
7300 Processing Unit:
Design Description Manual
Volume II: Shared .Resources
2501.002

n
0
3 ,,
c ;-.,, ..

... UJ
0 '< a. en c ,..

a- ~

February 1973 Edition

Memorex Corporation
Santa Clara, California 95052

Requests for copies of Memorex publications should be made to
your Memorex representative or to the Memorex branch office
serving your locality.

This publication is provided for informational purposes. Contact
Memorex for the latest periodic enhancement.

A readers' comments form is provided at the back of this publi­
cation. If the form has been removed, comments may be
addressed to the Memorex Corporation, Publications Dept.,
Santa Clara, California 95052.

© 1973, MEMOREX CORPORATION

7300 Processing Unit Design Description

Volume 2, Shared Resources

This volume provides Memorex Field Engineers with detailed operating principles of the
7300 Processing Unit's shared resources. The information is presented in two sections.
Section 2, Principles oif Logic Operation, describes the hardware making up the shared
resources - main storage, control storage, arithmetic-logic unit, timing, and control - plus
the basic and extended register files and System Control Panel. Section 3,
Micro-Instruction Repertoire, contains a detailed description of each micro-instruction by
means of a narrative mcplanation and hardware execution flow diagram. This section also
describes how micro-instructions are used to implement machine-language instructions and
gives directions for reading the micro-instruction assembler listing. Hardware descriptions

are keyed to corresponding drawings in the 7200/7300 Logic Diagrams Manuals, and
thus provides the Field Engineer with a comprehensive maintenance package.

This volume is part of a four volume set comprising the 7300 Processing Unit Design
Description Manual. The set of four volumes is assembled as a continuum of section
numbers containing the following information:

Volume 1, Overniew (2501.001)

Section 1. A general description of the 7~300 Processing Unit.

Volume 2, Shared Resources (2501.002)

Section 2.

Section 3.

A detailed description of maiin storage, control, timing and
arithmetic parts of the 7300 Processing Unit.

A detailed description of the formats, characteristics and
implementation of the micro instructions associated with the 7300
Processing Unit.

Volume 3, Dedicated Resources (2501.003)

Section 4.

Section 5.

Section 6.

A detailed description of the two basic data (selector) channels
for the 7300 Processing Unit.

A detailed description of the Integrated Communications
Adapter (ICA) for the 7300 Processing Unit.

A detailed description of th1~ Integrated File Adapter (I FA)
for the 7300 Processing Unit.

Volume 4, Power System (2501.004)

Section 7. A deitailed description of the 7300 Processing Unit power system.

NOTE

Because Volume 1 provides; an overview of the 7300
Processing Unit, it should always be used as an
introduction to the other volumes in the set.

iii

Section

2

TABLE OF CONTENTS
PRINCIPLES OF LOGIC OPERATION

Introduction
Block Diagram Description

Time Slice Allocation
A-Portion Read Operations
Major Cycle Execution

BRF Read
BRF Write
ERF Group I Read
ERF Group I Write
E RF Group 11 Read and Write
ERF Group Ill Read and Write
Arithmetic µl's
MS Reference µl's
FRJ and FNJ µl's
Micro-Instructions Requiring Constants

W-Portion Write Operations
System Control Panel Operations

Detailed Logic Analysis
Timing

Basic Timing
E-Pulse Timing
Major Cycle Duration
Read Time Clock Pulse Generator

Resource Allocation
Busy I Active Register
Resource Allocation Network

Scanner and Priority Logic
Time Slice Control Logic

Time Slicing
Normal Operation
Consecutive-Cycle Operation

Control
Skip Control
Branch Control
Cycle Delay Logic
System Reset Operation
Idle and Resync Conditions

Control Storage
CS Operation

Micro-Instruction Translation and Address Update
Micro-Instruction Decoding

Fµ Register
µI Translation
Jump Decode

Micro-Instruction Address Update
Sµ Fan-In
Sµ Register
Sµ + 1 Logic
Pb Register
P Register
E'RF Write Fan-in
Storing of Starting µI Address

Set P Logic
ProcessJr Register File

Basic Register File
Assignment and Functions
Basic Register Selection

Extended Register File
Assignment and Functions
Extended Register Selection

Access Capabilities and Limitations

iv

Page

2-1

2-1
2-1
2-1
2-2
2-7
2-7
2-7
2-7
2-7
2-7
2-8
2-8
2-8
2-8
2-10
2-10
2-10
2-10
2-10
2-10
2-13
2-15
2-16
2-19
2-19
2-25
2-25
2-27
2-29
2-29
2-29
2-36
2-36
2-38
2-47
2-47
2-52
2-52
2-55
2-59
2-59
2-59
2-63
2-63
2-66
2-66
2-66
2-69
2-69
2-70
2-73
2-73
2-77
2-79
2-82
2-82
2-84
2-85
2-85
2-92
2-99

Section

TABLE OF CONTENTS (Continued)

Mafn Storage lnterfac:e
S Register
D Register
Data Fan-in
MS Write Operation

Word and Byte Write Operations
Parity Generate and Store

MS Read Operation
Word and Byte Read Operations
MS Parity Checks
MS Parity Error Displaiy

MS Interface Signals
MS Reference Signals
MS Write Signals
MS Read Sign a Is
RO Reference Signals

Main Storage
MS Organization

MS Chassis
Block Diagram Description

Addressing
B-1 Row and Column Chip Addresses; A14 through A5
B-2 Column Select Address Bits A4, A3
B-3 Module Select Addresses; A3 through AO

Data Control
Storage Data Register
Sense Bias

Refresh Control
Interface Control Signals
Timing

Main Storage Clock
Address Time FF
Address Timing
Pre-charge Timing
Column Select Time
Strobe Timing
Storage Register Clear
Write Time
Digit Time

Error Correction Coding
Coding Check Bits
Generating Check Bits
Correcting Data
Error Interpretation Control
Error Logging

ECC Control
Normal Error Recovery
Diagnostic Control
ECC Write Controls

Register Option
Basic Storage Protection Feature
Relocation and Protection Feature

Relocation
Protection
Parity Error Register Extension

Job Accounting Feature
Register Read/Write

Register Read
Register Write

v

Page

2-99
2-100
2-102
2-102
2-103
2-103
2-103
2-106
2-107
2-107
2-108
2-108
2-113
2-113
2-113
2-114
2-115
2-115
2-115
2-122
2-124
2-124
2-124
2-124
2-126
2-126
2-126
2-128
2-128
2-132
2-132
2-132
2-137
2-137
2-137
2-137
2-137
2-137
2-137
2-137
2-138
2-138
2-138
2-141
2-141
2-142
2-144
2-144
2-144
2-147
2-148
2-151
2-151
2-161
2-163
2-163
2-166
2-170
2-173

Section

TABLE OF CONTENTS (Continued)

MU Decode and Store/Save
FRJ Decode
F and Fb Registers

Arithmetic~-Logic Unit
Aµ and Bµ Register Fan-in
Aµ and Bµ Registers
Addition

Adder Element Operation
Group Carry Generate
Group Carry Propagate
Look-Ahead Carry Register
Forced Carry Register
Inner Carry Register

Compare
Aµ < Bµ and Aµ > Bµ Com pares
Aµ = Bµ and Aµ =F Bµ Com pares
Aµ = 0 Compare
Algebraic and Logical Compare

ALU Fan-out
Status Logic

Arithmetic Status Bit Detect
Status Bit Storage

Constant Generator
Inputs and Outputs
Load S Micro Instructions
Load B Micro Instructions
Enter B Micro Instruction
DIG Micro Instruction
CORC Micro Instruction

Bit Sense and Sense/Toggle Logic
Shift Network

1/0 Interface
1/0 Requests
Register Selection

Processor 0
Processors 1 and 2
Processor 3

Data Input
Data Output
Termination of 1/0 Operation

System Control Panel Interface
Panel Control

CS Scan/Read
CS Write
MS/RO and RF Read and Write

Operating Modes
Processor Modes
Panel Modes

Loads
Disc CS Load
Card Reader CS Load
Auto load

Register Selection/Display

vi

Page

2-176
2-176
2-179
2-179
2-183
2-183
2-185
2-185
2-185
2-185
2-185
2-189
2-191

2-191
2-191
2-191
2-191
2-195
2-195
2-198
2-198
2-198
2-203
2-203
2-205
2-205
2-210
2-210
2-213
2-213
2-216
2-223
2-223
2-225
2-225
2-225
2-225
2-225
2-225
2-227
2-228
2-228
2-228
2-237
2-240
2-243
2-243
2-248
2-249
2-249
2-258
2-259
2-261

Section

3

TABLE OF CONTENTS (Continued)

APPENDIX 2A - INTRODUCTION TO ERROR CORRECTION
CODES

MICRO-INSTRUCTION REPERTOIRE

General
Formats
Characteristics

Register Addressability
Blockpoint µl's
Feeder Load µI's
1/0 Interface µl's

Pµ Write µl's
Resync µl's
Timing Constraints

Micro-Instruction Description
Register File Read Micro Instructions
Register File Write Micro Instructions
Register File Read, Main Storage Related Micro Instructions
Register File Write Main Storage Related Micro Instructions
Immediate Operand Micro Instructions
Shift Micro Instructions
Bit Sense Micro Instructions
Skip Micro Instructions
Branch Micro Instructions
Control Micro Instructions

Micro-Instruction Execution
Implementing MLl's by µl's

Basic Implementation Scheme
Representative M LI Flow Diagrams

APPENDIX 3A-- MICRO-INSTRUCTION ASSEMBLY LISTING

APPENDIX 38 -- LOGIC SIGNAL NAME ABBREVIATIONS

vii

Page

3-1
3-1
3-2
3-2
3-2
3-2
3-3

3-3
3-3
3-3
3-6
3-6
3-6
3-9
3-12
3-12
3-13
3-14
3-15
3-16
3-19
3-21
3-53
3-53
3-58

Figure

2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8
2-9
2-10
2-11
2-12
2-13
2-14
2-15
2-16
2-17
2-18
2-19
2-20
2-21
2-22
2-23
2-24
2-25
2-26
2-27
2-28
2-29
2-30
2-31
2-32
2-33
2-34
2-35
2-36
·2-37
2-38
2-39
2-40
2-41
2-42
2-43
2-44
2-45
2-46
2-47
2-48
2-49
2-50
2-51
2-52

LIST OF FIGURES

Central Processing Unit Block Diagram
Time Slicing
Register File Read µI Timing
FRJ and FNJ Sequences for MOVR (20) ML.I
Timing Block Diagram
Basic Timing Logic
Basic Timing Waveforms
E-Pulse Timing Logic
Gray Code Counter and E Timing Waveform
Long Access Logic to Generate EO' and EO" Pulses
Long Access Logic Waveforms
Real Time Clock Pulse Generator
Resource Allocation Logic, Block Diagram
Busy Flip-Flops, Processors 0 and 4
Busy Flip-Flops, Processors 1, 2, and 3
Busy Flip-Flops, Processors 5, 6, and 7
Active Flip-Flops, Processors 0 Through 7
Scanner and Priority Logic
Null Condition During MS Refresh
Time Slice Control Logic
Normal Priority Timing, Three Processors on Queue
Clear Resync Flip-Flop Logic
Alternate Time Slices for One Processor Requesting
One Processor in Queue, Not Enabled for CC
Interrogation Logic
One Processor in Queue, Enabled for CC
Generation of CC Mode Signals
CC Mode Signal Timing
One Processor in Queue, Enabled for CC, Another Processor Enters Queue
Two Processors in Queue, One Enabled for Priority
Skip Control Logic
Timing for Skip Executed at EO Through EB
Timing for Skip Executed at E7
FNJ µI at Location FFE, Executed at E4
FNJ µI at Location FFE, Executed at E6
FNJ µI at Location FFE, Executed at E7
JMP µI at Location FE, Executed at E4
JMP µI at Location FE, Executed at E7
Cycle Delay Logic
Cycle Delay Timing
System Reset Logic
Idle and Resync Logic
Idle and Resync Timing
Control Storage Block Diagram
Control Storage Page Organization
Control Storage Address Selection
Generator of ENRD - CS and ENWR - CS Signals
CS Control, Block Diagram
Fµ Register
Micro Instruction Decoding
Micro Instruction Translation Block Diagram
FNJ and JMP Jump Address Formats

viii

Page

2-3
2-5
2-6
2-9
2-11
2-12
2-12
2-13
2-14
2-17
2-18
2-18
2-20
2-22
2-23
2-24
2-24
2-26
2-28
2-28
2-30
2-30
2-30
2-32
2-32
2-33
2-33
2-35
2-37
2-38
2-39
2-40
2-41
2-42
2-43
2-44
2-45
2-46
2-48
2-49
2-50
2-53
2-54
2-56
2-57
2-58
2-58
2-60
2-61
2-62
2-64
2-65

LIST OF FIGURES (Continued)

Figure Page

2-53 Generation of FNJ and JMP Addresses 2-66
2-54 Sµ Fan-In 2-68
2-55 Sµ Register Formats 2-70
2-56 Sµ Register 2-71
2-57 Sµ + 1 Logic 2-72
2-58 P Fan-In 2-74
2-59 lfRF Write Fan-1111 2-75
2-60 Use of Pp and Pb to Hold Starting µI Address 2-76
2-61 Derivation of Starting µI Address 2-77
2-62 Execution of Sum µI at E6 if Cycle Delay Flip-Flop is Set 2-78
2-63 Set Pp. Logic 2-81
2-64 BRF and ERF Addressing 2-82
2-65 Basic Register File Array 2-83
2-66 Condition Register Bit Designations 2-83
2-67 BRF Addressing Methods 2-85
2-68 BRF Select Logic 2-86
2-69 Extended Register File Structure 2-87
2-70 Pµ Register 2-89
2-71 Busy/Active Register 2-89
2-72 Real Time Clock !Register 2-89
2-73 Parity Error Register 2-90
2-74 Control Register 2-91
2-75 Privileged Mode Register 2-91
2-76 Boundary Crossin 1g Register 2-91
2-77 CS Scan Register 2-91
2-78 ERF Group I Select Logic 2-92
2-79 ERF Group I Read and Write Timing 2-93
2-80 Generation of SELFH/PL and EFIRH/WL 2-94
2-81 E RF Group 11 Address Format, Read Operation 2-95
2-82 ER F Group 11 Address Format, Write Operation 2-97
2-83 ERF Group Ill Selection 2-98
2-84 Format of Word Transferred to MS 2-100
2-85 S Register 2-101
2-86 D Register 2-102
2-87 Data Fan-In 2-103
2-88 MS Write Operation 2-104
2-89 Word and Byte Store in MS 2-105
2-90 Generation of Byte Write Enables 2-106
2-91 Parity Generate and Store 2-108
2-92 MS Read Operation 2-109
2-93 Word and Byte Read Data Transfers 2-110
2-94 Generation of Byte Read Enables 2-111
2-95 Parity Check Logic 2-111
2-96 MS Parity Error Display Logic 2-112
2-97 MS Control Signal Waveforms 2-112
2-98 MS Reference Signals 2-113
2-99 MS Write Signal 2-113
2-100 MS Read Signals 2-114

ix

Figure

2-101
2-102
2-103
2-104
2-105
2-106
2-107
2-108
2-109
2-110
2-111
2-112
2-113
2-114
2-115
2-116
2-117
2-118
2-119
2-120
2-121
2-122
2-123
2-124
2-125
2-126
2-127
2-128
2-129
2-130
2-131
2-132
2-133
2-134
2-135
2-136
2-137
2-138
2-139
2-140
2-141
2-142
2-143
2-144
2-145
2-146
2-147
2-148
2-149
2-150

LIST OF FIGURES (Continued)

Reference Signals
Main Storage Chassis
Selection of a Bit from MS
MOS Storage Module Block Diagram
1024 Bit Storage IC Block Diagram
Timing for Storage Element
Main Storage Block Diagram
Addressing Scheme
Address Fanout
Address Control
Simplified Data Flow for One Data Bit
Storage Data Register (No ECC)
Refresh Control Block Diagram
Refresh Control Interface Timing
Timing Flow Diagram
Potentiometer Adjustment Locations

.Storage Timing (900 Nanosecond Cycle Time)
Storage Timing (1000 Nanosecond Cycle Time)
ECC Special Selection Lines (Timing)
Storing Lower Byte With ECC
Error Interpretation Logic
ECC Detailed Block Diagram
Data Correction Logic
Write Control for ECC
Installation of Either Basic Storage Protect or Relocation and Protection Feature
Register Option, Block Diagram
Basic Protect, Bounds Compare
Generation of Processor Select Signals
Write Operation Abort Logic
Relocation Procedure
Relocation Function Logic
Generation of ENCLKSTR
Segment Relocation Table Entry Interpretations
Derivation of Physical Memory Address from Console Main Storage Switch
Use of Segment Tag in Relocation and Index Operations
Generation of SEGTAGWR for Segment Tag Re-Write
Protect Function Logic
Address Mode Register
Protection Matrix
Parity Error Tag Register
Job Accounting Feature Block Diagram
Job Accounting Register Format
Generation of J/A WRITE
RO Register Address Format
Register Option Registers and Associated Addresses
Register Option Register Read
Register Option Register Write
Register Group Write Enables
Writing O's Into Job Accounting Register
M LI Translation and Save/Store, Block Diagram

x

Page

2-115
2-116
2-119
2-120
2-121
2-122
2-123
2-125
2-125
2-126
2-127
2-127
2-129
2-130
2-133
2-134
2-135
2-136
2-137
2-139
2-142
2-144
2-145
2-146
2-149
2-150
2-152
2-153
2-153
2-154
2-156
2-157
2-157
2-158
2-159
2-160
2-162
2-163
2-164
2-164
2-165
2-166
2-167
2-168
2-169
2-172
2-174
2-175
2-177
2-177

LIST OF FIGURES (Continued)

Figure Page

2-151 F RJ Branch Address 2-177

2-152 FRJ Decode of MLI 2A 0.0 2-178

2-153 F and Fb Registers 2-181

2-154 ALU Block Diagram 2-182

2-155 Aµ and Bµ Register Fan-In 2-182

2-156 Aµ and Bµ Register Data Store 2-184

2-157 Aµ and Bµ Register Destinations 2-184

2-158 Adder 2-187

2-159 Generation of GPCFtlN-1 2-188

2-160 Forced Carry Regist1er 2-190

2-161 Inner Carry f~egister 2-192

2-162 Aµ < Bµ and AJi> Bµ Compare Logic 2-192

2-163 Input Signals to Aµ ~ Bµ Compare Logic 2-193

2-164 Aµ= Bµ and Aµ::/= Bµ Compare Logic 2-193

2-165 Aµ= 0 Compare Lo!~ic 2-194

2-166 Sign and Magnitude Compare Logic 2-196

2-167 ALU Fan-Out 2-197

2-168 Overflow Definition 2-199

2-169 Overflow Detection 2-199

2-170 Arithmetic Status Bit Detect Logic 2-200

2-171 Status Bit Read Data Flow 2-201

2-172 Status Bit Register Storage 2-202

2-173 Constant Generator 2-204

2-174 Generation of Constants for Load S µl's 2-206

2-175 Generation of Constants for Load Bµl's (a· B:=Q·O, 1 •0, and 0· 1) 2-208

2-176 Generation of Constants for Load BµI (a·b=11•1) 2-209

2-177 Generation of Constants for Enter BµI 2-211

2-178 Generation of Constants for DIG µI 2-212

2-179 X-Field Fan-Out for DIG µI 2-212

2-180 Generation of Constants for CORC µI 2-213

2-181 Bit Sense and Sense/Toggle Logic 2-214

2-182 Toggling of Bit 4 of Aµ 2-215

2-183 Shift Operation Bloc::k Diagram 2-217

2-184 Shift Network 2-218

2-185 Left Shift of Bµ Bit 5 Four Places 2-219

2-186 Implementing Lefg Shift and Right Shift OpE!rations 2-220

2-187 Shift Delay Logic 2-221

2-188 Shift µI Timing 2-222

2-189 1/0 Requests to B/A Register 2-224

2-190 ERF Group ill Input 2-226

2-191 ERF Group ill Output 2-227

2-192 EQT Fan-In Logic 2-228

2-193 1/0 Terminate/Continue Logic 2-229

2-194 System Control Panel Interface Block Diagram 2-230

2-195 CS Scan and CS Reaid Operation 2-232

2-196 Parity Checking of CS Page 2-234

2-197 CLKCSS Logic 2-234

2-198 Clear CSS Register Logic 2-235

2-199 CLR FM and B LKSMS Logic 2-236

2-200 CS Scan Error Detec:t 2-237

xi

Figure

2-201
2-202
2-203
2-204
2-205
2-206
2-207
2-208
2-209
2-210
2-211
2-212
2-213
2-214
2-215
2-216
2-217
2-218
2-219
2-220
2-221
2-222
2-223
2-224
2-225
2-226

3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10
3-11
3-12
3-13
3-14
3-15
3-16
3-17
3-18
3-19
3-20
3-21

LIST OF FIGURES (Continued}

CS Write Operation
CS and AT Write Select
Set S Logic
MS/A 0 Read Routine
MS/A 0 Write Routine
RF Read Routine
Reading Segment Tag Position During Panel RF Read
RF Write Routine
Writing Segment Tag During Panel RF Write
GO Flip-Flop
Cycle Step Logic
Selection of System of Relocation Address for Breakpoint Compa~e
S Register Breakpoint
Console Busy Flip-Flop
Sµ Register Breakpoint
CS Load Initiate Logic
Formation of Address 000016 in Sµ Register
CS Load Control
CS Load Data Transfer
CS Load Complete Logic
CS Address and CS Present Compares
Transfer of ICRA Nybl Data to Console Data Register
Autoload Control Logic
Autoload Data Storage
Console Data Register Display
Console Address Register Display

Microcode Timing Restrictions
BRF Write
ER F Group I Write
ER F Group 11 Write
ERF Group Ill Write
BRF Read (to Aµ and Bµ)
ERF Group I Read (to Aµ and Bµ)
ER F Group 11 Read (to Aµ and 8µ)
ERF Group Ill Read (to Aµand Bµ)
CMP and CMU µl's
Load S µI
LOW and LOB µl's
SDWµI
SDBµI
LBB and LBB- µl's (a· = O·O)
LBB and LBB- µl's (a·b = 1•1)
DIG µI
CORC µI
Shift

Bit Sense and Sense/Toggle µl's
Skip µl's

xii

Page

2-238
2-239
2-240
2-241
2-241
2-241
2-242
2-243
2-244
2-245
2-245
2-246
2-247
2-248
2-250
2-252
2-253
2-254
2-256
2-257
2-258
2-259
2-260
2-261
2-262
2-263

3-4
3-22
3-23
3-24
3-25
3-26
3-27
3-28
3-29
3-30
3-31
3-32
3-33
3-34
3-35
3-36
3-37
3-38
3-39
3-40
3-42

Figure

3-22
3-23
3-24
3-25
3-26
3-27
3-28
3-29
3-30

3-3'1
3-32
3-33
3-34
3-35
3-36
3-37
3-38
3-39
3A-1

LIST OF FIGURES (Continued)

FNJ µl's (EO - E6)
FNJµl's (E7)
FRJ µI
FZJ µI
RNI 1 and RNI 2 µl's
JMP µI (EO - E6)
JMP µI (E7)

CIOµI
INV and RVK µI

JMP and FNJ µI Timing Diagram
(FZJ·Aµ= 0), FRJ, RN11, RNl2,CI01, CI02,ROM,and SYNCµl's
SOW and SOB
OTA, OTA-, IDX, and DFA µl's
SUM, DSUM, CMP, and DMU µl's
All Shift or Sense Instructions
Basic Microcode lmplimentation of MLI
Two-Byte (ADDR) MLI Flow Diagram
Six-Byte (ADDM) Instruction Flow Diagram
Typical Page of CS Assembly Listing

xiii

Page

3-42
3-13
3-44
3-45
3-46
3-47
3-48
3-49
3-50

3-51
3-51
3-51
3-52
3-52
3-52
3-54
3-55
3-57
3A-2

Table

2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8
2-9
2-10
2-11
2-12
2-13
2-14
2-15
2-16
2-17
2-18
2-19
2-20
2-21
2-22
2-23
2-24
2-25
2-26
2-27
2-28
2A-1
2A-2
3-1
3-2

LIST OF TABLES

On-Time Gray Code Counter Timing and Major Cycle Durations
Priority Logic Operations
CS Address Select Signals
Generation of Enables for Starting µI Address
ERF Group II Read Select Bits
Reading and Writing File Registers
Word and Byte Read Operations
MS Interface Signals
Interface Signal References
Error Coding Table
Syndrome Bit Generating Matrix
Error Logging Format
Diagnostic Selection Codes
Detailed Diagnostic Selection Code References
Occurrence of Job Accounting Register Increment Operations
Register Option Register Group Numbers
First-Level Selection of Register Groups
F RJ Address Decode Matrix
Aµ and Bµ Register Enables
Group Carry Generate Truth Table
Group Carry Propagate Truth Table
ALU Fan-out Exclusive-OR and Inclusive-OR Functions
Constant Generator Input Select
Constant Generator Output Constants
Field Selection for Setting Bits in Bµ Via Load B µl's
Constant Generator Outputs for CORC µI
Console Data Register Selector Addresses
Console Address Register Selector Addresses
Odd Parity Example
Formatting the Example into a Table
Micro-Instruction Characteristics
Address Table Input Translation

xiv

Page

2-15
2-27
2-60
2-79
2-96
2-99
2-107
2-109
2-131
2-140
2-141
2-143
2-146
2-147
2-167
2-170
2-171
2-180
2-186
2-188
2-188
2-194
2-203
2-205
2-207
2-213
2-263
2-263
2A-2
2A-2
3-5
3-17

2. PRINCllPLES OF L.OGIC OPERATION

INTRODUCTION

This section contains a detailed logic description of the
shared resources portion of the MEMOREX 7300
Processing Unit. The section begins with an over-all block
diagram description of the shared resources, discussing the
principal data paths and explaining some of the basic
concepts of time slicing and machine lainguage instruction
implementation by micro instructions. Following the
block diagram description is a comprehensive analysis of
each functional part of the shared resources.
Supplementing the narrative description are in-text logic
drawings illustrating each functional part, and portion
thereof. These drawings are based on the logic diagrams
contained in the 7300 Processing Unit Support Diagrams
manual. For ease in correlating the in-teixt drawings to the
logic diagrams, each drawing references the physical
module (PC board) on which the IO!Jic shown in that
drawing is contained, both by a dashed rectangle to
indicate the module t;>oundary and thEi module number.
The module number is of the form 1AXX and is (usually)
located in the lower right corner of each module
boundary.

NOTE

Signal names prefixed w~th a + or - in the
in-text drawings are identical to correspond­
ing signal names shown in the logic diagrams,
where the + or - represents the polarity of
the signal in the active state. Signal names
without such a prefi'x represent a combina­
tion of individual signals, where the polarity
of the signal is not conveyed.

BLOCK DIAGRAM DESCRIPTION

The shared resources encompasses all logic shared by the
eight processor states during their operation. It includes
elements for assigning time slices, reading and executing
Micro Instructions (µl's), reading and writing file regis­
ters, accessing Main Storage (MS), and communicating
with the four 1/0 processors and the System Control

2-1

Panel. (When enabled for operation, the Panel is granted
time slices just as if it was a ninth processor.) As dis­
cussed in Chapter 1, the shared resources consists of
four major parts: the Arithmetic-Logical Unit (ALU),
MS, Control Storage (CS), and Timing and Control logic.
For purposes of discussing the operation of the shared
resources, however, it is useful to also discuss operation
of the Basic Register File (BR F) and Extended Register
File (ERF) portions of the dedicated resources because
of their intimate relationship with the shared resources.
The shared resources plus the combination of BR F and
ER F are referred to as the Central Processing Unit
(CPU).

A block diagram of the CPU is shown in Figure 2-1.
This block diagram is similar to the CPU block diagram,
drawing 503247, in the logic diagram manual but has
been simplified by removing some of the auxiliary
elements such as (most) register fan-in and MS and CS
parity check circuits. Three of the four major elements
(ALU, MS, and CS) are indicated by dashed line boxes.
In addition, the BRF and ERF (both Groups I and II)
are similarly designated. The block diagram will be dis­
cussed by describing each data path shown on the dia­
gram and its relationship to other such paths during
execution of µl's during one time slice. The numbers
appearing in parentheses in text refer to a corresponding
data path in Figure 2-1.

TIME SLICE ALLOCATION

Assignment of a time slice to a particular processor state
actually begins at E560 of the previous time slice. (The
notation E560 means 60 nanoseconds into minor cycle E5
of the major cycle.) At this time, priority is granted to the
processor state under consideration. This sequence of
events begins when the processor's Busy flip-flop in the
Busy/Active (B/A) register of the ERF Group II is set.
Setting this flip-flop essentially informs the shared
resources that the processor under consideration has been
assigned a task to perform and, consequently, will need a

time slice to perform this task. Setting the Busy flip-flop
can be done by software, under program control, via the
ALU fan-in (1) or by manual control from the Panel (2).
In addition, each of the four 1/0 processors can issue a
request to set the Busy flip-flop (3) when they are ready
to perform an 1/0-related operation. The Busy flip-flop
output is routed to the Resync register in the Resource
Allocation Network (RAN) via path (4). The Resync
register functions as a job queue register by holding all
requests for time slices from the various processors until
granted by the RAN. The requests are fed to the priority
network, which assigns priority to each request. Normally,
the priority network assigns time slices to each processor
in a cyclic fashion: 0 through 7, 0 through 7, and so forth.
The four 1/0 processors, however, operate in a real-time
environment; consequently, their needs for time slices are
often critical to avoid loss of data transmitted to or from
an 1/0 device. Therefore, these processors can override the
normal cyclic assignment of time slices by setting a
corresponding bit in the Priority register (5). This register
enables the affected 1/0 processor to secure an
out-of-sequence time slice according to one of two
schemes: Enable Priority (secure a time slice when
needed) or Invoke Priority (secure alternate time slices
whether needed or not). At E560, the priority network is
sampled and the number of the processor granted the next
time slice is fed to the Read register (6).

A-PORTION READ OPERATIONS

The Read register contents are used to select the Pµ and
FRFregisters in the Group I ERF to obtain housekeeping
information required to begin the present time slice. This
housekeeping information consists of the present M LI
being executed, contained in FR F· and the address of the
first µI of that MLI to be executed during this time slice,
contained in Pµ. Normally, this housekeeping information
will reflect where the last time slice .assigned to this pro-·
cessor left off, that is, the M LI will remain the same and
the starting µI address will be one greater than that of the
last µI executed during the last time slice (unless a jump
or skip occurred at the end of the last time slice). Under
some circumstances, however, the starting µI address will
have been modified between the time slices due to a
boundary-crossing operation. This operation allows pro­
cessor state 4 (Executive) to access registers associated
with the present processor state, making it possible for
processor state 4, during its assigned time slice, to load a
different starting µI address into the present processor's
Pµ.

The housekeeping Read operations take place during the
R portion of a time slice, which overlaps minor cycles E6
and E7 of the previous time slice. These timing relation­
ships are shown in Figure 2-2. For convenience, the R por­
tion is considered to consist of two 100-nanosecond

2-2

minor cycles: RO and R1. During RO, the processor
number in the Read register is routed to the Group I ERF
via (7), and the starting µI address is read from Pµ and
clocked into the Sµ register at E680 (8). The Sµ register
holds the address of the next µI to be read from CS.
During R1, the MLI contained in FRF is read and trans­
ferred to the shared resources F register (9). Meanwhile,
the starting µI address clocked into Sµ at E680 has
already accessed CS to read the first µI to be executed
during the new time slice (10). This operation also takes
place during RO, and at EOOO the starting µI is clocked in
FJL (11) for translation and subsequent execution during
EO.

· BE!cause of the overlapping facility of shared resources,
the next µI in a sequence is (usually) read from CS during
the minor cycle that the present µI is being executed. This
can be seen from the previous paragraph where the first µI
of the next time slice is being read at RO (E6) simultane­
ous with translation/execution of the next to last µI of
the present time slice during E6 (RO). In general, this
overlapped operation holds true for most µl's that take
only one minor cycle to execute. Therefore, a single one­
minor-cycle-execute µI actually takes two minor cycles to
implement: one minor cycle to read the µI from CS and
one minor cycle to execute. If the µI is a Register File
Write (and ALU propagation requirements are met), the
execute portion (store into file register) does indeed take
place dur.ing the second minor cycle. However, if the µI is

a Register File Read, the execute portion actually extends
into a third minor cycle.

This timing relationship for successive Register File Read
µl's executed during one time slice is shown in Figure
2-3. The top portion of this figure shows the logic
elements through which the Register File Read ul must
pass during its implementation. As can be seen, the route
traversed by the µI consists of two
register-to-storage-to-register paths. The first path begins
with Sµ through a fan-in to CS through a fan-out to Fµ.
This path is used to read the µI from CS at the location
specified by the address in Sµ, and route it to Fµ. The
time required to traverse this path is 120 nanoseconds,
from the time that Sµ is clocked with the µI address
(CLKSµ at t) to the time that Fµ is clocked with the µI
read from CS (CLKFµ at t+120). The second path begins
with Fµ through a fan-in to the register file through a
fan-out to Aµ and Bµ. This path is used to translate the
µ.I in Fµ, access the register in either the BRF or ERF
defined by theµ I, and process the register contents in the
ALU via Aµ and/or Bµ. The time required to traverse
this path is also 120 nanoseconds, from the time that Fµ
is clocked with the µI (CLKFµ at time t) to the time
that Aµ and/or B,.t are clocked with the register contents
(CLKAµ/Bµ, at t+120). If the µI being executed is the
first one in a time slice, the two aforementioned paths are
preceded by a third path from the Read register in the

PANEL

•••••••••••••••••••••••••••••••
RESOURCE I

ALLOCATION =
NETWORK I

••••••••••• • • • •••••••

I
I
I
I

JJ

•

ARITHMETIC­
LOGICAL

UNIT

................ ..,
I •

•

••••••••••••••• • •••••••••••••••••••••••••••••••••••

PANEL

I

Lr- - -•CONS DATA BC

63

Fµ
I css, BIA, ALU, ii:c

BKPTSEL

•• I CSS, CONS AORS,
I CONS DATA

I I CONT, B/A, BC
ERF PE, TB, PRIV, RTC
GRP

II

61 6Z

PANEL

Figure 2·1. Central Processing Unit Block Diagram

2-3/2-4

I 1

11

21 R H 11111 H w I

MINOR CYCLES 4 l R I ED - EJ
(100 NSEC)

I
11 ___ I

a ... I,_ _ __... ... I

sl ... -----
--------------6.4µ.SEC--------------

READ AND
EXEC µI'S

Figure 2-2. Time Slicing

EXEC
µI

SAMPLE LOAD Aµ
PRIORITY µI ADRS LOADµI

READ ERF
Sµ cs REG CLKAµ/Bµ Pµ+F (Pµ,F) Fµ FILE (t+240)

E560
FAN-IN/FAN-OUT CLKS CLKFµ Bµ

RANKS (t) (t+120)

E5 E6 E7 EO E1 E2 El

00 00 00 00 00 00 00 00

l 60 l 80 l 80 80 20 80 20 80 20 •• .1 ,.
i ~~ ... 4~ ~ ~ 4~ A~ A ~ A~ p. l ~ ~

SAMPLE
PRIORITY

µI N CLKSµ CLKFµ CLKAµIBµ
(N) (N) (N)

CLKSµ CLKFµ CLKAµ/Bµ
(N+1) (N+1) (N+1)

µI N+1

µI N+2 CLKSµ CLKFµ CLKAµ/Bµ
(N+2) (N+2) (N+2)

CLKSµ CLKFµ
(N+J) (N+J)

µI N+J

CLKS.u
(N+4)

µI N+4
..

Figure 2-3. Register File Read µ1 Timing

RAN to Pµ in the Group I EBF to Sµ. This path, which
starts at E560, when the processor number is clocked into
the Read register, also takes 1 :20 nanoseconds to traverse.

Since A"'" and/or Bµ are not loaded with data until 240
nanoseconds after the µI address has been loaded into Sµ,
execution of a single Register File Read µI actually takes
two complete minor cycles plus part of a third and a
fourth minor cycle. This can be seen from the bottom
part of Figure 2-3, which shows the times at which Sµ,
Fµ, and Aµ/Bµ are clocked for each µI of a time slice.
Using J I N (the first µI executed in the time slice) as an
example, its total execution time exwnds through minor
cycles E6 and E7 of the previous time slice and through
EO and E1 of the present time slice, starting with CLSK
at E680 and ending with CLKAµ/B~- at E 120. The relative
times at which the same clocking operations occur for
successive µl's, however, is only 100 nanoseconds. For
example, CLKSµ for µI N occurs at E680 and CLKSµ for
µI N+1 occurs at E780, 100 nanoseconds later. In this
sense, then, execution of a µI is considered to take only
100 nanoseconds since an operation performed on µI N,
for example, can be followed by the same operation per­
formed on µI N+1 only 100 nanoseconds later. This so­
called pipeline effect extends throu1gh the whole time
slice, so that operations associated with µl's begun near
the end of the ti me slice assigned to processor X can act­
ually extend into the beginning of the next time slice
assigned to processor Y.

Returning to Figure 2-1, the µI address in Sµ used to read
the µI presently in Fµ is automatically updated by the
Sµ+1 adder. This adder adds +·t to the contents of Sµ and
routes it back to Sµ to form the address of the next µI to
be read from CS. This is the normal manner in which the
next µI address is formed since for ar:iv one sequence, µl's
are arranged in consecutive order in CS. However, there
are several other ways of loading Sµ with the address of
the next µI, depending on several factors such as execu­
tion of a Branch µI, storing data into Pµ, and operating in
the consecutive cycle (CC) mode. These alternate loads of
Sµ are discussed in the following paragraphs. If the µI
being executed is a Blockpoint (BP) µI, its address up­
dated by +1 will be fed to Pp for use as the anticipated
starting µI address for the next time slice (12), subject to
the boundary-crossing operation discussed above. In addi­
tion, the updated address is sent to Pb (13) for certain
conditions when the anticipated starting µI address cannot
be sent to Pp.

The µI in Fµ is now ready for execution. From this point
on, the paths traversed by the µI will depend on the type
of µI, as discussed in the following paragraphs.

MAJOR CYCLE EXECUTION

BRF Read

2-7

A BRF Read µI selects a register of the BRF by a combin­
ation of the processor number obtained from the RAN
Read register (14) and the register number obtained from
the µI via the register file fan-in (15). The contents of the
selected register are routed to the Aµ and/or Bµ registers
of the ALU (16) for processing defined by the µI opera­
tion code. The contents may also be routed to the S regis­
ter (38) or D register (41) via the Aµ register fan-in.

BRF Write

A BRF Write µI selects a register of the BRF in which to
write data from some shared resources register (usually
the Aµ, Bµ, or D register) or logical/arithmetic combina­
tion of the contents of such registers, as defined by the µI
operation code. The register is selected in the same man­
ner as for a BRF Read µI: processor number from Read
register (14) and register number from the µI (15). Upon
selecting the register, the contents to be written are gated
through the ALU fan-in logic to the BRF (17).

ERF Group I Read

The ERF Group I read µl's do not read Pµ or FRF
directly; instead, they read the contents of the Buffer
registers (Sµ/Pp and F) that reflect the most recent con­
tents of Pµ and FR F, assuming that Pp has not been up­
dated by a blockpoint µI. The contents of Sµ/Pp (the
notation Sµ/Pp indicates that status bits 0 and 1 are read
from Sµ and CS address bits 2 through 15 are read from
Pp) or F are routed to the ERF fan-in Aµ/Bµ via paths
(69) and (70). They are gated through the fan-in by cor­
responding enables and sent to the Aµ and Bµ registers.

ERF Group I Write

Like the ERF Group I read µl's, the ERF Group I write
µl's access Pµ and FR F through their buffers, Sµ/Pp and F
(and Fb). If Pµ is to be written, data is routed from the
ALU fan-in to Pp via Sµ and/or Pp (19). Then at the end
of the time slice, the data in Pp is written into Pµ as part
of the WO cycle housekeeping operation. If FRF is to be
written, data is routed from the ALU fan-in to F/Fb (20).
Then at the end of the time slice, the data in Fb is written
into FRF as part of the W1 cycle housekeeping operation
(21).

ERF Group II Read and Write

The ERF Group II register is selected by a combination of
processor number and register number, similar to that for
a BRF register. If a Read operation is specified, the
contents of the selected register are fed to the ALU via
the ERF Group II fan-in and the ERF input Aµ/Bµ fan-in
(22). If a Write operation is specified, the data to be

written is sent from the ALU via the ALU fan-in (23).

ERF Group Ill Read and Write

These ul's are programmed as part of an 1/0 data transfer
operation, since the ERF Group Ill registers associated
with the four 1/0 processors are located in the
corresponding adapters. The Group 111 register is selected
by the µI through the register file fan-in (24). Data
received from a Group Ill register is put in to the ERF
input Aµ/Bµ fan-in (25). Data transmitted to a Group 111
register is sent out via the ALU fan-in (26).

Arithmetic µI'S

Arithmetic µl's comprise those executed by the ALU.
They include Sum, Compare, Skip, Bit Sense, and
Shift µI's. The Sum µI's add the contents of Aµ and Bu
and route the sum to the ALU fan-in (27). The Compare
µI's compare the contents of Aµ and Bµ for less than,
equal, and greater than conditions by the compare
network (28). The results are used to generate
corresponding compare status bits which are sent to the
ALU fan-in (29) for storage in a designated register. The
Skip µI's determine conditions for skipping the next µI
by the skip evaluate logic (30) and Aµ=O logic (31). The
Bit Sense µI's scan the contents of Aµ for a designated
bit (32). When found, a number equal to the number of
bit positions scanned without a find is added to the con­
tents of Bµ (33). The result is then stored back in Bµ (33).
In addition, the bit in Aµ providing the find may also be
toggled. The Shift µI routes the contents of Aµ and Bµ to
Aµ buffer and Bµ buffer (34), then shifts the contents of
the two buffer registers by a specified amount. The
shifted result is stored back in Aµ and Bµ (37).

MS Reference µl's

Both read and write references to MS require loading an
address into the Sµ register from the Aµ register fan-in
(38). This address is sent to MS via the Register Option
(39). If an MS read is specified, the data is read from MS
and routed to the F RJ decode address table (AT) pointer
logic and to the ALU via path (40). If an MS write is
specified, the word to be stored is loaded in the D register
(41) and routed to MS via the Register Option (42).

FNJ and FRJ µl's

The FNJ (Function Jump) and FRJ (Format Jump) µl's
are executed as part of the process of reducing the
number of possibleµ I routines required to implement a
MU down to one particular routine applicable to that
MU only. The scheme for accomplishing this reduction is
shown in Figure 2-4. Implementing a MU requires three
sequences: Read Next Instruction (RN I) sequence,
Format Jump (FRJ) sequence, and Function Jump (FNJ)

2-8

sequence. The RNI sequence is used to read the MU from
MS and isolate it to a group of several M LI 's sharing
common characteristics by performing an F RJ, or
first-level, decode. This decode is performed by executing
an 1=RJ µ.I, and determines the format of the MU; that is,
its type (register/register, memory/register, memory/
memory, and so forth) and the addressing mode specified
(direct or indirect). Figure 2-4 shows the sequences
associated with a ADD R M LI (function code of 22). The
ADDR M LI belongs to a class of M Li's identified as
register/register MLl's, meaning that the operands process­
ed by these MLl's are obtained either from a file register
(direct accessing) or from MS at a location specified by
the contents of a file register (indirect addressing). All
M Li's with function codes of 20 through 29 belong to this
class of M Li's. For the example shown in Figure 2-4, both
operands required by the ADD R M LI are to be obtained
by direct addressing (D/D).

Upon executing the F RJ µI, a branch is made to an area
of CS determined by the F RJ decode to begin the F RJ
sequence. Note from the figure that any of four different
F R.J sequences for the register /register class of M LI 's
could have been entered, depending on the type of
operand addressing specified. The FRJ sequence reads the
first operand and prepares to enter the FNJ sequence by
performing an FNJ, or second-level, decode. This decode
is performed by executing an F NJ µI, and picks out the
ADDR MU from the rest of the register/register MLl's by
identifying its function (add register to register) and
causes a branch to another area of CS containing µl's
required to implement the move register to register func­
tion. Note again from the figure that any one of 10 differ­
ent FNJ sequences could have been entered, depending on
the function of the M LI. The FNJ sequence reads the
second operand, performs the required additiqn, stores
the result, and branches back to the RN I sequence to read
the next M LI.

Execution of both the FRJ and FNJ µl's form a branch
address to branch to the start of the F RJ and F NJ
sequences. Formation of the F RJ branch address, shown
in Figure 2-1, is accomplished by developing an
intermediate address tha points to the required F RJ
branch address stored in the F RJ decode address table
(AT). This pointer address is developed by feeding the
ML.I read from MS (43) to the pointer logic. The resultant
FRJ branch address is read from the AT, combined with
the contents of F, and routed to Pp (44). Formation of
the FNJ branch address is performed directly by the jump
decode logic. This logic, which is also used to form branch
addresses for other jump µl's, is fed with bits from both
the MU in F (45) and the FNJ µI in Fµ (46). The FNJ
branch address is formed by a combination of these bits
and fed to Sµ (68) and/or Pp (47).

c READMLI

c PUT MU INF

PERFORM FRJ (1ST
LEVEL) DECODE

20 •29
l/D ·--- ----· I I

I I
I I
I I
I I
I I
I I
I I
I I .. _______ ...

20 +29
DID 1----­ -----· • --------I OBTAIN 1ST OPER . _______ ..

I
I •..-------.. I PERFORM FNJ (2ND
I ._ ___ L_E_vE_L~lD~E_c_o_DE----~
I
.. ____ _

I
I
I
I
I
I
I
I
I

_r:= 1D~1 ~'-r---, r--~-::Wr- -, r-~~,. ----.,
I I
I I
I I
I I
I I
I I
I I
I I
·... 7 FRJ SEQUENCES I

_______ ..
I I
I I
I I
I I
I I
I I
I I
I I
I I L---.1 .. ___ I ___ .. ._ ___ ..

I
I

OBTAIN 2ND OPER

EXECUTE

STORE RESULT

•..-------..
I JUMP TO RNI ______ ..
I

·-----------

Figu1·e 2-4. FRJ and FNJ Sequences for ADDR (22) MLI

2-9

READ MU FROM
MS AND EXEC
FRJµI

I .. ,
.) SEO

JUMP TO AREA OF
CS DETERMINED BY
MLI FORMAT
(REG/REG, MEM/REG,
MEM/MEM, ETC.;
DIRECT OR IN·
DIRECT ADORES·
SING), EXEC
FNJµI

JUMP TO AREA OF
CS CONTAINING
MICROPROGRAM
FOR IMPLEMENTING
MLI FUNCTION
(MOVE. ADD, SHIFT,
AND, ETC.)

FRJ
SEO

FNJ
SEQ

Micro-Instructions Requiring Constants

A number of µl's require certain constants for their execu­
tion. These constants are generated by the constant
generator, either by itself or with other logic. Among the
constants generated are -1, 0, and +1 generated in con­
junction with the Forced Carry Register for the load S
µl's; 3 and 0 16 for the CORC µI; and certain word-,
byte-, and nybl-length constants for the load Bµ, enter Bµ,
and DIG µI's. The generated constants are fed to the Bµ
register (48).

W-PORTION WRITE OPERATIONS

At the end of the time slice assigned to the processor
state, the starting µI address in Pp and the M LI in F/Fb
must be written back into Pµ and FR F of the processor
state's Group I ER F to enable resumption of the micro­
program when the next time slice is assigned to the pro­
cessor state. These operations take place at WO (EO) and
W1 (E1), respectively, as shown in Figure 2-3. The Pµ and
FR F registers are selected by the processor number, now
contained in the Write register of the RAN (49). This
register number was transferred from the Execute register
during E5 (50). At WO, the starting µI address is written
back into Pµ. This address comes from either Pp (51), if
the BP µI was executed at EO through E6, or from Pb
(52), if the BP µI was executed at E7. The contents of Pb
are used for the latter situation because Sµ has already
been loaded with the starting µI address for the new time
slice; consequently, the updated BP address cannot be
routed to Pp via Sµ. Instead, it is fed directly to Pb after
being updated. At W1, the MU is written back into FRF
from Fb (21). (The contents of Fb must be used since F
already contains the M LI for the next time slice.) If the
processor is enabled for Consecutive Cycle (CC) opera­
tion, the starting µI address in Pp is routed back to Sµ
(53) to enable the processor to continue running during
the next time slice.

SYSTEM CONTROL PANEL OPERATIONS

Several operations initiated by the System Control Panel
are shown in Figure 2-1. The reset/load operation is
initiated by the Panel (54) to load CS with µl's from
either a disc or card device (55). Breakpoint comparisons
are made by comparing an address selected by the Panel
breakpoint selectors (56) with a µI address in Sµ (57) or
an MS address in S (58). A starting µI address can be
manually set into Sµ from the Panel (59). Address-related
information may be displayed on the Panel by means of
the address display fan-in via paths (60), (61), and (62).
Likewise, data-related information can be shown by
means of the data display fan-in and Console display
fan-in via paths (63) through (67).

2-10

DETAILED LOGIC ANALYSIS

TIMING

All timing needed by the various parts of the system,
including all 1/0 processors, is derived from timing logic in

the shared resources. A block diagram of this timing ioglc
is shown in Figure 2-5. The master clock, from which all
subsequent timing is derived, is a 10-megahertz crystal
oscillator. This master clock feeds pulses to a
100-nanosecond delay line. This delay line is tapped at
10-nanosecond intervals and the resultant outputs fed to
several long pulse and short pulse circuits. Each type of
circuit is nearly identical and generate its respective out­
put once every 100 nanoseconds (one minor cycle). The
long pulse circuit generates write signals which are 45 to
60 nanoseconds wide. The short pulse circuit generates
control timing pulses of 20 to 30 nanoseconds for a
number of purposes: 1) register clock signals, 2) inputs to
the real time clock (ATC) generator, 3) initiate E pulses
via the E timing generator logic, and 4) furnish basic clock
signals to the 1/0 processors. The E pulses are nominally
100 nanoseconds wide and are generated once during
every major cycle. They are generated by means of a gray
code counter whose binary outputs are ANDed together
as required to generate each E pulse.

Basic Timing

Logic for the basic timing is shown in Figure 2-6. The
10-megahertz master clock output is adjusted by a
potentiometer for a pulse width of 30 nanoseconds, as
shown in Figure 2-7. This figure shows typical pulses
generated by the basic timing over a period of 200
nanoseconds (two minor cycles). (Times for all pulses
generated by the basic timing logic are found in Section 6
of the 7200/7300 Processing Unit Maintenance manual.)
The adjusted master clock output is fed to a delay line,
which contains 10 taps. Each tap provides a delay of 10
nanoseconds from the previous tap, therefore, a total
delay of 100 nanoseconds from the previous tap, there­
fore, a total delay of 100 nanoseconds can be realized
from the delay line. These taps are connected to the
inputs of two types of pulse generate circuits, identified as
long pulse circuits and short pulse circuits.

Each long pulse circuit consists essentially of two
networks which feed the pre-set and pre-clear sides of a
type D flip-flop producing pulses of 40 to 60
nanoseconds. Each network contains a potentiometer for
independent adjustment of the leading and trailing edges
of the flip-flop output. An emitter-follower is used to feed
each network from the particular delay line tap for
delay line isolation and impedance matching purposes.

There are three such long pulse circuits, used to generate
NORMWR, LATEWR, AND BRFWRITE. Normally, the
starting µI address and M LI are written into Pµ and FR F
of the active processor during the W portion of the time
slice. For this purpose, NORMWR is used. During an
invoke condition, however (after ani IVK µI has been
executed), the starting µI address and M LI are written

into the Pµ and FR F of another processor, specified by
the contents of the Boundary Crossing (BC) register. For
this purpose, LATEWR is used. Signal LATEWR is gener­
ated about 15 nanoseconds later than NORMWR to
accommodate the extra time needed by the µI translation
logic. Signal BRFWRITE is used to write into any register
of the Basic Register File (BR F).

.......i----------..~ REGISTER CLOCK

1-----------•e. ATC GENERA TOR

(1A12)

----------------------· r---------------1 I
I ----------•
I

I
GRAY

J CODE
I CTR
I

E TIME
GEN I

I I
I (1A15) I ·-·------------_ ..

Figure 2-5. Timing Block Diagram

2-1 ·1

E PULSES
TO SHARED
RESOURCES

10 MHZfi7A
XTAL r.LLi

MSTR
OSCL

5VDC

ALL LOGIC ON
MODULE 1A12

TX00·1

TX20·1

TX40·1

TX60·1

TXB0-1

CLKSR

NORM WR

LATE WR

BRF WRITE

I
14

PULSE
WIDTH
ADJUST

10 30 50 70 90 100

20 40 60 80 -- L

L

Figure 2-6. Basic Timing logic

EO

100 NSEC .. ,
~30 •b:;--70 NSEC
I NSEC

•I I
I

I L I I
LJ I

I

I
I I I

I I I I
I I

~
I

I L
I I

I r I .J
I I I

I

E1

I

I I

PRE·CLR
NTWK

LONG PULSE
CIRCUIT

SHORT PULSE
CIRCUIT

I

I

r;=
I

L
I I L__r------"1

Figure 2-7. Basic Timing Waveforms

2-12

SHORT
PULSES

LONG
PULSES

}

NORM WR
LATE WR
BRFWRITE

TXOO
TX20
TX40
ETC.

Each short pulse circuit consists essentially of two RC
networks which generate pulses of 20 and 30 nanoseconds
in width. Each network is adjustable providing
independent adjustment of the output pulse leading and
trailing edges. The output pulse is fed through several
inverter drivers to provide the high fan-out requirements
of these pulses. There are eight short pulse circuits, which
generate TXXX signals and register clock signals. The
TXXX signals are 20 and 30 nanoseconds wide, and are
generated at intervals of 20 nanoseconds. The signal name
identifies when it occurs during the 100 nanosecond
period, i.e., TX20 indicates a signal generated 20
nanoseconds after TXOO. These signals are used in their
generated form for purposes of initiating operations at
specific points within a minor cycle. For this purpose,
they are usually combined with an E pulse, which defines
the particular minor cycle. They are also used to generate
E pulses via the E timing logic and clock pulses for use by
the 1/0 processors. The register clock signals are either 20
or 30 nanoseconds wide and are used to preset, preclear,
or enter data into a register at a specific time during a
minor cycle. For this purpose, they am usually combined
with a register clock enable signal which defines the condi­
tion under which data can be entered into the register
(usually resulting from translating a particular µI).

TX00-2

30T
CC-FIF

20T

10T

OOT

ON-TIME
CTR

ON-TIME
E- PULSE

GEN

TX40-3

E Pulse Timing

Logic for the E pulse timing is shown in Figure 2-8. The
logic consists of two ranks of E pulse generators driven by
corresponding ranks of a gray code counter. The two E
pulse generator ranks produce a series of overlapping
pulses nominally 100 nanoseconds in width called E
pulses. Each pulse overlaps the preceding pulse by 50
nanoseconds (nominal)*. The on-time (OT) rank generates
pulses that each start at the beginning of a minor cycle,
i.e., pulse E1 XX-0 starts at the beginning of minor cycle
E1. The early time (ET) rank generates pulses that each
start 50 nanoseconds preceding the corresponding on time
E pulse i.e., E1XX-E starts 50 nanoseconds before
E1 XX-0 or in the middle of minor cycle EO. Waveform
for typical on time and early time E pulses are shown in
Figure 2-9. These E pulses are used in their generated
form for combining with TXXX pulses of the basic timing
to initiate operations as discussed in the previous para­
graph. The E pulses are also used in combined forms with
each other to generate pulses, two or more minor cycles
wide. For example, E1/2XX-E is two minor cycles in

*The overlap actually ranges between 40 and 60 nanoseconds, due
to flip-flop and gate delays.

EXXX-0
PULSES

3ET

2ET

1ET

OET

EARLY-TIME
CTR

EARLY·
TIME

E-PULSE
GEN

ALL LOGIC ON
MODULE 1A15

EXXX·E
PULSES

Figure 2-8. E-Puli;e Timing Logic

2-13

I ED E1 E2 El E4 E5 E6 E7 E8 E9 EO E1 I
00 _J I I I r
10 I L I

20

30

+ EOXX-E-, n
+EOXX-On rL
+E1XX-EJI rt_

+E1xx-o....II r
+ E2XX-E n r
+ E4XX-E n
+ E7XX-L n

+ E1/2XX-E_J I r
+ E1256__J I I I r

+ E&nxx-E

- E67891DL

+NCE70RE9 rt_r1

Figure 2-9. Gray Code Counter and E Timing Waveform

2-14

width, starting at E050 (E1 XX-E start time) and ending at
E250 (E2XX-E end time). Pulse E12!>6 is active for minor
cycles E1, E2, E5, and E6, and inactive for the remaining
minor cycles.

All E pulses are derived from two ranks of a gray code
counter, an on time (OT) rank and an early time (ET)
rank. Each rank consists of four flip-flops, numbered 0
through 3, that are interconnected so as to generate a gray
code output*. Outputs from each o'f the flip-flops com­
prising the on time counter are shown in the upper part of
Figure 2-9. The counter is initiated at EOOO by TXOO
from the basic timing. The early time counter generates
the same counts as the on time counter, but starting 50
nanoseconds earlier. The BCD equivalent of each count
produced by the on time counter and the corresponding E
pulse generated is listed in Table 2-1.

Major Cycle Duration

The number of E pulses generated per major cycle
depends on whether the processor state is operating in the
Consecutive Cycle (CC) mode and/or if it is making a

reference to Main Storage (MS). If the processor state is
making an MS reference, the major cycle timing is also
influenced by which features of the Register Option (RO)
that require additional propagation time are present. This
information is tabulated to the right of the table in Table
2-1. If the processor state is not making an MS reference,
the only variable is whether or not the processor is operat­
ing in the CC mode. If not, the major cycle time is 800
nanoseconds, formed by generation of E pulses EOXX-0
through E7XX-O in sequence. If operating in the ECC
mode, the major cycle time is increased to 1000 nano­
seconds by the addition of E pulses E8XX-O and
E9XX-O. These two pulses are generated by the output
from on time counter flip-flop 30. This flip-flop is
enabled only if operating in the CC mode by signal
CC-F/F, as shown in Figure 2-8. When a BCD count of
either 4 if not in the CC mode, or 8 if in the CC mode is
reached, the counter recycles itself back to 0 to start
another series of E pulses.

*A gray code is a binary code in which only one bit position
changes state ("O" or "1 ") each time the counter is advanced.

Table 2-1. On."rime Gray-Code Counter Tirning and Major Cycle Durations

Counter Flip-Flops
BCD E-Pulse

30T 20T 10T OOT Result Generated

0 0 0 0 0 EOXX-0

0 0 0 0 0 EOXX-0'

0 0 0 0 0 EOXX-0"

0 0 0 1 1 E1XX-O

0 0 1 1 3 E2XX-O

0 0 1 0 2 E3XX-O

0 1 1 0 6 E4XX-O

0 1 1 1 7 E5XX-O

0 1 0 1 5 E6XX-O

0 1 0 0 4 E7XX-O

1 1 0 0 12 ESXX-0

1 0 0 0 8 E9XX-O

LEGEND
CC, BP, R/P, ECC - Major cyclu duration if operating in consec-cycle mode;
Basic Protect, Relocation and Protect, and ECC features not present.

2-15

cc cc cc cc
BP, BP, BP or BP or

R/P, R/P R/P, R/P,

ECC ECC ECC ECC

1 j_ 1 1 NOT NOT
GEN GEN

NOT GEN NOT GEN

800 900
NSEC NSEC

1000 1100
NSEC NSEC

cc:-
BP or

R/P,

ECC

1000
NSEC

Non-MS
Ref.

MS Ref.

CC,

BP or

R/P,

ECC

1200
NSEC

If the processor state is making an MS reference, the vari­
ables include not only whether or not operating in the CC
mode, but which features of the RO that require addi­
tion al time for propagation are present also. These
features include the Basic Protection (BP), Relocation and
Protection (R/P), and the Error Correction Code (ECC)
feature. If R/P, but not the ECC feature, is present, the
major cycle timing is increased by 100 nanoseconds from
a non-MS reference cycle to either 900 or 1100 nano­
seconds, depending on whether or not the CC mode is
enabled. This increase of 100 nanoseconds is provided by
generating a second EO pulse called EOXX-0'. Pulse
EOXX-0' allows for the extra time required by the MS
address to propagate through either the BP or R/P feature.
If both the R/P and the ECC feature are present, the cycle
time is increased by 200 nanoseconds from a non-MS
reference cycle to either 1000 or 1200 nanoseconds. This
increase of 200 nanoseconds is provided by generating not
only pulse EOXX-0', but a third EO pulse also, called
E 0 XX-0". Pulse EOXX-0" allows for the extra ti me
required by the ECC feature to check and correct, if
necessary, data read from an MS location. (The operation
of MS requires reading data from a MS location during
both a read and a write operation; therefore, extra time
must be allowed for ECC operation during both a read
and a write operation.) It should be pointed out that the
extra 100 nanoseconds added by pulse EOXX-0' is added
regardless of whether the BP or R/P feature of the RO is
present (since either one or the other must be present)
even though the BP feature does not require the increased
access ti me.

Pulses EO' and EO"* are generated during operations
collectively referred to as long access operations, and are
initiated by the long access logic shown in Figure 2-10.
Generation of either just EO', or both EO' and EO", is
determined by the adjustment of a delay network. This
network is initially clocked at either E650 if not in CC
mode, or E850, if in CC mode, by NCE70RE9. The out­
put delay is adjusted on the basis of which RO features
are present in the system, such that the output goes low at
either E070, if either the BP or R/P, but not the ECC
feature is present; or at E070', if either the BP or R/P, and
ECC features are present. These delays are shown in
Figure 2-11, along with subsequent timing, for both possi­
bilities: BP or R/P but no ECC (solid lines) and BP or R/P,
and ECC (dashed lines). The delay network output is
clocked into a flip-flop at E720 to generate signal TIMER.
This signal is combined with FXEQ-3, indicating that an
MS reference is to be made (load SµI) and master enable
EN LG ACC. The result is LONGACC, which goes low at
E040 (worst case). As shown in Figure 2-10, this signal is
used to block clocking of Fµ and Sµ with the next µI and
following µI address. This is necessary to inhibit reading
or executing a µI during the period that EO' and EO" are
active. In addition, LONGACC is gated to two flip-flops

2-16

that control the setting and clearing of the counter flip­
flops. The output of the On Time flip-flop sends a high to
the pre-clear input of the OOT flip-flop in the on time
counter. The result of this high pre-clear is to. delay the
flip-flop from setting for eithe; 100 or 200 nanoseconds.
This action effectively generates pulse EO' and EO" by
extending the EO pulse width from 100 to either 200 or
300 nanoseconds. The high output from the Early Time
flip-flop to the pre-clear input of the 1 ET flip-flop in the
early time counter produces a similar action to delay the
early time E1 pulse by the required amount.

It is important to note that the train of E pulses gen­
erated, including the inserting of EO' and EO" pulses, is
completely under hardware control (except for adding ES
and E9 if in the CC mode). In addition, every major cycle
will contain eight distinct E pulses, even though the inter­
vals of these pulses may vary as previously drscussed. If
the program being executed determines that it does not
need the remaining minor cycles in a time slice, it cannot
truncate the unneeded portion of the time slice. Instead,
it must cycle through the rest of the time slice by per­
forming NOP's until the end of the time slice. This is
(usually) done by inserting non-blockpoint or resync µI's
(either the SYNC µI itself or one that performs a resync as
part of its execution) to account for the unused trailing
portion of such major cycles. In this respect, the timing is
completely synchronous in that every time slice will run
to completion even if the program being executed during
the time slice does not.

The 1/0 processor clock logic consists of five buffer
drivers that are driven by basic timing pulses TXOO, T?<20,
TX40, TX60, and TX80 respectively, as shown in Figure
2-5. These buffer drivers, in turn, generate CLOCK-00,
CLOCK-20, CLOCK-40, CLOCK-60, and CLOCK-80,
which are routed to the four 1/0 processors.

Real Time Clock Pulse Generator

The real-time clock (ATC) pulse generator generates two
waveforms, one used to increment the ATC register and
the other sent to both the Integrated Communications
Adapter (ICA) and the Busy/Action (B/A) register. Each
waveform is derived from clock pulse TX60 from the
basic timing logic by means of appropriate countdown
logic. A block diagram of the RTC pulse generator is
shown in Figure 2-12. The basic timing initiate pulse,
designated RTCINPUT, is fed to a divide-by-4 network

*To avoid possible confusion in the following discussion, it should
be pointed out that pulses EO' and EO" are not generated as such.
In reality, they represent pulse EO extended in time by either 100
or 200 nanoseconds (both on-time EO and early-time E1 pulses are
extended). The result is a long EO pulse of either 200 nanoseconds
(EO plus EO') or 300 nanoseconds (EO plus EO' and EO") in length
nominally. It is useful, however, to think in terms of adding the
EO' and EO" pulses to retain the idea that all E pulses are nomin­
ally 100 nanoseconds wide.

+NCE70RE9

...---- * ------------I
I
I
I

I
I

100
OR
2QO

NSEC

: ·'--D-n-· _ ..
: TP10

I

TP2

FF

• I
I
I +TIMER

I
I
I
I
I

-LONGACC

ON­
TIME

FF

EARLY
TIME

FF

1A15

PRECLR TO 1E
_ STATE OF

EARLY RANK

·------- ------- ------

*DELAY ADJUSTED PER
RO FEATURES PRESENT
IN SYSTEM

I +ENLGACC

LOGICAL 1

TX60

Figure 2-10. Long Access Logic to Generate EO' and EO" Pulses

I

TXOO

I
I 1A13 I 1--------;.,

r-----------. I I
I

I 1A14 I

·----------.a

+ENCLKFM

I ·-----E_e ____ __. ______ E_1 ____ _.. ______ ED ____ __. ______ E .. u' ____ _____ E_, ____ ~I BPORR/P,NOECC

DELAY OUT
(TP2)

+TIMER

-LONGACC

PRECLR
TOOOT
PRECLR
TO 1ET

FLIP-FLOP
DD OUTPUT

I

100
+RTCINPUT

(TX&D) ~

Ell

E& E7 ED EO' ED" E1] BP OR RIP, ECC

E65D ED70 ED7D'

J l-~ i----.
I

E72D ED2D' ED20"

I 1- -· - - .,
J_

EOOO EOOO' EOOO"

-- --.i
EO&O EO&O' EO&O"

J l-- --.
J_

EOOO' E100 E100

T
-~~~J

SOLID LINES=TIMING FOR BP OR RIP, NO ECC
DASHED LINES=TIMING FOR BP OR R/P, AND ECC

E100

I

Figure 2-11. Long Access Logic Waveforms

400
+4 NSEC
(2 FF'S)

ALL LOGIC ON
MODULE 1A01

_

~

6.4 D.1024
+16 µSEC +16 MSEC _..
(CTR) -....- (CTR) ...

Figure 2-12. Real Time Clock Pulse Generator

2-18

E100 , ... - - --. I I I
t

INTERVAL EXAG·
GERATED FOR
CLARITY

+10 16.384

(CTR)
MSEC _...

AND ...
LOGIC

1.6384

+16 MSEC
(CTR) ,,..

-ATC-SPEC
(BUSY4 FF

ICA)

-RTCASYNC

(RTC)
REG

consisting of two flip-flops connected in cascaded fashion.
This results in a waveform repetition rate of 400 nano­
seconds. This waveform, in turn, is fed through three
divided-by-16 networks in serial fashion. Each network
consists of a four-bit up/down counter that overflows
when a count of 16 is reached. The resultant output is a
waveform with a 1.6384 millisecond repetition rate (600
Hz) that is fed to the RTC register as RTCASYNC. This
signal is also fed to a divide-by-10 network to generate
RTC-SPEC at 16.384 millisecond intervals (60 Hz). This
signal is fed to the processor 4 Busy flip-flop in the B/ A
register for purposes of waking up processor 4 at these
intervals. The signal is used also in the ICA for character
framing during synchronous transmission and for generat­
ing dial digits in the auto-call logic.

RESOURCE ALLOCATION

The resource allocation logic detects and stores requests
for time s I ices from the eight processors that

. communicate with the shared resources and the System
Control Panel. It then allocates time slices to each
processor or the Panel on the basis of its needs. A block
diagram of the resource allocation logic is shown in Figure
2-13. As shown, the logic consists of the Busy I Active
(B/ A) register, Console Busy flip-flop, Resource
Allocation Network (RAN), and Consecutive Cycle (CC)
logic. Requests from each processor are stored in
corresponding flip-flops of the B/A register (register 02 of
the ERF). The left-most eight flip-flops comprise the busy
portion of the register; the remaining eight flip-flops make
up the active portion. The Busy and Active flip-flops of
each processor perform related functions during execution
of a processor task. The Active flip-flop is set by software
alone when the program determines that a particular
processor should perform a particular task. The flip-flop is
set at the beginning of the task and remaons set until the
task is completed. The Busy flip-flop can be set by either
hardware or software, and informs shared resources that
another time slice is needed by the processor to execute
another portion of its assigned task. Requests from the
Panel are handled in an analogous manner, by setting the
Console Busy flip-flop. This flip-flop is set under hardware
control only.

Upon being set, the Busy or Console Busy flip-flop output
is entered in the task queue with other Busy flip-flop
outputs for assignment of time slices in accordance with
the priority level of the request. The task queue is defined
as those processors which have requested time slices and
are waiting for them to be granted. The task queue is
entered by setting corresponding Resync flip-flops in the
RAN, whose outputs are assigned priority in a cyclic
fashion by the priority encoder. For proc1~ssors 0 through
3, recognizing requests in this cyclic fashion (called the
scanner mode), may be altered by setting the
corresponding Priority flip-flop.

2-19

The Priority flip-flop may be set for either of two
conditions: enable and invoke. The enable condition sets
the flip-flop when the corresponding 1/0 processor
determines that it is about to lose data if it cannot obtain
a ti me slice expeditiously. The enable condition, there­
fore, enables a processor to obtain an out-of-sequence
time slice. The invoke condition assures that a processor
will unconditionally be granted every other time slice,
wlhether it really needs them or not (provided conditions
of higher priority are not present). Both priority condi­
tions are initiated by software, which sets a corresponding
enable override or invoke priority bit position in the
individual processor's Control register.

The processor state number assigned the next time slice is
routed to the Read register. This register initiates the RO
and R 1 cycles of the time slice to read the starting µI
addresses and present MU from Pµ and FRF•
respectively, in the ERF. From the Read register, the
pri::>cessor number is routed to the Execute register, and
th1m to the Write register near the end of the time slice .
The Write register initiates the WO and W1 cycles of a time
slice, which stores away the anticipated starting µI address
for the next time slice and the present MU for starting
the next time slice assigned to the processor. In addition,
the Read and Execute register contents are routed to the
Read/Execute compare circuits of the Consecutive Cycle
(CC) logic. These contents are evaluated for equality,
which they will be if no other processor is in the queue
and the present processor requests a second time slice.
The Read register contents are also used to determine if
so"ftware has enabled the processor to operate in the CC
mode. This is done by comparing the processor number in
th1e Read register with the corresponding CC bit of the
Control register. If the CC bit is set, the Clear CC flip-flop
is not set. The flip-flop output is combined with that from
the Read/Execute compare circuits to generate signals
required by the processor to operate in the CC mode.

If neither a processor nor the Panel has requested a time
slice, the resource allocation logic schedules a null
condition during the following time slice(s). The null
condition inhibits clocking Sµ with an updated µI address
and disables the output from Control Storage (CS) which
effectively loads NOP µl's into Fµ. A refresh request from
M:S will also generate a null condition if the refresh was
scheduled for the previous major cycle but was pre­
empted by a MS access request. During the next (present)
cycle, the refresh request will lock out another MS access
request (if generated) by setting up a null condition.

Busy I Active Register

Tlhe Busy/Active (B/A) register consists of 16 flip-flops,
divided into two groups of eight flip-flops each. Flip-flops

ALU

l- PROC
c
;

SYS '.:!
~ CONT
:xi PNL
!)
0
c

2
!:
S' ·n
Ill .. s·
;:,

r-.g
.ri·
IJI
S'
R-
C
ii.i'
ca
;
3

ALU

SYS
CONT
PNL

SYS
CONT
PNL

I
I I
I (1A03) I ·------.. r------,
I I
I I
I CONS I

BUSY

I FF I
I I
I (1A02) I
L------J

,..-~-----------,

CONT ---"'~.;;...;.1~ ·---_.. I
REG I cc I

CLEAR I
FF I

I

r-------------------------~,
cc

SIGNALS

I
I

I
I
I
I
I
I
I

INV I
EN-.

B/A
8-15

CON BUSY

I
I
I
I
I
I

I
I
I
I
I
I
I

I
I
I

RESYNC
FF
0-3

PRIOR
FF
0-3

RESYNC
FF
4-7

CONS
FF

L------REFRESH

RESOURCE
ALLOCATION

NETWORK

PRIOR
ENC

READ

CONS

NULL

I
I
I
I
I
I
I

RD/EXEC
CMP

..---...... •

EXEC

CONS

NULL

I
I
I
I
I
I

I
I
I
I
I
I
I

WRITE

WO,W1
------(WRITE

I I Pµ+ F)

I I
I I
I I
I I
I (1A13) I

L------------J I BRF I '--~~~~~~~~~~~--..SEL

I RO, R1
1.-.~~~~~ ~~~~~~~~~~~~--.(READ

I Pµ+ Fl

I
(1A16) I

-------------------~

0 through 7 comprise the Busy flip-flops for the eight pro­
cessors; flip-flops 8 through 15 make up the Active flip­
flops for each processor. Because of the differences in pro­
cessors, their Busy flip-flops are set and cleared under
different conditions. All Busy flip-flops, however, are
similar in that they are set or cleared by either an asyn­
chronous (forced) or synchronous (clocked) input to the
flip-flop. The forced inputs occur as a result of beginning
or ending an input data transfer from a processor to the
shared resources. Requests for such data transfers occur
either under program control, from the requesting pro­
cessor, or under manual control from the System Control
Panel. The clocked inputs to the Busy flip-flops are gen­
erated under program control by the Executive processor.

The Busy flip-flops for both processor 0 (communications
processor) and processor 4 (Executive processor) are
shown in Figure 2-14. The "normal" method of setting
these two flip-flops is by the REO signal, indicating that
an external event under hardware control wants a time
slice for the processor. For processor 0, R EQ is generated
by the communications adapter signifying that it is ready
to either send or receive data. For processor 4, R EQ is
generated after initialization of an Autoload operation,
and at 16.384-millisecond intervals thereafter by the real­
time clock (ATC) to wake up the Executive processor.

Setting the Busy flip-flop for processor 0 is inhibited if
the corresponding PROCESSOR CONTROL SELECT
switch on the Panel is set to STOP /STEP (SWSTOP is
high). Signal SWSTOP enables a processor task to be
executed in the stop/step mode from the System Control
Panel. For processor 4, setting the Busy flip-flop via R EQ
is inhibited if the INHIBIT REQ signall is present. This
inhibit signal is generated whenever the Busy flip-flop is
under control of a Breakpoint operation from the Panel
and provides a software debug facility for system pro­
grammer use.

The Panel may also turn on (initiate) ci processor under
manual control. This is accomplished by setting the
PROCESSOR SELECT selector to either the 0 or 4
position and pressing the PROCESSOR RUN pushbutton.
This action generates SWSELGO and GO FF, respectively.
This manner of setting the Busy flip-flop is disabled if the
switches are set when the processor is executing during
minor cycles E6 through E9.

Occurrence of a CS parity, MS parity, 01r outbound error
condition during the last time slice of a task sets the Busy
flip-flop for one more time slice. This is necessary for two
reasons (1) the error might occur at E7 so that no more
time would be available in the time slice to form the trap
address, or (2) unaware of the occurrence of an error con­
dition, the microprogram might stop as a result of clearing
the Busy flip-flop during the major cycle in which the
error condition occurred. The problem is overcome by

2-21

forcing the processor to run for one more time slice and
forming the trap address at E7 of this forced time slice.
Setting the Busy flip-flop for this condition is accomplish­
ed by START, which specifies the present processor exe­
cuting a task, and TRAP-1 which specifies occurrence of
the error condition.

Setting and clearing the Busy flip-flops for processors 0
and 4 (as well as for the other six processors) is
accomplished under software control by means of the
clocked input to the flip-flops. This is done at t80 of any
minor cycle, providing ENCLKB/A is present. This clock
enable is generated for any register file write µ,I when the
destination is register 2 (the Busy I Active register) of the
ERF. Unlike the other six processors, there are inhibiting
conditions that may prevent software from setting the
Busy flip-flop at ENCLKB/A time. Namely, the Busy flip­
flops for processors 0 and 4 can be cleared at ENCL KB/ A
tiime only if the corresponding Active flip-flop has been
previously cleared. In other words, these Busy flip-flops
may not be cleared at ENCLKB/ A time if the correspond­
ing Active flip-flop is still set.

Clearing of the Busy flip-flops for processors 0 and 4 is
accomplished when the PROCESSOR CONTROL
SELECT switch of the Panel is set to STOP/STEP. In this
mode, the selected processor runs for only one MLI or
only one major cycle as determined by the setting of the
CYCLE STEP switch. For whichever setting is selected,
indication that one major cycle or one M LI has been
executed is provided by RNl-TX. Signal STATE is
included to insure that the Busy flip-flop is not cleared
before the processor has been assigned a time slice during
step mode operation from the Panel. The Busy flip-flop is
also cleared under Panel control when the PROCESSOR
CONTROL SELECT switch is set to BKPT (signal
SWBKPT). This signal is ANDed with BKPT-TX, which is
g1enerated when any of the three BREAKPOINT MODE
SELECT switches (READ INSTR, READ DATA, and
WRITE DATA) is activated. These switches define the
tvpe of breakpoint action selected: read the MU at the
location specified by the breakpoint address (READ
11\JSTR switch), read the operand at the location specified
by the breakpoint address (READ DATA switch), or store
the operand at the location specified by the breakpoint
address (WRITE DATA switch). The breakpoint stop will
occur at the end of the major cycle in which the break­
point occurred.

Upon completion of a one-word transfer, the Busy
fllip-flop is cleared by the CIO signal. This signal is
generated when a CIO µI compare condition is not met,
indicating that additional words have yet to be
t11ansferred. The two CIO µ,l's compare the last byte

address with the current byte address. Signal CIO is
generated for either an Aµ=Bµ or an AµJBµ condition,
depending on the predetermined µI program.

The Busy flip-flop for processors 1, 2, and 3 is shown in
Figure 2-15. As shown, the flip-flops for these three
processors are set via the forced set input by means of the
same conditions as for processors 0 and 4. In addition,
these flip-flops can also be forced to a set condition by an
ATTN signal from the processor. This signal is related to
the R EQ signal in that it informs the shared resources that
the corresponding processor wants a time slice. It differs
from REQ, however, in that it is generated for a condition
not associated with the operation currently being
executed by the processor. Therefore, ATTN is inhibited

from setting the Busy flip-flop until the corresponding
Active flip-flop is cleared, meaning that the present
operation has been completed and the operation that
generated ATTN can now be executed. In addition, ATTN
cannot set the Busy flip-flop during times E6 through E9
to eliminate timing problems associated with CC and stop/
step operations at these times.

Setting the Busy flip-flops for processors 1, 2, and 3, via
thu clocked input, is done by means of software, the same
as for the Busy flip-flops of processors 0 and 4. The ALU
input must be enabled by both ENCLKB/A and the fact
that either the Busy flip-flop is already set or the
corresponding Active flip-flop is cleared.

.. --·----·--------·---------._--..
I I

+STATE---_.._,.._ ___ _. I
I I

+ TRAP-3 · TX-80
+SE LSWGO -----11..____.. ____ __,.

I
I

I I
(+GO-FF) + (·E6789-0)

+REQ-----1--1-----1-----~
CV-sw STOP------+----........

@-INH-REQ -----------11------11
+E6789·0-----.--r----L--'

+SW STOP------+-----­
+RNl-TX------1------

I
+SWBKPT~----1-------11

+BKPT·TX----.------....,.
(+STATE)+ (-ACTIVE) ... _Jlll/C.

I
+CIO----.------&---~

I
I
I

I
I
I
I
I
I
I
I
I
I

------+B/A

+TXBO·N ______ • _ ___.I)~·~
+ENCLK B/A i : ~

Q) PROC 0 ONLY

@PROC40NLY

I
1. 1A03 .._--.-.---.------...------.-.-----·-·

Figure 2-14. Busy Flip-Flops. Processors 0 and 4

2-22

-----------~---------• I
I
I
I
I
I
I
I
I

(+ATTN·-E6789) t-
+SWSTOP ----,--
·ACTIVE I

I
I
I
I
I

·ALU-----t-

1
+ACTIVE----·-.--

*

*

*

*

*

*SAME AS FOR
PROCIESSORS 0 AND 4

---1--+B/A

I
I
I
I
I

1A03

-~-----------------~
Fiuure 2-15. Busy Flip-Flops, Processors 1, 2, and 3

A diagram of the Busy flip-flops associated with
processors 5, 6, and 7 is shown in Figure 2-16. Because
these processors are general-purpose processors, the
corresponding Busy flip-flops do not require either the
REQ or ATTN forced set inputs. The only forced set
inputs are those required for generating a trap address and
selecting the processor from the Panel. The flip-flop is set
or cleared under program control at ENCLKB/A time.
Unlike the Communications and Executive processors, the
general-purpose processors can be cleared under software
control regardless of the state of the corresponding Active
flip-flop. The Busy flip-flop is cleared via the forced clear
inputs for an RN I and breakpoint condition initiated by
the Panel. The RNI condition is implemented in a manner
similar to that for processors 0 through 4, except that the
action of the STOP/STEP switch is mani'fested by clearing

2-23

tlhe corresponding Active flip-flop to generate ACTIVE.
This differs from that for processors 0 through 4 where
tlhe STOP/STEP switch input was supplied directly to the
forced clear logic.

The Active flip-flops for all eight processors are very
similar as shown in Figure 2-17. All eight flip-flops are set
and cleared at ENCLKB/A time under program control. In
a:ddition, the Active flip-flops for general-purpose
processors 5, 6, and 7 can be set and cleared via the Panel
by means of the force set and force clear inputs. This is
clone by means of the corresponding PROCESSOR
CONTROL SELECT switches, which set a flip-flop when
set to the NORMAL (run) position or clear a flip-flop
when set to the STOP/STEP position.

·----------------------' I
+STATE----'"----·-----

1
+(TRAP-3 · TXBO)-----------­.__lllllC

+SWSELGO------------
I

+GO-FF+(-E6789-0)---•I--------._ _ _,

I
I
I

+ALU---~1~--·---------------•
I
I

+(ENCLKB/A · TXB0)----
1
"-----------------

1
I
I

-ACTIVE --------r-. &.....--
+RNl-TX --------------.._ ~

+(STATE+SWBKPT)--------------

+BKPT-TX ------

·---+B/A

I 1A03

----------------------·
Figure 2-16. Busy Flip-Flops, Processors 5, 6, and 7

·---------------, I I

+s::~:: __ --; __ ,) . :
I I
I I
I I

+ALU I .._---,------+BIA

I I
+ TXBO-N ----111------11 I

+ENCLKB/A---·-- :

I I
I I
I * I
I I +SWSTOP

I I
I 1A03 I

·--------------..JI *PROCESSORS 5, 6, AND 7 ONL V

Figure 2-17. Active Flip-Flops, Processors 0 through 7

2-24

Resource Allocation Network

Scanner and Priority Logic

The Resource Allocation Network (RAl\I) assigns time
slices to each requesting processor in accordance with its
needs and its position in the queue reilative to other
requesting processors. The network consists of two
sections: the scanner and priority logic, wlhich grants time
slices to a particular processor; and the time slice control
logic, which sets up conditions to perform R (read rµ, and
F registers), E (execute µl's), and W (write Pµ and F
registers) cycles during the processor's assigned time slice.
A block diagram of the scanner and priority logic is shown
in Figure 2-18. The logic consists of eight Resync
flip-flops (one per processor), four Priority flip-flops (one
for each of processors 0 through 3), and a priority
encoder. The eight Resync flip-flops grant time slices to a
requesting processor on a cyclic bas~s, wherein all
requesting processors are granted one time slice in
succession starting with the lowest numbered processor.
Each Resync flip-flop is set at EH>O time if its
corresponding Busy flip-flop is set, meaning that the
processor wants a time slice. The clock signal which sets
each Resync flip-flop is ANDed with INH RSYN signals
from each higher-numbered Resync flip-flop. These signals
inhibit a Resync flip-flop from being set again until all
higher numbered processors have been granted their time
slices.

This method of granting time slices is referred to as the
scanner mode, since the logic simply scans all processors
requesting time slices and grants them in a cyclic
sequence. Under certain conditions, however (such as
imminent loss of data from an 1/0 device), the normal
scanner mode can be overridden by a priority mode to
grant a processor an out-of-sequence time slice if
necessary. This is accomplished by the Priority flip-flops.
Only processors 0 through 3 are provided with this
override capability since they are used with 1/0 devices
where rapid and timely data transfers are vital. These
Priority flip-flops can be set by either one of two priority
levels: enable priority and invoke priority. The enable
priority level is implemented under software control by
setting the EP (Enable Priority) bit position of the
Control register in the ERF for that particular processor
(CONTR-00 for processor 0, CONTR-0'1 for process 1,
and so forth). This level allows an 1/0 processor to secure
an out-of-sequence time slice if there is danger of losing
data, provided that no lower numbered processor is also in
an enable priority state. Indication of possible data loss is
provided by the PRI signal from each 1/0 processor,
which is ANDed with the corresponding CONTR bit. The
invoke priority level is also implemented under software
control by setting the IP (Invoke Priority) bit of the Con-

2-25

trol register in the ER F for that particular processor
(CONTR-04 for processor 0, CONTR-05 for processor 1,
and so forth). This level assures an 1/0 processor of at
least one alternate time slice, (even though there is not
necessarily danger of losing data) provided that no lower
numbered processor is also in a priority mode. If neither
EP or IP bit positions for a processor is set, the processor
reverts to the scanner mode previously discussed.

The outputs of both the Resync and Priority flip-flops are
fed to the priority encoder. 'This circuit makes the final
determination of priority by generating the number of the
processor assigned highest priority in BCD form. This
BCD number, represented in the block diagram as outputs
A, B, and C, are fed to the R, E, and W cycle logic. If no
processor is requesting a time slice, output D goes high to
generate either a null condition or allow the Panel to gain
access to the system. The null condition schedules NOP
operations during the interval that no processor is
requesting time slices, unless the Panel desires entry to the
system. For this condition, the Panel is treated by the
priority logic as a ninth processor, with the lowest
priority.

The REFRESH. signal fed to the priority encoder is used
to resolve a conflict between simultaneous requests for a
refresh cycle and an MS access cycle. If a refresh request
occurs in the absence of an MS access request, the refresh
operation takes place in MS transparent to the rest of
shared resources. However, if the refresh request occurs
simultaneous with an MS access request, the refresh
request is pre-empted by the MS access request. During
the following major cycle, however, the refresh request
pre-empts all other operations performed during that
major cycle by setting up a null condition. This null
condition effectively blocks the next processor in the
queue from getting a time slice until the following major
cvcle, even if that processor was not going to access MS.
Logic for generating this null condition is shown in Figure
2·19; associated timing is shown in Figure 2-115 located
in the paragraph titled Main Storage. As the timing of
Figure 2-115 shows, the Refresh Request flip-flop is set at
EO to generate REFRESH when the refresh counter
rnaches a count of 52. If an MS access request is not
present (signal ACCESSEN is low), the refresh operation
takes place on schedule and the Refresh Request flip-flop
is cleared at E3. For this situation, the fact that
RIEF RESH blocked other requests into the priority
encoder while it was high had no effect since the signal
dropped before E560, the processor committed time. If
an MS access request is present (ACCESS EN is high), the
Hefresh Request flip-flop remains set past E3 to block all
outputs from the priority encoder (outputs go high). At
E560, the Null State flip-flop is set, which sets the Null
flip-flop at E620 and finally causes ENCLKSM to go low.

+CONTR-07
·PRl-3 -----r:;;J----
+B/A-04------------ L.!.J -
+B/A-05------------·--------[!J

+B/A-06-----------------1[!]

+B/A-07--------------------B

+REFRESH~---1

Figure 2-18. Scanner and Priority Logic

2-26

PANEL
D AND

NULL
STATE

Table 2-2. Priority Logic Operations

Scanner (Revok1e Priority) Mode

1) all processon> requesting (all Busy FF's seit)

0, 1 f 2, 3, 4, 5, 6, 7 I 0, 1, 2, • o •

2) processors 0, 1, and 7 requesting

0,1,7,0,1,7, ...

clear Busy 7 FF

0, 1, 0, 1, 0, 1, ..•

1) Processors 1 through 7 requesting; proce5:sor 0 in enable priority mode

1, 2, 3, 4, 5, 0, 6, 7' 1, 2, 3, 4, 5, 0, 6, 7

,...-~

PRl-0 Set PRl-0 Set

2) processors 2 through 7 requesting; proces:sors 0 and 1 in enable priority mode

2,3,4,5,1,6, 7,2,3,0,4,5,6, 7

,.--"-\
PRl-1 Set PRl-0 Set

Invoke Priority Mode --------
1) processors 0, 1, and 2 requesting; processor 1 in invoke priority mode

1, 0, 1, 2, 1, 0, 1, 2, ...

2) processors 0, 1, 2, and 3 requesting; proc1essors 2 and 3 in invoke priority mode

2, 3, 2, 3, 2, :3, ...

Inhibiting this signal sets up the requir·ed null condition
for the following r:najor cycle by preventing updated µ.I
addresses from being clocked into S µ,,, The result is to
prevent execution of a microprogram during the next
major cycle (N+1) by issuing NOP's from CS. The refresh
operation, therefore, can be performed during major cycle
N+1. At E560 of this major cycle, the Null State flip-flop
is cleared and ENCLKSM goes high. Execution of µl's for
the processor that would normally have run during time
slice N+1 will instead be performed during time slice N+2.

Because priority assigned to a processor depends on many
different conditions (relative position of processor in
queue, whether enable or invoke priority control bits are
set, and so forth), it is useful to present several different
examples showing how the priority encode logic operates
under different conditions. These examples are listed in
Table 2-2. The two examples shown when operating in the
scanner mode grant time slices to eac:h processor in a
sequential manner. The sequence is interrupted only when
a Busy flip-flop is cleared (or set); however, the
interruption does not alter the cyclic nature of granting
time slices. The two examples shown when granting in the

2-27

enable priority mode indicate how a processor can obtain
an out-of-sequence time slice when its PR 1 signal is active,
providing that priority is enabled for that processor via
software. The two examples for the invoke priority mode
show how processors 2 and 3 can lock out any other
requesting processors in a lower priority mode, even
processors 0 and 1, whose relative positions in the queue
are higher.

Ti me Slice Control Logic

Logic to perform the R, E, and W portions of the active
processor's time slice is shown in Figure 2-20. These
portions of a time slice are initiated by corresponding
registers, which are clocked with the encoded processor
state number at the times necessary to start these
portions. The Read register, clocked at E560 of the
previous time slice, initiate signals to read the contents of
P µ and F for the active processor. (Time E560 is

·--------------.. I I
I PRIOR I
I ENC I
I I
I I
I NULL I

+REFRESH STATE I

FF I ·-----------.. I I
I ·READNULL I NUlL

FF +E560---1---------

SCAN·
NER
AND

PRIOR
LOGIC

E560

I
I (1A16) I

~--------------· +TX20 +ENCLKSM

A

c

I
(1A13) I

·-----------·
Figure 2-19. Null Condition During MS Refresh

r-------------------~

READ
REG

~
I

• ·- -----

I

EXEC EOOO REG

I
I
I

(1A16)1 -
_________ ..

