
Computing Surface 2

Overview
Documentation
Set

mei<o

Computing Surface 2

The infonnation supplied in this document is believed to be true but no liability is assumed for its use or for the
infringements of the rights of others resulting from its use. No licence or other rights are granted in respect of
any rights owned by any of the organisations mentioned herein.

This document may not be copied, in whole or in part, without the prior written consent of Meiko World
Incorporated.

Copyright © 1993 Meiko World Incorporated.

The specifications listed in this document are subject to change without notice.

Meiko, CS-2, Computing Surface, and CSTools are trademarks of Meiko Limited. Sun, Sun and a numeric
suffix, Solaris, SunOS, AnswerBook, NFS, XView, and Open Windows are trademarks of Sun Microsystems,
Inc. All SPARC trademarks are trademarks or registered trademarks of SPARe International, Inc. Unix, Unix
System V, and OpenLook are registered trademarks of Unix System Laboratories, Inc. The X Windows System
is a trademark of the Massachusetts Institute of Technology. AVS is a trademark of Advanced Visual Systems
Inc. Verilog is a registered trademark of Cadence Design Systems, Inc. All other trademarks are acknowledged.

Issue status: Draft
Preliminary
Release
Obsolete

~
D
D

Circulation control: t.! '(C ?er (\ a{

CONTENTS

mei<o

This documentation set contains the following three documents:

• The CS-2 Communications Network.

Overview of the CS-2 data network. Compares the CS-2 network with other net­
work types (logarithmic, ring etc.), and describes the benefits of Meiko's imple­
mentation.

• The CS-2 Communications Processor.

Overview of the Meiko Elan communications processor, listing design objectives
and implementation decisions.

• The CS-2 Vector Processing Element.

Overview of the Meiko vector processing boards describing the hardware archi­
tecture, the Fujitsu JlVP and SPARC processors, and compiler technology.

1

Com put i n g Sur fa c e 2

Overview of the CS-2
Communications Network

mei<o

Computing Surface 2

The infonnation supplied in this document is believed to be true but no liability is assumed for its use or for the
infringements of the rights of others resulting from its use. No licence or other rights are granted in respect of
any rights owned by any of the organisations mentioned herein.

This document may not be copied, in whole or in part, without the prior written consent of Meiko World
Incorporated.

Copyright © 1993 Meiko World IncOIporated.

The specifications listed in this document are subject to change without notice.

Meiko, CS-2, Computing Surface, and CSTools are trademarks of Meiko Limited. Sun, Sun and a numeric
suffix, Solaris, SunOS, AnswerBook, NFS, XView, and Open Windows are trademarks of Sun Microsystems,
Inc. All SPARC trademarks are trademarks or registered trademarks of SPARC International, Inc. Unix, Unix
System V, and OpenLook are registered trademarks of Unix System Laboratories, Inc. The X Windows System
is a trademark of the Massachusetts Institute of Technology. AVS is a trademark of Advanced Visual Systems
Inc. Veri log is a registered trademark of Cadence Design Systems, Inc. All other trademarks are acknowledged.

Issue status: Draft
Preliminary
Release
Obsolete

r-3--
D
D

Circulation control: &""X ~er('lo..l

CONTENTS

1 GENERAL DESCRIPTION 1+1
1.1

1.2

Network Characteristics
1.1.1 Full Connectivity
1.1.2 Low Latency . .
1.1.3 High Bandwidth
1.1.4 Fault Tolerance .
1.1.5 Deadlock Freedom
1.1.6 Scalability....
Logarithmic Networks

1+1
1+2
1+2
1+2
1+3
1+3
1+3
1+5

2 THE CS-2 COMMUNICATIONS NETWORK 2+1
2.1 Comparison With Fat-Tree Networks 2 + 2
2.2 Characterising a CS-2 Network 2 + 3

3 NETWORK IMPLEMENTATION 3+1
3.1
3.2
3.3

The Link Protocols
The Meiko Elite Network Switch
Routing Algorithms

3+1
3+2
3+3

4 CONCLUSIONS 4+1

1

GENERAL DESCRIPTION

Effective cooperation between processing elements (PEs) is a crucial. factor in
detennining the overall sustained perfonnance of a Massively Parallel Processing
(MPP) system.

In designing the CS-2 architecture, Meiko has concentrated on minimising the
impact of sharing work between processors. The effect of this is to increase the
number of processors that can be effectively used to solve a problem, improving the
perfonnance of existing parallel programs, and making parallel processing effective
for a significantly wider range of applications.

Every processing element in a CS-2 system has its own, dedicated interface to
the communications network: a Meiko designed communications processor. The
communications processor has a SPARC shared memory interface and two data links,
these links connect the communications processors to Meiko designed cross-point
switches.

This document provides an overview of the design of the communications network.
For more infonnation about the architecture of the communications processor see
Overview of the CS-2 Communications Processor.

1.1 Network Characteristics

meJ<o

The design of the CS-2 data network builds on Meiko's considerable expertise in the
field of MPP systems. From the outset the communications network was designed
with several key characteristics in mind:

• Full connectivity.
• Low latency.
• High Bandwidth.
• Fault tolerance.
• Deadlock freedom.
• Scalability.

SI002-10MI05.03 1.1

Computing Surface 2

It2

1.1.1 Full Connectivity

Every processing element (PE) has the ability to access memory on any other PE.
Messages pass from the source to destination PEs via a dynamically switched network
of active switch components. The network is fully connected, allowing a machine
with n PEs to sustain n simultaneous transfers between arbitrarily selected pairs of
PEs at full bandwidth.

The communication network. does not use the PEs as part of the network, only as
gateways on to it. This ensures that node resources (such as CPU and memory
bandwidth) are not affected by unrelated network traffic.

1.1.2 Low Latency

Inter-process communications latency has two components, start-up latency which
is coverered in "Overview of the CS-2 Communications Processor" and network
latency. The CS-2 communication network is designed to minimise and hide network
latency. Wormhole routing is used to reduce the latency through each switch stage,
and the overall network topology is designed to minimise the number of stages
through which a message passes. The low level communication protocols allow
overlapped message acknowledgements, and the message packet size is dynamically
adjusted so that it is always sufficient for full overlapping to occur.

CS-2 communications start-up latency are less than 10jl.s, network latencies are less
than 200ns per switch.

1.1.3 High Bandwidth

The communication bandwidth in an MPP system should be chosen to give an
appropriate compute communications ratio for current PE technology. The network
design should ensure that additional bandwidth can be added to maintain the
compute/communication ratio as the performance of the PEs improves with time.
Although the actual required compute/communications ratio is application specific,
the higher the network bandwidth the more generally applicable the MPP system will
be.

CS-2 data links are byte wide in each direction and operate at 70MHz. Usable
bandwidth (after protocol overheads) is 50 MBytes/s/link in each direction. Bi­
sectional bandwidth of the CS-2 network increases linearly with the number of PEs.
A 1024 PE machine has a bisectional bandwidth of over 50 GBytes/s.

mei<o

meJ<o

1 General Description

1.1.4 Fault Tolerance

The network for a very large MPP system will of necessity consist of a very large
number of components. Moreover for large systems a significant number of cables
and connectors will be required. Under these circumstances reliability becomes a
major issue. Tolerance to occasional failures by the provision of multiple routes
through the network is desirable for small systems, and essential for very large
systems.

