ﬁ LATTICE, INC.

TECHNICAL BULLETIN
TB841101.001

DATE: November 1, 1984
PRODUCT: 8086/8088 C Compiler
SUBJECT: Known Bugs in Version 2.14

Recently three bugs concerning the Version 2.14 libraries and
startup modules have come to light. Two of these pertain to the
sensing and use of the 8087 co-processor, and the other concerns
the use of the "malloc" and "getmem"” functions under MS-DOS 1 in
the S and P models of the compiler. In addition some code was

omitted from the file " main.c".
1. Floating Point Bugs
(a) Sensing of the 8087

The technique employed in the run-time library to sense
the presence of the 8087 co-processor does not work in
V2.14 because the B0B7 is not initialized prior to the
test. Correcting this problem is rather easy. You need
only add a line of code to the file "c.asm" provided with
the compiler and reassemble this file to replace the
current "c¢.obi".

In the file "c.asm" you will find a line:
CALL _MAIN

just prior to this line, insert the following line
DB 0DBh,0E3h 3 FNINIT instruction

Then reassemble “c.asm” for each of the memory models as
follows:

-- Copy "c.asm" to the appropriate model subdirectory
fi.e., \lc\s, \le\d, \lc\p, or \lc\l} so that it is
in the same directory as "dos.mac" for the
appropriate memory model.

~- Use the command

P. 0. BOX 3072 » GLEN ELLYN » LLINOIS 60138 » 312/858-7950 » TWX 910-291-2190

Al LATTICE, INC.

(b}

{c)

P. 0. BOX 3072 « GLEN ELLYN « ILLINOIS 60138 » 312/858-7950 ¢ TWX 910-291-2

masm ¢;
to assemble “c.asm” into "c.obj'".

The instruction is specified here as a "DB" pseudo-op
rather than an "FINIT" instruction since many assemblers
do not properly handle floating point instructions.
Should your assembler be able to handle such instructions,
be sure to use an “FNINIT" instruction rather than "FINIT"
or else the assembler will generate a "WAIT" instruction
prior to the “FINIT" and resulting programs will wait
endlessly on machines not containing a co-processor.

Floating Point in the D and L Models

In attempting to repair an earlier bug concerning the 8087
we accidentally broke its use in the D and L models. To
correct the problem you can use "debug" to patch the
libraries “lemd, lib" and “leml.lib” as follows.
{(Underlined portions are what you must type. Each line
must be entered with a carriage return.)

{i) Patching lcmd.lib

>debug lcmd.lib
~eA97A 10.12
-eA9CC 78.76
-4

e

>

{ii) Patching lcml.lib

>debug leml.lib
-eBB71 ~ 12.14
-eBBC7 30.3B
-¥

-9

>
Bug in 8087 Library Divide Routine

Under certain circumstances the floating point division
function C€Xd55 will return the incorrect value when an

LATTICE, INC.

—J P. 0. BOX 3072 e GLEN ELLYN ¢ LUNOIS 60138 ¢ 312/858-7950 » TWX 910-291-2190

8087 is present since this function fails to save and
restore the DI register. This bug will be repaired in a
future release.

(2) Malloc and Getmem under MS-DOS 1

£3)

The S and P model library memory allocation functions
“malloc” and "getmem" will not return the correct values in
an application running under MS-DOS 1 when a call to one of
these would cause the total memory allocated to exceed 64K.
In particular the failure value of NULL will not be returned
in this case, This problem will be fixed in a future
release, and it does not effect the D and L models.

Omission in "_main.c"
The last "exit(0);" statement should be replaced with
#ifndef TINY
exit(0);
#else
_exit{0);
#endif

*%% END **»

5l LATTICE, INC,

—J P. 0. BOX 3072 ¢ GLEN ELLYN ¢ LLINOIS 60138 o 312/B58-7950 « TWX 910-291-2190

TECHNICAL BULLETIN
TBO41010,.001

DATE: October 10, 1984
PRODUCT: 8086/8088 C Compller
SUBJECT: Version 2,14 Update

Version 2.14 of the B086/808B C compiler has been released to
correct the following problems:

1. In Version 2.13, the S model libraries were built in such
a way that the floating point operations did not use the
8087 chip if present., The other memory models worked

correctly.,

2. vhile fixing the PUTC problem in Version 2.13, we broke
the level 2 buffer flush function in such a way that buffers
were sometimes written twice. This would occur when you did
several FSEEKs without intervening reads or writes.

3. UNGETC did not always work correctly under the D and L
models, depending on where the buffer was located.

seENDS* S

@ LATTICE, INC.

- P. O BOX 3072 » GLEN ELLYN ¢ LLINOIS 60138 ¢ 312/858-7950 « TWX 910-291.21%0

TECHNICAL BULLETIN
TB841010,002

DATE: October 10, 1984
PRODUCT: 8086/8088 C Compiler
SUBJECT: Insufficient Memory Message

In bulletin TBA40914,00) we mentioned a problem observed during
the testing of Version 2.13 that resulted in an "Insufficlient
memory® message. At that time, we believed that the message was
orfginating from MS-DOS. VWell, we must admit with a blush that
the message was coming from C.ASM, our start-up module.

The situation leading to this message was that we forked a child
process whose .EXE file just barely fit into the available
memory. After loading the .EXE file, MS-D0OS passed control to
the child process at the C.ASH entry point. C.ASM then attempted
to allocate stack and hesp space for the C program, but there was
not enough memory. When that occurred, C.ASM displayed the
"lgsufficlent memory” message and aborted with a non-zero exit
code.

The mistake we made in our test program was to examine only the
return code from the FORKL function. This will indicate an error
only {f MS-DOS was unable to obtain the needed space and load the
child program. We should have alwe> used the WAIT function to
check the exit code from the child,

SSOENDOS

LATTICE, INC.

(=

P O BOX 3072 » GLEN ELLYN « LLINOIS 60138 » 312,858-7950 ¢ TWX 910-291-2190

TECHNICAL BULLETIN
TBB41010,.003

DATE: October 10, 1984
PRODUCT: 8086/8088 C Compiler
SUBJECT: Combining LC and LCM Libraries

In TBB40914.001 we gave a simple procedure for combining the LC
and LCH libraries. Some people who tried this procedure became
concerned about the duplicate symbol messages that resulted.
Here is a better procedure:

1. Use your favorite editor to create the file MIXLC.LNK
containing the following:

bu lcc.lib

£i lcm.iib

fi lec.ltdb

exc _pfmt,cprintf,fprintf, printf, sprintf
exc _stmt,cscan[,fscanf,scanf,sscant

2. For each memory model, copy MIXLC.LNK into the \lc\x
directory, where x is s, p, 4, or 1. Then vse CD to get
into that directory, and execute PLIB86 as follows:

plibB6 emixlc

This procedure creates a combined library LCC.LIB which includes
the complete versions of the PRINTF/SCANF functions., If you want
a combined library that contains the abbreviated verstions, simply
interchange the two "fi" commands in MIXLC.LNK.

SSeENDeSS

lﬁ] LATTICE, INC.

—J P. O BOX 3072 o GLEN ELLYN ¢ RLINOIS 60138 o 312/858-7950 « TWX 910-291-2190

TECHNICAL BULLETIN
TBB40914.00)

DATE: September 14, 1984
PRODUCT: 8086/8088 C Compiler
SUBJECT: Version 2.13 Update

Version 2.13 of the 8086/8088 C compiler has been released to
correct the following problems:

1. STRCMP and STRNCMP did not return the correct results
when comparing strings of unequal lengths.

2. The various forms of PUTC did not work correctly under
the D and L models.

3. The resuvlts of a floating-point divide-by-zero operation
with an 8087 installed were not the same as when the 8087
was removed.

4. Several problems existed in the various FORK functions:

{a) The environment string array was not passed
correctly to the child process under the S and P memory

models.

{b) An extra backslash was appended to the PATH
variable. This was usually accepted by PCDOS, but was
rejected by some MSDOS fmplementations.

(c) The construction of default FCBs did not stop when
an arqgument beginning with a slash was reached. This
caused problems for some older programs that relied on
the FCB setup done by the MSDOS command processor.

(d) The fork logic searched for a .EXE file before a
.COM file. This has been reversed because some people
keep the .EXE version around even after they have
generated a .COM.

LATTICE, INC.

=

P. 0. BOX 3072 « GLEN ELLYN « RUINOIS 60138 » 312/858-7950 « TWX 910 291 219

(e} A carriage return was not appended to the generated
command string, which caused some forked programs to
fail.

These problems usually showed up when you tried to fork the
command processor or when the child process attempted to use
the inherjited environment, To simplify the invocation of
the command processor, we've added a UNIX-compatible SYSTEM
function. The function has one argument, the conmand
string, and returns the same results as FORKL. For exanple,

system("dir a:"})

calls the command processor to display the directory from
drive A,

While testing the fork functions, we observed what appears
to be an MS-DOS bug. When the operating system cannot
obtain enocugh memory to load the child program, it's
supposed to return error code 8 that we will then pass back
to you in _oserr. However, in some cases, NS-DOS displays
the message "Insufficient memory” on the screen and returns
a success code. This has been observed on PC-DOS 2.1 and
3.0 running on the IBM-XT and IBH-AT and in the version of
MS-DOS currently running on the TANDY 2000, We are pursuing
a solut ion, but if anybody can give us any further
information, we would appreciate the help.

5. The SETJMP/LONGIMP functions did not work correctly under
the P model. Note that this correction required a change in
the SETJMP.H header flle and that ALL PROGRAMS USING THIS
HWEADER HMUST BE RE-COMPILED regardless of which memory model
they employ.

6. Detection of the 8087 did not work correctly on systems
using an 80286, such as the IBM-AT.

7. The POW function did not always return the correct
result.

8. Several people complained that the libraries became wvay
too large vhen we added the math functions. Therefore, we
have sp?it the library for each memory model into two
pieces. LCx.LIB contains the "core functions” for merory
model x, and LCMx.LIB contains the floating point math

Bl LATTICE, INC.

— P O BOX 3072 » GLEN ELLYN e LLINOIS 60138 ¢ 312/858-7950 « TWX 910-291-2190

functions. If you need to use both libraries, make sure
that LCM is mentioned before LC at link time. If you are
also using our CFOOD Smorgasbord, its library (LCX) should
be mentioned before LCH. At this time we are pretty
confident that the library was split in the correct place,
but if you find any interdependence problems that we

over looked, please report them to us. If you want to re-
combine the two libraries, use PLIBB6, as follows:

ren lc.lib lcc.lib
plib86 bu lc.lib fi lcc.lib,lcm.lib

Note that the batch files that we've been supplying for
1inking, named LINKx.BAT, only use LC.LIB. The release
disks include some new batch files named LINKMx.BAT that use
both LCM.LIB and LC.LIB.

You snould also be aware that two versions of the PRINTF and
SCANF families are provided. If you don't use LCM.LIB,
you'll get a version that does not support floating point
conversions, which saves about) Kbytes in the loag module.
With LCM.LIB, you get the full PRINTF and SCANF conversion
capabilities.

9. We've eliminated the need for TINYHMAIN.C by putting
conditional compilation statements into _MAIN.C, and the
release disks now contain pre-compiled versions of the
abbreviated. MAIN under the names MAINx.OBJ, where x is the
memory model (S,P,D, or L). 1If you need to recompile MAIN,
use the LC option -dTINY=1 to get the abbreviated version.

The LC libraries still contain the full version of _MAIN,
which is the default. Because this full version supports
the stdin, stdout, and stderr files, it forces all of the
level 2. 1/0 functions to be included. If you don't need

these standard files and don't use any level 2 I/0, your

load module size will be reduced by using the abbreviated
version.

#EEEND#**

LIFEBOAT

a s s o0 ¢ a t e s

Lattice C Manual

Lattice 9086/8088
C Compiler

Functional Description Released May 25, 1982
Manval
This document describes

Revision 2 of the compiler
and library.

Copyright © 1982, 1984 by
Lattice, Inc.

Note: Supplement to lattice Cv. 2.1
appended o this document
May 29, 1984.

Published by:

Lifeboat Associates
1651 Third Avenue
New York, New York 10128

Tele: (212) 860-0300
Telex: 424490 (LBSOFT Ul)

PREFACE

Lattice, Inc., a developer of portable softwara products based in
Chicago, Illinois originally developed Lattice C for its own
internal use on a minicomputer. When the IBM PC was introduced
in 1981, the company recognized the potential for developing a
full implementation of the C programming language for 16-bit
microcomputers. Lifeboat Associates, a New York-based software
publisher, then provided Lattice with funding which enabled the
company to make the conversion. It is believed that Lattice C
was the first minicomputer product successfully "ported"™ to the
IBM PC. In 1983, Microsoft, based in Bellevue, Washington,
selected Lattice C to become Microsoft C. Also in 1983, Lattice
developed a version of its compiler for the Motorcla 680860
microprocessor and a 280 cross-compiler for 8-bit CP/M-based
microsystems. With Revision 2, Lattice C implements MS-DOS 2.6
pathnames and large memory models, giving software developers the
ability to create programs and data structures which can better
utilize the large memory available on 8086/8888-based systems.

TRADEMARK ACKNOWLEDGMENTS

Lattice is a registered trademark of Lattice, Inc.
MS-DOS is a registered trademark of Microsoft, Inc.
CP/M is a registered trademark of Digital Research, Inc.
UNIX is a trademark of Bell Telephone Laboratories.
Intel is a trademark of Intel Corporation.

Motorola is a trademark of Motorola Corp.

288 is a trademark of Zilog, Inc.

Section 1
Section 2

2.1

2.3
Section 13

3.1

TABLE OF CONTENTS

Introduction
Language Definition
Summary of Mifferences

2.1.1 Differences from the Standard
2.1.2 Arbitrary Limitations

Ma jor Lanquage Features

Pre-processor Features
Arithmetic Objects
Derived Objects
Storaqge Classes

Scope of Identifiers
Initializers
Expression Evaluation
Control Flow

. . P
. .o

NNNNNNNN
. .
[B - Y R

NNNNNMNNNON

Comparison to the C Reference Manual
Portable Library Functions
Memory Allocation Functions

3.1.1 Level 3 Memory Allocation
3.1.2 Level 2 Memory Allocation
3.1.3 Level 1 Memory Allocation

1/0 and System Functions

1 Level 2 1/0 Functions and Macros
2 Level 1 1/0 Functions

3 Direct Console 1I/0 Functions

4

3.
3.
3.
3 Program Exit Functions

2.
2.
2.
2.

Utility Functions and Macros

3.3.1 Memory Utilities
3.3.2 Character Type Macros
3.3.3
3.3.4

String Utility Punctions
Utility Macros

NNNNORNNNON
1
0 @O NN

~N
+

-

-

Section 4 Compiler and Run-time Implementation
4.1 Operating Instructions

1 Phase 1

2 Phase 2

3 Program Linking

4 Program Execution

S Function Extract Utility

6 Object Module Dissassembler

4.2 Machine Dependencies

1 Data Elements

2 External Names

3 Include File Processing

4 Arithmetic Operations and Conversions
5 Floating Point Operations

6 Bit Fields

7 Register Variables

4.3 Compiler Processing

1 Phase 1

2 Phase 2

3 Error Processing
4 Code Generation

4.3.
4.3.
4.
4.
4.4 Memory Addressing Models

.1 Choosing the Memory Model

.2 Compiling the Memory Models

.3 Linking Programs

.4 Code Generation for Pointer Operations
.5 The -s Option for Four-byte Pointers
.6 Creating an Array Greater than 64K

4.5 Run-time Program Structure

4.5.1 Object Code Conventions
4.5.2 Linkage Conventions

4.5.3 Function Call Conventions
4.5.4 Assembly Language Interface
4.5.4 Stack Overflow Detection

Section 5 System Library Implementation

File 1/0

Device 1/0

Memory Allocation
Program Entry/Exit
Special Functions

nwounon

. o

(S0 Wl ST

Lattice 8086/8¢88 C Compiler Introduction

SECTION 1:

Introduction

This document provides a functional description of an
implementation of the Lattice C compiler, a portable compiler for
the high level programming language called C. It makes no
attempt to discuss either programming fundamentals or how to
program in C itself. Extensive reference is made to the

definitive text The C Programming Language, by Brian W. Kernighan
and Dennis M. Ritchie (Prentice-Hall, Inc., Englewood Cliffs, New
Jersey, 1978). This description of Lattice C 1is incomplete
without the Kernighan and Ritchie text, as it is called, which
also provides an excellent tutorial introduction to the language.

1.1 Documentation

The manual is divided into five sections. First, this
introduction. Second, the language accepted by the compiler,
which differs from the standard in only a few minor details, is
described. The third section presents the portable library
functions in functional groups with calling sequences and
examples. Fourth, the details of the compiler and run-time
program execution are presented for this implementation,
including detailed operating instructions, wmachine dependencies,
and program structure. Fifth, the operating system interfaces
are described in terms of the portable library functions (file
naming conventions, etc.) and the special functions provided with
this implementation.

As this document is intended to serve as a reference manual, each
topic is wusually presented in full technical detail as it is
encountered. Some reference to Sections not yet encountered is
unavoidable, but these references are specifically noted.

To get an overview of the compiler, read the first portion of
each of the major subsections in the implementation description
(Section 4), the language summary at the beginning of the
language definition (Section 2), and the function summaries at
the beginning of the library groups (Section 3), and the
introductions to the subsections in the system interface
information (Section 5). Error messages are described in
Appendix A and error reporting procedures in Appendix B. Methods
of converting C programs written for CP/M microcomputer systems
are described in Appendix C. A list of files shipped with
Lattice C are contained in Appendix D.

Lattice 8@86/8888 C Compiler Language Definition

SECTION 2:
Language Definition

The Lattice portable C compiler accepts a program written in the

C programming language, determines the elementary actions
specified by that program, and eventually translates those
actions into machine language instructions. Although the final

result of these processes is highly machine-dependent, the actual
language accepted by the compiler 1is, for the most part,
independent of any system or implementation details. This
section presents the language defined by the Lattice C compiler
using the Kernighan and Ritchie (K&R) text The C Programming
Language as a reference point. Since this language conforms
closely to that described in the text, only the major differences
are first presented. The major features of the language are then
discussed, not in any attempt at completeness, but simply for the
sake of showing them from a different perspective. Finally, a
comparison with the Kernighan and Ritchie "C Reference Manual” is
made to show more precisely how the Lattice implementation
differs from the standard.

2.1 Summary of Differences

There are two classes of differences that appear in a discussion

of an implementation of a programming language. The first class
is that of actual semantic differences; that is, variations which
cause the meaning of language constructs to differ. The second
class is merely a reflection of the practical 1limitations to
which all programs -- including compilers -- are subject. Each

of the following subsections presents the respective details for
the Lattice implementation of C.

2.1.1 Differences from the Standard

Deviating from a standard has its own peculiar set of perils and
rewards. Oon the one hand, the differences create problems for
those who have conformed to the standard in the past; on the
other, they may make life easier for those who take advantage of
them in the future. Most of the differences listed below were
prompted by a desire to make the language both more portable and

more comprehensible. The vast majority of programs will not
encounter these potential troublespots; those that do will in
most cases be improved by adjusting to conform to them. Here,

then, is a summary of the major differences:

] Comments normally can be nested in the Lattice compiler; in
the standard, they cannot. A compile-time option forces the
compiler back to the standard non-nesting mode.

o Pre~processor macro substitutions using arguments must be
specified on a single line; for example, when max{a,b) is
used, the invocation text from max to the final closing
parenthesis must be defined within a single input line.

Lattice 8086/8088 C Compiler Language Definition

o The dollar sign ($) is permitted as an embedded (i.e., not
the first) character in identifiers.

o Identically written string constants refer to the same
static storage location; that is, only one copy of the
string is generated by the compiler. This is in contrast to
the statement in Kernighan and Ritchie that all strings are
distinct, even when written identically.

o Multiple character constants are accepted by this compiler;
in the standard, only a single character enclosed in single
quotes is legal. The resulting value may be short or long,
and its exact value is machine-dependent.

o In processing structure and union member declarations, the
compiler builds a separate list of member names for each
structure (or union). Thus, identical names may be used for
members in different structures, even though both the offset
and the attributes may be different in each declaration.
The specific structure being referenced determines which
member name (and therefore which offset and set of
attributes) is meant. The typing rules for structure member
references are strictly enforced so that the particular list
of valid member names can be determined. In other words,
the expression in front of the . or -> operators must be
identifiable by the compiler as a structure or pointer to a
structure of a definite type.

o Implicit pointer conversion (by assignment) is legal but
generates a warning message; this occurs whenever any value
other than a pointer of the same type or the constant zero

is assigned to a pointer. A cast operator can be used to
eliminate the warning. A more stringent requirement is
enforced for initializers, where the expression to

initialize a pointer must evaluate to a pointer of the same
type or to the constant zero; any other value is an error.

o If a structure or union appears as a function argument
without being preceded by the address-of operator &, the
compiler generates a warning message and assumes that the
address of the aggregate was intended.

(o) An array name may be preceded by the address-of operator &;
the meaning, however, is not that of a pointer to the first
element but of a pointer to the array. This construct

allows initialization of pointers to arrays.

o The constant expression following an #if conditional
statement may not contain the sizeof operator and must be
completed in less than a single line.

A more systematic and detailed explanation of the above

differences 1is presented in Section 2.3, but some of the most
important items above deserve immediate clarification.

2-2

Lattice 8¢86/8088 C Compiler Language Definition

The intent behind making the structure and union member names a
separate «class of identifiers for each structure is twofold.
First, the flexibility of member names is greatly increased,
since now the programmer need not worry about a possible conflict
of names between different structures. Second, the requirement
that the compiler be able to determine the type of the structure
being referenced generally improves the clarity of the code, and
disallows such questionable constructs as

int *p;

p->xyz = 4;

which is considered an error by this compiler. Those who grumble
about this restriction should note that one can accomplish the
equivalent sequence in Lattice C by using a cast:

((struct ABC *)p)->xyz = 4;

The parentheses are required since the -> operator binds more
tightly than the cast. The idea is not that such code should be
prohibited unconditionally but that any such constructs should be
clearly visible for what they are; the cast operator serves this
purpose nicely.

Exactly the same intent is present in the pointer conversion
warning. By using a cast operator, the programmer can eliminate
the warning; the conversion is then explicitly intentional, and
not simply the result of sloppy coding. In addition, there is a
more important reason for the warning. Although many C programs
make the implicit assumption that pointers of all types may be
stored in int variables (or other pointer types) and retrieved
without difficulty, the lanquage itself makes no guarantee of
this. On word-addressed machines, in fact, such conversions will
not always work properly; the warning message provides a gentle
(and non-fatal) reminder of this fact.

Finally, the warning generated when a structure or union is used
as a function argument without the address-of operator is
intended to remind programmers that this compiler does not allow
an aggregate to be passed to a function -- only pointers to such
objects.

2.1.2 Arbitrary Limitations

Although the definition of a programming language is an idealized
abstraction, any real implementation is constrained by a number
of factors, not the least of which is practicality. The Lattice
compiler imposes the following arbitrary restrictions on the
language it accepts:

] The maximum size, in bytes, of any declared object is the

largest positive integer which can be represented as an int.
This implies, for example, a maximum size of 32767 bytes for

2-3

Lattice 8886/8088 C Compiler Language Definition

16—~bit int machines. The total size of all objects declared
with the same storage class is also subject to the same
restriction.

o The maximum value of the constant expression defining the
size of a single subscript of an array is one less than the
largest pasitive int (32766 for a 16-bit int).

o The total size of the formal parameters for any function is
limited to a maximum of 256 bytes. Thus, the maximum number
of formal parameters depends on their sizes.

[} The maximum size of a string constant is 256 bytes.

o Macros with arguments are limited to a maximum number of 8
arguments.

o The maximum level of #include file nesting is 4.

These limitations are imposed because of the way objects are
represented internally by the compiler; our hope is that they are
reasonably large enough for most real programs.

2.2 Major Language Features

The material presented in this section is meant to clarify some
of the language features which are not always fully defined in
the Kernighan and Ritchie text. These are features which depend
on implementation decisions made in the design of the compiler
itself, or on interpretations of the language definition. Those
language features which are specifically machine dependent are
described elsewhere in this manual.

2.2.1 Pre~-processor Features

The Lattice C compiler supports the full set of pre-processor
commands described in Kernighan and Ritchie. Most
implementations perform the pre-processor commands concurrently
with lexical and syntactic analysis of the source file, because
an additional compilation step can be avoided by this technique.
Other versions of the compiler incorporate a separate pre-
processor phase in order to reduce the size of the first phases
of the compiler. In either case, the analysis of the pre-
processor commands is largely independent of the compiler's C
language analysis. Thus, #define text substitutions are not
generally performed for any of the pre-processor commands,
although nesting of macro definitions is possible since
substituted text is always re-scanned for new #define symbols.

An exception occurs for the #if command, which 1is processed

differently. As noted in the list of differences, sizeof cannot
be used in #if expressions, and the expression must appear
entirely on a single line. These restrictions result from a
desire to keep #if expressions simple, and because the pre-

processor generally has no information about the size of declared

2-4

Lattice 8@86/8088 C Compiler Language Definition

objects. One other clarification should be noted: if a symbol
appeaxs in an #if expression which has not been defined in a
tdefine command, it is interpreted as if a value of zero had been
specified. This seems consistent with #ifdef usage and permits
the use of symbols which may or may not be defined. Otherwise,
#$if expressions support the full range of operations described in
Section 15 of Appendix A of Kernighan and Ritchie.

The 4#define command, as noted in Section 2.1.1, has the
limitation that the macro invocation text must all be contained
on a single input line. Because the compiler uses a text buffer

of fixed size, a particularly complex macro may occasionally
cause a line buffer overflow condition; usually, however, this
error occurs when more than one macro reference occurs in the
same source line, and can be circumvented by placing the macros
on different lines. Circular definitions such as

$define A B
#define B A

will be detected by the compiler if either A or B is ever used,
as will more subtle loops. Like many other implementations of C,
the Lattice compiler supports nested macro definitions, so that
if the line

#define XYZ 12
is followed later by
#define XYZ 43

the new definition takes effect, but the old one is not
forgotten. In other words, after encountering

fundef XYZ

the former definition (12) is restored. To completely wundefine
XYZ, an additional #undef is required. The rule is that each
gdefine must be matched by a corresponding #undef before the
symbol is truly "forgotten”.

