error (error in two or more data bits) occurred 
in reading a word from MS. Since irrecoverable errors 
are not correctable by the ECC logic, an error routine 
must be performed. The BYTE PE indicates a parity 
error that occurred in a word read from MS when the 
ECC logic is not present on the system. Under these 
circumstances, the parity check logic of the MS inter­
face logic is used to check for correct parity. (When 
present in the system, the ECC logic disables outputs 
from the MS interface logic.) Any of these three errors 
will set the MS PE flip-flops, providing OUTBOUND is 
not present. 
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PROCESSOR REGISTER FILES 

The shared resources contains two sets, or files, of 16-bit 
addressable registers. One set, called the Basic Register 
File (BR F) is intimately associated with executing 
machine language instructions (MU's) by the eight 
processors. The other set, called the Extended Register 
File (ERF) is used in conjunction with housekeeping, 1/0, 
and other special-purpose applications. The BRF consists 
of eight subsets, one for each of the eight processors. Each 
subset contains 32 registers. The ER F subsets contain 
only those registers (up to a total of 32) that are needed 
by the associated processor to perform its particular 
functions. In addition, the ERF subsets are further 
subdivided into groups, depending on which registers of 
the ERF are made available to each processor. Group I 
contains two registers each for all eight processors (Pµ and 
F), Group II contains common block registers which can 
be accessed by all eight processors, and Group 111 contains 
registers in processors 0 through 4 but which are restricted 
for use by only the associated processor. Addressing of a 
register is accomplished by specifying three elements: (1) 
the register number, 0-15 (0-F, hexadecimal), (2) the 
processor number, 0-7, and (3) the register file set, 
whether basic or extended. Usually, the hardware 
determines the processor number, the µI determines the 
register set, and the M LI specifies the register number (or 
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numbers, since basically the computer is a two-address 
machine). Deviations from this general rule will be 
described when appropriate. 

A block diagram showing how each register file is 
addressed is shown in Figure 2-64. Registers of the BRF 
are addressed by a processor number and register number. 
The processor number is derived from the resource 
allocation network, depending on acknowledging requests 
from processors. The register number is derived from 
either the M LI orµ. I, or a com bi nation of both, depending 
on the a and b designators of the µI. Addressing of 
registers in the ER F depends on the register group being 
accessed. If Group I is accessed, the register is selected by 
a processor number from the priority network and a Pµ or 
F select signal. If Group 11 is accessed, the register is 
selected by a register number alone, since these registers 
can be accessed by any processor. Registers of Group 111 
are selected by a processor number from the priority 
network and register number from the register select logic. 

µI ____. 

MLI ----. 

.__..., IVK 
µI 

PROC 
REQ 
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Fµ 
REG 

1A08-11 

F 
REG 

1A18·21 
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BASIC REGISTER FILE 

Assignment and Functions 

The Basic Register File (BRF) array is shown in Figure 
2-65. As shown, the BR F is a matrix of 256 registers, 32 
registers associated with each of 8 processors. The 
registers are made up of sixteen 256-bit LSI memory 
elements. Each element stores one bit of the 256 words 
comprising the BR F; therefore, each register word is 
stored 16 bits wide, one bit per element. 

Each register or register group of the BR F is assigned 
a use. These assignments are made by microcode con­
vention only and are not constrained in any way by 
hardware requirements. The first eight registers for 
each processor are general-purpose registers, addressed 
as 00 through 07. These registers are used for tempo­
rary storage of data involved in and resulting from 
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__ .... 

BRF ,.. 
ADRS .. 

PROC#(BRFS-0-2) INPUT 
,... 

... 1A25·28 --.. 
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PROC 

Figure 2-64. BRF and Ellf Addressing 
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Figure 2-65. Basic Register File Array 

SEE NOTE -----,--i 

3 

A>B 
A<B 

A=B 

4 

NOTE 

6 8 9 10 11 12 13 

BOUNDARY ERROR 
(STORAGE VIOLATION) 

SERVICE REQUEST----' 

PARITY ERROR 
IN MAIN STORAGE 

INVALID 
INSTRUCTION 

14 

BIT GROUPS 0·3 AND 4-7 ARE BOTH SET AFTER ANY OF THE COMPARE INSTRUCTIONS. INTERPRETATION, WHETHER LOGICAL (MAGNITUDE 
ONLY) OR ARITHMETIC (SIGNED VALUES), DEPENDS UPON THE INSTRUCTION, AS FOLLOWS: 

INSTRUCTION PURPIJSE 0-3 4.7 ----
CMPX} MAGNITUDE ONLY, LOGICAL 
CBY BYTE-ORIENTED 
CBYM 

LOGICAL 

CMPK ARITHIMETIC, PACKED DECIMAL ARITHMETIC ARITHMETIC 
CMPF ARITHIMETIC, FLOATING POINT 

CMP, CMPD, } 
ARITHIMETIC, WORD-ORIENTED ARITHMETIC CMPI, CMPM, 
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executing MLl's (operands for an ADD instruction, for 
example). Registers 08 and 09 are identified as the 
Condition register and Program Address (P) register, 
respectively. The Condition register records certain 
conditions resulting from executing MLl's (results 
equal, for example). These conditions and their corre­
sponding bit assignments in the Condition register are 
shown in Figure 2-66. 

The P register contains the address of the M LI currently 
being executed. The remaining 22 registers are transient 
registers (OA through OF and 10 through 1 F). These 
registers are used for temporary storage of data involved 
in and resulting from executing 1-tl's (for example, partial 
results accumulated while executing a machine language 
multiply instruction). Of these 22 registers, the last six 
(1 A through 1 F) are reserved for special use. Registers 
1 A through 1 D are reserved for floating-point µl's. 
Registers 1 E and 1 F can be used as any of the other 
transient registers except when executing a Load S 
( LS1, LSF, LS2, or LSE) µI. If loading S from either 
of these two registers, the Load S µI is interpreted as 
a reference to the Register Option instead of to Main 
Storage. To the left of the register array is listed the 
corresponding address of each register, both in hexa­
decimal form and in binary form, as designated by Fµ 
bits 11 through 15. 

Basic Register Selection 

Selection of a register in the BRF is accomplished by 
forming an 8-bit BRFS (BRF select) address, as shown in 
Figure 2-67. Bits 0 through 2 of this address specify one 
of the eight processors, and bits 3 through 7 specify one 
of the 32 registers of a processor subset. The processor 
select bits are usually obtained from the priority network, 
which determines which processor will be granted the 
next time slice. The register select bits are obtained from 
several sources, depending on the condition initiating 
selection of a register. 

Normal selection of a register is determined by theµ I 
X-field alone, or an inclusive-OR of the µI X-field with 
either the M LI R 1 or R2 fields depending on the values of 
the µI a and b designators (bits FM2-006 and FM2-007, 
respectively). The combinations of the various µI and 
M LI fields for selecting registers is shown in Figure 
2-67 and summarized below: 

a·b = O·O - register selected by µI X-field only (bits 
FM2-011 through FM2-015) 
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a·b = 1 ·0 - register selected by inclusive-OR of µI 
X-field and M LI R 1-field (bits F R-009 through 
FR-011) 

a·b = 0·1 - register selected by inclusive-OR of µI 
X-field and M LI R 2-field (bits F R-013 through 
FR-015) 

a·b = 1·1 - BRFS address inhibited and a register of 
the ERF is selected by the ERF select logic as 
discussed in the paragraph titled Extended Register 
Selection. 

A BR F register can also be selected by an I VK µI. The 
I VI< µI selects any of the 32 registers by the contents of 
the Boundary Crossing (BC) register instead of the Fµ and 
F register contents. Execution of the µI selects a register 
by means of bits BC-007 through BC-015. 

A simplified diagram of the BRF select logic is shown in 
Fiuure 2-68. Each of the 8 BR FS I ines connect to all 16 
elements of the BRF in parallel to enable all 16 bits ofa 
particular register. As shown, BRFS-0 through BRFS-2 
come from the resource allocation logic to select a 
particular processor. These three processor select bits, of 
which BRFS-0 is shown in detail, are selected by the 
EXEC bits from the Execute register during normal 
operation or bits 8, 9, and 10 of the BC register during an 
IVK µI. In either case, the three input bits represent the 
processor number in BCD form. Bits BR FS-3 through 
BRFS-7 are used to select a register of a processor BRF. 
For illustrative purposes, logic for generating bits BR FS-3 
and BRFS-5 is shown in detail. During normal operation, 
bit BRFS-3 is generated unconditionally by FM2-011 and 
bit BRFS-5 by FM1-013, in combination with FR-009 or 
FR-013 depending on the presence of enable FM2-006 

(a-designator) or FM2-007 (b-designator). During an IVK 
µI, BRFS-3 and BRFS-5 are generated by BC-011 and 
BC-013, respectively, when enabled by INVOKE. 

Writing into a selected register of the BRF is enabled by 
the ENBR FW-0 and ENBR FW-1 signals. As shown in 
Figure 2-68, ENBRFW-0 is used to enable writing into bits 
0 through 7 of a register, and ENBRFW-1 into bits 8 
through 15. Both enables are generated for basically the 
same conditions, those being translation of a Register File 
Write (1,X; 2,X; 4,X; or 8,X) µI in F. The difference 
between the two enables is that only ENBRFW-0 is 
generated for the CMP and CMU (2,2 and 2,3) µl's, since 
only bits 0 through 7 of a register can be written into by 
these two µl's. The write strobe pulse is furnished via 
BRFWRITE, which occurs at t50 of every minor cycle. 
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a·b = 0·1 

When the write enables and write strobe' are present, the 
data present on the DATA IN lines from the ALU fan-out 
logic is written into the selected register. 

Group I Registers 

Group I consists of two registers for each processor: the 
f=unction (F) register and the µI Address (Pµ) register. The 
F register is 16 bits in length and contains the M LI 
currently being executed by the associated processor. The 
Pµ register is 18 bits long and contains the address of the 
first µI to be executed during the next time slice assigned 
t 10 the active processor, plus four status bits. The format 
c1f this register is shown in Figure 2-70. As shown, the 
lower 14 bit positions (bits 02 through 15) contain the µI 
address, and the upper four bit positions contain the four 
status bits. Functionally, the Pµ register is considered to 
be an 18-bit register; physically, however, it consists of a 

EXTENDED REGISTER FILE 

Assignment and Functions 

The Extended Register File (ERF) array is shown in 
Figure 2-69. As shown, the ERF consists of three groups, 
according to the number of registers associated with each 
processor and their use. 
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Figure 2-69. Extended Register File Structure 
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16-bit basic register supplemented by a 2-bit extension 
register. Since two extra bit positions are available in the 
16-bit register, the Overflow (0) and Link (L) status bits 
are stored in these positions. The CS parity error (E) and 
Skip (S) status bits, however, are located in the 2-bit 
register. The E and S bits are hardware-controlled only 
and are inaccessible for µI control, except by µl's which 
write into Pµ when operating in the boundary-crossing 
mode. Although physically separate, the 2-bit register is 
addressed, read, and written by the same lines that control 
the 16-bit register. 

Conceptually, these two register sets belong to the BRF 
since these two registers are associated with each of the 
eight processors. However, limitations in the ability to 
address the registers as part of the BR F plus the 
look-ahead capability desired by these registers, described 
in the paragraph titled Access Capabilities and 
Limitations, make it necessary to include the F and Pµ 
registers as part of the ER F. The two registers are 
numbered 00 and 01. 

Group 11 Registers 

Group II consists of 14 registers, numbered 02 through 
OF. At present, only registers 02 through OB are assigned 
specific uses. These 14 registers form only one subset that 
are shared by all eight processors. Ordinarily, a processor 
cannot gain access to a register in another processor's 
register set because the processor number is part of the 
register addressing scheme. This processor number is not 
translated for the Group 11 registers, however. Therefore, 
any processor may gain access to these registers. For this 
reason, the registers of Group 11 are referred to as the 
common block registers. Each of the Group 11 registers is 
discussed below: 

Busy/Active (B/A) Register - The B/A register indicates 
which processors are presently engaged in processing a 
task (active condition) and which processors that are 
active require a time slice to execute the next portion of 
their tasks (busy condition). The difference between the 
two conditions is that the busy condition will go through 
many on-off cycles during execution of a task, whereas 
the active condition will generally remain set until that 
task has been completed. The B/A register is made up of a 
Busy flip-flop and an Active flip-flop associated with each 
processor. These 16 flip-flops make up the B/A register as 
shown in Figure 2-71, where the busy conditions are 
represented as bits 0 through 7 and the active conditions 
represented as bits 8 through 15. (More details of the B/ A 
register are contained in the paragraph titled Busy/Active 
Register.) 

Real Time Clock (RTC) Register - The RTC register is a 
16-bit register/counter that is incremented every 1.6384 
milliseconds. The contents of this register are used by 
processor 4 (Exec) for software timing purposes, such as 

updating the time-of-day clock and initiating time-out 
operations. A simplified diagram of the RTC register is 
shown in Figure 2-72. The register is made up of four 
4-bit binary counters, where each higher-order counter is 
incremented by a carry from the preceding lower-order 
counter. Incrementing of the lowest-order counter (bits 
12 through 15) is initiated by RTCASYNC from the RTC 
pulse generator. Th is signal is generated every 1.6384 
mi 11 iseconds. 

Because the 1.6384-millisecond RTCASYNC signal is 
developed asynchronously from the rest of the CPU 
timing, it must be synchronized to the E pulse timing 
to correctly update the RTC register. This is done by 
sending RTCASYNC through a pulse catcher network 
composed of flip-flops No. 1 and No. 2. The output 
of No. 1 goes high upon receipt of the low 
RTCASYNC signal and causes flip-flop No. 2 to set at 
E150. Since RTCASYNC is asynchronous with the E­
timing pulses, however, only a sliver of RTCASYNC 
mav be present at E050 time with the result that the 
output of No. 2 may be indeterminate for a couple of 
E-times. By E7, however, the output has stabilized 
sufficiently that it can be gated as RTC-G3CI to the 
lowest-order stage of the RTC register. Incrementing 
the register at E7 avoids problems in reading this reg­
ister at EO through E6. 
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A carry from the bit 12 through 15 counter generates 
RTC-G3CO, which initiates incrementation of the bits 8 
through 11 counter. The remaining two counters are 
incremented in a similar fashion, until a final count of 1.8 
minutes is reached (1.6384 msec x 216). Because the 
counter overflows at this point (RTC is generated), the 
processor must read the register at least this often if the 
timing interval information is to be meaningful. Upon 
reaching overflow of the bits 0 through 3 counter, the 
register clears itself and begins counting again from zero. 

Tie Breaker (T) Register - The Tie Breaker register is a 
16-bit register used for recording the status information 
pertaining to system tables in Main Storage (MS). System 
programs use the tables to communicate with one 
another. Before using them, however, each program must 
chE!Ck the Tie Breaker register to determine if the desired 
table of MS is being used by another program. This is 
done by assigning each bit of the T register to a particular 
System table (as differentiated from a User table) stored 
in MS. Before calling up a System table, a processor must 
examine the bit of the Tie Breaker register representing 
that table to see if it is already being used by another 
processor. This precaution prevents one processor from 
reading tabular material that another processor is 
updating, or vice versa. A processor sets the associated 
T-bit before starting to use a table via the Test and Set 
Tie-Breaker Register M LI ( 11), and clears the bit when 
finished via the Clear Tie Breaker Register MU (12). 
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Inputs to the T register are from the ALU fan-out logic 
under control of these two M LI 's. Bit assignments for the 
various tables are generated as part of the Operating 
System (control program). 

Parity Error Address (PE) Register - The PE register 
contains the MS address at which the last parity error 
occurred. This register is constantly fed with MS addresses 
from the S register, as shown in Figure 2-73. However, no 
address is gated into the register until CLKPE is activated. 
This signal is activated upon detection of a parity error, 
and is timing so that the address it gates into the PE 
register is where the parity error occurred. 

\ +SR-MNOO 

SREG( 

, +SR-MN15 

-CLKPE 

·-----------. 
I I 
I _._ .... 

1• 
I I 

... 

: I 
I I 
; I 
I I 
I I 
~ I 

_L_I --"" . ,... 
I 
I ~~ 

I ·----· ~-- [
1At08] 
1A11 ---· 

Figure 2-73. Parity Error Register 

Control Register - The Control register stores control bits 
for each processor that define the type of priority 
assigned to each processor and whether it is to run in the 
consecutive-cycle mode. A simplified diagram of the 
register is shown in Figure 2-74. The left-most eight stages 
store Enable Priority (EP) and Invoke Priority (IP) status 
bits associated with the priority logic of processors 0 
through 3. The right-most eight stages store Consecutive 
Cycle Enable (CCE) status bits associated with all eight 
processors. The register receives its input from the ALU 
fan-out logic, and is set and cleared by the Set/Reset 
Control Register MU. 

Privileged Mode (PM) Register - The PM register is a 
16-bit register, of which only the right-most eight bits (bit 
positions 8 through 15) are used at present. These eight 
bits allow the Executive processor to set any of the eight 
processors to a privileged state. This is done by setting a 
privilege mode bit in the register corresponding to each 
processor, as shown in Figure 2-75. When set to the 
privileged state, the processor is able to execute privileged 
MLl's. 
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Boundary Crossing (BC) Register - The BC register holds 
the processor and register number used by a processor or 
the System Control Panel to select a register in another 
processor's register file. This is done during execution of 
an IVK µI. The format of the Boundary Crossing register 
is shown in Figure 2-76. Although 16 bits in length, only 
the lower 9 bits of the Boundary Crossing register are used 
for boundary crossing monitor purposes. Typical reasons 
for crossing boundaries by processor 4 are to: 

1. Set P 

2. Set, clear, or examine Condition register 

:3. Set, clear, or examine general-purpose registers 

4. Set, clear, or examine transient registers 

!>. Set, clear, or examine Pµ and F registers 

£3. Test registers (diagnostic routines) 

Control Storage (CS) Scan Register - The CS Scan 
register is used to check longitudinal parity on 256-word 
pagHs in CS. This is done by performing an exclusive-OR 
on all words of a page. If the contents of the register 
yields all 1 's after the last word of a page has been 
chec;ked, this indicates that the page was loaded correctly. 
The CS Scan register receives its input from 14 bits of 
each word stored in CS (bit positions 9 and 10 are not 
used), as shown in Figure 2-77. The register output feeds 
the FRJ decode logic checking the contents for all "1 's". 
(More details of the CS scan operation are discussed in the 
paragraph titled CS Scan/Read.) 

Console Address Register - The Console Address register 
is used in conjunction with the row of 20 address 
pushbutton/indicators on the System Control Panel to 
provide entry and display of address-related information. 
See the MEMOREX 7300 Processing Unit Maintenance 
manual for a discussion of the Panel and how the Console 
Address register is used during maintenance operations. 

Console Data Register - The Console Data register is used 
in conjunction with the row of 20 data 
pushbutton/indicators on the System Control Panel to 
provide entry and display of data-related information. See 
the MEMOREX 7300 Processing Unit Maintenance man­
ual for a discussion of the Panel, and how the data register 
is used during maintenance operations. 
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Group 111 Registers 

There are four subsets of Group 111 registers, one for each 
of processors 0 through 3. Each subset has provision for 
addressing up to 16 registers. The Group 111 registers are 
1/0-oriented registers, addressable only by the associated 
1/0 processor, and not part of the shared resources. 
Because of the restrictions on addressing these Group 111 
registers, they are designated as dedicated extended 
registers. A description of these registers, including their 
use, is contained in the applicable section of Volume 3 of 
this manual. 

Extended Register Selection 

Selection of a particular extended register of the ER F 
depends in which group the register is located. For each 
group, specific register select signals are generated as 
described below. 

Group I - The Pµ and F registers of Group I are selected 
by four bits: three bits which define the processor number 
and one bit which defines either the Pµ or F registers of 
that processor's ERF. This selection is shown in Figure 
2-78. The processor number is defined by bits ERFG1SO, 
ERFG1S1, and ERFG1S2, which comprise a three-bit 
BCD. These bits are normally generated by the priority 
logic via corresponding read and write bits after deciding 
which processor gets the next time slice. Separate read 
bits (READ-XXX) and write bits (WRITEXXX) must be 
generated by the priority logic since reading the Pu 
register for the next processor to be granted a time slice 
occurs before writing into the F register of the current 
processor. Therefore, the current processor number 
defined by the WRITEXXX bits must be present along 
with the next processor number defined by R EAD-XXX 
until the end of the present processor's major cycle. 
Enables ENRD-ERF and ENWR-ERF define the times 
that the ER FG 1 address bits are generated. Enable 
ENRD-ERF occurs at RO and R1 times of the next major 
cycle (E6 and E7 times of the present major cycle) to read 
out the starting µI address from Pµ and the associated 
MU from F for the next processor to be honored. Enable 
ENWR-ERF occurs at WO and W1 times of the present 
major cycle to store the starting address of the firstµ I to 
be executed during the next assigned time slice, and to 
store the associated M LI into the Fu register. Execution 
of an IVK (F,1,1,) µI substitutes a processor number 
contained in bits 8, 9, and 10 of the Boundary Crossing 
(BC) register for that originally supplied by the priority 
network. This is shown as inputs BC-008, BC-009, and 
BC-010 to the ERF Group I address logic, which generate 
the ERFG1 address bits in place of the READ-XXX bits 
from the priority logic. Signal ENBC-ERF enables this 
processor number from the Boundary Crossing register at 
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E2 through E5 times when the Invoke flip-flop is set. 
During a master clear condition, the MC-2 signal is ANDed 
in succession with counts E 1256, E2345, and E4567 from 
the timing chain gray-code counter. These counters are 
generated in sequence to generate processor numbers 0 
through 7 in a cyclic fashion. The effect is to clear out the 
P µ register associated with all eight processors. Th ts 
operation causes an address of 000016 to be written into 
all P µ registers so that each processor routine will begin 
with an RNIO sequence. 

Besides selecting the processor via the ERFG1 bits, it is 
also necessary to select either the P µor F register of the 
selected processor, and to enable either a read or write of 
the selected register. Selection of either Pµ or F is 
provided by SELFH/PL, according to its state: 

SELFH/PL=high - selects F register 

SELFH/PL=low - selects Pµ register 

Reading or writing the selected register is provided by 
EFlRH/WL, according to its state: 

EF1 RH/WL=high - read operation 

EF1 RH/WL=low - write operation 
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Figure 2-78. ERF Group I Select Logic 
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Figure 2-79. ERF Group I Read and Write Timing 

These signals are used together to read or write the 
selected register, as shown in Figure 2-79. Reading Pµ and 
F occurs during E6 and E7 of the present time slice, in 
preparation for the processor to run during the next time 
slice. During these two minor cycles, EF1 RH/WL is high 
to enable the read operation and SELFH/PL is either low 
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or high to select either Pµ or F as the register to read 
from. Writing into Pµ and F occurs during WO and W1 
times of the present time slice. During these two minor 
cycles, EF1 RH/WL is low to enable the write operation 
and SELFH/PL is again either low or high to select either 
the Pµ or F register. 
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Figure 2-80. Generation of SELFH/PL and EFIRH/WL 

Generation of the SELFH/PL and EF1RH/WL signals is 
shown in Figure 2-80. Both SELFH/PL and EFl HH/WL 
are generated for a master clear condition to clear out the 
Pµ. registers (write an address of 0000s) of all eight 
processors. Signal SELFH/PL is also generated at the 
times shown in Figure 2-79 to read data from and write 
data into the Pµ. register as part of the normal 
housekeeping operations associated with each time slice. 
The IVK µ.I generates SELFH/PL to select a Pµ. register 
specified by the contents of the BC register. This signal is 
generated by BC-15, which specifies register 0001 (Pµ. 
register) of the ERF, and ENBC-ERF, which enables data 
to be read from the BC register during an IVK µ.I. 

Besides being generated during a master clear condition, 
signal EFl RH/WL is driven low for three other 
operations: write Pµ., write F, and IVK µ.I. During normal 
write Pµ. and write F operations, EFl RH/WL is generated 
by NORMWR and an ANDed combination of enabling 
conditions. Signal NORMWR is generated during the 
middle half of every minor cycle and is used as the basic 
write signal. For write Pµ operations, NORMWR is 
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enabled at WO time providing neither CIOEXIT or 
WR-NOP is low. If either CIOEXIT is low (indicating the 
compare condition of a CIO µ.I to exit from the data 
transfer loop has been met) or WR-NOP is low (indicating 
that a NOP µ.I is being executed), the Pµ. Write operation 
is inhibited (Pµ is not updated by Pp) by driving) 
EFl RH/WL high. If either condition is not met, however, 
E F 1 RH /W L remains low. For write F operations, 
NORMWR is enabled at Wl time except if NOP µI is 
executed. During write Pµ and write F operations 
initiated by the IVK µI, E1 FRH/WL is generated by 
LATWR and enabling conditions. Signal LATEWR is 
generated for the same period as NORMWR (about 50 
nanoseconds) but about 15 nanoseconds later in the 
minor cycle. This additional delay gives the IVK µI 
sufficient time to perform the required translation 
necessary to implement the µI. Since this µI selects only 
one register at a ti me, the E F 1 R H/WL signal is generated 
only once. Enabling conditions for the IVK µI are 
FXE0-1, which specifies the IVK K µI itself; BC-OOOOX, 
which specifies either register 0000 (F) or 0001 (Pµ ); and 
BC-07, which specifies the ERF. 
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Group 11 - Selection of a Group 11 register for reading or 
writing depends on whether the register is selected via µI 
control or hardware control. All Group 11 registers may be 
read via µI control, and all but the PE, RTC, and CS scan 
registers may be written via µI control. Logic for selecting 
a Group 11 register via µI control is shown in Figure 2-81. 
During a normal read operation, with the a and b 
designators set, each Group 11 register is selected by means 
of bits 12 through 15 of the µI X-field (F µ bits 12 
through 15). If the read operation is under control of an 
IVK µI, the register address is obtained from bits 12 
through 15 of the Boundary Crossing register. In either 
case, the 4-bit address generates four select signals, 
ERFG2SO through ERFG2S3 These select signals are fed 
to a translator where they undergo further decoding to 
generate select bits ERFGP2SO through ERFGP2S2. 
These three select bits are routed to a one-of-eight 
selector. The selector is fed with eight register inputs and 
enables reading the selected register input. Note that while 
there are only 8 inputs to this selector, there are 10 
registers of Group 11 that need to be selected. Selection of 
the two extra registers is accomplished by ORing the 
outputs of the CSS, Console Address, and Console Data 
registers and feeding the result into the selector as one 
register input. Each of these registers, then, is selected by 
a corresponding select bit: SELCSS, SELMA, or SELNR, 
which are generated by select signals ERFG2S2 and 
ERFG2S3. The correspondence of ERFGP2 and SEL 
select bits to the Group 11 register addresses is shown in 
Table 2-5. (Note that the select bits are defined in 
complement form while the address bits are defined in 
true form.) 

Selection of a Group 11 register for a write operation is 
basically done by selecting the appropriate clock or clock 
enable signal for a particular register. For the Busy/Active, 
Tie Breaker Control, Privileged Mode, Boundary Crossing, 
CS Scan, Console Address, and Console Data registers, the 
clock or clock enable signal is generated by the four select 
signals, ERFG2SO through ERFG2S3. This method of 
register selection is shown in Figure 2-82 for selecting the 
Tie-Breaker (T) and Boundary Crossing (BC) registers as 
examples of Group 11 register selection. Of the four select 
signals, ERFG2S1 through ERFG2S3 are routed to a 
BCD/one-of-eight decoder. The two decoder outputs are 
sent to one side of corresponding AND gates used to 
generate the clock enable signal for each register. The 
other side of the AND gates are fed with ERFG2SO. This 
signal is ANDed with ENERG2WR, indicating a Group II 
write operation, and SELERFG3, indicating that the 
ERFG2SO through ERFG2S3 select bits are selecting one 
of the lower 16 registers of the ERF. (As shown in Figure 
2-69, the upper 16 register addresses are reserved for 
Group 111 registers.) The result is fed in true form to the 
AND gate used to clock the BC register, since its address is 
greater than 7 (0815}, and in complement form to the 
AND gate used to clock the T register since its address is 7 
or less (0415). The AND gate outputs are enabled with 
CLKE R FG2 (generated at TX80 time) to generate register 
clock signals CLKTB and CLKBC. During a master clear 
operation, "O's" are written into all Group 111 registers 
(except the PE and RTC registers). This is accomplished 
by satisfying both sides of each AND gate with MC, which 
essentially clocks each register with no data ("O's") 
present on the register input lines. The result is to clear 
each register. 

Table 2-5. ERF Group II Read Select Bits 

Hex 
FµReg Bits ERFGP2 Bits SEL Bits 

Reg ADAS 12 13 14 15 S2 S1 so css MR NR 

B/A 02 0 0 1 0 1 1 1 1 1 1 

ATC 03 0 0 1 1 1 1 0 1 1 1 

T 04 0 1 0 0 1 0 1 1 1 1 

PE 05 0 1 0 1 1 0 0 1 1 1 

CONT 06 0 1 1 0 0 1 1 1 1 1 

PRIV 07 0 1 1 1 0 1 0 1 1 1 

BC 08 1 0 0 0 0 0 1 1 1 1 

css 09 1 0 0 1 0 0 0 0 1 1 

ADAS QA 1 0 1 0 0 0 0 1 0 1 

DATA OB 1 0 1 1 0 0 0 1 1 0 
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Selection of clock signals for the Busy/Active, Console 
Address, and Console Data registers differs slightly from 
those for the T and BC registers in that the select logic 
generates a clock enable signal only. The reason is because 
the flip-flops comprising these registers require a 
positive-going signal to clock them instead of the 
negative-going signal required by the other registers. The 
clock signals for these flip-flops, therefore, are generated 
by ANDing them with TX80 in a non-inverting fashion to 
furnish the required polarity. The AND gates are located 
on the same module with the registers. 

As mentioned previously, writing the PE, RTC, and CS 
scan registers is accomplished under hardware control 
only. The PE register is written with the MS address at 
which a PE occurred during an MS read operation, as 
discussed in the paragraph titled MS Read. The RTC 
register is continuously written with a clock pulse derived 
from the RTC pulse generator, as described in the 
paragraph titled Real Time Clock Pulse Generator. The CS 
scan register is written with cumulative longitudinal check 
data during a CS scan operation, as described in the 
paragraph titled Scan/Read. 

Group 111 - Selection of Group 111 registers is performed 

in a manner similar to that for the BRF registers: 
generation of a processor select number and a register 
address. Like the BR F registers, each 1/0 processor can 
only access registers of its assigned file. A simplified 
diagram showing selection of Group 111 registers is shown 
in Figure 2-83. The processor number is specified by the 
EXC:T signal from the resource allocation network. Each 
1/0 processor is selected by a unique EXCT signal. The 
Group 111 register is selected by the SE LE RF G3 signal and 
the four ERNG3 signals. The SELERFG3 is over-all select 
for al I Group II I registers. It defines the digit 1 for all 
Group Ill register address (1015 through 1F15) and 
enables selection of the Group 111 registers by disabling 
selection of the Group 11 registers (0215 through OF 15). 
The four ERNG3 select signals comprise the register 
address within Group 111. These five select signals are 
normally generated by corresponding bits of the X field of 
a RE'gister File Read or Register File Write µI (Fµ bits 11 
through 15). During an Invoke condition, the select 
signals are derived from corresponding bits of the BC 
register. The decision to perform a read or write into these 
registers is determined by the ERFG3RD or ERFG3WR 
signals. Each of these signals is generated from a 
com:!sponding Register File Read or Register File Write 
µI. 
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Table 2-6. Reading and Writing File Registers 

Prr0cessor 
Register Oriented Read Capability 

Basic Register File yes µI control 

Extended Register File 

Group I 

F yes hardware or µ1 control 

Pµ yes hardware or µI control 

Group II 

Busy/Active no hardware or µI control 

RTC no hardware or µ1 control 

Tie-Breaker no µ1 control 

PE no µI control 

Control no hardware or µI control 

Privileged Mode no µ1 control 

Boundary Crossing no hardware or µI control 

CS Scan no µI control 

Panel Address no µI control 

Panel Data no µ1 control 

Group Ill 

Processor 0 yes µ1 control 
(4 registers) 

Processor 1 yes µ1 control 
(5 registers) 

Processor 2 yes µ1 control 
(5 registers) 

Processor 3 yes µ1 control 
(1 register) 

*µI control write into E: and S bit positions will clear them. 
**All µl's that attempt a write, except ROM, will clear CSS. 

Write Capability 

µI control 

hardware or µI control 

hardware or µI control* 

hardware or µ1 control 

hardware control 

µ1 control 

hardware control 

µI control 

µ1 control 

µ1 control 

hardware or µI control** 

hardware or µI control 

hardware or µ1 control 

µI control 

µt control 

µt control 

µI control 

Access Capabilities and Limitations MAIN STORAGE INTERFACE 

Master Clear 

no 

no 

yes 

yes 

no 

yes 

no 

yes 

yes 

yes 

yes 

yes 

yes 

no 

no 

no 

no 

Because the registers of the BRF and ERF are read and 
written by a variety of conditions, it is useful to tabulate 
their conditions in one central locatif:m. Table 2-6 lists 
these conditions in summary form for each file register. 
Specifically, this table lists each regist•~r of the BRF and 
ER F, whether or not it is processor-oriented, conditions 
for reading and writing the register, and whether or not it 
can be master-cleared. 

The Main Storage (MS) interface logic controls data 
transfers between the MS sections of shared resources and 
the rest of shared resources (from here on referred to as 
the Central Processing Unit (CPU) section). All Circuhs 
of the MS interface logic function during one of two 
basic operations: write and read. 

Each type of operation performs on data in either word 
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mode (16 bits) or byte mode (8 bits). The two bytes of a 
word are referred to as the left-most byte (bits 0 through 
7) and the right-most byte (bits 8 through 15). The 
left-most and right-most bytes are also referred to as bytes 
0 and 1, respectively. 

Parity is calculated in the CPU for each byte of a 
word using odd parity (odd number of "1 's" in each 
byte, including the parity bit). The upper byte parity 
bit is referred to as PO, the lower byte parity bit at 
P1. The format of a word transferred to MS is shown 
in Figure 2-84. 

An MS write or read operation is always initiated by a 
Load S (LS1, LSF, LS2, or LSE) µI which transfers the 
contents of a register in the Basic Register File (BR F) to 
the S register. These contents specify the address of a 
location in MS. If the Load S µI is followed by a Load D 
(LDW, LDW-, or LDB) µI, the contents of a register in 
the BR F is transferred to the D register and the MS 
write is initiated. The MS write then transfers the con­
tents of D to the location in MS defined by the 
address in S. If the Load S µI is not followed by a 
Load D µI, an MS read operation will unconditionally 
take place by reading the operand stored at the loca­
tion in MS and sending it to the data fan-out logic in 
the MS interface. Normally a Load S µI programmed 
for a read operation will be followed by some µI that 
takes the data read from MS and uses it according to 
the particular µI. These µl's include the Store D (SDW 
or SDB) µl's and the D ... A (DTA, DTA-, IDX, and 
DFA) µl's. A special use of the SDW µI is during the 
RN I sequence to read the next M LI to be executed in 
the program. When used for this purpose, the SDW µI 
gates the first-level decoded results of the M LI from 
the FRJ decode address table (AT) and saves the MLI 
in the F and FRF registers until its execution is 
completed. 

Operating details of the MS interface logic will be 
presented by discussing the basic elements of the logic (S 
register, D register, and data fan-in) followed by a 
discussion of the MS write and MS read operations plus 

associated timing and control signals involved. Because 
thev are intimately associated with MS control signals, 
Register Option control signals are also discussed in this 
section. (A description of the Register Option itself is 
contained in the paragraph titled Register Option.) 

S REGISTER 

The S register holds the address of the word or byte to be 
either read from or written into MS. The register consists 
of 16 flip-flops, fashioned from cross-coupled NAND 
gates. The advantage of these flip-flops is that they do not 
require any data set-up time (about 10 nanoseconds) and 
provide immediate propagation. This enables the address 
data to be entered into the register immediately, an 
important feature since the MS access operation is time 
critical. A diagram showing one stage of the S register is 
shown in Figure 2-85. The address obtained from the BRF 
through the Aµ register fan-in is gated through the EN 
SET gate when CLKSR and ENCLKSR are present. Signal 
ENCLKSR is generated by a Load Sµ I (3,X) at E040 and 
cleared normally at E140 or upon occurrence of a CS read 
error (SWPERR). Assuming the address bit to the flip-flop 
is a 1, the feedback path from the SR (set) output to the 
CLK LATCH gate keeps the flip-flop set while the address 
bit is present during the clock period. After both the 
clock pulse and address bit have been removed, the 
flip-flop remains set due to the feedback path from the 
SR output to the NORM LATCH gate. The flip-flop 
remains set until cleared by a subsequent address bit of 0, 
together with clock and clock enable signals. 

MAIN STORAGE 

~-----------........... ,,,,.,,,....._~---------------------~ 

0 8 15 

LEFT-MOST BYTE RIGHT-MOST BYTE 

Figure 2-84. Format of Word Transferred to MS 
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Figure 2-86. D Register 

D REGISTER 

The D register holds the data to be written into MS at the 
location specified by the contents of the S register. This 
data also comes from a BRF register, but under control of 
a Load D (7,X) µ.I. The D register is composed of 16 
edge-triggered J-K flip-flops. The D register flip-flops can 
be preset or precleared, as required, to store data in either 
true or complement form. (See the paragraph titled Aµ. 
and Bµ Registers for a description of storing data in true 
or one's complement form in the Aµ and Bµ registers.) 
Logic for a stage of the D register is shown in Figure 2-86. 
The register is pre-cleared via ENRDR and CLKS/RDR to 
enable storing data in true form during execution of a . 
LDW (7,0) or LDB (7,2) µI, or during a master clear 
condition. The register is pre-set via ENSOR and 
CLKS/RDR to enable storing data in one's complement 
form during execution of a LDW- (7, 1) µI. For all these 
µl's, data on the RF-MSI lines is clocked in via CLKDR 
and ENCLKDR. The enable signal is generated by the 
Load D flip-flop for any Load D µI. If the system is in 
the maintenance mode, the register can be pre-set to store 
all "1 's" by the SET AM and SET BM signals. These 
signals are generated by simultaneously pressing the SET 

Aµ and SET Bµ pushbuttons on the System Control 
Panel. 

DATA FAN-IN 

The data fan-in logic, shown in Figure 2-87, provides for 
selecting one of three data paths to the ALU fan-out 
logic: 

1 .. Register Option (RO) 

2. D register 

3. Main Storage (MS) 

Data read from either the RO or MS is done so in a similar 
manner, by means of a Load S µI. For this µI, MSREADY 
is generated at E440 time of a time slice. In the case of a 
RO read, ROREAD must also be present. In the case of an 
MS read, ROA EAD must be low to specifically inhibit an 
attempted read from the RO. Data from the D register can 
be enabled when neither the RO or MS is reading out data 
(whenever MSREADY is low). For this condition, the 
data contained in D will usually represent an operand 
obtained from a file register. 
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MS WRITE OPERATION 

A block diagram for the MS write operation is shown in 
Figure 2-88. Data can be stored transferred to MS in 
either word mode (16 bits) or byte mode (8 bits). 
Selection of a byte to be transferred is under control of 
the STDBYTE enable, which enables the byte select logic. 
When STDBYTE is low, all 16 bits of the D register are 
stored in 16 bits of a location in MS specified by the 
address in S. When STDBYTE is high, the byte contained 
in bits 8 through 15 of D is transferred in parallel to both 
the left-most byte and right-most byte of the location in 
MS. The choice of storing bits 8 through 15 of Din either 
the left-most byte or right-most byte of MS is determined 
by the state of bit position 15 of thie address in S, as 
discussed in greater detail in the following paragraph 
(Word and Byte Write Operations). Odd parity for the 
word or byte to be stored is generated on a byte basis by 
the parity generator. The parity generated for each byte is 
stored along with the byte as shown in Figure 2-84. Prior 
to being routed to MS, the contents of both S and D are 
routed to the Register Option (RO) logic. Among other 
things, the RO may contain segment tags whose con­
tents are appended to the address contained in S to 
form an effective address at which data in D will be 
stored in MS. The data from D and the byte select 
logic also pass through the RO for the singular pur­
pose of initially loading certain regist,ers and tables in 
the RO. Thereafter, the RO is transparent to all data 
passing through to MS. 

Word and Byte Write Operations 

Word and byte writes into MS are performed by the logic 
of Figure 2-89. Selection of either a word or a byte to be 
transferred to MS is controlled by the byte selector. The 
byte selector is fed with outputs from both the left-most 
half and right-most half of D, and routes the byte 
contained in either half to the left-most half of a location 
in MS as specified by the state of STDBYTE. This select 
signal works in conjunction with MS byte write enables 
STOREUPP and STORELOW to store data in MS. As 
Figure 2-89 shows, there are threee ways in which data 
can be stored in MS depending on the µI executed. Part a 
shows a whole word store operation as performed by 
either a LOW or LOW- µI. For this case, STDBYTE is low 
so that data from D is sent directly to MS without the 
right-most byte being multiplexed onto the lines feeding 
the left-most half of the MS location. (This path is 
indicated by dashed lines signifying that the path is not 
enabled for a whole word store.) In addition, both 
STOREUPP and STORELOW are high to store both 
halves of the 16-bit word. Parts b and c of Figure 2-89 
show a byte store operation: part b showing a byte write 
into the left-most half (bits 0 through 7) of the MS 
location and part c showing a byte write into the 
right-most half (bits 8 through 15) of the MS location. In 
both cases, the byte to be stored in MS must be located in 
the right-most half of D. In both cases, STDBYTE is high 
so that the bytes in bits 8 through 15 are transferred in 
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parallel to both the left-most and the right-most half of 
the MS location. However, the byte will be stored into 
only one half depending on which MS write enable is 
generated (STOREUPP if writing into the left-most half or 
STORE LOW if writing into the right-most half). 

Logic for generating the byte write enables is shown in 
Figure 2-90. Enables STOREUPP and STORELOW are 
generated simultaneously during a word store by means of 
STOREMS and STDBYTE. Signal STOREMS is generated 
during any MS access requiring data to be stored and 
STDBYTE is low for a word store operation. During a 
byte store, either STOREUPP or STORELOW is 
generated, depending on the state of SELBYTEO. If a 
left-most byte store is indicated, SR 15 is low and 
SELBYTEO is high. If a right-most byte store is to be 
performed, SR 15 is high and SELBYTEO is low. Before 
being sent to MS, the two store enables are first passed to 
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the RO for combining with the bounds check signals. 
These check signals determine whether or not the 
addressed location can be written into. If not, the store 
enables are disabled. 

Parity Generate and Store 

During a word write, parity is calculated for each byte of 
a word. The parity bit calculated for the left-most byte of 
a word is transferred to MS along with the word as bit 16, 
and that for the right-most byte is transferred as bit 17. 
During a byte write, the parity bit calculated for the 
right-most byte in D is transferred to MS as both bits 16 
and 17. Either one of the two bits will be written with the 
byte depending on whether the byte is to be stored in the 
left-most half or the right-most half of the location on 
MS. A block diagram showing generation and storage of 
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Figure 2-90. Generation of Byte Write Enables 

parity bits is shown in Figure 2-91. Parity is calculated by 
a parity tree which generates parity for each byte in three 
stages. Stage 1 combines the true and complement states 
of the even-numbered bits of a byte together to generate 
corresponding GENODD signals. Each GENODD signal is 
high if the number of "1 's" combined is odd. Stage 2 
combines the true and complement states of the 
GENODD signals for each byte to generate two other 
signals. These signals are fed to the third stage, which is 
also fed with other inputs, to generate the final byte 
parity bit. 

During a byte store, only the parity bit generated for the 
right-most byte in D has meaning. However, this bit must 
be fed in parallel to MS as both bits 16 and 17 since the 
byte in D may be stored in either the left-most or the 
right-most half of the MS location. For this operation, 
STDBYTE is high to (1) enable the left-most byte store 
gate so that the right-most byte parity bit may be sent out 
over the bit 16 line, and (2) disable the word store gate to 
prevent the parity bit generated for the (meaningless) 
left-most byte in D from being sent out over the bit 16 
line. During a word store, both bytes contained in D have 
meaning; therefore, separate parity bits must be generated 
for each. For this case, STDBYTE is low to enable the 
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word store gate and disable the left-most byte store gate 
for bit 16. 

Signals SWEVEN16 and SWEVEN17 are generated by the 
BYTE PARITY 0 and BYTE PARITY 1 pushbuttons, 
respectively, on the System Control Console. These 
pushbuttons are used to change the parity generated for 
each byte from odd to even as a means of manually 
checking the parity detect logic. 

MS READ OPERATION 

A block diagram for the MS read operation is shown in 
Figure 2-92. Like the MS write operation, the S register is 
loaded with an MS address via a Load S µI. This µI 
performs the MS read and loads the data read into the 
data fan-in logic. This data is then routed from the data 
fan-in logic via a Store D or D-Aµ I and used according 
to the particular µI. If one of the aboveµ I's is executed in 
a time slice that did not reference MS by a preceding Load 
S µI, the data obtained will come from the D register 
instead of from MS. All data read from MS is checked for 
correct parity. This is done by routing the data from MS 
in parallel to both the data fan-in logic and the parity 



Table 2-7. Word and Byt4~ Read Operations 

Read Enables 
µ1 or Condition Operation Generated 

SOW µI DR 00-07-ALU 00-07 SEL-DR-0 

DR 08-15-ALU 08-15 SEL-DR-1 

SOB µI O's-ALU 00-07 SEL-ZR-0 

(SR 15 = 0) DR 00-07-ALU 08-15 SEL-DRB-0 

SOB µI O's-ALU 00-07 SEL-ZR-0 

(SR 15 = 1) DR 08-15-.AL U 08-15 SEL-DR-1 

check logic, as shown in Figure 2-85. The parity check 
iogic checks the data for even parity by combining the 
data bits (bits 0 through 15) with the parity bits (P1 and 
P2) on a byte basis. A parity error in either the upper byte 
or lower byte of a word generates an error signal which 
causes a jump to a parity error trap routine. 

Word and Byte Read Functions 

Although data from MS is always read in word form, 16 
bits at a time, the data may be masked to byte form, 
depending on the particular µI that initiated the read 
operation. This byte masking is performed by the ALU 
fan-out logic under control of mad byte enable signals. 
The types of MS read functions that can lbe performed are 
listed in Table 2-7. The SOW µI reads whole words and 
routes them to register X via the ALU fan-out. The SOB 
µI also reads whole words but masks out (sets to 0) either 
the upper 8 bit positions or the lower 8 bit positions of 
the word read to form a byte to be operated on. The 
choice of forming either a left-most byt1a or a right-most 
byte is determined by the state of bit 15 of the S register. 

Note that regardless of whether the SOB µI specifies 
either the left-most byte or the right-most byte, the byte 
is always handled as a 16-bit word, right-justified if 
necessary, with the upper 8 bit positions set to 0. 

The portion of the ALU fan-out logic used to perform the 
aforementioned read operation is shown in Figure 2-93. 
The figure has been simplified to show bit transfers in 
groups of four bits each. The enables required for each 
type of read operation listed in Table 2-7 are also shown 
in this figure. Each operation requires two enables: one to 
handle bits 0 through 7 and one to handle bits 8 through 
15. Generation of these read enables is shown in Figure 
2-94. Signal SELBYTEO is genrated from the 
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complemented output of the S register bit 15 flip-flop. It 
is used to select either the left-most byte (SELBYTEO 
high) or the right-most byte (SELBYTEO low) during 
execution of a SOB µI. 

MS PARITY CHECK 

Parity is checked on all data read from MS ,Py the parity 
check circuits. Checks are made on a byte basis using odd 
parity. A portion of the parity check logic is shown in 
1=igure 2-95. This logic checks parity of the left-most byte 
(bits 0 through 7) of the MS word. As shown, the logic 
consists of two parts: the parity checker circuit, which 
c:hecks parity of bits 0 through 3 and bits 4 through 7, 
and the MS parity check/display circuit, which generates a 
parity error signal (PE-BYTEO) if parity is not correct. As 
an example, assume the left-most byte stored in MS was 
all "1 's". Since this constitutes an even number of "1 's", 
the parity bit generated is also "1" so that the total 
number of ''1's" in the byte stored, including parity, is 
odd (8 + 1 = 9 "1 's"). Now assume that when the byte 
was read, bit 0 was erroneously read as a "O" instead of a 
"1 ". Since the error occurred in one of the four odd bits 
of the byte, CHKEVENO will go high. Bits 1, 3, 5, and 7 
were rea·d without error, however, and CHKEVEN1 goes 
low. These two outputs are combined with the P1 parity 
bit from MS to generate a low PE-BYTEO signal, 
s;ignifying an error in the data read. The low PE-BYTEO 
s;ignal is routed to the MS parity error display logic and to 
a parity error trap routine to recover from the error 
c:ondition. * 

"If the ECC option is present, parity bit P1 is meaningless since 
the ECC will provide automatic correction of single-bit errors. 
For this condition, the trap routine will be performed only if an 
error occurs that the ECC cannot correct. 
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Figure 2-91. Parity Generate and Store 

MS Parity Error Display 

The results of the MS parity check logic are sent to the 
MS parity error (PE) display logic to light the MS 
PARITY ERROR indicator on the System Control Panel 
upon detection of an MS PE. This logic also lights the 
indicator upon detection of an irrecoverable ECC error if 
the ECC option is present in the system. The MS PE 
display logic is shown in Figure 2-96. Information from 
the parity check logic and the ECC logic are fed to gate 1. 
This gate generates a high output if (1) the ECC option is 
present (ECCPRES) and a non-recoverable ECC error 
(ECCER ROR) is generated, or (2) the ECC operation is 
not present and a PE in either byte 0 or byte 1 read from 
MS (PE-1 + PE-2) is present. For either condition, signal 
STOREMS must be low to indicate that the operation 
being examined is not an MS store. The output of gate 1 is 
ANDed with OUTBOUND · OUTRANGE by gate 2. 
These two signals indicate that the PE occurred within the 
assigned bounds protect limits (OUTBOUND) and within 
an existent portion of MS (OUTRANGE). The result, 
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designated MS PE, is sent to the MS PE flip-flop to light 
the MS PE indicator on the Panel and to the Console Busy 
flip-flop clear logic to turn off the Panel upon detection 
of an MS PE (see the paragraph titled Console Modes). 

MS INTERFACE SIGNALS 

References to MS require a number of interface signals 
used both for initiating a reference and to restrict certain 
ti rne-constra i ned operations associated with MS 
references. These signals are divided into three categories: 
MS reference, MS write, and MS read signals. Because 

they are intimately associated with those required for MS 
references, control signals used during references to the 
RO are also discussed in this section. As an aid is 
discerning the differences between all MS and RO control 
signals, many of which perform identical functions but 
when different conditions, the purpose of each control 
signal is listed in Table 2-8. Timing for all MS control 
signals is shown in Figure 2-97. 
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Table 2-8. MS lnterfac:e Signals 

Function 
·-

MS Reference (Write or Read) 

Prevent Fµ from being clocked for remainder of time slice if Load S µI executed at EO. 

Initiates MS reference (either read or write) 

MS Write 

D register ready to be loaded with data to be stored on MS via Load D µI. 

Indicates MS write operation, used to enable word and byte write signals. 

MS l~ead 

Contents of D from MS ready to be transferred to register X via Store D µI. 

Contents of D from MS ready to be transferred to Aµ via o-Aµ I. 