CS-2 systems have two fully independent network layers and each PE is connected to
both layers. In addition each layer provides multiple routes between each arbitrarily
selected pair of PEs. The hardware link protocol uses Cyclic Redundancy Checks
CCRCs) to detect errors on each link; failed transmissions are not committed to
memory, but cause the data to be resent. All network errors are flagged to the system
administrator; permanently defective links can be removed from service.

1.1.5 Deadlock Freedom

Routing through multistage networks is essentially a dynamic resource allocation
problem and, because multiple PEs are attempting to acquire sets of route hops
simultaneously, there is the potential for deadlock. The most common deadlock
avoidance strategy is always to allocate resources in a fixed order. With wormhole
routing, since the resources are allocated as the message wonnholes through a
network, this affects routing strategy for a given topology. For example in a
hypercube or a grid, deadlock free routing is possible by ensuring that a PE routes
by resolving the address one dimension at a time in ascending order. Note: that this
actually removes the fault tolerance of the network; between PEs that differ by more
than one dimension there are many possible routes, but only one can be used without
risk of deadlock.

1.1.6 Scalability

The requirement for scalability within a network is one of the most difficult to achieve
in actual systems. The three factors that need to be considered are, growth in network
latency with scaling, growth in network cost, and growth in bisectional bandwidth.

SI002-10MI05.03 1.3

Computing Surface 2

1.4

The scalability properties of various network topologies are:

Type Number of Number Latency Bisectional
Switches of Links bandwidth

Ring N N N-l 2

d dimensional grid N dN d@ ifN

Arity d Omega net Nlogd N dNlo~dN /ogdN N
2

Arity d Benes net 2NlogdN dNlogd N 210gdN N

Crosspoint N2 N2 1 N

Where N is the number of processors in the machine, Number of links is the total
number of connections between switches. Latency is the worst case number of
switches which must be passed through. and Bisectional bandwidth is the worst case
bandwidth between two halves of the machine.

For scalability it is essential that the bisectional bandwidth of the machine increases
linearly with the number of processors. This is necessary because many important
problems cannot be parallelised without requiring long distance communication (for
example, FFf, and matrix transposition).

The cost (both in switches and wires) of a full crosspoint switch increases as the
square of the number of processors. Adoption of this network therefore leads to a
machine in which switch and wire costs rapidly dominate when significant numbers of
processors are used. For the logarithmic networks the switch and wire costs increase
only logarithmically faster than the number of processors. It is therefore possible to
build machines which contain significantly more processors before the switch costs
dominate and the machine ceases to be cost effective.

The crosspoint has the advantages of contention freedom and constant network
latency for all routes. However, although the worst case latency in a logarithmic
network increases slowly with the number of processors, they can be arranged so as
to ensure that this increase only occurs when long distance communication is required

meJ<o

I General Description

- perfonnance is not dependent upon exploiting locality of reference, but doing so is
beneficial.

The arity of the logarithmic network is the size of the crosspoint switch from which
the network is built. So if the crosspoint is built from 2 x 2 switches it will have
arity of 2. The choice of switch arity is highly influenced by the available packaging
technology, since given a limited number of pins to connect into a switch there is a
reciprocal relationship between the arity of the switch and the number of wires in
each link. As the bandwidth of a link is directly related to the number of wires over
which it is carried, this translates into a choice between a high arity switch which can
switch many low bandwidth links, or a low arity switch for few high bandwidth links.

1.2 Logarithmic Networks

mei<o

In order to analyse the CS-2 network it is useful to understand the characteristics of
the Benes and Omega networks.

The main attraction of the Benes network is that it can be proved to have equivalent
functionality to a full crosspoint (see Hockney and Jesshopet for a review) - any
pennutation of inputs can be connected to any pennutation of outputs without
contention. There are also multiple routes between any input-output pair. Calculating
the routing to ensure that the routes are allocated without congestion for any given
pennutation is, however, a non-trivial problem.

This problem has been solved for a number of interesting special cases
communication patterns: rings, grids, hypercubes etc. There has also been extensive
simulation of these networks under a wide variety of loadings.

t R.WHockney & C.RJesshope. Parallel Computers 2. Pub. Adam Hilger.

SI002-10MI05.03 ItS

Computing Surface 2

1.6

Fig. 1.1 16 processor Benes network

In an Omega network there is only one possible route for each input-output pair. Not
all possible permutations are possible without blocking, although common geometric
patterns such as shifts and FFf butterflies can be shown to be contention free.

Fig. 1.2 16 processor Omega network

meJ<o

2

THE CS-2 COMMUNICATIONS
NETWORK

CS-2 uses a logarithmic network constructed from 8 way crosspoint switches (see
section 3.2 for details of their implementation) and bi-directionallinks.

For the purposes of this analysis it can be considered to be a Benes network folded
about its centre line, with each switch chip rolling up the functionality of eight of the
unidirectional two way switches.

Bandwidth is constant at each stage of the network, and there are as many links out
(for expansion) as there are processors. Larger networks are constructed by taking
four networks and connecting them with a higher stage of switches. A 16 processor
network is illustrated in figure 2.1.

Fig. 2.1

meJ<o S1002-10M105.03

One layer of a 2-stage CS-2 network. 16 processors are connected to
stage 1, 16 links connect stage 1 to stage 2 and 16 links are available
for expansion.

Processors 0 - 1 5

2.1

Computing Surface 2

The scaling characteristics of the CS-2 network are shown in the table below; note
that the latency is measured in switch stages for a route which has to go to the highest
stage in the network.

Processors Stages Total Switches Latency
4 1 1 1

16 2 8 3
64 3 48 5

256 4 256 7
1024 5 1280 9
4096 6 6168 11

One aspect of implementing the network using bidirectional switches is that routes
which are relatively local do not need to go to the high stages of the switch hierarchy.
So, for example, a communication to a PE which is in the same cluster of 16
processors only needs to pass through 3 switches irrespective of the total network
size.

To broadcast to a range of outputs it is necessary to ascend the switch hierarchy to
a point from which all the target PEs can be reached. From this point the broadcast
then fans out to the target range of processors.

2.1 Comparison With Fat-Tree Networks

2.2

The multistage network used in the CS-2 machine can also be considered as a "fat
tree". In figure 2.1 we see that for each of the higher layer switches has identical
connections to the lower stages. If this is simply redrawn as shown in figure 2.2 we
get the "fat tree" structure.

In fat trees packets do not always have to go to the top of the tree; packets are routed
back down at the first node possible. This means that for problems which have locality
of reference in communications, bandwidth at higher levels of the tree can be reduced.
Exploiting the benefits of locality by reducing upper level network bandwidth has the
effect of making process placement more significant. Although the CS-2 network
pennits this local packet routing, the bandwidth is not reduced in the higher level.
This preserves the properties of Benes and Omega networks.

mei(o

2 The CS-2 Communications Network

Fig. 2.2 One layer of a 16 processor CS-2 network drawn as a fat tree

Further properties of "fat trees" are described by Leiserson t.

