

FUNCTIONAL DESCRIPTION OF THE

LITTON L-304H

MICROELECTRONIC COMPUTER

July 1974

THIS DOCUMENT HAS BEEN APPROVED FOR PUBLIC DISSEMINATION.

Prepared by:

Data Systems Division
Litton Systems, Inc.

8000 Woodley Avenue
Van Nuys, California 91409

MS 37269B

Section

2

3

4

5

TABLE OF CONTENTS

INTRODUCTION

L-304H Offers High-Speed Processing for Tactical Applications

System Organization of the L-304H Computer

MULTIPROGRAMMING CAPABILITY

Priority Demand Operation Enhanced by Multiprogramming

Response to Priority Interrupts

Program Level Change Shown as a Function of Interrupt

Program Levels Linked by Instructions

Protection Provided Against Power Loss

Multiprogramming Capability Enhanced by Four Real-Time
Clocks

Multiprogram Capability Facilitates Program Load

Protection Provided Against Interprogram Interference

EXTENDED MEMORY ADDRESSING

Extended Memory Addressing Option Provides Powerful Tool
in MultiprogramAddressing

Memory Parity Generation and Check Provided

REGISTER ORGANIZATION

General Purpose Process Registers Provide Multipurpose Use

Status Register

Preassigned Locations in Base Memory

INSTRUCTION REPERTOIRE

Instruction Repertoire Tailored to Tactical Real-Time

2

2

3

8

8

9

11

12

12

12

13

13

14

14

14

16

16

17

17

20

Applications 20

Flexibility of Data Word Formats 21

Instruction Word Format 22

Addressing Modes Enhance Programming 24

Instruction Options Provided by Multimode Addressing 24

Litton Computer Characterized by Powerful Instruction Repertoire 25

Special Instructions Facilitate Programming 44

Program Sequencing 46

Memory Control of the Instruction's Address Field 47

Series of Operations Implemented via Each Instruction Execution 48

Factors Affecting Instruction Execution Time 49

iii

TABLE OF CONTENTS (Continued)

Section Page

6 INPUTiOUTPUT SYSTEM 52

Modular Features of Input/Output Unit 52

IOU Addresses Up to 56 Peripheral Devices 53
Input/Output Multiplexing Occurs on a Priority Basis 53

Seven Modes of Automatic Input/Output Operations Provided 56

IOU System Provides Both a Burst and Block Mode of Data
Transfer 58

Real Time System Programs Called by I/O Interrupt Have
Programmable Priority 59

Program Loading Provided by Hardware Bootstrap Control 61

The IOU System is Power Fail Safe 61

7 SPECIAL PROCESSING UNITS 62

Pr.ogram Skip Capability Provided for all SPUs 63

Extended Performance Arithmetic Option 64

8 L-304H SOFTWARE 70

9 SYSTEM PACKAGING, POWER, AND CONTROLS 78

iv

LIST OF ILLUSTRATIONS

Figure Page

1-1 Comparison of Sample System Configurations 7

2-1 Program Level Change 11

3-1 PCA Byte Format 15

4-1 Base Memory Map 19

5-1 Process Register Pair 21

5-2 Operand Selected from Memory Output when W = 1 21

5-3 Operand Selected from Memory Output when W = 0 22

5-4 Full Word Format 22
5-5 Instruction Word Format 23
5-6 Queue Table Instruction -44
5-7 Move and Insert 45

5-8 Move and Zero 45

5-9 Instruction Access Process 47

5-10 Page Control and Address 48

5-11 Instruction Execution Sequence 49

6-1 OFR Instruction Word 53

6-2 ITR Instruction Word 54

6-3 DEC Instruction Word 54

6-4 I/O Key Word 55

6-5 I/O Termination Word 56

6-6 Character Positions, Least Significant First 57

6-7 Character Positions, Most Signficant First 57

7-1 SPU Interconnection Diagram .62

8-1 L-304 OS Resident Supervisor 71

8-2 L-304 Operating System 72
8-3 Resident Supervisor Structure 73
8-4 L-304 OS Support Programs 74
9-1 L-304H Processor Packaging 81
9-2 L-304H Memory Packaging 81
9-3 L-304H System Control Panel 82

v

LIST OF TABLES

Table Page

i-I Key Features of the L-304H Computer (2 Sheets) 6

II-I Program Level Condition Due to Program Activity Register 8

111-1 Interpretation of Access Control Bits 15

V-I Data Operand and Transfer Instruction Address 28

V-2 Class: Arithmetic Instructions (2 Sheets) 29

V-3 Class: Data Manipulation Instructions (3 Sheets) 31

V-4 Class: Data Handling Instructions (3 Sheets) 34

V-5 Class: Jump Instructions (3 Sheets) 37

V-6 Class: Transfer Instructions (2 Sheets) 40

V-7 Class: Input/Output Instructions 42

V-8 Class: Mis<;ellaneous Instructions 43

V-9 Add Instruction Times in Microseconds 51

VI-l Data Rates for 1/0 Operations 59

VII-1 Summary of Instructions for Extended Performance
Arithmetic Option 69

vi

Litton L-304H Computer System

SECTION 1 INTRODUCTION

L-304H OFFERS HIGH-SPEED PROCESSING FOR TACTICAL APPLICATIONS ~ _____ _

The Litton L-304H Computer provides signifi­
cantly_ il1cre~sed s~ed and perfQrmance capabiJi­
ties over previous L-304 models.

The L-304H is a successor to the basic Litton
L-304 series of computers that have found wide­
spread application among all branches of the mili­
tary for a variety of real-time data processing
applications. The L-304H retains the general
characteristics of this basic computer family while
offering a performance improvement of approxi­
mately four times that of the currently deployed
L-304F.

The computer architecture of the L-304 computer
systems is specifically designed for real-time appli­
cation as evidenced by the inclusion of features
such as a hardware interrupt handler, hardware
multiprogramming control, special instructions, a
hardware real-time clock, and provisions for spe­
cial processing units (SPUs). These and additional
features of the L-304H are described in more de­
tail in Table I-I.

Experience with real-time systems throughout the
industry has shown that attempts to handle a
large number of interrupts on a real-time basis
with an executive-type software interrupt handler
results in large overhead which decreases the ef­
ficiency of the machine directly proportional to
the number of interrupts that must be serviced.
Separate hardware is provided in the L-304H to

2

determine the source of the interrupt and whether
its _. priority is hjgher or lower __ thaJl the program
curren-tly under execution. This function is per­
formed concurrently and without interference to
the currently executing program. Sixty-four levels
of priority are provided, with complete control af­
forded the programmer for masking and enabling
each of the interrupts independently.

Hardware implementation of the. multiprogram­
ming function is also provided to minimize the
time required for data exchanging in the multi­
programming environment. Since the functions
performed in program exchanging are repetitive,
hardware implementation of this feature is quite
straightforward. As with the handling of inter­
rupts, full software override control is provided
to the program.

In design of the L-304 computer family, special
instructions were included for real-time processing.
As an example, the Gated Compare instruction
provides the ability to determine whether a quan­
tity is within or without specified limits. Such a
function, of course, is particularly useful in the
correlation of incoming sensor data with an exist­
ing data file. Hardware mechanization of real-time
clocks provides the programmer with the capability
to set timing intervals for four different real-time
clocks, each with resolution of one millisecond.

The L-304H is fully I/O compatible and upward

software compatible with the L-304F. This fea­
ture was provided by having the instruction set of
the L-304H contain, as a subset, the entire reper­
toire of the L-304F. Since software compatibility
has been maintained with previous versions of the
computer, fully developed support. software is
available. Enhancements to the already powerful
L-304 repertoire are provided by new instructions
and optional macro capability. The new instruc-

tions provide double precision (32-bit) arithmetic;
direct "flag" testing of a single bit in memory; and
enqueue, dequeue instructions for file control.

i Special processing units will "custom" functions as
required by particular applications.
Implementation of the computer utilizes MSI
Schottky circuitry which increases the packaging
density and permits an increase in the CPU clock
rate.

SYSTEM ORGANIZATION OF THE L-304H COMPUTER

The' L-304H computer system achieves maximum
flexibility and growth potential in storage, compu­
tation, and input/output capability by use of mod­
ular design techniques.

The modular design of the L-304H computer per­
mits a variety of system configurations, ranging·
from those with limited processing, memory, and
I/O requirements to systems requiring multiple
processors, independent input/output operations,
and masses of random access storage. This growth
is achieved by adding central processing units,
memory units, independent input/output units,
and special processing units (SPUs) without chang­
ing the basic system implementation.

The L-304H memories are designed with two or
four ports; i.e., they contain data lines, control
lines, and priority iogic which will permit either
two or four processors (or processor-like devices)
tu access the memories independently.

A basic processing system requires the use of a
. single memory port with the IOUs and SPUs cycle
stealing on a common bus with the CPU. (See

3/4

Figure 1-1, A.) The other port is available for
I/O direct memory access.

If additional processing capability is required, a
second L-304H processing unit (CPU, IOU, SPU)
may be added. (See Figure 1-1, B.)

Maximum memory expansion is achieved with the
use of word addressable mass memories and an
optional extended memory card. (See Figure
1-1, C.) While the memory bus capacity limits
the number of memory units to eight, the numbyr
of words directly addressable by L-304H instruc­
tions with an expanded EMA is two million. There­
fore, mass core memory units each containing
131 K words or more may be used. The asynchro-

'nous timing relationship between the CPU and the
memories permits the access time of the mass mem­
ory . to be considerably slower from that of the
main memory (without creating synchronization
problems).

An optional input/output processor (lOP) requir­
ing an independent bus memory would use the
four port memory(s), as shown in Figure 1-1, D.

Table I-I. Key Features of the L~304H Computer (Sheet I of 2)

Category

Computer Type

Logic

Arithmetic Mode

Floating Point Option

Word Length

Core Memory

Instructions

Addressing

Addressing Range

Address Modification·

Arithmetic

Features

General-purpose; modular, with single or multiple central processing
units.

Synchronous; silicon integrated circuits, TTL SSI, TTL MSI, and
Schottky SSI, MSI.

Parallel; binary; fixed point.

Five basic instructions: Compare, Add, Subtract, Multiply, Divide.
32-bit format: sign bit 8-bit exponent, 23-bit function.

Memory word - 32 bits plus 4 parity bits; (parity optional) instruc­
tion word - 32 bits; data word - 32 bits, 16 bits, 8 bits, 1 bit.

16,384-word assemblies, modular expansion to two million words;
overlapping memory cycles; one to four independent access ports;
changeable bank address; memory protect by 2048-word block
(optional); 450 nanosecond access; less ~han 750 nanoseconds full
cycle; wide temperature cores; power transient protection.

89 Basic Instructions: 18 Arithmetic, 36 Data Manipulation and
Handling, 26 Jump and Transfer, 4 Input/Output and 5 Miscellaneous.
39 Macro Instructions may be specified.

Single and double word addresses; modifiable; full randon addressing
capability up to two million words; memory bus limited by line drive
capability to maximum of 8 memory banks.

Without EMA Options:
With Standard EMA Option:
With Expanded EMA Option:

32,768 words
131,072 words

2,097,152 words

Eight modes: literal, direct, indirect, relative, with selectable indexing;
plus register-to-register mode.

Eight accumulators for each level; eight index registers for each level, .
overlapped with accumulators; fixed-point binary arithmetic; num­
bers are signed integers, negative numbers are two's complement.

5

Table I-I. Key Features of the L-304H Computer (Sheet 2 of 2)
r----------------------.---------------------------------______________________ ~

1 Category

Programming

Data Handling

Input/Output

Maintenance

Growth Capability

EMA
(Standard Option)

Feature

Sixty-four independent program levels with externally and internally
activated priority-level switching and software override capability;
dynamic priority hierarchy; eight process registers for each level to be
used as accumulators, index registers, mask registers; 16 memory page
control and address registers for each program level (optional); program
activity register containing one status and one enable bit for each pro­
gram level; multilevel priority interrupts; dynamic program relocatability
using page/base address registers; special memory test instructions; macro
instruction capability.

Logical operations; field, insert, shift, and comparison
instruction.

Single word transfers; block transfers by bytes or words (asynchron­
ous, independent of program execution); burst block transfers
(synchronous with device); interleaved transfers from several devices;
simultaneous I/O and instruction execution, independent I/O c-on­
troller; seaparate normal and error termination for each device; alarm
clock mode (for real-time clock); bootstrap program load.

Central system self-test using hang-up detectors for memory, central
processing unit, I/O, real-time clock; automatic detection to gross
function or module; modular construction; vast compatibility.
Optional self-test logic.

Special processing units (SPUs) implement classes of individual instruc­
tions using any operation code not required for the basic L-304H instruc­
tion set (macro). Specialized design for macro instructions allows greater
throughput. Six SPUs and one IOU may be associated with each CPU on
each Direct Memory Access channel.

Extended memory address up to 131 K words
Memory Protection
Parity generation and error detection for both the CPU memory and
IOU memory interfaces.

6

A

• L304H CENTRAL PROCESSING UNIT

• UP TO 131,072 WORDS OF MEMORY

• INPUT/OUTPUT UNIT

.SPECIAL PROCESSING UNIT

B

.DUAL L304H CENTRAL PROCESSING
UNITS

.UP TO 131,072 WORDS OF MEMORY

.INPUT/OUTPUT UNITS

• SPECIAL PROCESSING UNITS

C

.DUAL L304H CENTRAL PROCESSING
UNITS

.MIX OF 16K AND 131K WORD MEMORIES

• INPUT/OUTPUT UNITS

• SPECIAL PROCESSING UNITS

D

• DUAL L304H CENTRAL PROCESSING
UNITS

.UP TO 131,072 WORDS OF MEMORY

.1 NPUT /OUTPUT PROCESSORS

• SPECIAL PROCESSING UNITS

•••

16 K 16 K

16 K 16 K 16 K 131K

16K _ 16K

Figure 1-1. Comparison of Sample System Configurations

7

16 K

131K

16K

SECTION 2. MULTIPROGRAMMING CAPABILITY

PRIORITY DEMAND OPERATION ENHANCED BY MULTIPROGRAMMING _______ _

Featuring a multiprogramming capability that
enables it to execute 64 different programs on a
priority demand basis, the computer is uniquely
tailored to tactical command and control
applications.

One of the most important and unique features of
the computer is a hardware implemented system
for control of program switching in a multipro­
gramming environment. Its function and its tactical
data system advantages have been proven in opera­
tional systems.

The computer's built-in multiprogramming feature
allows the processor to execute up to 64 different
programs (00 through 778 in octal representation),
one at a time, on a priority demand basis. Real-time
clocks and interval timers under software control
are also provided to implement time-sliced multi­
programming if required. The principal feature of
the design is that the control for switching from
one program to another is built into the hardware
wi th a software override provision.

Each of up to 64 programs is assigned a program
level number that corresponds to a bit position
within a 64-bit program status register. Bits are set
or reset in this register by program or by the I/O
unit (Table 11-1). A second 64-bit register (the,
program enable register) provides logical mask­
ing on the program status register. Bits in this
register are set or reset by programmed instructions.
Together, these two 64-bit registers are called the

8

program activity register (PAR). The most signifi­
cant (highest numbered) one bit of the program
status register which has a corresponding one bit in

Table II-I. Program Level Condition Due to
Program Activity Register

Situation PS Bit PE Bit Description

Inactive 0 0 Program level is disabled
and idle

Waiting, 0 1 Program is enabled and is
waiting for a response
from an external equipment
or another program level

Stimulated 1 0 Equipment responded or
program was stimulated
but the program has not
been enabled

Suspended 1 1 Program suspended because
program of higher priority
is currently being executed
or program level change
lock has been set

Operating 1 1 Program level is operating

PS: Program Status Bit
PE: Program Enable Bit 3307-6

the program enable register determines the cur­
rently active program, as shown in Table II-I. The
PAR is held in eight half-word locations in the
base memory bank, and is accessible by any pro­
gram. (The base memory bank contains the PAR
along with dedicated addresses for inactive process
registers and I/O control words.)

A six-bit number that represents the active pro­
gram level is logically generated and held in a reg­
ister called the active program level register. The
contents of this register are available to pro­
grams by execution of the Load Register Special
instruction.

Nine program levels are used for special program
functions. These are program levels 70-77 and 00.
Program level 77 is reserved for power shutdown.
When this condition is detected, program level 77
is automatically entered. Approximately 100 mi­
croseconds remain for program clean-up before
power is lost.

Program level 76 is reserved for start-up of the
computer when power- is applied. Under this con­
dition, computer control causes the CPU to enter
and execute program level 76 if the system is in the
automatic mode.

Program levels 70-73 have been designated as ex-

RESPONSE TO PRIORITY INTERRUPTS

The computer will respond rapidly to program in­
terrupts in full accord with a preset ranking of pro­
gram priorities.

The computer has a number of design features that
facilitate the capability to respond to program
interrupts on a" priority basis without the use of
complex executive decision operations. Sixty-four
program interrupt levels are available, each having -
its own process registers and page control and ad­
dress (PCA) registers. This enables 64 independent
programs to be simultaneously available for com­
puter operation. Each level has an assigned priority
but only operates if that level is the highest pri­
ority demanding activation.

An interrupt level can be stimulated either by
instruction, by interrupts from the I/O, or by an
internally generated alarm. The I/O capability of

9

tern ally forced interrupt levels and may be entered
directly via a hard-wired interrupt signal from an
external device. The utilization of these levels for
forced interrupts does not preclude their use
within the normal priority auction configuration.

Program level 74 is entered automatically for a de­
tected memory access violation, a memory parity
error, a memory timeout, a program timeout, a
device timeout, or an illegal operation code. Status
bits are set preserving the source of the error such
that the program can sample status and determine
both the cause of the problem and the necessary
corrective action. Information available to the pro­
gram includes the error type, the device address,
and the memory bank address.

Program level 74 can also be entered directly via a
hard-wired interrupt signal from an external device._
This permits level 74 to be used as either an addi­
tional externally forced interrupt level or as an
error level entered either by an internally or ex­
ternally detected error.

Program level 75 is used for a program trace
routine when under control of the programmers'
console. I

Program level 00 is used for initial program execu­
tion following bootstrap program load by the IOU.

the computer enables many external interrupts
to be quickly serviced. This means that external
device interrupts occur for data transfer comple­
tion and for interrupts initialed by the device it­
self. These operations typically require a minimum
of program time. The program processing of I/O
interrupts is executed on a variable priority basis.

Low-priority function~ are interrupted in favor of
higher-priority functions. After completion of the
higher-priority function, the computer returns to
the interrupted lower-priority function without
delay and without program duplications. The
computer provides the additional feature of a pro­
grammable priority level lock-out. This feature
guarantees, if so desired, the execution of a se­
quence of instructions of a low-priority function
without being interrupted by a higher-priority
function. Normally, the lock-out is set only for

the sequence of a few instructions. During lock­
out, all external interrupts are accepted but not
executed. Low-priority functions will inv~rl~hly
receive quick attention -since the computer's capa­
bility to process data exceeds the requirements of
typical workloads by a comfortable margin.

Control over the programs which are operating or
suspended is maintained in the status and enable
registers. - The status register contains 64 bits,
where each position represents a program level.
The enable register acts as a mask. It is also
64 bits in length and can be used to inhibit a pro­
gram from operating. Thus, the program oper­
ating at any given time is the highest priority pro­
gram having a coincident one bit in both the status
and enable registers unless a program level lock is
set. When a program is operating, the set of pro­
cess registers accessed - is that set which corre­
sponds to the operating program level

Each time that the contents of the status or
enable register are accessed during the execution
-ot--specific in-structions, the- logic of the computer
will test the program priority levels to determine

_, whether or not a change of level is to occur. If a,
switch in programs is required, the hardware will
preserve the state of the interrupted program and
initiate the new program.

Completion of an I/O transfer, as well as device
initiated action, may also cause an interruption of
a current program. Under these circumstances, the
termination word associated with each I/O channel
will be accessed, the specified program level will
set the corresponding bit in the status register, and
a one will be placed in the proper position to indi­
cate the reason for termination of the I/O transfer.
The computer logic determines whether or not an
interruption is to take place. If an interrupt is to
occur, the procedure followed is the same as that
described.