Enable to gate data read from MS through data fan-out. 

RO Reference (Write or Read) 
·-------·· 

Reference to be made to register in ECC feature of RO. 

Reference to be made to register in basic protection, relocation and protection or job 
accounting feature of RO. 

Enab~e to gate data read from RO through data fan-out. 
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MS Reference Signals 

As discussed previously, an MS reference operation 
(whether read or write) always begins with a Load S µI. 
As far as the CPU is concerned, an MS write can be 
performed in two minor cycles (200 nanoseconds), the 
time required to execute a Load S µI followed by a Load 
D µI. An MS read, however, takes five minor cycles to 
perform from the start of the Load S µI (EOOO) until data 
read from MS is available at the data fan-in (E480 to 
E505). To assure that enough time will .always be available 
to read MS during the same time slice, the MS interface 
logic unconditionally forces execution of the Load S µI 
during EO regardless of whether a read or write is to be 
performed. If occurring in the program at any time other 
than EO, the non-MS reference portions of theµ I will be 
performed (that is, (X)-Aµ, constant-...Bµ, and 
0/+1..,... FCR). However the (X)- S transfer will not be 
performed since S can be clocked onlv during EO which 
effectively keeps the MS read from taking place. Instead a 
resync condition is set up and the Load S µI is re-executed 
at EO of the next time slice. The rnsync condition is 
implemented by the ASYNC signal, shown in Figure 2-98. 
The signal is generated by a Load S p.I executed at any 
time other than EO. This signal, in turn, generates 
BLOCKFM which keeps F µ from being loaded with the 
following µI for the rest of the time slice. To assure that 
the Load S µI be executed during the next EO time, it is 
necessary to program a blockpoint µI immediately 
preceding the Load S µI. (If the blockpoint µI were not 
used, the µI routine would execute through the Load SµI, 
idle through the rest of the time slice; then in the next 
time slice, start at the sameµ I as the present time slice 
(since no new block point address was provided) and 
repeat the same µl's up to the Load Sp.I.) 

Figure 2-98. MS Reference mgnals 

Signal ACCESSEN is sent directly to MS to initiate the 
MS reference. The signal is generated upon translation of a 
Load S µ.I if an RO reference has not been requested; that 
is, neither X=1 E or 1 F or BLKACCEN is high. Signal 
X==1 E or 1 F is generated if the X-field of the Load S µI 
specifies the contents of transient register 1 E or 1 F of the 
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BR F. These two registers, reserved for exclusive use by 
the RO, contain the address of a register in the RO to be 
referenced. Signal BLKACCEN is generated if the system 
is in the maintenance mode when a RO read or RO write 
is initiated by the CONSOLE MODE SELECT selector on 
the System Control Panel. 

MS Write Signals 

Indication that an MS write operation is to be performed 
is furnished by a Load D µI executed at E 1. This sets the 
Store MS flip-flop at E 160 to generate STOA EMS, as 
shown in Figure 2-99. This signal is used to enable 
generation of word and byte store signals STOR EUPP and 
STORELOW, as discussed previously. 

... ------------... I I 
LOAO 0µ1-I-- D I 

I I 
I I 
I I 
I I 

E160 -I-- C 0 +STOREMS 

I I 
I 1AM I L------------...1 

Figure 2-99. MS Write Signal 

MS Read Signals 

As explained earlier, data read from MS is not available at 
the interface until about E480. Therefore, the execution 
times of the µl's that use this data (the Store D and D+-A 
µl's) are restricted accordingly. For a Store D µI, data 
from the MS interface is transferred to a file register at 
t40 of the minor cycle in which execution of the µI 
began. This means that a Store D µI cannot be executed 
prior to E5 to allow storage of data at E540. For a D+-A 
µI, however, the transfer of MS data to Aµ does not 
take place until t20 of the minor cycle following that 
in which the µI began its execution. This means that a 
D .... A µI can begin execution at E4 because the data 
from MS is not transferred to Aµ until E520. 

Signals DR EADY for the Store D µl's and DR EADE for 
the D+-A µl's are generated for the purpose of providing 
these timing restrictions. Logic for generating the signals is 
shown in Figure 2-100; associated timing is shown in 
Figure 2-97. Each signal is generated for two different 
conditions: a Load Sµ I followed by a Load D µI (an MS 
write operation), and a Load S µI followed by any µI 
other than a Load D µI (an MS read and store operation). 
For either type of operation, both DREADY and 
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Figure 2-100. MS Read Signals 

DREADE go low at E040 when their respective flip-flops 
are set. If a write operation is being performed, both 
flip-flops are set. If a write operation is being performed, 
both flip-flops are cleared at E 160 time. This allows the 
Load D µI to be executed during the next minor cycle to 
store the data at the address contained in S. If a read 
operation is being performed (not Load D µI), the 
flip-flops stay set to keep DREADY low until E510 and 
DREADE low until E400. During this time, DREADY 
and DREADE are inverted and ANDed with STORE D 
and D -A respectively. The result is to schedule NOP's by 
preventing the following µI address and from being 
loaded into Sµ and Fµ, respectively. The flip-flops stay 
set until E400 and E510, at which time the Store D 
and D-A, µl's can be executed as discussed 
previously. 

For either of the two above situations, data from MS is 
gated through the data fan-in logic by MSREADY. This 
signal is generated as a result of a Load Su I at E400 
unless the next µI is a Load D (signal DREADE is low). 
The Load D µI signifies that an MS write is to be 
performed; therefore, no data is to be read from MS. 

RO Reference Signals 

Logic for generating the three RO reference signals is 
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shown in Figure 2-101 with associated timing shown in 
Figure 2-97. Signals RO-SPEC and MS-SPEC are generated 
as a result of addressing a RO register either in the RO 
iteslf (Basic Protect feature, Relocation and Protect 
feature, or Job Accounting feature) or in MS (ECC 
feature). Both signals are generated upon setting the MS 
Reference/RO Select flip-flop, indicating that a RO access 
is to be made. In addition, both signals are low during 
E040 to E 150 to allow the Load S µI to gate the RO 
register address into either the RO or MS. Signal RO-SPEC 
is generated specifically if the register addressed is not in 
the ECC feature (SR-MN04 is low). Signal SR-MN04 
indicates that bit 4 of the RO register address in BRF 
register 1 E or 1 F is cleared ("O"), which eliminates 
selection of the ECC. Signal MS-SPEC is generated 
specifically if the register addressed is in the ECC feature 
(SR-MN04 is high). Note that MS-SPEC does not begin an 
MS reference to read or write from MS proper. It only 
allows accessing the ECC registers of the RO. 

Data read from a register in the RO proper, (meaning not 
the ECC feature in MS itself), is gated through the data 
fan-in logic in the interface by ROREAD. This signal is 
generated at E040 if either X = 1 E OR 1 F is present, 
meaning that an RO reference has been specified. For 
both of these enabling conditions, SR-MN04 must be 
high. (Data from an ECC register is gated through the data 
fan-in as MS data via enable MSR EADY.) 
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Figure 2-101. RO R1tference Signals 

MAIN STORAGE 

The Main Storage (MS) section of the shared resources 
stores machine language instructions (MLl's) and data 
processed by the system. The primary characteristics of 
MS are as follows: 

• 
• 

Storage Element 
MOS integrated circuits 
Storage Capacity -

16 bit words 
8K*to 32K 
64K** 

8 bit bytes 
16K to 641< 
128K** 

(without Register Option) 
(with Register Option) 

• Storage Access -
Random access with an access time of 385 
nanoseconds 

• Storage Cycle Time -
900 nanoseconds without ECC 
1000 nanoseconds with ECC 

* K=1024 
**Capacity of one chassis; the Register Option pro­
vides an addressing capability up to Ei12K words 
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• Error Detection -
Parity error detection is standard. Error 
Correction Code (ECC) is an option. 

MS ORGANIZATION 

MS Chassis 

The MS logic modules are in the three card rows (A, 
8 and C) of chassis 2. Figure 2-102 shows that the 
card rows are organized as follows: 

• Card row A contains the leftmost byte of up 
to 64K words 

• Card row C contains the rightmost byte of 
up to 64K words 

• Card row 8 is used for the ECC feature 
when present 

Each card row is divided into two zones; each zone 
has a printed circuit backpanel with common address 
data and control connections for up to 32K addresses. 
As an example, the second page of Figure 2-102 lists 
the pins, signal names and logic mnemonics for Zone 
A 1. The storage elements are on the HH module 
which is the basic storage module for MS. A 64K 
word MS with the ECC option uses 48 HH storage 
modules. 
The timing, addressing and control logic is located on 
three modules in card locations 2811, 2812 and 2813. 
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Common Bus Pin Name Logic Mnemonic 
(for Zone Al) 

92 Address 14 AD14--.ZA1 
96 Address 13 AD13 __....zA1 
89 Address 12 AD12_...ZA1 
90 Address 11 AD11 __....zA 1 
94 Address 10 AD 10-....zA1 
91 Address 9 AD9 _..zA1 
85 Address 8 AD8 -....zA1 
82 Address 7 AD7 __....zA 1 
88 Address 6 AD6 --.zA1 
93 Address 5 AD5 -+-ZA 1 
86 Column Select 0 CLS O_..ZA1 
84 Column Select 1 CLS 1--..zA1 
83 Column Select 2 CLS 2-.ZA1 
80 Column Select 3 CLS 3-.ZA1 
38 Strobe Time STRB_..ZA1 
37 Digit Time DIFT --..zA1 
87 Write Time WRT _..zA1 
76 Column Select Time CLST-.ZA1 
81 Address Timing ADT _..,.zA1 
95 Precharge Time PRCH---ZA1 
24 Data In, Bit 0 DOO -.zA1 
25 Data In, Bit 1 D01 _..,.zA1 
26 Data In, Bit 2 D02 -.zA 1 
27 Data In, Bit 3 D03 -+ZA1 
31 Data In, Bit 4 D04 _..,.zA1 
32 Data In, Bit 5 D05 --.zA1 
33 Dataln,Bit6 D06 _...zA1 
34 Data In, Bit 7 D07 -.zAl 
78 Data In, Bit 8 DOB __.,.zA1 
22 Data Out, Bit 0 OOZA 1__...SR 
23 Data Out, Bit 1 01ZA 1_.,SR 
28 Data Out, Bit 2 02ZA1__...SR 
29 Data Out, Bit 3 03ZA 1---...s R 
30 Data Out, Bit 4 04ZA 1--.sR 
35 Data Out, 13 it 5 05ZA 1-....sR 
36 Data Out, Bit 6 06ZA 1__,...SR 
39 Data Out, Bit 7 07ZA 1_..,.SR 
40 Data Out, Parity 1 P1C1ZA 1 

Figure 2-102. Main Storage Chassis (Cont) · 
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Except for the data lines and the ECC control lines, 
all interface signal wiring comes to these three 
modules. 

The data control modules (Storage Data Register and 
Fan-in) and ECC control for the leftmost byte (bits 
0-7, card row A) and the rightmost byte (bits 8-15, 
card row C) are in locations A 12 and C12, respec­
tively. The ECC control modules are in locations A 11 
and C11. When the ECC option is not installed, these 
locations have jumper modules in them to route the 
storage data to the CPU. 

Zone Organization 

Figure 2-103 is a simplified zone organization diagram 
showing address and data lines for the eight HH stor­
age modules in a zone. Each HH storage module is a 
4096 address by 9 data bit building block; a zone 
with a fu II complement of eight H H storage modules 
stores a data byte (8 data bits plus 1 parity bit) for 
32K addresses. 

In Figure 2-103, a typical data bit (bit 2) is shown 
going to all 8 storage modules. Selection of an address 
occurs basically as follows: 

• An H H storage module is selected by a 
module select (1 of 8). 

• A column of storage elements on the module 
is selected by a column select (1 of 4). 

• Using 10 address bits, the 9 storage elements 
in the selected column decode corresponding 
storage cells (1 of 1024). 

The data bit is then stored in the selected storage 
element. Using the identical address, the same data bit 
can be read out of the element. 

HH Storage Module 

Figure 2-104 is a block diagram of the HH storage 
module. Thirty-six, 1024 X 1, MOS integrated circuits 
are arranged on the module in a 4 column by 9 row 
array. Each of the 9 rows comprises a data bit (0 
through 8) of 4096 addresses with 1024, 9 bit ad­
dresses in each column. 

Address selection is achieved as described in the pre­
ceding paragraph, Zone Organization. 

Data is controlled by nine digit drivers and nine sense 
amplifiers - one of each per bit. Because data flow to 
and from an HH module is a 9 bit block, the control 
signal for the digit drivers (Digit Timing) is common 
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to the nine digit drivers, and the sense amplifier strobe 
is common to the nine sense amplifiers. Data to be 
written into storage is gated with Digit Timing to 
enable a digit driver. The digit driver provides MOS 
voltage levels for "1" or "O" to the selected IC. Data 
read from storage is sensed by a sense amplifier which 
is then strobed. Data from the sense amplifiers goes 
into the Storage Data Register (SOR). 

Write and precharge drivers provide the read/write and 
precharge timing pulses required for IC operation. 
Timing pulses from the storage control logic are gated 
with module select to activate the drivers. 

Ba!fo Storage Element 

The basic storage element consits of a 1024 word by 1-bit 
integrated circuit (IC). This element contains 1024 storage 
cells, address decoding to select one of them, and read or 
write controls to read or store the data. The relationship 
between addressing and data is shown in Figure 2-105, the 
block diagram of the basic storage element. One feature of 
this storage element, not shown in Figure 2-105, is that it 
is a dynamic storage element. This means that the power 
inside the storage element charges the internal cell 
capacitors. Using charged cell capacitors is known as 
dynamic because power is required only during selection. 
When the cells are not selected, the cells are insulated 
from other circuitry to prevent the charge from leaking 
away. Power consumption is minimized because the 
charge is stored about 2 milliseconds without refreshing 
(charging). 

Each storage element has a matrix of 32 by 32 cells on it 
as shown in Figure 2-105. The matrix allows each cell to 
be independently accessed by using the ten decoded 
address bits with the column select. The initial activation 
of address, precharge and column select is the same for a 
read or write operation. Typically the data is read from 
the cells and then a Read/Write signal is activated, if 
necessary, to gate an external data bit into the element. 
The description of the storage element operation can be 
divided into a read, write, and refresh operation. 

For a read operation, the precharge gate is activated 
simultaneously with the address as shown in Figure 2-106. 
With pre-charge active, the address stabilizes into the 
selected row and column as shown in Figure 2-105. When 
column select is activated, its leading edge gates the 
contents of 32 storage cells (selected by the X address bits 
AO through A4) into 32 refresh amplifiers. The Y address 
bits A5 through A9 then select 1 of 32 refresh amplifiers 
for gating one data bit out. At the trailing edge of 
prn-charge, 32 data bits are gated from the refresh 
amplifiers back into the cells and one (1 of 32) data bit is 
gated out. Data out is then valid from end of pre-charge to 
end of column select as shown in Figure 2-106. 
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Figure 2-106. Timing for Storage Element 

For a write operation, the initial activation of address, 
pre-charge and column select is the same. After these 
signals are stable the data write is activated as shown in 
Figure 2-106, to gate an external data bit into the storage 
element. The timing is the same as the read operation 
except for activating the data write. 

For a refresh operation, a read operation is performed. 
The purpose of the refresh is to periodically recharge the 
c.apacitor of the storage cell. A small amount of charge 
leaks off of these capacitors so that refreshing each 
memory cell is necessary every 2 milliseconds to recharge 
the cell's capacitor when they are not accessed. The 
refresh amplifier, shown in Figure 2-105, recharges 32 
memory cells at one time when address inputs bits A 14 
through A 10 are sequenced through the 32 row addresses 
in the storage element. This refresh addressing and timing 
is controlled internal to storage. The refresh cycle is 
identical to the normal read cycle timing and address 
selection except that addressing from refresh control is 
sequential. 

Block Diagram Description 

A block diagram of MS is shown in Figure 2-107. 
Only the main interface signals such as addressing, 
data, and pertinent control are shown. Because of 
symmetry, data is flow-charted for one byte only with 
either a parity bit (treated as a data bit) or with five 
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of the ECC bits. The other byte of data with either 
parity or ECC has identical control signals, addressing 
and control signals. Data flow on the diagram is from 
left to right while addressing and control flows from 
the bottom of the page. 

The CPU sends sixteen address bits (0-15) to MS. 
Fifteen bits (0-14) are used by MS to decode 32K ad­
drnsses; bit 15 is used for byte control (select leftmost 
byte, select rightmost byte, or select a complete 
word). For expansion of MS beyond 32K addresses, 
the CPU sends four additional address extension bits 
(XO, X1, X2, X3) which provide addressing capability 
to 512K words. 

The refresh operation is a function of MS and occurs 
when an MS Refresh Request is acknowledged by the 
CPU (NU LL CYCLE). The refresh logic determines a 
block of 32 addresses to be refreshed and records ti me 
so that each address will be refreshed at least every 2 
mi 11 iseco nds. 

Control signals from the CPU provide the timing 
synchronization and initiation of a storage cycle. When 
a write cycle is required by the CPU, the write con­
trols for the desired byte are activated. Other interface 
signals provide for refresh control and error recovery 
interrogation. Within MS, the control signals are 
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primarily timing commands because storage always 
does a READ/WRITE cycle. One timing/control 
sequence automatically provides for reading stored 
data, correcting that data if ECG is present, and 
writing new data when necessary. 

Addressing 

The address from the CPU is sent to MS formatted as 
shown in Figure 2-108. This format allows for features 
such as Relocation and Protection to be used without 
altering the address bit numbering scheme. Least 
significant address bits are to the right end with the 
extension bits on the left end to provide for expanding 
storage. Features may alter the expanded storage 
addressing capacity but will have no effect on the 
addressing capacity of a storage unit with 32K or less 
words. Using Figure 2-108, the lowest order addresses 
start at the left and ascend in order to the right. The 12 
least significant address bits are common to all storage 
modules. Fan-out of these bits is on a zone basis, where 
each zone is 8 storage modules having identical 
interconnections on the backpanel, as shown in Figure 
2-105 and Figure 2-103. With the 12 common address 
lines providing decoding for each 4096 word storage 
module, the 1 of 16 module select from bits 0 
th rough 2 expands the addressing decode to 32K 
words of storage. 

When the address from the CPU is stable, an access enable 
signal from the CPU provides the initiation of a storage 
cycle. Since MS does not have an address register, the 
CPU address must be stable during the entire cycle. When 
an access enable signal is active, the address from CPU 
enters storage and then is fanned out. The only exception 
to gating the address to MS is when a refresh cycle is 
required. In this case, the access enable signal is blocked 
by the CPU resulting in the refresh address being gated 
into address bits 10 through 14. The refresh control holds 

address bits 9 th rough 5 at logical zero and blocks 
address bits 4 through X3 from changing during the 
refresh cycle. 

B-1 Row and Column Chip Addresses; A 14 
through A5 

As shown in Figure 2-109, the address fan-out module 
distributes the 10 least significant address bits to each of 
six zones. The 10 CPU address bits are used in 
conjunction with refresh control. 

The 10 least significant address bits are gated into MS 
from the CPU , without decoding, by an access enable 
signal. On the address fan-out module, these 10 address 
bits fan out to all storage modules via the 6 back panels as 
previously shown in Figure 2-103. On the storage module, 
the ten bits are gated onto the board by ANDing address 
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timing with board select. Each address line has a discrete 
driver to drive all 36 storage elements. The address lines 
are equally divided between the storage element column 
and row decode to make the 32 by 32 matrix selection in 
the element. The address is then decoded within each 
element. 

When MS requests a refresh cycle, the access enable is 
blocked by the CPU and the refresh address is used 
instead. The 1 of 32 refresh addresses controls address bits 
10 through 14. Because of the intrinsic storage element 
address decoding, the 32 row refresh addresses will refresh 
32 column addresses per element. Since all elements are 
selected during refresh, all addresses for all data bits in 
storage will therefore be refreshed using only 32 refresh 
addresses that are control led by address bits 10 through 
14. 

B-2 Column Select Address Bits A4, A3 

As shown in Figure 2-110, the most significant address 
bits are decoded or controlled on this board. The three 
most significant address bits (XO through X3) determine 
the out-of-range. The four column selects are decoded 
from two address bits and distributed to each zone. Four 
address bits are decoded into 1 of 16 module selects then 
respectively distributed to each row. Each module select 
controls the left-most byte, right-most byte, and ECG 

modules. Refresh control determines how often and what 
address the refresh cycle needs. 

The column select address bits 3 and 4 are also common 
to all storage elements. On the address control board, 
address bits 3 and 4 are gated from the computer by 
inactive Refresh. The decoding of column select (CLS) 
fans out 4 column selects that are common to all storage 
modules. As column select enters the storage module, it is 
gated with timing and board select signals. On the storage 
module, CLS provides the addressing expansion from 
1024 to 4096 addresses or physically from 1 to 4 storage 
elements (per data bit). The resultant column select(s) 
activate the chip enable pins for 9 parallel storage 
elements. 

Inactive Refresh is normally low throughout the entire 
timing cycle. When Refresh is requested, the computer 
address is blocked and, by using another inverter, all 
column select outputs are activated. 

B-3 Module Select Addresses; A3 through AO 

The most significant address bits, 0 through 3, decode 
which storage module board is selected. Selection of a 
module really is a selection of three modules: one module 
corresponding to the left-most byte; the second module 
corresponding to the right-most byte; and, when ECG is 
used, the third module corresponding to the check bits. 
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See Figure 2-108 for the address organization. On the 
address control module, address bits 0 through 3 are 
decoded into a 1 of 16 storage module selects so that a 
storage capacity of 64K addresses can be randomly 
accessed. The most significant bit, bit 0, determines 
physically which 32K of addresses are selected - when 
active the left half of MS is used; inactive, the right side. 
Again, when Refresh is active, the address from CPU is 
over-ridden so that all storage modules are selected. 

DATA CONTROL 

Storage Data Register 

The data control logic uses digit drivers, sense amplifiers 
and the Storage Data register (SD R). Figure 2-111 
illustrates a simplified data loop, for controlling the data 
flow from the CPU to the storage element for writing; and 
from the storage element to the CPU for reading. 

New data to be written into storage uses a digit driver as 
shown in Figure 2-111. Data read from the storage 
element is sensed by the sense amplifier and temporarily 
stored in the Storage Data register (SDR). From the SDR, 
the data is sent back to the CPU. 

As shown in Figure 2-112, the SDR is 18 data bits long, 
contained on two modules of 9 bits each. One module is 
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located in row A and stores the left-most byte plus the 
corresponding parity bit. The other module is located in a 
corresponding location in row C and stores the right-most 
byte and parity bit. The data fan-in logic, which gates one 
byte of data from the CPU to the storage elements, is 
organized in a similar fashion. 

When error correction is added, generated check bits have 
an equivalent set of drivers, storage, sense amplifiers and 
SDR's. Instead of sending the check bits back to the CPU 
when they are read, error correction logic corrects erring 
data or check bits. The corrected data without check bits 
is then sent back to the CPU. There are two advantages in 
having an equivalent set of hardware for check bits. First, 
the error correction feature can be added primarily using 
already existing card types. Second, the SDR for check 
bits can be used for special storage cycles that can 
interrogate check bits for maintenance purposes. The 
intricacies of generating check bits and performing error 
correction is discussed later. 

Sense Bias 

Sense bias is distributed to each storage module from the 
logic +5 volts connected to 6 connector pins on the HB 
board. Using the HB board to disperse sense bias to the 6 
zones allows future changes to sense bias such as a 
possible maintenance switch, a regulated special voltage or 
some other convenient logic voltage. Data read from 1 of 
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4 selected elements is compared against a threshold 
voltage in the sense amplifier. The threshold voltage is the 
sense amplifier bias voltage which provides the DC 

· reference for determining a one or zero. 

REFRESH CONTROL 

An inherent requirement of MOS-type storage is 
recharging or refreshing the capacitive cells within the 
element. The refresh cycle consumes an entire major 
timing cycle so that the CPU cannot address storage 
during refresh. Due to priorities when transferring high 
speed data, some control between the CPU and MS must 
be established. Logic internal to MS controls what address 
is to be refreshed next and when this address will be 
required. This control uses an incrementing counter to 
determine the refresh address and cascade counter to 
count the number of clock cycles. The cascaded counter 
converts clock pulses into a time-out calculated to refresh 
32 addresses every two milliseconds (2 ms). From the 
previous description of the storage element, the 32 by 32 
matrix of storage cells have 32 refresh amplifiers along 
one axis so that by sequencing the 32 addresses along the 
other axis, all 1024 storage cells of the element can be 
refreshed 32 cells at a time. 

To accomplish the refresh with a minimum of 
interference, only one consecutive major cycle is taken 
from the CPU. The CPU can then continue using MS until 
another refresh request is activated. If 32 addresses must 
be refreshed in 2 milliseconds, the refresh request should 
be activated every 62.5 microseconds (20011s-:-32 = 62.5 
µs). Therefore, if the processor accessed storage every 900 
ns, which is the MS reference cycle time without ECG, a 
counter incrementing up to about 71 accesses would be 
enough to refresh storage in time. Practically, however, 
the processor will run at a worst-case rate of 1.2 
microseconds. Using 1.2 microseconds as worst case, the 
counter would then count up to 52 before a refresh 
request should be made. 

The clock pulse from the CPU is present 200 nanoseconds 
before the storage can be accessed as shown in Figure 
2-114. The early clock allows the timing control logic to 
initialize in anticipation of an Access Enable signal. The 
clock pulse's leading edge is used to form a 50 nanosecond 
wide Start pulse by using a delay line as shown in the 
logic. This start pulse initiates the timing control and 
increments the cycle counting up to 52. Since the starting 
of timing is discussed under the paragraph titled Timing, 
only the refresh control and its timing is covered here. 

As shown in Figure 2-113, when the cycle counter has 
reached a count of 52, its output updates the refresh 
address and sets the Refresh Request flip-flop. First, the 
refresh address counter updates only once each refresh 

cycle keeping in mind that, due to storage element 
geometry, one row address will refresh 32 column 
addresses. The address counter is always incremented and 
never cleared so that all 32 addresses are cyclically 
sequenced. Second, the need for refresh is sent to the 
CPU via the Refresh Request flip-flop. In the CPU , the 
request for the next major cycle to be a null state is 
determined in the priority sequences. If the refresh 
request is honored, the Access Enable to MS is blocked. 
About 20 nanoseconds before a storage cycle begins, the 
access timing interrogates the Access Enable state (on 
Figures 2-117 and 2-118, this is 180 nanoseconds after the 
clock). If Access Enable is active, an MS reference is 
imminent and preempts MS's desire to refresh. If Access 
Enable is blocked at access time, the Refresh Granted 
flip-flop sets to gate the refresh address instead of a ,CPU 
addrnss, and it also resets the cycle counter. The Refresh 
Granted flip-flop implies that storage can now initiate a 
refresh cycle and and therefore drops (clear) its Refresh 
Request flip-flops. As soon as internal storage timing 
programs, the Refresh Request Clear will be activated to 
clear the Refresh Request flip-flop. Timing is shown in 
Figure 2-114. 

The Refresh Request Clear provides the timing for 
another special feature of refresh control; the Refresh 
Time-out. There are three conditions that must be 
satisfied before time-out occurs: 

1. There must be an active Refresh Request to the 
CPU. 

2. The request for refresh has been ignored by the 
CPU for 3 major cycles. The cycle counter is 
therefore at count of 3. 

3. Timing from the Refresh Request Clear is active 
once during each major cycle. 
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INTERFACE CONTROL SIGNALS 

All of the interface signals between the ALU and MS are 
shown in Table 2-9. The storage initiation, addressing 
and data functions are not discussed here. Interface signals 
for the ECG feature (module type HE) differ when the 
jumper module (type HF) replaces the ECC module. 
Without ECC, the jumper module routes data bits directly 
to and from MS because the data does not have to be 
coded for error correction. The detailed description of 
error/recovery and write control functions are as follows: 

1. Out-of-Range 

OUTRANGE on the HB module is used by the 
CPU to detect a missing HH module whether or 
not the module is missing by intent (the upper 
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Table 2-9. Interface Sig111als References 

Function Signal Can be Scoped on Pin: 

Storage Initiation Main Storage Clock 812-19 
Access Enable 812-25 
Refresh Req. (To CTIJ) 812-31 

Addressing Address bits 00-18 
Address 14 B11-16 

13 811-13 
12 B11-33 
11 B11-19 
10 B11-50 
09 B11-37 

8 811-70 
7 B11-57 
6 811-86 
5 B11-73 

.... 4 B12-34 
3 B12-39 
2 812-26 
1 812-94 
0 B12-95 

X3 B12-75 
X2 812-44 
X1 B12-45 
XO B12-58 

Data Data Bits 00-15 To From 
00 A11-72 A11-27 
01 A11-73 A11-26 
02 A11-74 A11-22 
03 A11-71 A11-24 
04 A11-70 A11-4 
05 A11-69 A11-6 
06 A11-56 A11-10 
07 A11-61 A11-11 
P1 A11-47 A11-28 
08 C11-72 C11-27 
09 C11-73 C11-26 
10 C11-74 C11-22 
11 C11-71 C11-24 
12 C11-70 C11-4 
13 C11-69 C11-6 
14 C11-56 C11-10 
15 C11-61 C11-11 
P2 C11-47 C11-28 

Error /Recovery ECC Error B12-37 
ECC In, Lwr, A11-95 

Upper C11-95 
ECC Present Upper, C111-9C 

Lwr A11-96 
Out-of-Range B12-32 
Special (MS-SPEC) 813-53 

SLX1-ECC B13-69 
SL1X-ECC B13-68 

Write Controls Store Upper Byte B13-66 
Store Lower Byte B13-67 
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addressing limit of storage) or by mistake 
(maintenance man has removed a board within 
contiguous storage). When an address is decoded 
in MS, the Board Select is active for only the set 
of modules used for that word; the left-most byte, 
right-most byte and if ECC is used, the ECC 
module. Board Select in turn generates a Board 
Present signal to detect the missing HH module. 
Board Present will be active from only 1 of 16 
modules in either card rows A, 8, or C. This singly 
active signal ( 1 of 16) al lows the outputs of al I 8 
modules, in each of the two zones, to be 
connected in common. Each zone is wired to the 
common point on the input of the out-of-range 
circuit. Additionally, when ECC is not present, 
the jumper module that replaces ECC also 
provides the disabling of the ECC gates on the 
out-of-range circuit. An added feature of 
out-of-range is the detection of the most 
significant CPU relocation bits. If any of these 
bits are active, storage reports this as out-of-range. 

2. ECC Error 

ECC Error on the HB module detects the Bad 
Data signal from either the left-most or right-most 
byte. From Figure 2-121, when the bad data line 
is active an irrecoverable error has occurred. The 
Bad Data signal is sent back to the CPU as ECC 
Error to force the CPU into a trap routine that 
will be software controlled. Basically, the trap 
routine will read the error log in storage in an 
attempt to decipher what happened and possibly 
recover from the multiple errors. 

3. Parity (No ECC) 

The parity bit is generated and detected in the 
CPU. It is shown in the storage logic diagrams as 
either PO or P1. Since the CPU generates the 
parity bit on a byte basis, MS stores the parity 
bits as if they were data bits - MS cannot 
differentiate between data and parity bits. 

4. Jumper Module (No ECC) 

The jumper module disables ECC functions on 
other modules as follows: 

a. ECC In - disables the out-of-range logic from 
detecting storage modules that are not plugged 
into row B - the ECC row. The out-of-range 
logic on the HB module will still detect 
out-of-range on the most significant address 
bits. 

b. ECC PRES - Grounds line to CPU indicating 
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that ECC is not present. When ECC is used, the 
line is permanently held active. 

c. FIXBIT - Grounds and disables write control 
from ECC. Only the CPU can then initiate a 
write operation. With tCC, the corrected data 
will be written back into MS. 

TIMING 

As shown in Figure 2-115, the timing control is primarily 
single-shots for timing. For ECC, the error log control 
logic is on this module. To allow ample set-up time in the 
single-shots used for timing, the clock pulse, precedes the 
Access Enable. The clock pulse used to initiate storage 
timing is generated by the CPU as part of its standard 
timing, so that it appears precisely related to all CPU 
events. For reference, the timing of MS will be relative to 
the leading edge of the clock pulse. 

There are two timing diagrams used for storage depending 
on whether or not the ECC feature is used. Timing is 
shown in Figure 2-118 (with ECC) and Figure 2-117 (no 
ECC). For reference on these figures, the abscissa has two 
timing scales. For convenience, the timing is referenced to 
the clock pulse so that scoping waveforms is easier. When 
referring to internal memory operations, the address 
stable time (200 nanoseconds after the clock) starts the 
true initiation of a storage access. 

Figure 2-115 shows the relationship between the timing 
adjustment of each single-shot. The flagged corners of 
most of the blocks mean that the timing is adjustable. 
Next to the flag is a number corresponding to the physical 
location of the potentiometer as shown in Figure 2-116. 
Because of the intricate dependence of one adjustment to 
others, as shown in Figure 2-115, timing is adjusted at the 

factory. For example, adjusting the Column Select Delay 
also affects Strobe, Write and Digit timing. The following 
is a description of each significant timing signal shown in 
Figure 2-117 and Figure 2-118. 

Main Storage Clock 

Thi:s pulse occurs 180 nanoseconds before storage 
activates Access Enable. The clock conditions timing in 
anticipation of a storage cycle. 

Address Time FF 

This flip-flop sets when the address is stable. Holds CPU 
address active during entire storage cycle. It is cleared by 
the time-out of strobe timing. 
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Addressi111g Timing 

The timing is derived from the Address Time flip-flop. 
The activation of Address Timing requires either Access or 
Refresh be present. If storage is in an idle state, the 
address will not be enabled and, therefore, minimizes 
power consumption. 

Pre-Charge Time 

As shown in Figure 2-107, the negative transition of 
precharge occurs shortly after address :stabilization. In the 
element pre-charge acts as a clock pulse to allow the 
address to become stable in the row and column decoders, 
in preparation for a column select. When pre-charge starts 
positive, the chip refresh amplifiers are clocked to write 
data back into the respective rows and columns, and also 
clocks data out of the chip for sensing. 

Column Select Time 

As shown in Figure 2-106, column select time gates the 
decoded column selects so that 9 c:hips (or bits) are 
enabled using chlp enable on the element. Column select 
occurs at least 30 nanoseconds before the end of 
pre-charge so that the selected cells within the chip 
present data to the chip refresh ampli1fiers. Column select 
is active until completion of any writing of new 
information into the chip. 

Strobe Time 

The strobe gates data from the sense amplifiers to the 
Storage Data register. Strobe timing adjustments are the 
same as Storage Register Clear except it is delayed by 
using 4 series inverters. 

Storage Register Clear 

Storage Register Clear is activated with the timing 
adjustments for strobe. Holding the register clear during 
:strobe time improves the access time by allowing the 
:sensed data bit to set or leave clear its corresponding SDR 
lbit position. Because strobe is delayed from storage 
1register clear, the trailing edge of strobe outlasts storage 
1register clear by that delay. This delay allows the data bit 
to determine the state of its respective SDR bit. 

Write Time 

Write Time enables the read/write input of the chip 
allowing new data to be written in the cell selected by 
(active) column select and the address. Write Time is 
active for the last 90 nanoseconds of column select time. 

Digit Time 

Digit Time gates the data bits from the data fan-out to the 
chips as shown in Figure 2-107. When digit time is active, 
data can be gated to storage by two paths: the usual path 
is data to be stored from the CPU. The other path is 
(when ECC is installed) the corrected data from the ECC 
checking logic being written back into storage. In either 
case, the timing must be active long enough to gate cor­
rect data in and late enough so that ECC has enough time 
to correct the data. Digit time terminates after column 
select is terminated. 

ERROR CORRECTION CODING 

An introduction to Error Correction Coding (ECC) is 
found in Appendix 2A. The ECC used for storage is 
implemented on a per byte basis to save time spent on 
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reading a word from storage, check it, calculate new check 
bits for the new byte in conjunction with the entire word 
and then store it. The steps for storing one byte are shown 
in Figure 2-120 and are as follows: 

1. Initiate storage to read the whole word. 

2. Send a new byte from CPU so its check bits can 
be generated (here is where the time-savings is 
done - new check bits are being generated 
while the whole word is still being read from 
storage). 

3. The whole word is read from storage into SDR 
and its ECC checked. 

4. New byte with its generated check bits and old 
byte with its check bits are written back into 
storage. 

When the whole word is read, the check bits are compared 
logically against the same data bits that generated them. 
Using the decoding of check bits and data bits provides 
the capability to correct a single error when it occurs. 
Should multiple errors occur, the decoding process can 
recognize that error correction is not possible and 
therefore interrupts the CPU because of a storage 
malfunction. When the single error is corrected, a log 
entry is made. (Recurring correctable errors are noted by 
software to determine a threshold, beyond which, a 
maintenance call should be made.) 

Coding Check Bits 

The coding of the check bits has both theoretical and 
practical constraints. Theory says that only five check bits 
will suffice to correct a single error and detect double 
errors. Practice takes advantage of off the shelf hardware 
parity generators having up to eight inputs. To code the 
check bits, the "1" or active state of the data is used 
because an active logical state implies correctly working 
circuitry. In other words, like odd parity, the lack of a 
signal should not be used because a disconnected cable 
may be interpreted as if the logic was actually present. 
Coding the check bits therefore uses the "1" state of the 
data. 

Generating Check Bits 

Choosing the data bits for each check bit must be done 
systematically so that the generation and checking are 
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identical. The methods used to choose the check bits 
theoretically guarantee single error correction and double 
error detection (SEC-DED). Using Table 2-10, the data bit 
code is generated. From the decimal numbers is the 
conversion to its binary equivalent. Note that every 
column is therefore distinct. By simply counting the 
number of ones in a column determines the weight of that 
column. Using only columns of odd weight (i.e., weight 1, 
3, or 5) mathematically simplifies double error detection 
logic. From the table, the check bits C1 through C5 are of 
weight one. The number of required check bits is 
determined from formulas proving Hamming error codes 
and not necessarily the number of weight-one binary 
numbers. The ten available data bit codes are of weight 
three, to code the 8-bit byte. To determine which two 
codes are not needed, the practical considerations of logic 
implementation take over. First, however, refer to Table 
2··18 for constructing the error coding matrix. Eight of the 
ten data bit codes (weight 3) and five check bit codes 
(weight 1) are reproduced from Table 2-10, in the 
identical format. Across each row, the number of one bits 
is counted and tabled under Number of Inputs. In all 
rows, except one, there are 6 input gates. For example, 
Q€merating check bit one, the five one bits from data bits 
0, 1, 2, 4, and 6 are gated together. 

To reduce any input or output loading problems, it is 
desirable to load each gate equally. The two bits 
eliminated from the ten originals would have caused 
uneven gate loading. The generation of the five check bits 
result from using Table 2-11 to implement the logic. Each 
parity generator makes a check bit produce even parity 
from the input data. Upon completing the check bit 
generation, the 8 data bits and 5 check bits are stored. 

Correcting Data 

When the stored data is read from storage and loaded into 
SDR, (Figure 2-120) the data and check bits are 
cross-checked for errors. The data to the corrector logic is 
the same polarity as the generated data even though the 
storage element and the data register perform one 
inversion each. The input to the syndrome bit generator is 
the same eight data bits that produced the five generated 
check bits and those five check bits. The output is called 
the syndrome bit to differentiate between the check bit 
alone and the data combined with the check bit. For 
example, syndrome bit 2 contains data bits 0, 1, 3, 4, 5 
and check bit C2 as shown in Table 2-11. The output of 
the syndrome generator is sensed for a "1" indicating a 
failure in one of the input bits. To recover the bad data 
bit, three-input AND gates are used in a coding scheme 
shown in Table 2-11. For example, to recover data bit 0, 
syndrome bits 1, 2, and 3 must be in an active state. The 
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Figure 2-120. Storing Lower Byte with ECC 
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 DECIMAL NUMBER 

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 BINARY EQUIVALENT 

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 

0 I 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 I 0 0 1 1 1 1 

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 

I 
1 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

WEIGHT 
0 1 1 2 1 2 2 3 1 2 2 3 2 3 3 4 1 2 2 3 2 3 3 4 2 3 3 4 3 4 4 5 (NO. OF ''1's" IN COLUMN) 

C1 C2 C3 C4 C5 CHECK BITS IWT 11 

0 1 2 3 4 5 6 7 8 9 DATA BIT CODE (WT 3) 

Table 2-10. Error Coding Table 



Table 2-11. Syndrome IBit Generating Matrix 

DATA BITS 

I 0 I _!_J_z I 3 I 4 I 
S1 1 1 1 1 

S2 1 1 1 1 

SJ 1 1 1 

S4 1 1 1 

S5 1 

NO. OF ACTIVE 
11\IPUTS 3 3 3 3 3 

syndrome bits used for recovering each data bit are shown 
in each column of Table 2-11 with the logic gate-input 
requirements at the bottom of the column. Note that if a 
check bit failed, only one syndrome bit will be active. For 
a single data bit error, the recovery generation is defined 
according to Table 2-11. Any other error is 
non-recoverable. 

Error Interpretation Control 

The syndrome bits are decoded into three error 
interpretation classes as shown in Fi!gure 2-121. These 
three classes cover all the combination:s of syndrome bits 
needed for error interpretation. Once the syndrome bits 
generate the control signals, corrective actions are taken. 

5 

1 

1 

1 

3 

When all syndrome bits are "O" the data from storage is 
good. Using the logic in Figure 2-121, the syndrome bits 
are checked for unrecoverable errors called Bad Data, and 
recoverable errors called FIXBIT. When unrecoverable 
errors occur, the Bad Data signal is sent to the processor. 
The FIXBIT signal controls the write timing discussed in 
the paragraph titled Write Time and indicates that 
correcting the data will be attempted" In the case of all 
syndrome bits being "O", there are no active outputs for · 
FIXBIT, Bad Data or the eight toggle c:ontrol gates which 
indicates good data. 

There are two kinds of correctable errors; either data bits 
or check bits. The difference botween failing data bits or 
check bits will be the number of active syndrome bits. For 
example, i1f data hit 7 fails, by using Table 2-11 there will 
be three syndrome bits S3, S4, and S5 active. If check bits 
C1 fails only syndrome bit S'I will be active. In other 
words, by decoding the syndrome bit~; using Table 2-18, 
the erring data bit can be corrncted by using three-input 
AND gates and check bits can be corrected with one 

I 
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CHECK BITS 
NO. OF 

6 7 c, Cz C3 C4 C5 INPUTS 

1 1 6 

1 6 

1 1 6 

1 1 1 6 

1 1 1 5 

3 3 1 1 1 1 1 

active and four inactive syndrome bits. Across the bottom 
of Table 2-18 is the number of required active inputs 
which is either one or three. When one or three syndrome 
bits are active the combination of bits will decode into a 
data or check bit and therefore the error is correctable. 
The error interpretation logic will activate FIXBIT and 
attempt to correct the error. From Figure 2-121 either 
one or three active syndrome bits causes Bad Data to go 
low and be interpreted as the data has been corrected. 

Unrecoverable errors occur when the active syndrome bits 
cannot be decoded into erring data or check bits. For 
example, if two syndrome bits S2 and S3 were active, 
there are no data bits or any single check bits of weight 2. 
Similarly there are no data or check bits of weight 4 or 5. 
When errors that activate syndrome bits with weights 
equal to 2, 4 or 5 are sensed, they are interpreted as Bad 
Data (active) with F IXBIT also active. The computer is 
signaled that an unrecoverable error has occurred with the 
Bad Data line which is the ECC error interface line, while 
error recovery is attempted internal to storage with the 
FIXBIT line. However, unless the proper syndrome bits 
shown in Table 2-11 are active, data or check bits may be 
incorrectly altered. With all five syndrome bits active for 
example, all eight data bits would be selected and their 
data altered. By providing some inspection logic, the data 
and check bits can be examined for future reference. 

Error Logging 

When one or more syndrome bits are non-zero, an error 
condition exists that may or may not be recoverable. 
Recovery internal to storage occurs when the syndrome 
bits match the matrix in Table 2-11. Any other 
combinations of syndrome bits result in unrecoverable 
errors which activate the ECC error line. In either case a 



SYN\: :::~TIV:~ O_N_L_Y_F_O_R_E_R-IR O._R_(-S)_,.,,,. 

SYNDROME BITS 

OES NEGATIVE OMLY IJ'IHEN ALL 
SYNDROME BITS ARE POSITIVE 

PARITY 
CHECKER 

OUTPUT HIGH WITH EVEN 
NUMBER OF HIGH INPUTS 

BAD DATA 

SEE TRUTH TABLE 
{NEGATIVE ONLY FOR ERRORISI 

SYNDROME BITS ::----i ):a.----~-------------- FIXBIT 

TRUTH TABLE FOR ABOVE LOGIC 

CONDITION OF ERROR INTERPRETATION 
NUMBER OF SYNDROME 

BITS THAT ARE ONES BAD DATA FIXBIT GOOD DATA I CORRECTABLE ERROR I NOT RECOVERABLE 

0 LOW LOW x 

1 LOW HIGH x 

2 HIGH HIGH x 

3 LOW HIGH x 

4 HIGH HIGH x 

5 HIGH HIGH x 

Figure 2-121. Error lnter1>retation Logic 

log entry is made. To isolate the error, an error logging 
register is used with the format shown in Table 2-12. The 
10 syndrome bits for both bytes and the 4 board select 
address bits are gated into a temporary storage register 
called the log. As each new entry is made into the log, the 
16th log bit is set signifying that new information has 
been entered into the log. When the CPU inspects the log, 
the 16th bit (or enter bit) is cleared by the CPU so that if 
a subsequent inspection occurs before another error is 
loaded into the log, the same error will not be inspected 
twice. The log is a clocked register that is loaded only 
when the clock input is high and then retains that 
information after the clock goes low. As each error is 
recognized by FIXBIT a new entry is made independent 
of whether or not the last entry was inspected. At any 
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time if there is an entry in the Error log registers it is the 
last error made. 

ECC CONTROL 
After the syndrome bits have been decoded into an erring 
bit, that bit must be corrected before it is sent to the CPU 
and then written back .into storage. If an error did occur, 
the Error log register is loaded. The data or check bit 
corrections occur independent of timing; however, timing 
does control the writing back into memory. Since error 
correction is done without timing for gating, the raw or 

uncorrected data cannot be examined by hardware or 
software for proper action. Using Figure 2-122, the data 
paths for normal error correction and diagnostic 
interrogation can be shown. 



Table 2-12. Error Logging Format 

DATA BIT LINE 12 13 14 15 11 10 9 8 7 6 5 4 3 2 1 0 

FUNCTION BOARD SELECT ADDRESS SYNDROME BITS 

ENTER NEW 
SIGNAL NAME X3 AO A1 A2 SPARE 10 9 8 7 6 5 4 3 2 1 BIT INFOR-

MATION 

INPUT PIN (B13) 45 46 35 36 52 51 42 41 76 63 77 70 71 58 57 -

OUTPUT PIN (B13) 48 47 38 37 49 50 39 40 74 75 61 62 73 72 60 59 



Normal Error Recovery 

The clearest way to understand a block diagram such as 
Figure 2-122 is to take one data bit and follow it through. 
Since the check bit is slightly more complex than data, it 
will be more instructive to follow check bit, Cl. Check bit 
Cl is corrected (when necessary) by generating a pair of 
corrector bit lines coming from the syndrome bit 
decoding logic and logically comparing these lines to a 
pair of uncorrected lines (for Cl) from storage. The pair 
of lines from storage is just bit Cl and its inversion 
(complement). Logically combining Cl and its 
complement with the Cl corrector bits controls the 
correcting of Cl regardless of Cl originally being a "O" or 
a "1 ". All data and check bits are corrected with this 
scheme. Figure 2-123 ii lustrates how the corrected check 
bits are corrected with this scheme. From Figure 2-123, 
the corrected check bits are gated back to storage for 
writing and the raw check bits are made available to the 
CPU via the Error Log register for software to check. 
Similarly the data bits are corrected and made available to 
the CPU and then written into storage. 

Diagnostic Control 

Storage provides logic to interrogate the Error Log register 
and the Storage Data register (which includes check bits). 
A special signal line (MS-SPEC) from the CTA initiates the 

+SOR 00 -SOR 00 

+SOR 00 

CONTROL FOR -TOGGLE 
DATA BIT 

00 (ACTIVE) 

+TOGGLE 

GATE FUNCTION 
11========:=:=======-=====~======tl 

A COMPLEMENTS DATA 
B TRUE DATA 
C,D OTHER FUNCTIONS 

dia~1nostic inquiry along with two other special lines that 
send the diagnostic code. When the MS-SPEC is active, the 
other select lines are decoded as shown in Table 2-13. 
Normally, the DAT A SE L gate is active in absence of 
MS··SPEC so that data and check bits are automatically 
corrected as shown in Figure 2-123. When another 
diagnostic selection code is used, DATA SEL blocks all 
error correcting. The signal code RAW CH K enables 10 
raw check bits generated from input data to be read and 
interpreted by CPU hardware/software. In contrast to 
RAW CHK, signal code RD CHK (code 11) enables 10 
uncorrected check bits read from storage to be gated to 
the CPU in the format shown in Table 2-14 (right 
column). For diagnostic maintenance, code 11 can be 
used to help isolate failing memory bits. 

ECC Write Controls 

When a recoverable error occurs, the active FIXBIT 
enables the write controls. These write controls are 
controlled by the ECC FIXBIT. As shown in Figure 
2-1 '24, the left-most (upper) and right-most (lower) bytes 
overlap each other on the ECC card row B. For example, 
either store upper from the CTA or FIXBIT upper from 
ECC activate the write controls for the left-most byte and 
the ECC check bits. The resultant write controls arythen 
combined with the write and digit timing. 

-SOR 00 

+DATA SELECT 

Figure 2-123. Data Correc:tion Logic 
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Figure 2-122. ECC Detailed Block Diagram 

I 
f RAW BITS TO CPU (CODE 101 

~' -DATA TO STORAGE (CODE 00) 

READ CHECK BITS TO CPU {CODE 11 l 

NOTE 1 CHECK BIT CORRECTOR LINES 

LOG TO CTA 
fCODE01) 



UPPER BYTE I ZA1 

EC C BITS I ZB1 

LOWER BYTE I ZC1 

Select Lines 

SLX1 SL1X 

0 0 

0 1 

1 0 

1 1 

ZA2 I ROW A 

ZB2 I ROW 8 

ZC2 ROW C 

Figure 2-124. Write Control for ECC 

Table 2-13. Diagnostic Selection Codes 

Code 

00 

01 

10 

11 

Signal Name 

DATA SEL 

LOG SEL 

RAWCHK 

RDCHK 

NOTE: Detailed references for these 
signals are found in Table 2-14. 
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WRITE CONTROL AREAS 

!JPPER 
BYTE 

LOWER 
BYTE 

Function 

Enables 16 corrected data bits from 
SOR to CPU. Normally active in 
absence of special signal. Normally 
gates corrected check bits to SOR 
for writing. 

Enables 16 log bits to CPU in format 
of Table 2-12. Entry bit clears 
when code is removed. 

Enables 10 check bits from input 
data check bit generates directly 
to CPU. 

Enables 10 corrected check bits to 
CPU. 