2.2.2 Arithmetic Objects

Six types of arithmetic objects are supported by the Lattice
compiler; along with pointers, these objects represent the
entities which can be manipulated in a C program. The types are:

short or short int

char

unsigned or unsigned int
long or long int

float

double or long float

Lattice 8086/8088 C Compiler Language Definition

Note that in this implementation, unsigned is not a modifier but
a separate data type.

The natural size of integers for the target machine (the machine
for which code is being generated) is indicated by a plain int
type specifier; this type will be identical to either short or
long, depending on the architecture of the target machine.
Although the size of all these objects is technically machine-
dependent, the Lattice compiler assumes the target machine has an
B-bit, 16-bit, or 32-bit architecture and that the fundamental
storage quantity is an 8-bit byte. Only in connection with bit
fields does this assumption ever become important.

The compiler follows the standard pattern for conversions between
the various arithmetic types, the so-called ™usual arithmetic
conversions" described in the Kernighan and Ritchie text. The
only exception to this occurs in connection with byte-oriented
machines, where expansion of char to int may be avoided if both
operards in an expression are char, and the target machine
supports byte-mode arithmetic and logical operations.

2.2.3 Derived Objects

The Lattice C compiler supports the standard extensions leading
to various kinds of derived objects, including pointers,
functions, arrays, and structures and unions. Declarations of
these types may be arbitrarily complex, although not all
declarations result in a legal object. For example, arrays of
functions or functions returning aggregates are illegal. The
compiler checks for these kinds of declarations and also verifies
that structures or unions do not contain instances of themselves.
Objects which are declared as arrays cannot have an array length
of zero, unless they are formal parameters or are declared extern
(see Section 2.2.4). All pointers are assumed to be the same
size -- usually, that of a plain int -- with one exception. on
word-addressed machines, pointers which point to objects which
can appear on any byte boundary are assumed to require twice as
much storage as pointers to objects which must be word-aligned.

Note that the size of aggregates (arrays and structures) may be
affected by alignment requirements. For example, the array

struct {
short 1i;
char c;
} x{1a]);

will occupy 40 bytes on machines which require short objects to
be aligned on an even byte address.

2.2.4 Storage Classes
Declared objects are assigned by the compiler to storage offsets

which are relative to one of several different storage bases.
The assigned storage base depends on the explicit storage class

2-6

Lattice 8086/8888 C Compiler Language Definition

specified in the declaration, or on the context of the
declaration, as follows:

External An object is classified as external if the extern
keyword 1is present in its declaration, and the
object is not later defined in the source file (that
is, it 1is not declared outside the body of any
function without the extern keyword). Storage is
not allocated for external items because they are
assumed to exist in some other file, and must be
included during the linking process that builds a
set of object modules into a load module.

Static An object 1is classified as static if the static
keyword 1is present in its declaration or if it is
declared outside the body of any function without an
explicit storage class specifier. Storage is
allocated for static items in the data section of
the object module; all such locations are
initialized to zero unless an initializer expression
is included in the declaration (see Section 2.2.6).
Static 1items declared outside the body of any
function without the static keyword are visible in
other files, that is, they are externally defined.
Note that string constants are allocated as static
items, and are treated as unnamed static arrays of
char.

Auto An object is classified as auto if the auto keyword
is present in its declaration, or if it is declared
inside the body of any function without an explicit
storage class specifier (it is illegal to declare an
object auto outside the body of a function).
Storage is presumably allocated for auto items using
a stack mechanism during execution of the function
in which they are defined.

Formal An object is classified as formal if it is a formal
parameter to one of the functions in the source
file. Storage is presumably allocated for formal

items when a function call is made during execution
of the program.

Note that the first phase of the compiler makes no assumption
about the validity of the register storage class declarator.
Items which are declared register are so flagged, but storage is
allocated for them anyway against either the auto or the formal
storage base. The implementation of register is machine-
dependent and may not be supported in some cases.

Note also that if the x compile-time option is used, the implicit
storage class for items declared outside the body of any function
changes from static to extern. This allows a single header file
to be wused for all external data definitions. When the main

2-7

Lattice 8086/8888 C Compiler Language Definition

function is compiled, the x option is not used, and so the
various objects are defined and made externally visible; when the
other functions are compiled the x option causes the same
declarations to be interpreted as references to objects defined
elsewhere.

2.2.5 Scope of Identifiers

The Lattice compiler conforms almost exactly to the scope rules
discussed in Appendix A of the Kernighan and Ritchie text (pp.
205-286). The only exception arises in connection with structure
and union member names, where (as noted in Section 2.1) the
compiler keeps separate lists of member names for each structure
or union; this means that additional classes of non-conflicting
identifiers occur for the various structures and unions. Two
additional points are worth clarifying.

First, when identifiers are declared at the beginning of a
statement block internal to a function (other than the first
block immediately following the function name), storage for any
auto items declared is allocated against the current base of auto
storage. When the statement block terminates, the next available
auto storage offset is reset to its value preceding those
declarations. Thus, that storage space may be reused by later
local declarations. Rather than generate explicit allocate and
deallocate operations, the compiler uses this mechanism to
compute the total auto storage required by the function; the
resulting storage is allocated whenever the function is called.
With this scheme, functions will allocate possibly more storage
than will be needed (in the event that those inner statement
blocks are not executed), but the need for run-time dynamic
allocation within the function is avoided.

Second, when an identifier with a previous declaration is
redefined locally in a statement block with the extern storage
class specifier, the previous definition is superseded 1in the
normal fashion but the compiler also verifies compatibility with
any preceding extern definitions of the same name. This is done
in accordance with the principle expressed in the text, namely
that all functions in a given program which refer to the same
external identifier refer to the same object. Within a source
file, the compiler also verifies that all external declarations
agree in type. The point is that in this particular case --
where a local block redefines an identifier as extern ~- the
declaration effectively does not disappear upon termination of
the block, since the compiler now has an additional external item
for which it must verify equivalent declarations.

2.2.6 Initializers

Objects which are of the static storage class (as defined in
Section 2.2.4) are guaranteed to contain binary zeros when the
program begins execution, unless an initializer expression is
used to define a different initial value. The Lattice compiler

Lattice 8086/8888 C Compiler Language Definition

supports the full range of initializer expressions described in
Kernighan and Ritchie, but restricts the initialization of
pointers somewhat. An arithmetic object may be initialized with
an expression that evaluates to an arithmetic constant which, if
not of the appropriate type, 1is converted to that of the target
object.

The expression used to initialize a pointer is more restricted:
it must evaluate to the int constant zero or to a pointer
expression vyielding a pointer of exactly the same type as the
pointer being initialized. This pointer expression can include
the address of a previously declared static or extern object,
plus or minus an int constant, but it cannot incorporate a cast
(type conversion) operator, because pointer conversions are not
evaluated at compile time (exception: a cast operator can be
used on an int constant but not on a variable name). This
restriction makes it impossible to initialize a pointer to an
array unless the & operator is allowed to be used on an array

name, because the array npame without the preceding & is
avtomatically converted to a pointer to the first element of the
array. Accordingly, as noted 1in Section 2.1, the Lattice

compiler accepts the & operator on an array name so that
declarations such as

int a[5], (*pa)lI5] = &a;

can be made. Note that if a pointer to a structure (or union} is
being initialized, the structure name used to generate an address
must be preceded by the & operator.

More complex objects (arrays and structures) may be initialized
by bracketed, comma-separated lists of initializer expressions,
with each expression corresponding to an arithmetic or pointer

element of the aggregate. A closing brace can be used to
terminate the list early; see Appendix A of Kernighan and Ritchie
for examples. Unions may not be initialized under this

implementation, although the first part of a structure containing
a union may be initialized if the expression list ends before
reaching the union. A character array may be initialized with a
string constant which need not be enclosed in braces; this is the
only exception to the rule requiring braces around the 1list of
initializers for an aggregate.

Initializer expressions for auto objects can only be applied to
simple arithmetic or pointer types (not to aggregates), and are
entirely equivalent to assignment statements.

2.2.7 Expression Evaluation

All of the standard operators are supported by the Lattice
compiler, in the standard order of precedence (see p. 49 of
Kernighan and Ritchije). Expressions are evaluated using. an
operator precedence parsing technique which reduces complex
expressions to a sequence of unary and binary operations
involving at most two oOperands. Operations 1involving only

2-9

Lattice 8086/8088 C Compiler Language Definition

constant operands (including floating point constants) are
evaluated by the compiler immediately, but no special effort is
made to re-order operands in order to group constants. Thus,
expressions such as

c - 'A' + 'a’

must be parenthesized so that the compiler can evaluate the
constant part:

c + ('a' - 'AY)

If at least one operand in an operation is not constant, the
intermediate expression result is represented by a temporary
storage location, known as a temporary. The temporary is then
"plugged into™ the larger expression and becomes an operand of
another binary or unary operation; the process continues until
the entire expression has been evaluated. The lifetimes of
temporaries and their assignment to storage locations are
determined by a subroutine internal to the first phase of the
compiler, which recognizes identically generated temporaries
within a straight-line block of code and eliminates recomputation

of equivalent results. Thus, common sub-expressions are
recognized and evaluated only once. For example, in the
statement

ali+l) = bli+l]);

the expression i+l will be evaluated once and used for both
subscripting operations. Expressions which produce a result that
is never used and which have no side effects, such as

i+3;
are discarded by this same subroutine.

Within the block of code examined by the temporary analysis
subroutine, operations which produce a temporary result are noted
and remembered so that later equivalent operations may be
deleted, as noted above. Two conditions (other than function
calls, which may have undetermined side effects) cause the
subroutine to discard an operation and no longer check for the
equivalent operation later: (1) if either of its operands
appears directly as a result of a subsequent operation; or (2) if
a subsequent operation defines an indirect (i.e., through a
pointer) result for the same type of object as one of the
original operands. The latter condition 1is based on the
compiler's assumption that pointers are always used to refer to
the correct type of target object, so that, for example, if an
assignment is made using an int pointer only objects of type int
can be changed. Only when the programmer indulges 1in type

punning -- using a pointer to inspect an object as if it were a
different type -- is this assumption invalid, and it is hard to
conceive of a case where the common sub-expression detection will
cause a problem with this somewhat dubious practice. Such

2-19

Lattice 80686/8088 C Compiler Language Definition

inspections are generally better left to assembly language
modules in any case.

With the exception of this common sub-expression detection, which
may replace an operation with a previous, equivalent one,
expressions are evaluated in strict left-to-right order as they
are encountered, except, of course, where that is prevented by

operator precedence or parentheses. It is best not to make any
assumptions, however, about the order of evaluation, since the
code generation phase is generally free to re-order the sequence
of many operations. The most important exceptions are the
logical OR (]|) and logical AND (&&) operators, -for which the
language deflinition guarantees left-to-right evaluation. The

code generation phase may have other effects on expression
evaluation; usually, some favorable assumptions about pointer
assignments are made, though these can be shut off by a compile-
time option. Check the implementation section of this manual for
full details.

2.2.8 Control Flow

C offers a rich set of statement flow constructs, and the Lattice
compiler supports the full complement of them. Some minor
points of clarification are noted here. First of all, the
compiler does verify that switch statements contain (1) at least
one case entry; (2) no duplicate case values; and (3) not more
than one "default" entry. In addition, the first phase of the
compiler recognizes certain statement flow constructs involving
constant test values, and may discard certain portions of code
accordingly. (Even those portions ultimately discarded are fully
analyzed, lexically and syntactically, before being eliminated.)
If an if statement has a constant test value, only the code for
the appropriate clause (the then or else portion) is retained;
while, do, and for statements with zero test values are entirely
discarded. '

The code generation phase generally makes a special effort to
generate efficient sequences for control flow. In particular,
the size and number of branch instructions is kept to a minimum
by extensive analysis of the flow within a function, and switch
statements are analyzed to determine the most efficient of
several possible wmachine language coonstructs. Check the
implementation section of this manual for the details regarding
this particular code generator.

2.3 Comparison to the Kernighan & Ritchie "C Reference Manual”

The - most precise definition of the C programming language
generally available is in Appendix A of the Kernighan and Ritchie
text, which 1is entitled C Reference Manual. This section
presents, in the same order defined in the text, a series of
amendments or annotations to that 'manual; this commentary
explicitly states any deviations of the ULattice C language
implementation from the features described. Because this
implementation is very close to the Kernighan and Ritchie

2-11

Lattice 8086/8888 C Compiler Language Definition

standard, many of the sections apply exactly as written; these
sections will not be commented upon. Any section not listed here
can be assumed to be fully valid for the language accepted by the
Lattice C compiler.

CRM 2.1 Comments

The Lattice compiler allows comments to be nested, that is,_each
/* encountered must be matched by a corresponding */ before the
comment terminates. This feature makes it easy to "comment out"
large sections of code which themselves contain comments. The ¢
compile-time option forces the compiler to process comments in
the standard, non-nesting mode.

2.4.3 Character constants

Two extensions to character constants are provided. First, more
than one character may be enclosed in single quotes; the result
may be int or long, depending on the number of characters, and
its value is machine-dependent. Second, if the first character
following the backslash in an escape sequence is x, the next one
or two digits are interpreted as a hexadecimal value. Thus,

*\xf9"
generates a character with the value @xF9.
CRM 2.5 Strings

The Lattice compiler recognizes Iidentically written string
constants and only generates one copy of the string. (Note that
strings wused to initialize char arrays -- not char * -- are not
actually generated, because they are really just shorthand for a
comma-separated list of single-character constants.) The same \x
convention described above can be employed in strings, where it
is generally more useful.

CRM 2.6 Hardware characteristics

See the implementation section of this wmanual for hardware
characteristics.

CRM 7.1 Primary expressions

The Lattice compiler always enforces the rules for the use of
structures and unions for the simple reason that it cannot
otherwise determine which 1list of member names is intended.
Recall from Section 2.1 that the compiler maintains a separate
list of members for each type of structure or union. Therefore,
the primary expression preceding the . or -> operator must be
immediately recognizable as a structure or pointer to a structure
of a specific type.

Lattice 8086/80688 C Compiler Language Definition

CRM 7.2 Unary operators

The requirement that the & operator can only be applied to an
lvalue is relaxed slightly to allow application to an array - name
{which 1is not considered an lvalue}. Note that the meaning of
such a construct is a pointer to the array itself, which is'quite
different from a pointer to the first element of the array. The
difference between a pointer to an array and to an array's first
element is only important when the pointer is wused in an
expression with an int offset, because the offset must be sealed
(multiplied) by the size of the object to which the pointer
points. In this case the target object size is the size of the
whole array, rather than the size of a single element, if the
pointer points to the array as a whole.

CRM 7.6 Relational operators

When pointers of different types are compared, the right-hand
operand is converted to the type of the left-hand operand;
comparison of a pointer and one of the integral types causes a
conversion of the integer to the pointer type. Both of these are
operations of gquestionable value and are certainly machine-
dependent.

CRM 7.7 Eguality operators
The same conversions noted above are applied.
CRM 8.1 Storage class-specifiers

The text states that the storage class-specifier, if omitted from
a declaration outside a function, is taken to be extern. This is
somewhat misleading, if not plainly imaccurate; 1in fact (as the
text points out in CRM 11.2), the presence or absence of extern
is critical to determining whether an object is being defined or
referenced. As noted in Section 2.2.4 of this document, if
extern is present, then the declared object either exists in some
other file or is defined later in the same file; if no storage
class specifier is present, then the declared object is being
defined and will be visible in other files. If the static
specifier is present, the object is also defined but is not made
externally visible. The only exception to these rules occurs for
functions, where it is the presence of a defining statement body
that determines whether the function is being defined.

The Lattice compiler can be forced to assume extern for all
declarations outside a function by means of the x compile time
option. Declarations which explicitly specify static or extern
are not affected.

CRM 8.5 Structure and union declarations
The Lattice compiler treats the names of structure members quite

differently from Kernighan and Ritchie. The names of members and
tags do not conflict with each other or with the identifiers used

2-13

Lattice 80886/8088 C Compiler Language Definition

for ordinary variables. Both structure and union tags are in the
same class of names, so that the same tag cannot be used for both
a structure and a union. A separate 1list of members is
maintained for each structure; thus, a member name may not appear
twice in a particular structure, but the same name may be used in
several different structures within the same scope.

CRM 8.7 Type names
Although a structure or wunion may appear in a type name
specifier, it must refer to an already known tag, that is,
structure definitions cannot be made inside a type name. Thus,
the sequence

(struct { int high, low; } *) x
is not permitted, but

struct HL { int high, low; };

{(struct HL *) «x
is acceptable.
CRM 190.1 External function definitions
As noted in the text, formal parameters declared float are
actually interpreted as double; similarly, formals declared char
or short are read as int. For consistency, the Lattice compiler
applies the same rules to functions: a function declared to
return float 1is assumed to return double, and char or short
functions to return int.
CRM 10.2 External data definitions

The Lattice compiler applies a simple rule to external data

declarations: if the keyword extern is present, the actual
storage will be allocated elsewhere, and the declaration is
simply a reference to it. Otherwise, it is interpreted as an

actual definition which allocates storage (unless the x option
has been used; see the comments on CRM 8.1).

CRM 12.3 Conditional compilation

As noted in Section 2.2.1 of this document, the constant
expression following #if may not contain the sizeof operator, and
must appear on a single input line.

CRM 12.4 Line control

Although the filename for #line is denoted as identifier, it need
not conform to the characteristics of C identifiers. The
compiler takes whatever string of characters 1is supplied; the
only lexical requirement for the filename is that it cannot
contain any white space.

2-14

Lattice 8@86/8888 C Compiler Language Definition

CRM 14.1 Structures and unions

The escape from typing rules descrived in the text is explicitly
not allowed by the Lattice compiler. In a reference to a
structure or union member, the name on the right must be a member
of the aggregate named or pointed to by the expression of the
left. This implementation, however, does not attempt to enforce
any restrictions on reference to union members, such as requiring
a value to be assigned to a particular member before allowing it

to be examined via that member.

Future versions of the compiler may support structure assignment,
but the value of other operations (such as passing aggregates
directly to or returning them from functions) seems questionable.

Lattice 80686/8688 C Compiler portable Library Functions

Section 3:
Portable Library Functions

in order to provide real portability, a C programming environment
must provide -- in a machine-independent way -- not only a well-
defined language but a library of useful functions as well. The
portable library provided with the Lattice C compiler attempts to
fulfill this requirement., Although not all of the features of
these functions can be implemented on every system supported by
the compiler, all systems must be able to provide the basic
functions of memory allocation, file input/output, and character
string manipulation; otherwise, the compiler itself could not be
implemented. An important side benefit of presenting the
functions from a machine-independent viewpoint is that it Thelps
the programmer think of them as such,

when referring to the function descriptions presented in this
seccion, remember that the compiler assumes that a function will
return an int value unless 1t is explicitly declared otherwise.
Any function which returns any other kind of value must be
declared as that kind of function in advance of its first usaqe
in the same file.

3.1 Memory Allocation Functions

The standard library provides memory allocation capabilities at
several different levels. The higher level functions call the
lower levels to perform the work, but provide easier interfaces
in exchange for the extra overhead. The actual amount of memory
available 1is system-dependent and usually depends on the size of
the program. In most systems the memory made available for
dynamic allocation by these functions is the same memory vuvsed for
the run-time stack (used for function calls and auto variables).
On these systems a default number of bytes is reserved for the
stack, and the remainder of the memory is used by the memory
allocation functions. In order to allow programs to adjust the
amount of memory reserved for the stack (and thus the amount
available for dynamic allocation}, the main program wusually
supports a special =n option to override the default stack size;
alternatively, a program may define the size internally. Check
the implementation section of the manual for details. The user
is cautioned that on many systems there is no check against the

stack overrunning its allotted size and destroying portions of
the memory pool.
All of the memory allocation functions return a pointer which is

of type char *, but is guaranteed to be properly aligned to store
any object.

Lattice BU86/8688 C Compiler Portable Library Functions

3.1.1 Level 3 Memory Allocation

The functions described in this section provide a UNIX-compatible
memory-allocation facility. The blocks of memory obtained may be
released in any order, but it is an error to release something
not obtained by calling one of these functions, Recause these
functions use overhead locations to keep track of allocation
sizes, the free function does not require a size arqument, The
overhead does, however, decrease the efficiency with which these
functions use the available memory. I1f many small allocations
are requested, the available memory will be more efficiently
utilized if the level 2 functions are used instead.

Lattice 8086/8@888 C Compiler Portable Library Functions

NAME

malloc -- UNIX-compatible memory allocation
SYNOPSIS
P = malloc(nbytes);

char *p; block pointer
unsigned nbytes; number of bytes requested

DESCRIPTION

Allocates a block of memory in a way that is compatible with
UNIX. The primary difference between malloc and getmem is
that the former allocates a structure at the front of each
block. This can result in very inefficient use of memory
when making many small allocation requests.

RETURNS

p NULL if not enough space available

pointer to block of nbytes of memory otherwise

i

CAUTIONS

Return value must be checked for NULL. The function should
be declared char * and a cast operator used if defining a
pointer to some other kind of object, as in:

char *malloc();
int *pi;

pi = {(int *)malloc(N);

Lattice 80686/8088 C Compiler Portable Library Functions

NAME

calloc -- allocate memory and clear

SYNOPSIS

p = calloc(nelt, eltsiz);

char *p; block pointer
unsigned nelt; number of elements
unsigned eltsiz; element size in bytes

Allocates and clears (sets to all zeros) a block of memory.
The size of the block is specified by the product of the two
parameters; this calling technique is obviously convenient

for allocating arrays. Typically, the second argument is a
sizeof expression.

RETURNS

11

p NULL 1r not enough space available

pointer to block of memory otherwise

CAUTIONS

Return value must be checked for NULL. The function should
be declared char * and a cast used if defining a pointer to
some other kind of object, as in:

char *calloc{();
struct buffer *pb;

pb = (struct buffer *)calloc(4, sizeof(struct buffer));

Lattice 8086/8088 C Compiler Portable Library Functions

NAME
free -- UNIX-compatible memory release function
SYNOPSIS

ret = free(cp);

int ret; return code
char *cp; block pointer
DESCRIPTION

Releases a block of memory that was previously allocated by
malloc or calloc. The pointer should be char * and |is
checked for validity; that is, verified to be an element of
the memory pool.

RETURNS
ret = @ if successful
= -1 if invalid block pointer
CAUTIONS

Remember to cast the pointer back to char *, as in:

char *malloc{);
int *pi;
pi = (int *) malloc(N);

if (free((char *)pi) != 8) { ... error ... }

Lattice 8086/8888 C Compiler Portable Library Functions

3.1.2 Level 2 Memory Allocation

The functions described in this section provide an efficient and

convenient memory allocation capability. Like the level 3
functions, allocation and de-allocation requests may be made in

any order, and it is an error to free memory not obtained by
means of one of these functions. The caller must retain both the
pointer and the size of the block fot use when it is freed;
failure to provide the correct length may lead to wasted memory
(the functions can detect an incorrect length when it is too
large, but not when it is too small). An additional convenience
is provided by the sizmem function, which can be wused to
determine the total amount of memory available.

The level 2 functions maintain a linked list of the blocks of
memory released by calls to rlsmem, called the free space 1list.
Initially, this 1list 1is null, and getmem acquires memory by
calling the level 1 memory allocator sbrk. As blocks are
released by the program, the free space list is created; when a
block adjacent to one already on the 1list 1is freed, it is
combined with any adjacent blocks. Thus, the size of the largest
block available may be smaller than the total amount of free
memory, due to breakage.

Lattice 8086/8088 C Compiler Portable Library Functions

NAME
getmem, getml -- get a memory block
SYNOPSIS
p = getmem(nbytes);
p = getml (lnbytes);
char *p; block pointer
unsigned nbytes; number of bytes requested
long lInbytes; long number of bytes requested
DESCRIPTION
Gets a block of memory from the free memory pool. If the
pool is empty or a block of the requested size 1is not
available, more memory is obtained via the level 1 function
sbrk.
RETURNS
p = NULL if not enough space available
= pointer to memory block otherwise
CAUTIONS

Return value must be checked for NULL. The function should
be declared char * and a cast used if defining a pointer to
some other kind of object, as in:

char *getmem();
struct XYZ *px;

px = (struct XYZ *)getmem(sizeof (struct XYZ));

Lattice 8086/8888 C Compiler Portable Library Functions

NAME
rlsmem, rlsml -- release a memory block
SYNOPSIS
ret = rlsmem(cp, nbytes);
ret = rlsml(cp, lnbytes);
int ret; return code
char *cp; block pointer to be freed
unsigned nbytes; size of block
long 1lnbytes; size of block as long integer
DESCRIPTION

Releases the memory block by placing it on a free block
list. If the new block is adjacent to a block on the list,
they are combined.

RETURNS
ret = @ if successful
= -1 if supplied block is not obtained by getmem or
getml or if it overlaps one of the blocks on the
list
CAUTIONS
Return value should be checked for error. If the correct

size is not supplied, the block may not be freed properly.

Lattice 8086/8688 C Compiler Portable Liﬁrary Functions

NAME
allmem, bldmem -- allocate level 2 memory pool
SYNOPSIS
ret = allmem();
ret = bldmem(n};
int ret; return code
int n; maximum number of 1 kilobyte blocks
DESCRIPTION
The bldmem function wuses the level 1 function sbrk to
allocate up to n 1 kilobyte blocks of memory. If n is @,
then all availabTe memory is allocated.
The allmem function merely calls bldmem with n set to 4.
Subsequent getmem and getml calls will make allocations from
this memory pool. All of the memory allocated by getmem
calls following a call to getmem can be freed by a call to
the rstmem function described below.
RETURNS
ret = -1 if first sbrk fails
= @ if successful
CAUTIONS

Should be called only once during the 1lifetime of the
program.

