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7300 Processing Unit Design Description
Volume 2, Shared Resources

This volume provides Memorex Field Engineers with detailed operating principles of the
7300 Processing Unit's shared resources. The information is presented in two sections.
Section 2, Principles of Logic Operation, describes the hardware making up the shared
resources - main storage, control storage, arithmetic-logic unit, timing, and control - plus
the basic and extended register files and System Control Panel. Section 3,
Micro-Instruction Repertoire, contains a detailed description of each micro-instruction by
means of a narrative explanation and hardware execution flow diagram. This section also
describes how micro-instructions are used to implement machine-language instructions and
gives directions for reading the micro-instruction assembler listing. Hardware descriptions
are keyed to corresponding drawings in the 7200/7300 Logic Diagrams Manuals, and
thus provides the Field Engineer with a comprehensive maintenance package.

This volume is part of a four volume set comprising the 7300 Processing Unit Design
Description Manual. The set of four volumes is assembled as a continuum of section
numbers containing the following information:

Volume 1, Overview (2501.001)
Section 1. A general description of the 7300 Processing Unit.

Volume 2, Shared Resources (2501.002)
Section 2. A detailed description of main storage, control, timing and

arithmetic parts of the 7300 Processing Unit.

Section 3. A detailed description of the formats, characteristics and
implementation of the micro instructions associated with the 7300
Processing Unit.

Volume 3, Dedicated Resources (2501.003)

Section 4. A detailed description of the two basic data (selector) channels
for the 7300 Processing Unit.

Section 5. A detailed description of the Integrated Communications
Adapter (ICA) for the 7300 Processing Unit.

Section 6. A detailed description of the Integrated File Adapter (IFA)
for the 7300 Processing Unit.

Volume 4, Power System (2501.004)

Section 7. A detailed description of the 7300 Processing Unit power system.

NOTE

Because Volume 1 provides an overview of the 7300
Processing Unit, it should always be used as an
introduction to the other volumes in the set.
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2. PRINCIPLES OF LOGIC OPERATION

INTRODUCTION

This section contains a detailed logic description of the
shared resources portion of the MEMOREX 7300
Processing Unit. The section begins with an over-all block
diagram description of the shared resources, discussing the
principal data paths and explaining some of the basic
concepts of time slicing and machine language instruction
implementation by micro instructions. Following the
block diagram description is a comprehensive analysis of
each functional part of the shared resources.
Supplementing the narrative description are in-text logic
drawings illustrating each functional part, and portion
thereof. These drawings are based on the logic diagrams
contained in the 7300 Processing Unit Support Diagrams
manual. For ease in correlating the in-text drawings to the
logic diagrams, each drawing references the physical
module (PC board) on which the logic shown in that
drawing - is contained, both by a dashed rectangle to
indicate the module boundary and the module number.
The module number is of the form 1AXX and is (usually)
located in the lower right corner of each module
boundary.

NOTE

Signal names prefixed with a + or — in the
in-text drawings are identical to correspond-
ing signal names shown in the logic diagrams,
where the + or — represents the polarity of
the signal in the active state. Signal names
without such a prefix represent a combina-
tion of individual signals, where the polarity
of the signal is not conveyed.

BLOCK DIAGRAM DESCRIPTION

The shared resources encompasses all logic shared by the
eight processor states during their operation. It includes
elements for assigning time slices, reading and executing
Micro Instructions (ul’s), reading and writing file regis-
ters, accessing Main Storage (MS), and communicating
with the four [/O processors and the System Control

Panel. (When enabled for operation, the Panel is granted
time slices just as if it was a ninth processor.) As dis-
cussed in Chapter 1, the shared resources consists of
four major parts: the Arithmetic-Logical Unit (ALU},
MS, Control Storage (CS), and Timing and Control logic.
For purposes of discussing the operation of the shared
resources, however, it is useful to also discuss operation
of the Basic Register File (BRF) and Extended Register
File (ERF) portions of the dedicated resources because
of their intimate relationship with the shared resources.
The shared resources plus the combination of BRF and
ERF are referred to as the Central Processing Unit
(CPU).

A block diagram of the CPU is shown in Figure 2-1.
This block diagram is similar to the CPU block diagram,
drawing 503247, in the logic diagram manual but has
been simplified by removing some of the auxiliary
elements such as (most) register fan-in and MS and CS
parity check circuits. Three of the four major elements
(ALU, MS, and CS) are indicated by dashed line boxes.
In addition, the BRF and ERF (both Groups | and 11)
are similarly designated. The block diagram will be dis-
cussed by describing each data path shown on the dia-
gram and its relationship to other such paths during
execution of ul’s during one time slice. The numbers
appearing in parentheses in text refer to a corresponding
data path in Figure 2-1.

TIME SLICE ALLOCATION

Assignment of a time slice to a particular processor state
actually begins at E660 of the previous time slice. (The
notation £560 means 60 nanoseconds into minor cycle E5
of the major cycle.) At this time, priority is granted to the
processor state under consideration. This sequence of
events begins when the processor’s Busy flip-flop in the
Busy/Active (B/A) register of the ERF Group Il is set.
Setting this flip-flop essentially informs the shared
resources that the processor under consideration has been
assigned a task to perform and, consequently, will need a



time slice to perform this task. Setting the Busy flip-flop
can be done by software, under program control, via the
ALU fan-in (1) or by manual control from the Panel (2).
In addition, each of the four 1/O processors can issue a
request to set the Busy flip-flop (3) when they are ready
to perform an 1/O-related operation. The Busy flip-flop
output is routed to the Resync register in the Resource
Aliocation Network (RAN) via path (4). The Resync
register functions as a job queue register by holding all
requests for time slices from the various processors until
granted by the RAN. The requests are fed to the priority
network, which assigns priority to each request. Normally,
the priority network assigns time slices to each processor
in a cyclic fashion: O through 7, 0 through 7, and so forth.
The four 1/O processors, however, operate in a real-time
environment; consequently, their needs for time slices are
often critical to avoid loss of data transmitted to or from
an 1/0 device. Therefore, these processors can override the
normal cyclic assignment of time slices by setting a
corresponding bit in the Priority register (5). This register
enables the affected /O processor to secure an
out-of-sequence time slice according to one of two
schemes: Enable Priority (secure a time slice when
needed) or Invoke Priority (secure alternate time slices
whether needed or not). At E560, the priority network is
sampled and the number of the processor granted the next
time slice is fed to the Read register (6).

R-PORTION READ OPERATIONS

The Read register contents are used to select the Pu and
FRFregisters in the Group | ERF to obtain housekeeping
information required to begin the present time slice. This
housekeeping information consists of the present MLI
being executed, contained in FRF' and the address of the
first ul of that MLI to be executed during this time slice,
contained in Pu. Normally, this housekeeping information

will reflect where the last time slice assigned to this pro-

cessor left off, that is, the MLI will remain the same and
the starting ul address will be one greater than that of the
last ul executed during the last time slice (unless a jump
or skip occurred at the end of the last time slice). Under
some circumstances, however, the starting ul address will
have been modified between the time slices due to a
boundary-crossing operation. This operation allows pro-
cessor state 4 (Executive) to access registers associated
with the present processor state, making it possible for
processor state 4, during its assigned time slice, to load a
different starting ul address into the present processor’s
Pu.

The housekeeping Read operations take place during the
R portion of a time slice, which overlaps minor cycles E6
and E7 of the previous time slice. These timing relation-
ships are shown in Figure 2-2. For convenience, the R por-
tion is considered to consist of two 100-nanosecond
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minor cycles: RO and R1. During RO, the processor
number in the Read register is routed to the Group | ERF
via (7), and the starting pl address is read from Pu and
clocked into the Su register at E680 (8). The Su register
holds the address of the next ul to be read from CS.
During R1, the MLI contained in FRF is read and trans-
ferred to the shared resources F register (9). Meanwhile,
the starting ul address clocked into Su at E680 has
already accessed CS to read the first ul to be executed
during the new time stice {10). This operation also takes
place during RO, and at EOQO the starting u! is clocked in
Fu (11) for translation and subsequent execution during
EQ.

‘Because of the overlapping facility of shared resources,

the next ul in a sequence is (usually) read from CS during
the minor cycle that the present ul is being executed. This
can be seen from the previous paragraph where the first ul
of the next time slice is being read at RO (E6) simultane-
ous with translation/execution of the next to last ul of
the present time slice during E6 (RO). In general, this
overlapped operation holds true for most ul's that take
only one minor cycle to execute. Therefore, a single one-
minor-cycle-execute ul actually takes two minor cycles to
implement: one minor cycle to read the ul from CS and
one minor cycle to execute. If the ul is a Register File
Write (and ALU propagation requirements are met), the
execute portion (store into file register) does indeed take
place dur'irig the second minor cycle. However, if the ul is
a Register File Read, the execute portion actually extends
into a third minor cycle.

This timing relationship for successive Register File Read
ul's executed during one time slice is shown in Figure
2-3. The top portion of this figure shows the logic
elements through which the Register File Read ul must
pass during its implementation. As can be seen, the route
traversed by the pl consists of two
register-to-storage-to-register paths. The first path begins
with Sy through a fan-in to CS through a fan-out to FL.
This path is used to read the (il from CS at the location
specified by the address in Sy, and route it to Fu.. The
time required to traverse this path is 120 nanoseconds,
from the time that Sy is clocked with the 1 address
(CLKSu at t) to the time that Fu is clocked with the ul
read from CS (CLKFu at t+120). The second path begins
with Fil through a fan-in to the register file through a
fan-out to Ap and Bpl. This path is used to translate the
Ml in Fp, access the register in either the BRF or ERF
defined by the w1, and process the register contents in the
ALU via Ap and/or By, The time required to traverse
this path is also 120 nanoseconds, from the time that Fi
is clocked with the ul (CLKFu at time t) to the time
that Al and/or B are clocked with the register contents
(CLKAu/Bu, at t+120). If the pl being executed is the
first one in a time slice, the two aforementioned paths are
preceded by a third path from the Read register in the
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Figure 2-1. Central Processing Unit Block Diagram
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RAN to Pu in the Group | ERF to Su. This path, which
starts at E560, when the processor number is clocked into
the Read register, also takes 120 nanoseconds to traverse.

Since A. and/or By are not loaded with data until 240
nanoseconds after the (11 address has been loaded into Sy,
execution of a single Register File Read (il actually takes
two complete minor cycles plus part of a third and a
fourth minor cycle. This can be seen from the bottom
part of Figure 2-3, which shows the times at which Su,
Fu, and Au/Bu are clocked for each il of a time slice.
Using /| N (the first Ul executed in the time slice) as an
example, its total execution time extends through minor
cycles E6 and E7 of the previous time slice and through
EO and E1 of the present time slice, starting with CLSK
at E680 and ending with CLKAu/BL. at E120. The relative
times at which the same clocking operations occur for
successive ul’s, however, is only 100 nanoseconds. For
example, CLKSu for ul N occurs at E680 and CLKSu for
ul N+1 occurs at E780, 100 nanoseconds later. In this
sense, then, execution of a ul is considered to take only
100 nanoseconds since an operation performed on ul N,
for example, can be followed by the same operation per-
formed on ul N+1 only 100 nanoseconds later. This so-
called pipeline effect extends through the whole time
slice, so that operations associated with ul's begun near
the end of the time slice assigned to processor X can act-
ually extend into the beginning of the next time slice
assigned to processor Y.

Returning to Figure 2-1, the ul address in Sy used to read
the ul presently in Fu is automatically updated by the
Su+1 adder. This adder adds +1 to the contents of Su and
routes it back to Su to form the address of the next ul to
be read from CS. This is the normal manner in which the
next ul address is formed since for any one sequence, ul’s
are arranged in consecutive order in CS. However, there
are several other ways of loading Su with the address of
the next ul, depending on several factors such as execu-
tion of a Branch ul, storing data into Pu, and operating in
the consecutive cycle (CC) mode. These alternate loads of
Su are discussed in the following paragraphs. If the ul
being executed is a Blockpoint (BP) ul, its address up-
dated by +1 will be fed to Pp for use as the anticipated
starting ul address for the next time slice (12), subject to
the boundary-crossing operation discussed above. In addi-
tion, the updated address is sent to Pb (13) for certain
conditions when the anticipated starting ul address cannot
be sent to Pp. ’

The il in Fu is now ready for execution. From this point

on, the paths traversed by the (il will depend on the type
of ul, as discussed in the following paragraphs.

MAJOR CYCLE EXECUTION

BRF Read
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A BRF Read ul selects a register of the BRF by a combin-
ation of the processor number obtained from the RAN
Read register (14) and the register number obtained from
the ul via the register file fan-in (156). The contents of the
selected register are routed to the Au and/or Bu registers
of the ALU (16) for processing defined by the ul opera-
tion code. The contents may also be routed to the S regis-
ter (38) or D register (41) via the Au register fan-in.

BRF Write

A BRF Write ul selects a register of the BRF in which to
write data from some shared resources register (usually
the Au, Bu, or D register) or logical/arithmetic combina-
tion of the contents of such registers, as defined by the ul
operation code. The register is selected in the same man-
ner as for a BRF Read ul: processor number from Read
register {14) and register number from the ul (15). Upon
selecting the register, the contents to be written are gated
through the ALU fan-in logic to the BRF (17).

ERF Group | Read

The ERF Group | read ul's do not read Pu or FRF
directly; instead, they read the contents of the Buffer
registers (Su/Pp and F) that reflect the most recent con-
tents of Pu and FRF' assuming that Pp has not been up-
dated by a blockpoint ul. The contents of Su/Pp (the
notation Su/Pp indicates that status bits O and 1 are read
from Su and CS address bits 2 through 15 are read from
Pp) or F are routed to the ERF fan-in Au/Bu via paths
(69) and (70). They are gated through the fan-in by cor-
responding enables and sent to the Au and Bu registers.

ERF Group | Write

Like the ERF Group | read ul’s, the ERF Group | write
ul’s access Pu and FRF through their buffers, Su/Pp and F
(and Fb). If Pu is to be written, data is routed from the
ALU fan-in to Pp via Su and/or Pp (19). Then at the end
of the time slice, the data in Pp is written into Pu as part
of the WO cycle housekeeping operation. If FRF is to be
written, data is routed from the ALU fan-in to F/Fb (20).
Then at the end of the time slice, the data in Fb is written
into FRF as part of the W1 cycle housekeeping operation
(21).

ERF Group 1l Read and Write

The ERF Group |l register is selected by a combination of
processor number and register number, similar to that for
a BRF register. If a Read operation is specified, the
contents of the selected register are fed to the ALU via
the ERF Group Il fan-in and the ERF input Ap/By fan-in
(22). If a Write operation is specified, the data to be
written is sent from the ALU via the ALU fan-in (23).



ERF Group 1l Read and Write

These wul’s are programmed as part of an 1/O data transfer
operation, since the ERF Group Ill registers associated
with the four 1/O processors are located in the
corresponding adapters. The Group |11 register is selected
by the !l through the register file fan-in (24). Data
received from a Group Il register is put in to the ERF
input Ap /By fan-in (25). Data transmitted to a Group 111
register is sent out via the ALU fan-in (26).

Arithmetic ul’'S

Arithmetic ul’s comprise those executed by the ALU.
They include Sum, Compare, Skip, Bit Sense, and
Shift ul's. The Sum pl’s add the contents of A and By,
and route the sum to the ALU fan-in (27). The Compare
ul’s compare the contents of Al and By for less than,
equal, and greater than conditions by the compare
network (28). The results are used to generate
corresponding compare status bits which are sent to the
ALU fan-in (29) for storage in a designated register. The
Skip w1's determine conditions for skipping the next pl
by the skip evaluate logic (30) and Au=0 logic (31). The
Bit Sense wul's scan the contents of Al for a designated
bit (32). When found, a number equal to the number of
bit positions scanned without a find is added to the con-
tents of Bu (33). The result is then stored back in Bu (33).
In addition, the bit in Ay providing the find may also be
toggled. The Shift ul routes the contents of Ay and Bu to
Au buffer and Bu buffer (34), then shifts the contents of
the two buffer registers by a specified amount. The
shifted result is stored back in Au and Bu (37).

MS Reference ul's

Both read and write references to MS require loading an
address into the Sy register from the Au register fan-in
(38). This address is sent to MS via the Register Option
(39). If an MS read is specified, the data is read from MS
and routed to the FRJ decode address table (AT) pointer
logic and to the ALU via path (40). If an MS write is
specified, the word to be stored is loaded in the D register
(41) and routed to MS via the Register Option (42).

FNJ and FRJ ul's

The FNJ (Function Jump) and FRJ (Format Jump) l}'s
are executed as part of the process of reducing the
number of possible p1 routines required to implement a
MLI down to one particular routine applicable to that
MLI only. The scheme for accomplishing this reduction is
shown in Figure 2-4. Implementing a MLI requires three
sequences: Read Next Instruction (RNI) sequence,
Format Jump (FRJ) sequence, and Function Jump (FNJ)
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sequence. The RNI sequence is used to read the MLI from
MS and isolate it to a group of several MLI's sharing
common characteristics by performing an FRJ, or
first-level, decode. This decode is performed by executing
an FRJ pl, and determines the format of the MLI; that is,
its type (register/register, memory/register, memory/
memory, and so forth) and the addressing mode specified
(direct or indirect). Figure 2-4 shows the sequences
associated with a ADDR MLI (function code of 22). The
ADDR MLI belongs to a class of MLI's identified as
register/register MLI's, meaning that the operands process-
ed by these MLI's are obtained either from a file register
(direct accessing) or from MS at a location specified by
the contents of a file register (indirect addressing). All
MLI‘s with function codes of 20 through 29 belong to this
class of ML!’s. For the example shown in Figure 2-4, both
operands required by the ADDR MLI are to be obtained
by direct addressing (D/D).

Upon executing the FRJ ul, a branch is made to an area
of CS determined by the FRJ decode to begin the FRJ
sequence. Note from the figure that any of four different
FRJ sequences for the register/register class of MLI’s
could have been entered, depending on the type of
operand addressing specified. The FRJ sequence reads the
first operand and prepares to enter the FNJ sequence by
performing an FNJ, or second-level, decode. This decode
is performed by executing an FNJ ul, and picks out the
ADDR MLI from the rest of the register/register MLI's by
identifying its function (add register to register) and
causes a branch to another area of CS containing ul’s
required to implement the move register to register func-
tion. Note again from the figure that any one of 10 differ-
ent FNJ sequences could have been entered, depending on
the function of the MLI. The FNJ sequence reads the
second operand, performs the required additign, stores
the result, and branches back to the RNI| sequence to read
the next MLI,

Execution of both the FRJ and FNJ ul’s form a branch
address to branch to the start of the FRJ and FNJ
sequences. Formation of the FRJ branch address, shown
in Figure 2-1, is accomplished by developing an
intermediate address tha points to the required FRJ
branch address stored in the FRJ decode address table
(AT). This pointer address is developed by feeding the
MLI read from MS (43) to the pointer logic. The resultant
FRJ branch address is read from the AT, combined with
the contents of F, and routed to Pp (44). Formation of
the FNJ branch address is performed directly by the jump
decode logic. This logic, which is also used to form branch
addresses for other jump ul’s, is fed with bits from both
the MLI in F (45) and the FNJ ul in Fu (46). The FNJ
branch address is formed by a combination of these bits
and fed to Su (68) and/or Pp (47).
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Micro-Instructions Requiring Constants

A number of ul’s require certain constants for their execu-
tion. These constants are generated by the constant
generator, either by itself or with other logic. Among the
constants generated are —1, 0, and +1 generated in con-
junction with the Forced Carry Register for the load S
ul’s; 3 and D16 for the CORC ul; and certain word-,
byte-, and nybl-length constants for the load Bu, enter By,
and DIG ul’s. The generated constants are fed to the Bu
register (48).

W-PORTION WRITE OPERATIONS

At the end of the time slice assigned to the processor
state, the starting ul address in Pp and the MLI in F/Fb
must be written back into Pu and FRF of the processor
state’s Group | ERF to enable resumption of the micro-
program when the next time slice is assigned to the pro-
cessor state. These operations take place at WO (EQ) and
W1 (E1), respectively, as shown in Figure 2-3. The Pu and
FRF registers are selected by the processor number, now
contained in the Write register of the RAN (49). This
register number was transferred from the Execute register
during E5 (50). At WO, the starting ul address is written
back into Pu. This address comes from either Pp (51), if
the BP ul was executed at EO through E6, or from Pb
(62), if the BP ul was executed at E7. The contents of Pb
are used for the latter situation because Su has already
been loaded with the starting ul address for the new time
slice; consequently, the updated BP address cannot be
routed to Pp via Su. Instead, it is fed directly to Pb after
being updated. At W1, the MLI is written back into FRF
from Fb (21). (The contents of Fb must be used since F
already contains the MLI for the next time slice.) If the
processor is enabled for Consecutive Cycle (CC) opera-
tion, the starting ul address in Pp is routed back to Su
(53) to enable the processor to continue running during
the next time slice.

SYSTEM CONTROL PANEL OPERATIONS

Several operations initiated by the System Control Panel
are shown in Figure 2-1. The reset/load operation is
initiated by the Panel (54) to load CS with ul’s from
either a disc or card device (55). Breakpoint comparisons
are made by comparing an address selected by the Panel
breakpoint selectors (66) with a ul address in Su (567) or
an MS address in S (568). A starting ul address can be
manually set into Su from the Panel (69). Address-related
information may be displayed on the Panel by means of
the address display fan-in via paths (60), (61), and (62).
Likewise, data-related information can be shown by
means of the data display fan-in and Console display
fan-in via paths (63) through (67}.
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DETAILED LOGIC ANALYSIS

TIMING

All timing needed by the various parts of the system,
including all 1/0 processors, is derived from timing logic in
the shared resources. A block diagram of this timing logic
is shown in Figure 2-5. The master clock, from which all
subsequent timing is derived, is a 10-megahertz crystal
oscillator. This master clock feeds pulses to a
100-nanosecond delay line. This delay line is tapped at
10-nanosecond intervals and the resultant outputs fed to
several long pulse and short pulse circuits. Each type of
circuit is nearly identical and generate its respective out-
put once every 100 nanoseconds (one minor cycle). The
lorig pulse circuit generates write signals which are 45 to
60 nanoseconds wide. The short pulse circuit generates
control timing pulses of 20 to 30 nanoseconds for a
number of purposes: 1) register clock signals, 2) inputs to
the real time clock (RTC) generator, 3) initiate E pulses
via the E timing generator logic, and 4) furnish basic clock
signals to the 1/0 processors. The E pulses are nominally
100 nanoseconds wide and are generated once during
every major cycle. They are generated by means of a gray
code counter whose binary outputs are ANDed together
as required to generate each E pulse,.

Basic Timing

Logic for the basic timing is shown in Figure 2-6. The
10-megahertz master clock output is adjusted by a
potentiometer for a pulse width of 30 nanoseconds, as
shown in Figure 2-7. This figure shows typical pulses
generated by the basic timing over a period of 200
nanoseconds (two minor cycles). (Times for all pulses
generated by the basic timing logic are found in Section 6
of the 7200/7300 Processing Unit Maintenance manual.)
The adjusted master clock output is fed to a delay line,
which contains 10 taps. Each tap provides a delay of 10
nanoseconds from the previous tap, therefore, a total
delay of 100 nanoseconds from the previous tap, there-
fore, a total delay of 100 nanoseconds can be realized
from the delay line. These taps are connected to the
inputs of two types of pulse generate circuits, identified as
long pulse circuits and short pulse circuits.

Each long pulse circuit consists essentially of two
networks which feed the pre-set and pre-clear sides of a
type D flip-flop producing pulses of 40 to 60
nanoseconds. Each network contains a potentiometer for
independent adjustment of the leading and trailing edges
of the flip-flop output. An emitter-follower is used to feed
each network from the particular delay line tap for
delay line isolation and impedance matching purposes.



There are three such long pulse circuits, used to generate
NORMWR, LATEWR, AND BRFWRITE. Normally, the
starting ul address and MLI are written into Py and FRF
of the active processor during the W portion of the time
slice. For this purpose, NORMWR is used. During an
invoke condition, however (after an IVK ul has been
executed), the starting ul address and MLI are written

into the Pu and FRF of another processor, specified by
the contents of the Boundary Crossing (BC) register. For
this purpose, LATEWR is used. Signal LATEWR is gener-
ated about 15 nanoseconds later than NORMWR to
accommodate the extra time needed by the ul translation
logic. Signal BRFWRITE is used to write into any register
of the Basic Register File (BRF).

TX00 woow s o e won -l

1 |
[TX809 o} crock I

1
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Figure 2.5. Timing Block Diagram
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Each short pulse circuit consists essentially of two RC
networks which generate pulses of 20 and 30 nanoseconds
in width. Each network is adjustable providing
independent adjustment of the output pulse leading and
trailing edges. The output pulse is fed through several
inverter drivers to provide the high fan-out requirements
of these pulses. There are eight short pulse circuits, which
generate TXXX signals and register clock signals. The
TXXX signals are 20 and 30 nanoseconds wide, and are
generated at intervals of 20 nanoseconds. The signal name
identifies when it occurs during the 100 nanosecond
period, i.e.,, TX20 indicates a signal generated 20
nanoseconds after TX00. These signals are used in their
generated form for purposes of initiating operations at
specific points within a minor cycle. For this purpose,
they are usually combined with an E pulse, which defines
the particular minor cycle. They are also used to generate
E pulses via the E timing logic and clock pulses for use by
the 1/O processors. The register clock signals are either 20
or 30 nanoseconds wide and are used to preset, preclear,
or enter data into a register at a specific time during a
minor cycle. For this purpose, they are usually combined
with a register clock enable signal which defines the condi-
tion under which data can be entered into the register
(usually resulting from translating a particular ul).

Figure 2-8.

E Pulse Timing

Logic for the E pulse timing is shown in Figure 2-8. The
logic consists of two ranks of E pulse generators driven by
corresponding ranks of a gray code counter. The two E
pulse generator ranks produce a series of overlapping
pulses nominally 100 nanoseconds in width called E
pulses. Each pulse overlaps the preceding pulse by 50
nanoseconds (nominal)*. The on-time (OT) rank genérates
pulses that each start at the beginning of a minor cycle,
i.e., pulse E1XX-O starts at the beginning of minor cycle
E1. The early time (ET) rank generates pulses that each
start 50 nanoseconds preceding the corresponding on time
E pulse i.e., E1XX-E starts 50 nanoseconds before
E1XX-O or in the middle of minor cycle EO. Waveform
for typical on time and early time E pulses are shown in
Figure 2-9. These E pulses are used in their generated
form for combining with TXXX pulses of the basic timing
to initiate operations as discussed in the previous para-
graph. The E pulses are also used in combined forms with
each other to generate pulses, two or more minor cycles
wide. For example, E1/2XX-E is two minor cycles in

*The overlap actually ranges between 40 and 60 nanoseconds, due
to flip-flop and gate delays.
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E-Pulse Timing Logic
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width, starting at E050 (E1XX-E start time) and ending at
E250 (E2XX-E end time). Pulse E1256 is active for minor
cycles E1, E2, E5, and E6, and inactive for the remaining
minor cycles.

All E pulses are derived from two ranks of a gray code
counter, an on time (OT) rank and an early time (ET)
rank. Each rank consists of four flip-flops, numbered 0
through 3, that are interconnected so as to generate a gray
code output®. Outputs from each of the flip-flops com-
prising the on time counter are shown in the upper part of
Figure 2-9. The counter is initiated at EO00 by TXO00
from the basic timing. The early time counter generates
the same counts as the on time counter, but starting 50
nanoseconds earlier. The BCD equivalent of each count
produced by the on time counter and the corresponding E
pulse generated is listed in Table 2-1.

Major Cycle Duration
The number of E pulses generated per major cycle

depends on whether the processor state is operating in the
Consecutive Cycle (CC) mode and/or if it is making a

reference to Main Storage (MS). If the processor state is
making an MS reference, the major cycle timing is also
influenced by which features of the Register Option (RO)
that require additional propagation time are present. This
information is tabulated to the right of the table in Table
2-1. If the processor state is not making an MS reference,
the only variable is whether or not the processor is operat-
ing in the CC mode. If not, the major cycle time is 800
nanoseconds, formed by generation of E pulses EOXX-O
through E7XX-O in sequence. If operating in the ECC
mode, the major cycle time is increased to 1000 nano-
seconds by the addition of E pulses E8XX-O and
E9XX-0. These two pulses are generated by the output
from on time counter flip-flop 30. This flip-flop is
enabled only if operating in the CC mode by signal
CC-F/F, as shown in Figure 2-8. When a BCD count of
either 4 if not in the CC mode, or 8 if in the CC mode is
reached, the counter recycles itself back to O to start
another series of E pulses.

*A gray code is a binary code in which only one bit position
changes state (0"’ or *’1"’) each time the counter is advanced.

Table 2-1. On-Time Gray-Code Counter Tirning and Major Cycle Durations

cc cc cc cc cc, cc,
BP, BP, BP or BP or BP or BP or
Counter Flip-Flops BCD E-Pulse R/, RIP R, R/, R, R/P,
30T 20T 10T 00T Result Generated ECC ECC ECC EcC ECC ECC
0 0 0 0 0 EOXX-O I 1 7 4
0 0 0 0 0 EOXX-O' NOT  NOT
0 0 0 0 0 EOXX-0" GEN  GEN  \ 0T GEN NOT GEN
B T T

0 0 0 1 1 £1XX-0
0 0 1 1 3 E2XX-O
0 0 1 0 2 E3XX-0
0 1 1 0 6 EAXX-O
0 1 1 1 7 E5XX-O
0 1 0 1 5 E6XX-O ¢
0 1 0 0 4 E7XX-O v v

800 900 1000
! ! 0 0 12 EBXX-0 NSEC NSEC NSEC
! 0 0 0 8 EOXX-0 1000 1100 1200

NSEC NSEC NSEC
/) e .
v "
Non-MS MS Ref.
Ref,
LEGEND ___

CC, BP, R/P, ECC — Major cycle duration if operating in consec-cycle mode;
Basic Protect, Relocation and Protect, and ECC features not present.
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If the processor state is making an MS reference, the vari-
ables include not only whether or not operating in the CC
mode, but which features of the RO that require addi-
tional time for propagation are present also. These
features include the Basic Protection (BP), Relocation and
Protection (R/P), and the Error Correction Code (ECC)
feature. If R/P, but not the ECC feature, is present, the
major cycle timing is increased by 100 nanoseconds from
a non-MS reference cycle to either 900 or 1100 nano-
seconds, depending on whether or not the CC mode is
enabled. This increase of 100 nanoseconds is provided by
generating a second EO pulse called EOXX-O’. Pulse
EOXX-O' allows for the extra time required by the MS
address to propagate through either the BP or R/P feature.
If both the R/P and the ECC feature are present, the cycle
time is increased by 200 nanoseconds from a non-MS
reference cycle to either 1000 or 1200 nanoseconds. This
increase of 200 nanoseconds is provided by generating not
only puise EOXX-O’, but a third EO pulse also, called
EOXX-0". Pulse EOXX-O" allows for the extra time
required by the ECC feature to check and correct, if
necessary, data read from an MS location. (The operation
of MS requires reading data from a MS location during
‘both a read and a write operation; therefore, extra time
must be allowed for ECC operation during both a read
and a write operation.) It should be pointed out that the
extra 100 nanoseconds added by pulse EOXX-O’ is added
regardless of whether the BP or R/P feature of the RO is
present (since either one or the other must be present)
even though the BP feature does not require the increased
access time,

Pulses EO’ and EOQ"* are generated during operations
collectively referred to as long access operations, and are
initiated by the long access logic shown in Figure 2-10.
Generation of either just EOQ’, or both EQ’ and EQ”, is
determined by the adjustment of a delay network. This
network is initially clocked at either E650 if not in CC
mode, or E850, if in CC mode, by NCE70RE9. The out-
put delay is adjusted on the basis of which RO features
are present in the system, such that the output goes low at
either EQ70, if either the BP or R/P, but not the ECC
feature is present; or at EQ70’, if either the BP or R/P, and
ECC features are present. These delays are shown in
Figure 2-11, along with subsequent timing, for both possi-
bilities: BP or R/P but no ECC (solid lines) and BP or R/P,
and ECC (dashed lines). The delay network output is
clocked into a flip-flop at E720 to generate signal TIMER.
This signal is combined with FXEQ-3, indicating that an
MS reference is to be made (load Sul) and master enable
ENLGACC. The result is LONGACC, which goes low at
EO40 (worst case). Asshown in Figure 2-10, this signal is
used to block clocking of Fu and Sy with the next ul and
following ul address. This is necessary to inhibit reading
or executing a ul during the period that EQ’ and EO” are
active. In addition, LONGACC is gated to two flip-flops
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that control the setting and clearing of the counter flip-
flops. The output of the On Time flip-flop sends a high to
the pre-clear input of the 00T flip-flop in the on time
counter. The result of this high pre-clear is to delay the
flip-flop from setting for eithe; 100 or 200 nanoseconds.
This action effectively generates pulse EQ’ and EO” by
extending the EQ pulse width from 100 to either 200 or
300 nanoseconds. The high output from the Early Time
flip-flop to the pre-clear input of the 1ET flip-flop in the
early time counter produces a similar action to delay the
early time E1 pulse by the required amount.

It is important to note that the train of E pulses gen-
erated, including the inserting of EQ’ and EO” pulses, is
completely under hardware control (except for adding E8
and E9 if in the CC mode). In addition, every major cycle
will contain eight distinct E pulses, even though the inter-
vals of these pulses may vary as previously discussed. If
the program being executed determines that it does not
need the remaining minor cycles in a time slice, it cannot
truricate the unneeded portion of the time slice. Instead,
it must cycle through the rest of the time slice by per-
forrning NOP’s until the end of the time slice. This is
(usually) done by inserting non-blockpoint or resync ul's
(either the SYNC ul itself or one that performs a resync as
part of its execution) to account for the unused trailing
portion of such major cycles. In this respect, the timing is
completely synchronous in that every time slice will run
to completion even if the program being executed during
the time slice does not.

The 1/0 processor clock logic consists of five buffer
drivers that are driven by basic timing pulses TX00, TX20,
TX40, TX60, and TX80 respectively, as shown in Figure
2-5. These buffer drivers, in turn, generate CLOCK-00,
CLOCK-20, CLOCK-40, CLOCK-60, and CLOCK-80,
which are routed to the four I/O processors.

Real Time Clock Pulse Generator

The real-time clock (RTC) pulse generator generates two
waveforms, one used to increment the RTC register and
the other sent to both the Integrated Communications
Adapter (ICA) and the Busy/Action (B/A) register. Each
waveform is derived from clock pulse TX60 from the
basic timing logic by means of appropriate countdown
logic. A block diagram of the RTC pulse generator is
shown in Figure 2-12. The basic timing initiate pulse,
designated RTCINPUT, is fed to a divide-by-4 network

*To avoid possible confusion in the following discussion, it should
be pointed out that pulses EQ’ and EO" are not generated as such.
In reality, they represent pulse EQ extended in time by either 100
or 200 nanoseconds (both on-time EOQ and early-time E1 pulses are
extended). The result is a long EO pulse of either 200 nanoseconds
(EO plus EOQ’) or 300 nanoseconds (EO plus EO' and EQ") in length
nominally. 1t is useful, however, to think in terms of adding the
EO’ and EO” pulses to retain the idea that all E pulses are nomin-
ally 100 nanoseconds wide.
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consisting of two flip-flops connected in cascaded fashion.
This results in a waveform repetition rate of 400 nano-
seconds. This waveform, in turn, is fed through three
divided-by-16 networks in serial fashion. Each network
consists of a four-bit up/down counter that overflows
when a count of 16 is reached. The resultant output is a
waveform with a 1.6384 millisecond repetition rate (600
Hz) that is fed to the RTC register as RTCASYNC. This
signal is also fed to a divide-by-10 network to generate
RTC-SPEC at 16.384 millisecond intervals (60 Hz). This
signal is fed to the processor 4 Busy flip-flop in the B/A
register for purposes of waking up processor 4 at these
intervals. The signal is used also in the ICA for character
framing during synchronous transmission and for generat-
ing dial digits in the auto-call logic.

RESOURCE ALLOCATION

The resource allocation logic detects and stores requests
for time slices from the eight processors that

- .communicate with the shared resources and the System

Control Panel. It then allocates time slices to each
processor or the Panel on the basis of its needs. A block
diagram of the resource allocation logic is shown in Figure
2-13. As shown, the logic consists of the Busy/Active
(B/A) register, Console Busy flip-flop, Resource
Allocation Network (RAN), and Consecutive Cycle (CC)
logic. Requests from each processor are stored in
corresponding flip-flops of the B/A register (register 02 of
the ERF). The left-most eight flip-flops comprise the busy
portion of the register; the remaining eight flip-flops make
up the active portion. The Busy and Active flip-flops of
each processor perform related functions during execution
of a processor task. The Active flip-flop is set by software
alone when the program determines that a particular
processor should perform a particular task. The flip-flop is
set at the beginning of the task and remains set until the
task is completed. The Busy flip-flop can be set by either
hardware or software, and informs shared resources that
another time slice is needed by the processor to execute
another portion of its assigned task. Requests from the
Panel are handled in an analogous manner, by setting the
Console Busy flip-flop. This flip-flop is set under hardware
control only.

Upon being set, the Busy or Console Busy flip-flop output
is entered in the task queue with other Busy flip-flop
outputs for assignment of time slices in accordance with
the priority level of the request. The task queue is defined
as those processors which have requested time slices and
are waiting for them to be granted. The task queue is
entered by setting corresponding Resync flip-flops in the
RAN, whose outputs are assigned priority in a cyclic
fashion by the priority encoder. For processors O through
3, recognizing requests in this cyclic fashion (called the
scanner mode), may be altered by setting the
corresponding Priority flip-flop.
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The Priority flip-flop may be set for either of two
conditions: enable and invoke. The enable condition sets
the flip-flop when the corresponding /O processor
determiies that it is about to lose data if it cannot obtain
a time slice expeditiously. The enable condition, there-
fore, enables a processor to obtain an out-of-sequence
time slice. The invoke condition assures that a processor
will unconditionally be granted every other time slice,
whether it really needs them or not (provided conditions
of higher priority are not present). Both priority condi-
tions are initiated by software, which sets a corresponding
enable override or invoke priority bit position in the
individual processor’s Control register.

The processor state number assigned the next time slice is
routed to the Read register. This register initiates the RO
and R1 cycles of the time slice to read the starting |
addresses and present MLl from Pu and FRp,
respectively, in the ERF. From the Read register, the
processor number is routed to the Execute register, and
then to the Write register near the end of the time slice.
The Write register initiates the WO and W1 cycles of a time
slice, which stores away the anticipated starting ul address
for the next time slice and the present MLI for starting
the next time slice assigned to the processor. In addition,
the Read and Execute register contents are routed to the
Read/Execute compare circuits of the Consecutive Cycle
(CC) logic. These contents are evaluated for equality,
which they will be if no other processor is in the queue
and the present processor requests a second time slice.
The Read register contents are also used to determine if
software has enabled the processor to operate in the CC
mode. This is done by comparing the processor number in
the Read register with the corresponding CC bit of the
Control register. If the CC bit is set, the Clear CC flip-flop
is not set. The flip-flop output is combined with that from
the Read/Execute compare circuits to generate signals
required by the processor to operate in the CC mode.

If neither a processor nor the Panel has requested a time
slice, the resource allocation logic schedules a null
condition during the following time slice(s). The null
condition inhibits clocking Sy with an updated ul address
and disables the output from Control Storage (CS) which
effectively loads NOP ul’s into Fu. A refresh request from
MS will also generate a null condition if the refresh was
scheduled for the previous major cycle but was pre-
empted by a MS access request. During the next (present)
cycle, the refresh request will lock out another MS access
request (if generated) by setting up a null condition.

Busy/Active Register

The Busy/Active (B/A) register consists of 16 flip-flops,
divided into two groups of eight flip-flops each. Flip-flops
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0 through 7 comprise the Busy flip-flops for the eight pro-
cessors; flip-flops 8 through 15 make up the Active flip-
flops for each processor. Because of the differences in pro-
cessors, their Busy flip-flops are set and cleared under
different conditions. All Busy flip-flops, however, are
similar in that they are set or cleared by either an asyn-
chronous (forced) or synchronous (clocked) input to the
flip-flop. The forced inputs occur as a result of beginning
or ending an input data transfer from a processor to the
shared resources. Requests for such data transfers occur
either under program control, from the requesting pro-
cessor, or under manual control from the System Control
Panel. The clocked inputs to the Busy flip-flops are gen-
erated under program control by the Executive processor.

The Busy flip-flops for both processor 0 (communications
processor) and processor 4 (Executive processor) are
shown in Figure 2-14. The “‘normal’’ method of setting
these two flip-flops is by the REQ signal, indicating that
an external event under hardware control wants a time
slice for the processor. For processor 0, REQ is generated
by the communications adapter signifying that it is ready
to either send or receive data. For processor 4, REQ is
generated after initialization of an Autoload operation,
and at 16.384-millisecond intervals thereafter by the real-
time clock (RTC) to wake up the Executive processor.

Setting the Busy flip-flop for processor 0 is inhibited if
the corresponding PROCESSOR CONTROL SELECT
switch on the Panel is set to STOP/STEP (SWSTOP is
high). Signal SWSTOP enables a processor task to be
executed in the stop/step mode from the System Control
Panel. For processor 4, setting the Busy flip-flop via REQ
is inhibited if the INHIBIT REQ signal is present. This
inhibit signal is generated whenever the Busy flip-flop is
under control of a Breakpoint operation from the Panel
and provides a software debug facility for system pro-
grammer use.

The Panel may also turn on (initiate) a processor under
manual control. This is accomplished by setting the
PROCESSOR SELECT selector to either the 0 or 4
position and pressing the PROCESSOR RUN pushbutton.
This action generates SWSELGO and GO FF, respectively.
This manner of setting the Busy flip-flop is disabled if the
switches are set when the processor is executing during
minor cycles E6 through E9.

Occurrence of a CS parity, MS parity, or outbound error
condition during the last time slice of a task sets the Busy
flip-flop for one more time slice. This is necessary for two
reasons (1) the error might occur at E7 so that no more
time would be available in the time slice to form the trap
address, or (2) unaware of the occurrence of an error con-
dition, the microprogram might stop as a result of clearing
the Busy flip-flop during the major cycle in which the
error condition occurred. The problem is overcome by
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forcing the processor to run for one more time slice and
forming the trap address at E7 of this forced time slice.
Setting the Busy flip-flop for this condition is accomplish-
ed by START, which specifies the present processor exe-
cuting a task, and TRAP-1 which specifies occurrence of
the error condition.

Setting and clearing the Busy flip-flops for processors O
and 4 (as well as for the other six processors) is
accomplished under software control by means of the
clocked input to the flip-flops. This is done at t80 of any
minor cycle, providing ENCLKB/A is present. This clock
enable is generated for any register file write ul when the
destination is register 2 (the Busy/Active register) of the
ERF. Unlike the other six processors, there are inhibiting
conditions that may prevent software from setting the
Busy flip-flop at ENCLKB/A time. Namely, the Busy flip-
flops for processors 0 and 4 can be cleared at ENCLKB/A
time only if the corresponding Active flip-flop has been
previously cleared. In other words, these Busy flip-flops
may not be cleared at ENCLKB/A time if the correspond-
ing Active flip-flop is still set.

Clearing of the Busy flip-flops for processors 0 and 4 is
accomplished when the PROCESSOR CONTROL
SELECT switch of the Panel is set to STOP/STEP. In this
mode, the selected processor runs for only one MLI or
only one major cycle as determined by the setting of the
CYCLE STEP switch. For whichever setting is selected,
indication that one major cycle or one MLI has been
executed is provided by RNI-TX. Signal STATE is
included to insure that the Busy flip-flop is not cleared
before the processor has been assigned a time slice during
step mode operation from the Panel. The Busy flip-flop is
also cleared under Panel control when the PROCESSOR
CONTROL SELECT switch is set to BKPT (signal
SWBKPT). This signal is ANDed with BKPT-TX, which is
generated when any of the three BREAKPOINT MODE
SELECT switches (READ INSTR, READ DATA, and
WRITE DATA) is activated. These switches define the
type of breakpoint action selected: read the MLI at the
location specified by the breakpoint address (READ
INSTR switch), read the operand at the location specified
by the breakpoint address (READ DATA switch), or store
the operand at the location specified by the breakpoint
address (WRITE DATA switch). The breakpoint stop will
occur at the end of the major cycle in which the break-
point occurred.

Upon completion of a one-word transfer, the Busy
flip-flop is cleared by the CIO signal. This signal is
generated when a ClO yl compare condition is not met,
indicating that additional words have yet to be
transferred. The two CIO ul’s compare the last byte



address with the current byte address. Signal CIO is
generated for either an Au=By or an Ap#By condition,
depending on the predetermined ul program.

The Busy flip-flop for processors 1, 2, and 3 is shown in
Figure 2-15. As shown, the flip-flops for these three
processors are set via the forced set input by means of the
same conditions as for processors 0 and 4. In addition,
these flip-flops can also be forced to a set condition by an
ATTN signal from the processor. This signal is related to
the REQ signal in that it informs the shared resources that
the corresponding processor wants a time slice. It differs
from REQ, however, in that it is generated for a condition
not associated with the operation currently being
executed by the processor. Therefore, ATTN is inhibited

from setting the Busy flip-flop until the corresponding
Active flip-flop is cleared, meaning that the present
operation has been completed and the operation that
generated ATTN can now be executed. In addition, ATTN
cannot set the Busy flip-flop during times E6 through E9
to eliminate timing problems associated with CC and stop/
step operations at these times.

Setting the Busy flip-flops for processors 1, 2, and 3, via
the clocked input, is done by means of software, the same
as for the Busy flip-flops of processors O and 4. The ALU
input must be enabled by both ENCLKB/A and the fact
that either the Busy flip-flop is already set or the
corresponding Active flip-flop is cleared.
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Figure 2-15. Busy Flip-Flops, Processors 1,2, and 3

A diagram of the Busy flip-flops associated with
processors 5, 6, and 7 is shown in Figure 2-16. Because
these processors are general-purpose processors, the
corresponding Busy flip-flops do not require either the
REQ or ATTN forced set inputs. The only forced set
inputs are those required for generating a trap address and
selecting the processor from the Panel. The flip-flop is set
or cleared under program control at ENCLKB/A time.
Unlike the Communications and Executive processors, the
general-purpose processors can be cleared under software
control regardless of the state of the corresponding Active
flip-flop. The Busy flip-flop is cleared via the forced clear
inputs for an RNI and breakpoint condition initiated by
the Panel. The RNI condition is implemented in a manner
similar to that for processors 0 through 4, except that the
action of the STOP/STEP switch is manifested by clearing
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the corresponding Active flip-flop to generate ACTIVE.
This differs from that for processors O through 4 where
the STOP/STEP switch input was supplied directly to the
forced clear logic.

The Active flip-flops for all eight processors are very
similar as shown in Figure 2-17. All eight flip-flops are set
and cleared at ENCLKB/A time under program control. In
addition, the Active flip-flops for general-purpose
processors 5, 6, and 7 can be set and cleared via the Panel
by means of the force set and force clear inputs. This is
done by means of the corresponding PROCESSOR
CONTROL SELECT switches, which set a flip-flop when
set to the NORMAL (run) position or clear a flip-flop
when set to the STOP/STEP position.
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Resource Allocation Network

Scanner and Priority Logic

The Resource Allocation Network (RAN) assigns time
slices to each requesting processor in accordance with its
needs and its position in the queue relative to other
requesting processors. The network consists of two
sections: the scanner and priority logic, which grants time
slices t0 a particular processor; and the time slice control
logic, which sets up conditions to perform R (read B, and
F registers), E (execute ul’s), and W {write Py and F
registers) cycles during the processor’s assigned time slice.
A block diagram of the scanner and priority logic is shown
in Figure 2-18. The logic consists of eight Resync
flip-flops (one per processor), four Priority flip-flops (one
for each of processors 0 through 3), and a priority
encoder. The eight Resync flip-flops grant time slices to a
requesting processor on a cyclic basis, wherein all
requesting processors are granted one time slice in
succession starting with the lowest numbered processor.
Each Resync flip-flop is set at E160 time if its
corresponding Busy flip-flop is set, meaning that the
processor wants a time slice. The clock signal which sets
each Resync flip-flop is ANDed with INH RSYN signals
from each higher-numbered Resync flip-flop. These signals
inhibit a Resync flip-flop from being set again until all
higher numbered processors have been granted their time
slices.

This method of granting time slices is referred to as the
scanner mode, since the logic simply scans all processors
requesting time slices and grants them in a cyclic
sequence. Under certain conditions, however (such as
imminent loss of data from an |/O device), the normal
scanner mode can be overridden by a priority mode to
grant a processor an out-of-sequence time slice if
necessary. This is accomplished by the Priority flip-flops.
Only processors O through 3 are provided with this
override capability since they are used with 1/O devices
where rapid and timely data transfers are vital. These
Priority flip-flops can be set by either one of two priority
levels: enable priority and invoke priority. The enable
priority level is implemented under software control by
setting the EP (Enable Priority) bit position of the
Control register in the ERF for that particular processor
(CONTR-00 for processor 0, CONTR-01 for process 1,
and so forth). This level allows an 1/O processor to secure
an out-of-sequence time slice if there is danger of losing
data, provided that no lower numbered processor is also in
an enable priority state. Indication of possible data loss is
provided by the PRI signal from each 1/O processor,
which is ANDed with the corresponding CONTR bit. The
invoke priority level is also implemented under software
control by setting the IP (Invoke Priority) bit of the Con-
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trol register in the ERF for that particular processor
(CONTR-04 for processor 0, CONTR-05 for processor 1,
and so forth). This level assures an |/O processor of at
least one alternate time slice, (even though there is not
necessarily danger of losing data) provided that no lower
numbered processor is also in a priority mode. If neither
EP or IP bit positions for a processor is set, the processor
reverts to the scanner mode previously discussed.

The outputs of both the Resync and Priority flip-flops are
fed to the priority encoder. This circuit makes the final
determination of priority by generating the number of the
processor assigned highest priority in BCD form. This
BCD number, represented in the block diagram as outputs
A, B, and C, are fed to the R, E, and W cycle logic. If no
processor is requesting a time slice, output D goes high to
generate either a null condition or allow the Panel to gain
access to the system. The null condition schedules NOP
operations during the interval that no processor is
requesting time slices, unless the Panel desires entry to the
system. For this condition, the Panel is treated by the
priority logic as a ninth processor, with the lowest
priority.

The REFRESH: signal fed to the priority encoder is used
to resolve a conflict between simultaneous requests for a
refresh cycle and an MS access cycle. If a refresh request
occurs in the absence of an MS access request, the refresh
operation takes place in MS transparent to the rest of
shared resources. However, if the refresh request occurs
simultaneous with an MS access request, the refresh
request is pre-empted by the MS access request. During
the following major cycle, however, the refresh request
pre-empts all other operations performed during that
major cycle by setting up a null condition. This null
condition effectively blocks the next processor in the
queue from getting a time slice until the following major
cycle, even if that processor was not going to access MS.
Logic for generating this null condition is shown in Figure
2-19; associated timing is shown in Figure 2-115 located
in the paragraph titled Main Storage. As the timing of
Figure 2-115 shows, the Refresh Request flip-flop is set at
EO to generate REFRESH when the refresh counter
reaches a count of 52. If an MS access request is not
present (signal ACCESSEN is low), the refresh operation
takes place on schedule and the Refresh Request flip-flop
is cleared at E3. For this situation, the fact that
REFRESH blocked other requests into the priority
encoder while it was high had no effect since the signal
dropped before E560, the processor committed time. |f
an MS access request is present (ACCESSEN is high), the
Refresh Request flip-flop remains set past E3 to block all
outputs from the priority encoder (outputs go high). At
EB60, the Null State flip-flop is set, which sets the Null
flip-flop at E620 and finally causes ENCLKSM to go low.
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Table 2-2. Priority Logic Operations

Scanner (Revoke Priority) Mode

0.1,2,3,4,5,6,7,0,1,2,...

2) processors 0, 1, and 7 requesting
0,1,7,0,1,7,...
clear Busy 7 FF
0,1,0,10,1,...

Enable Priority Mode

~%
PRI-0 Set

prm———— r—-*-—\
PRI-1 Set ' PRI-0 Set

Invoke Priority Mode

1,0,1,2,1,0,1,2,...

2,3,2,3,2,3,...

2,3,4,5,1,6,7,2,3,0,4,5,6,7

1) all processors requesting (all Busy FF's set)

1) Processors 1 through 7 requesting; processor O in enable priority mode
1,2,3,4,5,0,6,7,1,2,3,4,5,0,6,7

*
PRI1-0 Set

2) processors 2 through 7 requesting; processors O and 1 in enable priority mode

rre s

1) processors 0, 1, and 2 requesting; processor 1 ininvoke priority mode

2) processors 0, 1, 2, and 3 requesting; processors 2 and 3 in invoke priority mode

Inhibiting this signal sets up the required null condition
for the following major cycle by preventing updated w1
addresses from being clocked into Su. The result is to
prevent execution of a microprogram during the next
major cycle (N+1) by issuing NOP’s from CS. The refresh
operation, therefore, can be performed during major cycle
N+1. At EB60 of this major cycle, the Null State flip-flop
is cleared and ENCLIKSM goes high. Execution of ul’s for
the processor that would normally have run during time
slice N+1 will instead be performed during time slice N-+2.

Because priority assigned to a processor depends on many
different conditions (relative position of processor in
queue, whether enable or invoke priority control bits are
set, and so forth), it is useful to present several different
examples showing how the priority encode logic operates
under different conditions. These examples are listed in
Table 2-2. The two examples shown when operating in the
scanner made grant time slices to each processor in a
sequential manner. The sequence is interrupted only when
a Busy flip-flop is cleared (or set); however, the
interruption does not alter the cyclic nature of granting
time slices. The two examples shown when granting in the
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enable priority mode indicate how a processor can obtain
an out-of-sequence time slice when its PR1 signal is active,
providing that priority is enabled for that processor via
software. The two examples for the invoke priority mode
show how processors 2 and 3 can lock out any other
requesting processors in a lower priority mode, even
processors 0 and 1, whose relative positions in the queue
are higher.

Time Slice Control Logic

Logic to perform the R, E, and W portions of the active
processor’s time slice is shown in Figure 2-20. These
portions of a time slice are initiated by corresponding
registers, which are clocked with the encoded processor
state number at the times necessary to start these
portions. The Read register, clocked at EG60 of the
previous time slice, initiate signals to read the contents of
Pu and F for the active processor. (Time EB6O is
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considered to be the proceSsor committed time, at which
time the priority encoder logic is committed to grant a
time slice to a particular processor. This committal time is
in contrast to any time preceding this point, during which
the priority logic may change or abort a processor
request.) These two operations occur during two minor
cycles, identified as RO and R1. (Recall that these two
minor cycles do not exist as such. They occur during E6
and E7 of the previous time slice.) This is done by routing
the three READ signals to the ERF group | select logic.

The Execute register, clocked with the processor state
number at EQ00, is used for two purposes: (1) lts
contents are routed to the execute decoder logic, which
decodes the processor number in BCD form to set one of
eight Execute flip-flops. The flip-flop, in turn, generates
two outputs designated DISPLYS and STATE. Signal
DISPL.YS is used to light the corresponding PROCESSOR
ACTIVITY DISPLAY indicator on the Panel. Signal
STATE is used by the Busy register to conditionally set or
clear a particular Busy flip-flop. In addition, the Execute
flip-flops associated with processors O through 3 generate
an EXCT signal, which is returned to the corresponding
1/0 processor as an acknowiedge that it is starting a time
slice. (2) The Execute register contents are also fed to the
Consecutive Cycle (CC) logic to make the Read register/
Execute register comparison required as a prerequisite to
starting consecutive-cycling.

The Write register, clocked at E560, initiates the W
portion of a time slice required to store the next ul in PM
and the MLI presently being executed in F. This is
accomplished in a manner similar to the Read register, by
sending WRITE address signals to the ERF group | select
logic. These signals select Pu and F associated with the
active processor for storing the above quantities.

Time Slicing

Normal Operation

Normal time slicing consists of granting time slices to
processors in order of their priority, as discussed in the
previous paragraphs. This normal condition is illustrated
in Figure 2-21, which shows granting of time slices for
processors 0, 1, and 6. The timing assumes an initial
starting condition where no processors were executing
prior to requests from processors 0, 1, and 6. The first
time slice, therefore, is set up as a null since processor 0
(the first processor to be granted a time slice) will not
begin executing until the following time slice (recall that
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priority for a particular processor is always determined
one time slice before the processor begins executing). The
requests from all three processors set their corresponding
Busy flip-flop simultaneously at EQ80.

At E160, the Busy flip-flop contents are clocked into
Resync flip-flops 0, 1, and 6 in the scanner and priority
logic. The requests are scanned by the logic, which
determines that processor 0 will be granted the first time
slice. The processor number is sent to the Read register at
EB60 in preparation for initiating the RO and R1 cycles of
processor Qs time slice. These cycles read the address of
the first ul to be executed during the time slice from Py
and the MLI, of which the ul is a part, from Fgp. At
EB00, the Resync flip-flop for processor O is cleared to
remove this processor from the job queue (since its
request for a time slice has been honored). Clearing of the
Resync flip-flop at this time is a reflexive action and
occurs during E6 of every time slice, as shown in Figures
2-21 and 2-22. The State O flip-flop is set at E000. At the
same time, the processor number in the Read register is
transferred to the Execute register. At this point, the
execute time slice for processor 0 begins.

Processor 0 reads the first ul from CS at the address
specified by (Su) during EOQ, and executes this yl at EO
and the beginning of E1. At E160 of the processor O
execute time slice, the Resync flip-flops of the scanner
and priority logic are again scanned to note that pro-
cessors 1 and 6 are still waiting for time slices. The prior-
ity encoder determines that processor 1 will get the next
time slice and at E560, the encoded processor number is
clocked into the Read register. At this time also, the
encoded number for processor 0 is clocked into the Write
register from the Execute register to initiate the WO and
W2 cycles for processor 0. During these cycles, the address
of the first ul to be executed during the next time slice
assigned to processor 0 is transferred from Pb or Pp to Su
and the MLI currently being executed is stored into FRF'
From this point on, processors 1 and 6 time slices are
handled in exactly the same way as for processor 0, as will
time slices for all subsequent processors that may enter
the queue. During normal operation, therefore, the only
difference in granting time slices to a requesting processor
is the processor number, which determines its position in
the job queue.

Consecutive Cycle Operation

Consecutive cycle {CC) operation is a means of increasing
processing efficiency when only one processor is
requesting time slices. During normal operation, one
processor requesting time slices can execute only during
every other time slice. The reason is due to the overlap of
R and W cycles of successive time slices, as shown in
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Figure 2-23. Assume that processor 0 is the only processor
requesting time slices. Upon completion of the last ul at
E7, it stores the address of the first ul to be executed
during its next assigned time slice in Py, during WO and the
present MLI in FRE during W1. If another processor was
requesting time slices, it would have already read its
starting ul address and MLI from Py and FRp cycles
before, during the RO and R1 cycles of the next assigned
time slice. Since only one processor is requesting, it
cannot retrieve this information until the following RO
and R1 cycles. Therefore, the time slice following the one
that processor 0 was assigned must be nulled out. This
null is implemented by issuing NOP’s from CS. The result
is only a 60% utilization of shared resources (only every
other time slice can be used) when only one processor is
requesting.

Timing for one processor requesting a time slice and not
enabled; for CC generation is shown in Figure 2-24. The
first time slice is a null to allow priority to set up
conditions so that processor O can execute during the next
time slice. During the next time slice, processor 0 executes
the U I's while priority determines if there are any other
processors requesting time slices. Since there are no
others, it prepares to grant a second time slice to
processor O by clocking processor number O into the
execute register a second time. Prior to beginning this
second time slice, however, the processor is interrogated
to see whether it has been enabled for CC operation. The
CC mode of operation depends on two conditions being
present: (1) no other processor is requesting time slices,
and (2) the CC bit in the Control Register corresponding
to the single processor is set. Interrogating for these two
conditions is performed by the logic of Figure 2-25. This
logic checks for the first condition by comparing the
contents of the Read and Execute registers of the time
slice control logic at E6 for equality. During normal
operation (more than one processor requesting), the
contents of these registers will not be the same at E6 since
the Read register will already have been loaded with the
number of the next processor in the queue. During CC
operation, however, only one processor is in the queue so
the Read register contents will not have been changed.
The second condition is checked by the CC Clear flip-flop,
which sets by ANDing the processor number in the Read
register with the corresponding CC bit in the Control
register. |f both conditions are present, signal RD=EXEC
is generated. A second signal, CC-ENABLE is also
generated. This signal indicates only that the processor is
enabled for CC and not necessarily that it is the only one
in the queue. For this present example, CC-ENABLE is
high since processor 0 is not enabled for CC. The signal
generates ABANDCC at E640, which sets the Null
flip-flop in the priority logic. Setting this flip-flop blocks
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accesses to CS for all of the next time slices, which sets up
the required null time slice.

Enabling a single processor to operate in the CC mode is
accomplished by three operations: (1) At the end of the
time slice, Sy is loaded with the contents of Pp instead of
Pu. Since Pp contains the starting ul address for the
present processor, assuming that it could not get another
time slice until some later time, the processor can resume
execution during the following time slice at the same
point that it left off during the present time slice. Reading
this starting yl address from Pp and the resultant ul from
CS is performed during two extra minor cycles inserted
between E7 of the present time slice and EQ of the
following time slice, designated E8 and E9. During E8, the
contents of Pp are routed back to S#. During E9, the |
located in CS at the address contained in Sy is read for
execution during the following EO. (2) The read Py and F
operation associated with the R portion of the following
time slice is inhibited, to prevent reading the starting i1
address and MLI read by the same processor at the
beginning of the present time slice. This is done by
inhibiting selection of the Group | ERF containing Pu and
FRE- (3) Sp is blocked during E6 and E7 and Fy is
blocked during E8 and E9. These blocks are necessary to
prevent erroneous | addresses from making CS references
prior to the correct starting ! address being loaded into
Su at E8. The sequence of events for implementing these
operations is described in the following paragraphs.

Assume now that processor 0 is the only processor
requesting time slices and is also enabled for CC. Timing
for this example is shown in Figure 2-26. Like Figure
2-24, it is assumed that no processor was executing before
a request was made by processor O for time slices.
Therefore, the first time slice shown is a null. The
sequence of events during this null time slice is the same
as that for Figure 2-23. At EO of the next time slice, the
CC Clear flip-flop is set. Essentially, this flip-flop is used
to get out of the CC mode when the CC bit in the Control
register is cleared. Therefore, it is set when the processor
enters the CC mode and remains set until the CC bit is
cleared. When set, the CC-CLLEAR output from the clear
side goes low, as shown in Figure 2-25. Since this flip-flop
is clocked at EQBO of every time slice, it also serves the
purpose of snapshotting the CC bit every time slice. This
is the only time during a time slice that the CC bit is
snapshotted and commits the time slice to react
accordingly. In other words, even if the CC bit was to be
cleared before the end of the time slice, the time slice
would be committed to the CC mode even if not really
necessary.

At EG, the Null flip-flop is set and the CC flip-flop, which

is normally set if not in the CC mode, is cleared. Logic for
these flip-flops and associated logic generating other
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signals necessary for CC generation is shown in Figure
2-27. Corresponding timing for these signals is shown in
Figure 2-28. The two flip-flops are set and cleared,
respectively, at E620 wupon occurrence of a low
RD=EXEC signal. (Recall from Figure 2-24 that this signal
will be low for a single processor enabled for CC.)

Setting the Null flip-flop generates BLOCKS, which
blocks clocking of Spat E680 and E780. The clear side of
this flip-flop is also used to set the Null*>CS flip-flop,
which generates NULL> CS. This signal is sent to CS to
effectively shut off CS during E8 and E9. The result is to
clock “0’s”" into Fu at E800 and E900. Clearing the CC
flip-flop generates the following four signals which
perform the indicated operations: (1) Signal SELPMORF is
driven high to inhibit selection of the IC element
containing Py and FRg in the ERF. Since the same
processor is executing, nothing is needed for another
processor from the ERF. (2) Signal CONCYCLE is
generated to hold SELFH/PL low. This is done for the
special case when a ClO pl is executed in CC as part of an
I/O data transfer loop, and the condition for exiting from
the loop is met. For this situation, the address of the next
wlis put into PU as part of the ul execution. Therefore, it
must be loaded into Sy from Py. This is accomplished by
signal CIOEXIT in Figure 2-27. If the exit condition is
met, CIOEXIT drives SELPMORF low to enable selection
of Py by SELFH/PL to load Syu. (3} Signal CC-F/F is
generated to prevent the excursions counter from
recycling back to EO after generating E7. The result is to
add minor cycles E8 and E9 to the timing chain. (4)
Signal ENPP~SM is generated to enable gating the
contents of Pp, containing the starting il address of the
next time slice back to Sy This address gating takes place
during E8. At this point, processor 0 can begin executing
another time slice. Successive time slices will be executed
in exactly the same manner until a condition arises to
remove the processor from the CC mode. These
conditions are (1) the processor’s CC bit is cleared, (2)
another processor requests time slices, or (3) the
processor’s Busy flip-flop is cleared.

