Tape Drives

Published by LMI 1000 Massachusetts Avenue. Cambridge MA.O"._ZA:II::S‘_S USA

‘.

-
>

TR T s g T

Copyright © 1985 Lisp Machine Incorporated.

Tape Drives i Introduction

Introduction

This package contains the following manuals:
e Tape Drive Adapter: Specifications, maintenance, and basic operations of the L.MI

Magnetic Tape Drive Adapter.
o STR50 Magnetic Tape Unit: Specifications, operations, testing, and maintenance of

the 1/2" LMI magnetic tape drive.

Tape Drive Adapter

Published by LMI 1000 Massachusetis Avenue. Cambridge MA 02138 USA

The following document covers specifications, maintenance, and basic operations of the LMI Mag-
netic Tape Drive Adapter.

This manual published April, 1985.

Please help us to make LMI documentation work better for you! Send comments via your customer
dialup mail line to Sarah Smith (username SWRS) or by U.S. Mail to:

Dr. Sarah Smith

Director, Documentation
LMI '
1000 Massachusetts Avenue
Cambridge, MA 02138

LMI Lambdat™ is a trademark of LISP Machine Inc.

Multibust™ is a trademark of Intel Corp.

Jopyright @ 1985 Lisp Machine Incorporated.

Tape Drive Adapter i Table of Contents

Table of Contents

1. General Description e e e e e e e e e A |
2. Specifications L L oL L L L e e e e e

3. Error Codes L e e e e e e e e e e ... 3

LMI Customer Service is ready to hclp with your maintenance and expansion needs.

Our toll-free Customer Assistance Line is open from 8:30 a.m. until 8:00 p.m. Eastern
Time. '

Customers outside Massachusetts, please call:

¢1-800-872-LISP

Customers within Massachusetts, please call:
¢1-800-325-6115

Tape Drive Adapter 1 General Deseription

1. General Description

The LMI Lambda uses a Ciprico Multibus compatible 1/2" magnetic tape drive adapter. It is
mounted on a larger carrier card that plugs directly into the Lambda card cage. The adaptor
functions in 8 or 16-bit systems, single or multiprocesor, with 16-, 20-, or 24-bit addressing. It

features:

Control of up to 8 start/stop or streaming, PE or NRZI formatted drives.
Programmable for 8- or 16-bit systems.

Full 24-bit addressing.

DMA operation.

Single or multi-master environments.

Buffered, Direct, or Streaming data transfer modes.

Bus lock option during DMA transfers.

Programmable Interrupt option.

Optional on-board bufler up to 16K bytes.

Automatie retry for all recoverable errors.

64-byte buffer to ease demands on the system bus.

Powerful Block Move and Ezchange commands for generalized data handling.
Extensive self-diagnostic commands. |

May be used to execute user-written 8089 programs.

Single 5-volt operation.

Tape Drive Adapter 2 Specifications

2. Specifications

Physical Dimensions

Height: 6.75 in.
Width: 12.0 in.

The adapter board is mounted on a larger carrier card of standard size which is then
plugged into the Lambda card cage.

Power

Voltage: +5v +5%
Current Typical Maximum
2K 2.55 2.60
16K 3.00 3.10
Connectors

Two 50-pin flat cables to the tape drive
J1, J2: 3M, No. 3425 or equivalent
P1: Viking, No. 2V1143/1AV5 or equivalent

Interface [Fully Intel Multibus compatible

Operating Temperature
0° to 55° C
General
Capacity: 8 drives
Drives Controlled: All drives complying with industry standard formatted
interface. v

Transfer Rate Tape speed:

to 500 KBps (16 bit system)
to 330 KBps (8 bit system) (400 ns ACK) .

MTBF: 71,000 hours

Tape Drive Adapter 3 Error Codes

3. Error Codes

The following error codes for unrecoverable errors detected by the tape drive adapter are returned
in bits 0 to 4 of the Command Status Field.

00
01
02
03
04
05
06
07
08
09

0A
0B

oC
oD

OE
OF

10
11
12
13

14
15
i6
17

No unrecoverable error.

Timed out waiting for expected Data Busy false.

Timed out waiting for expected Data Busy false, Formatter Busy false, and Ready true.
Timed out waiting for expected Ready false.

Timed out waiting for expected Ready true.

Timed out waiting for expected Data Busy true.

A memory time-out occurred during a system memory reference.

A blank tape was encountered where data was expected.

An error occurred in the micro-diagnostic.

An unexpected INOT was encountered during a forward operation, or Load Point during
a reverse operation.

A hard or soft error occurred which could not be eliminated by retry.

A read overflow or write underflow occurred. This error indicates that the FIFO was
empty when data was requested by the tape during a write, or full when the tape
presented a byte during a read.

Not used.

A read parity error occurred on the byte interface between the drive and the tape drive
adapter.

An error was detected while calculating a checksum on the PROM.

A tape time-out occurred, because the tape drive did not supply an expected read or
write strobe. This normally occurs when attempting to read a larger record than was
written.

Tape not ready.
A write was attempted on a tape without a write-enable ring.
Not used.

The diagnostic mode jumper was not installed while attempting to exceute a Diagnostic
command.

An attempt was made to link from a command which does not aliow linking.
An unexpected filemark was encountered during a tape read.

An error in specifying a parameter was detected by the tape drive adapt.or.'
Not usecd.

Tape Drive Adapter 4 Error Codes

18 An unidentifiable hardware error occurred. Call LMI.

19 A streaming read or write operation was terminated by the operating system or disk.

STRS50

Magnetic Tape Unit

Published by LMI 1000 Massachusetts Avenue. Cambridge MA 02138 USA

The following document covers specifications, maintenance, and basic operations of the LMI STR50
Magnetic Tape Unit.

This manual published April, 1985.

Please help us to make LMI documentation work better for you! Send comments via your customer
dialup mail line to Sarah Smith {username SWRS) or by U.S. Mail to:

Dr. Sarah Smith

Director, Documentation
LMI1 '
1000 Massachusetts Avenue
Cambridge, MA 02138

LMI Lambdat™ is a trademark of LISI> Machine Inc.

Multibust™ is a trademark of Intel Corp.

Copyright © 1985 Lisp Machine Incorporated.

x

STR50 ~ i able of Contents

Table of Contents

1. General Description e e e e e e e e e e e e e e e e e e '
1.1 Power Connection e .1
2. Normal Operation e e e e e e e e e e .2
2.1 Controls and Indicators2
2.2 Loading Tape L . . e e e e e e e e e e .2
23 Unloading Tape« 0 o e e e e e e e e e e e e .3
3. Error Conditions 00 e e e e e e e e e e e . . 6
3.1 Error Indicatorso o e e e e e, . 6
32ManuallLoad o e . 6
33ManualUnload. e .9
4. Testing and Troubleshooting 10
41 Testing« . o 0 s e e e e e e e 10
4.2 Troubleshooting 10

LMI Customer Service is ready to help with your maintenance and expansion needs.

Our toll-free Customer Assistance Line is open from 8:30 a.m. until 8:00 p.m. Eastern
Time.

Customers outside Massachusetts, please call:
¢1-800-872-LISP

Customers within Massachusetts, please call:
¢1-800-325-6115

STR50 1 General Description

1. General Description

The STR50 half-inch magnetic tape drive incorporated with the Lambda uses a dual-gap head,
providing read-after-write capability. Read/write, control, and formatting electronics are all con-
tained on a single printed-wiring board. The transport is designed to operate on 85 to 132 Vac or
195 to 263 Vac, single-phase, 48 to 61 Hz line power. It can accommodate reels up to 10.5 inches
in diameter. Tape speed and density capabilities are 25 ips at 1600 bpi, or 100 ips at 1600 bpi in
streaming mode. :

1.1 Power Connection

A power cord is supplied only for the 85 to 132 Vac range indicated above.

CAUTION: To prevent damage to the STR50 and ensure proper operation, be sure the
outlet voltage is correct before applying power to the tape drive.

CAUTION The weight of the STR50 can upset an inadequately mounted equipment
rack. If the STR50 is to be extended on slides from the equipment rack, be sure that it
is mounted securely.

STR50

2 Normal Operation

2. Normal Operation

2.1 Controls and Indicators

The illuminated panel on the front of the STR50 (Figure 1) is used both as a control panel and to
indicate the status of the machine. Table 1 lists the control/indicator type, its functions, and the
conditions required for enabling these functions.

WRTEN
“MNO UNLOAD ON-LINE TESY

r'\ r'wr'ﬁr'wr'w U'
| —

Figure 1. Control Panel

2.2 Loading Tape

CAUTION: Both the front-panel door and the top cover are locked during tape-loaded
functions. Do not attempt to open either the top cover or the front-panel door during
load operation or while tape is loaded in transport.

To load tape:

Apply power to unit and verify that UNLOAD indicator is illuminated. Allow for a
normal delay of about 2 seconds.

Insure that tape is wound completely 6nto reel.

Open piexiglass front-panel door by pressing down gently on top (center) of door.
Insert tape into front of unit with the write-enable ring facing down.

Close front-pancl door.

Press LOAD switch. The access doors are now locked. The LOAD indicator will
blink,then remain illuminated when the load sequence is completed.

Press ON-LINE switch to place tape on line.

STR50 3 Normal Operation

2.3 Unloading Tape

NOTE: Transport must be in off-line mode. (The ON-LINE indicator light should be ofl.)

To unload tape:

o Press UNLOAD switch. While the tape is being unloaded, the UNLOAD indicator will
blink and the access doors will remain locked. When the unload sequence is completed,
the UNLOAD indicator will remain illuminated and the access doors will unlock.

e Open the front-panel door when the UNLOAD indicator stops blinking.
e Carefully remove the tape reel.

o Close the front-panel door.

STR50

Table 1 Controls and Indicators

Normal Operation

CONTROL/
INDICATOR TYPE FUNCTIONS CONDITIONS
POWER ON/OFF Switches the Fuse installed.
Rocker switch line power on Line cord
“and indicator and off. connected.
LOAD Tactile switch Loads tape to Tape inserted
REWIND and indicator BOT marker. in front
panel door.
Rewinds tape Top cover and
to BOT marker. front panel door
Illuminates to closed. Transport
indicate BOT tab in off-line mode
is positioned (ON-LINE indicator
at photo-sensor. off).
When pulsing,
transport is
- executing a load
or a rewind
sequence.
UNLOAD Tactile switch Unloads tape Transports in off-
and indicator from any point. line mode. (ON-
UNLOAD indicator LINE indicator off.)
flashes during
unload sequence,
then remains 1lit.
ON-LINE Tactile switch Toggles transport Load sequence
and indicator on and off line. stops when BOT
Indicator lights marker is sensed.
up when transport Pressing on-line
is in on-line switch at this
mode. point places tape
on line.
TEST Tactile switch Selects alternate For LMI diag-

operational mode
for other switches.

nostic use only.

STR50

WRT EN
(Write
Enable)

HI DEN
(High
Density)

Indicator

Tactile. switch
and Indicator

I1luminates to
indicate write
function may be
performed.

Lambda operates
in low-density

mode (1600 bpi).

Normal Operation

Tape reel write-
enable ring
installed, mounted
on supply hub,

and tape loaded.

HI DEN light off.

STR50

6 Error Conditions

3. Error Conditions

3.1 Error Indicators

The lighted control panel on the front of the STR50 is used to indicate operating failures or fault
conditions. These errors can be:

Operator Errors

These error conditions normally occur during normal tape loading operations and are
usually caused by improper loading procedures. Error signals will be displayed as a
steady pattern of indicator lights on the front panel. See Table 2 for a listing of error
codes.

Transport Errors

These codes indicate a serious deviation from the normal operating routine of the
STR50 and may require correction by an experienced service technician. They are
shown as a unique pattern of the front panel indicators with a quick double flash to
alert the operator. See Chapter 4 for troubleshooting instructions.

3.2 Manual Load

When the autoload routine has failed to load a tape successfully, it may be necessary to load the

tape manually. To do this:

Extend the STR50 unit on its slides to clear the equipment rack.
Lift the top cover and place the cover support in the slot provided.

Place the reel of tape on the supply hub. Be sure that the reel is evenly seated on the
hub.

Depress and hold the manual unlock button. (Open the plexiglass door in the front
panel. The button is on the bottom left-hand side of the tape reel opening.) Simul-
taneously rotate the supply hub clockwise until the supply reel is locked in place. A
definite click should be felt.

Thread the tape along the path shown in Figure 2. Carefully move the tachometer
assembly away from the takeup hub, wrap tape clockwise around the takeup hub, and
gently replace the tachometer assembly. Check that the tape is seated correctly on
the guides and threaded properly over the head assembly.

Close the top cover and place the transport in normal operating position.

Depress and hold the HI DEN switch, then press the LOAD switch and release both. -
Tape should tighten and advance until the Beginning of Tape (BOT) tab reaches the

STR50 7 Error Conditions

photosensor. The LOAD indicator will be illuminated, indicating that the STR50 is
ready for use.

Tachometer Assembly

M

Figure 2. Tape Threading Path

STR50

8 Error Conditions

Table 2 Operator Error Frent Panel Indications

INDICATION

- . - M - S S R PN D D U GRS S S R ST S CN e N T D S D PR S D G G e = e e e - T = P e e me

All indicators

All indicators
except LOAD.

All indicators
except UNLOAD

All indicators
except ON-LINE

All indicators
except TEST

- flashing

flashing

flashing

flashing

flashing

CONDITIONS

STR50 unable to complete load

sequence. Check tape leader for
damage and try again. If still
not successful, see Section 3.2.

BOT marker not detected within
the first 35 feet of tape.

The leader must be at least 6
feet in length.

Tape reel was inserted upside
down. The tape reel should be
inserted with the slot for

the write-enable ring facing
down.

Load or unload operation was
attempted with the front-panel
or top cover door open.

Load operation was attempted
without a tape reel in place.

STRS50 9 Error Conditions

3.3 Manual Unload

If the STR50 does not complete the rewind/unload sequence successfully, the tape recl may be
rewound manually. To do this:

o Lift the top-cover sides behind the front panel. Place the cover support in the slot
provided.

o Rotate the supply reel counterclockwise to rewind the tape onto the supply reel.

e Press the manual unlock button. (Open the plexiglass door in the front-panel. The
button is on the bottom left-hand side of the tape reel opening.) Simultaneously
rotate the supply reel counterclockwise until it turns freely and can be removed from
the transport.

STR50 10 Testing and Troubleshooting

4. Testing and Troubleshooting

4.1 Testing

The STR50 incorporates a power-up self-test and additional error detection during tape operation.
During a power-up operation, all indicator lights on the front panel should be illuminated for about
one second. If no problems are encountered, all lights except the UNLOAD indicator should go out.
Continued illumination of any other switches may indicate a failure of the ROM or RAM test. If
this happens, power cycle. If the error indications persist, call LML

4.2 Troubleshooting

The following tables list malfunction symptoms with the probable cause and simpie remedial
actions. If more serious problems are encountered, please call LMI for technical assistance.
Table 3 Power-up Malfunction Symptoms
Table 4 Operator Error Symptoms
"able 5 Transport Failure Symptoms

Table 6 System Failure Symptoms

STR50 11 Testing and Troubleshooting

Table 3 Power-up Malfunction Symptoms

SYMPTOM : CAUSE o REMEDIAL ACTION
Failure to complete During a normal power-
power-up sequence. up operation, all the
Transport unable to indicators on the front
initiate any local panel will light up for
or remote commands. about 1 second. All

except the UNLOAD light
should then go out.

No defect is indicated
by this sequence.

Any invalid fault code Call LMI.
(see tables 4-6) indicates
failure.

Fan operation during
power-up alsoc indicates
failure.

STR50

SYMPTOM

All indicators
flashing

All indicators
flashing except
LOAD

A1l indicators
flashing except
UNLOAD

All indicators
flashing except
ON-LINE

All indicators

flashing except

TEST

12

Table 4 Operator Error Symptoms

Tape leader damaged

Transport cannot com-
plete load sequence

BOT marker not
detected within the
first 35 feet of tape.

Tape reel inserted
upside down.

Tape-in-path sensor
failed.

Load operation attempted
with front panel door
or top cover open.

Load operation attempted
without reel of tape . in-
serted in unit.

Testing and Troubleshooting

REMEDIAL ACTION

Remove damaged tape.
Replace BOT marker
if necessary.

Call LMI.

Check tape for
BOT marker.

Insert reel correctly.

Call LMI.

Check door closure.

Open top cover. Be
sure reel is seated
on supply hub.

If not, seat reel
properly and try again.
During the load
operation, check to
see if the supply
servo is rotating
counterclockwise.

If the reel is
seated correctly and
rotation is counter-
clockwise, call

LMI for assistance.

STR50

i3

Testing and Troubleshooting

Table 5 Transport Failure Symptoms

REMEDIAL ACTION

- v T R T TR - - S B € WS KB W S E D s e e . s S D e Ve S = R - - - - e

LOAD and UNLOAD
indicators flashing

ON-LINE indicator
flashing

LOAD and ON-LINE
indicators flashing

UNLOAD and ON-LINE
indicators flashing

LOAD, UNLOAD, and
ON-LINE indicators
flashing

More than 3700 feet of
tape beyond the BOT
marker. .

Tension arm swing ex-
ceeded the normal
operating range during
auto load sequence.

Interface command
received prior to
completion of the
previous command.

Write command
received with a write-
protected reel of

tape in place.

Illegal or undefined
command received.

Usually caused by

a long reel of tape.
Try another reel;

if problem persists,
call LMI.

Occurs only during
load operation.

Open top cover. If
tape is not wrapped
around correctly,

or if tape is wrapped
correctly but load
sequence will not
continue, call LMI.

Usually caused by
system failure.
Call LMI.

Reset error code
and reload tape.
Check to see if

the WRT/EN light
goes off.

Call LMI.

Check cables and
interface command
lines. Call .LMI.

STR50

TEST indicator
flashing

UNLOAD and TEST
indicators
flashing

ON-LINE and TEST
indicators
flashing

LOAD, ON-LINE,
and TEST indicators
flashing

TEST, UNLOAD, and
ON-LINE indicators
flashing.

LOAD and HI DEN
indicators
flashing

UNLOAD and
HI DEN indicators
flashing

14

Failure of supply hub
locking mechanism.

Auto-zero function of
the digital-to-analog
converter failed during
power-up.

Supply reel not seated
on hub, or failure of
file protect circuit.

Supply reel did not
remain locked during
tape unload operation.

Controller error: tape
travel exceeded 18 feet
past EOT marker.

Tape buffer tension arm
exceeded its free travel
limits.

Tape speed variations

in excess of +10%
occurred. Usually
caused by bad tachometer
assembly when drive

is under system oper-
ation.

Testing and Troubieshooting

Failure occurs only
during load sequence.
If reel appears to
lock correctly,

call LMI.

Call LMI.

Reseat tape reel
and try again. If
problem persists,
call LMI.

Call LMI.

Call LMI.

Call LMI.

If failure occurs
during power-up,
check that the take-
up hub moves momen-
tarily counter-
clockwise, then
clockwise during
powerup. Call LMI.

STR50

15

Testing and Troubleshooting

Table 6 System Failure Symptoms

REMEDIAL ACTION

Read or write
errors during

system operation.

Tape reel cannot

be removed from
transport.

STRE0 "runs
away" with
Data Busy false.

System is unable to
complete data trans-
fer. '

Tape not wound
completely on supply
reel or tape reel.

Transport format-
ter no longer
controlling tape
motion.

Try to read a known
good tape to see if
errors are caused by
read or write logic.
If errors still occur,
call LMI.

If the tape is read
successfully, the
problem is in the
write formatter
circuitry. Call
LMI for assistance.