In multiprocessor configurations, the capability
of interprocessor interrupts exists. If, during the
execution of specific instructions~ one processor
accesses the base memory of another processor,
the latter is forced into a program level change -
normally to the level enabled by the calling pro­
cessor. This interrupt is automatically initiated by
the calling processor but may be locked out by the
called processor.
Externally forced interrupt levels (70-73 and 74)
are entered directly upon receipt of a hard-wired
interrupt signal from an external device. The pri­
ority auction (PAR word search) that normally
occurs in response to an external interrupt from
the IOU or an internally generated interrupt is by­
passed for the forced level interrupt and the pro­
gram level, as specified by the received signal, is
entered directly.

Forced interrupts can be inhibited by the program
level lockout. However, an interrupt received dur­
ing lockout will be saved and will initiate a level
change when the lockout is reset.

A level entered in response to a forced interrupt
can be interrupted by a higher priority interrupt
without the loss of the lower level interrupt.

When several forced interrupts are received to­
gether, a priority selection will be made by the
CPU such that the higher priority interrupts are
processed first.

The priority interrupts may be caused by sources
either external or internal to the computer. These
interrupts are:

a. External interrupts (from each peripheral de­
vice via the IOU)

10

(1) True interrupts (externally initiated)
(2) Normal I/O termination
(3) Error I/O termination

b. Internal interrupts

(1) Program termination
(2) Memory access violation
(3) Memory parity error
(4) Power interrupt
(5) Timeouts

c. Externally forced interrupt

d. Interprocessor interrupt

PROGRAM LEVEL CHANGE SHOWN AS A FUNCTION OF INTERRUPT ________ _

The computer's multiprogramming feature enables
the central processing unit to execute 64 different
programs on a priority demand basis.

Program level switching with software control is
built into the hardware. Its functional advantages
in tactical data systems have been proven in oper­
ational systems.

The sequence of a program level change is shown
step by step in Figure 2-1. An operating program
level is indicated by the most significant bit pair in
the program activity register which contains a one
in both the status and enable registers.

Assume that: (1) an interrupt changes the status
bit for a program of higher priority from a zero to
a one, (2) this program level is not masked, which

is shown by a one in the enable register, and
(3) the program level change lock is reset. . At the
end of the currently executed instruction, a level
change is initiated. The active general registers are
preserved in the general register area in the base
memory bank. The assigned fixed area is deter­
mined by the program level which corresponds to
the bit position in the program activity register as
shown in steps 2 and 3 (Figure 2-1).

The new program level to be activated addresses
the base memory bank, as shown in step 4. The set
of general registers is transferred by step 5 into the
active general registers. In addition, the p~ge con­
trol and address information is moved by step 6
from the core memory to the active registers.
Both active registers provide for faster access dur­
ing instruction execution.

OPERATING

1NTE10' 'ROGRl LEVEL

! ~I _~ _____ -----JI~r:STUS
PROGRAM
ACTIVITY
REGISTER

1 1 I ENABLE
BITS

0J 0

(BASE) MEMORY BANK

I ... 0
ACTIVE

... GENERAL
GENERAL REGISTERS REGISTERS

lit.
PAGE CONTROL AND ADDRESS CD r

"- ,
PROCESS REGISTERS 0 ACTIVE

PAGE CONTR AND ADDRESS r PAGE
CONTROL

AND ADDRESS

2344B-17A

Figure 2-1. Program Level Change

11

PROGRAM LEVELS LINKED BY INSTRUCTIONS

The hardware/software interface provides a six-fold
exit from a program level. Program levels can be
linked by using the "call" instructions.

A program level change is initiated by: (1) ex­
ternal interrupt, (2) input/output termination,
(3) program termination, (4) memory access vio­
lation or parity error, (5) functional time-outs, and
(6) power interrupts. A level change occurs nor.,.
mally if· the initiated program level is of higher
priority, the program level has been enabled, and .
the program level change lock has been reset.

The program level lock can be set only by
specific instructions, and can be set (or reset) by

PROTECTION PROVIDED AGAINST POWER LOSS

The on-off sequencer provides for orderly shut­
dQWll and startup procedures during power tran­
sients as well as application or removal of primary
power.

When primary power is initially applied or when
power is recovering from a transient, the on-off
sequencer provides a System Reset which initial­
izes the CPU and inhibits memory operation while
the logic voltage is coming up. When the logic volt­
age reaches its nominal level, the on-off sequencer
removes the System Reset and Memory Inhibit and,
provides a signal to the CPU that:

a. Sets up a program level change to program
level 76

b. Sets the location register to 1610

c. Sets the CPU to the run condition

any program. If so desired, the execution of a se­
quence of instructions of a low-priority function
can be completed without being interrupted by a
higher priority function. Normally, the lock is set
only for the sequence of a few instructions.

Any program is allowed to access the program
activity register, which governs the program level
change. Thus, any program can call any other
program by setting the appropriate bits in the PAR
and terminating itself. Specific instructions are
available for this purpose. If the called program is'
the highest priority, it is called immediately; if not,
it must wait.

. When a power failure has been detected, the on-off
sequencer notifies the CPU, which,.in turn

a. Completes the instruction being executed

b. Stores the registers associated with the cur­
ren t program level

c. Initiates a program level change to level 77

Approximately 100 microseconds are then left for
the necessary clean-up or bookkeeping operations
as specified by the programmer. After this 100-
microsecond period, the Memory Inhibit is acti­
vated since voltage tolerances can no longer be
guaran teed.

Once the shutdown sequence has begun, "start-up"
will not be initiated until System Reset has
been activated, regardless of the duration of the
transient.

MULTIPROGRAMMING CAPABILITY ENHANCED BY FOUR REAL-TIME CLOCKS

Real-time clocks provide prescribed time-base for
calling programs involved in peripheral service,
system monitors, or fault detection.

The L-304H provides four independent program­
mable real-time clocks (RTC). Each RTC is ac-

12

cessed via an I/O channel which is serviced by the
IOU in the alarm mode. The associated key and
termination words provide the agency for interval
counting and program interrupts after the specified
time has elapsed. These program interrupts can be
selectively disabled and temporarily locked out.

Each RTC has a period of 1 millisecond, and each
channel has a capacity of 4.1 seconds. Each RTC
channel is staggered by 250 microseconds in re­
questing IOU service.

In addition, the RTC logic provides. a monitor for

IOU operation: if one RTC channel has not been
serviced by the time the next clock is due (a period
of 250 microseconds), the IOU timeout bit is
posted in the status register, a System Reset is ef­
fected, and the CPU is forced to the error program
level, 74.

MULTIPROGRAM CAPABILITY FACILITATES PROGRAM LOAD __________ _

Program level 00 is reserved for program load­
ing after the IOU completes load of bootstrap
program.

After the initial bootstrap program has been
loaded by the IOU, the CPU, deactivated by the

program load switch and inhibited during the load
operation, is started by the IOU. The CPU will ob­
tain the program's starting location from the PLR
associated with level 00 where the IOU has stored
it during the bootstrap operation. The CPU will
then automatically enter level 00 and execute the
bootstrap program stored at that level.

PROTECTION PROVIDED AGAINST INTERPROGRAM INTERFERENCE

A technique utilizing memory protection mini­
mizes the possibility of interprogram interference.

The multiprogram use of a computer provides
opportunity for interprogram interference by acci­
dent or without authorization. To minimize this
possibility, memory-protect capabilities are pro­
vided in the L-304H Computer.

. The memory-protect feature implemented by the
PCA registers controls the memory access for in­
structions and operands as well as a write protec­
tion. The mechanization of the computer provides
the detailed features in hardware with appropriate
software control by program.

13

A violation of the privilege feature will automati­
cally cause a program level interruption to a spe­
cific program level. Control can then be returned
to the executive program. The memory protect
code is:

00 Instruction Fetch, Operand Read and
Write permitted

01 Only Instruction Fetch and Operand
Read permitted

10 Only Operand Read permitted
11 No Access permitted

SECTION 3. EXTENDED MEMORY ADDRESSING

EXTENDED MEMORY ADDRESSING OPTION PROVIDES
POWERFUL TOOL IN ~ MUL TIPROGRAM ADDRESSING-____________ _

The EMA option adds memory protection and par­
ity as well as extended addressing for each program
level of the L-304H.

The standard memory addressing capability of the
computer is 32,768 words. The EMA (extended
memory addressing) option expands this capability
to 131,072 words while segmenting all memory
into pages of 2048 words. In addition, each page
is subject to programmable access control.

This extended addressing and access control is pro­
vided by a set of 16 8-bit bytes associated with
each of the 64 program levels. These sets, caned
page control and address (PCA) registers, are
stored in reserved locations in the computer base
memory while the associated program level is not
active. PCA registers for the active program level
are held in a fast access "scratch pad" memory
within the CPU. During each program level change,
the required PCA registers are transferred from the
base memory to the scratch pad by the processor
hardware.

There is no program access to the scratch pad, but
all PCA registers in the base memory are accessible

by any program level. Each PCA byte consists of
a 6-bit page field and a 2-bit access control field
(Figure 3-1). Whenever the computer generates a
IS-bit address, the four most significant bits of the
address select one of the 16 PCA bytes from the
scratch pad memory. The page field, whiCh in­
cludes the memory bank and page addresses, is ap­
pended to the most significant end of the remain­
ing 11 bits, forming the 17-bit word address.
Since the IOU is independent of program levels,
the EMA is not active during IOU memory cycles.

At the same time, the access control field is com­
pared with the memory tnode lines and if the pend­
ing operation is not allowed, the memory request
is inhibited, the CPU is notified, and a level change
(to error level 74) is initiated. The memory is not
accessed. Table 111-1 shows the interpretation of
the excess control bits.

An expanded EMA option provides the computer
with the addressing capability of 2,097, IS2 words.

MEMORY PARITY GENERATION AND CHECK PROVIDED ____________ _

Parity on a byte basis is checked or generated for
every memory cycle.

If faulty parity is detected, the CPU inhibits execu­
tion of the instruction and initiates a transfer to .

14

the error program level, 74. If the check fails dur­
ing a Read-Modify-Write memory cycle, the data,
along with the incorrect parity bit is restored to
the memory before the transfer is initiated.

Table III-I. Interpretation of Access Control Bits

PAGE
ACCESS NAME ACTION PERMITTED ACTION INHIBITED

CONTROL BITS

00 READ-WRITE FETCH READ WRITE - - -
ACCESS INSTRUCTION OPERAND OPERAND

01 READ FETCH READ - - WRITE
ACCESS INSTRUCTION OPERAND

-

READ
READ -

10 DATA - - FETCH - WRITE
ACCESS

OPERAND

11 NO FETCH READ WRITE
ACCESS

- - -

2344B-1

M)B LSB

ACqESS CONTROL MEMORY BANK ADDRESS PAGE ADDRESS

Figure 3-1. PCA Byte Format

15

SECTION 4. REGISTER ORGANIZATION

GENERAL PURPOSE PROCESS REGISTERS PROVIDE MULTIPURPOSE USE ______ _

A set of eight process registers is provided for
each of 64 program levels. These registers may be
used as index registers, accumulators, and other
programming functions.

The computer provides a multiprogram capability
that is program-controlled with a priority demand
technique. Each of 64 program levels is assigned
its own set of process registers. These registers are
held in the computer's base memory bank for all
temporarily inactive program levels; and in high­
speed, scratch-pad memories for currently active
program levels. Whenever a program level change
occurs, the currently active registers are written,
automatically, back into their reserved and dedi­
cated locations within the base memory bank and
the new set of registers is loaded into the high­
speed memories.

The high-speed memories are constructed from MSI
random access memory chips. An array of these
elements provides a small memory of 16 half words.
Access to this memory is less than 40 nanoseconds.

Use of the process registers as both index registers

16

and accumulators eliminates the requirements for a
number of load and store instructions from a pro­
gram. Often, index quantities are derived from
arithmetic operations. Thus, the result is directly
available as an index in subsequent instructions.

The use of the process registers as multiple accu­
mulators provides the opportunity to leave partial
results in the accumulator without having to pre­
serve them in memory. Partial results can be com­
bined with instructions using the special address
feature, which allows register-ta-register operations
without time consuming memory access.

The process registers of any program level rna y be
addressed by any other program by addressing the
base memory bank. The process registers of the
active program may be addressed by the instruc­
tion's S field for indexing operations, by the in­
struction's H field for use as an accumulator, and
by the instruction's operand address. Special ad­
dresses (00-078) are recognized as process register
addresses instead of memory locations.

STATUS REGISTER

The status register contains information pertaining
to error/fault conditions existing within the system.

The register is organized as two 8-bit bytes, and
may be interrogated by a program via the Load

MSB

1ST BYTE I sp I AE I PE I
MSB

2ND BYTE I SP CrANN,L

Register Special instruction. This operation will
load the status register into the designated process
register.

The format of the two bytes is shown below

LSB

IE I 1M I CM I IT I PT I
LSB

SP I : MBA:

PT
IT

CM
1M
IE

PE
AE
SP

Program Time Out
IOU Time-Out
CPU/Memory Time-Out
IOU/Memory Time-Out
IOU Memory Parity Error
CPU Memory Parity Error
Access Violation
Spare

MBA

Channel

Current Memory Bank Address
or Error Memory Bank Address
Active IOU Channel or Error
IOU Channel

PREASSIGNED LOCATIONS IN BASE MEMORY _______________ _

Each base memory has several pre-assigned loca­
tions used as temporary storage for registers con­
trol words, etc., while that program level, channel,
or function is not active.

Figure 4-1 shows the organization of the locations
in the base memory. Each location is defined as
follows:

General Purpose Process Registers. Eight half
words to be used by each program level for accu­
mulators, index registers, etc.

I/O Control Words. Eight key and termination
words for each I/O channel. (See section on IOU).

Program Location Registers. One half-word for
each program level indicating the current entry
point into that program.

Program Activity Registers. Four words indicating
the enable and status conditions for each program
level.

Page Control and Address Words. Sixteen 8-bit
bytes for each program level controlling the mem­
ory access and paging for that level.

Note that although locations 01610-01777 are
unassigned, the processor, on automatic start­
up, is forced to run starting at location 01610.

17/18

, PROGRAM LEVEL 00 RHO RH1

01

GENERAL PURPOSE 02

PROCESS REGISTERS • • •
76

77 RHO RH1

1/0 CHANNEL 00,01 KEY

02,03

04,05
1/0 CONTROL

WORDS 06,07

• • •
74,75

76,77

PROGRAM LEVELS 0-3 PLR

4-7
PROGRAM LOCATION

REGISTERS

, 74-77 PLR

PROGRAM ACTIVITY REGISTERS PE PS

t ~
./

UNASSIGNED AUTO START
LOCATION

~ PROGRAM LEVEL 00 PO P1 P2 P3 .

PAGE CONTROL
01

AND ADDRESS WORDS

77

RH2 RH3

RH2 RH3

TERMINATE

PLR

PLR

PE PS

• • •

• • •

• • •

• • •

RH4 RH5

RH4 RH5

KEY

PLR

PLR

PE PS

HALF-WORD
OCTAL LOCATIONS

RH6 RH7

RH6 RH7

TERMINATE

PLR

PLR

PE PS

j I l

T T \
I r \

P13 P14 P15

00000-00007

000 1 0-00017

• • •

00770-00777

01000-10007

01010-10017

• • •
01360-01367

01370-01377

01400-01407

01410-01417

• • •
01570-01577

01600-01607

01610-01617

• • •
01770-01777

02000-02007

02010-02017

• • •
02770-02777

03000-03007 !
UNASSIGNED :

____ ""-i ________ ~ ____ L..._ ___ I..._ ___ ___L ____ __I1 0377:77777

Figure 4-1. Base Memory Map

19

SECTION 5. INSTRUCTION REPERTOIRE

INSTRUCTION REPERTOIRE TAILORED TO TACTICAL REAL-TIME APPLICATIONS -----

The computer instruction repertoire provides a
number of special instructions to specifically re­
duce the reaction time of tactical command and
control systems.

The computer has been designed to satisfy the
requirements of tactical real-time· command and
control systems. Toward this end, an instruction
repertoire has been prepared which provides a
numbe~_?f special instructions to decrease reaction
time. The combination of this type of instruction
list and the flexibility of programming offers a
powerful tool for performing real-time missions.
The selection of each instruction was made after
intensive trade-off analysis and discussions which
reflected Litton's extensive experience in tactical
data processing requirements. The instructions
may be grouped in seven classes: arithmetic, data
manipuiation, data handling, jump, transfer, inputi
output, and miscellaneous instructions. The arith­
metic instructions encompass a comprehensive
computational capability and include Add, Add
Double Precision, Subtract, Subtract Double Pre­
cision, Multiply, and Divide with a number of vari­
ations to simplify the programming operation.
The jump group includes compare instructions
which allow algebraic, logical, and gated (within
limits) comparisons.

Data manipulation instructions include logical
operations which enable data to be matched and
merged, and act as an adjunct to the data handling
capability. The Move and Insert and the Move and
Zero instructions give an excellent capability to
move groups of bits of arbitrary length about the
process registers. A full complement of shift in­
structions, including a reflect operation is also
provided. Four instructions are incorporated
which facilitate set and reset of individual bits
within a data word.

20

The Store all Zero instruction is used to clear
memory or register cells.

The Transfer and Jump instructions include a wide
range of control instructions to assist the pro­
grammer in organizing and controlling his program
sequence and provide a capability to respond to
external stimuli. General purpose (GP) register
test instructions are used to test and modify regis­
ters and provide program looping. Instructions are
provided to test a single bit for its status. A Load
Special Instruction provides internal/external sta­
tus to the programmer to facilitate fault diagnosis.
The Enque/Deque instruction provides a simplified
method for handling common data files.

Input/output instructions initiate and enable com­
munication to be set up with peripheral devices for
automatic independent data transfers. Two in­
structions allow single transfers between a device
and a GP register.

The L-304H was designed to accommodate the ad­
dition of a special processing unit tailored to a
customer's specific application. These SPUs offer
the capability to perform macro instructions and
allow execution of complex algorithms efficiently
under software control. The SPU has direct access
to both the memories and the hardware process
registers. Thirty-nine operation codes have been re­
served for the macro operations.

An example of an SPU is the extended perform­
ance arithmetic unit which provides double pre­
cision multiply and divide operations and floating
point multiply, divide, add, subtract, and compare
instructions.

A summary of the 128 instructions, by type,
includes:

Arithmetic: 18 fixed point

Data Manipulation: 6 logic, 6 shift, 8 set/
reset bit

Data Handling: 7 load (registers), 2 store
(registers), 4 move, 2 exchange, 1 store zero

FLEXIBILITY OF DATA WORD FORMATS

The data word size in the Litton computer is
determined at the programmer's option.

The programmer may select data words of a single
bit, a "byte" of eight bits, a half-word of 16 bits,
and a full word of 32 bits. The data word size is a
function of the programmer's option on the
instruction to be executed. On arithmetic and
logical instructions, either half-word or word
operations are allowed. Special instructions are
provided for test and modification of single bits
within a half-word. Special byte handling instruc­
tions are also provided. Full-word products are
generated on multiply instructions; full-word divi­
dends are used in divide instructions; full-word
register pairs are allowed in shift instructions, and
addition and subtraction can be performed on
full-word operands.

Memory addresses are considered as half-word
addresses because the instruction's operand ad­
dress field contains a single bit (in bit position O~

I
31

I

Transfer (Branch): 4 GP register test, 3 con­
trol transfer, 4 GP register modify

Jump: 7 compare, 8 test bit and skip on
match

Miscellaneous: 5 miscellaneous

Macro: 39 codes available

called the W field). This bit will select either the
left-most 16 bits of a selected word if it is zero
(W = 0), or it will select the right-most 16 bits of a
selected word if it is one(W = 1). On word opera­
tions, the W bit of the instruction is ignored, and
the address is treated as an even number. There­
fore, all word addresses are even numbers.

Bytes of eight bits are selected on half-word in­
structions as either the "upper byte" or "lower
byte" by the instruction's operation code. Single
bit positions of a byte are selected by use of the
instruction word's H field.

Bytes of a variable length and position are selected
and controlled during the move instructions by a
mask contained in the instruction's CA field.

The storage of partial words and full words within'
the process registers and memory is shown in
Figures 5-1 through 5-4.

