l;:jEEEBEBEB——i] UCID-16140

o e e

OEFER QUESTIONS TO:

LAWRENCE ELECTRONICS ENGINEERING UNIVERSITY LER

RADIATION REPORT oF 72-103401
Waldo nuson, Jr.JLABORATORY LIVERMORE, CALIFORNIA CALIFORNIA

ORIG.

DATE
W. G, _2/15/73
W’ ASSEMBLER PROGRAM FOR THE INTEL MCS-8 | SR ETAE
L — 8008 CPU PAGE 1 0F 24

REV.

Bx

1.0

2.0

3'0

N4

SUMMARY
This report is both a user's manual for the CDC-7600 computer program MCS8
as well as a reference manual for the INTEL 8008 symbolic assembly language.

The MCS8 program accepts as input, programs written in INTEL 8008 CPU assembly

language using mmemonic symbols for the instruction operations and creates
two output files: A standard assembly output (symbol table, object, and
source code) and a formatted object code output. The program will also
write a magnetic tape (a program option) in formatted object code in 1601
format (PN tape) which can then be used to punch a paper tape utilizing the
CDC 160A computer in building 113. The reference manual for the symbolic
assembly language appears as appendix A which is essentially a duplication
of Section II of the INTEL writeup titled '"MC8 8008 Assembler."

Reading MCS8 Program From Photostore

The MCS8 program is stored in the ELEPHANT photostore under the "take"
directory: 558850:INTEL.

After logging onto the OCTOPUS system on a CDC-7600 computer system read
MCS8 from the photostore as follows:

ELF / .5 .1

.RDS .558850:INTEL :MCS8
.END

RDS

ALL DONE

After the above operations the program will exist on disk file available for
use as described in the following section.

Creating a Input Data File

Before running MCS8, an ASCII disk data file containing the 8008 program in
terms of the 8008 symbolic assembly language instructions must be available.
This data file can be created in a number of ways. For example cards can
be punched and read onto disk through an online card-reader or RJET, or

one of the OCTOPUS editor routines (TRIX, NAB, MICROPUS) can be used online
to create a data file. The routines TRIX and NAB will be used for illus-
trative purposes. Figure 1 shows a data file created using TRIX and Figure
2 with NAB. The figures have been annotated to help show what was going on.
The TRIX example was taken from the INTEL MCS-8 CPU manual and the NAB
example is a program with deliberate errors to show some of the online
errors when running MCS8.

The details for using both TRIX and NAB are in the references at the end
of this report. TRIX is by far the most powerful and flexible of the two
editors and well worth the time learning how to use it.

*Changed pages 1, 4 and 6.

RL-3681

LER72-103401

RECORDED o

TRIX AC 7 «5 o1 C is for "create" file. 0 would
+ C(DATAIN)E be used to "open" an existing
*BL1 ¢ file in order to make additions
& *PROGRAM: AQ801 or changes.

&sDATE: MAY 27, 1972

& *PROGRAMMERS DR. PHIL TAI, MCS, INTEL CORP.
&= Start replacing Before Line 1.

&* . There is also an ALn. Likewise
& ORG 9 there is a DLn for Relete Line.

&BEGIN LAI 1S LOAD 1S TO AC
OUT 108 ‘
OUT 118B
oUT 128
ouT 138
OuT 148
ouUT 158
olT 16B
oUT 178
CAL DELAY DELAY 16.436 MSEC.
CAL DELAY
CAL DELAY
CAL DELAY
XRA CLEAR AC
F—m—l‘m The prompt for each line is an &
OuUT 11B
QuT 138
oUT 148
OUT 1SB
oUT 16B
ouT 17B
LCl 240 . LOAD 242 TO REG. C During the typing of any line th
LLI 2528 LOAD 2S2BCOCTAL) TO REG. C character delete (CTRL - X) and
LML @ LOAD @ TO REGe M line delete (CTRL - Y) may be
CSTEST LAH LOAD H TO AC used.
- OyT 188 .
LAL LOAD L TO AC
ouT 1B
XRA CLEAR AC
LMA WRITE AC TO MEMORY
CAL DELAY
CAL DELAY
INMN H=s R
INC - C =C
JFZ CSTEST
JMP BEGLIN
4DELAY LDI 8 LOAD 8 TO REG. D
&DY IND . D =D e+ 1
& JFZ D1

) RET
& END _— A single period terminates the

fee insert mode.
PN Exit TRIX.
ALL DONE

A |
+ 1

[- W N N N N B N N N N W W NN N N N NN W N N I W N W W NI S

Figure 1.

LED72-103401

[RECORDED

NAB 7/ S .1
TYPE NAME OF FILE. e Length $@ implies we are creating

DATABAD <?,,~’*’/”#ﬂ a new file.
L= 20

oK
R 0{ -Start replacing at location @

SEXAMPLE TO SHOW MCS ERROR DIAGNOSTICS
OKR

*

OKR

*

OKR ¢ . Prompt for each line.