Be sure that tape is
wound completely on
supply reel after
unload operation.

If tape is wound
completely on supply
reel, verify that
the tape reel is
unlocked.

Call LMI.

Call LMI.

STRb50

Transport "runs
away" with Data
Busy true.

Doors will not
lock or unlock.
Operator unable
to insert tape
into transport.

When drive is
placed ON-LINE,
tape unloads.

System detects
invalid inter-
face signals:

IFBY IRDY
IDBSY IFPT
~ILDP IEOT
IONL IRWD

ISPEED

16

Transport format-
ter no longer
controlling tape
motion.

Door lock mal-
functioning.

Transport will
not operate in on-
line mode.

System unable to
verify correct
transport status.

Testing and Troubleshooting

First, check read
threshold and
verify that it is
in proper operating
range. If trans-
port was executing
read operation
when runaway occurred
the read formatter
may be the problem.
Call LMI.

If transport was
executing a write oper-
ation, the write
formatter may be the
problem. Call LMI.

Verify closure.

Disconnect cables
between transport and
computer. If problem
still exists, trans-
port is at fault.
Call LMI.

Interface signals
may be at fault.
Call LMI.

STR50

Transport ignores
all commands sent
by the controller,
or transport exe-
cutes a command
other than the
command issued by
the controller.

System is unable
to select trans-
port.

17

System unable to
initiate any remote
command .

Invalid status indi-

cations from transport

to controller.

Testing and Troubleshooting

Check interface cable
connection between
drive and controller.
Check command lines.

Check interface
cable connection
to transport.

LI

I').isk Drives

IS

' Published by LMI 1000 Massachusetts Avenue. Cambfidge MA OQIQQ%USA

Cof)s‘yright © 1985 Lisp Machine Incorporated.

A

Disk Drives Introduction

Introduction

This package contains the following manuals:

e Multibus Controller: Specifications and operations of the LMI Multibus disk controller
board.
e MSU169 Disk Drive: Specifications and operations of the LMI MSU169 disk drive.

e MSU474 Disk Drive: Specifications and operations of the larger LMI MSU474 disk
drive.

#

Multibus Controller

Published by LM 1000 Massachusetts Avenue. Cambridge MA 0213$'"USA

The following document covers specifications, maintenance, and basic operations of the LMI Multi-
bus Controller Board.

This manual published April, 1985.

Please help us to make LMI documentation work better for you! Send comments via your customer
dialup mail line to Sarah Smith (username SWRS) or by U.S. Mail to:

Dr. Sarah Smith

Director, Documentation
LM1

1000 Massachusetts Avenue
Cambridge, MA 02138

LMI Lambdat™ is a trademark of LISP Machine Inc.Multibus*™ is a trademark of Intel Corp.

Copyright © 1985 Lisp Machine Incorporated.

4

Multibus Controller i Table of Contents

Table of Contents

1. General Description o e e e e e e e e e e R |
2. Specifications L L L L o L e e e e e e e e e e e e e e 2
2.1 Physical Dimensions e e e e e e .2
22Power . . Lo L o s e e e e e e e e e e e e e e e e e e e . .2
2.3 Connectors e e e e e e e e e e e e e e e e e e e .2
2.4 Operating Temperature o 0000 .2
3. General Operations e, . 4
31Status Code L L L e e e e e e e e e e e e e e . 4
32ErrorCodes o e e e e e e e e e e e e . 4

LMI Customer Service is ready to help with your maintenance and expansion needs.

Our toll-free Customer Assistance Line is open from 8:30 a.m. until 8:00 p.m. Eastern
Time.

Customers outside Massachusetts, please call:

¢1-800-872-LISP

Customers within Massachusetts, please call:
¢1-800-325-6115

[T

&

Multibus Controller ‘ 1 General Deseripiion

1. General Description

The LMI Lambda uses an Interphase Multibus controller board. The disk controller board is
mounted on a larger carrier card that plugs directly into the Lambda card cage. The disk controller
serves as a bus master during data transfers, using a variable burst length DMA technique. 1t can
directly connect from one to four storage module drives by industry standard A and B cables. The
controller board can control any type of drive with an SMD compatible interface.

Devices on the Multibus may command the controller to perform a disk function, such as READ,
or WRITE a sector (or more) of data into or out of System Memory. All such functions have an
extended list of parameters to define the exact function to be performed. This list is called the 1/0
Parameter Block (IOPB) and is found in common memory; that is, memory accessible to both the
LMI Lambda CPU, and the controller board. In order to cause a disk function to be performed, the
processor builds the IOPB in memory, writes a pointer to the IOPB into the Address Registers, and
writes a GO to the Command Register. The function is automatically completed by the controller.
Both an Operation Done interrupt and Done Stetus are provided.

The disk controller supports a wide variety of system configurations including:

e 8 and 16 bit (or mixed) systems
e Single or multiple CPU and other bus masters
e Serial and parallel bus priority

o Single user or multiuser-multitask environments

Absolute or relative addressing modes

Operation in Buffered mode, or Direct mode.

Multiple disk drive types with varying speeds and capacities can be controlled simultaneously.

Multibus Controller

2. Specifications

2.1 Physical Dimensions

Height: 6.75 in.

7.5 in.
Width: 12.0 in.
Thickness: .5 in.
Weight: 14.0 oz.

(to ejector)

(to cable connector)

Specifications

The disk controller board is mounted on a larger carrier card which is plugged into slot 16 of the

Lambda card cage.

2.2 Power

5 VDC + 5%, 3.75 AMPS

I+

-5 VDC + 5%, .6 AMPS

£

2.3 Connectors

Bus: Card edge:
Board: A cable:
B cable:

Maximum cable length:

86 pins on .166 center
60 pins
26 pins

50 feet

2.4 Operating Temperature

Ambient temp: 0° to 558° C

Multibus Controller 4 : General Operations

3. General Operations

3.1 Status Code

Once a disk has been accepted, operation status is provided. The three possible status indicators
are:

e 80H Operation successful, ready for next command
e 81H Operation in progress, busy

e 82H Error on last command

3.2 Error Codes

A status code of 82H after an operation will provide one of the following error codes:

NOTE: All error codes are hexadecimal.

10 DISK NOT READY
The disk’s ready signal output is tested at the beginning of any command requiring
a head movement (all commands except Reset). Error 10 is posted if the disk is not
ready. Note that error 18 is issued if the drive is not powered up.

11 INVALID DISK ADDRESS
The unit selects bits in the I/O Parameter Block (IOPB) which are examined for the
presence of a valid unit'selection (0-3). Check on all commands except Reset.

12 SEEK ERROR
All commands except Initialize and Reset may cause a Seek operation to be initiated.
The controller issues a Seek command to the disk drive, and, on completion, reads
the header of the appropriate sector to verify the location of the head. If wrong, the
~ SMD 2181 will execute a Restore and then Reseek the target track. The header will
be read again and if the track is still wrong, the controller will post Error 12 Seek

Error.
’.(

13 ECC CODE ERROR—DATA FIELD
The computed Error Correction Code (ECC) on the data did not agree with the ECC

Multibus Controller 5 General Operations

code appended to the data on the disk, and no error correction was attempted. NOTE:
See also Error 23.

14 INVALID COMMAND CODE
The command code, byte 0 in the IOPB, was not valid.

15 NOT USED

16 INVALID SECTOR IN COMMAND
The target sector in the IOPB, byte 8 and 9 in the IOPB, was greater than the capacity
of the drive as specified in byte 1 of that drive’s Unit Initialization Block (UIB). This
check is performed after the Seek has been done.

17 SPARE

18 BUS TIMEOUT
Bus acquisition was not made within 1 msec of a request, or XACK was not received
within 1 msec of a MRDC/, MWTC/, or IOWTC/.

19 NOT USED

1A DISK WRITE PROTECTED]
Posted when attempts are made to write to a disk that is write protected.

1B UNIT NOT SELECTED
A unit seleet was made and the unit failed to respond with unit selected. This error
is returncd when the drive unit number is misselected, the drive is not powered up, or
the cable is not connected.

K
1C NO ADDRESS MARK—HEADER FIELD
: This error is posted if no sync information is found in the header of the target scctor.

Multibus Controller 6 General Operations

Error correction will not be attempted on the header field.
1D NOT USED

1E DRIVE FAULTED
A Fault condition exists in a selected unit. The Fault should be cleared by a Restore
command.

1F NOT USED
20 NOT USED
. 21 NOT USED
22 NOT USED

23 UNCORRECTABLE ERROR
Error correction was attempted on the data field and the error was found to be uncor-
rectable.

24 SPARE
25 SPARE

26 NO SECTOR PULSE
The sector pulse is missing from a selected unit.

27 DATA OVERRUN
A data field timeout error generally caused by missing TX or RX clock.

Multibus Controller 7 General Opcrations

28 NO INDEX PULSE ON WRITE FORMAT
During a Write Format operation the disk controller looks for the index pulse from
the disk. If not found within 65 msec., the error is posted. No retries.

29 SECTOR NOT FOUND
If at any point during a Read or Write type operation the target sector cannot be
found, this error is posted.

2A ID FIELD ERROR—WRONG HEAD
The head number read from the disk in the header field was wrong.

2B INVALID SYNC IN DATA FIELD
The first byte read from the data field was not a valid syne character.

2C NOT USED

2D SEEK TIMEOUT ERROR
A seek was made and a normal complete response did not occur within 500 mseec.

2E BUSY TIMEOUT
On a dual ported drive, BUSY has been active for more than 500 msec.

2F NOT ON CYLINDER
The drive must be ON-CYLINDER within three seconds after being selected.

30 RTZ TIMEOUT
A Restore command was executed and a normal complete did not occur within three
seconds.

31 FORMAT OVERRUN ON DATA

Multibus Controller 8) - General Operations

40 UNIT NOT INITIALIZED

A command was attempted on a unit that has not been initialized.
42 GAP SPECIFICATION ERROR

4B SEEK ERROR

A seek error was reported by the disk drive.

4C MAPPED HEADER ERROR
No sector pulse found on track to be mapped.

51 BYTES/SECTOR SPECIFICATION ERROR
The bytes/sector in the UIB, bytes 2 and 3, exceed the capacity of the buffer.

52 INTERLEAVE SPECIFICATION FACTOR
The interleave factor in the UIB, byte 6, fails a sanity check.

53 INVALID HEAD ADDRESS
The target head in the IOPB, byte 5, was greater than the capacity of the drive as
specified in byte 1 of that drive’s UIB.

MSU169 Disk Drive

Pubiished by LLMI 1000 Massachusctts Avenue. Cambridge MA 02138 USA

The following document covers specifications, maintenance, and basic operations of the LMI
MSU169 Disk Drive.

This manual published April, 1985.

Please help us to make LMI documentation work better for you! Send comments via your customer
dialup mail line to Sarah Smith (username SWRS) or by U.S. Mail to:

Dr. Sarah Smith

Director, Documentation
LMl

1000 Massachusetts Avenue
Cambridge, MA 02138

LMI Lambda™ is a trademark of LISP Machine Inc.

Copyright © 1985 Lisp Machine Incorporated.

MSU169 Disk Drive i Table of Contents

Table of Contents

1. General Description e e e e e e e e e e e e e e R |
2. Features L e e e e e e e e e e e e .. L2
3. Specifications L L L L L L L e e e e e e e e e e 3
3.1 Physical L L L L e e e s e e e e e e e e 3
3.2 Environmental e e e e e e e e e e e e e e B |
33Power e e e e e e e e e e e e e e e e e e 3
4. Controls and Indiecators 4
4.1 Powering Up/Down e e e e e e e e e e e e e ... 4

4.2 Operator Panelo o A |

LMI Customer Service is ready to help with your maintenance and expansion needs.

Our toll-free Customer Assistance Line is open from 8:30 a.m. until 8:00 p.m. Eastern
Time.

Customers outside Massachusetts, please call:

¢1-800-872-LISP

Customers within Massachusetts, please call:
¢1-800-325-6115

MSU169 Disk Drive 1 General Description

1. General Description

The LMI Lambda can be equipped with an MSU 169 Disk Drive with a maximum unformatted
storage capacity of 168 megabytes. The 8-inch rigid disk drives are non-removable and are con-
tained in a sealed module. Head positioning is performed by a rotary actuator using a closed loop
SCrvo.

The MSU169 uses a standard SMD interface, allowing the drives to be added to an existing disk
configuration.

The MSU169 is mounted on slides in the base of the Lambda with room for a second MSU169 to
be installed beside it. -

MSU169 Disk Drive 2 Features

2. Features

¢« Reliability
e The MSU169 features Winchester type technology contact-start/stop (CSS)
heads and media.

o LSI circuits on each head amplify the small signal, thus reducing read
errors by increasing the signal-to-noise ratio.

¢ Heads, media, and positioning mechanism are sealed in a closed-loop air
filtration system.
e Electrical components located within the sealed disk area are minimized.
e Maintainability ;
No scheduled maintenance is required. The use of a completely sealed disk enclo-

sure, a belt-eliminating built-in DC spindle motor, and highly reliable printed circuit
assemblies greatly reduces the need for maintenance.

e Compact size

The unit can be mounted with two drives in a standard 19-inch rack. It weighs ap-
proximately 30 pounds.

e Low accoustical noise level and low vibration.

23 %

MSU169 Disk Drive

3. Specifications

3.1 Physical

3.2 Environmental

Temperature:

Humidity:

3.3 Power

DC Voltage
+5V +5%
-12V +5%
+24V +10%

Height:
Width:
Depth:
Weight:

Operating
Non-operating
Gradient

Operating
Non-operating

Load Current (Basic)
3.5A

3.0A

3.6 Arms (Effective, typical)
7.2 Ao-p (Maximum)

Specifications

5.0 in.
8.5 in.
15.0 in.
30 ibs.

5° to 40° C.
-40° to 60° C.
Less than + 15° C./hour

20% to 80% RH
5% to 95% RH

Load Current (Dual Port)
4.5A
4.0A

4.6 Arms (POWER ON; Effective typical)

The load currents of +5V DC and -12V DC will be stable during any operation being performed
within the disk drive. However, the load current of +24V DC will be varied through a power up
sequence or DC motor acceleration and/or seek operation.

MSU169 Disk Drive 4 Controls and Indicators

4. Controls and Indicators

4.1 Powering Up/Down

The MSU169 is not equipped with a power ON/OFF switch. Powering up or down of the MSU169
is typically performed by powering up or down the system.

4.2 Operator Panel

PTCT|

{Protect] Check

Figure 1. Operator Panel

The functions of the LED’s and swilches on the front pancl are:

Power indicator: Red
LED lights when the power is turned on.
Ready indicator: Red
LED indicates the initial seek has been performed, or the termination of a Seek or RTZ
operation.
Check indicator: Red
LED indicates a fault condition.

Protect indicator: Red

LED indicates that writing is inhibited.
Protect (PTCT) switch: White

Key inhibits the write operation.

Check clear switch: Gray (flat key)
Key resets a Device Check status.

MSU474 Disk Drive

Published by LMI 1000 Massachusetts Avenue. Cambridge MA 02138 USA

The following document covers specifications and basic operations of the LMI MSU474 Disk Drive.

This manual published April, 1985.

Please help us to make LMI documentation work better for you! Send comments via your customer
dialup mail line to Sarah Smith (username SWRS) or by U.S. Mail to:

Dr. Sarah Smith

Director, Documentation
LMI

1000 Massachusetts Avenue
Cambridge, MA 02138

LMf Lambda!™ is a trademark of LISP Machine Inc.

Copyright © 1985 Lisp Machine Incorporated.

MSU474 Disk Drive i Table of Contents

Table of Contents

1. General Deseription e e e e e e e e e e e e e e e e e e e R |
2. Features L L e e e e e e e e e e e e e e e e e e 2
3. Specifications Lo L L0 L 000 .3
4. General Operation00 e . . 8
4.1 Switchesand Controls0 . 8
4.2 Power-up Procedure e e e e e e e e e e e .. 9
4.3 Power-down Procedureo ..., P ¢
5 BError Sates e e e e e e e e e e e e e e e e .. 10

Index L L s e R |

LMI Customer Service is ready to hclp with your maintenance and expansion needs.

Our toll-free Customer Assistance Line is open from 8:30 a.m. until 8:00 p.m. Eastern
Time. :

Customers outside Massachusetts, please call:

¢1-800-872-LISP

Customers within Massachusetts, please call:
»1-800-325-6115

MSU474 Disk Drive ' 1 General Description

1. General Description

The LMI Lambda is equipped with a MSU474 Disk Drive. The moving head drive has a storage
capacity of up to 474 megabytes (unformatted). It uses Winchester type heads and platters,
allowing high recording density, data transfer rate, and a high degree of reliability with rapid
access time. The media is non-removable. The drive is appropriate for large-capacity, high-speed
data storage in an on-line system.

The drive is designed to meet the following standards:

e ULA478 Electronic Data Processing Unit and Systems
e CSA C22.2 No. 154-1975 Data Processing Equipment. (Under investigation)

MSU474 Disk Drive 2 Features

2. Features

Large Capacity and High Performance
The MSU474 provides 474 megabytes of unformatted data on six disks, with high
performance characteristics such as 1.859 megabytes per second data transfer, 18 mil-
liseconds average access time, and 7.58 milliseconds average latency time.

Compact Size _
The disk drive unit is configured with Disk Enclosure (DE), DC power supply and LSI
curcuits. It is available for mounting in a standard 19-inch rack.

High Reliablilty
The disk enclosure includes a rotary actuator, a direct-drive spindle motor, the mag-
netic heads, the disks, and the carriage. A completely secaled self-contained airflow
system is used within the DE to assure a clean environment for low-flying heads, thus
ensuring very high reliability.

High Serviceability
The DE can easily be removed for replacement in the field. Serviceability is further
improved by diagnostic information provided by the interface signals.

Low Maintenance _
The MSUA474 disk drive requires substantially reduced maintenance because of the
completely sealed DE, a direct-drive DC Spindle motor, and highly reliable printed
circuit boards.

Other Features

A recording densily of over 107 bits per square inch due to the advanced
head and disk. '

¢ Less than 0.62 KVA required despite large storage capacity.

e The dual channel feature, permitting two controllers to access the same
disk drive so that a file can be shared by two different systems.

s Modified interface signals between the controller and the disk drive to agree
with higher track capacity and high maintainability.

MSU474 Disk Drive

3. Specifications

The following tables list the specifications for the MSU474 Disk Drive.