I
16 15 o

Figure 5-1. Process Register Pair

15

5

31 16~ ~? I - BYTE UPPER ----41 --- BYTE LOWER ----1-

Figure 5-2. Operand Selected from Memory Output when W = 1

21

· 1 15

5

131
30 81 7

~ BYTE UPPER. • .. BYTE LOWER

o

Figure 5-3. Operand Selected from Memory Output when W = °
i5 15

S1 MSH LSH

31 30 16 15 14 o

Figure 5-4. Full Word Format

A data word may contain a numerical or logical
quantity. Numerical quantities are treated as
signed integers. Logical quantities include un­
signed numbers (e.g., addresses) or collections of
individual bits and fields.

In numerical words, the most significant bit is
treated as the algebraic sign. If this bit is a zero,
the sign is positive. If this bit is a one, the sign is
negative. The sign bit of a numerical half-word is
automatically sign extended (value repeated) to
the left 16-bit positions when a numerical full-',

The Litton computer operates with a 32-bit in­
struction word containing five fields.

The normal use and definition of each instruction
word field is as follows (Figure 5-5):

a. F Field - This 7-bit field is the instruction
operation code. The operation code is rep­
resented by a 3-digit octal number.

b. H Field - The H field is a 3-bit binary num­
ber that selects one of eight process registers
to be used as the accumulator by the in­
struction. Process registers are addressed by
H = 0, 1, 2, . . " 7 on all program levels.

c. M Field - The M field is a 3-bit code that
provides up to eight instruction address op­
tions as follows:

word operand is required.

Negative numbers are represented in two's com-
o plement form. Two's complement representation
has advantages in arithmetic compatibility with un­
signed numbers and in elimination: of a negative
zero value.

22

A 32-bit algebraic operand is provided with two
sign bits (S 1 and S2) which are always equal
(Figure 5-4).

M = 0, Direct Address
M = 1, Direct Address with Indexing
M = 2, Literal
M = 3, Literal with Indexing
M = 4, Indirect
M = 5, Indexed, Indirect
M = 6, Indirect, Indexed
M = 7, Relative with Indexing Option

These options are described in more detail in
a subsequent discussion of addressing modes.

d. S Field - The S field is a 3-bit field that
selects one of the eight process registers to be
used as an index register on modes M= 1, 3,
5, 6, and 7. The S field addresses the same
set of process registers as the H field on a
program level. A different set of eight pro­
cess registers is provided for each of 64 pro­
gram levels.

e. CA Field - The operand address field, CA, is
a 16-bit field that may either be an address of
a word in memory or may be a 16-bit oper­
and itself. The CA field is used as an operand
in the literal address modes, M = 2 or 3.

When the CA field is used as an address, it is
considered to consist of three subfields:
D, A, and W. These three subfields provide
memory address extension of up to 18 bits
for addressing 16-bit words or 17 bits for
addressing 32-bit words.

f. D Subfield - The D subfield is a 4-bit binary
number that selects one of 16 page control
and address registers. The selected register
contains six bits which are "appended to the
most significant end of the A subfield to
yield .a 17-bit operand address. Although an
overflow out of the D subfield may occur
during indexing, a carry is not allowed to
propagate from the D sub field to the S field.

LEGEND:

F:

M:

H:

s:
CA :

D:

A:

W:

OPERATION CODE

ADDRESSING MODE SELECTOR

ACCUMULATOR DESIGNATOR

INDEX DESIGNATOR

OPERAND ADDRESS FIELD

PAGE DESIGNATOR

WORD ADDRESS DESIGNATOR

HALFWORD ADDRESS DESIGNATOR

10F 8
ACCUMULATORS

~ .. ~
1 OF 8
INDEX

g. A Sub field - The A subfield is an II-bit
binary address. The II-bit address will
select one of 2048 32-bit words within a
memory module. The particular memory
module is selected by the three MSBs of the
6-bit page control and address register (de­
scribed previously).

h. W Subfield - During an operand fetch, the
I-bit W subfield specifies left or right half of
the 32-bit memory output to be used as a
16-bit operand. If W is a zero, the left half
of the word is used. If W is a one, the right
half is used. The W sub field is ignored during
an instruction fetch.

PAGE CONTROL
AND ADDRESS REG

~
MEMORY
PROTECTION

I MEMORY ADDRESS I
.......~

REGISTERS 1 OF 16

31 2524122 21

F H

-""'r- ...

CPU
CONTROL

AND TIMING

M

19 18 16 15 12 11

S D

\.

Figure 5-5. Instruction Word Format

23

A

CA

1 0

W

HALF-WORD
SELECTION

2344B-16A

ADDRESSING MODES ENHANCE PROGRAMMING

The availability of eight addressing modes in the
Litton computer provides the programmer with a
powerful tool.

The eight addressing modes may be grouped into
four major classes: literal, direct, relative, and
indirect. Indexing is applied appropriately to each
of the modes.

The literal mode uses information contained within
the instruction format as an operand. Therefore,
a memory access is eliminated which results in a
saving in storage space as well as in execution
time.

The direct mode is the most. commonly used
addressing mode. In this mode, the operand ad­
dress is contained within the instruction.

The relative mode provides an addressing capa­
bility which allows referencing to the location of
the current instruction. A relocation of a pro­
gram will not disturb the relationship between the
instruction and the referenced operand. It is
recommended that the operand be located close to
the instruction since an insertion or deletion of
instructions in a program requires modification of
the relative address.

The indirect addressing mode with indexing is
applicable to reentrant subroutines because the
index is added after accessing of the indirect
address.

Double indexing is provided through use of the
indirect options when CA = 0-7. Under those con­
ditions, CA will specify a second index register.

INSTRUCTION OPTIONS PROVIDED BY MULTIMODE ADDRESSING

Eight simply structured addressing modes pro­
vJded by the instruction's M field allows flexibility
in operand selection.

The eight address modes combined with the 128
instruction codes give the computer several hun­
dred useful instruction options. The M field is
used to select the address option. These options
are provided in almost all instructions. Table V-I
summarizes the possible operand addresses that
can be generated with the eight modes.

The addressing modes are defined as follows:

a. M = 0, Direct Address - The CA field of the
instruction word is not modified. The D sub­
field directly or indirectly selects the specific
memory module. The A and W subfields
specify a half-word operand address in the
specified memory module. On transfer in­
structions or full 32-bit operands, W is not
used.

b. M = 1, Direct Address with Indexing - The
CA field of the instruction word is added to
the contents of the index register selected by
the S field. Overflow on this addition is not
detected. The sum replaces the CA field
within the instruction word register, and is
used as the new operand address field as in
M = O.

24

c. M = 2, .Literal - The CA Treid represents a
16-bit half-word. This word may be an
operand, mask, instruction address, or shift
number.

d. M = 3, Literal with Indexing - The CA field
represents a 16-bit half-word as in mode 2.
The CA field is added to the contents of the
process register selected by the S field before
the instruction operation takes place. This
provides a useful double operation on many
instructions. Overflow is detected on this ad­
dition for those instructions which could
cause arithmetic overflow (F = Xl 0 through
X17, X30, X3l). If it does not occur for
instructions FIIO-FI17, F130, and F131,
the next instruction in sequence is skipped.
The sum replaces the CA field within. the in­
struction word register, and is used as the new
instruction operand, as in M = 2.

e. M = 4, Indirect - The contents of the mem­
ory word that are addressed by the 16-bit ad­
dress. This "indirect" address replaces the CA
field within the instruction word register and
is used as in M = O.

f. M = 5, Indexed, Indirect - The 16-bit CA
field of the instruction word is added to the
contents of the process register selected by
the S field. Overflow on this addition is not

detected. The sum is used to address a 16-bit
word in memory that replaces the CA field
of the instruction in the instruction word reg­
ister, and is used as the new operand address
field as in M = o.

g. M = 6, Indirect, Indexed - The 16-bit CA
field of the instruction selects a 16-bit word
in memory which is added to the process reg­
ister selected by the S field. No overflow
detection occurs. The sum replaces the CA
field of the instruction in the instruction
word register, and is used as the new operand
address field, as in M = o.

h. M = 1, Relative - This address option mode
operates in two ways, depending upon the
S field of the instruction word.

If the S field is all zeros, the contents of the
instruction location register, LL, are added to

•

the D and A subfields of the instruction. The
W bit is not modified. No overflow is de­
tected on this addition. The sum replaces
the D and A subfields of the instruction
within the instruction word register. This
operation yields an address that is relative
to the address on the next instruction in
sequence.

If the S field of the instruction is not zero, the
16-bit CA field of the instruction word is add­
ed to the contents of the LL register. The
sum is then added to the contents of the proc­
ess register selected by the S field. This opera­
tion yields an indexed address that is relative
to the address of the next instruction in
sequence.

The modified CA field is then used to specify
the operand address as in M = 0, unless it is a
transfer type instruction (F = 34 through 36,
40 through 43), in which case the CA field is
used as the operand as in M = 2.

LITTON COMPUTER CHARACTERIZED BY POWERFUL INSTRUCTION REPERTOIRE

The computer instructions include general-purpose
as well as special instructions useful in real-time
tactical applications.

The instructions, grouped into seven classes, are

listed in Tables V-I through V-So Instruction exe­
cution times are based on address modes 0 or I:
direct with or without indexing.

The following symbols and notations are used fre­
quently in the definition of the instructions.

25/26

Letter Definition

CA The instruction word's CA field. It is a
16-bit number that is used to address a
location in memory or, in modes 2 and 3
(Literal), CA is used as a 16-bit operand.

d Represents a full-word (32 bits) as in
(H)d or (Y)d.

F The F field of the instruction word de­
fining the operation code.

H

Hd

(H)

LL

LP

M

m-n

n

The H field of the instruction word
specifying the accumulator.

Hd or (H)d refers to a processor register
pair. The LSB of the H field is ignored
for instructions requiring the use of a
processor register pair.

The contents of the process register that
is selected by the H field of the instruc­
tion word.

Process register 6.

The even numbered register of a process
register pair (0, 2, 4, 6) which contains
the most significant half of a full-word.

The odd numbered register of a process
register pair (1, 3, 5, 7) which contains
the least significant half of a full word.

Represents the contents of the instruc­
tion location register (15 bits). This
number is the address of the next in­
struction in normal sequence.

Program level register.

The M field of the instruction word
specifying the address mode.

Denotes the bit positions of a word.
(Y)4-0 denotes the five LSBs of the
operand.

The number of bit positions shifted on
shift type instructions.

27

Letter

S

(S)

T

SWJ

SWH

Definition

The S field of the instruction word
specifying the index register.

The contents of the process register that
is selected by the S field of the instruc­
tion word. A 16-bit word that is gen­
erally used for address indexing.

Transfer address.

The set of three conditional jump
switches.

The set of three conditional halt
switches.

Y Operand address.

(Y) Operand - (Y) = Y for the literal mode.

(Y)B A single bit of the operand.

(Y)BL A single bit of the lower byte of the
operand.

(Y)BU A single bit of the upper byte of the
operand.

n One's complement unless otherwise
noted.

() Parentheses represent the contents of the
memory location that is addressed by
the word within the parentheses.

f Not equal to.

I I Absolute value.

A'B Logical AND function.

AlB Logical inclusive OR function.

A E9 B Logical exclusive OR function.

A + B Addition.

A - B Subtraction.

A x B Multiplication.

A:B Division.

N
00

M-Field

0

I

2

3

4

5

6

7

7

NOTES: CA:
LL:
M:
S:

Table V-t. Data Operand and Transfer Instruction Address

Action

Mode Transfer and Execute
Instruction

S-Field Name Operand Address Operand Address

0-7 Direct Y = CA Z = (Y) T = (Y)

0-7 Direct with Y = CA + (sj Z = (Y) T = (Y)
Indexing

0-7 Uteral Z = CA T = CA

0-7 Uteral with Z = CA + (S) T = CA + (S)
Indexing

0-7 Indirect Y = (CA) Z = (Y) T = (Y)

0-7 Indirect with Y = (CA+ (S)) Z = (Y) T = (Y)
Indexing

0-7 Indirect with Y = (CA) + (S) Z = (Y) T = (Y)
Second Address
Indexing

0 Relative Y = CA+LL Z = (Y) T = CA+ LL
"-

1-7 Relative with y= CA+ LL+(S) Z = (Y) T = CA + LL + (S)
Indexing

Contents of the Instruction Address Field y: Value of the Operand Address
Contents of the Location Register Z: Value for the Operand
Mode Designator T: Value for the Transfer Address
Index Designator (): Contents of

Table V-2. Class: Arithmetic Instructions (Sheet 1 of 2)
-

Name
Execution Time

Subclass Mnemonic Function Code Description (psec) m = 0/1

Arith ADD 010 (H) + cY)~H Add 1.60

SUB 011 (H) - cY)~H Subtract 1.60

RAD'" 012 (Y)+(H)~Y Replace Add 1.95

RUB'" 013 (Y) - (H) ~ Y Replace Subtract 1.95

ADA 014 (H) + I(Y)I ~ H Add Absolute 1.60

SBA 015 (H) - I(Y)I ~ H Subtract Absolute 1.60
-

MPY 030 (HE+ 1) X (Y)-+ Hd Multiply 3.36

DIV 031 (H)d 7 cY) -+ HE+ 1 Divide 7.20
Remainder -+ HE

Arith ADD 110 (H) + cY)~H Add 1.60
and Skip next location if!lQ overflow
Skip

SUB 111 (H)-cY)~ H Subtract 1.60
Skip next location if!!.Q overflow

RAD'" 112 (Y)+H~Y Replace Add 1.95
Skip next location if!!Q overflow

RUB'" 113 (Y)-(H)~ Y Replace Subtract 1.95
Skip next location if!lQ overflow

ADA 114 (H) + IcY)1 ~ H Add Absolute 1.60
Skip next location if !ill overflow

"'Literal modes 2 and 3 will cause the instruction to act as a NOP.

Vol
o

Subclass

Arith
and
Skip

Mnemonic

SBA

ADP

SDP

MPY

Div

Table V-2. Class: Arithmetic Instructions (Sheet 2 of 2)

Function Code Description

115 (H) - IcY)1 ~ H
Skip next location if.!!.Q overflow

120 (H)d + (Y)d ~ Hd
Skip next location if!!Q overflow

121 (H)d -- (Y)d ~ Hd
Skip next location if.!!.2 overflow

130 (HE+I) X (Y)~Hd
Skip next location if ~ overflow

131 (H)d 7 Y -~ HE+l Remainder ~ HE
Skip next location if!!Q overflow

Name
Execution Time
(}lsec) m = 0/1

Subtract Absolute 1.60

Add Double 1.92
Precision

Subtract Double 1.92
Precision

Multiply 3.36

--
Divide 7.20

--

Table V-3. Class: Data Manipulation Instructions (Sheet 1 of 3)

Subclass Mnemonic Function Code . Description Name
Execution Time
(psec) m = 0/ I

Logic EOR 020 (H) Ef> (Y) ~ H Exclusive Or 1.60

lOR 021 (H)j(Y) ~H Inclusive Or 1.60

AND 022 (H)'(Y)~H Logical And 1.60

RER'" 024 (Y) Ef> (H) ~ Y Replace 1.95
Exclusive Or

RIR'" 025 (Y)j(H)~Y Replace Inclusive Or 1.95

RAN'" 026 (y). (H) ~ Y Replace Logical And 1.95

Shift SLL 044 (H)d shifted logically, left, circularly n places as specified by Shift Long Left 2.72

(Y)4-0' 8 Shifts

H31 ~ HO HIS ~ HI6

w - NLL 045 (H)d shifted algebraically, left, open n places as specified by Normalize Long Left 2.88
(Y)4-0 or until H31 =f H30. Count residue ~ S. 8 Shifts

H31 ~ H3I H15~ HIS
H14 ~ H I6 O~HO

SLR 056 (H)d shifted logically, right, circularly n places as specifed by Shift Long Righ t 2.72

(Y)4-0' 8 Shifts

HO~ H3I H16~ HI5

SAR 057 (H)d shifted algebraically, right, open n places as specified by Shift Algebraically 2.72

(Y)4-0' Right 8 Shifts

H31 ~ H31 HIS ~ HIS
H16 ~ H14 H31 ~H30

"'Literal modes 2 or 3 will cause the instruction to act as a NOP.

Table V-3. Class: Data Manipulation Instructions (Sheet 2 of 3)

Description Name
Execution Time

Subclass Mnemonic Function Code (jlsecl m = 0/ I

Shift SNC 046 (HE+1)shifted logically, left, circularly n places as specified Shift And Count 2.72

by (Y)4-0· 8 Shifts

HIS ~HO
(HE) + number of ones shifted ~ HE

RFT 047 (HE) shifted logically left and (HE+)) shifted logically right Reflect 2.72
n places as specified by (Y)4-0. 8 Shifts
HO~ H16 H31 ~ HIS

Set/Reset SBL* 060 a) 1 --l- (Y)BL as specified by H. Set Lower Bit 1.95
Bit b) An interprocessor interrupt is set if other PAR

address is accessed.

SBU* 061 a) 1 -~ (Y)BU as specified by H. Set Upper Bit 1.95
b) An interprocessor interrupt is set if other PAR

address is accessed.
--r---

RBL* 062 o ~ (Y)BL as specified by H Reset Lower Bit 1.95

RBU* 063 o ~ (Y)BU as specified by H Reset Upper Bi t 1.95

SBL* 160 a) 1 -+ (Y)BL as speCified by H. Set Lower Bit 1.95
b) External interrupt lockout is reset
c) An internal interrupt is set if PAR address is accessed.
d) An interprocessor interrupt is set if other PAR address

is accessed

SBU* 161 a) 1 -+ (Y)BU as specified by H Set Upper Bit 1.95
b) External interrupt lockout is reset
c) An internal interrupt is set if PAR address is accessed
d) An interprocessor interrupt is setif other PAR address

is accessed

----_.-
*Literal modes 2 or 3 will cause the instruction to act as a NOP.

Table V-3. Class: Data Manipulation Instructions (Sheet 3 of 3)

Subclass Mnemonic Function Code Description Name
Execution Time
(/JSec) m = 0/1

Set/Reset RBL* 162 a) o ~ (Y)BL as specified by H Reset Lower Bit 1.95
Bit b) External interrupt lockout is reset

c) An internal interrupt is set if PAR address is accessed

RBU* 163 a) o ~ (Y)BU as specified by H Reset Upper Bit 1.95
b) External interrupt lockout is reset
c) An internal interrupt is set if PAR address is accessed.

*Literal modes 2 or 3 will cause the instruction to act as a NOP.

Table V-4. Class: Data Handling Instructions (Sheet I of 3)
--

Subclass Mnemonic Function Code Description
Execution Time

Name (J1Sec) m = ~~

Load LOR 004 (Y) -+ H Load Register 1.60
Register

LOO 006 (Y)d-+ Hd Load Double 1.76

- --
LOA 016 I(Y)I-+ H Load Absolute 1.60

-,---- --"-- ._-------

LOA 116 I(Y)I-+ H Load Absolute 1.60
Skip next location if!!2 overflow: (Y) ;=-1.

--
LOC 017 (Y) -+ H NOTE: 2's complement Load Complement 1.60

--
-

LOC 117 (Y) -+ H NOTE: 2's complement Load Complement 1.60
Skip next location if!!2 overflow: (y) =1= -1.

.-
LRS 104 LL/LP/base memory address/status -+H as specified by the Load Register 1.00

S field. The M and CA fields are not used by this instruction. Special

Store STZ 072 0-+ (Y) Store all Zeros 1.95

Zeros

Store STR* 005 (H) -+ Y Store Register 1.95
.-

Register
STO* 007 (H)d -+ Yd Store Double 1.95

Exchange EXC* 002 (Y) -+ H (H) -+ Y Exchange 1.95
.-

EXD* 003 (Y)d -+ Hd (H)d -+ Yd Exchange Double 2.27

*Literal modes 2 or 3 will cause the instruction to act as a NOP.

Table V-4. Class: Data Handling Instructions (Sheet 2 of 3)

Subclass Mnemonic Function Code Description Name
Execution Time
(usee) m = 0/1

Move MVI 071 a) (H) shifted logica!ly right, circularly n places as specified Move and Insert 1.92
by M field. HO ~ HIS 4 Shifts

b) [(H) shifted • ,C A] / [(S) • CA] ~ S

c) (H) ~ H unless H = S
NOTES: 1. Address options do not exist for this

instruction .
. 2. CA = mask

MVI 171 a) M=O Move and Insert 2.24
(H) shifted logically left, circularly 8 places. HIS -+ HO 8 Shifts

M::;i::O
(H) shifted logically left, circularly n places as specified
by the M field. HIS ~ HO

b) [(H)shifted • C A] / [(S) • CAl -+ S

c) (H) ~ H unless H = S

NOTES: 1. Address options do not exist for this
instruction.

