
Planning a Computer
Network: The Octopus
Experience*

John G. Fletcher

Lawrence Livermore Laboratory, University of California

The author of this article is engaged in so&
ware design and implementation for the
decade-old Octopus computer network.
This network remains in a continual state
of growth and change in a constant effort
to take advantage of the most advanced
hardware and software available from an
ever-developing technology. Those plan-
ning a computer network or other complex
computer system should benefit by consid-
ering the Octopus experience with regard
to the needs of computer users, methods
of design, network and operating system
structure, security and privacy, the manage-
ment of limited resources, and the advan-
tages of locally generated hardware and
software.

T HE LAWRENCE LIVERMORE LABORATORY (LLL)

is operated by the University of California;
the major portion of the Laboratory’s funding is
derived under a contract with the United States
Atomic Energy Commission. It carries out research
and development programs in various areas of
science and technology in response to changing
national needs. For example, in recent months
there has been an increased emphasis on matters
relating to energy sources and energy utilization.

It was clear from the time of the founding of LLL
in 1952 that its future would be closely tied to the
future of the then young computer industry. The
digital computer makes it possible to simulate the
performance of many more experiments than can
actually be performed because of limitations im-
posed by cost, time, technical feasibility, and
political and legal considerations. Over the years

‘Work performed under the auspices of the U.S. Atomic
Energy Commission. Copyright is granted on a non-
exclusive, irrevocable, paid up licence basis to the U.S.
Government.

72

LLL has striven to obtain and utilize computer
equipment representing the very forefront of
computer technology; the largest, the fastest, the
most sophisticated. For example, LLL was the
first to have the CDC 6600, the CDC 7600, the
IBM 10”-bit photo-digital store, and the Radia-
tion, Inc., 30,0004ine/minute printer. The first CDC
Star-100 was recently delivered.

During the 1950s each LLL computer was
operated independently in a batch-processing
mode. It gradually became clear that this primitive
approach to operation was inadequate, and about
a decade ago the Octopus computer network’ was
created. Today Octopus joins all but a small
fraction of LLL’s computing resources into a single
interconnected computing facility. It is a fully
operational working system serving over 1000
users; it is not an untried design, nor is it merely
an experimental project. Although few, if any, of
the concepts used in the Octopus design are new
or original, the network represents an integration
of many advanced concepts, which is unique for its
size and complexity. Therefore, the experience and
insight we have gained from the Octopus experience,
particularly with regard to the planning of a
computer network, should be of general interest.

The planning of a computer network-or any
other computer facility-should pass through four
stages in proper sequence: first, identifying the
needs of those who will use the facility; next,
designing a system that will satisfy those needs;
then, selecting the equipment required by the
design; and finally, allocating funds. This sequence
seems so obvious that it should not require men-
tioning. However, it appears to be commonplace
that these stages occur out of order, even com-
pletely in reverse: an amount of money is set aside
for the purpose of acquiring a computer capability;
equipment is then bought in quantities determined
by the funds available; decisions are made as to
how the equipment will be used; and only when it is
too late is it known whether or not the needs of the

LONG RANGE PLANNING

user have been satisfied. Here we shall discuss the
four stages in the correct sequence.

USER NEEDS

In considering the needs of the LLL employees who
are the users of the Octopus network, several
observations have been made. The most important
is that such needs are varied and changing. Although
most of the use of the network is for scientific
computation, there is also use by administrative,
clerical, financial, and library personnel. Even
considering just the scientific activity, one finds the
need not only for numerical calculation, but also
for information retrieval, text editing, interactive
display, and more. Furthermore, these varied needs
are not static; they expand and change with time
in ways that are often impossible to foresee, since
the experience of using a facility frequently suggests
new and more convenient patterns of activity.
Therefore, the Octopus design is above all flexible,
with as little as possible being assumed about the
users’ behavior. Octopus is a computer utifit~a
conglomerate of processing, storage, and communi-
cation resources that the user is allowed to request
and then use as he sees fit (within limitations im-
posed by the system). In spite of the variety of LLL
users’ needs, certain nearly universal needs can be
identified :

Computer resources should be immediately
and conveniently available. T.urn-around time,
the interval between the submission of a
request for computer resources and the receipt
of results, should be determined only by
speed of operation of the computers; it
should not be increased by inefficient opera-
tional techniques. For this reason, Octopus
provides for interactive time-sharing. A user
accesses the network primarily through a
remote interactive terminal (e.g., a tele-
typewriter) located either in his own office or
close by. If he has a card deck to input or a
moderate amount of printed matter to be
output, he can use a remote input/output
facility consisting of a card reader and line
printer located in his building, often on his
floor. The operating system software of the
various network computers permits opera-
tions relating to the activities of many users
to be overlapped and performed in such rapid
sequence that to a considerable extent each
user can maintain the illusion that he has a
computer to himself. This kind of organiza-
tion permits the results of very small problems
to be returned so quickly that to a human it
appears nearly instantaneous.