-



Table 2-14. Detailed Diagnostic Selection Code References 

Function Can be 
Signal Name Select Name Scoped On Generated 

Normal Data Data Error Log Check Bits Read Check Bits 

Select Lines Fermat 281~53 +MS-SPEC I'\ i i i 1 u 

2B13-69 • SLX1-ECC x 1 0 1 0 
(X=don't care) 

2B13-68 • SL1X-ECC x 1 1 0 0 

2A11-27 MS-DROO Data Bit 0 Data Bit 0 Entry Bit ECC CHK 1 ECC CHK 1 
2A11-26 MS-DR01 1 1 Syndrome 1 2 2 

Bits 
Data Lines 2A11-22 MS-DF02 2 2 2 3 3 
(used for the 2A11-24 MS-DF03 3 3 3 4 4 
bits selected) 2A11- 4 MS-DF04 4 4 4 5 5 

2A11- 6 MS-DFOS 5 5 5 Spare Spare 
2A11-10 MS-DF06 6 6 6 Spare Spare 
2A11-11 MS-DF07 7 7 7 Spare Spare 
2C11-27 MS-DFOS 8 8 8 ECC CHK 6 ECCCHK6 
2C11-26 MS-DF09 9 9 9 7 7 
2C11-22 MS-DF10 10 10 10 8 8 
2C11-24 MS-DF11 11 11 Spare 9 9 
2C11· 4 MS-DF12 12 12 ADDX3 10 10 
2C11- 6 MS-DF13 13 13 0 Spare Spare 

2C11-10 MS-DF14 14 14 1 Spare Spare 

2C11-11 MS-DF15 15 15 2 Spare Spare 

NOTE: When the select lines are in the format of a given column, that column of bits are gated on the data lines. 



REGISTER OPTION 

The Register Option (RO) comprises registers and 
associated control logic that implement the following 
features: 

1. Basic Storage Protection 

2. Relocation and Protection 

3. Job Accounting 

4. Error Correction Code (ECC) 

The first three features are physically part of the Central 
Processing Unit (CPU) portion of shared resources. The 
ECC feature is located in the Main Storage (MS) portion 
of shared resources and, for purposes of convenience, is 
discussed in the paragraph titled Main Storage. This sec­
tion, therefore discusses operations of only the Basic Stor­
age Protection feature, Relocation and Protection feature, 
and the Job Accounting feature. 

The Basic Storage Protection, and Relocation and Protec­
tion features are mutually exclusive; that is, when the 
Basic Storage Protection feature is present, the Relocation 
and Protection feature is absent, and visa versa. The Basic 
Storage Protection feature is used for MS sizes of 65,536 
bytes or less, while the Relocation and Protection feature 
is mandatory for MS sizes greater than 65,536 bytes. The 
Job Accounting and ECC feature may be present in the 
machine if either the Basic Storage Protection or Reloca­
tio!1 and Protection feature is installed. Figure 2-125 
shows the placement of RO modules in chassis 1 of the 
module deck. The modules comprising the Basic Storage 
Protection and Relocation and Protection features are 
both installed in locations 1 B27 and 1 B28 as shown. Since 
all logic necessary for the Basic Storage Protection feature 
is contained on module BK at location 1 B28, module BL 
at location 1 B27 is simply a jumper board to interface 
signals that would be processed by module BJ of the 
Relocation and Protection feature if it was installed. 

The Basic Storage Protection feature checks storage 
bounds on write operations only for processor states 5, 6, 
and 7. The check is made by defining both an upper page 
limit and lower page limit beyond which a write reference 
may not be made without error. lfa bounds error occurs, 
the write is inhibited and a trao routine is entered. 

The Relocation and Protection feature expands the MS 
addressing structure from 16 to 20 bits allowing 
addressing of up to 1 million bytes. This is accomplished 
under program control by furnishing a 4-bit segment tag 
value that can be either appended directly to the 16-bit 
address in S, or used to select a 12-bit relocation constant 
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that can be added to the contents of S to relocate all 
subsequent MS references by the amount of the constant. 
The relocation constant is obtained from a segment 
relocation table that contains 16 such entries. These 16 
entries essentially divide MS into 16 separate segments for 
purposes of providing areas of common usage, certain 
combinations of read and write protection, and other 
factors under control of the operating system. In addition, 
the Relocation and Protection feature also furnishes both 
read and write protection for all eight processor states. 
This protection may be implemented in either of two 
forms ( 1) reading or writing a particular portion of MS, or 
(2) attempting access to a particular portion of MS 
without regard to the type of reference. 

The Job Accounting feature consists of eight 32-bit 
registers, one per processor state. These registers log the 
number of time slices (major cycles) assigned to each 
processor state. 

A block diagram showing the address and data paths to 
and from the RO is shown in Figure 2-126. Since the RO 
is located between the S and D registers and MS, all 
address and data bits put into these registers must first 
pass through the RO before going to MS. An address put 
into S may be used to either address a location in MS or a 
register in the RO. If addressing an MS location, the 
address is checked for bounds protection and, if the 
Relocation and Protection feature is present, added to the 
relocation constant to generate the expanded 20-bit 
physical memory address. If addressing a register in the 
RO for purposes of reading or writing the register, the 
address is routed through processor and register select 
logic in the RO to select the appropriate register. An 
address used to access an RO register must be loaded into 
S from only transient registers 1Eor1 F of the BRF. Data 
loaded into the D register is stored in either MS, if 
addressing MS, or in an RO register, if addressing the RO. 

BASIC STORAGE PROTECTION FEATURE 

The Basic Storage Protection feature is implemented by 
three 16-bit registers, a compare network, and MS write 
inhibit logic. One bounds register is assigned to each of 
the processor states protected: 5, 6, and 7. The format 
for each of the bounds registers is as follows: 

~JO 07 08 15 I 
UPPER BOUNDS LOWER BOUNDS 
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Figure 2-1215. Installation of Either Basic Storage Protect or Relocation and Protection Feature 
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The bounds protect concept is based on dividing MS into 
pages of 256 bytes each. The upper bounds half (bits 00 
through 07) designates a maximum MS page number, 
whereas the lower bounds half (bits 08 through 15) 
designates a minimum MS page number. When the upper 
and lowHr bounds are equal, the MS write references are 
restricted to that one page. When the 1Upper bounds equals 
FF 16 and the lower bounds equals 0015, no main storage 
protection takes place. 

Logic of the Basic Storage Protection feature used during 
normal bounds compare operation is shown in Figure 
2-127. Each half of the three bounds regisers feeds a 
corresponding selector enabled by processor select signals 
ROST-1 XX and ROST-X1 X. These select signals are 
derived from the logic shown in Figure 2-128 and are 
generated for either of two conditions: normal operation 
(MS reference) or register read/write. For either case, 
three ROST signals are generated which represent the 
processor number in binary form. During normal 
operation, the ROST signals are generated from 
corresponding EXCT signals from the resource allocation 
network, which defines which process;or has been granted 
the present time slice. During a bounds register access 
(read or write operation), the ROST signals are derived 
from bits 8, 9, and 10 of the S-register. These three bits 
define the processor number in either a Read Register 
Option (RRO) or Write Register Option (WRO) MLI, for 
specifically accessing a particular RO register. These bits 
are enabled by RO-SPEC, which is generated during an 
RO access (see the paragraph entitled RO Reference 
Signals). When selected by a particular value of ROST 
signals, both halves of the bounds register selected are 
routed through the corresponding selector to individual 

bounds compare networks. Each network is also fed with 
the MS page address contained in bits 0 through 7 of the S 
register. These 7 bits of S are also routed to MS as 
ROS-MS bits 0 through 7. The two bounds compare 
networks make the following comparison of the page 
address agains the upper and lower bounds limit: 

Page !\!umber Less Than or Equal to Upper Bounds 
Limit 

Page Number Greater Than or Equal to Lower 
Bounds Limit 

If both these compare conditions are met, each compare 
network generates a low output which is combined with 
enable (fi+6+7) · MS-WR. This enable indicates that 
processor state 5, 6, or 7 is executing an MS write 
operation, the necessary prerequisite for performing a 
basic storage protect bounds check. The result is to make 
ROACCESS go high to permit the write operation to take 
place. 
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If either compare condition is not met, i.e., page address 
greater than upper bounds limit or less than lower bounds 
limit, ROACCESS goes low to abort the write operation. 
Logic for setting up the abort condition is shown in 
Figure 2-129. The low ROACCESS signal clears the 
Outbound flip-flop to generate a low from the Q output, 
provided the System Control Panel has not requested an 
RO access (CONST-RO is low). This low is sent to the 
STOREUPP and STORELOW gates to disable them, thus 
forcing MS write signals STOUPPMS and STOLOWMS 
low. In addition, and low flip-flop output is combined 
with the STOREUPP and STORE LOW signals to generate 
OUTBOUND. This signal is sent to the trap routine 
starting address logic (see the paragraph entitled Set Pp 
Logic) to cause a jump to the MS parity error trap 
routine. 

The four extended MS address bits RO-MSXO through 
RO-MSX3 shown connected to ground on Figure 2-127 
are so connected to eliminate a floating condition that 
might be interpreted by MS as extended address bits set to 
"1 's". As discussed in the paragraph titled Register 
Option, this basic storage protection module, type BK, is 
interchangeable with relocate and protection module BH 
if the Relocate and Protection feature is installed. Since 
the Relocation and Protection feature uses these four bits 
as the upper four-bit extension to the 16-bit address in S, 
these bits must be purposely grounded out if the basic 
protection feature is installed. 

RELOCATION AND PROTECTION FEATURE 

For discussion purposes, the relocation and protection 
portions of the Relocation and Protection feature will be 
treated as separate functions. During an actual MS 
reference, however, the two operations are performed at 
the same time. 

Relocation 

The general procedure for relocation is shown in Figure 
2-130. The 16-bit MS address in S, obtained from the 
BR F register as defined by the Load S µI X-field, is called 
a displacement address. The register number is also used 
to select a segment tag, a four-bit value that points to one 
of sixteen 24-bit entries in the segment relocation table. 
This segment tag resides in a register of the segment tag 
file corresponding to a register in the BR F, and is 
addressed concurrent with the BRF register. In effect, the 
Segment Tag register constitutes a four-bit extension of 
the BR F register to permit the expanded addressing 
capability provided by the Relocation and Protection 
feature. The combination of the BRF register contents 
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and that of the associated Segment Tag register is called 
the system address. The right-most 12 bits of the segment 
relocation table entry, called the relocation constant, are 
added, right-justified to the page number portion of the 
displacement address, to obtain a new 12-bit page 
number. This number, combined with the unchanged bits 
from the byte address portion of the displacement, forms 
the 20-bit physical address to which the MS reference is 
made. As far as bit numbering is concerned, the physical 
address is considered to consist of two parts: a 16-bit 
right-most part, made up of bit positions 0 through 15, 
and a 4-bit left-most part, made up of bit positions XO 
through X3. 

Logic which perform the relocation function is shown in 
Figure 2-131. The segment tag register file is addressed by 
a combination of ESXXX-RO bits, which define the pro­
cessor state executing, and BRFXSO bits, which define 
one of the 32 segment tags associated with the executing 
processor state. The four-bit segment tag value is gated 
through a selector to the S register extension and to the 
Sb register. This selector is fed with segment tag values 
from three sources: the Segment Tag register, pushbuttons 
XO through X3 of the CONSOLE REGISTER ADDRESS 
DI SPLAY pushbuttons, and S register bits 11 through 14. 
During normal operation, the segment tag value is obtain­
ed from the Segment Tag register bv the absence of both 
enables ROSTSE L and MSSTSE L. The segment tag value 
is clocked into the S register extension at the same time 
that the 16-bit displacement address is clocked into S by 
CLKSTR and ENCLKSTR. Signal ENCLKSTR is gener­
ated for two different conditions, as shown in Figure 
2°132. During normal operation, it is generated by 
ENCLKSR which enables clocking the S register. During a 
read or write into the RO, it is generated at E150 by 
RO-SPEC. Simultaneous with clocking into the S register 
extension, the tag value is also clocked into the Sb regis­
ter. This register holds the tag during1 indexing operations, 
as explained later. 

The segment tag in the S register extension is sent to the 
segment tag table to select one of the 16 relocation entries 
in this table. Each entry is 24 bits long, consisting of two 
12-bit words. The right-most word consists of the reloca­
tion constant to be added to the displacement address in 
S. The left-most word contains the maximum page 
number and validity bit used for bounds protect evalua­
tion, as discussed in the paragraph titled Protection. Each 
entry is stored in six storage elements, 4 bits per element. 
When addressed by the segment tag value, the correspond­
ing entry is read from the storage elements with the 
relocation constant being routed to three adder elements, 
as shown in Figure 2-131. Although stored in the reloca­
tion table as a 24-bit entry, the software which reads or 
writes the relocation table considers each entry to be 32 
bits long, consisting of two 16-bit words. The right-most 

word of this entry consists of the relocation constant in 
bit positions 4 through 15 with bit positions 0 through 3 
set to "O's". The left-most word consists of the validity 
bit in bit position 0 and the maximum page number in bit 
positions 8 through 12 with bit positions 1, 2, and 3 set to 
"O's". This correlation between the two forms of a reloca­
tion table entry as interpreted by hardware and software 
is shown in Figure 2-133. 

The relocation constant portion of a segment table entry 
addressed by the segment tag value is fed to three 
relocation adder elements, along with bits 0 through 7 of 
S (page number). In addition, the segment tag value itself 
is fed to the bit positions 0 through 3 relocation adder. 
The result is to form a 20-bit physical address from which 
the location in MS will be addressed. (In reality, the physi­
cal address presented to MS is really only 19 bits long, 
since the right-most bit (bit 15) is used in the MS interface 
logic to develop separate byte write signals.) This physical 
address is determined in one of two ways, depending on 
the position of the CONSOLE MAIN STORAGE switch 
on the System Control Panel. This switch generates enable 
RELOCATE, as shown in Figure 2-134. Logic for generat­
ing this enable assumes that either an MS read or write 
operation has been selected, and the Panel has been grant­
ed a time slice (CONST .. RO high). If the switch is in 
the RELOCATE position, signal RELOCATE goes high to 
enable the relocation adder. The result is to form the 
physical address by relocating the system address, via 
addition of the relocation constant, as shown in part a of 
Figure 2-134. If the switch is in the OFF position, 
RELOCATE goes low and the relocation adder is 
inhibited. The result is to form the physical address 
directly from the system address, bypassing the relocate 
mechanism, as shown in part b of Figure 2-134. For the 
case of relocation, signal ADAS MODE RELOC is ANDed 
with RELOCATE. This signal is developed from the 
Address Mode register, which indicates that relocation for 
the selected processor state is specified. 

The segment tag value routed to the Sb register is used 
during load S operations to insure that once a reference is 
made. to a relocated segment of MS, as determined by the 
segment tag corresponding to a particular BR F register, 
that all subsequent references to MS in the same program 
will be . made to the same segment even through a 

reference might be made from a different BR F register. 
This sequence is altered, however, when an indexing 
operation is performed which changes the relocation from 
that of the original Load S µI to that furnished by the 
segment tag of the index register. An example of using 
segment tags for relocating MS references during both 
non-index and index operations is shown in Figure 2-135. 
This figure shows execution of a MOVM (60) MLI, using 
both indirect addressing and indexing, in both pictorial 
form and by a partial listing of the correspondingµ, I 
program. (This partial listing has been simplified to show 
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only the concept of indexing using segment tags. As will 
be shown in Figure 2-136, every write back into the 

Segment Tag register from Sb must be initiated by an I DX 
µI (except during an RNI sequence) even if an indexing 
operation is not performed. As the picture shows, the 
MLI transfers the contents of MS location 2160 (210), 
specified by the contents of MS locations 1200 (2100) 
which is addressed by the second M LI word and modified 
by the contents of the index register (60) specified by the 
MLI R1 field (3); to MS location 2800, specified by the 
contents of MS location 4000 (2400) which is addressed 
by the third M LI word and modified by the contents of 
the index register (400) specified by the MLI R2 field (5). 
The µI program listing shows how the segment tags are 
initially chosen and then us~d by the rest of the program 
to key off this original tag until altered by an indexing 
operation. Initial selection of a segment tag is performed 
by the LS2 µI of the RNI sequence to read the first word 
of the M LI. For this example, the segment tag correspond­
ing to BRF register 01 (containing the first MLI word 
address) is 4. This indicates that all MS references made 
by this MOVM M LI are to be made to a segment of MS 
addressed by the relocation constant contained in entry 4 
of the segment relocation table (assuming the CONSOLE 
MA IN STORAGE switch on the Panel is set to the 
RELOCATE position). 

The LS1 µI routes segment tag 4 to both the relocation 
table and to Sb. The following register file write µI (and 
all subsequent register fileµl's until an indexing operation 
is performed) will write segment tag 4 back into the 
Segment Tag register corresponding to the BRF register 

selected by the µI so that all future references to that 
BRF register will key off of segment tag 4. This is shown 
at points Ci) and 0 of the µI listing. The segment tag 
write at Q) is of no consequence since segment tag 4 
original~corresponded to BRF register 01 anyway. At 
point ~ , however, segement tag 4 is written into the 
Segment Tag register corresponding to BR F register T3. 
This means that a subsequent read of T3 will not key off a 
tag associated with T3, but instead the tag associated with 
01. In like manner, the 01 segment tag is written into the 
Segment Tag register corresponding to BRF register T4 at 
point @. At point ©, however, the segment tag is 
changed by the preceding IDXµI, which routed a new tag 
(8) to Sb corresponding to BRF register 3 being used as an 
index register. This means that all subsequent references 
to register T3 will key off of segment tag 8. In a similar 
manner, segment tag A corresponding to BRF register 5 
being used as an index register is written into the Segment 
Tag register corresponding to T4 at point @ 

Logic showing the flow of data into Sb and back to the 
Segment Tag register is shown in Figure 2-131. The seg­
ment tag is clocked into Sb in the presence of 
ENCLKSBR. This enable is generated during execution of 
either a Load S µI or an IDS µI when X=O (the condition 
for indexing). The output from Sb is fed back to the Seg­
mmt Tag register through a selector. For writing into the 
register from Sb both selector enables RO-SPEC and 
ST-MUX are high. Register file write enable SEGTAGWR 
is generated for a segment tag rewrite by the logic shown 
in Figure 2-136. As discussed in the footnote to Figure 
2-135, all writes from Sb back into the Segment Tag regis-
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Figure 2-136. Generation of SEGTAGWR for Segment Tag Re-Write 
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ter must be initiated by an IDX (0,2) µI whether or not an 
indexing operation was actually performed, except during 
an RNI sequence Therefore, thH write enable is generated 
by two different conditions. During an RN I sequence, 
SEGTAGWR is generated by RNl-F/F, indicating that the 
RNI sequence is being performed, and ENBRFWR and 
BRFWRITE, indicating that a register file write µI is being 
performed and the ti me during execution of the µI that 
the register is to be written into. Du1ring the sequences 
following the RNI sequence, the index mechanism that 
generates SEGTAGWR must be used. Execution of an 
IDX µI sets the Segment Tag Write flip-flop. Then, when 
the register file write µI is executed to perform the actual 
write back into the file, ENBRFW and BRFWRITE are 
generated which, in combination with the flip-flop out­
put, generate SEGTAGWR. As soon as this enable is 
generated, the flip-flop is cleared to de-activate the write 
enable until the next segment tag rewrite is initiated. 

Protection 

Protection is accomplished during the course of 
performing relocation. This protection is implemented in 
three different ways: validity bit protect, bounds protect, 
and write/read protect. The validity bit and bounds 
protect evaluations are made on the contents of the 
left-most word read from a particular entry in the segment 
relocation table. The write/read protect evaluation is 
made on the contents of the protection matrix. All three 
types of protect depend on whether or not protection is 
defined for a particular processor, as determined by the 
contents o·f the Address Mode rngister. Each of the three 
protection schemes is discussed nn the following 
paragraphs, referencing Figure 2-137. 

Validity Bit Protect 

Validity bit protect is performed by examining the 
validity (V) bit (bit O) of th1~ left-most word of the 
segment relocation entry read by the four SEGT AG bits. 
If this bit is set ("1"), an access (either read or write) may 
be made to the MS segment defined by the relocation 
constant by generating ROACCESS. This bit offers the 
operating system a more convenient means of preventing 
access to a MS segment than using the !Protection matrix 
described below. If the V bit is not set ("1 "), ROACCESS 
goes low to inhibit the access and a jlllmp is made to a 
bounds error trap routine. 

The validity protect scheme is effective only if relocation 
is enabled for the particular processor state. This 
relocation enable is furnished by the Address Mode 
register, which specifies whether a particular processor is 
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1mabled for relocation and/or protection. This 16-bit 
register is composed of an 8-bit relocate ( R) field and an 
B-bit protect (D) field, as shown in Figure 2-138. When a 
particular bit is set in either field, the corresponding 
processor is enabled for the specified relocate or protect 
condition. As the figure shows, four different 
relocate/protect conditions are possible depending on the 
combination of R and D bits. These conditions are 
discussed below: 

1. R·D = O·O - If neither relocation nor protection 
is enabled for a particular processor, the physical 
memory address is made up of the displacement 
address and the segment tag value without any 
reference to a segment relocation table entry. 
This is the condition defined when the 
CONSOLE MAIN STORAGE switch is set to 
OFF position. In addition, none of the 
protection checks wi II be made. 

2. R·D = 0· 1 - This condition is unique in that even 
though protection is enabled, none of the 
protection checks is made. The reason is that 
without relocation, a validity bit or bounds 
check cannot be made. Without these checks, a 
write/read protect check is not needed so it is 
not made either. Essentially, then, this condition 
becomes the same as an R·D = O·O condition. 

3. R·D = 1 ·0 - If relocation only is to take place, 
the segment relocation table entry will be used to 
develop a physical memory address as discussed 
under the above Relocation paragraph. Because 
the relocation table is accessed, the validity bit 
check will be performed automatically even 
though protection is not enabled. Any other 
protection check, however, will not be 
performed. 

4. R·D = 1·1 - Relocation and protection will take 
place using the segment relocation table, and the 
protection matrix as described in the Write/Read 
Protect paragraph. 

1=or the validity bit check, the R bit corresponding to the 
present processor state is ANDed with the V bit from the 
segment relocation table to set up the protect condition 
previously described. 

Bounds Protect 

The bounds protect check is made by comparing the page 
number portion of the displacement address (bits 0 
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through 7 of S) with the maximum page number portion 
of the segment relocation table entry. The maximum page 
number, in effect, constitutes the upper boundary page 
address of the MS segment to be accessed. If the page 
number in S is greater than the maximum page number, 
an MS parity error condition is generated by forcing 
ROACCESS low. The check is made by two comparators, 
each comparing 4 of the 8 bits comprising the page 
number in Sand the maximum page number. The check is 
made only if both the relocate and protect conditions are 
enabled from the Address Mode register. 

Write/Read Protect 

The write/read protect check is made by examining the 
state of a read and write protect bit assigned to each entry 
of the segment relocation table. These read and write 
restrictions are accomplished by means of the protection 
matrix. The protection matri>e consists of a 16-bit Write 
Protect register and a 16-bit Read Protect register assigned 
to each of the either processoir states,, as shown in Figure 
2-139. Bits 0 through 15 of each register represent the 16 
segment entries 0 through F of the segment relocation 
table. A processor may access a segment in MS only if that 
segment number in the appropriate Write Protect or Read 
Protect register of the protection matrix is a 0. 

The protection matrix consists of four storage elements, 
each element storing four bits (segment numbers) of each 
of the 16 registers. A particular register is selected by the 
three processor select (ROST) signals and the 
PROTREAD signal. The PROTREAD signal serves a dual 
function of selecting the Read Protect register during EO 
through E3 of the processor's time slice (PROTREAD 
high), and the Write Protect register during E4 through E7 
(PROTREAD low). In this way, both write and read 
protect checks are made on the selected MS segment. 
Finally, the particular segment number of the selected 
processor's Write Protect and Read Protect registers is 
selected by the four SEGT AG signals through two selector 
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elements. The resultant protect bit selected is ANDed 
with the R·D = 1 ·1 signal from the address mode register 
to generate ROACCESS if the protect condition is met. 

The result of these three protection schemes is to drive 
ROACCESS high if the protect condition is met. If the 
protect condition is not met, ROACCESS goes low to 
inhibit an MS write operation, if requested, and generate 
an MS parity error trap condition in exactly the same 
manner as the basic protect feature discussed in the 
paragraph titled Basic Storage Protection Feature. 

Parity Error Register Extension 

The Parity Error (PE) register extension functions as an 
upper four-bit extension of the 16-bit PE register in the 
Group II ERF. In this regard, it displays the upper four 
bits of the physical address at which the last PE occurred. 
Logic for the PE register extension is shown in Figure 
2-140. The upper four address bits come from either one 
of two sources, depending on the setting of the SYSTEM/ 
PHYSICAL switch on the System Control Panel. If in the 
PHYSICAL position, selector enable SYSTEM goes low 
and the PE register extension is loaded with the upper 
four bits of the physical address via the four ROS-MS 
signals. This physical address may be either the relocated 
or un-relocated system address, depending on the setting 
of the CONSOLE MAIN STORAGE switch. If the 
SYSTEM/PHYSICAL switch is in the SYSTEM position, 
enable SYSTEM goes high and the PE register extension is 
loaded with the upper four bits of the system address 
regardless of the setting of the CONSOLE MAIN STOR­
AGE switch. The address bits are clocked into the register 
via CLKPE, at the same time that the PE register in the 
ERF is clocked with the lower 16 bits of the address. 

JOB ACCOUNTING FEATURE 

A block diagram of the Job Accounting feature is shown 
in Figure 2-141. The eight 32-bit job accounting registers 
are contained in four storage elements as shown. Each 



SEGMENT NUMBER 

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

WAITE PROTECT 0 
T 

1 
1 

2 

3 

~-- t--~ --·+---1 ----1-----1---1-----+--+---f----t---+--f--------+---ll 

- -. ·- -+· - --+--·-+-·--·__,>---~--+---+-- 1----1 1---l--- - -1--

PROCESSOR NO. 

l 
4 

5 

6 

7 

,---+--+--f---~--+--f----+--~----+---1 

1---..__--+----L---~-- ___ J_--+----+---f---+---+--f---+---+--1----11 

---+--+---l--+--+----l--+--+---+--+----+--l--+---1---l---I 

___________ ...._ __ ·--+--1---1----+--.+-. --l---+----l---+-4---11---1--4----lf---1---1 

READ PROTECT 0 

1 
1 

2 

3 

~--i--+---+----4--l--+--~---l--4---1--l--4---1--+----+---I 

PROCESSOR NO. 

l 
4 

5 

6 

7 

---+--+---+--+----~---l----~--+--4---~-+---1---+--+---+-~ 

---+--+----1---1---- I- --- ---l---+----+---l--+---+----l--+----+-----11 

Figure 2-139. Protection Matrix 

1----------- ·----------.. I I I I 
-SE GT AG I I I I 

00-03 I I I 
I I PE I AO 

SEL REG READ 

I 
EXT I LOGIC 

-ROS-MS 
XO+--X3 I I 

I I I 
I I I 

+SYSTEM I I 
I (102a) I I (1827) I 

-----------1 
.. ___ -----· 

-CLKPE 

Figure 2-140. Parity Error Tag Register 

2-164 



--EXEC-XXX 3 ADDER 
3 HOLDING 

J/A REG REG -
+RO-SPEC 

+E4567 - 0-3 __.-

-t>ll- 3 -- ,, 

I 
16-19 

• • ,, 

4.7 

4 

20-23 

[ • . .. 

8-11 

- 4 

24-27 c ~~ • 

12·15 

- 4 

[ 
28-31 

~~ .. 
4 

-J/AWRITE 
E340 OR 740 

-J/ACLOCK 
E160 OR 560 

FIRST 
ADD 

CARRY 

0- [J . .rr--
J ·E4567 ~ -

Figure 2-141. Job Accounting Feature Block Diagram 

2-165 

4 

r---

4 

.---

4 

.--I 

4 

~ 

J/A 
ADDER 

KO 

1 
LJ 

1 
LJ 

~ 
u 
ri 

ALL LOGIC ON 
MODULE 1829 



register consists of two 16-bit words, each individually 
addressable, as shown in Figure 2-142. The storage 
elements are interconnected so that each element stores 
the corresponding four bits of each 16-bit word. For 
example, the top-most element in Figure 2-141 stores the 
left-most four bits of both word 0 (bits 0 through 3) and 
word 1 (bits 16 through 19). During normal operation 
each element is addressed in two halves, wherein word 1 if 
a register is read, incremented by 1 and written back 
during the first half of a time slice (EO through E3), 
followed by a read, increment, and rewrite of word 0 
during the second half of a time slice. Occurrence of each 
operation for incrementing each word of a register is 
shown in Table 2-15. 

During normal operation, a particular register is addressed 
by the processor number specified by the three EX EC 
signals, and the particular word of the addressed register 
by signal E4567. During the first half of a time slice, 
E4567 is low to read word 1 from the register. This word 
is clocked into the adder holding register by J/ AC LOCK 
at E 160. The holding register is used to hold the word 
while the word is incremented by 1. This incrementation 
occurs as soon as the holding register is loaded by uncon­
ditionally routing the word to the adder. The +1 added to 
the word in the adder is generated through a NOR gate 
from two different sources, depending on whether word 1 
or word 0 is being incremented. During an increment of 
word 1, the +1 is obtained from E4567, which is inverted 
to the 1 state through the NOR gate. At E340, the incre­
mented word is stored back into the register by 
J/AWRITE. 

At E400, E4567 goes high to read word 0 of the selected 
register. Incrementing and subsequent rewriting of this 
word is performed in the same manner as for word 0, 
except for the clock times and the source of +1. During a 
word 0 increment, the +1 results from a carry-out, if 
generated, from the most significant bit (MSB) stage of 
the adder, indicating that the +1 added to word 1 
produced an overflow. The carry-out sets the First Add 
Carry flip-flop by J/AWRITE (E340 time). The resultant 
low from the 0 output is fed through the NOR gate and 
added to word 1 now in the adder. 

Generation of J/AWRITE is accomplished by the logic 
shown in Figure 2-143. The signal is generated for two 
different conditions: during normal (MS reference) 
operation to update the job accounting register contents 

by 1, and during Panel-initiated operations to clear the job 
acc:ounting register. For either condition, J/AWRITE is 
generated at both E340 and E740 by the combination of 
timing signals E3 or E7 and BR F WRITE. Signal 
BR FWR ITE furnishes a pulse width of 60 nanoseconds, 
starting at t40 of both E3 and E7. The two conditions 
during which J/AWRITE is generated are defined by 
enables NOT NULL and NOT CONS EXC J/A 
SPECI Fl ED. Specifically, these enables eliminate all other 
conditions during J/AWRITE could be generated: a null 
state and a Panel state where an operation other than a 
job accounting register reference (either read or write) has 
been initiated. A further resolution of the job accounting 
reference specified by the Panel is provided by signal L • 
J/A READ. This signal inhibits J/AWRITE during a job 
account register read operation, or discussed in the 
paragraph titled Register Read. Therefore, the signal is 
generated specifically for a write operation. 

REGISTER READ/WRITE 

Ruading and writing registers of the RO during other than 
normal (MS reference) operations is performed· under 
program control by the Read Register Option ( R RO) and 
Write Register Option (WRO) MLl's, and under manual 
control from the System Control Panel. The R RO and 
WRO M LI 's are each two-word M LI 's, of which the 
second word of the M LI addresses a particular register by 
register group number; processor number, if applicable; 
and, in the case of two-word registers, a designator that 
selects either word 0 or word 1 of the register. The 
System Control Panel permits selection of a RO register 
by setting the above register select information into the 
CONSOLE ADDRESS REGISTER DISPLAY 
pushbuttons. This section describes reading and writing 
RO registers by MLl's only. Reading and writing RO 
registers from the Panel is described in the paragraph 
titled MS/RO and RF Read and Write. 

The 16-bit format for addressing registers of the various 
register groups, including the ECC feature, is shown in 
Figure 2-144. Note that for selection of any RO register, 
bits 0 through 3 are always "O's". The register group 
numbers, defined by bits 4 through 7 of the address, are 
listed in Table 2-16. Note that each register of the ECC 
feature may be selected by two adjacent group numbers. 
The complete 16-bit address for each RO register is shown 
in hexadecimal form in Figure 2-145. 

0 15 16 31 

WORD 0 WORD1 I 
Figure 2-142. Job Accounting Register Format 
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Table 2-15. Occu1rrence of Job Accounting Register Increment Operations 

Time Signal Operation 

WORD 1 UPDATE 

EROOO-E300 E4567 ~ READ BITS 16-31 

E160 J/A CLOCK i /A REG~HOLDING REG-.ADDER 
--

EOOO-E300 E4567 +1 FROM E4567-ADDER 

E340 J/A WRITE ADDER- J/A REG 

WORD 0 UPDATE 

E400-E700 E4567 READ BITS 0-15 

E560 J/A CLOCK J/A REG-+HOLDING REG-..ADDER 

E340 J/A WRITE +1 FROM 1st ADD CARRY FF 

E740 J/A WRITE ADDER- J/A REG 

----------------------------• I 
+STOREUPP ~VRITE 

+STORELOW--~:---L...--r 
+RO-SPEC --il----­

J/A # I 
I 

LS:>J/A READ 

NOT CONS EXC I ·-------
NOTNULL I =c~ 

J/A SPECIFIED _ _.111~--- =I ),___E_34_o_-4_oo __ , ___ -J/A WRITE 
+BRFWRITE _ _._._____ - - E740-000 

E3 OR E7 

I <1025) 

1---------------------------

Fi11ure 2-143. Generation of j1/ A Write 
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11 12 13 14 15 

[ REG. NO. SEGMENT TAG REG. FILE 

11 12 13 14 15 

[ REG. NO. I I PROTECTION MATRIX 

t 0 == WRITE PROTECT 
1 == READ PROTECT 

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

lo 0 0 0 GROUP PROC. NO. [ REG. NO. I I SEGMENT RELOCATION TABLE 

t 0 == WORD 0 (MAX. PAGE) 
1 == WORD 1 (RELOC. CONST.) 

11 12 13 14 15 

~ 0 0 0 0 I BOUNDS REGISTERS 

11 12 13 14 15 

~ 0 0 0 I I JOB ACCOUNTING REG. FILE 

t 0 ==WORD 0 
1 == WORD 1 

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

jo 0 0 0 GROUP 0 0 0 I ~ 0 0 0 0 I ADDRESS MODE, PE TAG, MS 
DATA, LOG, GENERATED CHECK 
BITS, AND READ CHECK BITS 
REGISTERS 

!Figure 2-144. RO Register Address Format 
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i 
PROC. 
STATE 

NO. 

! 

l 
PROC 

STATE 
NO. 

! 

0 

1 

2 

3 

4 

5 

6 

7 

0 00~10 

0020 

2 0040 

3 0060 

4 008:0 

5 OOAO 

SEGMENT TAG 
REG. FILE 
(GROUP O) 

001F 

003F 

005F 

007F 

009F 

OOBF 
1--------·· ·---- ·----· 

6 ooc:o OODF 

7 001:0---00FF 

BASIC 
PROT JOB ACCT 
FEAT FEATURE 

,---1---, ,.____.I.____ 

BOUNDS 
REG. 

(GROUP 
5) . 

05AO 

JOB 
.ACCOUNTING 

REG. FILE 
(GROUP 6) 

WOO WD1 

0600 0601 
---1 

0620 0621 
1----- ------· - ---I 

0640 0641 

0660 0661 
1------- -------l 

0680 0681 
--1 

Cl6AO 06A1 
1--------1 -·---------- ----- ---·· ~- ---

05CO 06CO 06C1 

.05EO 06EO 06E1 

RELOCATION AND 
PROTECTION FEATURE 

Pf110TECT 
M.ATRIX 

(GHOUP 1) 
WR RD 

0 

SEGMENT 
REL CTN 
TABLE 

(GROUP 2) 
WOO WD1 

0200 0201 

0202 0203 

0204 0205 

0206 0207 --0100 0101 

2 

3 

4 

5 

6 

7 

8 

9 

A 

B 

c 
0 

E 

F 

0208 0209 PE 
AD DRS --1 TAG 

0120 0121 

0140 0141 

020A 020B MODE REG. _ ___, 
REG. (GROUP 020C 0200 

(GROUP 3) 4) 
0160 0161 

- 1---------1 
0180 0181 

020E 020F 
I 0400 ] 0300 

0210 0211 
-- -. -------- ····-1 

01AO 01A1 0212 0213 
~---- f--------l f------ ---- -l 

01CO 01C1 0214 0215 
---l 

01E1 01E1 0216 0217 

0218 0219 
---1 

021A 021B 

021C 0210 

021E 021F 

ECC FEATURE 

r 

MS GEN READ 
DATA LOG CHK CHK 
REG. REG. BITS BITS 

NOT (GROUP (GROUP (GROUP (GROUP 
USED 8/9) A/B) C/O) E/F) 

0700 T 0800/0900 I 0"00/0800 I OCOO/ODOO I OEOO/OFOO 

ALL RECilSTER ADDRESSES IN HEXADECIMAL FORM. 

Figure 2-145. Register Option t:~egisters and Associated Addresses 
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Register Read 

Reading a RO register by means of an MLI is 

accomplished by the logic shown in Figure 2-146. The 

basic approach is to select a register from the processor 

number (bits 8, 9, and 10), register number (bits 11 

through 15), and register word designator (bit 15) of the 

address contained in S. The data read travels over one of 

six data paths from each register group to a selector, 

which selects a particular data path by the register group 

number (bits 4 through 7) contained in S. This 

intermediate selection, which is also fed with the register 

group number. The final path selected routes the 

information read to the data fan-in in the MS interface 

logic. Selection of any RO register requires that enabled 

RO-SPEC be in the high state, indicating that a reference 

is being made to the RO for the express purpose of 

reading or writing an RO. register. 

Segment tag registers are selected by both processor 
number (SR-RO bits 8, 9, and 10) and register number 
(SR-RO bits 11 through 14 and SELBYTEO). The seg­
ment tag selected is passed to the PE/segment tag selector, 
which is also fed with output from the PE register exten­
sion. (There is only one PE register extension; therefore,· 
selection of this register is made by the register group 
select bits alone.) This selector selects either the Segment 
Tag or the PE register extension contents, depending on 

the state of SELSTAG, a~ shown in Table 2-17. The result 
is routed to the RO multiplexer as ST/PE bits. 

Entries in the segment relocation table are also selected by 
processor number and register number, via a correspond· 
ing segment tag as for normal MS reference operation. The 
resulting 24 bits of the selected entry are sent to the 
relocation/protection register fan-in. The 24 inputs to the 
fan-in are applied as two input groups of 12 bits each, cor­
responding to the two words that make up each entry in 
this table. The fan-in is also fed with outputs from a 
selected register in the protection matrix and from the 
Address Mode register. One of the 16 two-register entries 
in the protection matrix is selected by a processor via the 
ROST select bits. Selection of either the read or write 
register of the selected entry is made by bit 15 of S, which 
generates PROTREAD. If PROTREAD is high, the read 
register is selected; if PROTREAD is low, the write regis­
ter is selected. Selecting one of the four inputs groups to 
the ROBIT selector is performed by the two SELRO 
select bits, as shown in Table 2-17. The output of this fan­
in is fed to the RO multiplexer as ROBIT bits. 

If the Basic Storage Protection feature is installed in place 
of the Relocation and Protection feature, the ST /PE bits 
are not generated and the ROB IT are developed from a 
selection of one of the three bounds registers. This 
selection is made from the processor number via the 
ROST select bits. 

Table 2-16. Register Option Register Group Numbers 

Group No. 
Feature Register Group (Hexadecimal) , 

Relocation and Protection Feature Segment Tag Flegister File 0 

Protection Matrix 1 

Segment Relocation Table 2 

Address Mode Register 3 

PE Register E:ctension 4 

Basic Protection Feature Bounds Registers 5 

Job Accounting Feature Job Accounting Register File 6 

ECC Feature MS Data Register 8/9 

Log Register A/B 

Generated Check Bits CID 

Read Check Bits E/F 
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Selector Name 

ST/PE 

ROBIT 

Table 2-17. !First-Level Selection of Register Groups 

Sel ~nals and States ector Sit 

SEL T 

0 

.AG 

--SELRO 

0 

-SO 

0 

SELRO-S1 

0 

1 

0 

1 

Register Group Selected 

PE Register Extension 

Segment Tag Register 

Address Mode Register 

Protection Matrix 

Segment Relocation Entry, bits 12-33 (Relocation Constant) 

Segment Relocation Entry, bits 0-11 (V Bit and Max. Page No.) 
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·SR·RO 
8,9,10 

·SR·RO 
11-14, 

·SELBYTEO 

I 
I 
I 
I 
I 
I 

R/P I 
(1827). 

--------------------- ---
+RO-SPEC 

·SR·RO 
OB-10 

.. -------.. I ENC I 
I I 
I I 

I 
I 
I 
I 
I 
I 
I 

+ROST 

I 
I 
I 
I 
I 

I +PROT 
READ 

+RO·SPEC--111------' 

I 
I 
I 
I 
I 

I 11e251 I '--------· 

+SEL TAG --s:-------.. 
RELOC I 

I 
I 
I 
I 
I 

TABLE I 
I 
I 
I 
I 
I 

REL~~~ROT I 

FAN-IN I 

I 
I 

I R/P(1828) I 
, _____________ .. 

r ---------BOUNDS 
I REG 

I 
I 
I 
I 

--~ BOUNDSI 
FAN-IN 

I 
I 

I I 
I BP(1B28l• 

.. ____________ llllli 

·SR-RO 
08·10, 

.SRBIT·15 

Figure 2-146. Register Option Register Read 

p-----------------, 
: REG ADAS SEL 

I 

.SR-RO 
05-07 

+DR-RO 
00·15 



The ST/PE and ROBIT bits are sent to the RO multi­
plexer for final selection and routing to the data fan-in 
logic. This multiplexer is also fed with outputs from a 
selected register in the Job Accounting feature. The Job 
Accounting register is selected by S register bits 8, 9, and 
10, and either word 0 or word 1 of the register is selected 
by bit 15 of S. One of the three inputs to the RO multi­
plexer is gated by an encoded combination of register 
group select bits 5, 6, and 7 from S and master enables 
J/A, BASIC, and RELOC. (Bit 4 of the register group 
select field is not needed since it is always 0 for the non­
ECC features of the RO.) These three master enables pro· 
vide an over-all select enable for the three non-ECC 
features by defining which of the three features are pre­
sent or enabled for selection in the system. If either the 
Basic Storage Protection or the Relocation and Protection 
feature is present, the corresponding master enable is con­
nected to the high state (+5 vdc) to enable selecting the 
feature by bits 5, 6, and 7. The Job ,l\ccounting feature 
will always be present in the system, since the module 
containing this feature is also used for register read oper­
ations; however, the job accounting registers can be 
selected for read operations only if the master enable J/A 
is connected to the high state. Any feature not present or 
not available for selection is disabled by connecting its· 
master enable to the low state (ground). 

During a read of the job accounting re!~isters, the update 
operation must be inhibited so that a steady-state value 
from the register may be reea. This is accomplished by 
inhibiting the J/AWR ITE signal. When this signal is 
inhibited, the contents of the selected rngister are updated 
in the normal manner by adding +1; however, they are 
prevented from being written back into the register to 
keep the register contents from being altered during the 
read operation. The signal is inhibited as shown in Figure 
2-143 by applying a low to the two AND gates which 
generate J/AWRITE. This low is generated by RO-SPEC if 
a read of the job accounting registers is specified 
(ROWRITE is high). This low overrides the E times that 
would normally generate J/ AWR ITE for the duration of 
the time slice during which the read is being performed. 

Register Write 

Writing a RO register by means of an IVILI is done so by 
the logic of Figure 2-147. The register is selected by 
register group number, processor number, and register 
number Upon being selected, data from the D register is 
entered in the register in the presence Clf a corresponding 
write enable generated from the feature number. These 
write enables are generated by the logic shown in Figure 
2-148. Each write enable is generated by a corresponding 
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register gorup select signal decoded from bits 5, 6, and 7 
of S, and a RO write enable generated at E5 time from 
HO-SPEC, STOREUPP, and STORELOW. Two write 
e~nables are generated for the segment relocation table to 
cillow separate writes of word 0 and word 1 in each entry. 
The word designator is supplied by bit 15 of S, as follows: 

Bit 15 = "O" - write word 0 

Bit 15 = "1" - write word 1 

The Address Mode register requires two write enables 
because of the logic used to implement this register. Both 
enables are generated simultaneously for identical 
i:::onditions. The Address Mode register can also be written 
lby a master clear operation, for the purpose of clearing 
the register to O's. 

Referring back to Figure 2-147, the Segment Tag register 
to be written into is selected by bits 8, 9, and 10 of S 
(processor number) and bits 11 through 14 of S and 
:SELBYTEO (register number). Data to be written into the 
selected register is derived from bits 12 through 15 of the 
D register in the MS interface logic through a selector. For 
routing this data to the selected segment tag register, 
selector enables RO-SPEC and STMUX-SO are "1" and 
"1 ", respectively. Writing into other RO registers are 
selected in a similar manner, much the same as for reading 
the registers, except for the additional write enable 
required. 

Writing into a selected job accounting register is done so 
for the specific purpose of clearing the register. This is 

. done by generating RO-WRITE and combining it with 
RO-SPEC and the job accounting feature number, as 
shown in Figure 2-149, to generate both a low and a high 
output. The low output is applied to the function select 
input of the four adder elements, and the high output to 
the mode control input of the adder elements. The state 
of these two inputs determines how the four "adder" 
elements, which are really multi-purpose function 
generators, are to operate. During normal job accounting 
update operation, these elements function as adders. 
During a register write operation, however, the state of 
these two inputs is altered as discussed to make the 
elements generate all "O's" on their outputs, regardless of 
the inputs. These 16 "O's" are routed back to the selected 
register to clear the register upon occurrence of the 
J/AWRITE enable. 



-SR-RO 
oa-10 

-SR-RO 
11-14 

SELBYTEO 
-SEGTAGWR 

+DR-RO 
12-15 

r-----------------------, I I 
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I 
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IN 

SEG 
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SEL 
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REG 
EXT 

I 
I -SEGTAG 
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.------ ---.. • I 
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L-----------------------~ 
I 
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r~------, I 
I I -RELOCWRU ___ • ____ ____. 
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SEL ...._--------~--.• ~~--+~~--. 
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PROT 
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I 
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----------Figure 2-147. Register Option Register Write 
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r--------------------------~ I 

SEGTAGWR 
(SEG TAG REG) 

I 
I 
I 
I 
I 
I ------1.-------BASIC WR (BOUNDS REG) 

-SR-R005 

I 
I 
I REG 

GROUP ~------------ -PROTWR (PROT MATRIX) 
·SR-R006 

I 
I 
I 

-SR-R007 

NO. 
DEC 

REG 
RELOC 
TABLE 

-RELOCWRU l 
------ -RELOCWRL 

·SRBIT-15 ------------...... 

+MC-J--11~---~---~+------~---------

+RO-SPEC--.--t---"}.-• ...,....._ 

+STOREUPP----+---4 

+E5 --•:-....... --... 

+STORELOW I I 
(1826) 

~--------------------------· Figure 2-148. Register Group Write Enables 

figure 2·149. Writing O's into Job Accounting Registers 
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MLI DECODE AND STORE/SAVE 

The machine language instruction (MLI} decode and 
store/save logic performs a first-level (format) decode on 
the new M LI read from main storage (MS) for purposes of 
branching to a routine required to read the first MLI 
operand. The logic also saves the M LI from one time slice 
to the next until execution of the MLI is completed. A 
block diagram of the logic involved is shown in Figure 
2-150. The MLI read from MS during the RNI sequence is 
routed to the M LI decode and store/save logic by a SOW 
µI with FR F in Group I of the Extended Register File 
(ERF) as the destination. The µI reads the MLI from MS 
and passes it to the Format Jump ( F RJ) decoding logic to 
determine the format of the MLI and obtain the first 
operand to be processed by the MLI. The µI also routes it 
to the Fb register to be saved in the assigned FR F of the 
ER F at the end of the time slice, and to the F register via 
the F register fan-in logic. This auxiliary operation of 
routing the M LI to the F register provides for immediate 
modification of the MLI, if necessary, during the present 
time slice. 

FRJ DECODE 

The F RJ decode logic performs a first-level decode of an 
MLI to determine its format. The format of an MLI 
consists of two parts: instructions type and addressing 
mode. The type of MLI (register/register, 
memory/register, and so forth) is defined by the class of 
its function code (2X, 3X, 4X, and so forth). The 
addressing mode is indicated by the state of bits 8 and 12 
of the M LI, which determine whether the operands are to 
be obtained from MS or a file register. Upon determining 
the format, the decode logic generates a two-digit 
hexadecimal address. This address points to one of 256 
locations in an address table. This address table consists of 
ten bipolar storage elements, each element storing one bit 
of 256 words. Each word, therefore, consists of ten bits: a 
parity bit plus the right-most nine bits of a branch address 
to a routine required to read the first MLI operand. The 
nine bits from the address table are appended to the 
left-most five bits of the 14-bit CS address. These 
left-most five bits are also generated by the F RJ decode 
logic, as shown in Figure 2-151. Of these left-most five 
bits, bit positions 4 and 5 are set to "O" and "1 ", 
respectively. Bit 6 is obtained from bit 3 of the MLI 
contained in the F register. Bits 2 and 3 are used to 
specify the 4096-word storage unit in CS to which the 
FRJ jump is made. These bits are not changed from what 
is presently in the Sµ register. The F RJ address table is 
loaded during the initial CS load operation, immediately 
after CS is loaded. 
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An example of how the F RJ decode logic operates to 
generate jump addresses is shown in the block diagram of 
Fiuure 2-152. The F RJ decode logic consists of a 
translator, two address bit selectors, address table, output 
gating, and a parity check circuit. The M LI to be decoded 
is 2A O·O, which means the M LI whose operation code is 
2A, and whose bit positions 8 and 12 are both "O" 
(indicating that the M LI operands are to be obtained from 
or stored in a file register). The MLI is obtained from the 
D register via an F RJ µI and translated to generate two 
hexadecimal digits that point to the address table location 
containing the right-most nine bits of the F RJ branch 
address. For the 2A 0·0 MLI, the address table pointer is 
FB 16 (11111011). 

The contents of· location FB are routed to the output 
gating logic in preparation for transmitting the final FRJ 
branch address to the set P logic. This logic also appends 
bits 2 through 6 of the right-most 9 bits as shown. Note 
that data fed to the output gating logic is in complement 
form, so that the NANO gates can invert it to true form. 
ThB inputs to the gates of bit positions 4 and 5 are tied to 
a logic high (+5 vdc) and a logic low (ground), 
respectively, so that their outputs will be "O" and "1 ", 
respectively. The inputs to the bit positions 2 and 3 gates 
are also tied high to generate outputs of "O" and "O". 
This causes the F RJ branch to be made within the same 
4096-word CS storage unit. In this respect, the bits are 
said to be unchanged from what they were in the Sµ 
register before the jump address was produced. However, 
more storage units could be added at a later date (up to a 
maximum of 4). This might require these bits to be set to 
some value other than 00 if some FRJ routine should be 
located in another storage unit. It is for this reason that 
these bits are also generated in the FRJ decode logic 
besides bits 4 and 15, even though not actually necessary 
at present. 

