WESTERN ELECTRIC ® PEACHTREE SOFTWARE INC. ® CRAY RESEARCH @ UPJOHN @ RCA ® DYSANCORP.® WESTINGHOUSE ® AMERICAN BELL ®

(\. SOFTWARE BANC ® JOHNSON & JOHNSON @ HOFFMAN LaROCHE ® AT&T ® TiIME LIFE ® BALLY MANUFACTURING ® APPLE COMPUTER ® ¢
® »
.‘x;_o wv ?‘
® O =

O ?

O s -
L) .
‘,Cb&o x
QN -
N [*]

‘,*-’::3. AZ TE C C eee the most pOrtabIe Manx Software Systemé

with over 6,000 licensed

& and Comprehensive C users is one of the leading suppliers of

“C” compilers and cross compilers for

ftw the world’s most popular micro computers. The
§O are d eVeIOp ment MANX AZTEC C compiler is avalilable as a cross

System ava ilabl @ compiler or native compiler for the following environments:

’:1
<

)
0,
&0
N

AZTEC C86 AZTECC I} AZTEC C65

PC DOS CP/M-80 APPLE DOS _

MS DOS TRSDOS COMMODORE 64 (12/83)
CP/M-86 ProDQS (2/84)

The AZTEC C product is a complete development system. In addition to a full v7 “C” compiler, the
basic product includes assemblers, linkage editors, development utilities, and full run time libraries;
New products to be released in late 1983 and early 1984 include graphics development tools, data
base managers, program editors, screen management systems, and other development tools that
work in conjunction with the AZTEC C system.

CROSS DEVELOPMENT SYSTEMS

The AZTEC C cross development systems include all of the utilities and library support routines avail-
able with the native versions including a cross assembler. The binary image created in the host environ-
ment is downloaded and tested in the target environment. MANX has been using its own cross
compilers on a daily basis since 1980.

HOSTS PDP-11 68000 8086/8088 8080/8085/280
UNIX UNIX ports UNIX ports CP/M-80
PC DOS
MS DOS
CP/M-86
—TARGETS
G 8086/8088 8080/8085/280 6502/65xx
PC DOS * CP/M-80 APPLE DOS
MS DOS TRSDOS (12/83) APPLE PraDOS (2/84)
CP/M-86 LDOS (12/83) COMMODORE 64
DOSPLUS (12/83)

@ NYWAL @ D30 @ 'dYODVIVGTOUINOD @ OWVE AINNE ©°430D ¥ILNIWOI DVIWOD @ BWOTRHISNVE ¢ ANVELLID @ VIOYOLOW @ 1138 N¥I1SIMHLNO

0S © 13 & SOLINANOIIWIS TYNOILYN o O¥JOEIIW @ XIAIA @ YILNIWOD EVINAOW ¢ $EV1 1138 @ ‘430D ONJAVI » IVAINN ANYI4S @ LIOSOUDIW @ "OD YOLOW QYOI & SUILNIWOD VLS HLYON e X

Other host and target environments will be released in early 1984,

NATIVE COMPILERS

The AZTEC C native 8080 compiler was first released in 1981. Since that time it has been acquired by
more than 300 colleges and universities, thousands of corporations, small business, and government
agencies. The.compiler has been ported to the 6502 and 8086. Plans for future ports include the 68000,
16032, and IBM 370. All native versions are source compatible. Source develaped in one environment
can therefore be transferred to another environment and compiled, linked and executed.

For prices and information call; A ®
800-221-0440 (outside NJ) ‘ '
201-780-4004 (inside NJ) . , .

Or write to: MANX SOFTWARE SYSTEMS _ ’

P.O. BOX 55 ® SHREWSBURY, Nj 07701 sOo f tware Syst ems

FTWARE BA NC ® JOHNSON & JOHNSON @ HOFFMAN LaROCHE © AIAT © TIME UFE ® BALLY MANUFACTURING ® APﬂ.‘ECOA.dPUTEl ® AMDAHL CORP. ® BO.AL SOUTHWESTERN BELL ® MO

o ZTATEINC. ® LOCKHEED MISSILES & SPACE CO. ® ZENITH ® TIMEINC. ® MATTEL ® WANG LABS ® ROCKWELLINTERNATIONAL® EACLE COMPUTER INC. ® CORVUS ® PITNEY BOWES ® GENERAL

