
ll 

UCID-30021, Rev. 1 
Computer Documentation 

LAWRENCE LIVERMORE LABORATORY 
University of California/Livermore, California 

PRELIMINARY USER'S MANUAL 

FOR THE 

STAR SYSTEM SOFTWARE 

Joseph E. Requa 

Harriet G. Coverston 

Pierre Du Bois 

Donald R. Emery 

Douglas A. Kent 

Paul E. Lund 

Marilyn D. Richards 

David F. Storch 

George E. Vranesh 

March 9, 1972 

Prepared for U.S. Atomic Energy Commission under contract no. W-7405-Eng-48 





PREFACE 

This document represents the current status of the 

STAR software system which is being implemented at LLL 

for the Control Data STAR-100 Computer. As such it is 

subject to change without notice. 

-iii-





Rev, 1 

TABLE OF CONTENTS 

STAR System Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 
STAR System Philosophy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1.1 
Memory Concepts ............................................... 1.2 .1 
STAR System Diagram ........................................... 1.3.1 
STAR Software Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1. 4 .1 
STAR Peripheral System ........................................ 1. 5 .1 
Scanner Mechanism. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1. 6. 1 
Paging Mechanism .............................................. 1. 7 .1 
Job Scheduling ................................................ 1. 8 .1 
Time Usage & Charging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1. 9 .1 

STAR System Terminal Interface ..................................... 2 
STAR ID Line Sequence .................................... , . . . . 2 .1.1 
STAR Execute Line ............................................. 2 .1. 3 
STAR :B"<Je Line ................................................. 2.1.5 
STAR Break Line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 . 1. 6 
STAR Mes sage Line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 .1. 6 
System Inquiry Messages ....................................... 2.1.6 
Program State Mnemonics ....................................... 2 .1. 7 
Error Messages Detected. By Execute Line Processor ......•...... 2.1.8 

STAR System File Management Overview ............................... 3 
STAR File Management. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 .1.1 
STAR Drop Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 . 2 . 1 
S'I'A.R Disk Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 . 3 .1 
Ownership Categories .......................................... 3. 3 .1 
VJanagement Categories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3. 3 .1 
Type Categories ............................................... 3.3.3 
STAR Minus Page. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 . 4 .1 
Output Files For User 1 ....................................... 3.5.1 
STAR Record Structured Files .................................. 3.6.1 
STAR Pool Files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3. 7 .1 

STAR Sys tern Calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 
User Call Message Format ...................................... 4.1.1 
Available System Calls ........................................ 4.2.1 
Create . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 . 3 . 1 
Des troy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4. 4. 1 
Open. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4. 5 . 1 
Map ........................................................... 4.6.l 
Close. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4. 7 .1 
Terminate ..................................................... 4.8 .1 
Ad.vise ........................................................ 4.9.1 
Give Files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 .1¢ .1 
List File Ind.ex or System Table ............................... 4.11.1 
Release File Space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 .12 .1 
Change Name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4. 13 . 1 
Give Tape Access To Controllee ................................ 4.14.1 
List Controllee Chain ......................................... 4 .15 .1 

-v-



Rev. 1 

TABLE OF CONTENTS 

Send A Message To Controller .................................. 4.16.1 
Send A Message To Controllee .................................. 4.17.1 
Get A Message Or Symbols From Controller ...................... 4.18.1 
Get A Message Or Symbols From Controllee ...................... 4.19.1 
Message Control ............................................... 4. 2¢ .1 
Write Controllee Pages To Disk ................................ 4.21.1 
Send A Message To The Operator ................................ 4.22.1 
Initialize Or Disconnect Controllee ........................... 4.23.1 
Problem Program Interrupt ..................................... 4 .2~- .1 
User Directory Modification ................................... Lf .25 .1 
Miscellaneous ................................................. 4.26.1 
Recall ............................. , .......................... 4.27 .1 
System Call#5~ Explicit I/O .................................. 4.28.1 
Return From Interrupt ......................................... 4 .29 .1 
Give Up CPU Until I/O Completes ............................... 4.3¢.1 

-vi-



Rev. 1 

APPENDICIES 

APPENDIX 

STAR Register File Conventions.............................. "A" 

Object Module Format For STAR............................... "B" 

STAR Binary Card Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II c" 

Created Pages............................................... "D" 

Fatal User Errors From Fault Processor...................... "E" 

STAR Character Set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "F" 

STAR Memory Layout - Initial System ......................... "G" 

STAB. Op Codes and :Mnemonics. . . • • • • . . • • • • . • . • • • • • • • • • • • • • • • • • 11H" 

STAR Subroutine Linkage Conventions......................... "I" 

-vii-





1.1.1 

STAR SYSTEM PHILOSOPHY 

The intent of the STAR system is to provide a means of fully utiliz

ing the STAR computer while at the same time maintaining compatibility 

with the OCTOPUS network and extending the time sharing philosophy devel

oped by and currently in use at the Laboratory. 

The time sharing philosophy of the Lab differs from that outside the 

Lab in several important respects: 

1. File Orientation. All user information in memory has corresponding 

storage space on rotating storage so that jobs may be entered into 

and removed from memory as system requirements dictate. 

2. Language Independence. Communication between the system and user 

processes should be independent of software conventions of any lan

guage so that the user is free to utilize whatever software tools 

he sees fit. 

3. No Terminal Langu~ge. Since it is impossible for a system of a 

finite size to provide all the terminal language capabilities de

sired by the broad class of users at the Laboratory, the system 

only supports an ID line to connect the user to the computer, an 

EXECUTE line to indicate execution of a code already existing in 

a file on rotating storage, a BYE line to log the user off, and 

a series of system status requests preceded by a Control-E char

acter. Only the EXECUTE line causes user code to be executed. 

4. Primitive Function Oriented -~m Calls. The system provides a 

series of calls which, when issued by a user program, will cause 

system functions to be performed for the user code. These calls 

provide for resource allocation, file manipulation, message han

dling, obtaining system information and performing input and output. 



5. One Job Can Initialize and Run Another Job. This function 

allows the capability of implementing batch processors and 

message interface routines in a straightforward manner. 

1.1.2 

6. No Input/Output Limitations. For those devices or portions 

of devices to which the user has access, he should be able 

to do input and output in any manner of which the device is 

capable. For example, the system provides the means of 

creating a disk file containing absolute column binary card 

images. The user can read the file utilizing logical address 

within the file and hence is capable of processing any card 

deck in any format. Any sub-system such as COBOL or FORTRAN 

is then free to implement internal data structures required 

for the sub-system without system overhead and without forc

ing any other sub-system to be compatible with its data 

requirements. 

With these unique features, the time sharing systems at the Lab 

can support a multitude of terminal languages, language processors 

and utilities with very little system overhead. 

A set of files with global access called public files replace 

the normal terminal language. These files may contain routines to 

perform functions, through system calls, which would normally be per

formed by a terminal language. One or more may also contain command 

interpreters for a terminal language which then run other files to per

form the interpreted functions. Any user who needs a specialized ter

minal language for his application is free to write his own. Batch 

processing can be implemented in a straightforward. manner by simply 

interpreting messages obtained from a file rather than from a terminal. 

Once a batch processor is initiated, the user may log off the terminal 

and his jobs will be run to completion by the batch processor. 

The end result of this approach is to give the user all of the 

advantages of a terminal oriented time sharing system both from the 

terminal and from a user code with a low system overhead.. Also, since 

system requests are between a program and a program rather than between 



a man and a program, more information can be transferred in a more 

compact manner. Hence more powerful and complex system functions 

can be provided than are found in the normal time sharing system. 

Naturally a number of public files are provided by the system 

programmers as a necessary adjunct to the system for the casual 

user, such as compilers, loaders, batch processors and utility 

routines, but they are not a part of the system, and are treated 

exactly the same as any user job. 

Because of the virtual memory structure of STAR, and the file 

orientation of the system, the STAR system contains a powerful set 

1.1.3 

of calls for file manipulation and mappings between files and virtual 

space of which existing 6600, 7600 system calls are a subset. 

Terminal message handling has also been modified to give the 

user more flexibility. In general, the STAR system contains ex

isting system functions as a subset with the balance of the func

tions provided as logical extensions to current modes of operation 

to make full use of STAR capabilities. 





1.2.l 

MEMORY CONCEPTS 

The terms virtual memory and paging define concepts employed in 

the STAR hardware to facilitate multiprogramming or time sharing. The 

paging concept is generally present in virtual memory systems and has 

the effect of causing main memory, i.e. memory from which instructions 

may be executed, to appear larger than it really is and facilitates 

dynamic relocation of program segments. The STAR main memory is a 

core memory of 512 K (lK = 1024 words) 64-bit words. The main memory 

is considered to be divisable into eight blocks of 65536 words each. 

A block of this size is referred to as a large page. Each large page 

is divisable into 128 blocks of 512 words each. These are called small 

pages. 

The virtual memory concept provides an extension of addressable 

space to make it appear to the programmer that he has all of main memory 

and all of auxiliary memory immediately available. Auxiliary memory in 

the STAR hardware system is provided in the form of CDC 817 disc storage 

units. Since the programmer does not really have all of auxiliary memory 

available but only apparently available, the concept is termed virtual 

memory. A hardware mechanism is provided to translate each program -

generated virtual address to a physical core memory address according to 

a table whose content is controlled by the STAR software system. This 

table contains one entry for each page currently assigned by the soft

ware system. The table is of sufficient length to catalog the 1024 small 

pages possibly concurrently assigned to core memory. Each entry contains 

a physical page address, a user identifier - called a lock - and the virtual 

page address as it is known to the user. Utilizing this hardware, a page 

of the user's space may be loaded into any available physical core page and 

execution may proceed. 

Since a user identifier is provided as part of a table entry, two or 

more users may have a page in memory with the same user virtual address but 



1.2 .2 

different physical addresses. Thus, the user identifier, or lock, can be 

recognized as a memory protection device. It allows more than one pro

gram having the same virtual address range to execute simultaneously in 

core memory with no address conflicts. 

'rhe CDC STAR-100 hardware system has a bit-addressable main memory. 

The ad.dre.ss field allowed is 48-bits wide, allowing reference to 234 - 1 

small pages or 227 - 1 large pages. This range is considerably greater 

than the totality of storage media provided with the hardware system. For 

this reason it is sometimes conceptually convenient to consider virtual 

memory as symbolically "named space" rather than as "virtual address space." 

During execution of a program, the virtual addresses it references are 

little more than symbolic pointers to some segment of the program which 

rnay be dynamically relocated in physical memory several times. 

Until the advent of paged virtual memory hardware, the technique for 

handling problems too large for the core store had been to divide the pro

gram into segments and to provide a set of instructions for a loader as to 

when and where to replace program segments. Program segmentation using 

overlays had been the individual programmer's responsibility. Virtual 

memory and paging techniques permit the programmer to use memory as though 

it were entirely available to him. When a program reference a segment not 

in the main memory, the executive system intervenes. It takes care of 

locating the page containing the referenced address in the auxiliary memory 

and placing that page into main memory and makes the association between 

the virtual address referenced and the physical core address assigned to 

the segment. The latter is accomplished by completing the entry in the 

hardware address table already discussed. The lock portion of the entry 

is filled in from one of four such locks provided each executing program. 

These locks are in the form of numeric codes which are catenated to the 

address referenced by the program to form the virtual address which the 

hardware will interpret. These codes when supplied to the program are 

known as keys and are related to the program's descriptor block number. 



1.2 .3 

Rev. l 

Each program may have four such keys, one each for referencing 1) read/ 

write space, 2) read/only space, 3) library space and 4) shared space or write/ 

only space. The program then, has the key, the hardware address table has the lock 

and if the two are identical, the referenced virtual space is accessible. 

The operating system provided by LLL for the STAR-100 will consider 

every program to be executable only in virtual space. Data files scheduled 

for use by such programs may be defined in either virtual space or physical 

space. Virtual program and virtual data files must follow certain format 

specifications. (see Page 3.4) Generally, each virtual disc :::'ile is pre-

faced with a "minus page" which is a 512 word segment containing information 

needed by the operating system to control execution of the program. A part 

of this minus page is called the "bound virtual map." It is the function 

of this map to relate virtual addresses to logical disc addresses. A disc 

file which is defined by the user as being part of his virtual space may 

have up to 40 virtual partitions. Each of these is represented by an entry 

in the "bound virtual map" which describes the virtual address associated 

with the beginning of that piece of virtual space, the disc sector address 

corresponding and the length of the particular piece of the file. A virtual 

code file must have all its map entries up to date prior to execution. This 

is not a requirement for virtual data files the code may wish to use. As a 

virtual data file is opened, the program may accept the definitions in the 

bound virtual map or may ignore them and map the file into virtual space 

as it sees fit. System calls are provided for these operations. 

At the time a program is submitted to a loader, it must provide in

formation regarding where in virtual address space it shall be considered 

to reside and whether its address space is contiguous and whether it is 

to be segmented into small or large pages. For each address discontinuity 

or access discontinuity, an entry is made in the bound virtual map by the 

loader relating the beginning virtual address of the space to a logical disc 

address and providing the continuous length of the defined space. It is 

through interpretation of the bound virtual map that the operating system 

will later understand which page is to be read from the disc file containing 



L2.4 

the loaded program into the core memory when an address interrupt occurs. 

The phrase "bound virtual map" can be seen to define virtual space bound 

absolutely to a fixed space on the disc and,, hence, the virtual address 

is merely- a symbolic reference to the disc (auxiliary memory). 

Since we have a file-based system for the STAR computer, we need 

some disc region associated with each virtual region. This allows for 

complete program swap-out. We have incorporated the existing "drop file" 

concept into the STAR operating system. The drop file is a disc file 

created automatically by the system for each program as it is put into 

execution. The purpose of the drop file is to contain any modified pages 

of the program file, and modified pages of its read/only data files which 

have been defined to have temporary write access, and any free space which 

may have been attached. The drop file is considered a repository for parts 

of virtual space and so must have a minus page and map space. The area of 

a minus page reserved for such a map is known as the "drop file map." 

Assume a program in execution wishes to access an area of virtual 

space not defined in its bound virtual map. The program may create or 

open a disc file and map it into the desired address space, which results 

in an entry being made in the bound virtual map, or if the program just 

wants some temporary work space, it can attach virtual space which is not 

defined as being associated with an existing disc file. The latter is 

known as "free space." The free space is mapped into the drop file map 

in order that these pages can have a place of residence if the operating 

system decides to swap the entire program to disc. The virtual address 

space newly defined by any of these means becomes an extension of the 

program's prior space and is accessible with no further effort on the 

part of the program. Any reference to any address in currently defined 

virtual space will cause system intervention to place the appropriate page 

into core memory. 

With this paging and virtual memory scheme, a program need not ever 

perform any explicit I/O to or from disc storage. This construct is some-



1.2 .5 

times referred to a.s implicit I/O. Further, let us suppose the same ex

ecuting program wishes to develop a. disc file for output to some terminal 

device. Again the program merely creates a disc file indicating its 

virtual space correspondence. This causes yet another entry in the bound 

virtual map. The program procedes to write its output data into the de

fined virtual space with no explicit I/O request being required, i.e. 

the program fills an array. When the program is finished with the space, 

it may close the file causing all pages to be moved from core memory to 

the corresponding disc region. 'I'he act of closing the file also releases 

the virtual space associated with the file from the bound virtu2-l map. 

That virtual space is then available for re-definition. 

There is a situation where a data file might be used by a program 

and a decision is made by the program to modify some part of that data. 

If the input file is read/ only, the virtual space corresponding _is also 

considered to be read/only. In order to modify this virtual space, the 

program must declare the space to be "write t(:0mporary." The "write tem

porary" space is mapped into the drop file map as pages of it are actually 

written, L e. data is stored into the space. A definition of "write tem

porary" virtual space is that it is read/ only space which, if modified, 

will become part of the drop file and will exist in modified form only 

in the program's current execution space. When the job completes, the 

modified data. will disappear with the drop file. 

Having exposed virtual memory and paging concepts as they will be 

applied in the STAR-100 operating system, it should be pointed out that 

the system will provide a way around both concepts for non-executable 

files. A class of files known as "sequential data" files is provided. 

These files have no minus page and, hence, no virtual map. They are 

considered to be data files stored sequentially by continuous disc 

addresses. The intent of providing this class of files is to allow the 

programmer to do explicit I/O and manage his own buffer space in a manner 

somewhat analagous to current IODs on the 6600 and 7600 systems. Opening 

a sequential file causes an entry in the "bound sequential map" to be 

made. All I/O to and from the sequential file is handled by the program 

through its private buffers. 



1.2 .6 

The STAR operating system allows for files types 1) sequential, 

2) virtual data and 3) virtual code. Both virtual types must have a 

minus page prefixed which contains the bound virtual map of the file. 

The sequential file needs no minus page. 

Sequential files which are being used as such must be read and 

written explicitly by the program. Virtual files are read and written 

by the operating system for the program either on a demand basis or on 

advice from the program before an access interrupt actually occurs. 

Virtual files which have write access will be updated automaticslly as 

the user modifies their virtual space. Virtual files which have read/ 

only or execute/only access cannot be modified. Their corresponding 

virtual space can be modified through the mechanism provided by the 

"write temporary-'' definition which allows read/only space to be modified 

and become part of the drop file. 

A final consideration should be that the drop file in finite. The 

system makes a guess at its size bu the program is free to destroy the 

system-created file and then creates its own drop file at the length it 

requires. This request must be made very early in the program before 

any of its pages have drifted to the drop file. Any attempt to attach 

free space which will result in over-subscription of drop file space 

will be signaled as an error and the attachment will be denied. 



Several system calls exist within the structure of the 

STAR software system at LLL to allow the user quite a lot of 

freedom in defining and managing disc files and associated 

virtual address space. It may not be clear how these calls 

may be used to various ends, so this section will outline the 

operation of the file management calls. 

CREATE 

The purpose of the create call is to reserve space on a 

disc and to identify and define that space as specified by the 

user. 

A. Sequential File 

The specified IOC in the program minus page is filled in 

as required and an entry is made in the sequential map -

also part of the minus page. This is sufficient informa

tion to allow the program to initiate explicit I/O to/ 

1.2. 7 

Rev. 1 

from the disc file. Initiation implies "opening a window" 

onto the disc file prior to the actual read or write re

quest. These functions will be described later. Further, 

the user may specify a base virtual address to be associated 

with the file such that it may be used in the virtual mode 

later. 

B. Virtual File 

The specified IOC is filled in as required and one entry is 

made in the virtual map area of the program minus page. The 

virtual address associated with the first word of the disc 

file is taken from the base virtual address field of the 

system call. The system assumes that the disc file represents 



1.2 .8 
Rev. 1 

contiguous virtual address space. If the user wishes to 

introduce discontinuities in the virtual address space 

represented. by the disc file, he must first map out all or 

part of the initially defined space and then map in the 

desired virtual address space. There is a system call to 

accomplish this which will be discussed later. The vir

tual address specified in this call is examined for over

lap of existing defined space, and an error is indicated 

if such overlap exists. The file will not have been 

created if such an error is extant. 

All created files are given read and write access. 

OPEN 

The purpose of the open call is to connect a program to an 

already existing file so that I/O, either explicit or implicit, 

rnay be accomplished. 

A. Sequential File 

1. In sequential mode 

The specified IOC in the program minus page is filled 

in as required and an entry is made in the sequential 

file map area of the minus page. This is sufficient 

to allow the program to initiate explicit r/o to/from 

the disc file. Before the actual I/O can begin, one 

must "open a window" cm the file. This is done through 

a system call which will be discussed later. 

2. In virtual mode 

This option allows the program to use a file formatted 

in the sequential mode (no minus page), in the virtual 

mode. The specified roe in the program minus page is 



1.2.9 

Rev. 1 

completed and an entry is made in the virtual map 

area of the minus page. No entry is made in the 

sequential map. Even though the file is sequential, 

explicit r/o may not be accomplished if the file is 

opened virtual. One may, however, open the file 

more than once, concurrently, in various modes. The 

sequential file opened in the virtual mode is con

sidered to begin at the virtual address given in 

the working virtual address field of the system call. 

The virtual address space represented by the file is 

considered contiguous over the entire length of the 

file. After the open is complete the user may map 

out the just-defined space and map in the file in 

whatever manner he wishes. All the implicit ·I/O 

attributes which normally pertain to virtual files 

are applied to sequential files when being used in 

the virtual mode. 

B. Virtual File 

1. In virtual mode 

The specified roe in the program minus page is filled 

in and, optionally, the virtual map entry(s) is com

pleted. The user may elect to use the map of the file 

as recorded with the file on disc, in which case the 

map entries are simply copied to the program map space. 

The user may, alternatively, choose to open the file 

and have the file map copied into the program's call 

buffer. In this case, only the roe is filled in, no 

virtual map entries are made and the program does not 

have implicit access to the file. This type of open 

call is expected to be succeeded by a map-in call 

which will tell the system how to relate virtual space 

with the physical disc file. Any virtual map entries 



MAP 

made are checked for overlap of existing virtual 

space and an error is signaled if overlap occurs. 

Note that the file remains open, i.e. the IOC 

remains, in the case of an address overlap error. 

This allows the program to reschedule its virtual 

space through the map-out and rnap-in calls. These 

will be discussed later. 

2. In sequential mode 

This call allows the program to have access to all 

1.2 .1¢ 

Rev. l 

of a virtual file including its minus page, but all 

I/O must be explicitly done through the program 1 s 

I/O buffers. The specified IOC in the program minus 

page is filled in and one entry is made in the se

quential map. The file is mapped beginning with word 

zero of the file minus page. Sufficient information, 

as a result of this call is recorded to allow the pro

gram to initiate explicit I/O to/from the file. No 

implicit access is possible to any of the virtual space 

usually represented by the file when it 1 s open in the 

sequential mode. Note that the file m,a,y be open more 

than once concurrently in differing modes. 

The purpose of the map call is to define some virtual address 

region as part of the executing program 1 s accessible space. This 

may be an association of virtual address space with an already open 

disc file or it may be an attachment of free space, that is, virtual 

address space not related to any existing file. Release of defined 

space is allowed. 

A. Map-In 

In order to implicitly access virtual space, the definition of 



1.2 .11 

Rev. 1 

that space must be in the virtual map area of the program 

minus page. The map-in call provides the means to do this. 

Up to forty discontinuous address regions may be cataloged. 

The user relates some virtual starting address and length 

with some disc address of an open file and indicates the 

access rights pertaining to that virtual region. The system 

makes the necessary entries in the virtual space map of the 

program. Overlaps are signaled as an error. If all forty 

entries of the map are full, an error is signaled and no 

further map-ins are allowed until some space is released via 

the map-out option. There is sufficient data available as 

a result of this call to allow the system to process page 

exceptions for the defined space. In the case of a free space 

attachment, the defined virtual space is given a part of the 

program drop file on which it may reside it a core-to-disc 

swap becomes necessary. Free space attachments, therefore, 

are not given an entry in the bound virtual map but are 

cataloged in the program drop file map. This map can hold 

up to 170 entries of up to 31 pages each. This allows for 

as many as 170 non-contiguous address spaces to be part of 

the drop file. 

B. Map-Out 

The map-out option allows for release of virtual address 

space. This may be a release of space associated with an 

open disc file or a release of free space. Virtual address 

space which has been mapped out is no longer accessible to 

the program. The corresponding disc region may be re-defined 

in other virtual space. The disc file itself is not closed, 

that is, the roe is left intact. Mapping out free space 

causes the corresponding drop file map entries to be deleted 

and frees the disc space for re-assignment. If the disc file 



1.2 .12 

Rev. l 

region represented by a virtual space has write access and 

is mapped out, all modified pages of that space will be 

written on that disc file before the map-out process is 

complete. If the parent file did not have write access, 

all modified data is lost through the map out process. 

Note that the map call has no significance in dealing with sequential 

files. 

CLOSE 

The close call is provided to allow a program a means of sever

ing its connection with a previously opened disc file. The disc file 

itself continues to exist. 

The specified roe and the corresponding sequential map entry(s) 

is erased from the program minus page. The program no longer 

has access to the file through that roe. 

B. Virtual File 

The specified roe and the corresponding virtual map entry(s) is 

erased from the program minus page. Any modified pages of a 

write access file are gathered from core and drum and are written 

back to the parent file being closed. The program no longer has 

access to the file or the virtual space representing it. The 

virtual address space associated with the closed file is no longer 

defined. 

DESTROY 

The prupose of the destroy call is to allow a program to terminate 



1.2 .13 

Rev. 1 

the existence of a disc file. The file need not be open to accom

plish the destroy. If the file is open, the destroy is processed 

as usual and, additionally any pages of the file are erased from 

the core-drum system. The specified IOe, if any, and all related 

map entries are erased. The file and all its corresponding virtual 

address space cease to be defined. 

SEQUENTIAL I/ 0 

The sequential I/O call with its options allows the program 

to read or write an open sequential disc file. Prior to the actual 

I/O operation the program must "open a window" on the file. This 

means, simply, to associate some region of the program's defined 

virtual space with some region of the disc file. One might think 

of this call as temporarily allocating some virtual space to some 

area of a disc file. Having opened the window, the program may 

explicitly read or write the correspond disc region. The window 

virtual address may remain fixed and the disc region may be re

defined so that the program may look out the window and "see" a 

different part of the file. The window may be closed by the pro

gram. This disassociates the virtual space buffer and the disc 

region it represented. No I/O may be requested at the virtual 

address of a closed window. Two windows may be open concurrently 

in a sequential file roe. 





-·--~ --
' MAINTANENCE I DISK I CONTROL STATION 

I UNIT I .---. 
I MCU I DISK 

SYSTEM DIAGRAM 

DRUM 
OVERLAYS I OVERIAYS I OVERLAYS 

I STATION 1, STATION I STATION 
NUCLEUS NUCLEUS NUCLEUS 

I_ - - '~ - =\ _I -
I RESIDENT ., 

SYSTEM ~ STATION 

I COMMUNICATION 

I 
I 
I ,_ 

KERNEL 

~ 
L::_J 

PAGE 
FAULT 
ROUTINE 

SYSTEM 
TASKS 

1.3.1 

Rev. 1 

I UNIT RECORD 
STATION I 

I PRINTER, CARD READER I 
I OVERLAYS I 

I STATION...A..NUCLEUS I .. I SERVICE I 
STATION I 

I I 
,_T_'A_P_E_, ----i I DRUM, TI'Y I 

I RF.JET, TRANSPORT 

1-o_VE_R_IA_Y_s __ --< I OVERLAYS I 
STATION STATION 

NUCLEUS I NUCLEUS I 

TASK 
TABLES 

PAGE 
TABLE 

---1 
MONITOR I 
MODE I 

I 
I 
I 
I 
I 

_J 
USER I 
MODE 

I 
I 
I 
I - - ---- ----





STAR SOFTWARE STRUCTURE 

The STAR operating system is divided into four parts: 

1. Resident System. The resident system runs in Monitor mode, 

is always resident in core and references memory by absolute 

address. 

2. Virtual System Tasks. The virtual system tasks run in user 

mode, are pagable and reference memory by virtual address. 

They may modify system tables. 

3. Privileged User Tasks. The privileged user tasks have the 

same characteristics as virtual system tasks, except that 

they may not directly modify system tables. They perform 

tasks which require a long time compared to the virtual 

system tasks. 

4. Peripheral System. The peripheral operating system runs in 

the peripheral I/O computers attached to STAR. 

The resident system is divided into two parts, the KERNEL, 

which is responsible for time slicing and message handling and 

the PAGER, which is responsible for memory management and page 

swapping. 

1.4.1 

The time slicing portion of the KERNEL is controlled by the 

alternator loop. The alternator loop may be considered a circular 

table with each entry of the table containing a pointer to a minus 

page table entry, a descriptor block entry, and three sets of flag 

bits one set for KERNEL usage, one set for virtual system usage, 

and one set for shared usage. These bits define the status of each 

entry in the alternator loop. One entry in the alternator is unique 

in that it is shared by all virtual system tasks. Only one system 

task is allowed to run at a time to prevent two routines from modi

fying the same system table simultaneously. The system alternator 

slot has highest priority and is always run unless the slot is 

blocked for I/O, or PAGER action. If the slot is empty, the next 

task is selected from the job task queue and run. If the slot is 



blocked or the slot is empty and the system task queue is empty, 

then the rest of the slots are examined. This examination is 

controlled by two pointers, MAJOR and MINOR. Time slices are 

given in increments called tick times. MAJOR points to the 

alternator who currently is to run his tick time. If MAJOR can 

run, he is run, otherwise MINOR moves ahead of MAJOR to the next 

job which can run. Whenever MAJOR can run again, MINOR is reset 

to MAJOR. When MAJOR has run his tick time, MAJOR is advanced 

to the next slot which can run and the job which was previously 

MAJOR is given a new tick time. If, when MINOR is ahead of 

MAJOR, MINOR exhausts his tick time, he is marked as cycle

blocked. If MAJOR moves to a cycle-blocked job, that job is 

given a new tick time and MAJOR is advanced again. In this 

manner, for each circuit of the loop, each alternator gets one 

tick time. If MINOR moves all the way around the loop without 

finding a job which can run, MINOR is reset to MAJOR, all cyole

blocked jobs are given a new tick time, and the scan is tried 

again. If no job can run, the system monitors the station input 

queues for responses or requests until some action occurs which 

will allow a job to run. Station queues are periodically checked 

in the scan loop so responses and requests from stations can be 

processed in parallel with job executions. 

