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Field Guide to Cotnputers, Their Habits & Habitats 
Part I: The Nature of the Beast 

LRL mathematician 
Jim Baker, author 
of the series which 
begins here, is cur
rently acting head 
of Berkeley's Math
ematics and Com
puting Group. 
Baker majored in 
mathematics at 
UCLA and Pomona 
College, later did 

graduate work at UC. In 1952, he joined the 
laboratory to work on applications of com
puters to e:tperimental and theoretical physics 
problems. Since 1960, he has assisted Kent Cur
tis in the administration of the Mathematics 
and Computing Group. He was named acting 
group leader in August, 1963, when Curtis left 
for a year's assignment with the AEC in Wash-

ington. 

Back in 1940-which is not so very 
long ago as the history of science is meas
ured-an LRL research scientist with a 
problem in mathematics on his mind 
could take his questions to any one of the 
five computing machines which the UC 
physics department proudly maintained 
and made available to the faculty. Of 
course, one couldn't be sure of getting an 
electric machine (there were, after all , 
only two of those in the whole depart
ment); most likely, our scientist would 
settle for a hand-operated model and 
count himself lucky that he wasn't living 
back in the days when scientists did their 
own calculations with pencil, paper, and 
a "head for figures." 

By 1950, this picture had changed but 
little. The hand-operated machines had, 
no doubt, been replaced by electric 
models, and the first generation of elec
tronic digital computers-ENIAC and 
its relatives-had already appeared on 
the national scene. But the working sci
entist at LRL still did most of his calcu
lations with the help of computing ma
chines not very different in principle 
from the ones he had been using ten 
years earlier. 

The Machines Multiply 
By 1960 all this had changed. Today, 

this Laboratory ranks as one of the great
est concentrations of automatic comput
ing power to be found anywhere on earth. 
Within the past twelve years, automatic 
digital computing machines and their 
associated systems have become central 
to LRL research programs, and their uses 
have been extended to fields as diverse as 
high energy physics and payroll account
ing, nuclear device design and library 
documentation. 

This is the first of a series of MAGNET 
articles which will explore the design and 

uses of computers, with particular atten
tion to their pertinence to LRL research 
programs. Among the questions which 
we shall seek to answer are these: 

1. What is an automatic digital com
puter? 

2. How does a computer work? 
3. What sorts of problems can you do 

with a computer? 
4. What kinds of computers does the 

Laboratory have? 
5. What will be done with computers 

in the future? 
Definitions 

The things we want to talk about in 
this series are called Automatic Stored
Program Digital Computing Machines. 
Let us start, then, with a word-by-word 
analysis of this rather sonorous title. 

A computing machine is any device 
which allows us to deduce, from certain 
numbers that we know, certain other 
numbers that we want to know. 

All computing machines may be clas
sified either as analogue machines or digi
tal machines. Analogue machines com
pute by measuring; digital machines 
compute by counting. An example of an 
analogue computer is the ordinary slide 
rule. The operation of the slide rule de
pends on the principle that says that if 
you lay two_ sticks end-to-end, then the 
distance from the left end of the first 
stick to the right end of the second stick 
is the sum of the lengths of the sticks; 
slide rules work by adding and subtract
ing distances. 

The Abacus 
An example of a digital computer is 

the abacus. This is an ancient oriental 
device which allows one to compute by 
moving beads on wires. A typical abacus 
may have eight vertical wires and seven 
beads on each wire. The right-most wire 
is the units wire, the second right-most 
wire is the tens wire, the third right-most 
wire is the hundredths wire, and so on; 
this is a decimal computing machine. On 
a given wire, the five bottom-most beads 
are worth one unit apiece, while the two 
top-most beads are worth five units 
apiece; this is called the biquinary en
coding system. One operates the abacus 
by moving the beads up and down on 
their wire. If a bead is pushed up as far 
as it can go, then it counts its whole 
value. If it is down as far as it can go, 
then it counts zero. One essentially oper
ates the abacus by counting. 

Manual vs. Automatic 
Digital computers may again be di

vided into two classes: manual and auto
matic. Manual digital computers require 

the presence and intervention of a human 
operator at each step of the calculation 
which is being performed; automatic 
digital computers, on the other hand, can 
perform a large number of calculations 
without any human intervention. 

An example of a manual digital com
puting machine is an ordinary electric 
desk calculator. This machine requires its 
operator to enter each number by hand 
and then to press the appropriate button 
indicating to the machine the operation 
that it is to perform. An example of an 
automatic digital computing machine is 
the IBM type 602A electronic calculator; 
in this machine, the user indicates the 
sequence of arithmetic operations to be 
performed in advance by inserting wires 
in a plug board. This plug board is then 
mounted on the machine, input data in 
the form of tabulating cards are placed 
in a hopper belonging to the machine, the 
operator presses the ST ART button, and 
the machine then proceeds automatically 
to perform a fairly lengthy series of cal
culations on the input data without fur~ 
ther operator intervention. 

Fixed vs. Stored Program 
All automatic digital computing ma

chines may again be subdivided into two 
classes: fixed and stored program. 

The fixed program machines employ a 
fixed sequence of operations for each 
problem that they do. This sequence of 
operations is either permanently built 
into the hardware of the machine (such 
a machine is called a single-purpose ma
chine) or it is specified by a medium such 
as a plug board or sequence of tabul~ting 
cards which the machine itself cannot 
alter. In a stored program machine, on 
the other hand, the sequence of operations 
to be performed is specified by "in
structions" which are stored in a part of 
the machine called the memory which the 
machine itself can alter. 

The distinction between a fixed pro
gram and stored program automatic com
puter is much more fuzzy than the dis
tinction between a manual digital com
puter and an automatic digital computer; 
the essence of this distinction is, however, 
that the sequence of operations in a 
stored program computer is much more 
easily altered than the sequence of opera
tions in a fixed program computer, and 
that it is very much quicker and easier 
to insert a new sequence of instructions 
in a stored program computer than it is 
in a fi xed jJTogram computer. 

An example of a fixed program auto
matic digital computer is the IBM 602A 
Electronic calculator cited above. An ex-
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ample of a stored program automatic 
digital computer is tht IBM type 1401 
computer. 

The sequence of "instructions" which 
specifies the operations that the com
puter is to perform is called a Program. 

Parts of a Computer 
Every automatic stored-programmed 

digital computer may be divided into 
four functional units. These units are 
called: 

1. The memory 
2. The arithmetic unit 
3. The control unit 
4. The input-output section 

The memory of a digital computer is 
used to hold data which are being proc
essed, intermediate results, and the in
structions that tell the machine which 
operation to perform next. 

The basic information unit in any com
puter is called the word. A word is noth
ing but a string of numeric digits or 
alphanumeric characters with an alge
braic sign ( + or -) in front of it. As
sociated with each computer is a definite 
word size; one computer might have a 

word size of five decimal digits together 
with an algebraic sign. A typical word 
in such a computer might be -21376. In 
another computer, the word size might 
be 11 binary digits (we will talk about 
the binary number system later) and an 
algebraic sign. An example of a word in 
such a computer would be +tOllOOl0-
110. A computer whose words contain 
decimal digits is said to be a decimal com
puter. A computer whose words contain 
binary digits only is said to be a binary 
computer. A computer whose words con
tain decimal digits and alphabetic char
acters is said to be an alphanumeric com
puter. The important thing is that associ
ated with each computer is exactly one 
word size. For example, the IBM 6 5 0 is a 
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decimal computer and its word consists 
of an algebraic sign and ten decimal dig
its. The IBM 7094 is a binary computer 
whose word size is an algebraic sign and 
35 binary digits. The IBM 1401 is an 
alphanumeric computer whose ·word size 
is one alphanumeric character. 

Computer memories are divided up 
into cubbyholes - much like postoffice 
boxes--each one of which is large enough 
to hold exactly one word. So that we can 
keep track of the cubbyholes in memory 
where we are storing particular pieces of 
data or particular instructions for the 
computer, we give each cubbyhole a name 
or label. This label is called the address of 
that cubbyhole or the address of that 
memory cell. The label Is usually a 
number; so if, for example, we have 
a machine with a one-thousand word 
memory, the addresses of cells in that 

memory would run from 000 to 999. 
By the cycle time of a computer mem

ory, we mean the time that is required 
to retrieve one word from the memory 
and be ready to retrieve another word. 
Hence, if we have a computer whose 
memory has a cycle time of 10 micro
seconds, we will need 100 microseconds 
to retrieve 10 words from that memory. 

Arithmetic Unit 
The arithmetic unit (pronounced with 

the accent on the "met") of a digital 
computer is the part where all of the 
work gets done. This unit contains hard
ware which enables the computer to add, 
subtract, multiply, divide and perform 
certain other logical functions. As users, 
we need not be concerned with the mech-

an isms which are used to perform these 
arithmetic operations; the thing that we 
need to be concerned with is where the 
results of these operations end up. 

The results of arithmetic operations in 
many digital computers end up in devices 
which are called registers. A register is 
simply a bin or cell or cubbyhole in the 
arithmetic unit which is large enough to 
hold one or more words. A good example 
of an arithmetic register in a digital com-

puter is a top dial on a Friden calculating 
machine. This register is exactly anal
ogous to a very common arithmetic regis
ter in automatic digital computing 
machines called the accumulator. The ac
cumulator is the register which is used to 
hold the results of additions and of multi
plications. We perform additions in auto
matic digital computing machines in a 
fashion quite similar to the way in which 
we perform them on an ordinary adding 
machine (the Friden, for example) ; we 
first set the accumulator to zero, then we 
place in it a number which up until now 
has been stored in a cell in memory; we 
then add to it a second number which was 
perhaps stored in another cell in memory. 
At the conclusion of this operation, the 
sum of these two numbers remains in the 
accumulator register. Often, to save 
space, we refer to the accumulator as the 
A register or, starkly, as A. 

Another arithmetic register which oc
curs in quite a large number of digital 
computers is called the Multiplirr-Quo
tienf register or for short, the "M-Q" 
register. This register, as its name implies. 
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is used to hold one of the factors in a 
multiplication and to hold the result of 
a division. It corresponds to the second 
dial from the top on the Friden. 

All computers have an arithmetic sec
tion, hut not all computers have arith
metic registers. In some machines, the 
IBM 1401 for example, results of arith
metic operations are stored directly in 
the memory without stopping in an arith
metic register along the way. 

The Control Unit 
The control unit of an automatic digi

tal computer is that portion of the ma
chine that interprets the instructions that 
the machine is to execute and, in general, 
tells the machine what to do next. The 
control unit almost always contains two 
registers, called the instruction register 
and the control counter (IR and CC, for 
short). The instruction register, which is 
usually one word long, contains the com
mand which is currently being executed. 
The control counter, which is just large 
enough to hold one address, holds the 
address of the next instruction to be 
executed. 

It should be clear by now that the in
structions or commands which tell the 
machine which function to perform next 
are nothing but machine words (which 
is to say, numbers of a certain length) ; 
thus, there is no effective way of distin
guishing an instruction word from a data 
word. In fact, we occasionally inadver
tently try to execute as an instruction a 
data word-this usually leads -to absurd 
results. On the other hand, we often in
tentionally do arithmetic with instruc
tion words,as we shall see later. 

