

DESIGN STANDARDS

System design involves the definition and documentation of the requirements of a processing system. In
order for the system to take full advantage of the hardware and software available, the analyst must design
the system with the hardware and language capabilities in mind.

A system should be efficient as well as functional in order to be truly successful. The analyst should imple­
ment design techniques which capitalize on the available file �t�~�e�s�,� language-capabilities, and processing
types, in order to fulfill the system requirements in the most efficient manner possible.

The design standards listed in this section are recommended rules to follow during the system design develop­
ment phase. Each rule is accompanied by a reason or explanation. There may also be a narrative or coded
example which represents a possible method for implementating the rule.

STANDARD RULE:
Design control feature for related application functions in order to insure accuracy and prevent opera­
tor error.

REASON:
Specific processing sequence is often required especially when using work files. These situations must
be controlled so that they may not be run incorrectly.

METHOD EXAMPLES:
This may be done through the use of status flags, on a control file, which are constantly checked and
updated to reflect the various stages of completion.

STANDARD RULE:
All program functions must be capable of operating in a maximum of 26 pages of memory (6656 bytes).
The recommended breakdown for application programs is 18 pages (18 sectors, 4608 bytes) which
leaves a proportionate 8 pages of memory (2048 bytes) for data area.

REASON:
Controlling the amount of user memory which is available for each task provides for efficient memory
usage and encourages uniformity in program design. Since BBII allocates the available data area for each
task, limiting the program size is a method to insure that sufficient data area will be available for pro­
cessing.

DATE TITLE Standards Manual PAGE

2/28/77 Design Standards 47

PAGES PER
TERMINAL

••••• AVAILABLE USER MEMORY····.
aK 16K 24K 32K UOK 48K•.. -................ .

17 1 3 4 7 .. 8 -....... _-.-.---... -._ .. -.......... -. __ ... -.-_ ..
18 1 3 7 8

-----------------.-_ .. --.. -.... _-----------. __ ..
19 1 2. 5 7 8

----------------_ ----.. -._-.... ----... .
20 1 2 4 5 ._ .. ----... _ .. -..... -----_ -._ _
21 1 2 3 b 7

-._--------.------------._-_.--.. -_ .. _-------_ ..
22 1 2 3 5 7

-_.-----------------._-.... -----_._--_.-------..
23 1 2 3 & 7 -----.-----------_.--_ .. _-. __ ... _ .. _-.--_ .. ---.-
24 1 2 4 5 7

---------------_._---------------._-------------
25 1 2 3 4 5

----------------------------------_.-.-_ ... _--.-
2& 1 2 3 4 --------.---.--... _.-.-_._. __ ._ ... __ ._.---------

THIS GRAPH ILLUSTRATES THE
TERMINALS POSSIBLE, BASED ON

MAXIMUM NUMBER OF
THE AVAILABLE USER

ALL CORE AND THE TERMINAL CORE ALLOCATION. IN
ADDED. CASES, A SECONDARY PRINTER MAY RE

Figure All-l. Terminal Availability Graph

PAGE TITLE Standards Manual DATE
48 Design Standards 2/28/77

STANDARD RULE:
It is recommended that record size be defined as powers of two (i.e.: 2,4, 8, 16,32, 64, 128, 256,512).

REASON:
Record sizes other than powers of two, adversely affect system operating efficiency. This is because
additional disc rotations are required to read records which overlap sector boundaries.

STANDARD RULE:
When possible record sizes should be limited to two (2) sectors, (512 bytes) maximum.

REASON:
When working within a limited data area, records which occupy more than 512 bytes are impractical.

STANDARD RULE:
When related data does not fit on one record, design two separate files instead of multiple record
formats.

REASON:
Multiple record types existing in the same file are not compatible with language translator programs or
with EASY, the BASICjFOU R report generator system.

STANDARD RULE:
A scheme of file name assignments should be used consistently throughout the system and should be
assigned as part of the systems design phase. Th is provides the abil ity to easily recogn ize a file or program.

REASON:
It is very important to be able to identify a program or file especially during the debugging phase.

METHOD EXAMPLES:
It is recommended that a program name include the system or module, program and overlay (link)
identification.

System or
Module I.D.

APAAOO
APAA01
GLAZOO

Program
I.D.

Link
Number

A data file name should include the system or module identification. The remaining four characters
may be used to uniquely identify the file within the system, according to a consistent scheme.

DATE TITLE Stindards Manual PAGE

2/28/77 Design Standards 49

STANDARD RULE:
The data files and program disc requirements should be defined as part of the system design phase.
This includes establishing the necessary programs and files on the disc.

REASON:
This function should be completed prior to beginning programming in order to promote efficiency and
organization in the coding/debugging phase.

STANDARD RULE:
Always include the key data in the record.

REASON:
I n case a file directory is accidently destroyed or the key pointers are in error, a direct file may be easily
created usi ng the data records if the necessary key data is in the records.

STANDARD RULE:
Although the system allows variable length keys in 01 RECT and SORT files, keys for a given file should
be uniform in format and length.

REASON:
When it is necessary to read a 01 RECT file by building the key with data from other files, inconsistent
key lengths could cause a problem in accessing the desired record.

STANDARD RULE:
The next available sequence number should be stored on ordinal record zero (0) for INDEXED files.
When using sequence numbers in 01 RECT or SORT files store the next available sequence number in
a control file.

REASON:
It is important to maintain strict control of sequence numbers in order to prevent the loss of data due
to duplicate sequence numbers.

METHOD EXAMPLES:
When using sequence numbers, EXTRACT the control record, increment the next available sequence
number and write back the control record immediately.