Removing a single processor from the CC mode by
clearing the CC bit position is accomplished by the CC
Clear flip-flop, the same as for a single processor which
began executing with its CC bit initially cleared. At E640,
the evaluation is made to determine if the CC bit of a
single processor is still set. If not, the Read Null flip-flop
of the RAN is set via ABANDCC to null out the following
time slice. A special case is stopping the CC-enabled
processor completely because its Busy flip-flop is cleared.
Clearing the Busy flip-flop indicates that the task
performed by the processor is completed. Stopping the
processor is done by means of ABANDCC, as shown in
Figure 2-25. Clearing the Busy flip-flop, however, is done
at E7 which occurs after ABANDCC will have been

2-34

generated by the CC-ENABLE signal. For this case,
therefore, ABANDCC is generated at E840 by BUSY,
which indicates that the present processor has completed
its task. Generating ABANDCC in this manner prevents
the processor from being trapped in a condition in which
it could not turn itself off. The result is to generate a null
during the following time slice to allow the next processor
in the queue (if any) to read up its starting ul address. The
processor whose Busy flip-flop has cleared is removed
from the queue by clearing its Resync flip-flop in the
priority logic at the next E1, as shown in Figure 2-22,

A request from a second processor for time slices removes
the single processor enabled for CC from the CC mode by
preventing RD=EXEC from being generated. This prevents
the Null and CC flip-flop from being set, which inhibits
the associated CC mode signals. A special situation arises,
however, when the second processor is of lower priority
than the one enabled for CC. Under this condition, the
processor enabled for CC will run for one additional time
slice after the lower priority processor enters the queue.
The reason is that the CC snapshot logic will have
determined that the processor enabled for CC should
execute in the CC mode before the scanner and priority
logic recognizes that another processor has entered the
queue. This situation is shown in the timing of Figure
2-29. Assume that initially, only processor O is requesting.
The first time slice is a null to set up processor 0, enabled
for CC operation, to run during the next time slice.
During this next time slice, processor 6, not enabled for
CC, enters the queue at E160. At E050, however, the CC
snapshot logic has already determined that processor O
will run in the CC mode for the present time slice. One
minor cycle later, at E160, the scanner and priority logic
determines that both processor 0 and 6 are in the queue.
Since this determination is not made until after the CC
snapshot decided that processor O could run in the CC
mode (only processor in queue and CC bit set), the logic
assumes that both processors 0 and 6 have just entered the
queue and are to be granted priority. In accordance with
these processor numbers, the result is that processor O is
granted a second time slice solely on the basis of its
position in the queue. After completion of this time slice,
the CC snapshot logic is disabled and priority is granted in
the normal manner so that processors 0 and 6 get
alternate time slices. (The above sequence of events is
modified somewhat if the processor running in CC is also
in the invoke priority mode. Under these circumstances,
the RAN will prevent the second processor from entering
the queue even for alternate time slice. This level of prior-
ity — CC mode and invoke priority mode — is the highest
level of priority available to a processor and assures that
any of processors 0 through 3 in this mode will absolutely
lock out the other three processors for as long as the
present processor is in this mode.)
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As discussed previously, the Resync flip-flop for a
processor granted a time slice is normally cleared at E6 to
remove the processor from the queue. The flip-flop stays
cleared until all lower-numbered processors in the queue
are serviced. One exception to clearing the Resync
flip-flop at E6 is the case of a processor whose Busy
flip-flop was cleared at E7. In this case, the Resync
flip-flop is cleared at the next E1. A second exception is
the case of two or more processors in the queue, one of
which is in the priority mode. For this situation, the
Resync flip-flop of the processor enabled for priority
must be cleared prior to E5S60 to avoid locking out all
processors not enabled for priority. Timing for this
condition is shown in Figure 2-30. Assume that processors
0 and 6 are in the queue and processor O is in the priority
mode (Priority flip-flop set). At E160 of the null time
slice, the Resync flip-flop for processor 0 is set to initiate
the execute time slice. Because processor 0 is in a priority
condition, its Resync flip-flop is set again at the next
E160. This second resync request must be cleared before
E560 to avoid generating ABANDCC because both Read
and Execute registers contain the same processor number
(0). If ABANDCC were to be generated in this manner, it
would simulate the same condition as a single processor
requesting, not enabled for CC, by generating a null
during the next time slice. The effect would be to lock
out all requests for these processors in the queue notin a
priority condition. This effect is inhibited by clearing the
Resync flip-flop for processor 0 at E3 via CLR RESYNC,
as shown in Figure 2-22. The signal is generated by
CC-CLEAR, indicating the processor is not enabled for
CC, and ENCLR PRI. Signal ENCLR PRI, in turn, is
generated if the present processor executing (EXCTING
PROC # ) is in a priority condition (PRIORITY FF).
Signal EXCTING PROC # obtained from the execute
decoder of the scanner and priority logic and PRIORITY
FF is obtained from the corresponding processor Priority
flip-flop.

CONTROL

The following paragraphs discuss various control circuits
that are directly related to, but do not logically fit into
other sections of the shared resources information. These
are: skip control, branch control, cycle delay logic, and
system reset logic. The skip control logic evaluates skip
conditions and implements the skip operation for the
eight skip pl's, identified as the 5,X,X ul’s. Four of the
eight skips (5,X,0 ul's) enable a skip depending on the
results of an operand in Au,. The other four skips (5,X,1
’s) effect a skip depending on the results of a compare
between A and By. The branch control logic specifically
‘deals with generating a final branch address for the FNJ,
FRJ, FZJ, RNI, and JMP ul’s. These branch pl’s form
their address from the contents of Sy and a partial branch
address formed by branch address translation peculiar to
each branch pl. In addition, this logic implements the
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branch-to-next-CS module anomaly associated with all
branch pyl's.

The cycle delay logic is used to delay execution of a SUM,
DSUM, CMP, or CMU (2,X) ul for one minor cycle if
programmed immediately following any ul that feeds data
into either ApLor By Data loaded into Ay or Buby such a
pl takes almost one cycle to propagate through the ALU.

Therefore, the results of such a yl are not available for the
2,X ul to process until one minor cycle after the pl that
loaded Ay or Bu. The system reset logic performs a
System Reset on the system initiated by a power-on
condition, performing a Reset/Load or Autoload
operation, or pressing the SYSTEM RESET pushbutton
on the System Control Panel.

Skip Control

A simplified diagram of the skip control logic is shown in
Figure 2-31. The results of the A}, /By compares made in
the ALU are fed to the skip evaluation logic. This logic
combines the Ait/Bu compare results with the skip !
sub-operation codes (bit positions Sg and Sq) to
determine if the skip condition defined for the skip 1l
was met. The skip evaluation logic is enabled by the Not
Skip flip-flop. This flip-flop is normally in a set condition
to block the u! foliowing the skip w1 from being clocked
into Fu if the skip condition is met. This action
essentially skips the next (| by setting up a null condition
for the next minor cycle. The flip-flop is cleared for 100
nsec during the skipped ! minor cycle, however, to
enable the ul following the skipped ul to be clocked into
Fu. Timing for this sequence of events is shown in Figure
2-32. This figure shows the skip w1 (NI) being skipped
during E3, and the il following NI (N1+1) being executed
at E4. The flip-flop is cleared by SKIP from the skip
generate logic as a result of a low output from the skip
evaluate logic and the rest of the skip ! operation code
bits (5, X, 0 or 5, X, 1). These outputs are also sent to the
clock Fu logic to inhibit ENCLKFM at the start of E3. At
the end of E3, the Not Skip flip-flop is set again which
disables the skip evaluate logic. This allows the NI+1 pi
to be clocked into Fu for translation and subsequent
execution.

Execution of a skip ul at E7 differs from execution at EO
through E6 because the following il to be skipped will
not appear until the next assigned time slice. If the
processor is not operating in the Consecutive Cycle (CC)
mode, this next time slice will not be granted until several
other processors have been allocated their requested time
slices. It is necessary, therefore, to store away skip status
information in a register until the next assigned time slice.
This is done by routing SKIP from the skip generate logic
to the Skip Status flip-flop, which is set at E000. The out-
put of this flip-flop, in turn, is stored in the Skip Status



LeC

NULL —

(0)
Pu FRF

«4— PROCO

o

(0}

PROCO ——»

0

PROC 6

(0) (6)

— »l¢——— PROCO ———»le—— PROCE

(0)

2 o Do Ly LB Pelele T iy LB

Sy F Su Py FRf Su F |Pu FRf Su F[Pu Fgf Sy F |Pu FRF
|e5] 6 |E7 [wo| w1 eo|e1|e2|e3|ea|e5] 6| E7 | wo|wi Ro| R E0|€1] 2| e3|ea|es|e6 |7 [wo|wa

Ro|R1| €0 E1{E2|E3|Ea|E5|E6|E7[E8|ED RO[R1[ E0|£1[E2| €3[4 [E5 [E6 [E7 [wo w1 Ro| R1{ E0 E1] ETC.

wo  [wi

TO00  TI60  TS60 TG00  TOOD T160 Taizo—_ T600  T00O TI60  T560

SET BUSY  PRIOR CLR  SET RSYC  PRIOR CLR  SET BUSY  PRIOR

STATE  FF ENC  RSYC  STATE  FF ENC  RSYC STATE  FF ENC

FF T0 T0 FF FF ) T0 FF FF T0 T0

@  RSYC READ (0 © stk READ (0 (@ RSYC READ

READ  FF REG READ SET REG READ FF REG

REG (0.6) © REG (I REG (0 o

To EXEC TO EXEC TO EXEC

EXEC REG EXEC REG EXEC REG

REG T0 REG T0 REG T0

o WRITE 6) WRITE )] WRITE

T060 REG REG REG

SET o 0 (6)

cc

CLEAR

FF

Figure 2-29. One Processor in Queue, Enabled for CC, Another Processor Enters Queue



register during WO. This register is addressed and written
into by the same signals that store the starting ul address
in Pu, via the ERFG1, SELFH/PL, and EFIRH/WL sig-
nals. Timing for this skip status write operation is shown
in part a of Figure 2-33. During RO of the next time slice,
the skip status information is read from the register and
routed to the Null CS flip-flop which, in turn, is set by
skip status at E680. This flip-flop is used to skip the NI ul
at EO by preventing it from being read from CS. (This ul
skip differs from the case discussed in the previous para-
graphs in that the abort can be effected before the ul is
even read from CS. For the previous case, the ul to be
skipped had already been read from CS before the skip
evaluation logic detected that a skip should be made.) If
the skip ul is executed at E7 by a processor running in the
CC mode, it is not necessary to store skip status informa-
tion since the next time slice assigned to the processor will
follow the present time slice. Timing for this situation is
shown in part b of Figure 2-33. Signal SKIP is generated
as before to set the Skip Status flip-flop. Since EQ of the
next time slice must be delayed two minor cycles when
operating in the CC mode to accommodate E8 and E9,
the Skip flip-flop is set for this case at E800. The
Null » CS flip-flop is set, in turn, at E880 to block reading
of Ni from CS during E9.

Branch Control

The branch control logic operates on two classes of partial
branch™ ul's: the FNJ, FRJ, FZJ, RNI ul’s and the JMP
i, The main difference between the two classes of pl's is
how much of Sy is used to form the branch address. The
first class of partial branches uses only bits 2 and 3 of Su
with bits 4 through 15 derived from a corresponding jump
address generated by the particular yl. The JMP ul uses
bits 2 through 7 of S with bits 8 through 15 generated
by the JMP pul. In both cases, the Sy bits are under
hardware control as opposed to pi | control. Furthermore,
the branch control logic determines how the branch
address will be used to form a starting w| address (since
all branch wul’s are blockpoint pl's). Specifically, this
means using either Pp as a holding register if the branch
KV is executed during EO through E6, or Pp if the ul is
executed at E7. Depending on whether PD or Pbis used as
a holding register, the branch-to-next-CS storing unit®
anomaly may result. This anomaly causes the branch to

*Partial branch ul's are so identified because, at the most, they
replace only 14 of the 16 address bits in SU (bits O and 1 are not

. changed). This is in contrast to the full branch ul's (CLR, STA,

STB, and AND when X designates PM). This group of Ui's replaces

" all 16 bits of SM when the X designator of these Ul's specifies PU

since SM is in the same path.
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Figure 2-30. Two Processors in Queue, One Enabled for Priority
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take place within the same 4096-word unit in which the
branch pl is located, except for the following two cases in
which case the branch is made to the following unit: (1) If
the branch ul occupies the last location of a unit, or (2) Hf
the branch ul occupies the next-to-last location of a unit
and is executed at any time other than E6 or E7.

In addition to the above anomaly, the JMP ul has a
second anomaly associated with it that allows a branch to
the next 256-word page within a unit: (1) If the JMP ul
occupies the last location of a page, or (2) If the JMP ul
occupies the last location of a page and is executed at any
time other than EG or E7.

It should be noted that normal implemenation of the par-
tial branch ul's do not make use of these anomalous char-
acteristics. The anomalies ‘““fall out’” of the hardware
design by default rather than by intent.

Generation of the branch address for the first class of
branch pl’s is illustrated in Figures 2-34, 2-35, and 2-36
using the FNJ il as an example. These three figures show
execution of the FNJ pil at E4, E6, and E7, respectively.
As will be seen, the branch address and starting yl address
formed will differ according to the time that the ul is
executed. For all three examples, the FNJ ul is assumed
to be located in the next to last address (FFE) of
4096-word CS unit 0. Referring to Figure 2-34, the
address of the FNJ pil to be executed at E4 is clocked in
Suat E280 and the ul read from CS during E3. At E380,
Suis clocked with address OFFF (OFFE+1). Bits 2 and 3
of this updated address, in turn, are clocked into Pp at
E480 to form bits 2 and 3 of the sta_rting p! address.
These two bits are enabled to Pp by E7, indicating the
enable is active during every minor cycle except E7. Bits 2
and 3 also clocked into Sy at E480, but after being
updated a second time to form address TNNN. This
indicates that the resultant jump will be made to some
address in module 1. What has been clocked into Pp,
however, is address ONNN meaning that for blockpoint

Execution of the FNJ ul at E6 and E7, shown in Figures
2-35 and 2-36, differs from that executed at E4 in that
the ul to which the jump is made is not executed until the
next time slice. In Figure 2-35, the jump will be to address
NNN in the same unit since the address clocked into Pp
dces not get updated a second time by the Su+1 logic. At
E680, instead, the starting ul address for the following
time slice (XXXX) is gated into Su. This ul is then exe-
cuted at EOQ of the next time slice. Figure 2-36, is similar
to Figure 2-35 except that bits 2 and 3 cannot be routed
into Su even after the first Su+1 update. Therefore, they
are routed to Pb along with bits 4 through 15. At E780,
they are clocked into Pp along with the rest of the jump
address from the FNJ translation logic. Note that bits 2
and 3 are enabled from Pb specifically at E7, in contrast
to the two preceding examples where the bits were
enabled from Su byE_7.

In contrast to the preceding class of branch ul’s, the JMP
ul not only can jump to the next unit but also to the next
256-word page within a unit if located at address FFE and
executed at any time other than E6 or E7. This condition
arises from the fact that a JMP ul jump address is formed
using bits 2 through 7 of Su instead of just bits 2 and 3.
Therefore, the page address (bits 4 through 7) can be up-
dated by the Su + 1 logic as well as the unit address. This
page updating facility is shown in Figures 2-37 and 2-38,
which illustrate execution of the JMP u | at E4 and E7,
respectively. Both examples assume the JMP ul is located
in address OOFE, the second to the last address of CS page
0. Execution of the JMP ul at E4 is similar to that of the
FNJ ul at E4, except that only bits 8 through 15 of Pp
and Su are loaded with the translated jump address from
the JMP ul. Bits 2 through 7 of Pp are loaded with the
bits 2 through 7 of the JMP ul address updated once by
the Su+1 logic (OOFE+1=00FF). Since only one update of
this address is not sufficient to advance to the next page,
the address in Pp causes a jump to address NN in the same

purposes the resultant jump will be made to the same SKIP Ni NI+
address as in Sy but in unit 0. Bits 4 through 15 of the £2 E3 E4
jump address are formed by a translation of bits from
both the FNJ ul and the MLI in the F register as discussed A A A
in the paragraph titled Jump Decode. These twelve bits éﬂ%‘fiﬂ E';EB'&M (mfﬂ(’;M)
are clocked into both Pp and Su by the enable shown in [m-pu] H
Figure 2-34. Note that these enables clock the jump
address in two parts: bits 4 through 7 and bits 8 through
15. The ul normally executed at E5 is inhibited by block- SKiP
ing it from going into Fu. Instead, the ul at jump address
TNNN is read and then executed at EB6. NOT
SKIP FF .
N ————
100 NSEC

*CS storage units are 4096-word portions of CS located on bound-
aries of 010 (000016), 409610 (100016), 8192.'0 (200016), and

so forth. Figure 2-32. Timing for Skip Executed at EO through E6
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page (page 0). The resultant jump address in Su, however,
represents bits 2 through 7 after having been updated
twice by the Su+1 (00FE+2=0100). This causes a jump to
address NN in the next page (page 1). The JMP ul exec-
uted at E7 is similar to the FNJ ul executed at E7 in that
Pb must be used to hold the updated bits 2 through 7
from Su. Since these bits can be updated only once, the
jump is confined to the same CS page.

Cycle Delay Logic

The cycle delay logic is shown in Figure 2-39. Essentially,
the logic consists of the Cycle Delay flip-flop, which is set
at t00 for 100 nanoseconds by any ul that feeds Au
and/or Bu. These ul's are the Load S (3,X), Load By
(6,X), EBU and EBL (A and B), D~A (C,X), Load Ay
{D,X), and the Sense (E,X,1) ul's. Setting this flip-flop
generates 1ST CYCLE from the set side and 2ND CYCLE
from the clear side. As shown in the timing of Figure
2-40, signal 1ST CYCLE remains high for 100
nanoseconds followed by 2ND CYCLE, which goes high
after 100 nanoseconds. This figure shows two examples of
a 2,X pul (a SUM pl) following a load Ay, ul (a LAW pul).
Part & of the figure shows the SUM pl immediately
following the LAW ul; part b shows the SUM ul separated
from the LAW by a non-load AW/Bu ul (a LDW pl). As
shown in both examples, the Cycle Delay flip-flop is set at
E100 and remains set while the operand loaded in Ay
propagates through the ALU. In part a enable RF-WR
used to write the sum of Au and By into register X (that
is, the register selected by the ul X-field) is inhibited by
the high 1ST CYCLE signal during E1. This signal goes
low at E200 to allow the sum to be written into register X
during E2. Since the SUM u! has overlapped into E2, it is
necessary to delay all following pl’s on the time slice for
one minor cycle. This is done by routing 1ST CYCLE to a
NOR gate, which blocks ENCLKSM for one minor cycle,
and to an AND gate, which generates BLKFM for one
minor cycle. These inhibit conditions prevent the NIyl
from being clocked into Fu and the address for the N1+1
! from being clocked into Sy for one minor cycle. Signal
EG7IDL inhibits the Cycle Delay flip-flop from blocking
Su at either E6 or E7 to allow the starting | address for
the following time slice to be clocked into Sy. Part b of
the figure shows the Cycle Delay flip-flop being set again
at E100 to block RF-WR. This time, however, a LDW yul is
being executed during E1. Since the LDW ul does not
feed data into Ay or By, the operand in Ay is able to
propagate freely through the ALU. At E2, the SUM ul is
executed to store the resultant sum of Ay and By at
E250. For this case, then, the SUM takes only one minor
cycle to execute.
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System Reset Logic

The system can be reset to an initial condition (master
cleared) in one of four ways: from a power-on condition,
pressing the SYSTEM RESET pushbutton on the System
Control Panel, initiating a Reset/Load operation by
pressing the RESET LOAD pushbutton on the Panel, or
initiating an Autoload operation by pressing the
AUTOLOAD pushbutton on the Panel. When initiated in
one of the ways described above, the system reset
sequence performs the following operations:

1. The output of the ALU is cleared.
2.

The eight P registers within the Extended
Register File, Group |, are cleared.

The Busy/Active, Tie-Breaker, Control, Privileged
Mode, Boundary-Crossing, CS Scan, Panel
Address, and Panel Data registers within the
Extended Register File, Group || are cleared.

The A“, B“, D and Forced Carry registers within
the ALU are cleared.

A clear signal is transmitted to the Extended
Register File, Group 111, (For the effects of this
signal within the integrated adapters, see the
appropriate 1/0 processor document.)

The Resource Allocation Network (RAN) is
forced to issue Null cycles only.

The gray code counter is forced to issue ten
minor cycles per major cycle.

The Sy, Fu-1, and Fy-2 registers are cleared.

The RTC increment pulses are disabled at the set
input of the Busy flip-flop for processor state 4,
(Bit position 04 of the Busy/Active register).

10. The logical inter-lock which is set by a
breakpoint stop operation with processor state 4
(and when set, disables the output of the Busy
flip-flop for processor state 4 from appearing at
the input of the RAN) is cleared.

11. In the presence of the Register Option (RO)
Relocation and Protection feature, the
Addressing Mode register is cleared.

The system reset sequence lasts 0.4 to 0.6 milliseconds if
initiated from a Reset/Load or Autoload operation, as
long as the pushbutton is held pressed if initiated from the
SYSTEM RESET pushbutton, or until the POWER ON
indicator lights if initiated by a power-on condition.
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Figure 2-39. Cycle Delay Logic

A block diagram of the system reset logic is shown in
Figure 2-41. Depending on how the system reset sequence
is initiated, one of three signals will be generated:
SW-AUTO if initiated by an Autoload operation, MC-LD
if initiated by either a power-on condition or a
Reset/Load operation, or SW-MC if initiated from the
SYSTEM RESET pushbutton. The SW-AUTO and SW-MC
signals are fed through flip-flops to eliminate switch
bounce. The resultant three signals are then fed to a NOR
gate, which feeds two one-shots to generate system reset
signals MC-ALU, MC-10, MC-1, MC-2, and MC-3.

The MC-ALU signal is fed to the ALU enable logic to
generate SEL-ZR-0 and SEL-ZR-1. These select signals, in
turn, are fed to the ALU fan-in to effectively gate an
output of all “‘0’s’’ on the 16 lines from the ALU. These
“0’s" are then routed to the Group Il registers of the ERF
and to the SIJ, register, where they are clocked into the
registers to clear them. The clock and clock enable signals
for the ERF Group 11 registers are generated by MC-1, and
the clock enable signal for the S register by MC-2, The
A“, By, F“, D, and Fy-1 and Fu-2 registers are also
cleared by means of MC-1. These registers, however, differ
from the ERF Group Il and Sy register in that they can be
cleared directly by a forced clear input to each register
stage flip-flop. Clearing these registers is accomplished by
clear signals CLRFM, ENRDR, ENRAM, and ENRBM.
The Force Carry register is cleared in a similar manner.

The gray code counter is forced to issue a count of ten
minor cycles (EQ to E9) by simulating a Consecutive
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Cycle (CC) condition. This is done by combining MC-2
with STATEN from the Null flip-flop (which will be set
during a system reset condition) to clear the Consecutive
Cycle flip-flop. The high output from the clear side
(CC-F/F) is sent to the counter, which interprets the
sighal as a request for CC operation. The result is to
enable the E8 and E9 stages of the counter to generate the
ten minor cycles.

The Pu registers associated with all eight processor states
are cleared by MC-3, which travels through three stages of
inversion to generate SELFH/PL and EF1RF/WL. Both of
these signals are low; therefore, Pu is selected to be
written. Since there is no data on the lines which fed Py,
the registers are filled with “0's”’. Each of the eight
registers is selected in sequence by MC-2, which is
combined with E timing pulses from the gray code
counter to generate the three Py select signals (ERFG1) in
a cyclic manner.

The RAN is forced to issue null cyclic by means of MC-4,
which sets the Null State flip-flop in the RAN. Setting this
flip-flop, in turn, sets the Null flip-flop which sets up the
null conditions (block clocking of Sy and inhibit accesses
to CS).

If the Relocation and Protection feature of the RO is
present, the Addressing Mode register is cleared by MC-3.
This signal generates register write enables ADDWR-0 and
ADDWR-1 in combination with timing pulse E5 to write
“0’s"" into the register.
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The RTC increment pulses used to set the Busy flip-flop
associated with processor state 4 in the B/A register are
prevented from doing so during a system reset condition
by clearing the Request 4 flip-flop. This flip-flop is set
during an autoload sequence to give control of the
autoload routine to processor state 4 by setting the Busy
4 flip-flop on the B/A register via REQ-4. During a system
reset, however, the flip-flop is cleared to prevent the Busy
4 flip-flop in the B/A register from being set by REQ-4
until completion of the system reset sequence.

Idle and Resync Conditions

Several of the pul’s require either idling through the minor
cycle following their execution, or through the rest of the
time slice so that the next yl is executed at EO. Micro
instructions which fall into the former category are the
FNJ; JMP; and CLR, STA, STB and AND if X specifies
Pu. These pl’s cause either a partial branch (FNJ and JMP

I's) or a full branch (CLR, STA, STB, and AND if X
specifies Pyt) to a new pl address. The pl located in CS at
this new address is read during the minor cycle following
the one in which the branch pl was executed. Since this
following minor cycle would normally have been used to
execute the uil following the branch yl if the branch had
not taken place, clocking this following ul into Fp must
be inhibited since the branch did take place. This inhibit
operation is provided by generating BLOCKFM for one
minor cycle.

Logic for generating BLOCKFM is shown in Figure 2-42.
Operation code translation signals for the partial and full
jump ul’s are fed to gates 1, 2, and 3. During the execute
minor cycle of these pl's, enable signal IDLE-F/F is high.
The result is to generate BLOCKFM for one minor cycle,
which inhibits ENCL KFM. Timing for signal BLOCKFM,
as well as other signals associated with the idle operation,
is shown in part a of Figure 2-43. (This figure assumes
execution of the branch pl at EO; however, the relative
times shown are the same if the ul s executed at any
minor cycle EO through E6.) Simultaneous: with
generating BLOCKFM, signal IDLE is also generated by
the same transiation signals via gates 4, 5, and 6. Signal
IDLE sets the ldle flip-flop by means of gate 7 at E100
{first TXO0O0 after IDLE if not E7), causing IDLE-F/F to go
low. As a consequence, gates 1, 2, and 3 are disabled
which drops BLOCKFM and, in turn, causes ENCLKFM
to go high again. Dropping BLOCKFM after one minor
cycle is necessary so that the ul read from the branch
address, and all subsequent pl’s, can be clocked in Fu.
Signal IDLE remains high through E1, however, since no
new pl was loaded into Fu at E100 due to Fu being
blocked. If an FNJ or JMP pil is being executed, Pp must
be inhibited from being updated by the branch address +1
since the starting ul address formed by an FNJ or JMP ul
is the branch address itself. This is accomplished by
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inhibiting ENCLKPP at E1 via gate 8 for an FNJ pl and
via gate 9 for a JMP pl. This action retains the branch
address clocked into Pp at EOQ as the starting pl address.
At E200, the Idle flip-flop is cleared due to the low on the
flip-flop clear output fed back to gate 10. The result is to
cause both IDLE-F/F and ENCLKPP to go high once

again.

As can be seen from Figure 2-43, branch pl's executed at
EO through E6 take 200 nanoseconds to execute: 100
nanoseconds to form the branch address and 100
nancseconds to read the pl from CS at the location
specified by the branch address. If the branch ul is
executed at E7, however, the total execution time is only
100 nanoseconds, since the u | specified by the branch
address will not be read out until RO of the next time slice
assigned to the processor. In this respect, then, the branch
ul acts like an ordinary blockpoint ul and blocking of Fpuu
is not required. In fact, Fi must be clocked at EO to
enable the first il of the next time slice to be executed.
This is accomplished by nullifying the effect of
BLOCKFM by EO0/8XX-E, which forces ENCLKFM high
at E750. During EO of the next time slice, BLOCKFM
goes low when the first il of the next time slice is loaded
into Fu.

In contrast to the branch ul’s, which require idling
through just one minor cycle, the FRJ, RNi1, RNI2,
CiO1, Cl02, ROM, SYNC, and FZJ (if Apis 0) ul's
result in an idle through the remainder of the time slice so
that the next ul is not executed until the next EO. These
ul’s are called resync ul’s, because they resynchronize ul
execution back to EQ. These ul's achieve resynchroniza-
tion by blocking Fu for the remainder of the time slice via
gates 10, 11, and 12 of Figure 2-42. These gates do not
have to be enabled by IDLE-F/F as do those for the par-
tial branch ul’s since BLOCKFM will remain high through
EO of the next time slice. As for the branch ul’s, however,
the effect of BLOCKFM is negated at EO by the action of
EO/8XX-E to force ENCLKFM at E650. Timing of
BLOCKFM for a resync ul is shown in part b of Figure
2-43. One minor cycle later, the 1dle flip-flop is set via
gates 13, 14, and 15 for the purpose of inhibiting
ENCLKPP. For resync, clocking of Pp must be inhibited
after the minor cycle in which the resync ul is executed to
avoid continuously updating Pp by every update of Su
throughout the remainder of the time slice. At the end of
the time slice the Idle flip-flop is cleared and ENCLKPP is
allowed to go high updating Pp as required during the
next time slice.

CONTROL STORAGE

The Control Storage (CS) section is an alterable 14-bit,
word-oriented solid-state memory capable of storing 5120
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words (basic size). The CS stores all ul’s used by the pro-
cessing unit. These ul's execute MLI's under program con-
trol and perform functions initiated by the System Con-
" trol Panel and peripheral devices such as Reset/Load and
Auto Load. The CS also stores verification and diagnostic
routines used during checkout and maintenance
operations. A block diagram of the CS is shown on Figure
2-44.

CS Operation

The CS section is a rapid-access semi-conductor mem-
ory that stores 14-bit words in bipolar random-access
memory (RAM) integrated circuits (1C's). It is organ-
ized on the basis of 4096-word storage units and is
expandable in increments of 1024 words to a maxi-
mum of 16,384 words (addressing limit). At present,
the system is provided with a basic CS of 5120 (5K)
words (one 4096-word storage unit plus a 1024-word
portion of a second unit) with an 8192-word (8K) CS
offered as an optional feature. Each storage unit con-
sists of 224 RAM IC’s and corresponding address select
logic. Each IC stores 256 bits, and is interconnected
with other IC’s so that each stores one bit of 256
words. Each word, therefore, is partially stored on 14
IC's, ane bit per IC. This partial storage of words, 14
bits wide is referred to as page storage. A page is a
block of 256 words. Since each storage unit consists
of 4096 words, each unit consists of 16 pages
(4096/256).

A physical representation of the paging concept is il-
lustrated in Figure 2-45, which illustrates the pages
making up two storage units. Note that the 14 bits of
a word are numbered O through 8 and 11 through 15,
with bit positions 9 and 10 not used. The 16 pages
can be thought of as 16 loaves of bread, each loaf
consisting of 14 slices. Each slice represents one RAM
chip. Address ranges per page run in ascending order
by page number, as shown in the figure. (For example,
page O stores 256 words at addresses 000016 through
OOFF16 page 1 stores 256 words at addresses 010016
through 01FF16, and so forth.)

Each CS module stores two bits of each word. The
modules for the 8K CS contain 64 IC's each for
storing two bits of 8192 words. The 64 IC's are ar-
ranged in two groups of 32 IC’s each, wherein each
group stores one bit of two storage units (32 x 256 =
8192). The modules for the 5K CS contain 40 IC's
each for storing two bits of 5120 word. Each group of
20 IC’'s stores one bit of one storage unit (16 x 256 =
4096) plus one bit of a 1024-word portion of a
second storage unit (4 x 256 = 1024). The total bits
stored by each group then is 4096 + 1024 or 5120
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bits. In essence, each 5K CS module for a 6K CS is
an 8K CS module ‘“‘depopulated’” by the number of
IC's required to reduce the number of words stored.

Words are addressed in CS by the upper 14 bits of the
Su register, as shown in Figure 2-46. (The register is
actually 16 bits in length; however, bits O and 1 are
ul status bits and do not pass through the CS address
logic.) As the figure shows, bits 2 and 3 select one of
the four storage units, bits 4 through 7 select one of
the 16 pages comprising each unit, and bits 8 through
15 select one of the 256 words in each page. Selection
of a storage unit and addressing one of the 256 words
in a page is accomplished via corresponding Su register
bits directly. However, selection of a particular page is
performed by an intermediate coding of bits 4 through
7 to generate page select (SELP) signals. These SELP
signals are divided into three groups: SELPX-0,
SELPX-1, and SELPX-2. The SELPX-0 signals select
bits 0 through 3, the SELPX-t signals select bits 4
through 8 and bit 11 of the data word, and the
SELPX-2 signals select bits 12 through 15. The X val-
ue designates one of 16 page numbers (016 through
F16)' Each SELP signal is generated by a combination
of Su register bits b, 6, and 7, and either an ENRD-
CS or ENWR-CS enable signal derived from Su register
bit 4 in conjunction with other signals that define
whether a read (ENRD-CS) or write (ENWR-CS) opera-
tion is to be performed. Logic for generating these
enable signals is shown in Figure 2-47. Signal ENRD-
CSO will be generated whenever SM-CS04 is low,
except when any of the following inhibiting conditions
is present:

1. A parity error has been. detected in the il read
from CS. This causes SWCS-OFF to go low.

. The next ul is to be skipped, the processor state
is operating in the Consecutive Cycle mode, or
the CS has been disabled by the CS DISABLE
switch on the System Control Panel.

For the above three conditions, NULL-CS is forced low.
In the case of a skipped pl, it is still necessary for the
processor state to idle through one minor cycle. This is
accomplished by a NOP condition, wherein the CS is
inhibited from transferring a ul to the Fu register. The
effect is to write all “’0's” into FL . The Consecutive Cycle
mode also requires a NOP condition during E8 and E9
time. (These times would normally be EO and E1 for the
next time slice, when Fu would be loaded with the first
and second pl's of the next assigned processor state.
Since the same processor state will be granted the
following time slices, these loads must be aborted.) Signal
ENRD-CS1 is generated in a similar manner to ENRD-CS0O
except that ENRD-CS1 is enabled when SM-CS04 is high.
This enables ENRD-CSO0 to select pages 041g through 7¢g
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and ENRD-CS1 to select pages 81g through Fq5. When
either of these enables is present, data is read from the
location addressed by bits 8 through 15 of the S register.

Signal ENWR-CSO0 is generated when SM»CS04 is low and
WRITE-CS is present. Signal WRITE-CS is generated by
the System Control Panel during a CS load operation.
Signal ENWR-CS1 is generated in like manner, except that
SM=+-CS04 is high. As with the two ENRD-CS signals,
ENWR-CSO selects pages 0qg through 74g, and
ENWR-CS1 selects pages 81¢ through Fg. Either of these
two signals is used to generate a second write enable
signal, WRITECS, through a NOR gate. When either
ENWR-CSO or ENWR-CS1 is present, along with
WRITECS, the data present on the N«CS input lines is
stored in the location specified by bits 08 through 15 of
the Suregister.

Correlation of the SELP signals with the data bit groups
they select, and the Sy register bits and ENRD-CS and
ENWR-CS signals which generate each SELP signal, is
shown in Table 2-3.

MICRO-INSTRUCTION TRANSLATION AND
ADDRESS UPDATE

The pl translation and address update logic reads a yl
from CS at the location specified by the contents of Sy

and decodes it to generate the enables required to execute
" the pl. Upon making the CS read access, the contents of
Su are updated to form the address of the next pl in the
program. A block diagram of the ul translation and
address update logic is shown in Figure 2-48. Depending
on the il routine, the next ul address will be:

1. Incremented by one by the Sy+1 network

2. A jump address generated by the jump decode
logic

3. A beginning address set from the System Control
Panel, or

4. A jump address derived from the Ay and By
registers through the ALU fan-out logic,

Within a particular time slice, the CS reads ul’s as
addressed by the contents of the Sy register. If ending a
time slice for a particular processor, the address of the
beginning ul to be executed during the next time slice
available for the active processor must be stored in a
designated location in the Extended Register File (ERF).
At these times, the updated il address is routed to either
the Pp register or Pb register for storage in the ERF via
the ERF write logic.
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Micro-Instruction Decoding
FL. Register

The F i register holds the (I read from CS in preparation
for translation by the first-level and second-level yl
translation networks, and other decoding circuits. The
register consists of two ranks, each rank 16 bits in length.
Use of the double rank is necessary due to the high
fan-out requirements of most of the ul bits. A typical
stage of the Fu register is shown in Figure 2-49. This
figure shows the two ranks associated with the bit 00
stage, together with their interconnections. Each rank
is double-gated to assume definite set and clear
conditions.

Depending on the state of data bit CSDATAOQO, the
flip-flop is set or cleared upon activating clock pulse
CLKFM when enabled by ENCLKFM. Enable ENCLKFM
is generated constantly, except for certain conditions
when clocking Fit must be inhibited. During certain idle
conditions, the enable is inhibited by BLOCKFM. This
signal is generated when executing either a ROM, SYNC,
FRJ, RNI, ul; or a Load S ul executed at any time other
than EO. These ul’s result in idling through the rest of
the major cycle so that the next ul in the sequence
starts at the beginning of the next time slice. Clocking
of Fu, therefore, is inhibited for the remainder of the
present time slice. Indication of a parity error in Fu
(PE-FM) or a long MS access (LONGACC) also inhibits
ENCLKFM. Signal LONGACC indicates the addition of
timing pulses EQ’, or EQ’ and EO”, required for the
extra propagation time needed by the Register Option
(RO) during MS references. Adding these pulses essen-
tially sets up a hol/d condition during which Fu must
be inhibited from clocking-in the next ul. Execution
of a FZJ (0,3) ul when the jump condition (Au is 0)
is met returns control to the RNI2 subroutine. This
situation causes an idle condition through the rest of
the major cycle. Meeting the conditions for a skip
when executing a skip (5,X,X) ul inhibits ENCLKFM
for one minor cycle. This causes the following ul
would normally be executed is not aborted, however .

The enable signal is specifically generated during E8 and
EQ during consecutive cycle operation to perform NOP's
during these minor cycles (transfer “0's" to Fu ). This
prevents Fu, from being loaded with spurious il's during
these minor cycles.

Routing of bits from Fu to the various translation
networks is shown in Figure 2-50. Bits contained in rank 1
of Fu are identified as FM1 bits; those in rank 2 of Fu as
FM2 bits. In addition, some bits of each rank pass through
another stage of buffering before being used. In such
cases, the bits carry another identifier. For example, bits



Table 2-3, CS Address Selact Signals

Bit Groups SELP SpReg Bits
Selected Signals 4 | 5 t 6 I 7 Enables
SELPO-0 0 [} [} 0
¥ } ENRD-CS0/ENWR-CS0
SELP7-0 0 1 1 1
00— 03
SELPS-0 1 0 0 ) _
t } ENRD-CS1/ENWR-CS1
SELPF-0 1 1 1 1
SELPO-1 0 0 0 0 _
} ENRDCS-0/ENWR-CS0
SELP7-1 0 1 1 1
04—07
SELP8-1 1 0 0 0
{ { ENRD-CS1/ENWR-CS1
SELPF-1 1 1 1 1
SELPO-1 0 0 0 0
} } ENRD-CSO/ENWR-CSO0
SELPF-1 ) 1 1 1
08 and 11
SELP8-1 1 0 0 0
} } ENRD-CS1/ENWR-CS1
SELPF-1 1 1 1 1
SELPO-2 0 0 0 0
¥ } ENRD-CS0/ENWR-CSO0
SELP7-2 0 11 1
12— 15
SELP8-2 1 0 0 ) _
1 } ENRD-CS1/ENWR-CS1
SELPF-2 1 1 1 1
CONTROL
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P-------I-----------q
1
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Figure 2-48. CS Control, Block Diagram
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4, 5, and 11 of the Fyu-2 rank are directly interpreted by
the pl translation logic as sub-operation codes Sg, S¢, and
S9. However, they are also routed to the set P logic
through another stage of buffering. These bits are
designated as bits 104 and 105 to differentiate from bits
004 and 005 coming directly from the Fu-2 ranks. Note
that bits 9 and 10 of the Fpu register are not used since the
pl is only 14 bits in length. From the Fu-1 and Fu-2 ranks
of the Fp register, the LI bits are routed to the ul
translation network for decoding the various bit fields of
the pl, and to various other translation circuits for
specialized decoding of certain ul bits for particular
applications. Each of these translation networks shown in
Figure 2-50 is discussed in more detail in the following
paragraphs.

Micro-Instruction Translation

Translation of the ul function code and designators is
accomplished by the pl translation logic. This logic,
shown in block diagram form in Figure 2-561, consists of
two parts: a first-level translation network and a
second-level translation network. The first-level network
translates bits of the Fpu register used to form the ul to
generate the function (F) code, sub-operation (S) code,
and a and b designators. The F code values are collectively
referred to as FXEQ-X/X signals and FXEQ-X signals. The
FXEQ-X/X signals represent an ORed combination of two
adjacent Fu code values. (For example, FXEQ-2/3
represents an F code of either 2 or 3.)

The FXEQ-X represents a single F code value (i.e.,
FXEQ-3 means an F code value of 3). The FXEQ-X/X
signals are routed to the second-level translation network,
and the FXEQ-X signals are combined with S code signals
and the a and b designators to generate enable signals for
specific ul's.

The second-level translation network decodes the
FXEQ-X/X signals into particular F code values via the
microcode bits 00-03 logic. These F codes are combined
with additional S code values decoded by the micro
instruction bits 04-05 logic to form signals which are used
to set control flip-flops and execute other enable signals
used by a particular 1l. Generally speaking, the output
signals generated by the second-level translation logic are
of a more specialized nature, such as register enables for
executing operations associated with individual u1’s. This
is in contrast to output signals from the first-level
translation, which generates basic F and S codes, and
signals applicable to a large number of ul's requiring
similar operations (such as all ul’s which generate a
jump address). Each of the particular ul enable signals
will be discussed in greater detail in the description of
that section of logic used to implement the particular
Ml
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Jump Decode

The jump decode logic performs a second-level jump
address decode of the FNJ (0,1) ul and a jump address
decode of the JMP (9) pl. Formation of the FNJ jump
address is called a second-level decode because of its
relationship to the first-level jump address decode of the
FRJ (0,2) ptl when implementing MLI’s via ul's (see the
peragraph titled Implementing MLI’s by ul’s). Jump
addresses formed by the jump decode logic for both the
FNJ and FRJ pil’s are routed to the Sy register in place of
the normal updated pl address to cause a jump to a new
sequence of yl's in CS.

Formation of the FNJ jump address is performed in one
of two ways, depending on the value of bit 06 of the FNJ
pl (Fu 06). If Fu06 is 0, the jump address is formed as
shown in part a of Figure 2-52: bits 4 through 9 of the
jump address are made up of bits 7 and 11 through 15 of
the FNJu | in the Fu register, bits 10 through 13 of the
jump address are made up of bits 4 through 7 of the MLI
of which the FNJ ul is a part and bits 14 and 15 are
forced to zero. If Fu 06 is 1, the jump address is
formed as shown in part b of Figure 2-52: jump
address bits 4 through 9 are made up of bits 7 and 11
through 15 of the FNJ wul (the same as for the
FNJ/Fu06=0 1). However, jump address bits 10
through 15 are forced to zero, except for bit 12
which is made up of bit 8 of the MLI. Formation of
the JMP jump address is accomplished by transferring
the jump address contained in bits 4 through 7 and 12
through 15 of the JMP ul to bits 8 throuah 15 of the
new jump address as shown in part ¢ of Figure 2-52.

For all three jump addresses, bits O through 3 are not
altered from what they were before the jump address
was formed. Bit positions O and 1 contain ul status
information ‘and are not used as part of the wul
address. Bits 2 and 3, which define which 4096-word
portion in CS is to be selected, remain unchanged also.
In addition, bits 4 through 7 of the JMP ul address
remain unchanged by the JMP wul (although they are
incremented as necessary by the normal Su + 1 opera-
tion). Since all 12 bits of the jump address are re-
tained, each of the branch wul's allow jumping through
a 4096-word portion of CS. However, the wul’s are
usually implemented to jump only within a 256-word
page. The JMP ul can jump to any location within a
page (or 4096-word portion); however, the two FNJ
ul’s can jump only in certain increments because some
of their jump address bits are preset by hardware. The
FNJ/Fu06=0 ul can jump only in 4-address incre-
mented, starting at 0000* (0000, 0004, 0008, and so
forth). The FJN/Fu06=1 ul can jump only in 12-
address increments, starting on 64-word boundaries

* All addresses represented in hexadecimal form.
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(0004, 000C, 0044, 004C, and so forth). All three
jump addresses are loaded both into the Su register
(next CS address) and Pp register (blockpoint address).
However, if either ul occurs during E6 or E7 time, the
jump address goes only to the Pp register (and then to
Pu) for use as the starting ul address for the proc-
essor's next time slice. (For details of the timing
involved for this situation, see the paragraph, Branch
Control.)

Referring to Figure 2-62 it can be seen that jump address
bits 4 through 9 (JMP-04 through JMP-09) are formed in
the same manner for the FNJ/Fu06=0 and FNJ/Fu06=1
@l’s, i.e., they both are formed by bits 7, 11, 12, 13, 14,
and 15 of the jump pl. Bits JMP-10 through JMP-15,
however are formed in a manner peculiar to that
particular jump pl. Simplified logic showing the deviations
of these jump address bits is shown in Figure 2-63. Bits
JMP-08, JMP-09, JMP-14 and JMP-15 are formed in two
different ways, depending on whether the pl is a FNJ or
JMP. Bits JMP-10 through JMP-13 are formed in three
different ways, depending on whether the ul is a
FNJ/F“06=0, FNJ/Fuu06=1, or JMP. For a JMP ui, bits
JMP-08 through JMP-15 are generated by appropriate F

register bits when enabled by FM1-000. This bit isa 1 for
the JMP i, since the JMP F code is 915 (10019).

For both FNJ/Fu06=0 and Fu06=1, ul’s bits JMP-08 .
JMP-09’ JMP-14, and JMP-15 are derived in the same
manner. Bits JMP-08 and JMP-09 are generated by Fy

register bits 14 and 15 when enabled by FM1-000. This
bit is a 0 for_the FNJ ui, since the FNJ F code is 04g
(00005). Bits JMP-14 and JMP-15 are forced to 1 (which
forces address bits 14 and 15 in the S/t register to 0) by
the absence of an enable signal to make them 0. For a
FNJ/Fu06=0 wu! (identified as FNJ O in the corre-
sponding enable gates in Figure 2-63), bits JMP-10
through JMP-13 are generated from Fu register bits 4
through 7. These bits are enabled by FM1-000 -

FM1-006, where FM1-000 defines the FNJ ul and
FM1-006 defines bit Fu 06 as 0. For a FNJ/Fu06=1

Ml (identified as FNJ 1 in the corresponding enable
gates in Figure 2-53), bits JMP-12 is generated from
bit 8 of the MLI {contained in the F register) and bit
JMP-13 is set to 1 (via bit 6 itself of the FNJ/Fu06=1
ul). These two jump address bits are enabled by
FM1-000 - FM1-006. Bits JMP-10 and JMP-11 of the
FNJ/Fu06-1 ul are forced to 1 by the absence of an
enable signal to make them 0. This forces address bits
10 and 11 in the Su register to 0.
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Micro-Instruction Address Update

Su Fan-In

The Sy fan-in logic selects the 14-bit CS address to be
loaded in the Sy register from a number of sources, as
controlled by corresponding enable signals. A simplified
diagram of the logic is shown in Figure 2-54.

Note that the signal fan-in for bits 2 and 3 of the yl
address is different from that for bits 4 through 165.
During the time slice, the Sy register is normally fed with
the updated yl address from the Sy+1 logic via the Su_+1
bits. This logic adds one to the present ul address to form
the next ul address. This updated address is gated directly
through the Sy fan-in logic in the absence of an enable
signal for some other input to the Su fan-in. During a
FNJ or JMP ul, however, a new jump address is loaded
into the Su register via the JMP bits. This jump address
affects only bits 4 through 15 of the ul address;
therefore, the JMP bits do not appear as inputs to the bit
2 and 3 stages of the S fan-in logic. These JMP bits are
enabled by ENJP-SM. The ALU inputs represent data
from either the Au or Bu register to be stored in the
active processor’s assigned Pu register in the Extended
Register File (ERF), as the starting address for the
active processor’s next time slice. This data will be
transferred to the Su register for either a STA or STB
ul when the pl X-field specifies the Pu register, and
the ul is being executed at some time other than E6
or E7.

Since the STA and STB ul's are both blockpoint
instructions, a Su*>Pp transfer will take place to transfer
the Sy register contents to Pp for storage in the assigned
Pu register. The ALU inputs also represent the contents of
the B register used to access the CS during a ROM ul, as
follows: B+Sy»CS>CS Scan register. If beginning a new
time slice, the starting address for the new time slice will
normally come from the processor’s Py register, via the
PU bits. However, if no other processor has requested a
time slice, the present processor may run in consecutive
cycles (CC) if its CC bit is set. For this case, the next ul
address is read from the Pp register, which holds the yl
address updated by the last blockpoint pl. (This address
would normally be stored in the processor’s Py register for
use as the starting | address for the processor’s next time
slice. However, since the processor will run through the
next time slice in CC, there is no need to go through this
extra step of storing the contents of Pp in Pu). Inputs
from either the Pu register or Pp register are enabled by
ENPM-SM. The SETS bits represent a CS address set by
the System Control Panel which defines the starting
address of a Panel function. These functions allow data to

be read from or written into CS in individual locations or
in blocks during the maintenance mode or to initially load
the CS via the Reset/Load routine. The address generated
by the System Control Panel is only 12 bits in length (bits
4 through 15); therefore, all panel function sequences
must be located in the first 4096-word portion of CS.
(At present, only seven of the 12 SETS lines have
been assigned address functions: 7, 10, 11, 12, 13, 14,
and 15. The remaining five lines are tied to a logic
“1" to simulate O inputs to the corresponding bit
positions of Spu.)

S Register

The Spu register is a 16-bit register that contains the
address of the next (1 to be read from CS. This address is
contained in the lower 14 bits (bits 2 through 15) of the
register. The upper two bits (bits O and 1) normally
contain the two | status bits: Overflow (OV) and Link
(LK). This format of Sy is shown in part a of Figure 2-55.
Under certain conditions, however, the upper two bits
contain other information as shown in parts 4 and ¢ of
Figure 2-65. During a CS breakpoint operation initiated
from the System Control Panel (provided that Sy is not
selected for display by the Console Address register
indicators), bits 0 and 1 are forced to 0 so that only the
14-bit CS address is used for breakpoint comparison
purposes. This format is shown in part b of Figure 2-55.
(If Sy is selected for display, then bits O and 1 do
participate in the breakpoint comparison.) During a
Reset/Load operation, -bit 0 indicates that a burst check
error occurred and bit 1 indicates that either the CS load
is complete (bit 1 clear) or that the FRJ decode address
table (AT) load is being loaded (bit 1 set). This format of
S is shown in part ¢ of Figure 2-65, In addition, bits 8
through 15 of Sy are specifically interpreted as an AT
address during the AT load portion of a Reset/Load
operation and the AT read/write portion of a CS
read/write operation.

Simplified logic showing details of the 14-bit portion of
S is shown in Figure 2-56. (Details of the 2-bit portion
are discussed in the paragraph titled Status Logic and the
paragraph titled Disc CS Load.) Each bit stage consists of
a flip-flop clocked at t80 of every minor cycle when
ENCLKSM is present. This enable is generated constantly,
except upon occurrence of a specific condition to inhibit
the enable. Signal BLKSMS inhibits the enable for all but
one minor cycle (EO) of a time slice during a CS read or
CS write operation initiated from the System Control
Panel. These operations access CS only once during each
time slice assigned to the Panel; therefore, only one ul
address update and consequent clocking of the updated
address back into Su is allowed per time slice. Signal
BLOCKS inhibits ENCLKSM during (1) an MS access, (2)

2-67



F---------------I----------i
- i
-ALU ] i
- I
! i
-PU i
PP + 1
l I TOSM
-(Ss+1) 1 H REG
- i
- i
-ENALU~ SM } i
- I
! I
-ENPM>SM : DO——— i
]
- i
- i
1 i
- i
1 1A18 1
!---------------l----------‘
A. BITS 02 AND 03
r------------------------ﬁ
' ‘ '
ALY I -
I 1
]
-PU 1 |
SETS i :
PP }
: | TOSu
RE
-Jmp 3§ : 6
i i
- i
'(S},ﬁ‘) | | l
I - '
-ENALU~SM ' Do— :
- i
- I
-ENPM~SM 1 i
! i
- i
i I
ENJP - SM* 1
i I  *DESIGNATED -ENJP-~SMO
| FORBITS4-7 AND
1 § ENJP-SWIFOR
1 | - BITS 8-15.
- i
! I
i 1A18-21
L------------------------J

B. BITS 04 THROUGH 15

Figure 2-54. Sy, Fan-In

2-68



a null condition {none of the eight processors has
requested a time slice), or (3) E6 and E7 if a processor is
operating in the Consecutive Cycle (CC) mode. An access
to MS increases the cycle time from 800 to 900 or 1000
nanoseconds to allow for address propagation through the
Register Option. This extra time essentially sets up a hold
condition during which Si. must be blocked. During a null
condition, clocking Si with a new p 1 address would be
meaningless if no processor was running to execute the yl.
During CC operation, S must be blocked during E6 and
E7 to prevent clocking in addresses that would normally
be those of the first and second il’s to be executed by the
next processor assigned a time slice. Since the present
processor will continue executing, the next Ll address
must come from Pp. Blocking Sy.during E6 and E7 allows
this address to be obtained from Pp. Signal EXCEPT is
ANDed with BLOCKS to override BLOCKS during a CS
load operation to clear Sy to address 00004g.

Signals 2,X+4,X+C,X, and SHIFT blocks Su for one of the
following conditions: (1) Execution of a SUM, DSUM,
CMP, or CMU (2,X) ul, when preceded by a Feeder Load
ul. For this condition, the 2,X ul must be delayed one
minor cycle to allow the Feeder Load yl operand to
propagate through the ALU. (2) Execution of a SDW or
SDB (4,X) or D»A (CX) ul if part of an MS read
operation. For this condition, the 4,X or C,Xu | cannot be
executed until Eb, at which time the data read from MS is
available. (3) Execution of a shift ul. A shift ul takes two
minor cycles to execute; therefore, clocking the address of
the next ul address into Sptmust be delayed for one minor
cycle. For the last two conditions, blocking of Sy is
overriden if the pl is executed at E6 or E7 by E67IDL.
This allows the addresses of the first and second ul's of
the next time slice to be clocked into Si to begin this
time slice in the normal manner.

The address bits from Sp are fanned out to several
destinations. All 14 bits are routed to the Sy+1 logic for
address updating, and to CS via the SM-CS signals to read
the next ul. In addition, all 14 bits are sent to FRJ decode
logic to forrn jump addresses as discussed in the paragraph
titled Jump Decode. Bits 2 and 3 of the address are routed
to the CS loader logic via SM-LD. These bits are used
during the Reset/Load routine to inform the loader that
all n X 1024 words of a CS unit have been loaded.
Bits 4 through 15 of the address are routed to the
Console Data register in the System Control Panel for
purposes of displaying the address during maintenance
operations (bits 2 and 3 are also sent to the Console
Data register after they pass through the CS loader
logic.) ‘
Syt+1 Logic

The Sy+1 logic updates (increments by one) the present
J| address, and routes the updated address back to the Sy

register as the next ul address. Since individual pl's for a
given sequence are stored in consecutive locations in the
CS, this update process enables reading all Ul’s of a
particular sequence. A portion of the Su+1 logic, that
used to update bits 2 and 3 of the ul address, is shown in
Figure 2-57. Essentially, the Sy+1 consists of an
exclusive-OR gate for each bit stage, which functions as a
simple counter whenever a group carry-in signal (GX-CIN)
is present. There are four such group carry-in signals:
GO-CIN for bits 2 and 3 of the Sy register (the two MSB's

~ of the u address), G1-CIN for bits 4 through 7, G2-CIN
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for bits 8 through 11, and G3-CIN for bits 12 through 15.
The G3-CIN signal is always enabled, since this
lowest-order bit group will always be counting. Each
higher-order bit group, however, will be counting
depending on the ability of a next lower-order bit group
to satisfy an address update within its group without
having to propagate a carry into the next higher-order
group. For that reason, GO-CIN, G1-CIN and G2-CIN are
generated by group propagate signals (GX-PROP) from a
lower-order group: G2-CIN by G3-PROP, G1-CIN by
G3-PROP, and G2-PROP, and GO-CIN by G3-PROP,
G2-PROP, and G1-PROP. Looking at the pl address
update example in Figure 2-567, the yl address at time t is
to be incremented by one to form the next ul address at
time t'. At time t, bits 2 and 3 of the Sy register equal
“0"” and 1", respectively, to generate inputs to the
exclusive-OR gates of each stage which are low (L) and
high (H), respectively. Since all lower-order bits of the Sit
register equal one, the three GX-PROP signals are low as
shown. This condition produces a high GO-CIN signal as
the other input to the two exclusive-OR gates. The
resulting outputs from each exclusive-OR gate are routed
back to the set side of each Sy register flip-flop to set the
bit 2 stage and clear the bit 3 stage. The resultant change
on the outputs of these two flip-flops after updating is
shown in the dashed portion of the i1 address. The three
low CX-PROP signals cause G1-CIN and G2-CIN to go
high along with GO-CIN. These high carry-in signals, along
with G3-CIN (which always remains high) cause bit groups
4-7, 8-11, and 12-15 to be incremented by one also, to
form the complete new updated !l address at time t* as
shown in Figure 2-57. The updated result is fed both to
the S register and the Pb register.

Pb Register

The Pb register is a buffer register that stores the starting
address for the active processor’s next time slice in Py for
certain conditions when the starting address normally
obtained from Pp is no longer available. These abnormal
conditions are discussed in the paragraph titled Storing of
Starting 1 Address.
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Pp Register

The Pp register holds a y | address formed during the
active processor’s present time slice for use as the starting
address for the processor’s next time slice. The register is
loaded from a number of sources through the Pp fan-in
logic, as shown in Figure 2-58. The fan-in logic consists of
14 stages, one for each of the 14 [l address bits. Note
that the stages for bits 2 and 3 (part a) are different
from those for bits 4 through 15 (part b). Normally,
Pp receives the starting address from the Su register
after having been updated by the Su+1 logic. This
transfer is enabled by the absence of any other enable
signal and occurs during execution of a blockpoint
(BP} ul. Certain error conditions, such as a CS Parity
Error or Bounds Error will alter normal program oper-
ation by jumping to an error recovery routine.
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(Generation of starting addresses for these routines is
discussed in the paragraph titled Set Pp Logic.) These
error conditions will force a particular 12-bit starting
address for the next time slice into the Pp register via
the SETP bits. These bits are enabled by ENSPECPP
which is generated for these conditions by a TRAP sig-
nal. Enable ENSPECPP is also generated during
execution of a FRJ, FZJ, RNI1, or RNI2 ul. These
four ul’s cause a programmed jump (as opposed to the
unconditional error recovery jumps) to another part of
the MLI routine at the start of the next time slice.
Depending on the ul, the enable gates in the 14 FRJ
bits (bits 2 through 15) to form the corresponding
jump address.

The JMP bits form a 12-bit jump address when executing
a JMP pl. This address can be formed in different ways,
depending on when the ul is executed in the time slice.
The JMP bits, therefore, are gated by two different
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enables: ENJP-PPO for bits 4 through 7 and ENJP-PP1 for
enables 8 through 15. (See the paragraph titled Storing of
Starting (! Address for a more detailed discussion.) The
14 ALU inputs represent data from within the A yor B
register to be stored in the active processor’s assigned PU
register in the ERF. This data will be transferred directly
to the Pp register for either a STA or STB il when the yl
X-field specifies the Py register, and the wl is being
executed at E6 or E7 time. (If executed this late in a time
slice, the STA and STB blockpoint instruction will not be
able to execute a S Pp transfer; therefore the address
must be loaded into Pp directly.) The FRJ inputs to the
bit 2 and 3 stages of the Pp fan-in logic and their
corresponding enable, ENFRJ-PP, are not used at present.
These bits would normally be used to select one of the
four possible CS modules to which a jump would be made
when executing a FRJ pl. Since only one CS module is
used at present, these three lines are tied to +5 vdc which
effectively removes them from the fan-in logic.

The selected output, from the Pp fan-in logic is fed to
the set side of the Pp register in true form and to the
clear side in complement form. The data is stored in
the register upon occurrence of clock enable ENCLKPP
and clock signal CLKPP. The stored data is fed to the
ERF write logic.

ERF Write Fan-In

The ERF write fan-in logic provides data inputs to
FRF and Pu registers, which comprise the Group |
ERF, for storage therein. Generally, data is stored in
Pu during WO unless the last ul performed in the
time slice was a ClIO ul and the condition for exiting
from the 1/0 routine was not met. This condition sup-
presses the Pp Pu transfer, causing the routine to be
repeated. In a similar manner, data stored into FRF
during WI is conditioned by occurrence of the Fb
register clock signal, as discussed in the paragraph
entitled Fb and F Registers. The data to be stored will
be the result of either or both of the following opera-
tions: (1) store data in F or Py, or (2) store MLI and
next ul address in FRF and Pu, respectively. Although
similar in execution, these two operations result from
different conditions. The second operation always
occurs during a major cycle, to enable continuing with
the present processor’s program during the next
assigned time slice. The first operation is a function
only of a particular ul routine, and may or may not
occur during every major cycle.

A diagram of the ERF write fan-in logic is shown in
Figure 2-59. This logic is fed with all 16 bits that will
be stored in both FRF and Pu at the end of a time
slice. Data to be stored in F comes from the Fb
register and ALU fan-out logic. The Fb register con-
tains the MLI presently being executed. Inputs from

273

the ALU fan-out represents data to be stored in FRF
as a result of a Register »File_ Write ul when FRF is
specified as the storage register. Data to be stored in
Pu consists of the two status bits, Overflow and Link,
and the 14-bit next ul address updated by a BP wul.
This address is derived from either Pp, Pb, or a com-
bination thereof, as determined by the type of BP
operation performed and at what time in the time
slice. Since data from both Pp and Pb is combined,
the corresponding enables are divided so that the
upper 8 bits going to Pu (two status bits and bits 2
through 7 of the next ul address) and the lower 8 bits
(bits 8 through 15 of the next ml address) can be
gated separately.

Storing of Starting ! Address

Storing the starting yl address (that is, the address of the
first ul to be executed during the active processor’s next
assigned time slice) in the processor’s assigned P register
enables the processor to continue executing its task during
the next assigned time slice. This starting yl address is
formed by the last blockpoint (BP) ul executed during the
present time slice. Usually, this address is formed by
adding +1 to the BP ul address so as to form the address
of the next sequential ul in the MLI being executed. In
some cases, however, the starting p1l address will be a
branch address to cause a jump to a different il routine.
Branch ul's are also BP pl’s, so they enable the jump
address to be stored in Pu. Generally speaking, there are
four different conditions that govern how the starting M|
address is formed and how it is stored in PL. These are:
(1) execution of a non-branch BP u! at EO through E8, (2)
execution of a non-branch BP yl at E7, (3) execution of a
branch BP ul at EQ through EB6, and (4) execution of a
branch BP il at E7. ’

Forming the starting p | address by executing a
non-branch BP yl at either EO through E6 or E7 differs
mainly in the register used to hold the address until it is
sent to Py . Execution of a non-branch BP ul during EO
through E6 loads the starting ul address (BP 11 address
+1) into the Pp register during the minor cycle that the ul
is executed. Timing for such a situation, that of BP yl
executed at E4, is shown in part a of Figure 2-60. The
address for the BP p11 (104) is clocked into Sy at E280.
During E3, the ul is read from CS and the contents of St
are updated by 1 and clocked back into Sy at E380. At
E480, The BP address +1 (105) is clocked into Pp for
storing into PU at WO. Execution of a non-branch [t at
E7 is similar to that executed at EQ through EB6 in that the
starting (1 address is formed in the same way. For this
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situation, however, the starting (| address must be
clocked into Pb immediately after being updated by the
Sp+1 logic. This is because Sy is no longer available to
route the updated address from the SI-'- +1 logic to Pp. By
the time that the BP address has been updated, Syt has
been loaded with the first ul address for the following
time slice. This situation is shown in part b of Figure 2-60.
The BP pl address (107) is clocked into Sy at E580 in
preparation for executing the pl at E7. At E680,
however, Sy, is loaded with the address of the first ul to
be executed during the following time slice (300).
Therefore, the starting | address (108) must be held in
Pb until it can be stored in Py at WO.