User jobs, privileged user tasks and virtual system tasks 

communicate messages to the KERNEL by use of the exit force in

struction. PAGER communicates messages by direct calls. The 

peripheral system communicates messages to the KERNEL by moving 

pointers in the station queueing structure without the use of 

external interrupts. The KERNEL communicates to the peripheral 

system by moving pointers then setting station channel flags. 

All communications between the various portions of the system 

are by messages. All of these messages either pass through the 

KERNEL, in which case it acts as a message switcher, or are pro

cessed directly by the KERNEL. The functions and formats of these 

messages make up a large portion of the balance of this document. 

1.4.2 



1.4.3 

All access interrupts as well as certain messages dealing with 

core allocation are passed to the PAGER by the KERNEL. The PAGER 

dynamically allocates both large ana small pages and performs all 

required implicit I/O necessary to free memory pages and obtain the 

pages causing access interrupts. The PAGER operates in a demand 

paging mode utilizing a least-recently-used page algorithm. If the 

page faulting rate becomes too high, causing an overload in page swap

ping, one or more jobs are disconnected from the alternator to alle

viate the problem. If the number of pages on the paging drums becomes 

excessive, a virtual system task is brought up to alleviate the con

gestion. A degree of pre-demand paging is implemented by means of the 

advice message. This message can also be used to eliminate unneeded 

pages. 

The virtual portion of the system controls the entry of users 

into the system, the entry of jobs into the system, the ordering of 

jobs by priority, and the entry of jobs in and removal of jobs from 

the alternator loop. In addition, it contains the system file manage

ment routines, ·the explicit I/O routines and the teletype message 

handling routines. Virtual system task are placed in the job task 

queue by one of five occurrences: 

1. A communication from the service station requires processing. 

2. A user job requests a system service not provided by the resi

dent system. 

3. Bits are set in one or more alternator slots indicating virtual 

system action is required. 

4. An entry in the periodic table shows that it is time to run a 

virtual system periodic. 

5. A virtual system task requests the KERNEL to queue another vir

tual system task. 

Virtual tasks are all of equal priority and are run on a first 

in/first out basis. 



The privileged user tasks are run under special user numbers 

and are allowed to make either normal user calls or privileged 

system calls. They are not allowed to modify system tables ex

cept by means of calls. Privileged user tasks include: 

1.4.4 

L TIMEDATA is a routine that runs at deadstart times and period

ically thereafter. Its primary responsibility is to update 

system tables via Call #2-3. 

2. TIMECARD runs periodically to move information from the 

accounting table to a disk file. If will also run aperiod

ically if the time card buffer fills before its normal time 

to run. 

3. CARDREDR is brought up by the service station to move a card 

file from the service station drum to disk whenever the ser

vice station has a full card file. 

4. PRINTOUT is brought up by the virtual system to move printer 

files from disk to the service station drum whenever the system 

detects a completed printer file. 

5. HSPOUT is brought up to move files from disk to tape for off

line printing whenever one or a family of such files is avail

able to the system. 

6. DD800UT is similar to HSPOUT) but processes files destined for 

off-line plotting on the DD80. 

7. PUNCHOUT is similar to 5. and 6. but for punch card batch tape. 

Communications between the STAR central system and input and 

output devices is done passing messages to and from stations through 

central memory. Each station has a table of messages which it can 

service and of messages it can send. Although there are a number of 

stations, a large portion of the peripheral software is common to all 

stations. 

The basic peripheral system consists of two parts: 



1. A resident basic system called the NUCLEUS common to all 

stations. 

2. A set of overlays which perform tasks related to the 

individual stations. 

Each station's software is stored on its microdrum. 

The SCANNER program is the basic control mechanism of the 

NUCLEUS. The mechanism consists of a scanner program, scanner 

bits and the scantable which has one entry per scanner bit. The 

scanner bits are ordered by priority with the highest priority 

normally assigned to hardware status bits. These bits have an 

associated exclusive - or mask which allows a change-of-bit con

d.ition to be detected. A change in a scanner bit causes a call 

to the routine associated with it. If the routine is not in 

core, the overlay driver is entered automatically to read it in. 

1.4.5 





STAR PERIPHER~L SYSTEM 

Each station has different resources and its own tasks to do. 

These specific tasks are all implemented in a coITLmon manner and 

are executed within the framework of a sirrrple resident operating 

system. There is a large commonality of software between the 

stations. The main features of the structure are: 

1. A small resident basic operating system called the Nucleus. 

The Nucleus provides an efficient priority interrupt mecha

nism and an ordered allocation of the processor to the 

routines which require it. 

2. Modular software, written as small routines designed to run 

as overlays. One of these routines contains a set of library 

routines. The overlay implementation gives a large degree of 

implicit memory management. 

3. Concentration of tasks into larger task processing routines. 

This provides, for example, on-line error handling and main

tenance procedures common to all stations. 

4. Grouping of station functions into different systems to mini

mize system tables. Any one system contains only those routines 

necessary to its job. 

The Nucleus is a standard program used by each station. It con

sists of a set of simple diagnostic routines, a system dead start 

program, driver programs for the microdrum and keyboard/display, pro

grams to manage the overlay mechanism and the main control and organi

zational program. This last is called the scanner program. 

A station can contain up to nine different software systems on 

the microdrum. At dead start time, the Nucleus can be loaded and 

the proper system initiated. The initiation process consists of set

ting up the pointers to those global subroutines which are involved 

in the particular selected system and defining the conditions under 



which they are called as overlays. 

Systems consist of any or all of six types of overlays. 

1. Nucleus. 

2. Low ~e Over~ay. The first 256 locations of core are 

directly addressable and are called low core. The first 

half of low core is assigned to the Nucleus, and the other 

half to the system. This second half is called the low 

core overlay for that system. 

3. ~~verlay~. These are overlays which are not 

relocatable and must be placed at fixed addresses in 

core. Up to four such overlays are allowed. 

4. Resident Overlays. These overlays are resident in core. 

5. ConditionallY- R~sident Overlays. These are brought into 

core when needed and remain there until they are released. 

6. Temporarily Resident, Overlays. These are also brought into 

core when needed but are automatically released on exit. 

The overlay space is allocated in contiguous segments of 128 

bytes. Core is laid out in the following manner. 

0 

255 

~-095 

NUCLEUS LOW CORE 

SYSTEM LOW CORE 

• 
NUCLEUS 

OVERLAY TABLE 
I-----

FIXED CORE OVERLAYS 

RESIDENT OVERLAYS 

TEMPORARY OVERLAYS 
AND BUFFERS 

I NUCLEUS TABLES 
I 
L_ 



SCANNER MECHANISM 

The scanner program provides a low-overhead mechanism for 

handling asynchronous, external events by initiating program 

execution in a predetermined priority. The mechanism consists 

of a scanner program, scanner bits, and the scan table which 

has one entry for each scanner bit. Each bit is related to a 

specific overlay routine; multiple bits may be assigned to a 

single overlay to provide multiple entry points. The scanner' 

bits are segmented into 16-bit words which may actually be the 

16 bits of an input channel. Such bits are for channel flags, 

drum busy, card ready input signal, etc. These bits have an 

associated exclusive OR mask which allows a change-of-bit con

dition to be sensed. 

Scanner bits contained in core words not associated with an 

input channel are set by routines wishing to call other routines. 

Parameters are passed from routine to routine either via speci

fied low core locations or Control Packages. 

All bits in the scanner have an associated product mask used 

for maintenance and station configuration. The scanner program, 

which is entered by all routines on their exit, searches the 

scanner bits in priority by applying the appropriate masks. The 

scanner re-enters itself if no interrupt is detected; that is, 

no bits are changed. 

A change in a scanner bit is taken to be a call to the 

routine associated with it, and this is entered via the start 

address given in the scan table. If the overlay is not resident, 

the overlay driver is entered automatically to read it in. The 

overlay driver arranges to be entered by placing its own address 

in the scan table entry when the overlay for that entry is not in 

core storage. 

1.6 .l 





PAGING MECHANISM 

Cases Handled 

Handles following hardware interrupts: 

1. Page not found - virtual bit address invisible package. 

2. Write or read or execute violation. 

Handles following software created functions: 

3. Create N* small pages - a KERNEL request. 

4. Get virtual address, V for alternator number, A (looks 

like case 1.) - a KERNEL request. 

5. Advise for N* small pages, starting at virtual address 

V; or advise for 1 large page at virtual address V. 

For case 2, a read or execute violation is always fatal. For 

write violations, a search is made of the user's bound virtual map. 

If the page originated from the source file or a write temporary 

file, or if the individual map entry has write access, then the key 

for the page will be changed to read/write and an entry will be made 

attaching that virtual space to the drop file. 

A page initially receives a read-only key if the virtual space 

is defined in the source file; a write temporary file; a file whose 

IOC entry designates the file as read-only; or a file whose IOC 

entry designates the file as read/write but the individual map entry 

has read-only access. 

Determine Page Definition 

Cases 1, 4, and 5: 
a) Check made to see if page is already on its way into core. 

*N ~ 8, V and A are input. 



b) Check made to see if page is on its way out of core. 

1. 7 .2 
Rev. l 

The processing of the fault is terminated if the 

first check is fruitful, is delayed if the second is 

fruitful. 

c) Next, the user's map for the drop file is searched. 

If a hit, future key is tagged read/write and process 

turns to core allocator. 

d) Next, user 1 s bound virtual map is searched. If a hit, 

the future key is tagged read-only if the file is 

source, write temporary or IOC states read--only or map 

access bits state read-only. If the le is ·write only, 
the is wri ly' size is map entry 
here as wel ·1 as case c), process goes to core locator. 

e) If c) and d) fail, then a create is assumed, and an 

attachment is entered for the drop file for that 

virtual space. Small page size is assumed here unless 

this was an advise with large page flag set. Fatal 

errors occur here if drop file already full or the 

drop file map is already full. The future key is tagged 

read/wri 

Case 3: Processing goes directly to core allocator. 



CORE ALLOCATION 

SMALL PAGES 

There exist two types of small pages; system locked and 

ordinary small pages. The system locked pages are the "minus" 

page and the "zero" page that come into being whenever a des

criptor block is created. This is done for each execute line 

and each controllee initilization. Initially both of these 

pages/job will be locked down for the life of the job. Even

tually the "zero" page will be unlocked whenever the job is not 

in the alternator loop. 

The potentially long lived system locked pages will be 

allocated core within the large core blocks not assignable 

1. 7.3 

Rev. 1 

as large pages. Large blocks ¢ and~ (there are 8 large blocks 

in total ¢ through 7) will never be assigned as large pages and, 

hence, will always be within the "special region." If the max

imum number of large pages allowable is X (X = ¢ to 6) then the 

"special region" will be large blocks ¢ to 7-X. 

Ordinary small pages will be allocated core as follows. If 

a large page reserve is set, then the following steps will exclude 

that large block from consideration: 

1. If sufficient free space is available, allocation will start 

within the large blocks outside of the "special region" de

fined above, and will proceed within the "special region" if 

necessary. 

2. If sufficient free space is not available, the system will 

first look for any unlocked, non-reserved large pages belonging 



1.7.l~ 

Rev. 1 

to a disconnected job. If this search fails then the system 

will proceed as in Step 1 for whatever free space is avail-· 

able with the remainder of the pages (in the case of a multi-

ple page advice) allocated as a result of writing to the pag-

ing drum the oldest_, unlocked small pages in the page table. 

NOTE: If the system disallows large pages altogether, then there 

exists no special region and all pages are "ordinary" pages and 

allocation starts at large block ¢. 

LARGE PAGES 

There exist large page limits for each job class* and for the 

machine as a whole. Initially the macldne limit will be 5 in the 

daytime debug hours and 6 otherwise. I (interactive) and S (standby) 

classes will have zero limits. P (priority) class will "be allowed 

the machine limit at all times and IE (interactive batch) and B (batch) 

classes may have the machine limit except during daytime debug hours. 

Perhaps IB class will be limited to 2, B class to 4, during daytime 

debug hours. 

Procedure if the large page reserve is set: 

L If the requesting job is the reserve job and the reserved page 

is now unlocked, clear reserve and start necessary r/o. If the 

reserved page is not yet free, force user to fault again as a 

delaying tactic. 

2. If the requesting job is no~ the reserve job and the requesting 

job has priority over the reserve job, disconnect the reserve 

job and reset the reserve for the requesting job and go to Step 

1. If the requesting job has no priority over the reserve job, 

disconnect the requesting job. Priority determination is as 

follows: 

* See Page 1.8.1 for definition of Job Classes (i.e. Wait Queues) 



X = requesting job, Y reserve job 

a) if x is in p class, X has priority 

b) if x is in IB class, y has priority 

c) if x is in B class and 

if y i,s in p class, Y has priority 

if y is in IB class, X has priority 

if y is in B class, then whichever job 

execution firnt has priority 

Procedure if the large page reserve is not set: 

started 

1. 7 .5 
Rev. 1 

1. If individual limit is not reached, go to 2. (NOTE: individual 

limit - class limit) If it is reached, swap one of the re

questing job 1 s unlocked pages. If all are locked, force user 

to fault again. 

2. If class limit not reached, go to 3. If it is reached, the 

first attempt will be to swap an;y: unlocked disconnected page 

within the class. The second attempt will be to swap any 

locked disconnected page within the class. If both of these 

attempts fail, then all pages within the class belong to 

active jobs of which there are at least 2 active jobs. Note 

that this cannot happen if the requesting job is in the P 

class. So if the requesting job is in the IB class, disconnect 

the requesting job as there is no way to determine priority in 

this case. If the requesting job is in the B class, the job 

to be disconnected will be the one which started execution last. 

If the disconnected job is not the requesting job, then repeat 

the first two attempts in this step (2). 

3. If the machine limit is not reached, go to step 4. If it is 

reached, the first attempt is to swap any unlocked and dis

connected page. The second attempt is to swap any locked and 

disconnected page. (NOTE: Any swap of a locked page results 



1. 7.6 
Rev. l 

in the large page reserve being set.) Again (as in Step 2) 

if the first two attempts fail, then all pages belong to 

active jobs and there are at least 2 active jobs. Priority 

determination is as follmrs: 

a) if the requesting job is in P class, disconnect an IB 

job if there is one. If there are no IB class jobs 

disconnect the lowest priority B class job and repeat 

the first two attempts. 

b) if the requesting job is in IB class, disconnect the 

requesting job. 

c) if the requesting job is in B class, disconnect an IB 

job if one exists. If not, disconnect the lowest 

priority B class job (which could be the requesting 

job). 

l+. No limits are reached. The first attempt wj_ll be to allocate 

a free large block. This search would start at block #7 back

wards to block# (8-machine limit). The second attempt will 

be to clear a large block containing srn.all pages with the 

search starting as immediately above. The system will search 

first for a large block containing small pages none of which 

are I/O locked. If that is not possible, then the large page 

reserve will be set for the large block containing the least 

number of I/O locked small pages. 



I/O Handling 

i.7.7 
Rev.1 

The pager is set up to handle a large number of faults simulta

neously in the hopes of driving three (r/o) devices concurrently. 

These devices are: 

1. System page drum, 

2. User's page drum (for core overflow), 

3. Disk station. 

a) The first step is to issue I/O to release core pages (if neces

sary). Here the core page entry for the outgoing page(s) is 

deleted and an entry is made for the new page(s) under a null 

key (unique for each user). 

b) The second step is to poll the user's paging drum (unless new 

page is a large page or a definite create is decided before 

hand) for the page(s) in question, and if they exist there 

then the drum station will write them into core. 

c) The third step is, if page is not on the drum and is not a 

create, issue I/O to read the disk. 

d) The fourth step: after necessary I/O is completed, then the 

null key is replaced with the correct one, the page is un

locked, and the user is unblocked and free to execute again. 

Note: Advise requests do not block the user from execution. 

Shared Library Pages 

If a user faults or advises for a library page and a check 

reveals the same page is already on its way (due to another user's 

previous fault), the second user becomes library blocked and both 

(or more) users will be unblocked simultaneously when the page I/O 

is completed. 

Library pages are read-only pages and will drift to the user 



drum when core overflows. When the drum overflows} they will 

killed there. 

!;1ultiple Page Advises 

1. 7.8 
Rev. 1 

The entire virtual address range in any one request must 

not straddle file boundaries. However, some may exist on the 

drum without all of them on the drum (the remainder being on the 

disc). If only some exist in core then the request is abandoned, 

and the user will obtain the remainder of his pages via demand 
paging. 



JOB SCHEDULING 

QUEUE MANAGEMENT 

There are five (5) separate wait Queues. The jobs in each 

Queue are waiting for CPU time only. 

P Class Queue 

I Class Queue 

IB Class Queue 

B Class Queue 

S Class Queue 

First come, first served. 

Long tick, long slot. 

Round robin. 

Short tick, short slot. 

Requeued after each slot time. 

Round robin. 

Long tick, long slot. 

Requeued after each slot time.Inclusion 

in queue via system call only if in I 

class queue. 

First come, first served except if the 

job requests a suspend state at which 

time it will be put at the end of the 

Queue. Long tick, long slot. 

Round robin. Run only during idle time 

periods. 

No tapes. 

1.8.1 

The job catagory is defined on the execute lines; file name / T 

X where T=time limit in minutes and X=P, I, B or S. Note that this 

replaces the current "bid priority" designation. 

SLOT ASSIGNMENT 

For P and S class job, the slot has meaning only as a maximum 

accounting period. This is so because any time the system decides 

to disconnect a P job or an S job, it is done immediately without 

regard to slot times. 

For I, IB and B class jobs, there has to be an upper limit due 

to its accounting period function. But here, slot also has another 



function. Namely, an I, IB and B class job that is disconnected 

is able to finish its current slot time. 

1.8.2 

Note that slot times are used up by "charges" other than CPU 

time. Namely: any explicit I/O charges, implicit Disc I/O charges 

for page faulting (core overflow I/O charges and drum overflow I/O 

charges are not included), system call charges and core/drum resi

dence charges. 

PS LOT 15 seconds, S slot = 15 seconds, IB slot 15 seconds 

BS LOT 15 seconds, I slot 3 seconds 

TICK ASSIGNMENT 

The tick assignment, would be a number 1-100 representing a 

percentage of the length of time it would take to get once around 

the alternator loop. This time length would be a constant derived 

from hardware & software constrain concerning interrupts. 

PTICK = 5¢*#P NOTE: #P=¢ or 1 

STICK = 100/#S If no other class in alternator 

= 1 otherwise 

The TICK computation for I, IB and B incorporates the following 

base: 

THEREFORE: 

BA.SE = 100 - PTICK *#P IF ONLY ONE OF THE CLASSES I, 

IB or B IS PRESENT IN THE ALTERNATOR 

BASE= (100 - PTICK * # P) / 2 IF TWO OF THE CLASSES 

I, IB or B EXIST IN THE ALTERNATOR 

BA.SE = (100 - PTICK * # P) I 3 IF ALL THREE CLASSES 

I, IB AND B EXIST IN THE ALTERNATOR 

ITICK = MIN BA.SE I # I 2 ) 

IBTICK = MIN BASE I #IB ' 10) 

BTICK = MIN BA.SE I# B ' 10) 

ANY TICK WILL BE A MINIMUM OF 1. 



1.8.3 

ALTERNATOR MANAGEMENT 

The alternator loop needs to be "managed" only if core is full 

with active job pages and/or the alternator slots are full. The 

"management" consists of a decision as to which job gets disconnected. 

Given the following rules: 

Rule 1. 

Rule 2. 

Rule 3. 

Rule 4. 

Rule 5. 

Only one P class in alternator. 

If an S class exists in the alternator, then either, all 

jobs in the alternator are S class or, only two jobs are 

in the alternator, one S and one non-S. 

The one P class can keep all others out. 

B class will be guaranteed an alternator slot if more than 

one I class exists. 

IB class will be guaranteed an alternator slot if more than 

one I class and more than one B class exists. 

Decisions made when a job wants entry into the alternator loop, 

when all entries are taken or core is full. 

S class - does not get into the loop.Other classes: 

1. If any S class job's exist in the loop, they are the first to be 

disconnected. 

2. If more than one IB class exists, IB is the next to be disconnected. 

2a. If only one IB class exists and an IB wants in, the existing IB is 

disconnected. 

3. If more than one B class exists, a B class is the next to be dis

connected. 

3a. If only one B class exists and a B wants in, the existing B class 

will be disconnected if it arrived in the B class queue after the 

job desiring entry. 

4. If more than one I class exists, an I class is the next to be dis

connected. 

4a. If only one I class exists, and an I class wants in, the existing 

I class will be disconnected. 

5. If none of the above conditions are met then if an IB class exists, 

IB is disconnected; secondly if a B class exists, B is disconnected. 

If these two conditions fail, then if the job wanting in is not P 

class, it does not get in. If it is a P class job, then the one 

existing I class is disconnected. 





TIME USAGE AND CHARGING 

(A) General Flow of Time Usage vs. Charge for STAR 

When a job is initialized, the time limit is supplied by 

the user via TTY execution line or via "initialize controllee" 

system call. This time limit is converted to microseconds and 

stored in the descriptor block in variable -TL-. In the user 

table block is a variable -MONEY-, which contains the amount of 

time available to this job in microsecond units. 

Each time a job is entered into an alternator slot, a vari

able -HORA-, in the user's minus page, is cleared and the vari

able -SLOT-, also in the minus page, is computed by the subroutine 

-SLOTAC-. An initial value of 1/4 minutes is compared with -TL-. 

If the job is in the interactive Queue, the initial value is 1/2 ¢ 
minute. If -TL- is less than the initial value, the value of 

-TL- is used. This value multiplied by the user's priority ( .1 

if standby job, unity otherwise) is compared with -MONEY-. If 

-MONEY- is less, then a value is chosen, which when multiplied by 

priority = -MONEY-. This value is stored in the variable -SLOT-. 

(Microsecond units.) 

During execution, various time usages are collected into the 

variable -HORA-. When -HORA- ~ -SLOT-, the user's -MONEY- vari

able and -TL- variable are decremented (as described in Section C). 

A new value for -SLOT- is computed as above and -HORA- is cleared. 

-MONEY- and -TL- are also decremented whenever a job is disconnected 

from its alternator slot. Also, at the time of the decrementing 

(in subroutine -BANKAC-), time card entries are made in the sub-

routine -ACCTG-. 

HORA Rightmost 32 bits, word 1810 in minus page. 

SLOT Rightmost 32 bits, word 1710 in minus page. 

TL Rightmost 48 bits, word 4 in descriptor block. 

MONEY Rightmost 40 bits, word 8 in user table block. 



(B) Money and TL Decrementing 

Subroutine -BANKAC- decrements -MONEY- (Bank Account) and 

-TL-. See Section A for frequency. Prior to decrementing 

MONEY and TL, each temporary sum (multiplied by a weight factor) 

is added to its respective accumulated sum (except TPHOOK). 

TCPUC + CPUCHG, TMEMC + MEMCHG, TEX IO + EXIO, TIMIO + 

IMO, TSYSC +- SYSCG, TREMIO ~ REMIO. These accumulated sums 

are available to the user via a system call. These sums are 

cleared only at initial execution (i.e., new TTY execute line, 

or new "INITIALIZE CONTROLLEE" call). TL is decremented by the 

sum of these temporaries *Weight factor, i.e., TL= TL -

( TCPUC*CPFACT) + ( TMEMC*MEFACT) + ( TEXIO*EXFACT) + ( TIMIO*IMFACT) 

+ (TSYSC*SYFACT) + TREMIO*REFACT) ). MONEY is decremented by the 

same sum as -TL-, but multiplied by priority first (.1 for standby 

job, unity for others). 

(c) Time Card Entries 

This is the table of time usage. It is periodically written 

to a disc file for later editing. Maximum period is one hour. 

Period also occurs whenever a buffer fills (256 words) or a bank 

update occurs. This table contains 2 buffers, each 256 words in 

length. The first 5 words of each buffer and the last word of 

each buffer is fixed. 

Word 1 
II 2 
II 3 
II 4 
II 

5 

Word 256 

Wyman clock when buffer started 

Internal microsecond clock when buffer started 

System downtime 

Wyman clock when buffer written to disc 

Internal microsecond clock when buffer written 

if = zero, this buffer in use 

if = f/222222222222, this buffer to be written to 

disc 

Words 6-255 may contain the following 3 different types of 

time usage records. A zero entry where the 

first word of a record should begin indicates 

the end of the records in the given buffer. 



(C) Cont'd. 

Type 0 - Regular Entry (7 words) 

Regular Entry 
E 

Word 1 

2 

3 

4 

5 

T tf PHOOK 
2 6 

DISACC 

DRACCD 

TPWDS 

JOB 
8 

CDPGMILL 

6 
DRACCO 

7 

TTY Entry 

T 
6 

2_ 

2 
TERMS 

3 

USERNO 

DSECT 
16 

16 

SYS CHG 

FILTP 
16 

US ERNO 

TMESS 
16 

16 

Disc Purge & File Process Entry 

T USERNO 
2 6 

DISACC* DSECT 
2 16 

TPWDS* 

3 

DEPT 
24 

DSECMIN 
16 

ACCT NO 

TPACC DRACC 
32 8 

-
CPUTIME 

24 

CDPAGES 
34 
TPFUNCT DISCSEC 

12 12 

DEPT 
24 

TWO RDS 
16 

ACCT NO 

DEPT 
24 

DSECMIN 
16 

TPACC* ACT DEG 
32 8 

1. 9. 3 
Rev. 1 

32 

32 

48 

24 

32 

30 

24 

32 

32 

48 

32 

32 

24 



(C) Cont'd. 

ACTDEG 

ACCTNO 

CDPAGES 

= 

= 

CDPGMILL = 

CPUTIME 

DEPT 

DISCACC 

DISCS EC 

DRACC 

DRACCO 

DRACCD 

DSECMIN 

DSECT 

FILTP 

JOB 

SYS CHG 

T 

TERMS 

TMESS 

TWORDS 

TPACC 

TPFUNCT 

TPHOOK 

TPWDS 

US ERNO 

NOTE: 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

Alpha portion of account number (3 ASCII char's.) 

Account number ( 6 - 8 bit ASCII characters) 

Core/drum storage #pages in CDPGMILL 

, # pages * Milliseconds 

User execution time in microseconds 

It " " 

Division code (4 - 8 bit ASCII characters) 

# of disc accesses 

# of sectors in disc I/O 

# drum accesses for page fault & explicit I/O 
n n II when user causes core overflow 

" " " due to drum overflow 

Disc storage, # of sectors * minutes 

Disc storage, # of sectors in DSCEMIN 

# data bursts to mass store, TMDS 

Job class 1: priority 2: interactive 3: batch 4: standby 

System call CPU time in milliseconds 

Flag for which type of entry = ¢, 1, 2 

TTY hookup time in seconds 

# of messages to/from TTY 

# of words to/from TTY 

# of tape accesses on read/write 

" tt " " for function requests 

Tape drive hookup time in minutes 

# words in tape I/O read/write 

User number in binary 

For T = 2, * items are recorded if userno = 999999 and 

indicates system resources to process users DD80, PUNCH 

& HSP files. ACTDEG & DEPT are those of the original 

user unless userno 999999 is destroying its own file 

(a rare occurrence). 



1. 9. 5 
Rev. 1 

IVJINUS PAGE WORDS FDR USAGE 

'remporai,..,y Collection Over Slot fi.me 

147 

148 

149 

150 

CDPG!VITLL 
(TJVJEMC) 24 

16 

48 

The following fields are entered into a time usage entry each "slot" time: 

TPACC, DISCACC, DISCSEC, FILTP, TPFUNCT, TPHOOK, TPWDS, CPUTIJ\llE, CDPGMILL, 

SYS CH, DRP.CC, DRA.CCO, DRACCD and CDPAGES, 

The following fields are entered (i.e. summed) into the execution collection 

of usage charges: CPUTIJ\llE, CDPGMILL, SY8CHG, TREMIO, TIMIO AND TEXIO. 

Execution Collection of Charge.of Time Usa~~ 

Word 140 

141 

r PGFLT i CPUCHG 

DRFLT ~ ME~CH~----
48 

1-~-~----~·----.1--·-R-EM_I_0-----------1 
.,· 32 

IMIO I L -3LL. __ ..o..SY:=-;S'--"C=H.;:;;_G_ 32 _J 

L 

where: CPUCHG CPUTI~IB * CPFACT 

J\llEMCHG CDPGMILL * MEFACT 

EXIO = TEXIO * EX.FACT 





2.1.1 

STAR SYSTEM TERMINAL INTERFACE 

STAR ID Line Sequence 

The ID line for STAR has the form 

Where: 

IDT NNNNNN L AAAAAA PL CCCCCC 

T 

L 

PL 

cccccc 

is the six digit employee number of the user 

loggin in. 

is the letter designator for STAR 

is an alphabetic suffix A-D under which the 

user wishes to operate. (Each user may have 

up to four jobs active, one under each suffix). 

is a billing number consisting of three.alpha

betic characters followed by three numeric 

characters. 

is a letter designator (optional) for protec

tion level if CCCCCC is used. Valid letters 

are P, A, S, K 

is an optional six alphabetic character combi

nation (not echoed to teletype) used for 

classified access. 

The teletype line is assembled by the PDP-8 to which the tele

type is connected, prefaced by an Octopus network header of 48 bits 

and routined to the STAR service station. 

The service station verifies the parameters in the ID line to 

determine if it is valid. If it is, the service station sends a 

message to central consisting of a one-word header with function 

code #305 followed by a message consisting of the Octopus header 

left justified in the first 64-bit word, a three-word block of log

on information in the second, third, and fourth words, and a four

word user dictionary entry in the fifth through eighth words. The 

message has the following format. 