STANDARD RULE:
Program coding should always support a multi-user environment.

REASON:
Although an installation may only have one terminal originally, it is always possible that additional
equipment may be added later.

METHOD EXAMPLES:
Multi-user capability is accomplished through the use of EXTRACT in maintenance and update func­
tions as well as by using file LOCK in updates or other functions where only single users should be
allowed.

PAGE TITLE Standards Manual DATE

50 Design Standards 2/28/77

STANDARD RULE:
The system time and date functions should have uniform format throughout the system.

REASON:
Although those functions are usually only updated once a day, they appear on all output and should be
consistent.

METHOD EXAMPLES:
The time function should be set using four digits, representing twenty-four hours: HH:MM

10:00 12:00 14:00

The time should be output as follows:

10:00AM 12:00AM 1 :OOPM

The system date should be set and output as MOjDAjYR, and should be validated upon entry.

STANDARD RULE:
It is recommended that working variables used for such things as flags, line counts, page counts, error
handling, print masks and printer selection be standard within a system. Standard variable assignments
should be documented as part of systems design.

REASON:
Standard usage of working variables promotes consistency with in a system even though several pro­
grammers may have worked on it. Also, the efficient assignment of data variables decreases the amount
of user data required for program operation. Programs which use standard variables are easier to follow
for someone, other than the author or designer, who must make modifications.

METHOD EXAMPLES:
A sample variable list is provided on page 63 for reference when studying the sample routines and
examples in this manual. A list of such standard variables should be included as documentation for
any system.

STANDARD RULE:
Always display the identification of the system and program function being executed. The program or
link name may also be displayed.

REASON:
The operator must be kept informed on what is being processed in order to prevent ESCAPE or pre­
mature termination of the program. Also, the identification on the screen should agree with system
documentation thereby encouraging the use of the documentation available.

DATE TITLE Standards Manual PAGE

2/28/77 Design Standards 51

STANDARD RULE:
Always provide the ability to return immediately to the selector before executing a program.

REASON:
Operators sometimes make incorrect selections and should be allowed to return to th~ selector without
having to ESCAPE.

STANDARD RULE:
The current system time and date information should appear on all output including reports and screens.

REASON:
The time and date information is of great aide to an operator when filing reports. The ability to quick­
ly determine which report of several is most current is often very important.

STANDARD RULE:
Always consider the device to be used when designing the I/O formats.

REASON:
Various devices have certain limitations which must be considered. For instance, when displaying data
on an EDT, only 16 lines with 32 characters each may be displayed.

STANDARD RULE:
Common routines should be developed and used consistently where ever possible.

REASON:
The use of common routines for such things as error handling, data entry and printer selection, pro­
motes programming efficiency and consistency. Common routines need only be written, keyed in and
debugged once and then may be stored and merged into memory prior to keying in the rest of a program.
(See Common Routines)

STANDARD RULE:
Implement a consistent scheme for the use of the Function Keys (motor bars).

REASON:
The use of the Function Keys increases operator efficiency especially when the 10-key numeric keys
are used. When used, each of the Function Keys (I-IV) should have a predictable, pre-determined
result.

METHOD EXAMPLES:
The Function Keys may be used effectively in entry and maintenance functions as follows:

PAGE

CR or I - The new entry is accepted or "no change" occurs during selective field correction of
existing data.

II A numeric entry is automatically converted to a negative number.

III The data field is set to null.

IV The cursor returns to the previous data field for re-entry.

TITLE Standards Manual DATE
52 Design Standards 2/28/77

APPENDIX III - PROGRAMMING STANDARDS

DATE TITLE Standards Manual PAGE

2/28/77 Programming Standards 53

PROGRAMMING STANDARDS

No two programmers enforce programming techniques in exactly the same manner. Whether or not the same
methods are used is not as important as the overall consistency from program to program in a system.

The following list of standard rules are recommended in order to avoid serious problems and promote the
development of reliable and consistent applications software. Each rule or goal is accompanied by a reason
or explanation. I n some cases, coded examples or written explanations of appropriate methods to accomplish
the goal are also included.

STANDARD RULE:
Provide for all types of errors and use a common error routine wh ich provides retry capability (especial­
ly for I/O activities). It is recommended to display the error code, the file name and the statement
number as part of an error retry routine. Errors that are anticipated, such as 11-missing record, should
be handled internally, by using the DOM= option.

REASON:
An operator should be allowed to RETR Y error conditions without having the screen destroyed. Process­
ing generated error conditions such as 11, should be anticipated by the programmer and code included
to handle such a situation internally.

METHOD EXAMPLES:
See COMMON ROUTINES

STANDARD RULE:
Always accompany an ERASE directive with either a DIRECT, INDEXED or SORT directive in the
same program.

REASON:
It is important to maintain strict control duringfile clear operations. This activity should be performed
in a straight forward manner which is easy to follow.

If a file is not re-created immediately after being erased, it is possible that the disc space where the file
was located could be allocated for another purpose before the proper file is re-defined.

Also, files which are periodically cleared are often used by many programs. If such a file is not immedi­
ately re-defined after being erased, the code necessary to re-define the file must be included in all of the
program functions which use it.

STANDARD RULE:
Use the F I D function to obtain the file information necessary to E RASE and re-establish a file.

REASON:
When the FI D function is used in programs, the "hard" coding of file information is eliminated. This
makes a system more flexible. If the disc location of a file is changed, no program changes are required.