-+ EXCT-0

-+STATE 0

-----------..EXEC-1XX
---------~EXEC-X1X

---------EX£C·XX1

I
I

I (1A13) .. • ·------

WRITE 1XX

WRITE X1X

WRITE XX1

'----------------------------+READ·1XX

'-----------------------------+ READ·X1X

1-.-----------------------------+ READ·XX1

Figure 2-20. Time Slice Co·ntrol Logic

2-28

l CON
eve

LOGIC

ERF
GRPI
SEL

LOGIC.

considered to be the processor committE'd time, at which
time the priority encoder logic is committed to grant a
time slice to a particular processor. This c:ommittal time is
fin contrast to any time preceding this point, during which
the priority logic may change or abort a processor
request.) These two operations occur during two minor
cycles, identified as RO and R 1. (Recall that these two
minor cycles do not exist as such. They occur during E6
and E7 of the previous time slice.) This is done by routing
the three READ signals to the ERF group I select logic.

The Execute register, clocked with thu processor state
number at EOOO, is used for two purposes: (1) Its
contents are routed to the execute decoder logic, which
decodes the processor number in BCD form to set one of
eight Execute flip-flops. The flip-flop, in turn, generates
two outputs designated DISPL VS and STATE. Signal
DISPL VS is used to light the corresponding PROCESSOR
ACTIVITY DISPLAY indicator on the Panel. Signal
STATE is used by the Busy register to conditionally set or
clear a particular Busy flip-flop. In addition, the Execute
flip-flops associated with processors 0 through 3 generate
an EXCT signal, which is returned to the corresponding
1/0 processor as an acknowledge that it is starting a time
slice. (2) The Execute register contents are also fed to the
Consecutive Cycle (CC) logic to make the Read register/
Execute register comparison required as a prerequisite to
starting consecutive-cycling.

The Write register, clocked at E560, initiates the W
portion of a time slice required to store the next µI in Pµ
and the M LI presently being executed in F. This is
accomplished in a manner similar to the Read register, by
sending WRITE address signals to the EIRF group I select
~ogic. These signals select Pµ and F associated with the
active processor for storing the above quantities.

Time Slicing

Normal Operation

Normal time slicing consists of granting time slices to
processors in order of their priority, as discussed in the
previous paragraphs. This normal condition is illustrated
in Figure 2-21, which shows granting of time slices for
processors 0, 1, and 6. The timing assumes an initial
starting condition where no processorn were executing
prior to requests from processors 0, 1, and 6. The first
time slice, therefore, is set up as a null since processor 0
(the first processor to be granted a time slice) will not
begin executing until the following time slice (recall that

2-29

priority for a particular processor is always determined
one time slice before the processor begins executing). The
requests from all three processors set their corresponding
Biusy flip-flop simultaneously at E080.

At E160, the Busy flip-flop contents are clocked into
Resync flip-flops 0, 1, and 6 in the scanner and priority
laigic. The requests are scanned by the logic, which
dBtermines that processor 0 will be granted the first time
slice. The processor number is sent to the Read register at
E560 in preparation for initiating the RO and R 1 cycles of
processor O's time slice. These cycles read the address of
the first µI to be executed during the time slice from Pµ
and the MLI, of which the µI is a part, from FRF· At
E600, the Resync flip-flop for processor 0 is cleared to
re1move this processor from the job queue (since its
rnquest for a time slice has been honored). Clearing of the
Resync flip-flop at this time is a reflexive action and
o~curs during E6 of every time slice, as shown in Figures
2··21 and 2-22. The State 0 flip-flop is set at EOOO. At the
same time, the processor number in the Read register is
transferred to the Execute register. At this point, the
e:icecute time slice for processor 0 begins.

P1rocessor 0 reads the first µI from CS at the address
specified by (Sµ) during EO, and executes this µI at EO
and the beginning of E1. At E160 of the processor 0
execute time slice, the Resync flip-flops of the scanner
aind priority logic are again scanned to note that pro­
ciessors 1 and 6 are still waiting for time slices. The prior­
ity encoder determines that processor 1 will get the next
time slice and at E560, the encoded processor number is
clocked into the Read register. At this time also, the
encoded number for processor 0 is clocked into the Write
rngister from the Execute register to initiate the WO and
W2 cycles for processor 0. During these cycles, the address
of the first µI to be executed during the next time slice
assigned to processor 0 is transferred from Pb or Pp to Sµ
and the MLI currently being executed is stored into FRF·
From this point on, processors 1 and 6 time slices are
handled in exactly the same way as for processor 0, as will
tiime slices for all subsequent processors that may enter
the queue. During normal operation, therefore, the only
difference in granting time slices to a requesting processor
is the processor number, which determines its position in
tlhe job queue.

Consecutive Cycle Operation

Consecutive cycle (CC) operation is a means of increasing
processing efficiency when only one processor is
requesting time slices. During normal operation, one
processor requesting time slices can execute only during
every other time slice. The reason is due to the overlap of
n and W cycles of successive time slices, as shown in

·----------, I I
I I

+E6----------------i----.- I

·BUSY-------·---------11r----1__~

I
I
I

I>--1t------ -CLR RESYNC
+EJ-----~-·---------111--~

I
I

+CC-CLEAR-----------------

I
I (1A161 I
. _____ ..

+ENCLR PRI

I I
I OA1s11

1

·----------

Figure 2-21. Normal Priority Timing, ·rhree Processors in Queue

, .. ,, - PROCO FROC 1 PROC6 PROCX

IOI (1) {0) {6) (1) {X) {8)

Pµ fRF Pµ FRf Pp Fb Pµ fRf Pp fb Pµ FRf p. f1t
(NULL) 5ii f•

.. ..
Sµ F Pµ Sµ F Sµ F Pµ fRF

T080
BUSY
FF'S
SET
BY

REQ
0,1,6

T160 T560 T&llO
BUSY PRIOR CLR
FF'S ENC RSYC
TO TO FF

RSYC READ IOI
FF'S REG
0,1,B IOI

TOllO T180 T560 T&llO TOllO TtBO T560 T600
SET RSYC PRIOR CLR SET RSYC PRIOR CLR

STATE FF'S ENC RSYC STATE FF ENC RSYC
FF 1,8 TO FF Ff 6 TO FF
IOI STILL READ {1) _ill_ STILL READ (6)

ftXlf SET REG READ SET REG
REG _ill_ REG ..ill.
TO EXEC TO EXEC

EXEC REG EXEC REG
REG TO REG TO
IOI WRITE (11 WRITE

REG REG
IOI 111

Figure 2-22. Clear Resync 1=1ip-Flop Logic

START NI ACIRS
FOR NEXT TlME

I
SLICE CANNOT BE
RECOVERED UNTIL
NEXT RO TIME l

START NI
ADRS•Pµ START NI

T160 T560 T&OO
BUSY PRIOR CLR
FF'S ENC RSYC
TO TO Ff

RSYC READ {XI
FF'S REG
(XI (X)

rm-
REG
TD

WRITE
REG
{6)

l
ADRS ... Sµ

MLl•FRf l MLl ... F

1-4---PRDC0---4 l l-14---PROCD---........... ._,.. __

.,.~-------NULL

Figure 2-23. Alternate Time Slices fo1· One Processor Requesting

2-30

ETC.

Figure 2-23. Assume that processor 0 is the only processor
requesting time slices. Upon completion of the last µ) at
E7, it stores the address of the first µI to be executed
during its next assigned time slice in Pµ during WO and the
present MU in FRF during W1. If another processor was
requesting time slices, it would have already read its
starting µI address and M LI from Pµ and FR F cycles
before, during the RO and R 1 cycles of the next assigned
time slice. Since only one processor ijs requesting, it
cannot retrieve this information until tlhe following RO
and R 1 cycles. Therefore, the time slice following the one
that processor 0 was assigned must be nulled out. This
null is implemented by issuing NOP's from CS. The result
is only a 50% utilization of shared resources (only every
other time slice can be used) when only one processor is
requesting.

Timing for one processor requesting a time slice and not
enabled; for CC generation is shown in Figure 2-24. The
first time slice is a null to allow priority to set up
conditions so that processor 0 can execute during the next
time slice. During the next time slice, processor 0 executes
the µ I's while priority determines if there are any other
processors requesting time slices. Since there are no
others, it prepares to grant a second time slice to
processor 0 by clocking processor number 0 into the
execute register a second time. Prior to beginning this
second time slice, however, the processor is interrogated
to see whether it has been enabled for CC operation. The
CC mode of operation depends on two conditions being
present: (1) no other processor is requesting ti me slices,
and (2) the CC bit in the Control Register corresponding
to the single processor is set. lnterrogatirng for these two
conditions is performed by the logic of Figure 2-25. This
logic checks for the first condition by comparing the
contents of the Read and Execute registers of the time
slice control logic at E6 for equality. During normal
operation (more than one processor requesting), the
contents of these registers will not be the same at E6 since
the Read register will already have been loaded with the
number of the next processor in the queue. During CC
operation, however, only one processor is in the queue so
the Read register contents will not have been changed.
The second condition is checked by the CC Clear flip-flop,
which sets by ANDing the processor number in the Read
register with the corresponding CC bit in the Control
register. If both conditions are present, s;ignal RD=EXEC
is generated. A second signal, CC-El\JABLE is also
generated. This signal indicates only that the processor is
enabled for CC and not necessarily that it is the only one
in the queue. For this present example, CC-ENABLE is
high si nee processor 0 is not enabled for CC. The signal
generates ABANDCC at E640, which sets the Null
flip-flop in the priority logic. Setting this flip-flop blocks

2-31

accesses to CS for all of the next time slices, which sets up
the required null time slice.

Enabling a single processor to operate in the CC mode is
accomplished by three operations: (1) At the end of the
time slice, Sµ is loaded with the contents of Pp instead of
Pp,. Since Pp contains the starting µI address for the
present processor, assuming that it could not get another
time slice until some later time, the processor can resume
e:l{ecution during the following time slice at the same
point that it left off during the present time slice. Reading
this starting µI address from Pp and the resultant µI from
CS is performed during two extra minor cycles inserted
between E7 of the present time slice and EO of the
following time slice, designated ES and E9. During EB, the
contents of Pp are routed back to Sµ. During E9, theµ I
located in CS at the address contained in Sµ is read for
e:l{ecution during the following EO. (2) T~e read Pµ and F
operation associated with the R portion of the following
time slice is inhibited, to prevent reading the sta.rting µI
address and M LI read by the same processor at the
beginning of the present time slice. This is done by
inhibiting selection of the Group I ER F containing Pµ and
FRF· (3) Sµ is blocked during E6 and E7 and Fµ is
blocked during ES and E9. These blocks are necessary to
prevent erroneous µI addresses from making CS references
prior to the correct starting µI address being loaded into
Sµ at ES. The sequence of events for implementing these
operations is described in the following paragraphs.

,Ll\ssume now that processor 0 is the only processor
mquesting time slices and is also enabled for CC. Timing
for this example is shown in Figure 2-26. Like Figure
2-24, it is assumed that no processor was executing before
a request was made by processor 0 for time slices.
Therefore, the first time slice shown is a null. The
S4~quence of events during this null time slice is the same
as that for Figure 2-23. At EO of the next time slice, the
CC Clear flip-flop is set. Essentially, this flip-flop is used
to get out of the CC mode when the CC bit in the Control
n::?gister is cleared. Therefore, it is set when the processor
enters the CC mode and remains set until the CC bit is
cleared. When set, the CC-CLEAR output from the clear
siide goes low, as shown in Figure 2-25. Since this flip-flop
is clocked at E060 of every time slice, it also serves the
purpose of snapshotting the CC bit every time slice. This
is the only time during a time slice that the CC bit is
srnapshotted and commits the time slice to react
accordingly. In other words, even if the CC bit was to be
cleared before the end of the time slice, the time slice
would be committed to the CC mode even if not really
necessary.

At E6, the Null flip-flop is set and the CC flip-flop, which
is normally set if not in the CC mode, is cleared. Logic for
these flip-flops and associated logic generating other

rNULL PROC 0 NULL PROC0--=1
Pµ FRF Pp Fb Pµ FRF Pp Fb

(NULL) (NULL) (NULL) (NULL) -
Sµ F Pµ FRF Sµ F Pµ FRF

T160
BUSY

FF
TO

RSYC
FF
(0)

+CONTR-08

PROC#O

RO R1 ED E1 E2 El E4 E5 E6 E7 WO W1

E6 E7 WO W1 RO R1 ED E1

T560 T600 TODD T160 T560 T640 T160 T560 T&OO TODD
PRIOR CLR SET BUSY PRIOR SET BUSY PRIOR CLR SET

ENC RSYC STATE FF ENC NULL FF ENC RSYC STATE
TO FF FF TO TO STATE TO TO FF FF

READ (0) (0) RSYC READ FF RSYC READ (0) (0)
REG READ FF REG VIA FF REG READ

. (0) REG (0) (0) ABANDCC (0) (0) REG
TO EXEC STATEN TO

EXEC REG TO EXEC
REG TO WRITE REG
(0) WRITE NOP (0)

REG
(0)

Figure 2-24. One Processor in Queue, Not Enabled for CC

r------------------• I I
I
:----L~RD=EXEC

I
I
I
I

RO R1 ED E1 ETC.

W1

T160 T560 T640
BUSY PRIOR SET

FF ENC NULL
TO TO STATE

RSYC READ FF
FF REG VIA
(0) (0) ABANDCC

EXEC
REG
TO

WRITE
REG
(0)

-EO&O _______,.. I 1---------•
•-cc ENABLEI

1

li tt---&--*"" .._ ___ ,.
1A13 I

~---------- -------·
+CC-CLEAR

I 1A15 I
.. _________ .

·---1
I
I
I
I
I
I
I
I

---,

1A16

I
I
I
I
I
I

-READNULL

I
I ·-------·

Figure 2-25. Interrogation Logic

2-32

rNULL -·····--;i PROCO-n
Pp Pp Fb

Pµ fRF Pp Pp Fb ~ P:i F;F
...... (NULL) $µ j;:; f-;F Sµ F RO WO Wl

EO E1 EZ E3 E4 E5 E6 E7 WO W1 E3 E4 E5 E6 E7 ER E9

RO R1 EO E1 EZ ER E9

RO I~ 1
T160 T560 T600 TODD T160 T560 T600 TRZO TOOO T160 E1/2 T560 T60D T82D TODD
BUSY PRIOR CLR SET BUSY PRIOR CLR CLR SET BUSY SET PRIOR CLR CLR SET

FF ENC RSYC STATE FF ENC RSVC NULL STATE FF CON ENC RSVC NULL STATE
TO TO FF FF TO TO FF FF FF TO eve TO FF FF FF

RSYC READ (0) (O) HSYC READ (0) TROD (0) RSVC FF READ (D) TRRO (0)
FF REG READ FF REG T620 CLR READ FF REG T62D CLR READ
(OI (0) REG (O) (0) SET NULL FIEG (0) (0) SET NULL REG

STATEN TO EXEC NULL cs TO E"X"EC' NULL cs TO
TO EXEC REG FF FF EXEC REG FF FF EXEC

WRITE REG TO T620 flEG TO T62D. REG
NOP (0) WRITE CLR (D) WRITE CLR (0)
FF T060 REG CON 1ii60 REG CON T060

SET (0) eve SET (0) eve SET
cc

I
FF cc

1
FF cc

CLEAR T6RO Cl.EAR T6RD CLEAR
FF SET FF SET FF

NULL NULL
cs cs
FF FF

READ/EXEC READ/EXEC
COMPARE COMPARE

MADE HERE MADE HERE

figure 2-26. One Processor in Queue, Enabled for CC

~------------------------NULL I L 9 RD=EXEC__.,__ ____ _.

I
·E6/7XX·E-1---1----._ _ _.. ...

r
TX20

I
I
I

----·~·--+BLOCKS [BLOCK J
~-.... ~· CLKSµ

I
NULL• cs I

·--·NULL• CS [NOP'S: 0 .. Fµ J I VIA NULL• cs
I
I
I
I

TX80 I
·--------~·---SELPMORF [INHIBITSELJ _rL...I I OF Pµ+F

·CIOIEXIT -l·------
1
I
I
•
I
I

cc

• -------------r------------11---+CC-F/F [ADD EB AND E9J
I - TO TIME SLICE

I E620 [>1------1----ENPP-SM[GATE Pp TO Sµ]

L 1A13

------------------------~ Figure 2-27. Generation of CC Mode Signals

2-33

signals necessary for CC generation is shown in Figure
2-27. Corresponding timing for these signals is shown in
Figure 2-2B. The two flip-flops are set and cleared,
respectively, at E620 upon occurrence of a low
RD=EXEC signal. (Recall from Figure 2-24 that this signal
will be low for a single processor enabled for CC.)

Setting the Null flip-flop generates BLOCKS, which
blocks clocking of Sµat E680 and E780. The clear side of
this flip-flop is also used to set the Null· CS flip-flop,
which generates NULL-CS. This signal is sent to CS to
effectively shut off CS during EB and E9. The result is to
clock "O's" into Fµ at EBOO and E900. Clearing the CC
flip-flop generates the following four signals which
perform the indicated operations: (1) Signal SELPMORF is
driven high to inhibit selection of the IC element
containing Pµ and FRF in the ERF. Since the same
processor is executing, nothing is needed for another
processor from the ER F. (2) Signal CONCYCLE is
generated to hold SELFH/PL low. This is done for the
special case when a CIO µI is executed in CC as part of an
1/0 data transfer loop, and the condition for exiting from
the loop is met. For this situation, the address of the next
µI is put into Pµ as part of the µI execution. Therefore, it
must be loaded into Sµ from Pµ. This is accomplished by
signal CIOEXIT in Figure 2-27. If the exit condition is
met, CIOEXIT drives SELPMORF low to enable selection
of Pµ by SELFH/PL to load Sµ. (3) Signal CC-F/F is
generated to prevent the excursions counter from
recycling back to EO after generating E7. The result is to
add minor cycles EB and E9 to the timing chain. (4)
Signal ENPP-SM is generated to enable gating the
contents of Pp, containing the startingµ I address of the
next time slice back to Sµ,. This address gating takes place
during EB. At this point, processor 0 can begin executing
another time slice. Successive time slices will be executed
in exactly the same manner until a condition arises to
remove the processor from the CC mode. These
conditions are (1) the processor's CC bit is cleared, (2)
another processor requests time slices, or (3) the
processor's Busy flip-flop is cleared.

Removing a single processor from the CC mode by
clearing the CC bit position is accomplished by the CC
Clear flip-flop, the same as for a single processor which
began executing with its CC bit initially cleared. At E640,
the evaluation is made to determine if the CC bit of a
single processor is still set. If not, the Read Null flip-flop
of the RAN is set via ABANDCC to null out the following
time slice. A special case is stopping the CC-enabled
processor completely because its Busy flip-flop is cleared.
Clearing the Busy flip-flop indicates that the task
performed by the processor is completed. Stopping the
processor is done by means of ABANDCC, as shown in
Figure 2-25. Clearing the Busy flip-flop, however, is done
at E7 which occurs after ABANDCC will have been

2-34

generated by the CC-ENABLE signal. For this case,
therefore, ABANDCC is generated at E840 by BUSY,
which indicates that the present processor has completed
its task. Generating ABANDCC in this manner prevents
the processor from being trapped in a condition in which
it could not turn itself off. The result is to generate a null
during the following time slice to allow the next processor
in the queue (if any) to read up its starting µI address. The
processor whose Busy flip-flop has cleared is removed
from the queue by clearing its Resync flip-flop in the
priority logic at the next E 1, as shown in Figure 2-22.

A request from a second processor for time slices removes
the single processor enabled for CC from the CC mode by
preventing RD=EXEC from being generated. This prevents
thu Null and CC flip-flop from being set, which inhibits
thu associated CC mode signals. A special situation arises,
however, when the second processor is of lower priority
than the one enabled for CC. Under this condition, the
processor enabled for CC will run for one additional time
slice after the lower priority processor enters the queue.
The reason is that the CC snapshot logic will have
determined that the processor enabled for CC should
execute in the CC mode before the scanner and priority
logic recognizes that another processor has entered the
queue. This situation is shown in the timing of Figure
2-29. Assume that initially, only processor 0 is requesting.
The first time slice is a null to set up processor 0, enabled
for CC operation, to run during the next time slice.
During this next time slice, processor 6, not enabled for
CC, enters the queue at E160. At E050, however, the CC
snapshot logic has already determined that processor 0
will run in the CC mode for the present time slice. One
minor cycle later, at E160, the scanner and priority logic
determines that both processor 0 and 6 are in the queue.
Since this determination is not made until after the CC
snapshot decided that processor 0 could run in the CC
mode (only processor in queue and CC bit set), the logic
assumes that both processors 0 and 6 have just entered the
quEiue and are to be granted priority. In accordance with
these processor numbers, the result is that processor 0 is
granted a second time slice solely on the basis of its
position in the queue. After completion of this time slice,
the CC snapshot logic is disabled and priority is granted in
the normal manner so that processors 0 and 6 get
alternate time slices. (The above sequence of events is
modified somewhat if the processor running in CC is also
in the invoke priority mode. Under these circumstances,
the· RAN will prevent the second processor from entering
the queue even for alternate time slice. This level of prior­
ity - CC mode and invoke priority mode - is the highest
lev13I of priority available to a processor and assures that
any of processors 0 through 3 in this mode will absolutely
lock out the other three processors for as long as the
present processor is in this mode.)

- RD=EXEC

+ CC-F/F

- CONCYCLE

-SELPMORF

- ENPP-SM

- ENPM SM

- NULL

CS NULL
(VIA NULL CS)

E5 I E6 E7 EB E9 ED

E560 E050

I

E620 E050

r
E620 E050

L I
E620 E980

r INHIBIT READ Pµ

E620 E050

L I

E600 E800

r I i=P~Sµ-1

E620 E840 -------L· BLKSµ BU~Sµ ·1----------------
v V'

~ CLKF~ CLKFµ

----------·---, ~ (O'S;·F~) ~ (O'S;Fµ) .,------------

Figure 2-28. CC Mode !Signal Timing

2-35

As discussed previously, the Resync flip-flop for a
processor granted a time slice is normally cleared at E6 to
remove the processor from the queue. The flip-flop stays
cleared until all lower-numbered processors in the queue
are serviced. One exception to clearing the Resync
flip-flop at E6 is the case of a processor whose Busy
flip-flop was cleared at E7. In this case, the Resync
flip-flop is cleared at the next E 1. A second exception is
the case of two or more processors in the queue, one of
which is in the priority mode. For this situation, the
Resync flip-flop of the processor enabled for priority
must be cleared prior to E560 to avoid locking out all
processors not enabled for priority. Timing for this
condition is shown in Figure 2-30. Assume that processors
0 and 6 are in the queue and processor 0 is in the priority
mode (Priority flip-flop set). At E160 of the null time
slice, the Resync flip-flop for processor 0 is set to initiate
the execute time slice. Because processor 0 is in a priority
condition, its Resync flip-flop is set again at the next
E160. This second resync request must be cleared before
E560 to avoid generating ABANDCC because both Read
and Execute registers contain the same processor number
(0). If ABANDCC were to be generated in this manner, it
would simulate the same condition as a single processor
requesting, not enabled for CC, by generating a null
during the next time slice. The effect would be to lock
out all requests for these processors in the queue not in a
priority condition. This effect is inhibited by clearing the
Resync flip-flop for processor 0 at E3 via CLR R ESYNC,
as shown in Figure 2-22. The signal is generated by
CC-CLEAR, indicating the processor is not enabled for
CC, and ENCLR PRI. Signal ENCLR PRI, in turn, is
generated if the present processor executing (EXCTING
PROC #) is in a priority condition (PRIORITY FF).
Signal EXCTING PROC # obtained from the execute
decoder of the scanner and priority logic and PRIORITY
FF is obtained from the corresponding processor Priority
flip-flop.

CONTROL

The following paragraphs discuss various control circuits
that are directly related to, but do not logically fit into
other sections of the shared resources information. These
are: skip control, branch control, cycle delay logic, and
system reset logic. The skip control logic evaluates skip
conditions and implements the skip operation for the
eight skip µl's, identified as the 5,X,X µl's. Four of the
eight skips (5,X,O µl's) enable a skip depending on the
results of an operand in Aµ. The other four skips (5,X, 1
µl's) effect a skip depending on the results of a compare
between Aµ and Bµ. The branch control logic specifically
deals with generating a final branch address for the FNJ,
FRJ, FZJ, RNI, and JMP µl's. These branch µl's form
their address from the contents of Sµ and a partial branch
address formed by branch address translation peculiar to
each branch µI. In addition, this logic implements the

2-36

branch-to-next-CS module anomaly associated with all
branch µl's.

The cycle delay logic is used to delay execution of a SUM,
DSUM, CMP, or CMU (2,X) µI for one minor cycle if
programmed immediately following any µI that feeds data
into either Aµ or Bµ. Data loaded into Aµ or Bµ by such a
µI takes almost one cycle to propagate through the ALU'.

Therefore, the results of such a µI are not available for the
2,X µI to process until one minor cycle after the µI that
loaded Aµ or Bµ. The system reset logic performs a
System Reset on the system initiated by a power-on
condition, performing a Reset/Load or Autoload
operation, or pressing the SYSTEM RESET pushbutton
on the System Control Panel.

Skip Control

A simplified diagram of the skip control logic is shown in
Figure 2-31. The results of the Aµ/Bµ compares made in
the ALU are fed to the skip evaluation logic. This logic
combines the Aµ/Bµ compare results with the skip µI
sub-operation codes (bit positions So and S1) to
determine if the skip condition defined for the skip ul
was met. The skip evaluation logic is enabled by the Not
Skip flip-flop. This flip-flop is normally in a set condition
to block the µI following the skip µI from being clocked
into F µ if the skip condition is met. This action
essentially skips the next µI by setting up a null condition
for the next minor cycle. The flip-flop is cleared for 100
nsec during the skipped µI minor cycle, however, to
enable the µI following the skipped µI to be clocked into
Fµ. Timing for this sequence of events is shown in Figure
2-32. This figure shows the skip µI (NI) being skipped
during E3, and the µI following NI (Nl+1) being executed
at E4. The flip-flop is cleared by SKIP from the skip
generate logic as a result of a low output from the skip
evaluate logic and the rest of the skip µI operation code
bits (5, X, 0 or 5, X, 1). These outputs are also sent to the
clock Fµ logic to inhibit ENCLKFM at the start of E3. At
the end of E3, the Not Skip flip-flop is set again which
disables the skip evaluate logic. This allows the Nl+1 µI
to be clocked into Fµ for translation and subsequent
execution.

Execution of a skip µI at E7 differs from execution at EO
through E6 because the following µI to be skipped will
not appear until the next assigned time slice. If the
processor is not operating in the Consecutive Cycle (CC)
mode, this next time slice will not be granted until several
other processors have been allocated their requested time
slices. It is necessary, therefore, to store away skip status
information in a register until the next assigned time slice.
This is done by routing SKIP from the skip generate logic
to the Skip Status flip-flop, which is set at EOOO. The out­
put of this flip-flop, in turn, is stored in the Skip Status

NULL~ PROCO

(O)J
Pµ FRFI (NULL) -- -Sµ F

PROC 0 PROC 6 -----1-- PROC 0 ---...,.t--- PROC 6

. (O) I_ (6)_ (6) (O)

~ ~F1~ ~ ~ ~F ~ ~
Sµ F Pµ FRF Sµ F Pµ FRF

(O} (0)
Pp

I Pp fb

Sµ P: F;F

(6) {O)

Pµ FRFI Pp Fb
............... -+-

Sµ F Pµ FRF

E5 E6 E7 WO W1 EO E1 E2 E6 E7 WO W1 RO R1 EO E1 E2 E3 E4 ES E6 E7 WO W1

RO R1 ED E1 ES E9 RO R1 EO E1 E6 E7 WO W1 RO R1 EO E1 ETC.

WO

TOOO T160 T560 T600 TOOO T160 T560 T600 TOOO T160 T560
I\,) SET BUSY PRIOR CLR SET RSYC PRIOR CLR SET BUSY PRIOR w
...... STATE FF ENC RSYC STATE FF ENC RSYC STATE FF ENC

FF TO TO FF FF (6) TO FF FF TO TO

(0) RSYC READ (0) ~ STILL READ (0) .!!!.!__ RSYC READ

READ FF REG READ SET REG READ FF REG

REG (0,6) ~ REG ~ REG {O} (0)

TO EXEC TO EXEC TO EXEC

EXEC REG EXEC REG EXEC REG

REG TO REG TO REG TO

fil_ WRITE (6) WRITE (0) WRITE

T060 REG REG REG

SET (0) (O) (6)

cc
CLEAR

FF

Figure 2-29. One Processor in Queue, Enabled for CC, Another Processor Enters Queue

register during WO. This register is addressed and written
into by the same signals that store the starting µI address
in Pµ, via the ERFG1, SELFH/PL, and EFIRH/WL sig­
nals. Timing for this skip status write operation is shown
in part a of Figure 2-33. During RO of the next time slice,
the skip status information is read ,from the register and
routed to the Null CS flip-flop which, in turn, is set by
skip status at E680. This flip-flop is used to skip the NI µI
at EO by preventing it from being read from CS. (This µI
skip differs from the case discussed in the previous para­
graphs in that the abort can be effected before the µI is
even read from CS. For the previous case, the µI to be
skipped had already been read from CS before the skip
evaluation logic detected that a skip should be made.) If
the skip µI is executed at E7 by a processor running in the
CC mode, it is not necessary to store skip status informa­
tion since the next time slice assigned to the processor will
follow the present time slice. Timing for this situation is
shown in part b of Figure 2-33. Signal SKIP is generated
as before to set the Skip Status flip-flop. Since EO of the
next ti me slice must be delayed two minor cycles when
operating in the CC mode to accommodate EB and E9,
the Skip flip-flop is set for this case at E800. The
Null ... CS flip-flop is set, in turn, at E880 to block reading
of NI from CS during E9.

NULL

(0)

Pµ FRF

Branch Control
The branch control logic operates on two classes of partial
branch* µl's: the FNJ, FRJ, FZJ, RNI µl's and the JMP
µI. The main difference between the two classes of µl's is
how much of Sµ is used to form the branch address. The
first class of partial branches uses only bits 2 and 3 of Sµ
with bits 4 through 15 derived from a corresponding jump
address generated by the particular µI. The JMP µI uses
bits 2 through 7 of Sµ with bits 8 through 15 generated
by the JMP µI. In both cases, the S µ bits are under
hardware control as opposed toµ I control. Furthermore,
the branch control logic determines how the branch
address will be used to form a starting µI address (since
all branch µl's are blockpoint µl's). Specifically, this
means using either Pp as a holding register if the branch
µI is executed during EO through E6, or Pp if the µI is
executed at E7. Depending on whether P0 or Pb is used as
a holding register, the branch-to-next-CS storing unit*
anomaly may result. This anomaly causes the oranch to

*Partial branch µI's are so identified because, at the most, they
replace only 14 of the 16 address bits in Sµ (bits 0 and 1 are not

. changed). This is in contrast to the full branch µl's (CLR, STA,
STB, and AND when X designates Pµ). This group of µl's replaces
all 16 bits of Sµ when the X designator of these µl's specifies Pµ
since Sµ is in the same path.

?AOC 0 PROC 6

(6) (0)

Pµ FRf Pp Fb
(NULL)

EO E1 E2 EJ E4

T160
BUSY

FF
TO

RSYC
FF
0,6

Sµ F

E5 E6 E7

RO

TOOO
SET

STATE
FF
(0)

READ
REG
TO

EXEC
REG
(0)

WO W1

T160
BUSY
FF
TO

RSYC
FF
0,6

Sµ

TJOO
CLR

RSYC
FF
(0)

l
MUST BE

GENERATED
BEFORE
T560 TO

PREVENT
RD=EXEC

GENERATING
ARAND CC

AT T600

RO

E6

F Pµ FRf

R1 EO El

E7 WO W1

Figure 2-30. Two Processors in Queue, One Enabled for Priority

2-38

E2 EJ ETC.

P------------------------------
-E890XX-E ------------41

I
I
I

:---+ENCLKFM

I [L ~ SKIP MINOR TO BLOCK NI J
I H ~ NI MINOR TO CLOCK N1+1

I
I
I

I r--------------, I I SKIP AT

SKIP
GEN

I E7, cc I

..... ~~~-· I
.1 SKIP ~U~SL u

+AMEO.ZF!----!!!
+X,D,X-----

+AMBIT SKP--.-­
+X,2,X;X,3,X--+--...

+AMTEllBM ---t---1

+X,1,X---t---1

+AMLTEGBM--i--1~
+X,D,X---t---1

+AMEllBM---t---1

+X,3,X--i--1

L FOR 100
NSEC IF SKIP

NOT
SKIP +FXE0-5

FF

+FMl-111

SKIP
EVAL

SKIP
S2

CODE

IF SKIP:

H/SKIP MINOR
L/NI MINOR

5,X,D
5,X,1

1A14

I TATU FF I
I FF -NULL-CS

,...., _ _,,l_L.......J WO__.

+E800/EDOO I
I
I
I
I
I
I
I

+ERFG1-SD------­

+ERFG1-S1-------
I

+ERFG1-S2-+-------11

I
I .. _____ _

SKIP AT
E7, NOT CC

SKIP
STAT
REG

(1A13) -----
+EFIRH/WL

+SELFH/PL

L -----------------------------+TXOO

Figure 2-31. Skip Control Logic

take place within the same 4096-word unit in which the
branch µI is located, except for the following two cases in
which case the branch is made to the following unit: (1) If
the branch µI occupies the last location of a unit, or (2) If
the branch µI occupies the next-to-last location of a unit
and is executed at any time other than E6 or E7.

In addition to the above anomaly, the JMP µI has a
second anomaly associated with it that allows a branch to
the next 256-word page within a unit: (1) If the JMP µI
occupies the last location of a page, or (2) If the JMP µI
occupies the last location of a page and is executed at any
time other than E6 or E7.

It should be noted that normal implemenation of the par­
tial branch µl's do not make use of these anomalous char­
acteristics. The anomalies "fall out" of the hardware
design by default rather than by intent.

Generation of the branch address for the first class of
branch µl's is illustrated in Figures 2-34, 2-35, and 2-36
using the FNJ µI as an example. These three figures show
execution of the FNJ µI at E4, E6, and E7, respectively.
As will be seen, the branch address and starting µI address
formed will differ according to the time that the µI is
executed. For all three examples, the FNJ µI is assumed
to be located in the next to last address (FFE) of
4096-word CS unit 0. Referring to Figure 2-34, the
address of the FNJ µI to be executed at E4 is clocked in
Sµ at E280 and the JLI read from CS during E3. At E380,
Sµ is clocked with address OFFF (OFFE+1). Bits 2 and 3
of this updated address, in turn, are clocked into Pp at
E480 to form bits 2 and 3 of the starting µI address.
These two bits are enabled to Pp by E7, indicating the
enable is active during every minor cycle except E7. Bits 2
and 3 also clocked into Sµ at E480, but after being
updated a second time to form address 1 NNN. This
indicates that the resultant jump will be made to some
address in module 1. What has been clocked into Pp,
however, is address ONNN meaning that for blockpoint
purposes the resultant jump will be made to the same
address as in Sµ but in unit 0. Bits 4 through 15 of the
jump address are formed by a translation of bits from
both the FNJ µI and the M LI in the F register as discussed
in the paragraph titled Jump Decode. These twelve bits
are clocked into both Pp and Sµ by the enable shown in
Figure 2-34. Note that these enables clock the jump
address in two parts: bits 4 through 7 and bits 8 through
15. The µI normally executed at E5 is inhibited by block­
ing it from going into Fµ. Instead, the µI at jump address
1 NNN is read and then executed at E6.

*CS storage units are 4096-word portions of CS located on bound­
aries of 010 (000016), 409610 (100016), 819210 (2000

16
). and

so forth.

Execution of the FNJ µI at E6 and E7, shown in Figures
2-35 and 2-36, differs from that executed at E4 in that
the µI to which the jump is made is not executed until the
next time slice. In Figure 2-35, the jump will be to address
NNN in the same unit since the address clocked into Pp
does not get updated a second time by the Sµ+1 logic. At
E680, instead, the starting µI address for the following
time slice (XXXX) is gated into Sµ. This µI is then exe­
cuted at EO of the next time slice. Figure 2-36, is similar
to Figure 2-35 except that bits 2 and 3 cannot be routed
into Sµ even after the first Sµ+1 update. Therefore, they
are routed to Pb along with bits 4 through 1 5. At E780,
they are clocked into Pp along with the rest of the jump
address from the FNJ translation logic. Note that bits 2
and 3 are enabled from Pb specifically at E7, in contrast
to the two preceding examples where the bits were
enabled from Sµ by E7.

In contrast to the preceding class of branch µl's, the JMP
µI not only can jump to the next unit but also to the next
256-word page within a unit if located at address FFE and
executed at any time other than E6 or E7. This condition
arises from the fact that a JMP µI jump address is formed
using bits 2 through 7 of Sµ instead of just bits 2 and 3.
Therefore, the page address (bits 4 through 7) can be up­
dated by the Sµ + 1 logic as well as the unit address. This
page updating facility is shown in Figures 2-37 and 2-38,
which illustrate execution of the JMP µ I at E4 and E7,
respectively. Both examples assume the JMP µI is located
in address OOFE, the second to the last address of CS page
0. Execution of the JMP µI at E4 is similar to that of the
FNJ µI at E4, except that only bits 8 through 15 of Pp
and Sµ are loaded with the translated jump address from
the JMP µI. Bits 2 through 7 of Pp are loaded with the
bits 2 through 7 of the JMP µI address updated once by
thn Sµ+1 logic (OOFE+1=00FF). Since only one update of
this address is not sufficient to advance to the next page,
thn address in Pp causes a jump to address NN in the same

SKIP NI N1+1

I E2

I E3

I E4 I
A A A

E:NCLKFM ENCLKFM ENCLKFM
(SKIP+-Fµ) [BLOCK] (Nl+1• Fµ)

NI Fµ

SKIP ---,._ _____ .,,.,

NOT
SKIPH I I

2-40

~

100 NSEC

Figure 2-32. Timing for Skip Executed at EO through E6

·-SKIP

+SKIP

STATUS FF

+STR SKIP STAT

+RD SKIP STAT

-NULi:~· CS

SKIP NI N1+1

I E7 WO/EO W1/E1 RO/E6 R1/E7 EO El I
-, _______,,. I

EOOO E100 ____ r
_ ___..r

--,....._ ____ _

A. NOT CC MODE

SKIP

E680 E780

I I
---~

BLOCK READ

NI

OF NlµI
FROM CS

Nl+1

r:-]-:-:-E:--1 ED El I L...:.:...... __ - .J. _ - - ... __________ ..,u

-SKIP ~--------·--------'
E800 E100

+SKIP STATUS FF
__ J I

-NU LL CS

E880 E980 -w--------:1 ____ ,J~-----------

B. CC MODE

~-
BLOCK READ

OF NlµI
FROM CS

Figure 2-33. Timing for Skip Executed at E7

2-41

Figure 2-34. FNJ Li.I at Location ~FE, E.xecuted at E4

FNJµI LO­
CATED AT FFE

IN MOD. 0

Sµ 0 F

E2

CLKSM

F

Fl

FNJµI

µI AT
ADAS XXXX

MLI

CLKFM

FNJ
XLTN

Fµ I y y y y i.- CLKFM

ENJP...PPO

JUMP TO
ADAS NNN
IN MOD. 0

N

ENJP• PP1

Sµ 0 F F E CLKSM

Sµ~

Sµ 0 F F F CLKSM

Pµ x

sµI x X ,._CLKSM

ADAS OF 1ST
µI OF NEXT
TIME SLICE

[
NO ENJP..-SMJ
AT E6 or E7

Figure 2-35. FNJ µI at Location FFE, Executed at ES

x x x

ENPM•SM
~ISABLESJ

Sµ+1• Sµ

E4

E5

E6

E7

I I
I EO I
I I
I I
I I ._ ..

READ
FNJ
µI

EXEC.
FNJ
µI

E5

Sµ 0 F F E CLKSM

Pµ x x x x
MU

ENPM•SM F
[DISABLES] READ

Sµ+1.-Sµ E6 FNJ
FNJµI µI

fµ CLKFM Pb CLKPB CLKSM

I'.)

.$::.
~

FNJ
XLTN

EXEC.
E7 FNJ

µI
Pp CLKPP

ulAT
ADRS XXXX

FµI y y y y I
ENPBG1.0 @ E780 ENPBG1-1

@E780

VllO

Figure 2-36. FNJ µ1 at Location FFE, Executed at E7

E2

Sµ 0 0 F E CLKSM

E3
READ
JMP
µI

CLKSM

JMPµI

FµI I N I IN r-CLKFM
Sµ-Pp

l i (NO ENJP-PPO)

~

~ E4 EXEC
;:,. ENJP- SM1 JMP
01

ENJP-PP1
µI PpTCLKPP sd o N N -~CLKSM

t
JUMP TO

JUMP TO ADAS NN
ADAS NN IN PAGE 1
IN PAGE 0 ES NULL

µIAT
ADAS OINN

FµI x x x x r-CLKFM

EXEC
µI

E6 AT
ADAS
OINN

Figure 2-'n. JMP µI at Location FE, Executed at E4

I\,) JMPµI
.i::.

Fµ I I N I I en N

I I • +
~

0 F E

CLKPB sµI x x
*

x x

CLKPP

CLKSM

Pr<~
ENPM SM

I [DISABLES J
Sµ+1-Sµ

l+-CLKSM

ENPBG1~ ENPPG1~
@E780 .---~,.... -.@E780

JUMP TO
ADAS NN
IN MOD. 0

Figure 2-38. JMP µ1 at Location FE, Executed at E7

E5

READ

E6 JMP
~· I

EXEC.
E7 JMP

µI

WO

page (page 0). The resultant jump address. in Sµ, however,
represents bits 2 through 7 after having been updated
twice by the Sµ+1 (OOFE+2=0100). This causes a jump to
address NN in the next page (page 1). The JMP µI exec­
uted at E7 is similar to the FNJ µI executed at E7 in that
Pb must be used to hold the updated bits 2 through 7
from Sµ. Since these bits can be updated only once, the
jump is confined to the same CS page.

Cycle Delay Logic

The cycle delay logic is shown in Figure :2-39. Essentially,
the logic consists of the Cycle Delay flip-flop, which is set
at tOO for 100 nanoseconds by any µI that feeds Aµ.
and/or Bµ. These µl's are the Load S (3,X), Load Bµ
(6,X), EBU and EBL (A and B), D-A (C,X), Load Aµ
(D,X), and the Sense (E,X, 1) µl's. Setting this flip-flop
generates 1 ST CYCLE from the set side and 2ND CYCLE
from the clear side. As shown in the timing of Figure
2-40, signal 1 ST CYCLE rematns high for 100
nanoseconds followed by 2ND CYCLE, which goes high
after 100 nanoseconds. This figure shows two examples of
a 2,X µI (a SUM µI) following a load Ap. µI (a LAW µI).
Part a of the figure shows the SUM µI immediately
following the LAW µI; part b shows the SUM µI separated
from the LAW by a non-load Aµ/Bµ µI (a LOW µI). As
shown in both examples, the Cycle Delay flip-flop is set at
E100 and remains set while the operand loaded in Aµ
propagates through the ALU. In part a enable RF-WR
used to write the sum of Aµ and Bµ into register X (that
is, the register selected by the µI X-field) is inhibited by
the high 1 ST CYCLE signal during E1. This signal goes
llow at E200 to allow the sum to be writt•en into register X
during E2. Since the SUMµ I has overlapped into E2, it is
necessary to delay all following µl's on 1the time slice for
one minor cycle. This is done by routing 1ST CYCLE to a
NOR gate, which blocks ENCLKSM for one minor cycle,
and to an AND gate, which generates BLKFM for one
minor cycle. These inhibit conditions prevent the NI µI
from being clocked into Fµ and the address for the Nl+1
gl from being clocked into Sµ for one minor cycle. Signal
E671 DL inhibits the Cycle Delay flip-flop from blocking
Sµ at either E6 or E7 to allow the starting µI address for
the following time slice to be clocked into Sµ. Part b of
the figure shows the Cycle Delay flip-flClp being set again
at E100 to block RF-WR. This time, however, a LOW µI is
being executed during E1. Since the LOW µI does not
feed data into Aµ or Bµ, the operand in Aµ is able to
propagate freely through the ALU. At E2, the SUM µI is
executed to store the resultant sum of Aµ and Bµ. at
E250. For this case, then, the SUM takE~s only one minor
cycle to execute.

2-47

System Reset Logic

The system can be reset to an initial condition (master
cle!ared) in one of four ways: from a power-on condition,
prnssing the SYSTEM RESET pushbutton on the System
Cointrol Panel, initiating a Reset/Load operation by
pmssing the RESET LOAD pushbutton on the Panel, or
i ni.tiating an Autoload operation by pressing the
AUTOLOAD pushbutton on the Panel. When initiated in
one of the ways described above, the system reset
sequence performs the following operations:

1. The output of the ALU is cleared.

2. The eight P µ registers within the Extended
Register File, Group I, are cleared.

3. The Busy/Active, Tie-Breaker, Control, Privileged
Mode, Boundary-Crossing, CS Scan, Panel
Address, and Panel Data registers within the
Extended Register File, Group 11 are cleared.

4. The Aµ, Bµ, D and Forced Carry registers within
the ALU are cleared.

5. A clear signal is transmitted to the Extended
Register File, Group Ill. (For the effects of this
signal within the integrated adapters, see the
appropriate 1/0 processor document.)

6. The Resource Allocation Network (RAN) is
forced to issue Null cycles only.

7 · The gray code counter is forced to issue ten
minor cycles per major cycle.

8. The Sµ, Fµ-1, and Fµ-2 registers are cleared.

9. The RTC increment pulses are disabled at the set
input of the Busy flip-flop for processor state 4,
(Bit position 04 of the Busy/Active register).

10. The logical inter-lock which is set by a
breakpoint stop operation with processor state 4
(and when set, disables the output of the Busy
flip-flop for processor state 4 from appearing at
the input of the RAN) is cleared.

11. In the presence of the Register Option (RO)
Relocation and Protection feature, the
Addressing Mode register is cleared.

The system reset sequence lasts 0.4 to 0.6 milliseconds if
initiated from a Reset/Load or Autoload operation, as
long as the pushbutton is held pressed if initiated from the
SYSTEM RESET pushbutton, or until the POWER ON
indicator lights if initiated by a power-on condition.

,---------------·
-E671DL-------------------<Ja

+BLKFM

I
I
I
I
I

+1ST CYCLE I
I

I I
I I

+2ND CYCLE I
I -RF-WR

I I
I (1A05) I ·-----· 2,X -----<,11-------1._ _ _.,

I (1AG6) I

L--------------~ +TXOO

Figure 2-39. Cycle Delay Logic

A block diagram of the system reset logic is shown in
Figure 2-41. Depending on how the system reset sequence
is initiated, one of three signals will be generated:
SW-AUTO if initiated by an Autoload operation, MC-LO
if initiated by either a power-on condition or a
Reset/Load operation, or SW-MC if initiated from the
SYSTEM RESET pushbutton. The SW-AUTO and SW-MC
signals are fed through flip-flops to eliminate switch
bounce. The resultant three signals are then fed to a NOR
gate, which feeds two one-shots to generate system reset
signals MC-ALU, MC-10, MC-1, MC-2, and MC-3.

The MC-ALU signal is fed to the ALU enable logic to
generate SEL-ZR-0 and SEL-ZR-1. These select signals, in
turn, are fed to the ALU fan-in to effectively gate an
output of all "O's" on the 16 lines from the ALU. These
"O's" are then routed to the Group II registers of the ER F
and to the Sµ register, where they are clocked into the
registers to clear them. The clock and clock enable signals
for the ERF Group II registers are generated by MC-1, and
the clock enable signal for the S register by MC-2. The
Aµ, Bµ, Fµ, D, and Fµ-1 and Fµ-2 registers are also
cleared by means of MC-1. These registers, however, differ
from the ER F Group 11 and Sµ register in that they can be
cleared directly by a forced clear input to each register
stage flip-flop. Clearing these registers is accomplished by
clear signals CLRFM, ENRDR, ENRAM, and ENRBM.
The Force Carry register is cleared in a similar manner.

The gray code counter is forced to issue a count of ten
minor cycles (EO to E9) by simulating a Consecutive

2-48

Cycle (CC) condition. This is done by combining MC-2
with STATEN from the Null flip-flop (which will be set
during a system reset condition) to clear the Consecutive
Cycle flip-flop. The high output from the clear side
(CC-F /F) is sent to the counter, which interprets the
signal as a request for CC operation. The result is to
enable the ES and E9 stages of the counter to generate the
ten minor cycles.

The Pµ registers associated with all eight processor states
are cleared by MC-3, which travels through three stages of
inversion to generate SELFH/PL and EF1 RF/WL. Both of
these signals are low; therefore, Pµ is selected to be
written. Since there is no data on the lines which fed Pµ,
the registers are filled with "O's". Each of the eight
registers is selected in sequence by MC-2, which is
combined with E timing pulses from the gray code
counter to generate the three Pµ select signals (ERFG1) in
a cyclic manner.

The RAN is forced to issue null cyclic by means of MC-4,
which sets the Null State flip-flop in the RAN. Setting this
flip-flop, in turn, sets the Null flip-flop which sets up the
null conditions (block clocking of Sµ and inhibit accesses
to CS).

If the Relocation and Protection feature of the RO is
present, the Addressing Mode register is cleared by MC-3.
This signal generates register write enables ADDWR-0 and
ADDWR-1 in combination with timing pulse E5 to write
"O's" into the register.

LAW

I ED I
6. 6.

CLKFM CL KAM
(LAW~Fµ) (X•Aµ)

CILKBM
(+11-Bµ)

SUM

E1

6.
BLKRF·WR

(NO A+B+:X)

ALU liPRoPI TIME
(8D NS)

NI
(SUM)

E2

6.
RF-WR

(A+B+-X)

Nl+1
(NI)

El I

CYCLE 1----1-J
DELAY

1ST CYCLE L ____ _

FF l .. ______________ f
• 2ND CYCLE

I
6.

CLKFM
(LAW+-Fµ)

CYCLE l
DELAY

FF

6.
BLKSM

(NO N+1+-Sp

b.
BLKFM

(NO Nl~Fµ)

A. SUMµI FOLLOWED BY LAW µI

LAW LOW

ED I E1

6.
CL KAM
(X+-Aµ)
CLKBM
(+1+-Bu)

ALU IPROPI TIME
(8D NS)

_J 1ST CYCLE l

SUM

E2

6.
RF-WR

(A+B +-X)

1 r 2ND CYCLE

B. SUMµ~ FOLLOWED BY LOW µI

Figure 2-40. Cycle OE1lay Timing

2-49

NI

E3 I

r-------------------------~ I
·RTC·RE04------------t I

}

SET BUSY

·SW-AUTO

[::TOLOADJ

+SW·MC

[
SYSTEM J
RESET SW I

I

AUTO
LOAD

FF

+REQ-4 4 FF IN
I B/A REG

I
I
I •·---- .. I I I
I I I ·MC-1

: I I
>cr--t-:c=-:-! I 1A15 I

1
+MC·ALu .. ____ _

l+MC-10
1/0

PR·DCESSORS

I
I
I
I
I 1A07 I ------·

+ENCLKB/A
·CLKTB
-CLKCR
-CLKPR
-Cl KBC
+CLRCSS
+ENCLKMR
+ENCL KNR
+CLRFM

I
I 1A25•1A28 I ·------

0+-7 GEN O'S
ALU) ON ALL 16

LINES FROM
ALU AND
FED TD ERF

ALU GRP II REG
8+-15

r---------•

I I
I IA~ I

~-------------------------~

r----., r----,

+ENRDR

+ENRAM

{
+ENRBM-0
+ENRBM-1

I cr.o· I 1A05 I 1- x PI I ---------• E CE T ENCLKSM

I I I I
I 1A13 I I lA0& 1
L----,;,m L----::.1

~m~ ;

'··-------------------~!!.3~

Figure 2-41. Systems Reset Logic

2-50

CAUSES GRAV CODE

I CTR TO GEN
+CC-F/F 10 MINOR eve

(EO+-E9)

r-------,
+E4567--· I

·---· +ERFG1-SO I
I
I

--·---· +ERFG1 ·S1
SEL#B
PµREG
INSEQ

+E125&--t-----1---.

I
I
I

0-,---• ---,____.... ----+ERFG1·S2

I 1A13 I

L-------~

I
I

L------,!!~

r--------.i I D
I

I

I
I
I

HULL
STATE

I I
I 1A16 I

L-----------1.1
CLR
ADRS
MODE
REG

Figure 2-41. Systems 1Reset Logic (Cont)

2-51

CLR
BPµ
REG

r---------- .. I NULL I
I I

I
I I
I I } ISSUE
I ... NULL
I I CYCLES

I 1A13 I
.. __________ _.

The RTC increment pulses used to set the Busy flip-flop
associated with processor state 4 in the B/ A register are
prevented from doing so during a system reset condition
by clearing the Request 4 flip-flop. This flip-flop is set
during an autoload sequence to give control of the
autoload routine to processor state 4 by setting the Busy
4 flip-flop on the B/A register via R E0-4. During a system
reset, however, the flip-flop is cleared to prevent the Busy
4 flip-flop in the B/A register from being set by RE0-4
until completion of the system reset sequence.

Idle and Resync Conditions

Several of the µl's require either idling through the minor
cycle following their execution, or through the rest of the
time slice so that the next µ.I is executed at EO. Micro
instructions which fall into the former category are the
FNJ; JMP; and CLR, STA, STB and AND if X specifies
Pµ. These µl's cause either a partial branch (FNJ and JMP

l's) or a full branch (CLR, STA, STB, and AND if X
specifies Pµ) to a new µI address. The µI located in CS at
this new address is read during the minor cycle following
the one in which the branch µI was executed. Since this
following minor cycle would normally have been used to
execute the µI following the branch µI if the branch had
not taken place, clocking this following µI into Fµ must
be inhibited since the branch did take place. This inhibit
operation is provided by generating BLOCKFM for one
minor cycle.

Logic for generating BLOCKFM is shown in Figure 2-42.
Operation code translation signals for the partial and full
jump µl's are fed to gates 1, 2, and 3. During the execute
minor cycle of these µl's, enable signal IDLE-F/F is high.
The result is to generate BLOCKFM for one minor cycle,
which inhibits ENCL KFM. Timing for signal BLOCKFM,
as well as other signals associated with the idle operation,
is shown in part a of Figure 2-43. (This figure assumes
execution of the branch µI at EO; however, the relative
times shown are the same if the µI 1is executed at any
minor cycle EO through E6.) Simultaneous with
generating BLOCKFM, signal IDLE is also generated by
the same translation signals via gates 4, 5, and 6. Signal
IDLE sets the Idle flip-flop by means of gate 7 at E100
(first TXOO after IDLE if not E7), causing iDLE-F/F to go
low. As a consequence, gates 1, 2, and 3 are disabled
which drops BLOCKFM and, in turn, causes ENCLKFM
to go high again. Dropping BLOCKFM after one minor
cycle is necessary so that the µI read from the branch
address, and all subsequent µl's, can be clocked in Fµ.
Signal IDLE remains high through El, however, since no
new µI was loaded into Fµ at E100 due to Fµ being
blocked. If an FNJ or JMP µI is being executed, Pp must
be inhibited from being updated by the branch address +1
since the starting µI address formed by an FNJ or JMP µI
is the branch address itself. This is accomplished by

2-52

inhibiting ENCLKPP at El via gate 8 for an FNJ µI and
via gate 9 for a JMP µI. This action retains the branch
address clocked into Pp at EO as the starting µI address.
At E200, the Idle flip-flop is cleared due to the low on the
flip-flop clear output fed back to gate 10. The result is to
cause both IDLE-F/F and ENCLKPP to go high once
again.

As can be seen from Figure 2-43, branch µl's executed at
EO through E6 take 200 nanoseconds to execute: 100
nanoseconds to form the branch address and 100
nanoseconds to read the µI from CS at the location
specified by the branch address. If the branch µI is
executed at E7, however, the total execution time is only
100 nanoseconds, since the µ I specified by the branch
address will not be read out until RO of the next time slice
assigned to the processor. In this respect, then, the branch
µI acts like an ordinary blockpoint µI and blocking of Fµ
is not required. In fact, Fµ must be clocked at EO to
enable the first µI of the next time slice to be executed.
This is accomplished by nullifying the effect of
BLOCKFM by E0/8XX-E, which forces ENCLKFM high
at E750. During EO of the next time slice, BLOCKFM
goes low when the first µI of the next time slice is loaded
into Fµ.

In contrast to the branch µl's, which require idling
through just one minor cycle, the FRJ, RNI 1, RNl2,
CIOI, CI02, ROM, SYNC, and FZJ (if Aµ is O) µl's
result in an idle through the remainder of the time slice so
that the next µI is not executed until the next EO. These
µl's are called resync µl's, because they resynchronize µI
execution back to EO. These µI's achieve resynchroniza­
tion by blocking Fµ for the remainder of the time slice via
gates 10, 11, and 12 of Figure 2-42. These gates do not
have to be enabled by IDLE-F/F as do those for the par­
tial branch µl's since BLOCKFM will remain high through
EO of the next time slice. As for the branch µl's, however,
the effect of BLOCKFM is negated at EO by the action of
E0/8XX-E to force ENCLKFM at E650. Timing of
BLOCKFM for a resync µI is shown in part b of Figure
2-4:3. One minor cycle later, the Idle flip-flop is set via
gates 13, 14, and 15 for the purpose of inhibiting
ENCLKPP. For resync, clocking of Pp must be inhibited
after the minor cycle in which the resync µI is executed to
avoid continuously updating Pp by every update of Sµ
throughout the remainder of the time slice. At the end of
the time slice the Idle flip-flop is cleared and ENCLKPP is
allowed to go high updating Pp as required during the
next time slice.

CONTROL STORAGE

The Control Storage (CS) section is an alterable 14-bit,
word-oriented solid-state memory capable of storing 5120

p-----------------~ I I
-E789-0

•
+(8,X+F ,O,X) -i

I
I
I
I
I

IDLE
FF

I
I
I
I
I
I
i
I

_____ ..

TXOO

+IDLE

,------------.. I +O,X___..._ _ _.

I 4
o·x--------

I 1--..c
+(8+9)--1....._--1 5

I
+1,X---1..----
X =Pµi---111---.... 6

I
I
I
I
I

X=PµOR f---111---.... CLR}

: ~: X=Pµ

I AND 1A06 I

·-.. - - ------ - - al

i---------------,
I

10 +F,O,X

I
+O,X

11
+X,2

I
1,X

12
+(8+9)

I
i
I

+O,X --..---11 2

+X,1 -~1-----1----c:

I
+oo-1

, I
I
I
I I FZJ

I 1AOO I

~------~-----~--~

Figure 2-42. Idle and Resync Logic

-EO/BXX-E

+BLOCKFM I
I I
I 1A14 ~ .. ____ ..

+ENCLKFM

FµDECODE

BLOCKFM

Fµ DECODE
v

IDLE

IDLE-F/F

ENCLKPP

Fµ DECODE
v

BLOCKFM

Fµ DECODE
v

IDLE J

IDLE·F/F

ENCLKPP

EO E1

IDLE· Fµ DECODE

1ST TXOO AFTER
IDLE IF fi
v

I
IDLE · Fµ DECODE

A. BRANCH µI'S

1ST TXOO AFTER
IDLE IF E7

v

IDLE · Fµ DECODE
v

B. RESYNC µI'S

E2 E3

IDLE · IDLE-F/F · TXOO
v

I

Figure 2-43. Idle and Resync Timing

2-54

E7

ENCLKFM
v

1ST TXOO
AFTER E7

rt_
ID l E ·IDLE ·F /F ·TXOO

v

words (basic size). The CS stores all µI's used by the pro­
cessing unit. These µl's execute MLl's under program con­
trol and perform functions initiated by the System Con­
trol Panel and peripheral devices such as Reset/Load and
Auto Load. The CS also stores verification and diagnostic
routines used during checkout and maintenance
operations. A block diagram of the CS is shown on Figure
2-44.

CS Operation

The CS section is a rapid-access semi-conductor mem­
ory that stores 14-bit words in bipolar random-access
memory (RAM) integrated circuits (IC's). It is organ­
ized on the basis of 4096-word stora!Je units and is
expandable in increments of 1024 words to a maxi­
mum of 16,384 words (addressing limit). At present,
the system is provided with a basic CS of 5120 (5 K)
words (one 4096-word storage unit plus a 1024-word
portion of a second unit) with an 8192-word (BK) CS
offered as an optional feature. Each storage unit con­
sists o"f 224 RAM IC's and corresponding address select
logic. Each IC stores 256 bits, and is interconnected
with other IC's so that each stores one bit of 256
words. Each word, therefore, is partially stored on 14
IC's, one bit per IC. This partial storage of words, 14
bits wide is referred to as page storage. A page is a
block of 256 words. Since each storage unit consists
of 4096 words, each unit consists of 16 pages
(4096/256).

A physical representation of the paging concept is il­
lustrated in Figure 2-45, which illustrates the pages
making up two storage units. Note that the 14 bits of
a word are numbered 0 through 8 and 11 through 15,
with bit positions 9 and 10 not used. The 16 pages
can be thought of as 16 loaves of bread, each loaf
consisting of 14 slices. Each slice represents one RAM
chip. Address ranges per page run in ascending order
by page number, as shown in the figurn. (For example,
page 0 stores 256 words at addresses 000016 through
OOFF16 page 1 stores 256 words at addresses 010016
through 01FF 16, and so forth.)

Each CS module stores two bits of each word. The
modules for the 8K CS contain 64 IC's each for
storing two bits of 8192 words. The 64 IC's are ar­
ranged in two groups of 32 IC's each, wherein each
group stores one bit of two storage units (32 x 256 =
8192). The modules for the 5K CS contain 40 IC's
each for storing two bits of 5120 word. Each group of
20 IC's stores one bit of one storage unit (16 x 256 =
4096) plus one bit of a 1024-word portion of a
second storage unit (4 x 256 = 1024). The total bits
stored by each group then is 4096 + 1024 or 5120

2-55

bits. In essence, each 5K CS module for a 5K CS is
an 8K CS module "depopulated" by the number of
IC's required to reduce the number of words stored.

Words are addressed in CS by the upper 14 bits of the
SJt register, as shown in Figure 2-46. (The register is
actually 16 bits in length; however, bits 0 and 1 are
µI status bits and do not pass through the CS address
logic.) As the figure shows, bits 2 and 3 select one of
the four storage units, bits 4 through 7 select one of
the 16 pages comprising each unit, and bits 8 through
Hi select one of the 256 words in each page. Selection
of a storage unit and addressing one of the 256 words
in a page is accomplished via corresponding Sµ register
bits directly. However, selection of a particular page is
performed by an intermediate coding of bits 4 through
7 to generate page select (SE LP) signals. These SE LP
signals are divided into three groups: SELPX-0,
SELPX-1, and SELPX-2. The SELPX-0 signals select
bits 0 through 3, the SE LPX-1 signals select bits 4
through 8 and bit 11 of the data word, and the
SE LPX-2 signals select bits 12 through 15. The X val­
ue designates one of 16 page numbers (016 through
F16). Each SELP signal is generated by a combination
of Sµ register bits 5, 6, and 7, and either an EN RD­
CS or ENWR-CS enable signal derived from Sµ register
bit 4 in conjunction with other signals that define
whether a read (EN RD-CS) or write (ENWR-CS) opera­
tion is to be performed. Logic for generating these
enable signals is shown in Figure 2-47. Signal EN RD­
CSO will be generated whenever SM-CS04 is low,
e>:cept when any of the following inhibiting conditions
is present:

1. A parity error has been detected in the µI read
from CS. This causes SWCS-OFF to go low.

2. The next µI is to be skipped, the processor state
is operating in the Consecutive Cycle mode, or
the CS has been disabled by the CS DISABLE
switch on the System Control Panel.

For the above three conditions, NULL-CS is forced low.
1111 the case of a skipped µI, it is still necessary for the
processor state to idle through one minor cycle. This is
accomplished by a NOP condition, wherein the CS is
inhibited from transferring a µ,I to the Fµ register. The
effect is to write all "O's" into Fµ. The Consecutive Cycle
mode also requires a NOP condition during E8 and E9
tiime. (These times would normally be EO and E1 for the
next time slice, when Fµ would be loaded with the first
and second µI's of the next assigned processor state.
Since the same processor state will be granted the
following time slices, these loads must be aborted.) Signal
ENRD-CS1 is generated in a similar manner to ENRD-CSO
except that ENRD-CS1 is enabled when SM-CS04 is high.
This enables ENRD-CSO to select pages 016 through 716

