
UNIVERSITY OF CALIFORNIA

Law-rence Radiation Laboratory
Berkeley, California

AEC Contract No. W-7405-eng-48

FIELD GUIDE TO COMPUTERS,
THEIR HABITS & HABIT A TS

Jim Baker

January 196 5

UCRL-117 53

-1- UCRL-11753

Field Guide to Cotnputers, Their Habits & Habitats
Part I: The Nature of the Beast

LRL mathematician
Jim Baker, author
of the series which
begins here, is cur
rently acting head
of Berkeley's Math
ematics and Com
puting Group.
Baker majored in
mathematics at
UCLA and Pomona
College, later did

graduate work at UC. In 1952, he joined the
laboratory to work on applications of com
puters to e:tperimental and theoretical physics
problems. Since 1960, he has assisted Kent Cur
tis in the administration of the Mathematics
and Computing Group. He was named acting
group leader in August, 1963, when Curtis left
for a year's assignment with the AEC in Wash-

ington.

Back in 1940-which is not so very
long ago as the history of science is meas
ured-an LRL research scientist with a
problem in mathematics on his mind
could take his questions to any one of the
five computing machines which the UC
physics department proudly maintained
and made available to the faculty. Of
course, one couldn't be sure of getting an
electric machine (there were, after all ,
only two of those in the whole depart
ment); most likely, our scientist would
settle for a hand-operated model and
count himself lucky that he wasn't living
back in the days when scientists did their
own calculations with pencil, paper, and
a "head for figures."

By 1950, this picture had changed but
little. The hand-operated machines had,
no doubt, been replaced by electric
models, and the first generation of elec
tronic digital computers-ENIAC and
its relatives-had already appeared on
the national scene. But the working sci
entist at LRL still did most of his calcu
lations with the help of computing ma
chines not very different in principle
from the ones he had been using ten
years earlier.

The Machines Multiply
By 1960 all this had changed. Today,

this Laboratory ranks as one of the great
est concentrations of automatic comput
ing power to be found anywhere on earth.
Within the past twelve years, automatic
digital computing machines and their
associated systems have become central
to LRL research programs, and their uses
have been extended to fields as diverse as
high energy physics and payroll account
ing, nuclear device design and library
documentation.

This is the first of a series of MAGNET
articles which will explore the design and

uses of computers, with particular atten
tion to their pertinence to LRL research
programs. Among the questions which
we shall seek to answer are these:

1. What is an automatic digital com
puter?

2. How does a computer work?
3. What sorts of problems can you do

with a computer?
4. What kinds of computers does the

Laboratory have?
5. What will be done with computers

in the future?
Definitions

The things we want to talk about in
this series are called Automatic Stored
Program Digital Computing Machines.
Let us start, then, with a word-by-word
analysis of this rather sonorous title.

A computing machine is any device
which allows us to deduce, from certain
numbers that we know, certain other
numbers that we want to know.

All computing machines may be clas
sified either as analogue machines or digi
tal machines. Analogue machines com
pute by measuring; digital machines
compute by counting. An example of an
analogue computer is the ordinary slide
rule. The operation of the slide rule de
pends on the principle that says that if
you lay two_ sticks end-to-end, then the
distance from the left end of the first
stick to the right end of the second stick
is the sum of the lengths of the sticks;
slide rules work by adding and subtract
ing distances.

The Abacus
An example of a digital computer is

the abacus. This is an ancient oriental
device which allows one to compute by
moving beads on wires. A typical abacus
may have eight vertical wires and seven
beads on each wire. The right-most wire
is the units wire, the second right-most
wire is the tens wire, the third right-most
wire is the hundredths wire, and so on;
this is a decimal computing machine. On
a given wire, the five bottom-most beads
are worth one unit apiece, while the two
top-most beads are worth five units
apiece; this is called the biquinary en
coding system. One operates the abacus
by moving the beads up and down on
their wire. If a bead is pushed up as far
as it can go, then it counts its whole
value. If it is down as far as it can go,
then it counts zero. One essentially oper
ates the abacus by counting.

Manual vs. Automatic
Digital computers may again be di

vided into two classes: manual and auto
matic. Manual digital computers require

the presence and intervention of a human
operator at each step of the calculation
which is being performed; automatic
digital computers, on the other hand, can
perform a large number of calculations
without any human intervention.

An example of a manual digital com
puting machine is an ordinary electric
desk calculator. This machine requires its
operator to enter each number by hand
and then to press the appropriate button
indicating to the machine the operation
that it is to perform. An example of an
automatic digital computing machine is
the IBM type 602A electronic calculator;
in this machine, the user indicates the
sequence of arithmetic operations to be
performed in advance by inserting wires
in a plug board. This plug board is then
mounted on the machine, input data in
the form of tabulating cards are placed
in a hopper belonging to the machine, the
operator presses the ST ART button, and
the machine then proceeds automatically
to perform a fairly lengthy series of cal
culations on the input data without fur~
ther operator intervention.

Fixed vs. Stored Program
All automatic digital computing ma

chines may again be subdivided into two
classes: fixed and stored program.

The fixed program machines employ a
fixed sequence of operations for each
problem that they do. This sequence of
operations is either permanently built
into the hardware of the machine (such
a machine is called a single-purpose ma
chine) or it is specified by a medium such
as a plug board or sequence of tabul~ting
cards which the machine itself cannot
alter. In a stored program machine, on
the other hand, the sequence of operations
to be performed is specified by "in
structions" which are stored in a part of
the machine called the memory which the
machine itself can alter.

The distinction between a fixed pro
gram and stored program automatic com
puter is much more fuzzy than the dis
tinction between a manual digital com
puter and an automatic digital computer;
the essence of this distinction is, however,
that the sequence of operations in a
stored program computer is much more
easily altered than the sequence of opera
tions in a fixed program computer, and
that it is very much quicker and easier
to insert a new sequence of instructions
in a stored program computer than it is
in a fi xed jJTogram computer.

An example of a fixed program auto
matic digital computer is the IBM 602A
Electronic calculator cited above. An ex-

UCRL-11753

ample of a stored program automatic
digital computer is tht IBM type 1401
computer.

The sequence of "instructions" which
specifies the operations that the com
puter is to perform is called a Program.

Parts of a Computer
Every automatic stored-programmed

digital computer may be divided into
four functional units. These units are
called:

1. The memory
2. The arithmetic unit
3. The control unit
4. The input-output section

The memory of a digital computer is
used to hold data which are being proc
essed, intermediate results, and the in
structions that tell the machine which
operation to perform next.

The basic information unit in any com
puter is called the word. A word is noth
ing but a string of numeric digits or
alphanumeric characters with an alge
braic sign (+ or -) in front of it. As
sociated with each computer is a definite
word size; one computer might have a

word size of five decimal digits together
with an algebraic sign. A typical word
in such a computer might be -21376. In
another computer, the word size might
be 11 binary digits (we will talk about
the binary number system later) and an
algebraic sign. An example of a word in
such a computer would be +tOllOOl0-
110. A computer whose words contain
decimal digits is said to be a decimal com
puter. A computer whose words contain
binary digits only is said to be a binary
computer. A computer whose words con
tain decimal digits and alphabetic char
acters is said to be an alphanumeric com
puter. The important thing is that associ
ated with each computer is exactly one
word size. For example, the IBM 6 5 0 is a

-2-

decimal computer and its word consists
of an algebraic sign and ten decimal dig
its. The IBM 7094 is a binary computer
whose word size is an algebraic sign and
35 binary digits. The IBM 1401 is an
alphanumeric computer whose ·word size
is one alphanumeric character.

Computer memories are divided up
into cubbyholes - much like postoffice
boxes--each one of which is large enough
to hold exactly one word. So that we can
keep track of the cubbyholes in memory
where we are storing particular pieces of
data or particular instructions for the
computer, we give each cubbyhole a name
or label. This label is called the address of
that cubbyhole or the address of that
memory cell. The label Is usually a
number; so if, for example, we have
a machine with a one-thousand word
memory, the addresses of cells in that

memory would run from 000 to 999.
By the cycle time of a computer mem

ory, we mean the time that is required
to retrieve one word from the memory
and be ready to retrieve another word.
Hence, if we have a computer whose
memory has a cycle time of 10 micro
seconds, we will need 100 microseconds
to retrieve 10 words from that memory.

Arithmetic Unit
The arithmetic unit (pronounced with

the accent on the "met") of a digital
computer is the part where all of the
work gets done. This unit contains hard
ware which enables the computer to add,
subtract, multiply, divide and perform
certain other logical functions. As users,
we need not be concerned with the mech-

an isms which are used to perform these
arithmetic operations; the thing that we
need to be concerned with is where the
results of these operations end up.

The results of arithmetic operations in
many digital computers end up in devices
which are called registers. A register is
simply a bin or cell or cubbyhole in the
arithmetic unit which is large enough to
hold one or more words. A good example
of an arithmetic register in a digital com-

puter is a top dial on a Friden calculating
machine. This register is exactly anal
ogous to a very common arithmetic regis
ter in automatic digital computing
machines called the accumulator. The ac
cumulator is the register which is used to
hold the results of additions and of multi
plications. We perform additions in auto
matic digital computing machines in a
fashion quite similar to the way in which
we perform them on an ordinary adding
machine (the Friden, for example) ; we
first set the accumulator to zero, then we
place in it a number which up until now
has been stored in a cell in memory; we
then add to it a second number which was
perhaps stored in another cell in memory.
At the conclusion of this operation, the
sum of these two numbers remains in the
accumulator register. Often, to save
space, we refer to the accumulator as the
A register or, starkly, as A.

Another arithmetic register which oc
curs in quite a large number of digital
computers is called the Multiplirr-Quo
tienf register or for short, the "M-Q"
register. This register, as its name implies.

/ Accumulato r

is used to hold one of the factors in a
multiplication and to hold the result of
a division. It corresponds to the second
dial from the top on the Friden.

All computers have an arithmetic sec
tion, hut not all computers have arith
metic registers. In some machines, the
IBM 1401 for example, results of arith
metic operations are stored directly in
the memory without stopping in an arith
metic register along the way.

The Control Unit
The control unit of an automatic digi

tal computer is that portion of the ma
chine that interprets the instructions that
the machine is to execute and, in general,
tells the machine what to do next. The
control unit almost always contains two
registers, called the instruction register
and the control counter (IR and CC, for
short). The instruction register, which is
usually one word long, contains the com
mand which is currently being executed.
The control counter, which is just large
enough to hold one address, holds the
address of the next instruction to be
executed.

It should be clear by now that the in
structions or commands which tell the
machine which function to perform next
are nothing but machine words (which
is to say, numbers of a certain length) ;
thus, there is no effective way of distin
guishing an instruction word from a data
word. In fact, we occasionally inadver
tently try to execute as an instruction a
data word-this usually leads -to absurd
results. On the other hand, we often in
tentionally do arithmetic with instruc
tion words,as we shall see later.