2. CA = mask

MVZ 070 a) (H) shifted logically right, circularly n places as specified Move and Zero 1.60
by the M field. HO -+ H 15 4 Shifts

b) (H) shifted • CA -+ S

c) (H) ~ H unless H = S

NOTES: 1. Address options do not exist for this
instruction.

2. CA = mask

Subclass Mnemonic

Move MVZ

Table V-4. Class: Data Handling Instructions (Sheet 3 of 3)

Function Code

170 a)

b)

c)

--------------------------------------,,--------------------r-----"--------
Description

M :: 0
(H) shifted logically left, circularly 8 places. H 15 -l> HO

M :i: 0
(H) shifted logically left, circularly n places as specified
by the M field H 15 -l> HO

(H) shifted· CA ~ S

(H) -l> H unless H = S

NOTES: 1. Address options do not exist for this
instruction

2. CA = mask

Execution Time
(J,lSe<J.m = OD Name

Move and Zero 1.92
8 Shifts

-------------------------------------~------------------~----"----------

Table V-So Class: Jump Instructions (Sheet 1 of 3)
.- - - ----.--.. ~-- ... -- ---

Subclass Mnemonic Function Code Description Name
Execution Time
(/JSec) m = 0/1

Algebraic JTW 037 (Y) < (H) : LL + 2 -+ LL (next loc) Jump Three Ways 1.60 Y~ H

Compare
(Y) = (H) : LL + 4 -+ LL

1.76 Y > H

(Y) > (H) : LL + 6 -+ LL

CJL 050 (Y) ~ (H) : LL + 2 -+ LL (next loc) Compare, Jump if Less 1.60

(Y) < (H) : LL + 4 -+ LL

CJE 051 (Y) =F (H) : LL + 2 -+ LL (next loc) Compare, Jump if 1.60

(Y) = (H) : LL + 4 -+ LL
Equal

cm 052 (Y) = (H) : LL + 2 -+ LL (next loc) Compare, Jump if 1.60

(Y) =F (H) : LL + 4 -+ LL
not Equal

CJG 053 (Y) ~ (H) : LL + 2 -+ LL (next loc) Compare, Jump if 1.60

(Y) > (H) : LL + 4 -+ LL
Greater

Gated GCI 054 I(Y) - (H)I > (H6) : LL + 2 -+ LL (next loc) Gated Comparison, 1.76
Compare

I(Y) - (H)I ~ (H6): LL + 4 -+ LL
Jump if Inside

GCO 055 I(Y) - (H)I < (H6) : LL + 2 -+ LL (next loc) Gated Comparison, 1.76

I(Y) - (H)I > (H6): LL + 4 -+ LL
Jump if Outside

Test Bit TLZ 064* (Y)BL =F 0 : LL + 2 -+ LL (next loc) Test Lower Bit, 1.60

(Y)BL = 0 : LL + 4 -+ LL
Jump if Zero

BL = Lower bit as specified by H

*Literal modes 2 or 3 will cause the instruction to act like a NOP

w
00

Table V-So Class: Jump Instructions (Sheet 2 of 3)

Subclass Mnemonic Function Code Description
-.---------------

Test Bit TUZ 065* (Y)BU =F 0 : LL + 2 ~ LL (next loc)

(Y)BU = 0 : LL + 4 ~ LL

BU = Upper bit as specified by H

TLF 066* (Y)BL =F 1 : LL + 2 ~ LL (next loc)

(Y)BL = 1 : LL + 4 ~ LL

BL = Lower bit as specified by H

-

TUF 067* (Y)BU =F 1 : LL + 2 ~ LL (next loc)

(Y)BU = 1 : LL + 4 ~ LL

BU = Upper bit as specified by H

TLZ 164* a. (Y)BL =F 0 : LL + 2 ~ LL (next loc)

(Y)BL=O: LL+4~LL

BL = Lower bit as specified by H

b. Set external interrupt lockout

TUZ 165* a. (Y)BU =F 0 : LL + 2 ~ LL (next loc)

(y)BU=O: LL+4~LL

BU = Upper bit as specified by H

b. Set external interrupt lockout

*Literal modes 2 or 3 will cause the instruction to act like a NOP.

-
Name Execu

(~ec
tion Time

~:JU.L

Test Upper Bit, 1. 60
Jump if Zero

Test Lower Bit, 1. 60
Jump if One

Test Upper Bit, 1. 60
Jump if One

Test Lower Bit, 1. 60
Jump if Zero

Test Upper Bit, 1. 60
Jump if Zero

Table V-So Class: Jump Instructions (Sheet 3 of 3)

Subclass Mnemonic Function Code Description Name
Execution Time
(psec) m = 0/1

Test Bit TLF 166* a. (Y)BL * 1 : LL + 2 -+ LL (next loc) Test Lower Bit, 1.60

(Y)BL = 1 : LL + 4 -+ LL
Jumper if One

BL = Lower bit as specified by H

b. Set external interrupt lockout

TUF 167* a. (Y)BU * 1 : LL + 2 -+ LL (next loc) Test Upper Bit, 1.60

(Y)BU = 1 : LL + 4 -+ LL
Jump if One

BU = Upper bit as specified by H.

b. Set external interrupt lockout

*Li teral modes 2 or 3 will cause the instruction to act like a NOP.

Table V-6. Class: Transfer Instructions (Sheet 1 of 2)

Subclass Mnemonic Function Code Description Name
Execution Time
(psec) m:= 0/1

~.

Register DTX 032 a) (H) - 2 ~ H : 0 ~ H on wrap around Decrement by Two 1.60
Modify and Transfer

b) T ~ LL if H :#: 0

L1. + 2 -~ LL ifH = 0 (next loe)
--

DOX 033 a) (H) - 1 ~ H : 0 ~ H on wrap around Decrement by One 1.60
and Transfer

b) T ~ LL if H :#: 0

LL + 2 ~ LL ifH = 0 (next loc)

ITX 132 a) (H) + 2 ~ H : 0 ~ H on wrap around Increment by Two 1.60
and Transfer

b) T ~ LL if H :#: 0

LL + 2 ~ LL ifH = 0 (next loc)

lOX 133 a) (H) + 1 ~H: O~H on wrap around Increment by One 1.60
and Transfer

b) T~LLifH=I=O

LlL + 2 ~ LL ifH = 0 (next loc)

Register XEZ 040 (H) = 0: T~LL Transfer if H = 0 1.60

Test (H) =1= 0: LL + 2 ~ LL (next loc)

XNZ 041 (H) =1=0 : T~LL Transfer if H =1= 0 1.60

(H) = 0 : LL + 2 ~ LL (next loc)

XNG 042 (H) 15 :: 1 : T ~ LL Transfer if 1.60

(H)15 7= 1 : LL + 2 ~ LL (next loe)
H is Negative

Table V-6. Class: Transfer Instructions (Sheet 2 of 2)
..... -

Subclass Mnemonic Function Code Description Name
Execution Time
(/JSec) m = 0/1

Register XPS 043 {Hhs =0: T-+LL Transfer if 1.60
Test

{Hhs =1= 0: LL + 2 -+ LL (next loc)
H is positive

Control XFR 034 T-+LL Transfer 1.60
Transfer Uncondi tional

XLK 03S T-+LL Transfer 1.60

LL + 2 -+ H (next loc)
Unconditional and
Store Link

XSW 036 Hb = SWJb : T -+ LL Transfer on 1.60
I Console Transfer

Hb =1= SWJb : LL + 2 -+ LL (next loc)
Switch

Comparison is by bit match

Subclass Mnemonic Function Code

I/O DEC 074

DES 174

OFR 076

ITR 075

Table V-7. Class: Input/Output Instructions

Description

(yhS-8 I/O data lines 1 5-8

(Y)s-o I/O data lines 5-0

a. (Y) 15-

5-0 (Y)

8 ~ I/O data lines 15-8

~ I/O address lines 5-0

b. Res
Set
Res

,xternal interrupt lockout.
ernal interrupt.
) AR status bit associated with existing level.

et e
int
et J

(H)d ~I /0 data lines 31-0

(Y)S-O ~I /0 address lines 5-0

I/O dat a iiI les 31-0 ~ Hd

(Y)5-O ~ I/O address lines 5-0

Name
Execution Time
~ec) I1) = ~~

External Device 4.16
Command

External Device 5.31
Command and
Suicide

Output from Register 4.32

.-
Input to Register 4.48

Table V-S. Class: Miscellaneous Instructions

Subclass Mnemonic Function Code Description Name Execution Time
(usec)m=O/1

Misc EXE 001 a. LL~LL Execute 1.60 . .

b. The next instruction is accessed from address T.

HLT 000 Halt if Hb = SWHb· Comparison is by bit match. Halt 1.60

MBA 027 a. (Y) ~ memory module addressed by (Y)14-15 Memory Bank 2.16 H = 0

b. Memory status -- Hd if H =F 0
Assignment 2.56 H 1 0

QED 124* a. (Y) ffi (H) ~ Y Queue Table 1.95

b. Set YO if [(Y) ~ (H)] =#= 0
Enque and Deque

c. LL + 4 ~ LL if the following equation is true

[(Y) ffi (H)] = 0 • YO = 1

or

[(Y) ffi (H)] =#= 0 • YO = 0

LL + 2 ~ LL (next loc) if the above equation is false

d. Set external interrupt lockout

Nap 077 No operation No operation 0.80

Macro TBD Any Unused a. Macro is activated upon access of instruction from TBD TBD
Code memory.

b. CPU halts and waits for Function End signal from SPU.
c. CPU accesses next instruction from memory upon receipt

of the Function End signal.

NOTE: The SPU can generate the Function End signal im-
mediately upon recognition of its instruction when it is
advantageous to execute the macro instruction concur-
rently with subsequent CPU instructions.

"'Modes 2 or 3 will cause the instruction to act as a Nap.

SPECIAL INSTRUCTIONS FACILITATE PROGRAMMING ____________ _

A number of special instructions are provided to
simplify programming and reduce program execu­
tion time.

Special instructions that will simplify programming
include:

Queue Table Enque and Deque

This special instruction provides a more convenient
method for handling common data files between
multiple processor and program level, as well as
providing a suitable method of handling multiple
I/O termination to a common program level (Fig­
ure 5-6).

This is accomplished by using a designated control
word for each data file. The control word is com­
posed of an "in use" bit (bit 0) and 14 priority bits
(14-1). Bit 15 must always be zero.

The same instruction is used for both enqueing and
dequeing. A processor may use the file without
being called only when the control word contains
all zeros. If the file is in use when initially ac­
cessed by a processor, the appropriate queue bit

will be set in the control word but the next loca­
tion will be skipped in memory. The processor
must then wait to be called before u~ing the
table.

When a processor has finished using the table, it
must again execute the Queue Table instruction.
The processor queue bit and the "in use" bit will
be reset if no other queue bits are set in the in­
struction. The next location will be accessed by
the processor to return it to its next routine.

If other queue bits are still set when the dequeing
instruction is executed, the "in use" bit will not be
reset and the next location in memory will be
skipped. The processor will then determine the
next highest priority (relative bit position) and
issue a call to that processor by setting a bit in its
PAR word and generating an interprocessor inter-
rupt (SBL and SBU instructions). -

The interrupt lock-out is set during this instruction
to prevent a program level change from occurring
before the processor completes the routines neces­
sary for assuring an orderly transition in the usage
of the table.

0 I PRIORITY BITS

liN USE BIT

I
15 14 CONTROL WORD 0

(Y) INITIAL (Y) FINAL SKIP (HI

FILE NOT
002001 8 NO 0020018 IN USE 0000008

ENOUE

0400018 042001 8 YES 002001 8

LAST USER 002001 8 0000008 NO 002001 8

DEOUE

042001 8 040001 8 YES 002001 8

Figure 5-6. Queue Table Instruction

44

Move Instruction

The two Move instructions allow any number of
bits in one register to be addressed by means of a
mask and moved to any position in another
register.

The Move and Insert instruction (Figure 5 -7)
allows the bits to be stored into the designated
area of the register without disturbing the re­
maining contents of that register.

EQUATION: En SHIFTED . C~ I ES).c~s

The Move and Zero instruction (Figure 5-8) per­
mits the storage of the bits into the designated area
of the register but sets the remaining bits to zero.

This capability greatly facilitates the handling of
"packed" data which in tum minimizes memory
requirements by allowing several short words to be
stored into a single memory word.

H CA MASK S

INITIAL o E01 10~ 000 101 000 o 000 000 E 11 11 ~ 000 o 101 100 ~01 OO<Q 111

(H)
1 010 000 [201 10iJ 000 SHIFTED

(H)S'CA o 000 000 ~01 1 O~ 000

(S)·C'A o 101 100 ~OO OOOJ 111

FINAL
RESULT o 101 101 000 101 000 o 101 '100 ~01 10~000

Figure 5-7. Move and Insert

EQUATION: (H) SHIFTED-CA-+S

H CA MASK S

o E.01 102] 000 101 000 o 000 000 ~11 11 ~ 000 0101100 101000111

(H)
1 010000 1291 10~ 000 SHIFTED

(H)S·CA 0000000[201 10iJ 000

FINAL o 101 101 000 101 000
Figure 5-8. Move and Zero 0000 000 E01 10iJ 000

Gated Comparison

The Gated Comparison instructions allow com­
parisons to be made between a value in memory
and the contents of one of the process registers
plus or minus a designated gate value. This gate
value must be stored in a specific process register
prior to the execution of the gated comparison.

45

The program can be made to branch if the value in
memory falls inside or outside the gate range.
These instructions are extremely useful where
values are known only approximately or where
some tolerance is allowed on either side of an ex­
pected value.

Arithmetic and Skip Instructions

All arithmetic instructions are provided with alter­
nate operation codes to program exit within the
same program level upon detection of an arith­
metic overflow or error condition. Instances in
which this skip capability provides an error exit
include the following:

a. When the adder capacity is exceeded during
the execution of any Add or Subtract, Load
Absolute, or Load Complement instructions.

b. In the execution of a Multiply or Divide in­
struction where both operands are negative
full scale.

c. In the execution of a Divide instruction where
both operands are equal in magnitude and
either have like signs or the sign of the divisor
is positive.

d. In the execution of a Divide instruction where
the absolute magnitude of the dividend is
greater than the absolute magnitude of the
divisor.

PROGRAM SEQUENCING

The instruction access is shown step by step be­
ginning with the instruction location and ending
with the instruction stored in the instruction
register.

The instruction access or staticizing is shown in
the accompanying illustration (Figure 5 -9). The
encircled numbers show the individual sequential
steps.

The instruction location which is the address of the
instruction to be addressed is contained in the
16-bit location counter. The instruction location
register has three fields. All computer address for­
mats are by half words, and all instructions are of
32-bit length and are located in even-numbered
word addresses. Thus, the least significant address
bit is ignored. The D field serves a dual purpose:
step I verifying (through the page control and ad­
dress register) thaCa "fetch" of the instruction is

46

e. In the execution of a Divide instruction when
the divisor = O.

f. In the execution of a double precision Add or
Subtract instruction where the sign associated
with the least significant half of the operand
or processor register pair is unlike the sign as­
sociated with the most significant half.

g. In Mode 3, Literal with Indexing, where
arithmetic overflow occurs during the modifi­
cation of the literal operand.

The skip capability is implemented by permitting
the program to skip the next sequential location in
memory during an arithmetic operation when a .
legal condition exists. A software link to a subrou­
tine is established by storing an appropriate branch
instruction in the next sequential location follow­
ing the arithmetic instruction. The branch to the
subroutine is only executed when an illegal condi­
tion occurs. The subroutine is used to analyze the
result for appropriate action and then return con­
trol to the main program.

permitted, and step 2 providing the page address
bits to be appended to the A field.

If memory access is not authorized, then instruc­
tion is not accessed and error program level is
initiated. The A field and the appended address
bits will access the memory (step 3). This mem­
ory cell contains the instruction which is trans­
ferred into the instruction register by step 4.

The instruction location address is incremented
by 2 which corresponds to two half-word ad­
dresses. The result replaces the instruction loca­
tion in the location counter. Both of these steps
are shown as 5 and 6.

A program level change will preserve the process
registers in core memory and thus the instruction
location address is also automatically retained.

INSTRUCTION LOCATION

D A

.... ® \.. .A J ,
@ CD

.... ~ ~

+2 PAGE CONTROL
INCREMENT AND ADDRESS

@ LOGIC REGISTER

'"®~ MEMORY

,
.-"- " <9

..... .. INSTRUCTION REGISTER

I F I H J M I S I D A IW
2344B-14A

Figure 5-9. Instruction Access Process

MEMORY CONTROL OF THE INSTRUCTION'S ADDRESS FIELD __________ _

The memory control includes the page control and
the page address. The page control provides full
memory protection.

The memory control consists of the page control
(PC) and the page address (PA). Each program
level has' its own set of controls, each of which
contains 16 page control and address (PCA) regis­
ters (Figure 5-10).

Page Address

The four most significant bits of an address field
are labeled as D and are used to select one of the
16 PCA registers. The PA field within this register
consists of six bits which are appended to the A
field of the address. The II-bit A field addresses
one of 2048 words within a page.

The translation of the D field through the PA reg­
ister by pages can be considered as the base register
concept with a module of 2048 words Thus, a
dynamic program relocation can be achieved by
changing the content of the PA register. The size
of the PA field provides memory addresses of up
to 131 K words. The D field is also used for mem-

47

ory access control as described in the following
paragraphs.

Page Control

The memory access control is provided selectively
for each program level and selectively for each
2048 words of memory for the full address range
of 131 K words. As described in the preceding
paragraphs, the D field of the address accesses the
PCA register which contains two page control bits
in addition to the page address.

The page control bits provide control for:
(1) fetching of instructions, (2) read of operands,
and (3) write of operands. The two-bit page con­
trol field allows for four combinations of control
as shown in the accompanying diagram.

The fetch instruction control provides control for
the access of instructions from memory. It spe­
cifically prevents the execution of instruction from
a data base by accidental or unauthorized transfers.

The read operand control prevents reading of
operands from memory. Thus, unauthorized ac-

cess' of data base including instructions of programs
can be denied. The write operand control prevents
destruction of information in memory.

2 BITS 6 BITS

~I
~

PC PA

,.

.... ...
PAU-EeONTROL

0 0 READ-WRITE ACCESS

I 0 1 READ ACCESS
1 0 READ DATA ACCESS
1 1 NO ACCESS

!
,

A violation of any of the controls 'will inhibit the
execution of the instruction, set a bit in the com­
puter's status registeI.", and transfer control to the
error program level.

INSTRUCTION'S ADDRESS FIELD

D
I

A Iwl
I ~

I HALF WORD
C"~ .. ~"''''II"''\r...1 .. "I:~I:\J IIVI"

0
1
2
3
4
5
6
7

+--10
11
12
13
14
15
16
17

..l.. 6 BITS
"""II .. 11 BITS

PA I A I
~~ ____ ~~~~ ____ JA~ ____________ ~y~ ____________ "i

PAGE ADDRESS VIOR D A DDR ESS
2344B-13

Figure 5-10. Page Control and Address

SERIES OF OPERATIONS IMPLEMENTED VIA EACH INSTRUCTION EXECUTION

Each instruction execution accomplishes a series of
steps often requiring several instructions in less
advanced computers.

Figure 5-11 shows the instruction format as it is
stored in the instruction register.

The F and M fields contain the command function
of the instruction; they are decoded in the opera­
tion controller as shown in step 1. Assuming an
arithmetic type of instruction is under considera­
tion, the following steps continue to be performed.

The S field, as shown in steps 2 and 3, refers to the
index register which is retrieved from the process
registers. The index is added to the instruction's
address field consisting of D, A, W. The sum is a
new D, A, W quantity as shown in step 5.

48

As previously described, step 6 will use the PeA to
verify the authorization of memory access and to
translate the D field into the page address. Step 7
shows the appending of these bits to the A field
and the operand access from memory. It is as­
sumed that the M-mode field of the instruction
specified a direct memory access. Otherwise ap­
propriate address modes would be applied.