Sµ
BITS

04

~~~~ 
:~~!-CJ~ 
: C?~~~~~~~ . ~~-~-~ 
. CV~q:>~C?~C?~ 

5K 

cs 

6 ~ -~ :-t_J -~ UNIT 

05 PAGE 

7 

~ !-[] !-6. 2 ~ ·- ...!_ BK SEL UNIT CS 
06 B PAGE 1 

07 9 0 1 2 3 

:~~~!-[] 
: C?~<?~~~C?~ 
·~-~-~-~ 

----... F ~ cr_o CC[] CC[] 

BIT03 OF Sµ 
SELECTS UNIT 

0OR1 

8 LINES 1·0 EACH PAGE 

WORDSEL 

SµBITS 08 09 10 11 12 13 14 15 

Figure 2-44. Control StoragE1 Block Diagram 

2-56 



0000 

• 0 
PER DOFF 
:~=~E { 
PAGE .._ __ .. 

EACH BIT !PORTION 
OF A PAGE CONSISTS 
OF ONE IC 
ELEMENT. 

!BIT POSITIONS 
9 AND 10 
NOT USED. 

1CFF 



NOT PART 
OF CS 

ADDRESS 

LK 02 03 04 05 06 07 

14-BIT CS 
ADDRESS 

08 09 10 11 12 13 14 

~--------------- ----------------------
t.__ __ SELECTS 1 

OF 256 WORDS 
IN PAGE 

'---------------------~--SELECTS1 
OF 16 PAGES 
IN STORAGE UNIT 
(4096 WORDS) 

------------------~·-------~---SELECTS10F 

Figure 2-46. Control Storage Address Selection 

.. -------- .. I I 
-SWCS-OFF --------e----11 

"NULL-cs------­
·SM-CS04 --°"!Ill-.., __ _, 

I 

+SU.CS04 -·-------......... _ ....... 
I 
I (1020) I .. ________ .. 

r-------.. I I 
+WRITE-Cs-------,QY+ 

-ENWR-CSO 

-SM-CS04---l---I. I 

I I 
L · (1B18l I --------·-----·---• I 

I 

+SM•CS04 ··-----11·1-----m ... _...,. I 
I I 
L (1821) I 
_______ .. 

Figure 2-47. Generation of EN RD-CS and ENWR-CS Signals 

2-58 

4 STORAGE UNITS 
(MAXIMUM) 



and ENRD-CS1 to select pages 815 through F15· When 
either of these enables is present, data is read from the 
location addressed by bits 8 through 15 of the S register. 

Signal ENWR-CSO is generated when SM .. CS04 is low and 
WRITE-CS is present. Signal WRITE-CS is generated by 
the System Control Panel during a CS load operation. 
Signal ENWR-CS1 is generated in like manner, except that 
SM-CS04 is high. As with the two ENRD-CS signals, 
ENWR-CSO selects pages 015 through 715, and 
ENWR-CS1 selects pages 815 through Fm. Either of these 
two signals is used to generate a second write enable 
signal, WRITECS, through a NOR gate. When either 
ENWR-CSO. or ENWR-CS1 is present, along with 
WR ITECS, the data present on the N~ .. cs input lines is 
stored in the location specified by bits 08 through 15 of 
the Sµ, register. 

Correlation of the SELP signals with the data bit groups 
they select, and the Sµ register bits and ENRD-CS and 
ENWR-CS signals which generate eaclh SELP signal, is 
shown in Table 2-3. 

MICRO-INSTRUCTION TRANSLATION AND 
ADDRESS UPDATE 

The µI translation and address update logic reads a µI 
from CS at the location specified by the contents of Sµ 
and decodes it to generate the enables required to execute 

· the µI. Upon making the CS read access, the contents of 
Sµ are updated to form the address of the next µI in the 
program. A block diagram of the µ.I translation and 
address update logic is shown in Figurn 2-48. Depending 
on the µI routine, the next µI address will be: 

1. Incremented by one by the Sµ+1 network 

2. A jump address generated by the jump decode 
logic 

3. A beginning address set from the System Control 
Panel, or 

4. A jump address derived from the Aµ and Bµ 
registers through the ALU fan-out logic, 

Within a particular time slice, the CS reads µl's as 
addressed by the contents of the Sµ rngister. If ending a 
time slice for a particular processor, 1the address of the 
beginning µ.I to be executed during the next time slice 
available for the active processor mU1st be stored in a 
designated location in the Extended Register File (ERF). 
At these times, the updated µI address is routed to either 
the Pp register or Pb register for storage in the ERF via 
the ERF write logic. 

2-59 

Micro-Instruction Decoding 

Fµ Register 

The F µregister holds the µI read from CS in preparation 
for translation by the first-level and second-level µI 
translation networks, and other decoding circuits. The 
register consists of two ranks, each rank 16 bits in length. 
Use of the double rank is necessary due to the high 
fan-out requirements of most of the µI bits. A typical 
stage of the Fµ register is shown in Figure 2-49. This 
figure shows the two ranks associated with the bit 00 
stage, together with their interconnections. Each rank 
is double-gated to assume definite set and clear 
conditions. 

Depending on the state of data bit CS DAT AOO, the 
·flip-flop is set or cleared upon activating clock pulse 
CLKFM when enabled by ENCLKFM. Enable ENCLKFM 
is generated constantly, except for certain conditions 
when clocking Fµ must be inhibited. During certain idle 
1i::onditions, the enable is inhibited by BLOCKFM. This 
~signal is generated when executing either a ROM, SYNC, 
FRJ, RNI, µI; or a Load S µI executed at any time other 
than EO. These µl's result in idling through the rest of 
the major cycle so that the next µI in the sequence 
starts at the beginning of the next time slice. Clocking 
of Fµ, therefore, is inhibited for the remainder of the 
present time slice. Indication of a parity error in Fµ 
(PE-FM) or a long MS access (LONGACC) also inhibits 
ENCLKFM. Signal LONGACC indicates the addition of 
timing pulses EO', or EO' and EO", required for the 
extra propagation time needed by the Register Option 
(RO) during MS references. Adding these pulses essen­
tially sets up a hold condition during which Fµ must 
be inhibited from clocking-in the next µI. Execution 
of a FZJ (0,3) µI when the jump condition (Aµ is 0) 
is met returns control to the RN 12 subroutine. This 
situation causes an idle condition through the rest of 
the major cycle. Meeting the conditions for a skip 
when executing a skip (5,X,X) µI inhibits ENCLKFM 
for one minor cycle. This causes the following µI 
would normally be executed is not aborted, however . 

The enable signal is specifically generated during E8 and 
E9 during consecutive cycle operation to perform NOP's 
during these minor cycles (transfer "O's" to Fµ ). This 
prevents Fµ from being loaded with spurious µI's during 
these minor cycles. 

Routing of bits from F µ to the various translation 
networks is shown in Figure 2-50. Bits contained in rank 1 
of Fµ are identified as FM 1 bits; those in rank 2 of Fµ as 
FM2 bits. In addition, some bits of each rank pass through 
another stage of buffering before being used. In such 
cases, the bits carry another identifier. For example, bits 



CONTROL}cs DATA 
STORAGE 

Bit Groups 
Selected 

00-03 

04-01 

08 and 11 

12-15 

(1ADB·1A11) 

Table 2-3. CS Address Select Signals 

SELP 
Signals 

SEL.PO-O 

+ 
SEL.P7-0 

SELPS-0 

+ 
SELPF-0 

SELP0-1 

+ 
SELP7-1 

SELPS-1 

+ 
SELPF-1 

SEL.P0-1 

+ 
SELPF-1 

SELPS-1 

+ 
SELPF-1 

SELP0-2 

+ 
SEL.P7-2 

SELPS-2 

+ 
SELPF-2 

SµReg Bits 

4 T 6 

0 0 

0 1 

1 0 

1 1 

0 0 

0 1 

1 0 

1 1 

0 0 

0 1 

1 0 

1 1 

0 0 

0 1 

1 0 

1 1 

SETSµ ___ _ 
(PANEL) 

FXEQ 

µI 
ENABLES 

I 6 T 7 

0 0 

+ 
1 1 

0 0 

·~ 
1 1 

0 0 

~ 
1 1 

0 0 

l 
1 1 

0 0 

~ 
1 1 

0 0 

~ 
1 1 

0 0 

~ 
\ 1 1 

i 
0 0 

1 1 

·------1 
I 
n 
D 

B 
n 
n 
I 
n 
I 

I 
a 
0 µI ADDRESS 
g UPDATE LOGIC 

Enables 

ENRO-CSO/ENWR-CSO 

ENRO-CS1 /ENWR-CS1 

ENROCS-0/ENWR·CSO 

ENRO-CS1 /ENWR·CS1 

EN R 0-CSO/ENWR-CSO 

EN RO-CSl /ENWR-CS1 

ENRO-CSO/ENWR-CSO 

ENA 0-CSl /ENWR-CS1 

,.......--. SM-CS } CONTROL 
STORAGE 

-----------.. I 
I ---· S11+1 Pb I 

,,,. REG 

I 
I .......... 
I 
I 
I --... 

'---------Ml Pp I 
REG 

I 
I 
I 

·------------­AµOR Bµ 

(1A18·1A21) I ____ _. 
REGISTER~; 

µI 
.. ENABLES 

Figure 2-48. CS Control, 131ock Diagram 

2-60 

ERF 
WRITE 



+BLOCKFM 

·------------------, I i 
I 
I 
I 
I 
I 

+(O,J·Aµ=O) + (5,X,O·SKIPl-------+---~ 
I 
I 

+5,X,1 ·SKIP---.--------+--... 

-E89XX-E 
I 
I • I J i 
I : 
I (1A14) J 
~------------------

+ENCLKFM 

·-------------------------------------------, +-CSDATAOO--------------------F_µ_-
1
__________ Fµ-2 • 

I 
I 
I J Q +FM1-000 Q 

c c 
+CLKFM 

-FM1-DOO Q 

- +Fiil'i2-000 

-------------FM2-000 
I 

-CLRFM-&-----------------e-------------
I 

L------------------------------ -
+FM2-001----' 

-FM2-001-----

Figure 2-49. Fµ Register 

I 
I 

(1A08) I 
__________ .. 



0 

µI XTLN 
(1A06) 

(1A05) (1A05) 

(1A04) 

2 3 4 5 6 7 8 * 

(1A06) (1A22) 

µIXLTN 

--..,.-­
SETP 
(1A02) 

(1A24)B° 

ERF SELECT 
(1A22) 

11 12 13 14 15 

(1A06) 
µIXLTN 

Figure 2-50. Micro Instruction Decoding 

2-62 

SHIFT 
NETWORK 

(1A24) __..._... 

fµ·1 RANK 

WORD IN CS 

Fµ-2 RANK 

-..--­
BRF SELECT 

(1A22) 

*BITS 9 
AND10 
NOT PRE· 
SENT 
IN CS 



4, 5, and 11 of the Fµ-2 rank are directly interpreted by 
the µI translation logic as sub-operation c:odes So, S1, and 
S2. However, they are also routed to the set P logic 
through another stage of buffering. These bits are 
designated as bits 104 and 105 to differentiate from bits 
004 and 005 coming directly from the Fµ-2 ranks. Note 
that bits 9 and 10 of the Fµ register are not used since the 
µI is only 14 bits in length. From the Fµ-1 and Fµ-2 ranks 
of the Fµ register, the µI bits are routed to the µI 
translation network for decoding the various bit fields of 
the µI, and to various other translation circuits for 
specialized decoding of certain µI bits for particular 
applications. Each of these translation networks shown in 
Figure 2-50 is discussed in more detail in the following 
paragraphs. 

Micro .. lnstruction Translation 

Translation of the µI function code and designators is 
accomplished by the µI translation logic. This logic, 
shown in block diagram form in Figure 2-51, consists of 
two parts: a first-level translation network and a 
second-level translation network. The first-level network 
translates bits of the Fµ register used to form the µI to 
generate the function (F) code, sub-operation (S) code, 
and a and b designators. The F code valwas are collectively 
referred to as FXEO-X/X signals and FXEO-X signals. The 
FXEO-X/X signals represent an ORed combination of two 
adjacent Fµ code values. (For example, FXE0-2/3 
represents an F code of either 2 or 3.) 

The FXEO-X represents a single F code value (i.e., 
FXE0-3 means an F code value of 3). The FXEO-X/X 
signals are routed to the second-level translation network, 
and the FXEO-X signals are combined with S code signals 
and the a and b designators to generate enable signals for 
specific µl's. 

The second-level translation network decodes the 
FXEQ-X/X signals into particular F code values via the 
microcode bits 00-03 logic. These F codes are combined 
with additional S code values decoded by the micro 
instruction bits 04-05 logic to form signals which are used 
to set control flip-flops and execute other enable signals 
used by a particular µI. Generally speaking, the output 
signals generated by the second-level translation logic are 
of a more specialized nature, such as register enables for 
executing operations associated with individualµ l's. This 
is in contrast to output signals from the first-level 
translation, which generates basic F and S codes, and 
signals applicable to a large number of µl's requiring 
similar operations (such as all µl's which generate a 
jump address). Each of the particular µI enable signals 
will be discussed in greater detail in the description of 
that section of logic used to implement the particular 
µI. 

Jump Decode 

The jump decode logic performs a second-level jump 
address decode of the FNJ (0, 1) µI and a jump address 
decode of the JMP (9) µI. Formation of the FNJ jump 
address is cal led a second-level decode because of its 
re'lationship to the first-level jump address decode of the 
FBJ (0,2) µI when implementing MLl's via µl's (see the 
pa1ragraph titled Implementing MLl's by µl's). Jump 
adldresses formed by the jump decode logic for both the 
FNJ and FRJ µl's are routed to the Sµregister in place of 
the normal updated µI address to cause a jump to a new 
sequence of /.d's in CS. 

2-63 

Fiormation of the FNJ jump address is performed in one 
o1r two ways, depending on the value of bit 06 of the FNJ 
µII (Fµ 06). If Fµ,06 is 0, the jump address is formed as 
shown in part a of Figure 2-52: bits 4 through 9 of the 
jump address are made up of bits 7 and 11 through 15 of 
the FNJ µI in the Fµ register, bits 10 through 13 of the 
jump address are made up of bits 4 through 7 of the M LI 
o1f which the FNJ µI is a part and bits 14 and 15 are 
forced to zero. If Fµ 06 is 1, the jump address is 
formed as shown in part b of Figure 2-52: jump 
address bits 4 through 9 are made up of bits 7 and 11 
through 15 of the FNJ µI (the same as for the 
F NJ/ F µ06=0 I). However, jump address bits 10 
through 15 are forced to zero, except for bit 12 
which is made up of bit 8 of the M LI. Formation of 
the JMP jump address is accomplished by transferring 
the jump address contained in bits 4 through 7 and 12 
through 15 of the JMP µI to bits 8 throuflh 15 of the 
n1aw jump address as shown in part c of Figure 2-52. 

For all three jump addresses, bits 0 through 3 are not 
altered from what they were before the jump address 
was formed. Bit positions 0 and 1 contain µI status 
information and are not used as part of the µI 
address. Bits 2 and 3, which define which 4096-word 
portion in CS is to be selected, remain unchanged also. 
In addition, bits 4 through 7 of the JMP µI address 
rnmain unchanged by the JMP µI (although they are 
incremented as necessary by the normal Sµ + 1 opera­
tion). Since all 12 bits of the jump address are re­
tained, each of the branch µl's allow jumping through 
a 4096-word portion of CS. However, the µl's are 
usually implemented to jump only within a 256-word 
page. The JMP µI can jump to any location within a 
page (or 4096-word portion); however, the two FNJ 
µl's can jump only in certain increments because some 
of their jump address bits are preset by hardware. The 
FNJ/Fµ06=0 µI can jump only in 4-address incre­
mented, starting at 0000* (0000, 0004, 0008, and so 
forth). The FJN/Fµ06=1 µI can jump only in 12-
add ress increments, starting on 64-word boundaries 

*All addresses represented in hexadecimal form. 



Fµ 
BITS 

__.. ...... 

p--------------------· r---------------• I FIRST-LEVELµI XLTN I I SECOND-LEVEL µI XLTN I 
I I I I 
I I I I 
I I I MICRO I 
I S BITS, I I CODE I 

A,B DESIG ... ~ I __..._ I I .. 
BITS I --.. 

I I I 00-03 I 
I I I FF'S I AND 
I FXEQ-X µI I I OTHER I 

n __..._ 
XLTR .... ENABLE I J--t-+ -,.. .,... 

I ENABLE 
LOGIC 

I I LOGIC I 
I I MICRO I 

I FXEO-X/X I I I .. CODE I'" ...... __..._ 
~ I I T ...... BITS I 

I I I 04-05 I 
I I I I 
I I I I 
I I I I 
I .I I I 
I MAO~ I 

L--------------------1 
I (1A05) I 

L--------------~ 

Figure 2-51. Micro Instruction Translation Block Diagram 

) µI 

ENABLE 
SIG. 



(0004, OOOC, 0044, 004C, and so forth). All three 
jump addresses are loaded both into the Sµ register 
(next CS address) and Pp register (blockpoint address). 
However, if either µI occurs during E6 or E7 time, the 
jump address goes only to the Pp register (and then to 
Pµ) for use as the starting µI address for the proc­
essor's next time slice. (For details of the timing 
involved for this situation, see the paragraph, Branch 
Control.) 

Referring to Figure 2-52 it can be seen that jump address 
bits 4 through 9 (JMP-04 through JMP-09) are formed in 
the same manner for the FNJ/Fµ06=0 and FNJ/Fµ06=1 
µl's, i.e., they both are formed by bits 7, 11, 12, 13, 14, 
and 15 of the jump µI. Bits JMP-10 through JMP-15, 
however are formed in a manner peculiar to that 
particular jump µI. Simplified logic showing the deviations 
of these jump address bits is shown in Figure 2-53. Bits 
JMP-08, JMP-09, JMP-14 and JMP-15 are formed in two 
different ways, depending on whether the µI is a FNJ or 
JMP. Bits JMP-10 through JMP-13 am formed in three 
different ways, depending on whether the µI is a 
FNJ/Fµ06=0, FNJ/Fµ06=1, or JMP. For a JMP µI, bits 
JMP··08 through JMP-15 are generated by appropriate Fµ 

.:~GED Fµ BITS 

7 11 12 13 

00 01 02 03 04 05 06 07 

A. FNJ JUMP ADDRESS, Fµ 06 • 0 

-=ANG ED Fµ BITS 

7 11 12 13 

register bits when enabled by FM1-000. This bit is a 1 for 
the JMP µI, since the JMP F code is 915 (10012). 

For both FNJ/Fµ06=0 and Fµ06=1, µl's bits JMP-08 
JMP-09' JMP-14, and JMP-15 are derived in the same 
manner. Bits JMP-08 and JMP-09 are generated by Fµ 
register bits 14 and 15 when enabled by FMt-000. This 
bit is a 0 for the FNJ µI, since the FNJ F code is 015 
(00002). Bits JMP-14 and JMP-15 are forced to 1 (which 
forces address bits 14 and 15 in the sµ register to 0) by 
the absence of an enable signal to make them 0. For a 
FNJ/Fµ06=0 µI (identified as FNJ 0 in the~ 
sponding enable gates in Figure 2-53), bits JMP-10 
through JMP-13 are generated from Fµ register bits 4 
through 7. These bits are enabled by FM1-000 • 
FM1-006, where FM1-000 defines the FNJ µI and 
FM1-006 defines bit Fµ 06 as 0. For a FNJ/Fµ06=1 
µI (identified as FNJ 1 in the corresponding enable 
gates in Figure 2-53), bits JMP-12 is generated from 
bit 8 of the M LI (contained in the F register) and bit 
JMP-13 is set to 1 (via bit 6 itself of the FNJ/Fµ06=1 
µI). These two jump address bits are enabled by 
FM1-000 • FM1-006. Bits JMP-10 and JMP-11 of the 
FNJ/Fµ06-1 µI are forced to 1 by the absence of an 
enable signal to make them 0. This forces address bits 
10 and 11 in the Sµ register to 0. 

F BITS I I · I 0 
14 15 4 5 6 

08 09 10 11 12 13 14 15 

14 

1
1-l-l·I+ I · I · I 

00 0·1 02 03 04 05 06 07 08 09 10 11 12 13 14 15 

B. FNJ JUMP ADDRESS, Fµ 06 - 1 

-=I UNCHANGED Fµ BITS 

"' 5 6 7 12 13 14 15 

00 O'I 02 03 04 05 06 07 ()8 09 10 11 12 13 14 15 

C. JMP JUMP ADDRESS 

Figure 2-52. FNJ and JMP .Jump Address Formats 

2-65 



r------------------------, I I 
+FM1-000 I 

·FM1·006 

I 

FNJ I 
+FM2-014 -------t----1..,__-C: 

..,,p 
+FM1-004 -----t---it----1.__.,,,,, 

+FM2-015 ------t--1----1...,_llllllllt. 

+FR-008 -----+--_,1--__..._ _ _,,. 

+FM1-006 

+FR-005 FNJ 
0 

JMP 
+FM-007 

+FR-006 

+FR-008 

+FM2-012 

+FR-007 

JMP 
+FM2·013 

I 
I 
I 
I 
I 
I 

:- ·JMP-09 

I 
I 
I 
I 
I 
I JIO-..--- -JMP-10 

·JMP-11 

I 
I 
I 
I 
I 
I 
I 
I 
:- -JMP-12 

I 
I 
I 
I 
I 
I 
I 
I 

-JMP-13 
I 
I 
I 

=8-
I 
I 
I -JMP-14 

+FM2-014 I 
I 

=8 I 
I -JMP-15 

+FM2·015 I 
I 
I 

~-------------------------
Figure 2-53. Generation of FNJ and JMP Addresses 

2-66 

FNJ 

(Fµ06=0) 

Fµ-14 

Fµ-15 

F-04 

F-05 

F-06 

F-07 

0 

0 

FNJ 

(Fµ06=1) 

fµ-14 

Fµ-15 

0 

0 

F-08 

1 

0 

0 

JMP 

Fµ-04 

fµ-05 

Fµ-06 

Fµ-07 

Fµ-12 

Fµ-13 

fµ·14 

fµ-15 

--------------~..............--~-------------SµREGISTER CONTENTS 



Micro-Instruction Address Update 

Sµ Fan-In 

The Sµ fan-in logic selects the 14-bit CS address to be 
loaded in the Sµ register from a number of sources, as 
controlled by corresponding enable signals. A simplified 
diagram of the logic is shown in Figure 2-54. 

Note that the signal fan-in for bits 2 and 3 of the µI 
address is different from that for bits 4 through 15. 
During the time slice, the Sµ register is normally fed with 
the updated µI address from the Sµ+1 logic via the Sµ+1 
bits. This logic adds one to the present µ,I address to form 
the next µ,I address. This updated address is gated directly 
through the Sµ fan-in logic in the abs1ence of an enable 
signal for some other input to the Sµ. fan-in. During a 
FNJ or JMP µI, however, a new jump address is loaded 
into the Sµ register via the JMP bits. This jump address 
affects only bits 4 through 15 of the µI address; 
therefore, the JMP bits do not appear ais inputs to the bit 
2 and 3 stages of the Sµ fan-in logic. These JMP bits are 
enabled by ENJP-SM. The ALU inpU1ts represent data 
from either the Aµ or Bµ register to be stored in the 
active processor's assigned Pµ register in the Extended 
Register File (ERF), as the starting address for the 
active processor's next time slice. This data will be 
transferred to the Sµ register for either a ST A or STB 
µI when the µI X-field specifies the Pµ register, and 
the µI is being executed at some time other than E6 
or E7. 

Since the STA and STB µl's are both blockpoint 
instruction!;, a Sµ•Pp transfer will take place to transfer 
the Sµ register contents to Pp for storage in the assigned 
Pµ register. The ALU inputs also represe1nt the contents of 
the Bµ register used to access the CS during a ROM µI, as 
follows: B•Sµ•CS .. CS Scan register. If beginning a new 
time slice, the starting address for the new time slice will 
normally come from the processor's Pµ register, via the 
PU bits. However, if no other processor has requested a 
time slice, the present processor may run in consecutive 
cycles (CC) if its CC bit is set. For this case, the next µI 
address is read from the Pp register, which holds the µI 
address updated by the last blockpoint µI. (This address 
would normally be stored in the processor's Pµ. register for 
use as the starting µI address for the processor's next time 
slice. However, since the processor wm run through the 
next time slice in CC, there is no need to go through this 
extra step of storing the contents of Pp in Pµ). Inputs 
from either the Pµ register or Pp register are enabled by 
ENPM-SM. The SETS bits represent a CS address set by 
the System Control Panel which defines the starting 
address of a Panel function. These functions allow data to 

be read from or written into CS in individual locations or 
in blocks during the maintenance mode or to initially load 
1tie CS via the Reset/Load routine. The address generated 
by the System Control Panel is only 12 bits in length (bits 
4 through 15); therefore, all panel function sequences 
must be located in the first 4096-word portion of CS. 
(At present, only seven of the 12 SETS lines have 
been assigned address functions: 7, 10, 11, 12, 13, 14, 
and 15. The remaining five lines are tied to a logic 
"1" to simulate 0 inputs to the corresponding bit 
positions of Sµ.) 

SµRegister 

The S µ register is a 16-bit register that contains the 
address of the next µI to be read from CS. This address is 
contained in the lower 14 bits (bits 2 through 15) of the 
mgister. The upper two bits (bits 0 and 1) normally 
contain the two µI status bits: Overflow (OV) and Link 
(ILK). This format of Sµ is shown in part a of Figure 2-55. 
Under certain conditions, however, the upper two bits 
ciontain other information as shown in parts b and c of 
Figure 2-55. During a CS breakpoint operation initiated 
from the System Control Panel (provided that Sµ is not 
solected for display by the Console Address register 
indicators), bits 0 and 1 are forced to 0 so that only the 
14-bit CS address is used for breakpoint comparison 
purposes. This format is shown in part b of Figure 2-55. 
(If Sµ is selected for display, then bits 0 and 1 do 
participate in the breakpoint comparison.) During a 
Reset/Load operation, bit 0 indicates that a burst check 
error occurred and bit 1 indicates that either the CS load 
is complete (bit 1 clear) or that the F RJ decode address 
tl1ble (AT) load is being loaded (bit 1 set). This format of 
S µ is shown in part c of Figure 2-55. In addition, bits 8 
through 15 of Sµ are specifically interpreted as an AT 
address during the AT load portion of a Reset/Load 
01Peration and the AT read/write portion .of a CS 
mad/write operation. 

Simplified logic showing details of the 14-bit portion of 
Sµ is shown in Figure 2-56. (Details of the 2-bit portion 
are discussed in the paragraph titled Status Logic and the 
paragraph titled Disc CS Load.) Each bit stage consists of 
a flip-flop clocked at t80 of every minor cycle when 
ENCLKSM is present. This enable is generated constantly, 
e'ccept upon occurrence of a specific condition to inhibit 
the enable. Signal BLKSMS inhibits the enable for all but 
one minor cycle (EO) of a time slice during a CS read or 
C:S write operation initiated from the System Control 
Panel. These operations access CS only once during each 
time slice assigned to the Panel; therefore, only one µI 
address update and consequent clocking of the updated 
address back into Sµ is allowed per time slice. Signal 
BLOCKS inhibits ENCLKSM during (1) an MS access, (2) 

2-67 



~------------------------~ 
: I -ALU 

I 
I 

-PU-------------------+------11 
.pp---·1------

1 
-(Sµ+1)---1-------------t---+-----

I 
I 

-ENALU• SM------------... 

I 
I 

-ENPM+-SM---l-----t--1 
I 
I 
I 
I 
I 
I 1A18 
I ·-------------------------· A. BITS 02 AND 03 

r------------------------~ I 
·ALU---+:-------------=o 

-PU-~-r1--------------i---------..---...... 
-SETS -----11---------------+----·--

·PP -----1~------------+----·--

I 
-JMP-----lt---------------1,_-t---·--

I 
I 

I 
I 

-ENALU-SM ---------.e---
1 
I 

-ENPM+-SM -----------1----
I 
I 
I 

-ENJP- SM* --------t1t---+--1----1 

I 
I 
I 
I 
I 
I 1A19-21 

~------------------------J B. BITS 04 THROUGH 15 

Figure 2-54. Sµ Fan-In 

2-68 

TOSµ 
REG 

TOSµ 
REG 

*DESIGNATED ·ENJP--SMO 
FOR BITS 4-7 AND 
-ENJP-SM1 FOR 
BITS 8-15. 



a null condition (none of the eight processors has 
requested a time slice), or (3) E6 and E7 if a processor is 
operating in the Consecutive Cycle (CC) mode. An access 
to MS increases the cycle time from 800 to 900 or 1000 
nanoseconds to allow for address propagation through the 
Register Option. This extra time essentially sets up a hold 
condition during which Sµ must be blocked. During a null 
condition, clocking Sµ with a new µI address would be 
meaningless if no processor was running to execute the µI. 
During CC operation, Sµ must be blocked during E6 and 
IE7 to prevent clocking in addresses that would normally 
be those of the first and second µl's to be executed by the 
next processor assigned a time slice. Since the present 
processor will continue executing, the next µI address 
must come from Pp. Blocking Sµduring E6 and E7 allows 
this address to be obtained from Pp. Signal EXCEPT is 
ANDed with BLOCKS to override BLOCKS during a CS 
load operation to clear Sµ to address 000015. 

Signals 2,X+4,X+C,X, and SH I FT blocks Su for one of the 
following conditions: (1) Execution of a SUM, DSUM, 
CMP, or CMU (2,X) µI, when preceded by a Feeder Load 
ul. For this condition, the 2,X µI must be delayed one 
minor cycle to allow the Feeder Load µI operand to 
propagate through the ALU. (2) Execution of a SOW or 
SDB (4,X) or D ..... A (C,X) µI if part of an MS read 
operation. For this condition, the 4,X or C,Xµ I cannot be 
executed until E5, at which time the data read from MS is 
available. (3) Execution of a shift µI. A shift µI takes two 
minor cycles to execute; therefore, clocking the address of 
the next ul address into Sµ must be delayed for one minor 
cycle. For the last two conditions, b~ocking of Sµ is 
overriden if the µI is executed at E6 or E7 by E67 ID L. 
This allows the addresses of the first and second µl's of 
the next time slice to be clocked into Sµ to begin this 
time slice in the normal manner. 

The address bits from Sµ are fanned out to several 
destinations. All 14 bits are routed to the Sµ+1 logic for 
address updating, and to CS via the SM-CS signals to read 
the next µI. In addition, all 14 bits are sent to FRJ decode 
logic to form jump addresses as discussed in the paragraph 
titled Jump Decode. Bits 2 and 3 of the address are routed 
to the CS loader logic via SM-LD. These bits are used 
during the Reset/Load routine to inform the loader that 
all n X 1024 words of a CS unit have been loaded. 
Bits 4 through 15 of the addrnss am routed to the 
Console Data register in the System Control Panel for 
purposes of displaying the address during maintenance 
operations (bits 2 and 3 are also sent to the Console 
Data register after they pass through the CS loader 
logic.) 

Sµ+1 Logic 

The Sµ+1 logic updates (increments by one) the present 
µI address, and routes the updated address back to the Su 

n~gister as the next µI address. Since individual µI's for a 
given sequence are stored in consecutive locations in the 
CS, this update process enables reading all µl's of a 
particular sequence. A portion of the Sµ+1 logic, that 
used to update bits 2 and 3 of the µI address, is shown in 
Figure 2-57. Essentially, the Sµ+1 consists of an 
exclusive-OR gate for each bit stage, which functions as a 
siimple counter whenever a group carry-in signal (GX-CIN) 
is present. There are four such group carry-in signals: 
GO-CIN for bits 2 and 3 of the Su register (the two MSB's 
of the J,.tl address), G1-CIN for bits 4 through 7, G2-CIN 
for bits 8 th rough 11, and G3-C IN for bits 12 through 15. 
The G3-CIN signal is always enabled, since this 
lowest-order bit group will always be counting. Each 
higher-order bit group, however, will be counting 
depending on the ability of a next lower-order bit group 
t10 satisfy an address update within its group without 
having to propagate a carry into the next higher-order 
group. For that reason, GO-CIN, G1-CIN and G2-CIN are 
generated by group propagate signals (GX-PROP) from a 
lower-order group: G2-CIN by G3-PROP, G1-CIN by 
Ci3-PROP, and G2-PROP, and GO-CIN by G3-PROP, 
C]2-PROP, and G1-PROP. Looking at the µI address 
update example in Figure 2-57, the µI address at time tis 
to be incremented by one to form the next µI address at 
time t'. At time t, bits 2 and 3 of the Sµ register equal 
'''O" and "1", respectively, to generate inputs to the 
exclusive-OR gates of each stage which are low (L) and 
high (H), respectively. Since all lower-order bits of the Sµ 
register equal one, the three GX-PROP signals are low as 
shown. This condition produces a high GO-Cl N signal as 
the other input to the two exclusive-OR gates. The 
resulting outputs from each exclusive-OR gate are routed 
back to the set side of each Sµ register flip-flop to set the 
bit 2 stage and clear the bit 3 stage. The resultant change 
on the outputs of these two flip-flops after updating is 
shown in the dashed portion of the µI address. The three 
low CX-PROP signals cause G1-CIN and G2-CIN to go 
high along with GO-Cl N. These high carry-in signals, along 
with G3-CIN (which always remains high) cause bit groups 
4-7, 8-11, and 12-15 to be incremented by one also, to 
form the complete new updated µI address at time t* as 
shown in Figure 2-57. The updated result is fed both to 
the S~ register ·and the Pb register. 

Pb Register 

2-69 

The Pb register is a buffer register that stores the starting 
address for the active processor's next time slice in Pµ for 
1:::ertain conditions when the starting address normally 
1obtained from Pp is no longer available. These abnormal 
1:::onditions are discussed in the paragraph titled Storing of 
Startingµ! Address. 



00 01 02 15 

CS ADDRESS I 

A. NORMAL µI EXECUTION FORMAT 

00 01 02 15 

CS ADDRESS I 

B. CS BREAKPOINT FORMAT 

00 01 02 05 06 15 

~ 0 =cs LOAD COM'. .. :_ET_E_C_S _AD_D_R-ESSA-T_A_D-DR_E_s_s ~~~~~~~~~~::1 
1 =AT BEING LOADED 

.__ __ 1 =BURST CHECK ERROR OCCURRED DURING RESET/LOAD 

C. CS READ OR CS WRITE FORMAT 

Figure 2-55. S µ Register 1=ormats 

Pp Register 

The Pp register holds a µI address formed during the 
active processor's present time slice for use as the starting 
address for the processor's next time slice. The register is 
loaded from a number of sources through the Pp fan-in 
logic, as shown in Figure 2-58. The fan-in logic consists of 
14 stages, one for each of the 14 µI address bits. Note 
that the stages for bits 2 and 3 (part a) are different 
from those for bits 4 through 15 (part b ). Normally, 
Pp receives the starting address from the Sµ register 
after having been updated by the Sµ+1 logic. This 
transfer is enabled by the absence of any other enable 
signal and occurs during execution of a blockpoint 
(BP) µI. Certain error conditions, such as a CS Parity 
Error or Bounds Error will alter normal program oper­
ation by jumping to an error recovery routine. 

2-70 

(Generation of starting addresses for these routines is 
discussed in the paragraph titled Set Pp Logic.) These 
error conditions will force a particular 12-bit starting 
address for the next time slice into the Pp register via 
the SETP bits. These bits are enabled by ENSPECPP 
which is generated for these conditions by a TRAP sig­
n a I. Enable ENSPECPP is also generated during 
execution of a FRJ, FZJ, RNl1, or RNl2 µI. These 
four µl's cause a programmed jump (as opposed to the 
unconditional error recovery jumps) to another part of 
the MU routine at the start of the next time slice. 
Depending on the µI, the enable gates in the 14 FRJ 
bits (bits 2 through 15) to form the corresponding 
jump address. 

The JMP bits form a 12-bit jump address when executing 
a JMP µI. This address can be formed in different ways, 
depending on when the µI is executed in the time slice. 
The JMP bits, therefore, are gated by two different 



r-----,---------.. 
I I 
I I 
I I +BLKSMS 

I I 
I +BLOCKS 

·EXCEPT I I +ENCLKSM 
I +(2,X+4,X+C,X)----JI._ ____ __. 

I 
+SH! FT ---~11-----1~--1 

I ·E671DL-----..i..._ ____ • __ .,.,,.. 

I (1A06) I 

L--------------J 

.. 
I -----------------------, 

+02-•·-----------<-·---------. 
I 1J 

I 

+CLKSM/PB -·--­

I 
I 
I 
I 
I 
I 
I 
I 

._ _ _, 

+15-1-----1 
I 

,C 

K 

..... 
14 

t=F'S 
..,,,.... 

,J 

...__, .. ,c 

I 
Q 

Q 

I 
I 
I 
I 
I 
I 

I (1A18-1A21) I 

L--------~---------------~ 

Figure 2-56. sµ Register 

2-71 

+SM02 

{ Sµ +1, 
BITS 2_15 FRJ DECODE 

VIA SM.,. FRJ, 
CS VIA SM-CS 

BITS2,3- CS LOADER 
VIA SM- LO 

BITS 4-15 - DATA REG 
VIA SM-MN 

+SM15 



BITS4-7 
ALL 1'S 

----. 
BITS 8-11 _._.., 
ALL 1'S 

BITS 12-15 
ALL 1'S ---+-

61-PROP 

62-PROP 

63-PROP 

.ll. fil. 
~o--ii 1 
I I 
I 1 0 I 0 L __ :..J 0 0 

Sµ 
REG 

CS ADDR 

0 0 0 

L 

L 

L 

0 0 0 

H*,L BIT 2 

L*,H BIT 3 

Sµ+1 

GO-CIN 

H 
-----62-CIN 

+-µI ADDR AT t 

0 0 0 .-µI ADDA AT t* 

*REFER TO TEXT DESCRIBING THIS ILLUSTRATION. 

Figure 2-57. Sµ+1 Logic 

2-72 

L 

H 

H 



enables: ENJP-PPO for bits 4 through 7 and ENJP-PP1 for 
enables 8 through 15. (See the paragraph titled Storing of 
Starting µI Address for a more detailed discussion.) The 
14 ALU inputs represent data from within the Aµ or B µ 
register to be stored in the active proce1ssor's assigned Pµ 
register in the ERF. This data will be t1ransferred directly 
to the Pp register for either a STA or STB µI when theµ I 
X-field specifies the Pµ. register, andl the µ.I is being 
executed at E6 or E7 time. (If executed this late in a time 
slice, the STA and STB blockpoint instruction will not be 
able to execute a Sµ Pp transfer; therefore the address 
must be loaded into Pp directly.) The IFRJ inputs to the 
bit 2 and 3 stages of the Pp fan-in logic and their 
corresponding enable, ENFRJ-PP, are not used at present. 
These bits would normally be used to select one of the 
four possible CS modules to which a jump would be made 
when executing a FRJ µI. Since only one CS module is 
used at present, these three lines are tied to +5 vdc which 
effectively removes them from the fan-in logic. 

The selected output, from the Pp fan··in logic is fed to 
the set side of the Pp register in true form and to the 
clear side in complement form. The data is stored in 
the register upon occurrence of clock enable ENCLKPP 
and clock signal CLKPP. The stored data is fed to the 
ERF write logic. 

ERF Write Fan-In 

The ER F write fan-in logic provides data inputs to 
FR F and Pµ registers, which comprise the Group I 
ERF, for storage therein. Generally, data is stored in 
Pµ during WO unless the last µI performed in the 
time slice was a CIO µI and the condition for exiting 
from the 1/0 routine was not met. This condition sup­
presses the Pp Pµ transfer, causing the routine to be 
repeated. In a similar manner, data stored into FRF 
during WI is conditioned by occurrence of the Fb 
register clock signal, as discussed in the paragraph 
entitled Fb and F Registers. The data to be stored will 
be the result of either or both of the following opera­
tions: (1) store data in F or Pµ, or (2) store M LI and 
next µI address in FR F and Pµ, respectively. Although 
similar in execution, these two operations result from 
different conditions. The second operation always 
occurs during a major cycle, to enable continuing with 
the present processor's program during the next 
assigned time slice. The first operation is a function 
only of a particular µI routine, and may or may not 
occur during every major cycle .. 

A diagram of the ERF write fan-in logic is shown in 
Figure 2-59. This logic is fed with all 16 bits that will 
be stored in both FR F and Pµ at the end of a time 
slice. Data to be stored in FRF comes from the Fb 
register and ALU fan-out logic. The Fb register con­
tains the MLI presently being executed. Inputs from 

2-73 

the ALU fan-out represents data to be stored in FR F 
as a result of a Register File Write µI when FRF is 
specified as the storage register. Data to be stored in 
Pµ consists of the two status bits, Overflow and Link, 
and the 14-bit next µI address updated by a BP µI. 
This address is derived from either Pp, Pb, or a com­
bination thereof, as determined by the type of BP 
operation performed and at what time in the time 
slice. Since data from both Pp and Pb is combined, 
the corresponding enables are divided so that the 
upper 8 bits going to Pµ (two status bits and bits 2 
through 7 of the next µI address) and the lower 8 bits 
(bits 8 through 15 of the next µI address) can be 
gated separately. 

Storing of Starting p.I Address 

Storing the starting µI address (that is, the address of the 
first µI to be executed during the active processor's next 
assigned time slice) in the processor's assigned Pµ register 
enables the processor to continue executing its task during 
the next assigned time slice. This starting µI address is 
formed by the last blockpoint (BP) µI executed during the 
present time slice. Usually, this address is formed by 
adding +1 to the BP µI address so as to form the address 
of the next sequential µI in the M LI being executed. In 
some cases, however, the starting µI address will be a 
branch address to cause a jump to a different µI routine. 
Branch µl's are also BP µl's, so they enable the jump 
address to be stored in Pµ. Generally speaking, there are 
four different conditions that govern how the starting µI 
address is formed and how it is stored in Pµ. These are: 
(1) execution of a non-branch BP µI at EO through E6, (2) 
execution of a non-branch BP µI at E7, (3) execution of a 
branch BP µI at EO through E6, and (4) execution of a 
branch BP µI at E7. 

Forming the starting µI address by executing a 
non-branch BP µI at either EO through E6 or E7 differs 
mainly in the register used to hold the address until it is 
sent to Pµ. Execution of a non-branch BP µI during EO 
through E6 loads the starting µI address (BP µI address 
+1) into the Pp register during the minor cycle that the µI 
is executed. Timing for such a situation, that of BP µI 
executed at E4, is shown in part a of Figure 2-60. The 
address for the BP µI (104) is clocked into Sµ at E280. 
During E3, the µI is read from CS and the contents of S,..t 
are updated by 1 and clocked back into Sµ at E380. At 
E480, The BP address +1 (105) is clocked into Pp for 
storing into Pµ at WO. Execution of a non-branch µI at 
E7 is similar to that executed at EO through E6 in that the 
starting µI address is formed in the same way. For this 



·-----------------------, -Pb----------------------
1 
I 

*-FRJ -----•-----------+------+--... 
I 
I 

I 
I 

-Sµ I 
I 
I 
I 

+E700/900 ---------------

I 
I 

(1A18) 

·-----------------------~ 
A. BITS 2 AND 3 

·-------------------------· I I 
-JMP I I 

I I 
I I 

-SETP I 
-FRJ --·t--------·------- I 

I 
-ALU-_,.._ ________________ +--+----------

1 
I 

-Sµ--.,..-------------------+--+---+-----11 

I 
**-ENJP.-pp--.~-----e-... 

I 
I 

-ENSPECPP---------
1 
I 
I 

-ENAL u-pp----.~ ...... --+---+--11 

I 
I 
I 
I 
I 
I (1A19-1A21) 

&-------------------------· 
B. BITS 4 THROUGH 15 

Figure 2-58. Pp Fan-In 

2-74 

*THESE LINES NOT 
USED AT PRESENT. 

**DESIGNATED -ENJP-PPO 
FOR BITS 4 THROUGH 
7 AND -ENJP ... PP1 
FOR BITS 8 THROUGH 15. 



r--------------------~ I I 
-OVERFLOW,-LINK-----11----- I 

I I 
I I 

·fB00,01 ---·---- I 

·ALU00,01----

·PB02·16 --1---,---""'"'---+--+---
I 
I 

-FB02·16 I --·---t--t----t---t----

1 
I 

.PP02·15 1--
I 

·ALU00-15 l ______ ""'"'---+---_t•---IC.: 

*·ENPBG1·X---.... --11 

·ENFB ... 61 ----

*·ENFPG1·X -----1--{):1JO.------J 
+ENALU-61-----i--{):llO------------' 

I 

(1A18-1A21) 

L--------------------J 

Figure 2-59. ERF W'rite Fan-In 

2-75 

*X IS 0 FOR OVERFLOW, ltNK, 
AND BITS 2 .... 7; XIS 
1 FOR BITS 9.,.15 



BP 
(104) 

.-----E-2------.------E-3----..,.----~ 

6. 
CLKSM 

(104+1..-Sµ) 

6. 
CLKPP 

(105 ... Pp) 

A. NON-BRANCH BP µI EXECUTED AT E4 TIME 

BP 
(107) 

A 
(300) 

l ___ Es ______ E_a _______ E7 ___ [ = ~ = = ! 
BPµI 

LAST TIME J 
Sµ AVAILABLE 
FOR PRESENT 
TIME SLICE 

/::,,. 

CLKPB 
(107+1..-pb) 

B. NON-BRANCH BPµ I EXECUTED AT E7 TIME 

Figure 2-60. Use of Pp and Pb to Hold Starting µ.I Address 

situation, however, the starting µ. I address must be 
clocked into Pb immediately after being updated by the 
Sµ +1 logic. This is because Sµ. is no longer available to 
route the updated address from the Sµ. +1 logic to Pp. By 
the time that the BP address has been updated, Sµ. has 
been loaded with the first µ.I address for the following 
time slice. This situation is shown in part b of Figure 2-60. 
The BP µ.I address (107) is clocked into Sµ. at E580 in 
preparation for executing the µI at E7. At E680, 
however, Sµ, is loaded with the address of the first µI to 
be executed during the following time slice (300). 
Therefore, the starting µI address (108) must be held in 
Pb until it can be stored in Pµ at WO. 

Use of the Pp and Pb registers for form the starting µI 
address for non-branch BP µ.l's is shown in Figure 2-61. 
This figure shows the contents of Pp and Pb being fed 
through the ER F write fan-in logic by means of enables 
generated for the non-branch BP µI's, as shown in the top 
half of Table 2-4. For all non-branch BP /..ti's except the 
SUM, DSUM, CMP, and CMU µl's, the starting µI address 
is formed exactly as discussed in Figure 2-61: 
BP+1-Pp-Pµ if executed at EO through E6 or 
BP+1-Pb-Pt.t if executed at E7. (The Cl01 and Cl02 
µl's are the only exceptions that they cannot be executed 
at E7.) The SUM, DSUM, CMP, and CMU (2,X) µl's differ 
from the other non-branch BP µl's in that they sometimes 
use Pb as a holding register if executed at E6 as well as at 
E7. The criterion which determines if Pb instead of Pp is 
to be used is whether the µI preceding the 2,X µI was one 
which altered the contents of Aµ and Bµ. As discussed in 
the paragraph titled Cycle Delay Logic, the Cycle Delay 
flip-flop is set if such is the case and the 2,X µI executed 
at E6 also extends into E7 as well. Timing for a SUM µI 
executed at E6 for both the above conditions, shown in 
Figure 2-62, illustrates the difference in using either Pp or 
Pb as the holding register. 

Part a of this figure shows a SUM µI executed at E6 
preceded by a LOW µI at E5. Since a LDW µI does not 
alter the contents of Aµ and Bµ., the SUM µI can be 
executed in one minor cycle. Since the µ.I following the 
SUM is not a blockpoint (NBP) µI, the Pp register is fed 
with the updated SUM µI address which forms the starting 
µI address. The contents of Pp are routed to the ER F 
fan-in logic via the EN PPG I enables at E780. Part b of 
Figure 2-62 shows a SUM µI executed at E6 preceded by a 
LAW µ.I at E5. Since a LAW does alter the contents of Aµ 
and Bµ., the Cycle Delay flip-flop is set to inhibit clocking 
the sum of Aµ and Bµ to register X until E7. The logic 
that generates enables ENPPGI and ENPBGI to gate Pp 
and Pb data through the ERF write fan-in logic is fed with 
inputs from the Fµ translation logic. Since the SUM µI 
still resides in Fµ at E7, the ENPPGI and ENPBGI logic 
assumes that a new one-cycle BP µ.I was executed at E7, 
and that its updated address (105+1) is now in Pb and 
should be routed to Pµ. What is in Fµ, however, is- not a 
new BP µI executed at E7 but the SUM µI begun at E6. 
Therefore, the contents of Pb must reflect the updated 
SUM address (104+1 ), which is made available at E6. As a 
consequence, Pb must be clocked with this address at 
E580 to produce a meaningful starting µI address to be 
sent to the ERF fan-in at E780. 

2-76 

ThEi branch BP µI's differ from non-branch BP µI's in that 
they form the starting µ.I address as a result of a branch to 
a new address. These µl's generate ERF fan-in enables as 
shown in the bottom half of Table 2-4. The CLR, STA, 
STB, and AND (1,X) µl's when X specifies Pµ. form the 
starting µI address by routing a 14-bit branch address (bits 
2 through 15) from the ALU to both Sµ and Pp if 
executed at EO through E5 or to Pb only if executed at 
E6 or E7. (If executed at EO through E5, the branch 
address formed becomes both the jump address to branch 



to a new subroutine during the current time slice and the 
starting µI address for the next assigned time slice.) The 
1,X µl's are normally considered non-branch (register file 
write) µl's. They act as branch µl's, however, when the 
µI X-field specifies Pµ as a file register in which to store 
data. For this special case, the path to store data in Pµ is 
through S~. Since Sµ is effectively loaded with a new 
address, the µI essentially becomes a branch µI. the 
contents of the Pp are then routed to the ER F fan-in logic 
via the ENPPGI enables at E780. Since the starting µI 
address formed by these BP µl's does not involve an 
address update through Sµ, the address can always be 
held in Pp until the end of the time slice. The FJN, FRJ, 
FZJ, RNI and JMP µl's differ from the 1,X µl's in that 
they do use a portion of S µ to form the jump address 
and, therefore, the starting µI address. For the FRJ, FZJ, 
and FNI µl's, bits 2 and 3 of Sµ are used along with the 
jump address formed as bits 4 through 15. These two bits 
from Sµ, which enable a jump to another 4096-word CS 
module, aire actually the result of an Sµ+1 update. Since 
the two bits always go to Pp regardless of when in the 
time slice the µl's are executed, (either from Sµ or from 
Pb) the resultant 14-bit address can always be obtained 
from Pp via ENPPGI enables. For the JMP µI, bits 2 

JMP 

SETP 

FRJ 

JMP, FNJ 

RNl1, RNl2, FZJ 
-----·-+ 

FRJ -----·-+ 
Sµ ALL OTHER DP's 

EXEC AT EO..-.E6 
..... .... 

AND 1,X AT --+j 
E7 IF X=Pµ [ ~-..-_. 

ENCtKPP 

BITS 2 AND 3 FOR __..-
FNJ, FRJ, FZJ, RNl1, 
RNl2, AND JMP EXEC 
AT E7 FOR MODULE 
NO.UPDATE 

1---

1,X EXCEPT X=Pµ _ __...: 
Sµ+1 -__......, 

AND 2,X IF2 
CYCLE AND EXEC. 
AT E6 AND 4,X; 
JMP; ROM; SYNC; 
SKIP; AND FN.I 
AT E7 l 

ENCLKPB 

through 7 of Sµ are used in connection with bits 8 
through 15 from F µ to form the jump address. Bits 2 
through 7 are derived from the Sµ+1 logic to enable a 
jump not only to a different 4096-word module in CS 
but also to a different 256-word page within the 
module. These upper six bits of the jump address are 
treated in the same was as the upper six bits of the 
updated address of a non-branch BP µI; that is, the 
bits are routed to Pp if the JMP µI is executed at EO 
through E6 or to Pb if executed at E7. 

The difference between using Pb for a JMP µI as 
compared with using it for the non-branch BP µl's is that 
only the upper half of the register is used. Therefore, a 
JMP µI executed at E7 requires only that the upper half 
of Pb be enabled through the ERF fan-in logic. This is 
implemented by generating enable ENPBG1-0 only. The 
lower half of the jump address than is enabled through the 
ERF fan-in logic from Pp via ENPPG1-1. 

Set Pp Logic 

The Set PP logic generates starting addresses of the RNI 
and storage error routines stored in CS upon detection 
that such a routine must be executed. These addresses are 

ENPPG1·0 

ENPBG1·0 ERF 
WRITE 
FAN-IN 

+ l 0~1 ______ ,_~---1 .. _ 

.... l ~·· ..... 

-----~....-~--.... ,... a-15 

ENPPG1·1 

ENPBG1·1 

.... Pµ 

F1igure 2-61. Derivation of Starting µI Address 

2-77 



LOW (1D3) SUM (104) NBP (1D5) NTS (3DD) 

[ E4 E5 E6 E7 -------ED I _____ _. 
/::,,. /::,,. /::,,. 

SUM CLKSM ClKPP ENPPG1 
(104-Sµ) (1D5-Pp) (Pp.- ERF F /I) 

/::,,. 

NBP CLKSM 
(104+1•Sµ) 

/::,,. 

NTS CLKSM 
(JDD.-Sµ) 

A. SUM µI PRECEDED BY µI THAT DID NOT ALTER Aµ/Bµ REGISTERS 

CYCLE I 
DELAY 

FF 

SUM 
(E6) 

SUM 
(E7) 

BP 

I E4 

/::,,. 

CLKSM 
(104 .. Sµ) 

LAW (103) 

E5 

I 

l 

/::,,. 

CLKSM 
(104+,...,Sµ) 

CLKPB 
(104+1.-Pb) 

I 

SUM (104) SUM (1D4) NTS (3DD) ------. 
E6 E7 ED I _____ ... 

1ST CYCLE 

2ND CYCLE 

/::,,. 

ENPBG1 
(Pb~ERF F /I) 

/::,,. 

CLKSM 
3DD•S µ) 

B. SUM µI PRECEDED BY µI THAT ALTERED Aµ/Bµ REGISTERS 

Figure 2-62. Execution of Sum µI at E6 if Cycle Delay Flip-Flop is Set 

fed to the Pp register in place of the normal updated µI 
address from the Sµ +1 logic. A simplified diagram of the 
set Pp logic is shown in Figure 2-63. Although the Pp 
register is loaded with a 12-bit jump address (bits 4 
through 15), only 5 of these 12 bits are set to a particular 
value corresponding to the RNI or error recovery jump 
address. These 5 bits are 10, 11, 12, 14, and 15, as shown 
in Figure 2-63. Figure 2-63 also shows the state of these 
five bits when generating a corresponding jump address. 
These five bits form the following addresses in 
hexadecimal form: 

2-78 

RNl-000015 

RNI 1-000215 

RNl2-000915 

Bounds - 001015 

MS PE - 001815 

CS PE - 002815 

(Note than Figure 2-63 defines each address in 
complement form, as indicated by the SETP address 
designation.) 



Table 2-4. Generation of Enables for Starting µ.1 Address 

Executed at Pp/Pb Enables ERF Write Enables 

BP µI EO-+-E6 E7 ENCLKPP ENCLKPB ENPPG1-0 ENPPG1-1 ENPBG1-0 ENPBG1-1 

NON-BRANCH µ.I 

(CLR +STA+ STB +AND)· X f Pµ +SOW x x x x 
+SOB+ IOR + EOR +Skips+ ROM +SYNC x x x x 

CI01 + CI02 x G) x x x 

SUM + DSUM + CMP + CMU ~ x x x 7 
x x x 

BRANCHµI 

(CLR + ST A + STB + AND) · X = Pµ x x x x x 
+ FNJ + FRJ + FZJ + RNl1 + RNl2 

JMP x x x x 
x x x x 

©cannot execute at E7. 



The three RNI routines enable a processor to obtain the 
address of the next MU in the task program it is 
executing. Initially, the RNIO routine provides a starting 
point for a processor beginning a new task. When starting 
the task, the processor jumps to address 000015 under 
control of the operating system which has written address 
000015 into the processor's Pµ register. 

A µI is located at this address which instructs the 
processor where it will find the address of the first M LI in 
the task program. During execution of this MLI, the 
address of the next MU in the program will be developed 
as a normal part of the MU and stored in some transient 
register. Upon completion of the M LI, the last µI wi II 
usually specify a jump back to000215 (RN11 routine) to 
read out this next MU address and begin its execution. 
For certain M Li's, however, there is not enough time 
during their execution to develop the next M LI address. 
Under these conditions, the last µI will specify a jump 
back to 000915 (RNl2 sequence). This routine has 
already found the next M LI address in anticipation of 
such a problem, and can furnish this address immediately. 
This prevents any loss of time that could result if the 
address update had to be developed as a separate step, 
apart from normal MLI execution. The jump back to 
either 000215 or 000915 is implemented by the RNl1 
(8,0) and RNl2 (8,1) µl's, respectively. 

The remaining three addresses generated by the set P logic 
result from an MS parity error (PE), CS PE, or 
out-of-bounds condition. For each type of condition, the 
error routine sets an applicable bit in the condition 
register of the processor experiencing the error. This bit 
informs the operating system that an error occurred and 
to take appropriate corrective action. In the case of an MS 
parity and bounds error, the condition is recoverable in 
that only the processor in which the error occurred is shut 
down (except if the Executive processor experienced an 
MS parity error). For these cases, the error routines are 
referred to as traps since the error condition can be 
isolated to a particular processor without interferring with 
the rest of system operation. A CS parity error, however, 
is critical to overall system performance since it indicates 
a µI parity error. Since all processors share in the use of 
µ1 's, they can all be adversely affected. The only 
recourse, therefore, is to shut down the entire system. 

Referring to the logic of Figure 2-63, starting addresses 
for the RNI 1 and RNl2 routines are formed by a 
translation of the corresponding µI function codes. The 
RNIO starting address is generated as a result of no other 
address being generated, which will be the case when the 
processor initially jumps to this address to begin a task 
program. The bounds error, MS PE, and CS PE trap 

addresses are generated upon detection of the 
corresponding error condition. Signal CS PE is generated 
when a parity error is detected in the present µI being 
executed. The bounds error-trap address is generated upon 
detection of the OUTBOUND signal from the bounds 
control logic in the Register Option. The bounds control 
logic limits the address range in MS into which each 
processor may read or write, thus providing data 
protection. If this range is exceeded by a processor 
accessing MS, OUTBOUND is generated which sets the 
Bounds Error flip-flop. The MS PE flip-flop is set for 
three conditions: OUTRANGE, ECC ERR, and BTYE 
PE. Signal OUTRANGE indicates a reference to MS 
has been made to a storage module that is not present 
in the system. Signal ECC ERROR signifies an irrecov­
erabl1~ error (error in two or more data bits) occurred 
in reading a word from MS. Since irrecoverable errors 
are not correctable by the ECC logic, an error routine 
must be performed. The BYTE PE indicates a parity 
error that occurred in a word read from MS when the 
ECC logic is not present on the system. Under these 
circumstances, the parity check logic of the MS inter­
face logic is used to check for correct parity. (When 
present in the system, the ECC logic disables outputs 
from the MS interface logic.) Any of these three errors 
will set the MS PE flip-flops, providing OUTBOUND is 
not present. 

2-80 

PROCESSOR REGISTER FILES 

The shared resources contains two sets, or files, of 16-bit 
addressable registers. One set, called the Basic Register 
File (BR F) is intimately associated with executing 
machine language instructions (MU's) by the eight 
processors. The other set, called the Extended Register 
File (ERF) is used in conjunction with housekeeping, 1/0, 
and other special-purpose applications. The BRF consists 
of eight subsets, one for each of the eight processors. Each 
subset contains 32 registers. The ER F subsets contain 
only those registers (up to a total of 32) that are needed 
by the associated processor to perform its particular 
functions. In addition, the ERF subsets are further 
subdivided into groups, depending on which registers of 
the ERF are made available to each processor. Group I 
contains two registers each for all eight processors (Pµ and 
F), Group II contains common block registers which can 
be accessed by all eight processors, and Group 111 contains 
registers in processors 0 through 4 but which are restricted 
for use by only the associated processor. Addressing of a 
register is accomplished by specifying three elements: (1) 
the register number, 0-15 (0-F, hexadecimal), (2) the 
processor number, 0-7, and (3) the register file set, 
whether basic or extended. Usually, the hardware 
determines the processor number, the µI determines the 
register set, and the M LI specifies the register number (or 



I\) 

cb 

·-----------------------------------I 
+cs PE I 

I 
I 
I 

+OUTBOUND I 

l I 
I 
I 
I 
I 
I MSPE 

I 
I 

+ OUTRANGE-: 

.~,...,... c:oo ·I 11;,"'"' 1;;.nn-
1 

+PE-BYTE 

- ECC-PRES 

+ RN12µ1 
I 
I 

+ RNl1µ1 

I 
I 
I 
I 
I 
I I {1A02) I 

·------------------------------------
Figure 2-63. Set P Logic 

0 0 

0 

0 



numbers, since basically the computer is a two-address 
machine). Deviations from this general rule will be 
described when appropriate. 

A block diagram showing how each register file is 
addressed is shown in Figure 2-64. Registers of the BRF 
are addressed by a processor number and register number. 
The processor number is derived from the resource 
allocation network, depending on acknowledging requests 
from processors. The register number is derived from 
either the M LI orµ. I, or a com bi nation of both, depending 
on the a and b designators of the µI. Addressing of 
registers in the ER F depends on the register group being 
accessed. If Group I is accessed, the register is selected by 
a processor number from the priority network and a Pµ or 
F select signal. If Group 11 is accessed, the register is 
selected by a register number alone, since these registers 
can be accessed by any processor. Registers of Group 111 
are selected by a processor number from the priority 
network and register number from the register select logic. 

µI ____. 

MLI ----. 

.__..., IVK 
µI 

PROC 
REQ 
~ 

Fµ 
REG 

1A08-11 

F 
REG 

1A18·21 

BC 
REG 

1A08·11 

PRIOR 
NTWK 

1A16 

11-15 

... REG ...... 
SEL 

11-15 ...... -.-

...... i---.. 1A22 

11-15 

a-10 _... BRFS 
...... SEL 

.-. 1A16 

BASIC REGISTER FILE 

Assignment and Functions 

The Basic Register File (BRF) array is shown in Figure 
2-65. As shown, the BR F is a matrix of 256 registers, 32 
registers associated with each of 8 processors. The 
registers are made up of sixteen 256-bit LSI memory 
elements. Each element stores one bit of the 256 words 
comprising the BR F; therefore, each register word is 
stored 16 bits wide, one bit per element. 

Each register or register group of the BR F is assigned 
a use. These assignments are made by microcode con­
vention only and are not constrained in any way by 
hardware requirements. The first eight registers for 
each processor are general-purpose registers, addressed 
as 00 through 07. These registers are used for tempo­
rary storage of data involved in and resulting from 

REG#(BRFS·J-7) 
__ .... 

BRF ,.. 
ADRS .. 

PROC#(BRFS-0-2) INPUT 
,... 

... 1A25·28 --.. 

PROC#(BC08·10) ... ADRS ERF --.. ERFG1_.... GRP INPUT 
PROC#(RD,WR) --.. 

I 
_ ... 1A13 -.. 1A18·21 

r 
PµOR F 

ERF 
PROC#(ERFG2) 

_ .. ADRS ... GRP 
-.. INPUT --.. II 

1A08·11 

REG#(ERNGJ) ERF 
__.. GRP ,.. 

ADRS _ ... Ill INPUT ....... 
PROC#(EXCT) ... 1/0 -.. 

PROC 

Figure 2-64. BRF and Ellf Addressing 

2-82 



HEX 
ADDA .!! 

00 0 

l 
07 0 

08 0 

09 0 

DA 0 

+ 
OF 0 

10 

1F 

0 

OVERFLOW 
(CLEARED ON COMPARE) 

A>IB; DECIMAL 
RESULT IS POSITIVE 

A<lll; DECIMAL 
RESULT IS NEGATIVE 

A=B; LINK; DECIMAL 
RESULT IS ZERO 

INVALID DECIMAL 
(CLIEARED ON COMPARE) 

Fµ BITS 

.!! !! .!! 
0 0 0 

l 
0 1 

0 0 

0 0 

1 0 

+ 
1 1 1 

0 0 0 

2 

PROCESSOR 

15 0 2 :J 4 5 6 

0 GEN. PURP. 0 

l 
1 GEN. PURP. 7 

0 CONDITION 

PROG. ADDA. (P) 

0 TRANSIENT (TO) 

1 

0 

.__....__...., __ .... _...__...,. __ ..__...., _ __, TRANSIENT (T21) 

Figure 2-65. Basic Register File Array 

SEE NOTE -----,--i 

3 

A>B 
A<B 

A=B 

4 

NOTE 

6 8 9 10 11 12 13 

BOUNDARY ERROR 
(STORAGE VIOLATION) 

SERVICE REQUEST----' 

PARITY ERROR 
IN MAIN STORAGE 

INVALID 
INSTRUCTION 

14 

BIT GROUPS 0·3 AND 4-7 ARE BOTH SET AFTER ANY OF THE COMPARE INSTRUCTIONS. INTERPRETATION, WHETHER LOGICAL (MAGNITUDE 
ONLY) OR ARITHMETIC (SIGNED VALUES), DEPENDS UPON THE INSTRUCTION, AS FOLLOWS: 

INSTRUCTION PURPIJSE 0-3 4.7 ----
CMPX} MAGNITUDE ONLY, LOGICAL 
CBY BYTE-ORIENTED 
CBYM 

LOGICAL 

CMPK ARITHIMETIC, PACKED DECIMAL ARITHMETIC ARITHMETIC 
CMPF ARITHIMETIC, FLOATING POINT 

CMP, CMPD, } 
ARITHIMETIC, WORD-ORIENTED ARITHMETIC CMPI, CMPM, 

CMPR, CMPT 

LOGICAL 

Figure 2-66. Condition Register Bit Designations 

2-83 

15 



executing MLl's (operands for an ADD instruction, for 
example). Registers 08 and 09 are identified as the 
Condition register and Program Address (P) register, 
respectively. The Condition register records certain 
conditions resulting from executing MLl's (results 
equal, for example). These conditions and their corre­
sponding bit assignments in the Condition register are 
shown in Figure 2-66. 

The P register contains the address of the M LI currently 
being executed. The remaining 22 registers are transient 
registers (OA through OF and 10 through 1 F). These 
registers are used for temporary storage of data involved 
in and resulting from executing 1-tl's (for example, partial 
results accumulated while executing a machine language 
multiply instruction). Of these 22 registers, the last six 
(1 A through 1 F) are reserved for special use. Registers 
1 A through 1 D are reserved for floating-point µl's. 
Registers 1 E and 1 F can be used as any of the other 
transient registers except when executing a Load S 
( LS1, LSF, LS2, or LSE) µI. If loading S from either 
of these two registers, the Load S µI is interpreted as 
a reference to the Register Option instead of to Main 
Storage. To the left of the register array is listed the 
corresponding address of each register, both in hexa­
decimal form and in binary form, as designated by Fµ 
bits 11 through 15. 

Basic Register Selection 

Selection of a register in the BRF is accomplished by 
forming an 8-bit BRFS (BRF select) address, as shown in 
Figure 2-67. Bits 0 through 2 of this address specify one 
of the eight processors, and bits 3 through 7 specify one 
of the 32 registers of a processor subset. The processor 
select bits are usually obtained from the priority network, 
which determines which processor will be granted the 
next time slice. The register select bits are obtained from 
several sources, depending on the condition initiating 
selection of a register. 

Normal selection of a register is determined by theµ I 
X-field alone, or an inclusive-OR of the µI X-field with 
either the M LI R 1 or R2 fields depending on the values of 
the µI a and b designators (bits FM2-006 and FM2-007, 
respectively). The combinations of the various µI and 
M LI fields for selecting registers is shown in Figure 
2-67 and summarized below: 

a·b = O·O - register selected by µI X-field only (bits 
FM2-011 through FM2-015) 

2-84 

a·b = 1 ·0 - register selected by inclusive-OR of µI 
X-field and M LI R 1-field (bits F R-009 through 
FR-011) 

a·b = 0·1 - register selected by inclusive-OR of µI 
X-field and M LI R 2-field (bits F R-013 through 
FR-015) 

a·b = 1·1 - BRFS address inhibited and a register of 
the ERF is selected by the ERF select logic as 
discussed in the paragraph titled Extended Register 
Selection. 

A BR F register can also be selected by an I VK µI. The 
I VI< µI selects any of the 32 registers by the contents of 
the Boundary Crossing (BC) register instead of the Fµ and 
F register contents. Execution of the µI selects a register 
by means of bits BC-007 through BC-015. 

A simplified diagram of the BRF select logic is shown in 
Fiuure 2-68. Each of the 8 BR FS I ines connect to all 16 
elements of the BRF in parallel to enable all 16 bits ofa 
particular register. As shown, BRFS-0 through BRFS-2 
come from the resource allocation logic to select a 
particular processor. These three processor select bits, of 
which BRFS-0 is shown in detail, are selected by the 
EXEC bits from the Execute register during normal 
operation or bits 8, 9, and 10 of the BC register during an 
IVK µI. In either case, the three input bits represent the 
processor number in BCD form. Bits BR FS-3 through 
BRFS-7 are used to select a register of a processor BRF. 
For illustrative purposes, logic for generating bits BR FS-3 
and BRFS-5 is shown in detail. During normal operation, 
bit BRFS-3 is generated unconditionally by FM2-011 and 
bit BRFS-5 by FM1-013, in combination with FR-009 or 
FR-013 depending on the presence of enable FM2-006 

(a-designator) or FM2-007 (b-designator). During an IVK 
µI, BRFS-3 and BRFS-5 are generated by BC-011 and 
BC-013, respectively, when enabled by INVOKE. 

Writing into a selected register of the BRF is enabled by 
the ENBR FW-0 and ENBR FW-1 signals. As shown in 
Figure 2-68, ENBRFW-0 is used to enable writing into bits 
0 through 7 of a register, and ENBRFW-1 into bits 8 
through 15. Both enables are generated for basically the 
same conditions, those being translation of a Register File 
Write (1,X; 2,X; 4,X; or 8,X) µI in F. The difference 
between the two enables is that only ENBRFW-0 is 
generated for the CMP and CMU (2,2 and 2,3) µl's, since 
only bits 0 through 7 of a register can be written into by 
these two µl's. The write strobe pulse is furnished via 
BRFWRITE, which occurs at t50 of every minor cycle. 



NORMAL 
SELECTION 

{

PROC REQ FROM 
.. ------------PRIORITY 

NETWORK 

--{ FM2-011 
FM1-012 

FM1-013 
--{FM1-014 la·b == O·O 

FM1·015 

{

FR-009 
-- FR-010 

FR-011 

I FR-013 I lFR-014 i FR·015 

a·b = 1 ·0 

} 
...-"-..._,,_ ..-"--. a·b == 1·1 SELECTS ERF 

I° PRO~ # T \E: # 

6 J 
IVKµij 

SELECTION 

_.,, 
~ 

-------.....---l- l BC-011 
BC-012 

-- :~~~~! 
BC-015 

{ 

BC-008 
''------------ BC-009 

BC-010 

Figure 2-67. BR F Addr·essing Methods 

BC-007 SELECTS EITHER 
BRF OR ERF 

a·b = 0·1 

When the write enables and write strobe' are present, the 
data present on the DATA IN lines from the ALU fan-out 
logic is written into the selected register. 

Group I Registers 

Group I consists of two registers for each processor: the 
f=unction (F) register and the µI Address (Pµ) register. The 
F register is 16 bits in length and contains the M LI 
currently being executed by the associated processor. The 
Pµ register is 18 bits long and contains the address of the 
first µI to be executed during the next time slice assigned 
t 10 the active processor, plus four status bits. The format 
c1f this register is shown in Figure 2-70. As shown, the 
lower 14 bit positions (bits 02 through 15) contain the µI 
address, and the upper four bit positions contain the four 
status bits. Functionally, the Pµ register is considered to 
be an 18-bit register; physically, however, it consists of a 

EXTENDED REGISTER FILE 

Assignment and Functions 

The Extended Register File (ERF) array is shown in 
Figure 2-69. As shown, the ERF consists of three groups, 
according to the number of registers associated with each 
processor and their use. 

2-85 



,---------------, I 
+EXEC-1 XX ---------11 

I 
+ENEXBRF--1t--~--I~--~ 

I 
I 

+BC-008 ---.------11 

+ENBCBRF-1:----;_ _ _..,, 

I (1A16) 

~--------------~ 
+BC-011 

+FM1-013 

~--------------~ 
I : 

I 

I 

I 
I I -BRFS-6 

I 
I -BRFS-7 

, +F R-009 __...___.. I 
+FM2-006 I 

+FR-013 : +ENBRFW-X 

+FM2-007-· I +BRFWRITE 

L
I (rn22) I 
_______________ J 

,----------· ,, I 
, DATA\ALU I 

, IN FAN-I ,, I' OUTI 

,' l__ I ,, : 
, I 

, , 16 ELEMENTS I 
I I 
I I 
I I 
I I 
I 

SELECT 
1 OF 32 

REG 
IN BRF 

I (1A25-1A28) 

·-------------------~ X = 0 FOR BITS 0.-3 
X = 1 FOR BITS 4.-15 

Figure 2-68. BRF Select Logic 

2-86 



HEX Fµ BITS 
ADRS 11 _g_ .!! .!! 1! 

} GROUP I 
00 0 0 0 0 0 F 

01 0 0 0 0 1 Pµ 

02 0 0 0 1 0 B/A BUSY/ACTIVE 

03 0 0 0 1 1 RTC REAL TIME CLOCK 

04 0 0 0 0 T TIE-BREAKER 

!)5 0 0 0 1 PE PARITY ERROR 

06 0 0 1 0 c CONTROL 

07 0 0 1 1 1 PM PRIVILEGED MODE 

08 0 0 0 0 BC BOUNDARY-CROSSING 
GROUP II 
COMMON 

09 0 0 0 1 css CONTROL STORAGE SCAN BLOCK 

OA 0 0 0 CONSOLE ADDRESS 

OB 0 0 CONSOLE DATA 

l i 
UNASSIGNED 

i OF 0 1 1 1 

10 0 0 0 0 

GROUP 111 
AS NEEDED 

FOR 1/0 
PROCESSORS 

1F 

Figure 2-69. Extended Register File Structure 

2-87 



16-bit basic register supplemented by a 2-bit extension 
register. Since two extra bit positions are available in the 
16-bit register, the Overflow (0) and Link (L) status bits 
are stored in these positions. The CS parity error (E) and 
Skip (S) status bits, however, are located in the 2-bit 
register. The E and S bits are hardware-controlled only 
and are inaccessible for µI control, except by µl's which 
write into Pµ when operating in the boundary-crossing 
mode. Although physically separate, the 2-bit register is 
addressed, read, and written by the same lines that control 
the 16-bit register. 

Conceptually, these two register sets belong to the BRF 
since these two registers are associated with each of the 
eight processors. However, limitations in the ability to 
address the registers as part of the BR F plus the 
look-ahead capability desired by these registers, described 
in the paragraph titled Access Capabilities and 
Limitations, make it necessary to include the F and Pµ 
registers as part of the ER F. The two registers are 
numbered 00 and 01. 

Group 11 Registers 

Group II consists of 14 registers, numbered 02 through 
OF. At present, only registers 02 through OB are assigned 
specific uses. These 14 registers form only one subset that 
are shared by all eight processors. Ordinarily, a processor 
cannot gain access to a register in another processor's 
register set because the processor number is part of the 
register addressing scheme. This processor number is not 
translated for the Group 11 registers, however. Therefore, 
any processor may gain access to these registers. For this 
reason, the registers of Group 11 are referred to as the 
common block registers. Each of the Group 11 registers is 
discussed below: 

Busy/Active (B/A) Register - The B/A register indicates 
which processors are presently engaged in processing a 
task (active condition) and which processors that are 
active require a time slice to execute the next portion of 
their tasks (busy condition). The difference between the 
two conditions is that the busy condition will go through 
many on-off cycles during execution of a task, whereas 
the active condition will generally remain set until that 
task has been completed. The B/A register is made up of a 
Busy flip-flop and an Active flip-flop associated with each 
processor. These 16 flip-flops make up the B/A register as 
shown in Figure 2-71, where the busy conditions are 
represented as bits 0 through 7 and the active conditions 
represented as bits 8 through 15. (More details of the B/ A 
register are contained in the paragraph titled Busy/Active 
Register.) 

Real Time Clock (RTC) Register - The RTC register is a 
16-bit register/counter that is incremented every 1.6384 
milliseconds. The contents of this register are used by 
processor 4 (Exec) for software timing purposes, such as 

updating the time-of-day clock and initiating time-out 
operations. A simplified diagram of the RTC register is 
shown in Figure 2-72. The register is made up of four 
4-bit binary counters, where each higher-order counter is 
incremented by a carry from the preceding lower-order 
counter. Incrementing of the lowest-order counter (bits 
12 through 15) is initiated by RTCASYNC from the RTC 
pulse generator. Th is signal is generated every 1.6384 
mi 11 iseconds. 

Because the 1.6384-millisecond RTCASYNC signal is 
developed asynchronously from the rest of the CPU 
timing, it must be synchronized to the E pulse timing 
to correctly update the RTC register. This is done by 
sending RTCASYNC through a pulse catcher network 
composed of flip-flops No. 1 and No. 2. The output 
of No. 1 goes high upon receipt of the low 
RTCASYNC signal and causes flip-flop No. 2 to set at 
E150. Since RTCASYNC is asynchronous with the E­
timing pulses, however, only a sliver of RTCASYNC 
mav be present at E050 time with the result that the 
output of No. 2 may be indeterminate for a couple of 
E-times. By E7, however, the output has stabilized 
sufficiently that it can be gated as RTC-G3CI to the 
lowest-order stage of the RTC register. Incrementing 
the register at E7 avoids problems in reading this reg­
ister at EO through E6. 

2-88 

A carry from the bit 12 through 15 counter generates 
RTC-G3CO, which initiates incrementation of the bits 8 
through 11 counter. The remaining two counters are 
incremented in a similar fashion, until a final count of 1.8 
minutes is reached (1.6384 msec x 216). Because the 
counter overflows at this point (RTC is generated), the 
processor must read the register at least this often if the 
timing interval information is to be meaningful. Upon 
reaching overflow of the bits 0 through 3 counter, the 
register clears itself and begins counting again from zero. 

Tie Breaker (T) Register - The Tie Breaker register is a 
16-bit register used for recording the status information 
pertaining to system tables in Main Storage (MS). System 
programs use the tables to communicate with one 
another. Before using them, however, each program must 
chE!Ck the Tie Breaker register to determine if the desired 
table of MS is being used by another program. This is 
done by assigning each bit of the T register to a particular 
System table (as differentiated from a User table) stored 
in MS. Before calling up a System table, a processor must 
examine the bit of the Tie Breaker register representing 
that table to see if it is already being used by another 
processor. This precaution prevents one processor from 
reading tabular material that another processor is 
updating, or vice versa. A processor sets the associated 
T-bit before starting to use a table via the Test and Set 
Tie-Breaker Register M LI ( 11), and clears the bit when 
finished via the Clear Tie Breaker Register MU (12). 



r------1 
I . I 

: r;r;i : 
I L:..L.:J I 
I 
I (1A13) .. • ------

·----------------------------, I oo 01 02 1s I 
1

: I I I I 
1

: 
~ L STARTING µI ADDRESS -

I I 
I (1A18-1A21) I 

·-------------------~---------P- ----~ 
I 

r-
1 
I 
I 

0 

BOTH PORTIONS 
OF PµADDRESSED, 
READ, AND WRITTEN 
BY SAME LINES 

Figure 2-70. P µ Register 

BUSY EllTS 

~------
~-B-1....i ___ B_2 ______ B_3 __ ..... _B_4 ______ e_s ______ B6 _______ B_7 __ 1 

ACTIVE BITS· 

~-----
~A-1 __ ...... __ A_2 __ .... _A_J __ .... _A_4 __ .... __ A_s __ ..__A_a __ .I_. __ A1 ..... I 

Figure 2-71. Busy/ Active Register 

-------

-RTCASYNC -----. 

EACH STAGE IS INCREMENTED 
EVERY 1.6381J MSEC. 

No. 1 

E050 ----..---+---

-RTC-G3CO 

--,----------, I I 
I I 

(1A10)1 (1A11)1 _ .. ______ ---· 

E7 ----..---+--------
(1A15) 

Figure 2-72. Real Time Clock Register 

2-8H 



Inputs to the T register are from the ALU fan-out logic 
under control of these two M LI 's. Bit assignments for the 
various tables are generated as part of the Operating 
System (control program). 

Parity Error Address (PE) Register - The PE register 
contains the MS address at which the last parity error 
occurred. This register is constantly fed with MS addresses 
from the S register, as shown in Figure 2-73. However, no 
address is gated into the register until CLKPE is activated. 
This signal is activated upon detection of a parity error, 
and is timing so that the address it gates into the PE 
register is where the parity error occurred. 

\ +SR-MNOO 

SREG( 

, +SR-MN15 

-CLKPE 

·-----------. 
I I 
I _._ .... 

1• 
I I 

... 

: I 
I I 
; I 
I I 
I I 
~ I 

_L_I --"" . ,... 
I 
I ~~ 

I ·----· ~-- [
1At08] 
1A11 ---· 

Figure 2-73. Parity Error Register 

Control Register - The Control register stores control bits 
for each processor that define the type of priority 
assigned to each processor and whether it is to run in the 
consecutive-cycle mode. A simplified diagram of the 
register is shown in Figure 2-74. The left-most eight stages 
store Enable Priority (EP) and Invoke Priority (IP) status 
bits associated with the priority logic of processors 0 
through 3. The right-most eight stages store Consecutive 
Cycle Enable (CCE) status bits associated with all eight 
processors. The register receives its input from the ALU 
fan-out logic, and is set and cleared by the Set/Reset 
Control Register MU. 

Privileged Mode (PM) Register - The PM register is a 
16-bit register, of which only the right-most eight bits (bit 
positions 8 through 15) are used at present. These eight 
bits allow the Executive processor to set any of the eight 
processors to a privileged state. This is done by setting a 
privilege mode bit in the register corresponding to each 
processor, as shown in Figure 2-75. When set to the 
privileged state, the processor is able to execute privileged 
MLl's. 

2-90 

Boundary Crossing (BC) Register - The BC register holds 
the processor and register number used by a processor or 
the System Control Panel to select a register in another 
processor's register file. This is done during execution of 
an IVK µI. The format of the Boundary Crossing register 
is shown in Figure 2-76. Although 16 bits in length, only 
the lower 9 bits of the Boundary Crossing register are used 
for boundary crossing monitor purposes. Typical reasons 
for crossing boundaries by processor 4 are to: 

1. Set P 

2. Set, clear, or examine Condition register 

:3. Set, clear, or examine general-purpose registers 

4. Set, clear, or examine transient registers 

!>. Set, clear, or examine Pµ and F registers 

£3. Test registers (diagnostic routines) 

Control Storage (CS) Scan Register - The CS Scan 
register is used to check longitudinal parity on 256-word 
pagHs in CS. This is done by performing an exclusive-OR 
on all words of a page. If the contents of the register 
yields all 1 's after the last word of a page has been 
chec;ked, this indicates that the page was loaded correctly. 
The CS Scan register receives its input from 14 bits of 
each word stored in CS (bit positions 9 and 10 are not 
used), as shown in Figure 2-77. The register output feeds 
the FRJ decode logic checking the contents for all "1 's". 
(More details of the CS scan operation are discussed in the 
paragraph titled CS Scan/Read.) 

Console Address Register - The Console Address register 
is used in conjunction with the row of 20 address 
pushbutton/indicators on the System Control Panel to 
provide entry and display of address-related information. 
See the MEMOREX 7300 Processing Unit Maintenance 
manual for a discussion of the Panel and how the Console 
Address register is used during maintenance operations. 

Console Data Register - The Console Data register is used 
in conjunction with the row of 20 data 
pushbutton/indicators on the System Control Panel to 
provide entry and display of data-related information. See 
the MEMOREX 7300 Processing Unit Maintenance man­
ual for a discussion of the Panel, and how the data register 
is used during maintenance operations. 



EP EP EP EP 

0 1 2 3 

IP IP IP IP CCE CCE CCE CCE 

0 1 2 3 0 1 2 

EP=ENABLE PRIORITY 
IP=INVOKE PRIORITY 
CCE=CONSECUTIVE CYCLE ENABLE 

Figure 2-74. Control Register 

3 

CCE CCE CCE CCE 

4 5 6 7 

0 7 8 15 

~,--.................. .--0 .......... 2 ..... _3....,_4....,_5 ....... s ...... 1~1 
---------~·-~ RE:SERVED FOR PRIVILEGED 

FUTURE USE MODE 

Figure 2-75. Privileged Mode Register 

7 8 10 1·1 15 

r ___ 1 __,__ ....... _ __,,____.I 
L;- ' ' O=BASIC REGISTER PROCESSOR REGISTER 

1=EXT. REGISTER NO. (0-7) NO. (00-IF) 

Figure 2-76. Boundary Crossing Register 

.. ----··----., I I 
I I 

+(:SDATA00------

1 
I 
I 
I 
I 

CONT I 
noR I 

+CSDATA15--........ 

I 
I 
I 

• 
I I 
: [1A~OJ: 
I 1A11 I 
I -----··----.1 

+ICLKCSS--------' 

Figure 2-77. CS Scan Register 

2-91 

PARITY 
CHECK 



Group 111 Registers 

There are four subsets of Group 111 registers, one for each 
of processors 0 through 3. Each subset has provision for 
addressing up to 16 registers. The Group 111 registers are 
1/0-oriented registers, addressable only by the associated 
1/0 processor, and not part of the shared resources. 
Because of the restrictions on addressing these Group 111 
registers, they are designated as dedicated extended 
registers. A description of these registers, including their 
use, is contained in the applicable section of Volume 3 of 
this manual. 

Extended Register Selection 

Selection of a particular extended register of the ER F 
depends in which group the register is located. For each 
group, specific register select signals are generated as 
described below. 

Group I - The Pµ and F registers of Group I are selected 
by four bits: three bits which define the processor number 
and one bit which defines either the Pµ or F registers of 
that processor's ERF. This selection is shown in Figure 
2-78. The processor number is defined by bits ERFG1SO, 
ERFG1S1, and ERFG1S2, which comprise a three-bit 
BCD. These bits are normally generated by the priority 
logic via corresponding read and write bits after deciding 
which processor gets the next time slice. Separate read 
bits (READ-XXX) and write bits (WRITEXXX) must be 
generated by the priority logic since reading the Pu 
register for the next processor to be granted a time slice 
occurs before writing into the F register of the current 
processor. Therefore, the current processor number 
defined by the WRITEXXX bits must be present along 
with the next processor number defined by R EAD-XXX 
until the end of the present processor's major cycle. 
Enables ENRD-ERF and ENWR-ERF define the times 
that the ER FG 1 address bits are generated. Enable 
ENRD-ERF occurs at RO and R1 times of the next major 
cycle (E6 and E7 times of the present major cycle) to read 
out the starting µI address from Pµ and the associated 
MU from F for the next processor to be honored. Enable 
ENWR-ERF occurs at WO and W1 times of the present 
major cycle to store the starting address of the firstµ I to 
be executed during the next assigned time slice, and to 
store the associated M LI into the Fu register. Execution 
of an IVK (F,1,1,) µI substitutes a processor number 
contained in bits 8, 9, and 10 of the Boundary Crossing 
(BC) register for that originally supplied by the priority 
network. This is shown as inputs BC-008, BC-009, and 
BC-010 to the ERF Group I address logic, which generate 
the ERFG1 address bits in place of the READ-XXX bits 
from the priority logic. Signal ENBC-ERF enables this 
processor number from the Boundary Crossing register at 

2-92 

E2 through E5 times when the Invoke flip-flop is set. 
During a master clear condition, the MC-2 signal is ANDed 
in succession with counts E 1256, E2345, and E4567 from 
the timing chain gray-code counter. These counters are 
generated in sequence to generate processor numbers 0 
through 7 in a cyclic fashion. The effect is to clear out the 
P µ register associated with all eight processors. Th ts 
operation causes an address of 000016 to be written into 
all P µ registers so that each processor routine will begin 
with an RNIO sequence. 

Besides selecting the processor via the ERFG1 bits, it is 
also necessary to select either the P µor F register of the 
selected processor, and to enable either a read or write of 
the selected register. Selection of either Pµ or F is 
provided by SELFH/PL, according to its state: 

SELFH/PL=high - selects F register 

SELFH/PL=low - selects Pµ register 

Reading or writing the selected register is provided by 
EFlRH/WL, according to its state: 

EF1 RH/WL=high - read operation 

EF1 RH/WL=low - write operation 

r-----------. I I 
+WRITE1XX 

+ENWR~ERF-1 
+BC-08------11 

I 
I 
I 
I 
I 

I 
+ENA D+-ERF-------;._ ..... ~ I 

+E45&1-o------11 I 
I MC I 

+MC-2---m---i._..,.,, I 
I 
I 
I 
I 

SAME :- +ERFG1-S1 

I 
I 
I 
I 
I 

SAME -1- +ERFG1-S2 

I 
I 
I 

(1A13) I 
.. __________ .. 

Figure 2-78. ERF Group I Select Logic 



SELPMORF I I 
I I 
I I 
I I 
I I 

ENPB/PP ... G1 
I I 

I I 

I 
I 
I 

ENFB ... G1 I I 
T I 
I 1 

EF1RH/WL 
I I 

J I I 

ENWRERF I I 
I I 

SELFH/PL I I 

l r· I I 
-1 I 

I I 

I I 
I I 
I I 

l1 
I 
I 

I T 
.l. I 

r I 1 I I I 
I I 
I 1 

~ IF A LOAD F INSTRUCTION 
I EXECUTED IN THIS MAJOR 

-1 I 
I I l I I I I 
I I 

I I 
I I 

WAS 
CYCLE 

I_ 
PB OR pp..,.pp,-l+-1 I- -I 1- FB..,.FRF 

\ E4 E5 E6 E7 WO W1 J ~ , 
RO R1 EO E1 E2 EJ 1 

~ 

ENRDERF J 

EN PM-SM 

CLKSM ~ r 
I _._ 

ENALU+-FR I 
I 
I 

CLKFB/FR 
I n I 
I 
I 

Pµ ..... Sµ FRl=-F 
I 

ERF GAP 1 READ TIMIN1G FOR RO AND R1 

Figure 2-79. ERF Group I Read and Write Timing 

These signals are used together to read or write the 
selected register, as shown in Figure 2-79. Reading Pµ and 
F occurs during E6 and E7 of the present time slice, in 
preparation for the processor to run during the next time 
slice. During these two minor cycles, EF1 RH/WL is high 
to enable the read operation and SELFH/PL is either low 

2-93 

or high to select either Pµ or F as the register to read 
from. Writing into Pµ and F occurs during WO and W1 
times of the present time slice. During these two minor 
cycles, EF1 RH/WL is low to enable the write operation 
and SELFH/PL is again either low or high to select either 
the Pµ or F register. 



r--------------------~ I I 
RO TIME·(-CONCVCLE) I I 

I Pµ I 
RD I 

I I 
+MC I MC I 

I 
I 

+S 
I 

WOTIME--1-------------+---~ Pµ 
WR I 

I 
+BC-15 --------------+--.. 

+ENBC•ERF---·----------<-----·--
IVK 

I 
I 
I 
I 

I 
I 
I 
I 

+NORMWR -~•-----------. 
I 

-CIOEXIT--1-----
WO TIME--.,1-----

-WR-NOPTI 

W1 TIME---11----­
+ERF WR-....,1.-----~ 

I 
I 
I 
I 

MC 

.---+E 

... _,,,, 
+LATEWR----1--------------11 

+FXE0-1 : o--r 
+BCOOOO-X -.--­

+BC-07 I 

I (1A14) 
, _____________________ , 

Figure 2-80. Generation of SELFH/PL and EFIRH/WL 

Generation of the SELFH/PL and EF1RH/WL signals is 
shown in Figure 2-80. Both SELFH/PL and EFl HH/WL 
are generated for a master clear condition to clear out the 
Pµ. registers (write an address of 0000s) of all eight 
processors. Signal SELFH/PL is also generated at the 
times shown in Figure 2-79 to read data from and write 
data into the Pµ. register as part of the normal 
housekeeping operations associated with each time slice. 
The IVK µ.I generates SELFH/PL to select a Pµ. register 
specified by the contents of the BC register. This signal is 
generated by BC-15, which specifies register 0001 (Pµ. 
register) of the ERF, and ENBC-ERF, which enables data 
to be read from the BC register during an IVK µ.I. 

Besides being generated during a master clear condition, 
signal EFl RH/WL is driven low for three other 
operations: write Pµ., write F, and IVK µ.I. During normal 
write Pµ. and write F operations, EFl RH/WL is generated 
by NORMWR and an ANDed combination of enabling 
conditions. Signal NORMWR is generated during the 
middle half of every minor cycle and is used as the basic 
write signal. For write Pµ operations, NORMWR is 

2-94 

enabled at WO time providing neither CIOEXIT or 
WR-NOP is low. If either CIOEXIT is low (indicating the 
compare condition of a CIO µ.I to exit from the data 
transfer loop has been met) or WR-NOP is low (indicating 
that a NOP µ.I is being executed), the Pµ. Write operation 
is inhibited (Pµ is not updated by Pp) by driving) 
EFl RH/WL high. If either condition is not met, however, 
E F 1 RH /W L remains low. For write F operations, 
NORMWR is enabled at Wl time except if NOP µI is 
executed. During write Pµ and write F operations 
initiated by the IVK µI, E1 FRH/WL is generated by 
LATWR and enabling conditions. Signal LATEWR is 
generated for the same period as NORMWR (about 50 
nanoseconds) but about 15 nanoseconds later in the 
minor cycle. This additional delay gives the IVK µI 
sufficient time to perform the required translation 
necessary to implement the µI. Since this µI selects only 
one register at a ti me, the E F 1 R H/WL signal is generated 
only once. Enabling conditions for the IVK µI are 
FXE0-1, which specifies the IVK K µI itself; BC-OOOOX, 
which specifies either register 0000 (F) or 0001 (Pµ ); and 
BC-07, which specifies the ERF. 



.,, 
=· !:; 

CD 

N 
c!D 
:-' 
m 
::u .,, 
C') 

0 c 
"Cl 

= 
I\) 

~ cb 
01 a. 

~ 
CD 
81 .,, 
0 

3 
Ill 
:+ 
::u 
CD 
m a. 
0 
"Cl 
CD 
; .... s· 
:::s 

-FM1-012 

-FM1-013 -'1--t---------<JP'-......_ 

+BC-013 _..._+--_ _...-......._ 

-FM1-014 --r-t----------10..-......_ 
+BC-014 _..._.....__,.._......._ 

+INVOKE 

I 

-------------~ 

+ERFG2SO 

+ERFG2S1 

+ERFG2S2 

+ERFG2S3 

r-------------------------1 
BIA 

RTC 

T 

PE 

CONT 

PRIV 

BC 

css 

I 
ADRS 

DATA 
I 
I I I (1A08- 1A11) 

I --------------------·ERFGP2so 

8 
INPUT 

SEL 

--

ERFG2 



Group 11 - Selection of a Group 11 register for reading or 
writing depends on whether the register is selected via µI 
control or hardware control. All Group 11 registers may be 
read via µI control, and all but the PE, RTC, and CS scan 
registers may be written via µI control. Logic for selecting 
a Group 11 register via µI control is shown in Figure 2-81. 
During a normal read operation, with the a and b 
designators set, each Group 11 register is selected by means 
of bits 12 through 15 of the µI X-field (F µ bits 12 
through 15). If the read operation is under control of an 
IVK µI, the register address is obtained from bits 12 
through 15 of the Boundary Crossing register. In either 
case, the 4-bit address generates four select signals, 
ERFG2SO through ERFG2S3 These select signals are fed 
to a translator where they undergo further decoding to 
generate select bits ERFGP2SO through ERFGP2S2. 
These three select bits are routed to a one-of-eight 
selector. The selector is fed with eight register inputs and 
enables reading the selected register input. Note that while 
there are only 8 inputs to this selector, there are 10 
registers of Group 11 that need to be selected. Selection of 
the two extra registers is accomplished by ORing the 
outputs of the CSS, Console Address, and Console Data 
registers and feeding the result into the selector as one 
register input. Each of these registers, then, is selected by 
a corresponding select bit: SELCSS, SELMA, or SELNR, 
which are generated by select signals ERFG2S2 and 
ERFG2S3. The correspondence of ERFGP2 and SEL 
select bits to the Group 11 register addresses is shown in 
Table 2-5. (Note that the select bits are defined in 
complement form while the address bits are defined in 
true form.) 

Selection of a Group 11 register for a write operation is 
basically done by selecting the appropriate clock or clock 
enable signal for a particular register. For the Busy/Active, 
Tie Breaker Control, Privileged Mode, Boundary Crossing, 
CS Scan, Console Address, and Console Data registers, the 
clock or clock enable signal is generated by the four select 
signals, ERFG2SO through ERFG2S3. This method of 
register selection is shown in Figure 2-82 for selecting the 
Tie-Breaker (T) and Boundary Crossing (BC) registers as 
examples of Group 11 register selection. Of the four select 
signals, ERFG2S1 through ERFG2S3 are routed to a 
BCD/one-of-eight decoder. The two decoder outputs are 
sent to one side of corresponding AND gates used to 
generate the clock enable signal for each register. The 
other side of the AND gates are fed with ERFG2SO. This 
signal is ANDed with ENERG2WR, indicating a Group II 
write operation, and SELERFG3, indicating that the 
ERFG2SO through ERFG2S3 select bits are selecting one 
of the lower 16 registers of the ERF. (As shown in Figure 
2-69, the upper 16 register addresses are reserved for 
Group 111 registers.) The result is fed in true form to the 
AND gate used to clock the BC register, since its address is 
greater than 7 (0815}, and in complement form to the 
AND gate used to clock the T register since its address is 7 
or less (0415). The AND gate outputs are enabled with 
CLKE R FG2 (generated at TX80 time) to generate register 
clock signals CLKTB and CLKBC. During a master clear 
operation, "O's" are written into all Group 111 registers 
(except the PE and RTC registers). This is accomplished 
by satisfying both sides of each AND gate with MC, which 
essentially clocks each register with no data ("O's") 
present on the register input lines. The result is to clear 
each register. 

Table 2-5. ERF Group II Read Select Bits 

Hex 
FµReg Bits ERFGP2 Bits SEL Bits 

Reg ADAS 12 13 14 15 S2 S1 so css MR NR 

B/A 02 0 0 1 0 1 1 1 1 1 1 

ATC 03 0 0 1 1 1 1 0 1 1 1 

T 04 0 1 0 0 1 0 1 1 1 1 

PE 05 0 1 0 1 1 0 0 1 1 1 

CONT 06 0 1 1 0 0 1 1 1 1 1 

PRIV 07 0 1 1 1 0 1 0 1 1 1 

BC 08 1 0 0 0 0 0 1 1 1 1 

css 09 1 0 0 1 0 0 0 0 1 1 

ADAS QA 1 0 1 0 0 0 0 1 0 1 

DATA OB 1 0 1 1 0 0 0 1 1 0 

2-96 



r----------------------------------, 
I I 
I I I i i I DECODER - i +ERFG2S1 

+ERFG2S2 

+ERFG2S3 -------------------e I 
I 
I 
I 
I 

-SELERFGJ -----------------­
+ENERG2WR -------+---+-.-f--------11._ _ _,, 

I 
I 
i 
I 
I 
I 
I 
I 
I 
I 

+MC-1 -------'.L-----------41 
I 

I 

I 
• • 
I 
I 
I 
I 
I 
I 

+CLKERFG2 ------------------------------------- (1A04) I 
L----------------------------------~ 

Figure 2-82. ERF Group II Address Format, Write Operation 

(0
4)-CLKTB 

(OS)_CLKBC 



Selection of clock signals for the Busy/Active, Console 
Address, and Console Data registers differs slightly from 
those for the T and BC registers in that the select logic 
generates a clock enable signal only. The reason is because 
the flip-flops comprising these registers require a 
positive-going signal to clock them instead of the 
negative-going signal required by the other registers. The 
clock signals for these flip-flops, therefore, are generated 
by ANDing them with TX80 in a non-inverting fashion to 
furnish the required polarity. The AND gates are located 
on the same module with the registers. 

As mentioned previously, writing the PE, RTC, and CS 
scan registers is accomplished under hardware control 
only. The PE register is written with the MS address at 
which a PE occurred during an MS read operation, as 
discussed in the paragraph titled MS Read. The RTC 
register is continuously written with a clock pulse derived 
from the RTC pulse generator, as described in the 
paragraph titled Real Time Clock Pulse Generator. The CS 
scan register is written with cumulative longitudinal check 
data during a CS scan operation, as described in the 
paragraph titled Scan/Read. 

Group 111 - Selection of Group 111 registers is performed 

in a manner similar to that for the BRF registers: 
generation of a processor select number and a register 
address. Like the BR F registers, each 1/0 processor can 
only access registers of its assigned file. A simplified 
diagram showing selection of Group 111 registers is shown 
in Figure 2-83. The processor number is specified by the 
EXC:T signal from the resource allocation network. Each 
1/0 processor is selected by a unique EXCT signal. The 
Group 111 register is selected by the SE LE RF G3 signal and 
the four ERNG3 signals. The SELERFG3 is over-all select 
for al I Group II I registers. It defines the digit 1 for all 
Group Ill register address (1015 through 1F15) and 
enables selection of the Group 111 registers by disabling 
selection of the Group 11 registers (0215 through OF 15). 
The four ERNG3 select signals comprise the register 
address within Group 111. These five select signals are 
normally generated by corresponding bits of the X field of 
a RE'gister File Read or Register File Write µI (Fµ bits 11 
through 15). During an Invoke condition, the select 
signals are derived from corresponding bits of the BC 
register. The decision to perform a read or write into these 
registers is determined by the ERFG3RD or ERFG3WR 
signals. Each of these signals is generated from a 
com:!sponding Register File Read or Register File Write 
µI. 

1/0 PROC 
GROUP II 

REGISTERS .----------------.,__ F I +ERFG3RD} SEL EITHER 

-FM1-001 
+BC-011 

I µ READ OR WRITE 

L DECODE (1A06) 1--+ERFG3WR OPERATION 

-----------------· '----------------'---- } RESOURCE +Exp-o SEL 1 OF 4 
I ALLOC I I 
L NETW (1A16) I +EXCT-3 1/0 PROCESSOR 

----------------
,----------------~ : I } I l SEL GAP Ill REG --------.L---=i----- } I --l--+SElERFG3 BY DISABLING 

. : ~ GROUP II REG SEL 
I 
I I 

-FM1-012 ------------+----------­ I 
+BC-012 ------------.--+----11 

I 
I 

-FM1-014 --------·--1-----------
+BC-014 ---------=

1
......_..._ __ _ 

• l-----'---- +ERNG3-00 
I 

I 
I SEL 1OF16 
I GROUP Ill REG 
I 
I 

.._>-----!!!---- +ERN G3-03 

+INVOKE ------------~---. __ ,,. 
I I 
I (1A22) I 

·----------------~ 
1=igure 2-83. ERF Group Ill Selection 

2-98 



Table 2-6. Reading and Writing File Registers 

Prr0cessor 
Register Oriented Read Capability 

Basic Register File yes µI control 

Extended Register File 

Group I 

F yes hardware or µ1 control 

Pµ yes hardware or µI control 

Group II 

Busy/Active no hardware or µI control 

RTC no hardware or µ1 control 

Tie-Breaker no µ1 control 

PE no µI control 

Control no hardware or µI control 

Privileged Mode no µ1 control 

Boundary Crossing no hardware or µI control 

CS Scan no µI control 

Panel Address no µI control 

Panel Data no µ1 control 

Group Ill 

Processor 0 yes µ1 control 
(4 registers) 

Processor 1 yes µ1 control 
(5 registers) 

Processor 2 yes µ1 control 
(5 registers) 

Processor 3 yes µ1 control 
(1 register) 

*µI control write into E: and S bit positions will clear them. 
**All µl's that attempt a write, except ROM, will clear CSS. 

Write Capability 

µI control 

hardware or µI control 

hardware or µI control* 

hardware or µ1 control 

hardware control 

µ1 control 

hardware control 

µI control 

µ1 control 

µ1 control 

hardware or µI control** 

hardware or µI control 

hardware or µ1 control 

µI control 

µt control 

µt control 

µI control 

Access Capabilities and Limitations MAIN STORAGE INTERFACE 

Master Clear 

no 

no 

yes 

yes 

no 

yes 

no 

yes 

yes 

yes 

yes 

yes 

yes 

no 

no 

no 

no 

Because the registers of the BRF and ERF are read and 
written by a variety of conditions, it is useful to tabulate 
their conditions in one central locatif:m. Table 2-6 lists 
these conditions in summary form for each file register. 
Specifically, this table lists each regist•~r of the BRF and 
ER F, whether or not it is processor-oriented, conditions 
for reading and writing the register, and whether or not it 
can be master-cleared. 

The Main Storage (MS) interface logic controls data 
transfers between the MS sections of shared resources and 
the rest of shared resources (from here on referred to as 
the Central Processing Unit (CPU) section). All Circuhs 
of the MS interface logic function during one of two 
basic operations: write and read. 

Each type of operation performs on data in either word 

2-99 



mode (16 bits) or byte mode (8 bits). The two bytes of a 
word are referred to as the left-most byte (bits 0 through 
7) and the right-most byte (bits 8 through 15). The 
left-most and right-most bytes are also referred to as bytes 
0 and 1, respectively. 

Parity is calculated in the CPU for each byte of a 
word using odd parity (odd number of "1 's" in each 
byte, including the parity bit). The upper byte parity 
bit is referred to as PO, the lower byte parity bit at 
P1. The format of a word transferred to MS is shown 
in Figure 2-84. 

An MS write or read operation is always initiated by a 
Load S (LS1, LSF, LS2, or LSE) µI which transfers the 
contents of a register in the Basic Register File (BR F) to 
the S register. These contents specify the address of a 
location in MS. If the Load S µI is followed by a Load D 
(LDW, LDW-, or LDB) µI, the contents of a register in 
the BR F is transferred to the D register and the MS 
write is initiated. The MS write then transfers the con­
tents of D to the location in MS defined by the 
address in S. If the Load S µI is not followed by a 
Load D µI, an MS read operation will unconditionally 
take place by reading the operand stored at the loca­
tion in MS and sending it to the data fan-out logic in 
the MS interface. Normally a Load S µI programmed 
for a read operation will be followed by some µI that 
takes the data read from MS and uses it according to 
the particular µI. These µl's include the Store D (SDW 
or SDB) µl's and the D ... A (DTA, DTA-, IDX, and 
DFA) µl's. A special use of the SDW µI is during the 
RN I sequence to read the next M LI to be executed in 
the program. When used for this purpose, the SDW µI 
gates the first-level decoded results of the M LI from 
the FRJ decode address table (AT) and saves the MLI 
in the F and FRF registers until its execution is 
completed. 

Operating details of the MS interface logic will be 
presented by discussing the basic elements of the logic (S 
register, D register, and data fan-in) followed by a 
discussion of the MS write and MS read operations plus 

associated timing and control signals involved. Because 
thev are intimately associated with MS control signals, 
Register Option control signals are also discussed in this 
section. (A description of the Register Option itself is 
contained in the paragraph titled Register Option.) 

S REGISTER 

The S register holds the address of the word or byte to be 
either read from or written into MS. The register consists 
of 16 flip-flops, fashioned from cross-coupled NAND 
gates. The advantage of these flip-flops is that they do not 
require any data set-up time (about 10 nanoseconds) and 
provide immediate propagation. This enables the address 
data to be entered into the register immediately, an 
important feature since the MS access operation is time 
critical. A diagram showing one stage of the S register is 
shown in Figure 2-85. The address obtained from the BRF 
through the Aµ register fan-in is gated through the EN 
SET gate when CLKSR and ENCLKSR are present. Signal 
ENCLKSR is generated by a Load Sµ I (3,X) at E040 and 
cleared normally at E140 or upon occurrence of a CS read 
error (SWPERR). Assuming the address bit to the flip-flop 
is a 1, the feedback path from the SR (set) output to the 
CLK LATCH gate keeps the flip-flop set while the address 
bit is present during the clock period. After both the 
clock pulse and address bit have been removed, the 
flip-flop remains set due to the feedback path from the 
SR output to the NORM LATCH gate. The flip-flop 
remains set until cleared by a subsequent address bit of 0, 
together with clock and clock enable signals. 

MAIN STORAGE 

~-----------........... ,,,,.,,,....._~---------------------~ 

0 8 15 

LEFT-MOST BYTE RIGHT-MOST BYTE 

Figure 2-84. Format of Word Transferred to MS 

2-100 



~ 
0 -

-----------------------------, 
+RF~SI-------___ -_----1==1 E:L:E> I I ~ ~R~RD 

LATCH I I 

Di 11 ! 

r---------. I 
+3 x-•·-----. I 

I 
I 

+E040 --------

I 
I 

I (1A05).I .. _______ _ 

NORM 
LATCH 

+CLKSR ---·---

+ENCLKSR 

I (1A29, 1A30) 

I 
I 
I 

L-----------------------------~ 

Figure 2-85. S Register 



·-----------.. I I 
-7, 1 - ............ --<..A 

I 
-SETAM-.,~~·i-llllllC 

I 

I 
I 

+ENS DR 

I -SETBM-
1
.---<,l[_ __ 

----------------~ I I I (1A05) __ . _________ ... 
+CLKS/RDR------------

I 

I 
I 

t20 

+RF+-MSl------------·---------+----------11 J 

I 
I 
I 
I 
I a---.---

I 
+CLKDR------------·----------1----11 

I 
I 
I 
I 

PARITY GEN, 
BYTE SEL r-----, I LOAD 0 

I 

I 
I 
I 
I 
I 
I 

K 

t20 

I 
I 
I 
I 
I 

+(7,0+7~:~~:----•!--11I FF It +ENCL KOR 

I I I I 

I (1A29, 1A30) 1' I I +ENRDR 
+(7,0+7,1)------- .-

·---~---~--------
1 : ·----·--

Figure 2-86. D Register 

D REGISTER 

The D register holds the data to be written into MS at the 
location specified by the contents of the S register. This 
data also comes from a BRF register, but under control of 
a Load D (7,X) µ.I. The D register is composed of 16 
edge-triggered J-K flip-flops. The D register flip-flops can 
be preset or precleared, as required, to store data in either 
true or complement form. (See the paragraph titled Aµ. 
and Bµ Registers for a description of storing data in true 
or one's complement form in the Aµ and Bµ registers.) 
Logic for a stage of the D register is shown in Figure 2-86. 
The register is pre-cleared via ENRDR and CLKS/RDR to 
enable storing data in true form during execution of a . 
LDW (7,0) or LDB (7,2) µI, or during a master clear 
condition. The register is pre-set via ENSOR and 
CLKS/RDR to enable storing data in one's complement 
form during execution of a LDW- (7, 1) µI. For all these 
µl's, data on the RF-MSI lines is clocked in via CLKDR 
and ENCLKDR. The enable signal is generated by the 
Load D flip-flop for any Load D µI. If the system is in 
the maintenance mode, the register can be pre-set to store 
all "1 's" by the SET AM and SET BM signals. These 
signals are generated by simultaneously pressing the SET 

Aµ and SET Bµ pushbuttons on the System Control 
Panel. 

DATA FAN-IN 

The data fan-in logic, shown in Figure 2-87, provides for 
selecting one of three data paths to the ALU fan-out 
logic: 

1 .. Register Option (RO) 

2. D register 

3. Main Storage (MS) 

Data read from either the RO or MS is done so in a similar 
manner, by means of a Load S µI. For this µI, MSREADY 
is generated at E440 time of a time slice. In the case of a 
RO read, ROREAD must also be present. In the case of an 
MS read, ROA EAD must be low to specifically inhibit an 
attempted read from the RO. Data from the D register can 
be enabled when neither the RO or MS is reading out data 
(whenever MSREADY is low). For this condition, the 
data contained in D will usually represent an operand 
obtained from a file register. 

2-102 



r----------------~----------------, I I 
+RO-DR 

I I 
I I 

DREG 

+MS+-DR 

+RO READ 

+MSREADY 

I 
I 
I 
I 
I 

I 
I 
I 
I 61.J--..---- ·DR 

I (1A29,1A30) 

L---------------------------------~ Figure 2-87. Dci1ta Fan-in 

MS WRITE OPERATION 

A block diagram for the MS write operation is shown in 
Figure 2-88. Data can be stored transferred to MS in 
either word mode (16 bits) or byte mode (8 bits). 
Selection of a byte to be transferred is under control of 
the STDBYTE enable, which enables the byte select logic. 
When STDBYTE is low, all 16 bits of the D register are 
stored in 16 bits of a location in MS specified by the 
address in S. When STDBYTE is high, the byte contained 
in bits 8 through 15 of D is transferred in parallel to both 
the left-most byte and right-most byte of the location in 
MS. The choice of storing bits 8 through 15 of Din either 
the left-most byte or right-most byte of MS is determined 
by the state of bit position 15 of thie address in S, as 
discussed in greater detail in the following paragraph 
(Word and Byte Write Operations). Odd parity for the 
word or byte to be stored is generated on a byte basis by 
the parity generator. The parity generated for each byte is 
stored along with the byte as shown in Figure 2-84. Prior 
to being routed to MS, the contents of both S and D are 
routed to the Register Option (RO) logic. Among other 
things, the RO may contain segment tags whose con­
tents are appended to the address contained in S to 
form an effective address at which data in D will be 
stored in MS. The data from D and the byte select 
logic also pass through the RO for the singular pur­
pose of initially loading certain regist,ers and tables in 
the RO. Thereafter, the RO is transparent to all data 
passing through to MS. 

Word and Byte Write Operations 

Word and byte writes into MS are performed by the logic 
of Figure 2-89. Selection of either a word or a byte to be 
transferred to MS is controlled by the byte selector. The 
byte selector is fed with outputs from both the left-most 
half and right-most half of D, and routes the byte 
contained in either half to the left-most half of a location 
in MS as specified by the state of STDBYTE. This select 
signal works in conjunction with MS byte write enables 
STOREUPP and STORELOW to store data in MS. As 
Figure 2-89 shows, there are threee ways in which data 
can be stored in MS depending on the µI executed. Part a 
shows a whole word store operation as performed by 
either a LOW or LOW- µI. For this case, STDBYTE is low 
so that data from D is sent directly to MS without the 
right-most byte being multiplexed onto the lines feeding 
the left-most half of the MS location. (This path is 
indicated by dashed lines signifying that the path is not 
enabled for a whole word store.) In addition, both 
STOREUPP and STORELOW are high to store both 
halves of the 16-bit word. Parts b and c of Figure 2-89 
show a byte store operation: part b showing a byte write 
into the left-most half (bits 0 through 7) of the MS 
location and part c showing a byte write into the 
right-most half (bits 8 through 15) of the MS location. In 
both cases, the byte to be stored in MS must be located in 
the right-most half of D. In both cases, STDBYTE is high 
so that the bytes in bits 8 through 15 are transferred in 

2-10~1 



r-----------------------, I I 
RF -MSI I SR-RO 

0-15 ALU 0-15"f-

I 

.. ..... S REG 

0,2,4,6 

I .... 
I 

I 
I 
I 
I 
I 
I 
I 

... 

I DR-RO 

1---11...l.~ ___ 0,_2•_4·_6 
---t-M REGISTER i --,. OPTION 

1,3,5,7 

.------t·::M BYTE 
SEL 

I 
I 
I 

... 

DREG 

8,10,12,14 

9,11,13,15 

_._ 
--1 
I 
_I --1 
I 
I 
I 
I 
I 
I 

DR-RO 
1,3,5,7 

DR-RO 
8,10,12,14 

DR·RO 
9,11,13,15 

... 

..... 

... 

I r-----.. I I 
I I _I P1 

MAIN 
STORAGE 

,. PARITY I GEN ODD ! ... PARITY I ~ 
11---• ..----------1T1--1,..M STORE I P2 .... ,___ _________ --t.M GEN 

I I I ,.. 
I I I 
I I I 
I I I 

{1A29,1A30) I IL {1A22) I 

~-----------------------~ -----~ 
Figure 2-88. MS Write 01>eration 

parallel to both the left-most and the right-most half of 
the MS location. However, the byte will be stored into 
only one half depending on which MS write enable is 
generated (STOREUPP if writing into the left-most half or 
STORE LOW if writing into the right-most half). 

Logic for generating the byte write enables is shown in 
Figure 2-90. Enables STOREUPP and STORELOW are 
generated simultaneously during a word store by means of 
STOREMS and STDBYTE. Signal STOREMS is generated 
during any MS access requiring data to be stored and 
STDBYTE is low for a word store operation. During a 
byte store, either STOREUPP or STORELOW is 
generated, depending on the state of SELBYTEO. If a 
left-most byte store is indicated, SR 15 is low and 
SELBYTEO is high. If a right-most byte store is to be 
performed, SR 15 is high and SELBYTEO is low. Before 
being sent to MS, the two store enables are first passed to 

2-104 

the RO for combining with the bounds check signals. 
These check signals determine whether or not the 
addressed location can be written into. If not, the store 
enables are disabled. 

Parity Generate and Store 

During a word write, parity is calculated for each byte of 
a word. The parity bit calculated for the left-most byte of 
a word is transferred to MS along with the word as bit 16, 
and that for the right-most byte is transferred as bit 17. 
During a byte write, the parity bit calculated for the 
right-most byte in D is transferred to MS as both bits 16 
and 17. Either one of the two bits will be written with the 
byte depending on whether the byte is to be stored in the 
left-most half or the right-most half of the location on 
MS. A block diagram showing generation and storage of 



..... .... .. ... 

D r--+ 
BYTE 0-7 I MS 

..... Sl:L 0-7 
l 

,.. 

I r+ ..... 
I 

.. 
I I 1~ t 

-STD BYTE +STORE UPP 

l I ..... .... 
I 

... 

D I 
MS 

8-15 I 8-15 
I 
l _. -- --...-

f 
A. LDW OR LDW-µI +STOA EL OW 

t---·------. .... .... 

.... 
D .... 

BYlrE MS 
0-7 r--·--- --+ SEL 0-7 

r-+ _. ,... 

+srl~VTE +sroAeuPP 

_. .. 
D MS 

8-15 8-15 

.. .... 

B. LDB µI, SR15=0 (D 8-15 ...... MS 0-7) 

I- - - - - - -....i _. ,.. 

.... 
BYl'E MS D ... 

0-7 
I- --.i 

SEL 0-7 
1--·-- --

rl ..... ,... 

t 
+STDEIVTE 

........ 
- ... 

D 
MS 8-15 
8-15 

.... ,.. 

t 
C. LDBµl,SR15=1 (D8-15-MS8-15) +STORELOW 

Figure 2-89. Word and Byte Store in MS 

2-1051 



r------------------------------~ I I 

+STD BYTE 

+STOREMS 

+SELBVTEO -. 

I 
I 
I 
I 
I 
I 
I 

------ +STOREUPP 

MS 
VIA 
RO 

I 1A22 I 

·------------------------------~ 
Figure 2-90. Generation of Byte Write Enables 

parity bits is shown in Figure 2-91. Parity is calculated by 
a parity tree which generates parity for each byte in three 
stages. Stage 1 combines the true and complement states 
of the even-numbered bits of a byte together to generate 
corresponding GENODD signals. Each GENODD signal is 
high if the number of "1 's" combined is odd. Stage 2 
combines the true and complement states of the 
GENODD signals for each byte to generate two other 
signals. These signals are fed to the third stage, which is 
also fed with other inputs, to generate the final byte 
parity bit. 

During a byte store, only the parity bit generated for the 
right-most byte in D has meaning. However, this bit must 
be fed in parallel to MS as both bits 16 and 17 since the 
byte in D may be stored in either the left-most or the 
right-most half of the MS location. For this operation, 
STDBYTE is high to (1) enable the left-most byte store 
gate so that the right-most byte parity bit may be sent out 
over the bit 16 line, and (2) disable the word store gate to 
prevent the parity bit generated for the (meaningless) 
left-most byte in D from being sent out over the bit 16 
line. During a word store, both bytes contained in D have 
meaning; therefore, separate parity bits must be generated 
for each. For this case, STDBYTE is low to enable the 

2-106 

word store gate and disable the left-most byte store gate 
for bit 16. 

Signals SWEVEN16 and SWEVEN17 are generated by the 
BYTE PARITY 0 and BYTE PARITY 1 pushbuttons, 
respectively, on the System Control Console. These 
pushbuttons are used to change the parity generated for 
each byte from odd to even as a means of manually 
checking the parity detect logic. 

MS READ OPERATION 

A block diagram for the MS read operation is shown in 
Figure 2-92. Like the MS write operation, the S register is 
loaded with an MS address via a Load S µI. This µI 
performs the MS read and loads the data read into the 
data fan-in logic. This data is then routed from the data 
fan-in logic via a Store D or D-Aµ I and used according 
to the particular µI. If one of the aboveµ I's is executed in 
a time slice that did not reference MS by a preceding Load 
S µI, the data obtained will come from the D register 
instead of from MS. All data read from MS is checked for 
correct parity. This is done by routing the data from MS 
in parallel to both the data fan-in logic and the parity 



Table 2-7. Word and Byt4~ Read Operations 

Read Enables 
µ1 or Condition Operation Generated 

SOW µI DR 00-07-ALU 00-07 SEL-DR-0 

DR 08-15-ALU 08-15 SEL-DR-1 

SOB µI O's-ALU 00-07 SEL-ZR-0 

(SR 15 = 0) DR 00-07-ALU 08-15 SEL-DRB-0 

SOB µI O's-ALU 00-07 SEL-ZR-0 

(SR 15 = 1) DR 08-15-.AL U 08-15 SEL-DR-1 

check logic, as shown in Figure 2-85. The parity check 
iogic checks the data for even parity by combining the 
data bits (bits 0 through 15) with the parity bits (P1 and 
P2) on a byte basis. A parity error in either the upper byte 
or lower byte of a word generates an error signal which 
causes a jump to a parity error trap routine. 

Word and Byte Read Functions 

Although data from MS is always read in word form, 16 
bits at a time, the data may be masked to byte form, 
depending on the particular µI that initiated the read 
operation. This byte masking is performed by the ALU 
fan-out logic under control of mad byte enable signals. 
The types of MS read functions that can lbe performed are 
listed in Table 2-7. The SOW µI reads whole words and 
routes them to register X via the ALU fan-out. The SOB 
µI also reads whole words but masks out (sets to 0) either 
the upper 8 bit positions or the lower 8 bit positions of 
the word read to form a byte to be operated on. The 
choice of forming either a left-most byt1a or a right-most 
byte is determined by the state of bit 15 of the S register. 

Note that regardless of whether the SOB µI specifies 
either the left-most byte or the right-most byte, the byte 
is always handled as a 16-bit word, right-justified if 
necessary, with the upper 8 bit positions set to 0. 

The portion of the ALU fan-out logic used to perform the 
aforementioned read operation is shown in Figure 2-93. 
The figure has been simplified to show bit transfers in 
groups of four bits each. The enables required for each 
type of read operation listed in Table 2-7 are also shown 
in this figure. Each operation requires two enables: one to 
handle bits 0 through 7 and one to handle bits 8 through 
15. Generation of these read enables is shown in Figure 
2-94. Signal SELBYTEO is genrated from the 

2-107 

complemented output of the S register bit 15 flip-flop. It 
is used to select either the left-most byte (SELBYTEO 
high) or the right-most byte (SELBYTEO low) during 
execution of a SOB µI. 

MS PARITY CHECK 

Parity is checked on all data read from MS ,Py the parity 
check circuits. Checks are made on a byte basis using odd 
parity. A portion of the parity check logic is shown in 
1=igure 2-95. This logic checks parity of the left-most byte 
(bits 0 through 7) of the MS word. As shown, the logic 
consists of two parts: the parity checker circuit, which 
c:hecks parity of bits 0 through 3 and bits 4 through 7, 
and the MS parity check/display circuit, which generates a 
parity error signal (PE-BYTEO) if parity is not correct. As 
an example, assume the left-most byte stored in MS was 
all "1 's". Since this constitutes an even number of "1 's", 
the parity bit generated is also "1" so that the total 
number of ''1's" in the byte stored, including parity, is 
odd (8 + 1 = 9 "1 's"). Now assume that when the byte 
was read, bit 0 was erroneously read as a "O" instead of a 
"1 ". Since the error occurred in one of the four odd bits 
of the byte, CHKEVENO will go high. Bits 1, 3, 5, and 7 
were rea·d without error, however, and CHKEVEN1 goes 
low. These two outputs are combined with the P1 parity 
bit from MS to generate a low PE-BYTEO signal, 
s;ignifying an error in the data read. The low PE-BYTEO 
s;ignal is routed to the MS parity error display logic and to 
a parity error trap routine to recover from the error 
c:ondition. * 

"If the ECC option is present, parity bit P1 is meaningless since 
the ECC will provide automatic correction of single-bit errors. 
For this condition, the trap routine will be performed only if an 
error occurs that the ECC cannot correct. 



.. ----.. I PARITY 
I GEN NO. 1 

I ·----------------~~~-- .. I PARITY GEN NO. 3 I 
0,2,4,6 

I 

I 
I 
I 
I 

1
1 

GEN NO. 2 1
1 +STD BYTE 

+GENODDD I I 
'---------4- WORD I_. +DR-MS 

STORE 16 

DATA 
FAN­
OUT 

1.3.5.7~o.-
• I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 

9,11,13,15 

I 

~-.. • 

+GENOOD1 

+GENODD9 

-SWEVEN16 

-SWE VEN17----------IMI 

LEFT 
BYTE 

STORE 

WORD 
+ 

RIGHT 
BYTE 

STORE 

----•+DR-MS 

I 
I 
I 
I 
I 

17 

I (1A22) I 

L---------------------~ 
I 

I (1A29,1 AJO) J ------
Figure 2-91. Parity Generate and Store 

MS Parity Error Display 

The results of the MS parity check logic are sent to the 
MS parity error (PE) display logic to light the MS 
PARITY ERROR indicator on the System Control Panel 
upon detection of an MS PE. This logic also lights the 
indicator upon detection of an irrecoverable ECC error if 
the ECC option is present in the system. The MS PE 
display logic is shown in Figure 2-96. Information from 
the parity check logic and the ECC logic are fed to gate 1. 
This gate generates a high output if (1) the ECC option is 
present (ECCPRES) and a non-recoverable ECC error 
(ECCER ROR) is generated, or (2) the ECC operation is 
not present and a PE in either byte 0 or byte 1 read from 
MS (PE-1 + PE-2) is present. For either condition, signal 
STOREMS must be low to indicate that the operation 
being examined is not an MS store. The output of gate 1 is 
ANDed with OUTBOUND · OUTRANGE by gate 2. 
These two signals indicate that the PE occurred within the 
assigned bounds protect limits (OUTBOUND) and within 
an existent portion of MS (OUTRANGE). The result, 

2-108 

designated MS PE, is sent to the MS PE flip-flop to light 
the MS PE indicator on the Panel and to the Console Busy 
flip-flop clear logic to turn off the Panel upon detection 
of an MS PE (see the paragraph titled Console Modes). 

MS INTERFACE SIGNALS 

References to MS require a number of interface signals 
used both for initiating a reference and to restrict certain 
ti rne-constra i ned operations associated with MS 
references. These signals are divided into three categories: 
MS reference, MS write, and MS read signals. Because 

they are intimately associated with those required for MS 
references, control signals used during references to the 
RO are also discussed in this section. As an aid is 
discerning the differences between all MS and RO control 
signals, many of which perform identical functions but 
when different conditions, the purpose of each control 
signal is listed in Table 2-8. Timing for all MS control 
signals is shown in Figure 2-97. 



MAIN 
STORAGE 

Signal 

ASYNC 

ACCESS EN 

DR EADY, 
DR EADE 

STOREMS 

DR EADY 

DR EADE 

MSREADY 

MS-SPEC 

RO-SPEC 

ROREADY 

< 
ADAS 

I 

REGISTER 
OPTION 

MS-...DR 0-15 

P1,P2 

D 
REG 

Table 2-8. MS lnterfac:e Signals 

Function 
·-

MS Reference (Write or Read) 

Prevent Fµ from being clocked for remainder of time slice if Load S µI executed at EO. 

Initiates MS reference (either read or write) 

MS Write 

D register ready to be loaded with data to be stored on MS via Load D µI. 

Indicates MS write operation, used to enable word and byte write signals. 

MS l~ead 

Contents of D from MS ready to be transferred to register X via Store D µI. 

Contents of D from MS ready to be transferred to Aµ via o-Aµ I. 

Enable to gate data read from MS through data fan-out. 

RO Reference (Write or Read) 
·-------·· 

Reference to be made to register in ECC feature of RO. 

Reference to be made to register in basic protection, relocation and protection or job 
accounting feature of RO. 

Enab~e to gate data read from RO through data fan-out. 

SR:~RO 

ll-15 

·-----., I LOAD SµI I 
I I 
I I 
I s I 

--~--~~__."""--_. REG ..__.·~~~~~~~~~~~~~~~~~~ALU 

I 
I 
I 
I 

RF..,..MS 
0-15 

I 
I 
I 
I 

DATA 
FAN-IN 

PAR 
CHK 

I STOREDµI 
Ii D•AµI 

II ~------/"-.- --------
11 

SHIFT 
NETW 

II AµREG 
II 00~-:15 AL u 
II FAN-OUT 

II FRJ DECODE 

II 
II 
II 
II CH KEV 

·-------• I 
I I 

I n 
I II 
I (1A29,1A30) II 
•-----~I 

I 
I 
I 
I 
I 

MS 
PE 

CHK 

I PE-BYTED ! 
I TRAP 
I ROUTINE 

: PE-BVTE1 • 

I 
I I 

I (1A05) .. • .. _____ _ 
Figure 2-92. MS Read Operation 

2-109 



-DR·OOO 
- 003 

·DR-008 
...... 011 

-DR·012 
- 015 

·--------------------------, I I 
I 
I 

-SEL·DR-1---------m 

·SEL-ZR-1 
I 
I 
I I 
I 1A25-28 I 

L-------------------------~ 

Figure 2-93. Word and Byte Read Data Transfers 

2-110 

..._ __ -ALU00-03 

...._ __ -ALU04-07 

i-----ALUOB-11 

._---ALU12-15 



SDWµI 

SDBµJ 

+SELBYTEO 

r-------------------------~ I 

~ 
I 

I ) I 
I I ·SEL·ZR-0 

I I 
I I 
I I 
I I 
I I 
I I 

·SEL-DR·1 

._____i, )-- ·SEL-DR·O 

__ ],.......__..)---- ·SEL·DRB·O 

(1A07) 

L~------------------------~ 
Figure 2-94. Generation o,f Byte Read Enables 

0 3 4 16 

BVTESTOREo.I ____________ ... , __________ ..,. m 
0 3 4 16 

BYTE READ I 0 ·1 _t _______ .. m 
ERROR 

Figure 2-95. Parity Check Logic 

2-11 'I 

MS PARITY 
CHECK/DISPLAY 

r-------------. 
Di--~ 

I 
I 

I (1A05) I 

.. ____________ .. 



~--------------------------, CON BUSY 
.--~~~~~--~~~FFCLR I 

I LOGIC I 
I ---.... .-2 

-O UTBOUND--1-------
·0UTRANGE~~.-----------------1 

I 
I 
I 

0 
: } SYSTEM 
---+MPEDISPY CONTROL 

PANEL 

CLK 
·E CCE R RO R-......... --411----_. 

I 
(-PE-BYTEO) + (-PE-BYTE1 )--::---1.-..... ~ 

+STOREMS--:·-----

1 ..___,,, 

1A02 _____ ... I 

L--------------------MEMREH650 

+DR EADY 
(WRITE) 

+DR EADY 
(READ) 

ED 

E040 

H LOADSµI 

E040 I 

Figure 2-96.. MS Parity Error Display Logic 

E1 E2 EJ E4 E5 

E~O 

r LOAD D µI 
DATA 

DATA AVAIL TO RF 
FHOMMS (E540) 

• • 

E6 

H LOADSµI STORED µI (NOT LOAD D µI) 

·DREADE 
(WRITE) 

·DREADE 
(READ) 

ENCLKSR 

MSREADY 

RO READ, 
ACCESSEN 

STOREMS 

MS-SPEC 
RO-SPEC 

E040 E_;!iD ESOO T.. w LOA~S µI l LOADD I 

E~O I E400 DATA AVAIL DATA TO A 
·; FROM MS (E520) w LOA6SµI 

... • D-A µI (NOT LOAD D µI) 

E~O E~O 

w 1 
E~OO 

I 
E040 • w 

E~O 

r -
rr E150 

T 

J 

Figure 2-97. MS Control Signal Waveforms 

2-112 

E7 ] 



MS Reference Signals 

As discussed previously, an MS reference operation 
(whether read or write) always begins with a Load S µI. 
As far as the CPU is concerned, an MS write can be 
performed in two minor cycles (200 nanoseconds), the 
time required to execute a Load S µI followed by a Load 
D µI. An MS read, however, takes five minor cycles to 
perform from the start of the Load S µI (EOOO) until data 
read from MS is available at the data fan-in (E480 to 
E505). To assure that enough time will .always be available 
to read MS during the same time slice, the MS interface 
logic unconditionally forces execution of the Load S µI 
during EO regardless of whether a read or write is to be 
performed. If occurring in the program at any time other 
than EO, the non-MS reference portions of theµ I will be 
performed (that is, (X)-Aµ, constant-...Bµ, and 
0/+1..,... FCR). However the (X)- S transfer will not be 
performed since S can be clocked onlv during EO which 
effectively keeps the MS read from taking place. Instead a 
resync condition is set up and the Load S µI is re-executed 
at EO of the next time slice. The rnsync condition is 
implemented by the ASYNC signal, shown in Figure 2-98. 
The signal is generated by a Load S p.I executed at any 
time other than EO. This signal, in turn, generates 
BLOCKFM which keeps F µ from being loaded with the 
following µI for the rest of the time slice. To assure that 
the Load S µI be executed during the next EO time, it is 
necessary to program a blockpoint µI immediately 
preceding the Load S µI. (If the blockpoint µI were not 
used, the µI routine would execute through the Load SµI, 
idle through the rest of the time slice; then in the next 
time slice, start at the sameµ I as the present time slice 
(since no new block point address was provided) and 
repeat the same µl's up to the Load Sp.I.) 

Figure 2-98. MS Reference mgnals 

Signal ACCESSEN is sent directly to MS to initiate the 
MS reference. The signal is generated upon translation of a 
Load S µ.I if an RO reference has not been requested; that 
is, neither X=1 E or 1 F or BLKACCEN is high. Signal 
X==1 E or 1 F is generated if the X-field of the Load S µI 
specifies the contents of transient register 1 E or 1 F of the 

2-113 

BR F. These two registers, reserved for exclusive use by 
the RO, contain the address of a register in the RO to be 
referenced. Signal BLKACCEN is generated if the system 
is in the maintenance mode when a RO read or RO write 
is initiated by the CONSOLE MODE SELECT selector on 
the System Control Panel. 

MS Write Signals 

Indication that an MS write operation is to be performed 
is furnished by a Load D µI executed at E 1. This sets the 
Store MS flip-flop at E 160 to generate STOA EMS, as 
shown in Figure 2-99. This signal is used to enable 
generation of word and byte store signals STOR EUPP and 
STORELOW, as discussed previously. 

... ------------... I I 
LOAO 0µ1-I-- D I 

I I 
I I 
I I 
I I 

E160 -I-- C 0 +STOREMS 

I I 
I 1AM I L------------...1 

Figure 2-99. MS Write Signal 

MS Read Signals 

As explained earlier, data read from MS is not available at 
the interface until about E480. Therefore, the execution 
times of the µl's that use this data (the Store D and D+-A 
µl's) are restricted accordingly. For a Store D µI, data 
from the MS interface is transferred to a file register at 
t40 of the minor cycle in which execution of the µI 
began. This means that a Store D µI cannot be executed 
prior to E5 to allow storage of data at E540. For a D+-A 
µI, however, the transfer of MS data to Aµ does not 
take place until t20 of the minor cycle following that 
in which the µI began its execution. This means that a 
D .... A µI can begin execution at E4 because the data 
from MS is not transferred to Aµ until E520. 

Signals DR EADY for the Store D µl's and DR EADE for 
the D+-A µl's are generated for the purpose of providing 
these timing restrictions. Logic for generating the signals is 
shown in Figure 2-100; associated timing is shown in 
Figure 2-97. Each signal is generated for two different 
conditions: a Load Sµ I followed by a Load D µI (an MS 
write operation), and a Load S µI followed by any µI 
other than a Load D µI (an MS read and store operation). 
For either type of operation, both DREADY and 



r--------------.. 
I I 
I I 

LOAD SµI ,-- D MS I 
I REF I 
I 111 I 

+Eo4o------- c ii I +DREADV 

I 
E500 +LOAD D·E160 I 

I 
I 
I 
I 
I 
I 

D 

----c 
E400 +LOAD D·E160-:--1-------' 

I 

I 
I 
I 
I 

MS I 
REF 

II I 

~-OREADE 
I 
I 
I 

I D o--- 11--1--- +MSREADV 
1 MS I 
I R~F I 
I c I 
I I 
I I 
I I 

-STOREMS-+- I 
I 1A04 I 
... ______________ .. 

Figure 2-100. MS Read Signals 

DREADE go low at E040 when their respective flip-flops 
are set. If a write operation is being performed, both 
flip-flops are set. If a write operation is being performed, 
both flip-flops are cleared at E 160 time. This allows the 
Load D µI to be executed during the next minor cycle to 
store the data at the address contained in S. If a read 
operation is being performed (not Load D µI), the 
flip-flops stay set to keep DREADY low until E510 and 
DREADE low until E400. During this time, DREADY 
and DREADE are inverted and ANDed with STORE D 
and D -A respectively. The result is to schedule NOP's by 
preventing the following µI address and from being 
loaded into Sµ and Fµ, respectively. The flip-flops stay 
set until E400 and E510, at which time the Store D 
and D-A, µl's can be executed as discussed 
previously. 

For either of the two above situations, data from MS is 
gated through the data fan-in logic by MSREADY. This 
signal is generated as a result of a Load Su I at E400 
unless the next µI is a Load D (signal DREADE is low). 
The Load D µI signifies that an MS write is to be 
performed; therefore, no data is to be read from MS. 

RO Reference Signals 

Logic for generating the three RO reference signals is 

2-114 

shown in Figure 2-101 with associated timing shown in 
Figure 2-97. Signals RO-SPEC and MS-SPEC are generated 
as a result of addressing a RO register either in the RO 
iteslf (Basic Protect feature, Relocation and Protect 
feature, or Job Accounting feature) or in MS (ECC 
feature). Both signals are generated upon setting the MS 
Reference/RO Select flip-flop, indicating that a RO access 
is to be made. In addition, both signals are low during 
E040 to E 150 to allow the Load S µI to gate the RO 
register address into either the RO or MS. Signal RO-SPEC 
is generated specifically if the register addressed is not in 
the ECC feature (SR-MN04 is low). Signal SR-MN04 
indicates that bit 4 of the RO register address in BRF 
register 1 E or 1 F is cleared ("O"), which eliminates 
selection of the ECC. Signal MS-SPEC is generated 
specifically if the register addressed is in the ECC feature 
(SR-MN04 is high). Note that MS-SPEC does not begin an 
MS reference to read or write from MS proper. It only 
allows accessing the ECC registers of the RO. 

Data read from a register in the RO proper, (meaning not 
the ECC feature in MS itself), is gated through the data 
fan-in logic in the interface by ROREAD. This signal is 
generated at E040 if either X = 1 E OR 1 F is present, 
meaning that an RO reference has been specified. For 
both of these enabling conditions, SR-MN04 must be 
high. (Data from an ECC register is gated through the data 
fan-in as MS data via enable MSR EADY.) 



,----------------------------, 
+MS REF I FF-....,:..-----, 

I 
I 

X=1EOR1F~ 

+BLKACCEN~...,/' 
+E040 --ti~--

[-
-E 000+-E 150 -----=C 
+SR+-MN04 -----

D 

' 1A04 I 

L----------------------------J 
Figure 2-101. RO R1tference Signals 

MAIN STORAGE 

The Main Storage (MS) section of the shared resources 
stores machine language instructions (MLl's) and data 
processed by the system. The primary characteristics of 
MS are as follows: 

• 
• 

Storage Element 
MOS integrated circuits 
Storage Capacity -

16 bit words 
8K*to 32K 
64K** 

8 bit bytes 
16K to 641< 
128K** 

(without Register Option) 
(with Register Option) 

• Storage Access -
Random access with an access time of 385 
nanoseconds 

• Storage Cycle Time -
900 nanoseconds without ECC 
1000 nanoseconds with ECC 

* K=1024 
**Capacity of one chassis; the Register Option pro­
vides an addressing capability up to Ei12K words 

2-115 

• Error Detection -
Parity error detection is standard. Error 
Correction Code (ECC) is an option. 

MS ORGANIZATION 

MS Chassis 

The MS logic modules are in the three card rows (A, 
8 and C) of chassis 2. Figure 2-102 shows that the 
card rows are organized as follows: 

• Card row A contains the leftmost byte of up 
to 64K words 

• Card row C contains the rightmost byte of 
up to 64K words 

• Card row 8 is used for the ECC feature 
when present 

Each card row is divided into two zones; each zone 
has a printed circuit backpanel with common address 
data and control connections for up to 32K addresses. 
As an example, the second page of Figure 2-102 lists 
the pins, signal names and logic mnemonics for Zone 
A 1. The storage elements are on the HH module 
which is the basic storage module for MS. A 64K 
word MS with the ECC option uses 48 HH storage 
modules. 
The timing, addressing and control logic is located on 
three modules in card locations 2811, 2812 and 2813. 



STORAGE CAPACITY 
(K-WORDS) 4K BK 12K 16K 20K 24K 28K 32K 36K 40K 44K 48K 52K 56K 60K 65K 

MODULE LOCATION 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

I 
c..:I I 
c..:I I w 

LEFT-MOST a: LEFT-MOST = BYTE = 0 a: = BYTE = >< x Cf.I c x x ::.:: ::.:: a: Cl) ::.:: ::.:: 
ROWA o::t o::t w o::t 

1 
STORAGE 

o::t 
STORAGE Cl. 

:E I 
ZONE ~ ZONE I 

ZA1 ZA2 

HF 

HH HH HE HD HH HH 

..... _, 
..... => 0 

ECC 0 a: z ECC 
BYTES z ..... 0 

BYTES = = z c..:I = = >< >< cc 0 (!:I >< >< ROWB ::.:: ::.:: u.. c..:I z ::.:: ::.:: 
o::t 

ZONE o::t a: a: !E 
o::t ZONE o::t 

c c 
ZB1 c c j:: ZB2 cc cc 

HG 
HH _ ___,r---+---+-----+---r--- HH HA HB HC HH ---1---1----1----1----1--- HH 

RIGHT-MOST c..:I 
RIGHT-MOST c..:I 

BYTE w 
BYTE = = a: = ROWC >< >< 0 a: >< ::.:: ::.:: Cl) c ::.:: 

o::t STORAGE o::t a: Cl) STORAGE o::t 
ZC1 w ZC2 Cl. 

:E = ...., 

HF 

HH HH HE HD HH 

MODULE SELECT NUMBER 0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Figure 2-102. Main Storage Chassis 

2-116 



Common Bus Pin Name Logic Mnemonic 
(for Zone Al) 

92 Address 14 AD14--.ZA1 
96 Address 13 AD13 __....zA1 
89 Address 12 AD12_...ZA1 
90 Address 11 AD11 __....zA 1 
94 Address 10 AD 10-....zA1 
91 Address 9 AD9 _..zA1 
85 Address 8 AD8 -....zA1 
82 Address 7 AD7 __....zA 1 
88 Address 6 AD6 --.zA1 
93 Address 5 AD5 -+-ZA 1 
86 Column Select 0 CLS O_..ZA1 
84 Column Select 1 CLS 1--..zA1 
83 Column Select 2 CLS 2-.ZA1 
80 Column Select 3 CLS 3-.ZA1 
38 Strobe Time STRB_..ZA1 
37 Digit Time DIFT --..zA1 
87 Write Time WRT _..zA1 
76 Column Select Time CLST-.ZA1 
81 Address Timing ADT _..,.zA1 
95 Precharge Time PRCH---ZA1 
24 Data In, Bit 0 DOO -.zA1 
25 Data In, Bit 1 D01 _..,.zA1 
26 Data In, Bit 2 D02 -.zA 1 
27 Data In, Bit 3 D03 -+ZA1 
31 Data In, Bit 4 D04 _..,.zA1 
32 Data In, Bit 5 D05 --.zA1 
33 Dataln,Bit6 D06 _...zA1 
34 Data In, Bit 7 D07 -.zAl 
78 Data In, Bit 8 DOB __.,.zA1 
22 Data Out, Bit 0 OOZA 1__...SR 
23 Data Out, Bit 1 01ZA 1_.,SR 
28 Data Out, Bit 2 02ZA1__...SR 
29 Data Out, Bit 3 03ZA 1---...s R 
30 Data Out, Bit 4 04ZA 1--.sR 
35 Data Out, 13 it 5 05ZA 1-....sR 
36 Data Out, Bit 6 06ZA 1__,...SR 
39 Data Out, Bit 7 07ZA 1_..,.SR 
40 Data Out, Parity 1 P1C1ZA 1 

Figure 2-102. Main Storage Chassis (Cont) · 

2-117 



Except for the data lines and the ECC control lines, 
all interface signal wiring comes to these three 
modules. 

The data control modules (Storage Data Register and 
Fan-in) and ECC control for the leftmost byte (bits 
0-7, card row A) and the rightmost byte (bits 8-15, 
card row C) are in locations A 12 and C12, respec­
tively. The ECC control modules are in locations A 11 
and C11. When the ECC option is not installed, these 
locations have jumper modules in them to route the 
storage data to the CPU. 

Zone Organization 

Figure 2-103 is a simplified zone organization diagram 
showing address and data lines for the eight HH stor­
age modules in a zone. Each HH storage module is a 
4096 address by 9 data bit building block; a zone 
with a fu II complement of eight H H storage modules 
stores a data byte (8 data bits plus 1 parity bit) for 
32K addresses. 

In Figure 2-103, a typical data bit (bit 2) is shown 
going to all 8 storage modules. Selection of an address 
occurs basically as follows: 

• An H H storage module is selected by a 
module select (1 of 8). 

• A column of storage elements on the module 
is selected by a column select (1 of 4). 

• Using 10 address bits, the 9 storage elements 
in the selected column decode corresponding 
storage cells (1 of 1024). 

The data bit is then stored in the selected storage 
element. Using the identical address, the same data bit 
can be read out of the element. 

HH Storage Module 

Figure 2-104 is a block diagram of the HH storage 
module. Thirty-six, 1024 X 1, MOS integrated circuits 
are arranged on the module in a 4 column by 9 row 
array. Each of the 9 rows comprises a data bit (0 
through 8) of 4096 addresses with 1024, 9 bit ad­
dresses in each column. 

Address selection is achieved as described in the pre­
ceding paragraph, Zone Organization. 

Data is controlled by nine digit drivers and nine sense 
amplifiers - one of each per bit. Because data flow to 
and from an HH module is a 9 bit block, the control 
signal for the digit drivers (Digit Timing) is common 

2-118 

to the nine digit drivers, and the sense amplifier strobe 
is common to the nine sense amplifiers. Data to be 
written into storage is gated with Digit Timing to 
enable a digit driver. The digit driver provides MOS 
voltage levels for "1" or "O" to the selected IC. Data 
read from storage is sensed by a sense amplifier which 
is then strobed. Data from the sense amplifiers goes 
into the Storage Data Register (SOR). 

Write and precharge drivers provide the read/write and 
precharge timing pulses required for IC operation. 
Timing pulses from the storage control logic are gated 
with module select to activate the drivers. 

Ba!fo Storage Element 

The basic storage element consits of a 1024 word by 1-bit 
integrated circuit (IC). This element contains 1024 storage 
cells, address decoding to select one of them, and read or 
write controls to read or store the data. The relationship 
between addressing and data is shown in Figure 2-105, the 
block diagram of the basic storage element. One feature of 
this storage element, not shown in Figure 2-105, is that it 
is a dynamic storage element. This means that the power 
inside the storage element charges the internal cell 
capacitors. Using charged cell capacitors is known as 
dynamic because power is required only during selection. 
When the cells are not selected, the cells are insulated 
from other circuitry to prevent the charge from leaking 
away. Power consumption is minimized because the 
charge is stored about 2 milliseconds without refreshing 
(charging). 

Each storage element has a matrix of 32 by 32 cells on it 
as shown in Figure 2-105. The matrix allows each cell to 
be independently accessed by using the ten decoded 
address bits with the column select. The initial activation 
of address, precharge and column select is the same for a 
read or write operation. Typically the data is read from 
the cells and then a Read/Write signal is activated, if 
necessary, to gate an external data bit into the element. 
The description of the storage element operation can be 
divided into a read, write, and refresh operation. 

For a read operation, the precharge gate is activated 
simultaneously with the address as shown in Figure 2-106. 
With pre-charge active, the address stabilizes into the 
selected row and column as shown in Figure 2-105. When 
column select is activated, its leading edge gates the 
contents of 32 storage cells (selected by the X address bits 
AO through A4) into 32 refresh amplifiers. The Y address 
bits A5 through A9 then select 1 of 32 refresh amplifiers 
for gating one data bit out. At the trailing edge of 
prn-charge, 32 data bits are gated from the refresh 
amplifiers back into the cells and one (1 of 32) data bit is 
gated out. Data out is then valid from end of pre-charge to 
end of column select as shown in Figure 2-106. 



~ ..... ..... 
c.o 

10 ADDRESS BITS = 32 X 32 = 1,024 BITS 