XIAN3I8 @ T1AIMOH 31138 @ WE @ TVIIGIW -OI1gIHDOY e WEI

-NOLHSY @ LiVIDUIVSIHDNH @ 'd¥0D SWILSAS DIHLITONOW @ 'd¥0OD INIWJOT1IAIA SNLOT @ HONAT THINIW @ NOINN NIILSIM @ SOIHIVED FILNIWOI VA0 o b}
TL'D @ MUL @ SOILLOBOY 'S'N @ QAVIIVE-LIITMIH © ‘'ODNOLYON @ INIT-NO-VHEIIS @ YON @ YIWTININUYI4 @ DNISWILSAS OIGIAIIIL @ NITINVES @ DONIHSITEN IUVM

[=]

Aztec C for CPM Release Doc

Aztec C for CPM, version 1.06D
Release Document

This release document describes Aztec C for CPM, version
and is divided into the following sections:

1.06D,

U W

.

.

Differences between Aztec C, versions 1.06D and 1.06B
Differences between Aztec C, versions 1.06B and 1.05G
Packaging

Helpful hints

Outstanding bugs

Addenda

Aztec C for CPM Release Doc

1.

Differences between Aztec C, versions 1.06D and 1.06B

Version 1.06D of Aztec C for CPM is primarily a bug-fixing

release. There are a few additions to the compiler preprocessor.

1.1 Fixed bugs

o]

C

All Manx programs, except for the compilers, cc and cz, now
recognize when there is no more disk space, and log an error
message.

The linker had a bug which caused some overlays to overlay
the last byte in the root's uninitialized data segment.

The compilers had a bug which caused them to ignore the line
following a #endasm statement.

There was a bug in the function agetc() which prevented a
program from turning off the EOF flag on the console.

The format() function, called by printf(), fprintf(), and
sprintf(), incorrectly handled the '%*f' conversion.

The compilers incorrectly generated an error 99 for
statements in which a character pointer was assigned to a
long variable.

The compilers generated incorrect code for statements of the
form

It

Il

a <= 4;
a /= 4;

when 'a' was a character variable.
Some bugs in the ftoa() and atof() function were fixed.

The internal function for closing a file, filecl(), didn't
properly handle files located 1n user areas other than the
current area. This prevented programs from accessing files
in other user areas.

The program 'sidsym' will access files in any user area, and
wlll sort a symbol table into numerical order. It has been

linked with the tiny library, thus reducing its size.

The 1.06B version of the linker required that the extension

'.com' for the file to which executahble code was written. If
another extension was used, the linker would generate
inappropridate oerror messayes. With the 1.06D linker, 1f the
extension itsn't fLcom’, the linker will generate a mewmory
inage of the excecutablie proguram; 1n this case, the default

base address ana code segment address are 0.

Aztec C for CPM Release Doc

The functions in() and out() have been added to c.lib.

The module 'ctype' was misplaced in the 1library: it now
comes after the modules 'atoi' and 'atol', since they both
reference 1it.

There was a bug in the tiny library, t.lib, which affected
programs that called puts{) without calling putchar() or
that called gets() without calling getchar(). This has been
fixed by adding getchar() and putchar() to the Croot module
in t.lib.

There was a bug in the compilers which occurred when both
the -M and -U options were used in the compilation of a
program: global functions declared in the program weren't
declared 'public' and hence couldn't be accessed by
functions in other modules.

The rename() function now returns -1 when it fails.
The 'exec' functions were fixed.

There was a bug in code that compared a long variable to a
constant.

The compiler preprocessor didn't support \" and \'.

The compiler generated incorrect code when the ++ operator
was applied to an unsigned long variable.

There was a bug in malloc() which sometimes caused programs
calling it to go into an infinite loop.

There was a bug in the processing of #1f statements by the
compiler which affected statements of the form

#1f MACRO

when MACRO wasn't defined.

New features

The complilers now have the ability to print error messages
instead of an error code. The file 'cc.msg' contains the
error messages. If the compiler finds an error, and 1if it
can open this file, the error's message will be printed;
otherwise, the error's number will be printed.

The compller searches for cc.msg 1n the same areas that 1t
would senrch for an inclade file.

