
Computation Department

Livermore
LTSS Time-Sharing

System

MASTER

s

Lawrence Radiation Laboratory
University of California/Livermore

DISTRIBUTION Or THIS DLCIUMONJ IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image
products. Images are produced from the best available
original document.

LTSS-1
Edition 2

LIVERMORE TIME SHARING SYSTEM

Part 1: Octopus
\

Chapter 1: Hardware

------------------------------- NOTICE---------------------------------
This report was prepared as an account of work
sponsored by the United States Government. Neither
the United States nor the United States Energy
Research and Development Administration, nor any of
their employees, nor any of their contractors,
subcontractors, or their employees, makes any
warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness
or usefulness of any information, apparatus, product or
process disclosed, or represents that its use would not
infringe privately owned rights.

University of California
Lawrence Radiation Laboratory
Livermore, California 94550

DISTRIBUTION of this DOQUM£NT
IS UNUMITF'D

HARDWARE

CIC-LTSS-1-ED. 2

Authors: John G. Fletcher, J. Dennis Lawrence

March 10, 1970

If you wish to be placed on a mailing
list for LTSS-related documents, please
send your name and L-code to:

LTSS LIST

COMPUTER INFORMATION CENTER

L-60

Acknowledgment: My thanks to Harry L. Nelson for carefully verifying

the technical accuracy of sections 1.2 and 1.3. -- J.D.L.

LTSS-1
Edition 2

TABLE OF CONTENTS

Page

1.1 The PDP-6 Computer System (by John Fletcher)

1.1.1. Hardware Components ... T

1.1.2. Processor Registers ... 3

1.1.3. Word Formats .. A

1.1.4. Pagination - Segmentation .. 6

1.1.5. Protection ... 8

1.1.6. Interrupt Capability ... 10

1.1.7. Core Memory... 10

1.2. The CDC 6600 Computer System (by Dennis Lawrence)

1.2.1. System Organization ... 12

1.2.2. Hardware Components ... 13

1.2.3. Central Memory Characteristics 13

1.2.4. Peripheral Processor Characteristics 14

1.2.5. Central Processor Characteristics 18

1.2.6. Instruction Format ... 15

1.2.7. CPU Instruction Registers .. 17

1.2.3. CPU Operating Registers .. 18

1.2.9. CPU Functional Units ... 19

1.2.10. Exchange Jump.. 20

1.2.11. CPU Exit Mode.. 23

1.2.12. Floating Point Arithmetic .. 24

1.3. The CDC 7600 Computer System (by Dennis Lawrence)

1.3.1. Hardware Components ... 26

1.3.2. Small Core Memory Characteristics 26

1.3.3. Large Core Memory Characteristics 28

1.3.4. Peripheral Processor Characteristics 29

1.3.5. Central Processor Characteristics 29

1.3.6. Instruction Format ... 29

1.3.7. CPU Instruction Registers .. 31

1.3.8. CPU Operating Registers ... 31

1.3.9. CPU Functional Units ... 32

-i -

LTSS-1
Edition 2

TABLE OF CONTENTS (continued) Page

1.3.10. Exchange Jump... 35

1.3.11. Program Status Designators ... 37

1.3.12. Floating Point Arithmetic .. 39

References.. 42

Appendix: CDC 6600/7600 Operation Codes ... 43

ILLUSTRATIONS

1.1. PDP-6 Hardware .. 2

1.2. Pagination-Segmentation Hardware Operation 9

1.3. CDC 6600 Computer System... 12

1.4. CDC 6600 Exchange Jump Package.. 22

1.5. CDC 7600 Hardware.. 27

1.6. CDC 7600 Timing.. 34

1.7. CDC 7600 Exchange Package.. 36

-1- LTSS-1
Edition 2

1. HARDWARE

1.1. THE PDP-6 COMPUTER SYSTEM^

1.1.1. Hardware Components

The Octopus computer complex is centered on a "head" consisting of the

following devices (illustrated in Figure 1.1):

A. Two Digital Equipment Corporation (DEC) Programmed Data Processor-6
(PDP-6) computers,^ modified locally to include paged and segmented

addressing. These are described more fully below, in Sections 1.1.2.-

1.1.6.
B. 256 K (where K = 1024) 36-bit words of high-speed random-access

magnetic core memory. This memory consists of 16 "boxes" of 16 K

words each. Eight of these boxes are products of the Lockheed

Electronics Company (EEC), six of Ampex and two of DEC. The DEC

memories have a 1.75 microsecond cycle time; the others are one

microsecond (see Section 1.1.7.).

C. One General Precision Librascope (GPL) Disc File with a capacity

of 0.807 billion bits (22.4 million words), and a transfer rate of

20.35 megabits/second. This is a fixed head disc; all access delays

are rotational in origin (averaging about 35 milliseconds).

D. One International Business Machines (IBM) Data Cell with a capacity

of 3.24 billion bits (90 million words) and a transfer rate of 324

kilobits/second (reading) or 162 kilobits/second (writing). Random

access averages half a second.

E. One IBM Photo-Digital Storage Device with a capacity of 1.02 tril­

lion bits (28.3 billion words), and a transfer rate of 1.5 megabits/

second (reading) or 255 kilobits/second (writing). Random access

is about 5 seconds.

F. A number of line units, which are interfaces to devices which lie

on the Octopus "tentacles", enabling those devides to directly read

or write (under PDP-6 control) the core memory and to interrupt a

processor. Currently, each CDC-6600 and CDC-7600 is connected to a

line unit.

Caution: The PDP-6's may be replaced with PDP-10's in the near future. This
will render this entire discussion obsolete.

-2- LTSS-1
Edition 2

G. A pair of I/O busses enabling the processors to send or receive

data or control information to or from the disc, data cell, photo

store, line units, and other devices. These other devices include

a clock, PDP-8 computers which multiplex teletypewriters, a switch

which can rearrange I/O bus connections, two magnetic tape trans­

ports, an IBM 1401 computer, a card reader-punch, a paper tape

reader, two console teletypewriters, and a television monitor dis­

play system (TMDS).

H. A video display which can examine memory and is used for maintenance

and debugging.

DISC

DATA
CELLLINE

UNIT

LINE
UNIT HOTO-

STORE

DATA PATHS

VIDEO \
HSPLAY

LINE
UNIT

PDP-6PDP-6

CORE MEMORY

CONTROL PATHS

Figure 1.1. PDP-6 Hardware

-3- LTSS-1
Edition 2

1.1.2. Processor Registers

Each PDP-6 processor executes independently of the other. The only com­

munication between them is through the shared core memory and by means of

a mutual interrupt facility described in Section 1.1.6. A PDP-6 does not

execute in synchronism with any clock; rather, each instruction proceeds

as fast as circuitry and memory availability will allow. The typical in­

struction takes about 5 microseconds.

The following registers characterize the state of execution of a process:

A. One program counter which holds the 18-bit effective address of

the instruction next to be fetched.

B. Sixteen accumulators, each of which can hold a 36-bit word. These

registers are addressable as core locations 0 through 15. Except

for accumulator 0, their right halves are also used as index registers.

C. A number of registers used by the pagination-segmentation hardware,

which are described more fully in Section 1.1.4. They include a

descriptor base register, eight address base registers, two in­

terrupt summary registers, and eight associative memory registers.

D. Nine flags, bits indicative of various processor events and states,

including arithmetic overflow and carry (3 bits), jump or skip occur­

rence (1 bit) byte manipulation state (1 bit), processor mode

(2 bits), and optional interrupt enables (2 bits). Further infor­

mation of a similar character, but including enough information to

diagnose the source of processor-generated interrupts, is obtained

through the use of special I/O instructions.

E. Internal registers which retain the state of the interrupt channels,

which are discussed in Section 1.1.5.

The PDP-6 repertoire of 393 instructions directly manipulates the contents

of these registers (notably the accumulators) and the contents of memory

words. The instructions are executed sequentially without significant over­

lap or look-ahead.

-4- LTSS-1
Edition 2

1.1.3. Word Formats

Certain uses of words by the processors (e.g., as operands of move. Boolean,

and byte manipulation instructions) regard them as bit patterns and assume

no special format. Other uses, however, interpret them according to the

formats now summarized.