2.2 Characterising a CS-2 Network

Logarithmic, or multi-stage, switch networks are described in a variety of ways by
different people. The scheme used by Meiko is outlined below.

For a machine with N processors the size of its network is defined by one parameter:
size. The position of a processing element is defined by two parameters: level and
network id. The position of a switch in the network is defined by four parameters:
layer, level, network id, and plane.

Every processor in a (complete) network is connected via a data link to a switch in
the lowest stage, these switches are then connected to higher stages, etc and N links
emerg from the top of the network. These links can be used to connect to further
stages, or if we forgo the ability to expand they can be used to double the size of the
network without introducing an extra stage (see figure 2.3).

t C.E.Leiserson. Fat-Trees: Universal Networks/or hardware-Efficient Supercom­
puting. IEEE Transactions on Computers, Volume C-34 number 10 (Oct. 1985). pp
892-901.

mei<o Sl002-10MI05.03 2+3

Computing Surface 2

2.4

Fig. 2.3 Doubling the size of a CS-2 network

We use a binary fonn for network size, equal to the number of bits in the network
id of the lowest processor in the network. This is used because the top stage of the
network can use either 4 or 8 links.

A network has L size /2 J stages, indexed by the parameter level. The top stage is O. The
deepest processors in the network have level = size. A network supports between
2"ize-2 + 1 and 2"ize processors. Note: it is not necessary for the switch network to
be complete. Figure 2.4 illustrates a network of size 6.

Fig. 2.4 One layer of 64 processor (size 6) CS-2 network

There are a variety of ways of drawing these networks (see the "CS-2 Product
Description" for two other examples). To draw (or manufacture !) them without
crossing data links you need one more dimension than there are stages in the network.

mei(o

meJ<o

2 The CS-2 Communications Network

A CS-2 machine has 2 completely independent identical switch networks. These
networks are indexed by the parameter layer. Processors are connected to both layers,
switches are in one layer or the other.

The position of each processing element is uniquely determined by its network id
and level, which describe the route to it from all points at the top of the network
(level = 0). Routes down are written <0-7>.<0-3>.<0-3> ... working down from the
top of the network. Each digit represents the output link used on a network switch.
For example, in figure 2.4 processor 0 has route 0.0.0, and processor 17 has route
1.0.1. Note that the route is the same for all starting points at the top of the network
Network ids of communications processors Oeaves of the network) are sometimes
called elan ids.

Each stage of the switch network has 2size-2 switches, and 21evel distinct routes from
the top of the network. The network id of a switch indexes the distinct routes within
each level. Within each stage there are 2size-level-2 switches with the same route
from the top of the network Plane indexes these points.

Sl002-10MI05.03 2.5

3

NETWORK IMPLEMENTATION

The CS-2 communications network is constructed from a VLSI packet switch ASIC
- the Elite Network Switch. Interfacing between the network and the processors
is perfonned by a second device, the Elan Communications Processor. Switches
are connected to each other and to communications processors by byte wide bi­
directional links.

3.1 The Link Protocols

meJ<o

The choice of a byte wide link protocol is dictated by a number of factors. The link
must be wide enough to meet the bandwidth requirements of the processor, but must
not be so large that the number of I/O pins on the devices becomes prohibitively large.
The implementation that Meiko selected uses 20 wires for each bidirectional link, 10
in each direction. When clocked at 70 MHz this yields a bandwidth of 50 MBytes/s
(after allowing for protocol overheads) in each direction. This level of perfonnance
and the underlying protocol fonnat is appropriate for optic fibre communication over
long distances (the link can be converted to a 630 MHz data stream).

The use of bidirectional links pennits flow control and acknowledge tokens to be
multiplexed on to the return link. The low level flow control allows buffering of the
data at the line level so that communications clock frequencies in excess of the round
trip delay can be used. The interface is asynchronous and is tolerant to a 200ppm
frequency difference between the ends. This means that each end can have its own
clock, substantially simplifying construction of large systems.

Sl002-10MI05.03 3.1

Computing Surface 2

3.2 The Meiko Elite Network Switch

The Elite switch is capable of switching eight independent links, each byte wide.
The switch is a full crosspoint, allowing any pennutation of inputs and outputs to
be achieved without contention. For each data route through the switch a separate
return route exists, ensuring that acknowledgements are never congested by data on
the network.

The switch component contains a broadcast function that allows incoming data to
be broadcast to any contiguous range of output links. The switch contains logic to
recombine the acknowledge or not-acknowledge tokens from each of the broadcast
destinations. To allow broadcasts to ranges of outputs over multiple switches the
switch topology must be hierarchical.

Fig. 3.1 Meiko Elite network switch

--+- 9 bit wide Data route & Control

---. PAck route & Control

3.2 meJ<o

3 Network Implementation

The data passing through a switch is CRC checked at each switch. If a failure
is detected, the message is aborted, an error count is incremented, and the packet
is negatively acknowledged. This ensures that incorrect data is removed from the
network as soon as possible.

Routing within the switch is byte steered. On entry into a switch the first byte of
any packet is interpreted as the destination output or range of outputs. This byte is
stripped off within the switch so that the next byte is used for routing in the following
switch. The latency through each switch device is 7 clock cycles for outgoing data,
and 5 cycles for returning acknowledge tokens. The switch contains no routing tables
of any sort. The translation between destination processor and route infonnation is
perfonned entirely on the communications processor, where it can be more easily
modified or updated.

Although the switch component is an 8 x 8 crosspoint, the use of bi-directionallinks
means that for the purposes of constructing logarithmic networks the effective radix
is 4.

Each switch has a perfonnance monitoring and diagnostic interface connected to the
CS-2 control network. This allows collection of statistics on error rates and network
loading.

3.3 Routing Algorithms

meJ<o

Although the CS-2 data network can have the congestion properties of a full
crosspoint, but achieving this requires allocation of routes in a non-contending
fashion. In the CS-2 network the route is pre-detennined by the communications
processor. By storing the route infonnation in the Elan it becomes easier to change
the routing algorithm, due to machine reconfiguration or link failure for example.

The translation from a processor address to network route is handled in the
communications processor by a look-up, the table is stored in the memory of the
PE and indexed by destination processor. Each table entry contains four alternative
routes to the destination processor, one of which is selected. The specification of
alternative routes allows the even distribution of traffic throughout the network,
although all four routes may be identical when this is undesirable. Each PE maintains
its own look-up table which may be different to the others, thus enabling any function
of source/destination addressing to be used from.

One simple routing function is to direct all data for the same destination processor
through a single switch node at the top of the hierarchy. This allows the network to
perfonn two functions: data distribution, and distributed arbitration for use where

SI002-10MI05.03 3.3

Computing Surface 2

3.4

many senders wish to communicate with the same processor simultaneously. By
adopting this strategy we ensure that if blocking does occur, it does so as soon as
possible, and consumes little of the network resource. Using this simple algorithm
has the effect of reducing the network to an Omega network - essentially the second,
return part, of the network is guaranteed non blocking, and perfonns a simple data
ordering operation. By virtue of its similarity to an Omega network, this network will
be non-blocking for arbitrary shifts and FFf style pennutations.