DATE TITLE Standards Manual PAGE

2/28/77 Programming Standards 55

STANDARDS REVISION COMMITTEE (continued)
.'7

SECTION ;j/ty:aztd/o/'

METHOD EXAMPLES:

0010 RE~ "FILEIO--PROGi-(AM TO PRINT fo'ILE 10
0100 BEGIN
0120 DEF FNA(A,X$):ASC(X$(A,l»
0130 DEF FNB(A,X$)=ASC(X$(A,1»*25b+ASC(X$(A+l,1»

PAGE:

1110 INPUT (O,ERR=1110)'CS',~(10,10),"ENTER FIL~ NA~E ",N$:(LEN=l,b)
1120 OPE~ (1,ERR=1110}~S
1130 LET X1S=FIO(1,ERR=1110)
1140 PRINT "FILE NA~E: ",X1S(1,b)
1150 LET X=F~A(7,Xl$)

11&0 LET Xl=INT(X/lb),x2=X-~1.lb,Y$="FILE TYPE: "
11&5 PRINT "DISC NUM~E~: ",Xl
1170 ON X2/~GOT011"O,1220,1200

1180 PRINT YS,"INUEXED"
l1QO GOlO 1300
1 2 0 0 P R 1 !~ T Y $, "P R 0 G RAM"
1210 GUTO 1300
1220 REM "FILE IS EITHER DIRECT OR SO~T
1230 REM "NO RECURO SIZE MEANS IT IS SORT
1240 IF FNb(13,Xl~)=OGUT01270
1250 PRINT Y$,"DIRECT"
1260 GuTO 12QU
1270 PRINT Y$,t1SU~f"

1290 PRII\IT "KEY SIZE: ",FNA(B,Xl$)
1300 PRINT "NUMbER OF RECb~os: ",FNB(Q,X1S)
1310 IF FNSll1,Xl$»O~~I~T"kfCORO SIZE: ",FNH(11,Xl$)
1320 P~INT "FILE LOCATION: ",FNb(13,xlS)
1330 INPur "ENTER CR TO CONTINUE ",.
1340 CL()SE (1)
1350 GOlO 1000
9qqq END

Figure AIII-l. FlO Routine Example

PAGE TITLE Standards Manual
56 Programming Standards

DATE

2/28/77

STANDARD RULE:
The READRECORD directive in conjunction with the SIZ= option may be used to accept entry in re­
sponse to direct questions.

REASON:
The use of READRECORD reduces key strokes because no CR entry is required as a field terminator.
However, the use of READRECORD is impractical when more than 1 character must be entered, be­
cause it does not have all of the validation capabilities available with'INPUT.

1000 PRINT @(lO,lO),"DO YOU WANT A HARD COPY? (YIN) ",
1010 READRECQRO (O,SIZ=1)@(45,lO),X7S
1020 IF X7S="NPGOT09000
1030 IF X7!<>"Y"GOT01000

STANDARD RULE:
Always increment statement numbers by at least ten.

REASON:
This allows room for future corrections and modifications. The renumbering utility, *p and *Q support
this technique.

STANDARD RULE:
Always complete a logic loop, (FOR/NEXT or GOSUB). EXIT TO is the only other acceptable method
of exiting such logic.

REASON:
The operating system wll support as many open GOSUB and FOR/NEXT loops as the available data
area will allow. An error is not generated if such routines are improperly exited (i.e.: by a GO TO).
However, in order fora program to be easily modified, such routines should follow a logical pattern
and come to a logical end.

METHOD EXAMPLES:
1050 GOSU B 7000
7000 FO R X = 1 TO 5
7010 IF A$(X,l)="0" EXIT TO 7030
7020 NEXT
7030 RETURN

STANDARD RULE:
The current record key or index data should always be available in a variable.

REASON:
In case of a system or program error, the availability of the current key or index may be critical in order
to solve the problem. It is possible that the file pointer does not contain the applicable information.

METHOD EXAMPLES:
Use a key or index function when accessing a file. However, this does cause an additional disc access.
OR
If high volumes present a timing problem, using the key or index function may be eliminated. However,
the current record key (or index) data must be available for error handling. This can also be done by
storing the prior record key (or index) in a variable and executing a dummy read and a key (or index)
function as parLof the common error processing routine.

DATE TITLE Standards Manual PAGE

2/28/77 Programming Standards 57

STANDARD RULE:
All date entries should be validated thoroughly.

REASON:
Dates are often used as the basis for payment selections, commissions, and management level reports.

METHOD EXAMPLES:
1010 INPUT (0,ERROR=1010)X$:(8,8)
1020 IFX$(1,2)< "01"ORX$(1,2» "12"ORX$(3,1)<> "I"

ORX$(4,2)< "01"ORX$(4,2» "31"ORX$(6,1)<> "/"
OR X$(7,2)< "76" OR X$(7,2» "90" GOTO 1010

If a valid date is stored as part of the system, use the month and year values for validation if feasible.

STANDARD RULE:
Indicate the program progress on the screen during sort, update or report processing functions.

REASON:
This enables the operator to estimate the time of completion. Also, this alerts the operator if a program
is erroneously caught in a loop, or other type of error situation which does not generate a system error.

METHOD EXAMPLES:
This is done by printing the source file key, the index or a record count on the screen. If high record
volume warrants, print the key or other data for every twenty-fifth record (or other convenient interval)
and print the current key data as part of the common error handling routine.

STANDARD RULE:
Working variables usage should be recorded for each program.

REASON:
The existing variables name usage becomes critically important when changes must be made to a program.

STANDARD RULE:
It is recommended that data variables obtained by reading a file as well as data variables being prepared
to be written to a file, reflect the current device number assignment of the file. String variable names
then range from An$ through Zn$. Numeric variables range from An through Zn with the exception
of arrays. (n represents device number)

REASON:
This allows for control of data variables, prevents accidental usage duplication and is of great aide to
another programmer who may later have to work with the program.