The Azteo C compllers now have predefined symbols whiioh
tdent i fy the machine on which code generatea by o compl e
Wil rui:

Aztec C for CPM Release Doc

MPU8080 - code will run on an 8080
MPUZ80 - code will run on a Z80
MPU8086 - code will run on an 8086 or 8088

This allows statements of the form

#if MPU8S080O | MPUZ80

/* 8080 and Z80 code goes here */
telse

#i1fdef MPUB0O86

/* 8086 code goes here
#endif
#endif

o The compiler now treats adjacent quoted character strings as
a single quoted string. For example, the statement

printf("this is" " really just" "one string");

is equivalent to
printf("this is really just one string");

o The compiler defines the following symbols to be quoted
strings:

__LINE
The number of the line being compiled.

__FILE
The name of the file being compiled.

___FUNC___
The name of the function being compiled.

This, and the addition noted above allows statements like:

printf("error in file " FILE " line " LINE);
o) The compller supports the #lline statment. Thilis has the
syntax

#line lineno filename

and rescts the compller's idea of the file being compiled to
"filename' and of the current line number to 'lineno'.

4

Aztec C for CPM Release Doc

2. Differences between Aztec C, versions 1.06B and 1.05G

This section discusses the changes which were made in going
from version 1.05G to 1.06B.

2.1 Compiler changes
The following changes were made to the 8080 and 280

compilers:

o #1f 1is now supported.

o) If the last character on a line 1is the backslash character,
'\', the compiler will consider the next line to be part of
the curret line. Thus, lines can be indefinitely long.

o The compiler will allow the file name in a #include
statement to be delimited by angle brackets, '<' and '>', as
well as by double quotes. That is,

#include <filename>
is supported.

o The compiler now supports unsigned char and unsigned long in
adition to unsigned int. As before, unsigned defaults to
unsigned int. On 8-bit machines, char is unsigned; on 16-bit
machines, char is signed.

o The compiler now supports 'short int' declarations.

o The compiler supports the following new options, which are
fully described in the manual:

-f In-line function entry code.
-1 areas to be searched for include files.
-1 size of local symbol table.
-p send error messages to the printer.
-q convert automatic variables to static.
-r produce code for RMAC by Digital Research.
-u convert globals to externs.
o The compiler now does some mild type checking, whic¢ch may

cause compilation errors for code which previously compiled
without errors.

Varliables cannot be redeclared. The compiler will generate
an error in the obvious case:

int 1:

’

double 1;

Mor can functions be redeclared. Hence the fol lowing will
produce « compl latlon error:

Aztec C for CPM Release Doc

main()

{
double func():;
int 1i;

}

func ()

{3

func has been declared double in main but defined as 1int.

2.2 Changes to the linker and libraries

The major change in the linker in going from version 1.05G
to 1.06B is that it now distinguishes between initialized and
uninitialized data, which are placed in separate regions. The
linker has new options accordingly for specifying the address of
each segment.

The standard run-time library is now called c.lib; the
library containing floating point functions is called m.lib.

When a program that performs floating point is linked, the
floating point library, m.lib, must be searched by the linker
before the standard library, c.lib.

A new library, t.lib, is provided which will decrease the
size of a program. It's uses and limitations are described in the
manual.

Programs can be quickly linked with the new library, r.lib.
They must be loaded with the program r.com. These two files
aren't on the distribution disks; 1instead, a batch file 1is
provided with which they can be created.

2.3 Generating ROM-able code

Version 1.06B of the Aztec C package has more support for
generating ROM-able code than did version 1.05G.

A ROM-able program can have pre-initialized data.

A program now has three segments: code, initialized data,
and uninitialized data. When a program 1s started, 1ts
uninitialized data segment is automatically cleared.

The compller now generates public symbols for global
variables rather than common blocks. With this, variables can be

caslly located in ROM.

A special Library, tow.lipn, 1s provided., Programs 1 inked

Aztec C for CPM Release Doc

with it are smaller than programs linked with c.lib, since it
doesn't automatically pull in the standard UNIX-compatible i/o
functions, as does c.lib. Programs linked with it aren't passed
command line arguments, and don't have access to the stdin,
stdout, and stderr devices.