An instruction word, in a digital com
puter whose word length was algebraic 
sign and five decimal digits, might look 
something like this: 
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U nu a ed 
Ope r a t i on l n etruct l on Addreaa ,.. , 

Code (Op Cod• ) 

The sign in this particular machine is 
not interpreted as part of the instruction 
word. The operation code, sometimes ab
breviated op code, is composed of two 
decimal digits. This operation code tells 
the machine what function it is to per
form next; for example, an operation 
code of 01 might tell the machine to add, 
an operation code of 02 might tell the 
machine to subtract, and so on. The last 
three digits of the instruction word in 
this machine are to be used for an address. 
We will use the letter .. m" to designate 
this instructicn address in future discus
sions. The address part of the instruction 
tells the machine the location of .the data 
on which it is to perform the operation 
specified by the operation code. So, for 
example, the instruction word + 012 5 6 
might mean to add (operation code 01) , 
the number that is stored in address num
ber 2 5 6 to the number that is already in 
the accumulator, and leave the result in 
the accumulator. 

Some machines have registers called 
.. B registers" or .. index registers" in their 
control sections. These registers are used 
in a spec.:ial way to modify the address 
parts of instructions. We will discuss 
them in more detail later. 

Input-Output Section 
The input-output section of an auto

matic computer is a very important one 
from the viewpoint of the user. It is this 
section which allows the user to com
nrnnicate with the computer (this is 
called input) and the computer to com
municate with the user (this is called 
output). 

Input-output may be accomplished 
through a very wide variety of media. 
The simplest, least expensive, and slow
est input device is a set of switches on the 
console of the computer. By throwing 
these switches appropriately, the operator 
mav feed information into the computer. 
While almost every computer has facili-
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ties for this type of input, these facilities 
are seldom used except by engineers who 
are trying tq repair the machine. 

The simpl~t kind of output device is 
a ~t of display lights on the console of 
the machine. These li~Iits may display the 
contents of the various arithmetic and 
control registers and may also have the 
capability of displaying the contents of 
various cells in the memory. Obviously, 
the machine must be stopped before we 
can read the contents of the lights: hence: 
these devices are not frequently used 
either. 

A step ahead of console switches and 
lights as an input-output dpvice is the 
typewriter. This device may be used for 
input by its keyboard or for output onto 
a piece of paper. Because of its slowness, 
it should not, however, be used for large 
volumes of either input or output. 

Now we come to a class of input-out
put media w.hich includes paper tape, 
tabulating cards, and magnetic tape-all 
of which make input-output a two-or 
three-step process. Consider, for example, 
paper tape, which is a very common 
medium on low-cost computers. If we 
wish to prepare some data for input to 
our computer, we may punch these data 
onto a paper tape using a typewriter-like 
device such as a Flexowriter or teletype 
machine. We then take this paper tape 
containing our data over to our computer 
and read it in. The important thing here 
is that the slow-speed human process of 
punching the paper tape is separated 
from the relatively high-speed auto
matic computer processes of reading 
paper tape and computing. The situation 
on the output side is very similar. The 
computer punches out our answers on 
paper tape at relatively high speed. Since 
we cannot read this paper tape directly, 
we take it over to a printing device which 
looks something like a typewriter, and in
sert the paper tape into this device and 
our answers are then printed out on a 
sheet of paper. 

Paper tape and cards are generally used 
as input-output media on low-or medium
price machines. Magnetic tape, which is 
very much faster, is used as the basic 
input-output medium on all high speed 
computers today. 
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Part II: Sitnple-M inded Cotnputer 
These days, digital c~mputers can 

solve calculus problems at about the level 
of a college sophomore; they can trans
late from Russian into English at per
haps the college freshman level; they can 
produce numerical solutions to very dif
ficult mathematical problems. 

We have already described the four 
principal parts of aa automatic digital 
computer. We saw that the computer 
must perform all its complicated tasks 
by doing a few relatively simple arith
metic and logical operations at a very 
high rate of speed. 

At th.is time we are going to give an 
example which will illustrate all the 
feature~ and functions described in last 
month's article. This example computer, 
called the SMAC (or Simple Minded 
Automatic Computer), is a realistic ma
chine; it is more complicated than some 
computers which are presently installed 
at the Laboratory. If you can understand 
how SMAC works, then you should be 
able to understand how almost any digi
tal computer works. 

Type of Arithmetic 
The SMAC is a decimal machine -

which is to say that it uses the same 
number system that you and I use. 
SMAC's word .length is five decimal 
digits and an algebraic sign. It represents 
negative numbers the same way that you 
and I represent negative numbers. For 
example, in SMAC the number -14 
would be represented as -00014. This is 
an advantage over most hand calculators, 
which would tend to represent -14 as 
9999999986 (as you can easily verify by 
subtracting 14 from zero on one of 
them). The SMAC's way of representing 
numbers is called the sign and magnitude 
system. The hand calculator's way of 
representing negative numbers is called 
the tens complement system. 

Anatomy of SMAC 
Memory. SMAC has a one-thousand

word memory. Each word in the memory 
has an address consisting of three deci
mal digits; thus, addresses run from 000 
up to 999. Each of the one thousand 
memory cells is, of course, just big 
enough to contain one word consisting 
of five decimal digits and an algebraic 
sign. 

Arithmetic Section. SMAC has a very 
simple arithmetic section indeed. It con
sists of exactly one arithmetic register: 
the accumulator. We will often refer to 
the accumulator as the A register or 
simply as A. SMAC's accumulator is just 
one word long - five decimal digits 
and an algebraic sign. It is the register 
that will ho~d the results of all arithmetic 

operations performed in SMAC. 
Control Section. The control section 

of SMAC contains three registers. The 
instruction register, or IR, is a one-word 
(five decimal digits and sign) register; 
it holds the command which is currently 
being executed. The control counter, or 
CC, is a three-digit register; it contains 
the address in memory where the next 
command to be executed is located. The 
index register (which we will call the B 
register or B) is another three-digit reg
ister. It is used to modify the address 
portions of certain commands. Its use 
will be illustrated later. 

Input-Output Section 
SMAC has a paper tape reader for in

put and a paper tape punch for output. 
It can read one word in a forward direc
tion from the paper tape which is cur
rently in the tape reader, and then place 
this word in a memory location specified 
by the command which is b~ing execu
ted. Similarly, it can punch out onto the 
paper tape which is currently in the 
tape-punching mechanism one word 
from an address designated by the cur
rent command. 

Paper tapes which are to be read into 
the computer must first be prepared in 
the proper form. Sometimes, they are 
punched on a Flexowriter or Teletype 
machine away from the computer; some
times they have been punched by the 
computer itself in a previous run. When 
we wish to find out what information 
is on an output tape that has been 
punched by the computer, we must take 
that tape over to a Flexowriter, which 
then prints the contents of the tape on a 
piece of ordinary paper. 

Instruction Format 
Every computer word that is brought 

from the memory into the instruction 

register is interpreted by SMA.C as an in-

SMAC EXECUTES A COMMAND 
(Assume that the execution of a com
mand has just been completed, then 
start at Step I.} 

I. C(C(CC) )~IR 
2. 1+ C(CC)~CC 

3. If the sign of IR is +• go to Step 
5: if the sign of IR is -, go to 
Step 4. 

4. Subtract C(B) from m (the right
most 3 digits of IR) and replace 
m by the result. 

5. Execute the instruction in IR. 
6. Go to Step I. 

Figure I 

struction word. The two decimal digits 
at the extreme left (which we sometimes 
call the two most significant digits) are 
interpreted as an operation code, or OP 
code. This operation code tells the ma
chine what function it is to perform 
next. The three digits at the extreme 
right of the instruction word are in
terpreted by the machine as an address. 
This address, in general, gives the ma
chine the location of the data upon 
which the function specified by the OP 
code is to be performed. So, for ex
ample, if the operation code for addition 
is 01 and the word +01223 comes into 
the instruction register, the computer 
will add the word which is presently 
stored in memory location 223 to the 
number which is currently in the ac
cumulator, leaving the sum in the ac
cumulator. 

The sign of the instruction word tells 
the computer what to do with the B 
register. If the sign of the current in
struction word is +, then the B register 
is ignored. If the sign of the current in
struction word is -, then the con
tents of the B register (a three-digit 
number) is subtracted from the address 
part of the instruction word {the three 
digits on the right) before the instruc
ion is executed. We of ten refer to the ad
dress part of the current instruction as 
m. 

Notation 
In order to be able to describe more 

concisely how the computer works, we 
must make some notational conventions. 
Let us agree that C(s) is to mean the 
contents of s if s is the name of either 
a memory location, an arithmetic regis
ter, ar a control register; similarly, C ( m) 
will mean the word that is current
ly stored in memory location m; C(A) 
will mean the contents of the accumu
lator; C(CC) will mean the contents of 
the control counter (remember that the 
contents of the control counter is a 
three-digit number). 

We use the arrow (~) to indicate 
"goes to"; C(m)~A, for example, 
means that the contents of the memory 
register m goes to the accumulator (that 
is, that the contents of rn will replace the 
current contents of the accumulator). 
C (A) ~m means that the current con
tents of the accumulator will replace 
the current contents of m. 

How the Machine Works 
Each time that SMAC executes an 

instruction, it goes through five or six 
steps under the direction of the hard
ware in its control section. These steps 
are summarized succinctly in Figure 1. 



1. C(C(CC) )~IR. The purpose 
of this step is to take the next command 
from the location specified by the con
trol counter and load it into the instruc
tion register. (The command actually 
tells the contents of the contents of the 
control counter to "go to" the instruc
tion register.) Remember that the control 
counter is a three-digit register - just 
big enough to contain one address. So, 
in fact, C(CC), the contents of the con
trol counter, is an address in SMAC's 
memory, and C [C (CC)] is the con
tents of that address in the memory. In 
fact, the contents of that address is to 
be used as the next instruction to be ex
ecuted by SMAC. 

2. t+C(CC)~CC. The effect of 
Step 2 is to add one to the control coun
ter. For example, if during Step 1 the 
control counter contained 173, after 
Step 2 it would contain 174. In perform
ing this operation, SMAC takes succes
sive commands from successive locations 
in memory. 

-5- UCRL-11753 

3. If the sign of JR is +, go to Step 
5; if the sign of JR is - , go to Step 4; and, 
4. 'Subtract C (B) from m (the last 
three digits of JR), and replace m by the 
result. Steps 3 and 4 have to do with 
the index register (the B register). They 
say that if the sign of the next instruc
tion is minus, we should subtract the 
contents of the B register from the ad
dress part of the next instruction before 
executing that instruction. On the other 
hand, if the sign of the next instruction 
is positive, then we should simply ignore 
the B register. 

5 M--A C 
(It may be somewhat reassuring for 

you to know that you are not yet sup
posed to understand the purpose of the 
B register; this will be explained when 
we start to do a programming example.) 

(Si mpl(t /YI ind~ .Aul-omaHc Comput~t-) 

5. Execute the instruction in JR. 

the instruction register. At this stage 
of the game, the memory address portion 
of the instruction, m, may have been 
altered by having the contents of the B 
register subtracted from it. However, 
we will continue to call this altered 
address m. 