Use of the Pp and Pb registers for form the starting ul
address for non-branch BP ul’s is shown in Figure 2-61.
This figure shows the contents of Pp and Pb being fed
through the ERF write fan-in logic by means of enables
generated for the non-branch BP ul’s, as shown in the top
half of Table 2-4. For all non-branch BP ul’s except the
SUM, DSUM, CMP, and CMU pul’s, the starting 1 address
is formed exactly as discussed in Figure 2-61:
BP+1+~Pp+Pu if executed at EQ through E6 or
BP+1+Pb=Py, if executed at E7. (The CIO1 and CIO2
ul’s are the only exceptions that they cannot be executed
at E7.) The SUM, DSUM, CMP, and CMU (2,X) ul's differ
from the other non-branch BP pl’s in that they sometimes
use Pb as a holding register if executed at E6 as well as at
E7. The criterion which determines if Pb instead of Pp is
to be used is whether the ul preceding the 2,X pl was one
which altered the contents of Ay and Bu. As discussed in
the paragraph titled Cycle Delay Logic, the Cycle Delay
flip-flop is set if such is the case and the 2,X Ul executed
at E6 also extends into E7 as well. Timing for a SUM ul
executed at E6 for both the above conditions, shown in
Figure 2-62, illustrates the difference in using either Pp or
Pb as the holding register.
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Part a of this figure shows a SUM pl executed at EG
preceded by a LDW ! at EB. Since a LDW ul does not
alter the contents of Al and By, the SUM Ul can be
executed in one minor cycle. Since the ul following the
SUM is not a blockpoint (NBP) ul, the Pp register is fed
with the updated SUM yl address which forms the starting
ul address. The contents of Pp are routed to the ERF
fan-in logic via the ENPPG! enables at E780. Part b of
Figure 2-62 shows a SUM Ll executed at E6 preceded by a
LAW yl at E5. Since a LAW does alter the contents of Al
and By, the Cycle Delay flip-flop is set to inhibit clocking
the sum of Ay and By to register X until E7. The logic
that generates enables ENPPGI and ENPBGI to gate Pp
and Pb data through the ERF write fan-in logic is fed with
inputs from the Fu translation logic. Since the SUM pl
still resides in Fu at E7, the ENPPGI and ENPBGI logic
assumes that a new one-cycle BP ul was executed at E7,
and that its updated address (105+1) is now in Pb and
should be routed to Py. What is in Fu, however, is not a
new BP | executed at E7 but the SUM il begun at E6.
Therefore, the contents of Pb must reflect the updated
SUM address (104+1), which is made available at E6. As a
consequence, Pb must be clocked with this address at
EB80 to produce a meaningful starting !l address to be
sent to the ERF fan-in at E780.

The branch BP pl’s differ from non-branch BP Lil’s in that
they form the starting il address as a result of a branch to
a new address. These ul’s generate ERF fan-in enables as
shown in the bottom half of Table 2-4. The CLR, STA,
STB, and AND (1,X) ul’s when X specifies P form the
starting ul address by routing a 14-bit branch address (bits
2 through 15) from the ALU to both Su and Pp if
executed at EO through Eb5 or to Pb only if executed at
E6 or E7. (If executed at EQ through E5, the branch
address formed becomes both the jump address to branch



to a new subroutine during the current time slice and the
starting w1 address for the next assigned time slice.) The
1,X ul’s are normally considered non-branch (register file
write) pl's. They act as branch ul’s, however, when the
pl X-field specifies Py, as a file register in which to store
data. For this special case, the path to store data in Py is
through S . Since Sy is effectively loaded with a new
address, the pl essentially becomes a branch ul. the
contents of the Pp are then routed to the ERF fan-in logic
via the ENPPGI enables at E780. Since the starting ul
address formed by these BP yl's does not involve an
address update through Sy, the address can always be
held in Pp until the end of the time slice. The FJN, FRJ,
FZJ, RNI and JMP pul’s differ from the 1,X wl’s in that
they do use a portion of S to form the jump address
and, therefore, the starting 1 address. For the FRJ, FZJ,
and FNI pl’s, bits 2 and 3 of Sy are used along with the
jump address formed as bits 4 through 15. These two bits
from Sit, which enable a jump to another 4096-word CS
module, are actually the result of an SNH update. Since
the two bits always go to Pp regardless of when in the
time slice the pl’s are executed, (either from Sy or from
Pb) the resultant 14-bit address can always be obtained
from Pp via ENPPGI enables. For the JMP pul, bits 2

Py

JViP, FNJ

Jmp

RNI, RNI2, FZJ
SETP

FRJ FRJ

through 7 of Sy are used in connection with bits 8
through 15 from Fy to form the jump address. Bits 2
through 7 are derived from the Su+1 logic to enable a
jump not only to a different 4096-word module in CS
but also to a different 256-word page within the
module. These upper six bits of the jump address are
treated in the same was as the upper six bits of the
updated address of a non-branch BP ul; that is, the
bits are routed to Pp if the JMP ul is executed at EO
through E6 or to Pb if executed at E7.

The difference between using Pb for a JMP “I as
compared with using it for the non-branch BP pl's is that
only the upper half of the register is used. Therefore, a
JMP ul executed at E7 requires only that the upper half
of Pb be enabled through the ERF fan-in logic. This is
implemented by generating enable ENPBG1-0 only. The
lower half of the jump address than is enabled through the
ERF fan-in logic from Pp via ENPPG1-1.

Set Pp Logic

The Set Pp logic generates starting addresses of the RNI
and storage error routines stored in CS upon detection
that such a routine must be executed. These addresses are
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fed to the Pp register in place of the normal updated Ul
address from the Sp +1 logic. A simplified diagram of the
set Pp logic is shown in Figure 2-63. Although the Pp
register is loaded with a 12-bit jump address (bits 4
through 15), only 5 of these 12 bits are set to a particular
value corresponding to the RNI or error recovery jump
address. These 5 bits are 10, 11, 12, 14, and 15, as shown
in Figure 2-63. Figure 2-63 also shows the state of these
five bits when generating a corresponding jump address.
These five bits form the following addresses in
hexadecimal form:
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RNI-00004¢ Bounds — 00104g
RNI11-000246 MS PE —- 00181
RNI2-000946 CS PE —00284¢

(Note than Figure 2-63 defines each address in

complement form, as indicated by the SETP address
designation.)



Table 2-4. Generation of Enables for Starting 11 Address

Executed at Pp/Pb Enables ERF Write Enables

BP y! EQ—E6 E7 ENCLKPP | ENCLKPB ENPPG1-0 ENPPG1-1 ENPBG1-0 ENPBG1-1

NON-BRANCH i

6.-C

(CLR + STA + STB + AND) * X # P + SDW X X X X
+SDB + IOR + EOR + Skips + ROM + SYNC X X X X
CI01 + CI02 X ©O) X X X
EQO>ES

SUM + DSUM + CMP + CMU X E6,E7 X X X

X X X X

BRANCH pil

(CLR +STA +STB + AND) - X =Py X X X X X
+ FNJ + FRJ + FZJ + RNI1 + RNI2
JMP X X X X

X X X X

@Cannot execute at E7.



The three RNI routines enable a processor to obtain the
address of the next MLI in the task program it is
executing. Initially, the RNIO routine provides a starting
point for a processor beginning a new task. When starting
the task, the processor jumps to address 000015 under
contro!l of the operating system which has written address
00004 into the processor’s Py register.

A pl is located at this address which instructs the
processor where it will find the address of the first MLI in
the task program. During execution of this MLI, the
address of the next MLI in the program will be developed
as a normal part of the MLI and stored in some transient
register. Upon completion of the MLI, the last ul will
usually specify a jump back to 000245 (RNI1 routine) to
read out this next MLI address and begin its execution.
For certain MLI's, however, there is not enough time
during their execution to develop the next MLI address.
Under these conditions, the last ul will specify a jump
back to 000915 (RNI2 sequence). This routine has
already found the next MLI! address in anticipation of
such a problem, and can furnish this address immediately.
This prevents any loss of time that could result if the
address update had to be developed as a separate step,
apart from normal MLI execution. The jump back to
either 000216 or 00094 is implemented by the RNI1
(8,0) and RNI12 (8,1) ul’s, respectively.

The remaining three addresses generated by the set P logic
result from an MS parity error (PE), CS PE, or
out-of-bounds condition. For each type of condition, the
error routine sets an applicable bit in the condition
register of the processor experiencing the error. This bit
informs the operating system that an error occurred and
to take appropriate corrective action. In the case of an MS
parity and bounds error, the condition is recoverable in
that only the processor in which the error occurred is shut
down (except if the Executive processor experienced an
MS parity error). For these cases, the error routines are
referred to as traps since the error condition can be
isolated to a particular processor without interferring with
the rest of system operation. A CS parity error, however,
is critical to overall system performance since it indicates
a M parity error. Since all processors share in the use of
pl's, they can all be adversely affected. The only
recourse, therefore, is to shut down the entire system.

Referring to the logic of Figure 2-63, starting addresses
for the RNI1 and RNI2 routines are formed by a
translation of the corresponding ul function codes. The
RNIO starting address is generated as a result of no other

address being generated, which will be the case when the

processor initially jumps to this address to begin a task
program. The bounds error, MS PE, and CS PE trap

addresses are generated upon detection of the
corresponding error condition. Signal CS PE is generated
when a parity error is detected in the present yl being
executed. The bounds error-trap address is generated upon
detection of the OUTBOUND signal from the bounds
control logic in the Register Option. The bounds control
logic limits the address range in MS into which each
processor may read or write, thus providing data
protection. If this range is exceeded by a processor
accessing MS, OUTBOUND is generated which sets the
Bounds Error flip-flop. The MS PE flip-flop is set for
three conditions: OUTRANGE, ECC ERR, and BTYE
PE. Signal OUTRANGE indicates a reference to MS
has been made to a storage module that is not present
in the system. Signal ECC ERROR signifies an irrecov-
erable error (error in two or more data bits) occurred
in reading a word from MS. Since irrecoverable errors
are not correctable by the ECC logic, an error routine
must be performed. The BYTE PE indicates a parity
error that occurred in a word read from MS when the
ECC logic is not present on the system. Under these
circumstances, the parity check logic of the MS inter-
face logic is used to check for correct parity. (When
present in the system, the ECC logic disables outputs
from the MS interface logic.) Any of these three errors
will set the MS PE flip-flops, providing OUTBOUND is
not present.

PROCESSOR REGISTER FILES

The shared resources contains two sets, or files, of 16-bit
addressable registers. One set, called the Basic Register
File (BRF) is intimately associated with executing
machine language instructions (MLI’s) by the eight
processors. The other set, called the Extended Register
File (ERF) is used in conjunction with housekeeping, 1/0,
and other special-purpose applications. The BRF consists
of eight subsets, one for each of the eight processors. Each
subset contains 32 registers. The ERF subsets contain
only those registers {up to a total of 32) that are needed
by the associated processor to perform its particular
functions. In addition, the ERF subsets are further
subdivided into groups, depending on which registers of
the ERF are made available to each processor. Group |
contains two registers each for all eight processors (P“ and
F), Group |l contains common block registers which can
be accessed by all eight processors, and Group 111 contains
registers in processors 0 through 4 but which are restricted
for use by only the associated processor. Addressing of a
register is accomplished by specifying three elements: (1)
the register number, 0-15 (0-F, hexadecimal), (2) the
processor number, 0-7, and (3) the register file set,
whether basic or extended. Usually, the hardware
determines the processor number, the yl determines the
register set, and the MLI specifies the register number (or
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numbers, since basically the computer is a two-address
machine). Deviations from this general rule will be
described when appropriate.

A block diagram showing how each register file is
addressed is shown in Figure 2-64. Registers of the BRF
are addressed by a processor number and register number.
The processor number is derived from the resource
allocation network, depending on acknowledging requests
from processors. The register number is derived from
either the MLI or I, or a combination of both, depending
on the a and b designators of the ul. Addressing of
registers in the ERF depends on the register group being
accessed. If Group | is accessed, the register is selected by
a processor number from the priority network and a Py or
F select signal. If Group Il is accessed, the register is
selected by a register number alone, since these registers
can be accessed by any processor. Registers of Group |l!
are selected by a processor number from the priority
network and register number from the register select logic.

BASIC REGISTER FILE

Assignment and Functions

The Basic Register File (BRF) array is shown in Figure
2-65. As shown, the BRF is a matrix of 256 registers, 32
registers associated with each of 8 processors. The
registers are made up of sixteen 256-bit LSI memory
elements. Each element stores one bit of the 2566 words
comprising the BRF; therefore, each register word is
stored 16 bits wide, one bit per element.

Each register or register group of the BRF is assigned
a use. These assignments are made by microcode con-
vention only and are not constrained in any way by
hardware requirements. The first eight registers for
each processor are general-purpose registers, addressed
as 00 through 07. These registers are used for tempo-
rary storage of data involved in and resulting from

n:g REG#(BRFS-3>7)
BRF
| 11+15 ADRS
H g PROC#(BRFS-0~2) | meut 1AZ5.28
1A08-11
RFEG ZEE PROC#(BC08-10) ERF
11+15 GRP
MLI > PROC#(RD,WR) 1
. 1A18-21
1A18-21 »1 1A22
PLORF
11+-15
RBEcG ERF
VK___ | PROCA4ERFG2) ADRS GRP
ki INPUT [ I
§-10 BRFS 1A08-11
1A08-11 1 SEL
» 1a18
';Tvov:z REGA{ERNG3) | ERF
PROC ADRS | elﬁp
RE PROCA(EXCT) N 10
1A16 d PROC

Figure 2-64. BRF and ERF Addressing



HEX Fu BITS PROCESSOR

ADDR 11 12 13 M 15 0 1 2 3 4 5 6 7

00 0 0 O 0 0 GEN. PURP.0

0 0 0 1 1 1 GEN. PURP. 7

08 60 1 0 0 o CONDITION

09 0 1 0 o0 1 PROG. ADDR. (P)

0A ¢ 1 1 0 0 TRANSIENT (T0)

OF 0 1 1 1 1

10 1 g 0 o0 0

v v v

1F T oo TRANSIENT (T21)

Figure 2-65. Basic Register File Array
SEE NOTE
I
0 1 2 3 4 ] 6 7 8 9 10 1 12 13 14 15
OVERFLOW BOUNDARY ERROR _J
(CLEARED ON COMPARE) (STORAGE VIOLATION)
A>B; DECIMAL RVICE RE EST
RESULT IS POSITIVE SERVIC eu
PARITY ERROR
A<B; DECIMAL _ IN MAIN STORAGE
RESULT IS NEGATIVE
INVALID
A=B; L'NK; DECIMAL INSTRUCTION
RESULT IS ZERO
INVALID DECIMAL
(CLEARED ON COMPARE)
A>B
A<B
=B —

NOTE

BIT GROUPS 0-3 AND 4-7 ARE BOTH SET AFTER ANY OF THE COMPARE INSTRUCTIONS. INTERPRETATION, WHETHER LOGICAL (MAGNITUDE
ONLY) OR ARITHMETIC (SIGNED VALUES), DEPENDS UPON THE INSTRUCTION, AS FOLLOWS:

INSTRUCTION PURPOSE 03 41

CMPX MAGNITUDE ONLY, LOGICAL LOGICAL
cBy BYTE-ORIENTED

CBYM

CMPK ARITHMETIC, PACKED DECIMAL ARITHMETIC ARITHMETIC
CMPF ARITHMETIC, FLOATING POINT

gm:i’cwgﬁ' } ARITHMETIC, WORD-ORIENTED ARITHMETIC LOGICAL
CMPR, CMPT

Figure 2-66. Condition Register Bit Designations
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executing MLI’s (operands for an ADD instruction, for
example). Registers 08 and 09 are identified as the
Condition register and Program Address (P) register,
respectively. The Condition register records certain
conditions resulting from executing MLI's (results
equal, for example). These conditions and their corre-
sponding bit assignments in the Condition register are
shown in Figure 2-66.

The P register contains the address of the MLI currently
being executed. The remaining 22 registers are transient
registers (OA through OF and 10 through 1F). These
registers are used for temporary storage of data involved
in and resulting from executing wl’s (for example, partial
results accumulated while executing a machine language
multiply instruction). Of these 22 registers, the last six
(1A through 1F) are reserved for special use. Registers
1A through 1D are reserved for floating-point ul's.
Registers 1E and 1F can be used as any of the other
transient registers except when executing a Load S
(LS1, LSF, LS2, or LSE) ul. If loading S from either
of these two registers, the Load S ul is interpreted as
a reference to the Register Option instead of to Main
Storage. To the left of the register array is listed the
corresponding address of each register, both in hexa-
decimal form and in binary form, as designated by Fu
bits 11 through 15.

Basic Register Selection

Selection of a register in the BRF is accomplished by
forming an 8-bit BRFS (BRF select) address, as shown in
Figure 2-67. Bits O through 2 of this address specify one
of the eight processors, and bits 3 through 7 specify one
of the 32 registers of a processor subset. The processor
select bits are usually obtained from the priority network,
which determines which processor will be granted the
next time slice. The register select bits are obtained from
several sources, depending on the condition initiating
selection of a register.

Normal selection of a register is determined by the ui
X-field alone, or an inclusive-OR of the yl X-field with
either the MLI R¢ or R fields depending on the values of
the ul a and b designators (bits FM2-006 and FM2-007,
respectively). The combinations of the various ul and
MLI fields for selecting registers is shown in Figure
2-67 and summarized below:

a'b = 0-0 — register selected by ul X-field only (bits
FM2-011 through FM2-015)
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ab = 1:0 — register selected by inclusive-OR of ul
X-field and MLl Rq-field (bits FR-009 through
FR-011)

ab = 0-1 — register selected by inclusive-OR of pli
X-field and MLI Ro-field (bits FR-013 through
FR-015)

a'b = 11 — BRFS address inhibited and a register of
the ERF is selected by the ERF select logic as
discussed in the paragraph titled Extended Register
Selection.

A BRF register can also be selected by an IVK ul. The
IVK ul selects any of the 32 registers by the contents of
the Boundary Crossing (BC) register instead of the Fjl and
F register contents. Execution of the ! selects a register
by means of bits BC-007 through BC-015.

A simplified diagram of the BRF select logic is shown in
Figure 2-68. Each of the 8 BRFS lines connect to all 16
elements of the BRF in parallel to enable all 16 bits of a
particular register. As shown, BRFS-0 through BRFS-2
come from the resource allocation logic to select a
particular processor. These three processor select bits, of
which BRFS-0 is shown in detail, are selected by the
EXEC bits from the Execute register during normal
operation or bits 8, 9, and 10 of the BC register during an
IVK ul. In either case, the three input bits represent the
processor number in BCD form. Bits BRFS-3 through
BRFS-7 are used to select a register of a processor BRF.
For illustrative purposes, logic for generating bits BRFS-3
and BRFS-56 is shown in detail. During normal operation,
bit BRFS-3 is generated unconditionally by FM2-011 and
bit BRFS-56 by FM1-013, in combination with FR-009 or
FR-013 depending on the presence of enable FM2-006
(a-designator) or FM2-007 (b-designator). During an IVK
(!, BRFS-3 and BRFS-5 are generated by BC-011 and
BC-013, respectively, when enabled by INVOKE.

Writing into a selected register of the BRF is enabled by
the ENBRFW-0 and ENBRFW-1 signals. As shown in
Figure 2-68, ENBRFW-0 is used to enable writing into bits
0 through 7 of a register, and ENBRFW-1 into bits 8
through 15. Both enables are generated for basically the
same conditions, those being translation of a Register File
Write (1,X; 2,X; 4,X; or 8,X) ul in F. The difference
between the two enables is that only ENBRFW-0 is
generated for the CMP and CMU (2,2 and 2,3) uli’s, since
only bits 0 through 7 of a register can be written into by
these two pl’s. The write strobe pulse is furnished via
BRFWRITE, which occurs at t60 of every minor cycle.
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Figure 2-67. BRF Addressing Methods

When the write enables and write strobe are present, the
data present on the DATA IN lines from the ALU fan-out
logic is written into the selected register.

EXTENDED REGISTER FILE

Assignment and Functions

The Extended Register File (ERF) array is shown in
Figure 2-69. As shown, the ERF consists of three groups,
according to the number of registers associated with each
processor and their use.
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Group | Registers

Group | consists of two registers for each processor: the
Function (F) register and the I Address (Pu) register. The
F register is 16 bits in length and contains the MLI
currently being executed by the associated processor. The
Pu register is 18 bits long and contains the address of the
first ul to be executed during the next time slice assigned
to the active processor, plus four status bits. The format
of this register is shown in Figure 2-70. As shown, the
lower 14 bit positions (bits 02 through 15) contain the ul
address, and the upper four bit positions contain the four
status bits. Functionally, the Py register is considered to
be an 18-bit register; physically, however, it consists of a
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Figure 2-69. Extended Register File Structure
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16-bit basic register supplemented by a 2-bit extension
register. Since two extra bit positions are available in the
16-bit register, the Overflow (O) and Link (L) status bits
are stored in these positions. The CS parity error (E) and
Skip (S) status bits, however, are located in the 2-bit
register. The E and S bits are hardware-controlled only
and are inaccessible for 1l control, except by ul’s which
write into Py when operating in the boundary-crossing
mode. Although physically separate, the 2-bit register is
addressed, read, and written by the same lines that control
the 16-bit register.

Conceptually, these two register sets belong to the BRF
since these two registers are associated with each of the
eight processors. However, limitations in the ability to
address the registers as part of the BRF plus the
look-ahead capability desired by these registers, described
in the paragraph titled Access Capabilities and
Limitations, make it necessary to include the F and Py
registers as part of the ERF. The two registers are
numbered 00 and 01.

Group Il Registers

Group !l consists of 14 registers, numbered 02 through
OF. At present, only registers 02 through OB are assigned
specific uses. These 14 registers form only one subset that
are shared by all eight processors. Ordinarily, a processor
cannot gain access to a register in another processor’s
register set because the processor number is part of the
register addressing scheme. This processor number is not
translated for the Group 1l registers, however. Therefore,
any processor may gain access to these registers. For this
reason, the registers of Group Il are referred to as the
common block registers. Each of the Group 1l registers is
discussed below:

Busy/Active (B/A) Register — The B/A register indicates
which processors are presently engaged in processing a
task (active condition) and which processors that are
active require a time slice to execute the next portion of
their tasks (busy condition). The difference between the
two conditions is that the busy condition will go through
many on-off cycles during execution of a task, whereas
the active condition will generally remain set until that
task has been completed. The B/A register is made up of a
Busy flip-flop and an Active flip-flop associated with each
processor. These 16 flip-flops make up the B/A register as
shown in Figure 2-71, where the busy conditions are
represented as bits 0 through 7 and the active conditions
represented as bits 8 through 15. (More details of the B/A
register are contained in the paragraph titled Busy/Active
Register.)

Real Time Clock (RTC) Register — The RTC register is a
16-bit register/counter that is incremented every 1.6384
milliseconds. The contents of this register are used by
processor 4 (Exec) for software timing purposes, such as

updating the time-of-day clock and initiating time-out
operations. A simplified diagram of the RTC register is
shown in Figure 2-72. The register is made up of four
4-bit binary counters, where each higher-order counter is
incremented by a carry from the preceding lower-order
counter. Incrementing of the lowest-order counter (bits
12 through 15) is initiated by RTCASYNC from the RTC
pulse generator. This signal is generated every 1.6384
milliseconds.

Because the 1.6384-millisecond RTCASYNC signal is
developed asynchronously from the rest of the CPU
timing, it must be synchronized to the E pulse timing
to correctly update the RTC register. This is done by
sending RTCASYNC through a pulse catcher network
composed of flip-flops No. 1 and No. 2. The output
of No. 1 goes high upon receipt of the low
RTCASYNC signal and causes flip-flop No. 2 to set at
E150. Since RTCASYNC is asynchronous with the E-
timing pulses, however, only a sliver of RTCASYNC
may be present at E050 time with the result that the
output of No. 2 may be indeterminate for a couple of
E-times. By E7, however, the output has stabilized
sufficiently that it can be gated as RTC-G3CI to the
lowest-order stage of the RTC register. Incrementing
the register at E7 avoids problems in reading this reg-
ister at EO through EG.

A carry from the bit 12 through 15 counter generates
RTC-G3C0, which initiates incrementation of the bits 8
through 11 counter. The remaining two counters are
incremented in a similar fashion, until a final count of 1.8
minutes is reached (1.6384 msec x 216). Because the
counter overflows at this point (RTC is generated), the
prccessor must read the register at least this often if the
timing interval information is to be meaningful. Upon
reaching overflow of the bits 0 through 3 counter, the
register clears itself and begins counting again from zero.

Tie Breaker (T) Register — The Tie Breaker register is a
16-bit register used for recording the status information
pertaining to system tables in Main Storage (MS). System
programs use the tables to communicate with one
another. Before using them, however, each program must
check the Tie Breaker register to determine if the desired
table of MS is being used by another program. This is
done by assigning each bit of the T register to a particular
System table (as differentiated from a User table) stored
in MS. Before calling up a System table, a processor must
examine the bit of the Tie Breaker register representing
that table to see if it is already being used by another
processor. This precaution prevents one processor from
reading tabular material that another processor is
updating, or vice versa. A processor sets the associated
T-bit before starting to use a table via the Test and Set
Tie-Breaker Register MLI (11), and clears the bit when
finished via the Clear Tie Breaker Register MLI (12).
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Inputs to the T register are from the ALU fan-out logic
under control of these two MLI’s. Bit assignments for the
various tables are generated as part of the Operating
System (control program).

Parity Error Address (PE) Register — The PE register
contains the MS address at which the last parity error
occurred. This register is constantly fed with MS addresses
from the S register, as shown in Figure 2-73. However, no
address is gated into the register until CLKPE is activated.
This signal is activated upon detection of a parity error,
and is timing so that the address it gates into the PE
register is where the parity error occurred.

'----------ﬂ

| |

1 1

+SR-MN00 —— ]
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V1 1
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N | |
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Figure 2-73. Parity Error Register

Control Register — The Control register stores control bits
for each processor that define the type of priority
assigned to each processor and whether it is to run in the
consecutive-cycle mode. A simplified diagram of the
register is shown in Figure 2-74. The left-most eight stages
store Enable Priority (EP) and Invoke Priority (IP) status
bits associated with the priority logic of processors 0
through 3. The right-most eight stages store Consecutive
Cycle Enable (CCE) status bits associated with all eight
processors. The register receives its input from the ALU

fan-out logic, and is set and cleared by the Set/Reset
Control Register MLI.

Privileged Mode (PM) Register — The PM register is a
16-bit register, of which only the right-most eight bits (bit
positions 8 through 15) are used at present. These eight
bits allow the Executive processor to set any of the eight
processors to a privileged state. This is done by setting a
privilege mode bit in the register corresponding to each
processor, as shown in Figure 2-75. When set to the

privileged state, the processor is able to execute privileged
MLI’s.
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Boundary Crossing (BC) Register — The BC register holds
the processor and register number used by a processor or
the System Control Panel to select a register in another
processor’s register file. This is done during execution of
an IVK pl. The format of the Boundary Crossing register
is shown in Figure 2-76. Although 16 bits in length, only
the lower 9 bits of the Boundary Crossing register are used
for boundary crossing monitor purposes. Typical reasons
for crossing boundaries by processor 4 are to:

1. SetP
2. Set, clear, or examine Condition register
3. Set, clear, or examine general-purpose registers

4. Set, clear, or examine transient registers

am—

5. Set, clear, or examine PL. and F registers

o~
i~

5. Test registers (diagnostic routines)

Control Storage (CS) Scan Register — The CS Scan
register is used to check longitudinal parity on 256-word
pages in CS. This is done by performing an exclusive-OR
on all words of a page. If the contents of the register
yields all 1’s after the last word of a page has been
checked, this indicates that the page was loaded correctly.
The CS Scan register receives its input from 14 bits of
each word stored in CS (bit positions 9 and 10 are not
used), as shown in Figure 2-77. The register output feeds
the FRJ decode logic checking the contents for all “/1's"’.
(More details of the CS scan operation are discussed in the
paregraph titled CS Scan/Read.)

Console Address Register — The Console Address register
is used in conjunction with the row of 20 address
pushbutton/indicators on the System Control Panel to
provide entry and display of address-related information.
See the MEMOREX 7300 Processing Unit Maintenance
manual for a discussion of the Panel and how the Console
Address register is used during maintenance operations.

Console Data Register — The Console Data register is used
in conjunction with the row of 20 data
pushbutton/indicators on the System Control Panel to
provide entry and display of data-related information. See
the MEMOREX 7300 Processing Unit Maintenance man-
ual for a discussion of the Panel, and how the data register
is used during maintenance operations.
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Group 11l Registers

There are four subsets of Group Il registers, one for each
of processors O through 3. Each subset has provision for
addressing up to 16 registers. The Group Il registers are
I/O-oriented registers, addressable only by the associated
I/0 processor, and not part of the shared resources.
Because of the restrictions on addressing these Group 111
registers, they are designated as dedicated extended
registers. A description of these registers, including their
use, is contained in the applicable section of Volume 3 of
this manual.

Extended Register Selection

Selection of a particular extended register of the ERF
depends in which group the register is located. For each
group, specific register select signals are generated as
described below.

Group | — The Pp and F registers of Group | are selected
by four bits: three bits which define the processor number
and one bit which defines either the Py or F registers of
that processor’s ERF. This selection is shown in Figure
2-78. The processor number is defined by bits ERFG1S0,
ERFG1S1, and ERFG1S2, which comprise a three-bit
BCD. These bits are normally generated by the priority
logic via corresponding read and write bits after deciding
which processor gets the next time slice. Separate read
bits (READ-XXX) and write bits (WRITEXXX) must be
generated by the priority logic since reading the Pu
register for the next processor to be granted a time slice
occurs before writing into the F register of the current
processor. Therefore, the current processor number
defined by the WRITEXXX bits must be present along
with the next processor number defined by READ-XXX
until the end of the present processor’'s major cycle.
Enables ENRD-ERF and ENWR-ERF define the times
that the ERFG1 address bits are generated. Enable
ENRD-ERF occurs at RO and R1 times of the next major
cycle (E6 and E7 times of the present major cycle) to read
out the starting u! address from Py and the associated
MLI from F for the next processor to be honored. Enable
ENWR-ERF occurs at WO and W1 times of the present
major cycle to store the starting address of the first 41 to
be executed during the next assigned time slice, and to
store the associated MLI into the Fu register. Execution
of an IVK (F,1,1,) ul substitutes a processor number
contained in bits 8, 9, and 10 of the Boundary Crossing
(BC) register for that originally supplied by the priority
network. This is shown as inputs BC-008, BC-009, and
BC-010 to the ERF Group | address logic, which generate
the ERFG1 address bits in place of the READ-XXX bits
from the priority logic. Signal ENBC-ERF enables this
processor number from the Boundary Crossing register at

E2 through EB times when the Invoke flip-flop is set.
During a master clear condition, the MC-2 signal is ANDed
in succession with counts £1256, £2345, and E4567 from
the timing chain gray-code counter. These counters are
generated in sequence to generate processor numbers O
through 7 in a cyclic fashion. The effect is to clear out the
Pu register associated with all eight processors. This
operation causes an address of 000045 to be written into
all Py registers so that each processor routine will- begin
with an RNI0 sequence.

Besides selecting the processor via the ERFG1 bits, it is
also necessary to select either the P or F register of the
selected processor, and to enable either a read or write of
the selected register. Selection of either P or F is
provided by SELFH/PL, according to its state:
SELFH/PL=high — selects F register
SELFH/PL=low — selects Py register

Reading or writing the selected register is provided by
EF1RH/WL, according to its state:

EF1RH/WL=high — read operation
EF1RH/WL=low — write operation

'----------ﬂ
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Figure 2-78. ERF Group | Select Logic
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These signals are used together to read or write the
selected register, as shown in Figure 2-79. Reading Pit and
F occurs during E6 and E7 of the present time slice, in
preparation for the processor to run during the next time
slice. During these two minor cycles, EF1RH/WL is high
to enable the read operation and SELFH/PL is either low

2-93

or high to select either Py or F as the register to read
from. Writing into Pu and F occurs during WO and W1
times  of the present time slice. During these two minor
cycles, EFIRH/WL is low to enable the write operation
and SELFH/PL is again either low or high to select either
the Py or F register.
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Figure 2-80. Generation of SELFH/PL and EFIRH/WL

Generation of the SELFH/PL and EF1RH/WL signals is
shown in Figure 2-80. Both SELFH/PL and EF1RH/WL
are generated for a master clear condition to clear out the
Py registers (write an address of 0000g) of all eight
processors. Signal SELFH/PL is also generated at the
times shown in Figure 2-79 to read data from and write
data into the Pu register as part of the normal
housekeeping operations associated with each time slice.
The IVK ul generates SELFH/PL to select a Pu register
specified by the contents of the BC register. This signal is
generated by BC-15, which specifies register 0001 (Pu
register) of the ERF, and ENBC-ERF, which enables data
to be read from the BC register during an IVK p I.

Besides being generated during a master clear condition,
signal  EF1RH/WL is driven low for three other
operations: write Py, write F, and IVK pl. During normal
write Pt and write F operations, EF1RH/WL is generated
by NORMWR and an ANDed combination of enabling
conditions. Signal NORMWR is generated during the
middle half of every minor cycle and is used as the basic
write signal. For write Pu operations, NORMWR is
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enabled at WO time providing neither CIOEXIT or
WR-NOP is low. If either CTOEXIT is low (indicating the
compare condition of a CIO yl to exit from the data
transfer loop has been met) or WR-NOP is low (indicating
that a NOP pul is being executed), the Pu Write operation
is inhibited (P is not updated by Pp) by driving)
EF1RH/WL high. If either condition is not met, however,
EF1RH/WL remains low. For write F operations,
NORMWR is enabled at W1 time except if NOP pul is
executed. During write Py and write F operations
initiated by the IVK pul, E1FRH/WL is generated by
LATWR and enabling conditions. Signal LATEWR is
generated for the same period as NORMWR (about 50
nancseconds) but about 15 nanoseconds later in the
minor cycle. This additional delay gives the IVK ul
sufficient time to perform the required translation
necessary to implement the ul. Since this ul selects only
one register at a time, the EF1RH/WL signal is generated
only once. Enabling conditions for the IVK pul are
FXEQ-1, which specifies the IVK K ul itself; BC-0000X,
which specifies either register 0000 (F) or 0001 (P¢); and
BC-07, which specifies the ERF.
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Group 1l — Selection of a Group !l register for reading or
writing depends on whether the register is selected via (il
control or hardware control. All Group 11 registers may be
read via il control, and all but the PE, RTC, and CS scan
registers may be written via ul control. Logic for selecting
a Group Il register via ul control is shown in Figure 2-81.
During a normal read operation, with the a and b
designators set, each Group 1l register is selected by means
of bits 12 through 15 of the ul X-field (Fu bits 12
through 15). If the read operation is under contro! of an
IVK pul, the register address is obtained from bits 12
through 15 of the Boundary Crossing register. In either
case, the 4-bit address generates four select signals,
ERFG2S0 through ERFG2S3 These select signals are fed
to a translator where they undergo further decoding to
generate select bits ERFGP2S0 through ERFGP2S2.
These three select bits are routed to a one-of-eight
selector. The selector is fed with eight register inputs and
enables reading the selected register input. Note that while
there are only 8 inputs to this selector, there are 10
registers of Group |l that need to be selected. Selection of
the two extra registers is accomplished by ORing the
outputs of the CSS, Console Address, and Console Data
registers and feeding the result into the selector as one
register input. Each of these registers, then, is selected by
a corresponding select bit: SELCSS, SELMR, or SELNR,
which are generated by select signals ERFG2S2 and
ERFG2S3. The correspondence of ERFGP2 and SEL
select bits to the Group 1l register addresses is shown in
Table 2-5. (Note that the select bits are defined in
complement form while the address bits are defined in
true form.)

Selection of a Group 1l register for a write operation is
basically done by selecting the appropriate clock or clock
enable signal for a particular register. For the Busy/Active,
Tie Breaker Control, Privileged Mode, Boundary Crossing,
CS Scan, Console Address, and Console Data registers, the
clock or clock enable signal is generated by the four select
signals, ERFG2S0 through ERFG2S3. This method of
register selection is shown in Figure 2-82 for selecting the
Tie-Breaker (T) and Boundary Crossing (BC) registers as
examples of Group I register selection. Of the four select
signals, ERFG2S1 through ERFG2S3 are routed to a
BCD/one-of-eight decoder. The two decoder outputs are
sent to one side of corresponding AND gates used to
generate the clock enable signal for each register. The
other side of the AND gates are fed with ERFG2S0. This
signal is ANDed with ENERG2WR, indicating a Group |!
write operation, and SELERFG3, indicating that the
ERFG2S0 through ERFG2S3 select bits are selecting one
of the lower 16 registers of the ERF. (As shown in Figure
2-69, the upper 16 register addresses are reserved for
Group I registers.) The result is fed in true form to the
AND gate used to clock the BC register, since its address is
greater than 7 (084g), and in complement form to the
AND gate used to clock the T register since its address is 7
or less (044g). The AND gate outputs are enabled with
CLKERFG2 (generated at TX80 time) to generate register
clock signals CLKTB and CLKBC. During a master clear
operation, ““0's’’ are written into all Group Il registers
(except the PE and RTC registers). This is accomplished
by satisfying both sides of each AND gate with MC, which
essentially clocks each register with no data (”0's")
present on the register input lines. The result is to clear
each register.

Table 2-5. ERF Group |l Read Select Bits

Hex F . Reg Bits ERFGP2 Bits SEL Bits
Reg ADRS 12 13 14 15 §2 S1 S0 | C8§ MR NR
B/A 02 0 1 0 1 1 1 1 1 1
RTC 03 0 1 1 1 0 1 1 1
T 04 0 1 0 0 1 0 1 1 1 1
PE 05 0 1 0 1 1 0 0 1 1 1
CONT 06 0 1 1 0 0 1 1 1 1 1
PRIV 07 0 1 1 1 0 1 0 1 1 1
BC 08 1 0 0 0 0 0 1 1 1 1
CSS 09 1 0 0 1 0 0 0 0 1 1
ADRS 0A 1 0 1 0 0 0 0 1 0 1
DATA oB 1 0 1 1 0 0 0 1 1 0
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Selection of clock signals for the Busy/Active, Console
Address, and Console Data registers differs slightly from
those for the T and BC registers in that the select logic
generates a clock enable signal only. The reason is because
the flip-flops comprising these registers require a
positive-going signal to clock them instead of the
negative-going signal required by the other registers. The
clock signals for these flip-flops, therefore, are generated
by ANDing them with TX80 in a non-inverting fashion to
furnish the required polarity. The AND gates are located
on the same module with the registers.

As mentioned previously, writing the PE, RTC, and CS
scan registers is accomplished under hardware control
only. The PE register is written with the MS address at
which a PE occurred during an MS read operation, as
discussed in the paragraph titled MS Read. The RTC
register is continuously written with a clock pulse derived
from the RTC pulse generator, as described in the
paragraph titled Real Time Clock Pulse Generator. The CS
scan register is written with cumulative longitudinal check
data during a CS scan operation, as described in the
paragraph titled Scan/Read.

Group Il — Selection of Group lll registers is performed

in a manner similar to that for the BRF registers:
generation of a processor select number and a register
address. Like the BRF registers, each 1/0O processor can
only access registers of its assigned file. A simplified
diagram showing selection of Group Il registers is shown
in Figure 2-83. The processor number is specified by the
EXCT signal from the resource allocation network. Each
/0 processor is selected by a unique EXCT signal. The
Group 111 register is selected by the SELERFG3 signal and
the four ERNG3 signals. The SELERFG3 is over-all select
for all Group Il registers. It defines the digit 1 for all
Group 11l register address (1045 through 1F16) and
enables selection of the Group 11l registers by disabling
selection of the Group Il registers (02414 through OF 1g).
The four ERNG3 select signals comprise the register
address within Group lll. These five select signals are
normally generated by corresponding bits of the X field of
a Register File Read or Register File Write yul (Fy bits 11
through 15). During an Invoke condition, the select
signals are derived from corresponding bits of the BC
register. The decision to perform a read or write into these
registers is determined by the ERFG3RD or ERFG3WR
signals. Each of these signals is generated from a
corresponding Register File Read or Register File Write

ul.
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Figure 2-83. ERF Group 11l Selection
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Table 2-6. Reading and Writing File Registers

Processor
Register Oriented Read Capability Write Capability Master Clear
Basic Register File yes P‘l control /J,I control no
Extended Register File
F yes hardware or (1| control hardware or ul control no
PN yes hardware or N' control hardware or I.L' control* yes
Group I}
Busy/Active no hardware or u,l control hardware or p,l control yes
RTC no hardware or (| control hardware control no
Tie-Breaker no p,l control w control yes
PE no 41 controt hardware control no
Control no hardware or Ul control I,,Ll contro! yes
Privileged Mode no [.U control (! control yes
Boundary Crossing no hardware or Ul control M control yes
CS Scan no ul control hardware or u,l control** yes
Panel Address no A control hardware or i control yes
Panel Data ‘ no M} control hardware or (il control yes
Group 11
Processor O yes M1 control /J,I control no
(4 registers)
Processor 1 yes MI control ! control no
(5 registers)
Processor 2 yes i control M control no
(5 registers)
Processor 3 yes I control /.U control no
(1 register)

* ul control write into E and S bit positions will clear them.
**All ['s that attempt a write, except ROM, will clear CSS.

Access Capabilities and Limitations

Because the registers of the BRF and ERF are read and
written by a variety of conditions, it is useful to tabulate
their conditions in one central location. Table 2-6 lists
these conditions in summary form for each file register.
Specifically, this table lists each register of the BRF and
ERF, whether or not it is processor-oriented, conditions
for reading and writing the register, and whether or not it
can be master-cleared.
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MAIN STORAGE INTERFACE

The Main Storage (MS) interface logic controls data
transfers between the MS sections of shared resources and
the rest of shared resources (from here on referred to as
the Central Processing Unit (CPU) section). All circuits
of the MS interface logic function during one of two
basic operations: write and read.

Each type of operation performs on data in either word



mode (16 bits) or byte mode (8 bits). The two bytes of a
word are referred to as the left-most byte (bits O through
7) and the right-most byte (bits 8 through 15). The
left-most and right-most bytes are also referred to as bytes
0 and 1, respectively.

Parity is calculated in the CPU for each byte of a
word using odd parity (odd number of ““1's’’ in each
byte, including the parity bit). The upper byte parity
hit is referred to as PO, the lower byte parity bit at
P1. The format of a word transferred to MS is shown
in Figure 2-84.

An MS write or read operation is always initiated by a
Load S (LS1, LSF, LS2, or LSE) ! which transfers the
contents of a register in the Basic Register File (BRF) to
the S register. These contents specify the address of a
location in MS. If the Load S | is followed by a Load D
(LDW, LDW-, or LDB) ul, the contents of a register in
the BRF is transferred to the D register and the MS
write is initiated. The MS write then transfers the con-
tents of D to the location in MS defined by the
address in S. If the Load S ul is not followed by a
Load D wul, an MS read operation will unconditionally
take place by reading the operand stored at the loca-
tion in MS and sending it to the data fan-out logic in
the MS interface. Normally a Load S ul programmed
for a read operation will be followed by some u! that
takes the data read from MS and uses it according to
the particular ul. These ul’s include the Store D (SDW
or SDB) ul's and the D - A (DTA, DTA-, IDX, and
DFA) ul’s. A special use of the SDW ul is during the
RNI sequence to read the next MLI to be executed in
the program. When used for this purpose, the SDW ul
gates the first-level decoded results of the MLI from
the FRJ decode address table (AT) and saves the MLI
in the F and FRF registers until its execution is
completed.

Operating details of the MS interface logic will be
presented by discussing the basic elements of the logic (S
register, D register, and data fan-in) followed by a
discussion of the MS write and MS read operations plus
associated timing and control signals involved. Because
they are intimately associated with MS caontrol signals,
Register Option control signals are also discussed in this
section. (A description of the Register Option itself is
contained in the paragraph titled Register Option.)

S REGISTER

The S register holds the address of the word or byte to be
either read from or written into MS. The register consists
of 16 flip-flops, fashioned from cross-coupled NAND
gates. The advantage of these flip-flops is that they do not
require any data set-up time (about 10 nanoseconds) and
provide immediate propagation. This enables the address
data to be entered into the register immediately, an
important feature since the MS access operation is time
critical. A diagram showing one stage of the S register is
shown in Figure 2-85. The address obtained from the BRF
through the AW register fan-in is gated through the EN
SET gate when CLKSR and ENCLKSR are present. Signal
ENCLKSR is generated by a Load Su. | (3,X) at E040 and
cleared normally at E140 or upon occurrence of a CS read
error (SWPERR). Assuming the address bit to the flip-flop
is a 1, the feedback path from the SR (set) output to the
CLK LATCH gate keeps the flip-flop set while the address
bit is present during the clock period. After both the
clock pulse and address bit have been removed, the
flip-flop remains set due to the feedback path from the
SR output to the NORM LATCH gate. The flip-flop
remains set until cleared by a subsequent address bit of O,
together with clock and clock enable signals.

MAIN STORAGE

—

P1

LEFT-MOST BYTE

RIGHT-MOST BYTE

Figure 2-84. Format of Word Transferred to MS
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D REGISTER

The D register holds the data to be written into MS at the
location specified by the contents of the S register. This
data also comes from a BRF register, but under control of
a Load D (7,X) ul. The D register is composed of 16
edge-triggered J-K flip-flops. The D register flip-flops can
be preset or precleared, as required, to store data in either
true or complement form. (See the paragraph titled Al
and Bu Registers for a description of storing data in true
or one’s complement form in the Au and Bu registers.)
Logic for a stage of the D register is shown in Figure 2-86.
The register is pre-cleared via ENRDR and CLKS/RDR to

enable storing data in true form during execution of a .

LDW (7,0) or LDB (7,2) ul, or during a master clear
condition. The register is pre-set via ENSDR and
CLKS/RDR to enable storing data in one’s complement
form during execution of a LDW- (7,1) ul. For all these
ul’s, data on the RF-MSI lines is clocked in via CLKDR
and ENCLKDR. The enable signal is generated by the
Load D flip-flop for any Load D ul. If the system is in
the maintenance mode, the register can be pre-set to store
all “1's” by the SET AM and SET BM signals. These
signals are generated by simultaneously pressing the SET

Au and SET Bp pushbuttons on the System Control
Panel.

DATA FAN-IN

The data fan-in logic, shown in Figure 2-87, provides for
selecting one of three data paths to the ALU fan-out
logic:

1. Register Option (RO)
2. D register
3. Main Storage (MS)

Data read from either the RO or MS is done so in a similar
manner, by means of a Load S ul. For this ul, MSREADY
is generated at E440 time of a time slice. In the case of a
RO read, ROREAD must also be present. In the case of an
MS read, ROREAD must be low to specifically inhibit an
attempted read from the RO. Data from the D register can
be enabled when neither the RO or MS is reading out data
(whenever MSREADY is low). For this condition, the
data contained in D will usually represent an operand
obtained from a file register.
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Figure 2-87. Data Fan-in

MS WRITE OPERATION

A block diagram for the MS write operation is shown in
Figure 2-88. Data can be stored transferred to MS in
either word mode (16 bits) or byte mode (8 bits).
Selection of a byte to be transferred is under control of
the STDBYTE enable, which enables the byte select logic.
When STDBYTE is low, all 16 bits of the D register are
stored in 16 bits of a location in M$S specified by the
address in S. When STDBYTE is high, the byte contained
in bits 8 through 15 of D is transferred in parallel to both
the left-most byte and right-most byte of the location in
MS. The choice of storing bits 8 through 15 of D in either
the left-most byte or right-most byte of MS is determined
by the state of bit position 15 of the address in S, as
discussed in greater detail in the following paragraph
(Word and Byte Write Operations). Odd parity for the
word or byte to be stored is generated on a byte basis by
the parity generator. The parity generated for each byte is
stored along with the byte as shown in Figure 2-84. Prior
to being routed to MS, the contents of both S and D are
routed to the Register Option (RO) logic. Among other
things, the RO may contain segment tags whose con-
tents are appended to the address contained in S to
form an effective address at which data in D will be
stored in MS. The data from D and the byte select
logic also pass through the RO for the singular pur-
pose of initially loading certain registers and tables in
the RO. Thereafter, the RO is transparent to all data
passing through to MS.

Word and Byte Write Operations

Word and byte writes into MS are performed by the logic
of Figure 2-89. Selection of either a word or a byte to be
transferred to MS is controlled by the byte selector. The
byte selector is fed with outputs from both the left-most
half and right-most half of D, and routes the byte
contained in either half to the left-most half of a location
in MS as specified by the state of STDBYTE. This select
signal works in conjunction with MS byte write enables
STOREUPP and STORELOW to store data in MS. As
Figure 2-89 shows, there are threee ways in which data
can be stored in MS depending on the ul executed. Part a
shows a whole word store operation as performed by
either a LDW or LDW- ul. For this case, STDBYTE is low
so that data from D is sent directly to MS without the
right-most byte being multiplexed onto the lines feeding
the left-most half of the MS location. (This path is
indicated by dashed lines signifying that the path is not
enabled for a whole word store.) In addition, both
STOREUPP and STORELOW are high to store both
halves of the 16-bit word. Parts b and ¢ of Figure 2-89
show a byte store operation: part b showing a byte write
into the left-most half (bits 0 through 7) of the MS
location and part ¢ showing a byte write into the
right-most half {(bits 8 through 15) of the MS location. In
both cases, the byte to be stored in MS must be located in
the right-most half of D. In both cases, STDBYTE is high
so that the bytes in bits 8 through 15 are transferred in
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Figure 2-88. MS Write Operation

parallel to both the left-most and the right-most half of
the MS location. However, the byte will be stored into
only one half depending on which MS write enable is
generated (STOREUPP if writing into the left-most half or
STORELOW if writing into the right-most half).

Logic for generating the byte write enables is shown in
Figure 2-90. Enables STOREUPP and STORELOW are
generated simultaneously during a word store by means of
STOREMS and STDBYTE. Signal STOREMS is generated
during any MS access requiring data to be stored and
STDBYTE is low for a word store operation. During a
byte store, either STOREUPP or STORELOW is
generated, depending on the state of SELBYTEO. If a
left-most byte store is indicated, SR 15 is low and
SELBYTEO is high. If a right-most byte store is to be
performed, SR 15 is high and SELBYTEO is low. Before
being sent to MS, the two store enables are first passed to
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the RO for combining with the bounds check signals.
These check signals determine whether or not the
addressed location can be written into. If not, the store
enables are disabled.

Parity Generate and Store

During a word write, parity is calculated for each byte of
a word. The parity bit calculated for the left-most byte of
a word is transferred to MS along with the word as bit 16,
and that for the right-most byte is transferred as bit 17.
During a byte write, the parity bit calculated for the
right-most byte in D is transferred to MS as both bits 16
and 17. Either one of the two bits will be written with the
byte depending on whether the byte is to be stored in the
left-most half or the right-most half of the location on
MS. A block diagram showing generation and storage of

MAIN
STORAGE
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parity bits is shown in Figure 2-91. Parity is calculated by
a parity tree which generates parity for each byte in three
stages. Stage 1 combines the true and complement states
of the even-numbered bits of a byte together to generate
corresponding GENODD signals. Each GENODD signal is
high if the number of “1's’ combined is odd. Stage 2
combines the true and complement states of the
GENODD signals for each byte to generate two other
signals. These signals are fed to the third stage, which is
also fed with other inputs, to generate the final byte
parity bit.

During a byte store, only the parity bit generated for the
right-most byte in D has meaning. However, this bit must
be fed in parallel to MS as both bits 16 and 17 since the
byte in D may be stored in either the left-most or the
right-most half of the MS location. For this operation,
STDBYTE is high to (1) enable the left-most byte store
gate so that the right-most byte parity bit may be sent out
over the bit 16 line, and (2) disable the word store gate to
prevent the parity bit generated for the (meaningless)
left-most byte in D from being sent out over the bit 16
line. During a word store, both bytes contained in D have
meaning; therefore, separate parity bits must be generated
for each. For this case, STDBYTE is low to enable the
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word store gate and disable the left-most byte store gate
for bit 16.

Signals SWEVEN16 and SWEVEN17 are generated by the
BYTE PARITY 0 and BYTE PARITY 1 pushbuttons,
respectively, on the System Control Console. These
pushbuttons are used to change the parity generated for
each byte from odd to even as a means of manually
checking the parity detect logic.

MS READ OPERATION

A block diagram for the MS read operation is shown in
Figure 2-92. Like the MS write operation, the S register is
loaded with an MS address via a Load S ul. This pl
performs the MS read and loads the data read into the
data fan-in logic. This data is then routed from the data
fan-in logic via a Store D or D~A | and used according
to the particular ul. If one of the above yl’s is executed in
a time slice that did not reference MS by a preceding Load
S pl, the data obtained will come from the D register
instead of from MS. All data read from MS is checked for
correct parity. This is done by routing the data from MS
in parallel to both the data fan-in logic and the parity



Table 2-7. Word and Byte Read Operations

Read Enables

b or Condition Operation Generated
SOW ;! DR 00-07—ALU 00-07 SEL-DR-0

DR 08-15—ALU 08-15 SEL-DR-1
SDB NI 0's—-ALU 00-07 SEL-ZR-0
(SR 15 = 0) DR 00-07—ALU 08-15 SEL-DRB-0
SDB ul 0’'s—ALU 00-07 SEL-ZR-0
(SR15=1) DR 08-15—+AL U 08-15 SEL-DR-1

check logic, as shown in Figure 2-85. The parity check
logic checks the data for even parity by combining the
data bits (bits O through 15) with the parity bits (P1 and
P2) on a byte basis. A parity error in either the upper byte
or lower byte of a word generates an error signal which
causes a jump to a parity error trap routine.

Word and Byte Read Functions

Although data from MS is always read in word form, 16
bits at a time, the data may be masked to byte form,
depending on the particular (| that initiated the read
operation. This byte masking is performed by the ALU
fan-out logic under control of read byte enable signals.
The types of MS read functions that can be performed are
listed in Table 2-7. The SDW pl reads whole words and
routes them to register X via the ALU fan-out. The SDB
4l also reads whole words but masks out (sets to 0) either
the upper 8 bit positions or the lower 8 bit positions of
the word read to form a byte to be operated on. The
choice of forming either a left-most byte or a right-most
byte is determined by the state of bit 15 of the S register.

Note that regardless of whether the SDB ul specifies
either the {eft-most byte or the right-most byte, the byte
is always handled as a 16-bit word, right-justified if
necessary, with the upper 8 bit positions set to 0.

The portion of the ALU fan-out logic used to perform the
aforementioned read operation is shown in Figure 2-93.
The figure has been simplified to show bit transfers in
groups of four bits each. The enables required for each
type of read operation listed in Table 2-7 are also shown
in this figure. Each operation requires two enables: one to
handle bits O through 7 and one to handle bits 8 through
15. Generation of these read enables is shown in Figure
2-94. Signal SELBYTEO is genrated from the
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complemented output of the S register bit 15 flip-flop. It
is used to select either the left-most byte (SELBYTEOQ
high) or the right-most byte (SELBYTEO fow) during
execution of a SDB pul.

MS PARITY CHECK

Parity is checked on all data read from MS by the parity
check circuits. Checks are made on a byte basis using odd
parity. A portion of the parity check logic is shown in
Figure 2-95. This logic checks parity of the left-most byte
(bits 0 through 7) of the MS word. As shown, the logic
consists of two parts: the parity checker circuit, which
checks parity of bits O through 3 and bits 4 through 7,
and the MS parity check/display circuit, which generates a
parity error signal (PE-BYTEQ) if parity is not correct. As
an example, assume the left-most byte stored in MS was
all *“1’s"’. Since this constitutes an even number of ““1's”,
the parity bit generated is also ‘'1"” so that the total
number of “1's” in the byte stored, including parity, is
odd (8 + 1 =9 ““1's”'). Now assume that when the byte
was read, bit 0 was erroneously read as a ‘’0”’ instead of a
1", Since the error occurred in one of the four odd bits
of the byte, CHKEVENO will go high. Bits 1, 3, 5, and 7
were read without error, however, and CHKEVEN1 goes
low. These two outputs are combined with the P1 parity
bit from MS to generate a low PE-BYTEO signal,
signifying an error in the data read. The low PE-BYTEO
signal is routed to the MS parity error display logic and to
a parity error trap routine to recover from the error
condition.”

*If the ECC option is present, parity bit P1 is meaningless since
the ECC will provide automatic correction of single-bit errors.
For this condition, the trap routine will be performed only if an
error occurs that the ECC cannot correct.
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Figure 2-91. Parity Generate and Store

MS Parity Error Display

The results of the MS parity check logic are sent to the
MS parity error (PE) display logic to light the MS
PARITY ERROR indicator on the System Control Panel
upon detection of an MS PE. This logic also lights the
indicator upon detection of an irrecoverable ECC error if
the ECC option is present in the system. The MS PE
display logic is shown in Figure 2-96. Information from
the parity check logic and the ECC logic are fed to gate 1.
This gate generates a high output if (1) the ECC option is
present (ECCPRES) and a non-recoverable ECC error
(ECCERROR) is generated, or {2) the ECC operation is
not present and a PE in either byte O or byte 1 read from
MS (PE-1 + PE-2) is present. For either condition, signal
STOREMS must be low to indicate that the operation
being examined is not an MS store. The output of gate 1 is
ANDed with OUTBOUND - OUTRANGE by gate 2.
These two signals indicate that the PE occurred within the
assigned bounds protect limits (OUTBOUW) and within
an existent portion of MS (OUTRANGE). The result,
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designated MS PE, is sent to the MS PE flip-flop to light
the MS PE indicator on the Panel and to the Console Busy
flip-flop clear logic to turn off the Panel upon detection
of an MS PE (see the paragraph titled Console Modes).

MS INTERFACE SIGNALS

References to MS require a number of interface signals
used both for initiating a reference and to restrict certain
time-constrained operations associated with MS
references. These signals are divided into three categories:
MS reference, MS write, and MS read signals. Because
they are intimately associated with those required for MS
references, control signals used during references to the
RO are also discussed in this section. As an aid is
discerning the differences between all MS and RO control
signals, many of which perform identical functions but
when different conditions, the purpose of each control
signal is listed in Table 2-8. Timing for all MS control
signals is shown in Figure 2-97.



Table 2-8. MS Interface Signals

Signal Function
MS Reference (Write or Read)
ASYNC Prevent Fu from being clocked for remainder of time slice if Load S ! executed at EO.
ACCESSEN Initiates MS reference (either read or write)
MS Write
DREADY, D register ready to be ioaded with data to be stored on MS via Load D I_,Ll.
DREADE
STOREMS Indicates MS write operation, used to enable word and byte write signals.
MS Read
DREADY Contents of D from MS ready to be transferred to register X via Store D HI'
DREADE Contents of D from MS ready to be transferred to AIJ, via D= AM l.
MSREADY Enable to gate data read from MS through data fan-out.
RO Reference (Write or Read)
MS-SPEC Reference to be made to register in ECC feature of RO.
RO-SPEC Reference to be made to register in basic protection, relocation and protection or job
accounting feature of RO .
ROREADY Enable to gate data read from RO through data fan-out.
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Figure 2-92. MS Read Operation
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MS Reference Signals

As discussed previously, an MS reference operation
(whether read or write) always begins with a Load S ul.
As far as the CPU is concerned, an MS write can be
performed in two minor cycles (200 nanoseconds), the
time required to execute a Load S ul followed by a Load
D pul. An MS read, however, takes five minor cycles to
perform from the start of the Load S i1l (EQ00) until data
read from MS is available at the data fan-in (E480 to
E505). To assure that enough time will always be available
to read MS during the same time slice, the MS interface
logic unconditionally forces execution of the Load S ul
during EO regardless of whether a read or write is to be
performed. If occurring in the program at any time other
than EO, the non-MS reference portions of the ul will be
performed (that is, (X)~Ap, constant-=By, and
0/+1=FCR). However the (X)= S transfer will not be
performed since S can be clocked only during EO which
effectively keeps the MS read from taking place. Instead a
resync condition is set up and the Load S ul is re-executed
at EO of the next time slice. The resync condition is
implemented by the ASYNC signal, shown in Figure 2-98.
The signal is generated by a Load S ul executed at any
time other than EO. This signal, in turn, generates
BLOCKFM which keeps Fu from being loaded with the
following pil for the rest of the time slice. To assure that
the Load S pl be executed during the next EO time, it is
necessary to program a blockpoint ul immediately
preceding the Load S ul. (If the blockpoint il were not
used, the il routine would execute through the Load Sul,
idle through the rest of the time slice; then in the next
time slice, start at the same pl as the present time slice
(since no new block point address was provided) and
repeat the same fi1's up to the Load S pul.)

r------.----l1

1 1
LOAD S ul -J N\
+ACCESSEN
+X=1E OR 1F —=—J i
+BLKACCEN'='f :
. i
SWPERROR :)1—+ASYNCI ELOCKS
: N
1 L 1
+EOXX-0A 1
1 i
1A04 |
L------l-l—--l

Figure 2-98. MS Reference Signals

Signal ACCESSEN is sent directly to MS to initiate the
MS reference. The signal is generated upon translation of a
Load S (il if an RO reference has not been requested; that
is, neither X=1E or 1F or BLKACCEN is high. Signal
X=1E or 1F is generated if the X-field of the Load S u!
specifies the contents of transient register 1E or 1F of the
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BRF. These two registers, reserved for exclusive use by
the RO, contain the address of a register in the RO to be
referenced. Signal BLKACCEN is generated if the system
is in the maintenance mode when a RO read or RO write
is initiated by the CONSOLE MODE SELECT selector on
the System Control Panel.

MS Write Signals

Indication that an MS write operation is to be performed
is furnished by a Load D ul executed at E1. This sets the
Store MS flip-flop at E160 to generate STOREMS, as
shown in Figure 2-99. This signal is used to enable
generation of word and byte store signals STOREUPP and
STORELOW, as discussed previously.
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I 1a0s 1
L------------J

Figure 2-99. MS Write Signal

MS Read Signals

As explained earlier, data read from MS is not available at
the interface until about E480. Therefore, the execution
times of the pl's that use this data (the Store D and DA
ul’s) are restricted accordingly. For a Store D !, data
from the MS interface is transferred to a file register at
t40 of the minor cycle in which execution of the ul
began. This means that a Store D (| cannot be executed
prior to E5 to allow storage of data at E540. For a D+A
ul, however, the transfer of MS data to Au does not
take place until t20 of the minor cycle following that
in which the ul began its execution. This means that a
D » A ul can begin execution at E4 because the data
from MS is not transferred to Au until E520.

Signals DREADY for the Store D pl’s and DREADE for
the DA ul's are generated for the purpose of providing
these timing restrictions. Logic for generating the signals is
shown in Figure 2-100; associated timing is shown in
Figure 2-97. Each signal is generated for two different
conditions: a Load Sii| followed by a Load D ul {(an MS
write operation), and a Load Spul followed by any ul
other than a Load D p| (an MS read and store operation).
For either type of operation, both DREADY and



r--------------q

1 1
1 |
LOAD Sui — D ms ]
I REF 1
M
i _ |
+E040 —¢ c a §—+DREADY
1 ]
1 T 1
E500 + LOAD D-E160 - I
|
I D mS ]
|
REF i
i 1"
1 _ 1
1 ¢ q -DREADE
1 7 1
|
E400 + LOAD D-E160 -—: 1
] . 1
] D a +MSREADY
] MS 1
REF
i A i
1 c ]
1 i
1 1
i 1
STOREMS —§ 1
1 |
1A04
h---------n----‘

Figure 2-100. MS Read Signals

DREADE go low at E040 when their respective flip-flops
are set. If a write operation is being performed, both
flip-flops are set. If a write operation is being performed,
both flip-flops are cleared at E160 time. This allows the
Load D ul to be executed during the next minor cycle to
store the data at the address contained in S. If a read
operation is being performed (not Load D ul), the
flip-flops stay set to keep DREADY low until E510 and
DREADE low until E400. During this time, DREADY
and DREADE are inverted and ANDed with STORE D
and D A respectively. The result is to schedule NOP’s by
preventing the following ul! address and from being
loaded into Su and Fu, respectively. The flip-flops stay
set until E400 and E510, at which time the Store D
and D= A, ul's can be executed as discussed
previously.

For either of the two above situations, data from MS is
gated through the data fan-in logic by MSREADY. This
signal is generated as a result of a Load Swul at E400
unless the next (4l is a Load D (signal DREADE is low).
The Load D pl signifies that an MS write is to be
performed; therefore, no data is to be read from MS.

RO Reference Signals

Logic for generating the three RO reference signals is
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shown in Figure 2-101 with associated timing shown in
Figure 2-97. Signals RO-SPEC and MS-SPEC are generated
as a result of addressing a RO register either in the RO
iteslf (Basic Protect feature, Relocation and Protect
feature, or Job Accounting feature) or in MS (ECC
feature). Both signals are generated upon setting the MS
Reference/RO Select flip-flop, indicating that a RO access
is to be made. In addition, both signals are low during
E040 to E150 to allow the Load S ul to gate the RO
register address into either the RO or MS. Signal RO-SPEC
is generated specifically if the register addressed is not in
the ECC feature (SR-MNO4 is low). Signal SR-MNO4
indicates that bit 4 of the RO register address in BRF
register 1E or 1F is cleared (”0’"), which eliminates
selection of the ECC. Signal MS-SPEC is generated
specifically if the register addressed is in the ECC feature
(SR-MNO4 is high). Note that MS-SPEC does not begin an
MS reference to read or write from MS proper. It only
allows accessing the ECC registers of the RO.