PAGE TITLE Standards Manual DATE
58 Programming Standards 2/28/77

METHOD EXAMPLES:
File Data Variables.

1050 READ (1 ,EN D=9000,E RR=8600,KEY=X 1 $)A 1 $,8 1 $,C1 $,D1 $,A 1,81 ,C1

1200 READRECORD (2,END=9000,ERR=8600,KEY=X2$)A2$

STANDARD RULE:
The variable used for file key or index values should be consistent and reflect the current device num­
ber assignment of the file.

REASON:
It is important that the key or index value can be easily identified.

METHOD EXAMPLES:
A variable that would seldom conflict in keeping with the file data variable assignment standard is X.
Therefore, it is recommended that key data variables be Xn$ and index values be represented by Xn.
(n is the file device number)

DATE TITLE Standards Manual PAGE

2/28/77 Programming Standards 59

PROGRAM ORGANIZATION

Every' program has an appointed task, whether it be the entry of data for storage on disc or the production
of a report. Aside from the obvious purpose of the program,there are several logical processes which every
complete program must include. It is logical, and not incompatible with the BASICjFOU R system, that
these processing operations be physically located within the program in the same sequence in which they
occur. (See Diagram)

PROGRAM IDENTIFICATION

This mandatory section of code consists of remark statements wh'ich provide the program name and descrip­
tion, the system to which the program belongs, the revision date, author initials, link information, and
(optional) the device number's assignment description. This section occupies statements 10 through 99 and
is always the first coding in the program.

INITIALIZATION

This section of code performs "housekeeping" duties, such as clearing memory, screen set up, opening files,
setting constants, and printer selection. It begins at statement number 100 and may continue through state­
ment number 999. This section is omitted in the instance of "overlay" or "link" programs where initializa­
tion has already been performed.

PROCESSING

The processing section is the coding executed to accomplis~ the defined task, such as produce a report,
accept data entry, or store the data on disc. The logic is executed repeatedly until the task is completed.
Th is section of code occupies statements 1000 th rough 6999.

SUB ROUTINES

This section of code contains routines which may be repeatedly used from different locations in the program.
File accesses, common data entry routines, and formula calculations are a few examples. This section
occupies statements 7000 through 7999.

ERROR PROCESSING

A complete program must contain logic to correctly handle all possible error conditions. An error must
never be ignored. The Error Processing section contains all routines necessary for error handling and occupies
statement number 8000 through 8999.

TERMINATION

This section performs the logical steps necessary to terminate the program. This includes setting flags, print­
ing totals, and returning to the index program or program link. Also included in this section are mandatory
program identification and "END" statements. The Termination section is located in statement numbers
9000 th rough 9999.

PAGE TITLE Standards Manual DATE

60 Programming Standards 2/28/77

PROGRAM ORGANIZATION

DIAGRAM

Statement
Numbers
10 - 99

Statement
Numbers
100 - 999

Statement
Numbers
1000 - 6999

1.

IDENTIFICATION
SECTION

,1/

2.

INITIALIZATION
SECTION

\i

3.

PROCESSING
SECTION

./ :7

v ~

I"- --
5.

I~

'If
L
"'

4.

~ ,-

ERROR
PROCESSING

SECTION

Statement
Numbers
8000-8999

Statement
Numbers
7000 - 7999

Statement
Numbers
9000 - 9999

6.

....... ..,

SUB-ROUTINES
SECTION

TERMINATION
SECTION

..-
"' ./

~
, ~

OPTION: If the above diagrammed statement numbering scheme is
not used, "REM" statements must be used to head each logical
section. Each section should consistently use the same number­
ing scheme throughout the system.

Figure All 1-2. Program Organization Diagram

DATE TITLE Standards Manual PAGE

2/28/77 Programming Standards 61

o 0 1 0 ~ t M III t. Iii 1 I FIe A r 1 iJ '\I ~ I: ell (I i'I \ u - y ~ "
o 0 2 0 ~ E M A IJ).)I. U U - J ~ E. ,.~ I I" V (lIe t:. S LIS T J f~ b "
0030 ~I:M AlP 5YS1~~"
OOijO ~~M Ll~K5 TO APXAUU"
0050 REM (I ~ I () 1/70 "
(J 0 b 0 REM (1) = UP!:. t~ IJ A YAh L t S (7) : ~ I< '!f'.T t' K II "

0100 Rt~ 1I'dTIALIlA1IIJ,\I SECTION lOU - 999"
011 0 ~EG I J~
0120 LET Y$="~N###.~0-",t~="="4###.OO-",Lq:9~,IJQ=1
0150 UIM A(3),b(3) .
01~() IULIST Al$,til~,Cl$,A(1),A(2),A(j)
0150 Pl<lNT 'cS','S~',~(l,u),"A/P - V!:.NDUR INVOICE LIST"
018u OPEN (7,EHN=BUSU)"LP"
0190 LET F~~="AIJU~E~U~0U"
0200 OPEN (l,E~~=dlUU)"APUPtN"
0210 INPuT (U,t~k=210)~(1,3),"E~TEW C~ TO PRUCEEO O~ ~NO ",XS:("":lOOO
0210:,"~N~II=99q7)

1000 ~EM "PkuC!:.SSlNG SECTION 1000 - b~9~11
1010 LET F9$="APOP!:.NIU~O"
1 020 k E" iJ (1, E I~ I) = q u U u , E ~ ~ = d b IJ 0) 10 L = 1 40
103U PRl~l ~(1,20J,A1$,