FUNCTION 
CHECKSUM TO FROM CODE 

#305 

DEST. DEST. SOURCE SOURCE F L T c c 
MA.CH DEVICE MA.CH DEVICE I A y N H 

R s p T A 
s T E R I 
T L N 

ASCII USER NUMBER ASCII SUFFIX 

ASCII ACCOUNT NUMBER ASCII LEVEL 

USER 
DIRECTORY 
POINTER 

SNPT 
RETURN BINARY 
TIME ON USER NO. ASCII DIVISION 
LOG OUT 

PNTRF POINTER POINTER UDMON TO USERS FILE TO USER MILLESECOND ·TIME IN USER ACCOUNT LIST ON DRUM REPOSI-
TORY 

PCTG. FILKT 
AMOUNT COUNT OF UDDEB 
OF TIME USERS FILES MILLESECOND TIME USED 
ALLOWED 

2.1.2 

} 
MESSAGE 
HEADER 

OCTOPUS 
HEADER 

LOG-ON 
INFORMATION 

USER 

DIRECTORY 

ENTRY 



The kernel picks up the message from the service station, 

moves it to a free slot in the teletype message buffer (TTYS), 

queues the teletype mes,sage processor if it is not already 

queued and returns a response to the service station. 

The teletype message processor recognizes the message as a 

log-on message by virtue of the "first" bit being set in the 

Octopus header word. A user table entry is assigned and filled 

in if no entry for this user already exists. An entry will 

already exist if the user had previously logged out leaving '"

job active in the system. If no user table entry already ex

isted and the user had files catalogued in the inactive file 

index on the service station drum, the inactive entries are 

read and placed in the active file index in central memory. At 

this point, the log-on sequence is complete. 

STAR Execute Line 

The STAR system expects an execute line whenever a user is 

logged on under a suffix and no program is active under that 

suffix. An execute line is a message to the system to start a 

program under that suffix. An execute line has the form. 

where: 

FILENAME MESSAGE 
/\ 

T X 
/\ 

FILENAME 

f\ 

MESSAGE 

is the name of a virtual code file 

containing the program to be run. 

is the blank character (space bar). 

is an initial message for the problem 

and may contain any character string 

which does not have the string/\ / /\ 

as a substring. 

2 .1.3 

T is a decimal (possibly integer) number 

specifying the number of minutes of 

real time the program is allowed to run. 



X Is The Job Class 

P Priority 

B Batch 

I Interactive 

S Standby 

2 .1.4 
Rev. 1 

The character string/\//\ TAX may be ommi tted., in which case T = 1, 

X = I will be assumed by the system. 

The teletype line is assembled by the PDP-8 to which the tele

type is connected., prefaced by an Octopus network header of 48-bits 

and routed. to the STAR service station. The service station sends 

a message to central consisting of a one-word head.er with function 

code #305, the Octopus head.er left adjusted. in the second word and 

the execute line starting in the third word. 

The KERNEL picks up the message, moves it to a free slot in the 

teletype message buffer, queues the teletype message processor if it 

is not already queued, and sends a response to the service station. 

The teletype message processor recognizes this as an execute 

line by noting that no DB number is filled in the user table FROG 

slot for this suffix and the message is not a break and does not begin 

with a (CTRL-D) or (CTRL-E). It then verifies that the FILENAME exists 

and is a virtual code file. If this check fails, an error message is 

sent to the teletype, otherwise the message processor: 

1. Assigns a free DB. 

2. Sets system action in progress for the assigned. DB in DBSTAT 

3. Assigns keys for the DB. 

4. Sets FROG in the user table for the appropriate suffix. 

5. Sets STATE= #30 for this DB. 

6. Sets FCNTLR in the DB if the message is not void. 

7. Fills in an entry in the XEQBUF table. 

Since the message processor may have more than one execute line 

to process when it is run, there may be multiple entries made in XEQBUF. 



2.1.5 

If more than eight execute lines are waiting, the first eight are 

processed and an error message sent on the remainder. The message 

processor then calls subroutine CRSDF in the file management rou

tines. For each execute line the file manager will: 

1. Fill in MP3 in the DB. 

2. Read the minus page into the appropriate MPT entry. 

3. Examine roe (17) for an existing drop file and verify 

certain items in that roe. 
4. Examine virtual map entries for any pertaining to IOC 

(16), the source file IOC and verify certain items in 

the map entries. 

5. Create an automatic drop file if none exists and fill 

in roe (17). 
6. Fill in IOC (16) with source file information. 

7. Update the XEQBUF table and return to the execute 

message processor. 

8. The execute message processor will examine XEQBUF. It 

will send out an appropriate error message for those 

lines in error and release their DB's, keys, and zero 

their PROG's. If any execute lines are OK, it will 

set their DB states to #11 and call subroutine QUEUER. 

The processed entries will be removed from XEQBUF. 

QUEUER will then reorder the queue of jobs to be run. 

STAR BYE Line 

The BYE line enters the central system in the same manner as 

ID and EXECUTE lines. The message itself consists of the teletype 
' character generated by simultaneously striking the control key and 

the D key (denoted (CTRL-D)). The purpose of this line is to sever 

the connection between the terminal and the user table entry. Any 

active jobs remain active. Note that logging off of the terminal 

may affect the behavior of the problem program, since some of the 

message calls to the system give different results, depending on 

the presence or absence of a terminal connection. 



STAR Break Line 

2 .1.6 
Rev. l 

The BREAK key is used to terminate a job. If no problem program 

is running under the logged in suffix, the message "NO PP" is sent to 

teletype. However, if PHOG is set, the system searches down the con

trollee chain until finding a problem program in a HUNNING OR WAIT ALT 

state and terminates this problem program and all (if any) of its con_

trollees. If no problem program is in the above states, the entire 

chain is terminated. The following message is sent to the next higher 

level problem program controller: 

#OD~-l 4C 4C2 Ol+~-4 F ~LE "CR ALL DONE CR LF ETB B" 

#450DOA1742000000 

or if the terminated problem program was attached to teletype, the 

message "BREAK" is sent to teletype, 

S'I:AR Mes Line 

Whenever a problem program is active under the suffix to which 

a teletype is connected and the system receives a message from that 

teletype whose first character is not a (CTRL-E) character, the 

message is assumed to be a message to the problem program (or possibly 

to one of the problem programs in the controllee chain for that suffix 

designated by a message control call). The message is removed from the 

teletype input buffer, placed in a system buffer and pointed to by an 

entry in the appropriate descriptor block. The message is then obtained 

by the program connected to that descriptor block by a GET MESSAGE from 

controller or a GET SYMBOLS from controller call. If a message is wait

ing for a problem program and a second message is typed before the first 

mesErage is atrked -ro-:r by -the-problem prugram,;-the--second: message replaces 

the first and the first is lost. 

System Inquiry Messages 

There exists a class of messages, each preceded by a (CTRL-E) 

character which are considered to be messages to the system and which 

wRy be sent whether or not a problem program is active under the suffix 



2 .1. 7 

Cont'd. 

under which the teletype is logged in. These include: 

1. (CTRL-E) S get program state. 

2. (CTRL-E) T get time and date. 

3. (CTRL-E) ? get date, time, state, bank. 

4. (CTRL-E) GXX get XX minutes from the repository to which this 

user belongs. 

5. ( CTRL·--E) I teletype interrupt. 

6. (CTRL-E) U list time used by this user today. 

7. (CTRL-E) OP MESSAGE send "message" to the operator's teletype. 

8. (CTRL-E) SU list active suffixes. 

9. (C'I'RL-E) BB list bank account. 

10. (CTRL-E) BP list time in repository to which user is connected. 

11. (CTRL-E) PR list number of jobs in I Class waiting to be con

nected to an alternator slot. 

M.1emonic ----· ----
RUNNING Program is in the alternator loop. 

WAIT ALT Program is waiting for an alternator slot. 

WAIT TPE Program is waiting on tape assignment. 

WRT CNTR Program is waiting for controller to get on disk. 

WRT CNTE Program is waiting for controllee to get on disk. 

RCV CNTR Program is waiting to get a message from controller. 

RCV CNTE Program is waiting to get a message from controllee. 

RCV PDP Program is waiting to get a message from the PDP-6. 

SND CNTR Program is waiting to send a message to controller. 

SND CNTE Program is waiting to send a message to controllee. 

SND PDP Program is waiting to send a message to the PDP-6. 

SND OPR Program is waiting to send a message to the operator. 

SND TTY Program is waiting to send a message to the teletype. 

DUMPING Program is in a state of being dumped to disk. 

FINISH Program is finished. Clean-up is in progress. 

SUSPEND Program is suspended. 



ERROR MESSAGES DETECTED BY EXECUTE LINE PROCESSOR 

1. NO.FILE - File name does not appear in User's private 

file index or the Public file index. 

2. NON-EXECUTABLE FILE - File is not a virtual code file. 

3. NO TL - After/\ /I\ illegal or no time limit specified. 

l+. BAD CIASS - Class is not P, I, B, or S. 

2 .1.8 
Rev. 1 

5. NO TIME IN BANK - User has no MONEY in his bank account. 

6. NOT ENOUGH TIME FOR JOB - TL* CR4RGE (unity for P, I, 

and B, .1 for S) is greater than MONEY. 

7. SYSTEM TABLES FULL. TRY AGAIN·- No room for job. 

8. SYSTEM DROP FILE CREATE ERROR - System cannot create 

drop file. 

9 . DISK TROUBLE 

10. SOURCE OR DROP FILE ANOMALY 

11. DROP FILE 'IDO SMALL 



3 .l. l 

STAR FILE MANAGEMENT 

A requirement exists for a catalogue of all files currently be-

ing stored_ the system. This catalogue is called the file index .. 

Another requirement is a map of allocated disk space. 'I'his map is 

called the disk map. 

Because of the large number (up to 21000) of files to be cata

logued for each 817 disk file, it would be inefficient to attempt 

to keep the full catalogue of files in central memory; hence tl-:e 

file index is divided into an active file index in central memory 

and an inactive file index on the service station drum. A file in

dex entry Tequires 8 words allowing 64 files to be catalogued in a 

small page, Because most users have less than 61~ files, and for re

trieval from the inactive file index we wish to block entries by the 

user, ancl, furthermore, the service station drum is alterable in 

quarter pages, the inactive file index is allocated in quarter page 

blocks cataloging 16 files, For users with more than 16 files, in

active index blocks can be chained together. A bit map is used to 

record full and free blocks in the inactive file index. The inactive 

file index contains the entries of all users who do not currently 

have an entry in the user table. 

The active file index will be a resident system table in the 

initial systems. For later systems, it will be made pagable. Entries 

in the inactive file index have the same format as in the inactive file 

index, but the use of the table will differ from that of the inactive 

file index. When an inactive user logs on, his user directory entry 

is sent to central as part of the log-on message. The directory con

tains a pointer to the users first block in the inactive file index. 

The pointer is null if the user has no files. The file system reads 

the blocks containing the user's files from the service station drum. 

For each file, a hash address in the active file index is generated 

using a concatenation of the file name and user number. The hash 



address provides a starting point for a quadratic search through 

the active file index to find a vacant entry for the file. This 

technique produces a very even fill of the active index. As the 

user's files are entered in the active index, they are chained 

together and a pointer to the head of the chain is placed in the 

user table to facilitate searches of the user's private files. 

For later systems, the technique for entering files in the 

active index will change, since it is desirable to produce a 

dense fill of the index with each user's private file set c~ose 

together to reduce page faulting by the file system. 

The disk map will require one page per unit. (Each 817 disk 

contains two units.) This map is unaware of discrete files. It 

merely maps assigned space on disk. Voids are defined by the dis

parity between two consecutive entries when comparing the first 

word address plus length of the first entry with the first word 

address of the second entry. Thus, it is possible, in theory, to 

completely fill a disk with a number of files and have only one 

entry in the disk map. 

When a user logs on, he is inhibited from executing any jobs 

until his files have been entered in the active file index and 

his inactive file index blocks have been released. This is be

cause when a user sends an execute line, his private file index 

is searched before the public file index in order to allow him 

to utilize files with the same name as public files. 

If a user logs off with no jobs active, his files are re

turned to the inactive file index. Note that since his inactive 

index blocks were released at log on, new blocks must be assigned 

when his files are returned to the inactive index, and his user 

directory entry must be updated with a new inactive index pointer. 

3.1.2 



If the user has a job active at log-off time, his files remain in 

the active index. 

user table entry. 

When the job completes a time is set in his 

At some time ~T later, if the user has not 

logged back on, he is considered to be inactive, and his files 

are returned to the inactive index. His user table is not, how

ever, released since it contains a message pointer to the last 

message to be sent to the terminal so that the user may determine 

what happened to his job when he next logs on. 

Because of the limited storage available on disk, private 

files which have not been referenced for a fixed period of time 

are purged from the system. Purging of files for an active user 

is the responsibility of the file management system. Purging of 

files in the inactive index is done by the service station. 

It is also the responsibility of the file system to process 

all user calls pertaining to files. 

3.1.3 





THE STAR DROP FILES 

Since the STAR system requires that each page in the memory 

drum system have some disk correspondence for its current image, 

cases often occur when a page with a read-only disk image is 

modified or a free page is assigned, and hence disk space is re

quired which has not previously been specified by the user. In 

order to handle this situation, whenever an execution is started, 

the system automatically provides a file called a drop file into 

which these pages may be mapped. The actual disk correspondence 

is kept in the drop file map portion of the minus page and the 

minus page as well as page zero are two pages which are ent~1·ed 

in the drop file. 

3.2.1 

In this manner, every executing process consists of at least 

two files, the file whose name appeared on the execute line termed 

the source file and the system created file termed the drop file. 

More files may be associated with the process through explicit 

user action. 

The default options for the drop file are a name created from 

the source file name and some random hash characters with a length 

equal to the source file length. The user has two ways of control

ling system action on drop files. He may specif'y a drop file length 

to be associated with a source file utilizing the close call, or he 

can explicitly create a drop file with the desired name and length 

utilizing a create call within the source file. In the second case, 

the create call must occur before any pages are written to the drop 

file. 

The user should be aware that the drop file map is constructed 

essentially on a page-by-page basis, and the drop file map is of 

finite size. Attempting to add a page to a drop file map which is 

full is a fatal error. Users desiring large blocks of virtual space 

not represented in some file should create a virtual file and map 

it into the desired space to avoid this difficulty (via Map-In Call). 





STAR DISK FILES 

Ownership Categories 

Public - Public files are accessible by the entire body of 

users. The files have execute-only protection, i.e., they may 

not be read or written by a user -- only executed. These files 

are expected to be general purpose programs which augment the 

capability of the STAR operating system. 

Shared Private - Shared private files are those which are 

accessible by some subset of the body of users. Typically, a 

file in this category can be accessed by any member of the sub

set according to the access rights given by the originating user. 

There may be subsets bounded by Laboratory divisional codes, _by 

security pools or some other boundary. These are, as yet, un

defined subsets as are the rules for manipulating the files, but 

the skeletal structure for implementing them exists. 

3.3.1 

Private - Private files may be accessed exclusively by the 

originating user. He is free to manipulate the content, access 

rights, security level, external access, lifetime, etc., as he 

wishes. The operating system will maintain the right to terminate 

a file based on its quiescent lifetime. This will be done to allow 

a reasonable amount of the disk store to be available at all times. 

Management Categories 

Private - Management of private disk files is left entirely to 

the originating user. The operating system will protect these files 

from access by any other user. The sole exclusion is the system's 

right to purge based on lifetime, as mentioned above. 



3.3.2 

Scratch - Scratch files may be created only by a user program. 

They will exist only for the duration of the activity of the origi

nating program. When the program terminates normally, all scratch 

files will be destroyed. If the system terminates the program be

cause of a fatal error, or because the BREAK message was received, 

or if the program terminates with a request to save its drop file, 

the scratch files will be saved as read/write files. If the system 

call to close a file is issued on a scratch file, it will be de

stroyed. Scratch files will have read/write access. 

_Qute_~! - Output files may be created only by a user program. 

They will exist only for the duration of the activity of the ori

ginating program. When the program terminates normally, all output 

files will be given to the system privileged user for processing. 

Output files must have legitimate names for the devices for.which 

they are destined. These names will follow existing Laboratory 

tradition. 

Writ~Temporary - A write temporary file will be treated as 

having read-only access. However, pages from such a file may be 

modified in core by a program. When this happens, the modified image 

will be catalogued as part of the program drop file, and subsequent 

reference to that page address space will cause the modified page to 

be accessed. Of course, the space may be mapped out of the drop file 

in order to reference the source image again. 

Drop - The drop file is that disc space set aside for dumping 

the altered pages of an executing program. The file is created by 

the operating system automatically as part of the sequence for start

ing a new program. It is created at the length of the source file or 

a particular length may be specified in the File Index entry at which 

a programis drop file is to be created. A program may also create its 

own drop file which causes the automatic drop file to be destroyed. 

This may be done only if no pages have been written to the existing 

drop file. The drop file will be preserved for any abnormal termi

nation and may be preserved or destroyed, at the option of the 

program, upon normal completion. 



3.3.3 
Rev. 1 

Type Categories 

Sequential Data - A sequential file is, by definition, a data 

file. It may not be executed. It is not associated with the exe

cuting program's virtual space. Any I/Oto or from the file is done 

by the program explicitly by means of a windowing technique. 

Virtual Data - A virtual data file is not assumed to have a 

suitable minus page for execution, though it may have. It must be 

mapped into the executing program's virtual space and any reference 

to the defined space is treated as an access interrupt, and the I/O 

to retrieve the data from disc is accomplished by the operating system. 

It may not be executed. 

Virtual Code - This is an executable program file. It_ is pre

sumed to have a suitable minus page for execution, i.e., an invisible 

package and virtual maps to define the physical disk-virtual space 

correspondence. 

Access Categories 

Write - A file having write access may be written into by a problem pro

gram or the operating system. In the case of a virtual data file, 

this means that modified pages will be returned in place to the 

original file. 

Read - An attempt to write explicitly into a read-only file 

will produce an I/O error. An attempt to modify a page from a read

only virtual file will produce a fatal error. There is, however, a 

means for mapping in portions of read-only virtual files and giving 

those portions write access. The pages in these map-ins will be 

treated like those of a Write Temporary type file. 

Execute - Any attempt to read or write an execute-only file 

will be denied. Typically these files will be public, utility code 

files. Only the system or a privileged user will be able to update 

them. 





3.4.1 

STAR MINUS PAGE 

Every virtual file to be used within the STAR OPERATING SYSTEM 
must have a minus page. This rule applies to virtual code and 
virtual data files. Files which are known to be sequential will not 
have this requirement. 

For the virtual code file, it will be the responsibility of a 
program loader to prefix a minus page to the body of the code and 
fill in the required virtual maps. For files which are virtual data, 
the creating user must manufacture the minus page and maps. The virtual 
map definitions contained in the disc image of virtual files may be 
modified dynamically through system calls. 

In the instance of an executing problem program, the operating 
system uses the minus page to store such information as the executing 
IP (Invisible Package), interrupt IP, time-slicing data, input/output 
connections to disc files and tape drives, maps of the program's de
fined virtual space, time charging data, page fault statistics, etc. 

Following is a diagram of a system minus page, and the definitions 
of the information contained in it. In some cases it has been necessary 
to expand some entries. The expansions and their definitions follow on 
succeeding pages. 

STAR PROGRAM MINUS PAGE FIELD DEFINITIONS 

INVISIBLE PACKAGE #1 
INVISIBLE PACKAGE #2 
Program restart temporaries 
TICK 
TICKL 
SLOT 
PINC 
HORA 
USER roe 
SOURCE roe 

DROP roe 

Words 136 - 138 
10 10 

ERROR NO. 
ERROR ADDRESS 
CPUCHG 
MEMC HG 
SYSCHG 

IMIO 

Executing package. 
Interrupt package. 
Operating system use. 
CPU time slice each turn in alternator. 
Amount of tick left. 
When HORA=SLOT, charging done. 
P-counter increment for call. 
Accumulated charges since last accounting. 
User I/O connector for disk, tape I/O. 
System I/O connector for program source 
file. 

System I/O connector for program drop 
file. 

Self-explanatory. Counts are entries. 

A code number defining some fatal error. 
Location where error occurred. 
CPU sec. Sum over entire execution. 
Core/drum residence msec. Running sum. 
System call msec. Sum over entire exe-
cution. 

Implicit I/O msec. Running sum. 



STAR MINUS PAGE, Continued 

Field Definitions 

EXIO 
REMIO 
PGFLT 

DRFLT 

TC PUC 
TMEMC 

TEXIO 
TIMIO 
TSYSC 
TPHOOK 

TREMIO 
LASTUP 

TPACC 
DISCACC 
DISC SEC 
FILTP 
TPFUNCT 
TJ?\.VDS 
DRACC 

DRACCO 

DRACCD 
CDPAGES 
INTERRUPT ADDRESSES } 
BOUND SEQUENTIAL MAPS 
BOUND VIRTUAL MAPS 
DROP MAPS 

Expl,i<;:,it I/O msec. Running sum. 
Remote I/O msec. Running sum. 
Count page faults over entire 
execution. 

Count drum hits on page fault. 
Running sum. 

3.4.2 

CPU sec. Temporary sum for each slot. 
Core/drum residence msec. Sum for each 

SLOT. 
Explicit I/O msec. for each SLOT. 
Implicit I/O msec. for each SLOT. 
System call msec. for each SLOT. 
Tape drive hook-up minutes for 
each SLOT. 

Remote I/O msec. for each SLOT. 
Last time memory charge accounted for. 

#of tape accessess for read/write. 
#of disc accessess. 
Disc I/O, #of sectors. 
# of data bursts, mass store & TMDS. 
#of tape functions. 
# of tape words read/written. 
# of drum accesses due to page fault. 

or explicit I/O of user. 
# of drum accesses caused by user. 

due core overflow on page fault. 
# of drum accessess due to drum overflow. 
# of pages in TMEMC computation. 
For I/O and TTY interrrupt, see p. 2.46.1 

Expanded on following pages. 



_,c ) 
10 

0 -15 

16 

17 

18 

19 -31 

32 -47 

48 -63 

64 -127 

128-131 

132-135 

136 

_37 

139 

140-150 

151 

152-159 

160-175 

176-255 

256-511 

0 

--

STAR PROGRAM MINUS PAGE 

INVISIBLE PACKAGE (IP) #1 

Program Restart Temporaries 

TICK 8 TICKL24 SLOT 
32 

-
PINC 8 Monitor Resta24 HORA 

32 Address -

Program Restart Temporaries 

INVISIBLE PACKAGE #2 

USER roe # 0 - IOC #F (4 wds/entry ) 
--~------.----·----··-----·------·-···-·-·-··-·-·--·---------------

SYSTEM IOC #10 (Source File ) 
-

SYSTEM IOC #11 (Drop File) 
Bound Pointer to first 

Free 
32 Seq. Seq. map entry 

Count 
Bound Pointer to 1st 

Free 
32 Virtual bound virtual map 

Count 
Drop Pointer to 1st drop 

Free 
32 Count 8 map entry 

Error No. J Virtual Bit Address of Error 
16 

Expanded on 3.4.10 - Time Usage Entries 

Explicit r/o Information 

INTERRUPT ADDRESSES 
1 Word/entry 

Bound Sequential Files Map 16 entries 

Bound Virtual Files Map 2 Word/entry 
40 entries 

1 Full Wor<i} 170 
Drop File Map 1 half Word entries 

3.4.3 
Rev. 1 

(Loe ) 
16 63 

0 - F 

10 

11 

12 

13 - lF 

20 - 2F 

30 - 3F 

40 - 7F 

80 - 83 

84 - 87 

24 88 

24 89 

24 8A 

48 8B 

8c - 96 

97 - 9A 

98 - 9F 

AO - AF 

BO - FF 

100-lFF 



3.4.4 

EXPLICIT I/O AND INTERRUPT INFORMATION IN THE MINUS PAGE 

151 

152 - 157 

159 

IOUTi 

LGPG 

SMPG 

ALFWD 

IOREQ 

ISTCK 

INI'NO 

A 

IOUTl IOUT2 IOUT3 IOUT4 IOUT5 IOUT6 LGPG SMPG 
8 8 8 8 8 8 8 8 

INTNO ISTCK IOREQ ALFWD 

8 8 8 42 

INT NO ISTCK A Cbhtroller interrupt P counter 

8 8 1 (word v.a.) 42 

INTNO ISTCK A Controllee interrupt P c01mter 

1 l_word v.a.l 
42 

A bit set means I/O is out. Each IOUT contains 8 bits for the 
8 possible BETA requests. There are 6 IOUT fields for the 6 
possible #100 calls. 

Number of large pages with I/O outstanding. 

Number of small pages with I/O outstanding. 

ALPHA word pointer for I/O request. Note the interrupt address 
(if one) is in the ALPHA (2) word. 

Contains the I/O BETA request which is being processed or last 
processed. 

A bit set means an interrupt is stacked waiting for previous I/O 
to finish. ISTCK contains 8-bits for the 8 possible I/O BETA 
requests (MW 152-157) or 1-bit for the controller (MW 158) or 
controllee (MW 159) 

Nonzero means the PP is currently in an interrupt routine. N 
is set to the Beta request number if I/O (152-157) or problem 
DB no. if MW 158-159. 

A bit set which means only messages preceded by a CTRL-E i will 
interrupt. 



1 

2 

3 

4 

STAR PROGRAM MINUS PAGE roe DEFINITION 

An IOC (Input/Output Connector) is a four word block used by the 
operating system to establish a link between the program and an I/O 
device. 

Each program may have up to 161 (0-1510 ) such links. For the 
purposes of the roe, each logical dis~ file to which the program 
connects itself is considered a separate device. The operating system 
assigns two extra roe blocks, in user minus page space, for itself. 
These are IOC (1610 ) for the program source file and IOC (1710 ) for the 
program drop file. The drop file is automatically created ttirough roe 
(1710 ) with the start of each new program. The name of the file is con
trived from the first four characters of the source file name and four 
hash characters. The problem program may create its drop file 
call, if no page has been written to the automatic drop file. 
roe is overwritten with creation of the new drop file. 

roe formats and field definitions follow: 

STAR MINUS PAGE roe FORMATS 

BOUND SEQUENTIAL FILE roe 

File Name (ASCII) 

No. of 
. L DU' 

LENGTH 0 i n 
Type Sequential Seq. g s i 

Map Map (Sectors) i c t c 
Pointer Entries a 

8 16 8 16 1 4 

Page Size of 
Virtual Address Window 1 Window 1 

32 16 

Page Size of 
Virtual Address Window 2 Window 2 

32 16 

ria system 
'rhe drop 

A 
c 
c Free 
E 

~ 4 

Free 

Free 

64 

0 
w 
N 

2 
---1 

16 

16 



BOUND VIRTUAL FILE IOC 

1 
File Name (ASCII) 

Free 

3 .!+.6 
Rev. 1 

64 

0 
w 
N 

2 Type 

3 

* 
!+ 

8 54 2 --

I 
Free 

64' 

Physical Disc 
Sector Address of 

First Page of 
This space 

18 

LENGTH 

(Sectors) 

16 

_IOC TL~c 0 -- I Logical Disc 
P0 ° i n 1 Sector Address 

i $ s t f ~· t p nt l c r o Elrs age 
e c u o1 of This Space 

15 r!! 9 6 I 16 
I 3 ti l 

*Note that word 4 of a virtual file IOC is normally zero. It is filled 

in only for the program drop file IOC (1710 ). Since no entry is made in 

the Bound Virtual Map for the drop file, the 4th word of its IOC is made 

to duplicate the second word of a bound Virtual Map entry. 



STAR MINUS PAGE roe FORMATS 

TAPE roe 

1 ~ ~'\'\~ ~ ~2~1 Tape Name (ASCII) 
Type sl Free 4ojLo~. I Unit 2 

3 Unused 

4 Unused 

0 

ACCESS 4 == Execute Access 

2 Read Access 

1 == Write Access 

OWN 0 Private file 

1 Public file 

2 Political file 

Expansion of TYPE field: 

Principal Type 3 Mode Lockout 

PRINCIPAL TYPE 0 Private disc file 

1 Scratch disc file 

2 Output disc file 

3 Write temporary disc file 

4 Tape 

*LOCKOUT 1 Execute lockout 

2 == Write lockout 

4 == Read lockout 

*Partially implemented. Ignore until we have shared files. 

MODE 0 Sequential 

1 Virtual disc file data 

2 Virtual disc file code 

3.4.7 
Rev. 1 

40 

Free 12 

~ 3 

-·---- -----~! 



3.4.8 

STAR MINUS PAGE FILE MA.PS 

Bound Sequential Files 

Bound sequential files will consist of one single contiguous disc segment. 
One sequential map entry per sequential IOC is allowed. The IOC and its 
map entry will be positionally related in their respective areas through 
roe number. 

Physical Disc 
Sector Address 
of Page Zero 

18 

0 

Bound Virtual Files 

BOUND SEQUENTIAL MAP ENTRY FORMAT 

LENGTH 
(Sectors) 

16 

x 1 - roe Pointer 
x2 - Logical Unit 
x 3 - Control 

x 1 x 2 x3 

5 3 6 

Logical Disc 
Sector Address 
of Page Zero 

16 

Bound virtual files may consist of discontinuous address space. Up to 4o10 
virtual space segments can be simultaneously mapped. The various segments 
may belong to one roe or each segment may have its own roe. Each segment 
points to the IOC currently using it. In the following diagram, the symbol 
~will indicate those fields for which the program loader will be responsible. 
The operating system will make the logical-physical connections at execution 
time. 