Data read from a register in the RO proper, (meaning not
the ECC feature in MS itself), is gated through the data
fan-in logic in the interface by ROREAD. This signal is
generated at EQ40 if either X = 1E OR 1F is present,
meaning that an RO reference has been specified. For
both of these enabling conditions, SR-MNO4 must be
high. (Data from an ECC register is gated through the data
fan-in as MS data via enable MSREADY .)
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Figure 2-101. RO Reoference Signals

MAIN STORAGE

The Main Storage (MS) section of the shared resources
stores machine language instructions (MLI's) and data
processed by the system. The primary characteristics of
MS are as follows:

® - Storage Element —

MOS integrated circuits
Storage Capacity —

16 bit words
8K*to 32K
64K**

8 bit bytes
16K to 64K
128K**

(without Register Option)

(with Register Option)

Storage Access —

Random access with an access time of 386
nanoseconds

Storage Cycle Time —

900 nanoseconds without ECC

1000 nanoseconds with ECC

* K=1024
**Capacity of one chassis; the Register Option pro-
vides an addressing capability up to 512K words
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®  Error Detection —
Parity error detection is standard. Error

Correction Code (ECC) is an option.
MS ORGANIZATION

MS Chassis

The MS logic modules are in the three card rows (A,
B and C) of chassis 2. Figure 2-102 shows that the
card rows are organized as follows:

L] Card row A contains the leftmost byte of up
to 64K words

® Card row C contains the rightmost byte of
up to 64K words

® Card row B is used for the ECC feature

when present

Each card row is divided into two zones; each zone
has a printed circuit backpanel with common address
data and control connections for up to 32K addresses.
As an example, the second page of Figure 2-102 lists
the pins, signal names and logic mnemonics for Zone
A1. The storage elements are on the HH module
which is the basic storage module for MS. A 64K
word MS with the ECC option uses 48 HH storage
modules.

The timing, addressing and control logic is located on
three modules in card locations 2B11, 2B12 and 2B13.
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Common Bus Pin Name Logic Mnemonic

{for Zone Al)
92 Address 14 AD14 —ZA1
96 Address 13 AD13 —ZA1
89 Address 12 AD12 —=ZA1
20 Address 11 AD11 —=ZA1
94 Address 10 AD10 —=ZA1
91 Address 9 AD9 —»ZA1
85 Address 8 AD8 —=ZA1
82 Address 7 AD7 —=ZA1
83 Address 6 AD6 —»=ZA1
93 Address b ADb —=ZA1
86 Column Select O CLS 0—=ZA1
84 Column Select 1 CLS 1—=ZA1
83 Column Select 2 CLS 2—»ZA1
80 Column Select 3 CLS 3—»=ZA1
38 Strobe Time STRB —ZA1
37 Digit Time DIFT —ZA1
87 Write Time WRT —»ZA1
76 Column Select Time CLST —ZA1
81 Address Timing - ADT —=ZA1
95 Precharge Time PRCH—ZA1
24 Data In, Bit O D00 —=ZA1
25 Data In, Bit 1 D01 —=ZA1
26 Data In, Bit 2 D02 —»ZA1
27 Data In, Bit 3 D03 —=ZA1
31 Data In, Bit 4 D04 —»ZA1
32 Data In, Bit 5 D05 —=ZA1
33 Data In, Bit 6 D06 —=ZA1
34 Data In, Bit 7 D07 —»ZAIl
78 Data In, Bit 8 D08 —»=ZA1
22 ‘Data Out, Bit 0 00ZA1—SR
23 Data Out, Bit 1 01ZA1—SR
28 Data Out, Bit 2 02ZA1—SR
29 Data Out, Bit 3 03ZA1—=SR
30 Data Out, Bit 4 04ZA1—SR
35 Data Out, Bit 5 05ZA1—SR
36 Data Out, Bit 6 06ZA1—=SR
39 Data Out, Bit 7 07ZA1T—SR
40 Data Out, Parity 1 P1C1ZA1

Figure 2-102. Main Storage Chassis (Cont) °
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Except for the data lines and the ECC control lines,
all interface signal wiring comes to these three
modaules.

The data control modules (Storage Data Register and
Fan-in) and ECC control for the leftmost hyte (bits
07, card row A) and the rightmost byte (bits 8-15,
card row C) are in locations A12 and C12, respec-
tively. The ECC control modules are in locations A11
and C11. When the ECC option is not installed, these
locations have jumper modules in them to route the
storage data to the CPU.

Zone Organization

Figure 2-103 is a simplified zone organization diagram
showing address and data lines for the eight HH stor-
age modules in a zone. Each HH storage module is a
4096 address by 9 data bit building block; a zone
with a full complement of eight HH storage modules
stores a data byte (8 data bits plus 1 parity bit) for
32K addresses.

In Figure 2-103, a typical data bit (bit 2) is shown
going to all 8 storage modules. Selection of an address
occurs basically as follows:

L An HH storage module is selected by a
module select (1 of 8).

L A column of storage elements on the module
is selected by a column select (1 of 4).

®  Using 10 address bits, the 9 storage elements

in the selected column decode corresponding
storage cells (1 of 1024).

The data bit is then stored in the selected storage
element. Using the identical address, the same data bit
can be read out of the element.

HH Storage Moduie

Figure 2-104 is a block diagram of the HH storage
module. Thirty-six, 1024 X 1, MOS integrated circuits
are arranged on the module in a 4 column by 9 row
array. Each of the 9 rows comprises a data bit (0
through 8) of 4096 addresses with 1024, 9 bit ad-
dresses in each column.

Address selection is achieved as described in the pre-
ceding paragraph, Zone Organization.

Data is controlled by nine digit drivers and nine sense
amplifiers — one of each per bit. Because data flow to
and from an HH module is a 9 bit block, the control
signal for the digit drivers (Digit Timing) is common
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to the nine digit drivers, and the sense amplifier strobe
is common to the nine sense amplifiers. Data to be
written into storage is gated with Digit Timing to
enable a digit driver. The digit driver provides MOS
voltage levels for 1" or “0" to the selected {C. Data
read from storage is sensed by a sense amplifier which
is then strobed. Data from the sense ampiifiers goes
into the Storage Data Register (SDR).

Write and precharge drivers provide the read/write and
precharge timing pulses required for IC operation.
Tirming pulses from the storage control logic are gated
with module select to activate the drivers.

Basic Storage Element

The basic storage element consits of a 1024 word by 1-bit
integrated circuit (IC). This element contains 1024 storage
cells, address decoding to select one of them, and read or
write controls to read or store the data. The relationship
between addressing and data is shown in Figure 2-105, the
biock diagram of the basic storage element. One feature of
this storage element, not shown in Figure 2-105,is that it
is a dynamic storage element. This means that the power
inside the storage element charges the internal cell
capacitors. Using charged cell capacitors is known as
dynamic because power is required only during selection.
When the cells are not selected, the cells are insulated
from other circuitry to prevent the charge from leaking
away. Power consumption is minimized because the
charge is stored about 2 milliseconds without refreshing
(charging).

Each storage element has a matrix of 32 by 32 cells on it
as shown in Figure 2-105. The matrix allows each cell to
be independently accessed by using the ten decoded
address bits with the column select. The initial activation
of address, precharge and column select is the same for a
read or write operation. Typically the data is read from
the cells and then a Read/Write signal is activated, if
necessary, to gate an external data bit into the element.
The description of the storage element operation can be
divided into a read, write, and refresh operation.

For a read operation, the precharge gate is activated
simultaneously with the address as shown in Figure 2-106.
With pre-charge active, the address stabilizes into the
selected row and column as shown in Figure 2-105. When
column select is activated, its leading edge gates the
contents of 32 storage cells (selected by the X address bits
AQ through A4) into 32 refresh amplifiers. The Y address
bits Ab through A9 then select 1 of 32 refresh amplifiers
for gating one data bit out. At the trailing edge of
pre-charge, 32 data bits are gated from the refresh
amplifiers back into the cells and one (1 of 32) data bit is
gated out. Data out is then valid from end of pre-charge to
end of column select as shown in Figure 2-106.
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10 ADDRESS BITS = 32X 32 = 1,024 BITS

e

11C CHIP

HAS 1,024

N

TYPICAL COLUMN
SELECT IC CHIP

DATA BITS

INA32X32
MATRIX

L DATABIT2
~~(T0 BE STORED)

o DATABIT2
"~ (READ OUT)

Figure 2-103. Selection of a Bit from MS

1 ZONE IS 32K ADDRESS BY 9 DATA BITS
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Figure 2-106. Timing for Storage Element

For a write operation, the initial activation of address,
pre-charge and column select is the same. After these
signals are stable the data write is activated as shown in
Figure 2-106, to gate an external data bit into the storage
element. The timing is the same as the read operation
except for activating the data write.

For a refresh operation, a read operation is performed.
The purpose of the refresh is to periodically recharge the
capacitor of the storage cell. A small amount of charge
leaks off of these capacitors so that refreshing each
memory cell is necessary every 2 milliseconds to recharge
the cell’s capacitor when they are not accessed. The
refresh amplifier, shown in Figure 2-105, recharges 32
memory cells at one time when address inputs bits A14
through A10 are sequenced through the 32 row addresses
in the storage element. This refresh addressing and timing
is controlled internal to storage. The refresh cycle is
identical to the normal read cycle timing and address
selection except that addressing from refresh control is
sequential.

Block Diagram Description

A block diagram of MS is shown in Figure 2-107.
Only the main interface signals such as addressing,
data, and pertinent control are shown. Because of
symmetry, data is flow-charted for one byte only with
either a parity bit (treated as a data bit) or with five
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of the ECC bits. The other byte of data with either
parity or ECC has identical control signals, addressing
ancd control signals. Data flow on the diagram is from
left to right while addressing and control flows from
the bottom of the page.

The CPU sends sixteen address bits (0-15) to MS.
Fifteen bits (0-14) are used by MS to decode 32K ad-
dresses; bit 15 is used for byte control (select leftmost
byte, select rightmost byte, or select a complete
word). For expansion of MS beyond 32K addresses,
the CPU sends four additional address extension bits
(X0, X1, X2, X3) which provide addressing capability
to 512K words.

The refresh operation is a function of MS and occurs
when an MS Refresh Request is acknowledged by the
CPU (NULL CYCLE). The refresh logic determines a
block of 32 addresses to be refreshed and records time
so that each address will be refreshed at least every 2
milliseconds.

Control signals from the CPU provide the timing
synchronization and initiation of a storage cycle. When
a write cycle is required by the CPU, the write con-
trals for the desired byte are activated. Other interface
signals provide for refresh control and error recovery
interrogation. Within MS, the control signals are
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primarily timing commands because storage always
does a READ/WRITE cycle. One timing/control
sequence automatically provides for reading stored
data, correcting that data if ECC is present, and
writing new data when necessary.

Addressing

The address from the CPU is sent to MS formatted as
shown in Figure 2-108. This format allows for features
such as Relocation and Protection to be used without
altering the address bit numbering scheme. Least
significant address bits are to the right end with the
extension bits on the left end to provide for expanding
storage. Features may alter the expanded storage
addressing capacity but will have no effect on the
addressing capacity of a storage unit with 32K or less
words. Using Figure 2-108, the lowest order addresses
start at the left and ascend in order to the right. The 12
least significant address bits are common to all storage
modules. Fan-out of these bits is on a zone basis, where
each zone is 8 storage modules having identical
interconnections on the backpanel, as shown in Figure
2-105 and Figure 2-103. With the 12 common address
lines providing decoding for each 4096 word storage
module, the 1 of 16 module select from bits O
through 2 expands the addressing decode to 32K
words of storage.

When the address from the CPU is stable, an access enable
signal from the CPU provides the initiation of a storage
cycle. Since MS does not have an address register, the
CPU address must be stable during the entire cycle. When
an access enable signal is active, the address from CPU
enters storage and then is fanned out. The only exception
to gating the address to MS is when a refresh cycle is
required. In this case, the access enable signal is blocked
by the CPU resulting in the refresh address being gated
into address bits 10 through 14. The refresh control holds
address bits 9 through 5 at logical zero and blocks
address bits 4 through X3 from changing during the
refresh cycle.

B-1 Row and Column Chip Addresses; A14
through Ab

As shown in Figure 2-109, the address fan-out module
distributes the 10 least significant address bits to each of
six zones. The 10 CPU address bits are used in
conjunction with refresh control.

The 10 least significant address bits are gated into MS
from the CPU, without decoding, by an access enable
signal. On the address fan-out module, these 10 address
bits fan out to all storage modules via the 6 back panels as
previously shown in Figure 2-103. On the storage module,
the ten bits are gated onto the board by ANDing address
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timing with board select. Each address line has a discrete
driver to drive all 36 storage elements. The address lines
are equally divided between the storage element column
and row decode to make the 32 by 32 matrix selection in
the element. The address is then decoded within each
element.

When MS requests a refresh cycle, the access enable is
blocked by the CPU and the refresh address is used
instead. The 1 of 32 refresh addresses controls address bits
10 through 14. Because of the intrinsic storage element
address decoding, the 32 row refresh addresses will refresh
32 column addresses per element. Since all elements are
selected during refresh, all addresses for all data bits in
storage will therefore be refreshed using only 32 refresh
addresses that are controlled by address bits 10 through
14.

B-2 Column Select Address Bits A4, A3

As shown in Figure 2-110, the most significant address
bits are decoded or controlled on this board. The three
most significant address bits (X0 through X3) determine
the out-of-range. The four column selects are decoded
from two address bits and distributed to each zone. Four
address bits are decoded into 1 of 16 module selects then
respectively distributed to each row. Each module select
controls the left-most byte, right-most byte, and ECC

modules. Refresh control determines how often and what
address the refresh cycle needs.

The column select address bits 3 and 4 are also common
to all storage elements. On the address control board,
address bits 3 and 4 are gated from the computer by
inactive Refresh. The decoding of column select (CLS)
fans out 4 column selects that are common to all storage
modules. As column select enters the storage module, it is
gated with timing and board select signals. On the storage
module, CLS provides the addressing expansion from
1024 to 4096 addresses or physically from 1 to 4 storage
elements (per data bit). The resultant column select(s)
activate the chip enable pins for 9 parallel storage
elements.

Inactive Refresh is normally low throughout the entire
timing cycle. When Refresh is requested, the computer
address is blocked and, by using another inverter, all
column select outputs are activated.

B-3 Module Select Addresses; A3 through AO

The most significant address bits, 0 through 3, decode
which storage module board is selected. Selection of a
module really is a selection of three modules: one module
corresponding to the left-most byte; the second module
corresponding to the right-most byte; and, when ECC is
used, the third module corresponding to the check bits.



Figure 2-109. Address Fanout
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Figure 2-110. Address Control

See Figure 2-108 for the address organization. On the
address control module, address bits O through 3 are
decoded into a 1 of 16 storage module selects so that a
storage capacity of 64K addresses can be randomliy
accessed. The most significant bit, bit 0, determines
physically which 32K of addresses are selected — when
active the left half of MS is used; inactive, the right side.
Again, when Refresh is active, the address from CPU is
over-ridden so that all storage modules are selected.

DATA CONTROL

Storage Data Register

The data control logic uses digit drivers, sense amplifiers
and the Storage Data register (SDR). Figure 2-111
illustrates a simplified data loop, for controlling the data
flow from the CPU to the storage element for writing; and
from the storage element to the CPU for reading.

New data to be written into storage uses a digit driver as
shown in Figure 2-111. Data read from the storage
element is sensed by the sense amplifier and temporarily
stored in the Storage Data register (SDR). From the SDR,
the data is sent back to the CPU.

As shown in Figure 2-112, the SDR is 18 data bits long,
contained on two modules of 9 bits each. One module is
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located in row A and stores the left-most byte plus the
corresponding parity bit. The other module is located in a
corresponding location in row C and stores the right-most
byte and parity bit. The data fan-in logic, which gates one
byte of data from the CPU to the storage elements, is
organized in a similar fashion.

When error correction is added, generated check bits have
an equivalent set of drivers, storage, sense amplifiers and
SDR's. Instead of sending the check bits back to the CPU
when they are read, error correction logic corrects erring
data or check bits. The corrected data without check bits
is then sent back to the CPU. There are two advantages in
having an equivalent set of hardware for check bits. First,
the error correction feature can be added primarily using
already existing card types. Second, the SDR for check
bits can be used for special storage cycles that can
interrogate check bits for maintenance purposes. The
intricacies of generating check bits and performing error
correction is discussed later.

Sense Bias

Sense bias is distributed to each storage module from the
logic +5 volts connected to 6 connector pins on the HB
board. Using the HB board to disperse sense bias to the 6
zones allows future changes to sense bias such as a
possible maintenance switch, a regulated special voltage or
some other convenient logic voltage. Data read from 1 of
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4 selected elements is compared against a threshold

voltage in the sense amplifier. The threshold voltage is the

sense amplifier bias voltage which provides the DC
" reference for determining a one or zero.

REFRESH CONTROL

An inherent requirement of MOS-type storage is
recharging or refreshing the capacitive cells within the
element. The refresh cycle consumes an entire major
timing cycle so that the CPU cannot address storage
during refresh. Due to priorities when transferring high
speed data, some control between the CPU and MS must
be established. Logic internal to MS controls what address
is to be refreshed next and when this address will be
required. This control uses an incrementing counter to
determine the refresh address and cascade counter to
count the number of clock cycles. The cascaded counter
converts clock pulses into a time-out calculated to refresh
32 addresses every two milliseconds (2 ms). From the
previous description of the storage element, the 32 by 32
matrix of storage cells have 32 refresh amplifiers along
one axis so that by sequencing the 32 addresses along the
other axis, all 1024 storage cells of the element can be
refreshed 32 cells at a time.

To accomplish the refresh with a minimum of
interference, only one consecutive major cycle is taken
from the CPU. The CPU can then continue using MS until
another refresh request is activated. f 32 addresses must
be refreshed in 2 milliseconds, the refresh request should
be activated every 62.5 microseconds (200us + 32 = 62.5
us). Therefore, if the processor accessed storage every 900
ns, which is the MS reference cycle time without ECC, a
counter incrementing up to about 71 accesses would be
enough to refresh storage in time. Practically, however,
the processor will run at a worst-case rate of 1.2
microseconds. Using 1.2 microseconds as worst case, the
counter would then count up to 52 before a refresh
request should be made.

The clock pulse from the CPU is present 200 nanoseconds
before the storage can be accessed as shown in Figure
2-114. The early clock allows the timing control logic to
initialize in anticipation of an Access Enable signal. The
clock pulse’s leading edge is used to form a 50 nanosecond
wide Start pulse by using a delay line as shown in the
logic. This start pulse initiates the timing control and
increments the cycle counting up to 52. Since the starting
of timing is discussed under the paragraph titled Timing,
only the refresh control and its timing is covered here.

As shown in Figure 2-113, when the cycle counter has
reached a count of 52, its output updates the refresh
address and sets the Refresh Request flip-flop. First, the
refresh address counter updates only once each refresh

cycle keeping in mind that, due to storage element
geometry, one row address will refresh 32 column
addresses. The address counter is always incremented and
never cleared so that all 32 addresses are cyclically
sequenced. Second, the need for refresh is sent to the
CPU via the Refresh Request flip-flop. In the CPU, the
request for the next major cycle to be a null state is
determined in the priority sequences. If the refresh
request is honored, the Access Enable to MS is blocked.
About 20 nanoseconds before a storage cycle begins, the
access timing interrogates the Access Enable state (on
Figures 2-117 and 2-118, this is 180 nanoseconds after the
clock). If Access Enable is active, an MS reference is
imminent and preempts MS's desire to refresh. If Access
Enable is blocked at access time, the Refresh Granted
flip-flop sets to gate the refresh address instead of a CPU
address, and it also resets the cycle counter. The Refresh
Granted flip-flop implies that storage can now initiate a
refresh cycle and and therefore drops (clear) its Refresh
Request flip-flops. As soon as internal storage timing
programs, the Refresh Request Clear will be activated to
clear the Refresh Request flip-flop. Timing is shown in
Figure 2-114.

The Refresh Request Clear provides the timing for
another special feature of refresh control; the Refresh
Time-out. There are three conditions that must be
satisfied before time-out occurs:

1. There must be an active Refresh Request to the
CPU.

2. The request for refresh has been ignored by the
CPU for 3 major cycles. The cycle counter is
therefore at count of 3.

3. Timing from the Refresh Request Clear is active
once during each major cycle.

INTERFACE CONTROL SIGNALS

All of the interface signals between the ALU and MS are
shown in Table 2-9. The storage initiation, addressing
and data functions are not discussed here. Interface signals
for the ECC feature (module type HE) differ when the
jumper module (type HF) replaces the ECC module.
Without ECC, the jumper module routes data bits directly
to and from MS because the data does not have to be
coded for error correction. The detailed description of
error/recovery and write control functions are as follows:

1. Out-of-Range
OUTRANGE on the HB module is used by the

CPU to detect a missing HH module whether or
not the module is missing by intent (the upper
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Table 2-9. Interface Signals References

Function

Signal

Can be Scoped on Pin:

Storage Initiation

Addressing

Data

Error/Recovery

Write Controls

Main Storage Clock
Access Enable
Refresh Req. (To CTW)

Address bits 00-18
Address 14

13

12

1

10

éo-wwbmm\v‘aog

XXX
S =N

Data Bits 00-15

01
02
03

05

07
P1
08

10
"
12
13
14
15
P2

ECC Error
ECC in, Lwr,
Upper
ECC Present Upper,
Lwr
Out-of-Range
Special  (MS-SPEC)
SLX1-ECC
SL1X-ECC

Store Upper Byte
Store Lower Byte

B12-19
B12-25
B12-31

B11-16
B11-13
B11-33
B11-19
B11-50
B11-37
B11-70
B11-67
B11-86
B11-73
B12-34
B12-39
B12-26
B12-94
B12-95
B12-75
B12-44
B12-45
B12-58

To From
A11-72 A11-27
A11-73 A11-26
A11-74 A11-22
A11-71 A11-24
A11-70 Al1-4
A11-69 A11-6
A11-56 A11-10
A11-61 A11-11
A11-47 A11-28
C11-72 Cc11-27
C11-73 C11-26
C11-74 C11-22
C11-71 C11-24
C11-70 c114
C11-69 Cc11-6
C11-56 c11-10
C11-61 C11-11
Cc11-47 C11-28

B12-37
A11-95
C11-95
C111-9C
A11-96
B12-32
B13-53
B13-69
B13-68

B13-66
B13-67
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addressing limit of storage) or by mistake
(maintenance man has removed a board within
contiguous storage). When an address is decoded
in MS, the Board Select is active for only the set
of modules used for that word; the left-most byte,
right-most byte and if ECC is used, the ECC
module. Board Select in turn generates a Board
Present signal to detect the missing HH module.
Board Present will be active from only 1 of 16
modules in either card rows A, B, or C. This singly
active signal (1 of 16) allows the outputs of all 8
modules, in each of the two zones, to be
connected in common. Each zone is wired to the
common point on the input of the out-of-range
circuit. Additionally, when ECC is not present,
the jumper module that replaces ECC also
provides the disabling of the ECC gates on the
out-of-range circuit. An added feature of
out-of-range is the detection of the most
significant CPU relocation bits. If any of these
bits are active, storage reports this as out-of-range.

. ECC Error

ECC Error on the HB module detects the Bad
Data signal from either the left-most or right-most
byte. From Figure 2-121, when the bad data line
is active an irrecoverable error has occurred. The
Bad Data signal is sent back to the CPU as ECC
Error to force the CPU into a trap routine that
will be software controlled. Basically, the trap
routine will read the error log in storage in an
attempt to decipher what happened and possibly
recover from the multiple errors.

. Parity (No ECC)

The parity bit is generated and detected in the
CPU. It is shown in the storage logic diagrams as
either PO or P1. Since the CPU generates the
parity bit on a byte basis, MS stores the parity
bits as if they were data bits — MS cannot
differentiate between data and parity bits.

. Jumper Module (No ECC)

The jumper module disables ECC functions on
other modules as follows:

a. ECC In — disables the out-of-range logic from
detecting storage modules that are not plugged
into row B — the ECC row. The out-of-range
logic on the HB module will still detect
out-of-range on the most significant address
bits.

b. ECC PRES — Grounds line to CPU indicating
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that ECC is not present. When ECC is used, the
line is permanently held active.

c. FIXBIT — Grounds and disables write control
from ECC. Only the CPU can then initiate a
write operation. With ECC, the corrected data
will be written back into MS.

TIMING

As shown in Figure 2-115, the timing control is primarily
single-shots for timing. For ECC, the error log control
logic is on this module. To allow ample set-up time in the
single-shots used for timing, the clock pulse, precedes the
Access Enable. The clock pulse used to initiate storage
timing is generated by the CPU as part of its standard
timing, so that it appears precisely related to all CPU
events. For reference, the timing of MS will be relative to
the leading edge of the clock pulse.

There are two timing diagrams used for storage depending
on whether or not the ECC feature is used. Timing is
shown in Figure 2-118 (with ECC) and Figure 2-117 (no
ECC). For reference on these figures, the abscissa has two
timing scales. For convenience, the timing is referenced to
the clock pulse so that scoping waveforms is easier. When
referring to internal memory operations, the address
stable time (200 nanoseconds after the clock) starts the
true initiation of a storage access.

Figure 2-115 shows the relationship between the timing
adjustment of each single-shot. The flagged corners of
most of the blocks mean that the timing is adjustable.
Next to the flag is a number corresponding to the physical
location of the potentiometer as shown in Figure 2-116.
Because of the intricate dependence of one adjustment to
others, as shown in Figure 2-115, timing is adjusted at the
factory. For example, adjusting the Column Select Delay
also affects Strobe, Write and Digit timing. The following
is a description of each significant timing signal shown in
Figure 2-117 and Figure 2-118.

Main Storage Clock

This pulse occurs 180 nanoseconds before storage
activates Access Enable. The clock conditions timing in
anticipation of a storage cycle.

Address Time FF

This flip-flop sets when the address is stable. Holds CPU
address active during entire storage cycle. It is cleared by
the time-out of strobe timing.
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Addressing Timing

The timing is derived from the Address Time flip-flop.
The activation of Address Timing requires either Access or
Refresh be present. If storage is in an idle state, the
address will not be enabled and, therefore, minimizes
power consumption.

Pre-Charge Time

As shown in Figure 2-107, the negative transition of
precharge occurs shortly after address stabilization. In the
element pre-charge acts as a clock pulse to allow the
address to become stable in the row and column decoders,
in preparation for a column select. When pre-charge starts
positive, the chip refresh amplifiers are clocked to write
data back into the respective rows and columns, and also
clocks data out of the chip for sensing.

Column Select Time

As shown in Figure 2-106, column select time gates the
decoded column selects so that 9 chips (or bits) are
enabled using chip enable on the element. Column select
occurs at least 30 nanoseconds before the end of
pre-charge so that the selected cells within the chip
present data to the chip refresh amplifiers. Column select
is active until completion of any writing of new
information into the chip.

Strobe Time

The strobe gates data from the sense amplifiers to the
Storage Data register. Strobe timing adjustments are the
same as Storage Register Clear except it is delayed by
using 4 series inverters.

Storage Register Clear

Storage Register Clear is activated with the timing
adjustments for strobe. Holding the register clear during
strobe time improves the access time by allowing the
sensed data bit to set or leave clear its corresponding SDR
bit position. Because strobe is delayed from storage
register clear, the trailing edge of strobe outlasts storage
register clear by that delay. This delay allows the data bit
to determine the state of its respective SDR bit.

" Write Time

Write Time enables the read/write input of the chip
allowing new data to be written in the cell selected by
(active) column select and the address. Write Time is
active for the last 90 nanoseconds of column select time.

Digit Time

Digit Time gates the data bits from the data fan-out to the
chips as shown in Figure 2-107. When digit time is active,
data can be gated to storage by two paths: the usual path
is data to be stored from the CPU. The other path is
{when ECC is installed) the corrected data from the ECC
checking logic being written back into storage. In either
case, the timing must be active long enough to gate cor-
rect data in and late enough so that ECC has enough time
to correct the data. Digit time terminates after column
select is terminated.

ERROR CORRECTION CODING

An introduction to Error Correction Coding (ECC) is
found in Appendix 2A. The ECC used for storage is
implemented on a per byte basis to save time spent on
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reading a word from storage, check it, calculate new check
bits for the new byte in conjunction with the entire word
and then store it. The steps for storing one byte are shown
in Figure 2-120 and are as follows:

1. Initiate storage to read the whole word.

2. Send a new byte from CPU so its check bits can
be generated (here is where the time-savings is

done — new check bits are being generated
while the whole word is still being read from
storage).

3. The whole word is read from storage into SDR
and its ECC checked.

4. New byte with its generated check bits and old
byte with its check bits are written back into
storage.

When the whole word is read, the check bits are compared
logically against the same data bits that generated them.
Using the decoding of check bits and data bits provides
the capability to correct a single error when it occurs.
Shouid multiple errors occur, the decoding process can
recognize that error correction is not possible and
therefore interrupts the CPU because of a storage
malfunction. When the single error is corrected, a log
entry is made. (Recurring correctable errors are noted by
software to determine a threshold, beyond which, a
maintenance call should be made.)

Coding Check Bits

The coding of the check bits has both theoretical and
practical constraints. Theory says that only five check bits
will suffice to correct a single error and detect double
errors. Practice takes advantage of off the shelf hardware
parity generators having up to eight inputs. To code the
check bits, the ‘1’ or active state of the data is used
because an active logical state implies correctly working
circuitry. In other words, like odd parity, the lack of a
signal should not be used because a disconnected cable
may be interpreted as if the logic was actually present.
Coding the check bits therefore uses the ‘1" state of the
data.

Generating Check Bits

Choosing the data bits for each check bit must be done
systematically so that the generation and checking are
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identical. The methods used to choose the check bits
theoretically guarantee single error correction and double
error detection (SEC-DED). Using Table 2-10, the data bit
code is generated. From the decimal numbers is the
conversion to its binary equivalent. Note that every
column is therefore distinct. By simply counting the
number of ones in a column determines the weight of that
column. Using only columns of odd weight (i.e., weight 1,
3, or 5) mathematically simplifies double error detection
logic. From the table, the check bits C1 through C5 are of
weight one. The number of required check bits is
determined from formulas proving Hamming error codes
and not necessarily the number of weight-one binary
numbers. The ten available data bit codes are of weight
three, to code the 8-bit byte. To determine which two
codes are not needed, the practical considerations of logic
irnplementation take over. First, however, refer to Table
2-18 for constructing the error coding matrix. Eight of the
ten data bit codes (weight 3) and five check bit codes
(weight 1) are reproduced from Table 2-10, in the
identical format. Across each row, the number of one bits
is counted and tabled under Number of Inputs. In all
rows, except one, there are 6 input gates. For example,
generating check bit one, the five one bits from data bits
0, 1, 2,4, and 6 are gated together.

To reduce any input or output loading problems, it is
desirable to load each gate equally. The two bits
eliminated from the ten originals would have caused
uneven gate loading. The generation of the five check bits
result from using Table 2-11 to implement the logic. Each
parity generator makes a check bit produce even parity
from the input data. Upon completing the check bit
generation, the 8 data bits and 5 check bits are stored.

Correcting Data

When the stored data is read from storage and loaded into
SDR, (Figure 2-120) the data and check bits are
cross-checked for errors. The data to the corrector logic is
the same polarity as the generated data even though the
storage element and the data register perform one
inversion each. The input to the syndrome bit generator is
the same eight data bits that produced the five generated
check bits and those five check bits. The output is called
the syndrome bit to differentiate between the check bit
alone and the data combined with the check bit. For
example, syndrome bit 2 contains data bits 0, 1, 3, 4, 5
and check bit C2 as shown in Table 2-11. The output of
the syndrome generator is sensed for a "“1” indicating a
failure in one of the input bits. To recover the bad data
bit, three-input AND gates are used in a coding scheme
shown in Table 2-11. For example, to recover data bit O,
syndrome bits 1, 2, and 3 must be in an active state. The
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10 1" 12 13 14 15 16 17 18 19 21 2| 23| 24| 25 27 28 30 31 32 DECIMAL NUMBER
1 0 1 1} 1 [} 1 0 1 4] 1] 1 0 1 0 0 1 1 [} 1 BINARY EQUIVALENT
4] 1 1 0 ] 1 1 0 0 1 o [+] 1 1 0 1 1 o} 1 1
0 0 o 1 1 1 1 0 0 L] 1 1 1 1 0 0 0 1 1 1
1 1 1 1 1 1 1 0 [} 1] o 0 [0} 0 1 1 1 1 1 1
1] 0 0 ] 0 V] 1 1 1 1 1 1 1 1 1 1 1 1 1 1
. WEIGHT
2 2 3 2 3 3 4 1 2 2 2 3 3 4 2 3 4 4 4 5 (NO. OF "1's” IN COLUMN)
Cg CHECK BITS (WT 1)
1 2 3 5 6 8 DATA BIT CODE (WT 3)

Table 2-10. Error Coding Table




Table 2-11. Syndrome Bit Generating Matrix

DATA BITS CHECK BITS NO. OF
0 1 2 3 4 5 6 7 ¢ | ¢ | c3 | ca | c5|INPUTS
st | 1 1 1 1 1 1 6
s2 | 1 1 1 1 1 1 6
$3 | 1 1 1 1 1 1 6
s4 1 1 1 1 1 1 6
S5 1 1 1 1 1 5
NO. OF ACTIVE
INPUTS 3 3 3 3 3 3 3 3 1 1 1 1 1

syndrome bits used for recovering each data bit are shown
in each column of Table 2-11 with the logic gate-input
requirements at the bottom of the column. Note that if a
check bit failed, only one syndrome bit will be active. For
a single data bit error, the recovery generation is defined
according to Table 2-11. Any other error is
non-recoverable.

Error interpretation Control

The syndrome bits are decoded into three error
interpretation classes as shown in Figure 2-121. These
three classes cover all the combinations of syndrome bits
needed for error interpretation. Once the syndrome bits
generate the control signals, corrective actions are taken.

When all syndrome bits are "0’ the data from storage is
good. Using the logic in Figure 2-121, the syndrome bits
are checked for unrecoverable errors called Bad Data, and
recoverable errors called FIXBIT. When unrecoverable
errors occur, the Bad Data signal is sent to the processor.
The FIXBIT signal controls the write timing discussed in
the paragraph titled Write Time and indicates that
correcting the data will be attempted. In the case of all

syndrome bits being ““0”, there are no active outputs for -

FIXBIT, Bad Data or the eight toggle control gates which
indicates good data.

There are two kinds of correctable errors; either data bits
or check bits. The difference between failing data bits or
check bits will be the number of active syndrome bits. For
example, if data bit 7 fails, by using Table 2-11 there will
be three syndrome bits S3, S4, and Sb active. If check bits
C1 fails only syndrome bit S1 will be active. In other
words, by decoding the syndrome bits using Table 2-18,
the erring data bit can be corrected by using three-input
AND gates and check bits can be corrected with one
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active and four inactive syndrome bits. Across the bottom
of Table 2-18 is the number of required active inputs
which is either one or three. When one or three syndrome
bits are active the combination of bits will decode into a
data or check bit and therefore the error is correctable.
The error interpretation logic will activate FIXBIT and
attempt to correct the error. From Figure 2-121 either
one ot three active syndrome bits causes Bad Data to go
low and be interpreted as the data has been corrected.

Unrecoverable errors occur when the active syndrome bits
cannot be decoded into erring data or check bits. For
example, if two syndrome bits S2 and S3 were active,
there are no data bits or any single check bits of weight 2.
Similarly there are no data or check bits of weight 4 or 5.
When errors that activate syndrome bits with weights
equal to 2, 4 or 5 are sensed, they are interpreted as Bad
Data (active) with FIXBIT also active. The computer is
signaled that an unrecoverable error has occurred with the
Bad Data line which is the ECC error interface line, while
error recovery is attempted internal to storage with the
FIXBIT line. However, unless the proper syndrome bits
shown in Table 2-11 are active, data or check bits may be
incorrectly altered. With all five syndrome bits active for
example, all eight data bits would be selected and their
data altered. By providing some inspection logic, the data
and check bits can be examined for future reference.

Error Logging

When one or more syndrome bits are non-zero, an error
condition exists that may or may not be recoverable.
Recovery internal to storage occurs when the syndrome
bits match the matrix in Table 2-11. Any other
combinations of syndrome bits result in unrecoverable
errors which activate the ECC error line. In either case a
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OES NEGATIVE OMLY WHEN ALL
SYNDROME BITS ARE POSITIVE

S5

POSITIVE ONLY FOR ERROR(S)
SYNDROME BITS

NEGATIVE ONLY FOR ERROR(S)

$1

SYNDROME BITS

S5

> OUTPUT HIGH WITH EVEN

—_— NUMBER OF HIGH INPUTS
PARITY
—" CHECKER
—_— BAD DATA
— SEE TRUTH TABLE
—
FIXBIT

TRUTHTABLE FOR ABOVE LOGIC

CONDITION OF ERROR INTERPRETATION
NUMBER OF SYNDROME
BITS THAT ARE ONES BAD DATA FIXBIT GOOD DATA CORRECTABLE ERROR NOT RECOVERABLE

0 Low Low X

1 Low HIGH X

2 HIGH HIGH X

3 Low HIGH X

4 HIGH HIGH X

5 HIGH HIGH X

Figure 2-121. Error Interpretation Logic

log entry is made. To isolate the error, an error logging
register is used with the format shown in Table 2-12. The
10 syndrome bits for both bytes and the 4 board select
address bits are gated into a temporary storage register
called the /og. As each new entry is made into the log, the
16th log bit is set signifying that new information has
been entered into the log. When the CPU inspects the log,
the 16th bit (or enter bit) is cleared by the CPU so that if
a subsequent inspection occurs before another error is
loaded into the log, the same error will not be inspected
twice. The log is a clocked register that is loaded only
when the clock input is high and then retains that
information after the clock goes low. As each error is
recognized by FIXBIT a new entry is made independent
of whether or not the last entry was inspected. At any
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time if there is an entry in the Error Log registers it is the
last error made.

ECC CONTROL

After the syndrome bits have been decoded into an erring
bit, that bit must be corrected before it is sent to the CPU
and then written back into storage. {f an error did occur,
the Error Log register is loaded. The data or check bit
corrections occur independent of timing; however, timing
does control the writing back into memory. Since error
correction is done without timing for gating, the raw or
uncorrected data cannot be examined by hardware or
software for proper action. Using Figure 2-122, the data
paths for normal error correction and diagnostic
interrogation can be shown.



Table 2-12. Error Logging Format

£vi-c

DATA BIT LINE 12 13 14 15 1" 10 9 8 7 6 5 4 3 2 1 0
FUNCTION BOARD SELECT ADDRESS SYNDROME BITS
ENTER NEW
SIGNAL NAME X3 A0 Al A2 |SPARE | 10 9 8 7 6 5 4 3 2 1 BIT INFOR-
MATION
INPUT PIN (B13) 45 46 35 36 52 51 42 a 76 63 77 70 n 58 57 -
OUTPUT PIN (B13} 43 47 38 37 49 50 39 40 74 75 61 62 3 12 60 59




Normal Error Recovery

The clearest way to understand a block diagram such as
Figure 2-122 is to take one data bit and follow it through.
Since the check bit is slightly more complex than data, it
will be more instructive to follow check bit, C1. Check bit
C1 is corrected (when necessary) by generating a pair of
corrector bit lines coming from the syndrome bit
decoding logic and logically comparing these lines to a
pair of uncorrected lines (for C1) from storage. The pair
of lines from storage is just bit C1 and its inversion
(complement). Logically combining C1 and its
complement with the C1 corrector bits controls the
correcting of C1 regardless of C1 originally being a ‘0" or
a ""1”. All data and check bits are corrected with this
scheme. Figure 2-123 illustrates how the corrected check
bits are corrected with this scheme. From Figure 2-123,
the corrected check bits are gated back to storage for
writing and the raw check bits are made available to the
CPU via the Error Log register for software to check.
Similarly the data bits are corrected and made available to
the CPU and then written into storage.

Diagnostic Control
Storage provides logic to interrogate the Error Log register

and the Storage Data register (which includes check bits).
A special signal line {(MS-SPEC) from the CTA initiates the

diagnostic inquiry along with two other special lines that
send the diagnostic code. When the MS-SPEC is active, the
other select lines are decoded as shown in Table 2-13.
Normally, the DATA SEL gate is active in absence of
MS-SPEC so that data and check bits are automatically
corrected as shown in Figure 2-123. When another
diagnostic selection code is used, DATA SEL blocks all
error correcting. The signal code RAW CHK enables 10
raw check bits generated from input data to be read and
interpreted by CPU hardware/software. In contrast to
RAW CHK, signal code RD CHK (code 11) enables 10
uncorrected check bits read from storage to be gated to
the CPU in the format shown in Table 2-14 (right
column). For diagnostic maintenance, code 11 can be
used to help isolate failing memory bits.

ECC Write Controls

When a recoverable error occurs, the active FIXBIT
enables the write controls. These write controls are
controlled by the ECC FIXBIT. As shown in Figure
2-124, the left-most (upper) and right-most (lower) bytes
overlap each other on the ECC card row B. For example,
either store upper from the CTA or FIXBIT upper from
ECC activate the write controls for the left-most byte and
the ECC check bits. The resultant write controls arythen
combined with the write and digit timing.

+SDR 00 -SDR 00
—
+SDR 00
CONTROL FOR
DATA BIT TOGGLE
00 (ACTIVE)
+TOGGLE
GATE FUNCTION
A COMPLEMENTS DATA
B TRUE DATA
C.D OTHER FUNCTIONS

+DATA SELECT

Figure 2-123. Data Correction Logic
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Figure 2-122. ECC Detailed Block Diagram




WRITE CONTROL AREAS

|
UPPER BYTE ZA1 ! za2 ROW A
PPER
N BYTE
ECC BITS ZB1 | 282 ROW B
|
LOWER
} BYTE
LOWER BYTE ZC1 I 202 ROW ¢
|
Figure 2-124. Write Control for ECC
Table 2-13. Diagnostic Selection Codes
Select Lines
SLX1 SL1X Code Signal Name Function

0 0 00 DATA SEL Enables 16 corrected data bits from
SDR to CPU. Normally active in
absence of special signal. Normally
gates corrected check bits to SDR
for writing.

o 1 01 LOG SEL Enables 16 log bits to CPU in format
of Table 2-12. Entry bit clears
when code is removed.

1 0 10 RAW CHK Enables 10 check bits from input
data check bit generates directly
to CPU.

1 1 1 RD CHK Enables 10 corrected check bits to
CPU.

NOTE: Detailed references for these
signals are found in Table 2-14.
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Table 2-14. Detailed Diagnostic Selection Code References

Function Can be .
Seiect Name Scoped On Signal Name Generated
Normal Data Data Error Log Check Bits | Read Check Bits

Select Lines Format 281353 +MSSPEC 0 i i i 1

2B13-69 - SLX1-ECC X 1 0 1 0
{X=don"t care)
2B13-68 -SL1X-ECC X 1 1 0 0
2A11-27 MS-DR00O Data Bit 0 Data Bit 0 Entry Bit ECCCHK 1 ECC CHK 1
2A11-26 MS-DR0O1 1 1 Syndrome 1 2 2
Bits

Data Lines 2A11-22 MS-DF02 2 2 2 3 3

(used for the 2A11-24 MS-DF03 3 3 3 4 4

bits selected) 2A11- 4 MS-DF0O4 4 4 4 5 5
2A11- 6 MS-DFO05 5 5 5 Spare Spare
2A11-10 MS-DFO06 6 6 6 Spare Spare
2A11-11 MS-DFQ7 7 7 7 Spare Spare
2C11-27 MS-DFO8 8 8 8 ECCCHK 6 ECC CHK 6
2C11-26 MS-DF09 9 9 9 7 7
2C11-22 MS-DF10 10 10 10 8 8
2C11-24 MS-DF11 1 11 Spare 9 9
2C11- 4 MS-DF12 12 12 ADD X3 10 10
2C11- 6 MS-DF13 13 13 0 Spare Spare
2C11-10 MS-DF 14 14 14 1 Spare Spare
2C11-11 MS-DF15 15 15 2 Spare Spare

NOTE: When the select lines are in the format of a given column, that column of bits are gated on the data lines.




REGISTER OPTION

The Register Option (RO) comprises registers and
associated control logic that implement the following
features:

1. Basic Storage Protection
2. Relocation and Protection
3. Job Accounting

4. Error Correction Code (ECC)

The first three features are physically part of the Central
Processing Unit (CPU) portion of shared resources. The
ECC feature is located in the Main Storage (MS) portion
of shared resources and, for purposes of convenience, is
discussed in the paragraph titled Main Storage. This sec-
tion, therefore discusses operations of only the Basic Stor-
age Protection feature, Relocation and Protection feature,
and the Job Accounting feature.

The Basic Storage Protection, and Relocation and Protec-
tion features are mutually exclusive; that is, when the
Basic Storage Protection feature is present, the Relocation
and Protection feature is absent, and visa versa. The Basic
Storage Protection feature is used for MS sizes of 65,536
bytes or less, while the Relocation and Protection feature
is mandatory for MS sizes greater than 65,536 bytes. The
Job Accounting and ECC feature may be present in the
machine if either the Basic Storage Protection or Reloca-
tion and Protection feature is installed. Figure 2-125
shows the placement of RO modules in chassis 1 of the
module deck. The modules comprising the Basic Storage
Protection and Relocation and Protection features are
both installed in locations 1B27 and 1B28 as shown. Since
all logic necessary for the Basic Storage Protection feature
is contained on module BK at location 1B28, module BL
at location 1B27 is simply a jumper board to interface
signals that would be processed by module BJ of the
Relocation and Protection feature if it was installed.

The Basic Storage Protection feature checks storage
bounds on write operations only for processor states 5, 6,
and 7. The check is made by defining both an upper page
limit and lower page limit beyond which a write reference
may not be made without error. Ifa bounds error occurs,
the write is inhibited and a trap routine is entered.

The Relocation and Protection feature expands the MS
addressing structure from 16 to 20 bits allowing
addressing of up to 1 million bytes. This is accomplished
under program control by furnishing a 4-bit segment tag
value that can be either appended directly to the 16-bit
address in S, or used to select a 12-bit relocation constant
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that can be added to the contents of S to relocate all
subsequent MS references by the amount of the constant.
The relocation constant is obtained from a segment
relocation table that contains 16 such entries. These 16
entries essentially divide MS into 16 separate segments for
purposes of providing areas of common usage, certain
combinations of read and write protection, and other
factors under control of the operating system. In addition,
the Relocation and Protection feature also furnishes both
read and write protection for all eight processor states.
This protection may be implemented in either of two
forms (1) reading or writing a particular portion of MS, or
(2) attempting access to a particular portion of MS
without regard to the type of reference.

The Job Accounting feature consists of eight 32-bit
registers, one per processor state. These registers log the
number of time slices {major cycles) assigned to each
processor state.

A block diagram showing the address and data paths to
and from the RO is shown in Figure 2-126. Since the RO
is located between the S and D registers and MS, all
address and data bits put into these registers must first
pass through the RO before going to MS. An address put
into S may be used to either address a location in MS or a
register in the RO. If addressing an MS location, the
address is checked for bounds protection and, if the
Relocation and Protection feature is present, added to the
relocation constant to generate the expanded 20-bit
physical memory address. If addressing a register in the
RO for purposes of reading or writing the register, the
address is routed through processor and register select
logic in the RO to select the appropriate register. An
address used to access an RO register must be loaded into
S from only transient registers 1E or 1F of the BRF. Data
loaded into the D register is stored in either MS, if
addressing MS, or in an RO register, if addressing the RO.

BASIC STORAGE PROTECTION FEATURE

The Basic Storage Protection feature is implemented by
three 16-bit registers, a compare network, and MS write
inhibit logic. One bounds register is assigned to each of
the processor states protected: 5, 6, and 7. The format
for each of the bounds registers is as follows:

00 07 08 15

UPPER BOUNDS LOWER BOUNDS
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Figure 2-125. Installation of Either Basic Storage Protect or Relocation and Protection Feature

2-149



osL-¢

BRF

1 o DATA
REG
s | 16-BIT ADRS
REG IpiSPLACEMENT

REG
OPTN

BP
R/P
J/A

RO DATA

Ecc Yecc oata
DATA
'MS DATA
mS
20-BIT ADRS
[PHY ADRS]

Figure 2-126. Register Option, Block Diagram

DATA ALU

_ﬁ FAN-IN



The bounds protect concept is based on dividing MS into
pages of 256 bytes each. The upper bounds half (bits 00
through 07) designates a maximum MS pagé number,
whereas the lower bounds half (bits 08 through 15)
designates a minimum MS page number. When the upper
and lower bounds are equal, the MS write references are
restricted to that one page. When the upper bounds equals
FF 16 and the lower bounds equals 0041, no main storage
protection takes place.

Logic of the Basic Storage Protection feature used during
normal bounds compare operation is shown in Figure
2-127. Each half of the three bounds regisers feeds a
corresponding selector enabled by processor select signals
ROST-1XX and ROST-X1X. These select signals are
derived from the logic shown in Figure 2-128 and are
generated for either of two conditions: normal operation
(MS reference) or register read/write. For either case,
three ROST signals are generated which represent the
processor number in binary form. During normal
operation, the ROST signals are generated from
corresponding EXCT signals from the resource allocation
network, which defines which processor has been granted
the present time slice. During a bounds register access
(read or write operation), the ROST signals are derived
from bits 8, 9, and 10 of the S-register. These three bits
define the processor number in either a Read Register
Option (RRO) or Write Register Option (WRO) MLI, for
specifically accessing a particular RO register. These bits
are enabled by RO-SPEC, which is generated during an
RO access (see the paragraph entitled RO Reference
Signals). When selected by a particular value of ROST
signals, both halves of the bounds register selected are
routed through the corresponding selector to individual
bounds compare networks. Each network is also fed with
the MS page address contained in bits 0 through 7 of the S
register. These 7 bits of S are also routed to MS as
ROS-MS bits 0 through 7. The two bounds compare
networks make the following comparison of the page
address agains the upper and lower bounds limit:

Page Number Less Than or Equal to Upper Bounds
Limit

Page Number Greater Than or Equal to Lower
Bounds Limit

If both these compare conditions are met, each compare
network generates a low output which is combined with
enable (5+6+7) MS-WR. This enable indicates that
processor state 5, 6, or 7 is executing an MS write
operation, the necessary prerequisite for performing a
basic storage protect bounds check. The result is to make
ROACCESS go high to permit the write operation to take
place.
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If either compare condition is not met, i.e., page address
greater than upper bounds limit or less than lower bounds
limit, ROACCESS goes low to abort the write operation.
Logic for setting up the abort condition is shown in
Figure 2-129. The low ROACCESS signal clears the
QOutbound flip-flop to generate a low from the Q output,
provided the System Control Panel has not requested an
RO access (CONST-RO is low). This low is sent to the
STOREUPP and STORELOW gates to disable them, thus
forcing MS write signals STOUPPMS and STOLOWMS
low. In addition, and low flip-flop output is combined
with the STOREUPP and STORELOW signals to generate
OUTBOUND. This signal is sent to the trap routine
starting address logic (see the paragraph entitled Set Pp
Logic) to cause a jump to the MS parity error trap
routine.

The four extended MS address bits RO-MSXO0 through
RO-MSX3 shown connected to ground on Figure 2-127
are so connected to eliminate a floating condition that
might be interpreted by MS as extended address bits set to
“1's"”. As discussed in the paragraph titled Register
Option, this basic storage protection module, type BK, is
interchangeable with relocate and protection module BH
if the Relocate and Protection feature is installed. Since
the Relocation and Protection feature uses these four bits
as the upper four-bit extension to the 16-bit address in S,
these bits must be purposely grounded out if the basic
protection feature is installed.

REL OCATION AND PROTECTION FEATURE

For discussion purposes, the relocation and protection
portions of the Relocation and Protection feature will be
treated as separate functions. During an actual MS
reference, however, the two operations are performed at
the same time,

Relocation

The general procedure for relocation is shown in Figure
2-130. The 16-bit MS address in S, obtained from the
BRF register as defined by the Load S ul X-field, is called
a displacement address. The register number is also used
to select a segment tag, a four-bit value that points to one
of sixteen 24-bit entries in the segment relocation table.
This segment tag resides in a register of the segment tag
file corresponding to a register in the BRF, and is
addressed concurrent with the BRF register. In effect, the
Segment Tag register constitutes a four-bit extension of
the BRF register to permit the expanded addressing
capability provided by the Relocation and Protection
feature. The combination of the BRF register contents
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and that of the associated Segment Tag register is called
the system address. The right-most 12 bits of the segment
relocation table entry, called the relocation constant, are
added, right-justified to the page number portion of the
displacement address, to obtain a new 12-bit page
number. This number, combined with the unchanged bits
from the byte address portion of the displacement, forms
the 20-bit physical address to which the MS reference is
made. As far as bit numbering is concerned, the physical
address is considered to consist of two parts: a 16-bit
right-most part, made up of bit positions O through 15,
and a 4-bit left-most part, made up of bit positions X0
through X3.

Logic which perform the relocation function is shown in
Figure 2-131. The segment tag register file is addressed by
a combination of ESXXX-RO bits, which define the pro-
cessor state executing, and BRFXSO0 bits, which define
one of the 32 segment tags associated with the executing
processor state. The four-bit segment tag value is gated
through a selector to the S register extension and to the
Sb register. This selector is fed with segment tag values
from three sources: the Segment Tag register, pushbuttons
X0 through X3 of the CONSOLE REGISTER ADDRESS
DISPLAY pushbuttons, and 8§ register bits 11 through 14.
During normal operation, the segment tag value is obtain-
ed from the Segment Tag register by the absence of both
enables ROSTSEL and MSSTSEL. The segment tag value
is clocked into the S register extension at the same time
that the 16-bit displacement address is clocked into S by
CLKSTR and ENCLKSTR. Signal ENCLKSTR is gener-
ated for two different conditions, as shown in Figure
2-132. During normal operation, it is generated by
ENCLKSR which enables clocking the S register. During a
read or write into the RO, it is generated at E150 by
RO-SPEC. Simultaneous with clocking into the S register
extension, the tag value is also clocked into the Sb regis-
ter. This register holds the tag during indexing operations,
as explained later.

The segment tag in the S register extension is sent to the
segment tag table to select one of the 16 relocation entries
in this table. Each entry is 24 bits long, consisting of two
12-bit words. The right-most word consists of the reloca-
tion constant to be added to the displacement address in
S. The left-most word contains the maximum page
number and validity bit used for bounds protect evalua-
* tion, as discussed in the paragraph titled Protection. Each
entry is stored in six storage elements, 4 bits per element.
When addressed by the segment tag value, the correspond-
ing entry is read from the storage elements with the
relocation constant being routed to three adder elements,
as shown in Figure 2-131. Although stored in the reloca-
tion table as a 24-bit entry, the software which reads or
writes the relocation table considers each entry to be 32
bits long, consisting of two 16-bit words. The right-most
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word of this entry consists of the relocation constant in
bit positions 4 through 15 with bit positions 0 through 3
set to ‘“0's”. The left-most word consists of the validity
bit in bit position 0 and the maximum page number in bit
positions 8 through 12 with bit positions 1, 2, and 3 set to
“Q’s"". This correlation between the two forms of a reloca-
tion table entry as interpreted by hardware and software
is shown in Figure 2-133.

The relocation constant portion of a segment table entry
addressed by the segment tag value is fed to three
relocation adder elements, along with bits 0 through 7 of
S (page number). In addition, the segment tag value itself
is fed to the bit positions 0 through 3 relocation adder.
The result is to form a 20-bit physical address from which
the location in MS will be addressed. (In reality, the physi-
cal address presented to MS is really only 19 bits long,
since the right-most bit (bit 15) is used in the MS interface
logic to develop separate byte write signals.) This physical
address is determined in one of two ways, depending on
the position of the CONSOLE MAIN STORAGE switch
on the System Control Panel. This switch generates enable
RELOCATE, as shown in Figure 2-134. Logic for generat-
ing this enable assumes that either an MS read or write
operation has been selected, and the Panel has been grant-
ed a time slice (CONST =+ RO high). If the switch is in
the RELOCATE position, signal RELOCATE goes high to
enable the relocation adder. The result is to form the
physical address by relocating the system address, via
addition of the relocation constant, as shown in part a of
Figure 2-134. If the switch is in the OFF position,
RELOCATE goes low and the relocation adder is
inhibited. The result is to form the physical address
directly from the system address, bypassing the relocate
mechanism, as shown in part b of Figure 2-134. For the
case of relocation, signal ADRS MODE RELOC is ANDed
with RELOCATE. This signal is developed from the
Address Mode register, which indicates that relocation for
the selected processor state is specified.

The segment tag value routed to the Sb register is used
during load S operations to insure that once a reference is
made to a relocated segment of MS, as determined by the
segment tag corresponding to a particular BRF register,
that all subsequent references to MS in the same program
will be made to the same segment even through a
reference might be made from a different BRF register.
This sequence is altered, however, when an indexing
operation is performed which changes the relocation from
that of the original Load S ul to that furnished by the
segment tag of the index register. An example of using
segment tags for relocating MS references during both
non-index and index operations is shown in Figure 2-135.
This figure shows execution of a MOVM (60} MLI, using
both indirect addressing and indexing, in both pictorial
form and by a partial listing of the corresponding i
program. (This partial listing has been simplified to show
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Figure 2-135. Use of Segment Tag in Relocation and Index Operations
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only the concept of indexing using segment tags. As will
be shown in Figure 2-136, every write back into the
Segment Tag register from Sb must be initiated by an IDX
Ml (except during an RNI sequence) even if an indexing
operation is not performed. As the picture shows, the
MLI! transfers the contents of MS location 2160 (210},
specified by the contents of MS locations 1200 (2100}
which is addressed by the second MLI| word and modified
by the contents of the index register (60) specified by the
MLI R1 field (3); to MS location 2800, specified by the
contents of MS location 4000 (2400) which is addressed
by the third MLI word and modified by the contents of
the index register (400) specified by the MLI R2 field ().
The ul program listing shows how the segment tags are
initially chosen and then used by the rest of the program
to key off this original tag until altered by an indexing
operation. Initial selection of a segment tag is performed
by the LS2 ul of the RNI sequence to read the first word
of the MLI. For this example, the segment tag correspond-
ing to BRF register Q1 (containing the first MLI word
address) is 4. This indicates that all MS references made
by this MOVM MLI are to be made to a segment of MS
addressed by the relocation constant contained in entry 4
of the segment relocation table (assuming the CONSOLE
MAIN STORAGE switch on the Panel is set to the
RELOCATE position).

The LS1 Ll routes segment tag 4 to both the relocation
table and to Sb. The following register file write 1l (and
all subsequent register file 4 1’s until an indexing operation
is performed) will write segment tag 4 back into the
Segment Tag register corresponding to the BRF register

selected by the ul so that all future references to that
BRF register will key off of segment tag 4. This is shown
at points and of the ul listing. The segment tag
write at is of no consequence since segment tag 4
originally corresponded to BRF register Q1 anyway. At
point é), however, segement tag 4 is written into the
Segment Tag register corresponding to BRF register T3.
This means that a subsequent read of T3 will not key off a
tag associated with T3, but instead the tag associated with
Q1. In like manner, the Q1 segment tag is written into the
Segment_Tag register corresponding to BRF register T4 at
point . At point , however, the segment tag is
changed by the preceding IDX i1, which routed a new tag
(8) to Sb corresponding to BRF register 3 being used as an
index register. This means that all subsequent references
to register T3 will key off of segment tag 8. In a similar
manner, segment tag A corresponding to BRF register 5
being used as an index register is written into the Segment
Tag register corresponding to T4 at point @

Logic showing the flow of data into Sb and back to the
Segment Tag register is shown in Figure 2-131. The seg-
ment tag is clocked into Sb in the presence of
ENCLKSBR. This enable is generated during execution of
either a Load S ul or an IDS ul when X=0 (the condition
for indexing). The output from Sb is fed back to the Seg-
ment Tag register through a selector. For writing into the
register from Sb both selector enables RO-SPEC and
ST-MUX are high. Register file write enable SEGTAGWR
is generated for a segment tag rewrite by the logic shown
in Figure 2-136. As discussed in the footnote to Figure
2-135, all writes from Sb back into the Segment Tag regis-
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Figure 2-136. Generation of SEGTAGWR for Segment Tag Re-Write
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ter must be initiated by an IDX (0,2) ul whether or not an
indexing operation was actually performed, except during
an RNI sequence Therefore, the write enable is generated
by two different conditions. During an RNI sequence,
SEGTAGWR is generated by RNI-F/F, indicating that the
RNI sequence is being performed, and ENBRFWR and
BRFWRITE, indicating that a register file write ul is being
performed and the time during execution of the ul that
the register is to be written into. During the sequences
following the RNI sequence, the index mechanism that
generates SEGTAGWR must be used. Execution of an
IDX ul sets the Segment Tag Write flip-flop. Then, when

the register file write ul is executed to perform the actual’

write back into the file, ENBRFW and BRFWRITE are
generated which, in combination with the flip-flop out-
put, generate SEGTAGWR. As soon as this enable is
generated, the flip-flop is cleared to de-activate the write
enable until the next segment tag rewrite is initiated.

Protection

Protection is accomplished during the course of
performing relocation. This protection is implemented in
three different ways: validity bit protect, bounds protect,
and write/read protect. The validity bit and bounds
protect evaluations are made on the contents of the
left-most word read from a particular entry in the segment
relocation table. The write/read protect evaluation is
made on the contents of the protection matrix. All three
types of protect depend on whether or not protection is
defined for a particular processor, as determined by the
contents of the Address Mode register. Each of the three
protection schemes is discussed in the following
paragraphs, referencing Figure 2-137.

Validity Bit Protect

Validity bit protect is performed by examining the
validity (V) bit (bit 0) of the left-most word of the
segment relocation entry read by the four SEGTAG bits.
If this bit is set (‘“1”’), an access (either read or write) may
be made to the MS segment defined by the relocation
constant by generating ROACCESS. This bit offers the
operating system a more convenient means of preventing
access to a MS segment than using the protection matrix
described below. If the V bit is not set (“’1’), ROACCESS
goes low to inhibit the access and a jump is made to a
bounds error trap routine. -

The validity protect scheme is effective only if relocation
is enabled for the particular processor state. This
relocation enable is furnished by the Address Mode
register, which specifies whether a particular processor is
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enabled for relocation and/or protection. This 16-bit
register is composed of an 8-bit relocate (R) field and an
8-bit protect (D) field, as shown in Figure 2-138. When a
particular bit is set in either field, the corresponding
processor is enabled for the specified relocate or protect
condition. As the figure shows, four different
relocate/protect conditions are possible depending on the
combination of R and D bits. These conditions are
discussed below:

1. R:D = 0-0 — If neither relocation nor protection
is enabled for a particular processor, the physical
memory address is made up of the displacement
address and the segment tag value without any
reference to a segment relocation table entry.
This is the condition defined when the
CONSOLE MAIN STORAGE switch is set to
OFF position. In addition, none of the
protection checks will be made.

2. R-D =0-1 — This condition is unique in that even
though protection is enabled, none of the
protection checks is made. The reason is that
without relocation, a validity bit or bounds
check cannot be made. Without these checks, a
write/read protect check is not needed so it is
not made either. Essentially, then, this condition
becomes the same as an R-D = 0-0 condition.

3. R:-D = 1.0 — If relocation only is to take place,
the segment relocation table entry will be used to
develop a physical memory address as discussed
under the above Relocation paragraph. Because
the relocation table is accessed, the validity bit
check will be performed automatically even
though protection is not enabled. Any other
protection check, however, will not be
performed.

4, R-D = 1-1 — Relocation and protection will take
place using the segment relocation table, and the
protection matrix as described in the Write/Read
Protect paragraph.

For the validity bit check, the R bit corresponding to the
present processor state is ANDed with the V bit from the
segment relocation table to set up the protect condition
previously described.

Bounds Protect

The bounds protect check is made by comparing the page
number portion of the displacement address (bits 0
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Figure 2-138. Address Mode Register

through 7 of S) with the maximum page number portion
of the segment relocation table entry. The maximum page
number, in effect, constitutes the upper boundary page
address of the MS segment to be accessed. If the page
number in S is greater than the maximum page number,
an MS parity error condition is generated by forcing
ROACCESS low. The check is made by two comparators,
each comparing 4 of the 8 bits comprising the page
number in S and the maximum page number. The check is
made only if both the relocate and protect conditions are
enabled from the Address Mode register.

Write/Read Protect

The write/read protect check is made by examining the
state of a read and write protect bit assigned to each entry
of the segment relocation table. These read and write
restrictions are accomplished by means of the protection
matrix. The protection matrix consists of a 16-bit Write
Protect register and a 16-bit Read Protect register assigned
to each of the either processor states, as shown in Figure
2-139. Bits 0 through 15 of each register represent the 16
segment entries 0 through F of the segment relocation
table. A processor may access a segment in MS only if that
segment number in the appropriate Write Protect or Read
Protect register of the protection matrix is a 0.

The protection matrix consists of four storage elements,
each element storing four bits (segment numbers) of each
of the 16 registers. A particular register is selected by the
three processor select (ROST) signals and the
PROTREAD signal. The PROTREAD signal serves a dual
function of selecting the Read Protect register during EO
through E3 of the processor’s time slice (PROTREAD
high), and the Write Protect register during E4 through E7
(PROTREAD low). In this way, both write and read
protect checks are made on the selected MS segment.
Finally, the particular segment number of the selected
processor's Write Protect and Read Protect registers is
selected by the four SEGTAG signals through two selector
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elements. The resultant protect bit selected is ANDed
with the R'D = 11 signal from the address mode register
to generate ROACCESS if the protect condition is met.