A utility program, hx, 1s provided for converting the memory
image of program, as generated by the linker, into Intel hex
format, for feeding to a ROM burner.

2.4 PFunction changes

In version 1.06B, some functions have been added, some
features added to 1.05 functions, and some 1.05 functions
deleted.

2.4.1 New functions
ioctl
With this function, programs can handle console i/o in
a variety of ways: console input can be performed a
line or character at a time, with or without echo. For
a full description, see the console i/o section of the
functions chapter in the manual.

setjmp, longjmp

these standard UNIX functions allow a program to escape
to a known point when neccessary.

i1sxxx

These functions, 1mplemented as macros, allow a program
to classify characters.

gsort
A sort function.
setmem
Set memory to a specific value.
movmem
Move a block of memory
sbrk

Primitive memory allocation function

Aztec C for CPM Release Doc

malloc, calloc, realloc, free
Sophisticated memory allocation functions.
execl, execv, execlp, execvp
These functions allow a program to activate another

program. Control 1s never returned to the calling
program.

2.4.2 Additions to existing functions

o scanf has been brought up to the UNIX standard.

o g option added to printf.

2.4.3 Deleted functions

2.5

blockmv - use movmem instead
settop - use sbrk
clear - use setmem

Fixed bugs

The following bugs were fixed in going from version 1.05G to

version 1.06B:

]

(]

O

A bug in the comparison of longs is fixed.

The function fopen when used to open a file in append mode,
will now correctly position a file containing text.

The compiler will work with files which are an exact
multiple of 128 bytes in length.

open frees the file control block of a file on an open
failure.

scanf works according to the description in the library
section of the manual. Several bugs were fixed.

The logical negation of a constant now works. For example,
!1 1s zero.

2% 1n a format string 1s treated as the per cent character.

The initializer of an automatlc or register variable can be
an arbitrary expression.

The extract option (-x) for libutil has been tixerd.

The g converslion Ls supported by the printf, fprintf, and
sprintf functions.

Aztec C for CPM

(o]

Release Doc

The compiler allows macros to be redefined.

Under the -M compiler option, the caveats for using M80 no
longer exist. This includes: specifying an option to M80 to
ensure that statics are initialized to zero; including

libc.h in every source module; and specifying the .8080
statement to M80.

Aztec C for CPM

3. Packaging

Release Doc

This section describes the files provided with the Aztec C

package.
3.1 Standard package

cz.com
cc.com
cc.msg
as.com
In.com
hx.com
arcv.com
libutil.com
sidsym.com
c.lib
m.lib
t.lib
crc.com
header.arc

280 compiler

8080 compiler

compller error message file

8080 assembler

linker

Intel hex generator

Source dearchiver

Object file librarian

Utility for use with DRI SID/ZSID
standard run-time library

library of floating point functions
tiny library

crc program

archived header files

ovloader .o, ovbgn.o ovloader support functions

r.o, rbegin.o,

exmpl.c

3.2 Pro extensions

rext.asm, rbuild.sub
files for making r.com and r.lib
sample C source program

The following source archive files are provided:

libcsrc.arc
libasrc.arc
mathsrc.arc
ovly.arc
hx.arc
tinysrc.arc

C programs

assembler programs
floating point functions
overlay functions

Intel hex generator
Source for t.lib

Other files in the pro extensions:

rom. lib

Cniii. CoIn
sgz.com

Source archives contain the source for many separate functions,
and can be unpacked into individual files by the program arcv:

library used 1in generating ROMable code
libc.rel, math.rel
versions of c¢.lib and m.lib for use with

M80 and RMAC
object file utility
object file utility

arcv header.arc

unpacks all the files
default drive.

L neader.arc to separate flles on

the

Aztec C for CPM Release Doc

3.3 Checking the files

To verify that the files on the disk are correct, the
program 'crc' can be run. This computes a number, called the
'crc', for each specified file. The number generated by a file
can be compared to the correct numbers, which are listed below.

The command to start crc has the form
crc [filename]

If 'filename' isn't specified, the crc is computed for each file
on the current user area on the default drive.

'filename' can specify a single file. It can also define a
set of files using the standard CPM 'wildcard characters' * and
?. For example,

crc *.arc

computes the crc of each file having extension '.arc'.