The operand as retrieved from memory is shown in
step 8. A half-word command operation would use
.the W-address bit to select the appropriate half­
word to which the operation has to be applied.
The instruction's H field selects, in step 9, an ac­
cumulator from the process registers. Steps 8, 10,
and 11 show the combination of the selected accu­
mulator with the operand from memory. The re­
sult of the operation replaces the accumulator.

Other commands may replace content of memory
or apply only to the process registers as de-

scribed in the instruction repertoire.

INSTRUCTION

F H M S D I A Iw , I --. T 0
CD CO~ND ~\.

"""
""III~

DECODER ® r+ ADDER OPERATION CONTROL

~ 0
""III ~

PROCESS REGISTERS CD D I A Iw lj ~

l ... I' ~ ""
INDEX - 0 0

... ~
""~ PAGE CONTROL (}) , i ... AND ADDRESS MEMORY

ACCUMULATOR ~

i ~ REGISTER , ...
r- -

@
® @

~ , OPERATION It ~
(ADDER) I'

Figure 5-11. Instruction Execution Sequence 2344B-12A

FACTORS AFFECTING INSTRUCTION EXECUTION TIME _____________ _

The instruction execution time depends upon the
instruction type, selected options, and the loca­
tion of the operands.

The instruction execution time is variable and de­
pends upon several parameters. The programmer
can drastically reduce the execution time by se­
lecting the appropriate combinations of influencing
factors.

The instruction execution time in the computer
depends upon four major functions to be per­
formed and upon four hardware parameters. Each
instruction sequences through the following four
steps:

1. Instruction access
2. Generation of operand address
3. Operand access
4. Execution of command

49

The execution time also depends upon:

a. Availability of the memory
b. Memory cycle time
c. Use of process register

The instruction access time depends upon the
location of the instruction. If the instruction and
operand are located in the same memory bank, the
. operation will take the maximum time. The time·
decreases as instructions and operands are located
in the different banks which can be accessed
simultaneously.

The time also depends upon the memory cycle
time and availability. Each memory is accessed by
the central processing unit and the input/output
unit. If one of these two units has control of a
memory, the second unit must wait for completion
of service for the rust unit. If both units attempt
to simultaneously access the same memory, the

input/output unit is given priority.

The generation of the operand address depends
upon the selected address mode as specified by the
instruction's mode field. The literal mode gives the
fastest execution since no memory access for
operand access is involved. The indirect addressing
requires one memory access.

The operand access time depends upon the same

50

parameters as described for the instruction access.
The fastest execution time is achieved for register­
to-register operations.

The execution of the command depends upon the
selected instruction. I t normally involves the ac­
cess of an accumulator from the process registers,
the combined operation between operand and ac­
cumulator, and the return to the result into the
process register. As an example, variations in
"add" instruction times are shown in Table V-9.

Table V-9. Add Instruction Times in Microseconds

Access Type Memory/Memory Memory/Register Register/Memory Register /Register

Data Location

Instruction - Memory X Memory X Memory X Memory X

Indirect Address ... Memory X Memory X Process Register Process Register

Operand - Memory X Process Register Memory X Process Register

M=O

Direct 1.60 1.28 1.60 1.28

M = 1

Direct 1.60 1.28 1.60 1.28

Indexed

M=2

I Literal 1.12 1.12 1.12 1.12

A M=3

D Literal 1.12 1.12 1.12 1.12

D Indexed

R
M=4

E
Indirect 2.40 2.08 2.08 1.60

S

S M=5

Indexed 2.40 2.08 2.08 1.60

M Indirect

0 I M=6
I D

Indirect 2.40 2.08 2.08 1.60
E

Indexed
S

M=7,S=0

Relative 1.92 1.60 1.92 1.60

M=7,S1=0

Relative 1.92 1.60 1.92 1.60

Indexed

51

SECTION 6. INPUT/OUTPUT SYSTEM

MODULAR FEATURES OF INPUT/OUTPUT UNIT ______________ _

The input/output unit is modular, with a direct
memory access channel.

The input/output unit (IOU) is independent of the
CPU with the exception of common power supplies
and a common channel to memory. Data through­
put is enhanced by the simultaneous operation of
the CPU and IOU.

Parallel, simultaneous operation of processing units
allows peak processing loads to be accommodated.
By the appropriate choice of memory configura­
tion, the CPU-IOU system can be matched to
increasing processing loa4 requirements. For ex­
ample, availability of two memory units allows an
increase in the capability of simultaneous CPU-IOU
operations over that possible with a single memory
unit. The direct memory access channel is shared

52

in a manner which minimizes the data transfer time.

Modularity of the IOU provides the following ad­
vantages:

a. Additional IOU capability can be obtained
simply.

b. The IOU can be interfaced with a separate
memory port for high data rate applications.

c. The IOU can be operated at twice normal
clock frequency for high data rate appli­
cations.

d. Special purpose IOUs can be added to the sys­
tem without affecting the CPU or memory.

IOU ADDRESSES UP TO 56 PERIPHERAL DEVICES

The IOU can address up to 56 external peripheral
devices and multiplex the transfer of data between
the devices and the memory.

The IOU has the capability of addressing 64 de­
vices. However, eight addresses are used for inter­
nal processor functions (real-time clock, mainte­
nance functions, etc.).

The S6 device addresses are divided into seven
groups of eight addresses, with an input/output ex­
change unit required to multiplex data transfer
within each group of eight addresses.

The data exchange can consist of a 32-bit word or
an 8-bit byte. The IOU controls packing and un­
packing of the bytes into the 32-bit memory word.
P~ty js written with each memory word and
checked as each word is read. -

In addition to the data interface, 31 control and ad­
dress lines are provided to the peripheral devices.
All lines are twisted pairs with a common ground
system. Peripheral device to IOU distances of 30
meters can be accommodated.

INPUT/OUTPUT MULTIPLEXING OCCURS ON A PRIORITY BASIS ---_______ _

Communication with peripheral devices can be ini­
tiated as an input/output instruction is executed in
the CPU (programmed input/output), or upon the
request of the peripheral device and under control
of the IOU command words (automatic inputj
output.

Programmed input/output instructions have highest
priority for access to the peripheral devices. An
automatic data transfer will be interrupted while
the CPU instruction is executed. These instruc­
tions are used to exchange data with the device at
the convenience of the CPU program. Examples
are: reading device status, commanding a specific
device function, and transferring program status to
the device.

F =076

OFR OPERAND: IV)=

15

These input/output instructions are:

a. Output From Register (OFR) instruction (Fig­
ure 6-1). This instruction causes the contents
of the process register pair addressed by the
instruction H field to be transmitted to the
device addressed by the six least significant
bits of the instruction operand.

The S field selects one of eight process regis­
ters for address modification on modes M = 1,
3, S, and 7 if S 1= O. Bits 1 S to 6 of the oper­
and are not used.

A I
DEVICE ADDRESS

5 o

1424-16
Figure 6-1. OFR Instruction Word

S3

b. Input to Register (ITR) instruction (Figure
6-2). This instruction causes the device ad­
dressed by the six least significant bits of the
instruction operand to transmit up to 32 bits
of data. This data is stored in the process
register pair specified by the H field of the
instruction.

F = 075

ITR OPERAND: (V)=

15

The S field selects one of eight process regis­
ters for address modification on modes M = 1,
3, 5, and 7 if S -+ O. Bits 15 to 6 of the oper­
and are not used.

A I
DEVICE ADDRESS I

5 o

Figure 6-2. ITR Instruction Word
1424-17

c. Device Command (DEC) instruction (Figure
6-3). This instruction causes the most signifi­
cant eight bits (bit positions 15 to 8) of the
instruction operand to be transmitted to the
I/O interface unit that was addressed by the
least significant six bits (bits 5 to 0 of the
operand). The H field is not used on this
instruction.

All modes, M, of address modification are al­
lowed; however, Mode 2, the literal mode, or
Mode 0, the direct mode, will be the most
common.

F = X74

DEC OPERAND: (V)=

15

The S field selects one of eight process regis­
ters for address modification on modes M = 1,
3, 5, and 7 if S 1= o.

If F = 174, an automatic program level change
will occur. At the end of the DEC instruction
the Program Activity Register is obtained
from memory. The active bit for the current
program level is reset and the next highest pro­
gram level is entered. This operation is called
program level suicide. In addition, external
interrupt lockout is removed if it was in
effect.

INPUT IOUTPUT
COMMAND

A

""".""'.'-11 DEVICE ADDRESS

8 7 6 5

I

Figure 6-3. DEC Instruction Word

54

o
1199-358

Automatic input/output operations are handled in
the order of their address; a request from the device
at address 778 has priority over an address 768
request; an address 008 request has lowest priority.
Two IOU command words for each of 778 ad­
dresses are stored in a memory designated as the
"base" memory. The key word defines the mode
of I/O operation, the block length and the current
address of data in memory; it controls the transfer
of data initiated by a request from the device. The
termination word defines two CPU program levels
to be activated for a normal or error termination
and tag bits defIning the type of termination; it
controls interruption of the CPU at the end of an
I/O operation.

When an I/O interface unit is ready to receive data
from the computer or is ready to transmit data
to the computer, it will set the request line at its
I/O station in a true state. The IOU will cause the
interface unit to transmit its substation address by
sending an enable signal to the interface unit. The

I

t
M BL

31 30 28 27 16 15

IOU will read from memory the key word associ­
ated with the station and substation address.

Figure 6-4 shows the I/O key word format. The
fields of the key word are defined as:

M = Mode, bit positions 30 to 28. This 3-bit
specifies one of the following modes of
operation designated in octal digits:

0

1

2

3

4

5

6

7

Inactive

Alarm

Block word input

Block word output

Block character input, least significant
character (LSC) first

Block character output, LSC first

Block character input, most significant
character (MSC) first

Block character output, MSC first

CA

o
1424-18

Figure 6-4. I/O Key Word

BL = Block length, bit positions 27 to 16. This
12-bit field specifies either the number
of words or characters in a block data
transmission of the number of time incre­
ments in the alarm mode. In 32-bit
word transfers, BL can specify up to
4095 words. In the character mode, BL
can specify up to 4095 characters packed
into 1024 words; thus, the two least sig­
nificant bits of BL specify the character
position in the word. After each word or
character transmission or after each time
increment, BL is' decremented until a
block length of Zero is reached.

55

CA = Current address, bit positions 31, 15 to
Q. This 17-bit field specifies the running
address of the memory location from
which the current 32-bit word is (or four
8-bit characters are) accessed in an out­
put operation, or in which it is stored in
an input operation. After each word
transmission in a block data transfer, CA
is incremented.

When the block length, BL, field of the I/O key
word has been decremented to Zero, the IOU will
obtain the termination word to signal the program­
mer that data communication is complete for that

particular I/O substation. Figure 6-5 shows the I/O
termination word format. The fields of the termi­
mination word are defined as:

EPL = Error Program level, bits 21 to 16. This
6-bit fiyld is the binary number of the
program level to be entered if an error

condition during the I/O -data communi­
cation occurred (E bit or R bit is set) or
an external interrupt signal from the I/O
substation (I bit is set) occurred. This
program level number is preset by the
program.

NPL EPL \ NOT USED

31 30 29 28 27 22 21 16 15 o

Figure 6-5. I/O Termination Word 1424-19

NPL = Normal erogram level2 bits 27 to 22. This mission of a device error signal during an
6-bit field is the binary number of the I/O data transfer.
program level to be entered when the
key word block length field, BL, reaches . I = Indicator, bit 30. The I bit is set when-
Zero and no error condition was de- ever the processor receives the indicator
tected (F bit is set). This program level signal from an interface unit following
number is preset by the program. the acknowledgement of its request. The

indicator signal is used primarily for the
It = Channel-malfunction, bit 28. The Rbit ac-com plishmen.t of an in~terface unit ini-

is set whenever an I/O operation is termi- tiated program interruption.
nated by the recognition of an error con-
dition by the processor. The processor F = Block com.Qlete 2 bit 31. The F bit is set
recognizes a channel malfunction by an following the completion of the transfer
inactive mode (mode zero) or an initial of a block of data. This is considered a
block length of zero. normal termination of an I/O operation.

The F bit is not set if an abnormal ter-
E = Device errof i bit 29. The E bit is set minating condition (the detection of an

whenever an I/O operation is terminated error condition) occurs prior to the spe-
due to the recognition of an error condi- cified number of transmissions or the re-
tion by the interface unit. The interface ceipt of an indicator signal.
unit notifies the processor by the trans-

SEVEN MODES OF AUTOMATIC INPUT/OUTPUT OPERATIONS PROVIDED _______ _

Data transfer by word or byte provides adaptabil­
ity of the IOU to many different applications.

M = 0, inactive mode

If the IOU detects that the key word mode
field is all zeros, it will indicate an I/O error
condition. It will obtain the corresponding
termination word, set its R bit, and will trans­
mit and end-of-transmission signal to the inter­
face unit. The EPL field of the termination
word is used to specify the status bit in the
program activity register that is set to a one.

56

The key word is not modified.

M = 1, alarm mode

In the alarm mode, the block length field, BL,
of the key word is used as an elapsed time
counter. Each time a request from the substa­
tion address with this key word is serviced,
the BL field is decremented; the CA field is
not modified and no data transmission occurs.
The req'uest signal is usually provided from an
interface unit with a real-time clock source.

When the BL field reaches zero, the corres­
ponding termination word is obtained from
memory and its F bit set to a one. In this
mode, the NPL field of the word is used to set
the desired status bit in the program activity
register. An end-of-transmission signal is
transmitted to the interface.

Since the BL field is composed of 12 bits, up
to 4095 time intervals may be counted with­
out program intervention. The programmer
has normal access to the key words, since they
are addressable in memory.

M = 2 or 3, block word input or output

I

These modes are the normal modes for trans­
mission of full words. Words may be any size

LAST THIRD

(01)2 (10)2

31 24 23 16 15

from 1 to 32 bits, but each request for an in­
put or output addresses one word in memory
and the address field of the key word, CA, is
incremented to the next word address. The
block length field, BL, is decremented for
each word received or transmitted.

M = 4 or 5, block character input or output, least
significant character first

Data is received or transmitted as 8-bit charac­
ters. This data is unpacked from a 32-bit
word on input from right to left. Each 32-bit
word is separated into four 8-bit character
fields. The least significant two bits of the
key word block length field, BL, counts the
character position within the data word, as
shown in Figure 6-6.

SECOND FIRST

(11)2 (00)2

8 7 o

Figure 6-6. Character Positions, Least Significant First 1424-20

I

As characters are received or transmitted they
are not shifted in position within the 32-bit
word. They are properly placed or transmit­
ted according to the character number. Block
length may be any number from 1 to 4095 10'

The current address field, CA, of the key word
in a character mode is incremented each time
the least significant two bits of the"" block
length field decrements from (01)2 to (00)2'

FIRST SECOND

(00)2 (1~)2

31 24 23 16 15

M = 6 or 7, block character input or output, most
significant character first

These modes are similar to modes 4 and 5 ex­
cept that characters are counted left to right.
The least significant two bits of the key word
block length field counts the character posi­
tions within the data word, as shown in Fig­
ure 6-7.

THIRD LAST

(10)2

8 7 o

Figure 6-7. Character Positions, Most Significant First 1424-21

57

IOU SYSTEM PROVIDES BOTH A BURST AND BLOCK MODE OF
DATA TRANSFER

The IOU can accommodate peripheral devices with
different data transfer rates.

Devices requiring a high data rate utilize the burst
mode; the block mode can be used for lower data
rates. In either case, the limitation on IOU data
rates is determined by the memory unit; the high­
est rates are possibie when the IOU and CPU are
addressing different memory units.

The block mode of data transfer involves fetching
the key word and transfer of one data word for
each request from the device. After each sequence
the request next in priority is processed by the
IOU.

Block Transmission Input. The IOC examines the
eight I/O request lines when it is not already exe­
cuting an I/O operation. When an I/O request is de­
tected, the IOU enters the phases which are pro­
vided for I/O control. If two or more I/O requests
are received simultaneously, the highest numbered
station will be serviced first.

A block of data will be received (input) by the IOU
upon completion of the following sequence of
events:

a. The request from the interface unit is ac­
knowledged by activating the enable line for
that station.

b. The interface unit specifies the substation on
the three address lines, and then transmits a
ready signal. The processor waits until this
ready signal is received.

c. A sync sigr~al is sent to the interface unit. The
sync signal causes the interface unit to deacti­
vate its request if it is in the block mode. The
interface unit places data on the lines and then
transmits another ready signal. The processor
waits until the ready signal is received.

d. The data is taken from the data lines by an
internal control signal.

e. Steps a, b, and c are repeated for each request
until the block length of the key word reaches
zero. An end-of-transmission signal is sent to
the interface unit if the entire block of data
has been received.

58

Block Transmission Output. A block of data will
have been transmitted (output) by the IOU upon
compietion of the foHowing s~q uence:

a. The request signal from the interface unit is
acknowledged by activating the enable line of
that station.

b. The interface unit specifies the substation on
the three address lines, and then transmits a
ready sigrlal. The processor waits until the
ready signal is received.

c. A sync signal is sent to the interface unit to
deactivate its request if it is in the block mode.

d. The processor waits until another ready signal
is received from the interface unit.

e. The data is put on the data lines by the data
bus enable control.

f. The data is clocked into the interface unit
with :i-strobe coiitiolsignaI

g. Steps a, b, c, and d are repeated until the
block length of the key word reaches zero. An
end-of-transmission signal is sent to the inter­
face unit if the entire block of data has been
transmitted.

The burst triode of data transfer involves fetching
the key word once in response to a device request
followed by multiple data transfers. Data transfer
continues until the block length reaches zero as
detected by the IOU, or the device deactivates its
request. A higher priority request will interrupt
the burst mode data transfer which will then be
re-established after the higher priority request is
serviced.

Since memory cycles have to be time-shared with
the CPU, data rates are effected by the memory
interleave between the CPU and the IOU. Table
VI-I provides the typical and maximum data rates
for all modes of operation.

Table VI-I. Data Rates for I/O Operations

Maximum Typical
(kHz) (kHz)

Burst Input 458 450

Burst Output 625 590

Block Input 230 220

Block Output 218 217

REAL TIME SYSTEM PROGRAMS CALLED BY I/O INTERRUPT HAVE PROGRAMMABLE PRIORITY

Flexibility in the programming of real-time systems
is provided by variable program priority. Recon­
figuration of externally driven programs during op­
eration is effected by an efficient machine archi­
tecture.

Real time systems require that programs be acti­
vated in response to external signals. The relative'
priority of such programs must be set to allow com­
pletion of all programs between interrupts. It is
advantageous if the relative priority of programs is
not final but can be adjusted to differing opera­
tional environments.

The activation of CPU program levels is controlled
by various control words stored in the "base" mem­
ory unit. Some of these words are modified by
hardware in addition to being available to the pro­
grammer.

The steps involved in calling a program are outlined
in the following paragraphs to illustrate the ease
with which program priority can be changed.

The IOU termination word designates two of 64
possible program levels to be called upon termina­
tion of the I/O operation. This can be due to an in­
terrupt from the peripheral device or to completion
of a data transfer operation.

Address in Base of Termination Word

(0010008 + 4 DA8 + 28) = [TAGS, NPL, EPL, SPARE]

The CPU is interrupted by the IOU after a status
bit is written in the program activity register (PAR)
corresponding to the program level designated in
the termination word. The CPU then determines
the highest program level which has been enabled
and initiates a program level change if required.
The program has control of the program levels
which can be activated by means of the PAR enable
list.

Address in Base of Program Activity Register

PL 178 to 008 (16008)

PL 378 to 208 (16028)

PL 578 to 408 (16048)

PL 778 to 608 (16068)

[PL ENABLE, PL STATUS]

[PL ENABLE, PL STATUS]

[PL ENABLE, PL STATUS]

[PL ENABLE, PL STATUS]

During the program level change, the program loca­
tion register and the eight process registers of the
new program are fetched from memory and placed
in hardware registers. Also, if the extended mem­
ory address option' is part of the CPU, the address
of relevant pages must be fetched.

Address in Base of Program Location Register

(14008 + 2 PL8) = [SPARE, PROGRAM LOCATION]

Changing the priority of the program called by an
I/O interrupt requires changing the control words
described above. If spare program levels are avail­
able, a simple priority change can be effected by

59/60

disabling the old and enabling the new program
level in the program activity register, copying the
old program location in the new program location
register (also the process registers), and changing
the program level fields of the termination word.