The result of these three protection schemes is to drive
ROACCESS high if the protect condition is met. If the
protect condition is not met, ROACCESS goes low to
inhibit an MS write operation, if requested, and generate
an MS parity error trap condition in exactly the same
manner as the basic protect feature discussed in the
paragraph titled Basic Storage Protection Feature.

Parity Error Register Extension

The Parity Error (PE) register extension functions as an
upper four-bit extension of the 16-bit PE register in the
Group |l ERF. In this regard, it displays the upper four
bits of the physical address at which the last PE occurred.
Logic for the PE register extension is shown in Figure
2-140. The upper four address bits come from either one
of two sources, depending on the setting of the SYSTEM/
PHYSICAL switch on the System Control Panel. If in the
PHYSICAL position, selector enable SYSTEM goes low
and the PE register extension is loaded with the upper
four bits of the physical address via the four ROS-MS
signals. This physical address may be either the relocated
or un-relocated system address, depending on the setting
of the CONSOLE MAIN STORAGE switch. If the
SYSTEM/PHYSICAL switch is in the SYSTEM position,
enable SYSTEM goes high and the PE register extension is
loaded with the upper four bits of the system address
regardless of the setting of the CONSOLE MAIN STOR-
AGE switch. The address bits are clocked into the register
via CLKPE, at the same time that the PE register in the
ERF is clocked with the lower 16 bits of the address.

JOB ACCOUNTING FEATURE

A block diagram of the Job Accounting feature is shown
in Figure 2-141. The eight 32-bit job accounting registers
are contained in four storage elements as shown. Each
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register consists of two 16-bit words, each individually
addressable, as shown in Figure 2-142. The storage
elements are interconnected so that each element stores
the corresponding four bits of each 16-bit word. For
example, the top-most element in Figure 2-141 stores the
left-most four bits of both word 0 (bits 0 through 3) and
word 1 (bits 16 through 19). During normal operation
each element is addressed in two halves, wherein word 1 if
a register is read, incremented by 1 and written back
during the first half of a time slice (EO through E3),
followed by a read, increment, and rewrite of word 0
during the second half of a time slice. Occurrence of each
operation for incrementing each word of a register is
shown in Table 2-15.

During normal operation, a particular register is addressed
by the processor number specified by the three EXEC
signals, and the particular word of the addressed register
by signal E4567. During the first half of a time slice,
E4567 is low to read word 1 from the register. This word
is clocked into the adder holding register by J/ACLOCK
at E160. The holding register is used to hold the word
while the word is incremented by 1. This incrementation
occurs as soon as the holding register is loaded by uncon-
ditionally routing the word to the adder. The +1 added to
the word in the adder is generated through a NOR gate
from two different sources, depending on whether word 1
or word 0 is being incremented. During an increment of
word 1, the +1 is obtained from E4567, which is inverted
to the 1 state through the NOR gate. At E340, the incre-
mented word is stored back into the register by
J/AWRITE.

At E400, E4567 goes high to read word 0 of the selected
register. Incrementing and subsequent rewriting of this
word is performed in the same manner as for word O,
except for the clock times and the source of +1. During a
word O increment, the +1 results from a carry-out, if
generated, from the most significant bit (MSB) stage of
the adder, indicating that the +1 added to word 1
produced an overflow. The carry-out sets the First Add
Carry flip-flop by JJAWRITE (E340 time). The resultant
low from the Q output is fed through the NOR gate and
added to word 1 now in the adder.

Generation of J/AWRITE is accomplished by the logic
shown in Figure 2-143. The signal is generated for two
different conditions: during normal (MS reference)
operation to update the job accounting register contents
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by 1, and during Panel-initiated operations to clear the job
accounting register. For either condition, J/AWRITE is
generated at both E340 and E740 by the combination of
timing signals E3 or E7 and BRF WRITE. Signal
BRFWRITE furnishes a pulse width of 60 nanoseconds,
starting at 140 of both E3 and E7. The two conditions
during which J/AWRITE is generated are defined by
enables NOT NULL and NOT CONS EXC J/A
SPECIFIED. Specifically, these enables eliminate all other
conditions during JJAWRITE could be generated: a null
state and a Panel state where an operation other than a
job accounting register reference (either read or write) has
been initiated. A further resolution of the job accounting
reference specified by the Panel is provided by signal L ~
J/A READ. This signal inhibits J/JAWRITE during a job
account register read operation, or discussed in the
paragraph titled Register Read. Therefore, the signal is
generated specifically for a write operation.

RIEGISTER READ/WRITE

Reading and writing registers of the RO during other than
normal (MS reference) operations is performed under
program control by the Read Register Option (RRO) and
Write Register Option (WRO) MLI's, and under manual
control from the System Control Panel. The RRO and
WRO MLI's are each two-word MLI's, of which the
second word of the ML addresses a particular register by
register group number; processor number, if applicable;
and, in the case of two-word registers, a designator that
selects either word O or word 1 of the register. The
System Control Panel permits selection of a RO register
by setting the above register select information into the
CONSOLE ADDRESS REGISTER DISPLAY
pushbuttons. This section describes reading and writing
RO registers by MLI’s only. Reading and writing RO
registers from the Panel is described in the paragraph
titled MS/RO and RF Read and Write.

The 16-bit format for addressing registers of the various
register groups, including the ECC feature, is shown in
Figure 2-144. Note that for selection of any RO register,
bits O through 3 are always “0’s”. The register group
numbers, defined by bits 4 through 7 of the address, are
listed in Table 2-16. Note that each register of the ECC
feature may be selected by two adjacent group numbers.
The complete 16-bit address for each RO register is shown
in hexadecimal form in Figure 2-145.

16 N

WORD 0

WORD 1

Figure 2-142. Job Accounting Register Format
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Table 2-15. Occurrence of Job Accounting Register Increment QOperations

Time Signal Operation

WORD 1 UPDATE

ER000-E300 E4567 READ BITS 16-31

E160 J/A CLOCK J/A REG—+HOLDING REG -ADDER
E000-E300 E4567 +1 FROM E4567—=ADDER
E340 J/A WRITE ‘ ADDER— J/A REG

WORD 0 UPDATE

E400-E700 E4567 READ BITS 0-15
E560 JJACLOCK J/A REG —»HOLDING REG —»ADDER
E340 J/AWRITE +1 FROM 1st ADD CARRY FF
E740 JAWRITE ADDER—- J/A REG
-----I--I----------l-----------l
i
‘ 1
1 |
+STORELOW —3— ‘
STO i -
+RO-SPEC | 1
JA# 1 L> J/A READ ]
| |
NOT NULL : )—_‘ :
NOT CONS EXC —
ya speciFiep —1 E340400 |
+BRFWRITE IL E740000 |
E3 OR E7 1
i (gzs) 1

Figure 2-143. Generation of J/A Write
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GROUP

GROUP

1M 12 13 14 15
REG. NO. SEGMENT TAG REG. FILE
1M 12 13 14 15
REG. NO. PROTECTION MATRIX
0 = WRITE PROTECT
1 = READ PROTECT
8 9 10 1M 12 13 14 15
PROC. NO. REG. NO. SEGMENT RELOCATION TABLE
L S 0 = WORD 0 (MAX. PAGE)
1 = WORD 1 (RELOC. CONST.)
M 12 13 14 15
0o 0 0 0 0 BOUNDS REGISTERS
1 12 13 14 15
0 0 o0 o0 JOB ACCOUNTING REG. FILE
0 = WORD 0
1= WORD 1
8 9 10 1M 12 13 14 15
0 0 o 0o 0 0 0 0 ADDRESS MODE, PE TAG, MS

Figure 2-144. RO Register Address Format
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Figure 2-145. Register Option Registers and Associated Addresses
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Register Read

Reading a RO register by means of an MLI is
accomplished by the logic shown in Figure 2-146. The
basic approach is to select a register from the processor
number (bits 8, 9, and 10), register number (bits 11
through 15), and register word designator (bit 15) of the
address contained in S. The data read travels over one of
six data paths from each register group to a selector,
which selects a particular data path by the register group
number (bits 4 through 7) contained in S. This
intermediate selection, which is also fed with the register
group number. The final path selected routes the
information read to the data fan-in in the MS interface
logic. Selection of any RO register requires that enabled
RO-SPEC be in the high state, indicating that a reference
is being made to the RO for the express purpose of
reading or writing an RO register.

Segment tag registers are selected by both processor
number (SR-RO bits 8, 9, and 10) and register number
(SR-RO bits 11 through 14 and SELBYTEOQ). The seg-
ment tag selected is passed to the PE/segment tag selector,
which is also fed with output from the PE register exten-

sion. (There is only one PE register extension; therefore,

selection of this register is made by the register group
select bits alone.) This selector selects either the Segment
Tag or the PE register extension contents, depending on

the state of SELSTAG, as shown in Table 2-17. The result
is routed to the RO multiplexer as ST/PE bits.

Entries in the segment relocation table are also selected by
processor number and register number, via a correspond-
ing segment tag as for normal MS reference operation. The
resulting 24 bits of the selected entry are sent to the
relocation/protection register fan-in. The 24 inputs to the
fan-in are applied as two input grovups of 12 bits each, cor-
responding to the two words that make up each entry in
this table. The fan-in is also fed with outputs from a
selected register in the protection matrix and from the
Address Mode register. One of the 16 two-register entries
in the protection matrix is selected by a processor via the
ROST select bits. Selection of either the read or write
register of the selected entry is made by bit 15 of S, which
generates PROTREAD. 1f PROTREAD is high, the read
register is selected; if PROTREAD is low, the write regis-
ter is selected. Selecting one of the four inputs groups to
the ROBIT selector is performed by the two SELRO
select bits, as shown in Table 2-17. The output of this fan-
in is fed to the RO multiplexer as ROBIT bits.

If the Basic Storage Protection feature is installed in place
of the Relocation and Protection feature, the ST/PE bits
are not generated and the ROBIT are developed from a
selection of one of the three bounds registers. This
selection is made from the processor number via the
ROST select bits.

Table 2-16. Register Option Registar Group Numbers

Group No.
Feature Register Group (H'exadecimal)

Relocation and Protection Feature Segment Tag Register File 0
Protection Matrix 1
Segment Relocation Table 2
Address Mode Register 3
PE Register Extension 4

Basic Protection Feature Bounds Registers 5

Job Accounting Feature Job Accounting Register File 6

ECC Feature MS Data Register 8/9
Log Register A/B
Generated Check Bits c/D
Read Check Bits E/F
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Table 2-17. First-Level Selection of Register Groups

Selector Name

Selector Signals and States

Register Group Selected

ST/PE SEL TAG
0 PE Register Extension
1 Segment Tag Register
RO BIT SELRO-S0 SELRO-S1

0 0
0 1
1 0
1

Address Mode Register
Protection Matrix
Segment Relocation Entry, bits 12-33 (Relocation Constant)

Segment Relocation Entry, bits 0-11 (V Bit and Max. Page No.)
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The ST/PE and ROBIT bits are sent to the RO multi-
plexer for final selection and routing to the data fan-in
logic. This multiplexer is also fed with outputs from a
selected register in the Job Accounting feature. The Job
Accounting register is selected by S register bits 8, 9, and
10, and either word 0 or word 1 of the register is selected
by bit 15 of S. One of the three inputs to the RO multi-
plexer is gated by an encoded combination of register
group select bits 5, 6, and 7 from S and master enables
J/A, BASIC, and RELOC. (Bit 4 of the register group
select field is not needed since it is always O for the non-
ECC features of the RO.) These three rnaster enables pro-
vide an over-all select enable for the three non-ECC
features by defining which of the three features are pre-
sent or enabled for selection in the system. If either the
Basic Storage Protection or the Relocation and Protection
feature is present, the corresponding master enable is con-
nected to the high state (+5 vdc) to enable selecting the
feature by bits 5, 6, and 7. The Job Accounting feature
will always be present in the system, since the module
containing this feature is also used for register read oper-
ations; however, the job accounting registers can be
selected for read operations only if the master enable J/A
is connected to the high state. Any feature not present or

not available for selection is disabled by connecting its"

master enable to the low state (ground).

During a read of the job accounting registers, the update
operation must be inhibited so that a steady-state value
from the register may be reea. This is accomplished by
inhibiting the J/AWRITE signal. When this signal is
inhibited, the contents of the selected register are updated
in the normal manner by adding +1; however, they are
prevented from being written back into the register to
keep the register contents from being altered during the
read operation. The signal is inhibited as shown in Figure
-2-143 by applying a low to the two AND gates which
generate JJAWRITE. This low is generated by RO-SPEC if
a_read of the job accounting registers is specified
(ROWRITE is high). This low overrides the E times that
would normally generate J/AWRITE for the duration of
the time slice during which the read is being performed.

Register Write

Writing a RO register by means of an MLI is done so by
the logic of Figure 2-147. The register is selected by
register group number, processor number, and register
number Upon being selected, data from the D register is
entered in the register in the presence of a corresponding
write enable generated from the feature number. These
write enables are generated by the logic shown in Figure
2-148. Each write enable is generated by a corresponding

2-173

register gorup select signal decoded from bits 5, 6, and 7
of S, and a RO write enable generated at ES time from
RO-SPEC, STOREUPP, and STORELOW. Two write
enables are generated for the segment relocation table to
allow separate writes of word 0 and word 1 in each entry.
The word designator is supplied by bit 15 of S, as follows:

Bit 16 = 0" — write word O

Bit 16 =""1"" — write word 1

The Address Mode register requires two write enables
because of the logic used to implement this register. Both
enables are generated simultaneously for identical
conditions. The Address Mode register can also be written
by a master clear operation, for the purpose of clearing
the register to 0's.

Referring back to Figure 2-147, the Segment Tag register
to be written into is selected by bits 8, 9, and 10 of S
(processor number) and bits 11 through 14 of S and
SELBYTEQ (register number). Data to be written into the
selected register is derived from bits 12 through 15 of the
D register in the MS interface logic through a selector. For
routing this data to the selected segment tag register,
selector enables RO-SPEC and STMUX-SO are 1" and
1", respectively. Writing into other RO registers are
selected in a similar manner, much the same as for reading
the registers, except for the additional write enable
required.

Writing into a selected job accounting register is done so
for the specific purpose of clearing the register. This is

- done by generating RO-WRITE and combining it with

RO-SPEC and the job accounting feature number, as
shown in Figure 2-149, to generate both a low and a high
output. The low output is applied to the function select
input of the four adder elements, and the high output to
the mode control input of the adder elements. The state
of these two inputs determines how the four ‘‘adder”
elements, which are really multi-purpose function
generators, are to operate. During normal job accounting
update operation, these elements function as adders.
During a register write operation, however, the state of
these two inputs is altered as discussed to make the
elements generate all “/0’s’’ on their outputs, regardless of
the inputs. These 16 *“0’s"’ are routed back to the selected
register to clear the register upon occurrence of the
J/AWRITE enable.



r--------------------.---1

1 1
SR-RO
us+10—l'_@"l SEG s : -SEGTAG
FAN- 00~-03
_@_, TAG REG 2
i IN REG O I8 O
snro 1 1
11-14 |
SELBYTEO g l I
SEGTAGWR — i
| |
DR-RO - I
+DR-RO _
1215 (O s 4 :
: : F------I---1
3
+RO-SPEC i 1 ‘ |
I I ! I
-STMUX-S0 — R/P | 1
H (127 1 1 SEG 1
L------—-----—----------J +DR-RO fis\ »1 REL
oo-15— & \2J TBL |
Ir-_-----1 = - :
i : -RELOCWRU ! I
- i -RELOCWRL ; :
SR-RO +ROST
w-0—TCO? s FOy i i
1 | 1 . 1
1 1 1 |
I (1626 1 i PROT i
L-----‘-J l »{ MTRX l
| |
| i
| 4 [
proTwR —A 1
| |
| i
i ADRS 1
i »] MODE 1
] REG ]
| 1
1 1
-ADDWR-0 1 |
. 1 R/P
ADDWR1 ™| (1a08) 1
T T Il T I I Ty
r------l---1
| |
| 1
1 1
+DR-R0__=__._" BDS ]
00~15 (19 REG |
i I
i i
1 ]
-BASICWR '] BP |
I {1828)
i & 5 K K 5 B N B |

Figure 2-147. Register Option Register Write

2-174



r--------l-------------------1
i |
| |
i i -SEGTAGWR
1 | (SEG TAG REG)
1 |
i ! i
1 | -BASIC WR (BOUNDS REG)
SR-R005 —f— L I
i |
1 REG [ '
I GROUP 1 PROTWR (PROT MATRIX)
-SR-R006 —— NO. i ' ]
| DEC ]
1 r i
1 i -RELOCWRU
sR-R007 —A— i : REG
I RELOC
1 r i TABLE
I y i ‘RELOCWAL
1 ]
| b 1
SRBIT-15 —} ]
| i
i ]
i 1
e3 ! ! : -ADDWR-0
= -
| i
1 L i ADRS
| 1 > MODE
1 p ] REG
| 1
1 1
i : i -ADDWR-1
| | 1
| . 1
+Ro-spec—4 2 1
+sToreupp—I _—_J :
+E§ : i
+STORELOW—————— (826 |
h-------_l------------------
Figure 2-148. Register Group Write Enables
8 8 ¢ R /% &R B §% § ® B R °B B § B 0 R B 3 § B § I} |
1 |
i ADDER 1
1 |
0's
1 H | mopE T0 I
1 CONT REG :
+R0-SPEC
08 L fFuncT i
J/A FEAT )
SEL
+R-0-WRITE 1
1 (1829) 1

------l-------------------J

Figure 2-149. Writing 0's into Job Accounting Registers

2-175



MLI DECODE AND STORE/SAVE

The machine language instruction (MLI} decode and
store/save logic performs a first-level (format) decode on
the new MLI read from main storage (MS) for purposes of
branching to a routine required to read the first MLI
operand. The logic also saves the MLI from one time slice
to the next until execution of the MLI is completed. A
block diagram of the logic involved is shown in Figure
2-150. The MLI read from MS during the RN} sequence is
routed to the MLI decode and store/save logic by a SDW
ul with FRg in Group | of the Extended Register File
(ERF) as the destination. The u! reads the MLI from MS
and passes it to the Format Jump (FRJ) decoding logic to
determine the format of the MLI and obtain the first
operand to be processed by the MLI. The ul also routes it
to the Fy, register to be saved in the assigned Fpp of the
ERF at the end of the time slice, and to the F register via
the F register fan-in logic. This auxiliary operation of
routing the ML! to the F register provides for immediate
modification of the MLI, if necessary, during the present
time slice.

FRJ DECODE

The FRJ decode logic performs a first-level decode of an
MLI to determine its format. The format of an MLI
consists of two parts: instructions type and addressing
mode. The type of MLI (register/register,
memory/register, and so forth) is defined by the class of
its function code (2X, 3X, 4X, and so forth). The
addressing mode is indicated by the state of bits 8 and 12
of the MLI, which determine whether the operands are to
be obtained from MS or a file register. Upon determining
the format, the decode logic generates a two-digit
hexadecimal address. This address points to one of 256
locations in an address table. This address table consists of
ten bipolar storage elements, each element storing one bit
of 266 words. Each word, therefore, consists of ten bits: a
parity bit plus the right-most nine bits of a branch address
to a routine required to read the first ML| operand. The
nine bits from the address table are appended to the
left-most five bits of the 14-bit CS address. These
left-most five bits are also generated by the FRJ decode
logic, as shown in Figure 2-151. Of these left-most five
bits, bit positions 4 and 5 are set to ‘0" and ‘1",
respectively. Bit 6 is obtained from bit 3 of the MLI
contained in the F register. Bits 2 and 3 are used to
specify the 4096-word storage unit in CS to which the
FR.} jump is made. These bits are not changed from what
is presently in the Su register. The FRJ address table is
loaded during the initial CS load operation, immediately
after CS is loaded.
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An example of how the FRJ decode logic operates to
generate jump addresses is shown in the block diagram of
Figure 2-1562. The FRJ decode logic consists of a
translator, two address bit selectors, address table, output
gating, and a parity check circuit. The MLI to be decoded
is 2A 0-0, which means the ML| whose operation code is
2A, and whose bit positions 8 and 12 are both “0”
(indicating that the ML! operands are to be obtained from
or stored in a file register). The MLI is obtained from the
D register via an FRJ ul and translated to generate two
hexadecimal digits that point to the address table location
containing the right-most nine bits of the FRJ branch
address. For the 2A 0-0 MLI, the address table pointer is
FB16(1111 1011).

The contents of location FB are routed to the output
gating logic in preparation for transmitting the final FRJ
branch address to the set P logic. This logic also appends
bits 2 through 6 of the right-most 9 bits as shown.  Note
that data fed to the output gating logic is in complement
form, so that the NAND gates can invert it to true form.
The inputs to the gates of bit positions 4 and b are tied to
a logic high (+5 vdc) and a logic low (ground),
respectively, so that their outputs will be "0’ and 1",
respectively. The inputs to the bit positions 2 and 3 gates
are also tied high to generate outputs of 0" and ““0".
This causes the FRJ branch to be made within the same
4096-word CS storage unit. In this respect, the bits are
said to be wunchanged from what they were in the Su
register before the jump address was produced. However,
more storage units could be added at a later date (up to a
maximum of 4). This might require these bits to be set to
some value other than 00 if some FRJ routine shouid be
located in another storage unit. It is for this reason that
these bits are also generated in the FRJ decode logic
besides bits 4 and 15, even though not actually necessary
at present.

Since the address table is part of CS, it is alterable. The
branch addresses are loaded in the table with the rest of
CS as part of the Reset/Load sequence. This is
accomplished by specifying each location in the address
table by means of an address contained in bit positions 8
through 15 of Su. These address bits from Sy are fed to
the address bit selectors along with the outputs from the
translator. During an initial CS load, however, the DR or
Suenable will be such as to select the address bits from Su
instead of from the translator. As each address table
location is selected, the corresponding jump address to be
stored is fed in on the N=~CS bit 7 through 15 lines and
the parity bit fed in on the N-CS bit O line.
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A map of the address table, showing the location of the
FRJ jump address for each type of ML is shown in Table
2-17. The vertical boxhead contains the hexadecimal
address generated by D register bits O through 3; the
horizontal boxhead contains the hexadecimal address
generated by bits 4 through 7.

F, AND F REGISTERS

The Fy, (F buffer) and F registers are used to hold the
MLI being executed during the present time slice.
Normally, the MLI is loaded in F from Frg assigned to
that processor at the beginning of the processor’s present
time slice (at EO0Q time). It stays in ¥ where it is fanned
out to various sections of control logic required to
execute the MLI until the next EOOO time. At this time,
the MLI for the next processor is loaded into F. The
above procedure is altered somewhat during an RNI
sequence when a new MLI is read from MS for a processor.
For this situation, the MLI is loaded into both F and Fb
by a SDW ul at E5 time. Loading the new MLI into F
provides the fan-out necessary to begin executing the MLI
as before. The Fb register provides a place to hold the
MLI until it can be stored in F q. It is necessary to pro-
vide this buffer register for this singular purpose because
the ML! is not stored in FRF until W1 time. However, at
EO time (one minor cycle time before W1), the MLI for
the next processor is routed to F which displaces the MLI
for the present processor. The Fb register, therefore,
eliminates this overlap problem by providing a holding
register for the MLI,

A simplified diagram of the F and Fb registers is shown in
Figure 2-153. Both the F and Fb registers are fed with the
MLI from the ALU fan-out logic via the ALU input. This
MLI will be either a new MLI read from MS during an
RNI sequence, or an existing MLI that has been modified
during the course of its execution. (For example, double
precision MLI’s require R1 * 1 and/or R2 + 1 modifica-
tions to their R-fields.) At the beginning of the time slice,
F is fed with the present MLI from FRF during the R1
cycle.

Selection of one of the two inputs to F is made via
ENALU = FR through a two-input selector element. The
two registers are clocked by a common signal but under
different conditions. The F register is clocked uncondi-
tionally at EOOO time for transferring the ML! presently
being executed from FRF' The F and Fb registers are
both clocked during execution of a SDW ul for purposes
of reading a new MLI from MS and transferring it to F
and Fb as discussed previously. Clocking F with the con-
tents of FRF is inhibited at EQOQ if the present processor
is operating in the consecutive-cycle (CC)mode. Under this
condition, there is no need to clock the next processor’s
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MLI into F since the present processor will keep
executing. Indeed, it may happen that the ALU might
have modified the present MLI at E8; consequently, it
must be routed back to both Fb and F at EO of the next
time slice.

ARITHMETIC-LOGIC UNIT

The arithmetic-logic unit (ALU) performs all arithmetic
and logical operations required by the ul’s. These opera-
tions include the following: addition, comparison, shifts,
logical sum and product, bit sense, and sense/toggle. A
block diagram of the ALU is shown in Figure 2-154.

The ALU adder performs both addition and subtraction
by an additive process. Addition is performed by adding
both numbers in true form; subtraction is accomplished
by adding the minuend in true form and the subtrahend
in two’s complement form. Two’'s complementing is
performed by the LAW— and LBW-— ul’s in conjunction
with the Forced Carry Register (FCR).

Data to be operated on by the ALU is fed to the Au
and Bu registers through corresponding fan-in logic.
Generally, this data will be from either a file register or
from main storage via the data fan-in path. Data in these
registers is unconditionaltly added and compared by the
adder and compare networks. The resuits, however, are
used only if required by the ul being executed. Data to be
manipulated by any of the other operations is done so
only if the ul so specifies.

Shift, bit sense, and sense/toggle operations are imple-
mented by corresponding logic. Both these operations
feed the shifted or sense/toggle data back to the Au and
Bu registers to complete the operation. In the case of a
shift, the (up to) 32-bit result is held in Au and Bu after
being shifted for use by another pl. A bit sense or
sense/toggle operation required sending the locationto the
sensed or toggled bit in Au back to Bu for addition to the
contents of Bu. Because these two operations require a
longer than normal propogation path through the ALU,
they may delay execution of the next ul as explained in
greater detail in the paragraphs that discuss these
operations.

Logical sum and product operations on the contents of
Au and Bu are performed by means of the ALU fan-out,
wherein the logical operations is effected by certain
combinations of enables according to the ul being
executed.

Some ul’s require certain constants to be generated as
part of their execution. These constants enter the Bu
register as 16-bit words, 8-bit bytes, or 4-bit nybils,
depending on the ul. They are generated by the constant
generator which feeds the Bu fan-in.
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Table 2-18. FRJ Address Decode Matrix

4-7

03 F E D [ B A 9 8 7 6 5 4 3 2 1 o
F 20-29 20-29 20-29 20-29 2A 2A 2A 2A 2B 2B 2B 2B 2C-2F 2C-2F 2C-2F 2C-2F
RiRz | Ry(Ry) | (R))Ry | (Ry)Ry) | RyRy | Ry(Ry) | (R))Ry | (RYRy) | RyRy | Ry(Ry) | (RyIRy | (RYNRy) | RyRy | Ry(Ry) | (RyIRy | (R)(Ry
E 30-39 30-39 30-39 30-39 3A 3A 3A 3A 3B 3B 38 38 3C-3F 3C-3F 3C-3F 3C-3F
D AO0-A9 AO-A9 AQ-A9 AC-A9 AA AA AA AA AB AB AB AB AC-AF AC-AF AC-AF AC-AF
[ B0-B9 BO-B9 B0-B9 BO-B9 BA BA BA BA 8B 88 BB BB BC-BF 8CBF B8C.BF BC-BF P
B 60-63 60-63 60-63 60-63 64-67 64-67 64-67 64-67 68-6B 68-6B 68-68 68-6B 6C-6F 6C-6F 6C-6F 6C-6F
A 70-73 70-73 70-73 70-73 74-77 74-77 74-77 74-77 78-78 78-7B 78-78 78-78 7C-7F 7C-7F 7C-7F 7C-7F J
9 00-03 04-07 08-08 0C-OF 10-13 14-17 18-1B 1C-1F 40-43 44-47 48-4B 4C-4F 50-563 54-57 58-5B 5C-5F -
8 80-83 84-87 88-8B 8C-8F 90-93 94-97 98-98 9C-9F C0-C3 Ca-C7 C8-CB CC-CF D0-D3 D4-D7 D8-DB DC-DF
7 EO EO EO EO E1 E1 E1 E1 E2 E2 E2 E2 E3 E3 E3 E3 A
6 E4 E4 E4 E4 E5 ES ES E5 E6 E6 E6 E6 E7 E7 E? E?7
5 E8 £8 E8 E8 E9 E9 E9 E9 EA EA EA EA EB EB EB EB
4 EC EC EC EC ED ED ED ED EE EE EE EE EF EF EF EF L.
3 FO FO FO FO F1 F1 F1 F1 F2 F2 F2 F2 F3 F3 F3 F3
2 F4 F4 » F4 F4 F5 F5 F5 F5 F6 F6 F6 F6 F7 F7 F7 F7
1 F8 F8 F8 F8 F9 F9 F9 F9 FA FA FA FA FB FB FB FB
0 FC FC FC FC FD FD FD FD FE FE FE FE FF FF FF FF

*Value of A and B same as Row F
**Values of A and B do not apply

NOTE: (Boxheads represent hexadecimal address in a 256-word address table that points to the starting address, as modified by bits 2-6 of Sy, for
implementing the machine-language instruction indicated in the matrix.) Actual starting addresses in CS are listed in the CS printout.
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A AND Bu REGISTER FAN-IN

The Au and By register fan-in logic provides inputs to the
Ay and Bu registers from a variety of sources, as shown in
Figure 2-1565. As shown, the logic consists of two gating
networks for each bit, one for the Au register and one for
the Bu register. Data comes from the sources listed below:

1. Shift network (SN bits) — to both Ay and Bu
registers.

. Bit toggle generator (TBIT bits) — to Ay register
only.

Main Storage, Register Option, or D register (DR
bits) — to Au register only.

. Extended register files (ER bits) — to both Au
and Bu registers.

Basic register files (BR bits) — to both Ay and Bu
registers.

Bu register adder (BMSUM bits) — to Bu register
only.

Constant generator (CG bits) — to Bu register
only.

All data is routed to the fan-in logic in complement form
and gated through the logic by an enable in true form.
The result is an output signal in true form that is routed
to the clocked set and clear inputs of the Au and Bu
register flip-flops. A second output from the Ay register
fan-in logic, labeled RF-MSI, routes data from a selected
register of the BRF to the S and D registers in the control
storage interface logic during execution of load S and load
Dul’s.

The SN bits are enabled by ENSN-ALU during execution
of a shift ul (SHF, SHR, DLS, or DRS). Data from the D
register is gated by ENDR = AM during execution of a
D+ A ul (DTA, DTA/, IDX, or DFA). The ER bits from a
selected extended register are gated to the Au and Bu
registers by ENERF-AM and ENERF-BM, respectively.
These two enables are generated for differentu I’s when an
overall permit condition, AANDB + INVERF, is present.
Signal AANDB indicates that the X-field and the ul is
addressing a register in the ERF (2 and b designators are
both 1). Signal INVERF is generated when executing an
IVK ul, wherein the processor and ERF register numbers
are obtained from the Boundary Crossing register. Enable
ENERF-AM is generated when AANDB + INVERF is
present, and executing any ul except a Load D ul or a
Shift ul. These two classes of ul's specifically inhibit
ENERF-AM since they require their own enables to
transfer data to the Apu register, as described above.
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Enable ENERF-BM is generated when RANDM +
INVRFE is present, and executing an LBW, LBW/, LAB,
CLA, or LBL ul;or a Load D ul. The Load D ul’s require,
in addition to loading the D register, that the contents of
an ERF be transferred to the Bu register, in either true or
complement form.

The BRF bits from a register of the BRF are enabled by
ENBRF ~AM and ENBRF-BM. These two enables are
generated in a manner similar to those for extended
register data: the presence of an overall permit condition
ANDed with specific ul function codes. The permit
condition for enabling BRF data is AANDB - INVERF.
The specific ul’s for generating each BRF enable are
identical to those for generating the ERF enables, as
summarized below:

ENBRF-AM = (AANDB - INVERF) - (LOAD D +
SHIFT)

ENBRF-BM = (AANDB - INVERF) - (LBW + LBW/
+ LAB + CLA + LBL + LOAD D)

Data from the constant generator is gated through the
fan-in logic to the Bu register via ENCG-BM. This enable is
generated for any ml except for the above ul’s referenced,
which require their own enables for the peculiarities of
the particular ul.

Ay AND Bu REGISTERS

The Au and Bu registers receive data from the Au and Bu
fan-out logic that is to be processed by the adder. These
two registers can be considered as the addend and augend
registers since they hold these two quantities during add
operations. Each register consists of 16 J-K flip-flops with
data, clock, preset, and preclear inputs. Since some ul’s
require that data to be processed by the adder be in
complement form, the Au and Bu registers provide the
capability for one's complementing data if the ul so
requires (all data routed to the Au and Bu registers is in
true form; therefore, complementing must be done in the
registers themselves). This complementation is provided
by using the ability of a J-K flip-flop output to toggle its
output state when both inputs are ““T'’, and by condition-
ing the register prior to storing data via the preset and
preclear inputs. (Two's complementing of the data,
required by the SUM and DSUM ul's for performing sub-
traction, is effected by adding +1 from the FCR to the
one’s complement data in Au and Bu.)

An example of how data can be stored in one stage of the
Au register in either true or complement store is shown in
Figure 2-156. Part a shows how data is stored in true
form. Prior to reception of data on the input line con-
nected to both the J and K inputs, the flip-flop is pre-
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cleared by ENRAM to generate *1"'* on the Q output line
and “0"* on the Q output line (the * indicates the state
of the output lines due to either the preset or preclear
conditioning). Assuming the input data is a 1", the Q
and Q outputs are toggled, when clock pulse ENCAM goes
low, so that now the Q output is a ‘0" and the Q output
is a 1", If the input data is a ‘0", no toggling takes place
and the Q and Q output states remain unchanged. Since
data is stored in the flip-flop stage in the same form as
that on the input lines, the stage is said to store data in
true form. Part b of Figure 2-156 shows storing data in
complement (one’s compiement) form. The flip-flop is
conditioned by presetting it via the ENSAM signal. The
result is to change the Q output to a “1”* and the Q out-
put to a ““0”*. Assuming again that the input data is a
1", the state of the output lines will toggle so that the Q
output goes to “0” and the Q output goes to “*1". The
resultant output then becomes the complement of the
input. If the input data is a ““0"’, no toggling takes place
and the Q output remains at ‘“1” and the Q output
remains at “0’’. The Bu register stores data in either true
form or complement in exactly the same way, condi-
tioned by means of enables ENRBM and ENSBM. A list of
ul’'s involving transfer of data between the Au and Bu
registers and the adder, and their corresponding register
enables is shown in Table 2-19.

Outputs from the Ap and Bu registers are routed to
several destinations, as shown in Figure 2-157. Both set
and clear sides of both registers are fed to the ALU
fan-out logic for distribution to other sections of the
shared resources. In addition, the set side of the Au
register is routed to the compare and bit sense logic for
evaluation during execution of compare and bit sense ul’s.
Bit 00 from the set side of the Bpu register is routed to the
status logic as BM-NEG for status bit compare operations.
Also, the clear side of the Bpu register is fed to a buffer
register. Outputs from this buffer register are routed to
the bit sense adder, during execution of bit sense (E,X,1)
ul’s; and to the shift network, during execution of shift
(E,X,0) ul's.

ADDITION

Adder Element Operation

The adder consists of four MSI adder elements and a
full-carry look-ahead circuit, as shown in Figure 2-158.
The adder performs addition of two 16-bit operands from
the Ap and Bpu registers. This addition is performed
unconditionally whenever operands are loaded in the Ay
and Bpu registers. The result is used, however, only when
so directed by a SUM or DSUM pul. Each ALU element
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performs upon four bits of the operand and is designated
by one of four group numbers: O through 3. Each adder
element generates four SUM bits, a group carry generate
bit (GCGEN) and a group carry propagate bit (GCPROP).
The SUM bits are fed to the ALU fan-out logic; the
GCGEN and GCPROP bits are fed to the look-ahead carry
generator logic. This logic provides simultaneous carries
for each ALU element by combining the GCGEN and
GCPROP bits from each element to generate a
corresponding group carry input signal (GPCRIN). Each
carry input is fed to the next higher group ALU element
in an attempt to satisfy the lower-order carry. The carry
generate logic for the highest-order group (group O0)
generates a sum word carry, ADDERGEN, in place of a
GCRIN signal. This sum word carry is fed to the Forced
Carry register during multiple-precision operations to
generate a lowest-order carry (GPCRIN-3) to be satisfied
during addition of subsequent words during the
multiple-precision operation.

Group Carry Generate

The GCGEN signal from an adder element is the Group
Carry Generate signal, indicating that the inputs to the
four stages have generated a sum that is in excess of what
can be respresented by the SUM bits of that element. A
group carry generate will be developed whenever any of
the input conditions to an element listed in Table 2-20 is
present.

Group Carry Propagate

The GCPROP signal from an ALU element is the Group
Carry Propagate signal, indicating that the particular
element cannot absorb a group carry generate from a.
lower-order element. Therefore, if a carry generate from a
lower-order element occurs it must be propagated to a
higher-order element. A group carry propagate is
generated whenever the sum of a stage is either 1"
(addend and augend bits are "“0” and “1” or "1 and
“0"), or a “0" with a carry of 1" (both addend and
augend bits are ‘“1"'), Table 2-21 shows input states of the
AM and BM bits which will generate a group carry
propagate.

Look-Ahead Carry Generator

The look-ahead carry generator evaluates the group carry
generate and group carry propagate bits from each adder
element to develop group carry input bits for each
higher-order adder element. Since each adder element
generates carry generate and carry propagate bits



Table 2-19. A, and Bl Register Enables

mi Enables
ENSAM ENRAM ENSBM ENRBM
Op Code NMEMO (COMP~Au) (TRUE~AL) (ComMP~Bu) (TRUE+~Bu)
3,0 LS1 X X
3,1 LSF X X
3,2 LS2 X X
3,3 LSE X X X
6,0 LBW X
6,1 LBW-— X
6,2 LBB X
6,3 LBB— X
7.3 LBL X
A EBU X
B EBL X
c,0 DTA X X
C1 DTA-— X
C,2 1DX X X
C,3 DFA X X
D,0 LAW X
D, 1 LAW-— X
D,2 LAB X X
D,3 CLA X X
E, 0,0 SHF X X
E, 1,0 SHR X X
E, 2,0 DLS X X
E, 3,0 DRS X X
F,2 DIG X
F,3 CORC X
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Table 2-20. Group Carry Gonerate Truth Table

AMOO BM0O AMO1 BMO1 AMO02 BMO02 AMO3 BMO03
0 0 X X X X X X
0 1
1 0 0 0 X X X X
0 1 0 1
1 0 1 0 0 0 X X
0 1 0 1 0 1
1 0 1 0 1 0 0 0
Table 2-21. Group Carry Propagate Truth Table
AMOO BMOO AMO1 BMO1 AMO2 BMO02 AMO3 BMO03
(] 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
0 0 0 0 0 0 0 0
r----------_--------1
] 1
| ]
| ]
+GCGEN-2 F — :
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i +GPCRIN-1
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Figure 2-169, Generation of GPCRIN-1



simultaneously, the carry generator produces the required
carry input bits to each adder element simultaneously.” It
is this /ook-ahead capability of the carry generator in
generating carry input bits simultaneously that speed up
the addition operation as compared with an add
performed using serial carry inputs. A portion of the carry
generator, that used for generating GPCRIN-1 (the group
carry input bit to adder element group 1), is shown in
Figure 2-159. The GPCRIN-1 signal is generated if any of
the following conditions occurred:

1. group 2 produced a carry out (GCGEN-2), or

2. group 2 produced a carry propagate (GCPROP-2)
and group 3-produced a carry out (GCGEN-3), or

3. both groups 2 and 3> produced a carry propagate,
and a carry was forced from the FCR
(FORCECRY).

As mentioned previously, ADDERGEN is produced as a
sum-word carry during multiple precision operations.
Normaily this sum-word carry will be generated when a
carry out results from bit 15 of the sum. During execution
of a CMPK, ADDK, SUBK, or ZADK MLI (F codes of 50
through 53), however, the sum-word carry is generated
when bit 7 of the sum generates a carry out. This is
because these four ML.I’s execute decimal numbers in byte
form (two 4-bit hexadecimal digits) instead of in
whole-word form (four 4-bit hexadecimal digits). For
these four MLI's, ADDERGEN is generated by MLI-5053.
Signal ADDERGEN is fed to the /ink logic to generate a
link status bit in the Py register as shown in the adder
block diagram of Figure 2-1568. From the link logic, it is
fed to the Forced Carry register which generates
FORCECRY. This signal then is fed back to the carry
generator to generate GPCRIN-3.

Forced Carry Register
The Forced Carry register (FCR) is a single flip-flop used
to store either a 0" or 1" for use as a constant during

the following three types of operations:

1. MLI address updates,

2. two's complement arithmetic operation, and

*Actually, the carry input to group O is generated two gate delay
times later than the group 3 carry input and those to groups 1
and 2 are generated one gate delay time later. These delays,
however, are negligible compared to gate delays incurred in the
adder elements.

3. storing a sum-word carry generated for
subsequent additions during multiple precision
arithmetic adds.

The type-D edge-triggered flip-flop can be set or cleared in
three different ways, as shown in Figure 2-160: +1-+ FCR,
D+FCR, and LINK+ FCR.

The +1+FCR operation is effected by a low into the
forced set input which causes the Q output to go low. For
LS1 and LS2 ul’s, the operation is performed for purposes
of forming the address of the next MLI. These two ui's
load register S (the MLI address register) with the
contents of a register designated by the ul X-field. The
MI's are programmed as part of the MLI RNI sequence to
form the address of the MLI. The +1~+ FCR operation is
then used by the SUM ul in the RNI sequence to add
either 1 (LS1 u!) or 2 (LS2 ul) to the contents of the S
register to form the address of the next MLI to be
executed. For LBW-, LBB-, DTA, DFA, LAW-, and CLA
ul’s, the +1-+FCR operation is used to add one to the
one’s complement of the word loaded by these ul's to
express them in two’s complement form.

The 0-+FCR operation is produced by a low into the
forced clear input which causes the Q output to go high.
For LSF and LSE wul's, the operation is performed for
purposes of forming the address of the next MLI by
subtracting either 1 (LSF M1) or 2 (LSE wi) from the
contents of the S register. (The constant 1 or 2 to be
subtracted comes from the B u register; therefore, the FCR
must be loaded with a 0.) For the LBW, LBB, DTA, 1DX,
and LAB ul's, the 0+ FCR operation is performed to
inhibit adding 1 to the word loaded by these ul’s. These
Jl's are the true form equivalent of the one’s complement
load ul’s discussed above. Since addition of the FCR
contents to the word loaded by these Hl's occurs
unconditionally as part of the I, the FCR must be loaded
with a 0 to avoid correcting the word loaded in true form.
The DIG and CORC ul's provide for encoding and
post-addition correcting of decimal numbers expressed in
excess-3 form. Both these ul’s involve adding (or
subtracting) 3 from the decimal number represented in
hexadecimal form. However, the carries (if produced) by
these operations must be inhibited. Since the FCR would
ordinarily furnish this carry, due to its function as a
sum-word carry generator, the register must be set to 0 to
inhibit the carry.

During execution of an LBL ul, the Link bit from the Pu
register is sent to the FCR. This operation is effected by
storing LINK in the flip-flop when clocked by LBL. This
causes the Q output to go low to generate the forced
carry. The flip-flop output is sent in complement form
through a selector/inverter to generate FORCECRY in
true form, This selector/inverter also provides for generat-
ing FORCECRY upon simultaneous depression of the
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SET A and SET B pushbuttons on the System Control
Panel. Simultaneously pressing these pushbuttons enables
a carry to be forced into the ALU adder during Panel
operations.

Inner Carry Register

The Inner Carry register (ICR) evaluates the carry outputs
from the look-ahead carry generator during execution of
decimal sum operations via the DSUM ul. The outputs
from the ICR determine whether a +3 or a -3 is generated
by the constant generator to correct each 4-bit
hexadecimal group of the decimal sum, The register
consists of four type-D flip-flops, as shown in Figure
2-161.

Each_flip-flop is fed with the carry output from a 4-bit
group corresponding to the hexadecimal equivalent of
each digit of the decimal sum. The carries are clocked into
the flip-flops when SUMDEC is generated via translation
of the DSUM ul. The DDG-CG outputs from the ICR are
then routed to the constant generator for generation of
either +3 or -3 for decimal sum correction.

COMPARE

Compare operations performed by the ALU consist of
making five types of comparisons between operands in the
Auand Bp register: Au<<Bu, Au>Bu, Ay = Bu, Auz By,
and Au = 0. Both algebraic {sign and magnitude) and
logical (magnitude only) compares are made, in an
unconditional manner whenever operands are loaded into
the Au and By registers. Their results, however, are used
only when so directed by au | or other command enable.
The results are used for the following three purposes:

1. storing compare status information in the
Condition register during execution of a compare
(CMP, CMU) u,

2. evaluating conditions under which the present
processor is turned off and the next processor in
the queue is granted priority, during execution of
aClO1 or ClO2u |, and

3. evaluating skip conditions during a skip ul.

Ay -~ Buand Au> Bu Compares

The Au< By and Ay > By compares are made as shown in
Figure 2-162. The 16 outputs from both the Ayand By
registers are routed to four LS| compare elements. Each
element makes an Ay < By and Ay > By comparison of
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four pairs of bits. The two outputs from each element,
AMGTBM (A greater than Byu) and AMLTBM (A uless
than By), are ‘routed to final combinational logic which
combines all four AMGTBM outputs and all four
AMLTBM outputs with AMEQBM (A = Bu) signals to
generate final AMLTEQBM and AMGTEQBM signals,
respectively. Consider first the logic that generates
AMLTEQBM. The signal is generated by a NANDing
operation which combines each AMGTBM signal of a
particular 4-bit group with the AMEQBM signal of the
next higher-order bit group.

Essentially, this logic generates AMLTEQBM if no group
of Ap bits is greater than a corresponding group of Bu
bits. The reason for considering the AMEQBM signal from
a previous group is to account for all possible
combinations of operand magnitudes in both A uand Bu
registers. The example shown in Figure 2-163 illustrates
how the AMLTEQBM logic operates. Each digit of the
decimal number contained in the Apu (13991g) and Bu
(14009q) registers is represented by four bits of one
group. Below each pair of digits of a group is shown the
corresponding compare evaluation. Note that each
evaluation contains one signal that is low when the
compare evaluation is satisfied for that group. This is
necessary to ensure that at least one input to each AND
gate of the AMLTEQBM logic is low to generate a high
AMLTEQBM signal. The AMGTEQBM logic works in
basically the same way, except that the output signal is
generated if no group of Bu bits is greater than or equal to
a corresponding group of Apu bits.

Au= By and Ay * Bu Compares

The Au = Bu and Au # Bu compares are made as shown in
Figure 2-164. The comparison of Ay = By is made again in
groups of four bits by pairing the true outputs of the Au
register with the complement outputs of the By register,
and vice versa.

The result of such pairing yields a high output for each
comparison, as shown in the example at the top of Figure
2-164. The output from each group comparison is fed to
an AND gate to generate AMEQBM, and through an
inverter to generate AMEQBM.

Ay = 0 Compare

The Au = 0 compare is made as shown in Figure 2-165.
The 16 complement outputs from the Ay register are fed
to a NAND gate, which generates a low output when all
inputs are high (all 16 register flip-flops contain ‘0"'s).
The low output is designated AMEQZR.



+AMOD —p 03 _@_l'_'

+BMO0 — 03 —@——l—-

-------------l
I I
'I I
|
I I
- I
+AMGTBM-1 -—f——— i
i I
|
+AMGTBM-2 -—f i
- I
|
+AMGTBM 3 -—f :
+AmEQBM-o-—1 ] ]
i +AMEQBM-1 -—J— i
| i
————ay ' +AMEQBM-2 --—l— :
|
b . avetema (1A22) |
| [ rF 1. fr r 3 1 r&r f 1 F 0 B |
1
i
|
|
|
|
|
1
! +AMLTBM-0
L)
i
: i . ¢ ¢ % § ¢ 13 5 1 3 1 1 3 |
(1a25) 1 1 :
H i
- i
+AMLTBM-1 - I |
| :
+AmLTEM-2 -—
. i
I i
+AMLTBM-3 -—-= i
+AMEQBM-0-—f :
+AMEQBM-1 —=—-— [ ]
+AMEQBM-2 -—=— :
i (aazz) 1

Figure 2-162, Au< By and Ay > By Compare Logic

2-192

+AMLTEQBM

+AMGTEQBM



GROUP

REG 0 1 2 3
Au 1 3 9 9
Bu 1 4 0 0

AMGTBMO
AMGTBM-1 - AMEGBM-( ]
AMGTBM-2 - A"'MTz'ﬁ';TnT

v
AMGTBM-3 - AMEQBM-2

Figure 2-163. Input Signals to A u = By Compare Logic

r--------l---l---1

i 1
+AMO00 I !
T —AMEQBM
I | . - - .-
_ |
—BMOO H i 1
i +AMEQBM-0 :
—AMO0 — —_—
| = +AMEQBM-1 +AMEQBM
_ +AMEDBM-2
+BMOO —:—— 1 +AMEQBM-3 : :
(1A22)
I BITS 03 : Ty |
i |
] (1a25) |
[T T P T T T T 1T v I b I

TRUTH TABLE FOR BIT 0 COMPARE (TABLE WOULD HOLD TRUE FOR ALL BIT POSITIONS)

BIT _ _ COMPARE
POSITION Ap Bu An Bu RESULT

0 1 X X 0 1

0 X 1 0 X 1

Figure 2-164, A“ - Bll and A,_; % Bu Compare Logic
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Table 2-22. ALU Fanout Exclusive-OR and Inclusive-OR Function

Input Output ALU-00
Excl. OR Incl. OR
1 (4] SEL-EOR
AMOO BMOO AMOO BMO0O 1 1 SEL-OR
1 1 0 0 0 1
1 0 0 1 1 1
0 1 1 0 1 1
0 0 1 1 0 0
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Algebraic and Logical Compare

The algebraic and logical compare logic, shown in Figure
2-166, evaluates the results of the Au< Bu and Au> By
logic, and the state of the MSB’s of Ay and By to make
the compares required by the CMP (2,2), CMU (2,3), and
RNI (8,0+1) ml's. For the CMP yl, both an algebraic
compare (sign and magnitude) and a logical compare
{magnitude only) are made on the contents of Ap and By.
The Ap > Bu algebraic compare is made by comparing the
complement state of the MSB of Ay (AM-00) with the
true state of the MSB of Bu (BM-NEG). If both signals are
high, the contents of Ay are greater (more positive) then
the contents of By to generate STATUS-1. The Au< By
algebraic compare is made by inverting the state of the
above MSB’s, so that the true state of the MSB of Ay is
compared with the complement state of the MSB of Bu. If
both signals are high, the contents of By are greater than
those of Au to generate STATUS-2. For both compares,
bit FM1-005 is used to specify the CMP ul. The logical
compare is made simultaneous with the algebraic compare
via signals AMEQBM and AMGTEQBM to evaluate the
16-bit quantities in Ay and Bu on a magnitude basis only.
The results of this compare generates STATUS-5,
STATUS-6, and STATUS-7.

For a CMU ul, the two above compares are also made;
however, the algebraic compare essentially reduces in
implementation to a logical compare. In effect, then, the
CMU pi performs two simultaneous logical compare
operations and generates two identical status bits for each
compare noted: bit positions 1 and & if Ay < By, bit
positions 2 and 6 if Au > By, and bit positions 3 and 7 if
Au=Bu.

The STATUS-3 output has two different meanings,
depending on during which ul it is generated. If generated
during a CMP or CMU ul, it indicates an Au = Bu compare
condition, as previously noted. If generated during an RN!
ul, however, it indicates a Link bit has been generated.
For this condition, STATUS-3 is generated by LINK and
FM1-000, which is high if an RN ul is being executed. All
seven status bits are fed to the status logic via the ALU
fan-out.

ALU FAN-OUT

The ALU fan-out logic provides output gating from the
ALU for selecting one of the following eight logic
functions:

1. Exclusive-OR between the outputs of the Ay and
Bu registers.

2. Inclusive-OR between the outputs of the Au and
Bu registers. - '

3. Outputs from main storage (MS) data fan-out.
4. Outputs from status logic.
5. Outputs from adder.

6. Outputs f ister. .
utputs from Ay register Together equal logic

7. Outputs from Byu register, product A and Bu.

8. Clear conditions.

There are 16 fan-out stages, one stage per bit. As shown in
Figure 2-167, the upper eight stages differ from the lower
eight stages because of the byte read capability from the
MS data fan-out logic. Except for the Au and Bu register
outputs used to perform the exclusive-OR function, all
data is gated to the fan-out logic in complemented form.
The other 15 bits are gated by similar fan-out logic stages.
(Note that the STAT inputs appear in only the upper
eight stages of the fan-out logic since there are only eight
status bits generated in the ALU.) The exclusive-OR and
inclusive-OR functions of the Ay and By registers are
performed by the two top AND gates of the fan-out logic.
The top gate is fed with Au and By register bits in true
form, and enabled by SEL-EOR. The next gate is fed with
Ay and By register bits in complement form, and enabled
by SEL-OR. When both enable signals are high, the
exclusive-OR function (either one, but not both) is
performed on the two register outputs. When enable
SEL-EOR is low and enable SEL-OR is high, the
inclusive-OR function (either one or both) is performed.
These two logic functions are summarized in Table 2-22.

Each of the remaining six functions is presented with its
respective enable to one of the remaining AND gates.
When the enable is high, the data is gated and inverted to
true form. The logical product of Au and Bu is realized by
gating the contents of both registers simultaneously. Data
from the MS data fan-out logic can be gated in either
word form (16 bits) or byte form (8 bits).

These data transfers occur in connection with operations
involving the MS interface logic; details of these data
transfers, therefore, are discussed in the paragraph titled
Main Storage Interface Word and Byte Read Functions.
Use of the ALU fan-out logic to generate clear conditions
is discussed in the paragraph titled System Reset
Conditions.
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STATUS LOGIC

The status logic takes the results of the compare
evaluations discussed in the previous paragraph and
arranges for their storage in a specified register during
execution of a compare ul. The logic also detects and
processes the arithmetic status bits, Overflow and Link
generates during arithmetic operations. These two bits are
conditionally stored in a specified register via an RNI1 or
RNI2 pul, and unconditionally carried along with the
address of the present pl contained in the Sy register. The
description of the status logic is divided into the following
two sections:

1. detection, reading and writing of the arithmetic
status bits into the Pu register, and

2. storing of the compare and arithmetic status bits
in a specified register.

Arithmetic Status Bit Detect

During arithmetic operations, two status bits are
generated along with the operand result: Overflow and
Link. The Overflow bit indicates that during a 16-bit
operand add operation, the MSB of the sum (bit 01) has
overflowed into the sign bit position (bit 00). The Link
bit indicates that during one iteration of a
multiple-precision add operation, a carry-out has been
generated from bit position 00 of the adder which must
be added to the partial sum to be processed during the
following iteration. The Link bit essentially indicates that
the partial sum processed during the present iteration is
linked with that to be processed during the active
processor’s next time slice, since they are part of the same
over-all operation. The bit is normally generated during
execution of an MLI containing several SUM or DSUM
ul’s that are executed during different time slices.

Depending on the sign of the addend and augend, two
types of overflow are possible: positive overflow or
negative overflow (underflow). The two types of overflow
are depicted in Figure 2-168. Positive overflow, shown in
part a of Figure 2-168, is produced when the MSB of the
sum of two negative numbers overflows into the sign bit
of the sum. The result is to make the sum look like a
positive number (sign bit of ““0”). Negative overflow,
shown in part b of Figure 2-168, is produced when the
MSB of two positive numbers overflows into the sign bit
of the sum. The result is to make the sum look like a
negative number (sign bit of 1"’). The two overflow types
are generated by the logic shown in Figure 2-169. This
logic evaluates the state of the MSB of the Ay and By
registers, and the adder to detect an overflow condition.

The Overflow and Link bits generated during a sum
operation (SUM or DSUMy |) are detected and routed to
both they status current register and theu status write
register, as shown in Figure 2-170. The p status write
register holds the detected status bits for the remainder of
the time slice, and then transfers these bits to the active
processor’s Py register in the ERF at WO. The register is
fed with the detected bits through selector 4 when
enabled by EN-SUM. This enable is generated whenever a
SUM or DSUM ul is executed (FM2-005 high or low) and
the associated ML is not a 50 through 53, or if a DSUM
Hl is generated (FM2-005 low) and the associated MLI is a
50 through 53. The g status current register performs a
dual function. If new status bits are detected during the
present time slice, it holds these bits for possible transfer
to another register upon execution of a store status ul

(such as an RNIu 1). For this purpose, the current register
is loaded from the status detectors through selector 3 at

any time other than E750 through E000 (E789XX-L
low). These previously detected bits are obtained from
either the processor’s assigned Pu register if not running in
the Consecutive Cycle (CC) mode, or from the y status
write register if running in the CC mode. If not in the CC
mode, the status bits are read from Py during the RO
cycle of the present time slice in the manner as the
starting ul address. However, the status bits will not be
useful to the present time slice until EQ; therefore they
must be held in the status buffer register during R1. This
is accomplished by the data path listed in part a of Figure
2-171. Along with this path are shown the corresponding
times at which data is enabled through a selector or
clocked into a register. Note that the status bits are held
in the buffer register during R1 of the present time slice
(actually from E680 of the previous time slice to E000).
If in the CC mode, the status bits are read from the write
register at E880, at the same time that the starting |
address is read from Py. The data path and associated
timing for a CC condition is shown in part b of Figure
2-171. For this case, however, the enable used to gate
status from the write to selector 1 occurs at E880, which
is the same time that the buffer register would be clocked
if in the CC mode. Since there is not enough time to put
status into the buffer register from selector 1, the status
bits instead bypass the buffer register and instead are
gated directly to selector 2. Note from the timing that the
same one-minor cycle buffer delay is still achieved (from
E880 until EO00) when bypassing the buffer register in
CC mode as for the case of not operating in the CC mode
(from E680 until E00O).

Status Bit Storage

As discussed previously, the compare and arithmetic
status bits generated during a time slice can be stored in a
selected register. Generally, the register selected is the
Condition register (register 8 of the BRF); however, under
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p E650
SEL 1 E880
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SEL3 E700>E00
CURRENT REG E000
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WRITE REG
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SEL3 E900
CURRENT REG EQ0C
b, CC MODE

Figure 2-171. Status Bit Read Data Flow

certain conditions the register specified will be a transient
register. Storing of the status bits is accomplished by the
CMP and CMU ui’s, which store the six compare status
bits (Ay > By, Au< Bu and Au = Bu) and the RNI1 and
RNI12 ul’s, which stare the arithmetic status bits,
OVERFLOW and LINK. These ul's implement the storage
operation via the status bit storage logic of Figure 2-172.
This logic feeds eight status lines to the ALU fan-out
logic. When gated by SEL-STAT, the fan-out network
routes the eight status lines to bit locations 0 through 8 of
the selected register in the BRF for storage.

The three algebraic compare bits are routed to the ALU
fan-out via the STATUS-1, STATUS-2, and STATUS-3
lines. The STATUS-3 line is also used to carry the LINK
status bit during execution of an RNI 1. This i also
gates the OVERFLOW bit over the STATUS-0 line when

high. The three logical compare bits are routed to the
ALU fan-out via the STATUS-5, STATUS6, and
STATUS-7 lines. To enable storing a complete byte of
status information, a STATUS-4 line is added to the seven
above lines. This line is tied to a logical 1 via the +5 vdc
supply to enable storing a ‘0" in the corresponding bit
position 4 of the register.

The data present on the four status lines is gated through
the ALU fan-out via SEL-STAT, which is generated for
the CMP, CMU, RNI1 and RNI2 ul's. The status bits are
then stored in a register of the BRF designated by the
X-field of the particular ul. The format of the register,
showing locations of the arithmetic and compare status
bits, -appears in Figure 2-172. For the RNI1 and RNI2
ul's, the X-field will designate either the Condition
register or an irrelevant register, depending on what type
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of operation the RN! ul is a part of. If the RNI ul is
associated with an arithmetic operation, the register
specified is the Condition register so that LINK and
OVERFLOW may be saved for future use. If the RNI ul is
not associated with an arithmetic operation, the X-field is
coded to specify some irrelevant register. This is to satisfy
the requirement of specifying some register by the X-field.

CONSTANT GENERATOR

Inputs and Outputs

The constant generator provides values of constants to the
Bu register as required by the following ul’s: LS1, LSE,
LS2, LSF, LBB, LBB-, EBU, EBL, DIG, and CORC. The
constant generator consists of four pairs of MSI selector
elements, each element containing two
four-input/one-output selectors. Inputs to each selector

are selected by two select signals, ENCG-0 and ENCG-1,
which feed both selectors of an element. A simplified
block diagram of the constant generator, showing one pair
of selector elements, is shown in Figure 2-173. Each
element of the pair is fed with two bits of a particular
input.

Depending on the ul, the outputs are used to develop one -
of the following:.

1. bits 0, 1, 8, and 9 of a 16-bit word constant,

2. the two most significant bits of the two 8-bit
byte constants, or

3. the two most significant bits of alternate 4-bit
nybl constants.

The other six elements of the constant generator are
paired together in the same manner to generate bit pairs
separated by eight bits. The select signals are enabled by
H1i's to select corresponding inputs as shown in Table 2-23.

Table 2-23. Constant Genarator Input Selection

Select Signal State )
Micro Instructions —ENCG-0 —ENCG-1 Inputs Enabled

LS1, LSF, LS2, LSE 0 0 +5 vDC, FORCE 1
DIG 1 0 ENT-CG

ab = 0-0
LBB, LBB- [a-b =10 0 1 BIT-CG

ab = 01
LBB, LBB- {ab = 1-1 1 0 ENT-CG
EBU, EBL 1 0 ENT-CG
CORC 1 1 DDG-CG
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The resulting constants generated by inputs selected for
particular ul’s are shown in Table 2-24. (These constants
represent the final values stored in the Bu register, not the
outputs from the constant generator. Depending on the
ul, the constant generator outputs may require
complementing prior to By register storage.)

Generation of each constant via the corresponding pl is
discussed in the following paragraphs.

Load S Micro Instructions
Constant values required for the load S ul’s are as follows:

LS1: O's to Bu register

LSF: -1 to Bu register

LS2: +1 to Bu register

LSE: -2 to Buregister
To generate these constants, select signals ENCG-0 and
ENCG-1 are 0" and *0" as shown in Table 2-23, The
state of these select signals causes the +56 vdc logic level to
be gated as outputs CG-BMOO through CG-BM14 and the
FORCE?1 signal to be gated on CG-BM15 (the MSB) of the

constant. The FORCE1 signal is low for the LS1 and LSF
ul’s and high for the LS2 and LSE ul's.

Table 2-24. Constant Generator Output Constants

M i 01 2 4 6 6 7 8 910 11 12 13 14 15
LS1 000 0 0O0OO0O0OOGOT OO 0O O
LSF 1T 1 1 1 1 11 1 11 11 1111
Ls2 0 0 0 0 000O0OOOGOTO OO OO O
LSE 11 1 1 1 1 1 111111111
LBB (ab = 0-0) 216-X

LBB (ab = 1:0} 215-(XVRy)

LBB (b = 0-1) 215-(XVRy)

LBB (ab = 0-1} fe—————215-PROC I 27-PROC ]
LBB- (a*b =0+0) 15X

L8B- (a-b = 1-0) P1SOVR,)

LBB- (a*b=0-1) 515-(XVR,)

LBB- (a*b =0+1)

. ,15-PROC

|
|
DIG e X —»I--— X I X EA X
EBL (N) oooooooo} N
EBU (N) — N {
CORC 101 101 1101 1101
CORC ] . k . 'i .
0011 0011 0011 0011
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The resultant outputs are then either FFFF g for the LS1
and LSF ul’s and FFFF g for the LS2 and LSE uls. These
outputs are presented to the Au and Bu register fan-in
logic and are gated through the logic by ENCG BM, as
discussed in the paragraph titled Au and By Fan-In and
shown on the simplified logic of Figure 2-174. This logic
inverts the inputs fed to it so that now the constant
corresponding to LS1 and LSF is 000045 and that for
LS2 and LSE is 0001 1g. These constants are then clocked
into the By register in either true form or complement
form by means of the forced set and forced clear
conditioning of the Bu register flip-flops discussed in the
paragraph titled Au and By Registers. The constants are
already in the desired form for the LS1 and LS2 pul‘s, so
they are stored in the By register in true form. However,
the constants must be complemented for the LSF and
LSE ul’s so that they represent -1 and -2 in two's
complement form. Therefore, the constants are stored in
the By register in complement form for these two ul’s so
that the final form of these constants is FFFFg (-110)
and FFFEq¢ ('210).