The crc's of the files in the basic package are:

cc.com 49D7 arcv.com F71C
libutil.com C4ccC cz.com 9AAG
t.lib F76C as.com 492¢C
ln.com 6B78 c.lib EBCA
m.lib 8348 rbegin.o A830
r.o 0O9F4 header.arc 6618
rbuild.sub 5895 cCc.msg 61E3
rext.asm 5441 sidsym.com 5517
exmpl.c 3780 ovbgn.o 1792
ovloader .o 0OF29 crc.com C4CF

The crc's of the pro extension files are:

libc.rel CC10 libcsrc.arc F6B8
libasrc.arc B783 tinysrc.arc DAF6
mathsrc.arc ABEF ovly.arc F32E
rom.lib 6298 sz .com 7D54

cnin. com 9990 math.rel 4205

Aztec C for CPM Release Doc

4.

Helpful hints

This section discusses common problems encountered when

using Aztec C.

O

5‘

]

If all the files don't seem to be on your disks, check the
reverse side of the disks. Some systems allow information to
be read from only one side of a disk. For such systems, we
frequently send out disks which have information on both
sides. By putting a disk in your drive with one side up you
can read the information on that side, and by putting it in
the drive with the other side up, you can read the
information on the other side.

If a program performs floating point operations, it must be
linked with m.l1ib. The linker must search this library
before c.lib. That is, the link line must look something
like

ln prog.o m.lib c.lib

If you have a printf statement with a '$f" conversion, and
printf prints '$f' instead of a floating point number, you
have specified the libraries to the linker in the wrong
order.

Outstanding bugs

This section describes bugs which exist in version 1.06D of

The compiler doesn't print an error message when there is no
more space on a disk to which it is writing.

Aztec C for CPM Release Doc

6. Addenda

This section presents information which was omitted from the
manual.

6.1 Creating the 'fast linker' files

To save disk space, the 'fast linker' files r.com and r.lib
are not provided on the distribution disks. Instead, a submit
file named rbuild.sub 1is provided, with the files r.o, rext.asm,
and rbegin.o, which will build r.com and r.lib.

6.2 RMAC patch

RMAC doesn't allow symbols to contain the characters '.' or

', both of which are required by Aztec C-supplied programs and
by compiled programs.

RMAC can be patched to allow these characters in symbol
names. The procedure for doing this is described in pages which
are appended to this release document.

6.3 HX and SIDSYM documentation

Descriptions of the programs HX and SIDSYM were omitted from
the manual, and are appended to this release document.

HX Aztec Command HX

NAME
hx - 1Intel hex generator

SYNOPSIS
hx infile [options]

DESCRIPTION

hx converts the memory image version of a program to Intel hex
format. A program which is to be burned into ROM 1s often
required to be in this format.

hx is used in this way:
hx infile [options]

where infile is the name of the file, generated by the linker LN,
which which contains the memory image of the program. [options]
are optional parameters which are described below.

hx also reads the symbol table for the program, which must have
the same name as infile, with the extension .SYM. The option -T
causes the linker to generate this file.

An optional period (.) on the command line causes hx to send its
output to the standard output device, which of course can be
redirected to a disk file. Absence of this option causes hx to
send its output to a file whose name is derived from infile by
changing the extent to .HEX.

For example, glven a program whose memory image and symbol table
are 1n the files PROG.COM and PROG.SYM, the following will
generate Intel hex code for it in the file PROG.HEX:
HX PROG.COM
And the followling will send the hex code to the file OUTPUT.FIL:
HX PROG.COM . >OUTPUT.FIL
The option —-B defines the load address for the first record
generated by hx. It defaults to 0x100. For example, the following
will begin loading PROG.COM at 0x8000:

HX PROG.COM -B8000

HX Aztec Command HX

II. In more detail...

Intel hex code consists of a sequence of 16-byte records, each
having the following format:

:1llaaaattdd..ddccCRLF

11 = record length (up to sixteen bytes)

aaaa = load address
tt = record type (0, except for end-of-file)
d..d = data bytes
cc = checksum (0 - sum of bytes in record)
CR = carriage return
LF = linefeed

hx generates Intel hex code for a program's code segment and
initialized data segment. When this code is burned into ROM, the
initialized data segment will immediately follow the code segment
in memory. When the code is activated, the Manx routine .begin,
which initially gets control, will move the ROM copy of the
initialized data segment into RAM.