Table 1
Table 2
Table 3

Table 4

Specifications
Environmental Requirements
Power Requirements

Cables and Connectors

Specifications

MSU474 Disk Drive 4

Table 1 Specifications

Specifications

/Drive (MB)
Capacity

474.2 (Unformatted)

/Track (KB)

28.160 (Unformatted)

Configuration of Disks and Heads

Fixed heads
p— e,

6 \AAY

5

>
19 <18 .
>17 >16
315514
4 13212

3 9 8 heads

7 6
} 5 54
2 3 X2
1 :j 1 5 0 -
Rotational Speed (RPM) 3,961
Latency (ms) 7.5
Diameter (Inch) 10.5
Disk
Number 6
/Drive 20 + 1 (Servo)
Heads .
/Surface 2
Cylinders 842
Data Transfer Rate (MB/sec) 1.859
Maximum 35
Positioning Time Average 18
(ms)
Minimum 5
Track Density (TPI) 880
Bit Density (BPI) 12,800
on interface NRZ
Data Coding
on disk surface MFM

MSU474 Disk Drive 5 Specifications

Table 2 Environmental Requirements

St t it On Sit Operating
Environment . oragi ord ;ansm Nn _é : atin Office
in packaged form on-0Oper 8 | Environment
Temperature* Within 24 More than 24
Hours Hours 23°F ~ 140°F | 50°F v 104°F
- o [+] [~} (<]
~40°F ~ 140°F 23°F ~ 140°F éai Sé;goeC) éig gégﬁoec)
(-40°C~ 60°C) | (=5°C~60°C) : & ; &
Max change Max change 18°F/Hour 18"F/Hour
36°F/Hour 18°F/Hour (10°C/Hour) (10°C/Hour)
(20°C/Hour) (10°C/Hour)
Humidity 5% ~ 95% RH 207% ~ 807 RH
Non-condensing Max change 10%/Hour
Non-condensing
Vibration 3G (When locked for 0.2G 0.2G
shipment) (10Hz ~ 500Hz) (5Hz ~ 50Hz)
1G
(50Hz ~ 500Hz)
Shock 5G (Max. 30 ms) 3G (Max. 10ms) | 2G (Max. 10ms)
Altitude 40,000 FT (12,000 m) 10,000 FT (3,000 m)
Dust 0.168 mg/m3 (Stearic Acid Standard)
Air flow _— 2.5 m3/min.
Acoustic _— 60 dBA

* °C =-§(°F—32)

MSU474 Disk Drive

Table 3 Power Requirements

Specifications

Voltage Frequency Current (Aac) Power Consumption Heat Dissipation
(Vac2107%) | (Hz*2Hz) Starting* |Running (KvA) (géﬁiil gzgﬁ
100 50/60 5.7/5.4 0.57/0.54 460/42011,800/1,600
120 60 5.3 4.6 0.55 430 1,700
220 50 2.8 0.62 510 2,000
240 50 2.6 0.62 510 2,000

*Worst case transient with a maximum of 40 amps for less than 1/2 cycle of input AC Power.

Table 4 Cables and Connectors

Cable Connector (Supplier)
Specification Supplier Drive Side Cable Side
A-Cable Zo = 100x10Q SPECTRA FUJITSU FUJITSU
(60-Pin) 28 AWG STRIP FCN-704P060-AU/L FCN~707J060-AU/B
7 Stands 455-248-60
100 FT. Max. 3M 3M
3472-2303 3334-6010
B-Cable Zo = 1002100 ANSLEY FUJITSU FUJITSU
(26-Pin) 28 AWG 174-26 FCN-705P026=AU/L FCN-707J026-AU/B
7 Stands
50 FT. Max. 3M 3M
3429-1303 3399-6010

MSU474 Disk Drive \ 7 Specifications

J Front Panel Color : Light Beige
. %, Weight : 143 Lbs (65 kg)

10.24

* Metric System

The 19-inch rack must meet with
following specification:

E.I.A/RS-310<C Standard

{ Inch]

Service Clearance

Figure 2. Physical Dimensions

MSU474 Disk Drive 8 General Operation

4. General Operation

4.1 Switches and Controls

Switches and indicators on the operator panel are shown in the figure below.

"o

Fault Start

. . Protect Start

Power on Ready

Figure 3. Operator Panel

Start/On Switch
Enables rotation of the spindle motor. The heads start an Initial Seek operation and
stop on the cylinder zero approximatley 40 seconds later, lighting the Ready light. The
spindle motor stops rotating approximately 15 seconds after the switch is set to the
off position.

Protect/On Switch
Inhibits write opcration. If a write command is issued from the controller while the
PROTECT /ON switch is on, the Fault and Control Check conditions will be returned to
the controller.

NOTE: The function of the PROTECT switch can occur with the selection of
the drive. If the drive is selected before the switch is turned on, it must be
deselected, then selected again to enable File Select.

Start (LED)
. Light indicates that the spmdle is rotating.
Ready (LED)

Light indicates that the spindle has reached the rated speed and no fault condition
exists in the drive. It goes off when the heads are seeking the desired cylinder.
Fault (LED and Switch)

Indicates a Fault condition (i.e., R/W check status) or a Seek Error. Depréssing the
indicator switch clears this condition.

MSUA474 Disk Drive 9 General Operation

Power On (LED)
Light indicates that the DC power supply unit is on.

4.2 Power-up Procedure

To power up the MSU474:

e The main Lambda power supply should be ON; the Power On indicator light should
be on.

e Press the START /ON switch on the disk front panel. The Start indicator should be on.

e Wait about 40 seconds for the disk to reach speed. The ready indicator should light,
indicating that the disk is ready for use.

4.3 Power-down Procedure

To power down the MSU474:

e leave LISP and/or UNIX gracefully. (See The LMI Lambda Field Service Manual,
Section 6.18 and Section 6.19.)

e Switch the START/ON switch to the off position.

MSU474 Disk Drive 10

5. Error States

Table 5 lists the error states issued by the disk unit and control unit.

Table 5 Error Status

Error States

NOT READY Not Ready status indicates disk drive is not ready

FAULT Fault status indicates a fault condition has occurred in the
unit

SEEK ERROR | Seek Error status indicates a seek error has occurred in
seek operation

READ ERROR | Read Error status indicates a data error has occurred in
read operation

AM MISSING | AM Missing status indicates that AM (Address Mark) has not
found in read operation

S le

1

Lambda Kermit User’s Guide
Release 2.0: March 27, 1985

i)

24-0100327-0001

Published.by LMI 1600 MassachuseLLS Avenue. Cambridge MA 02138 USA

. Information in this manual is current as of March 1985 for ILM] Release 2.0.

Please help us to make LM! documentation work better for you! Send comments via your customer
dialup mail line to Sarah Smith (username SWRS) or by U.S. Mail to:

Dr. Sarah Smith

Director, Documentation
LMI

1000 Massachusetts Avenue
Cambridge, MA 02138

LMI Lambda®™ is a trademark of LISP Machine Ine.

Kermit is a trademark of Henson Associates, Inc., creators of peTheMuppet Show.

Copyright © 1985 Lisp Machine Incorporated.
¥

Lambda Kermit User’s Guide i Table of Contents

Table of Contents

1. Introduction L L L L e e e e e e e e e e e e 1
1.1 Restrictions on KERMIT e e e e e e e e e e e 1
L2LMIKermit e e e e e 3
1.3 More Information on KERMIT 3.

2. Connecting the Two Computers v v v v v v v v v v o 4
2.1 Cable Connections L L L e e e e e e e e e e e 4
22Modem Connections e e e e e e e e e e e e 4

3. How to Start the KERMIT Program 5

4. Using the Z29 Terminal Emulator 6

5. Overview of KERMIT Commands 7
5.1 The KERMIT CommandMenu 7
5.2 The NETWORK Commands v v v v v v v v e e e e e e e i s 8

6. File Transfer e 11
6.1 Sending Files Using Server Mode 11
6.2 Receiving Files Using Server Mode 11
6.3 Sending Files Without Using Server Mode 12
6.4 Receiving Files without Using Server Mode 13
6.5 File Transfer Failure 13
6.6 Aborting File Transfers e 13

7. Remote Login Server Lo o e 15
7.1 Command Interpreter Commands 15

Appendix A. Making a Special Cable 17

¥

Lambda Kermit User’s Guide 1 Introduction

1. Introduction

The KERMIT file transfer protocol was developed at the Columbia University Center for
Computing Activities, as were the first several KERMIT programs. Columbia has shared
these programs freely with the worldwide computing community since 1981, and many
individuals and institutions have contributed improvements or new implementations
of the protocol. KERMIT implementations now support about sixty different systems.

Although KERMIT is free and available to anyone who requests it, it is not in “the public
domain”. The protocol, the manuals, the Columbia implementations, and many of the
contributed implementations bear copyright notices dated 1981 or later, and include a
legend like:

Permission is granted to any individual or institution to copy or use this
document and the programs described in it, except for explicitly commercial
purposes.

This copyright notice is to protect KERMIT, Columbia University, and the various
contributors from having their work usurped by others and sold as a product.

1.1 Restrictions on KERMIT

KERMIT may be passed along to others under the following conditions:

It is acceptable to charge a reproduction fee when supplying KERMIT to others. The
reproduction fee may be designed to recover costs of media, packaging, printing, ship-
ping, order processing, or any computer use required for reproduction. The fee should
not reflect any program or documentation development effort, and it should be be in-
dependent of how many implementations of KERMIT appear on the medium or where
they came from. It should not be viewed as a license fee. (Columbia charges $100.00
for a 2400 ft. recl of magnetic tape that includes all known versions of KERMIT, two
printed manuals, various flyers, a box, and postage. There is an additional $100 order
processing charge if an invoice must be sent.)

Commercial institutions may make unlimited internal use of KERMIT, and may incor-
porate KERMIT into their products with the following restrictions:

e A KERMIT program may not be sold as a product in and of itself. In
addition to violating the prevailing spirit of sharing and cooperation, com-
mercial sale of a product called “KERMIT” would violate the trademark

held on that name by Henson Associates, Inc., creators of The Muppet
Show.

¢ [xisting KERMIT programs and documentation may be included with hard-
ware or other software as part of a standard package, provided that the
price of the hardware or software product is not raised significantly beyond
costs of reproduction of the KERMIT component.

Lambda Kermit User’s Guide 2 Introduction

e KERMIT protocol may be included in a multi-protocol communication pack-
age as one of the communication options, or as a communication feature of
some other kind of software package, in order to enhance the attractiveness
of the package. KERMIT protocol file transfer and management should not
be the primary purpose of the package. The price of the package should
not be raised significantly because KERMIT was included, and the vendor’s
literature should make a statement to this effect.

e Credit for development of the KERMIT protocol should be given to the
Columbia University Center for Computing Activities, and customers should.
be advised that KERMIT is available for many systems for only a nominal
fee from Columbia and from various user group organizations, such as

DECUS and SHARE.

e Columbia University holds the copyright on the KERMIT protocol, and may’
grant permission to any person or institution to develop a KERMIT pro-
gram for any particular system. A commercial institution that intends to
distribute KERMIT under the conditions listed above should be aware that
other implementations of KERMIT for the same system may appear in the
standard KERMIT distribution at any time. Columbia University encour-
ages all developers of KERMIT software and documentation to contribute
their work to Columbia for further distribution.

¢ Finally, Columbia University does not warrant in any way the KERMIT
software nor the accuracy of any related documentation, and neither the
authors of KERMIT programs or documentation nor Columbia University
acknowledge any liability resulting from program or documentation errors.

Commercial organizations wishing to provide KERMIT to their customers should write
a letter stating their plans and their agreement to comply with the guidelines listed
above. The letter should be addressed to:

KERMIT Distribution
Columbia University Center for Computing Activities
612 West 115th Street
New York, NY 10025

Lambda Kermit User’s Guide 3 Introduction

1.2 LMI Kermit

The LMI version of KERMIT allows communication and file transfer between the LAMBDA -
and other computers (including other LAMBDAS) via a standard RS-232 serial connec-
tion. KERMIT is normally used to transfer ASCII text files to and from various types
of computers when more advanced technologies, such as those based on Ethernet, are
not available.

This LMI version of KERMIT features a window interface, terminal emulation, a remote

login servei, and the ability to use the server facility provided by many timesharing

implementations of the KERMIT protocol. The remote login server provides access to

basic LAMBDA file manipulation commands and to a KERMIT server facility on many
. ‘personal computers.

If you have trouble using this LMI version of KERMIT, don’t hesitate to call the LMI
Customer Assistance Line. The LMI CAL numbers are:

Qutside Massachusetts: 1-800-872-LISP
Inside Massachusetts: 1-800-325-6115

1.3 More Information on KERMIT

This document is a brief explanation of the LMI version of KERMIT which runs on
LAMBDAs. For more information on what KERMIT is and how it works, see the ac-
companying Kermit User Guide by the Columbia University Center for Computing
Activities, in particular Chapter 2 on pages 7-16.

Lambda Kermit User’s Guide 4 Connecting the Two Computers

2. Connecting the Two Computers

The two machines must be connected by a cable or modem.

2.1 Cable Connections

Two machines at the same site may be connected by cable. To connect machines at
the same site by cable, the industry standard RS-232 serial connection is best. To
connect them, look on the back panel of the LAMBDA for Port A and Port B. Port A is
male and is labelled "Data Terminal Equipment": Port B is female and labelled "Data
Communication Equipment®.

Connect serial Port B to the other computer via an RS-232 cable.

In many cases, it is necessary to make a special cable. Appendix A contains some
guidelines for making one.

2.2 Modem Connections

Two machines in diflerent sites may be connected by modems. Since most modems
are DCE devices and the LAMBDA's serial port B is also DCE, you must switch lines 2
and 3 on the cable connecting the LAMBDA to the modem. . Lines 1 and 7 should go
straight across.

NOTE: The LAMBDA’s Remote Login Server facility does not support modem control
lines of any kind. Therefore it will neither answer a call on a telephone line nor hang
up afterwards. If you have a modem that can automatically answer and hang up phone
calls, you can connect to a remote LAMBDA.

Some modems may be commanded to hang up with a sequence of characters. The
following variable allows you to attempt to use such a modem.

s-terminal:*hangup-call* "a string" Variable
Defines the sequence of characters that will command a modem to hang up when given.

Lambda Kermit User’s Guide 5 How to Start the KERMIT Program

3. How to Start the KERMIT Frogram

To enter the KERMIT program, type SYSTEM) K cn the LAMBDA. This will return you
to a previous KERMIT window, or create a new one if there is no previous one.

The KERMIT window consists of five window panes:

The Status Pane (upper left corner)
Displays the status of file transfers. It displays the number of packets of
data that have been sent or received, along with the current state of the
transfer process.

The Command Pane (upper right corner)
Displays a menu of mouse-sensitive KERMIT commands.

The HEATH Z29 Emulator Pane (middle of screen)
Used to communicate with the remote host: instead of going to the other
machine’s terminal and typing your input, you type it here. This window
is in reverse video from the rest of the windows. (If the other computer
can’t be set up to interact with the emulator pane, you can still transfer
files by typing commands on each machine’s terminal.)

The Interaction Pane (bottom of screen)
This is where KERMIT prompts you for information (like filenames and
pathnames), asks for confirmation before performing transfers, and states
the success or failure of a transfer.

Abort, Exit, Break, and Resume Window
This window, along the bottom of the KERMIT frame, allows you to leave
the KERMIT program. (In this version of KERMIT, it may have some bugs.)

To transfer files, you must have a version of KERMIT operating on the other machine
also. So, after entering KERMIT on the LAMBDA, you must log into the other machine.
To do this, click ([)[Connect] in the Command Menu. The local KERMIT will now
switch you to the 229 Terminal Emulator, from which you may communicate with the
other machine. See the next chapter.

NOTE: I your two machines cannot communicaie via the terminal emulator, you may
still transfer files by typing the appropriate commands to the two terminals. To do
this, set up KERMIT on the LAMBDA (but don't [L}[Connect]), and then go to the other
machine, login, and start that machine’s version of XKERMIT. Set both machines to the
same baud rate. You may now transfer files with or without server mode. Follow the
directions in Chapter 5 of this document.

Lambda Kermit User’s Guide 6 ~ Using the Z29 Terminal Emulator

4. Using the Z29 Terminal Emulator

The LMI version of KERMIT contains a special window through which you can converse
with the other machine. This is the Z29 terminal emulator, chosen because Z29s are a
common type of terminal. The commands you will use from the terminal emulator to
communicate with the remote machine are the commands, found in Section
5.2 of this manual. g

Both machines must be set at the same baud rate for the RS-232 port. To set the baud
on the LAMBDA, click {L)/Set Baud Rate]| in the Command Menu. A menu of baud
rates from 50 to 19,200 will pop up; select one. The default is 9600.

To use the emulator, click m on the Command Menu. You will now be
connected to the other machine and should use the appropriate commands to login to
it and set up its version of KERMIT.

The emulator recognizes most of the Z29 escape sequences and will do the appropriate
action whenever it receives one. For example, see the following list for the LAMBDA
keys which correspond to Z29 escape sequences:

For the Z29 CONTROL key, use the LAMBDA CTRLkey.
For the Z29 ESCAPE key, use the LAMBDA (ALT MODE).
'For ESCAPE-X sequences on the Z29, use META-X keystrokes on the LAMBDA.

For the sequence CONTROL-Z-X on the Z29, use CTRL-META-X keystrokes
on the LAMBDA.

When talking to an MIT EMACS-style editor (such as STEVE in VAX /NIL, and EMACS
under TOPS-20) you can use the META and CONTROL keys just as you would in ZMACS
on the LAMBDA.

Any ASCII characters you type will be sent to the other computer via the RS5-232
link, and any characters received via the RS-232 will be displayed in the Z29 terminal
emulator pane.

When you are finished with the emulator, click @ on the Command
Menu or type NETWORK)-C (for close). The terminal emulator will shut down, closing
the connection to the remote machine without logging you out from that machine,
and the actual I/O stream will not be affected in any way. Both machines will still be
running their version of KERMIT and you may transfer files. This is known as “escaping
back” to KERMIT on the LAMBDA.

Lambda Kermit User’s Guide 7 Overview of KERMIT Commands

5. Overview of KERMIT Commn:.ands

The LMI version of KERMIT supports two command interfaces: the mouse/menu inter-
face for system commands called. at the local KERMIT, and the (N\ETWORK)key commands
for use with the Terminal Emulator. The commands available to the mouse are those

in the Command Menu. The ({ETWORK) commands are called by giving (NETWORK) a
single keystroke argument, a character key, for example. ETWORK) supports some
commands not available in the Command Menu.

Two commands work from either the mouse or WETWORK): “Disconnect” and “Set baud
rate.” ’

Both sets of commands are described below.

5.1 The KERMIT Command Menu

The top right window, the command pane, contains the following commands for use
from the local KERMIT:

Connect Establishes a, virtual terminal connection with the remote host.

Disconnect :
Closes the conncction between the two machines that was made by the
connect command.

Send files

Sends one or more files to a remote host.

Receive files
Receives one or more file from a remote KERMIT.

Server/send
Sends orne or more files to a remote KERMIT in server mode.

Server /receive
Receives one or more files from a remote KERMIT in server mode.

Server/finish
Exits from server mode in a remote KERMIT, but does not log out.

Server/bye

Lambda Kermit User’s Guide 8 Overview of KERMIT Commands

Finishes with remote KERMIT in server mode and logs you out of the remote
machine.

Set Baud Rate
Pops up a menu for selecting the serial baud rate of your RS-232 line.

Restart Program- :
Starts KERMIT from scratch, resetting all parameters to their default or
initial value. A fresh serial stream will be allocated, resetting the associated
hardware. :

Review Parameters
Pops up a choose-variable-values menu to let you modify parameters such
as the default local directory, the serial port device and the filename con-
version mode.

Refresh windows
Refreshes all the windows in the display.

List Directory
Lists the files in the default local directory.

Help Accesses more detailed documentation on commands.

Remote Login Server
Enables the Remote Login Server to process remote logins and file transfers
via the serial port device (for example, from a remote machine, you can
login to a LAMBDA and perform file transfers).

Remote KERMIT Server
Same as Remote Login Server, but goes directly to KERMIT server mode
without needing to log in. (Do CTRL~@ABORT) TO QUIT.)

5.2 The NETWORK Commands

These commands are given as single-keystroke arguments to WETWORK) and are used
from the terminal emulator. :

C (for Close)
* Escapes back to KERMIT command level.

Lambda Kermit User’s Guide 9 Overview of KERMIT Commands

K (for Kill stream)

Sends current stream a :close message and disconnects.

CLEAR SCREEN

Clears the terminal emulator screen.

CTRL-(CLEAR SCREEN

Clears the interaction pane (the bottom window).
F Flushes any unprocessed input in the serial input buffer.