Fig. 3.2 Shift by 5 on a 16 processor CS-2 network

The programmable nature of the CS-2 communication network allows users (who
are so inclined) to design their own routing algorithms. This permits optimisation
of routing for specific traffic patterns or study of the effect of routing strategy on
network perfonnance.

meJ<o

4

CONCLUSIONS

mei<o

The CS-2 network provides a flexible solution to the problem of connecting
together large numbers of processing elements. The network can provide equivalent
perfonnance to a full crosspoint, but can be simplified where this level of interconnect
is not required. The combination of Meiko Elan and Elite network technology allows
considerable flexibility in the choice of routing algorithm.

The communications co-processor uses a lookup table to map abstract processor
addresses to switch network routes. By maintaining the lookup tables within the
PE memory they are easier to modify to reflect changing workload or network
failures. By maintaining separate lookup tables on each communications processor,
any function of address mapping may be implemented. The Elan communications
processor acts as a gateway into the CS-2 switch network.

The Elite network switch is a full 8 x 8 crosspoint switch. It is the fundamental
building block of the CS-2 communications network. The route through the switch is
detennined by the header byte of each incoming message. Headers are added by the
communications processor and removed by the switch as the message passes through
it. In addition to a direct mapping from input link to output link, the switch supports
broadcast and combining operations by mapping a single input to a contiguous range
of outputs.

Sl002-10MI05.03 4.1

Computing Surface 2

Overview of the CS-2
Communications Processor

mei<o

Computing Surface 2

The infonnation supplied in this document is believed to be true but no liability is assumed for its use or for the
infringements of the rights of others resulting from its use. No licence or other rights are granted in respect of
any rights owned by any of the organisations mentioned herein.

This document may not be copied, in whole or in part, without the prior written consent of Meiko World
Incorporated.

Copyright © 1993 Meiko World Incorporated.

The specifications listed in this document are subject to change without notice.

Meiko, CS-2, Computing Surface, and CSTools are trademarks of Meiko Limited. Sun, Sun and a numeric
suffix, Solaris, SunOS, AnswerBook, NFS, XView, and Open Windows are trademarks of Sun Microsystems,
Inc. All SPARC trademarks are trademarks or registered trademarks of SPARC International, Inc. Unix, Unix
System V, and OpenLook are registered trademarks of Unix System Laboratories, Inc. The X Windows System
is a trademark of the Massachusetts Institute of Technology. AVS is a trademark of Advanced Visual Systems
Inc. Verilog is a registered trademark of Cadence Design Systems, Inc. All other trademarks are acknowledged.

Issue status: Draft
Preliminary
Release
Obsolete

~
D
D

Circulation control: Et. ~e ,('\~l

CONTENTS

1 OVERVIEW . 1.1

2 EFFICIENT INTER-PROCESSOR
COMMUNICATIONS 2.1
2.1 Latency and Bandwidth ... 2.2
2.2 Network Security 2.3
2.3 Virtual Addressing 2.3

3 ELAN FUNCTIONALITY 3.1
3.1
3.2
3.3
3.4
3.5

Checking
Translation. . .
Copying
Device Control .
11rread Processor
3.5.1 Thread code
3.5.2 Events..........
3.5.3 Other Fonns of Remote Access

3.1
3.2
3.3
3.3
3.4

... 3.4
3.4
3.5

4 ELAN IMPLEMENTATION 4.1
4.1
4.2
4.3
4.4

Design Approach
Optimisation
Clocking ...
Re-hosting

4.1
4.2
4.2
4.2

5 USING THE COMMUNICATIONS PROCESSOR . 5.1
5.1 DMA Transfers. 5.1

6 CONCLUSIONS 6.1

1

OVERVIEW

meJ<o

Effective cooperation between processing elements is a crucial factor in detennining
the overall perfonnance of an MPP system. Maintaining effective inter-processor
communication as a system scales in size is a vital aspect of preserving balance.

In designing the CS-2 architecture Meiko has concentrated on minimising the impact
of sharing work between processors. The effect of this is to increase the number of
processors that can be used effectively to solve a problem, improving the perfonnance
of existing parallel programs and making parallel processing efficient for a wider
range of applications.

Every processing element in a CS-2 system has its own, dedicated interface to
the communications network: a Meiko designed communications processor. The
communications processor has a SPARC shared memory interface and two data links.
Data links are connected by Meiko designed 8 x 8 cross-point switches. Data links
are byte wide in each direction and operate at 70MHz, providing 50 Mbytes/s of user
bandwidth in each direction.

S l002-10MIOO.02 1.1

Computing Surface 2

1.2

Fig. 1.1 The Elan Communications Processor

System Clock Domain

Reply Thread

Input 0 Input 1

OMA

Internal
Memory

Command

Output

The communications processor supports remote read, write and synchronisation
operations specified by virtual processor number and virtual address - both are
checked in hardware. Latency hiding is supported by non-blocking instructions,
instruction sequences and completion tests.

This document provides an overview of the design of the communications processor
and its usage. For more infonnation about the architecture of the data network see
the CS-2 Communications Network Overview.

meJ<o

2

EFFICIENT INTER-PROCESSOR
COMMUNICATIONS

meJ<o

In a distributed memory system, work is shared between processors by exchanging
data over a communications network. The efficiency of data exchange controls the
effectiveness of work sharing and hence the number of processors that can be used
on a given problem.

Rather than design a new processor with built in communications capability Meiko
chose to separate the issues in the design of the CS-2. Processing elements consist
of a high performance RISe CPU (with optional vector processing capabilities) and
a dedicated communications processor.

The interface between the communications processor and the rest of the processing
element is central to the efficiency of the CS-2 network. It provides the following
essential features:

Sl002-10MIOO.02

• Low communication start-up latency.

• High bandwidth inter-processor communication ..

• Security against corruption.

• Operation in a network-wide virtual addressing,
virtual process environment.

2.1

Computing Surface 2

2.1 Latency and Bandwidth

2.2

Efficient inter-processor communication requires both low latency and high
bandwidth. While solutions to the bandwidth problem can be addressed by ever
improving hardware technology, these improvements only exacerbate underlying
latency problems.

To show that this is the case consider a system with a communications start-up latency
of lOlls. To transfer a 100 byte message via a 1 Mbyte/s network we will get an
achieved bandwidth of 0.9 Mbytes/s (90% efficiency). For the same transfer over a
50 Mbytes/s network, the achieved bandwidth is just 8.3 Mbytes/s (16% efficiency).
Clearly the improvements in bandwidth for this example system have been severely
limited by the start-up latency and the size of the data transfer.

By using a dedicated communications processor Meiko have reduced start-up latency
by implementing in hardware the communications code that would normally execute
on the main processor.

The data links joining communications processors and network switches are byte
wide in each direction. Links are clocked at 70MHz. Their bandwidth after protocol
is 50MBytes/s in each direction. The CS-2 data network is a fat tree with constant
bandwidth between stages. It is capable of supporting full bandwidth transfers
between all pairs of processors (see the CS-2 Communication Network Overview for
more details).