ORG 178B
OKR

LAS
OKR
JMP1 OUT 100
OKR
JMP] OUT 11B
OKR

CAL DELAY
OKR

TFX
OKR

ouT
OKR

JMP STOP
OKR
STOP END

OKL"__,/’ Terminates the insertation mode.
!

oK
T 0 20 Type starting at location @ the

00000000 *EXAMPLE TO SHOW MCS ERROR DIAGNOSTICS next 20 lines.

00000004*

90000005+

000009906 ORG 178B

00000010 LAS

00000011JMP1 OUT 100

20000013JMP1 OUT 11B

20000015 CAL DELAY

90000017 TFX

00000820 OUT

000080221 JMP STOP

00038023STOP END

00008024 END OF FILE

oK
END ¢ Exit NAB

ALL DONE

Figure 2

a.o

eI UCID-16140
‘ RECUPOLY LER72-103401

L Page 4

Running MCS8 From a Teletype

Once we have obtained MCS8 from the Photostore and have created a data file
we are able to run MCSS8.

To start the program in execution, type:

Mcs8 / .5 .1

PLEASE TYPE INPUT FILE NAME (A7)
DATAIN

TYPE LINE-FEED OR TAPE VAULT NO.
DC2§3

8¢98 INTEL ASSEMBLER

ALL DONE

During execution four disk files are created by MCS-8. They are:

BUFFER Used by the program as a ENCODE-DECODE buffer.
MCSMID Used for temporary storage during execution.
MCSBIN The formatted object code in 1601 format.

MCSOUT The standard output which contains a symbol table

and source and object code.

If a line-feed response is used when running the program, no magnetic will
be written. The first two files can be ignored (or destroyed). The file
MCSBIN can be punched as cards and the cards converted to paper tape on the
PDP-1 computer using the HAT routine. To first punch the cards on the
OCTOPUS system, type:

PUNCH MISCBIN / .5 .1
BOX&ID?
BOX NPP PROGRAM: A: A@8¢1

ALL DONE

The file MCSOUT is the standard listing file and can be either listed on the
teletype or sent to a printer or an RJET using OUT or ALLOUT., For example
using OUT and the printer:

OUT PRINTER MCSOUT / .5 .1
BOX&ID?
BOX NP@ PROGRAM: A@8f1

ALL DONE

In the above example it is implied that tape DC2#3 will be available to
the OCTOPUS computer operator (use routine SAMTOP to request a tape from
the vault). If you want it then use *vault-number. You can use a tape
name like *MCS8 if you can pick the tape up from the computer in a reasonable
amount of time (1 hour). The CDC-160A computer in building 113 is used

for punching a paper tape using the magnetic tape. The instruction book at
the CDC-160A tells how to use the computer, instructions are also contained
in LER71-10506 "Preparing and Verifying Punched Paper Tapes for the CLI
Program."

MCS8 / 3 .1
PLEASE TYPE INPUT FILE NAME (A7)
DATABAD

8608 INTEL ASSEMBLER

ESESSERTTSITERTET RIS

ORG 1788
SSSERROR
LAS
SSSERROR
JMPL OUT 100
SSSERROR
63
JMPL OUT 11tB
’ SSSERROR
CAL DELAY
S$SSSERROR
TFX
SSSERROR
ouT
$SSERROR
JMP STOP
SSSERROR
STOP END
SSSERROR
ALL DONE

R FCO RNDE; LER72-103401

e e ——— .

Page 5

ILLEGAL NUMERIC CONTAINS CHARACTERS
ILLEGAL CHARACTER S

ILLEGAL VALUEs 100, MAXIMUMs

MULTIPLY o:nnsb symsdL
UNDEF INED SYMBOLDELAY
ILLEGAL OPCODETFX
MISSING OPERAND FIELD
UNDEFINED SYMBOLSTO®

ERRONEOUS LABEL

Figure 3

7 RECo, 00 _—j UCID-16140
. LER72-103401
Page 6

The paper tapes produced by means of either the magnetic tape or punch cards
are Intel format PN tapes in positive logic (high level = P= 1). They can
be used on the PROM programmer. It is recommended that the magnetic tape
produced paper tape be used for reasons of efficiency.

Figure 3 shows the teletype output produced when the file DATABAD was
used as input to MCS8. Normally the input file would be corrected with
a text editor and then MCS8 rerun.

Figure 4 and 5 show the listings of files MCSOUT and MCSBIN for an 8008
program which assembled with no errors.

Need Help?

If you need help running the MCS8 assembler program on the CDC~7600 system or
in punching cards let me know. There are many people familiar with the use
of both NAB and TRIX who can help you. I will be glad to help you with these
programs as well. In addition, Terry Allison or Jack Oliver can assist with
the operation of the PDP-1 computer.