Lattice 8686/8088 C Compiler Portable Library Functions

NAME

sizmem -- get memory pool size
SYNOPSIS

bytes = sizmem();

long bytes; number of bytes
DESCRIPTION

Returns the number of unallocated bytes in the memory pool

used by getmem and getml. Note that getmem
dynamically expand the pool by calling sbrk

and getml
whenever a

regquest cannot be honored. Therefore, the value returned by

sizmem does not necessarily indicate how much

memory is

actually available. If used after calling allmem, however,

the actual memory pool size will be returned.
RETURNS

bytes = (long) number of bytes in memory pool
CAUTIONS

Note that this function returns a long integer,
declared long before it is used.

and must be

Lattice 8086/8688 C Compiler Portable Library Functions

NAME

rstmem -- reset memory pool

SYNOPSIS

rstmem();

DESCRIPTION

Resets the level 2 memory pool to its initial state. all
memory allocated by calls to getmem and getml made after
allmem was called is released by rstmem; memory allocated
before allmem was called is not affected. This function
makes it possible to make a certain number of initial sbrk,
getmem, or getml calls, and then to initialize a memory pool
by calling allmem. Any allocations made after the call to
allmem are freed by rstmem, but the preceding sbrk or getmem
calls are not affected.

CAUTIONS

This function cannot be used if any files have been opened
after the immediately preceding allmem call for access using
any of the level 2 I/0 functions, because these functions
use getmem to allocate buffers. Files should be opened
before the allmem call to avoid this problem.

Lattice 8086/8088 C Compiler Portable Library Functions

3.1.3 Level 1 Memory Allocation

The two functions defined at the lowest level of memory
allocation are primitives which perform the basic operations
needed to implement a more sophisticated facility; they are used
by the level 2 functions for that purpose. sbrk treats the total
amount of memory available as a single block, from which portions
of a specific size may be allocated at the low end, creating a
new block of smaller size. rbrk merely resets the block back to
its original size. The “break point® mentioned here should not
be confused with the breakpoint concept used in debugging; this
term simply refers to the address of the low end of the block of
memory manipulated by sbrk.

Lattice 8086/8088 C Compiler Portable Library Functions

NAME
sbrk, 1lsbrk -- set memory break point
SYNOPSIS
p = sbrk(nbytes);
p = lsbrk(lnbytes);
char *p; points to low allocated address
unsigned nbytes; number of bytes to be allocated
long 1ln bytes; long number of bytes to be allocated

DESCRIPTION

Allocates a block of memory of the requested size, if
possible. These functions form the basic UNIX memory
allocator. The first time one of them is called, it will
allocate the largest available block of high memory. Then
the requested number of bytes is subtracted from the low end
of the block for use by the caller.

RETURNS
p = ~1 if request cannot be fulfilled (sbrk only)
p = @ if request cannot be fulfilled (lsbrk only)
= pointer to low address of block if successful
CAUTIONS

For consistency with the UNIX function, sbrk returns -1 if
it cannot satisfy the request, although the rest of the
memory allocators return NULL. Both functions should be
declared char * and a cast used if defining a pointer to
some other kind of object.

Lattice 8086/8088 C Compiler Portable Library Functions

NAME
rbrk -- reset memory break point

SYNOPSIS
rbrk{);

DESCRIPTION
Resets the memory break point to its original starting-
point. This effectively returns all memory to the free
space block.

CAUTIONS

Like rstmem above, this function cannot be used if any files
are open and being accessed using the level 2 1/0 functions.

Lattice 8086/8088 C Compiler Portable Library Functions

3.2 1/0 and System Functions

The standard library provides 1/0 functions at several different
levels, with single character get and put functions and formatted
I/0 at the highest levels, and direct byte stream 1/0 functions
at the lowest levels. The major system dependency arises in
connection with text files, where some systems perform certain
translations to accommodate the particular text file
representation wused in the local environment. Although the
translation is generally transparent at the higher levels, 1/0 at
the lowest levels, particularly 1/0 involving binary data, must
be aware of the translation. Check the implementation section of
this manual for the details appropriate to a particular system.

Three general classes of 1/0 functions are provided. First, the
ievel 2 functions define a buffered text file interface which
implements the single character I/0 functions as macros rather
than function calls. Second, the level 1 functions define a byte
stream-oriented file interface, primarily useful for manipulation
of disk files, though most of the same functions are applicable
to devices (such as the user's console) as well. Finally, since
one of the most common I/0 interfaces is with the user's console,
a special set of functions allows single character I/0 directly
to the user's terminal, as well as formatted and string 1/0.

The system functions discussed in this section are concerned with
program exit, Additional system functions are described in the
implementation section of the manual.

3.2.1 Level 2 I/O Functions and Macros

These functions provide a buffered interface using a special
structure, manipulated internally by the functions, to which a
pointer called the file pointer is defined. This structure is
defined in the standard [/0 header file (called stdio.h on most
systems) which generally must be included (by means of a #include
statement) in the source file where level 2 features are being
used. The file pointer is used to specify the file upon which
operations are to be performed. Some functions require a file
pointer, such as

FILE *fp;

to be explicitly included in the calling sequence; others imply a
specific file pointer. In particular, the file pointers stdin
and stdout are implied by the use of several functions and
macros; these files are so commonly used that on most systems
they are opened automatically before the main function of a
program begins execution. Other file pointers must be declared
by the programmer and initialized by calls to the fopen function.

The level 2 functions are designed to work primarily with text
files. The usual C convention for line termination uses a single
character, the newline (\n}, to indicate the end of a line.
Unfortunately, many operating environments use a multiple

3-15

Lattice 8086/8888 C Compiler Portable Library Functions

character sequence -- usually carriage return/line feed, but
occasionally even more exotic delimiters. In order to allow all
C programs to work with text files in the same way, the Lattice
functions support the standard newline convention but may --
depending on the system ~- perform a text mode translation so
that end-of-line sequences will conform to local conventions.
This translation is usually beneficial and transparent but may
cause problems when working with binary files. Normally, all
files accessed through the level 2 functions are opened in the
text, or translated mode, but the programmer may override this
mode by defining the external location

int _fmode = @x8000;

in one of the functions in the program (this statement must
appear outside the body of the function itself in order to be
considered an external definition). The value at fmode is
passed to the level 1 function open or creat when the file is
opened. I1f zero, the file is opened in the text mode; if @x8000,
the file is opened in the binary, or untranslated mode. Note
that if fmode is defined as above, the stdin, stdout, and stderr
files opened for the main function will also be opened in the

binary mode. If this is undesirable, _fmode can be initialized
with zero and then set to ¢x8000 before specific fopen calls are
made; in this way, different files may be opened in different
modes. Check the implementation section of this manual for more

information about the file access modes.

The actual 1/0 operations are performed by the level 2 functions
through calls to the level 1 I/0 functions described in the next
section. The normal mode of buffering, designed to support
sequential operations, performs read and write functions in 512-
byte blocks.

Normally the level 2 functions acquire buffers via the level 2
memory allocator unless the file is on a device other than a
disk. Alternatively, the setbuf function allows a private buffer
tc be attached. This function assumes that the buffer is the
standard size, which 1is defined via the BUFSIZ constant in
stdio.h. 1f for some reason operating the level 2 I/0 functions
in the buffered mode is not desirable, the setnbf function can be
called. This is done automatically for non-disk files or if
setbuf is called with a NULL buffer pointer.

In the descriptions below, some of the function calls are
actually implemented as macros; these are noted explicitly. The
reason the programmer should be aware cf the distinction 1is
because most macros involve the conditional operator and may,
under certain conditions, evaluate an argument expression more
than once. This can cause unexpected results if that expression
involves side effects, such as increment or decrement operators
or function calls.

Lattice 8886/8088 C Compiler Portable Library Functions

NAME
fopen -- open a buffered file
SYNOPS IS
fp = fopen{name, mode);
FILE *fp; file pointer for specified file
char *name; file name
char *mode; access mode
DESCRIPTION

Opens a file for buffered access; the translated mode is the
default mode but may be overridden as described in the
introduction to this section. The NULL-terminated string
which specifies the filename must conform to local file
naming conventions. The access mode is also specified as a
string, and may be one of the following:

r to read a file

w to write a file

a to append to a file

r+ to update a file (read and write)
W+ to create a file for update

a+ to append to and update a file

The mode character must be specified in lower case. The a
option adds to the end of an existing file, or creates a new
one; the w option discards any data in the file, if it
already exists. On most systems, no more than 16 files
(including stdin, stdout, and stderr, if those are opened
for main) can be opened using fopen.

When a file is opened for update, both reading and writing
may be performed on the file pointer. In order to switch
modes, an fseek or rewind must be executed. Opening the
file to append forces all data to be written to the current
end of file, regardless of previous seeks.

RETURNS

fp = NULL if error
= file pointer for specified file if successful

CAUTIONS
The return code must be checked for NULL; the error return
may be generated if an invalid mode was specified or if the
file was not found, could not be created, or too many files

were already open,

Lattice 8086/8088 C Compiler Portable Library Functions

NAME
freopen -- reopen a buffered file

SYNOPS IS
fpr = freopen(name, mode, fp);
FILE *fpr; file pointer after re-opening
char *name; file name
char *mode; access mode
FILE *fp; current file pointer

DESCRIPTION
Reopens a buffered file; that is, attaches a new file to a
previously used file pointer. This function is useful for
programs which must open several files, but only one at a
time; this avoids using up file pointers unnecessarily. The
previous file is automatically closed before the file
pointer is reused. The name and mode arguments are the same
as those for fopen.

RETURNS
fpr = NULL if error

= fp if successful
CAUTIONS

The return code should be checked for NULL; the same errors
defined for fopen may occur.

Lattice 8086/8088 C Compiler Portable Library Functions

NAME

fclose -- close a buffered file
SYNOPSIS

ret = fclose(fp);

int ret; return code

FILE *fp; file pointer for file to be closed
DESCRIPTION

Completes the processing of a file and releases all related
resources, If the file was being written, any data which
has accumulated in the buffer is written to the file, and
the level 1 close function is called for the associated file
descriptor, The buffer associated with the file block is
freed. fclose is automatically called for all open files
when a program calls the exit function (see Section 3.2.4)
or when the main program returns, but it is good programming
practice to close files explicitly. As the last buffer is
not written until fclose is called, data may be lost if an
output file is not properly closed.

RETURNS

ret -1 if error

¢ if successful

o

Lattice 8086/8888 C Compiler Portable Library Functions

NAME
getc, getchar -- get character from file
SYNOPSIS

(o]
C

getc (fp);
getchar ();

tou

int c¢; next input character or EOF
FILE *fp; file pointer

DESCRIPTION
Gets the next character from the indicated file (stdin, in

the case of getchar). The value EOF (-1) is returned on
end-of-file or error.

RETURNS
c = character
= EOF if end-of-file or error
CAUTIONS

These are implemented as macros, so0 beware of side effects.

Lattice 8086/8¢88 C Compiler Portable [Library Functions

NAME
putc, putchar -- put ~haracter to file
SYNOPSIS

r = putc{c, fp);

r = putchar (c};

int r; same as character sent, or error code
char c; character to he output

FILE *fp; file pointer

DESCRIPTION

Puts the character to the indicated file (stdout, in the
case of putchar). The value EOF (-1) is returned on end-of-
file or error.

RETURNS
r = character sent if successful
= EOF if error or end-of-file
CAUTIONS

These are implemented as macros, so beware of side ~ffects.

Lattice 8086/8088 C Compiler Portable Library Functions

NAME
fgetc, fputc -- get/put a character

SYNOPSIS
r = fgetc (fp);
r = fputc(c, fp);
int r; return character or code
char c; character to be sent (fputc)
FILE *fp; file pointer

DESCRIPTION
These functions get (fgetc) or put (fputc) a single
character to the indicated file. Since they are functions,
they are often recommended for use rather than the
corresponding macros (getc and putc) in two types of
situations: (1) if many calls are made and/or (2) if the
programmer 1is concerned about the amount of memory used in
the macro expansions. The tradeoff is the usual one: the

macro executes more quickly because it saves a function
call; the function requires less memory since its code is
present in the program only once.

RETURNS

r = character if successful (c, for fputc)
= EOF if error or end-of-file

Lattice 8086/8888 C Compiler Portable Library

NAME
ungetc -- push character back on input file
SYNOPSIS

r = ungetc(c, fp);

Functions

int r; return character or code
char c¢; character to be pushed back
FILE *fp; file pointer
DESCRIPTION
Pushes back a character to the specified input file. The

character supplied must be the character wmost

recently

obtained by a getc (or getchar, in which case fp should be

supplied as stdin) invocation.
RETURNS

r = character if successful
= EOF if previous character does not match

Lattice 8¢686/8¢88 C Compiler Portable Library Functions

NAME

fread, fwrite -- read/write blocks of data from/to a file

SYNOPSIS

nact = fread(p, s, n, fp);

nact = fwrite(p, s, n, fp);
int nact; actual number of blocks read or written
char *p; pointer to first block of data
int s; size of each block, in bytes
int n; number of blocks to be read or written
FILE *fp; file pointer
DESCRIPTION
These functions read (fread) or write (fwrite) blocks of

data from or to the specified file. Each block is of size s
bytes; blocks start at p and are stored contiguously from
that location. n specifies the number of blocks (of size s)
that are to be read or written. -

RETURNS
nect = actual number of blocks (nf size s) read or written;
may be less than n if error or end-cof-file occurred
CAUTIONS

Return value must be checked to verify that the correct
number of blocks was processed. The ferror and feof macros
can be used to determine the cause Iif the return value is
less than n.

Lattice 8086/8888 C Compiler Portable Library Functions

NAME
gets, fgets
SYNOPSIS

p = gets(s);
p = fgets(s,

char *p;
char *s;
int n;

FILE *fp;

DESCRIPTION

Gets an in
(stdin, in
encountered
Then, gets
fgets passes

RETURNS

NULL if
s if suc

p

CAUTIONS

For gets,

~- get a string

n, fp};

returned string pointer
buffer for input string
number of bytes in buffer
file pointer

put string from a file. The specified file
the case of gets) is read until a newline is
or n-1 characters have been read (fgets only).
replaces the newline with a NULL byte, while
the newline through with a NULL byte appended.

end of file or error
cessful

there is no length parameter, so the input

buffer must be large enough to accommodate the string.

Lattice 8#686/8688 C Compiler Portable Library Functions

NAME
puts, fputs -- put a string

SYNOPSIS

#

X puts(s);
r = fputs(s, fp);

int r; return code

char *s; output string pointer

FILE *fp; file pointer
DESCRIPTION

Puts an output string to a file. Characters from the string
are written to the specified file (stdout, 1in the case of
puts) until a NULL byte is encountered. The NULL byte is
not written, but puts appends a newline.

RETURNS

r = EOF if end-of-file or error

Lattice B¢86/8088 C Compiler Portabkle Library Functions

NAME

scanf, fscanf, sscanf -- perform formatted input conversions
SYNOPS IS

n = scanf(cs, ...ptrs...);

n = fscanf(fp, cs, ...ptrs...});

n = sscanf(ss, cs, ...ptrs...};

int n; number of input items matched, or EOF

FILE *fp; file pointer (fscanf only)

char *ss; input string (sscanf only)

char *cs; format control string

---- ...ptrs...; pointers for return of input values

DESCRIPTION

These functions perform formatted input conversions on text
obtained from three types of files:

1) the stdin file (scanf);
2) the specified file (fscanf);
3} the specified string (sscanf).

The control string contains format specifiers and/or
characters to be matched from the input; the list of pointer
arguments specify where the results of the conversions are
to go. Format specifiers are of the form

t{*i{n}(l]X
where

1) the optional * means that the conversion is to be
performed, but the result value not returned;

2) the optional n is a decimal number specifying a maximum
field width;

3) the optional 1 (el) is used to indicate a long int or
long float (i.e., double) result is desireqg;

4) X 1is one of the format type indicators from the
following list:

d -- decimal integer
-- octal integer
-- hexadecimal integer
short integer
-- single character
-- character string
-- floating point number

mn QRO
1
]

The format type must be specified in lower case. White
space characters in the control string are ignored;
characters other than format specifiers are expected to
match the next non-white space characters in the input. The

3-27

Lattice 8086/8388 C Compiler Portable Library Functions

input is scanned through white space to locate the npext
input item in all cases except the ¢ specifier, where the
next input character is returned without this initial scan.
See the Kernighan and Ritchie text for a more detailed
explanation of the formatted input functions.

RETURNS
n = pumber of input items successfully matched, i.e., for
which wvalid text data was found; this includes all
single character items in the control string
= EOF if end-of-file or error is encountered during scan
CAUTIONS
All of the input values must be pointers to the result
locations. Make sure that the format specifiers match up
properly with the result locations. 1f the assignment

suppression feature (*) is used, remember that a pointer
must not be supplied for that specifier.

fLattice 8@86/8@88 C Compiler Portable Library Functions

NAME
printf, fprintf, sprintf -- generate formatted output
SYNOPSIS

printf(cs, ...args...);
fprintf (fp, cs, ...args...);

n = sprintf(ds, cs, ...args...);

int n; number of characters (sprintf only)

FILE *fp; file pointer (fprintf)

char *ds; destination string pointer (sprintf)

char *cs; format control string

—mm— ...3arQS...; list of arguments to be formatted
DESCRIPTION

These functions perform formatted output conversions and
send the resulting text to:

1) the stdout file (printf);
2) the specified file (fprintf); or
3) the specified output string (sprintf}.

The control string contains ordinary characters, which are
sent without modification to the appropriate output, and
format specifiers of the form

$(-1(m}(.pll1]X

where

1) the optional - indicates the field 1is to be left
justified (right justified is the default);

2} the optional m field is a decimal number specifying a
minimum field width;

3) the optional .p field is the character . followed by a
decimal number specifying the precision of a floating
point image or the maximum number of characters to be
printed from a string;

4) the optional 1 (el) indicates that the item to be
formatted is long; and

5) X is one of the format type indicators from the
following list:

-- decimal signed integer

-- decimal unsigned integer

-- hexadecimal integer

-~ octal integer

character string

-- single character

-- fixed decimal floating point

-- exponential floating point

~-- use e or f format, whichever is shorter

QomMmN o xoc
1
t

Lattice 8686/8088 C Compiler Portable Library Functions

The format type must be specified in lower case. Characters
in the control string which are not part of a format

specifier are sent to the appropriate output; a % may be
sent by using the sequence %%. See the Kernighan and
Ritchie text for a more detailed explanation of the

formatted output functions.

RETURNS
n = number of characters placed in ds (sprintf only), not
including the NULL byte terminator
CAUTIONS

3-39

For sprintf, no check of the size of the output string area
is made, so it must be large enough to contain the resulting
image. In all cases, the format specifiers must match up
properly with the supplied values for formatting.

Lattice 8086/8088 C Compiler Portable ILibrary Functions

NAME

fseek -- seck to a new file position
SYNOPSIS

ret = fseek (fp, pos, mode);

int ret; return code

FILE *fp; file pointer

long pos; desired file position

int mode; of fset mode

DESCRIPTION

Seeks to a new position in the specified file.
l1seek function description (Section 3.2.2) for the
of the offset mode argument.

RETURNS
ret = @ if successful
= -1 if error
CAUTIONS

See the
meaning

1f mode 1 is specified, the file position established for

files being accessed in the translated mode
incorrect.

may be

Lattice 8086/80688 C Compiler Portable Library Functions

NAME
ftell -- return current file position
SYNOPSIS

pos = ftell (fp);

long pos; current file position
FILE *fp; file pointer
DESCRIPTION

Returns the current file position, that is, the number of
bytes from the beginning of the file to the byte at which
the next read or write operation will transfer data.

RETURNS
pos = current file position {long)
CAUTIONS
The file pos tion returned takes account of the buffering

it
used con the file, so the file position returned is a logical
fiie position rather than the actual position. Note thaot
text mode translation may cause an incorrect file position
. be returneqd, since the number of characters in the buffer
i3 not necaessarily the number that will be actually read or
written because of the translation.

Lattice 8086/8888 C Compiler portable Library Functions

NAME

ferror, feof -- check if error/end of file
SYNOPSIS

ret = feof (fp);

ret = ferror (fp);

int ret; return code

FILE *fp; file pointer
DESCRIPTION

These macros generate a non-zero value if
condition is true for the specified file.

RETURNS

the indicated

ret = non-zero if error (ferror) or end of file (feof)

zero if not

Lattice 8686/8@¢88 C Compiler Portable Library Functions

NAME

clrerr -- clear error flag for file
SYNOPSIS

clrerx(fp);

FILE *fp; file pointer
DESCRIPTION

Clears the error flag for the specified file. Once set, the
flag will remain set, forcing EOF returns for functions on
the file, until this function is called.

Lattice 8086/8088 C Compiler Portable Library Functions

NAME
fileno -~ return file number for file pointer
SYNOPSIS

fn = fileno(fp);

int fn; file number associated with file pointer
FILE *fp; file pointer
DESCRIPTION

Returns the file number, used for the level 1 1/0 calls, for
the specified file pointer.

RETURNS
fn = file number (file descriptor) for level 1 calls
CAUTIONS

Implemented as a macro.

Lattice 8@¢86/8088 C Compiler

NAME
rewind -- rewind a file
SYNOPSIS

rewind (fp);

FILE *fp; file pointer

DESCRIPTION

Resets the file position of the

beginning of the file.
CAUTIONS

Implemented as a macro.

Portable Library Functions

specified file to the

Lattice 8686/8B@R8 C Compiler Portable Library Functions

NAME

fflush -- flush output buffer for file
SYNOPSIS

fflush(fp);

FILE *fp; file pointer
DESCRIPTION

Flushes the output buffer of the specified file, that |is,
forces it to be written.

CAUTIONS

This macro must be used only on files which have been opened
for writing or appending.

Lattice 8@386/8688 C Compiler Portable Library Punctions

NAME

setbuf -- change buffer for level 2 file 1/0

SYNOPSIS

setbuf (fd,buf);

FILE *fd;
char *buf;

DESCRIPTION

This function attaches a private buffer to the file whose
descriptor 1s fd. The length of the buffer is assumed to be
the same as bufsiz, which is defaulted to the constant
BUFSIZ in stdio.h.

1f the buffer pointer is NULL, then this function is the
same as setnbf.

CAUTICNS

3-38

buf must be large enough to handle the data specified in
_bufsiz.

Lattice B8086/8d88 C Compiler Portable Library Functions

NAME

setnbf -- set file unbuffered
SYNOPSIS

setnbf (fp) ;

FILE *fp; file pointer
DESCRIPTION

Changes the buffering mode for the specified file pointer
from the default 512-byte block mode to the unbuffered mode
used for devices (including the user's console). in this

mode, read and write oberations are performed using single
characters.

CAUTIONS

Although the unbuffered mode may be used without difficulty
on files, the standard buffering mode is generally more
efficient, so this function should only be used for those
"files" which are definitely known to be devices.

Lattice 8086/8488 C Compiler Portable Library Functions

3.2.2 Level 1 1/0 Functions

These functions provide a basic, low-level 1/0 interface which
allows a file to be viewed as a stream of randomly addressable
bytes. Operations are performed on the file using the functions
described in this section; the file is specified by a file number
or file descriptor, such as

int f£4;

which is returned by open or creat when the file is opened. Data
may be read or written in blocks of any size, from a single byte
to as much as several kilobytes in a single operation. The
concept of a file position is key: the file position is a long
integer, such as

long fpos;

which specifies the position of a byte in the file as the number
of bytes from the beginning of the file to that particular byte.
Thus, the first byte in the file is at file position @L. Two
distinct file positions are maintained internally by the level 1
functions. The current file position is the point at which data
transfers take place between the program and the file; it is set
to zero when the file is opened, and is advanced by the number of
bytes read or written using the read and write functions. The
end of file position is simply the total number of bytes
contained 1in the file; it is changed only by write operations
which increase the size of the file.

The current file position can be set to any value from zero up to
and including the end of file position using the lseek function.
Thus, to append data to a file, the current file position is set
to the end of the file using lseek before any write operations
are performed. When data is read from near the end of file, as
much of the requested count as can be satisfied is returned; zero
is returned for attempts to read when the file position is at the
end of file.

The level 1 functions operate in one of two mutually exclusive
modes: the text or translated mode, and the binar or
untranslated mode. On some systems the two modes are i1dentical.
The desired mode is specified when the file is opened or created,
and remains in effect until the file is closed. The two modes
are provided so that any required translation of text file end-
of-line sequences can be performed automatically even by the
lowest level operations (read and write functions), while at the
same time a program may disable the translation, as needed, when
working with binary files. The problem is that not all systems
use the standard C end-of-line delimiter, the newline (\n); the
translated mode converts the newline to whatever the local
delimiter may be. Since this may 1involve expansion or
contraction of the number of bytes read or written, the count
returned by read or write may not correctly reflect the actual
change in the file position. In the binary mode, this problem

3-40

Lattice 8086/8088 C Compiler Portable Library Functions

does not occur since no translation is performed.

A public symbol called _iomode presets the translation mode.
Normally, _iomode 1is @ and translated mode is used unless @ RAW
is specified (see open function). If iomode 1is changed to
9x800@¢, then the untranslated mode is used unless @ RAW is
specified. 1In other words, @ RAW toggles the meaning of _iomode.

Although the level 1 functions are primarily useful for working
with files, ¢they can be used to read and write data to devices
{including the user's terminal), as well, The exact nature of
the 1/0 performed 1is system-dependent, but it 1is generally
unbuffered and may have different effects, depending on whether

the translated or untranslated mode is in effect. The 1lseek
function has no effect on devices, and usually returns an error
status. Direct I/0 to the user's terminal may also be performed

using the functions described in Section 3.2.3.

The actual 1/0 operations on disk files are buffered, but at a
level that 1is generally transparent to the programmer. The
buffering makes close operations a necessity for files that are
modified.

3-41

Lattice 8086/8888 C Compiler Portable Library Functions

NAME
open -- open a file
SYNOPSIS
file = open{name, rwmode);
int file; file number or error code
char *npame; file name
int mode; indicates read/write mode and other
options (see below)
DESCRIPTION
Opens a file for access using the level 1 1/0 functions.
The file name must conform to local naming conventions. The
mode word indicates the type of 1/0 which will be performed
on the file. The header file fnctl.h defines the codes for
the mode arguments:
@ RDONLY Read only access
@ _WRONLY Write only access
2 _RDWR Read/write access
Also, the following flags can be ORed into the above codes:
3 CREAT Create the file if it doesn't exist
@ TRUNC Truncate (set to zero length) the file
if it does exist
8 _EXCL Forces create to fail if file exists
9 _APPEND Seek to end-of-file before each write
@ _RAW Use untranslated 1/0 (see introduction
to section 3.2.2)
The current file position is set to zero if the file |is
successfully opened. On most systems, no more than 16 files
(including any which are being accessed through the level 2
functions, such as stdin, stdout, etc.) can be open at the
same time. Closing the file releases the file number for
use with some other file.
RETURNS
file = file number to access file, if successful
= -1 if errxor
CAUTIONS

Check the return value for error.