Step 5 says that we are now to execute 
the instruction as it currently appears in 

Mnemonic 

CLA 
ADD 
SUB 
STO 
TRA 
TMI 

TZE 

LXA 
SXA 
TIX 

INP 

OUT 
HLT 

SMAC'S INSTRUCTION REPERTOIRE 
OP Code 

00 
01 
02 
03 
().4 

05 

06 

07 
08 
09 

10 

11 
12 

~planation 

C(m)~A. Clear and add. 
C(A) +c(m)~A. Add. 
C(A)-C(m)~A. Subtract. 
C (A) ~m. Store. 
m~CC. Unconditional transfer. 
If C(A) <O, then m~CC; otherwise proceed normally. 

Transfer on minus. 
If C(A) = 0, then m~CC; otherwise proceed normally. 

Transfer on zero. 
Rightmost 3 digits of C(m)~B. load index from address. 
C(B)~Three rightmost digits of m. Store index in address. 
C(B)-1~8; if C(B) ~O, then m~CC; otherwise, pro

ceed normally. Transfer on index. 
Read the next word from the tape in the paper tape 

reader into address m. 
Punch onto paper tape the word in address m. 
STOP. Halt. 

Figure 2 

After we have finished executing the 
current instruction, we return to Step 1 
and start the whole process over again. 

Command Repertoire 
In Figure 2, the SMAC's repertoire of 

instructions is listed in concise form. 
The first column gives a three-letter 
mnemonic abbreviation which is sup
posed to remind us what each operation 
code does. The second column lists the 
actual operation codes; these codes are 
the ones that will actually appear in the 
two left-hand digits of instruction 
words. The third column in Figure 2 
lists exactly what each operation code 
tells SMAC to do. 

The OP Codes 
The first op2ration in the table has 

operation code 00. Its mnemonic is CLA, 
which stands for clear and add. The ef
fect of this instruction is that the con
tents of the address designated by m 
(the address portion of this instruction) , 
should be placed in the accumulator. 
Whatever was in the accumulator before 
is lost. However, the con ten ts of the 
memory address number m remains un-
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changed. It is generally true that the 
only way in which we can destroy the 
contents of a register is by storing some
thing on top of it. 

The next two operation codes, 01 
(ADD) and 02 (SUB), are the codes 
for add and subtract, respectively. They 
cause the contents of m to be added to 
or subtracted from the contents of A 
and the resulting sum or difference to 
be left in A. Again, the contents of m 
remains unchanged. 

Operation Code 03 (STO) is the store 
operation. The execution of an instruc
tion word which has this operation code 
causes the contents of the accumulator 
to be placed in address number m. The 
previous contents of m are lost and the 
contents of the accumulator remain un
changed. 

Transfer of Control 
Operation Code 04 (TRA) is the un

conditional transfer of control operation. 
In this operation, the number m (itself 
a three-digit number) replaces the cur
rent contents of the control counter. 
Notice that this operation is different 
from all the preceding operations. In the 
others, we were always doing something 
with the contents of m. In the transfer 
of control operation, however, the con
tents of m are undisturbed. Instead, we 
are simply instructing SMAC that its 
next command is to be picked ·up from 
address number m instead of from the 
usual spot. 

Operation Code Numbers 05 (TMI) 
and 06 (TZE) are the trans/ er on minus 
and transfer on zero operations, respec-
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tively. They tell SMAC to go to location 
m for its next command in the event that 
the accumulator is either negative 
(TMI) or zero (TZE). 

Operation Code 0 7 ( LXA) is the load 
index from address operation code. This 
code tells the computer to take the three 
right-hand digits from the memory cell 
whose address ism, and place those digits 
into the B register. The contents of mis 
unaffected by this operation. 

Store Index 
Operation Code 08 (SXA) is the store 

inJex in address operation. It is the re
verse of the LXA operation above. Its 
effect is to place the contents of the B 
register into the three right-hand digits 
of the memory cell whose address is m. 
The left-hand two digits and the sign of 
the cell number mare unaffected by this 
operation. 

Operation Code 09 (TIX) tells the 
computer to perform the transfer on in
dex operation. This is a very complicated 
operation; first of all, the computer 
subtracts 1 from the current contents of 
the B register. Then, if the new contents 
of the B register is different from zero, 
the computer takes its next command 
from location m. However, if the new 
contents of B is equal to zero the com
puter goes ahead and takes its next com
mand from the normal location desig
nated by the control counter. 

Operation Codes 10 (INP) and 11 
(OUT) are the input and output opera
tions. They tell the computer to read 
the next word from paper tape .into lo
cation m or to punch the next word from 
location m onto paper tape, respectively. 

The final operation code is number 
12 ( HL T) . It is the code for Halt. Wh~n 
SMAC executes this command, it stops 
computing and turns on a light on its 
console which says PROGRAM STOP. 

Getting Started 
A question that very often worries 

beginners in computing is "How does 
the machine get started?" On the SMAC 
the starting operation is accomplished 
through the use of- a very convenient 
button which is labeled "LOAD PAPER 
TAPE." The depression of this button 
causes the following sequence of actions 
to take place: 

1. The computer reads the next four 
words from the paper tape in the tape 
reader into memory cells 000, 001, 002, 
and 003. 

2. The control counter is set to 000. 
3. The computer proceeds to operate 

automatically, taking its first command 
(of course) from location 000. Location 
000 contains one of the four words that 
have just been read in from paper tape. 

At the beginning of his paper tape, 
the programmer will have punched a 
"Loader" program which will load it
self into the computer's memory and 
then in turn load his program in. In 
_the next chapter we will see an ex
ample of such a loader. 

What's more, we will write down three 
programs to do the same simple calcu
lation. We will see how we can econo
mize on the use of memory by using 
different sections of our program a num
ber of times, how a program can modify 
its own commands, and (at last) what 
useful purpose the B register serves. 
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Part III: A Problem. in Addition 

The problem we want to do is a very 
easy one, but its solution will illustrate 
many important programming tech
niques. 

The problem is, simply, to add up 5 0 
numbers (we shall call these numbers, 
Xi, X 2 , ••• X 50 ) and to place their sum 
(which we shall call S) in SMAC's 
memory cell number 700. We shall as
sume, for the sake of simplicity, that ( 1) 
each of these 5 0 numbers is a :five-digit 
number, ( 2) their sum is also a :five-digit 
number, and ( 3) in the course of adding 
them up, we shall never encounter a 
number with more than five digits in it. 
(The purpose of all these assumptions is 
to avoid having to worry about exceed
ing the word size of SMAC). 

Subtotals 
Thus far, we have labeled our numbers 

(X 1 , etc.) and our final answer, S. From 
time to time in the course of our com
puting, however, we may have' occasion 
to refer to a subtotal, or partial sum, of 
the numbers added thus far. Let us call 
these subtotals S1 , ~'Sa and so on. (You 
will n@te that S1 will be the same as Xi, 
and S50 will be the same as S.) When we 
wish to refer to a subtotal '\Vi.thout being 
specific, we shall call it Si. 

A few more assumptions, and we will 
be ready to begin. Let us agree that, by 
the. time our program takes control of 
the computer, all of the numbers that 
are to be added up will already have been 
read into SMAC's memory from the 
paper tape. We assume that the first 
number, Xi, is in memory cell number 
101, X2 1s m 102, etc. , up to our last 
number, X 50, which is in cell numbet-
150. 

Let us also agree not to worry about 
getting our own programs into SMAC's 
memory. We shall suppose that our pro
·gram has been punched on paper tape and 
has been placed in the appropriate mem
ory cells by a "loader" program. Since 
memory cell numbers 101-200 have been 
pretty well taken up by our numbers X 1 
and so forth, let us put our program into 
the memory cells numbered 201-300. 

Finally, let us agree that the location 
of the first command in our program 
(Location 201) has already been placed 
in the control counter by the loader pro
gram. We are now ready to solve our 
problem in addition. 

Flow Charts 
Actually, we are going to solve our 

problem in three different ways, using 
three different programs. Each program 

presents a different attack on the prob
lem, and each (except possibly Number 
2) has its advantages and its disadvan
tages. Each program is first described by 
a Flow Chart. This chart, an essential of 
any program, is simply a sequence of 

boxes, each of which describes in more 
or less detail a function to be performed 
by the computer. These boxes are con
nected to one another by arrows. The 
arrows describe the fiow of control from 
box to box in the computer. 

Differently shaped boxes represent dif
ferent functions to be performed by the 
computer: an inverted triangle signifies 
the start of the program; a rectangular 
box signifies a computation to be per
formed; an oval box signifies that a de
cision is to be made (this is the only kind 
of box which can have more than one 
arrow going out of it) ; a right-side-up 
triangle designates the end of the pro
gram. 

We give each important box on the 
Flow Chart a number; this number will 
be ref erred to on our programming sheet 
and will tell us what part of the program 
we are working on currently. 

Programming Forms 
On the next page, you will see illus

trated the actual programming forms on 
which we write down our program. The 
sort of programming that we are doing 
here is called machine language program
ming (i. e., programming that is done in 
the computer's own simple-minded lan
guage) . Machine language programming 
is harder than other kinds of program
ming, and the forms we use in connec
tion with it arc more complicated than 
the forms used for other systems. Ma
chine language is worth your attention 
however, since other methods (which 
we shall describe next month) are based 

ultimately on this approach. 
Our machine language coding form 

has seven columns. The first column, 

headed Box Number, designates the 
number of the flow chart box that we 
are currently working on. The second 
column, headed Location, tells us the ad
dress in SMAC's memory where this 
command is to reside as the program is 
being executed. The third column, head
ed Op Code Mnemonic, will contain the 
three-letter abbreviations which remind 
us just what the operation code in this 
command does. The fourth, :fifth, and 
sixth columns contain the actual pro
gram words which are to be loaded into 
memory. (The fourth column gives the 
sign, plus or minus, the fifth column 
gives the Op Code, and the sixth column 
gives the address, m. For a review of the 
..meaning of these terms, see Part I, 
page 3, .column 2.) Column 7 of 
the programniing form is headed Re
marks. In this column, we write down 
what we are trying to accomplish with 
each command. It is a very important 
column. 

A Simple-Minded Approach 

In Program 1, which is based on Flow 
Chart 1, we solve our problem in the 
most simple-minded manner imaginable. 
First, we execute a clear and add (CLA) 
command, which brings the first number 
of our series (X1 ) into the accumulator. 
Then we execute a sequence of ADD 
commands which successively add to 
the sum already in the accumulator the 
subsequent numbers X2, X3, and so on, 
until we reach X1rn. At the conclusion 
of this sequence of 50 commands, we 
have the sum, S, in the accumulator. We 
then execute a store (STO) command, 
instructing the machine to put this an
swer into location 700. The total number 
of commands executed is 51. The total 
amount of memory required for our pro
gram is 51 cells. 

We shall see, in due time, that Pro
gram 1 is the most efficient of the -three 
programs from the viewpoint of time; 
it executes many fewer commands than 
either of the other two codes. However, 
Program 1 uses 51 memory cells to add 
up 5 0 numbers. If our problem had been 
to add up 100 numbers and we had writ
ten a program to do this using the tech
niques of Program 1, that program 
would have required 101 memory cells. 
In fact, when we use this technique the 
number of words in the program always 
depends on the number of numbers to be 
added together. Let us see whether we 
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can write a code which will avoid some 
of these problems. 