An instruction word, in a digital com
puter whose word length was algebraic
sign and five decimal digits, might look
something like this:

-3-

U nu a ed
Ope r a t i on l n etruct l on Addreaa ,.. ,

Code (Op Cod•)

The sign in this particular machine is
not interpreted as part of the instruction
word. The operation code, sometimes ab
breviated op code, is composed of two
decimal digits. This operation code tells
the machine what function it is to per
form next; for example, an operation
code of 01 might tell the machine to add,
an operation code of 02 might tell the
machine to subtract, and so on. The last
three digits of the instruction word in
this machine are to be used for an address.
We will use the letter .. m" to designate
this instructicn address in future discus
sions. The address part of the instruction
tells the machine the location of .the data
on which it is to perform the operation
specified by the operation code. So, for
example, the instruction word + 012 5 6
might mean to add (operation code 01) ,
the number that is stored in address num
ber 2 5 6 to the number that is already in
the accumulator, and leave the result in
the accumulator.

Some machines have registers called
.. B registers" or .. index registers" in their
control sections. These registers are used
in a spec.:ial way to modify the address
parts of instructions. We will discuss
them in more detail later.

Input-Output Section
The input-output section of an auto

matic computer is a very important one
from the viewpoint of the user. It is this
section which allows the user to com
nrnnicate with the computer (this is
called input) and the computer to com
municate with the user (this is called
output).

Input-output may be accomplished
through a very wide variety of media.
The simplest, least expensive, and slow
est input device is a set of switches on the
console of the computer. By throwing
these switches appropriately, the operator
mav feed information into the computer.
While almost every computer has facili-

UCRL-11753

ties for this type of input, these facilities
are seldom used except by engineers who
are trying tq repair the machine.

The simpl~t kind of output device is
a ~t of display lights on the console of
the machine. These li~Iits may display the
contents of the various arithmetic and
control registers and may also have the
capability of displaying the contents of
various cells in the memory. Obviously,
the machine must be stopped before we
can read the contents of the lights: hence:
these devices are not frequently used
either.

A step ahead of console switches and
lights as an input-output dpvice is the
typewriter. This device may be used for
input by its keyboard or for output onto
a piece of paper. Because of its slowness,
it should not, however, be used for large
volumes of either input or output.

Now we come to a class of input-out
put media w.hich includes paper tape,
tabulating cards, and magnetic tape-all
of which make input-output a two-or
three-step process. Consider, for example,
paper tape, which is a very common
medium on low-cost computers. If we
wish to prepare some data for input to
our computer, we may punch these data
onto a paper tape using a typewriter-like
device such as a Flexowriter or teletype
machine. We then take this paper tape
containing our data over to our computer
and read it in. The important thing here
is that the slow-speed human process of
punching the paper tape is separated
from the relatively high-speed auto
matic computer processes of reading
paper tape and computing. The situation
on the output side is very similar. The
computer punches out our answers on
paper tape at relatively high speed. Since
we cannot read this paper tape directly,
we take it over to a printing device which
looks something like a typewriter, and in
sert the paper tape into this device and
our answers are then printed out on a
sheet of paper.

Paper tape and cards are generally used
as input-output media on low-or medium
price machines. Magnetic tape, which is
very much faster, is used as the basic
input-output medium on all high speed
computers today.

UCRL-11753 -4-

Part II: Sitnple-M inded Cotnputer
These days, digital c~mputers can

solve calculus problems at about the level
of a college sophomore; they can trans
late from Russian into English at per
haps the college freshman level; they can
produce numerical solutions to very dif
ficult mathematical problems.

We have already described the four
principal parts of aa automatic digital
computer. We saw that the computer
must perform all its complicated tasks
by doing a few relatively simple arith
metic and logical operations at a very
high rate of speed.

At th.is time we are going to give an
example which will illustrate all the
feature~ and functions described in last
month's article. This example computer,
called the SMAC (or Simple Minded
Automatic Computer), is a realistic ma
chine; it is more complicated than some
computers which are presently installed
at the Laboratory. If you can understand
how SMAC works, then you should be
able to understand how almost any digi
tal computer works.

Type of Arithmetic
The SMAC is a decimal machine -

which is to say that it uses the same
number system that you and I use.
SMAC's word .length is five decimal
digits and an algebraic sign. It represents
negative numbers the same way that you
and I represent negative numbers. For
example, in SMAC the number -14
would be represented as -00014. This is
an advantage over most hand calculators,
which would tend to represent -14 as
9999999986 (as you can easily verify by
subtracting 14 from zero on one of
them). The SMAC's way of representing
numbers is called the sign and magnitude
system. The hand calculator's way of
representing negative numbers is called
the tens complement system.

Anatomy of SMAC
Memory. SMAC has a one-thousand

word memory. Each word in the memory
has an address consisting of three deci
mal digits; thus, addresses run from 000
up to 999. Each of the one thousand
memory cells is, of course, just big
enough to contain one word consisting
of five decimal digits and an algebraic
sign.

Arithmetic Section. SMAC has a very
simple arithmetic section indeed. It con
sists of exactly one arithmetic register:
the accumulator. We will often refer to
the accumulator as the A register or
simply as A. SMAC's accumulator is just
one word long - five decimal digits
and an algebraic sign. It is the register
that will ho~d the results of all arithmetic

operations performed in SMAC.
Control Section. The control section

of SMAC contains three registers. The
instruction register, or IR, is a one-word
(five decimal digits and sign) register;
it holds the command which is currently
being executed. The control counter, or
CC, is a three-digit register; it contains
the address in memory where the next
command to be executed is located. The
index register (which we will call the B
register or B) is another three-digit reg
ister. It is used to modify the address
portions of certain commands. Its use
will be illustrated later.

Input-Output Section
SMAC has a paper tape reader for in

put and a paper tape punch for output.
It can read one word in a forward direc
tion from the paper tape which is cur
rently in the tape reader, and then place
this word in a memory location specified
by the command which is b~ing execu
ted. Similarly, it can punch out onto the
paper tape which is currently in the
tape-punching mechanism one word
from an address designated by the cur
rent command.

Paper tapes which are to be read into
the computer must first be prepared in
the proper form. Sometimes, they are
punched on a Flexowriter or Teletype
machine away from the computer; some
times they have been punched by the
computer itself in a previous run. When
we wish to find out what information
is on an output tape that has been
punched by the computer, we must take
that tape over to a Flexowriter, which
then prints the contents of the tape on a
piece of ordinary paper.

Instruction Format
Every computer word that is brought

from the memory into the instruction

register is interpreted by SMA.C as an in-

SMAC EXECUTES A COMMAND
(Assume that the execution of a com
mand has just been completed, then
start at Step I.}

I. C(C(CC))~IR
2. 1+ C(CC)~CC

3. If the sign of IR is +• go to Step
5: if the sign of IR is -, go to
Step 4.

4. Subtract C(B) from m (the right
most 3 digits of IR) and replace
m by the result.

5. Execute the instruction in IR.
6. Go to Step I.

Figure I

struction word. The two decimal digits
at the extreme left (which we sometimes
call the two most significant digits) are
interpreted as an operation code, or OP
code. This operation code tells the ma
chine what function it is to perform
next. The three digits at the extreme
right of the instruction word are in
terpreted by the machine as an address.
This address, in general, gives the ma
chine the location of the data upon
which the function specified by the OP
code is to be performed. So, for ex
ample, if the operation code for addition
is 01 and the word +01223 comes into
the instruction register, the computer
will add the word which is presently
stored in memory location 223 to the
number which is currently in the ac
cumulator, leaving the sum in the ac
cumulator.

The sign of the instruction word tells
the computer what to do with the B
register. If the sign of the current in
struction word is +, then the B register
is ignored. If the sign of the current in
struction word is -, then the con
tents of the B register (a three-digit
number) is subtracted from the address
part of the instruction word {the three
digits on the right) before the instruc
ion is executed. We of ten refer to the ad
dress part of the current instruction as
m.

Notation
In order to be able to describe more

concisely how the computer works, we
must make some notational conventions.
Let us agree that C(s) is to mean the
contents of s if s is the name of either
a memory location, an arithmetic regis
ter, ar a control register; similarly, C (m)
will mean the word that is current
ly stored in memory location m; C(A)
will mean the contents of the accumu
lator; C(CC) will mean the contents of
the control counter (remember that the
contents of the control counter is a
three-digit number).

We use the arrow (~) to indicate
"goes to"; C(m)~A, for example,
means that the contents of the memory
register m goes to the accumulator (that
is, that the contents of rn will replace the
current contents of the accumulator).
C (A) ~m means that the current con
tents of the accumulator will replace
the current contents of m.

How the Machine Works
Each time that SMAC executes an

instruction, it goes through five or six
steps under the direction of the hard
ware in its control section. These steps
are summarized succinctly in Figure 1.

1. C(C(CC))~IR. The purpose
of this step is to take the next command
from the location specified by the con
trol counter and load it into the instruc
tion register. (The command actually
tells the contents of the contents of the
control counter to "go to" the instruc
tion register.) Remember that the control
counter is a three-digit register - just
big enough to contain one address. So,
in fact, C(CC), the contents of the con
trol counter, is an address in SMAC's
memory, and C [C (CC)] is the con
tents of that address in the memory. In
fact, the contents of that address is to
be used as the next instruction to be ex
ecuted by SMAC.

2. t+C(CC)~CC. The effect of
Step 2 is to add one to the control coun
ter. For example, if during Step 1 the
control counter contained 173, after
Step 2 it would contain 174. In perform
ing this operation, SMAC takes succes
sive commands from successive locations
in memory.

-5- UCRL-11753

3. If the sign of JR is +, go to Step
5; if the sign of JR is - , go to Step 4; and,
4. 'Subtract C (B) from m (the last
three digits of JR), and replace m by the
result. Steps 3 and 4 have to do with
the index register (the B register). They
say that if the sign of the next instruc
tion is minus, we should subtract the
contents of the B register from the ad
dress part of the next instruction before
executing that instruction. On the other
hand, if the sign of the next instruction
is positive, then we should simply ignore
the B register.

5 M--A C
(It may be somewhat reassuring for

you to know that you are not yet sup
posed to understand the purpose of the
B register; this will be explained when
we start to do a programming example.)

(Si mpl(t /YI ind~ .Aul-omaHc Comput~t-)

5. Execute the instruction in JR.

the instruction register. At this stage
of the game, the memory address portion
of the instruction, m, may have been
altered by having the contents of the B
register subtracted from it. However,
we will continue to call this altered
address m.

Step 5 says that we are now to execute
the instruction as it currently appears in

Mnemonic

CLA
ADD
SUB
STO
TRA
TMI

TZE

LXA
SXA
TIX

INP

OUT
HLT

SMAC'S INSTRUCTION REPERTOIRE
OP Code

00
01
02
03
().4

05

06

07
08
09

10

11
12

~planation

C(m)~A. Clear and add.
C(A) +c(m)~A. Add.
C(A)-C(m)~A. Subtract.
C (A) ~m. Store.
m~CC. Unconditional transfer.
If C(A) <O, then m~CC; otherwise proceed normally.

