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This documentation set contains the following three documents: 

• The CS-2 Communications Network. 

Overview of the CS-2 data network. Compares the CS-2 network with other net­
work types (logarithmic, ring etc.), and describes the benefits of Meiko's imple­
mentation. 

• The CS-2 Communications Processor. 

Overview of the Meiko Elan communications processor, listing design objectives 
and implementation decisions. 

• The CS-2 Vector Processing Element. 

Overview of the Meiko vector processing boards describing the hardware archi­
tecture, the Fujitsu JlVP and SPARC processors, and compiler technology. 
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1 

GENERAL DESCRIPTION 

Effective cooperation between processing elements (PEs) is a crucial. factor in 
detennining the overall sustained perfonnance of a Massively Parallel Processing 
(MPP) system. 

In designing the CS-2 architecture, Meiko has concentrated on minimising the 
impact of sharing work between processors. The effect of this is to increase the 
number of processors that can be effectively used to solve a problem, improving the 
perfonnance of existing parallel programs, and making parallel processing effective 
for a significantly wider range of applications. 

Every processing element in a CS-2 system has its own, dedicated interface to 
the communications network: a Meiko designed communications processor. The 
communications processor has a SPARC shared memory interface and two data links, 
these links connect the communications processors to Meiko designed cross-point 
switches. 

This document provides an overview of the design of the communications network. 
For more infonnation about the architecture of the communications processor see 
Overview of the CS-2 Communications Processor. 

1.1 Network Characteristics 

meJ<o 

The design of the CS-2 data network builds on Meiko's considerable expertise in the 
field of MPP systems. From the outset the communications network was designed 
with several key characteristics in mind: 

• Full connectivity. 
• Low latency. 
• High Bandwidth. 
• Fault tolerance. 
• Deadlock freedom. 
• Scalability. 
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1.1.1 Full Connectivity 

Every processing element (PE) has the ability to access memory on any other PE. 
Messages pass from the source to destination PEs via a dynamically switched network 
of active switch components. The network is fully connected, allowing a machine 
with n PEs to sustain n simultaneous transfers between arbitrarily selected pairs of 
PEs at full bandwidth. 

The communication network. does not use the PEs as part of the network, only as 
gateways on to it. This ensures that node resources (such as CPU and memory 
bandwidth) are not affected by unrelated network traffic. 

1.1.2 Low Latency 

Inter-process communications latency has two components, start-up latency which 
is coverered in "Overview of the CS-2 Communications Processor" and network 
latency. The CS-2 communication network is designed to minimise and hide network 
latency. Wormhole routing is used to reduce the latency through each switch stage, 
and the overall network topology is designed to minimise the number of stages 
through which a message passes. The low level communication protocols allow 
overlapped message acknowledgements, and the message packet size is dynamically 
adjusted so that it is always sufficient for full overlapping to occur. 

CS-2 communications start-up latency are less than 10jl.s, network latencies are less 
than 200ns per switch. 

1.1.3 High Bandwidth 

The communication bandwidth in an MPP system should be chosen to give an 
appropriate compute communications ratio for current PE technology. The network 
design should ensure that additional bandwidth can be added to maintain the 
compute/communication ratio as the performance of the PEs improves with time. 
Although the actual required compute/communications ratio is application specific, 
the higher the network bandwidth the more generally applicable the MPP system will 
be. 

CS-2 data links are byte wide in each direction and operate at 70MHz. Usable 
bandwidth (after protocol overheads) is 50 MBytes/s/link in each direction. Bi­
sectional bandwidth of the CS-2 network increases linearly with the number of PEs. 
A 1024 PE machine has a bisectional bandwidth of over 50 GBytes/s. 
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1 General Description 

1.1.4 Fault Tolerance 

The network for a very large MPP system will of necessity consist of a very large 
number of components. Moreover for large systems a significant number of cables 
and connectors will be required. Under these circumstances reliability becomes a 
major issue. Tolerance to occasional failures by the provision of multiple routes 
through the network is desirable for small systems, and essential for very large 
systems. 

CS-2 systems have two fully independent network layers and each PE is connected to 
both layers. In addition each layer provides multiple routes between each arbitrarily 
selected pair of PEs. The hardware link protocol uses Cyclic Redundancy Checks 
CCRCs) to detect errors on each link; failed transmissions are not committed to 
memory, but cause the data to be resent. All network errors are flagged to the system 
administrator; permanently defective links can be removed from service. 

1.1.5 Deadlock Freedom 

Routing through multistage networks is essentially a dynamic resource allocation 
problem and, because multiple PEs are attempting to acquire sets of route hops 
simultaneously, there is the potential for deadlock. The most common deadlock 
avoidance strategy is always to allocate resources in a fixed order. With wormhole 
routing, since the resources are allocated as the message wonnholes through a 
network, this affects routing strategy for a given topology. For example in a 
hypercube or a grid, deadlock free routing is possible by ensuring that a PE routes 
by resolving the address one dimension at a time in ascending order. Note: that this 
actually removes the fault tolerance of the network; between PEs that differ by more 
than one dimension there are many possible routes, but only one can be used without 
risk of deadlock. 

1.1.6 Scalability 

The requirement for scalability within a network is one of the most difficult to achieve 
in actual systems. The three factors that need to be considered are, growth in network 
latency with scaling, growth in network cost, and growth in bisectional bandwidth. 
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The scalability properties of various network topologies are: 

Type Number of Number Latency Bisectional 
Switches of Links bandwidth 

Ring N N N-l 2 

d dimensional grid N dN d@ ifN 

Arity d Omega net Nlogd N dNlo~dN /ogdN N 
2 

Arity d Benes net 2NlogdN dNlogd N 210gdN N 

Crosspoint N2 N2 1 N 

Where N is the number of processors in the machine, Number of links is the total 
number of connections between switches. Latency is the worst case number of 
switches which must be passed through. and Bisectional bandwidth is the worst case 
bandwidth between two halves of the machine. 

For scalability it is essential that the bisectional bandwidth of the machine increases 
linearly with the number of processors. This is necessary because many important 
problems cannot be parallelised without requiring long distance communication (for 
example, FFf, and matrix transposition). 