Lattice B8086/8088 C Compiler Portable Library Functions

NAME
creat -- create a new file
SYNOPSIS
file = creat (name, pmode);
int file; file number or error code

char *name;
int pmode;

DESCRIPTION

file name
access privilege mode bits; bit 15 has
same meaning as for open

Creates a new file with the specified name and prepares it
for access via the level 1 1/0 functions. The file name
must conform to local naming conventions. Creating a device
is equivalent to opening it. The access privilege mode bits
are system-dependent and on some systems may be largely

ignored; however, bit 15 is interpreted in the same way as
for open: if set, operations are performed on the file
without translation. If the file already exists, its
contents are discarded. The current file position and the

end-of-file are both zero (indicating an empty file) if the
function is successful.

RETURNS

file = file number to access file, if successful

= -1 if error

CAUTIONS

Check the return value for error. creat should be used only
on files which are being completely rewritten, since any
existing data is lost.

Lattice 8286/89488 C Compiler Portable Library Functions

NAME
unlink -- remove file name from file system
SYNOPSIS
ret = unlink(name);
int ret; return code: @ if successful
char *name; name of file to be removed
DESCRIPTION
Removes the specified file from the file systemn. The file
name must conform to local naming conventions. The
specified file must not be currently open. All data in the
file is lost.
RETURNS
ret = @ if successful
= -1 if error
CAUTIONS

Should be used with care since the file, once removed, is
generally irretrievable.

Lattice 8086/8088 C Compiler Portable Library

NAME
read -- read data from file
SYNOPSIS

status = read(file, buffer, length);

Functions

int status; status code or actual length
int file; file number for file
char *buffer; input buffer
int length; number of bytes requested
DESCRIPTION
Reads the next set of bytes from a file. The return count

is always equal to the number of bytes placed in the buffer

and will never exceed the length parameter, except in the
case of an error, where -1 is returned. The file position
is advanced accordingly.
RETURNS
status = @ if end-of-file
= -1 if error occurred
= number of bytes actually read, otherwise
CAUTIONS
If fewer than the requested number of bytes remain between
the current file position and the end-of-file, only ' that
number is transferred and returned. The number of bytes by

which the file position was advanced may not

equal the

pumber of bytes transferred if text mode translation

occurred.

Lattice 8@86/8988 C Compiler Portable Library Functions

NAME
write -- write data to file
SYNOPSIS
status = write(file, buffer, length);
int status; status code or actual length
int file; file number
char *buffer; output buffer
int length; number of bytes in buffer
DESCRIPTION

Writes the next set of bytes to a file. The return count is
equal to the number of bytes written, unless an error
occurred. The file position is advanced accordingly.

RETURNS
status = -1 if error
= pumber of bytes actually written
CAUTIONS

The number of bytes written may be less than the supplied
count if a physical end-of-file limitation was encountered.

Lattice 8086/8088 C Compiler Portable Library Functions

NAME
lseek -- seek to specified file position
SYNOPSIS
pos = lseek(file, offset, wmode);
long pos; returned file position or error code
int file; file number for file
long offset; desired position
int mode; of fset mode:
@ = relative to beginning of file
1 = relative to current file position
2 = relative to end-of-file
DESCRIPTION
Changes the current file position to a new position in the
file. The offset is specified as a long int and is added to
the current position (mode 1) or to the logical end-of-file
(mode 2). Not all implementations support offset mode 2.
RETURNS
pos = -11 if error occurred
= new file position if successful
CAUTIONS

The offset parameter must be a long quantity; therefore a
long constant should be indicated when supplying a zero. In
most cases, the return code should be checked for error,
which indicates that an invalid file position (beyond the
end-of-file) was specified. Note that the current file
position may be obtained by

long cpos, lseek();

cpos = lseek(file, OL, 1);

which will never return an error code.

Lattice 8886/8088 C Compiler Portable Library Functions

NAME
close -- close a file
SYNOPSIS

status = close(file);

int status; status code: 0 if successful
int file; file number
DESCRIPTION

Closes a file and frees the file number for use in accessing
another file. Any buffers allocated when the file was
opened are released.

RETURNS
status = @ if successful
= -1 if error
CAUTIONS

This function must be called if the file was modified;
otherwise, the end-of-file and the actual data on disk may
not be updated properly.

Lattice 8086/8¢88 C Compiler Portable Library Functions

3.2.3 Direct Console 1/0 Functions

These functions provide a direct 1/0 interface to the user's
console. Because there 1is no buffering of characters, the
functions are particularly useful for applications which use
cursor positioning to define special screen formats or which
implement special single character responses to program prompts.
In order to distinguish these functions from the corresponding
level 2 functions, different names are used for them. This
allows programs to make use of both kinds of 1/0, if desired.
Proyrams which perform console 1/0 exclusively can use the
tdefine mechanism to establish the following equivalencies for
some of the level 2 functions:

#define getchar getch
#define putchar putch
tdefine gets cgets
#define puts cputs
tdefine scanf cscanf
#define printf cprintf

Several system dependencies arise in connection with the direct

console functions. Whether or not characters are echoed as they
are input is system-dependent but there is usually a mechanism to
enable or disable the echo. On some systems the characters that

are typed when the program is not actually waiting for input are
saved, and then presented to the getch function when it requests

input. Often only one character is saved; however some systems
may save none while others retain several. The presence of type-
ahead, as this feature is usually called, rarely affects the
program itself, although its absence may be a source of

irritation to users who have to communicate with the program.

Lattice 80#86/8688 C Compiler Portable Library Functions

NAME

getch, putch -- get/put character directly from/to console
SYNOPSIS

c = getch();

putch(c);

int c; character received/sent to console

DESCRIPTION

These functions get (getch) or put (putch) single characters
from or to the user's console.

RETURNS
c = character received (getch)
CAUTIONS

There 1is no notion of an end of file or error status, but
some implementions may use EOF (-1) as an error return.

Lattice B086/8688 C Compiler Portable Library Functions

NAME

ungetch —-- push character back to console
SYNOP SIS

r = ungetch(c);

int r; return code
char c¢; character to be pushed back

DESCRIPTION

Pushes the indicated character back on the

one character of pushback is allowed.
is called.

RETURNS

r = EOF if a character has already been pushed back

¢ if successful

]

is
cause getch to return the pushed-back character next time

Only
to
it

Lattice 8886/8088 C Compiler Portable Library Functions

NAME

kbhit -~ check for keyboard hit
SYNOPSIS

hit = kbhit();

int hit; g if no hit
DESCRIPTION

Returns a non-zero value if a keyboard character is
available.

RETURNS

hit @ if no character available

non-zero if character available

on

Lattice 8086/8088 C Compiler Portable Library Functions

NAME
cgets -- get string directly from console
SYNOPSIS

p = cgets(s);

char *p; returned string pointer
char *s; input string buffer

DESCRIPTION
Gets a string directly from the user's console. Characters
are input until a system-dependent terminator (usually CR,
¢x0D) is encountered. The carriage return is replaced by a
NULL byte.

RETURNS
p = pointer to string received, which does not include the

terminating carriage return
CAUTIONS

Check the implementation section of this manual for details
of the operation of this function.

Lattice 8086/80888 C Compiler Portable Library Functions

NAME

cputs -- put string directly to console
SYNOPSIS

cputs(s);

char *s; string to be output
DESCRIPTION

Puts a NULL terminated string directly to the user's
console. Does not automatically generate a carriage return
or linefeed.

Lattice 8086/8@¢88 C Compiler Portable Library Functions

NAME

cscanf, cprintf -- formatted 1/0 directly to console
SYNOPS IS

same as scanf and printf
DESCRIPTION

These functions perform the equivalent of scanf and

printf, but characters are sent directly to or received
directly from the console.

RETURNS
n = number of input items matched (cscanf)

CAUTIONS
cscanf performs its I/0 directly using getch, so there are
none of the usual input conveniences such as back spacing or
line deletion. If an implementation's version of cgets
provides some of these conveniences, it may be better to
call cgets and then use sscanf to decode the resulting
string.

Lattice 8@86/8088 C Compiler Portable Library Functions

3.2.4 Program Exit Functions

The program entry mechanism, that is, the means by which the
main function gains control, 1is sufficiently system-dependent
that it must be described in the implementation section of this
manual. Program exit, however, is somewhat more general,
although not without its own implementation dependencies.

The simplest way to terminate execution of a C program is
for the main function to execute a return statement, or -- even
simpler -- to "drop through”" its terminating brace. In many
cases, however, a more flexible program exit capability is
needed; this is provided by the exit and exit functions
described in this section. They offer the advantage of allowing
any function -- not just main -- to cause termination of the
program, and in some systems, they allow information to be passed
to other programs.

Lattice 8086/8688 C Compiler Portable Library Functions

NAME
exit -- terminate execution of program and close files
SYNOPSIS
exit(errcode);
int errcode; exit error code
DESCRIPTION
Terminates execution of the current program, but first
closes all output files which are currently open through the
level 2 I/0 functions. The error code is normally set to
zero to indicate no error, and to a non-zero value if some
kind of error exit was taken.
CAUTIONS
Note that exit only closes those files which are being

accessed using the level 2 functions. Files accessed using
the level 1 functions are not automatically closed.

Lattice 8086/8088 C Compiler Portable Library Functions

NAME

_exit -- terminate execution immediately
SYNOPSIS

_exit (errcode);

int errcode; exit error code
DESCRIPTION

Terminates execution of the current program immediately,
without checking for open files.

Lattice 8086/8088 C Compiler Portable Library Functions

3.3 Utility Functions and Macros

The portable library orovides 1 variety of additienal functions
uscful for many of the common dita manipulations petformed by C
Drogr ams. Three urilities provide fast memary transfers; a set
»f macros atlows guick testing of character types; and several
utili1ry functions facalitate charscter string handling.

3.3.1 Memory Utilities

The three utility functions Jdescribed here are usually
tmpltemented in machine language for maximum officiency. These
are the eqguivalent of the almost universal FILL and MOVF
subroutines defined in many other lanquaqges. T T

Lattice 8086/8888 C Compiler Portable Library Functions

NAME

setmem -~ initialize memory to specified char value

SYNOPSIS

setmem(p, n, c);

char *p; base of memory to be initialized
unsigned n; number of bytes to be initialized
char c; initialization value

DESCRIPTION

Sets the specified number of bytes of memory to the
specified byte value. On many systems a hardware block fill
instruction is wused to perform the initialization. This
function is wuseful for the initialization of auto char
arrays.

CAUTIONS

Some systems may distinguish between char * pointers and
pointers of other types, so it is good practice to use a
cast operator when arrays or pointers of other types are
used for the p argument.

Lattice 8086/8088 C Compiler Portable Library Functions

NAME
movmem ~-- move a block of memory
JYNOPS1IS

movmem (s, 4, n};

char *s; source memory block

char *d; destination memory block

unsigned n; number of bytes to be transferred
DESCRIPTION

Moves memory . om one location to another. The function

checks the relative locations of source and destination
blocks, and performs the move in the order necessary to

preserve the data in the event of overlap. On many systems
a hardware block move instruction is used to perform the
transfer.

CAUTIONS

Some systems may distinguish between char * pointers and
pointers of other types, so it is good practice to use a
cast operator when arrays or pointers of other types are
used for the s and 4 arguments.

Lattice 8086/8088 C Compiler Portable Library Functions

NAME
reproem -- replicate values thrcough memory
SYNOPSIS
repmem(s, v, lv, nv);
char *s; memory to be initialized
char *v; template of values to be replicated
int 1lv; number of bytes in template
int nv; number of templates to be replicated
DESCRIPTION

Replicates a set of values throughout a block of memory.
This function 1s a generalized version of setmem, and can be
used to initialize arrays of items other than char. Note
that the replication count indicates the number of copies of
v which are to be made, not the total number of bytes to be
initialized.

CAUTIONS

Some systems may distinguish between char * pointers and
other types of pointers, so it is good practice to use a
cast operator when arrays or pointers of other types are
used for the s and v arguments.

Lattice B086/8088 C Compiler Portable Library Functions

3.3.2 Character Type Macros

The character type header file, called ctype.h on most systems,
defines several macros which are useful in the analysis of text
data. Most allow the programmer to determine quickly the type of
a character, i.e., whether it is alphabetic, numeric,
punctuation, etc. These macros refer to an external array called
ctype which is indexed by the character itself, so they are
generally much faster than functions which check the character
against a range or discrete list of values. Although ASCIT s
defined as a 7-bit code, the ctype array is defined to be 257
bytes long so that valid results are obtained for any character
value. This means that a character with the value @xbl, for
instance, will be classified the same as a character with the
value @x31. Programs that need to distinguish between these
values must test for the 8x8¢ bit before using one of these
macros. Note that ctype is actually indexed by the character
value plus one; this allows the standard EOF value (-1} to be
tested in a macro without yielding a nonsense result. EOF yields
a zero result for any of the macros: it is not defined as any of
the character types.

Here are the macros defined in the character type header file
ctype.h. Note that many of these will evaluate argument
expressions more than once, so beware of using expressions with
side effects, such as function calls or increment or decrement
operators. Note that the file ctype.h must be included if any of
these macros are used; otherwise, the compiler will generate a
reference to a function of the same name.

isalpha(c) non-zero if ¢ is alphabetic, @ if not

isupper (c) non-zero if ¢ is upper case, @ if not

islower (c) non~zero if ¢ is lower case, @ if not

isdigit(c) non-~zero if c is a digit 8-9, @ if not

isxdigit{c) non-zero if c is a hexadecimal digit, @
if not (@-9, A-F, a-f)

isspace (c) non~zero if ¢ is white space, @ if not

ispunct (c} non-zero if ¢ is punctuation, @ if not

isalnum(c) non~zero if c is alphabetic or digit

isprint (c) non~zero if ¢ is printable (including
blank)

isgraph(c) non~zero if ¢ 18 graphic (excluding
blank)

iscntrl {c) non~zero if c is control character

isascii (c) non-zero if ¢ is ASCII (98-127)

iscsym(c) non~zero if valid character for C
identifier, 8 if not

iscsymf (¢} non~zero if valid first character for C
identifier, 8 if not

toupper (c) converts c¢ to upper case, if lower case

tolower (c) converts ¢ to lower case, if upper case

Note that the last two macros generate the value of ¢ unchanged
if it does not qualify for the conversion.

Lattice 88686/8088 C Compiler Portable Library Functions

3.3.3 String Utility Functions

The portable library provides several functions to perform many
of the most common string manipulations. These functions all
work with sequences of characters terminated by a NULL (zero)
byte, which is the C definition of a character string. A special
naming convention is used, which works as follows: The first two
characters of a string function are always st, while the third
charactex indicates the type of the return value from the
functions

stc function returns an int count
stp function returns a character pointer
sts function returns an int status value

Thus, the name of the function shows at a glance the type of
value it returns.

For compatibility with other C implementations, four of the most
comacn functions are provided with str names; these are the
functions mentioned in Kernighan and Ritchie: strlen, strcpy,
strcat, and strcmp.

Lattice 8086/8688 C Compiler Portable Library Functions

NAME
strien, stclen -- measure length of string
SYNOPSIS
length = strlen(s);
length = stclen(s);
int length; number of bytes in s (before NULL)
DESCRIPTION
Counts the number of bytes in s before the NULL terminator.
The terminator itself is not included in the count.
RETURNS

length = number of bytes in string before NULL byte

Lattice 8086/8088 C Compiler Portable Library Punctions

NAME
strcpy, stccpy -- copy one string to another
SYNROPSIS

strcpy(to, from);
actual = stccpy(to, from, length);

int actual; actual number of characters moved
(stccpy only)

char *to; destination string pointer

char *from; source string pointer

int length; sizeof (to) (stccpy only)

DESCRIPTION

Moves the NULL-terminated source string to the destination

string. strcpy does not get a length parameter, so all of
the source string is copied unconditionally. For stccpy, if
the source is too long for the destination, 1its rightmost
char acters are not moved. The destination string is always

NULL~terminated.

RETURNS
actual = actual number of characters moved, 1including the
NULL terminator (stccpy only)
CAUTIONS

As noted above, strcpy Jdoes not get a length parameter, so
the destinatlion string must be large enough. Use stccpy
it this causes problems,

Lattice 80686/8@¢88 C Compiler Portable Library Functions

NAME
strcat -- concatenate strings
SYNOPSIS
strcat{to, from);
char *to; string to be concatenated to
char *from; string to be added
DESCRIPTION

Concatenates from to the end of to. The result is always
NULL-terminated.

CAUTIONS

No length parameter is present, so the destination string
must be large enough to receive the combined result.

Lattice 8¢86/8088 C Compiler Portable Library Functions

HAME

strcmp, stscmp -- compare two strings

SYNOPSIS

status = strcmp(s, t);
status = stscmp(s, t);

int status; result of comparison
>8 if s>t, @ if s==t, <@ if s<t

char *s; first string to compare

char *t; second string to compare
DESCRIPTION

Compares two NULL-terminated strings, byte by byte, and

returns an int status indicating the result of the

comparison. If zero, the strings are identical, up to and

including the terminating byte. 1f non-zero, the status

indicates the result of the comparison of the first pair of
bytes which were not equal.

RETURNS
status = ¢ if strings match
< @ 1f first string less than second string
> ¢ if first string greater than second string
CAUTIONS
The result of the comparison may depend on whether

characters are considered signed, 1if any of the characters
is greater than 127,

Lattice 8086/8888 C Compiler Portable Library Functions

NAME
stcu_d -- convert unsigned integer to decimal string
SYNOPSIS

length = stcu_d{out, in, outlen};

int length; output string length (excluding NULL)
char *out; output string
unsigned in; input value
int outlen; sizeof {out)
DESCRIPTION

Converts an unsigned integer into a string of decimal digits
terminated with a NULL byte. Leading zeros are not copied
to the output string, and if the input value is zero, only a
single @ character is produced.

RETURNS

length = number of characters placed in output string, not
including the NULL terminator

CAUTIONS

If the output string is tooc small for the result, only the
rightmost digits are returned.

Lattice 80686/8088 C Compiler Portable Library Functions

NAME
stci_d -~ convert signed integer to decimal string

SYNOPSIS
length = gtci_d(out, in, outlen);
int length; output string length (excluding NULL)
char *out; output string
int in; input value
int outlen; sizeof (out)

DESCRIPTION
Converts an integer into a string of decimal digits
terminated with a NULL byte. If the integer is negative,
the output string is preceded by a -. Leading zeros are not
copied to the output string.

RETURNS
length = number of characters placed in output string, not

including the NULL terminator
CAUTIONS

If the output string is too small for the result, the
returned length may be zero, or a partial string may be
returned.

Lattice 8086/8088 C Compiler Portable Library Functions

NAME
stch_i -- convert hexadecimal string to integer
SYNOPSIS
count = stch_i(p, r);
int count; number of characters scanned
char *p; input string
int *r; result integer
DESCRIPTION
Converts a hexadecimal string into an integer. The process
terminates only when a non-hex character is encountered.
Valid hex characters are 8-9, A-F, and a-f.
RETURNS
count = @ if input string does not begin with a hex digit
= number of characters scanned
CAUTIONS

No check for overflow is made during the processing.

v}"

()

Lattice BV/8088 C Compiler Portable Library Punctions

NAME
stcd_i -- convert decimal string to integer
SYNOPSIS
count = stcd_i(p, r);
int count; number of characters scanned
char *p; input string
int *r; result integer
DESCRIPTION
Converts a decimal string into an integer. The process
terminates when a non-decimal character is found. valid
decimal characters are #-9. The first character may be + or -.
RETURNS
count = @ if input string does not begin with a decimal
digit
= number of characters scanned
CAUTIONS

No check for overflow is made during processing.

Lattice 8086/8888 C Cowmpiler Portable Library Functions

NAME
stpblk -- skip blanks (white space)
SYNOPSIS
q = stpblk(p);
char *q; updated string pointer
char *p; initial string pointer
DESCRIPTION
Advances the string pointer past white space characters
(space, tab, or newline).
RETURNS
q = updated string pointer (advanced past white space)
CAUTIONS

Must be declared char *, as the stp prefix indicates.

Lattice 8686/8888 C Compiler

NAME

Portable Library Functions

stpsym -- get a symbol from a string

SYNOPSIS

p = stpsym(s, sym, symlen);

char *p; points to next character in s
char *s; input string
char *sym; output string
int symlen; sizeof (sym)
DESCRIPTION

Breaks out the next symbol from the input string. The first
character of the symbol must be alphabetic (upper or lower
case), and the remaining characters must be alphanumeric.
Note that the pointer is not advanced past any initial white
space in the input string. The output string is the NOULL-
terminated symbol.

RETURNS

p = pointer to next character (after symbol) in input string

CAUTIONS

Must be declared char *, as the stp prefix indicates. If no
valid symbol characters are found, p will equal s, and sym
will contain an initial NULL byte.

sL-t

*83Aq JINN TEIITUT UR UTERIUOD (1M
¥03 pue ‘s tjenba (1i1m d “‘punoj ai1e si331deieyd UIX03 PprieA
ou 31 -s@3jedipur x13aiad dis ayj se ‘, IeYD PIIV[OIP 3G ISNW

SNOILNYD
butri3s 3ndut ut (uaxol 233je) 333deIeyD 3IXdU 03 1ajutod = d
SNINLIY
cuayol
PIIRUTWIIZI-TIAN @Yyl st buyizs Indino ayy *burays Indur
dY3y ur siajoereydo aoeds ajrys reyjrur Aue 3sed paoueape

30U Sy 133jutod 8yl 3Jeyl 230N °"UIY0) ® UI PAapN[OuUT ag Jouued
yotym §1330Rieyd JO 3IST] @ s3ur3ap buriys yearq 2yl ‘spiom

19yzo uj *Hutrils yeaiq Iyl Ul ST VY3 1I33IdRIRYD 3ISIT]J

ay3 burpniour 30u Ing 03 dn s UT BIIJORIPYD [Ie JO SISISUOD

uayol Iy *Huriis jnduy ayy wWo1j uaxol IX3U 3Y3l 3Ino s)xeailg
NROILAI¥DS3Ad

buriys xeazq I3y1qe IRYD

(x03) joazys {uagxoy juy

butri3s 3ndano {303y 10YD

butrays 3ndut 184 10YD

8 Ul aeyd 3Ixau o3 sjurod {dy 204D

{(xaq ‘uaxol ‘ol ‘s)xo3dis = d
SISJdONXS
buyils ® woij uayol e 336 -- yoadas

JHYR

suofidung Lawiqyq] @[qe3lrogd 1917dwmo) D §898/9888 22F33e]

Lattice B986/8088 C Compiler Portable Library Functions

NAME
stpchr -- find specific character in string
SYNOPSIS

p = stpchr(s, c);

char *p; points to ¢ in 8 {(or is RULL)

char *s; points to string being scanned

char c¢; character to be located
DESCRIPTION

Scans the specified string to find the first occurrence of
the specified character. 1If the NULL terminator byte is hit
first, a NULL pointer is returned.

RETURNS
p = NULL if ¢ not found in s
= pointer to first ¢ found in 8 (from left)
CAUT]IONS

Must be declared char *, as the stp prefix indicates.

Lattice 8086/8088 C Compiler Portable Library Functions

NAME
stpbrk -~ find break character in string
SYNOPSIS
p = stpbrk(s, b);
char *p; points to element of b in s
char *s; points to string being scanned
char *b; points to break character string
DESCRIPTION
Scans the specified string to find the first occurrence of a
character from the break string b. In other words, b is a
NULL terminated 1list of characters being sought. If the
terminator byte for 8 is hit first, a NULL pointer is
returned.
RETURNS
P = NULL if no element of b is found in s
= pointer to first element of b in 8 (from left)
CAUTIONS

Must be declared char *, as the stp prefix indicates.

3-717

Lattice 80686/8088 C Compiler Portable Library Functions

NAME

stcis, stcisn -- measure span of a character set

SYNOPSIS

length = stcis(s, b);
length = stcisn(s, b);

#

int length; span length in bytes

chaxr *s; points to string being scannegd

char *b; points to character set string
DESCRIPTION

These functions compute the number of characters at the
beginning (left) of s that come from a specified character
set. For stcis, the character set consists of all
characters in b, while for stcisn, the character set
consists of all characters not in b.

RETURNS

length = number of characters from the specified set which
appear at the beginning (left) of s

Lattice 8086/8888 C Compiler Portable Library Functions

NAME
stcarg ~- get an argument

SYNOPSIS
length = stcarg(s, b);
int length; number of bytes in argument
char *s; text string pointer
char *b; break string pointer

DESCRIPTION
Scans the text string until one of the break characters is
found or until the text string ends (as indicated by a NULL
character). While scanning, the function skips over partial
strings enclosed in single or double quotes, and the
backslash is recognized as an escape character.

RETURNS

length number of bytes (in s8) in argument

@ if not found

"o

3-79

Lattice 8686/8888 C Compiler Portable Library Functions

NAME

stcpm -- pattern match (unanchored)

SYROPSIS

length = stcpm(s, p, q);

int length; length of matched string

char *s; string being scanned

chax *p; pattern string

char **q; points to matched string if found

DESCRIPTION

Scans the specified string to find the first substring that
matches the specified pattern. The pattern is specified in
a simple form of regular expression notation, where

? matches any character
s*® matches zero or more occurrences of s
s+ matches one or more occurrences of s

The backslash is used as an escape character (to match one
of the special characters 7, *, or +). The scan is not
anchored; that is, if a matching string is not found at the
first position of 8, the next position is tried, and so on.
A pointer to the first matching =vbstring is returned at *q.

RETURNS

length = @ if no match
= length of matching substring, if successful

CAUTIONS

Note that the third argument must be a pointer to a
character pointer, since this function really returns two
values: a pointer to, 2nd the length of the first matching
substring.