BOUND VIRTUAL MAP ENTRY FORMAT 

Virtual Page Address 

Physical Disc 
Sector Address 
of First Page 
of This Space 

LENGTH 

(Sectors) 
18 

x 1 -
x 2 -
x 3 -

16 

roe Pointer 
Logical Unit 
Control 

Control Field Expansion: 

42 

c 
1 

c 
2 

44 

c 
3 

x 1 x 2 

c 
4 

5 3 

46 

32 

x 3 

c 
5 

6 

Free 

Logical Disc 
Sector Address 
of First Page 
of This Space 

c 
6 

15 

16 



Full 
Word 
Entry 

Half 
Word 
Entries 

3.4.9 
Rev. 1 

Control Field Expansion, continued: 

c6 0 Small pages ( 512 words) 

1 Large pages (65536 words) 

C5 = 1 Read access Note that the various segments 

C4 1 Write access of a virtual file may have 
differing access rights. 

C3 = 1 Undefined 

c2 1 Kill Pages In Core/Drum System Upon Map Out 

cl Preload Pages 

The bound virtual map will be divided such that all word 1 entries are in 
the first half of the map space and all word 2 entries are in correspond
ing positions in the second half. Entries will be sorted by ascending 
virtual address. Blank entries will be squeezed out. 

STAR MINUS PAGE FILE MAPS 

Drop File (Free Space) Map: 

This space maps the disc drop file indicated in IOC (17). It will contain 
entries for the program minus page and program virtual page zero, initially. 
As the program executes, any free space (virtual space not defined in the 
bound virtual map) which the program attached will be mapped here. Also, 
any modified pages of 0 write temporary\] files will be entered in this map, 
along with any modified source file-program-pages. Up to 17010 such entries 
can be made with up to 3110 pages in each entry. 

DROP FILE MAP ENTRY FORMAT 

r-
Physical Disc 
Sector Address LENGTH ~ Virtual Page Address of 
of First Page (Sectors) 1 First Page of This Space 
of This Space 

18 12 2 32 

Entry 1,3,5, ......... 169 

Page 1 ........... Page 

0 PAGE SIZE 

~ 
~ 

Entry 

31 ~ Page 
32 ~ 

0 SMALL PAGES 
1 = LARGE PAGES 

2 ,4~6' .......... 170 

1 ........... Page 31 
32 

HALF WORD BIT MAP: The entire drop map is deivided into 170 full word 
entries followed by 170 1/2 word entries. Each bit corresponds to each 
of 31 pages in a full word entry. Bit off means page undefined or 
exists in core/drum system. Bit on indicates page has been written to 
disc once. 

~ 
~ 
~ 
~ N 



MINUS PAGE WORDS FOR TIME USAGE 
Rev. 1 

Temporary Collection Over Slot Time 

TPWDS DISCACC DISCSEC CDPGMIIL 
146 16 1 (TMEMC) 24 

SYS CHG TPHOOK CPUTIIVIE 

147 16 8 (TCPUC) 24 

DRACC TREMIO TI TIMIO TEXIO 

148 16 16 16 16 
DRACCO LASTUP 

149 16 48 
DRACCD FILTP CDPAGES 

150 16 8 24 

The following fields are entered into a time usage entry each vSLOTetime: 
TPACC, DISCACC , DISCSEC.., FILTP , TPFUNCT., TPHOOK , TPNDS , CPUTIME ., 
CDPGMILL , SYSCNG ., DRACC ., DRACCO., DRACCD ., and CDPAGES. 

The following fields are entered (i.e. summed) into the execution collec
tion of usage charges: CPUTIME .., CDPGMILL .., SYSCHG..., TREMIO, TIMIO.., 
and TEXIO. 

EXECUTION COLLECTION OF CHARGE OF TIME USAGE 

140 

142 

WHERE: 

NOTE: 

PG FLT i6J CPU CHG 

DRFLT 161 MEMC HG 

EXIO I 
I 

32 
IMIO 

32, 

CPUCHG = CPUTIME * CPFACT 
MEMCHG = CDPGMIL * MEFACT 
EXIO = TEXIO * EXFACT 
IMIO = TIMIO * IMFACT 
REMIO = TREMIO * REFACT 
SYSCHG = SYSCHG * SYFACT 
PGFLT = # page faults total 

REM IO 

SYS CHG 

DRFLT = # page faults found on drum 

48 

48 

32 

32 

The multiplying factors above are percentages from 0•100 
which may be changed dynamically. 



3.4.11 

MINUS PAGE WORDS FOR TIME USAGE, cont'd. 

TIMIO 

TEXIO 

Implicit I/O charge. 
Rate 50 millisec/access+ 1 millisec/sector 

a) For DISC WRITES initiated due to closing a file, 
mapping out a file, advise out a page(s) and job 
termination. 

b) For DISC READS initiated due to demand page faults 
or advise in page(s). 

Explicit I/O charge. 
Rate 50 millisec/access+ 1 millisec/sector for all 
disc I/O explicitly stated by user. 
Rate 8 millisec/access+ 1 millisec/sector for all 
tape I/O read and writes. 
Rate 10 millisec/tape function 

This is to include processing of printer, HSP and DD80 files by special 
system routines. 

TREMIO 

MEMC HG 

Remote I/O charge 
Rate some fee/data burst to mass store and TMDS 
Rate disc I/O rates to process remote printer files 
plus some charge for printer use (?) 

Contains that portion of the core/drum storage usage 
accumulated during users occupation of an alternator 
slot. That portion of CDPGMILL attributable to users 
INACTIVE state will be recorded in time usage record 
(along with active state data), but NOT be charged 
against bank account. 

BANK ACCOUNT DECREMENT - only the sums of those fields recorded in 
minus words 140-143. Every job will have these sums 
weighted by l,except for standby jobs whose weighted 
0priority9 will be small, perhaps 10%. Note that 
this does away with the current vpriorityv weighting 
scheme. 





Rev. l 

o·uJ.~PTJT FIIrES FOf~ lTSER 1 

rI1hese are files which the user wishes to have processed by a 

sy·ste111 l1ser fer· -co the 15-ne printer tape, 

DD80 tape or 

call (#08) give the fiie to user number 999999 or must 

have created them de t, Constraints on the name of an 

output file exist and are defined below 

L Files scl:tedJJ.led. for ~Line must have names begin·~ 

ning with the letter p or P, The names need not be a full word in 

length. 

2. Files destined for the off-·line printer (high speed tape) must 

have names beginning with the letter h or H. The names need not be 

a full word in A ion for saving some number of 

files for consecutive processing exists. This is 

the "fami concept current available on other Laboratory 

systems. 

'I:'he second character must be a numeric se-

quence number in the range ¢ ·- filF. The name must be eight 

characters (full word), This "family" of files will be held 

in the output file chain until the family file name with the 

second character being x or X arrives, or until the family ages to 

some limit) at which time the entire family is output. Files 

for high ,speed tape wbich are not recognized as members of a 

family" will be processed at once. 

3. Files destined for the DDBO plot tape must have names beginning 

with the letter d or D. 1-lll such names must be eight characters in 

length. The family concept as in 2 above will be effective. 

4. Files destined for the card punch tape must hs.ve names begin-

ning with the letter b or B. All such names must be eight characters 

in length No family grouping Is possible, Each file is pro-

cessed when received. 

The output processing programs run on demand by the Give File 

call. ~~he appropriate processors for printer files, punch files 



3.5.2 

and non-family high speed printer files are initiated immediately 

after the Give File call. Members of families of files are stacked 

and no processor runs until an end-of-family name is recognized, 

at which time the appropriate processor is initiated. 

Files processed for the line printer are handled by a program 

executing under user number ¢¢¢¢¢1, but the user gives the file to 

user 999999. The system recognizes the situation and switches the 

file to the user ¢¢¢¢¢1 chain. 

File Ownership 

Each private disc file cataloged in the system is recognized 

as belonging to some user number, some division code, and some 

account designator. When a file is given from one user to another, 

the user number and division code change, but the owner account 

stays fixed until the recipient user references the given file 

the first time. Then the account designator in force at the first 

reference to the file replaces the former account. An entry is 

made in the system accounting table at this point, indicating the 

total time of ownership of the file under the originating account 

designator. The account designator used for ownership liability 

is the alpha portion of the usual Laboratory effort-account number. 



File Activity 

A file is considered active if some program, active in the 

system, has the file open, i.e., at least one of the program's 

roe entries point to the file. 

A file may be destroyed by a program if the file activity 

counter (a count of the number of roe's currently pointing to 

the file) is zero or one. If it is one, the active IOe must be 

in the minus page of the program requesting the file destroy. 

A file may be given to another user only if its activity 

counter is zero. This means, in the jargon, that the file must 

be closed. 

A program is allowed to open the same disc file in as many 

of his roe's as he wishes. Each open call will result in the 

file activity counter being incremented. 

When a program is terminally dumped to disc, any active 

roe's are examined, and if they point to a disc file, the appro

priate activity counter is decremented. 

Finally, for statistical purposes, a reference counter is 

maintained in each file index entry which is a running sum of 

roe's which have been connected with the file. 

3.5.3 





STAR RECORD STRUCTURED FILES 

SCOPE 

This document pertains primarily to files from the card 

reader and files destined for various printing devices. The 

format of these files will be discussed along with the control 

characters and their applications. 

COMPRESSED ASCII 

Explanation - this term refers to the form lines that are 

stored within a record structured file. These lines can be 

either a card image or print line and are comprised of 8-bit 

ASCII. 

ASCII - this term refers to an 8-bit ASCII. There 

are 256 possible characters within this character 

set. See table at end of writeup. 

Line - a line can be any length. Current printers 

are, however, limited to 12¢ characters. All lines 

are ended with the control character "US." 

Blanks - all blank fields of larger than 2 characters 

are compressed. The control character "ESC" followed 

by the number of blanks in the field denotes the 

blank field. An ASCII "¢" is always added to the 

blank count; the reason for this is to remove the 

blank count out of the range of the control char-

acters. 

3.6.1 



3.6.2 

Rev. 1 

Control characters. A detailed explanation. 

ASCII 

NUL 

EOT 

FF 

so 

ESC 

FS 

GS 

RS 

us 

0 
BINARY 

HEX 

¢¢ 

¢4 

¢c 

lB 

lC 

lD 

lE 

lF 

30 

DEC 

¢¢ 

12 

14 

27 
I 

28 

29 

30 

31 

48 

OCT 

¢¢ 

¢4 

14 

16 

33 

35 

36 

37 

60 

USE ... 

Padding - used to round out to a 

desired boundary. 

Physical end of media - last char

acter in file. Only passing, 

pointers and ID may follow. 

Top of form - appears in print files. 

'11he following line will be at the 

top of the next page. 

Mode change - the next whole word 

is the start of a binary field. 

Compressed blanks - the following 

8-bit character denotes count of 

blanks plus ASCII ¢. 

File se1Jarator - equivalent to LRL 

end-of-file. 

Group Separator 

Record separator 

End of line - this character is at the 

end of every ASCII line. 

ASCII zero - added to blank count. 

Explana~iOE, - this term refers to binary card images contained 

in a file. The card is in two parts. Control and content. Only 

the content is put into the file. The control uses the first 48 

bits of the card. 

Control bits. A detailed explanation. 

Bits ¢¢-¢7 Byte count. Number of 8-bit bytes starting 

in column 5. 



Bits ¢8-11 Denote a binary card. This field = ¢1¢1. If 

EOF card, then this field = 1111. 

Bits 12-23 

Bits 24-47 

Sequence number. 1st card = ¢¢¢¢¢¢¢¢¢¢¢1. 

Checksum. 24 bit arithmetic sum of the 8-

bit data bytes. 

Content. The card may contain up to 114 data bytes. The 

binary information in the file may be thought of as abso

lute column binary. 

PRINT FILES 

Explanation - a print file is a file prepared within the STAR 

for some external hardcopy device. It is comprised of compressed 

ASCII. The last four 64-bit words are the usual ASCII ID informa

tion. The last ASCII character within the file, exclusive of ID, 

must be an "EOT." 

CARD FILES 

Absolute column binary - specified by an "A" in column 3¢ of 

the ID card. This format treats the card as a binary bit string. 

Each card puts 15 64-bit words into the file. 

Mixed mode - specified by a blank in column 3¢ of the ID card. 

A mixed mode file consists of compressed ASCII and binary in any mix. 

Format of a mixed mode file. In order to determine 

mode changes within the file, a pointer field is 

used. The pointer field. is at the end of the file 

between the last data and the ID information. The 

logical address of this field may be found by look-

ing at the 5th word from the end of the file. Please 

note that mode changes must start at 64-bit boundaries. 

(See 3 .6. 5 for example of mixed file.) 



3 .6 )~ 
Rev. 1 

POINTER WORD FORMAT 

/LOCATION OF 
1NEXT POINTER WORD 

Bits ¢¢-15 

Bits 16-31 

Bits 32-39 

Bits 40-63 

Location of next pointer word. This number 

added to address of pointer field points to 

next pointer word. 

Unused. 

Mode of block. 01/02/03/04/FF = compressed ACSII/ 

binary/record separator/group separator/last 

pointer word 

Logical address of specified block. 

Example of a mixed mode deck 

Card 1: c 
Card 2: C /'!»/'' l\ 1,3"'BCD1,CARDS. 

Card 3: ABC 

Card 4: BINARY CARD-FULL CARD-114 BYTES 

Card 5: BINARY CARD-86 BYTES 

Card 6: * /\ !\ /\ 1\J\ DA TA 



WORD 

¢ 

1 

2 

3 

11 

lB 

lC 

lD 

lE 

2¢ 

21 

22 

23 

24 
25 
26 
27 

c 

c 

• 
BYTE 1 
BIN CD 1 

• 

• 

* 
@ 
¢ ¢ 

¢ ¢ 

¢ ¢ 

¢ ¢ 

@) c (Esc) 3516 

D D c A 

@) A B c 

• • • • 

3 D 

R D 

@) ® 
• • 

8 BITS 
~ 

B 

s 

(NUL) 

• 

I = c;1i I :~E c; 2] ·_I __ • J • I • I • 
• • • • • • BYTE 36 

BIN CD 2 

(Esc) 3516 D A T A @ 

@ (NUL) (NUL) (NUL) (NUL) (NUL) (NUL) 

¢ 1 ¢1 ¢ ¢ ¢ ¢ ¢ ¢ 

¢ 2 ¢2 ¢ ¢ ¢ ¢ ¢ 3 

¢ 3 ¢1 ¢ ¢ ¢ ¢ 1 c 

¢ ¢ FF ¢ ¢ ¢ ¢ ¢ ¢ 

¢ ¢ ¢ ¢ 1 E 

32 CHARACTER 
ASCII ID. 

COMPRESSED ASCII 

BINARY 

} COMPRESSED ASCII 

POINTER FIELD 

} 
LOGICAL ADDRESS 

. OF POINTER FIELD ~ 

°' • 
\J1. 

~ 
Cll 
< • 
...... 



3.6.6 

Rev. 1 

Record separator and group separator cards have 7-8 - 9 and 

6-7-9 punches respectively in column 1. Record and group separator 

cards will cause map entries with modes 3 and 4 respectively. The 

contents of the card will be considered to be an ASCII record and will 

be placed in the file accordingly. 



STAR Pool Files 

3.7.1 
Rev. 1 

The STAR operating system will offer the pool file concept 

for sharing files in a manner somewhat similar to the 7600 im

plementation. This involves the appointment of some subset of 

users as pool "bosses." A pool boss will be allowed to have a 

list of private files as usual, but, in aadition, will be allowed 

to have a second list of files which will be considered pool files. 

A pool file is one which is under the direct control of the pool 

boss in matters of integrity and disposition. The pool file may 

be accessed by other users if they are currently connected to the 

pool. The non-pool boss user may not alter the content of the 

pool file on disc. That is to say, he may have only read/execute 

access to a pool file. The rule applies regardless of the file's 

access type. Of course, the write-temporary definition is avail

able. Only the pool boss may write into a pool file. 

Each user in the system may have a list of pool bosses to 

which he may attach himself. In order to use a pool file list, the 

user must first attach himself to the pool list. This is accom

plished by a type-in on the user's terminal: 

CONTROL-E POOL POOLNAME 

where POOLNAME is the name of the file pool to which the user wishes 

access. Pool names may be up to eight alphanumeric characters. A 

user may attach to as many as four independent file pools at the 

same time. A pool boss is automatically attached to his pool file 

list, if any. The pool boss may also be eligible to attach to other 

pools. The specification of pool bosses and pool members is handled 

through Computation Department administration and can be periodically 

updated. 



When a user, who is attached to file pools, references a 

file, a search is rnade 1) of his private file list; 2) of his 

pool file list(s) in the order in which he attached to them, 

3.7.2 
Rev. 1 

and 3) of the public file list. Note that a pool boss actually 

has two independent file lists under his control and, as such, 

can be in control of two files of the same name and user number. 

However, in such a case, he couldn 1 t reference the file in the 

pool list since the private list is searched first. Clearly, the 

pool boss may be boss of only one file pool. 

If a user, who is eligible to use some pool, wishes to 

place one of his private files in the pool list, he may do so 

through an option in the GIVE Files System call. The user need 

not be attached to the pool at the time. 

To break an established connection with a pool the users 

type in: 

CON'I1ROL-E POOL <-POOLNAME 

where the minus sign preceding the POOLNAME indicates release from 

the pool. 

The user may list the names of the pools in the order in 

which he is attached to them by typing: 

CONTROL-E LP 

The list will be printed at the user terminal. If the user 

logs off the computer and leaves no program active, the connection 

to all pools is severed. 

This inrplementation allows for shared files on a need-to-know 

basis rigorously controlled by laboratory administration. 



USER CALL MESSAGE FORMAT 

All user calls, whether or not they are for the KERNEL, are 

issued by an exit force to the KERNEL. Immediately following the 

exit force instruction in the instruction stream is a 32-bit in

struction with its upper 16 bits #¢¢EE or a 64-bit instruction 

with its upper 16 bits #¢¢FF. In the first case the low order 8-

bits of the instruction contains a full word register designator 

and the designated register contains the virtual bit address of 

the first full word of the message. In the second case the low 

order 48-bits of the instruction contain the virtual bit address 

of the first full word of the message. 

4.1.1 

The message itself consists of Alpha and Beta portions. The 

Alpha portion has the same general form for all calls. The Beta 

portion has a format dependent on the individual service required. 

See the section on individual function codes for Beta format spec

ifications. 

Good call returns are back to the instruction following the 

#¢¢EE or #¢¢FF instruction which may be another #¢¢EE or #¢¢FF 

instruction if chained calls are desired. 

Alpha and Beta words must occur on full word boundaries and 

may not exist in the user's page ¢. They must exist in virtual 

space with read write access and they may not cross large page 

boundaries. 



R 

L 

M 

c 
FRE 

F 

N 

R 

N 

THE FORMAT OF THE ALPHA PORTION OF THE MESSAGE IS: 

I 

I 

I 
L M 8 ' c 

8 FRE8 16 16 I 

E EA 

I 

I 

! 

I F 
I 

4.1.2 

Rev. 1 

5 
ALPHA ( 1) 

ALPHA (2) 
16 48 

.BL .BA 16 I - - ,_ 

Response code filled in by the system when the call 

completes. A zero value indicates good completion. 

See P. 4.1.3 for non-zero values common to all system 

calls and for meaning of other non-zero values, see 

writeups of individual calls. 

Is the length of the BEI'A Buffer in full words if 

L =#FFFF. For this case, the BETA words are assumed 

to immediately follow ALPHA + 1 and word ALPHA + 2 

does not exist. If L =#FFFF, word ALPHA + 2 exists 

and contains the BETA descriptor. 

Option 

Control option 

Reserved for future use. 

Function code specifying what function is to be per

formed to satisfy this call. 

Sub-function code whose usage is dependent on the 

primary function code. 

1 ALPHA ( 3) 

- (Optional) 



EEA 

.BL 

BA 

Is the virtual address to which control will be sent 

for R /,¢. EEA =¢ will be considered fatal error. 

If L=#FFFF, ALPRA + 2 must exist. ,BL is then the 

length of the BETA buffer in full words. 

If L=#FFFF, _BA is the virtual bit address of the 

4.1.3 
Rev. 1 

first full word of the BETA buffer. Note that in this 

case, the ALPHA and BETA areas need not be contiguous. 

ERROR RESPONSES COMMON TO ALL SYSTEM CALLS 

#-212 

#2-13 

No ALPHA Pointer (fatal) 

ALPHA out of bounds, that is, ALPHA bit address is 

greater than 247-1. (fatal) 

UEEA = ¢ (fatal) 

ALPHA read only (fatal) or BETA read only (non-fatal) 





SYSTEM CALLS 

4.2 .1 

Rev. 1 

This is a current list of system calls which will be available in 

initial operating system. 

Generally, function codes in the range #¢ - #F involve disc or tape 

access, #10 - #lF manage message traff1c·, #2¢ - #2F are miscellany, #50 -

#52 are explicit I/O functions. 

01 

02 

03 

04 

05 

06 
07 

08 

09 
OA 

OB 

oc 
13 
14 

15 
16 

17 
18 

19 
lA 

lB 

lC 

23 
24 

25 

50 

51 
i::;;:> 

Function 

Create disc files or tapes 

Destroy disc files or tapes 

Open disc files 

Map-in, Map-out virtual address space 

Close disc files 

Terminate this program with or without dump to disc 

Advise for page pre-load, free space or page release 

Give disc files to another user 

List private or public file index 

Cutback length of a disc file 

Change a disc file name 

Give tape access to controllee 

List controllee chain 

Send a message to controller 

Send a message to controllee 

Get message or symbols from controller 

Get message or symbols from controllee 

Message control 

Write all controllee pages to disc 

Send a message to operator's console 

Initialize or disconnect a controllee 

Problem Program Interrupt 

User Directory Modification 

Miscellaneous, e.g., modify Tl, Pr, get PP info, etc. 

Suspend PP for a time period 

I/o Call 

Release interrupt 

~~ TI(\ 





4.3.1 
Rev. 1 

SYSTEM CALL ¢1 - CREATE 

The CREATE call will be issued by a problem program to reserve, and 

attach itself to, a hitherto undefined I/O medium. 

ALPHA ( 1) 

ALPHA (2) 

R 

L 

c 

F 

N 

NAME 

IOC 

BETA (1) 

BETA (2) 

BETA (3) 

BETA (4) 

=#FFFF 

f#FFFF 

R L c F 

16 16 16 16 

N ERROR EXIT VIRTUAL ADDRESS 

16 48 

NAME (ASCII)r' 64 
IOC DEVICE 

I 
TYPE l~K I 

ACS 

I 
MODE l CLASS UNIT 

8* 8 8* 8* 8* 8* 8 
SS 
8 

LENGTH BASE VIRTUAL ADDRESS 
16 -:f 48 

-

* set by system for device = 5 or 6 
f not required for device = 5 or 6 but may be used 

¢ 
Response Code 1 = 

#2- 11 

Normal 
Error (see SS) 
Error (N=¢) 

Left 16 bits of word ALPHA (3) equal length 

of remote BETA buffer. Right 48 bits of word 

ALPHA (3) equal location of remote BETA buffer. 

BETA buffer immediately follows word ALPHA (2) 

and contains L words. 

not used. 

Function code = ¢1 for CREATE 

Number of creates in this call (16 max.) 

ASCII Device Name - not to exceed 8 characters 

for disc or 5 characters for tape. 

IOC number for connection (¢-15). 



DEVICE 

TYPE 

tOK -·-, 

ACS -

MODE 

CLASS 

U:NI'I' 

¢ ··-

l --

2 -

':{ --.J 

4 -

,-
) 

6 

Di c File ( \ access; 

Rev. 1 

Scratch file (Disc file may -be dest:l'.'oyed by 

file (D:Lsc file may l1e processed for 

of job). 

Write disc file. 

'l1ape dd_ve 

Disc file (De any existing file 

with name same as BE'rA (1) I 
I 

Disc file (Noti i.e., set SS and take 

error return, if a file with name same as BETA (1) 

exists). 

Sequential (to File Index). 

1 Virtual Data 

2 Virtual Code 

F'or Device = 4 

7 Seven Track tane 

9 Nine Track 

1 

2 

4 

0 

1 

2 

4 

0 
1 

2 

Execute lockout protection (to IOC and File Index) 

Write lockout protection 

Read. lockout protection 

No protection 

Write access (to File Index and IOC~ 

Read access 

Execute access 

Sequential (to IOC) 

Virtual Data 

Virtual Code 

Security access code (to File Index) 

Logical disc unit on which file is to exist. System 



SYSTEM CALL ¢1 - CREATE cont'd. 

SS 

= 

returns actual unit used. (To File 

Index and IOC) . 

Error Code 

Normal completion 

4.3. 3 

Rev. 1 



SYSTEM CALL ¢1 - CREATE cont'd. 

LENGTH 

#1 

== #2 
== #3 

= #4 

= #5 

#6 
= #7 

#8 

= #9 
=#A 

#B 

= #C 
= #D 

= #E 

= #15 

= #17 

File already exists 

No disc space 

Illegal device number 

Parameter or format error 

Operator - initiated tape error 

roe in use 

File index full 

STANDBY job trying to create tape 

-unused-

SS field was preset 

Can't destroy existing drop file 

Drop file name already exists 

(For device = 5,6) Some pages have been 

written to existing drop file. Won't 

create a new one. 

(For device = 5,6) Drop file length won't 

hold space already in drop file map. 

Virtual map in minus page is full 

Virtual address overlap in virtual map 

Number of 512-word sectors (small pages) 

this file (to File Index & IOC). 

BASE VIRTUAL ADDRESS Is the virtual address corresponding to the 

first physical word of this file. (to File 

Index & IOC) . 

Note that BETA + 2 is not needed for tape create. However, for 

multiple creates in a single call, all three BETA words must be 

provided for each request. 

Purpose and Operation: 

The CREATE call is generally issued by a problem program to attach itself 
to a logical tape drive, which is assigned only to the one program. Also, the 
program may reserve disc space under a logical name which will be assigned to 
the catalog of files under the user ID number associated with the calling pro
gram. Additionally, for tape or disc, an IOC is filled in attaching the program 
to the CREATED device to allow I/O from/to that device. 



SYSTEM CALL ¢1 - CREATE cont 1 d. 

4.3. 5 
Rev. 1 

For a tape create, the system tape assignment table is examined for 
possible existence of the tape. If it is not in the table, a message is 
sent to the operator TTY requesting the tape. The program P-counter is set 
to re-issue the call and the program is dumped to disc. When the operator 
assigns the tape, the program is reactivated, issues the tape create call 
and now gets connected to the tape. 

Disc file creates are immediate. 

The operating system also uses the routine to CREATE disc to effect 
creation of an automatic drop file for new execute lines. The file is 
created with a recognizable file name and at the length of the source file 
or a pre-specified length. The program minus page is loaded to a system 
table and virtual maps verified. 

The using program may create a new drop file to override the automatic 
one, if no pages have been written to the existing drop file. 

Drop files are created with Read and Write Access, and at the access 
level at which the program is operating. 





4.4.1 

SYSTEM CALL ¢2 DESTROY 

This call will be issued by a problem program to sever its connection with 

a tape drive and release the drive for re-assignment, or to sever its connection 

with a disc file and release the disc space for re-assignment. 

R 
16 ALPHA (1) 

N 
ALPHA (2) 16 

BETA ( 1) 

BETA (2) 
IOC 
8 

R 

L = #FFFF 

f #FFFF 

c 

F 

N 

NAME 

roe 

L c F 
16 16 16 

ERROR EXIT VIRTUAL ADDRESS 

NAME (ASCII) 
64 

DEVICE 
8 

Response Code 

48 

FREE 
40 

= ¢ Normal 
= 1 Error (See SS) 
= #2-11 Error ( N=¢) 

SS 
8 

Left 16 bi ts of word ALPHA ( 3) ·equal length of 

remote BETA buffer. Right 48 bits of word 

ALPHA (3) equal location of remote BETA buffer. 

BETA immediately follows word ALPHA (2) and 

contains L words. 

Not used. 

Function code = ¢2 for DESTROY. 

Number of requests in this call (16 max.) 

ASCII device name as assigned by user in 

either CREATE or CHANGE call-not to exceed 

8 characters for disc files, or 5 characters 

for tapes. 

For tape destroy, calling program specifies IOC. 

For disc file destroy, this field will not be 

examined, but will be filled in by the system 

with the inclusive OR of all IOC numbers found 

to contain the file connection of the file be

ing destroyed. 



4.4.2 

SYSTEM CALL ¢2 DESTROY cont'd. 

DEVICE 

SS 

~ 

=l 

=2 

=3 

=4 

=5 
=6 

Purpose and Operation 

¢ = disc file 

4 tape drive 

Error code 

Normal completion 

File name does not exist 

Tape name mismatch between BETA (1) and IOC 

Some other active problem program has the 

file open 

Format or parameter error 

Tried to destroy source or drop file 

Illegal device number 

The DESTROY call is generally issued by a problem program to release 

a storage device for re-assignment by the system. These are, currently, 

tape drives and disc files. 

In the case of a tape drive, the system expects an IOC defining the 

connection to exist. The system will erase its tables of tape-PP corre

spondence and will erase the IOC in the PP minus page. 

Disc files need not have IOC's representing a connection. The fact 

of existence in the File Index is sufficient. A file need not be opened 

in order to destroy it. If it is open, however, it may be open only in one 

IOC and that must be an IOC of the calling program. The system will erase 

the roe, erase the memory maps in the minus page corresponding to that roe 
and erase representative entries from the core page table and drum page 

table. Hence, all virtual space connected with the destroyed file is avail

able for re-definition. 