Transfer on minus.
If C(A) = 0, then m~CC; otherwise proceed normally.

Transfer on zero.
Rightmost 3 digits of C(m)~B. load index from address.
C(B)~Three rightmost digits of m. Store index in address.
C(B)-1~8; if C(B) ~O, then m~CC; otherwise, pro

ceed normally. Transfer on index.
Read the next word from the tape in the paper tape

reader into address m.
Punch onto paper tape the word in address m.
STOP. Halt.

Figure 2

After we have finished executing the
current instruction, we return to Step 1
and start the whole process over again.

Command Repertoire
In Figure 2, the SMAC's repertoire of

instructions is listed in concise form.
The first column gives a three-letter
mnemonic abbreviation which is sup
posed to remind us what each operation
code does. The second column lists the
actual operation codes; these codes are
the ones that will actually appear in the
two left-hand digits of instruction
words. The third column in Figure 2
lists exactly what each operation code
tells SMAC to do.

The OP Codes
The first op2ration in the table has

operation code 00. Its mnemonic is CLA,
which stands for clear and add. The ef
fect of this instruction is that the con
tents of the address designated by m
(the address portion of this instruction) ,
should be placed in the accumulator.
Whatever was in the accumulator before
is lost. However, the con ten ts of the
memory address number m remains un-

UCRL-11753

changed. It is generally true that the
only way in which we can destroy the
contents of a register is by storing some
thing on top of it.

The next two operation codes, 01
(ADD) and 02 (SUB), are the codes
for add and subtract, respectively. They
cause the contents of m to be added to
or subtracted from the contents of A
and the resulting sum or difference to
be left in A. Again, the contents of m
remains unchanged.

Operation Code 03 (STO) is the store
operation. The execution of an instruc
tion word which has this operation code
causes the contents of the accumulator
to be placed in address number m. The
previous contents of m are lost and the
contents of the accumulator remain un
changed.

Transfer of Control
Operation Code 04 (TRA) is the un

conditional transfer of control operation.
In this operation, the number m (itself
a three-digit number) replaces the cur
rent contents of the control counter.
Notice that this operation is different
from all the preceding operations. In the
others, we were always doing something
with the contents of m. In the transfer
of control operation, however, the con
tents of m are undisturbed. Instead, we
are simply instructing SMAC that its
next command is to be picked ·up from
address number m instead of from the
usual spot.

Operation Code Numbers 05 (TMI)
and 06 (TZE) are the trans/ er on minus
and transfer on zero operations, respec-

-6-

tively. They tell SMAC to go to location
m for its next command in the event that
the accumulator is either negative
(TMI) or zero (TZE).

Operation Code 0 7 (LXA) is the load
index from address operation code. This
code tells the computer to take the three
right-hand digits from the memory cell
whose address ism, and place those digits
into the B register. The contents of mis
unaffected by this operation.

Store Index
Operation Code 08 (SXA) is the store

inJex in address operation. It is the re
verse of the LXA operation above. Its
effect is to place the contents of the B
register into the three right-hand digits
of the memory cell whose address is m.
The left-hand two digits and the sign of
the cell number mare unaffected by this
operation.

Operation Code 09 (TIX) tells the
computer to perform the transfer on in
dex operation. This is a very complicated
operation; first of all, the computer
subtracts 1 from the current contents of
the B register. Then, if the new contents
of the B register is different from zero,
the computer takes its next command
from location m. However, if the new
contents of B is equal to zero the com
puter goes ahead and takes its next com
mand from the normal location desig
nated by the control counter.

Operation Codes 10 (INP) and 11
(OUT) are the input and output opera
tions. They tell the computer to read
the next word from paper tape .into lo
cation m or to punch the next word from
location m onto paper tape, respectively.

The final operation code is number
12 (HL T) . It is the code for Halt. Wh~n
SMAC executes this command, it stops
computing and turns on a light on its
console which says PROGRAM STOP.

Getting Started
A question that very often worries

beginners in computing is "How does
the machine get started?" On the SMAC
the starting operation is accomplished
through the use of- a very convenient
button which is labeled "LOAD PAPER
TAPE." The depression of this button
causes the following sequence of actions
to take place:

1. The computer reads the next four
words from the paper tape in the tape
reader into memory cells 000, 001, 002,
and 003.

2. The control counter is set to 000.
3. The computer proceeds to operate

automatically, taking its first command
(of course) from location 000. Location
000 contains one of the four words that
have just been read in from paper tape.

At the beginning of his paper tape,
the programmer will have punched a
"Loader" program which will load it
self into the computer's memory and
then in turn load his program in. In
_the next chapter we will see an ex
ample of such a loader.

What's more, we will write down three
programs to do the same simple calcu
lation. We will see how we can econo
mize on the use of memory by using
different sections of our program a num
ber of times, how a program can modify
its own commands, and (at last) what
useful purpose the B register serves.

-7 - UCRL-11753

Part III: A Problem. in Addition

The problem we want to do is a very
easy one, but its solution will illustrate
many important programming tech
niques.

The problem is, simply, to add up 5 0
numbers (we shall call these numbers,
Xi, X 2 , ••• X 50) and to place their sum
(which we shall call S) in SMAC's
memory cell number 700. We shall as
sume, for the sake of simplicity, that (1)
each of these 5 0 numbers is a :five-digit
number, (2) their sum is also a :five-digit
number, and (3) in the course of adding
them up, we shall never encounter a
number with more than five digits in it.
(The purpose of all these assumptions is
to avoid having to worry about exceed
ing the word size of SMAC).

Subtotals
Thus far, we have labeled our numbers

(X 1 , etc.) and our final answer, S. From
time to time in the course of our com
puting, however, we may have' occasion
to refer to a subtotal, or partial sum, of
the numbers added thus far. Let us call
these subtotals S1 , ~'Sa and so on. (You
will n@te that S1 will be the same as Xi,
and S50 will be the same as S.) When we
wish to refer to a subtotal '\Vi.thout being
specific, we shall call it Si.

A few more assumptions, and we will
be ready to begin. Let us agree that, by
the. time our program takes control of
the computer, all of the numbers that
are to be added up will already have been
read into SMAC's memory from the
paper tape. We assume that the first
number, Xi, is in memory cell number
101, X2 1s m 102, etc. , up to our last
number, X 50, which is in cell numbet-
150.

Let us also agree not to worry about
getting our own programs into SMAC's
memory. We shall suppose that our pro
·gram has been punched on paper tape and
has been placed in the appropriate mem
ory cells by a "loader" program. Since
memory cell numbers 101-200 have been
pretty well taken up by our numbers X 1
and so forth, let us put our program into
the memory cells numbered 201-300.

Finally, let us agree that the location
of the first command in our program
(Location 201) has already been placed
in the control counter by the loader pro
gram. We are now ready to solve our
problem in addition.

Flow Charts
Actually, we are going to solve our

problem in three different ways, using
three different programs. Each program

presents a different attack on the prob
lem, and each (except possibly Number
2) has its advantages and its disadvan
tages. Each program is first described by
a Flow Chart. This chart, an essential of
any program, is simply a sequence of

boxes, each of which describes in more
or less detail a function to be performed
by the computer. These boxes are con
nected to one another by arrows. The
arrows describe the fiow of control from
box to box in the computer.

Differently shaped boxes represent dif
ferent functions to be performed by the
computer: an inverted triangle signifies
the start of the program; a rectangular
box signifies a computation to be per
formed; an oval box signifies that a de
cision is to be made (this is the only kind
of box which can have more than one
arrow going out of it) ; a right-side-up
triangle designates the end of the pro
gram.

We give each important box on the
Flow Chart a number; this number will
be ref erred to on our programming sheet
and will tell us what part of the program
we are working on currently.

Programming Forms
On the next page, you will see illus

trated the actual programming forms on
which we write down our program. The
sort of programming that we are doing
here is called machine language program
ming (i. e., programming that is done in
the computer's own simple-minded lan
guage) . Machine language programming
is harder than other kinds of program
ming, and the forms we use in connec
tion with it arc more complicated than
the forms used for other systems. Ma
chine language is worth your attention
however, since other methods (which
we shall describe next month) are based

ultimately on this approach.
Our machine language coding form

has seven columns. The first column,

headed Box Number, designates the
number of the flow chart box that we
are currently working on. The second
column, headed Location, tells us the ad
dress in SMAC's memory where this
command is to reside as the program is
being executed. The third column, head
ed Op Code Mnemonic, will contain the
three-letter abbreviations which remind
us just what the operation code in this
command does. The fourth, :fifth, and
sixth columns contain the actual pro
gram words which are to be loaded into
memory. (The fourth column gives the
sign, plus or minus, the fifth column
gives the Op Code, and the sixth column
gives the address, m. For a review of the
..meaning of these terms, see Part I,
page 3, .column 2.) Column 7 of
the programniing form is headed Re
marks. In this column, we write down
what we are trying to accomplish with
each command. It is a very important
column.

A Simple-Minded Approach

In Program 1, which is based on Flow
Chart 1, we solve our problem in the
most simple-minded manner imaginable.
First, we execute a clear and add (CLA)
command, which brings the first number
of our series (X1) into the accumulator.
Then we execute a sequence of ADD
commands which successively add to
the sum already in the accumulator the
subsequent numbers X2, X3, and so on,
until we reach X1rn. At the conclusion
of this sequence of 50 commands, we
have the sum, S, in the accumulator. We
then execute a store (STO) command,
instructing the machine to put this an
swer into location 700. The total number
of commands executed is 51. The total
amount of memory required for our pro
gram is 51 cells.

We shall see, in due time, that Pro
gram 1 is the most efficient of the -three
programs from the viewpoint of time;
it executes many fewer commands than
either of the other two codes. However,
Program 1 uses 51 memory cells to add
up 5 0 numbers. If our problem had been
to add up 100 numbers and we had writ
ten a program to do this using the tech
niques of Program 1, that program
would have required 101 memory cells.
In fact, when we use this technique the
number of words in the program always
depends on the number of numbers to be
added together. Let us see whether we

UCRL-11753

can write a code which will avoid some
of these problems.

A Complicated Approach
In Program 2, we use a programming

technique known as looping. This means
that various sections of the program are
used more than once while we are doing
our problem. For example, one ADD
command (in Location 2 0 6 of Program
2) does all of the work accomplished by
the 49 ADD commands of Program 1.
Since Program 2's ADD command has
to add numbers residing in different
memory cells, the address part of the
command must be modified during the
program.