A. Under various circumstances a word may be used to generate an

effective address. (The word "generate" is used to distinguish

this situation from one in which a word is merely interpreted as

holding an effective address in one or both halves.) The format is

012,13,14. ..17,18... 35--------------,-- ------------ ,
» I I I t

. i i i x ; a
1 iii 1
1_____________L____ !______1_________________________)

The effective address is generated as follows. The A (address)

field is added to the contents of the index register (right half

of the accumulator) specified by the X-field (unless zero is speci­

fied, in which case A is used directly) to obtain an indirect address.

This is also the effective address unless the I (indirect) bit is

one, in which case the word specified by the indirect address is

read and is used to generate a new indirect address; the effective

address is finally obtained only when a word with the I bit equal

to zero is encountered. If the chain of indirect addresses loops

on itself, the processor will remain in the loop until interrupted.

Bits 0-12 are never involved in effective address generation.

B. All instructions without exception generate an effective address

as explained above; this address either is used to specify a word

from which an operand is to be fetched and/or in which a result is

to be stored, or is used itself as the right half of an operand

having zeros in its left half. Bits 0-12 of the instruction are

interpreted as follows.

1. If bits 0-2 are all zeros, the instruction is a programmed

operator. This instruction stores bits 0-12 of itself and the

effective address it generates into core location 32 and then

-5- LTSS-1
Edition 2

executes the instruction in location 33. It is intended that

this be a jump to a subroutine which interpretively executes

the information in 32, thus providing a means of extending the

instruction repertoire.

2. If bits 0-2 are all ones, the instruction is one of eight I/O

instructions as specified by bits 10-12. Bits 3-9 specify one

of a possible 128 devices (connected to the I/O bus) to which

the instruction may refer.

3. In all other cases, bits 0-8 specify one of 384 instructions.

Usually the separate bits may be individually understood; for

example, if bits 0-2 are 110, an accumulator mask and test in­

struction is indicated and bits 3-8 are respectively interpre­

ted as complement masked bits, clear masked bits, mask with con­

tents of effective address (rather than with the address itself),

skip, reverse skip selection if masked bits are all zero, and

swap halves of word before masking. Except for two jump in­

structions, for which they act as modifiers of the meaning of

bits 0-8, bits 9-12 select an accumulator (or, in a few cases,

a pagination-segmentation register) which contains an operand

and/or is a repository for a result.

C. A byte pointer is a word used in connection with certain instructions

in order to select a byte. The effective address generated by this

word locates the word in which the byte is to be found, while bits

0-5 describe the position of the byte in the word and bits 6-11

give the byte size, which may range from 0 to 36. Bit 12 is unused.

D. All integer operands and results are two's complement numbers. That

is, the 36-bit binary number implied by the bit pattern is interpre­

ted directly if bit 0 is zero. Otherwise this number is interpreted
as the negative number found by subtracting 236. It should be

noted that there is, therefore, only one representation of the in­

teger zero.

E. Floating point operands and results use bits 1-8 as a binary exponent

plus 128, and bits 9-35 as a fraction. Bit 0 is zero for positive

numbers. Negative numbers are the two's complement of the corres­

ponding positive number. Both floating and fixed point zeros have

-6- LTSS-1
Edition 2

all bits zero. It follows that the same arithmetic comparison in­

structions may be used for fixed and floating point numbers.

1.1.4. Pagination - Segmentation

The PDP-6 uses two distinct schemes by which effective addresses (such as

those generated by instructions) are translated into actual addresses (in

core memory). The first scheme, absolute addressing; simply treats the

effective address as the actual address. This scheme is used only when the

processor is executing in executive mode, a mode intended to be reserved to

the operating system itself. All computations (user problems) should be
permitted to run only under the second scheme, pagination-segmentation.^

The complete rationale behind this rather involved scheme, now described,

will be made clear when its role in an operating system is discussed (see
Section 2.1.).

A computation will have access to a virtual memory of 2 words. The 22-

bit virtual address of one of these words may be analyzed into a 7-bit (high-

order) segment number specifying one of 128 segments into which the virtual

memory is divided, and a 15-bit (low-order) word number specifying a word

within the segment. The contents of each of the 22-bit address base registers

(ABR) is interpreted as a virtual address. An (18-bit) effective address,

when it is used to specify a memory word, is converted into a virtual address

as follows (except for addresses 0-15 which always specify an accumulator).

The high-order three bits of the effective address select an ABR. The word

number in this register (called the augment) is added to the low-order fifteen

bits of the effective address (called the offset) to produce a word number

for the resultant virtual address. The segment number in the ABR becomes

the segment number of the resultant address. The intention is that the ABR

contain an entry point address (or pointer to an array) which serves as a

reference point from which the offset is measured.

Address base register 0 is called the procedure base register (PBR), and

always contains a zero augment. The program counter always has its high-

order three bits equal to zero (except in executive mode), and thus selects

this register to determine the segment containing instructions. Jump instruc­

tions reload the PBR if the jump is out of segment; a special pair of jump

-7- LTSS-1
Edition 2

instructions save and restore this register, thus permitting ready return

from subroutines.

Every segment is divided into pages of a uniform size which may be 128, 512,

2 K, or 8 K words. A segment is brought into actual (core) memory a page

at a time from the disc. A core table (the page table), associated with

each segment that has at least one page in core, has one entry for each page

of the segment. This entry contains the actual core address of the page or

shows it to not be in core. A segment is limited to 32 pages; hence segments

using the smaller page sizes cannot have the maximum 32 K words.

Every active computation is associated with a core table (the segment table),

with an entry for each segment in the virtual memory of the computation. The

entry contains the actual core address of the page table for that segment,

or shows that the page table (and hence every page) for the segment is not

in core. Several segment tables may point to the same page table; segments

may be shared. The descriptor base register (DBR) contains the address of

the segment table associated with the executing process.

Thus at each memory reference, the processor hardware, as well as converting

the effective address into a virtual address as described above, goes to a

segment table and a page table and finds the actual address of the desired

word (see Figure 1.2.). If for any reason the actual address cannot be found

(such as, if the page is not in core), the instruction execution is aborted

and the processor interrupted (see Section 1.1.6.). The two interrupt

summary registers then contain information which enables the operating

system to diagnose and, if possible, correct the difficulty (such as by re­

trieving the page from disc — time shared execution of other processes

meanwhile continuing).

The processor has eight associative memory registers which contain the segment

and page numbers of eight pages together with the corresponding page table

entry. At each memory reference, these registers are interrogated in parallel

by the hardware to find whether they hold information about the referenced

page; if so, the two memory references to the segment and page tables may be

bypassed. Only because of these registers can paging be efficient. The

associative memory registers are ranked by the hardware according to

-8- LTSS-1
Edition 2

recentness of use; every time segment and page tables are actually referenced,

the page table information obtained replaces the information in the least

recently used register. Clearly, programs which "jump around" will be less

efficient than those which do not.

Paging has the advantages that programs need not occupy contiguous core and

need not be fully loaded in order to execute, thus increasing the efficiency

of core utilization.

1.1.5. Protection

In addition to executive mode, the processors have two other modes, in both

of which pagination and segmentation are effective. One of these modes, the

IOT mode, is intended to be used only by the operating system, since, except

for the addressing scheme, it differs little from executive mode. The other

mode, user mode, is intended for general use. In this mode the following

things, possible in executive mode, are illegal and cause an interrupt (thus

shifting control to the operating system, see Section 1.1.6.).

A. Memory references are limited to areas located by the chain of

pointers: DBR to segment table to page table to page. Further,

the kinds of references may be limited. Each page table entry
contains three bits, the read (R), write (W), and execute (X) bits.

If and only if the corresponding bit is set may the words of the

page be referenced to fetch data (R), store results (W), or fetch

instructions (X). (All references to accumulators are permitted.)

Thus, shared segments will usually not have "W" access. It is

assumed that segment and page tables and locations 32-47, if they

are accessible at all in user mode, occur in pages with "W" access

denied.

B. All I/O instructions are forbidden.
C. Certain other instructions are also forbidden, such as those which

load the descriptor base register, change the processor mode, or

halt the processor. It is assumed that the instruction in location

33 is carefully chosen.