A single interrupt from a peripheral device will in­
terrupt the CPU after a delay of 3.6 microseconds.
The program level change in the CPU will be com­
pleted in 14 microseconds if the search for priority
is a maximum (assuming no extended memoryad­
dressing).

PROGRAM LOADING PROVIDED BY HARDWARE BOOTSTRAP CONTROL _______ _

The IOU can provide the bootstrap function at any
device address. An initial program of 1023 instruc­
tions can be loaded by byte or 4095 instructions
can be loaded by word.

The program load feature is activated by a program
load signal on the IOU interface. Both the CPU
and IOU must be in the halted condition and all
peripheral devices reset before this signal is acti­
vated. Activation of the program load signal causes
the IOU to examine the first device request as a
source of four bytes of data defining the key word

THE IOU SYSTEM IS POWER FAIL SAFE

In the event of power interruption, operational
shut-down and start-up occur without loss of mem­
ory data.

The IOU uses the same power sequencer as the
CPU. Power interrupt quring IOU operation results
in an orderly termination of the data transfer cur­
rently taking place. The termination word R bit is
set for the device transferring data at the time

61

controlling the program load. These four bytes are
stored in the IOU key word register. The next
device request is controlled' by the key word and
program data is stored at the designated current
address until the block length reaches zero. At
this time, an interrupt to program level OOg is sent
to the CPU, and the IOU leaves the bootstrap mode.

The CPU will begin program execution at the loca­
tion specified by the initial value of the designated
current address.

power failure is detected, and a system reset signal
is sent to all devices on the IOU interface.

During power start-up, the system reset signal is
sent to all devices on the IOU interface. A com­
mand from the CPU program is necessary before an
I/O device becomes active, thereby insuring that
the IOU command words have been initialized be­
fore automatic I/O operation starts.

SECTION 7. SPECIAL PROCESSING UNITS

Special processing units (SPUs) may be added to
adapt the L-304H to unique processing or to ex­
pand on the basic instruction set. Examples of ex­
pansion of the basic instruction set are: floating
point instructions, cordic conversion instruction,
bit string instructions, transcendental functions,
sqll:~re.ro~t_,_ etc.

The SPUs implement classes of or individual in­
structions using operation codes not required for
the basic L-304H instruction set. These instructions

M M

MEMORY INTERFACE

are called macro-instructions. SPUs tailored to
the macro-instruction(s) greatly increase ptocessor
throughput.

SPUs interface directly with memory via the DMA
channel. Control signals between the CPU and SPU
.(l~terminethe interactio.n required betweeathe two
units. All 16 (16 bit) active registers (8 process
plus 8 scratchpad) may be used by a SPU.
Figure 7 -I shows a typical interconnect configura­
tion.

M

--------,
CONTROL

CPU SPU

r-------,
I I

----1 SPU I
I I L ______ .J

PROCESS REG'R INTERFACE I ___________ ~---------..I
L-304H-2

Figure 7 -I. SPU Interconnection Diagram

62

The SPU control lines are: Instruction Fetch,
Active Registers Available, Operand Fetch, Address
Phase Enable, Location Register Increment, and
Function End.

The Instruction Fetch line is activated by theCPU
each time an instruction is accessed by the CPU.
The line alerts the SPU(s) to monitor the instruc­
tion on the memory interface. If the instruction is
a macro, a SPU must interpret the proper action.
The CPU halts on detection of a macro, issues a
Active Register Available signal and removes the
Instruction Fetch signal. The SPU(s) now has
access to the eight basic process registers plus
eight scratch pad registers not used by the CPU.
The eight scratchpad registers are not automatic­
ally stored in memory on a power loss or program
level change. The Function End signal is generated
by the operating SPU when the SPU has completed
its task or no longer requires the CPU to remain
halted. The CPU's response to the Function End
signal is to deactivate the Active Register Available
signal and resume processing.

The SPU instructs the CPU to fetch the operand by
activating the Address Phase Enable line. The CPU
then executes the designated address mode of oper-

ation and activates the Operand Fetch line when
the operand is available to the SPU. The CPU then
halts, issues the Active Registers Available signal,
and waits to be released by the Function End sig­
nal from the SPU.

An SPU communicates with memory in the same
manner as the IOU. The memory addresses provided
by the SPU may require interpretation by the
extended memory addressing (EMA) option if sup­
plied. Activation of the Address Interpret line
accomplishes this function.

An SPU designed to continue a task after releasing
the CPU from the halted condition may still access
memory via the DMA interface, but will no longer
have access to the "active" registers of the CPU.
On completion of a task this SPU must inform
the CPU by using an interrupt line or control word.
If the EMA option is provided, the SPU must
inform the CPU by using an interrupt line or con­
trol word. If the EMA option is provided, the SPU
must address memory using absolute addresses or
the CPU must be placed in the non-interrupt mode
prior to accessing the macro instruction. The SPU
must activate the Address Interrupt line to the
EMA if the memory address requires interpretation.

PROGRAM SKIP CAPABILITY PROVIDED FOR ALL SPUs _____________ _

All SPUs are provided with the capability of gener­
ating a program skip operation.

The provision of a skip capability for all SPUs per­
mits a program exit within the same program level
for SPU arithmetic error conditions or any other
SPU condition where a jump from the main rou-

63

tine is desirable. The SPU initiates this skip capa­
bility by activating the Location Register Incre­
ment line prior to issuing the Function End signal.
The CPU increments the location register before
accessing the nex t instruction, thus skipping the
nex t instruction in memory.

EXTENDED PERFORMANCE ARITHMETIC OPTiON ________________ _

The intent of the SPU concept is to accommodate
specific and unique customer requirements without
modifying the basic CPU structure.

To increase the capability of an already powerful
instruction set, an extended performance arithme­
tic unit has been designed as an optional addition
to the basic L-304H. This unit provides a full set of
floating point instructions and completes the set of
full-word, fixed-point arithmetic instructions.

This SPU uses the same instruction format as the
L-304H and is capable of directly accessing the
process register in the CPU. Therefore, all memory
register operations place the result in the process
register of the CPU.

Floating Point Arithmetic

The purpose of the floating-point instruction set is
to perform calculations using operands with a wide
range of magnitude and yielding results scaled to
preserve precision.

A floating-point number consists of a signed expo­
nent and a signed fraction. The quantity expressed
by this number is the fraction muitiplied by the
power of 2 as defined by the exponent. The expo­
nent is expressed in excess 128 binary notation;

Floating Point Format

s FRACTION

31

The first bit in the format is the sign bit (S). The
subsequent 23 bits provide 23 bits of magnitude

64

the fraction is expressed as a binary number having
a radix point to the left of the high-order digit.
Operations may be either register-to-register or
storage-to-register.

To preserve maximum precision, addition, subtrac­
tion, muitipiication, and division are performed
with normalized results.

Floating Point Number Representation

A floating point number consists of a signed expo­
nent and a signed fraction. The quantity of this
number is a 23-bit signed fraction multiplied by the
power of 2 as defined by the exponent.

The exponent is an 8-bit binary number with a range
from -128 to + 127. A zero exponent has a binary
value of all zeroes. A negative exponent is expressed
in Ts -coinpIenftmf nolatio-h.

The fraction is a 24-bit binary number consisting of
a sign bit and 23 bits of magnitude. The range of
the fraction may be expressed as follows:

-1 ~ F < +1

Negative fractions are represented in 2's comple­
ment form. A true zero is defined as an all zero
word.

EXPONENT

8 7 o

for the fraction. The last 8 bits are occupied by the
exponent.

Double Precision Number Representation

A double precision number is represented by a
3 I-bit signed fraction. The sign of the most signifi­
cant half of the word is repeated in the least signifi­
cant half of the word. This is consistent with the
existing double precision format in the L-304H.

I s I ~B I s I LSB

31 30 16 15 14 o

Sixty-four-bit data cards are used by the Long
Multiply and Long Divide in~tructions. The format
is consistent with the 32-bit format.

I,--~~I ~_B ____ ---.lI ____ s---'I~ ____ __I1 HO- H1 or H4- H5

31 30 16 15 14 0

I~~~I ______ I_s ~1 _____ Ls__'B I H2- Ha or HS- H7

-31 30 16 15 14

Floating-Point Normalization

A quantity can be represented with the greatest
precision by a floating-point number of given
fraction length when that number is normalized.
A normalized floating-point number has the sign
bit and high-order fraction bit in opposite sense.
If this condition is not met, the number is said to
be unnormalized. The process of normalization
consists of shifting the fraction left until the
high-order binary digit is of opposite sense from
the sign bit and reducing the characteristic by the

65

o

number of digits shifted. A zero fraction cannot be
normalized; therefore, its associated characteristic
remains unchanged when normalization is called.

Normalization usually takes place when the inter­
mediate arithmetic result is changed to the final
result. This function is called "post-normalization."
All instructions assume that floating-point numbers
are normalized. Operands not pre-normalized are
detected as an error.

Floating Point Add (FAD) Instruction

The FAD instruction performs the addition of two
32-bit floating point numbers. The operand (Y)d is
added algebraically to the contents of the process
register pair (H)d and the normalized sum is placed
in (H)d.

A number of error conditions can occur prior to or
as a result of the steps required to add the two
numbers. If an error is detected, a status bit is set
defining the error, the process registers are left
unaltered, and the next instruction in memory is
executed. When the trap capability is utilized, the
next instruction is skipped when no error occurs.

The types of errors that can occur within this in­
struction are as follows:

1. One or both of the numbers were not pre­
normalized.

2. Exponent underflow occurred during post­
normalization.

3. Exponent overflow occurred as a result of a
fraction overflow.

Floating Point Subtract (FSB) Instruction

The FSB instruction performs the subtraction of
two 32 bit floating point numbers. The operand
(Y)d is subtracted algebraically from the contents
of the process register pair (H)d and the normalized
difference is placed in (H)d.

The same error conditions exist for the FSB instruc­
tion as for the F AD instruction. When the trap
instruction is used, the instruction will execute the
next instruction in sequence when an error occurs
or skip over the next instruction when an error does
not occur.

Floating Point Multiply (FMP) Instruction

The FMP instruction performs a multiplication of
the operand (Y)d and the process register pair (H)d.
The post-normalized product is truncated to 24 bits
and stored in (H)d.

66

Error conditions that occur during the execution of
the multiply instruction will cause a status bit to be
set defining the error and cause the next instruction
in memory to be executed. The process register pair
will be left unaltered for any error condition. The
trap instruction wi11 cause the next instruction to
be skipped when an error condition does not occur.

Errors that can occur are as follows:

1. One or both of the numbers were not pre-

2. Exponent overflow occurred during the initial
addition of the exponents (positive exponents).

3. Exponent overflow occurred during the initial
addition of the exponents (negative exponents).

4. Exponent overflow occurred due to a product
overflow (+ 1). A product overflow which re­
sults from a (-1) multiplicand and a (-1) multi­
plier causes the product to be shifted right one
place and the exponent increased by one.

S. Exponent underflow occurred during the post­
normalization cycle.

When either of the numbers to be multiplied con­
tains a zero fraction, a true zero (a1l~bits are zero) is
stored into the process register pair.

Floating Point Divide (FDV) Instruction

The FDV instruction performs a division of the pro­
cess register pair (H)d by the operand (Y)d. The
quotient is placed in Hd. No remainder is preserved.

Errors that can occur for the FDV instruction are
as follows:

1. ~ One or both of the numbers are not pre­
normalized.

2. Divisor = zero

3. Exponent overflow or underflow occurs during
the initial subtraction of exponents.

4. Exponent overflow occurs when it is necessary
to correct the condition where the divisor frac­
tion is not greater in magnitude than the divi­
dend fraction

When the dividend contains a zero fraction, a true
zero (all bits are zero) is stored into the process
register pair.

Floating Point Compare .Instructions

The compare instructions perform an algebraic com­
parison between the double length operand (Y)d
and the process register pair (H)d. The operand
and process registers are left unaltered by these
instructions. .

The three instructions used in perforlning the com­
parisons are as follows:

1. FCL: The next instruction in memory is skip­
ped if Yd < Hd.

2. FCE: The next instruction i~ memory is skIp­
ped if Yd = Hd.

3. FCG: The next instruction in memory is skip-
ped if Yd > Hd. ,"

It is assumed that all numbers are pre-normalized
prior to executing the compare instructions. If the.,
numbers are not pre-normalized, an error bit is set
and the next instruction in memory is executed.

Double Precision Multiply (DMY) Instruction

The DMY instruction performs a multiplication of
the double length operand (Y)d and a process regis­
ter pair (H)d. The 32-bit truncated product is stored
in the process register pair (H)d.

Multiplication of a (-1) multiplier by a (-1) multi­
plicand will resul t in an error condition. The process
register pair is left unaltered and the next instruc-

. tion in memory is executed. Use of the trap instruc­
tion will cause the next location in memory to be
skipped if an error does not exist.

Double Precision Divide (DDV) Instruction

The dividend (H)d is divided by the divisor (Y)d.
The quotient is placed in Hd and the remainder is
discarded. An illegal divide will occur if the divi­
dend is greater than the divisor or the dividend is
equal to the divisor and has the same sign. An illegal
divide will cause an error bit to be set and the pro­
cess register pair will be left unaltered. ,

A trap instruction will cause the next instruction in
memory to be skipped if no error condition exists.

Double Precision Compare Instructions

The compare instructions perform an algebraic com­
parison between the double length operand (Y)d and
the process register pair (H)d. The operand and pro­
cess registers are left unaltered by these instructions.

The instructions used in performing the compari­
sons are as follows:

1. DCL: The next instruction in memory is skip­
ped if Yd < Hd.

2. DCE: The next instruction in .memory is skip­
ped if Yd = Hd.

3. DCG: The next instruction in memory is skip­
ped ifYd > Hd.

L9n9 Multiply (LMY) Instruction

The process register pair (H)d is multiplied by the
operand (Y)d and the 64-bit product is stored in
Hd and Hd + 1. The multiplicand is restricted to
H(O,1) or H(4 ~. The product will be stored in
H(O,I,2,3) or H(4,5,6,7)'

A (+ 1) product will result in an error condition.
The process registers are left unaltered and the next
instruction in memory is executed. Use of the trap
instruction will cause the next location in memory
to be shipped if no error condition exists.

Long Divide (LDV) Instruction

The 64-bit dividend (H)d, d + 1 is divided by the
divisor (Y)d. The remainder is stored in Hd and
the 32-bit quotient is stored in (H)d + 1.

The 64-bit dividend will be fetched from either
H(O,I,2,3) or H(4,5,6,7)'

An illegal divide will occur if the dividend is greater
than the divisor or the dividend is equal to the divi­
sor and has like sign. An illegal divide will cause an
error bit to be set and the process registers will be
left unaltered.

A trap instruction will cause the next instruction in
memory to be skipped if no error condition exists.

Packaging and Power

The extended performance arithmetic unit is pack­
aged on four logic cards which are inserted directly
into the processor unit A TR case.

No additional power is required other than that
already provided by the processor power supply.

67/68

Table VII-I. Summary of Instructions For Extended Performance
Arithmetic Option

Mnemonic Code Operation Name

FAD 140* Hd + Yd Hd Floating Point Add

FSB 141* Hd - Yd Hd Floating Point Subtract

FMP 142* Hd x Yd Hd Floating Point Multiply

FDV 143* Hd
Yd Hd Floating Point Divide

FAD 150* Hd + Yd Hdt Floating Point Add-Trap

FSB 151* Hd - Yd Hdt Floating Point Subtract-Trap

FMP 152* Hd x Yd Hdt Floating Point Multiply-Trap

FDV 153* Hd
Yd Hd Floating Point Divide-Trap

FCL 101 * Skip Next Location Floating Point Compare,
If Y < H Jump is Less

FCE 102* Skip Next Location Floating Point Compare,
If Y = H Jump if Greater

FCG 103* Skip Next Location Floating Point Compare,
If Y > H Jump if Greater

DMY 144 Hd x Yd Hd Double Precision Multiply

DDV 145 Hd Hd
Yd Double· Precision Divide

DMY 154 Hd x Yd Hdt Double Precision Multiply-Trap

DDV 155 ~~ Hut Double Precision Divide-Trap

DCL 105 Skip Next Location Double Precision Compare,
If Y < H Jump if Less

DCE 106 Skip Next Location Double Precision Compare,
If Y = H Jump if Less

DCG 107 Skip Next Location Double Precision Compare,
If Y > H Jump if Less

LMY 146 (H)d x (Y)d'" Long Multiply
Hd, d + I

LDV 147 (Hd,d+l) HI+
(Y)d (1 Long Divide

Remainder .. Hd

LMY 156 (H)d x (Y)U"- Long Multiply-Trap
Hd, d + It

-

LDV 157 (H)d, d + I
.. Hd + I Long Divide-Trap (Y)d

Remainder ... Hdt

*Literal Modes 2 or 3 will cause the instruction to act as an NOP.

tSkip Next Location If No Error

69

Execution
Times
(,usee)

5.24

5.24

6.24

12.64

5.24

5.24

6.24

12.64

2.44

2.44

2.44

7.24

15.64

7.24

15.64

2.44

2.44

2.44

7.64

16.04

7.64

16.04

SECTION 8. L-304H SOFTWARE

The L-304H Computer incorporates a software
package which includes a comprehensive set of
operator-controlled utility/facility programs and a
computer test program for use in detecting and
isolating computer failures.

Operating System

The L-304H utilizes the standard operating system
provided for all the Litton family of L-304 com­
puters. This system has been developed to provide
effective communication between the user and the
computer system, and to aid in efficient use of the
system.

The operating system is a group of programs that
controls the loading and execution of object pro­
grams with provisions for relocatability and for
card, tape. (magnetic or paper), and printer han­
dling. Troubleshooting aids are also provided in the
form of memory dumps and program trace per­
formed at operator-selected points. In addition the
L-304 operating system provides the required flexi­
bility to allow use of the computer in varying mem­
ory configurations with no less than 16K words as
a minimum.

The L-304 operating system is categorized in three
major groups: (1) the Resident Supervisor, (2) the
Loading Control Programs, and (3) the Support
Programs. Of these, only those programs in the
Resident Supervisor category must be in core stor­
age at all times.

70

The programs in the Resident Supervisor category
can be further considered as three groups desig­
nated as Control Programs, Service Programs, and
I/O Programs. The Control Programs are those
which determine the course of action to be taken
by the L-304 operating system. The Service Pro­
grams are those routines which perform specific
non-I/O functions, such as the Octal Conversion
Routine. Most of these routines are open; i.e., they
may be called directly by the User Program, per­
form their function, and return to the User Pro­
gram. The I/O Programs handle the L-304 peri­
pherals in the manner best suited for the L-304
operating system. These routines are also open for
use by the User Program, providing that the
method of peripheral handling is suitable to the
user's problem.

A block diagram of the L-304 operating system and
related software is shown in Figure 8-1 and 8-2.

The Resident Supervisor structure is illustrated in
Figure 8-3. The programs in this group also fall
into three categories: (1) the System Loading Con­
trol Programs, (2) the Functional Input Programs,
and (3) the Modification Programs. This structure
is illustrated in Figure 8-4. The L-304 operating
system Loading Control Programs consist of all pro­
grams other than the Resident Supervisor which
may be used by L-304 during a load operation.