CTRL-B (for control baud)
Sets the baud rate.

E Evaluates a LISP expression.

P (for Push) v
Breaks to a LISP listener. Press to return to KERMIT.

B (for Break) ‘
Transmits a break.

] Transmits a null.

S or (STATUS
Shows serial stream status.

L Logs connection to a disk file (See paragraph below for more information).
CTRL-L Closes logging to a disk file.

- Q .Quits logging to a disk file temporarily.
R Resumes logging to a disk file.

?, (HELP), or H

Lambda Kermit User’s Guide o 10 Overview of KERMIT Commands

Displays a table of NETWORK)commands.

The four "log" commands, "L, CTRL-L, Q, and R," allow you to keep track of every-
thing displayed on the Z29 terminal emulator by putting it into a file. That is, after
logging into a disk file, everything typed on the Z29 terminal emulator, will be saved
into that file. A log is useful for monitoring your session and can also capture informa-
tion from another computer that doesn’t support the KERMIT protocol. For example,
if you can communicate with another machine through the terminal emulator, you can
ask it to “type” the contents of a file onscreen. As the contents are typed onscreen,
they are also saved into the log file.

Lambda Kermit User’s Guide 11 File Transfer

6. File Transfer

While there are many possible variations, KERMIT supports two main methods of file
transfer. One method assumes that both the local and remote KERMIT provide a
“server mode”, the other method assumes neither KERMIT has a server mode. The
server mode method is faster, easier, and more foolproof, but not all implementations
of KERMIT provide it. Both methods are described below. :

6.1 Sending Files Using Server Mode

NOTE: If your machines cannot communicate through the terminal emulator, you will
login and start KERMIT on each machine separately, and then start at step number 4.

1. Connect to the other computer by clicking m in the Command Menu.
2. Using the Z29 Terminal Emulator, login to the other computer.

-~ 3. Run the other computer’s KERMIT program. Typically, this will mean typing
Kermit to that computer’s top level operating system. The KERMIT program should
respond by printing a prompt, like KERMIT >. This means the other computer’s KERMIT
program is ready to accept input.

4. At the other computer’s KERMIT prompt, type SERVER ®ETURN). (It should print a
message instructing you to return to your host computer and disconnect.) -

5. Click (L)[Disconnect] on the LAMBDA Command Menu.

6. Click [L}[Server/send] on the LAMBDA Command Menu and then type the name
of the LAMBDA file being sent. (If the file is not in the current directory, you must
specify the pathname.) It will ask you to confirm that you want that file sent and give
you the name it will be saved as on the other machine.

7. The file will be sent. The Status Pane will keep track of the packets as they are sent.
The Interaction Pane will say something like File sent successfully: LAM3: ROBERT;
foo.lisp#2 when the operation is complete. '

8. Click (L){Server/finish] if you are finished sending and receiving files. This
will close the connection with the remote computer without logging you out from it.

To close the connection and logout from the remote computer, click m Server/bye

instead.

NOTE: If you close the connection, you must reopen it again to transfer more files.

6.2 Receiving Files Using Server Mode

Lambda Kermit User’s Guide 12 File Transfer

Before receiving files from another computer, you should review the parameters by
clicking m[Review parameters| on the Command Menu. The three most important
parameters are:

KERMIT-default-pathname
Specifies the LAMBDA directory into which the received file will be written.

*File-Closing-Disposition#
Specifies what the LAMBDA KERMIT program should do when an incom-
plete file transfer is aborted.

Filnamcnv (for “File Name Conversion”)
Sets up a file name conversion appropnate for the type of operating system
on the other machine.

Here is the procedure for receiving files. Steps 1 through 5 are exactly the same as
the procedure for sending files, described above. You need not repeat them if you are
already connected to the other KERMIT’s server (for example, if you have already sent
some files).

6. Click m[Server/receiveJ on the LAMBDA KERMIT Command Menu. The LAMBDA
will prompt you to type the name of the file that you want to receive as it is on the
other computer.

7. The file on the other computer will now be sent to the LAMBDA and stored into
the default directory on the LAMBDA. (You can change the default directory with
[Review parameters| on the Command Menu.)

8. Click ﬂIServer/finish] if you are finished sending and receiving files. This
will close the connection with the remote computer without logging you out from it.
To close the connection and logout from the remote computer, click m Server/bye
instead.

6.3 Sending Files Without Using Server Mode

Steps 1 through 3 are the same as for sending files using server mode.
4. At the other computer’s KERMIT prompt, type Receive RETURN).
5. Click m on the LAMBDA Command Menu.

6. Click m Send file| on the LAMBDA Command Menu. The LAMBDA KERMIT will
then prompt you to type the name of the LAMBDA file you want to send.

Lambda Kermit User’s Guide o 13 File Transfer

7. The file will be transferred. KERMIT will inform you when the transfer is complete.

8. Click m to connect back to the other computer. If you are finished
transferring files, quit the other KERMIT, logout from the other computer, and click
() Dizcomnect].

6.4 Receiving Files without Using Server Mode

Steps 1 through 3 are the same as for sending files using server mode.

4. At the other computer’s KERMIT prompt, type send filename ®ETURN).

5. Click m Disconnect] on the LAMBDA’s Command Menu.

6. Click [L)|Receive file] on the LAMBDA Command Menu. The LAMBDA KERMIT
program will wait for the file to be received from the other computer.

7. The file will be transferred. KERMIT will inform you when the transfer is complete.

8. Click m to connect back to the other computer. If you are finished
transferring files, quit the other KERMIT, logout from the other computer, and click

() Disconnect).
6.5 File Transfer Failure

File transfers can fail for various reasons. This version of KERMIT supports the transfer
of only ASCII files. If you try to transfer LISP machine binary files (e.g. QFASL's),
you will probably get checksum errors.

Files are sent in “packets” with single character checksums to provide accuracy. If a
packet’s checksum is inaccurate, the packet is resent. You may see warnings on your
screen if this happens. It does NOT mean that your file failed to be transferred. If the
transfer was correct, you will see this message on the interaction pane: “File transfered
successfully: filename

If a packet does not get through, KERMIT may send it over again, up to approximately
10 tries.

“Timing out” is provided for. If for some reason the remote KERMIT is not getting
data through to the LAMBDA KERMIT, it will know to quit waiting after a reasonable
time (usually about 2 to 15 seconds).

6.6 Aborting File Transfers

Lambda Kermit User’s Guide 14 File Transfer

If at any point you wish to abort a file transfer, type CTRL-Z instead of (ABORT). It
may not take effect until the next time KERMIT samples the keyboard: if KERMIT is
waiting for a packet (no more than 94 characters) of data, it won’t sample the keyboard
until the packet either finishes or times out. (This should take no more than about 20
seconds.) CTRL-Z is preferred over (ABORT), since it allows both the local and remote
KERMITs to exit gracefully. However, if this fails or a drastic abort is needed, type

CTRL- (XBORT) -

Lambda Kermit User’s Guide 15 "~ Remote Login Server

7. Remote Login Server

Sometimes you may want to transfer files to and from a LAMBDA while actually working
from another computer. The Remote Login Server allows you to log in to the LAMBDA
over the connection. Once the two machines are connected, you should start up the
other machine’s version of KERMIT.

While in Remote Login Server mode, the LAMBDA waits to receive a character from
the serial port. When it receives one, it responds by sending the prompt Username:
back across the serial port. When the LAMBDA receives a username followed by a
@®ETURN), it sends back the prompt Password. If the username and password sent
back are valid, (or the LAMBDA password database is empty), the LAMBDA enters a
command-interpreter-loop. This command interpreter is not a fully-functional loop; it
provides only limited access to a few LAMBDA facilities.

The following variable and function allow you to set up a LAMBDA password database
and then modify it. Once you have done this, you must use the correct password to
login remotely to the LAMBDA.

s-terminal:*ps-kermit-login-passwords®* nil Variable
An alist. This is the username password database.

It is settable as a site option (in the call to defsite in SYS:SITE;SITE) via the keyword
:KERMIT-LOGIN-ACCOUNTS. Here is an example:

(defsite :x
(:kermit-login-accounts (fred "password") (jim "failword") (jack
"noword")) '
.2
s-terminal:add-ps-terminal-account username password Function

Adds or modifies the information in the password database.

Once you have logged in successfully to the LAMBDA through the remote login server,
you must use the command interpreter’s commands, instead of regular LAMBDA com-
mand syntax.

7.2 Command Interpreter Commands

When you have logged into a LAMBDA remotely, with the remote login server, you
must use different commands from the regular LAMBDA commands. These are known
as the command interpreter commands.

The command interpreter’s prompt is Kermit-G>. Commands should always be fol-
lowed by a @ETURN). Some commands take arguments. Commands which take argu-

Lambda Kermit User’s Guide 16 ' Remote Login Server

ments will prompt for them if they are not given on the command line. Here are the
command interpreter commands:

cd
pwd
Dir
type
eval
help
herald
time
logout
server

Changes (default) directory.

Prints (default) working directory.

Prints directory listing,.

Prints a file on the screen.

Reads, evaluates, and prints a LISP {orm.

Prints a listing of commands. '

Calls the LISP function Print-Herald.

Prints the current time.

Goes back to mode of waiting for username/password.
Goes into KERMIT-server mode.

The most common way of transferring files is to cd to the directory with files you are
interested in, call dir to list them, and then go into server mode to transfer these files
to or from another LAMBDA or other computer.

Lambda Kermit User’s Guide 17 Making a Special Cable

Appendix A. Making a Special Cable

To make a cable for connecting the machines, use a shielded twisted pair for best
results. In the following example, we will refer to the shield wire as "S", and the
elements of the pair as "A" and "B". The cable in this example will work between a
LAMBDA and a VAX:

For the LAMBDA, use a male DB-25 connector on Port B. For the VAX end, (which is
"Data Terminal Equipment"), use a female DB-25 connector. ‘

LAMBDA PORT-B (DCE) VAX (DTE)
pin - connection connection - pin
2~ A e A- 2
I B- 3
A S A s- 7
) jumper jumper (
1 - -1
4 - - 4
) jumper
5 - - 6
6 - - 6
) jumper
8 - - 8
) jumper

CUCCA Kermit User Guide
Fifth Edition-July 1984

24-0100336-0002

Published by LMI] 1000 Massachusetts Avenue. Cambridge MA 02138 USA

This ma_nual w:?s.edited by Frank da Cruz and produced by the Columbia University Center for
Computing Activities, New York, New York 10027.

Permission is granted to any individual or institution to copy or use this document and the
programs described in it, exeept for explicitly commercial purnoses.

Copyright © 1981,1982,1983,1984 Trustees of Columbia University in the City of New York,

KERMIT User Guide

TABLE OF CONTENTS

Ordering Information
1. Introduction
2. How to Use KERMIT

2.1

2.2. Talking to Two Computers at Once

2.3
24.
25

2.6 Another Way —- The KERMIT Server

The KERMIT Program

Transferring a File

Basic KERMIT Commands
Real Exampies

25.1. PC to Host

25.2. Host to Host
2.5.3. Micro to Micro

3. When Things Go Wrong

3.1
3.2
33
34.
35.
3.6.
37
38
38

Communication Line Problems
The Transfer is Stuck

The Micro is Hung

The Remote Host Went Away
The Disk is Full

Message Interference

Host Errors

File is Garbage

Junk after End of File

4. KERMIT Commands

4.1
42
4.3
44
45
4.6
47.
4.8
49

Remote and Local Operation
Command interface
Notation

Summary of KERMIT Commands

The SEND Command
The RECEIVE Commana
GET

SERVER

BYE

4 10. FINISH

4.11. REMOTE

4.12. LOCAL

4.13. CONNECT

4.14. HELP

4.15. TAKE

4.16. EXIT, QUIT

4.17. The SET Command
4.18. DEFINE

Page i

"18
18
19
20
21
21

~
“~

23
24
25
26
27
28
28
28
28
28
29
30
30
30
30
36

Page ii

4.18.
4.20.
421,
4.22

SHOW
STATISTICS
LOG
TRANSMIT

5. KERMIT Implementations

6. DECSYSTEM-20 KERMIT
6.1. The DEC-20 File System
6.2. Program Operation
6.3. Remote and Local Operation
6.4. Conditioning Your Job for Kermit
6.5. KERMIT-20 Commands
6.6. Examples
6.7. Installation

7. VAX/VMS KERMIT

8. IBM VM/CMS KERMIT

8. UNIX KERMIT

10. MS-DOS KERMIT

10.1.

10.2.
10.3.

104
10.5.

10.6.
10.7.
10.8.
10.9.

The MS-DOS File System

10.1.1. File Specifications

10.1.2. File Formats

Program Operation

Kermit—-MS Commands

10.3.1. Commands for File Transfer

10.3.2. Commands for Connecting and Disconnecting

10.3.3. Commands for File Management

10.3.4. The SERVER Command

10.3.6. The SET Command

10.3.8. The SHOW Command

10.3.7. Command Macros

Termina! Emulation

Instaliation of Kermit-MS

10.5.1. Try Again To Find A Kermit Disk

10.5.2. Bootstrapping From the Communication Line
10.5.2.1. Use An Existing File Capture Facility
10.56.2.2. Type In Your Own Bootstrap

Compatibility with Oider Versions of MS-DOS Kermit

What's Missing

Program Organization

Adding Support For New Systems

10.8.1. Generic MS-DOS Kermit

10.8.2. Adding System-Dependent Code

10.10. Heath/Zenith~ 18 Control Codes

KERMIT User Guide

37
37
37
37
39

41

42
45
46
47
47
60
62
63
71
75
79
80
80
81
82
84
.85
87
88
80
80
96
=13
€7
9s
100
100
100
101
105
105
106
107
107
107
113

KERMIT User Guide

11. CP/M=-80 KERMIT
11.1. Generic KERMIT-80
11.2. Installation
11.2.1. Downloading Kermit—-80
11.2.2. Building KERMIT.HEX
11.2.3. Generic Kermit-80
12. CP/M-86 KERMIT
12.1. Kermit—-86 Commands
12.2. Instaliation:
12.3. DEC Rainbow 100 Support
12.4. NEC Advanced Personal Computer Support
13. APPLE-DOS KERMIT
13.1. The DOS 3.3 File System
13.2. Program Operation
13.3. Remote and Local Operation
13.4. KERMIT-65 Commands
13.5. Customizing. Building, and Installing KERMIT-65
Appendix |. The ASCIH Character Set
Index

Page iii

"7
122
123
124

125

126
129
130
133
133
134
137
138
139
141
141
146
153
157

Preface to the 5th Edition, March 1984 Page 1

PREFACE TO THE 5TH EDITION, MARCH 1984

Since the 4th Edition of the KERMIT Users Guide was produced in July 1983, the
KERMITs have been flying thicker and faster than anyone could keep up with. Oid versions
have improved, and implementations for many new systems have appeared. It is no longer
practical to even attempt to cover all the implementations in a single manual. Therefore,
this manual will try to describe a sort of “ideal” KERMIT program, one which has most of
the features specified in the KERM/T Protoco/l Manual. Most real KERMIT programs will
fall short of this description in some ways. After the main, system-independent part of
the manual there are sections for several particular KERMIT programs, emphasizing their
differences from the ideal, at the time of this writing. The system—dependent portions
of this manual will rapidly become dated; current information about any particular KERMIT
program can be found in the accompanying. on-line help or documentation files, or built—in
internal help text

5th Edition, Revision 1, July 1984

The major sections of the manual are relatively unchanged. The chapters describing
DECSYSTEM-20, MS-DOS. CP/M-86, CP/M-80. and Apple DOS Kermits have been updated
to reflect new releases since last March. Meanwhile, a 2-part articie describing the Kermit
protocol was published in the June and July 1984 issues of BYTE Magazine, which is
recommended reading for anyone who wants to know the reasons why a protocol like
Kermit is necessary. :

History and Acknowledgements

The KERMIT file transfer protocol was designed at the Columbia University Center for
Computing Activities (CUCCA) in 1881~82 mainly by Bill Catchings and Frank da Cruz. Bill
wrote the first two programs, one for the DECSYSTEM-20 and one for a CP/V-80
microcomputer. :

The nitiai objective was tc aliow users of our DEC-2C and IBM timesharing sysiems to
archive their files on microcomputer floppy disks. The design owes much to the ANSI and
ISO models, and ideas were borrowed from similar projects at Stanford University and the
University of Utah. The protocol was designec to accommodate the “sengitive” communica-
tions tront end of the full-dupiex DEC-2C system as weli as the peculiarities of half-
duplex IBM mainframe communications. The protocol was soon implemented successfully
on our IBM 4341 systems under VM/CMS by Daphne Tzoar of CUCCA.

Meanwhile it was becoming apparent that KERMIT was useful for more than just file
archiving; IBM PCs were beginning to appear in the offices and departments, and there
arose a general need for file transfer among all our systems. Daphne soon had prepared
an 1BM PC implementation.

After our initial success with KERMIT, we presented it at conferences of user groups like
DECUS and SHARE, and we began to get requests for it from other sites. Since we had
written down a description of the protocol, some sites wrote their own implementations
for new computers, or adapted one of our implementations to run on additional systems,
and sent back these new versions to us so that we could share them with others. In this
way, KERMIT has grown to support about 50 different systems; it has been sent on
magnetic tape from Columbia to hundreds of sites in dozens of countries, and has reached
hundreds or thousands more through various user groups and networks. ‘

To date, contributions to the KERMIT effort have been made by individuals at the following &

Page 2 KERMIT User Guide

institutions: Stevens Institute of Technology, Cornell University, the University of Chicago,
Rutgers University, Cerritos College, the University of Toronto, the University of Tennessee
at Knoxville, the University of California at Berkeley, the University of Toledo, the University
of Texas at Austin, the University of Michigan, Oakland University, the University of
Wisconsin, University College Dublin, the University of Washington, ABC-Klubben Stockholm,
the Helsinki University of Technology. the US National Institutes of Health, Digital Equipment
Corporation, The SOURCE Telecomputing, SPSS Inc, Hewlett-Packard Laboratories, Litton
Data Systems, RCA Laboratories, Atari Computer, and others. The list grows constantly.

The Kermit protocol was named after Kermit the Frog, start of the television series 7HE
MUPPET SHOW, and is used by permission of Henson Associates, Inc.

Customizing This Manual

Although this manual was produced at Coiumbia University, all attempts have been made to
keep it free of site-specific information. However, due to the large number of KERMIT
implementations, descriptions of each one would make the manual unnecessarily thick.
Therefore, the manual is sent from Columbia with specific documentation about a selection
of systems. Some of these descriptions may not be of interest at your site, while others
that are may be lacking.

Each site, upon receiving a KERMIT tape, may decide which versions of KERMIT are
important to it and include the appropriate documentation in this manual This is most
conveniently done if your site has the Scribe text formatting system (from UNILOGIC Ltd in
Pittsburgh PA, USA), with which this manual was produced Scribe runs on a wide variety
of systems. There are also Scribe subsets, such as Perfect Writer and Final Word, that
run on various microcomputers. :

The system-—specific parts of the KERMIT User Guide are included with "€INCLUDE" state-
ments at the end of the Scribe source file for this manual, whose filename is USER.MSS.
You may add or delete ®INCLUDE statements to suit your needs, and run the result through
the text formatter to produce a customized manual.

Not all system-specific documentation is provided in .Mss (Scribe input} format, since some
KERMIT contributors do not have Scribe at their sites. In that case, you will either have to
add Scribe formatting commands. or else enclose the whole subfile in €VERBATIM brackets

If you do not have SCRIBE, you may still use an editor to delete or add sections to the
finished documentation file, though the results will not be as satisfactory —— the table of
contents, index, and page numbers will not be automatically adjusted.