Before we turn to the program itself,
let us get its logic firmly in mind by
studying its Flow Chart, pictured on the
opposite page. In boxes 1 and 2, the yari
ables of our "loop"-i and S1-i, are given
their starting values of 1 and O, respect
ively. Box 3 (the ADD command) is
where the assigned task is actually per
formed; boxes 4 and 5 perform loop con
trol functions, deciding that the loop is
to be performed again or that the pro
gram is to proceed to the next step. Boxes
6 and 7 describe the terminal portion of
the program, where we store our result
(box 6) and halt (box 7).

The Program
Now let us look at the program which

carries out this logic. Its first moves (i.e.,
the commands in memory cells 201 and
202) are concerned with the ADD com
mand in Location 206 which will be used
throughout the program. What these
two commands do is to set this ADD
command to the first value that it must
have: that is, +01 101. (So tha.t it will
be readily available to us, we have pre
viously stored this number in Location
216-the first empty memory cell fol
lowing those devoted to the program
proper.)

In cells 2 0 3 and 2 04 of Program 2, we
set the partial sum Si-l to its initial val
ue of zero. Si, you will remember, is the
sum of the first i X's. S1-i, then, will be
the subtotal which precedes S1• The
quantity i starts out with a value of 1,
and we first compute S1 (which is equal
to X1) by adding X 1 to S0 (which is
equal to 0).

In cell 2 0 5, we have a clear and •dd
(CLA) command which places the cur
rent value of S1•1 in the accumulator.
The ADD command in cell 206 adds X 1

to S1- i, yielding Si, our subtotal. The
store (STO) command in memory cell
207 places that value of S1 back into
Location 700.

Now we are ready to see whether we
are finished. If i is equal to 5 0, we have
just cQt1nputed S110, which is eq1'4l to the
sum of the first 50 X's and, he11ce, is
equal to S, our answer. Iq that event, we

-8-

FLOW CHART I

50 r---------
51

Box Op Code
No. Location Mnemonic

I 201 CLA
2 202 ADD
3 203 ADD

--
49 249 ADD
50 250 ADD
51 251 STO
52 252 HLT

Box Op Code
No. Location Mnemonic

I 201 CLA
I 202 STO
2 203 CLA
2 204 STO
3 205 CLA
3 206 ADD

3 207 STO
4 208 CLA
4 209 SUB

4 210 lZE

5 211 CLA

5 212 ADD

5 213 STO
5 214 TRA
7 215 HLT

216
217
218
219

FLOW CHAU 2 FLOW CHART l

s, = s,., + x,

i +l~ i

i + I -+ i, i = 511

PROGRAM I
OP

Sign Code m Remarks

+ 00 IOI Cf IOI) =X1 =S1 ~A
+ 01 102 C I 02) + C(A) = X2 + S1 ~A
+ 01 103 C(I03) + C(A) = ~ + S2 ~A

+ 01 149 Cf 149) + C(A) = X49 + S41 ~A
+ 01 150 C 150) + C (A) = Xso + S49 = S ~ A
+ 03 700 C(A) = S~700
+ 12 999 STOP

PROGRAM 2

OP
Sign Code m Remarks

+ 00 216 C(216) = + 01 IOI~ A
+ 03 206 C(A) = + 01 101=+01L(X1)~206
+ 00 217 C(217) = O = S1-1 = S,~ A
+ 03 700 Cf A) = 0 = Si-1 = S0 ~ 700
+ 00 700 C 700) = Si-1 ~A
+ 01 IOI C(IOO+i) + C(A) = X, + S1-1 =

S,~A

+ 03 700 C(A) = S, ~ 700
+ 00 218 C(.218) = + 01 150 = + 01 L(X50) ~A
+ 02 206 C(A)-C(206) :C(A)- +ol (IOO+i) =

C(A) - (+ 01 L(X 1)) = 50 - i ~A
+ 06 215 If i = 50 take the next command from 215,

otherwise take the next command from 211.
+ 00 206 i-=/= 50. Cf 206) = + 01 (IOO+i) =

219
+01 L Xi) ~A

+ 01 C(A) + C(219) = +ol (IOO+i) +I=
+01(100+i+1) = +01 L(X1+1) ~A

+ 03 206 C(A) = + 01 L(X,+1) ~ 206
+ 04 205 Take next command from 205
+ 1-2 999 STOP
+ 01 JOI + 01 L(Xi)
+ 00 000 0
+ 01 150 + 01 L(X,.)
+ 00 001 I

are through, since we have already placed
this answer in Location 700, which is
just where we want it. However, if i is
not equal to 50, we are not yet through.
Instead, we must add 1 to the current
value of i aml perform more ad.ditions.

Commands which permit us to find
out what the current value of i is are
contained in cells 208, 209, and 210.

-9-

require 19 spaces in memory as compared
with the 51 spaces that were needed by
Program 1. However, as we work our
way through the program we see that
those commands located in cells 2 0 5
through 210 are each executed exactly
once; the commands located in cells 205
through 210 are each executed 50 times;
the commands located in cells 211

PROGRAM 3

Box Op Code OP
No. location Mnemonic Sign Code m Remarks

I 201 CLA + 00 IOI
2 202 lXA + 07 207
3 203 ADD 01 151

4 20'4 TIX + 09 203

5 205 STO + 03 700
6 206 HLT + 12 999

207 + 00 0'4~

We find this value by looking at the ad
dress part of the command in Location
2 0 6. This is the address of Xi, and we
know that X 1 is stored in Loca.tion 100
+ i. So, if cell 206 currently contains
+ 01 150, then we know that i must be
equal to 50. We check this by subtract
ing the current contents of cell 206 from
+ 01 150 (which we have thoughtfully
placed in cell 218 in advance). If the
result of this subtraction is not zero, then
we know that i is not yet 5 0.

In the event that i is equal to 5 0, then,
of course, the problem is over and we go
to Location 215, which contains a HLT,
for our next command. In the event
that i is not yet equal to 5 0, we go to
Location 211, where we increase i by 1.
Since the only command in our program
which refers to i directly is in Location
2 0 6 (this is the command in which we
add X1 to S1-1) , we must add 1 to the
address part of 2 0 6 in order to increase i.
This is done in Locations 211, -212, and
213. At Location 214, we go back to
Location 205 and repeat this whole
process.

Self-Improvement
If you have followed us closely, you

will already have noted that the contents
of cell 2 06 are changed several times
during the execution of Program 2. This
is important because cell 206 contains
one of the commands in the program.
We observe, thus, that a program may
alter itself. This is very important.

Now let us see how our Program 2
compares with our first, more simple
minded, Program 1. We see that Program
2 and the constants associated with it

C(IOI) =X1 = S,~A
Rirhtmost 3 digits of C(207) = 0'49 ~ B
C 151 - C(B)) + C(A) = X1 + S1-1 =

S1~A
C(B) -1 ~B. If C(B) =F 0 go to 203,

If C(B) = 0 go to 205.
C(A) = S ~ 700.

STOP
49

through 214 are each executed 49 times,
and the command in cell 215 is executed
once. When we add all these executions
up, we observe that 501 commands are
executed by Program 2 in the course of
adding up our 5 0 numbers. This means
thait Program 2 will require ten times as
long to execute as Program 1. So, by sav
ing a little over a factor of two in mem
ory requirements, we have sacrificed a
factor of about ten in speed. It is inter
esting to note, however, that by chang
ing the constant in cell _ 218 we can make
Program 2 add up any number of num
bers that we may require.

A Balanced Approach
In our third and last program, we do

the same problem in addition, achieve
even better savings in space, and make
a substantial improvement over Program
2 in time. ·

Program 3 employs the B register, or
index register. We hope that the impor
tance of this register will be illustrated
in this example.

Program 3 is similar to Program 1 in
that we are not required to store inter
mediate partial sums as we go through
the program. We begin, in Location 201,
with a clear and add (CLA) command
which places our first number (Xi) in
the accumulator. Next, in Location 202,
we place the constant 49 in the B regis
ter. In Location 203, we have an ADD
command-an ADD command, how
ever, whose sign is minus. Let us see
what happens the first time we execute
the command in Location 203. The con
trol counter now contains 203, so we
place the contents of 203 (namely, -01

UCRL-11753

1 5 1) in the instruction register. We then
add 1 to the control counter, so that it
now contains 204. Next, we examine the
sign of the instruction register and ob
serve that it is minus. This tells us that
before executing the command we must
subtract the contents of the B register
from the address part of the instruction
register. The address part of the instruc
tion register contains 151; the B register
contains 49. After we perform the re
quired subtraction, the instruction reg
ister contains 01 102; we then proceed
to execute this command. It says: Add
the contents of 102 to the number that
is already in the accumulator. The num
ber that is already in the accumulator is
X1 (or S1, as we sometimes call it). The
contents of 102 is X2 • We complete this
addition, leaving X1 + X2 = s.i in the
accumulator.

In Location 204, we have a transfer on
imlex (TIX) command. This command
tells the machine to subtract 1 from the
B register and then, if the new contents
of Bis different from 0, to take its next
command from Location 203 again. The
first time we went through this piece of
code, the B register contained 49; after
we perform this subtraction, it will con
tain 48. Since 48 is indeed 4ifferent from
0, we must go back to 203 for our next
command. And since 203 contains the
command -01 151, we must subtract
48 (the contents of B) from 151 before
executing the command. The command
tha.t we actually execute is 01 10 3, which
says: Add X3 to the number that is al
ready in the accumulator.

HLT at Zero
We keep repeating this two-step loop

until we have added X 11o into the accum
ula.tor. At that time, the B register will
contain 1. This time, when we execute
the command in 2 04 and subtract 1 from
the B register, our result is 0. Now, for
the first time, the B register does contain
0, and we are sent to _20 5 for our next
command. Here, we are told to store
(STO) the result, S, in Location 700·.
This completes the program, and we go
to Location 206 where we are told to
HLT.

The total memory required for this
code is 7 cells. The total number of com
mands executed is 102, since those in
Locations 201, 202, 20S, and 206 are
each executed once, and the ones in 203
and 204 arft executed 49 times each.

This code, then, requires one-seventh
the memory required by Program 1, and
takes only twice as long to execute. If we
were doing this problem in real life, this
is undoubtedly the code that we would
use.

UCRL-11753 -10-

Part IV: Progratnrning Languages
We have just written three programs

for the SMAC Computer. These pro
grams were written down in the lan
guage of the computer itself. This type
of programming is called Machine Lan
guage Programming.

When we program in machine lan
guage we write down the actual address
in memory where each command is to be
stored; we write the actual numeric op
eration code for each command and we
write the numeric address of the operand
which this command refers to. If we are
writing short programs for a decimal or
alphanumeric computer, machine lan
guage programming can be relatively
satisfactory. However, when we try to
write long programs or when we try to
write programs for binary computers,
the drawbacks of machine language cod
ing soon become obvious.