Computer resources should be universally
accessible. Each remote interactive terminal
should be capable of calling into play any of
the network resources. It is this need that
dictates that an interconnected network,

JUNE, 1975

rather than a number of independent com-
puters, is required. With the network, a user
at any terminal can converse with any of the
large worker computers (e.g., CDC 7600’s),
which have the function of executing users’
programs. The worker computers can in turn
command the operation of any of the net-
work’s storage devices or input/output equip-
ment. Without a network, there would have
to be a separate class of remote terminals for
each worker computer, which would no
doubt require the purchase of a larger num-
ber of terminals. Also, unique and expensive
equipment such as the lo’*-bit store and the
30,000 line/minute printer would not be
directly available (on-line) to all computers
but would have to be used indirectly (ofiline)
by manual transport of magnetic tapes or
similar media, resulting in reduced efficiency
and increased time delays.

Complete programming freedom is required.
The user should be able to write his program
in whatever programming language he finds
most suitable. At LLL, the principal language
is a form of FORTRAN called LRLTRAN,2
but a great variety of languages is available-
including assembly language (for each kind
of computer), COBOL, ALGOL, APL,
SNOBOL, and LISP. Such freedom, coupled
with security requirements (discussed below),
requires that worker computer hardware
provide two modes: a privileged one for the
execution of the operating system and an
unprivileged one for the users’ programs.
Programs executing in the unprivileged mode
are interrupted after a predetermined time,
they are limited as to the portion of the main
memory that they can access, and they cannot
directly access secondary storage or input/
output equipment; such access is performed
by making requests of the operating system.

The computer system must retain information
for extended periods, in some cases for years.
That is, there must be a central data base
maintained by the network that is directly
accessible to all worker computers. At LLL
the primary facility for storing this data base
is the 1012-bit store. Without a central data
base, one is faced with the inefficiency and
delay of maintaining multiple copies and of
transporting information manually.

Interference by one user with the activities of
another cannot be tolerated (whether it
arises from malicious intent or, as is usually
the case, from error). No user should be able
to induce a malfunction of the system. No
user should be able to view or alter another
user’s private information. No user should be
able to usurp an unfair portion of the system
resources. That is, the system should provide
security, privacy, and fairness.

73

Finally, at least at LLL, users demand very
extensive and very up-to-date facilities. They
continually modify and improve programs,
with the result that they require more pro-
cessing time and other resources; therefore,
LLL needs several of the largest and fastest
computers available today. Users also request
that every convenience of which they hear or
read be made available to them; a current
trend is toward the introduction of devices
permitting rapid display of text and pictures.
The major components of the current
Octopus inventory are summarized in Table 1.

NETWORK DESIGN

In designing and implementing the Octopus net-
work, LLL has made use of whatever good ideas
could be found in the computing literature and
other external sources. However, much of the
effort has had to rely on trial and error, guided by
the good sense of LLL’s own staff, for Octopus for
the most part has tread and is treading new ground.
Universities, which are an excellent source of good
ideas (as well as some bad ones), are hampered in
their efforts to fully implement those ideas by a lack
of funds. Commercial users of computers generally
have been reluctant to create their own computer
system designs and have relied on computer
manufacturers and computer software firms. The
latter two groups seem very slow to innovate,
possibly because of the difficulties of accommodat-
ing radical changes to their existing customers and
of convincing new customers of the effectiveness of
an untried concept. It is for these reasons that
Octopus is unique.

In judging the applicability of Octopus design
concepts to their needs, others must first consider
whether their needs are the same as the needs of
LLL users (cited above). They should also note that
Octopus is geographically compact and uses its own

data transmission lines; the problems of dealing
with the commercial telephone network are absent.
Furthermore, Octopus is under a single adminis-
tration, which avoids a number of problems of a
political nature. Nevertheless, the LLL situation
probably resembles that of many medium or large
.corporations or governmental bodies.