If you are running a version of KERMIT for which adequate documentation has not been
provided (after all, this is a distributed. volunteer effort!), please feel free to write some,
preferably in Scribe input format, and send it back to Columbia so that others may benefit
from it Likewise if you produce a new implementation of KERMIT.

Ordering Information |) Page 3

ORDERING INFORMATION

The KERMIT software is free and available to all. Columbia University, however, cannot
afford to distribute free software on the scale required for KERMIT. Therefore, to defray
our costs for media, printing, postage, materials, labor, and computing resources, we must
request a moderate distribution fee from sites that request KERMIT directly from Columbia
The schedule is as follows:

Complete KERMIT Distribution . $100.00
(Tape, Users Guide, and Protocol Manual)

Printed Documents _ _ $5.00 each
{Users Guide, Protocol Manual, or Any Source Listing)

Other sites are free to redistribute KERMIT on their own terms, and are encouraged to do
so, with the following stipulations: KERMIT should not be soid for profit; credit should be
given where it is due; and new material should be sent back to Columbia University at the
address below so that we can maintain a definitive and comprehensive set of KERMIT
implementations for further distribution

To order KERMIT from Columbia University, send a letter requesting either:

(a) The manuals or source listings you desire (specify each one), or

(b) A 9-track magnetic tape in one of the foliowing formats:
System Tape Format Densities
TOPS-10 BACKUP/Interchange, Unlabeled ' 1600
TOPS-20 DUMPER, Unlabeled 1600
IBM VM/CMS EBCDIC, CMS Format _ 1600. 6250

or EBCDIC, OS Standarc Label 1600, 6250 -

UNIX TAR 1600
Other ASCIll, ANSI Label, Format "D" 1600

{Specify svstem, format, and density) = The "Kermit collection” has grown so large
that we can no longer fit it on a 2400 reel oi magnetic tape at 800bp. One
copy of each manual will be included with the tape. We will supply the tape,
packaging, and postage.

We can only make tapes in the formats listed above. We cannot produce floppy disks;
bootstrapping procedures are provided to allow the microcomputer versions to be
downloaded from the mainframe for which the tape is produced The tape inciudes all
source programs, documentation, and, when practical, binaries or hex. Unfortunately, our
limited resources to not allow us to provide automatic updates to KERMIT recipients when
new implementations, documentation, or bug fixes appear.

Send your letter to:

KERMIT Distribution

Columbia University Center for Computing Activities
7th Floor, Watson Laboratory

612 West 115th Street

New York, NY. 10025

Page 4 : KERMIT User Guide

Please list the machines and operating systems you expect to run KERMIT on, specify the
tape format or the listings desired, and mention whether there are additional systems for
which you require KERMIT or if you might be interested in attempting your own implemen=
tation for a new system. Make checks payable to Columbia University Center for
Computing Activities.

KERMIT is available to users of the BITNET network via a server at host CUVMA. BITNET
users may type "SMSG RSCS MSG CUVMA KERMSRV HELP" for further information.
KERMIT is also available to users of ARPANET, via anonymous FTP from host
COLUMBIA-20, in the area PS:<KERMIT>. And KERMIT is distributed regularly by various
computer user groups such as DECUS and SHARE.

Since new KERMIT programs are added —- and old ones improved —= so frequently, sites
that use KERMIT heavily are encouraged to contact Columbia two or three times a year for
news.

No warranty of the software nor of the accuracy of the documentation surrounding it is
expressed or implied, and neither the authors nor Columbia University acknowledge any
liability resulting from program or documentation errors.

Introduction Page B

1. INTRODUCTION

Everyone wants to get computers talking to one another. There are many ways to do this,
and most of them are very expensive. But there is one way that is cheap and relatively
_easy. connect the two computers through their terminal (TTY) ports, tricking one computer
(or both) into believing that the other is a terminal. This can be expected to work because -
the standard for connecting computers to terminals is almost universally followed, in both
hardware (plug and signal EIA RS-232) and software (character code: ASCIl). Once two
computers are connected in this way, cooperating programs can be run on each to achieve
the desired communication by means of a communication protoco/.

Why is a protocol necessary at all? Three major problems occur when you try to connect
two computers via TTY line:

1. Noise —- It is rarely safe to assume that there will be no electrical inter—
ference on a line; any long or switched data communication line will have
occasional interference, or noise, which typically results in garbled or extra
characters. . Noise corrupts data, perhaps in subtle ways that might not be
noticed until it's too late.

2. Synchronization —— Data must not come in faster than the receiving machine
can handie it Although line speeds at the two ends of the connection may
match, the receiving machine might not be able to process a steady stream of
input at that speed Its central processor may be too siow or too heavily
loaded, or its buffers too full or too small. The typical symptom of a
synchronization problem is lost data; most operating systems will simply
discard incoming data they are not prepared to receive.

3. Line Outages -- A line may stop working for short periods because of a
faulty connector, loss of power, or similar reason. On dialup or switched
connections. such intermittent failures will cause carrier to drop and the
connection tc be closed. but for any connection in which the carrier signa. is
not used, the symptom will be lost data

To prevent corruption of data and to synchronize communication, cooperating computers
can send control information to one another at the same time that they are transferring
data. This intermingling of control information with data, and the resulting actions con-
stitute a "protocol”.

KERMIT is such a protocol It is specifically designed for transfer of sequential files over
ordinary serial telecommunication lines. KERMIT is not necessarily better than many other .
terminal—oriented file transfer protocols but it is free, it is well documented, and it has
been implemented compatibly. on a variety of microcomputers and mainframes.

KERMIT transfers data by encapsulating it in "packets” of control information. This
information includes a synchronization marker, a packet number to allow detection of lost
packets, a length indicator, and a "checksum” to allow verification of the data Lost or
corrupt packets are detected, and retransmission is requested. Duplicated packets are
discarded. In addition, various special control packets allow cooperating KERMITs to
connect and disconnect from each other and to exchange various kinds of information
Very few assumptions are made about the capabilities of either computer, so the KERMIT
protocol can work between many different kinds of systems. :

Page 6 KERMIT User Guide

Organization of This Manual

Section 2, How to Use KERMI/T, telis all you need to know to transfer text files in most
cases, and shows some specific examples. :

If you follow the examples in Section 2 but you can't make a terminal connection or you
“can't transfer files successfully, consult Section 3, When Things Go Wrong.

If you expect to be a heavy user of KERMIT, you should read Section 4, KERMIT
Commands, which describes all the features of KERMIT in detail. You may find that
familiarity with the material in this section will help you get past difficulties that can crop
up when you are making new kinds of connections or transferring unusual kinds of files.
You will also find descriptions of some advanced file management features that have been
omitted from the earlier sections.

Section 5, KERMIT [mplementations, briefly lists’ the systems for which KERMIT is
available as of this writing. The subsequent chapters describe selected particular im-
plementations. You should read the appropriate section for each system with which you
are using KERMIT; each section describes the file naming conventions and other system
features that are important to KERMIT users, and lists the KERMIT commands for that
system mainly in terms of their differences from the "ideal" KERMIT described in section 4.

How to Use KERMIT Page 7

2. HOW TO USE KERMIT

KERMIT is a protocol for reliable file transfer between computers over the ordinary serial
telecommunication lines that are used to connect terminals to computers. The mechanics of
using KERMIT to get a file transferred can be confusing until you get the hang of it - A
little background material might make the process a bit easier to understand. :

KERMIT is probably the cheapest way to put two computers into communication. The
required hardware is usually already available, the software is free, and all components run
as ordinary user programs, with no system modifications. This is in sharp contrast to a
communication network, where there are dedicated high-speed communications channels
and drivers, expensive software, and so forth. The network provides more services than
KERMIT, usually at higher speed, and with greater convenience, because the network is
usually part of the system. When a network is not available, KERMIT can fill in. But since
KERMIT is not integrated with any particular system, but rather grafted on top of many
different systems, it requires some extra work from those who use it

2.1. The KERMIT Program

KERMIT embodies a set of rules for transferring files reliably between computers. in
general, one computer is a large system (a host, for lnstance a timesharing system with
many termihals), and the other is a personal computer (PC)}. The host believes that the PC
is an ordinary terminal. In order for the KERMIT protoco! to occur, a KERMIT program
must be running on each end of the communication line == one on the host, one on the
PC.

The two Kermit programs exchange messages in a special language all their own, the
Kermit protoco/. The dialog runs something like, "Hi! I'm going to be sending files to you.
When you send messages to me, please don't make them more than 80 characters long,
and if you don't hear anything from me for 15 seconds. wake me up, OK?" “0K.” "Now,
here comes a file called Foo.TxT, OK?" "OK.” "Here's the first piece.” “Got it.” "Good,
here's the second piece.” "That second piece was junk.” "Well, then here it is again..” Et
cetera You don't see any of this. Its all packed into a concise code which the two
Kermits can undersiand; they do ali the worrying about transmission, error checking,
character set translation, and sc forth. Each message is called a packe:, and each packet is
in & special format that all Kermits can understand

2.2. Talking to Two Computers at Once

Your task is just to get the two Kermits started. The confusion arises because you have
to use a single keyboard and screen to talkk to two different computers, two different
programs. Let's talk about a common case: you are sitting at a personal computer (PC%),
which has a serial communication port. The serial port is connected to a host computer
using, say, a dialup modem®.

1
Host-to~host and PC-10-PC connections are also possible.

2

The terms PC, micro, microcomputer, and workstation will all be used loosely in this document to denote a
single—user system.

The actual means of connection isn't important in this case —- it also could be a direct line to the host,
some kind of switched line, etc. :

a*

Page 8 : KERMIT User Guide

-Normally, when you use your PC, you are "talking” directly to it; your commands are
interpreted directly by the PC's operating system (CP/M, MS-DOS, UNIX, whatever), or by
some program that runs on the PC (an editor, a text formatter, space invaders.) The
version of Kermit on your PC is a program like any other, but it has a special ability to
either interpret your commands directly, like other programs, or to pass everything you
type through to the host When you tell Kermit to CONNECT, it sends every character you
type out the serial port, and it will put every character that comes in the serial port onto
the screen. This is called virtual terminal service —- one computer acts "virtually” as
though it were a terminal on another. You are now "talking” to the host, and the PC is
ignoring you. ’

Kermit, like most programs, has a prompt. The prompt is a symbol it types on the left
margin to indicate that it is ready for you to type a command Kermit's prompt is normally
"kermit-xx>". The xx identifies the implementation of Kermit; the Kermit that runs on the
DEC-20 is called "Kermit-20" and its prompt is "Kermit-20>"; the Kermit that runs on Z80
and 8080-based microcomputers is called "Kermit-80" and its prompt is "Kermit-80>"; the
Kermit on the IBM PC is "Kermit-86"", and so forth. If you become confused about who
you are talking to, the prompt should provide a clue. In addition, most Kermits print an
informative message like :

[Connecting to remote host, type CTRL-]C to return]
when you CONNECT, and type another message like
[Connection closed, back at PC]

when you' return.

Having “connected” to the host, there must be a way for you to get back to the PC. This
is accomplished by an escape sequence. As Kermit passes your characters through to the
host, it checks each one to see if it's a special predefined escape character. When the PC
sees this character, it stops ignoring you —— you are once again "talking” to the PC, not the
host. The escape character is normally chosen to be one that you will not need to type
while talking to the host, and one that is hard to type by accident —-— its usually a contro/
character., such as Controi-]. which is accomplished by holding down the key marked CTRL
or CONTROL and typing the indicated character (in this case, a right bracket "1"). The CTRL
key works just like 2 SHIFT key. Control characters are written either as CTRL-A or ~a,
where A is the character to be typed while holding down CTRL.

2.3. Transferring a File

To transfer a file, you must first get the attention of the PC's operating system. This is
normally done by starting the PC, possibly inserting your system floppy disk first. Once
youre at command level on your PC. you run Kermit. Then you tell Kermit to CONNECT
you to the host. Now youre talking to the host —- at this point you must log in, and then
run Kermit on the host.

Now you have a Kermit on each end of the wire. The next step is to tell eac/ Kermit
what to do. Suppose you want to transfer a file from the host to the PC; you would first
tell the host Kermit to SEND the file, then "escape” back to the PC Kermit and tell it to
receive the file. The transfer begins —— you can sit back and watch, or go make yourself
a sandwich. The PC Kermit will continuously show packet and retry counts on your screen,
and will notify you when the transfer is complete.

4 .
Although the processor in the IBM PC is an 8088, it is programmed as though it were an 8086.

How to Use KERMIT Page 9

The desired file is now on your PC's disk. The Kermit protocol has ensured that the file
arrived correctly and completely. Now you must clean up after yourself: CONNECT back to
the host, exit from Kermit on the host, log out from the host, "escape” back to PC Kermit
and exit from it. Now you can do whatever you had planned for your file —— edit it, print
it on your PC printer, etc. ‘

" The KERMIT protocol, and most Kermit programs, allow you to send a file reliably from the
host to the PC, from the PC to the host, from host to host, or PC to PC, usually without
any special regard for the nature of the particular machines involved. Most implementations
also allow files to be sent in groups, with a single command, such as "Send all my Fortran
files!” The scenario for each of these is always the same as above —- only the details of
how to establish the actual connection differ.

KERMIT works best with "printable” files —— files composed only of letters, digits, punctua-
tion marks, carriage returns, tabs, and so forth —— since these can be represented on
almost any kind of computer. KERMIT is also able to transfer "binary” files —— files such
as executable programs -- composed of arbitrary bit patterns, but binary files normally are
meaningful only to the kind of computer on which they are generated Nevertheless,
KERMIT can usually move such files from system A to system B (where they are not much
use) and back to system A in their original condition, although in some cases some special
care must be taken to accomplish this.

Now that we have a basic understanding of what KERMIT does and how it works, let's look
at some more concrete examples. First you need to -know what the basic Kermit
commands are.

2.4. Basic KERMIT Commands

These are generic descriptions of the most basic Kermit commands. Detailed descriptions
will come later. In these descriptions, /oca/ refers to .the system that you are using
directly, remote. refers to the system to which you are CONNECTed via Kermit. Commands
may take one or more operands on the same line, and are terminated bv a carriage return.

SEND f/lespec . Send the file or file group specified by fi/lespec from this Kermit to
the other. The name of each file is passed to the other Kermit in a
special control packet, so it can be stored there with the same name
A file group is usually specified by including "wildcard” characters like
"x" in the file specification. Exampies:

send foo.txt
send *.for

Some impiementations of Kermit may not support transfer of file
groups; these versions would require a separate SEND command for
each file to be transferred.

REdEIVE Receive a file or file group from the other Kermit If an incoming file
‘ name is not legal, then attempt to transform it to & similar iegal name,
e.g. by deleting illegal or excessive characters. The name thus formed
cannot be guaranteed to be unique, in which case previously existing
files could be overwritten. Some versions of Kermit attempt to
prevent this by warning you of filename collisions and taking, or
allowing for, evasive action.

CONNECT Make a "virtual terminal” connection to the remote system. On a PC
or micro, this usually means to send all keyboard input out the serial
port, and display all input from the serial port on the screen. To

Page 10 KERMIT User Guide

"escape’ from a virtual terminal connection, type Kermit's escape
character (e.g. CTRL-], control-rightbracket), followed by the letter "C”
for "Close Connection”.

SET . Establish various nonstandard settings, such as CONNECT escape
' character, file characteristics, communication line number, parity, or
fiow control.
SHOW Display the values of SET options.
HELP Type a summary of KERMIT commands and what they do.
EXIT Exit from KERMIT back to the host operating system.
? Typed anywhere within a KERMIT command: List the commands,

options, or operands that are possible at this point. This command
may or may hot require a carriage return, depending on the host
operating system.

2.5. Real Examples

Kermit can be used in several ways: from a PC that is connected to a lafger host
computer; from a host computer which is connected to another host; from one PC to
another. :

2.5.1. PC to Host

in this example, the user is sitting at an IBM Personal Computer (PC), which is connected
through its serial port to a DECSYSTEM-20 host computer. The IBM PC is./ocal/, the
DEC-20 is remote. This example will also apply almost literally to any other microcom-
puter impiementation of Kermit.

You have started up your PC and have the Kermit program on your disk. Begin by running
Kermit on the PC. Use Kermits CONNECT command to become & terminai to the DEC-20.
in fact, the PC emulates the popular Heath—-18 (or VT52) terminal, so it is desirable to tell
the DEC-20 that your terminal is one of these. Login on the DEC-20 and run Kermit
there. Here is an example of this procedure with commands you type underiined:

A>kermit ! Run Kermit on the PC.>

Kermit V1.20

Kermit-86> | This is the Kermit prompt for the PC.
Kermi t-86>connect ! Connect to the DEC-20.

[Connecting to host, type control-] to return to PC.
Baud rate is 8600, connecting over COM1.]

! You are now connected to the DEC-20.
Cu208 ! The system prints its herald.
eterminal heath-18 ! Set your terminal type (optional).
elogin my-id password ! Login using normal login method.

At this point, the DEC-20 prints various messages.)

ekermit ! Run Kermit on the DEC-20.
Kermit-20> ! This is Kermit-20‘s prompt.

5
Everthing from a "!" mark 1o the end of line is commentary, not system typecut or part of a2 command.

How to Use KERMIT Page 11

You are now ready to transfer files between the two machines.

The following example illustrates how to send files from the DEC-20 to the PC. Note the
use of the "*' wildcard character to denote a file group.
Kermit-20>send *.for | Send all my FORTRAN files.
~le ! Now return back to the PC by
! typing the escape sequence, in this case
! ~JC (Control-] followed by *C")
[Back at PC.]
Kermit-86>receive ! Tell the PC files are coming.

If you take more than about 5 seconds to get back to Kermit-86 and issue the RECEIVE
command, the first packets from Kermit-20 may arrive prematurely and appear on your
screen, but no harm will be done because the packet will be retransmitted by the DEC-20
until the PC acknowledges it.

Once the connection is established, the PC will show you what is happening —— it first
clears the screen and waits for incoming packets; as packets arrive, the current file name
and packet number will be continuously displayed on the screen. ~ When the PC's
"Kermit-86>" prompt returns to your screen, the transfer is done. During file transfer, the
microcomputer screen looks something like this:

IBM PC Kermit-86 V1.20

Number of Packets: 2984 Receiving. ..
Number of Retries: 2
File Name: FOO.TXT

The packet and retry counts are continuously updated, anc the word in the'upper right tells
the status of the transfer —— receiving, sending, complete, interrupted. or failed.

When the transfer is complete Imost versions of KERMIT sound a beep to wake you upl,
you must CONNECT back to the DEC-20 host, EXIT from Kermit there, logout, anc "escape
back” to the PC as you did previously.

Kermit-86>connect ! Get back to the DEC-20.
[Connecting tc hesti. Type CTRL-]C to return to PC.
Kermit-20> ! Here we are.

Kermi t-20>exit ! Get out of Kermit-20.
@) ogout : ! Logout from the DEC-20.

Logged out Job 55, User MY-ID, Account MY-ACCOUNT, TTY 146,
at 24-Jan-84 15:18:56, Used 0:00:17 in 0:21:585

“lec ! Now "escape" back to the PC,
[Back at PC.}]
Kermi t-86>exit ! and exit from the PC’s Kermit.

The files you transferred should now be on your PC disk.

To send files from the PC to the DEC-20, foliow a similar procedure. First follow the
instructions in the previous section to log in to the DEC-20 through the PC. Then in
response to the host Kermit's "Kermit-20>" prompt you type RECEIVE rather than SEND.
Now escape back to the PC and use the SEND command to send the local PC files to
DEC-20 host The PC will show you the progress of the transmission on its screen.