-9- LTSS-1
Edition 2

ADDRESS BASE REGISTERS
E5J

EFFECTIVE ADDRESS: T7 00324

W

□□ 117 00146

OTX 00000

021 j 02213 AUGMENT

[Ti roo~o... ; 00501 : i

014 76630

TI nos 1 00016

TJ I 043 1 ooooT

SEGMENT NUMBER

DESCRIPTOR BASE REGISTER
1142713 T~ "]

1

PAGE NUMBER

| SEGMENT TABLE
►[017605 T

VIRTUAL ADDRESS: joyf ’ 02'...... 537'

SEGMENT NUMBER

OFFSET

WORD NUMBER

->E]
L -

PAGE TABLE
T634 -----4-

I

ACTUAL ADDRESS:

LINE NUMBER

> 634537

Figure 1.2. Pagination-Segmentation Hardware Operation

(For 512 Word Pages)

-10- LTSS-1
Edition 2

1.1.6. Interrupt Capabi1ity

Each processor has seven interrupt channels. Each device on the I/O bus

may be connected to one of the channels by a suitable I/O instruction. The

processor itself is considered to be device 0 and thus may (and should) be

connected to a channel so that processor interrupts may be effective; these

include push-down-list overflow, arithmetic overflow (if enabled), program

counter skip or jump (if enabled for flow tracing), pagination-segmentation

faults, nonexistent memory (because of faulty or missing box), and memory

parity failure. The seven channels are ranked in priority from 1 (high) to
7 (low); any number of devices may be on a single channel. A suitable I/O

instruction can clear, turn on, or turn off the entire interrupt system,

can turn on or off any channel, and can request an interrupt on any channel.

Also, a suitable I/O instruction to the I/O bus switch device will cause it

to interrupt the other processor.

When an interrupt is requested on a channel (either by a device connected to

that channel with the channel on or by the special I/O instruction just men­

tioned), the interrupt begins as soon as the current instruction reaches a

suitable point and all higher priority channels are dismissed. This beginning

of the interrupt consists of the execution of instruction at location (32+2n),

where n is the channel number. This instruction should be carefully chosen.

Usually it is a jump to subroutine, entering executive mode and saving the

program counter (which may be that of a lower priority channel). This sub­

routine should determine the cause of the interrupt (by checking the status

of all devices on that channel), service the needs indicated (saving and

restoring any accumulators or other registers used), reset the interrupting

devices to a noninterrupting status, and then return to the interrupted

routine with a special jump instruction which dismisses the channel.

1.1.7. Core Memory

The core memories are accessible through six ports. Two of these ports are

attached to the processors; the others to multiplexors to which several de­

vices can be attached. Priority schemes in the porting structure and in the

multiplexors select which device desiring access to a given box gets the

-11- LTSS-1
Edition 2

next memory cycle. Accesses to different boxes do not conflict. Clearly,

the port and multiplexor connection of each device must be made with full

consideration of its speed and its ability to survive delay without data

loss. Consecutive addresses may be optionally placed in a single box or

alternated between two interlaced boxes.

An important feature is that the processors may - on a given single access -

not only read or write the memory, but may also read the memory and rewrite

the same word with different data — no other processor or device being able

to access the word in the interim. Many instructions exploit this feature.

The result is vast simplifications in the programming required to handle

certain "close call" situations when two processors share a common memory.

-12- LTSS-1
Edition 2

1.2. THE CDC 6600 COMPUTER SYSTEM

1.2.1. System Organization

3
The Control Data Corporation 6600 computer system consists of eleven inde­

pendent computers, a shared central memory, and twelve input/output data

channels (Figure 1.3.). Ten of these eleven computers are peripheral

and control processing units (PPU); the eleventh is termed the central

processing unit (CPU).

The CPU is a high speed arithmetic device with access to the central memory.

Each PPU has its own memory, and can also access the central memory. A PPU

may execute a program independently of the CPU and the other nine PPU's,

may control and start the CPU, and may transfer data between the central

memory and any of the twelve data channels.

The 6600 computer is capable of concurrent operations of three types: pro­

gram execution, CPU functional unit operation, and memory access. Concurrent

program execution may occur when the CPU and any PPU's are operating simul­

taneously, as described above. The other two types will be discussed below.

PPU

' PPU

CENTRAL
► PPUMEMORY

PPU ◄

' PPU

PPU

DATA CHANNEL

DATA CHANNELEL]

►(data 'channel

►[data CHANNEL 1

►[data channel)

i ►[data channel]

I ►[DATA CHANNEL ;

\ ►[data channel]

» ►[data channel]

t ►[DATA'CHANNEL-!

f ►{DATA CHANNEL]

CHAN I

Figure 1.3. CDC 6600 Computer System

-13- LTSS-1
Edition 2

1.2.2. Hardware Components

The Lawrence Radiation Laboratory presently has three 6600 computing

systems in the time sharing system. The equipment for each system is very

similar to the other two; the components of a typical system are given

below.

A. One CDC 6601 main frame, containing the CPU, ten PPU's, central

memory, and some input/output synchronizers.

B. One CDC 6602 console display unit, with a manual keyboard and

two cathode ray tube display units.

C. One CDC 405 high speed card reader.

D. One CDC 415 card punch.

E. One CDC 501 high speed printer.

F. One CDC 1612 high speed printer.

G. Eight CDC 607 one-half inch magnetic tape units.

H. Three CDC 6603 mass storage disc files.

I. One 280-C cathode ray tube display system, commonly known as the

DD80-C.

1.2.3. Central Memory Characteristics

The 6600 central memory is a random access coincident-current magnetic core

memory of 131,072 sixty-bit words, arranged in thirty-two logically indepen­

dent banks of 4096 words each. The central memory is common to all eleven

system computers. It requires one major cycle (1000 nanoseconds) to perform

a read-write operation. Several banks may be in operation at any given time.

The maximum memory reference rate is one address per minor cycle (100 nano­

seconds). Similarly, the maximum rate of data flow to and from memory is

one word per minor cycle.

The location of each word in central memory is specified by a seventeen bit

address. Consecutive words are located in different banks to obtain the

rapid access rates described above. Thus, each address is composed of two

fields — a twelve-bit left-hand portion defining a location within a bank

and a five-bit right-hand portion defining the bank. (The remaining bit of

-14- LTSS-1
Edition 2

the eighteen-bit address field, located to the left of the twelve-bit por­

tion, is not used.)

OAA AAAAA AAAAA BBBBB

where A = address within bank, and B = bank.

Certain precautions are required so that independent programs may time

share a computer. In the 6600, every program has a reference address (RA)

and a field length (FL) attached to it by the PPU that initiates the pro­

gram. All CPU references to central memory (for instructions or data) are

therefore made relative to the reference address and are checked by the hard­

ware to insure that they do not exceed the field length. This allows easy re­

location of the program in central memory, and insures the integrity of each

program in central memory. As an example, suppose P is an address in a

program (relative to the program's first word address of zero). The pro­

gram is loaded into central memory beginning at location RA (that is,

program address zero corresponds to memory address RA). Any reference by

the program to location P results first in a check to insure that

0 < P < FL .

Then, the sum P + RA is formed, and this word of central memory is accessed.

1.2,4. Peripheral Processor Characteristics

There are ten identical peripheral and control processors (PPU), each with a

twelve-bit 4096-word random access coincident-current magnetic core memory.

There are twelve input/output data channels in the 6600; all PPU's have

access to all twelve channels. In addition, all PPU's have access to cen­

tral memory, and may cause the CPU to begin execution of a program in central

memory. Each PPU may operate independently of and simultaneously with the

other nine. The PPU's act as system control computers, performing input,

output, and supervisory tasks while the CPU carries out high-speed arithme­

tic computations.

-15- LTSS-1
Edition 2

The basic time units for the 6600 are a minor cycle of 100 nanoseconds and

a major cycle of 1000 nanoseconds. A PPU may access its own 4096 word memory

in one major cycle, and may transmit or receive data through an I/O channel

at a maximum rate of one twelve-bit word per major cycle. There is a real

time clock, available on a channel of its own (not one of the twelve I/O

channels), which counts major cycles. The clock period is 4096 major cycles

(4.096 milliseconds); that is, the twelve-bit word holding the clock time

overflows every 4.096 ms.

An important feature of a PPU is its ability to control the CPU, by issuing

an exchange jump instruction. This instruction sends an eighteen-bit ad­

dress to the CPU, and causes the CPU to cease executing instructions. The

address is the starting location of a sixteen word exchange jump package

containing various pieces of information about a CPU program to be executed.