Moving communications code from the main processor to a communications engine
does not in itself reduce latency. Performance improvements come from running the
right code in the right places. In particular there are significant benefits to be had from
moving the lightweight interrupt intensive operations associated with inter-process
communication off a conventional microprocessor and onto a communications
processor designed specifically for this purpose.

meJ<o

2 Efficient Inter-processor Communications

2.2 Network Security

The CS-2 communications network is shared by both user and system level
communications so it is vital that a security mechanism is used to prevent unrelated
communications from interacting. To relieve the burden of checking from the
main processor and to reduce start up latency, the main processor issues unchecked
communication instructions to the communications processor, the communications
processor then implements the security strategy in hardware. This mechanism is
preferable to the more conventional use of kernel mapped devices, which use checked
system calls to access the device, often with a significant performance impact (a
checked system call in a 40 MHz SPARC takes approximately SOilS).

The CS-2 network protects processes from communications errors that occur within
other unrelated processes, but does not protect a process from errors within itself.
This is the same model as that employed for memory protection by the UNIX
operating system - processes are protected from each other, but not from themselves.

2.3 Virtual Addressing

meJ<o

The communications processor uses separate page tables from the main processor.
This means that a user process need not make its entire address space visible
when it communicates, only the portion that contains the data need be mapped for
communication. Secondly, separate page tables may be used to reduce the amount
of cache flushing in non cache-coherent systems; in a write through cache only those
pages that are mapped with write permission need be flushed.

The two sets of page tables are kept in step by a modified page out daemon and new
page in code in the operating system. The modified page out daemon modifies both
sets of tables, whereas the new page in code handles the asynchronous page faults
from the communications processor.

Sl002-10MIOO.02 2.3

3

ELAN FUNCTIONALITY

The functionality of the communications processor was decided by drawing on
experience from Meiko's CSTools/CSN communication software, used to create a
programming environment over Transputer networks,' and other message passing
systems such as the Chorus Nucleus. This analysis showed that the start-up process
consists of four components:

• Checking.

• Translation.

• Copying.

• Device control.

Each of which is important if start-up latency is to be minimised.

3.1 Checking

meJ<o

The CS-2 supports virtual memory addressing on each processing element, allowing
it to implement a fully distributed store for operating system use, and penn it it to
implement the applications binary interface (ABI) for the base microprocessors. The
communications processor therefore has two types of parameters to check: memory
addresses and process addresses.

The communications processor receives unchecked virtual memory addresses from
the main processor so it must incorporate a memory management unit (MMU). The
MMU used within the Elan supports multiple simultaneous contexts allowing I/O to
continue for suspended processes.

The checking of process addresses is analogous to the checking of memory addresses.
It is implemented by a simple table look-up and exception mechanism. The
communications processor is designed to handle the common case where a user
is trying to communicate with other processes for which it has pennission; an
exception is generated whenever there is no pennission. As checking is perfonned

S 1 002-1 OM 1 00.02 3.1

Computing Surface 2

independently on each of the communications processors, failed processing elements
can be removed from seIVice by removing them from each communications
processor's list of valid destinations.

3.2 Translation

3.2

Process and memory translation within the communications processor is imple­
mented through the same mechanism as the checking, that is, by table look-ups.
Memory address translation yields the same results as the main processor's trans­
lation mechanism. Dynamic process translation yields two components: a destina­
tion processor and a destination context. There are no physical processor or memory
addresses in user space.

Fig. 3.1 Elan Process Translation

Context Table Virtual Process Table

r--t

Context
Number

I---

---.

Virtual Process
Number

Routing Table

~

Virtual process ids are translated through a per context virtual to physical processor
translation which points at the route bytes needed to direct a message to this processor.

meJ<o

3.3 Copying

3 Elan Functionality

The communications processor supports a number of features to remove the
requirement for copying of data. By using network wide virtual addressing there
is no need to copy data into physically mapped output buffers, a common technique
in distributed systems to overcome the problems of virtual address translation and
page locking during communication. Furthennore, because the main processor and
the communications processor share a common memory bus (a SPARC MBus) and
the same cache coherency protocols, the problems associated with cache coherency
are also avoided.

Clearly the avoidance of unnecessary copying contributes greatly to reduced start­
up latency and efficient use of memory bandwidth. For messages that are copied
once on sending, this adds message size x 2 / memory bandwidth to the start­
up latency, and consumes three times as much store bandwidth.

3.4 Device Control

meJ<o

The final requirement of message start-up code is in device control. This is setting
up the communications parameters in store, signaling to the communication device,
and responding to interrupts returned by the communications processor.

Control of the communications processor is via a command port which is nonnally
mapped into the user address space. The command port consists of a range of memory
addresses. The communications processor command is detennined by extracting 5
bits from the address that is used. The data that is used by the communications
processor command corresponds to the 32 bits of data that are written to that memory
address. Commands sent to the command port are written in a single read-modify­
write cycle and are acknowledged with the value that is read back (which will be
non-negative if the command is accepted). The kernel can prevent the user issuing
certain commands by mapping limited portions of the command port address space
in to the user address space.

Exceptions generated by the communications processor may be handled by the
communications processor's own thread processor, without direct intervention by the
main processor.

S 1 002-1 OM 1 00.02 3.3

Computing Surface 2

3.5 Thread Processor

3.4

One of the objectives of the Elan communications processor is to reduce the number
of interrupts and system calls that must be executed to perfonn message passing.
As we have seen the combination of the user mapped command port and the
Elan communication processor's security mechanisms allows user level code to
initiate remote memory accesses without making a system call. In many cases,
however, message protocols require higher level functions than simply the transfer
of data. Other common requirements are for synchronisation between processes
executing on separate processors, and allocation of global resources. To support these
requirements the Elan communications processor includes a RISC processor which
can execute user level code independentl y of the main node processor, and also create
additional network transactions.

The hardware and microcode of the thread processor support an extremely
lightweight scheduling mechanism. This allows lightweight processes (threads)
running on the thread processor to be suspended and then rapidly rescheduled by
the hardware when the relevant event has occurred.

The user level code in the main node processor can directly request the execution of a
thread process through access to the appropriate command port. The thread code has
no more privileges than the user code which initiated it. The Elan communications
processor uses its page tables for the relevant user context whenever it makes a store
access from the thread.

3.5.1 Thread code

Thread code can be written in ANSI C. An inlined library provides access to the Elan
communication processor I/O instructions without the overhead even of a subroutine
call.

3.5.2 Events

Events provide a general mechanism by which synchronisation may be achieved
between lightweight threads running either in the same, or different, Elan
communication processors. In addition an event can be used to cause an interrupt
to the main node processor. An event is represented by a double word in store.

A thread can perfonn the following operations on either local or remote events:

Wait If the event has already been set, then execution continues and the
event is unset. Otherwise the thread is suspended on the event until
the event is set, when it will be rescheduled.

meJ<o

mei<o

3 Elan Functionality

Set The event is set. If there was an action already present on the event
then it is perfonned.

Clear If the event was set it is cleared.

Test Poll the status of an event without modifying or suspending on it.

There are various possible actions which can occur when an event is triggered, these
depend on what has been suspended in the event structure:

A local thread The thread is placed back on the thread run queue, so will
resume execution.

A remote thread The remote thread is rescheduled on its own processor.

A local interrupt The main processor is interrupted.

Events also support queues of outstanding requests. When a queued event is set, the
first action on the queue is executed, and the queue updated to point to the next action.