When the 'Kermit-86>" prompt indicates that the transmission is complete you shouid
follow the procedure shown above to logout from the DEC-20 host, except that you may

Page 12 KERMIT User Guide

first wish to confirm that the files have been stored correctly in your directory on the
DEC-20.

2.5.2. Host to Host

This section describes use of Kermit between two hosts. A "host' is considered to be a
large or multi-user system, whose distinguishing characteristic is that it has multiple
terminals. Use of Kermit for host-to-host file transfers differs from the PC~to—host case
in that the line your terminal is connected to is not the same as the line over which the
data is being transferred, and that some special commands may have to be issued to allow
one Kermit to conform to unusual requirements of the other host.

_in this example, you are already logged in to a DEC-20, and you use an autodialer to
connect to an IBM 370-series system running VM/CMS through DEC-20 TTY port 12. The
autodialer, in this example, is invoked from program called DIAL (idealized here, for
simplicity), to which you merely supply the phone number.

edial 765-4321/baud: 1200

765-4321, baud 1200

[confirm)

Dialing your number, please hold...
Your party waiting is on TTY12:

e

Other methods exist for connecting two hosts with a serial line. Dedicated hookups can
be made simply by running an EIA cable between TTY ports on the two systems.” For
connecting to remote systems when no autodialer is available, a manual dialup connection is
also possible, but tricky.” If you have a microcomputer that supports KERMIT, you may find
it easier to first transfer from host A to the micro, then from the micro to host B.

The following procedure would be the same in any case, once a connection is made.

e

ekermit ' ! Run Kermit on the DEC-20.)
Kermit-20>set ibm ! Turn on handshaking, parity. local echo.
Kermit-20>set line (to tty) 12 ! Indicate the line we’ll use.
Kermit-20>connect ! And connect to it.

[KERMIT-20: Connmecting over TTY12:, type <CTRL-Y>C to return.]
VM/370 ONLINE ! The IBM system prints its herald.

.legin myuserid mypassword ! Login to IBM system.

LOGON AT 20:49:21 EST THURSDAY 01/20/84
CUVMB SP/CMS PUT 8210 01/18/84

.kermit

KERMIT-CMS>.send profile exec ! Send a file.

*Ye . I KERMIT-20's escape sequence typed here.
[KERMIT-20: Connection Closed. Back at DEC-20.]

Kermit-20>receive ! Tell Kermit-20 to RECEIVE.

Such a connection, by the way, usually requires the receive and transmit leads (pins 2 and 3) be swapped
in one of the RS-232 connectors; this is called a "null modem" cable.

Here's one way: log in on port x on your system, and assign another port, y. to which you have physical
access. Unplug the terminal from port y, and connect the terminal to a dialup modem. Dial up the remote
computer and log in on it. Now, using 2 null modem cable, connect the modem directly to port y. Go back to
your terminal on port x, run Kermit from it, and CONNECT to port y.

How to Use KERMIT v Page 13

The transfer takes place now; Kermit-20 will print the names of incoming files, followed
by dots or percents to indicate the packet traffic (a dot for every © packets successfully
transferred, a percent for every timeout or retransmission). It is complete when when you
see "[0K])", a beep is sounded, and the Kermit-20 prompt next appears. At that point we
connect back to the remote IBM system, exit from the remote Kermit and log out.

PROFILE.EXEC.1 ..%%.[OK]
Kermit-20>connect ! Get back to IBM and clean up.
[KERMIT-20: Connecting over TTY12:, type <CTRL-Y>C to return.]

KERMIT-CMS> .
KERMIT-CMS>.exit
R;

SP/CMS
. Togout -

CONNECT= 00:03:01 VIRTCPU= 000:00.12 TOTCPU= 000:00.60
LOGOFF AT 20:52:24 EST THURSDAY 01/20/84

“Ye ! Type Kermit-20‘s escape sequence
[KERMIT-20: Connection Closed. Back at DEC-20.]

Kermit-20>exit I A1l done with Kermit.

That's the whole procedure. The file is in your DEC-20 directory, completely readabie, as
PROFILE.EXEC —- note that KERMIT-CMS transiated from the IBM EBCDIC character encoding
into standard ASCIl, and converted the space between the file name and file type to a dot.

To send a file from the local host to the remote host, we would merely have reversed the -
SEND and RECEIVE commands in the exampie above.

2.5.3. Micro to Micro

Kermit also works between personal computers (microcomputers, workstations) The dif-
ference here is that commands -are typed on two keyboards, rather than a single one. This
is because a personal computer normally only accepts commands from its own keyboard.
If one PC Kermit CONNECTs to another, there will normally be no program on the other
side to listen.

Making the physical connection petween twec micros is tricky. If the two units are ir close
proximity-, you can connect their serial ports with a null modem cable. However, different
micros have different requirements —— some may want a male connector on their serial
port. others a female; many require that certain of the RS-232 signals be held high or

lowg. in any case, you must also make sure the port speeds are the same at both ends.

Connections at longer distances can be made via dialup, providing the required modems are
available (one side needs autoanswer capability), or using any kind of dedicated or switched
circuit that may be available —— PBX, port contention unit, aimost anything you can plug an
EIA connector into.

Why would you want to run Kermit between two PCs that are next to each other? One good reason is
that if they are different models, their floppy disks are probably incompatibie.

By wiring certain of the pins in the connector together; for instance, some micros want DTR (Data Terminal
Ready, pin 20) to be held high, and this might be accomptished by connecting it to CTS (Clear To Send, pin 5)
See EiA Standard RS-232-C, and the appropriate manuals for your micro.

Page 14 KERMIT User Guide

in this example, a DEC VT180 "Robin” CP/M microcomputer is connected to a Intertec
"SuperBrain” CP/M micro, using a female—to—male null modem cable. Getting the cable right
is the hard part. The connection can be tested by running Kermit and issuing the CONNECT
command on both ends: typein from each micro should appear on the screen of the other.

Suppose you want to send a file Foo.HEX from the Robin to the SuperBrain. Proceed as
follows:

1. Run Kermit on the SuperBrain, and give the RECEIVE command:

A>kermit
Intertec SuperBrain Kermit-80 - V3.7
Kermit-80>receive

2. Run Kermit on the Robin, and give the SEND command for FOO.HEX.

A>kermit
DEC VT18X Kermit-80 - V3.7
Kermit-80>send f00.hex

Watch the packets fly. When you get the next Kermit-80> prompt, the
transfer is done, and you can EXIT from both Kermits.

The key point is to start the receiving end first —— most microcomputer Kermits do not
inciude a timeout facility, and if the receiver is not ready to receive when the sender first
sends, there will be a protocol deadlock. '

2.6. Another Way —- The KERMIT Server

So far, we have been describing the bare-bones version of the KERMIT protocol An
optional extension to the protocol includes the concept of a Kermit server. A KERMIT
server is a Kermit program that does not interact directly with the user, but only with
another Kermit program. You do not type commands to a Kermit server, you merely start
it at one end of the connection, and then type all further commands at the other end

Not ali implementations of Kermit can be servers, and not all know how to talk to servers
-- but most of the major ones can and do. The server is run on the remote computer,
which would normally be a large host, such as the DEC-20. You must still connect to the
remote host to log in and start the server, but vou no ionger have to tell one side to
SEND and tne other 1o RECEIVE, nor must you connect back to the remote side to ciean
up and log out when youre done. Using the server, you can do as many send and receive
operations as you like without ever having to connect back to the remote host Some
servers also provide additional services, such as directory listings, file deletion, or disk
usage inquiries.

A Kermit server is just a Kermit program running in a special mode. It acts much like
ordinary Kermit does after you give it a RECEIVE command --— it waits for a message
from the other Kermit, but in this case the message is a command telling what to do,
normally to send or to receive a file or group of files. After escaping back to the local
system, you can give as many SEND and GET commands as you like, and when youre
finished transferring files, you can give the BYE command, which sends a message to the
remote Kermit server to log itself out You don't have to connect back to the remote host
and clean up. However, if you want to connect back to the host, you can use the
FINISH command instead of BYE, to shut down the Kermit server on the remote host
without logging it off, allowing you to CONNECT back to your job there.

Here's an example of the use of a Kermit server. The user is sitting at a CP/M-80
microcomputer and a DEC-20 is the remote host.

How to Use KERMIT

A>kermit ! Run Kermit on the micro.
Kermit V3,9A

Kermit-80> I This is the micro Kermit’s prompt.
Kermi t-80>connect ! Connect to the DEC-20.
[Connecting to remote host. Type CTRL-]C to return to micro.]
- CU20E ! The DEC-20 prints its herald.

®login my-id password ! Log in normally.

{The DEC-20 prints various login messages here.)
ekermit ! Run Kermit-20 normally
Kermit-20>server ! Tell it to be a server.

Kermit Server running on DEC-20 host. Please type your escape
sequence to return to your local machine. Shut down the server by
typing the Kermit BYE command on your local machine.

*le ! Now escape back to the micro.
[Connection closed, back at micro.]

Kermit-80>get *.pas ! Get all my DEC-20 Pascal programs.
Kermit-80>send foo0.* ! Send all the "“foo" files from my micro.
Kermit-80>exit I Exit from Kermit back to CP/M.

A>

(Here you can do some work on the micro, edit files, whatever you like.)

This is much simpier.

A>kermit ! Run Kermit-80 some more.

Kermit-80>send file.pas ! Send another file.

Kermit-80>bye ! That’s all. Shut down the Kermit server.
A> ! Back at CP/M automatically.

Page 15

Note that once you've started the Kermit Server on the remote end,

you can run Kermit as often as you like on the micro without having to go back and forth
any more; just make sure to shut the server down when youre done by typing the BYE
commanc.

Here are basic the commands available for talking to servers.

SENC 7irespec

GET filespec

BYE

FINISH

the normal way.

get *.¢c

Ask the remote host to send a file or file group Example

Sends a file or file group from the local host to the remote host in

This command is exactly equivalent to typing "send x.c” at the remote
host foliowed by ‘"receive” on the local host Note that the local
Kermit does not attempt to validate the filespec. If the server cannot
parse it, or cannot access the specified filels). it will send back an .

appropriate error message.

Shut down the remote server and exit from Kermit. This will cause
the job at the remote end to log itself out You need not connect
back and clean up unless you get an error message in response to
this command (for instance, if your logged-out disk quota is exceeded

on the remote host).

Shut down the server without having it log itself out, and don't exit

from Kermit A subsequent CONNECT command will put you back at

your job on the remote host, at system command level

Page 16 | KERMIT User Guide

When Things G6 Wrong : Page 17

3. WHEN THINGS GO WRONG

Connectmg two computers can be a tricky business, and many things can go wrong.
Before you can transfer files at all, you must first establish terminal communication. But
successful terminal connection does not necessarily mean that file transfer will also work.
And even when file transfer seems to be working, things can happen to ruin it

3.1. COmﬁunicétioh Line Problems

If you have a version of KERMIT on your microcomputer, but the CONNECT command
doesn't seem to work at all, please:

o .Make. sure all the required physical connections have been made and have not
" wiggled loose. If you are using a modem, make sure the carrier light is on.

e If you have more than one connector on your micro, make sure you are using
the right one.

¢ Make sure that the port is set to the right communication speed, or baud rate.
Some versions of KERMIT have a built—- SET BAUD command. others require
that you set the baud rate using a system command or setup mode before
-you start the KERMIT program. Use the SHOW command to find out what
the current baud rate is.

o Make sure that the other communication line parameters, like parity, bits per
character, handshake, and flow control are set correctly.

You must consult the appropriate manuals for the systems and equipment in question.

If all settings and connections appear to be correct, and communication still does not take
place. the fault mav be in your modem. internal modems (ie. those that plug in to a siot
inside the microcomputer chassis) are not recommended for use with KERMIT. Many
microcomputer KERMIT programs are written to control tne communication hardware ex-—
plicitly: internal modems can interfere with that control

KERMIT normally expects to have full control of the communication port However, it is
sometimes the case that some communications equipment controls the line between the
twe computers on either end. Examples include modems (particulariv "smart” modems! port

‘contention or selection units, multiplexers, local networks, and wide—area networks. Such

equipment can interfere with the KERMIT file transfer protocol in various ways:

e It can impose parity upon the communication line. This means that the 8th bit
of each character is used by the equipment to check for correct transmission.
Use of parity will:

- Cause packet checksums to appear incorrect to the receiver and foil
any attempt at file transfer. In most cases, not even the first packet
will get through.

- Prevent the use of the 8th bit for binary file data
If terminal connection works but file transfer does not, parity is the most
likely culprit. To overcome this impediment, you should find out what parity

is being used, and inform the KERMITs on each side (using the SET PARITY
command) so that they can:

- Compose and interpret the checksums correctly.

Page 18 KERMIT User Guide

- Employ & special encoding to allow 8-bit data to pass through the
7-bit communication channel.

Man1yO packet-switched networks, such as GTE TELENET, require parity to be
set

¢ Communications equipment can also interpret certain characters in the data
stream as commands rather than passing them along to the other side. For
instance, you might find your "smart’” modem suddenly disconnecting you and
placing a call to Tasmania. The only way to work around such problems is to
put the device into “transparent’ or ‘binary” mode. Most communication
devices have a way to do this; consult the appropriate manual In some
cases, transparent mode will also cancel the parity processing and allow the
use of the Bth bit for data :

3.2, The Transfer is Stuck

There are various ways in which Kermit file transfers can become stuck, but since many
hosts are capable of generating timeout interrupts when input doesn't appear quickly
enough, they can usually resend or "NAK” (negatively acknowleédge) lost packets. Neverthe-
less, if a transfer seems to be stuck, you can type RETURN on the keyboard of most
micros to simulate a timeout.

An interesting exception is the IBM mainframe (VM/CMS) Kermit —- it cannot time out its
"virtual console" (ie. the user's terminal, so when using Kermit from a micro to an IBM
host, occasional manual wakeups may be necessary.

The following sections discuss various reasons why a transfer in progress could become
stuck. Before examining these, first make sure that you really have a Kermit on the other
end of the line, and you have issued the appropriate command SEND, RECEIVE, or SERVER.
I the remote side is not a server, remember that you must connect back between each
transfer and issue a new SEND or RECEIVE command. '

3.3. The Micro is Hung

The micro itself sometimes becomes hung for reasons beyond Kermit's controi, such as
power fiuctustions. I tne micro’s screen has not been upaatec for a long time, thern the
micro may be hung. Try these steps (in the foliowing order).

e Check the connection. Make sure no connectors have wiggled loose from
their sockets. If youre using a modem, make sure -you still have a carrier
signal. Reestablish your connection if you have to.

e Press RETURN to wake the micro up. This should clear up any protocol
deadiock. Several RETURNs might be necessary.

e If the problem was not a deadlock, restart the micro and then restart Kermit,
CONNECT back to the host, get back to your job or login again, and restart
the transfer. You may have to stop and restart Kermit on the remote host

10
TELENET uses MARK parity.

When Things Go Wrong Page 18

3.4. The Remote Host Went Away

if your local system is working but the transfer is hung, maybe the remote host or the
remote KERMIT program crashed. .Get back to command level on the local KERMIT (on
microcomputer implementations, you may be able to do this by typing about five RETURNS,
or one or more Control-C's). issue the CONNECT command so that you can see what
happened. If the remote system has crashed then you will have to wait for it to come
back, and restart whatever file that was being transferred at the time.

3.5. The Disk is Full

If your local floppy disk or remote directory fills up, the Kermit on the machine where this
occurs will inform you and then terminate the transfer. You can continue the transfer by
repeating the whoie procedure either with a fresh floppy or after cleaning up your
directory. Some KERMIT programs allow you to continue the sequence where it left off,
for instance on the DEC-20 by using the SEND command and including the name of the
file that failed in the "(INITIAL)" field:

Kermit-20>send *.for (initial) foo.for

See the Kermit—-20 command summary for further information about the initial filespec.

3.6. Message Interference

You may find that file transfers fail occasionally and upredictably. One explanation could be
that terminal messages are being mixed with your file packet data. These could include
system broadcast messages (like "System is going down in 30 minutes”), messages from
other users ('Hi Fred, what's that KERMIT program you're aiways running?”), notifications that
you have requested (lts 7:30, go home!" or "You have mail from."). Most KERMIT
programs attempt to disable intrusive messages automatically, but not all can be guaranteed
to do so. It may be necessary for you to "turn off’ such messages before starting
KERMIT.

3.7. Host Errors -

Various error conditions can occur on the remote host that could effect file transmission.
Whenever any such error occurs the remote Kermit normally attempte to send ar infor-
mative error message to the local one, and then breaks transmission, putting you back at
Kermit command level on the local system.

oy

3.8. Filé is Garbage

There are certain conditions under which Kermit can beiieve it transferred a file correctly
when in fact, it did not The most likely cause has to do with the tricky business of fi/e
attributes, such as text vs binary, 7-bit vs 8-bit, blocked vs stream, and so forth. Each
system has its own peculiarities, and each KERMIT has special commands to allow you to
specify how a file should be sent or stored However, these difficulties usually crop up
only when sending binary files. Textual files should normally present no problem between
any two KERMIT programs.

Page 20 ' KERMIT User Guide

3.9. Junk after End of File

When transferring a text file from a microcomputer to a mainframe, sometimes you will
find extraneous characters at the end of the file after it arrives on the target system. This
is because many microcomputers don't have a consistent way of indicating the end of a
file. CP/M is a good example. The minimum unit of storage on a CP/M floppy is a "block”
of 128 bytes. Binary files always consist of a whole number of blocks, but a text file
can end anywhere within a block. Since CP/M does not record a file's byte count, it uses
_the convention of marking the end with an imbedded Control~Z character. If your
microcomputer version of KERMIT is not looking for this character, it will send the entire
last block, which may contain arbitrary junk after the "real” end of the file. To circumvent
this problem, most microcomputer KERMITs have commands like SET FILE ASCIl or SET
FILE TEXT to instruct KERMIT to obey the CTRL-Z convention. Some microcomputer
KERMITs operate in "text’ mode by default, others in "binary” or "block” mode.

KERMIT Commands ‘ Page 21

4. KERMIT COMMANDS

An "ideal” KERMIT program will be described here, which has most of the features
specified in the KERMIT Protoco/ Manua/. No KERMIT program will have all these
commands or support all these options. The exact form of some of the commands may
differ from version to version Some KERMIT programs may support system-dependent
~ options not described here. The intention of this description is to provide a base from
which specific KERMIT programs can be described in terms of their differences from the
“ideal.” '

4.1. Remote and Local Operation

Some KERMIT programs can be run in two ways, remote and /oca/. A remote Kermit is
usually running on a mainframe, which you have CONNECTed to through a PC or other
computer. When KERMIT runs remotely, all file transfer is done over the job's controling
terminal line —- the same line over which you logged in, and to which you would type
interactive commands. What the system thinks is your terminal is really another computer,
usually a8 microcomputer, running its own copy of Kermit

When KERMIT is in "local mode”, file transfer is done over an external device, such as a
microcomputer’'s serial communication port, or an assigned terminal line on a mainframe.
The local Kermit is connected in some way (like a dialout mechanism) to another computer,
again running its own copy of Kermit. A local Kermit is in control of the screen, a remote
Kermit has no direct access to it. Microcomputer KERMITs usually run in local "mode”,
whereas mainframe Kermits usually need to be given some special command to run in local
mode. Some commands make sense only for remote Kermits, others only for local, still
others can be used with either. Local and remote operation of KERMIT is shown
schematically here:

PC is Local, Mainframe is Remote.