The Human Factor
One of the major difficulties is associ

ated with the fact that people make mis
takes when they write programs. If we
have made a mistake in a machine lan
guage program and we wish to correct
that mistake by inserting an extra com
mand in the middle of our program, then
it is necessary for us to go through the
whole program and advance by one the
location in which each command follow
ing the inserted command is to be placed
in memory; at the same time, we must
be careful to modify appropriately any
operand addresses which refer to that
section of coding. If our code were sev
eral thousand words long this would ob
viously be an impermissibly tedious task.

2+1=11?
If we try to write programs in ma

chine language for a binary computer,
the situation immediately becomes even
worse. Now the probability of our mak
ing an error is compounded by the fact
that we are working in a number system
which is unfamiliar to us and by the
necessity for our writing down many
more symbols than were necessary for a
decimal or alphanumeric machine. For
example, the word length on the 7094
Computer is 36 binary digits and the ad
dress length on that computer is 15
binary digits. This means that if we were
to write in machine language for the
7094, then for each instruction, we
would have to write a location consisting
of 15 binary digits and a command con
sisting of 3 6 binary digits. Even if we
were able to write down a sequence of
such commands. without making any

errors, we would be almost certain to
make some mistakes when we tried to
punch those commands into tabula ting
cards.

Quite early in the game it began to
occur to people that the computers
which were the source of all these diffi
culties might also offer solutions for some
of them. For example, it proved very

easy to write a program called an Octal
Loader which allowed the programmer
to write his program in the .octal number
system instead of in the binary system.
It turns out that it is almost trivial to
translate back and forth between the
octal (or base 8) number system and the
binary (or base 2) system; however, if
one writes in the octal system, he needs
to write down only one-third as many
symbols as he would if he were writing
in the binary system. The programmer
who wrote his program down in octal
would also punch it into cards in octal.
Then, instead of loading his program di
rectly into the machine as he would have
done had it been a machine language pro
gram, he would first load the octal loader
program into the machine. This octal
loader program would then treat his code
as data; it would read in the octal cards,
translate them into regular binary ma
chine language, and output this binary
machine language program on a separate
card deck. Now, whenever the program
mer wishes to run his problem, he loads
this binary machine language deck into
the computer followed by whatever data
he wants to process.

The process explained above is typical

of the sorts of things that happen in con
nection with all automatic programming
systems: a program is written in some
language other than machine language;
it is then input to some sort of a translat
ing or processing routine which converts
it into a machine language program. This
machine language program is the output
of the automatic programming system.
This translation need occur only once,
provided the programmer has not made
a mistake.

Assembly Programs
After the invention of the octal load

er, developments in automatic program
ming took place very rapidly. It became
clear that it would be very easy to have
the computer translate mnemonic oper
ation codes such as CLA, ADD, TRA,
etc., into the corresponding numeric ma
chine-language operation codes. It also
became clear that it would be possible
for the programmer to write his program
using symbolic addresses instead of ab
solute numeric addresses, and that the
computer could then translate these
symbolic addresses into the required ab
solute numeric addresses. So, for exam
ple, the programmer instead of writing
101, might write X and the computer
would be given the task of translating
this symbolic address, X, into the abso
lute address 101. The programs which
perform the translation from mnemonic
operation codes to numeric operation
codes and from symbolic addresses to
numeric addresses are called Assembly
Programs or Symbolic Assembly Pro
grams.

Let SMAC Do It
These symbolic assembly programs

still have the property that each line of
code that the programmer writes down
generates only one machine-language in
struction; the programmer is still think
ing in the way that the machine thinks.
He must still break down his program
into basic machine instructions. He has
only delegated to the machine certain
tedious bookkeeping tasks.

The language that the programmer
uses when writing a program which is to
be processed by an Assembler is called an
Assembly Language. These days no one
writes in absolute machine language.
When we say that a program is written
in machine language, we mean that it is
written in assembly language.

Problem Oriented Languages
Because of the essential identity be

tween assembly language and machine
language, the programming of a problem

in assembly language was still a fairly
tedious task. However, it wasn't long
before several people got the idea that it
might be possible to develop a program
ming language which resembled more
closely the language we ordinarily use
when describing a procedure for solving
a problem on a computer. The idea was,
of course, that the programmer would
write his program in this uProcedure
Oriented Language" and that the com
puter, using a program called a Compiler,
would translate this code into a machine
language code.

Source Programs
Let us examine some of the terminol

ogy associated with automatic program
ming systems. The programming lan
guages we are talking about are called
Procedure Oriented Languages or Prob
lem Oriented Languages or sometimes,
for short, POL's. The computer pro-
grams which translate programs written
in these POL's into machine language
are called Compilers, or Processors, or
Translators. Programs written in POL's
are called Source Programs; the machine
language programs into which they are
translated are called Object Programs.

Problem Oriented Languages have de
veloped in two principal :fields: engineer
ing-scientific computing and commer
cial data processing. · When trying to
solve problems in engineering or science,
one is usually concerned with doing a
lot of fairly complicated arithmetic.
Often, it is difficult to tell in advance
when doing such problems what the sizes
of the numbers involved will be. These
factors must be taken into account when
one is designing a language which is to
be used to describe procedures for solving
this class of problems. On the other hand,
in solving problems in commercial data
processing, one has to do only a small
amount of arithmetic in general and the
sizes of the quantities involved are rela
tively well known in advance; however,
when doing such problems one is often
faced with very much more input-out
put than is required in most scientific
calculations. Languages to be used in de
scribing solutions of business problems
must reflect these properties.

FORTRAN
By far the most popular engineering

and scientific POL in use today is FOR
TRAN. FORTRAN is an acronym for
Formula Translation. This language was
developed by the International Business
Machines Corporation in cooperation
with certain computer users; Robert
Hughes of LRL's Livermore Laboratory
is one of the designers of this language.

The first machine for which a FOR
TRAN Compiler was written was the
IBM 704. That Compiler was completed
in 19 5 6 at a cost of around half a million

-11-

dollars. Since that time, FOR TRAN
Compilers have been written for many
other computers, and their unit cost has
gone down substantially.

In Figure 1, an example of a FOR
TRAN program is shown. This program
does the same problem that we did last
month. The problem is simply to add up
5 0 numbers. In FOR TRAN, we call
these numbers X (1) , X (2) , X (3) , . . .
X (5 0) . The first statement in the pro
gram DIMENSION X (5 o) simply tells
the FORTRAN O>mpiler that there are
to be at most 50 X's. The next statement
sets the partial sum S equal to 0. Inci
dentally, the equals sign in FOR TRAN
has a somewhat different meaning than
it does in ordinary algebra. In FOR
TRAN, the equals sign means .. is to be
replaced by." So, for example, S= 0
means that the current value of the var
iable whose name is Sis to be replaced by
0. The next statement, DO 23 I= 1,50,
means that the computer is to execute all

FORTRAN
DIMENSION X(50)

S=O
DO 23 I= 1.50

23 s=s+xm

the statements following this one down
through and including statement num
ber 23, and it is to do this while the
variable I successively takes on the
values 1,2,3, ... , 50. Statement 23, as a
matter of fact, is the very next state
ment. It says S=S+X(l) which means
that the variable whose name is S is to
be replaced by the current value of
s+X(l). This statement is executed
first with I= 1 and S = 0, so that the
new S is equal to o+X(1). The next
time through, I is equal to 2, and the
new Sis equal to X (1) + X (2). The
next time we obtain X (1) + X (2) +
X(3) and so on. Finally, when 1=50,
we obtain the sum of all 50 X's. The
FOR TRAN Compiler will translate this
source program into an object program
which looks very much like Program No.
3 of last month's article.

ALGOL
ALGOL is another engineering and

scientific language. ALGOL, which is
an acronym for Algorithmic Language,
was designed in 19 5 8 by a committee of
European and American mathematics
and computer experts. The ALGOL
language is more elegant than · FOR
TRAN and is much more precisely spe
cified. ALGOL Compilers have been
written for the CDC 1604, the Bur
roughs B50.00, and the IBM 7090 com
puters.

In Figure 2, an ALGOL program to

UCRL-11753

solve our addition program is exhibited.
Although ALGOL is a more precise lan
guage than FOR TRAN, it is somewhat
farther away from our usual algebraic

ALGOL
beqin real array X[I:50];

real S; lnteqer I;
S : = 0. ; for I : = l step l until 50

do S: = S + Xffi: end;

language than FOR TRAN is and hence
has less intuitive appeal to many of us.

In the United States, ALGOL is used
at certain university computer centers,
such as the Stanford unter. It is also
used very extensively in Burroughs Com
puter Installations.

Examples of ALGOL programming
can be seen in the Algorithm section of
the Commutiica tions of the Association
for Computing Machinery every month.

Business Languages
Late in 19"58, the Department of De

fense organized a committee of comput
er users and manufacturers to design and
specify a common business-oriented
computer language. The language which
this group designed is now known as
COBOL. It is, in fact, a common busi
ness-oriented language and is very much
more popular than any other such lan
guage. COBOL Compilers have been
written for all principal computers on
which business applications are per
formed.

The COBOL language is designed to
deal effectively with the large input
output problem associated with commer
cial data proce'Jsing, and with the logical

COBOL
MOVE O. TO S

PERFORM SUMMING
VARYING I FROM l BY 1

UNTil. I EQUALS 50; END RUN.

SUMMING. ADD xm TO s.

complexity of business computer appli
cations. It is, in fact, true that business
applications are quite often very much
more complex logically than are engi
neering and scientific applications.

For exainple, consider the straight
forward problem of computing a sol
dier's pay. If the soldier goes AWOL
for one day on the 28th of February,
1963, he loses three days' pay; however,
should he go AWOL for one day on the
31st of March, 1963, he does not lose any
pay at all. If we write a computer pro
gram to compute military payroll, the
program must cope somehow with this

UCRL-11753

rather anomalous situation. In Figure 3,
a segment of a COBOL program to add
up 5 0 numbers is illustrated. This seg
ment of the COBOL program is called
the procedure section. There are other
sections called the environment section
and the data section.

Programming Made Easy

In the eight years since the invention
of Problem Oriented Languages, their use
has increased phenomenally. At the Lab
oratory, more than 5 0 % of the programs

-12-

currently being written are being writ
ten in FOR TRAN. In other large com
puter installations, almost 90 % of all
programs are now written in FOR
TRAN. Many business installations
write only in COBOL.

The reasons for this revolution are
fairly clear. It is possible to learn a lan
guage like FOR TRAN in about a week,
whereas to learn machine language pro
gramming on a large binary computer
would require two or three months. Once
a program has been written in a problem
oriented language, it is possible to com-

pile and run it on any computer for
which a Compiler for that language has
been constructed.

A remarkable application of FOR
TRAN occurred at Livermore recently
when, under the direction of Hans
Bruijnes, a FOR TRAN Compiler for the
CDC 3600 was written in the FOR
TRAN language. The construction of
this Compiler required less than one man
year; this is to be contrasted with the
20 man years that were required for the
construction of the first FOR TRAN
Compiler for the IBM 704.