] C -

T hri A /7 St g 144».,-1,4:'7;,;/{- _
W. G. MAGNUSON, JR."" :
Electronics Engineering Department

Distribution:

Ww.
H.
EE
EE

G. Magnuson, Jr. (25 copies)
C. McDonald

Division Leaders

Group Leaders

TRIX AC

«0(MCSB1
66 LINES
NN T

- -) T - e P
AR RRRER AR KRR RN AR AERARR PR AR ARG SRR SR AR R AR SRR RSSO EN S EE RSB ED

Rk kEEkk

BREARKEERRRE AR KR RRARKRKK KK RRERAKRKERKRRRARREAR AR A SRABRBEEERO SR EB00020 4

LRl L] 2L
0

8
16
24
32
40
48
56
64
72
80
88
96

104
112
120
128
136
144
152
160
' 168
176
184

192

/ ¢S
N)

BNNNNNPPNF
BNPNPNPPPF
BNONNNPNNF
BNNNNNNNPF
BNNNNNNNNF
BNNNNNNNNF
BNNNPNPPNF
BNNPNNPPNF
BNNNNNNNNF
BPNPNPNPNF
BNNNPPNONF
BNNNPPPPNF
BNNNPNPNNF
BNNPPPNPNF
BNPNPNONPF
BNNNPPNNNF
BNNNNNPPPF
BNPNNPNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF

" BNNNNNNNNF

200
208
216
224
232
240
e48
+END

BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF

ALL DONE

R T

L TN

BNNNNNNNPF
BNPNNNPPNF
BNNNNNNNNF
BNPNPNPPPF
BNNNNNNNNF
BPNONONNNF
BPPPPOPPPF
BPPPPPNNNF
BNPNNNNNPF
BNPN=>NPNPF
BPPNNPNNNF
BNNNNNNNNF
BPNNNNNNNF
BNNNNNNNNF
BNNNNNPPPF
BNPNNPNNNF
BNNNPPPPNF
BNPNNNNPPF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
RNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF

gigure_S

BNPNPNPNPE
BNNNNPNPPF
BNNNNNNNNF
BNPNNNPPNF
BNONNNPPNF
BNPNPNPPPF
BPNPNONPNF
BNPNNNPPNF
BNNNPNPPNF
BNNNPPNPNF
BNNPNNNNNF
BPPNNNNNOF
BPPNNPNNNF
BNNNNNPPNF
BNNNPPPPNF
BNNPPPONNF
BPNPPPNPNFE
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNEF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF

e

Y

BPNPNPNNNF
BNNNNNNNNF
BNNNNNPPNF
BNNPPPNPNF
BNPNNNNNPF
BNPNNNNNPF
BNPNPNPNPF
BNNPPPNPNF
pOOPPOPPPE
BPPNNNNNPF
BNPNNPNNNF
BNPNPNNPPF
BNPNNN®PNF
BNNNNNNNPF
BNCPPNNPPF
BNNNNNNNNF
BNNNPPNNNF
BNNNNNPPPF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF

LER72-103401
Page 7

TRIX AC 7 oS o}

Spy e LER72-103401
<0 (MCSOUT) Bt e RNy Page 8

66 LlNEs. A s —— e S - e s e ..h.

NN T ‘

SYMBOL VALUE

1 BEGIN 9
2 TAPE 1
3 TTY 17
4 TTYIN 30
S TTYD! S8
6 ST 60
7 TTYD2 65
8 ST2 87

LoC OBJECT CODE SOURCE STATEMENTS
B EE S EE IS IS SE SN ENSENESESSSEEERERIREEEBASEEEREE
@ »30 # TTY TAPE READER CONTROL
@ *30 * INTEL PROGRAM AQ800-09 S/22/72 (DR. PHIL TAI)
9 +30 . ORG ©
0 6 1 BEGIN LAI 1 SUPRESS TTY
2 83 ouT 128 ouTPUT 2
3 168 XRA CLEAR AC :
4 87 -OUT 138 OUTPUT 3 = TAPE RDR. CONTROL
S 70 11 e CAL TAPE REQ. TAPE RDRe CONT. RT.
8 68 e 0 JMP BEGIN
11 6 1 TAPE LAI 1 .TAPE READER ENABLE CODE
13 87 OUT 138 OUTPUT 3 =~ ENABLE TAPE RDR.
14 70 S8 o CAL TTYD1 TAPE RDRe. CONTROL DELAY
17 9 TTY HLT WAIT FOR TTY START PULSE
18 70 65) CAL TTYDZ TTY DELAY =~ 4.468 MSEC.
21 168 XRA TAPE RDR. DISABLE CODE
22 87 . ouT 138 OUTPUT 3 -« DISABLE TP. RDR.
23 65 INP 08B INPUT @ - READ START PULSE
24 22 253 LCI 255 COMPLEMENT TTY START PULSE
- 26 170 XRC EXCLUSIVE-OR REG. C
27 85 OUT 12B OUTPUT 2 - START PULSE OUT
28 33 248 ' LEl 248 TTY DATA SAMPLING COUNTER
30 70 S8 0 TTYIN CAL TTYDI TTY DELAY - 9.012 MSEC.
33 65 INP 0B READ TTY DATA INPUT
34 22 258 ’ LCl 2SS COMPLEMENT TTY DATA
36 170 XRC
37 85 0oJT 128 OUTPUT 2 - TTY DATA OUT
38 26 RAR - STORE TTY DATA OUT
39 193 LAB LOAD TTY DATA TO
40 26 RAR
4] 200 LBA LOAD AC TO REG. B
42 32 INE E=E+ 1
43 72 30 o JFZ TTYIN JUMP I|F ZERO F/F 1S NOT SET
46 193 LAB LOAD REG. B TO AC
47 83 oJT 118 OUTPUT 1, TTY CHAR.
48 20 128 Sl 128 REMOVE PARITY BIT
50 200 LBA STORE TTY INPUT DATA
51 70 S8] CAL TTYDI :
5S4 6 1 , LAI 1
S6 85 oJT 128 SUPPRESS TTY
57 7 RET
S8 30 115 TTYD1 LDI 11S 9.0812 MSEC. DELAY
60 24 ST IND D =D+)
61 72 690] JFZ ST
64 7 RET
65 30 186 TTYD2 LDI 186 4.468 MSEC. DELAY.
67 24 ST2 IND
68 72 67) JFZ ST2
71 7 RET
72 30 END
+END
ALL DONE