Communication
Line (Packets)
o meme e YA e Other terminals
| o
1 1 t]
PC ! LOCAL Mainframe !} } REMOTE
et

4
1
t
[}
]
'
'
1
]
[}
]
+
]
[}
1
1
]
1
1
1
]
'
+*
+
'
1
1
[}
'
1
1
1
1
1
1
]
—————— e —————

i
1
]
t
;
#ommmememmmemm oo + Your job'’s :
! Packets: 724 | | terminal line ;
! Retries: 7?7 !
! File: FOD.BAR ! ! !
torcccrrmrananen + | !
Screen i
t
]
e e N + e e e Lt +
]
']
! {Commands)
t
)
LR L +
\ Keyboard \
R ettt +
You

‘The KERMIT program on the PC is a /ocal Kermit. It can control the screen, the keyboard,
and the port separately, thus it can update the screen with status information. watch for

Page 22 ' KERMIT User Guide

interrupt signals from the keyboard, and transfer packets on the communications port, all at
the same time.

The KERMIT program running on the mainframe is a remote Kermit. The user logs in to the
mainframe through a terminal port The host computer cannot tell that the user is really
coming in through a microcomputer. The keyboard, screen, and port functions are all
combined in user's mainframe terminal line. Therefore a remote Kermit is cut off from
your screen and keyboard during file transfer.

A KERMIT server is always remote, and must get its commands from a local KERMIT. The
following descriptions will indicate when a command must be remote or local.

4.2, Command Interface

Most implementations (the UNIX version is the major exception) have an interactive
keyword-style command interface, modeled after that of the DECSYSTEM-20, which is
roughly as follows: In response to the “kermit-xx>" prompt you may type a keyword, such
as SEND, RECEIVE, or EXIT, possibly followed by additional keywords or operands, each of
which is called a fie/d. You can abbreviate keywords (but not file names) to any length
that makes them distinguishable from any other keyword valid for that fieid You can type
a question mark at any time to get information about what's expected or valid at that point.
The ESC and "?" features work best on full duplex systems (all but the IBM mainframe, so
far), where the program can "wake up” immediately and perform the required function. On
half duplex or record-oriented systems, the ESC feature is not available, and the "?"
requires a carriage return to follow.

in this example, the user types "set’ and then a question mark to find out what the SET
options are. The user then continues the command at the point where the question mark
was typed, adding a "d" and another question mark to see what set options start with "d".
The user then adds a "u’ to select "duplex” (the only SET option that starts with "du”’)
followed by an ESC (shown here by a dollar sign} to complete the current field and issue
the guide word "(to)" for the next one, then another question mark tc see what the
possibilities are, and so forth. The command is finally terminated by & carriage return
Before carriage return is typed, however, the command can be edited using RUBOUT or
other command editing kevs. Finally, the same command is entered again with a minimum
of keystrokes, with each field abbreviated to its shortest uniaue length in the exampie.
the parts the user types are underlined; all the rest is system typeout

Kermit-20>set ? one of the following:

debugging delay duplex escape
file handshake I8M Tine
parity receive ' send

Kermit-20>set d? one of the following:

debugging delay duplex

Kermit-20>set dusplex (to) 2 one of the following:
full hatlf

Kermit-20>set duplex (to) hsalf
Kermit-20>set du h

KERMIT Commands ' Page 23

4.3. Notation

in the command descriptions, the following notation is used:

anything

Lanything]
number.

character

A parameter - the symbol in italics is replaced by an argument of the
specified type (number, filename, etc).

An optional field. If omitted, it defaults to an appropriate value.
A whole number, entered in prevailing notation of the system.

A single character, entered literally, or as a number (perhaps octal or
hexadecimal) representing the ASCIl value of the character..

floating- point-number

filespec

A 'real” number, possibly containing a decimal point and a fractional part.

A file specification, i.e. the name of a file, possibly including a search path,
device or directory name, or other qualifying information, and possibly
containing “"wildcard” or pattern—-matching characters to denote a group of
files.

A control character may be written using "uparrow” or “caret’” notation,
since many systems display control characters this way. Control characters
are produced by holding down the key marked CTRL or Control and typing
the appropriate character, e.g. X

Commands are shown in upper case, but can be entered in any combination of upper and

lower case.

x

Page 24 KERMIT User Guide

4.4. Summary of KERMIT Commands

Here is a brief list of KERMIT commands as they are to be found in most KERMIT
programs. The following sections will describe these commands in detail.

For exchanging files:
SEND, RECEIVE, GET

For connecting to a remote host:
CONNECT, SET LINE, SET PARITY, SET DUPLEX, SET HANDSHAKE, SET ESCAPE,
SET FLOW-CONTROL

For acting as a server:
SERVER

For talking to a server:
BYE, FINISH, GET, SEND, REMOTE

Setting nonstandard transmission and file parameters:
SET BLOCK-CHECK, SET DEBUG, SET DELAY, SET FILE, SET INCOMPLETE, SET
PARITY, SET RETRY;
SET SEND (or RECEIVE) END-OF~LINE, START-OF-PACKET, PACKET-LENGTH, PAUSE.
TIMEOUT, PADDING

For defining "macros” of SET commands:
DEFINE

For interrupting transmission:
Control-X, Controi~Z, Control-C, Controi-E

Getting information:
HELP, STATISTICS, SHOW

Executing command files:
TAKE

For recording the history of a file transfer operation:
LOG TRANSACTIONS

For non-protoco!/ file capture or transmission:
LOG SESSION, TRANSMIT

For closinc log files:
CLOSE

Leaving the program:
EXIT, QUIT

if you have a file called KERMIT.INI in your default or home disk, KERMIT will execute an
automatic TAKE command on it upon initial startup. KERMIT.INI may contain any KERMIT
commands, for instance SET commands, or DEFINEs for SET macros to configure KERMIT
to various systems or communications media. Note: Your particular implementation of
KERMIT may use a different name for this file.

KERMIT Commands ’ Page 25

4.5. The SEND Command
Syntax:

Sending a single file:
SEND nonwild-filespecl [filespec2]

Sending multiple files:
SEND wi/d-filespect [filespec2]

The SEND command causes a file or file group to be sent to the other system. There are
two forms of the command, depending on whether fi/espec?! contains "wildcard” charac-
ters. Use of wildcard characters is the most common method of indicating a group of
files in a single file specification. For instance if Foo.FOR is a single file, a FORTRAN
program named FOO, then =.FOR might be a group of FORTRAN programs.

Sending a File Group

If filespec? contains wildcard characters then all matching files will be sent, in directory-
listing order (according to the ASCIl collating sequence) by name. if a file can't be opened
for read access, it will be skipped. The initial file in a wildcard group can be specified
with the optional filespec2. This allows a previously interrupted wildcard transfer to
continue from where it left off, or it can be used to skip some.files that would be
transmitted first

Sending a Single File

If filespec? does not contain any wildcard characters, then the single file specified by
filespec1 will be sent. Optionally, fi/espec2 may be used to specify the name under which
the file will arrive at the target system; fi/espec? is not parsed or validated locally in any
way. If filespec2 i not specified the file will be sent with its own name.

SEND Command General Operation

Files will be sent with their filename and filetype (for instance F00.BAR, no device or
directory fieild, no generation number or attributes). If communication line parity is being
used (see SET PARITY) the sending KERMIT wili request that the other KERMIT accept a
" special ‘kind of prefix notation for binary files. This is an advanced feature, and not all
KERMITs have it; if the other KERMIT does not agree to use this feature, binary files
cannot be sent correctly.

The sending KERMIT will also ask the other KERMIT whether it can handie a special prefix
encoding for repeated characters. |If it can, then files with long strings of repeated
characters will be transmitted very efficiently. Columnar data, highly indented text, and
binary files are the major beneficiaries of this technique.

SEND Remote Operation

If you are running KERMIT remotely (for instance, from a microcomputer), you should
"escape back” to your local Kermit within a reasonable amount of time and give the
RECEIVE command. Don't take more than a minute or two to complete the switch, or
KERMIT may “time out” and give up l(in. that case, you'll have to CONNECT back to the
remote system and reissue the SEND command).

Page 26 ' KERMIT User Guide

- SEND Local Operation

If youre running KERMIT locally, for instance on a microcomputer, you should have already
run KERMIT on the remote system and issued either a RECEIVE or a SERVER command.

Once you give KERMIT the SEND command, the name of each file will be printed on your
‘s¢reen as the transfer begins, and information will be displayed to indicate the packet
traffic. When the specified operation is complete, the program will sound a beep, and the
status of the operation will be indicated by a message like OK, Complete, Interrupted, or
Failed. '

If you see many packet retry indications, you are probably suffering from a noisy
connection. You may be able to cut down on the retransmissions by using SET SEND
PACKET-LENGTH to decrease the packet iength; this will reduce the probability that a given
packet will be corrupted by noise, and reduce the time required to retransmit a corrupted
packet.

If you notice a file being sent which you do not really want to send, you may cancel the
operation immediately by typing either Control-X or Control-Z. If your are sending a file
group, Control~X will cause the current file to be skipped. and KERMIT will go on to the
next file, whereas Control-Z will cancel sending the entire group and return you to
KERMIT-20 command level.

4.6. The RECEIVE Command
Syntax: RECEIVE [f//espec]

The RECEIVE command tells KERMIT to wait for the arrival a file or file group sent by a
SEND command from the other system. If only one file is being received, you may include
the optiona! f//espec as the name to store the incoming file under; otherwise, the name is
taken from the incoming file header. If the name in the header is not a legal file name on
the local system, KERMIT will attempt to transform it to a legal name.

If an incoming file has the same name as an existing file, KERMIT will either overwrite the
old file or else try to create a new unique name, depending on the setting of FILE
WARNING.

if you have SET PARITY, then 8th-bit prefixing will be requested. If the other side cannot
do this, binary files cannot be transferred correctly. The sending KERMIT may also request
that repeated characters be compressed.

If an incoming file 'does not arrive in its entirety, KERMIT will normally discard it; it will not
appear in your directory. You may change this behavior by using the command SET
INCOMPLETE KEEP, which will cause as much of the file as arrived to be saved in your
directory. ,

RECEIVE Remote Operation

If your are running KERMIT remotely, you shoulid escape back to your local Kermit and give
the SEND command. You should do this within about two minutes, or KERMIT may time
out and give up; if this happens, you can CONNECT back to the remote system and reissue
the RECEIVE command.

KERMIT Commands Page 27

RECEIVE Local Operation

If you are running KERMIT locally, you should already have issued a SEND command’\1 to
the remote KERMIT, and then escaped back to DEC-20 Kermit.

_As files arrive, their names will be shown on your screen, along with a continuous displéy
the packet traffic. :

If a file begins to arrives that you don't really want, you can attempt to cangel it by typing
Control-X; this sends a cancellation request to the remote Kermit If the remote Kermit
. understands this request (not all implementations of Kermit support this feature), it will
comply; otherwise it will continue to send. If a file group is being sent, you can request
the entire group be cancelled by typing Controi-Z.

4.7. GET “
LOCAL ONLY —-- Syntax: GeT [remote-filespec]

The GET command requests a remote KERMIT server to send the file or file group
specified by remote-filespec. Note the distinction between the RECEIVE and GET com-
mands: RECEIVE puts KERMIT into a passive wait state, whereas GET actively sends a
command to a server.

The GET command can be used only when KERMIT is local, with a KERMIT server on the
other end of the line. This means that you must have CONNECTed to the other system,
logged in, run KERMIT there, issued the SERVER command, and escaped back to the local
KERMIT.

. The remote filespec is any string that can be a legal file specification for the remote
system; it 1s not parsed or validated locally. As files arrive, their names will be displayed
on your screen, aiong with a continuous indication of the packet traffic. As in the
RECEIVE command., you may type Controi—X to request that the current incoming file be
cancelied, Controi-Z to request that the entire incoming batch be cancelied.

If the remote KERMIT is not capable of server functions, then you will probably get an
error message back from it like "lliegal packe: type”. In this case, you must connect to the
other hermit, give & SEND command, escape back, and give 2 RECE!VE commanc

Optional Syntax: 1f you are requesting a single file, you may type the GET command
without a filespec. In that case, Kermit programs that implement the optional GET syntax
will prompt you for the remote filespec on the subsequent line, and the name to store it
.under when it arrives on the line after that

Kermit-MS>get

Remote Source File: aux.txt
Local Destination File: auxfile.txt

11
not SERVER ~- use the GET command-to receive files from a KERMIT server.

Page 28 KERMIT User Guide

4.8. SERVER
REMOTE ONLY —- Syntax: SERVER

The” SERVER command instructs KERMIT to cease taking commands from the keyboard and
to receive all further instructions in the form of KERMIT packets from another system. A
KERMIT server must be remote; that is, you must be logged in to the system through
another computer, such as a microcomputer. In addition, your local KERMIT should have
commands for communicating with remote servers; these inciude GET, FINISH, and BYE.

After issuing this command, escape back to your local system and issue SEND, GET, BYE,
FINISH, or other server-oriented commands from there. If your local KERMIT does not
have a BYE command, then it does not have the full ability to communicate with a KERMIT
server and you should not put the remote KERMIT into SERVER mode. If your local
KERMIT does have a BYE command, use it to shut down and log out the KERMIT server
when you are done with it ‘

Any nonstandard parameters should be selected with SET commands before putting KERMIT
in server mode, in particular the block check type and special file modes.

4.9. BYE
LOCAL ONLY -- Syntax: BYE

When running as a local Kermit talking to a KERMIT server, use the BYE command to shut
"down and log out the server. This will also close any debugging log files and exit from
the local KERMIT.

4.10. FINISH
LOCAL ONLY —-- Syntax: FINISH

When running as a local Kermit talking to a remote KERMIT server use the FINISH command
to shut down the server without logging out the remote job, so that you can CONNECT
back to it. Also, close any local debugging log file.

4.11. REMOTE
LOCAL ONLY -- Syntax: REMOTE command

When running in local mode, talking to a remote KERMIT server send the specified
command to the remote server. If the server does not understand the command (all of
these commands are optional features of the KERMIT protocol), it will reply with a2 message
like "Unknown KERMIT server command”. If does understand, it will send the resuits back,
and they will be displayed on the screen. The REMOTE commands are:

CWD [directory) Change Working Directory. If no directory name is provided, the
server will change to the default directory. Otherwise, you will be
prompted for a password, and the server will attempt to change to
the specified directory. If access is not granted, the server will
provide a message to that effect.

DELETE fi/espec Delete the specified file or files. The names of the files that are
deleted will appear on your screen.

DIRECTORY [fi/espec]

KERMIT Commands Page 29

The names of the files that match the given file specification will be
displayed on your screen. If no file specification is given, all files
from the current directory will be listed.

DISK [directory] Provide information about disk usage in the current directory, such aé
the quota, the current storage, the amount of remaining free space.

HELP Provide a list of the functions that are available.

HOST [command] Pass the given command to the server's host command processor, and
display the resulting output on your screen.

. KERMIT [command] Pass the given command, which is expressed in the server KERMIT's
own interactive-mode command syntax, to the server for execution.
This is useful for changing settings, logging, and other functions.

RUN program-name [command-1ine-argument]
Have the remote KERMIT run the indicated program with the indicated
" command line; send the results back to your screen.

PROGRAM . [command']
Send the command to the program started by most recent REMOTE
RUN program, and display the results on the screen. If no command
is given, send newline character.

TYPE filespec Display the contents of the specified file on your screen.

4.12. LOCAL

Syntax: LOCAL command

Execute the specifiea command on the local system —— on the system where KERMIT to
which your are typing this command is running. These commands provide some iocal file
management capabilitv without having to leave the KERMIT program, which is particularly
useful on microcomputers.

CWD [directory] "Change Working Directory” to the specified directory.
DELETE 7//espec Delete the specified fiie or files.
DIRECTORY [fi/espec) Provide a directory listing of the specified files.

Some KERMIT programs may provide commands for these or other functions in the syntax
of their own system, when this would cause no confusion. For instance, CP/M KERMIT
may use ERA in place of LOCAL DELETE.

4.13. CONNECT
LOCAL ONLY —— Syntax: CONNECT [terminal-designator]

Establish a terminal connection to the system at the other end of the communication line.
On a microcomputer, this is normally the serial port On a mainframe, you will have to
specify a terminal line number or other identifier, either in the CONNECT command itself,
or in @ SET LINE command. Get back to the local KERMIT by typing the escape character
followed by a single character "command’. Several single-character commands are pos-—
sible:

Page 30 KERMIT User Guide

Close the connection and return to the local KERMIT.

Show status of the connection.

Send a BREAK signal.

(zero) Send a NUL (0) character.

Push to the local system command processor without breaking the connection.
Quit logging session transcript

Resume logging session transcript.

List ali the possible single~character arguments.

"] {or whatever you have set the escape character to be)

Typing the escape character twice sends one copy of it to the connected host.

wemD VO wwo

You can use the SET ESCAPE command to define a different escape character, and SET
PARITY, SET DUPLEX, SET FLOW-CONTROL, SET HANDSHAKE to establish or change those
parameters.

4.14. HELP

Syntax: HELP

Typing HELP aione prints a brief summary of KERMIT and its commands, and possibly
instructions for obtaining more detailed help on particular topics. Most KERMIT implemen-
tations also aliow the use of "?" within a command to produce a short help message.

'4.15. TAKE

TAKE filespec

Execute KERMIT commands from the specified file. The file may contain contain any valid
KERMIT commands, including other TAKE commands. :

4.16. EXIT, QUIT

EXIT
Exit from KERMIT.

QuIT is a synonym for EXIT.

4.17. The SET Command

Syntax: SET parameter [option] [value]
Establish or modify various parameters for file transfer or terminal connection.

When a file transfer operation begins, the two KERMITs automatically exchange special
initialization messages, in which each program provides the other with certain information
about itself. This information includes the maximum packet size it wants to receive, the
timeout interval it wants the other KERMIT to use, the number and type of padding
characters it needs, the end—of-line character it needs to terminate each packet (if any), the
block check type, the desired prefixes for control characters, characters with the "high bit”
set, and repeated characters. Each KERMIT program has its own preset "default” values for
these parameters, and you normally need not concern yourself with them. You can examine
their values with the SHOW command; the SET command is provided to allow you to
change them in order to adapt to unusual conditions.

KERMIT Commands

The foliowing parameters may be SET:

BAUD-RATE Set the speed of the current communications port
BLOCK-CHECK Packet transmission error detection method

DEBUGGING Mode or log file

DELAY How iong to wait before starting to send

DUPLEX For terminal connection, full (remote echo) or half (local echo)
ESCAPE Character for terminal connection

FILE For setting file parameters like name conversion and byte size
FLOW-CONTROL Selecting flow control method, like XON/XOFF

HANDSHAKE For turning around half duplex communication line

IBM Set things up for communicating with an IBM mainframe
INCOMPLETE What to do with an incomplete file

LINE Terminal line to use for terminal connection or file transfer
PARITY Character parity to use

PORT For switching communication ports

PROMPT For changing the program’'s command prompt

RECEIVE Various parameters for receiving files

RETRY How many times to retry a packet before giving up

SEND Various parameters for sending files

The DEFINE command may be used to compose "macros” by combining SET commands.
The SET commands are now described in detail.

SET BAUD-RATE

Set or change the baud rate (approximate translation: transmission speed in bits per second)
on the currently selected communications devicee. The way of specifying the baud rate
varies from system to system; in most cases, the actual number (such as 1200 or 8600 is
typed. Systems that do not provide this command generally expect that the speec of the
line has -already been set appropriately outside of KERMIT.

SET BLOCK-CHECK

KERMIT normally uses a 1-character block check, or “checksum’, on each packet The
sender of the packet computes the block check based on the other characters in the
packet, and the receiver recomputes it the same way. |f these quantities agree, the packet
is accepted and the transmission proceeds. If they disagree, the packet is rejected and
transmitted again.