The cost (both in switches and wires) of a full crosspoint switch increases as the 
square of the number of processors. Adoption of this network therefore leads to a 
machine in which switch and wire costs rapidly dominate when significant numbers of 
processors are used. For the logarithmic networks the switch and wire costs increase 
only logarithmically faster than the number of processors. It is therefore possible to 
build machines which contain significantly more processors before the switch costs 
dominate and the machine ceases to be cost effective. 

The crosspoint has the advantages of contention freedom and constant network 
latency for all routes. However, although the worst case latency in a logarithmic 
network increases slowly with the number of processors, they can be arranged so as 
to ensure that this increase only occurs when long distance communication is required 
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I General Description 

- perfonnance is not dependent upon exploiting locality of reference, but doing so is 
beneficial. 

The arity of the logarithmic network is the size of the crosspoint switch from which 
the network is built. So if the crosspoint is built from 2 x 2 switches it will have 
arity of 2. The choice of switch arity is highly influenced by the available packaging 
technology, since given a limited number of pins to connect into a switch there is a 
reciprocal relationship between the arity of the switch and the number of wires in 
each link. As the bandwidth of a link is directly related to the number of wires over 
which it is carried, this translates into a choice between a high arity switch which can 
switch many low bandwidth links, or a low arity switch for few high bandwidth links. 

1.2 Logarithmic Networks 
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In order to analyse the CS-2 network it is useful to understand the characteristics of 
the Benes and Omega networks. 

The main attraction of the Benes network is that it can be proved to have equivalent 
functionality to a full crosspoint (see Hockney and Jesshopet for a review) - any 
pennutation of inputs can be connected to any pennutation of outputs without 
contention. There are also multiple routes between any input-output pair. Calculating 
the routing to ensure that the routes are allocated without congestion for any given 
pennutation is, however, a non-trivial problem. 

This problem has been solved for a number of interesting special cases 
communication patterns: rings, grids, hypercubes etc. There has also been extensive 
simulation of these networks under a wide variety of loadings. 

t R.WHockney & C.RJesshope. Parallel Computers 2. Pub. Adam Hilger. 
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Fig. 1.1 16 processor Benes network 

In an Omega network there is only one possible route for each input-output pair. Not 
all possible permutations are possible without blocking, although common geometric 
patterns such as shifts and FFf butterflies can be shown to be contention free. 

Fig. 1.2 16 processor Omega network 
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THE CS-2 COMMUNICATIONS 
NETWORK 

CS-2 uses a logarithmic network constructed from 8 way crosspoint switches (see 
section 3.2 for details of their implementation) and bi-directionallinks. 

For the purposes of this analysis it can be considered to be a Benes network folded 
about its centre line, with each switch chip rolling up the functionality of eight of the 
unidirectional two way switches. 

Bandwidth is constant at each stage of the network, and there are as many links out 
(for expansion) as there are processors. Larger networks are constructed by taking 
four networks and connecting them with a higher stage of switches. A 16 processor 
network is illustrated in figure 2.1. 

Fig. 2.1 

meJ<o S1002-10M105.03 

One layer of a 2-stage CS-2 network. 16 processors are connected to 
stage 1, 16 links connect stage 1 to stage 2 and 16 links are available 
for expansion. 

Processors 0 - 1 5 

2.1 
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The scaling characteristics of the CS-2 network are shown in the table below; note 
that the latency is measured in switch stages for a route which has to go to the highest 
stage in the network. 

Processors Stages Total Switches Latency 
4 1 1 1 

16 2 8 3 
64 3 48 5 

256 4 256 7 
1024 5 1280 9 
4096 6 6168 11 

One aspect of implementing the network using bidirectional switches is that routes 
which are relatively local do not need to go to the high stages of the switch hierarchy. 
So, for example, a communication to a PE which is in the same cluster of 16 
processors only needs to pass through 3 switches irrespective of the total network 
size. 

To broadcast to a range of outputs it is necessary to ascend the switch hierarchy to 
a point from which all the target PEs can be reached. From this point the broadcast 
then fans out to the target range of processors. 

2.1 Comparison With Fat-Tree Networks 

2.2 

The multistage network used in the CS-2 machine can also be considered as a "fat 
tree". In figure 2.1 we see that for each of the higher layer switches has identical 
connections to the lower stages. If this is simply redrawn as shown in figure 2.2 we 
get the "fat tree" structure. 

In fat trees packets do not always have to go to the top of the tree; packets are routed 
back down at the first node possible. This means that for problems which have locality 
of reference in communications, bandwidth at higher levels of the tree can be reduced. 
Exploiting the benefits of locality by reducing upper level network bandwidth has the 
effect of making process placement more significant. Although the CS-2 network 
pennits this local packet routing, the bandwidth is not reduced in the higher level. 
This preserves the properties of Benes and Omega networks. 
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2 The CS-2 Communications Network 

Fig. 2.2 One layer of a 16 processor CS-2 network drawn as a fat tree 

Further properties of "fat trees" are described by Leiserson t. 

2.2 Characterising a CS-2 Network 

Logarithmic, or multi-stage, switch networks are described in a variety of ways by 
different people. The scheme used by Meiko is outlined below. 

For a machine with N processors the size of its network is defined by one parameter: 
size. The position of a processing element is defined by two parameters: level and 
network id. The position of a switch in the network is defined by four parameters: 
layer, level, network id, and plane. 

Every processor in a (complete) network is connected via a data link to a switch in 
the lowest stage, these switches are then connected to higher stages, etc and N links 
emerg from the top of the network. These links can be used to connect to further 
stages, or if we forgo the ability to expand they can be used to double the size of the 
network without introducing an extra stage (see figure 2.3). 

t C.E.Leiserson. Fat-Trees: Universal Networks/or hardware-Efficient Supercom­
puting. IEEE Transactions on Computers, Volume C-34 number 10 (Oct. 1985). pp 
892-901. 
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Fig. 2.3 Doubling the size of a CS-2 network 

We use a binary fonn for network size, equal to the number of bits in the network 
id of the lowest processor in the network. This is used because the top stage of the 
network can use either 4 or 8 links. 

A network has L size /2 J stages, indexed by the parameter level. The top stage is O. The 
deepest processors in the network have level = size. A network supports between 
2"ize-2 + 1 and 2"ize processors. Note: it is not necessary for the switch network to 
be complete. Figure 2.4 illustrates a network of size 6. 

