
" --
UCID-16l40

DfFH QUESTIONS TO: LAWRENCE
RADI loTION

ELECTRONICS ENGINEERING UNIVERSITY
OF

CAliFORNIA

LER 72-103401 REPORT
Waldo Ma2nuson. Jr. LABORATORY LIVERMORE, CALIFORNIA
ORIG.

W. G. 'U__ on. Jr
ASSEMBLER PROGRAM FOR THE INTEL MCS-8

8008 CPU

DATf/15173 REV.

APPROVE[, . I" l..J.;r- .
'a~' '-~ PAGE 1

1.0
. t
SUMMKRY

This report is both a user's manual for the CDC-7600 computer program MCS8
as well as a reference manual for the INTEL 8008 symbolic assembly language.
The MCS8 program accepts as input, programs written in INTEL 8008 CPU assembly
language using mnemonic symbols for the instruction operations and creates
two output files: A standard assembly output (symbol table, object, and
source code) and a formatted object code output. The program will also
write a magnetic tape (a program option) in formatted object code in 1601
format (PN tape) which can then be used to punch a paper tape utilizing the
CDC l60A computer in building 113. The reference manual for the syaholic
assembly language appears as appendix A which is essentially a duplication
of Section II of the INTEL writeup titled "MC8 8008 Assembler."

2.0 Reading MCS8 Program From Photostore

The MCS8 program is stored in the ELEPHANT photostore under the "take"
directory: 558850:INTEL.

After logging onto the OCTOPUS system on a CDC-7600 computer system read
MCS8 from the photostore as follows:

ELF / .5 .1
.RDS .558850:INTEL:MCS8
• END
RDS

ALL DONE

After the above operations the program will exist on disk file available for
use as described in the following section.

3.0 Creating a Input Data File

Before running MCS8, an ASCII disk data file containing the 8008 program in
terms of the 8008 symbolic assembly language instructions must be available.
This data file can be created in a number of ways. For example cards can
be punched and read onto disk through an online card-reader or &JET, or
one of the OCTOPUS editor routines (TRIX, NAB, MICROPUS) can be used online
to create a data file. The routines TRIX and NAB will be used for illus­
trative purposes. Figure 1 shows a data file created using TRIl and F!gure
2 with NAB. The figures have been annotated to help show what was going on.
The TRIX example was taken from the INTEL MCS-8 CPU uumual and the NAB
example is a program with deliberate errors to show 80me of the. online.
errors when running MCS8.

The details for using both TRIX and NAB are in the references at the end
of this report. TRIX is by far the MOst powerful and flexible of the two
editors and well worth the time le.aming how to use it.

*Changed pages 1, 4 and 6.

RL·3t181

c'J

(RECORO(O
LER72-l03401

Page 2

YRI X AC I .5 .1 C is for "createlt file. 0 would
.C(DATAIN~~r-------------______ be used to "open" an existing
• BL 1 file in order to make addi t.ions
& .PROGRAM I AISel or changes.
'.DATE. MAY 21. 1912
'*PROGRAMM!RI DR. PHIL ,.
••
& ORG"

TAl. MC!. INTEL COR~.

&BEGIN LAI IS LOAD 15 TO AC
& OUT I.a
I OUT liB
& OUT 'lIB

• OUT 138
lOUT 148
lOUT 15B
& OUT 168
& Oln 118
• CAL DELAY
& CAL.D!LAY
• CAL DELAY
& CAL DELAY
& XRA

Start replacing !efore ~ine 1 •
There is also an ALn. Likewise
there is a DLn for ~e1ete ~ine.

If- OUT
, OUT

CLEAR At
I'Br,~~~~~~~~~~~~~~~~~~~Ihe pr~t for each line is an &
118

, OUT
I OUT
, OUT
& OUT
& OUT
&: LeI
& LLI
& LHI
ICSTtIT
& OUT
& LAb

138
1.t8
158
168
I1B
2 ...
2528

• LAM
In .

I OUT liB
I XRA
& LMA
I CAL DnAY
& CAl. DELAY
& INM
• INC
& '" Z CSTEST
& JMP 8!GSH
.DELAY LOI' I
&Dt INO

~ LOAD 2'-' TO REa. c
LOAD 2,ea(OCTAL) TO REG. C
LOAD • TO REI. H
LOAD H TO At

LOAD L TO AC

Ct.!AR AC
WRIT! At TO~O~Y

LOAD. TO "ft. D
D • D • I

During the typing of any line th
character delete (CTRL - X) and
line delete (CTRL - Y) may De
used.

I It 01
& RET I END ~-~~~~~~~~~~~~~~-~~~A ebale period te~inates the
I • ~ inaert .ode •

. ~~<--------------'£- Exit TRIX.

ALL DONE

Fiaura 1.

[RECORDED
NAB / .5 .1

LED72-l0J40l

Pale 3

TYPE NAME OF FILE. _- .. -------------.... Length •• twapli •• we are creatina
DATABAD _______ a new file.
L- 'I~
OK
R 0~<~~~~~~~~~~~-~~~~-~~--1Start replacing at location,

.EXAMPL! TO SHOW MCS ERROR DIAGNOSTICS
OKR
•
OKR
•
OKR (Prompt for each line.

ORG 1188
OKR

LAS
OKR
JMJll OUT I'.
OJ<R
JMPI OUT lIB
OKR

CAL DELAY
OKR

T,.X
OKR

OUT
OKR

JMP STOP
OKR
STOP END
OKR Terminates the inaertation mode.
,~

OK
T 0 28 (type atartina at location' the

0ee0000e*EXAMPLE TO SHOW MCS ERROR DIAGNOSTICS next 20 linea.