Lattice 8686/8¢88 C Compiler Portable Library Functions

NAME
stcpma -- pattern match (anchored}
SYNOPSIS
length = stcpma({s, p};
int length; length of matching string
char *s; string being scanned
char *p; pattern string
DESCRIPTION
Scans the specified string to determine if it begins with a
substring that matches the specified pattern. See the
description of stcpm for a specification of the pattern
format.
RETURNS
length ¢ if no match

length of matching substring if successful

Lattice 8086/8888 C Compiler Portable Library Functions

NAME
stspfp -- parse file pattern

SYNOPSIS
error = stspfp(p, n);
int error; return code: -1 if error
chax *p; file name string
int n(l16]; node index array

DESCRIPTION
Parses a file name pattern which consists of node names
separated by slashes. Each slash is replaced by a NULL
byte, and the beginning index of that node is placed in the
index array. For example, the pattern /abc/de/f has three
nodes, and their indexes are 1 for abc, 5 for de, and 8 for
f. Note that the leading slash, if present, 1is skipped.
Note also that a slash that is part of a node name (usually
unwise) must be preceded by a backslash, The last entry in
the node array n is set to -1 (in the example above, this
causes n{3] to be -1).

RETURNS

@ if successful

error =
= -1 if too many nodes or other error

Lattice 8086/8088 C Compiler Portable Library Functions

3.3.4 Utility Macros

The standard 1/0 header file stdio.h defines three general
utility macros which are useful in working with arithmetic
objects. They are:

max(a,b) returns the maximum of a and b
min{a,b) returns the minimum of a and b
abs (a) returns the absolute value of a

Several important restrictions must be noted.

First, since these are macros which use the conditional operator,
arguments with side effects (such as function calls or increment
or decrement operators) cannot be used, and the address-of
operator cannot be applied to these "functions™. Second, beware
of using the macro names in declarations such as

int min;

because the compiler will try to expand min as a macro, and an
error message complaining of invalid macro usage will be
generated. Third, only arithmetic data items should be used as
arguments to these macros; max and min should be supplied two
arguments of the same data type, although conversion will be
performed 1f necessary.

Lattice 80686/8688 C Compiler Compiler/Run-time Implementation

SECTION 4:
Compiler and Run-time Implementation

A version of the Lattice C compiler for the B88¢86/8088 runs under
Microsoft's MS-DOS operating system. It accepts programs written
in the C programming language (the full language -- not a subset)
and produces relocatable machine code in Intel's 80886 object
module format, suitable for use by Microsoft's program 1linker.
The library defines a comprehensive set of I/0 subroutines which
implement under MS-DOS wmost of the UNIX-compatible standard
functions described in the text by Kernighan and Ritchie.

The 8086 instruction set is well-suited to the implementation of
a high-level language like C, and the Lattice compiler generates
machine code which takes full advantage of 1its features.
Although the 8086 architecture supports up to 1 megabyte of
addressable memory, its segmented addressing approach works most
efficiently with 64K-byte program and data address spaces. In
order to provide the most flexibility, the compiler supports four

different memory addressing environments, or models, from which
the programmer can select the combination of efficiency and
addressability reguired for a particular application. These

models are discussed in more detail in Section 4.4; initially,
only the simplest and most efficient model will be presented in
examples: the so-called S model in which a program may have a
maximum of 64K bytes of program section (functions), plus a
maximum of 64K bytes of data section (including static data, auto
or stack data, and dynamically allocatable memory}. Despite
these limitations, programs of considerable complexity and power
(including the compiler itself) can be developed.

4.1 Operating Instructions

See Appendix D for the most current list of the files supplied
with the compiler package. The executable files LC1.EXE and
LC2.EXE make up the actual compiler. Each performs a portion of
the compilation process and must be invoked by separate commands;
LC1 does not automatically 1load LC2 when it completes its
processing. Normally, LC2 should be executed immediately after
LCl if there are no errors in the source file. A batch procedure
file can be used to execute LCL and LC2 in succession, using the
same file name (the normal sequence). The compilation process
can be diagramed as follows:

file.C -> LCl -> file.Q
file.Q -> LC2 -> file.OBJ

LC1l reads a C source file, which must have a .C extension, and
(provided there are no fatal errors) produces an intermediate
file of the same name with a .Q extension. LC2 reads an
intermediate file created by LCl1l and produces an object file of
the same name with an .0OBJ extension. The .Q file is deleted by
LC2 when it completes its processing. Each phase normally
creates its output file on the same drive and directory as the

4-1

Lattice 8686/8688 C Compiler Compiler/Run-time Implementation

input file. Note that if a source file defines more than one
function, so does its resulting object file. Individual
functions cannot be broken out from the object file when a
program is linked; see Section 4.3.2 for more information.

The .OBJ file must be supplied as input to the linker in order to
produce an executable program file. Two special files must also
be involved in the linking process, in addition to any .OBJ files
created by the user. The linking process can be diagrammed as
follows:

(Note that the actual filenames used depends upon the memory
model selected; see Section 4.4 for more information. In this
discussion and in the example below, the S5 model will be used to
illustrate the linking process.) -

CS.0OBJ + user.OBJ + ... + LCS.LIB -> LINK -> user.EXE

The special files required are CS.0BJ and LCS.LIB. First, the
file CS.OBJ must be specified as the first module on the LINK
execution command; this module defines the execution entry and
exit points for any program generated using the Lattice C
compiler. Second, the file LCS.LIB must be specified as the
library; this file defines all of the run-time and 1/0 library
functions 1included as part of the Lattice C package. The user
must also specify at link time the names of any .OBJ files which
are to be included, as well as the name of the .BXE file which
will be created by the linker.

To illustrate the program generation sequence, the following
commands necessary to compile, 1link, and execute the Fahrenheit-

to-Celsius sample program (FTOC.C). This example assumes that
all of the .EXE files (LCl, LC2, and LINK) reside on the same
disk and directory. The commands will be shown in upper case,
although 1lower case commands will work as well. (Note: the

linker prompts described here are for Version 1.18 of the
Microsoft linker; for LINK.EXE versions other than 1.1, and for
use with linkers other than the Microsoft linker, appropriate
documentation should be consulted. Generally, the default
responses are correct.)

STEP 1: Execute the first phase of the compiler by typing
LC1 FTOCCKENTER>

Note that the .C extension is not supplied (although
the command will work properly even if it is).

STEP 2: when the MS-DOS prompt 1is 1issued after LCl1 has
completed its processing, execute the second phase of
the compiler with

LC2 FTOC<KENTER>

Again, no extension is specified; LC2 supplies the .Q

Lattice 8986/8d88 C Compiler Compiler/Run-time Implementation

extension.

STEP 3: when the prompt is issued after LC2 has completed its
processing, the linker is invoked by typing

LINK CS+FTOC,FTOC,NUL,LCS

Note that CS (meaning CS.OBJ) is specified as the first
object module on the LINK command; this is required for
the 1linking of any C program. Then FTOC (meaning
FTOC.0OBJ, which was just produced by LC2) is specified
as an additional object module. The second FTOC causes
the run file to be named FTOC.EXE, NUL skips the
generation of a link map, and LCS causes LINK to search
LCS.LIB for external references.

STEP 4: Execute the .EXE file by typing
FTOCKENTER>

The program writes a list of Fahrenheit temperature
values and their Celsius equivalents to the wuser's
console.

Detailed instructions for compiling, 1linking, and executing
programs are presented in the following sections. See Section
4.3 for a detailed discussion of the processing performed by the
compl ler phases,

In presenting the various command line formats, the term field
will be used to describe a sequence of non-white space characters

in the command line. Optional fields will be shown enclosed in
square brackets []; the brackets are not to be included when the
actual command is typed. Examples are provided at the end of

each section.

Versions of Lattice C designed to take advantage of MS$-DOS
version 2.0 recognize the full Version 2 pathnames for all
filenames. The name can be specified on the command line, as in:

LCl b:\lowlevel\file

(which specifies b:\lowlevel\file.c for compilation), or it can
be specified in $include statements, as in

#include "b:\headers\stdio.h"
See option -id below for further uses of command line pathnames.
4.1.1 Phase 1

The first phase of the compiler reads a C source file and

produces an intermediate file of 1logical records ' called
quadruples, or quads. See Section 4.3.1 for a more detailed
discussion of the processing performed. The format of the

4-3

Lattice 8886/8088 C Compiler Compiler/Run-time Implementation

command to invoke the first phase of the compiler is:
LC1 [=stack] [>listfile]} filename [options]<ENTER>

The various command line specifiers are shown in the order they

must appear in the command. Required specifier are shown in
emphasized type. Optional specifiers are shown enclosed in
brackets. The first two options are part of the general command

line options for all C programs (see Section 4.1.4). This allows
the use of if expressions in batch files, such as:

LC1 %1
if errorlevel 1 goto errs

=stack The first option is used to override the number of
bytes reserved for the stack (see Section 4.5 for a
complete description of the structure of C programs).
The default is 2048 (decimal) bytes, which is
sufficient for most programs. I1f present, the stack
size override field must be the first field after the
name of the first phase (LCl). It is specified as an
equals sign followed by a decimal number (for example,
=4996 specifies a value of 4996 decimal bytes). Since
the compiler wuses recursion to process C statements,
heavily-nested statements cause the compiler to use
more stack space than straightforward, linear
sequences. If a source program with many embedded
statements (ifs within ifs within ifs, etc.) causes the
first phase to terminate execution with a STACK
OVERFLOW error message, the program should compile
successfully if LCl is re-executed using an increased
stack size, such as 4896. Some experimentation may be
required to determine the necessary stack size. On
systems which are cramped for memory, the stack size
may be trimmed down in an attempt to eliminate a Not
enough memory error; there is no guarantee, however,
that the compilation will be successful, particularly
if the stack size is reduced below 1824 bytes,

>listfile The second option is used to direct the first phase

messages to a specified file. These messages include
the compiler sign-on message and any error or warning
messages which may be generated. The full filename

must be specified, including extension, if any. If the
file already exists, it is truncated and reused. This
option is useful for reviewing long lists of exrror
messages.

filename This 1is the only command line field which must be
present; it specifies the name of the C source file

which is to be compiled. The filename should be
specified without the .C extension; the first phase
supplies the extension automatically. Note that only

files with a .C extension can be compiled; if some
other extension is specified, the compiler ignores it

Lattice 8086/80688 C Compiler Compiler/Run-time Implementation

options

~d

and tries to find name.C. (#include files, on the
other hand, must be fully specified with extensions.)
The default drive and directory (hereafter

drive/directory) are used unless a pathname preceding
the filename specifies another drive/directory; the

quad file is created jp-eie same drive and directory as
the source file less the -o option is used (see
below). Alphabetic characters may be either upper or

lower case in filenames.

Compile time options are specified as a hyphen followed
by a single letter. The letter must be typed in lower
case; the corresponding upper case option will have no
effect. Each option must be specified separately, with
a separate hyphen and letter (that is, they cannot be
combined as they can for certain UNIX programs).
Current options include:

Causes the compiler to assume worst-case aliasing, that
is, to abandon any optimizations based on favorable
assumptions about pointers. Normally, the compiler
assumes that objects referenced through pointers are
not the same as objects being referenced directly in
the same section of the program; this option cancels
that assumption. The -a option additionally forces all
assignment statements to be performed (i.e., the actual
store to memory) before execution of the next
statement. Normally, the code generated for assignment
causes a value to be loaded to a register, but it may
not be stored immediately; the -a flag now forces the
store operation. This is important only in (1) unions,
where a value is stored and then immediately inspected
or passed to a function via another member; (2) real-
time processing where shared data values are used as
"lock" words, and immediate execution of an assignment
statement is critical to subsequent actions; and (3)
memory-mapped 1/0 assignments, where values must be
stored repeatedly in the same "memory" location.

Forces byte alignment for all offset calculations. The
first phase normally aligns all objects which are not
pointers, structures, or unions on a word boundary.

Causes comments to be processed without nesting. The
Lattice compiler normally assumes that comments may be
nested; this allows large sections of code to be
commented out very easily. This option allows the user
to force the compiler to the standard, non-nesting mode
of operation.

Causes debugging information to be inciuded in the quad
file. Specifically, 1line separator quads are inter-
spersed with the normal quads. This allows the second
phase to collect information relating input line num-
bers to program section offsets. 1f this option is

4-5

Lattice 8086/8d88 C Compiler Compiler/Run-time Implementation

~-iprefix

-~mM

-oprefix

used, the object file produced will contain line num-
ber/offset records, and can be processed by the Object
Module Disassembler to produce an intermixed source
code and machine code 1listing (see Section 4.1.6
below). Note that the -d option does not affect the
size of the function itself, only the object file.

Specifies that #include files are to be searched for by
prepending the filename with the string prefix, unless
the filename in the #include statement 1s already
prefixed by a drive or directory identifier. Up to 4
different -i strings may be specified. Note that when
an unprefixed #include filename is encountered, the
current drive/directory is searched; then
drive/directories are searched using prefixes specified
in -i options, in the same left-to-right order as they
were supplied on the command line. The drive/directory
specification should follow DOS 2.6 naming conventions
(see example below). No intervening blanks are
permitted in the string following the i.

Causes the compiler to generate code for the specified
memory model. The model can be specified as a single
letter, either upper-~ or lower-case, naming the model;
or a numeric indicator from @ to 3 may be used ($=0,
P=1, D=2, L=3). The model specifier must be adjacent
to the m (no intervening blanks). (See Section 4.4.2),

Causes the compiler to retain up to 39 characters for
all identifier symbols, including #define symbols. The
default symbol retention length is 8 characters.

Specifies that the output file (the .Q or quad file) is
to Dbe formed by prepending the input filename (the .C
file which is being compiled) with prefix. The drive
is specified by a single alphabetic character, either

upper or lower case, followed by a colon. Thus ~-ob:
causes prepending with b:. Any drive or directory
prefixes attached to the input filename are discarded
before the prepending is performed. No intervening

blanks are permitted in the string following the o.

Changes the way code 1is generated for four-byte
pointers in the D and L models; see Section 4.4.5.

Changes the default storage class for external
declarations (made outside the body of a function) from
external definition to external reference. The usual
meaning of an extermal declaration for which an
explicit storage class is not present is to define
storage for the object and make it visible 1in other
files: i.e., external definition, The -x option
causes such declarations to be treated as if they were
preceded by the extern keyword, that is, the object

Lattice 8086/8688 C Compiler Compiler/Run-time Implementation

being declared 1is present in some other file. This
option is provided for use on programs written for the
BDS C compiler; see Appendix C for more information.

EXAMPLES
LCl xyzfile -b:\headers\

This command executes the first phase of the compiler
using file XYZFILE.C as input, creating file XYZFILE.Q
in the current directory. Any #include files not found
in the current drive/directory will be searched for in
the directory B:\HEADERS. Note the trailing backslash
on the prefix attached to the -i flag; it is not
automatically assumed by the compiler.

LCl1 XYZ -ob: -x

This command executes the first phase of the compiler
using file XY2.C as input, creating file XYZ.Q on B:;
it sets all external declarations without a storage
class to be interpreted as extern declarations.

LC1 =4096 >tns.err tns

This command executes the first phase of the compiler
using file TNS.C as input, creating file TNS.Q on the
currently logged-in disk; it causes the stack size to
4096 decimal bytes, and create a file TNS.ERR to
contain all of the messages generated by the compiler.

4.1.2 Phase 2

The second phase of the compiler reads a quad file created by the
first phase and creates an object file in the standard MS-DOS
format. See Section 4.3.2 for a more detailed discussion of the
processing performed. The format of the command to invoke the
second phase of the compiler is:

LC2 filename (options]<ENTER>

The command format is very similar to that for the first phase.
The stack size override and listfile options can also be used,
but they are generally less useful and will not be described here
in any detail. Note that neither phase of the compiler does any
processing of the standard input, so the < option has no effect
on elther phase (see Section 4.1.4 for the general C program
execution options).

filename This field must be present; it specifies the name of
the intermediate file for which code is to be
generated. This intermediate file is a quad file with
a .Q extension, created by the first phase of the
compiler. The file name should be specified without
the .0 extension; the second phase supplies the

4-7

Lattice 8686/8088 C Compiler Compiler/Run-time Implementation

extension automatically. Alphabetic characters may be
supplied in either upper or lower case. The default
directory is used unless another drive/directory name
is specified, and the object file is created in the
same drive as the quad file unless the -o option is
used (see below).

options Compile time options are specified as a hyphen
followed by a single letter. The letter must be typed
in lower case; the corresponding upper case option will
have no effect, Each option must be specified
separately, with a separate hyphen and letter (that is,
they cannot be combined as they can for certain UNIX
programs). Current options include:

-ggroup Assigns a name of the user's choice to be used for the
code group in the .0BJ module. group may be 15 or
fewer characters in length, and must be adjacent to the
-3 {(no intervening blanks).

-oprefix Specifies that the output file (the .0BJ file) is to be
formed by prepending the input filename (the .Q file
which is being compiled) with prefix. The drive is
specified by a single alphabetic character, either
upper or lower case, followed by a colon. Thus -ob:
causes prepending with b:. Any drive or directory
prefixes attached to the input filename are discarded
before the prepending is performed. No intervening
blanks are permitted in the string following the o.

-ssegment Assigns a name of the user's choice to be used for the
code segment in the .0BJ module. segment must be 15 or
fewer characters in length, and must be adjacent to the
-8 (no intervening blanks).

~-v Causes the code generator to omit the code at the entry
to each function which checks for stack overflow (See
Section 4.5.5).

The ~g and -s options for LC2 are provided to override the
default code group and segment names. Only users who need to
intexface to very specialized applications (other languages,
etc.) will need to make use of these options.

EXAMPLE
LC2 u79@ -oc:
This command executes the second phase of the compiler

using file U790.Q as input, causing the file U790.0BJ
to be created on drive C:.

Lattice 8086/8888 C Compiler Compiler/Run-time Implementation

4.1.3 Pzggram Linking

After all of the component source modules for a program have been
compiled, they must be linked together to form an executable

program file. This step 1is necessary for several reasons.
First, the object file produced by the second phase of the
compiler is not in a state suitable for execution. Second, most

programs make use of functions not defined in the current mocdule;
before such programs can execute, they must be “"connected"™ with
those other modules. These external functions may be defined by
the user, in which case they must be compiled and be available as
.0BJ files, or they may be defined in the library supplied with

the compiler. (The portable functions are described in Section
3; others defined only under MS-DOS are described in Section
5.5.) Third, although C normally defines the function called

main to be the execution point of a C program, there is usually a
considerable amount of system-dependent processing which must be
performed before main is actually called; the module to perform
this processing is integrated into the program when it is linked.

Although the usual concept of linking involves external function
calls, C also permits functions to access data locations defined
in other modules. This kind of reference is possible because the
external linkage mechanism supported by the object code
associates an external symbol with a memory location; this symbol
is the identifier used to declare the object in a C program. The
programmer must be careful to declare an object with the same
attributes in both the module which defines it and the module
which refers to it, because the linker cannot verify the type of
reference made -- it simply connects memory references using
external symbols. The use of include filesﬁggL common external
declarations will usually prevent this kind of error.

The linking process in a general sense requires that all of the
components of a program be specified, either directly or
indirectly, as input to the linker. Three types of input are
required.

1. A start-up file CS.OBJ (or CP.OBJ, CD.OBJ, or CL.OBRJ)
must be specified as the first module included by the
linker. This file defines the MS5-DOS entry point for
all C programs compiled using the Lattice C compiler.

2. Functions generated by the user must be specified as
additional modules to be included. These modules
include the main module, as well as any additional
functions defined in other source modules.

3. A library file LCS.LIB (or LCP.LIB, LCD.LIB, or LCL.LIB)
must be specified as the library to be searched during
linking.

In the case of the Microsoft linker supplied with MS-DOS, these
inputs are specified by:

Lattice 8@86/8088 C Compiler Compiler/Run-time Implementation

1. Making CS (or CP, CD, or CL) the first module on the
LINK command.

2. Including the names (without the .0BJ extension) of the
user's object files on the LINK command, after the CS
(or CP, CD, or CL) specification.

3. Typing LCS (or LCP, LCD or LCL) in response to the
Libraries prompt from the linker.

Note that for step (2), one of the files included on the LINK
command must be the main module.

If the linker cannot find one of the .OBJ files mentioned on the
LINK command, it will stop processing without creating a .EXE
file. Another error condition can arise if the linker cannot
find all of the external items referred to in the .OBJ files
specified. In this case, the message Unresolved Externals will be
generated by the linker, followed by a list of the external names
which were not defined. No attempt to execute a program with
unresolved externals should be made unless it is certain that the
missing functions will never be called. -

See Section 4.2.2 for a discussion of external names. See
Section 4.4 for a discussion of the startup and library files
used in the four memory models. See Section 4.5 for a technical
description of the object code features used in this
implementation. If the 1linker being used allows generation of a
public symbol map, a .MAP file may be created, allowing the
examination of the components in the resulting load module.

EXAMPLE

LINK CS XYZ QRS<ENTER>

Run File [CS.EXE}: XYZ<ENTER>

List File [NUL.MAP]: <ENTER>

Libraries {[.LIB]: LCS<ENTER>
This command executes the linker, producing XYZ.EXE as
an executable program, and causes the files XYZ2.0BJ and
QRS.OBJ to be included in the program. Answers to the
prompts from the linker used for this compilation are
also shown.

Alternatively, these linker instructions can appear on
a single command line:

LINK CS+XYZ+QRS,XYZ ,NUL,LCS<ENTER>
4.1.4 Program Execution
When a C program is executed, the function main is called to

begin execution. Two important services are performed for main
before it receives control.

4-1¢

Lattice 8086/8888 C Compiler Compiler/Run-time Implementation

1. The command which executed the program is analyzed, and
information from the command 1line 1is supplied as

parameters to main. The analysis performed and the
nature of the parameters supplied will be discussed in
detail below. This feature 1is designed to make it

easier to process command line inputs to the program.

2. The buffered text files stdin [standard input), stdout
(standard output), and stderr (standard error) are
opened and thus available for use by the program.
Normally, all three units are assigned to the user's
console, but stdin and stdout may be assigned elsewhere
by command line options described below. This feature
allows flexibility in the use of programs which work
with text file I/0 using the standard getchar and
putchar macros.

The simplest way to execute a C program is to type the name of
the .EXE file (without the .EXE extension), followed by a return
(<enter>). Since the command line provides a convenient way to
supply input to a program, a program execution request will often
contain other information. The general format of the command
line to execute a C program is:

pgmname [=stack] [<infile] [>outfile] [args])<ENTER>

Everything after pgmname is optional, as the brackets indicate.
The various additional items (=stack, <infile and >outfile), if
present, must appear before all other command 1line arguments
following the program name. Note that these three items do not
contribute to the argument count.

pgmname This field names the program to be executed; it is the
name of the .EXE file created when the program was

linked. It must be specified without the .EXE
extension.
=stack The first optional field is used to specify a decimal

number of bytes to be reserved for the stack when the
program executes. The default value used if this field

is not present is 2048 bytes. The stack size is
specified as a decimal number immediately preceded by
an equals sign. A1l objects declared auto are

allocated from the stack, but the memory used for these
allocations is freed when the function in which they
are declared returns to its caller. The dynamic nature
of this allocation makes it generally difficult to
predict how much stack space is actually needed for a

particular program. The stack size option on the
command line allows the user to adjust the amount of
memory reserved for the stack without having to
recompile the program. The memory reserved for the

stack affects the amount of memory available for
dynamic allocation by the various library functions

4-11

Lattice 8086/8¢88 C Compiler Compiler/Run-time Implementation

<infile

>outfile

‘args

described in Section 3.1. See Section 4.5 for more
information about the structure of C programs.

The second optional field names a file or device to
which the standard input (stdin) is to be assigned.
This option is wuseful only if the program being
executed actually uses the standard input (that is, it
processes text input using getchar or scanf or makes

explicit getc or fscanf calls using stdin). The file
or device pame must be immediately preceded by a <
character; if a file, the full name including
extension, if any, and pathname, if any, must be
specified. See Section 5.2 for a list of valid device

names, The file must exist, or the program will be
aborted with the error message Can't open stdin file.

The third optional field names a file or device to
which the standard output (stdout) is to be assigned.
This option is wuseful only if the program being
executed actually uses the standard output (that is, it
generates text output using putchar or printf or makes
explicit putc or fprintf calls using stdout). The file
or device name must be immediately preceded by a >

character; if a file, the full name including
extension, if any, must be specified. See Section 5.2
for a list of valid device names. The file is opened

as a new file, which discards its previous contents if
they already existed and creates an empty file. 1If the
filename specified is invalid or not enough directory
space is available to create the new file, the program
is aborted with the error message Can't creata stdout
file.

If two > characters are used instead of one, the file
is opened for appending, and any output is added on to
the end of the file. This option is wuseful for
accumulating logging information. The file is created
if it does not exist.

Any additional fields beyond the program name and the
three optional fields are extracted and passed to the
function main as two arguments:

main(argc, argv)
int argc; /* number of arguments */
char *argv(l; /* array of ptrs to arg strings */

Each arg string is terminated by a null byte. On most
systems which support C, argv{@] is the name by which
the program was invoked. Unfortunately, wunder MS-DOS
the program name is not readily available, although all
of the other information from the command line is. A
dummy argv(@] is therefore supplied (all programs are
named ¢ according to argv{8]) but subsequent elements
of argv are defined properly. Arguments appear in argv

Lattice 8686/8088 C Compiler Compiler/Run-time Implementation

in the same order in which they were found on the

command line. Note that the optional stack and file
specifiers are not included in the argv list of
strings.

Although all of the above features are intended as conveniences
for writing utility programs under MS-DOS, many of the library
1/0 functions are forced to be a part of the program because of
this processing (specifically, the opening of the buffered input
and output files). For programs which were going to use the
buffered 1/0 functions anyway, this does not present a problem,
even though these functions add a substantial number of bytes of
code to the size of the linked program. Users who must be
concerned about program size and who are not wusing these
functions can avoid including the extra modules by supplying a
special version of main, the library function which calls main.
See Section 5.4 for details.

EXAMPLES
CPROG =8800 <INPUT.R PQP 12

This command executes CPROG.EXE, sets the stack size to
8000 decimal bytes, and connects stdin to the file

INPUT.R. The main function will be supplied an argc
value of 3, with strings ¢, PQP, and 12 in the argv
array.

errlog >>errors.log data

This command executes ERRLOG.EXE with stdout connected
to ERRORS.LOG for appending (adding to the end of
file). The main function will be supplied with an argc
value of 2, with strings ¢ and data in the argv array.