Hardware in the CPU replaces the exchange jump package with similar data

from the interrupted program.

A PPU can also monitor a CPU program by obtaining the current program address.

1.2.5. Central Processor Characteristics

The 6600 CPU is a high speed arithmetic processor that has access only to

the central memory; it is incapable of any input or output functions. It

is composed of several functional units, to carry out arithmetic and logi­

cal operations, and a control unit, to direct the functional units, initiate

instruction fetching, and perform fetching and storing of data. The high

speed of the CPU is obtained by minimizing memory references for both in­

structions and data, by the bank interlacing of the central memory, and by

the concurrent functional unit operation on unrelated instructions.

1.2.6. Instruction Format

The 6600 instructions may occupy fifteen bits or thirty bits; one instruc­

tion word may contain any of five different instruction combinations, as

indicated below:

-16- LTSS-1
Edition 2

15 15 15 15

30 15 15

15 30 15

15 15 30

30 30

(bits)

Groups of bits in an instruction are commonly identified by the letters f,

m, i, j, k (all three-bit groups), and K (eighteen-bit constant). A typical

fifteen-bit instruction has five three-bit fields:

(total of 15 bits),

where

-fm- represents the operation code.

-i- normally represents a result register.

-j,k- normally represent operand registers.

The typical thirty-bit instruction has four three-bit fields and one

eighteen-bit field:

f m i j K

3 3 3 3 18 (total of 30 bits),

where

-fm- represents the operation code.

-i- normally represents a result register.

-j- normally represents an operand register.

-K- is the (literal) second operand.

Details of the CPU instructions are summarized in the appendix.

-17- LTSS-1
Edition 2

1.2.7. CPU Instruction Registers

The CPl/ contains eight sixty-bit instruction registers (commonly called

the stack), designated by 10, II, ..., 17. During the execution of a

program, instruction words are transferred from central memory to regis­

ter 10, one at a time from (usually) sequential locations. The instruc­

tion word is transferred by the control unit from 10 to a device called

the U-register, where it is decoded into the component two, three, or four

instructions. These are then issued, sequentially, to the functional units

for execution.

If the instruction word does not contain a branch instruction, a new in­

struction word is requested for 10 as soon as the current instruction word

has been transferred to the U-register. At this point, all instruction

words in registers 10 - 16 are transferred to the next higher instruction

register; 16 17, 15 16, ..., 10 II. The contents of 17 are lost from

the stack.

If the instruction word contains a branch instruction, this process changes

somewhat. First, the branch is tested to see if the branch condition is sat­

isfied; if not, processing continues as described in the above paragraph. If

the branch is to be taken, however, the branch address is examined to see if

the next instruction word is already in a stack register. If not, the new

word is fetched into 10 and the foregoing procedure continues. (There is a

considerable delay while this fetch from memory to 10 takes place.) If the

new instruction word is already in the stack (say, in register 15), it is

fetched into the U-registers from that instruction register. Succeeding in­

structions will be taken from successive stack registers as long as possible

at a more rapid rate (that is, from 14, ..., 10). No more instruction words

are brought to 10 until an instruction word is requested that is not in the

stack. A loop of seven words or less (at most 27 instructions) can be execu­

ted very rapidly, since no waiting is necessary for instruction words to be

brought from memory. Efficient 6600 programming may require maximal use of

stack loops and minimal use of out-of-stack branch instructions.

-18- LTSS-1
Edition 2

1.2.8. CPU Operating Registers

References to central memory for fetching and storing data are minimized

by the use of twenty-four operating registers, divided into three sets of

eight registers:

Eight 18-bit address registers (A-registers) AO, ..., A7

Eight 60-bit operand registers (X-registers) XO, ... X7

Eight 18-bit increment registers (B-registers) BO, ..., B7 .

All X-registers are used to hold operands for and operation results from

the functional units. The five registers XI, ..., X5 can hold operands read

from central memory; the two registers X6 and X7 similarly can hold results

to be sent to central memory. As an illustration of the use of these regis­

ters, consider the following instruction sequence:

Transfer [A] to B*

Set D equal to [A] + [A]*[C] .

This may be accomplished by the following sequence of operations:

1. Fetch [A] into register X2.

2. Fetch [C] into register X4.

3. Multiply the contents of X2 and X4 together; send the result to XO.

4. Move the contents of X2 to X6.

5. Add the contents of XO and X2 together and send the result to X7.

6. Store [X6] into B.

7. Store [X7] into D.

The address registers are used to fetch operands from memory and store results

into memory. Placing a number P in address register A1, ..., A5 will cause

the contents of memory word P to be placed into the corresponding X-register.

Similarly, placing a number P in the address register A6 or A7 will cause

the contents of the corresponding X-register to be placed into memory loca­

tion P. Registers AO and XO are independent and have no connection with

central memory. As an illustration, consider the sequence given above. It

may more accurately be given by changing certain steps as follows:

f
"[A]" means the contents of the variable named "A".

-19- LTSS-1
Edition 2

1. Place (A) into register A2, causing [A] to be placed into X2.

2. Place (C) into A4, causing [C] to be placed in X4.

3. Multiply the contents of X2 and X4 together; send the result to XO

4. Move the contents of X2 to X6.

5. Add the contents of XO and X2 together and send the result to X7.

6. Place (B) into A6, causing [X6] to be transferred to B.

7. Place (D) into A7, causing [X7] to be transferred to D.

The B-registers have no direct connection to central memory; registers

Bl, B7 are used to provide program indexing. Register BO is eternally

fixed as an eighteen-bit zero. In the example above, suppose we wish to

perform the instructions
Set B(I) = A(I)

SET D(I) = A(I) + C*A(I)

for I = 0, 1, ..., 10. Instructions to do this, using two B-registers,

might be the following:

1. Initialize the B-registers by setting Bl = 0 and B3 = 11.

2. Place (A) + [Bl] into A2 (that is, the location of the first word

of array A, plus the increment given in Bl), resulting in

[A(I)] in X2.

3. Place (C) into A4, resulting in [C] in X4.

4. Multiply [X2] and [X4] together, and send the result to XO.

5. Move [X2] to X6.

6. Add [XO] and [X2] together, sending the result to X7.

7. Place (B) + [Bl] into A6, resulting in B(I) = A(I).

8. Place (D) + [Bl] into A7, resulting in 0(1) = A(I) + C*A(I).

9. Place [Bl] + 1 into Bl.

10. If [Bl] < [B3], jump to step 2 for the next iteration of this loop

•4*

1.2.9. CPU Functional Units

Additional operating speed is obtained by the use of ten functional units

which may operate simultaneously on unrelated instructions, as long as no

conflicts are present. The multiply and increment units are duplexed, so

+„ (A) means the location of the variable named "A".

-20- LTSS-1
Edition 2

that an instruction may be sent to the second unit whenever the first one

is busy.

Branch unit. Handles all jumps or branches within a program.

Increment unit. Performs one's complement addition and subtraction

of eighteen-bit numbers. There are two of these

units.

Long add unit. Performs one's complement addition and subtraction

of sixty-bit fixed point numbers.

Add unit. Performs floating point addition and subtraction.

Multiply unit. Performs floating point multiplication. There are

two of these units.

Divide unit. Performs floating point division. This unit can

also sum the number of ones in a sixty-bit word.

Boolean unit. Performs the logical operations: transfer, inter­

section, union, and complement.

Shift unit. Performs all operations of shifting, normalizing,

packing and unpacking, and mask generation.

1.2.10. Exchange Jump

An eighteen-bit P-register is used to hold the address of each program in­

struction word as it is being executed. P is advanced in the following

ways:

A. P is advanced by one when all instructions in a sixty-bit word

have been extracted and sent to the instruction registers.

B. P is set to the address specified by a branch instruction.

C. P is set to the address specified in the exchange jump package.

A program is begun in the CPU by means of an exchange jump instruction from

a PPU. This causes initial values to be entered into all operating registers

and the P-register from a 16-word exchange jump package located in central

memory. The PPU actually provides the CPU with the first word address of

this package, and the CPU exchanges the current contents of the program's

registers with the new contents as given in the exchange jump package. Thus,

-21- LTSS-1
Edition 2

the controlling data for two programs is interchanged; another exchange

jump may later cause control to go back to the interrupted program.