-13- UCRL-11753

Part V: Cotnputers at LRL
In the first part o(this article, .we.

asserted that the Radiation Laboratory
contained "one of the greatest concen
trations of automatic computing power
to be found anywhere on earth." In this
chapter we hope to make this strong
assertion seem a little more believable by
reviewing the history of computers at
LRL and describing the models currently
muse.

The Laboratory acquired its first
automatic digital computer in 1952; this
machine, which was installed at the
Livermore Laboratory, was the famous
UNIV AC I. it was manufactured by
Remington-Rand and was the first
stored-program automatic digital com
puter to be offered commercially in the
United States. The Laboratory's machine
was the fifth to be manufactured.

Dawn of an Age
Although the UNIVAC I was slow

by modern standards (its memory cycle
time was about 242 microseconds), it
had many sophisticated features. Its only
input-output medium, other than a type
writer for operator instructions, was
magnetic tape; magnetic tape input
output was buffered, which means that
the machine could compute at the same
time as it was reading or writing on
tape.

However, the fact that the only input
medium to the machine (for both pro
grams and data) was magnetic tape
created certain problems. It was not pos
sible, at the time when the UNIVAC I
was installed, to punch data on cards
and then transfer them to magnetic_ tape;
one had to use a machine called a "Uni
typer" to transfer data directly from a
keyboard to magnetic tape. The Unitype
Operator could not conveniently see
what she had put on the tape, and had no
convenient method for verifying this
information. The great success of the
UNIVAC I operation is a tribute to Liv
ermore unitypist Cecilia Larsen, who
during her entire career at the Labora
tory has made only 17 mistakes.

Binary Machines
The next machine to be installed, an

IBM 701, was the first of a long sequence
of IBM scientific computers at the Liv
ermore and Berkeley Laboratories. The
701 was a binary machine-unlike the
UNIVAC I, which· was alphanumeric.
It had a word length of 36 binary digits.

The 701 employed a Williams Tube
memory. In this memory system, infor
mation was stored in the form of dots

on the surface of a cathode ray tube. It
was probably the least reliable memory
system ever invented. Informatipn would
capriciously disappear from or appear in
the memory; occasionally when some
one opened a door or window and allowed
a beam of sunlight to strike one of the
tubes' surfaces, the machine would pick
up several bits.

When the 701
was released by the
Livermore Labora
tory in 1956, it was
moved to UC's

:'""",;,"""=·....................... Berkeley campus,
:~::: :::::::: ~-:-;:::.::::::::.-:-.;:::::::::::::.::::·... where it became

~[~:~~~I the first computer
to be installed at

~ the campus Com
~~ puter Center. At

--"""-'~~~__;J the time of this
move, its Williams Tube memory was
replaced by a magnetic core memory,
which proved to be very much more
reliable.

A Compatible Family
The next machines to be installed at

Livermore were IBM 704's. They re
placed the 701. The introduction of the
704 in 19 5 6 marked the beginning of a
period in the history of scientific com
putation which is just now coming to
an end. The 704 was the first of a se
quence of IBM-produced scientific com
puters which were to be more or less
compatible; that is, programs written
for one member of the sequence could
be run an subsequent members of the se
quence. Members of this series of com
puters were the 704, the 709, the 7090,
the 7094-11, the 7040, and the 7044.
One or more of each of these types of
computers has been installed at the Lab
oratory at one time or another.

Like the 701, all of these machines
were binary 3 6-bit word computers.
They employed sign and magnitude
arithmetic, used single-address logic, and
had one command per word. All of these
machines, with the exception of the 704,
had buffered input-output. The 704 and
709 were vacuum-tube machines, and
all the rest are solid-state.

Another family of scientific com
puters represented at the Laboratory in
cludes the CDC (Control Data Corpora
tion) 1604 and 3600. These are large
scale scientific machines; they have a 48-
bit word, use single-address logic, and
(like the UNIVAC I) have two com
mands per word.

There are currently two 3600 com-

puters installed at Livermore. It is for
these machines that the FOR TRAN
Compiler written in the FOR TRAN
language was devised . .

Few-of-a-Kind Machines
From a very early time in its history,

the Livermore Laboratory has supported
the development of advanced computer
hardware. The Laboratory was moti
vated to do this because it had comput
ing requirements which continuously
outpaced the capacities of commercially
available computers.

The first machine whose development
the Laboratory sponsored was the LARC
(Livermore Advanced Research Com
puter). It was designed and manu
factured by Remington-Rand to the
Laboratory's specifications, and was
finally delivered to the Laboratory in
1960. One additional LARC was manu
factured for the Navy's Bureau of Ships.

The LARC is a decimal machine with
a 12-decimal digit word. Its design in
cludes many important innovations. It
was the first machine to incorporate an
independent computer as an input
output processor. It was also the first
machine to employ large-scale mass stor
age devices for input and output buffer
ing. Another innovation which it in
cluded was the use of a cathode ray tube
as a primary output medium.

The STRETCH
The development of the IBM

STRETCH computer was initially spon
sored by the Los Alamos Scientific Lab
oratory. It is another large-scale binary,
scientific computer. Approximately seven
of these machines were manufactured;
machine number two is at the Livermore
Laboratory.

Notable features of the STRETCH
system are a very high-speed massrstor
age system and ingenious hardware pro
visions for setting up subsequent com
mands for execution while processing
the current command.

Although the CDC 6600 Computer is
now part of the Control Data Corpora
tion's standard product line, the first
machine was developed under a contract
'with the Livermore Laboratory. This
machine, which is the most powerful of
all the computers mentioned so far, has
just been delivered to the Laboratory.

The 6600 incorporates a radical de
sign. Because of this design, it can per
form several arithmetic or logical func
tions simultaneously. Its input and out
put are handled by ten independent com-

UCRL-11753

puters or peripheral processors which
are built into the main machine. The
main memory consists of 130,000 words
of 60 binary digits each.

Support Computers
The problem of preparing information

to be processed by computers, and the
problem of presenting output from these
computers in a meaningful form, are
very difficult ones. The Berkeley and
Livermore Laboratories have arrived at
.somewhat different solutions to these
p: oblems.

These solutions depend on the nature
of the problems done at the two sites.
At Berkeley, the principal computation
requirement is in the area of scientific
data reduction. Here, very large volumes
of input are involved and only moderate
volumes of output result. At Livermore,
the situation is just reversed. There, the
principal interest is in solving large
problems of hydrodynamics; a small
volume of input may result in a very
large volume of output.

In Berkeley, the large volume of data
arising from the measurement of the
position of tracks on bubble chamber
film is either fed to computers directly
from automatic measuring machines
(like the Flying-Spot Digitizer) or is
written by measuring machines on a
medium such as paper tape, cards, or

-14-

magnetic tape, which may then be read
by a computer. The primary input
medium for programs and for other
types of data is cards. These cards are
not read directly into large-scale com
puters but are first transcribed onto
magnetic tape. The transcription is per- .
formed by small peripheral computers;
IBM 140 I's are used for this purpose at
both Berkeley and Livermore.

At Berkeley, the peripheral computers
also serve as printers. Output which is
to be printed is first written by the large
scientific computers on magnetic tape,
and the information on the tapes is later
printed through the facilities of one of
the peripheral 140 l's.

The Versatile 1401
The IBM 1401 (which, by the way, is

~.he most popular computer ever manu
factured)i is an alphanumeric, variable
word - length, two-address machine. A
variety of input-output equipment may
be attached to the 1401, including mag
netic tapes, card readers, card punches,
printers, plotters, paper tape readers, etc.
The 1401 can read cards at the rate of
8 00 cards per minute, and it can print
at the rate of 600 lines per minute. There
are currently four 140l's in Berkeley
and two in Livermore.

Printing at Livermore
At the Livermore Lab, the printing

problem is much larger than it is in
Berkeley. Historically, Livermore has
solved this problem by procuring very
high-speed printers. Printers currently
installed at Livermore include two 5 000-
line-per-minute SC 5 000 machines, man
ufactured by General Dynamics, and the
recently delivered 3 0,000-line-per-min
ute Radiation Inc. printer.

Storage Systems
It is perfectly obvious that even if

the entire scientific staff of the Labora
tory spent all of its time examining
computer output, it would still be pos
sible to lcok at only a small fraction of
the output of these very high-speed
printers. The difficulty is that although
we may want to see only a few numbers
which result from a given computer run,
we generally do not know in advance
just what numbers these are; so, instead
of printing out only a few numbers and
~hen rerunning the problem whenever
we want to print out a few more num
bers (which would be very expensive),
we quite of ten print out a very compre
hensive selection from the output of a
given computer run. We can then store
this output on our shelf and whenever
we want to look at a few more numbers
we can find them in the course of five
or ten minutes without asking for an

Cotnputing Machines at the Laboratory
(brought up to date as of September 196 5)

Machine Memory Memory Power
Manufacturer Word Size Number Site Relative Name Size Cycle Time

to 7094

1..01 IBM I Alphanumeric 4000-12000 11.5 Micro- 2 L -Character Characters seconds 4 B

7040 IBM 36 Binary 32,768 8 Micro-
I B 0.2 Digits Words seconds

I

I

7044 IBM
36 Binary 32,768 2 Micro-

I B 0 .5
Digits Words seconds

36 Binarv
32,768 and 2.0 Micro- 2 L 7094 IBM Digits 65,536 seconds I B I I

Words
----- I

48 Binary 65,536 1.5 Micro- I !
3600 CDC 2 I L 1.5 Digits Words seconds I I

I
I

12 Decimal 30,000 4 Micro-
I

LARC Sperry-Rand L
I

Digits Words seconds I

I
1.5

I
I 1-

3
-

STRETCH IBM ! 64 Binary 96,000 2.2 Micro-
I L Digits Words seconds

I

-1
6600 CDC 60 Binary 131.092 I Micro- I L I

16 Digits Words second I 8 I

additional computer run.
This system works quite effectively.

However, it has obvious disadvantages
in that it creates a large demand for
~torage space and the paper costs associ
ated with it are very large.

In order to eliminate these difficulties
and to create a generally more effective
man-machine relationship, a new input
output handling system is presently be
ing designed and implemented at Liver
more. This system is called Octopus. It
substitutes for the present paper storage
of computer output a large machine
readable memory. This memory is to
hold all output from the principal Liv
ermore computers for as long as this out
put is of interest. The user will retrieve
information from this mass memory

-15-

either via conventional printers or via
one of several remote input-output sta
tions. Current versions of these input
output stations include a teletype ma
chine and a small incremental plotter;
ultimately the stations will include
CRT-type display devices.

When the user wants some informa
tion he approaches the teletype keyboard,
types in the serial number of his prob
lem and specifications about the data
that he wants. This data will then be
retrieved from the mass memory and
presented to him on the input-output
device of his choice. A Digital Equip
ment Corporation PDP-6 Computer is
being acquired to control the Octopus
complex.