However, the block check is not a foolproof method of error detection. The normal
single—character KERMIT block check is only a 6-bit quantity (the low order 8 bits of the
arithmetic sum folded upon itself). With only six bits of accuracy, the chances are one in
2% —- that is, 1/64 -- that an error can occur which will not be detected in the
checksum, assuming that all errors are equally likely.

You can decrease the probability that an error can slip through, at the expense of
transmission efficiency, by using the SET BLOCK-CHECK command to select more rigorous
block check methods. Note that all three methods will detect any single—bit error, or any
error in an odd number of bits. The options are:

1-CHARACTER-CHECKSUM:
The normal single~character 6-bit checksum.

Page 32 KERMIT User Guide

2-CHARACTER-CHECKSUM:
A 2-character, 12-bit checksum. Reduces the probability of an error
going undetected to 1/4096, but adds an extra character to each
packet.

3-CHARACTER~-CRC: A 3-character, 16-bit Cyclic Redundancy Check, CCITT format In
addition to errors in any odd number of bits, this method detects
double bit errors, all error bursts of length 16 or less, and more than
99.99% of all possible longer bursts. Adds two extra characters to
each packet. ‘

The single character checksum has proven to be quite adequate in practice, much more
effective than straightforward analysis would indicate, since all errors are not equally likely,
and a simple checksum is well suited to catching the kinds of errors that are typical of
telecommunication lines. The other methods should be requested only when the connection
is very noisy.

Note that the 2- and 3-character block checks are not available in all versions of KERMIT;
if the other KERMIT is not capable of performing the higher—precision block checks, the
transfer will automatically use the standard single-character method.

SET DEBUG
Syntax: SET DEBUG 0pt/ons

Record the packet traffic, either on your terminal or in a file. Options are:

STATES Show Kermit state transitions and packet numbers (brief).
PACKETS Display each incoming and outgoing packet (iengthy).
LOG-FILE Log the selected information (STATES or PACKETS) to the specified

file. If log file not specified, then use the terminal if local

OFF Don't display debugging information (this is the defaultl If debugging
was in effect. turn it off and close any log file.

SET DELAY
Syntax: SET DELAY number

Specify how many seconds to wait before sending the first packet after a SEND command.
Use when remote and SENDing files back to your local Kermit. This gives you time to
"escape” back and issue a RECEIVE command. The normal delay is 5 seconds. In local
mode or server mode, KERMIT does not delay before sending the first packet.

SET DUPLEX .
Syntax: SET DUPLEX keyword

For use when CONNECTed to a remote system. The keyword choices are FULL and HALF.
FULL means the remote system echoes the characters you type, HALF means the local
system echoes them. FULL is the default, and is used by most hosts. HALF is necessary
wheh connecting to IBM mainframes. Half duplex is also called "local echo”.

[

KERMIT Commands Page 33

SET ESCAPE
Syntax: SET ESCAPE character

Specify or change the character you want to use to "escape’ from remote connections
back to KERMIT. This would normally be a character you don't expect to be using on the
remote system, perhaps a control character like ~\, *1, ~*, or “_. Most versions of
KERMIT use one of these by default After you type the escape character, you must
follow it by a single-character "argument’, such as "C" for Close Connection. The

arguments are listed above, under the description of the CONNECT command.

SET FILE
Syntax: SET FILE parameter keyword

Establish file-related parameters. Depending on the characteristics of the system, it may
be necessary to tell KERMIT how to fetch an outbound file from the disk, or how to store
an incoming file. The actual parameters you can specify in this command will vary from
system to system, and you should consult the documentation for your particular version of
KERMIT. Some examples would be byte size (PDP-10 architecture). record length or block
size (record oriented systems), end—of-file detection method (on microcomputers).

This can be a very important command if you intend to transfer binary files, but is normally
unecessary for transmitting textual files.

SET FLOW-CONTROL

Syntax: SET FLOW-CONTROL option

For communicating with full dupiex systems. System-level flow control is not necessary to
the KERMIT protoco!, but it can help to use it if the same method is available on both
systems. The most common type of flow control on full duplex systems is XON/XOFF.
SET HANDSHAKE

Syntax: SET HANDSHAKE option

For communicating with half dupiex systems This lets you specify the line turnaround’
character sent by tne half dupiex host to indicate it has ended its transmission and Is
granting you permission to transmit. When a handshake is set, KERMIT will not send a

packet until the half duplex host has sent the specvfled character (or a timeout has
occurred). The options may inciude: .

.NONE No handshake; undo the effect of any previous SET HANDSHAKE.
XOFF Control-S.

XON Controi-Q.

BELL Control-G.

CR Carriage Return, Control-M.
LF Linefeed. Control-J.

ESC Escape, Control-[.

SET INCOMPLETE
Syntax: SET INCOMPLETE option

Specify what to do when a file transfer fails before it is completed. The options are’
DISCARD (the default) and KEEP. If you choose KEEP, then if a transfer fails to complete

Page 34 KERMIT User Guide

successfully, you will be able to keep the incompliete part that was received.

SET LINE

Syntax: SET LINE [terminal/-designator]

Specify the terminal line to use for file transfer or CONNECT. This command is found on
mainframe KERMITs, which normally run in "remote mode” using their own controliing
terminal for file transfer. Specifying a separate line puts the program in “iocal mode” If
no line is specified, revert to the job's controlling terminal, i.e. go back to "remote mode.”

SET PORT
Syntax: SET PORT terminal-designator

Specify the communications port for file transfer or CONNECT. This command is found on
microcomputer KERMITs that run in "local’ mode. SET PORT does not change the remote/
local status but simply selects a different port for local operation.

SET PARITY
Syntax: SET PARITY keyword

Parity is a technique used by communications equipment for detecting errors on a per-
character basis; the "8th bit’ of each character acts as a check bit for the other seven
bits. KERMIT uses block checks to detect errors on a per—packet basis, and it does not
use character parity. However, some systems that KERMIT runs on, or equipment through
which these systems communicate, may be using character parity. If KERMIT does not
know about this, arriving data will have been modified and the block check will appear to
be wrong, and packets will be rejected.

if parity is being used on the communication line, you must inform both KERMITs, so the
desired parity can be added to outgoing characters, and stripped from incoming ones. SET
PARITY should be used for communicating with hosts that require character parity (IBM
mainframes are typical examples) or through devices or networks (like GTE TELENET) that
add parity tc characters that pass through them Both KERMITs shouid be set to the same
parity. The specified parity is used both for terminal connection (CONNECT)} and file
ransfer (SEND, RECEIVE, GET).

The choices for SET PARITY are:

NONE (the default) eight data bits and no parity bit.

MARK seven data bits with the parity bit set to one.

SPACE seven data bits with the parity bit set to zero.

EVEN seven data bits with the parity bit set to make the overall parity even.
ODD seven data bits with the parity bit set to make the overall parity odd.

NONE means no parity processing is done, and the 8th bit of each character can be used
for data when transmitting binary files.

If you have set parity to ODD, EVEN, MARK, or SPACE, then advanced versions of KERMIT
will request that binary files will be transferred using 8th-bit-prefixing. If the KERMIT on
the other side knows how to do 8th-bit—prefixing {this is an optional feature of the
KERMIT protoco!l, and not all implementations of KERMIT have it} then binary files can be
transmitted successfully. If NONE is specified, 8th—bit—prefixing will not be requested.

KERMIT Commands Page 35

SET PROMPT

This allows you to change the program's prompt This is particularly useful if you are
using KERMIT to transfer files between two systems of the same kind, in which case you
can change the prompts of the KERMIT programs involved to include appropriate distin—
guishing information.

SET SEND
SET SEND parameter

Parameters for outgoing packets, as follows:

END-OF~LINE character
The ASCIl character to be used as a line terminator for packets, if one is
required by the other system, carriage return by default You will only have to
use this command for systems that require a line terminator other than carriage
return.

PACKET-LENGTH number , :
Maximum packet length to send between 10 and 94 (decimal)l Shortening the
packets might allow more of them to get through through without error on
noisy communication lines. Lengthening the packets increases the throughput on
clean lines.

TIMEOUT number
How many seconds to waut for a packet before trying again.

PAUSE f/oating-point-number
How many seconds to pause before sending each data packet Setting this to a
nonzero vaiue may allow some slow systems enough time to consolidate itself
packet betfore the next packet arrives. Normally, no per—packet pausing 1s done.

PADDING number, PADCHAR character
How much padding to send before a packei if the other side needs padding,
and what character to use for padding Defaults are no padding, ana NUL (O)
for the padding character. '

QUOCTE character
What printable character to use for quoting of control characters, "#" (43) by
default. There should be no reason to change this.

START-OF-PACKET character
The start-of-packet character is the only control character used "bare” by the
KERMIT protocol. It is Control~A by default If a bare Control~A causes
problems for your communication hardware or software, you can use this
command to select a different control character to mark the start of a packet
You must also issue the reciprocal command (SET RECEIVE START-OF-PACKET)
to the KERMIT on the other system (providing it has such a command).

SET RECEIVE
Syntax: SET RECEIVE parameter

Parameters to request or expect for incoming packets, as follows:

END-OF-LINE character
Carriage return (15) by default

Page 36 KERMIT User Guide

PACKET-LENGTH number
Maximum length packet for the other side to send, decimal number, between 10
and 94, decimal.

TIMEOUT number :
How many seconds the other Kermit should wait for a packet before asking for
retransmission. :

PAUSE f/oating-point-number
How many seconds to pause before acknowledging a packet Setting this to a
nonzero value will slow down the rate at which data packets arrive, which may
be necessary for systems that have “sensitive" front ends and cannot accept
input at a high rate.

PADDING number, PADCHAR character
How many padding characters to request before each incoming packet, and what
the padding ‘character should be. No KERMITs are known to need padding, and
if one did, it would request it without your having to teli it to do so. This
command would only be necessary, therefore, under very unusual circumstances.

QUOTE character
What printable character to use for quoting of control characters, "#" {43) by
default. There should be no reason to change this.

START~OF-PACKET character
The control character to mark the beginning of incoming packets. Normally SOH
(Control-A, ASCIl 1) (see SET SEND START-OF-PACKET, above).

SET RETRY
SET RETRY option number

Set the maximum number of retries aliowed for:

INITIAL-CONNECTION
) How many times to try connecting before giving up, normally something like 15.

PACKETS How many times to try sending a particular packet before giving up, normally 5.
I ¢ line is very noisy. you might want to increase this number

4.18. DEFINE

DEFINE macroname [set-parameters)

Define a "SET macro” to allow convenient association of one or more SET parameters with
a mnemonic keyword of your choice. The SET parameters are a list of one or more SET
options, separated by commas. If you use KERMIT to communicate with several different
kinds of systems, you may set up &8 macro for each, for instance:

DEFINE IBM PARITY MARK, DUPLEX HALF, HANDSHAKE XON

DEFINE UNIX PARITY NONE, DUPLEX FULL, HANDSHAKE NONE
DEFINE TELENET PARITY MARK, RECEIVE TIMEOUT 20

You may then type SET IBM, SET UNIX, and so forth to set all the desired parameters with
a single command. It is convenient to inciude these definitions in your KERMIT.INI file.

[

Another other handy use for SET macros would be for rapid adaptation to different
conditions of line noise:

KERMIT Commands Page 37

DEFINE CLEAN BLOCK-CHECK 1, SEND PACKET-LENGTH 94, RETRY PACKET S5
DEFINE NOISY BLOCK-CHECK 2, SEND PACKET-LENGTH 60, RETRY PACKET 10
DEFINE VERY-NOISY BLOCK 3, SEND PACKET 40, RETRY PACKET 20

You may redefine an existing macro in the same manner as you defined it You can
undefine an existing macro by typing an empty DEFINE command for it, for instance:

DEFINE IBM

You can list all your macros and their definitions with the SHOW MACROS command.

4.19. SHOW
Syntax: sHow [option]

The SHOW command displays the values of the parameters settable by the SET command.
If a particular option is not requested, a complete display will be provided.

4.20. STATISTICS

Give statistics about the most recent file transfer, such as the total number of characters
transmitted, the effective baud rate, and so forth.

4.21. LOG
Syntax: LoG [option] [filespec]

Log the specified entity to the specified log file.

TRANSACTIONS Direct KERMIT to log transactions, such as files successfully sent or
received or files that could not be successfuliy sent or received A
transaction is useful recording the progress of a long unattended
multifile transfer.

SESSION Create a transcript of a CONNECT session, when running a ilocal
KERMIT connected to & remote system, in the specified file The log
is closed when connection is closed. In some implementations, log-
oing can be "toggled” by typing the connect escape character followec
by Q (Quit logging) or R (Resume logging) or similar single—character
commands. Session-logging is useful for recording dialog with an
interactive system, and for "capturing” from systems that don't have
KERMIT. No guarantee can be made that the file will arrive correctly
or compietely, since no error checking takes place.

DEBUGGING Record debugging information in the specified file. There may be
several options to select the desired information —— entire packets,
state transitions, etc —— available via the SET DEBUGGING command.

4.22. TRANSMIT

Syntax: TRANSMIT f//espec

Send the contents of the specified file to the other system "bare”, without protocol,
packets, error checking, or retransmission. This command is useful for sending standard:
logon or connection sequences, and for sending files to systems that dont have KERMIT.
No guarantee can be made that the target system will receive the file correctly and
completely. When receiving a file, the target system wouid normally be running a text

Page 38 KERMIT User Guide

editor in text collection mode.

KERMIT implementations Page 39

5. KERMIT IMPLEMENTATIONS

Kermit has been written for a wide variety of systems, both mainframes and microcom-
puters. Kermit is not written in a portable language; rather, each implemenation is written
in the language best suited for the particular machine. The specification, given in the
Kermit Protoco/ Manual, is quite general and allows implementation on almost any machine.

Here's a brief table summarizing the known Kermit implementations, as of this writing. This

list is constantly growing, and may be far out of date by the time you read it

Machine
DECsystem=-10,20
IBM 370 Series

IBM 370 Series
CDC Cyber 170
Sperry/Univac—-1100
Honeywell

DEC VAX-11

DEC PDP-11

DEC Pro-300 Series
VAX,PDP-11,SUN,etc
PRIME

HP3000, Univac, etc
HP 1000

Apolio

Terak, HP-98x6, IBM PC
8080, 8085, or 280
8086. 8088

8086, 8088

Apple || 6502
TRS80 I, I

Atar

Operating System
TOPS-10,20
VM/CMS, MVS/TSO
MTS

NOS

EXEC

MULTICS

vMS
RT,RSX,RSTS.MUMPS
P/0S

UNIX

PRIMOS

Software Tools-
RTE

Aegis

UCSD p-System
CP/M-80
PC-DOS, MS-DOS
CP/M-86

Apple DOS
TRSDOS

DCS

Language
MACRO-10,20

IBM Assembler
Pascal

Fortran-77

EXEC Assembler
PL/

Biiss-32, Macro-32
MACRO-11 & others
Bliss— 16, Macro-11
C

PL/P

Ratfor

Fortran

Fortran

UCSD Pascal

ASM

- MS MASM-86

DR ASMB6
DEC-10/20 CROSS
Z80 Assembier
Action!

The 8080 version runs on the DEC VT180, DECmate Il (CP/M), Heath/Zenith-89 and 100,
Superbrain, Appie 11/280, TRS-80 lI (CP/M), Osborne, Kaypro, and others. There are 8086
MS DOS versions for the IBM PC, DEC Rainbow, Wang PC, Compaq, Heath/Zenith—-100,
HP-150, Tandy 2000, Victor 8000, and others. The 8086 CP/M-86 version runs on the
DEC Rainbow and the NEC APC.

The remainder of the KERMIT User Guide is devoted to descriptions of selected KERMIT
implementations. f a description of your version of KERMIT does not.appear, fook in the
KERMIT area on your mainframe for an on-line documentation file. Even if your version is
described beiow, the version of the manual you are reading may be out of date and the
online information may be more current.

Page 40 KERMIT User Guide

DECSYSTEM-20 KERMIT Page 41

6. DECSYSTEM-20 KERMIT

Authors: Frank da Cruz, Bill Catchings, Columbia University
Language: MACRO-20

Version: 4.1(2386)

Date: July 3, 1984

KERMIT-20 Capabilities At A Glance:

Local operation: Yes
Remote operation: Yes
Transfers text files: Yes
Transfers binary files: Yes
Wildcard send: Yes
“X/"Y interruption: Yes
Filename collision avoidance: (Uses generation numbers)
Can time out Yes
8th—bit prefixing: Yes
Repeat count prefixing: Yes
Alternate block checks: Yes
Terminal emulation: Yes
Communication settings: Yes
Transmit BREAK: Yes
IBM communication: Yes
Transaction logging: Yes
Session logging: Yes
Raw transmit: . No
Act as server: Yes
Talk to server: Yes
Advanced commands for servers: Yes
Local file management: Yes
Handie file attributes No
Command/init files: Yes

KERMIT-20 is a program that implements the KERMIT file transfer protocol! for the Digital
- Equipment Corporation DECSYSTEM-20 mainframe computer. It is written in MACRO-20
assembly language and should run on any DEC-20 system with version 4 of TOPS-20 or
later.

The KERMIT-20 section will describe the things you should know about the DEC-20 file
system in order to make effective use of KERMIT, and then it will describe the special
features of the KERMIT-20 program.

Page 42 KERMIT User Guide

6.1. The DEC-20 File System

The features of the DEC-20 file system of greatest interest to KERMIT users are the form
of the file specifications, and the distinctions between text and binary files.

DEC-20 File Specifications

DEC-20 file specifications are of the form
DEVICE : <DIRECTORY>NAME . TYPE . GEN; ATTRIBUTES

where the DIRECTORY, NAME, and TYPE may each be up to 39 characters in length, GEN is
a generation (version number), and various attributes are possible (protection code, account,
temporary, etc). Generation and attributes are normally omitted. Device and directory,
when omitted, default to the user's own (or "connected’) disk and directory. Thus
NAME.TYPE is normally sufficient to specify a file, and only this information is sent along by
KERMIT-20 with an outgoing file.)

The device, directory, name, and type fields may contain uppercase letters, digits, and the
special characters "-" (dash), "_" (underscore), and "s" (dollar sign). There are no imbedded
or trailing spaces. Other characters may be included by prefixing them (eachl with a
Control-V. The fieids of the file specification are set off from one another by the
punctuation indicated above.

The device -field specifies a physical or "logical" device upon which the file is resident
The directory field indicates the area on the device, for instance the area belonging to the
owner of the file. KERMIT-20 does not transmit the device or directory fields to the
target system, and does not attempt to honor device or directory fields that may appear in
incoming file names; for instance, it will not create new directories.

The name is the primary identifier for the file. The type, also called the "extension”, is an
indicator which, by convention, tells what kind of file we have. For instance FOD.FOR is the
source of & Fortran program named FOO, Foo.REL might be the relocatable object module
produced by compiling FOO.FOR; FOO.EXE could an executable program produced by LOADing
and SAVing FDO.REL, and so forth.

The DEC-20 allows a group of files to be specified in a single file specification by
including the special "wiidcard” characters, "+" and "%’ A '*" matches any string of
characters, inciuding nc cnaracters at all; a "% matches any single character. Here are

some examples:

* . FOR All files of type FOR (all Fortran source files) in the connected directory.
FOD.* Files of all types with hame FOO.
Fx.» Ali files whose names start with F.

FxXx, = All files whose names start with F and contain at least one X
%. * All files whose names are exactly one character long.
* %% All files whose types are at least three characters long.

Wildcard notation is used on many computer systems in simila