~~~:.~ 
DATA BITS ~ TYPICAL COLUMN
IN A 32 X 32 SELECT IC CHIP

MATRIX

1 ZONE IS 32K ADDRESS BY 9 DATA BITS

Figure 2-103. Selection of a Bit from MS

10 ADDRESS BITS

COLUMN
SELECT2

._ ______J DATA BIT 2
(TO BE STORED)

~-------------•DATABIT2
(READOUTI

"'
"' 0

COLUMN
SELECT
LINES

CLSO

CLS1

CLS2

CLS3

ADDRESS
LINES

.... ,..

.......i ...

.... ...

~~ ...

18

17

16

15

14

13

12

11

10

CLSO __..
(9 CHIPS),..

CLS1 _..
(9 CHIPS)"'

CLS2 _..
(9 CHIPS)"'

CLS3 _..
(9 CHIPS) ...

Jo.
__.. ...
.... ,..
.... ...
.... ADDRESS ,.. .. DRIVERS ...
.... ...
.... ,..
..... -....

DIGIT
DRIVERS

~---------------------,

ID DD DD DD D DI
I I

ID I
II MATRIX OF 36 STORAGE II

D ELEMENTS IN A 4 BY 9 ARRAY

I I
I I

lo I L _____________________ J

.... ,..
.... ,..
.... ...
__.. -....
..... -..... ,...

....
~r

181
17

16

15

~: I ~~1:iL 36

12

11

10

...... ...

.... ...

DATA TO STORAGE REGISTERS

WRITE TIMINGi ...

PRE-CHARGE_.
--....

Figure 2-104. MOS Storage Module Block Diagram

\lllRITE
P\~ING

PRE-CHARGE
TIMING

DRIVERS

(18 CHIPS)_.
-..

(18 CHIPS)_..
--....

(18 CHIPS)_..
........

(18 CHIPS)_..
-...

ADDRESSES

0-102310

1024-204 710

2048-307110

3072-409510

o::t'
c::c
:::>
a:
:c
I­
Q
c::c
en
1-
iii
en
en
w
0:
c
c
c::c _, _,
w
t.:I

><

~

w
c
0
t.:I
w
c

Ntr.>
f'"J en
LL.w
oo:

0 -·c
c::c
s:
0
a:
><

32 BY 32 CELL MATRIX
XO

--"" J\ -....

r~ ~

rl r-1

I-- :r: :r: -
X1 _}\.

I ""L ...L
H ~ H ~ H t--4

I :r :r l\. - - ~ -

l < ? ..:::: ~ .? ...::: ~ <
30 __., .ti.. ,..L ~g 1--

~ 1-4 ~ t l:r _j\ - -
X31 _.. J\

~~ ~ L
~ H H l-1 H 1-4

~ ~~ A~

~I: :r ~ - ~· ~

~ ... ~, ~

~4
REF. REF. REF. r

.-+ AMP. AMP. ~ ..--. AMP •

WRITE f + • [+ • [Aro ...
.... -

1'. 'f PRECHARGf.. ,
J\

~,

DATA IN J\
~

V1 •.••..•••.•. ~ •....••.•. V30
VO l -

1 OF 32
V COLUMN ADDRESS DECODE

l
V CIELL ADDRESS BITS A5 THRU A9

1=igure 2-105. 1024 Bit Ste>rage IC Block Diagram

2-121

r9
~O

...::: 7 > ..:

fQ
H

~r-

~lr

...... ,,,..
REF.
AMP.

r. A

~lr

V31

I+

...
COL UM N

CT SELE

~
OUT

ADDRESS STABLE
ADDRESS

DATE GATED

~
i--

TO CELL FROM REFRESH AMPLIFIER

PRE-CHARGE

COLUMN
SELECT

DATA WRITE

[

LAl:O
REFRESH AMPLIFIERS

NOTE: FOR INSTRUCTIONAL CLARITY, SIGNAL
POLARITIES MAY BE INVERTED.

VALID DATA OUT
- ..

J 1

Figure 2-106. Timing for Storage Element

For a write operation, the initial activation of address,
pre-charge and column select is the same. After these
signals are stable the data write is activated as shown in
Figure 2-106, to gate an external data bit into the storage
element. The timing is the same as the read operation
except for activating the data write.

For a refresh operation, a read operation is performed.
The purpose of the refresh is to periodically recharge the
c.apacitor of the storage cell. A small amount of charge
leaks off of these capacitors so that refreshing each
memory cell is necessary every 2 milliseconds to recharge
the cell's capacitor when they are not accessed. The
refresh amplifier, shown in Figure 2-105, recharges 32
memory cells at one time when address inputs bits A 14
through A 10 are sequenced through the 32 row addresses
in the storage element. This refresh addressing and timing
is controlled internal to storage. The refresh cycle is
identical to the normal read cycle timing and address
selection except that addressing from refresh control is
sequential.

Block Diagram Description

A block diagram of MS is shown in Figure 2-107.
Only the main interface signals such as addressing,
data, and pertinent control are shown. Because of
symmetry, data is flow-charted for one byte only with
either a parity bit (treated as a data bit) or with five

2-122

of the ECC bits. The other byte of data with either
parity or ECC has identical control signals, addressing
and control signals. Data flow on the diagram is from
left to right while addressing and control flows from
the bottom of the page.

The CPU sends sixteen address bits (0-15) to MS.
Fifteen bits (0-14) are used by MS to decode 32K ad­
drnsses; bit 15 is used for byte control (select leftmost
byte, select rightmost byte, or select a complete
word). For expansion of MS beyond 32K addresses,
the CPU sends four additional address extension bits
(XO, X1, X2, X3) which provide addressing capability
to 512K words.

The refresh operation is a function of MS and occurs
when an MS Refresh Request is acknowledged by the
CPU (NU LL CYCLE). The refresh logic determines a
block of 32 addresses to be refreshed and records ti me
so that each address will be refreshed at least every 2
mi 11 iseco nds.

Control signals from the CPU provide the timing
synchronization and initiation of a storage cycle. When
a write cycle is required by the CPU, the write con­
trols for the desired byte are activated. Other interface
signals provide for refresh control and error recovery
interrogation. Within MS, the control signals are

LEFT-MOST BYTE
BITS 0•7, PO

JUMPER
MODULE
HF-2A11

JUMPER RIGHT-MOST BYTE
BJTSB-15 Pl I MODULE

~
COLUMN SELECT

DIGIT

9 BiTS

S BITS

WRITE

DATA
FAN-IN

HD-2A12

DATA
FAN-IN

HD-2C12

PRECHARGE

STORE UPPER MS
AND/OR

STORE LOWER MS

TIMING CONTROL
2B13 (TO EVERY HH)

ADDRESS

STROBE

ACCESS

START I
REFRESH

REG

(NULL CYCLE)

STORAGE
MODULE

HH-2A03 10.
14-21

STORAGE
MODULE

EXPANDABLE

IN 4K
ADDRESS

INCREMENTS
HH-2C03-10,

14--21

ADDRESS FAN-OUT
HA 2B11

S BITS

9 BITS

COLlll'IN SELECT

(1 OF4)

MODULE SELECT

(1OF16)

STORAGE
DATA REG
HD-2A12

STORAGE
DATA REG

HD-2C12

t
DATA REG

CLEAR FROM
TIMING

CONTROL HG

10 BIT CELL ADDRESS

ADDRESS AND CONTROL
2B12 HB

5 ------ADDR EXTENSIONS

ACCESS ENABLE (CPU REQUESTS A STORAGE

CYCLE)

6 8

Figure 2-107. Main Storage Block Diagram

JUMPER
MODULE
HF-2A11

JUMPER
MODULE
HF-2C11

9 10 11 12 13 14 15

primarily timing commands because storage always
does a READ/WRITE cycle. One timing/control
sequence automatically provides for reading stored
data, correcting that data if ECG is present, and
writing new data when necessary.

Addressing

The address from the CPU is sent to MS formatted as
shown in Figure 2-108. This format allows for features
such as Relocation and Protection to be used without
altering the address bit numbering scheme. Least
significant address bits are to the right end with the
extension bits on the left end to provide for expanding
storage. Features may alter the expanded storage
addressing capacity but will have no effect on the
addressing capacity of a storage unit with 32K or less
words. Using Figure 2-108, the lowest order addresses
start at the left and ascend in order to the right. The 12
least significant address bits are common to all storage
modules. Fan-out of these bits is on a zone basis, where
each zone is 8 storage modules having identical
interconnections on the backpanel, as shown in Figure
2-105 and Figure 2-103. With the 12 common address
lines providing decoding for each 4096 word storage
module, the 1 of 16 module select from bits 0
th rough 2 expands the addressing decode to 32K
words of storage.

When the address from the CPU is stable, an access enable
signal from the CPU provides the initiation of a storage
cycle. Since MS does not have an address register, the
CPU address must be stable during the entire cycle. When
an access enable signal is active, the address from CPU
enters storage and then is fanned out. The only exception
to gating the address to MS is when a refresh cycle is
required. In this case, the access enable signal is blocked
by the CPU resulting in the refresh address being gated
into address bits 10 through 14. The refresh control holds

address bits 9 th rough 5 at logical zero and blocks
address bits 4 through X3 from changing during the
refresh cycle.

B-1 Row and Column Chip Addresses; A 14
through A5

As shown in Figure 2-109, the address fan-out module
distributes the 10 least significant address bits to each of
six zones. The 10 CPU address bits are used in
conjunction with refresh control.

The 10 least significant address bits are gated into MS
from the CPU , without decoding, by an access enable
signal. On the address fan-out module, these 10 address
bits fan out to all storage modules via the 6 back panels as
previously shown in Figure 2-103. On the storage module,
the ten bits are gated onto the board by ANDing address

2-124

timing with board select. Each address line has a discrete
driver to drive all 36 storage elements. The address lines
are equally divided between the storage element column
and row decode to make the 32 by 32 matrix selection in
the element. The address is then decoded within each
element.

When MS requests a refresh cycle, the access enable is
blocked by the CPU and the refresh address is used
instead. The 1 of 32 refresh addresses controls address bits
10 through 14. Because of the intrinsic storage element
address decoding, the 32 row refresh addresses will refresh
32 column addresses per element. Since all elements are
selected during refresh, all addresses for all data bits in
storage will therefore be refreshed using only 32 refresh
addresses that are control led by address bits 10 through
14.

B-2 Column Select Address Bits A4, A3

As shown in Figure 2-110, the most significant address
bits are decoded or controlled on this board. The three
most significant address bits (XO through X3) determine
the out-of-range. The four column selects are decoded
from two address bits and distributed to each zone. Four
address bits are decoded into 1 of 16 module selects then
respectively distributed to each row. Each module select
controls the left-most byte, right-most byte, and ECG

modules. Refresh control determines how often and what
address the refresh cycle needs.

The column select address bits 3 and 4 are also common
to all storage elements. On the address control board,
address bits 3 and 4 are gated from the computer by
inactive Refresh. The decoding of column select (CLS)
fans out 4 column selects that are common to all storage
modules. As column select enters the storage module, it is
gated with timing and board select signals. On the storage
module, CLS provides the addressing expansion from
1024 to 4096 addresses or physically from 1 to 4 storage
elements (per data bit). The resultant column select(s)
activate the chip enable pins for 9 parallel storage
elements.

Inactive Refresh is normally low throughout the entire
timing cycle. When Refresh is requested, the computer
address is blocked and, by using another inverter, all
column select outputs are activated.

B-3 Module Select Addresses; A3 through AO

The most significant address bits, 0 through 3, decode
which storage module board is selected. Selection of a
module really is a selection of three modules: one module
corresponding to the left-most byte; the second module
corresponding to the right-most byte; and, when ECG is
used, the third module corresponding to the check bits.

I

REGISTER OPTION
ONLY

EXTENSION ADDRESS

XO I X1 X2

512K 256K 128K

OUT-OF-RANGE

DETECT OR

ADDRESS

EXPANSION

BEYOND

ONE CHASSIS

X3

65K

• • • • • []=r;
• • •
L [I • • •
~K

• • .STORAGE
MODULE SELECT

• • • • • •
1K EOUALS 1024

I

I

I

CPU ADDRESS

3 I 4 I 5 I 6 7 8 9 10 11 12 13

STOFIAGE ADDRESS

I

4K I 2K I 1K I 512 256 I 120 64 I 32 I 16 I 8 4 I
STORAGE ELEMENT COLUMN STORAGE ELEMENT ROW

COLUMN
SELECT

29 28

DECODE

27 26

Figure 2-108. Addressing Scheme

25 24

REFRESH ADDRES:S {5 LINES OF CONTROL
5 LINES OF GROUND

DECODE

23 22 21

REFRESH ADDRESS

14

2

20

ALL 10 ADDRESS BITS GO TO EACH ZONE

TO ZONE ZA1

.1\ DD R ESS 1..._3 _--11wi

ADDRESS 12

ADDRESS 11

ADDRESS 10

FROM CPU ADDRESS 09

ADDRESS 07

ADDRESS 06

ACCESS

ADDRESS
FANOUT

(2B11)

j

TO ZONE ZA2

TO ZONE ZC1

TO ZONE ZC2

.figure 2-109. Address Fanout

2-125

I

15

BYTE
SELECT

STORAGE
CAPACITY
(WORDS)

STORAGE
ELEMENT
ADDRESSING

MODULE SELECTS
(FANS OUT TO 3 CARD ROWS)

TO ZONE ZA1

TO ROW A
ADDRESS STORAGE

MODULE
SELECT

ADDRESS 01 DECODE TO ROW B

1 OF 16
ADDRESS 00 (32K WO)

ADDRESS X3 EXPANSION

TO 65K

WO

ADDRESS X2
OUTRAN GE MS

ADDRESS X1
OUT OF TO CPU CLOCK
RANGE
ERROR ECC ERROR ACCESS

ADDRESS XO ENABLE

MODULE

ECC IN~~~~~--"

..

..

REFRESH
CONTROL

ADDRESS 0 COLUMN
SELECT
DECODE

1OF4

ADDRESS 03

REFRESH
REQUEST

BAD DATA
IRRECOV-
ERABLE

(WITH ECC) ERROR

REFRESH
ADDRESS

SIGNAL

ADDRESS/CONTROL
MODULE TYPE-HB
LOCATION-B12

TO ZONE ZA2

TO ZONE ZB1

TO ZONE ZB2

TO ZONE ZC1.

TO ZONE ZC2

ECC ERROR
TO CPU

Figure 2-110. Address. Control

See Figure 2-108 for the address organization. On the
address control module, address bits 0 through 3 are
decoded into a 1 of 16 storage module selects so that a
storage capacity of 64K addresses can be randomly
accessed. The most significant bit, bit 0, determines
physically which 32K of addresses are selected - when
active the left half of MS is used; inactive, the right side.
Again, when Refresh is active, the address from CPU is
over-ridden so that all storage modules are selected.

DATA CONTROL

Storage Data Register

The data control logic uses digit drivers, sense amplifiers
and the Storage Data register (SD R). Figure 2-111
illustrates a simplified data loop, for controlling the data
flow from the CPU to the storage element for writing; and
from the storage element to the CPU for reading.

New data to be written into storage uses a digit driver as
shown in Figure 2-111. Data read from the storage
element is sensed by the sense amplifier and temporarily
stored in the Storage Data register (SDR). From the SDR,
the data is sent back to the CPU.

As shown in Figure 2-112, the SDR is 18 data bits long,
contained on two modules of 9 bits each. One module is

2-126

located in row A and stores the left-most byte plus the
corresponding parity bit. The other module is located in a
corresponding location in row C and stores the right-most
byte and parity bit. The data fan-in logic, which gates one
byte of data from the CPU to the storage elements, is
organized in a similar fashion.

When error correction is added, generated check bits have
an equivalent set of drivers, storage, sense amplifiers and
SDR's. Instead of sending the check bits back to the CPU
when they are read, error correction logic corrects erring
data or check bits. The corrected data without check bits
is then sent back to the CPU. There are two advantages in
having an equivalent set of hardware for check bits. First,
the error correction feature can be added primarily using
already existing card types. Second, the SDR for check
bits can be used for special storage cycles that can
interrogate check bits for maintenance purposes. The
intricacies of generating check bits and performing error
correction is discussed later.

Sense Bias

Sense bias is distributed to each storage module from the
logic +5 volts connected to 6 connector pins on the HB
board. Using the HB board to disperse sense bias to the 6
zones allows future changes to sense bias such as a
possible maintenance switch, a regulated special voltage or
some other convenient logic voltage. Data read from 1 of

FOR EACH DATA BIT _ ,--------------------- 1
I I
! ~ DIGIT ~ STORAGE IC ~ SAEl\~SPE ~ SOR 1--..:..:----"•z:- 4~ D~-:: -P I DRIVER 'I \

NEW DATA

I I { ORMAL CPU

NORMAL L __________________ _j :~~H}+ PATH

~-uR_A_T_1o_N __ ___________ , __________________ • ____ .._ ____________________ -+-------t------
~10N ONLY ------------------\

I I
+ I I

CHECK -H DIGIT L....i La. SEANMSPE L...... SOR I .. ERROR L..ilo........J
BIT ~- DRIVER ..- STORAGE IC I .,. IP' 11--...:..l '"""'-..~CORRECTOR .-...- CORRECTED

GENERATOR I I DATA

I I

FROM
SENSE
AMPLI­
FIERS

L ___________________ _J

FOR EACH CHECK BIT

-CORRECTED DATA TO BE WRITTEN BACK

Figure 2-111. Simplified Dat;a Flow for One Data Bit

STORAGE DATA REGISTEFI DATA FAN-IN

00/08 • ..._____.
01/09 . I-----+ ,..
02/10
03/11 _...

04/12 ... SOR
(9 BITS)

05/13, ,..
06/14 _._ .. -...

07/15 __..
P1/P2 _...

s DR CLEAR (TIMINGJ

DATA

TO

CPU

FROM

CPU

STO

00/08

01/09

02/10

03/11

04/12

05/13

06/14

07/15

P1/P2

RE MS

..
__..

_ ... -...

...
--...

.. --...
(9 BITS) .. ,..

...

... ,..

...

•
(WRITE

COMMAND FROM CPU

NOTE: ECC OPTION EXPANDS SOR AND FP1N·IN TO 13 BITS
REFER TO FIGURE 2-114 TO INCLUDE ECC

Figure 2-112. Storage Da'ta Register (No ECC)

2-127

__.. --..

__.. -..

,..

_ .. ,..

...

_ ... -...

...

...

-• ,..

TO
STORAGE
ELEMENTS

4 selected elements is compared against a threshold
voltage in the sense amplifier. The threshold voltage is the
sense amplifier bias voltage which provides the DC

· reference for determining a one or zero.

REFRESH CONTROL

An inherent requirement of MOS-type storage is
recharging or refreshing the capacitive cells within the
element. The refresh cycle consumes an entire major
timing cycle so that the CPU cannot address storage
during refresh. Due to priorities when transferring high
speed data, some control between the CPU and MS must
be established. Logic internal to MS controls what address
is to be refreshed next and when this address will be
required. This control uses an incrementing counter to
determine the refresh address and cascade counter to
count the number of clock cycles. The cascaded counter
converts clock pulses into a time-out calculated to refresh
32 addresses every two milliseconds (2 ms). From the
previous description of the storage element, the 32 by 32
matrix of storage cells have 32 refresh amplifiers along
one axis so that by sequencing the 32 addresses along the
other axis, all 1024 storage cells of the element can be
refreshed 32 cells at a time.

To accomplish the refresh with a minimum of
interference, only one consecutive major cycle is taken
from the CPU. The CPU can then continue using MS until
another refresh request is activated. If 32 addresses must
be refreshed in 2 milliseconds, the refresh request should
be activated every 62.5 microseconds (20011s-:-32 = 62.5
µs). Therefore, if the processor accessed storage every 900
ns, which is the MS reference cycle time without ECG, a
counter incrementing up to about 71 accesses would be
enough to refresh storage in time. Practically, however,
the processor will run at a worst-case rate of 1.2
microseconds. Using 1.2 microseconds as worst case, the
counter would then count up to 52 before a refresh
request should be made.

The clock pulse from the CPU is present 200 nanoseconds
before the storage can be accessed as shown in Figure
2-114. The early clock allows the timing control logic to
initialize in anticipation of an Access Enable signal. The
clock pulse's leading edge is used to form a 50 nanosecond
wide Start pulse by using a delay line as shown in the
logic. This start pulse initiates the timing control and
increments the cycle counting up to 52. Since the starting
of timing is discussed under the paragraph titled Timing,
only the refresh control and its timing is covered here.

As shown in Figure 2-113, when the cycle counter has
reached a count of 52, its output updates the refresh
address and sets the Refresh Request flip-flop. First, the
refresh address counter updates only once each refresh

cycle keeping in mind that, due to storage element
geometry, one row address will refresh 32 column
addresses. The address counter is always incremented and
never cleared so that all 32 addresses are cyclically
sequenced. Second, the need for refresh is sent to the
CPU via the Refresh Request flip-flop. In the CPU , the
request for the next major cycle to be a null state is
determined in the priority sequences. If the refresh
request is honored, the Access Enable to MS is blocked.
About 20 nanoseconds before a storage cycle begins, the
access timing interrogates the Access Enable state (on
Figures 2-117 and 2-118, this is 180 nanoseconds after the
clock). If Access Enable is active, an MS reference is
imminent and preempts MS's desire to refresh. If Access
Enable is blocked at access time, the Refresh Granted
flip-flop sets to gate the refresh address instead of a ,CPU
addrnss, and it also resets the cycle counter. The Refresh
Granted flip-flop implies that storage can now initiate a
refresh cycle and and therefore drops (clear) its Refresh
Request flip-flops. As soon as internal storage timing
programs, the Refresh Request Clear will be activated to
clear the Refresh Request flip-flop. Timing is shown in
Figure 2-114.

The Refresh Request Clear provides the timing for
another special feature of refresh control; the Refresh
Time-out. There are three conditions that must be
satisfied before time-out occurs:

1. There must be an active Refresh Request to the
CPU.

2. The request for refresh has been ignored by the
CPU for 3 major cycles. The cycle counter is
therefore at count of 3.

3. Timing from the Refresh Request Clear is active
once during each major cycle.

2-128

INTERFACE CONTROL SIGNALS

All of the interface signals between the ALU and MS are
shown in Table 2-9. The storage initiation, addressing
and data functions are not discussed here. Interface signals
for the ECG feature (module type HE) differ when the
jumper module (type HF) replaces the ECC module.
Without ECC, the jumper module routes data bits directly
to and from MS because the data does not have to be
coded for error correction. The detailed description of
error/recovery and write control functions are as follows:

1. Out-of-Range

OUTRANGE on the HB module is used by the
CPU to detect a missing HH module whether or
not the module is missing by intent (the upper

REFRESH
GRANTED

FF

-~-
MAIN STORAGE ... PULSE I

CLOCK (FROM CPU) SHAPER _n_:ons

COUNTER
RESET

CYCLE
COUNTER

I

CYCLE
COUNTER

I!

--+ INITIATES
TIMING
CONTROL

COUNT=J

AND

COUINT=52

MID SET
REFRESH
TIME-OUT

FF

POWER

ON
CLEAR

MASTER
CLEAR

REFRESH
&---------+-------.. ADDRESS

COUNTER
1 OF 32

LIGHT-EMITTING DIODE
INDICATOR

REFRESH ADDRESS (5 BITS)

r----~;;~;;u~;--

SET

REFRESH
REQUEST

FF

----"---------+ TO CPU "----=--_.. CPU
PRIORITY
NETWORK

BLOCKS CPU
ADDRESS

ACCESS
FF

CLEAR

REFRESIH REQUEST

NULL CYCLE

ACCESS ENABLE FROM CPU
'--------&.-------~---------+------....... 4------11

BLOCK
ACCESS
ENABLE

ACCESS ENABLE

ACCESS TIMING
(ONCE EVERY CYCLE)

Figure 2-113. Refresh Control Block Diagram

2-129

'Tl
ii'
~
Ill

~
~

::0

~
Ill Ill
1111 w ::r

0 n
0 = "* 2.
;-..
~ ...
Ill n
Ill

-f
3·
;·

CCI

MAIN
STORAGE
CLOCK
E740

ACCESS
ENABLE AT EO

NULL FF SET
(IN CPU PRIORITY
NETWORK)

COUNTER

REFRESH
REQUEST FF

REFRESH
GRANTED FF

7 0 2 3 4 5 6 7 0 2 3

J--ACCESS ENABLE PRE-EMPTS i rPRIORiTY BLOCKS ri"< I I I
__ .,.

11
_ ~TORAGIE'S DESIRE TO REFRESH! l ~' ACCESS ENABLE

~-+---~---~t\1-t"i'~~~~'~ "'~~+-~~-+---~~~--~+-~~-4-~----J.i!l_-~~~-~-~-~'~~~~'~~~+-------1 ' IN ' V\' ~N-STORAGEACCE~ ~. f ~

NULL SCHEDULED IN CPU

1_ I
I I I

LXlK°lUN_~_52-+-----11-----+----~----+------+---......_--_, I _ fficouNT=1

J L::':_ REFRESH REO. CLEARED
REQUEST
CLEARED

\ l ..
L"--------+-----------+----i---- ------·\]'

V- REFRESH CYCLE GRANTED TO STORAGE BECAUSE
COINCIDENTALLY THE CPU DIDN'T NEED MAIN STORAGE

lr---+------+----- --------+-----+-----+-·
----~--+---~----+--~~----4----4--~--+-----+----~~F

REFRESH
GRANTED

I

Table 2-9. Interface Sig111als References

Function Signal Can be Scoped on Pin:

Storage Initiation Main Storage Clock 812-19
Access Enable 812-25
Refresh Req. (To CTIJ) 812-31

Addressing Address bits 00-18
Address 14 B11-16

13 811-13
12 B11-33
11 B11-19
10 B11-50
09 B11-37

8 811-70
7 B11-57
6 811-86
5 B11-73

.... 4 B12-34
3 B12-39
2 812-26
1 812-94
0 B12-95

X3 B12-75
X2 812-44
X1 B12-45
XO B12-58

Data Data Bits 00-15 To From
00 A11-72 A11-27
01 A11-73 A11-26
02 A11-74 A11-22
03 A11-71 A11-24
04 A11-70 A11-4
05 A11-69 A11-6
06 A11-56 A11-10
07 A11-61 A11-11
P1 A11-47 A11-28
08 C11-72 C11-27
09 C11-73 C11-26
10 C11-74 C11-22
11 C11-71 C11-24
12 C11-70 C11-4
13 C11-69 C11-6
14 C11-56 C11-10
15 C11-61 C11-11
P2 C11-47 C11-28

Error /Recovery ECC Error B12-37
ECC In, Lwr, A11-95

Upper C11-95
ECC Present Upper, C111-9C

Lwr A11-96
Out-of-Range B12-32
Special (MS-SPEC) 813-53

SLX1-ECC B13-69
SL1X-ECC B13-68

Write Controls Store Upper Byte B13-66
Store Lower Byte B13-67

2-131

addressing limit of storage) or by mistake
(maintenance man has removed a board within
contiguous storage). When an address is decoded
in MS, the Board Select is active for only the set
of modules used for that word; the left-most byte,
right-most byte and if ECC is used, the ECC
module. Board Select in turn generates a Board
Present signal to detect the missing HH module.
Board Present will be active from only 1 of 16
modules in either card rows A, 8, or C. This singly
active signal (1 of 16) al lows the outputs of al I 8
modules, in each of the two zones, to be
connected in common. Each zone is wired to the
common point on the input of the out-of-range
circuit. Additionally, when ECC is not present,
the jumper module that replaces ECC also
provides the disabling of the ECC gates on the
out-of-range circuit. An added feature of
out-of-range is the detection of the most
significant CPU relocation bits. If any of these
bits are active, storage reports this as out-of-range.

2. ECC Error

ECC Error on the HB module detects the Bad
Data signal from either the left-most or right-most
byte. From Figure 2-121, when the bad data line
is active an irrecoverable error has occurred. The
Bad Data signal is sent back to the CPU as ECC
Error to force the CPU into a trap routine that
will be software controlled. Basically, the trap
routine will read the error log in storage in an
attempt to decipher what happened and possibly
recover from the multiple errors.

3. Parity (No ECC)

The parity bit is generated and detected in the
CPU. It is shown in the storage logic diagrams as
either PO or P1. Since the CPU generates the
parity bit on a byte basis, MS stores the parity
bits as if they were data bits - MS cannot
differentiate between data and parity bits.

4. Jumper Module (No ECC)

The jumper module disables ECC functions on
other modules as follows:

a. ECC In - disables the out-of-range logic from
detecting storage modules that are not plugged
into row B - the ECC row. The out-of-range
logic on the HB module will still detect
out-of-range on the most significant address
bits.

b. ECC PRES - Grounds line to CPU indicating

2-132

that ECC is not present. When ECC is used, the
line is permanently held active.

c. FIXBIT - Grounds and disables write control
from ECC. Only the CPU can then initiate a
write operation. With tCC, the corrected data
will be written back into MS.

TIMING

As shown in Figure 2-115, the timing control is primarily
single-shots for timing. For ECC, the error log control
logic is on this module. To allow ample set-up time in the
single-shots used for timing, the clock pulse, precedes the
Access Enable. The clock pulse used to initiate storage
timing is generated by the CPU as part of its standard
timing, so that it appears precisely related to all CPU
events. For reference, the timing of MS will be relative to
the leading edge of the clock pulse.

There are two timing diagrams used for storage depending
on whether or not the ECC feature is used. Timing is
shown in Figure 2-118 (with ECC) and Figure 2-117 (no
ECC). For reference on these figures, the abscissa has two
timing scales. For convenience, the timing is referenced to
the clock pulse so that scoping waveforms is easier. When
referring to internal memory operations, the address
stable time (200 nanoseconds after the clock) starts the
true initiation of a storage access.

Figure 2-115 shows the relationship between the timing
adjustment of each single-shot. The flagged corners of
most of the blocks mean that the timing is adjustable.
Next to the flag is a number corresponding to the physical
location of the potentiometer as shown in Figure 2-116.
Because of the intricate dependence of one adjustment to
others, as shown in Figure 2-115, timing is adjusted at the

factory. For example, adjusting the Column Select Delay
also affects Strobe, Write and Digit timing. The following
is a description of each significant timing signal shown in
Figure 2-117 and Figure 2-118.

Main Storage Clock

Thi:s pulse occurs 180 nanoseconds before storage
activates Access Enable. The clock conditions timing in
anticipation of a storage cycle.

Address Time FF

This flip-flop sets when the address is stable. Holds CPU
address active during entire storage cycle. It is cleared by
the time-out of strobe timing.

MS CLOCK START

.,,
Ci"
c
Ci
~
~

~

~

-t
I\.) 3·

~-VJ
w .,,

0 :e
c ;·
ca
"" Ill

3

SET
ADDRESS

SET
ADDRESS
WIDTH

COLUMN
SELECT
DELAY

9.

COLUMN
SELECT
WIDTH

ADDRESS
TIMING

FF

CLEAR
ADDRESS

CLEAR
ADDRESS

WIDTH

COLUMN
SELECT
TIME

ADDRESS
IMING

STROBE STROBE DATA REG. CLEAR
DELAY WIDTH

I 4
INVERTERS

WRITE WRITE WRITE
DELAY WIDTH TIME

PRE-CHARGE PRE-CHARGE PRE-CHARGE
DELAY WIDTH TIMING 11.

DIGIT DIGIT DIGIT
DELAY WIDTH TIMING

GATE
ADDRESS SAMPLE
ENABLE ACCESS ENABLE

NOTE: NUMBERED FLAG MEANS ADJUSTABLE - REFER
TO FIGURE 2-116 FOR PHYSICAL LOCATION OF POT.

NORMAL ~TIMING
LATE MARGIN
EARL V SWITCH

PRECHARGE WIDTH c[PG w 0

GATE ACCESS ENABLE {GATE AE 0

PRECHARGE DELAY c[Pc D 0

ADDRESS SET ~ 0

ADDRESS CLEAR ~ ©

COLUMN SELECT DELAY rl cs D ©

WRITE WIDTH c[WR w 0

WRITE DELAY rl w D ©

COLUMN SELECT WIDTH ~ ©

STROBE DELAY c[~ @

DIGIT DELAY q DIG D @

DIGIT WIOTH q DIG w @

NOTE: TIMING HAS BEEN FACTORY ADJUSTED

Figure :2-116. Potentiometer Adjustment Locations

2-134

'Tl ca·
c
~
~
:"'
~
Q
;

CCI
CD

~
3·

":-l
;·
cc - co w

01 g
z
Ill
:I -o
Cit
CD
n
Q
:I
c.
(')
<
f)
a;
~
3·
~

MS CLOCK
B12-TP2

ACCESS ENABLE
B13-TP20

AODRESS TIMING
B13-TP9
PRECHARGE TIMING
B13-TP7

COLUMN SELECT
B13-TP18

STROBE
B13-TP1

STORAGE REG CLR
B13-TP2

WRiTEYiiiiE
B13-TP23

DIGIT TIME
B12-TP24

STORE
(UPPER OR LOWER)

DATA IN

REFRESH REG
{EVERY 41.6 US)
PARITY

DATA OUT

OUT OF RANGE

020
0

020'
100

120
200

220
300

320
400

420
500

:1
I

520
600

620
700

720
800

1 ru i

I
I

I i.._ 195 ...
~ -.

I I _r;;;- 175 l
; ..

215 _ ... I l ...- -.,
msf•r il T T 1=

, ..
l ! cr 228

I. 370

!]"I

m~ 1208 350 l 4----: 336 _.._ H28-, r- ~ I l E2361316 E6aaJ1&a

~021
T

80--+ I
E405 485 E502 I 582 I

'4+-90-llj I
L E490 }570 I

I+-t---123---11 -+i 52 ~
I

E:i23 J 603 i E61Z l 692 I

f r-93---+j ~133~

l E493J 573 T E693l173

l I
E160f 1 1 1

I I
I J I l

~SET IN STORAGE rrREO IN STORAGE I
r !.-INTERROGATED--. l J I

IN CPU VOATA FROM LAST CYCLE 'cLEAREO J
l J .. f"-..NEW

1
DATA

i I
l l

10 1 ©. (1 rT400(1A02· r---=t T560 (1A16-~) ~TOOO (1A16-TP19 AND 24 TP23

NOTES: ffi SYNC OCCURS EVERY CYCLE.

OCCURS ONLY DURING AN MS-RD (SWEEP) OR MS-WR (ENTER).

TIMES LISTED TO RIGHT OF PULSE ARE STORAGE TIMES; TO LEFT ARE PROCESSOR TIMES; BETWEEN
ARROWS ARE SYNC TIMES.

PROCESSOR
020'4--TIMES
900 +--STORAGE TIMES

~

MS CLOCK
B12-TP2

ACCESS ENABLE
B13-TP20

020
0

020'
100

020"
200

120
300

220
400

320
500

420
600

520
700

f I J

I j I

: ru I t
... 195--+--+-..t I r I

620
800

720 +-PROCESSOR TIMES
900 +-STORAGE TIMES

1000

1005 1030

I E095' 175 I I t i------... '--+----+-----+-----+----!..-+-----+--_;....---1------l------l.---~
... ~--+--215--+----+-., I 1 ... ~ _ __._169---+~ ... "1

ADDRESSTIWNG I Ernrf~1~-5---~---~---~--~I~---~-~, -~---E-6~H~19oo

B13-TP9 L .. i....---1-------+---~1-- 370 -~-~- I ----------
~ I I --+---22B--+-----,.-1 I I

PRECHARGE TIMINGr 1

B13-TP7 I E028·l 208 E170 350

COLUMN SELECT -~___. ____ ,__335 -~----+--+,

B13-TP18 I E136 l 316

STROBE
B13-TP1

L.~___. ___ ___,,__ ___ r505~--+-----+---~-::i

E3o5l~5
STORAGE REG CLR
B13-TP2

WRITE TIME
813-TP23

1

l+-128~-..;:-l l E688 r--8-68__._ ___ __._ ___ _

02~t- I
E~2~~58-2~~~-,~-l--'------+-----~------

1 o -+I !++- I
E390j570

144-123---1-t_ i.- 52-+j
l emJ703 I E612l 1_92 ______________ _

I.-+-93-+j i..- 133--+j

DIGIT TIME
B12-TP24

l E493f673 I I E693l873
1--~~-+-~~-+-~~-+-~~---1~~~-+-~--;-+-~---' I : "----l~~~l--~~

STORE
(UPPER OR LOWER)

DATA IN

moJ I
I
l

1 1~---------
1

J I

1--~~-'--~~~~~-1-~~---~~~...___.J I I l'""'-~~---+-~~---+~~~
JL_SET IN STORAGE ,J CLEARED IN STORAGE

REFRESH REG
(EVERY 46.8 US) ECCi

DATA OUT I

r "-INTERROGATED....... L l ~ 1
INCPU --.,--------+-----L--~,----~,-4-------+-~lt----~-----+-----+------

1-----i-----i-------1VDATA FROM LAST CYCLE CLEARED -11

OUT OF RANGE

ECC ERROR

I
l
I
l

1------+-----+----,+-t-----'~NEWDA\A
I I

F CLEARED

I l
I

.....
r -!l NEW ERROR

!...cvTOOO (1A16-TP19 AND 24)

I 14-ECC~
©T400~ CALCULATION

(1 A02-TP23) I TIME
~(0 T560
~(1A16-TP8)

NOTES: ffi SYNC OCCURS EVERY CYCLE.

2 OCCURS ONLY DURING AN MS-RD (SWEEP) OR MS-WR (ENTER).

3 TIMES LISTED TO RIGHT OF PULSE ARE STORAGE TIMES; TO LEFT ARE PROCESSOR TIMES;
BETWEEN ARROWS ARE SYNC TIMES.

ECC X1AND1X

ECC SPECIAL
__ _I

DATA OUT ~ 1
...L.._

10 MIN J OMIN
_.

~~L I --
i... I 60MAX 10 MIN

20 MIN -----ti+it--~

Figure 2-119. ECC Special Sehtction Lines (Timing)

Addressi111g Timing

The timing is derived from the Address Time flip-flop.
The activation of Address Timing requires either Access or
Refresh be present. If storage is in an idle state, the
address will not be enabled and, therefore, minimizes
power consumption.

Pre-Charge Time

As shown in Figure 2-107, the negative transition of
precharge occurs shortly after address :stabilization. In the
element pre-charge acts as a clock pulse to allow the
address to become stable in the row and column decoders,
in preparation for a column select. When pre-charge starts
positive, the chip refresh amplifiers are clocked to write
data back into the respective rows and columns, and also
clocks data out of the chip for sensing.

Column Select Time

As shown in Figure 2-106, column select time gates the
decoded column selects so that 9 c:hips (or bits) are
enabled using chlp enable on the element. Column select
occurs at least 30 nanoseconds before the end of
pre-charge so that the selected cells within the chip
present data to the chip refresh ampli1fiers. Column select
is active until completion of any writing of new
information into the chip.

Strobe Time

The strobe gates data from the sense amplifiers to the
Storage Data register. Strobe timing adjustments are the
same as Storage Register Clear except it is delayed by
using 4 series inverters.

Storage Register Clear

Storage Register Clear is activated with the timing
adjustments for strobe. Holding the register clear during
:strobe time improves the access time by allowing the
:sensed data bit to set or leave clear its corresponding SDR
lbit position. Because strobe is delayed from storage
1register clear, the trailing edge of strobe outlasts storage
1register clear by that delay. This delay allows the data bit
to determine the state of its respective SDR bit.

Write Time

Write Time enables the read/write input of the chip
allowing new data to be written in the cell selected by
(active) column select and the address. Write Time is
active for the last 90 nanoseconds of column select time.

Digit Time

Digit Time gates the data bits from the data fan-out to the
chips as shown in Figure 2-107. When digit time is active,
data can be gated to storage by two paths: the usual path
is data to be stored from the CPU. The other path is
(when ECC is installed) the corrected data from the ECC
checking logic being written back into storage. In either
case, the timing must be active long enough to gate cor­
rect data in and late enough so that ECC has enough time
to correct the data. Digit time terminates after column
select is terminated.

ERROR CORRECTION CODING

An introduction to Error Correction Coding (ECC) is
found in Appendix 2A. The ECC used for storage is
implemented on a per byte basis to save time spent on

2-137

reading a word from storage, check it, calculate new check
bits for the new byte in conjunction with the entire word
and then store it. The steps for storing one byte are shown
in Figure 2-120 and are as follows:

1. Initiate storage to read the whole word.

2. Send a new byte from CPU so its check bits can
be generated (here is where the time-savings is
done - new check bits are being generated
while the whole word is still being read from
storage).

3. The whole word is read from storage into SDR
and its ECC checked.

4. New byte with its generated check bits and old
byte with its check bits are written back into
storage.

When the whole word is read, the check bits are compared
logically against the same data bits that generated them.
Using the decoding of check bits and data bits provides
the capability to correct a single error when it occurs.
Should multiple errors occur, the decoding process can
recognize that error correction is not possible and
therefore interrupts the CPU because of a storage
malfunction. When the single error is corrected, a log
entry is made. (Recurring correctable errors are noted by
software to determine a threshold, beyond which, a
maintenance call should be made.)

Coding Check Bits

The coding of the check bits has both theoretical and
practical constraints. Theory says that only five check bits
will suffice to correct a single error and detect double
errors. Practice takes advantage of off the shelf hardware
parity generators having up to eight inputs. To code the
check bits, the "1" or active state of the data is used
because an active logical state implies correctly working
circuitry. In other words, like odd parity, the lack of a
signal should not be used because a disconnected cable
may be interpreted as if the logic was actually present.
Coding the check bits therefore uses the "1" state of the
data.

Generating Check Bits

Choosing the data bits for each check bit must be done
systematically so that the generation and checking are

2-138

identical. The methods used to choose the check bits
theoretically guarantee single error correction and double
error detection (SEC-DED). Using Table 2-10, the data bit
code is generated. From the decimal numbers is the
conversion to its binary equivalent. Note that every
column is therefore distinct. By simply counting the
number of ones in a column determines the weight of that
column. Using only columns of odd weight (i.e., weight 1,
3, or 5) mathematically simplifies double error detection
logic. From the table, the check bits C1 through C5 are of
weight one. The number of required check bits is
determined from formulas proving Hamming error codes
and not necessarily the number of weight-one binary
numbers. The ten available data bit codes are of weight
three, to code the 8-bit byte. To determine which two
codes are not needed, the practical considerations of logic
implementation take over. First, however, refer to Table
2··18 for constructing the error coding matrix. Eight of the
ten data bit codes (weight 3) and five check bit codes
(weight 1) are reproduced from Table 2-10, in the
identical format. Across each row, the number of one bits
is counted and tabled under Number of Inputs. In all
rows, except one, there are 6 input gates. For example,
Q€merating check bit one, the five one bits from data bits
0, 1, 2, 4, and 6 are gated together.

To reduce any input or output loading problems, it is
desirable to load each gate equally. The two bits
eliminated from the ten originals would have caused
uneven gate loading. The generation of the five check bits
result from using Table 2-11 to implement the logic. Each
parity generator makes a check bit produce even parity
from the input data. Upon completing the check bit
generation, the 8 data bits and 5 check bits are stored.

Correcting Data

When the stored data is read from storage and loaded into
SDR, (Figure 2-120) the data and check bits are
cross-checked for errors. The data to the corrector logic is
the same polarity as the generated data even though the
storage element and the data register perform one
inversion each. The input to the syndrome bit generator is
the same eight data bits that produced the five generated
check bits and those five check bits. The output is called
the syndrome bit to differentiate between the check bit
alone and the data combined with the check bit. For
example, syndrome bit 2 contains data bits 0, 1, 3, 4, 5
and check bit C2 as shown in Table 2-11. The output of
the syndrome generator is sensed for a "1" indicating a
failure in one of the input bits. To recover the bad data
bit, three-input AND gates are used in a coding scheme
shown in Table 2-11. For example, to recover data bit 0,
syndrome bits 1, 2, and 3 must be in an active state. The

'---.

ER UPP
BYT E

--

ER LOW
BYT E

... ..

ADDRESS

+

0-1
ECC
BITS

i----

8·15,
ECC BITS

CORRECTED OLD !3YTE \llllTH ECC

CHECK
BIT DISCARDED

GENERATOR t-1 STROBE

I STORE UPPER

I
I ,, I ~,

I
L~

~ SENSE
_ ... SOR ... ERROR ... FAN-IN ~ -...

AMPS CORRECTOR (OLD BYTE)

!--·-.. ----------·-------------

SENSE SOR ERROR DISCARDED FAN-IN
_h. AMPS CORRECTOR ~--__.... (NEW BYTE) I----... ,..

r-+-

~~

NEVIi
CHECK STORE LOWER ... BIT liV'l't'" ,.. 1----

GENERATOR

ECC GENERATED NEW BYTE

Figure 2-120. Storing Lower Byte with ECC

2-139

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 DECIMAL NUMBER

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 BINARY EQUIVALENT

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 I 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 I 0 0 1 1 1 1

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1

I
1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

WEIGHT
0 1 1 2 1 2 2 3 1 2 2 3 2 3 3 4 1 2 2 3 2 3 3 4 2 3 3 4 3 4 4 5 (NO. OF ''1's" IN COLUMN)

C1 C2 C3 C4 C5 CHECK BITS IWT 11

0 1 2 3 4 5 6 7 8 9 DATA BIT CODE (WT 3)

Table 2-10. Error Coding Table

Table 2-11. Syndrome IBit Generating Matrix

DATA BITS

I 0 I _!_J_z I 3 I 4 I
S1 1 1 1 1

S2 1 1 1 1

SJ 1 1 1

S4 1 1 1

S5 1

NO. OF ACTIVE
11\IPUTS 3 3 3 3 3

syndrome bits used for recovering each data bit are shown
in each column of Table 2-11 with the logic gate-input
requirements at the bottom of the column. Note that if a
check bit failed, only one syndrome bit will be active. For
a single data bit error, the recovery generation is defined
according to Table 2-11. Any other error is
non-recoverable.

Error Interpretation Control

The syndrome bits are decoded into three error
interpretation classes as shown in Fi!gure 2-121. These
three classes cover all the combination:s of syndrome bits
needed for error interpretation. Once the syndrome bits
generate the control signals, corrective actions are taken.

5

1

1

1

3

When all syndrome bits are "O" the data from storage is
good. Using the logic in Figure 2-121, the syndrome bits
are checked for unrecoverable errors called Bad Data, and
recoverable errors called FIXBIT. When unrecoverable
errors occur, the Bad Data signal is sent to the processor.
The FIXBIT signal controls the write timing discussed in
the paragraph titled Write Time and indicates that
correcting the data will be attempted" In the case of all
syndrome bits being "O", there are no active outputs for ·
FIXBIT, Bad Data or the eight toggle c:ontrol gates which
indicates good data.

There are two kinds of correctable errors; either data bits
or check bits. The difference botween failing data bits or
check bits will be the number of active syndrome bits. For
example, i1f data hit 7 fails, by using Table 2-11 there will
be three syndrome bits S3, S4, and S5 active. If check bits
C1 fails only syndrome bit S'I will be active. In other
words, by decoding the syndrome bit~; using Table 2-18,
the erring data bit can be corrncted by using three-input
AND gates and check bits can be corrected with one

I

2-141

CHECK BITS
NO. OF

6 7 c, Cz C3 C4 C5 INPUTS

1 1 6

1 6

1 1 6

1 1 1 6

1 1 1 5

3 3 1 1 1 1 1

active and four inactive syndrome bits. Across the bottom
of Table 2-18 is the number of required active inputs
which is either one or three. When one or three syndrome
bits are active the combination of bits will decode into a
data or check bit and therefore the error is correctable.
The error interpretation logic will activate FIXBIT and
attempt to correct the error. From Figure 2-121 either
one or three active syndrome bits causes Bad Data to go
low and be interpreted as the data has been corrected.

Unrecoverable errors occur when the active syndrome bits
cannot be decoded into erring data or check bits. For
example, if two syndrome bits S2 and S3 were active,
there are no data bits or any single check bits of weight 2.
Similarly there are no data or check bits of weight 4 or 5.
When errors that activate syndrome bits with weights
equal to 2, 4 or 5 are sensed, they are interpreted as Bad
Data (active) with F IXBIT also active. The computer is
signaled that an unrecoverable error has occurred with the
Bad Data line which is the ECC error interface line, while
error recovery is attempted internal to storage with the
FIXBIT line. However, unless the proper syndrome bits
shown in Table 2-11 are active, data or check bits may be
incorrectly altered. With all five syndrome bits active for
example, all eight data bits would be selected and their
data altered. By providing some inspection logic, the data
and check bits can be examined for future reference.

Error Logging

When one or more syndrome bits are non-zero, an error
condition exists that may or may not be recoverable.
Recovery internal to storage occurs when the syndrome
bits match the matrix in Table 2-11. Any other
combinations of syndrome bits result in unrecoverable
errors which activate the ECC error line. In either case a

SYN\: :::~TIV:~ O_N_L_Y_F_O_R_E_R-IR O._R_(-S)_,.,,,.

SYNDROME BITS

OES NEGATIVE OMLY IJ'IHEN ALL
SYNDROME BITS ARE POSITIVE

PARITY
CHECKER

OUTPUT HIGH WITH EVEN
NUMBER OF HIGH INPUTS

BAD DATA

SEE TRUTH TABLE
{NEGATIVE ONLY FOR ERRORISI

SYNDROME BITS ::----i):a.----~-------------- FIXBIT

TRUTH TABLE FOR ABOVE LOGIC

CONDITION OF ERROR INTERPRETATION
NUMBER OF SYNDROME

BITS THAT ARE ONES BAD DATA FIXBIT GOOD DATA I CORRECTABLE ERROR I NOT RECOVERABLE

0 LOW LOW x

1 LOW HIGH x

2 HIGH HIGH x

3 LOW HIGH x

4 HIGH HIGH x

5 HIGH HIGH x

Figure 2-121. Error lnter1>retation Logic

log entry is made. To isolate the error, an error logging
register is used with the format shown in Table 2-12. The
10 syndrome bits for both bytes and the 4 board select
address bits are gated into a temporary storage register
called the log. As each new entry is made into the log, the
16th log bit is set signifying that new information has
been entered into the log. When the CPU inspects the log,
the 16th bit (or enter bit) is cleared by the CPU so that if
a subsequent inspection occurs before another error is
loaded into the log, the same error will not be inspected
twice. The log is a clocked register that is loaded only
when the clock input is high and then retains that
information after the clock goes low. As each error is
recognized by FIXBIT a new entry is made independent
of whether or not the last entry was inspected. At any

2-142

time if there is an entry in the Error log registers it is the
last error made.

ECC CONTROL
After the syndrome bits have been decoded into an erring
bit, that bit must be corrected before it is sent to the CPU
and then written back .into storage. If an error did occur,
the Error log register is loaded. The data or check bit
corrections occur independent of timing; however, timing
does control the writing back into memory. Since error
correction is done without timing for gating, the raw or

uncorrected data cannot be examined by hardware or
software for proper action. Using Figure 2-122, the data
paths for normal error correction and diagnostic
interrogation can be shown.

Table 2-12. Error Logging Format

DATA BIT LINE 12 13 14 15 11 10 9 8 7 6 5 4 3 2 1 0

FUNCTION BOARD SELECT ADDRESS SYNDROME BITS

ENTER NEW
SIGNAL NAME X3 AO A1 A2 SPARE 10 9 8 7 6 5 4 3 2 1 BIT INFOR-

MATION

INPUT PIN (B13) 45 46 35 36 52 51 42 41 76 63 77 70 71 58 57 -

OUTPUT PIN (B13) 48 47 38 37 49 50 39 40 74 75 61 62 73 72 60 59

Normal Error Recovery

The clearest way to understand a block diagram such as
Figure 2-122 is to take one data bit and follow it through.
Since the check bit is slightly more complex than data, it
will be more instructive to follow check bit, Cl. Check bit
Cl is corrected (when necessary) by generating a pair of
corrector bit lines coming from the syndrome bit
decoding logic and logically comparing these lines to a
pair of uncorrected lines (for Cl) from storage. The pair
of lines from storage is just bit Cl and its inversion
(complement). Logically combining Cl and its
complement with the Cl corrector bits controls the
correcting of Cl regardless of Cl originally being a "O" or
a "1 ". All data and check bits are corrected with this
scheme. Figure 2-123 ii lustrates how the corrected check
bits are corrected with this scheme. From Figure 2-123,
the corrected check bits are gated back to storage for
writing and the raw check bits are made available to the
CPU via the Error Log register for software to check.
Similarly the data bits are corrected and made available to
the CPU and then written into storage.

Diagnostic Control

Storage provides logic to interrogate the Error Log register
and the Storage Data register (which includes check bits).
A special signal line (MS-SPEC) from the CTA initiates the

+SOR 00 -SOR 00

+SOR 00

CONTROL FOR -TOGGLE
DATA BIT

00 (ACTIVE)

+TOGGLE

GATE FUNCTION
11========:=:=======-=====~======tl

A COMPLEMENTS DATA
B TRUE DATA
C,D OTHER FUNCTIONS

dia~1nostic inquiry along with two other special lines that
send the diagnostic code. When the MS-SPEC is active, the
other select lines are decoded as shown in Table 2-13.
Normally, the DAT A SE L gate is active in absence of
MS··SPEC so that data and check bits are automatically
corrected as shown in Figure 2-123. When another
diagnostic selection code is used, DATA SEL blocks all
error correcting. The signal code RAW CH K enables 10
raw check bits generated from input data to be read and
interpreted by CPU hardware/software. In contrast to
RAW CHK, signal code RD CHK (code 11) enables 10
uncorrected check bits read from storage to be gated to
the CPU in the format shown in Table 2-14 (right
column). For diagnostic maintenance, code 11 can be
used to help isolate failing memory bits.

ECC Write Controls

When a recoverable error occurs, the active FIXBIT
enables the write controls. These write controls are
controlled by the ECC FIXBIT. As shown in Figure
2-1 '24, the left-most (upper) and right-most (lower) bytes
overlap each other on the ECC card row B. For example,
either store upper from the CTA or FIXBIT upper from
ECC activate the write controls for the left-most byte and
the ECC check bits. The resultant write controls arythen
combined with the write and digit timing.

-SOR 00

+DATA SELECT

Figure 2-123. Data Correc:tion Logic

2-144

I
I

STORAGE l ST:A~AGE
I REGISTER

I
--r~~

I
I
I
I
I

i

--+--

Figure 2-122. ECC Detailed Block Diagram

I
f RAW BITS TO CPU (CODE 101

~' -DATA TO STORAGE (CODE 00)

READ CHECK BITS TO CPU {CODE 11 l

NOTE 1 CHECK BIT CORRECTOR LINES

LOG TO CTA
fCODE01)

UPPER BYTE I ZA1

EC C BITS I ZB1

LOWER BYTE I ZC1

Select Lines

SLX1 SL1X

0 0

0 1

1 0

1 1

ZA2 I ROW A

ZB2 I ROW 8

ZC2 ROW C

Figure 2-124. Write Control for ECC

Table 2-13. Diagnostic Selection Codes

Code

00

01

10

11

Signal Name

DATA SEL

LOG SEL

RAWCHK

RDCHK

NOTE: Detailed references for these
signals are found in Table 2-14.

2-146

WRITE CONTROL AREAS

!JPPER
BYTE

LOWER
BYTE

Function

Enables 16 corrected data bits from
SOR to CPU. Normally active in
absence of special signal. Normally
gates corrected check bits to SOR
for writing.

Enables 16 log bits to CPU in format
of Table 2-12. Entry bit clears
when code is removed.

Enables 10 check bits from input
data check bit generates directly
to CPU.

Enables 10 corrected check bits to
CPU.

-

Table 2-14. Detailed Diagnostic Selection Code References

Function Can be
Signal Name Select Name Scoped On Generated

Normal Data Data Error Log Check Bits Read Check Bits

Select Lines Fermat 281~53 +MS-SPEC I'\ i i i 1 u

2B13-69 • SLX1-ECC x 1 0 1 0
(X=don't care)

2B13-68 • SL1X-ECC x 1 1 0 0

2A11-27 MS-DROO Data Bit 0 Data Bit 0 Entry Bit ECC CHK 1 ECC CHK 1
2A11-26 MS-DR01 1 1 Syndrome 1 2 2

Bits
Data Lines 2A11-22 MS-DF02 2 2 2 3 3
(used for the 2A11-24 MS-DF03 3 3 3 4 4
bits selected) 2A11- 4 MS-DF04 4 4 4 5 5

2A11- 6 MS-DFOS 5 5 5 Spare Spare
2A11-10 MS-DF06 6 6 6 Spare Spare
2A11-11 MS-DF07 7 7 7 Spare Spare
2C11-27 MS-DFOS 8 8 8 ECC CHK 6 ECCCHK6
2C11-26 MS-DF09 9 9 9 7 7
2C11-22 MS-DF10 10 10 10 8 8
2C11-24 MS-DF11 11 11 Spare 9 9
2C11· 4 MS-DF12 12 12 ADDX3 10 10
2C11- 6 MS-DF13 13 13 0 Spare Spare

2C11-10 MS-DF14 14 14 1 Spare Spare

2C11-11 MS-DF15 15 15 2 Spare Spare

NOTE: When the select lines are in the format of a given column, that column of bits are gated on the data lines.

REGISTER OPTION

The Register Option (RO) comprises registers and
associated control logic that implement the following
features:

1. Basic Storage Protection

2. Relocation and Protection

3. Job Accounting

4. Error Correction Code (ECC)

The first three features are physically part of the Central
Processing Unit (CPU) portion of shared resources. The
ECC feature is located in the Main Storage (MS) portion
of shared resources and, for purposes of convenience, is
discussed in the paragraph titled Main Storage. This sec­
tion, therefore discusses operations of only the Basic Stor­
age Protection feature, Relocation and Protection feature,
and the Job Accounting feature.

The Basic Storage Protection, and Relocation and Protec­
tion features are mutually exclusive; that is, when the
Basic Storage Protection feature is present, the Relocation
and Protection feature is absent, and visa versa. The Basic
Storage Protection feature is used for MS sizes of 65,536
bytes or less, while the Relocation and Protection feature
is mandatory for MS sizes greater than 65,536 bytes. The
Job Accounting and ECC feature may be present in the
machine if either the Basic Storage Protection or Reloca­
tio!1 and Protection feature is installed. Figure 2-125
shows the placement of RO modules in chassis 1 of the
module deck. The modules comprising the Basic Storage
Protection and Relocation and Protection features are
both installed in locations 1 B27 and 1 B28 as shown. Since
all logic necessary for the Basic Storage Protection feature
is contained on module BK at location 1 B28, module BL
at location 1 B27 is simply a jumper board to interface
signals that would be processed by module BJ of the
Relocation and Protection feature if it was installed.

The Basic Storage Protection feature checks storage
bounds on write operations only for processor states 5, 6,
and 7. The check is made by defining both an upper page
limit and lower page limit beyond which a write reference
may not be made without error. lfa bounds error occurs,
the write is inhibited and a trao routine is entered.

The Relocation and Protection feature expands the MS
addressing structure from 16 to 20 bits allowing
addressing of up to 1 million bytes. This is accomplished
under program control by furnishing a 4-bit segment tag
value that can be either appended directly to the 16-bit
address in S, or used to select a 12-bit relocation constant

2-148

that can be added to the contents of S to relocate all
subsequent MS references by the amount of the constant.
The relocation constant is obtained from a segment
relocation table that contains 16 such entries. These 16
entries essentially divide MS into 16 separate segments for
purposes of providing areas of common usage, certain
combinations of read and write protection, and other
factors under control of the operating system. In addition,
the Relocation and Protection feature also furnishes both
read and write protection for all eight processor states.
This protection may be implemented in either of two
forms (1) reading or writing a particular portion of MS, or
(2) attempting access to a particular portion of MS
without regard to the type of reference.