1040 IF L9>~~GU~U~7UI0
10~O LET ~9~="LP 1u50"
lObO PklNT l7,!:.~R=~bOO)Al$,~(lO),bl~,ru(~O),Cl$,~l~S),A(1):Y$,~(b5),A(2
10bO:):y~,rul7~),A(3):Y)

107U LEl L9=L9+1
1080 FUk X=lTUj
1090 Ltl ~(X)=b(X)+A(X)

11 0 0 1'.1 E)(T)(
1110 GOTO lul0
7 u u 0 ~ HI "~ U b - ~ U U 1 111/ E S ~ E. C , I () N 7 1I U U - 7 9 q q "

7010 LET F9$="LIJ 7v20"
7020 PRIll/ T ('" E R ~ = ~ 6 0 U) , H· , , , L F ' , "D ATE: ", U A Y , <JI (30) , "t; A ~! elF 0 u ~ C 0 ~ P U ~
7020:ATION",~l7b),"PAGE II,P9:"~O",'LF'
7 U 3 U , P ~ I rlj I (7, t: R ~ = t; b 0 lJ) II V t !'J U 0 R " , 01 (1 u) , "I'~ A 1-1 t. " , QI (" () , " 1 N V 0 I C r. ..~ 0 • " , aJ (~ 7)
7030:,IAMUU~T",0I(b5),"r01-PAIU",~(/b),ltiALANCt:",'Lr'
7UijO LET ~~=P~+1,L9=b

70~0 ,kETU~N

7900 FU~ X=lfU1U()
7910 p~INr ',.(b',
7 9 2 0 I'J E A I)(
7 9 .5 0 ~ E T U ~ ill
8UOO ~£::M "EIHh)~ Pto(OCtti51,~G SECTION ~vVU-t;9q~"
8 0 ~ U P ~ I NT ct' (V , ~ 2) , "P k 1 i~ T E ~ UNA V A I L A ~ U:. " ,
B060 GOSUd 190u
8v7U 60TU "'997
81 00 P R I i\l T ('I) (1/ , 22) , F ~ $ l 1 , b) ," F 1 L t: IJ I~ A V A ! L A H L t " ,
8110 GOru d0bU
8bOO PkI~' ~lU,2~),'LD',~(1,22),"t~kUk ",t:RR," ON ~ILt: ",F9~(1,b)," 51
8bvO:MT ~ ",r4~(7)," C~-RETAY 1-AHU~1",

8 b 1 U G 0 5 U I:' 1 9 () \)
8b20 IIIJPUT ';)(~'.:l,i'i!),'l.(d',X1j

863u If- X7'\="1"GOTiJt;90ll
86"0 IF X7~<>""GU'0dbOU
8 b '.:l U IJ w I 1\1 T 0' (\I , d 2) , , L l) ,

8bbO kE:lto(Y
8900 P I(I ill T 01 l 1 , 2 j) , " rl U I~ AbU ioi T t:. 0 - CAL L ... ~ 0 G rl AI'-l M t: Ii " ,
8910 GU5Ud 7quu
89~O !:.SCAPt
t;930 Guru b':lO()
900u ~E~ "IEk~lNAlluN ~~CTlu~ gUou-~~49"

9010 LET fg~="LP QO~0"

9 0 2 UPi'(I J ~ r (I, t:. to{ I'(= ti b v u) , L F ' ; Il' (1 0) , " T fJ 1 A L S " , 01 (5") , b (1) : l :b , 4' l b ") , ti (~) : l:tl
9020: ,:lI(74) ,NO) :£-0, elF'
9030 Ht:G 11-:
9997 to(UN "A~'~VO"

9998 ~~~ "~~O - AP)(XU0"
9999.END

Figure AIII-3. Sample Program Organization

PAGE TITLE Standards Manual DATE

62 Programming Standards 2/28/77

COMMON ROUTINES

The following is a list of the variables which are used in the common routines coded examples.

VARIABLE
NAME

F7

F9$

L7

L8

L9

N7

P7

P9

R8

x

X$

X7

X7$

ZO$

Z7$

Z8$

DESCRIPTION

I nput field flag

Operation device name
FORMAT;
F = File name
S = Statement number
BBII F9$="FFFFFFSSSS"

Cursor vertical position

Maximum field length

Line Count

Numeric entry flag O=string
1 =numeric

Cursor horizontal position

Page Count

Numeric entry maximum range

Miscellaneous

Miscellaneous

I nput variable - numeric

I nput variable - string

Dashes (For VDT screens)

OPTION: Use a single character such as" at the
end of the field to indicate length of field.

Zeros

Blanks

Figure AIII-4. Common Routines

DATE TITLE Standards Manual
2/28/77 Programming Standards

ROUTINE

Entry

Errors

Entry

Entry

Entry

Entry

Entry

Bell, Password

Entry

Entry, Errors,
Printer Password

Entry

Entry

Entry

PAGE

63

GLOSSARY OF TERMS

DATE TITLE Standards Manual PAGE

2/28/77 Glossary Of Terms 65

GLOSSARY OF TERMS

TERMS AND DEFINITIONS

ALPHANUMERIC - Characters which are either letters of the alphabet, numerals or special symbols.

APPLICATION PROGRAM - An application is a specific problem or job to be solved through the use of a
computer or other data processing machinery. Therefore, an application program is one of several used
to solve the specific problem.

Some examples are: Inventory Control, Payroll, Cost Accounting, etc.

ARRA Y - An array is a group of numeric variables with the same name that are referenced through the use
of a subscript. This can be thought of as being similar to a family of people, a" of whom have the same
surname, but who have different first names.

For example: Let us assume that the variable X has been defined as having three elements. These would
be referenced as X(O), X(l) and X(2).