OK

8"Ie."" ••
00""8 •• 5.
eeeeee8& ORa 1788
le8e8811 LAS
8008 •• IIJMPI OUT 118
IS0""813JMPl OUT liB
.".e.815 CAL DELAY
81"80111 T' X
."e88828 OUT
•••••• el JMP STO­
ee e3STOP END
'88"8e~ END or ,.ILI:

END (Exit NAB

ALL DONE

Figure 2

(: .
---_

~.r ... ,p;';.:) __ I "tvv J~_" ,
- ~ -------_ ... -- ---

UCID-16140
LER72-103401
Page 4

4.0 Running MCS8 From a Teletype

Once we have obtained MCS8 from the Photos tore and have created a data file
we are able to run MCS8.

To start the program in execution, type:

MCS8 / .5.1
PLEASE TYPE INPUT FILE NAME (A7)
DATA IN
TYPE LINE-FEED OR TAPE VAULT NO.
DC2'3

----------------------8"a INTEL ASSEMBLER

ALL DONE

During execution four disk files are created by MCS-a. They are:

BUFFER
MCSMID
MCSBIN
MCSOUT

Used by the program as a ENCODE-DECODE buffer.
Used for temporary storage during execution.
The formatted object code in 1601 format.
The standard output which contains a symbol table
and source and object code.

If a line-feed response is used when running the program, no magnetic will
be written. The first two files can be ignored (or destroyed). The file
MCSBIN can be punched as cards and the cards converted to paper tape on the
PDP-l computer using the HAT routine. To first punch the cards on the
OCTOPUS system. type:

PUNCH MISCBIN / .5 .1
BOX&ID?
BOX Nt'. PROGRAM: A: A{lJa'l

ALL DONE

The file MCSOUT is the standard listing file and can be either listed on the
teletype or sent to a printer or an RJET using OUT or ALLOUT ~ For example
using OUT and the printer:

OUT PRINTER MCSOUT / .5 .1
BOX&ID?
BOX Nf, PBOGRAM: A,a'l

ALL DONE

In the above example it is implied that tape DC2,3 will be available to
the OCTOPUS computer operator (use routine SAMTOP to request a tape from
the vault). If you want it then use *vault-number. You can use a tape
name like *MCS8 if you can pick the tape up from the computer in a reasonable
amount of time (1 hour). The CDC-160A computer 1n building 113 is used
for punching a paper tape using the magnetic tape. The instruction book at
the CDC-160A tells how to use the computer. instructions are also contained
in LER7l-l0506 "Preparing and Verifying Punched Paper Tapes for the CLI
Program."

Mess I .5 .1
~LEASE TYPE INPUT FILE NAME CA1)
DATABAD

880S INTEL ASSEMBLER

ORG 1188
!SSERROR

LAS
SSSERROR

JMPI OUT III
SSSERROR

63

JMPI OUT lIB
III ERROR

CAL DELAT
S!SERROR

Trrx
I.SERROR

OUT
SStERROR

JMP STOP
IIIERROR

STOP END
SSS!!ttROR

ALL DON!

I~IfQRDEL LEa72-103401

Page 5

ILLEGAL NUMERIC CONTAINS CHARACT~R8

ILLEGAL CHARACTER S

ILLEGAL VALUE- I'.. MAXIMUM-

MULTIPLY DE'IHED SYM8dl

UNDE'INED SYMBOLDELAY

ILLEGAL OPCOOET~X

MISSING OPERAND ~I!LO

ERRONEOUS LABEL

Figure 3

•

UCID-16l40
LER72-l0340l
Page 6

The paper tapes produced by means of either the magnetic tape or punch cards
are Intel format PN tapes in positive logic (high level a pa 1). They can
be used on the PROM progr r. It is recommended that the magnetic tape
produced paper tape be used for reasons of efficiency.

Figure 3 shows the teletype output produced when the file DATABAD was
used as input to MCS8. Normally the input file would be corrected with
a text editor and then MCS8 rerun.

Figure 4 and 5 show the listings of files MCSOUT and MCSBIN for an 8008
program which assembled with no errors.

Need Help?

If you need help running the MCS8 assembler program on the CDC-7600 system or
in punching cards let me know. There are many people familiar with the use
of both NAB and TRIX who can help you •. I will be glad to help you with these
programs as well. In addition, Terry Allison or Jack Oliver can assist with
the operation of the PDP-l computer.

~ (.., '. " J
~/;/i.,< .. {,. //./ /1. ,;,.'; ·I"·t-t .• ,.J-e",, 1, .. /1.-

W. G. MAGNUSON, JR." v
Electronics Engineering Department

Distribution:
w. G. Magnuson. Jr. (25 copies)
H. C. McDonald
EE Division Leaders
EE Group Leaders

TfH X I\C I .5 • I LER72-103401 .OCMCSOIN) -- ~... .'" -' - - .. _ ..
6~ LINES •

/"", \' '. ~ ... Page 7
• NN T \.,

.. ;; -;••..•.•
•••••••• •• ••••••••

8 BNNNNNPPNF" BNNNNNNNPF" BNPNPNPNPF" BPNPNPNNNF"
BNPNPNPPPF" BNPNNNPONF" BNNNN°NnpF' BNNNNNNNNF"

8 BN°NNN°NNF" BNNNNNNNNF' BNNNNNNNNF' BNNNNNDPNF"
BNNNNNNNDF' BNDN°N°PPF' BNPNNNOPNF" BNNPPPNPNF"

16 BNNNNNNNNF" BNNNNNNNNF' BNDNNNPPNF' BNDNNNNNPF"
BNNNNNNNNF' BDN°N°NNNF' BNPNPNDPPF" BNPNNNNNPF"

24 BNNNPNPPNF" BPPPPPPPPF' BPNPNDN"NF' BNPNDNPNPF"
BNNPNNoPNF' BDPPPPNNNF" BNPNNN"PNF" BNNDOPNPNF"

32 BNNNNNNNNF' RNPNNNNNDF' BNNNDNPPNF' BDDDDDPPPF"
BPNPNPNPNF' BNPN':lNPNF'F' BNNNPPNPNF' BPPNNNNNPF"

40 BNNNDPNPNF" BPPNN°NNNF" BNN"NNNNNF" BNPNNPNNNF'
BNNNPPPPNF" BNNNNNNNNF' BPPNNNNN°F" BNPNPNNPPF"

48 BNNNPNPNNF' BPNNNNNNNF' BpoNNPNNNF" BNPNNN°PNF'
BNNPPPNPNF" BNNNNNNNNF' RNNNNNPPNF" BNNNNNNNPF"

S6 BNPNPNoNPF' BNNNNNPPPF' BNNNDPPPNF' BNDPPNNPPF'
BNNNPPNNNF" BNDNNPNNNF" BNNPPPPNNF' BNNNNNNNNF'