Load B Bit Micro Instructions

The LBB pl's set a bit into the By register derived from
values of the pl X-field and associated MLI R and Ry
fields. The manner in which these various fields are used
to set the bit is determined by the ul a2 and b designators,
as summarized in Table 2-26. When set to the value
determined by the a and b designators, the bit in Bu forms
a binary number whose value can be indicated as a power
of 2 as shown in Table 2-24. (For example, if the LBB pul
specifies that bit 6 is to be set in Buanda-b=0"-0, the
resultant binary number indicated is 2156 o 29
(51210).)

Setting the bit in Bu for 2 and b valuesof 00,0 - 1, and
1- 0 is performed by the logic of Figure 2-175. Depending
on the particular value of the a and b designators, the bit
to be set is accomplished by one of the following:

1. a decoding of the p! X-field (FM1-112+1185),

2. an ORed combination of the ul X-field and MLI
R4-field (FR-008 +112), or

3. an ORed combination of the ul X-field and MLI
Ro-field (FR-012~+015).

COMPL OUT: -1 FOR
LSF, -2 FOR LSE
TRUE OUT: 0 FOR

1 ] LS1, +1 FOR LS2
1 i —cc~smoo
1 I ”
1 i i i
1 1 i i
s I 1 +FFFFg —FFFFqg i
v
wsvoe)) | CONST ! *| +rrrEgg REG  § -FFFEqg By 1
1 GEN : ] FANN > REG :
: i : +CLKAM/BM-H] I
i b comsmia i 1
— - | i
1 1 i i
—CG+
FORCE 1 ——»] | -CG- Bwms 140 : 1A25 :
0 FOR LS1,LSF): 1 i 1 -
1FOR LS2, LSE 1 I - I s |1
] 1A29 1 ﬁ---l---------- [ ——
] 1A30 |
L 1 —ENCG >~ BM +ENSBM (LSE AND LSF)
[N ] - M R e .
—ENCG-0-ENCG-0 +ENRBM (LS1 AND LS2)
e ———— T ——
BOTH O

Figure 2-174. Generation of Constants for Load S Lii's
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Table 2-25. Field Selection for Setting Bits in Bl Via Load B pl‘s

Designator Value

Determination of Bit in

a b Bl to be Set

0 0 Ml X-field (bits 12-15)

0 1 Inclusive OR of ul X-field and MLI R, field
(bits 12-15)

1 0 Inclusive OR of ul X-field and MLI R field
(bits 8-11)

1 1

Active processor determined by ENT bits to
constant generator
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In each instance, the four bits comprise a bit select code
that defines, in binary form, the bit of Bu to be set. The
MSB of this bit select code, BIT1XXX, selects either the
left-most or the right-most byte of Bu ir] which the bit is
to be set. The a and b designators (FM2-006 and
FM2-007) determine how BIT1XXX is formed: either
directly or by the exclusive OR operation described
above. This signal is used in either its generated
complement form to clock the lower half of Bu {(bit
positions 8 through 15) via ENCBM-1, or inverted to true
form to clock the upper half (bit positions 0 through 7)
via ENCBM-0. In both cases, the enable for generating
either of these two clock signals is provided by 6,243 -
AANDB which defines the LBB and LBB- ul’s for a afid b
values of 0-0,0- 1, and 1 * 0. Selecting a particular bit of
the selected byte is performed by the remaining three bits
of the select code: BITX1XX, BITXX1X, and BITXXX1.
These bits are generated in exactly the same way as the
MSB. Generation of BITXIXX is showh in Figure 2-175.
These three bits are fed to a three-input/one-of-eight line
decoder to generate a bit select signal, BIT-CG. The result
is fed to the constant generator, to set the specified bit of
By. ,

Setting of a bit in By for a and b values of 1-1 is
performed by the logic of Figure 2-176. This logic sets a
bit in each byte of the Bpuregister corresponding to the

processor that is presently active. (For example, if
processor 0 is presently active, bit O of the upper byte and
bit 8 of the lower byte of By will be set.) Using processor
0 as an example, bits 0 and 8 of By are set by one input to
the constant generator. ENT-CG00, when enabled by
ENCG-0 and ENCG-1 equal to ““1" and “0", respectively.
Signal ENT-CGO0O, in turn, is produced by STATEO from
the priority logic which indicates that processor O has
been assigned the present time slice. This processor signal
is enabled by FMT-000 which is high for ul’s 0,0 through
7,3 {(which includes the LBB and LBB- ul’s). Since a bit is
to be written in both bytes of By, both enable clock
upper byte and lower byte signals must be activated. This
is - accomplished by generating both ENCBM-0 and
ENCBM-1 simultaneously via 6,2+3. The value function
code appears alone with no instructions or values of aand

- b designators; therefore, the enable clock signals are

‘produced for all combinations of a and b values including
ab = 1 1. (Generation of these enable clock signals for

- unrestricted values of a and b does not interfere with

clock enables generated for restricted values of @ and b as

« discussed in the last paragraph since different inputs to

the constant generator are used for the two variations of
Load B ul's: BIT-CG inputs for Load B ul’s with a and b
values of 0-0, 1-0, and 0°1; and ENT CG inputs for
Load B ul’s with -a and b values of 1+1.) The LBB ul
sets the bit number in Bu in true form; the LBB-ul
sets the bit number in Bu in complement form. (See

. the paragraph titled Au and Bu Registers for a dis-

cussion of setting -bits in Bu in either true or
complement form.)
---------I---1
= e '
6,243 I i +ENCBM-0
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| UPR 1 BOTH ACT
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i 1
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Enter B Micro Instruction

The Enter Bu I's provide for entering an eight-bit value
specified by the ul N field (bit positions 4 through 7 and
12 through 15) into either the upper byte (EBU ul) or
lower byte (EBL ul) of the By register. The ul's are
implemented as shown in the logic of Figure 2-177. The
eight bits of the ul N field are applied to the ENT—CG
fan-out logic. Bits 4 through 7 of the N field are enabled
through the fan-out logic by 10XX and bits 12 through 15
are enabled by 1XXX. Both enables 10XX and 1XXX are
high for the EBU (1010) and EBL (1011) ul’s. (Enable
10XX is used for enabling bits 4 through 7 of the ul to
specifically eliminate the DIG and CORC ul's, which also
load By with. bits from this field during their execution.)

The EBU ul enters the value specified by the ul N field
into bits O through 7 of Bu in true form and leaves the
contents of bit positions 8 through 15 unchanged. It
accomplishes this by generating ENRBM-0 to first set bits
0 through 7 to “0”'s, and then enters the value of N via
ENCBM-0.

The EBL ul enters the value of N in true form in bit
positions 8 through 15 of Bu and sets bits O through 7 to
“0"'s. It does this by generating ENRBM-0 and ENRBM-1
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to set both bytes of By to “0”s, and then enters the value
of N into bit positions 8 through 15 via ENCBM-1.

DIG Micro Instruction

The DIG ul loads each four-bit nybl position of the Bu
register with a value specified by the ul X-field. The ul is
implemented as shown in Figure 2-178. The ul X-field is
presented to the ENT-CG fan-in logic as bits 12 through
15 of the Fu register. These bits are fed in parallel to two
gates each, so that the X-field value is enabled through the
gates as ENT-CGOO through ENT-CGO3 and as ENT-CG04
through ENT-CGO07. These two 4-bit nybls are routed in
parallel to the four 4-bit nybl positions of B u so that the
original value defined by the X-field is copied into Bu as
four values. This one-to-four transformation is shown in
Figure 2-179. Enabling of the four-bit X-field through the
ENT-CG fan-in logic is accomplished by enable 11XX,
which gates the X-field through the ENT-CGOO through
ENT-CGO3 gates; and enable 1XXX, which gates the
X-field through the ENT-CG04 through ENT-CGO7 gates.
Both enable clock signals are activated for this ul so that
the X-field value can be written into both upper and lower
halves of By.
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CORC Micro Instruction

The CORC ul generates values of 315 or Dqg which are
used to correct each decimal digit after executing a DSUM
1. The decision to generate either 3¢ or Dyg is made on
the basis of whether or not a carry was generated during
manipulation of the particular decimal digit. The ul is
implemented by the logic of Figure 2-180, which shows
generation of a decimal correction value associated with
bits O through 3 of a decimal arithmetic operation. The
input to the constant generator consists of DDG-CGO00
from the bit O through 3 stage of the Inner Carry register,
and a ground connection. The DDG-CG00 input is applied
in generated complement form to bit stage 2, and inverted
to true form and applied to bit stages 0 and 1 of the
constant generator. Bit 3 is tied permanently to ground
since its value is "0’ regardless of which correction value
is generated. Assuming that a carry is generated from stage
0 of the decimal operation, DDG-CGO0 is low and the
CG-BM outputs are as shown in Table 2-26. Since the
constant generator outputs are in complement form, they
are inverted by the ALU fan-in logic prior to storage in
Bu. The result is 00115 (315) which is the required
correction code. If no carry was generated from stage 0 of
the decimal operation, the inputs to bit positions 0, 1, and-
2 are reversed. The result stored in B ufor this situation is
11019 (D4g), or the two’s complement of 344.

BIT SENSE AND SENSE/TOGGLE

The bit sense and sense/toggle logic is used to execute the
bit sense and bit sense/toggle (E,X,1) ul’s. The two bit
sense (E,0,1 and E,1,1) ul's scan the Auregister contents
sequentially from bit position 00 through bit position 16
for the presence of the first 0’ or *“1”. In addition, the
By register contents are incremented by 1 for each bit
position scanned without a find. The two bit sense/toggle
(E,2,1 and E,3,1) ul's are executed similarly except that
they additionally toggle the sensed bit to the alternate
state. Logic for executing these four ul's is shown in
Figure 2-181. The Ay register contents are fed to priority
encoder logic, which produces a BCD output
corresponding to the first “0” or 1" detected in Ap.
Since the priority logic, however, cannot itself determine
that it is to sense either the first ‘0" or the first “1” (all it
can sense is the first “0"'), the data presented to it must
first be preconditioned to a form that will allow the
priority encoder to, in effect, sense for the right bit state.
This preconditioning is performed by routing the data
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Table 2-26. Constant Generator Outputs to CORC IJ,I
| CG Qutputs
DDG-CGO0 Input to
Carry Status Value 001 002 003 004 B
Carry 0 1 1 0 ] 0011 (34¢)
No Carry 1 0 0 1 0 1101 (D)
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from Apu through a selector prior to being fed to the
priority encoder. This selector gates the contents of Ay in
either true or complement form depending on the state of
FM1-105 of the ul sub-operation code. If the bit is 0",
the contents of Au are gated in true form so that the first
“Q"" detected by the priority encoder is the first 0" of
the Au. If the bit is /1", the contents of Ay are gated in
complement form so that the first ‘0’ detected by the
priority encoder is really the first **1”" of Au. The priority
encoder logic consists of two elements, each element
determining priority of eight inputs (bit positions 00
through 07 and 08 through 15). The partial results are fed
to the bit sense generator, which combines the outputs
from the two priority encoder elements to generate a
four-bit code representing the bit position where the first
“0" or 1" was detected. This bit position number is fed
to an adder which adds the number to the contents of Bu.
In reality, this addition simulates incrementing By for
each position of Ay scanned without a find. Assume that
a “1” is to be detected in bit position 4 of Ay This
scan/increment sequence would require incrementing Bu
four times, since four bit positions would be scanned
without a find (bit positions 0 through 3). By generating
the bit position at which the ““1"" is found, only one
addition need be performed and the result is the same (4 =
bit position no. = no. of increments without find: 0+3).

r-------l---------l

If executing a bit sense/toggle ul, the bit sensed must be
toggled as well as its position in Ay being added to Bu.
This is accomplished by the bit toggle logic, which
generates a two-bit toggle bit-position code from the
four-bit sense bit-position code. For example, if bit 4 is to
be toggled, the two-bit code consists of TBITO1XX and
TBITXX00. This two-bit code is routed to an AND gate,
as shown in Figure 2-182, to generate one signal that
specifically designates bit 4 as the bit to be toggled. The
result is routed to selector logic. This logic selects either
the toggle bit designator or a corresponding bit from the
shift network, depending on the state of FM2-211. Since a
bit sense/toggle ul is being executed, FM2-211 is high to
gate the toggle bit designator to the Ap and By fan-in
logic. This logic is enabled, in turn, by ENSN-ALU which
is high for both shift and bit sense/toggle ul‘s. The result
is fed to both the J and K inputs of the bit 4 flip-flop of
the Ay register. Since both inputs are fed with the same
signal, the flip-flop will toggle from its present state to the
alternate state upon occurrence of ENCAM, which is also
generated during execution of a bit sense/toggle ul.
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Figure 2-182. Toggling of Bit 4 of AU
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SHIFT NETWORK

The shift network performs a left shift on each bit of a
32-bit operand as determined by a specified shift count. A
block diagram showing the logic required to implement
the shift operation is shown in Figure 2-183. The 32-bit
operand in the Auand Bu buffer registers is entered into
the shift network and shifted by. an amount defined by
the shift count control output. This shift count is derived
from one of three sources:

1. the X-field of a ul (SHF and SHR ul’s),

2. bit positions 12 through 15 of the D register
contents (DLS and DRS ul's if bit 1 of F is a
uou)' or

3. bit positions 8 through 11 of the MLl in F (DLS
and DRS ul's if bit 1 of Fisa ’1").

If either a SHF or DLS pl is executed, the shift count will
be derived in true form and the shift will be to the left. If
either a SHR or DRS pul is executed, the shift count will
be derived in two’'s complement form. The result is to
effect a right shift by an amount equal to the shift count
in true form by left shifting the number of bits specified
by the shift count in two's complement form. Indication
that a right shift is to be performed is furnished by signal
SHIFTR. This signal enables the two’s complement logic
1o convert the shift count from true form to two's
complement form. After being shifted, the 32-bit operand
is routed back to the Au and Bu registers through the shift
network and bit sense fan-in logic, and the Ay and Bu
fan-in logic.

The shift network itself consists of two ranks of 32
selectors each. The first rank is fed with the combined
32-bit output from the Ap buffer and Bu buffer registers.
It is organized such that each bit of Ay buffer and Bu
buffer is fed to four selectors to enable each bit to be
left-shifted O to 3 places, depending on which of the four
selectors is enabled. These enables are derived from the
upper four bits of the eight-bit shift count from the shift
count control. The output from each first-rank selector
circuit is fed to four selector circuits of the second rank.
These selector circuits perform a similar shifting function
as the first-rank selectors, but on a nybl basis. Therefore,
the bit shifted 0 to 3 places by the first-rank selectors is
shifted 0, 4, 8, or 12 places by the second-rank selectors.
These second-rank selectors are enabled by the lower four
bits of the eight-bit shift count.
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Shifting of a typical bit of By buffer (bit 11) is shown in
Figure 2-184. The four first-rank selectors fed by bit 11
are physically packaged in two selector elements: selectors
0A and 1A in one element and selectors 2A and 3A in the
other element. Each selector is fed with other bits of Bu
buffer to effect a shift on them also; however, only bit 11
is fed to all four of the selectors shown. These four
selectors shift bit 11 to the left O to 3 places as indicated
by the SHF O through SHF 3 designations. These four
outputs are each fed to four second-rank selectors to
effect the shift on a nybl basis. Therefore, the SHF 0
output can be shifted 0, 4, 8, or 12 places to the left by
selectors 0B, 4B, 8B, or 12B. Similarly, the SHF 1 output,
which already represents bit 11 shifted left one place, can
be shifted 1, 5, 9, or 13 places to the left of its original
position in By buffer by selectors 1B, 5B, 9B, and 13B.
Therefore, bit 11 of Bu (and all other bits of Au buffer
and Bu buffer) can be left-shifted O to 16 places by the
cornbined action of the first-rank and second-rank shift
selectors.

Examples of three different shifts of bit 11 of the B
buffer are shown in Figure 2-185. Part a shows the
selectors involved for a shift of O places to the left. The
bit is simply gated straight through selectors OA and 0B
and appears at the output of the shift network as bit 27 of
the 32-bit result (11 + 16). Part b shows the selectors
involved in shifting bit 11 left 5 places. Selector 1A shifts
the bit 1 place and selector 5B shifts the bit the remaining
4 places. Part ¢ shows the bit shifted left 14 places:
selector 2A shifts it 2 places and selector 14B shifts it 12
places.

As discussed previously, right shifts are implemented by
converting the shift count to two’s complement form and
performing a left shift. The result, however, is developed
in the lower half of the shift network (bit positions 16
through 31) instead of in the upper half as during a left
shift operation. This difference in where the result is
developed is interpreted as either a left shift or a right
shift, as shown in Figure 2-186. This figure shows the
principal ul’s used to implement both a left shift and a
right shift machine language instruction (MLI). Both
examples assume that an operand in some register R will
be shifted either left or right four places and stored back
into R. Part a shows the ul's necessary to execute a
left-shift MLI. The operand is transferred from R to B by
a L.BW ul. From By, the operand is left-shifted four places
through the shift network by a DLS ul. During the shift,
the four most significant bits are shifted end-off and the
empty space resulting from shifting the four least
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significant bits is filled with zeros. The result is sent to By,
and stored back in R by a STB ul. Part b shows execution
of a right-shift MLI. The shift count (4) is converted to
two’s complement form to form Cqg (F1g - 416 = C16)
or 1210. The operand again is transferred to Bu and
shifted left 12 places by a DRS ul. This time the shifted
operand is developed in the upper half of the shift
network and transferred to Ay. The result is stored back
into R by a STA ul.

Because of the propagation delay through the shift
network {almost 100 nanoseconds total) and the length of
the data path back to Au and By, the shift ul’s take two
minor cycles to execute. It is necessary, therefore, to
delay the following functions for one rminor cycle:

1. clocking the shifted operand back into Ay and
Bu,

2. execution of the first ul following the shift by
blocking its transfer to Fu (this ul has already
been read from CS), and

3. delay reading the second ul following the shift ul'
from CS by blocking the transfer of its address
into Su.

These inhibit conditions are generated by translation of
the shift ul operation code and setting the Shift Delay
flip-flop, as shown in Figure 2-187. Signal BLOCKFM is
generated and ENCLKSM is disabled to block clocking of
Fu and Sy. These conditions are generated during the first
minor cycle of the shift ul by translation of the shift ul
(E, X, X) and the fact that the Shift Delay flip-flop is not
set. At the beginning of the second minor cycle of the
shift ul, the flip-flop sets to enable clocking the shifted
data back into Ay and Bu by generating ENCAM and
ENCBM.

Timing for the above conditions is shown in Figure 2-188.
This chart assumes that the shift ul is read from CS during
E1 and executed during E2 and E3. The two pul’'s
following the shift (SHIFT + 1 and SHIFT + 2) are
delayed in their execution because of the constraints just
discussed. Note that the shifted contents of the shift
network cannot be clocked into Au and Bu at E320
(which they would normally be if the pl was a
one-minor-cycle u!) because enables ENCAM and ENCBM
are inhibited at E280 due to the fact that the Shift Delay
flip-flop has not yet set. When this flip-flop sets at E300,
then ENCAM and ENCBM can be generated at E380 to
clock Apand Bu at E420.

r------------'

] 1
1 | ~ENCLKSM
i |
1 |
1 1
+FXEQ —
FXEQ -1 : Dl> + +BLOCKFM
|
I (1A06)
- . r 1 7 2 ° 7 7 °’ ]|
I-----—--I------s-mﬁ--l--------_----
XX i DELAYFE_ [
T . 0 Q 0 EncAM
i CLK ]
i Ay |
| |
i |
1 +Tx00 —J¢ a i
| 3 +ENCBM
] CLK i
1 By ]
1 1
i i

(IAUm
N I SN N N P N (N RN S O SN S S Y SN A N N D NN NN SN S N PN

Figure 2-187. Shift Delay Logic

2-221



zeee

E1

E2

E3 E4 ES
SHIFTul gm - - -
CLKFM ENCAM |  CLKAM
(E200) BLOCK ENCBM CLKBM
ENCAM (E380) (E420)
ENCBM
(E280)
SHIFT +1p1 Y A
CLKSM CLKFM CLKAM
BLOCK CLKBM
CLKFM
SHIFT +21 -
CLKSM CLKFM
BLOCK
CLKSM
FXEQ-E1
BLK FM
ENCLKSM
' SHIFT DELAY
FF
ENCAM/BM

Figure 2-188. Shift ul Timing




I/O INTERFACE

The 1/O interface logic controls the transfer of all data
and associated control signals between the shared
resources and 1/O processors 0 through 3 during normal
I/0 transfer operations.” These operations involve
transferring data between MS or registers in shared
resources and designated register in each 1/0 processor.
Each 1/0 processor contains registers dedicated to its
exclusive use; for addressing purposes, however, they are
collectively referred to as Group Ill registers of the
Extended Register File (ERF}. All 1/0O operations are
initially started by the Executive processor under program
control. However, each word transfer comprising the 1/0
operation is initiated by a request signal from the 1/0
processor. This request is sent to shared resources after
determining that it either has assembled a complete word
in its register for transfer to shared resources (if an input
operation), or that the last word it received from shared
resources has been written into its storage medium (disc,
magnetic tape, and so forth) and it is now ready for
another word (if an output operation). One word can be
transferred during each time slice assigned to an 1/0O
processor.

NOTE

Input and output operations are discussed from
point of view of the shared resources. Thus, input
operations transfer data from an 1/O processor to
the shared resources and output operations transfer
data from the shared resources to the 1/0O processor.

I/0 REQUESTS

All data transfers between the shared resources and an 1/0
processor are initiated by requests from the 1/0 processor.
These requests are implemented as part of an 1/O transfer
routine executed by the respective 1/O processor (such as
the DIO packet executed by disc processor 3) and are
generated when the word to be transferred has been
assembled in the appropriate register. In the case of an
input data transfer (I/0 processor to shared resources),
the request is generated when the word has been read
from the 1/O device (card reader, disc, and so forth) and
assembled in the transfer register of the 1/0O processor. In
the case of an output data transfer (shared resources to
1/0 processor), the request is generated when the 1/0
processor has written the last word received onto the disc,
magnetic tape, or whatever, and is now ready to receive
the next word from shared resources. Prior to the actual

*The CS Load and MS Load operations from /O processors 1 and
3 are not considered normal 1/0 transfers in that they are usually
performed only once, during a power-on condition.
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transfer of data, the I/O processor has been initialized by
software routines executed both by the processor needing
the 1/0 data and the Executive processor. Among other
duties, these routines perform the following activities:

1. set the 1/O processor's Active flip-flop in the
Busy/Active (B/A) register, and

2. set up a buffer in MS where the 1/0 data will be
stored by defining a Current Byte Address (CBA)
and a Final Byte Address (FBA).

Upon determining that it is ready for a word transfer, the
1/0 processor sends a request to shared resources for a
time slice during which to perform the transfer. This is
done by setting the 1/O processor’s Busy flip-flop in the
B/A register, whose output is then routed to the priority
logic for assignment of a time slice. After each word is
transferred, a comparison is made of the updated CBA
and the FBA by a CIO ul for a condition of equality. If
the two addresses are not equal, the pl shuts off the 1/O
processor by clearing its Busy flip-flop until the processor
is ready for the next word to be transferred. The 1/O
processor’s Busy flip-flop is again set by another request
and the above sequence is repeated until all words have
been transferred. At this point, the CBA will equal the
FBA. The result is to prevent the processor’s Busy
flip-flop from being cleared to execute the next sequential
ul's in the 1/O transfer routine until it is completed.
During this 1/O operation, the request from the 1/0
processor has been generated and deactivated many times
(once for each 1/0 word), causing the processor to turn on
and turn off in a corresponding manner. Throughout this
operation, however, the 1/O processor is locked on to the
shared resources by means of the processor's Active
flip-flop which remains set for the entire operation. This
locking up of the processor is necessary to prevent either
the Executive processor or another 1/O device associated
with the 1/0 processor from attempting to initiate another
I/0 operation while the processor’s Busy flip-flop is
cleared between word transfers, which could normally be
done if the Active flip-flop was not set.

A simplified diagram of the B/A register showing the
relationship between the Active flip-flops of each 1/0
processor and corresponding Busy flip-flops is shown in
Figure 2-189. The Active flip-flop for a particular
processor is set by software under control of the
aforementioned 1/O transfer initialization routines. The
Active flip-flop outputs (B/A-08 through B/A-11) are fed
back to the Executive processor informing it that the 1/0
processor is presently engaged in an /O operation and
may not be interrupted until completed. The request
(REQ) signals from each /O processor are fed to the Busy
flip-flops when a word is ready for transfer. These
flip-flop outputs (B/A-00 through B/A-03) are routed to
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the priority logic for assignment of time slices. Busy
flip-flops for processors 1, 2, and 3 may also be set via
corresponding ATTN signals in the event that an 1/0
device requests a time slice for a data transfer that is not
initiated under software control. Setting the Busy flip-flop
in this way will be permitted by the B/A register and then
turn control over to appropriate software, but only if the
processor associated with the 1/0O device is not presently
engaged in another task as indicated by the corresponding
Active flip-flop being set. This lock-out condition is
implemented by ANDing the ATTN signal with the
complemented output from the Active flip-flop.

Additional details about setting the Busy flip-flops by
request signals may be found in the paragraph titled B/A
Register.

REGISTER SELECTION

Selection of a register in one of the four 1/0 processors is
accomplished by means of the Extended Register File
(ERF) Group 1 selection logic discussed in the paragraph
titled Extended Register Selection. As discussed in that
paragraph, all registers of these 1/0 processors are selected
by an encoded register address sent to the processor on
the four ERNG3 lines. This address is developed both for
read and write operations. This paragraph will discuss
some of the peculiaritiesin register selection in each of the
four processors.

Processor 0

Processor O contains four registers that may be addressed
by the ERNG3 lines: write data 12, read data 13, write
address 1D, and read address 1F registers. As the names
imply, these registers are used to read or write associated
data or address information when selected by the
corresponding address. (Recall that the four ERNGS3 lines
encode only the least significant digit of the address (2, 3,
D, or F). The most significant digit (1) is implied by the
¢! function code as a consequence of generating a register
read or register write signal to enable information from or
to the register.) Further details about addressing these
registers may be found in Section 5 (Volume 3) of this
manual,

Processors 1 and 2

Processors 1 and 2 contain five registers that may be
addressed by the ERNGS3 lines: Bus In register, Tag Out
register, Channel Control register, Byte Count register,
and Bus Out register. Three of these five registers (Tag
Out, Channel Control, and Byte Count registers) may be
addressed for either an input or output data transfer. The
Bus In register may be addressed only for an input
operation; conversely, the Bus Out register may be
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addressed only for an output operation. When addressing
the eight-bit Tag Out register for an input data transfer,
the data on the eight tag in lines is also selected for
transfer to the shared resources. Further details about
addressing these registers may be found in Section 4
{Volume 3) of this manual.

Processor 3

Processor 3 contains one register that is addressed by the
ERNG3 lines. Depending on the address used to select this
register and the time at which the address is generated on
the ERNGS3 lines, this register may be used to perform a
variety of functions. For example, addressing the register
as register 10 indicates to the IFA that the information
contained in the register is to be used to select a particular
disc drive. When addressed as register 12, the contents are
interpreted as status select bits. Further details about
addressing this register may be found in Section 6
(Volume 3) of this manual.

DATA INPUT

Data read from the four 1/0 processors is fed to the
shared resources by means of the ERF Group Ill input
logic shown in Figure 2-190. This logic consists of 16 data
receivers which receive the 16 data lines from each of the
four 1/0 processors. Data from a particular processor is
selected by a corresponding ENERG3 enable, which gates
data from the particular processor through the data
receivers, and the ERFG3RD signal, which strobes data
from the register in the selected 1/O processor. Each
ENERG3 enable is generated by a corresponding STATE
signal from the priority logic which defines the processor
from which data is to be read, and a and b designator
values of both 1’ which define an ERF register is being
selected. Signal ERFG3RD is generated for any u! that
can read an ERF Group Il register (6, 1; 6, 2; 7, X, and
D, X ui's) ANDed with a second line that indicates the
particular ul is making a reference to an ERF Group Il
register (a'b = 1-1 and Fy -011 = 1).

DATA OUTPUT

Data to be written into registers of the 1/0 processors is
fed from the shared resources by means of the ERF
Group |11 output logic shown in Figure 2-191. This logic
consists of 16 data drives which receive the 1/0 data from
the ALU and fan it out to the four 1/O processors.
(Although data is fed out to all four processors in parallel,
only one of the four will be enabled to receive it as
selected by the EXCT signal from the priority logic.) The
register 'to be written into is enabled by the ERFG3WR
signal. This signal is generated in a manner similar to
ERFG3RD, except that it is generated during execution
of a pl that can write into an ERF Group 111 register.
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TERMINATION OF 1/0 OPERATION

As discussed in the paragraph titled 1/Q Requests, an 1/0
operation is normally terminated when the CBA equals
the FBA, indicating that the 1/O buffer in MS has been
completely filled. This condition is implemented by the
CIO ul, which checks the contents of the Au and Bu
registers for a condition of either equality or inequality
depending on which of the two CIO ul's is being
executed. However, the 1/0O operation can also be
terminated before normal completion because of an
abnormal condition detected during the operation. This
abnormal termination is indicated by an End of Transfer

(EOT) signal sent from the processor to the shared
resources. In the case of a normal 1/0 termination, the
ClO condition keeps the Busy flip-flop set so that the 1/0
operation can terminate in an uninterrupted fashion by
means of the 1/O data transfer routine. In the case of an
abnormal 1/O termination, the EOT signal keeps the Busy
flip-flop set to allow the Executive to detect the source of
the abnormal condition. Each of the four 1/O processors
sends a respective EOT signal to fan-in logic in the shared
resources, as shown in Figure 2-192. This logic AND's the
EOT signal with a corresponding STATE signal from the
resource allocation network to generate EOTEXIT. This
signal is routed to the I/O terminate/continue logic.
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The 1/O terminate/continue logic, shown in Figure 2-193,
is used to either terminate or continue the 1/0 operation,
based on receipt of the EOTEXIT signal and evaluation of
the CBA/FBA compare during execution of a C10 ul. This
logic generates three signals: IOEXIT, CIO-TX, and
CIOEXIT. Signal IOEXIT is used to terminate the /O
operation in the 1/O processors. The signal is generated for
either a normal 1/0 (CIO ul) terminate condition, or an
abnormal (EOT) terminate condition. For a CIO ul
terminate, the signal is generated during execution of
either a CI01 ul and an Ap=By condition, or a C102 ul
and an Au#Bpu condition. These are the conditions defined
for these two ul's that indicate that the 1/O operation has
been completed. The result is to cause the |/O processor
to idle {perform NOP's) through the rest of the time slice
and update the Pu register in the ERF with the contents
of Pp, which defines the starting address of the first ul to
be executed during the next time slice. This ul will be the
first in a routine to obtain status information, which
always follows after transfer of 1/0O words. For an EOT
terminate, the signal is generated by means of EOTEXIT
during execution of the following CIO ui in the 1/0
transfer routine regardless of whether or not the CIO
compare condition is met. Combining EOTEXIT with
signal CIO is necessary so that the 1/0O processor can begin
the routine to obtain status information. (As discussed
above, the starting ul address for this routine results from
executing either the Cl01 or CI02 ul.) For all three ways
of generating IOEXIT, signal IDLE is included to prevent
the signal from being generated if the 1/0 processor is in
an idle condition.

Signals CIO-TX and CIOEXIT are generated for a
condition opposite of that for generating IOEXIT, that is,
if the condition for terminating an 1/O operation is not
met. Essentially, this means one of the following is true:

1. execution of a C101 ul and an Au#By condition,

2. execution of a Cl02 gyl and an Ay=B ucondition,
or

3. no EOTEXIT signal.
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Signal CIO-TX is fed to the B/A register to clear the 1/0
processor’s Busy flip-flop. This action allows the 1/O
operation to continue by permitting the 1/0 processor to
set the Busy flip-flop again when the next 1/0 word is
ready for transfer. Signal CIOEXIT is routed to the Pu
select logic to inhibit writing the contents of Py (starting
ul address of routine for obtaining status) into the 1/0
processor’s assigned Pu register. Since additional 1/0
words are to be transferred, the CIOEXT signal effectively
causes the 1/O transfer routine to repeat by causing the
un-updated contents of Pu to be transferred back to Su at
the beginning of the next assigned time slice. Inhibiting
the Pp +Py operation is done by changing signal
EFIRH/WL to the high state. When in the low state, this
signal enables data to be stored in Pu. When changed to
the high state, however, this write operation is inhibited.
If the 1/O processor is running in the Consecutive Cycle
(CC) mode, Sy is inhibited from being written with the
contents of Pp by inhibiting ENPP-SM. This inhibiting
condition is also generated by the CIOEXIT signal.

SYSTEM CONTROL PANEL INTERFACE

The System Control Panel (Panel) interface logic controls
all Panel-initiated functions of the system. These
functions include (1) reading and writing Main Storage
(MS), Control Storage (CS), Register Option (RO)
registers, and Register File (RF) registers; (2) selecting
processor and panel operating modes; (3) initiating CS
loads and MS loads; and (4) displaying file registers
contents. The Panel interface also enables display of
certain system status information such as MS and CS
parity errors and processor states which are executing
major cycles, the capability of transferring control of the
system from the Panel to a remote location, a general
system reset facility, and applying AC power to the
system.

A block diagram showing the main functions controlled
by the Panel interface logic is shown in Figure 2-194,
Reading and writing MS, CS, RO, and RF registers are
grouped under one category identified as console control.
These operations are selected by means of the CONSOLE
MODE SELECT selector. The MS, RO, and RF register
read and write operations are similar in that each is
performed by a ul subroutine. The CS Read and CS Write
operations are also selected by the CONSOLE MODE
SELECT selector. However, these operations are
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implemented by hardware only, due to the fact that a CS
Write operation might alter the very subroutine in CS used
to perform the CS Write. The CS Read operation is more
accurately identified as the CS Read/Scan operation.
These two operations are executed in a similar manner,
the major difference being the operating mode in which
they are performed. The CS Scan operation is performed
in the normal mode (continuous operation) to verify that
all data written in CS and the FRJ decode address table
(AT) during a Reset/Load operation was stored without
error. Data is read from CS in a continuous manner for
purposes of making longitudinal parity checks on a page
basis without regard to the contents of any particular
location. The data is said to be scanned when performing
this operation; hence, the term CS Scan. A CS Read
operation, on the other hand, is performed in the
stop/step mode so that particular locations in either CS or
the AT may be read, one at a time. The CS Scan and CS
Read operations are limited to off-line use only; that is,
no other processor may be requesting slices when
performing either of these operations. This means that the
Panel will be granted alternate time slices by the resource
allocation logic in which to perform the chosen operation.
(The Panel does not have the facility to operate in the
Consecutive Cycle mode.)

The Panel allows each of the eight processors or the Panel
itself to function in one of three operating modes:
stop/step, normal and breakpoint. Basically, the stop/step
mode permits operation for only a short period of time
(either one major cycle or one MLI), the normal mode
permits operation for an indefinite period of time (usually
until the processor or Panel is set to another mode), and
the breakpoint mode permits operation only until some
pre-determined address in either CS or MS is reached. The
normal mode is the mode in- which a processor would
execute a program in an on-line situation. The stop/step
and breakpoint modes are used primarily during
maintenance operations. Selection of a processor mode is
made by one of eight PROCESSOR CONTROL SELECT
switches; Panel mode selection by the CONSOLE
CONTROL SELECT switch. The processor stop/step
mode is divided further into two sub-modes as determined
by the position of the CYCLE STEP switch. This switch
causes the selected processor to run for either one major
cycle (when set to the up position) or for one MLI (when
set to the down position). Similarly, the processor
breakpoint mode can be run in one of three sub-modes,
depending on selection of the three BREAKPOINT
MODE SEL ECT switches: READ INSTR, READ DATA,
and WRITE DATA. When the corresponding switch is set
to the up position, a breakpoint stop will occur (1)
immediately after the MLI at the breakpoint address is
read (READ INSTR switch), (2) at the end of the storage
reference cycle in which data was read at the breakpoint
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address (READ DATA switch) or (3) at the end of the
storage reference cycle in which data-was written at the
breakpoint address (WRITE DATA switch).

Initial loading of CS and associated AT, and MS, is
performed by the Panel RESET/LOAD and AUTOLOAD
switches, respectively. The CS load can also be performed
automatically during a power-up system reset condition.
For whichever condition, the CS load is performed under
hardware control using either disc or cards as the input
medium. The choice of which medium will be used is
determined by the LOAD SELECT switch. Either disc or
cards may be used to load MS also. If the disc was used to
load CS and will also be used to load MS, it will also load
MS automatically upon completion of the CS load under
control of an autoload routine. If loading from cards, the
MS load operation must be started manually. The CS load
operation is under control of the Panel. Conversely, the
autoload operation is under control of Executive
processor 4. This control enables the Executive processor
to load data in pre-determined areas of MS as determined
by processor number, bounds protect, and other related
criteria.

Selected registers of the Extended Register File (ERF)
Group Il and the ALU may be selected for displaying
their contents by means of hardware control as opposed
to the software-controlled RF read and write operations.
These registers are selected by the CONSOLE ADDRESS
REGISTER SELECT and CONSOLE DATA REGISTER
SELECT selectors, which select address-related and
data-related registers respectively. These selectors permit
display of register contents only; data may not be written
into these registers by this method. In addition, only one
processor may be running and then in the stop mode
when addressing registers using these selectors. As such,
selecting registers by this method is designed primarily for
maintenance purposes when troubleshooting a single
processor.

PANEL CONTROL

CS Scan/Read

The CS scan and CS read operation are performed by the
same logic, but under different conditions. The CS scan
operation is performed in the normal mode and verifies
that all data written into CS during a CS load was entered
without error. The CS read operation is performed in the
stop/step mode to display the contents of individual
locations in CS in a sequential manner. Logic for
performing both CS scan and CS read operations is shown
in Figure 2-195. As shown, both operations are executed
in basically the same manner except for the duration of
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signal CONBUSY. This signal obtains time slices for the
Panel during Panel-initiated operations by the shared
resources. In effect, this signal is analogous to a Busy
flip-flop output from the B/A register which indicates that
a particular processor wants a time slice. During a CS scan
operation, CONBUSY is generated continuously from the
time that the CONSOLE RUN pushbutton is pressed until
the last location in the AT is scanned. This enables the CS
scan operation to proceed in a continuous manner by
automatically granting time slices to the Panel. One CS
location is scanned each time slice. During a CS read
operation, however, CONBUSY is generated for only one
time slice at a time upon pressing the CONSOLE RUN
pushbutton. This happens as a result of the Panel being in
the stop/step mode (CONSOLE CONTROL SELECT
switch set to the STOP/STEP position). When set to this
position, the stop/step signal clears out the Console Busy
flip-flop that generates. CONBUSY at the end of the
Panel-assigned time slice. The result is that only one
location in either CS or in the AT is read at a time. For
whichever operation is being performed, CONBUSY is fed
to the Resource Allocation Network ([RAN) to generate
READCON and STATEC. These two signals, along with
SWCS-RD from the CS-RD position of the CONSOLE
MODE SELECT selector, are routed to the CS scan/read
logic.

The CS scan/read logic implements the CS scan operation
by making a longitudinal parity check of all 2566 words of
each page in CS and a horizontal parity check of all 256
words in the AT. (A longitudinal parity check involves
checking the same bit of all 256 words in a page in
sequence as the words are scanned, as opposed to a
horizontal parity check which checks all 16 bits of one
word.) The logic scans each CS page in sequence in a
continuous manner until a word is detected with
erroneous bits. The remainder of the page containing the
error is scanned, but the operation stops on the last
address of the page. At this point, the CS Scan register
will contain all 1's in every bit position except those in
which the error occurred (and in bit positions 9 and 10,
which are not used). These bits are displayed in the
CONSOLE DATA REGISTER DISPLAY indicators on
the Panel via the 16 NDISPLAY signals fed from the Data
register display selector logic. The same sequence of
events occurs during the scan of an unused page
{essentially an unused page is interpreted by the CS Scan
register as a page in which all words contain parity errors).

Pressing the CONSOLE RUN pushbutton causes the CS
scan operation to resume checking the rest of the pages in
CS. If no errors were detected in any of the pages, the SC
scan operation will continue until the last address of the
last page on CS is reached. At this point, the operation

‘will stop, and the Panel indicators will display the value

FFOF, the hexadecimal equivalent of all 16 bits except 9
and 10 being 1-bits.

The ability of using a longitudinal parity check to check
bit errors in the manner described above is accomplished
by inserting a word called a checksum in each page of CS
coded such that the CS Scan register output of the last
word read from a page with no errors will equal all 1-bits.
The word-by-word development of the longitudinal parity
check is implemented by the toggling property of the 16
J-K flip-flops which make up the CS Scan register,
wherein the output of each flip-flop will toggle (change
state) whenever a J input of /1" is detected. This toggling
property of the J-K flip-flops enables the word-by-word
parity check to be developed for each page as shown in
Figure 2-196. {Assume for purposes of discussing this
figure that each word in CS is four bits in length and the
page to be considered is page 0.) Initially the CS Scan
register is cleared to zeros by means of CLRCSS. Then the
first word in CS at address 00004 (0110) is fed to the CS
Scan register by the ENCLKCSS signal. This signal enables
clocking the CS Scan register at E200 of every Panel time
slice, as shown in Figure 2-197. Since the register was
initially cleared, the output of the register is the same as
the input. The contents of Sy are updated by the S +1
logic via ENCL KSM and the contents of address 000144
(1011) are fed to the register. Since bits 0, 2, and 3 of this
word are 1's, the register output corresponding to these
three bit positions will toggle.

This same sequence of events repeats itself for all 256
words in the page (255 ul’s plus the checksum). Note that
the checksum (assumed to be stored at address 00FF 1) is
coded to generate a CS Scan register output of all 1's after
it is scanned. In essence, each bit of the checksum enables
checking parity of the corresponding bit in all 266 words
of a page. At this point, the register output is compared
with the contents of the Su register. |f the right-most
eight bits of Sy (address of word within page) are all 1's
(FF1g), the compare indicates that all words within the
page were loaded without error. ‘
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Upon completing a check of all CS pages, the CS scan
logic begins to read the contents of each 256-word AT, in
sequence, performing a horizontal parity check on each
9-bhit address stored in the AT. (As discussed in the
paragraph entitled FRJ Decode, the complete FRJ branch
address is 14 bits in length. The upper 5 bits, however, are
derived from other sources and therefore are not checked
for parity.) Each 9-bit address is checked for odd parity.
Upon detection of a parity error, signal ATCHKEYV is
generated (since an even number of 1's detected indicates
an error) to generate a scan error signal.

As discussed previously, the CS Scan register is cleared
initially prior to beginning the CS scan operation.
However, it also cleared after scanning the last address of
each page in CS in preparation for beginning a scan of the
next page. Logic for generating the clear signal required at
these two different times is shown in Figure 2-198. Initial
generation of CLRCSS occurs between E560 and E00O of
the time slice preceding that granted to the Panel, when

READCON and STATEC are both high. Since the Panel is
running in the continuous mode and no other processors
may be running during a CS scan operation, these two
signals remain at their final value (READCON high and

STATEC low) until the end of the operation. This assures

that the clear signal will not be generated during the
scanning of a page to erroneously clear the longitudinal
parity check being developed. Upon completing a page
scan, the lower eight bits of Sy contain all 1's to indicate
that 256 (or a multiple of 256) addresses have been
developed. This condition is indicated by signal G1-CIN
from the Su+1 logic. Signal G1-CIN generates CLRCSS to
begin the scan of the next sequential page in CS. During a
CS read, the clear signal will be generated prior to every
time slice granted the Panel. This enables the particular
contents of a location in either CS or the AT to be
entered in the CS Scan register for display on the Panel.
These individual clear signals are generated as a result of
the Panel running in the stop/step mode, where
READCON and STATEC will be re-initiated every time
the Console Busy flip-flop is set.
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Figure 2-198. Clear CSS Register Logic

2-235



During normal ul execution, the ul's read from CS are
unconditionally gated into the Fu register for translation.
During a CS scan/read operation, however, these pl’s must
be inhibited from entering Fu. Blocking entry into Fu for
this purpose is provided by signal CLRFM, generated as
shown in Figure 2-199. This signal is generated during the
W portion of the previous time slice (at E560) via
READCON to clear out the last ul executed before the
Panel got its time slice. The signal stays high through the
execute portion of the Panel time slice via STATEC to
block all ul‘s read from CS during the Panel time slice.
Another feature of normal pl execution is the updating of
Suevery time slice to address the next sequential pl in CS.
Since only one pl is read per time slice when doing a CS
scan or CS read operation, normal Su updating must be
modified to occur only once during a time slice. This
modification is accomplished by the BLKSMS signal,
shown in Figure 2-199. The signal is held high during
every Panel time slice to block clocking Su except at E000
time. At EO000, signal EOXX-0 goes high for about 30
nanoseconds to allow the contents of Su to be gated to
the Sp+1 logic. During the rest of the Panel time slice,
BLKSMS is held high by SWCS-RD and BLKSMFF, Signal
BLKSMFF is generated from the set output of the Block
Su flip-flop. This flip-flop is set by a master clear signal
and remains set until completion of the CS scan/read
operation.

Gating of the CS Scan register contents through the data
display selectors is accomplished by three SELN signals, as

shown in Figure 2-195. These signals are forced to a value
required to gate data from the CS Scan register to the data
register indicators on the Panel when the CONSOLE
MODE SELECT selector is set to the CS-RD position. As
a result, the data register selector does not have to be set
to the CSS position, when doing a CS scan/read operation.

Parity errors detected during a CS scan operation are done
so by the logic shown in Figure 2-200. This logic detects
errors occurring both during the scan of CS and the AT.
Errors that occurred during the scan of each CS page are
detected by comparing the contents of the CS Scan
register after the last address has been scanned in a page
(CSS-FF9F) with the lower eight bits of Su (G1-CIN). If
the CS Scan register contents are all 1's, except for bits 9
and 10 (CSS-FF9F low), at the same time that the lower
eight bits of Sp are all 1's (G1-CIN high) to indicate
address 25510 (or a multiple of address 2651¢), the page
was loaded correctly. Any other combination signifies an
error, which generates SCANERR at E350. This signal sets
the CS PE flip-flop to light the CS PARITY ERROR
indicator on the Panel. In addition, STOP-CS is also
generated to stop the CS scan operation by clearing the
Console Busy flip-flop. This signal, however, can be
disabled by the DISABLE CS switch on the Panel to
disable the CS scan stop condition. Parity errors detected
during the AT scan are handled in a similar manner via
generation of signal ATCHKEV.
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Figure 2-199. CLRFM and BLKSMS Logic
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Figure 2-200. CS Scan Error Detect

Console Busy flip-flop. This signal, however, can be
disabled by the DISABLE CS switch on the Panel to
disable the CS scan stop condition. Parity errors detected
during the AT scan are handled in a similar manner via
generation of signal ATCHKEV.

CS Write

The CS write operation loads a particular word entered via
the data register pushbuttons into the location in either
CS or the AT specified by the contents of S . The
operation may be performed in either the stop/step or the
normal mode. If in the stop/step mode, different words
may be entered into successive locations each time the
CONSOLE RUN pushbutton is pressed. If in the normal
mode, the same word may be dynamically written into
successive locations of CS and through the last address of
the AT automatically when the CONSOLE RUN
pushbutton is pressed. in either case, the first location to
be written into (if different from 00001g) must be
counted up to by first performing a breakpoint scan as
described in the paragraph titled Console Modes. This scan
is necessary since the Sy register cannot be entered
directly with an address. Like the CS scan and CS read
operations, the CS write operation must be performed in
the off-line mode (no other processor requesting time
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slices). (The CS write operation should not be confused
with the initial CS load operation. The latter is used to
load CS and the AT with new data at the beginning of a
job. The former is used to change data already contained
in CS and the AT as a result of the CS load operation.)

Logic for performing a CS write is shown in Figure 2-201.
As in the CS scan/read, signal CONBUSY is generated for
two conditions: continuously if the CS write operation is
performed in the normal mode, or once per Panel time
slice if performed in the stop/step mode. In addition, the
contents of Sy are updated once per time slice as
controlled by BLKSMS. Data to be written is entered in
the 16 console data register pushbuttons and stored in
either CS or the AT via the data display selectors. These
selectors are enabled by three SELN lines, which are
forced by the CS-WR signal derived from the CS-WR
position of the CONSOLE MODE SELECT selector
switch to a value required to gate the data register output
lines.

A write into either CS or the AT must be accompanied by
a corresponding write enable: WRITE-CS or AT-WRITE.
Both enables are generated at E700 of a Panel time slice,
as shown in Figure 2-202. Selection of either WRITE-CS
or AT-WRITE is controlled by the AT-SEL signal from
the CS loader logic. During a CS write operation, this logic
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also functions as during a CS load routine to monitor the
contents of Su. Initially AT-SEL is low to generate
WRITE-CS. When the CS loader logic determines that all
of CS has been addressed, by comparing the contents of
Su with the number of CS modules in the system, writing
into the AT can begin. At this point, AT-SEL goes high to
generate AT-WRITE.

In systems containing a 5120 (5K)-word CS, addressing
errors will occur if attempts are made to address the
upper 3072-word portion of the second storage unit.
These errors will occur because ‘‘wrap-around’” of the
Su contents will not occur if addressing in this range;
that is, the contents of Su will not have yet re-cycled
back to a 4096-word boundary address. Addressing in
this non-existent portion of CS will be indicated by
the CS PARITY ERROR indicator on the Panel, which
will light as a result of detecting what appears to be
parity errors in the ““bad data’ located at these non-
existent addresses.

MS/RO and RF Read and Write

Panel-initiated read and write operations performed on
Main Storage (MS), or in registers of the Register File
(RF) or Register Option (RO} are done so by means of
corresponding ul subroutines located in CS. When the
CONSOLE MODE SELECT selector on the Panel is set to
the corresponding position {MS-RD, MS-WR, RF-RD,
RF-WR, RO-RD, or RO-WR), a corresponding starting
address is generated by the set S logic which causes a jump
to the subroutine for performing the selected operation.
The set S logic and the corresponding starting addresses
generated are shown in Figure 2-203. The address is
generated on seven lines that feed the Su register. (The
complete jump address is 12 bits in length, where the
remaining 5 bits are forced to zero in the Su register.)
Each read or write subroutine causes one word to be read
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or written during each time slice assigned to the Panel.
During the time slice, Su is updated in the normal manner
until the subroutine is completed for one word. At the
beginning of the next time slice, another word can be read
or written since the position of the CONSOLE MODE
SELECT selector automatically forces the starting address
of the subroutine again.

Any of the subroutines may be performed in either the
on-line mode (other processors running) or off-line mode
{no processors running). If doing an RF operation, any of
the registers in the BRF or Groups | and 1l of the ERF
{except the Boundary Crossing register) may be accessed.
(The Group !l registers of the ERF, associated with 1/0
processors 0 through 3, may not be accessed by this
mechanism.) The six read and write operations (MS read,
MS write, RO read, RO write, RF read, and RF write) are
implemented by four ul routines, with the MS and RO
read and write operations sharing the same read and write
routines.

The MS/RO read routine of Figure 2-204 reads the data in
MS located at the address entered into the CONSOLE
ADDRESS REGISTER DISPLAY pushbuttons and
transfers it to the CONSOLE DATA REGISTER
DISPLAY indicators. If the CONSOLE CONTROL
SELECT switch is in the STOP/STEP position, one pass
through the routines will be executed in one time slice
each time the CONSOLE RUN pushbutton is pressed. If
the CONSOLE CONTROL SELECT switch is in the
NCRMAL position and the CONSOLE RUN pushbutton
is pressed, the routine will be repeated to read out the
contents of all sequential locations above that entered
into the address register pushbuttons until all of MS or the
RO is read. The MS/RO write routine of Figure 2-205
operates in a similar manner: data to be stored at an
address entered in the address register pushbuttons is
entered in the data register pushbuttons. Again, data can
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Figure 2-206. RF Read Routine
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Figure 2-207. Reading Segment Tag Portion During Panel RF Read

be stored in either the stop/step or normal mode. When
operating in the normal mode, the data entered into the
data register is stored at the address entered into the
address register and at all sequential locations above that
address.

The RF read and write routines are somewhat more
complex than those for MS and the RO because of the
necessity to cross processor boundaries. Since the Panel is
considered a processor, the only way it can gain access to
the file registers of another processor is by means of the
Boundary Crossing (BC) register. The RF read routine of
Figure 2-206 takes the processor and register number
entered into the address register pushbuttons and transfers
it to the BC register via the Au register. Then an {VK ul is
executed so that the processor file register to be read can
be addressed by the contents of the BC register. The
contents of the selected register are read and transferred
to Bu. The contents of Bu are then routed to the data
register by a STB ul preceded by a RVK ul. The RVK pul
is necessary to cancel the IVK ul so that the desired
register number (that of the console data register) can be
derived from the STB ul X-field instead of from the BC
register.

If the Relocation and Protection feature of the RO is
present, the RF read routine will also read the Segment
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Tag register corresponding to a BRF register selected and
display the four bits of this register in the X0 through X3
indicators of the CONSOLE DATA REGISTER
DISPLAY. This is accomplished by the logic shown in
Figure 2-207. The segment tag is selected by BC and
BRESXO bits derived from the BC register instead of
from the resource allocation logic and ul X-field. The
selected register is clocked into the extended portion of
the Console Data register at t80 by ENCLKNRX. This
enable is generated for a RF read operation assuming that
an ERF register has not been selected (BC-007 is high).
The 4-bit tag value in the data register is selected for
display in the CONSOLE DATA REGISTER DISPLAY
X0 through X3 indicators by SELNDPYX. This select
signal is generated when the CONSOLE DATA
REGISTER SELECT selector is set to DATA.

The RF write routine of Figure 2-208 is executed
similarly, the only significant difference being that data is
to be written into the processor file register selected by
the contents of the BC register. This data again is entered
into the console data register. As for MS read and write
operations, RF operations can be executed in either the
stop/step or normal mode. If the Relocation and
Protection feature of the RO is present, the RF write
routine may also be used to write the Segment Tag
register corresponding to the BRF register selected. This is
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Figure 2-208. RF Write Routine

accomplished by the logic shown in Figure 2-209. The
segment tag value set into the_extended portion of the
Console Data register via the SWSETN XO through X3
signals is routed to the selected Segment Tag register. This
register is selected by the BC and BRFSXO bits from the
BC register. The value is written into the register by write
enable SEGTAGWR. For this purpose, SEGTAGWR is
generated for a register file write operation under control
of an IVKu | (signal INV-F/F high). The tag value is also
selected for display in the extended portion of the data
register indicators by select signal SELNDPY X,

The BC register itself may not be selected as a register to
write into by the RF write method. For this unigue case,
a situation is created where the BC register attempts to
address itself by its own contents. A circular condition
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results during which the write operation generates
spurious address bits that attempt to select other registers
at random.

OPERATING MODES
Processor Modes

The basic rationale governing processor execution in a
selected mode is to start the processor by pressing the
PROCESSOR RUN pushbutton, which sets the
processor’s Busy flip-flop in the B/A register; and stop the
processor by means of signals generated according to the
mode selected, which clear the processor’s Busy flip-fiop.
Logic for starting the processor via the PROCESSOR
RUN pushbutton is shown in Figure 2-210. Pressing this
switch generates SW-GO, which sets the Processor Run
flip-flop. The output of this flip-flop is fed to one side of
a NAND gate to set the Go flip-flop. The other side of the
NAND gate is fed with the Go Button flip-flop output
routed through a one-shot circuit. The one-shot assures
that the set pulse to the Go flip-flop is only 100
nanoseconds wide.

Setting the Go flip-flop generates GO-FF, which is routed
to the B/A register to set the processor’s Busy flip-flop
upon receipt of a corresponding processor select signal.
This signal is generated by setting the PROCESSOR
SELECT selector to the desired processor number, which
generates a SWSELGO signal. These two signails, GO-FF
and SWSELGO, set the processor's Busy flip-flop, as
described in the paragraph titled Busy/Active Register.
Once the processor’s Busy flip-flop is set, the Go flip-flop
can be cleared to allow another processor to be turned on
from the Panel. This is accomplished by the CLR-GOFF
signal, which is generated from SWSELGO and the
STATE signal from the RAN.

Normal Mode

The processor normal mode is initiated by the sequence of
events just described plus setting the corresponding
PROCESSOR CONTROL SELECT switch to the
NORMAL position. This switch position does not produce
a corresponding signal as do the processor select switch
and GO button. Its selection, however, is implied by the
absence of a signal from either the STOP/STEP or
BREAKPOINT positions of the PROCESSOR CONTROL
SELECT switch. As a result, the processor will continue
to run indefinitely in this mode until either the stop/step
or breakpoint mode is selected.

Stop/Step Mode
The processor stop/step mode is selected by setting the

corresponding PROCESSOR CONTROL SELECT switch
to the STOP/STEP position and proceeding as for the
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processor normal mode. As discussed previously, the
stop/step can be executed by performing either one major
cycle or one MLI per depression of the PROCESSOR
RUN pushbutton, as determined by the setting of the
CYCLE STEP switch. Logic for implementing these two
sub-modes is shown in Figure 2-211. When the stop
condition defined by either of these two sub-modes is
met, signal RNI-TX is generated. This signal is fed to the
clear side of the corresponding Busy flip-flop in the B/A
register to clear the flip-flop. If the CYCLE STEP switch
is set to the up position, the processor runs for one major
cycle and is then turned off. This is implemented by signal
SWCYCSTEP from the up position of the switch. This
signal generates RNI-TX at E350 of at least one time slice
preceding the one during which the selected processor will
execute. The RNI-TX signal, therefore, is present during
the execution time slice which means that the processor
will be turned off at the end of this single time slice.
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If the CYCLE STEP switch is set to the down position,
the processor runs for one MLI as determined by signal
RNI-F/F from the RNI flip-flop. This flip-flop sets upon
detection that the present MLl has been completed and
the RNI sequence of the next MLI has been executed. The
RNI breakpoint sub-mode discussed in the paragraph
titled Normal Mode makes use of the fact that the next
MLI RNI sequence has been executed. The cycle step
evaluation, however, is interested in knowing only that
the present MLI has been completed. The logic that drives
the flip-flop makes an evaluation of the address in Su to
determine if the MLI RN!I sequence has been executed.
This is done by examining bits 4 through 11 of S to see
if they are all O's. If they are 0, SM+FRJ04 through
SM<FRJT1 are all high which indicates that Su has been
reset to either 00024 (RNI1 sequence starting address)
or 000945 (RNI2 sequence starting address) to start the
next MLI, but has not been updated past 000F 14 (last
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Figure 2-211. Cycls Step Logic
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address of RNI2 sequence). The result is to generate
RNI-TX upon completion of either the RNI1 or RNI2
sequence.

Breakpoint Mode

The processor breakpoint mode is entered by setting the
corresponding PROCESSOR CONTROL SELECT switch
to the BREAKPOINT position. When set to this position,
the 20-bit breakpoint address set in hexadecimal form by
the five BREAKPOINT ADDRESS SELECT selectors on
the Panel (assuming the Relocation and Protection feature
of the RO is installed) is continuously compared with the
last physical address that referenced a word (either MLI or
data) in MS. The lower 8 bits of this physical address are
derived directly from the S register; the upper 12 bits
from the RO. These upper 12 bits may be derived from
either the system address or from the relocation logic,
depending on the position of the SYSTEM/PHYSICAL
switch as shown in Figure 2-212. If set to SYSTEM, select
signal SYSTEM is high and the upper 12 bits are derived

from the system address (upper 8 bits of S and the 4-bit
segment tag value). If set to PHYSICAL, signal SYSTEM
is iow and the upper 12 bits come from the relocation
logic and will usually represent a relocated equivalent of
the system address.

Upon reading a breakpoint condition (two addresses
equal), the processor is stopped by clearing its Busy
flip-flop. Logic for performing S register breakpoint
comparisons is shown in Figure 2-213. For purposes of
simplification, only the left-most of the five selectors is
shown. This selector generates an encoded four-bit address
corresponding to one of the 16 positions of the selector
(04 to Fqg). This encoded address is compared in
complement form with extension address bits X0 through
X3 from the RO in true form for a match. The
comparison is made on a bit-by-bit basis via exclusive-OR
gates. If all four bits from the selector match the
corresponding four bits from S, signal SRBKCP-X0 goes
high. The other 16 bits of S are compared with encoded
addresses from the other four selectors in a similar
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fashion. If all 20 bits of the physical address match the
hexadecimal address set in the selectors, signal MATCH is
generated and routed to the breakpoint sub-mode logic.
The signal is also routed to the Console Busy flip-flop
clear logic of Figure 2-214 for use during
Console-controlled MS read and MS write breakpoint scan
operations.

The breakpoint sub-mode logic consists of three NAND
gates corresponding to the three breakpoint sub-mode
switches: READ DATA, READ INSTR, and WRITE
DATA. If the READ DATA switch is set to the up
position, SWROPBKP is generated to stop the processor
after the operand located at the breakpoint address has
been read. Indication of an MS read operation is furnished
by RNI-F/F - STOREMS, meaning neither an RNI or an
MS store operation was performed. The other two
sub-mode switches stop the processor upon indication
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that the breakpoint occurred for their particular
conditions. (As discussed in the last paragraph, signal
RNI-F/F is used here in the breakpoint compare logic to
indicate that a new MLI has just been read.) When the
particular sub-mode condition is met, signal BKP-TX is
generated. This signal is routed to the B/A register to clear
the processor’s Busy flip-flop.

Panel Modes

Selection of a Panel mode is made by means of the
CONSOLE CONTROL SELECT switch. Like the
PROCESSOR CONTROL SELECT switches which select
processor modes, this switch allows the Panel to operate
in one of three modes: normal, stop/step and breakpoint.
Each mode is initiated by pressing the CONSOLE RUN
pushbutton, which sets the Console Busy flip-flop. This
flip-flop is similar to the processor Busy flip-flops in the



B/A register in that it enables the Panel to obtain time
slices through the RAN, If operating in the normal mode,
the Console Busy flip-flop remains set until the
CONSOLE CONTROL SELECT switch is set to either the
STOP/STEP or BREAKPOINT position. (The NORMAL
position of the CONSOLE CONTROL. SELECT switch is
implied by the absence of a signal from the STOP/STEP
or BREAKPOINT positions of this switch.) When this is
done, the flip-flop will be cleared when the corresponding
stop/step or breakpoint condition is reached.

Logic which sets and clears the Console Busy flip-flop is
shown in Figure 2-214. The flip-flop is set either manually
by pressing the CONSOLE RUN pushbutton (SW-RUN
signal) or under program control during a CS load
operation (RUN-LD signal). Clearing the flip-flop is
accomplished when any of six conditions is present:
system reset, Panel stop mode, stop CS, off, MS parity
error, or Panel breakpoint mode. Each of these conditions
satisfies a corresponding NAND gate, which generates a
low output to clear the flip-flop.

The system reset (SYSRST) gate is satisfied by either
AUTO-MC, MC-LD, or SW-MC, Signal AUTO-MC is
generated at the beginning of an autoload sequence. Since
the autoload sequence is a processor-controlled operation
(proc&r_ﬂ, the Console Busy flip-flop must be cleared.
The MC-LD signal is generated at the beginning of a CS
load routine to clear the flip-flop until a CS word is ready
to be transferred from either the disc or card reader.
Signal SW-MC is produced by the SYSTEM RESET
pushbutton on the Panel for purposes of doing a general
system reset.

The Stop gate clears the Console Busy flip-flop upon
detection of a stop mode condition. Generally, this
condition will be implemented by setting the CONSOLE
CONTROL _SELECT switch to the STOP/STEP position,
generating SWSTOP-C. For this condition, the Panel will
execute one major cycle per depression of the CONSOLE
RUN pushbutton. During a CS load routine, however, the
stop condition is implemented to clear the Console Busy
flip-flop after each CS word has been transferred until the
next word is ready for transfer. This condition generates
STOP-LD which, in conjunction with RUN-LD, set and
clear the flip-flop at one-major-cycle intervals.

The Stop CS gate clears the Console Busy flip-flop upon
detection of either a CS scan error or an Su register
breakpoint condition. For either case, signal STOP-CS is
generated. Generation of STOP-CS due to a CS scan error
condition is discussed in the paragraph titled CS
Scan/Read; this paragraph discusses generation of the
signal due to an Su register breakpoint condition. This
condition is usually implemented for purposes of scanning
up to a particular CS address to begin a CS read operation.
The scan operation consists of comparing the present CS
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address in Sp with the breakpoint address set in the
right-most four BREAKPOINT ADDRESS SELECT
selectors. Logic for accomplishing this is shown in Figure
2-215. The compare operation is identical to that for the
S register breakpoint compare shown in Figure 2-213,
except that the CS breakpoint scan compare is made on
the contents of Su instead of S. Like 2-213, Figure 2-215
shows details for only one of the selectors and the
corresponding four bits of Su. The breakpoint scan mode
is entered by setting the CONSOLE CONTROL SELECT
switch to the BREAKPOINT position, which generates
signal SWBRKPT-C. Upon detection of a breakpoint
compare, signal STOP-CS is generated which clears the
Console Busy flip-flop.

The Off gate clears the Console Busy flip-flop when none
of the Console functions has been selected by the
CONSOLE MODE SELECT selector, that is, the switch is
set to the OFF position. Detection of a parity error (PE)
during an MS read operation clears the flip-flop via the MS
PE gate. This gate is fed with PE information from the MS
PE display logic via the MS PE signal. This signal is
ANDed with SWDISMPE, which is generated by the
STORAGE PARITY DISABLE switch on the Panel. If
activated, this signal goes low to disable the MS PE signal.
The resultant output is fed to the MS PE gate of the
Console Busy flip-fiop clear logic.