4.1.5 Function Extract Utility

Because the compiler generates a single, indivisible object
module for all of the functions defined in a source file, the
Function Extract Utility (FXU) is provided so that groups of
small functions may be kept together in a single source file and
object modules produced for them individually. The utility
operates by extracting the source text for a single, specified
function, thus creating a source module which can then be
compiled to produce an object module defining only that specific
function.

Those who are somewhat puzzled by the need for this utility may
find the following example helpful. Suppose that one user has a
module <called STRING.C, which defines several string handling
functions, and that a program calls one of those functions (say,

strcnt). If STRING.C is compiled as a single source module, the
resulting object module defines strcnt along with several other
functions. When the program is linked, then, the machine code

for strent is included (as part of the object module produced

4-13

Lattice 8086/8088 C Compiler Compiler/Run-time Implementation

when STRING.C was compiled), but the code for all of the other
functions is included as well, even though the program does not
make use of them. Only by compiling strcnt as the only function
defined in its source module will the compiler produce an object
module which defines only that function. FXU can be used -to
produce such a source file.

The format of the command to invoke the Function Extract Utility
is

FXU [<header-file] [>output-file] filenawme function<enter>

The various command line specifiers are shown in the order they
must appear in the command; optional specifiers are shown
enclosed in brackets. The first two options are part of the
general command line options for all C programs (see Section
4.1.4).

<header-file The first option specifies a file which will be
copied to the output file when the specified

function is found. The entire file 1is copied
before any text from the function is written. 1f
only the function itself is to be written to the
output file, the <NUL option should be used, If

this option is omitted, text will be read from the
user's console and copied to the output file
until a control-Z is typed.

>output-file The second option gpecifies the output file which
will contain the text of the extracted function
(preceded by the header file text, if any). 1f
this option is omitted, text is written to the
user's console.

filename Specifies the name of the file containing the
function to be extracted,

function Specifies the name of the function to be extracted
from the specified file. The function name must
be specified exactly as it appears in its
definition, except that alphabetic characters may
be specified in either upper or lower case.

The Function Extract Utility counts braces defined in the body of
the functions in order to determine when it has reached the end
of a function. Although it recognizes comments and will not make
the mistake of counting any braces which might be enclosed in
them, it assumes that comments can be nested, which is the same
assumption normally made by the compiler. The compiler, however,
can be requested by command line option to process comments as if
they did not nest; FXU has no such option.

The text extracted consgists of all the characters between the

closing brace of the preceding function, up to and including the
clogsing brace of the extracted function. If the specified

4-14

Lattice 8086/88688 C Compiler Compiler/Run-time Implementation

function 1is the first one defined in the source file, then all
characters from the beginning of the file to the function's
closing brace are included. Note that functions which refer to
external data items defined in the source module cannot be easily
processed with the function extract utility. As the example
below illustrates, however, the header file option can be used to
avoid this limitation.

If the specified function is not encountered in the specified
source file, the output file will receive the single error
message Named function not found. Note that FXU works on only a
single function, not a list of functions. A source module
defining more than one extracted function can be generated,
however, by executing FXU repeatedly and then combining the
extracted texts using the CAT program, which is supplied as an
example source file.

The supplied version of FXU uses an internal buffer to store
characters between functions, while it scans for the next. The
buffer size can be expanded, if necessary, by a simple
modification to the source text, which is supplied as FXU.C.

EXAMPLES
FXU <NUL STRING.C strcnt

This command extracts the function called strcnt from the
text file STRING.C and causes the extracted text to be
written to the user's console.

FXU <IOS.H >INPUT.C IOFUNC.C input

This command extracts the function called input from the
text file IOFUNC.C, prepends the output with the text from
the file I0S.H and writes the resulting text to INPUT.C.
1f each function in IOFUNC.C can refer to the external
locations flagl and flag2, for example, and needs the
information from the standard 1/0 header file, then I0OS.H
should include the text

tinclude <stdio.h>
extern int flagl, flag2;

A similar technique can be used for functions which need more
extensive external references.

4.1.6 Object Module Disassembler

For programmers who wish to debug C modules at the machine code
level, the Object Module Disassembler (OMD) provides a listing of
the machine language instructions generated for a particular C
source module. If the module is compiled with the -d option so
that 1line number/offset information is included in the object
file, the disassembler wutility can produce a listing with
interspersed source code lines. This listing can then be used in

4-15

Lattice 8086/8088 C Compiler Compiler/Run~-time Implementation

association with the link map for the program to perform
interactive debugging using Microsoft's DEBUG.

The format of the command to invoke the object module
disassembler is

OMD [>listfile] [options) objfile [textfile]

The various command line specifiers are shown in the order they
must appear in the command. Optional specifiers are shown
enclosed in brackets.

>listfile The first option is used to direct the listing produced
by OMD to a specified file or device. 1f this option
is omitted, the listing output is written to the user's
console.

options Four override options can be specified; each consists
of a hyphen followed by a single letter which indicates
the value to be overridden, and a string of decimal
digits specifying the override value. There must be no
embedded blanks in any single option, but each must be
specified as a separate field. The valid options are:

-Pnnn Overrides the default size provided for the program
section of the object module being processed. nnn
specifies a decimal number of bytes of storage to be
allocated for the program section. The default value
is 1624 bytes.

-Dnnn Overrides the default size provided for the data
section of the object module being processed. nnn
specifies a decimal number of bytes of storage to be
allocated for the data section. The default value is
1024 bytes.

~Xnnn Overrides the default maximum number of external items
which can be processed by OMD; this number applies
separately to both external definitions and external
references. nnn specifies a decimal number of external

items which can be processed. The default value is
200.

-Lnnn Overrides the default size for the line number and
offset information tables. These tables are used only

if the object file was produced with the -d ‘option;
line number/offset information from the file is placed
in these tables. The default size (which defines the
maximum number of line number/offset pairs which can be
processed) is 1060.

objfile Specifies the name of the object file, produced by the
compiler, which is to be processed by OMD. The full
name including the .0BJ extension must be specified.

Lattice 8086/8088 C Compiler Compiler/Run~-time Implementation

textfile Specifies the name of a C source code file which is to
be listed along with the disassembled instructions. 1If
this option is present, the object file must have been
compiled using the -d option for the LCl command. The
full name including the .C extension wmust be specified.

OMD processes only a single object module. The entire module is
read and loaded into memory before the listing is generated. The
various override options are useful for processing very large
object modules, or for reducing the amount of memory needed by
OMD on systems which are cramped for memory.

If the textfile option is used, only the source text from the
specified file is listed; 1if it refers to any #include files,
they will not be listed. Some limitations of the textfile option
should be noted. First, the code generated for the third portion
of for statements is placed at the bottom of the loop; that code
will appear in front of the next statement after the end of the
loop. Second, the compiler tends to defer storing registers
until the last possible moment, so that the code shown for
assignment statements often consists merely of loading values
into registers; the registers will be stored later. Finally, the
code generated for entry to a function will often be displayed in
front of the source lines defining that function. Thus,
inspection of the surrounding code may be necessary to determine
the actual code generated for a source file construct.

EXAMPLES
OMD -P2#48 -D8G@S QRS.OBJ

This comwand disassembles the object module QRS.OBJ and
writes the listing to the user's console; it causes
2048 decimal bytes of storage to be allocated for the
program section defined in the object module, and 8089
decimal bytes for the data section.

OMD >TEMP.LST -~X46¢ XYZ.0OBJ XYZ.C

This command disassembles the object module XYZ.0BJ and
writes the listing to the file TEMP.LST; it causes the
source code lines from XYZ.C to be placed in the
listing, provided that line number and offset
information is present in the object file. It also
provides for a maximum number of 408 external items
(same limit for both external definitions and external
references}).

ERROR MESSAGES

A variety of error conditions are detected by the Object Module
Disassembler; all cause early termination of the output file and
result in the writing of an appropriate error message to stderr.
These messages are self-explanatory for the most part. If one of
the run-time-specifiable options is not sufficiently large, the

4-17

Lattice 8086/8¢88 C Compiler Compiler/Run-time Implementation

error message will indicate the specific option which was not
large enough; for example, 1if the module defines too many words
of program section, the message

Program section overflow

will Dbe produced. Note that OMD was designed specifically for
use with modules generated by the C compiler; attempts to use it
with other object modules will probably cause an error message to
be generated.

4.2 Machine Dependencies

The C language definition does not completely specify all aspects
of the language; a number of important features are described as
machine-dependent. This flexibility in some of the finer details
permits the lanquage to be implemented on a variety of machine
architectures without forcing code generation sequences that are
elegant on one machine and awkward on another. This section
describes the machine-dependent features of +the 1language as
implemented on the 8086/8088. See Section 2 of the manual for a
description of the machine-independent features of the Lattice
implementation of the language.

4.2.1 Data Elements

The standard C data types are implemented according to the
following descriptions. The only data elements which free
alignment to a word offset are pointers, structures, and unions;
as noted in Section 4.1.2, this alignment can be disabled by a
compile time option. In all cases, regardless of the length of
the data element, the low order (least significant) byte is
stored first, followed by successively higher order bytes. This
scheme is congistent with the general byte ordering used on the
8986, and with the memory formats expected by the 8087 numeric
data processor, The following table summarizes the character-
istics of the data types:

Type Length in Bits Range
char 8 @ to 255 (ASCII character set)
int 16 -32768 to 32767
short 16 -32768 to 32767
unsigned 16 # to 65535
long 32 -2E9 to 2E9
float 32 +/- 10E37 to +/- 10E38
double 64 +/- 18E-307 to +/- 1@E308
char defines an 8-bit unsigned integer. Text

characters are generated with bit 7 reset,
according to the standard ASCII format.

int defines a 16-bit signed integer; short and short
int are synonyms.

Lattice 8086/8088 C Compiler Compiler/Run-time Implementation

unsigned or

unsigned int defines a 16-bit unsigned integer. Note that in
this implementation, unsigned is not a modifier
but a separate data type.

long or
long int defines a 32-bit signed integer.
float defines a 32-bit signed floating point number,

with an 8-bit biased binary exponent, and a 24-
bit fractional part which is stored in normalized
form without the high-crder bit being explicitly
represented. The exponent bias is 127. This
representation 1is equivalent to approximately 6
or 7 decimal digits of precision.

double or

long float defines a 64-bit signed floating point number,
with an 11-bit biased binary exponent, and a 53-
bit fractional part which is stored in normalized
form without the high~order bit being explicitly
represented. The exponent bias is 1¢23. This
representation is equivalent to approximately 15
or 16 decimal digits of precision.

Pointers to the various data types are either two bytes or four
bytes in length, depending on the memory addressing model used.
See Section 4.4 for more information.

4.2.2 External Names

External identifiers in the MS-DOS implementation differ from
ordinary identifiers in one important respect: the MS-DOS linker
treats upper and lower case letters as if they were the same.
This means that, although the compiler will consider main and
MAIN to be two different functions, the linker will not.
External names may be up to 8 characters in length, and the
underscore 1is a valid character. Since the compiler always
assumes that external names have the same characteristics as
ordinary identifiers, programmers must be careful not to define
external names which the compiler believes are different but
which the linker will interpret as the same name. A safe rule is
to use lower case letters only for all externally visible items,
including functions and data items which are to be defined for
reference from functions in other source files.

A user may define external objects with any name that does not
conflict with the following classes of identifiers:

#kx4k4%x Certain library functions and data elements (defined in
modules written in C) are defined with an initial
underscore.

CX*has Run-t ime support functions (written in assembly
language) which implement C language features such as

4-19

Lattice 8086/8688 C Compiler Compiler/Run-time Implementation

long integer multiply and divide, floating point
arithmetic, and the 1like are defined with CX as the
first two characters.

XCtarn Low-level operating system interface functions (written
in assembly langquage) are defined with XC as the first
two characters.

The 1likelihood of collision with library definitions is remote,
but users should be aware of these conventions and avoid applying
these types of identifiers to external, user-defined functions
and data.

4.2.3 Include File Processing
Include files may be specified as:
#include "filename.ext"
or

finclude <filename.ext>

The two forms have exactly the same effect. The name between the
delimiters 1is taken at face wvalue; the extension must be

specified 1if one is defined for the file. The usual convention
is to use .H for all header files, as was done with the header
files included with the compiler package. Alphabetic characters

in a filename may be specified in either upper or 1lower case.
The file must be present in the default drive/directory unless a

drive specifier or pathname is included in the filename (not
recommended). The -i option (see Section 4.1.1) is the
recommended method for specifying a different drive and/or
directory path. The filename is retained internally by the

compiler for error reporting (see Section 4.3.3).
4.2.4 Arithmetic Operations and Conversions

Arithmetic operations for the integral types (floating type
operations are discussed in the next section) are generally
performed by in-line code. Integer overflows are ignored in all
cases, although 16-bit signed comparisons correctly include
overflow in determining the relative size of operands. Division
by zero generates an interrupt which is processed by MS$S-DOS; on
the operating system used to develop the compiler, the message
Integer overflow is generated and execution of the offending
program aborted. Division of negative integers causes truncation
toward zero, just as it does for positive integers, and the
remainder has the same sign as the dividend. Right shifts are
arithmetic, that is, the sign bit is copied into vacated bit
positions, wunless the operand being shifted is unsigned; in that
case, a logical (zero-fill) right shift is performed.

Function calls to library routines are generated only for long
integer multiplication, division, and comparison. Product
overflow is ignored. Division by zero yields a result of zero.
The sign of the remainder 1is the same as the sign of the

4-20

Lattice 8086/8088 C Compiler Compiler/Run-time Implementation

dividend. Comparison 1is signed but does not take account of
overflow.

Conversions are dgenerated according to the “usual arithmetic
conversions™ described in Kernighan and Ritchie, and are
generally trouble free. The following four points should be
noted:

1. char objects are unsigned in this implementation. Sign
extension is not performed during expansion to int;
instead, the high byte is simply set to zero. Code
sequences such as

char i;

for {i=8; i >= @; i--)
will not work (in this case, the loop never terminates).

2. Conversion of int or short to 1long causes sign
extension. The inverse operation is a truncation; the
result is undé¥fined if its absolute value is too large
to be represented.

3. Conversions from integral to floating types are fairly
straightforward. The inverse conversions cause any
fractional part to be dropped.

4. Conversion from float to double is well-defined, but the
inverse operation may cause an underflow or overflow
condition since double has a much larger exponent range.
Considerable precision is also lost, though the fraction
is rounded to its nearest float equivalent.

4.2.5 Floating Point Operations

In accordance with the language definition, all floating point
arithmetic operations are performed using double precision
operands, and all function arguments of type float are converted
to type double before the function is called. The formats used
are identical to the short real and long real formats expected by
the 80687 numeric data processor (the formats are described in
Section 4.2.1). Legal floating point operations include simple
assignment, conversion to other arithmetic types, unary minus
{change sign), addition, subtraction, multiplication, division,
and comparison for equality or relative size. Note that, in
contrast to the signed integer representations, negative floating
point values are not represented in two's complement notation;
positive and negative numbers differ only in the sign bit. 'This
means that two kinds of =zero are possible: positive and
negative. All floating point operations treat either value as
true zero and generally produce positive zero, whenever possible.
Note that code which checks float or double objects for zero by
type punning (that is, examining the objects as if they were int
or some other integral type) may assume (falsely) negative zero

4-21

Lattice 8086/8088 C Compiler Compiler /Run-time Implementation

to be not zero.

Floating point arithmetic and comparison operations are performed
by generating calls to library functions. These functions do not
make use of the 8887, although the floating-point formats are
compatible with the 8@87. Note that these functions were
designed for accuracy, not speed, using straightforward,
unsophisticated algorithms.

Floating point exceptions are processed by a library function
called CXFERR that 1is vcalled according to the following
convention:

CXFERR{errno);
int errno;

where errno can be
underflow

overflow
= divide by zero

1
2
3

The standard version of CXFERR supplied in the 1library file
LCS.LIB (and LCP.LIB, LCD.LIB, and LCL.LIB} simply ignores all
error conditions. You may write a different version (in either C
or assembly language) to print out an error message and terminate
processing, or take any other action. If CXFERR returns to the
library function which called it, each exception is processed as
follows:

Under flow Sets the result equal to zero.)
Overflow Sets the result to plus or minus infinity.
Zerodivide Sets the result equal to zero.

Consult the 80687 description for more information about the
floating-point formats.

4.2.6 Bit FPields

Bit fields are fetched on a word basis, that is, the entire word
containing the desired bit field is loaded (or stored) even if
the field is 8 bits or less in size. Bit fields are assigned
from left to right within a machine word; the maximum field size
is 15 bits. Bit fields are considered unsigned in this
implementation; sign extension is not performed when the value of
a field is expanded in an arithmetic expression. If a structure
is declared

struct {
unsigned «x
unsigned y
unsigned z
} a;

os ee oo
Wb U
~e e we

then a occupies a single 16-bit word, a.x resides in bits 15

4-22

Lattice 80686/8088 C Compiler Compiler/Run-time Implementation

through 11, a.y in bits 18 through 7, and a.z in bits 6 through
4. Because of the way bytes are ordered on the 8086, this
results in a.y being split between the low and high bytes.

4.2.7 Register Variables

This version of the compiler does not implement register
variables because of the comparatively 1limited number of
registers available on 8086/8688 microprocessor. However,
declarations using register are accepted if properly made.
Storage is reserved for these objects as if they had been
declared auto.

4.3 Compiler Processing

The Lattice C compiler under M5-DOS is implemented as two
separately executable programs, each performing part of the
compilation task. This section discusses the structure of the
compi ler in general terms, and describes the processing performed
by both phases. Special sections are devoted to a discussion of
the topics of error processing and code generation.

4.3.1 Phase 1

The first phase of the compiler performs all pre-processor
functions concurrently with lexical and syntactical analysis of

the input file. It generates the symbol tables, which contain
information about the various identifiers in the program, and
produces an intermediate file of logical records called

quadruples, which represent the elementary actions specified by
the program. The intermediate file (also called the quad file)
is reviewed as it is written, and locally common sub-expressions
are detected and replaced by equivalent results. When the entire
source program has been processed (assuming there are no fatal
errors), selected symbol table information is written to the quad
tile, for use by the second phase. The first phase is thus very

active as far as disk 1/0 is concerned. Generally, if the disk
activity stops for more than a few seconds, it is reasonable to
assume that the compiler has failed. See Appendix B for the

compi ler error reporting procedure if this happens.

When the first phase begins execution, it writes a sign-on
message to the standard output, unless (1) the specified source
file could not be found, or (2) a quad file with a .Q extension
could not be created (owing to lack of directory space). The
sign-on message identifies the version of the compiler which is
being executed. The MS-DOS 2.8 implementation returns an exit
code of =zero if no errors were detected, and a code of 1
otherwise. This allows the use of if expressions in batch files,
such as:

LC1 %1
if errorlevel 1 goto errs

See Section 4.3.3 for more information about error processing.

4-23

Lattice 8686/8888 C Compiler Compiler/Run-time Implementation
Note that the quad file is deleted if any fatal errors are
detected.

4.3.2 Phase 2

The second phase of the compiler scans the quad file produced by

the first phase, and produces an object file in the Intel 8086
format. This object code supports all of the necessary relocation

and external linkage <conventions needed for C programs (see
Section 4.5.2 for details}. A logical segment of code specifying
the 8086 machine language instructions which make up the

executable portion of the program is generated first, followed by
a segment of data-defining code for all static items. Unlike the
first phase, the code generator is not always actively performing

disk 1/0. Each function is constructed in memory before its
object code is generated, so there may be fairly sizable pauses
during which no apparent activity is taking place. In generatl,

these delays should not last more than several seconds. Anything
lonqger than a 3@-second delay can safely be assumed to be a
crash; see Appendix B for information about reporting compiler
problems.

When the second phase begins execution, it writes a sign-on
message to the standard output, unless (1) the specified quad
file could not be found, or (2) an object file with a ,OBJ
extension could not be created (owing to lack of directory
space). When code generation is complete, the second phase
writes a message of the form

Module size P=pppp D=dddd

to the standard output (usually the wuser's console). ppPpPpP
indicates the size in bytes of the program or executable portion
of the module generated, and dddd indicates the size in bytes of
the data portion; both values are given in hexadecimal. These
sizes include the requirements for all of the functions included
in the original source file. Note that the sizes define the
amount of memory required for the module once it is 1loaded (as
part of a program) into memory; the .0BJ file requires more space
because it contains additional relocation information.

As noted in the introduction to Section 4.1, the code generator
produces a single .0BJ module for a given source module,
regardless of how many functions were defined in that module.
These functions (if more than one is defined) cannot be separated
at link time; 1if any one of the functions is needed, all of them
will be included. Functions must be separated into individual
source files and compiled to produce separate object modules if
it is necessary to avoid this collective inclusion. As
previously mentioned, a Function Extract Utility (FXU.EXE) s
provided so that multiple functions may be stored in a single .C
file and extracted individually for compilation; see Section
4.1.5.

Lattice 8¢686/8088 C Compiler Compiler/Run-time Implementation

4.3.3 RBrror Processing

All error conditions (with the exception of internal compiler
errors) are detected by the first phase. As soon as the first
fatal error is encountered, the compiler stops generating quads
and deletes the quad file just before it terminates execution.
This prevents the second phase from attempting to generate code
from an erxroneous quad file. As mentioned in Section 4.3.1, under
DOS 2.8 the compiler returns a zero if no errors are detected,
and a 1 otherwise. When the compiler detects an error in an input
file, it generates an error message of the form:

filename line Error nn: descriptive text

where filename is the name of the current input file (which may
not be the original source file if $include files are used); line
is the line number, in decimal, of the current line in that file;
nn is an error number identifying the error; and descriptive text
is a brief description of the error condition. (Appendix A
provides expanded explanations for all error and warning messages
produced by the compiler.) All error messages are written to the
standard output, which is normally the user's console but can be
directed to a file if desired (see Section 4.1.1). A message
similar to the one above but with the text Warning instead of
Error is generated for non-fatal errors; in this case, generation
of the quad file continues normally. In some cases, an error
message will be followed by the additional message:

Execution terminated

which indicates that the compiler was too confused by the error
to be able to continue processing. The compiler uses a very
simple-minded error recovery technique which may cause a single
error to induce a succession of subsequent errors in a "cascade"
effect. 1In general, the programmer should attempt to correct the
obvious errors first and not be overly concerned about error
messages for apparently valid source lines (although all lines
for which errors are reported should be checked).

Error messages which begin with the text CXERR are internal
compiler errors which indicate a problem in the compiler itself.

See Appendix B for the compiler error reporting procedure. The
compiler generates a few other error messages that are not
numbered; they are usually self-explanatory. The most common of

these is the Not enough memory message, which means that the
compiler ran out of working memory.

4.3.4 Code Generation

The code generation phase reads the quad file and builds an image
of the instructions for each function in working memory, before
writing the instructions to the object file. This implies that
at least as much working memory must be present as is required by
the largest function in the source file; actually, considerably
more memory (as much as several times that size) 1is required

4-25

Lattice 8086/8088 C Compiler Compiler/Run-time Implementation

because of the additional overhead used by the compiler. Since
the compiler uses the S memory model which has a 64K byte data
space limitation, there is a definite limit to the size of a
functicn which can be compiled even when the maximum amount of
memory 1is available. Nonetheless, all of the compiler's own
source modules -- some of which contain very large functions --
can be compiled without difficulty. 1In any case, C is a language
which encourages modularity; most programs consist of numerous
functions, most of them small. 1t is therefore doubtful that the
function size limitation will prove to be a problem.

One treason for the extra overhead in buffering the function in
memory is that branch instructions are not explicitly represented
in the function image. Instead, they are represented by special
structures denoting the type and target of each branch. When the
function has been completely defined, the branch instructions are
analyzed and several important optimizations are performed:

1. Any branch instruction that passes control directly to
another branch instruction is re-routed to branch
directly to the target location.

2. A conditional branch instruction that branches over a
single wunconditional branch is replaced by a single
conditional branch instruction of the opposite sense.

3., Sections of code into which control does not flow are
detected and discarded.

4. Each branch instruction is coded in the smallest
possible machine language sequence required to reach the
target location.

Most of these optimizations are applied iteratively wuntil no
further improvement is obtained.

The code generator also makes a special effort to generate
efficient code for the switch statement. Three different code
sequences may be produced, depending on the number and range of
the case values.

1. If the number of cases is three or fewer, control is
routed to the case entries by a series of test and
branch instructions.

2. If the case values are all positive and the difference
between the maximum and minimum case values is less than
twice the number of cases, the compiler dgenerates a
branch table which is directly indexed by the switch

value. The value is adjusted, if necessary, by the
minimum case value and compared against the size of the
table before indexing. This construction requires

minimal execution time and a table no longer than that
required for the type of segquence described in No. 3.

Lattice 8@86/8088 C Compiler Compiler/Run-time Implementation

3. Otherwise, the compiler generates a table of [case
value, branch address] pairs, which is linearly searched
for the switch value.

All of the above sequences are generated in-line without function
calls because the number of instruction bytes is small enough
that little benefit would be gained by implementing them as
library functions.

Aside from these special control flow analyses, the compiler does
not perform any global data flow analysis or any loop
optimizations. Thus, values in registers are not preserved
across regions into which control may be directed. The compiler
does, however, retain information about register contents after
conditional branches which cause control to leave a region of
code. Throughout each section of code into which control cannot
branch (although it may exit via conditional branches), values
which are loaded into registers are retained as long as possible
so as to avoid redundant load and store operations, The
allocation of registers is gquided by onext-use information,
obtained by analysis of the local block of code, which indicates
which operands will be used again in subsequent operations. This
information also assists the compiler, in analyzing binary
operations, in its decision whether to load both operands into
registers or to load one operand and use a memory reference to
the other. Generally, the result of such an operation will be
computed in a register, but sequences like

i+=3;

will 1load the value of j into a register and compute the result
directly 1into the memory location for i (but only if i 1is not
used later in the same local block of code).

The hardware registers AX, BX, CX, and DX are used as general
purpose accumulators, while SI and DI (along with BX) are used
for access to indirect operands. BP is used to address the
current stack frame; see Section 4.5.3 for more information. In
the D and L memory addressing models, the ES segment register is
used for indirect pointer references, see Section. 4.4.