6'4 BNNNNNPPPF' BNNNPPPPNF' BPN?PPNPNF' BNNNoPNNNF"
BNPNNPNNNF' BNPNNNN"PF' BNNNNNNNNF' BNNNNNPP"F'

72 BNNNNNNNNF" BNNNNNNNNF' BNNNNNNNNF' BNNNNNNNNF"
BNNNNNNNNF' BNNNNNNNNF' BNNNNNNNNF' BNNNNNNNNF'

80 BNNNNNNNNF' BNNNNNNNNF' BNNNNNNNNF" BNNNNNNNNF"
BNNNNNNNNF" BNNNNNNNNF' BNNNNNNNNF" BNNNNNNNNF"

88 BNNNNNNNNF' BNNNNNNNNF' BNNNNNNNNF' BNNNNNNNNF"
BNNNNNNNNF' ONNNNNNNNF' BNNNNNNNN~· BNNNNNNNNF"

96 ONNNNNNNNF' RNNNNNNNNF' BNNNNNNNNF' BNNNNNNNNF'
BNNNNNNNNF' BNNNNNNNNF' BNNNNNNNNF' BNNNNNNNNF"

104 BNNNNNNNNF' BNNNNNNNNF' BNNNNNNNNF" BNNNNNNNNF"
BNNNNNNNNF' BNNNNNNNNF' RNNNNNNNNF" BNNNNNNNNF"

112 BNNNNNNNNF' BNNNNNNNNF' BNNNNNNNNF" BNNNNNNNNF"
BNNNNNNNNF' BNNNNNNNNF' BNNNNNNNNF" BNNNNNNNNF"

120 BNNNNNNNNF' BNNNNNNNNF' BNNNNNNNNF" BNNNNNNNNF"
BNNNNNNNNF' BNNNNNNNNF' BNNNNNNNNF" BNNNNNNNNF"

128 BNNNNNNNNF" BNNNNNNNNF' BNNNNNNNNF" BNNNNNNNNF"
BNNNNNNNNF' BNNNNNNNNF' BNNNNNNNNF" BNNNNNNNNF"

136 BNNNNNNNNF' BNNNNNNNNF" BNNNNNNNNF" BNNNNNNNNF"
BNNNNNNNNF" BNNNNNNNNF' BNNNNNNNNF" BNNNNNNNNF"

144 BNNNNNNNNF' BNNNNNNNNF' BNNNNNNNNF" BNNNNNNNNF"
BNNNNNNNNF' BNNNNNNNNF' BNNNNNNNNF" BNNNNNNNNF"

152 BNNNNNNNNF' BNNNNNNNNF' BNNNNNNNNF" BNNNNNNNNF"
BNNNNNNNNF" BNNNNNNNNF' BNNNNNNNNF" BNNNNNNNNF"

168 BNNNNNNNNF" BNNNNNNNNF" BNNNNNNNNF" BNNNNNNNNF"
BNNNNNNNNF' BNNNNNNNNF' BNNNNNNNNF" BNNNNNNNNF"

168 BNNNNNNNNF" BNNNNNNNNF' BNNNNNNNNF' BNNNNNNNNF"
BNNNNNNNNF" BNNNNNNNNF' BNNNNNNNNF' BNNNNNNNNF"

176 BNNNNNNNNF' BNNNNNNNNF' BNNNNNNNNF" BNNNNNNNNF"
BNNNNNNNNF' BNNNNNNNNF' BNNNNNNNNF" BNNNNNNNNF"

184 BNNNNNNNNF' BNNNNNNNNF' BNNNNNNNNF' BNNNNNNNNF"
BNNNNNNNNF' BNNNNNNNNF' BNNNNNNNNF" BNNNNNNNNF"

192 BNNNNNNNNF" BNNNNNNNNF' BNNNNNNNNF" BNNNNNNNNF"
'BNNNNNNNNF' BNNNNNNNNF" BNNNNNNNNF' BNNNNNNNNF'

288 BNNNNNNNNF' BNNNNNNNNF' BNNNNNNNNF" BNNNNNNNNF"
BNNNNNNNNF" BNNNNNNNNF' BNNNNNNNNF' 8NNNNNNNNF"

20S BNNNNNNNNF" BNNNNNNNNF' BNNNNNNNNF" BNNNNNNNNF'
BNNNNNNNNF" BNNNNNNNNF" BNNNNNNNNF" 8NNNNNNNNF"

216 BNNNNNNNNF" BNNNNNNNNF' BNNNNNNNNF' BNNNNNNNNF"
BNNNNNNNNF' BNNNNNNNNF" BNNNNNNNNF" BNNNNNNNNF"

22<4 BNNNNNNNNF' BNNNNNNNNF" BNNNNNNNNF' BNNNNNNNNF"
BNNNNNNNNF' BNNNNNNNNF' BNNNNNNNNF' BNNNNNNNN'