CONTROL
ROUTINES

OPERATOR
COMMUNICATIONS

ROUTINES

BOOTSTRAP
LOADER

SUPERVISOR
CONTROL

DUMP

OPERATOR
INITIATED

LOAD
ROUTINE

ERROR
DIAGNOSTIC
ROUTINE
(OSERRORI

OPERATOR
INTERRUPT

L3040S
RESIDENT

SUPERVISOR

SYSTEM
LOADER

MASTER
RESET

RECOVERY

SERVICE
ROUTINES

BINARY
TO OCTAL

CONVERSION
ROUTINE

1/0
ROUTINES

KEYWORD
GENERATION

ROUTINE

MULTIPLEX
I/O

ROUTINE

DURA
I/O

ROUTINE

Figure 8 -1. L-304 OS Resident Supervisor

71

37269

PATCH

MAP
ROUTINE

FETCH
IRELOCATING

LOADERS)

INSERT

JOB
CONTROL

CARD
CONVERSION

ROUTINE
RELOCATOR

RESIDENT
SUPERVISOR

PRE­
PROCESSOR

START
ROUTINE

TRACE

LIBRARIAN

POST­
PROCESSOR

SAVE

COM POOL
ASSEMBLER

POST­
PROCESSOR

PRINT
FORMAT
ROUTINE

UNIVERSAL
LOAD

ROUTINE

Figure 8-2. L-304 Operating System

SORT
ROUTINE

SLANG
SETUP

AND
EXECUTIVE

INSTRUCTION
TRAIL

37269-

NON-RESIDENT L304 OS ROUTINES

BOOTSTRAP LOADER

60

FETCH
PATCH INSERT INITIALIZATION

ROUTINE

60 110 180

LINKAGE START
FETCH LOADER EDITOR ROUTINE

250 180 150

MAP ROUTINE

200

JOB CONTROL

670

CARD CONVERSION ROUTINE

1070

RELOCATOR

1010

SLANG COMPI LER

1900

PRE-PROCESSOR

390

TRACE INPUT ROUTINE

300

SAVE RESTART

110 60

LIBRARIAN

750

L304 0s::8440

GRAND TOTAL::::19,780

RESIDENT SUPERVISOR
--

SUPERVISOR CONTROL

SYSTEM LOADER

OPERATOR INITIATED
LOAD (OSSAVE)

MASTER RESET RECOVERY

OPERATOR INTERRUPT

ERROR ROUTINE

BINARY-TO-OCTAL
CONVERSATION ROUTINE

KEYWORD GENERATION ROUTINE

DUMP ROUTINE

DURA 1/0 ROUTINE (98)

MULTIPLEX
1/0

ROUTINE
(460)

37269

Figure 8-3. Resident Supervisor Structure

73

PROGRAMS DEPENDENT
UPON L3040S

SLAt~G SETUP Af"JO
EXECUTIVE

POST-PROCESSOR
SAVE ROUTINE

400

600

+1000 DATA BASE

POST -PROCESSOR
DATA EDITOR

840
+1220 DATA BASE

PROGRAMS THAT ARE
LOADED BY AND USE THE
SERV!CES OF THE L304 OS

L304 ASSEMBLER I
-~

COMPOOL ASSEMBLER

TRACE PROGRAM

1500

UNIVERSAL LOAD ROUTINE

500

PRINT FORMAT ROUTINE

500

SORT

700

DUPLICATION ROUTINES

300

TOTAL:::: 1840 TOTAL:::: 9500

Figure 8-4. L-304 as Support Programs

74

Assembly Program

The L-304 Assembly Program is available for use
on a Litton L-304, or IBM 360 or IBM 370
computer.

The assembly language is relatively standard, i.e.,
each instruction (statement), excluding the label
and comments field, consists of an operator and
variable field. The operator (op code) identifies the
operation (add, subtract, etc.); the variable field
generally represents such things as storage loca­
tions, general registers, immediate data, or constant
values. The variable field in assembly language can
contain from I to 4 subfields, depending on
the instruction class.

The assembly program translates or processes
assembler-language programs into machine language
for execution by the computer. The program
written in the assembler language (used as input
to the Assembler) is called the source program; the
machine-language program produced as output from
the Assembler is called the object program. The
translation or processing procedure performed by
the Assembler to produce the object program is
called assembling. The object program produced
is also referred to as an assembly. Program state­
ments (source statements) written in assembler lan-

1 8 10 14 16

OPERA-

guage may consist of: a label to identify the state-
I ment; a symbolic operation code (mnemonic) to

identify the function the statement represents; and
a variable field, consisting of one to four sub fields
to designate the data or storage locations used in
the operation, and space for comments.

Symbolic instruction statements are one-for-one
representations of L-304 machine instructions

The assembler language provides for the symbolic
representation of any addresses, machine compo­
nents (such as registers), and actual values needed
in source statements. Also provided is a variety of
forms of data representations: decinial, octal, hexa­
decimal, or character representation of binary
machine values. (The programmer selects the repre­
sentation best suited to express a given piece of
data.)

The following example illustrates the use of the
label (name), operation, variable field (operand),
and comments entries as they appear on the cod­
ing form. An "Add" instruction has been labeled
by the symbol LABL; the operation entry (ADD)
is the mnemonic operation code for an add opera­
tion; and the variable field 5, 6 designates the two
general registers whose contents are to be added.

71 73 80

IDENTI-
LABEL TION VARIABLE FIELD COMMENTS FICATION

LABL ADD 5,6

The basic structure of the assembler language is a
source statement consisting of a label entry, an
operation entry, and a variable field entry. The
label entry (optional) is a symbol. The operation
entry (mandatory) is a mnemonic operation code
representing an assembler instruction. A variable

75

ADD REGISTER 5 100
TO 6. STORE SUM
IN6.

field entry, if used, may be numeric or symbolic or
a combination of numeric and symbolic. The vari­
able field entry may consist of from zero to four
sub fields, depending upon the type of operation
code specified.

Service Routines

The L-304 Service Routines listed below constitute
functions which are used by most program systems.
The routines may be loaded by the Operating
System Program and entered from external pro­
grams or they may be entered directly by operator
control.

Mathematical Routines

This group is divided into the foilowing five sub­
sections:

a. Trigonometric Functions

• Sine/Cosine
• Tangent
• Arc Tangent
• Arc Sine/Arc Cosine

b. Square Root

c. Double Precision Arithmetic Functions

• Add/Subtract
• Multiply
• Divide

d. Logarithmic Functions (Base 2, e, or 10)

e. Exponential Function (XY)

Conversion Routines

The routines within this group will:

a. Format 16-bit data words into EBCDIC charac­
ters for binary, octal, hex, or BCD output

b. Pack binary, octal, hex, or BCD EBCDIC charac­
ter inputs into 16-bit words

c. Convert binary to BCD or BCD to binary. The
Edit will convert a signed binary fraction to a
signed BCD fraction and format in EBCDIC
(with leading zeros suppressed and inserted deci­
mal point).

Interceptor/Simulator Program

The L-304 Interpreter/Simulator is a group of seven
modules (separate assemblies) designed to simulate
the execution of any L-304 program on the IBM

360. The simulator is written in IBM 360 Basic
Assembly Language and can be run on any model
of the IBM 360 computer which is operating under
the S6360 Operating System. The resuits of a sim­
ulator run will, with the specific exceptions, be
identical to the results that would be obtained if
the same program were to be executed on an L-304
computer.

The simulator is designed to accept as input the
output of the L-304 Assembler Program. This input

-~ consists of a machine language representation of
the programmed instructions. The user of the simu­
lator indicates, via control cards:

76

a. The trace or dump features that he wishes to
use.

b. The peripheral device(s) he wishes to simulate.

c. The modification he wishes to make to the as­
sembled program(s) ..

d. The address and program level at which the exe­
cution of the L-304 program is to start.

e. The maximum number of lines of output or the
maximum number of L-304 instructions he
wishes to execute in this run.

The seven modules of the simulator have specific
functions.

The Input Module has four major functions:

1. To read in the control cards

2. To read in the binary deck(s)

3. To resolve any external linkages in the L-304
programs

4. To relocate, if necessary, the data in the binary
deck(s).

The Universal Load Routine deformats the control
cards read by the Input Module and stores the data
from the various fields in the 360 core.

The Instruction Interpreter Module performs the
execution of all L-304 instructions except the three
I/O instructions and maintains the L-304 real time
clock.

The Peripheral Simulator simulates the peripheral
devices that normally interface with the L-304.

The Debugging Module is responsible for generating
program traces, and dump output.

The I/O Control Simulator simulates both the
L-304 IOC and the I/O devices defined by the
customer that are to be present on the L-304. This
module also maintains the L-304 real time clock.

General Machine Test Program (GMT)

The GMT program consists of a set of program
modules which exercise and test the functions of
the central processor unit, memory unit(s) and I/O
control unit. The program is constructed to facili­
tate computer troubleshooting by providing an
error halt option at each test point and an option
to loop on a given test.

The program is loaded into memory from card
decks using the bootstrap load feature of the
L-304.

The program modules of the GMT have specific
functions described as follows:

77

a. Instruction Test - all instructions (except I/O)
and addressing modes are tested.

b. Internal Interrupt Test - all logic related to pro­
gram level call is tested except for I/O stimu­
lators.

c. Real Time Clock Test - the L-304 program
controlled clock is tested along with I/O stimu­
lated program level call.

d. Computer Time-Out Logic Test - central proces­
sor, memory, and I/O control timeout logic
tested.

e. Watchdog Timer Test - the programmed con­
trolled times is tested.

f. Data Entry and Display Test - the operator
communication functions are tested

g. Extended Memory Addressing - all logic asso­
ciated with memory access by program is tested

h. Memory Test - one or more memories are tested
and the test is directed to locating failures in
the data lines, addressing lines, and memory con­
trollogic.

SECTION 9. SYSTEM PACKAGING, POWER, AND CONTROLS

Design and packaging of the L~304H Computer
makes it suitable for use in a wide variety of rugged
tactical environments.

Each module of the airborne version of the L-304H
Computer is packaged in a three-quarter long ATR
case, which measures 7.5 inches by 7.5 inches by
19.5 inches and weighs approximately 30 pounds.
One ATR case contains the processor unit, includ­
ing the control, arithmetic, and input/output cir­
cuits. Another case, containing the memory unit,
includes a 16,384 word core stack and associated
memory circuitry (Figures 9-1 and 9-2).

Provision for growth is afforded by the modular
construction technique used throughout both units.
Memory size can be increased by simply adding
16K memory units in a plug-in arrangement.
Multiple processor capability is likewise achieved
by the modular addition of processor units.

78

Standard electronic circuits, consisting of high­
speed Schottky SSI and MSI elements are used
throughout the processor and memory units. Eight
types of SSI and 14 types of MSI circuits are used,
with components mounted on four- to six-layer
printed circuit cards constructed by standard
plated-through hole technique, with ground and
power layers provided.

Heat generated on the cards is conducted through
integral bar-type heat sinks to the sides of the ATR
case where spring pressure is applied to maintain
positive contact to cold plates on the side of the
structure. With the use of cold plates, components
are isolated from air flow contaminants.

The processor and memory units are powered by
integral power supplies. Input power is 115 volts,
400 Hertz. Processor power consumption is 220

watts; memory power consumption is 260 watts
under nominal operating conditions. Automatic,
orderly shutdown is provided by power sequencing
circuitry, and power loss protection is provided·
by power fault interrupt to the CPU. Operation
in both steady-state and transient conditions is
as specified in MIL-STD-704A for category B
equipment.

External interface connectors are mounted either
on the front faces of the ATR cases or on the rear
depending upon specific customer applications.
VAST test connectors are provided on the sides of
the cases and on the edges of the printed circuit
cards.

The ATR structures are dip-brazed assemblies which'
give extremely high strength-to-weight ratios and
incorporate two side cold plates of finned alu­
minum. As a result of the dip-brazing process, the
fins become an integral part of the primary struc­
ture and provide a direct, unimpaired thermal path
for all internal components. Cooled air is not
required, and the computer uses only forced am­
bient air for heat dissipation.

The L-304H Computer is designed for installation
in a variety of ground, shipboard, and airborne en­
vironments, and meets the following military speci­
fications:

MIL-E-5400N
MIL-E-16400
MIL-I-461A
MIL-E-4158
MIL-STD-704A

Processor Unit

Class 2X
Classes 3 and 4
Notice 3

Category B

The processor unit ATR case includes the central
processing unit (CPU), input/output unit (IOU),
and associated power supply. Twenty logic card
connectors are provided. The CPU uses 11 printed
circuit cards, the IOU uses 3 cards, and 6 card slots
are provided as spares for expansion. Each card is
6 inches x 7 inches and contains a mix of SSI and
MSI components up to a maximum of 80 microcir­
cuits. A single wire-wrap plate is used to intercon­
nect the cards with 180-pin fork and b lade connec­
tors used to connect the cards to the plate. Func­
tional partitioning and byte slicing maximize fault
isolation techniques.

79

Access to the functional cards and power supply
assemblies is gained. by removing the top shear
cover of the unit case. Removal of the bottom
shear cover provides access to the wiring side of the
wire-wrap plate. All covers are fitted with EMI
gaskets.

The power supply furnishes a regulated +5 volt,
40 ampere output to the processor unit. Distributed
power is routed through the VAST connector to
accommodate VAST testing requirements. A termi­
nating cap (mating connector) is provided to return
direct power during operation, and each card is sup­
plied power through a separate power cable. The
power supply has been packaged with four separ­
ate, removable units. In addition to providing ther­
mal advantages, this packaging of elements accom­
modates testing, fault isolation, and replacement of
elements. The four units are: (1) switch assembly,
(2) rectifier assembly" (3) auxiliary regulator card
assembly, and (4) main regulator control card as­
sembly. These four units plug in directly to the
single processor unit wire wrap plate.

The switch and rectifier assemblies are modular sub­
assemblies using a one-piece heat sink which mounts
discrete components directly to its surface. The
heat sink is then mounted directly to the system
cold plates, providing a direct thermal path to sys­
tem cooling.

The two card assemblies are two-sided printed cir­
cuit cards with discrete components mounted on a
bar type heat sink similar to the logic cards. Ther­
mal conduction is achieved through spring clips to
primary structure which is attached to the cold
plates. Electrical connections are made through 30
and 90-pin fork and blade type connectors.

Sense circui try has been added to protect the
power supply and to automatically shut down
power under the following conditions:

a. Overv olt age
b. Overcurrent
c. Overtemperature
d. Loss of phase
e. Over/under voltage input

Automatic restart will occur under the following
condi tions:

a. The temperature decreases to the operating
level.

b. The input voltage reaches the level required
by specification.

Fuses have been added within the power supply to
protect the unit from an internal short-circuit
condition.

Memory Unit

The memory unit ATR case contains six types of
17 printed circuit cards, a 16K core stack, and
the memory power supply. The circuit cards are
4 inches x 7 inches and are interconnected by a
single wire-wrap plate with fork and blade connec­
tors used to connect the cards to the plate. The
16K by 36-bit core stack is a single plug-in unit,
and contains in tegral sense am plifier circuits. Four
rails on the corners of the core stack provide physi­
cal support and location fixing. In addition, the
rails provide thermal conductive cooling paths for
conducting heat to the cold wall side plates. The
core stack uses 14 mil cores, selected for optimum
performance and reliability.

The 16K memory power supply provides regulated
direct current voltages to the 16K core memory
unit. The power supply accepts 3-phase, 115-vac,
400-Hz power input and furnishes the memory
with the following voltages:

+5v ±10 percent @ 11.5 amps

+5v ±5 percent @ 1.0 amp

-5v ±5 percent @ 0.5 amp

+23v ±7 percent @ 0.5 amp

+32v ±10 percent @ 0.7 amp

+ 12v variable (8.5 to 12 amps) matched to
stack characteristics

The power supply consists of six major assemblies:

Main Chassis. Contains the high power com­
ponents and serves as the housing assembly
for the power supply.

Component Chassis. Contains the output rec­
tifier filters.

Four Circuit Cards. Auxiliary converter, ±5v
regulator, +5v regulator, and logic card.

80

Heat is removed from the power supply via the
thermal conduction from the main chassis to the
cold plates. The power supply provides a single
132-pin output connector which contains both
the output voltages and test points internal to the
power supply. The test points were selected to
providecompatibiiity with VAST testing require­
ments. In addition, the power supply provides a
fault signal to the memory to indicate a power
supply malfunction; it also contains the same
startup, shutdown, and protective circuitry fea­
tures as the processor power suppiy.

System Control Panel

The system control panel (SCP) for the L-304H,
shown in Figure 9-3, is a self-contained subunit
which can be mounted on the front of the pro­
cessor case or located remotely.

The panel indicators and switches are grouped as
follows:

Indicators Data
Display

Functional Data & Base
Switches Select Switches

INDICATORS

RUN: Illuminates when CPU is running.

OVER TEMP: Illuminates when processor
case temperature reaches the warning level;
if temperature increases to the upper limit,
system power is shut down.

PWR FAULT PROC: Illuminates when the
processor power supply fails.

PWR FAULT MEM: Illuminates when a mem­
ory power supply fails.

IOU MEM TIME OUT: Illuminates on a de­
tected failure for the IOU-memory interface.

IOU TIME OUT: Illuminates on a detected
failure for the IOU-external device interface.

CPU MEMORY TIME OUT: Illuminates on a
detected failure for the CPU-memory
interface.

PROGRAM TIME OUT: Illuminates on fail­
ures such as an internal CPU failure, an illegal
operation code, or a time out of the CPU­
SPU interface.

SYSlfMCOIIT'ROl

1.62

1.50

Lll'Il MODUlAR PRQC£SSOR
AND SYSlfM COIIlRO\. CQIISClI

~ ------------
-~-._ 3.0

.3TYP- -"'Z

6.5

Figure 9-1. L-304H Processor Packaging

7.6

13

L·304H 16K X 36 BIT
4 PORT HIGH SPEED CORE MEMORY

Figure 9-2. L-304H Memory Packaging

81

FUNCTIONAL SWITCHES

LAMP TEST: Actuation causes all switch caps
and indicators to illuminate ~Tld forces zeroes
into the data display.

PARITY ERROR: Switchcap illuminates
when memory parity error is detected; actu-,
ation of switch resets display.

DATA ENTER: Actuation interrupts the
processor and indicates to the program that
the operator has entered a code into the
DATA SELECT switches.

t::r:':\
\:::/

POWER FAULT J
OVER

PRO MEM· TEMP

TIME OUTS

100

POWER: Actuation turns on the processor
power supply.

SYS RESET: ~A?Lctuation causes a simulated
power failure and resets the processor and
memory to their initial conditions; release of
the switch simulates restoration of power,
i.e., the processor is forced to program level
768 and started.

PROG LOAD: Actuation initially causes a
system reset; upon recovery, the CPU re­
mains inactive and the Bootstrap signal is sent
to the IOU.

--,
-1
-~

FAULT
CODE

o

I I
L.J..