A computer system should be designed defen-
sively. This is the most important principle used at
LLL. Defensive design means that each part of the
system will (in so far as possible) recover from the
results of anomalous events. In particular, no
malfunction or error in one component of the
network should induce a malfunction in other
components of the network. The same rule should
apply to a considerable extent to different program
modules within a single computer, especially when
they are written by different programmers.

One aspect of the defensive design of Octopus is
that each computer in the network generally has
only a single function. Thus, the worker computers
carry out only those activities immediately neces-
sary to the execution of users’ programs. Other
computers in the network are classified as cuncen-
trurors. Each concentrator is the center of a sub-
network that carries out a single function in support
of the worker computers. The concentrator is
connected to each worker computer and to what-
ever terminals, input/output devices, or storage
media are appropriate to the function of the
subnetwork, as shown in Figure 1.

The major subnetworks currently making upOcto-
pus are summarized in Table 2. Figure 2 indicates
how the entire Octopus network is formed by a
superposition of its subnetworks. A failure in any
concentrator can deny the network the capability
provided by the corresponding subnetwork, but it
will not significantly affect other capabilities. Inter-
connections between subnetworks (not shown in
Figure 2) provide alternate routes for information
so that in many cases a failure of a connecting link

Table 1. Octopus Hardware Inventory.

Function

Computer

Storage

interactive Terminal

Output Display

Output Hardcopy

Card Input

Miscellaneous i/o

Number

4
1
2

-40

1
1

-20
-20
-20

-600
-20

-5
2

128

1

-30’

-30
-

Equipment

CDC 7600
CDC 6600
DEC PDP-10
minicomputers

1 Olz-bit photodigital store
Data Cell
disks
disk pack drives
magnetic tape transports

teletypes
30 character/set hardcopy units
alphameric softcopy units
LDS-1 high-performance displays

television monitors

30,000 line/minute printer
FR80 microfilm recorders
300 to 1000 line/minute printers

card readers

card punches, paper tape, DECtape, etc.

74 LONG RANGE PLANNING

Figure 1. Typical Octopus Subnetwork.

will in no way degrade network capability. A highly
centralized network (such as the name Octopus
might suggest) with a single ‘head’ directing traffic
among its ‘tentacles’ is highly vulnerable to failures
in the head, and the frequency of failures in the head
is aggravated by each addition to the network, since
it requires a change in the head. The actual Octopus
structure permits the graceful replacement of
obsolete facilities and introduction of additional
facilities; the temporary disruptions caused by such
changes affect only a small part of the entire
network.

Another aspect of the defensive design of
Octopus is that the system programs in the worker
computers (those that execute in the privileged
mode) are kept as limited as possible; as much
activity as possible is carried out in the unprivileged
mode. The system programs perform those func-
tions, and only those functions, that present a
threat to the security of the system or to the
privacy of the users; such programs include those
for accessing the data base, routing messages,
allocating and charging for resources, and per-
forming input/output. Functions not performed by
system programs include, in addition to applied
computation, compiling (translating programs
written in FORTRAN, COBOL, or other com-
puter languages into machine instructions), editing

textual information, searching the data base to find
desired records, and altering or debugging defective
programs.

Limiting the system programs has the additional
advantage that the programming load may be
distributed over a wide base. Only those changes
and additions of a very fundamental nature affect
the system programs and therefore need be made
by the highly trusted and highly skilled group of
system programmers. (At LLL this group numbers
only about 20 persons, even though the entire
network has been designed and implemented by
LLL employees with no use being made of manu-
facturers’ software.) All other changes and addi-
tions are made by programmers associated with the
group desiring the change. One can imagine a
hierarchical structure of non-system programmers.
At the highest level are those who write the sub-
routines, compilers, and utilities that are used
universally. Programmers at lower levels use the
routines generated by those at higher levels as
building blocks in producing specialized, and
perhaps very sophisticated subsystems for use in
particular ranges of applications. A very complex
program, such as a compiler, can be written by a
programmer at any level of the hierarchy, depend-
ing upon the range of users who expect to use it.
(Several users at LLL, in fact, have written their
own personal compilers.)

Defensive design means not only that the system
will survive after a malfunction, but also that
malfunctions are detected and corrected. The
system must collect records of its activity, particu-
larly of anomalous events. Very serious anomalies
must be reported immediately to operating per-
sonnel. It should be possible to debug and trouble-
shoot all but the grossest software and hardware
failures while the computer involved continues to
run.