Figure 4

4.

e e LER72-103401

gRECORDEm Page 9

REFERENCES

INTEL Corp., "MCS8 8008 8-bit Parallel Central Processor Unit,"

55 pages, June 1972. This report describes the 8008 processor,
processor timing, instruction set, controls signals, electrical
specifications, etc. It is the basic reference if you are going to
use the 8008.

INTEL Corp., '"MCS8 8008 Assembler," 20 pages, June 1972. Section I,
user's manual, is not applicable to the way the MCS8 assembler program
is run at LLL. Section II describes the symbolic assembly language
appears as Appendix A of this LER.

INTEL Corp., '"MCS8 Bootstrap Loader Control Program," 19 pages, June 1972,

A. Cecil, H. Mill, and J. Rinde, "File Editing with TRIX," UCID-30040,
36 pages, March 1972, Copies are available from TID. Use page 35-
selected commands from TRIX AC - as a guide when using TRIX.

"Introduction to OCTOPUS," CIC Manual I-002, October 1967. Pages 76-78
give a brief description of NAB. NAB is also to be described in Utility
routine UR-204 when it is published.

1'0

LER72-103401
Page 10

b

Appendix A

GENERAL DESCRIPTION

The 8008 Assembler generates object programs from symbolic assembly language
instructions. Programs are written in the assembly language using mnemonic
symbols both for 8008 instruction and for special assembler operations.
Symbolic addresses can be used in the source program; however, the assembled
program will use absolute addresses.

1.1

1.2

1.3

1.4

Assembler Use and Operation

Source programs are written in assembly language and edited prior to
assembling, using an editor program. Edited programs can then be
assembled. The Assembler processes the source program in two passes
or cycles.

The Assembler generates a symbol table from the source statement names
in the first pass and checks for errors.

In the second pass the Assembler uses the symbol table and the source

program to generate both a program listing and an absolute binary pro=-
gram. Error conditions are indicated in the program listing.

Symbol Usage

Symbols can represent specific addresses in memory for data and program

_words, or can be defined as constants. Symbols are used as labels for

locations in the program or as data storage area labels or as constants.

Expressions can be formed from a symbol combined by plus or minus operators
with other symbols or numbers to indicate a location other than that
named by the symbol. Every symbol appearing as part of an operand must

. also appear as a statement label or else it is not defined and will be

treated as an error. Symbols that are used.as labels’ for two or more.
statements are also in error.

Absolute Addressing

Object programs use all absolute addresses. The starting address is
specified by a pseudo instruction at the beginning of the source pro-
gram. All subroutines referenced by symbol in the main program must be
assembled as part of the main program. Subroutines not assembled with the
main program must be referenced by their starting addresses.

Program Addresses

Consecutive memory addresses are generated by the Assembler program counter
and assigned to each source statement. Two byte source statements are

assigned &wo consecutive addresses and three byte source statements are

, assigned three consecutive addresses.

RECURDCY B

The starting address is set by an ORG pseudo instruction at the
beginning of the source program.

1.5 Output Options

The Assembler output is stored in files and can be read out in several
forms. Some of the options availlable are:

a. binary paper tape at the terminal (if your teletype is so equippaa);
b. card output at computer center;
c. program listing at the terminal;
d. program listing at the computer center;
e, symbol table listing at the terminalj;
f. symbol table listing at the computer center,
The printout of the program listing will have the following format!
Columns
1- 5 Location (octal) of first byte of object code
6~ 7 Blank
8- 10 First byte object code word in octal
11 Blank
12- 14 Second byte object code word in octal
15 Blank
16- 18 Third byte object work in octal
19 Blank
20~ 22 Fourth byte object code word in octal
23~ 24 Blank
25~ 27 First 48 characters of aource statement

2,0 INSTRUCTION FORMAT

The Intel Assembly program conaists of a sequence of symholic statementa, Each
source language statement containe a maximum of four fielda im the following order:

location field;
operation field;
operand field|
comment field.

WECURU LU terrz-10301
e Page 12

The format is essentially free field. Fields are delimited by one
or more blanks. Blanks are interpreted as field separators in all
cases, except in the comments field or in a literal character string.