Since the address table is part of CS, it is alterable. The 
branch addresses are loaded in the table with the rest of 
CS as part of the Reset/Load sequence. This is 
accomplished by specifying each location in the address 
table by means of an address contained in bit positions 8 
through 15 of Sµ. These address bits from Sµ are fed to 
the address bit selectors along with the outputs from the 
translator. During an initial CS load, however, the DR or 
Sµ enable will be such as to select the address bits from Sµ 
instead of from the translator. As each address table 
location is selected, the corresponding jump address to be 
stored is fed in on the N-CS bit 7 through 15 lines and 
the parity bit fed in on the N-cs bit 0 line. 
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A map of the address table, showing the location of the 
FRJ jump address for each type of MLI is shown in Table 
2-1'7. The vertical boxhead contains the hexadecimal 
address generated by D register bits 0 through 3; the 
horizontal boxhead contains the h13xadecimal address 
generated by bits 4 through 7. 

Fb AND f REGISTERS 

The Fb (F buffer) and F registers are used to hold the 
MLI being executed during the present time slice. 

Normally, the MLI is loaded in F from FRF assigned to 
that processor at the beginning of the processor's present 
time slice (at EOOO time). It stays in 1= where it is fanned 

out to various sections of control logic required to 
execute the M LI until the next EOOO time. At this time, 

the ML I for the next processor is loaded into F. The 
above procedure is altered somewhat during an RN I 
sequence when a new M LI is read from MS for a processor. 

For this situation, the M LI is loaded into both F and Fb 
by a SDW µI at E5 time. Loading the new MLI into F 
provides the fan-out necessary to begin executing the M LI 

as before. The Fb register provides a place to hold the 
M LI until it can be stored in FR F' It is necessary to pro­
vide this buffer register for this singular purpose because 
the MLI is not stored in FRF until W1 time. However, at 
EO time (one minor cycle time before W1), the MLI for 
the next processor is routed to F which displaces the MLI 
for the present processor. The Fb register, therefore, 
eliminates this overlap problem by providing a holding 
register for the M LI. 

A simplified diagram of the F aind Fb registers is shown in 
Figure 2-153. Both the F and Fb registers are fed with the 
M LI from the ALU fan-out logic via the ALU input. This 
MU will be either a new MLI read from MS during an 
RN I sequence, or an existing M LI that has been modified 
during the course of its execution. (For example, double 
precision MLl's require R1 ± 1 and/or R2 ± 1 modifica­
tions to their A-fields.) At the beginning of the time slice, 

F is fed with the present MLI from FRF during the R1 
cycle. 

Selection of one of the two inputs to F is made via 
ENALU ... FR through a two-input selector element. The 
two registers are clocked by a common signal but under 
different conditions. The F register is clocked uncondi­
tionally at EOOO time for transferring the MLI presently 

being executed from FR F· The F and Fb registers are 
both clocked during execution of a SOW µI for purposes 
of reading a new M LI from MS and transferring it to F 
and Fb as discussed previously. Clocking F with the con­
tents of FRF is inhibited at EOOO if the present processor 
is operating in the consecutive-cycle (CC) mode. Under this 
condition, there is no need to clock the next processor's 
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MLI into F since the present processor will keep 
executing. Indeed, it may happen that the ALU might 
have modified the present M LI at EB; consequently, it 

must be routed back to both Fb and F at EO of the next 
time slice. 

ARITHMETIC-LOGIC UNIT 

The arithmetic-logic unit (ALU) performs all arithmetic 
and logical operations required by the µl's. These opera­
tions include the following: addition, comparison, shifts, 
logical sum and product, bit sense, and sense/toggle. A 
block diagram of the ALU is shown in Figure 2-154. 

The ALU adder performs both addition and subtraction 
by an additive process. Addition is performed by adding 
both numbers in true form; subtraction is accomplished 
by adding the minuend in true form and the subtrahend 
in two's complement form. Two's complementing is 
performed by the LAW- and LBW- µl's in conjunction 
with the Forced Carry Register (FCR). 

Data to be operated on by the ALU is fed to the Aµ 
and Bµ registers through corresponding fan-in logic. 
Generally, this data will be from either a file register or 
from main storage via the data fan-in path. Data in these 
registers is unconditionally added and compared by the 
adder and compare networks. The results, however, are 
used only if required by the µI being executed. Data to be 
manipulated by any of the other operations is done so 
only if the µI so specifies. 

Shift, bit sense, and sense/toggle operations are imple­
mented by corresponding logic. Both these operations 
feed the shifted or sense/toggle data back to the Aµ and 
Bµ registers to complete the operation. In the case of a 
shift, the (up to) 32-bit result is held in Aµ and Bµ after 
being shifted for use by another µI. A bit sense or 
sense/toggle operation required sending the locationto the 
sensed or toggled bit in Aµ back to Bµ for addition to the 
contents of Bµ. Because these two operations require a 
longer than normal propagation path through the ALU, 
they may delay execution of the next µI as explained in 
greater detail in the paragraphs that discuss these 
operations. 

Logical sum and product operations on the contents of 
Aµ and Bµ are performed by means of the ALU fan-out, 
wherein the logical operations is effected by certain 
combinations of enables according to the µI being 

executed. 

Some µ1 's require certain constants to be generated as 
part of their execution. These constants enter the Bµ 
register as 16-bit words, 8-bit bytes, or 4-bit nybls, 
depending on the µI. They are generated by the constant 
generator which feeds the Bµ fan-in. 
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D AD-A9 AD-A9 AD-A9 

c I 
B0-89 

I B0-89 BO-B9 

B 60-63 60-63 60-63 

A 70-73 70-73 70-73 

9 00-03 04-07 08-08 

8 8D-83 84-87 88-8B 

7 EO ED ED 

6 E4 E4 E4 

5 E8 E8 E8 

4 EC EC EC 

3 FD FD FD 

2 F4 F4 F4 

1 F8 F8 F8 

D FC FC FC 

*Value of A and B same as Row F 
**Values of A and 8 do not apply 

I 

Table 2-18. FRJ Address Decode Matrix 

c B A 9 8 7 6 5 4 3 2 1 D 

2D-29 2A 2A 2A 2A 2B 2B 2B 2B 2C-2F 2C-2F 2C-2F 2C-2F 
(R1llR2I R1 R2 R1 (R2I (R1l R2 (R1HR2I R1 R2 R1 (R2I IR1I R2 (R1HR2I R1 R2 R1 (R2) IR1I R2 (R1HR2I 

3D-39 3A 3A 3A 3A 3B 38 3B 3B 3C-3F 3C-3F 3C-3F I 3C-3F 

AD-A9 AA AA AA AA AB AB AB AB AC-AF AC-AF AC-AF AC-AF 

B0-89 BA BA BA BA BB BB BB BB BC-BF BCBF 
l 

BCBF 
l 

BC-BF 

I I 
I 1 I 60-63 64-67 64-67 64-67 64-67 68-68 68-68 68-68 68-68 6C-6F ' 6C-6F 6C-6F 6C-6F 
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70-73 74-77 74-77 74-77 74-77 78-78 l I I l 78-78 78-78 78-78 l 7C-7F l 7C-7F 7C-7F 7C-7F 

l I so-53 l 
T I OC-OF 10-13 14-17 18-18 lC-lF 40-43 44-47 48-48 4C-4F 54-57 58-58 5C-5F 

T T 
8C-8F 90-93 94-97 98-9B 9C-9F CD-C3 C4-C7 C8-CB CC-CF I DD-D3 ! 

D4-D7 D8-DB DC-DF 

ED El El El El E2 E2 E2 I E2 I E3 I E3 E3 E3 

E4 E5 E5 E5 E5 E6 E6 E6 E6 E7 E7 E7 E7 

E8 E9 E9 E9 E9 EA EA EA EA EB EB EB EB 

EC ED ED ED ED EE EE EE EE EF EF EF EF 

FD Fl Fl Fl Fl F2 F2 F2 F2 F3 F3 F3 F3 

F4 F5 F5 F5 F5 F6 F6 F6 F6 F7 F7 F7 F7 

F8 F9 F9 F9 F9 FA FA FA FA FB FB FB FB 
I 

FC FD FD FD FD FE FE FE FE FF FF l FF FF 

NOTE: (Boxheads represent hexadecimal address in a 256-word address table that points to the starting address, as modified by bits 2-6 of Sµ, for 
implementing the machine-language instruction indicated in the matrix.) Actual starting addresses in CS are listed in the CS printout. 
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Figure 2-153. F and Fb Registers 
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AµAND Bµ REGISTER FAN-IN 

The Aµ and Bµ register fan-in logic provides inputs to the 
Aµ and Bµ registers from a variety of s1ources, as shown in 
Figure 2-155. As shown, the logic consists of two gating 
networks for each bit, one for the Aµ register and one for 
the Bµ register. Data comes from the sources listed below: 

1. Shift network (SN bits) - to both Aµ and Bµ 
registers. 

2. Bit toggle generator (TBIT bits) - to Aµ register 
only. 

3. Main Storage, Register Option, or D register (DR 
bits) - to Aµ register only. 

4. Extended register files (ER bits)I - to both Aµ 
and Bµ registers. 

5. Basic register files (BR bits) - to both Aµ and Bµ 
registers. 

6. Bµ register adder (BMSUM bits) - to Bµ register 
only. 

7. Constant generator (CG bits) -· to Bµ register 
only. 

All data is routed to the fan-in logic i111 complement form 
and gated through the logic by an enable in true form. 
The result is an output signal in true form that is routed 
to the clocked set and clear inputs of the Aµ and BJ.L 
register flip-flops. A second output from the Aµ register 
fan-in logic, labeled R F-MSI, routes data from a selected 
register of the BR F to the Sand D registers in the control 
storage interface logic during execution of load Sand load 
Dµl's. 

The SN bits are enabled by ENSN-ALU during execution 
of a shift µI (SHF, SHR, DLS, or DRS). Data from the D 
register is gated by ENDR .. AM dur,ing execution of a 
D .. ~µI (OTA, OTA/, IDX, or DFA). The ER bits from a 
selected extended register are gated to the Aµ and Bµ 
registers by ENERF-AM and ENERF-BM, respectively. 
These two enables are generated for differentµ l's when an 
overall permit condition, AANDB + INVERF, is present. 
Signal AANDB indicates that the X-field and the µI is 
addressing a register in the ER IF (a and b designators are 
both 1 ). Signal INVERF is generated when executing an 
IVK µI, wherein the processor and ERF register numbers 
are obtained from the Boundary Crossing register. Enable 
ENERF-AM is generated when AANDB + INVERF is 
present, and executing any µI except a Load D µI or a 
Shift µI. These two classes of µl's ·specifically inhibit 
ENERF-AM since they require their own enables to 
transfer data to the Aµ register, as described above. 
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Enable ENERF-BM is generated when RANDM + 
INVR FE is present, and executing an LBW, LBW/, LAB, 
CLA, or LBL µI; or a Load D µI. The Load D µl's require, 
in addition to loading the D register, that the contents of 
an ERF be transferred to the Bµ register, in either true or 
complement form. 

The BR F bits from a register of the BR F are enabled by 
ENBR F -+AM and ENBR F-BM. These two enables are 
generated in a manner similar to those for extended 
register data: the presence of an overall permit condition 
ANDed with specific µI function codes. The permit 
condition for enabling BRF data is AANDB · INVERF. 
The specific µl's for generating each BRF enable are 
identical to those for generating the ER F enables, as 
summarized below: 

ENBRF-AM = (AANDB · INVERF) · (LOAD D + 
SHIFT) 

ENBRF-BM = (AANDB · INVERF) ·(LBW+ LBW/ 
+LAB+ CLA + LBL + LOAD D) 

Data from the constant generator is gated through the 
fan-in logic to the Bµ register via ENCG-BM. This enable is 
generated for any ~I except for the above µl's referenced, 
which require their own enables for the peculiarities of 
the particular µI. 

Aµ AND Bµ REGISTERS 

The Aµ and Bµ registers receive data from the Aµ and Bµ 
fan-out logic that is to be processed by the adder. These 
two registers can be considered as the addend and augend 
registers since they hold these two quantities during add 
operations. Each register consists of 16 J-K flip-flops with 
data, clock, preset, and preclear inputs. Since some µl's 
require that data to be processed by the adder be in 
complement form, the Aµ and Bµ registers provide the 
capability for one's complementing data if the µI so 
requires (all data routed to the Aµ and Bµ registers is in 
true form; therefore, complementing must be done in the 
registers themselves). This complementation is provided 
by using the ability of a J-K flip-flop output to toggle its 
output state when both inputs are "T", and by condition­
ing the register prior to storing data via the preset and 
preclear inputs. (Two's complementing of the data, 
required by the SUM and DSUM µl's for performing sub­
traction, is effected by adding +1 from the FCR to the 
one's complement data in Aµ and Bµ.) 

An example of how data can be stored in one stage of the 
Aµ register in either true or complement store is shown in 
Figure 2-156. Part a shows how data is stored in true 
form. Prior to reception of data on the input line con­
nected to both the J and K inputs, the flip-flop is pre-
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cleared by EN RAM to generate "1 "* on the Q output line 
and "O"* on the 0 output line (the -11, indicates the state 
of the output lines due to either the preset or preclear 
conditioning). Assuming the input data is a "1 ", the Q 

and 0 outputs are toggled, when clock pulse ENCAM goes 
low, so that now the 0 output is a "Cl" and the Q output 
is a "1 ". If the input data is a "O", no toggling takes place 
and the Q and 0 output states remain unchanged. Since 
data is stored in the flip-flop stage in the same form as 
that on the input lines, the stage is said to store data in 
true form. Part b of Figure 2°156 shows storing data in 
complement (one's complement) form. The flip-flop is 
conditioned by presetting it via the ENSAM signal. The 
result is to change the Q output to a "1 "* and the Q out­
put to a "O"*. Assuming again that the input data is a 
"1 ", the state of the output lines will toggle so that the Q 

output goes to "O" and the Q output goes to "1 ". The 
resultant output then becomes the complement of the 
input. If the input data is a "O", no toggling takes place 
and the 0 output remains at "1" and the Q output 
remains at "O". The Bµ register stores data in either true 
form or complement in exactly the same way, condi­
tioned by means of enables ENRBM and ENSBM. A list of 
µl's involving transfer of data between the Aµ and Bµ 
registers and the adder, and their corresponding register 
enables is shown in Table 2-19. 

Outputs from the Aµ and Bµ registers are routed to 
several destinations, as shown in Figure 2-157. Both set 
and clear sides of both registers arei fed to the ALU 
fan-out logic for distribution to other sections of the 
shared resources. In addition, the SElt side of the Aµ 
register is routed to the compare and bit sense logic for 
evaluation during execution of comparn and bit sense µl's. 
Bit 00 from the set side of the Bµ register is routed to the 
status logic as BM-NEG for status bit compare operations. 
Also, the clear side of the Bµ register is fed to a buffer 
register. Outputs from this buffer register are routed to 
the bit sense adder, during execution of bit sense (E,X, 1) 
µl's; and to the shift network, during execution of shift 
(E,X,O) µl's. 

ADDITION 

Adder Element Operation 

The adder consists of four MSI adder elements and a 
full-carry look-ahead circuit, as shown in Figure 2-158. 
The adder performs addition of two 16-bit operands from 
the Aµ. and Bµ. registers. This addi1tion is performed 
unconditionally whenever operands am loaded in the Aµ 
and Bµ registers. The result is used, however, only when 
so directed by a SUM or DSUM µI. Each ALU element 
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performs upon four bits of the operand and is designated 
by one of four group numbers: 0 through 3. Each adder 
element generates four SUM bits, a group carry generate. 
bit (GCGEN) and a group carry propagate bit (GCPROP). 
The SUM bits are fed to the ALU fan-out logic; the 
GCGEN and GCPROP bits are fed to the look-ahead carry 
generator logic. This logic provides simultaneous carries 
for each ALU element by combining the GCGEN and 
GCPROP bits from each element to generate a 
corresponding group carry input signal (GPCRIN). Each 
carry input is fed to the next higher group ALU element 
in an attempt to satisfy the lower-order carry. The carry 
generate logic for the highest-order group (group O) 
generates a sum word carry, ADDERGEN, in place of a 
GCR IN signal. This sum word carry is fed to the Forced 
Carry register during multiple-precision operations to 
generate a lowest-order carry (GPCRIN-3) to be satisfied 
during addition of subsequent words during the 
multiple-precision operation. 

Group Carry Generate 

The GCG EN signal from an adder element is the Group 
Carry Generate signal, indicating that the inputs to the 
four stages have generated a sum that is in excess of what 
can be respresented by the SUM bits of that element. A 
group carry generate will be developed whenever any of 
the input conditions to an element listed in Table 2-20 is 
present. 

Group Carry Propagate 

The GCPROP signal from an ALU element is the Group 
Carry Propagate signal, indicating that the particular 
element cannot absorb a group carry generate from a. 
lower-order element. Therefore, if a carry generate from a 
lower-order element occurs it must be propagated to a 
higher-order element. A group carry propagate is 
generated whenever the sum of a stage is either "1" 
(addend and augend bits are "O" and "1" or "1" and 
"O"), or a "O" with a carry of "1" (both addend and 
augend bit~e "1"). Table 2-21 shows input states of the 
AM and BM bits which will generate a group carry 
propagate. 

Look-Ahead Carry Generator 

The look-ahead carry generator evaluates the group carry 
generate and group carry propagate bits from each adder 
element to develop group carry input bits for each 
higher-order adder element. Since each adder element 
generates carry generate and carry propagate bits 



Table 2-19. Aµ and Bµ Register Enables 

-1!:_1 Enables 
ENSAM ENRAM ENS BM ENRBM 

Op Code NM EMO (COMP ... Aµ) (TRUE-Aµ) (COMP..Bµ) (TRUE-Bµ) 

3,0 LS1 x x 

3, 1 LSF x x 

3, 2 LS2 x x 

3,3 LSE x x x 

6,0 LBW x 

6, 1 LBW- x 

6,2 LBB x 

6,3 LBB- x 

7,3 LBL x 

A EBU x 

B EBL x 

C,O DTA x x 

C, 1 DTA- x 

C,2 IDX x x 

C,3 DFA x x 

0,0 LAW x 

D, 1 LAW- x 

D,2 LAB x x 

D,3 CLA x x 

E,0,0 SHF x x 

E, 1, 0 SHA x x 

E,2,0 DLS x x 

E,3,0 DRS x x 

F,2 DIG x 

F,3 CORC x 
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Table 2-20. Group Carry Gonerate Truth Table 

-- -- -- -- --
BMOO AM01 BM01 AM02 BM02 AM03 

0 x x x x x 

1 
0 0 0 x x x 

1 0 1 
0 1 0 0 0 x 

1 0 1 0 1 
0 1 0 1 0 0 

Table 2-21. Group Carry Propagate Truth Table 

-- -- -- -- -- --
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Figure 2-159. Generation of GPCRIN-1 
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simultaneously, the carry generator produces the required 
carry input bits to each adder element simultaneously.* It 
is this look-ahead capability of the carry generator in 
generating carry input bits simultaneously that speed up 
the addition operation as compared with an add 
performed using serial carry inputs. A pmtion of the carry 
generator, that used for generating GPCRIN-1 (the group 
carry input bit to adder element group 1), is shown in 
Figure 2-159. The GPC RI N-1 signal is g1enerated if any of 
the following conditions occurred: 

1. group 2 produced a carry out (GCGEN-2), or 

2. group 2 produced a carry propagate (GCPROP-2) 
and group 3 produced a carry out (GCGEN-3), or 

3. both groups 2 and 3 produced a carry propagate, 
and a carry was forced from the FCR 
(FORCECRY). 

As mentioned previously, ADDERGEN is produced as a 
sum-word carry during multiple precision operations. 
Normally this sum-word carry will be nenerated when a 
carry out results from bit 15 of the sum. During execution 
of a CMPK, ADDK, SUBK, or ZADK MLI (F codes of 50 
through 53), however, the sum-word carry is generated 
when bit 7 of the sum generates a carry out. This is 
because these four M LI 's execute decimal numbers in byte 
form (two 4-bit hexadecimal digits) instead of in 
whole-word form (four 4-bit hexadedmal digits). For 
these four MLl's, ADDERGEN is generated by MLl-5053. 
Signal ADDERGEN is fed to the link logic to generate a 
link status bit in the Pµ register as shown in the adder 
block diagram of Figure 2-158. From the link logic, it is 
fed to the Forced Carry register which generates 
FORCECRY. This signal then is fed back to the carry 
generator to generate GPCRIN-3. 

Forced Carry Register 

The Forced Carry register (FCR) is a single flip-flop used 
to store either a "O" or "1" for use as a constant during 
the following three types of operations: 

1. M LI address updates, 

2. two's complement arithmetic operation, and 

*Actually, the carry input to group 0 is generated two gate delay 
times later than the group 3 carry input and those to groups 1 
and 2 are generated one gate delay time ~ater. These delays, 
however, are negligible compared to gate delays incurred in the 
adder elements. 

3. storing a sum-word carry generated for 
subsequent additions during multiple precision 
arithmetic adds. 

The type-D edge-triggered flip-flop can be set or cleared in 
three different ways, as shown in Figure 2-160: +1 + FCR, 
0 .. FCR, and LINK .. FCR. 

The +1 .... FCR operation is effected by a low into the 
forced set input which causes the 0 output to go low. For 
LS1 and LS2 µl's, the operation is performed for purposes 
i::>f forming the address of the next MLI. These two µl's 
lload register S (the M LI address register) with the 
contents of a register designated by the µI X-field. The 
Jlll's are programmed as part of the MLI RNI sequence to 
form the address of the M LI. The + 1 .. FC R operation is 
then used by the SUM JJ. I in the RN I sequence to add 
1~ither 1 (LS1 µI) or 2 (LS2 µI) to the contents of the S 
1register to form the address of the next ML I to be 
1~xecuted. For LBW-, LBB-, OTA, DFA, LAW-, and CLA 
Jlll's, the +1 ... FCR operation is used to add one to the 
one's complement of the word loaded by these µl's to 
1~xpress them in two's complement form. 

The 0 .. FCR operation is produced by a low into the 
forced clear input which causes the 0 output to go high. 
For LSF and LSE µl's, the operation is performed for 
purposes of forming the address of the next MLI by 
:subtracting either 1 (LSF µ1) or 2 (LSE µI) from the 
contents of the S register. (The constant 1 or 2 to be 
:subtracted comes from the Bµ register; therefore, the FCR 
must be loaded with a 0.) For the LBW, LBB, OTA, IDX, 
.and LAB µl's, the 0-+ FCR operation is performed to 
inhibit adding 1 to the word loaded by these µl's. These 

):.ti's are the true form equivalent of the one's complement 
load µl's discussed above. Since addition of the FCR 
contents to the word loaded by these µl's occurs 
unconditionally as part of the µI, the FCR must be loaded 
with a 0 to avoid correcting the word loaded in true form. 
The DIG and CORC µl's provide for encoding and 
post-addition correcting of decimal numbers expressed in 
excess-3 form. Both these µl's involve adding (or 
subtracting) 3 from the decimal number represented in 
hexadecimal form. However, the carries (if produced) by 
these operations must be inhibited. Since the FCR would 
ordinarily furnish this carry, due to its function as a 
sum-word carry generator, the register must be set to 0 to 
inhibit the carry. 

During execution of an LB L µI, the Link bit from the Pµ 
register is sent to the FCR. This operation is effected by 
storing LINK in the flip-flop when clocked by LBL. This 
causes the Q output to go low to generate the forced 
carry. The flip-flop output is sent in complement form 
through a selector/inverter to generate FORCECRY in 
true form. This selector/inverter also provides for generat­
ing FORCECRY upon simultaneous depression of the 
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SET A and SET B pushbuttons on the System Control 
Panel. Simultaneously pressing these pushbuttons enables 
a carry to be forced into the ALU adder during Panel 
operations. 

Inner Carry Register 

The Inner Carry register (ICR) evaluates the carry outputs 
from the look-ahead carry generator during execution of 
decimal sum operations via the DSUM µI. The outputs 
from the ICR determine whether a +3 or a -3 is generated 
by the constant generator to correct each 4-bit 
hexadecimal group of the decimal sum. The register 
consists of four type-D flip-flops, as shown in Figure 
2-161. 

Each flip-flop is fed with the carry oiutput from a 4-bit 
group corresponding to the hexadecimal equivalent of 
each digit of the decimal sum. The carries are clocked into 
the flip-flops when SUMDEC is generated via translation 
of the DSUM µL The DOG-CG outputs from the ICR are 
then routed to the constant generator for generation of 
either +3 or -3 for decimal sum correction. 

COMPARE 

Compare operations performed by the ALU consist of 
making five types of comparisons between operands in the 
Aµ. and B,µ register: Aµ< Bµ, Aµ> Bµ,. Aµ = Bµ, Aµ r Bµ, 
and Aµ = 0. Both algebraic (sign and magnitude) and 
logical (magnitude only) compares are made, in an 
unconditional manner whenever operands are loaded into 
the Aµ and Bµ registers. Their results, however, are used 
only when so directed by aµ I or othur command enable. 
The results are used for the following three purposes: 

1. storing compare status info1rmation in the 
Condition register during executiion of a compare 
(CMP, CMU) µI, 

2. evaluating conditions under which the present 
processor is turned off and the next processor in 
the queue is granted priority, during execution of 
a CI01 or CI02µ I, and 

3. evaluating skip conditions during1 a skipµ I. 

Aµ~ Bµand Aµ> Bµ Compares 

The Aµ< Bµ and Aµ> Bµ compares are made as shown in 
Figure 2-162. The 16 outputs from both the Aµ and Bµ 
registers are routed to four LSI compare elements. Each 
element makes an Aµ< Bµ and Aµ> Bµ comparison of 
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four pairs of bits. The two outputs from each element, 
AMGTBM (Aµ greater than Bµ) and AML TBM (Aµless 
than Bµ), are routed to final combinational logic which 
combines all four AMGTBM outputs and all four 
AML TBM outputs with AMEOBM (Aµ= Bµ) signals to 
generate final AML TEOBM and AMGTEQBM signals, 
respectively. Consider first the logic that generates 
AML TEQBM. The signal is generated by a NANDing 
operation which combines each AMGTBM signal of a 
particular 4-bit group with the AMEQBM signal of the 
next higher-order bit group. 

Essentially, this logic generates AM L TEOBM if no group 
of Aµ bits is greater than a corresponding group of Bµ 
bits. The reason for considering the AMEOBM signal from 
a previous group is to account for all possible 
combinations of operand magnitudes in both A µand Bµ 
registers. The example shown in Figure 2-163 illustrates 
how the AM L TEOBM logic operates. Each digit of the 
decimal number contained in the Aµ (139910) and Bµ 
(140010) registers is represented by four bits of one 
group. Below each pair of digits of a group is shown the 
corresponding compare evaluation. Note that each 
evaluation contains one signal that is low when the 
compare evaluation is satisfied for that group. This is 
necessary to ensure that at least one input to each AND 
gate of the AML TEOBM logic is low to generate a high 
AML TEOBM signal. The AMGTEQBM logic works in 
basically the same way, except that the output signal is 
generated if no group of Bµ bits is greater than or equal to 
a corresponding group of Aµ bits. 

Aµ= Bµ and Aµ~ Bµ Compares 

The Aµ = Bµ and Aµ "/:- Bµ compares are made as shown in 
Figure 2-164. The comparison of Aµ= Bµ is made again in 
groups of four bits by pairing the true outputs of the Aµ 
register with the complement outputs of the Bµ register, 
and vice versa. 

The result of such pairing yields a high output for each 
comparison, as shown in the example at the top of Figure 
2-164. The output from each group comparison is fed to 
an AND gate to generate AMEOBM, and through an 
inverter to generate AMEOBM. 

Aµ = 0 Compare 

The Aµ.= 0 compare is made as shown in Figure 2-165. 
The 16 complement outputs from the Aµ register are fed 
to a NANO gate, which generates a low output when all 
inputs are high (all 16 register flip-flops contain "O"s). 
The low output is designated AMEOZR. 
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Algebraic and Logical Compare 

The algebraic and logical compare logic, shown in Figure 
2-166, evaluates the results of the Aµ< Bµ and Aµ> Bµ 
logic, and the state of the MSB 's of Aµ and Bµ to make 
the compares required by the CMP (2,2), CMU (2,3), and 
RNI (8,0+1) µl's. For the CMP µI, both an algebraic 
compare (sign and magnitude) and a logical compare 
(magnitude only) are made on the cont1mts of Aµ and Bµ. 
The Aµ > Bµ algebraic compare is made by comparing the 
complement state of the MSB of Aµ (AM-00) with the 
true state of the MSB of Bµ (BM-NEG). If both signals are 
high, the contents of Aµ are greater (more positive) then 
the contents of Bµ to generate ST A TUS-1. The Aµ < B µ 
algebraic compare is made by inverting the state of the 
above MSB's, so that the true state of the MSB of Aµ is 
compared with the complement state of the MSB of Bµ. If 
both signals are high, the conten~of Blµ are greater than 
those of Aµ to generate ST A TUS-2. For both compares, 
bit FM 1-005 is used to specify the CMP µ.I. The logical 
compare is made simultaneous with the algebraic compare 
via signals AM EQBM and AMGTEOBl\ll to evaluate the 
16-bit quantities in Aµ and Bµ on a magnitude basis only. 
The results of this compare generates STATUS-5, 
ST A TUS-6, and ST A TUS-7. 

For a CMU µI, the two above compares are also made; 
however, the algebraic compare essentially reduces in 
implementation to a logical compare. In effect, then, the 
CMU µI performs two simultaneous logical compare 
operations and generates two identical status bits for each 
compare noted: bit positions 1 and Ei if Aµ.< Bµ, bit 
positions 2 and 6 if Aµ> Bµ, and bit positions 3 and 7 if 
Aµ= Bµ. 

The STATUS-3 output has two different meanings, 
depending on during whichµ I it is generated. If generated 
during a CMP or CMU µI, it indicates an Aµ= Bµ compare 
condition, as previously noted. If generated during an RN I 
µ.I, however, it indicates a Link bit has been generated. 
For this condition, STATUS-3 is generated by LINK and 
FMl-000, which is high if an RNI µI is bieing executed. All 
seven status bits are fed to the status logic via the ALU 
fan-out. 

ALU FAN-OUT 

The ALU fan-out logic provides output gating from the 
ALU for selecting one of the following eight logic 
functions: 

1. Exclusive-0 R between the output~i of the Aµ and 
Bµ registers. 

2. Inclusive-OR between the outputs of the Aµ and 
Bµ registers. · 

3. Outputs from main storage (MS) data fan-out. 

4. Outputs from status logic. 

5. Outputs from adder. 

6. Outputs from Aµ register. } 

7. Outputs from Bµ register. 

8. Clear conditions. 

Together equal logic 
product Aµ and Bµ. 

There are 16 fan-out stages, one stage per bit. As shown in 
Figure 2-167, the upper eight stages differ from the lower 
eight stages because of the byte read capability from the 
MS data fan-out logic. Except for the Aµ and Bµ register 
outputs used to perform the exclusive-OR function, all 
data is gated to the fan-out logic in complemented form. 
The other 15 bits are gated by similar fan-out logic stages. 
(Note that the STAT inputs appear in only the upper 
eight stages of the fan-out logic since there are only eight 
status bits generated in the ALU.) The exclusive-OR and 
inclusive-OR functions of the Aµ and Bµ registers are 
performed by the two top AND gates of the fan-out logic. 
The top gate is fed with Aµ and Bµ register bits in true 
form, and enabled by SEL-EOR. The next gate is fed with 
Aµ and Bµ register bits in complement form, and enabled 
by SEL-OR. When both enable signals are high, the 
1exclusive-OR function (either one, but not both) is 
1Performed on the two register outputs. When enable 
:SEL-EOR is low and enable SEL-OR is high, the 
iinclusive-OR function (either one or both) is performed. 
These two logic functions are summarized in Table 2-22. 

Each of the remaining six functions is presented with its 
respective enable to one of the remaining AND gates. 
When the enable is high, the data is gated and inverted to 
true form. The logical product of Aµ and Bµ is realized by 
!Jating the contents of both registers simultaneously. Data 
from the MS data fan-out logic can be gated in either 
word form (16 bits) or byte form (8 bits). 

These data transfers occur in connection with operations 
iinvolving the MS interface logic; details of these data 
transfers, therefore, are discussed in the paragraph titled 
Main Storage Interface Word and Byte Read Functions. 
Use of the ALU fan-out logic to generate clear conditions 
is dis cussed in the paragraph titled System Reset 
Conditions. 
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STATUS LOGIC 

The status logic takes the results of the compare 
evaluations discussed in the previous paragraph and 
arranges for their storage in a specified register during 
execution of a compare µI. The logic also detects and 
processes the arithmetic status bits, Overflow and Link 
generates during arithmetic operations. These two bits are 
conditionally stored in a specified register via an RNl1 or 
RNl2 µI, and unconditionally carried along with the 
address of the present µI contained in the Sµ register. The 
description of the status logic is divided into the following 
two sections: 

1. detection, reading and writing of the arithmetic 
status bits into the Pµ register, and 

2. storing of the compare and arithmetic status bits 
in a specified register. 

Arithmetic Status Bit Detect 

During arithmetic operations, two status bits are 
generated along with the operand result: Overflow and 
Link. The Overflow bit indicates that during a 16-bit 
operand add operation, the MSB of the sum (bit 01) has 
overflowed into the sign bit position (bit 00). The Link 
bit indicates that during one iteration of a 
multiple-precision add operation, a carry-out has been 
generated from bit position 00 of the adder which must 
be added to the partial sum to be processed during the 
following iteration. The Link bit essentially indicates that 
the partial sum processed during the present iteration is 
linked with that to be processed during the active 
processor's next time slice, since they are part of the same 
over-all operation. The bit is normally generated during 
execution of an MLI containing several SUM or DSUM 
µl's that are executed during different time slices. 

Depending on the sign of the addend and augend, two 
types of overflow are possible: positive overflow or 
negative overflow (underflow). The two types of overflow 
are depicted in Figure 2-168. Positive overflow, shown in 
part a of Figure 2-168, is produced when the MSB of the 
sum of two negative numbers overflows into the sign bit 
of the sum. The result is to make the sum look like a 
positive number (sign bit of "0"). Negative overflow, 
shown in part b of Figure 2-168, is produced when the 
MSB of two positive numbers overflows into the sign bit 
of the sum. The result is to make the sum look like a 
negative number (sign bit of "1 "). The two overflow types 
are generated by the logic shown in Figure 2-169. This 
logic evaluates the state of the MSB of the Aµ and Bµ 
registers, and the adder to detect an overflow condition. 

The Overflow and Link bits generated during a sum 
operation (SUM or DSUMµ I) are detected and routed to 
both theµ status current register and theµ status write 
registor, as shown in Figure 2-170. The µ. status write 
registor holds the detected status bits for the remainder of 
the time slice, and then transfers these bits to the active 
processor's Pµ, register in the ER F at WO. The register is 
fed with the detected bits through selector 4 when 
enablod by EN-SUM. This enable is generated whenever a 
SUM or DSUM µI is executed (FM2-005 high or low) and 
the associated M LI is not a 50 through 53, or if a DSUM 
µI is generated (FM2-005 low) and the associated MLI is a 
50 through 53. The µ. status current register performs a 
dual function. If new status bits are detected during the 
present time slice, it holds these bits for possible transfer 
to another register upon execution of a store status µI 
(such as an RNIµ I). For this purpose, the current register 
is loaded from the status detectors through selector 3 at 
any time other than E750 through EOOO (E789XX-L 
low). These previously detected bits are obtained from 
either the processor's assigned Pµ register if not running in 
the Consecutive Cycle (CC) mode, or from theµ status 
write register if running in the CC mode. If not in the CC 
mode, the status bits are read from Pµ during the RO 
cycle of the present time slice in the manner as the 
starting µI address. However, the status bits will not be 
useful to the present time slice until EO; therefore they 
must be held in the status buffer register during R 1. This 
is accomplished by the data path listed in part a of Figure 
2-171. Along with this path are shown the corresponding 
times at which data is enabled through a selector or 
clocked into a register. Note that the status bits are held 
in tho buffer register during R 1 of the present time slice 
(actually from E680 of the previous time slice to EOOO). 
If in the CC mode, the status bits are read from the write 
register at E880, at the same time that the starting I 
address is read from Pµ. The data path and associated 
timing for a CC condition is shown in part b of Figure 
2-171. For this case, however, the enable used to gate 
status from the write to selector 1 occurs at E880, which 
is the same time that the buffer register would be clocked 
if in the CC mode. Since there is not enough time to put 
status. into the buffer register from selector 1, the status 
bits instead bypass the buffer register and instead are 
gated directly to selector 2. Note from the timing that the 
same one-minor cycle buffer delay is still achieved (from 
E880 until EOOO) when bypassing the buffer register in 
CC mode as for the case of not operating in the CC mode 
(from E680 until EOOO). 

Status Bit Storage 

As discussed previously, the compare and arithmetic 
status bits generated during a time slice can be stored in a 
selected register. Generally, the register selected is the 
Condition register (register 8 of the BRF); however, under 
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Figure 2-171. Status Bit Flead Data Flow 

certain conditions the register specified will be a transient 
register. Storing of the status bits is accomplished by the 
CMP and CMU µl's, which store the six compare status 
bits (Aµ> Bµ, Aµ< Bµ and Aµ= Bµ) and the RNl1 and 
RN 12 µl's, which store the arithmetic status bits, 
OVERFLOW and LINK. These µl's implement the storage 
operation via the status bit storage logic: of Figure 2-172. 
This logic feeds eight status lines to the ALU fan-out 
logic. When gated by SE L-ST AT, the fan-out network 
routes the eight status lines to bit locaticms 0 through 8 of 
the selected register in the BR F for storage. 

The three algebraic compare bits are routed to the ALU 
fan-out via the ST ATUS-1, ST A TUs-2: and ST ATUS-3 
lines. The STATUS-3 line is also used to carry the LINK 
status bit during execution of an RN ii~ I. This 1tl also 
gates the OVERFLOW bit over the STATUS-0 line when 

high. The three logical compare bits are routed to the 
~~LU fan-out via the STATUS-5, STATUS-6, and 
STATUS-7 lines. To enable storing a complete byte of 
status information, a ST ATUS-4 line is added to the seven 
above lines. This line is tied to a logical 1 via the +5 vdc 
supply to enable storing a "O" in the corresponding bit 
position 4 of the register. 

The data present on the four status lines is gated through 
the ALU fan-out via SEL-STAT, which is generated for 
the CMP, CMU, RNl1 and RNl2 µl's. The status bits are 
then stored in a register of the BRF designated by the 
X-field of the particularµ I. The format of the register, 
showing locations of the arithmetic and compare status 
bits, appears in Figure 2-172. For the RNl1 and RNl2 
1-rl 's, the X-field will designate either the Condition 
register or an irrelevant register, depending on what type 
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of operation the RNI µI is a part of. If the RNI µI is 
associated with an arithmetic operation, the register 
specified is the Condition register so that LINK and 
OVERFLOW may be saved for future use. If the RNI µI is 
not associated with an arithmetic operation, the X-field is 
coded to specify some irrelevant register. This is to satisfy 
the requirement of specifying some register by the X-field. 

CONSTANT GENERATOR 

Inputs and Outputs 

The constant generator provides valuies of constants to the 
Bµ register as required by the following µl's: LS1, LSE, 
LS2, LSF, LBB, LBB-, EBU, EBL, DIG, and CORC. The 
constant generator consists of four pairs of MSI selector 
elements, each element containing two 
four-input/one-output selectors. Inputs to each selector 

are selected by two select signals, ENCG-0 and ENCG-1, 
which feed both selectors of an element. A simplified 
block diagram of the constant generator, showing one pair 
of selector elements, is shown in Figure 2-173. Each 
element of the pair is fed with two bits of a particular 
input. 

Depending on the µI, the outputs are used to develop one 
of the following: 

1. bits 0, 1, 8, and 9 of a 16-bit word constant, 

2. the two most significant bits of the two 8-bit 
byte constants, or 

3. the two most significant bits of alternate 4-bit 
nybl constants. 

The other six elements of the constant generator are 
paired together in the same manner to generate bit pairs 
separated by eight bits. The select signals are enabled by 
µl's to select corresponding inputs as shown in Table 2-23. 

Table 2-23. Constant Gen•nator Input Selection 

~lect Signal! State 

Micro ln:structions -ENCG-0 -ENCG-1 Inputs Enabled 

LS1, LSF, LS2, LSE 0 0 +5 voe, FORCE 1 

DIG 1 0 ENT-CG 

r·b = 0-0 
LBB, LBB- a•b = 1 ·0 0 1 BIT-CG 

a·b = 0·1 

LBB, LBB- { a·b = '1 ·1 1 0 ENT-CG 

EBU, EBL 1 0 ENT-CG 

CORC 1 1 DOG-CG 
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Figure 2-173. Constant Generator 
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The resulting constants generated by inputs selected for 
particular µl's are shown in Table 2-24. (These constants 
represent the final values stored in the Bµ register, not the 
outputs from the constant generator. Depending on the 
µI, the constant generator outputs may require 
complementing prior to Bµ register storage.) 

Generation of each constant via the corresponding µ.I is 
discussed in the following paragraphs. 

Load S Micro Instructions 

Constant values required for the load S µl's are as follows: 

LS1: O's to Bµ register 

LSF: -1 to Bµ register 

LS2: +1 to Bµ register 

LSE: -2 to Bµ register 

To generate these constants, select signals ENCG-0 and 
ENCG-1 are "O" and "O" as shown in Table 2-23. The 
state of these select signals causes the +5 vdc logic level to 
be gated as outputs CG-BMOO through CG-BM14 and the 
FORCE1 signal to be gated on CG-BM15 (the MSB) of the 
constant. The FORCE1 signal is low for the LS1 and LSF 
µl's and high for the LS2 and LSE µl's. 

Table 2-24. Constant Generator Output Constants 

-;-----_____~s 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

LS1 0 0 0 0 () 0 0 0 0 0 0 0 0 0 0 0 

LSF 1 1 1 1 ·1 1 1 1 1 1 1 1 1 1 1 1 

LS2 0 0 0 0 () 0 0 0 0 0 0 0 0 0 0 0 

LSE ·1 1 1 1 ·1 1 1 1 1 1 1 1 1 1 1 1 

LBB (a·b = O·O) 215-X 

LBB (a·b = 1·0) 215-(XVR1) 

LBB (a·b = O·H 215-(XVR2) 

LBB (a·b = O·H 215-PROC ·I· 27-PROC 

---
LBB- (a•b = 0•0) 215-X 

LBB- (a•b = 1 •0) 2 t5-(XVR 1) 

LBB- (a•b = 0• 1) 2
15-(XvR2) 

LBB- (a•b = 0• 1) 215-PIROC 
I I · 27;PROC 

DIG ~ x -+-x + x + x~ 
EBL (N) 0 0 0 0 () 0 0 o I· N 

EBU (N) N ·I 
CORC 1101-+ 1101 1101 1101 
CORC + - + + + ·I + ----l 

0011 0011 0011 0011 
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The resultant outputs are then either FFFF 16 for the LS1 
and LSF µl's and FFFF15 for the LS2 and LSE µIs. These 
outputs are presented to the Aµ and Bµ register fan-in 
logic and are gated through the logic by ENCG BM, as 
discussed in the paragraph titled Aµ and Bµ Fan-In and 
shown on the simplified logic of Figure 2-174. This logic 
inverts the inputs fed to it so that now the constant 
corresponding to LS1 and LSF is 000015 and that for 
LS2 and LSE is 000116· These constants are then clocked 
into the Bµ register in either true form or complement 
form by means of the forced set and forced clear 
conditioning of the Bµ register flip-flops discussed in the 
paragraph titled Aµ and Bµ Registers. The constants are 
already in the desired form for the LS1 and LS2 µl's, so 
they are stored in the Bµ register in true form. However, 
the constants must be complemented for the LSF and 
LSE µl's so that they represent -1 and -2 in two's 
complement form. Therefore, the constants are stored in 
the Bµ register in complement form for these two µ1 's so 
that the final form of these constants is FFFF15 (-110) 
and FFFE15 (-210). 

..--------.. 
I I 
I I 

I -CG-BMOO 

I I I 
I I 
I I 

1's I I 
(+5 VDC) I CONST I 

I GEN I 
I I 
I I 
I I 

-CG-BM14 

1's 

I 
I -CG- BM15 

FORCE 1 ------------.... 1+0 

(0 FOR LS1, LSF): I 
1 FOR LS2, LSE I I 

I OA29J I 
I 1A30 I 

L-- I ---· -ENCG-0-ENCG-O 

BOTH 0 

Load B Bit Micro Instructions 

The LBB µl's set a bit into the Bµ register derived from 
values of the µ.I X-field and associated MLI R1 and R2 
fields. The manner in which these various fields are used 
to set the bit is determined by the µI a and b designators, 
as summarized in Table 2-26. When set to the value 
determined by the a and b designators, the bit in Bµ forms 
a binary number whose value can be indicated as a power 
of 2 as shown in Table 2-24. (For example, if the LBB µI 
specifies that bit 6 is to be set in Bµ and a · b = 0 · 0, the 
resultant binary number indicated is 215-6 or 29 
(51210).) 

Setting the bit in Bµ for a and b values of 0 · 0, 0 · 1, and 
1 · 0 is performed by the logic of Figure 2-175. Depending 
on the particular value of the a and b designators, the bit 
to be set is accomplished by one of the following: 

1. adecodingoftheptl X-field (FMl-112 .. 115), 

2. an 0 Red combination of the µI X-field and M LI 
R 1-field (F R-008 .. 112), or 

3. an ORed combination of the µI X-field and MLI 
R2-field (FR-012 .. 015). 

{ 

COMPL OUT: ·1 FOR 
LSF, -2 FOR LSE 
TRUE OUT: 0 FOR 
LS1, +1 FOR LS2 

r---------------- • I 1 
I 

+FFFF16 I -FFFF15 

+FFFE15 I REG -FFFE15 Bµ 
FAN~N REG 

I 
I 
I 
I 
I 
I 
I 
I 
I 

+CL KAM/BM 

·---,-------­
-ENCG-BM 

[1Ar] 
1A28 - ___ .. 

+ENSBM (LSE AND LSF) 

+ENRBM (LS1 AND LS2) 

Figure 2-'174. Generation of Constants for Load S µl's 
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Tablet 2-25. Field Selection for Sutting Bits in Bµ Via Load B µl's 

Designator Valuo Determination of Bit in 
a b Bµto be Set 

0 0 µI X-field (bits 12-15) 

0 1 Inclusive OR of µIX-field and MLI R2 field 
(bits 12-15) 

1 0 Inclusive OR of µI X-field and M LI R 1 field 
(bits 8-11) 

1 1 Active processor determined by ENT bits to 
constant generator 
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r----------------------------~ ! I }- _·_. - +ENCBM-0 

+6,2+3 

-AANDB 
CLK I 
Bµ I UPR 

I 
I 
I 
I 

CLK 
Bµ I 

LWR I 
I 
I 
I 

(1A05) I 

~------------ ----------------r------------ --------------~~ I 
+FM1-112--..------

I 
+F R-008----1~------1 

I 
I 

+F R-012 ----1~-1-----11 

I 
I 
I 
I 
I 

+FM1-113--.------
-BITXIXX 

+ENCBM-1 

SEL 
BYTE 

+F R-009---1....__-+--+----11 
---.-----. ..... -BIT• CGOO 

I 
I 

+FR-013--------
I 

-BITXXIX 

-BITXXXI 

BIT 
GEN 

I 

I 1 OF 8 I 

I OUTPUTS: 

I 
1----11----------BIT +- CG07 

+FM2-006--: : 

+FM2-007--: II 
(1A22) 

~----------------------------~ 

Figure 2-175. Generation of Constants for Load B µl's (a·b = O·O, 1·0, and 0-1) 
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In each instance, the four bits comprise a bit select code 
that defines, in binary form, the bit of Bµ to be set. The 
MSB of this bit select code, BIT1 X>CX, selects either the 
left-most or the right-most byte of Elµ in which the bit is 
to be set. The a and b designators' (FM2-006 and 
FM2-007) determine how BIT1 XXX is formed: either 
directly or by the exclusive OR operation described 
above. This signal is used in either its generated 
complement form to clock the lower half of Bµ (bit 
positions 8 through 15) via ENCBM-1, or inverted to true 
form to clock the upper half (bit positions 0 through 7) 
via ENCBM-0. In both cases, the enable for generating 
either of these two clock signals is provided by 6,2+3 · 
AANDB which defines the LBB and LBB- µl's for a and b 

values of 0 · 0, 0 · 1, and 1 · 0 .. Selecting a particular bit of 
the selected byte is performed by the: remaining three bits 
of the select code: BITX1XX, BITXX1X, and BITXXX1. 
These bits are generated in exactly the same way as· the 
MSB. Generation of BITXIXX is shown in Figure 2-175. 
These three bits are fed to a three-input/one-of-eight fine 
decoder to generate a bit select signal!, BIT-CG. The result 
is fed to the constant generator, to set the specified bit of 
Bµ. 

Setting of a bit in Bµ for a and b values of 1 ·1 is 
performed by the logic of Figure 2-176. This logic sets a 
bit in each byte of the Bµ·register corresponding to the 

processor that is presently active. (For example, if 
processor 0 is presently active, bit 0 of the upper byte and 
bit 8 of the lower byte of Bµ will be set.) Using processor 
0 as an example, bits 0 and 8 of Bµ are set by one input to 
the constant generator. ENT-CGOO, when enabled by 
ENCG-0 and ENCG-1 equal to "1" and "O", respectively. 
Signal ENT-CGOO, in turn, is produced by STATEO from 
the priority logic which· indicates that processor 0 has 
been assigned the p·resent time slice. This processor signal 
is enabled by FM1-000 which is high for µl's 0,0 through 
7,3 (which includes the LBB and LBB- µl's). Since a bit is 
to be written in both bytes of Bµ, both enable clock 
upper byte and lower byte signals must be activated. This 
is accomplished by generating both ENCBM-0 and 
ENCBM-1 simultaneously via 6,2+3. The value function 
code appears alone with no instructions or values of a and 

b designators; therefore, the enable clock signals are 
·produced for all combinations of a and b values including 
a-b = 1 · 1. (Generation of these enable clock signals for 
unrestricted values of a and b does not interfere with 
clock enables generated for restricted values of a and b as 
discussed in the last paragraph since different inputs to 
the constant generator are used for the two variations of 
Load B µl's: BIT-CG inputs for Load B µl's with a and b 
values of O·O, l·O, and 0· 1; and ENT CG inputs for 
Load B µl's with a and b values of 1·1.) The LBB µI 
sets the bit number in Bµ in true form; the LB 8-µI 
sets the bit number in Bµ in complement form. (See 
the paragraph titled Aµ and Bµ Registers for a dis­
cussion of setting ·bits in Bµ in either true or 
complement form.) 

.. -----------, I I 
+6,2+3 

+STATE 0 

-FM1·000 

I 
T CLK 

Bµ 
UPR 

CLK 
Bµ 

LWR 

Ji•ENCBM-0 
I 

Ji•ENCBM-1 
(1A05) I ________ , ___ ~ 

r--------,---1 
I I 

i I ) I 
I -ENT+-CGOO 
I 

I I 
I (1A07) I ·--------·----

BOTH ACT 
TO SEL 
BOTH BYTES 

Figure 2-176. Generation of Constants for Load Bµ I (a·b = 1 ·1) 



Enter B Micro Instruction 

The Enter Bµ l's provide for entering an eight-bit value 
specified by the µI N field (bit positions 4 through 7 and 
12 through 15) into either the upper byte (EBU µI) or 
lower byte (EBL µI) of the Bµ register. The µl's are 
implemented as shown in the logic of Figure 2-177. The 
eight bits of the µI N field are applied to the ENT -CG 
fan-out logic. Bits 4 through 7 of the N field are enabled 
through the fan-out logic by 1 OXX and bit$ 12 through 15 
are enabled by 1 XXX. Both enables 10XX and 1 XXX are 
high for the EBU (1010) and EBL (1011) µl's. (Enable 
10XX is used for enabling bits 4 through 7 of the µI to 
specifically eliminate the DIG and CORC µl's, which also 
load Bµ with bits from this field during their execution.) 