If the disc file was classified at a level greater than PARD, it will 

be overwritten with disc pattern. 



SYSTEM CALL ¢3 - OPEN 

4.5.1 
Rev. 1 

The open call will be issued by problem program to attach itself to 

an already existing disc file. 

-
WORD: R 

ALPHA ( 1) 16 

ALPHA (2) 
N 

16 

BETA (1) 

me MAP IN 
BETA. (2) 8 8 

BET/\ (3) 

BETA (4) 
LErJGTH/SECTOP 

16 

GET.fl. (5) 
BUFFEP/Lrnr,rn 

( ,,!nro) 16 

R 

L = #FFFF 

f #FFFF 

c 

F 

N 

NAME 

IOC 

L c 
16 16 

ERROR EXIT VIRTUAL ADDRESS 
(48) 

NAME (/\SCI I) 64 

TYPE LOK /\CS r!ODE CLS 
8 8 8 8 8 

nrr nt·!N ST ~I 
8 8 8 8 

l110~KINri 1!Ir.TUAL /\DDPESS ( GJT) 
48 

BUffEr. VFlTlf/\L llOOOESS (BIT) 
48 

Response code = ¢ Normal 
= 1 Error (see SS) 
= lf2_11 Error (N=¢) 

F 
16 

UNIT 
8 

SS 
8 

= lf2_14 Error (BETA Bounds) 

Left 16-bits of word ALPHA (3) equal length 

of remote BETA buffer. Right 48-bits of 

word ALPHA (3) equal location of remote 

BETA buffer. 

Beta buffer immediately follows word ALPHA 

(2) and contains L words. 

not used. 

Function code = ¢3 for OPEN. 

Number of opens in this call (16 max.) 

ASCII file name (8 characters max.) 

IOC number for connection (¢-15). 



SYSTEM ·· OPEN cont 1 d.. 

-)E-

OWN 

TYPE 

¢ 

D 

D ¢ 

l 

2 

3 

¢ 

4.5.2 

use virtual acklress information in file index 

and as snecified in minus page existing with 

file roe and. ma.p filled. in 

exist rn.aps to calling program in 

buffer specified in word BETA ( 4) ... note 

that BE'l'A ( L1) is not otherwise requfred IOe 

filled in 

No rr1ap er1tr5-es a.re generat.ed,, 

Not examined for sequential file being opened 

Priv·ate file 

PubHc file filled 

Po1Hica1 file 

Expansion of 'I'YPE field: 

c D c m 
J_ 

l 2 
( l) (3) ( l) (3) 

open as snecified by call but don 1 t change 

file index type. 

open as specified by call and change file 

index type to that shown in T field. 

how system is to consider this file (copied 

to PRINCIPAL TYPE field in IOC): 

open as normal disc file 

open as a "scratch" file (system may destroy 

at ALL DONE) 

open as "output" file (system may process at 

ALL DONE) 

open as "write temporary" (any modified page 

will be sent to drop file. Source not updated.) 

open as specified by call but don't change file 
. rl 
in~,ex access. 



4.5.3 
Rev. 1 

SYSTEM CALL ¢3 - OPEN cont 1 d. 

T 

LOK 

ACS 

MODE 

w 

OPT 

l 

¢ 

1 

·- 2 

¢ 

= 1 

2 

~-

open as specified by call and change file index 

access and lockout to that given in field ACS 

and LOK. 

sequential (no minus page assumed) 

Virtual data (minus page assumed) 

Virtual code (minus page assumed) 

T Field, if not specified, will be filled in by 

system. 

Lockout protection. If file being opened is 

PUBLIC, this information will be taken from 

the FILE INDEX. 

Get from FILE INDEX 

Execute Lockout 

} (to IOC) Write Lockout 

Read Lockout 

ACCESS rights. If file being opened is PUBLIC, 

this information will be then taken from the 

FILE INDEX. 

¢) . Get from FILE 
1 I union of W . t 

INDEX. (RETURNED BY 

\ 

SYSTEM IN ACS FIELD 

ri e Access 

== 2 } bits Read Access 

41 allowed Execute Access 

I 
~ (to IOC) 
) 

¢ 

= 1 

== 2 

¢ 

) 
'I1his field must always be specified. (to IOC) 

open sequential (no minus page assumed) 

Virtual data (minus page assumed) 

Virtual code (minus page assumed) 

System will use virtual address from FILE INDEX 

and return it in the WORKING VIRTUAL ADDRESS field. 

Examined only for Sequential File being opened in 

Virtual Mode. 

System will use virtual address specified in 

WORKING VIRTUAL ADDFESS . 
Bit ¢ = preload, Bit 
Bi ts 2-7 undef:LnecL 

kill (see pg.3.4.8) 



UT 

ST 

SS 

·~- 0 
- l 
:::: 1 

::::: 2 

- 3 
;:;: 4 

- 5 

6 

= 7 

= 8 

LENGTH 

WORKING VIRTUAL ADDRESS 

BUFFER LENGTH 

BUFFER V. A. 

Rev. l 

Logical disc unit on which file exists. (Ahrays 

filled in system.) 

File Subtype 

Error Code. 

normal completion 

0 -- Normal 
1 -· Scratch 
2 -- Output 
3 -- Write Temporary 

= Drop File 
7 - Batch input 

No name given or name not in FILE INDEX 

No ALPHA word pointer or zero req_uests specified 

in ALPHA ( 2) . 

Virtual ma~9 

IOC already in use 

Illegal 'l'J'Jle, Lok, ACS 

Disc station error minus page 

Virtual map full 

Public or Pool Access Code greater than operating 

access code. 

Nmnber of 512-"word sectors (small pages) 

comprising this file. (Always filled in by system), 

is the virtual address to correspond with the 

first physical word of the file, 

If user wishes the file maps delivered to his 

program space and not mapped in. These specify the 

length and location of that buffer space where the 

system is to store the maps, 

Generally, to be able to accomplish any I/O, either implicit or explicit, 

a program must be attached to that I/O device through an IOC. The OPEN call is 

the mechanism by which a program attaches itself to an existing disc file. 

Through this call, the IOC may be filled in from known information re

garding the file or with selected options according to the user 1 s wishes. The 

calling program may even permanently alter the type and access rights of his 

file through this call. Note that no modification or supercession of public 



SYSTEM CALL ¢3 - OPEN cont'd. 

file lockout, classif~.cation or access is allowed. Further, if a file is 

opened with the attribute "write temporary," the system will not allow 

the write access bit in the virtual map to be on, so the user need not 

declare it. 

The calling program may use the file with all its attributes as is 

or may modify them for the time the file is open. File maps defining 

virtual space may be superceded even for PUBLIC files, for the duration 

of the roe. The program may elect to look at those maps and re-o.efine 

virtual space through M..A.P-IN calls. 

If the calling program requests the virtual maps be delivered to its 

space, it must provide a BE'I'..A. buffer of sufficient length to hold the en

tire map space. The system will store entries only until the buffer is 

full, however. But, no effort is made to squeeze out zero entries, so 

the user should alway.s take the entire map. Currently, this is 40 entries 

or 80 words. These will be delivered to the program as contiguous 2 word 

entries. Note that this is a different format from that of the minus page 

which is made up of a L~O word table of first word entries and a 40 word 

table of second word entries. 

The map fornnt appearing in the user's BETA buffer will be: 

I 
i 

Entry I 

VOID 
17 i i· ____ i 

I PHYSICAL DISC I 

VIRTUAL PAGE ADDRESS 
32 

LENGTH 
(SECTORS) 

16 

IOC 
PTR 

5 

j lJNT CONTROL 

NOT USED 
15 l 

LOGICAL DISC ----J 
I ADDRESS I 

18 ! 
' ADDRESS l 

16 I j 3 6 

Entry 2 

etc. 

A program may open a "sequential file" in the "virtual" mode. 

Constraints: contiguous virtual space is assumed; working virtual 



SYSTEM CALL - OPEN cont 1 d. 

4-.5 .6 
Rev. 1 

address must be given; only one entry will be made in the virtual 

space map; three BETA words will be assumed. 

Note that whenever the FILE INDEX 'l'YPE is changed by this call, 

the new TYPE is assumed to prevaj_l for all the varj_ous functj_ons 

of the call. 

Tryj_ng to open a fj_le at a level hj_gher than operating results in 

SSc:o5 Error j_f the file space is declared to be write temporar;y or 

if read access is recruested. 



4.6.l 
Rev. 1 

The MAP call will be issued by a problem program to gain access 

to certain virtual space by relating that space to some area of an al

ready opened disc file. Free virtual space, i.e., address space not 

bound_ to any disc f:i1e may be appended by this call. Release or re

definition of virtual space is also provided. 

WORD ALPHA ( l) 

R 

L 

c 

F 

N 

ALPHA (2) 

BE'l.'A ( 1) 

( 2 '> BETA 

# FFFF 

I # FFFF 

¢= 
l= 

2= 

VIRTUAL ADDRESS 

L 

R L c F 
16 16 l 16 

N ERROR EXIT VIRTUAL ADDRESS 
16 48 

VIRTUAL PAGE 
ADDRESS 

D 

) 16 

Response Code 

8 8 

# ¢ Normal 
# ~ ( 88' 1'1 = - .L Error see _ 

SS 
8 

Left 16-bits of word ALPHA (3) equal length of 

remote BETA buffer. Right 48-bits of ALPHA (3) 

equal location of remote BETA buffer. 

BETA buffer immediately follows word ALPHA ( 2) 

and contains L words. 

Option Field 

MAP IN 

Complete Mapout 

Drop File :Map-out only 

Function code = ¢4 for M.AP call 

Not used 

The first word virtual small page address of the 

space being defined. 



4.6.2 
Rev. 1 

SYSTEM CALL ¢4 - :MAP cont'd. 

LOGICAL DISC ADDRESS The logical sector address within a disc 

file associated with the VIRTUAL ADDRESS 

above. If this field equal #FFFF, free 

space, as defined by VIRTUAL ADDRESS and 

LENGTH, will be appended. 

LENGTH 

roe 

CONTROL 

1 2 

c 1 c 2 

The number of contiguous virtual address 

sectors (small pages) being defined (must 

be contiguous in the disc file if not a 

free space call). 

A pointer to the IOC which defines the disc 

file being mapped. If the call is for a 

free space map-outor map-in, IOC=l7 must be 

specified. If the call is for a source file 

rrap-out, IOC=l6 must be specified. 

3 4 5 6 7 

Sffi/Lg PRELOAD KILL 
page 

C 1, C 2, not used. 

Small/Large page bit 

= 1 for large. 

¢ for small 

PRELOAD bit will be copied to virtual map. 

KILL 1 kill these pages in memory upon 

¢; dump pages to disc 

map out, 

8 

A C 

WA ¢ Get access rights for virtual map entry from roe. 

AC 

Error field =#¢ 

=# 1 

= 2 

= 3 

= 4 

= 5 

= 1 Get access rights 

= ¢ No Read or Write 
= 1 Read Access 
= 2 Write Access 

N = ~ Read/Write Access 
o ef"ror 

from AC. 

Access 

virtual address overlap in bound virtual map 

not used 

map-out LENGTH greater than length in map 

sector count not mod 128 for large page call 

no roe 



4.6.3 
Rev. l 

SYSTEM CALL - MAP cont 1 d. 

Error field := 6 

7 
-· 8 

= 9 
A 

B 

c 
D 

E 

- F 

10 

11 

virtual address same as existing advise call 

bound virtual mBp is full at mBp-in 

logical disc address and length is greater than 

disc file length 

A page requested for map out is locked down 

Space undefined at map-out 

l'flAP entry is large page, given virtual address is not 

bound virtual map full at map-out 

Wrong IOC number for Free Space grab 

Free space map is full at map-out 

Drop file of insufficient size to hold free space MAP-IN 

Can't find disk index at map-in 

Virtual address overlap in free space map 

The ERROR EXIT address will be executed for any ssf-¢. 

Purpose .and Operation: 

Generally, to define some virtual address range, previously undefined, as 

being part of program space. 

Defining bound virtual space means associating some virtual address range 

with some physical disc range, on a cont]_guous word-to-word basis, in an already

open disc file. This might be the source code file itself or some other virtual 

data file. 

Defining free space means appending some virtual address range to program 

space. Free space is not considered to be associated with any existing disc 

file, however, there must be sufficient space in the drop file to contain all 

defined free space and all modified pages that are not associated with virtual 

data files. 

For any map-in there must exist sufficient room in the pertinent virtual 

space map to make a new entry. For bound virtual space, a new entry is required 



4,6.4 

SYSTEM CALL - MJ-1.P cont cl, 

for each virtual address d5scontinuity or change in IOC number or in access 

rights. 

Mapping out virtual space means to release a virtual address range 

from defined program space and to make available the d.rop file space that 

represents it. The mapped-out range becomes eligible space for a map-in. 

Mapping out space associated with a write-·access virtual data file 

will cause any modified pages, in the map-out region, to be written to the 

parent file. 

IVT.apping out any other virtual space, modified or not, causes total 

loss of all records associated with the snace. No image is copied to any 

disc file. The space is no longer defined in any minus page map. Any 

previous image of that space which may have existed in the drop file is 

irrecoverable. 'l'he drop file disc space is available for re-assignment. 



SYSTEM CALL ¢5 - CLOSE 

4.7.1 
Rev. 1 

The CLOSE call will be issued by a problem program to sever its connection 

with a disc file 7 but leave the file in existance. Modification of some File 

Index attributes is allowed. 

ALPHA 

ALPHA 

ALPHA 

BETA 

BETA 

R 

L 

c 

F 

N 

roe 

TYPE 

( 1) 

(2) 

(3) or 

( 1) 

(2) ' 

= # FFFF 

/: # FFFF 

R 
16 

N 
16 

roe DVC 
8 8 

LENGTH 
16 

L c 
16 16 

ERROR EXIT VIRTUAL ADDRESS 
48 

I 
TYPE LOK ACS FLAG. 
8 8 8 8 

BASE VIRI'UAL ADDRESS 
48 

= ¢ Normal 
Response code = 1 Error (see ·SS) 

= #211 Error (N=¢) 

F 
16 

I 
SS 
8 

Left 16-bits of word ALPHA (3) equal length of 

remote BETA buffer. Right 48-bits of word 

ALPHA (3) equal location of remote BETA buffer. 

BETA buffer is immediately follows word 

ALPHA (2) and is L words long. 

not used. 

Function code = ¢5 for CLOSE. 

Number of CLOSES in this call (16 max.) 

roe number (¢-15) of roe to be closed. 

Expansion of TYPE field: 

c 2 
( 1) 

c 4 
( 1) 

T 

( 4) 



¢ 

1 

¢ 

1 

c3 1 

c4 = 1 

T ¢ 

1 

2 

LOK 

¢ 

1 

2 

= 4 

ACS l 

2 

4 

*SS 

¢ 
l 

4.7.2 

Rev. 1 

Close file with no change to File Index file type. 

Close and change type in File Index to that given 
in field T. 

Close file with no change to File Index file 
access and/or lockout. 

Close file and change access and lockout in file 
and lockout in File Index to those given in LOK 
and ACS. (Note that lockout information is not 
currently being used). 

Install small page length in LENGTH into File Index. 
This will be drop file size for the code. 

Remove drop file length 

Sequential data (no minus page assumed) 

Virtual data (minus page assumed) 

Virtual code (minus page assumed) 

Lockout protection. (Currently not honored.) 

None 

Execute lockout 

1,fri te lockout 

Read lockout 

Write access 

Read access 

Execute access 

Error code 

Normal completion 

Non-disc IOC (IOC not erased) 



SYSI'EM CALL -- CLOSE cont 1 d. 

2 

3 

4 

5 

FLAG ¢ 

l 

2 

3 

DVC ¢ 

1 

2 

3 

BASE VIRTUAL ADDRESS 

IOC number out of range (IOC not erased) 

Access denied (try to modify a Public File Index 
entry). 

For SS-3 the file will be closed, i.e., the IOC 
is cleared but any changes indicated will not be 
accomplished. 

'I'YPE, LOK, or ACS value illegal 

A page of the file being closed is locked down. 

Ignore BETA (2) 

Reset Base VIRTUAL ADDRESS in File Index to that 
given by BASE VIRTUAL ADDRESS, 

Change device type per DVC field. 

Both l & 2 are to be done . 

Norrnal disc file 

Scratch file 

Output file 

Write-temporary file 

is the virtual address corresponding to the first 
word of the file. 

* Error exist will be taken for any SS=¢ 

Purpose and Operation: 

This call is generally issued for the purpose of erasing a disc IOC in 

the program minus page. Erasure of an IOC breaks the I/O connection with the 

device it represented. Virtual address space associated with the IOC being 

released is available for re-definition. 

The system will accept the call only for disc IOC's numbered¢ through 

15. The user may not erase his source or drop file IOC, numbered 17 and 17 

respectively. Upon receiving the call, the system will examine and val:l.date 



SYSTEM CALL 

the IOC. The file index w:Lll be searched for the represented file. If it 

no longer exists, the IOC will be erased and virtual space released and the 

normal return will be taken. 

If the represented file has write access and the IOC is virtual, modified 

pages js the core-drum system will be written back to disc before the CLOSE is 

completed. If the file was write protected, any modified pages in the core

drum system and tho,se represented in the drop file map will be deleted. Hence, 

closing a file causes erasure of the IOC, virtual maps and core-drum page 

tables. If the IOC ·was sequential_, it and its accompanying sequential map 

entry are erased. 

Permanent changes to the file index entry are allowed thro_ugh th].s call. 

However, if the file is PUBLIC, privileged access rights must be obtained by 

the user. Note that all I/O to any disc file will be accomplished before any 

file index changes are effected, The file index entry will exist in its new 

state only at completion of the CLOSE call. 



4.8.1 

SYS'I'EM CALL ¢6 - TERMINATE 
Rev. 1 

The TERMINATE call is issued by a problem program to signal the system 

that it has completed execution. 

R 
ALPHA (1) 16 

ALPHA (2) N 
16 

R 

L 

N 

F 

c 

RESUME ADDRESS 

OPERATION 

L c F 
16 16 16 

RESUME ADDRESS 
48 

Response code (not used) 

L = ¢ 
(not used) 

Function code = ¢6 TERMINATE 

=¢ Erase problem program from core and preserve 
drop file. 

=l Erase problem program from core and delete 
drop file. 

If field is non-zero and (C=0, the RESUME ADDRESS 

will be stored in the program counter field of 

the IP in the drop file minus page. 

All pages belonging to write access files which 

are open at time of this call will be returned 

to their disc images (if modified). All other 

modified pages will be written to the drop file 

(for ( C=¢). 

If ( C=l, all "scratch" disc files will be des

troyed and all "output" disc files will be 

processed, it the latter have legal output names. 

The program will not regain control after issuing 

this call. 





Rev. 1 

SYSTEM CALL ¢7 - ADVISE 

The ADVISE call might be issued by a problem program to inform the 

system of an expected need for some virtual space in an attempt to avoid 

faulting for the space. The space may be bound or free, i.e., associated 

with some bound virtual file, library space or simply an attachment of 

hitherto undefined space. The call may also be used to advise the system 

that it may immediately remove some pages from the core-drum system as the 

program will no longer use them. 

ALPHA ( 1) 

ALPHA (2) 
,___ 

BETA ( 1) ~ 
j8 

R 

¢ 

= 1 

L = # FFFF 

t # FFFF 

c 

PGCT 
8 

R 
16 

N 
16 

L c 
16 16 

ERROR EXIT ADDRESS 
48 

VIRTUAL BIT ADDRESS 
48 

Response code 

Normal completion 

See SS for specific error 

F 
16 

Left 16-bits of word ALPHA (3) equal 

' 

length of remote BETA word. Right 48-bits 
word ALPHA (3) equal location of remote BETA 
word. 

BETA follows ALPHA immediately. 

(not used) 

F Function code ¢7 for ADVISE 

N not used 

PGCT Page control - expansion: 

I PIO 
I_ ( l) 

PSZ 
( 1) 

PN 
(6) 



SYSTEM CALL ¢7 - ADVISE cont'd. 

PIO = ¢ 
1 

PSZ = ¢ 
= 1 

PN 

VIRTUAL BIT ADDRESS 

SS 

= ¢ 
= 1 

= 2 

= 3 

Purpose and Operation: 

attach or load pages 

dump pages from core-drum 

small page(s) 

large page 

page count, maximum of 8 for small pages 
1 for large pages 

Starting address for this call 

Error code 

Normal Completion 

Space violates system boundary 

Page count too large 

Page is locked down, can't remove it (PIO=l) 

The advise call can be thought of as a pre-load mechanism. If the call 

is made referencing already-defined virtual space, a message will be sent 

from the call processor to the page fault processor indicating the address 

and length of the advised-for space. From then on, things will be treated 

much as a page fault. If more than one small page is indicated, the pages 

requested should be contiguous on disc. This will result in only one disc 

read instead of several. For large page advises, the system will allow only 

one per call. If the virtual address mentioned in the system call is not 

defined in any virtual map, it will be considered to be a definition of new 

free space and an appropriate entry will be made in the drop file map, as 

well as allocating core space. This is true for any size page. 

If the call is to advise the system that some space is no longer re

quired to be in the core-drum system, the system will write all modified 

pages in the mentioned space back to their appropriate disc file. Unchanged 

pages or pages with KILL bit on will simply be deleted from the core-drum 

maps. This option has the effect of increasing available space in the core

drum system. 



SYSTEM CALL ¢8 - GIVE FILES 

4.1¢.1 

Rev. 1 

This call will be issued by a problem program to give one or more of its 

private, inactive files to another user. 

R L c F 
ALPHA ( 1) 16 16 16 16 

N ERROR EXIT ADDRESS 
ALPHA (2) 16 48 

NAME 
64 BETA (1) 

SS USE~ 

BETA (2) 8 48 

R Response code 

= ¢ 
= 1 

= 1/211 

L = # FFFF 

t # FFFF 

c = ¢ 
= 1 

F 

N 

NAME 

USER 

Normal completion 

See SS for specific error 

N = ¢ (error) 

Left 16-bits of word ALPHA (3) equal length if 

remote BETA buffer. Right 48-bits of word 

ALPHA (3) equal location of remote BETA buffer. 

BETA buffer immediately follows word ALPHA (2) 

and contains L words. 

Give to a private user number 
Give to pool named in BETA(2) (8 characters maximum) 
Function code = ¢8 for GIVE 

Number of files to be given (maximum=l6) 

ASCII File name 

ASCII user number to which the file is to be 

given. 



SYSTEM CALL 

SS 

~-. 1¢ .2 
Rev. l 

- GIVE FILES cont 1 d. 

Error Code 

# 
¢ Norn1a.1 completion. 

1 File of same name there 

-- 2 ~Narn.e same as Pi_iblic File nan1e 

3 No file of given name exists to give 

l+ User number given does not exist 

5 f:De has illegitimate name 

6 File is active ( IOCS 

'7 :ified PUJ3:LIC user number 

-- 8 to source or file 

9 Access than ,givi.ng to private (non-

nu.mbeJ::"., 

ion_ 

The call allows a program to give one of its te files to another 

user number. 'The file must be clos i.e., no IOCS active against it, be-

fore giving. :tt may be that the receiving user will have to be 
·1 ~ o.oggea on. Files being given to user 999999 for output processing must have 

names beginning with one of the characters, P,p ,h,D,d,B b. File names beginning 

with character H or D d will be examined for family membership. The output pro-

cessor routines will run only on demand. The decision to run them is made by 

this call processor. Family files will be backlogged until the end name is 

recognized. Others will be processed at once. 

The method of givj_ng a fj_le wj_ thin the system j_s to unchain it from the 

giving user's list of files and to chain it in to the recipients file list. 

No file may be given to the PUBLIC list. No file having the same name 

as a PUBLIC file TI18.,Y be given. 

A file which is given w:Lll retain, in the file index, the account de-

signB.tor of the originating user until such time as the recipient user 

references the file. At that time, the recipient user 1 s account designator 

replaces the original. Hence, the originating user remains liable for any 

charge.s against the file until the recipient user uses the file. 

F:Ues for outDut may have names involving upper e.nd/ or lower case 

cl1E1,racters .. 



SYSTEM CALL ¢8 - GIVE FILES cont'd. 

4.1¢.3 
Rev. 1 

Files for RJET output must have 8 character names beginning with RP or 

rp. Files for the FR80 must have 8 character names beginning with F or 

f. Both must be given to user 000002 for processing. 





SYSTEM CALL - LIST FILE INDEX OR SYSTEM TABLE 

~-.lLl 
Rev. l 

This call allows a problem program to get a copy of j_ts private file 

index list or to get a copy of the public file index list, or certain other 

system tables. 

ALPHA (1) 

ALPHA (2) 

R 

T 
l.J 

c 

F 

N 

# FFFF 

f # FFFF 

R 
16 

N 
16 

L 
16 

l 
ERROR EXIT 

Response code 

Normal completion 

48 

c 111 

16 16 

ADDRESS 

Left 16-bits of word BETA (l) equal length of 

remote BETA buffer. Right 48-bits of word 

BETA (1) equal location of remote BETA buffer. 

BETA buffer immediately follows word ALPHA ( 2) 

and contains L words. 

Option Control, ¢ get Public Index 
1 get Private Index 
2 Timecard buffer 

on 

least equal 
5, N 

:size, 

3 Statistics buffer 
4 Bank update table 
5 Miscellaneous Table 
6 = inrut les 

or 

be 
.at 
2 

buffe1 



4.11.2 

Rev. 1 

SYSTEM CALL ¢9 - LIST FILE INDEX OR SYSTEM TABLE 

NAME 

LENGTH 

CLS 

RW 

TORG 

TLR 

TYPE 

UNIT 

DEVICE 

Filled in by system with ASCII File name. 

Filled in by system with the length (measured 

in 64-bit words) of the file. 

Security access code 

Filled in by system with the Read/Write access 

of the file; 1 = write access 
2 = read access 
4 = execute access 

Time file was originated 

Tirre file was last referenced 

Filled in by system with file type: 

el = Sequential data 

1 = Virtual data 

2 = Virtual code 

ITicrosecond clock 

shifl:ed right 24 bits 

Logical disc unit number on which file exists. 

= ¢ Normal, private disc file 

= 1 Scratch disc file 

2 Output disc file 

3 Write temporary disc file 

Disc Sector Address is absolute sector address at which file begins on 

disc. 



4.12.1 
Rev. 1 

SYSTEM CALL #¢A - RELEASE FILE SPACE 

This call may be issued by a problem program to reduce the length of an 

existing private disc file. The reduction occurs at the largest absolute 

address end of the file. 

R L c F 
ALPHA ( 1) 16 16 16 16 

N ,, ,ERROR EXIT ADDRESS 
ALPHA (2) 16 48 

BETA (1) FILE NAME 

64 

i;s LENGTH 
8 (WO ROS' 24 BETA (2) 

R Response code 

L == # FFFF 

-/: # FFFF 

c 

F 

N 

NAME 

LENGTH 

¢ Normal completion 

= 1 See SS for error 

Left 16-bits of word ALPHA (3) equal length of 

remote BETA buffer. Right 48-bits of word 

ALPHA (3) equal location of remote BETA buffer. 

BETA buffer immediately follows word ALPHA (2) 

and contains L words 

Not used. 

Function code = #¢A for File Size Cutback. 

Not used. 

ASCII name of file whose size is to be cutback. 

Is the user-supplied new length of the file in 64-Bi t 

words which will be rounded up to the nearest 200 (Hex) 

by the System. 



SYSTEM CALL 

SS 

4.12.2 

Rev. 1 

·- RELEASE FILE SPACE cont' cL 

# 

·-· ¢ 
l 

-- 2 

3 

Error code 

Normal completion. 

New length given is larger than existing length. 

Name not in File Index. 

An active problem program has the file open. 

The error return will be taken for any SS of ¢ and the file length will 

not have been changed. 

The cut must be completely 

!10 IOC s far the This lncludes the reauesting nrogram. 



4.13.1 

SYSTEM CALL #¢B - CHANGE NAME 

This call allows a problem program to change the name of an existing 

private disc file, or to change current account number. 

R 
16 ALPHA ( 1) 

ALPHA (2) 
N 
16 

BETA ( 1) 

BETA (2) 

R 

L = # FFFF 

~ # FFFF 

c 

F 

N 

BETA (1) (C=¢) 

BETA (2) (c=¢) 

BETA ( 1) (C=l) 

L c 
16 16 

ERROR EXIT ADDRESS 
48 

NAME 1 

NAME 2 

Response code 

¢ Normal completion 

= 1 Name error 

I 
F 
16 

Left 16-bits of word ALPHA (3) equal length of 

remote BETA buffer. Right 48-bits of word 

ALPHA (3) equal location of remote BETA buffer. 

BETA buffer immediately follows word ALPHA (2) 

and contains L words. 

= 0 change file name 
= 1 change account number 

Function code = # ¢ B for CHANGE 

Not used. 

Old file name (ASCII, right justified) 

New file name (ASCII, right justified) 

New account number 

The only errors which might occur are that the old file name doesn't exist 

or the new file name already exists, or new account number is invalid. 





4.14.1 
Rev. l 

SYSTEM 

A problem program controller may give its controllee access to one or 

more tapes currently existing in the controller 1 s IOC area. 

ALPHA ( 1) 

ALPHA (2) 

R 

L # FFFF 

~ # FFFF 

c 

N 

1rAPE NAME 

roe 

SS 

# 
= ¢ 

1 
2 

3 

R 
16 

N 
16 

L c I F 
16 16 16 

ERROR EXIT 
48 

8 

Response code 

¢ Normal completfon 

1 See SS field for specific error 

#211 N = ¢ 

Left 16-l)i ts of word ALPHA ( 3) equal length of 

remote BETA buffer. Right 48-bits of word 

ALPHA (3) equal location of remote BETA buffer. 