ASCII CODE - ASCII is the name of a standard code that assigns specific bit patterns to each sign, symbol,
letter and operation in a specific set.

ASCII stands for: American Standard Code for Information Interchange. ASCII is the code used by the
BASICjFOU R computer.

BBI - The acronym for Business BASIC I, the first programming language level used on BASICjFOU R
systems.

BBII - The acronym for Business BASIC II, the programming language level used on BASICjFOU R systems.

BIT - A contraction or abbreviation of binary digit. It signifies the smallest piece of smallest unit of infor­
mation. In the computer, bits are either on (expressed by a 1) or off (expressed by 0). A group of
eight bits is referred to as a byte.

BLAN K - The character-code that wi" result in the printing of a space in a given position.

BOSS - An acronym for Basic Operating Software System.

BRANCHING - Branching within a compucter program is the means whereby the normal sequence of exe­
cution is changed. A branch instruction causes the computer to execute an instruction other than the
next one in sequence within the program.

Business BASIC Branch instructions are: GOTO ... ON GOTO ... GOSUB (See program sequence
control).

DATE TITLE Standards Manual PAGE

2/28/77 Glossary Of Terms 67

BUSI NESS BASIC - The interpretive, high level programming language used on BASIC/FOU R computers.

BYTE - The smallest addressable unit of information in memory. A byte is a group of eight binary bits. A
byte can contain a value of 0 through 255.

The first four bits in a byte are referred to as the high order bits. The last four bits in a byte are referred
to as the low order bits. One byte equals one character.

CENTRAL PROCESSOR - The portion of a computer that consists of the three main sections - arithmetic
and control, input/output and memory.

COOl NG - To prepare a set of computer instructions required to perform a given action to solve a given

problem.

CONCATENATION -:- Concatenation means to unite or join together. In Business BASIC, concatenation of
alpha-numeric string information may be accomplished through the use of the + sign.

CONSTANTS - A constant is a quantity or data item that does not vary in value within a program.

CONTROL KEYS - The control keys (also called "Motor Bars") are used to reduce key strokes required for
branching (see INPUT in Reference Manual).

CONTROL VARIABLE - In Business BASIC, a control variable is a numeric variable required as a parame­
ter in FOR/N EXT loops. Execution of a FOR statement will set the control variable to a value. Each
execution of a NEXT statement will increment the value. Each execution of a NEXT statement will
increment the value in the control variable by the step value, if specified, or by 1. When the value in the
control variable exceeds the end value, the FOR/NEXT loop is terminated.

COUNTER - A variable or a location in memory which can be set to an initial number and increased or de­
creased by an arbitrary number.

DATA FI LES - Data represents information and information is the assigned meaning. Computers process
and handle only data.

A file is a collection of related data. The data is present in the forms of records.

A data file may be in the form of punched cards, punched paper tape, magnetic tape or may be mag­
netically recorded on a disc.

DATA HANDLI NG FU NCTIONS - Data handling functions are provided to manipulate values contained in
either string or numeric variables.

Functions are dividied into groups:

PAGE

Those that examine a variable or provide in numeric form a part or characteristic of the variable.
Those that convert a variable from one form or code to another.

TITLE Standards Manual DATE

68 Glossary Of Terms 2/28/77

DATA LIST - In Business BASIC, the term data list refers to the collection of individual data items to be
either entered from a fiie or output to a file.

The collection of items can be any combination of constant and/or variable information.

DEBUGGI NG - The process of determining the correctness of a computer routine, locating any errors, and
correcting them. Also, the detection and correction of malfunctions in a computer itself.

DEBUGGING, ON-LINE - The act of debugging a program while time-sharing its execution with an on-line
process program.

DEVICE - A device is any hardware mechanism that is created, formed, invented, devised or constructed
by design.

Business BASIC refers to a device as a means of inputing information or outputting data.

Devices are: card readers, paper tape punch units, punch tape readers, magnetic tape units, video dis­
play terminals.

DI RECT FI LE - A direct file is a type of file containing data records. As the file is created, and as records
are written to the file initially, a string value is associated with each record. This value is called the key.

Direct files may be read:

RANDOMLY - using an index or key.
LOGICALL Y - according to key sequence or according to record sequence using the index.

DI RECT MODE - Direct mode refers to the mode of operation in the Business BASIC language where state­
ments keyed-in at a terminal are executed immediately after they are entered.

Statements to be executed immediately, or in direct mode are entered with no statement numbers.

DIRECTIVE - The Directive is the portion of a Business BASIC statement which specifies the operation to
be performed.

Business BASIC Directives are English language word(s).

Some examples are: LET GOTO END STOP PRINT

DOCUM ENTATION - Design, program and operator documentation wh ich completely describe a system
(See the USER DOCUMENTATION Section).

ERR TASK VARIABLE - ERR task variable is a numeric or simple variable which contains a code that re­
presents the error status of the particular task.

The name of this variable is "ERR".

For example, to print its contents the following statement is used: PRINT ERR

DATE TITLE Standards Manual PAGE

2/28/77 Glossary Of Terms 69

ERROR HANDLING - Program coding routines which provide for all possible error conditions.

EXPONENTIATION - Exponentiation means to raise to a power. That is, to multiply a number by itself
a specified number of times.

The symbol for exponentiation in Business BASIC is l' (up arrow). Example: 21'2 means to raise 2 to
the power of 2 (result is 4).

FI ELD TE RM I NATOR - Business BASIC provides for field terminators. All data entered at a terminal must
be followed by one field terminator unless READRECORD is used for input. (Also called control keys).