The EBU µI enters the value specified by the µI N field 
into bits 0 through 7 of Bµ in true form and leaves the 
contents of bit positions 8 through 15 unchanged. It 
accomplishes this by generating ENRBM-0 to first set bits 
0 through 7 to "O"s, and then enters the value of N via 
ENCBM-0. 

The EBL µI enters the value of N in true form in bit 
positions 8 through 15 of Bµ and sets bits 0 through 7 to 
"O"s. It does this by generating ENRBM·O and ENRBM-1 

to set both bytes of Bµ to "O"s, and then enters the value 
of N into bit positions 8 through 15 via ENCBM-1. 

DIG Micro Instruction 

The DIG µI loads each four-bit nybl position of the Bµ 
register with a value specified by the µI X-field. The µI is 
implemented as shown in Figure 2-178. The µI X-field is 
presented to the ENT-CG fan-in logic as bits 12 through 
15 of the F µregister. These bits are fed in parallel to two 
gates each, so that the X-field value is enabled through the 
gates as ENT-CGOO through ENT-CG03 and as ENT-CG04 
through ENT-CG07. These two 4-bit nybls are routed in 
parallel to the four 4-bit nybl positions of B µso that the 
original value defined by the X-field is copied into Bµ as 
four values. This one-to-four transformation is shown in 
Figure 2-179. Enabling of the four-bit X-field through the 
FNT-CG fan-in logic is accomplished by enable 11 XX, 
which gates the X-field through the ENT-CGOO through 
Ef\1T-CG03 gates; and enable 1 XXX, which gates the 
X-field through the ENT-CG04 through ENT-CG07 gates. 
Both enable clock signals are activated for this µI so that 
tho X·field value can be written into both upper and lower 
halves of Bµ. 
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CORC Micro Instruction 

The CORC µI generates values of 316 or D 16 which are 
used to correct each decimal digit aftEff executing a DSUM 
µI. The decision to generate either 316 or D 16 is made on 
the basis of whether or not a carry was generated during 
manipulation of the particular decimal digit. The µI is 
implemented by the logic of Figure 2-180, which shows 
generation of a decimal correction value associated with 
bits 0 through 3 of a decimal arithmetic operation. The 
input to the constant generator consists of DDG-CGOO 
from the bit 0 through 3 stage of the Inner Carry register, 
and a ground connection. The DDG-CGOO input is applied 
in generated complement form to bit stage 2, and inverted 
to true form and applied to bit stages 0 and 1 of the 
constant generator. Bit 3 is tied permanently to ground 
since its value is "O" regardless of which correction value 
is generated. Assuming that a carry is generated from stage 
0 of the decimal operation, i)DG-CGOO is low and the 
CG-BM outputs are as shown in Table 2-26. Since the 
constant generator outputs are in complement form, they 
are inverted by the ALU fan-in logic: prior to storage in 
Bµ. The result is 00112 (316) whiich is the required 
correction code. If no carry was generated from stage 0 of 
the decimal operation, the inputs to bit positions 0, 1, and 
2 are reversed. The result stored in Bitfor this situatfon is 
1101 2 (Orn), or the two's complement of 316. 

BIT SENSE AND SENSE/TOGGLE 

The bit sense and sense/toggle logic is used to execute the 
bit sense and bit sense/toggle (E,X,1) µl's. The two bit 
sense (E,O, 1 and E, 1, 1) µI's scan the Aµ register contents 
sequentially from bit position 00 through bit position 15 
for the presence of the first "O" or "1". In addition, the 
B µ register contents are incremented by 1 for each bit 
position scanned without a find. The two bit sense/toggle 
(E,2,1 and E,3,1) µl's are executed similarly except that 
they additionally toggle the sensed bit to the alternate 
state. Logic for executing these four µl's is shown in 
Figure 2-181. The Aµ register contents are fed to priority 
encoder logic, which produces a BCD output 
corresponding to the first "O" or "1" detected in Aµ. 
Since the priority logic, however, cannot itself determine 
that it is to sense either the first "O" or the first "1" (all it 
can sense is the first "0"), the data presented to it must 
first be preconditioned to a form that will allow the 
priority encoder to, in effect, sense for the right bit state. 
This preconditioning is performed by routing the data 

r-------------------~ I I 

-DDG--CGOO 

-~ j 1------1-
1 
I 

=ll ~I _L I 
I 

(1A29) I 

~-------------------~ Figure 2-180. Generation of C:onstants for CORC µI 

Tall>le 2-26. Constant Generatc1r Outputs to CORC µI 

I--·---
CG Outputs 

DDG-CGOO Input to 
Carry Sta1tus Value 001 002 003 004 Bµ 

Carry 0 1 1 0 0 0011 (316) 

No Carry 1 0 0 1 0 1101 (016) 
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from Aµ through a selector prior to being fed to the 
priority encoder. This selector gates the contents of Aµ in 
either true or complement form depending on the state of 
FM1-105 of the µI sub-operation code. If the bit is "O", 
the contents of Aµ are gated in true form so that the first 
"O" detected by the priority encoder is the first "O" of 
the Aµ. If the bit is "1 ", the conten1ts of Aµ are gated in 
complement form so that tho first "O" detected by the 
priority encoder is really the first "1" of Aµ. The priority 
encoder logic consists of two elements, each element 
determining priority of eight inputs (bit positions 00 
through 07 and 08 through 15). The partial results are fed 
to the bit sense generator, which combines the outputs 
from the two priority encoder elements to generate a 
four-bit code representing the bit position where the first 
"O" or "1" was detected. This bit position number is fed 
to an adder which adds the number to the contents of Bµ'. 
In reality, this addition simulates incrementing Bµ for 
each position of Aµ scanned without a find. Assume that 
a "1" is to be detected in bit position 4 of Aµ This 
scan/increment sequence would require incrementing Bµ 
four times, since four bit positions would be scanned 
without a find (bit positions 0 throu!~h 3). By generating 
the bit position at which the "1" is found, only one 
addition need be performed and the result is the same (4 = 
bit position no. = no. of increments without find: 0 -+3). 

If executing a bit sense/toggle µI, the bit sensed must be 
toggled as well as its position in Aµ being added to Bµ. 
This is accomplished by the bit toggle logic, which 
generates a two-bit toggle bit-position code from the 
four-bit sense bit-position code. For example, if bit 4 is to 
be toggled, the two-bit code consists of TBIT01 XX and 
TBITXXOO. This two-bit code is routed to an AND gate, 
as shown in Figure 2-182, to generate one signal that 
specifically designates bit 4 as the bit to be toggled. The 
result is routed to selector logic. This logic selects either 
the toggle bit designator or a corresponding bit from the 
shift network, depending on the state of FM2-211. Since a 
bit sense/toggle µI is being executed, FM2-211 is high to 
gate the toggle bit designator to the Aµ and Bµ fan-in 
logic. This logic is enabled, in turn, by ENSN-ALU which 
is high for both shift and bit sense/toggle µI's. The result 
is fed to both the J and K inputs of the bit 4 flip-flop of 
the Aµ register. Since both inputs are fed with the same 
signal, the flip-flop will toggle from its present state to the 
alternate state upon occurrence of ENCAM, which is also 
generated during execution of a bit sense/toggle µI. 

r------------------------------------1 
+TBITXXOO 

+TBITX1XX 
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+ENS~ALU 
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I 
I 
I 
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I 
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SEL 
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04 

I (1A26) 
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Figure 2-182. Toggling of Bit 4 of Aµ 
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SHIFT NETWORK 

The shift network performs a left shift on each bit of a 
32-bit operand as determined by a specified shift count. A 
block diagram showing the logic required to implement 
the shift operation is shown in Figure 2-183. The 32-bit 
operand in the Aµ and Bµ buffer registers is entered into 
the shift network and shifted by an amount defined by 
the shift count control output. This shift count is derived 
from one of three sources: 

1. the X-field of a µI (SHF and SHA µl's), 

2. bit positions 12 through 15 of the D register 
contents (DLS and DRS µl's if bit 1 of F is a 
"0"), or 

3. bit positions 8 through 11 of the MLI in F (DLS 
and DRS µl's if bit 1 of F is a "1 "). 

If either a SHF or DLS µI is executed, the shift count will 
be derived in true form and the shift will be to the left. If 
either a SHA or DRS µI is executed, the shift count will 
be derived in two's complement form. The result is to 
effect a right shift by an amount equal to the shift count 
in true form by left shifting the number of bits specified 
by the shift count in two's complement form. Indication 
that a right shift is to be performed is furnished by signal 
SHIFTR. This signal enables the two's complement logic 
to convert the shift count from true form to two's 
complement form. After being shifted, the 32-blt operand 
is routed back to the Aµ and Bµ registers through the shift 
network and bit sense fan-in logic, and the Aµ and Bµ 
fan-in logic. 

The shift network itself consists of two ranks of 32 
selectors each. The first rank is fed with the combined 
32-bit output from the Aµ buffer and Bµ buffer registers. 
It is organized such that each bit of Aµ buffer and Bµ 
buffer is fed to four selectors to enable each bit to be 
left-shifted 0 to 3 places, depending on which of the four 
selectors is enabled. These enables are derived from the 
upper four bits of the eight-bit shift count from the shift 
count control. The output from each first-rank selector 
circuit is fed to four selector circuits of the second rank. 
These selector circuits perform a similar shifting function 
as the first-rank selectors, but on a nybl basis. Therefore, 
the bit shifted 0 to 3 places by the first-rank selectors is 
shifted 0, 4, 8, or 12 places by the second-rank selectors. 
These second-rank selectors are enabled by the lower four 
bits of the eight-bit shift count. 
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Shifting of a typical bit of Bµ buffer (bit 11) is shown in 
Figure 2-184. The four first-rank selectors fed by bit 11 
are physically packaged in two selector elements: selectors 
QA and 1 A in one element and selectors 2A and 3A in the 
other element. Each selector is fed with other bits of Bµ 
buffer to effect a shift on them also; however, only bit 11 
is fed to all four of the selectors shown. These four 
selectors shift bit 11 to the left 0 to 3 places as indicated 
by the SHF 0 through SHF 3 designations. These four 
outputs are each fed to four second-rank selectors to 
effect the shift on a nybl basis. Therefore, the SHF 0 
output can be shifted 0, 4, 8, or 12 places to the left by 
selectors OB, 48, 88, or 128. Similarly, the SH F 1 output, 
which already represents bit 11 shifted left one place, can 
be shifted 1, 5, 9, or 13 places to the left of its original 
position in Bµ buffer by selectors 18, 58, 98, and 138. 
Therefore, bit 11 of Bµ (and all other bits of Aµ buffer 
and Bµ buffer) can be left-shifted 0 to 16 places by the 
combined action of the first-rank and second-rank shift 
selectors. 

Examples of three different shifts of bit 11 of the B 
buffer are shown in Figure 2-185. Part a shows the 
selectors involved for a shift of 0 places to the left. The 
bit is simply gated straight through selectors OA and OB 
and appears at the output of the shift network as bit 27 of 
the 32-bit result ( 11 + 16). Part b shows the selectors 
involved in shifting bit 11 left 5 places. Selector 1 A shifts 
the bit 1 place and selector 5B shifts the bit the remaining 
4 places. Part c shows the bit shifted left 14 places: 
selector 2A shifts it 2 places and selector 14B shifts it 12 
places. 

As discussed previously, right shifts are implemented by 
converting the shift count to two's complement form and 
performing a left shift. The result, however, is developed 
in the lower half of the shift network (bit positions 16 
through 31 ) instead of in the upper half as during a left 
shift operation. This difference in where the result is 
developed is interpreted as either a left shift or a right 
shift, as shown in Figure 2-186. This figure shows the 
principal µl's used to implement both a left shift and a 
right shift machine language instruction (MLI ). Both 
examples assume that an operand in some register R will 
be shifted either left or right four places and stored back 
into R. Part a shows the µl's necessary to execute a 
left-shift MLI. The operand is transferred from R to B by 
a LBW µI. From Bµ, the operand is left-shifted four places 
through the shift network by a DLS µI. During the shift, 
the four most significant bits are shifted end-off and the 
empty space resulting from shifting the four least 
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significant bits is filled with zeros. The result is sent to Bµ, 
and stored back in R by a STB µI. Part b shows execution 
of a right-shift MLI. The shift count (4) is converted to 
two's complement form to form C15 (F15 - 415 = C15) 
or 1210. The operand again is transferred to Bµ and 
shifted left 12 places by a DRS µI. This time the shifted 
operand is developed in the upper half of the shift 
network and transferred to Aµ. The result is stored back 
into R by a ST A µI. 

Because of the propagation delay through the shift 
network (almost 100 nanoseconds tot~1I) and the length of 
the data path back to Aµ and Bµ, the, shift µl's take two 
minor cycles to execute. It is necessary, therefore, to 
delay the following functions for one minor cycle: 

1. clocking the shifted operand back into Aµ and 
Bµ, 

2. execution of the firstµ I following the shift by 
blocking its transfer to Fµ (this µI has already 
been read from CS), and 

3. delay reading the second µI following the shift µI 
from CS by blocking the transfer of its address 
into Sµ. 

+FXEQ- E1 

These inhibit conditions are generated by translation of 
the shift µI operation code and setting the Shift Delay 
flip-flop, as shown in Figure 2-187. Signal BLOCKFM is 
generated and ENCLKSM is disabled to block clocking of 
Fµ and Sµ. These conditions are generated during the first 
minor cycle of the shift µI by translation of the shift µI 
(E, X, X) and the fact that the Shift Delay flip-flop is not 
set. At the beginning of the second minor cycle of the 
shift µI, the flip-flop sets to enable clocking the shifted 
data back into Aµ and Bµ by generating ENCAM and 
ENCBM. 

Timing for the above conditions is shown in Figure 2-188. 
This chart assumes that the shift µI is read from CS during 
E1 and executed during E2 and E3. The two µl's 
following the shift (SHIFT + 1 and SHIFT + 2) are 
delayed in their execution because of the constraints just 
discussed. Note that the shifted contents of the shift 
network cannot be clocked into Aµ and Bµ at E320 
(which they would normally be if the µI was a 
one-minor-cycle µI) because enables ENCAM and ENCBM 
are inhibited at E280 due to the fact that the Shift Delay 
flip-flop has not yet set. When this flip-flop sets at E300, 
then ENCAM and ENCBM can be generated at E380 to 
dock Aµ and Bµ at E420. 
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1/0 INTERFACE 

The 1/0 interface logic controls the transfer of all data 
and associated control signals between the shared 
resources and 1/0 processors 0 through 3 during normal 
I /0 transfer operations.* These operations involve 
transferring data between MS or registers in shared 
resources and designated register in each 1/0 processor. 
Each 1/0 processor contains registern dedicated to its 
exclusive use; for addressing purposes, however, they are 
collectively referred to as Group 111 registers of the 
Extended Register File (ERF}. All 1/0 operations are 
initially started by the Executive processor under program 
control. However, each word transfer c;omprising the 1/0 
operation is initiated by a request signal from the 1/0 
processor. This request is sent to shared resources after 
determining that it either has assembled a complete word 
in its register for transfer to shared resources (if an input 
operation), or that the last word it re<:e~ved from shared 
resources has been written into its storage medium (disc, 
magnetic tape, and so forth) and it is now ready for 
another word (if an output operation). One word can be 
transferred during each time slice assigned to an 1/0 
processor. 

NOTE 

Input and output operations are discussed from 
point of view of the shared resoun:es. Thus, input 
operations transfer data from an 1/0 processor to 
the shared resources and output oporations transfer 
data from the shared resources to the 1/0 processor. 

1/0 REQUESTS 

All data transfers between the shared resources and an 1/0 
processor are initiated by requests from the 1/0 processor. 
These requests are implemented as part of an 1/0 transfer 
routine executed by the respective 1/0 processor (such as 
the D 10 packet executed by disc processor 3) and are 
generated when the word to be transferred has been 
assembled in the appropriate register. In the case of an 
input data transfer (1/0 processor to shared resources), 
the request is generated when the word has been read 
from the 1/0 device (card reader, disc, and so forth) and 
assembled in the transfer register of the 1/0 processor. In 
the case of an output data transfer (shared resources to 
1/0 processor), the request is generated when the 1/0 
processor has written the last word received onto the disc, 
magnetic tape, or whatever, and is now ready to receive 
the next word from shared resources. Prior to the actual 

*The CS Load and MS Load operations from 1/0 processors 1 and 
3 are not considered normal 1/0 transfers in that they are usually 
performed only once, during a power-on condition. 

transfer of data, the 1/0 processor has been initialized by 
Software routines executed both by the processor needing 
the 1/0 data and the Executive processor. Among other 
duties, these routines perform the following activities: 

1. set the 1/0 processor's Active flip-flop in the 
Busy/Active (B/A) register, and 

· 2. set up a buffer in MS where the 1/0 data will be 
stored by defining a Current Byte Address (CBA) 
and a Final Byte Address (FBA). 

Upon determining that it is ready for a word transfer, the 
1/0 processor sends a request to shared resources for a 
time slice during which to perform the transfer. This is 
done by setting the 1/0 processor's Busy flip-flop in the 
B/ A register, whose output is then routed to the priority 
logic for assignment of a time slice. After each word is 
transferred, a comparison is made of the updated CBA 
and the FBA by a CIO µI for a condition of equality. If 
the two addresses are not equal, the µI shuts off the 1/0 
processor by clearing its Busy flip-flop until the processor 
is ready for the next word to be transferred. The 1/0 
processor's Busy flip-flop is again set by another request 
and the above sequence is repeated until all words have 
been transferred. At this point, the CBA will equal the 
FBA. The result is to prevent the processor's Busy 
flip-flop from being cleared to execute the next sequential 
µI's in the 1/0 transfer routine until it is completed. 
During this 1/0 operation, the request from the 1/0 
processor has been generated and deactivated many times 
(once for each 1/0 word), causing the processor to turn on 
and turn off in a corresponding manner. Throughout this 
operation, however, the I /0 processor is locked on to the 
shared resources by means of the processor's Active 
flip-flop which remains set for the entire operation. This 
locking up of the processor is necessary to prevent either 
the Executive processor or another 1/0 device associated 
with the 1/0 processor from attempting to initiate another 
1/0 operation while the processor's Busy flip-flop is 
cleared between word transfers, which could normally be 
done if the Active flip-flop was not set. 

A simplified diagram of the B/A register showing the 
relationship between the Active flip-flops of each 1/0 
processor and corresponding Busy flip-flops is shown in 
Figure 2-189. The Active flip-flop for a particular 
processor is set by software under control of the 
aforementioned 1/0 transfer initialization routines. The 
Active flip-flop outputs (B/A-08 through B/A-11) are fed 
back to the Executive processor informing it that the 1/0 
processor is presently engaged in an 1/0 operation and 
may not be interrupted until completed. The request 
(REO) signals from each 1/0 processor are fed to the Busy 
flip-flops when a word is ready for transfer. These 
flip-flop outputs (B/A-00 through B/A-03) are routed to 
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the priority logic for assignment of time slices. Busy 
flip-flops for processors 1, 2, and 3 may also be set via 
corresponding ATTN signals in the event that an 1/0 
device requests a time slice for a data transfer that is not 
initiated under software control. Setting the Busy flip-flop 
in this way will be permitted by the Bl.A register and then 
turn control over to appropriate software, but only if the 
processor associated with the 1/0 device is not presently 
engaged in another task as indicated by the corresponding 
Active flip-flop being set. This lock-out condition is 
implemented by ANDing the ATTN signal with the 
complemented output from the Active flip-flop. 

Additional details about setting the Busy flip-flops by 
request signals may be found in the pc;1ragraph titled B/A 
Register. 

REGISTER SELECTION 

Selection of a register in one of the four 1/0 processors is 
accomplished by means of the Extended Register File 
(ERF) Group Ill selection logic discussed in the paragraph 
titled Extended Register Selection. A:s discussed in that 
paragraph, all registers of these 1/0 processors are selected 
by an encoded register address sent to the processor on 
the four ERNG3 lines. This address is developed both for 
read and write operations. This paragraph will discuss 
some of the peculiarities in register selection in each of the 
four processors. 

Processor 0 

Processor 0 contains four registers that may be addressed 
by the ERNG3 lines: write data 12, read data 13, write 
address 1 D, and read address 1 F registers. As the names 
imply, these registers are used 'Ito read or write associated 
data or address information when selected by the 
corresponding address. (Recall that the~ four ERNG3 lines 
encode only the least significant digit of the address (2, 3, 
D, or F). The most significant digit (1) is implied by the 
µI function code as a consequence of uenerating a register 
read or register write signal to enable information from or 
to the register.) Further details about addressing these 
registers may be found in Section 5 (Volume 3) of this 
manual. 

Processors 1 and 2 

Processors 1 and 2 contain five registers that may be 
addressed by the ERNG3 lines: Bus In register, Tag Out 
register, Channel Control register, Byte Count register, 
and Bus Out register. Three of these five registers (Tag 
Out, Channel Control, and Byte Count registers) may be 
addressed for either an input or outpUJt data transfer. The 
Bus In register may be addressed only for an input 
operation; conversely, the Bus Out register may be 
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addressed only for an output operation. When addressing 
the eight-bit Tag Out register for an input data transfer, 
the data on the eight tag in lines is also selected for 
transfer to the shared resources. Further details about 
addressing these registers may be found in Section 4 
(Volume 3) of this manual. 

Processor 3 

Processor 3 contains one register that is addressed by the 
ERNG3 lines. Depending on the address used to select this 
register and the time at which the address is generated on 
the ERNG3 lines, this register may be used to perform a 
variety of functions. For example, addressing the register 
as register 10 indicates to the I FA that the information 
contained in the register is to be used to select a particular 
disc drive. When addressed as register 12, the contents are 
interpreted as status select bits. Further details about 
addressing this register may be found in Section 6 
(Volume 3) of this manual. 

DATA INPUT 

Data read from the four 1/0 processors is fed to the 
shared resources by means of the ER F Group 111 input 
logic shown in Figure 2-190. This logic consists of 16 data 
receivers which receive the 16 data lines from each of the 
four 1/0 processors. Data from a particular processor is 
selected by a corresponding ENERG3 enable, which gates 
data from the particular processor through the data 
receivers, and the ERFG3RD signal, which strobes data 
from the register in the selected 1/0 processor. Each 
ENERG3 enable is generated by a corresponding STATE 
signal from the priority logic which defines the processor 
from which data is to be read, and a and b designator 
values of both "1" which define an ERF register is being 
selected. Signal ERFG3RD is generated for any µI that 
can read an ER F Group 111 register (6, 1; 6, 2; 7, X, and 
D, X µl's) ANDed with a second line that indicates the 
particular µI is making a reference to an ERF Group Ill 
register (a·b = 1 ·1 and Fµ -011 = 1 ). 

DATA OUTPUT 

Data to be written into registers of the 1/0 processors is 
fed from the shared resources by means of the ERF 
Group Ill output logic shown in Figure 2-191. This logic 
consists of 16 data drives which receive the 1/0 data from 
the ALU and fan it out to the four 1/0 processors. 
(Although data is fed out to all four processors in parallel, 
only one of the four will be enabled to receive it as 
selected by the EXCT signal from the priority logic.) The 
register.to be written into is enabled by the ERFG3WR 
signal. This signal is generated in a manner similar to 
ERFG3RD, except that it is generated during execution 
of a µI that can write into an ER F Group 111 register. 



1/0 
PROC 

·-----------------· I I 
I I 
I I 

+ERI0-00 

I I 
+ERl1-00---·· I 

I I 
I I 

-ERFG3-00 
+ERl2-00 

I 
I 

+ER13-00 -------·--1-----
I 
I 
I 

~ 
I 
I 
I 

+ERi 0-15 ---..... --t--+---t~-1---11 
I 
I 

+ERl1·15 -------+----11----t---
I 
I 

+ERl2·15-------~---... 
.---ERFG3·15 

I I 
I I 

+ERl3-15 --------+--f-·--f--+---11 I 
I 
I 
I ,_ 

I 
I 

<1016) I - -----------· 
--i-----------·--------ENERG3-0 

-·--+----------------ENERG3-1 

~-+----------------ENERG3-2 

---------------ENERG3-3 

r------------~----1 
I I 6,1 +6,2+ 

7,X + D,X I 
I 
•--a·b=1 ·1 
I 
·--Fµ-011 
I 

L
I nAo6) I 

-----------------~ 

Figure 2-190. ERF Group Ill Input 

2-226 

SHARED 
RESOURCES 



16 I 
} 1/0 OUT I PR~C 

LINES I 

} 

·------.. } 
I I 
I I 

·ALU-00 ·--.. ~>-----,.--E-R_.0,·..,D0-+------

1 
I 
I 
I t I 

1/0 
PROC 

3 

l~ER0-15 ·ALU-15----r _____ ___.__ 

I I 
SHARED 

RES 

I (1A18-1A21) I ··------.. 

Figure 2-191. ERF Gmup Ill Output 

TERMINA.TION OF 1/0 OPERATION 

As discussed in the paragraph titled 1/0 Requests, an l/Q 
operation is normally terminatied when the CBA equals 
the FBA, indicating that the l/Q buffer in MS has been 
completely filled. This condition is implemented by the 
CIQ µI, which checks the contents of the Aµ and Bµ 
registers for a condition of either equality or inequality 
depending on which of the two CIQ µl's is being 
executed. However, the l/Q operation can also be 
terminated before normal completion because of an 
abnormal condition detected during tlhe operation. This 
abnormal termination is indicated by an End of Transfer 
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(EQT) signal sent from the processor to the shared 
resources. In the case of a normal l/Q termination, the 
CIQ condition keeps the Busy flip-flop set so that the l/Q 
operation can terminate in an uninterrupted fashion by 
means of the l/Q data transfer routine. In the case of an 
abnormal l/Q termination, the EQT signal keeps the Busy 
flip-flop set to allow the Executive to detect the source of 
the abnormal condition. Each of the four l/Q processors 
sends a respective EQT signal to fan-in logic in the shared 
resources, as shown in Figure 2-192. This logic AND's the 
EQT signal with a corresponding ST ATE signal from the 
resource allocation network to generate EQTEXIT. This 
signal is routed to the l/Q terminate/continue logic. 
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The 1/0 terminate/continue logic, shown in Figure 2-193, 
is used to either terminate or continue the 1/0 operation, 
based on receipt of the EOTEXIT signal and evaluation of 
the CBA/FBA compare during execution of a CIO µI. This 
logic generates three signals: IOEXIT, CIO-TX, and 
CIOEXIT. Signal IOEXIT is used to terminate the 1/0 
operation in the 1/0 processors. The signal is generated for 
either a normal 1/0 (CIO µI) terminate condition, or an 
abnormal (EOT) terminate condition. For a CIO µI 
terminate, the signal is generated during execution of 
either a CI01 µI and an Aµ=Bµ condition, or a CI02 µI 
and an Aµ~Bµ condition. These are the conditions defined 
for these two µl's that indicate that the 1/0 operation has 
been completed. The result is to cause the 1/0 processor 
to idle (perform NOP's) through the rest of the time slice 
and update the Pµ register in the ERF with the contents 
of Pp, which defines the starting address of the first µI to 
be executed during the next time slice. This µI will be the 
first in a routine to obtain status information, which 
always follows after transfer of 1/0 words. For an EQT 
terminate, the signal is generated by means of EOTEXIT 
during execution of the following CIO µI in the 1/0 
transfer routine regardless of whether or not the CIO 
compare condition is met. Combining EOTEXIT with 
signal CIO is necessary so that the 1/0 processor can begin 
the routine to obtain status information. (As discussed 
above, the starting µI address for this routine results from 
executing either the CI01 or CI02 µI.) Fc;>r all three ways 
of generating IOEXIT, signal IDLE is included to prevent 
the signal from being generated if the 1/0 processor is in 
an idle condition. 

Signals CIO-TX and CIOEXIT are generated for a 
condition opposite of that for generating IOEXIT, that is, 
if the condition for terminating an 1/0 operation is not 
met. Essentially, this means one of the following is true: 

1. execution of a CI01 µI and an Aµ:f:Bµ condition, 

2. execution of a CI02 µI and an Aµ=Bµcondition, 
or 

3. no EOTEXIT signal. 

Signal CIO-TX is fed to the B/A register to clear the 1/0 
processor's Busy flip-flop. This action allows the 1/0 
operation to continue by permitting the 1/0 processor to 
set the Busy flip-flop again when the next 1/0 word is 
ready for transfer. Signal CIOEXIT is routed to the Pµ 
select logic to inhibit writing the contents of Pp (starting 
µI address of routine for obtaining status) into the 1/0 
processor's assigned Pµ register. Since additional 1/0 
words are to be transferred, the CIOEXT signal effectively 
causes the 1/0 transfer routine to repeat by causing the 
un-updated contents of Pµ to be transferred back to Sµ at 
the beginning of the next assigned time slice. Inhibiting 
thu Pp + Pµ operation is done by changing signal 
EFI RH/WL to the high state. When in the low state, this 
signal enables data to be stored in Pµ. When changed to 
the high state, however, this write operation is inhibited. 
If the 1/0 processor is running in the Consecutive Cycle 
(CC) mode, Sµ is inhibited from being written with the 
contents of Pp by inhibiting ENPP-SM. This inhibiting 
condition is also generated by the CIOEXIT signal. 
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SYSTEM CONTROL PANEL INTERFACE 

The System Control Panel (Panel) interface logic controls 
all Panel-initiated functions of the system. These 
functions include (1) reading and writing Main Storage 
(MS), Control Storage (CS), Register Option (RO) 
registers, and Register File (RF) registers; (2) selecting 
processor and panel operating modes; (3) initiating CS 
loads and MS loads; and (4) displaying file registers 
contents. The Panel interface also enables display of 
certain system status information such as MS and CS 
parity errors and processor states which are executing 
major cycles, the capability of transferring control of the 
system from the Panel to a remote location, a general 
system reset facility, and applying AC power to the 
system. 

A block diagram showing the main functions controlled 
by the Panel interface logic is' shown in Figure 2-194. 
Reading and writing MS, CS, RO, and RF registers are 
grouped under one category identified as console control. 
These operations are selected by means of the CONSOLE 
MODE SELECT selector. The MS, RO, and RF register 
read and write operations are similar in that each is 
performed by a µI subroutine. The CS Read and CS Write 
operations are also selected by the CONSOLE MODE 
SELECT selector. However, these operations are 
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implemented by hardware only, due to the fact that a CS 
Write operation might alter the very subroutine in CS used 
to perform the CS Write. The CS Read operation is more 
accurately identified as the CS Read/Scan operation. 
These two operations are executed ini a similar manner, 
the major difference being the operating mode in which 
they are performed. The CS Scan operation is performed 
in the normal mode (continuous operation) to verify that 
all data written in CS and the F RJ decode address table 
(AT) during a Reset/Load operation was stored without 
error. Data is read from CS in a continuous manner for 
purposes of making longitudinal parity checks on a page 
basis without regard to the contents of any particular 
location. The data is said to be scanned when performing 
this operation; hence, the term CS Scan. A CS Read 
operation, on the other hand, is performed in the 
stop/step mode so that particular locations in either CS or 
the AT may be read, one at a time. The CS Scan and CS 
Read operations are limited to off-line use only; that is, 
no other processor may be requesting slices when 
performing either of these operations. This means that the 
Panel will be granted alternate time slices by the resource 
allocation logic in which to perform the chosen operation. 
(The Panel does not have the facility to operate in the 
Consecutive Cycle mode.) 

The Panel allows each of the eight processors or the Panel 
itself to function in one of three operating modes: 
stop/step, normal and breakpoint. Basically, the stop/step 
mode permits operation for only a short period of time 
(either one major cycle or one M LI), the normal mode 
permits operation for an indefinite period of time (usually 
until the processor or Panel is set to another mode), and 
the breakpoint mode permits operation only until some 
pre-determined address in either CS or MS is reached. The 
normal mode is the mode in which a processor would 
execute a program in an on-line situation. The stop/step 
and breakpoint modes are used primarily during 
maintenance operations. Selection of a processor mode is 
made by one of eight PROCESSOR CONTROL SELECT 
switches; Panel mode selection by the CONSOLE 
CONTROL. SELECT switch. The processor stop/step 
mode is divided further into two sub-modes as determined 
by the position of the CYCLE STEP switch. This switch 
causes the selected processor to run for either one major 
cycle (when set to the up position) or for one M LI (when 
set to the down position). Similarly, the processor 
breakpoint mode can be run in one oif three sub-modes, 
depending on selection of the thrne BREAKPOINT 
MODE SELECT switches: READ INSTR, READ DATA, 
and WRITE DATA. When the corresponding switch is set 
to the up position, a breakpoint stop will occur (1) 
immediately after the M LI at the breakpoint address is 
read (READ INSTR switch), (2) at the end of the storage 
reference cycle in which data was read at the breakpoint 
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address (READ DATA switch) or (3) at the end of the 
storage reference cycle in which data was written at the 
breakpoint address (WRITE DATA switch). 

Initial loading of CS and associated AT, and MS, is 
performed by the Panel RESET/LOAD and AUTOLOAD 
switches, respectively. The CS load can also be performed 
automatically during a power-up system reset condition. 
For whichever condition, the CS load is performed under 
hardware control using either disc or cards as the input 
medium. The choice of which medium will be used is 
determined by the LOAD SELECT switch. Either disc or 
cards may be used to load MS also. If the disc was used to 
load CS and will also be used to load MS, it will also load 
MS automatically upon completion of the CS load under 
control of an autoload routine. If loading from cards, the 
MS load operation must be started manually. The CS load 
operation is under control of the Panel. Conversely, the 
autoload operation is under control of Executive 
processor 4. This control enables the Executive processor 
to load data in pre-determined areas of MS as determined 
by processor number, bounds protect, and other related 
criteria. 

Selected registers of the Extended Register File (ERF) 
Group 11 and the ALU may be selected for displaying 
their contents by means of hardware control as opposed 
to the software-controlled RF read and write operations. 
These registers are selected by the CONSOLE ADDRESS 
REGISTER SELECT and CONSOLE DATA REGISTER 
SELE CT selectors, which select address-related and 
data-related registers respectively. These selectors permit 
display of register contents only; data may not be written 
into these registers by this method. In addition, only one 
processor may be running and then in the stop mode 
when addressing registers using these selectors. As such, 
selecting registers by this method is designed primarily for 
maintenance purposes when troubleshooting a single 
processor. 

PANEL CONTROL 

CS Scan/Read 

The CS scan and CS read operation are performed by the 
same logic, but under different conditions. The CS scan 
operation is performed in the normal mode and verifies 
that all data written into CS during a CS load was entered 
without error. The CS read operation is performed in the 
stop/step mode to display the contents of individual 
locations in CS in a sequential manner. Logic for 
performing both CS scan and CS read operations is shown 
in Figure 2-195. As shown, both operations are executed 
in basically the same manner except for the duration of 
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signal CONBUSY. This signal obtains time slices for the 
Panel during Panel-initiated operations by the shared 
resources. In effect, this signal is analogous to a Busy 
flip-flop output from the BIA register which indicates that 
a particular processor wants a time slice1. During a CS scan 
operation, CONBUSY is generated con1tinuously from the 
time that the CONSOLE RUN pushbut1ton is pressed until 
the last location in the AT is scanned. This enables the CS 
scan operation to proceed in a continuous manner by 
automatically granting time slices to the Panel. One CS 
location is scanned each time slice. During a CS read 
operation, however, CONBUSY is generated for only one 
time slice at a time upon pressing the~ CONSOLE RUN 
pushbutton. This happens as a result of the Panel being in 
the stop/step mode (CONSOLE CONTROL SELECT 
switch set to the STOP/STEP position). When set to this 
position, the stop/step signal clears out the Console Busy 
flip-flop that generates CONBUSY at the end of the 
Panel-assigned time slice. The result is that only one 
location in either CS or in the AT is read at a time. For 
whichever operation is being performed, CONBUSY is fed 
to the Resource Allocation Network mAN) to generate 
READCON and STATEC. These two signals, along with 
SWCS-RD from the CS-RD position of the CONSOLE 
MODE SELECT selector, are routed to the CS scan/read 
logic. 

The CS scan/read logic implements the CS scan operation 
by making a longitudinal parity check of all 256 words of 
each page in CS and a horizontal parity check of all 256 
words in the AT. (A longitudinal parity check involves 
checking the same bit of all 256 words in a page in 
sequence as the words are scanned, as opposed to a 
horizontal parity check which checks all 16 bits of one 
word.) The logic scans each CS page in sequence in a 
continuous manner until a word is detected with 
erroneous bits. The remainder of the page containing the 
error is scanned, but the operation stops on the last 
address of the page. At this point, the CS Scan register 
will contain all 1 's in every bit position except those in 
which the error occurred (and in bit positions 9 and 10, 
which are not used). These bits are displayed in the 
CONSOLE DATA REGISTER DISPLAY indicators on 
the Panel via the 16 NDISPLAY signals fed from the Data 
register display selector logic. The !iame sequence of 
events occurs during the scan of an unused page 
(essentially an unused page is interpreted by the CS Scan 
register as a page in which all words contain parity errors). 

Pressing the CONSOLE RUN pushbutton causes the CS 
scan operation to resume checking the rest of the pages in 
CS. If no errors were detected in any of the pages, the SC 
scan operation will continue until the last address of the 
last page on CS is reached. At this point, the operation 
will stop, and the Panel indicators will display the value 
FF9F, the hexadecimal equivalent of all 16 bits except 9 
and 10 being 1-bits. 

The ability of using a longitudinal parity check to check 
bit errors in the manner described above is accomplished 
by inserting a word called a checksum in each page of CS 
coded such that the CS Scan register output of the last 
word read from a page with no errors will equal al I 1-bits. 
The word-by-word development of the longitudinal parity 
check is implemented by the toggling property of the 16 
.J-K flip-flops which make up the CS Scan register, 
wherein the output of each flip-flop will toggle (change 
state) whenever a J input of "1" is detected. This toggling 
!Property of the J-K flip-flops enables the word-by-word 
1Parity check to be developed for each page as shown in 
Figure 2-196. (Assume for purposes of discussing this 
figure that each word in CS is four bits in length and the 
page to be considered is page 0.) Initially the CS Scan 
register is cleared to zeros by means of CLRCSS. Then the 
first word in CS at address 000015 (0110) is fed to the CS 
Scan register by the ENCLKCSS signal. This signal enables 
clocking the CS Scan register at E200 of every Panel time 
slice, as shown in Figure 2-197. Since the register was 
initially cleared, the output of the register is the same as 
the input. The contents of Sµ are updated by the S +1 
logic via ENCL KSM and the contents of address 000115 
(1011) are fed to the register. Since bits 0, 2, and 3 of this 
word are 1 's, the register output corresponding to these 
three bit positions will toggle. 

This same sequence of events repeats itself for all 256 
words in the page (255 µl's plus the checksum). Note that 
the checksum (assumed to be stored at address OOFF15) is 
coded to generate a CS Scan register output of all 1 's after 
it is scanned. In essence, each bit of the checksum enables 
checking parity of the corresponding bit in all 256 words 
of a page. At this point, the register output is compared 
with the contents of the Sµ register. If the right-most 
eight bits of Sµ. (address of word within page) are all 1 's 
(FF 15), the compare indicates that all words within the 
page were loaded without error. 
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Upon completing a check of all CS pages, the CS scan 
logic begins to read the contents of each 256-word AT, in 
sequence, performing a horizontal parity check on each 
9-bit address stored in the AT. (As discussed in the 
paragraph entitled F RJ Decode, the complete F RJ branch 
address is 14 bits in length. The upper 5 bits, however, are 
derived from other sources and therefore are not checked 
for parity.) Each 9-bit address is checked for odd parity. 
Upon detection of a parity error, signal ATCHKEV is 

generated (since an even number of 1 's detected indicates 
an error) to generate a scan error signal. 

As discussed previously, the CS Scan register is cleared 
initially prior to beginning the CS scan operation. 
However, it also cleared after scanning the last address of 
each page in CS in preparation for beginning a scan of the 
next page. Logic for generating the clear signal required at 
these two different times is shown in Figure 2-198. Initial 
generation of CLRCSS occurs between E560 and EOOO of 
the time slice preceding that granted to the Panel, when 

READCON and STATEC are both high. Since the Panel is 
running in the continuous mode and no other processors 
may be running during a CS scan operation, these two 
signals remain at their final value (READCON high and 
STATEC low) until the end of the operation. This assures 
that the clear signal will not be generated during the 
scanning of a page to erroneously clear the longitudinal 
parity check being developed. Upon completing a page 

scan, the lower eight bits of Sµ contain all 1 's to indicate 
that 256 (or a multiple of 256) addresses have been 
developed. This condition is indicated by signal G1-CIN 
from the Sµ+1 logic. Signal G1-CIN generates CLRCSS to 
begin the scan of the next sequential page in CS. During a 
CS read, the clear signal will be generated prior to every 
time slice granted the Panel. This enables the particular 
contents of a location in either CS or the AT to be 
entered in the CS Scan register for display on the Panel. 
These individual clear signals are generated as a result of 
the Panel running in the stop/step mode, where 
READCON and STATEC will be re-initiated every time 
the Console Busy flip-flop is set. 
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During normal µI execution, the µl's read from CS are 
unconditionally gated into the Fµ register for translation. 
During a CS scan/read operation, however, these µl's must 
be inhibited from entering Fµ. Blocking entry into Fµ for 
this purpose is provided by signal CLRFM, generated as 
shown in Figure 2-199. This signal is generated during the 
W portion of the previous time slice (at E560) via 
READCON to clear out the last µI executed before the 
Panel got its time slice. The signal stays high through the 
execute portion of the Panel time slice via STATEC t9 
block all µl's read from CS during the Panel time slice. 
Another feature of normal µI execution is the updating of 
Sµ every time slice to address the next sequential µI in CS. 
Since only one µI is read per time slice when doing a CS 
scan or CS read operation, normal Sµ updating must be 
modified to occur only once during a time slice. This 
modification is accomplished by the BLKSMS signal, 
shown in Figure 2-199. The signal is held high during 
every Panel time slice to block clocking Sµ except at EOOO 
time. At EOOO, signal EOXX-0 goes high for about 30 
nanoseconds to allow the contents of Sµ to be gated to 
the Sµ+1 logic. During the rest of the Panel time slice, 
BLKSMS is held high by SWCS-RD and BLKSMFF. Signal 
BLKSMFF is generated from the set output of the Block 
Sµ flip-flop. This flip-flop is set by a master clear signal 
and remains set until completion of the CS scan/read 
operation. 

Gating of the CS Scan register contents through the data 
display selectors is accomplished by three SELN signals, as 

shown in Figure 2-195. These signals are forced to a value 
required to gate data from the CS Scan register to the data 
register indicators on the Panel when the CONSOLE 
MODE SELECT selector is set to the CS-RD position. As 
a result, the data register selector does not have to be set 
to the CSS position, when doing a CS scan/read operation. 

Parity errors detected during a CS scan operation are done 
so by the logic shown in Figure 2-200. This logic detects 
errors occurring both during the scan of CS and the AT. 
Errors that occurred during the scan of each CS page are 
detected by comparing the contents of the CS Scan 
register after the last address has been scanned in a page 
(CSS-FF9F) with the lower eight bits of Sµ (G1-CIN). If 
the CS Scan register contents are all 1 's, except for bits 9 
and 10 (CSS-FF9F low), at the same time that the lower 
eight bits of Sµ are all 1's (G1-CIN high) to indicate 
address 25510 (or a multiple of address 25510), the page 
was loaded correctly. Any other combination signifies an 
error, which generates SCANERR at E350. This signal sets 
the CS PE flip-flop to light the CS PARITY ERROR 
indicator on the Panel. In addition, STOP-CS is also 
generated to stop the CS scan operation by clearing the 
Console Busy flip-flop. This signal, however, can be 
disabled by the DISABLE CS switch on the Panel to 
disable the CS scan stop condition. Parity errors detected 
during the AT scan are handled in a similar manner via 
generation of signal ATCHKEV. 
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Console Busy flip-flop. This signal,. however, can be 
disabled by the DISABLE CS switch on the Panel to 
disable the CS scan stop condition. Parity errors detected 
during the AT scan are handled in a similar manner via 
generation of signal ATCHKEV. 

CS Write 

The CS write operation loads a particular word entered via 
the data register pushbuttons into th1e location in either 
CS or the AT specified by the corntents of S . The 
operation may be performed in either the stop/step or the 
normal mode. If in the stop/step mode, different words 
may be entered into successive locations each time the 
CONSOLE RUN pushbutton is pressed. If in the normal 
mode, the same word may be dynamically written into 
successive locations of CS and through the last address of 
the AT automatically when the CONSOLE RUN 
pushbutton is pressed. In either case, the first location to 
be written into (if different from 000015) must be 
oounted up to by first performing a breakpoint scan as 
described in the paragraph titled Console Modes. This scan 
is necessary since the Sµ register cannot be entered 
directly with an address. Like the CS scan and CS read 
operations, the CS write operation mlJlst be performed in 
the off-line mode (no other processor requesting time 
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slices). (The CS write operation should not be confused 
with the initial CS load operation. The latter is used to 
load CS and the AT with new data at the beginning of a 
job. The former is used to change data already contained 
in CS and the AT as a result of the CS load operation.) 

Logic for performing a CS write is shown in Figure 2-201. 
As in the CS scan/read, signal CON BUSY is generated for 
two conditions: continuously if the CS write operation is 
performed in the normal mode, or once per Panel time 
slice if performed in the stop/step mode. In addition, the 
oontents of Sµ are updated once per time slice as 
controlled by BLKSMS. Data to be written is entered in 
the 16 console data register pushbuttons and stored in 
either CS or the AT via the data display selectors. These 
selectors are enabled by three SELN lines, which are 
forced by the CS-WR signal derived from the CS-WR 
position of the CONSOLE MODE SELECT selector 
switch to a value required to gate the data register output 
lines. 

A write into either CS or the AT must be accompanied by 
a corresponding write enable: WRITE-CS or AT-WRITE. 
Both enables are generated at E700 of a Panel time slice, 
as shown in Figure 2-202. Selection of either WRITE-CS 
or AT-WRITE is controlled by the AT-SEL signal from 
the CS loader logic. During a CS write operation, this logic 
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also functions as during a CS load routine to monitor the 
contents of Sµ. Initially AT-SEL is low to generate 
WRITE-CS. When the CS loader logic determines that all 
of CS has been addressed, by comparing the contents of 
Sµ with the number of CS modules in the system, writing 
into the AT can begin. At this point, AT-SEL goes high to 
generate AT-WRITE. 

In systems containing a 5120 (5K)-word CS, addressing 
errors will occur if attempts are made to address the 
upper 3072-word portion of the second storage unit. 
These errors will occur because "wrap-around" of the 
Sµ contents will not occur if addressing in this range; 
that is, the contents of Sµ will not have yet re-cycled 
back to a 4096-word boundary address. Addressing in 
this non-existent portion of CS will be indicated by 
the CS PARITY ERROR indicator on the Panel, which 
will light as a result of detecting what appears to be 
parity errors in the "bad data" located at these non­
existent addresses. 

MS/RO and RF Read and Write 

Panel-initiated read and write operations performed on 
Main Storage (MS), or in registers of the Register File 
(RF) or Register Option (RO) are done so by means of 
corresponding µI subroutines located in CS. When the 
CONSOLE MODE SELECT selector on the Panel is set to 
the corresponding position (MS-RD, MS-WR, RF-RD, 
RF-WR, RO-RD, or RO-WR), a corresponding starting 
address is generated by the set S logic which causes a jump 
to the subroutine for performing the selected operation. 
The set S logic and the corresponding starting addresses 
generated are shown in Figure 2-203. The address is 
generated on seven lines that feed the Sµ register. (The 
complete jump address is 12 bits in length, where the 

remaining 5 bits are forced to zero in the Sµ register.) 
Each read or write subroutine causes one word to be read 
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or written during each time slice assigned to the Panel. 
During the time slice, Sµ is updated in the normal manner 
until the subroutine is completed for one word. At the 
beginning of the next time slice, another word can be read 
or written since the position of the CONSOLE MODE 
SELECT selector automatically forces the starting address 
of the subroutine again. 

Any of the subroutines may be performed in either the 
on-line mode (other processors running) or off-line mode 
(no processors running). If doing an RF operation, any of 
the registers in the BRF or Groups I and II of the ERF 
(except the Boundary Crossing register) may be accessed. 
(The Group 111 registers of the ER F, associated with 1/0 
processors 0 through 3, may not be accessed by this 
mechanism.) The six read and write operations (MS read, 
MS write, RO read, RO write, RF read, and RF write) are 
implemented by four µI routines, with the MS and RO 
read and write operations sharing the same read and write 
routines. 

The MS/RO read routine of Figure 2-204 reads the data in 
MS located at the address entered into the CONSOLE 
ADDRESS REGISTER DISPLAY pushbuttons and 
transfers it to the CONSOLE DATA REGISTER 
DI SP LAY indicators. If the CONSOLE CONTROL 
SELECT switch is in the STOP/STEP position, one pass 
through the routines will be executed in one time slice 
each time the CONSOLE RUN pushbutton is pressed. If 
the CONSOLE CONTROL SELECT switch is in the 
NORMAL position and the CONSOLE RUN pushbutton 
is pressed, the routine will be repeated to read out the 
contents of all sequential locations above that entered 
into the address register pushbuttons until all of MS or the 
RO is read. The MS/RO write routine of Figure 2-205 
operates in a similar manner: data to be stored at an 
address entered in the address register pushbuttons is 
entered in the data register pushbuttons. Again, data can 
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be stored in either the stop/step or normal mode. When 
operating in the normal mode, the data entered into the 
data register is stored at the address entered into the 
address register and at all sequential locations above that 
address. 

The RF read and write routines are somewhat more 
complex than those for MS and the RO because of the 
necessity to cross processor boundaries. Since the Panel is 
considered a processor, the only way it can gain access to 
the file registers of another processor is by means of the 
Boundary Crossing (BC) register. The RF read routine of 
Figure 2-206 takes the processor and register number 
entered into the address register pushbuttons and transfers 
it to the BC register via the Aµ register. Then an IVK µI is 
executed so that the processor file register to be read can 
be addressed by the contents of the BC register. The 
contents of the selected register are read and transferred 
to Bµ. The contents of Bµ are then routed to the data 
register by a STB µI preceded by a RVK µI. The RVK µI 
is necessary to cancel the I VK µI so that the desired 
register number (that of the console data register) can be 
derived from the STB µI X-field instead of from the BC 
register. 

If the Relocation and Protection feature of the RO is 
present, the RF read routine will also read the Segment 
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Tag register corresponding to a BRF register selected and 
display the four bits of this register in the XO through X3 
indicators of the CONSOLE DATA REGISTER 
DISPLAY. This is accomplished by the logic shown in 
Figure 2-207. The segment tag is selected by BC and 
BRFSXO bits derived from the BC register instead of 
from the resource allocation logic and µI X-field. The 
selected register is clocked into the extended portion of 
the Console Data register at t80 by ENCLKNRX. This 
enable is generated for a RF read operation assuming that 
an ERF register has not been selected (BC-007 is high). 
The 4-bit tag value in the data register is selected for 
display in the CONSOLE DATA REGISTER DISPLAY 
XO through X3 indicators by SELNDPYX. This select 
signal is generated when the CONSOLE DATA 
REGISTER SELECT selector is set to DATA. 