SIDSYM Aztec Command SIDSYM

NAME
sidsym - generate SID-readable symbol table

SYNOPSIS
sidsym infile outfile

DESCRIPTION
sidsym converts a symbol table which has been generated by the
Manx linker, 1ln to a format which can be read by the Digital

Research symbolic debugger program, SID.

The linker option —-T causes the linker to generate a file
containing the symbol table.

infile is the name of the symbol table file created by the
linker.

outfile is the name of the file in which sidsym is to place the
reformatted symbol table. It can have the same name as infile

EXAMPLES

The following command will link the object file exmpl.o, creating
the files exmpl.com and exmpl.sym, which contain the executable
program and the symbol table, respectively:

In -t exmpl.o -1lc

The following will then convert the symbol table in exmpl.sym to
SID-readable format, leaving the result in exmpl.sym:

sidsym exmpl.sym exmpl,sym

io

RMAC patch RMAC patch

Patches for RMAC

When using RMAC there are several restrictions on what
characters can be used in labels. RMAC has several restrictions
on legal labels.

o Leading .'! are not allowed in labels. The CII run-time

library entry points begin with a '.
©0 Imbedded or trailing ' ' are not allowed in labels. Many

C programs often use "' in labels and the compiler also

appends a trailing '_'_character to some labels.

The following patch can be applied to RMAC to allow labels

containing '.' and ' ' characters.

l. First determine your version of RMAC
Enter
rmac
RMAC will start, list its version number, log a message
saying that no source file was entered, and halt.
2. RMAC 1.0 Patch

RMAC must be patched using the Digital Research program DDT.
To start DDT, enter

ddt rmac.com
DDT will display several lines, then display a '-'
character, which 1s 1its prompt, and then walt for a command
to be entered.
First enter

L1do1l
fol lowed by a carrliage return. DDT will display the RMAC
instructions beginning at 0x1d91, the first two of which
should be

1d91 Ccpt 3F

1d93 JT% L DAG

1096

Then enter

RMAC patch RMAC patch

to display the instruction beginning at 0x13b. The first
instruction should be

013B NOP

13c . e
Now enter

A1d93

followed by a carriage return, to patch the instruction at
0x1d93. DDT will display the address and wait for you to
enter the new instruction. Enter

jmp 13b
<Ccr>

Now enter
Al3Db

followed by a carriage return, to patch the instructions
beginning at 0x13b. DDT will display the address and wait.

Enter

jz 1da6
cpi 2e
jz ldao
cpi S5f
jz l1da6
Jmp 1d9e6
<cr>

All the patches have been made. Now exit DDT by entering
g0

followed by a carriage return. Then save the patched RMAC by
entering

save 53 crmac.com

This saves the patched RMAC in the file 'crmac.com'.

3. RMAC 1.1 Patch

RMAC must be patched using the Digital Research program DDT.
To start DDT, enter

dd U uac «con

LT will display several lines, then display a ‘=

i

character, which s 1ts prowmpt, amnd then walt for o command

RMAC patch RMAC patch

to be entered.
First enter
LL1d9c

followed by a carriage return. DDT will display the RMAC
instructions beginning at 0x1d9c, the first two of which
should be

1d9¢c CPI 3F
1d9%e J2 1DB1
1D% ...

Then enter
L13Db

to display the instruction beginning at 0x13b. The first
instruction should Dbe

013B NOP

13c¢ .o
Now enter

AldCe

followed by a carriage return, to patch the instruction at
0x1d9e. DDT will display the address and wait for you to
enter the new instruction. Enter

jmp 13b
<cr>

Now enter
Al3b

followed by a carrliage return, to patch the lnstructions
beginning at 0x13b. DDT will display the address and wait.

Enter

Jz 1dbl
cpi 2e
Jz ldbl
cpi 5¢E
Jz ldbl
Jmp ldal
<Cr>

ALl the patohes nave been aade.s Now ex 1t DD oy oot e tndg

RMAC patch RMAC patch
followed by a carriage return. Then save the patched RMAC by
entering

save 53 crmac.com

This saves the patched RMAC in the file 'crmac.com'.