SECURITY AND PRIVACY

The security of a computer system may be subverted
by unauthorized persons who gain physical access
to its components. All computers must be protected,
since their programs (and even their hardware)
can be modified by anyone who can physically
touch them. Transmission lines must be protected
against taps; in many cases the only solution is to
send all messages in encrypted form. Personnel
security is even more difficult. At present there is
no choice but to trust the small group of persons
who design and maintain the system; any completely

Table 2. Octopus Subnetworks.

1. Controls 512 remote teletypewriter terminals.
2. Controls 256 remote teletypewriter and other more advanced interactive terminals.
3. Controls 128 remote television monitors for displaying computer output.
4. Controls 24 remote card reader/line printer facilities.
5. Controls centrally located high-speed printers and microfilm recorders.
6. Controls data collection from remote experimental facilities.
7. Controls the central data base and intercomputer file traffic.

JUNE, 1975 75

[Worker)A 1

Concentrator
i

Concentrator

Figure 2. Octopus Network Structure.

safe scheme of program and hardware checking
and ver&ation would be prohibitively expensive.
If the physical and personnel security problems are
solved, then creating a secure system is not difficult.
All that is required is that the designers and im-
plementers of the system be competent and keep
security constantly in mind: it is extremely difficult,
or impossible, to correct an insecure system by
subsequently making additions or minor alterations.

future may provide (at reasonable cost) truly
foolproof devices that recognize fingerprints,
voiceprints, or the like.

The requirement of privacy implies that the
system must be able to unambiguously identify a
user who has begun to use an interactive terminal.
Otherwise it would not know which resources (data
bases, executing programs, time allotments, etc.)
should be made available to him. Octopus requires
that a user type a secret combinarian (or password)
at the time he begins to use a terminal. The com-
bination, consisting of six letters, is initially gen-
erated by Octopus (using a random process), is
known only to Octopus and to the user (not to any
administrator), is changed periodically, and is
neither printed nor displayed when typed by the
user. All generation and verification of combina-
tions is performed by a special pair of computers in
the network (which have no other function); if
either member of the pair fails, the other can carry
on alone. Provided that users are conscientious
about not writing down their combinations, this
scheme seems safer than one using keys or coded
cards, which can be lost or stolen. However, the

Having identified the user, the system must next
determine the resources to which he has access.
Octopus utilizes an extremely flexible concept
known as a directory structure. A directory is a
body of information maintained by Octopus that
points to (or lists) a number of resources; each
resource is associated with a mnemonic or name
by which a user refers to the resource. A directory
itself is a resource; that is, one directory may point
to other directories. The directories therefore form
what the mathematicians call a directed graph
structure: starting at any directory, one may follow
numerous branching (or looping) chains of pointers
that ultimately terminate at non-directory resources,
such as data files (see Figure 3). For each user there
is an associated, unique root directory; the user may
access any resource that can be reached by a chain
of pointers starting at his root directory. The system
can access any resource whatsoever by following
chains of pointers starting at a particular directory
called the master directory. The directory structure
permits each user (and the Octopus system) to
create a convenient logical structure for his
resources. It also permits the most general kind of
resource sharing among users; each user may give
every other user pointers to as many or as few of his
resources as he wishes.

76 LONG RANGE PLANNING

Figure 3. Example of a Portion of a Directory Structure.

LIMITED RESOURCES

Often when someone hears of the LLL computer
inventory, he assumes that the users of Octopus
exist in a world of effectively unlimited information
processing resources. This is simply not so. Octopus
resources are large because LLL computing needs
are large. In fact, the majority of users’ complaints
about the network can be traced to the exhaustion
of a resource. Octopus must be efficiently im-
plemented because needless inefficiencies would
only increase these complaints and would require
additional expense to compensate for them. In
achieving efficiency, a major concern of the system
designers must be the effects of access delays and
mismatched data transfer rates between devices
that are exchanging information. In deciding what
is to be done to alleviate a resource shortage, there
is no simple rule to follow when balancing equip
ment cost, hardware and software design effort,
time until availability, and the ultimate quality of
service.

Since resources are always limited, some scheme
must be employed to equitably limit user requests
to the available supply. Quasi-economic techniques
seem to be the most successful. In requesting
processor time, for example, an Octopus user may
bid a value in the range O-1 to 10.0; those who bid
higher receive preference. The time taken by a
user’s program is multiplied by his bid and deducted
from his allotment of time. This, the user must
balance his desire to execute his programs at
popular hours of the day (when high bids are
required) against his desire to execute for a long
time.