The exchange jump package provides the following items of information for

a program to be executed:

A. Program address (P).

B. Reference address for central memory (RA).

C. Field length for central memory (FL).

D. Program exit mode (EM).

E. Initial contents of operating registers.

These quantities are located as indicated in Figure 1.4.

-22- LTSS-1
Edition 2

bits 59...54,53........................... 36,35................................18,17.............................. 0

location 6 18 18 18

0 /////// P AO /////////////////

1 /////// RA A1 B1

2 /////// FL A2 B2

3 /////// EM A3 B3

4 ////////////////////////// A4 B4

5 ////////////////////////// A5 B5

6 ////////////////////////// A6 B6

7 ////////////////////////// A7 B7

10 XO

11 XI

12 X2

13 X3

14 X4

15 X5

16 X6

17 X7

Location is relative to the first word of the exchange jump package.

Bits are numbered 0 to 59, reading right to left.

Figure 1.4. CPC 6600 Exchange Jump Package

-23- LTSS-1
Edition 2

1.2.11. CPU Exit Mode

Execution of a program by the CPU will continue until a PPU causes an ex­

change jump to take place, or until an error occurs. The exit mode feature

allows the programmer to control the three error conditions that may occur.

These are:

Address out of range — An attempt was made to reference central

memory with an address greater than FL.

Operand out of range — A floating point arithmetic unit received

an infinite operand.

Indefinite operand — A floating point arithmetic unit received

an indefinite operand.

To select the exit conditions that he wishes to cause execution to stop,

the programmer must preset the EM bits of the exchange jump package as follows

000000 No exit selections are made.

010000 Address out of range.

020000 Operand out of range.

030000 Address or operand out of range.

040000 Indefinite operand.

050000 Indefinite operand or address out of range.

060000 Indefinite operand or operand out of range.

070000 Indefinite operand or operand or address out of range.

When an error is detected for which the exit mode is set, the CPU generates

a halt instruction at location zero of the program (location RA of central

memory), containing the upper six bits of the exit condition and the contents

of the P-register.

59...54,53...48,47.................................30,29..0

00 OE P 0

STOP EXIT P-register ZEROS

The CPU then sets the P-register to zero, causing a jump to this generated

halt instruction. When an error is detected for which the exit mode is not

set, it is ignored.

-24- LTSS-1
Edition 2

1.2.12. Floating Point Arithmetic

All arithmetic in the 6600 is performed using one's complement numbers.

This means that a K-bit number is interpreted directly if the sign bit

(bit K-l) is zero, and is interpreted by comolementing the entire num­

ber if the sign bit is one. Note that there are therefore two represen­

tations of zero (00...0 and 77...7, octal).

Since the 6600 is intended to be used primarily for large scientific prob­

lems, floating point arithmetic is used for most calculations. A floating

point data word on the 6600 computer system occupies an entire sixty-bit

word, and contains three fields:

Length Bits Fiel d

1 59 Coefficient sign.

11 48 - 58 Biased exponent (characteristic)

48 0 - 47 Integer Coefficient.

The binary point is considered to be to the right of the coefficient. The

sign bit is zero for plus and one for minus; negative numbers are represen­

ted in one's complement notation. The exponent is biased by 2000 octal
(210). This means that the characteristic is formed by adding 2000 to the

true exponent if it is positive, or by adding 3777 to the true exponent if

it is negati ve :

True exponent 274 becomes biased exponent 2274.

True exponent -36 becomes biased exponent 1741.

For example, floating point numbers 1.0 and 0.75 would be given by

20000 00000 00000 00001

17760 00000 00000 00003

if unnormalized, and by

if normalized.

17204 00000 00000 00000

17176 00000 00000 00000

-25- LTSS-1
Edition 2

Note that exponent arithmetic uses the one's complement notation. Floating

point numbers may appear with exponents from 0000 to 3776 (thus ranging from

-1023 to +1022, decimal). This allows floating point numbers in the range
-293 322

10 to 10 , approximately.

Floating point numbers may be normalized or unnormalized, and performing an

arithmetic operation on two normalized floating point numbers need not pro­

duce a normalized result. The 6600 also has capability for operating on

double precision floating point numbers, each with its own exponent and

coeffi cient.

An arithmetic operation that results in an exponent larger than 3777 is

treated as an infinite quantity; a coefficient of all zeros and an exponent

of 3777 is created for such a result. Use of infinity (and, in some cases,

zero) as operands may produce an indefinite result; a coefficient of all

zeros and an exponent of 1777 is created for such a result. Note that no

error occurs when an infinite or indefinite result is generated. An optional

exit is available when such results are used as operands. For more informa­

tion on these topics, olease refer to reference 3.

-26- LTSS-1
Edition 2

1.3. THE CPC 7600 COMPUTER SYSTEM

1.3.1. Hardware Components

The Control Data Corporation 7600 computer system ’ actually consists of

eleven independent computers, much like the CDC 6600. The machine was, in

fact, designed to be upward compatible with the 6600 for user programs. The

input-output section has been greatly changed, however, and core memory now

comes in two types.

The central processing unit (CPU) contains a high speed computation section,

with access to both types of central memory. The peripheral processor units
(PPU) operate independently of the CPU and of each other, and control the

input-output functions of the system. The small core memory (SCM) is a very

fast coincident current multibank device, and is used to contain executing

programs, the resident system monitor program, and some 1/0 buffer areas.
The large core memory (LCM) is a much larger and slower linear selection type

of memory, and provides the basic working storage for the CPU. The system

is illustrated in Figure 1.5.

1.3.2. Small Core Memory Characteristics

The 7600 CPU contains two memories. The small core memory (SCM) is a random

access coincident-current magnetic core memory of 65,536 sixty-bit words,

arranged in 32 logically independent banks of 2048 words each. Up to ten

banks may be in operation at any given time. The maximum memory reference

rate is one word per clock period (27.5 nanoseconds); the read-write cycle

time is ten clock periods (275 ns).

The location of each word in SCM is specified by a sixteen-bit address. Con­

secutive words are located in different banks to obtain the rapid access rates.

Thus, each address is composed of two fields — an eleven bit left-hand por­

tion defining a location within a bank, and a five-bit right-hand portion

selecting the bank. (The remaining portion of the eighteen-bit address

field, located to the left of the eleven-bit portion, is not used.)

-27- LTSS-1
Edition 2

PPU PPU PPU

Data Paths

Control Paths

Figure 1.5. CDC 7600 Hardware

-28- LTSS-1
Edition 2

00A AAAAA AAAAA BBBBB ,

where A = address within bank, and B = bank.

The 7600 memory protection scheme is similar to the 6600 process. Every

program in SCM has a reference address (RAS) and a field length (FLS). All

CPU references to SCM are made relative to RAS, and are checked by the hard­

ware to insure that they do not exceed FLS.

The first 4096 addresses of SCM are reserved for input-output and control buf­

fers. All data entering the CPU from a PPU goes through these buffers; when

a buffer is full, the CPU normally transfers the data to LCM.

1.3.3. Large Core Memory Characteristics

The 7600 large cove memory (LCM) is a linear selection type memory of 512,000

sixty-bit words, arranged in eight independent banks of 64,000 words each.

A reference to a word in LCM results in eight sixty-bit words being read

simultaneously into a 480-bit register; there is one such register per bank.

The memory cycle time is 1.76 microseconds (64 clock periods).

The large core memory is intended to provide basic working storage for a

CPU program. Instructions cannot be executed directly from LCM — they must

be read into the SCM and executed from there. Maximum data transfer rates

between LCM and SCM occur when many consecutive words are moved. One sixty-

bit word per clock period can be transferred during such block copy instruc­

tions. However, single words may be read from LCM. A contiguous group of

eight words is brought to a 480-bit register in 1.76 ys. The other seven

words in this packet may then be referenced directly from this register in

only three clock periods each (82.5 ns).

Memory protection is similar to that described for SCM, using a relative

address (RAL) and a field length (FLL).

-29- LTSS-1
Edition 2

1.3.4. Peripheral Processor Characteristics

Each of the ten peripheral processor units (PPU) is an independent computer

with a twelve-bit 4096 word random access coincident current magnetic core

memory. Each PPU has provision for eight fully duplex input/output channels,

one of which leads to the small core memory buffer area. The PPU's are used

to perform input and output at the request of the CPU system monitor program.