BETA buffer im.111ediately follows word ALPHA (2) 

and contains L words. 

¢, Give access 

= 1, Recall access 

Function Code = # ¢ C for GIVE TAPE ACCESS 

Number of tapes to be given ( 16 max. ) 

ASCII name under which tape exists in IOC. (5 

characters max.) 

roe number for this connection 

Error Code 

Normal Completion 
No name given 
Wrong IOC word 
ControlJ_ee alread:y owns a private tape in given 
IOC rn.J.mber 
No controllee 



4.14.2 

SYS'I'EM CALL ·· GIVE 'I'APE ACCESS TO CONTROLLEE cont 1 d. 

Controller doesn 1 t own namec1 tape. 

6 Controllee IOC alread:y in use. 

The controllee will access to the tape through the same IOC number 

as the controller uses. The controllee 1 s IOC will not have the tape name 

filled in, however. So: the controllee will not be able to destr.oy such a 

tape. 



SYSTEM CALL "LIST CONTROLLEE CHAIN" 

L .. 15 .1 
Rev. 1 

This call is used by a problem program to get a list of the CONTROLLEE 

chain. The list contains the problem program level and descriptor number, 

source file name, drop file name, and other information. 

ALPHA I ' \ 
~ J_) 

ALPFl" ... A ( 2) 

ALPHA (3) 

F 

L # FFFF 

f- # FFFF 

R 

J 

B 

M 

I-

l 

1 

= 2 

¢ 
l 

2 

16 
J 
8 

T 
.LI M F 
16 8 8 16 

B EF.ROR EXIT VIRTUAL ADDRESS 
8 48 

VIRTUAL ADDRESS OF REMOTE 
BETA BUFFER L~8 

Function code = #13 

· contains the maximum number of words to be 

returned in the REMOTE BETA buffer. The right -

most 48-bits of ALFF.A ( 3) contains the location 

of the remote BETA buffer. 

L contains the maximum number of words to be 

returned in BETA. The BETA buffer begins in the 

word following ALPHA ( 2) . 

Good return means the controllee chain was stored. 

R contains the number of words returned in BETA. 

Error Return means the call was not processed. 

R contains the error number. 

Length of BETA is zero. 

Illegal option 

The calling problem program 1 s level in the controllee 

chain, returned by the system. 

The descriptor number, a unique number associated 

with the calling program, returned by the system. 

List all controllees in the chain 

List only this problem program (four BETA words 

returned by system) 

List only this problem programs controller. (Four 

BETA words returned by system). 



4.15.2 
Rev. l 

SYSTEM CALL #13 - "LIST CONTROLLEE CHAIN" cont'd 

M 

BETA 

BETA 

BETA 

BETA 

BETA 

s 

T 

c 

N 

D 

K 

( 1) 

(2) 

(3) 

( 4) 

= 3 

s 
8 

K 
8 

List only this problem program's controllee(four 

BETA words returned by the system). 

There are 4 words per entry. For M=¢¢, the con

trollees are listed in ascending order, starting 

with the problem program directly attached to the 

teletype. 

T 
8 

c 
8 

SOURCE FILE NAME IN ASCII 

DROP FILE NAME IN ASCII 
64 

24 
N 
8 

D 
8 

6 

The level of the problem program whose name is in 

BETA (3), the level is a number 2-6. 

Contains the descriptor number which is associated 

with the problem program in BETA (3). 

Contains the descriptor number of this problem 

programs controller. (returned by the system) 

Contains the descriptor number of another PP in 

the chain. The PP in BETA (3) has informed the 

system that messages from above not specifically 

directed to him should be sent to N. (returned by 

the system; may be zero) see P. 4.20.1) 

Contains the descriptor number of another PP in 

the chain. The PP in BETA (3) has informed the 

system that messages from below not specifically 

directed to him should be sent to D. (returned by 

the system; may be zero). see P. 4.20.1) 

Contains the descriptor number of this problem 

programs controllee (returned by the system; may 

be zero). 



SYSTEM _C.ALL #13 - "LIST CONTROLLEE CI{AIN" cont 1 d 

Remarks: 

L The descriptor number may be used in the Send Message system calls 

to specifically direct a message to a particular PP, or in the 

Get Message system calls to determine the identity of the sender. 

2. The descriptor number is unique and is associated with the PP until 

it is disconnected. 

3. There are a maximum 5 problem program controllee levels, starting 

with 2 which is the level directly under the teletype. The tele

type is level 1. 

h The calling program may associate J & B in ALPH.A (2) with S and T 

in BETA (1) to get his place in the controllee chain. 





4.16.1 
Rev. 1 

SYSTEM CALL #14 - "SEND A MESSAGE TO CONTROLLER" 

This call may be used by a problem program to send a message to a 

problem program controller or the teletype. 

R 
16 ALPHA (1) 

B 

ALPHA (2) 
8 8 

BL 
ALPHA (3) 16 

F 

c 

= ¢¢ 

= ¢1 

= ¢2 

M 

= ¢¢ 

= ¢2 

L M c F 
16 8 8 _l6_ 

ERROR EXIT VIRTUAL ADDRESS 
48 

VIRTUAL ADDRESS OF REMOTE DATA 
BUFFER 48 

Function Code = #14 

Control Field 

Send a message to controller and if problem 

program controller, stop running this PP 

(pages drift out) and start running the controller. 

If teletype controller, keep running this PP. 

Send a message to controller and if problem 

program controller, write all of this PP's 

pages on disk before starting the controller. 

If teletype controller, keep running this PP. 

Send a message directly to teletype and keep 

running this PP. 

Replace, Notify or Wait Option 

Replace Option: If the teletype is logged out 

then replace any existing message. If the tele

type is logged in but the buffer is full, then 

stop running this PP (pages drift out) until the 

buffer is free. 

Notify Option: Return to the error exit address 

if unable to send message. Check the R field. 

Wait Option: If unable to send message, stop 

running this PP (pages drift out) until the 

message can be sent. 



4.16.2 
Rev. 1 

SYSTEM CALL #14 - "SEND A MESSAGE TO CONTROLLER" cont'd. 

L 

B 

R 

BETA 

= # FFFF BL contains the number of bytes in the message. 

The rightmost 48-bits of ALPHA (3) point to the 

remote BETA buffer where the message is stored. 

f # FFFF L contains the number of bytes in the message. 

The BETA buffer begins in the word after ALPHA (2). 

L or BL must be > ¢ & < 4096. 

The message is sent to the controller whose 

descriptor number is in B. If C=¢2, or this 

problem program is level two, B is ignored. 

The B field may be zero in which case the message 

is sent to the next high level controller (may 

be teletype). 

Error Response Field 

1 BETA byte count 7 4096 or = ¢. 

2 Illegal option. 

3 For B non-zero, no controller exists by 

that descriptor number. 

= 4 Teletype not logged in. (M=Ol) 

= 5 Teletype logged in under a different suffix. 

(M=Ol) 

6 System output buffer full. (M=Ol) 

Contains the message. 



BE11\ l) 
8 8 

8 

C is a.n 

Q 
u 

8 8 

ASCII eharacter. 

8 8 

c_ 
( 

8 

·R.ernarlzs 

rnessages to us the replace or wait option 

); if the is logged in, the system buffer will 

hold up to 5 messages or L~o96 bytes, whichever occurs first. If 

the telet:y11e is logged out, the buffer will hold only one message. 

2. messs.ges to teletype are grouped in blocks of 151 characters 

and sent one block at a time to the telety-pe. the last block is 

less th.an l , an end,-of-message character ( #17) is adcled after 

the last message byte. 





4.17.1 
Rev. 1 

SYSTEM CALL #15 - 'l3END A MESSAGE TO CONTROLLEE" 

This call may be used by a problem program to start its CONTROLLEE with 

or without a message. The CONTROLLEE must have been previously initialized. 

R L M c 
I F 

16 16 8 8 16 ALPHA ( 1) 

ALPHA (2) B ERROR EXIT VIRTUAL ADDRESS 
8 8 48 

BL VIRTUAL ADDRESS OF REMOTE BETA BUFFER 
16 48 ALPHA (3) 

F Function Code = #15 

C Control Field 

¢¢ 

M 

= ¢¢ 

= ¢2 

L = # FFFF 

-/= # FFFF 

Stop running this problem program .(pages drift 

out) and start the controllee immediately. 

Write all of this problem program's pages to 

disk before starting the controllee. 

Is the Message Option Field 

Start controllee with a message and if the 

controllee already has a message from controller, 

replace it with the message in BETA. 

Start controllee with a message, but if the 

controllee already has a message from controller, 

return to the error exit address. 

Start the controllee without a message. 

BL" contains the number of bytes in the message. 

The rightmost 48-bits of ALPHA (3) point to the 

Remote BETA buffer. 

L contains the number of bytes in the message. 

The BETA buffer begins in the word after ALPHA (2). 

L or BL must be>¢ & < 4096. 



4.17.2 
Rev. 1 

SYSTEM CALL #15 - "SEND A MESSAGE TO CONTROLLEE" cont'd 

B 

R 

BETA 

BETA ( 1) 

• 

= 1 

= 2 

= 3 

= 4 

7 

cl 

8 

c9 

c2 

8 

The message is sent to the controllee whose 

descriptor number is in B. The B field may 

be zero, in which case the message is sent to 

the next lower level controllee. 

Error Response Field 

BETA byte count > 4096 or ¢ 
Illegal option. 

For B non zero, no controllee exists by that 

descriptor number. 

For B = ¢, no controllee exists. 

Controllee already has a message. (M=Ol) 

Contains the message 

c3 C4 c5 I 
c 6 I c7 

I 8 8 8 I 8 8 

C3 

8 

- - - - - - - -

C is an 8-bit ASCII character 



4.17.3 

SYSTEM CAJ;,L #Jj - 11 SEND A MESSAGE TO~ 

Remarks: 

1. Sendj_ng a message causes the system to copy the message from the 

problem program virtual space into a system buffer and to start 

the controllee. 

2. If a controllee is running, a message from teletype sent to its 

controller will start the controller and stop the controllee. 

3. If any controllee other than level two issues the SYSTEM CALL #16, 

"GET A MESSAGE or SYMBOLS FROM CONTROLLER" with the wait option, 

and there is no message from controller waiting, then the next 

higher level controller problem program will be started and the 

controllee will stop running and be put in a state of waiting for 

a message from controller. 





4.18.1 

Rev. 1 

SYSTEM CALL #16 - "GEI' A MESSAGE OR SYMBOLS FROM CONTROLLER" 

ALPHA ( 1) 

J 
ALPHA (2) 8 

ALPHA (3) 

F 

c 

M 

R 
16 

BL 
16 

= ¢¢ 

= ¢3 

= ¢¢ 

I= ¢¢ 

= ¢1 

= 02 

B 
8 

L M 

I 
c F 

16 8 8 16 
ERROR EXIT VIRTUAL ADDRESS 

48 

VIRTUAL ADDRESS OF REMOTE BETA BUFFER 
48 

Function Code = #16 

Control Field ("Wait" Option ¢¢ & ¢2 and 

"Notify" Option = ¢1, ¢3) 

If a message from controller is not there, 

stop running this PP until a message arrives. 

Return the message to the PP buffer and re

lease it from the system buffer. 

If there is no message from controller, re

turn to the error exit address. If there is 

a message return it to the problem program 

buffer and release it from the System buffer. 

If a message from controller is not there, stop 

running this PP until a message arrives. Return 

the message to the PP buffer, but do not release 

it from the system buffer. 

If there is no message from controller, return 

to the error exit address. If there is a 

message return it to the problem program buffer 

but do not release it from the system buffer. 

Message Format Option 

Return in message format. 

Return in symbol format. 

Delimiters are space and control characters. 

Symbols are-bNink filled 
Delimiters ar.e,sp~ce. control characters, comma, 

period, semicolon, left and right parenthesis, 
left and right brackets. Symbols are blank filled. 



4.18.2 
Pev. 1 

SYSTEM CALL f!l6 - "GET P. 'MESSAGE OR SYMBOLS FROM CONTPOLLER" cont'd 

L 

= 03 Delimiters are nrograrrmer specified. The number of de

limiters is stored in the left most of 16-bits of BETA 

(1). The right most 48-bits of BETA (1) point to the 

Delimiters. L'l.e L.elimi ters are stored left to right, 

byte by byte in the buffer. The number of aelimiters 

must be < 2012l. The svmbols are stored starting in BETA 

(2). Symbols are blank filled. 

= 04 Delimiters are any character not a letter, digit, or period. 

= 09 

= r/JA 

= r/JB 

= 0C 

= # ITIT 

:t # FITl'." 

= 1 

= 2 

= 3 

= 7 

Symbols are blank filled. 

SaJ"IE as 01 except symbols are null filled. 

Same as 02 excent symbols are null filled. 

Sane as 03 excent symbols are null filled. 

Same as 01+ except symbols are null filled. 

BL contajns the maximum number of bytes (M=00) or words 

(M¥00) to be delivered as a result of this call. The 

ri9:ht rrost lJ.8-bits of ALPHA ( 3) point to the Remote BETA 

buffer. 

L contains the rraximum number of bvtes (M=00) or words 

U':¥00) to be delivered as a result of this call. '111e 

BETA buffer begins in the word after API.HA ( 2) • 

Lor BL must be > l2l and < 4096. 

Good return rreans the message was stored. R contains the 

number of bvtes (t.<f=012l) or number of words (M#i2li2l) returned 

in BETA. 

Error return means no message was stored. R contains the 

ern::>r number. 

Byte (M=i2l0) or word (Jvi"fi2ll2l) cound bad. L=l2l or> 4096. 

Illegal option. 

No message from controller waiting. 

For t1=12l3 and =#0B the delimiter count was greater than 200. 



4.18.3 

Rev. l 

SYSTEM CALL #16 - "GET A MESSAGE OR SYMBOLS FROM CONTROLLER" cont'd. 

J 

B 

The system will store the level of the sender. 

The system will store the descriptor number of 

the sender. 

Remarks: 

L Getting a message causes the system to copy the message from the system 

buffer to the problem program buffer. No end-of-message is added by the 

system. If the number of bytes in the message is greater than the number 

requested, only the number of bytes requested will be delivered. If the 

number of bytes in the message is less than the number requested, the 

entire message will be delivered and the remaining portion of the PP 

buffer will be cleared. 

2. Getting symbols causes the system to crack the message into symbols and 

copy them into the problem program buffer. A delimiter, other than a 

bl or null is s as a s•.•mbol. For M=n1~m2.. ng &nn ar1d #~C 
.f Yi , 'IJ • ' 'fJ ' 11 'fJ•'"\ t , J/.1 ' 

blanks nulls are sq out. For M=03, and #08 blanks and nulls are 
squeezed out on 1y if set as de1 i ters. If' the number of svmbo 1 s is 

ter than the number of word~ feauested, only t~e number of words re-

ques will b~ delivered. Tf the number of svmbals is less than the 

numbe·r of t·iords reouested, all the sumbols wi11 be delivered. (No end-of
messaae is added by the svstem.) 

3. A symbol is defined to be less than 9 characters. Symbols are right

adjusted in the BETA word and blank or null fil 1 ed in the 1 eftrrost pa rt 

of the word if less than 8 characters. 

4. If the message was sent from teletype, J will be set to one and B will be 

set == #FF. 





4.19.1 

Rev. l 

SYSTEM CALL #1 7 - "GET A MESSAGE OR SYMBOLS FROM CONTROLLEE" 

R L M c F 
ALPHA (1) 16 16 .8 8 16 

J B ERROR EXIT VIRTUAL ADDRESS 
ALPHA (2) 8 8 48 

VIRTUAL ADDRESS OF REMOTE BETA BUFFER 
ALPHA (3) 16 48 

F Function Code :: # 17 

c Control Field 

= 00 Return the message to the PP buffer and release 

it from the system buffer. 

= 02 Return the message to the PP buffer, but do not 

release it from the system buffer. 

M Message Format Option. 

= 02 

= 03 

= 04 

= 09 
= #~A 

= #08 

Return 1a message format. 

Return in symbol format. 

Delimiters are space and control characters. 

Symbols are blank filled. 

Delimiters are space, control characters, comma, 
period, semicolon, left and right parenthesis, 
left and riaht brackets. Symbols are blank filled. 

Delimiters are programmer specified. The number of 
delimiters is stored in the leftmost 16-bits of BETA 
(1). The rightmost 48-bits of BETA (1) point to the 
Delimiters. The Delimiters are stored left to right, 
byte by byte, in the buffer. The number of Delimiters 
must be L. 200. The symbols are stored starting in 
BETA (2). Symbols are blank filled. 

Delimiters are any character not a letter, digit, 
or oeriod. Symbols are blank filled. 

Same as 01 except symbols are null filled. 

s.a.me as 02 l'l!Xcept symbols are null fille°'. 

Same as 03 except symbols are null filled. 



SYSTEM CALL 

L 

R 

4.19.2 
Rev. 1 

- "GET A MESSAGE OR SYMBOLS FROM CONTROLLEE" cont d. 

# FFFF 

-/= c/f FFFF 

-- 1 

2 

3 

= 4-

5 

6 

7 

contains the maximum number of bytes (M=¢¢) 
or words ( to be delivered as a result of 

this call. 'I'he rightmost 4-8-bits of ALPHA (3) 

point to the Remote BE'I'A buffer. 

L contains the maximum number of bytes (M=¢¢) or 

words ) to be delivered as a result of this 

call. 'I'he BETA buffer begins in the word after 

ALPHA (2). 

L or must be > ¢ 8c < 4096. 

Good return means the message was stored. R 

contains the number of bytes (M=¢¢) or number 

of words ); returned in BETA. 

Error return means no message was stored. 

R contains the error number. 

Byte (M=¢¢) or word (Mf¢¢) count bad. L 
or> 4096. 

Illegal option 

No message from controllee waiting. 

There is a message from controller waiting. 

Available 

PP was started because the controllee whose 

level and descriptor number is stored in J and 

B is waiting on a message from controller. 

For M=¢:? or I the l i count is 7 



4.19.3 
Rev. 1 

SYSTEM CALL #17 - "G~r A MESSAGE OR SYMBOLS FROM CONTROLLEE" cont Id. 

J 

B 

The system will store the level of the sender. 

The system will store the descriptor number of 

the sender. 

Remarks: 

1. Getting a message causes the system to copy the message from the system 

buffer to the problem program buffer. No end-of-message is added by the 

system. If the number of bytes in the message is greater than the number 

requested only the number of bytes requested will be delivered. If the 

number of bytes in the message is less than the number requested, the 

entire message will be delivered and the remaining portion of the PP 

buffer will be cleared. 

2. Getting symbols causes the system to crack the message into symbols and 

copy them into the problem program buffer. A delimiter, other than a blank 

or null is stored as a symbol. For M=01, 02, 04, 09, #0A, and #0C, blanks 

nulls are squeezed out. For M=03 and =#08 blanks and nulls are squeezed 

out only if set as imiters. If the number symbols is greater than the 

number of words requested, only the number of words requested will be de
livered. If the number of symbols is less than the number of words requested, 

:-ill the symbols vdll be delivered; No end-of-messaae is added by the system. 

3. A symbol is defined to be less than 9 characters. Symbols are right

adjusted in the BETA word and blank or nu11 -Filled in the leftmost part of 

the word if less than 8 characters. 

4. The level and descriptor number returned by the system will have no mean

ing if the controllee who sent the message has been disconnected. 





4.2¢.1 
Rev. 1 

SYS'I.'EM CALL #18 - "MESSAGE CONTROL" 

This call may be issued by the problem program to inform the system 

that messages sent to this problem program should be directed to another 

CONTROLLEE or CONTROLLER in the chain. 

ALPHA (1) 

ALPRA. (2) 

F 

M 

I R 
I 16 

lII 

¢ 

= 1 

1 

2 

3 

4 

5 
6 

B 
8 

i~ M c F 
8 8 16 

ERROR EXIT VIRTUAL ADDRESS 
48 

Function Code #18 

Turn on or off bypass 

Turn off bypass 

Turn on bypass 

Option Field 

Means set input bypass (C=¢1) or turn off input 

bypass (C=¢¢). If the input bypass is set, then 

messages from controller not specifically directed 

to this PP should be sent to this PP's controllee. 

Means set output bypass (C=¢1) or turn off output 

bypass (C=¢¢). If the output bypass is set, then 

messages from controllee not specifically directed 

to this PP should be sent to this PP's controller. 

Means set both bypasses (C=¢1) or turn off both 

bypasses ( C=¢¢). 

Means look only at J. 
Means look only at B, 
Look at both J and B to decide where messages 

should be directed. 



SYSTEM CALL #18 - uMESSAGE CONTROL" cont'd. 

L Nnt used. 

R Error Response Field 

4.2¢.2 

Rev. 1 

= 1 No controller or controllee exists by that 

descriptor number. 

,J Descriptor number of CONTROLLEE to whom messages 

from above are to be directed. 

B Descriptor number of CONTROLLER to whom messages 

from below are to be directed. 

Remarks: 

1. The controllee may direct messages from below to teletype by setting 

B =#FF. 

2. This call does not redirect those messages which are sent specifically 

to this problem program, that is, the descriptor number was set in the 

B field in svsten call #14 and #15 (see p. 4.16.l and p. 4.17.1). 



4.21.l 

Rev. 1 

SYSTEM CALL #19 - "WRITE CONTROLLEE PAGES TO DISK" 

I 
I 
I 

I 
ALPHA ( 1) 

I 
' 

ALPHA (2) 
I 
I 

ALPHA (3) I 
I 

F 

N 

L 

R 

BETA 

B 

Remarks: 

B 
8 

R 
16 
N 
16 

BL 
16 

¢¢ 
¢1 

¢2 
# FFFF 

-/= # FFFF 

== 1 

l 

L 

I 
F 

16 16 16 

ERROR EXIT VIRTUAL ADDRESS 
48 

VIRTUAL ADDRESS OR REMOTE BETA BUFFER 
48 

Function Code = #19 

Control Option 

Write next lower controllee pages to disk. 

Write controllee pages whose descriptor 

number is in BETA (1) to disk. 
Write this problem program's pages to disk. 

contains the number of words in BETA. The 

rightmost 48-bits of ALPHA (3) contains the 

location of the remote BETA buffer. 

I 

L contains the number of words in BETA. The 

BETA buffer begins in the word following ALPHA 

(2). 

Error Response Field 

No controller or no controllee by that 

descriptor number. 

The controllee whose descriptor number is B will 

be written to disk. (N = ¢1) 

1. The CONTROLLER stops running and is put in a "WRT CNTE'' state until 

all the CONTROLLEE pages are on disk. (N = ¢¢) ¢1) 





4.22.1 

Rev. 1 

SYSTEM CALL #lA - "SEND A MESSAGE TO THE OPERATOR" 

A problem program may use this call to communicate to the operator. 

R L F 
16 16 16 16 ALPHA ( 1) 

N ERROR EXIT VIRTUAL ADDRESS 
ALPHA (2) 16 48 

BL VIRTUAL ADDRESS OF REMOTE BETA BUFFER 
ALPHA (3) 16 48 

F Function Code #lA 

N Control Field 

=¢¢ 

L =# FFFF 

-/:# FFFF 

R 

= 1 

= 2 

If unable to send message, stop rq.nning this 

problem program until the message can be sent. 

Return to the error exit address if unable to 

send message. 

uL contains the number of bytes in the message. 

The rightmost 48-bits of ALPHA (3) point to 

the remote BETA buffer. 

L contains the number of bytes in the message. 

The BETA buffer begins in the word after ALPHA 

(2). 

L or BL must be > ¢ and c:::_ 8¢ . 

Error Response Field. 

Byte count bad, L = ¢ or >8¢. 

System buffer full (N = ¢1). 

Remark: 

1. The operator's teletype is always logged in. Therefore, the only reason a 
message could not be sent at the time the call is issued is because the 
system buffer is full. 





4.23.1 
Rev. 1 

SYSTEM CALL #lB - "INITIALIZE OR DISCONNECT CONTROLLEE" 

This call j_s used by a problem program to j_nitialize another problem 

program as controllee. Thj_s call may also be used by a problem program to 

disconnect a previously initialized controllee. 

R 
ALPHA ( 1) 16 

ALPHA (2) N 
16 

ALPHA (3) BL 
16 

F 

N 

#10 

L = # FFFF 

f # FFFF 

R 

For N~ 1¢ 

= , _L 

= 2 

= 3 

4 

5 

= 6 

= 7 

= 8 

9 

L 

~~ 
F 

16 l ERROR EXIT VIRTUAL ADDRESS 
48 

I VIRTUAL ADDRESS OF REMOTE BETA BUFFER 
i 48 

Functj_on Code #lB 

Control Field 

Initialize controllee and restart this PP. 

Initialize controllee and start controllee 

immediately. Stop running this PP. 

Disconnect Controllee and restart this PP 

(BETA not used) 

Bl contains the number of words in BETA. 

The rightmost 48-bits of ALPHA (3) contains 

the location of the remote BETA buffer. 

L contains the number of words in BETA. The 

BETA buffer is located in the word after ALPHA 

( 2) . 

Error Response Field 

Controllee already present 

Illegal option 

File not there 

Not enough time in bank to run controllee 

Illegal Priority 

System drop file create error 

Controllee file is not executable. 

Disc trouble 

System tables full, cannot initialize controllee 

at this tj_me. 



4.23.2 
Rev. 1 

SYSTEM CALL #lB - "INITIALIZE OR DISCONNECT CONTROLEE" cont'd. 

= #A Source or drop file IOC anomaly. 

= # B 5 levels of controllees are already present. 

= # D Controllee drop file is too small 

for N = # 10 

BETA = # C No controllee present. 

BETA (1) SOURCE FILE NAME OF CONTROLLEE (ASCII) 

BETA (2) 
B 
8 8 

TIME LIMIT IN MICROSECONDS 
48 

B Contains the descriptor number of the controllee 

(returned by the system). 

If time limit is zero, the controller's time limit is used. 

Remarks: 

1. Five levels of problem program controllees are maximum. 

2. The descriptor number is a unique number associated with the controllee. 

If the controllee is disconnected and re-initialized, this number might 

change. 



4.24.1 
Rev. 1 

SYSTEM CALL #lC - "PROBLEM PROORAM INTERRUPT" 

This call may be used by a problem program to inform the system 

that it wants to be interrupted or it does not want to be interrupted 

by a message. 

R L 

I 
F 

16 16 16 16 
ALPHA ( 1) 

J B ERROR EXIT VIRTUAL ADDRESS 
8 8 48 ALPHA (2) 

t3L VIRTUAL ADDRESS OF REMOTE BETA BUFFER 
ALPHA (3) 16 48 

F Function Code = #lC 

L = # FFFF 

-/= # FFFF 

R 

= 1 

= 2 

B 

= ¢ 

= 1 

= 2 

J = ¢ 

BL contains the number of words in. BETA. 

The rightmost 48-bits of ALPHA (3) point 

to the remote BETA buffer. 

L contains the number of words in BETA. 

The BETA buffer begins in the word after 

ALPHA (2). 

Error Response Field 

47 Interrupt address greater than 2 - 1. 

Illegal option. 

Option 

Means any message will interrupt this PP. 

Means any message preceded by a left adjusted 

CTRL-E i (#0549) will interrupt this PP. 

Means this PP no longer wants to be interrupted 

by the arrival of a message. 

Type interrupt option 

Means the B ~iled refers to messages from 

controller 



4.24.2 
Rev. 1 

SYS'I'EM CALL - "PROBLEM PROGRAM INTERqUPT" cont 1 d 

BE'I'A 

Remarks: 

2. 

4. 

6. 

Contains the interrupt address, the virtual 

bit address where the PP is to be started 

when a message arrj_ves. 

W'nen the "Problem Program Interrupt" system call is issued 

for options B , the problem program will be 

interrupted all succeeding messages or C'I'RL-E i messages 

until the problem program terminates or issues the call with 

There will always be a message waiting if the problem program 

:Ls sent to the :Lnterrupt address. 

The problem program :Lnterrupt is treated like an I/O interrupt. 

In order to release the interrupt the problem program must 

issue the system call, "Return from Interrupt" described on 

For B~ ¢1, the CTRL-E i is stripped off the message. The 

message is repositioned_ at the beginning of the word. 

The CTRL-E i interrupt will cause any output message(s) to 

be released. 

The C'I'RL-E i will interrupt the highest level controllee 

who has issued the interrupt system call with option BB = ¢1. 

The input bypass is ignored. 



4.25.1 
Rev. 1 

SYSTEM CALL f2_3 - USER DIRECTORY MODIFICATION 

This call is used to add, delete or modify an entry in the User Directory. 

It will be used to update bank accounts, user combinations, etc. It also con

tains a means for donating time between pool accounts. The call is restricted 

to privileged users. 

R L c F 
ALPHA ( 1) 16 16 16 16 

N ERROR EXIT ADDRESS 
ALPHA (2) 16 

BETA ( 1) D I~ I p s R u 
32 1 1 1 20 

SS G z 
BETA (2) 8 8 40 

h 
; 

R Response Code 

L 

c 

== ¢ 
== 1 

== 2 

== # FFFF 

~ # FFFF 

== ¢ 

== 1 

== 2 

== 3 

Normal Completion 

See BSS 

Error form service station 

Left 16-bits of word ALPHA (3) equal length of 

remote BETA buffer. Right 48-bits of word 

ALPHA (3) equal location of remote BETA buffer. 