The Job Accounting feature consists of eight 32-bit
registers, one per processor state. These registers log the
number of time slices (major cycles) assigned to each
processor state.

A block diagram showing the address and data paths to
and from the RO is shown in Figure 2-126. Since the RO
is located between the S and D registers and MS, all
address and data bits put into these registers must first
pass through the RO before going to MS. An address put
into S may be used to either address a location in MS or a
register in the RO. If addressing an MS location, the
address is checked for bounds protection and, if the
Relocation and Protection feature is present, added to the
relocation constant to generate the expanded 20-bit
physical memory address. If addressing a register in the
RO for purposes of reading or writing the register, the
address is routed through processor and register select
logic in the RO to select the appropriate register. An
address used to access an RO register must be loaded into
S from only transient registers 1Eor1 F of the BRF. Data
loaded into the D register is stored in either MS, if
addressing MS, or in an RO register, if addressing the RO.

BASIC STORAGE PROTECTION FEATURE

The Basic Storage Protection feature is implemented by
three 16-bit registers, a compare network, and MS write
inhibit logic. One bounds register is assigned to each of
the processor states protected: 5, 6, and 7. The format
for each of the bounds registers is as follows:

~JO 07 08 15 I
UPPER BOUNDS LOWER BOUNDS

MODULE
LOCATIONS

_,
0
a:
I-z
0
t.l
Cl a:

AR

1826

BASIC
PROTECT
FEATURE -------------

C3' I-
t.l en w

<(I-
.cE. 0

a:
a: a..
w t.l a.. en :ii:
:::> <(..., ca

BL BK

N
~ ~

z z
0 0
~ ~
<(<(
t.l t.l
0 0 _, _,
w w
a: a:

BJ BH

---------------RELOCATION
AND

PROTECT
FEATURI:

1827 1828

Cl
z
~ z
:::>
0
t.l
t.l
<(
ca
0 ...,

AP

1829

Figure 2-1215. Installation of Either Basic Storage Protect or Relocation and Protection Feature

2-149

~
O'I
0

BRF ALU~ --.- FAN-IN ~

RO DATA

DATA ... D __. REG
--.

REG
"II" OPTN

[:ip]
J/A

DATA

... s 16-BIT ADAS
REG

......
DISPLACEMENT 20-BIT ADAS ...

-..
[PHY ADAS]

Figure 2-126. Register Option. Block Diagram

__.
DATA

~ FAN-IN
ALU

ECC
ECC DATA

MS DATA
MS

The bounds protect concept is based on dividing MS into
pages of 256 bytes each. The upper bounds half (bits 00
through 07) designates a maximum MS page number,
whereas the lower bounds half (bits 08 through 15)
designates a minimum MS page number. When the upper
and lowHr bounds are equal, the MS write references are
restricted to that one page. When the 1Upper bounds equals
FF 16 and the lower bounds equals 0015, no main storage
protection takes place.

Logic of the Basic Storage Protection feature used during
normal bounds compare operation is shown in Figure
2-127. Each half of the three bounds regisers feeds a
corresponding selector enabled by processor select signals
ROST-1 XX and ROST-X1 X. These select signals are
derived from the logic shown in Figure 2-128 and are
generated for either of two conditions: normal operation
(MS reference) or register read/write. For either case,
three ROST signals are generated which represent the
processor number in binary form. During normal
operation, the ROST signals are generated from
corresponding EXCT signals from the resource allocation
network, which defines which process;or has been granted
the present time slice. During a bounds register access
(read or write operation), the ROST signals are derived
from bits 8, 9, and 10 of the S-register. These three bits
define the processor number in either a Read Register
Option (RRO) or Write Register Option (WRO) MLI, for
specifically accessing a particular RO register. These bits
are enabled by RO-SPEC, which is generated during an
RO access (see the paragraph entitled RO Reference
Signals). When selected by a particular value of ROST
signals, both halves of the bounds register selected are
routed through the corresponding selector to individual

bounds compare networks. Each network is also fed with
the MS page address contained in bits 0 through 7 of the S
register. These 7 bits of S are also routed to MS as
ROS-MS bits 0 through 7. The two bounds compare
networks make the following comparison of the page
address agains the upper and lower bounds limit:

Page !\!umber Less Than or Equal to Upper Bounds
Limit

Page Number Greater Than or Equal to Lower
Bounds Limit

If both these compare conditions are met, each compare
network generates a low output which is combined with
enable (fi+6+7) · MS-WR. This enable indicates that
processor state 5, 6, or 7 is executing an MS write
operation, the necessary prerequisite for performing a
basic storage protect bounds check. The result is to make
ROACCESS go high to permit the write operation to take
place.

2-151

If either compare condition is not met, i.e., page address
greater than upper bounds limit or less than lower bounds
limit, ROACCESS goes low to abort the write operation.
Logic for setting up the abort condition is shown in
Figure 2-129. The low ROACCESS signal clears the
Outbound flip-flop to generate a low from the Q output,
provided the System Control Panel has not requested an
RO access (CONST-RO is low). This low is sent to the
STOREUPP and STORELOW gates to disable them, thus
forcing MS write signals STOUPPMS and STOLOWMS
low. In addition, and low flip-flop output is combined
with the STOREUPP and STORE LOW signals to generate
OUTBOUND. This signal is sent to the trap routine
starting address logic (see the paragraph entitled Set Pp
Logic) to cause a jump to the MS parity error trap
routine.

The four extended MS address bits RO-MSXO through
RO-MSX3 shown connected to ground on Figure 2-127
are so connected to eliminate a floating condition that
might be interpreted by MS as extended address bits set to
"1 's". As discussed in the paragraph titled Register
Option, this basic storage protection module, type BK, is
interchangeable with relocate and protection module BH
if the Relocate and Protection feature is installed. Since
the Relocation and Protection feature uses these four bits
as the upper four-bit extension to the 16-bit address in S,
these bits must be purposely grounded out if the basic
protection feature is installed.

RELOCATION AND PROTECTION FEATURE

For discussion purposes, the relocation and protection
portions of the Relocation and Protection feature will be
treated as separate functions. During an actual MS
reference, however, the two operations are performed at
the same time.

Relocation

The general procedure for relocation is shown in Figure
2-130. The 16-bit MS address in S, obtained from the
BR F register as defined by the Load S µI X-field, is called
a displacement address. The register number is also used
to select a segment tag, a four-bit value that points to one
of sixteen 24-bit entries in the segment relocation table.
This segment tag resides in a register of the segment tag
file corresponding to a register in the BR F, and is
addressed concurrent with the BRF register. In effect, the
Segment Tag register constitutes a four-bit extension of
the BR F register to permit the expanded addressing
capability provided by the Relocation and Protection
feature. The combination of the BRF register contents

·--· UPPER
BOUNDS

REC

I
I
I
I

r-{4}--j- RO·MS
l. - I XO-X3

5

+ROST-1 XX-------

6

LOWER
BOUNDS

REG

5

6

1

+ROST·X1X---•.-..... -+-----'

I
I
I
I
I

+ROST·XX1 --------i---..a..------
+ROMS·WR ----.-----i---..a..------

REG
SEL

(5+6+ 7)·MS·WR

UPR
BOUND
COMP

LWR
BOUND
COMP

L•W/I BOUNDS
H+-OUT·BOUND

+ROACCESS

·SR·ROOO +-07 ----'----- i------- ·RO-MS
I 00•01
I
I <1 e2s) I

---·

Figure 2-127. Buie Protect, Bounds Compare

2-152

·----------------, I I
·EXEC·1XX--.._ _____ ---Jr--, I

I I

·SR·R008-

I I

I
I
I
I

+ROST-1XX --.l.-1-----1---1--~

I

·SR·R010-------­

+RO-SPEC--:-1--jt-------a __ _,

I 11026> I

'----------------· Figure 2·128. Generation of Processor Select Signals

·--, I I
+STOREUPP I I

I I
I I
I I

+STORELOW - I I
I I
I I
I I

+ROACCESS - I

+ROST·1XX

+ROST-X1X

+ROST-XX1

+STOUPPMS }MS

+STOLOWMS

I I

I 0 Q ·-+oUTBOUND

+CONST-RO

......-------------Cl.K

---------~--RO-MSRD

11026> I

Figure 2-129. Write Operation Abort Logic

2-153

LOAD
SµI

X·FIELD

-~ -
REG SEGMENT
NO. TAG REGISTER

(5 BITS)

4 BITS
~ I--

32 TAG REGISTER
PER PROCESSOR

....
"'

.... ...

REG. DEFINED
BYµI

X·FIELD

SEGMENT
RELOCATION TABLE

12 BITS

1
RELOC. CONST. 1---

I
I
I
I
I

00

DISPLACEMENT
ADDRESS

07 08

_..I PAGE BYTE

'l NO. AORS

...
PAGE NO.+

RELOC. CONST .

16 SEGMENT
ENTRIES I NEW PAGE NO.

BYTE
ADAS

Figure 2-130. Relocation Procedure

PHYSICAL
ADDRESS

15

s
REG

and that of the associated Segment Tag register is called
the system address. The right-most 12 bits of the segment
relocation table entry, called the relocation constant, are
added, right-justified to the page number portion of the
displacement address, to obtain a new 12-bit page
number. This number, combined with the unchanged bits
from the byte address portion of the displacement, forms
the 20-bit physical address to which the MS reference is
made. As far as bit numbering is concerned, the physical
address is considered to consist of two parts: a 16-bit
right-most part, made up of bit positions 0 through 15,
and a 4-bit left-most part, made up of bit positions XO
through X3.

Logic which perform the relocation function is shown in
Figure 2-131. The segment tag register file is addressed by
a combination of ESXXX-RO bits, which define the pro­
cessor state executing, and BRFXSO bits, which define
one of the 32 segment tags associated with the executing
processor state. The four-bit segment tag value is gated
through a selector to the S register extension and to the
Sb register. This selector is fed with segment tag values
from three sources: the Segment Tag register, pushbuttons
XO through X3 of the CONSOLE REGISTER ADDRESS
DI SPLAY pushbuttons, and S register bits 11 through 14.
During normal operation, the segment tag value is obtain­
ed from the Segment Tag register bv the absence of both
enables ROSTSE L and MSSTSE L. The segment tag value
is clocked into the S register extension at the same time
that the 16-bit displacement address is clocked into S by
CLKSTR and ENCLKSTR. Signal ENCLKSTR is gener­
ated for two different conditions, as shown in Figure
2°132. During normal operation, it is generated by
ENCLKSR which enables clocking the S register. During a
read or write into the RO, it is generated at E150 by
RO-SPEC. Simultaneous with clocking into the S register
extension, the tag value is also clocked into the Sb regis­
ter. This register holds the tag during1 indexing operations,
as explained later.

The segment tag in the S register extension is sent to the
segment tag table to select one of the 16 relocation entries
in this table. Each entry is 24 bits long, consisting of two
12-bit words. The right-most word consists of the reloca­
tion constant to be added to the displacement address in
S. The left-most word contains the maximum page
number and validity bit used for bounds protect evalua­
tion, as discussed in the paragraph titled Protection. Each
entry is stored in six storage elements, 4 bits per element.
When addressed by the segment tag value, the correspond­
ing entry is read from the storage elements with the
relocation constant being routed to three adder elements,
as shown in Figure 2-131. Although stored in the reloca­
tion table as a 24-bit entry, the software which reads or
writes the relocation table considers each entry to be 32
bits long, consisting of two 16-bit words. The right-most

word of this entry consists of the relocation constant in
bit positions 4 through 15 with bit positions 0 through 3
set to "O's". The left-most word consists of the validity
bit in bit position 0 and the maximum page number in bit
positions 8 through 12 with bit positions 1, 2, and 3 set to
"O's". This correlation between the two forms of a reloca­
tion table entry as interpreted by hardware and software
is shown in Figure 2-133.

The relocation constant portion of a segment table entry
addressed by the segment tag value is fed to three
relocation adder elements, along with bits 0 through 7 of
S (page number). In addition, the segment tag value itself
is fed to the bit positions 0 through 3 relocation adder.
The result is to form a 20-bit physical address from which
the location in MS will be addressed. (In reality, the physi­
cal address presented to MS is really only 19 bits long,
since the right-most bit (bit 15) is used in the MS interface
logic to develop separate byte write signals.) This physical
address is determined in one of two ways, depending on
the position of the CONSOLE MAIN STORAGE switch
on the System Control Panel. This switch generates enable
RELOCATE, as shown in Figure 2-134. Logic for generat­
ing this enable assumes that either an MS read or write
operation has been selected, and the Panel has been grant­
ed a time slice (CONST .. RO high). If the switch is in
the RELOCATE position, signal RELOCATE goes high to
enable the relocation adder. The result is to form the
physical address by relocating the system address, via
addition of the relocation constant, as shown in part a of
Figure 2-134. If the switch is in the OFF position,
RELOCATE goes low and the relocation adder is
inhibited. The result is to form the physical address
directly from the system address, bypassing the relocate
mechanism, as shown in part b of Figure 2-134. For the
case of relocation, signal ADAS MODE RELOC is ANDed
with RELOCATE. This signal is developed from the
Address Mode register, which indicates that relocation for
the selected processor state is specified.

The segment tag value routed to the Sb register is used
during load S operations to insure that once a reference is
made. to a relocated segment of MS, as determined by the
segment tag corresponding to a particular BR F register,
that all subsequent references to MS in the same program
will be . made to the same segment even through a

reference might be made from a different BR F register.
This sequence is altered, however, when an indexing
operation is performed which changes the relocation from
that of the original Load S µI to that furnished by the
segment tag of the index register. An example of using
segment tags for relocating MS references during both
non-index and index operations is shown in Figure 2-135.
This figure shows execution of a MOVM (60) MLI, using
both indirect addressing and indexing, in both pictorial
form and by a partial listing of the correspondingµ, I
program. (This partial listing has been simplified to show

+ESXXX-RO

-BRFSX
0-4

-EB90XX·E

+RO-SPEC

-SEGTAGWR--1t--------+----..J

·ROST-SH -1--------+-----11

-MSST-SEL--1t--------+----t1

+CLKSTR~----------------11
I

+ENCLKSTR I

I
I
I ·RO-SPEC - 1

·STMUX-S0-1---+--

SEL

+TX20-1t----------------·-1

+ENCLKSBR ,___ ______________

I
I

+SE GT AG

·SR00-03

----------------SEG RELOC TABLE
(RELOC CONST)

04
~

07

OB
~

11

12

i
15

RELOC
ADDER

·SR04-07-f--...©----

I

1628 L----------------

-ROS-MS
XO-X3

-ROS-MS
00-03

·SR·ROOB-14 __..___ ___ _

+SELBYTEO I
I

--©,___ ___ _.. ----1-------------------~~~:j~~~B-14
1627

---------------------------1-----------------------1
-SW-RELOC---------------------. I

I
I

+RELOCATE

1626 •• -----------------
I ------

Figure 2-131. Relocation Function Logic

2-156

0

v 0 0 0

/
//I /

I
I

/ I
/ I / /

/ / I
I / I

I /
/ I
0 3 4 7 8

v 0 0 0 0 0 0 0

O'S
ADDED

+RO-SPEC

I
~2XX~ I

WORDO

I ! (1s2s> I
.. ______________ _

Figure 2-132. Generation of ENCLKSTR

12 0

MAXIMUM
PAGE NO.

I'
I \

\ I
I

\
\

I \

15 I \
0 3 4

MAXIMUM
0 0 0 0 PAGE NO.

O'S
ADDED

WORD1

RELOCATION
CONSTANT

Figure 2-133. Segment Relocation Table Entry Interpretations

RELOCATION
CONSTANT

12

\

HARDWARE
SEGMENT ENTRY

(24 BITS)

\
\
\
\
\

\
15

SOFTWARE
SEGMENT ENTRY

(32 BITS)

SEGMENT
RELOCATION

TABLE

A. RELOCATE POSITION

SEG
TAG

TABLE

B. OFF POSITION

0

Io

DISPLACEMENT ADDRESS

7 B 15

PHYSICAL ADDRESS

DISPLACEMEfH ADDRESS

PHYSICAL ADDRESS

Figure 2-134. Derivation of Physical Memory Address from Console Main Storage Switch

2-158

3 60

MOVM

60 3 5 5

1200 ... 1200 2100 2100 + 60 = 2160
I

4000 4000 I 2400 I • 2400 + 400 = 2800 I
I I

I 21~0G I
I

1¢0 +
2800 I

MLI 1ST (LS2 fi1 READ 1ST WORD OF MLI Q1 TAG (4) • Sb
WORD READ STA P SAVE ADAS ON P ffi4 .. Q1 TAG REG
(RNI SEQ) SUM 01 UPDATE ADAS 4 .. 01 TAG REG

MLI 2ND (LS2 Q1 READ 2ND WORD OF MLI Q1 TAG (4) .. Sb
WORD READ SUM 01 UPDATE ADAS ffi 4 • 01 TAG REG

SOW TJ 1200 ... T3 4 .._ TJTAG REG

MLI JRD (LS2 Q1 READ JRD WORD OF MLI 01 TAG (4) .. Sb
WORD READ SUM Q1 UPDATE ADAS 4-.. Al TAG REG

SOW T4 4000-.. T4 @4-..T4TAGREG

1ST OPERAND (LS2 TJ 1200 -.. TJ 4 .,,... Sb
READ+ INDEX IDX M 2100.,,... Aµ, 60 +- Bµ IDX TAG (8) +-Sb

SUM TJ 2100 + 60-.. TJ @8.,,... TJ TAG REG

2ND OPERAND (LS2 T4 4000 .._ T4 4,.. Sb
READ+ INDEX IDX R 2400 Aµ, 400 +- Bµ IDX TAG (A) .. Sb

SUM T4 2400 + 400.,,... T4 ©A.,,... T4 TAG REG

Figure 2-135. Use of Segment Tag in Relocation and Index Operations

2-1591

only the concept of indexing using segment tags. As will
be shown in Figure 2-136, every write back into the

Segment Tag register from Sb must be initiated by an I DX
µI (except during an RNI sequence) even if an indexing
operation is not performed. As the picture shows, the
MLI transfers the contents of MS location 2160 (210),
specified by the contents of MS locations 1200 (2100)
which is addressed by the second M LI word and modified
by the contents of the index register (60) specified by the
MLI R1 field (3); to MS location 2800, specified by the
contents of MS location 4000 (2400) which is addressed
by the third M LI word and modified by the contents of
the index register (400) specified by the MLI R2 field (5).
The µI program listing shows how the segment tags are
initially chosen and then us~d by the rest of the program
to key off this original tag until altered by an indexing
operation. Initial selection of a segment tag is performed
by the LS2 µI of the RNI sequence to read the first word
of the M LI. For this example, the segment tag correspond­
ing to BRF register 01 (containing the first MLI word
address) is 4. This indicates that all MS references made
by this MOVM M LI are to be made to a segment of MS
addressed by the relocation constant contained in entry 4
of the segment relocation table (assuming the CONSOLE
MA IN STORAGE switch on the Panel is set to the
RELOCATE position).

The LS1 µI routes segment tag 4 to both the relocation
table and to Sb. The following register file write µI (and
all subsequent register fileµl's until an indexing operation
is performed) will write segment tag 4 back into the
Segment Tag register corresponding to the BRF register

selected by the µI so that all future references to that
BRF register will key off of segment tag 4. This is shown
at points Ci) and 0 of the µI listing. The segment tag
write at Q) is of no consequence since segment tag 4
original~corresponded to BRF register 01 anyway. At
point ~ , however, segement tag 4 is written into the
Segment Tag register corresponding to BR F register T3.
This means that a subsequent read of T3 will not key off a
tag associated with T3, but instead the tag associated with
01. In like manner, the 01 segment tag is written into the
Segment Tag register corresponding to BRF register T4 at
point @. At point ©, however, the segment tag is
changed by the preceding IDXµI, which routed a new tag
(8) to Sb corresponding to BRF register 3 being used as an
index register. This means that all subsequent references
to register T3 will key off of segment tag 8. In a similar
manner, segment tag A corresponding to BRF register 5
being used as an index register is written into the Segment
Tag register corresponding to T4 at point @

Logic showing the flow of data into Sb and back to the
Segment Tag register is shown in Figure 2-131. The seg­
ment tag is clocked into Sb in the presence of
ENCLKSBR. This enable is generated during execution of
either a Load S µI or an IDS µI when X=O (the condition
for indexing). The output from Sb is fed back to the Seg­
mmt Tag register through a selector. For writing into the
register from Sb both selector enables RO-SPEC and
ST-MUX are high. Register file write enable SEGTAGWR
is generated for a segment tag rewrite by the logic shown
in Figure 2-136. As discussed in the footnote to Figure
2-135, all writes from Sb back into the Segment Tag regis-

-----------------------------------• I
+TX60---...

I
I
I
I
I
I
I
I

.----t--110

CLK

+ENBRfW~---l-----------~

I
I
I

SEGMENT
TAG WRITE

I +RNl-F/f----"l"-------------------11.._ _ _,,

+BRFWRITE--11r-----------·------------------._ _ _..~ ;

I (1 s26) I

·-----------------------------------
Figure 2-136. Generation of SEGTAGWR for Segment Tag Re-Write

2-160

ter must be initiated by an IDX (0,2) µI whether or not an
indexing operation was actually performed, except during
an RNI sequence Therefore, thH write enable is generated
by two different conditions. During an RN I sequence,
SEGTAGWR is generated by RNl-F/F, indicating that the
RNI sequence is being performed, and ENBRFWR and
BRFWRITE, indicating that a register file write µI is being
performed and the ti me during execution of the µI that
the register is to be written into. Du1ring the sequences
following the RNI sequence, the index mechanism that
generates SEGTAGWR must be used. Execution of an
IDX µI sets the Segment Tag Write flip-flop. Then, when
the register file write µI is executed to perform the actual
write back into the file, ENBRFW and BRFWRITE are
generated which, in combination with the flip-flop out­
put, generate SEGTAGWR. As soon as this enable is
generated, the flip-flop is cleared to de-activate the write
enable until the next segment tag rewrite is initiated.

Protection

Protection is accomplished during the course of
performing relocation. This protection is implemented in
three different ways: validity bit protect, bounds protect,
and write/read protect. The validity bit and bounds
protect evaluations are made on the contents of the
left-most word read from a particular entry in the segment
relocation table. The write/read protect evaluation is
made on the contents of the protection matrix. All three
types of protect depend on whether or not protection is
defined for a particular processor, as determined by the
contents o·f the Address Mode rngister. Each of the three
protection schemes is discussed nn the following
paragraphs, referencing Figure 2-137.

Validity Bit Protect

Validity bit protect is performed by examining the
validity (V) bit (bit O) of th1~ left-most word of the
segment relocation entry read by the four SEGT AG bits.
If this bit is set ("1"), an access (either read or write) may
be made to the MS segment defined by the relocation
constant by generating ROACCESS. This bit offers the
operating system a more convenient means of preventing
access to a MS segment than using the !Protection matrix
described below. If the V bit is not set ("1 "), ROACCESS
goes low to inhibit the access and a jlllmp is made to a
bounds error trap routine.

The validity protect scheme is effective only if relocation
is enabled for the particular processor state. This
relocation enable is furnished by the Address Mode
register, which specifies whether a particular processor is

2-161

1mabled for relocation and/or protection. This 16-bit
register is composed of an 8-bit relocate (R) field and an
B-bit protect (D) field, as shown in Figure 2-138. When a
particular bit is set in either field, the corresponding
processor is enabled for the specified relocate or protect
condition. As the figure shows, four different
relocate/protect conditions are possible depending on the
combination of R and D bits. These conditions are
discussed below:

1. R·D = O·O - If neither relocation nor protection
is enabled for a particular processor, the physical
memory address is made up of the displacement
address and the segment tag value without any
reference to a segment relocation table entry.
This is the condition defined when the
CONSOLE MAIN STORAGE switch is set to
OFF position. In addition, none of the
protection checks wi II be made.

2. R·D = 0· 1 - This condition is unique in that even
though protection is enabled, none of the
protection checks is made. The reason is that
without relocation, a validity bit or bounds
check cannot be made. Without these checks, a
write/read protect check is not needed so it is
not made either. Essentially, then, this condition
becomes the same as an R·D = O·O condition.

3. R·D = 1 ·0 - If relocation only is to take place,
the segment relocation table entry will be used to
develop a physical memory address as discussed
under the above Relocation paragraph. Because
the relocation table is accessed, the validity bit
check will be performed automatically even
though protection is not enabled. Any other
protection check, however, will not be
performed.

4. R·D = 1·1 - Relocation and protection will take
place using the segment relocation table, and the
protection matrix as described in the Write/Read
Protect paragraph.

1=or the validity bit check, the R bit corresponding to the
present processor state is ANDed with the V bit from the
segment relocation table to set up the protect condition
previously described.

Bounds Protect

The bounds protect check is made by comparing the page
number portion of the displacement address (bits 0

+SEGTAG00-03

-SR-R000-03

v
BIT

MAX
PAGE

4-7

MAX
PAGE
8-11

r-M~;;G~ r CHECKER
1
__ .. _____

I
I ----1----+----11
I

I
I

LWR I
--~ I COMP I

-SR-R004-07 --©i---.,,,~~=--==-~:--tH I I

11 r LL __ _J

I 0~3 I

I I SEL ---

I R I
ADAS MODE REG I 4-7 I

I

G+-
1

I D I
I 4-1 I

+ROST-xxx---(D~-~-=---=-----~=--'""'

PROT MATRIX

+ROST-XXX
+PROTREAO

I
I
I
I

I

WR

RD

WR

RD

WR

RD

WR

RD

L __ _j

SEL

SEL

-SEGTAG00-03 4 >---------e---'

Figure 2-137. Protect Function Logic

2-162

V BIT PROT

BOUNDS PROT 0-3

WR/RD PROT

ALL LOGIC ON
MODULE 1828

00 07 I OEI 15

EJ7EI 3 4 5 6 7 I o 2 3 4 5 6 7 I
RELOCATION (R) BITS PROTECT (D) BITS

R

0
0
1
1

D

0
1
0
1

NO RELOCATION, NO PROTECTION
NO RELOCATION, PROTECTION
PROTECTIOH, NO RELOCATION
RELOCATION, PROTECTION

Figure 2-138. Address Mode Register

through 7 of S) with the maximum page number portion
of the segment relocation table entry. The maximum page
number, in effect, constitutes the upper boundary page
address of the MS segment to be accessed. If the page
number in S is greater than the maximum page number,
an MS parity error condition is generated by forcing
ROACCESS low. The check is made by two comparators,
each comparing 4 of the 8 bits comprising the page
number in Sand the maximum page number. The check is
made only if both the relocate and protect conditions are
enabled from the Address Mode register.

Write/Read Protect

The write/read protect check is made by examining the
state of a read and write protect bit assigned to each entry
of the segment relocation table. These read and write
restrictions are accomplished by means of the protection
matrix. The protection matri>e consists of a 16-bit Write
Protect register and a 16-bit Read Protect register assigned
to each of the either processoir states,, as shown in Figure
2-139. Bits 0 through 15 of each register represent the 16
segment entries 0 through F of the segment relocation
table. A processor may access a segment in MS only if that
segment number in the appropriate Write Protect or Read
Protect register of the protection matrix is a 0.

The protection matrix consists of four storage elements,
each element storing four bits (segment numbers) of each
of the 16 registers. A particular register is selected by the
three processor select (ROST) signals and the
PROTREAD signal. The PROTREAD signal serves a dual
function of selecting the Read Protect register during EO
through E3 of the processor's time slice (PROTREAD
high), and the Write Protect register during E4 through E7
(PROTREAD low). In this way, both write and read
protect checks are made on the selected MS segment.
Finally, the particular segment number of the selected
processor's Write Protect and Read Protect registers is
selected by the four SEGT AG signals through two selector

2-163

elements. The resultant protect bit selected is ANDed
with the R·D = 1 ·1 signal from the address mode register
to generate ROACCESS if the protect condition is met.

The result of these three protection schemes is to drive
ROACCESS high if the protect condition is met. If the
protect condition is not met, ROACCESS goes low to
inhibit an MS write operation, if requested, and generate
an MS parity error trap condition in exactly the same
manner as the basic protect feature discussed in the
paragraph titled Basic Storage Protection Feature.

Parity Error Register Extension

The Parity Error (PE) register extension functions as an
upper four-bit extension of the 16-bit PE register in the
Group II ERF. In this regard, it displays the upper four
bits of the physical address at which the last PE occurred.
Logic for the PE register extension is shown in Figure
2-140. The upper four address bits come from either one
of two sources, depending on the setting of the SYSTEM/
PHYSICAL switch on the System Control Panel. If in the
PHYSICAL position, selector enable SYSTEM goes low
and the PE register extension is loaded with the upper
four bits of the physical address via the four ROS-MS
signals. This physical address may be either the relocated
or un-relocated system address, depending on the setting
of the CONSOLE MAIN STORAGE switch. If the
SYSTEM/PHYSICAL switch is in the SYSTEM position,
enable SYSTEM goes high and the PE register extension is
loaded with the upper four bits of the system address
regardless of the setting of the CONSOLE MAIN STOR­
AGE switch. The address bits are clocked into the register
via CLKPE, at the same time that the PE register in the
ERF is clocked with the lower 16 bits of the address.

JOB ACCOUNTING FEATURE

A block diagram of the Job Accounting feature is shown
in Figure 2-141. The eight 32-bit job accounting registers
are contained in four storage elements as shown. Each

SEGMENT NUMBER

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

WAITE PROTECT 0
T

1
1

2

3

~-- t--~ --·+---1 ----1-----1---1-----+--+---f----t---+--f--------+---ll

- -. ·- -+· - --+--·-+-·--·__,>---~--+---+-- 1----1 1---l--- - -1--

PROCESSOR NO.

l
4

5

6

7

,---+--+--f---~--+--f----+--~----+---1

1---..__--+----L---~-- ___ J_--+----+---f---+---+--f---+---+--1----11

---+--+---l--+--+----l--+--+---+--+----+--l--+---1---l---I

____________ __ ·--+--1---1----+--.+-. --l---+----l---+-4---11---1--4----lf---1---1

READ PROTECT 0

1
1

2

3

~--i--+---+----4--l--+--~---l--4---1--l--4---1--+----+---I

PROCESSOR NO.

l
4

5

6

7

---+--+---+--+----~---l----~--+--4---~-+---1---+--+---+-~

---+--+----1---1---- I- --- ---l---+----+---l--+---+----l--+----+-----11

Figure 2-139. Protection Matrix

1----------- ·----------.. I I I I
-SE GT AG I I I I

00-03 I I I
I I PE I AO

SEL REG READ

I
EXT I LOGIC

-ROS-MS
XO+--X3 I I

I I I
I I I

+SYSTEM I I
I (102a) I I (1827) I

-----------1
.. ___ -----·

-CLKPE

Figure 2-140. Parity Error Tag Register

2-164

--EXEC-XXX 3 ADDER
3 HOLDING

J/A REG REG -
+RO-SPEC

+E4567 - 0-3 __.-

-t>ll- 3 -- ,,

I
16-19

• • ,,

4.7

4

20-23

[• . ..

8-11

- 4

24-27 c ~~ •

12·15

- 4

[
28-31

~~ ..
4

-J/AWRITE
E340 OR 740

-J/ACLOCK
E160 OR 560

FIRST
ADD

CARRY

0- [J . .rr--
J ·E4567 ~ -

Figure 2-141. Job Accounting Feature Block Diagram

2-165

4

r---

4

.---

4

.--I

4

~

J/A
ADDER

KO

1
LJ

1
LJ

~
u
ri

ALL LOGIC ON
MODULE 1829

register consists of two 16-bit words, each individually
addressable, as shown in Figure 2-142. The storage
elements are interconnected so that each element stores
the corresponding four bits of each 16-bit word. For
example, the top-most element in Figure 2-141 stores the
left-most four bits of both word 0 (bits 0 through 3) and
word 1 (bits 16 through 19). During normal operation
each element is addressed in two halves, wherein word 1 if
a register is read, incremented by 1 and written back
during the first half of a time slice (EO through E3),
followed by a read, increment, and rewrite of word 0
during the second half of a time slice. Occurrence of each
operation for incrementing each word of a register is
shown in Table 2-15.

During normal operation, a particular register is addressed
by the processor number specified by the three EX EC
signals, and the particular word of the addressed register
by signal E4567. During the first half of a time slice,
E4567 is low to read word 1 from the register. This word
is clocked into the adder holding register by J/ AC LOCK
at E 160. The holding register is used to hold the word
while the word is incremented by 1. This incrementation
occurs as soon as the holding register is loaded by uncon­
ditionally routing the word to the adder. The +1 added to
the word in the adder is generated through a NOR gate
from two different sources, depending on whether word 1
or word 0 is being incremented. During an increment of
word 1, the +1 is obtained from E4567, which is inverted
to the 1 state through the NOR gate. At E340, the incre­
mented word is stored back into the register by
J/AWRITE.

At E400, E4567 goes high to read word 0 of the selected
register. Incrementing and subsequent rewriting of this
word is performed in the same manner as for word 0,
except for the clock times and the source of +1. During a
word 0 increment, the +1 results from a carry-out, if
generated, from the most significant bit (MSB) stage of
the adder, indicating that the +1 added to word 1
produced an overflow. The carry-out sets the First Add
Carry flip-flop by J/AWRITE (E340 time). The resultant
low from the 0 output is fed through the NOR gate and
added to word 1 now in the adder.

Generation of J/AWRITE is accomplished by the logic
shown in Figure 2-143. The signal is generated for two
different conditions: during normal (MS reference)
operation to update the job accounting register contents

by 1, and during Panel-initiated operations to clear the job
acc:ounting register. For either condition, J/AWRITE is
generated at both E340 and E740 by the combination of
timing signals E3 or E7 and BR F WRITE. Signal
BR FWR ITE furnishes a pulse width of 60 nanoseconds,
starting at t40 of both E3 and E7. The two conditions
during which J/AWRITE is generated are defined by
enables NOT NULL and NOT CONS EXC J/A
SPECI Fl ED. Specifically, these enables eliminate all other
conditions during J/AWRITE could be generated: a null
state and a Panel state where an operation other than a
job accounting register reference (either read or write) has
been initiated. A further resolution of the job accounting
reference specified by the Panel is provided by signal L •
J/A READ. This signal inhibits J/AWRITE during a job
account register read operation, or discussed in the
paragraph titled Register Read. Therefore, the signal is
generated specifically for a write operation.

REGISTER READ/WRITE

Ruading and writing registers of the RO during other than
normal (MS reference) operations is performed· under
program control by the Read Register Option (R RO) and
Write Register Option (WRO) MLl's, and under manual
control from the System Control Panel. The R RO and
WRO M LI 's are each two-word M LI 's, of which the
second word of the M LI addresses a particular register by
register group number; processor number, if applicable;
and, in the case of two-word registers, a designator that
selects either word 0 or word 1 of the register. The
System Control Panel permits selection of a RO register
by setting the above register select information into the
CONSOLE ADDRESS REGISTER DISPLAY
pushbuttons. This section describes reading and writing
RO registers by MLl's only. Reading and writing RO
registers from the Panel is described in the paragraph
titled MS/RO and RF Read and Write.

The 16-bit format for addressing registers of the various
register groups, including the ECC feature, is shown in
Figure 2-144. Note that for selection of any RO register,
bits 0 through 3 are always "O's". The register group
numbers, defined by bits 4 through 7 of the address, are
listed in Table 2-16. Note that each register of the ECC
feature may be selected by two adjacent group numbers.
The complete 16-bit address for each RO register is shown
in hexadecimal form in Figure 2-145.

0 15 16 31

WORD 0 WORD1 I
Figure 2-142. Job Accounting Register Format

2-166

Table 2-15. Occu1rrence of Job Accounting Register Increment Operations

Time Signal Operation

WORD 1 UPDATE

EROOO-E300 E4567 ~ READ BITS 16-31

E160 J/A CLOCK i /A REG~HOLDING REG-.ADDER
--

EOOO-E300 E4567 +1 FROM E4567-ADDER

E340 J/A WRITE ADDER- J/A REG

WORD 0 UPDATE

E400-E700 E4567 READ BITS 0-15

E560 J/A CLOCK J/A REG-+HOLDING REG-..ADDER

E340 J/A WRITE +1 FROM 1st ADD CARRY FF

E740 J/A WRITE ADDER- J/A REG

----------------------------• I
+STOREUPP ~VRITE

+STORELOW--~:---L...--r
+RO-SPEC --il----­

J/A # I
I

LS:>J/A READ

NOT CONS EXC I ·-------
NOTNULL I =c~

J/A SPECIFIED _ _.111~--- =I),___E_34_o_-4_oo __ , ___ -J/A WRITE
+BRFWRITE _ _._._____ - - E740-000

E3 OR E7

I <1025)

1---------------------------

Fi11ure 2-143. Generation of j1/ A Write

2-167

11 12 13 14 15

[REG. NO. SEGMENT TAG REG. FILE

11 12 13 14 15

[REG. NO. I I PROTECTION MATRIX

t 0 == WRITE PROTECT
1 == READ PROTECT

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

lo 0 0 0 GROUP PROC. NO. [REG. NO. I I SEGMENT RELOCATION TABLE

t 0 == WORD 0 (MAX. PAGE)
1 == WORD 1 (RELOC. CONST.)

11 12 13 14 15

~ 0 0 0 0 I BOUNDS REGISTERS

11 12 13 14 15

~ 0 0 0 I I JOB ACCOUNTING REG. FILE

t 0 ==WORD 0
1 == WORD 1

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

jo 0 0 0 GROUP 0 0 0 I ~ 0 0 0 0 I ADDRESS MODE, PE TAG, MS
DATA, LOG, GENERATED CHECK
BITS, AND READ CHECK BITS
REGISTERS

!Figure 2-144. RO Register Address Format

2-168

i
PROC.
STATE

NO.

!

l
PROC

STATE
NO.

!

0

1

2

3

4

5

6

7

0 00~10

0020

2 0040

3 0060

4 008:0

5 OOAO

SEGMENT TAG
REG. FILE
(GROUP O)

001F

003F

005F

007F

009F

OOBF
1--------·· ·---- ·----·

6 ooc:o OODF

7 001:0---00FF

BASIC
PROT JOB ACCT
FEAT FEATURE

,---1---, ,.____.I.____

BOUNDS
REG.

(GROUP
5) .

05AO

JOB
.ACCOUNTING

REG. FILE
(GROUP 6)

WOO WD1

0600 0601
---1

0620 0621
1----- ------· - ---I

0640 0641

0660 0661
1------- -------l

0680 0681
--1

Cl6AO 06A1
1--------1 -·---------- ----- ---·· ~- ---

05CO 06CO 06C1

.05EO 06EO 06E1

RELOCATION AND
PROTECTION FEATURE

Pf110TECT
M.ATRIX

(GHOUP 1)
WR RD

0

SEGMENT
REL CTN
TABLE

(GROUP 2)
WOO WD1

0200 0201

0202 0203

0204 0205

0206 0207 --0100 0101

2

3

4

5

6

7

8

9

A

B

c
0

E

F

0208 0209 PE
AD DRS --1 TAG

0120 0121

0140 0141

020A 020B MODE REG. _ ___,
REG. (GROUP 020C 0200

(GROUP 3) 4)
0160 0161

- 1---------1
0180 0181

020E 020F
I 0400] 0300

0210 0211
-- -. -------- ····-1

01AO 01A1 0212 0213
~---- f--------l f------ ---- -l

01CO 01C1 0214 0215
---l

01E1 01E1 0216 0217

0218 0219
---1

021A 021B

021C 0210

021E 021F

ECC FEATURE

r

MS GEN READ
DATA LOG CHK CHK
REG. REG. BITS BITS

NOT (GROUP (GROUP (GROUP (GROUP
USED 8/9) A/B) C/O) E/F)

0700 T 0800/0900 I 0"00/0800 I OCOO/ODOO I OEOO/OFOO

ALL RECilSTER ADDRESSES IN HEXADECIMAL FORM.

Figure 2-145. Register Option t:~egisters and Associated Addresses

2-16~1

I

Register Read

Reading a RO register by means of an MLI is

accomplished by the logic shown in Figure 2-146. The

basic approach is to select a register from the processor

number (bits 8, 9, and 10), register number (bits 11

through 15), and register word designator (bit 15) of the

address contained in S. The data read travels over one of

six data paths from each register group to a selector,

which selects a particular data path by the register group

number (bits 4 through 7) contained in S. This

intermediate selection, which is also fed with the register

group number. The final path selected routes the

information read to the data fan-in in the MS interface

logic. Selection of any RO register requires that enabled

RO-SPEC be in the high state, indicating that a reference

is being made to the RO for the express purpose of

reading or writing an RO. register.

Segment tag registers are selected by both processor
number (SR-RO bits 8, 9, and 10) and register number
(SR-RO bits 11 through 14 and SELBYTEO). The seg­
ment tag selected is passed to the PE/segment tag selector,
which is also fed with output from the PE register exten­
sion. (There is only one PE register extension; therefore,·
selection of this register is made by the register group
select bits alone.) This selector selects either the Segment
Tag or the PE register extension contents, depending on

the state of SELSTAG, a~ shown in Table 2-17. The result
is routed to the RO multiplexer as ST/PE bits.

Entries in the segment relocation table are also selected by
processor number and register number, via a correspond·
ing segment tag as for normal MS reference operation. The
resulting 24 bits of the selected entry are sent to the
relocation/protection register fan-in. The 24 inputs to the
fan-in are applied as two input groups of 12 bits each, cor­
responding to the two words that make up each entry in
this table. The fan-in is also fed with outputs from a
selected register in the protection matrix and from the
Address Mode register. One of the 16 two-register entries
in the protection matrix is selected by a processor via the
ROST select bits. Selection of either the read or write
register of the selected entry is made by bit 15 of S, which
generates PROTREAD. If PROTREAD is high, the read
register is selected; if PROTREAD is low, the write regis­
ter is selected. Selecting one of the four inputs groups to
the ROBIT selector is performed by the two SELRO
select bits, as shown in Table 2-17. The output of this fan­
in is fed to the RO multiplexer as ROBIT bits.

If the Basic Storage Protection feature is installed in place
of the Relocation and Protection feature, the ST /PE bits
are not generated and the ROB IT are developed from a
selection of one of the three bounds registers. This
selection is made from the processor number via the
ROST select bits.

Table 2-16. Register Option Register Group Numbers

Group No.
Feature Register Group (Hexadecimal) ,

Relocation and Protection Feature Segment Tag Flegister File 0

Protection Matrix 1

Segment Relocation Table 2

Address Mode Register 3

PE Register E:ctension 4

Basic Protection Feature Bounds Registers 5

Job Accounting Feature Job Accounting Register File 6

ECC Feature MS Data Register 8/9

Log Register A/B

Generated Check Bits CID

Read Check Bits E/F

2-170

Selector Name

ST/PE

ROBIT

Table 2-17. !First-Level Selection of Register Groups

Sel ~nals and States ector Sit

SEL T

0

.AG

--SELRO

0

-SO

0

SELRO-S1

0

1

0

1

Register Group Selected

PE Register Extension

Segment Tag Register

Address Mode Register

Protection Matrix

Segment Relocation Entry, bits 12-33 (Relocation Constant)

Segment Relocation Entry, bits 0-11 (V Bit and Max. Page No.)

2-171

·SR·RO
8,9,10

·SR·RO
11-14,

·SELBYTEO

I
I
I
I
I
I

R/P I
(1827).

--------------------- ---
+RO-SPEC

·SR·RO
OB-10

.. -------.. I ENC I
I I
I I

I
I
I
I
I
I
I

+ROST

I
I
I
I
I

I +PROT
READ

+RO·SPEC--111------'

I
I
I
I
I

I 11e251 I '--------·

+SEL TAG --s:-------..
RELOC I

I
I
I
I
I

TABLE I
I
I
I
I
I

REL~~~ROT I

FAN-IN I

I
I

I R/P(1828) I
, _____________ ..

r ---------BOUNDS
I REG

I
I
I
I

--~ BOUNDSI
FAN-IN

I
I

I I
I BP(1B28l•

.. ____________ llllli

·SR-RO
08·10,

.SRBIT·15

Figure 2-146. Register Option Register Read

p-----------------,
: REG ADAS SEL

I

.SR-RO
05-07

+DR-RO
00·15

The ST/PE and ROBIT bits are sent to the RO multi­
plexer for final selection and routing to the data fan-in
logic. This multiplexer is also fed with outputs from a
selected register in the Job Accounting feature. The Job
Accounting register is selected by S register bits 8, 9, and
10, and either word 0 or word 1 of the register is selected
by bit 15 of S. One of the three inputs to the RO multi­
plexer is gated by an encoded combination of register
group select bits 5, 6, and 7 from S and master enables
J/A, BASIC, and RELOC. (Bit 4 of the register group
select field is not needed since it is always 0 for the non­
ECC features of the RO.) These three master enables pro·
vide an over-all select enable for the three non-ECC
features by defining which of the three features are pre­
sent or enabled for selection in the system. If either the
Basic Storage Protection or the Relocation and Protection
feature is present, the corresponding master enable is con­
nected to the high state (+5 vdc) to enable selecting the
feature by bits 5, 6, and 7. The Job ,l\ccounting feature
will always be present in the system, since the module
containing this feature is also used for register read oper­
ations; however, the job accounting registers can be
selected for read operations only if the master enable J/A
is connected to the high state. Any feature not present or
not available for selection is disabled by connecting its·
master enable to the low state (ground).

During a read of the job accounting re!~isters, the update
operation must be inhibited so that a steady-state value
from the register may be reea. This is accomplished by
inhibiting the J/AWR ITE signal. When this signal is
inhibited, the contents of the selected rngister are updated
in the normal manner by adding +1; however, they are
prevented from being written back into the register to
keep the register contents from being altered during the
read operation. The signal is inhibited as shown in Figure
2-143 by applying a low to the two AND gates which
generate J/AWRITE. This low is generated by RO-SPEC if
a read of the job accounting registers is specified
(ROWRITE is high). This low overrides the E times that
would normally generate J/ AWR ITE for the duration of
the time slice during which the read is being performed.

Register Write

Writing a RO register by means of an IVILI is done so by
the logic of Figure 2-147. The register is selected by
register group number, processor number, and register
number Upon being selected, data from the D register is
entered in the register in the presence Clf a corresponding
write enable generated from the feature number. These
write enables are generated by the logic shown in Figure
2-148. Each write enable is generated by a corresponding

2-173

register gorup select signal decoded from bits 5, 6, and 7
of S, and a RO write enable generated at E5 time from
HO-SPEC, STOREUPP, and STORELOW. Two write
e~nables are generated for the segment relocation table to
cillow separate writes of word 0 and word 1 in each entry.
The word designator is supplied by bit 15 of S, as follows:

Bit 15 = "O" - write word 0

Bit 15 = "1" - write word 1

The Address Mode register requires two write enables
because of the logic used to implement this register. Both
enables are generated simultaneously for identical
i:::onditions. The Address Mode register can also be written
lby a master clear operation, for the purpose of clearing
the register to O's.

Referring back to Figure 2-147, the Segment Tag register
to be written into is selected by bits 8, 9, and 10 of S
(processor number) and bits 11 through 14 of S and
:SELBYTEO (register number). Data to be written into the
selected register is derived from bits 12 through 15 of the
D register in the MS interface logic through a selector. For
routing this data to the selected segment tag register,
selector enables RO-SPEC and STMUX-SO are "1" and
"1 ", respectively. Writing into other RO registers are
selected in a similar manner, much the same as for reading
the registers, except for the additional write enable
required.

Writing into a selected job accounting register is done so
for the specific purpose of clearing the register. This is

. done by generating RO-WRITE and combining it with
RO-SPEC and the job accounting feature number, as
shown in Figure 2-149, to generate both a low and a high
output. The low output is applied to the function select
input of the four adder elements, and the high output to
the mode control input of the adder elements. The state
of these two inputs determines how the four "adder"
elements, which are really multi-purpose function
generators, are to operate. During normal job accounting
update operation, these elements function as adders.
During a register write operation, however, the state of
these two inputs is altered as discussed to make the
elements generate all "O's" on their outputs, regardless of
the inputs. These 16 "O's" are routed back to the selected
register to clear the register upon occurrence of the
J/AWRITE enable.

-SR-RO
oa-10

-SR-RO
11-14

SELBYTEO
-SEGTAGWR

+DR-RO
12-15

r-----------------------, I I

I

I
I

FAN­
IN

SEG
TAG
REG

SEL

s
REG
EXT

I
I -SEGTAG

00-03

.------ ---.. • I
R/P

(1827)

L-----------------------~
I
I SEG

REL
TBL

-SR·RO
oa-10

I
r~------, I
I I -RELOCWRU ___ • ____ ____.

I I -RELOCWRL
I I +ROST I

SEL_--------~--.• ~~--+~~--.

I I I
I I I
I l1B26) I I

L-------~ I I
I
I

PROT
MTRX

-PROTWR -------+-----'
I
I
I
I
I
I
I

ADAS
MODE

REG

-ADDWR-0 I R/P
-ADDWR·1-I (

1828
)

.. _________ .
r-----
1
I
I

---,
+DR-RO __ 1--t BOS

REG

I
I
I
I
I
I
I
I

00-15
I
I
I

-BASICWR-------__, BP I
I l1B28)J

----------Figure 2-147. Register Option Register Write

2-174

r--------------------------~ I

SEGTAGWR
(SEG TAG REG)

I
I
I
I
I
I ------1.-------BASIC WR (BOUNDS REG)

-SR-R005

I
I
I REG

GROUP ~------------ -PROTWR (PROT MATRIX)
·SR-R006

I
I
I

-SR-R007

NO.
DEC

REG
RELOC
TABLE

-RELOCWRU l
------ -RELOCWRL

·SRBIT-15 ------------......

+MC-J--11~---~---~+------~---------

+RO-SPEC--.--t---"}.-• ...,....._

+STOREUPP----+---4

+E5 --•:-....... --...

+STORELOW I I
(1826)

~--------------------------· Figure 2-148. Register Group Write Enables

figure 2·149. Writing O's into Job Accounting Registers

2-17fi

ADAS
MODE
REG

MLI DECODE AND STORE/SAVE

The machine language instruction (MLI} decode and
store/save logic performs a first-level (format) decode on
the new M LI read from main storage (MS) for purposes of
branching to a routine required to read the first MLI
operand. The logic also saves the M LI from one time slice
to the next until execution of the MLI is completed. A
block diagram of the logic involved is shown in Figure
2-150. The MLI read from MS during the RNI sequence is
routed to the M LI decode and store/save logic by a SOW
µI with FR F in Group I of the Extended Register File
(ERF) as the destination. The µI reads the MLI from MS
and passes it to the Format Jump (F RJ) decoding logic to
determine the format of the MLI and obtain the first
operand to be processed by the MLI. The µI also routes it
to the Fb register to be saved in the assigned FR F of the
ER F at the end of the time slice, and to the F register via
the F register fan-in logic. This auxiliary operation of
routing the M LI to the F register provides for immediate
modification of the MLI, if necessary, during the present
time slice.

FRJ DECODE

The F RJ decode logic performs a first-level decode of an
MLI to determine its format. The format of an MLI
consists of two parts: instructions type and addressing
mode. The type of MLI (register/register,
memory/register, and so forth) is defined by the class of
its function code (2X, 3X, 4X, and so forth). The
addressing mode is indicated by the state of bits 8 and 12
of the M LI, which determine whether the operands are to
be obtained from MS or a file register. Upon determining
the format, the decode logic generates a two-digit
hexadecimal address. This address points to one of 256
locations in an address table. This address table consists of
ten bipolar storage elements, each element storing one bit
of 256 words. Each word, therefore, consists of ten bits: a
parity bit plus the right-most nine bits of a branch address
to a routine required to read the first MLI operand. The
nine bits from the address table are appended to the
left-most five bits of the 14-bit CS address. These
left-most five bits are also generated by the F RJ decode
logic, as shown in Figure 2-151. Of these left-most five
bits, bit positions 4 and 5 are set to "O" and "1 ",
respectively. Bit 6 is obtained from bit 3 of the MLI
contained in the F register. Bits 2 and 3 are used to
specify the 4096-word storage unit in CS to which the
FRJ jump is made. These bits are not changed from what
is presently in the Sµ register. The F RJ address table is
loaded during the initial CS load operation, immediately
after CS is loaded.

2-176

An example of how the F RJ decode logic operates to
generate jump addresses is shown in the block diagram of
Fiuure 2-152. The F RJ decode logic consists of a
translator, two address bit selectors, address table, output
gating, and a parity check circuit. The M LI to be decoded
is 2A O·O, which means the M LI whose operation code is
2A, and whose bit positions 8 and 12 are both "O"
(indicating that the M LI operands are to be obtained from
or stored in a file register). The MLI is obtained from the
D register via an F RJ µI and translated to generate two
hexadecimal digits that point to the address table location
containing the right-most nine bits of the F RJ branch
address. For the 2A 0·0 MLI, the address table pointer is
FB 16 (11111011).

The contents of· location FB are routed to the output
gating logic in preparation for transmitting the final FRJ
branch address to the set P logic. This logic also appends
bits 2 through 6 of the right-most 9 bits as shown. Note
that data fed to the output gating logic is in complement
form, so that the NANO gates can invert it to true form.
ThB inputs to the gates of bit positions 4 and 5 are tied to
a logic high (+5 vdc) and a logic low (ground),
respectively, so that their outputs will be "O" and "1 ",
respectively. The inputs to the bit positions 2 and 3 gates
are also tied high to generate outputs of "O" and "O".
This causes the F RJ branch to be made within the same
4096-word CS storage unit. In this respect, the bits are
said to be unchanged from what they were in the Sµ
register before the jump address was produced. However,
more storage units could be added at a later date (up to a
maximum of 4). This might require these bits to be set to
some value other than 00 if some FRJ routine should be
located in another storage unit. It is for this reason that
these bits are also generated in the FRJ decode logic
besides bits 4 and 15, even though not actually necessary
at present.

Since the address table is part of CS, it is alterable. The
branch addresses are loaded in the table with the rest of
CS as part of the Reset/Load sequence. This is
accomplished by specifying each location in the address
table by means of an address contained in bit positions 8
through 15 of Sµ. These address bits from Sµ are fed to
the address bit selectors along with the outputs from the
translator. During an initial CS load, however, the DR or
Sµ enable will be such as to select the address bits from Sµ
instead of from the translator. As each address table
location is selected, the corresponding jump address to be
stored is fed in on the N-CS bit 7 through 15 lines and
the parity bit fed in on the N-cs bit 0 line.

DATA
FAN-IN

r----·--. r------------------~ I I I I
I I I

J ·I I I ALU I I F
FAN-OUT REr

I I I
I I I
I I I
L (1A25-1J\28~ I ----1- I

·I I
I Fb
I REG
I
I
I (1A18-1A21)

L------------------~ r----1-,
I H-I FRJ I Pp

---.... -- DECODE I FAN-IN

I - I
I I
I (1A17) I

L-----~
Figure 2-150. MLI Translation a111d Save/Store, Block Diagram

ADDRESS TABLE OUTPUT

15

I ___ ...__,,_. ________ ---... ,....-------
DEFINE SET BY ONE OF 256

STORAGE DECODE ADDRESSES
UNIT TO LOGIC
WHICH

JIUMP IS
IVIADE
(NOT

CHANGED)

Figure 2-151. FRJ Branch Address

2-177

ERF
• INPUT

Aµ/Bµ

II- FRF

l\,J

.....
-...J
OJ

XLTR

All LOGIC ON
MODULE 1A17

N..CSDO PAR! INITIAL
N-CSOJ } CS LOAD

j ADRS ~ ADDRESS TABLE
N•C515 (256 9-BIT)

ADAS PLUS
PARITY

F E D c B A

1111

Sµ.08-11

1011

Sµ.12-15

DR
OR
Sµ

F

E

D

c
1111 (F)

A

g

8

1

6

5

4

2

0

* UNCHANGED
(SET TO 1)

Figure 2-152. FRJ Decode of MLI 2A 0-0

2 0

*

*

0

ADDRESS
READ Fo3
OUTIN
COMPL
FORM

FRJ
BRANCH

ADDRESS

PAR
CHK

ENABLE

SET
p

5

7
~
15

A map of the address table, showing the location of the
FRJ jump address for each type of MLI is shown in Table
2-1'7. The vertical boxhead contains the hexadecimal
address generated by D register bits 0 through 3; the
horizontal boxhead contains the h13xadecimal address
generated by bits 4 through 7.

Fb AND f REGISTERS

The Fb (F buffer) and F registers are used to hold the
MLI being executed during the present time slice.

Normally, the MLI is loaded in F from FRF assigned to
that processor at the beginning of the processor's present
time slice (at EOOO time). It stays in 1= where it is fanned

out to various sections of control logic required to
execute the M LI until the next EOOO time. At this time,

the ML I for the next processor is loaded into F. The
above procedure is altered somewhat during an RN I
sequence when a new M LI is read from MS for a processor.

For this situation, the M LI is loaded into both F and Fb
by a SDW µI at E5 time. Loading the new MLI into F
provides the fan-out necessary to begin executing the M LI

as before. The Fb register provides a place to hold the
M LI until it can be stored in FR F' It is necessary to pro­
vide this buffer register for this singular purpose because
the MLI is not stored in FRF until W1 time. However, at
EO time (one minor cycle time before W1), the MLI for
the next processor is routed to F which displaces the MLI
for the present processor. The Fb register, therefore,
eliminates this overlap problem by providing a holding
register for the M LI.

A simplified diagram of the F aind Fb registers is shown in
Figure 2-153. Both the F and Fb registers are fed with the
M LI from the ALU fan-out logic via the ALU input. This
MU will be either a new MLI read from MS during an
RN I sequence, or an existing M LI that has been modified
during the course of its execution. (For example, double
precision MLl's require R1 ± 1 and/or R2 ± 1 modifica­
tions to their A-fields.) At the beginning of the time slice,

F is fed with the present MLI from FRF during the R1
cycle.

Selection of one of the two inputs to F is made via
ENALU ... FR through a two-input selector element. The
two registers are clocked by a common signal but under
different conditions. The F register is clocked uncondi­
tionally at EOOO time for transferring the MLI presently

being executed from FR F· The F and Fb registers are
both clocked during execution of a SOW µI for purposes
of reading a new M LI from MS and transferring it to F
and Fb as discussed previously. Clocking F with the con­
tents of FRF is inhibited at EOOO if the present processor
is operating in the consecutive-cycle (CC) mode. Under this
condition, there is no need to clock the next processor's

2-179

MLI into F since the present processor will keep
executing. Indeed, it may happen that the ALU might
have modified the present M LI at EB; consequently, it

must be routed back to both Fb and F at EO of the next
time slice.

ARITHMETIC-LOGIC UNIT

The arithmetic-logic unit (ALU) performs all arithmetic
and logical operations required by the µl's. These opera­
tions include the following: addition, comparison, shifts,
logical sum and product, bit sense, and sense/toggle. A
block diagram of the ALU is shown in Figure 2-154.

The ALU adder performs both addition and subtraction
by an additive process. Addition is performed by adding
both numbers in true form; subtraction is accomplished
by adding the minuend in true form and the subtrahend
in two's complement form. Two's complementing is
performed by the LAW- and LBW- µl's in conjunction
with the Forced Carry Register (FCR).

Data to be operated on by the ALU is fed to the Aµ
and Bµ registers through corresponding fan-in logic.
Generally, this data will be from either a file register or
from main storage via the data fan-in path. Data in these
registers is unconditionally added and compared by the
adder and compare networks. The results, however, are
used only if required by the µI being executed. Data to be
manipulated by any of the other operations is done so
only if the µI so specifies.

Shift, bit sense, and sense/toggle operations are imple­
mented by corresponding logic. Both these operations
feed the shifted or sense/toggle data back to the Aµ and
Bµ registers to complete the operation. In the case of a
shift, the (up to) 32-bit result is held in Aµ and Bµ after
being shifted for use by another µI. A bit sense or
sense/toggle operation required sending the locationto the
sensed or toggled bit in Aµ back to Bµ for addition to the
contents of Bµ. Because these two operations require a
longer than normal propagation path through the ALU,
they may delay execution of the next µI as explained in
greater detail in the paragraphs that discuss these
operations.

Logical sum and product operations on the contents of
Aµ and Bµ are performed by means of the ALU fan-out,
wherein the logical operations is effected by certain
combinations of enables according to the µI being

executed.

Some µ1 's require certain constants to be generated as
part of their execution. These constants enter the Bµ
register as 16-bit words, 8-bit bytes, or 4-bit nybls,
depending on the µI. They are generated by the constant
generator which feeds the Bµ fan-in.

";->
00
0

~ 3
F E D

F 20-29 2D-29 2D-29

R1 R2 R1 (R2I (R1I R2

E 3D-39 3D-39 3D-39

D AD-A9 AD-A9 AD-A9

c I
B0-89

I B0-89 BO-B9

B 60-63 60-63 60-63

A 70-73 70-73 70-73

9 00-03 04-07 08-08

8 8D-83 84-87 88-8B

7 EO ED ED

6 E4 E4 E4

5 E8 E8 E8

4 EC EC EC

3 FD FD FD

2 F4 F4 F4

1 F8 F8 F8

D FC FC FC

*Value of A and B same as Row F
**Values of A and 8 do not apply

I

Table 2-18. FRJ Address Decode Matrix

c B A 9 8 7 6 5 4 3 2 1 D

2D-29 2A 2A 2A 2A 2B 2B 2B 2B 2C-2F 2C-2F 2C-2F 2C-2F
(R1llR2I R1 R2 R1 (R2I (R1l R2 (R1HR2I R1 R2 R1 (R2I IR1I R2 (R1HR2I R1 R2 R1 (R2) IR1I R2 (R1HR2I

3D-39 3A 3A 3A 3A 3B 38 3B 3B 3C-3F 3C-3F 3C-3F I 3C-3F

AD-A9 AA AA AA AA AB AB AB AB AC-AF AC-AF AC-AF AC-AF

B0-89 BA BA BA BA BB BB BB BB BC-BF BCBF
l

BCBF
l

BC-BF

I I
I 1 I 60-63 64-67 64-67 64-67 64-67 68-68 68-68 68-68 68-68 6C-6F ' 6C-6F 6C-6F 6C-6F
l

70-73 74-77 74-77 74-77 74-77 78-78 l I I l 78-78 78-78 78-78 l 7C-7F l 7C-7F 7C-7F 7C-7F

l I so-53 l
T I OC-OF 10-13 14-17 18-18 lC-lF 40-43 44-47 48-48 4C-4F 54-57 58-58 5C-5F

T T
8C-8F 90-93 94-97 98-9B 9C-9F CD-C3 C4-C7 C8-CB CC-CF I DD-D3 !

D4-D7 D8-DB DC-DF

ED El El El El E2 E2 E2 I E2 I E3 I E3 E3 E3

E4 E5 E5 E5 E5 E6 E6 E6 E6 E7 E7 E7 E7

E8 E9 E9 E9 E9 EA EA EA EA EB EB EB EB

EC ED ED ED ED EE EE EE EE EF EF EF EF

FD Fl Fl Fl Fl F2 F2 F2 F2 F3 F3 F3 F3

F4 F5 F5 F5 F5 F6 F6 F6 F6 F7 F7 F7 F7

F8 F9 F9 F9 F9 FA FA FA FA FB FB FB FB
I

FC FD FD FD FD FE FE FE FE FF FF l FF FF

NOTE: (Boxheads represent hexadecimal address in a 256-word address table that points to the starting address, as modified by bits 2-6 of Sµ, for
implementing the machine-language instruction indicated in the matrix.) Actual starting addresses in CS are listed in the CS printout.

1
J
}
l

>

~------------------· I F b I
I REG I
I I

ALU----------t._------------11 D 0 --------FRF

I
I
I
I
I
I
I
I
I

FRf-·~--~----~

I
I
I
I r-------.. I I I +ENCLKFB

I -.- I
I I I
I I I
I I +CLKFB/FR ------
1 I I

SDWµI -: J_ __ -----1·----

SEL

I I ._ __ ,,

I
I

c I
I
I

F I REG
I

0

c

Too

Too

I I I (1A18-1A21) I 1A141 L-----·-------------..1 .. _______ ;..,
+EOXX-E

Figure 2-153. F and Fb Registers

2-181

l BRF AORS
ERFINPUT

---------------- -------------~

DREG I
I
I
I

•-----• I
I I I

: CONST I I

Aµ
FAN·

IN

Bµ
FAN·

IN

I GEN ---. -.-----
• I I .._. __ _.

Aµ
REG

Bµ
REG

ALU
FAN-OUT

I
I
I
I
I
I
I

(1A25-1A28) I

... I (1A29, 1AJO)I ·---------­
----~ ------------------- ---------·

(·SN--ALU)+(·TBIT)

·DR

+ENDA-AM

·ER-ALU

+ENERF-AM

·BR-ALU

+ENBRF--AM

(-SN-ALU)+(-BSUM)

+ENSN-ALU

·CG-BM

+EN CG-BM

+ENE RF-BM

+ENBRF.-BM

'---•DREG
S REG

Figure 2-154. ALU Block Diagram

DATA __ _,
FAN-IN

r------------------~ I I
I

I I
I AµREG I

FAN-IN I
I I

I

I

I

I

I
I

I
I
I
I
I
I
I (1 A25-1 A28) I

~------------------~ F=igure 2-155. Aµ and Bµ Register Fan-In

2-182

}
MS

+RF-MSI INTERFACE

REG
FILE

AµAND Bµ REGISTER FAN-IN

The Aµ and Bµ register fan-in logic provides inputs to the
Aµ and Bµ registers from a variety of s1ources, as shown in
Figure 2-155. As shown, the logic consists of two gating
networks for each bit, one for the Aµ register and one for
the Bµ register. Data comes from the sources listed below:

1. Shift network (SN bits) - to both Aµ and Bµ
registers.

2. Bit toggle generator (TBIT bits) - to Aµ register
only.

3. Main Storage, Register Option, or D register (DR
bits) - to Aµ register only.

4. Extended register files (ER bits)I - to both Aµ
and Bµ registers.

5. Basic register files (BR bits) - to both Aµ and Bµ
registers.

6. Bµ register adder (BMSUM bits) - to Bµ register
only.

7. Constant generator (CG bits) -· to Bµ register
only.

All data is routed to the fan-in logic i111 complement form
and gated through the logic by an enable in true form.
The result is an output signal in true form that is routed
to the clocked set and clear inputs of the Aµ and BJ.L
register flip-flops. A second output from the Aµ register
fan-in logic, labeled R F-MSI, routes data from a selected
register of the BR F to the Sand D registers in the control
storage interface logic during execution of load Sand load
Dµl's.

The SN bits are enabled by ENSN-ALU during execution
of a shift µI (SHF, SHR, DLS, or DRS). Data from the D
register is gated by ENDR .. AM dur,ing execution of a
D .. ~µI (OTA, OTA/, IDX, or DFA). The ER bits from a
selected extended register are gated to the Aµ and Bµ
registers by ENERF-AM and ENERF-BM, respectively.
These two enables are generated for differentµ l's when an
overall permit condition, AANDB + INVERF, is present.
Signal AANDB indicates that the X-field and the µI is
addressing a register in the ER IF (a and b designators are
both 1). Signal INVERF is generated when executing an
IVK µI, wherein the processor and ERF register numbers
are obtained from the Boundary Crossing register. Enable
ENERF-AM is generated when AANDB + INVERF is
present, and executing any µI except a Load D µI or a
Shift µI. These two classes of µl's ·specifically inhibit
ENERF-AM since they require their own enables to
transfer data to the Aµ register, as described above.

2-183:

Enable ENERF-BM is generated when RANDM +
INVR FE is present, and executing an LBW, LBW/, LAB,
CLA, or LBL µI; or a Load D µI. The Load D µl's require,
in addition to loading the D register, that the contents of
an ERF be transferred to the Bµ register, in either true or
complement form.

The BR F bits from a register of the BR F are enabled by
ENBR F -+AM and ENBR F-BM. These two enables are
generated in a manner similar to those for extended
register data: the presence of an overall permit condition
ANDed with specific µI function codes. The permit
condition for enabling BRF data is AANDB · INVERF.
The specific µl's for generating each BRF enable are
identical to those for generating the ER F enables, as
summarized below:

ENBRF-AM = (AANDB · INVERF) · (LOAD D +
SHIFT)

ENBRF-BM = (AANDB · INVERF) ·(LBW+ LBW/
+LAB+ CLA + LBL + LOAD D)

Data from the constant generator is gated through the
fan-in logic to the Bµ register via ENCG-BM. This enable is
generated for any ~I except for the above µl's referenced,
which require their own enables for the peculiarities of
the particular µI.

Aµ AND Bµ REGISTERS

The Aµ and Bµ registers receive data from the Aµ and Bµ
fan-out logic that is to be processed by the adder. These
two registers can be considered as the addend and augend
registers since they hold these two quantities during add
operations. Each register consists of 16 J-K flip-flops with
data, clock, preset, and preclear inputs. Since some µl's
require that data to be processed by the adder be in
complement form, the Aµ and Bµ registers provide the
capability for one's complementing data if the µI so
requires (all data routed to the Aµ and Bµ registers is in
true form; therefore, complementing must be done in the
registers themselves). This complementation is provided
by using the ability of a J-K flip-flop output to toggle its
output state when both inputs are "T", and by condition­
ing the register prior to storing data via the preset and
preclear inputs. (Two's complementing of the data,
required by the SUM and DSUM µl's for performing sub­
traction, is effected by adding +1 from the FCR to the
one's complement data in Aµ and Bµ.)

An example of how data can be stored in one stage of the
Aµ register in either true or complement store is shown in
Figure 2-156. Part a shows how data is stored in true
form. Prior to reception of data on the input line con­
nected to both the J and K inputs, the flip-flop is pre-

r-----t---\.Jll c

-ENC AM -EN RAM
PART A. TRUE STORE

0

----c

-ENC AM

0

-EN RAM

0*,0
n-----

1*,1 a-----

!---·

c

-EN CAM

+CLKBUFF

-ENSAM

0

0
Q

1*,1

c

0*,H [
0*,1

PART B. ONE'S COMPLEMENT STORE -ENC AM

Figure 2-156. Aµ and Bµ Register Data Store

r-------------------i
[:

.----.. COMPARE,
BIT SENSE

} FA~L~UT
+AMXX

I ..
Aµ I

REG I
I -AMXX ..
I
I
1 ·AMBUFFXX

Aµ I •
BUFF I
REG I

I +BM-NEG .. :f l : +BMXX .. I
Bµ I

REG I I -BMXX ..
I

..... 1-BMBUFFX_!
...

I
...

Bµ
BUFF I
REG I

I

J 1A25 I
I ~ I
I ~~~I
~--------------------~

Figure 2-157. Aµ and Bµ Register Destinations

2-184

SHIFT
NETWORK

STATUS
LOGIC

}

ALU
FAN-OUT

SHIFT
NETWORK

+
BIT SENSE

ADDER

cleared by EN RAM to generate "1 "* on the Q output line
and "O"* on the 0 output line (the -11, indicates the state
of the output lines due to either the preset or preclear
conditioning). Assuming the input data is a "1 ", the Q

and 0 outputs are toggled, when clock pulse ENCAM goes
low, so that now the 0 output is a "Cl" and the Q output
is a "1 ". If the input data is a "O", no toggling takes place
and the Q and 0 output states remain unchanged. Since
data is stored in the flip-flop stage in the same form as
that on the input lines, the stage is said to store data in
true form. Part b of Figure 2°156 shows storing data in
complement (one's complement) form. The flip-flop is
conditioned by presetting it via the ENSAM signal. The
result is to change the Q output to a "1 "* and the Q out­
put to a "O"*. Assuming again that the input data is a
"1 ", the state of the output lines will toggle so that the Q

output goes to "O" and the Q output goes to "1 ". The
resultant output then becomes the complement of the
input. If the input data is a "O", no toggling takes place
and the 0 output remains at "1" and the Q output
remains at "O". The Bµ register stores data in either true
form or complement in exactly the same way, condi­
tioned by means of enables ENRBM and ENSBM. A list of
µl's involving transfer of data between the Aµ and Bµ
registers and the adder, and their corresponding register
enables is shown in Table 2-19.

Outputs from the Aµ and Bµ registers are routed to
several destinations, as shown in Figure 2-157. Both set
and clear sides of both registers arei fed to the ALU
fan-out logic for distribution to other sections of the
shared resources. In addition, the SElt side of the Aµ
register is routed to the compare and bit sense logic for
evaluation during execution of comparn and bit sense µl's.
Bit 00 from the set side of the Bµ register is routed to the
status logic as BM-NEG for status bit compare operations.
Also, the clear side of the Bµ register is fed to a buffer
register. Outputs from this buffer register are routed to
the bit sense adder, during execution of bit sense (E,X, 1)
µl's; and to the shift network, during execution of shift
(E,X,O) µl's.

ADDITION

Adder Element Operation

The adder consists of four MSI adder elements and a
full-carry look-ahead circuit, as shown in Figure 2-158.
The adder performs addition of two 16-bit operands from
the Aµ. and Bµ. registers. This addi1tion is performed
unconditionally whenever operands am loaded in the Aµ
and Bµ registers. The result is used, however, only when
so directed by a SUM or DSUM µI. Each ALU element

2-185

performs upon four bits of the operand and is designated
by one of four group numbers: 0 through 3. Each adder
element generates four SUM bits, a group carry generate.
bit (GCGEN) and a group carry propagate bit (GCPROP).
The SUM bits are fed to the ALU fan-out logic; the
GCGEN and GCPROP bits are fed to the look-ahead carry
generator logic. This logic provides simultaneous carries
for each ALU element by combining the GCGEN and
GCPROP bits from each element to generate a
corresponding group carry input signal (GPCRIN). Each
carry input is fed to the next higher group ALU element
in an attempt to satisfy the lower-order carry. The carry
generate logic for the highest-order group (group O)
generates a sum word carry, ADDERGEN, in place of a
GCR IN signal. This sum word carry is fed to the Forced
Carry register during multiple-precision operations to
generate a lowest-order carry (GPCRIN-3) to be satisfied
during addition of subsequent words during the
multiple-precision operation.

Group Carry Generate

The GCG EN signal from an adder element is the Group
Carry Generate signal, indicating that the inputs to the
four stages have generated a sum that is in excess of what
can be respresented by the SUM bits of that element. A
group carry generate will be developed whenever any of
the input conditions to an element listed in Table 2-20 is
present.

Group Carry Propagate

The GCPROP signal from an ALU element is the Group
Carry Propagate signal, indicating that the particular
element cannot absorb a group carry generate from a.
lower-order element. Therefore, if a carry generate from a
lower-order element occurs it must be propagated to a
higher-order element. A group carry propagate is
generated whenever the sum of a stage is either "1"
(addend and augend bits are "O" and "1" or "1" and
"O"), or a "O" with a carry of "1" (both addend and
augend bit~e "1"). Table 2-21 shows input states of the
AM and BM bits which will generate a group carry
propagate.

Look-Ahead Carry Generator

The look-ahead carry generator evaluates the group carry
generate and group carry propagate bits from each adder
element to develop group carry input bits for each
higher-order adder element. Since each adder element
generates carry generate and carry propagate bits

Table 2-19. Aµ and Bµ Register Enables

-1!:_1 Enables
ENSAM ENRAM ENS BM ENRBM

Op Code NM EMO (COMP ... Aµ) (TRUE-Aµ) (COMP..Bµ) (TRUE-Bµ)

3,0 LS1 x x

3, 1 LSF x x

3, 2 LS2 x x

3,3 LSE x x x

6,0 LBW x

6, 1 LBW- x

6,2 LBB x

6,3 LBB- x

7,3 LBL x

A EBU x

B EBL x

C,O DTA x x

C, 1 DTA- x

C,2 IDX x x

C,3 DFA x x

0,0 LAW x

D, 1 LAW- x

D,2 LAB x x

D,3 CLA x x

E,0,0 SHF x x

E, 1, 0 SHA x x

E,2,0 DLS x x

E,3,0 DRS x x

F,2 DIG x

F,3 CORC x

2-186

-AM04

i
-BM07

-AMOS

L
-BM11

-AM12

~
-BM15

-----SUIVIOO
1----..---• -SUIVI01 __ .____ -SUIVI02

-----SUIVI03 r---------· I I CARRY GEN I

---·~-·G_CG_E_N-_O~--~~-·~- I
: I
I (1A25) r---·------1

I

I
I
I (1A28) I
_________ ...

-G PRltf:!l ______ ...,.. .----.--•-ADDER GEN@

+GPCRIN-0 I

I
I
I
I
I
I
I

I

I
I
I
I
I
I
I

I
I
I

-------· -------- I I I I I I
I I I I I
I LINK I +LINK I FORCE I +FORCECRY

LOGIC ------ ---- CARRY ---------.--
1 I I REG I
I I I I I
I (1A18) I I (1A05) I I (1A23) L------1 ~------~ ---------~

Figure 2-158. Adlder

2-187

--
AMOO

0

0
1

0
1

0
1

--
AMOO

0

1

0

+GCGEN-2

+GCPROP-2

+GCGEN-3

+GCPROP-3

+FORCECRY

Table 2-20. Group Carry Gonerate Truth Table

-- -- -- -- --
BMOO AM01 BM01 AM02 BM02 AM03

0 x x x x x

1
0 0 0 x x x

1 0 1
0 1 0 0 0 x

1 0 1 0 1
0 1 0 1 0 0

Table 2-21. Group Carry Propagate Truth Table

-- -- -- -- -- --
BMOO AM01 BM01 AM02 BM02 AM03

1 () 1 0 1 0

0 1 0 1 0 1

0 () 0 0 0 0

r-------------------, I I
I I
I I

----'I I
.- I
I I

I
I
I
I

••

I

I ' (1A23) I

L-------------------J

Figure 2-159. Generation of GPCRIN-1

2-188

--
BM03

x

x

x

0

--
BM03

1

0

0

+GPCRIN-1

simultaneously, the carry generator produces the required
carry input bits to each adder element simultaneously.* It
is this look-ahead capability of the carry generator in
generating carry input bits simultaneously that speed up
the addition operation as compared with an add
performed using serial carry inputs. A pmtion of the carry
generator, that used for generating GPCRIN-1 (the group
carry input bit to adder element group 1), is shown in
Figure 2-159. The GPC RI N-1 signal is g1enerated if any of
the following conditions occurred:

1. group 2 produced a carry out (GCGEN-2), or

2. group 2 produced a carry propagate (GCPROP-2)
and group 3 produced a carry out (GCGEN-3), or

3. both groups 2 and 3 produced a carry propagate,
and a carry was forced from the FCR
(FORCECRY).

As mentioned previously, ADDERGEN is produced as a
sum-word carry during multiple precision operations.
Normally this sum-word carry will be nenerated when a
carry out results from bit 15 of the sum. During execution
of a CMPK, ADDK, SUBK, or ZADK MLI (F codes of 50
through 53), however, the sum-word carry is generated
when bit 7 of the sum generates a carry out. This is
because these four M LI 's execute decimal numbers in byte
form (two 4-bit hexadecimal digits) instead of in
whole-word form (four 4-bit hexadedmal digits). For
these four MLl's, ADDERGEN is generated by MLl-5053.
Signal ADDERGEN is fed to the link logic to generate a
link status bit in the Pµ register as shown in the adder
block diagram of Figure 2-158. From the link logic, it is
fed to the Forced Carry register which generates
FORCECRY. This signal then is fed back to the carry
generator to generate GPCRIN-3.

Forced Carry Register

The Forced Carry register (FCR) is a single flip-flop used
to store either a "O" or "1" for use as a constant during
the following three types of operations:

1. M LI address updates,

2. two's complement arithmetic operation, and

*Actually, the carry input to group 0 is generated two gate delay
times later than the group 3 carry input and those to groups 1
and 2 are generated one gate delay time ~ater. These delays,
however, are negligible compared to gate delays incurred in the
adder elements.

3. storing a sum-word carry generated for
subsequent additions during multiple precision
arithmetic adds.

The type-D edge-triggered flip-flop can be set or cleared in
three different ways, as shown in Figure 2-160: +1 + FCR,
0 .. FCR, and LINK .. FCR.

The +1 FCR operation is effected by a low into the
forced set input which causes the 0 output to go low. For
LS1 and LS2 µl's, the operation is performed for purposes
i::>f forming the address of the next MLI. These two µl's
lload register S (the M LI address register) with the
contents of a register designated by the µI X-field. The
Jlll's are programmed as part of the MLI RNI sequence to
form the address of the M LI. The + 1 .. FC R operation is
then used by the SUM JJ. I in the RN I sequence to add
1~ither 1 (LS1 µI) or 2 (LS2 µI) to the contents of the S
1register to form the address of the next ML I to be
1~xecuted. For LBW-, LBB-, OTA, DFA, LAW-, and CLA
Jlll's, the +1 ... FCR operation is used to add one to the
one's complement of the word loaded by these µl's to
1~xpress them in two's complement form.

The 0 .. FCR operation is produced by a low into the
forced clear input which causes the 0 output to go high.
For LSF and LSE µl's, the operation is performed for
purposes of forming the address of the next MLI by
:subtracting either 1 (LSF µ1) or 2 (LSE µI) from the
contents of the S register. (The constant 1 or 2 to be
:subtracted comes from the Bµ register; therefore, the FCR
must be loaded with a 0.) For the LBW, LBB, OTA, IDX,
.and LAB µl's, the 0-+ FCR operation is performed to
inhibit adding 1 to the word loaded by these µl's. These

):.ti's are the true form equivalent of the one's complement
load µl's discussed above. Since addition of the FCR
contents to the word loaded by these µl's occurs
unconditionally as part of the µI, the FCR must be loaded
with a 0 to avoid correcting the word loaded in true form.
The DIG and CORC µl's provide for encoding and
post-addition correcting of decimal numbers expressed in
excess-3 form. Both these µl's involve adding (or
subtracting) 3 from the decimal number represented in
hexadecimal form. However, the carries (if produced) by
these operations must be inhibited. Since the FCR would
ordinarily furnish this carry, due to its function as a
sum-word carry generator, the register must be set to 0 to
inhibit the carry.

During execution of an LB L µI, the Link bit from the Pµ
register is sent to the FCR. This operation is effected by
storing LINK in the flip-flop when clocked by LBL. This
causes the Q output to go low to generate the forced
carry. The flip-flop output is sent in complement form
through a selector/inverter to generate FORCECRY in
true form. This selector/inverter also provides for generat­
ing FORCECRY upon simultaneous depression of the

2-18H

lS1 } S UPDATE
LS2

LBB-
DTA 2'S COMPL
DFA

LBW-}

LAW- r-----------------------------------.,
CLA I x UPDATE I I

+TXBD

+LINK

+7,3

I

I
I
I
I
I

+1-.FCR

0-FCR

Q

I
I
I
I
I
I
I
I
I

I
I
I

LSF
LSE } L----------------------s UPDATE

(1A05) I

-----------' -
LBW
LBB
OTA
IDX 2'S COMPL
LAB
DIG
CORC

BIT 15 CARRY

+SUM DEC

BIT 11 CARRY

BIT7 CARRY

BIT 3 CARRY

Figure 2-160. Forced Carry Register

r-------.. I I
I T D Q

I I
I I
I I
• c a

I ·DDG·.-CGO
T

I I
I I
I D Q I
--- I I
I I
I I
I c a I -DDGto--CG1 T I
I I
I I
T D Q I
I I
I I
I I

a I -DDG CG2
T c
I I
I I
• D Q I -.-
I I
I I
I I
I l: a I -DDGto--CG3

I T
I (1A23) I .. _______ ..

-SET-BM
-SET-AM
~

SYSTEM
CONTROL

PANEL

CONSTANT
GENERATOR

Figure 2-161. Inner Carry Register

2-190

SET A and SET B pushbuttons on the System Control
Panel. Simultaneously pressing these pushbuttons enables
a carry to be forced into the ALU adder during Panel
operations.

Inner Carry Register

The Inner Carry register (ICR) evaluates the carry outputs
from the look-ahead carry generator during execution of
decimal sum operations via the DSUM µI. The outputs
from the ICR determine whether a +3 or a -3 is generated
by the constant generator to correct each 4-bit
hexadecimal group of the decimal sum. The register
consists of four type-D flip-flops, as shown in Figure
2-161.

Each flip-flop is fed with the carry oiutput from a 4-bit
group corresponding to the hexadecimal equivalent of
each digit of the decimal sum. The carries are clocked into
the flip-flops when SUMDEC is generated via translation
of the DSUM µL The DOG-CG outputs from the ICR are
then routed to the constant generator for generation of
either +3 or -3 for decimal sum correction.

COMPARE

Compare operations performed by the ALU consist of
making five types of comparisons between operands in the
Aµ. and B,µ register: Aµ< Bµ, Aµ> Bµ,. Aµ = Bµ, Aµ r Bµ,
and Aµ = 0. Both algebraic (sign and magnitude) and
logical (magnitude only) compares are made, in an
unconditional manner whenever operands are loaded into
the Aµ and Bµ registers. Their results, however, are used
only when so directed by aµ I or othur command enable.
The results are used for the following three purposes:

1. storing compare status info1rmation in the
Condition register during executiion of a compare
(CMP, CMU) µI,

2. evaluating conditions under which the present
processor is turned off and the next processor in
the queue is granted priority, during execution of
a CI01 or CI02µ I, and

3. evaluating skip conditions during1 a skipµ I.

Aµ~ Bµand Aµ> Bµ Compares

The Aµ< Bµ and Aµ> Bµ compares are made as shown in
Figure 2-162. The 16 outputs from both the Aµ and Bµ
registers are routed to four LSI compare elements. Each
element makes an Aµ< Bµ and Aµ> Bµ comparison of

2-191

four pairs of bits. The two outputs from each element,
AMGTBM (Aµ greater than Bµ) and AML TBM (Aµless
than Bµ), are routed to final combinational logic which
combines all four AMGTBM outputs and all four
AML TBM outputs with AMEOBM (Aµ= Bµ) signals to
generate final AML TEOBM and AMGTEQBM signals,
respectively. Consider first the logic that generates
AML TEQBM. The signal is generated by a NANDing
operation which combines each AMGTBM signal of a
particular 4-bit group with the AMEQBM signal of the
next higher-order bit group.

Essentially, this logic generates AM L TEOBM if no group
of Aµ bits is greater than a corresponding group of Bµ
bits. The reason for considering the AMEOBM signal from
a previous group is to account for all possible
combinations of operand magnitudes in both A µand Bµ
registers. The example shown in Figure 2-163 illustrates
how the AM L TEOBM logic operates. Each digit of the
decimal number contained in the Aµ (139910) and Bµ
(140010) registers is represented by four bits of one
group. Below each pair of digits of a group is shown the
corresponding compare evaluation. Note that each
evaluation contains one signal that is low when the
compare evaluation is satisfied for that group. This is
necessary to ensure that at least one input to each AND
gate of the AML TEOBM logic is low to generate a high
AML TEOBM signal. The AMGTEQBM logic works in
basically the same way, except that the output signal is
generated if no group of Bµ bits is greater than or equal to
a corresponding group of Aµ bits.

Aµ= Bµ and Aµ~ Bµ Compares

The Aµ = Bµ and Aµ "/:- Bµ compares are made as shown in
Figure 2-164. The comparison of Aµ= Bµ is made again in
groups of four bits by pairing the true outputs of the Aµ
register with the complement outputs of the Bµ register,
and vice versa.

The result of such pairing yields a high output for each
comparison, as shown in the example at the top of Figure
2-164. The output from each group comparison is fed to
an AND gate to generate AMEOBM, and through an
inverter to generate AMEOBM.

Aµ = 0 Compare

The Aµ.= 0 compare is made as shown in Figure 2-165.
The 16 complement outputs from the Aµ register are fed
to a NANO gate, which generates a low output when all
inputs are high (all 16 register flip-flops contain "O"s).
The low output is designated AMEOZR.

+AMOO -+OJ

+BMOO -+03

·-------• I
I I
I I
I I +AMGTBM-0

I I
I I
I I
I I
I I
I I
I I
I I
I I

+AMLTBM-0

I I I
I

•• (1A25) I -------

-------------· I I
I I

I
I

+AMGTBM-1 --~-===t---c;;

I
I
I
I
I

+AMEQBM-0-

+AMEOBM-1 ___ _...

I
I
I
I
I
I
I
I
I

+AMEOBM-2---·--...J

I (1A22) I ·-------------

·-------------• I
I I
I

+AML TBM-1 --!·-==J---<
I
I
I
I

>e>-iiiil __ +AMGTE OBM

+AMEOBM-0-

+AMEOBM-1---_...

+AMEOBM-2-----'
I
I (1A22) I --------------·

Figure 2-162. Aµ< Bµ and Aµ> Bµ Compare Logic

2-192

GROUP

~ RE 0 1 2 3

Aµ 1 3 9 9

Bµ 1 4 0 0

AMGTBM-0
l l

AMGTBM-1 · AMEQBM-li

AMGTBM·:~ · AMEQBM-1

AMGTBM-3 · AMEQBM-2

F=igure 2-163. Input Signals to Aµ~ Bµ Compare Logic

r--------------.. I I
I I

+AMOO ----,- I
-BMOO __ ,.._ _ _.

I

-AMOO - --·--

+BMOO-,----
I
I
I
I
I

BITS 0--3

I
I

I
I
I
I
I
I

(1A25) I
.. ______________ ..

·-------· I I
~DBM-0 I I
+AMEIO.BM-1 --- --·--------- +AMEQBM
+AMEIO.BM-2 -~---- I
+AMEQBM-3 ---:~'----'

I (1A22) I ·-------·
TRUTH TABLE FOR BIT 0 COMPARE (TABLE WOULD HOLD TRUE FOR ALL BIT POSITIONS)

BIT

I I I
COMPARE

POSITION Aµ Bµ "A~ Bµ RESULT

0

I

1

I

x

I

x 0 1

0 x 1 0 x 1

Figure 2-164. Aµ • B µ and A ii rf< B µ Compare Logic

2-193

AMOO

1

1

0

0

·---------, I I
I I

-AMOO I

-AM15

I

16
INPUTS

I (1AZ3)

·---------

I
I

Figure 2-165. Aµ • 0 Compare Logic

+AMEQZR

Table 2-22. ALU Fanout Exclusive-OR and Inclusive-OR Function

Input Ou~ut ALU-00

Exel. OR Incl.OR

1 0 -- --
BMOO AMOO BMOO 1 1

1 0 0 0 1

0 0 1 1 1

1 1 0 1 1

0 1 1 0 0

2-194

SEL-EOR] SEL·OR

Algebraic and Logical Compare

The algebraic and logical compare logic, shown in Figure
2-166, evaluates the results of the Aµ< Bµ and Aµ> Bµ
logic, and the state of the MSB 's of Aµ and Bµ to make
the compares required by the CMP (2,2), CMU (2,3), and
RNI (8,0+1) µl's. For the CMP µI, both an algebraic
compare (sign and magnitude) and a logical compare
(magnitude only) are made on the cont1mts of Aµ and Bµ.
The Aµ > Bµ algebraic compare is made by comparing the
complement state of the MSB of Aµ (AM-00) with the
true state of the MSB of Bµ (BM-NEG). If both signals are
high, the contents of Aµ are greater (more positive) then
the contents of Bµ to generate ST A TUS-1. The Aµ < B µ
algebraic compare is made by inverting the state of the
above MSB's, so that the true state of the MSB of Aµ is
compared with the complement state of the MSB of Bµ. If
both signals are high, the conten~of Blµ are greater than
those of Aµ to generate ST A TUS-2. For both compares,
bit FM 1-005 is used to specify the CMP µ.I. The logical
compare is made simultaneous with the algebraic compare
via signals AM EQBM and AMGTEOBl\ll to evaluate the
16-bit quantities in Aµ and Bµ on a magnitude basis only.
The results of this compare generates STATUS-5,
ST A TUS-6, and ST A TUS-7.