The BRKPT MODE gate is satisfied by a breakpoint stop
during an MS read or MS write operation. This stop will
occur as a result of reading or writing a block of data
between some starting address and an ending address
entered into the five BREAKPOINT ADDRESS SELECT
selectors. The compare is made by the S register
breakpoint logic of Figure 2-213. As shown in the figure,
the MATCH signal generated upon reaching the
breakpoint address is routed to the BKPT MODE gate of
Figure 2-214.

LOADS
Disc CS Load
A disc CS load may be initiated in one of three ways:

1. Setting the POWER ON pushbutton to on
{power on load)

2. Pressing the RESET/LOAD pushbutton
(reset/load load)

3. Executing a CS Load disc command (CS disc
command load)

The power on and reset/load loads are initiated under
operator control via the System Control Panel. The power
on load may be performed with the system in the
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operator or program mode, the reset/load load may be
performed with the system in the operator mode, program
mode, or maintenance mode. The third method is
initiated under program control and may be performed
with the system in the operator mode, program mode, or
maintenance mode.

Each load may be divided into two parts: an initiate part
and a data transfer part. The initiate part generates signals
in the shared resources that set up conditions in both the
disc IFA and shared resources in preparation for the
subsequent transfer of words to be stored in CS. Logic
used during the CS load initiate part is shown in Figure
2-216. The logic generates eight initiate signals. Four of
these eight signals (DISCS, POMC-10, DOA, and MC-10)
are sent to the IFA; the other five (LDCS-WR, STOP-LD,
MC-1, MC-2, and MC-3) are used within the shared
resources. Prior to beginning any of the three CS loads,
the disc IFA must be selected as the device from which
the load will be made. This is accomplished by setting the
LOAD SELECT switch on the Panel to the DISC position.
Setting the switch to this position generates SWDISC,
which is sent to the shared resources to set the Load
Select flip-flop. Setting this flip-flop generates DISCS,
which enables the IFA for the CS load and subsequent MS
load.

Power-On Load

The power-on load is initiated automatically when power
is initially applied to the system via the POWER ON
pushbutton on the Panel. When set to the ON position,
the switch initiates a power-on system reset sequence.
During this sequence, PWRON-MC is low which sets the
Power On System Reset flip-flop. Through one level of
inversion, the flip-flop (set output) generates POMC-10.
This signal is routed to the IFA to clear the First Seek
Drive O flip-flop. The true form of the set output is fed to
the Power On OR-gate to generate MC-LD which, in turn,
generates MC-10, MC-1, MC-2, and MC-3. Signal MC-10 is
used to clear all registers and counters in the IFA except
the Data Byte counter. This counter instead is set to a
count of 33281, for use as a word transfer counter.
Signals MC-1 and MC-2 are used in the shared resources to
clear the S register to address 000044, at which loading
of CS will commence. Since Sy cannot be cleared directly,
it is done by clearing the Bu register in the ALU and
transferring its contents (zeros) to Su. Logic for
accomplishing this is shown in Figure 2-217. Signal MC-1
generates ENRBM-0 and ENRBM-1 which resets (clear)
both halves of Bu. The output of Bu is routed to S

through the Su fan-in logic when enabled by ENALU-SM.
Signal MC-2 generates EXCEPT which, in turn, is used to
generate ENCLKSM. Signal EXCEPT is generated for this
purpose of setting address 0004g into Sy for beginning a
CS load. Signal MC-3 is routed to the clear side of the
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DOA flip-flop to clear this flip-flop upon detection of a
burst check error.

Upon completion of the power-on system reset sequence,
PWRON-MC goes high to clear the Power On Master Clear
flip-flop. The resultant low from the set side is inverted
and fed to three one-shot circuits and an OR gate to set
the DOA flip-flop. Signal DOA (Dead Start) initiates the
CS load operation in the IFA, starting from cylinder O,
track 1. It is delayed about 600 nanoseconds from MC-LD
{and therefore MC-IO and MC-1, MC-2, MC-3) via
one-shot circuit 2 to allow the master clear operation
initiated by these two signals to be completed. One-shot
circuit 3 furnishes a negative pulse 60 nanoseconds wide
to set the DOA flip-flop. Signal DOA is inverted to form
STOP-LD. This signal is used in conjunction with
RUN-LD (see Figure 2-218) to start and stop the RAN for
enabling single-word _transfers of CS data. Signal DOA is
also ANDed with SWMAINT (MAINTENANCE MODE
pushbutton not on) to generate LDCS-WR. This signal
forces a CS load {CS write) condition and acts as if the
CONSOLE MODE SELECT selector were set to the
CS-WR position. The signal also forces selection of the
Console Data register as the means for transferring data
from the disc to CS. This forced selection simulates
setting the CONSOLE DATA REGISTER SELECT
selector to the DATA position. The action of clearing the
Power On System Reset flip-flop also deactivates MC-10,
MC-1, MC-2, and MC-3.

Reset/Load Load

The reset/load load is initiated manually by means of the
switch on the System Control Panel. This load is similar to
the power-on load except that POMC-10 is not generated
and that performing this load in the maintenance mode
also depends on activating the SYSTEM RESET
pushbutton and setting the CONSOLE MODE SELECT
selector to CS-WR. Regardless of whether the system is in
the operator mode, program mode, or maintenance mode,
pressing the RESET/LOAD pushbutton activates
SWDEADS. This signal sets the DOA flip-flop via one-shot
circuits 2 and 3. In addition, the signal generates MC-LD
via one-shot circuit 2 and the Reset/Load OR-gate if the
system is in either the operator mode or program mode
{signal SWMAINT is high). Signal MC-LD in turn,
generates MC-I0, MC-1, MC-2, and MC-3 as in ‘the
power-on load sequence. If the system is in the
maintenance mode, SWMAINT is low and generation of
both MC-LD and LDCS-WR is inhibited. For this
situation, MC-10, MC-1, MC-2 and MC-3 are generated by
MC-SW from the SYSTEM RESET pushbutton and the CS
load condition is set up by SWCS-WR from the CS-WR
position of the CONSOLE MODE SELECT pushbutton.
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CS Disc Command Load

The CS disc command load is initiated via execution of a
CS Load disc command by the IFA in either the normal
mode or maintenance mode. Executing this command
generates DSRS (Dead Start Restart) in the IFA, which is
routed back to the shared resources. Essentially, this
signal provides a simulated setting of the RESET/LOAD
pushbutton under software control. This signal is also
generated upon detection of a burst check error in reading
data (CS words) from the disc in the maintenance mode.
Detection of such an error requires re-loading the CS data.
For whichever reason, it generates DOA, MC-10, MC-1,
MC-2 and MC-3 in the same manner as pressing the
RESET/LOAD switch. In addition, DSRS is routed to
indicator 00 of the CONSOLE ADDRESS REGISTER
DISPLAY on the Pane! to indicate that the CS load is
being performed as a result of either executing a disc
command or detecting a burst error. Lighting this lamp,
however, has real significance only upon detection of a
burst error. If this condition occurs, DSRSDIS is
generated to specifically inhibit generating DOA, MC-10,
MC-1, MC-2, and MC-3 by means of DSRS. This means
that the system will stop upon detection of a burst check
error. Re-loading CS must be re-initiated manually by
means of the RESET/LOAD and SYSTEM RESET
pushbuttons. Loading or reloading CS upon occurrence of
the other three conditions that generate DSRS (disc
command — normal mode, disc command — maintenance
mode, and burst check — normal mode) will take place
automatically.

Upon completing the initialization sequence in the disc
IFA, the transfer of data from the IFA to the shared
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resources can begin. This is done by the logic shown in
Figures 2-218 and 2-219. Figure 2-218 shows generation
of signals which control the transfer of data and Figure
2-219 shows the logic involved in the data transfer itself.
After receiving DOA from the shared resources, the IFA
reads the first word to be stored in CS from the disc in
serial fashion, assembles it in the IFA extended register,
and sends DDS (Disc Data Strobe) to shared resources to
inform it that the first CS word is available for transfer.
The CS load control logic AND’s DDS with SWDISC from
the PRIMARY position of the AUTOLOAD SELECT
switch to trigger one-shot circuit 1. This one-shot
furnishes a pulse 60 nanoseconds in width to clear the
console data register in preparation for receiving CS data
from the IFA. The falling edge of this one-shot triggers
one-shot circuit 2, which generates SEL EN. This signal,
also 60 nanoseconds wide, is used with SWDISC on Figure
2-219 to generate an enable which is applied to four
selector elements. These elements receive CS data from
either the disc, via the sixteen ER13 bits, or the card
reader, via the four ODI bits. When furnished with the
corresponding enable, the elements gate data from the
corresponding 1/O device. In the case of the disc, the
sixteen ERI3 bits are gated and passed to the Console
Data register as SLSTEN bits. When clocked by CLKNR,
the Console Data register passes the data to the data
display fan-in logic. Selection of the Console Data register
is forced by the CS write operation. Data from the fan-in
logic is then routed to CS for storage at the address
defined by the contents of the Su register. Initially, Su is
loaded with 000045 as discussed previously. For every
subsequent word transfer, Su is updated by the Su+1 logic
to form the address at which the next CS word will be
stored.
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During a CS load operation, data is transferred to CS from
the disc in an asynchronous manner under control of a
strobe generated for each word to be transferred.
Essentially, the CS load can be characterized as a
start/stop operation, where everything stops after a word
is transferred until receipt of the strobe for the next word.
The strobe required to transfer each word is the DDS
signal. This signal is generated in the IFA for every word
that the IFA assembles in its extended register. This
signal, in turn, is used by the shared resources to generate
RUN-LD which sets the Console Busy flip-flop, producing
CONBUSY. Signal CONBUSY is routed to the RAN to set
both the Console and Console State flip-flops. Setting
these flip-flops generate the signals necessary to start the
Sut+1 update logic and store the data transferred to the
Console Data register at the corresponding location in CS.
Signal CONBUSY is analogous to the processor requests
from the B/A register during normal operation in that it is
used to obtain a time slice for the Panel. Upon completion
of the single-word store, DDS is deactivated and the
Console Busy flip-flop is cleared by the ANDed
combination of STOP-LD and STATEC from the RAN.
When the next word has been assembled in the IFA
extended register, DDS is activated again and the above
sequence of events is repeated. Each word transfer takes
one major cycle to execute.

Transfer of data to CS will stop when one of the following
four conditions occur:

1. a burst check error is detected,

2. the CS load is completed,

3. a system reset operation is performed, or
4, the system is shut down.

Detection of a burst check error is performed by the IFA
and requires that the contents of CS be re-loaded.
Indication of a burst check error is furnished by signal
DSRS. This signal performs the same functions as if it was
generated for starting a CS load via execution of a CS
Load disc command, namely, generation of signals DOA,
STOP-LD, MC-10, MC-1, MC-2, and MC-3. When a burst
check error occurs, however, the CS load operation is in
progress and the DOA flip-flop is already set. To re-start
the load operation, this flip-flop must be cleared and set
again to initialize the disc heads. Clearing the DOA
flip-flop is performed by MC-3, which is routed back to
the clear side of the flip-flop as shown in Figure 2-195.
After the 600-microsecond delay from one-shot circuit 1
is complete, the DOA flip-flop is set again to re-start the
CS load operation. (Again recall that re-starting the CS
load by means of a burst check error is inhibited if the
system is in the maintenance mode, due to the presence of
DSRSDIS.)
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Determining that a CS load operation has been completed
is performed by the CS load complete logic, shown in
Figure 2-220. This logic determines that all data has been
loaded in both the CS and FRJ decode address table (AT).
Upon detecting this condition, the logic generates
ENDCSLD. The logic essentially consists of five parts: the
1K-word detector, the CS present detector, the AT Selec-
tor flip-flop, the AT present decoder, and the AT present
detector. During a CS load, the 1K-word detector moni-
tors the state of bits 6 and 7 from Su to sense when
Su reaches addresses of X0FF16, X2FF16 and
X3FF g, indicating that 256, 512, 768, and 1024
words, respectively, have been loaded. The states of
bits 6 and 7 are ANDed with X-00FF, indicating that
bits 8 through 15 are all 1-bits. This progress of
address detects in 256-word increments as shown in
Figure 2-221. When a load of 1024 words in CS is
detected, signal 1K DET is generated and routed to
one side of gate A.

The other side of gate A is fed with an output from the
CS present detector. This detector performs a dual
function of checking for CS loads in 1024-word
increments up to 16,384 words (four CS storage units),
and checking to see if a portion of CS addressed by Su is
actually present in the system. The latter check is
necessary since the Su+1 logic has no way of knowing
whether Sy has been updated past a CS location not
present in the system. Indication that another 1024-word
increment of CS is going to be loaded is provided by bits 2
through 5 of S . The states of these four bits are ANDed
with four CSEQ bits, the encoded result of which
represents hexadecimally the maximum number of
1024-word portions of CS present in the system. (For
example, if the system contains two CS storage units
(8192 words), the encoded CSEQ bit result will be
CSEQ1000.) This progression of address detects in
1024-word increments ANDed with the corresponding
CSEQ bit result is also shown in Figure 2-221. When a
match is detected, signal CS PRES DET is generated. Note
that generation of this signal is not dependent on the
states of Su bits 6 through 15; therefore, the signal
indicates only that the first location of the last 1024-word
portion of CS present in the system has been addressed.
Indication that this portion of CS has been completely
loaded is furnished by signal 1K DET. When these two
signals occur simultaneously, gate A is enabled and sets
the AT Select flip-flop. The set side of this flip-flop gen-
erates AT-SEL and the clear side feeds one input to gate B
used to generate ENDQ and ENDCSLD.

Signal AT-SEL enables the FRJ decode address table to be
loaded with data from the disc. This is accomplished in
basically the same manner as the CS load complete
operation: determining the number of words loaded per
address table and combining this information with the
number of address tables present in the system.
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Determination that an address table has been loaded with
256 words is accomplished by signal X-00FF. This signal
is combined with those from the 1K word detector and
the AT present decoder by the AT present detector. The
1K word detector determines which of the four
(maximum) address tables is being addressed by bits 06
and 07 of Su. This information is combined with outputs
from the AT present decoder, which determines from two
ATEQ bits how many address tables are present in the
system. The results of these two decoders are combined
with signal X-00FF to enable one of four NOR gates,
making up the AT present detector, as shown on Figure
2-221. This result, AT PRES DET, is combined with the
output from the CS Load flip-flop to generate ENDO and
EDNCSLD. Signal ENDO is fed to the IFA, informing it
that the CS and AT load operations have been completed.
Signal ENDCSLD is routed to the CS load initiate logic
(Figure 2-216) to clear the DOA flip-flop, thus
deactivating signal DOA to the IFA. This completes the
disc CS load operation.
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Card CS Load

A CS load from cards may be performed by either a
power-on system reset condition, or by pressing the
RESET/LOAD pushbutton. Cards may be read from
either the card reader or the reader/punch, as determined
by the setting of the LOAD SELECT switch on the Panel
(CR position for card reader and R/P position for
reader/punch). The initiate part of a card CS load is very
similar to that for a disc CS load. The only differences are
that the LOAD SELECT switch must be set to one of the
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two settings described above and that signal MC-10 is not
used. Referring to the CS load initiate logic of Figure
2-216, signal SWOTHER is generated by setting the
AUTOLOAD SELECT switch to either the CR or R/P
position. This signal clears the Autoload Select flip-flop
which causes DISCS to go low. A fow DISCS signal
enables the selected card device for performing the CS
load operation. Activating the RESET/LOAD pushbutton
generates DOA and MC-LD which, in turn, generates
MC-10. Signal DOA is routed to either the Integrated Card
Reader Adapter (ICRA) or the Integrated Reader Punch
Adapter (IRPA) to set up logic for assembling the first
word to be transferred to CS. Although generated, signal
MC-10 is not used by the ICRA or IRPA since there are
no pick-up heads to be positioned in the card reader
device as in the disc.

Data transfers from the ICRA/IRPA to the shared
resources differ from those from the IFA because data
transferred from the ICRA/IRPA is done so in nybl form,
four bits at a time, instead of in whole word form, This
requires four separate data transfers, one per nybl, to
assemble a complete word in the Consale Data register
prior to storing it in CS. These four data transfers are
enabled by the output of a two-bit nybl counter, which
generates four counts (00, 01, 10, and 11) in sequence.
The nybl counter consists of two flip-flops, labeled O and
1, as shown in Figure 2-219. When clocked by signal
NYBL CTR CLK, the nybl counter enables a nybl on the
ODI lines to pass through a selector to the Console Data
register. Signal NYBL CTR CLK is generated by ODS
{Output Data Scan) from_the ICRA. This signal serves a
similar purpose as signal DDS from the IFA, namely, to
initiate each nybl data transfer from the ICRA to the
shared resources. The four counts enable four nybls
through selector elements O through 3 in sequence, as
shown in Figure 2-222. During each four-nybl transfer,
signals NYBLO and NYBL3 are sent to the CS load
control logic. Signal NYBLO, sent concurrent with the
wansfer of nybl 0 to the shared resources, generates
CLRNR to allow the next four-nybl word to be assembled
in the Console Data register. Signal NYBL3, sent
concurrent with nybl 3, generates RUN-LD which in turn
generates CONBUSY. This signal sets up the RAN to write
the assembled word into CS. Once assembled in the
Console Data register, the resultant word from the ICRA
is stored in CS in the same manner as a word from the
IFA during a disc CS load.

Termination of a CS load from the ICRA is accomplished
by means of the ENDI signal from the ICRA, which
informs the shared resources that all the cards have been
read. This signal clears the DOA flip-flop in the same
manner as ENDCSLD clears the flip-flop at the end of a
CS load from the disc.
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- Figure 2-222, Transfer of ICRA Nybi Data to Console Data Register

Autoload

The autoload operation loads the operating system and
user programs into Main Storage (MS) upon completion of
the CS load. Either disc or card reader may be used to
load MS.” Unlike the CS load, which is loaded in CS in
sequential addresses under hardware control, the MS {oad
is under control of a Disc Autoload or Card Reader
Autoload routine stored as part of the CS load. These two
routines turn control of the MS load over to the Executive
processor, which controls the placement of various
routines in MS in accordance with their use. If the system
is in either the operator mode or program mode, and CS
was loaded by a power-on or reset/load condition, the
autoload operation begins automatically upon completion
of the CS load operation. For any other condition, the
autoload operation must be initiated manually by means
of the AUTOLOAD pushbutton.

*At present, only the disc may be used to load MS via the
autoload operation.
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Control signals generated during an autoload operation are
shown in Figure 2-223. These signals are initiated by
either SWAUTO from the AUTOLOAD pushbutton on
the Panel or AUTO-LD from the disc IFA. These two
signals are ORed together to set the Autoload flip-flop,
which removes the effects of switch bounce from the
AUTOLOAD pushbutton. Setting this flip-flop triggers
two one-shot circuits in sequential order. One-shot circuit
1 generates a negative pulse of 4 microseconds in width to
set the System Reset flip-flop. This flip-flop is used to
generate MC-1 and MC-2, which are used to clear the Su
register in the manner shown in Figure 2-195. One-shot
circuit 2 generates a 0.1-microsecond-wide negative pulse
which sets the Request 4 and the Request Enable
flip-flops. The Request 4 flip-flop generates REQ-4
through one side of an OR gate to set the Busy 4 flip-flop
of the Busy/Active register. This flip-flop output, in turn,
is used to obtain time slices via the RAN to effect the
transfer of MS data. The set output from the Request 4
flip-flop is also used in combination with SWOTHER from
the CR and R/P positions of the LOAD SELECT switch
to generate the starting address of the autoload routine by
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Figure 2-223. Autoload Control Logic



means of the set S logic. If loading from the disc,
SWOTHER is not present and the starting address formed
is 01131¢. If loading from a card device, SWOTHER is
present and the starting address formed is 0112¢14. The
Request 4 flip-flop is cleared at EO0O of the next minor
cycle by STATEN from the Null State flip-flop in the
RAN. Signal REQ-4 may also be generated by the normal
executive request from the Real Time Clock (RTC)
register. This request (RTC-REQ 4} is generated every
16.384 milliseconds when the RTC register overflows and
is enabled by the set output from the Request Enable
flip-flop.

Upon generating the starting address of the autoload
routine, transfer of data from either disc or cards begins
under control of I's in the autoload routine. The basic
flow of data from the input device (disc or cards) to MS is
shown in Figure 2-224. All enables are generated by the
ul’s of the autoload routine.

REGISTER SELECTION/DISPLAY

Certain registers of the shared resources and the ERF
Group Il may be selected for displaying their contents by
means of hardware alone, in contrast to the
software-controlled RF read routine described in the
paragraph titled MS/RO and RF Read and Write. These
registers are selected by the CONSOLE ADDRESS
REGISTER SELECT and CONSOLE DATA REGISTER
SELECT selectors on the Panel. The CONSOLE
ADDRESS REGISTER SELECT selector permits display
of address-related data contained in the S, Sy, Console
Address, and PE registers. The CONSOLE DATA
REGISTER SELECT selector permits display of
data-related information contained in the RTC, Fu-2,
Fu-1, CS Scan, B/A, Console Data, D, Au, By, and BC
regi;ters, plus the sum of Au and By,

Logic for displaying data-related information in the CON-

SOLE DATA REGISTER DISPLAY indicators is shown

in Figure 2-225. Each position of the CONSOLE DATA
REGISTER SELECT selector is fed to one of two encoder
circuits, depending on whether the register is associated
with the ALU in the shared resources (D, Au, Bu or sum
of Au and Bu) or with the ERF Group Il (B/A, RTC, BC,
CS scan, Fu—1, or Fu—2). The ERF Group Il register
positions are sent to an eight-input encoder, which
generates a three-bit register address on the three SELN
lines. This encoder is also fed with an overall ALU register
select signal (SWSELALU) which is generated when any
of the four ALU register quantities is selected. The three
SELN lines are sent to the data display selector. This
selector is fed with the 16 lines from each ERF Group !l
register selected by the CONSOLE DATA REGISTER
SELECT selector plus 16 lines from the ALU fan-out
logic, fed with inputs from the four ALU-associated regis-
ters. Each position of the Console Data register selector
generates a three-bit register address as shown in Table
2-27 to select its corresponding rester for display. Note
that the address generated for the four ALU-associated
registers is the same for all. This is a result of signal
SWSELALU, which is generated when any of the four
ALU-associated registers is the same for all. This is a result
of signal SWSELALU, which is generated when any of the
four ALU-associated registers is selected. These registers
are selected by their own encode logic because of the
necessity of displaying their contents during a null condi-
tion only. Furthermore, the contents must be the results
of only one of the eight processors running and then in
the stop mode. These restrictions are necessary so that
meaningful (non-changing) data may be displayed. The
null restriction is implemented by signals READNULL
and STATEN from the RAN. The result is to generate
SELDISPY, which generates a corresponding enable to
gate the contents of the selected ALU register to the selec-
tor. The selector output is sent to a second selector which
is used during the CS scan and CS read operation to dis-
play the contents of either CS or the FRJ decode address
table (AT). For console data display operations, signal
AT-SELAJ will be high to gate data from the selector
{N + CS) to the CONSOLE DATA REGISTER DISPLAY
indicators.

CR +ERI2
R/P 00-15 @
-ERFG3 -ER-ALU +RF+~MSI +DR~RO
00-15 -1 00-15 00-15
0015 » » MS
DISC { +ERI3
@ (1816} (1A18-21), (1A25-28) (1A29,30)
ENERG3-2
-ENERG3-3 +ENGR2/3 +ENERF~AM +CLKDR
+ENCLKDR

Figure 2-224. Autoload Data Storage
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Table 2-27. Console Data Registor Selectors address on the two SELM lines for each register selected

_ as shown in Table 2-28 These lines are fed to a driver and-
Selector Select Signal States then to the address display selector that is fed with the 16
Setting SELN-S2 | SELN-S1 | SELN-S0 lines from each address-related register. The output from
the selected register is routed to the CONSOLE
B/A ! ! ! ADDRESS REGISTER DISPLAY indicators on the Panel
css 1 0 0 over the MDISPY lines.
Fu1 0 1 1 Table 2-28. Console Address Register Selector
Fu2 1 0 1 Selector Select Signal States
Setting SELM-S1 SELM-SO
RTC 1 1 0
SK 1 1
BC 0 0 1
S 0 1
SUM 4] 0 0
™M 1 0
B 0 0 0
PE 0 0
Al 0 0 0
D 0 0 (] .
The Fu2, Fu1, RTC, CSS, D, Au, Bu, SUM, and BC posi-
N o 1 1 tions of the CONSOLE DATA REGISTER SELECT
selector and the Su and PE positions of the CONSOLE

DATA REGISTER SELECT selector are enabled only if

Logic for displaying address-related information in the
CONSOLE ADDRESS REGISTER DISPLAY indicators is
shown in Figure 2-226. The four positions of the
CONSOLE ADDRESS REGISTER DISPLAY selector are
fed to an encoder, which generates a two-bit register

the Panel is in the maintenance mode (MAINTENANCE
MODE pushbutton set to on). These selector positions are
disabled if the Panel is in either the operator mode or the
program mode by appropriate grounding of the selector
lug corresponding to the position on the Panel itself.
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Figure 2-226. Console Address Register Display
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APPENDIX 2A

INTRODUCTION TO ERROR CORRECTION CODES

In recent vyears, the demand is for increasingly
sophisticated error detection and correction schemes to
improve reliability as judged by performance, cost and
size. The objective here is to give an insight to the idea
(not the theory), some terminology, and a comprehensive
but simplified example of what error correction means.
The basic assumption is that all hardware has an intrinsic
failure rate, however small, so that by minimizing the
hardware in an entire system will tend to lower the system
failure rate. The design objective is to provide, with
minimum hardware, a redundancy coding that will
combat statistically independent single errors. Statistically
independent single errors means that about 99% of the
time, random or intermittent errors will occur only one at
a time. Over a long period of time the same identical error
will not occur. A shorted diode for example, that fails
every time it is used is not ah independent error. Noise
injected into the transmission medium tends to be random
in nature and therefore redundant coding is used to
combat it. To implement this objective, many
random-error-correcting codes have been used. For
computer applications, variations in the Hamming
Single-Error-Correction (SEC) and
Double-Error-Detection {DED) are the most useful.

Most single error correction coding was originally designed
for bit serial transmission of data over a radio link where
atmospheric noise is rather unpredictable. By sending
redundant bits with the message, the errors caused by
atmospheric noise can be overcome. Whether it was a data
bit or a redundant bit doesn’t matter because the coding
allows a single error to occur and still recover from it. The
basic assumption in a Hamming error code is that data
transmission is done bit serially. For bit parallel memories,
modifications to the coding hardware is necessary. The
coding hardware simultaneously calculates parity on two

bytes to minimize the calculating time required. Random .

access bit-parallel storage have used parity bits as their
basic error detection scheme. Typically a parity generator
calculates how many binary one bits there are in the word
to be stored. Then a parity bit is generated to make the
total summation of word data bits and the parity bit to be
an odd number of one bits. The result is then stored.
Upon reading this word from storage, the summation of
one bits is checked to verify an odd number of ones. Any
errors result in an interrupt to the computer warning it of
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an unidentifiable failure. To find the failing bit requires
some redundance coding scheme not available with parity.
The extreme redundancy code would be a bit for bit
duplication of the original data word (if the duplicate
word is known to be sent correctly). Using mathematical
theorems, the number of duplicate bits, or check bits, can
be minimized.

Table 2A1 shows an example of one method of producing
redundancy for correcting errors. For the information
shown in the three rows, the row and column parity is
calculated and shown to make odd parity.

Once the row parity and column parity is calculated, the
check on row parity is calculated and is shown in the
lower right-hand corner of the matrix. The array of
information can now be transmitted bit-serial over the
radio link and then staticized by the receiver into the
original format. If an error occurs, it will show up in both
the row and column parity checks. The bad parity checks
for the row and column will intersect at the erring
information bit so that it can be corrected. In other
words, a single error was detected by the check bits (row
and column parity) and it was correctable by pinpointing
the bad information bit.

Suppose that a double information error had occurred. If
one error was in Byte 1 and the other in a different
column of Byte 2, there would be two failing columns and
two failing row parity bits. In this case a double error

. could be both detected and corrected if the parity bits are

assumed to be correct. However, had both failing bits
occurred in the same byte, there would be two erring
column parity but no erring row parity. The double error
is now detected but not necessarily corrected because one
of the errors may have occurred in the check bits.
Generally, error detection is logically easier to implement
than error correction. For this reason, correcting single
errors and only detecting multiple errors is the most
common redundancy coding.

In the example, the code word consisted of 20 symbols of
which 12 were information and 8 were check symbols.
The check symbols provide the code word with
error-correcting capability.



The example shows how redundant check bits can
reconstruct a single error. To adopt this example to a
useful code for bit parallel storage requires doing the
coding simultaneously. Using three parity generators to
calculate the three row-parity bits and five parity
generators to calculate the five column parity bits, the
entire matrix can be simultaneously generated. The one
exception in the example is the column parity bit that is
generated from the row parity bits. It must wait until the
three row parity bits are generated. Finally, the entire
code word of twelve information bits and 8 parity (check)
bits can now be stored. When the code word is read from

Table 2A1. Odd Parity Example

Information Row Parity
Word 1 t1 10 0
Word 2 1100 1
Word 3 01 0 1 1
Column Parity 1 000 1

storage, similar simultaneous logic can detect and possibly
correct the error.

To minimize the logic and the number of check bits,
many coding schemes have been developed. The easiest
method of minimizing logic is to construct a table as

shown in Table 2A2, The table shows the relationship for
constructing the check bits from the information bits.
Now however, the matrix of “X’ is in the form that
mathematical theorems can be used to minimize the
redundant check bits. From this example, the technique
of forming error correction codes is shown. After the
mathematical theorems minimize the table, the new table
can be used to satisfy the construction of the logic.

Variations and modifications to the Hamming SEC-DED
codes have resulted in codes superior in cost, performance
and reliability. The parallel generation of all check bits
minimizes hardware and increases speed. For most codes,
the capability or probability of correcting a single error
and detecting all multiple errors can be empirically
determined.

Table 2A2. Formatting the Example into a Table

Row
Byte 1 Byte 2 Byte 3 Parity Bit
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2
Row Check Bit 1 X X X X
2 X X X X
3 X X X X
Column Check Bit 1 X X X
2 X X X
3 X X X
4 X X X
5 X X X
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3. MICRO-INSTRUCTION REPERTOIRE

GENERAL

The micro instructions (u's) are 14-bit codes stored in
control storage (CS) and are used to implement the
execution of machine-language instructions (MLI's) and
to perform special manipulative routines initiated by the
operator from the System Control Panel. There are 65
basic ul’s, grouped into 10 classes, comprising the reper-
toire. Some of these basic ul’s, such as the FNJ ul, can
be executed in one of two ways depending on whether
or not a certain bit of the ul is set. Each ul consists of
14 bits, arranged in a 16-bit format such that bit posi-
tions 9 and 10 are not used and are always in the clear
state. For the most part, ul’s enable inter-register trans-
fers of data and address information. Some ul’s, how-
ever, are used to access main storage {MS) or exercise
control over a programmed operation.

FORMATS

The 14-bit ul’s (one bit of which is a parity bit) are
read from CS and deposited in the 16-bit Fu register,
as they are needed. Since unused bit positions 9 and
10 are always 0, and the parity bit P (bit 8) is carried
along with the ul instead of being generated sepa-
rately, it is possible to express each ul as four hexa-
decimal characters as shown below:

(1] 3 4 7 8 1 12 15
2 bits
unused
- I\~ T Y — g >
W v A g v
0-»F O0--F 0189 0—F

Except for the hexadecimal character represented by bit
positions 8 through 11 of the pl, each character can
assume values of O through F depending on how the pi is
coded. Bit positions 9 and 10 of the remaining character
are always defined as O's; therefore, this character can
only assume values of 0, 1, 8, and 9.

31

The ul's are formatted in several different ways,
depending basically on their particular function. The
format used for each ul is shown with the description of
that pl in the paragraphs that follow. All formats,
however, use some or all of the field designators shown in
the following four formats. Explanations of these
designators follow the illustrations.

0 3 45 6 7 8 9 10 1 15
F Sols1|a| b| P| Not X
Used
0 3 45 6 7 8 9 10 11 12 15
F $qiS4| a| b Not X
0 {S1 O S2
0 3 45 6 7 8 9 10 11 15
F Spl S 11 P Not |
0| ©1 Used
0 3 4 7 8 9 11 12 15
F N P| Not N
Used
Field
Designator Meaning
F The basic function, or operation, code
P Parity bit (odd parity is used)
N An 8-bit operand (two fields, bit 04 is the
MSB)

1 A 6-bit jump index (two fields, bit 07 is the
MSB)

X A register designation, skip designator, a
mathematical constant, or a hexadecimal
value indicating a bit (one of 16) to be set,
cleared, or toggled. Bit 11 is not used (is a
“0"") for the latter.



If bit 11 is a ““zero” when X is used as a
register designation, the register specified by
bits 12-15 will be one of 16 in the lower half
of the basic register file (i.e., registers 0-15).
If bit 11 is a "*1”, then the register is one of
16 in the upper half of the basic file
(registers 16-31).

$0.51.S2 Sub-operation codes

ab These designators determine how the number
of the register to be operated on is derived.
If both a and b are 0", the X field desig-
nates a basic register. If both are 1", the X
field designates an extended register. If
either a or b is a 1", the register number is
derived by performing an inclusive OR
between the lower three bits of X and the
3-bit Ry or R2 field of the machine-language
instruction, as the case may be, and that
number specified a basic register. For the
SKB, SKB-, LBB and LBB- ul's, the machine
OR is performed between the lower four bits

of X and the corresponding 4 bits of either

the Ry or R, field (including the indirect
designator) of the machine-language
instruction.

CHARACTERISTICS

In addition to grouping ul’s into classes according to
similarities in execution, ul's can also be grouped into
more general categories according to certain basic
characteristics that cut across sub-division by class. These
categories are discussed below.

REGISTER ADDRESSABILITY

Since most pl’s can address registers of either the Basic
Register File (BRF) or the Extended Register File (ERF),
it is often convenient to know which ul’s are the
exception. Furthermore, of those that can address the
ERF, it is convenient to know which of the three groups
making up the ERF can be addressed by a particular ul.
This register addressability information is listed in Table
3-1. This table lists the capability of each pil to either read
or write a register of the ERF. The letters R’ and “W’’
are used to indicate read and write operations,
respectively. Any pl that can read or write a register of
the ERF can also read or write a register in the BRF.

BLOCKPOINT ulI'S

A micro program block is a series of ul’s that must be
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executed in the same major cycle (800 nanoseconds) if
the results of the data manipulations are to be valid. The
last gl in the block, must then be one that stores data in a
dedicated resource, and ensures that data is not lost in the
shared resources. These ul's are called blockpoint (BP)
instructions. Each time the hardware detects a BP ul, it
remembers the BP address +1, so that the program can
resume at the proper location on the next major cycle.
This is accomplished by routing the output of Su+1to
the Py register by means of the BP ul. At the end of the
major cycle, the contents of Pp is transferred to Ppi as part
of the W portion of the time slice.

All branch, skip, and register file write ul's are BP
ul's. These ul’s usually occur near the end of a time
slice as a result of their intended use. Therefore, they
are suitable for performing the BP function since any
ul occurring after the BP ul in the present time slice
will be repeated during the next time slice. Because
time slices always begin by reading the ul following a
BP ul, the microprogrammer must be sure that a BP
ul occurs at least once during every time slice. Block-
point ul's are also tabulated in Table 3-1.

FEEDER LOAD uI'S

A feeder load pl is one which loads data into either or
both Al or Bu (feeder) registers. As such, they inhibit
execution of a ul that uses the results of this data (such as
a SUM or CMP ul) for 100 nanoseconds following the
feeder load ul to allow sufficient time for the data to
propagate through the ALU (refer to the paragraph on
Cycle Delay Logic). The feeder load pl's, listed in Table
3-1, generally have the following properties:

1. cause full execution time of 200 nanoseconds
(100 nanoseconds null time plus 100
nanoseconds execute time) when immediately
preceding a 2,X (SUM, DSUM, CMP or CMU) pul.

2. clear inhibit on inner carries. Referring to Table
3-1, the following anomalies to the above
properties should be noted:

a. The DIG and CORC wl’s inhibit inner carries
as part of their execution. Therefore, they do
not clear the inhibit on inner carries as do the
other feeder load ul’'s.

b. The shift (SHF, SHR, DLS, and DRS) yl's
cause full execution time on the 2,X 1's even
if the shift count equals zero so that the Ay
and By registers are not altered.

c. The bit sense (SRO and SS1) ul’s cause full
execution time on the 2,X ul’s even if the Bu
register is not incremented.



I/O INTERFACE ul'S

Micro instructions which either read or write a Group IIl
register in the ERF are referred to as 1/0 interface pl’s.
Besides reading or writing the Group Il register in the 1/0
processor, these Ul’s also furnish a read or write status
signal to the control logic, which can also read or write
these registers in addition to pl’s. This is necessary
because the read and write control logic is under hardware
control and cannot otherwise determine that a particular
register has been read or written by a pl.

It is the responsibility of the microprogram to insure that
whenever a Group |l register is read by executing an /O
interface ul, a subsequent blockpoint ptl which stores the
data in the shared resources file will be executed in the
same major cycle.

PLWRITE pI'S

Aside from the BP pl’s, which write a starting ul address
into Pu from Py, the following four ul's write and P as

a part of their execution: CLR, STA, STB, and AND.

Since the only path to Py is from Su via Pp, these . l's
cause a full 14-bit address branch to another pl routine.
The two status bits, Overflow and Link, that are also
carried along with the 14-bit branch address are under
hardware control only. Therefore, they cannot be altered
directly but only by means of an arithmetic operation.

RESYNC ul's

Execution of some ul’s require that the following ul
start at the beginning of the next time slice. An example
of such a ul is the RNI (Read Next Instruction) ul,
which causes a branch to a routine that reads the next
MLI from MS and decodes it to determine its format.
These operations can always be executed in one time
slice; therefore, the RNl ul idles to the end of the
present time slice to assure that the first ul of the RNI
routine will be executed at EQ of the next time slice.
These ul's that cause the following ul to start at the
next EO are called resync ul’s, and are listed in Table
3-1.

TIMING CONSTRAINTS

Several pl's are subject to particular timing constraints in
their execution. Usually these constraints prevent the J|
from being executed during certain minor cycles of a time
slice (usually EO or E7) or, conversely, force the ul to be
executed at only a particular minor cycle. For other pl's
the constraint increases the execution time from one to
two minor cycle, depending either on the preceding il
executed or when the time-constrained pl was executed
during the time slice. Applicable timing constraints for
each pl are discussed in the paragraph which describes
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each pl. They are also summarized in this paragraph for
convenience. The first category of timing constraints is
summarized in Figure 3-1. These constraints must be
implemented by the micro-programmer when preparing
the I program. The second category of constraints is also
summarized in Figure 3-1 and in the items below:

1. The SUM, DSUM, CMP, and CMU uI's require
two minor cycles to execute if the preceding pl
altered the contents of Ay and/or Bl.

b. Execution of Load S ul’s during EOQ require one
or two additional minor cycles if the system
contains the basic protection feature or the
relocation and protection feature, and/or the
ECC feature.

c. Branch pl’s which reference the address portion
of both Sy and Pp (FNJ, JMP, and AND, CLR,
STA, and STB when X = Pu) require one
additional minor cycle if executed during any
minor cycle other than E7.

d. Branch p1’s which reference the address portion
of Pp only (FRJ, FZJ when (Au) =0, RNI1, and
RNI2) cause a resync condition described in the
paragraph on Resync ul’s.

e. Control ul’'s C101, C102, ROM, and SYNC
cause a resync condition described in the
paragraph on Resync ul’s.

The above group of timing constraints are referred to as
synchronous constraints because the timing restrictions
occur as a result of predictable timing anomalies. In
contrast, there are a number of asynchronous constraints
which occur because of unpredictable signals generated as
a result of operator intervention or 1/O processor requests.
When these signals are read, resolve time of 200
nanoseconds must be allowed before any actions
dependent on the states of such signals are taken. This
interval of time is necessary to allow the asynchronous
signal to assume a final, steady-state condition. For
example, if a LAW wul designating the Panel Address
register (ERF register OA) is followed by a Skip ul, which
uses the result of Apto perform a skip, an interval of 200
nanoseconds must be inserted between the two ul's to
prevent a possible machine malfunction. Such a
malfunction could result from the fact that the operator
could be altering the contents of the address register at
the very instant its contents were being read by the LAW
M, resulting in an indeterminate skip evaluation. This
resolve time requirement must be accommodated under



microprogram control. In the case of this example, the
requirement should be satisfied by two NOP pul’s
immediately following the LAW pul, a STA and LAW
combinations specifying an otherwise unused register
within the BRF or ERF, a SHF pul designating a shift
count of 0, or some other non-interferring combination of
two ul's. Such precautions are particularly applicable to
pl’s which read or write the ERF Group 11 registers.

MICRO-INSTRUCTION DESCRIPTION

Descriptions of each of the ul’s are presented in the
following paragraphs. The ul’s are arranged in order of
operation code according to their class. Each descrip-
tion consists of an English title, mnemonic identifier,

mat, and a narrative description. The description also
lists the ul execution time(s), plus any timing con-
straints or anomalies peculiar to the ul. The ten classes
of ul's are as follows:

1. register file read 6. shift

2. register file write 7. bit sense
3. register file read, MS related 8. skip

4. register file write, MS related 9. branch

operation code in hexadecimal form, instruction for- 5. immediate operand 10. control
< TIME SLICE
le— MAJOR CYCLE
@ cio
® FRJ
CTrTTT T
1
Vo1 By E7 | Wo o Wy ® FRJ
[ AR I I I
Rg Rq Eg Eq Eg E3 Eq Eg Eg E7 Wp Wq
K
HFW _———— —_———- =
LOAD § (5) r B |
IVK () | Rop | Ry | Eg | € | |
CI.RF @ SR DR [N I F |
IVK
FNJ
LDW
LDW-
LDB OTA SOW @
©) DTA-  sDB ()
OFA
10X
MINOR CYCLE LEGEND
R — READ
W — WRITE HOUSEKEEPING (HARDWARE)
E — EXECUTE (MICROCODE)
NOTES

PN =

oo,

DO NOT EXECUTE AT TIME SHOWN.

MUST BE EXECUTED AT TIME SHOWN IF STORING (D) IN MS.
EARLIEST TIME VALID INFO IS AVAILABLE DURING READ MS.
EARLIEST TIME FOR STORING (D) IN REGISTER FILE DURING A"
MS READ

DO NOT EXECUTE AFTER TIME SHOWN IF ACCESSING F OR Pyu.
EXECUTE ONLY AT TIME SHOWN IF.PERFORMED IN CONJUNCTION
WITH A M3 READ.

DO NOT EXECUTE A REGISTER FILE WRITE INSTRUCTION AT EO IF
DESTINATION X IS OF THE F REGISTER. TO DO SO MAY DESTROY
THE CONTENTS OF THE F REGISTER FOR THE PROCESSOR HAVING
THE PREVIOUS TIME SLICE.

Figure 3-1. Microcode Timing Restrictions
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Table 3-1. Micro-Instruction Characteristics

MNEMONIC

REG. ADDRESSABILITY

Group

GRP | GRP

F

Pu

1 1]

BLOCK
POINT

FEEDER
LOAD

Py
WRITE

RESYNC

AND
Cl01
C102
CLA
CLR

w*

*

w

=32

W W

s

X
X
X

cmMmpP
cMU
CORC
DFA
DIG

===

2

EE=ED

Y

X X{Xx

DLS
DRS
DSUM
DTA
pTA\

ITS

3=

X XX X X

EBL
EBU
ECOR
FNJ
FRJ

X XX X

FZJ
1DX
I0R
IVK
JmP

s

XX X X

X

LAB
LAW
LAW\
LBB
LBB\

ot lie s s}

o s 1

310D
DI

LBL
LBW
LBWA
LDB
LDW

X X X|X X X X X

LDW\
LSE
LSF
LS1
LS2

DIDIIJVNDIIIITD

IDVIIVVITIDID

DIVDVDIVDD

IV IJIIJIIJVITIDID

X X X X

NOP

RNI1
RNI2
ROM
RVK

==

==

X X X

X X X

sDB
SDw
SHF
SHR
SKB

£=

==
==

X X

SKB\
SKE
SKE\
SKG
SKL

SKN
SKZ
SRO
SR1
SS0

X XX X X X X|X

§81
STA
S§TB
SUM
SYNC

===

=

=
=

X X X X

XX X X

*W represents a Write operation, R represents a Read operation
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REGISTER FILE READ MICRO-INSTRUCTIONS

The ul’s in this class perform register file read references
which are unrelated to main storage operations.

Load Au Word (LAW)

D.0
0 1 2 3 45 6 7 8 9

1 1 0 1}j0/0|a|b|P

10 11 12 13 14 15

0 o0 X

Loads the AL register with the contents of the
register-file-register designated by the X-field. Execution
time: 100 nanoseconds.

lI:_)o1ad Au Complement (LAW-)

0 1 2 3 45 6 7 8 9 10 11 12 13 14 15

Load Au and Bu (LAB)
D,2

0 1
1 1 0 1|1({0]|alb}P

2 3 45 6 7 8 9 10 11 12 13 14 15
0 0 X

Loads the A register with the contents of the register file
register designated by the X-field. Loads the Bl register
with the contents of the register file register designated by
the X-field. Stores 0 in the Forced Carry register (FCR).

Execution time: 100 nanoseconds

Clear Ay (CLA)
D,3

0 1
1T 1 0 1j1i1]la|b]|P

2 3 45 6 7 8 9 1 1 12 13 14 15

0 o X

11 0 1|/0|1]a|b|P|O O X

Loads the Ay register with the one’s complement of the
contents of the register file register designated by the
X-field. Stores 1 in the Forced Carry register (FCR).

Execution time: 100 nanoseconds

Load Bu Word (LBW)
6,0

0 1 2 3 45 6 7 8 9 10 11 12 13 14 15

0 1 1 0ofOo|Ofa|b|P|]O O X

Loads the Bu register with the contents of the register file
register designated by the X-field. Stores 0 in the Forced
Carry register (FCR),

Execution time: 100 nanoseconds

Load Bu Complement (LBW-)
6,1

0 1 2 3 45 6 7 8 9 10 11 12 13 14 15

0 1 1 0o|Oo|1]a|b|P]O O X

Loads the By register with the one's complement of the
contents of the register file register designated by the
X-field. Stores 1 in the Forced Carry register (FCR).

Execution time: 100 nanoseconds

3-6

Clears the AL register. Loads the By register with the
contents of the register file register designated by the
X-field. Stores 1 in the Forced Carry register (FCR).

Execution time: 100 nanoseconds

Load Bu Link (LBL)

7.3
01 2 3 45 6 7 8 9 10 1 12 13 14 15
0 1 1 1|1{1]la|lb]P]O0 0 X

Loads the Bu register with the contents of the register file
register designated by the X-field. Stores the Link bit (bit
1 of Pu register) in the Forced Carry register (FCR).

Execution time: 100 nanoseconds

REGISTER FILE WRITE MICRO INSTRUCTIONS

The pl’s in this class perform register file write references
which are unrelated to main storage operations.

NOTE

The CLR, STA, STB and AND ul’s cause a branch
operation when the Pu-Register is designated by the
X-field.

Clear Contents of Register (CLR)
1,0

0 1 10 11 12 13 14 15

2 3 4 5 6 7 8 9

0 0 0 1|0j0OjJa|b|PjO O X




Clears the register file register designated by the X-field.
Updates Pp.

Execution time: normally, 100 nanoseconds

When the register file register designated is Py, the
execution time is 200 nanoseconds; however, the
instruction can be executed at time E7. Do not use at
time EO when the X-field designates the FRp register.
This could result in clearing the previous processor’s FRE
register (if changed during E7).

Store Au (STA)

1.1
01 2 3 45 6 7 8 9 101 12 13 14 15
o0 00 1|/o|1]lalb[PlO 0O X

Stores the contents of the Au register into the register file
register designated by the X-field. Update Pp.

Execution time: normally, 100 nanoseconds

When the register file register designated is Py, the
execution time is 200 nanoseconds; however, the
instruction can be executed at time E7.

Store Bu (STB)
1.2

0 1 2 3 4656 6 7 8 9 1 1 12 13 14 15

0 0 0 1|1|0}jafb|P|O O X

Stores the contents of the By register into the register file
register designated by the X-field. Updates Pp.

Execution time: normally, 100 nanoseconds
When the register file register designated is P, the

execution time is 200 nanoseconds; however, the
instruction can be executed at time E7.

logical Product, Au and Bu (AND)

Logical product is illustrated by the following truth table.

Bu
Au 0 1
0 0 0
1 0 1

Updates Pp.
Execution time: normally 100 nanoseconds

When the register file register designated is Py, the
execution time is 200 nanoseconds; however, the
instruction can be executed at time E7.

Inclusive OR, Au and Bu (IOR)
4,2

0 1 2 3 45 6 7 8 9 1011 12 13 14 15

0 1 0 O|1{0|a|bjP}|O O X

Stores the inclusive OR of the AU register and the By
register into the register file register designated by the
X-field.

Inclusive OR is illustrated by the following truth table.

B
A 0 1
0 1
1 1 1

Updates Pp.

Execution time: 100 nanoseconds

Exclusive OR, Au and Bu (EOR)

. 413

01 2 3 45 6 7 8 9 10 1.12 13 14 15

0 1 0 O|1|j1|ja|b|P|O O X

13
0t 2 3 45 6 7 8 9 1 11 12 13 14 15
0 0 0 %}j1|1lajb|P|O O X

Stores the logical product of the Au register and the Bu
register into the register file register designated by the
X-field.

Stores the exclusive OR of the AU register and the Bu
register into the register file register designated by the
X-field.

Exclusive OR is illustrated by the following truth table.

B
ASIH ()} 1
()} 0 1
1 1 o

Updates Pp.

Execution time: 100 nanoseconds



Sum, Au and Bu (SUM)
2,0

0 1 2 3 45 6 7 8 9 10 11 12 13 14 15

0 0 1 0j0|O]ja|b|P|O O X

Stores the sum of the Apiregister, the By register and the
Forced Carry register into the register file register
designated by the X-field. Overflow occurs when both the
Ay register and the By register have like signs, but the
resultant sum has the opposite sign. Overflow is reflected
in bit position 0 of the Py register; if overflow occurs, bit
0 is set, otherwise bit 0 is cleared. Link is the carry out of
bit position 0 during the sum operation. Link is reflected
in bit position 1 of the Pu register.

NOTE

If bits 0-7 of the Function register (F) equal
5016—531 6 ©f if inner carriers are inhibited as a
result of a DIG or CORC ul, bits 0 and 1 of the
Pu register are not affected.

Updates Pp.
Execution time: normally 200 nanoseconds
NOTE

Whenever any Feeder Load ul (q.v.) is executed, the
sum begins propagating and requires approximately
100 nanoseconds before it can be written in the
register file. Consequently, if a SUM ul is preceded
by a ul which is not a Feeder Load ul, the
propagation time is overlapped with the execution
of the non-Feeder Load il and the actual SUM pul
requires only 100 nanoseconds to execute.

Decimal Sum, Au and Bu (DSUM)

2.1
0 1 2 3 45 6 7 8 9 1 11 12 13 14 15
0 0 1 0|O0|1|a|lb}|P|O O X

Stores the sum of the Al register, the B register and the
Forced Carry register into the register file register
designated by the X-field. Transfers the inner carries to
the Inner-Carry register, unless inner carries are inhibited
(g.v. DIG and CORC). Overflow occurs when both the AL
register and the By register have like signs, but the
resultant sum has the opposite sign. Overflow is reflected
in bit position 0 of the Puregister; if overflow occurs, bit
0 is set, otherwise bit O is cleared. Link is the carry out of
bit position 0 during the sum operation.

NOTE

If bits 0-7 of the Function register (F) equal

3-8

5016-5316. link is the carry out of bit position 8
during the sum operation. Link is reflected in bit
position 1 of the Pu register. If inner carries are
inhibited as a result of a DIG or CORC ul, bits 0
and 1 of Pu are not affected.

Updates Pp.
Execution time: normally 200 nanoseconds
NOTE

Whenever any Feeder Load ul (q.v.) is executed, the
sum begins propagating and requires approximately
100 nanoseconds before it can be written to the
vegister file. Consequently, if a DSUM pil is preceded
by a ul which is not a Feeder Load ul, the
propagation time is overlapped with the execution
of the non-Feeder Load ul and the actual DSUM pl
requires only 100 nanoseconds to execute.

Sign and Magnitude Compare (CMP)
2,2

0 1 2 3 45 6 7 8 9 1 1 12 13 14 15

0 0 1 O0j1{0fla|lb|PlO O X

Performs a comparison of the Au register and Bu
register contents. A corresponding bit is set and all
others cleared in the bit 0-7 field of the register file
register designated by the CMP X-field to indicate the
results of the compare as shown below:

01 23 45 6 7

LI—- Au=Bu
Au fogically less than Bu
Au logically greater than Bu

Clear
Ap=Bu
L“——‘ Au arithmetically less than Bu
Au arithmetically greater than Bu
‘—— Clear

Bits 8-15 of the register file register are unchanged,
unless the register designated is an extended register, in
which case bits 8-15 are set.

For logical results, FFFF16 is the largest number that
can be stored and 000016 is the smallest number.

For arithmetic results, 7FFF16 is the largest number
than can be stored and 80001,6 is the smallest number.



Updates Pp.
Execution time: normally 200 nanoseconds
NOTE

Whenever any Feeder Load il (q.v.) is executed, the
compare begins propagating and requires
approximately 100 nanoseconds before the result of
the comparison can be written to the register file.
Consequently, if a CMP ul is preceded by a tl which
is not a Feeder Load ul, the propagation time is
overlapped with the execution of the non-Feeder
Load yl and the actual CMP | requires only 100
nanoseconds to execute.

Magnitude Compare (CMU)
2.3

0 1 2 3 4 5 6 7 8 9
0 0 1 O]1}1|lajb}|P

10 11 12 13 14 156

D 0 X

Performs a comparison of the Au register and Bu
register contents. A corresponding bit is set and all
others cleared on the bit 0-7 field of the register file
register designated by the CMU X-field to indicate the
results of the compare as shown belew:

01 2 3 45 6 7
LL‘—- Au=Bu
Au logically less than Bu
Au logically greater than Bu
Clear
Au=Bu
— Au logically less than Bu
— Au logically greater than Bu
“— Clear

Bits 8-15 of the register file register are unchanged,
unless the register designated is an extended register, in
which case bits 8-15 are set.

FFFF16 is the largest number that can be stored and
0000 is the smallest number,

Updates Pp.
Execution time: normally 200 nanoseconds

NOTE

Whenever any Feeder Load ul {(q.v.) is executed, the
compare begins propagating and requires
approximately 100 nanoseconds before the result of
the comparison can be written to the register file.
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Consequently, if a CMU ul is preceded by a pl
which is not a Feeder Load ut, the propagation time
is overlapped with the execution of the non-Feeder
Load ul and the actual CMU u! requires only 100
nanoseconds to execute.

REGISTER FILE READ, MAIN STORAGE RELATED
MICRO-INSTRUCTIONS

The ul’s in this class perform register file read references
which are, or may be related to, main storage (or register
option) operations. Micro-instructions LS1, LSF, LS2 and
LSE are unconditionally related to main storage (or
register option) operations. The LDW, LDW-, and LDB
ul’s are main storage (or register option) related only
when they are executed during E1 immediately following
the execution of an LS1, LSF, LS2 or LSE ul at EO. All
other ul in this class are main storage (or register option)
related when they occur after, but within the same major
cycle as LS1, LSF, LS2 or LSE yl executed for the
purpose of performing main storage (or register option)
read operations.

Selection of an input to the D Fan-In Network within the
ALU is conditioned by the ul’s within this class in the
following manner: .
a. During main storage read operations, the data
from main storage is selected at the D Fan-In
Network from E4 through E7.

b. During register option read operations, the data
from the register option is selected at the D
Fan-tn Network from E4 through E7,

c. For the purpose of making D Fan-In Network
selection only, register option read operations
which specify the register set associated with the
ECC feature are treated as main storage read
operations.

d. During all minor cycles other than those
described in items a, b, and ¢, the D ‘register is
selected at the D Fan-In Network.

Load S (LS1)
3,0

o 1
0O 0 1 1]0)J0|a{b]|P

2 3 45 6 7 8 9 10 11 12 13 14 16
00 X

Stores the contents of the register file register designated
by the X-field into the Storage Address register (S) and
into the Au register. Stores 0000,q (010) in the Bu
register. Stores 1 in the Forced Carry register (FCR).

This pl initiates a main storage reference. If the next
sequential y | is a load Storage Data register (LDW, LDW-,



or LDB), a write to main storage is performed; otherwise a
read from main storage is performed.

This 1 always begins execution at time EQ. Consequently,
the H' immediately preceding this ul must update Pp,
since upon reading up this ul, if the time is other than EO,
the hardware will cause an idle through the remainder of
the current major cycle. Then the normal mechanism at
time WO of storing Pp into Pu will cause the address
of an already executed ul to be designated as the
starting point for the major cycle, and a loop will
result in microcode.

Execution time: 100 nanoseconds

Load S (LSF)
3.1

0123 465%67 8 9
0 0 1 1] o| 1| a

10 11 12 13 14 15
bl PI 00

X

Stores the contents of the register file register designated
by the X-field into the Storage Address register (S) and
into the Au register. Stores FFFF16 (~110) in the Bu
register. Stores 0 in the Forced Carry register (FCR).

This pl initiates a main storage reference. If the next
sequential 1 is a load Storage Data register (LDW, LDW-,
or LDB), a write to main storage is performed; otherwise a
read from main storage is performed.

This ul always begins execution at time EO. Consequently,
the ! immediately preceding this (11 must update Py,
since upon reading up this ul, if the time is other than EO,
the hardware will cause an idle through the remainder of
the current major cycle. Then the normal mechanism at
time WO of storing P and Pu will cause the address of an
already executed ul to be designated as the starting point
for the major cycle, and a loop will result in microcode.

Execution time: 100 nanoseconds

Load S (LS2)

3,2
0 1 2 3 45 6 7 8 9

0 aIbIP

10 11 12 13 14 15
0 0

0 0 1 1]1 X

Stores the contents of the register file register designated
by the X-field into the Storage Address register (S) and
into the A register. Stores 000145 (+11g) in the Bu
register. Stores 1 in the Forced Carry register (FCR).

This p1 initiates a main storage reference. If the next
sequential pl is a Load Storage Data Register (LDW,
LDW-, LDB), a write to main storage is performed;
otherwise a read from main storage is performed.

This @1 always begins execution at time EO.
Consequently, the pl immediately preceding this ;1 must
update Pp, since upon reading up this ul, if the time is
other than EOQ, the hardware will cause an idle through the
remainder of the current major cycle. Then the normal
mechanism at time WO of storing P into Pu will cause
the address of an already executed ul to be designated
as the starting point for the n"llajor cycle, and a loop will
result in microcode.

Execution time: 100 nanoseconds

Load S (LSE)
3.3

012 3465 67 8 9 111 12 13 14 15
0 0 1 1]43| 1| al bl PI 0 o0 l

Stores the contents of the register file register designated
by the X-field into the Storage Address register (S) and
into the Au register. Stores FFFE1G (-210) in the Bu
register. Stores Q in the Forced Carry register (FCR).

X

This @1 initiates a main storage reference. If the next
sequential 14| is a load Storage Data register (LDW, LDW-,
or LDB), a write to main storage is performed; otherwise a
read from main storage is performed.

This ul always begins execution at time EO. Consequently,
the pl immediately preceding this (I must update Pp,
since upon reading up this 1, if the time is other than EO,
the hardware will cause an idle through the remainder of
the current major cycle. Then the normal mechanism at
time WO of storing P, into Pu will cause the address
of an already executed ul to be designated as the
starting point for the major cycle, and a loop will

result in the micro instruction routine.

3-10

Execution time: 100 nanoseconds

Load D Word (LDW)

7,0
01 2 3 45 6 7 8 9 10 1 12 13 14 15
0 1 1 1|]0{0|lajb|(P|O O X

Loads the Storage Data register (D) with the contents of
the register file register designated by the X-field.

Execution time: 100 nanoseconds

When executed during E1, immediately following an LS1,
LSF, LS2 or LSE ml at EO, this ! will result in a main
storage or register option write reference involving a full
transfer of the D register output. In such cases, alteration
of the contents of the D register by means of ul’s during
E2 through E7, may result in machine maifunction. The
word locations of the write reference within main storage,




or within the register option, are designated by the
contents of the S register (bit 15 irrelevant except for
breakpoint) and are subject to appropriate hardware
validity checks on the part of the Basic Storage Protection
or Relocation and Protection features. Write references
thus performed involve 16 data bits.

Load D Complement (LDW-)
7.1

01 2 3 45656 6 7 8 ¢ 10 11 12 13 14 15

0 1 1 1|0|1|a[bTP]o o | X

Loads the Storage Data register (D) with the one’s
complement of the contents of the register file register
designated by the X-field.

Execution time: 100 nanoseconds
For a description of the relationship of this ul to main
storage and register option write references see the

comments for the LDW ul.

LLoad D Byte (LDB)

7,2
0 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15
0 1 1 1{1{1]0Cja|{bi{P]|O X

Loads the Storage Data register (D) with the contents of
the register file register designated by the X-field.

When executed during E1, immediately following an LS1,
LSF, LS2, or LSE gyl at EO, this ul results in a main
storage write reference involving a partial transfer of the D
register output for which the right-most byte is duplicated
in the left-most byte position (the D register output to the
D Fan-In Network is not affected). In such cases,
alteration of the contents of the D register by means of
ul's during E2 through E7, may result in machine
malfunction. The byte location of the write reference
within main storage is designated by the contents of the S
register and is subject to appropriate hardware validity
checks on the part of the Basic Storage Protection or
Relocation and Protection features. Write references thus
performed involve the transfer of only the left-most data
byte where bit position 15 of the S register is clear, or the
transfer of only the right-most data byte where bit 15 of
the S register is set.

D to Au, True (DTA)

Cc,0
01 2 3 46 67 8 9 10 11 12 13 14 16
110000ab[d00 X

311

Transfers the output of the data fan-in to the Au register,
Loads the Bu register with the contents of the register file
register file register designated by the X-field. Stores Q in
the Forced Carry register (FCR).

If a main storage reference was initiated at the beginning
of this major cycle, this 1l will not execute prior to time
E4.

Execution time: 100 nanoseconds

D to Au, Complement (DTA—)

(O
0 1 2 3 45 6 7 8 9 10 11 12 13 14 15
1 1 0 0/{0j{1|a|b|P|O O X

Transfers the output of the data fan-in to the Au register.
Loads the Bu register with the one’s complement of the
register file register designated. Stores 1 in the Forced
Carry register (FCR).

If a main storage reference was initiated at the beginning
of this major cycle, this 1 will not execute prior to time

E4.

Execution time: 100 nanoseconds

Index {IDX)
C,2
0 1 2 3 45 6 7 8 9 10 11 12 13 14 15

11 0 O0Oj110taflbiPi{oO O X

If the register file register designated by the X-field
equals zero, the Bu register is cleared; otherwise, loads
the Bu register with the contents of the register file
register designated by the X-field. Transfers the out-
put of the data fan-in to the Ay register. Stores O in the
Forced Carry register (FCR).

If a main storage reference was initiated at the beginning
of this major cycle, this il will not execute prior to time
4.

Execution time: 100 nanoseconds

In the presence of the Relocation and Protection feature,
the IDX micro-command also serves as the implicit
rnicro-command control mechanism for dynamic segment
tag write references. Each IDX ul allows the next register
file write reference, performed under ul control, to occur
such that the associated segment tag is also written. The
segment tag value so written will correspond to the
segment tag value read during the last LS1, LSF, LS2, or
LSE ul, whenever the associated IDX pil simply cleared
the B register. Alternatively, the segment tag value so



written will correspond to the segment tag value read
during the associated IDX ul whenever this associated
IDX pl performed a transfer of the register file output to
the By register.

D False to Au (DFA)
Cc,3

0 10 11 12 13 14 15
K x |
Transfers the one's complement of the data fan-in
output to the Ay register. Loads the Bu register with

the contents of the register file register designated by the
X-field. Stores 1 in the Forced Carry register (FCR).

1 2 3 465 67 89
10 oI 1| 1| al b| P| 0 0 |

If a main storage reference was initiated at the beginning
of this major cycle, this instruction will not execute prior
to time E4.

Execution time: 100 nanoseconds

REGISTER FILE WRITE, MAIN STORAGE RELATED
MICRO INSTRUCTIONS

The pl's within this class perform register file write
references which may be related to main storage or
register option read operations. These ul’s will be main
storage or register option related when they occur after,
but in the same major cycle as LS1, LSF, LS2, or LSE
ul’s, which are executed for the purpose of performing
main storage or register option read operations.