A Complicated Approach 
In Program 2, we use a programming 

technique known as looping. This means 
that various sections of the program are 
used more than once while we are doing 
our problem. For example, one ADD 
command (in Location 2 0 6 of Program 
2) does all of the work accomplished by 
the 49 ADD commands of Program 1. 
Since Program 2's ADD command has 
to add numbers residing in different 
memory cells, the address part of the 
command must be modified during the 
program. 

Before we turn to the program itself, 
let us get its logic firmly in mind by 
studying its Flow Chart, pictured on the 
opposite page. In boxes 1 and 2, the yari
ables of our "loop"-i and S1-i, are given 
their starting values of 1 and O, respect
ively. Box 3 (the ADD command) is 
where the assigned task is actually per
formed; boxes 4 and 5 perform loop con
trol functions, deciding that the loop is 
to be performed again or that the pro
gram is to proceed to the next step. Boxes 
6 and 7 describe the terminal portion of 
the program, where we store our result 
(box 6) and halt (box 7). 

The Program 
Now let us look at the program which 

carries out this logic. Its first moves (i.e., 
the commands in memory cells 201 and 
202) are concerned with the ADD com
mand in Location 206 which will be used 
throughout the program. What these 
two commands do is to set this ADD 
command to the first value that it must 
have: that is, +01 101. (So tha.t it will 
be readily available to us, we have pre
viously stored this number in Location 
216-the first empty memory cell fol
lowing those devoted to the program 
proper.) 

In cells 2 0 3 and 2 04 of Program 2, we 
set the partial sum Si-l to its initial val
ue of zero. Si, you will remember, is the 
sum of the first i X's. S1-i, then, will be 
the subtotal which precedes S1• The 
quantity i starts out with a value of 1, 
and we first compute S1 (which is equal 
to X1 ) by adding X 1 to S0 (which is 
equal to 0). 

In cell 2 0 5, we have a clear and •dd 
(CLA) command which places the cur
rent value of S1•1 in the accumulator. 
The ADD command in cell 206 adds X 1 

to S1- i, yielding Si, our subtotal. The 
store (STO) command in memory cell 
207 places that value of S1 back into 
Location 700. 

Now we are ready to see whether we 
are finished. If i is equal to 5 0, we have 
just cQt1nputed S110, which is eq1'4l to the 
sum of the first 50 X's and, he11ce, is 
equal to S, our answer. Iq that event, we 
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FLOW CHART I 

50 r---------
51 

Box Op Code 
No. Location Mnemonic 

I 201 CLA 
2 202 ADD 
3 203 ADD 

--
49 249 ADD 
50 250 ADD 
51 251 STO 
52 252 HLT 

Box Op Code 
No. Location Mnemonic 

I 201 CLA 
I 202 STO 
2 203 CLA 
2 204 STO 
3 205 CLA 
3 206 ADD 

3 207 STO 
4 208 CLA 
4 209 SUB 

4 210 lZE 

5 211 CLA 

5 212 ADD 

5 213 STO 
5 214 TRA 
7 215 HLT 

216 
217 
218 
219 

FLOW CHAU 2 FLOW CHART l 

s, = s,., + x, 

i +l~ i 

i + I -+ i, i = 511 

PROGRAM I 
OP 

Sign Code m Remarks 

+ 00 IOI Cf IOI) =X1 =S1 ~A 
+ 01 102 C I 02) + C(A) = X2 + S1 ~A 
+ 01 103 C(I03) + C(A) = ~ + S2 ~A 

+ 01 149 Cf 149) + C(A) = X49 + S41 ~A 
+ 01 150 C 150) + C (A) = Xso + S49 = S ~ A 
+ 03 700 C(A) = S~700 
+ 12 999 STOP 

PROGRAM 2 

OP 
Sign Code m Remarks 

+ 00 216 C(216) = + 01 IOI~ A 
+ 03 206 C(A) = + 01 101=+01L(X1)~206 
+ 00 217 C(217) = O = S1-1 = S,~ A 
+ 03 700 Cf A) = 0 = Si-1 = S0 ~ 700 
+ 00 700 C 700) = Si-1 ~A 
+ 01 IOI C( IOO+i) + C(A) = X, + S1-1 = 

S,~A 

+ 03 700 C(A) = S, ~ 700 
+ 00 218 C(.218) = + 01 150 = + 01 L(X50) ~A 
+ 02 206 C(A)-C(206) :C(A)- +ol ( IOO+i) = 

C(A) - ( + 01 L(X 1)) = 50 - i ~A 
+ 06 215 If i = 50 take the next command from 215, 

otherwise take the next command from 211. 
+ 00 206 i-=/= 50. Cf 206) = + 01 ( IOO+i) = 

219 
+01 L Xi) ~A 

+ 01 C(A) + C(219) = +ol (IOO+i) +I= 
+01(100+i+1) = +01 L(X1+1) ~A 

+ 03 206 C(A) = + 01 L(X,+1) ~ 206 
+ 04 205 Take next command from 205 
+ 1-2 999 STOP 
+ 01 JOI + 01 L(Xi) 
+ 00 000 0 
+ 01 150 + 01 L(X,.) 
+ 00 001 I 



are through, since we have already placed 
this answer in Location 700, which is 
just where we want it. However, if i is 
not equal to 50, we are not yet through. 
Instead, we must add 1 to the current 
value of i aml perform more ad.ditions. 

Commands which permit us to find 
out what the current value of i is are 
contained in cells 208, 209, and 210. 
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require 19 spaces in memory as compared 
with the 51 spaces that were needed by 
Program 1. However, as we work our 
way through the program we see that 
those commands located in cells 2 0 5 
through 210 are each executed exactly 
once; the commands located in cells 205 
through 210 are each executed 50 times; 
the commands located in cells 211 

PROGRAM 3 

Box Op Code OP 
No. location Mnemonic Sign Code m Remarks 

I 201 CLA + 00 IOI 
2 202 lXA + 07 207 
3 203 ADD 01 151 

4 20'4 TIX + 09 203 

5 205 STO + 03 700 
6 206 HLT + 12 999 

207 + 00 0'4~ 

We find this value by looking at the ad
dress part of the command in Location 
2 0 6. This is the address of Xi, and we 
know that X 1 is stored in Loca.tion 100 
+ i. So, if cell 206 currently contains 
+ 01 150, then we know that i must be 
equal to 50. We check this by subtract
ing the current contents of cell 206 from 
+ 01 150 (which we have thoughtfully 
placed in cell 218 in advance). If the 
result of this subtraction is not zero, then 
we know that i is not yet 5 0. 

In the event that i is equal to 5 0, then, 
of course, the problem is over and we go 
to Location 215, which contains a HLT, 
for our next command. In the event 
that i is not yet equal to 5 0, we go to 
Location 211, where we increase i by 1. 
Since the only command in our program 
which refers to i directly is in Location 
2 0 6 (this is the command in which we 
add X1 to S1-1) , we must add 1 to the 
address part of 2 0 6 in order to increase i. 
This is done in Locations 211, -212, and 
213. At Location 214, we go back to 
Location 205 and repeat this whole 
process. 

Self-Improvement 
If you have followed us closely, you 

will already have noted that the contents 
of cell 2 06 are changed several times 
during the execution of Program 2. This 
is important because cell 206 contains 
one of the commands in the program. 
We observe, thus, that a program may 
alter itself. This is very important. 

Now let us see how our Program 2 
compares with our first, more simple
minded, Program 1. We see that Program 
2 and the constants associated with it 

C(IOI) =X1 = S,~A 
Rirhtmost 3 digits of C(207) = 0'49 ~ B 
C 151 - C(B)) + C(A) = X1 + S1-1 = 

S1~A 
C(B) -1 ~B. If C(B) =F 0 go to 203, 

If C(B) = 0 go to 205. 
C(A) = S ~ 700. 

STOP 
49 

through 214 are each executed 49 times, 
and the command in cell 215 is executed 
once. When we add all these executions 
up, we observe that 501 commands are 
executed by Program 2 in the course of 
adding up our 5 0 numbers. This means 
thait Program 2 will require ten times as 
long to execute as Program 1. So, by sav
ing a little over a factor of two in mem
ory requirements, we have sacrificed a 
factor of about ten in speed. It is inter
esting to note, however, that by chang
ing the constant in cell _ 218 we can make 
Program 2 add up any number of num
bers that we may require. 

A Balanced Approach 
In our third and last program, we do 

the same problem in addition, achieve 
even better savings in space, and make 
a substantial improvement over Program 
2 in time. · 

Program 3 employs the B register, or 
index register. We hope that the impor
tance of this register will be illustrated 
in this example. 

Program 3 is similar to Program 1 in 
that we are not required to store inter
mediate partial sums as we go through 
the program. We begin, in Location 201, 
with a clear and add (CLA) command 
which places our first number (Xi) in 
the accumulator. Next, in Location 202, 
we place the constant 49 in the B regis
ter. In Location 203, we have an ADD 
command-an ADD command, how
ever, whose sign is minus. Let us see 
what happens the first time we execute 
the command in Location 203. The con
trol counter now contains 203, so we 
place the contents of 203 (namely, -01 
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1 5 1 ) in the instruction register. We then 
add 1 to the control counter, so that it 
now contains 204. Next, we examine the 
sign of the instruction register and ob
serve that it is minus. This tells us that 
before executing the command we must 
subtract the contents of the B register 
from the address part of the instruction 
register. The address part of the instruc
tion register contains 151; the B register 
contains 49. After we perform the re
quired subtraction, the instruction reg
ister contains 01 102; we then proceed 
to execute this command. It says: Add 
the contents of 102 to the number that 
is already in the accumulator. The num
ber that is already in the accumulator is 
X1 (or S1, as we sometimes call it). The 
contents of 102 is X2 • We complete this 
addition, leaving X1 + X2 = s.i in the 
accumulator. 

In Location 204, we have a transfer on 
imlex (TIX) command. This command 
tells the machine to subtract 1 from the 
B register and then, if the new contents 
of Bis different from 0, to take its next 
command from Location 203 again. The 
first time we went through this piece of 
code, the B register contained 49; after 
we perform this subtraction, it will con
tain 48. Since 48 is indeed 4ifferent from 
0, we must go back to 203 for our next 
command. And since 203 contains the 
command -01 151, we must subtract 
48 (the contents of B) from 151 before 
executing the command. The command 
tha.t we actually execute is 01 10 3, which 
says: Add X3 to the number that is al
ready in the accumulator. 

HLT at Zero 
We keep repeating this two-step loop 

until we have added X 11o into the accum
ula.tor. At that time, the B register will 
contain 1. This time, when we execute 
the command in 2 04 and subtract 1 from 
the B register, our result is 0. Now, for 
the first time, the B register does contain 
0, and we are sent to _20 5 for our next 
command. Here, we are told to store 
(STO) the result, S, in Location 700·. 
This completes the program, and we go 
to Location 206 where we are told to 
HLT. 

The total memory required for this 
code is 7 cells. The total number of com
mands executed is 102, since those in 
Locations 201, 202, 20S, and 206 are 
each executed once, and the ones in 203 
and 204 arft executed 49 times each. 