For a CMU µI, the two above compares are also made;
however, the algebraic compare essentially reduces in
implementation to a logical compare. In effect, then, the
CMU µI performs two simultaneous logical compare
operations and generates two identical status bits for each
compare noted: bit positions 1 and Ei if Aµ.< Bµ, bit
positions 2 and 6 if Aµ> Bµ, and bit positions 3 and 7 if
Aµ= Bµ.

The STATUS-3 output has two different meanings,
depending on during whichµ I it is generated. If generated
during a CMP or CMU µI, it indicates an Aµ= Bµ compare
condition, as previously noted. If generated during an RN I
µ.I, however, it indicates a Link bit has been generated.
For this condition, STATUS-3 is generated by LINK and
FMl-000, which is high if an RNI µI is bieing executed. All
seven status bits are fed to the status logic via the ALU
fan-out.

ALU FAN-OUT

The ALU fan-out logic provides output gating from the
ALU for selecting one of the following eight logic
functions:

1. Exclusive-0 R between the output~i of the Aµ and
Bµ registers.

2. Inclusive-OR between the outputs of the Aµ and
Bµ registers. ·

3. Outputs from main storage (MS) data fan-out.

4. Outputs from status logic.

5. Outputs from adder.

6. Outputs from Aµ register. }

7. Outputs from Bµ register.

8. Clear conditions.

Together equal logic
product Aµ and Bµ.

There are 16 fan-out stages, one stage per bit. As shown in
Figure 2-167, the upper eight stages differ from the lower
eight stages because of the byte read capability from the
MS data fan-out logic. Except for the Aµ and Bµ register
outputs used to perform the exclusive-OR function, all
data is gated to the fan-out logic in complemented form.
The other 15 bits are gated by similar fan-out logic stages.
(Note that the STAT inputs appear in only the upper
eight stages of the fan-out logic since there are only eight
status bits generated in the ALU.) The exclusive-OR and
inclusive-OR functions of the Aµ and Bµ registers are
performed by the two top AND gates of the fan-out logic.
The top gate is fed with Aµ and Bµ register bits in true
form, and enabled by SEL-EOR. The next gate is fed with
Aµ and Bµ register bits in complement form, and enabled
by SEL-OR. When both enable signals are high, the
1exclusive-OR function (either one, but not both) is
1Performed on the two register outputs. When enable
:SEL-EOR is low and enable SEL-OR is high, the
iinclusive-OR function (either one or both) is performed.
These two logic functions are summarized in Table 2-22.

Each of the remaining six functions is presented with its
respective enable to one of the remaining AND gates.
When the enable is high, the data is gated and inverted to
true form. The logical product of Aµ and Bµ is realized by
!Jating the contents of both registers simultaneously. Data
from the MS data fan-out logic can be gated in either
word form (16 bits) or byte form (8 bits).

These data transfers occur in connection with operations
iinvolving the MS interface logic; details of these data
transfers, therefore, are discussed in the paragraph titled
Main Storage Interface Word and Byte Read Functions.
Use of the ALU fan-out logic to generate clear conditions
is dis cussed in the paragraph titled System Reset
Conditions.

2-195

P-----------------------------1 I MLI STATUS I
I BITS I

-FM1-005 CMPµI I I
-AM-00 __ A.._µ_+ __ .__ ________ -t-_____ I

+BM-NEG--
8.:...µ·--;--.----jt----1---&.-_.., STATUS-1

(Aµ >Bµ)

CMP

+AMTEQBM

}cMU STATUS-2
+AMEQBM I (Aµ(Bµ)

I CMP, CMU
I +FM1-000

I I
I I I I I I I I I I

I I
STATUS-3

I RNI (Aµ= Bµ)
I

+LINK I

L (1A23)

---------- ---- --------------
p ____ ..._ ___ ,

• LOGla;
I COMP I

STATUS-5
I 11-----11.~---- (Aµ > Bµ)

I I STATUS-6
I -.---1.1------ (Aµ(Bµ)

I I
I I STATUS-7

+AMGTEQBM----------~---~---~-r---:. _____ ;---...------ (Aµ=Bµ)

! (1A07) .. • ---------
Figure 2-166. Sign and Magnitude Compare Logic

2-196

+AMOO
+BMOO ·

·AMOO·
-BMOO·

-DROO

*·STATUS-0

·SUM-00

·AMOO

-BMOO

WRITE
INTO BRF

+SEL·EOR

+SEL-OR

+SELDR·O

+SEL·STAT

+SEL-SUM

+SEL·AM

+SEL·BM

SEL-ZR·O

r---------------------1
I
I
I
I
I

·DR00--------1-
1

SEL·DRB·0----1--

·DROB --------~ BITS
I s~s

SEL-DR-1----,-

SUM

A

B

SEL·ZR·1 ---------11 CLR

WRITE ~ (1A27)
1
1

INTO BRF ..-------- 1A28

L--------------------~
Figure 2·167. AILU Fan-Out

2-1917

*ONLY PRESENT IN STAGES 0-3

STATUS LOGIC

The status logic takes the results of the compare
evaluations discussed in the previous paragraph and
arranges for their storage in a specified register during
execution of a compare µI. The logic also detects and
processes the arithmetic status bits, Overflow and Link
generates during arithmetic operations. These two bits are
conditionally stored in a specified register via an RNl1 or
RNl2 µI, and unconditionally carried along with the
address of the present µI contained in the Sµ register. The
description of the status logic is divided into the following
two sections:

1. detection, reading and writing of the arithmetic
status bits into the Pµ register, and

2. storing of the compare and arithmetic status bits
in a specified register.

Arithmetic Status Bit Detect

During arithmetic operations, two status bits are
generated along with the operand result: Overflow and
Link. The Overflow bit indicates that during a 16-bit
operand add operation, the MSB of the sum (bit 01) has
overflowed into the sign bit position (bit 00). The Link
bit indicates that during one iteration of a
multiple-precision add operation, a carry-out has been
generated from bit position 00 of the adder which must
be added to the partial sum to be processed during the
following iteration. The Link bit essentially indicates that
the partial sum processed during the present iteration is
linked with that to be processed during the active
processor's next time slice, since they are part of the same
over-all operation. The bit is normally generated during
execution of an MLI containing several SUM or DSUM
µl's that are executed during different time slices.

Depending on the sign of the addend and augend, two
types of overflow are possible: positive overflow or
negative overflow (underflow). The two types of overflow
are depicted in Figure 2-168. Positive overflow, shown in
part a of Figure 2-168, is produced when the MSB of the
sum of two negative numbers overflows into the sign bit
of the sum. The result is to make the sum look like a
positive number (sign bit of "0"). Negative overflow,
shown in part b of Figure 2-168, is produced when the
MSB of two positive numbers overflows into the sign bit
of the sum. The result is to make the sum look like a
negative number (sign bit of "1 "). The two overflow types
are generated by the logic shown in Figure 2-169. This
logic evaluates the state of the MSB of the Aµ and Bµ
registers, and the adder to detect an overflow condition.

The Overflow and Link bits generated during a sum
operation (SUM or DSUMµ I) are detected and routed to
both theµ status current register and theµ status write
registor, as shown in Figure 2-170. The µ. status write
registor holds the detected status bits for the remainder of
the time slice, and then transfers these bits to the active
processor's Pµ, register in the ER F at WO. The register is
fed with the detected bits through selector 4 when
enablod by EN-SUM. This enable is generated whenever a
SUM or DSUM µI is executed (FM2-005 high or low) and
the associated M LI is not a 50 through 53, or if a DSUM
µI is generated (FM2-005 low) and the associated MLI is a
50 through 53. The µ. status current register performs a
dual function. If new status bits are detected during the
present time slice, it holds these bits for possible transfer
to another register upon execution of a store status µI
(such as an RNIµ I). For this purpose, the current register
is loaded from the status detectors through selector 3 at
any time other than E750 through EOOO (E789XX-L
low). These previously detected bits are obtained from
either the processor's assigned Pµ register if not running in
the Consecutive Cycle (CC) mode, or from theµ status
write register if running in the CC mode. If not in the CC
mode, the status bits are read from Pµ during the RO
cycle of the present time slice in the manner as the
starting µI address. However, the status bits will not be
useful to the present time slice until EO; therefore they
must be held in the status buffer register during R 1. This
is accomplished by the data path listed in part a of Figure
2-171. Along with this path are shown the corresponding
times at which data is enabled through a selector or
clocked into a register. Note that the status bits are held
in tho buffer register during R 1 of the present time slice
(actually from E680 of the previous time slice to EOOO).
If in the CC mode, the status bits are read from the write
register at E880, at the same time that the starting I
address is read from Pµ. The data path and associated
timing for a CC condition is shown in part b of Figure
2-171. For this case, however, the enable used to gate
status from the write to selector 1 occurs at E880, which
is the same time that the buffer register would be clocked
if in the CC mode. Since there is not enough time to put
status. into the buffer register from selector 1, the status
bits instead bypass the buffer register and instead are
gated directly to selector 2. Note from the timing that the
same one-minor cycle buffer delay is still achieved (from
E880 until EOOO) when bypassing the buffer register in
CC mode as for the case of not operating in the CC mode
(from E680 until EOOO).

Status Bit Storage

As discussed previously, the compare and arithmetic
status bits generated during a time slice can be stored in a
selected register. Generally, the register selected is the
Condition register (register 8 of the BRF); however, under

2-198

SIGN DATA SIGN DATA

xx x ... +-Aµ. REG__. 0 xx x.
+ 1 y y y ... +-- Bµ. REU __. + 0 y y y.

0 z z z ... +--ADDER·--+ z z z.

A. POSITIVE OVERFLOW B. NEGATIVE OVERFLOW

Figure 2-168. Overflow Definition

r----------------------, I I
+SUM·POS--1--- I

+AM00--1--- I
+BM-NEG T :--·OVERFLOW

I I
I I
I I
I I
I I
I I
I I
I (1A23) I

~----------------~-----~

Figure 2-169. Ov~itrflow Detection

2-199

I\.)

"" 0
0

A

E880
f +~WR·SEL 1]
l.:-~Pµ-SEL1

E680+E880
E&/800

[
i9SEL 1·SEL2J
-~BUFF-SEL2

E789XX-L
f+~SEL2-CR]
l:-~DET-CR

I (1A06) I
._ ____________ ..

ENSUM+EOOO+EBOO

Figure 2-170. Arithmetic Status Bit Detect Logic

SEL
REG

A

Pµ E650 WRITE REG

l l
SEL1 E880 SEL1 E880

l
j BUFFER REG E680

l
SEL2 E&/800 SEL2 E800+-E900

l l
SEL3 E70o.EOO SEL3 E900

l l
CURRENT REG EOOO CURRENT REG EOOO

a. NOT CC MOOE b. CC MOOE

Figure 2-171. Status Bit Flead Data Flow

certain conditions the register specified will be a transient
register. Storing of the status bits is accomplished by the
CMP and CMU µl's, which store the six compare status
bits (Aµ> Bµ, Aµ< Bµ and Aµ= Bµ) and the RNl1 and
RN 12 µl's, which store the arithmetic status bits,
OVERFLOW and LINK. These µl's implement the storage
operation via the status bit storage logic: of Figure 2-172.
This logic feeds eight status lines to the ALU fan-out
logic. When gated by SE L-ST AT, the fan-out network
routes the eight status lines to bit locaticms 0 through 8 of
the selected register in the BR F for storage.

The three algebraic compare bits are routed to the ALU
fan-out via the ST ATUS-1, ST A TUs-2: and ST ATUS-3
lines. The STATUS-3 line is also used to carry the LINK
status bit during execution of an RN ii~ I. This 1tl also
gates the OVERFLOW bit over the STATUS-0 line when

high. The three logical compare bits are routed to the
~~LU fan-out via the STATUS-5, STATUS-6, and
STATUS-7 lines. To enable storing a complete byte of
status information, a ST ATUS-4 line is added to the seven
above lines. This line is tied to a logical 1 via the +5 vdc
supply to enable storing a "O" in the corresponding bit
position 4 of the register.

The data present on the four status lines is gated through
the ALU fan-out via SEL-STAT, which is generated for
the CMP, CMU, RNl1 and RNl2 µl's. The status bits are
then stored in a register of the BRF designated by the
X-field of the particularµ I. The format of the register,
showing locations of the arithmetic and compare status
bits, appears in Figure 2-172. For the RNl1 and RNl2
1-rl 's, the X-field will designate either the Condition
register or an irrelevant register, depending on what type

2-201

r------,
: v+LL~c :
I I
I I
I
I (1A07) I L------.1

*STORED BY RNI
µI'S; OTHER
BITS STORED BY
CMP, CMU µI'S

-STATUS-0

-STATUS-1

-STATUS-2

-STATUS-3

-STATUS-4

-STATUS-5

-STATUS-6

0 2 3 4 5 6 7 8

...__,,_,.
ALGEB
COMP

r------------ --,

ALU -ALU BRF
FAN-OUT WR

I
I
I

-STA TUS-7 _....__.....__----:

(1A25,26)

------------~ ---,
........ -.. I

I
(1A07) ! ---CMP RN11

CMU RN12

Figure 2-172. Status Bit Register Storage

15

I

of operation the RNI µI is a part of. If the RNI µI is
associated with an arithmetic operation, the register
specified is the Condition register so that LINK and
OVERFLOW may be saved for future use. If the RNI µI is
not associated with an arithmetic operation, the X-field is
coded to specify some irrelevant register. This is to satisfy
the requirement of specifying some register by the X-field.

CONSTANT GENERATOR

Inputs and Outputs

The constant generator provides valuies of constants to the
Bµ register as required by the following µl's: LS1, LSE,
LS2, LSF, LBB, LBB-, EBU, EBL, DIG, and CORC. The
constant generator consists of four pairs of MSI selector
elements, each element containing two
four-input/one-output selectors. Inputs to each selector

are selected by two select signals, ENCG-0 and ENCG-1,
which feed both selectors of an element. A simplified
block diagram of the constant generator, showing one pair
of selector elements, is shown in Figure 2-173. Each
element of the pair is fed with two bits of a particular
input.

Depending on the µI, the outputs are used to develop one
of the following:

1. bits 0, 1, 8, and 9 of a 16-bit word constant,

2. the two most significant bits of the two 8-bit
byte constants, or

3. the two most significant bits of alternate 4-bit
nybl constants.

The other six elements of the constant generator are
paired together in the same manner to generate bit pairs
separated by eight bits. The select signals are enabled by
µl's to select corresponding inputs as shown in Table 2-23.

Table 2-23. Constant Gen•nator Input Selection

~lect Signal! State

Micro ln:structions -ENCG-0 -ENCG-1 Inputs Enabled

LS1, LSF, LS2, LSE 0 0 +5 voe, FORCE 1

DIG 1 0 ENT-CG

r·b = 0-0
LBB, LBB- a•b = 1 ·0 0 1 BIT-CG

a·b = 0·1

LBB, LBB- { a·b = '1 ·1 1 0 ENT-CG

EBU, EBL 1 0 ENT-CG

CORC 1 1 DOG-CG

2-2mi

-ODG--CGOO

-BIT--CGOO

-ENT.-CGOO

+5 voe

-BIT--CG01

-ENT--CG01

r-------------------------1
I ----[>--_._ I

l I
I

1 I

i
I I
i I

I
I I
I I
I I I I
I I
1 _I_

---I

-CG--BMOO

-CG--BM01

I
I

l I
I
I
I
I
I
I
I
I
I
I
I
• • -CG--BMOB

I
I
I
I
I
I
I

_[I
I - --- I

-CG--BM09

I
I
I
I
I
I
I

-ENCG·O I" ~ I
I

-ENCG-1

I
I

I ---[:>c--- (1A291 I
·-------------------------~

Figure 2-173. Constant Generator

2-204

The resulting constants generated by inputs selected for
particular µl's are shown in Table 2-24. (These constants
represent the final values stored in the Bµ register, not the
outputs from the constant generator. Depending on the
µI, the constant generator outputs may require
complementing prior to Bµ register storage.)

Generation of each constant via the corresponding µ.I is
discussed in the following paragraphs.

Load S Micro Instructions

Constant values required for the load S µl's are as follows:

LS1: O's to Bµ register

LSF: -1 to Bµ register

LS2: +1 to Bµ register

LSE: -2 to Bµ register

To generate these constants, select signals ENCG-0 and
ENCG-1 are "O" and "O" as shown in Table 2-23. The
state of these select signals causes the +5 vdc logic level to
be gated as outputs CG-BMOO through CG-BM14 and the
FORCE1 signal to be gated on CG-BM15 (the MSB) of the
constant. The FORCE1 signal is low for the LS1 and LSF
µl's and high for the LS2 and LSE µl's.

Table 2-24. Constant Generator Output Constants

-;-----_____~s 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

LS1 0 0 0 0 () 0 0 0 0 0 0 0 0 0 0 0

LSF 1 1 1 1 ·1 1 1 1 1 1 1 1 1 1 1 1

LS2 0 0 0 0 () 0 0 0 0 0 0 0 0 0 0 0

LSE ·1 1 1 1 ·1 1 1 1 1 1 1 1 1 1 1 1

LBB (a·b = O·O) 215-X

LBB (a·b = 1·0) 215-(XVR1)

LBB (a·b = O·H 215-(XVR2)

LBB (a·b = O·H 215-PROC ·I· 27-PROC

LBB- (a•b = 0•0) 215-X

LBB- (a•b = 1 •0) 2 t5-(XVR 1)

LBB- (a•b = 0• 1) 2
15-(XvR2)

LBB- (a•b = 0• 1) 215-PIROC
I I · 27;PROC

DIG ~ x -+-x + x + x~
EBL (N) 0 0 0 0 () 0 0 o I· N

EBU (N) N ·I
CORC 1101-+ 1101 1101 1101
CORC + - + + + ·I + ----l

0011 0011 0011 0011

2-20fi

The resultant outputs are then either FFFF 16 for the LS1
and LSF µl's and FFFF15 for the LS2 and LSE µIs. These
outputs are presented to the Aµ and Bµ register fan-in
logic and are gated through the logic by ENCG BM, as
discussed in the paragraph titled Aµ and Bµ Fan-In and
shown on the simplified logic of Figure 2-174. This logic
inverts the inputs fed to it so that now the constant
corresponding to LS1 and LSF is 000015 and that for
LS2 and LSE is 000116· These constants are then clocked
into the Bµ register in either true form or complement
form by means of the forced set and forced clear
conditioning of the Bµ register flip-flops discussed in the
paragraph titled Aµ and Bµ Registers. The constants are
already in the desired form for the LS1 and LS2 µl's, so
they are stored in the Bµ register in true form. However,
the constants must be complemented for the LSF and
LSE µl's so that they represent -1 and -2 in two's
complement form. Therefore, the constants are stored in
the Bµ register in complement form for these two µ1 's so
that the final form of these constants is FFFF15 (-110)
and FFFE15 (-210).

..--------..
I I
I I

I -CG-BMOO

I I I
I I
I I

1's I I
(+5 VDC) I CONST I

I GEN I
I I
I I
I I

-CG-BM14

1's

I
I -CG- BM15

FORCE 1 ------------.... 1+0

(0 FOR LS1, LSF): I
1 FOR LS2, LSE I I

I OA29J I
I 1A30 I

L-- I ---· -ENCG-0-ENCG-O

BOTH 0

Load B Bit Micro Instructions

The LBB µl's set a bit into the Bµ register derived from
values of the µ.I X-field and associated MLI R1 and R2
fields. The manner in which these various fields are used
to set the bit is determined by the µI a and b designators,
as summarized in Table 2-26. When set to the value
determined by the a and b designators, the bit in Bµ forms
a binary number whose value can be indicated as a power
of 2 as shown in Table 2-24. (For example, if the LBB µI
specifies that bit 6 is to be set in Bµ and a · b = 0 · 0, the
resultant binary number indicated is 215-6 or 29
(51210).)

Setting the bit in Bµ for a and b values of 0 · 0, 0 · 1, and
1 · 0 is performed by the logic of Figure 2-175. Depending
on the particular value of the a and b designators, the bit
to be set is accomplished by one of the following:

1. adecodingoftheptl X-field (FMl-112 .. 115),

2. an 0 Red combination of the µI X-field and M LI
R 1-field (F R-008 .. 112), or

3. an ORed combination of the µI X-field and MLI
R2-field (FR-012 .. 015).

{

COMPL OUT: ·1 FOR
LSF, -2 FOR LSE
TRUE OUT: 0 FOR
LS1, +1 FOR LS2

r---------------- • I 1
I

+FFFF16 I -FFFF15

+FFFE15 I REG -FFFE15 Bµ
FAN~N REG

I
I
I
I
I
I
I
I
I

+CL KAM/BM

·---,-------­
-ENCG-BM

[1Ar]
1A28 - ___ ..

+ENSBM (LSE AND LSF)

+ENRBM (LS1 AND LS2)

Figure 2-'174. Generation of Constants for Load S µl's

2-206

Tablet 2-25. Field Selection for Sutting Bits in Bµ Via Load B µl's

Designator Valuo Determination of Bit in
a b Bµto be Set

0 0 µI X-field (bits 12-15)

0 1 Inclusive OR of µIX-field and MLI R2 field
(bits 12-15)

1 0 Inclusive OR of µI X-field and M LI R 1 field
(bits 8-11)

1 1 Active processor determined by ENT bits to
constant generator

2-20J'

r----------------------------~ ! I }- _·_. - +ENCBM-0

+6,2+3

-AANDB
CLK I
Bµ I UPR

I
I
I
I

CLK
Bµ I

LWR I
I
I
I

(1A05) I

~------------ ----------------r------------ --------------~~ I
+FM1-112--..------

I
+F R-008----1~------1

I
I

+F R-012 ----1~-1-----11

I
I
I
I
I

+FM1-113--.------
-BITXIXX

+ENCBM-1

SEL
BYTE

+F R-009---1....__-+--+----11
---.-----. -BIT• CGOO

I
I

+FR-013--------
I

-BITXXIX

-BITXXXI

BIT
GEN

I

I 1 OF 8 I

I OUTPUTS:

I
1----11----------BIT +- CG07

+FM2-006--: :

+FM2-007--: II
(1A22)

~----------------------------~

Figure 2-175. Generation of Constants for Load B µl's (a·b = O·O, 1·0, and 0-1)

2-208

SEL
1 OF 8
BITS OF
BYTE

In each instance, the four bits comprise a bit select code
that defines, in binary form, the bit of Bµ to be set. The
MSB of this bit select code, BIT1 X>CX, selects either the
left-most or the right-most byte of Elµ in which the bit is
to be set. The a and b designators' (FM2-006 and
FM2-007) determine how BIT1 XXX is formed: either
directly or by the exclusive OR operation described
above. This signal is used in either its generated
complement form to clock the lower half of Bµ (bit
positions 8 through 15) via ENCBM-1, or inverted to true
form to clock the upper half (bit positions 0 through 7)
via ENCBM-0. In both cases, the enable for generating
either of these two clock signals is provided by 6,2+3 ·
AANDB which defines the LBB and LBB- µl's for a and b

values of 0 · 0, 0 · 1, and 1 · 0 .. Selecting a particular bit of
the selected byte is performed by the: remaining three bits
of the select code: BITX1XX, BITXX1X, and BITXXX1.
These bits are generated in exactly the same way as· the
MSB. Generation of BITXIXX is shown in Figure 2-175.
These three bits are fed to a three-input/one-of-eight fine
decoder to generate a bit select signal!, BIT-CG. The result
is fed to the constant generator, to set the specified bit of
Bµ.

Setting of a bit in Bµ for a and b values of 1 ·1 is
performed by the logic of Figure 2-176. This logic sets a
bit in each byte of the Bµ·register corresponding to the

processor that is presently active. (For example, if
processor 0 is presently active, bit 0 of the upper byte and
bit 8 of the lower byte of Bµ will be set.) Using processor
0 as an example, bits 0 and 8 of Bµ are set by one input to
the constant generator. ENT-CGOO, when enabled by
ENCG-0 and ENCG-1 equal to "1" and "O", respectively.
Signal ENT-CGOO, in turn, is produced by STATEO from
the priority logic which· indicates that processor 0 has
been assigned the p·resent time slice. This processor signal
is enabled by FM1-000 which is high for µl's 0,0 through
7,3 (which includes the LBB and LBB- µl's). Since a bit is
to be written in both bytes of Bµ, both enable clock
upper byte and lower byte signals must be activated. This
is accomplished by generating both ENCBM-0 and
ENCBM-1 simultaneously via 6,2+3. The value function
code appears alone with no instructions or values of a and

b designators; therefore, the enable clock signals are
·produced for all combinations of a and b values including
a-b = 1 · 1. (Generation of these enable clock signals for
unrestricted values of a and b does not interfere with
clock enables generated for restricted values of a and b as
discussed in the last paragraph since different inputs to
the constant generator are used for the two variations of
Load B µl's: BIT-CG inputs for Load B µl's with a and b
values of O·O, l·O, and 0· 1; and ENT CG inputs for
Load B µl's with a and b values of 1·1.) The LBB µI
sets the bit number in Bµ in true form; the LB 8-µI
sets the bit number in Bµ in complement form. (See
the paragraph titled Aµ and Bµ Registers for a dis­
cussion of setting ·bits in Bµ in either true or
complement form.)

.. -----------, I I
+6,2+3

+STATE 0

-FM1·000

I
T CLK

Bµ
UPR

CLK
Bµ

LWR

Ji•ENCBM-0
I

Ji•ENCBM-1
(1A05) I ________ , ___ ~

r--------,---1
I I

i I) I
I -ENT+-CGOO
I

I I
I (1A07) I ·--------·----

BOTH ACT
TO SEL
BOTH BYTES

Figure 2-176. Generation of Constants for Load Bµ I (a·b = 1 ·1)

Enter B Micro Instruction

The Enter Bµ l's provide for entering an eight-bit value
specified by the µI N field (bit positions 4 through 7 and
12 through 15) into either the upper byte (EBU µI) or
lower byte (EBL µI) of the Bµ register. The µl's are
implemented as shown in the logic of Figure 2-177. The
eight bits of the µI N field are applied to the ENT -CG
fan-out logic. Bits 4 through 7 of the N field are enabled
through the fan-out logic by 1 OXX and bit$ 12 through 15
are enabled by 1 XXX. Both enables 10XX and 1 XXX are
high for the EBU (1010) and EBL (1011) µl's. (Enable
10XX is used for enabling bits 4 through 7 of the µI to
specifically eliminate the DIG and CORC µl's, which also
load Bµ with bits from this field during their execution.)

The EBU µI enters the value specified by the µI N field
into bits 0 through 7 of Bµ in true form and leaves the
contents of bit positions 8 through 15 unchanged. It
accomplishes this by generating ENRBM-0 to first set bits
0 through 7 to "O"s, and then enters the value of N via
ENCBM-0.

The EBL µI enters the value of N in true form in bit
positions 8 through 15 of Bµ and sets bits 0 through 7 to
"O"s. It does this by generating ENRBM·O and ENRBM-1

to set both bytes of Bµ to "O"s, and then enters the value
of N into bit positions 8 through 15 via ENCBM-1.

DIG Micro Instruction

The DIG µI loads each four-bit nybl position of the Bµ
register with a value specified by the µI X-field. The µI is
implemented as shown in Figure 2-178. The µI X-field is
presented to the ENT-CG fan-in logic as bits 12 through
15 of the F µregister. These bits are fed in parallel to two
gates each, so that the X-field value is enabled through the
gates as ENT-CGOO through ENT-CG03 and as ENT-CG04
through ENT-CG07. These two 4-bit nybls are routed in
parallel to the four 4-bit nybl positions of B µso that the
original value defined by the X-field is copied into Bµ as
four values. This one-to-four transformation is shown in
Figure 2-179. Enabling of the four-bit X-field through the
FNT-CG fan-in logic is accomplished by enable 11 XX,
which gates the X-field through the ENT-CGOO through
Ef\1T-CG03 gates; and enable 1 XXX, which gates the
X-field through the ENT-CG04 through ENT-CG07 gates.
Both enable clock signals are activated for this µI so that
tho X·field value can be written into both upper and lower
halves of Bµ.

+A

+B

+FM1-004 THAU 007

+10XX

+FM1-012 THAU 015

+1XXX

CLK
Bµ

UPR

CLK
Bµ

LWA

I
I
I

I
I
I
I
I

I
I
I
I
I

(1A05)J

·---------~--------

Fi"ure 2-177. Generation of Constants for Enter B µI

2-211

+ENRBM-0 (
CLEAR)

BITS0...,..7

+ENRBM-1 G (CLEAR)
BITS 9...,..15

+ENCBM-0

+ENCBM-1

-ENT-.CGOO THAU 03

-ENT-.CG04 THRU 07

·----------------.,
I I

F,2+3
.
--- ,.-

CLK
T

I Bµ I
I UPA I

+ENCBM-0

I I
I I
I I
I I
I CLK ; I Bµ

+ENCBM-1

I LWA I
I I
I (1A05) I

~---------------~ P----------------• I I
I I
I I
I -ENT--CGOO THAU 03

+11XX

I
+FM1-012 THAU 015

-ENT ... CG04 THAU 07
+1XXX

I (1A07) I

·----------------~
Figure 2-178. Generation of Constants for DIG µ.I

BµAEG I 0 1 2 3 l 4 5 6 7 .l 8 9 10 11 l 12 13 14 15 J
~ii. • • •1~ .1~ .1~ j .1~ ... • ~~ ...

-ENT• CG BITS 00 01 02 03 04 05 06 07

+ ~~ .. II> .. ~

~
.. II> •

FM2 BITS 012 013 014 015

Figure 2-179. X-Field Fan-Out for DIG µ.I

2-212

CORC Micro Instruction

The CORC µI generates values of 316 or D 16 which are
used to correct each decimal digit aftEff executing a DSUM
µI. The decision to generate either 316 or D 16 is made on
the basis of whether or not a carry was generated during
manipulation of the particular decimal digit. The µI is
implemented by the logic of Figure 2-180, which shows
generation of a decimal correction value associated with
bits 0 through 3 of a decimal arithmetic operation. The
input to the constant generator consists of DDG-CGOO
from the bit 0 through 3 stage of the Inner Carry register,
and a ground connection. The DDG-CGOO input is applied
in generated complement form to bit stage 2, and inverted
to true form and applied to bit stages 0 and 1 of the
constant generator. Bit 3 is tied permanently to ground
since its value is "O" regardless of which correction value
is generated. Assuming that a carry is generated from stage
0 of the decimal operation, i)DG-CGOO is low and the
CG-BM outputs are as shown in Table 2-26. Since the
constant generator outputs are in complement form, they
are inverted by the ALU fan-in logic: prior to storage in
Bµ. The result is 00112 (316) whiich is the required
correction code. If no carry was generated from stage 0 of
the decimal operation, the inputs to bit positions 0, 1, and
2 are reversed. The result stored in Bitfor this situatfon is
1101 2 (Orn), or the two's complement of 316.

BIT SENSE AND SENSE/TOGGLE

The bit sense and sense/toggle logic is used to execute the
bit sense and bit sense/toggle (E,X,1) µl's. The two bit
sense (E,O, 1 and E, 1, 1) µI's scan the Aµ register contents
sequentially from bit position 00 through bit position 15
for the presence of the first "O" or "1". In addition, the
B µ register contents are incremented by 1 for each bit
position scanned without a find. The two bit sense/toggle
(E,2,1 and E,3,1) µl's are executed similarly except that
they additionally toggle the sensed bit to the alternate
state. Logic for executing these four µl's is shown in
Figure 2-181. The Aµ register contents are fed to priority
encoder logic, which produces a BCD output
corresponding to the first "O" or "1" detected in Aµ.
Since the priority logic, however, cannot itself determine
that it is to sense either the first "O" or the first "1" (all it
can sense is the first "0"), the data presented to it must
first be preconditioned to a form that will allow the
priority encoder to, in effect, sense for the right bit state.
This preconditioning is performed by routing the data

r-------------------~ I I

-DDG--CGOO

-~ j 1------1-
1
I

=ll ~I _L I
I

(1A29) I

~-------------------~ Figure 2-180. Generation of C:onstants for CORC µI

Tall>le 2-26. Constant Generatc1r Outputs to CORC µI

I--·---
CG Outputs

DDG-CGOO Input to
Carry Sta1tus Value 001 002 003 004 Bµ

Carry 0 1 1 0 0 0011 (316)

No Carry 1 0 0 1 0 1101 (016)

2-213

-CG BMOO

-CG-.. BM01

-CG-.BM02

-CG--BM03

+AM00-.03

-AM00-03

+AM04-.07

-AM04-.Q7

1'J

"'
.i:.

+AMOS-11

-AM08•11

+AM12-15

-AM12-15

+FM1-105

SEL

SEL

SEL

SEL

r1-SENSE ON 1 J
LO-SENSE ON 0

PRIOR
ENC

PRIOR
ENC

+TBITOOXX

+TBIT01XX

+TBIT10XX

BIT BIT +TBIT11XX

SENSE TOGGLE
GEN GEN

+TBITXXOO

+TBITXX01

+TBITXX10

+TBITXX11

Figure 2-181. Bit Sense and Sense/Toggle Logic

-BMBUFf04-.07 4

-BMBUFF08•11

-BMBUFF12-15

ALL LOGIC CONTAINED ON
CARD IN LOCATION 1A23

ADDA

ADDA

ADDA

ADDA

-BMSUM
00•03

-BMSUM
04•07

-BMSUM
08 ... 11

-BMSUM
12•15

from Aµ through a selector prior to being fed to the
priority encoder. This selector gates the contents of Aµ in
either true or complement form depending on the state of
FM1-105 of the µI sub-operation code. If the bit is "O",
the contents of Aµ are gated in true form so that the first
"O" detected by the priority encoder is the first "O" of
the Aµ. If the bit is "1 ", the conten1ts of Aµ are gated in
complement form so that tho first "O" detected by the
priority encoder is really the first "1" of Aµ. The priority
encoder logic consists of two elements, each element
determining priority of eight inputs (bit positions 00
through 07 and 08 through 15). The partial results are fed
to the bit sense generator, which combines the outputs
from the two priority encoder elements to generate a
four-bit code representing the bit position where the first
"O" or "1" was detected. This bit position number is fed
to an adder which adds the number to the contents of Bµ'.
In reality, this addition simulates incrementing Bµ for
each position of Aµ scanned without a find. Assume that
a "1" is to be detected in bit position 4 of Aµ This
scan/increment sequence would require incrementing Bµ
four times, since four bit positions would be scanned
without a find (bit positions 0 throu!~h 3). By generating
the bit position at which the "1" is found, only one
addition need be performed and the result is the same (4 =
bit position no. = no. of increments without find: 0 -+3).

If executing a bit sense/toggle µI, the bit sensed must be
toggled as well as its position in Aµ being added to Bµ.
This is accomplished by the bit toggle logic, which
generates a two-bit toggle bit-position code from the
four-bit sense bit-position code. For example, if bit 4 is to
be toggled, the two-bit code consists of TBIT01 XX and
TBITXXOO. This two-bit code is routed to an AND gate,
as shown in Figure 2-182, to generate one signal that
specifically designates bit 4 as the bit to be toggled. The
result is routed to selector logic. This logic selects either
the toggle bit designator or a corresponding bit from the
shift network, depending on the state of FM2-211. Since a
bit sense/toggle µI is being executed, FM2-211 is high to
gate the toggle bit designator to the Aµ and Bµ fan-in
logic. This logic is enabled, in turn, by ENSN-ALU which
is high for both shift and bit sense/toggle µI's. The result
is fed to both the J and K inputs of the bit 4 flip-flop of
the Aµ register. Since both inputs are fed with the same
signal, the flip-flop will toggle from its present state to the
alternate state upon occurrence of ENCAM, which is also
generated during execution of a bit sense/toggle µI.

r------------------------------------1
+TBITXXOO

+TBITX1XX

+FM2-211

+ENS~ALU

+ENC AM

I AµAND Bµ I
I REGISTER I
I FAN~N I

Aµ I
REG

I I

I
I
I
I
I
I
I
I
I
I
I

SEL

-I>-'--

BIT
04

I (1A26)

~-----------------------------------~

Figure 2-182. Toggling of Bit 4 of Aµ

2-21 !5

SHIFT NETWORK

The shift network performs a left shift on each bit of a
32-bit operand as determined by a specified shift count. A
block diagram showing the logic required to implement
the shift operation is shown in Figure 2-183. The 32-bit
operand in the Aµ and Bµ buffer registers is entered into
the shift network and shifted by an amount defined by
the shift count control output. This shift count is derived
from one of three sources:

1. the X-field of a µI (SHF and SHA µl's),

2. bit positions 12 through 15 of the D register
contents (DLS and DRS µl's if bit 1 of F is a
"0"), or

3. bit positions 8 through 11 of the MLI in F (DLS
and DRS µl's if bit 1 of F is a "1 ").

If either a SHF or DLS µI is executed, the shift count will
be derived in true form and the shift will be to the left. If
either a SHA or DRS µI is executed, the shift count will
be derived in two's complement form. The result is to
effect a right shift by an amount equal to the shift count
in true form by left shifting the number of bits specified
by the shift count in two's complement form. Indication
that a right shift is to be performed is furnished by signal
SHIFTR. This signal enables the two's complement logic
to convert the shift count from true form to two's
complement form. After being shifted, the 32-blt operand
is routed back to the Aµ and Bµ registers through the shift
network and bit sense fan-in logic, and the Aµ and Bµ
fan-in logic.

The shift network itself consists of two ranks of 32
selectors each. The first rank is fed with the combined
32-bit output from the Aµ buffer and Bµ buffer registers.
It is organized such that each bit of Aµ buffer and Bµ
buffer is fed to four selectors to enable each bit to be
left-shifted 0 to 3 places, depending on which of the four
selectors is enabled. These enables are derived from the
upper four bits of the eight-bit shift count from the shift
count control. The output from each first-rank selector
circuit is fed to four selector circuits of the second rank.
These selector circuits perform a similar shifting function
as the first-rank selectors, but on a nybl basis. Therefore,
the bit shifted 0 to 3 places by the first-rank selectors is
shifted 0, 4, 8, or 12 places by the second-rank selectors.
These second-rank selectors are enabled by the lower four
bits of the eight-bit shift count.

2-216

Shifting of a typical bit of Bµ buffer (bit 11) is shown in
Figure 2-184. The four first-rank selectors fed by bit 11
are physically packaged in two selector elements: selectors
QA and 1 A in one element and selectors 2A and 3A in the
other element. Each selector is fed with other bits of Bµ
buffer to effect a shift on them also; however, only bit 11
is fed to all four of the selectors shown. These four
selectors shift bit 11 to the left 0 to 3 places as indicated
by the SHF 0 through SHF 3 designations. These four
outputs are each fed to four second-rank selectors to
effect the shift on a nybl basis. Therefore, the SHF 0
output can be shifted 0, 4, 8, or 12 places to the left by
selectors OB, 48, 88, or 128. Similarly, the SH F 1 output,
which already represents bit 11 shifted left one place, can
be shifted 1, 5, 9, or 13 places to the left of its original
position in Bµ buffer by selectors 18, 58, 98, and 138.
Therefore, bit 11 of Bµ (and all other bits of Aµ buffer
and Bµ buffer) can be left-shifted 0 to 16 places by the
combined action of the first-rank and second-rank shift
selectors.

Examples of three different shifts of bit 11 of the B
buffer are shown in Figure 2-185. Part a shows the
selectors involved for a shift of 0 places to the left. The
bit is simply gated straight through selectors OA and OB
and appears at the output of the shift network as bit 27 of
the 32-bit result (11 + 16). Part b shows the selectors
involved in shifting bit 11 left 5 places. Selector 1 A shifts
the bit 1 place and selector 5B shifts the bit the remaining
4 places. Part c shows the bit shifted left 14 places:
selector 2A shifts it 2 places and selector 14B shifts it 12
places.

As discussed previously, right shifts are implemented by
converting the shift count to two's complement form and
performing a left shift. The result, however, is developed
in the lower half of the shift network (bit positions 16
through 31) instead of in the upper half as during a left
shift operation. This difference in where the result is
developed is interpreted as either a left shift or a right
shift, as shown in Figure 2-186. This figure shows the
principal µl's used to implement both a left shift and a
right shift machine language instruction (MLI). Both
examples assume that an operand in some register R will
be shifted either left or right four places and stored back
into R. Part a shows the µl's necessary to execute a
left-shift MLI. The operand is transferred from R to B by
a LBW µI. From Bµ, the operand is left-shifted four places
through the shift network by a DLS µI. During the shift,
the four most significant bits are shifted end-off and the
empty space resulting from shifting the four least

I

,------------------------------- ·------------, I I I I
I I I 1 I
I Aµ I I I
I SNHTIWFKT Aµ ... RAEµG .. BUFF ! I ~ I
I FAN-IN REG .,._~.-----.. • ..--1 ... M I
I FAN-IN I
I • I I
I I I SEL SEL I

; I I I +rnsLw I I +~ii~~ I ~ I i i RA1NK RA2NK I {
i Bµ I I
I..... ~~~~ ~ F:~IN RBtG __... BUFF ! _I_....
T ,,.. .-------... ... -... REG -. I ...
I FAN-IN I
I I I
I I I
I j +cLksM ~- I I
I +ENSN+-ALU (E320) (1A25+-1A28) I I

----------------------~-------~ I

·----------.. I +CL KBUFF I
I (E260) _I

I i
! _._ ! +ENOR+-SC

---11i.......,.,.MI ! +ENFR+-SC

I ..i +SHIFTR -

F

Fµ
0

, ___ ..
I
I
I SHIFT
I COUNT
T CONT

1
i

,J ~

1--

1--

1--

1--
I

I ~ I
I (1A05) I
L--- ... ------J I (1A24)J

, _______________ _

+CLKFM
(E200)

Figure 2-183. Shift Operation Block Diagram

SHF 15
--J=-12 15B

1----

__.. 14B + 13 ...

....
138 -ti 14 ...

t----

r-+ 128 ~15

.... ~1 6 ... 11B

1----

-- 10B ~ 17 --..

.....J 9B +18

t----

+--+ BB 19

SN
OUTPUT

........ 20 .. 78 --...

I---'""'
....... 6B ... 21 ..

08:
SHF 5 SHF 3 22

..... __..
SB ..

3A --...llio.! ..
t----....... .. r----

SHF 4 __..
23

... 09 ..
SHF 2 t---+ 48 ..

2A --... _:
: ...

__... SHF 3 __... 24 .. - .. 3B Bµ

1----BUFF
REG

.. 2B SHF 2 __,. 25 --..
10 ..

SHF 1 ~ SHF 1 _. 26 .. -: 1A --... 1B """"11"'1

r.:: I- --- t----11 r: SHF 0 SHF 0 _..
27

12 :::: DA OB .. 13 ...
1 4 __... --... ,__....___

ALL LOGIC ON

L©--, ~ MODULE 1A24

--SHIFT
COUNT

Figure 2-184. Shift Network

2-218

0 11 12 15 16 19 20 23 24 27 31

SNOUTPurt:::JC::::I: -

SHF 0

Bµ.1 .. .-.._
0 3 4 7 8 11 12 15

a. SHIFT LEH 0 PLACES

0 11 12 1.3 15 16 19 20 23 24 27 28 31

SN OUTPUTD \ l_lll!~---'--------'------'-----........ 1 __ ._.I
~---~ SHF12

Ci? SHF2

0 3 4 7 8 15

c. SHIFT LEFT 14 PLACES

Fiuure 2-185. Left Shift of Bµ Bit 5 Four Places

2-219

X X X X X X X X 0 0 0 0 R

Aµlo o o ojo o o olo o o ojx xx xi l1 o 1 ofx xx xix xx xlo o o oleµ

THESt BITS lDLS 4 DROPPED

Aµlo o o ojo o o olo o o olo o o ol lx xx xl1o1 olx xx xix xx xleµ.
~

~R

A. LEFT SHIFT MLI (4 PLACES)

AµI lxxxxj1o1 olxxxxl fxxxxlo o o olo o o olo o o oleµ

r DRS4

SN xx xx 1

Aµ 0 1 0 X X X X X X X X 8µ

Ix xx x(1 o 1 olx xx xix xx xJR

B. RIGHT SHIFT MLI (4 PLACES)

Figure 2·186. Implementing Left Shift and Right Shift Operations

2-220

significant bits is filled with zeros. The result is sent to Bµ,
and stored back in R by a STB µI. Part b shows execution
of a right-shift MLI. The shift count (4) is converted to
two's complement form to form C15 (F15 - 415 = C15)
or 1210. The operand again is transferred to Bµ and
shifted left 12 places by a DRS µI. This time the shifted
operand is developed in the upper half of the shift
network and transferred to Aµ. The result is stored back
into R by a ST A µI.

Because of the propagation delay through the shift
network (almost 100 nanoseconds tot~1I) and the length of
the data path back to Aµ and Bµ, the, shift µl's take two
minor cycles to execute. It is necessary, therefore, to
delay the following functions for one minor cycle:

1. clocking the shifted operand back into Aµ and
Bµ,

2. execution of the firstµ I following the shift by
blocking its transfer to Fµ (this µI has already
been read from CS), and

3. delay reading the second µI following the shift µI
from CS by blocking the transfer of its address
into Sµ.

+FXEQ- E1

These inhibit conditions are generated by translation of
the shift µI operation code and setting the Shift Delay
flip-flop, as shown in Figure 2-187. Signal BLOCKFM is
generated and ENCLKSM is disabled to block clocking of
Fµ and Sµ. These conditions are generated during the first
minor cycle of the shift µI by translation of the shift µI
(E, X, X) and the fact that the Shift Delay flip-flop is not
set. At the beginning of the second minor cycle of the
shift µI, the flip-flop sets to enable clocking the shifted
data back into Aµ and Bµ by generating ENCAM and
ENCBM.

Timing for the above conditions is shown in Figure 2-188.
This chart assumes that the shift µI is read from CS during
E1 and executed during E2 and E3. The two µl's
following the shift (SHIFT + 1 and SHIFT + 2) are
delayed in their execution because of the constraints just
discussed. Note that the shifted contents of the shift
network cannot be clocked into Aµ and Bµ at E320
(which they would normally be if the µI was a
one-minor-cycle µI) because enables ENCAM and ENCBM
are inhibited at E280 due to the fact that the Shift Delay
flip-flop has not yet set. When this flip-flop sets at E300,
then ENCAM and ENCBM can be generated at E380 to
dock Aµ and Bµ at E420.

,.------------· I I
I
I
I
I

I I
I 0A06) I
L------------·

-ENCLKSM

+BLOCKFM

·--------- ---------------------· SHIFT

+E,X,X • DELAY FF I
------- D Q •------1------- +ENC AM

CLK I
Aµ I

I
I

+TXOO c
~]

I
I

+ENC BM
CLK I
Bµ I

I
(1A05) I

'------------------------------~
Figure 2-187. Shift Delay Logic

2-221

E1 E2 El E4

SHIFTµI 6t-11--+--------P-----r---1----~6.t-+-~a

~~::o~ BJCK ~:~~~ ~~~:~

SHIFT+1µ1

SHIFT +2µ1

BLK FM

ENCLKSM

I SHIFT DELAY
FF

EN CAM/BM

CL~SM

ENCAM (E380) (E420)
ENC BM
(E280)

t
BLOCK
CLKSM

FXEQ-E1

BLOCK
CLKFM

Figure 2-188. Shift µI Timing

£;.

CLKFM

6.
CLKSM

.a.

6.
CL KAM
CLKBM

CLKFM

E5

1/0 INTERFACE

The 1/0 interface logic controls the transfer of all data
and associated control signals between the shared
resources and 1/0 processors 0 through 3 during normal
I /0 transfer operations.* These operations involve
transferring data between MS or registers in shared
resources and designated register in each 1/0 processor.
Each 1/0 processor contains registern dedicated to its
exclusive use; for addressing purposes, however, they are
collectively referred to as Group 111 registers of the
Extended Register File (ERF}. All 1/0 operations are
initially started by the Executive processor under program
control. However, each word transfer c;omprising the 1/0
operation is initiated by a request signal from the 1/0
processor. This request is sent to shared resources after
determining that it either has assembled a complete word
in its register for transfer to shared resources (if an input
operation), or that the last word it re<:e~ved from shared
resources has been written into its storage medium (disc,
magnetic tape, and so forth) and it is now ready for
another word (if an output operation). One word can be
transferred during each time slice assigned to an 1/0
processor.

NOTE

Input and output operations are discussed from
point of view of the shared resoun:es. Thus, input
operations transfer data from an 1/0 processor to
the shared resources and output oporations transfer
data from the shared resources to the 1/0 processor.

1/0 REQUESTS

All data transfers between the shared resources and an 1/0
processor are initiated by requests from the 1/0 processor.
These requests are implemented as part of an 1/0 transfer
routine executed by the respective 1/0 processor (such as
the D 10 packet executed by disc processor 3) and are
generated when the word to be transferred has been
assembled in the appropriate register. In the case of an
input data transfer (1/0 processor to shared resources),
the request is generated when the word has been read
from the 1/0 device (card reader, disc, and so forth) and
assembled in the transfer register of the 1/0 processor. In
the case of an output data transfer (shared resources to
1/0 processor), the request is generated when the 1/0
processor has written the last word received onto the disc,
magnetic tape, or whatever, and is now ready to receive
the next word from shared resources. Prior to the actual

*The CS Load and MS Load operations from 1/0 processors 1 and
3 are not considered normal 1/0 transfers in that they are usually
performed only once, during a power-on condition.

transfer of data, the 1/0 processor has been initialized by
Software routines executed both by the processor needing
the 1/0 data and the Executive processor. Among other
duties, these routines perform the following activities:

1. set the 1/0 processor's Active flip-flop in the
Busy/Active (B/A) register, and

· 2. set up a buffer in MS where the 1/0 data will be
stored by defining a Current Byte Address (CBA)
and a Final Byte Address (FBA).

Upon determining that it is ready for a word transfer, the
1/0 processor sends a request to shared resources for a
time slice during which to perform the transfer. This is
done by setting the 1/0 processor's Busy flip-flop in the
B/ A register, whose output is then routed to the priority
logic for assignment of a time slice. After each word is
transferred, a comparison is made of the updated CBA
and the FBA by a CIO µI for a condition of equality. If
the two addresses are not equal, the µI shuts off the 1/0
processor by clearing its Busy flip-flop until the processor
is ready for the next word to be transferred. The 1/0
processor's Busy flip-flop is again set by another request
and the above sequence is repeated until all words have
been transferred. At this point, the CBA will equal the
FBA. The result is to prevent the processor's Busy
flip-flop from being cleared to execute the next sequential
µI's in the 1/0 transfer routine until it is completed.
During this 1/0 operation, the request from the 1/0
processor has been generated and deactivated many times
(once for each 1/0 word), causing the processor to turn on
and turn off in a corresponding manner. Throughout this
operation, however, the I /0 processor is locked on to the
shared resources by means of the processor's Active
flip-flop which remains set for the entire operation. This
locking up of the processor is necessary to prevent either
the Executive processor or another 1/0 device associated
with the 1/0 processor from attempting to initiate another
1/0 operation while the processor's Busy flip-flop is
cleared between word transfers, which could normally be
done if the Active flip-flop was not set.

A simplified diagram of the B/A register showing the
relationship between the Active flip-flops of each 1/0
processor and corresponding Busy flip-flops is shown in
Figure 2-189. The Active flip-flop for a particular
processor is set by software under control of the
aforementioned 1/0 transfer initialization routines. The
Active flip-flop outputs (B/A-08 through B/A-11) are fed
back to the Executive processor informing it that the 1/0
processor is presently engaged in an 1/0 operation and
may not be interrupted until completed. The request
(REO) signals from each 1/0 processor are fed to the Busy
flip-flops when a word is ready for transfer. These
flip-flop outputs (B/A-00 through B/A-03) are routed to

-ALU-00

-ALU-01

SHARED
RESOURCE

-ALU-02

l\:l
~ -ALU-03
l\:l
~

+~A~B)
1/0

PROC
+B/A-09 0-3

ACTIVE
FF'S

+B/A-10

+B/A-11
(1A03)

'-------

+RE0-0--------------1

+REQ-1

+ATTN-1

-B/A-09

+RE0-2

+ATTN-2

-B/A-10

+REQ-3

+ATTN-3

-B/A-11

BUSY
FF'S

(1A03)

---------~ BIA REGISTER

Figure 2-189. 1/0 Requests for B/A Register

t----+B/A-00

1----+B/A-01

1----+B/A-02

1----+B/A-03

SHARED
RESOURCES

the priority logic for assignment of time slices. Busy
flip-flops for processors 1, 2, and 3 may also be set via
corresponding ATTN signals in the event that an 1/0
device requests a time slice for a data transfer that is not
initiated under software control. Setting the Busy flip-flop
in this way will be permitted by the Bl.A register and then
turn control over to appropriate software, but only if the
processor associated with the 1/0 device is not presently
engaged in another task as indicated by the corresponding
Active flip-flop being set. This lock-out condition is
implemented by ANDing the ATTN signal with the
complemented output from the Active flip-flop.

Additional details about setting the Busy flip-flops by
request signals may be found in the pc;1ragraph titled B/A
Register.

REGISTER SELECTION

Selection of a register in one of the four 1/0 processors is
accomplished by means of the Extended Register File
(ERF) Group Ill selection logic discussed in the paragraph
titled Extended Register Selection. A:s discussed in that
paragraph, all registers of these 1/0 processors are selected
by an encoded register address sent to the processor on
the four ERNG3 lines. This address is developed both for
read and write operations. This paragraph will discuss
some of the peculiarities in register selection in each of the
four processors.

Processor 0

Processor 0 contains four registers that may be addressed
by the ERNG3 lines: write data 12, read data 13, write
address 1 D, and read address 1 F registers. As the names
imply, these registers are used 'Ito read or write associated
data or address information when selected by the
corresponding address. (Recall that the~ four ERNG3 lines
encode only the least significant digit of the address (2, 3,
D, or F). The most significant digit (1) is implied by the
µI function code as a consequence of uenerating a register
read or register write signal to enable information from or
to the register.) Further details about addressing these
registers may be found in Section 5 (Volume 3) of this
manual.

Processors 1 and 2

Processors 1 and 2 contain five registers that may be
addressed by the ERNG3 lines: Bus In register, Tag Out
register, Channel Control register, Byte Count register,
and Bus Out register. Three of these five registers (Tag
Out, Channel Control, and Byte Count registers) may be
addressed for either an input or outpUJt data transfer. The
Bus In register may be addressed only for an input
operation; conversely, the Bus Out register may be

2-2261

addressed only for an output operation. When addressing
the eight-bit Tag Out register for an input data transfer,
the data on the eight tag in lines is also selected for
transfer to the shared resources. Further details about
addressing these registers may be found in Section 4
(Volume 3) of this manual.

Processor 3

Processor 3 contains one register that is addressed by the
ERNG3 lines. Depending on the address used to select this
register and the time at which the address is generated on
the ERNG3 lines, this register may be used to perform a
variety of functions. For example, addressing the register
as register 10 indicates to the I FA that the information
contained in the register is to be used to select a particular
disc drive. When addressed as register 12, the contents are
interpreted as status select bits. Further details about
addressing this register may be found in Section 6
(Volume 3) of this manual.

DATA INPUT

Data read from the four 1/0 processors is fed to the
shared resources by means of the ER F Group 111 input
logic shown in Figure 2-190. This logic consists of 16 data
receivers which receive the 16 data lines from each of the
four 1/0 processors. Data from a particular processor is
selected by a corresponding ENERG3 enable, which gates
data from the particular processor through the data
receivers, and the ERFG3RD signal, which strobes data
from the register in the selected 1/0 processor. Each
ENERG3 enable is generated by a corresponding STATE
signal from the priority logic which defines the processor
from which data is to be read, and a and b designator
values of both "1" which define an ERF register is being
selected. Signal ERFG3RD is generated for any µI that
can read an ER F Group 111 register (6, 1; 6, 2; 7, X, and
D, X µl's) ANDed with a second line that indicates the
particular µI is making a reference to an ERF Group Ill
register (a·b = 1 ·1 and Fµ -011 = 1).

DATA OUTPUT

Data to be written into registers of the 1/0 processors is
fed from the shared resources by means of the ERF
Group Ill output logic shown in Figure 2-191. This logic
consists of 16 data drives which receive the 1/0 data from
the ALU and fan it out to the four 1/0 processors.
(Although data is fed out to all four processors in parallel,
only one of the four will be enabled to receive it as
selected by the EXCT signal from the priority logic.) The
register.to be written into is enabled by the ERFG3WR
signal. This signal is generated in a manner similar to
ERFG3RD, except that it is generated during execution
of a µI that can write into an ER F Group 111 register.

1/0
PROC

·-----------------· I I
I I
I I

+ERI0-00

I I
+ERl1-00---·· I

I I
I I

-ERFG3-00
+ERl2-00

I
I

+ER13-00 -------·--1-----
I
I
I

~
I
I
I

+ERi 0-15 ---..... --t--+---t~-1---11
I
I

+ERl1·15 -------+----11----t---
I
I

+ERl2·15-------~---...
.---ERFG3·15

I I
I I

+ERl3-15 --------+--f-·--f--+---11 I
I
I
I ,_

I
I

<1016) I - -----------·
--i-----------·--------ENERG3-0

-·--+----------------ENERG3-1

~-+----------------ENERG3-2

---------------ENERG3-3

r------------~----1
I I 6,1 +6,2+

7,X + D,X I
I
•--a·b=1 ·1
I
·--Fµ-011
I

L
I nAo6) I

-----------------~

Figure 2-190. ERF Group Ill Input

2-226

SHARED
RESOURCES

16 I
} 1/0 OUT I PR~C

LINES I

}

·------.. }
I I
I I

·ALU-00 ·--.. ~>-----,.--E-R_.0,·..,D0-+------

1
I
I
I t I

1/0
PROC

3

l~ER0-15 ·ALU-15----r _____ ___.__

I I
SHARED

RES

I (1A18-1A21) I ··------..

Figure 2-191. ERF Gmup Ill Output

TERMINA.TION OF 1/0 OPERATION

As discussed in the paragraph titled 1/0 Requests, an l/Q
operation is normally terminatied when the CBA equals
the FBA, indicating that the l/Q buffer in MS has been
completely filled. This condition is implemented by the
CIQ µI, which checks the contents of the Aµ and Bµ
registers for a condition of either equality or inequality
depending on which of the two CIQ µl's is being
executed. However, the l/Q operation can also be
terminated before normal completion because of an
abnormal condition detected during tlhe operation. This
abnormal termination is indicated by an End of Transfer

2-227

(EQT) signal sent from the processor to the shared
resources. In the case of a normal l/Q termination, the
CIQ condition keeps the Busy flip-flop set so that the l/Q
operation can terminate in an uninterrupted fashion by
means of the l/Q data transfer routine. In the case of an
abnormal l/Q termination, the EQT signal keeps the Busy
flip-flop set to allow the Executive to detect the source of
the abnormal condition. Each of the four l/Q processors
sends a respective EQT signal to fan-in logic in the shared
resources, as shown in Figure 2-192. This logic AND's the
EQT signal with a corresponding ST ATE signal from the
resource allocation network to generate EQTEXIT. This
signal is routed to the l/Q terminate/continue logic.

r----------.. I I

P~gc /·EDT +--t>- i
I
I

RES I
ALLOC {·STATE
NTWK

I
I
I
I

I (1A07) I

L----·------
Figure 2-192. EQT Fan-In Logic

The 1/0 terminate/continue logic, shown in Figure 2-193,
is used to either terminate or continue the 1/0 operation,
based on receipt of the EOTEXIT signal and evaluation of
the CBA/FBA compare during execution of a CIO µI. This
logic generates three signals: IOEXIT, CIO-TX, and
CIOEXIT. Signal IOEXIT is used to terminate the 1/0
operation in the 1/0 processors. The signal is generated for
either a normal 1/0 (CIO µI) terminate condition, or an
abnormal (EOT) terminate condition. For a CIO µI
terminate, the signal is generated during execution of
either a CI01 µI and an Aµ=Bµ condition, or a CI02 µI
and an Aµ~Bµ condition. These are the conditions defined
for these two µl's that indicate that the 1/0 operation has
been completed. The result is to cause the 1/0 processor
to idle (perform NOP's) through the rest of the time slice
and update the Pµ register in the ERF with the contents
of Pp, which defines the starting address of the first µI to
be executed during the next time slice. This µI will be the
first in a routine to obtain status information, which
always follows after transfer of 1/0 words. For an EQT
terminate, the signal is generated by means of EOTEXIT
during execution of the following CIO µI in the 1/0
transfer routine regardless of whether or not the CIO
compare condition is met. Combining EOTEXIT with
signal CIO is necessary so that the 1/0 processor can begin
the routine to obtain status information. (As discussed
above, the starting µI address for this routine results from
executing either the CI01 or CI02 µI.) Fc;>r all three ways
of generating IOEXIT, signal IDLE is included to prevent
the signal from being generated if the 1/0 processor is in
an idle condition.

Signals CIO-TX and CIOEXIT are generated for a
condition opposite of that for generating IOEXIT, that is,
if the condition for terminating an 1/0 operation is not
met. Essentially, this means one of the following is true:

1. execution of a CI01 µI and an Aµ:f:Bµ condition,

2. execution of a CI02 µI and an Aµ=Bµcondition,
or

3. no EOTEXIT signal.

Signal CIO-TX is fed to the B/A register to clear the 1/0
processor's Busy flip-flop. This action allows the 1/0
operation to continue by permitting the 1/0 processor to
set the Busy flip-flop again when the next 1/0 word is
ready for transfer. Signal CIOEXIT is routed to the Pµ
select logic to inhibit writing the contents of Pp (starting
µI address of routine for obtaining status) into the 1/0
processor's assigned Pµ register. Since additional 1/0
words are to be transferred, the CIOEXT signal effectively
causes the 1/0 transfer routine to repeat by causing the
un-updated contents of Pµ to be transferred back to Sµ at
the beginning of the next assigned time slice. Inhibiting
thu Pp + Pµ operation is done by changing signal
EFI RH/WL to the high state. When in the low state, this
signal enables data to be stored in Pµ. When changed to
the high state, however, this write operation is inhibited.
If the 1/0 processor is running in the Consecutive Cycle
(CC) mode, Sµ is inhibited from being written with the
contents of Pp by inhibiting ENPP-SM. This inhibiting
condition is also generated by the CIOEXIT signal.

2-228

SYSTEM CONTROL PANEL INTERFACE

The System Control Panel (Panel) interface logic controls
all Panel-initiated functions of the system. These
functions include (1) reading and writing Main Storage
(MS), Control Storage (CS), Register Option (RO)
registers, and Register File (RF) registers; (2) selecting
processor and panel operating modes; (3) initiating CS
loads and MS loads; and (4) displaying file registers
contents. The Panel interface also enables display of
certain system status information such as MS and CS
parity errors and processor states which are executing
major cycles, the capability of transferring control of the
system from the Panel to a remote location, a general
system reset facility, and applying AC power to the
system.

A block diagram showing the main functions controlled
by the Panel interface logic is' shown in Figure 2-194.
Reading and writing MS, CS, RO, and RF registers are
grouped under one category identified as console control.
These operations are selected by means of the CONSOLE
MODE SELECT selector. The MS, RO, and RF register
read and write operations are similar in that each is
performed by a µI subroutine. The CS Read and CS Write
operations are also selected by the CONSOLE MODE
SELECT selector. However, these operations are

-AMEQBM

+CIO

-IDLE

CI01µ I

Cl02µ1

-EOTEXIT

r--~~~ I L =Aµ= Bµ (1A14) I
I
I
I
I
I

I

I
I
I

• I

I
I

I
I

L=Aµ:#B I
I
I
I
I

----------------... 1
-+IOEXIT

~------------------------------------- r-----,
I I

I
LJ-...---ENPMM

+CONCVC ---- I
I I
I (1A13) I . _____ ..

Figure 2-193. 1/0 Terminate/Continue Logic

CONSOLE
MODE

SELECT

I

(
)
)

f

)

MS-RD, MS-WR

RO-RD, RO-WR

RF-RD, RF-WR

CS-RD, CS-WR

eve STEP

PROC CONT SEL (8

BKPT ADAS SEL (5

)~}
s -

CONS CONT SE L

BKPT ADRS SEL (4)

RESET/LOAD

AUTO LOAD

LOAD SE L

CONS ADAS REG SE

CONS DATA REG SE

L

L

'--

MS-RD, MS-WR -,,-
t I

Sµ~·-

....
~}mRT

....... µI
SET SUB-... s ADAS ROU-

.... t---+ . TINES

... CS RD CSWR

GO -.-

... PROC
SET

..... BUSY FF
OPER *

MODES STOP, BKPT CLR --..

-.... RUN SET

~
CONS CONS

OPER BUSY FF

MODES STOP, BKPT ... CLR -..

...
....... ,..._

DISC _.._ cs
DC RDR RES/LO= LO ~ --.._

... LOADS
DISC-,.....

.......

""
AUTO LOAD ... MS

RE0-4 = ~ EXEC LO
PROC_

... REG

... DSPLY
.......

* PART F SHARED RESOURCES 0

Figure 2-194. System Control Panel Interface Block Diagram

..
...

MS

s _..

RO

Sµ _..
cs ..

AND ,..
AT

... BRF

Fµ-1 ~ GRP
Fµ-2 ... I,

~---
~

PE GRP ...
ERF

- ..
II _..

.......

Aµ,Bµ
Aµ+Bµ.. D ...

ALU --..

implemented by hardware only, due to the fact that a CS
Write operation might alter the very subroutine in CS used
to perform the CS Write. The CS Read operation is more
accurately identified as the CS Read/Scan operation.
These two operations are executed ini a similar manner,
the major difference being the operating mode in which
they are performed. The CS Scan operation is performed
in the normal mode (continuous operation) to verify that
all data written in CS and the F RJ decode address table
(AT) during a Reset/Load operation was stored without
error. Data is read from CS in a continuous manner for
purposes of making longitudinal parity checks on a page
basis without regard to the contents of any particular
location. The data is said to be scanned when performing
this operation; hence, the term CS Scan. A CS Read
operation, on the other hand, is performed in the
stop/step mode so that particular locations in either CS or
the AT may be read, one at a time. The CS Scan and CS
Read operations are limited to off-line use only; that is,
no other processor may be requesting slices when
performing either of these operations. This means that the
Panel will be granted alternate time slices by the resource
allocation logic in which to perform the chosen operation.
(The Panel does not have the facility to operate in the
Consecutive Cycle mode.)

The Panel allows each of the eight processors or the Panel
itself to function in one of three operating modes:
stop/step, normal and breakpoint. Basically, the stop/step
mode permits operation for only a short period of time
(either one major cycle or one M LI), the normal mode
permits operation for an indefinite period of time (usually
until the processor or Panel is set to another mode), and
the breakpoint mode permits operation only until some
pre-determined address in either CS or MS is reached. The
normal mode is the mode in which a processor would
execute a program in an on-line situation. The stop/step
and breakpoint modes are used primarily during
maintenance operations. Selection of a processor mode is
made by one of eight PROCESSOR CONTROL SELECT
switches; Panel mode selection by the CONSOLE
CONTROL. SELECT switch. The processor stop/step
mode is divided further into two sub-modes as determined
by the position of the CYCLE STEP switch. This switch
causes the selected processor to run for either one major
cycle (when set to the up position) or for one M LI (when
set to the down position). Similarly, the processor
breakpoint mode can be run in one oif three sub-modes,
depending on selection of the thrne BREAKPOINT
MODE SELECT switches: READ INSTR, READ DATA,
and WRITE DATA. When the corresponding switch is set
to the up position, a breakpoint stop will occur (1)
immediately after the M LI at the breakpoint address is
read (READ INSTR switch), (2) at the end of the storage
reference cycle in which data was read at the breakpoint

2-231

address (READ DATA switch) or (3) at the end of the
storage reference cycle in which data was written at the
breakpoint address (WRITE DATA switch).

Initial loading of CS and associated AT, and MS, is
performed by the Panel RESET/LOAD and AUTOLOAD
switches, respectively. The CS load can also be performed
automatically during a power-up system reset condition.
For whichever condition, the CS load is performed under
hardware control using either disc or cards as the input
medium. The choice of which medium will be used is
determined by the LOAD SELECT switch. Either disc or
cards may be used to load MS also. If the disc was used to
load CS and will also be used to load MS, it will also load
MS automatically upon completion of the CS load under
control of an autoload routine. If loading from cards, the
MS load operation must be started manually. The CS load
operation is under control of the Panel. Conversely, the
autoload operation is under control of Executive
processor 4. This control enables the Executive processor
to load data in pre-determined areas of MS as determined
by processor number, bounds protect, and other related
criteria.

Selected registers of the Extended Register File (ERF)
Group 11 and the ALU may be selected for displaying
their contents by means of hardware control as opposed
to the software-controlled RF read and write operations.
These registers are selected by the CONSOLE ADDRESS
REGISTER SELECT and CONSOLE DATA REGISTER
SELE CT selectors, which select address-related and
data-related registers respectively. These selectors permit
display of register contents only; data may not be written
into these registers by this method. In addition, only one
processor may be running and then in the stop mode
when addressing registers using these selectors. As such,
selecting registers by this method is designed primarily for
maintenance purposes when troubleshooting a single
processor.

PANEL CONTROL

CS Scan/Read

The CS scan and CS read operation are performed by the
same logic, but under different conditions. The CS scan
operation is performed in the normal mode and verifies
that all data written into CS during a CS load was entered
without error. The CS read operation is performed in the
stop/step mode to display the contents of individual
locations in CS in a sequential manner. Logic for
performing both CS scan and CS read operations is shown
in Figure 2-195. As shown, both operations are executed
in basically the same manner except for the duration of

cs

,-----

.. --1
I

I
I
I
I

CLR
css

Fµ
REG

cs
SCAN
REG

----------., (1A08-11) I

EWCLK
css

I
I
I
I
I

DATA I
DISP
SEL

SELN

---- --- --.. (1B16)

AT-SELAJ

r--------1
I

DATA
REG
SEL

LONG
CHK

I
I
I
I
I

SWCS-RD~

RAN

I\.) CON* READCON I ~LOCK
i\J BUSY S µ w
I\.) STATEC I

(1A16) I

I cs I SCAN/ CLR
css ENCLK I READ css CS-RD

LOGIC REG I
I

(1A04) I -- ---- ______ ..
SµEN G1-CIN

ENCLKSM r--- ---,
I I
I Sµ I
I REG +1 I
I I
I I
I (1A18-21) I

~-------~-------~

PE
CHK

I I
AT

I I
I (1A17) I
._ ___________ ..

* GENERATED CONTINUOUSLY FOR CS
SCAN GENERATED FOR EACH DEPRESSION
OF CONSOLE RUN PUSHBUTTON FOR
CS READ IN STOP/STEP MODE

Figure 2-195. CS Scan and CS Read Operation

}

CONS

NDISPLV DATA
REG
DISPL

CSS-FF9F

ATCHKEV

signal CONBUSY. This signal obtains time slices for the
Panel during Panel-initiated operations by the shared
resources. In effect, this signal is analogous to a Busy
flip-flop output from the BIA register which indicates that
a particular processor wants a time slice1. During a CS scan
operation, CONBUSY is generated con1tinuously from the
time that the CONSOLE RUN pushbut1ton is pressed until
the last location in the AT is scanned. This enables the CS
scan operation to proceed in a continuous manner by
automatically granting time slices to the Panel. One CS
location is scanned each time slice. During a CS read
operation, however, CONBUSY is generated for only one
time slice at a time upon pressing the~ CONSOLE RUN
pushbutton. This happens as a result of the Panel being in
the stop/step mode (CONSOLE CONTROL SELECT
switch set to the STOP/STEP position). When set to this
position, the stop/step signal clears out the Console Busy
flip-flop that generates CONBUSY at the end of the
Panel-assigned time slice. The result is that only one
location in either CS or in the AT is read at a time. For
whichever operation is being performed, CONBUSY is fed
to the Resource Allocation Network mAN) to generate
READCON and STATEC. These two signals, along with
SWCS-RD from the CS-RD position of the CONSOLE
MODE SELECT selector, are routed to the CS scan/read
logic.

The CS scan/read logic implements the CS scan operation
by making a longitudinal parity check of all 256 words of
each page in CS and a horizontal parity check of all 256
words in the AT. (A longitudinal parity check involves
checking the same bit of all 256 words in a page in
sequence as the words are scanned, as opposed to a
horizontal parity check which checks all 16 bits of one
word.) The logic scans each CS page in sequence in a
continuous manner until a word is detected with
erroneous bits. The remainder of the page containing the
error is scanned, but the operation stops on the last
address of the page. At this point, the CS Scan register
will contain all 1 's in every bit position except those in
which the error occurred (and in bit positions 9 and 10,
which are not used). These bits are displayed in the
CONSOLE DATA REGISTER DISPLAY indicators on
the Panel via the 16 NDISPLAY signals fed from the Data
register display selector logic. The !iame sequence of
events occurs during the scan of an unused page
(essentially an unused page is interpreted by the CS Scan
register as a page in which all words contain parity errors).

Pressing the CONSOLE RUN pushbutton causes the CS
scan operation to resume checking the rest of the pages in
CS. If no errors were detected in any of the pages, the SC
scan operation will continue until the last address of the
last page on CS is reached. At this point, the operation
will stop, and the Panel indicators will display the value
FF9F, the hexadecimal equivalent of all 16 bits except 9
and 10 being 1-bits.

The ability of using a longitudinal parity check to check
bit errors in the manner described above is accomplished
by inserting a word called a checksum in each page of CS
coded such that the CS Scan register output of the last
word read from a page with no errors will equal al I 1-bits.
The word-by-word development of the longitudinal parity
check is implemented by the toggling property of the 16
.J-K flip-flops which make up the CS Scan register,
wherein the output of each flip-flop will toggle (change
state) whenever a J input of "1" is detected. This toggling
!Property of the J-K flip-flops enables the word-by-word
1Parity check to be developed for each page as shown in
Figure 2-196. (Assume for purposes of discussing this
figure that each word in CS is four bits in length and the
page to be considered is page 0.) Initially the CS Scan
register is cleared to zeros by means of CLRCSS. Then the
first word in CS at address 000015 (0110) is fed to the CS
Scan register by the ENCLKCSS signal. This signal enables
clocking the CS Scan register at E200 of every Panel time
slice, as shown in Figure 2-197. Since the register was
initially cleared, the output of the register is the same as
the input. The contents of Sµ are updated by the S +1
logic via ENCL KSM and the contents of address 000115
(1011) are fed to the register. Since bits 0, 2, and 3 of this
word are 1 's, the register output corresponding to these
three bit positions will toggle.

This same sequence of events repeats itself for all 256
words in the page (255 µl's plus the checksum). Note that
the checksum (assumed to be stored at address OOFF15) is
coded to generate a CS Scan register output of all 1 's after
it is scanned. In essence, each bit of the checksum enables
checking parity of the corresponding bit in all 256 words
of a page. At this point, the register output is compared
with the contents of the Sµ register. If the right-most
eight bits of Sµ. (address of word within page) are all 1 's
(FF 15), the compare indicates that all words within the
page were loaded without error.

CS SCAN
Sµ REGISTER
CS ADDRESS

CS WORDS REG OUTPUT IN HEX FORM

0 1 1 0 0 1 1 0 0 0 0 0
1 0 1 1 1 ,. 0 1 0 0 0 1
1 0 0 1 0 1 1 0 0 0 0 2
0 1 1 1 0 0 0 1 0 0 0 3

1 0 0 1 0 0 0 0 F c
0 1 0 0 1 0 0 0 F D
0 1 1 1 0 1 0 0 F E

CHECKSUM-+ 0 0 0 .__. 0 0 F F

t
INDICATES PAGE
WAS LOADED
WITHOUT ERROR

Figure 2-196. Parity Checking of CS Page

r------.. r-----.,
I I

+E2XX-E ___ I I
I
I
I

I I
+ENCLKCSS I

I
I
I

IL (1A04) I ______ ...
+CLKFM- I

(too) I I
IL (1A08 - 1A11) ! _____ ..

Figure 2-197. CLKCSS Logic

2-234

256
ADDRESSES

CLK) css
REG
EVERY
E200

Upon completing a check of all CS pages, the CS scan
logic begins to read the contents of each 256-word AT, in
sequence, performing a horizontal parity check on each
9-bit address stored in the AT. (As discussed in the
paragraph entitled F RJ Decode, the complete F RJ branch
address is 14 bits in length. The upper 5 bits, however, are
derived from other sources and therefore are not checked
for parity.) Each 9-bit address is checked for odd parity.
Upon detection of a parity error, signal ATCHKEV is

generated (since an even number of 1 's detected indicates
an error) to generate a scan error signal.

As discussed previously, the CS Scan register is cleared
initially prior to beginning the CS scan operation.
However, it also cleared after scanning the last address of
each page in CS in preparation for beginning a scan of the
next page. Logic for generating the clear signal required at
these two different times is shown in Figure 2-198. Initial
generation of CLRCSS occurs between E560 and EOOO of
the time slice preceding that granted to the Panel, when

READCON and STATEC are both high. Since the Panel is
running in the continuous mode and no other processors
may be running during a CS scan operation, these two
signals remain at their final value (READCON high and
STATEC low) until the end of the operation. This assures
that the clear signal will not be generated during the
scanning of a page to erroneously clear the longitudinal
parity check being developed. Upon completing a page

scan, the lower eight bits of Sµ contain all 1 's to indicate
that 256 (or a multiple of 256) addresses have been
developed. This condition is indicated by signal G1-CIN
from the Sµ+1 logic. Signal G1-CIN generates CLRCSS to
begin the scan of the next sequential page in CS. During a
CS read, the clear signal will be generated prior to every
time slice granted the Panel. This enables the particular
contents of a location in either CS or the AT to be
entered in the CS Scan register for display on the Panel.
These individual clear signals are generated as a result of
the Panel running in the stop/step mode, where
READCON and STATEC will be re-initiated every time
the Console Busy flip-flop is set.

.. ------··-----.. I I
+REA OCON---: 1

1 -STATEC------------
+SWCS-RD- I

------+CLRCSS
+E6JCX-O -,---11---+-----11 I
+G1-CIN-

I I
css CLR I

I (1A04) I
.. _____________ __

E51)0

,~I, -----------------­
+RE Ao co N ---,--------------... i

EOOO I
I

-STATEC----------"----.... 1
'-.,_,-'

CLRCSS

Figure 2-198. Clear CSS Register Logic

2-23!5

During normal µI execution, the µl's read from CS are
unconditionally gated into the Fµ register for translation.
During a CS scan/read operation, however, these µl's must
be inhibited from entering Fµ. Blocking entry into Fµ for
this purpose is provided by signal CLRFM, generated as
shown in Figure 2-199. This signal is generated during the
W portion of the previous time slice (at E560) via
READCON to clear out the last µI executed before the
Panel got its time slice. The signal stays high through the
execute portion of the Panel time slice via STATEC t9
block all µl's read from CS during the Panel time slice.
Another feature of normal µI execution is the updating of
Sµ every time slice to address the next sequential µI in CS.
Since only one µI is read per time slice when doing a CS
scan or CS read operation, normal Sµ updating must be
modified to occur only once during a time slice. This
modification is accomplished by the BLKSMS signal,
shown in Figure 2-199. The signal is held high during
every Panel time slice to block clocking Sµ except at EOOO
time. At EOOO, signal EOXX-0 goes high for about 30
nanoseconds to allow the contents of Sµ to be gated to
the Sµ+1 logic. During the rest of the Panel time slice,
BLKSMS is held high by SWCS-RD and BLKSMFF. Signal
BLKSMFF is generated from the set output of the Block
Sµ flip-flop. This flip-flop is set by a master clear signal
and remains set until completion of the CS scan/read
operation.

Gating of the CS Scan register contents through the data
display selectors is accomplished by three SELN signals, as

shown in Figure 2-195. These signals are forced to a value
required to gate data from the CS Scan register to the data
register indicators on the Panel when the CONSOLE
MODE SELECT selector is set to the CS-RD position. As
a result, the data register selector does not have to be set
to the CSS position, when doing a CS scan/read operation.

Parity errors detected during a CS scan operation are done
so by the logic shown in Figure 2-200. This logic detects
errors occurring both during the scan of CS and the AT.
Errors that occurred during the scan of each CS page are
detected by comparing the contents of the CS Scan
register after the last address has been scanned in a page
(CSS-FF9F) with the lower eight bits of Sµ (G1-CIN). If
the CS Scan register contents are all 1 's, except for bits 9
and 10 (CSS-FF9F low), at the same time that the lower
eight bits of Sµ are all 1's (G1-CIN high) to indicate
address 25510 (or a multiple of address 25510), the page
was loaded correctly. Any other combination signifies an
error, which generates SCANERR at E350. This signal sets
the CS PE flip-flop to light the CS PARITY ERROR
indicator on the Panel. In addition, STOP-CS is also
generated to stop the CS scan operation by clearing the
Console Busy flip-flop. This signal, however, can be
disabled by the DISABLE CS switch on the Panel to
disable the CS scan stop condition. Parity errors detected
during the AT scan are handled in a similar manner via
generation of signal ATCHKEV.

r-----------~-----~ I I
+AEADCON ------- I

I I

I I
(+SWCS-AD) + (+SWCS-WR)

+CLRFM

I I
+STATEC ------- I

I I
I I
I I

+EOXX-0 I I }- -------+BLKSMS

+~s~~;~~---:- -------- I
I · I
I (1A04) I

~-----------------~

Figure 2-199. CLRFM and BLKSMS Logic

2-236

r---------------------------, I I

+G1·CIN ---+--------­
+SWCS·RD -----------­
·CSS·FF9F --1-+------+--+--•C

I
+ATCHKEV -----------..__.,,,,,,

·SWDISCPE --11---------

t-E350 -

H~ERROR

I
I ,------.
I I I

I +SCANNER '1]'-+CSPEDISPY I cs I
I PE I
I FF I
I I
I I
I 1A15 I .. ____ ...

1A04 I

~---------------------------~
Figure 2·200. CS Sc:an Error Detect

Console Busy flip-flop. This signal,. however, can be
disabled by the DISABLE CS switch on the Panel to
disable the CS scan stop condition. Parity errors detected
during the AT scan are handled in a similar manner via
generation of signal ATCHKEV.

CS Write

The CS write operation loads a particular word entered via
the data register pushbuttons into th1e location in either
CS or the AT specified by the corntents of S . The
operation may be performed in either the stop/step or the
normal mode. If in the stop/step mode, different words
may be entered into successive locations each time the
CONSOLE RUN pushbutton is pressed. If in the normal
mode, the same word may be dynamically written into
successive locations of CS and through the last address of
the AT automatically when the CONSOLE RUN
pushbutton is pressed. In either case, the first location to
be written into (if different from 000015) must be
oounted up to by first performing a breakpoint scan as
described in the paragraph titled Console Modes. This scan
is necessary since the Sµ register cannot be entered
directly with an address. Like the CS scan and CS read
operations, the CS write operation mlJlst be performed in
the off-line mode (no other processor requesting time

2-237

slices). (The CS write operation should not be confused
with the initial CS load operation. The latter is used to
load CS and the AT with new data at the beginning of a
job. The former is used to change data already contained
in CS and the AT as a result of the CS load operation.)

Logic for performing a CS write is shown in Figure 2-201.
As in the CS scan/read, signal CON BUSY is generated for
two conditions: continuously if the CS write operation is
performed in the normal mode, or once per Panel time
slice if performed in the stop/step mode. In addition, the
oontents of Sµ are updated once per time slice as
controlled by BLKSMS. Data to be written is entered in
the 16 console data register pushbuttons and stored in
either CS or the AT via the data display selectors. These
selectors are enabled by three SELN lines, which are
forced by the CS-WR signal derived from the CS-WR
position of the CONSOLE MODE SELECT selector
switch to a value required to gate the data register output
lines.

A write into either CS or the AT must be accompanied by
a corresponding write enable: WRITE-CS or AT-WRITE.
Both enables are generated at E700 of a Panel time slice,
as shown in Figure 2-202. Selection of either WRITE-CS
or AT-WRITE is controlled by the AT-SEL signal from
the CS loader logic. During a CS write operation, this logic

------------.. I I
I CONS DATA I

CONSOLE ___._ DATA DISP
DATA REG I REG SEL I

I I
I
I ... _______ _ (1A08) ! __ ..

+cs-wR -----• .. I 1s1s ~
+SWCS-WR -----------.

.-----..
I I
I
I

+CONBUSV ----

-SELN

I I +STATEC I
I ---,
I I I
I (1A1&) I I .. ____ ..

-BLKSMS

+ENCLKSM

r------.,
I I
I I

AT I
I I
I I
I (1A17) I
L---1•-:.I

+AT-WRITE

r------..
I I

+N•CS I I
cs I

I I
I I

t1e1a) I --·
+WRITE CS

1A06

r---- --------------·--.
1
I
I Sµ

I
I
I

I
I

+1 I
I
I
I

I I
L (1A18-1A21) J

Figure 2-201. CS Write Operation

2-238

r----------------,
+E7XX-O __L I

I I
+READCON-+ I

I
+SWCS-WR--.-

+AT-SEL.--}--------'

CONSOLE
MODE
SELECT
SWITCH

I
I
I
I
I I
I I
I (1A04) I

L-----------------~

,..---·---,
I I
I -SETS07

-SWMS-INR I
I -SETS10

-SWRO-WR I -SETS11
-SWMS-RD

I SETS -SETS12
-SWRO-RD

LO<lilC I
I -SETS13

-SWRF-WR
I I -SETS14

-SWRF-RD I
I -SETS15

I I
I I

L---·---J

Figure 2-202. CS and AT Write Select

2-23'9

+AT WRITE

Sµ
REG

7

0 0 0 0 0 0 0 0 MS-WR/RO-WR (010015)

7 14 15

I 0 0 0 0 0 0 I MS·RD/RO·RD (101315)

7 13 14

I 0 0 0 0 0 0 I
7 12 13

I 0 0 0 0 0 0 I RF·RD (010C15)

Figure 2-203. Set S l.ogic

also functions as during a CS load routine to monitor the
contents of Sµ. Initially AT-SEL is low to generate
WRITE-CS. When the CS loader logic determines that all
of CS has been addressed, by comparing the contents of
Sµ with the number of CS modules in the system, writing
into the AT can begin. At this point, AT-SEL goes high to
generate AT-WRITE.

In systems containing a 5120 (5K)-word CS, addressing
errors will occur if attempts are made to address the
upper 3072-word portion of the second storage unit.
These errors will occur because "wrap-around" of the
Sµ contents will not occur if addressing in this range;
that is, the contents of Sµ will not have yet re-cycled
back to a 4096-word boundary address. Addressing in
this non-existent portion of CS will be indicated by
the CS PARITY ERROR indicator on the Panel, which
will light as a result of detecting what appears to be
parity errors in the "bad data" located at these non­
existent addresses.

MS/RO and RF Read and Write

Panel-initiated read and write operations performed on
Main Storage (MS), or in registers of the Register File
(RF) or Register Option (RO) are done so by means of
corresponding µI subroutines located in CS. When the
CONSOLE MODE SELECT selector on the Panel is set to
the corresponding position (MS-RD, MS-WR, RF-RD,
RF-WR, RO-RD, or RO-WR), a corresponding starting
address is generated by the set S logic which causes a jump
to the subroutine for performing the selected operation.
The set S logic and the corresponding starting addresses
generated are shown in Figure 2-203. The address is
generated on seven lines that feed the Sµ register. (The
complete jump address is 12 bits in length, where the

remaining 5 bits are forced to zero in the Sµ register.)
Each read or write subroutine causes one word to be read

2-240

or written during each time slice assigned to the Panel.
During the time slice, Sµ is updated in the normal manner
until the subroutine is completed for one word. At the
beginning of the next time slice, another word can be read
or written since the position of the CONSOLE MODE
SELECT selector automatically forces the starting address
of the subroutine again.

Any of the subroutines may be performed in either the
on-line mode (other processors running) or off-line mode
(no processors running). If doing an RF operation, any of
the registers in the BRF or Groups I and II of the ERF
(except the Boundary Crossing register) may be accessed.
(The Group 111 registers of the ER F, associated with 1/0
processors 0 through 3, may not be accessed by this
mechanism.) The six read and write operations (MS read,
MS write, RO read, RO write, RF read, and RF write) are
implemented by four µI routines, with the MS and RO
read and write operations sharing the same read and write
routines.

The MS/RO read routine of Figure 2-204 reads the data in
MS located at the address entered into the CONSOLE
ADDRESS REGISTER DISPLAY pushbuttons and
transfers it to the CONSOLE DATA REGISTER
DI SP LAY indicators. If the CONSOLE CONTROL
SELECT switch is in the STOP/STEP position, one pass
through the routines will be executed in one time slice
each time the CONSOLE RUN pushbutton is pressed. If
the CONSOLE CONTROL SELECT switch is in the
NORMAL position and the CONSOLE RUN pushbutton
is pressed, the routine will be repeated to read out the
contents of all sequential locations above that entered
into the address register pushbuttons until all of MS or the
RO is read. The MS/RO write routine of Figure 2-205
operates in a similar manner: data to be stored at an
address entered in the address register pushbuttons is
entered in the data register pushbuttons. Again, data can

REPEAT IF IN
CONTINUOUS MOOE

REPEAT IF IN
CONTINUOUS MODE

Sl "ARTING ADRS 010315

LS2
ADRS IN

M-S J
...

SUM
M+2 ... M J

..
sow

MS..-N

T
J

Figure 2-204. MS/RO R1ead Routine

J..:ARTING ADRS 010015

.... --A~:~INJ
M-S

LOW J IOATAIN
N ... D

Figure 2-205. MS/RO Wriite Routine

STARTING ADRS 010C15

LAW
PROC & REG

INM•Aµ

•
STA

Aµ•BC

't_

IVK
PROC & REG
.#FROM BC

•
LBW

DATA-IN
REG ... Bµ

RVK
REG# FROM
µIX-FIELD

•
STB

Bµ ... N

Figure 2-206. RF Read Routine

2-241

~--------------------------------, I SEG R/P I
TAG CONS

+BC-08-10 I DATA I
(PROC #) _____ _, REG, I

TX80-

EXT SEL I

Q ·.- +NDISPLV xo-xJ
I
I

-ROSTSEL

-MSSTSEL ~----------------[____________ _

I
I
I
I
I

(1826)1 _ ..
-BC-007

+SWRF-RD
+CONST-RO

r----------.. : I ~: +ENCLKNRX

I I
I I

~:~~~-!~-~ ~~--~!---~-E_LN_D_P_vx __________________________ __

I · I
I I
.. __________ ii

Figure 2-207. Reading Segment Tag Portion During Panel RF Read

be stored in either the stop/step or normal mode. When
operating in the normal mode, the data entered into the
data register is stored at the address entered into the
address register and at all sequential locations above that
address.

The RF read and write routines are somewhat more
complex than those for MS and the RO because of the
necessity to cross processor boundaries. Since the Panel is
considered a processor, the only way it can gain access to
the file registers of another processor is by means of the
Boundary Crossing (BC) register. The RF read routine of
Figure 2-206 takes the processor and register number
entered into the address register pushbuttons and transfers
it to the BC register via the Aµ register. Then an IVK µI is
executed so that the processor file register to be read can
be addressed by the contents of the BC register. The
contents of the selected register are read and transferred
to Bµ. The contents of Bµ are then routed to the data
register by a STB µI preceded by a RVK µI. The RVK µI
is necessary to cancel the I VK µI so that the desired
register number (that of the console data register) can be
derived from the STB µI X-field instead of from the BC
register.