Store D Word (SDW)

4,0
0 1 2 3 45 6 7 8 9 1 11 12 13 14 15
0 1 0 0j0|O|ajbiP|lO O X

Stores the output of the data fan-in into the register file
register designated by the X-field.

If a main storage reference was initiated at the beginning
of this major cycle, this 1 will not execute prior to time
ES5.

Updates Pp,

Execution time: 100 nanoseconds

Store D Byte (SDB)
41

0 1 2 3 45 6 7 8 9 10 11 12 13 14 15

X

o 10 ofof1]alb]rPlo o

Clears bits 0-7 of the register file register designated by
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the X-field. If the current contents of the Storage Address
register is even, bits 0-7 of the data fan-in output
are stored in bits 8-15 of the register file register
designated, otherwise bits 8-15 of the data fan-in output
are stored in bits 8-15 of the register file register
designated.

If & main storage reference was initiated at the beginning
of this major cycle, this yl will not execute prior to time
E5.

Updates Pp.

Execution time: 100 nanoseconds

IMMEDIATE OPERAND MICRO INSTRUCTIONS

The ul’s within this class transfer immediate operands to
the By-register. These immediate operands are contained
within the ul’s themselves, with the exception of CORC
and special cases of the LBB and LBB- ul's.

Undesignated bit positions within these ul’s have no effect

on pl execution except to the extent that they shall
participate in the formation of valid parity.

Enter Bu Upper (EBU)

A
012 3 45 67 89 101 12131415
1010 No plo o N,

Transfers Ng into bits 0-3 of the By register and transfers
N1 into bit positions 4-7 of the B register. Bits 8-15 of
the Byt register are unaffected.

Execution time: 100 nanoseconds

Enter Bu Lower (EBL)

B
012 3 4567 8 9 1011 1213 14 15
10 11 Ng Plo o N,

Clears bit positions 0-7 of the Bu register. Transfers Ng
into bits 8-11 of the By register. Transfers Nq into bits
12-15 of the By register.

Execution time: 100 nanoseconds

Load Bu Bit (LBB)
6,2
0 1

0 1 1 0|1|0]a|b]|P

2 3 45 6 7 8 9 10 1-12 13 14 15

0 0

X




If both a and b are set, sets the bit in both the upper and
lower bytes of the By register to correspond with the
processor state number in which the ul is being executed
and clears the remaining 14 bit positions, i.e.,

2(18—PROC#) , 5 (7-PROC#) ,

If both a and b are clear, a bit in Bu is set designated
only by bit positions 12-15 of the pul.

2(15_)() - Bu

If either a or b, but not both, is set, a bit in Bu is
set designated by four bits from the corresponding
field of the F register inclusively ORed with bit
positions 12-15 of the ul.

Stores 0 in the Forced Carry register (FCR).
Execution time: 100 nanoseconds

Load Bu Bit Complement (LBB-)

6,3
01 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 X

0 1 1 Oj1|1|a|b|P

If both a and b are set, clears the bit in both the upper
and lower bytes of the Byiregister which corresponds with
the processor state number in which the ul is being
executed and sets the remaining 14 bit positions, i.e.,

o(15—PROCH#)  5(7—PROC#) Bu

‘If both a and b are clear, a bit in By is cleared, desig-
nated only by bit positions 12-15 of the ul.

If either a or b, but not both, is set, a bit in Bu is
cleared designated by four bits from the corresponding
field of the F register inclusively ORed with bit
positions 12-156 of the ul.

Stores 1 in the Forced Carry register (FCR).

Execution time: 100 nanoseconds

Digit Duplication (DIG)

F2
0 1 2 3 45 6 7 8 9% 10 1 12 13 14 15
11 1 1]1]o0 P{O O X

This instruction copies the absolute value of the 4-bit
X-field (of the DIG instruction) into each 4-bit group
of the Bu register. Inhibits inner carries normally
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propagated for each digit position in the adder. Like-
wise, inhibits clocking Overflow and Link conditions in
the Pu register which occurs during sum operations.
These disables remain in effect until a new value is
inserted into either the Au or Bu register by means of
a Feeder Load ul other than DIG or CORC.

Stores 0 in the Forced Carry register (FCR).
Execution time: 100 nanoseconds

Correct Code (CORC)

F,3
0 1 2 3 465 6 7 8 9 1 1 12 13 14 15
1T 1 1 1111 Pl O O

This instruction enters, into each of the 4-bit groups of
the By register, a hexadecimal value dictated by the state
of the corresponding stage of the Inner Carry register
(ICR). The ICR stages were set (or not set) by the
previous DSUM instruction. if the bit (X;) in the ICR is a
1, the value '3 is inserted into the appropriate 4-bit
group of the B register. If the ICR bit is a 0, the value
“D" (2's complement of 3, expressed hexadecimally) is
inserted in By, .

Inhibits inner carries normally propagated for each
digit position in the adder. Likewise, inhibits clocking
Overflow and Link conditions in the Pu register which
occurs during sum operations. These disables remain in
effect until a new value is inserted into either the Au
or Bu register by means of a Feeder Load ul other
than DIG or CORC.

Stores 0 in the Forced Carry register (FCR).

Execution time: 100 nanoseconds

SHIFT MICRO-INSTRUCTIONS

The pl’s within this class left shift the contents of the
Au/Bu registers. Shift counts of 4 bits are pil-designated
in true or 2's complement form, for shifts from 0 to 151
binary places. Bits shifted from the Ay register are
end-off (lost). Bits from the Byl register are shifted into
the Ap register with zeros inserted into the right-most bit
positions of the Byl register.

Undesignated bit positions within these ul’s have no
effect on ul execution except to the extent that they
participate in the formation of valid parity.



Shift Left (SHF)
E,0,0
0o 1

2 3 45 6 7 8 9 10 11 12 13 14 15

11 1 o0fjofo PlO0 0}o0 K

Performs a left end-off shift of the combined Ay register
and By register, with the A register containing the most
significant bits. The shift count is specified by K. Zeros
are entered at the right end of the Bt register.

Execution time: 200 nanoseconds
Shift Right (SHR)
E,1.0

0 1 2 3 45 6 7 8 9 10 1 12 13 14 15

11 1 00} PO O |O K

Performs a left end-off shift of the combined Ay register
and BL register, with the ALl register containing the most
significant bits. The shift count is specified by the two's
complement of K. Zeros are entered at the right end of
the By register.

Execution time: 200 nanoseconds

Left Shift, Dependent Count (DLS)

Ez2,0
0 1 2 3 465 6 7 8 9 1 1 12 13 14 15
1T 1 1 0]1}10 PO O[O

Performs a left end-off shift of the combined AL register
and By register, with the Ay register containing the most
significant bits. Zeros are entered at the right end of the
By register. Shift count is determined by the following
scheme:

o If bit 1 of the Function register (F) is clear, the
shift count is specified by bit positions 12
through 15 of the Storage Data register (D);

e If bit 1 of the Function register (F) is set, the
shift count is specified by bit positions 8 through
11 of the Function register (F).

Execution time: 200 nanoseconds

If the shift count is to be obtained from the Storage Data
register (D) and a main storage reference was initiated at
the beginning of this major cycle, this ul cannot be
executed prior to time E5. Otherwise, the shift count data
will not be valid and the results are unpredictable.
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Right Shift, Dependent Count (DRS)

E.3,0
012 3 45 67 8 9 10 11 12 13 14 15
11 1 oi1[1| IP 0 olo

Performs a left end-off shift of the combined Ay register
and B register, with the AU register containing the most
significant bits. Zeros are entered at the right end of the
B register. Shift count is determined by the following
scheme:

e If bit 1 of the Function register (F) is clear, the
shift count is specified by the two’s complement
of bit positions 12 through 15 of the Storage
Data register (D);

e If bit 1 of t;’le Function register (F) is set, the
shift count is specified by the two’s complement
of bit positions 8 through 11 of the Function
register (F).

Execution time: 200 nanoseconds

If the shift count is to be obtained from the Storage Data
register (D) and a main memory reference was initiated at
the beginning of this major cycle, this instruction cannot
be executed prior to time EB, otherwise the shift count
data will not be valid and the results are unpredictable.

BIT SENSE MICRO INSTRUCTIONS

The pl's within this class scan the contents of the Ay
register, from left to right, for the purpose of detecting
the first bit position in the set or cleared state as specified
by the associated ul. Bit positions thus detected are
cleared or set within the AL register as specified by the
SR1 and SSO ul's, respectively. A value corresponding to
the bit position detected, 00 through 154, is added to
the contents of the B register. When the entire Al
register is scanned without detection of a bit in the
specified state, 161q shall be added to the contents of the
By register.

Undesignated bit positions within these ul’s do not effect
Ml execution except to the extent that they participate in
the formation of valid parity.

Sense for Zero (SRO)
E,0,1

0 1 2 3 45 6 7 8 9 10 11 12 13 14

[1 11 ofofo] felo of1]

15

]




Sequentially scans the A register from bit position 00
toward bit 15, for the presence of the first ““0”.
Increments the BL register by an amount equal to the
number of bit positions scanned before finding the first
“0". If no 0" is found, the By register is incremented by
1610-

Execution time: 200 nanoseconds
Sense for One (SS1)
E,1,1

01 2 3 45 6 7 8 9 101 12 13 14 15

|1 1 1 olol1| IP]O OMJJ

Sequentially scans the Ay register from bit position 00
toward bit 15, for the presence of the first ‘1",
Increments the Bu register by an amount equal to the
number of bit positions scanned before finding the first
“17.1f no 1" is found, the B register is incremented by
1610-

Execution time: 200 nanoseconds

Sense and Set for Zero (SS0)

SKIP MICRO INSTRUCTIONS

The wul’s within this class provide for skipping the next
successive ul when the specified conditions within the
A L registers are met. These (Ll’s require one minor cycle
for translation and an additional minor cycle to skip the
next successive i1 when the specified conditions are met.
Skip ul’'s for which the specified conditions are met as
initially translated during E7 skip the next successive |
during EO of the next appropriately-allocated major cycle.

NOTE

When the contents of the Ay or By registers are
logically ambiguous as a result of transferring
asynchronous signals into them, the execution of
Skip ul's without an allowance for resolve time may
result in machine malfunction in the form of
undefined and unpredictable u1l execution. See the
paragraph on Timing Constraints.

Undesignated bit positions within these ui’s have no effect
on [l execution except to the extent that they participate
in the formation of valid parity.

Skip if Au is Zero (SKZ)

E,2,1 500
0 1 2 3 45 6 7 8 9 10 11 12 13 14 15 0 1 2 3 45 6 7 8 9 1 11 12 13 14 15
1 1 1 0f|1}]0 P10 o0 ]1 0 1 0 1)0]0 P|O O |0

Sequentially scans the A register from bit position 00
toward bit 15, for the presence of the first ““0"’. Sets the
first 0" and increments the By register by an amount
equal to the number of bit positions scanned before
finding the first 0. If no 0" is found, the By register is
incremented by 161.

Execution time: 200 nanoseconds

Sense and Reset for One (SR1)

If the contents of the Ay register are equal to zero, the
next sequential ul is not executed; however, 100
nanoseconds are required to cycle through the skipped pl.

Updates Pp.

Execution time: 100 nanoseconds

Skip if Au is Non-Zero (SKN)

E.,3,1 5,10
01 2 3 45 6 7 8 9 1011 12 13 14 156 01 2 3 45 6 7 8 9 111 1213 14 15
1 1 1 of1]1 P{o o0 |1 0 1 0 1|01 plo o]o

Sequentially scans the Ay register from bit position 00
toward bit 15, for the presence of the first *’1”". Clears the
first “1" and increments the By register by an amount
equal to the number of bit positions scanned before
finding the first *1”. If no “1” is found, the By register is
incremented by 164.

Execution time: 200 nanoseconds

3-15

If the contents of the Ay register are not equal to zero,

the next sequential ul is not executed; however, 100

nanoseconds are required to cycle through the skipped ul.

Updates Pp.

Execution time: 100 nanoseconds



Skip if Au Bit is a One (SKB)

Skip if Au<Bu (SKL)

5,2,0 5,1,1
0 1 2 3 45 6 7 8 9 10 1 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 1 0 1}]1]0}la|lblP{O0 O |0 X 0 1 0 1}]0]1 PlO O |1

If the designated bit of the A register is set, the next
sequential il is not executed; however, 100 nanoseconds
are required to cycle through the skipped ul.

Designated bit — If either a or b is set, four bits from the
corresponding field of the F register are inclusively ORed
with bit positions 12-15 of the ul to determine the bit to
be accessed.

Updates Pp.

Execution time: 100 nanoseconds

Skip if Au Bit is a Zero (SKB—)

5,3,0
0 1 2 3 4656 6 7 8 9 1 11 12 13 14 15
0 1 0 1j1|1jajb)jP|O 0 |O X

If the designated bit of the Ay register is not set, the next
sequential pil is not executed; however, 100 nanoseconds
are required to cycle through the skipped ut1.

Designated bit — If either a or b is set, four bits from the
correspnding field of the F register are inclusively ORed
with bit positions 12-15 of the yl to determine the bit to
be accessed.

Updates Pp.

Execution time: 100 nanoseconds

Skip if Ay > Bu (SKG)
5,0,1

0 1 2 3 45 6 7 8 9 10 11 12 13 14 15
NN ) 1 I N Y I

Performs a 16-bit logical compare of the Ay, register and
the B register. If Au > Bu, the next sequential yl is
not executed; however, 100 nanoseconds are required to
cycle through the skipped ul.

Updates Pp,

Execution time: 100 nanoseconds

3-16

Performs a 16-bit iogical compare of the Al register and
the By register. If Ap<<By, the next sequentiat 11 is not
executed; however, 100 nanoseconds are required to cycle
through the skipped pl.

Updates Pp.

Execution time: 100 nanoseconds

Skip if Au = Bu (SKE)

5,21
0 1 2 3 45 6 7 8 9 1 11 12 13 14 15
01 0 1|1j}0 Pl|O O |1

Performs a 16-bit logical compare of the Au register and
the By register. If Ap = By, the next sequential yl is not
executed; however, 100 nanoseconds are required to cycle
through the skipped ul.

Updates Pp,

Execution time: 100 nanoseconds

Skip if Au # Bu (SKE-)

53,1
0 1 2 3 45 6 7 8 9 10 11 12 13 14 15
01 0 1|11 PlOo 0 |1

Performs a 16-bit logical compare of the Al register and
the Bt register. If Au# B, the next sequential 1 is not
executed; however, 100 nanoseconds are required to cycle
through the skipped yl.

Updates Pp.

Execution time: 100 nanoseconds

BRANCH MICRO INSTRUCTIONS

In addition to the CLR, STA, STB and AND u!’s which
effect a branch operation when the P register is
designated as described in the paragraph titled Register
File Writes, the six pl’s in this class explicitly provide the
means for performing branch operations.



As opposed to the implicit ul’s previously mentioned and
described in the paragraph titled Register File Writes, the
explicit yl’s in this class are capable of only partial write
references to the right-most address portions of the Sy
and Py registers.

Function Decode Jump (FNJ)
0,1
[V I | 10 11 12 13 14 15

00 I

2 3 45 6 7 8 9

000 0f0f1 Io| P

The function decode jump causes a branch by placing a
value in Sy according to the following algorithm:

if Fué =0
0 1 2 3 45 6 7 8 9 1011 12 13 14 15
OUOooD " oo

F
d7 1 1213 14 15| 4 5 6 7

If Fué = 1

2 3 45 6 7 8 9 10 1 12 13 14 15

. un- Fu 00

. Fg| 1| o] o
‘{changed| 7 11 12 13 14 15

FNJ cannot be executed at time EO

Updates Pp.

Execution time: 200 nanoseconds, however, can be
executed at time E7

ANOMALY: Normally, the FNJ M' branches to a location
within the same 4096-word CS module in which the jump
is located. This is what is indicated by bits 02 and 03 of
Su being “unchanged”. However, there are two cases
when the decode jump branches to a location within the
next consecutive 4096 word module.

1. If the decode jump occupies the last location of a
4096-word module (address XFFFqg).

2. If the decode jump occupies the next-to-last
location of a 4096-word module (address
XFFE16) and is executed any time other than
E6 or E7.

Format Decode Jump (FRJ) -
0,2

012 3 45 67 8 9 1011 12 13 14 15
loooo|1lo| |P|o o| ]

FRJ — The 1st level decode jump will access a 256 word
address table whose contents are alterable and loaded at
CS Load time. Input to this table is determined from the
function code as shown in Table 3-2.

Table 3-2 Address Table Input Translation

Function
Code Address Table Input Translation
XD-XF XC-XF

6X.7X 0 1 0 Fo3 Foa Fos Fos F12
0X,1X,4X 5X 0 1 1 Foo Fo1 Fo3 Foa Fos
8X,9X,CX,DX

EX 1 0 Foa Fos Foe Foz Fos Fi2
FX 1 1 Fos Fos Foe Foz Fog Fi2




Note that the function code must have been transferred to
the Storage Data register (D), since the FRJ instruction
actually keys off the D register.

The address table output consists of a parity bit plus 9
bits which are used as the right-most bits of the FRJ
branch address. The left-most bits are as shown below:

0 1 2 3 45 6 7 8 9 10 11 12 13 14 15

un- o] 1 Dol3 table output
..jchanged

Cannot be executed until a minimum of 200 nanoseconds
has elapsed since the loading of the D register.

Resyncs so that the next ul will execute at time EO
of the next major cycle assigned to this processor.

Updates Pp.

Execution time: 200 nanoseconds, however, can be
executed at time E7

ANOMALY:: Normally, the FRJ pul branches to a location
within the same 4096-word CS module in which the jump
is located. This is what is indicated by bits 02 and 03 of
Si being ““unchanged’””. However, there are two cases
when the decode jump branches to a location within the
next consecutive 4096-word module.

1. If the decode jump occupies the last location of a
4096-word module {address XFFFqg).

2. If the decode jump occupies the next-to-last
location of a 4096-word module (address
XFFEg)} and is executed at any time other than
E6 ro E7.

Zero Jump
(FZJ40,3)
0 1 2 3 45 6 7 8 9 10 11 12 13 14 15
0 0 0 Oof1]1 P

Tests the contents of the Ay register. If the contents
equals zero, the next micro-instruction is taken from
location X00916 of control storage, otherwise the next
micro-instruction is taken from the next sequential
location.

Location X009,q of control storage is the beginning
of an RNI micro-instruction sequence.

If the contents of the Au register equals zero, a resync
occurs such that the next ul will execute at time EO
of the next major cycle assigned to this processor.

Updates P_; however, the update address is always
000916' Therefore, to function properly, another

blockpoint ul must occur later within the same major
cycle.

Execution time: 200 nanoseconds, however, can be
executed at E7

Normally, the FZJ instruction branches to location
00091 within the same 4096-word CS module in which
the jump is located. However, there are two cases when
the jump branches to location 00091g within the next
consecutive 4096-word module.

1. If the FZJ occupies the last location of a
4096-word module (address XFFF¢g).

2. If the FZJ occupies the next-to-last location of a
4096-word module (address XFFEqg) and is
executed at any time other than E6 or E7.

Jurnp

(JmP 9)

01 2 3 45 6 7 8 9 10 11 12 13 14 15
100 1] No lPl 0 o | I Nq

Re-sequences the microcode by placing a value in Su
according to the foliowing scheme:

No-+Sug-11
Nq->Su12.15

This will result in a branch in control storage to a location
within the current 256-word page. Two conditions occur
when the branch will be to the specified location in the
next sequential page:

1. When the JMP ul occupies the last location of a
page (address XXFFg).

2. When the JMP pl occupies the next-to-last
location of a page (address XXFEqg) and is
executed at any time other than E6 or E7.

Updates Pp.

Execution time: 200 nanoseconds, however, can be
executed at E7

Read Next Instruction 1 (RNI 1)

8,0
012 3 45 6 7 8 9 1011 12 13 14 15
[f 0 o o| ol o| aI bl P| ) | X

Re-sequences the microcode so that the next ul to be
executed is at location X00216 of control storage.
Clears bits 1-2 and 4-7 of the register file register
designated by the X-field. Transfers bit 0 of the Pu



register (Overflow bit) to bit 0 of the register file
register designated. Transfers bit 1 of the Pu register
(Link bit) to bit 3 of the register file register
designated. Bits 8-15 of the register file register are
unchanged, unless the register designated is an
extended register, in which case bits 8-15 are set.

Updates Pp‘.

Execution time: 200 nanoseconds, however, can be
executed at time E7

Normally, the RNI1 instruction branches to location
000216 within the same 4096-word CS module in
which the jump is located. However, there are two
cases when the jump branches to location 000216
within the next consecutive 4096-word module.

1. If the RNIT occupies the last location of a
4096-word module (address XFFFg).

2. If the RNI1 occupies the next-to-last location of
a 4096-word module (address XFFEqg) and is
executed at any time other than E6 or E7.

Read Next Instr\uction 2 (RNI 2)
8,1

012 3 45 6 7 8 9 1011 12 13 14 15
1.0 0 olﬁolgil a Lb [Pl 0 0 l 41

Re-sequences the microcode so that the next ul to be
executed is at location X00916 of control storage.
Clears bit positions 1, 2, and 4 through 7 of the
register file register designated by the X-field. Transfers
bit 0 of the Pu register (Overflow) to bit 0 of the
register file register designated. Transfers bit 1 of the
Pu register (Link) to bit 3 of the register file register
designated. Bit positions 8-15 of the register file
register are unchanged, unless the register designated is
an extended register in which case bits 8-15 are set.

X

Resyncs so the next ul will execute at time EO of the
next major cycle assigned to this processor.

Updates Pp.

Execution time: 200 nanoseconds, however, can be
executed at time E7

Normally, the RNI2 instruction branches to location
00091¢ within the same 4096-word module in which the
jump is located. However, there are two cases when the
jump branches to location 00094 within the next
consecutive 4096-word module.
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1. If the RNI2 occupies the last location of a
4096-word module (address XFFFqg).

2. If the RNI2 occupies the next-to-last location of
a 4096-word module (address XFFEg) and is
executed at any time other than EG6 or E7.

CONTROL MICRO INSTRUCTIONS

The ul’s within this class perform timing, input/output
termination and boundary-crossing mode operations.

Undesignated bit positions within these y1’s have no effect
on ul execution except to the extent that they participate
in the formation of valid parity.

No Operation (NOP)
0,0

01 2 345 6 7 8 9 1011 12 13 14 15
Io 0 0 o]jblfo] IPI 0 o l

Does nothing

Execution time: 100 nanoseconds

Resynchronize (SYNC)

F.0,1
0 1 2 3 45 6 7 8 9 1 11 12 13 14 15
1t 1 1 1]01}0 Plo 0 |1

Resyncs the processing unit so that the next yl executes
at time EOQ of the next major cycle.

Updates P, pointer

Execution time: 100 nanoseconds

Invoke Boundary Crossing Mode (I1VK)

F,1,1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
17 1 1 110]1 PO O |1

This instruction invokes the boundary-crossing (BC)

mode, which allows a processor to access registers in
another processor’s register file. The condition con-
tinues until nullified by a RVK micro instruction, or
until the end of the current major cycle. The method
of specifying the register file address varies, depending
upon which group of registers is being accessed.

a. Basic registers
* @ Bit 7 of the BC register and bits 6-7 of the ul
must be cleared.



® Processor number
the BC register.

is derived from bits 8-10 of

® Register number is determined by inclusive
ORing bits 11-15 of the BC register with bits
11-15 of the ul.

b. Group | extended registers
® Bit 7 of the BC register must be set and bits
11-14 must be cleared.

@ Processor number is derived from bits 8-10 of
the boundary crossing register.

® Register number is derived from bit 15 of the
BC register.

These registers can only be accessed during time E3 -
E
4.

c. Group |l extended registers
® Bit 7 of the boundary crossing register must be
set and bit 11 must be cleared.

® Bit 11 of the ul must be cleared.

Register number is determined by inclusive
ORing bits 12-15 of the BC register with bits
12-15 of the ul. {(Processor number is immaterial,
since these are the common block registers.)

An attempt to read an unassigned register in this group
(0C-0F) will yield zeros. An attempt to write an
unassigned register in this group (0C-OF) will result in an
effective NOP. Any write references addressing the BC
register (08) while in the BC mode shall not be sup-
ported and may result in machine malfunction.

d. Group 11l extended registers
® Bits 6, 7 and 11 of the ul
indicating group II1.

must be set,

Bits 7-11 of the BC register do not participate in
address determination; hence only registers from
the processor in execution can be accessed.

Register number is determined by inclusive
ORing bits 12-15 of the BC register with bits
12-15 of the u.

Any operations not described above are undefined and,
if attempted, cause unpredictable results.

Execution time - 100 nsec
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Revoke Boundary Crossing Mode (RVK)
F,1.0

0 1 2 3 45 6 7 8 9

I P

Restores processor to ‘‘normal’’ mode after having been in
“boundary crossing mode’’. See explanation under IVK,

10 11 12 13 14 15

1T 1 1 1101

oolo

Execution time: 100 nanoseconds

Read Control Memory (ROM)
F,0,0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
[1 11 1]0(0] |P|o olo L

Performs an exclusive OR of the contents of the con-
trol storage location whose address is contained in the
Bu register and the contents of the Control Storage
Scan Register (CSS), storing the results in the Control
Storage Scan Register. Resyncs the processing unit so
that the next ul will execute at time EO of the next
major cycle.

Cannot execute later than time EB. If executed at time
E6, the data transferred to the CS Scan register is
unpredictable.

Updates Pp

Execution time: 200 nanoseconds
Compare /0 (CIOI)
8,2

01 2 3 45 6 7 8 9 10 11 12 13 14 15

1000|1I01 1[P|00 X
Performs a 16-bit logical compare of the Au register and
the Bu register. If Ay = Bu, a resync occurs and the
next sequenctial ul is executed at the beginning of the
next major cycle. If Ay # Bu, a resync occurs and the
processor’s busy bit is cleared. In addition, normal stor-
ing of P_ to Pu at WO time is suppressed so that the ul
whose address is in Pu is executed at the beginning of
the next major cycle whenever the processor is
reactivated.

Cannot be executed at time E7.
Updates Pp
Execution time: 100 nanoseconds

If bits 6 and 7 of the ul are not both set, a write will
occur to the register file register designated by the

1




X-field, as follows: bits 1-2 and 4-7 will be cleared,
bit 0 of the Pu register will be transferred to bit O,
bit 1 of the Pu register will be transferred to bit 3,
bits 8-156 will not be affected.

Compare 1/0 (Cl02)

8,3 ‘

0 12 3 45 6 7 8 9 1011 12 13 14 15
10 0 o|1{ 1|1|1IP X

0o o0

Performs a 16-bit logical compare of the A y register and
the By register. If Ay, # By, a resync occurs and the next
sequential ul is executed at the beginning of the next
major cycle. If Ay = By, a resync occurs and the next
processor’s busy bit is cleared. In addition, normal storing
of Pp to Py at time WO is suppressed so that the pl
whose address is in Py is executed at the beginning of the
next major cycle whenever the processor is reactivated.

Cannot be executed at time E7.
Updates Pp

Execution time: 100 nanoseconds

If bits 6 and 7 of the ul are not both set, a write will
occur to the register file register designated by the
X-field, as follows: bits 1-2 and 4-7 will be cleared, bit
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0 of the Pu register will be transferred to bit 0, bit 1
of the Pu register will be transferred to bit 3, bits
8-15 will not be affected.

MICRO INSTRUCTION EXECUTION

Block diagrams which show the principal portions of logic
required to execute each pl are shown in Figures 3-2
through 3-30. Figures 3-2 through 3-10 show details of
the register file read and write operations that form a part
of many ul’s. Figures 3-11 through 3-30 show details of
execution, particularly applicable to each ul, with
references to the register file read and write operations of
Figures 3-2 through 3-10 where required. Micro-
instructions which are subject to timing constraints
contain a reference on the block diagram to an
applicable timing diagram. These timing diagrams are
identified as Figures 3-31 through 3-36.

NOTE

All data and most control signals shown in the flow
diagrams are represented in true form, regardiess of
whether the signal is actually defined in the true or
complement form. Exceptions to this rule are
certain control signals that are time-restricted,
shown in their actual state (either true or
complement form) during the time that they are
restricted.
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Figure 3-26. RNI1 and RNI2 Ll's
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Jump
ADRS
XLTN
JMP
08-15
| l--l----------l---------------—-------
E'D ]
]
1 (®)
i s
m
1A07 | FA
l Su
[ I 'G@’ REG (19 {
»——l—p’
|
]
ENJP-SM1 I
[H»en-ss] 1 {E0-E6 ONLY)
L~E6 ]
I (8)
i "
Pp ERF
: _____ 3 1O WR P
1 [7;|
1
1 141821
I--l 3 . 5 r r r P P 3 1 P 7 1 f 5 3 | -_---------I
ENPPG1
PLLENABLE
ENJP>-PP1
1A14
FXEQ-JMP
BLOCKFM* Fu R
> EN —» ENCLKFM
Fu DECODE 1A14
IDLE* IDLE GLEEF P -
1A06 FF IDLEF/FE_,, EN | ——» ENCLKPP*
y 1714 1A06
* *SEE FIGURE 3-31 FOR TIMING
CP
JMP ADRS JMP ADRS Fu REG
OP CODE e {12+15) 1A08-11

Figure 3-27. JMP (1 (EO—E6)
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JMP
ADRS
XLTN

1A07

JMP
08-15

ENJP~PP1

Su

FAN-

Su
REG

FXEQ-JMP

FuDECODE

1A06

?

0P CODE

JMP ADRS
4+17)

JMP ADRS
(12+15)

Figure 3-28. JMP i (E7)
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FuREG
1A08-11

]

1

|

Py -

REG :
i

i

1

|

1

1

i

Pu :

REG 1
1

1

1

1A18-21 ]



Sy Pp Py
REG REG REG
1A18-21 1A18-21 1A18:21
N Y
ENPP~SM EFIRH/MWL
H=BLOCK Py=Su H=NO Py-Py
IN CC MODE WR ENABLE
CC CONT Pu
EN
1A13 1A14
F'y
CTOEXIT
(Apu# By - EOTEXTTT
B/A
CI0-TX (Ap# By EOTEXIT) | REe
CLR  1A03

10 EXIT (Ap = Bu + EOTEXIT)

Ci0 CONT

1A14

Ap# By, REPEAT 1/0
XFER ROUTINE

Ay=By, GOTO /O
EXIT ROUTINE

» TO IFA AND BDC TO
TERMINATE OPERATION

Py U
EN ENCLKPP
1A08

BLOCKFM* Fu
Fu » EN }——» ENCLKFM
DECODE 1A14
IDLE* IDLE {DLEF/R*
1A06 » FE >
1A14

P

*SEE FIGURE 3-32 FOR TIMING

0P CODE

FuREG

X-FIELD 1A08-11

Figure 3-29. CI101

3-49



ERF INPUT

Au/B
HH 1A18:21
A 3 b
@
= b
L] [L-]
Z z
] ERFG3 ERFG2
00-15 00-15
ERF GRP |
ERF GRP Il (16)
1A18:21 1B16
1 I PROCH) " I ERF GRP Il @
ROC - _._
o
o 1A08-11
«<
ER1RH/WL
- (PROC #) =
28 b
£ -3
REG F,Pu EN BRF
SEL
1A22 , 1A14 1A25-28
r h ﬂ
w s {PROG #)
oo (=3
w 0
! 3| & ® O
ERF EN F | = 8o Q 2
1a08 | “1 = £3 el 3
wl [+ = —]
3 h w
BC-0000X
pRIDR REG FILE ADR
NTWK S
1ATE : 1A22
Y
(PROC #)
3
11-15 g
b 3 s
o =
I} 8-10 @
(=)
-]
= BC REG
w BC REG
W 1A08-11 1A08-11
=
IVK/RVK CONT
BC-07 BC-15  RVK-E780 ()
2/
FLREG
OP CODE X-FIELD 1}\‘03.11

Figure 3-30. INV and RVk ul
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FDECODE IDLE - F . DECODE

Y e
BLOCK F
——L—-r FuDECODE

/ H
IDLE [~

1ST TX00 FOLLOWING IDLE
pd _IDLE - IDLE FF-TX00

IDLE FF g

NOTE: IF INSTRUCTION IS DECODED AT E7 TIME, BLOCK Fy, IS NEGATED BY EO-E TIME AND F. IS CLOCKED AS
USUAL AT THE END OF E7 TIME. IN THAT CASE THE INSTRUCTION TAKES ONLY 100 NS.

Figure 3-31. JMP and FNJ (I Timing Diagram

P
BLOCK Fy. ’
1ST TX00 FOLLOWING ENCLK Fy
Fu. DECODE IF (E0-E)
E7 \ P e
IDLE FF ' 4 ',_-\__
, /

1ST TX00
'/IDLE - F,, DECODE FOLLOWING E7
ENCLKPP /
Figure 3-32. (FZJ - Al = 0), FRJ, RNI1, RNI2, CIO1, C102, ROM, and SYNC Ll's
400 500
| FuDECODE
/ -DREADY .~ Fu DECODE - DREADY
BLOCK Fy / ENABLES |
MS DATA ~_
THROUGH DATA
MS READY FANIN

MS STROBE l \

«— Fu_DECODE
ENCLK Sy - DREADY

l \Fp, DECODE - DREADY

Figure 3-33. SDW and SDB
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400

500

BLOCK Fu

BLOCK Fy
Fu. DECODE N
- DREADE
ENCLKS T~
MS READY
MS STROBE / \
CLK Au/Bu /_\_
Figure 3-34. DTA, DTA-, IDX, and DFA Ll's
/— FuDECODE - 3ND CYCLE
BLOCK Fy

\

1STCYCLE

~~TX00 OF ANY LOADAORB

«—— F12DECODE - 2ND CYCLE
ENCLKS 1

CLK Au/By e\ "

By

LOADED
BY PREVIOUS
INSTRUCTION

Figure 3-35. SUM, DSUM, CMP, and CMU 1il's

. (SHIFT V SENSE) - SHIFT DELAY

SHIFT DELAY

ENCLKSy

ENCAw/By

\

SHIFT DELAY

Figure 3-36. All Shift or Sense Instructions
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IMPLEMENTING MACHINE LANGUAGE
INSTRUCTION BY MICRO INSTRUCTIONS

This section describes how micro-instructions (ul's) are
linked together in routines to execute (implement)
machine-language instructions (MLI’s). This is done by
means of showing certain MLI's in flow diagram form as
examples, listing all the ul’s necessary to implement each
MLI. Emphasis is placed on the concept of using
individual ul’s as “building blocks” to form routines,
routines to form a complete MLI. Use of the ul assembly
listing in Appendix 3A to locate the routines comprising a
MLI is also described.

BASIC IMPLEMENTATION SCHEME

Machine language instructions (MLI’s) executed by the
system are done so by micro-instructions (ul’s) arranged
in a particular order as required by the MLI. This
arrangement of ul’s necessary to execute a MLI can be
divided into at least three, and sometimes more, individual
sequences as shown in Figure 3-37. The first sequence is
called the Read Next Instruction (RNI) sequence. This
sequence reads the first word of the MLI from main
storage (MS), inserts this word in the F register for
subsequent translation, and performs a first-level, or
Format Jump, decode of the MLI to determine its format,
that is, its length (2-, 4-, 6-, or 8-byte} and the type of
operand addressing specified (direct, indirect, or
indexing). Upon obtaining this information, a jump is
made to a corresponding FRJ sequence common to all
MLI‘s of this format. The FRJ sequence reads the first
operand to be processed by the MLI from either a file
register or from MS, depending on the addressing mode
specified. This sequence also performs a second-level, or
Function Jump (FNJ) decode of the MLI to determine its
function, that is whether the MLI will perform an add,
shift, move, compare, or other type of function. At this
point, the MLI is uniquely defined.

Upon determining the MLI function, a jJump is made to a
corresponding FNJ sequence that reads the second
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operand, performs the specified operation on the two
operands, and stores the result. After completing the
store, a jump is made back to the RNI sequence to
execute the following MLI. Each sequence takes at least
one time slice to perform. More complex MLI’s, such as
multiply, divide, or 1/O instructions may require more
than one time slice to complete the FRJ sequence and
several execute sequences apart from the FNJ sequence.
However, all MLI"s are basically executed in the manner
just described, where the FRJ decode performs a gross
translation of the MLI and isolates it to a group of several
MLI‘s, and the FNJ decode performs a final translation to
uniquely define the MLI.

An example of how the RNI, FRJ, and FNJ sequences are
used to execute a two-byte MLI, specifically the ADDR
(26) ML |, is shown in Figure 3-38. This figure shows the
functional operations making up each sequence and the
address of the corresponding ul in CS required to perform
each function. (Refer to the CS assembly listing in
Appendix 3A for a listing and description of each ul at
the address listed in Figure 3-38.) Execution of the MLI
can begin with either the RN10, RNI1, or RNI2 sequence,
depending on when in the program the MLI is executed as
described in the paragraph titled Set Pp Logic. If the
ADDR MLI is the first MLI of the program, the RNIO
sequence is entered at address 0000* and the MLI address
is obtained from the processor’s assigned P register in the
Basic Register File (BRF). If the ADDR MLI follows
another MLI in the same program, that previous MLI will
have terminated with either an RNI1 or RNI2 ul to cause
a jump back to either the RNI1 sequence (address 0002)
or the RNI2 sequence (address 0009). The choice of
terminating with either an RNI1 or RNI2 ul will depend
on whether the previous ML! had time to form the ADDR
MLI address, as discussed in the paragraph titled Set Pp
Logic. Depending on which of the two RNI sequences is
entered, the MLI address is obtained from either register
Q1 (P+2) or register Q2 (P+4). Except for the source of
obtaining the MLI address, the RNI0 and RNI1 sequences
are identical; therefore, they combine at address 0004.
Both RN!I0/1 and RNI2 sequences terminate at addresses
0008 and OOOF, respectively, with an FRJ ul to
implement the FRJ decode operation.

*All CS addresses are represented in hexadecimal form.



RNI
SEQUENCE

FRJ
SEQUENCE

FNJ
+
EXEC
SEQUENCE

e e ™ e e e e e

<

READ MACHIN
INSTRUCT

E-LANGUAGE
ION (MLI)

PUT MLIIN

F REG

ISTER

PERFORM FIRST-
LEVEL DECODE (FRJ)

OBTAIN FIRST
OPERAND

PERFORM

SECOND-

LEVEL DECODE (FNJ)

OBTAIN SECOND

OPER

AND

EXECUTE

STORE
RESULT

READ NEXTI

NSTRUCTION

JUMP TO AREA OF CS AS DETERMINED BY FORMAT OF MLI (DIRECT OR
INDIRECT ADDRESSING; 2-, 4-, 6-, OR 8-BYTE)

O0BTAIN GPERAND FROM REGISTER FILE OR MEMORY, AS SPECIFIED BY Ry
FIELD OF MLL.

JUMP TO SPECIFIC AREA OF CS CONTAINING THE MICROPROGRAM FOR
IMPLEMENTING THE MLI FUNCTION (ADD, SHIFT, ETC.)

LOCATION OF SECOND OPERAND IS SPECIFIED BY Ry FIELD OF MLI.

IF EXECUTION REQUIRES MORE THAN ONE MAJOR CYCLE, TEMPORARILY
STORE CS ADDRESS AND PARTIAL RESULTS UNTIL NEXT ASSIGNED TIME
SLICE.

STORE RESULT IN REGISTER FILE OR MEMORY, AS SPECIFIED BY Rg FIELD
OF MLI AND/OR THE MLI FUNCTION.

Figure 3-37. Basic Microcode Implamentation of ML
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1ST MLI RNI ANI2
OF PROG i ul
rNio | oooo RNIT | o002 _
p~s | o001 a1-s | o003
0004 0009
RNI RNI
0 2
0008 000F
FRJ (FIRST LEVEL) FRJ
DECODE ul
¢ e BREAK
R1-Ry (R1)- Ry Rq - (Rg) (Rq) - (R2)
0400 0402 0404 0407
0401 04 0405 0408
0 READ 18T 03 0406 READ 1ST 0409
READ 1ST OPER. FROM READ 18T OPER. FROM
OPER. FROM NS LOC. OPER. FROM MS LOC.
REG Ry SPEC. BY REG. Ry SPEC. BY
(Rq) (Rq)
FNJ FNJ
(2ND . (2nd
LEVEL) | . "} Levey) |T
DECODE FNJ pecope | FM
ul wul
BREAK
0208 0348
READ 2ND 0209 READ 2ND on
OPER. FROM OPER. FROM 038
Ry + ADD + MS LOC.
STORE IN SPEC. BY
REG. Ry (Ry) + ADD
BREAK
A
0389
RETURN 03BA
T0 RN STORE SUM
IN MS LOC.
SPEC. BY
(Rg)
RETURN
T0 RNI2 0388

FFigure 3-38. Two-Byte (ADDR) MLI Flow Diagram
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The FRJ decode translates the MLI function code and
indirect designators to determine the ML! format. An
examination of the FRJ decode address table determines
that the ADDR MLI is a two-byte MLI in the 20-29 range
of function codes, defining it as a register/register MLI.
The result is a jump to one of four FRJ sequence starting
addresses: 0400, 0402, 0404, or 0407, depending on the
addressing mode specified. This jump is made at the
beginning of a new time slice assigned to the processor, as
indicated by the word “BREAK" in Figure 3-38. For this
example, the FRJ sequence for all four addressing modes
is shown. (During actual execution, of course, only one of
the four could be specified.) For convenience, these four
possible addressing modes are summarized below:

0 7 8 9 11 12 13 15
26 1 R 1 R
0 1 0 2

ADDR MLI FORMAT

Rq - Ry — first operand read direct/second operand
read direct

(Rq) - Ry — first operand read indirect/second
operand read direct

R4 (Ry) — first operand read direct/second
operand read indirect

(Rq1) - (Rg) — first operand read indirect/second
operand read indirect

The FRJ sequences for the Rq - Ry and (R{) - Ro mode
start at different addresses since the first mode requires
reading the first operand via direct addressing and the
second mode requires reading the first operand via
indirect addressing. The FNJ and execute sequence for
these two conditions, however, are identical because the
second operand for both conditions is read via direct
addressing. The FNJ decode, therefore, generates FNJ
sequence beginning address 0208 for both the Rq - Ry
and (Rq1) - Rp modes. Upon completing the Sum and
Store operation, the routine ends with an RNI1 ul, which
causes a jump back to the RNI1 sequence to read the next
MLI. For both these addressing modes, both FRJ and FNJ
sequences are executed in the same time slice. If executed
in either of these two addressing modes, therefore, the
ADDR MLI takes two time slices to execute: one for the
RNl sequence and one for the combined FRJ and
FNJ/execute sequence.

The FRJ sequences for the Rq - (Rp) and (Rq) -. (Ro)
mode also start at different addresses because of the
different addressing mode required for reading the first
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operand. In addition, these two addressing modes cannot
read the first operand using the Ry - Ry and (R4) - Ry
mode first operand read routine because it is necessary to
store the first operand read from MS in register T3 before
reading the second operand. This additional store requires
a SDW ul not available in the R1 + R and (R1). R2 first
operand read routines. Upon storing the first operand read
in T3, the FNJ decode branches to a common FNJ and
execute sequence to read the second operand using
indirect addressing and add it to the first operand. After
the addition, a jJump is made to a separate store sequence
to store the result in MS at location (Ro). If executed in
either of these two addressing modes, therefore, the
ADDR MLI takes four time slices to execute: one each for
the RNI, FRJ, and FNJ sequences, and one for the final
store sequence.

Execution of a six-byte MLI, that of the ADDM (62) MLI,
is shown in Figure 3-39. Like the ADDR MLI flow
diagram of Figure 3-38, the ADDM ML flow diagram also
shows the four possible modes of addressing. However,
the ADDM MLI is more complex because of the indexing
capability provided by this MLI. This indexing capability
is provided by the Rq and Ry fields of the first MLI word,
which add the contents of registers defined by these fields
to the operand addresses designated by the My and My
fields contained in the second and third words of the MLI.
Indexing of this type is called post-indexing. (For more
details regarding indexing, see the MEMOREX 7300
Processing Unit Reference Manual.) The figure assumes
that the proper RNI sequence has been completed and
that a jJump has been made to one of four FRJ sequence
starting addresses as a result of the FRJ decode operation.
Because of its greater complexity, the ADDM MLI is able
to take greater advantage of the divisible nature of the |
routines comprising a sequence, as evidenced by the
numerous jumps within each sequence used to execute the
MLi. The greater number of time slices required to
execute this MLI reflects the two additional words of the
MLI read from MS and the indexing operations required
during the FRJ sequence. The number of time slices
required per sequence for each of the four addressing
modes is listed below:

RNI FRJ FNJ/EXEC | STORE
My Mg | 1 3 1 1
My)-My | 1 4 1 1
Mg« (Mg) | 1 4 1 1
(My) - (Mg)| 1 5 1 1




FRJ

FNJ

STORE

‘ Mq - My ,

READ 2ND INST | 0421
wDM; FROMMS | 0422
N4
INDEX M7 OR (M7)  Jo4a23
[M3/(Mq) + (Rq)] 0424
¢——— BREAK
READ 3RD INST | 0425
wD M FROMMS | o7
NG
INDEX Mz OR (M) | ga3r
[Ma/(Mg} + (R2)] 0440
{&——BREAK
0441
READ 1ST OPER. 0442
FROM MS 0443
0444
i ¢————BREAK
READ 2ND OPER. 3§33
FROMMS AND | 5aga
ADD 0308
| e—————BREAK
y
03E9
STORE SUM 03EA
03EB

RETURN
-TO RNt

62

1 1
R
0 1

Rz

My

My

A

READ 2ND INST
WD Mq FROM MS

0428
0429
042A

BREAK

READ 1ST OPER.
ADRS. FROM MS
AT LOC. SPEC.
BY (M¢)

0428
042C

< My - (M2) ’

READ 2ND INST. ] 042D
wD Mq FROM NS § 042E
A
INDEX My 042F
[Mq + (Rq)] 0430
L+——BREAK
READ 3RD INST gzg;
WD Mz FROMMS  J 0,50
N5
BREAK
A
READ 2ND OPER.
ADRS FROM MS
atLoc seec. | U°F
BY (M)

Figure 3-39. Six-Byte (ADDM) Instruction Flow Diagram
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< (M) - (Mg} '

READ 2ND INST. | 0435
WD My FROM MS  § 0436
0437
¢ BREAK
READ 3RD InsT, [ 0438
WD Mo F 0439
2 FROMMS | B
l¢——— BREAK
READ 1ST OPER.
ADRS FROM MS
" ATLOC.SPEC. | 0438
BY (Mq)
INDEX (My) 043¢
[mq)+ Ry Jos3p




REPRESENTATIVE MLI FLOW DIAGRAMS sequence, upon completing the FRJ pl of the RNI

Flow diagrams for a number of other MLI's (RBIT, BOF, ?:egjence. Note th;t; thc;BOFhMLI is cc?mplete;iNtil.;rmg the
and CBYM) are shown in Figures 3-40, 3-41, and 3-42. e (e ouners requlre an execute
The flow diagrams start at the beginning of the FRJ sequence for their completion.
0 78 9 1112 13 15
RBIT BD [0 Ry |1 Ip
RESET BIT My
0 7 8 9 1 12 15
FROM BRANCH BOF E2 0 R4 Ig
FRJ IF BIT
DECODE OFF M
FROM
FRJ
DECODE
ACCESS V4 FORM 0637
MEM USING Q4 (P+2)
AS AN ADDR
Y ACCESS M; FROM 0526
0638 MEM USING Q4 (P+2)
INDEX My WITH Ry FIELD !
AND STORE IN T3 0639 AS A ADDR
JUMP TO RESET 063A 0527
BIT ROUTINE OBTAIN (R1) AND
FRJ CHECK BIT POSITION
ENJ BREAK SPECIFIED BY R
ACCESS OPERAND FROM 0084
MEM USING(T3) AS ADDR
0528
NO 0529
A 4 0085 |  EXIT TO RNI2 ROUTINE
ENTER COMPLEMENT OF BIT 0086
IN B REG. AS INDICATED
BY 19 FIELD IN MLI
YES
~ 0051 STORE M4 ACCESSED 052A
AND B REG WITH OPERAND 0052 INQ (‘lBRF 0A)
AND STORE IN T4 0053 1
[4—————BREAK
4 y
STORE RESULT OF AND | oo 0528
(BIT RESET) TO LOC EXIT TO RNI1 ROUTINE
SPECIFIED BY T3
y
0056
EXIT TO RNI2 ROUTINE
Figure 3-40. Two-Byte (RBIT) Instruction Flow Diagram Figure 3-41. Two-Byte {(BOF) Instruction Flow Diagram
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COMPARE BYTE
MEMORY - MEMORY

CBYM

Ry

L

LOCATION OF THE ADDR
OF THE FIRST OPERAND

My

LOCATION OF THE ADDR

FROM
FRJ
DECODE

0435
ACCESS Mq FROM MEM 0437
USING Q4 (P+2) AS A ADDR
AND SAVE IN T3
y
0436
UPDATE Q¢ TO P+6
(01 = BRF 0A)
l¢——— BREAK
y _
0438
ACCESS My FRON MEM 043A
USING Q4 (P+4) AS A
ADDR AND SAVE IN T4
y
0439
UPDATE Qq TO P+4
(Qq = BRF 0A)
| ¢—————— BREAK
A
0438
ACCESS ADDRESS OF THE
FIRST OPERAND FROM
MEM USING M AS
THE MEM ADDR.
y
043C
INDEX 1ST OPERAND ADDR
WITH (Rq) AND SAVE
1ST EFFECTIVE OPERAND
ADDRIN T3
[&———  BREAK
y
043E
ACCESS ADDRESS OF THE
SECOND OPERAND FROM
MEM USING Mg AS
THE MEM ADDR.

v

A

OF THE 2ND OPERAND

043F
INDEX 2ND OPERAND | gasg
ADDR WITH (R) AND
SAVE 2ND EFFECTIVE
OPERAND ADDRESS IN T4
f¢—————— BREAK
h
0441
ACCESS THE 1ST OPERAND
FROM MEM. USING THE
1ST EFFECTIVE OPERAND
ADDR AND SAVE IN T3
0443
SAVE BYTE OPERAND
INTS
A
0444
DECODE JUMP TO
COMPARE BYTE ROUTINE
FRJ
FNJ
c
ACCESS THE 2ND OPERAND | soap
FROM MEM. USING THE 2ND | g32¢
EFFECTIVE OPERAND ADD
Ry AND SAVE THE
BYTE OPERAND IN T2
4——————— BREAK
y
0346
COMPARE THE 1STAND | 347
2ND BYTE OPERANDS AND | g3ep
TRANSFER THE RESULTS | o3EE
TO THE CONDITION REG.
y
03EF
EXIT TO
RNI1 ROUTINE

Figure 3-42. Six-Byte (CBYM) Instruction Flow Diagram
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APPENDIX 3A

MICRO-INSTRUCTION ASSEMBLY LISTING

The micro-instruction (yl) assembly listing is a sequential
printout of the contents of control storage (CS). It lists all
ul’s making up each machine language instruction (MLI),
trap routine, and off-line function initiated from the
System Control Panel. Each CS location is listed in the
printout, even those which do not contain a ul. Such
unused locations are loaded with ““0’'s’’, except the parity
bit (bit position 8), which is set to ‘1"’ to produce odd
parity for the corresponding location. Directions for using
the p! assembly listing to determine how a particular MLI
or trap routine is implemented by (i's are contained in
the paragraphs titled Implementing MLI's by pi’s and
System Reset Operations, respectively. This appendix
discusses the symbols and conventions used in interpreting
the listing. Refer to Figure 3A-1, which shows a typical
page of the CS assembly listing, for the locations of the
numbered items described below:

@PAGE -- This item defines the sheet page of the
assembly listing (not the 256-word physical CS page).
Each sheet page is numbered in consecutive order within
each of the 16 physical pages of CS. Depending on the
amount of explanatory matter on each sheet page, each
physical page may have from 7 to 15 sheet pages.
(2)LOCATN — This column lists each 16-bit CS
focation in hexadecimal form. Using location 001744 as
an example, each digit of the location number provides
the following information:

0 1 7

‘—E Location within page

Page within 4096-word
storage unit

Number of 4096-word
storage unit of CS

@ OBJECT — This column lists the contents of each CS
location in machine coded hexadecimal form (yl object
code).

3A-1

(D A/B — These two columns list the values of the a and
b designators (bit positions 6 and 7) for each ul.

‘:5) ADDR — This column lists the rightmost two digits
of thel | object code. Generally, these two digits specify
either the address of a register specified by a RF read, or
RF write ul, or a branch address of a branch yl. In some
cases, however, the listed value indicates a constant to be
operated on by the particular ul. If the ADDR value
specifies a register, the register will be in either the BRF
or ERF, depending on the values of the a and b
designators.

(@ SOURCE STATEMENT — This column lists the plin
mnemonic form (source code) and a source code
equivalent of the corresponding ADDR column entry
(register number, jJump address, or constant). To the right
of each pul listed is a short description explaining the
purpose of the ul. Where a register number is listed, it is
indicated with an abbreviation as defined below:
C — Condition register (BRF)

P — P register (BRF)

Tn, Qn — Transient register n of BRF
M — Register defined by Rq field of MLI
R — Register defined by Ry field of MLI
Xn — Register n of ERF Group 1l

En — Register n of ERF Group |11

@ “This column lists the branch address in source code
form corresponding to the CS location in hexadecimal
form as a means of defining the start of a branch routine.
This information is used in conjunction with the table at
the top of the page, which provides a cross-reference of
branch addresses in both source code and object code
form. The first sheet page of each CS physical page
provides similar information regarding the branch
addresses referenced within that physical page.



This column lists the cumulative results of a
longitudinal parity check performed during a CS scan
operation. Each entry represents the results of the check
up to the corresponding CS location, if no longitudinal
parity errors were detected. This information is used
during maintenance operations to determine the location
at which incorrect data is stored.

Refer to the FRJ decode address table in the front
of the assembly listing to find the starting address of the
FRJ sequence corresponding to the MLI under
consideration.

These conventions specify the four possible
operand addressing modes associated with these MLI’s.

(For more details about operand addressing, see the
MEMOREX 7300 Processing Unit Reference Manual.)
These are as follows:

A:B — first operand read direct, second operand
read direct.

(A):B — first operand read indirect, second operand
read direct.

A:(B) — first operand read direct, second operand
read indirect.
second

(A):(B) — first operand read

operand read indirect.

indirect,

PAGE 002 »

®

06/30/72

0R14  ADDK 01C2 CRA O1GF  CRR 01D5 CRC N1F5  CHG
01F6 CBH 01E9 CBN 01NPA  CRW 01BF  CRX 0A00  CMPK
01RB  CMPX 012D DINXT 05RF  DIVK 0OBBA  DSCRD 0462 EDTX
01FD ERREPC 0032 E12 0192 MOVL 019E  MOVLA 01AR  MOVLB
0173  MOVX 0178 MOVXA O0L7E MOVXR 0184 MOVXC 0186 MOVXD
0191 MOVXE 05RF  MPYK 0122 0OFF 0169 OTHER OR3P PAKX
001D SAVEPC 0811 SUBK 0509  TRNX 05BF  UNDEF 0B3B  UNPX
0800  ZADK
LACATN DRJECT A B ADDR SOURGE STATEMENT MODEL C MICRO ASSMBLY
: 27 JUNF 72
ORG 100
NPSCRD EQU RRA
EDTX  EQU 462
PAKX  EQU R3R
UNPX  ERU R3R
CMPK  EQU ADO
TRNX  EQU 509
UNDFF  EQU SAF
ZADK  EQU 800
ADPK  EQU 8l4
SURK  EOU  A11
MPYK  EQU SRF (UNDEF
DIVK  EOU 58F (UNDEF)
* % ¥ & ¥ x ¥k %k ¥ K %k ¥k Xk ¥ X ¥ ¥ ¥k ¥ k ¥k ¥ ¥ ¥ X
* CONSOLE FUNCTION ENTER
*
0100 330A 11 OA Ls2 X10 LOAD ADDRESS FROM CONSOLE ADDRESS RFG (M) 3B0A
0101 7388 1 1 OB LOW  X11 LOAD DATA FROM CONSOLE DATA REG (N) 4881
0102 230A 11 O0A SUM  X10 INCREMENT ADDRESS 6B8B
* %k % % % k & ¥ % ¥ & ¥k % %k ¥ X% ¥k Kk % & ¥ %k ¥k % ¥
% CONSOLE FUNCTION SWEEP
*
0103 380A 1 1 OA LS2 X10 LOAD ADDRESS FROM CONSOLE ADDRESS REG (M) 5081
0104 230A 11 O0A SUM  X10 INCREMENT ADDRESS 7388
0105 4388 11 OB SOW  X11 STORF DATA IN CONSOLF DATA REG (N) 3000
x & ¥ & % & k % k % ok ¥ &k & & k K % % % %k % & & X
* CONSOLE FUNCTION REGISTER FILE WRITE
*
0106 N30A 11 OA LAW  X10 LOAD REGISTER NUMBER FROM CONSOLE ADDR REG (M) E30A
0107 1708 11 08 STA X8 STORE IN BOUNDARY CROSSING REGISTER (BC) F402
0108 6308 11 0B LBW  X11 LOAD CONTENTS OF CONSOLE DATA REG (N) 9709
0109 F490 1VK INVOKE ROUNDARY CROSSING MODE 6399
010A 1880 0 0 00 STB 0 STORE DATA IN REGISTER 7819
0108 F400 RVK REVOKE BOUNDARY CROSSING MODE 8F19

* & k& ok % Xk Kk X & %k & ¥ %k ok %k X X & ¥ k X% XK ¥ % X

Figura 3A-1. Typical Page of CS Assembly Listing .
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ABAND
ALU
AM

AT
B/A
BC
BKPT
BLK
BM
BRF
BRFS
BUFF
cc

CG
CHK
CIN
CLK
CLR
CR
CRIN
cs

css
DISPY
DRBO
ECC
EN
ENCAM
ENDO
ENRAM
ENSAM
ENT
EOR
EOT
EQ
ENRSYCL
ERF
ERFG2
EXEC
EOXX-E
EOXX-L
FB

FF
FM1
FM2
FR
FRJ
FXEQ

APPENDIX 3B

LOGIC SIGNAL NAME ABBREVIATIONS

Abandon
Airthmetic-Logical Unit
A register

Address Table
Busy/Active

Boundary Crossing
Breakpoint

Block

By register

Basic Register File
Basic Register File Select
Buffer

Consecutive Cycles
Constant Generator
Check

Carry In

Clock

Clear

Control register

Carry In

Control Storage
Control Store Scan
Display

D register Byte O

Error Correction Code
Enable

Enable Clock Al

End Out

Enable Reset Al
Enable Set A i

Enter

Exclusive — OR

End of Transmission
Equal

Enable Resync FF Clear
Extended register
Extended Register File Group |
Execute

EO Minor Cycle, Early
EO Minor Cycle, Late

F Buffer register
Flip-flop

Fu register, Rank 1

F i register, Rank 2

F register

Format Jump

Fu Translation Equals (example:
FXEQ-6 means translation of yl whose

GC
GEN
GP
GT
ICA
ICRA
IFA
INVERF
IOR
JVP
P
LD
LT
MC
MR
MS
SMI
NR
ov
PB
PE
PM
Pp
PR
PROP
RD
REQ
RF
RNI
RTC
RO
SELFH/PL
SN
SOPXEQ

SPEC

SR
STDBYTE
sw

$1, 82,83
TB

TBIT

WR

XTAL

ZR

operation code is 6)

Group Carry

Generate

Group

Greater Than

Integrated Communications Adapter
Integrated Card Reader Adapter
Integrated File Adapter

Invoke Extended Register File
Inclusive — OR

Jump

Jump

Load

Less Than

Master Clear

Console Address register

Main Storage

MS Interface

Console Data register

Overflow

P Buffer register

Parity Error

P register

P Pointer register

Privileged register

Propagate

Read

Request

Register File (either BRF or ERF)
Read Next Instruction

Real Time Clock

Register Option

Select F if High or Py if Low
Shift Network

Sub-op Code Translation Egquals
(example: SOPXEQ-0 means
translation of u | whose sub-op code is
0)

Specified, Special

S register

Store D Byte

Switch

Select 1, Select 2, Select 3

Tie Breaker

Toggle Bit

Write

Crystal

Zero






a and b designators, use in

Load B Bit ul’s 2-206
selecting BRF register 2-84
Au register
description  2-183
fan-in 2-183
Basic Register File
addressing 2-84
data path
read ul’s 2-7
write ul's 27
individual register assignment
bit sense ul
description 3-14
execution 2-213
flow diagram 3-40
blockpoint (BP) ul
implementing BP feature 2-73
purpose 3-2
Boundary-Crossing (BC) register
description 2-90
use in selecting registers
ul control
BRF 2-84
ERF Group | 2-92
ERF Group Il 2-96
ERF Group Il 2-98
Panel Control 2-242
BRF
(see ""Basic Register File"’)
Busy/Active (B/A) register
description 2-88
set/clear conditions 2-19
Condition register 2-83
Console Data register
description 290
use during Panel operations
CS load 2-253, 2-255
CS scan/read 2-233
CS write 2-237
register display 2-261
RF read/write  2-242
Console Address register
description 290
use during panel operations
CS disc command load 2-253
register display 2-261
RF read/write  2-42
Control register
CC bits used to specify CC mode

description  2-90

2-82

2-31

EP/IP bits used to specify priority mode

INDEX

2-25

Control Storage
access inhibited 2-68
address format 2-58
longitudinal parity check
(see “‘CS scan’’)
page organization
parity error
address generation
status bit in Pu
read 2-231
scan 2-33
write 2-237
common-block registers

2-65

2-77
2-88

(see ""Extended Register File, Group |1’}

consecutive-cycle (CC) mode
conditions for entering
conditions for leaving

cs
(see "“Control Storage’’)

2-31
2-34

Extended Register File
Group |
addressing 292
individual register assignment
1l data path
read
write
Group {1
addressing 2-96
data path, ul 2-7
individual register assignment
Group Il
addressing 2-98
data path, ul 28
individual register assignment
write fan-in 2-73
ERF
(see “Extended Register File’’)

2-7
2-7

feeder load ul's
delay of following ul
description  3-2
FNJ/FRJ ul's
descriptions 3-16
execution time anomaly
EO through E5 2-40
EG, E7 2-40
flow diagrams
jump address decode
FNJ ul 2-63
FRJ ut 2-176
use during MLI routine selection
FRE register

2-49

2-85

2-85

2-92

3-42, 3-43, 3-44

2-8, 3563

contents used to address FRJ decode address



INDEX (Cont)

table  2-176
description
Fu register

clocking
block during idle/resync condition
relative to Au/Bu clock 22
relative to Su clock 2-2
description  2-69

2-85

2-62

invoke/revoke mode

(see ""Boundary-Crossing register use in selecting
register’’)

JMP ul
execution time anomaly 2-40
jump address decode 2-65
Link (LK) status bit
contained in Pu register 2-88
contained in Su register 2-66

master clear
(see “‘system reset’’)
micro-instruction (ul)
formats 3-1
overlap feature 2-2
translation 2-63
(also see headings related to a particular ul and
characteristics such as ““block point ul’')
minor cycle
generation by E-pulse timing
relation to ul execution times
Main Storage
reference
ul data path

2-13
2-7

2-8
MS
(see “"Main Storage'’)

Overflow (OV) status bit
contained in Pu register
contained in Sy register

2-88
2-66

parity error address (PE) register
description 2-90
P register 2-84
Py, register
description  2-69
use with Py, to store starting
ul address
Pp register
description  2-70
use with Py, to store starting
ul address

2-76

2-76

priority logic

(see “"time slice allocation”})
Pu register

description  2-85

written into from Pp/Pb 2-73

at end of time slice

read-time clock (RTC)
pulse generation
register description
register
(see register wanted, also see '‘register file’’, “’Basic
Register File” and “Extended Register File’’)
register file (1)

2-16
2-88

access capability/limitations 2-99
read from Panel 2-242
read ul's

description 39

execute portion time 2-2
write from Panel
write ul’s

description 3-12

execute portion time 2-2

(also see additional headings ‘’Basic Register File”” and

""Extended Register File’’)

resync ul
condition generated 2-52
description 3-3

RO/R1 cycles

operations performed during 2-2
generation of 2-92
Skip ul
descriptions 3-15
executed at EQ through E6 2-36
executed at E7 2-36
flow diagrams 3-41
status bit location in Pu 2-88

shared resources
block diagram description 2-1

shift ul
description 3-13
execution 2-216
flow diagram 3-39
status bits

(see particular bit wanted)
system reset
operations performed 2-47
power-on condition from power sequence
control 2-251
Su register
clocking

blocking conditions 2-66



INDEX {(Cont)

relative to Fu clock 22
description 2-66
fan-in 2-66
Su + 1 adder 2-69

Tie-Breaker (T) register 2-88
time slice
allocation
consecutive-cycle mode 2-29
examples of during various modes 2-27
interruption by REFRESH request 2-25
normal {scanner) mode priority mode 2-25, 2-29
enable 2-25
invoke 2-25
control logic 2-27
timing
CLK pulse 2-13
constraints during ul exec 3-3
E pulse
major cycle duration
MS reference 2-15
non-MS reference 2-15
TX pulse 2-13

WO/W1 cycles
generation of 2-92
operations performed during 2-2
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