The RF write routine of Figure 2-208 is executed 
similarly, the only significant difference being that data is 
to be written into the processor file register selected by 
the contents of the BC register. This data again is entered 
into the console data register. As for MS read and write 
operations, RF operations can be executed in either the 
stop/step or normal mode. If the Relocation and 
Protection feature of the RO is present, the RF write 
routine may also be used to write the Segment Tag 
register corresponding to the BR F register selected. This is 
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accomplished by the logic shown in Figure 2-209. The 
segment tag value set into the.~led portion of the 
Console Data register via the SWSETN XO through X3 
signals is routed to the selected Segment Tag register. This 
register is selected by the BC and BR FSXO bits from the 
BC register. The value is written into tlhe register by write 
enable SEGTAGWR. For this purpose, SEGTAGWR is 
generated for a register file write operntion under control 
of an IVKµ I (signal INV-F/F high). Tlhe tag value is also 
selected for display in the extended portion of the data 
register indicators by select signal SELNIOPYX. 

The BC register itself may not be selected as a register to 
write into by the RF write method. For this unique case, 
a situation is created where the BC nagister attempts to 
address itself by its own contents. A circular condition 
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resu Its during which the write operation generates 
spurious address bits that attempt to select other registers 
at random. 

OPERATING MODES 

Processor Modes 

The basic rationale governing processor execution in a 
selected mode is to start the processor by pressing the 
PROCESSOR RUN pushbutton, which sets the 
processor's Busy flip-flop in the B/A register; and stop the 
processor by means of signals generated according to the 
mode selected, which clear the processor's Busy flip-flop. 
Logic for starting the processor via the PROCESSOR 
RUN pushbutton is shown in Figure 2-210. Pressing this 
switch generates SW-GO, which sets the Processor Run 
flip-flop. The output of this flip-flop is fed to one side of 
a NANO gate to set the Go flip-flop. The other side of the 
NANO gate is fed with the Go Button flip-flop output 
routed through a one-shot circuit. The one-shot assures 
that the set pulse to the Go flip-flop is only 100 
nanoseconds wide. 

Setting the Go flip-flop generates GO~FF, which is routed 
to the B/A register to set the processor's Busy flip-flop 
upon receipt of a corresponding processor select signal. 
This signal is generated by setting the PROCESSOR 
SELECT selector to the desired processor number, which 
generates a SWSELGO signal. These two signals, GO-FF 
and SWSELGO, set the processor's Busy flip-flop, as 
described in the paragraph titled Busy/Active Register. 
Once the processor's Busy flip-flop is set, the Go flip-flop 
can be cleared to allow another processor to be turned on 
from the Panel. This is accomplished by the CLR-GOF F 
signal, which is generated from SWSELGO and the 
STATE signal from the RAN. 

Normal Mode 

The processor normal mode is initiated by the sequence of 
events just described plus setting the corresponding 
PROCESSOR CONTROL SELECT switch to the 
NORMAL position. This switch position does not produce 
a corresponding signal as do the processor select switch 
and GO button. Its selection, however, is implied by the 
absence of a signal from either the STOP /STEP or 
BREAKPOINT positions of the PROCESSOR CONTROL 
SELECT switch. As a result, the processor will continue 
to run indefinitely in this mode until either the stop/step 
or breakpoint mode is selected. 

Stop/Step Mode 

The processor stop/step mode is selected by setting the 
corresponding PROCESSOR CONTROL SELECT switch 
to the STOP/STEP position and proceeding as for the 
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processor normal mode. As discussed previously, the 
stop/step can be executed by performing either one major 
cycle or one MLI per depression of the PROCESSOR 
RUN pushbutton, as determined by the setting of the 
CYCLE STEP switch. Logic for implementing these two 
sub-modes is shown in Figure 2-211. When the stop 
condition defined by either of these two sub-modes is 
met, signal RNl-TX is generated. This signal is fed to the 
dear side of the corresponding Busy flip-flop in the B/A 
register to clear the flip-flop. If the CYCLE STEP switch 
is set to the up position, the processor runs for one major 
cycle and is then turned off. This is implemented by signal 
SWCYCSTEP from the up position of the switch. This 
signal generates RNl-TX at E350 of at least one time slice 
preceding the one during which the selected processor will 
execute. The RN I-TX signal, therefore, is present during 
the execution time slice which means that the processor 
will be turned off at the end of this single time slice. 
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If the CYCLE STEP switch is set to the down position, 
the processor runs for one MLI as determined by signal 
RNl-F/F from the RNI flip-flop. This flip-flop sets upon 
detection that the present M LI has been completed and 
the RNI sequence of the next MLI has been executed. The 
RNI breakpoint sub-mode discussed in the paragraph 
titled Normal Mode makes use of the fact that the next 
MLI RNI sequence has been executed. The cycle step 
evaluation, however, is interested in knowing only that 
the present M LI has been completed. The logic that drives 
the flip-flop makes an evaluation of the address in Sµ to 
determine if the MLI RNI sequence has been executed. 
This is done by examining bits 4 through 11 of S to see 
if they are all O's. If they are 0, SM .. FRJ04 through 
SM•FRJ11 are all high which indicates that Sµ has been 
reset to either 000215 (RN 11 sequence starting address) 
or 000915 (RNl2 sequence starting address) to start the 
next M LI, but has not been updated past 000F16 (I ast 
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address of RNl2 sequence). The result is to generate 
RNl-TX upon completion of either the RNl1 or RNl2 
sequence. 

Breakpoint Mode 

The processor breakpoint mode is entered by setting the 
corresponding PROCESSOR CONTROL SELECT switch 
to the BREAKPOINT position. When set to this position, 
the 20-bit breakpoint address set in hexadecimal form by 
the five BREAKPOINT ADDRESS SELECT selectors on 
the Panel (assuming the Relocation and Protection feature 
of the RO is installed) is continuously compared with the 
last physical address that referenced a word (either M LI or 
data) in MS. The lower 8 bits of this physical address are 
derived directly from the S register; the upper 12 bits 
from the RO. These upper 12 bits may be derived from 
either the system address or from the relocation logic, 
depending on the position of the SYSTEM/PHYSICAL 
switch as shown in Figure 2-212. If set to SYSTEM, select 
signal SYSTEM is high and the upper 12 bits are derived 
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from the system address (upper 8 bits of S and the 4-bit 
segment tag value). If set to PHYSICAL, signal SYSTEM 
is iow and the upper 12 bits come from the relocation 
logic and will usually represent a relocated equivalent of 
the system address. 

Upon reading a breakpoint condition (two addresses 
equal), the processor is stopped by clearing its Busy 
flip-flop. Logic for performing S register breakpoint 
comparisons is shown in Figure 2-213. For purposes of 
simplification, only the left-most of the five selectors is 
shown. This selector generates an encoded four-bit address 
corresponding to one of the 16 positions of the selector 
(015 to F 15). This encoded address is compared in 
complement form with extension address bits XO through 
X3 from the RO in true form for a match. The 
comparison is made on a bit-by-bit basis via exclusive-OR 
gates. If all four bits from the selector match the 
corresponding four bits from S, signal SRBKCP-XO goes 
high. The other 16 bits of S are compared with encoded 
addresses from the other four selectors in a similar 
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fashion. If all 2 0 bits of the physical address match the 
hexadecimal address set in the selectors, signal MATCH is 
generated and routed to the breakpoint sub-mode logic. 
The signal is also routed to the Console Busy flip-flop 
clear logic of Figure 2-214 for use during 
Console-controlled MS read and MS write breakpoint scan 
operations. 

The breakpoint sub-mode logic consists of three NANO 
gates corresponding to the three breakpoint sub-mode 
switches: READ DATA, READ INSTR, and WRITE 
DATA. If the READ DATA switch is set to the up 
position, SWROPBKP is generated to stop the processor 
after the operand located at the breakpoint address has 
been read. Indication of an MS read operation is furnished 
by RNl-F/F · STOREMS, meaning neither an RNI or an 
MS store operation was performed. The other two 
sub-mode switches stop the processor upon indication 
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that the breakpoint occurred for their particular 
conditions. (As discussed in the last paragraph, signal 
RNl-F/F is used here in the breakpoint compare logic to 
indicate that a new MLI has just been read.) When the 
particular sub-mode condition is met, signal BKP-TX is 
generated. This signal is routed to the 8/ A register to clear 
the processor's Busy flip-flop. 

Panel Modes 

Selection of a Panel mode is made by means of the 
CONSOLE CONTROL SELECT switch. Like the 
PROCESSOR CONTROL SELECT switches which select 
processor modes, this switch allows the Panel to operate 
in one of three modes: normal, stop/step and breakpoint. 
Each mode is initiated by pressing the CONSOLE RUN 
pushbutton, which sets the Console Busy flip-flop. This 
Hip-flop is similar to the processor Busy flip-flops in the 



B/A register in that it enables the Panel to obtain time 
slices through the RAN. If operating in the normal mode, 
the Console Busy flip-flop remains set until the 
CONSOLE CONTROL SELECT switch is set to either the 
STOP/STEP or BREAKPOINT position. (The NORMAL 
position of the CONSOLE CONTROL SELECT switch is 
implied by the absence of a signal from the STOP/STEP 
or BREAKPOINT positions of this switch.) When this is 
done, the flip-flop will be cleared when the corresponding 
stop/step or breakpoint condition is reached. 

Logic which sets and clears the Console Busy flip-flop is 
shown in Figure 2-214. The flip-flop is set either manually 
by pressing the CONSOLE RUN pushbutton (SW-RUN 
signal) or under program control during a CS load 

operation (RUN-LO signal). Clearing the flip-flop is 
accomplished when any of six conditions is present: 
system reset, Panel stop mode, stop CS, off, MS parity 
error, or Panel breakpoint mode. Each of these conditions 
satisfies a corresponding NANO gate, which generates a 
low output to clear the flip-flop. 

The system reset (SYSRST) gate is satisfied by either 
AUTO-MC, MC-LO, or SW-MC. Signal AUTO-MC is 
generated at the beginning of an autoload sequence. Since 
the autoload sequence is a processor-controlled operation 
(proc~~), the Console Busy flip-flop must be cleared. 
The MC-LO signal is generated at tho beginning of a CS 
load routine to clear the flip-flop untH a CS word is ready 
to be transferred from either the disc or card reader. 
Signal SW-MC is produced by the SYSTEM RESET 
pushbutton on the Panel for purposes of doing a general 
system reset. 

The Stop gate clears the Console Busy flip-flop upon 
detection of a stop mode condition. Generally, this 
condition will be implemented by setting the CONSOLE 
CONTROL SELECT switch to the STOP/STEP position, 
generating SWSTOP-C. For this condition, the Panel will 
execute one major cycle per depression of the CONSOLE 
RUN pushbutton. During a CS load routine, however, the 
stop condition is implemented to clear the Console Busy 
flip-flop after each CS word has been transferred until the 
next word is ready for transfer. This condition generates 
STOP-LO which, in conjunction with RUN-LO, set and 
clear the flip-flop at one-major-cycle intervals. 

The Stop CS gate clears the Console IBusy flip-flop upon 
detection of either a CS scan error or an Sµ. register 
breakpoint condition. For either case, signal STOP-CS is 
generated. Generation of STOP-CS due to a CS scan error 
condition is discussed in the paragraph titled CS 
Scan/Read; this paragraph discusses generation of the 
signal due to an Sµ. register breakpoint condition. This 
condition is usually implemented for purposes of scanning 
up to a particular CS address to begin a CS read operation. 
The scan operation consists of compa1ring the present CS 
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address in Sµ with the breakpoint address set in the 
right-most four BREAKPOINT ADDRESS SELECT 
selectors. Logic for accomplishing this is shown in Figure 
2-215. The compare operation is identical to that for the 
S register breakpoint compare shown in Figure 2-213, 
except that the CS breakpoint scan compare is made on 
the contents of Sµ. instead of S. Like 2-213, Figure 2-215 
shows details for only one of the selectors and the 
corresponding four bits of Sµ.. The breakpoint scan mode 
is entered by setting the CONSOLE CONTROL SELECT 
switch to the BREAKPOINT position, which generates 
signal SWBRKPT-C. Upon detection of a breakpoint 
compare, signal STOP-CS is generated which clears the 
Console Busy flip-flop. 

The Off gate clears the Console Busy flip-flop when none 
of the Console functions has been selected by the 
CONSOLE MODE SELECT selector, that is, the switch is 
set to the OFF position. Detection of a parity error (PE) 
during an MS read operation clears the flip-flop via the MS 
PE gate. This gate is fed with PE information from the MS 
PE display logic via the MS PE signal. This signal is 
ANDed with SWDISMPE, which is generated by the 
STORAGE PARITY DISABLE switch on the Panel. If 
activated, this signal goes low to disable the MS PE signal. 
The resultant output is fed to the MS PE gate of the 
Console Busy flip-flop clear logic. 

The BRKPT MODE gate is satisfied by a breakpoint stop 
during an MS read or MS write operation. This stop will 
occur as a result of reading or writing a block of data 
between some starting address and an ending address 
entered into the five BREAKPOINT ADDRESS SELECT 
selectors. The compare is made by the S register 
breakpoint logic of Figure 2-213. As shown in the figure, 
the MATCH signal generated upon reaching the 
breakpoint address is routed to the BKPT MODE gate of 
Figure 2-214. 

LOADS 

Disc CS Load 

A disc CS load may be initiated in one of three ways: 

1. Setting the POWER ON pushbutton to on 
(power on load) 

2. Pressing the RESET /LOAD pushbutton 
(reset/load load) 

3. Executing a CS Load disc command (CS disc 
command load) 

The power on and reset/load loads are initiated under 
operator control via the System Control Panel. The power 
on load may be performed with the system in the 
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operator or program mode, the reset/load load may be 
performed with the system in the operator mode, program 
mode, or maintenance mode. The third method is 
initiated under program control and may be performed 
with the system in the operator modei, program mode, or 
maintenance mode. 

Each load may be divided into two parts: an initiate part 
and a data transfer part. The initiate part generates signals 
in the shared resources that set up conditions in both the 
disc I FA and shared resources in preparation for the 
subsequent transfer of words to be stored in CS. Logic 
used during the CS load initiate part is shown in Figure 
2-216. The logic generates eight initiate signals. Four of 
these eight signals (DISCS, POMC-10,. DOA, and MC-10) 
are sent to the IFA; the other five (LDCS-WR, STOP-LD, 
MC-1, MC-2, and MC-3) are used within the shared 
resources. Prior to beginning any of the three CS loads, 
the disc llFA must be selected as the device from which 
the load will be made. This is accomplished by setting the 
LOAD SELECT switch on the Panel toi the DISC position. 
Setting the switch to this position !generates SWD ISC, 
which is sent to the shared resources to set the Load 
Select flip-flop. Setting this flip-flop generates DISCS, 
which enables the IFA for the CS load and subsequent MS 
load. 

Power-On Load 

The power-on load is initiated automatically when power 
is initially applied to the system via the POWER ON 
pushbutton on the Panel. When set to the ON position, 
the switch initiates a power-on system reset sequence. 
During this sequence, PWRON-MC is low which sets the 
Power On System Reset flip-flop. Through ~me level of 
inversion, the flip-flop (set output) generates POMC-10. 
This signal is routed to the IFA to clear the First Seek 
Drive 0 flip-flop. The true form of the set output is fed to 
the Power On OR-gate to generate MC-LD which, in turn, 
generates MC-10, MC-1, MC-2, and MC-3. Signal MC-10 is 
used to clear all registers and counters in the I FA except 
the Data Byte counter. This counter instead is set to a 
count of 332810, for use as a word transfer counter. 
Signals MC-1 and MC-2 are used in the shared resources to 
dear the Sµ register to address 000015, at which loading 
of CS will commence. Since Sµ cannot be cleared directly, 
it is done by clearing the Bµ registier in the ALU and 
transferring its contents (zeros) to Sµ. Logic for 
accomplishing this is shown in Figure 2-217. Signal MC-1 
generates ENRBM-0 and ENRBM-1 which resets (clear) 
both halves of Bµ. The output of Bµ is routed to S 
through the Sµ fan-in logic when enabled by ENALU-SM. 
Signal MC-2 generates EXCEPT which, in turn, is used to 
generate ENCLKSM. Signal EXCEPT is generated for this 
purpose of setting address 00015 into Sµ for beginning a 
CS load. Signal MC-3 is routed to the clear side of the 
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DOA flip-flop to clear this flip-flop upon detection of a 
burst check error. 

Upon completion of the power-on system reset sequence, 
PWRON-MC goes high to clear the Power On Master Clear 
flip-flop. The resultant low from the set side is inverted 
and fed to three one-shot circuits and an OR gate to set 
the DOA flip-flop. Signal DOA (Dead Start) initiates the 
CS load operation in the IFA, starting from cylinder 0, 
track 1. It is delayed about 600 nanoseconds from MC-LD 
(and therefore MC-10 and MC-1, MC-2, MC-3) via 
one-shot circuit 2 to allow the master clear operation 
initiated by these two signals to be completed. One-shot 
circuit 3 furnishes a negative pulse 60 nanoseconds wide 
to set the DOA flip-flop. Signal DOA is inverted to form 
STOP-LD. This signal is used in conjunction with 
RUN-LO (see Figure 2-218) to start and stop the RAN for 
enabling single-word transfers of CS data. Signal DOA is 
also ANDed with SWMAINT (MAINTENANCE MODE 
pushbutton not on) to generate LDCS-WR. This signal 
forces a CS load (CS write) condition and acts as if the 
CONSOLE MODE SELECT selector were set to the 
CS-WR position. The signal also forces selection of the 
Console Data register as the means for transferring data 
from the disc to CS. This forced selection simulates 
setting the CONSOLE DATA REGISTER SELECT 
selector to the DATA position. The action of clearing the 
Power On System Reset flip-flop also deactivates MC-10, 
MC-1, MC-2, and MC-3. 

Reset/Load Load 

The reset/load load is initiated manually by means of the 
switch on the System Control Panel. This load is similar to 
the power-on load except that POMC-10 is not generated 
and that performing this load in the maintenance mode 
also depends on activating the SYSTEM RESET 
pushbutton and setting the CONSOLE MODE SELECT 
selector to CS-WR. Regardless of whether the system is in 
the operator mode, program mode, or maintenance mode, 
pressing the RESET/LOAD pushbutton activates 
SWDEADS. This signal sets the DOA flip-flop via one-shot 
circuits 2 and 3. In addition, the signal generates MC-LD 
via one-shot circuit 2 and the Reset/Load OR-gate if the 
system is in either the operator mode or program mode 
(signal SWMAINT is high). Signal MC-LD in turn, 
generates MC-10, MC-1, MC-2, and MC-3 as in ·the 
power-on load sequence. If the system is in the 
maintenance mode, SWMAINT is low and generation of 
both MC-LD and LDCS-WR is inhibited. For this 
situation, MC-10, MC-1, MC-2 and MC-3 are generated by 
MC-SW from the SYSTEM RESET pushbutton and the CS 
load condition is set up by SWCS-WR from the CS-WR 
position of the CONSOLE MODE SELECT pushbutton. 
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CS Disc Command Load 

The CS disc command load is initiated via execution of a 
CS Load disc command by the IFA in either the normal 
mode or maintenance mode. Executing this command 
generates DSRS (Dead Start Restart) in the IFA, which is 
routed back to the shared resource:s. Essentially, this 
signal provides a simulated setting of the RESET /LOAD 
pushbutton under software control. This signal is also 
generated upon detection of a burst ch1eck error in reading 
data (CS words) from the disc in the maintenance mode. 
Detection of such an error requires re-loading the CS data. 
For whichever reason, it generates DOA, MC-10, MC-1, 
MC-2 and MC-3 in the same manner as pressing the 
RESET/LOAD switch. In addition, DSRS is routed to 
indicator 00 of the CONSOLE ADDRESS REGISTER 
DISPLAY on the Panel to indicate that the CS load is 
being performed as a result of either executing a disc 
command or detecting a burst error. Lighting this lamp, 
however, has real significance only upon detection of a 
burst error. If this condition occurs, DSRSDIS is 
generated to specifically inhibit generating DOA, MC-10, 
MC-1, MC-2, and MC-3 by means of DSRS. This means 
that the system will stop upon detection of a burst check 
error. Re-loading CS must be re-initiated manually by 
means of the RESET /LOAD and SYSTEM RESET 
pushbuttons. Loading or reloading CS upon occurrence of 
the other three conditions that generate DSRS (disc 
command - normal mode, disc command - maintenance 
mode, and burst check - normal mode) will take place 
automatically. 
Upon completing the initialization sequence in the disc 
I FA, the transfer of data from the I FA to the shared 
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resources can begin. This is done by the logic shown in 
Figures 2-218 and 2-219. Figure 2-218 shows generation 
of signals which control the transfer of data and Figure 
2-219 shows the logic involved in the data transfer itself. 
After receiving DOA from the shared resources, the IFA 
reads the first word to be stored in CS from the disc in 
serial fashion, assembles it in the I FA extended register, 
and sends DDS (Disc Data Strobe) to shared resources to 
inform it that the first CS word is available for transfer. 
The CS load control logic AND's DDS with SWDISC from 
the PRIMARY position of the AUTOLOAD SELECT 
switch to trigger one-shot circuit 1. This one-shot 
furnishes a pulse 60 nanoseconds in width to clear the 
console data register in preparation for receiving CS data 
from the IFA. The falling edge of this one-shot triggers 
one-shot circuit 2, which generates SEL EN. This signal, 
also 60 nanoseconds wide, is used with SWD ISC on Figure 
2-219 to generate an enable which is applied to four 
selector elements. These elements receive CS data from 
either the disc, via the sixteen ER 13 bits, or the card 
reader, via the four ODI bits. When furnished with the 
corresponding enable, the elements gate data from the 
corresponding 1/0 device. In the case of the disc, the 
sixteen ER 13 bits are gated and passed to the Console 
Data register as SLSTEN bits. When clocked by CLKN R, 
the Console Data register passes the data to the data 
display fan-in logic. Selection of the Console Data register 
is forced by the CS write operation. Data from the fan-in 
logic is then routed to CS for storage at the address 
defined by the contents of the Sµ register. Initially, Sµ is 
loaded with 000015 as discussed previously. For every 
subsequent word transfer, Sµ is updated by the Sµ+1 logic 
to form the address at which the next CS word will be 
stored. 
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During a CS load operation, data is transferred to CS from 
the disc in an asynchronous manner under control of a 
strobe generated for each word to be transferred. 
Essentially, the CS load can be characterized as a 
start/stop operation, where everything stops after a word 
is transferred until receipt of the strobe for the next word. 
The strobe required to trans-fer each word is the DDS 
signal. This signal is generated in the I FA for every word 
that the I FA assembles in its extended register. This 
signal, in turn, is used by the shared resources to generate 
RUN-LO which sets the Console Busy flip-flop, producing 
CONBUSY. Signal CONBUSY is routed to the RAN to set 
both the Console and Console Stat1a flip-flops. Setting 
these flip-flops generate the signals necessary to start the 
Sµ+1 update logic and store the data transferred to the 
Console Data register at the corresponding location in CS. 
Signal CON BUSY is analogous to th1a processor requests 
from the B/A register during normal operation in that it is 
used to obtain a time slice for the Panel. Upon completion 
of the single-word store, DDS is deactivated and the 
Console Busy flip-flop is cleared by the ANDed 
combination of STOP-LO and STATEC from the RAN. 
When the next word has been assumbled in the I FA 
extended register, DDS is activated again and the above 
sequence of events is repeated. Each word transfer takes 
one major cycle to execute. 

Transfer of data to CS will stop when one of the following 
four conditions occur: 

1. a burst check error is detected, 

2. the CS load is completed, 

3. a system reset operation i:s performed, or 

4. the system is shut down. 

Detection of a burst check error is performed by the IF A 
and requires that the contents of CS be re-loaded. 
Indication of a burst check error is ·furnished by signal 
DSRS. This signal performs the same functions as if it was 
generated for starting a CS load via execution of a CS 
Load disc command, namely, generation of signals DOA, 
STOP-LO, MC-10, MC-1, MC-2, and MC-3. When a burst 
check error occurs, however, the CS load operation is in 
progress and the DOA flip-flop is already set. To re-start 
the load operation, this flip-flop must be cleared and set 
again to initialize the disc heads. Clearing the DOA 
flip-flop is performed by MC-3, which is routed back to 
the clear side of the flip-flop as shown in Figure 2-195. 
After the 600-microsecond delay from one-shot circuit 1 
is complete, the DOA flip-flop is set again to re-start the 
CS load operation. (Again recall that re-starting the CS 
load by means of a burst check error is inhibited if the 
system is in the maintenance mode, duEl to the presence of 
DSRSDIS.) 
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Determining that a CS load operation has been completed 
is performed by the CS load complete logic, shown in 
Figure 2-220. This logic determines that all data has been 
loaded in both the CS and FRJ decode address table (AT). 
Upon detecting this condition, the logic generates 
ENDCSLD. The logic essentially consists of five parts: the 
1 K-word detector, the CS present detector, the AT Selec­
tor flip-flop, the AT present decoder, and the AT present 
detector. During a CS load, the 1 K-word detector moni­
tors the state of bits 6 and 7 from Sµ to sense when 
Sµ reaches addresses of XOFF 16, X2FF 16 and 
X3FF 16, indicating that 256, 512, 768, and 1024 
words, respectively, have been loaded. The states of 
bits 6 and 7 are ANDed with X-OOFF, indicating that 
bits 8 through 15 are all 1-bits. This progress of 
address detects in 256-word increments as shown in 
Figure 2-221. When a load of 1024 words in CS is 
detected, signal 1 K DET is generated and routed to 
one side of gate A. 

The other side of gate A is fed with an output from the 
CS present detector. This detector performs a dual 
function of checking for CS loads in 1024-word 
increments up to 16,384 words (four CS storage units), 
and checking to see if a portion of CS addressed by Sµ is 
actually present in the system. The latter check is 
necessary since the Sµ+1 logic has no way of knowing 
whether Sµ has been updated past a CS location not 
present in the system. Indication that another 1024-word 
increment of CS is going to be loaded is provided by bits 2 
through 5 of S . The states of these four bits are ANDed 
with four CSEQ bits, the encoded result of which 
represents hexadecimally the maximum number of 
1024-word portions of CS present in the system. (For 
example, if the system contains two CS storage units 
(8192 words), the encoded CSEQ bit result will be 
CSEQ1000.) This progression of address detects in 
1024-word increments ANDed with the corresponding 
CSEQ bit result is also shown in Figure 2-221. When a 
match is detected, signal CS PRES DET is generated. Note 
that generation of this signal is not dependent on the 
states of Sµ bits 6 through 15; therefore, the signal 
indicates only that the first location of the last 1024-word 
portion of CS present in the system has been addressed. 
Indication that this portion of CS has been completely 
loaded is furnished by signal 1 K DET. When these two 
signals occur simultaneously, gate A is enabled and sets 
the AT Select flip-flop. The set side of this flip-flop gen­
erates AT-SE Land the clear side feeds one input to gate B 
used to generate ENDO and ENDCSLD. 

Signal AT-SEL enables the FRJ decode address table to be 
loaded with data from the disc. This is accomplished in 
basically the same manner as the CS load complete 
operation: determining the number of words loaded per 
address table and combining this information with the 
number of address tables present in the system. 
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Determination that an address table has been loaded with 
256 words is accomplished by signal X-OOFF. This signal 
is combined with those from the 1 K word detector and 
the AT present decoder by the AT present detector. The 
1 K word detector determines which of the four 
(maximum) address tables is being addressed by bits 06 
and 07 of Sµ. This information is combined with outputs 
from the AT present decoder, which determines from two 
ATEQ bits how many address tables are present in the 
system. The results of these two decoders are combined 
with signal X-OOFF to enable one of four NOR gates, 
making up the AT present detector, as shown on Figure 
2-221. This result, AT PRES DET, is combined with the 
output from the CS Load flip-flop to generate ENDO and 
EDNCSLD. Signal ENDO is fed to the I FA, informing it 
that the CS and AT load operations have been completed. 
Signal ENDCSLD is routed to the CS load initiate logic 
(Figure 2-216) to clear the DOA flip-flop, thus 
deactivating signal DOA to the I FA. This completes the 
disc CS load operation. 
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Figure 2-221. CS Add and CS Present Compares 

Card CS Load 

A CS load from cards may be performed by either a 
power-on system reset condition, or by pressing the 
RESET/LOAD pushbutton. Cards may be read from 
either the card reader or the reader/punch, as determined 
by the setting of the LOAD SELECT switch on the Panel 
(CR position for card reader and R/P position for 
reader/punch). The initiate part of a card CS load is very 
similar to that for a disc CS load. The only differences are 
that the LOAD SELECT switch must be set to one of the 
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two settings described above and that signal MC-10 is not 
used. Referring to the CS load initiate logic of Figure 
:2-216, signal SWOTHER is generated by setting the 
AUTOLOAD SELECT switch to either the CR or R/P 
position. This signal clears the Autoload Select flip-flop 
vvhich causes DISCS to go low. A low DISCS signal 
enables the selected card device for performing the CS 
load operation. Activating the RESET /LOAD pushbutton 
generates DOA and MC-LD which, in turn, generates 
MC-10. Signal DOA is routed to either the Integrated Card 
Reader Adapter (ICRA) or the Integrated Reader Punch 
Adapter (I APA) to set up logic for assembling the first 
word to be transferred to CS. Although generated, signal 
MC-10 is not used by the ICRA or I RPA since there are 
no pick-up heads to be positioned in the card reader 
device as in the disc. 

Data transfers from the ICRA/I APA to the shared 
resources differ from those from the I FA because data 
transferred from the ICRA/I APA is done so in nybl form, 
four bits at a time, instead of in whole word form. This 
requires four separate data transfers, one per nybl, to 
assemble a complete word in the Console Data register 
prior to storing it in CS. These four data transfers are 
c:mabled by the output of a two-bit nybl counter, which 
generates four counts (00, 01, 10, and 11) in sequence. 
The nybl counter consists of two flip-flops, labeled 0 and 
1, as shown in Figure 2-219. When clocked by signal 
NYBL CTR CLK, the nybl counter enables a nybl on the 
ODI lines to pass through a selector to the Console Data 
register. Signal NYBL CTR CLK is generated by ODS 
{Output Data Scan) from the ICRA. This signal serves a 
similar purpose as signal DDS from the I FA, namely, to 
initiate each nybl data transfer from the ICRA to the 
shared resources. The four counts enable four nybls 
through selector elements 0 through 3 in sequence, as 
shown in Figure 2-222. During each four-nybl transfer, 
signals NYBLO and NYBL3 are sent to the CS load 
control logic. Signal NYBLO, sent concurrent with the 
transfer of nybl 0 to the shared resources, generates 
CLRNR to allow the next four-nybl word to be assembled 
in the Console Data register. Signal NYBL3, sent 
concurrent with nybl 3, generates RUN.LO which in turn 
generates CON BUSY. This signal sets up the RAN to write 
the assembled word into CS. Once assembled in the 
Console Data register, the resultant word from the ICRA 
is stored in CS in the same manner as a word from the 
IFA during a disc CS load. 

Termination of a C~ from the ICRA is accomplished 
by means of the ENDI signal from the ICRA, which 
informs the shared resources that all the cards have been 
read. This signal clears the DOA flip-flop in the same 
manner as ENDCSLD clears the flip-flop at the end of a 
CS load from the disc. 
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Auto load 

The autoload operation loads the operating system and 
user programs into Main Storage (MS) U1Pon completion of 
the CS load. Either disc or card reader may be used to 
load MS.* Unlike the CS load, which is loaded in CS in 
sequential addresses under hardware control, the MS load 
is under control of a Disc Autoload or Card Reader 
Autoload routine stored as part of the CS load. These two 
routines turn control of the MS load over to the Executive 
processor, which controls the placement of various 
routines in MS in accordance with their use. If the system 
is in either the operator mode or program mode, and CS 
was loaded by a power-on or reset/load condition, the 
autoload operation begins automaticallv upon completion 
of the CS load operation. For any other condition, the 
autoload operation must be initiated manually by means 
of the AUTOLOAD pushbutton. 

*At present, only the disc may be used to load MS via the 
autoload operation. 
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Control signals generated during an autoload operation are 
!shown in Figure 2-223. These signals are initiated by 
1either SWAUTO from the AUTOLOAD pushbutton on 
the Panel or AUTO-LO from the disc IFA. These two 
!Signals are ORed together to set the Autoload flip-flop, 
which removes the effects of switch bounce from the 
.AUTOLOAD pushbutton. Setting this flip-flop triggers 
two one-shot circuits in sequential order. One-shot circuit 
1 generates a negative pulse of 4 microseconds in width to 
!set the System Reset flip-flop. This flip-flop is used to 
1generate MC-1 and MC-2, which are used to clear the Sµ 
1register in the manner shown in Figure 2-195. One-shot 
1i::ircuit 2 generates a 0.1-microsecond-wide negative pulse 
which sets the Request 4 and the Request Enable 
'flip-flops. The Request 4 flip-flop generates REQ-4 
through one side of an OR gate to set the Busy 4 flip-flop 
,of the Busy/Active register. This flip-flop output, in turn, 
is used to obtain time slices via the RAN to effect the 
transfer of MS data. The set output from the Request 4 
·flip-flop is also used in combination with SWOTHER from 
the CR and R/P positions of the LOAD SELECT switch 
to generate the starting address of the autoload routine by 
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means of the set S logic. If loading from the disc, 
SWOTHER is not present and the starting address formed 
is 011315. If loading from a card device, SWOTHER is 
present and the starting address formed is 011215. The 
Request 4 'flip-flop is cleared at EOOO of the next minor 
cycle by STATEN from the Null State flip-flop in the 
RAN. Signal RE0-4 may also be generated by the normal 
executive request from the Real Time Clock (ATC) 
register. This request (RTC-REQ 4) is generated every 
16.384 milliseconds when the ATC regis.ter overflows and 
is enabled by the set output from thet Request Enable 
flip-flop. 

Upon generating the starting address of the autoload 
routine, transfer of data from either disc or cards begins 
under control of l's in the autoload routine. The basic 
flow of data from the input device (disc or cards) to MS is 
shown in Figure 2-224. All enables are generated by the 
µl!s of the autoload routine. 

REGISTER SELECTION/DISPLAY 

Certain registers of the shared resources and the ERF 
Group 11 may be selected for displaying their contents by 
means of hardware alone, in contrast to the 
software-controlled RF read routine described in the 
paragraph titled MS/RO and RF Read and Write. These 
registers are selected by the CONSOLE ADDRESS 
REGISTER SELECT and CONSOLE DATA REGISTER 
SELECT selectors on the Panel. The CONSOLE 
ADDRESS REGISTER SELECT selectoir permits display 
of address-related data contained in the S, Sµ, Console 
Address, and PE registers. The CONSOLE DATA 
REGISTER SELE CT se I ector permits display of 
data-related information contained in the ATC, Fµ-2, 
Fµ-1, CS Scan, B/A, Console Data, D, Aµ, Bµ, and BC 
registers, plus the sum of Aµ and Bµ. 

Logic for displaying data-related information in the CON­
SOLE DATA REGISTER DISPLAY indicators is shown 

CR { 
R/P 

DISC { 

-ENERG3·2 

-ENERGJ-3 

-ERFG3 
OEJ-15 

(1A18·2H 

+ENGR2/3 

iin Figure 2-225. Each position of the CONSOLE DATA 
REGISTER SELECT selector is fed to one of two encoder 
drcuits, depending on whether the register is associated 
with the ALU in the shared resources (D, Aµ, Bµ or sum 
1of Aµ and Bµ) or with the ER F Group II ( B/ A, RTC, BC, 

GS scan, Fµ-1, or Fµ-2). The ERF Group II register 
positions are sent to an eight-input encoder, which 
qenerates a three-bit register address on the three SE LN 
!lines. This encoder is also fed with an overall ALU register 
select signal (SWSELALU) which is generated when any 
of the four ALU register quantities is selected. The three 
SELN lines are sent to the data display selector. This 
selector is fed with the 16 lines from each ERF Group II 
register selected by the CONSOLE DATA REGISTER 
SELECT selector plus 16 lines from the ALU fan-out 
logic, fed with inputs from the four ALU-associated regis­
ters. Each position of the Console Data register selector 
!~enerates a three-bit register address as shown in Table 

2-27 to select its corresponding rester for display. Note 
1that the address generated for the four ALU-associated 
registers is the same for all. This is a result of signal 
SWSELALU, which is generated when any of the four 
ALU-associated registers is the same for all. This is a result 
of signal SWSELALU, which is generated when any of the 
four ALU-associated registers is selected. These registers 
are selected by their own encode logic because of the 
necessity of displaying their contents during a null condi-
1tion only. Furthermore, the contents must be the results 
of only one of the eight processors running and then in 
1the stop mode. These restrictions are necessary so that 
meaningful (non-changing) data may be displayed. The 
null restriction is implemented by signals READNULL 
and STATEN from the RAN. The result is to generate 
SELDISPY, which generates a corresponding enable to 
uate the contents of the selected ALU register to the selec-
1tor. The selector output is sent to a second selector which 
is used during the CS scan and CS read operation to dis­
play the contents of either CS or the FRJ decode address 
table (AT). For console data display operations, signal 
AT-SELAJ will be high to gate data from the selector 
(N .. CS) to the CONSOLE DATA REGISTER DISPLAY 
indicators. 

·ER.-ALU 
00-15 
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+Rf.-MSI 
00-15 
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.________. MS 

Figure 2-224. Autoload Data Storage 
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Figure 2-225. Console Data Display 
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Table 2-27. Console Data Regist1tr Selectors 

Selector Select S!s_nal States 

Setting SELN-82 SELN-S'.I SELN-SO 

B./A 1 1 1 

css 1 0 0 

Fµ 1 0 1 1 

Fµ2 1 0 1 

ATC 1 1 0 

BC 0 0 1 

SUM 0 0 0 

Bµ 0 0 0 

Aµ 0 0 0 

D 0 0 6 

N 0 1 1 

Logic for displaying address-related information in the 
CONSOLE ADDRESS REGISTER DISPLAY indicators is 
shown in Figure 2-226. The four positions of the 
CONSOLE ADDRESS REGISTER DISPLAY selector are 
fed to an encoder, which generates a two-bit register 

address on the two SE LM lines for each register selected 
.as shown in Table 2-28 These lines are fed to a driver and 
then to the address display selector that is fed with the 16 
lines from each address-related register. The output from 
the selected register is routed to the CONSOLE 
ADDRESS REGISTER DISPLAY indicators on the Panel 
over the MDISPY lines. 

Sµ 

M 

PE 

Table 2-28. Console Address Register Selector 

Selector Select S!g_nal States 

Setting SELM-81 SELM-SO 

sµ 1 1 

s 0 1 

M 1 0 

PE 0 0 

The Fµ2, Fµ1, ATC, CSS, D, Aµ, Bµ, SUM, and BC posi­
tions of the CONSOLE DATA REGISTER SELECT 
selector and the Sµ and PE positions of the CONSOLE 
DATA REGISTER SELECT selector are enabled only if 
the Panel is in the maintenance mode (MAINTENANCE 

MODE pushbutton set to on). These selector positions are 
disabled if the Panel is in either the operator mode or the 
program mode by appropriate grounding of the selector 
lug corresponding to the position on the Panel itself. 

r------. I (1AOB-1A11) I 
I 
I 

ADAS I 
DISPLAY ...,__---t 

SEL 
I 
I 
I 
I .. _ - _ .. 

} 

CONS 
ADRS 

MDISPV REG 
IND 

r--- .. -., r-··----. 
CONS { ADRS 
REG 
SEL 

I I I I 
-SWSEL-SM --111---• I SELM-SOA I I SELM-SO 

-SWSEL-M I 
I ENC I 

-SWSEL-SR ------ti I DVR I 
SELM-S1 

-SWSEL-PE ----- I I I 
I I I I 
I I 
L .. --Jl'!U~ 

I 0025)1 L-··---;;.a 
Figure 2-226. Console Address Register Display 
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APPENDIX 2A 

INTRODUCTION TO ER:ROR CORRECTION CODES 

In recent years, the demand is for increasingly 
sophisticated error detection and correction schemes to 
improve reliability as judged by performance, cost and 
size. The objective here is to give an insight to the idea 
(not the theory)., some terminology, and a comprehensive 
but simplified example of what erro1r correction means. 
The basic assumption is that all hardware has an intrinsic 
failure rate, however small, so that by minimizing the 
hardware in an entire system will tend to lower the system 
failure rate. The design objective is to provide, with 
minimum hardware, a redundancy coding that will 
combat statistically independent single errors. Statistically 
independent single errors means that about 99% of the 
time, random or intermittent errors w!ill occur only one at 
a time. Over a long period of time the same identical error 
will not occur. A shorted diode for example, that fails 
every time it is used is not ah independent error. Noise 
injected into the transmission medium tends to be random 
in nature and therefore redundant coding is used to 
combat it. To implement this objective, many 
random .. error-correcting codes have been used. For 
computer applications, variations in the Hamming 
Single-Error-Correction (SEC) and 
Double-Error-Detection (DED) are the most useful. 

Most single error correction coding was originally designed 
for bit serial transmission of data over a radio link where 
atmospheric noise is rather unpredictable. By sending 
redundant bits with the message, the errors caused by 
atmospheric noise can be overcome. Whether it was a data 
bit or a redundant bit doesn't matter because the coding 
allows a single error to occur and still recover from it. The 
basic assumption in a Hamming error code is that data 
transmission is done bit serially. For bit parallel memories, 
modifications to the coding hardware is necessary. The 
coding hardware simultaneously calculates parity on two 
bytes to minimize the calculating time required. Random . 
access bit-parallel storage have used parity bits as their 
basic error detection scheme. Typically a parity generator 
calculates how many binary one bits there are in the word 
to be stored. Then a parity bit is generated to make the 
total summation of word data bits and the parity bit to be 
an odd number of one bits. The result is then stored. 
Upon reading this word from storage, the summation of 
one bits is checked to verify an odd number of ones. Any 
errors result in an interrupt to the computer warning it of 
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an unidentifiable failure. To find the failing bit requires 
some redundance coding scheme not available with parity. 
The extreme redundancy code would be a bit for bit 
duplication of the original data word (if the duplicate 
word is known to be sent correctly). Using mathematical 
theorems, the number of duplicate bits, or check bits, can 
be minimized. 

Table 2A 1 shows an example of one method of producing 
redundancy for correcting errors. For the information 
shown in the three rows, the row and column parity is 
calculated and shown to make odd parity. 

Once the row parity and column parity is calculated, the 
check on row parity is calculated and is shown in the 
lower right-hand corner of the matrix. The array of 
information can now be transmitted bit-serial over the 
radio link and then staticized by the receiver into the 
original format. If an error occurs, it will show up in both 
the row and column parity checks. The bad parity checks 
for the row and column will intersect at the erring 
information bit so that it can be corrected. In other 
words, a single error was detected by the check bits (row 
and column parity) and it was correctable by pinpointing 
the bad information bit. 

Suppose that a double information error had occurred. If 
one error was in Byte 1 and the other in a different 
column of Byte 2, there would be two failing columns and 
two failing row parity bits. In this case a double error 
could be both detected and corrected if the parity bits .~re 

assumed to be correct. However, had both failing bits 
occurred in the same byte, there would be two erring 
column parity but no erring row parity. The double error 
is now detected but not necessarily corrected because one 
of the errors may have occurred in the check bits. 
Generally, error detection is logically easier to implement 
than error correction. For this reason, correcting single 
errors and only detecting multiple errors is the most 
common redundancy coding. 

In the example, the code word consisted of 20 symbols of 
which 12 were information and 8 were check symbols. 
The check symbols provide the code word with 
error-correcting ca pa bi I ity. 



The example shows how redundant check bits can 
reconstruct a single error. To adopt this example to a 
useful code for bit parallel storage requires doing the 
coding simultaneously. Using three parity generators to 
calculate the three row-parity bits and five parity 
generators to calculate the five column parity bits, the 
entire matrix can be simultaneously generated. The one 
exception in the example is the column parity bit that is 
generated from the row parity bits. It must wait until the 
three row parity bits are generated. Finally, the entire 
code word of twelve information bits and 8 parity (check) 
bits can now be stored. When the code word is read from 

Table 2A 1. Odd Parity Example 

Information Row Parity 

Word 1 1 1 1 0 0 

Word 2 1 1 0 0 1 

Word3 0 1 0 1 1 

Column Parity 1 0 0 0 1 

storage, similar simultaneous logic can detect and possibly 
correct the error. 

To minimize the logic and the number of check bits, 
many coding schemes have been developed. The easiest 
method of minimizing logic is to construct a table as 

shown in Table 2A2. The table shows the relationship for 
constructing the check bits from the information bits. 
Now however, the matrix of "X" is in the form that 
mathematical theorems can be used to minimize the 
rndundant check bits. From this example, the technique 
of forming error correction codes is shown. After the 
mathematical theorems minimize the table, the new table 
can be used to satisfy the construction of the logic. 

Variations and modifications to the Hamming SEC-OED 
codes have resulted in codes superior in cost, performance 
and reliability. The parallel generation of all check bits 
minimizes hardware and increases speed. For most codes, 
the capability or probability of correcting a single error 
and detecting all multiple errors can be empirically 
determined. 

Table 2A2. Formatting the Example into a Table 

Row 
Byte 1 Byte2 Byte 3 Parity Bit 

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 

Row Check Bit 1 x x x x 

2 x x x x 

3 x x x x 

Column Check Bit 1 x x x 

2 x x x 

3 x x x 

4 x x x 

5 x x x 
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3. MICRO-INST'RUCTION REPERTOIRE 

GENERAL. 

The micro instructions (µ's) are 14-bit codes stored in 
control storage (CS) and are used to implement the 
execution of machine-language instructions (MLl's) and 
to perform special manipulative routines initiated by the 
operator from the System Control Pan1el. There are 65 
basic µl's, grouped into 10 classes, comprising the reper­
toire. Some of these basic µI's, such as the FNJ µI, can 
be executed in one of two ways depending on whether 
or not a certain bit of the µI is set. Each µI consists of 
14 bits, arranged in a 16-bit format such that bit posi­
tions 9 and 10 are not used and are always in the clear 
state. For the most part, µl's enable inter-register trans­
fers of data and address information. Some µl's, how­
ever, are used to access main storage 1(MS) or exercise 
control over a programmed operation. 

FORMATS 

The 14-bit µl's (one bit of which is a parity bit) are 
read from CS and deposited in the 16-bit Fµ register, 
as they are needed. Since unused bit positions 9 and 
10 are always 0, and the parity bit P (bit 8) is carried 
along with the µI instead of being generated sepa­
rately, it is possible to express each µI as four hexa­
decimal characters as shown below: 

[ 
' 

0 3 4 7 8 1'1 12 15 

I lpl"31 I .. .J\ 
if' '"---v-- -..i' if' ' o-F 0-F 0,,1,8,9 O-.f 

Except for the hexadecimal character represented by bit 
positions 8 through 11 of the µI, each character can 
assume values of 0 through F depending on how the µI is 
coded. Bit positions 9 and 10 of the remaining character 
are always defined as O's; therefore, this character can 
only assume values of 0, 1, 8, and 9. 
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I 

I 

The µI's are formatted in several different ways, 
depending basically on their particular function. The 
format used for each µI is shown with the description of 
that µI in the paragraphs that follow. All formats, 
!however, use some or all of the field designators shown in 
the following four formats. Explanations of these 
designators follow the illustrations. 

0 3 4 5 6 7 8 9 10 11 15 

F jsojs,jaj bl Pl Not x 
Used 

0 3 4 5 6 7 8 9 10 11 12 15 

F I So Is, I • I b I p I ::~ 1621 x 

0 3 4 5 6 7 8 9 10 11 15 

F lt1I 1 ·I p I ::~I 
0 3 4 7 8 9 11 12 15 

F N I p I ::.: I I N 

Field 
Designator Meaning 

F 

p 

N 

x 

The basic function, or operation, code 

Parity bit (odd parity is used) 

An 8-bit operand (two fields, bit 04 is the 
MSB) 

A 6-bit jump index (two fields, bit 07 is the 
MSB) 

A register designation, skip designator, a 
mathematical constant, or a hexadecimal 
value indicating a bit (one of 16) to be set, 
cleared, or toggled. Bit 11 is not used (is a 
"0") for the latter. 



If bit 11 is a "zero" when X is used as a 
register designation, the register specified by 
bits 12-15 will be one of 16 in the lower half 
of the basic register file (i.e., registers 0-15). 
If bit 11 is a "1 ", then the register is one of 
16 in the upper half of the basic file 
(registers 16-31 ). 

Sub-operation codes 

a,b These designators determine how the number 
of the register to be operated on is derived. 
If both a and b are "O", the X field desig­
nates a basic register. If both are "1 ",the X 
fie Id designates an extended register. If 
either a or b is a "1 ", the register number is 
derived by performing an inclusive OR 
between the lower three bits of X and the 
3-bit R1 or R2 field of the machine-language 
instruction, as the case may be, and that 
number specified a basic register. For the 
SKB, SKB-, LBB and LBB- µl's, the machine 
OR is performed between the lower four bits 
of X and the corresponding 4 bits of either . 
the R1 or R2 field (including the indirect 
designator) of the machine-language 
instruction. 

CHARACTERISTICS 

In addition to grouping µl's into classes according to 
similarities in execution, µl's can also be grouped into 
more general categories according to certain basic 
characteristics that cut across sub-·division by class. These 
categories are discussed below. 

REGISTER ADDRESSABILITY 

Since most µI's can address registers of either the Basic 
Register File (BRF) or the Extended Register File (ERF), 
it is often convenient to know which µl's are the 
exception. Furthermore, of those that can address the 
ERF, it is convenient to know which of the three groups 
making up the ERF can be addressed by a particular µI. 
This register addressability information is listed in Table 
3-1. This table lists the capability of each µI to either read 
or write a register of the ERf. The letters "R" and "W" 
are used to indicate read and write operations, 
respectively. Any µI that can read or write a register of 
the ERF can also read or write a register in the BRF. 

BLOCKPOINT µI'S 

A micro program block is a series of µl's that must be 
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executed in the same major cycle (800 nanoseconds) if 
the results of the data manipulations are to be valid. The 
last µI in the block, must then be one that stores data in a 
dedicated resource, and ensures that data is not lost in the 
shared resources. These µl's are called blockpoint (BP) 
instructions. Each time the hardware detects a BP µI, it 
remembers the BP address +1, so that the program can 
resume at the proper location on the next major cycle. 
This is accomplished by routing the output of Sµ +1 to 
the Pp register by means of the BP µI. At the end of the 
major cycle, the contents of Pp is transferred to Pµ as part 
of the W portion of the time slice. 

All branch, skip, and register file write µl's are BP 
µ1 ··s. These µI's usually occur near the end of a time 
slice as a result of their intended use. Therefore, they 
are suitable for performing the BP function since any 
µI occurring after the BP µI in the present time slice 
will be repeated during the next time slice. Because 
time slices always begin by reading the µI following a 
BP µI, the microprogrammer must be sure that a BP 
µI occurs at least once during every time slice. Block­
point µ1 's are also tabulated in Table 3-1. 