Livermore people who are working on

UCRL-11753

the Octopus project include George
ing, Bob Abbott, Bob Wyman, J. Carver
Michael, Norman Hardy, Bud Wirsch
Hill, Ed Lafranchi, and Jerry Russell.

The chart on page 7 lists some vital
statistics about computers currently in
stalled at the Laboratory. The column
headed "Power Relative to 7094" re
quires some explanation. When a 2 ap
pears in this column, it means that the
computer in question could do in one
hour a set of problems that the 7094
would require two hours to do, and so
on.

Of course, different computers are
better at some problems than others; the
figures given reflect a typical mix of
Livermore problems.

UCRL-11753 -16-

Part VI: Applications at LRL
So far in this series, we have described

the way in which digital computers
work; we have told about the automatic
programming systems which make the
use of digital computers easier; and we
have described the more important com
puters which are currently installed at
the Laboratory. In this chapter we will
tell about some of the problems which
are solved on these computers.

Hydrodynamics
A large proportion of the calcula

tions which are done at the Livermore
Laboratory are associated with hydrody
namics problems. These problems have to
do with the motion of gases or liquids;
they arise very frequently in connection
with programmatic research conducted
at Livermore.

A mathematical model of a new nu
clear warhead can be put on a computer
to determine whether the model has a
prospect of success or failure. Many
models can be tested inexpensively, and
many failures eliminated without actu
ally constructing prototypes. In develop
ing mathematical models, the larger the
number of factors taken into account by
the model, the more accurate the evalu
ation by the machine.

Simulated A-Tests
Computers, although no substitute for

the testing of the final product, are in a
sense an unlimited "pretesting" range.
The only alternative to the use of com
puters would be crude models, much
trial-and-error field testing, many fail
ures, greater cost, and slower progress.

Computers are essential in other re
search and development at Livermore.
They were critical in the design of the
reactors for Project Pluto, the program
to develop a nuclear ramjet engine.

Project Plowshare, the program to de
velop a technology for the peaceful use
of nuclear explosives, is also dependent on
computers. The design of special nuclear
devices for a variety of special purposes
in Plowshare is done in much the same
way as is the design of nuclear weapons.
Computers are also coming into use !n
the analysis of plasmas, the extremely hot
gases produced in experiment.al machines
in Project Sherwood, the program to de
velop controlled thermonuclear reac
tions.

Mathematically speaking, a hydrody
namics problem involves the solution of
partial differential equations. In order to
solve these equations on a digital com
puter, one generally substitutes for them

di1ference equations, whose solutions are.
one hopes, close to the solutions of the
original equations.

These problems require very large
amounts of computer time for their solu
tion. They constitute an important rea
son for the Livermore Laboratory's ac
quisition of very large-scale machines,
such as the new Control Data 6600.

In a rather interesting instance of a
hydrodynamics application, Livermore
physicist Chuck Leith is using the LARC

computer to study che global movement
of air masses. His programs are capable
of computing the movement of air in an
entire hemisphere. It is hoped that this
work will ultimately lead to moderately
long-range weather forecasting systems.

Monte Carlo
A large class of problems which are

of interest at Livermore are attacked
most conveniently by so-called Monte
Carlo techniques. These techniques in
volve devising a probabilistic game whose
distributions of outcomes corresponds
to the solution of a certain mathematical
or physical problem, and then of playing
that game with a digital computer and
observing this distribution of outcomes.

Suppose, for example, that the prob
lem that we are faced with is determin
ing the area of a certain figure which we
have inscribed on a square sheet of fiber
board. There are a number of ways in
which we could attack the problem. We
could, for example, cover the sheet of
fiberboard with a network of grid lines
which divide it up into small squares,
and then count the number of such small
squares which lie inside our figure. Alter
natively, we could take a handsaw and
cut out the figure and weigh it (its
weight would presumably be proportion
al to its area). Or, using numerical tech
niques in a computer, we could compute
the integrals of the functions which de-
fine the bounding curves of our figure.
These methods are all deterministic ways
of solving our problem. Let us consider

a Monte Carlo technique for solving the
same problem.

Suppose we have a dart-throwing ma
chine with which it is possible to hit our
piece of fiberboard at each throw, but
which has the property that successive
throws of the dart will hit any section
of the board with equal probability. This
means that the probability of hitting
any figure inscribed on our rectangle is
proportional to the area of that figure.
We now proceed empirically to deter
mine the probability of hitting the figure
inscribed on our piece of fiberboard by
throwing darts; we count as successes
throws on which we hit our figure and
as failures throws on which we miss our
figure. We can then estimate the proba
bility of hitting the figure by dividing
our total number of successes by our
total number of throws. Then, to deter
mine the area of the figure, we need only
to multiply this estimated probability
by the total area of the board.

We can play this game inside of a
digital computer by substituting for a
dart throw the selection of two random
numbers, which represent the coordinates
of the point on our board.

By using the Monte Carlo method, it
is possible to attack large classes of phys
ical problems which do not readily yield
to more sophisticated mathematical tech
niques.

Orbits
For a number of years, Joe Brady of

the Livermore Computation Group has
been carrying out a program of research
in celestial mechanics. One of the earliest
programs for computing the orbits of
the near-earth satellites was written by
Brady and his co-workers; in fact, at the
time the first Sputnik was launched,
Brady's program was the only operational
one in the country. Since that time,
Brady has been working on a definitive
orbit for the planet Mars. This work re
sulted in the publication, last year, of
a set of Mars coordinates extending from
the year 1800 to the year 2000.

Astronomers, especially those inter
ested in celestial mechanics, were among
the earliest users of automatic computing
equipment. The advent of artificial earth
satellites greatly increased the comput
ing requirements of this group. As much
computer time is required to compute
one orbit of an artificial satellite about
the earth as is required to compute one
revolution of the earth about the sun.
The difficulty is that tbe satellite requires
only about 90 minutes to go around the
earth, whereas the earth takes a year to

go around the sun. Brady's pioneering
work at Livermore has exercised a signif
icant influence in this important ar.ea
of computer applications.

Berkeley Computing
The nature of the computing load at

Berkeley is influenced by the goal of the
Berkeley Laboratory, which is to conduct
basic research in the physical and biolog
ical sciences. Most problems that comQ
into the Berkeley Computing Center
have to do with the reduction of experi
mental data, with the design of experi
ments, with theoretical physics calcula
tions, or with the design of particle
accelerators.

By far the largest applications area
at Berkeley is the reduction of data from
bubble chamber experiments. This proc
ess takes place in several stages, not all
of which are directly associated with
computing machines.

The first stage consists in the exposure
and processing of pictures of bubble
chamber events.

The second stage involves the manual
scanning of these pictures. In this stage
a person called a scanner looks at each
picture to see whether it contains an
"interesting" nuclear event. If it con
tains such an event, he notes the roll and
frame number of the picture on which
this event is recorded and perhaps a
rough location of the event on the film .

Automatic Measuring
The third stage consists of accurately

measuring the locations of points along
the tracks on the film which make up
the events of interest. Several automatic
and semi-automatic devices are available
at the Laboratory to perform this meas
uring function. These devices include
the Franckenstein, which was developed
at the Laboratory by Jack Franck. This
machine is a projection microscope which
automatically follows bubble chamber
tracks, measures the locations of points
on the tracks, and writes the coordinates
of these positions out on magnetic tape
for later use on a digital computing ma
chine. Another measuring device devel
oped at the Laboratory is the Spiral Read
er. This machine, which is very much
faster than the F ranckenstein, operates
under the control of a small digital com
puter, and again places its output on
magnetic tape for later analysis on a large
computer.

The Scanning-Measuring Projector,
invented by Luis Alvarez, operates under
the control of a medium-scale computer.
One 7040 Computer is currently con
trolling five of these devices simulta
neously.

The Flying-Spot Digitizer, or FSD,
developed at the Laboratory under the
supervision of Howard White, is the
most automatic of all the measuring de
vices mentioned so far. It operates under

-17 -

the direct control of a 7094-II com
puter. In this system, the computer,
under the control of a m agnetic tape
produced when the film was scanned,
turns the film to the frame numbers
which contain interesting events, locates
the fiducial marks on these frames, and
digitizes bubble locations. The computer
program which controls the FSD device
also selects coordinates of points along
the tracks in events of interest, and dis
cards measurements of uninteresting
points on the film. In the time left over
after these control and filtering functions
are performed, the computer analyzes
either events that have just been meas
ured or events that have been measured
on some previous occasion.

Data Analysis
The output from all of the measuring

devices just described serves as input for
data analysis programs which are de
signed to identify the observed nuclear
events and to study distributions of var
ious properties of these events. The first
step in this analysis process is to recon
struct the event in three-dimensional
space; at least t wo pictures are taken of
each event, so one may perform this re
construction quite easily. After the
tracks have been located in space, their
curvature is computed. From this cur
vature and from the intensity of the
magnetic field in the neighborhood of the
track, one can deduce the momentum
of the particle which made the track.

After these calculations have been
made, all the tracks making up the event
are considered simultaneously. Now, by
using the constraints of conservation of

UCRL-1.1753

energy and momentum, one can often
deduce the mass of the particles involved
and, hence. their identity. This step is
called kinemHic analysis.

When all events making up an experi
ment have been analyzed, the informa
tion just computed is stored on a mag
netic tape. This tape serves, in turn, as
input for a series of statistical analysis
programs.

Two sets of bubble chamber data anal
ysis programs are used at the Berkeley
Laboratory: the PANAL-PACKAGE
EXAMIN system developed in the Alva
rez Group, and the FOG-CLOUDY -
FAIR system developed by Howard
White's Data Handling Group. Each of
these systems involves well over 100,000
computer instru ::: tions , and together they
consume about 60 of the computation
time used on Berkeley computers.

The Berkeley Laboratory pioneered
the development of automatic measure
ment and analysis systems for bubble
chamber data. Programs and hardware
developed at the Berkeley Labortatory
are used in high energy physics laborato
ries all over the world.

Acee I era tor Design
Computers are also playing an increas

ingly important role at Berkeley in the
design of particle accelerators. They are
used to compute the magnetic fields gen
erated by given magnet designs and to
trace the orbits of particles through these
fields. Al Garren, of the Theoretical Phys
ics Group, has developed an accelerator
oriented language which allows its user
to evaluate very quickly a particular ac
celerator configuration.

' ii y 'i : ij
'· . \ : i /I : ! ·l \

. ·. : '·: '~ ' ; ~ .,, '" ' · ,·;;l
"· "· I i i I . I ~ : l '>., hj1/; . NJ~~

. "1 r, I I • ~ . •

·T·J · . ! i :~ I
l j .. • I I I~ ;

; •· ! . ; I i ~l L f . ; j I I

l~~ . . j : i ·~;
; l ·1. : ; ! j .,

I I ! 'ii'' I' ; ! i I : ii ~
' . I ·I ; 11 ! ; ~. ! f . I 1 .