3.5.3 Other Forms of Remote Access

In addition to events, the Elan also supports other fonns of remote store access. In
particular thread code can generate network transactions to perfonn:

Atomic Swap The word at the given remote address is returned, and
overwritten with the word sent in the message.

Atomic Add The word sent in the message is atomically added to the
data at the remote address. The original remote data may
optionally be returned.

Atomic test The word at the remote address is compared with a test
and store value sent in the message. If equal then a new value sent

in the message is written to the remote store, otherwise
the remote store is unchanged. The original remote value
may optionally be returned.

Remote compares The word at the remote address is compared with the
given data using one of the operations ==, =, >= or
<. The result of the comparison is returned as an
acknowledge or negative acknowledge.

The broadcast capabilities of the Elite switch can be used to combine the results of a
broadcast remote compare operation into a single result.

SI002-10MIOO.02 3.5

4

ELAN IMPLEMENTATION

The Elan communications processor and Elite network switch were designed by
Meiko at its European subsidiary in Bristol, UK.

The two ASICs are implemented on 1.0 micron drawn 3 layer metal CMOS sea of
gates gate arrays. Both components use a 110,000 gate base array which incorporates
more than 440,000 transistors.

The communications processor achieves a utilisation of approximately 75%
(representing around 83,000 gates), the network switch utilises approximately 55%
(61,000 gates).

Both components are packaged in 208 pin PGAs.

4.1 Design Approach

meJ<o

The network design was subjected to extensive parallel simulation using models
written in 'C'. The network components were designed using an iterative top-down
approach.

A gross functional model was written in Verilog to simulate the behaviour of
the Elan. This was rewritten and refined to produce a cycle by cycle functional
model encompassing the full state required, together with a module hierarchy.
These modules were converted into a stylised register transfer subset of the Verilog
language, which aided their synthesis into gate level logic. This synthesis/conversion
was done by hand for the majority of modules. The development for the Elite
followed a similar design flow to the Elan.

The gate and functional models were automatically compared using a number of
techniques, and were kept in step throughout the design. The two model types have
different simulation properties. The functional model consumes considerable less
memory however the gate model simulation executes faster if the entire data set is
present in memory during the the simulation. Simulations of CS-2 data networks

Sl002-10M100.02 4.1

Computing Surface 2

(communications processors and network switches) were conducted using functional
models.

The gate level logic was targeted at a vendor independent technology library. Vendor
selection was based on the two qualities of cost and process speed requirement. Re­
targeting of the implementation to a different vendor/process would be relatively easy
to perfonn.

4.2 Optimisation

The 70MHz operating frequency of the Elan-Elite network required extensive
optimisation of logic delays using a timing analyser to give guaranteed worst case
temperature, process, and voltage operation. The layout associated with these high
frequency circuits was carefully floor planned.

4.3 Clocking

The communications processor operates in two separate clock domains, one
synchronised to the host processor's memory interface, the other to the 70MHz
communications clock. Appropriate synchronisation occurs when data is transferred
between the two domains.

The network switch also synchronises data from each link to its local 70MHz clock,
the data is sampled and regenerated at each switch.

The communications processor and network switch therefore remove the requirement
for global clock distribution throughout the machine.

4.4 Re-hosting

4.2

The interface between the communications processor and the processing element
is through the processor's cache coherent memory protocol. The initial version of
the communications processor implements the SPARC MBus protocol, however re­
targeting of the communications processor to a different host memory bus would
require only minor modifications to the communications processor, since the memory
interface is a well contained module within the design consisting of around 5000
gates.

meJ<o

5

USING THE COMMUNICATIONS
PROCESSOR

In this section we show in outline how the communications processor is used to
communicate with other processes via the data network. The example shows how
to initiate a DMA transfer to remote store.

5.1 DMA Transfers

meJ<o

In the previous sections we have seen that a key factor in the design of the
communications processor is that it offers low communication start-up latencies, and
that communication start-up requires minimal intervention by the main processor.
For a typical DMA transfer of data to a remote processor, the actions required by the
main processor are as follows:

• User program creates a DMA structure in store identifying the characteris­
tics of the transfer (source and destination addresses, amount of data, etc).
This could be done in advance if the same access is to be made repeatedly.

• User program issues DMA command with RmW to command port. The
address of the DMA structure is written to the appropriate address in the
command port.

• User program checks command accepted; a value of greater than or equal
to 0 in the command port indicates that the command was accepted.

The main processor is now free to continue with its work leaving the communications
processor to transfer the data, and to ensure its integrity. The actions now required
by the communications processor are:

Sl002-10MlOO.02

• Command processor reads the 32bit data from the command port and
uses this to locate the DMA descriptor. The descriptor is read into the
communications processors DMA queue.

• DMA processor reads the queue item in.

5.1

Computing Surface 2

5.2

• DMA processor perfonns destination process translation.

• DMA processor reads route infonnation.

• DMA processor reads source data in and starts to send. The route
infonnation is prepended to the data, and is stripped off as it passes through
the switch network.

If the main processor wanted continnation that a DMA had completed it would
include a pointer to an event in the DMA description. Polling this event (when there
is no more useful work to do) would continn completion of the transfer.

meJ<o

6

CONCLUSIONS

meJ<o

Efficient inter-processor communications requires the right balance of latency and
bandwidth. CS-2 uses Meiko's own communication hardware, developed from many
years experience in the ma~sively parallel processing field, to create a network with
both high bandwidth and low start-up latency.

The Elan communications processor is key to minimising the network latency. It
selVes not just as a communications co-processor, but aims to minimise the amount
of message start up code, and therefore minimise startup latency. For simple
communications the overhead on the main processor can be reduced to a single read
modify write. More complex protocols require small fragments of code to be run on
the communications processor. The requirement for copying of messages is removed
by the ability of the communications processor to operate in virtual store. Protection
is implemented by hardware table look ups of translation tables which impose low
overhead on valid operations, and generate exceptions in the much less frequent error
cases.

S 1 002-1 OM 1 00.02 6.1

Computing Surface 2

Overview of the CS-2
Vector Processing Element

mei<o

Computing Surface 2

The infonnation supplied in this document is believed to be true but no liability is assumed for its use or for the
infringements of the rights of others resulting from its use. No licence or other rights are granted in respect of
any rights owned by any of the organisations mentioned herein.

This document may not be copied, in whole or in part, without the prior written consent of Meiko World
Incorporated.

Copyright © 1993 Meiko World Incorporated.

The specifications listed in this document are subject to change without notice.

Meiko, CS-2, Computing Surface, and CSToois are trademarks of Meiko Limited. Sun, Sun and a numeric
suffix, Solaris, SunOS, AnswerBook, NFS, XView, and Open Windows are trademarks of Sun Microsystems,
Inc. All SPARC trademarks are trademarks or registered trademarks of SPARC International, Inc. Unix, Unix
System V, and OpenLook are registered trademarks of Unix System Laboratories, Inc. The X Windows System
is a trademark of the Massachusetts Institute of Technology. AVS is a trademark of Advanced Visual Systems
Inc. Verilog is a registered trademark of Cadence Design Systems, Inc. All other trademarks are acknowledged.