In order to generate the most efficient code for the largest
number of source language constructions, the compiler usually
makes a favorable assumption about pointer variables.
Specifically, it assumes that the actual objects accessed using
pointer variables are not the same as other objects which can be
accessed directly. This allows the compiler to avoid discarding
register contents (thus forcing them to be reloaded, perhaps
unnecessarily, at a later time) whenever a result is assigned
using a pointer. Consider the following example:

int i, j, k, *pi;
i = j+2;
*pi = j;

Lattice B8086/8888 C Compiler Compiler/Run-time Implementation

k = i*4;

In the general case, it is quite possible that pi might actually
point to i, which would change the value assigned to k in the
next statement. In the vast majority of C programs, however, i
will be a local variable to which it is not possible for pi to
point. The compiler normally makes this assumption, that is,
that *pi cannot be equivalent to i, and therefore can retain the
value computed in the first statement for i in a register, which
saves having to reload it to perform the multiply operation in
the third statement.

On the other hand, there are rare cases where this assumption is
not valid. C programmers almost never code sequences such as:

pi = &i;
*pi = 12;

but more subtle cases of pointer overlap can occur, particularly
when both the pointer and its target are externally defined. For
these cases, the -a compile-time option is provided (Section
4.1.1);, this forces the compiler to assume worst-case aliasing
(which 1is compiler jargon for pointer overlap} when generating
code. The compiler is so designed because instances of pointer
overlap are more the exception than the rule. Thus, rather than
default to worst-case assumptions that produce correct code in
all cases and unnecessary inefficiencies in most cases, the
compiler normally makes a favorable assumption that produces
efficient code which works correctly in nearly all cases.

A final note on this subject: even when the -a option is used,
the compiler assumes that only objects of the pointed-to type can
be changed in pointer assignments. Thus, if an int pointer is
used in an indirect assignment, only registers containing int
values will be discarded.

4.4 Memory Addressing Models

The segmented architecture of the 8086 and 8088 processors
presents special problems for the implementation of high level
languages. In order to provide programmers with the ability to
select the combination of efficiency and addressability needed
for a particular application, the compiler supports four
different sets of memory addressing assumptions, called memory
models. Each is identified by a single capital letter, and
reflects a different view of the addressing of functions and data
within a C program. These views can be expressed by the
limitation on the size of the respective space for program text
(the functions) and data objects (all o the declared or
allocated data structures), as follows:

4-28

Lattice 8086/8088 C Compiler Compiler/Run-time Implementation

Model Program Address Space Data Address Space
S 64K 64K
P up to 1M 64K
D 64K up to 1M
L up to 1M up to 1M

The D and L models use four-byte pointers, and the P and L models
generate FAR calls and returns. The S and P models produce
compact, efficient code limited to addressing a 64K data area,
while the D and L models allow access to all of the 1 megabyte of

available memory.

4.4.1 Choosing the Memory Model

The compiler 1is most efficient (both in terms of code size and

execution speed) for the S model. All of the examples in
previous sections have shown commands for compiling with the §
model, and this memory model is particularly recommended for

beginning C programmers.

All of the functions in a single program must be compiled and
linked with one and only one of the available memory models. In
other words, functions compiled for different models may not be
combined. 1t becomes important, ~therefore, to choose the right
memory model for the particular application. The tradeoff is
between efficiency and memory addressability. There are two
choices that must be made.

1. Will the combined size of the functions in the program
be greater than 64K bytes? 1f not, one of the models
that uses NEAR calls (the S or D models) should be

selected, as these are faster and require 1less code.

Otherwise, a model that supports FAR calls (the P or L

models) should be selected.

2. Does the application require more than 64K bytes of data
storage? 1f not, one of the models that uses 2-byte
data pointers (the S or P models) should be selected,
because pointer operations are performed much more
efficiently in these models. If the program simply
needs access to specific memory locations beyond the
program's 64K address space, the library functions peek
and poke can be used, allowing the program to retain the
efficient 2-byte pointers. Otherwise, 1if data storage
in excess of 64K bytes is a must, a model that uses the
4-byte data pointers (the D or [. models) must be
selected, even though this will produce somewhat less
efficient code.

4.4.2 Compiling for the Memory Models
Generation of code for the various models is controlled by a

compile-time option specified on the first phase (LCl) of the

4-29

Lattice 8086/8388 C Compiler Compiler/Run-time Implementation

compiler. The -m option must be followed immediately (no spaces)
by a letter (either lower or upper case) specifying the desired
memory model. The model may also be specified as a single
numeric digit from & to 3. I1f no -m option is present, code is
generated for the S model.

S model: LCl1 filename (no flags)
LCl filename -m$

P model: LCl1 filename -mP
LC1 filename -ml

D model: LC1 filename -mD
LC1l filepame -m2

L model: LC1 filename -mL

LC1l filename -m3
4.4.3 Linking Programs

When using the various memory models, care must be taken to link
with the appropriate library (LCS.LIB, LCP.LIB, LCD.LIB, or
LCL.LIB). The compiler generates code segments with different
names for each model, which allows examination of the LINK map to
determine if <code for different models has been erroneously
mixed. Only one of the following segment names should appear on
the link map.

5 model: PROG (code group PGROUP)
P model: _CODE
D model: CODE (code group CGROUP)
L model: _PROG

Note that for the P and L models, several segments with the name
_CODE (ox _PROG) will be included (one for each separately com-
piled module containing functions}.

4.4.4 Code Generation for Pointer Operations

In the S and P models, pointers to the various data types consist
of the 16-bit offset of the low order (least significant) byte of
the data element. Since the combined size of the data elements
in these models cannot exceed 64K bytes, the address of an item
is fully specified in 16 bits. Indirect data references are made
by loading the pointer into one of the indexing registers S§I, DI,
or BX.

Function pointers differ in each of the memory models. 1In the S
and D models, pointers to functions consist of the 16-bit offset
of the first byte of the code defining the function. In the §

model, this pointer is stored in two bytes, while in the D model,
it is stored as the first two of four bytes (the last two are
zero since they are not used, but are merely required to conform
to the four-byte size of other pointers in the D model). In the P

model, a two-byte pointer (required because of the two-byte size

4-30

Lattice 8086/8088 C Compiler Compiler/Run-time Implementation

of data pointers) is used to store the offset of a four-byte
function address contained in the data section. This function
pointer has the same format as function pointers in the L model,
where the first two bytes contain a 16-bit offset and the next
two contain the 16-bit segment base for the function.

The code generated by the D and L models uses four-byte pointers
and can therefore address any location in memory. These pointers
are stored as an offset portion in the low two bytes, followed by
a base portion in the high two bytes (the format expected by the
machine language Iinstructions LDS and LES}. Objects are ad-
dressed from these pointers by loading the base portion into the
extra segment register ES, the offset portion into an index
register, and using the segment override prefix for ES to force
the indexed operation to refer to the correct memory location.
Since there is only one ES register, such common operations as
copying from one pointer to another require ES to be reloaded for
each step in the copying process. Pointer references are there-
fore less efficient than in the 2-byte memory models.

The four-byte pointers used in the D and L models are manipulated
according to the following rules:

1. Pointer arithmetic is performed by adding or subtracting
a 32-bit offset to the pointer, using a call to a
library routine. Thus, dynamically allocated arrays
(addressed by subscripting a pointer variable) may be
larger than 64K, and address manipulations work properly
for all offset values. Note that, since the compiler
requires statically declared arrays (extern, static, or
auto) to be less than 64K bytes in size, only a 16-bit
offset 1is wused in accessing elements of these arrays,
resulting in more efficient code.

2. wWhen two 4-byte pointers are subtracted, a library
routine is called which returns a long result.

3. Conversions between long integers and 4-byte pointers
are automatically performed, again by calling library
routines.

4. Comparison of pointers for equality or relative rank is
performed by calling a library routine which converts
the pointers to normalized {canonical) form before
comparing. Thus, two pointers which have different base
and offset portions, but which actually point to the
same location will be recognized as equal.

5. Any function which returns a pointer as its return value

calls a library routine which converts that pointer to
normalized (i.e., offset in the range 6 to 15) form.

4-31

Lattice 8086/8888 C Compiler Compiler/Run-time Implementation

4.4.5 The -s Option for Four-byte Pointers

While the above rules dgenerally describe use of four-byte
pointers, the additional overhead of library routine calls can be
inefficient if a significant amount of pointer manipulation is

being performed. A special compile-time option (specified on
LCl) 1is provided for knowledgeable users who are willing to work
within certain restrictions. Adding the -s flag to LCl causes

the following changes in the above rules:

1. Pointer arithmetic is performed by adding or subtracting
a 16-bit offset to the pointer. Thus, no single object
may be greater than 64K bytes in size.

2. Pointer arithmetic affects only the offset portion of the
pointer (not the base). wWhen pointers are compared for
equality, an exact match of both base and offset portions
is required. When compared for relative rank, only the
offset portions are compared, so the comparison is
meaningful only if they are pointers to the same array.

3. When two pointers are subtracted, only the offset
portions participate in the operation, and the result is
a short.

4. Pointers and long integers are not converted when one is
assigned to the other; instead, a simple copy operation
is performed.

S. The return value from a function which returns a pointer
is not normalized.

Most functions can be safely compiled with the -s option,
resulting in improved code generation quality. In fact, all of
the library functions written in C supplied in the libraries are
compiled with the -s option, except for the memory allocation
functions. Note that the -s flag has no effect on the S and P
models.

As noted above, the biggest potential problem when converting
code to use the four-byte pointers of the D and L models is that
pointers and integers are no longer the same size. While it may
appear that a program's source code does not depend in any way on
this fact, programmers must be alert for subtle problems that
might relate to this. Here are three important cautions:

1. Wwhen supplying pointer arguments to C functions, it is
common practice to supply a null pointer (i.e., one that
does not point to anything) as the #define constant NULL,
which is defined as @ by stdio.h. wWhen compiling code
for the D or L models, NULL must be changed to @L so that
the null pointer value supplied to functions is the same
size as the pointer argument. Failure to do this will
cause the called function to incorrectly address its
parameters, resulting in serious problems.

Lattice 8086/8888 C Compiler Compiler/Run-time Implementation

2. The sbrk memory allocator is supposed to return a value
of -1 when no more memory is available (for compatibility
with other implementations). Under the D and L models,
the result of casting -1 into a character pointer depends
on whether the -s option was used (see Sections 4.4.4).

Since the 1library function was compiled without the -s
option, the -1 gets converted to the four-byte pointer
format. The result is that a function compiled with the
-s option cannot properly test for the -1 value! All of

these problems can be avoided by wusing the library
function 1sbrk, which accepts a long integer number of
bytes and returns zero if no mora space is available (see
Section 3.1).

3. The four-byte pointers implemented under the D and L
models allow direct access to all of the memory on the
machine. This can be extremely useful, but it can also
be extremely dangerous. Memory on the 86886 and 8088
processors is not protected, and storing values via an
uninitialized pointer can crash the system -- or worse.
MS-DOS stores a number of very important system elements
in lower memory, so that use of an uninitialized pointer
to store data can have disastrous consequences (such as
destroying the File Allocation Table (FAT) for a hard
disk!). Programmers should exercise extreme caution when
using these memory models. Beginning programmers are
advised to use the S or P models, where wuninitialized
pointers are much less likely to access critical
locations.

4.4.6 Creating an Array Greater than 64K Bytes

Since static data in all of the memory models is limited to a
maximum of 64K bytes, the only way to create an object of greater
size is through the memory allocation functions.

Suppose that an array of 10,008 double precision values must be
allocated; 80,008 bytes of storage will be required for such an
array. First, a pointer must be declared which will contain the
array's address after allocation:

double *4d;
Note that a simple double pointer is all that is needed, despite
the fact that it will actually point to an array. Next, the
memory allocation function

char *getml();

must be declared.

Also note that the memory allocation function must be declared to
return a pointer; otherwise, the compiler will assume it returns

Lattice 8#86/8088 C Compiler Compiler/Run-time Implementation

an int and the cast operation shown below will not work
correctly. The array is then allocated by the expression:

d = (double *) getml (80060L);

Note the L (el) specifier on the constant. The size could also
be specified as (1¢@00L * sizeof (double)). (Note: if the size
argument for getml is computed using a multiplication expression,
be sure that one of the operands is a long constant or is cast to
a long before the multiplication; otherwise, the compiler will
perform the multiplication in short arithmetic and obtain an
incorrect result. 1f the example above is written as
({long) (10008@ * sizeof (double)), the size argument is incorrectly
computed as 14464!

The retuxrned pointer, of course, must be checked for NULL (zero)
before wuse; NULL is returned if there is not enough memory
available for the regquested allocation. The variable d can now
be subscripted as if it were an array, 1i.e., d[(12] will address
the thirteenth (13th) element of 4, etc. In this example, the
number of elements in the array is less than 64K, so ordinary int
variables can be used as subscripts; 1t a char array had been
allocated, long integers would be needed to subscript an array of
this size. Also note that since an object with a size greater
than 64K is being addressed, the -s option cannot be used.

4.5 Run—-time Program Structure

This section describes the structure of C programs under the
8086/8888 MS-DOS implementation of the Lattice C compiler. Some
knowledge of the architecture of the 8086 processor and of the
8886 object code and linkage concepts is required in order to
understand much of the information presented. Readers who are
not interested in the precise technical details of the hardware
implementation may safely skim through or skip over this section;
it is primarily intended for programmers who must provide an
interface between C and assembly language.

Postponing discussion of the specific object code details used to
create it (see Section 4.5.1 below), the general structure of a C
program is illustrated by the diagrams on the next page.

Lattice 8086/8888 C Compiler Compiler/Run-time Implementation

S and P Models
High Address |-~-=--~wcceo——m—ceoc—- <~ SP

stack
(auto data)

---------------------- <- DS, ES, SS
finottéonss
Low Address J---e-——ce—cmmcemmne—wa <~ CS§
D and L models
High Address |-----—-e—ecmmmmee—ee
dynamic
memory
---------------------- <~ SP
stack
(auto data)
---------------------- <~ S§
static data
---------------------- <~ DS
functions
Low Address |---=--eommemmmcemeeen <~ CS

The C programming language provides for three basic kinds of
memory allocation: the instructions which make up the executable
functions, the static data items which persist independently of
any of the functions which refer to them, and the automatic data
items which exist only while a function 1is invoked. Most
implementations (including this one) support, through library
functions, an additional dynamic memory allocation facility which
returns pointers to objects not explicitly declared. The
diagrams above show the way these allocations are made; as one
might expect, the auto data items are allocated on the 8086
hardware stack.

Lattice 8¢86/8888 C Compiler Compiler/Run-time Implementation

Two different memory layouts are used, depending on the size of
pointers. In either case, the functions are grouped together in
the lowest portion of the address space defined by the program,
and the static data items are grouped together immediately above
the functions. In the S and P models, the segment registers DS,
ES, and SS all contain the same value, which is the base segment
address for all of the static data items in the program. The
stack pointer SP is initialized to point to the highest available
of fset relative to this segment; this vaiue 1is X'FfFFe' if
sufficient memory is available, and is adjusted accordingly if
less than 64K bytes of memory remain above the data segment base.
A certain number of bytes is reserved for the stack, which grows
downward. The remainder of memory between the end of the static
data items and the lowest address allotted to the stack |is
available for dynamic memory allocation using library functions.
The stack overflow detection mechanism described in Section 4.5.5
can be used to prevent stack allocations from exceeding the
allotted space and colliding with the dynamic memory pocl or the
static data items. The stack size override feature described in
Section 4.1.4 allows the number of bytes to be reserved for the
stack to be specified when a program is executed.

In the D and L models, the stack resides immediately above the
static data arsa, and the free memory pool (allocated by the
functions described in Section 3.1) is above the stack, which can
be as large as 64K bytes. Segment register DS points to the base
of the static data area, SS points to the base of the stack, and

ES is undefined. The stack pointer SP is initialized to contain
the number of bytes allocated for the stack (defined in _stack;
see Section 4.5.5). As ncted above, the stack overflow detection

mechanism prevents collision with the static data elements.
4,5.1 Object Code Conventions

The object file created by the second phase is in the standard
MS-DOS object code format, which is compatible with the Intel
8086 object module format. The object file defines the
instructions and data necessary to implement the module specified
by the C source file, and also contains relocation and linkage
information necessary to guarantee that the components will be
addressed properly when the module is executed or referenced as
part of a linked program. In order to force the parts of the
module into the proper locations after linking, the object file
defines two logical segments which are marked for concatenation
with other segments of the same name.

The program segment is the segment which includes the
instructions which perform the actions specified by any functions
defined in the source file. As noted in Section 4.4.3, the
segment name used for the program segment depends on the memory
model.

DATA is the segment which includes all static data 1items which

are defined in the source file. This includes not only those
data items explicitly declared static but also items declared

4-36

Lattice 8086/8888 C Compiler Compiler/Run-time Implementation

outside the body of a function without an explicit storage class
specifier, string constants, and double precision constants.
(Buto data items are simply allocated on the stack at run time
and are not explicitly defined in the object file.)

The DATA segment is defined to be combinable with other segments
of the same name. In the $ and D models, the program segment is
also made combinable. Program segments combine with byte-
alignment, that is, as closely as possible; DATA segments combine
with word-alignment. Thus, no space is wasted when functions are
combined during 1linking, and the word alignment of elements
within a particular DATA segment is preserved after combination.
This alignment of data items is important for efficient data
fetches on the 8086, where word fetches from an odd byte address
require an additional four clock periods. Note that although a
compile-time option (described in Section 4.1.1) allows the
alignment requirement for data items within a particular module
to be relaxed, the word alignment of DATA segments during linking
is not affected.

The net effect of these segment definitions is to force, at link
time, all functions to be collected together and all static data
items to be similarly combined. This achieves the most important
part of the program structure diagrammed above. The segment
directives needed to combine assembly language modules with C
modules are shown in Section 4.5.4.

4.5.2 Linkage Conventions

The 8086 group concept is used to guarantee that the data portion
of the final linked program does not exceed 64K bytes; in the S

and D models, it is similarly used to force the combined program
section to fit into 64K. The groups which may be defined are:

PGROUP = BASE segment + PROG segment (S model)
CGROUP = BASE segment + CODE segment (D model)
DGROUP = DATA segment + STACK segment {(all models)

The PROGRAM and DATA segments are obtained from the C modules in
the program, as previously discussed. The other two segments are
defined in the startup module (CS$.0BJ, CP.OBJ, CD.OBJ, or
CL.0BJ), which must be the first module encountered during
linking. The BASE segment serves two purposes: (1) it forces
PGROUP (or CGROUP) lower in memory because it is the first
segment within the startup module, and (2) it contains a byte
which identifies the memory model used. The latter feature allows
programs to be examined with a program debugger to determine the
memory module used when the program was linked. The STACK segment

has a dual role as well: (1) it defines the base of the stack
and dynamic memory portion of the data section of the program,
and (2) it satisfies the linker's need for a segment of type

STACK (if one is not encountered, the linker generates a warning
message) .

Lattice 8086/8888 C Compiler Compiler/Run-time Implementation

The startup module (CS$.0BJ, CP.OBJ, CD.OBJ, or CL.OBJ) also
defines its own program and DATA segments. The PROGRAM segment
defines the initial execution address of the linked program. The
segment registers are initialized, and the amount of memory

remaining above the STACK segment is determined. The stack
pointer is adjusted to its initial wvalue, as noted 1in the
discussion in Section 4.5. In the DATA segment of the startup

module, the address of the stack base and top are saved for use
by the memory allocation functions. At the top of the stack, the
address of the program segment prefix is saved so that an orderly

return to MS-DOS can be made when the program terminates. The
characters from the command line which executed the program are
transferred from the program segment prefix to the stack. A
pointer to this copy of the command line is then passed to the
function _main, which begins execution of the program (see

Section 5.4).

As noted in Section 4.2.2, external names differ from ordinary
identifiers in C in that upper and lower case letters are
equivalent. All external names are defined as an unspecified
type, that is, there is no set of attributes associated with the
name; it is simply an offset within one or the other of the two
defined groups. It is therefore an error to define two items
with the same external name in the same program. It is the
programmer's responsibility to prevent this occurrence and also
to make sure that programs refer to external names in a
consistent way (i.e., a function should not refer to xyz as long
when it is actually defined as int in some other module).
External definition and reference from assembly language modules
are discussed in Section 4.5.4.

See the appropriate linker documentation for information on how
to obtain a public symbol map for a linked program. As a
convenience, the DGROUP segments are defined with class name
DATA, the PGROUP segments with class name PROG, and the CGROUP
segments with the class name CODE.

4.5.3 Function Call Conventions

wWwhen a C function makes a call to another function, it first
pushes the values of any arguments onto the stack and then makes
a call to that function. A NEAR call (which changes IP but not
CS) is used in the 5 and D models; a FAR call (which changes both
IP and CS) is used in the P and L models. The argument values are
pushed in reverse (right-to-left) order because the stack grows
downward on the 8086; this allows the called function to address
the arguments in the natural left-to-right (low-address-to-high-
address) order. The first actions taken by the called function
are:

1. The BP register is pushed onto the stack; this saves the
value of BP used by the caller.

2. The stack pointer SP is reduced (i.e., a value is
subtracted from it) by the number of bytes of stack

ittice 8886/8088 C Compiler Compiler/Run-time Implementation

space required by the called function. This value is
rounded to the nearest word so that the stack pointer is
always word-aligned. The stack space includes all auto
data elements declared in the function, and also may
include additional space for the temporary storage
locations which are often required during expression
evaluation. If no auto items or temporaries are needed,
this step is skipped; SP is unchanged.

3. If the function was compiled with stack overflow
detection, it then checks the stack pointer for a legal
value, as described in Section 4.5.5. If stack overflow
is detected, control is routed to the entry point XCOVF
(defined in the startup module) by means of a jump
instruction.

4. The stack pointer SP is moved into BP to allow
addressing of the elements on the stack: function
arguments, auto storage, and temporaries.

he offsets of the various components are indicated by the
ollowing diagram. Note that of the registers used by the
alling program, only BP is saved.

High = [|-==—=cemmmmme—— <- Caller's BP

return address
(2 or 4 bytes)

Low = jermermccmcccscemne—~ <~ BP, SP

uring execution of a C function, BP and SP normally contain the
ame value. The temporaries are allocated closest to BP,
ollowed by the auto elements declared, in the order of their
eclaration. This addressing scheme has the disadvantage that
he arguments supplied to the function are at an offset
etermined in part by the amount of auto storage declared. If
he function declares more than approximately 124 bytes of auto
torage, the arguments require an additional offset byte in the
nstructions which refer to them.

he compensating advantage to this mechanism appears when a
unction calls another function and supplies it with argument
alues. Because a C function may in special cases have a
ariable number of arguments (printf is the classic example), the
alled function cannot deallocate the stack space used in pushing

4-39

Lattice 8086/8088 C Compiler Compiler/Run~-time Implementation

the argument values; the calling function must do so. By
retaining the normal SP value in BP, Lattice C functions can
restore the stack pointer after a function call with the two-byte
instruction:

MOV SP,BP

If BP is not set up in this way, a value must be explicitly added
to SP, which requires a three- or four-byte instruction.

A second advantage to this technique is that it is easy to
implement assembly language functions (to be called from C) with
a variable number of arguments. Since the caller's BP contains
the value in SP before argument values were pushed (as the
diagram shows), it defines the upper limit for the address of any
arguments. In other words, only the space between the saved
return address and the address in the caller's BP register can
contain arguments.

when a function returas to its caller, it first 1loads the
function return value, 1if any, into predefined registers. The
size of the value returned determines the register(s) used:

16 bits AX register
32 bits (AX,BX) register pair
64 bits (AX,BX,CX,DX)} register quadruplet

In the multiple register returns, AX contains the high order bits
of the value. Note that in the D and L models, this means that
the segment portion of a pointer return value is contained in BX
and the base portion in AX.

After the return value is loaded, the function adds to SP the
same value that was subtracted on entry. Then BP is popped,
restoring the caller's base pointer, and a near return Iis
executed. The calling function now regains control, and must
restore SP if any argument values were pushed.

4.5.4 Assembly Language Interface

Programmers may write assembly language modules for
inclusion in C programs, provided that these modules adhere to
the object code, linkage, and function call conventions described
in the preceding sections. In order to facilitate assembly
language programming for the various memory models, four macro
libraries have been provided as part of the compiler package.
These libraries define values for symbols which can be tested for
conditional assembly purposes, including:

LPROG 1 for P or L model, # otherwise
DATA 1 for D or L model, @ othewwsse
8886 1 for S model, @ otherwise
8086 1 for P model, @ otherwise
8986 1 for D model, € otherwise
8686 1 for L model, # otherwise

Lattice 8086,/8088 C Compiler Compiler/Run-time Implementation

Also defined are four special macros, used to delimit the
beginning and end of the program and data segments:

PSEG defines start of program segment
ENDPS defines end of program segment
DSEG defines start of data segment
ENDDS defines end of data segment

In order to use these symbols and macros, an INCLUDE statement
must be wused at the beginning of the assembly language module.
For example:

INCLUDE DM8886 . MAC

makes available the symbol and macro definitions for the D memory
model . By using the generic include file named DOS.MAC, an
assembly language module can be assembled under any of the
models, as long as the appropriate header file 1is copied to
DOS.MAC before the module is assembled.

An assembly language module which defines one or more functions
to be called from C must define the start of the program segment:

PSEG

followed by PUBLIC declarations of the functions:
PUBLIC AFUNC, ...

followed by the functions themselves:

AFUNC PROC NEAR/FAR

ENDP

Note that the PROC statement must define the function NEAR in the
S and D models, and FAR in the P and L models. The function must
conform to the conventions detailed in Section 4.5.3. If a value
is to be returned by the function, it must be placed in the
appropriate register(s).

To call a function from assembly language, an EXTRN declaration
must be inciluded for that function, and the caller must supply
any expected arguments in the proper order (see Section 4.5.3).
Note that the position of the EXTRN statements for functions is
critical: for the P and L models, they must appear before the
program segment definitions:

EXTRN XYZ:FAR,
PSEG
AFUNC PROC FAR

For the S and D models, they must appear after the definition of
the program segment:

Lattice 8086/8088 C Compiler Compiler/Run-time Implementation

PSEG
EXTRN XYZ:NEAR, ...
AFUNC PROC NEAR

An assembly language module may also define data locations to be
accessed (using "extern" declarations) from C programs:

DSEG
PUBLIC DX1,DX2,DX3

DX1 DW 4000H

DX2 DW 80@G0H

DX3 DB 'Text string',@
ENDDS

Note that if the address of an item is to be defined, the name
must be prefixed with the group name if it is used as the operand
of the OFFSET operator or of the DW or DD statements. 1f DX4 is
used to define the address of DXl in the example above, it must
be coded:

DX4 DW DGROUP:DX1

Otherwise, a segment-relative offset is generated, which will not
be the actual address of the item as it is defined within the
context of a C program. (Note: the prefix is not required for
the LEA instruction, which refers to the current ASSUME
directive.)