The basic time unit for a 7600 PPU is the clock period of 27.5 ns. A PPU

may access its own memory in 275 ns, and may transmit or receive data through

an I/O channel at a maximum rate of one twelve-bit word per nine clock periods

(247.5 ns).

1.3.5. Central Processor Characteristics

The 7600 Central Processing Unit (CPU) consists of a computation section, both

memories, and an input/output multiplexor. The computation section is a high

speed arithmetic processor that has access only to the central memories; it is

incapable of any input or output function. It has a sixty-bit internal word,

nine independent functional units to carry out arithmetic and logical opera­

tions, and a twelve-word instruction stack. The high speed of the CPU is ob­

tained, as in the 6600, by minimizing memory references for instructions and

data, by the interlacing of the SCM, and by the concurrent operation of the
functional units. In addition, the functional units are segmented (Section 1.3.9).

The CPU I/O Multiplexor (MUX) is used to communicate between the PPU's and the

SCM, by a data-buffering mechanism. Communication between CPU and PPU is over

a twelve-bit fully duplex channel. The MUX has 15 of these channels, each

with separate SCM buffer areas for input and for output.

1.3.6. Instruction Format

The CDC 7600 instruction format is identical to that of the 6600. Each in­

struction may occupy fifteen or thirty bits; one instruction word may contain

any of five different instruction combinations, as indicated below:

-30- LTSS-1
Edition 2

15 15 15 15

30 15 15

15 30 15

15 15 30

30 30

(bits)

Groups of bits in an instruction are commonly identified by the letters

g, h, i, j, k (three-bit groups), and K (eighteen-bit constant). A typical

fifteen-bit instruction has five three-bit fields:

(total of 15 bits),

where

-gh- represents the operation code.

-i- normally represents a result register.

-j,k- normally represent operand registers.

The typical thirty-bit instruction has four three-bit fields and one eighteen-

bit field:

9 h i j K

3 3 3 3 18 (total of 30 bits),

where

-gh- represents the operation code.

-i- normally represents a result register.

-j- normally represents an operand register.

-K- is the (literal) second operand.

The g bits generally identify the type of instruction and the functional

unit. The h bits usually specify the functional unit mode. Details of the

instructions are summarized in the appendix.

-31- LTSS-1
Edition 2

1.3.7. CPU Instruction Registers

The CPU contains twelve sixty-bit instruction registers, commonly called the

stack. During the execution of a program, instruction words are transferred

to the stack from the SCM, two words ahead of the instruction currently being

executed. As each new instruction is fetched into the stack, the ones al­

ready there are shifted one register. The oldest instruction is lost.

The stack is used most efficiently for small programs that can be contained

entirely within the stack. Only ten of the stack registers may be used in

such a loop, so it may contain at most 40 instructions.

An 18-bit P-register is used to hold the address of each program instruction

word as it is being executed. P is advanced in the following ways:

A. P is advanced by one when all instructions in a sixty-bit stack

register have been extracted and sent to the current instruction

word register.

B. P is set to the address specified by a branch instruction.

C. P is set to the address specified in the exchange package.

1.3.8. CPU Operating Registers

The twenty-four operating registers are nearly identical in arrangement, number,

and function to those of the 6600. (See Section 1.2.8.) There are three sets

of eight registers each:

Eight 60-bit operand registers (X-registers) XO, ..., X7,

Eight 18-bit address registers (A-registers) AO, ..., A7,

Eight 18-bit increment registers (B-registers) BO, ..., B7.

All X-registers are used to hold operands for and operation results from the

functional units and LCM. The five registers XI, X2, ..., X5 can hold operands

read from SCM, and the two registers X6 and X7 can hold results to be sent to

SCM.

The A-registers are used to fetch operands from SCM and store results into

SCM. Placing a number in address register Al, A2, ..., A5 will cause the• • • 5

-32- LTSS-1
Edition 2

contents of the corresponding SCM word to be transferred to the correspond­

ing X-register. Similarly, placing a number in A6 or A7 causes the contents

of X6 or X7 to be transferred to SCM.

Registers AO and XO have no connection with SCM. They are used to hold ad­

dresses for the block copy instructions that transfer data between LCM and SCM

Any X-register may be used to hold the 21-bit address of a single word in LCM.

This word may then be brought to an X-register from LCM, or sent to LCM from

an X-register, by means of the read and write LCM instructions (014 and 015 —

see Append!x).

The B-registers are used primarily to provide program indexing and loop count­

ing. Register BO is eternally fixed as an eighteen-bit zero.

1.3.9. CPU Functional Units

The functional units of the 7600 are considerably different from the 6600.

Except for the multiply and divide units, all functional units have one clock

period segmentation. This means that the operands for the unit move through

the unit in a "pipe-line" fashion, freeing previous portions each clock period

Thus, a new set of operands may be entered into the functional unit each clock

period. The multiply unit has a two clock period segment, and the divide unit

has no segmentation at all (it uses an iterative algorithm, and requires eigh­

teen clock periods before a new divide instruction may begin).

Increment unit.

Long add unit.

Floating add unit.

Floating multiply unit.

Floating divide unit.

Population count unit.

Performs one's complement addition and

subtraction of eighteen bit numbers.

Performs integer addition and subtraction

of sixty-bit numbers.

Performs floating point addition and sub­

tract! on.

Performs floating point multiplication.

Performs floating point division.

Counts the number of one bits in a sixty-

bit word.

-33- LTSS-1
Edition 2

Boolean unit.

Shift unit.

Normalize unit.

Functional unit times

Performs the logical operations of transfer,

intersection, union, and complement. Per­

forms pack and unpack operations.

Performs all operations of shifting.

Performs the normalize operations.

are given in Figure 1.6.

-34- LTSS-1
Edition 2

Functional
Unit

Instructions
Affected

Segment Time
(clock periods)

Execution Time
(clock periods)

Increment 50-57 (A-reg.) 1 2 to set Aj

8 to read to Xj

1 to store from Xj

60-77 (B, X-reg.) 1 2

Long Add 36-37 1 2

Floating Add 30-35 1 4

Floating Multiply 40-42 2 5

Floating Divide 44-45 18 20

Population Count 47 1 2

Boolean 10-17, 26-27 1 2

Shi ft 20-23, 43 1 2

Normalize 24-25 1 2

Branch 02-07
!
f
i

l

2 - no branch

3 - branch into stack

11 - branch out of stack

46 (pass)

i

— 1

Figure 1.6. CDC 7600 Timing

-35- LTSS-1
Edition 2

1.3.10. Exchange Jump

The exchange jump instruction is a special instruction to allow the CPU to

switch execution from one program to another. It causes initial values to

be entered into all operating registers and the program address register

from a sixteen word exchange package, and previous values of those registers

to be stored in the same package. The following quantities are involved:

A. Program address (P).

B. Reference address for small core (RAS) and large core (RAL)

memories.

C. Field length for small core (FLS) and large core (FLL) memories.

D. Program status designation register (PSD).

E. Normal exit address (NEA).

F. Error exit address (EEA).

G. Breakpoint address (BPA).

H. The operating registers.

These quantities are diagrammed in Figure 1.7.

An exchange jump may be initiated under several different conditions.

A. An exchange exit instruction is issued by the system monitor program.

B. An error exit instruction is issued by a user program or by a CPU

error condition.

C. An input or output interrupt occurs.

D. A real time interrupt occurs by an overflow of the clock period

counter (every 3.6 ms).

E. A program breakpoint is reached.

F. The program is operating in step mode.

The 7600 has two exit addresses in the exchange package. These designate

absolute SCM addresses, assumed to reside within the system monitor program.

NEA is used by a user program issuing an exchange exit instruction, to request

monitor services (such as an input or output request). EEA is used by a user

program issuing an error exit instruction, or if a CPU error is detected (such

as arithmetic overflow, indefinite results, hardware failure, or address out

of range). In the latter case, the type of error will be specified in the

PSD register. (See Section 1.3.11.)

-36- LTSS-1
Edition 2

bits 59...54,53............................36,35................................18,17................................ 0

location 6 18 18 18

0 /////// P AO BPA

1 /////// RAS Al B1

2 /////// FLS A2 B2

3 /////// PSD A3 B3

4 RAL A4 B4

5 FLL A5 B5

6 NEA A6 B6

7 EEA A7 B7

10 XO

11 XI

12 X2

13 X3

14 X4

15 X5

16 X6

17 X7

Location is relative to the first word of the exchange package. Bits are

numbered 0 to 59, reading right to left.