I

C
DATA SELECT """\ BASE

_I SEl

ffi~~~~
~~~~~I 

L-304H 

Figure 9-3. L-304H System Control Panel 

DATA DISPLAY: Three-digit decimal LED 
readout under program control which pro­
vides program communication with operator; 
the FAULT CODE indicator calls attention to 
the fact that a fault code is present. 

DATA SELECT: Three decimal switches used 
by operator to insert data into processor; the 
switches can be interrogated at any time by 
the program, but the DATA ENTER switch 
must be actuated to interrupt the running 
program. 

BASE SEL: Eight position switch by which 
the operator designates which of the mem­
ories is to serve as the base memory. 

In addition to the controls and indicators on the 
system control console, each 16K memory has a 
prime power on/off switch and indicator, a mem­
ory bank address switch, and a power fault 
indicator. 

82 



rn 
Litton 

DATA SYSTEMS 



NT S 
AN/USQ~20 

01 Right SHift. Q ............... Shift (0) Right by Y 
·02 Right SH itt. A ................ Shift (Al Right by Y 
03 Right SHift. AQ ...... ;. .......... Shift (AO) Right by Y, 
04* COMpare • A,ea, ~ AQ • ........ Sense Oh (Ali =(A)f 

05 Left SH ift • Q _ "._ ................ Shift (Q) Left by Y 
06 Left SH ift • A ................... Shift (Al Left by Y 
07 Left SHift. AQ ................... Shift (AO) Left by Y 
10 ENTer. Q .. <a .. .. .. .. • .. .. .. • .. .... Y ... Q 

II ENTer 0 A • .. ... .. .. .. • .... .. .. .... Y ..... A . 
12 ENTer" 8 n • .... .. .. .. .. .. ... .. .... Y -fl!:oo BJ 

of'. 

i3 ..... EXternal - FunCTion. en ........... j;dO orl.(y)-+C1.j=0 or It See Noto, 
14 SToRe It Q ....................... (0) --B>Y. k=OtQ'~Q 
15 SToRe It A .......................... {A),......,.,. Y. k =4, A'-fJoA 
16 SToRe. an ............ ' ............. (B)l~ Y 
ri"!'I. SToRe'. cf! .......... 8 ' ........ ! • (Clj-.... y 
20 ADD 0 A ... '" .................... (A) + Y .....;~ A 
21 SUBtract 41 A ........ it ............ (A) - Y --l'/J:- A 
22 MUltiply ............................. {Ql Y -fJJ- AQ 
23* DIVide ............................ (AO) / Y -+- Q. R -(l:!.Af 
24 RePlace 1& A +Y ......... " ..... (A) +(Y) ~ ya A 
25 RePlace 41 A -Yo ••••••••• (A) -(Y)~ ya A 
26* ADD • Q .................. {Q}+- Y ...... O.(A)i=(A)flj interpretation 
27'* 5U a tract • Q • • .. • • .. • • • • .. (a) - Y ..:...flo. Q, (A) i :: (A)f f reversed for AS Q 

30 ENTer 0 y + Q 0 C • • • •• .. • •• y +(0) -fit- A 
31 ENTer ~ y .... Q ............ Y-(Q)-I>·A 
32 SToRe <I A + Q ............ (A) 'HO) -J:- Y a A 
33 SToRe. A- Q ....... ;' •••• (A) .... (Q} ... Y SA 
34 RePlace 0 V+Q •••• ;. ...... (Yl+(Q}"""YSA 
35 RePlace e y ... Q ............ (Y) -(0) -JIro Y a A 
36 RePLace to V+ ........... t (Y)+I ~yaA 
37 RePLace It Y ................ (V) - I ~ Y a A 

40* ENTer • L.P** • II .......... L.[Y(Q)J"A~j::2,even par!ty,l=3,odd parity 
41 ADD. LP ................ I..[V(Q)] +{A) ...... A 
42 SUStract· \I LP ••• " .......... (Al - LlY(Q)]~A 
43 COMpare • MASK ............ ' (A) - l[V(Q}jSENSE O),(A'+L[V(Q)]dA1l"(A1f 
44* RePlace fa lP ••••••••••• L.(Yl{O) +Y SA;j=2.evan parityd=3,ood parity 
45 RePlace • A +lP ............. L(Y)(Ol + (Al" Y8A 
~16 RePlace • A -LP ••••••••• (A}-L(Y}(O)~YE.\A 
47 SToRe \I L.P •• ' .• : ••••••• L(A)(Q) -fta> Yi (Ali:: (A}f 
50 S£Lective • SET •• ;...... SET (A\, FOR Y ni:l 
!Sl SElective • CP*'" • • • • .. •• COM PLEM ENT (Aln FOR Y n = I 
5, SElective .. CL** ........ CLEAR (Aln FOR Y n =1 
53 SELective • SU** • • • • • ... Y n ..... (A}n FOR {O}n:ttl 

*""l.P'" L.o(jica I Product CP - Complement SU - Substitute tL. -Cleor 

PUlER 

54 fteplace. SElective • SET.. • .. • • SET (Aln FOR ('()n ::I I r -II> Y a A 
55 Replace SElective •. CPo ....... COMPLEMENT (A)nFOR (Y)n=l,-+-V SA 
56 Replace SElective • Ct. .......... CLEAR (Aln FOR (Y)n zit ~ Y a A 
51 Replace SElective • SUo ... : ... (Y)n ~(A>n FOR ('Q)n =Ilt -f>Y 
60 Jum P (arithmetic 1 •••••••• }Jump to Y if j -c?ndIt iO.n is satisfied. 
61 Jum P {manua I} ... " • • • • • •• (see JP a RJP. J - Designators) 
62"'" JumP {Ifoen has ACTIVE Jump to Vif Ctinput } 

IN put buffer) .......... buffer active.... {see JP a R J P 
63A Ju~P (If 1& en has ACTIVE Jump to Y if Ci output j - Designators) 

OUTput buffer) ........ buffer active 
64 Return JumP (arithmetic) •• ~ • }Jump. to Y+I and P+I ~YL if j condition is 
65 Return JumP (manual). ••••. ; satisfied (see JP a. RJP 1 - Designators) 
66 ..... TERMinate e en" !NPUT •••••• Terminate input buffer on chClnnel j 
6~ TERMinate • en. OUTPUT •••• Terminate output buffer on channel j 
70* RePeaT ................... Ex~cute N I Y times " 
71' BSKip 0- an •••.••...••••• (Sll =Y) skip NI and clear {S)ll {B)l ~ Y, 

Advance si and read N I 
7~ 8JumP" a~ •.•.•.••..•.• (Bli =0, read NI i (B)j ¢: 0, (S)j-L and 

. . . jump to address Y 

73'"' INput. en (without monitor mode). Buffer IN on Cj ; k ::3, (Y)-+- (00100 + j) i 
k .: I) (y)~ (00100+ ill; 

A k =0, Y -+ (00100+1\ .• 
74" OUTput 0 C"'(wifhout monitor mode) • Buffer. OUT on el; k = 3, (y) + (00120+ j) i 

E = I, {V}\. + (00120+ DL; 
A k cO, Y '-'{OOI20+J }L' 

75'" INput 0 en (withoMONITOR model. Buffer IN on cl with mono 
k = 3, tV) -+{OOIOO + 1> t 

k = I, (Y)L -'(oOIOO+nLj 
k =0, Y ~(OOIOO+nl. 

A mono inter, at 00040+j 
76'" OUiputeC'Cwith-MoNrron mode). Buffer OUT on CJ with mono 

. k=3,{Y) .... {00120+j); 

...... NO - OPeration • It • .. • .. • • • • ....... . 

k:o It (Y)L -!J.!.{OOI20 + j)l' 
k :;0, Y -in--{OOI2o+1\. 
mono inter. at 00060 + j 

.....,. Clear-A,·O,D an,ot Y...... •• .......... CS-I Mono-codes 

- Com Premont 4) A or. Q .............. _} 

- Remove Interrupt Lockout ............ . 
- Remove Interrupt L.ockout and JumP.Y .. . 
..... TeSt-CO or-CI ....................... . 

'!} ~5peciol j a k Designators <.see opponite ~ldQ of card) Y - The operand, Y or (y) 



NTDS 
AN/USQ·20 

UNIT 

j .. DESIG. 
NORMAL 

k-DESIGNATORS 
r----" 

(Not applicable on 
'* or A) 

READ STORE REPLACE 

j Skip Cod. k Code OriQin Code Dest. Cc1de OrlQin 

0 
I 

2 

:3 
4 

5 
s" 
t-----., 

-
(nolklp) 0 'blank' UL 

SKIP I L M~ 

Q POS 2 U Mu 

Q NEG :3 VI M 

A ZERO .4 X XUl 

A NOT Zero 5 LX .XML 

A POS 
A NEG 

6' UX XMu 

7 A. A 

LEGEND 

M - Memory word (30 bits 1 

ML - Low t!' half memory word 

Mu- Upper half memory word 

X •• Sign bit extended 

JP & RJP 
j -DESIGNATORS 

JP RJP JP RJP 

j 60 64 61 65 

0 ( No Jump)· Wncond. Jump 1 
I (Uncond. Jume)* KEY I 

2 Q P~S KEY 2 

3 Q NEG KEY "3 

4 A ZERO STOP 

5 A NOT Zero STOP 5 

6 A POS STOP 6 

7 A NEG STOP 1 
==?: - ---_.- '=;-~---~ 

i 

Q 0 
L ML 
U MiJ 
W M 

A A 

CPL . Cpl ML 

CPU Cpl Mu 

CPW Cpl M 

Cpl- Complement 

A-A· re~ister 

o - O-reQister 

U - U~reQister 

'not uled' 

L 
U 
'II 

'notuMd' 

LX 
UX 

not UMd' 

COM - A • • Qt. A Q 
04 

0 (no skip) 

-
Ml 
Mu 
M 

-
XML 
XMu 

-

t (uncond itional skip) 

2 Y LESS : y s to) 

:3 Y MORE: Y > (0) 

4 Y IN :(Q)~ Y and Y >(A) 

~ Y OUT :(Q) < Y or Y :s (A 1 

6 Y LESS : Y s (A) 
7 Y MORE: Y > (A) 

co PUTER 

~ S J-DE IGNATORS 
(4 bits) 

D~sf, 

[

T OCCUPIt:S <\ bit pO~ltions and represents Cn where n may be 0 -15
9 

The Instruction word assumes the formot: 

-
Ml 

f I t b y 

§":- -2412~- 20}19 leli7 - 15114 - ::iJ 
Mu 
M 

-
"-"" 
k-DESIGNATORS 

Ml (2 bits) 

My 

-
EX- FCT STRoC" JP IN ed'tOUT.Cn 

k 13 17 62 63 73 75 74 76 

~ 
, 
not used' 

, 
not used' , blank' I blank' 

I 
, 
not used' 

, 
nof used' L L 

2 
, 
not used' 

I 
not used' U 

, 
not used' 

3 VI 'II W W 

* j -DESIGNATORS 
DIV ADO-Q ,SU aeQ 
23 26 27 

(no skip) ( no skip) -
SKIP SKIP 

NO Over Flow A POS 
Over r:low A NEG 

A ZERO Q ZERO 
A NOT Zero Q t40T Zero 

A POS Q POS 
A NEG Q NEG _. .. 

ENTeLPt RPLe LP 
40 44 

(no skip) 

SKIP 
EVEN parity 

000 pOrlty 

A ZERO 
A NOT Zero 

A POS 

A NEG 

{no mOd.lJV 0 

AOV :y 0 

RPT 
70 ,-------1 

f NE r:Y 

BACK 
~~E s'(i-l 

fNE"Y-1 
1.-
1'( 0 

ADO B :y' 0 f NE "y .. Bb 

Rpl. Inc. : Yo -'-._---_. 
AOVR :'(0 

BACK R : Yo 
ADD B R fy--

-':' 62 j 63, __ ./ 06 Increm4lnt If HI is RPL eloS!} i Increments '( addrcu for the store portion of the replace. I 

*60 eleorsi.nt~rrupt a bootstrop modes.. 
~~ en ACTIVE IN en ACTIVE OUT HE - Next execution 



l'i 7. 

ni 

t-,"; 

Table IV -6. Index of Instructions by Function Code 

, PAGE 
FUNCTION MNEMONIC NUMoER 

CODE CODE IN TEXT :r--;,fRUCfIO"-l 

00 MtT 2-54 rlAU 
I 

vi EXE 2-5C I EXECUTE ' 

02 EXC 2-1- I EXCHA.NGE 

03 i EXD 2-17 EXCHANGE DOUBLE 

. ! 
(}.l 

I LOR 2-12 LOAD ill-! 

05 STR 2-12 ! STORE RH 

06 LDD 2-]3 ! LOAD DOUBLE 

07 I )rD 2-13 STORE DOuSlE 

I 

10 AJD 2-18 ADD 

11 SUB 2-19 SUBTRACT 

12 RAO 2-19 REPLACE ADD 

13 RU8 2-19 ~EPLACE SUaTRAG 

14 AOA 2-2C AOD ABSOLUTE 

15 S8A 2-20 SUfi'" ... .:! ASSOLUTE 

16 LDA 2-14 LOAD A8S0LUTE 

17 lDC 2-14 LOAD COMPLEMENT 

20 EOR 2-22 EXCLUSUE OR 

i 
21 lOR 2-23 INCLUSIVE OR 

22 AND 2-23 LOGICAL AND 

23 MBD 2-51 MEMORY SANK DESIGNATOR 

24 REI! 2-24 REPLACE EXCLUSive OR 

25 Rill 2-25 REPLACE INClUSIVE OR 

26 /IAN 2-26 REPLACE lOGICAL AND 

27 MBA 2-51 MEMORY BANK ASSIGNMENT 

JO MPY 2-21 MULTIPLY 

31 DIV 2-21 DIVIDE 

32 DTX 2-31 DECREMeNT RH BY 2, 
TRANSFER IF RH .. 0 

32 ITX 2-32 TRANSFER AND INCitEMENT 
If" l) RH &Y 2 

33 cox 2-32 DECREMENT RH BY I, 
TRANSFER IF lIH ,. 0 

33 lOX 2-33 TRANSFER AND INCREMENT 
(E " 1) IIrl BY 1 

J.I XFR 2-33 TRANSfER UNCONDITIONAL 

35 xu: 2-33 TRANSFER UNCONDITIONAL 
AND STORE LINK 

36 )(SW 2-3.4 TRANSFE~ ON CONSOLE 
TRANSFER SWITCH 

37 JTW 2-36 JUMP THREE-WAY 

·INDICATES DUAL FUNCT!ON CODE fOR IDENTICAL INSUUCTIOr-., 

I 
-l 

~ 

i 

FUN(7jON 
(::.,o~ I I PAGE 

INSTRUCTION 
MNEMONIC I NUMBER 

i CODE IN TEXT 

-----~~~.'~\--~----------~--~---~-----------------------4 

I
I 

XEZ 2-34 TRANSFER IF RH = 0 

4 ! XNZ 2-35 TRANSFER If RH .. 0 

XNG 2-35 TRANSFER IF lIH IS NEGATIVE 

!--------~---------+------~------------------~~ 

l-. ____ .~~3~ __ ~ ____ X_ps _____ t~-2--~----r_-T-RA-N-'--F-E-Il-'f--RH--1s __ ~ __ SI_Tl_V_E __ ~ 
Sll f 2-7:7 SHIFT LONG LEFT 

45 Nll 2-28 NORMAL! ZE lONG LEFT 

SNC 2-30 SHIFT AND COUNT 

47 11FT 2-30 REFLECT 

L 50 CJl 2-36 COMPARE, JUMP IF lESS 

L ____ 5_1 ____ +-___ C_J_E ____ +-_2_-_3_7 __ ~I--CO\~ARE.JU~iFfQUAL 
i CJU 2-37 COMPARE, JUMP IF UNEQUAL 

53 CJG 2-38 COMPARE, JUMP IF GREATER 

~'----'----_+----------+_------+_----------------------_1 

55 

57 

60 
(Oi! 01) 

152 
(Ol! 63; 

64 • 
(OR 65; 

66 
(OR 67)0 

70 

71 

74 

75 

76 

n 

Gel 

GeO ~-' 

SlR 

SET 

Cll! 

SKZ 

SKN 

MVZ 

MVI 

STZ 

DEV 

OFR 

NO? 

2-38 

2-38 

2-~ 

2-19 

2-52 

2-53 

2-39 

2-40 

2-16 

2-14 

2-~ 

2--45 

2-45 

I 2-49 

GATED COMPARISON, 
JUMP IF INSIDf 

GATED COM~AJUSON. 
JUMP IF OUTSIDE 

SHIFT LONG RIGHT 

SHIFT AlGEBU.lCAll Y RIGHT 

SET alT 

CLEAR alT 

SKIP IF 81T IS ZERO 

SKIP IF alT IS ONE 

MOve AND ZEitO 

MOVE AND INS9T 

STORE All Zf~OS 

SPECIAL D£V1Cf COMMAND 

INPUT TO REGISTeR 

OUTPUT fROM REGISTER 

NO OPERATION 

2502-8 

4-30 

t"\ -i .... , _ 

t-', -; :... . 

\" ,-



Table IV-5. L-304F Instruction Index 

ARITHMETIC INSTRUCTIONS TRANSFER IN.STRUCTIONS 

FUNCTION MNEMONIC PAGE 
INSTRUCTION CODE CODE NUMBER 

FUNCTION MNEMONIC PAGE 
INSTRUCTION CODc CODE NUMBER 

ADD A.8~OlUH : 14 ADA 2-20 DECREMENT RH 8Y 3:! DOX 2-32 

ADD 10 ADD 2-J8 
f--

OI'I.D1: 31 DIV 2-21 

I. TRANSFER IF 
RH/o 

DECREMENT RH L\Y 32 OTX 2-31 
MUlTlPl Y 30 MPY 2-21 2, TRANSfER IF \ 

REPlACE ADD 12 RAO 2-19 
REPLACE suarRACT 13 RUB 2-19 

RH/O 

TRANSFER AND 33 lOX 2-33 
INCREMENT IE ~ I) 

\LJBTRACT I 15 S8A 2-20 RH BY 1 

~.'B~OlUTE 

~ II SUB 2-19 ~ .. uaTRACT 

TRANSFER AND 32 ITX 2-32 
INCilt:MENT IE.: I} 

,- RH 8Y 2 

DATA TRANSMISSION INSTRUCTIONS TRANSFER IF 
" 

40 XEZ 2-34 
RH = 0 

INSTRUCTION 
FUNCTION MNEMONIC PAGE 

CODE CODE NUMBER 

EXCHANGE 02 EXC 2-17 

TRANSFER "-
34 XfR 2-33 

UNCONOIT 10NA l 

TRANSFER 35 xu:: 2-33 
UNCONDITIONAL 

EXCHANGE 03 ,XO 2-17 AND STORE LINK 

DOUIILE TRANSFER IF RH 41 XNG 2-35 
1---

LOAD 16 l.OA 2-14 IS NEGATIVE '" II AaSOLUTE ..... - ~ --' r- ----
LOAD COMPLEMENT 17 lDC 2-14 

TRANSFEilIF 41 XNZ 2-35 
RH 10 

LOAD DOUBLE 06 lDD 2-13 TRANSFER If RH " 
IS POSITIvE ' 

43 XI'S 2-35 

LOAD RH - 04 LOR 2-~M -.-------.. TRANSfER ON 36 xsw 2-3-4 
MOVE AND !N)E!!T 71 MVI 2-14 CONSOLE TRANSFER 

MOVE A.ND ZERO 70 MVZ 2-16 SWITCH 

f---- . 
S TOilE DOUBLE 07 STD 2-13 JUMP INSTRUCTIONS 
ST()llE RH OS S II! 2-12 

lOGIC INSTRUCTIONS 
FUNCTION MNEMONIC I PAGE 

IN:'fI!UCTION 
COOf CODE NUMBU 

COMPARE, JUMi' 51 CJE 2-37 
!NS TRUCT I ON 

FUNCTiON MNEMCNIC PAGE 
CODE CODE NUMBER 

IF EQUAL 

COMPARE, JUMP 53 CJG 2-:11 
LOGICAL AND 22 AND 2-23 If GREATER 
~-

EXCLUS IVE OR 20 fOR 2-22 COMPARE, JUMP 50 CJL 2-30 
IF leSS 

1:"eLUSIVE OR 21 lOR 2-23 
f-----. 
R~?LACE 26 RAN 2-26 
LOGICAL AND 

COMPARE, JUMP 52 CJU 2-37 
If UNEQUAL 

REPLACE 24 RE~ 2-24 
EXCLUSIVE O~ 

GATtD COMPAal- s. GCI 2-:?s 
SON, JUMP If 
INSIDE 

~EPLACE 25 RIR 2-25 
INCLUSIVE OR GATED COMPAIl!- 55 GCO 2-38 

SON, JUMP If 

SHIFT INSTRUCTIONS OUTSIDE 

JUMP THREE WAY 37 JTW 2-36 
FUNCTION MNEMONIC PAGE 

INSTRUCTION CODe CODE NUMBER 
Sit:; IP If alT IS bO SKN 2--40 
ONI: lei 67} * 

NORMALIZE 
LON(; LEfT 45 NLl 2-28 

SKIP IF II!T IS 0.- SKZ -2-39 
zuo 10165) * 

SHIfT AlGfBRAI- 57 SAR 2-29 
CAll Y RIGHT MISCELLANEOUS INSTRUCTIONS 
SHIfT lONG lEFT 44 SLl 2-'0 
SHIFT lONG RIGHT 56 SlR 2-29 
Sr',fT AND COUNT 46 SNC 2-30 
HFLECT 47 P.fT 2-30 

INPUT /OUTPUT INSTRUCTIONS 

INSTRUCTION 
FUNCTION MNEMONIC PAGE 

CODE CODf NUMBER 
CLEAR alT 62 Clit 2-53 

I 
10163) 

~~ 01 EXE -2-50 

'\HAlT 00 HU4 2-54 

INSTIluCrlON 
fUNCTION MNEMONIC PAGE 

CODE CODE NUMBER 

MEMOIY!ANI( 27 MM 2-51 
ASSIGNMENT 

SPecIAL DEVICE 74 Of V 2-404 COMMAND 

MEMOIfY BANK 23 Mao 2-51 
DESIGNATOR 

INI'UT fO 75 IT II 
RfGIS Tf~ 2-.45 
-.--- _._-

NO OPERA TION n NOP 2--49 
SET BIT 60 SET 2-52 

1Of/ 61) 
OUTPU';' FROM 76 Ofll 
REGiS TEll 2-45 S rO~f ALL ZEROS 72 STZ 2-54 

4-29 


	000
	001
	002
	003
	004
	005
	006
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	83
	A-01
	A-02
	A-03
	A-04