BETA buffer immediately follows word ALPHA (2) 

and contains L words. 

Option Control 

modify existing accounts, or add if not already 

in user directory. 

add new account (s). 

delete existing account (s). 

donate from pool to pool (1 per call) 



4.25 .2 

SYSTEM CALL 1/2.3 - USER DIRECTORY MODIFICATION cont'd. 

F Function code = 1/23 for UD Mod. 

N The number of accounts to be processed with 

this call. 

BETA WORD FORMATS: 

c = ¢ 

BETA ( 5) G = 

D = 

E I= ¢ 

¢ 
p I=¢ 

= ¢ 
s I=¢ 

= ¢ 

R I=¢ 

u 

BETA (6) 

z = 

The first BETA word is considered to have the 

update time, the second BETA word to have the 

bank name, the third BETA word to have the 

minimum priority, the fourth BETA word is 

reserved for future use. The actual bank account 

data begins in BETA (5). 

maximum percentage donation from the divisional 

repository allowed for this user. 

division code (ASCII) 

reset DEBIT and PERCENTAGE fields for all users 

of this repository 

no such reset as above 

repository account 

private user account 

time returns to pool (snap-back) 

user eligible to keep time 

OK to execute priority job 

binary user number (not used for PI=¢). 

BSS - error code* 

The bank account quantity to be installed 

(ignored if P = ¢) in microseconds. 



4.25.3 

SYSTEM CALL #23 - USER DIRECTORY MODIFICATION cont'd. 

BETA (7) 

BETA (8) 

etc. 

c :;;: 1 

c :;;: 2 

BETA ( 1) 

c :;;: 3 

BETA ( 1) 

BETA (2) 

BETA (3) 

D :;;: 

E :;;: 

p :;;: 

s :;;: 

R :;;: 

u :;;: 

G :;;: 

D :;;: 

E 

p 

s 
R :;;: 

u :;;: 

G 

As BETA (5) 

As BETA (6) 

Format as for C=¢, but start with BETA (1) 
being the first account. No presumptions 

made about first four BETA words. 

Only one BETA word per account is required. 

G - error code* 

division code (ASCII) 

not used 

as for C = ¢ above 

not used 

not used 

as for C = ¢ above 

Three BETA words required. Only one donation 

is allowed for each call. 

error code* 

division code (ASCII) for Donor 

not used 

not used 

not used 

not used 

not used 

not used 

D division code (ASCII) of Donee 

E, P, S,R,U not used 

z:;;: microsecond donation 



SYSTEM CALL #23 - USER DIRECTORY MODIFICATION cont'd. 

* 
= ¢ 
= 1 

= 2 

3 

4 

5 
6 

7 
= 8 

= 9 
1¢ 

Error Codes 

Normal 

Trying to add an already extent number 

Division mismatch 

No such account to update 

UD full when trying to add a new entry 

Trying to modify non-pool account 

Percentage greater than 100 

Not enough time in donor pool 

Illegal option 

Illegal table name 

Table size too big 

4.25.4 



4.26.1 

SYSTEM CALL lfr2.4 - MISCELLANEOUS 

This call allows a Problem Program to manipulate its time limit and/or 

that of its controllees. It further allows the problem program to a variety 

of miscellaneous information about itself, its controller(s) and its con

trollee( s). 

R 
ALPHA ( 1) 16 

N 
ALPHA (2) 16 

BETA ( 1) 

BETA (2) 

etc ... 

R 

= ¢ 
= 1 

L = # FFFF 

c # 
= ¢ 

1 

= 2 

L c I 16 16 

ERROR EXIT ADDRESS 

Response Code 

Normal completion 

Error 

48 

F 
16 

Left 16-bits of word ALPHA (3) equal length of 

remote BETA buffer. Right 48-bits of word 

ALPHA (3) equal location of remote BETA buffer. 

BETA buffer immediately follows word ALPHA (2) 

and contains L words 

Control field 

Modify time limit 

BETA ( 1) = 

BETA (2) = 

new time limit from program 
(microseconds) 
existing time limit from system 
(microseconds) 

Get user ID number and bank account 

BETA (1) =User ASCII number from system 
BETA (2) =Bank time (integer microseconds) 

Change priority of calling program 

- - Call has been disallowed - -



SYSTEM CALL 

4.26.2 
Rev. l 

- MISCELLAJ\JEOUS cont d. 

3 

4 

5 

7 

8 

- 9 

A 

B 

Get time limit and priority 

BE'I'A ( 1) Existing time limit (microseconds) 

from system 

BETA (2) = Existing priority from system 

Change priori of calling program and con-

trollees 

.. - Call has been disallowed - -

Change priority of controllees 

Call has been disallowed 

Get controllee na111e 

BETA (1) 
BETA (2) 

Source file name 

Drop file name 

Get controller name 

BETA ( - l 1, - Source file name 

BETA (2) - Drop file name 

Who am I? 

Source file name 

Drop file name 

BETA (1) 

BETA (2) 

BE'I'A ( 3) Suffix, Level in controllee chain, 

ID (ASCII) 

Get elapsed execution time and page fault count 

BETA ( 1) CPU, Memory times 

BETA (2) System Call, Implicit r/o times 

BETA (3) Explicit I/O, Remote I/O times 

BETA ( 4) Page fault count, page faults to drum 

BETA (1) LRL Master clock 

BETA ( 2) HR:MI:SE (ACII) 

BETA (3) MO/DA/YR (ASCII) 

BETA ( 4) =:: Millisecond station clock 

BETA ( 5) CPU microsecond clock 

~estri:ted to User-1 codes, erase_ sy~tem ou~:put tape 
El numbers BETA(l) = HSP, CRT or bb89-J (ASCL) 



SYSTEM CALL #2.5 - RECALL 

4.27.1 
Rev. 1 

This system call allows a problem program to suspend itself for a time 

period in the interval (30 sec<::. Tsus ..C. 30 min.). The system will recall 

the program to active status at the end of the suspension interval. The pro

gram is not allowed to own tape(s) or to be connected to a problem program 

controller or controllee. System privaleged user numbers are exempt from the 

tape ownership restriction. 

R 
ALPHA ( 1) 16 

ALPHA (2) N 

BETA (1) 

R 

= ¢ 
1 

L = # FFFF 

f # FFFF 

c 

F 

N 

TIME 

L 

I 
c 

16 16 

ERROR EXIT ADDRESS 
48 

Response Code 

Normal Completion 

Error - call not allowed 

TIME 
32 

F 
16 

Left 16-bits of word ALPHA (3) equal length of 

remote BETA buffer. Right 48-bits of word 

ALPHA (3) equal location of remote BETA buffer. 

BETA buffer immediately follows word ALPHA (2) 

and contains L words 

not used 

Function code = #2.5 for RECALL 

not used 

Suspension period given in integer microseconds, 

30 sec. <:. time<:. 30 min. 

Any time period given outside the allowed interval 

will be set to the nearest interval limit. 





SYSTEM CALL #50 EXPLICIT I/O 

4.28.1 
Rev. 1 

Two forms of input and output are available on STAR, Implicit and 

Explicit. Implicit I/O is accomplished by the user defining a 1 to 1 

correspondence between segments of disk space and equal length segments 

of virtual address space (see calls CREATE, OPEN, MAP). This mapping in

formation is stored in the executing program's minus page and IOC's (see 

STAR minus page format). Given this :Map, a reference to a virtual address 

not already in the memory drum system can be transformed into a disk 

address via the map provided and the system can do the necessary I/O to 

obtain the required page. References to pages which do not exist in the 

map cause pages to be assigned to the user. These pages are called free 

space and the system automatically catalogues them in the free space map 

of the drop file. The user may also obtain free space in blocks larger 

than one page using the ADVISE call. 

Any input or output operations done by the system as a function of 

the virtual space - disk address correspondence mapping is called Implicit 

I/O since the user causes it to be done implicitly by virtual address ref

erencing. 

Tape I/O cannot be done Implicitly and only data blocks of 512 words 

(small pages) or 65K words (large pages) may be transferred implicitly. 

These two facts give rise to the need for the user to have the capability 

of requesting specific blocks of data to be transferred. This is accom

plished through a system call with function code #100. The format of this 

call is the same as any other system call except the error exit address in 

the second alpha word is replaced by an interrupt address. 

Up to 8 BETA words may be associated with each call and each BETA 

word may be either a window (buffer definition) operation or an image 

(data transfer) operation. There are two reasons for separating these 

two functions. First, the user often uses the same window (buffer area) for 

a succession of image (data transfer) requests. Hence, redefining the win

dow for each image is a redundant operation. Second, it is anticipated 



SYSTEM CALL #50 EXPLICIT I/O cont'd. 

4.28.2 
Rev. I 

that the system should evolve such that a code stated in large pages 

utilizing explicit I/O should be capable of running in a small page 

demand paging mode with no changes to the code when an insufficient 

number of large pages are available. It appears necessary to separate 

window and image requests to achieve this goal. 

In order to allow double buffering without requiring an inordinate 

amount of window requests, the system provides two windows per file(IOC). 

Note that if one wants to simulate an IOD as used on the Frost and 

Floe systems, it requires three beta words, the first an open window, the 

second an image and the third a close window. 



The Format for a STAR I/O call is: 

A R L 

1 15 

SYS B 

8 8 

I BETA LENGTH 

16 

L_ -

FC = # 50 16 for an I/O call. 

F 

16 16 

INTERRUPT ADDRESS 

BETA ADDRESS 

4.28.3 
Rev. 1 

ALPHA (1 

16 

ALPHA (2 

48 

l 

ALPHA (3; 

48 

- J 

BP contains the BET/\ index for the I/0 request which just completed and caused 

the interrupt. B is stored by the system. 

L = # FFFF means ALPHA (3) contains the address and length of the BETA 

buffer. 

~ # FFFF means the BETA buffer immediately follows ALPHA (2). 

L is then the number of words in the BETA buffer. 

R is the response code filled in on completion of the call. 

= ¢ NO ERRORS 
= 1 ILLEGAL INTERRUPT ADDRESS 
= 2 MORE THAN 8 REQUESTS 
= 4 ERROR IN ONE OR MORE I/O REQUESTS 

A - A bit cleared by the system when the ALPHA and BETA words are no longer required. 

SYS temporary storage for system. 



Eacl1 is ONE word 

OP BUSY 

8 l 

~C.APE; 

MODE 

8 8 l 

('-~::::> J_t BOP BUSY 

8 8 1 

8 24 

'"1 
I 

7 

4.28.4 
Rev. l 

one of the following two formats. 

IOC 

8 24 

RETRY TAPE FILE 
A 

7 1 7 

IOC 
24 

7 8 

32 

rche first format is for I:MiWE requests. The second format is for WINDOW requests. 

OP - l READ 

2 WRITE 

3 FUNCTION 

4 WHIDOW 

SUBOP for OP -- 1 or 2 

SUBOP l WINDOW 1 

2 WINDOW 2 

SUBOP for OP = 3 

SUBOP 3 REWIND 

)_f UNLOAD 

5 WRITE El\TD OF FILE 

6 FOREWARD SPACE RECORDS 

7 READ TO EJ\ID OF FILE 

8 BACKSPACE RECORDS 

9 BACKSPACE FILE 



A 

B 

c 
F 

SUBOP for OP = 4 

SUBOP = 1 

2 

3 

4 

IOC - Input/ Output 

MODE = oooxxxxl 2 
oooxxxlx2 
000001 xx2 .. 

ooooloxx2 

ooonllxx2 

ooolooxx2 

SET DENSITY 

SEEK 

ERASE 

READ STATUS 

OPEN WINDOW 1 

CLOSE WINDOW 1 

OPEN WINDOW 2 

CLOSE WINDOW 2 

Connector 

interrupt on good completion. 

interrupt on error. 

4.28.5 
Rev. I 

process this request and all previous requests before 

issuing the next request. Control is returned to the 

PP. 

process this request and all previous requests before 

issuing the next request. Control is NOT returned to 

the PP. 

process this request before issuing the next request. 

Control is returned to the PP. 

give up CPU until this request is complete. 

ooooooxx proceed with next request immediately. 
FILE ADDRESS - iogical page (sector) address at which data transmission is 

to begin. 

BUSY - cleared when the request is complete. 

WINDOW ADDRESS- Starting VIRTUAL PAGE ADDRESS where image requests are to 

deposit or obtain information 

WINDOW LENGTH - The length in pages (sectors) of the VIRTUAL RANGE to be 

associated with the WINDOW. 

TAPE FLAG - For TAPE READ, = ¢ means truncate record to 16-bit word 
boundary. 

= 1 means transmit entire record. 



RE'J~RY .0 
, 
.L 

Standard Recovery Procedure 

No Petry on Error 

4.28.6 
Rev. 1 

TAPE MODE ¢ = BCD l BINARY 2 = BINARY ASCII 

CENTPJ\L ERROR -

¢ 
.L 

2 

3 
}_~ 

5 

6 

7 

8 

9 

=nif A 

~L B 

II c ff 

Set when an error is found by central before the request 

is sent to the station. 

No error found by central 

Non--existent IOC 

Window size greater than 2!+ small pages 

Not sequential disk file 

Density not ¢, 1, or 2 for FlJNCTION # A 

Illegal OP or SUBOP 

Illegal tape mode or mode field 

No WINDOW assigned 

FILE ADDRESS out of bounds 

Illegal access (r/o or w/o file) 

InteITupt requested with no interrupt address specified 

Over 128 small pages for this I/O call 

Window crosses large page boundary. 

ISSUED .. a bit set by the system when no central error was found and the 

request has been sent to the station. 

STATION ERROR - The following error conditions are returned by the station. 

xxxxxl 

xxxxx2 

xxxxx4-

xxxxx8 

xxxx1x 

xxxx2x 

xxxx4x 

xxx x8x 

xxx lxx 

xxx 2xx 

Multiple concUtions are or ed together. 

Device not ready 

Parity error 

Data exceeds program_mer's buffer 

End of Taue 

End of file condition 

Attempt to write file-protected tape 

Channel failure 

Lost data on Tape record 

Attempted backspace at load point 

Disk positioning Error 



NOTES ON I/O REQUESTS 

4.28.7 
Rev. 1 

1. For TAPE READ or WRITE operations, the FILE ADDRESS FIELD when 

NON-ZERO will specify the number of 16-bit bytes to come from 

or go to tape, otherwise the full IMA.GE of the specified 

WINDOW will be transmitted. 

2. After a TAPE READ operation, the FILE ADDRESS FIELD will contain 

the number of 16-bit bytes in the physical record. If the record 

is larger than the WINDOW, only as much data as will fit in the 

WINDOW will be transmitted to the WINDOW. 

3. The FILE ADDRESS FIELD will contain the RECORD COUNT for the 

FOREWARD SPACE and BACKSPACE operations. If an END OF FILE is 

encountered the spacing operation will stop and the number of 

records actually spaced over will be returned in the FILE ADDRESS 

FIELD. 

4. The FILE ADDRESS FIELD will contain the tape UNIT STATUS after 

the READ STATUS operation. The STATUS bits are: 

OOOXXl Ready 

l)()QXX2 Busy 

oonxx4 Write Enable 

OOOxxB End of File 

oonx1x Load Point 

000X2x End of Tape 

OOOxox 200 BPI Density 

OOOx4x 556 BPI Density 

onnxsx Boo BPI Density 

0001xx Lost Data 

0002xx End of Operation 

0004xx Parity Error 

ooosxx Reserved 



4.28.8 
Rev. 1 

5. For ERASE DISK FUNCTION, the second half word in the second BETA word 

will be trented as two 16-bit fields, the left r10st 16-bits containing 
a sector count ~nd the rightmost-16-bits containina a patteren to be 
written. A s~ctor count of zero will imply the whole file is to be 

erased. 

6. The FILE ADDRESS FIELD will contain the number of erasures to be 

performed for the ERASE TAPE FUNCTION. (~ 6 inches of blank tape/ 

erasure.) 

7. No interrupt routine may be interrupted. The interrupts are 

stacked and processed one at a time. The zero level will be 

started only after the "Return from Interrupt" call has been 

issued for the last interrupt in the list. 

8. The maximum WINDOW size for disk and tape is 24 small pages 

unless the buffer is in a large page. 

9. After a TAPE READ operation, if the RECORD length is not equal 

to the WINDOW length, the remainder of the WINDOW will be un

defined. 

10. If there is a central or station error in one of the Beta re

quests and this request does not have the mode bit "interrupt 

on error" set, all following requests will be processed normally. 

If the "interrupt on error" bit is set, the requests following 

the one in error will be processed up to and including the re

quest with any of the contingency bits set (the three left 

adjusted mode bits); the rest of the Beta requests will NOT 

be issued. 

11. No window may cross a large page boundary. 



4.28.9 
Rev. 1 

12. Only 6 I/O calls may be processed at any one time. If six #50 

calls have I/O outstanding and the PP issues another I/O call, 

the PP will disconnected until one call completes. 

13. For FUNCTION #A, the DENSITY should be placed in the FILE 

ADDRESS FIELD. It should be set = ¢, 1, or 2 for 200 BPI, 

556 BPI, or 800 BPI, respectively. 

14. A WINDOW may be closed as soon as the IMAGE request has been 

issued to the station. Note the I/O does not have to be 

completed. 





4.29.1 
Rev. 1 

SYSTEM CALL # 51 - "RETURN FROM INTERRUPI'" 

This call is used by a problem program to terminate an input/output 

interrupt routine or a problem program message interrupt routine. 

ALPHA (1) 

ALPHA (2) 

F 

L 

R 

N 

= 1 

= ¢ 

R L F 
16 16 16 16 

N ERROR EXIT VIRTUAL ADDRESS 
16 48 

Function Code = # 51 

Not used 

Error response field 

Already at zero level 

Option 

Release the current interrupt and return to the zero 

level at the point of interruption or take the next 

interrupt in the list. All zero level registers are 

preserved. 

= 1 Release the current interrupt and make this the zero 

level which will be restarted at the Good Return for 

this system call. The zero level will be started 

immediately if no additional interrupts have been 

stacked or after the "Return From Interrupt" call 

has been issued for the last interrupt in the list. 





4.3¢.1 
Rev. 1 

SYSTEM CALL #102 - "GIVE UP CPU UNTIL I/O COMPLETES" 

This call is for use with the Explicit I/O call, function code = 
#~O It allows the problem program to give up the CPU until all or 

part of its I/O is complete 

R L F 
ALPHA ( 1) 16 16 16 16 

ALPHA (2) 
N ERROR EXIT VIRTUAL ADDRESS 16 48 

--g-L VIRTUAL ADDRESS OF REMOTE 

ALPHA (3) 16 BETA BUFFER 48 

F Function Code = # 52 

L = # FFFF 

f # FFFF 

R 

N 

0 

= 1 

BETA 

BL contains the number of words in BETA. The rightmost 

48-bits of ALPHA (3) contains the location of the 

remote BETA buffer. 

L contains the number of words in BETA. The BETA 

buffer begins in the word following ALPHA (2). 

not used 

Option 

Give up CPU until all I/O is complete. Note NO BETA 

words are required. 

Give up CPU until those I/O calls specified in BETA 

are complete. 

Contains the virtual Bit address of the explicit I/O 

call, that is the location of ALPHA (1) for the system 

call #50 (N = ¢1) 



4.3¢.2 
Rev. 1 

SYSTEM CALL #52 - "GIVE UP CPU UNTIL I/O COMPLETES" cont'd. 

Remarks: 

1 The system only keeps a record of the I/O which is 

outstanding. Therefore, if any virtual address in 

BETA does not point to one of the problem program's 

I/O calls, then the system will consider that the 

I/O has already completed. Note it is the user's 

responsibility to set BETA correctly. 



A. 1 
1 

APPENDIX A 

s TER FILE CONVENTIONS 

The register file is subdivi d into five or portions. 

L 

residence of addresses or data. Th s space is never saved 

by the caller. This space is chosen large enough to permit 

execution of many lowest level subroutines (such as, SIN, COS, 

etc. ) tely within the temporary space, obviatlng the need 

for s an_d restor any of the caller s permanent reg s ter s, 

The choke of low num.bered registers permits their use for both 

foll and half word rles. 

2. s -- re sters whose contents are universal to all programs 
-~--~---

within a specific execution/language system (the constant 11 1 11 , or an 

operat system entry po for example). These cells are 

assum.ed by all m.odules wLthin a given system and are not usually 

loaded by called rnodules. Likewise, these registers are not saved 

and restored by program modules. The values in these registers 

are to a given operating environment, thus if a module from 

a different environment is to be called, it is the caller 1 s responsibility 

to establish the correct values for the callee in the proper registers. 



A. 2 
REV. 1 

The total (temporaries + globals) space begins at register 

3 and continues through register 19. Thus the number of 

temporaries available is dependent upon the number of 

globals required by a specific environment. 

The Global registers defined by LLL are: 

14 Contains constant #800 -- Used for initializing the register 

file during a programs prologue (register #20). 

15 Contains constant# 680 -- Used for saving the regtster 

file's environment and working registers (register #lA). 

16 Contains the constant 1. 

1 7 Parameter descriptor -- Contains the number of the para-

meters being passed during a call. The number is contained 

in the length portion. The address portion contains zero if 

the parameters are in the register file, and the address of 

the parameter list if the parameters are in memory. 

18 Function return -- The function return value is a two word 

19 Patr (See parameters). 



A. 3 

REV. 1 

3. Environment -- The environment registers consist of the 

minimum set of registers needed to support the general 

requirements of recursive, re-entrant execution with 

dynamic linking. The environment registers are • 

IA Return register -- contains the bit address of the 

location in the caller to which the calle normally 

returns. 

lB Dynamic space pointer -- contains the bit base 

ad.dress of the next available free location in the 

dynamlc stack. (In an ascending sequence from the 

value of the dynamic space pointer can be found the 

only known unused space for stacking or allocating 

dynamic data). The dynamlc space pointer is always 

advanced. prlor to storing data into the region or 

before addresses pointing to that region are 

calculated. 

lC Current stack pointer -- contains the bit base address 

of the region in the dynamic stack for staring the 

register file. The minimum length of that region will 

be the maximum number of registers that the caller 

will need to have saved, plus the length of the region 

required for dynamic working storage for the program. 

During call sequences the caller will set the length 

portion of the current stack pointer to the number of 

registers to be saved by the callee. The current stack 

pointer is set up by the caller, but the registers are 

saved by the callee. The minimum number of registers 

that the caller can indicate are to be saved is the 

number of environment registers (six). 



A. 4 

REV. l 

lD Previ.ous stack pointer -- contains the bit base address 

and the number of registers where the caller's registers 

have been saved. The callee 1 s previous stack pointer 

is an exact copy of the caller's current stack pointer. 

lE Callee data base -- contains the bit base address of the 

statlc space which was allocated to the module by the 

loader, The caller passes the callee the address of the 

callee's static space l.n the callee ta base r ster. 

If, at the tin:1e of the the caller has not been linked 

to the callee by the loader, the value of the callee data 

base will be the data base add!·ess of the loader. The 

exponent portion of the callee data base register will 

contain an ordinal used by the loader to determine which 

module is making the call. 

1 -~ - -'- unit -- contains the b!.t base address of a stack of 

data in dynarnlc space which defines the action to be taken 

by interrupt and error handling routines for a given set of 

pre-defined conditions for the active modules. The regls' 

rrmst be stored at each call in order to support the execution 



requirements of condition handling in block structured 

languages such as PL/I. 

A. 5 
REV. 1 

4. Register save area -- begins at register IA and thus contains 

the environment registers. It defines the space to be saved 

and restored by called processors and therefore is the space 

wherein permanent variables and addresses would be allocated. 

The length of this area ls dependent upon the usage of thls area 

by the caller. The allocation of the environment registers at 

the beginning of the space ensures that they will appear at the 

beglnnlng of every stack, thus facilitating unstacking or stack 

searching processes needed for block structured languages as 

well as non-standard Fortran call/return usage. 

The working regls ters are the portion of the register save area 

that does not include the environment registers. 

LRLTRAN has reserved two working registers for further 

environment lnformaHon. 



20, 

5. 

ran'l name -

curr in 

A. 6 

REV. 1 

(left adjusted) name oJ the program 

Current data base - contains bit base address of the current 

exec prograrns data base. U entry into a prograrn, the 

callee data, base r ster (#IE) is ed in the current data base 

s ter. 

T se r sters consist of those registers that 

are t to be saved and restore and do not contaln pararr1ete:rs. 

6. Paran:1eters -- to permit a varying num.ber of param.eters to be 

ssed via the r ster file (dependl.ng on the execution 

en vi parameters are assigned from. register 

towards the end of the register save area. All 

parameters are elther passed in the parameter section of the 

r ster file or in memory outside the register file area. As 

all other reglsters are accounted for, no registers other than 

the parar:neter registers may be used for passingparameters 

and values. 



A. 7 
REV. 1 

The allocation of the parameter registers in the above manner 

allows the parameters to be passed in even/odd register 

pairs. LRLTRAN makes reference to only the even part 

of the register pair. 

The register pair will allow parameter passing of the following form: 

A. Passing base addresses and offsets or pointer pairs for 

sparse vectors. 

B. Passing type double or complex parameters. 

By assigning the parameters backwards from FF the compiler can 

define the boundary he will accept dividing permanent registers from 

parameter registers. (LRLTRAN on the 7600 allows only a maximum 

of 5 arguments to be passed through the register file. Thus the 

maximum permanent register is #F5). Thus if the maximum number 

of parameters expected still leaves sufficient permanent registers 

for execution, all such parameters can be passed through the register 

file. Note that since the callee knows the use to which a parameter is 

going to be put (i.e., he will use only the value portion of the register 

pair), he may utilize one of the registers for temporary calculations. 



I 

2 
3 

I3 

14 

IS 

16 

17 

I8 

I9 

IA 

IB 

IC 

lD 

lE 

IF 

20 

2I 

22 

FS 
F6 

FF 

0 

0 

0 

REGISTER FILE LAYOUT 

Machine Zero 

Data Flag Return 

Always Temporary 

Parameter Descriptor 

T:'TT .... lr"" m.,-,-,.1'T T> "nl""nTT,.... "11.T 
"""J:'"~.L'-.L:I~ 

RETURN 

D_y_namic S_E_ace Pointer 

Current Stack Pointer 

Previous Stack Pointer 

Callee Data Base 

On Unit Stack Pointer 

Program Name 

Current Data Base 

Working Registers 

Tem_E_orar_y_ R~!.sters 

Parameter Registers 

#800 

#680 

1 

A. 8 
REV. I 

WR 

SR 

PD 

RET 

DSP 

STACK 

OLD-STACK 

LINK 

ON 

PRG 

OLD-LINK 



APPENDIX B 

OBJECT MODULE FORMAT FOR STAR 

1) General Table Structure 

B. 1 
REV. l 

An object module consists of a number of standard tables. 

Each of these tables begins with a stanardd two word header 

of the following form: 

ASCII Table Name 

Length Back Pointer 

Word 1 -- The ASCII name of the table. 

Word 2 - - (Length field) full word length of the table. 

(Address field) pointer to the header table. 

(relative with respect to the respective table). 

2) Module Header Table 

The module header is a standard table giving general infor-

mation concerning the object module and providing a linkage 

to all the other tables ln the module. The module header table 

is logically the primary table ln the module. 



ASCII Table Name 

I. en~th 0 

MQgule Name 

Date+ T'me Created 

T Len_g__ Processor 

C Leng Data Base Length 

Tvoe Pointer 

Ty12e Pointer 

- ---------------------
Word 1 -- The ASCII name of the table= '~MODULE.A"· 

Word 2 -- The length of the table (length portion). 

A back pointer of 0 (address portion). 

B. 2 
REV. 1 

Word 3 -- The ASCII name of the module, eight-character, 

left adjusted, and blank-filled. 

Word 4 - - The date and time the module was created. This 

information is in packed decimal with a positive sign. 

The date and time are in this order: year, year, month, 

month, day, day, hour, hour, minute, minute, second, 

second, mUUsecond, millisecond, millisecond. 

Word 5 -- The word length of the tables excluding the code. 

The ASCII name of the processor that created the 

module. 



B. 3 
REV. 1 

Word 6 -- The word length of the code. The bit length of 

the data base area. 

Word 7 on -- Each word contains a table type and a pointer to 

a table of that type. The type is contained in the 

length portion. The pointer contains a bit address 

relative to the first word address of the header. 

By convention the first table described is the code, 

and the second is the external/entry table. 

1£ HEX type is 11 4 11 , the pointer contains a bit 

address to the next module header. 

Table Types 

HEX type ASCII Name 

0001 "CODE" 

0002 11 EXT ENTR11 

0003 11 REL CODE 11 

0006 11SYMB TAB 11 

0101 ''INT DATA1' 

0201 11 INT REL0 11 

Description 

Code Block Table 

External/Entry Table 

Code Relocation Table 

Debug Symbol Table 

Interpretive Data Initialization 

Table 

Interpretive Relocation 

Initialization Table 



3) Code Block Table 

B.4 
REV. 1 

The code consists of a standard table whose contents is the 

executable code. 

Table Name 

Length 

Code 

""'lord L ASCII table name 11 CODE 11 • 

Word 3 on ~- The code. 

This table describes relocation l.n the code itself. 

Table Name 

Length I 
J 

Back Pointer 

t-·~~~-C~·-u_r_r_e_n~t_B~a_s_e~~·~~~~~l 
I NBI NI l 
i 

' 
•. !; 
I I1 > 12, 13, . IN 

Vford 1 -- ASCII Table name 11 REL CODE 11 • 

Word 3 -- Current base - Current bit address at which this 

module is relocated 



Word 4 -- NBI - The number of bHs per ind.ex ln the hit 

string starting ln word 5, NI = The number of 

indices in the string. 