FEEDER LOAD µI'S 

A feeder load µI is one which loads data into either or 
both Aµ or Bµ (feeder) registers. As such, they inhibit 
execution of a µI that uses the results of this data (such as 
a SUM or CMP µI) for 100 nanoseconds following the 
feeder load µI to allow sufficient time for the data to 
prnpagate through the ALU (refer to the paragraph on 
Cycle Delay Logic). The feeder load µl's, listed in Table 
3-1, generally have the following properties: 

1. cause full execution time of 200 nanoseconds 
(100 nanoseconds null time plus 100 
nanoseconds execute time) when immediately 
preceding a 2,X (SUM, DSUM, CMP or CMU) µI. 

2. clear inhibit on inner carries. Referring to Table 
3-1, the following anomalies to the above 
properties should be noted: 

a. The DIG and CORC µl's inhibit inner carries 
as part of their execution. Therefore, they do 
not clear the inhibit on inner carries as do the 
other feeder load µ 1 's. 

b. The shift (SHF, SHR, DLS, and DRS) µl's 
cause full execution time on the 2,X µl's even 
if the shift count equals zero so that the Aµ 
and Bµ registers are not altered. 

c. The bit sense (SRO and SS1) µl's cause full 
execution time on the 2,X µl's even if the Bµ 

register is not incremented. 



1/0 INTERFACE µI'S 

Micro instructions which either read or write a Group 111 
register in the ERF are referred to as 1/0 interface µl's. 
Besides reading or writing the Group 111 register in the 1/0 
processor, these µl's also furnish a read or write status 
signal to the control logic, which can also read or write 
these registers in addition to µl's. This is necessary 
because the read and write control logic is under hardware 
control and cannot otherwise determine that a particular 
register has been read or written by a µI. 

It is the responsibility of the microprogram to insure that 
whenever a Group 111 register is read by executing an 1/0 
interface µI, a subsequent blockpoint µI which stores the 
data in the shared resources file will b13 executed in the 
same major cycle. 

PµWRITE /.LI'S 

Aside from the BP µl's, which write a starting µI address 
into Pµ from Pp the following four µl's write and Pµ as 

a part of their execution: CLR, STA, STB, and AND. 
Since the only path to Pµ is from Sµ via Pp, these µl's 
cause a full 14-bit address branch to another µI routine. 
The two status bits, Overflow and Liink, that are also 
carried along with the 14-bit branch address are under 
hardware control only. Therefore, they cannot be altered 
directly but only by means of an arithmetic operation. 

RESYNCµl'S 

Execution of some µl's require that the following µI 
start at the beginning of the next time slice. An example 
of such a µI is the RNI (Read Next Instruction) µI, 
which causes a branch to a routine that reads the next 
M LI from MS and decodes it to determine its format. 
These operations can always be executed in one time 
slice; therefore, the RN I µI idles to the end of the 
present time slice to assure that the first µI of the RN I 
routine will be executed at EO of thta next time slice. 
These µl's that cause the following µI to start at the 
next EO are called resync µl's, and are listed in Table 
3-1. 

TIMING CONSTRAINTS 

Several µl's are subject to particular timing constraints in 
their execution. Usually these constraints prevent the ,ii 
from being executed during certain minor cycles of a time 
slice (usually EO or E7) or, conversely, force theµI to be 
executed at only a particular minor cycle. For other µl's 
the constraint increases the execution time from one to 
two minor cycle, depending either on the preceding µI 
executed or when the time-constrained µI was executed 
during the time slice. Applicable timing constraints for 
each µI an~ discussed in the paragraph which describes 
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eiach µI. They are also summarized in this paragraph for 
c:onvenience. The first category of timing constraints is 
summarized in Figure 3-1. These constraints must be 
implemented by the micro-programmer when preparing 
the µI program. The second category of constraints is also 
s;ummarized in Figure 3-1 and in the items below: 

1. The SUM, DSUM, CMP, and CMU µl's require 
two minor cycles to execute if the preceding µI 
altered the contents of Aµ and/or Bµ. 

b. Execution of Load S µl's during EO require one 
or two additional minor cycles if the system 
contains the basic protection feature or the 
relocation and protection feature, and/or the 
ECC feature. 

c. Branch µI's which reference the address portion 
of both Sµ and Pp (FNJ, JMP, and AND, CLR, 
STA, and STB when X = Pµ) require one 
additional minor cycle if executed during any 
minor cycle other than E7. 

d. Branch µl's which reference the address portion 
of Pp only (FRJ, FZJ when (Aµ)= 0, RNl1, and 
RNl2) cause a resync condition described in the 
paragraph on Resync µI's. 

e. Control µl's C101, C102, ROM, and SYNC 
cause a resync condition described in the 
paragraph on Resync µI's. 

The above group of timing constraints are referred to as 
:synchronous constraints because the timing restrictions 
1occur as a result of predictable timing anomalies. In 
1oontrast, there are a number of asynchronous constraints 
which occur because of unpredictable signals generated as 
a result of operator intervention or 1/0 processor requests. 
When these signals are read, resolve time of 200 
nanoseconds must be allowed before any actions 
dependent on the states of such signals are taken. This 
interval of time is necessary to allow the asynchronous 
·signal to assume a final, steady-state condition. For 
1example, if a LAW u, I designating the Panel Address 
register (ERF register OA) is followed by a Skip µI, which 
uses the result of Aµ to perform a skip, an interval of 200 
nanoseconds must be inserted between the two ,.ti's to 
prevent a possible machine malfunction. Such a 
malfunction could result from the fact that the operator 
could be altering the contents of the address register at 
the very instant its contents were being read by the LAW 
µI, resulting in an indeterminate skip evaluation. This 
resolve time requirement must be accommodated under 



microprogram control. In the case of this example, the 
requirement should be satisfied by two NOP µI's 
immediately following the LAW µI, a STA and LAW 
combinations specifying an otherwise unused register 
within the BRF or ERF, a SHF µI designating a shift 
count of 0, or some other non-interferring combination of 
two ul's. Such precautions are particularly applicable to 
µI's which read or write the ER F Group 111 registers. 

mat, and a narrative description. The description also 
lists the µI execution time(s), plus any timing con­
straints or anomalies peculiar to the µI. The ten classes 
of µl's are as follows: 

MICRO-INSTRUCTION DESCRIPTION 

Descriptions of each of the µl's are presented in the 
following paragraphs. The µ1 's are arranged in order of 
operation code according to their class. Each descrip­
tion consists of an English title, mnemonic identifier, 
operation code in hexadecimal form, instruction for-

1. register file read 

2. register file write 

3. register file read, MS related 

4. register file write, MS related 

5. immediate operand 

6. shift 

7. bit sense 

8. skip 

9. branch 

10. control 

--------------TIME SLICE---------------... 

r
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R - READ } 
W _ WRITE HOUSEKEEPING (HARDWARE) 

E - EXECUTE (MICROCODE) 

NOTES 

1. DO NOT EXECUTE AT TIME SHOWN. 
2. MUST BE EXECUTED AT TIME SHOWN IF STORING (D) IN MS. 
3. EARLIEST TIME VALID INFO IS AVAILABLE DURING READ MS. 
4. EARLIEST TIME FOR STORING (D) IN REGISTER FILE DURING A· 

MS READ 
5. DO NOT EXECUTE AFTER TIME SHOWN IF ACCESSING F OR Pµ. 
6. EXECUTE ONLY AT TIME SHOWN IF PERFORMED IN CONJUNCTION 

WITH A MS READ. 
1. DO NOT EXECUTE A REGISTER FILE WRITE INSTRUCTION AT ED IF 

DESTINATION X IS OF THE F REGISTER. TO DO SO MAY DESTROY 
THE CONTENTS OF THE F REGISTER FOR THE PROCESSOR HAVING 
THE PREVIOUS TIME SLICE. 

Figure 3-1. Microcode Timing Restrictions 
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Table 3-1. Micro-lnstructic~n Characteristics 

~~· ADDRESSABILITY 
Group I GAP GAP BLOCK FEEDER Pµ 

MNEMONIC ~n-11 Ill POINT LOAD WRITE RESYNC 

AND W* w w w x x 
Cl01 x x 
CI02 x x 
CLA R* R R R x 
CLR w w w w x x 
CMP w w x 
CMU w w x 
CORC x 
DFA R R R x 
DIG x 
DLS x 
DRS x 
DSUM w w x 
OTA R R R x 
OTA\ R R R x 
EBL x 
EBU x 
EOR w w w x 
FNJ x 
FRJ x x 
FZJ x x 
IDX R R x 
IOR w w R x 
IVK 
JMP x 
LAB R R R R x 
LAW R R R R x 
LAW\ R R R R x 
LBB x 
LBB\ x 
LBL R R R R x 
LBW R R R R x 
LBW\ R R R R x 
LOB R R R R 
LOW R R R R 
LOW\ R R R R 
LSE R R R x 
LSF R R R x 
LS1 R R R x 
LS2 R R R x 
NOP 
RNl1 w w x x 
RNl2 w w x x 
ROM x x 
RVK 
SOB w w w x 
sow w w w x 
SHF x 
SHA x 
SKB x 
SKB\ x 
SKE x 
SKE\ x 
SKG x 
SKL x 
SKN x 
SKZ x 
SRO x 
SR1 / x 
sso x 
SS1 x 
STA w w w w x x 
STB w w w w x x 
SUM w w x 
SYNC x x 

*W represents a Write operation, R represents a Read 1operation 
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REGISTER FILE READ MICRO-INSTRUCTIONS 

The µl's in this class perform register file read references 
which are unrelated to main storage operations. 

Load Aµ Word (LAW) 
D,O 

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

11 o 1ioiolalblPlo oi x 

Loads the Aµ register with the contents of the 
register-file-register designated by the X-field. Execution 
time: 100 nanoseconds. 

Load Aµ Complement (LAW-) 
D,1 

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

f1 o 1joj1jajbjPjo o I x 

Loads the Aµ register with the one's complement of the 
contents of the register file register designated by the 
X-field. Stores 1 in the Forced Carry register (FCR). 

Execution time: 100 nanoseconds 

Load Bµ Word (LBW) 
6,0 

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

f o 

Loads the Bµ register with the contents of the register file 
register designated by the X-field. Stores 0 in the Forced 
Carry register (FCR). 

Execution time: 100 nanoseconds 

Load Bµ Complement (LBW-) 
6,1 

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Loads the Bµ register with the one's complement of the 
contents of the register file register designated by the 
X-field. Stores 1 in the Forced Carry register (FCR). 

Execution time: 100 nanoseconds 
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Load Aµ and Bµ (LAB) 
D,2 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 x 

Loads the Aµ register with the contents of the register file 
register designated by the X-field. Loads the Bµ register 
w~th the contents of the register file register designated by 
the X-field. Stores 0 in the Forced Carry register ( FCR ). 

Execution time: 100 nanoseconds 

Cli~ar Aµ (CLA) 
D,3 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

~ 1 O 1!1!1lalblPIO 0 I X 

Clears the Aµ register. Loads the Bµ register with the 
contents of the register file register designated by the 
X-field. Stores 1 in the Forced Carry register (FCR). 

Execution time: 100 nanoseconds 

Load Bµ Link (LBL) 
7 ,.3 

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

r~~l~,-1,-1-,a-,~b,~P-,O~O~,~-X~--

Loads the Bu register with the contents of the register file 
register designated by the X-field. Stores the Link bit (bit 
1 of Pµ register) in the Forced Carry register (FCR). 

Execution time: 100 nanoseconds 

REGISTER FILE WRITE MICRO INSTRUCTIONS 

The µl's in this class perform register file write references 
which are unrelated to main storage operations. 

NOTE 

The CLR, STA, STB and AND µl's cause a branch 
operation when the Pµ-Register is designated by the 
X-field. 

Clear Contents of Register (CLR) 
1,0 

0 2 3 4 5 6 7 8 9 

~ 0 0 

10 11 12 13 14 15 

x 



Clears the register file register designated by the X-field. 
Updates Pp. 

Execution time: normally, 100 nanoseconds 

When the register file register designated is Pµ, the 
execution time is 200 nanoseconds; however, the 
instruction can be executed at time E:7. Do not use at 
time EO when the X-field designates tlhe F RF register. 
This could result in clearing the previous; processor's FR F 
register (if changed during E7). 

Store Aµ (ST A) 
. 1, 1 

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Stores the contents of the AJJ register into the register file 
register designated by the X-field .. Update Pp. 

Execution time: normally, 100 nanoseconds 

When the register file register designated is Pµ,, the 
execution time is 200 nanoseconds; however, the 
instruction can be executed at time E7. 

Store Bµ (STB) 
1,2 

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

loo o 11l1lolalblPlomiJ __ x __ 

Stores the contents of the Bµ register into the register file 
register designated by the X-field. Updates Pp. 

Execution time: normally, 100 nanoseconds 

When the register file register designated is Pµ, the 
execution time is 200 nanoseconds; however, the 
instruction can be executed at time E7. 

Logical Product, Aµ and Bµ (AND) 
1,3 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

~ o 1 !1 j1 ja jb 1Plo3 __ x __ 

Stores the logical product of the Aµ register and the Bµ 
register into the register file register designated by the 
X-field. 
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Logical product is illustrated by the following truth table. 

~ µ 0 1 

0 0 0 

1 0 1 

Updates Pp. 

Execution time: normally 100 nanoseconds 

When the register file register designated is Pµ, the 
execution time is 200 nanoseconds; however, the 
instruction can be executed at time E7 . 

Inclusive OR, Aµ and Bµ (IOR) 
4,2 

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Stores the inclusive OR of the Aµ register and the Bµ 
register into the register file register designated by the 
X-field. 

Inclusive OR is illustrated by the following truth table. 

~ 0 

0 0 

1 1 

Updates Pp· 

Execution time: 100 nanoseconds 

Exclusive OR, Aµ and Bµ (EOR) 
4,3 

1 

1 

1 

0 2 3 4 5 6 7 8 9 10 11. 12 13 14 15 

(o 
Stores the exclusive 0 R of the Aµ register and the Bµ 
register into the register file register designated by the 
X-field. 

Exclusive OR is illustrated by the following truth table. 

~ 0 1 

0 0 1 

1 1 0 

Updates Pp. 

Execution time: 100 nanoseconds 



Sum, Aµ and Bµ (SUM) 
2,0 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

loo o!ojojajbjPjo o j x J 
Stores the sum of the Aµ register, the Bµ register and the 
Forced Carry register into the register file register 
designated by the X-field. Overflow occurs when both the 
Aµ register and the Bµ register have like signs, but the 
resultant sum has the opposite sign. Overflow is reflected 
in bit position 0 of the Pµ register; if overflow occurs, bit 
0 is set, otherwise bit 0 is cleared. Link is the carry out of 
bit position 0 during the sum operation. Link is reflected 
in bit position 1 of the Pµ register. 

NOTE 

If bits 0-7 of the Function register ( F) equal 
5016-5316, or if inner carriers are inhibited as a 
result of a DIG or CORC µI, bits 0 and 1 of the 
Pµ register are not affected. 

Updates Pp. 

Execution time: normally 200 nanoseconds 

NOTE 

Whenever any Feeder Load µI (q.v.) is executed, the 
sum begins propagating and requires approximately 
100 nanoseconds before it can be written in the 
register file. Consequently, if a SUM µI is preceded 
by a µI which is not a Feeder Load µI, the 
propagation time is overlapped with the execution 
of the non-Feeder Load µI and the actual SUM µI 
requires only 100 nanoseconds to execute. 

Decimal Sum, Aµ and Bµ (DSUM) 
2,1 

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

loo ojoj1jajbjPjo o I x J 
Stores the sum of the Aµ register, the Bµ register and the 
Forced Carry register into the register file register 
designated by the X-field. Transfers the inner carries to 
the Inner-Carry register, unless inner carries are inhibited 
(q.v. DIG and CORC). Overflow occurs when both the Aµ 
register and the Bµ register have like signs, but the 
resultant sum has the opposite sign. Overflow is reflected 
in bit position 0 of the Pµ register; if overflow occurs, bit 
0 is set, otherwise bit 0 is cleared. Link is the carry out of 
bit position 0 during the sum operation. 

NOTE 

If bits 0-7 of the Function register (F) equal 
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5015-5315, link is the carry out of bit position 8 
during the sum operation. Link is reflected in bit 
position 1 of the Pµ register. If inner carries are 
inhibited as a result of a DIG or CORC µI, bits 0 
and 1 of Pµ are not affected. 

Updates Pp. 

Execution time: normally 200 nanoseconds 

NOTE 

Whenever any Feeder LoadµI (q.v.) is executed, the 
sum begins propagating and requires approximately 
100 nanoseconds before it can be written to the 
register file. Consequently, if a DSUM µI is preceded 
by a µI which is not a Feeder Load µI, the 
propagation time is overlapped with the execution 
of the non-Feeder Load µI and the actual DSUM µI 
requires only 100 nanoseconds to execute. 

Sign and Magnitude Compare (CMP) 
2,2 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

E_o~-o~l1_!_ol~a~lb_l_P_lo~o~l~-x~--
Performs a comparison of the Aµ register and Bµ 
register contents. A corresponding bit is set and all 
others cleared in the bit 0-7 field of the register file 
register designated by the CMP X-field to indicate the 
results of the compare as shown below: 

01234567 

Aµ=Bµ 

less than Bµ 

Aµ logically greater than Bµ 

Clear 

Aµ=Bµ 

· Aµ arithmetically less than Bµ 

Aµ arithmetically greater than Bµ 

- Clear 

Bits 8-15 of the register file register are unchanged, 
unless the register designated is an extended register, in 
which case bits 8-15 are set. 

For logical results, FFFF 16 is the largest number that 
can be stored and 0000 16 is the smallest number. 

For arithmetic results, 7FFF 16 is the largest number 
than can be stored and 800016 is the smallest number. 



Updates Pp. 

Execution time: normally 200 nanosecc)nds 

NOTE 

Whenever any Feeder Load µI (q.v.) is executed, the 
com pare begins propagating and requires 
approximately 100 nanoseconds before the result of 
the comparison can be written to the register file. 
Consequently, if a CMP µI is preceded by a ul which 
is not a Feeder Load µI, the propagation time is 
overlapped with the execution of the non-Feeder 
Load µI and the actual CMP µI requires only 100 
nanoseconds to execute. 

Magnitude Compare (CMU) 
2,3 

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

loo oj1l1lalblPlo=GJ x 

Performs a comparison of the Aµ register and Bµ 
register contents. A corresponding bit is set and all 
others cleared on the bit 0-7 field of the register file 
register designated by the CMU X-field to indicate the 
results of the compare as shown below: 

01234567 

Aµ==Bµ 

less than Bµ 
Aµ logically greater than Bµ 

Clear 

Aµ=Bµ 

Aµ logically less than Bµ 
Aµ logically greater than Bµ 

Clear 

Bits 8-15 of the register file register are unchanged, 
unless the register designated is an exte!nded register, in 
which case bits 8-15 are set. 

FFFF16 is the largest number that can be stored and 
0000 is the smallest number. 

Updates Pp. 

Execution ti me: normally 200 nanoseconids 

NOTE 

Whenever any Feeder Load µI (q.v.) is executed, the 
compare begins propagating and requires 
approximately 100 nanoseconds before the result of 
the comparison can be written to the register file. 
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Consequently, if a CMU µI is preceded by aµ I 
which is not a Feeder Load µI, the propagation time 
is overlapped with the execution of the non-Feeder 
Load µI and the actual CMU µI requires only 100 
nanoseconds to execute. 

REGISTER FILE READ, MAIN STORAGE RELATED 
MICRO-INSTRUCTIONS 

The µl's in this class perform register file read references 
which are, or may be related to, main storage (or register 
option) operations. Micro-instructions LS1, LSF, LS2 and 
LSE are unconditionally related to main storage (or 
register option) operations. The LOW, LDW-, and LOB 
µl's are main storage (or register option) related only 
when they are executed during E1 immediately following 
the execution of an LS1, LSF, LS2 or LSE µI at EO. All 
other µI in this class are main storage (or register option) 
related when they occur after, but within the same major 
cycle as LS1, LSF, LS2 or LSE µI executed for the 
purpose of performing main storage (or register option) 
read operations. 

Selection of an input to the D Fan-In Network within the 
ALU is conditioned by the µl's within this class in the 
following manner: 

a. During main storage read operations, the data 
from main storage is selected at the D Fan-In 
Network from E4 through E7. 

b. During register option read operations, the data 
from the register option is selected at the D 
Fan-In Network from E4 through E7. 

c. For the purpose of making 0 Fan-In Network 
selection only, register option read operations 
which specify the register set associated with the 
ECC feature are treated as main storage read 
operations. 

d. During a II minor cycles other than those 
described in items a, b, and c, the 0 'register is 
selected at the D Fan-In Network. 

Load S (LS1) 
3,0 

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

loo 1lololalblPlo o I x 

Stores the contents of the register file register designated 
by the X-field into the Storage Address register (S) and 

into the Aµ register. Stores 0000 16 (010) in the Bµ 
register. Stores 1 in the Forced Carry register (FCR). 

This µI initiates a main storage reference. If the next 
sequential µI is a load Storage Data register (LOW, LOW-, 



or LOB), a write to main storage is performed; otherwise a 
read from main storage is performed. 

This µI always begins execution at time EO. Consequently, 
the µI immediately preceding this µI must update Pp. 
since upon reading up this ul, if the time is other than EO, 
the hardware will cause an idle through the remainder of 
the current major cycle. Then the normal mechanism at 
time WO of storing Pp into Pµ will cause the address 
of an already executed µI to be designated as the 
starting point for the major cycle, and a loop will 
result in microcode. 

Execution time: 100 nanoseconds 

Load S (LSF) 
3,1 

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

I 0 0 1 I o I 1 I a I b I p I o 0 I x 

Stores the contents of the register file register designated 
by the X-field into the Storage Address register (S) and 
into the Aµ register. Stores FFFF 16 (-1 10) in the Bµ 
register. Stores 0 in the Forced Carry register (FCR). 

This µI initiates a main storage reference. If the next 
sequential µI is a load Storage Data register (LOW, LOW-, 
or LOB), a write to main storage is performed; otherwise a 
read from main storage is performed. 

This µI always begins execution at time EO. Consequently, 
the µI immediately preceding this µI must update Pp, 
since upon reading up this µI, if the time is other than EO, 
the hardware will cause an idle through the remainder of 
the current major cycle. Then the normal mechanism at 
time WO of storing PP and Pµ will cause the address of an 
already executed µI to be designated as the starting point 
for the major cycle, and a loop will result in microcode. 

Execution time: 100 nanoseconds 

Load S (LS2) 
3,2 

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 o o 

Stores the contents of the register file register designated 
by the X-field into the Storage Address register (S) and 
into the Aµ register. Stores 000115 (+110) in the Bµ 
register. Stores 1 in the Forced Carry register (FCR). 

This µI initiates a main storage reference. If the next 
sequential µI is a Load Storage Data Register (LOW, 
LOW-, LOB), a write to main storage is performed; 
otherwise a read from main storage is performed. 
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This µ.I always begins execution at time EO. 
Consequently, the µI immediately preceding thisµ.I must 
update Pp. since upon reading up this µ.I, if the time is 
other than EO, the hardware will cause an idle through the 
remainder of the current major cycle. Then the normal 
mechanism at time WO of storing Pp into Pµ will cause 
the address of an already executed µI to be designated 
as the starting point for the major cycle, and a loop will 
result in microcode. 

Execution time: 100 nanoseconds 

Load S (LSE) 
3,3 

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

(£0 1!1!1lalblPIO ol x 
Stores the contents of the register file register designated 
by the X-field into the Storage Address register (S) and 
into the Aµ register. Stores FFFE 16 (-2 10) in the Bµ 
register. Stores 0 in the Forced Carry register (FCR). 

This µI initiates a main storage reference. If the next 
sequential µI is a load Storage Data register (LOW, LOW-, 
or LOB), a write to main storage is performed; otherwise a 
read from main storage is performed. 

This µ.I always begins execution at time EO. Consequently, 
the µI immediately preceding this µI must update Pp. 
since upon reading up this µI, if the time is other than EO, 
the hardware will cause an idle through the remainder of 
the current major cycle. Then the normal mechanism at 
time WO of storing P into Pµ will cause the address 

p . h of an already executed µI to be designated as t e 
starting point for the major cycle, and a loop will 
result in the micro instruction routine. 

Execution time: 100 nanoseconds 

Load D Word (LOW) 
7,0 

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Loads the Storage Data register (D) with the contents of 
the register file register designated by the X-field. 

Execution time: 100 nanoseconds 

When executed during E1, immediately following an LSl, 
LSF, LS2 or LSE µI at EO, this µI will result in a main 
storage or register option write reference involving a full 
transfer of the D register output. In such cases, alteration 
of the contents of the D register by means of µI's during 
E2 through E7, may result in machine malfunction. The 
word locations of the write reference within main storage, 



or within the register option, are designated by the 
contents of the S register (bit 15 irre~evant except for 
breakpoint) and are subject to appropriate hardware 
validity checks on the part of the Basic Storage Protection 
or Relocation and Protection features. Write references 
thus performed involve 16 data bits. 

load D Complement ( LDW-) 
7, 1 

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

lo 1 I 0 j 1 I a I b I p I 03 x, __ 

loads the Storage Data register (D) with the one's 
complement of the contents of the register file register 
designated by the X-field. 

Execution ti me: 100 nanoseconds 

For a description of the relationship of this µI to main 
storage and register option write references see the 
comments for the LDW µI. 

Load D Byte (LDB) 
7,2 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Ei 1!1l1lo!albl<EI __ x ___ 

Loads the Storage Data register (D) with the contents of 
the register file register designated by the X-field. 

When executed during El, immediately following an LS1, 
LSF, LS2, or LSE µI at EO, this µI results in a main 
storage write reference involving a partial transfer of the D 
register output for which the right-most byte is duplicated 
in the left-most byte position (the D register output to the 
D Fan-In Network is not affected). In such cases, 
alteration of the contents of the D register by means of 
µl's during E2 through E7, may result in machine 
malfunction. The byte location of the write reference 
within main storage is designated by the contents of the S 
register and is subject to appropriate hardware validity 
checks on the part of the Basic Stora~1e Protection or 
Relocation and Protection features. Write references thus 
performed involve the transfer of only the left-most data 
byte where bit position 15 of the S regist1~r is clear, or the 
transfer of only the right-most data byte where bit 15 of 
the S register is set. 

D to Aµ, True (OTA) 
C,O 

0 2 3 4 5 6 7 8 9 10 n 12 13 14 15 

I 1 0 o!ololalblP!o 0 [ x 
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Transfers the output of the data fan-in to the Aµ register. 
Loads the Bµ register with the contents of the register file 
register file register designated by the X-field. Stores O in 
the Forced Carry register (FCR). 

If a main storage reference was initiated at the beginning 
of this major cycle, this µI will not execute prior to time 
lE4. 

!Execution ti me: 100 nanoseconds 

D to Aµ, Complement (OTA-) 
C,1 

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Transfers the output of the data fan-in to the Aµ register. 
Loads the Bµ register with the one's complement of the 
register file register designated. Stores 1 in the Forced 
Carry register (FCR). 

If a main storage reference was initiated at the beginning 
of this major cycle, thisµ I will not execute prior to time 
E4. 

Execution time: 100 nanoseconds 

Index (I DX) 
C,2 

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

(1 o ol1lolalblPlo o I x J 

If the register file register designated by the X-field 
equals zero, the Bµ register is cleared; otherwise, loads 
the Bµ register with the contents of the register file 
register designated by the X-field. Transfers the out­
put of the data fan-in to the Aµ register. Stores 0 in the 
Forced Carry register (FCR). 

If a main storage reference was initiated at the beginning 
of this major cycle, thisµ I will not execute prior to time 
1:4. 

Execution time: 100 nanoseconds 

In the presence of the Relocation and Protection feature, 
the I DX micro-command also serves as the implicit 
micro-command control mechanism for dynamic segment 
tag write references. Each IDX µI allows the next register 
file write reference, performed under µI control, to occur 
such that the associated segment tag is also written. The 
~;egment tag value so written will correspond to the 
segment tag value read during the last LS1, LSF, LS2, or 
LSE µI, whenever the associated IDX µI simply cleared 
the B µ register. Alternative! y, the segment tag value so 



written will correspond to the segment tag value read 
during the associated I DX µI whenever this associated 
IDX µI performed a transfer of the register file output to 
the Bµ register. 

D False to Aµ (DFA) 
C,3 

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Transfers the one's complement of the data fan-in 
output to the Aµ register. Loads the Bµ register with 

the contents of the register file register designated by the 
X-field. Stores 1 in the Forced Carry register (FCR). 

If a main storage reference was initiated at the beginning 
of this major cycle, this instruction will not execute prior 
to time E4. 

Execution time: 100 nanoseconds 

REGISTER FILE WRITE, MAIN STORAGE RELATED 
MICRO INSTRUCTIONS 

The µl's within this class perform register file write 
references which may be related to main storage or 
register option read operations. These µl's will be main 
storage or register option related when they occur after, 
but in the same major cycle as LS1, LSF, LS2, or LSE 
µl's, which are executed for the purpose of performing 
main storage or register option read operations. 

Store D Word (SOW) 
4,0 

0 2 3 4 5 6 7 8 9 

f o 

10 11 12 13 14 15 

o I x 

Stores the output of the data fan-in into the register file 
register designated by the X-field. 

If a main storage reference was initiated at the beginning 
of this major cycle, thisµ I will not execute prior to time 
E5. 

Updates Pp. 

Execution time: 100 nanoseconds 

Store D Byte (SOB) 
4,1 

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

lo o o!ol1lalblPlo o I x 

Clears bits 0-7 of the register file register designated by 
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the X-field. If the current contents of the Storage Address 
register is even, bits 0-7 of the data fan-in output 
are stored in bits 8-15 of the register file register 
designated, otherwise bits 8-15 of the data fan-in output 
are stored in bits 8-15 of the register file register 
des.i~nated. 

If a main storage reference was initiated at the beginning 
of this major cycle, this µI will not execute prior to time 
E5. 

Updates Pp. 

Execution ti me: 100 nanoseconds 

IMMEDIATE OPERAND MICRO INSTRUCTIONS 

The µl's within this class transfer immediate operands to 
the Bµ-register. These immediate operands are contained 
within the µl's themselves, with the exception of CORC 
and special cases of the LBB and LBB- µl's. 

Undesignated bit positions within these µl's have no effect 
on µI execution except to the extent that they shall 
participate in the formation of valid parity. 

Enter Bµ Upper (EBU) 
A 

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

~ 0 ol No I p I 0 0 I I N1 

Transfers No into bits 0-3 of the Bµ register and transfers 

N1 into bit positions 4-7 of the Bµ register. Bits 8-15 of 
the Bµ register are unaffected. 

Execution time: 100 nanoseconds 

Enter Bµ Lower (EBL) 
B 
0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

~o 
Clears bit positions 0-7 of the Bµ register. Transfers No 
into bits 8-11 of the Bµ register. Transfers N1 into bits 
12·15 of the Bµ register. 

Execution time: 100 nanoseconds 

Load Bµ Bit (LBB) 
6,2 

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

E 0!1 Iola lb IP loo I I x 



If both a and b are set, sets the bit in both the upper and 
lower bytes of the Bµ register to corrrespond with the 
processor state number in which the µI is being executed 
and clears the remaining 14 bit positions, i.e., 

2 (15-PROC#) + 2 (7-PROC#) _. Bµ 

If both a and b are clear, a bit in Bµ is set designated 
only by bit positions 12-15 of the µI. 

2 (15-X)...., Bµ 

If either a or b, but not both, is set, a bit in Bµ is 
set designated by four bits from the corresponding 
field of the F register inclusively ORed with bit 
positions 12-15 of the µI. 

Stores 0 in the Forced Carry register (FCR). 

Execution time: 100 nanoseconds 

Load Bµ Bit Complement (LBB-) 
6,3 

0 2 3 4 5 6 7 8 9 10 ~1 12 13 14 15 

f o 0 j 1 j 1 I a I b I p I 03_._1 __ x_ 

If both a and b are set, clears the bit in both the upper 
and lower bytes of the Bµ register which corresponds with 
the processor state number in which the µI is being 
executed and sets the remaining 14 bit positions, i.e., 

2 (15-PROC#) + 2 (7-PROC:fl~ ..,.. Bµ 

\If both a and b are clear, a bit in Bµ is cleared, desig­
nated only by bit positions 12-15 of the µI. 

2 (15-X) .-sµ 

If either a or b, but not both, is set, a bit in Bµ is 
cleared designated by four bits from the corresponding 
field of the F register inclusively ORed with bit 
positions 12-15 of the µI. 

Stores 1 in the Forced Carry register (FCR). 

Execution time: 100 nanoseconds 

Digit Duplication (DIG) 
F,2 

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

11 1 l1 l0 I lpl~ I x 

This instruction copies the absolute value of the 4-bit 
X-field (of the DIG instruction) into each 4-bit group 
of the Bµ register. Inhibits inner carries normally 
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propagated for each digit pos1t1on in the adder. Like­
wise, inhibits clocking Overflow and Link conditions in 
the Pµ register which occurs during sum operations. 
These disables remain in effect until a new value is 
inserted into either the Aµ or Bµ register by means of 
.a Feeder Load µI other than DIG or CORC. 

Stores 0 in the Forced Carry register (FCR). 

Execution time: 100 nanoseconds 

Correct Code (CORC) 
F,3 

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

This instruction enters, into each of the 4-bit groups of 
the Bµ register, a hexadecimal value dictated by the state 
of the corresponding stage of the Inner Carry register 
(ICR). The ICR stages were set (or not set) by. the 
previous DSUM instruction. If the bit (Xi) in the ICR is a 
1, the value "3" is inserted into the appropriate 4-bit 
group of the Bµ register. If the ICR bit is a 0, the value 
"D" (2's complement of 3, expressed hexadecimally) is 
inserted in Bµ. 

Inhibits inner carries normally propagated for each 
digit position in the adder. Likewise, inhibits clocking 
Overflow and Link conditions in the Pµ register which 
occurs during sum operations. These disables remain in 
effect until a new value is inserted into either the Aµ 
or Bµ register by means of a Feeder Load µI other 
than DIG or CORC. 

Stores 0 in the Forced Carry register (FCR). 

Execution time: 100 nanoseconds 

SHIFT MICRO-INSTRUCTIONS 

The µl's within this class left shift the contents of the 
Aµ/Bµ registers. Shift counts of 4 bits are µI-designated 
in true or 2's complement form, for shifts from 0 to 1510 
binary places. Bits shifted from the Aµ register are 
end-off (lost). Bits from the Bµ register are shifted into 
the Aµ register with zeros inserted into the right-most bit 
positions of the Bµ register. 

Undesignated bit positions within these µl's have no 
effect on µI execution except to the extent that they 
participate in the formation of valid parity. 



Shift Left (SHF) 
E,0,0 

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Performs a left end-off shift of the combined Aµ register 
and Bµ register, with the Aµ register containing the most 
significant bits. The shift count is specified by K. Zeros 
are entered at the right end of the Bµ register. 

Execution time: 200 nanoseconds 

Shift Right (SHR) 
E,1,0 

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

K 

Performs a left end-off shift of the combined Aµ register 
and Bµ register, with the Aµ register containing the most 
significant bits. The shift count is specified by the two's 
complement of K. Zeros are entered at the right end of 
the Bµ register. 

Execution time: 200 nanoseconds 

Left Shift, Dependent Count (DLS) 
E,2,0 

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Performs a left end-off shift of the combined Aµ register 
and Bµ register, with the Aµ register containing the most 
significant bits. Zeros are entered at the right end of the 
Bµ register. Shift count is determined by the following 
scheme: 

• If bit 1 of the Function register ( F) is clear, the 
shift count is specified by bit positions 12 
through 15 of the Storage Data register (D); 

• If bit 1 of the Function register (F) is set, the 
shift count is specified by bit positions 8 through 
11 of the Function register (F). 

Execution time: 200 nanoseconds 

If the shift count is to be obtained from the Storage Data 
register (D) and a main storage reference was initiated at 
the beginning of this major cycle, this µI cannot be 
executed prior to time E5. Otherwise, the shift count data 
will not be valid and the results are unpredictable. 
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Right Shift, Dependent Count (DRS) 
E.<3,0 

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Performs a left end-off shift of the combined Aµ register 
and Bµ register, with the Aµ register containing the most 
siunificant bits. Zeros are entered at the right end of the 
BJ..l register. Shift count is determined by the following 
scneme: 

• If bit 1 of the Function register ( F) is clear, the 
shift count is specified by the two's complement 
of bit positions 12 through 15 of the Storage 
Data register (D); 

/ 

• If bit 1 of the Function register (F) is set, the 
shift count is specified by the two's complement 
of bit positions 8 through 11 of the Function 
register (F). 

Execution time: 200 nanoseconds 

If the shift count is to be obtained from the Storage Data 
renister (D) and a main memory reference was initiated at 
the beginning of this major cycle, this instruction cannot 
be executed prior to time E5, otherwise the shift count 
data will not be valid and the results are unpredictable. 

BIT SENSE MICRO INSTRUCTIONS 

The µl's within this class scan the contents of the Aµ 
re~1ister, from left to right, for the purpose of detecting 
the first bit position in the set or cleared state as specified 
by the associated µI. Bit positions thus detected are 
cleared or set within the Aµ register as specified by the 
SR1 and SSO µl's, respectively. A value corresponding to 
the bit position detected, 00 through 15101 is added to 
thu contents of the Bµ register. When the entire Aµ 
register is scanned without detection of a bit in the 
specified state, 1610 shall be added to the contents of the 
Bµ, register. 

Undesignated bit positions within these µl's do not effect 
µI execution except to the extent that they participate in 
the formation of val id parity. 

Sense for Zero (SRO) 
E,0,1 

0 2 3 4 5 

~ 0 1°1°1 
6 7 8 9 10 11 12 13 14 15 

I p I 0 0 I 1 I 



Sequentially scans the Aµ register from bit position 00 
toward bit 15, for the presence of the first "O". 
Increments the Bµ register by an amount equal to the 
number of bit positions scanned before finding the first 
"O". If no "O" is found, the Bµ register is incremented by 
1610. 

Execution ti me: 200 nanoseconds 

Sense for One (SS1) 
E, 1, 1 

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

-,1~--o~l-of~1~,~-,P~,~ 

Sequentially scans the Aµ register from bit position 00 
toward bit 15, for the presence of the first "1 ". 
Increments the Bµ register by an amount equal to the 
number of bit positions scanned before finding the first 
"1 ". If no "1" is found, the Bµ register is incremented by 
1610. 

Execution time: 200 nanoseconds 

Sense and Set for Zero (SSO) 
E,2,1 

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Sequentially scans the Aµ register from bit position 00 
toward bit 15, for the presence of the first "O". Sets the 
first "O" and increments the Bµ register by an amount 
equal to the number of bit positions scanned before 
finding the first "0". If no "O" is found,, the Bµ register is 
incremented by 1610· 

Execution ti me: 200 nanoseconds 

Sense and Reset for One (SR 1) 
E,3,1 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0]1I1 I Ip lo~ .-1 ____ 
Sequentially scans the Aµ register from bit position 00 
toward bit 15, for the presence o'f the first "1 ". Clears the 
first "1" and increments the Bµ register by an amount 
equal to the number of bit positions scanned before 
finding the first "1 ". If no "1" is found, the Bµ register is 
incremented by 1610. 

Execution t~me: 200 nanoseconds 
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SKIP MICRO INSTRUCTIONS 

The µl's within this class provide for skipping the next 
successive µI when the specified conditions within the 
Aµ registers are met. These µl's require one minor cycle 
for translation and an additional minor cycle to skip the 
next successive µI when the specified conditions are met. 
Skip µI's for which the specified conditions are met as 
initially translated during E7 skip the next successive µI 
during EO of the next appropriately-allocated major cycle. 

NOTE 

When the contents of the Aµ or B µ, registers are 
logically ambiguous as a result of transferring 
asynchronous signals into them, the execution of 
Skip µl's without an allowance for resolve time may 
result in machine malfunction in the form of 
undefined and unpredictable µI execution. See the 
paragraph on Timing Constraints. 

Undesignated bit positions within these µI's have no effect 
on µI execution except to the extent that they participate 
in the formation of valid parity. 

Skip if Aµ is Zero (SKZ) 
5,0,0 

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

If the contents of the Aµ register are equal to zero, the 
next sequential µI is not executed; however, 100 
nanoseconds are required to cycle through the skipped µI. 

Updates PP. 

Execution time: 100 nanoseconds 

Skip if Aµ is Non-Zero (SKN) 
5,1,0 

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

If the contents of the Aµ register are not equal to zero, 
the next sequential µI is not executed; however, 100 
nanoseconds are required to cycle through the skipped µI. 

Updates Pp. 

Execution time: 100 nanoseconds 



Skip if Aµ Bit is a One (SKB) 
5,2,0 

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

If the designated bit of the Aµ register is set, the next 
sequential µI is not executed; however, 100 nanoseconds 
are required to cycle through the skipped µI. 

Designated bit - If either a or b is set, four bits from the 
corresponding field of the F register are inclusively ORed 
with bit positions 12-15 of the µI to determine the bit to 
be accessed. 

Updates Pp. 

Execution time: 100 nanoseconds 

Skip if Aµ Bit is a Zero (SKB-) 
5,3,0 

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

If the designated bit of the Aµ register is not set, the next 
sequential µI is not executed; however, 100 nanoseconds 
are required to cycle through the skipped µI. 

Designated bit - If either a or b is set, four bits from the 
correspnding field of the F register are inclusively ORed 
with bit positions 12-15 of the µI to determine the bit to 
be accessed. 

Updates Pp. 

Execution time: 100 nanoseconds 

Skip if Aµ> Bµ (SKG) 
5,0,1 

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

o 1 Io Io I 

Performs a 16-bit logical compare of the Aµ register and 
the Bµ register. If Aµ > Bµ, the next sequential µI is 
not executed; however, 100 nanoseconds are required to 
cycle through the skipped µI. 

Updates Pp. 

Execution time: 100 nanoseconds 

Skip if Aµ<Bµ (SKL) 
5, 1, 1 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

E_1_0___.1j~o-j1~j~~l_P~'o~o-j1_j~~---
Performs a 16-bit logical compare of the Aµ register and 
the Bµ register. If Aµ< Bµ, the next sequential µI is not 
executed; however, 100 nanoseconds are required to cycle 
through the skipped µI. 

Updates Pp. 

Execution time: 100 nanoseconds 

Skip if Aµ = Bµ (SKE) 
5,2, 1 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

E1 o 1!1!0! IPlo oj1I 

Performs a 16-bit logical compare of the Aµ register and 
the Bµ register. If Aµ= Bµ, the next sequential µI is not 
executed; however, 100 nanoseconds are required to cycle 
through the skippedµ I. 
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Updates Pp. 

Execution ti me: 100 nanoseconds 

Skip if Aµ =I= Bµ (SKE-) 
5,3, 1 

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Performs a 16-bit logical compare of the Aµ register and 
the Bµ register. If Aµ 'I- Bµ, the next sequentialµ I is not 
executed; however, 100 nanoseconds are required to cycle 
through the skipped µI. 

Updates Pp. 

Execution time: 100 nanoseconds 

BRANCH MICRO INSTRUCTIONS 

In addition to the CLR, STA, STB and ANDµ l's which 
effect a branch operation when the Pµ register is 
designated as described in the paragraph titled Register 
File Writes, the six µl's in this class explicitly provide the 
means for performing branch operations. 



As opposed to the implicit µl's previously mentioned and 
described in the paragraph titled Regi:ster File Writes, the 
explicit µl's in this class are capable of only partial write 
references to the right-most address portions of the Sµ 
and Pp registers. 

Function Decode Jump (FNJ) 
0, 1 

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

fo o o=oloj1j j10 jPjo oj 11 

The function decode jump causes a branch by placing a 
value in Sµaccording to the following algorithm: 

if Fµ6 = 0 

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

[ill]E· Fµ 14± F 

71 °I° anged 7 11 12 13 5 6 

If Fµ6 = 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

I 

~ged 1 11 1/~3 14 ;r1 OI F, 
11 OI OI 

FNJ cannot be executed at time EO 

Updates Pp. 

Execution time: 200 nanoseconds, however, can be 
executed at time E7 

ANOMALY: Normally, the FNJ µI branches to a location 
within the same 4096-word CS module in which the jump 
is located. This is what is indicated by bits 02 and 03 of 
Sµ being "unchanged". However, there are two cases 
when the decode jump branches to a location within the 
next consecutive 4096 word module. 

1. If the decode jump occupies the last location of a 
4096-word module (address XFFF15). 

2. If the decode jump occupies the next-to-last 
location of a 4096-word module (address 
XFFE 16) and is executed any time other than 
E6 or E7. 

Format Decode Jump (F RJ) 
0,2 

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

J 

FRJ - The 1st level decode jump will access a 256 word 
address table whose contents are alterable and loaded at 
CS Load time. Input to this table is determined from the 
function code as shown in Table 3-2. 

Table 3-2 Address Table Input Translation 

Function 
Code Address Tcltble Input Translation 

2X,3X,AX,BX 0 0 Foo Fo3 XB or XA or Fos F12 
XD-XF XC-XF 

6X,7X 0 1 0 Fo3 Fo4 Fo5 Foe F12 

OX,1X,4X,5X 0 1 1 Foo Fo1 Fo3 Fo4 Fo5 
8X,9X,CX,DX 

EX 1 0 Fo4 Fo5 Fos Fo7 Fos F12 

FX 1 1 Fo4 Fo5 Fos Fo7 Fos F12 
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Note that the function code must have been transferred to 
the Storage Data register (0), since the FRJ instruction 
actually keys off the D register. 

The address table output consists of a parity bit plus 9 
bits which are used as the right-most bits of the F RJ 
branch address. The left-most bits are as shown below: 

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

table output 

Cannot be executed until a minimum of 200 nanoseconds 
has elapsed since the loading of the D register. 

Resyncs so that the next µI will execute at time EO 
of the next major cycle assigned to this processor. 

Updates Pp. 

Execution time: 200 nanoseconds, however, can be 
executed at time E7 

ANOMALY: Normally, the FRJ µ.I branches to a location 
within the same 4096-word CS module in which the jump 
is located. This is what is indicated by bits 02 and 03 of 
Sµ being "unchanged". However, there are two cases 
when the decode jump branches to a location within the 
next consecutive 4096-word module. 

1. If the decode jump occupies the last location of a 
4096-word module (address XFFFrnL 

2. If the decode jump occupies the next-to-last 
location of a 4096-word module (address 
XFFE16) and is executed at any time other than 
E6 ro E7. 

Zero Jump 

(FZJ 0,3) 

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

loo o oj1j1f jPj 

Tests the contents of the Aµ register. If the contents 
equals zero, the next micro-instruction is taken from 

location X00916 of control storage, otherwise the next 
micro-instruction is taken from the next sequential 
location. 

Location X009 16 of control storage is the beginning 
of an RNI micro-instruction sequence. 

If the contents of the Aµ register equals zero, a resync 
occurs such that the next µI will execute at time EO 
of the next major cycle assigned to this processor. 

Updates PP; however, the update address is always 
0009 16 . Therefore, to function properly, another 
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bloc:kpoint µI must occur later within the same major 
cycle. 

Execution time: 200 nanoseconds, however, can be 
executed at E7 

Normally, the FZJ instruction branches to location 
000916 within the same 4096-word CS module in which 
the jump is located. However, there are two cases when 
the jump branches to location 000916 within the next 
consecutive 4096-word module. 

1. If the FZJ occupies the last location of a 
4096-word module (address XFFF15). 

2. If the FZJ occupies the next-to-last location of a 
4096-word module (address XFFE16) and is 
executed at any time other than E6 or E7. 

Jump 

(JMP9) 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

~ 0 0 1 I N0 l PI o 0 I I N1 

Re-sequences the microcode by placing a value in Sµ 
according to the following scheme: 

No-sµa-11 

This will result in a branch in control storage to a location 
within the current 256-word page. Two conditions occur 
when the branch will be to the specified location in the 
next sequential page: 

1. When the JMP µI occupies the last location of a 
page (address XXFF15}. 

2. When the JMP µ I occupies the next-to-last 
location of a page (address XXFE16) and is 
executed at any time other than E6 or E7. 

Updates Pp. 

Execution time: 200 nanoseconds, however, can be 
executed at E7 

Read Next Instruction (RNI 1) 
8,0 
0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

~o 0 olojojalblPlo 0 I x 

Re-sequences the microcode so that the next µI to be 
executed is at location X002 16 of control storage. 
Clears bits 1-2 and 4-7 of the register file register 
designated by the X-field. Transfers bit 0 of the Pµ 



register (Overflow bit) to bit 0 of the register file 
register designated. Transfers bit 1 of the Pµ register 
(Link bit) to bit 3 of the register file register 
designated. Bits 8-15 of the register file register are 
unchanged, unless the register designated is an 
extended register, in which case bits 8-15 are set. 

Updates Pp .. 

Execution time: 200 nanoseconds, however, can be 
executed at time E7 

Normally, the RNI 1 instruction branches to location 
0002 16 within the same 4096-word CS module in 
which the jump is located. However, there are two 
cases when the jump branches to location 0002 16 
within the next consecutive 4096-word module. 

1. If the RNI 1 occupies the last location of a 
4096-word module (address XFFF16). 

2. If the RNI 1 occupies the next-to-last location of 
a 4096-word module (address XFFE 16) and is 
executed at any time other than E6 or E7. 

" Read Next Instruction 2 (RNI 2) 
8,1 

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Re-sequences the microcode so that the next µI to be 
executed is at location X009 16 of control storage. 
Clears bit positions 1, 2, and 4 through 7 of the 
register file register designated by the X-field. Transfers 
bit 0 of the Pµ register (Overflow) to bit 0 of the 
register ti le register designated. Transfers bit 1 of the 
Pµ register (Link) to bit 3 of the register file register 
designated. Bit positions 8-15 of the register file 
register are unchanged, unless the register designated is 
an extended register in which case bits 8-15 are set. 

Resyncs so the next µI will execute at time EO of the 
next major cycle assigned to this processor. 

Updates Pp. 

Execution time: 200 nanoseconds, however, can be 
executed at time E7 

Normally, the RNl2 instruction branches to location 
000916 within the same 4096-word module in which the 
jump is located. However, there are two cases when the 
jump branches to location 000916 within the next 
consecutive 4096-word module. 
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1. If the RNl2 occupies the last location of a 
4096-word module (address XFF F rnL 

2. If the RNI 2 occupies the next-to-last location of 
a 4096-word module (address XFFE16) and is 
executed at any time other than E6 or E7. 

CONTROL MICRO INSTRUCTIONS 

The µl's within this class perform timing, input/output 
termination and boundary-crossing mode operations. 

Undesignated bit positions within these µl's have no effect 
on µI execution except to the extent that they participate 
in the formation of val id parity. 

No Operation (NOP) 
0,0 

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

fo o o ojolol I Pio o 

Does nothing 

Execution time: 100 nanoseconds 

Resynchronize (SYNC) 
F,0,1 

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Resyncs the processing unit so that the next µI executes 
at time EO of the next major cycle. 

Updates PP pointer 

Execution time: 100 nanoseconds 

Invoke Boundary Crossing Mode (IVK) 

F, 1, 1 

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

This instruction invokes the boundary-crossing (BC) 
mode, which allows a processor to access registers in 
another processor's register file. The condition con­
tinues until nullified by a RVK micro instruction, or 
until the end of the current major cycle. The method 
of specifying the register file address varies, depending 
upon which group of registers is being accessed. 

a. Basic registers 
.. • Bit 7 of the BC register and bits 6-7 of the µI 

must be cleared. 