232 BNNNNNNNNF" BNNNNNNNNF" BNNNNNNNNF" BNNNNNNNNII'
BNNNNNNNNF" BNNNNNNNN, BNNNNNNNNF' BNNNNNNNNII'

2<4. BNNNNNNNNF" BNNNNNNNNF" BNNNNNNNN,. 8NNNNNNNNII'
BNNNNNNNN' BNNNNNNNNF' 8NNNNNNNNII' 8NNNNNNNNF

2<48 8NNNNNNNNF' 8NNNNNNNNF' 8NNNNNNNNF BNNNNNNNNII"
BNNNNNNNNII' BNNNNNNNNF BNNNNNNNN .. BNNNNNNNN'

.END

ALL DONE
lisure 5

c,

TRIX AC , .5 .1
.OCMCSOUT)
66 LINES •
• NN T
•••••••••••••••••••••

SYMBOL VALUE
•••••••••••••••••••••

I BEGIN • 2 TAPE 11
3 TTY 11
~ TTYIH 38
5 TTYDI 58
6 ST 68
1 TTYD2 65
8 ST2 67

••
LOC OBJECT CODE SOURCE STATEMENTS
••

8 *38
8 *38
8 *30

" 6 2 85
3 168
4 87
5 70 II •
8 68 " 8

II 6 I
13 87
14 70 58 8
17 0
18 70 65 8
21 168
22 87
e3 65
24 22 '255
26 170
27 85
28 38 2~8
30 10 58 •
33 65
34 22 255
36 110
31 85
38 26
39 193
40 26
41 200
42 32
43 12 38 •
46 193
~1 83
~8 2e 128
5e eee
51 70 58 •
54 6 I
56 85
51 1
58 30 115
60 24
61 12 61 •
64 7
65 30 186
67 2~

68 12 61 a
11 7
72 .30

.END

ALL DONE

* TTY TAPE READER CONTROL
• INTEL PROGRAM Alsel-a8 5'22'72 CDR. PHIL TAl)

ORG 8
BEGIN LAI I

OUT 128
XRA

TAPE

TTY

-OUT
CAL
JMP
LAI
OUT
CAL
HLT

138
TAPE
BEGIN
I
138
TTYOI

CAL TTYD2
XRA
OUT 138
INP 8B
LCI 255
XRC
OUT
LEI

TTYIN CAL
INP
LCI
XRC

12B
248
TTYOI
aB
255

O'JT 128
RAR
LA8
RAR
LBA
INF.:
Jrz TTYIN
LAB
OIJT II B
SUI 128
LBA
CAL TTYOI
LAI I
OUT 129
RET

TTYOI LOlliS
ST INO

JF"Z ST
RET

TTYD2 LDI 186
ST2 IND

JF"Z ST2
RET
END

SIJf:tRESS'TTY
OUTPUT 2
CLEAR AC
OUTPUT 3 - TADE RDR. CONTROL
REQ. TAPE ROR. CONT. RT.

.TAPF.: READER ENABL! CODE
OUTPUT 3 - ENABLE TAPE RDR.
TA~E RDR. CONTROL DELAY
WAIT FOR TTY START "IJLS£
TTY DELAY - 4.468 MSEC.
TAPE RDR. DISABLE CODE
OUTPUT 3 - DISABLE TP. RDR.
INPUT I - READ START PULSE
COMPLEMENT TTY START PULSE
EXCLUSIVE-OR REG. C
OUTPUT 2 - START "'JLSE OUT
TTY DATA SAMPLING COUNTER
TTY DELAY - 9.012 MSEC.
READ TTY DATA INPUT
COMPLEMENT TTY DATA

O'JTPUT 2 - TTY DATA OUT
STORE TTY DATA OUT
LOAD TTY DATA TO

LOAD AC TO R€G. B
E • E • I
JUMP I' ZERO ," IS NOT SET
LOAD REG. 8 TO AC
OUTPUT I. TTY CHAR.
REMOVE PARITY BIT
STORE TTY INPUT DATA

StJPPRESS TTY

9.812 MSEC. DELAY
D • 0 • I

~. 468 MSEC. DEL-AY-

Figure 4

LER72-103401
Page 8

iRECORDEDi
"'---'

REFERENCES

LER72-103401
Page 9

1. INTEL Corp., "MCS8 8008 8-bit Parallel Central Processor Unit,"
55 pages, June 1972. This report describes the 8008 processor,
processor timing, instruction set, controls signals, electrical
specifications, etc. It is the basic reference if you are going to
use the 8008.

2. INTEL Corp., "MCS8 8008 Assembler," 20 pages, June 1972. Section I,
user's manual, is not applicable to the way the MCS8 assembler program
is run at LLL. Section II describea the symbolic assembly language
appears as Appendix A of this LER.

3. INTEL Corp., "MCS8 Bootstrap Loader Control Program," 19 pales, June 1972.

4. A. Cecil, H. Mill, and J. Rinde, "File Editing with TRIX," UCID-30040,
36 pages, March 1972. Copies are available from TID. Use page 35-
selected commands from TRIX AC - as a guide when using TRIX.

5. "Introduction to OCTOPUS," CIC Manual 1-002, October 1967. Page. 76-78
give a brief description of NAB. NAB is also to be described in Utility
routine UR-204 when it is published.

•

Appendix A

LER72-103401
Page 10

1.0 GENERAL DESCRIPTION

The 8008 Assembler generates object programs from symbolic assembly language
instructions. Programs are written in the assembly language using mnemonic
symbols both for 8008 instruction and for special assembler operations.
Symbolic addresses can be used in the source program; however, the assembled
program will use absolute addresses.

1.1 Assembler Use and Operation

Source programs are written in assembly language and edited prior to
llssembling, using an editor program. Edited programs can then be
assembled. The Assembler processes the source program in two passes
or cycles.

The As.embler generates a symbol table from the source statement nameB
in the first pass and checks for errors.