The
end

2.1

2,2

2.3

maXimum length of any statement is 80 characters. The instruction must
prior to character 48 but the comments may extend to column 80.

Symbols

Symbols are used in the location field and in the operand field. A
symbol is a sequence of one to six characters representing a value.
The first character of any symbol must be an alphabetic. Symbols

are comprised of the characters A through Z, and zero through nine.

The value of a symbol is determined by its use. In the location field
of a machine instruction or a data definition, the value assigned to

the symbol is the current value of the program counter. In the location
field of an EQU pseudo instruction, the value of the operand field is
assigned to the symbol.

An asterisk is a special purpose symbol. It represents the location
of the first byte of the current instruction. Thus if an operand
contains *-1, then the value calculated by the Assembler is one less
than the location of the first byte of the current instruction.

Examples of legal symbols:

MAT START2
MIKE 27148
TED24 RONA3Z
®

Numeric Constants

Two types of numeric constants are recognized by the Assembler: decimal
and octal. A decimal number is represented by one to five digits (0-9)
within the range of 0 to 16383. An octal number contains from one to
five digits (0-7) followed by the letter B. The range of octal numbers
is 0 to 37777B.

Numeric constants can be positive or negative. Positive constants are

preceded by a plus sign or no sign. Negative constants are preceded by
a minus sign. There can be no blanks between the sign and the digits.

If a minus sign precedes the number, then the complement of the binary

equivalent 1is used. ;

Expressions

Expressions may occur in the operand field. The Assembler evaluates the
expression from left to right and produces an absolute value for the
~-object code. There can be symbols and numbers in expressions separated
* by arithmetic operator + and - Octal and decimal numbers are acceptable.
No embedded blanks are allowed within expressions.

2.4

2.5

2.6

; K t L U “ UL UJ’ LER72-103401

Page 13

Parenthese are not permitted in an expression. Thus terms
cannot be grouped as in the expression Z-(4+T). That expression
must be written as Z-4-T to be acceptable to the Assembler.

Location Field

The location field of a statement contains a symbol when needed
as a reference by other statements. If a statement is not referenced
explicitly, then the location field may be blank.

The symbol must start in column 1 of the statement. That is, if a
symbol is required it must be punched immediately following the end

of statement mark of the preceding statement. The Assembler therefore
assumes that if column 1 is blank, the location field of that statement
does not contain a symbol.

Column 1 of the location field can also indicate that the entire line
is a comment. If an asterisk occurs in column 1, then positions 2
through 80 contain remarks about the program. These remarks have no
effect on the assembled program but do appear in the output listing.

Operation Field

The operation field must be present and is represented by a
mnemonic code. The code describes a machine operation or an Assembler
operation.

The operation code follows the location field and is seperated by one
or more blanks from the location field. The operation field is ter~
minated by a blank or an end of statement mark when there is no
operand field and no comment field.

Examples of machine operations:

LAB Load Register A with the contents of Register B
CPM Compare contents of A register with contents of
memory location m.
Example of Assembler operation:
ORG Set program counter to specified origin.

Operand Field

The contents and significance of the operand field are dictated by the
operation code. The operand field can contain the following:

blank
symbol
numeric
expression
data list.

RECORDE: oo

The operand field follows the operation code and is separated from
that code by one or more blanks. The operand is terminated by a
blank or an end of statement mark if no comments follow the operand.

Examples of operands:

DANI MIKE2-MIKE4+1
143B 773B+X2

1869 ®-1

RON+33B AA44-22B
(blank)

2.7 Comment Field

The comment field is optional. It follows the operand field and is
seperated from that field by at least one blank. If there is no
operand field for a given operation code, then the comment field
follows the operation field. Once again at least one blank separates
the operation code and the comments. Comments must terminate on or
before the 80th character position. If the comment extends beyond
that position, it will be truncated on the output listing. Comments
up to the 48th character position are printed along with the source
code. If comments are in positions 49 through 80, then they are
printed on the next line.

3.0 MACHINE OPERATION

Each instruction in the 8008 repertoire can be represented by a three letter
mnemonic in the 8008 assembly language. For each source statement in the
assembly language (except for some pseudo instructions), the Assembler will
generate one or more bytes of object code. Source language statements use
the following notation:

Label - optional statement label;
Operand - one of the following:

data - a number, symbol or expression used to generate
the second byte of an immediate instruction.

address - a number, symbol or expression used to generate
the second and third bytes of a call or jump
instruction.

device - a number, symbol or expression used to define

input/output instructions to select specific devices.
Comment - optional comment.

() - information enclosed in brackets is optional.

N AN AN LER72-103401
lR%L\)“MLiL Page 1%

3.1 Move Statements-- 1 byte, or 2 bytes when operand is used.

3.2

Move instructions replace the contents of memory or of the A, B, C,
D, E, H and L Registers with the contents of one of the Registers A,
B, C, D, E, Hor L or with the contents of the memory location specified
by H and L or with an operand from the second byte of the instruction.
In what follows, r, can represent A, B, C, D, E, H, L or M. r, can re-

present A, B, C, D, E, H, L, Mor I. 1If r, = M, the contents of memory
are replaced by the contents of Tye If r, = M, the contents of r, are

replaced by the contents of memory. If r, = 1, the contents of r, are

1
replaced by the operand from the second byte of the imstruction.