This code, then, requires one-seventh 
the memory required by Program 1, and 
takes only twice as long to execute. If we 
were doing this problem in real life, this 
is undoubtedly the code that we would 
use. 
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Part IV: Progratnrning Languages 
We have just written three programs 

for the SMAC Computer. These pro
grams were written down in the lan
guage of the computer itself. This type 
of programming is called Machine Lan
guage Programming. 

When we program in machine lan
guage we write down the actual address 
in memory where each command is to be 
stored; we write the actual numeric op
eration code for each command and we 
write the numeric address of the operand 
which this command refers to. If we are 
writing short programs for a decimal or 
alphanumeric computer, machine lan
guage programming can be relatively 
satisfactory. However, when we try to 
write long programs or when we try to 
write programs for binary computers, 
the drawbacks of machine language cod
ing soon become obvious. 

The Human Factor 
One of the major difficulties is associ

ated with the fact that people make mis
takes when they write programs. If we 
have made a mistake in a machine lan
guage program and we wish to correct 
that mistake by inserting an extra com
mand in the middle of our program, then 
it is necessary for us to go through the 
whole program and advance by one the 
location in which each command follow
ing the inserted command is to be placed 
in memory; at the same time, we must 
be careful to modify appropriately any 
operand addresses which refer to that 
section of coding. If our code were sev
eral thousand words long this would ob
viously be an impermissibly tedious task. 

2+1=11? 
If we try to write programs in ma

chine language for a binary computer, 
the situation immediately becomes even 
worse. Now the probability of our mak
ing an error is compounded by the fact 
that we are working in a number system 
which is unfamiliar to us and by the 
necessity for our writing down many 
more symbols than were necessary for a 
decimal or alphanumeric machine. For 
example, the word length on the 7094 
Computer is 36 binary digits and the ad
dress length on that computer is 15 
binary digits. This means that if we were 
to write in machine language for the 
7094, then for each instruction, we 
would have to write a location consisting 
of 15 binary digits and a command con
sisting of 3 6 binary digits. Even if we 
were able to write down a sequence of 
such commands. without making any 

errors, we would be almost certain to 
make some mistakes when we tried to 
punch those commands into tabula ting 
cards. 

Quite early in the game it began to 
occur to people that the computers 
which were the source of all these diffi
culties might also offer solutions for some 
of them. For example, it proved very 

easy to write a program called an Octal 
Loader which allowed the programmer 
to write his program in the .octal number 
system instead of in the binary system. 
It turns out that it is almost trivial to 
translate back and forth between the 
octal (or base 8) number system and the 
binary (or base 2) system; however, if 
one writes in the octal system, he needs 
to write down only one-third as many 
symbols as he would if he were writing 
in the binary system. The programmer 
who wrote his program down in octal 
would also punch it into cards in octal. 
Then, instead of loading his program di
rectly into the machine as he would have 
done had it been a machine language pro
gram, he would first load the octal loader 
program into the machine. This octal 
loader program would then treat his code 
as data; it would read in the octal cards, 
translate them into regular binary ma
chine language, and output this binary 
machine language program on a separate 
card deck. Now, whenever the program
mer wishes to run his problem, he loads 
this binary machine language deck into 
the computer followed by whatever data 
he wants to process. 

The process explained above is typical 

of the sorts of things that happen in con
nection with all automatic programming 
systems: a program is written in some 
language other than machine language; 
it is then input to some sort of a translat
ing or processing routine which converts 
it into a machine language program. This 
machine language program is the output 
of the automatic programming system. 
This translation need occur only once, 
provided the programmer has not made 
a mistake. 

Assembly Programs 
After the invention of the octal load

er, developments in automatic program
ming took place very rapidly. It became 
clear that it would be very easy to have 
the computer translate mnemonic oper
ation codes such as CLA, ADD, TRA, 
etc., into the corresponding numeric ma
chine-language operation codes. It also 
became clear that it would be possible 
for the programmer to write his program 
using symbolic addresses instead of ab
solute numeric addresses, and that the 
computer could then translate these 
symbolic addresses into the required ab
solute numeric addresses. So, for exam
ple, the programmer instead of writing 
101, might write X and the computer 
would be given the task of translating 
this symbolic address, X, into the abso
lute address 101. The programs which 
perform the translation from mnemonic 
operation codes to numeric operation 
codes and from symbolic addresses to 
numeric addresses are called Assembly 
Programs or Symbolic Assembly Pro
grams. 

Let SMAC Do It 
These symbolic assembly programs 

still have the property that each line of 
code that the programmer writes down 
generates only one machine-language in
struction; the programmer is still think
ing in the way that the machine thinks. 
He must still break down his program 
into basic machine instructions. He has 
only delegated to the machine certain 
tedious bookkeeping tasks. 

The language that the programmer 
uses when writing a program which is to 
be processed by an Assembler is called an 
Assembly Language. These days no one 
writes in absolute machine language. 
When we say that a program is written 
in machine language, we mean that it is 
written in assembly language. 

Problem Oriented Languages 
Because of the essential identity be

tween assembly language and machine 
language, the programming of a problem 



in assembly language was still a fairly 
tedious task. However, it wasn't long 
before several people got the idea that it 
might be possible to develop a program
ming language which resembled more 
closely the language we ordinarily use 
when describing a procedure for solving 
a problem on a computer. The idea was, 
of course, that the programmer would 
write his program in this uProcedure 
Oriented Language" and that the com
puter, using a program called a Compiler, 
would translate this code into a machine 
language code. 

Source Programs 
Let us examine some of the terminol

ogy associated with automatic program
ming systems. The programming lan
guages we are talking about are called 
Procedure Oriented Languages or Prob
lem Oriented Languages or sometimes, 
for short, POL's. The computer pro-
grams which translate programs written 
in these POL's into machine language 
are called Compilers, or Processors, or 
Translators. Programs written in POL's 
are called Source Programs; the machine 
language programs into which they are 
translated are called Object Programs. 

Problem Oriented Languages have de
veloped in two principal :fields: engineer
ing-scientific computing and commer
cial data processing. · When trying to 
solve problems in engineering or science, 
one is usually concerned with doing a 
lot of fairly complicated arithmetic. 
Often, it is difficult to tell in advance 
when doing such problems what the sizes 
of the numbers involved will be. These 
factors must be taken into account when 
one is designing a language which is to 
be used to describe procedures for solving 
this class of problems. On the other hand, 
in solving problems in commercial data 
processing, one has to do only a small 
amount of arithmetic in general and the 
sizes of the quantities involved are rela
tively well known in advance; however, 
when doing such problems one is often 
faced with very much more input-out
put than is required in most scientific 
calculations. Languages to be used in de
scribing solutions of business problems 
must reflect these properties. 

FORTRAN 
By far the most popular engineering 

and scientific POL in use today is FOR
TRAN. FORTRAN is an acronym for 
Formula Translation. This language was 
developed by the International Business 
Machines Corporation in cooperation 
with certain computer users; Robert 
Hughes of LRL's Livermore Laboratory 
is one of the designers of this language. 

The first machine for which a FOR
TRAN Compiler was written was the 
IBM 704. That Compiler was completed 
in 19 5 6 at a cost of around half a million 
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dollars. Since that time, FOR TRAN 
Compilers have been written for many 
other computers, and their unit cost has 
gone down substantially. 

In Figure 1, an example of a FOR
TRAN program is shown. This program 
does the same problem that we did last 
month. The problem is simply to add up 
5 0 numbers. In FOR TRAN, we call 
these numbers X ( 1 ) , X ( 2) , X ( 3 ) , . . . 
X ( 5 0) . The first statement in the pro
gram DIMENSION X ( 5 o) simply tells 
the FORTRAN O>mpiler that there are 
to be at most 50 X's. The next statement 
sets the partial sum S equal to 0. Inci
dentally, the equals sign in FOR TRAN 
has a somewhat different meaning than 
it does in ordinary algebra. In FOR
TRAN, the equals sign means .. is to be 
replaced by." So, for example, S= 0 
means that the current value of the var
iable whose name is Sis to be replaced by 
0. The next statement, DO 23 I= 1,50, 
means that the computer is to execute all 

FORTRAN 
DIMENSION X(50) 

S=O 
DO 23 I= 1.50 

23 s=s+xm 

the statements following this one down 
through and including statement num
ber 23, and it is to do this while the 
variable I successively takes on the 
values 1,2,3, ... , 50. Statement 23, as a 
matter of fact, is the very next state
ment. It says S=S+X(l) which means 
that the variable whose name is S is to 
be replaced by the current value of 
s+X(l). This statement is executed 
first with I= 1 and S = 0, so that the 
new S is equal to o+X( 1). The next 
time through, I is equal to 2, and the 
new Sis equal to X (1) + X (2). The 
next time we obtain X ( 1 ) + X ( 2) + 
X(3) and so on. Finally, when 1=50, 
we obtain the sum of all 50 X's. The 
FOR TRAN Compiler will translate this 
source program into an object program 
which looks very much like Program No. 
3 of last month's article. 

ALGOL 
ALGOL is another engineering and 

scientific language. ALGOL, which is 
an acronym for Algorithmic Language, 
was designed in 19 5 8 by a committee of 
European and American mathematics 
and computer experts. The ALGOL 
language is more elegant than · FOR
TRAN and is much more precisely spe
cified. ALGOL Compilers have been 
written for the CDC 1604, the Bur
roughs B50.00, and the IBM 7090 com
puters. 

In Figure 2, an ALGOL program to 
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solve our addition program is exhibited. 
Although ALGOL is a more precise lan
guage than FOR TRAN, it is somewhat 
farther away from our usual algebraic 

ALGOL 
beqin real array X[I:50]; 

real S; lnteqer I; 
S : = 0. ; for I : = l step l until 50 

do S: = S + Xffi: end; 

language than FOR TRAN is and hence 
has less intuitive appeal to many of us. 

In the United States, ALGOL is used 
at certain university computer centers, 
such as the Stanford unter. It is also 
used very extensively in Burroughs Com
puter Installations. 

Examples of ALGOL programming 
can be seen in the Algorithm section of 
the Commutiica tions of the Association 
for Computing Machinery every month. 

Business Languages 
Late in 19"58, the Department of De

fense organized a committee of comput
er users and manufacturers to design and 
specify a common business-oriented 
computer language. The language which 
this group designed is now known as 
COBOL. It is, in fact, a common busi
ness-oriented language and is very much 
more popular than any other such lan
guage. COBOL Compilers have been 
written for all principal computers on 
which business applications are per
formed. 

The COBOL language is designed to 
deal effectively with the large input
output problem associated with commer
cial data proce'Jsing, and with the logical 

COBOL 
MOVE O. TO S 

PERFORM SUMMING 
VARYING I FROM l BY 1 

UNTil. I EQUALS 50; END RUN. 

SUMMING. ADD xm TO s. 

complexity of business computer appli
cations. It is, in fact, true that business 
applications are quite often very much 
more complex logically than are engi
neering and scientific applications. 

For exainple, consider the straight
forward problem of computing a sol
dier's pay. If the soldier goes AWOL 
for one day on the 28th of February, 
1963, he loses three days' pay; however, 
should he go AWOL for one day on the 
31st of March, 1963, he does not lose any 
pay at all. If we write a computer pro
gram to compute military payroll, the 
program must cope somehow with this 
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rather anomalous situation. In Figure 3, 
a segment of a COBOL program to add 
up 5 0 numbers is illustrated. This seg
ment of the COBOL program is called 
the procedure section. There are other 
sections called the environment section 
and the data section. 