Nevertheless, the entire problem of resource
allocation (including processor scheduling) and
charging is one of the most intractable at LLL. One
difficulty is that different users exhibit different
patterns of activity. For example, when considering
how to include program size in the charge for
processor time, one is making a decision that
determines whether large or small programs are
favored. The users will never agree among them-
selves as to what algorithm is fair and proper; each
would like an algorithm favorable to himself.

JUNE, 1975

Another difficulty is that there is no unbiased way
to determine how much time should be placed in
each user’s allotment. (This should be less of a
problem in a commercial environment, where the
allotment would be bought with real money.)
Briefly, resource allocation is another area in which
the system should remain flexible.

HARDWARE AND SOmARE

In selecting the hardware necessary to implement
the Octopus design, LLL found that the most
suitable equipment was not all of a single manu-
facture. LLL therefore employs a staff of engineers
and technicians who design, install, and maintain
the interfaces that join computers and other
devices of differing manufacture. A connection
between two computers typically consists of two
interfaces; each interface adapts the input-output
hardware of one computer to an Octopus standard
hardware protocol, according to which the two
interfaces interact (as shown in Figure 4). This
means that only one kind of interface need be built
for each type of computer, rather than one for each
pair of interconnected types. The engineering staff
also designs and installs other devices beside
interfaces; this is necessary because sometimes a
required kind of equipment is not available from
any manufacturer.

In the case of software, LLL has found it neces-
sary to go even further: all system programs and
most other software are generated at LLL. This is
necessary because of (1) the network activity
peculiar to Octopus, (2) the presence of unique

Figure 4. Typical Intercomputer Connection.

77

equipment, (3) the fact that manufacturer’s soft-
ware is often not yet available when LLL acquires
a computer, and (4) the fact that commercially
available software often does not adhere to the
design principles outlined above, particularly with
regard to security. LLL therefore employs a staff
of system programmers who design, implement,
and maintain Octopus software. In consequence,
Octopus software is not only more advanced and
more tailored to LLL needs than commercial
software, but it is also more readily altered in
response to changing needs. And by having hard-
ware and software designers work together, LLL
has generated designs that represent a very efficient
division of function between hardware and software.

It has been found at LLL that hardware reli-
ability is a more serious problem than software
reliability: once a software error is fixed, it remains
fixed, but hardware continually fatigues and wears
out. Even so, it is important that software be
designed and implemented with as few errors as
possible. For this problem there is no panacea;
there is no substitute for highly skilled and con-
scientious programmers who are interested in their
work. At LLL, work on the computer system is kept
interesting by granting programmers considerable
independence. (This at least partly accounts for the
fact that system programmer turnover is low.) The
software designers of the network also implement
their designs; there is no two-level structure of
analysts and programmers. Recently this approach
has been widely hailed as the significant aspect of
the chief programmer approach to software
development.

Other recently promoted techniques3 for produc-
ing flexible and reliable software at minimal cost

are in many cases irrelevant or dangerous. They are
characterized by an effort to replace the good
judgment of the programmer with a few simple rules
regarding the programming languages or program-
ming constructions that he should employ. The
nature of the rules proposed suggests that the
proposers are familiar with only a part of the
computer system design and implementation
problem. A complete system requires a full range
of languages and techniques; the selection among
them cannot be reduced to a few rules but should be
left to the software expert who will do the work.

THE FINAL STEP

This discussion has followed the planning of a
computer network from the determination of the
users’ needs, through the layout of the design, to
the selection of hardware and software. The final
step is obtaining funds. I can offer little assistance.
The reader is on his own! n

REFERENCES

(1) J. G. Fletcher, The Octopus Computer Network.
Detamalion, Vol. 19, No. 4, pp. 58-93 (April 1973).

(2) S. F. Mendicino, R. A. Hughes, J. T. Martin, F. H.
McMahon, J. E. Ranelletti and R. G. Zwakenberg,
The LRLtran Compiler, Comm. ACM, Vol. 11, No. 11,
pp. 747-755 (November 1968).

(3) D. D. McCracken et a/., Revolution in Programming
(a collection of five articles). Det8mation. Vol. 19,
No. 12, pp. 5D-63 (December 1973).

LONG RANGE PLANNING