The field terminators are the following keys:

CR
FUNCTION KEY I
FUNCTION KEY II
FUNCTION KEY III
FUNCTION KEY IV

Carriage Return
FS (Field separator)
GS (Group separator)
RS (Record separator)
US (U n it separator)

FLOATI NG POI NT - Floating Point is a system of representing numbers using a pair of numbers, one of
which represents the digits in the number, the other which represents the power of ten by which the
number is multiplied.

Floating Point notation is used in Business BASIC to represent very large or very small numbers.

Example: The number 1 in Floating Point notation is represented as 1 E+Ol (that is - 1 times 10 raised
to the power of 1).

FLOWCHART - A diagram consisting of a set of symbols and connecting lines that show step-by-step pro­
gression through a procedure or system.

FORMAT MASK - Format Masks are the means provided by Business BASIC to print numbers in a for­
matted manner. A Format Mask is a string constant or'the name of a string variable. The mask is ap­
pended to the number to be formatted by using a colon (:).

Example: PRI NT 100:"00000" will display the number as 00100
PRI NT 100:"#####" will display the number as 1 00

Format masks provide for proper insertion of commas, decimal points, dollar signs, positive and/or
negative signs, etc.

HEXADECIMAL - Hexadecimal refers to a numbering system where there are sixteen possible digits. These
digits are 0 through 9 and the letters ABC D E and F.

In the computer, a byte consists of 8 bits which can be divided into 4 high order bits and 4 low order
bits. Each 4 bits contain a hexadecimal digit.

PAGE TITLE Standards Manual DATE
70 Glossary Of Terms 2/28/77

HORIZONTAL POSITION - Horizontal position refers to the position within a line on the terminal or
printer.

The terminal has 80 horizontal positions referred to as 0 through 79.

Printers normally have 132 horizontal positions referred to as 0 through 131.

INDEXED FI LE - An indexed file is a data file that is created by writing records sequentially starting with
the first physical location for records and continuing to the end.

Indexed files may be accessed in two ways:

Sequentially, starting with the first physical location and continuing to the end.
By using a specific record's location. This is referred to as the index. The first record has an index
of 0 (zero).

INTERACTIVE - A system with the ability to directly respond to user commands.

KEY - A key is the string value associated with each recora of a direct file. It may be used to access indi­
vidual records in the direct file.

LOGICAL OPERATORS - Logical Operators are used by Business BASIC to define the testing to be done
in I F statements.

<
>

<> or><
>= or=>
<= or=<

is equal to
less than
greater than
not equal to
greater than or equal to
less than or equal to

LOOP - A loop is a group of statements in a program that are executed a specified number of times with in
the program at a given point.

The first statement in a Business BASIC loop is the FOR statement. The last statement in Business
BASIC loop is the NEXT statement.

For example: The following loop is executed 5 times ...
7100 FOR 1=1 T05
7110 ... any BAS IC statement
7120 NEXT I

MATHEMATICAL SYMBOLS - Mathematical symbols are characters recognized by Business BASIC to
represent mathematical operations to be performed.

DATE TITLE

2/28/77

+

*
/
1\

tells the computer to add
tells the computer to subtract
tells the computer to multiply
tells the computer to divide
tells the computer to raise to a power

Standards Manua.1
Glossary Of Terms

PAGE

71

MNEMONIC CONSTANTS - A mnemonic constant consists of two characters, enclosed in primes (') and is
used to cause a specific action to occur on a peripheral device or on a terminal.

NUMERIC ARRAYS - A numeric array is a group of numeric variables with the same name that are refer­
enced through the use of a subscript. This can be thought of as similar to a family of people, all of
whom have the same surname, but each of which have a different first name. (See AR RA Y)

NUMERIC CONSTANT - A numeric constant is a number whose value does not vary within a program.

NUMERIC FIELD - A numeric field is an item of data present in a data record whose contents are always
numeric information.

A numeric field is represented by using a simple variable name, numeric array, or a numeric constant.

ON-L I N E - Directly interacting with a computer.

OVE RLA Y - An overlay is a continuation program. It is also often referred to as a LI N K.

PARAMETER - A parameter is a required and/or optional value used in association with a statement direc­
tive to define in detail the action to be taken by the computer.

Parameters include or reference all variable or constant information that may be associated with the
particular BASIC statement. The type of information included depends upon the particular directive.

Parameters often consist of variables.

PE RIPHERAL DEVICE - A peripheral device is a means of inputting information to the computer or
outputting information from the computer.

A BASIC/FOU R system may have any of the following peripheral devices: Card Reader, Paper Punch,
Paper Tape Reader, Magnetic Tape Units, Video Display Terminals and Printer. (See DEVICE)

PRECISION STATEMENT - The precision statement, after it is executed, specifies the number of decimal
places to the right of the decimal point that final results and intermediate results of mathematical ex­
pressions are to be carried.

Business BASIC provides for a minimum of 0 (none) through a maximum of 14 digits to the right of
the decimal point.

PROG RAM - A program is a series of instructions which the computer follows to perform a given task.
These instructions must be written in a language understood by both man and machine.

PROGRAM FILE - A program file is a disc file that contains a Business BASIC program.

PROGRAM INITIALIZATION - Program initialization refers to certain operations normally performed at
the beginning of a computer program. Business BASIC provides three directives which can be used for
initialization. These are BEGI N, CLEAR, and RESET.

PAGE TITLE Standards Manual DATE
72 Glossary Of Terms 2/28/77

The first statement in a Business BASIC program should be the BEGIN statement. This will clear 01/
data, close all files aiJd reset any incomplete loops and resets the precision to 2. The CLEAR statement
only clears data and resets incomplete loops and resets the precision to 2. The RESET statement only
resets incomplete loops and resets the precision to 2.