Fig. 2.4 One layer of 64 processor (size 6) CS-2 network 

There are a variety of ways of drawing these networks (see the "CS-2 Product 
Description" for two other examples). To draw (or manufacture !) them without 
crossing data links you need one more dimension than there are stages in the network. 
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2 The CS-2 Communications Network 

A CS-2 machine has 2 completely independent identical switch networks. These 
networks are indexed by the parameter layer. Processors are connected to both layers, 
switches are in one layer or the other. 

The position of each processing element is uniquely determined by its network id 
and level, which describe the route to it from all points at the top of the network 
(level = 0). Routes down are written <0-7>.<0-3>.<0-3> ... working down from the 
top of the network. Each digit represents the output link used on a network switch. 
For example, in figure 2.4 processor 0 has route 0.0.0, and processor 17 has route 
1.0.1. Note that the route is the same for all starting points at the top of the network 
Network ids of communications processors Oeaves of the network) are sometimes 
called elan ids. 

Each stage of the switch network has 2size-2 switches, and 21evel distinct routes from 
the top of the network. The network id of a switch indexes the distinct routes within 
each level. Within each stage there are 2size-level-2 switches with the same route 
from the top of the network Plane indexes these points. 

Sl002-10MI05.03 2.5 



3 

NETWORK IMPLEMENTATION 

The CS-2 communications network is constructed from a VLSI packet switch ASIC 
- the Elite Network Switch. Interfacing between the network and the processors 
is perfonned by a second device, the Elan Communications Processor. Switches 
are connected to each other and to communications processors by byte wide bi­
directional links. 

3.1 The Link Protocols 
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The choice of a byte wide link protocol is dictated by a number of factors. The link 
must be wide enough to meet the bandwidth requirements of the processor, but must 
not be so large that the number of I/O pins on the devices becomes prohibitively large. 
The implementation that Meiko selected uses 20 wires for each bidirectional link, 10 
in each direction. When clocked at 70 MHz this yields a bandwidth of 50 MBytes/s 
(after allowing for protocol overheads) in each direction. This level of perfonnance 
and the underlying protocol fonnat is appropriate for optic fibre communication over 
long distances (the link can be converted to a 630 MHz data stream). 

The use of bidirectional links pennits flow control and acknowledge tokens to be 
multiplexed on to the return link. The low level flow control allows buffering of the 
data at the line level so that communications clock frequencies in excess of the round 
trip delay can be used. The interface is asynchronous and is tolerant to a 200ppm 
frequency difference between the ends. This means that each end can have its own 
clock, substantially simplifying construction of large systems. 
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3.2 The Meiko Elite Network Switch 

The Elite switch is capable of switching eight independent links, each byte wide. 
The switch is a full crosspoint, allowing any pennutation of inputs and outputs to 
be achieved without contention. For each data route through the switch a separate 
return route exists, ensuring that acknowledgements are never congested by data on 
the network. 

The switch component contains a broadcast function that allows incoming data to 
be broadcast to any contiguous range of output links. The switch contains logic to 
recombine the acknowledge or not-acknowledge tokens from each of the broadcast 
destinations. To allow broadcasts to ranges of outputs over multiple switches the 
switch topology must be hierarchical. 

Fig. 3.1 Meiko Elite network switch 

--+- 9 bit wide Data route & Control 

---. PAck route & Control 
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3 Network Implementation 

The data passing through a switch is CRC checked at each switch. If a failure 
is detected, the message is aborted, an error count is incremented, and the packet 
is negatively acknowledged. This ensures that incorrect data is removed from the 
network as soon as possible. 

Routing within the switch is byte steered. On entry into a switch the first byte of 
any packet is interpreted as the destination output or range of outputs. This byte is 
stripped off within the switch so that the next byte is used for routing in the following 
switch. The latency through each switch device is 7 clock cycles for outgoing data, 
and 5 cycles for returning acknowledge tokens. The switch contains no routing tables 
of any sort. The translation between destination processor and route infonnation is 
perfonned entirely on the communications processor, where it can be more easily 
modified or updated. 

Although the switch component is an 8 x 8 crosspoint, the use of bi-directionallinks 
means that for the purposes of constructing logarithmic networks the effective radix 
is 4. 

Each switch has a perfonnance monitoring and diagnostic interface connected to the 
CS-2 control network. This allows collection of statistics on error rates and network 
loading. 

3.3 Routing Algorithms 
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Although the CS-2 data network can have the congestion properties of a full 
crosspoint, but achieving this requires allocation of routes in a non-contending 
fashion. In the CS-2 network the route is pre-detennined by the communications 
processor. By storing the route infonnation in the Elan it becomes easier to change 
the routing algorithm, due to machine reconfiguration or link failure for example. 

The translation from a processor address to network route is handled in the 
communications processor by a look-up, the table is stored in the memory of the 
PE and indexed by destination processor. Each table entry contains four alternative 
routes to the destination processor, one of which is selected. The specification of 
alternative routes allows the even distribution of traffic throughout the network, 
although all four routes may be identical when this is undesirable. Each PE maintains 
its own look-up table which may be different to the others, thus enabling any function 
of source/destination addressing to be used from. 

One simple routing function is to direct all data for the same destination processor 
through a single switch node at the top of the hierarchy. This allows the network to 
perfonn two functions: data distribution, and distributed arbitration for use where 
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many senders wish to communicate with the same processor simultaneously. By 
adopting this strategy we ensure that if blocking does occur, it does so as soon as 
possible, and consumes little of the network resource. Using this simple algorithm 
has the effect of reducing the network to an Omega network - essentially the second, 
return part, of the network is guaranteed non blocking, and perfonns a simple data 
ordering operation. By virtue of its similarity to an Omega network, this network will 
be non-blocking for arbitrary shifts and FFf style pennutations. 

Fig. 3.2 Shift by 5 on a 16 processor CS-2 network 

The programmable nature of the CS-2 communication network allows users (who 
are so inclined) to design their own routing algorithms. This permits optimisation 
of routing for specific traffic patterns or study of the effect of routing strategy on 
network perfonnance. 
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CONCLUSIONS 
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The CS-2 network provides a flexible solution to the problem of connecting 
together large numbers of processing elements. The network can provide equivalent 
perfonnance to a full crosspoint, but can be simplified where this level of interconnect 
is not required. The combination of Meiko Elan and Elite network technology allows 
considerable flexibility in the choice of routing algorithm. 