(Label) | Lr,r, | data | (Comment)
Move r, to Ty
_Examples:
Label | LEH | | Comment
Move H to E.
Label | LAM | | Comment

Move A from memory.

Label | LMB | | Comment

Move B to memory.

Label | LCI | 062B | Comment
Load octal 062 {nto C.

Label | LMI | 1358 | Comment
Load octal 135 into memory.

The contents of the sending location are unchanged after each move.
An operand is required if and only if r, = I.

Arithmetic and Logical Operation Statements-- 1 byte, or 2 bytes

when operand is used.

These instructions perform arithmetic or logical operations between

the contents of the A Register and the contents of one of the Registers
B, C, D, E, H or L or the contents of a memory location specified by

H, and L or an operand. The result is placed in the A Register. In
what follows, r may be B, C, D, E, Hor L, Mor I. If r = M, memory-
location 1s specified. If r = I, the operand from the second byte of
the instruction is specified.

3.3

r.;.._...!,:‘ .

3.2,1 (Label) | ADr | data | (Comment)
Add r to A.
3.2.2 ‘(Label) | ACr | data | (Comment)

Add r to A with carry.

3.2.3 (Label) | SUr | data | (Comment)
Subract r from A.

3.2.4 (Label) | SBr | data | (Comment)

Subtract r from A with borrow.

3.2,5 (Label) | NDr | data | (Comment)
Logical AND r with A.

3.2,6 (Label) | XRr | data | (Comment)
Exclusive OR r with A.

3.2.7 (Label) | ORr | data | (Comment)
Inclusive OR r with A.
3.2.8 (Label) | CPr | data | (Comment)
Compare r with A.
Examples:
Label | ADB | | Comment
Add B to'A."
Label | suM | | Comment
Subtract the contents of the memory location
specified by H and L from A.
+ Label | cp1 | 024B | Comment

Compare octal 024 with A.
An operand is required if and only if r = I.

Rotate Statements -- 1 byte

3.3.1 (Label) | RLC | | (Comment)
Rotate A one bit left. '

3.3.2 (Label) | RRC | | (Comment)
Rotate A one bit right.

3.3.3 (Label) | RAL | | (Comment)
Rotate A through the carry one bit left.

3.3.4 (Label) | RAR | | (Comment)
Rotate A through the carry one bit right.

LER72-103401
Page 16

3.4 Call Statements -- 3 bytes

3.5

Call instructions are used to enter subroutines.

FECORDED

LER72-103401
Page ¥/

The second

and third bytes of call instructions are generated from source
programs operands and are used to address the starting locations
for the called subroutines.

An operand 1s always required.

3.4.1 (Label) | CAL | address [(Comment)

Call subroutine unconditionally.
3.4.2 (Label) | CTC | address | (Comment)

Call subroutine if carry = 1.
3.4.3 (Label) | CFC | address | (Comment)

Call subroutine if carry = 0.
3.4,4 (Label) | CTZ | address | (Comment)

Call subroutine if accumulator = 0.
3.4.5 (Label) | CFZ | address | (Comment)

Call subroutine if accumulator ¥ 0.
3.4,6 (Label) | CTP | address | (Comment)

Call subroutine if accumulator parity is even.
3.4.7 (Label) | CFP | address | (Comment)

Call subroutine if accumulator parity is odd.
3.4.8 (Label) | CTS | address | (Comment)

Call subroutine if accumulator sign is minus.
3.4.9 (Label) | CFS | address | (Comment)

Call subroutine if accumulator sign in plus.

At the conclusion of each subroutine, control returns to the

address '"Label+3".

Jump Statements -- 3 bytes

Jump instructions are used to alter the normal program sequence. The
second and third bytes of jump instructions are generated from source
program operands and are used as the addteso of the next instruction.
An operand is always required.

P (T LER72-103401
: R 'E {; U H ') t “ Page 18

3.5.1 (Label) | JMP | address | (Comment)

Jump to address unconditionally.

3.5.2 (Label) | JTC | address | (Comment)

Jump to address if carry = 1.

3.5.3 (Label) | JFC | address | (Comment)
Jump to address if carry = 0.

3.5.4 (Label) | JTZ | address | (Comment)

Jump to address if accumulator = 0.

3.5.5 (Label) | JFZ | address | (Comment)
Jump to address if accumulator # 0.

3.5.6 (Label) | JTP | address | (Comment)

Jump to address if accumulator parity is even.

3.5.7 (Label) | JFP | address | (Comment)
Jump to address if accumulator parity.:is odd.

3.5.8 (Label) | JTS | address | (Comment)

Jump to address if accumulator sign is minus.

3.5.9 (Label) | JFS | address | (Comment)
Jump to address if accumulator sign is plus.