If the Relocation and Protection feature of the RO is
present, the RF read routine will also read the Segment

2-242

Tag register corresponding to a BRF register selected and
display the four bits of this register in the XO through X3
indicators of the CONSOLE DATA REGISTER
DISPLAY. This is accomplished by the logic shown in
Figure 2-207. The segment tag is selected by BC and
BRFSXO bits derived from the BC register instead of
from the resource allocation logic and µI X-field. The
selected register is clocked into the extended portion of
the Console Data register at t80 by ENCLKNRX. This
enable is generated for a RF read operation assuming that
an ERF register has not been selected (BC-007 is high).
The 4-bit tag value in the data register is selected for
display in the CONSOLE DATA REGISTER DISPLAY
XO through X3 indicators by SELNDPYX. This select
signal is generated when the CONSOLE DATA
REGISTER SELECT selector is set to DATA.

The RF write routine of Figure 2-208 is executed
similarly, the only significant difference being that data is
to be written into the processor file register selected by
the contents of the BC register. This data again is entered
into the console data register. As for MS read and write
operations, RF operations can be executed in either the
stop/step or normal mode. If the Relocation and
Protection feature of the RO is present, the RF write
routine may also be used to write the Segment Tag
register corresponding to the BR F register selected. This is

LAW] PROC & REG
#lµM-.Aµ

STARTING ADAS 010615

_y

] STA
Aµ•BC

•
LBW

DATA IN
N.-Bµ

.,,
IVK] PROC & REG

#FROM BC

...
STB] Bµ.,..REG

DEFINED BY BC

.,,
RVK

REG# FROM
µI X·FIELD

Figure 2-208. RF Write Rc>utine

accomplished by the logic shown in Figure 2-209. The
segment tag value set into the.~led portion of the
Console Data register via the SWSETN XO through X3
signals is routed to the selected Segment Tag register. This
register is selected by the BC and BR FSXO bits from the
BC register. The value is written into tlhe register by write
enable SEGTAGWR. For this purpose, SEGTAGWR is
generated for a register file write operntion under control
of an IVKµ I (signal INV-F/F high). Tlhe tag value is also
selected for display in the extended portion of the data
register indicators by select signal SELNIOPYX.

The BC register itself may not be selected as a register to
write into by the RF write method. For this unique case,
a situation is created where the BC nagister attempts to
address itself by its own contents. A circular condition

2-243

resu Its during which the write operation generates
spurious address bits that attempt to select other registers
at random.

OPERATING MODES

Processor Modes

The basic rationale governing processor execution in a
selected mode is to start the processor by pressing the
PROCESSOR RUN pushbutton, which sets the
processor's Busy flip-flop in the B/A register; and stop the
processor by means of signals generated according to the
mode selected, which clear the processor's Busy flip-flop.
Logic for starting the processor via the PROCESSOR
RUN pushbutton is shown in Figure 2-210. Pressing this
switch generates SW-GO, which sets the Processor Run
flip-flop. The output of this flip-flop is fed to one side of
a NANO gate to set the Go flip-flop. The other side of the
NANO gate is fed with the Go Button flip-flop output
routed through a one-shot circuit. The one-shot assures
that the set pulse to the Go flip-flop is only 100
nanoseconds wide.

Setting the Go flip-flop generates GO~FF, which is routed
to the B/A register to set the processor's Busy flip-flop
upon receipt of a corresponding processor select signal.
This signal is generated by setting the PROCESSOR
SELECT selector to the desired processor number, which
generates a SWSELGO signal. These two signals, GO-FF
and SWSELGO, set the processor's Busy flip-flop, as
described in the paragraph titled Busy/Active Register.
Once the processor's Busy flip-flop is set, the Go flip-flop
can be cleared to allow another processor to be turned on
from the Panel. This is accomplished by the CLR-GOF F
signal, which is generated from SWSELGO and the
STATE signal from the RAN.

Normal Mode

The processor normal mode is initiated by the sequence of
events just described plus setting the corresponding
PROCESSOR CONTROL SELECT switch to the
NORMAL position. This switch position does not produce
a corresponding signal as do the processor select switch
and GO button. Its selection, however, is implied by the
absence of a signal from either the STOP /STEP or
BREAKPOINT positions of the PROCESSOR CONTROL
SELECT switch. As a result, the processor will continue
to run indefinitely in this mode until either the stop/step
or breakpoint mode is selected.

Stop/Step Mode

The processor stop/step mode is selected by setting the
corresponding PROCESSOR CONTROL SELECT switch
to the STOP/STEP position and proceeding as for the

r----------------------------, I I
I @~~~~~~~~-~~~~--, +BC-08-+-10

I
-BRFSX0-0-4 --:--©-------------------

1 CONS

-SWSETN ------c ---- DATA
XO•-XJ REG I EXT

I
I
I
I
I
I
I
I

+RO-SPEC--------

I

SEL

-STMUX-SO--.-----------------'

I
I
I
I
I
I
I
I

+SELNDPYX _ __.,__ _____________ __,

SEG
... - ... TAG

REG

----41-----1

DATA
REG
EXT
SEL

·---+NDISPY
xo-xJ

L------------------------
(1826).1 ---..--------.. I I

+ENBRFWR : I) I
+BRFWRITE I -SEGTAGWR

+INV-F/F I
I I
I (1e2s> I .. _______ ..

Figure 2-209. Writing Segment Tag During Panel RF Write

processor normal mode. As discussed previously, the
stop/step can be executed by performing either one major
cycle or one MLI per depression of the PROCESSOR
RUN pushbutton, as determined by the setting of the
CYCLE STEP switch. Logic for implementing these two
sub-modes is shown in Figure 2-211. When the stop
condition defined by either of these two sub-modes is
met, signal RNl-TX is generated. This signal is fed to the
dear side of the corresponding Busy flip-flop in the B/A
register to clear the flip-flop. If the CYCLE STEP switch
is set to the up position, the processor runs for one major
cycle and is then turned off. This is implemented by signal
SWCYCSTEP from the up position of the switch. This
signal generates RNl-TX at E350 of at least one time slice
preceding the one during which the selected processor will
execute. The RN I-TX signal, therefore, is present during
the execution time slice which means that the processor
will be turned off at the end of this single time slice.

2-244

If the CYCLE STEP switch is set to the down position,
the processor runs for one MLI as determined by signal
RNl-F/F from the RNI flip-flop. This flip-flop sets upon
detection that the present M LI has been completed and
the RNI sequence of the next MLI has been executed. The
RNI breakpoint sub-mode discussed in the paragraph
titled Normal Mode makes use of the fact that the next
MLI RNI sequence has been executed. The cycle step
evaluation, however, is interested in knowing only that
the present M LI has been completed. The logic that drives
the flip-flop makes an evaluation of the address in Sµ to
determine if the MLI RNI sequence has been executed.
This is done by examining bits 4 through 11 of S to see
if they are all O's. If they are 0, SM .. FRJ04 through
SM•FRJ11 are all high which indicates that Sµ has been
reset to either 000215 (RN 11 sequence starting address)
or 000915 (RNl2 sequence starting address) to start the
next M LI, but has not been updated past 000F16 (I ast

,---------------------------------~ I I
I PROC I
I RUN I
I FF ~~ I

-SW-GO ---<""'II I

+STATE

-SWSELGO

100
NSEC

ONE
SHOT

(1A02)

I
I
I

--------------------------- -----~ r--------------. I I

! l>-~FF·
I I
I (1AOJ) I --·-------.. ---_ ..

Figure 2-210. G10 Flip-Flop

·-------------.. I I
I .. ------· .. ----.. I
I I I ,I I

·SM+-IFRJ -f-©--1>-t' ·RNI .I I ·RNll-F/F 04-11 B ----. D Q_ __________ __..,

I I II I

·--RNl-TX
I
I

I (1A17) I ii I (+MEMREFH+E350)

~------~ c I
I I
II (1A15) I 11.. ____ ..

+EOXX

I
I

I
I

(1A02) I ... _. ____________ ..

Figure 2-211. Cycl1et Step Logic

2-245

r----------------~ I R~ I

(
RELOCATE j

LOGIC \

SYSTEM
ADDRESS

I
I

I
I
I
I
I
I
I

XO I
t +RO-MN x3 ,..._..... xo-x3

I
I
I
I
I
I
I

+RO-MN
--.-- 00-03

I
I
I
I
I
I
I

BREAKPOINT
COMPARE
LOGIC

I \... (1021) I ., ________ I _______ ..
+SYSTEM

Figure 2-212. Selection of System or Relocation Address for Breakpoint Compare

address of RNl2 sequence). The result is to generate
RNl-TX upon completion of either the RNl1 or RNl2
sequence.

Breakpoint Mode

The processor breakpoint mode is entered by setting the
corresponding PROCESSOR CONTROL SELECT switch
to the BREAKPOINT position. When set to this position,
the 20-bit breakpoint address set in hexadecimal form by
the five BREAKPOINT ADDRESS SELECT selectors on
the Panel (assuming the Relocation and Protection feature
of the RO is installed) is continuously compared with the
last physical address that referenced a word (either M LI or
data) in MS. The lower 8 bits of this physical address are
derived directly from the S register; the upper 12 bits
from the RO. These upper 12 bits may be derived from
either the system address or from the relocation logic,
depending on the position of the SYSTEM/PHYSICAL
switch as shown in Figure 2-212. If set to SYSTEM, select
signal SYSTEM is high and the upper 12 bits are derived

2-246

from the system address (upper 8 bits of S and the 4-bit
segment tag value). If set to PHYSICAL, signal SYSTEM
is iow and the upper 12 bits come from the relocation
logic and will usually represent a relocated equivalent of
the system address.

Upon reading a breakpoint condition (two addresses
equal), the processor is stopped by clearing its Busy
flip-flop. Logic for performing S register breakpoint
comparisons is shown in Figure 2-213. For purposes of
simplification, only the left-most of the five selectors is
shown. This selector generates an encoded four-bit address
corresponding to one of the 16 positions of the selector
(015 to F 15). This encoded address is compared in
complement form with extension address bits XO through
X3 from the RO in true form for a match. The
comparison is made on a bit-by-bit basis via exclusive-OR
gates. If all four bits from the selector match the
corresponding four bits from S, signal SRBKCP-XO goes
high. The other 16 bits of S are compared with encoded
addresses from the other four selectors in a similar

BREAKPOINT
ADDRESS
SELECT 0

-SWBKPT2_(_Q

-SWBKPTX1

-SWBKPTX2

-SWBKPTX3

~------------~---------, I

J +RO-MNXO•X3--.

1
!""--"""I

+SRBKCT-XO

I
I
I
I
I

L-------------------- (1~6~

r---------,
-SWBKPT00.-03!:J ~· : I +SRBKCP-0

+RO-MN00..03 4 I
! I

l+SRBKCPXO

I I
~---------------~ I

I ______ +S_R_B_K_CP_-1 __________________ ~
-SWBKPT04~7!!J' 4 I
+RO-MN04•07-

1
4

I I

-SWBKPTOS.-11~ ~ :

i ~)l ~
+SR-MN08•11-:---©--' L/ I

I I
I I

-SWBKPT12•15=t:J I
I +SRBKCP-3

+SR-MN12-15-: 4

II. (1AOB-1A11).II

-......--------CONS

I
I
ii
I

I
I
I

+MATCH

BUSY
FF
CLEAR

+MEMREF ·E350-..------.

I
I

READ
.-....... -_INSTR

+SWROPBKP--------­
(-RNl-F/F)·(-STORMS)--11-------1--+---li--~

I
I

+SWRNIBKP---------+--­
+RNl-F/F ------+--.J-_..,_ ~

I
+SWSTOBKP-l:---------11
+STOREMS- 1

-------_.__.,.,

I DATA I
I (1A02) I

~---------------~
Figure 2-213. S Register Breakpoint

-BKP-TX

·-----~----------------------~ I CONS I
I BUSY I
I FF I

-SW-RUN I I

-RUN-LO

-AUTO-MC
-MC-LO

-SW-MC

-STOP-LO

-SWSTOP-C

+STOP-CS

I

I
I

+CONS MD OFF I

+E7
+SWMS-RD
+STATEC

+E350

(+MSRO)+(MSWR)
+MATCH

-STATEC

-SWBKPT-C

+MS-PE

-SWOISMPE

I

I

I
I

BKPT

(1A02)

I
I
I
I
I
I
I
I

+CON BUSY

·---------~------------------~
Figure 2-214. Console Busy Flip-Flop

fashion. If all 2 0 bits of the physical address match the
hexadecimal address set in the selectors, signal MATCH is
generated and routed to the breakpoint sub-mode logic.
The signal is also routed to the Console Busy flip-flop
clear logic of Figure 2-214 for use during
Console-controlled MS read and MS write breakpoint scan
operations.

The breakpoint sub-mode logic consists of three NANO
gates corresponding to the three breakpoint sub-mode
switches: READ DATA, READ INSTR, and WRITE
DATA. If the READ DATA switch is set to the up
position, SWROPBKP is generated to stop the processor
after the operand located at the breakpoint address has
been read. Indication of an MS read operation is furnished
by RNl-F/F · STOREMS, meaning neither an RNI or an
MS store operation was performed. The other two
sub-mode switches stop the processor upon indication

2-248

that the breakpoint occurred for their particular
conditions. (As discussed in the last paragraph, signal
RNl-F/F is used here in the breakpoint compare logic to
indicate that a new MLI has just been read.) When the
particular sub-mode condition is met, signal BKP-TX is
generated. This signal is routed to the 8/ A register to clear
the processor's Busy flip-flop.

Panel Modes

Selection of a Panel mode is made by means of the
CONSOLE CONTROL SELECT switch. Like the
PROCESSOR CONTROL SELECT switches which select
processor modes, this switch allows the Panel to operate
in one of three modes: normal, stop/step and breakpoint.
Each mode is initiated by pressing the CONSOLE RUN
pushbutton, which sets the Console Busy flip-flop. This
Hip-flop is similar to the processor Busy flip-flops in the

B/A register in that it enables the Panel to obtain time
slices through the RAN. If operating in the normal mode,
the Console Busy flip-flop remains set until the
CONSOLE CONTROL SELECT switch is set to either the
STOP/STEP or BREAKPOINT position. (The NORMAL
position of the CONSOLE CONTROL SELECT switch is
implied by the absence of a signal from the STOP/STEP
or BREAKPOINT positions of this switch.) When this is
done, the flip-flop will be cleared when the corresponding
stop/step or breakpoint condition is reached.

Logic which sets and clears the Console Busy flip-flop is
shown in Figure 2-214. The flip-flop is set either manually
by pressing the CONSOLE RUN pushbutton (SW-RUN
signal) or under program control during a CS load

operation (RUN-LO signal). Clearing the flip-flop is
accomplished when any of six conditions is present:
system reset, Panel stop mode, stop CS, off, MS parity
error, or Panel breakpoint mode. Each of these conditions
satisfies a corresponding NANO gate, which generates a
low output to clear the flip-flop.

The system reset (SYSRST) gate is satisfied by either
AUTO-MC, MC-LO, or SW-MC. Signal AUTO-MC is
generated at the beginning of an autoload sequence. Since
the autoload sequence is a processor-controlled operation
(proc~~), the Console Busy flip-flop must be cleared.
The MC-LO signal is generated at tho beginning of a CS
load routine to clear the flip-flop untH a CS word is ready
to be transferred from either the disc or card reader.
Signal SW-MC is produced by the SYSTEM RESET
pushbutton on the Panel for purposes of doing a general
system reset.

The Stop gate clears the Console Busy flip-flop upon
detection of a stop mode condition. Generally, this
condition will be implemented by setting the CONSOLE
CONTROL SELECT switch to the STOP/STEP position,
generating SWSTOP-C. For this condition, the Panel will
execute one major cycle per depression of the CONSOLE
RUN pushbutton. During a CS load routine, however, the
stop condition is implemented to clear the Console Busy
flip-flop after each CS word has been transferred until the
next word is ready for transfer. This condition generates
STOP-LO which, in conjunction with RUN-LO, set and
clear the flip-flop at one-major-cycle intervals.

The Stop CS gate clears the Console IBusy flip-flop upon
detection of either a CS scan error or an Sµ. register
breakpoint condition. For either case, signal STOP-CS is
generated. Generation of STOP-CS due to a CS scan error
condition is discussed in the paragraph titled CS
Scan/Read; this paragraph discusses generation of the
signal due to an Sµ. register breakpoint condition. This
condition is usually implemented for purposes of scanning
up to a particular CS address to begin a CS read operation.
The scan operation consists of compa1ring the present CS

2-249

address in Sµ with the breakpoint address set in the
right-most four BREAKPOINT ADDRESS SELECT
selectors. Logic for accomplishing this is shown in Figure
2-215. The compare operation is identical to that for the
S register breakpoint compare shown in Figure 2-213,
except that the CS breakpoint scan compare is made on
the contents of Sµ. instead of S. Like 2-213, Figure 2-215
shows details for only one of the selectors and the
corresponding four bits of Sµ.. The breakpoint scan mode
is entered by setting the CONSOLE CONTROL SELECT
switch to the BREAKPOINT position, which generates
signal SWBRKPT-C. Upon detection of a breakpoint
compare, signal STOP-CS is generated which clears the
Console Busy flip-flop.

The Off gate clears the Console Busy flip-flop when none
of the Console functions has been selected by the
CONSOLE MODE SELECT selector, that is, the switch is
set to the OFF position. Detection of a parity error (PE)
during an MS read operation clears the flip-flop via the MS
PE gate. This gate is fed with PE information from the MS
PE display logic via the MS PE signal. This signal is
ANDed with SWDISMPE, which is generated by the
STORAGE PARITY DISABLE switch on the Panel. If
activated, this signal goes low to disable the MS PE signal.
The resultant output is fed to the MS PE gate of the
Console Busy flip-flop clear logic.

The BRKPT MODE gate is satisfied by a breakpoint stop
during an MS read or MS write operation. This stop will
occur as a result of reading or writing a block of data
between some starting address and an ending address
entered into the five BREAKPOINT ADDRESS SELECT
selectors. The compare is made by the S register
breakpoint logic of Figure 2-213. As shown in the figure,
the MATCH signal generated upon reaching the
breakpoint address is routed to the BKPT MODE gate of
Figure 2-214.

LOADS

Disc CS Load

A disc CS load may be initiated in one of three ways:

1. Setting the POWER ON pushbutton to on
(power on load)

2. Pressing the RESET /LOAD pushbutton
(reset/load load)

3. Executing a CS Load disc command (CS disc
command load)

The power on and reset/load loads are initiated under
operator control via the System Control Panel. The power
on load may be performed with the system in the

BREAKPOINT
ADDRESS
SELECT 0

-SWBKPTXO

-SWBKPTX1

-SWBKPTX2

-SWBK.PTX3

+LD-MN00.-03

+SM-MN04~7

+SM-MN08~11

.----------, I
I +SMBKCP-0

I
I

t:J_
I

t!J~
I
I

!:J..........,_,,.
L
I (1AOB-1A11) !

+SMBKCP-1

+SMBKCP-2

+SMBKCP-3

+SWBKPT-C

+SWCS-RD

+SWCS-WR

Figure 2-215. Sµ Register Breakpoint

·-----------, I

+STOP-CS

I
I (1A04) ! ·-----------·

operator or program mode, the reset/load load may be
performed with the system in the operator mode, program
mode, or maintenance mode. The third method is
initiated under program control and may be performed
with the system in the operator modei, program mode, or
maintenance mode.

Each load may be divided into two parts: an initiate part
and a data transfer part. The initiate part generates signals
in the shared resources that set up conditions in both the
disc I FA and shared resources in preparation for the
subsequent transfer of words to be stored in CS. Logic
used during the CS load initiate part is shown in Figure
2-216. The logic generates eight initiate signals. Four of
these eight signals (DISCS, POMC-10,. DOA, and MC-10)
are sent to the IFA; the other five (LDCS-WR, STOP-LD,
MC-1, MC-2, and MC-3) are used within the shared
resources. Prior to beginning any of the three CS loads,
the disc llFA must be selected as the device from which
the load will be made. This is accomplished by setting the
LOAD SELECT switch on the Panel toi the DISC position.
Setting the switch to this position !generates SWD ISC,
which is sent to the shared resources to set the Load
Select flip-flop. Setting this flip-flop generates DISCS,
which enables the IFA for the CS load and subsequent MS
load.

Power-On Load

The power-on load is initiated automatically when power
is initially applied to the system via the POWER ON
pushbutton on the Panel. When set to the ON position,
the switch initiates a power-on system reset sequence.
During this sequence, PWRON-MC is low which sets the
Power On System Reset flip-flop. Through ~me level of
inversion, the flip-flop (set output) generates POMC-10.
This signal is routed to the IFA to clear the First Seek
Drive 0 flip-flop. The true form of the set output is fed to
the Power On OR-gate to generate MC-LD which, in turn,
generates MC-10, MC-1, MC-2, and MC-3. Signal MC-10 is
used to clear all registers and counters in the I FA except
the Data Byte counter. This counter instead is set to a
count of 332810, for use as a word transfer counter.
Signals MC-1 and MC-2 are used in the shared resources to
dear the Sµ register to address 000015, at which loading
of CS will commence. Since Sµ cannot be cleared directly,
it is done by clearing the Bµ registier in the ALU and
transferring its contents (zeros) to Sµ. Logic for
accomplishing this is shown in Figure 2-217. Signal MC-1
generates ENRBM-0 and ENRBM-1 which resets (clear)
both halves of Bµ. The output of Bµ is routed to S
through the Sµ fan-in logic when enabled by ENALU-SM.
Signal MC-2 generates EXCEPT which, in turn, is used to
generate ENCLKSM. Signal EXCEPT is generated for this
purpose of setting address 00015 into Sµ for beginning a
CS load. Signal MC-3 is routed to the clear side of the

2-251

DOA flip-flop to clear this flip-flop upon detection of a
burst check error.

Upon completion of the power-on system reset sequence,
PWRON-MC goes high to clear the Power On Master Clear
flip-flop. The resultant low from the set side is inverted
and fed to three one-shot circuits and an OR gate to set
the DOA flip-flop. Signal DOA (Dead Start) initiates the
CS load operation in the IFA, starting from cylinder 0,
track 1. It is delayed about 600 nanoseconds from MC-LD
(and therefore MC-10 and MC-1, MC-2, MC-3) via
one-shot circuit 2 to allow the master clear operation
initiated by these two signals to be completed. One-shot
circuit 3 furnishes a negative pulse 60 nanoseconds wide
to set the DOA flip-flop. Signal DOA is inverted to form
STOP-LD. This signal is used in conjunction with
RUN-LO (see Figure 2-218) to start and stop the RAN for
enabling single-word transfers of CS data. Signal DOA is
also ANDed with SWMAINT (MAINTENANCE MODE
pushbutton not on) to generate LDCS-WR. This signal
forces a CS load (CS write) condition and acts as if the
CONSOLE MODE SELECT selector were set to the
CS-WR position. The signal also forces selection of the
Console Data register as the means for transferring data
from the disc to CS. This forced selection simulates
setting the CONSOLE DATA REGISTER SELECT
selector to the DATA position. The action of clearing the
Power On System Reset flip-flop also deactivates MC-10,
MC-1, MC-2, and MC-3.

Reset/Load Load

The reset/load load is initiated manually by means of the
switch on the System Control Panel. This load is similar to
the power-on load except that POMC-10 is not generated
and that performing this load in the maintenance mode
also depends on activating the SYSTEM RESET
pushbutton and setting the CONSOLE MODE SELECT
selector to CS-WR. Regardless of whether the system is in
the operator mode, program mode, or maintenance mode,
pressing the RESET/LOAD pushbutton activates
SWDEADS. This signal sets the DOA flip-flop via one-shot
circuits 2 and 3. In addition, the signal generates MC-LD
via one-shot circuit 2 and the Reset/Load OR-gate if the
system is in either the operator mode or program mode
(signal SWMAINT is high). Signal MC-LD in turn,
generates MC-10, MC-1, MC-2, and MC-3 as in ·the
power-on load sequence. If the system is in the
maintenance mode, SWMAINT is low and generation of
both MC-LD and LDCS-WR is inhibited. For this
situation, MC-10, MC-1, MC-2 and MC-3 are generated by
MC-SW from the SYSTEM RESET pushbutton and the CS
load condition is set up by SWCS-WR from the CS-WR
position of the CONSOLE MODE SELECT pushbutton.

I\.)

~
U'I
I\.)

·---~ (DISC)~ I -SWDISC

I
LOAD I
SEL I

(CR OR R/P) I FF I
.SWOTHER I

I I
I I

+DISCS
rH;)DISC l
LL.CARDSJ

·P'lllRON-MC ~~~~~~~~~~~~~~~~~~~--------~---~------~-------------~OMC-10

r
+PWRON-MC

u

.SWDEADS

I -OSRS IFA
·DSRSDIS

I
I
I
I
I
I
I
I
I

(ICRA OR IRPA) I
-ENDI

O·S
2

600
NSEC

n

60
NSEC

I
I
I
I
I

POWER ON I
I

(IFA)

:--+--------------- ·LDCS-WR

1-.... -----+-~f---------------- +DOA [:~:A]
IRPA

><>---II--+-------------- -STOP-LO

-MC·LD

-ENDCSLD-~-----------------1

I
I
I
I M~n ,______________ ----------------------------~

Figure 2-216. CS Load Initiate Logic

r-----------., I I
I I

(1A02)

.. _________ _

I
I

[
IFA J +MC-10 ICRA
IRPA

r-------, I Bµ REG I
I I ·------------, I Sµ I I

·ALU 00-15 I REG I I
I I I
I l+ENALU-SM-,__-i._...,
I I I c

I (1A25-28) .. • I
L-- ---·· I

+MC-1---11
+ENRBM

~--------------

(1A05)

+MC-2---11 -EXCEPT

(1A13) (1A06)

+ENCLKSM

I
I
I
I

+CLKSM------.._ _ _,
I
I (1A18-21)
.. ____________ ..

Figure 2·217. Formation of Address 000016 ,in Sµ Register

CS Disc Command Load

The CS disc command load is initiated via execution of a
CS Load disc command by the IFA in either the normal
mode or maintenance mode. Executing this command
generates DSRS (Dead Start Restart) in the IFA, which is
routed back to the shared resource:s. Essentially, this
signal provides a simulated setting of the RESET /LOAD
pushbutton under software control. This signal is also
generated upon detection of a burst ch1eck error in reading
data (CS words) from the disc in the maintenance mode.
Detection of such an error requires re-loading the CS data.
For whichever reason, it generates DOA, MC-10, MC-1,
MC-2 and MC-3 in the same manner as pressing the
RESET/LOAD switch. In addition, DSRS is routed to
indicator 00 of the CONSOLE ADDRESS REGISTER
DISPLAY on the Panel to indicate that the CS load is
being performed as a result of either executing a disc
command or detecting a burst error. Lighting this lamp,
however, has real significance only upon detection of a
burst error. If this condition occurs, DSRSDIS is
generated to specifically inhibit generating DOA, MC-10,
MC-1, MC-2, and MC-3 by means of DSRS. This means
that the system will stop upon detection of a burst check
error. Re-loading CS must be re-initiated manually by
means of the RESET /LOAD and SYSTEM RESET
pushbuttons. Loading or reloading CS upon occurrence of
the other three conditions that generate DSRS (disc
command - normal mode, disc command - maintenance
mode, and burst check - normal mode) will take place
automatically.
Upon completing the initialization sequence in the disc
I FA, the transfer of data from the I FA to the shared

2-25~~

resources can begin. This is done by the logic shown in
Figures 2-218 and 2-219. Figure 2-218 shows generation
of signals which control the transfer of data and Figure
2-219 shows the logic involved in the data transfer itself.
After receiving DOA from the shared resources, the IFA
reads the first word to be stored in CS from the disc in
serial fashion, assembles it in the I FA extended register,
and sends DDS (Disc Data Strobe) to shared resources to
inform it that the first CS word is available for transfer.
The CS load control logic AND's DDS with SWDISC from
the PRIMARY position of the AUTOLOAD SELECT
switch to trigger one-shot circuit 1. This one-shot
furnishes a pulse 60 nanoseconds in width to clear the
console data register in preparation for receiving CS data
from the IFA. The falling edge of this one-shot triggers
one-shot circuit 2, which generates SEL EN. This signal,
also 60 nanoseconds wide, is used with SWD ISC on Figure
2-219 to generate an enable which is applied to four
selector elements. These elements receive CS data from
either the disc, via the sixteen ER 13 bits, or the card
reader, via the four ODI bits. When furnished with the
corresponding enable, the elements gate data from the
corresponding 1/0 device. In the case of the disc, the
sixteen ER 13 bits are gated and passed to the Console
Data register as SLSTEN bits. When clocked by CLKN R,
the Console Data register passes the data to the data
display fan-in logic. Selection of the Console Data register
is forced by the CS write operation. Data from the fan-in
logic is then routed to CS for storage at the address
defined by the contents of the Sµ register. Initially, Sµ is
loaded with 000015 as discussed previously. For every
subsequent word transfer, Sµ is updated by the Sµ+1 logic
to form the address at which the next CS word will be
stored.

ICRA
IRPA

r--~~~~~~~~~~~~~~~~~~~~~~~-+SELEN

,.--~~~~~~~~~~~~~~~~~~NYBL

P------~------------------- ----1
I

~VBLO~--~~~~~--~~~~­

I
I

._ _ _,,

60
NSEC

0-S
1

60
NSEC

n z n z
0-S
2

800
NSEC

0-S
3

-----,
I
I
I r---------.,
I I I
•-RUN-LO I I

I
I
I
I
I
I I
I-STOP-LO
I I

CON
BUSY

FF
I
I
I
I
I
I
I
I

l+STATEC I
I I (1AD2) I I L---------.1 I

I
I
I
I
I

-NYBL3 . I (1817) I

~-------------------------------------J

Figure 2-218. CS Load Control

CTR
CLK

+CON BUSY

During a CS load operation, data is transferred to CS from
the disc in an asynchronous manner under control of a
strobe generated for each word to be transferred.
Essentially, the CS load can be characterized as a
start/stop operation, where everything stops after a word
is transferred until receipt of the strobe for the next word.
The strobe required to trans-fer each word is the DDS
signal. This signal is generated in the I FA for every word
that the I FA assembles in its extended register. This
signal, in turn, is used by the shared resources to generate
RUN-LO which sets the Console Busy flip-flop, producing
CONBUSY. Signal CONBUSY is routed to the RAN to set
both the Console and Console Stat1a flip-flops. Setting
these flip-flops generate the signals necessary to start the
Sµ+1 update logic and store the data transferred to the
Console Data register at the corresponding location in CS.
Signal CON BUSY is analogous to th1a processor requests
from the B/A register during normal operation in that it is
used to obtain a time slice for the Panel. Upon completion
of the single-word store, DDS is deactivated and the
Console Busy flip-flop is cleared by the ANDed
combination of STOP-LO and STATEC from the RAN.
When the next word has been assumbled in the I FA
extended register, DDS is activated again and the above
sequence of events is repeated. Each word transfer takes
one major cycle to execute.

Transfer of data to CS will stop when one of the following
four conditions occur:

1. a burst check error is detected,

2. the CS load is completed,

3. a system reset operation i:s performed, or

4. the system is shut down.

Detection of a burst check error is performed by the IF A
and requires that the contents of CS be re-loaded.
Indication of a burst check error is ·furnished by signal
DSRS. This signal performs the same functions as if it was
generated for starting a CS load via execution of a CS
Load disc command, namely, generation of signals DOA,
STOP-LO, MC-10, MC-1, MC-2, and MC-3. When a burst
check error occurs, however, the CS load operation is in
progress and the DOA flip-flop is already set. To re-start
the load operation, this flip-flop must be cleared and set
again to initialize the disc heads. Clearing the DOA
flip-flop is performed by MC-3, which is routed back to
the clear side of the flip-flop as shown in Figure 2-195.
After the 600-microsecond delay from one-shot circuit 1
is complete, the DOA flip-flop is set again to re-start the
CS load operation. (Again recall that re-starting the CS
load by means of a burst check error is inhibited if the
system is in the maintenance mode, duEl to the presence of
DSRSDIS.)

2-255

Determining that a CS load operation has been completed
is performed by the CS load complete logic, shown in
Figure 2-220. This logic determines that all data has been
loaded in both the CS and FRJ decode address table (AT).
Upon detecting this condition, the logic generates
ENDCSLD. The logic essentially consists of five parts: the
1 K-word detector, the CS present detector, the AT Selec­
tor flip-flop, the AT present decoder, and the AT present
detector. During a CS load, the 1 K-word detector moni­
tors the state of bits 6 and 7 from Sµ to sense when
Sµ reaches addresses of XOFF 16, X2FF 16 and
X3FF 16, indicating that 256, 512, 768, and 1024
words, respectively, have been loaded. The states of
bits 6 and 7 are ANDed with X-OOFF, indicating that
bits 8 through 15 are all 1-bits. This progress of
address detects in 256-word increments as shown in
Figure 2-221. When a load of 1024 words in CS is
detected, signal 1 K DET is generated and routed to
one side of gate A.

The other side of gate A is fed with an output from the
CS present detector. This detector performs a dual
function of checking for CS loads in 1024-word
increments up to 16,384 words (four CS storage units),
and checking to see if a portion of CS addressed by Sµ is
actually present in the system. The latter check is
necessary since the Sµ+1 logic has no way of knowing
whether Sµ has been updated past a CS location not
present in the system. Indication that another 1024-word
increment of CS is going to be loaded is provided by bits 2
through 5 of S . The states of these four bits are ANDed
with four CSEQ bits, the encoded result of which
represents hexadecimally the maximum number of
1024-word portions of CS present in the system. (For
example, if the system contains two CS storage units
(8192 words), the encoded CSEQ bit result will be
CSEQ1000.) This progression of address detects in
1024-word increments ANDed with the corresponding
CSEQ bit result is also shown in Figure 2-221. When a
match is detected, signal CS PRES DET is generated. Note
that generation of this signal is not dependent on the
states of Sµ bits 6 through 15; therefore, the signal
indicates only that the first location of the last 1024-word
portion of CS present in the system has been addressed.
Indication that this portion of CS has been completely
loaded is furnished by signal 1 K DET. When these two
signals occur simultaneously, gate A is enabled and sets
the AT Select flip-flop. The set side of this flip-flop gen­
erates AT-SE Land the clear side feeds one input to gate B
used to generate ENDO and ENDCSLD.

Signal AT-SEL enables the FRJ decode address table to be
loaded with data from the disc. This is accomplished in
basically the same manner as the CS load complete
operation: determining the number of words loaded per
address table and combining this information with the
number of address tables present in the system.

r-------------------, I
I

SELEN

!. :o--SWDISC __ :__ DISC/CR

+ERl3 00 -03

+ODl-00

+ERl3 04-07.

+ODl-01

+ERl3 08·11

+ODl-02

+ERl312·15

DATA

I SEL ~------------, : 1 •[1A08J I
I

4! +SLSETN I 1111 I -N+CS

T -. 00-03 I : ~ ~
I _.. S~L K--0---: ~ ~
I _.. I I
I _. I I
I + I I
I I I I
I I I
I l I I
! + I I

--.- 4 _. I +SLSETN I -N+CS

: :I ·nt--© i ~ f0. ~
I ~ I I I
I I I I
I I I DATA I
I I I CONS DISPV I
I I I DR~TGA F,~N- I 1 1 I I I
I 4

..... : +SLSETN I I ·N•CS

I SEL I 08-11 : LL~
! ~ 2 r+--0-1 .;- ~ II~

--.- + I I I
I .. I I I
I ~ I I I
I ,----J I I I
I I I I
I , I I I
I • I I I
T 4

.... I +SLSETN I I ·N+CS

I SEL I 12-15 I ~
I -r3~-0-J~ ~ ~
I
I ~ I I I

~--:"--~~----t~~~~----1---t---t~~--...J I I I
I NYBL -. I I I

+ODl-03

NVBL
CTR
CLK

I NTER I 1- I ! cou I +ENCLKNR I

; p--- ~ : «LKNR-: - : : L:Ee-. SEL : 1..--------•i-.. • _ ..
I I CONSOLE { .SELN-SO -
I I DATA REG -SELN·S1 -L-------------------.a ~~\~~~ED .SELN·S2----1

Figure 2-219. CS Load Data Transfer

2-256

CONTROL
STORAGE

+SM·LD02 -

+CSE01XXX --

+SM·LD03 -

r---------------------··-------------------, I +s voe I
I I
I I

I
I

I I

+CSEQX1XX--: cs CS PRES OET
PRES

+SM-LD04 -

+CSEOXX1X

+SM·LD05 -
+CSEQXXX1 -

+X-OOFF

+SM·MNO& -

+SM·MN07 -

+ATEOX1

+ATE01X

I

I

I
I
I
I
I
I

I

OET

IK
WO
OET

AT
PRES
DEC

1K OET

AT
PRES
DH

c
c

L---------------------~-------------
-CLEAR-AT

Figure 2-220. CS Lolld Complete Logic

2-257

(1817)

-----~

+AT-SEL

+ENDO

·ENDCSLD

Determination that an address table has been loaded with
256 words is accomplished by signal X-OOFF. This signal
is combined with those from the 1 K word detector and
the AT present decoder by the AT present detector. The
1 K word detector determines which of the four
(maximum) address tables is being addressed by bits 06
and 07 of Sµ. This information is combined with outputs
from the AT present decoder, which determines from two
ATEQ bits how many address tables are present in the
system. The results of these two decoders are combined
with signal X-OOFF to enable one of four NOR gates,
making up the AT present detector, as shown on Figure
2-221. This result, AT PRES DET, is combined with the
output from the CS Load flip-flop to generate ENDO and
EDNCSLD. Signal ENDO is fed to the I FA, informing it
that the CS and AT load operations have been completed.
Signal ENDCSLD is routed to the CS load initiate logic
(Figure 2-216) to clear the DOA flip-flop, thus
deactivating signal DOA to the I FA. This completes the
disc CS load operation.

02 03 04 05 06 07 OB 09 10 11 12 13 14 15

Sµ I y y y y I x x I 1 1 I 1 1 I

{

0 0 - 256 WORDS LOADED

DETECTED O 1 - 512 WORDS LOADED
BYIK
WO OET 1 0 - 768 WORDS LOADED

1 1 - 1024 WORDS LOADED --+ 1K DET

0 0 0 0 ANO CSEOOOOO

0 0 0 1 ANO CSE00001
I

DETECTED I
I BY CS
I CS PRES DET

PRES DET I

+
1 1 1 0 AND CSE01110

1 1 1 1 AND CSE01111

{

0 0 AND ATEOOO~
DETECTED 0 1 AND ATE001
BY AT OR AT PRES OET
PRES DET 1 0 ANO ATE010

1 1 ANO ATE011

Figure 2-221. CS Add and CS Present Compares

Card CS Load

A CS load from cards may be performed by either a
power-on system reset condition, or by pressing the
RESET/LOAD pushbutton. Cards may be read from
either the card reader or the reader/punch, as determined
by the setting of the LOAD SELECT switch on the Panel
(CR position for card reader and R/P position for
reader/punch). The initiate part of a card CS load is very
similar to that for a disc CS load. The only differences are
that the LOAD SELECT switch must be set to one of the

2-258

two settings described above and that signal MC-10 is not
used. Referring to the CS load initiate logic of Figure
:2-216, signal SWOTHER is generated by setting the
AUTOLOAD SELECT switch to either the CR or R/P
position. This signal clears the Autoload Select flip-flop
vvhich causes DISCS to go low. A low DISCS signal
enables the selected card device for performing the CS
load operation. Activating the RESET /LOAD pushbutton
generates DOA and MC-LD which, in turn, generates
MC-10. Signal DOA is routed to either the Integrated Card
Reader Adapter (ICRA) or the Integrated Reader Punch
Adapter (I APA) to set up logic for assembling the first
word to be transferred to CS. Although generated, signal
MC-10 is not used by the ICRA or I RPA since there are
no pick-up heads to be positioned in the card reader
device as in the disc.

Data transfers from the ICRA/I APA to the shared
resources differ from those from the I FA because data
transferred from the ICRA/I APA is done so in nybl form,
four bits at a time, instead of in whole word form. This
requires four separate data transfers, one per nybl, to
assemble a complete word in the Console Data register
prior to storing it in CS. These four data transfers are
c:mabled by the output of a two-bit nybl counter, which
generates four counts (00, 01, 10, and 11) in sequence.
The nybl counter consists of two flip-flops, labeled 0 and
1, as shown in Figure 2-219. When clocked by signal
NYBL CTR CLK, the nybl counter enables a nybl on the
ODI lines to pass through a selector to the Console Data
register. Signal NYBL CTR CLK is generated by ODS
{Output Data Scan) from the ICRA. This signal serves a
similar purpose as signal DDS from the I FA, namely, to
initiate each nybl data transfer from the ICRA to the
shared resources. The four counts enable four nybls
through selector elements 0 through 3 in sequence, as
shown in Figure 2-222. During each four-nybl transfer,
signals NYBLO and NYBL3 are sent to the CS load
control logic. Signal NYBLO, sent concurrent with the
transfer of nybl 0 to the shared resources, generates
CLRNR to allow the next four-nybl word to be assembled
in the Console Data register. Signal NYBL3, sent
concurrent with nybl 3, generates RUN.LO which in turn
generates CON BUSY. This signal sets up the RAN to write
the assembled word into CS. Once assembled in the
Console Data register, the resultant word from the ICRA
is stored in CS in the same manner as a word from the
IFA during a disc CS load.

Termination of a C~ from the ICRA is accomplished
by means of the ENDI signal from the ICRA, which
informs the shared resources that all the cards have been
read. This signal clears the DOA flip-flop in the same
manner as ENDCSLD clears the flip-flop at the end of a
CS load from the disc.

ICRA _.......__

NVBL
CTR
CNT

00

CDDI
LllNES

.. ---· SEL
0

01

4

SEL
1

7

I SEL
10 1_.,2_.

8 _, __ _

11

11 I 12
CONSOLE

DATA REG

·Figure 2-222. Transfer of ICRA Nybl [)ata to Console Data Register

Auto load

The autoload operation loads the operating system and
user programs into Main Storage (MS) U1Pon completion of
the CS load. Either disc or card reader may be used to
load MS.* Unlike the CS load, which is loaded in CS in
sequential addresses under hardware control, the MS load
is under control of a Disc Autoload or Card Reader
Autoload routine stored as part of the CS load. These two
routines turn control of the MS load over to the Executive
processor, which controls the placement of various
routines in MS in accordance with their use. If the system
is in either the operator mode or program mode, and CS
was loaded by a power-on or reset/load condition, the
autoload operation begins automaticallv upon completion
of the CS load operation. For any other condition, the
autoload operation must be initiated manually by means
of the AUTOLOAD pushbutton.

*At present, only the disc may be used to load MS via the
autoload operation.

2-259

Control signals generated during an autoload operation are
!shown in Figure 2-223. These signals are initiated by
1either SWAUTO from the AUTOLOAD pushbutton on
the Panel or AUTO-LO from the disc IFA. These two
!Signals are ORed together to set the Autoload flip-flop,
which removes the effects of switch bounce from the
.AUTOLOAD pushbutton. Setting this flip-flop triggers
two one-shot circuits in sequential order. One-shot circuit
1 generates a negative pulse of 4 microseconds in width to
!set the System Reset flip-flop. This flip-flop is used to
1generate MC-1 and MC-2, which are used to clear the Sµ
1register in the manner shown in Figure 2-195. One-shot
1i::ircuit 2 generates a 0.1-microsecond-wide negative pulse
which sets the Request 4 and the Request Enable
'flip-flops. The Request 4 flip-flop generates REQ-4
through one side of an OR gate to set the Busy 4 flip-flop
,of the Busy/Active register. This flip-flop output, in turn,
is used to obtain time slices via the RAN to effect the
transfer of MS data. The set output from the Request 4
·flip-flop is also used in combination with SWOTHER from
the CR and R/P positions of the LOAD SELECT switch
to generate the starting address of the autoload routine by

"" r:.,,
O')
0

r---~ I I
-RTC-REG4-t1t---------------------------1 I

I
I
I
I
I
I
I
I 4

µSEC
-SWAUTO l_

-AUTO-LO AUTO
O·S

I LOAD
1

I
FF

I
I

+STATEN

I

L.

u

0.1
µSEC

0-S
2

-,_

u

REQ
EN
FF

REQ
4
FF

+REQ-4

SET

~WOTHER~•:------------------+-------------------
1

s

1 }ADRS 011215
I I

I i
.,___ ADRS 011315

I
I
I
I
I
I
I
I

SYS
RST
ff

I (1A02) I

~--------~-----~-----~--------------------J

Figure 2-223. Autoload Control Logic

-DISC

means of the set S logic. If loading from the disc,
SWOTHER is not present and the starting address formed
is 011315. If loading from a card device, SWOTHER is
present and the starting address formed is 011215. The
Request 4 'flip-flop is cleared at EOOO of the next minor
cycle by STATEN from the Null State flip-flop in the
RAN. Signal RE0-4 may also be generated by the normal
executive request from the Real Time Clock (ATC)
register. This request (RTC-REQ 4) is generated every
16.384 milliseconds when the ATC regis.ter overflows and
is enabled by the set output from thet Request Enable
flip-flop.

Upon generating the starting address of the autoload
routine, transfer of data from either disc or cards begins
under control of l's in the autoload routine. The basic
flow of data from the input device (disc or cards) to MS is
shown in Figure 2-224. All enables are generated by the
µl!s of the autoload routine.

REGISTER SELECTION/DISPLAY

Certain registers of the shared resources and the ERF
Group 11 may be selected for displaying their contents by
means of hardware alone, in contrast to the
software-controlled RF read routine described in the
paragraph titled MS/RO and RF Read and Write. These
registers are selected by the CONSOLE ADDRESS
REGISTER SELECT and CONSOLE DATA REGISTER
SELECT selectors on the Panel. The CONSOLE
ADDRESS REGISTER SELECT selectoir permits display
of address-related data contained in the S, Sµ, Console
Address, and PE registers. The CONSOLE DATA
REGISTER SELE CT se I ector permits display of
data-related information contained in the ATC, Fµ-2,
Fµ-1, CS Scan, B/A, Console Data, D, Aµ, Bµ, and BC
registers, plus the sum of Aµ and Bµ.

Logic for displaying data-related information in the CON­
SOLE DATA REGISTER DISPLAY indicators is shown

CR {
R/P

DISC {

-ENERG3·2

-ENERGJ-3

-ERFG3
OEJ-15

(1A18·2H

+ENGR2/3

iin Figure 2-225. Each position of the CONSOLE DATA
REGISTER SELECT selector is fed to one of two encoder
drcuits, depending on whether the register is associated
with the ALU in the shared resources (D, Aµ, Bµ or sum
1of Aµ and Bµ) or with the ER F Group II (B/ A, RTC, BC,

GS scan, Fµ-1, or Fµ-2). The ERF Group II register
positions are sent to an eight-input encoder, which
qenerates a three-bit register address on the three SE LN
!lines. This encoder is also fed with an overall ALU register
select signal (SWSELALU) which is generated when any
of the four ALU register quantities is selected. The three
SELN lines are sent to the data display selector. This
selector is fed with the 16 lines from each ERF Group II
register selected by the CONSOLE DATA REGISTER
SELECT selector plus 16 lines from the ALU fan-out
logic, fed with inputs from the four ALU-associated regis­
ters. Each position of the Console Data register selector
!~enerates a three-bit register address as shown in Table

2-27 to select its corresponding rester for display. Note
1that the address generated for the four ALU-associated
registers is the same for all. This is a result of signal
SWSELALU, which is generated when any of the four
ALU-associated registers is the same for all. This is a result
of signal SWSELALU, which is generated when any of the
four ALU-associated registers is selected. These registers
are selected by their own encode logic because of the
necessity of displaying their contents during a null condi-
1tion only. Furthermore, the contents must be the results
of only one of the eight processors running and then in
1the stop mode. These restrictions are necessary so that
meaningful (non-changing) data may be displayed. The
null restriction is implemented by signals READNULL
and STATEN from the RAN. The result is to generate
SELDISPY, which generates a corresponding enable to
uate the contents of the selected ALU register to the selec-
1tor. The selector output is sent to a second selector which
is used during the CS scan and CS read operation to dis­
play the contents of either CS or the FRJ decode address
table (AT). For console data display operations, signal
AT-SELAJ will be high to gate data from the selector
(N .. CS) to the CONSOLE DATA REGISTER DISPLAY
indicators.

·ER.-ALU
00-15

(1A25-28)

+ENERf.-AM

+Rf.-MSI
00-15

(1A29,30)

+CLKDR
+ENCLKDR

+DR.-RO l
00-15

.________. MS

Figure 2-224. Autoload Data Storage

2-261

CONS
DATA
REG
SEL

.---------.. I I
-SWSELB/A I
-SWSELRTC-----------------------------11 I

I I
.SWSEL-BC -----------------------------1
-SWSEL-F1 ----------------------:•:------• ENC

-SWSEL·F2 ----------------------1------

I
I

SWSELALU

0

-SWSEL-OR-1----------------+--

+READNULL

+STATEN

I
I

I
I
I

·---------~ r------, s
I U:::

"ii

I

I
I
I
I

r1~251 • tA28 I ______ ;._";.I

Figure 2-225. Console Data Display

-SELN-SO

-SELN-S1

.,
I
I
I
I
I
I -N-CS
I 00-15

I
I
I
I
I
I

IL (1A08-1A11) ! -----

·AT
00·15

·AT-SELAJ

---· I
I
I \ CONS

+NOISPYl DATA

I 00-15 I REG
DISP

I
I I
I (1A17) I . ______ ..

Table 2-27. Console Data Regist1tr Selectors

Selector Select S!s_nal States

Setting SELN-82 SELN-S'.I SELN-SO

B./A 1 1 1

css 1 0 0

Fµ 1 0 1 1

Fµ2 1 0 1

ATC 1 1 0

BC 0 0 1

SUM 0 0 0

Bµ 0 0 0

Aµ 0 0 0

D 0 0 6

N 0 1 1

Logic for displaying address-related information in the
CONSOLE ADDRESS REGISTER DISPLAY indicators is
shown in Figure 2-226. The four positions of the
CONSOLE ADDRESS REGISTER DISPLAY selector are
fed to an encoder, which generates a two-bit register

address on the two SE LM lines for each register selected
.as shown in Table 2-28 These lines are fed to a driver and
then to the address display selector that is fed with the 16
lines from each address-related register. The output from
the selected register is routed to the CONSOLE
ADDRESS REGISTER DISPLAY indicators on the Panel
over the MDISPY lines.

Sµ

M

PE

Table 2-28. Console Address Register Selector

Selector Select S!g_nal States

Setting SELM-81 SELM-SO

sµ 1 1

s 0 1

M 1 0

PE 0 0

The Fµ2, Fµ1, ATC, CSS, D, Aµ, Bµ, SUM, and BC posi­
tions of the CONSOLE DATA REGISTER SELECT
selector and the Sµ and PE positions of the CONSOLE
DATA REGISTER SELECT selector are enabled only if
the Panel is in the maintenance mode (MAINTENANCE

MODE pushbutton set to on). These selector positions are
disabled if the Panel is in either the operator mode or the
program mode by appropriate grounding of the selector
lug corresponding to the position on the Panel itself.

r------. I (1AOB-1A11) I
I
I

ADAS I
DISPLAY ...,__---t

SEL
I
I
I
I .. _ - _ ..

}

CONS
ADRS

MDISPV REG
IND

r--- .. -., r-··----.
CONS { ADRS
REG
SEL

I I I I
-SWSEL-SM --111---• I SELM-SOA I I SELM-SO

-SWSEL-M I
I ENC I

-SWSEL-SR ------ti I DVR I
SELM-S1

-SWSEL-PE ----- I I I
I I I I
I I
L .. --Jl'!U~

I 0025)1 L-··---;;.a
Figure 2-226. Console Address Register Display

2-263

APPENDIX 2A

INTRODUCTION TO ER:ROR CORRECTION CODES

In recent years, the demand is for increasingly
sophisticated error detection and correction schemes to
improve reliability as judged by performance, cost and
size. The objective here is to give an insight to the idea
(not the theory)., some terminology, and a comprehensive
but simplified example of what erro1r correction means.
The basic assumption is that all hardware has an intrinsic
failure rate, however small, so that by minimizing the
hardware in an entire system will tend to lower the system
failure rate. The design objective is to provide, with
minimum hardware, a redundancy coding that will
combat statistically independent single errors. Statistically
independent single errors means that about 99% of the
time, random or intermittent errors w!ill occur only one at
a time. Over a long period of time the same identical error
will not occur. A shorted diode for example, that fails
every time it is used is not ah independent error. Noise
injected into the transmission medium tends to be random
in nature and therefore redundant coding is used to
combat it. To implement this objective, many
random .. error-correcting codes have been used. For
computer applications, variations in the Hamming
Single-Error-Correction (SEC) and
Double-Error-Detection (DED) are the most useful.

Most single error correction coding was originally designed
for bit serial transmission of data over a radio link where
atmospheric noise is rather unpredictable. By sending
redundant bits with the message, the errors caused by
atmospheric noise can be overcome. Whether it was a data
bit or a redundant bit doesn't matter because the coding
allows a single error to occur and still recover from it. The
basic assumption in a Hamming error code is that data
transmission is done bit serially. For bit parallel memories,
modifications to the coding hardware is necessary. The
coding hardware simultaneously calculates parity on two
bytes to minimize the calculating time required. Random .
access bit-parallel storage have used parity bits as their
basic error detection scheme. Typically a parity generator
calculates how many binary one bits there are in the word
to be stored. Then a parity bit is generated to make the
total summation of word data bits and the parity bit to be
an odd number of one bits. The result is then stored.
Upon reading this word from storage, the summation of
one bits is checked to verify an odd number of ones. Any
errors result in an interrupt to the computer warning it of

2A-1

an unidentifiable failure. To find the failing bit requires
some redundance coding scheme not available with parity.
The extreme redundancy code would be a bit for bit
duplication of the original data word (if the duplicate
word is known to be sent correctly). Using mathematical
theorems, the number of duplicate bits, or check bits, can
be minimized.

Table 2A 1 shows an example of one method of producing
redundancy for correcting errors. For the information
shown in the three rows, the row and column parity is
calculated and shown to make odd parity.

Once the row parity and column parity is calculated, the
check on row parity is calculated and is shown in the
lower right-hand corner of the matrix. The array of
information can now be transmitted bit-serial over the
radio link and then staticized by the receiver into the
original format. If an error occurs, it will show up in both
the row and column parity checks. The bad parity checks
for the row and column will intersect at the erring
information bit so that it can be corrected. In other
words, a single error was detected by the check bits (row
and column parity) and it was correctable by pinpointing
the bad information bit.

Suppose that a double information error had occurred. If
one error was in Byte 1 and the other in a different
column of Byte 2, there would be two failing columns and
two failing row parity bits. In this case a double error
could be both detected and corrected if the parity bits .~re

assumed to be correct. However, had both failing bits
occurred in the same byte, there would be two erring
column parity but no erring row parity. The double error
is now detected but not necessarily corrected because one
of the errors may have occurred in the check bits.
Generally, error detection is logically easier to implement
than error correction. For this reason, correcting single
errors and only detecting multiple errors is the most
common redundancy coding.

In the example, the code word consisted of 20 symbols of
which 12 were information and 8 were check symbols.
The check symbols provide the code word with
error-correcting ca pa bi I ity.

The example shows how redundant check bits can
reconstruct a single error. To adopt this example to a
useful code for bit parallel storage requires doing the
coding simultaneously. Using three parity generators to
calculate the three row-parity bits and five parity
generators to calculate the five column parity bits, the
entire matrix can be simultaneously generated. The one
exception in the example is the column parity bit that is
generated from the row parity bits. It must wait until the
three row parity bits are generated. Finally, the entire
code word of twelve information bits and 8 parity (check)
bits can now be stored. When the code word is read from

Table 2A 1. Odd Parity Example

Information Row Parity

Word 1 1 1 1 0 0

Word 2 1 1 0 0 1

Word3 0 1 0 1 1

Column Parity 1 0 0 0 1

storage, similar simultaneous logic can detect and possibly
correct the error.

To minimize the logic and the number of check bits,
many coding schemes have been developed. The easiest
method of minimizing logic is to construct a table as

shown in Table 2A2. The table shows the relationship for
constructing the check bits from the information bits.
Now however, the matrix of "X" is in the form that
mathematical theorems can be used to minimize the
rndundant check bits. From this example, the technique
of forming error correction codes is shown. After the
mathematical theorems minimize the table, the new table
can be used to satisfy the construction of the logic.

Variations and modifications to the Hamming SEC-OED
codes have resulted in codes superior in cost, performance
and reliability. The parallel generation of all check bits
minimizes hardware and increases speed. For most codes,
the capability or probability of correcting a single error
and detecting all multiple errors can be empirically
determined.

Table 2A2. Formatting the Example into a Table

Row
Byte 1 Byte2 Byte 3 Parity Bit

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2

Row Check Bit 1 x x x x

2 x x x x

3 x x x x

Column Check Bit 1 x x x

2 x x x

3 x x x

4 x x x

5 x x x

2A-2

3. MICRO-INST'RUCTION REPERTOIRE

GENERAL.

The micro instructions (µ's) are 14-bit codes stored in
control storage (CS) and are used to implement the
execution of machine-language instructions (MLl's) and
to perform special manipulative routines initiated by the
operator from the System Control Pan1el. There are 65
basic µl's, grouped into 10 classes, comprising the reper­
toire. Some of these basic µI's, such as the FNJ µI, can
be executed in one of two ways depending on whether
or not a certain bit of the µI is set. Each µI consists of
14 bits, arranged in a 16-bit format such that bit posi­
tions 9 and 10 are not used and are always in the clear
state. For the most part, µl's enable inter-register trans­
fers of data and address information. Some µl's, how­
ever, are used to access main storage 1(MS) or exercise
control over a programmed operation.

FORMATS

The 14-bit µl's (one bit of which is a parity bit) are
read from CS and deposited in the 16-bit Fµ register,
as they are needed. Since unused bit positions 9 and
10 are always 0, and the parity bit P (bit 8) is carried
along with the µI instead of being generated sepa­
rately, it is possible to express each µI as four hexa­
decimal characters as shown below:

[
'

0 3 4 7 8 1'1 12 15

I lpl"31 I .. .J\
if' '"---v-- -..i' if' ' o-F 0-F 0,,1,8,9 O-.f

Except for the hexadecimal character represented by bit
positions 8 through 11 of the µI, each character can
assume values of 0 through F depending on how the µI is
coded. Bit positions 9 and 10 of the remaining character
are always defined as O's; therefore, this character can
only assume values of 0, 1, 8, and 9.

3-1

I

I

The µI's are formatted in several different ways,
depending basically on their particular function. The
format used for each µI is shown with the description of
that µI in the paragraphs that follow. All formats,
!however, use some or all of the field designators shown in
the following four formats. Explanations of these
designators follow the illustrations.

0 3 4 5 6 7 8 9 10 11 15

F jsojs,jaj bl Pl Not x
Used

0 3 4 5 6 7 8 9 10 11 12 15

F I So Is, I • I b I p I ::~ 1621 x

0 3 4 5 6 7 8 9 10 11 15

F lt1I 1 ·I p I ::~I
0 3 4 7 8 9 11 12 15

F N I p I ::.: I I N

Field
Designator Meaning

F

p

N

x

The basic function, or operation, code

Parity bit (odd parity is used)

An 8-bit operand (two fields, bit 04 is the
MSB)

A 6-bit jump index (two fields, bit 07 is the
MSB)

A register designation, skip designator, a
mathematical constant, or a hexadecimal
value indicating a bit (one of 16) to be set,
cleared, or toggled. Bit 11 is not used (is a
"0") for the latter.

If bit 11 is a "zero" when X is used as a
register designation, the register specified by
bits 12-15 will be one of 16 in the lower half
of the basic register file (i.e., registers 0-15).
If bit 11 is a "1 ", then the register is one of
16 in the upper half of the basic file
(registers 16-31).

Sub-operation codes

a,b These designators determine how the number
of the register to be operated on is derived.
If both a and b are "O", the X field desig­
nates a basic register. If both are "1 ",the X
fie Id designates an extended register. If
either a or b is a "1 ", the register number is
derived by performing an inclusive OR
between the lower three bits of X and the
3-bit R1 or R2 field of the machine-language
instruction, as the case may be, and that
number specified a basic register. For the
SKB, SKB-, LBB and LBB- µl's, the machine
OR is performed between the lower four bits
of X and the corresponding 4 bits of either .
the R1 or R2 field (including the indirect
designator) of the machine-language
instruction.

CHARACTERISTICS

In addition to grouping µl's into classes according to
similarities in execution, µl's can also be grouped into
more general categories according to certain basic
characteristics that cut across sub-·division by class. These
categories are discussed below.

REGISTER ADDRESSABILITY

Since most µI's can address registers of either the Basic
Register File (BRF) or the Extended Register File (ERF),
it is often convenient to know which µl's are the
exception. Furthermore, of those that can address the
ERF, it is convenient to know which of the three groups
making up the ERF can be addressed by a particular µI.
This register addressability information is listed in Table
3-1. This table lists the capability of each µI to either read
or write a register of the ERf. The letters "R" and "W"
are used to indicate read and write operations,
respectively. Any µI that can read or write a register of
the ERF can also read or write a register in the BRF.

BLOCKPOINT µI'S

A micro program block is a series of µl's that must be

3-2

executed in the same major cycle (800 nanoseconds) if
the results of the data manipulations are to be valid. The
last µI in the block, must then be one that stores data in a
dedicated resource, and ensures that data is not lost in the
shared resources. These µl's are called blockpoint (BP)
instructions. Each time the hardware detects a BP µI, it
remembers the BP address +1, so that the program can
resume at the proper location on the next major cycle.
This is accomplished by routing the output of Sµ +1 to
the Pp register by means of the BP µI. At the end of the
major cycle, the contents of Pp is transferred to Pµ as part
of the W portion of the time slice.

All branch, skip, and register file write µl's are BP
µ1 ··s. These µI's usually occur near the end of a time
slice as a result of their intended use. Therefore, they
are suitable for performing the BP function since any
µI occurring after the BP µI in the present time slice
will be repeated during the next time slice. Because
time slices always begin by reading the µI following a
BP µI, the microprogrammer must be sure that a BP
µI occurs at least once during every time slice. Block­
point µ1 's are also tabulated in Table 3-1.

FEEDER LOAD µI'S

A feeder load µI is one which loads data into either or
both Aµ or Bµ (feeder) registers. As such, they inhibit
execution of a µI that uses the results of this data (such as
a SUM or CMP µI) for 100 nanoseconds following the
feeder load µI to allow sufficient time for the data to
prnpagate through the ALU (refer to the paragraph on
Cycle Delay Logic). The feeder load µl's, listed in Table
3-1, generally have the following properties:

1. cause full execution time of 200 nanoseconds
(100 nanoseconds null time plus 100
nanoseconds execute time) when immediately
preceding a 2,X (SUM, DSUM, CMP or CMU) µI.

2. clear inhibit on inner carries. Referring to Table
3-1, the following anomalies to the above
properties should be noted:

a. The DIG and CORC µl's inhibit inner carries
as part of their execution. Therefore, they do
not clear the inhibit on inner carries as do the
other feeder load µ 1 's.

b. The shift (SHF, SHR, DLS, and DRS) µl's
cause full execution time on the 2,X µl's even
if the shift count equals zero so that the Aµ
and Bµ registers are not altered.

c. The bit sense (SRO and SS1) µl's cause full
execution time on the 2,X µl's even if the Bµ

register is not incremented.

1/0 INTERFACE µI'S

Micro instructions which either read or write a Group 111
register in the ERF are referred to as 1/0 interface µl's.
Besides reading or writing the Group 111 register in the 1/0
processor, these µl's also furnish a read or write status
signal to the control logic, which can also read or write
these registers in addition to µl's. This is necessary
because the read and write control logic is under hardware
control and cannot otherwise determine that a particular
register has been read or written by a µI.

It is the responsibility of the microprogram to insure that
whenever a Group 111 register is read by executing an 1/0
interface µI, a subsequent blockpoint µI which stores the
data in the shared resources file will b13 executed in the
same major cycle.

PµWRITE /.LI'S

Aside from the BP µl's, which write a starting µI address
into Pµ from Pp the following four µl's write and Pµ as

a part of their execution: CLR, STA, STB, and AND.
Since the only path to Pµ is from Sµ via Pp, these µl's
cause a full 14-bit address branch to another µI routine.
The two status bits, Overflow and Liink, that are also
carried along with the 14-bit branch address are under
hardware control only. Therefore, they cannot be altered
directly but only by means of an arithmetic operation.

RESYNCµl'S

Execution of some µl's require that the following µI
start at the beginning of the next time slice. An example
of such a µI is the RNI (Read Next Instruction) µI,
which causes a branch to a routine that reads the next
M LI from MS and decodes it to determine its format.
These operations can always be executed in one time
slice; therefore, the RN I µI idles to the end of the
present time slice to assure that the first µI of the RN I
routine will be executed at EO of thta next time slice.
These µl's that cause the following µI to start at the
next EO are called resync µl's, and are listed in Table
3-1.

TIMING CONSTRAINTS

Several µl's are subject to particular timing constraints in
their execution. Usually these constraints prevent the ,ii
from being executed during certain minor cycles of a time
slice (usually EO or E7) or, conversely, force theµI to be
executed at only a particular minor cycle. For other µl's
the constraint increases the execution time from one to
two minor cycle, depending either on the preceding µI
executed or when the time-constrained µI was executed
during the time slice. Applicable timing constraints for
each µI an~ discussed in the paragraph which describes

3-3

eiach µI. They are also summarized in this paragraph for
c:onvenience. The first category of timing constraints is
summarized in Figure 3-1. These constraints must be
implemented by the micro-programmer when preparing
the µI program. The second category of constraints is also
s;ummarized in Figure 3-1 and in the items below:

1. The SUM, DSUM, CMP, and CMU µl's require
two minor cycles to execute if the preceding µI
altered the contents of Aµ and/or Bµ.

b. Execution of Load S µl's during EO require one
or two additional minor cycles if the system
contains the basic protection feature or the
relocation and protection feature, and/or the
ECC feature.

c. Branch µI's which reference the address portion
of both Sµ and Pp (FNJ, JMP, and AND, CLR,
STA, and STB when X = Pµ) require one
additional minor cycle if executed during any
minor cycle other than E7.

d. Branch µl's which reference the address portion
of Pp only (FRJ, FZJ when (Aµ)= 0, RNl1, and
RNl2) cause a resync condition described in the
paragraph on Resync µI's.

e. Control µl's C101, C102, ROM, and SYNC
cause a resync condition described in the
paragraph on Resync µI's.

The above group of timing constraints are referred to as
:synchronous constraints because the timing restrictions
1occur as a result of predictable timing anomalies. In
1oontrast, there are a number of asynchronous constraints
which occur because of unpredictable signals generated as
a result of operator intervention or 1/0 processor requests.
When these signals are read, resolve time of 200
nanoseconds must be allowed before any actions
dependent on the states of such signals are taken. This
interval of time is necessary to allow the asynchronous
·signal to assume a final, steady-state condition. For
1example, if a LAW u, I designating the Panel Address
register (ERF register OA) is followed by a Skip µI, which
uses the result of Aµ to perform a skip, an interval of 200
nanoseconds must be inserted between the two ,.ti's to
prevent a possible machine malfunction. Such a
malfunction could result from the fact that the operator
could be altering the contents of the address register at
the very instant its contents were being read by the LAW
µI, resulting in an indeterminate skip evaluation. This
resolve time requirement must be accommodated under

microprogram control. In the case of this example, the
requirement should be satisfied by two NOP µI's
immediately following the LAW µI, a STA and LAW
combinations specifying an otherwise unused register
within the BRF or ERF, a SHF µI designating a shift
count of 0, or some other non-interferring combination of
two ul's. Such precautions are particularly applicable to
µI's which read or write the ER F Group 111 registers.

mat, and a narrative description. The description also
lists the µI execution time(s), plus any timing con­
straints or anomalies peculiar to the µI. The ten classes
of µl's are as follows:

MICRO-INSTRUCTION DESCRIPTION

Descriptions of each of the µl's are presented in the
following paragraphs. The µ1 's are arranged in order of
operation code according to their class. Each descrip­
tion consists of an English title, mnemonic identifier,
operation code in hexadecimal form, instruction for-

1. register file read

2. register file write

3. register file read, MS related

4. register file write, MS related

5. immediate operand

6. shift

7. bit sense

8. skip

9. branch

10. control

--------------TIME SLICE---------------...

r
·-----MAJOR CYCLE-------..i

Q) CIO

@ FRJ

,--,-- ,- --,--,--,
I I I I I I
} I E5 I E1 I Wo I W1 I
L_ L_.L _ ...L _ _J __ J

LOADS 6
IVK 1

CLR F 1

FNJ 1

@ FRJ

Wo

IVK@

RFW!

LDWl
LOW-(@
LOB I

{

OTA SOW ©
f;;\ OTA- SOB ©
\:!.I OFA

IOX
MINOR CYCLE LEGEND

R - READ }
W _ WRITE HOUSEKEEPING (HARDWARE)

E - EXECUTE (MICROCODE)

NOTES

1. DO NOT EXECUTE AT TIME SHOWN.
2. MUST BE EXECUTED AT TIME SHOWN IF STORING (D) IN MS.
3. EARLIEST TIME VALID INFO IS AVAILABLE DURING READ MS.
4. EARLIEST TIME FOR STORING (D) IN REGISTER FILE DURING A·

MS READ
5. DO NOT EXECUTE AFTER TIME SHOWN IF ACCESSING F OR Pµ.
6. EXECUTE ONLY AT TIME SHOWN IF PERFORMED IN CONJUNCTION

WITH A MS READ.
1. DO NOT EXECUTE A REGISTER FILE WRITE INSTRUCTION AT ED IF

DESTINATION X IS OF THE F REGISTER. TO DO SO MAY DESTROY
THE CONTENTS OF THE F REGISTER FOR THE PROCESSOR HAVING
THE PREVIOUS TIME SLICE.

Figure 3-1. Microcode Timing Restrictions

3-4

Table 3-1. Micro-lnstructic~n Characteristics

~~· ADDRESSABILITY
Group I GAP GAP BLOCK FEEDER Pµ

MNEMONIC ~n-11 Ill POINT LOAD WRITE RESYNC

AND W* w w w x x
Cl01 x x
CI02 x x
CLA R* R R R x
CLR w w w w x x
CMP w w x
CMU w w x
CORC x
DFA R R R x
DIG x
DLS x
DRS x
DSUM w w x
OTA R R R x
OTA\ R R R x
EBL x
EBU x
EOR w w w x
FNJ x
FRJ x x
FZJ x x
IDX R R x
IOR w w R x
IVK
JMP x
LAB R R R R x
LAW R R R R x
LAW\ R R R R x
LBB x
LBB\ x
LBL R R R R x
LBW R R R R x
LBW\ R R R R x
LOB R R R R
LOW R R R R
LOW\ R R R R
LSE R R R x
LSF R R R x
LS1 R R R x
LS2 R R R x
NOP
RNl1 w w x x
RNl2 w w x x
ROM x x
RVK
SOB w w w x
sow w w w x
SHF x
SHA x
SKB x
SKB\ x
SKE x
SKE\ x
SKG x
SKL x
SKN x
SKZ x
SRO x
SR1 / x
sso x
SS1 x
STA w w w w x x
STB w w w w x x
SUM w w x
SYNC x x

*W represents a Write operation, R represents a Read 1operation

3-5

REGISTER FILE READ MICRO-INSTRUCTIONS

The µl's in this class perform register file read references
which are unrelated to main storage operations.

Load Aµ Word (LAW)
D,O

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

11 o 1ioiolalblPlo oi x

Loads the Aµ register with the contents of the
register-file-register designated by the X-field. Execution
time: 100 nanoseconds.

Load Aµ Complement (LAW-)
D,1

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

f1 o 1joj1jajbjPjo o I x

Loads the Aµ register with the one's complement of the
contents of the register file register designated by the
X-field. Stores 1 in the Forced Carry register (FCR).

Execution time: 100 nanoseconds

Load Bµ Word (LBW)
6,0

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

f o

Loads the Bµ register with the contents of the register file
register designated by the X-field. Stores 0 in the Forced
Carry register (FCR).

Execution time: 100 nanoseconds

Load Bµ Complement (LBW-)
6,1

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Loads the Bµ register with the one's complement of the
contents of the register file register designated by the
X-field. Stores 1 in the Forced Carry register (FCR).

Execution time: 100 nanoseconds

3-6

Load Aµ and Bµ (LAB)
D,2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 x

Loads the Aµ register with the contents of the register file
register designated by the X-field. Loads the Bµ register
w~th the contents of the register file register designated by
the X-field. Stores 0 in the Forced Carry register (FCR).

Execution time: 100 nanoseconds

Cli~ar Aµ (CLA)
D,3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

~ 1 O 1!1!1lalblPIO 0 I X

Clears the Aµ register. Loads the Bµ register with the
contents of the register file register designated by the
X-field. Stores 1 in the Forced Carry register (FCR).

Execution time: 100 nanoseconds

Load Bµ Link (LBL)
7 ,.3

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

r~~l~,-1,-1-,a-,~b,~P-,O~O~,~-X~--

Loads the Bu register with the contents of the register file
register designated by the X-field. Stores the Link bit (bit
1 of Pµ register) in the Forced Carry register (FCR).

Execution time: 100 nanoseconds

REGISTER FILE WRITE MICRO INSTRUCTIONS

The µl's in this class perform register file write references
which are unrelated to main storage operations.

NOTE

The CLR, STA, STB and AND µl's cause a branch
operation when the Pµ-Register is designated by the
X-field.

Clear Contents of Register (CLR)
1,0

0 2 3 4 5 6 7 8 9

~ 0 0

10 11 12 13 14 15

x

Clears the register file register designated by the X-field.
Updates Pp.

Execution time: normally, 100 nanoseconds

When the register file register designated is Pµ, the
execution time is 200 nanoseconds; however, the
instruction can be executed at time E:7. Do not use at
time EO when the X-field designates tlhe F RF register.
This could result in clearing the previous; processor's FR F
register (if changed during E7).

Store Aµ (ST A)
. 1, 1

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Stores the contents of the AJJ register into the register file
register designated by the X-field .. Update Pp.

Execution time: normally, 100 nanoseconds

When the register file register designated is Pµ,, the
execution time is 200 nanoseconds; however, the
instruction can be executed at time E7.

Store Bµ (STB)
1,2

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

loo o 11l1lolalblPlomiJ __ x __

Stores the contents of the Bµ register into the register file
register designated by the X-field. Updates Pp.

Execution time: normally, 100 nanoseconds

When the register file register designated is Pµ, the
execution time is 200 nanoseconds; however, the
instruction can be executed at time E7.

Logical Product, Aµ and Bµ (AND)
1,3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

~ o 1 !1 j1 ja jb 1Plo3 __ x __

Stores the logical product of the Aµ register and the Bµ
register into the register file register designated by the
X-field.

3-7

Logical product is illustrated by the following truth table.

~ µ 0 1

0 0 0

1 0 1

Updates Pp.

Execution time: normally 100 nanoseconds

When the register file register designated is Pµ, the
execution time is 200 nanoseconds; however, the
instruction can be executed at time E7 .

Inclusive OR, Aµ and Bµ (IOR)
4,2

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Stores the inclusive OR of the Aµ register and the Bµ
register into the register file register designated by the
X-field.

Inclusive OR is illustrated by the following truth table.

~ 0

0 0

1 1

Updates Pp·

Execution time: 100 nanoseconds

Exclusive OR, Aµ and Bµ (EOR)
4,3

1

1

1

0 2 3 4 5 6 7 8 9 10 11. 12 13 14 15

(o
Stores the exclusive 0 R of the Aµ register and the Bµ
register into the register file register designated by the
X-field.

Exclusive OR is illustrated by the following truth table.

~ 0 1

0 0 1

1 1 0

Updates Pp.

Execution time: 100 nanoseconds

Sum, Aµ and Bµ (SUM)
2,0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

loo o!ojojajbjPjo o j x J
Stores the sum of the Aµ register, the Bµ register and the
Forced Carry register into the register file register
designated by the X-field. Overflow occurs when both the
Aµ register and the Bµ register have like signs, but the
resultant sum has the opposite sign. Overflow is reflected
in bit position 0 of the Pµ register; if overflow occurs, bit
0 is set, otherwise bit 0 is cleared. Link is the carry out of
bit position 0 during the sum operation. Link is reflected
in bit position 1 of the Pµ register.

NOTE

If bits 0-7 of the Function register (F) equal
5016-5316, or if inner carriers are inhibited as a
result of a DIG or CORC µI, bits 0 and 1 of the
Pµ register are not affected.

Updates Pp.

Execution time: normally 200 nanoseconds

NOTE

Whenever any Feeder Load µI (q.v.) is executed, the
sum begins propagating and requires approximately
100 nanoseconds before it can be written in the
register file. Consequently, if a SUM µI is preceded
by a µI which is not a Feeder Load µI, the
propagation time is overlapped with the execution
of the non-Feeder Load µI and the actual SUM µI
requires only 100 nanoseconds to execute.

Decimal Sum, Aµ and Bµ (DSUM)
2,1

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

loo ojoj1jajbjPjo o I x J
Stores the sum of the Aµ register, the Bµ register and the
Forced Carry register into the register file register
designated by the X-field. Transfers the inner carries to
the Inner-Carry register, unless inner carries are inhibited
(q.v. DIG and CORC). Overflow occurs when both the Aµ
register and the Bµ register have like signs, but the
resultant sum has the opposite sign. Overflow is reflected
in bit position 0 of the Pµ register; if overflow occurs, bit
0 is set, otherwise bit 0 is cleared. Link is the carry out of
bit position 0 during the sum operation.

NOTE

If bits 0-7 of the Function register (F) equal

3-8

5015-5315, link is the carry out of bit position 8
during the sum operation. Link is reflected in bit
position 1 of the Pµ register. If inner carries are
inhibited as a result of a DIG or CORC µI, bits 0
and 1 of Pµ are not affected.

Updates Pp.

Execution time: normally 200 nanoseconds

NOTE

Whenever any Feeder LoadµI (q.v.) is executed, the
sum begins propagating and requires approximately
100 nanoseconds before it can be written to the
register file. Consequently, if a DSUM µI is preceded
by a µI which is not a Feeder Load µI, the
propagation time is overlapped with the execution
of the non-Feeder Load µI and the actual DSUM µI
requires only 100 nanoseconds to execute.

Sign and Magnitude Compare (CMP)
2,2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

E_o~-o~l1_!_ol~a~lb_l_P_lo~o~l~-x~--
Performs a comparison of the Aµ register and Bµ
register contents. A corresponding bit is set and all
others cleared in the bit 0-7 field of the register file
register designated by the CMP X-field to indicate the
results of the compare as shown below:

01234567

Aµ=Bµ

less than Bµ

Aµ logically greater than Bµ

Clear

Aµ=Bµ

· Aµ arithmetically less than Bµ

Aµ arithmetically greater than Bµ

- Clear

Bits 8-15 of the register file register are unchanged,
unless the register designated is an extended register, in
which case bits 8-15 are set.

For logical results, FFFF 16 is the largest number that
can be stored and 0000 16 is the smallest number.

For arithmetic results, 7FFF 16 is the largest number
than can be stored and 800016 is the smallest number.

Updates Pp.

Execution time: normally 200 nanosecc)nds

NOTE

Whenever any Feeder Load µI (q.v.) is executed, the
com pare begins propagating and requires
approximately 100 nanoseconds before the result of
the comparison can be written to the register file.
Consequently, if a CMP µI is preceded by a ul which
is not a Feeder Load µI, the propagation time is
overlapped with the execution of the non-Feeder
Load µI and the actual CMP µI requires only 100
nanoseconds to execute.

Magnitude Compare (CMU)
2,3

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

loo oj1l1lalblPlo=GJ x

Performs a comparison of the Aµ register and Bµ
register contents. A corresponding bit is set and all
others cleared on the bit 0-7 field of the register file
register designated by the CMU X-field to indicate the
results of the compare as shown below:

01234567

Aµ==Bµ

less than Bµ
Aµ logically greater than Bµ

Clear

Aµ=Bµ

Aµ logically less than Bµ
Aµ logically greater than Bµ

Clear

Bits 8-15 of the register file register are unchanged,
unless the register designated is an exte!nded register, in
which case bits 8-15 are set.

FFFF16 is the largest number that can be stored and
0000 is the smallest number.

Updates Pp.

Execution ti me: normally 200 nanoseconids

NOTE

Whenever any Feeder Load µI (q.v.) is executed, the
compare begins propagating and requires
approximately 100 nanoseconds before the result of
the comparison can be written to the register file.

3-9

Consequently, if a CMU µI is preceded by aµ I
which is not a Feeder Load µI, the propagation time
is overlapped with the execution of the non-Feeder
Load µI and the actual CMU µI requires only 100
nanoseconds to execute.

REGISTER FILE READ, MAIN STORAGE RELATED
MICRO-INSTRUCTIONS

The µl's in this class perform register file read references
which are, or may be related to, main storage (or register
option) operations. Micro-instructions LS1, LSF, LS2 and
LSE are unconditionally related to main storage (or
register option) operations. The LOW, LDW-, and LOB
µl's are main storage (or register option) related only
when they are executed during E1 immediately following
the execution of an LS1, LSF, LS2 or LSE µI at EO. All
other µI in this class are main storage (or register option)
related when they occur after, but within the same major
cycle as LS1, LSF, LS2 or LSE µI executed for the
purpose of performing main storage (or register option)
read operations.

Selection of an input to the D Fan-In Network within the
ALU is conditioned by the µl's within this class in the
following manner:

a. During main storage read operations, the data
from main storage is selected at the D Fan-In
Network from E4 through E7.

b. During register option read operations, the data
from the register option is selected at the D
Fan-In Network from E4 through E7.

c. For the purpose of making 0 Fan-In Network
selection only, register option read operations
which specify the register set associated with the
ECC feature are treated as main storage read
operations.

d. During a II minor cycles other than those
described in items a, b, and c, the 0 'register is
selected at the D Fan-In Network.

Load S (LS1)
3,0

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

loo 1lololalblPlo o I x

Stores the contents of the register file register designated
by the X-field into the Storage Address register (S) and

into the Aµ register. Stores 0000 16 (010) in the Bµ
register. Stores 1 in the Forced Carry register (FCR).

This µI initiates a main storage reference. If the next
sequential µI is a load Storage Data register (LOW, LOW-,

or LOB), a write to main storage is performed; otherwise a
read from main storage is performed.

This µI always begins execution at time EO. Consequently,
the µI immediately preceding this µI must update Pp.
since upon reading up this ul, if the time is other than EO,
the hardware will cause an idle through the remainder of
the current major cycle. Then the normal mechanism at
time WO of storing Pp into Pµ will cause the address
of an already executed µI to be designated as the
starting point for the major cycle, and a loop will
result in microcode.

Execution time: 100 nanoseconds

Load S (LSF)
3,1

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I 0 0 1 I o I 1 I a I b I p I o 0 I x

Stores the contents of the register file register designated
by the X-field into the Storage Address register (S) and
into the Aµ register. Stores FFFF 16 (-1 10) in the Bµ
register. Stores 0 in the Forced Carry register (FCR).

This µI initiates a main storage reference. If the next
sequential µI is a load Storage Data register (LOW, LOW-,
or LOB), a write to main storage is performed; otherwise a
read from main storage is performed.

This µI always begins execution at time EO. Consequently,
the µI immediately preceding this µI must update Pp,
since upon reading up this µI, if the time is other than EO,
the hardware will cause an idle through the remainder of
the current major cycle. Then the normal mechanism at
time WO of storing PP and Pµ will cause the address of an
already executed µI to be designated as the starting point
for the major cycle, and a loop will result in microcode.

Execution time: 100 nanoseconds

Load S (LS2)
3,2

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 o o

Stores the contents of the register file register designated
by the X-field into the Storage Address register (S) and
into the Aµ register. Stores 000115 (+110) in the Bµ
register. Stores 1 in the Forced Carry register (FCR).

This µI initiates a main storage reference. If the next
sequential µI is a Load Storage Data Register (LOW,
LOW-, LOB), a write to main storage is performed;
otherwise a read from main storage is performed.

3-10

This µ.I always begins execution at time EO.
Consequently, the µI immediately preceding thisµ.I must
update Pp. since upon reading up this µ.I, if the time is
other than EO, the hardware will cause an idle through the
remainder of the current major cycle. Then the normal
mechanism at time WO of storing Pp into Pµ will cause
the address of an already executed µI to be designated
as the starting point for the major cycle, and a loop will
result in microcode.

Execution time: 100 nanoseconds

Load S (LSE)
3,3

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(£0 1!1!1lalblPIO ol x
Stores the contents of the register file register designated
by the X-field into the Storage Address register (S) and
into the Aµ register. Stores FFFE 16 (-2 10) in the Bµ
register. Stores 0 in the Forced Carry register (FCR).

This µI initiates a main storage reference. If the next
sequential µI is a load Storage Data register (LOW, LOW-,
or LOB), a write to main storage is performed; otherwise a
read from main storage is performed.

This µ.I always begins execution at time EO. Consequently,
the µI immediately preceding this µI must update Pp.
since upon reading up this µI, if the time is other than EO,
the hardware will cause an idle through the remainder of
the current major cycle. Then the normal mechanism at
time WO of storing P into Pµ will cause the address

p . h of an already executed µI to be designated as t e
starting point for the major cycle, and a loop will
result in the micro instruction routine.

Execution time: 100 nanoseconds

Load D Word (LOW)
7,0

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Loads the Storage Data register (D) with the contents of
the register file register designated by the X-field.

Execution time: 100 nanoseconds

When executed during E1, immediately following an LSl,
LSF, LS2 or LSE µI at EO, this µI will result in a main
storage or register option write reference involving a full
transfer of the D register output. In such cases, alteration
of the contents of the D register by means of µI's during
E2 through E7, may result in machine malfunction. The
word locations of the write reference within main storage,

or within the register option, are designated by the
contents of the S register (bit 15 irre~evant except for
breakpoint) and are subject to appropriate hardware
validity checks on the part of the Basic Storage Protection
or Relocation and Protection features. Write references
thus performed involve 16 data bits.

load D Complement (LDW-)
7, 1

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

lo 1 I 0 j 1 I a I b I p I 03 x, __

loads the Storage Data register (D) with the one's
complement of the contents of the register file register
designated by the X-field.

Execution ti me: 100 nanoseconds

For a description of the relationship of this µI to main
storage and register option write references see the
comments for the LDW µI.

Load D Byte (LDB)
7,2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Ei 1!1l1lo!albl<EI __ x ___

Loads the Storage Data register (D) with the contents of
the register file register designated by the X-field.

When executed during El, immediately following an LS1,
LSF, LS2, or LSE µI at EO, this µI results in a main
storage write reference involving a partial transfer of the D
register output for which the right-most byte is duplicated
in the left-most byte position (the D register output to the
D Fan-In Network is not affected). In such cases,
alteration of the contents of the D register by means of
µl's during E2 through E7, may result in machine
malfunction. The byte location of the write reference
within main storage is designated by the contents of the S
register and is subject to appropriate hardware validity
checks on the part of the Basic Stora~1e Protection or
Relocation and Protection features. Write references thus
performed involve the transfer of only the left-most data
byte where bit position 15 of the S regist1~r is clear, or the
transfer of only the right-most data byte where bit 15 of
the S register is set.

D to Aµ, True (OTA)
C,O

0 2 3 4 5 6 7 8 9 10 n 12 13 14 15

I 1 0 o!ololalblP!o 0 [x

3-11

Transfers the output of the data fan-in to the Aµ register.
Loads the Bµ register with the contents of the register file
register file register designated by the X-field. Stores O in
the Forced Carry register (FCR).

If a main storage reference was initiated at the beginning
of this major cycle, this µI will not execute prior to time
lE4.

!Execution ti me: 100 nanoseconds

D to Aµ, Complement (OTA-)
C,1

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Transfers the output of the data fan-in to the Aµ register.
Loads the Bµ register with the one's complement of the
register file register designated. Stores 1 in the Forced
Carry register (FCR).

If a main storage reference was initiated at the beginning
of this major cycle, thisµ I will not execute prior to time
E4.

Execution time: 100 nanoseconds

Index (I DX)
C,2

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(1 o ol1lolalblPlo o I x J

If the register file register designated by the X-field
equals zero, the Bµ register is cleared; otherwise, loads
the Bµ register with the contents of the register file
register designated by the X-field. Transfers the out­
put of the data fan-in to the Aµ register. Stores 0 in the
Forced Carry register (FCR).

If a main storage reference was initiated at the beginning
of this major cycle, thisµ I will not execute prior to time
1:4.

Execution time: 100 nanoseconds

In the presence of the Relocation and Protection feature,
the I DX micro-command also serves as the implicit
micro-command control mechanism for dynamic segment
tag write references. Each IDX µI allows the next register
file write reference, performed under µI control, to occur
such that the associated segment tag is also written. The
~;egment tag value so written will correspond to the
segment tag value read during the last LS1, LSF, LS2, or
LSE µI, whenever the associated IDX µI simply cleared
the B µ register. Alternative! y, the segment tag value so

written will correspond to the segment tag value read
during the associated I DX µI whenever this associated
IDX µI performed a transfer of the register file output to
the Bµ register.

D False to Aµ (DFA)
C,3

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Transfers the one's complement of the data fan-in
output to the Aµ register. Loads the Bµ register with

the contents of the register file register designated by the
X-field. Stores 1 in the Forced Carry register (FCR).

If a main storage reference was initiated at the beginning
of this major cycle, this instruction will not execute prior
to time E4.

Execution time: 100 nanoseconds

REGISTER FILE WRITE, MAIN STORAGE RELATED
MICRO INSTRUCTIONS

The µl's within this class perform register file write
references which may be related to main storage or
register option read operations. These µl's will be main
storage or register option related when they occur after,
but in the same major cycle as LS1, LSF, LS2, or LSE
µl's, which are executed for the purpose of performing
main storage or register option read operations.

Store D Word (SOW)
4,0

0 2 3 4 5 6 7 8 9

f o

10 11 12 13 14 15

o I x

Stores the output of the data fan-in into the register file
register designated by the X-field.

If a main storage reference was initiated at the beginning
of this major cycle, thisµ I will not execute prior to time
E5.

Updates Pp.

Execution time: 100 nanoseconds

Store D Byte (SOB)
4,1

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

lo o o!ol1lalblPlo o I x

Clears bits 0-7 of the register file register designated by

3-12

the X-field. If the current contents of the Storage Address
register is even, bits 0-7 of the data fan-in output
are stored in bits 8-15 of the register file register
designated, otherwise bits 8-15 of the data fan-in output
are stored in bits 8-15 of the register file register
des.i~nated.

If a main storage reference was initiated at the beginning
of this major cycle, this µI will not execute prior to time
E5.

Updates Pp.

Execution ti me: 100 nanoseconds

IMMEDIATE OPERAND MICRO INSTRUCTIONS

The µl's within this class transfer immediate operands to
the Bµ-register. These immediate operands are contained
within the µl's themselves, with the exception of CORC
and special cases of the LBB and LBB- µl's.

Undesignated bit positions within these µl's have no effect
on µI execution except to the extent that they shall
participate in the formation of valid parity.

Enter Bµ Upper (EBU)
A

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

~ 0 ol No I p I 0 0 I I N1

Transfers No into bits 0-3 of the Bµ register and transfers

N1 into bit positions 4-7 of the Bµ register. Bits 8-15 of
the Bµ register are unaffected.

Execution time: 100 nanoseconds

Enter Bµ Lower (EBL)
B
0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

~o
Clears bit positions 0-7 of the Bµ register. Transfers No
into bits 8-11 of the Bµ register. Transfers N1 into bits
12·15 of the Bµ register.