PROGRAM LANGUAGE - A programming language is basically the means of communication between man
and computer. It is a set of rules and conventions that govern the manner and sequence in which instruc­
tions are written or specified for execution by a computer.

PROGRAM LOOP - A program loop is a group of statements in a program that are executed a specified
number of times within the program at a given point. (See LOOP)

PROG RAM SEQU ENCE CONTROL - Program sequence control statements change the order of processing
statements with in a program.

Business BASIC provides two statements that can alter the sequence of processing statements in a pro­
gram. These are GOTO and ON/GOTO. (See BRANCHING)

PROGRAM TERMINATION - Business BASIC provides two directives to terminate processing of a program.
The two directives function in the same manner. When executed, all files and/or devices opened are
closed and thus made available for use. Execution of a program termination statement does not change
the contents of any variables. The two statements provided are: STOP and EN D.

RANDOM - Permitting access to stored data in no particular sequence.

RECORD - A record consists of a group of data elements or fields that relate to a single major item. A col­
lection of records is called a file.

For example: An inventory file might consist of records that would each relate to a single inventory
item. Each record might contain the inventory item code, a description of the item, its price, the cur­
rent quantity on hand, the quantity on order, etc.

ROUND - Round refers to a manner of adjusting a decimal number. When the computer rounds a number,
the least significant digit is deleted, and the remaining part of the number is adjusted based on the fol­
lowing:

1. If the least significant digit is 4 or less, that digit is merely deleted to obtain the rounded result.

2. If the least significant digit is 5 or more, that digit is deleted and '1 is added to the next higher sig­
nificant digit.

For example: 21.534 is 21.53 if rounded; 21.536 is 21.54 if rounded.

ROUTINE - A series of computer instructions which perform a specific, limited task.

SECTOR - The smallest accessible portion of a disc.

DATE TITLE Standards Manual PAGE

2/28/77 Glossary .Of Terms 73

SEQU ENTIAL - Sequential means an order. In Business BASIC, sequential refers to logical order of records
in a disc file or a file present on a peripheral device.

An example of sequential is the manner in which a pr<?gram is executed. That is, in statement number
sequence. The first statement of a program is executed first, followed by the second, followed by the

third and so forth.

SIGN I FICANT DIGIT - Significant digit is the first non-zero digit in a number.

For example: in the number 00030211, the first significant digit is 3.

The least significant digit in a number is that digit which contributes the smallest quantity to the value
of the number.

For example: in the number 21.5436, the least significant digit is 6.

SIMPLE VARIABLE - A simple variable can contain numeric information only. It can be named as any
single alphabetic character (A-Z) or as a single alphabetic character followed by a single numeric
digit (0-9).

The following are all valid simple variable names: A J8 X9 G P1 (See VARIABLE).

SLEW - Slew refers to the movement of paper in a printer through a distance greater than the normal line
spacing without printing.

SOFTWARE - The programs or routines, and supporting documentation, which instruct the operations of
a computer.

STATEMENT - An instruction that defines an operation and which as a unit causes the computer to com­
plete that operation.

STR I NG - A string is a collection of characters that are a mixture of numbers, alphabetic characters and/or
special characters such as punctuation.

In Business BASIC, strings may be present in constant or variable form. (See STRING VARIABLE,
STRING CONSTANT)

STRI NG CONSTANT - A string constant is a group of alphabetic and/or numeric characters, enclosed in
quotation marks, that do not change within a program.

String constants are often used to communicate with an operator via the terminal.

For example: "This is a string constant" "So is this"

STRI NG FI ELD - A string field is a data item within a record whose contents are a mixture of alphabetic
and/or numeric information.

A string fieid may be represented by either a string constant or a string variable.

PAGE TITLE Standards Manual DATE
74 Glossary Of Terms 2/28/77

STRING VARIABLE - A string variable is a variable containing a mixture of alphabetic and numeric infor­
mation. String variables may be named as any single alphabetic character (A-Z) followed by a dollar
sign ($) or as a combination of a single alphabetic character (A-Z) followed by a single numeric digit
'(0-9) followed by a dollar sign ($).

Some examples of string variable names are: A$ A8$. N2$ U $ Zl $

SUBROUTINE - A subroutine is a series of program statements that are to be executed in more than one
place within a given program. Subroutines may be called for execution at any point within the program.

The Business BASIC directive used to transfer program control to a subroutine is the GOSU B instruction.

Program control wi" be transferred back to the statement following the GOSUB statement when a re­
turn is executed. Return should be the last statement in a subroutine.

SUBSCRIPT - A subscript is a portion of a string or an array. To reference a portion of a string, the pro­
grammer must specify the starting position within the string. He may optionally specify the number of
characters to be referenced.

For example: Assume the variable A$ contains 5 characters, ABCDE
A$ (1,3) is the ABC
A$(5,l) is the E

SYNTAX - Syntax is the rules governing the structure of program statements or expressions in the Business
BASIC language.

SYSTEM - A collection of parts or devices that forms and operates, as an organized whole through some
form of regulated interaction.

SYSTEM DESIGN - The definition and documentation of the system requirements, function relationships
and technical procedures, necessary to develope and support the system.

SYSTEM VARIABLES - There are two system variables in the Business BASIC language:

1. TI M is a numeric variable containing the current value of the built in computer clock expressed in
ten thousands of an hour.

2. DAY is a string variable containing eight characters that are its current contents.

The system directives provided to change these variables are SETTIME and SETDA Y respectively.

TASK - Any user program.

DATE TITLE Standards Manual PAGE

2/28/77 Glossary Of Terms 75