Programming Made Easy 

In the eight years since the invention 
of Problem Oriented Languages, their use 
has increased phenomenally. At the Lab
oratory, more than 5 0 % of the programs 
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currently being written are being writ
ten in FOR TRAN. In other large com
puter installations, almost 90 % of all 
programs are now written in FOR
TRAN. Many business installations 
write only in COBOL. 

The reasons for this revolution are 
fairly clear. It is possible to learn a lan
guage like FOR TRAN in about a week, 
whereas to learn machine language pro
gramming on a large binary computer 
would require two or three months. Once 
a program has been written in a problem 
oriented language, it is possible to com-

pile and run it on any computer for 
which a Compiler for that language has 
been constructed. 

A remarkable application of FOR
TRAN occurred at Livermore recently 
when, under the direction of Hans 
Bruijnes, a FOR TRAN Compiler for the 
CDC 3600 was written in the FOR
TRAN language. The construction of 
this Compiler required less than one man 
year; this is to be contrasted with the 
20 man years that were required for the 
construction of the first FOR TRAN 
Compiler for the IBM 704. 
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Part V: Cotnputers at LRL 
In the first part o( this article, .we. 

asserted that the Radiation Laboratory 
contained "one of the greatest concen
trations of automatic computing power 
to be found anywhere on earth." In this 
chapter we hope to make this strong 
assertion seem a little more believable by 
reviewing the history of computers at 
LRL and describing the models currently 
muse. 

The Laboratory acquired its first 
automatic digital computer in 1952; this 
machine, which was installed at the 
Livermore Laboratory, was the famous 
UNIV AC I. it was manufactured by 
Remington-Rand and was the first 
stored-program automatic digital com
puter to be offered commercially in the 
United States. The Laboratory's machine 
was the fifth to be manufactured. 

Dawn of an Age 
Although the UNIVAC I was slow 

by modern standards (its memory cycle 
time was about 242 microseconds), it 
had many sophisticated features. Its only 
input-output medium, other than a type
writer for operator instructions, was 
magnetic tape; magnetic tape input
output was buffered, which means that 
the machine could compute at the same 
time as it was reading or writing on 
tape. 

However, the fact that the only input 
medium to the machine (for both pro
grams and data) was magnetic tape 
created certain problems. It was not pos
sible, at the time when the UNIVAC I 
was installed, to punch data on cards 
and then transfer them to magnetic_ tape; 
one had to use a machine called a "Uni
typer" to transfer data directly from a 
keyboard to magnetic tape. The Unitype 
Operator could not conveniently see 
what she had put on the tape, and had no 
convenient method for verifying this 
information. The great success of the 
UNIVAC I operation is a tribute to Liv
ermore unitypist Cecilia Larsen, who 
during her entire career at the Labora
tory has made only 17 mistakes. 

Binary Machines 
The next machine to be installed, an 

IBM 701, was the first of a long sequence 
of IBM scientific computers at the Liv
ermore and Berkeley Laboratories. The 
701 was a binary machine-unlike the 
UNIVAC I, which· was alphanumeric. 
It had a word length of 36 binary digits. 

The 701 employed a Williams Tube 
memory. In this memory system, infor
mation was stored in the form of dots 

on the surface of a cathode ray tube. It 
was probably the least reliable memory 
system ever invented. Informatipn would 
capriciously disappear from or appear in 
the memory; occasionally when some
one opened a door or window and allowed 
a beam of sunlight to strike one of the 
tubes' surfaces, the machine would pick 
up several bits. 

When the 701 
was released by the 
Livermore Labora
tory in 1956, it was 
moved to UC's 

:'""",;,"""=·....................... ........... Berkeley campus, 
:~::: :::::::: ~-:-;:::.::::::::.-:-.;:::::::::::::.::::·... where it became 

~[~:~~~I the first computer 
to be installed at 

~ the campus Com
~~ puter Center. At 

--"""-'~~~__;J the time of this 
move, its Williams Tube memory was 
replaced by a magnetic core memory, 
which proved to be very much more 
reliable. 

A Compatible Family 
The next machines to be installed at 

Livermore were IBM 704's. They re
placed the 701. The introduction of the 
704 in 19 5 6 marked the beginning of a 
period in the history of scientific com
putation which is just now coming to 
an end. The 704 was the first of a se
quence of IBM-produced scientific com
puters which were to be more or less 
compatible; that is, programs written 
for one member of the sequence could 
be run an subsequent members of the se
quence. Members of this series of com
puters were the 704, the 709, the 7090, 
the 7094-11, the 7040, and the 7044. 
One or more of each of these types of 
computers has been installed at the Lab
oratory at one time or another. 

Like the 701, all of these machines 
were binary 3 6-bit word computers. 
They employed sign and magnitude 
arithmetic, used single-address logic, and 
had one command per word. All of these 
machines, with the exception of the 704, 
had buffered input-output. The 704 and 
709 were vacuum-tube machines, and 
all the rest are solid-state. 

Another family of scientific com
puters represented at the Laboratory in
cludes the CDC (Control Data Corpora
tion) 1604 and 3600. These are large
scale scientific machines; they have a 48-
bit word, use single-address logic, and 
(like the UNIVAC I) have two com
mands per word. 

There are currently two 3600 com-

puters installed at Livermore. It is for 
these machines that the FOR TRAN 
Compiler written in the FOR TRAN 
language was devised . . 

Few-of-a-Kind Machines 
From a very early time in its history, 

the Livermore Laboratory has supported 
the development of advanced computer 
hardware. The Laboratory was moti
vated to do this because it had comput
ing requirements which continuously 
outpaced the capacities of commercially 
available computers. 

The first machine whose development 
the Laboratory sponsored was the LARC 
(Livermore Advanced Research Com
puter). It was designed and manu
factured by Remington-Rand to the 
Laboratory's specifications, and was 
finally delivered to the Laboratory in 
1960. One additional LARC was manu
factured for the Navy's Bureau of Ships. 

The LARC is a decimal machine with 
a 12-decimal digit word. Its design in
cludes many important innovations. It 
was the first machine to incorporate an 
independent computer as an input
output processor. It was also the first 
machine to employ large-scale mass stor
age devices for input and output buffer
ing. Another innovation which it in
cluded was the use of a cathode ray tube 
as a primary output medium. 

The STRETCH 
The development of the IBM 

STRETCH computer was initially spon
sored by the Los Alamos Scientific Lab
oratory. It is another large-scale binary, 
scientific computer. Approximately seven 
of these machines were manufactured; 
machine number two is at the Livermore 
Laboratory. 

Notable features of the STRETCH 
system are a very high-speed massrstor
age system and ingenious hardware pro
visions for setting up subsequent com
mands for execution while processing 
the current command. 

Although the CDC 6600 Computer is 
now part of the Control Data Corpora
tion's standard product line, the first 
machine was developed under a contract 
'with the Livermore Laboratory. This 
machine, which is the most powerful of 
all the computers mentioned so far, has 
just been delivered to the Laboratory. 

The 6600 incorporates a radical de
sign. Because of this design, it can per
form several arithmetic or logical func
tions simultaneously. Its input and out
put are handled by ten independent com-
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puters or peripheral processors which 
are built into the main machine. The 
main memory consists of 130,000 words 
of 60 binary digits each. 

Support Computers 
The problem of preparing information 

to be processed by computers, and the 
problem of presenting output from these 
computers in a meaningful form, are 
very difficult ones. The Berkeley and 
Livermore Laboratories have arrived at 
.somewhat different solutions to these 
p: oblems. 

These solutions depend on the nature 
of the problems done at the two sites. 
At Berkeley, the principal computation 
requirement is in the area of scientific 
data reduction. Here, very large volumes 
of input are involved and only moderate 
volumes of output result. At Livermore, 
the situation is just reversed. There, the 
principal interest is in solving large 
problems of hydrodynamics; a small 
volume of input may result in a very 
large volume of output. 

In Berkeley, the large volume of data 
arising from the measurement of the 
position of tracks on bubble chamber 
film is either fed to computers directly 
from automatic measuring machines 
(like the Flying-Spot Digitizer) or is 
written by measuring machines on a 
medium such as paper tape, cards, or 
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magnetic tape, which may then be read 
by a computer. The primary input 
medium for programs and for other 
types of data is cards. These cards are 
not read directly into large-scale com
puters but are first transcribed onto 
magnetic tape. The transcription is per- . 
formed by small peripheral computers; 
IBM 140 I's are used for this purpose at 
both Berkeley and Livermore. 

At Berkeley, the peripheral computers 
also serve as printers. Output which is 
to be printed is first written by the large 
scientific computers on magnetic tape, 
and the information on the tapes is later 
printed through the facilities of one of 
the peripheral 140 l's. 

The Versatile 1401 
The IBM 1401 (which, by the way, is 

~.he most popular computer ever manu
factured )i is an alphanumeric, variable
word - length, two-address machine. A 
variety of input-output equipment may 
be attached to the 1401, including mag
netic tapes, card readers, card punches, 
printers, plotters, paper tape readers, etc. 
The 1401 can read cards at the rate of 
8 00 cards per minute, and it can print 
at the rate of 600 lines per minute. There 
are currently four 140l's in Berkeley 
and two in Livermore. 

Printing at Livermore 
At the Livermore Lab, the printing 

problem is much larger than it is in 
Berkeley. Historically, Livermore has 
solved this problem by procuring very 
high-speed printers. Printers currently 
installed at Livermore include two 5 000-
line-per-minute SC 5 000 machines, man
ufactured by General Dynamics, and the 
recently delivered 3 0,000-line-per-min
ute Radiation Inc. printer. 

Storage Systems 
It is perfectly obvious that even if 

the entire scientific staff of the Labora
tory spent all of its time examining 
computer output, it would still be pos
sible to lcok at only a small fraction of 
the output of these very high-speed 
printers. The difficulty is that although 
we may want to see only a few numbers 
which result from a given computer run, 
we generally do not know in advance 
just what numbers these are; so, instead 
of printing out only a few numbers and 
~hen rerunning the problem whenever 
we want to print out a few more num
bers (which would be very expensive), 
we quite of ten print out a very compre
hensive selection from the output of a 
given computer run. We can then store 
this output on our shelf and whenever 
we want to look at a few more numbers 
we can find them in the course of five 
or ten minutes without asking for an 

Cotnputing Machines at the Laboratory 
(brought up to date as of September 196 5 ) 

Machine Memory Memory Power 
Manufacturer Word Size Number Site Relative Name Size Cycle Time 

to 7094 

1..01 IBM I Alphanumeric 4000-12000 11.5 Micro- 2 L -Character Characters seconds 4 B 

7040 IBM 36 Binary 32,768 8 Micro-
I B 0.2 Digits Words seconds 

I 

I 

7044 IBM 
36 Binary 32,768 2 Micro-

I B 0 .5 
Digits Words seconds 

36 Binarv 
32,768 and 2.0 Micro- 2 L 7094 IBM Digits 65,536 seconds I B I I 

Words 
----- I 

48 Binary 65,536 1.5 Micro- I ! 
3600 CDC 2 I L 1.5 Digits Words seconds I I 

I 
I 

12 Decimal 30,000 4 Micro-
I 

LARC Sperry-Rand L 
I 

Digits Words seconds I 

I 
1.5 

I 
I 1-

3 
-

STRETCH IBM ! 64 Binary 96,000 2.2 Micro-
I L Digits Words seconds 

I 

-1 
6600 CDC 60 Binary 131.092 I Micro- I L I 

16 Digits Words second I 8 I 



additional computer run. 
This system works quite effectively. 