The communications co-processor uses a lookup table to map abstract processor 
addresses to switch network routes. By maintaining the lookup tables within the 
PE memory they are easier to modify to reflect changing workload or network 
failures. By maintaining separate lookup tables on each communications processor, 
any function of address mapping may be implemented. The Elan communications 
processor acts as a gateway into the CS-2 switch network. 

The Elite network switch is a full 8 x 8 crosspoint switch. It is the fundamental 
building block of the CS-2 communications network. The route through the switch is 
detennined by the header byte of each incoming message. Headers are added by the 
communications processor and removed by the switch as the message passes through 
it. In addition to a direct mapping from input link to output link, the switch supports 
broadcast and combining operations by mapping a single input to a contiguous range 
of outputs. 
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OVERVIEW 
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Effective cooperation between processing elements is a crucial factor in detennining 
the overall perfonnance of an MPP system. Maintaining effective inter-processor 
communication as a system scales in size is a vital aspect of preserving balance. 

In designing the CS-2 architecture Meiko has concentrated on minimising the impact 
of sharing work between processors. The effect of this is to increase the number of 
processors that can be used effectively to solve a problem, improving the perfonnance 
of existing parallel programs and making parallel processing efficient for a wider 
range of applications. 

Every processing element in a CS-2 system has its own, dedicated interface to 
the communications network: a Meiko designed communications processor. The 
communications processor has a SPARC shared memory interface and two data links. 
Data links are connected by Meiko designed 8 x 8 cross-point switches. Data links 
are byte wide in each direction and operate at 70MHz, providing 50 Mbytes/s of user 
bandwidth in each direction. 
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Fig. 1.1 The Elan Communications Processor 

System Clock Domain 

Reply Thread 

Input 0 Input 1 

OMA 

Internal 
Memory 

Command 

Output 

The communications processor supports remote read, write and synchronisation 
operations specified by virtual processor number and virtual address - both are 
checked in hardware. Latency hiding is supported by non-blocking instructions, 
instruction sequences and completion tests. 

This document provides an overview of the design of the communications processor 
and its usage. For more infonnation about the architecture of the data network see 
the CS-2 Communications Network Overview. 
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EFFICIENT INTER-PROCESSOR 
COMMUNICATIONS 

meJ<o 

In a distributed memory system, work is shared between processors by exchanging 
data over a communications network. The efficiency of data exchange controls the 
effectiveness of work sharing and hence the number of processors that can be used 
on a given problem. 

Rather than design a new processor with built in communications capability Meiko 
chose to separate the issues in the design of the CS-2. Processing elements consist 
of a high performance RISe CPU (with optional vector processing capabilities) and 
a dedicated communications processor. 

The interface between the communications processor and the rest of the processing 
element is central to the efficiency of the CS-2 network. It provides the following 
essential features: 
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• Low communication start-up latency. 

• High bandwidth inter-processor communication .. 

• Security against corruption. 

• Operation in a network-wide virtual addressing, 
virtual process environment. 

2.1 
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2.1 Latency and Bandwidth 

2.2 

Efficient inter-processor communication requires both low latency and high 
bandwidth. While solutions to the bandwidth problem can be addressed by ever 
improving hardware technology, these improvements only exacerbate underlying 
latency problems. 

To show that this is the case consider a system with a communications start-up latency 
of lOlls. To transfer a 100 byte message via a 1 Mbyte/s network we will get an 
achieved bandwidth of 0.9 Mbytes/s (90% efficiency). For the same transfer over a 
50 Mbytes/s network, the achieved bandwidth is just 8.3 Mbytes/s (16% efficiency). 
Clearly the improvements in bandwidth for this example system have been severely 
limited by the start-up latency and the size of the data transfer. 

By using a dedicated communications processor Meiko have reduced start-up latency 
by implementing in hardware the communications code that would normally execute 
on the main processor. 

The data links joining communications processors and network switches are byte 
wide in each direction. Links are clocked at 70MHz. Their bandwidth after protocol 
is 50MBytes/s in each direction. The CS-2 data network is a fat tree with constant 
bandwidth between stages. It is capable of supporting full bandwidth transfers 
between all pairs of processors (see the CS-2 Communication Network Overview for 
more details). 

Moving communications code from the main processor to a communications engine 
does not in itself reduce latency. Performance improvements come from running the 
right code in the right places. In particular there are significant benefits to be had from 
moving the lightweight interrupt intensive operations associated with inter-process 
communication off a conventional microprocessor and onto a communications 
processor designed specifically for this purpose. 
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2 Efficient Inter-processor Communications 

2.2 Network Security 

The CS-2 communications network is shared by both user and system level 
communications so it is vital that a security mechanism is used to prevent unrelated 
communications from interacting. To relieve the burden of checking from the 
main processor and to reduce start up latency, the main processor issues unchecked 
communication instructions to the communications processor, the communications 
processor then implements the security strategy in hardware. This mechanism is 
preferable to the more conventional use of kernel mapped devices, which use checked 
system calls to access the device, often with a significant performance impact (a 
checked system call in a 40 MHz SPARC takes approximately SOilS). 

The CS-2 network protects processes from communications errors that occur within 
other unrelated processes, but does not protect a process from errors within itself. 
This is the same model as that employed for memory protection by the UNIX 
operating system - processes are protected from each other, but not from themselves. 

2.3 Virtual Addressing 
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The communications processor uses separate page tables from the main processor. 
This means that a user process need not make its entire address space visible 
when it communicates, only the portion that contains the data need be mapped for 
communication. Secondly, separate page tables may be used to reduce the amount 
of cache flushing in non cache-coherent systems; in a write through cache only those 
pages that are mapped with write permission need be flushed. 

The two sets of page tables are kept in step by a modified page out daemon and new 
page in code in the operating system. The modified page out daemon modifies both 
sets of tables, whereas the new page in code handles the asynchronous page faults 
from the communications processor. 
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ELAN FUNCTIONALITY 

The functionality of the communications processor was decided by drawing on 
experience from Meiko's CSTools/CSN communication software, used to create a 
programming environment over Transputer networks,' and other message passing 
systems such as the Chorus Nucleus. This analysis showed that the start-up process 
consists of four components: 

• Checking. 

• Translation. 

• Copying. 