Return Statements -- 1 byte

Return instructions are used at the end of subroutines to return
control to the address following the call instruction that entered
the subroutine. In what follows, assume a subroutine was callegl
as shown:

MAIN | CAL | SUBRTN | Comment
3.6.1 (Label) | RET | | (Comment)
Return unconditionally to "MAIN+3",

3.6.2 (Label) | RTC | | (Comment)
Return to "MAIM+3" 4f carry = 1.

3.6.3 (Label) | RFC | | (Comment)
' Return to "MAIN+3" if carry = 0.

e 3.6.4 (Label) | RTZ | | (Comment)
Return to "MAIN43" if accumulator = 0.

3'7

3.8

. | LER72-103401
Ar e Page 49
Ly

~
-

g
P

‘RECO

v e wwee cm

te

e s

3.6.5 (Label) | RFZ | | (Comment)
Return to "MAIN+3" if accumulator # 0.

3.6.6 (Label) | RIP | * | (Comment)
Return to "MAIM3" if accumulator parity is even.

3.6.7 (Label) | RFP | | (Comment)
Return to "MAIN+3" if accumulator parity is odd.

3.6.8 (Label) | RTS | | (Comment)
Return to "MAINM+3" if accumulator sign is minus.

3.6.9 (Label) | RFS | | (Comment)
Return to "MAIN+3" if accumulator sign is plus.

Input/OQutput Statements -- 1 byte

These instructions are used to input or output data, one byte at a time,
between the A Register and the external device selected by the operand.
An operand is always required.

3.7.1 (Label) | INP | device| (Comment)

Inputs one byte of data from device to the
A Register.

3.7.2 (Label) | OUT | device | (Comment)
Outputs one byte of data from the A Register to device.

The device operand must have a value between 0 and 7 for input instructions
and between 10 and 37 octal for output instructions.

Increment/Decrement Statements -- 1 byte

These instructions are used to increment by one or decrement by one
of the registers r. In what follows, r can represent B, C, D, E, H
or L. Increment and decrement operations affect the accumulator con-
ditions zero, parity and sign, but not carry.

3.8.1 TLabeD | inr | [(Comment)
Add 1 to r.
3.8.2 (Label) | DCr | | (Comment)

Subtract 1 from r.

Example:

(Label) | INB | | (Comment)

Add 1 to B.

4.0

‘D T-< sTr N LER72-103401
™ L ([} h L Page 20

3.9 Halt Statement -- 1 byte

The halt instruction is used to stop the 8008 processor.

(Label) | HLT | | (Comment)

3.10 Restart Statement -~ 1 byte

The restart instruction is used in conjunction with an interrupt signal
to start the 1201 after a halt. The program counter is set to a starting
address equal to the operand multiplied by octal 10. A start operand is
required which may have a value from 0 to 7.

(Label) | RST | start | (Comment)

3.11 Load Address Statement -- 4 bytes .

This instruction is used to load H and L with a memory address and is
simply an assembly language convention equivalent to the two separate
instructions LHI and LLI. An operand is required.

(Label) | SHL | address | (Comment)

PSEUDO INSTRUCTIONS

The purpose of pseudo instructions is to direct the Assembler, to define
constants used by the object code, and define values required by the
Assembler. The following is a list of pseudo operations.

ASB Define paper tape output.

ORG Define origin of program.

EQU Define symbol value for Assembler.
DEF Define constants for object code.
DAD Define two byte address.

END Define End of source code.

&3] Program Origin

The program origin can be defined by the user by an ORG pseudo operation.
If no ORG statement is defined, the origin is assumed to be zero. The

origin can be redefined whenever necessary by including an ORG statement
prior to the section of code which starts at a specific program location.

The format of the ORG statement is}

| ORG | n | (Comments)

RecorpED e

The operand n can be a number symbol, or an expression. If a symbol
is used it must be predefined in the code.
Example of the ORG statement:

LAB Instruction starts in
LOC 0000.
LCD
ORG 1000B
SAM LCD Instruction stored in
LOC 1000.
ORG 5000B
SALLY DEF 1,4,77B,7000B Data starts in LOC 5000.
END

- 4,2 Equate Symbol

A symbol can be given a value other than the one normally assigned
by the program location counter by using the EQU pseudo operation.
The symbol contained in the location field is given the value
defined by the operand field.

The EQU statement does not produce a machine instruction or data
word in the object code. It merely assigns a value to a symhol
used in the source code,

Format of the EQU statement; .

Symbol | EQU | operand | (Cogment)

The operand may contain a numberic, a aymhdl, or an expresaion,
Symbols which appear in the operand muat be preyiously defined
in the source code,

All fields are required except for the comment field, which fa
always optional.

Example of EQU statementsas

TELET EQU 4
MAGT2 EQU 2
MAGT6 EQU 6 .
SAM EQU 10008
INP TELET
LAB
CALL SAM
ouUT MAGT2

4.3* Define Constant

Constant data values can be defined uaing the DEF pseudo statement.
The data values are placed in sequential worda in the object code.
If a symbol appears in the location field, it is associated with the

first data word. That symbol can be then used to reference the
defined data,

4.4

o . i ettt

TECORDED

Format of the DEF statement:

(Symbol) |DEF |[data list | (Comment)

The data 1list consists of one or more terms separated by commas.
There can be no embedded blanks in the data list (except in a
literal character string). The terms can be octal or decimal
numerics, literal character strings, symbols or expressions.