I ~. . , (I~. i, i . . i; ~ ; .
il i i . I . ~ 1

''.· : ~ ; I i ·i1 I ; ! ~ • I ."'.) .

I I I .. . i j;
; ; ~ ' ·~ . , ! ;j ! . i

FLYING-SPOT DIGITIZER, working in conjunction with computers, has helped to automate the
bubble-chamber film analysis task at Berkeley. Picture at left shows a typical pi-minus interaction
in a bubble chamber. The negative of this photograph is scanned by the FSD, and the digitized
information is sent directly into a computer. The picture at right was "computed" from the digitized

information supplied by the FSD.

UCRL-11753 -18-

Part VII: The World of the Future
The computing machines which will

be installed in the United States starting
in 196 5 (an early forerunner of these
was the Control Data 6600, delivered to
the L~ven~ore Lab two months ago) will
be quite different from the machines that
have been installed to date. They will be
faster by a factor of ten or so; their mem
ories will be up to four times as large;
and they will be equipped with much
faster ai:id more sophisticated input-out
put devices than were their predecessors.
These hardware changes will have a pro
found effect on the ways in which com
puters are used.

At computer installations where the
problem load involves a fair amount of
input-output (such as LRL's Berkeley
Laboratory), the installation of a com
puter whose arithmetic unit is ten times
fa~ter does not necessarily mean that one
will now~ able to do ten times as many
problems m the same time period. If we
attempt to run our problems in the con
v.entional way, we will spend most of the
time on our computer waiting for input
output tasks to be accomplished; the cen
tral processin~ unit will be idle for a large
s~are ?f the time. One way to remedy this
s1tuatio~ woul~ be to acquire input-out
put devices which were faster than exist
mg ones by a factor of ten. Unfortunate
ly, such devices are not readily available,
so we must seek another solution to this
problem.

Multiprogramming
The solution that will be adopted at

most large computer installations is
known as Multiprogramming. This con
cept involves having the programs for
several problems in memory at once.
These problems all share the computer's
central processing unit, but each one is
assigned its own peripheral input-output
devices-tape drives, for example. If we
have a reasonable mix of problems, and if
we are clever in writing a program to
allocate our computer components
among these problems, we can expect to
keep a reasonable number of machine
components busy at the same time; one
code may be using the central processing
unit, for example, while three others are
simultaneously performing tape input
output functions. Under such a system,
the elapsed time for doing a set of prob
lems will be substantially reduced.

Most of the machines which are sched
uled for delivery starting in 19 6 5
have hardware capabilities which allow

them to be multiprogrammed. Such
hardware capabilities include large mem
ories (we must have enough space to get
several codes into memory at once),
several input-output channels (we must
allow several programs to be performing
input-output tasks at the same time),
and memory protection devices (we
must prevent the program which has
control of the central processing unit
from destroying other programs which
share the memory) .

The program!:g which control the
scheduling of problems on the computer
and the allocation of computer hard
ware are called Monitor Systems. A
limited multilprogramming monitor
system, called Diprogramming, has been
in operation on a 7094 computer at the
Berkeley Laboratory for about six
months. It was described in the August
issue of the MAGNET. A more sophisti
cated Multiprogramming Monitor Sys
tem for the Control Data 6600 is
currently under development at the Liv
ermore Laboratory.

In the future, Multiprogramming
Monitor Systems will be provided by the
manufacturers of all major computers.
Such systems are ~lready available for the
Honeywell 800 and UNIVAC 1107
Computers.

An important consequence of the
availability of multiprogramming sys
tems on new computers involves the way
in which card input and printer output
will be handled. The user who now

wishes to submit a problem for solution
on a large-scale computer turns in a
deck of cards with his program -on it;
this deck of cards is then combined with
several other decks and taken to a small
auxiliary computer such as an IBM 1401,
whete the cards are transcribed onto a
reel of magnetic tape. This tape is then
transferred from the 1401 computer to
the large-scale computer, and the prob
lems on the tape are done in sequence.
The large-scale computer, instead of
printing the answers on its on-line print
er, writes them out on another reel of
magnetic tape. When all the problems
in this sequence have been completed,
this printer tape is transferred to a 1401
computer, which performs the actual
printing. The reason for all this tape
manipulation lies in the sequential way
in which problems are done on current
large-scale computers. If one were to
read cards on-line or print on-line, one
would idle all other components of the
machine-an intolerable condition.

SPOOLing
When a mulitprogramming system is

available, this whole situation changes;
it now becomes perf~ctly feasible to
print on-line and read cards on-line and,
at the same time, to utilize many other
components of the computer. This type
of activity is called SPOOLing, which
stands for Simultaneous Peripheral Out
put On-Line. In the bright world of the
future, the user will simply insert his
problem deck into a card-reader attached
to a large-sple computer; the computer
will then read his cards in and store them
on an auxiliary storage device, such as
a magnetic disk. When the problem
reaches the head of the queue and when
memory space becomes available for it,
the Monitor System will load it into the
memory and begin executing it, probably
in conjunction with several other pro
grams. Printer output will be written
on a disk; as soon as an on-line printer
becomes available, the output will be
printed. The availability of this SPOOL
ing capability should dramatically de
crease the elapsed time between the sub
mission of a program deck and the return
of printed output.

The possibility of more intimate man
machine relationships is another impor
tant consquence of multiprogramming
systems. Under ideal conditions, the user
of current hardware and systems may
expect a two-hour delay between the
time he submits a problem to the com
puter and the time he gets his output

back. Quite often, when he looks at his
output, he discovers that he has omitted
a comma in a FOR TRAN statement, or
that there has been a keypunching error
in the preparation of his data, or that
the hypothesis he was testing in his pro
gram is false and that he now wishes to
try another one. In any of these cases,
the user may require only a few minutes
of looking at his output before he is pre
pared to submit another program. After
submitting the program again he must,
of course, wait another two hours. This
is a very inefficient way of using people.
One possible solution to this problem
would be to provide each user with his
own computer; he could sit at the con
sole of his machine and obtain immediate
turn-around on his problem, since there
would be no people queuing up in front
of him. This, of course, is not a very
efficient way of using computing ma
chines--even if one had enough money
to buy that many machines.

User Consoles
A compromise solution will be found

in a variety of user display and inquiry
consoles that will be available with the
next generation of computing machines.
These consoles, which may be installed at
remote locations, will be connected di
rectly to the central computer system.
The simplest of these consoles is a type
writer or teletype machine - supple
mented, perhaps, by a card reader. More
complicated consoles include a cathode
ray tube display system, which can be
used for either graphical or alphanumeric
output. The user will employ these con
soles as debugging devices or as quick
response mechanisms in the solution of
problems.

The Livermore OCTOPUS System,
which was described in a previous
MAGNET article (September '64), will
employ several consoles, each consisting
of a teletype machine and a small pen
and-ink plotter. In Berkeley, consoles of
two types will be used: typewriter and
card reader stations will be used for pro
gram debugging, and CRT plotters
equipped with keyboards and light pen
cils will be used as on-line physics con
soles.

New Problems
The increased computing power of

future computer generations, and the
increasing sophistication of programming

-19-

systems available for them, will allow
the computer user to attack larger prob
lems than ever before. For example,
Livermore scientists will be able to un
dertake much more detailed simulation
of weapons systems, and Berkeley scien
tists will tackle the analysis of larger
experiments than in the past. Moreover,
it will now be possible to solve effec
tively some entirely new problems. One
of these which has been much discussed
is the pattern-recognition problem for
bubble chamber events. Over the past
few years the· Berkeley Laboratory has
developed some extremely speedy devices
for measuring the location of points on
bubble chamber film. f:Iowever, present
systems demand that all film be scanned
by a human scanner in advance of mea-

/

/

: -
.. /- .· _ -- / .,,

_.......,,...__..... . , " . 1 ,,

~

'OIJl C.OM1>UTl."- ~""~ ~~I~ W~lMe1'..
1>1ll'. CJ:.h\1>UTC~ I~ N .. 'IC1" ~ON(,

o•a.'°<>1ltt !
VY AM T Vti'T f

surement. This human scanner is the
pattern-recognition element in the sys
tem. In the future, it is hoped that this
pattern-recognition role can be taken
over by computers; such systems are
currently under development by How
ard White and his co-workers and several
other groups at the Berkeley Laboratory.

At present, when a computer user
wants to solve a specific mathematical
problem he is forced to spend a great deal
of time matching his particular version
of that problem with the available nu
merical techniques, and with computer
programs which implement those tech
niques. He must match the appropriate
code to his problem. This is often a fairly
time-consuming process. In the future,
it is hoped that much of this work can

UCRL-11753

be taken over by the computer; for ex
ample, the user may someday merely
submit his differential equation for solu
tion, specifying the range over which
the solution is needed and the required
accuracy. The· computer would then
analyze the differential equation, select
an appropriate solution technique, and
pick out of its library a code which im
plements that technique. Here, the com
puter would take over some of the func
tions not only of the programmer, but
also of the numerical analyst.

Advances in list-processing and in the
manipulation of symbols by computers
should make possible the creation of
routines capable of performing many of
the algebraic manipulations which now
constitute something of a national sport
among theoretical physicists. The least
we may confidently expect of such rou
tines is that they will be capable of the
formal manipulation of infinite series
and of the simplification of algebraic
expressions. These manipulations will
probably be accomplished with the assis
tance of the display consoles mentioned
earlier.

Exotic Applications
Many new and exciting computer

applications can be expected outside of
the Laboratory's research areas durin<Y
the coming years as well. For exampl~~
computer-assisted engineering design
applications, already being written ; will
permit a mechanical engineer to interact
very closely with a computer. In this
application, the computer will play the
role of a sort of high-speed calculator
and draftsman.

Somewhat farther off is the develop
ment of fully-automatic, high-quality'
mechanical translation from one natural
language to another. This development
will surely be stimulated by the increased
speed and memory size of the computers
now becoming available.

Effective computer-assisted weather
forecasting is probably somewhat closer
than effective mechanical translation.
The avai.lability of high-speed comput
ers, together with the presence of in
creasing amounts of data from weather
satellites, should make this development
possible in the near future.

Finally, the use of computers in teach
ing, to extend existing programmed
learning techniques. will be extremelv
important. ·

This report was prepared as an account of Government
sponsored work. Neither the United States, nor the Com

mission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or
implied, with respect to the accuracy, completeness,

or usefulness of the information contained in this
report, or that the use of any information, appa

ratus, method, or process disclosed in this report
may not infringe privately owned rights; or

8. Assumes any liabilities with respect to the use of,
or for damages resulting from the use of any infor

mation, apparatus, method, or process disclosed in

this report.

As used in the above, "person acting on behalf of the
Commission" includes any employee or contractor of the Com

mission, or employee of such contractor, to the extent that
such employee or contractor of the Commission, or employee

of such contractor prepares, disseminates, or provides access
to, any information pursuant to his employment or contract

with the Commission, or his employment with such contractor.