However, it has obvious disadvantages 
in that it creates a large demand for 
~torage space and the paper costs associ
ated with it are very large. 

In order to eliminate these difficulties 
and to create a generally more effective 
man-machine relationship, a new input
output handling system is presently be
ing designed and implemented at Liver
more. This system is called Octopus. It 
substitutes for the present paper storage 
of computer output a large machine
readable memory. This memory is to 
hold all output from the principal Liv
ermore computers for as long as this out
put is of interest. The user will retrieve 
information from this mass memory 
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either via conventional printers or via 
one of several remote input-output sta
tions. Current versions of these input
output stations include a teletype ma
chine and a small incremental plotter; 
ultimately the stations will include 
CRT-type display devices. 

When the user wants some informa
tion he approaches the teletype keyboard, 
types in the serial number of his prob
lem and specifications about the data 
that he wants. This data will then be 
retrieved from the mass memory and 
presented to him on the input-output 
device of his choice. A Digital Equip
ment Corporation PDP-6 Computer is 
being acquired to control the Octopus 
complex. 

Livermore people who are working on 
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the Octopus project include George 
ing, Bob Abbott, Bob Wyman, J. Carver 
Michael, Norman Hardy, Bud Wirsch
Hill, Ed Lafranchi, and Jerry Russell. 

The chart on page 7 lists some vital 
statistics about computers currently in
stalled at the Laboratory. The column 
headed "Power Relative to 7094" re
quires some explanation. When a 2 ap
pears in this column, it means that the 
computer in question could do in one 
hour a set of problems that the 7094 
would require two hours to do, and so 
on. 

Of course, different computers are 
better at some problems than others; the 
figures given reflect a typical mix of 
Livermore problems. 
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Part VI: Applications at LRL 
So far in this series, we have described 

the way in which digital computers 
work; we have told about the automatic 
programming systems which make the 
use of digital computers easier; and we 
have described the more important com
puters which are currently installed at 
the Laboratory. In this chapter we will 
tell about some of the problems which 
are solved on these computers. 

Hydrodynamics 
A large proportion of the calcula

tions which are done at the Livermore 
Laboratory are associated with hydrody
namics problems. These problems have to 
do with the motion of gases or liquids; 
they arise very frequently in connection 
with programmatic research conducted 
at Livermore. 

A mathematical model of a new nu
clear warhead can be put on a computer 
to determine whether the model has a 
prospect of success or failure. Many 
models can be tested inexpensively, and 
many failures eliminated without actu
ally constructing prototypes. In develop
ing mathematical models, the larger the 
number of factors taken into account by 
the model, the more accurate the evalu
ation by the machine. 

Simulated A-Tests 
Computers, although no substitute for 

the testing of the final product, are in a 
sense an unlimited "pretesting" range. 
The only alternative to the use of com
puters would be crude models, much 
trial-and-error field testing, many fail
ures, greater cost, and slower progress. 

Computers are essential in other re
search and development at Livermore. 
They were critical in the design of the 
reactors for Project Pluto, the program 
to develop a nuclear ramjet engine. 

Project Plowshare, the program to de
velop a technology for the peaceful use 
of nuclear explosives, is also dependent on 
computers. The design of special nuclear 
devices for a variety of special purposes 
in Plowshare is done in much the same 
way as is the design of nuclear weapons. 
Computers are also coming into use !n 
the analysis of plasmas, the extremely hot 
gases produced in experiment.al machines 
in Project Sherwood, the program to de
velop controlled thermonuclear reac
tions. 

Mathematically speaking, a hydrody
namics problem involves the solution of 
partial differential equations. In order to 
solve these equations on a digital com
puter, one generally substitutes for them 

di1ference equations, whose solutions are. 
one hopes, close to the solutions of the 
original equations. 

These problems require very large 
amounts of computer time for their solu
tion. They constitute an important rea
son for the Livermore Laboratory's ac
quisition of very large-scale machines, 
such as the new Control Data 6600. 

In a rather interesting instance of a 
hydrodynamics application, Livermore 
physicist Chuck Leith is using the LARC 

computer to study che global movement 
of air masses. His programs are capable 
of computing the movement of air in an 
entire hemisphere. It is hoped that this 
work will ultimately lead to moderately 
long-range weather forecasting systems. 

Monte Carlo 
A large class of problems which are 

of interest at Livermore are attacked 
most conveniently by so-called Monte 
Carlo techniques. These techniques in
volve devising a probabilistic game whose 
distributions of outcomes corresponds 
to the solution of a certain mathematical 
or physical problem, and then of playing 
that game with a digital computer and 
observing this distribution of outcomes. 

Suppose, for example, that the prob
lem that we are faced with is determin
ing the area of a certain figure which we 
have inscribed on a square sheet of fiber
board. There are a number of ways in 
which we could attack the problem. We 
could, for example, cover the sheet of 
fiberboard with a network of grid lines 
which divide it up into small squares, 
and then count the number of such small 
squares which lie inside our figure. Alter
natively, we could take a handsaw and 
cut out the figure and weigh it (its 
weight would presumably be proportion
al to its area). Or, using numerical tech
niques in a computer, we could compute 
the integrals of the functions which de-
fine the bounding curves of our figure. 
These methods are all deterministic ways 
of solving our problem. Let us consider 

a Monte Carlo technique for solving the 
same problem. 

Suppose we have a dart-throwing ma
chine with which it is possible to hit our 
piece of fiberboard at each throw, but 
which has the property that successive 
throws of the dart will hit any section 
of the board with equal probability. This 
means that the probability of hitting 
any figure inscribed on our rectangle is 
proportional to the area of that figure. 
We now proceed empirically to deter
mine the probability of hitting the figure 
inscribed on our piece of fiberboard by 
throwing darts; we count as successes 
throws on which we hit our figure and 
as failures throws on which we miss our 
figure. We can then estimate the proba
bility of hitting the figure by dividing 
our total number of successes by our 
total number of throws. Then, to deter
mine the area of the figure, we need only 
to multiply this estimated probability 
by the total area of the board. 

We can play this game inside of a 
digital computer by substituting for a 
dart throw the selection of two random 
numbers, which represent the coordinates 
of the point on our board. 

By using the Monte Carlo method, it 
is possible to attack large classes of phys
ical problems which do not readily yield 
to more sophisticated mathematical tech
niques. 

Orbits 
For a number of years, Joe Brady of 

the Livermore Computation Group has 
been carrying out a program of research 
in celestial mechanics. One of the earliest 
programs for computing the orbits of 
the near-earth satellites was written by 
Brady and his co-workers; in fact, at the 
time the first Sputnik was launched, 
Brady's program was the only operational 
one in the country. Since that time, 
Brady has been working on a definitive 
orbit for the planet Mars. This work re
sulted in the publication, last year, of 
a set of Mars coordinates extending from 
the year 1800 to the year 2000. 

Astronomers, especially those inter
ested in celestial mechanics, were among 
the earliest users of automatic computing 
equipment. The advent of artificial earth 
satellites greatly increased the comput
ing requirements of this group. As much 
computer time is required to compute 
one orbit of an artificial satellite about 
the earth as is required to compute one 
revolution of the earth about the sun. 
The difficulty is that tbe satellite requires 
only about 90 minutes to go around the 
earth, whereas the earth takes a year to 



go around the sun. Brady's pioneering 
work at Livermore has exercised a signif
icant influence in this important ar.ea 
of computer applications. 

Berkeley Computing 
The nature of the computing load at 

Berkeley is influenced by the goal of the 
Berkeley Laboratory, which is to conduct 
basic research in the physical and biolog
ical sciences. Most problems that comQ 
into the Berkeley Computing Center 
have to do with the reduction of experi
mental data, with the design of experi
ments, with theoretical physics calcula
tions, or with the design of particle 
accelerators. 

By far the largest applications area 
at Berkeley is the reduction of data from 
bubble chamber experiments. This proc
ess takes place in several stages, not all 
of which are directly associated with 
computing machines. 

The first stage consists in the exposure 
and processing of pictures of bubble 
chamber events. 

The second stage involves the manual 
scanning of these pictures. In this stage 
a person called a scanner looks at each 
picture to see whether it contains an 
"interesting" nuclear event. If it con
tains such an event, he notes the roll and 
frame number of the picture on which 
this event is recorded and perhaps a 
rough location of the event on the film . 

Automatic Measuring 
The third stage consists of accurately 

measuring the locations of points along 
the tracks on the film which make up 
the events of interest. Several automatic 
and semi-automatic devices are available 
at the Laboratory to perform this meas
uring function. These devices include 
the Franckenstein, which was developed 
at the Laboratory by Jack Franck. This 
machine is a projection microscope which 
automatically follows bubble chamber 
tracks, measures the locations of points 
on the tracks, and writes the coordinates 
of these positions out on magnetic tape 
for later use on a digital computing ma
chine. Another measuring device devel
oped at the Laboratory is the Spiral Read
er. This machine, which is very much 
faster than the F ranckenstein, operates 
under the control of a small digital com
puter, and again places its output on 
magnetic tape for later analysis on a large 
computer. 

The Scanning-Measuring Projector, 
invented by Luis Alvarez, operates under 
the control of a medium-scale computer. 
One 7040 Computer is currently con
trolling five of these devices simulta
neously. 

The Flying-Spot Digitizer, or FSD, 
developed at the Laboratory under the 
supervision of Howard White, is the 
most automatic of all the measuring de
vices mentioned so far. It operates under 
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the direct control of a 7094-II com
puter. In this system, the computer, 
under the control of a m agnetic tape 
produced when the film was scanned, 
turns the film to the frame numbers 
which contain interesting events, locates 
the fiducial marks on these frames, and 
digitizes bubble locations. The computer 
program which controls the FSD device 
also selects coordinates of points along 
the tracks in events of interest, and dis
cards measurements of uninteresting 
points on the film. In the time left over 
after these control and filtering functions 
are performed, the computer analyzes 
either events that have just been meas
ured or events that have been measured 
on some previous occasion. 

Data Analysis 
The output from all of the measuring 

devices just described serves as input for 
data analysis programs which are de
signed to identify the observed nuclear 
events and to study distributions of var
ious properties of these events. The first 
step in this analysis process is to recon
struct the event in three-dimensional 
space; at least t wo pictures are taken of 
each event, so one may perform this re
construction quite easily. After the 
tracks have been located in space, their 
curvature is computed. From this cur
vature and from the intensity of the 
magnetic field in the neighborhood of the 
track, one can deduce the momentum 
of the particle which made the track. 

After these calculations have been 
made, all the tracks making up the event 
are considered simultaneously. Now, by 
using the constraints of conservation of 
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energy and momentum, one can often 
deduce the mass of the particles involved 
and, hence. their identity. This step is 
called kinemHic analysis. 

When all events making up an experi
ment have been analyzed, the informa
tion just computed is stored on a mag
netic tape. This tape serves, in turn, as 
input for a series of statistical analysis 
programs. 