• Device control. 

Each of which is important if start-up latency is to be minimised. 

3.1 Checking 
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The CS-2 supports virtual memory addressing on each processing element, allowing 
it to implement a fully distributed store for operating system use, and penn it it to 
implement the applications binary interface (ABI) for the base microprocessors. The 
communications processor therefore has two types of parameters to check: memory 
addresses and process addresses. 

The communications processor receives unchecked virtual memory addresses from 
the main processor so it must incorporate a memory management unit (MMU). The 
MMU used within the Elan supports multiple simultaneous contexts allowing I/O to 
continue for suspended processes. 

The checking of process addresses is analogous to the checking of memory addresses. 
It is implemented by a simple table look-up and exception mechanism. The 
communications processor is designed to handle the common case where a user 
is trying to communicate with other processes for which it has pennission; an 
exception is generated whenever there is no pennission. As checking is perfonned 
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independently on each of the communications processors, failed processing elements 
can be removed from seIVice by removing them from each communications 
processor's list of valid destinations. 

3.2 Translation 

3.2 

Process and memory translation within the communications processor is imple­
mented through the same mechanism as the checking, that is, by table look-ups. 
Memory address translation yields the same results as the main processor's trans­
lation mechanism. Dynamic process translation yields two components: a destina­
tion processor and a destination context. There are no physical processor or memory 
addresses in user space. 

Fig. 3.1 Elan Process Translation 
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Virtual process ids are translated through a per context virtual to physical processor 
translation which points at the route bytes needed to direct a message to this processor. 
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3.3 Copying 

3 Elan Functionality 

The communications processor supports a number of features to remove the 
requirement for copying of data. By using network wide virtual addressing there 
is no need to copy data into physically mapped output buffers, a common technique 
in distributed systems to overcome the problems of virtual address translation and 
page locking during communication. Furthennore, because the main processor and 
the communications processor share a common memory bus (a SPARC MBus) and 
the same cache coherency protocols, the problems associated with cache coherency 
are also avoided. 

Clearly the avoidance of unnecessary copying contributes greatly to reduced start­
up latency and efficient use of memory bandwidth. For messages that are copied 
once on sending, this adds message size x 2 / memory bandwidth to the start­
up latency, and consumes three times as much store bandwidth. 

3.4 Device Control 
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The final requirement of message start-up code is in device control. This is setting 
up the communications parameters in store, signaling to the communication device, 
and responding to interrupts returned by the communications processor. 

Control of the communications processor is via a command port which is nonnally 
mapped into the user address space. The command port consists of a range of memory 
addresses. The communications processor command is detennined by extracting 5 
bits from the address that is used. The data that is used by the communications 
processor command corresponds to the 32 bits of data that are written to that memory 
address. Commands sent to the command port are written in a single read-modify­
write cycle and are acknowledged with the value that is read back (which will be 
non-negative if the command is accepted). The kernel can prevent the user issuing 
certain commands by mapping limited portions of the command port address space 
in to the user address space. 

Exceptions generated by the communications processor may be handled by the 
communications processor's own thread processor, without direct intervention by the 
main processor. 
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3.5 Thread Processor 

3.4 

One of the objectives of the Elan communications processor is to reduce the number 
of interrupts and system calls that must be executed to perfonn message passing. 
As we have seen the combination of the user mapped command port and the 
Elan communication processor's security mechanisms allows user level code to 
initiate remote memory accesses without making a system call. In many cases, 
however, message protocols require higher level functions than simply the transfer 
of data. Other common requirements are for synchronisation between processes 
executing on separate processors, and allocation of global resources. To support these 
requirements the Elan communications processor includes a RISC processor which 
can execute user level code independentl y of the main node processor, and also create 
additional network transactions. 

The hardware and microcode of the thread processor support an extremely 
lightweight scheduling mechanism. This allows lightweight processes (threads) 
running on the thread processor to be suspended and then rapidly rescheduled by 
the hardware when the relevant event has occurred. 

The user level code in the main node processor can directly request the execution of a 
thread process through access to the appropriate command port. The thread code has 
no more privileges than the user code which initiated it. The Elan communications 
processor uses its page tables for the relevant user context whenever it makes a store 
access from the thread. 

3.5.1 Thread code 

Thread code can be written in ANSI C. An inlined library provides access to the Elan 
communication processor I/O instructions without the overhead even of a subroutine 
call. 

3.5.2 Events 

Events provide a general mechanism by which synchronisation may be achieved 
between lightweight threads running either in the same, or different, Elan 
communication processors. In addition an event can be used to cause an interrupt 
to the main node processor. An event is represented by a double word in store. 

A thread can perfonn the following operations on either local or remote events: 

Wait If the event has already been set, then execution continues and the 
event is unset. Otherwise the thread is suspended on the event until 
the event is set, when it will be rescheduled. 
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3 Elan Functionality 

Set The event is set. If there was an action already present on the event 
then it is perfonned. 

Clear If the event was set it is cleared. 

Test Poll the status of an event without modifying or suspending on it. 

There are various possible actions which can occur when an event is triggered, these 
depend on what has been suspended in the event structure: 

A local thread The thread is placed back on the thread run queue, so will 
resume execution. 

A remote thread The remote thread is rescheduled on its own processor. 

A local interrupt The main processor is interrupted. 

Events also support queues of outstanding requests. When a queued event is set, the 
first action on the queue is executed, and the queue updated to point to the next action. 

3.5.3 Other Forms of Remote Access 

In addition to events, the Elan also supports other fonns of remote store access. In 
particular thread code can generate network transactions to perfonn: 

Atomic Swap The word at the given remote address is returned, and 
overwritten with the word sent in the message. 

Atomic Add The word sent in the message is atomically added to the 
data at the remote address. The original remote data may 
optionally be returned. 

Atomic test The word at the remote address is compared with a test 
and store value sent in the message. If equal then a new value sent 

in the message is written to the remote store, otherwise 
the remote store is unchanged. The original remote value 
may optionally be returned. 

Remote compares The word at the remote address is compared with the 
given data using one of the operations ==, =, >= or 
<. The result of the comparison is returned as an 
acknowledge or negative acknowledge. 

The broadcast capabilities of the Elite switch can be used to combine the results of a 
broadcast remote compare operation into a single result. 