A literal character string 1s enclosed in single quote marks (').

It can contain any ASCII characters, including blanks. The internal
BCD 8 bit codes correspoinding to the given characters are stored in
sequential bytes, one character per byte.

Octal and decimal numbers are stored one per byte in binary.
Octal numbers must be in the range 0 to 377B.

Decimal numbers must ,be in the range 0 to 255.

Two's complements are stored for minus numbers.

The program counter is incremented by one for each numberic
term in the data string and by n for each literal string of n
characters.

Examples of data strings:

MESS1 DEF 'SYMBOL TABLE OVERFLOWED', Y-2, SUB2

MESS2 DEF 'LITERAL STRING 1', 'LITERAL STRING2'

MASKS DEF 77B, 177B, 130B, LABELS3, X+3 Required masks
DEF 24,133,378,99,232, 'ERROR' Required constants

Define Address

Program addresses, defined by alphabetic symbols, are stored as data

by the DAD pseudo operation. The 16 bit address is stored in sequential

bytes; the first byte contains the 8 least significant bits and the
second byte contains the 8 most significant bits of the address.

Format of the DAD statement:

(Symbol) I DAD | data 1list | (Comment)

The data list consists of one or moré symbols seperated by commas.
There can be no embedded blanks in the data list. '

The program counter is incremented by two for each symbol in the
data list.

4.5

4.6

™ LER72-103401
[} Page 23

Examples of DAD statements:

LINK DAD SUB1,SUB2,SUB3
ERRSUB DAD ERRORX Print Errors
DAD SOCTAL,SPECM,SYMBOL,SEXPR,SLIT

End of Source

The end of the source code statements is defined with the END
pseudo statement. The END operation code generates no object
code; it merely signals to the Assembler that there is no more
source code.

Format of the END statement:

l END [[(Comment)

Note that no symbol is allowed in the location field of the END
statement.

Assembler paper tape output

The format of the paper tape output is defined by the ASB pseudo
output. The operand specifies the format with the following
mnemonic codes.

F1601 -~ 1601 format described in Intel Manual
SILI CON GATE MOS LSI ROM 1601, 1301

F8008 - F8008 Format
(this logic is not included in the Assembler but
the position of the code is described in the
PAPER Subroutine)

The entire 80 character statement is written on the paper tape file
as the first record. It is used to describe the contents of the
paper tape. If no ASB pseudo operation appears, then format F1601
is assumed and a string of asterisks appear on the paper tape file
as the first record.

Examples of ASB statements:

ASB F1601 Keyboard Code
ASB F1601 Data Transmission Code

-

DSy o LER72-103401
{RE Unw . Page 24

5.0 ERRORS

5.1 Various types of errors can be detected by the Assembler.
Message 1s emitted following the statement which contains
the error. The error messages and their meanings follow.

$ERROR$ ILLEGAL CHARACTER X
The special character X(such as §, / .,) appears in the statement
(not in the comment) or perhaps a required operand field is missing.

$ERRORS$ MULTIPLY DEFINED SYMBOL XXXXXX
The symbol XXXXXX has been defined more than one time.

$ERROR$ UNDEFINED SYMBOL XXXXXX
The symbol XXXXXX has been used but never defined.

$ERRORS$ ILLEGAL NUMBERIC CONTAINS CHARACTER X
An octal number includes an i1llegal digit (such as an 8 or 9)
or the numberic contains non numeric characters

$ERROR$ ILLEGAL OPCODE XXX
The operation code XXX is not one of the acceptable mnemqnics.

$ERROR$ MISSING OPERAND FIELD
No operand found for an operation code which requires one.

$ERROR$ ILLEGAL VALUE=YYYYYY,MAXTMUM=XXXXXX
The numberic value of an octal or decimal number of an expression
has overflowed its limit,

OXXXX = 377B for 1 byte operands or data word
XXX = 37777B for 2 byte operands

IXXXXX = 37B for output device numbers
OOOX = 7 for input device numbers

YYYYYY = given operand value

$ERROR$ ILLEGAL SYMBOL
A location field contains a symbol that has more than six characters
or that does not start with an alphabetic.

$ERRORS MISSING LABEL
The label, which is required by the EQU pseudo operation, is missing.

$ERROR$ SYMEOL TABLE OVERFLOW, MAXIMUM=XXXXXX
-Too many symbols in source program to fit into allocated symbol
table. ‘

$ERROR LINE OVERFLOW, MAXTMUM=XXXX
Input line exceeds 48 characters; or missing carriage return.

$ERROR$ ERRONEOUS LABEL
Qpcodes END and ORG may not have a label

$ERROR$ ILLEGAL ORIGIN XXXXXX is less. than XXXXXX
Value of new origin is less than current program count.

$ERROR$ ILLEGAL OPERAND
DAD opcode requires symbolic operand