Issue status: Draft
Preliminary
Release
Obsolete

Et
D
D

Circulation control: ["1 ~e ('(\o....l

CONTENTS

1 GENERAL DESCRIPTION 1.1
1.1 MK403 Ovexview .. 1. 1

1.1.1 J.l VP Vector Processor 1.2
1.1.2 Superscalar SPARC Processor 1 .4
1.1.3 Memory System 1 .4

2 COMPILERS 2.1
2.1 Ovexview. 2. 1
2.2 Languages .. 2. 1

2.2.1 FORTRAN and C 2. 1
2.2.2 High Perfonnance Fortran (HPF). 2.2
2.2.2.1 Fortran-90 Binding 2.2
2.2.2.2 New Features in High Perfonnance Fortran 2.2

2.3 Code Generation . 2.3

3 CONCLUSIONS 3.1

1

GENERAL DESCRIPTION

This document describes the architecture of the CS-2 vector element (MK403). It
briefly describes the internal architecture of the Fujitsu J.l VP and the compilation
strategy used to exploit the combined resources of the SPARC and multiple J.l VP
processors.

For more details of the workings of the J.l VP see the "Programmers Reference
Manual".

1.1 MK403 Overview

meJ<o

The CS-2 vector element incorporates a 40MHz Superscalar SPARC, a Meiko Elan
Communications Processor and 2 Fujitsu J.l VP vector processors. All processors have
access to the memory system via 3 memory ports, two of which are used by the vector
processors and the third by the SPARC and Elan which share an MBus.

Fig. 1.1 CS-2 Vector Processing Element

Sl002-10MI01.03 1t1

Computing Surface 2

It2

The memory system is implemented as 16 independent banks, with a (current) total
capacity of 128 MBytes. Memory bandwidth for each of the 3 ports is 1.2 GBytes/s,
with a total bandwidth of 3.2 GBytes/s.

External I/O support is provided through 3 SBus interface slots - primarily used for
disk controllers, but capable of supporting network interfaces and graphics cards.

1.1.1 J.t VP Vector Processor

The J.tVP operates with a 50MHz (2Ons) clock. It has a vector register architecture
with 8 KBytes of vector registers, configurable as between 8 and 64 vectors each of
16-128 64-bit registers (see below). In addition there are 32 scalar registers and a set
of vector mask registers whose fonnat tracks that of the vector registers.

Fig. 1.2 J.t VP Vector Processor

400 MB)1esIsec

50 MHz

200 32-bit MFlops

100 64-bit MFlops

Vector
Regislei'
VRO-63

8KB

3.2 GBytes/sec

mei<o

mei<o

1 General Description

Configuration of the JL VP vector and mask registers:

Precision Length Number of registers
Single 32 64
Single 64 32
Single 128 16
Single 256 8
Double 16 64
Double 32 32
Double 64 16
Double 128 8

The J-l VP has seperate pipes for floating point multiply, floating point add, floating
point divide, and integer operations. The floating multiply and add pipes can
each deliver one double precision (64 bit) or two single precision (32 bit) IEEE
format result(s) on every clock, giving a maximum theoretical performance of 100
MFLOPS/s double precision and 200 MFLOPS/s single precision; the divide pipe can
simultaneously deliver an extra 6 MFLOPS/s in either single or double precision.
Both the add and multiply pipes have the low latency (pipe depth) of two cycles
(4Ons), with one extra cycle being required to read and one to write the vector register
file.

The vector register elements are scoreboarded, so that chaining between input and
output operands occurs wherever possible without requiring explicit compiler or
programmer intervention.

The JL VP has a single load/store pipe which is used for accessing the memory system.
This is a 64 bit interface which can generate four addresses on consecutive clock
cycles before stalling for the returned data. Once the data is present a 64 bit word can
be transferred on each clock cycle, giving a maximum bandwidth of 400 MBytes/s.

The instruction set includes masked vector operations, compressions (sum, maxval,
maxindex, minval, minindex), vector compress under mask and expand under
mask operations, as well as logical operations on integers and mask registers and
conditional branches. Vector loads and stores can be performed with strides and
under mask, as well as with an index vector ("indirect"). For further information
about the J-lVP instruction set the J-lVP Programmers reference Manual.

S 1002-10M101.03 1.3

Computing Surface 2

1.4

1.1.2 Superscalar SPARe Processor

The MK403 uses SPARC MBus processor modules. It is generally populated with a
36 or 40HMz Viking SPARC, but other standard modules can be used.

The Superscalar SPARC has two independent integer ALUs which can execute
separate arithmetic operations or can be cascaded so that the processor can execute
two dependent instructions in the same cycle. It has instruction issue logic which can
issue up to three instructions on the same cycle. Load and stores operations of all
data types to the on chip 16 KBytes data cache occur in a single cycle. The floating
point unit can execute multiply and add instructions simultaneously, though only one
floating point instruction can be issued per cycle.

1.1.3 Memory System

The Superscalar SPARC processors and Elan communication processor are connected
to a standard 40MHz MBus. The vector processors and MBus are connected to a 16
bank memory system, each bank providing 64 bits of user data (78 bits including
error checking and correction, implemented using 20 by 4 bit DRAMs with two
bits unused). Error detection and correction is implemented on each half word (32
bits), allowing write access to 32 bit (ANSI-IEEE 754-1985 single) values to be
perfonned at full speed, without requiring a read modify write cycle.

Each bank of memory maintains a currently open DRAM page within which accesses
may be perfonned at full speed. . This corresponds to a size within the bank of 8
KBytes, giving 128 KBytes total for the 16 banks. When an access is required outside
the currently open page a penalty of 6 cycles is incurred to close the previous page,
and open the new one.

Refresh cycles are perfonned on all banks within a few clock cycles of each other,
thus allowing the cost of re-opening the banks to be pipelined (since the J.l VP can issue
four addresses before stalling for the data from the first), and reducing the overhead
of refresh to a few percent of memory bandwidth.

The memory system is clocked at the same speed as the J.l VP processors (50 MHz),
and accesses from the 40 MHz MBus are transferred into the higher speed clock
domain. When accessing within an open page each memory bank can accept a new
address every two cycles (4Ons), and replies with the data four cycles (8Ons) later,
giving a bandwidth of 8 Bytes every two cycles (4Ons), that is 200 MBytes/s. Since
there are 16 banks, the total memory system bandwidth is thus 3.2 GBytes/s.

Each J.l VP can issue a memory request every cycle (2Ons), and can issue 4 addresses
before it requires data to be returned. In the absence of bank contention (which will
be discussed below), after a start up latency of four cycles, these requests can be

mei<o

1 General Description

satisfied as fast as they are issued, giving each Jl VP a steady state bandwidth of 8
Bytes every 2Ons, that is 400 MBytes/s.

Since each bank can accept a new address every two cycles (4Ons), but the JlVP can
generate an address every cycle (2Ons) there is the possibility of bank contention if
the Jl VP generated repeated accesses to the same bank. With a simple linear mapping
of addresses to banks, this would occur for all strides which are multiples of 16 (for
64 bit double precision accesses). Such an access pattern would then see only one
half of the nonnal bandwidth, that is 200 MBytes/s. All other strides achieve full
bandwidth.