Figure 1.7. CDC 7600 Exchange Package

-37- LTSS-1
Edition 2

A real time interrupt occurs after a user program has run for about 3.6 milli

seconds. This is used to segment program execution, and to enable the system

monitor program to perform required periodic "house-keeping": initiate input

or output processing, update the clock, update the charge to the user, and

possibly initiate a new user program.

During debugging, a program may be executed in small sections by using the

breakpoint address (BPA) register. Whenever the program reaches the break­

point (P = BPA), then execution ceases with a jump to EEA. Normally, no in­

structions are executed at BPA. A program executing in step mode will cease

execution, with a jump to EEA, at the end of each instruction word.

1.3.11. Program Status Designators

Execution of a program by the CPU will continue until an exchange jump occurs

as discussed in the previous section. The reason for the exit may be deter­

mined by examining the bits of the Program Status Designator (PSD) in the

exchange package.

Bi t Function Bi t Function

17 Exit Mode Flag 8 SCM Block Range Condition Flag

16 Monitor Mode Flag 7 LCM Direct Range Condition Flag

15 Step Mode Flag 6 SCM Direct Range Condition Flag

14 Indefinite Mode Flag 5 Program Range Condition Flag

13 Overflow Mode Flag 4 Breakpoint Condition Flag

12 Underflow Mode Flag 3 Step Condition Flag

11 LCM Parity Condition Flag 2 Indefinite Condition Flag

10 SCM Parity Condition Flag 1 Overflow Condition Flag

9 LCM Block Range Condition Flag 0 Underflow Condition Flag

The six mode flags are set before the program is initiated, and govern its

execution. The exit mode flag controls the source of the exchange package

address for the execution of an exchange exit instruction, and the monitor

mode flag determines whether the program can be interrupted by an input or

output request. These two flags are never set for user programs.

-38- LTSS-1
Edition 2

The step mode flag causes the program to be interrupted at the end of each

instruction word. The indefinite mode flag will cause a program interrupt

whenever an indefinite floating point result is detected. The overflew

mode flag and underflow mode flag cause a program interrupt whenever a float­

ing point overflow or underflow is detected in a floating point result. The

interrupt will occur only after the current instruction word is completed,

and control is sent to EEA in all four cases.

The twelve condition flags are set by the hardware whenever the specified

conditions occur; control is sent to EEA at the end of the current instruc­

tion word. The LCM parity condition flag and the SCM parity condition flag

are set whenever a parity error is detected in a memory reference. (The SCM

has one parity bit per 12 bits, and the LCM has one parity bit per 15 bits.)

The LCM block range condition flag and the SCM block range condition flag
are set whenever a block copy instruction (instructions Oil and 012) requests

a reference to an address greater than or equal to FLL or FLS. The LCM direct

range condition flag is set whenever a direct read or write (instructions 014

and 015) requests a reference to an address greater than or equal to FLL.

The SCM direct range condition flag is set whenever any SCM reference (other

than block copy) is greater than or equal to FLS, and whenever the program

register is greater than or equal to FLS.

The breakpoint condition flag is set whenever P = BPA, and the step condition

flag is set whenever an instruction issues and the step mode flag is set. The

indefinite condition flag, overflow condition flag, and underflow condition

flag are set whenever the corresponding conditions are detected by a floating

point functional unit. If the corresponding mode flag is also set, execution

will terminate at the end of the current instruction word. This word probably

does not contain the instruction that caused the condition, because of the

overlapping of the functional unit processing. Indefinite and overflow con­

ditions may occur during the execution of instructions 30-35, 40-42, and 44-45;

underflow may occur during the execution of instructions 32-33, 40-42, and

44-45.

-39- LTSS-1
Edition 2

1.3.12. Floating Point Arithmetic

All arithmetic in the 7600 is performed using one's complement numbers.

This means that a k-bit number is interpreted directly if the sign bit is

zero, and is interpreted by complementing the entire number if the sign bit

is one. A floating point data word occupies sixty bits, including a one-

bit sign (the leftmost bit), an eleven-bit biased exponent, and a 48-bit

integer coefficient. The binary point is considered to be to the right of
the coefficient. The exponent is biased by 2000 octal (2'°). This means

that the biased exponent is formed by adding 2000 to the true exponent if

it is positive, and adding 3777 to the true exponent if it is negative.

Floating point numbers need not be normalized, and arithmetic operations

performed on normalized operands need not produce a normalized result. The

7600 can operate with double precision numbers, each with its own exponent

and coefficient.

It is sometimes necessary to convert a floating point number into decimal

notation. One way to do this is described here.

A. Examine the sign bit.

1. If the sign bit is zero, the number is positive, so let S = +1.

2. If the sign bit is one, the number is negative. Let S = -1,

and complement the number.

B. Separate the exponent, E, and the coefficient, C. The exponent is

the leftmost four octal digits.

C. Examine the exponent.

1. If E >_ 2000 (octal), let R = E - 2000. (R is the true exponent.)

2. If E < 2000 (octal), let R = -(1777 - E).

D. Convert the coefficient to a decimal integer. Suppose the coeffi­

cient has octal digits Clit ... C2 Cj. Then, this is con­

verted to a decimal integer D by the formula

D = C^-S15 + C, •81il + ... + C -8 + C, .
16 15 2 1

E. The final result is formed by attaching the true exponent and the
sign: Y = S-2R-D.

-40- LTSS-1
Edition 2

This can be clarified by some examples.

1. The number is X = 17204 00000 00000 00000.

A. S = +1.

B. E = 1720, C = 4 00000 00000 00000.

C. R = -578 = -4710.

D. D = 4-815 = 4*2^'’ = 2Z*7.

E. V = (+1)(2“/,7)(21<7) = +1.

2. The number is X = 60511 57777 77777 77777.

A. S = -1. X = 17266 20000 00000 00000.

B. E = 1726, C = 6 20000 00000 00000.

C. R = -51g = -41jQ.

D. D = 6-815 + 2-811* = 25-2/<3.

E. Y = (-1) (2"^) (25 •2it3) = -25 *22 = -100

3. The number is 16744 14336 75013 27554.

A. S = +1.

B. E = 1674, 0=4 14336 75013 27554.

C. R = -103g = -6710.

D. D = 4-815 + S1** + 4*813 + 3*812 + ... ;

E. Y = (+1)(2"67)(2147)(236) = 2147-2"31

= (2147)(.465)(10”^) = (.998)(10“6) ^ 10"6.

Biased floating point exponents may range from 2000 to 3777 (octal) for posi­

tive exponents, and from 1776 to 0000 for negative exponents. If a number is

generated with a biased exponent greater than 3777, an overflow condition
occurs, and the overflow condition flag will be set.T The exponent will be

forced to 3777, and the coefficient (or its complement) will be forced to

zeros. If a number is generated with a biased exponent less than 0000, an

underflow condition occurs. A word of all zeros or all ones is produced.

fSome exceptions to these remarks may occasionally occur; see reference 6.

-41- LTSS-1
Edition 2

An indefinite condition occurs whenever a floating point functional unit

cannot complete a calculation (such as dividing zero by zero). An expon­

ent of 1777 and a zero characteristic will be generated.

The standard cases are as follows:

Positive overflow (+°°)

Negative overflow (-<=°)

Positive indefinite (+IND)

Negative indefinite (-IND)t

Positive underflow (+0)

Negative underflow (-0)

37770 00000 00000 00000

40007 77777 77777 77777

17770 00000 00000 00000

60007 77777 77777 77777

00000 00000 00000 00000
77777 77777 77777 77777

Overflow and indefinite conditions are unlikely to occur during error-free

computations, since the permissible exponents allow numbers in the approxi­
mate range 10 to]0+^22.

tCan only occur from packing or Boolean operations.

-42- LTSS-1
Edition 1

REFERENCES

1. Programmed Data Proaessor-6 Handbook^ Digital Equipment Corporation,

Maynard, Massachusetts, DEC Publication Number F-65 and F-65 Change

Notice number 3 (July, 1965).

2. David L. Pehrson, Pagination and Segmentation of the PDP-6 and Other

Problems in Memory Control, Lawrence Radiation Laboratory, Livermore,

California, UCRL-70084 (August 15, 1966).