• Processor number is derived from bits 8-10 of 
the BC register. 

• Register number is determined by inclusive 
ORing bits 11-15 of the BC register with bits 
11-15 of the µI. 

b. Group I extended registers 
• Bit 7 of the BC register must be set and bits 

11-14 must be cleared. 

• Processor number is derived from bits 8-10 of 
the boundary crossing register. 

• Register number is derived from bit 15 of the 
BC register. 

These registers can only be accessed during time E3 -

E4. 

c. Group 11 extended registers 
• Bit 7 of the boundary crossing register must be 

set and bit 11 must be cleared. 

• Bit 11 of the µI must be cleared. 

• Register number is determined by inclusive 
ORing bits 12-15 of the BC register with bits 
12-15 of the µI. (Processor number is immaterial, 
since these are the common block registers.) 

An attempt to read an unassigned register in this group 
( 0 C-0 F) w i II yield zeros. An attempt to write an 
unassigned register in this group (OC-OF) will result in an 
effective NOP. Any write references addressing the BC 
register (08) while in the BC mode shall not be sup­
ported and may result in machine malfunction. 

d. Group 111 extended registers 
• Bits 6, 7 and 11 of the µI must be set, 

indicating group 111. 

• Bits 7-11 of the BC register do not part1c1pate in 
address determination; hence only registers from 
the processor in execution can be accessed. 

• Register number is determined by inclusive 
ORing bits 12-15 of the BC register with bits 
12-15 of the µ. 

Any operations not described above are undefined and, 
if attempted, cause unpredictable results. 

Execution ti me - 100 nsec 
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Revoke Boundary Crossing Mode (RVK) 
F,1,0 

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

~1 1 I o 11 I p I 0 o Jo I 
Restores processor to "normal" mode after having been in 
"boundary crossing mode". See explanation under IVK. 

Execution time: 100 nanoseconds 

Read Control Memory (ROM) 
F,0,0 

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

~-1~ __ jo_j_o_j __.l~~~l_o_o~(o_I~~--
Performs an exclusive OR of the contents of the con­
trol storage location whose address is contained in the 
Bµ register and the contents of the Control Storage 
Scan Register (CSS), storing the results in the Control 
Storage Scan Register. Resyncs the processing unit so 
that the next µI will execute at time EO of the next 
major cycle. 

Cannot execute later than time E5. If executed at time 
E6, the data transferred to the CS Scan register is 
unpredictable. 

Updates Pp 

Execution time: 200 nanoseconds 

Compare 1/0 (CIOI) 
8,2 

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

~o o 0!1!ol1!1fPlo of x 

Performs a 16-bit logical compare of the Aµ register and 
the Bµ register. If Aµ = Bµ, a resync occurs and the 
next sequenctial µI is executed at the beginning of the 
next major cycle. If Aµ =I= Bµ, a resync occurs and the 
processor's busy bit is cleared. In addition, normal stor­
ing of Pp to Pµ at WO time is suppressed so that the µI 
whose address is in Pµ is executed at the beginning of 
the next major cycle whenever the processor is 
reactivated. 

Cannot be executed at time E7. 

Updates Pp 

Execution time: 100 nanoseconds 

If bits 6 and 7 of the µI are not both set, a write will 
occur to the register file register designated by the 



X-field, as follows: bits 1-2 and 4-7 will be cleared, 
bit 0 of the Pµ register will be transferred to bit 0, 
bit 1 of the Pµ register will be transferred to bit 3, 
bits 8-15 will not be affected. 

Compare 1/0 (Cl02) 
8,3 

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

11 o o o 11 ( 1 11 11 I p I o=<iJ x 

Performs a 16-bit logical compare of the Aµ register and 
the Bµ register. If Aµ =f. Bµ, a resync occurs and the next 
sequential µI is executed at the beginning of the next 
major cycle. If Aµ = Bµ, a resync occurs and the next 
processor's busy bit is cleared. In addition, normal storing 
of Pp to Pµ at time WO is suppressed so that the µI 
whose address is in Pµ is executed at the beginning of the 
next major cycle whenever the processor is reactivated. 

Cannot be executed at time E7. 

Updates Pp 

Execution tilme: 100 nanoseconds 

If bits 6 and 7 of the µI are not both set, a write will 
occur to the register file register designated by the 
X-field, as follows: bits 1-2 and 4-7 will be cleared, bit 

3-21 

0 of the Pµ register will be transferred to bit 0, bit 1 
of the Pµ register will be transferred to bit 3, bits 
8-15 will not be affected. 

MICRO INSTRUCTION EXECUTION 

Block diagrams which show the principal portions of logic 
required to execute each µI are shown in Figures 3-2 
through 3-30. Figures 3-2 through 3-10 show details of 
the register file read and write operations that form a part 
of many µl's. Figures 3-11 through 3-30 show details of 
execution, particularly applicable to each µI, with 
references to the register file read and write operations of 
Figures 3-2 through 3-10 where required. Micro­
instructions which are subject to timing constraints 
contain a reference on the block diagram to an 
applicable ti ming diagram. These ti ming diagrams are 
identified as Figures 3-31 through 3-36. 

NOTE 

All data and most control signals shown in the flow 
diagrams are represented in true form, regardless of 
whether the signal is actually defined in the true or 
complement form. Exceptions to this rule are 
certain control signals that are time-restricted, 
shown in their actual state (either true or 
complement _form) during the time that they are 
restricted. 
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1A13 

•CS 
FF BLOCK 

READ OF l
AT~:i

1

:1EDj 
1A13 NEXT 

......... ,..._. µI 

SET 
(T680) 

CLR 
(T780) 

AT EO 

[ 

AORS, RD, ] 
& WR CONT 
SAME ASPµ 

__.,._,. 

x >< >< >< 
>< >< >< >< 

>< >< >< >< j:: .... .... .... 
i5!i iii i5!i ii!i 

BIT POSITION 
GEN 

1A22 

11•15 

11-15 

F REG 

1A18·21 

X·FIELD 
FµREG 
1A08·11 



F 
REG 

1A18·21 

FR 004-008 

JUMP 
ADAS 
FORM 

1AD7 

ENJP 
-SM1 

ENJP 
.-sMO 

H~ ED-ES 
L~ E6 

JMP 
04-07 

4 

JMP 
08-15 

ENJP 
~PP1 

ENJP 
.-ppo 

BLOCKFM* I FµDECODE 

IDLE* 
1AD6 

OP CODE 

r---------------------------------, I 
I 
I 
I 
I 
I 

Fµ 
EN 

IDLE 
FF 

0-3 

4-7 
Sµ 

REG -- ---
Sp 
F/1 

(EO•E6 ONLY) 

0-3 

4-7 
Pp ERF Pµ 

- - --- REG WR 

Pp 
F/I 

-------------------
1A18·21 I 

----------~ 

,.,.1 
IDLE-F/F* 

1A14 

JUMP ADDRESS 

FXE0-0 

Pp 
EN 

Figure 3-22. FNJ µl's (EO-E6) 
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1AD6 

ENPPG1 

PµENABLE 

1A14 

*SEE FIGURE 3·31 FOR TIMING 

FµREG 
1AD8-11 



F 
REG 

1A18·21 

JUMP 
ADAS 
FORM 

JMP 
04-07 

1A07 

JMP 
08-15 

8 

ENJP 
•PP1 

EN.iP 
_____ , ... ppo 

FµOECODE 

1A06 

OPCODE 

---------~------------------------

Sµ 
F/I 

0-3 

4-7 

Pp 
F/1 

(E7 ONLY) 

Sµ 
REG 

Pp 
REG 

ERF 
WR 

Pµ 

1A18·21 

-----------------
____________ .. 

FXEQ-0 

JUMP ADDRESS 

Figure 3-23. FNJ µ.l's (E7) 
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ENPPG1 

Pµ ENABLE 

1A14 

FµREG 
1AOB·11 



4 BITS __.. 
........ 

MS 

M 

DATA Mll l FAN-IN FUNCT 
s~DR CODE Pp Pp 
0-15 DR COMPRESS FRJ FRJ FAN-IN REG 

-@+ 100-107 OP CODE NTWK ADAS DECODE ~ ~ 8 _. .. TABLE ADDRESS 
POINTER TABLE 

l 1A19·21 1A19-21 
DR ADRS/IDX • 108, 112 

2 
DESIG _. 4 BITS _. 

--..- ........ 

1A29,30 1A17 

MSRLDY 
• 

ENFRJ1 
ENFRJ2 

(E400) 
ENSPECPP 

"T1 
c:Ci' 

CONSOLE 
LOGIC 

c 
; 1A02 

w 
w !\> 
.ti:. ~ 
.i:a 

"T1 
::D 
c.. 

~ 
-- ·'" ·-·~·" 

BLOCKFM* Fµ 
+ ENCLKFM ..... EN Fµ .. 

DECODE 1A14 

IDLE* __.. IDLE IDLE-FfF~ ... Pp EN J---. ENCLKPP* 1A06 .. FF --.. 
~~ 1A14 1AD6 

*SEE FIGURE 3-32 FOR TIMIN 
4 f 

G 

J I l SUB-OP l X·FIEL D 
Fµ REG 

OP CODE 
CODE 1 AOB-11 



SHP SETP 
11,12,14,15 000915 .. 4 -.. 

1A02 

~~ 

ENSPECPP 

BIT 
SEl~SE 

1A23 

[ 
Fµ DECODE 

1A06 

f 

~ 
l OP CODE 

Pp 
FAN-IN 

16 

1A19-21 

T 

Fji/Pµ 

AMEQZR _..J 
EN 

-.. 

1A14 

• 
FZJµI 

Figure 3-25. FZJ' µ1 
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Pp 
REG 

..... -.. 

1A19-21 

• ENCLKFM* 

IDLE-F7F* _.. Pp EN ... 
1A06 

*SEE FIGURE 

I X-FIELD I Fµ R 
1A08 

3-32 FOR TIMING 

EG 
·11 



STATUS OVFL ... STAT·O _ .. 
µ ..... F/I ... ALU REG 

STATUS 1A07 FAN-IN FrLE 
CURR .. 
REG 2 - ... 

LINK .. STATUS STAT-3 .... 1A18 ..... F/I .. 1A25 1A25 
1A23 • 

SH-STAT 

ALU 
ENABLES 

1A07 

SET P 
LOGIC SETP 0002 

11,12,14,15 
4 

(RN11) __. Pp __.. Pp REG 
0009 

.. FAN-IN 16 ...... 

(RNl2) 1A18-21 1A18-21 
4~ 

1A02 

J ENSPECPP 

r 
~1 1A14 I FµEN BLOCKFM* 

llJi ENCLKFM Fµ DECODE 

IDLE* .. IDLE IDLE-F/F* ... Pp EN r-+ ENCLKPP* 1A06 .... FF -. 

J 1A14 1A06 

~ 
*SEE FIGURE 3-32 FOR TIMING 

[ OP CODE 1 1 X-FIELD l Fµ DECODE 
1A08-11 

Figure 3-26. RNI 1 and RNl2 µl's 
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JUMP 
ADAS 
XLTN 

JMP 
08-15 --·----------·-----------------------

8 

1A07 

• I 
I 
I 
I 
I 
I 

~ 
I 

ENJP-SM1 + •--=-r H-E-O-·E5J------t-

L L-E6 I 
I 
I 
I 
I 
I 

ENJP-PP1 

Sµ 
F/I 

Pp 
F/I 

Sµ 
REG 

(EO-E6 ONLY) 

Pp 
REG 

ERF 
WR 

Pµ 

1A18·21 

-------------------- -----------

FXEQ-JMP 

ENPPG1 

PµENABLE 

1A14 

FµOECODE 

BLOCKFM*L __ F_µ __ .... ~----EN --+ ENCLKFM 
1A14 

1A06 IDLE* L 

JMPAORS 
(4-7) 

IDLE 
FF 

IOLE-F/F* ..... .. 
1A14 

Figure 3-27. JMP µ:I (EO-E6) 
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Pp 
EN 

1A06 
r--. 

JMPADRS 
(12-15) 

*SEE FIGURE 3-31 FOR TIMING 

FµREG 
1A08·11 



---------------------------------------JMP 
ADAS JMP 
XLTN 08-15 

1A07 
8 

ENJP-PP1 

Fµ.DECODE 

1AD6 

OP CODE 

Sµ 
FAN-

IN 

Pp 
F/I 

Sµ 
REG 

Pp 
REG 

-----------------

JMPADRS 
(4-7) 

ENPPG1-1 

f=XEO-JMP 

Figure 3-28. JMP µ1 (E7) 
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ERFWR 
EN 

ERF 
WR 

Pb 
REG 

Pµ 
REG 

1A18-21 

-----------------
ENPBG1-0 

1A14 

JMPADRS 
(12-15) 

FµREG 
1AD8-11 



[ Sµ 
REG 

1A18·21 

ENPP.,...SM 

fH=BLOCK Pp+-SµJ 
L IN cc MODE 

CC CONT 

1A13 

CiiiEXii" 
(Aµ# 0µ · EOTEXIT) 

Pp 
REG 

1A18·21 

CIO·TX (Aµ• Bµ- EOTEXIT) 

Pµ 
REG 

1A18·21 

Pµ 
EN 

B/A 
REG 

EF1RH/WL 

fH•NO Pp....,Pµl 
LWR ENABLE J 

1A14 

CLR 1A03 

Aµ# Bµ., REPEAT 1/0 
XFER ROUTINE ---- - --------.. ----------·----------------------! 

CIO CONT 

1A14 

[ OPCODE 

Aµ= Bµ., GO TO 1/0 
EXIT ROUTINE 

______ 1o_E_x_1_T_(_A_µ_._ =_B_µ_+_E_O_T_E_x_1T_, __ TO I FA AND BOC TO 

TERMINATE OPERATION 

BLOCKFM* F:µ 

1A14 I IFµ EN .. ENCLKFM 

DEl:OOE 

IDLE* IDLE IDLE-F/F* Pp 
1A06 IFF EN E'Nc'iJCPP* 

1A14 1A06 

*SEE FIGURE 3·32 FOR TIMING 

I FµREG 

--------------------X··-Fl_E_L_D_... 1A08·11 

Figure 3-29. CI01 
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ERFINPUT 
Aµ/Bµ 

!'.:?. 
N 
a: 
Cl 
2 
w 

LI. 
a: 
w 
> 
== 

ERF EN 

A 

6 

OP CODE 

1A18·21 

~~ ~~ -t.__ ______ ~---------------------~--------------~~~~~---------~------------1 

1A04 

REG 
SEL 

LI. 
a: r 
t.) 
a:i 
z 
w 

l 
ERF GAP I 

1A22 .. 

1A18-21 

Q 
w 
x 
LI. 

(PROC #) 

ER1RH/WL -

F, Pµ EN 

1A14 

ERFGRPlll ~ 
1816 

(PROC#) 

(PROC #) 

4 
M 
t:IM 
Z9 
a:= w= 

t BC-OOOOX 
~--I---.___+----, 

(PROC #) 

IVK/RVK CONT 

l 

1 
BC-07 

PRIOR 
NTWK 

LL. 
a: 
a:i 

t, 
CICI 
z 
w 

1A16 
[ 

'I" 

~10 
BC REG 

1A08-11 

i i 
BC-15 RVK -E780 

1 
Figure 3-30. I NV and RVk µI 
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1 
X-FIELD 

ERFGJ 
00-15 

ERF GAP II 

r 

~ 
t:IM 
LL. ' a:= 
w 

4 

1 AOB-11 

BRF 

REG FILE ADAS 

ERFG2 
00-15 

1A25-28 

1A22 

"' -1 
11-15 -~ ~ 

~ 
BC REG 

1A08-11 

5 

] FµREG 
1A08-11 



FµDECODE IDLE · F µDECODE 

~-BLOCK F_H_ \. 
/FµDECOOE 

IDLE J ~ L 1ST TXOO FOLLOWING IDLE 
......-IDLE· IDLE FF· 

IDLE FF If IF E7 ~ 
TXOO 

NOTE: IF INSTRUCTION IS DECODED AT E7 TIME, BLOCK Fµ IS NEGATED BY EO-E TIME ANO Fµ IS CLOCKED AS 
USUAL AT THE END OF E7 TIME. IN THAT CASE THE INSTRUCTION TAKES ONLY 100 NS. 

Figure 3-31. JMP and FNJ ttl Timing Diagram 

~~ BLOCK Fµ , -, f 
1ST TXOO FOLLOWING ENCLK Fµ 
FµDE~DEIF~ (EO-E) 

~t;\._ IDLE FF , 
/IDLE· Fµ DECODE 

1ST TXOO 
FOLLOWING E7 -ENCLKPP \. 

Figure 3-32. (FZJ ·Aµ= 0), FRJ, RNl1, RNl2, CI01, Cl02, ROM, and SYNC µl's 

500 
/F~DEt~ODE 

·DREADY / Fµ DECODE · DR EADY 
BLOCK Fµ IF ENABLES ~ 

MS DATA~ 
THROUGH DATA'..; 

MS READY FAN-IN :,-

MS STROBE I ' __...- FJ.!. DECODE 

ENCLK Sµ ~ · DREADV 

'\µDECODE· DRE ADY 

Figure 3-33. SOW a1nd SOB 
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400 500 

BLOCK Fµ , 
FµOECOOE/ l 

ENCL KSµ ~ 
· OREADE-........_ , 

MS READY If 

MS STROBE f "\ 

CLK Aµ}Bµ I 

Figure 3-34. OTA, OTA-, IOX, and OFA µl's 

c.- Fµ DECODE· 2ND CYCLE 

BLOCK Fµ II l 

1ST CYCLE 11-rxoo OF ANY LOAD A ORB ~ 

...--- Fµ DECODE· 2ND CYCLE 
ENCLKS µ ~ ' CLK Aµ/Bµ I Aµ/Bµ '-

LOADED 
BY PREVIOUS 
INSTRUCTION 

Figure 3-35. SUM, OSUM, CMP, and CMU µl's 

/(SHIFT V SENSE)· SHIFT DELAY 

BLOCK Fµ , ~ 

SHIFT DELAY , ~ 

ENCL KSµ l ~SHIFT DELAY 

ENCAµ}Bµ 

' I 

Figure 3-36. All Shift or Sense Instructions 
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IMPLEMENTING MACHINE LANGUAGE 
INSTRUCTION BY MICRO INSTRUCTIONS 

This section describes how micro-instructions (µI's) are 
linked together in routines to execute (implement) 
machine-language instructions (MLl's). This is done by 
means of showing certain M LI 's in flow diagram form as 
examples, listing all the µl's necessary to implement each 
M LI. Emphasis is placed on the concept of using 
individual µl's as "building blocks" to form routines, 
routines to form a complete MLI. Use of the µI assembly 
listing in Appendix 3A to locate the routines comprising a 
MLI is also described. 

BASIC IMPLEMENTATION SCHEME 

Machine language instructions (MLl's) executed by the 
system are done so by micro-instructions (µl's) arranged 
in a particular order as required by the MLI. This 
arrangement of µl's necessary to execUJte a M LI can be 
divided into at least three, and sometimes more, individual 
sequences as shown in Figure 3-37. ThE! first sequence is 
called the Read Next Instruction (RNI) sequence. This 
sequence reads the first word of the MLI from main 
storage (MS), inserts this word in the F register for 
subsequent translation, and performs a first-level, or 
Format Jump, decode of the MLI to determine its format, 
that is, its length (2-, 4-, 6-, or 8-byte)I and the type of 
operand addressing specified (direict, indirect, or 
indexing). Upon obtaining this information, a jump is 
made to a corresponding F RJ sequence common to all 
MLl's of this format. The FRJ sequence reads the first 
operand to be processed by the M LI from either a file 
register or from MS, depending on the addressing mode 
specified. This sequence also performs a second-level, or 
Function Jump (FNJ) decode of the ML.I to determine its 
function, that is whether the M LI will perform an add, 
shift, move, compare, or other type of function. At this 
point, the M LI is uniquely defined. 

Upon determining the MLI function, a iump is made to a 
corresponding FNJ sequence that reads the second 

3-53 

operand, performs the specified operation on the two 
operands, and stores the result. After completing the 
store, a jump is made back to the RN I sequence to 
execute the following MLI. Each sequence takes at least 
one time slice to perform. More complex MLl's, such as 
multiply, divide, or 1/0 instructions may require more 
than one time slice to complete the FRJ sequence and 
several execute sequences apart from the FNJ sequence. 
However, all M Li's are basically executed in the manner 
just described, where the FRJ decode performs a gross 
translation of the M LI and isolates it to a group of several 
MLl's, and the FNJ decode performs a final translation to 
uniquely define the MLI. 

An example of how the RNI, F RJ, and FNJ sequences are 
used to execute a two-byte MLI, specifically the ADDR 
(26) ML I, is shown in Figure 3-38. This figure shows· the 
functional operations making up each sequence and the 
address of the corresponding µI in CS required to perform 
each function. (Refer to the CS assembly listing in 
Appendix 3A for a listing and description of eachµ I at 
the address listed in Figure 3-38.) Execution of the M LI 
can begin with either the RNIO, RNl1, or RNl2 sequence, 
depending on when in the program the M LI is executed as 
described in the paragraph titled Set Pp Logic. If the 
ADDR MLI is the first MLI of the program, the RNIO 
sequence is entered at address 0000 * and the M LI address 
is obtained from the processor's assigned P register in the 
Basic Register File (BRF). If the ADDR MLI follows 
another MLI in the same program, that previous MLI will 
have terminated with either an RNl1 or RNl2µ1 to cause 
a jump back to either the RN 11 sequence (address 0002) 
or the RN 12 sequence (address 0009). The choice of 
terminating with either an RNl1 or RNl2 µI will depend 
on whether the previous MLI had time to form the ADDR 
MLI address, as discussed in the paragraph titled Set Pp 
Logic. Depending on which of the two RNI sequences is 
1entered, the M LI address is obtained from either register 
01 (P+2) or register 02 (P+4). Except for the source of 
1:>btaining the MLI address, the RNIOand RNl1 sequences 
are identical; therefore, they combine at address 0004. 
IBoth RNI0/1 and RNl2 sequences terminate at addresses 
0008 and OOOF, respectively, with an FRJ µI to 
implement the FRJ decode operation. 

~All CS addresses are represented in hexadecimal form. 



RNI 

SEQUENCE/ 

FRJ I 
SEQUENCE I 

FNJ 
+ 

EXEC 
SEQUENCE 

READ MACHINE-LANGUAGE 
INSTRUCTION (MU) 

PUT MU IN 
F REGISTER 

PERFORM FIRST­
LEVEL DECODE (FRJ) 

OBTAIN FIRST 
OPERAND 

PERFORM SECOND­
LEVEL DECODE (FNJ) 

OBTAIN SECOND 
OPERAND 

EXECUTE 

STORE 
RESULT 

READ NEXT INSTRUCTION 

JUMP TO AREA OF CS AS DETERMINED BY FORMAT OF MU (DIRECT OR 
INDIRECT ADDRESSING; 2-, 4-, 6·, OR 8-BYTE) 

OBTAIN OPERAND FROM REGISTER FILE OR MEMORY, AS SPECIFIED BY R1 
FIELD OF Mll. 

JUMP TO SPECIFIC AREA OF CS CONTAINING THE MICROPROGRAM FOR 
IMPLEMENTING THE Mll FUNCTION (ADD, SHIFT, ETC.) 

LOCATION OF SECONO OPERAND IS SPECIFIED BY R2 FIELD OF MU. 

IF EXECUTION REQUIRES MORE THAN ONE MAJOR CYCLE, TEMPORARILY 
STORE CS ADDRESS AND PARTIAL RESULTS UNTIL NEXT ASSIGNED TIME 
SLICE. 

STORE RESULT IN REGISTER FILE OR MEMORY, AS SPECIFIED BY R2 FIELD 
OF MU AND/OR THE Mll FUNCTION. 

Figure 3-37. Basic Microcode Implementation of MLI 
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R1. Rz 

1ST MLI 
OF PROG 

RNIO 0000 
P .. S 0001 

0400 
0401 

READ 1ST 

RNl1 
µI 

RNl1 0002 
m-s 0003 

FRJ (FIRST LEVEL) 
DECODE 

READ 1ST OPER. FROIM 
OPER. FROM 

REG R1 

FNJ 
(2ND 

LEVEL) 
DECODE 

MS LOC. 
SPEC. BY 

(R1) 

FNJ 
µI 

-------~· 0208 

READ 2ND 
OPER. FROM 
Rz +ADD+ 
STORE IN 
REG.Rz 

0209 

RN12 
µI 

READ 1:ST 
OPER. FR:OM 

REG.R1 

FRJ 
µI 

BREAK 

0404 
0405 
0406 

FNJ 
(2nd 

LEVEL) 
DECODE 

(R1). (Rz) 

READ 1ST 
OPER. FROM 

MS LOC. 
SPEC. BY 

(R1) 

FNJ 
µI 

i------BREAK 

..-------.... 0348 

READ 2ND 
OPER. FROM 

MS LOC. 
SPEC.BY 

(Rz) +ADD 

0349 
034A 
034B 

1------- BREAK 

03B9 

STORE SUM 
IN MS LOC. 
SPEC.BY 

{Rz) 

03BA 

03BB 

!Figure 3-38. Two-Byte (ADDR) MLI Flow Diagram 
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RNISEQ 
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READ 1ST..,J 
WORD OF 
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FRJ SEQ 
[READ 1STJ 

OPER 

FNJ AND 
EXEC SEQ 

[

READ 2NDJ 
OPER + 

EXECUTE 



The F RJ decode translates the M LI function code and 
indirect designators to determine the M LI format. An 
examination of the FRJ decode address table determines 
that the ADDR MLI is a two-byte MLI in the 20-29 range 
of function codes, defining it as a register/register MU. 
The result is a jump to one of four F RJ sequence starting 
addresses: 0400, 0402, 0404, or 0407; depending on the 
addressing mode specified. This jump is made at the 
beginning of a new time slice assigned to the processor, as 
indicated by the word "BREAK" in Figure 3-38. For this 
example, the F RJ sequence for all four addressing modes 
is shown. (During actual execution, of course, only one of 
the four could be specified.) For convenience, these four 
possible addressing modes are summarized below: 

0 7 8 9 11 12 13 15 

26 

ADDA MLI FORMAT 

R 1 · R2 - first operand read direct/second operand 
read direct 

(R1) · R2 - first operand read indirect/second 
operand read direct 

R1 · (R2) - first operand read direct/second 
operand read indirect 

(R1) · (R2) - first operand read indirect/second 
operand read indirect 

The F RJ sequences for the R 1 · R 2 and (R 1 ) · R 2 mode 
start at different addresses since the first mode requires 
reading the first operand via direct addressing and the 
second mode requires reading the first operand via 
indirect addressing. The FNJ and execute sequence for 
these two conditions, however, are identical because the 
second operand for both conditions is read via direct 
addressing. The FNJ decode, therefore, generates FNJ 
sequence beginning address 0208 for both the R1 · R2 
and (R 1) · R2 modes. Upon completing the Sum and 
Store operation, the routine ends with an RNI 1 µI, which 
causes a jump back to the RN 11 sequence to read the next 
MLI. For both these addressing modes, both FRJ and FNJ 
sequences are executed in the same time slice. If executed 
in either of these two addressing modes, therefore, the 
ADDR MLI takes two time slices to execute: one for the 
RNI sequence and one for the combined FRJ and 
FNJ/execute sequence. 

The FRJ sequences for the R1 · (R2) and (R1) ·. (R2) 
mode also start at different addresses because of the 
different addressing mode required for reading the first 
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operand. In addition, these two addressing modes cannot 

read the first operand using the R 1 · R2 and (R 1) · R2 
mode first operand read routine because it is necessary to 
store the first operand read from MS in register T3 before 
reading the second operand. This additional store requires 
a SOW µI not available in the R 1 • R2 and ( R 1). R2 first 

operand read routines. Upon storing the first operand read 
in T3, the FNJ decode branches to a common FNJ and 
execute sequence to read the second operand using 
indirect addressing and add it to the first operand. After 
the addition, a jump is made to a separate store sequence 
to store the result in MS at location (R2). If executed in 
either of these two addressing modes, therefore, the 
ADDR MLI takes four time slices to execute: one each for 
the RNI, FRJ, and FNJ sequences, and one for the final 
store sequence. 

Execution of a six-byte MLI, that of the ADDM (62) MLI, 
is shown in Figure 3-39. Like the ADDR MLI flow 
diagram of Figure 3-38, the ADDM MU flow diagram also 
shows the four possible modes of addressing. However, 
the ADDM M LI is more complex because of the indexing 
capability provided by this MLI. This indexing capability 
is provided by the R 1 and R2 fields of the first M LI word, 
which add the contents of registers defined by these fields 
to the operand addresses designated by the M 1 and M2 
fields contained in the second and third words of the M LI. 
Indexing of this type is called post-indexing. (For more 
details regarding indexing, see the MEMOREX 7300 
Processing Unit Reference Manual.) The figure assumes 
that the proper RN I sequence has been completed and 
that a jump has been made to one of four FRJ sequence 
starting addresses as a result of the FRJ decode operation. 
Because of its greater complexity, the ADDM M LI is able 
to take greater advantage of the divisible nature of theµ I 
routines comprising a sequence, as evidenced by the 
numerous jumps within each sequence used to execute the 
MLI. The greater number of time slices required to 
execute this M LI reflects the two additional words of the 
MU read from MS and the indexing operations required 
during the F RJ sequence. The number of time slices 
required per sequence for each of the four addressing 
modes is listed below: 

M1. (M2) 

(M1) ·. (M2) 

RNI FRJ FNJ/EXEC STORE 

3 

4 

4 

5 



62 l ~ l R1 l ~ l R2 

M1 

M2 

M1 ·M2 c (M1) ·M2 M1. (M2) (M1) · (M2) 

READ 2ND INST 0421 [READ 2ND INST 
0428 READ 2ND INST. 0420 READ 2ND INST. 0435 

WO M1 FROM MS 0422 WO M1 FROM MS 0429 WO M1 FROM MS 042E WO M1 FROM MS 0436 
042A 0437 

BREAK BREAK 

N4 
~EAD 1ST OPER. \ORS. FROM MS 042B INDEX M1 042F READ 3RO INST. 0438 

AT LOC. SPEC. 042C [M1 + (R1)] 0430 WO M2 FROM MS 0439 
043A BY (M1) 

INDEX M1 OR (M1) 0423 BREAK BREAK 
[M1/(M1) + (R1)] 0424 

0431 READ 1ST OPER. 
READ 3RD INST 0432 ADAS FROM MS 

BREAK WO M2 FROM MS 0433 AT LOC. SPEC. 043B 

BY (M1) 

READ 3RD INST 0425 

WD M2 FROM MS 0426 
0427 N5 

INDEX (M1) 043C 
BREAK [(M1) + (R1)] 0430 

N6 READ 2ND OPER. 

L ADAS FROM MS 043E 
AT LOC. SPEC. 

BY (M2) 

INDEX M2 OR (M2) 043F 
[M2/(M2) + (R2)] 0440 

BREAK 

0441 
READ 1ST OPER. 0442 

FRJ FROM MS 0443 
0444 

BREAK 

READ 2ND OPER. 
0308 
0309 

FNJ FROM MS AND 030A 
ADD 030B 

BREAK 

STORE 03E9 
STORE SUM 03EA 

03EB 

Figure 3-39. Six-Byte (ADDM) Instruction Flow Diagram 
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REPRESENTATIVE MLI FLOW DIAGRAMS 
Flow diagrams for a number of other MLl's (RBIT, BOF, 
and CBYM) are shown in Figures 3-40, 3-41, and 3-42. 
The flow diagrams start at the beginning of the F RJ 

0 7 8 9 11 12 1l 15 

9 

sequence, upon completing the FRJ µI of the RNI 
sequence. Note that the BOF MLI is completed during the 
FRJ sequence, while the others require an FNJ/execute 
sequence for their completion. 

0 7 8 9 11 12 15 

FROM BRANCH BOF 

I 
E2 0 R1 12 I 

FRJ 

FNJ 

FRJ 
DECODE 

ACCESS V1 FORM 
MEM USING 01 (P+2) 

AS AN ADDR 

INDEX M1 WITH R1 FIELD 
AND STORE IN Tl 

ENTER COMPLEMENT OF BIT 
IN B REG. AS INDICATED 

BY 12 FIELD IN MLI 

0637 

06l8 
06l9 

06lA 

OOB4 

OOB5 
OOB6 

0051 
0052 
005l 

------BREAK 

STORE RESULT OF AND 
(BIT RESET) TO LOC 

SPECIFIED BY Tl 

0054 
0055 

0056 

Figure 3-40. Two-Byte (RBIT) Instruction Flow Diagram 

IF BIT 
OFF 

FROM 
FRJ 

DECODE 

ACCESS M1 FROM 
MEM USING G1 (P+2) 

AS A ADDA 

OBTAIN IR1) AND 
CHECK BIT POSITION 

SPECIFIED BY R 

M1 

0526 

0527 

EXIT TO RNl2 ROUTINE 

052B 

Figure 3-41. Two-Byte (BOF) Instruction Flow Diagram 
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CBYM E COMPARE BYTE 
MEMORY - MEMORY 

!FROM 
FRJ 

DECODE 

MEM 
'ADDA 

ACCESS M1 FROM 
USING 01 {P+2) AS J 

AND SAVE IN T3 

6B 

0435 
0437 

UPDATE 01 TO 
(01 = BRF DA 

0 0436 IP 
) 

MEM ACCESS M2 FROM 
USING 01 (P+4) 

ADDA ANO SAVE 
it\S A 
IN T4 

BREAK 

0438 
043A 

00439 4 
) 

UPDATE 01 TO 
(01 = BRF OA ....__E 

OF THE ACCESS AID DRESS 
FIRST OPERAND 

MEM USING Ml 
THE MEM ADD 

!FROM 
AS 
R. 

D ADDR INDEX 1ST OPERAN 
WITH (R1) ANDS 

1ST EFFECTIVE OP 
ADDA IN T3 

'AVE 
ERAND 

--

IOF THE ACCESS ADDRESS 
SECOND OPERAND 

MEM USING M2 
THE MEMAO 

FROM 
AS 

DR. 

--,.. 

BREAK 

043B 

043C 

BREAK 

043E 

I l R1 

M1 

M2 

R2 l 1 l 
LOCATION OF THE ADDA 
OF THE FIRST OPERAND 

LOCATION OF THE ADDA 
OF THE 2ND OPERAND 

+ 
INDEX 2ND OPERAND 
ADDA WITH (R2) AND 
SAVE 2ND EFFECTIVE 

OPERAND ADDRESS IN T4 

...._ 
I"'" ,, 

ACCESS THE 1ST OPERAND 
FROM MEM. USING THE 

lST EFFECTIVE OPERAND 
ADDA AND SAVE IN T3 

• 
SAVE BYTE OPERAND 

IN T5 

• 
DECODE JUMP TO 

COMPARE BYTE ROUTINE 

+ 
ACCESS THE 2ND OPERAND 
FROM MEM. USING THE 2ND 
EFFECTIVE OPERAND ADD 

R2 AND SAVE THE 
BYTE OPERAND IN T2 

...._ 
I"'" 

+ 
COMPARE THE 1ST AND 

2N D BYTE OPE RAN OS AND 
TRANSFER THE RESULTS 
TO THE CONDITION REG. 

+ 
EXIT TO 

RNll ROUTINE 

043F 
0440 

BREAK 

0441 

0443 

0444 

FRJ 

FNJ 

032C 
032D 
032E 

BREAK 

0346 
0347 
03ED 
03EE 

03EF 

Fi11ure 3-42. Six-Byte (CBYM) Instruction Flow Diagram 
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APPENDIX 3A 
MICROi-INSTRUC1 .. ION ASSEMBLY LISTING 

The micro-instruction (µI) assembly listing is a sequential 
printout of the contents of control storage (CS). It lists all 
µl's making up each machine language instruction (MLI), 
trap routine, and off-line function initiated from the 
System Control Panel. Each CS location is listed in the 
printout, even those which do not contain a µI. Such 
unused locations are loaded with "O's", except the parity 
bit (bit position 8), which is set to "1" to produce odd 
parity for the corresponding location. Directions for using 
the µI assembly listing to determine how a particular MLI 
or trap routine is implemented lby µl's are contained in 
the paragraphs titled Implementing MLl's by µl's and 
System Reset Operations, respectively. This appendix 
discusses the symbols and conventions used in interpreting 
the listing. Refer to Figure 3A-1, which shows a typical 
page o'f the CS assembly listing, for the locations of the 
numbered items described below: 

G) PAGE -- This item defines the slheet page of the 
assembly listing (not the 256-word physical CS page). 
Each sheet page is numbered in consecutive order within 
each of the 16 physical pages of CS. Depending on the 
amount of explanatory matter on each sheet page, each 
physical page may have from 7 to 15 sheet pages. 

@ LOCATN - This column lists each 16-bit CS 
location in hexadecimal form. Using location 001715 as 
an example, each digit of the location number provides 
the following information: 

0 0 1 7 

L
t 'L Location within page 

I..________ Page within 4096-word 
storage unit 

Number of 4096-word 
storage unit of CS 

@oBJECT - This column lists the contents of each.CS 
location in machine coded hexadecimal form (µI object 
code). 

3A-1 

(~A/B - These two columns list the values of the a and 
b designators (bit positions 6 and 7) for each µI. 

(3) ADDA - This column lists the rightmost two digits 
of theµ I object code. Generally, these two digits specify 
either the address of a register specified by a RF read, or 
BF write µI, or a branch address of a branch µI. In some 
cases, however, the listed value indicates a constant to be 
operated on by the particular µI. If the ADDA value 
specifies a register, the register will be in either the BR F 
or ER F, depending on the values of the a and b 
designators. 

(~SOURCE STATEMENT -This column lists the µI in 
mnemonic form (source code) and a source code 
equivalent of the corresponding ADDR column entry 
(register number, jump address, or constant). To the right 
of each µI listed is a short description explaining the 
purpose of the µI. Where a register number is listed, it is 
indicated with an abbreviation as defined below: 

C - Condition register (BRF) 

P - P register (BRF) 

Tn, On - Transient register n of BR F 

M - Register defined by R 1 field of M LI 

R - Register defined by R 2 field of M LI 

Xn - Register n of ERF Group 11 

En - Register n of ERF Group Ill 

0 .This column lists the branch address in source code 
form corresponding to the CS location in hexadecimal 
form as a means of defining the start of a branch routine. 
This information is used in conjunction with the table at 
the top of the page, which provides a cross-reference of 
branch addresses in both source code and object code 
form. The first sheet page of each CS physical page 
provides similar information regarding the branch 
addresses referenced within that physical page. 



© This column lists the cumulative results of a 
longitudinal parity check performed during a CS scan 
operation. Each entry represents the results of the check 
up to the corresponding CS location, if no longitudinal 
parity errors were detected. This information is used 
during maintenance operations to determine the location 
at which incorrect data is stored. 

(For more details about operand addressing, see the 
MEMOREX 7300 Processing Unit Reference Manual.) 
These are as follows: 

A:B - first operand read direct, second operand 
read direct. 

@ Refer to the F RJ decode address table in the front 
of the assembly listing to find the starting address of the 
F R J sequence corresponding to the M LI under 
consideration. 

(A):B - first operand read indirect, second operand 
read direct. 

A:(B) - first operand read direct, second operand 
read indirect. 

@ These conventions specify the four possible 
operand addressing modes associated with these MLl's. 

(A): (B) - first operand read indirect, second 
operand read indirect. 

06 /30/7 2 PAGE 002 lb 

OR14 AOOK OlC? CAA OlCF CAA 01 [)') CAC 01 F5 CHG CD 
01 F6 CBH 01F9 CAN OlOA CAW OlAF CRX OAOO CMPK 
OlAA CMPX 0120 IHOXT 05RF DIVK OARA OSCRO 0462 FDTX 
OlFO ERREPC 0032 E12 0192 MnVL Ol9E MOVLA OlAP MOVLR 
0173 Mnvx 0178 MOVXA 017E MOVXA 0184 Mnvxc 0186 MfJVXD 
0191 MOVXE 05AF MPYK 0122 OFF 0169 OTHER OA3P· PAKX 
0010 SAVEPC 0811 SUBK 0509 TRNX 05RF UNDEF OIBR IJNPX 
OHOO ZAOK 

LOCATN ORJECT A A AODR SOURCE STA TF.MENT MODfL C MICRO ASSMBLY 

® @) © ® ® 
71 .lllNF 17 

ORG 100 

nSCRn EOtJ AAA 
FDTX EOU 462 
PAKX EOU A3A 
UNPX EOIJ A3A 
CMPK F.011 AOO 
TRNX EOU 509 
UNDFF EOU 5AF 
ZADK EOll 800 
ADnK EOU 814 
SllRK EOU All 
MPYK EOU 5RF <UNOEFI 
OIVK EOU 5AF <UNDEFI 

* * * * * * * * * * * * * * * * * * * * * * * * * 
* CONSOLE FUNCTION ENTER 

* 0100 3BOA OA LS2 XlO LOAD ADDRESS FROM CONSOLE ADDRESS RFG (Ml 3BOA 
0101 B8B OA LOW Xll LOA!) DATA FROM CONSOLE DATA REG CNI 4881 
0102 230A OA SllM XlO INCREMENT ADDRESS 6B8B 

* * * * * * * * * * * * * * * * * * * * * * * * * * CONSOLE FIJNCTIDM SWEEP 

* 0103 3BOA OA LS2 XlO LOAD ADDRESS FROM CONSOLE ADDRESS REG (Ml 5081 
0104 ?30A OA SllM XlO INCREMENT ADnRESS 7388 
0105 431HI OB snw Xll STnRF DATA IN CONSOLF nATA REG CNI 3000 

* * * * * * * * * * * * * * * * * * * * * * * * * 
* CONSOLE FllNC TI ON REGISTER FILE WRITE 

* 0106 030A OA LAW XlO LOAD REGISTER HUMP.ER FROM CONSOLE ADDR REG ( M) E30A 
0107 1708 08 STA XR STORE JN BOUNOllRY CROSSING REGISTER (8CI F402 
0108 6308 OB LAW Xll LOAO CONTENTS OF CONSOLE DATA REG I NI 9709 
0109 F490 I VK INVOKE AOUNOARV CROSSING MODE 6399 
OlOA 1880 0 0 00 STA 0 STORE nATA IN REGISTER 7819 
OlOB F400 

G) 
RVK REVOKE AOUNDARV CROSSING MOOE 8Fl9 

* * * * * * * * • * * * * * * * * * * • • '°' * * * ® 

Figure 3A-1. Typical Page of CS Assembly Listing . 
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ABAND 
ALU 
AM 
AT 
B/A 
BC 
BKPT 
BLK 
BM 
BRF 
BRFS 
BUFF 
cc 
CG 
CHK 
CIN 
CLK 
CLR 
CR 
CRIN 
cs 
css 
DISPY 
DRBO 
ECC 
EN 
EN CAM 
ENDO 
ENRAM 
EN SAM 
ENT 
EOR 
EQT 
EO 
ENRSYCL 
ERF 
ERFG2 
EXEC 
EOXX-E 
EOXX-L 
FB 
FF 
FM1 
FM2 
FR 
FRJ 
FXEO 

APPENDIX 38 
LOGIC SIGNA,L NAME ABBREVIATIONS 

Abandon 
Airthmetic-Logical Unit 
Aµ register 
Address Table 
Busy I Active 
Boundary Crossing 
Breakpoint 
Block 
Bµ register 
Basic Register File 
Basic Register File Select 
Buffer 
Consecutive Cycles 
Constant Generator 
Check 
Carry In 
Clock 
Clear 
Control register 
Carry In 
Control Storage 
Control Store Scan 
Display 
D register Byte 0 
Error Correction Code 
Enable 
Enable Clock Aµ 
End Out 
Enable Reset Aµ 
Enable Set Aµ 
Enter 
Exclusive - 0 R 
End of Transmission 
Equal 
Enable Resync FF Clear 
Extended register 
Extended Register File Group 11 
Execute 
EO Minor Cyclu, Early 
EO Minor Cyclu, Late 
F Buffer register 
Flip-flop 
Fµ register, Rank 1 
Fµregister, Rank 2 
F register 
Format Jump 
Fµ Translation Equals (example: 
FXE0-6 means translation of µI whose 

38-1 

GC 
GEN 
GP 
GT 
ICA 
ICRA 
IFA 
INVERF 
IOR 
JMP 
JP 
LO 
LT 
MC 
MR 
MS 
SMI 
NR 
ov 
PB 
PE 
PM 

Pp 
PR 
PROP 
RD 
REO 
RF 
RNI 
RTC 
RO 

SELFH/PL 
SN 
SOPXEO 

SPEC 
SR 
STD BYTE 
SW 
S1,S2,S3 
TB 
TBIT 
WR 
XTAL 
ZR 

operation code is 6) 
Group Carry 
Generate 
Group 
Greater Than 
Integrated Communications Adapter 
Integrated Card Reader Adapter 
Integrated File Adapter 
Invoke Extended Register File 
Inclusive - OR 
Jump 
Jump 
Load 
Less Than 
Master Clear 
Console Address register 
Main Storage 
MS Interface 
Console Data register 
Overflow 
P Buffer register 
Parity Error 
Pµ register 
P Pointer register 
Privileged register 
Propagate 
Read 
Request 
Register File (either BRF or ERF) 
Read Next Instruction 
Real Ti me Clock 
Register Option 

Select F if High or Pµ if Low 
Shift Network 
Sub-op Code Translation Equals 
(example: SOPXE0-0 means 
translation ofµ I whose sub-op code is 
0) 
Specified, Special 
S register 
Store D Byte 
Switch 
Select 1, Select 2, Select 3 
Tie Breaker 
Toggle Bit 
Write 
Crystal 
Zero 





a and b designators, use in 
Load B Bit µl's 2-206 
selecting BRF register 2-84 

Aµ register 
description 2-183 
fan-in 2-183 

Basic Register File 
addressing 2-84 
data path 

read µl's 2-7 
writeµl's 2-7 

individual register assignment 
bit sense µI 

description 
execution 
flow diagram 

3-14 
2-213 

3-40 
blockpoint (BP) µI 

implementing BP feature 
purpose 3-2 

Boundary-Crossing (BC) register 
description 2-90 
use in selecting registers 

µI control 
BRF 2-84 
ERF Group I 2-92 
ERF Group II 2-96 

2-73 

ERF Group 111 2-98 
Panel Control 2-242 

BRF 
(see "Basic Register File") 

Busy/Active (B/A) register 
description 2-88 
set/clear conditions 2-19 

Condition register 2-83 
Console Data register 

description 2-90 
use during Panel operations 

CS load 2-253, 2-255 
CS scan/read 2-233 
CS write 2-237 
register display 2-261 
RF read/write 2-242 

Console Address register 
description 2-90 
use during panel operations 

CS disc command load 2-253 
register display 2-261 
RF read/write 2-42 

Control register 

2-82 

CC bits used to specify CC mod<e 2-31 
description 2-90 

INDEX 

Control Storage 
access inhibited 2-58 
address format 2-58 
longitudinal parity check 

(see "CS scan") 
page organization 2-55 
parity error 

address generation 
status bit in Pµ 

read 2-231 
scan 2-33 
write 2-237 

common-block registers 

2-77 
2-88 

(see "Extended Register File, Group 11") 
consecutive-cycle (CC) mode 

conditions for entering 2-31 
conditions for leaving 2-34 

cs 
(see "Control Storage") 

E:xtended Register File 
Group I 

addressing 2-92 
individual register assignment 
µI data path 

read 2-7 
write 2-7 

Group 11 
addressing 2-96 
data path, µI 2-7 
individual register assignment 

Group Ill 

addressing 2-98 
data path, µI 2-8 

2-85 

2-85 

individual register assignment 2-92 
write fan-in 2-73 

ERF 
(see "Extended Register File") 

feeder load µl's 
delay of following µI 2-49 
description 3-2 

FNJ/F RJ µ1 's 
descriptions 3-16 
execution time anomaly 

EO through E5 2-40 
E6, E7 2-40 

flow diagrams 3-42, 3-43, 3-44 
jump address decode 

FNJ µI 2-63 
FRJ µI 2-176 

use during M LI routine selection 2-8, 3-53 

FR F register 
EP/IP bits used to specify priority mode 2-25 contents used to address F RJ decode address 

1-1 



INDEX (Cont) 

table 2-176 
description 2-85 

Fµ register 

clocking 
block during idle/resync condition 2-52 
relative to Aµ/Bµ clock 2-2 
relative to Sµ clock 2-2 
description 2-59 

invoke/revoke mode 
(see "Boundary-Crossing register use in selecting 
register") 

JMP µI 
execution time anomaly 2-40 
jump address decode 2-65 

Link (LK) status bit 
contained in Pµ register 
contained in Sµ register 

master clear 
(see "system reset") 

micro-instruction (µI) 

formats 3-1 
overlap feature 2-2 

translation 2-63 

2-88 
2-66 

(also see headings related to a particular µI and 
characteristics such as "block point µI") 

minor cycle 
generation by E-pulse timing 
relation to µI execution times 

Main Storage 
reference 

µI data path 2-8 
MS 

(see "Main Storage") 

Overflow (OV) status bit 
contained in Pµ register 
contained in Sµ register 

parity error address (PE) register 
description 2-90 

P register 2-84 

Pb register 
description 2-69 

2-13 

2-88 
2-66 

2-7 

use with Pb to store starting 2-76 
µI address 

Pp register 
description 2-70 
use with Pb to store starting 2-76 

µI address 

1-2 

priority logic 
(see "time slice allocation") 

Pµ register 

description 2-85 

written into from Pr/Pb 
at end of time slice 

read-time clock (RTC) 
pulse generation 2-16 
register description 2-88 

re!Jister 

2-73 

(see register wanted, also see "register file", "Basic 
Register File" and "Extended Register File") 

re·~ister file (1) 
access capability/limitations 2-99 
read from Panel 2-242 
read µl's 

description 3-9 
execute portion ti me 

write from Panel 
write µl's 

description 3-12 

2-2 

execute portion time 2-2 
(also see additional headings "Basic Register File" and 
"Extended Register File") 

resync µI 
condition generated 2-52 
description 3-3 

RO/R 1 cycles 
operations performed during 2-2 
generation of 2-92 

SkipµI 
descriptions 3-15 
executed at EO through E6 2-36 
executed at E7 2-36 
flow diagrams 3-41 
status bit location in Pµ 2-88 

shared resources 
block diagram description 

shift µI 
description 3-13 
execution 
flow diagram 

status bits 

2-216 
3-39 

(see particular bit wanted) 

system reset 

2-1 

operations performed 2-47 
power-on condition from power sequence 

control 2-251 
Sµ register 

clocking 
blocking conditions 2-66 



relative to Fµ clock 2-2 
description 2-66 
fan··in 2-66 

Sµ + 1 adder 2-69 

Tie-Breaker (T) register 2-88 
time slice 

allocation 
consecutive-cycle mode 2-29 
examples of during various modes 
interruption by REFRESH request 
normal (scanner) mode priority mode 

enable 2-25 
invoke 2-25 

control logic 2-27 
timing 

CLK pulse 2-13 
constraints during µI exec 3-3: 
E pulse 
major cycle duration 

MS reference 2-15 
non-MS reference 2-15 

TX pulse 2-13 

WO/W1 cycles 
generation of 2-92 
operations performed during 2-2 

INDEX (Cont) 

2-27 
2-25 

2-25, 2-29 

1-3 
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