In the second pass the Assembler uses the symbol table and the source
program to generate both a program listing and an absolute binary pro­
gram. Error condition. are indicated in the program listing.

1.2 Symbol Usage

Symbols can represent specific addresses in memory for data and program
words, or can be defined as constants. Symbols are used as labels for
locations in the program or as data storage area labels or as constants.

Expressions can be formed from a symbol combined by plus or minus operators
with other symbols or numbers to indicate a location other than that
named by the symbol. Every symbol appearing as part of an operand must

. also appear as a statement label or else it is not defined and wi~l_._~~_
~re-a-te_ci ~s -al! -_error. -sYmbols that are used as labels - for- two' or more
statements are also in error.

1.3 Absolute Addressing

Object programs use all absolute addresses. The starting address is
specified by a pseudo instruction at the beginning qf the source pro­
gram. All subroutines referertced by symbol in the main program must be
assembled as part of the main program. Subroutines not assembled with the
main program must be referenced by their starting addresses.

1.4 Program Addresses

Consecutive memory addresses are generated by the Assembler program counter
and "slaned to each source stata.ent. Tvo byte source statements are
.. siped wocoo.ecutive addres.ea--and~hree byte source stateaents are

•• ssianed fhre.-coa.ecutiv •• ddr ••••••

RECOkut.u LER72-l0340l
Page 11

The starting address is set by an ORG pseudo instruction at the
beginning of the source program.

1.5 Output Options

The Assembler output is stored in files and can be read out in several
forms. Some of the options available are:

a. binary paper tape at the terminal (if your teletype is .0 equipped);
b. card output at computer center;
c. program listing at the terminal;
d. program listing at the computer center;
e. symbol table listing at the terminal;
f. symbol table li.ting at the computer center.

The printout of ,the program listing will have the following format'

Columns

1- 5 Location (octal) of first byte of object code

6- 7 Blank

8- 10 First byte object code word in octal

11 Blank

12- 14 Second byte object code word in octal

15 Blank

16- 18 Third by,te object work 1n octal

19 Blank

20- 22 Fourth byte object code woJ:d in octal

23- 24 Blank

25- 27 First 48 characters. of source statement

2.0 INSTRUCTION fORMAT

The Intel Assembly program 'cona~st. of a aeCluen,ce Qf ~ol1.c .tat_enta~ Each
source language statement containa a .ax1mum ot four f~eld. ~~ the {ollowing order.

location field;
operation field,
operand field;
cOUlDent field.

LER72-103401
Page 12

The format is essentially free field. Fields are delimited by one
or more blanks. Blanks are interpreted as field separators in all
cases, except in the comments field or in a literal character string.

The maximum length of any statement is 80 characters. The instruction must
end prior to character 48 but the comments may extend to column 80.

2.1 Symbols

Symbols are used in the location field and in the operand field. A
symbol 1s a sequence of one to six characters representing a value.
The first character of any symbol must be an alphabetic. Symbols
are comprised of the characters A through Z, and zero through nine.

The value of a symbol is determined by its use. In the location fielH
of a machine instruction or a data definition, the value assigned to
the symbol is the current value of-the program counter. In the location
field of an EQU pseudo instruction, the value of the operand field is
assigned to the symbol.

An asterisk is a special purpose symbol. It represents the location
of the first byte of the current instruction. Thus if an operand
contains *-1, then the value calculated by the Assembler is one less
than the location of the first byte of the current instruction.

Ixamples of legal symbols:

MAT START 2
MIKE Zl48
TED24 RONA3Z

*
2.2 Numeric Constants

Two types of numeric constants are recognized by the Assembler: decimal
and octal. A decimal number is represented by one to five digits (0-9)
within the range of 0 to 16383. An octal number contains from one to
five,digits (0-7) followed by the letter B. The range of octal numbers
is 0 to 37777B.

Numeric constants can be positive or negative. Positive constants are
preceded by a plus sign or no sign. Negative constants are preceded by
a minus sign. There can be no blanks between the sign and the digits.
If a-minus sign precedes the number, then the complement of the binary
equivalent is used. -

2.3 Expressions

Expressions may occur in the operand field. The Assembler evaluates the
expression from left to right and produces an absolute value for the
~ject code. There can be symbols and numbers in expressions separated

f by -irithmet:l.c..-_ope_rator + and - Octal and deciaal nUllbers are acceptable.
Ro eahedded blanks are allowed within expressions.

ktLUhUt.u,
----------------~-~

LER72-l0340l
Page 13

Parenthese are not permitted in an expression. Thus terms
cannot be grouped as in the expression Z-(4+T). That expression
must be written as Z-4-T to be acceptable to the Assembler.

2.4 Location Field

The location field of a statement contains a symbol when needed
as a reference by other statements. If a statement is not referenced
explicitly, then the location field may be blank.

The symbol must start in column 1 of the statement. That is, if a
symbol is required it must be punched immediately following the end
of statement mark of the preceding statement. The Assembler therefore
assumes that if column 1 is blank, the location field of that statement
does not contain a symbol.

Oolumn 1 of the location field can also indicate that the entire line
is a comment. If an asterisk occurs in column 1. then positions 2
through 80 contain remarks about the program. These remarks have no
effect on the assembled program but do appear in the output listing.

2.S Operation Field

The operation field must be present and is represented by a
mnemonic code. The code describes a machine operation or an Assembler
operation.

The operation code follows the location field and is seperated by one
or more blanks from the location field. The operation field is ter­
minated by a blank or an end of statement mark when there is no
operand field and no comment field.

Examples of machine operations:

LAB Load Register A with the contents of Register B
CPM Compare contents of A register with contents of

memory location m.

Example- of Assembler operation:

ORG Set program counter to specified origin.

2.6 Operand Field

The contents and significance of the operand field are dictated by the
operation code. The operand field can contain the follow1oaz

blank
symbol
numeric
expression
data list.