3. Control Data 6000 Series Computer Systems: Reference Manual, second

edition, Control Data Corporation, St. Paul, Minnesota, CDC Publication

Number 60100000 (July, 1965).

4. Harry L. Nelson, Program Optimizing Techniques for the CDC 6600 Central

Processor, Lawrence Radiation Laboratory, Livermore, California,
UCRL-12489 (April 6, 1965).

5. Control Data 7600 Computer System: Preliminary System Description,

Control Data Corporation, St. Paul, Minnesota, CDC Publication Number

60258400 (September, 1969).

6. Control Data 7600 Computer System: Preliminary Reference Manual, second

edition, Control Data Corporation, St. Paul, Minnesota, CDC Publication

Number 60258200 (1969).

7. John E. Ranelletti, CPU76, A 6600/7600 Central Assembler, Lawrence

Radiation Laboratory, Livermore, California, Computer Information Center,

CIC Report Ll-004 (March 5, 1970).

-43- LTSS-1
Edition 2

APPENDIX

CDC 6600/7600 Operation Codes

The instruction sets for the CDC 6600 and CDC 7600 computers are nearly

identical, so they can be discussed together. The following conventions

are used.

A. Each character in the octal column represents three bits.

B. Lower-case letters (i, j, k) designate the three-bit portions of

an instruction (usually operating registers). Upper-case letters

(KKKKKK) designate the eighteen-bit portion of some instructions.

C. A dash indicates an unused portion of an instruction.
D. The mneumonics are those used by the CPU76 Assembler.^

E. Operating registers are designated by an upper case/lower case

pair (Ai, Bj , Xk).

F. The contents of an operating register are indicated by brackets

([Ai], [Bj], [Xk]).

G. Instruction 00 has a different function on the two machines. In­

structions Oli, for i / 0, are available on the 7600 only.

octal mnemonic function

00— HALT Stop (6600).

00—- ERJP Error exit to EEA (7600).

01--KKKKKK RTJ Return jump to K.

OiljKKKKKK BCLS Block copy K + [Bj] words from LCM to SCM (7600).

012jKKKKKK BCSL Block copy K + [Bj] words from SCM to LCM (7600).

01300 EXNEA Exchange exit to NEA if exit flag is clear (7600).

013jKKKKKK EXK Exchange exit to K + [Bj] if exit flag is set (7600)

014 j k RLCM Read LCM at [Xk] to Xj (7600).

015jk WLCM Write [Xj] into LCM at Xk (7600).

0160k RCIB Reset channel [Bk] input buffer (7600).

016jk RCIS Read channel [Bk] input status to Bj (7600).

0170k RCOB Reset channel [Bk] output buffer (7600).

017jk RCOS Read channel [Bk] output status to Bj (7600).

-44- LTSS-1
Edition 2

octal mnemonic function

02i-KKKKKK J Jump to K + [Bi].

030JKKKKKK JZ Jump to K if [Xj] = 0.

031jKKKKKK JNZ Jump to K if [Xj] + 0.

032jKKKKKK JP Jumo to K if [Xj] > 0.

033jKKKKKK JM Jump to K if [Xj] < 0.

034jKKKKKK JINR Jump to K if [Xj] is in range.

035jKKKKKK JOUTR Jump to K if [Xj] is out of range.

036jKKKKKK JDEF Jump to K if [Xj] is definite.

037jKKKKKK JIDEF Jump to K if [Xj] is indefinite.

04ijKKKKKK JBE Jump to K if [Bi] = [Bj].

05ijKKKKKK JBNE Jump to K if [Bi] f [Bj].

06ijKKKKKK JBGE Jump to K if [Bi] > [Bj].

07ijKKKKKK JBLT Jump to K if [Bi] < [Bj].

lOij- REP Copy [Xj] to Xi.

Hi jk AND Logical product of [Xj] and [Xk] to Xi.

12i jk OR Logical sum of [Xj] and [Xk] to Xi.

13i j k XOR Logical difference of [Xj] and [Xk] to Xi.

14i-k NOTK Complement of [Xk] to Xi.

15i jk ANDC Logical product of [Xj] and comp. ([Xk]) to Xi.

16i jk ORC Logical sum of [Xj] and comp. ([Xk]) to Xi.

17i jk XORC Logical difference of [Xj] and comp. ([Xk]) to Xi.

20i jk IS Left shift [Xi] by jk bits, circular.

21i jk RS Right shift [Xi] by jk bits, sign extended.

22i jk LSB Left shift [Xk] by [Bj] bits to Xi, circular.

23i jk RSB Right shift [Xk] by [Bj] bits to Xi, sign extended

24i jk N Normalize [Xk] to Xi and Bj.

25i jk NR Round and normalize [Xk] to Xi and Bj.

26i jk UNPAK Unpack [Xk] to Xi and Bj.

27i jk PAK Pack [Xk] and [Bj] to Xi.

-45- LTSS-1
Edition 2

octal mnemonic function

30i jk ADD Floating sum of [Xj] and [Xk] to Xi.

31 i jk SUB Floating difference of [Xj] and [Xk] to Xi.

32i jk ADDLO Floating lower sum of [Xj] and [Xk] to Xi.

33i jk SUBLO Floating lower difference of [Xj] and [Xk] to

34i jk ADDR Rounded floating sum of [Xj] and [Xk] to Xi.

35 i jk SUBR Rounded floating difference of [Xj] and [Xk]

36i jk ADD60 Integer sum of [Xj] and [Xk] to Xi.

37i jk SUB60 Integer difference of [Xj] and [Xk] to Xi.

40i jk MPY Floating product of [Xj] and [Xk] to Xi.

41i jk MPYR Rounded floating product of [Xj] and [Xk] to

42i jk MPYLO Floating lower product of [Xj] and [Xk] to Xi

43i jk MOM Form mask of jk bits in Xi.

44i jk DVI Floating divide of [Xj] by [Xk] to Xi.

45i jk DVIR Rounded floating divide of [Xj] by [Xk] to Xi

46— PASS Pass.

47i-k POP Population count of [Xk] to Xi.

50ijKKKKKK AR Set Ai to [Aj] + K.

51ijKKKKKK AI/STI Set Ai to [Bj] + K.

52ijKKKKKK AO Set Ai to [Xj] + K.

53i jk AO I Set Ai to [Xj] + [Bk].

54i jk ARI Set Ai to [Aj] + [Bk].

55i jk ARD Set Ai to [Aj] - [Bk].

56i jk All Set Ai to [Bj] + [Bk].

57i jk AID Set Ai to [Bj] - [Bk].

60ijKKKKKK BR Set Bi to [Aj] + K.

61ijKKKKKK BI Set Bi to [Bj] + K.

62ijKKKKKK BO Set Bi to [Xj] + K.

63i jk BOI Set Bi to [Xj] + [Bk].

64i jk BRI Set Bi to [Aj] + [Bk].

65i jk BRD Set Bi to [Aj] - [Bk].

66i jk BII Set Bi to [Bi] + [Bk].

67i jk BID Set Bi to [Bj] - [Bk].

-46-

octal mnemonic function

70ijKKKKKK FR Set Xi to [Aj] + K.

71 ijKKKKKK FI Set Xi to [Bj] + K.

72ijKKKKKK FO Set Xi to [Xj] + K.

73i jk FOI Set Xi to [Xj] + [Bk].

74i jk FRI Set Xi to [Aj] + [Bk].

75i jk FRO Set Xi to [Aj] - [Bk].

76i jk FI I Set Xi to [Bj] + [Bk].

77i jk FID Set Xi to [Bj] - [Bk].

LEGAL NOTICE
This report was prepared as an account of Government sponsored work.

Neither the United States, nor the Commission, nor any person acting on behalf
of the Commission:

A. Makes any warranty or representation, expressed or implied, with
respect to the accuracy, completeness, or usefulness of the information con­
tained in this report, or that the use of any information, apparatus, method, or
process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages
resulting from the use of any information, apparatus, method or process dis­
closed in this report.

As used in the above, "person acting on behalf of the Commission"
includes any employee or contractor of the Commission, or employee of such
contractor, to the extent that such employee or contractor of the Commission,
or employee of such contractor prepares, disseminates, or provides access to,
any information pursuant to his employment or contract with the Commission,
or his employment with such contractor.

LTSS-1
Edition 2