SI002-10MIOO.02 3.5 



4 

ELAN IMPLEMENTATION 

The Elan communications processor and Elite network switch were designed by 
Meiko at its European subsidiary in Bristol, UK. 

The two ASICs are implemented on 1.0 micron drawn 3 layer metal CMOS sea of 
gates gate arrays. Both components use a 110,000 gate base array which incorporates 
more than 440,000 transistors. 

The communications processor achieves a utilisation of approximately 75% 
(representing around 83,000 gates), the network switch utilises approximately 55% 
(61,000 gates). 

Both components are packaged in 208 pin PGAs. 

4.1 Design Approach 
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The network design was subjected to extensive parallel simulation using models 
written in 'C'. The network components were designed using an iterative top-down 
approach. 

A gross functional model was written in Verilog to simulate the behaviour of 
the Elan. This was rewritten and refined to produce a cycle by cycle functional 
model encompassing the full state required, together with a module hierarchy. 
These modules were converted into a stylised register transfer subset of the Verilog 
language, which aided their synthesis into gate level logic. This synthesis/conversion 
was done by hand for the majority of modules. The development for the Elite 
followed a similar design flow to the Elan. 

The gate and functional models were automatically compared using a number of 
techniques, and were kept in step throughout the design. The two model types have 
different simulation properties. The functional model consumes considerable less 
memory however the gate model simulation executes faster if the entire data set is 
present in memory during the the simulation. Simulations of CS-2 data networks 
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(communications processors and network switches) were conducted using functional 
models. 

The gate level logic was targeted at a vendor independent technology library. Vendor 
selection was based on the two qualities of cost and process speed requirement. Re­
targeting of the implementation to a different vendor/process would be relatively easy 
to perfonn. 

4.2 Optimisation 

The 70MHz operating frequency of the Elan-Elite network required extensive 
optimisation of logic delays using a timing analyser to give guaranteed worst case 
temperature, process, and voltage operation. The layout associated with these high 
frequency circuits was carefully floor planned. 

4.3 Clocking 

The communications processor operates in two separate clock domains, one 
synchronised to the host processor's memory interface, the other to the 70MHz 
communications clock. Appropriate synchronisation occurs when data is transferred 
between the two domains. 

The network switch also synchronises data from each link to its local 70MHz clock, 
the data is sampled and regenerated at each switch. 

The communications processor and network switch therefore remove the requirement 
for global clock distribution throughout the machine. 

4.4 Re-hosting 

4.2 

The interface between the communications processor and the processing element 
is through the processor's cache coherent memory protocol. The initial version of 
the communications processor implements the SPARC MBus protocol, however re­
targeting of the communications processor to a different host memory bus would 
require only minor modifications to the communications processor, since the memory 
interface is a well contained module within the design consisting of around 5000 
gates. 
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USING THE COMMUNICATIONS 
PROCESSOR 

In this section we show in outline how the communications processor is used to 
communicate with other processes via the data network. The example shows how 
to initiate a DMA transfer to remote store. 

5.1 DMA Transfers 
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In the previous sections we have seen that a key factor in the design of the 
communications processor is that it offers low communication start-up latencies, and 
that communication start-up requires minimal intervention by the main processor. 
For a typical DMA transfer of data to a remote processor, the actions required by the 
main processor are as follows: 

• User program creates a DMA structure in store identifying the characteris­
tics of the transfer (source and destination addresses, amount of data, etc). 
This could be done in advance if the same access is to be made repeatedly. 

• User program issues DMA command with RmW to command port. The 
address of the DMA structure is written to the appropriate address in the 
command port. 

• User program checks command accepted; a value of greater than or equal 
to 0 in the command port indicates that the command was accepted. 

The main processor is now free to continue with its work leaving the communications 
processor to transfer the data, and to ensure its integrity. The actions now required 
by the communications processor are: 

Sl002-10MlOO.02 

• Command processor reads the 32bit data from the command port and 
uses this to locate the DMA descriptor. The descriptor is read into the 
communications processors DMA queue. 

• DMA processor reads the queue item in. 
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5.2 

• DMA processor perfonns destination process translation. 

• DMA processor reads route infonnation. 

• DMA processor reads source data in and starts to send. The route 
infonnation is prepended to the data, and is stripped off as it passes through 
the switch network. 

If the main processor wanted continnation that a DMA had completed it would 
include a pointer to an event in the DMA description. Polling this event (when there 
is no more useful work to do) would continn completion of the transfer. 
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CONCLUSIONS 
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Efficient inter-processor communications requires the right balance of latency and 
bandwidth. CS-2 uses Meiko's own communication hardware, developed from many 
years experience in the ma~sively parallel processing field, to create a network with 
both high bandwidth and low start-up latency. 

The Elan communications processor is key to minimising the network latency. It 
selVes not just as a communications co-processor, but aims to minimise the amount 
of message start up code, and therefore minimise startup latency. For simple 
communications the overhead on the main processor can be reduced to a single read 
modify write. More complex protocols require small fragments of code to be run on 
the communications processor. The requirement for copying of messages is removed 
by the ability of the communications processor to operate in virtual store. Protection 
is implemented by hardware table look ups of translation tables which impose low 
overhead on valid operations, and generate exceptions in the much less frequent error 
cases. 
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Overview of the CS-2 
Vector Processing Element 
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GENERAL DESCRIPTION 

This document describes the architecture of the CS-2 vector element (MK403). It 
briefly describes the internal architecture of the Fujitsu J.l VP and the compilation 
strategy used to exploit the combined resources of the SPARC and multiple J.l VP 
processors. 

For more details of the workings of the J.l VP see the "Programmers Reference 
Manual". 

1.1 MK403 Overview 

meJ<o 

The CS-2 vector element incorporates a 40MHz Superscalar SPARC, a Meiko Elan 
Communications Processor and 2 Fujitsu J.l VP vector processors. All processors have 
access to the memory system via 3 memory ports, two of which are used by the vector 
processors and the third by the SPARC and Elan which share an MBus. 

Fig. 1.1 CS-2 Vector Processing Element 
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It2 

The memory system is implemented as 16 independent banks, with a (current) total 
capacity of 128 MBytes. Memory bandwidth for each of the 3 ports is 1.2 GBytes/s, 
with a total bandwidth of 3.2 GBytes/s. 