•

R E (; () k [j t. ; ~ LER72-103401
Page l~

The operand field follows the operation code and is separated from
that code by one or more blanks. The operand is terminated by a
blank or an end of statement mark if no comments follow the operand.

Examples of operands:

DAN I
l43B
1869
RON+33B
(blank)

2.7 Comment Field

MIKE2-MIICE4+ I
773B+X2
*-1
AA44-22B

The comment field is optional. It follows the operand field and is
seperated from that field by at least one blank. If there is no
operand field for a given operation code, then the comment field
follows the operation field. Once again at least one blank separates
the operation code and the comments. Comments must terminate on or
before the 80th character position. If the comment extends beyond
that position, it will be truncated on the output listing. Comments
up to the 48th character position are printed along with the source
code. If comments are in position. 49 through 80, then they are
printed on the next line.

3.0 MACHINE OPERATION

Each instruction in the 8008 repertoire can be represented by a three letter
mnemonic in the 8008 assembly language. lor each source statement in the
assembly language (except for some pseudo instructions), the Assembler will
generate one or more bytes of object code. Source language statements use
the following notation:

Label - optional statement label;
Operand - one of the following:

data

address

device

- a number, symbol or expression used to generat~
the second byte of an immediate instruction.

- a number, symbol or expression used to generate
the second and third bytes of a call or jump
instruction.

- a number, symbol or expression used to define
input/output instructions to select specific devices.

Comment - optional comment.

() - inforaation enclosed in brackets is optional.

LER72-l0340l
Page 15

3.1 Move Statements-- 1 byte, or 2 bytes when operand is used.

Move instructions replace the contents of memory or of the A, B, C,
D, E, Hand L Registers with the contents of one of the Registers A,
B, C, D, E, H or L or with the contents of the memory location specified
by Hand L or with an operand from the second byte of the instruction.
In what follows, r l can represent A, B, C, D, E, H, L or H. r

2
can re-

present A, B, C, D, E, H, L, M or I. If r l - M, the contents of memory

are replaced by the contents of r 2. If r 2 - H, the contents of r 1 are

replaced by the contents of memory. If r 2 • I, the contents of r
1

are

replaced by the operand from the second b~te of the instruction.

{Label} I Lrl r 2

Hove r 2 to r
1

•

. bamples:

Label LEH

Move H to E.

Label LAM

data

Move_A, from memory.

Label LMB

Move B to memory.

(Comment)

Comment

Comment

Comment

Label LCI 062B . I Comment

Load octal 062 into C.

Label LM! l35B Comment

Load octal 135 into memory.

The contents of the sending location are unchanged after each move.
An operand is required if and only if r 2 • I.

3.2 Arithmetic and Logical Operation Statements-- 1 byte, or 2 bytes
when operand is used.

These instructions perform arithmetic or logical operations between
the contents of the A Register and the contents of one of the Registers
B, C, D, E, H or L or the contents of a memory location specified by
H, and L or an operand. The result is placed in the A Register. In
what follows, r may be B, C, D, E, H or· L, M or I. If r • H, memory'

, locatio~ is specified. If r • I, the operand from the second byte of
the instruction 1_ specified.

~'-r co R D ED·
.. .-.. --. ---

3.2.1 (Label) ADr data I (Comment)

Add r to A.

3.2.2 . (Label) I ACr data (ColIIDen t)

Add r to A with carry.

3.2.3 (Label) SUr I data (Comment)

Subract r from A.

3.2.4 (Label) SBr data (Comment)

Subtract r from A with borrow.

3.2.5 (Label) NDr data

Logical AND r with A.

3.2.6 (Label) Dr data

Exclusive OR r with A.

3.2.7 (Label) I ORr I data
Inclusive OR r with A.

3.2.8 (Label) I CPr I data
Compare r with A.

Example.:

Label ADB

Add B· to' A. -

Label SUM

I (CoDlDent)

(CoDlDent)

(Comment)

(CoDlDent)

Comment

Comment

Subtract the contents of the memory location
specified by Hand L from A.

Label CPI 024B CoDlllent

Compare octal 024 with A.

An operand is required if and only if r - 1.

3.3 Rotate Statements -- 1 byte

•

3.3.1

3.3.2

3.3.3

(Label) RLC (Comment)

Rotate A one bit left.

(Label) I R.RC (Comment)

Rotate A one bit right •

(Label) I RAt (CoDlDent)

R.otate A through the carry one bit left.

3.3.4 (Label) I BAR (Comment)
Iotate A throush the carry one b1t risht.

LER72-103401
Page 16

fR E COR D ED ..
3.4 Call Statements -- 3 bytes

LER72-l0340l
Page rr

Call instructions are used to enter subroutines. The second
and third bytes of call instructions are generated from source
programs operands and are used to address the starting locations
for the called subroutines. An operand is always required.

3.4.1 (Label) CAL address I (Comment)

Call subroutine unconditionally.

3.4.2 (Label) CIC I address I (Comment)

Call subroutine if carry • 1.

3.4.3 (Label) CFC I address I (Comment)

Call subroutine if carry • O.

3.4.4 (Label) CTZ I address I (Comment)

Call subroutine if accumulator • O.

3.4.5 (Label) CFZ I address I (Comment)

Call subroutine if accumulator ¢ O.

3.4.6 (Label) CIP I address I (Comment)

Call subroutine if accumulator parity 1s even.

3.4.7 (Label) CFP I address I (Comment)

Call subroutine if accumulator parity 1s odd.

3.4.8 (Label) CIS I address I (Comment)

Call subroutine if accumulator sign is minu8.

3.4.9 (Label) CPS I address I (CoDDDent)

Call subroutine if accumulator 8ign in plus.

At the conclusion of each subroutine, control return8 to the
address "Label+3".