To ameliorate this problem as well as allowing the straightforward linear mapping of
addresses to banks, Meiko also provide the option (through the choice of the physical
addresses which are used to map the memory into user space) of scrambling the
allocation of addresses to memory banks. The mapping function has been chosen
to guarantee that accesses on "important" strides (1, 2, 4, 8, 16, 32) achieve full
perfonnance. Access on other strides may see reduced perfonnance, but there are no
strides within the open pages which see the pathological reduction to one half of the
available bandwidth.

meJ<o Sl002-10MI01.03 ItS

2

COMPILERS

2.1 Overview

The Fortran and C compilers for the vector processing element generate code for all
three processors: using the scalar processor to execute scalar code, and the two J.l VPs
to execute vector loops. They incorporate a wide range of standard optimisations:

constant folding, constant propagation, common subexpression removal,
automatic function inlining, instruction scheduling, loop invariant removal,
induction variable detection, software loop pipelining, loop splitting, loop
interchange, loop vectorization, vectorization of intrinsic functions, vector
idiom recognition, dead code removal,

as well as proprietary optimisations for the CS-2.

2.2 Languages

meJ<o

2.2.1 FORTRAN and C

The FORTRAN language conforms to ANSI X3.9-1978, with the addition of many
extensions including CRAY Pointers, ALLOCATABLE arrays and COMMON blocks,
VMS structures, END DO statements, and NAMELIST I/O. The compiler also
recognises the CRAY vectorization directives (e.g. CDIR$IVDEP).

The C compiler accepts the ANSI C language, and incorporates the same vectorizer
and code generator as the FORTRAN compiler.

Sl002-10MIOl.03 2.1

Computing Surface 2

2.2

2.2.2 High Performance Fortran (HPF)

The High Perfonnance Fortran Forum (HPFF) is a group of industrial and academic
organisations which is open to all. The objective of the group is to standardise
annotations and extensions to ISO 1539: 1991 (Fortran-90) to allow a Fortran program
to be efficiently executed under a data parallel execution model. HPFF have
published the final draft specification for public comment. An HPF compiler for
the CS-2 is currently under development.

2.2.2.1 Fortran-90 Binding
The HPFF has chosen Fortran-90 as the language for extension. The new dynamic
storage allocation and array calculation features make it a natural base for HPF. The
HPF language features fall into 3 categories with respect to Fortran-90:

• New directives.

• New language syntax.

• Language restrictions.

The new directives are structured comments which suggest implementation strategies
or assert facts about a program to the compiler. They may affect the efficiency of the
computation perfonned, but do not change the value computed by the program. The
fonn of the HPF directives has been chosen so that a future Fortran standard may
chose to include these features as full statements in the language.

A few new language features, namely the FORALL statement and certain intrinsics,
are also defined. They were made first-class language constructs rather than
comments because they can affect the interpretation of a program, for example by
returning a value used in an expression. These are proposed as direct extensions to
the Fortran-90 syntax and interpretation.

Full support of Fortran sequence and storage association is not compatible with the
data distribution features of HPF. Some restrictions on use of sequence and storage
association are defined. These restrictions may in tum require insertion of directives
into standard Fortran programs in order to preserve correct semantics.

2.2.2.2 New Features in High Performance Fortran
High Perfonnance Fortran extends Fortran in several areas. These areas include:
data distribution features, parallel statements, extended intrinsic functions, foreign
procedures and changes in sequence and storage association.

mei<o

2 Compilers

2.3 Code Generation

meJ<o

The compilers for the vector processing elements produce code that executes on
the SPARC, and, dynamically if appropriate, on the two attached vector processors.
Scalar code executes on the Superscalar SPARC processor, vector code is compiled
to execute on either the SPARC processor or the 11 VPs, or both.

Where the vector length is not known at compile time, the compiler generates both
vector code (for the 11 VPs) and scalar code: the choice of which code to execute being
made at run time based on the actual vector length.

The vectorizer exploits the multiple IlVPs in two different ways. Where there is a
loop around a vector loop, as shown below, the compiler will generate code which
executes alternative iterations of the outer loop on each of the 11 VPs; each instance
of the inner loop (and its strip-mine loop) will execute entirely on a single 11 VP:

DO I = l,N
DO J = I,M

X(J,I) = A*X(J,I) + Y(J)
END DO

END DO

The generated code is analogous to the following (pseudo) source code:

In parallel on 11 VP 1

DO I = 1,N,2
DO J = 1,M

X(J,I) = A*X(J,I) + Y(J)
END DO

END DO

and on IlVP 2

SI002-10MI01.03

DO I'=2,N,2
DO J' = l,M

X(J',I')
END DO

END DO

A*X(J',I') + Y(J')

2.3

Computing Surface 2

2.4

Where there is no outer level independent loop which can be exploited, then the
compiler will split the individual strips of the inner loop across the two J.t VPs.
Consider the following example:

DO J = 1,M
X(J) = A*X(J) + Y

END DO

The generated code is analogous to the following (pseudo) source code:

In parallel on j.t VP 1

IBASE = 1
ILEN = MIN(M-IBASE, stripLength)

C Strip mine loop
DO WHILE (ILEN .GT. 0)

C Vector operation
DO J = IBASE,IBASE+ILEN

X(J) = A*X(J) + Y
END DO

C 2 here is number of uVPs involved
IBASE lBASE + 2 * stripLength
lLEN = MlN(M-lBASE, stripLength)

END DO

and on j.tVP 2

IBASE' = stripLength
ILEN' = MIN(M-IBASE', stripLength)

C Strip mine loop
DO WHILE (lLEN' .GT. 0)

C Vector operation
DO J' = lBASE,lBASE+lLEN'

X(J') = A*X(J') + Y
END DO

C 2 here is number of uVPs involved
lBASE' lBASE' + 2 * stripLength
ILEN' = MlN(M'-IBASE', stripLength)

END DO

All of this code executes on the j.t VP.

The code generator schedules vector instructions to ensure that chaining of vector
operations happens as often as possible (by ensuring that there are no scalar operations
scheduled between dependent vector operations).

meJ<o

2 Compilers

If the operation is a vector sum, then each p.VP will produce the sum of the elements
it processes, and the final accumulation of the two partial sums will be perfonned by
the scalar processor.

mei<o Sl002-10MI01.03

3

CONCLUSIONS

meJ<o

Each CS-2 vector processing element consists of a Superscalar SPARC, a Meiko
Elan communications processor, and 2 Fujitsu J1 VP vector processors sharing a three
ported memory system. Cycle time is 2Ons, performance peaks at 200 MFLOPS per
processing element in 64 bit arithmetic, or 400 MFLOPS in 32 bit.

To achieve high performance on real world problems you need the correct balance of
CPU and memory system performance. The CS-2 vector memory system is organised
as 16 independent banks, enabling it to sustain 1.2 GBytes/s on direct, strided, or
indirect addressing. Memory capacity is currently 32 or 128 MBytes per processing
element.

The CS-2 development environment for the vector processing elements includes
compilers for FORTRAN-77, ANSI C, Fortran-90, and High Performance Fortran.
The compilation system produces compiled code that executes on either the SPARC
processor or, dynamically where appropriate, on the two attached vector processors.

Sl002-10MI01.03 3.1