External I/O support is provided through 3 SBus interface slots - primarily used for 
disk controllers, but capable of supporting network interfaces and graphics cards. 

1.1.1 J.t VP Vector Processor 

The J.tVP operates with a 50MHz (2Ons) clock. It has a vector register architecture 
with 8 KBytes of vector registers, configurable as between 8 and 64 vectors each of 
16-128 64-bit registers (see below). In addition there are 32 scalar registers and a set 
of vector mask registers whose fonnat tracks that of the vector registers. 

Fig. 1.2 J.t VP Vector Processor 
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1 General Description 

Configuration of the JL VP vector and mask registers: 

Precision Length Number of registers 
Single 32 64 
Single 64 32 
Single 128 16 
Single 256 8 
Double 16 64 
Double 32 32 
Double 64 16 
Double 128 8 

The J-l VP has seperate pipes for floating point multiply, floating point add, floating 
point divide, and integer operations. The floating multiply and add pipes can 
each deliver one double precision (64 bit) or two single precision (32 bit) IEEE 
format result(s) on every clock, giving a maximum theoretical performance of 100 
MFLOPS/s double precision and 200 MFLOPS/s single precision; the divide pipe can 
simultaneously deliver an extra 6 MFLOPS/s in either single or double precision. 
Both the add and multiply pipes have the low latency (pipe depth) of two cycles 
(4Ons), with one extra cycle being required to read and one to write the vector register 
file. 

The vector register elements are scoreboarded, so that chaining between input and 
output operands occurs wherever possible without requiring explicit compiler or 
programmer intervention. 

The JL VP has a single load/store pipe which is used for accessing the memory system. 
This is a 64 bit interface which can generate four addresses on consecutive clock 
cycles before stalling for the returned data. Once the data is present a 64 bit word can 
be transferred on each clock cycle, giving a maximum bandwidth of 400 MBytes/s. 

The instruction set includes masked vector operations, compressions (sum, maxval, 
maxindex, minval, minindex), vector compress under mask and expand under 
mask operations, as well as logical operations on integers and mask registers and 
conditional branches. Vector loads and stores can be performed with strides and 
under mask, as well as with an index vector ("indirect"). For further information 
about the J-lVP instruction set the J-lVP Programmers reference Manual. 
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1.4 

1.1.2 Superscalar SPARe Processor 

The MK403 uses SPARC MBus processor modules. It is generally populated with a 
36 or 40HMz Viking SPARC, but other standard modules can be used. 

The Superscalar SPARC has two independent integer ALUs which can execute 
separate arithmetic operations or can be cascaded so that the processor can execute 
two dependent instructions in the same cycle. It has instruction issue logic which can 
issue up to three instructions on the same cycle. Load and stores operations of all 
data types to the on chip 16 KBytes data cache occur in a single cycle. The floating 
point unit can execute multiply and add instructions simultaneously, though only one 
floating point instruction can be issued per cycle. 

1.1.3 Memory System 

The Superscalar SPARC processors and Elan communication processor are connected 
to a standard 40MHz MBus. The vector processors and MBus are connected to a 16 
bank memory system, each bank providing 64 bits of user data (78 bits including 
error checking and correction, implemented using 20 by 4 bit DRAMs with two 
bits unused). Error detection and correction is implemented on each half word (32 
bits), allowing write access to 32 bit (ANSI-IEEE 754-1985 single) values to be 
perfonned at full speed, without requiring a read modify write cycle. 

Each bank of memory maintains a currently open DRAM page within which accesses 
may be perfonned at full speed. . This corresponds to a size within the bank of 8 
KBytes, giving 128 KBytes total for the 16 banks. When an access is required outside 
the currently open page a penalty of 6 cycles is incurred to close the previous page, 
and open the new one. 

Refresh cycles are perfonned on all banks within a few clock cycles of each other, 
thus allowing the cost of re-opening the banks to be pipelined (since the J.l VP can issue 
four addresses before stalling for the data from the first), and reducing the overhead 
of refresh to a few percent of memory bandwidth. 

The memory system is clocked at the same speed as the J.l VP processors (50 MHz), 
and accesses from the 40 MHz MBus are transferred into the higher speed clock 
domain. When accessing within an open page each memory bank can accept a new 
address every two cycles (4Ons), and replies with the data four cycles (8Ons) later, 
giving a bandwidth of 8 Bytes every two cycles (4Ons), that is 200 MBytes/s. Since 
there are 16 banks, the total memory system bandwidth is thus 3.2 GBytes/s. 

Each J.l VP can issue a memory request every cycle (2Ons), and can issue 4 addresses 
before it requires data to be returned. In the absence of bank contention (which will 
be discussed below), after a start up latency of four cycles, these requests can be 
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satisfied as fast as they are issued, giving each Jl VP a steady state bandwidth of 8 
Bytes every 2Ons, that is 400 MBytes/s. 

Since each bank can accept a new address every two cycles (4Ons), but the JlVP can 
generate an address every cycle (2Ons) there is the possibility of bank contention if 
the Jl VP generated repeated accesses to the same bank. With a simple linear mapping 
of addresses to banks, this would occur for all strides which are multiples of 16 (for 
64 bit double precision accesses). Such an access pattern would then see only one 
half of the nonnal bandwidth, that is 200 MBytes/s. All other strides achieve full 
bandwidth. 

To ameliorate this problem as well as allowing the straightforward linear mapping of 
addresses to banks, Meiko also provide the option (through the choice of the physical 
addresses which are used to map the memory into user space) of scrambling the 
allocation of addresses to memory banks. The mapping function has been chosen 
to guarantee that accesses on "important" strides (1, 2, 4, 8, 16, 32) achieve full 
perfonnance. Access on other strides may see reduced perfonnance, but there are no 
strides within the open pages which see the pathological reduction to one half of the 
available bandwidth. 
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COMPILERS 

2.1 Overview 

The Fortran and C compilers for the vector processing element generate code for all 
three processors: using the scalar processor to execute scalar code, and the two J.l VPs 
to execute vector loops. They incorporate a wide range of standard optimisations: 

constant folding, constant propagation, common subexpression removal, 
automatic function inlining, instruction scheduling, loop invariant removal, 
induction variable detection, software loop pipelining, loop splitting, loop 
interchange, loop vectorization, vectorization of intrinsic functions, vector 
idiom recognition, dead code removal, 

as well as proprietary optimisations for the CS-2. 