3.5 Jump Statements -- 3 bytes

Jump instruction8 are u8ed to alter the normal program 8equence. The
second and third bytes of jump in8tructions are generated from source
program operand8 and are u8ed a8 the addre8s of the next instruction.
An operand i8 alway. required.

3.6

3.5.1 (Label) JMP address I (Comment)

Jump to address unconditionally.

3.5.2 (Label) I JTC I address I (Comment)

Jump to address if carry • 1.

3.5.3 (Label) I JFC I address I (Comment)

Jump to address if carry • O.

3.5.4 (Label) I JTZ I address I (Comment)

Jump to address if accumulator • O.

3.5.5 (Label) I JFZ I address I (Comment)

Jump to address if accumulator ~ O.

3.5.6 (Label) I JTP I address I (Comment)

LER72-103401
Page 18

Jump to address if accumulator parity 1s even.

3.5.7 (Label) I JFP I address I (Comment)

Jump to address if accumulator parity . .;ts odd.

3.5.8 (Label) I JTS I address I (Comment)

Jump to address if accumulator sign is minus.

3.5.9 (Label) I JFS I address I (Comment)

Jump to address if accumulator sign is plus.

Return Statements -- 1 byte

Return instructions are used at the end of subroutines to return
control to the address following the call instruction that entered
the subroutine. In what follows, assume a subroutine vas ca1le~
as shown:

MAIN CAL SUBRTN Comment

3.6.1 (Label) RET I (Comment)

Return unconditionally to "MAIN+3".

3.6.2 (Label) RTC I (Comment)

Return to "MAIN+3" if carry • 1.

3.6.3 (Label) arc I (Comment)

I.e turn to ''MAIN+3'' if carry • O.

• 3.6.4 (Label) I.TZ (CoiIaent)

I.e tUrD to ''MAIM3'' if accuaulator • o.

3.6.5

3.6.6

3.6.7

3.6.8

3.6.9

(Label) RFZ

Return to "MAIN+3" if

(Label) I RTP

Return to "MAIN+3" if

(Label) I RFP

Return to "MAIN+3" if

(Label) I RTS

(Comment)

accumulator ¢ O.

I (Comment)

accumulator parity

I (CoDDllent)

accumulator par1ty

(Comment)

LER72-l0340l
Page J.9

is even.

1s odd.

Return to "MAIN+3" if accumulator s1gn ia minua.

(Label) I RFS (Comment)

Return to "MAIN+3" if accumulator s1gn is plus.

3.7 Input/Output Statements -- 1 byte

These instructions are used to input or output data. one byte at a tim-.
between the A Register and the external device selected by the operand.
An operand is always required.

3.7.1 (Label) INP I device I (Comment)

Inputs one byte of data from device to the
A Register.

3.7.2 (Label) OUT device (CoDDDent)

Outputs one byte of data from the A Register to device.

The device operand must have a value be~een 0 and 7 for input instructions
and between 10 and 37 octal for output instructions.

3.8 Increment/Decrement Statements -- 1 byte

These instructions are used to increment by one or decrement by one
of th~ registers r. In what follows, r can represent B. C. D, E. H
or L. Increment and decrement operations affect the accumulator con­
ditions zero, parity and sign. but not carry.

3.8.1 (Label) I INr (~omeQt)

Add 1 to r.

3.8.2 (Label) I DCr (Comment)

Subtract 1 from r.

Example a

(Label) INB (Co8Dent)

Add 1 to B.

3.9 Halt Statement -- 1 byte

The halt instruction is used to stop the 8008 processor.

(Label) HLT I (Comment)

3.10 Restart Statement -- 1 byte

LER72-103401
Page 20

The restart instruction is used in conjunction with an interrupt signal
to start the 1201 after a halt. The program counter is set to a starting
addre •• equal to the operand multiplied by octal 10. A start operand i8
required which may have a value from 0 to 7.

(Label) 1ST start (Comment)

3.11 Load Address Statement -- 4 bytes.

This instruction is used to load Hand L with a memory address and is
simply an as.embly languale convention equivalent to the two separate
instructions LHI and LLI. An operand is required.

(Label) SHL address (CoDlDent)

4.0 PSEUDO INSTRUCTIONS

The purpo.e of pseudo instructions is to direct the Assembler, to define
constants used by the object code, and define values required by the
A.sambler. The follOWing is a list of pseudo operatioos. .

ASB Define paper tape output.
ORG Define origin of program.
EQU Define symbol value for Assembler.
DEF Define constants for object code.
DAD Define·two byte address.
END Define End of source code.

4~ Proar am Orisin

The program origin can be defined by the user by an ORG pseudo operation.
If no ORG statement is defined, the origin is assumed to be zero. The
origin can be redefined whenever necessary by including an ORG statement
prior to the .ection of code which starts at a speciflc program location.

The format of the ORG .tatement ~s.

ORG n (Co1llDents)

e·

. R E COR D E 0' -- -~~-- ... -~ .-------
LER72-103401
Page 21

The operand n can be a number symbol, or an expression.
is used it must be predefined in the code.

If a symbol

Example of the ORG statement:

SAM

LAB

LCD

ORG
LCD

ORG
SALLY DEl

END

1000B

5000B
l,4,77B,7000B

Instruction starts in
LOC 0000.

Instruction stored in
LOC 1000.

Data starts in LOC SOOO.

. 4.2 Equate Symbol

4.3'

A symbol can be given a value other than the one normally assigned
by the program location counter by using the EQU pseudo operation.
The symbol contained in the location field ia given the value
defined by the operand field.

The EQU statement does not produce a machine instruction or data
word in the object code. It merely assigns a -valua to a srmhol
used in the source code,

Format of the EQU statement, '

Symbol EQU operand 1 (Co_ent}

The operand may contain' a numbe~1c:, a sfDlh6l, or an ~rea8ion~
Symbols which appear in tha operand muat.be preyioualr deflned
in the source code • .
All fields are required except for thaco .. ent fleld, which ta
always optional.