Word 5 -- A blt string of indices, each is NBI bits long. 

Each index references a half word ln the code to 

be relocated relative to the base address of the 

code. 

As the result of processing this table, the bit base address 

B. 5 
REV. I 

of the code will be added to the 48 bit fields pointer to by the 

indices ln the bit string. 

5) External/Entry Table 

The external/ entry table contains deflnltions for all entry 

point, external symbols, and common blocks. 



ASCII Table Name 

Entry Name M 

External Name 1 

ame N-M 

Entr Descri tor 1 

E 

External Descri tor 1 

External Descriptor (N-M) 

Word 1 -- ASCII Table Name 11 EXT ENTRY". 

Word 3 -- M =number of entry point names in the table. 

N = number of names ln the table. 

B. 6 
REV. 1 



Word 4 through 3+N -- List of entry point names. 

Word 4+N through 3tM -- List of external names. 

Word 4+M through 3+M+N -- List of entry point descriptors. 

Word 4+M+N through 3+M+M -- List of external descriptors. 

B.7 
REV. l 

The following types of entry points and external symbols are defined: 

Entry Points 

An entry point is a named value defined in the procedure, and is 

intended to be referenced as an external by an external procedure. 

Common Blocks 

A common block is a named alterable space referenced by one 

of more proceudres. A common block can be initizlized with 

relocatable data. Blank common is a common block with name 

of eight blanks. 

External Procedure 

The standard method of using an external procedure reference is 

in a call. 

Having a symbol multiply defined as a common block and external 

procedure is specifically allowed. 

All names are eight character, left-adjusted, and blank filled. 



B.8 
REV. I 

.Each de c r s of e form: 

HEX type the symbol. 

el contains information as sodated with the 

s 

bH a ess in the code. 

~rype = 14 [Exte1·nal proce Value = 0. 

e -- 1 omn1on = bit length 

of the common block. 

6) 

The data table contains information that, when 

SS the , results in the inHializatlon of areas 

static space. 

CII Table Name 

L Back Pointer 

Data Item Descriptor 

tor 
Data Item 

tor 



Word I -- ASCII Table name 11 INT DATA11 • 

Word 3 on -- Data item descriptor and item pairs. 

a J 1 
ORDJ 

1 6 31 63 

ORD2 Chain 

Data Descriptor Format 

The data item des crlptor contains the following fields: 

B.9 
REV. I 

ORDI -- The pseudo~ address vector ordinal of the static 

space to be initialized. 

ORD2 -- The pseudo address vector ordinal relative to 

'vhich relocation is to be done (relocation base). 

Type -- Indicates what type of data item follows. 

Chain -- Relative full word count to next data item descriptor 

(H any) in the table. 

When ORD 2 ls zero, the values in the item are stored directly 

lnto the destination field described by ORDl. If ORD2 ls not zero, 

the relocation base .d.escrlbed by ORD2 ts added to the values before 

they are stored lnto the destination field described by ORD!. 

Leng J Relative Address 

Values 

Format 1 



L 

rrnat 2. 

Blt String 

Format 3 

Number of Descriptor~ 
·~~~-~~~~......__.,,_~ r 

l 
! .·.Jesc Desc 2 l 
+--~--· ·~~~~~~---'~~~~~~~~~~~~-<-' 
i 

' 1 Desc N 
ii~~~~~~~~~~-'-~~~~~~~~~~~-+ 
J 

Value 

Format 4 

B~lO 
REV. 1 



The kinds of initialization area: 

Type Descrlption Data Item Format 

I Full Word Broadcast 1 

2 Half Word Broadcast I 

3 Full Word Vector Transmit I 

4 Half Word Vector Transmit I 

5 Full Word Sparse Vector 2 

6 Half Word Sparse Vector 2 

7 Full Word Index List 3 

8 Half Word Index List 3 

9 Byte String I 

A Bit String I 

B Sparse Structure 4 

c Character Broadcast I 

Full Word Broadcast 

Data Item Type 1 

Item Format I 

Length Full word vector length 

Value A full word to be stored. in consecutive 

full words starting at the relative address 

ln the section of static space. 

B. 11 
REV. 1 



Data Item 

~ t . .:t' orr:r1a 

Data e 

Forrnat 

Data Item e 

Form.at 

L 

s 

2 

l 

Half word vector length 

A left-adjusted half word to be stored 

B.12 

REV. I 

in consecutive half word locations starting 

at the relatl ve bl.t es s. 

3 

l 

Full word vector length 

Full word vector to be transmitted to the 

relative address in the control section. 

t 

4 

1 

Half word vector length 

Half word vector to be transmitted to the 

relative address in the control section. 



r 

Data Item Type 5 

teni. Format - -

er of values in item 

s Full word 

of control vector 

Bit vector of length leng2 

Half 

Data Hern e _ _ 6 

ten1 For:rna t 2 

L er of values in Hem 

s Left A sted half word vector 

of control vector 

Bit S a usted control vector. 

t 

Data He:m Type 7 

Iten1. Forma 

L Number of values in item 

s Full word values 

Number of bits per index 

NI Number of indices 

j3it Str A bit str of NI indices, each index 

is NBI bits long and contains a full word 

count. 

B. 13 
REV. I 



st 

Data Item Type 8 

For:rnat 3 

Number of values in Hein 

s A left- usted half word vector 

Num.ber of bits per index 

r of Indices 

A bit string of indices, each lndex is NBI 

bits and contains a half word count. 

Data Itern T e 9 

1 

Nun1ber of bytes in value field 

A left- ted byte string. 

BH 

Data Ite:m. Type - - A 

Itern. Form.at 1 

Number of bits i.n value field. 

s A left-adjusted bit string. 

B. 14 
REV. I 



Sparse Structure 

Data Item Type __ B 

Item Format 4 

Length Number of Hems is value field 

Data Type Type of value (word, half word, byte 

string, bit s trlng). 

ND Number of descriptors 

Descriptor Half Word descriptors 

The details of this structure will be defined later. 

Character Broadcast 

Data Item Type __ C 

Item Format 1 

Length Length of byte string to be filled with a 

character. 

Value Left byte contains a character 

7) Interpretive Relocation Initialization Table 

ASCII_ Table Name 

Length l Back Pointer 

Relocation Item 1 

Relocation Item 2 

- - - - -

Relocation Item N 

B.15 
REV. I 



ord 1 CII Table name 11 INT RELO". 

·vror 3 on -·- Relocation Herns - item formats are sim!.lar 

l 

to data initialization table formats but do not 

Table name 11 SYMB TAB". 

r--· 
l 
l 

I 
j Code Address 
! 

I i Data Base Ad.dress 

~ernal Address 1 

l 

I 
' I 
r 
l 
l 

l External Address 2 
t- ·-------
! 

! 

External Address N J 

ti on 

0 

1 

2 

3/4 

5/6 

7/8 

ZN+l, 2N+2 

B.16 
REV. l 



For Common 

For External 
Procedure 

0 

0 

EORD 

MORD 

Address 

Bit Len_g_th 

Entry Address 

Data Base 

B.17 
REV. I 





c.1 

APPENDIX C 

STAR BINARY CARD FORMAT 

1 2 3 )_~ 6 80 
-- -- --

12 
"\) 

y 

11 
-L T 
1' E E 

0 E Q 2 u c 
1 c E H B 

2 0 N E y 

u rl c T 
3 

v 

N E K E 

4 rn s 1 y 

u T 
5 N M E 

6 u 3 
M 

7 1 B y J_ 

8 ¢ 
E T 

E 
9 1 

-- -- --

~~ is the number of 8-bit bytes starting in column 5. 

SEQUENCE J'{IJJVIBER is the sequence number of the card starting from 1. 

CHECKSUM is the 2Lc-bit arithmetic sum of the 8-bit data bytes. 

BYTE2 are the 8-bit data bytes. 
-·-·--'"-·-··-·-

EOF is a card with 6-7-8-9 punches in column 1. 





APPENDIX D 

CREATED PAGES 

Pages created in core will be initialized with the following 

pattern: 

¢¢¢clFlC (HEX) To be written into each half word 

The leading zeroes will result in an interrupt to monitor 

mode if an attempt is made to execute the word. The lF is an 

end-of-line sentinel, and lC is an end-of-file sentinel for any 

of the out-put routines. 

Definition of a "Created Page": 

1. The user faults during execution for a virtual address 

not defined previously in his bound virtual map or drop 

file map. 

2. The virtual address is found in the drop file map but is 

not in core, on drum or on disc. A bit in the drop file 

map will be "on" if it is on disc. These addresses were 

probably entered in the map via system call -04- "map in 

call." 

D.l 

3. One of the above two conditions occurred during an "advice 

call" - system call 07-. 

Note: The act of writing the pattern will not constitute a 

"modified" page. The page becomes "modified" only 

when the hardware detects a write during "job mode" 

execution. 





E.l 

APPENDIX E 

FATAL USER ERRORS FROM FAULT PROCESSOR 

The error number will be found in the minus page along with the 

associated virtual bit address where applicable - in word 139 (10). 

Error # (Hex) 

25 

27 

28 

29 

Message and Meaning 

Virt. Add Dup. Advice Call 

When making an advice call one specifies large 

or small pages. Upon finding one of the virtual 

addresses either in core, drum, drop map or 

virtual map the page size found did not match 

the page size specified. 

WOP. Violation in System Call 

In processing a system call, the system faulted 

for a user's page to write into it. The page 

was found to have a read/only protection. 

WOP. Violation Direct Fault 

During program execution the user attempted to 

write into a page with read/only protection. 

Out of Bound Memory Reference 

During program execution the user attempted to 

reference virtual address space reserved for the 

system (i.e., the upper quarter of virtual address 

space). System conventions as to address space are: 

¢ to 247 1 user space 

47 
2 - 1 to 248 - 1 lower half shared library 

space upper half system space 



E.2 

When attempting to append pages to the drop file either the map was 

full or the physical disc space was full. The page fault routine appends 

pages to the drop file under the following circumstances: 

1. The page wanted is here-to-for undefined space and so a 

page(s) is created in core. 

2. A first write attempt is made into a source file page or 

a page from a "wrj_te temporary" file. 



ERRORS DETECTED BY FILE MANAGEMENT 

f,2_¢9 NO SOURCE FILE (non-fatal) 

f/-21¢ NO DROP FILE (non-fatal) 





F.l 
APPENDIX F 

STAR CHARACTER SET 

DEC. OCTAL HEX USASC KEYPUNCH DEC. OCTAL HEX USASC KEYPUNCH 
r A ' ~ 

¢ ¢ ¢ NUL 64 1¢¢ 4¢ @ .. 
1 1 1 SOH 65 1¢1 41 A A 
2 2 2 STX 66 1¢7 42 B B 
3 3 3 ETX 67 1¢3 43 c c 
4 4 4 EOT 68 1¢4 44 D D 
5 5 5 ENQ 69 1¢5 45 E E 
6 6 6 ACK 7¢ 1¢6 46 F F 
7 7 7 BEL 71 1¢7 47 G G 

8 1¢ 8 BS 72 11¢ 48 H H 
9 11 9 HT 73 111 49 I I 

1¢ 12 A LF 74 112 4A J J 
11 13 B VT 75 113 4B K K 
12 14 c FF 76 114 4c L L 
13 15 D CR 77 115 4D M M 
14 16 E s¢ 78 116 4E N N 
15 17 F Sl 79 117 4F 0 0 

16 2¢ 1¢ DLE I 8¢ 12¢ 5¢ p p 

17 21 11 DCl NONE 81 121 51 Q Q 

18 22 12 DC2 
l 

82 122 52 R R 
19 23 13 DC3 83 123 53 s s 
2¢ 24 14 DC4 I 84 124 54 T T ' 
21 25 15 NAK l 85 125 55 u u 
22 26 16 SYN 86 126 56 v v 
23 27 17 ETB l 87 127 57 w w 

24 3¢ 18 CAN I 
88 13¢ 58 x x 

25 31 19 EM ! 89 131 59 y y 

26 32 lA SUB 9¢ 132 5A z z 
27 33 lB ESC 91 133 5B [ [ 
28 34 lC FS 92 134 5C '\ I 

' 29 35 lD GS 93 135 5D J ] 
3¢ 36 lE RS 94 136 5E (\ " 31 37 lF us 

~, 95 137 5F - -> 

32 4¢ 2¢ 0 SPACE 96 14¢ 6¢ II .4!l 

33 41 21 ~ 'ii 97 141 61 a 
34 42 22 f I J::i. 98 142 62 b 
35 43 23 # D 99 143 63 c NONE 
36 44 24 $ I $ 1¢¢ 144 64 d 

l 37 45 25 % T(' 1¢1 145 65 e 
38 46 26 & l & 1¢2 146 66 f 

39 47 27 I 
11 1¢3 147 67 g 



F.2 

E3 1I'AR Character Set 

DEC OCTAL HE_,'{ USASC KEYPUNCH DEC OCTAL HEX USASC KEYPUNCH 

5¢ 28 
51 29 
52 2A 
53 2B + + k 

54- 20 ,, l 

55 2D m 
56 2E . . 6E n 

57 2F I I 111 6F 0 

6¢ ¢ ¢ 112 16¢ 
!+9 61 31 1 l 113 161 71 q 

5¢ 62 32 2 2 llL~ 162 72 r 

51 63 33 3 3 115 163 73 s NONE 
52 64 34- 4 4 116 164 74 t 

I 53 65 35 5 5 117 165 75 u 

54 66 36 6 6 118 166 76 v 

55 67 37 7 7 119 167 77 w 
I 

8 12¢ 17¢ 78 x 

9 9 121 171 79 y 

58 122 172 7A z 

59 , . 123 173 7B { 

6¢ < < 124 174 7C 
61 71~ 

I/ 
:::: - 125 175 7D } 

62 76 3E ~ > 126 176 7E Ill / 

63 77 3F ? a 127 177 7F DEL 



APPENDIX G 

STAR MEMORY LAYOUT Initial System 

The first #5 pages of central memory will contain tables acces

sible to the central system. Shared tables will start at physical 

G.1 

word address #ADD. They will occupy #23 pages in the initial system. 

These pages will be entered in the page table starting at word address 

#30000000000, i.e., the beginning of the upper quarter of memory , and 

will occupy #4800 words. The next 3 pages of physical memory will con

tain read/write areas shared between the Kernel, stations, and pager 

tables. Following this will be the resident system {Kernel and Pager}. 

This is expected to occupy #lF. pages of memory. The remainder of memory 

will be available for user and virtual system pagable space. In order to 

allow for possible expansion of shared tables, the origin address for the 

possible expansion of shared tables, the origin address for the virtual 

system will be word address #30000008000. #100 pages will be reserved 

on the system drum for system pages; this puts the upper end of the 

system range at word address #30000027FFF. Any pages at addresses greater 

than this referenced by the system should be created by the system refer

encing them, locked down while in use, and then unlocked. The first 128 

pages of this range are reserved for the minus page table, with one entry 

per DB. The next 128 pages are reserved for VPZTAB with one entry per DB. 

System I/O buffers will be assigned in the following space as needed. 



Page 

#29 

#2C 

Ji' 11'=4C 

#3FF 

0 

5 

G.2 

PHYSICAL MEMORY LAYOUT 

r--------·------·------------------~----·--1 

i I I Physical Tables 10 ,--·-

Hex Bit 
Address 
(Absolute) 

! J28000 
l 

I 
I 

Shared Tables 

(#23 pages) 

!--------·---~--,--------·----
\ 

Station and Page Routine Tables ( 3 pages) 

Resident System 

(#lE pages) 

1148000 

-1160000 
I 
I 

I 

I 
---~----·----------·----·-----·----·---·---·-------! 

741 Virtual System Minus Page 1250000 

75 :·--·--- Virtual System Page 0 I 258000 

76 -=-=-~=----==-~=-=-~~ ---==--------_-_ ------------------------i 260000 
I 

============================================================4 Pagab'e Space 1 
----------------------- i ------------------------i I --·----------------------------------------------------------, 
------------------------(951 ~ages)-------------------------~ ----·· ----------------- ------ _::. _____ -- ---- -------------------? 

t~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~] 
1023-------------------------------------------------------------{1FF8000 



#Page 

#1 

#100000000 

#180000000 

#180000024 

#180000040 

#180000140 

#1800001co 

#1800001c1 

#180000241 

#lFFFFFFFF 

VIRTUAL SYSTEM MEMORY LAYOUT 

VIRTUAL SYSTEM PAGE 0 

USER SPACE 

LIBRARY SPACE 

SHARED TABLES 

VOID 

PAGABLE SYSTEM 

-

MINUS PAGE TABLE 
-

MINUS PAGE SYSTEM BUFFER 

PAGE 0 TABLE 

FREE SPACE 

Ci.3 

' 

Virtual Word 
Address 

00000000000 

00000000200 

20000000000 

30000000000 

30000004800 

30000008000 

30000028000 

30000038000 

30000038200 

30000048200 

#3FFFFFFFEOO 



STAR OP CODES AND MNEMONICS 

0X MONITOR 2X BRANCH 4X HALF REGIS rm 6X FULL REGISTER BX VECTOR 

00 IDLE IDLE JEQH JUMP = HALF AUF ADD UPPER AUF ADD UPPER AUV ADD UPPER 

01 ** JNEH JUMP r HALF ALH ADD LOWER ALF ADD LOWER ALV ADD LOWER 

02 ** JGEH JUMP > HALF ANH ADD NORM. ANF ADD NORM. ANV ADD NORM. 

03 ** JLTH JUMP < HALF ** AXF ADD INDEX AXV ADD INDEX 

04 BKPT BREAKPOINT JEQF JUMP = FULL SUH SUB UPPER SUF SUB UPPER SUV SUB. UPPER 

05 ** JNEF JUMP f' FULL SLH SUB LOWER SLF SUB LOWER SLV SUB. LOWER 

06 FAULT FAULT TEST JGEF JUMP > FULL SNH SUB NORM. SNF SUB NORM. SNV SUB. NORM. 

~7 ** JLTF JUMP < FULL ** SXF SUB INDEX sxv SUB. INDEX 

08 SET CF SET CHAN. FLAG FEQC FIRST = CHAR. MUH MUL T. UPPER MUF MUL T. UPPER ~ MUV MULT. UPPER 

109 EXIT EXIT FORCE FNEC F !RST f CHAR. MLH MUL T. LOWER MLF MULT. LOWER MLV MUL T. LOWER 
~P. TIMERM SET MTR. TIMER LQL LOAD LENG. 16 ** ** ** 
0B ** CL INC. LENG. 16 MSH MULT. SIG. MSF MULT. SIG. i MSV MUL T. SIG. 

~c STAR STORE AR' s ** DUH DIV. UPPER DUF DIV. UPPER ! DUV DIV. UPPER 

~D LOAR LOAD AR' s ** LQH LOAD IMM. ** ** 
0E XL TINT XLATE EXT. INT. ** AQH INC. IMM. ** ** 
~F XLTADR XLATE VIRT. ADD ** DSH DIV. SIG. DSF DIV. SIG. DSV DIV. SIG. 

10 ROB DEC. TO BIN. ** !NTH TRUNCATE INTF TRUNCATE INTV TRUNCATE 
11 RBD BIN. TO DEC. JIX JUMP INC. INDEX ILH FLOOR ILF FLOOR ILV FLOOR 
12 LC LOAD CHAR. JB BIT BRANCH ALT !UH CEILING IUF CEILING !UV CEILING 
13 STC STORE CHAR. JF DFR BRANCH ALT ROOTH SIG. SQRT. , ROOTF SIG. SQRT. I ROOTV SIG. SQRT. 

14 COMPB COMPRESS BITS ** CSH ADJ. SIG. CSF ADJ. SIG. CSV ADJ. SIG. 
15 MERGB MERGE BITS JDX JUMP DEC. INDEX CEH ADJ. EXP. CEF ADJ. EXP. CEV ADJ. EXP. 
16 MAS KB MASK BITS JSX JUMP SAVE ADD. ** RFH CONTRACT RFHV CONTRACT 
17 MERGC MERGE CHARS. ** ** RFHN CONTRACT ROUND RFHNV CONTRACT ROUND ' 

18 RCR BYTES RIGHT RL REP. LENG. RH XMIT HALF RF XMIT RV XMIT 
19 FRNEC SCAN RIGHT CLOCK READ CLOCK RAH XMIT ABS. RAF XMIT ABS. RAV XMIT ABS. 
lA FFCI FILL CHAR. IMM. TIMER SET TIMER UH EXP R+T UF EXP R+T UV EXP A+C 
1 B FFC FILL CHAR. FLAG DFR LOAD/STORE PH PACK PF PACK PV PACK 

lC GMZ GEN. MASK 0 MXH MUL T. IN DEX HALF RHF EXTEND UL XMIT LENGTH RHFV EXTEND 
lD GMB GEN. MASK l MXF MUL T. INDEX FULL 16 RHX EXTEND INDEX ' ... ** 
l E CLE COUNT LEAD = LQF LOAD IMM. FULL 16 LH LOAD F LOAD ** 
l F BSIGMA COUNT l's AQF INC. IMM. FULL STH STORE STF STORE ** 

lX BYTE-BIT 3X BRANCH sx HALF REGISTER 7X FULL REGISTER 9X VECTOR 

AX SPARSE VECTOR ex SPECIAL VECTOR 

AUS ADD UPPER FEQ SELECT Fl RST = 

ALS ADD LOWER FNE SELECT FIRST f' 
' 

ANS ADD NORM. FGE SELECT FIRST _::_ 

** FLT SELECT Fl RST < 

SUS SUB. UPPER GCEQ COMPARE = ORD. 
' 

SLS SUB. LOWER GCNE COMPARE r ORD. 

SNS SUB. NORM. ' GCGE COMPARE > ORD. 

I GCLT 
-

** COMPARE < ORD. 

MUS MUL T. UPPER GXEQ SEARCH = INDEX 

MLS MUL T. LOWER GXNE SEARCH r INDEX 

** GXGE SEARCH _::_ INDEX 

MSS MULT. SIG. GXL T SEARCH < INDEX 

DUS DIV. UPPER ** 
** LIH LOAD IMM. HALF 24 

** AIH INC. IMM. HALF 24 

DSS DIV. SIG. FUZZ ARITH. COMPRESS 

JEQX JUMP = INDEX HSUM AVERAGE 

JNEX JUMP f' INDEX MEAN ADJ. MEAN 

JGEX JUMP > INDEX ** 
JLTX JUMP < INDEX ** 

JLEX JUMP .::_ INDEX HOIF AVE. DIFFERENCE 

JGTX JUMP > INDEX DELTA DIFFERENCE 

J JUMP FMB SEARCH MASK BIT 

sow XMIT INDEX DEST TABM XLATE MARK 

REV XMIT REVERSE MAX MAXIMUM 

TRANS XPOSE f'OVE MIN MINIMUM 

REAP XMIT INDEX SOURCE SIGMA VECTOR SUM 

MAS KV MASK VEC. PROD VECTOR PRODUCT 

COMPV COMPRESS VEC. DOTV VECT. DOT PROD. 

MERGV MERGE VEC. DOTS SPRS. DOT PROD. 

LIF LOAD IMM. FULL 48 POLY POL YNDMIAL EVAL. 

AIF INC. IMM. FULL 48 IOTA INTERVAL 

BX BRANCH/VECTOR DX VECTOR MACRO 

EX BYTE-BIT 

AB ADD BINARY E0 

SB SUB. BINARY El 

MB MULT. BINARY E2 

DB DIV. BINARY E3 

AD ADD DECIMAL E4 

SD SUB. DECIMAL ES 

MD MUL T. DECIMAL E6 

DD DIV. DECIMAL E7 

KB COMPARE BINARY EB 

KO COMPARE DECIMAL E9 

MAS KC MERGE/ BYTE MASK EA 

EDIT EDIT MARK EB 

AC f'ODULO ADD EC 

SC MODULO SUB. ED 

TAB TRANSLATE EE 

TABT TRANSLATE TEST EF 

XOR EXCLUSIVE OR F0 

AND AND Fl 

OR OR F2 

NANO NOT AND F3 

NOR NOT OR F4 

IMPL IMPLICATION F5 

INHB INHIBIT F6 

!FF IF AND ONLY IF Fl 

RC BYTES LEFT FB 

RKC BYTES LEFT COMP. F9 

SCALE f'OVE AND SCALE FA 

, RZD ZONED TO DECIMA L FB 

ROZ DECIMAL TO ZONED FC 

KC COMPARE CHAR. FD 

FMC SEARCH MASK FE 

FMC SEARCH MASK FF 

FX BIT /BYTE 

::r: . 
...... 

:i> 
~ 
~ 
trJ z 
b 
~ 
tr: 





APPENDIX I 

I. 1 
REV. l 

STAR SUBROUTINE LINKAGE CONVENTIONS 

1) Call Sequence 

The following sequence will be used as a standard. call of an external 

procedure: 

78YYOOLK Load the link register with the add.res s of the 

data base to be invoked. 

36RROOEP Branch to the entry point of the called 

procedure and set a return location. 

Where: 

ST = Stack Register 

LK = Link Register 

RR = Return Register 

EP = Entry Point Value 

In the static case, LK and EP contain resolved address. However, to 

support dynamic linkage, LK will "initially reference the data base of the 

loader, and EP will initially reference the entry point to the loader. 

The exponent of EP will contain the entry ordinal (EORD) of the caller and 

the exponent of LK will contain the module ordinal (MORD) of the caller. 



EP EORD. 

LK MORD. DATA BASE ADDRESS 

Note that LK is a canonical register while EP is not. 

If the load is invoked because of an unresolved call, the 

following can be determined: 

1. The exponent of the link register (LK) contains the module 

ordinal (MORD) of the calling procedure within the catalog 

of all resolved modules. 

I. 2 
REV. I 

2. The 11 R 11 register of the 11 78" instruction preceding the value 

of return (see call sequence) tells the loader the register 

from which LK was loaded. 

3. The 11 T 11 register of the 11 36 11 instruction preceding the value 

of return (see call sequence) tells the loader the register 

containing the entry ordinal (EORD) and. entry add.res s. 

Using MORD,. the identity and location of the caller may be determlned. 

Applying EORD to the external list of the caller, allows the name of the 

entry to be invoked, to be determined.. The loader must perform the 

resolution of the requested entry, update the data base of the caller, and. 

update both EP and. LK which are contained in the register file. 



2) Prologue (entry) Sequence 

I. 3 
REV. I 

The prologue of the called procedure has the following responsibilities: 

38STOOSR Save the status of the register 

980000SR file in the stack frame of the 

OOOOOOST caller. (This is a store back). 

78STOOOS 

78DPOOST Advance stack pointers 

3FDPXXXX 

2ASTXXXX Set number of registers to be 

saved by a called program. 

38LKOOWR Block load register file with 

980000LK 'initial values using LK as the 

OOOOOOWR source descriptor. 

Where: 

ST = Stack Reg"ister 

SR = #680 Register 

DP = DSP Register 

OS = Old Stack Register 

WR = #800 Register 



3) Epilogue (return) Sequence 

The epUogue of the called procedure shall be as follows: 

380SOOSR 

9800000S 

OOOOOOSR 

334000RR 

I. 4 

REV. I 

A non-normal return will be carried out in a similar fashion 

except that the values of OS and RR will be obtained from known 

variables. 

4) Rationale 

1. Procedures may be s tatlcally or dynamically Hnked. 

2. Addresses that are established at execute time are stored 

in static space and the procedure itself is not modified. 

Hence, the procedure may be maintained in write protected 

storage. 

3. The mechanism for saving and restoring the register file 

is a conventional chained stack. This also allows for the 

creation of dynamlc storage for block structured languages 

such as PL/I and ALGOL. Note that the environment registers 

are saved beginning at the top of a stack frame (prologue of 

caller). Thus a stack frame appears as follows: 



I. 5 
REV. 1 

Old Stack 

} Previous Stack Frame 
Stack 

Environment 
Re_g:isters 

Working 
Reglsters Current Stack Frame 

Dynamic Work 
Space 

Temporary Work 
/Next Stack Frame 

} 
The initial size of a frame will not include temporary work space. Any 

S_Q_ace DSP 

time temporary work space is needed, the program can increment the 

DSP (integral number of words) and obtain space. An entire frame 

disappears when returning to a calling program. 

4. When an interrupt occurs, the entire register file must be saved. 

This can be accomplished by obtaining a save area for 256 registers 

beginning at DSP. Resumlng requires the entire register fUe b be 

restored and hence is not a normal return. 

5. Note that the number of registers to be saved ls set by the caller. 

The actual save is performed in the prologue of the callee (store back). 

If the caller can do all its work within temporary (clobberable) 

registers, the registers need not be saved. This is only true for 

the lowest level module which will never invoke other modules. 



LLL Internal Distribution 

J. Requa 

Addressograph F 

TID File 

RAC/lh 

DISTRIBUTION 

50 

848 

75 

NOTICE 

External Distribution 

W. Sembrat 
Control Data Corporation 
Livermore, California 

Technical Information Center 
Oak Ridge, Tennessee 

"This report was prepared as an account of work sponsored by 
the United States Government. Neither the United States nor 
the United States Atomic Energy Commission, nor any of their 
employees, nor any of their contractors, subcontractors, or their 
employees, makes any warranty, express or implied, or assumes 
any legal liability or responsibility for the accuracy, completeness 
or usefulness of any information, apparatus, product or process 
disclosed, or represents that its use would not infringe privately
owned rights." 

10 6 

J .1 

25 

2 