2.2 Languages 
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2.2.1 FORTRAN and C 

The FORTRAN language conforms to ANSI X3.9-1978, with the addition of many 
extensions including CRAY Pointers, ALLOCATABLE arrays and COMMON blocks, 
VMS structures, END DO statements, and NAMELIST I/O. The compiler also 
recognises the CRAY vectorization directives (e.g. CDIR$IVDEP). 

The C compiler accepts the ANSI C language, and incorporates the same vectorizer 
and code generator as the FORTRAN compiler. 
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2.2 

2.2.2 High Performance Fortran (HPF) 

The High Perfonnance Fortran Forum (HPFF) is a group of industrial and academic 
organisations which is open to all. The objective of the group is to standardise 
annotations and extensions to ISO 1539: 1991 (Fortran-90) to allow a Fortran program 
to be efficiently executed under a data parallel execution model. HPFF have 
published the final draft specification for public comment. An HPF compiler for 
the CS-2 is currently under development. 

2.2.2.1 Fortran-90 Binding 
The HPFF has chosen Fortran-90 as the language for extension. The new dynamic 
storage allocation and array calculation features make it a natural base for HPF. The 
HPF language features fall into 3 categories with respect to Fortran-90: 

• New directives. 

• New language syntax. 

• Language restrictions. 

The new directives are structured comments which suggest implementation strategies 
or assert facts about a program to the compiler. They may affect the efficiency of the 
computation perfonned, but do not change the value computed by the program. The 
fonn of the HPF directives has been chosen so that a future Fortran standard may 
chose to include these features as full statements in the language. 

A few new language features, namely the FORALL statement and certain intrinsics, 
are also defined. They were made first-class language constructs rather than 
comments because they can affect the interpretation of a program, for example by 
returning a value used in an expression. These are proposed as direct extensions to 
the Fortran-90 syntax and interpretation. 

Full support of Fortran sequence and storage association is not compatible with the 
data distribution features of HPF. Some restrictions on use of sequence and storage 
association are defined. These restrictions may in tum require insertion of directives 
into standard Fortran programs in order to preserve correct semantics. 

2.2.2.2 New Features in High Performance Fortran 
High Perfonnance Fortran extends Fortran in several areas. These areas include: 
data distribution features, parallel statements, extended intrinsic functions, foreign 
procedures and changes in sequence and storage association. 
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2 Compilers 

2.3 Code Generation 
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The compilers for the vector processing elements produce code that executes on 
the SPARC, and, dynamically if appropriate, on the two attached vector processors. 
Scalar code executes on the Superscalar SPARC processor, vector code is compiled 
to execute on either the SPARC processor or the 11 VPs, or both. 

Where the vector length is not known at compile time, the compiler generates both 
vector code (for the 11 VPs) and scalar code: the choice of which code to execute being 
made at run time based on the actual vector length. 

The vectorizer exploits the multiple IlVPs in two different ways. Where there is a 
loop around a vector loop, as shown below, the compiler will generate code which 
executes alternative iterations of the outer loop on each of the 11 VPs; each instance 
of the inner loop (and its strip-mine loop) will execute entirely on a single 11 VP: 

DO I = l,N 
DO J = I,M 

X(J,I) = A*X(J,I) + Y(J) 
END DO 

END DO 

The generated code is analogous to the following (pseudo) source code: 

In parallel on 11 VP 1 

DO I = 1,N,2 
DO J = 1,M 

X(J,I) = A*X(J,I) + Y(J) 
END DO 

END DO 

and on IlVP 2 
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DO I'=2,N,2 
DO J' = l,M 

X(J',I') 
END DO 

END DO 

A*X(J',I') + Y(J') 
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Computing Surface 2 

2.4 

Where there is no outer level independent loop which can be exploited, then the 
compiler will split the individual strips of the inner loop across the two J.t VPs. 
Consider the following example: 

DO J = 1,M 
X(J) = A*X(J) + Y 

END DO 

The generated code is analogous to the following (pseudo) source code: 

In parallel on j.t VP 1 

IBASE = 1 
ILEN = MIN( M-IBASE, stripLength) 

C Strip mine loop 
DO WHILE (ILEN .GT. 0) 

C Vector operation 
DO J = IBASE,IBASE+ILEN 

X(J) = A*X(J) + Y 
END DO 

C 2 here is number of uVPs involved 
IBASE lBASE + 2 * stripLength 
lLEN = MlN( M-lBASE, stripLength) 

END DO 

and on j.tVP 2 

IBASE' = stripLength 
ILEN' = MIN( M-IBASE', stripLength) 

C Strip mine loop 
DO WHILE (lLEN' .GT. 0) 

C Vector operation 
DO J' = lBASE,lBASE+lLEN' 

X(J') = A*X(J') + Y 
END DO 

C 2 here is number of uVPs involved 
lBASE' lBASE' + 2 * stripLength 
ILEN' = MlN( M'-IBASE', stripLength) 

END DO 

All of this code executes on the j.t VP. 

The code generator schedules vector instructions to ensure that chaining of vector 
operations happens as often as possible (by ensuring that there are no scalar operations 
scheduled between dependent vector operations). 
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2 Compilers 

If the operation is a vector sum, then each p.VP will produce the sum of the elements 
it processes, and the final accumulation of the two partial sums will be perfonned by 
the scalar processor. 
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CONCLUSIONS 
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Each CS-2 vector processing element consists of a Superscalar SPARC, a Meiko 
Elan communications processor, and 2 Fujitsu J1 VP vector processors sharing a three 
ported memory system. Cycle time is 2Ons, performance peaks at 200 MFLOPS per 
processing element in 64 bit arithmetic, or 400 MFLOPS in 32 bit. 

To achieve high performance on real world problems you need the correct balance of 
CPU and memory system performance. The CS-2 vector memory system is organised 
as 16 independent banks, enabling it to sustain 1.2 GBytes/s on direct, strided, or 
indirect addressing. Memory capacity is currently 32 or 128 MBytes per processing 
element. 

The CS-2 development environment for the vector processing elements includes 
compilers for FORTRAN-77, ANSI C, Fortran-90, and High Performance Fortran. 
The compilation system produces compiled code that executes on either the SPARC 
processor or, dynamically where appropriate, on the two attached vector processors. 
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