Example of EQU statement.,

TELET EQU 4
MAGT2 EQU 2
MAGT6 EQU 6
SAM EQU 1000B

INP TELET
LAB
CALL SAM
OUT KAGT2

Define Constant

Constant data values can be defined using the DEl pseudo statement.
The data values are placed in seq,uential warda in the. object code.
If a symbol appears in the location field, lt t ... sociated with the
first data word. That symbol can tie thea used to reference the
defined data.

,.,.

_~ E CO R DE D
. -'-- - .~~-... -... _-

Format of the DEF statement:

(Symbol) IOEF Idata list (Comment)

LER72-103401
Page 22

The data list consists of one or more terms separated by commas.
There can be no embedded blanks in the data list (except in a
literal character string). The terms can be octal or decimal
numerics, literal character strings, symbols or expressions.

A literal character string is enclosed in single quote marks (').
It can contain any ASCII characters, including blanks. The internal
BCD 8 bit codes correspoinding to the given characters are stored in
sequential bytes, one character per byte.

Octal and decimal numbers are stored one per byte in binary.
Octal numbers must be in the range 0 to 377B.
Decimal numbers must ,be in the range 0 to 255.
Two's complements are stored for minus numbers.

The program counter is incremented by one for each numberic
term in the data string and by n for each literal string of n
characters.

Examples of data strings:

MESSI DEF
MESS2 DEF
MASKS DEF

DEF

4.4 Define Address

'SYMBOL TABLE OVERFLOWED', Y-2, SUB2
'LITERAL STRING 1', 'LITERAL STRING2'
77B, l77B, l30B, LABELS3, X+3 Required masks
24,133,37B,99,232. 'ERROR' Required constants

Program addresses, defined by alphabetic symbols, are stored as data
by the DAD pseudo operation. The 16 bit address is stored in sequentia~
bytes; the first byte contains the 8 least' significant bits and the
second byte contains the 8 most significant bits of the addres~.

Format of the DAD statement:

(Symbol) DAD data list (Couanent)

The data list consiats of one or more symbols seperated by commaa.
There can be no embedded blanks in the data list.

The progr.. counter ia incremented by two for each symbol in the
data liat.

Examples of DAD statements:

LINK DAD
ERRSUB DAD

DAD

4.5 End of Source

SUBl,SUB2,SUB3
ERROR! Print Errors
SOCTAL,SPECM,SYMBOL,SEXPR,SLIT

LER7~-10340l
Page 2'3

The end of the source code statements 1s defined with the END
pseudo statement. The END operation code generates no object
code; it merely signals to the Assembler that there 1. no more
source code.

Format of the END statement:

END (Comment)

Note that no symbol is allowed in the location field of the END
statement.

4.6 Assembler paper tape output

The format of the paper t~pe output is defined by the ASB pseudo
output. The operand specifies the format with the following
mnemonic codes.

P160l - 1601 format described in Intel Manual
SILl CON GATE MOS LSI ROM 1601, 1301

F8008 - F8008 Format
(this logic is not included in the Assembler but
the position of the code is described in the
PAPER Subroutine)

The entire 80 character statement is written on the paper tape file
as the first record. It is used to describe the contents of the
paper tape. If no ASB pseudo operation appears, then format F160l
is assumed and a string of asterisks appear on the paper tape .file
as the first record.

Examples of ASB statements:

ASB
ASB

F160l
F1601

Keyboard Code
Data Transmission Code

,.,. ..

s.o ERRORS

, :
! .~

LER72-103401
Page 24

5.1 Various types of errors can be detected by the Assembler.
Message is emitted following the statement which contains
the error. The error messages and their meanings follow.

$ERROR$ ILLEGAL CHARACTER X
The special character X(such as $, I .,) appears in the statement
(not in the comment) or perhaps a required operand field is missing.

$ ERRORS $ MULTIPLY DEFINED SYMBOL XXXXXX
The symbol XXXXXX has been defined more than one time.

$ERROR$ UNDEFINED SYMBOL XXXXXX
The symbol XXXXXX has been used but never defined.

$ERROR$ ILLEGAL NUMBERIC CONTAINS CHARACTER X
An octal number includes an illegal digit (such as an 8 or 9)
or the numberic contains non numeric characters

$ERROR$ ILLEGAL OPCODE XXX
The operation code XXX is not one of the acceptable mnemQnics.

$ERROR$ MISSING OPERAND FIELD
No operand found for an operation code which requires one.

$ERROR$ ILLEGAL VALUE-YYYYYY,MAXIMUMcXXXXXX
The numberic value of an octal or decimal number of an expression
has overflowed its limit.

XXXXXX - 377B
XXXXXX - 37777B
XXXXXX - 37B

for 1 byte operands or data word
for 2 byte operands

XXXXXX - 7
for output device numbers
for input device numbers

YYYYYY - given operand value

$ERROR$ ILLEGAL SYMBOL
A location field contains a symbol that has more than six characters
or that does not start with an alphabetic.

$ERROR$ MISSING LABEL
The label, which is required by the EQU pseudo operation. is missing.

$ERllOR$ SYMBOL TABLE OVERFLOW, MAXIMUM-XXXXXX
,Too many symbols in source program to fit into allocated symbol

table-.-

$ERROR LINE OVERFLOW, MAXIMUM-XXIX
Input line exceeds 48 character.; or missing carriage return.

$ERROR$ ERRONEOUS LABEL
Opcodes END and ORG may not have a label

$ERRO~$. ILLEGAL. ORIGIN XXXXXX is less. than :xxxxxx
Value of new origin is les8 than current prograa count.

$ERROR$ ILLEGAL OPElWID
DAD opcode requlres srmbo11c operand