Execution time: 100 nanoseconds

Load Bµ Bit (LBB)
6,2

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

E 0!1 Iola lb IP loo I I x

If both a and b are set, sets the bit in both the upper and
lower bytes of the Bµ register to corrrespond with the
processor state number in which the µI is being executed
and clears the remaining 14 bit positions, i.e.,

2 (15-PROC#) + 2 (7-PROC#) _. Bµ

If both a and b are clear, a bit in Bµ is set designated
only by bit positions 12-15 of the µI.

2 (15-X)...., Bµ

If either a or b, but not both, is set, a bit in Bµ is
set designated by four bits from the corresponding
field of the F register inclusively ORed with bit
positions 12-15 of the µI.

Stores 0 in the Forced Carry register (FCR).

Execution time: 100 nanoseconds

Load Bµ Bit Complement (LBB-)
6,3

0 2 3 4 5 6 7 8 9 10 ~1 12 13 14 15

f o 0 j 1 j 1 I a I b I p I 03_._1 __ x_

If both a and b are set, clears the bit in both the upper
and lower bytes of the Bµ register which corresponds with
the processor state number in which the µI is being
executed and sets the remaining 14 bit positions, i.e.,

2 (15-PROC#) + 2 (7-PROC:fl~ ..,.. Bµ

\If both a and b are clear, a bit in Bµ is cleared, desig­
nated only by bit positions 12-15 of the µI.

2 (15-X) .-sµ

If either a or b, but not both, is set, a bit in Bµ is
cleared designated by four bits from the corresponding
field of the F register inclusively ORed with bit
positions 12-15 of the µI.

Stores 1 in the Forced Carry register (FCR).

Execution time: 100 nanoseconds

Digit Duplication (DIG)
F,2

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

11 1 l1 l0 I lpl~ I x

This instruction copies the absolute value of the 4-bit
X-field (of the DIG instruction) into each 4-bit group
of the Bµ register. Inhibits inner carries normally

3-13

propagated for each digit pos1t1on in the adder. Like­
wise, inhibits clocking Overflow and Link conditions in
the Pµ register which occurs during sum operations.
These disables remain in effect until a new value is
inserted into either the Aµ or Bµ register by means of
.a Feeder Load µI other than DIG or CORC.

Stores 0 in the Forced Carry register (FCR).

Execution time: 100 nanoseconds

Correct Code (CORC)
F,3

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

This instruction enters, into each of the 4-bit groups of
the Bµ register, a hexadecimal value dictated by the state
of the corresponding stage of the Inner Carry register
(ICR). The ICR stages were set (or not set) by. the
previous DSUM instruction. If the bit (Xi) in the ICR is a
1, the value "3" is inserted into the appropriate 4-bit
group of the Bµ register. If the ICR bit is a 0, the value
"D" (2's complement of 3, expressed hexadecimally) is
inserted in Bµ.

Inhibits inner carries normally propagated for each
digit position in the adder. Likewise, inhibits clocking
Overflow and Link conditions in the Pµ register which
occurs during sum operations. These disables remain in
effect until a new value is inserted into either the Aµ
or Bµ register by means of a Feeder Load µI other
than DIG or CORC.

Stores 0 in the Forced Carry register (FCR).

Execution time: 100 nanoseconds

SHIFT MICRO-INSTRUCTIONS

The µl's within this class left shift the contents of the
Aµ/Bµ registers. Shift counts of 4 bits are µI-designated
in true or 2's complement form, for shifts from 0 to 1510
binary places. Bits shifted from the Aµ register are
end-off (lost). Bits from the Bµ register are shifted into
the Aµ register with zeros inserted into the right-most bit
positions of the Bµ register.

Undesignated bit positions within these µl's have no
effect on µI execution except to the extent that they
participate in the formation of valid parity.

Shift Left (SHF)
E,0,0

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Performs a left end-off shift of the combined Aµ register
and Bµ register, with the Aµ register containing the most
significant bits. The shift count is specified by K. Zeros
are entered at the right end of the Bµ register.

Execution time: 200 nanoseconds

Shift Right (SHR)
E,1,0

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

K

Performs a left end-off shift of the combined Aµ register
and Bµ register, with the Aµ register containing the most
significant bits. The shift count is specified by the two's
complement of K. Zeros are entered at the right end of
the Bµ register.

Execution time: 200 nanoseconds

Left Shift, Dependent Count (DLS)
E,2,0

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Performs a left end-off shift of the combined Aµ register
and Bµ register, with the Aµ register containing the most
significant bits. Zeros are entered at the right end of the
Bµ register. Shift count is determined by the following
scheme:

• If bit 1 of the Function register (F) is clear, the
shift count is specified by bit positions 12
through 15 of the Storage Data register (D);

• If bit 1 of the Function register (F) is set, the
shift count is specified by bit positions 8 through
11 of the Function register (F).

Execution time: 200 nanoseconds

If the shift count is to be obtained from the Storage Data
register (D) and a main storage reference was initiated at
the beginning of this major cycle, this µI cannot be
executed prior to time E5. Otherwise, the shift count data
will not be valid and the results are unpredictable.

3-14

Right Shift, Dependent Count (DRS)
E.<3,0

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Performs a left end-off shift of the combined Aµ register
and Bµ register, with the Aµ register containing the most
siunificant bits. Zeros are entered at the right end of the
BJ..l register. Shift count is determined by the following
scneme:

• If bit 1 of the Function register (F) is clear, the
shift count is specified by the two's complement
of bit positions 12 through 15 of the Storage
Data register (D);

/

• If bit 1 of the Function register (F) is set, the
shift count is specified by the two's complement
of bit positions 8 through 11 of the Function
register (F).

Execution time: 200 nanoseconds

If the shift count is to be obtained from the Storage Data
renister (D) and a main memory reference was initiated at
the beginning of this major cycle, this instruction cannot
be executed prior to time E5, otherwise the shift count
data will not be valid and the results are unpredictable.

BIT SENSE MICRO INSTRUCTIONS

The µl's within this class scan the contents of the Aµ
re~1ister, from left to right, for the purpose of detecting
the first bit position in the set or cleared state as specified
by the associated µI. Bit positions thus detected are
cleared or set within the Aµ register as specified by the
SR1 and SSO µl's, respectively. A value corresponding to
the bit position detected, 00 through 15101 is added to
thu contents of the Bµ register. When the entire Aµ
register is scanned without detection of a bit in the
specified state, 1610 shall be added to the contents of the
Bµ, register.

Undesignated bit positions within these µl's do not effect
µI execution except to the extent that they participate in
the formation of val id parity.

Sense for Zero (SRO)
E,0,1

0 2 3 4 5

~ 0 1°1°1
6 7 8 9 10 11 12 13 14 15

I p I 0 0 I 1 I

Sequentially scans the Aµ register from bit position 00
toward bit 15, for the presence of the first "O".
Increments the Bµ register by an amount equal to the
number of bit positions scanned before finding the first
"O". If no "O" is found, the Bµ register is incremented by
1610.

Execution ti me: 200 nanoseconds

Sense for One (SS1)
E, 1, 1

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

-,1~--o~l-of~1~,~-,P~,~

Sequentially scans the Aµ register from bit position 00
toward bit 15, for the presence of the first "1 ".
Increments the Bµ register by an amount equal to the
number of bit positions scanned before finding the first
"1 ". If no "1" is found, the Bµ register is incremented by
1610.

Execution time: 200 nanoseconds

Sense and Set for Zero (SSO)
E,2,1

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Sequentially scans the Aµ register from bit position 00
toward bit 15, for the presence of the first "O". Sets the
first "O" and increments the Bµ register by an amount
equal to the number of bit positions scanned before
finding the first "0". If no "O" is found,, the Bµ register is
incremented by 1610·

Execution ti me: 200 nanoseconds

Sense and Reset for One (SR 1)
E,3,1

2 3 4 5 6 7 8 9 10 11 12 13 14 15

0]1I1 I Ip lo~ .-1 ____
Sequentially scans the Aµ register from bit position 00
toward bit 15, for the presence o'f the first "1 ". Clears the
first "1" and increments the Bµ register by an amount
equal to the number of bit positions scanned before
finding the first "1 ". If no "1" is found, the Bµ register is
incremented by 1610.

Execution t~me: 200 nanoseconds

3-15

SKIP MICRO INSTRUCTIONS

The µl's within this class provide for skipping the next
successive µI when the specified conditions within the
Aµ registers are met. These µl's require one minor cycle
for translation and an additional minor cycle to skip the
next successive µI when the specified conditions are met.
Skip µI's for which the specified conditions are met as
initially translated during E7 skip the next successive µI
during EO of the next appropriately-allocated major cycle.

NOTE

When the contents of the Aµ or B µ, registers are
logically ambiguous as a result of transferring
asynchronous signals into them, the execution of
Skip µl's without an allowance for resolve time may
result in machine malfunction in the form of
undefined and unpredictable µI execution. See the
paragraph on Timing Constraints.

Undesignated bit positions within these µI's have no effect
on µI execution except to the extent that they participate
in the formation of valid parity.

Skip if Aµ is Zero (SKZ)
5,0,0

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

If the contents of the Aµ register are equal to zero, the
next sequential µI is not executed; however, 100
nanoseconds are required to cycle through the skipped µI.

Updates PP.

Execution time: 100 nanoseconds

Skip if Aµ is Non-Zero (SKN)
5,1,0

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

If the contents of the Aµ register are not equal to zero,
the next sequential µI is not executed; however, 100
nanoseconds are required to cycle through the skipped µI.

Updates Pp.

Execution time: 100 nanoseconds

Skip if Aµ Bit is a One (SKB)
5,2,0

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

If the designated bit of the Aµ register is set, the next
sequential µI is not executed; however, 100 nanoseconds
are required to cycle through the skipped µI.

Designated bit - If either a or b is set, four bits from the
corresponding field of the F register are inclusively ORed
with bit positions 12-15 of the µI to determine the bit to
be accessed.

Updates Pp.

Execution time: 100 nanoseconds

Skip if Aµ Bit is a Zero (SKB-)
5,3,0

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

If the designated bit of the Aµ register is not set, the next
sequential µI is not executed; however, 100 nanoseconds
are required to cycle through the skipped µI.

Designated bit - If either a or b is set, four bits from the
correspnding field of the F register are inclusively ORed
with bit positions 12-15 of the µI to determine the bit to
be accessed.

Updates Pp.

Execution time: 100 nanoseconds

Skip if Aµ> Bµ (SKG)
5,0,1

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

o 1 Io Io I

Performs a 16-bit logical compare of the Aµ register and
the Bµ register. If Aµ > Bµ, the next sequential µI is
not executed; however, 100 nanoseconds are required to
cycle through the skipped µI.

Updates Pp.

Execution time: 100 nanoseconds

Skip if Aµ<Bµ (SKL)
5, 1, 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

E_1_0___.1j~o-j1~j~~l_P~'o~o-j1_j~~---
Performs a 16-bit logical compare of the Aµ register and
the Bµ register. If Aµ< Bµ, the next sequential µI is not
executed; however, 100 nanoseconds are required to cycle
through the skipped µI.

Updates Pp.

Execution time: 100 nanoseconds

Skip if Aµ = Bµ (SKE)
5,2, 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

E1 o 1!1!0! IPlo oj1I

Performs a 16-bit logical compare of the Aµ register and
the Bµ register. If Aµ= Bµ, the next sequential µI is not
executed; however, 100 nanoseconds are required to cycle
through the skippedµ I.

3-16

Updates Pp.

Execution ti me: 100 nanoseconds

Skip if Aµ =I= Bµ (SKE-)
5,3, 1

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Performs a 16-bit logical compare of the Aµ register and
the Bµ register. If Aµ 'I- Bµ, the next sequentialµ I is not
executed; however, 100 nanoseconds are required to cycle
through the skipped µI.

Updates Pp.

Execution time: 100 nanoseconds

BRANCH MICRO INSTRUCTIONS

In addition to the CLR, STA, STB and ANDµ l's which
effect a branch operation when the Pµ register is
designated as described in the paragraph titled Register
File Writes, the six µl's in this class explicitly provide the
means for performing branch operations.

As opposed to the implicit µl's previously mentioned and
described in the paragraph titled Regi:ster File Writes, the
explicit µl's in this class are capable of only partial write
references to the right-most address portions of the Sµ
and Pp registers.

Function Decode Jump (FNJ)
0, 1

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

fo o o=oloj1j j10 jPjo oj 11

The function decode jump causes a branch by placing a
value in Sµaccording to the following algorithm:

if Fµ6 = 0

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

[ill]E· Fµ 14± F

71 °I° anged 7 11 12 13 5 6

If Fµ6 =

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I

~ged 1 11 1/~3 14 ;r1 OI F,
11 OI OI

FNJ cannot be executed at time EO

Updates Pp.

Execution time: 200 nanoseconds, however, can be
executed at time E7

ANOMALY: Normally, the FNJ µI branches to a location
within the same 4096-word CS module in which the jump
is located. This is what is indicated by bits 02 and 03 of
Sµ being "unchanged". However, there are two cases
when the decode jump branches to a location within the
next consecutive 4096 word module.

1. If the decode jump occupies the last location of a
4096-word module (address XFFF15).

2. If the decode jump occupies the next-to-last
location of a 4096-word module (address
XFFE 16) and is executed any time other than
E6 or E7.

Format Decode Jump (F RJ)
0,2

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

J

FRJ - The 1st level decode jump will access a 256 word
address table whose contents are alterable and loaded at
CS Load time. Input to this table is determined from the
function code as shown in Table 3-2.

Table 3-2 Address Table Input Translation

Function
Code Address Tcltble Input Translation

2X,3X,AX,BX 0 0 Foo Fo3 XB or XA or Fos F12
XD-XF XC-XF

6X,7X 0 1 0 Fo3 Fo4 Fo5 Foe F12

OX,1X,4X,5X 0 1 1 Foo Fo1 Fo3 Fo4 Fo5
8X,9X,CX,DX

EX 1 0 Fo4 Fo5 Fos Fo7 Fos F12

FX 1 1 Fo4 Fo5 Fos Fo7 Fos F12

3-17

Note that the function code must have been transferred to
the Storage Data register (0), since the FRJ instruction
actually keys off the D register.

The address table output consists of a parity bit plus 9
bits which are used as the right-most bits of the F RJ
branch address. The left-most bits are as shown below:

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

table output

Cannot be executed until a minimum of 200 nanoseconds
has elapsed since the loading of the D register.

Resyncs so that the next µI will execute at time EO
of the next major cycle assigned to this processor.

Updates Pp.

Execution time: 200 nanoseconds, however, can be
executed at time E7

ANOMALY: Normally, the FRJ µ.I branches to a location
within the same 4096-word CS module in which the jump
is located. This is what is indicated by bits 02 and 03 of
Sµ being "unchanged". However, there are two cases
when the decode jump branches to a location within the
next consecutive 4096-word module.

1. If the decode jump occupies the last location of a
4096-word module (address XFFFrnL

2. If the decode jump occupies the next-to-last
location of a 4096-word module (address
XFFE16) and is executed at any time other than
E6 ro E7.

Zero Jump

(FZJ 0,3)

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

loo o oj1j1f jPj

Tests the contents of the Aµ register. If the contents
equals zero, the next micro-instruction is taken from

location X00916 of control storage, otherwise the next
micro-instruction is taken from the next sequential
location.

Location X009 16 of control storage is the beginning
of an RNI micro-instruction sequence.

If the contents of the Aµ register equals zero, a resync
occurs such that the next µI will execute at time EO
of the next major cycle assigned to this processor.

Updates PP; however, the update address is always
0009 16 . Therefore, to function properly, another

3-18

bloc:kpoint µI must occur later within the same major
cycle.

Execution time: 200 nanoseconds, however, can be
executed at E7

Normally, the FZJ instruction branches to location
000916 within the same 4096-word CS module in which
the jump is located. However, there are two cases when
the jump branches to location 000916 within the next
consecutive 4096-word module.

1. If the FZJ occupies the last location of a
4096-word module (address XFFF15).

2. If the FZJ occupies the next-to-last location of a
4096-word module (address XFFE16) and is
executed at any time other than E6 or E7.

Jump

(JMP9)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

~ 0 0 1 I N0 l PI o 0 I I N1

Re-sequences the microcode by placing a value in Sµ
according to the following scheme:

No-sµa-11

This will result in a branch in control storage to a location
within the current 256-word page. Two conditions occur
when the branch will be to the specified location in the
next sequential page:

1. When the JMP µI occupies the last location of a
page (address XXFF15}.

2. When the JMP µ I occupies the next-to-last
location of a page (address XXFE16) and is
executed at any time other than E6 or E7.

Updates Pp.

Execution time: 200 nanoseconds, however, can be
executed at E7

Read Next Instruction (RNI 1)
8,0
0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

~o 0 olojojalblPlo 0 I x

Re-sequences the microcode so that the next µI to be
executed is at location X002 16 of control storage.
Clears bits 1-2 and 4-7 of the register file register
designated by the X-field. Transfers bit 0 of the Pµ

register (Overflow bit) to bit 0 of the register file
register designated. Transfers bit 1 of the Pµ register
(Link bit) to bit 3 of the register file register
designated. Bits 8-15 of the register file register are
unchanged, unless the register designated is an
extended register, in which case bits 8-15 are set.

Updates Pp ..

Execution time: 200 nanoseconds, however, can be
executed at time E7

Normally, the RNI 1 instruction branches to location
0002 16 within the same 4096-word CS module in
which the jump is located. However, there are two
cases when the jump branches to location 0002 16
within the next consecutive 4096-word module.

1. If the RNI 1 occupies the last location of a
4096-word module (address XFFF16).

2. If the RNI 1 occupies the next-to-last location of
a 4096-word module (address XFFE 16) and is
executed at any time other than E6 or E7.

" Read Next Instruction 2 (RNI 2)
8,1

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Re-sequences the microcode so that the next µI to be
executed is at location X009 16 of control storage.
Clears bit positions 1, 2, and 4 through 7 of the
register file register designated by the X-field. Transfers
bit 0 of the Pµ register (Overflow) to bit 0 of the
register ti le register designated. Transfers bit 1 of the
Pµ register (Link) to bit 3 of the register file register
designated. Bit positions 8-15 of the register file
register are unchanged, unless the register designated is
an extended register in which case bits 8-15 are set.

Resyncs so the next µI will execute at time EO of the
next major cycle assigned to this processor.

Updates Pp.

Execution time: 200 nanoseconds, however, can be
executed at time E7

Normally, the RNl2 instruction branches to location
000916 within the same 4096-word module in which the
jump is located. However, there are two cases when the
jump branches to location 000916 within the next
consecutive 4096-word module.

3-19

1. If the RNl2 occupies the last location of a
4096-word module (address XFF F rnL

2. If the RNI 2 occupies the next-to-last location of
a 4096-word module (address XFFE16) and is
executed at any time other than E6 or E7.

CONTROL MICRO INSTRUCTIONS

The µl's within this class perform timing, input/output
termination and boundary-crossing mode operations.

Undesignated bit positions within these µl's have no effect
on µI execution except to the extent that they participate
in the formation of val id parity.

No Operation (NOP)
0,0

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

fo o o ojolol I Pio o

Does nothing

Execution time: 100 nanoseconds

Resynchronize (SYNC)
F,0,1

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Resyncs the processing unit so that the next µI executes
at time EO of the next major cycle.

Updates PP pointer

Execution time: 100 nanoseconds

Invoke Boundary Crossing Mode (IVK)

F, 1, 1

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

This instruction invokes the boundary-crossing (BC)
mode, which allows a processor to access registers in
another processor's register file. The condition con­
tinues until nullified by a RVK micro instruction, or
until the end of the current major cycle. The method
of specifying the register file address varies, depending
upon which group of registers is being accessed.

a. Basic registers
.. • Bit 7 of the BC register and bits 6-7 of the µI

must be cleared.

• Processor number is derived from bits 8-10 of
the BC register.

• Register number is determined by inclusive
ORing bits 11-15 of the BC register with bits
11-15 of the µI.

b. Group I extended registers
• Bit 7 of the BC register must be set and bits

11-14 must be cleared.

• Processor number is derived from bits 8-10 of
the boundary crossing register.

• Register number is derived from bit 15 of the
BC register.

These registers can only be accessed during time E3 -

E4.

c. Group 11 extended registers
• Bit 7 of the boundary crossing register must be

set and bit 11 must be cleared.

• Bit 11 of the µI must be cleared.

• Register number is determined by inclusive
ORing bits 12-15 of the BC register with bits
12-15 of the µI. (Processor number is immaterial,
since these are the common block registers.)

An attempt to read an unassigned register in this group
(0 C-0 F) w i II yield zeros. An attempt to write an
unassigned register in this group (OC-OF) will result in an
effective NOP. Any write references addressing the BC
register (08) while in the BC mode shall not be sup­
ported and may result in machine malfunction.

d. Group 111 extended registers
• Bits 6, 7 and 11 of the µI must be set,

indicating group 111.

• Bits 7-11 of the BC register do not part1c1pate in
address determination; hence only registers from
the processor in execution can be accessed.

• Register number is determined by inclusive
ORing bits 12-15 of the BC register with bits
12-15 of the µ.

Any operations not described above are undefined and,
if attempted, cause unpredictable results.

Execution ti me - 100 nsec

3-20

Revoke Boundary Crossing Mode (RVK)
F,1,0

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

~1 1 I o 11 I p I 0 o Jo I
Restores processor to "normal" mode after having been in
"boundary crossing mode". See explanation under IVK.

Execution time: 100 nanoseconds

Read Control Memory (ROM)
F,0,0

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

~-1~ __ jo_j_o_j __.l~~~l_o_o~(o_I~~--
Performs an exclusive OR of the contents of the con­
trol storage location whose address is contained in the
Bµ register and the contents of the Control Storage
Scan Register (CSS), storing the results in the Control
Storage Scan Register. Resyncs the processing unit so
that the next µI will execute at time EO of the next
major cycle.

Cannot execute later than time E5. If executed at time
E6, the data transferred to the CS Scan register is
unpredictable.

Updates Pp

Execution time: 200 nanoseconds

Compare 1/0 (CIOI)
8,2

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

~o o 0!1!ol1!1fPlo of x

Performs a 16-bit logical compare of the Aµ register and
the Bµ register. If Aµ = Bµ, a resync occurs and the
next sequenctial µI is executed at the beginning of the
next major cycle. If Aµ =I= Bµ, a resync occurs and the
processor's busy bit is cleared. In addition, normal stor­
ing of Pp to Pµ at WO time is suppressed so that the µI
whose address is in Pµ is executed at the beginning of
the next major cycle whenever the processor is
reactivated.

Cannot be executed at time E7.

Updates Pp

Execution time: 100 nanoseconds

If bits 6 and 7 of the µI are not both set, a write will
occur to the register file register designated by the

X-field, as follows: bits 1-2 and 4-7 will be cleared,
bit 0 of the Pµ register will be transferred to bit 0,
bit 1 of the Pµ register will be transferred to bit 3,
bits 8-15 will not be affected.

Compare 1/0 (Cl02)
8,3

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

11 o o o 11 (1 11 11 I p I o=<iJ x

Performs a 16-bit logical compare of the Aµ register and
the Bµ register. If Aµ =f. Bµ, a resync occurs and the next
sequential µI is executed at the beginning of the next
major cycle. If Aµ = Bµ, a resync occurs and the next
processor's busy bit is cleared. In addition, normal storing
of Pp to Pµ at time WO is suppressed so that the µI
whose address is in Pµ is executed at the beginning of the
next major cycle whenever the processor is reactivated.

Cannot be executed at time E7.

Updates Pp

Execution tilme: 100 nanoseconds

If bits 6 and 7 of the µI are not both set, a write will
occur to the register file register designated by the
X-field, as follows: bits 1-2 and 4-7 will be cleared, bit

3-21

0 of the Pµ register will be transferred to bit 0, bit 1
of the Pµ register will be transferred to bit 3, bits
8-15 will not be affected.

MICRO INSTRUCTION EXECUTION

Block diagrams which show the principal portions of logic
required to execute each µI are shown in Figures 3-2
through 3-30. Figures 3-2 through 3-10 show details of
the register file read and write operations that form a part
of many µl's. Figures 3-11 through 3-30 show details of
execution, particularly applicable to each µI, with
references to the register file read and write operations of
Figures 3-2 through 3-10 where required. Micro­
instructions which are subject to timing constraints
contain a reference on the block diagram to an
applicable ti ming diagram. These ti ming diagrams are
identified as Figures 3-31 through 3-36.

NOTE

All data and most control signals shown in the flow
diagrams are represented in true form, regardless of
whether the signal is actually defined in the true or
complement form. Exceptions to this rule are
certain control signals that are time-restricted,
shown in their actual state (either true or
complement _form) during the time that they are
restricted.

'T1 =· c
;

t

Aµ

Bµ

SUM

DATA FAN-IN

STATUS

c:
Q c:

:? UJ _. _.
UJ UJ
en en

ALU
FAN-
OUT

1A25•28

~

I-
~ c: <(

~ I- :::I c en en <(_. _. _. _.
UJ UJ UJ UJ
Cl) en en en

ALU
ENABLES

OP CODE

16

-
~ c:
cc N _. _.
UJ UJ
en en

Fµ
DECODE

1A07

ENBRFW

(WR EN)

1A06

Cl
en
U..N
c:c,
cc

3

EXEC
REG

BRF

1 A25-28

(PROC #)

1A16

F REG

1A18•21

Cl
en u..,...
c: ' cc C""I

BRF
SH

X-FIEL D

1A22

(IVK)

BC REG

1A08-11

.---------------------! 1A18-21

I Pp 16~---

I
I
I
I
I

·---·---------..
ALU
FAN·
OUT

1A25-28

-~
....

cc a: c::c :::!!:
:::!!: 0

~
cc: :::> :::!!: a:

w c:i en Cf,) c::c CCI N
-I -I -I -I -I -I -I
w w w w w w w w
Cf,) Cl) en en en en Cl) Cf,)

ALU ENABLES

1A07

ERF
GRP II
WRITE
FAN-IN I

I
I
I
I
I
I ---

EF1RH/WL (WR SEL)

SEL FH/PL (REG SEL)

Pµ IF ENABLES

1A14

[FµOECODE

1A06

·---------· I 1A18-21 I
I I

ENWRERF

u..
a:
0
:::!!:
Q.
-I
w
en

><
>< a:
3:

PµREG

GRPI
ADRS

>< x
a:
3:

I
I
I
I
I _ ..

3

.-M
CJ en
u.. '
ffi ;:,:

x
>< a:
3:

1A13

WRITE
REG

1A13

OP CODE I Fµ REG

-------------------·----------------------·X··-Fl•E•L•D--__. 1AOB-11

Figure 3-3. ER F Group I Write

3-23

I

a: = a:
Cl S!

a:
w Q

.....
w w w
en en Cl)

S REG

1A29,30

lc:,9-241

ALU
FAN-OUT

1A25-28

I-
:::!: ex:

I- ::::> ::!:
en en ex:
.....
w w w
en Cl) Cl)

ALU
ENABLES

OP CODE

1.6384 MSEC

=
::!: a:
co N
.....
w w
en en

1A07

r -.----------1 1A08-11 •

PE

ATC

css

CONS ADAS

CONS DATA

B/A

BC

T

PRIV

---·
Q
Cl
x

~ a:
ERFG2S u 2

~ ~

0-3
u u
2 2
w w

ERF ENABLES

ENERFG2WR

Fµ DECODE

1A06

Figure 3-4. ERF Group II Write

3-24

a: ex:
::!: Cii
~ ~
.....
u u
2 2
w w

1A04

ERFG2S
0-4

ERF SEL

1A22

11-15

5

X-FIELD

TX80

11.-15
(IVK)

FµREG
1A08-11

BC REG

1A08-11

ALU
FAN-OUT

a: a:
0 ~ w
.....
w w
Cl) Cl)

ALU
00-15

-1
~

Cl I-
::1E c(cc I- ::::>

0 Cl) Cl)

~
w w w
Cl) Cl) Cl)

:E
c(

.....
w
Cl)

ALU ENABLES

OP CODE

:E
IXI
w
Cl)

Cl

a:
N
.....
w
Cl)

1/0
OUT
GAP
Ill

1A18-21

1A07

2
w
cc e
a: s:
M
t!:I
u.
a:
w

Fµ DECODE

(4 (PROC#)

c:·.C-R•E•G •1 A•1•6•

1A06

Figure 3-5. ERF Group Ill Write

3-2Ei

(REG#)

ERF SEL

11-15

5

X-FIELD

1A22

11..-15

(IVK)

Fµ REG
1 AOS-11

BC REG

1A08-11

EXEC REG

1A16

BRF

1A25+-28

F REG

1A20-21

OP CODE

5

BRF SEL

5

1A22

BC REG

1AD8-11

·--------------------· I I
I I
I I
I F~~- Aµ I

I
I
I
I

·-

IN REG I
I
I
I
I
I
I
I

Bµ
FAN­

IN

Bµ
REG

I
I
I
I
I
I

1A25-28 I -------------·
ENBRF ENBRF
_.AM _.BM

Fµ DECODE

1A05

X-FIELD
FµREG
1A08-11

Figure 3-6. BRF Read ho Aµ and Bµ)

3-26

>< ><
x x
E c
< < w w
cc cc

·----------1-1 I 1A18-21 I
I F
I
I
I ·­(PROC**) 3

Cl)

cb
C-?
c:;
u..
cc
w

u..
cc (CHIP 0
:!!: SEL) 0..
-' w
Cf.I

GRP IADRS

1A13

-' (READ ~
:J: EN)
cc
u:
w

ERFINPUT
TO Aµ/Bµ

1A18-21

ER-.... ALU
00·15

r---------------~ I 1A18·21 I
I I
I I
I I
I Aµ Aµ I

FAN-IN REG I
I I
I I
I I
I I
I I
I I
I I
I I
I Bµ Bµ I

ENERF
-AM

FAN-IN REG I
I
I
I
I

__________ _.

ENERF
..,.. BM

READ REG ERF J Fµ DECODE

1A16

BC REG

1AOB-11

ENABLES
1A~4 1A05

.-----------..... -----............. ------------------------------~..-----------· I Fµ REG
OP CODE , _____________ , ____________ .._ ___ x._F_IE_L_D __ 1A08·11

Figure 3-ir. ER F Group I Read (to Ap, and Bµ)

3-27

·-----------------------•
1A08-11 I

GAP II I

PE

ATC

css

ADAS

DATA

B/A

BC

TB

PRIV

CONT

OP CODE

___...__

Cl) cc Cl) cc
t.) :E 2
...I ...I ...I
w w w
Cl) Vol Cl)

Cl)
N

ERF
GAP
II

IFAN­
IN

t!l I"">
u.. ' a:=
w

~
N
t!I
z
w

I
I
I
I
I

ERF ENABLES

1A04

Cl)
N

~r-;>
a:= w

ERF SEL

1A22

ERF ERF-ALU
INPUT 00-15
Aµ}Bµ

1A18-21

ENERFG2WR

Figure 3-8. ERF Group II Read (to Aµ and Bµ)

3-28

----------------• I
I I
I I
I I
I Aµ Aµ I

FAN- REG I
IN

Bµ
FAN­

IN

.. __ _

ENERF
-AM

Fµ DECODE

1A05,6

ENERF
-BM

FµREG
1A08-11

Bµ
REG

1A25-28

ICA
1015,16

BDC1

1C11,12

BDC2
1C13,14

ERIJ-00•15
IFA

1814

.,,
ii'
c
al
w
~
m
:XJ .,,
C)

4J ...
0

I\) c
<O 'ti

EXCT ERNG3
0-3 0

00-03 a: - M

:XJ
CD
QI .
Cl.

(!)
LL

EXEC REG
a:

ERF SEL w
:;-
0
)>

1A16 1A22

1:
QI
:I
a.
m

'l=

11•15
(IVK)

ERFEN BC REG

1A06 1A08-11

1/0
INPUT

GRP
Ill

(REG
SEL)

4

"' ~~ a:C?
wQ
ZQ
w

ERF EN

ERFGJ
00-15

ERF
INPUT
Aµ/Bµ

~
N a:
c.:i
z
w

1A18-21

ERF •ALU
00-15

.,,,

P---------------, I
I
I
I

I
I
I
I

Aµ
FAN­

IN

. .-----

1i1~
rH1'"

IN

Aµ
REG

1A25-28

1:1
REG

___________ ..
ENE RF ENERF
•AM -BM

ERF EN Fµ DECODE

._---..-•1i11Aiii04lill 1A05

AANDB

1A07

FµREG
1A08-11

eve 1ST CYCLE* FµJSµ
DLV EN

PREVµI FF
THAT LOADED
AµAND/OR Bµ 2ND CYCLE*

1A05

*SEE FIGURE 3-35 FOR TIMING

----------------• I I -.-

ADDER
I L FROM BIT 0 POSITION ... I
I
I
I
I Aµ

REG ~ I AMGTBM

I o-3 0i _.. T 4 ... LEVEL
I AMEQBM I

STATUS AµlBµ .. 0-3 ©+!
CMP ---- 4 FAN-IN

I AMLTBM

~ 0-3 ~
"""Pl 1A22

.,,
=· c
(;

Ct>
?
n

w s: w "'O
0 I»

::I
Q.

Bµ I
REG I

...I.

i

n s:
c

1=.
Ill-

1A25-28 I --------------· -
FMl-005

(H~CMU
L~CMP)

5

I OP CODE I SUB-OP I CODE

BLOCKFM*

ENCLKSM*

SUM-POS
LEVEL

II
AMLTEQBM., STATUS ... FAN-IN

AMEQBM _.,
-......

BM-NEG _.. ... 1A23

+

1

~

STATUS-1
(Aµ> Bµl _.,,,

--....
STATUS - 2
(Aµ< Bµ) _., ...

STATUS - 3
(Aµ= 8µ) _..

...
STATUS - 5 ALU

FAN-OUT (Aµ> Bµ) _., ...
STATUS - 6
(Aµ< Bµ) __... ..

STATUS - 7
(Aµ= 8µ)

-...... 1A25-28
4~

I-
~
I-
~
..J
w
U)

ALU
EN

1A07

BRF
**

ERF
GROUP I

**

ERF
GROUP II

**

ALU01

ALU02

'

J
ALU03

ALU05

' ALU06

I
ALU07

I

**SEE FIGURES 3-2, 3-3, ANO 3-4 FOR SELEC

X-FIELD] Fµ REG
1AOB-11

TION

8RF

1A25·28

ERF
GRP

I

1A18-21

ERF
GRP
II

1AOB-11

Pp REG

1A111·21

F REG

1A18·21

1/0
INPUT
GRP Ill

1 B16

~

~

ERF
GRP

~
II

FAN-IN

1A08·11

~

~----------------------~ ·-----~-----------·~!._--1~~---------.-

...... -..

ERF
INPUT
Ap./8µ

I--+

I

I F~~- r®+ R~~ rt
! .. 16--------------! ,,_ _•:::~-... A~~:M~._-.. ~ .. -_. ~DOR

f--'

ENCG·O
ENCG·1

~

CONST
GEN

I ~X2~

I ._ Vt
I

0.1. I
E,F i ..

I
I

8µ
FAN·

IN

8µ
REG

16

0,+1

1A29,30 I
iJ 1lli~ ~

FORCE 1
'----

-------~-----------~---
s

REG

1A29,30

------, .
SR~O

~
00-15 ~MS

VIA
RO

.-------1:;:1>11 'I A 18-21
CLKSR _____J
(TXBO)

DREADY
DREADE

~

H§r-J

5

r OP CODE

ENGR·;G _______ _

ENGR2/ll~
ENPP•ALU
ENFR•Al.U

r

J

CONST
SEL

1A07

.FµDECODE 1
1A05,6

[

FµEN

1A14
1--.----ll

Figure 3-11. Lo:ad S µ,I

3-31

a:
VJ
~
-'
()
z
w

ACCESS
EN

MS TIMING

1A04

FXEQ3 J
ASVNC ('Ell)

X·FIELD
]

MS

BRF

ERF
GAP

I

ERF
GAP

II

1/0
INPUT
GRP Ill

1816

Aµ
FAN-IN

:ii:

1
LL.
cc

~
cc
ca
2
w

RF+- MSI
00-07

Rf..- MSI
08-15

CL KS/RDA
(TX80)

*SEE FIGURES 3-2, 3-3, 3-4, AND 3-5 FOR SELECTION

I
~

OP CODE

DREG
0-7

8-15

1A29,30

cc
c cc e: c
en t.J
2 2
w w

FµDECODE

1A05,6

CLKDR
(TX20)

SELDBYH
(LOB)

BYTE
SEL

Figure 3-12. LOW and LOB µ,l's

3-32

I
I
I

REG
OPTION

MS CONT

X·FIELD

I
I
I

STORE UPP

MS WRITE
CONT

MS
INPUT
DATA

0-7

2A12

MS
INPUT
DATA
8-15

2C12

STOA EL OW

1A22

SELBYTEO
(SR15)

1A04

I FµREG
1A08-11

RO

1828

DREG

1A29,30

MS

2A12-C12

Sµ
REG

1A18-21

RO+-DR
00-15

--(is~---..

--~~~~~------Gsi------M

DATA
FAN-IN

---(£s .__ ___ _.,.-..i..---.·-

MS+-DR
00·15

ENCLKSM* (DREADY)

FµEN

OP CODE

BLOCKFM*

(DR EADY)

1A14

IFµ DECODE

1A06

>­
Cl
<C
w
a:
Cl

* >-
Cl c
<C <C w w a: a:
0 en
a: ::iE

MS CONT]

1A04

0-7

8-15

Figure 3-13. SOW µ1

3.33

--------• ALU FAN-OUT I
I 1A25·28 I

Ci' .-
cc d::
Cl c ..:. ..:. w w
en en

ALU EN

1A07

X-FIELD

BRF

**

**

ERF
GAP
11/111

**

**SEE FIGURES 3·6, 3-7, 3-8,
AND 3-9 FOR SELECTION

*SEE FIGURE 3-33 FOR TIMING

I

RO

1828

DREG

1A29,30

MS

2A12-C12

Sµ
REG

1A18-21

ENCLKFM

FµEN

RO+-DR
00-15

MS+-DR
00-15

BLOCKFM*
(OREADY)

1A14

Fµ DECODE

DATA
FAN-IN

1A06

>-c
c:c
I.I.I
a:
c

MS CONT

1A04

·---------• AL u F AN-0 UT 1 A25-28 I
I

0-7

Cl
c:;:i cO cO
a: a: a:
N c c
...:, ...:, ...:,
I.I.I I.I.I I.I.I
Vol Vol Vol

ALU EN

1A07

SR15 = 0

BRF

ERF
GRP
11/111

*SEE FIGURE 3-33 FOR TIMING
**SEE FIGURES 3-6, 3-7, 3-8,

ANO 3-9 FOR SELECTION.

I Fµ REG
___ o_P_c_o_oE_ ___________________________ x_-F_IE_L_D_.... 1A08-11

Figure 3-14. SOB µI

3-34

w w
(J1

BIT
GEN

BIT-1XXX

BIT-X1XX

BIT-XX1X

BIT-XXX1

12 .. 15

8 .. 11

F REG

1A20-21

OP CODE

x
DECODE

1A22

BIT•CG
00-07
(15-X)

CONST
GEN

CG.-B
00-15

1A29,30

ENCG-0

CG CONT

1A07

AANDB

I

ALU EN

1A05

ENCBM-1

(a·b ~ D·X ;> 8) I

Bµ
FAN-IN

1A25-28

EN CG-BM

ALU EN

X-FIELD

ENSBM (LBB-)

ENRBM (LBS)

1A05

FµREG
1A08-11

Bµ
REG

1A25-28

I

PRIOR CONST
NTWK GEN

..,, STATE cS'
c STATE SEL
; 0-7

~
~

r-
to 1AD7
to
QI
:I
Q.

r-
w to 1A16 w to
O'> 1i

111"

;-

O"'

CG CONT

ENCBM-1

Bµ
CG-BM FAN-IN

00-15

1A25-28

ENCG-BM

ENCG-1

ALU EN

1AD7 1A05

X-FIELD

LBB
µI

ALU EN

1AD5

ENCBM-0

EWSBM (LBB-)

ENRBM (LBB)

Ft REG
1AD8-11

Bµ
REG

1A25-28

"T1 ce·
c:
al

w ~
w
......

c
G)

"S,

CG
FAN-IN

1A07

ENT+-- CG
00-07

OP CODE

ENCG-0

CONST
GEN

1A29,30

ENCG-1

Bµ
FAN-IN

1A25-2B

ENTER
Fµ 12-15

4 PLACES

!
0-3

4-7

8-11

12-15

Bµ
REG

1A25-2B

ENCG- BM ENCARRY

CG CONT Fµ DECODE

1AITT 1A~

12 13 14 15

X-FIELD
Fµ REG
1AOB-11

INHIBIT
INNER
CARRIES

CARRY
GEN

1A23

INNER CONST
CARRY GEN

REG

CG-Bµ
ODG-CG 00-15

00-03

"T1 1A23 1A29,30
r.C'
c:
;

~
w ~

w
CX> (")

0
::0 ENCG-0 ENCG-1
(")

~

CG CONT

1A07

OP CODE

ENTER
315 OR 015
4 PLACES

i
0-3

Bµ
FAN-IN

4-7

8-11

12-15

1A25-28

ENCG+-B

Fµ DECODE

1A05

Bµ
REG

1A25-28

EN CARRY

X-FIEL D
FµREG
1A08-11

INHIBIT
INNER

CARRIES

CARRY
GEN

1A23

··------· I I
I I
I I
I Aµ I

----'16'--1-- BU FF
~ REG I

I
-----i,...- I

I

Bµ
BUFF
REG

I
I
I
I
I

I
I
I
I

1A25-28 I

CLKBUFF (TX60)

·------------------------• I
SN•ALU I

..---·-----• 00-15 I

SN
SEL

RANK
I

SN
SEL

RANK
II

1A24

SHIFT
COUNT

I
I
I
I
I
I
I

SN .. ALU I
16-31 I

SN
FAN·

IN

SN
FAN­

IN

F -­
Fµ--
D --~,.._...,. __ ..__.,.._.

ENDR•SC

EN FR-SC

SHIFTR**

ENSN+-ALU

Aµ
FAN-IN

8µ
FAN-IN

ENCL KAM*

Aµ
REG

Bµ
FAN-IN

1A25-28 ___ ..

ENCLKBM*

BLOCKFM* l
GEN DURING

1ST CYCLE
OF SHIFT

µI

**SHF OR DRS - COMPLEMENTS SHIFT COUNT ALU, SN
ENABLES!

Sµ Fµ
ENABLES

OP CODE

1A05 1A06

*SEE FIGURE 3-36 FOR TIMING

I Fµ REG

----------·-----------X---Fl·E-LD-- 1A08-11

Figure 3-19. Shift

3-39

r-------------------------,
_______ B_M_o_o._1s ______ 16 1-------~------~•r--------~·------------------------------------,

I
BµBUFF

REG

1A25-28

BIT
SENSE

1A23

+

BMBUFF
00-15

~
Bµ

ADDER

BIT 0 OR 1
FIND COUNT

{ALL SENSEµ I)

TBITOOXX

TBIT01XX

1A23

+

I
BMSUM 1

1

HS-+
I
I
I
I
.I.

TBIT10XX

TBIT11XX (

TBITXXOO

TOGGLE BIT DATA

i
I
I
I
I
I
I
I
I
I
I _...

{SSO & SR1 µI)
8

TBITXX01

TBITXX10)

TBITXX11

I ~

I
I
I
I
l
I

SN+
BµADD
FAN-IN

SN+ BIT
SENS[
FAN-IN

Bµ
REG

FAN-IN

J

Aµ
REG

FAN-IN

T

...... ..

Bµ
REG

A
REG

1A25-28

I
I
I
I
I
I
I
I
I
I

L-------+---------i----~----~.1 AM00-15
---------+-------------t16l------~-----+---------------~~-------------+--------+--------

FM1-105

[
H ~SENSE FOR 1]
L ~ SENSE FOR 0

CLKBUFF (TX60)

SHIFT
NTWK

1A24

OP CODE

FM2-111

ALU, BIT
SENSE EN

_f -
1A05

Sµ,Fµ
ENABLES

j

ENCL KAM*

ENCLKBM*

ENCLKSM* _. } GEN DURING
___ --.. 1ST CYCLE
BLOCKFM* + OF SENSEµ,!

1A06

·•sEE FIGURE 3-36 FOR TIMING

FM2-011

X-FIELD
Fµ REG
1A08-11

Figure 3-20. Bit Sense and Sense/Toggleµ l's

3-40

-------------··-...
Aµ

REG

Bµ
REG

----·----
AM

00-15

I
I
I

I
1A25·28J ------

OP CODE

BIT
SENSE

1A:23

.~µ= 0

A~iBIT SKIP

(SKB OR
SKB·l

SKIP
CONT

TOOO

FµDECDDE J
1M6

Figure 3-21. Skip µl's

3-41

SKIP EXEC AT EO-E6

l
AT~~1

1

:1ED]
BLOCK

CLOCK OF
NEXTµI
INTO Fµ.

ENCLKFM

El
RESET

SKIP EXEC AT E7

1A13

CS/PE
STATUS

REG

1A13

•CS
FF BLOCK

READ OF l
AT~:i

1

:1EDj
1A13 NEXT

......... ,..._. µI

SET
(T680)

CLR
(T780)

AT EO

[

AORS, RD,]
& WR CONT
SAME ASPµ

__.,._,.

x >< >< ><
>< >< >< ><

>< >< >< >< j::
i5!i iii i5!i ii!i

BIT POSITION
GEN

1A22

11•15

11-15

F REG

1A18·21

X·FIELD
FµREG
1A08·11

F
REG

1A18·21

FR 004-008

JUMP
ADAS
FORM

1AD7

ENJP
-SM1

ENJP
.-sMO

H~ ED-ES
L~ E6

JMP
04-07

4

JMP
08-15

ENJP
~PP1

ENJP
.-ppo

BLOCKFM* I FµDECODE

IDLE*
1AD6

OP CODE

r---------------------------------, I
I
I
I
I
I

Fµ
EN

IDLE
FF

0-3

4-7
Sµ

REG -- ---
Sp
F/1

(EO•E6 ONLY)

0-3

4-7
Pp ERF Pµ

- - --- REG WR

Pp
F/I

1A18·21 I

----------~

,.,.1
IDLE-F/F*

1A14

JUMP ADDRESS

FXE0-0

Pp
EN

Figure 3-22. FNJ µl's (EO-E6)

3-42

1AD6

ENPPG1

PµENABLE

1A14

*SEE FIGURE 3·31 FOR TIMING

FµREG
1AD8-11

F
REG

1A18·21

JUMP
ADAS
FORM

JMP
04-07

1A07

JMP
08-15

8

ENJP
•PP1

EN.iP
_____ , ... ppo

FµOECODE

1A06

OPCODE

---------~------------------------

Sµ
F/I

0-3

4-7

Pp
F/1

(E7 ONLY)

Sµ
REG

Pp
REG

ERF
WR

Pµ

1A18·21

____________ ..

FXEQ-0

JUMP ADDRESS

Figure 3-23. FNJ µ.l's (E7)

3-43

ENPPG1

Pµ ENABLE

1A14

FµREG
1AOB·11

4 BITS __..
........

MS

M

DATA Mll l FAN-IN FUNCT
s~DR CODE Pp Pp
0-15 DR COMPRESS FRJ FRJ FAN-IN REG

-@+ 100-107 OP CODE NTWK ADAS DECODE ~ ~ 8 _. .. TABLE ADDRESS
POINTER TABLE

l 1A19·21 1A19-21
DR ADRS/IDX • 108, 112

2
DESIG _. 4 BITS _.

--..-

1A29,30 1A17

MSRLDY
•

ENFRJ1
ENFRJ2

(E400)
ENSPECPP

"T1
c:Ci'

CONSOLE
LOGIC

c
; 1A02

w
w !\>
.ti:. ~
.i:a

"T1
::D
c..

~
-- ·'" ·-·~·"

BLOCKFM* Fµ
+ ENCLKFM EN Fµ ..

DECODE 1A14

IDLE* __.. IDLE IDLE-FfF~ ... Pp EN J---. ENCLKPP* 1A06 .. FF --..
~~ 1A14 1AD6

*SEE FIGURE 3-32 FOR TIMIN
4 f

G

J I l SUB-OP l X·FIEL D
Fµ REG

OP CODE
CODE 1 AOB-11

SHP SETP
11,12,14,15 000915 .. 4 -..

1A02

~~

ENSPECPP

BIT
SEl~SE

1A23

[
Fµ DECODE

1A06

f

~
l OP CODE

Pp
FAN-IN

16

1A19-21

T

Fji/Pµ

AMEQZR _..J
EN

-..

1A14

•
FZJµI

Figure 3-25. FZJ' µ1

3-45

Pp
REG

..... -..

1A19-21

• ENCLKFM*

IDLE-F7F* _.. Pp EN ...
1A06

*SEE FIGURE

I X-FIELD I Fµ R
1A08

3-32 FOR TIMING

EG
·11

STATUS OVFL ... STAT·O _ ..
µ F/I ... ALU REG

STATUS 1A07 FAN-IN FrLE
CURR ..
REG 2 - ...

LINK .. STATUS STAT-3 1A18 F/I .. 1A25 1A25
1A23 •

SH-STAT

ALU
ENABLES

1A07

SET P
LOGIC SETP 0002

11,12,14,15
4

(RN11) __. Pp __.. Pp REG
0009

.. FAN-IN 16

(RNl2) 1A18-21 1A18-21
4~

1A02

J ENSPECPP

r
~1 1A14 I FµEN BLOCKFM*

llJi ENCLKFM Fµ DECODE

IDLE* .. IDLE IDLE-F/F* ... Pp EN r-+ ENCLKPP* 1A06 FF -.

J 1A14 1A06

~
*SEE FIGURE 3-32 FOR TIMING

[OP CODE 1 1 X-FIELD l Fµ DECODE
1A08-11

Figure 3-26. RNI 1 and RNl2 µl's

3-46

JUMP
ADAS
XLTN

JMP
08-15 --·----------·-----------------------

8

1A07

• I
I
I
I
I
I

~
I

ENJP-SM1 + •--=-r H-E-O-·E5J------t-

L L-E6 I
I
I
I
I
I

ENJP-PP1

Sµ
F/I

Pp
F/I

Sµ
REG

(EO-E6 ONLY)

Pp
REG

ERF
WR

Pµ

1A18·21

-------------------- -----------

FXEQ-JMP

ENPPG1

PµENABLE

1A14

FµOECODE

BLOCKFM*L __ F_µ __ ~----EN --+ ENCLKFM
1A14

1A06 IDLE* L

JMPAORS
(4-7)

IDLE
FF

IOLE-F/F*
1A14

Figure 3-27. JMP µ:I (EO-E6)

3.47

Pp
EN

1A06
r--.

JMPADRS
(12-15)

*SEE FIGURE 3-31 FOR TIMING

FµREG
1A08·11

---------------------------------------JMP
ADAS JMP
XLTN 08-15

1A07
8

ENJP-PP1

Fµ.DECODE

1AD6

OP CODE

Sµ
FAN-

IN

Pp
F/I

Sµ
REG

Pp
REG

JMPADRS
(4-7)

ENPPG1-1

f=XEO-JMP

Figure 3-28. JMP µ1 (E7)

3-48

ERFWR
EN

ERF
WR

Pb
REG

Pµ
REG

1A18-21

ENPBG1-0

1A14

JMPADRS
(12-15)

FµREG
1AD8-11

[Sµ
REG

1A18·21

ENPP.,...SM

fH=BLOCK Pp+-SµJ
L IN cc MODE

CC CONT

1A13

CiiiEXii"
(Aµ# 0µ · EOTEXIT)

Pp
REG

1A18·21

CIO·TX (Aµ• Bµ- EOTEXIT)

Pµ
REG

1A18·21

Pµ
EN

B/A
REG

EF1RH/WL

fH•NO Pp....,Pµl
LWR ENABLE J

1A14

CLR 1A03

Aµ# Bµ., REPEAT 1/0
XFER ROUTINE ---- - --------.. ----------·----------------------!

CIO CONT

1A14

[OPCODE

Aµ= Bµ., GO TO 1/0
EXIT ROUTINE

______ 1o_E_x_1_T_(_A_µ_._ =_B_µ_+_E_O_T_E_x_1T_, __ TO I FA AND BOC TO

TERMINATE OPERATION

BLOCKFM* F:µ

1A14 I IFµ EN .. ENCLKFM

DEl:OOE

IDLE* IDLE IDLE-F/F* Pp
1A06 IFF EN E'Nc'iJCPP*

1A14 1A06

*SEE FIGURE 3·32 FOR TIMING

I FµREG

--------------------X··-Fl_E_L_D_... 1A08·11

Figure 3-29. CI01

3-49

ERFINPUT
Aµ/Bµ

!'.:?.
N
a:
Cl
2
w

LI.
a:
w
>
==

ERF EN

A

6

OP CODE

1A18·21

~~ ~~ -t.__ ______ ~---------------------~--------------~~~~~---------~------------1

1A04

REG
SEL

LI.
a: r
t.)
a:i
z
w

l
ERF GAP I

1A22 ..

1A18-21

Q
w
x
LI.

(PROC #)

ER1RH/WL -

F, Pµ EN

1A14

ERFGRPlll ~
1816

(PROC#)

(PROC #)

4
M
t:IM
Z9
a:= w=

t BC-OOOOX
~--I---.___+----,

(PROC #)

IVK/RVK CONT

l

1
BC-07

PRIOR
NTWK

LL.
a:
a:i

t,
CICI
z
w

1A16
[

'I"

~10
BC REG

1A08-11

i i
BC-15 RVK -E780

1
Figure 3-30. I NV and RVk µI

3-50

1
X-FIELD

ERFGJ
00-15

ERF GAP II

r

~
t:IM
LL. ' a:=
w

4

1 AOB-11

BRF

REG FILE ADAS

ERFG2
00-15

1A25-28

1A22

"' -1
11-15 -~ ~

~
BC REG

1A08-11

5

] FµREG
1A08-11

FµDECODE IDLE · F µDECODE

~-BLOCK F_H_ \.
/FµDECOOE

IDLE J ~ L 1ST TXOO FOLLOWING IDLE
......-IDLE· IDLE FF·

IDLE FF If IF E7 ~
TXOO

NOTE: IF INSTRUCTION IS DECODED AT E7 TIME, BLOCK Fµ IS NEGATED BY EO-E TIME ANO Fµ IS CLOCKED AS
USUAL AT THE END OF E7 TIME. IN THAT CASE THE INSTRUCTION TAKES ONLY 100 NS.

Figure 3-31. JMP and FNJ ttl Timing Diagram

~~ BLOCK Fµ , -, f
1ST TXOO FOLLOWING ENCLK Fµ
FµDE~DEIF~ (EO-E)

~t;\._ IDLE FF ,
/IDLE· Fµ DECODE

1ST TXOO
FOLLOWING E7 -ENCLKPP \.

Figure 3-32. (FZJ ·Aµ= 0), FRJ, RNl1, RNl2, CI01, Cl02, ROM, and SYNC µl's

500
/F~DEt~ODE

·DREADY / Fµ DECODE · DR EADY
BLOCK Fµ IF ENABLES ~

MS DATA~
THROUGH DATA'..;

MS READY FAN-IN :,-

MS STROBE I ' __...- FJ.!. DECODE

ENCLK Sµ ~ · DREADV

'\µDECODE· DRE ADY

Figure 3-33. SOW a1nd SOB

3-51

400 500

BLOCK Fµ ,
FµOECOOE/ l

ENCL KSµ ~
· OREADE-........_ ,

MS READY If

MS STROBE f "\

CLK Aµ}Bµ I

Figure 3-34. OTA, OTA-, IOX, and OFA µl's

c.- Fµ DECODE· 2ND CYCLE

BLOCK Fµ II l

1ST CYCLE 11-rxoo OF ANY LOAD A ORB ~

...--- Fµ DECODE· 2ND CYCLE
ENCLKS µ ~ ' CLK Aµ/Bµ I Aµ/Bµ '-

LOADED
BY PREVIOUS
INSTRUCTION

Figure 3-35. SUM, OSUM, CMP, and CMU µl's

/(SHIFT V SENSE)· SHIFT DELAY

BLOCK Fµ , ~

SHIFT DELAY , ~

ENCL KSµ l ~SHIFT DELAY

ENCAµ}Bµ

' I

Figure 3-36. All Shift or Sense Instructions

3-52

IMPLEMENTING MACHINE LANGUAGE
INSTRUCTION BY MICRO INSTRUCTIONS

This section describes how micro-instructions (µI's) are
linked together in routines to execute (implement)
machine-language instructions (MLl's). This is done by
means of showing certain M LI 's in flow diagram form as
examples, listing all the µl's necessary to implement each
M LI. Emphasis is placed on the concept of using
individual µl's as "building blocks" to form routines,
routines to form a complete MLI. Use of the µI assembly
listing in Appendix 3A to locate the routines comprising a
MLI is also described.

BASIC IMPLEMENTATION SCHEME

Machine language instructions (MLl's) executed by the
system are done so by micro-instructions (µl's) arranged
in a particular order as required by the MLI. This
arrangement of µl's necessary to execUJte a M LI can be
divided into at least three, and sometimes more, individual
sequences as shown in Figure 3-37. ThE! first sequence is
called the Read Next Instruction (RNI) sequence. This
sequence reads the first word of the MLI from main
storage (MS), inserts this word in the F register for
subsequent translation, and performs a first-level, or
Format Jump, decode of the MLI to determine its format,
that is, its length (2-, 4-, 6-, or 8-byte)I and the type of
operand addressing specified (direict, indirect, or
indexing). Upon obtaining this information, a jump is
made to a corresponding F RJ sequence common to all
MLl's of this format. The FRJ sequence reads the first
operand to be processed by the M LI from either a file
register or from MS, depending on the addressing mode
specified. This sequence also performs a second-level, or
Function Jump (FNJ) decode of the ML.I to determine its
function, that is whether the M LI will perform an add,
shift, move, compare, or other type of function. At this
point, the M LI is uniquely defined.

Upon determining the MLI function, a iump is made to a
corresponding FNJ sequence that reads the second

3-53

operand, performs the specified operation on the two
operands, and stores the result. After completing the
store, a jump is made back to the RN I sequence to
execute the following MLI. Each sequence takes at least
one time slice to perform. More complex MLl's, such as
multiply, divide, or 1/0 instructions may require more
than one time slice to complete the FRJ sequence and
several execute sequences apart from the FNJ sequence.
However, all M Li's are basically executed in the manner
just described, where the FRJ decode performs a gross
translation of the M LI and isolates it to a group of several
MLl's, and the FNJ decode performs a final translation to
uniquely define the MLI.

An example of how the RNI, F RJ, and FNJ sequences are
used to execute a two-byte MLI, specifically the ADDR
(26) ML I, is shown in Figure 3-38. This figure shows· the
functional operations making up each sequence and the
address of the corresponding µI in CS required to perform
each function. (Refer to the CS assembly listing in
Appendix 3A for a listing and description of eachµ I at
the address listed in Figure 3-38.) Execution of the M LI
can begin with either the RNIO, RNl1, or RNl2 sequence,
depending on when in the program the M LI is executed as
described in the paragraph titled Set Pp Logic. If the
ADDR MLI is the first MLI of the program, the RNIO
sequence is entered at address 0000 * and the M LI address
is obtained from the processor's assigned P register in the
Basic Register File (BRF). If the ADDR MLI follows
another MLI in the same program, that previous MLI will
have terminated with either an RNl1 or RNl2µ1 to cause
a jump back to either the RN 11 sequence (address 0002)
or the RN 12 sequence (address 0009). The choice of
terminating with either an RNl1 or RNl2 µI will depend
on whether the previous MLI had time to form the ADDR
MLI address, as discussed in the paragraph titled Set Pp
Logic. Depending on which of the two RNI sequences is
1entered, the M LI address is obtained from either register
01 (P+2) or register 02 (P+4). Except for the source of
1:>btaining the MLI address, the RNIOand RNl1 sequences
are identical; therefore, they combine at address 0004.
IBoth RNI0/1 and RNl2 sequences terminate at addresses
0008 and OOOF, respectively, with an FRJ µI to
implement the FRJ decode operation.

~All CS addresses are represented in hexadecimal form.

RNI

SEQUENCE/

FRJ I
SEQUENCE I

FNJ
+

EXEC
SEQUENCE

READ MACHINE-LANGUAGE
INSTRUCTION (MU)

PUT MU IN
F REGISTER

PERFORM FIRST­
LEVEL DECODE (FRJ)

OBTAIN FIRST
OPERAND

PERFORM SECOND­
LEVEL DECODE (FNJ)

OBTAIN SECOND
OPERAND

EXECUTE

STORE
RESULT

READ NEXT INSTRUCTION

JUMP TO AREA OF CS AS DETERMINED BY FORMAT OF MU (DIRECT OR
INDIRECT ADDRESSING; 2-, 4-, 6·, OR 8-BYTE)

OBTAIN OPERAND FROM REGISTER FILE OR MEMORY, AS SPECIFIED BY R1
FIELD OF Mll.

JUMP TO SPECIFIC AREA OF CS CONTAINING THE MICROPROGRAM FOR
IMPLEMENTING THE Mll FUNCTION (ADD, SHIFT, ETC.)

LOCATION OF SECONO OPERAND IS SPECIFIED BY R2 FIELD OF MU.

IF EXECUTION REQUIRES MORE THAN ONE MAJOR CYCLE, TEMPORARILY
STORE CS ADDRESS AND PARTIAL RESULTS UNTIL NEXT ASSIGNED TIME
SLICE.

STORE RESULT IN REGISTER FILE OR MEMORY, AS SPECIFIED BY R2 FIELD
OF MU AND/OR THE Mll FUNCTION.

Figure 3-37. Basic Microcode Implementation of MLI

3-54

R1. Rz

1ST MLI
OF PROG

RNIO 0000
P .. S 0001

0400
0401

READ 1ST

RNl1
µI

RNl1 0002
m-s 0003

FRJ (FIRST LEVEL)
DECODE

READ 1ST OPER. FROIM
OPER. FROM

REG R1

FNJ
(2ND

LEVEL)
DECODE

MS LOC.
SPEC. BY

(R1)

FNJ
µI

-------~· 0208

READ 2ND
OPER. FROM
Rz +ADD+
STORE IN
REG.Rz

0209

RN12
µI

READ 1:ST
OPER. FR:OM

REG.R1

FRJ
µI

BREAK

0404
0405
0406

FNJ
(2nd

LEVEL)
DECODE

(R1). (Rz)

READ 1ST
OPER. FROM

MS LOC.
SPEC. BY

(R1)

FNJ
µI

i------BREAK

..-------.... 0348

READ 2ND
OPER. FROM

MS LOC.
SPEC.BY

(Rz) +ADD

0349
034A
034B

1------- BREAK

03B9

STORE SUM
IN MS LOC.
SPEC.BY

{Rz)

03BA

03BB

!Figure 3-38. Two-Byte (ADDR) MLI Flow Diagram

3-55

0407
0408
0409

RNISEQ

[

READ 1ST..,J
WORD OF

MLI

FRJ SEQ
[READ 1STJ

OPER

FNJ AND
EXEC SEQ

[

READ 2NDJ
OPER +

EXECUTE

The F RJ decode translates the M LI function code and
indirect designators to determine the M LI format. An
examination of the FRJ decode address table determines
that the ADDR MLI is a two-byte MLI in the 20-29 range
of function codes, defining it as a register/register MU.
The result is a jump to one of four F RJ sequence starting
addresses: 0400, 0402, 0404, or 0407; depending on the
addressing mode specified. This jump is made at the
beginning of a new time slice assigned to the processor, as
indicated by the word "BREAK" in Figure 3-38. For this
example, the F RJ sequence for all four addressing modes
is shown. (During actual execution, of course, only one of
the four could be specified.) For convenience, these four
possible addressing modes are summarized below:

0 7 8 9 11 12 13 15

26

ADDA MLI FORMAT

R 1 · R2 - first operand read direct/second operand
read direct

(R1) · R2 - first operand read indirect/second
operand read direct

R1 · (R2) - first operand read direct/second
operand read indirect

(R1) · (R2) - first operand read indirect/second
operand read indirect

The F RJ sequences for the R 1 · R 2 and (R 1) · R 2 mode
start at different addresses since the first mode requires
reading the first operand via direct addressing and the
second mode requires reading the first operand via
indirect addressing. The FNJ and execute sequence for
these two conditions, however, are identical because the
second operand for both conditions is read via direct
addressing. The FNJ decode, therefore, generates FNJ
sequence beginning address 0208 for both the R1 · R2
and (R 1) · R2 modes. Upon completing the Sum and
Store operation, the routine ends with an RNI 1 µI, which
causes a jump back to the RN 11 sequence to read the next
MLI. For both these addressing modes, both FRJ and FNJ
sequences are executed in the same time slice. If executed
in either of these two addressing modes, therefore, the
ADDR MLI takes two time slices to execute: one for the
RNI sequence and one for the combined FRJ and
FNJ/execute sequence.

The FRJ sequences for the R1 · (R2) and (R1) ·. (R2)
mode also start at different addresses because of the
different addressing mode required for reading the first

3-56

operand. In addition, these two addressing modes cannot

read the first operand using the R 1 · R2 and (R 1) · R2
mode first operand read routine because it is necessary to
store the first operand read from MS in register T3 before
reading the second operand. This additional store requires
a SOW µI not available in the R 1 • R2 and (R 1). R2 first

operand read routines. Upon storing the first operand read
in T3, the FNJ decode branches to a common FNJ and
execute sequence to read the second operand using
indirect addressing and add it to the first operand. After
the addition, a jump is made to a separate store sequence
to store the result in MS at location (R2). If executed in
either of these two addressing modes, therefore, the
ADDR MLI takes four time slices to execute: one each for
the RNI, FRJ, and FNJ sequences, and one for the final
store sequence.

Execution of a six-byte MLI, that of the ADDM (62) MLI,
is shown in Figure 3-39. Like the ADDR MLI flow
diagram of Figure 3-38, the ADDM MU flow diagram also
shows the four possible modes of addressing. However,
the ADDM M LI is more complex because of the indexing
capability provided by this MLI. This indexing capability
is provided by the R 1 and R2 fields of the first M LI word,
which add the contents of registers defined by these fields
to the operand addresses designated by the M 1 and M2
fields contained in the second and third words of the M LI.
Indexing of this type is called post-indexing. (For more
details regarding indexing, see the MEMOREX 7300
Processing Unit Reference Manual.) The figure assumes
that the proper RN I sequence has been completed and
that a jump has been made to one of four FRJ sequence
starting addresses as a result of the FRJ decode operation.
Because of its greater complexity, the ADDM M LI is able
to take greater advantage of the divisible nature of theµ I
routines comprising a sequence, as evidenced by the
numerous jumps within each sequence used to execute the
MLI. The greater number of time slices required to
execute this M LI reflects the two additional words of the
MU read from MS and the indexing operations required
during the F RJ sequence. The number of time slices
required per sequence for each of the four addressing
modes is listed below:

M1. (M2)

(M1) ·. (M2)

RNI FRJ FNJ/EXEC STORE

3

4

4

5

62 l ~ l R1 l ~ l R2

M1

M2

M1 ·M2 c (M1) ·M2 M1. (M2) (M1) · (M2)

READ 2ND INST 0421 [READ 2ND INST
0428 READ 2ND INST. 0420 READ 2ND INST. 0435

WO M1 FROM MS 0422 WO M1 FROM MS 0429 WO M1 FROM MS 042E WO M1 FROM MS 0436
042A 0437

BREAK BREAK

N4
~EAD 1ST OPER. \ORS. FROM MS 042B INDEX M1 042F READ 3RO INST. 0438

AT LOC. SPEC. 042C [M1 + (R1)] 0430 WO M2 FROM MS 0439
043A BY (M1)

INDEX M1 OR (M1) 0423 BREAK BREAK
[M1/(M1) + (R1)] 0424

0431 READ 1ST OPER.
READ 3RD INST 0432 ADAS FROM MS

BREAK WO M2 FROM MS 0433 AT LOC. SPEC. 043B

BY (M1)

READ 3RD INST 0425

WD M2 FROM MS 0426
0427 N5

INDEX (M1) 043C
BREAK [(M1) + (R1)] 0430

N6 READ 2ND OPER.

L ADAS FROM MS 043E
AT LOC. SPEC.

BY (M2)

INDEX M2 OR (M2) 043F
[M2/(M2) + (R2)] 0440

BREAK

0441
READ 1ST OPER. 0442

FRJ FROM MS 0443
0444

BREAK

READ 2ND OPER.
0308
0309

FNJ FROM MS AND 030A
ADD 030B

BREAK

STORE 03E9
STORE SUM 03EA

03EB

Figure 3-39. Six-Byte (ADDM) Instruction Flow Diagram

3-57

REPRESENTATIVE MLI FLOW DIAGRAMS
Flow diagrams for a number of other MLl's (RBIT, BOF,
and CBYM) are shown in Figures 3-40, 3-41, and 3-42.
The flow diagrams start at the beginning of the F RJ

0 7 8 9 11 12 1l 15

9

sequence, upon completing the FRJ µI of the RNI
sequence. Note that the BOF MLI is completed during the
FRJ sequence, while the others require an FNJ/execute
sequence for their completion.

0 7 8 9 11 12 15

FROM BRANCH BOF

I
E2 0 R1 12 I

FRJ

FNJ

FRJ
DECODE

ACCESS V1 FORM
MEM USING 01 (P+2)

AS AN ADDR

INDEX M1 WITH R1 FIELD
AND STORE IN Tl

ENTER COMPLEMENT OF BIT
IN B REG. AS INDICATED

BY 12 FIELD IN MLI

0637

06l8
06l9

06lA

OOB4

OOB5
OOB6

0051
0052
005l

------BREAK

STORE RESULT OF AND
(BIT RESET) TO LOC

SPECIFIED BY Tl

0054
0055

0056

Figure 3-40. Two-Byte (RBIT) Instruction Flow Diagram

IF BIT
OFF

FROM
FRJ

DECODE

ACCESS M1 FROM
MEM USING G1 (P+2)

AS A ADDA

OBTAIN IR1) AND
CHECK BIT POSITION

SPECIFIED BY R

M1

0526

0527

EXIT TO RNl2 ROUTINE

052B

Figure 3-41. Two-Byte (BOF) Instruction Flow Diagram

3-58

0529

CBYM E COMPARE BYTE
MEMORY - MEMORY

!FROM
FRJ

DECODE

MEM
'ADDA

ACCESS M1 FROM
USING 01 {P+2) AS J

AND SAVE IN T3

6B

0435
0437

UPDATE 01 TO
(01 = BRF DA

0 0436 IP
)

MEM ACCESS M2 FROM
USING 01 (P+4)

ADDA ANO SAVE
it\S A
IN T4

BREAK

0438
043A

00439 4
)

UPDATE 01 TO
(01 = BRF OA__E

OF THE ACCESS AID DRESS
FIRST OPERAND

MEM USING Ml
THE MEM ADD

!FROM
AS
R.

D ADDR INDEX 1ST OPERAN
WITH (R1) ANDS

1ST EFFECTIVE OP
ADDA IN T3

'AVE
ERAND

--

IOF THE ACCESS ADDRESS
SECOND OPERAND

MEM USING M2
THE MEMAO

FROM
AS

DR.

--,..

BREAK

043B

043C

BREAK

043E

I l R1

M1

M2

R2 l 1 l
LOCATION OF THE ADDA
OF THE FIRST OPERAND

LOCATION OF THE ADDA
OF THE 2ND OPERAND

+
INDEX 2ND OPERAND
ADDA WITH (R2) AND
SAVE 2ND EFFECTIVE

OPERAND ADDRESS IN T4

...._
I"'" ,,

ACCESS THE 1ST OPERAND
FROM MEM. USING THE

lST EFFECTIVE OPERAND
ADDA AND SAVE IN T3

•
SAVE BYTE OPERAND

IN T5

•
DECODE JUMP TO

COMPARE BYTE ROUTINE

+
ACCESS THE 2ND OPERAND
FROM MEM. USING THE 2ND
EFFECTIVE OPERAND ADD

R2 AND SAVE THE
BYTE OPERAND IN T2

...._
I"'"

+
COMPARE THE 1ST AND

2N D BYTE OPE RAN OS AND
TRANSFER THE RESULTS
TO THE CONDITION REG.

+
EXIT TO

RNll ROUTINE

043F
0440

BREAK

0441

0443

0444

FRJ

FNJ

032C
032D
032E

BREAK

0346
0347
03ED
03EE

03EF

Fi11ure 3-42. Six-Byte (CBYM) Instruction Flow Diagram

3-59

APPENDIX 3A
MICROi-INSTRUC1 .. ION ASSEMBLY LISTING

The micro-instruction (µI) assembly listing is a sequential
printout of the contents of control storage (CS). It lists all
µl's making up each machine language instruction (MLI),
trap routine, and off-line function initiated from the
System Control Panel. Each CS location is listed in the
printout, even those which do not contain a µI. Such
unused locations are loaded with "O's", except the parity
bit (bit position 8), which is set to "1" to produce odd
parity for the corresponding location. Directions for using
the µI assembly listing to determine how a particular MLI
or trap routine is implemented lby µl's are contained in
the paragraphs titled Implementing MLl's by µl's and
System Reset Operations, respectively. This appendix
discusses the symbols and conventions used in interpreting
the listing. Refer to Figure 3A-1, which shows a typical
page o'f the CS assembly listing, for the locations of the
numbered items described below:

G) PAGE -- This item defines the slheet page of the
assembly listing (not the 256-word physical CS page).
Each sheet page is numbered in consecutive order within
each of the 16 physical pages of CS. Depending on the
amount of explanatory matter on each sheet page, each
physical page may have from 7 to 15 sheet pages.

@ LOCATN - This column lists each 16-bit CS
location in hexadecimal form. Using location 001715 as
an example, each digit of the location number provides
the following information:

0 0 1 7

L
t 'L Location within page

I..________ Page within 4096-word
storage unit

Number of 4096-word
storage unit of CS

@oBJECT - This column lists the contents of each.CS
location in machine coded hexadecimal form (µI object
code).

3A-1

(~A/B - These two columns list the values of the a and
b designators (bit positions 6 and 7) for each µI.

(3) ADDA - This column lists the rightmost two digits
of theµ I object code. Generally, these two digits specify
either the address of a register specified by a RF read, or
BF write µI, or a branch address of a branch µI. In some
cases, however, the listed value indicates a constant to be
operated on by the particular µI. If the ADDA value
specifies a register, the register will be in either the BR F
or ER F, depending on the values of the a and b
designators.

(~SOURCE STATEMENT -This column lists the µI in
mnemonic form (source code) and a source code
equivalent of the corresponding ADDR column entry
(register number, jump address, or constant). To the right
of each µI listed is a short description explaining the
purpose of the µI. Where a register number is listed, it is
indicated with an abbreviation as defined below:

C - Condition register (BRF)

P - P register (BRF)

Tn, On - Transient register n of BR F

M - Register defined by R 1 field of M LI

R - Register defined by R 2 field of M LI

Xn - Register n of ERF Group 11

En - Register n of ERF Group Ill

0 .This column lists the branch address in source code
form corresponding to the CS location in hexadecimal
form as a means of defining the start of a branch routine.
This information is used in conjunction with the table at
the top of the page, which provides a cross-reference of
branch addresses in both source code and object code
form. The first sheet page of each CS physical page
provides similar information regarding the branch
addresses referenced within that physical page.

© This column lists the cumulative results of a
longitudinal parity check performed during a CS scan
operation. Each entry represents the results of the check
up to the corresponding CS location, if no longitudinal
parity errors were detected. This information is used
during maintenance operations to determine the location
at which incorrect data is stored.

(For more details about operand addressing, see the
MEMOREX 7300 Processing Unit Reference Manual.)
These are as follows:

A:B - first operand read direct, second operand
read direct.

@ Refer to the F RJ decode address table in the front
of the assembly listing to find the starting address of the
F R J sequence corresponding to the M LI under
consideration.

(A):B - first operand read indirect, second operand
read direct.

A:(B) - first operand read direct, second operand
read indirect.

@ These conventions specify the four possible
operand addressing modes associated with these MLl's.

(A): (B) - first operand read indirect, second
operand read indirect.

06 /30/7 2 PAGE 002 lb

OR14 AOOK OlC? CAA OlCF CAA 01 [)') CAC 01 F5 CHG CD
01 F6 CBH 01F9 CAN OlOA CAW OlAF CRX OAOO CMPK
OlAA CMPX 0120 IHOXT 05RF DIVK OARA OSCRO 0462 FDTX
OlFO ERREPC 0032 E12 0192 MnVL Ol9E MOVLA OlAP MOVLR
0173 Mnvx 0178 MOVXA 017E MOVXA 0184 Mnvxc 0186 MfJVXD
0191 MOVXE 05AF MPYK 0122 OFF 0169 OTHER OA3P· PAKX
0010 SAVEPC 0811 SUBK 0509 TRNX 05RF UNDEF OIBR IJNPX
OHOO ZAOK

LOCATN ORJECT A A AODR SOURCE STA TF.MENT MODfL C MICRO ASSMBLY

® @) © ® ®
71 .lllNF 17

ORG 100

nSCRn EOtJ AAA
FDTX EOU 462
PAKX EOU A3A
UNPX EOIJ A3A
CMPK F.011 AOO
TRNX EOU 509
UNDFF EOU 5AF
ZADK EOll 800
ADnK EOU 814
SllRK EOU All
MPYK EOU 5RF <UNOEFI
OIVK EOU 5AF <UNDEFI

*
* CONSOLE FUNCTION ENTER

* 0100 3BOA OA LS2 XlO LOAD ADDRESS FROM CONSOLE ADDRESS RFG (Ml 3BOA
0101 B8B OA LOW Xll LOA!) DATA FROM CONSOLE DATA REG CNI 4881
0102 230A OA SllM XlO INCREMENT ADDRESS 6B8B

* CONSOLE FIJNCTIDM SWEEP

* 0103 3BOA OA LS2 XlO LOAD ADDRESS FROM CONSOLE ADDRESS REG (Ml 5081
0104 ?30A OA SllM XlO INCREMENT ADnRESS 7388
0105 431HI OB snw Xll STnRF DATA IN CONSOLF nATA REG CNI 3000

*
* CONSOLE FllNC TI ON REGISTER FILE WRITE

* 0106 030A OA LAW XlO LOAD REGISTER HUMP.ER FROM CONSOLE ADDR REG (M) E30A
0107 1708 08 STA XR STORE JN BOUNOllRY CROSSING REGISTER (8CI F402
0108 6308 OB LAW Xll LOAO CONTENTS OF CONSOLE DATA REG I NI 9709
0109 F490 I VK INVOKE AOUNOARV CROSSING MODE 6399
OlOA 1880 0 0 00 STA 0 STORE nATA IN REGISTER 7819
OlOB F400

G)
RVK REVOKE AOUNDARV CROSSING MOOE 8Fl9

* * * * * * * * • * * * * * * * * * * • • '°' * * * ®

Figure 3A-1. Typical Page of CS Assembly Listing .

3A-2

ABAND
ALU
AM
AT
B/A
BC
BKPT
BLK
BM
BRF
BRFS
BUFF
cc
CG
CHK
CIN
CLK
CLR
CR
CRIN
cs
css
DISPY
DRBO
ECC
EN
EN CAM
ENDO
ENRAM
EN SAM
ENT
EOR
EQT
EO
ENRSYCL
ERF
ERFG2
EXEC
EOXX-E
EOXX-L
FB
FF
FM1
FM2
FR
FRJ
FXEO

APPENDIX 38
LOGIC SIGNA,L NAME ABBREVIATIONS

Abandon
Airthmetic-Logical Unit
Aµ register
Address Table
Busy I Active
Boundary Crossing
Breakpoint
Block
Bµ register
Basic Register File
Basic Register File Select
Buffer
Consecutive Cycles
Constant Generator
Check
Carry In
Clock
Clear
Control register
Carry In
Control Storage
Control Store Scan
Display
D register Byte 0
Error Correction Code
Enable
Enable Clock Aµ
End Out
Enable Reset Aµ
Enable Set Aµ
Enter
Exclusive - 0 R
End of Transmission
Equal
Enable Resync FF Clear
Extended register
Extended Register File Group 11
Execute
EO Minor Cyclu, Early
EO Minor Cyclu, Late
F Buffer register
Flip-flop
Fµ register, Rank 1
Fµregister, Rank 2
F register
Format Jump
Fµ Translation Equals (example:
FXE0-6 means translation of µI whose

38-1

GC
GEN
GP
GT
ICA
ICRA
IFA
INVERF
IOR
JMP
JP
LO
LT
MC
MR
MS
SMI
NR
ov
PB
PE
PM

Pp
PR
PROP
RD
REO
RF
RNI
RTC
RO

SELFH/PL
SN
SOPXEO

SPEC
SR
STD BYTE
SW
S1,S2,S3
TB
TBIT
WR
XTAL
ZR

operation code is 6)
Group Carry
Generate
Group
Greater Than
Integrated Communications Adapter
Integrated Card Reader Adapter
Integrated File Adapter
Invoke Extended Register File
Inclusive - OR
Jump
Jump
Load
Less Than
Master Clear
Console Address register
Main Storage
MS Interface
Console Data register
Overflow
P Buffer register
Parity Error
Pµ register
P Pointer register
Privileged register
Propagate
Read
Request
Register File (either BRF or ERF)
Read Next Instruction
Real Ti me Clock
Register Option

Select F if High or Pµ if Low
Shift Network
Sub-op Code Translation Equals
(example: SOPXE0-0 means
translation ofµ I whose sub-op code is
0)
Specified, Special
S register
Store D Byte
Switch
Select 1, Select 2, Select 3
Tie Breaker
Toggle Bit
Write
Crystal
Zero

a and b designators, use in
Load B Bit µl's 2-206
selecting BRF register 2-84

Aµ register
description 2-183
fan-in 2-183

Basic Register File
addressing 2-84
data path

read µl's 2-7
writeµl's 2-7

individual register assignment
bit sense µI

description
execution
flow diagram

3-14
2-213

3-40
blockpoint (BP) µI

implementing BP feature
purpose 3-2

Boundary-Crossing (BC) register
description 2-90
use in selecting registers

µI control
BRF 2-84
ERF Group I 2-92
ERF Group II 2-96

2-73

ERF Group 111 2-98
Panel Control 2-242

BRF
(see "Basic Register File")

Busy/Active (B/A) register
description 2-88
set/clear conditions 2-19

Condition register 2-83
Console Data register

description 2-90
use during Panel operations

CS load 2-253, 2-255
CS scan/read 2-233
CS write 2-237
register display 2-261
RF read/write 2-242

Console Address register
description 2-90
use during panel operations

CS disc command load 2-253
register display 2-261
RF read/write 2-42

Control register

2-82

CC bits used to specify CC mod<e 2-31
description 2-90

INDEX

Control Storage
access inhibited 2-58
address format 2-58
longitudinal parity check

(see "CS scan")
page organization 2-55
parity error

address generation
status bit in Pµ

read 2-231
scan 2-33
write 2-237

common-block registers

2-77
2-88

(see "Extended Register File, Group 11")
consecutive-cycle (CC) mode

conditions for entering 2-31
conditions for leaving 2-34

cs
(see "Control Storage")

E:xtended Register File
Group I

addressing 2-92
individual register assignment
µI data path

read 2-7
write 2-7

Group 11
addressing 2-96
data path, µI 2-7
individual register assignment

Group Ill

addressing 2-98
data path, µI 2-8

2-85

2-85

individual register assignment 2-92
write fan-in 2-73

ERF
(see "Extended Register File")

feeder load µl's
delay of following µI 2-49
description 3-2

FNJ/F RJ µ1 's
descriptions 3-16
execution time anomaly

EO through E5 2-40
E6, E7 2-40

flow diagrams 3-42, 3-43, 3-44
jump address decode

FNJ µI 2-63
FRJ µI 2-176

use during M LI routine selection 2-8, 3-53

FR F register
EP/IP bits used to specify priority mode 2-25 contents used to address F RJ decode address

1-1

INDEX (Cont)

table 2-176
description 2-85

Fµ register

clocking
block during idle/resync condition 2-52
relative to Aµ/Bµ clock 2-2
relative to Sµ clock 2-2
description 2-59

invoke/revoke mode
(see "Boundary-Crossing register use in selecting
register")

JMP µI
execution time anomaly 2-40
jump address decode 2-65

Link (LK) status bit
contained in Pµ register
contained in Sµ register

master clear
(see "system reset")

micro-instruction (µI)

formats 3-1
overlap feature 2-2

translation 2-63

2-88
2-66

(also see headings related to a particular µI and
characteristics such as "block point µI")

minor cycle
generation by E-pulse timing
relation to µI execution times

Main Storage
reference

µI data path 2-8
MS

(see "Main Storage")

Overflow (OV) status bit
contained in Pµ register
contained in Sµ register

parity error address (PE) register
description 2-90

P register 2-84

Pb register
description 2-69

2-13

2-88
2-66

2-7

use with Pb to store starting 2-76
µI address

Pp register
description 2-70
use with Pb to store starting 2-76

µI address

1-2

priority logic
(see "time slice allocation")

Pµ register

description 2-85

written into from Pr/Pb
at end of time slice

read-time clock (RTC)
pulse generation 2-16
register description 2-88

re!Jister

2-73

(see register wanted, also see "register file", "Basic
Register File" and "Extended Register File")

re·~ister file (1)
access capability/limitations 2-99
read from Panel 2-242
read µl's

description 3-9
execute portion ti me

write from Panel
write µl's

description 3-12

2-2

execute portion time 2-2
(also see additional headings "Basic Register File" and
"Extended Register File")

resync µI
condition generated 2-52
description 3-3

RO/R 1 cycles
operations performed during 2-2
generation of 2-92

SkipµI
descriptions 3-15
executed at EO through E6 2-36
executed at E7 2-36
flow diagrams 3-41
status bit location in Pµ 2-88

shared resources
block diagram description

shift µI
description 3-13
execution
flow diagram

status bits

2-216
3-39

(see particular bit wanted)

system reset

2-1

operations performed 2-47
power-on condition from power sequence

control 2-251
Sµ register

clocking
blocking conditions 2-66

relative to Fµ clock 2-2
description 2-66
fan··in 2-66

Sµ + 1 adder 2-69

Tie-Breaker (T) register 2-88
time slice

allocation
consecutive-cycle mode 2-29
examples of during various modes
interruption by REFRESH request
normal (scanner) mode priority mode

enable 2-25
invoke 2-25

control logic 2-27
timing

CLK pulse 2-13
constraints during µI exec 3-3:
E pulse
major cycle duration

MS reference 2-15
non-MS reference 2-15

TX pulse 2-13

WO/W1 cycles
generation of 2-92
operations performed during 2-2

INDEX (Cont)

2-27
2-25

2-25, 2-29

1-3

COMMENTS FORM

I 7300 Processing Unit Design Description Manual Volume 11:
Shared Resources (2501.002)

Please send us your comments, to help us produce better publications. Use the space below to
qualify your responses to the following questions, if you wish, or to comment on other aspects of
the publication. Please use specific page and paragraph/line references where appropriate. All
comments become the property of the Memorex Corporation.

• Is the material: Yes No

Easy to understand? 0 0

Conveniently organized? 0 0

Complete? 0 0

Well illustrated? 0 0

Accurate? 0 0

Suitable for its intiended audience;> 0 0

Adequately indexud? 0 0

• For what purpose did you use this publication (reference, general interest, etc.)?

• Please state your department's function:---·-----------------

Please use the space below to describe any specific comments which you feel will help us to

produce a better publication. --------~----------------~

Business Reply Mail

No Postage Necessary if Mailed in the United States

Postage Will be Paid By

Memorex Corporation

Santa Clara Publications
Mail Stop 00-21
1200 Memorex Drive
Santa Clara, California 95052

First Class

Permit No. 250

Santa Clara

California 95050

.. ~

e a • • •• e e • e e e e e e e e • e • e e e •• a a e e e e e e e a e •• e e e e • e e • e • e a e a e e e e e e • e • e e e e e e e e e • e e A e e e e e e e e a e e e e e e • a e a e e a e e a 9 e • e e e e e • e e • e e e •• • • a e

Thank you for your information

Our goal is to provide better, more useful manuals, and your
comments will help us to do so .

...................... .\llemorex Publications

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	2-001
	2-002
	2-003
	2-004
	2-005
	2-006
	2-007
	2-008
	2-009
	2-010
	2-011
	2-012
	2-013
	2-014
	2-015
	2-016
	2-017
	2-018
	2-019
	2-020
	2-021
	2-022
	2-023
	2-024
	2-025
	2-026
	2-027
	2-028
	2-029
	2-030
	2-031
	2-032
	2-033
	2-034
	2-035
	2-036
	2-037
	2-038
	2-039
	2-040
	2-041
	2-042
	2-043
	2-044
	2-045
	2-046
	2-047
	2-048
	2-049
	2-050
	2-051
	2-052
	2-053
	2-054
	2-055
	2-056
	2-057
	2-058
	2-059
	2-060
	2-061
	2-062
	2-063
	2-064
	2-065
	2-066
	2-067
	2-068
	2-069
	2-070
	2-071
	2-072
	2-073
	2-074
	2-075
	2-076
	2-077
	2-078
	2-079
	2-080
	2-081
	2-082
	2-083
	2-084
	2-085
	2-086
	2-087
	2-088
	2-089
	2-090
	2-091
	2-092
	2-093
	2-094
	2-095
	2-096
	2-097
	2-098
	2-099
	2-100
	2-101
	2-102
	2-103
	2-104
	2-105
	2-106
	2-107
	2-108
	2-109
	2-110
	2-111
	2-112
	2-113
	2-114
	2-115
	2-116
	2-117
	2-118
	2-119
	2-120
	2-121
	2-122
	2-123
	2-124
	2-125
	2-126
	2-127
	2-128
	2-129
	2-130
	2-131
	2-132
	2-133
	2-134
	2-135
	2-136
	2-137
	2-138
	2-139
	2-140
	2-141
	2-142
	2-143
	2-144
	2-145
	2-146
	2-147
	2-148
	2-149
	2-150
	2-151
	2-152
	2-153
	2-154
	2-155
	2-156
	2-157
	2-158
	2-159
	2-160
	2-161
	2-162
	2-163
	2-164
	2-165
	2-166
	2-167
	2-168
	2-169
	2-170
	2-171
	2-172
	2-173
	2-174
	2-175
	2-176
	2-177
	2-178
	2-179
	2-180
	2-181
	2-182
	2-183
	2-184
	2-185
	2-186
	2-187
	2-188
	2-189
	2-190
	2-191
	2-192
	2-193
	2-194
	2-195
	2-196
	2-197
	2-198
	2-199
	2-200
	2-201
	2-202
	2-203
	2-204
	2-205
	2-206
	2-207
	2-208
	2-209
	2-210
	2-211
	2-212
	2-213
	2-214
	2-215
	2-216
	2-217
	2-218
	2-219
	2-220
	2-221
	2-222
	2-223
	2-224
	2-225
	2-226
	2-227
	2-228
	2-229
	2-230
	2-231
	2-232
	2-233
	2-234
	2-235
	2-236
	2-237
	2-238
	2-239
	2-240
	2-241
	2-242
	2-243
	2-244
	2-245
	2-246
	2-247
	2-248
	2-249
	2-250
	2-251
	2-252
	2-253
	2-254
	2-255
	2-256
	2-257
	2-258
	2-259
	2-260
	2-261
	2-262
	2-263
	2-264
	2A-1
	2A-2
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-42
	3-43
	3-44
	3-45
	3-46
	3-47
	3-48
	3-49
	3-50
	3-51
	3-52
	3-53
	3-54
	3-55
	3-56
	3-57
	3-58
	3-59
	3-60
	3A-1
	3A-2
	3B-1
	3B-2
	I-1
	I-2
	I-3
	I-4
	replyA
	replyB