Two sets of bubble chamber data anal
ysis programs are used at the Berkeley 
Laboratory: the PANAL-PACKAGE
EXAMIN system developed in the Alva
rez Group, and the FOG-CLOUDY -
FAIR system developed by Howard 
White's Data Handling Group. Each of 
these systems involves well over 100,000 
computer instru ::: tions , and together they 
consume about 60 of the computation 
time used on Berkeley computers. 

The Berkeley Laboratory pioneered 
the development of automatic measure
ment and analysis systems for bubble 
chamber data. Programs and hardware 
developed at the Berkeley Labortatory 
are used in high energy physics laborato
ries all over the world. 

Acee I era tor Design 
Computers are also playing an increas

ingly important role at Berkeley in the 
design of particle accelerators. They are 
used to compute the magnetic fields gen
erated by given magnet designs and to 
trace the orbits of particles through these 
fields. Al Garren, of the Theoretical Phys
ics Group, has developed an accelerator
oriented language which allows its user 
to evaluate very quickly a particular ac
celerator configuration. 
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FLYING-SPOT DIGITIZER, working in conjunction with computers, has helped to automate the 
bubble-chamber film analysis task at Berkeley. Picture at left shows a typical pi-minus interaction 
in a bubble chamber. The negative of this photograph is scanned by the FSD, and the digitized 
information is sent directly into a computer. The picture at right was "computed" from the digitized 

information supplied by the FSD. 
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Part VII: The World of the Future 
The computing machines which will 

be installed in the United States starting 
in 196 5 (an early forerunner of these 
was the Control Data 6600, delivered to 
the L~ven~ore Lab two months ago) will 
be quite different from the machines that 
have been installed to date. They will be 
faster by a factor of ten or so; their mem
ories will be up to four times as large; 
and they will be equipped with much 
faster ai:id more sophisticated input-out
put devices than were their predecessors. 
These hardware changes will have a pro
found effect on the ways in which com
puters are used. 

At computer installations where the 
problem load involves a fair amount of 
input-output (such as LRL's Berkeley 
Laboratory), the installation of a com
puter whose arithmetic unit is ten times 
fa~ter does not necessarily mean that one 
will now~ able to do ten times as many 
problems m the same time period. If we 
attempt to run our problems in the con
v.entional way, we will spend most of the 
time on our computer waiting for input
output tasks to be accomplished; the cen
tral processin~ unit will be idle for a large 
s~are ?f the time. One way to remedy this 
s1tuatio~ woul~ be to acquire input-out
put devices which were faster than exist
mg ones by a factor of ten. Unfortunate
ly, such devices are not readily available, 
so we must seek another solution to this 
problem. 

Multiprogramming 
The solution that will be adopted at 

most large computer installations is 
known as Multiprogramming. This con
cept involves having the programs for 
several problems in memory at once. 
These problems all share the computer's 
central processing unit, but each one is 
assigned its own peripheral input-output 
devices-tape drives, for example. If we 
have a reasonable mix of problems, and if 
we are clever in writing a program to 
allocate our computer components 
among these problems, we can expect to 
keep a reasonable number of machine 
components busy at the same time; one 
code may be using the central processing 
unit, for example, while three others are 
simultaneously performing tape input
output functions. Under such a system, 
the elapsed time for doing a set of prob
lems will be substantially reduced. 

Most of the machines which are sched
uled for delivery starting in 19 6 5 
have hardware capabilities which allow 

them to be multiprogrammed. Such 
hardware capabilities include large mem
ories (we must have enough space to get 
several codes into memory at once), 
several input-output channels (we must 
allow several programs to be performing 
input-output tasks at the same time), 
and memory protection devices (we 
must prevent the program which has 
control of the central processing unit 
from destroying other programs which 
share the memory) . 

The program!:g which control the 
scheduling of problems on the computer 
and the allocation of computer hard
ware are called Monitor Systems. A 
limited multilprogramming monitor 
system, called Diprogramming, has been 
in operation on a 7094 computer at the 
Berkeley Laboratory for about six 
months. It was described in the August 
issue of the MAGNET. A more sophisti
cated Multiprogramming Monitor Sys
tem for the Control Data 6600 is 
currently under development at the Liv
ermore Laboratory. 

In the future, Multiprogramming 
Monitor Systems will be provided by the 
manufacturers of all major computers. 
Such systems are ~lready available for the 
Honeywell 800 and UNIVAC 1107 
Computers. 

An important consequence of the 
availability of multiprogramming sys
tems on new computers involves the way 
in which card input and printer output 
will be handled. The user who now 

wishes to submit a problem for solution 
on a large-scale computer turns in a 
deck of cards with his program -on it; 
this deck of cards is then combined with 
several other decks and taken to a small 
auxiliary computer such as an IBM 1401, 
whete the cards are transcribed onto a 
reel of magnetic tape. This tape is then 
transferred from the 1401 computer to 
the large-scale computer, and the prob
lems on the tape are done in sequence. 
The large-scale computer, instead of 
printing the answers on its on-line print
er, writes them out on another reel of 
magnetic tape. When all the problems 
in this sequence have been completed, 
this printer tape is transferred to a 1401 
computer, which performs the actual 
printing. The reason for all this tape 
manipulation lies in the sequential way 
in which problems are done on current 
large-scale computers. If one were to 
read cards on-line or print on-line, one 
would idle all other components of the 
machine-an intolerable condition. 

SPOOLing 
When a mulitprogramming system is 

available, this whole situation changes; 
it now becomes perf~ctly feasible to 
print on-line and read cards on-line and, 
at the same time, to utilize many other 
components of the computer. This type 
of activity is called SPOOLing, which 
stands for Simultaneous Peripheral Out
put On-Line. In the bright world of the 
future, the user will simply insert his 
problem deck into a card-reader attached 
to a large-sple computer; the computer 
will then read his cards in and store them 
on an auxiliary storage device, such as 
a magnetic disk. When the problem 
reaches the head of the queue and when 
memory space becomes available for it, 
the Monitor System will load it into the 
memory and begin executing it, probably 
in conjunction with several other pro
grams. Printer output will be written 
on a disk; as soon as an on-line printer 
becomes available, the output will be 
printed. The availability of this SPOOL
ing capability should dramatically de
crease the elapsed time between the sub
mission of a program deck and the return 
of printed output. 

The possibility of more intimate man
machine relationships is another impor
tant consquence of multiprogramming 
systems. Under ideal conditions, the user 
of current hardware and systems may 
expect a two-hour delay between the 
time he submits a problem to the com
puter and the time he gets his output 



back. Quite often, when he looks at his 
output, he discovers that he has omitted 
a comma in a FOR TRAN statement, or 
that there has been a keypunching error 
in the preparation of his data, or that 
the hypothesis he was testing in his pro
gram is false and that he now wishes to 
try another one. In any of these cases, 
the user may require only a few minutes 
of looking at his output before he is pre
pared to submit another program. After 
submitting the program again he must, 
of course, wait another two hours. This 
is a very inefficient way of using people. 
One possible solution to this problem 
would be to provide each user with his 
own computer; he could sit at the con
sole of his machine and obtain immediate 
turn-around on his problem, since there 
would be no people queuing up in front 
of him. This, of course, is not a very 
efficient way of using computing ma
chines--even if one had enough money 
to buy that many machines. 

User Consoles 
A compromise solution will be found 

in a variety of user display and inquiry 
consoles that will be available with the 
next generation of computing machines. 
These consoles, which may be installed at 
remote locations, will be connected di
rectly to the central computer system. 
The simplest of these consoles is a type
writer or teletype machine - supple
mented, perhaps, by a card reader. More 
complicated consoles include a cathode 
ray tube display system, which can be 
used for either graphical or alphanumeric 
output. The user will employ these con
soles as debugging devices or as quick
response mechanisms in the solution of 
problems. 

The Livermore OCTOPUS System, 
which was described in a previous 
MAGNET article (September '64), will 
employ several consoles, each consisting 
of a teletype machine and a small pen
and-ink plotter. In Berkeley, consoles of 
two types will be used: typewriter and 
card reader stations will be used for pro
gram debugging, and CRT plotters 
equipped with keyboards and light pen
cils will be used as on-line physics con
soles. 

New Problems 
The increased computing power of 

future computer generations, and the 
increasing sophistication of programming 
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systems available for them, will allow 
the computer user to attack larger prob
lems than ever before. For example, 
Livermore scientists will be able to un
dertake much more detailed simulation 
of weapons systems, and Berkeley scien
tists will tackle the analysis of larger 
experiments than in the past. Moreover, 
it will now be possible to solve effec
tively some entirely new problems. One 
of these which has been much discussed 
is the pattern-recognition problem for 
bubble chamber events. Over the past 
few years the· Berkeley Laboratory has 
developed some extremely speedy devices 
for measuring the location of points on 
bubble chamber film. f:Iowever, present 
systems demand that all film be scanned 
by a human scanner in advance of mea-
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surement. This human scanner is the 
pattern-recognition element in the sys
tem. In the future, it is hoped that this 
pattern-recognition role can be taken 
over by computers; such systems are 
currently under development by How
ard White and his co-workers and several 
other groups at the Berkeley Laboratory. 

At present, when a computer user 
wants to solve a specific mathematical 
problem he is forced to spend a great deal 
of time matching his particular version 
of that problem with the available nu
merical techniques, and with computer 
programs which implement those tech
niques. He must match the appropriate 
code to his problem. This is often a fairly 
time-consuming process. In the future, 
it is hoped that much of this work can 
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be taken over by the computer; for ex
ample, the user may someday merely 
submit his differential equation for solu
tion, specifying the range over which 
the solution is needed and the required 
accuracy. The· computer would then 
analyze the differential equation, select 
an appropriate solution technique, and 
pick out of its library a code which im
plements that technique. Here, the com
puter would take over some of the func
tions not only of the programmer, but 
also of the numerical analyst. 

Advances in list-processing and in the 
manipulation of symbols by computers 
should make possible the creation of 
routines capable of performing many of 
the algebraic manipulations which now 
constitute something of a national sport 
among theoretical physicists. The least 
we may confidently expect of such rou
tines is that they will be capable of the 
formal manipulation of infinite series 
and of the simplification of algebraic 
expressions. These manipulations will 
probably be accomplished with the assis
tance of the display consoles mentioned 
earlier. 

Exotic Applications 
Many new and exciting computer 

applications can be expected outside of 
the Laboratory's research areas durin<Y 
the coming years as well. For exampl~~ 
computer-assisted engineering design 
applications, already being written ; will 
permit a mechanical engineer to interact 
very closely with a computer. In this 
application, the computer will play the 
role of a sort of high-speed calculator 
and draftsman. 

Somewhat farther off is the develop
ment of fully-automatic, high-quality' 
mechanical translation from one natural 
language to another. This development 
will surely be stimulated by the increased 
speed and memory size of the computers 
now becoming available. 

Effective computer-assisted weather 
forecasting is probably somewhat closer 
than effective mechanical translation. 
The avai.lability of high-speed comput
ers, together with the presence of in
creasing amounts of data from weather 
satellites, should make this development 
possible in the near future. 

Finally, the use of computers in teach
ing, to extend existing programmed 
learning techniques. will be extremelv 
important. · 
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