Similarly, to refer to data elements defined in a C module,
include appropriate EXTRN statements:

EXTRN XD1:WORD,XD2:BYTE

.

MOV AX,XD1

Note that any EXTRN statements for data elements must be defined
within a DATA segment declaration like the one shown previously.
The BYTE attribute must be used for external char items. If an
element is larger than a word, a STRUC can be used to define it,
or its offset can be loaded into an index and used to fetch its
component parts. The same caution about addresses requiring a
group prefix applies to an external reference. For example:

DW DGROUP:XD1

must be used to define the address of XD1l. Otherwise, a segment-
relative offset is generated, which will not be the actual
address of the item as it is defined within the context of a C
program. Note that the prefix is not required for the LEA
instruction, which refers to the current ASSUME directive.

Lattice 8886/8688 C Compiler Compiler/Run-time Implementation

Upper and lower case letters for external names (and for all
symbols within assembly language modules) are equivalent, so an
assembly language function XYZ can be called from C as either XYZ
or Xyz.

Assembly language functions need to preserve BP only, as the
compiler does not make any assumptions regarding register
contents following a function call (except for return values).

As noted above, DS always points to the base of static storage
for any of the memory models, so assembly language functions must
be careful not to change DS. In the S and P models, ES must also

be preserved (but not in the D and L models).

Note the differences between the use of pointers in the S and P
models from their wusage in the D and L wmodels, as in the
following example:

S/P model: MOV BX, [BP].ARGl ;jget a pointer arg
MOV AX, [BX] juse it

D/L model: LES BX,[BP].ARG1 ;get offset and base
MOV AX,ES:[BX} suse it

The following example (supplied with the compiler package as the
file I0.ASM) illustrates many of the above requirements, and also
demonstrates the use of DOS.MAC and conditional assembly for the
different memory models.

TITLE PORT 1/0 FUNCTIONS

SUBTTL Copyright 1982 by Lattice, Inc.
NAME PORTIO

INCLUDE DOS.MAC

IF LPROG
X EQU 6 ;OFFSET OF ARGUMENTS
ELSE
X EQU 4 ;OFFSET OF ARGUMENTS
ENDIF
PSEG
L 2
name inp -- input byte from port
synopsis ¢ = inp(port);
int c; returned byte
int port; port address

description This function inputs a byte from the specified por
address and returns it as the function value.

WA ws Ws s We we I ws we we we W

PUBLIC INP
IF LPROG

Lattice 8U86/8088 C Compiler Compiler/Run-time Implementation

INP PROC FAR
ELSE
INP PROC NEAR
ENDIF
PUSH BP ;SAVE BP
MOV BP,SP
MOV DX, [BP+X]) ;GET PORT ADDRESS
IN AL,DX ;GET INPUT BYTE
XOR AH,AH ;CLEAR HIGH BYTE
POP BP
RET
INP ENDP
PAGE
AR
name outp -~ output byte to port
synopsis outp(port,c);
int port; port address
int c; byte to send

description This function sends the specified character to
the specified port.

me N e M We %e we e ma W we we

*

PUBLIC OSUTP
IF LEROG

0UTP PROC FAR
ELSE

ouTP PROC NEAR
ENDIF
PUSH BP ;SAVE BP
MOV BP,SP
MOV DX, [BP+X) ;GET PORT ADDRESS
MOV AX, [BP+X+2) ;GET OUTPUT BYTE
ouT DX, AL
POP BP
RET

OUTP ENDP
ENDPS
END

4.5.5 Stack Overflow Detection

The compiler, by default, generates code at the beginning of each
function to check for stack overflow. The cost in code size for
each function is 9 bytes for the S and D models, and 11 bytes for
the P and L models. The benefit is elimination of a very nasty
class of errors which can be very difficult to find. When stack
overflow is detected, the error message:

% STACK OVERFLOW *
is written to the console, and the program terminates immedi-

ately.

4-44

Lattice 8086/8988 C Compiler Compiler/Run-time Implementation

Stack overflow occurs when the program fails to supply sufficient

storage for the run-time stack. The number of bytes of storage
for which the stack is set up is defined in the external location

stack, and can be changed when the program is executed by the
=nnn option on the command line. The size of the stack can thus

be set in any of three ways:

1. If no definition for stack is found in the user’'s
object modules during linking, the Lattice C library
provides a definition of _stack containing 2048 (2K).

Thus, the default stack size is 2848 bytes.

2. 1f one of the user's object modules includes a
definition for _stack, that value will be used. all
that is required is that a statement such as

int _stack = 40896;

appear outside the body of a function. That value then
becomes the default stack size.

3. Either one of the above methods can be overridden at
execution time (after linking) by executing the program
with a command such as

PROGNAME =80¢040

The decimal value after the equals sign becomes the
stack size during execution of the program.

Unfortunately, there is no hard and fast rule for determining how
much stack space a program will need. At least as much storage
as the largest amount of auto storage declared in any of the
functions 1included in the program will be needed (i.e., 1if a
function has an auto array of 4@0¢ bytes, at least that much
stack space is needed, because auto data items are allocated on
the stack). Since C functions typically call other functions,
the storage needed by the called function must be added to that
needed by the caller, and so on. The intention in supplying the
various setting mechanisms described above is to make the stack
size easily adjustable.

The code for stack overflow detection can be eliminated by com-
piling your source file with the -v option on LC2 (Section
4.1.2). Library functions are supplied with stack overflow
detection included.

Lattice 8086/8088 C Compiler System Library Implementation

SECTION 5:
System Library Implementation

Although the portable library functions described in Section 3 of
this manual define a general purpose interface to the typical
environment provided for C programs, there are inevitably many
details and variations which are system-dependent. In this
section, some of the details of the MS-DOS library implementatior
are presented in order to clarify the peculiarities of this
particular environment.

Fortunately, MS-DOS supports a number of powerful features which
allow a full implementation of the standard file I1/0 functions,
although the representation of text files presents a minor
problem; Section 5.1 discusses file I/0. Several standard device
names are also supported by MS-DOS, and the Lattice C 1I/¢
interface processes these in special ways, as explained ir
Section 5.2. The structure of Lattice C programs (see Sectior
4.5) allows the full set of memory allocation functions, althougt
care must be taken to provide sufficient space for the stack, as
Section 5.3 warns. The basic program entry and exit functions
are described in Section 5.4, and some special functions unique
to the MS5-DOS implementation are presented in Section 5.5. Ag
additional functions will probably be provided as the compiler
evolves, the programmer should check the addendum for the current
version of the compiler.

5.1 File 1/0
Filenames are specified according to the following format:
d:\pathname\filename.ext

where d: is an optional drive specifier, pathname is an optional
directory specifier, filename is the name of the file, and .ext
is the file extension. 1f the drive specifier is omitted, the
currently logged-in disk is used; if the pathname is omitted, the
current directory is used. The filename is specified without
trailing blanks if 1less than 8 characters; the extensior
(including the ".") must be omitted if one is not defined for the
file. Alphabetic characters may be supplied in either upper or
lower case; actual filenames use upper case letters only. Only
those characters which are legal for filenames under MS-DOS are
acceptable; consult the MS-DOS documentation for details.
Certain names are recognized as devices rather than files; see
Section 5.2.

The level 1 1/0 functions perform disk I/0 by making direct calls
to MS-DOS, so that all buffering is performed by the operating
system. Programs using the level 2 I/0 functions cannot use the
rbrk function, because fopen allocates a buffer using getmem.

In the MS-DOS implementation, both the level 2 (fopen, putc,
getc, fclose) and the level 1 (open, creat, read, write, close)

5-1

Lattice 8086/8888 C Compiler System Library Implementation

1/0 functions are limited to 2¢ open files, including devices,
and including the three (stdin, stdout, stderr) which are
automatically opened for the main program. Note that the number
of files available under MS-DOS version 2 is also affected by the
CONFIG.SYS file, since an M5-DOS file handle is used for every
open file (see MS-DOS documentation).

The portable library provides a system-dependent option when a
file is opened or created; the programmer may select one of two
modes of I/0 operation while a file is open. On some systems the
modes are in fact the same, but in the MS-DOS implementation they
differ in some important details.

Translated or text mode is the default condition. In this mode,
the line terminator normally used by C programs (a single newline
character, \n or @x@A) is translated to the MS5-DOS line
terminator, which consists of the two characters, carriage return
and linefeed (Ux@D followed by @x@a). This translation is
performed when the file is written using calls to the write
library function; the inverse translation is performed when the
file is read using the read library function. Programs which use
the higher level I/0 functions (putchar, getchar, printf, etc.)
are usually not affected, but programs which call read and write
directly must beware of these translations. On read calls, the
count returned may be less than the actual number of bytes by
which the file position was advanced (because of CR deletions).
Note that all carriage returns are discarded when reading from a
file in the translated mode; similarly, all linefeeds are
expanded to CR/LF when writing to the file.

Untranslated or binary mode is an option which can be selected
when the file is opened or created. By adding 0x8860 to the mode
for the open call or to the access privilege mode word for the
creat call, the programmer indicates that read/write operations

on the file are to be performed without translation. In this
mode, bytes are transferred between the caller's area and the
file without modification. This option must be used for files

containing binary data; otherwise data bytes which happen to take
on CR and LF values will be translated incorrectly.

In addition to the file 1/0 modes discussed above, two other
functions should be clarified under the heading of file 1/0. The
creat function gets a system-dependent argument, the access
privilege mode bits; these are ignored under the MS-DOS
implementation, except for bit 15 (the ¢x88080 bit) which, if set,
causes the file to be accessed in untranslated or binary mode.
The 1seek function has an offset mode, not always implemented,
which specified an offset relative to the end of file. Because
MS-DOS retains the exact file size in its directory, this mode
can be and is implemented in this version.

5.2 Device 1/0

Several special file names are checked for by the Lattice 1/0
interface under MS5-D0S, and processed using single character

5-2

Lattice 8086/8088 C Compiler System Library Implementation

reads and writes. These device names may be specified in either
upper or lower case, but will be recognized by the level 1 open
and creat functions only if the trailing colon is supplied. If
the colon is omitted, the name is passed to the operating system
and may be processed specially by it; however, the level 1
functions will deal with a device reference sans colon as 1f it
were a reference to a disk file. The device names recognized are
as follows:

Console CON:

Printer PRN:, LST:, LPT:, LPT1
Aux Port AUX:, COM:, RDR:, PUN:
Null NUL:, NULL:

I1/0 is performed to these devices, one character at a time, using
the appropriate BDOS function calls. One exception occurs for
the console device: if a translated mode read operation requests
more than 1 byte, the BDOS buffered console input function is
used to read the data (a maximum of 128 bytes per read). Any
special editing features supported by the operating system
(backspace processing, etc.) will therefore be enabled.

The following table lists the devices and the corresponding BDOS
functions used for read and write operations in translated and
untranslated modes.

Device Translated Mode Untranslated Mode
Name Read FN Write FN Read FN Write FN
CON 1 2 7 6
AUX 3 4 3 4
CcOoM1 3 4 3 4
PRN - 5 - 5
LPT1 - 5 - S
NUL - - - -
A - for the function number indicates that the corresponding
operation is not supported for that device. The read function
returns end of file (count = @) if read is not supported. 1f

writing 1is not supported, the write function returns a normal
count indicating success, but does not actually send the data.
An additional special device name, specified by a NULL string
("", which consists of just a '\@8'), is recognized and processed
as if CON: had been specified.

In translated mode, a newline (@x8A) is converted to a carriage

return/linefeed sequence. A carriage return on input is
converted to a newline, and terminates the read operation even if
the byte count 1is not satisfied. In untranslated mode,

characters are sent without modification, and read operations do
not terminate until the requested number of characters has been
received. Note that a read operation to the console in
untranslated mode does not echo the characters received.

Programmers may also perform direct single character 1/0

5-3

Lattice 8086/8888 C Compiler System Library Implementation

operations wusing the bdos function, and several additional
functions support direct 1/0 to the console. See Section 5.5 for
details.

If one of these devices is opened for access using fopen, input
and output are performed in unbuffered mode, which means that
single characters are received and sent immediately. The only
exception to this rule occurs for stdin, which main opens in
buffered mode so that the buffered console input function can be
used. I1f desired, stdin can be changed to the unbuffered mode
using setnbf; see Section 3.2.2 for more information.

5.3 Memory Allocation

The full set of memory allocation functions described in Section
3.1 is provided under MS-DOS. The following cautions apply:

1. The 1reset functions rstmem and rbrk cannot be used if
any of the level 2 I/0 functions are also being used on
currently open files. Note that only disk files
allocate a file access block using getmem; the reset
functions may be used if the only open files are
actually connected to devices. A file may be closed,
then re-opened after the reset function is called:
however, any file pointers must be updated if this is
done, because there is no guarantee that the same value
will be returned when the file is opened again.

2. The dynamic memory used by the memory allocation
functions is the same memory used for the run-time
stack. Programmers must be careful to provide enough
space for the stack to prevent its collision with the
dynamic memory pool, either by getting an override value
from the command line (see Section 4.1.4) or by defining
an external int location called _stack and initializing
it with a desired value. See Section 4.5.5 for a
complete discussion of the stack size.

3. Programmers who wish to implement their own memory
allocation functions can refer to the data locations in
the startup module which define the total stack space
available:

extern unsigned _base;

contains the offset (from DS) of the lowest portion of
the stack, which is the same as the highest offset of
the static data items in the program (see diagram at
Section 4.5).

extern unsigned _top;

contains, in the S and P models, the offset of the top

of the stack, either X'FFF8' or whatever was determined
to be the highest usable offset; in the D and L models,

Lattice 8086/8688 C Compiler System Library Implementation

it contains the number of bytes allocated for the stack
(same as _stack). As noted above, the external location
stack contains the default or specified stack size
desired; user-written memory allocators may wish to make
use of that value, as a convenience,

5.4 Program Entry/Exit

The startup module CS.0BJ (or CP.OBJ, CD.OBJ, or CL.OBJ) calls

main to begin execution of a C program, and passes to it a copy
of the command line which executed the program. Actually,
because MS-DOS does not save the program name portion of the
command, the command line passed to _main consists of the
characters "c " (lower case 'c' followed by a blank) immediately
followed by all of the characters typed after the program name.
The standard version of main supplied in the libraries analyzes
the command 1line for all of the elements described in Section
4.1.4, and then passes the command-line arguments to main. If
the stack override and file specifier features are not needed,
the version supplied as TINYMAIN.C can be used instead. Please
note the following important cautions if this is done.

1. The likrary function printf sends its output to the pre-
defined file pointer stdout, which is normally opened by
main. 1f the code that performs this function is
removed, printf calls will produce no visible output
{the 1I/0 library functions ignore attempts to read or
write unopened files). A similar caveat applies to the
use of scanf, which reads from stdin.

2., 1f the goal 1is to avoid including the level 2 1/Q
functions in the linked program, the library function
exit should not be called, since it closes all buffered
output file before terminating execution and
automatically causes level 2 functions to be included.
Call _exit instead.

The program exit functions exit and _exit are described in
Section 3.2.4. The error code argument is passed back to tha
operating system, where it can be tested in a batch file using a
command such as:

if error level 1 goto error
5.5 Special Functions
The functions discussed in this section provide low-level access

to various system resources. They tend to be machine-dependent
and are therefore not portable.

Lattice B8@86/8¢88 C Compiler System Library Implementation

NAME

bdos -- call BDOS function
SYNOPSIS

ret = bdos(fn,dx);

int ret; returns code

int £n; BDOS function number

int dx; value to be placed in DX
DESCRIPTION

Performs a BDOS call by placing fn in the AH register, dx in
the DX register, and operating an INT 21H. The value
returned by BDOS in the AX register is passed back as ret.

CAUTIONS

In the D and L models, it is better to use the intdosx
function described next, since some BDOS function calls need
a pointer defined relative to DS, which may not contain the

correct segment base in these models,

Lattice 8886/8088 C Compiler System Library Implementation

NAME
intdos, intdosx -~ generate DOS function call
SYNOPSIS
ret = intdos(inregs, outregs);
ret = intdosx(inregs, outregs, segregs);
int ret; operating system return code
union REGS *finregs; input registers
union REGS *outregs; output registers
struct SREG *segregs; segment registers (intdosx only)
DESCRIPTION

Generates a DOS function request to the operating system.
The operating system specifications should be checked to
determine the DOS functions and calling sequences supported;
the wvalues 1in the registers are used as inputs. In
particular, the exact function request is specified by
placing a value in one of the registers (under MS-DOS, the
function number is specified in AH; wunder CP/M-86, 1in CL).
inregs must contain the values which will be loaded into the
working registers before the function call is made; outregs
will receive the values in the registers after control
returns from the function request. With intdosx, the values
which will be placed in the segment registers before the
interrupt may be specified; although the SREGS structure
defines all of the segment registers, only DS and ES will
actually be 1loaded. The RBEGS and SREGS structures are
defined in the DOS.H header file.

CAUTIXONS

Defining the segment register values for intdosx is best
accomplished by calling segread to obtain current values
(see below for details on this function).

Note that inregs, outregs, and segregs are shown as pointers
above; the usual technique is to declare them directly, and
then use the address-of operator to pass a pointer to them.

Lattice 8086/8088 C Compiler System Library Implementation

NAME

int86, int86x -- generate 8886 software interrupt
SYNOPSIS

int86(intno, inregs, outregs);

int86x(intno, inregs, outregs, segregs);

int intno; interrupt number

union REGS *inregs; input registers

union REGS *outregs; output registers

struct SREGS *segregs; segment registers (int86x only)
DESCRIPTION

Performs an 8886 software interrupt of the specified number.
The operating system should be checked to determine the
interrupts and calling sequences supported; generally,
values in the registers are used as inputs. inregs wmust
contain the register values which will be loaded into the
work ing registers before the interrupt is performed; outregs
will receive the register values after control returns from
the interrupt. With int86x, the values which will be placed
in the segment registers before the interrupt can be
specified; although the SREGS structure defines all of the
segment registers, only DSand ES will actually be loaded.
The REGS and SREGS structures are defined in the DOS.H
header file.

CAUTIONS

The software interrupts on the 8686 are used to implement
multi-level system processing, and invalid input data can
cause unpredictable (and occasionally disastrous) results.
Defining the segment register values for int86x is best
accomplished by calling segread to obtain current values
(see below for details on this function).

Note that inregs, outregs, and segregs are shown as pointers
above; the usual technique is to declare them directly, and
then use the address-of operator to pass a pointer to them.

Lattice 8086/8888 C Compiler System Library Implementation

NAME

segread -- return current segment register values

SYNOPSIS

segread (segregs);

struct SREGS *sedqregs; structure for return of values

DESCRIPTION

Places the current 8686 segment register values into the
SREGS structure whose pointer is supplied. 1ts main purpose
is to obtain current values in order to make a subsequent
call to int86x or intdosx. The definition for the SREGS
structure is found in the DOS.H header file.

Lattice 8886/8688 C Compiler System Library Implementation

NAME
movedata -- move data bytes from/to segment/offset address

SYNOPSIS
movedata (sseg, soff, dseg, doff, nbytes);
int sseg; segment portion of source address
int soff; of fset portion of source address
int dseg; segment portion of destination address
int doff; offset portion of destination address
unsigned nbytes; number of bytes to move

DESCRIPTION
Moves the specified number of data bytes from the source to
the destination address. The addresses must be specified as
(segment:offset) in accordance with the standard 8086 nota-
tion. This function is primarily intended for use in pro-
grams compiled wusing the S and P models; in the D and L
models, the standard library function movmem can be used.
The segread function can be used to obtain segment register
values.

CAUTIONS

Memory 1is not protected on the 8086, so supplying invalid
parameters to this function can have disastrous results.

Lattice 8086/8888 C Compiler System Library Implementation

NAME

peek, poke -- examine/modify arbitrary memory locations

SYNOPSIS

peek (segment, offset, buffer, nbytes);
poke (segment, offset, buffer, nbytes);

int segment; segment portion of memory address
int offset; offset portion of memory address
char *buffer; local memory buffer

unsigned nbytes; number of bytes to transfer

DESCRIPTION

These functions copy data values between an arbitrary memory
location and a local memory buffer: peek moves data to the
local buffer from a specified memory address, while poke
moves data from the local buffer to the arbitrary memory
address. These functions are primarily intended for use in
programs compiled using the S and P models; in the D and L
models, the standard library function movmem can be used.

CAUTIONS

Memory is not protected on the 8686, so supplying invalid
parameters to the poke function can have disastrous results.

Lattice 8086/8688 C Compiler System Library

NAME

inp, outp -- direct port 1/0 functions
SYNOPSIS

v = inp(p);

outp(p,v);

int v; 1/0 value

int p; 1/0 port number
DESCRIPT ION

The inp function reads 1/0 port p and returns

is there. The outp function writes value v to
CAUTIONS

Direct port operations can cause all sorts
including physical damage to some systems,
should be exercised.

Implementation

whatever data
port p.

of problems,
Extreme care

Lattice 8686/8888 C Compiler Error Messages

APPENDIX A:
Error Messages

This appendix describes the various messages produced by the
first and second phases of the compiler. Error messages which
begin with the text CXERR are compiler errors which are described
in Appendix B.

A.l1 Unnumbered Messages
These messages describe error conditions in the environment,
rather than errors in the source file due to improper
language specifications.

Can't create object file
The second phase of the compiler was unable to create the
.0BJ file. This error usually results from a full directory
on the output disk.

Can't create quad file
The first phase of the compiler was unable to create the .Q
file. This error usually results from a full directory on
the output disk.

Can't open quad file
The second phase of the compiler was unable to open the .Q
file specified on the LC2 command, usually because it did
not exist on the specified (or currently logged-in)
drive/directory.

Can't open source file
The first phase of the compiler was unable to open the .C
file specified on the LC1l command, usually because it did
not exist on the specified (or currently logged-in)
drive/directory.

File name missing
A file name was not specified on the LCl or LC2 command.

Intermediate file error
The first phase of the compiler encountered an error when
writing to the .Q file. This error usually results from an
out-of -space condition on the output disk.

Invalid command line option
An invalid «command line option (beginning with a -) was

specified on either the LCl1 or the LC2 command. See

A-1

Lattice 8086/8¢88 C Compiler Exror Messages

Sections 4.1.1 and 4.1.2 for valid command line options.
The option is ignored, but the compilation is not otherwise
affected. 1In other words, this error is not fatal.

No functions or data defined

A source file which did not define any functions or data
elements was processed by the computer. This error always
terminates execution of the compiler. It can be generated
by forgetting to terminate a comment, which then causes the
compiler to treat the entire file as a comment.

Not enough memory

This message is generated when either phase of the compiler
uses up all the available working memory. The only cure for
this error is either to increase the available memory on the
system, or (if the maximum is already available) reduce the
size and complexity of the source file. Particularly large
functions will generate this error regardless of how much
memory is available; break the task into smaller functions
if this occurs.

Object file error
The second phase of the compiler encountered an error when
writing to the .OBJ file. This error usually results from
an out-of-space condition on the output disk.

A.2 Numbered Error Messages

These error messages describe syntax or specification errors in
the source file; they are generated by the first phase of the

compiler. A few are warning messages that simply remark on
marginally acceptable constructions but do not prevent the
creation of the quad file. See Section 4.3.3 for more

information about error processing.

1 This error is generated by a variety of conditions in
connection with pre-processoxr commands, including specifying
an unrecognized command, failure to include white space
between command elements, or use of an illegal pre-processor
symbol .

2 The end of an input file was encountered when the compiler
expected more data. This may occur on an #include file or
the original source file. In many cases, correction of a
previous error will eliminate this one.

3 The file name specified on an #include command was not
found.

4 An unrecognized element was encountered in the input file
that could not be classified as any of the wvalid lexical
constructs (such as an identifier or one of the valid

Lattice 8086/8¢88 C Compiler Error Messages

18

11

12

13

14

15

16

expression operators). This may occur if control characters
or other illegal (i.e., high bit set) characters are
detected in the source file. This may also occur if a pre-

processor command is specified with the # not in the first
position of an input line.

A pre-processor f#define macro was used with the wrong number
of arguments.

Expansion of a #§define macro caused the compiler's line
buffer to overflow. This may occur if more than one lengthy
macro appears on a single input line.

The maximum extent of #include file nesting was exceeded;
the compiler supports #include nesting to a maximum depth of
4.

An invalid arithmetic or pointer conversion was specified.
This wusually results when an attempt is made to convert
something into an array, a structure, or a function.

The named identifier was undefined in the context in which
it appeared, that is, it had not been previously declared.
This message is only generated once; subsequent encounters
with the identifier assume that it is of type int (which may
cause other errors).

An error was detected in the expression following the |
character (presumably a subscript expression). This may
occur if the expression in brackets is NULL (not present).

The length of a string constant exceeded the maximum allowed
by the compiler (256 bytes). This will occur if the closing
" (quotes) are omitted in specifying the string.

The expression preceding the . (period) or -> structure
reference operator was not recognizable by the compiler as a
structure or pointer to a structure. This may occur even
for constructions which are accepted by other compilers; see
Section 2.1.

An identifier indicating the desired aggregate member was
not found following the . (period) or -> operator.

The indicated identifier was not a member of the structure
or union to which the . (period) or -> referred. This may
occur for constructions which are accepted by other
compilers; see Section 2.1.

The identifier preceding the (function call operator was
not implicitly or explicitly declared as a function.

A function argument expression specified following the (
function call operator was invalid. This may occur if an
argument expression was omitted.

Lattice 8086/8088 C Compiler Error Messages

17

18

19

20

21

22

23

25

26

27

28

During expression evaluation, the end of an expression was
encountered but more than one operand was still awaiting
evaluation. This may occur if an expression contained an
incorrectly specified operation.

During expression evaluation, the end of an expression was
encountered but an operator was still pending evaluation.
This may occur if an operand was omitted for a binary
operation.

The number of opening and closing parentheses in an
expression was not equal. This error message may also
occur if a macro was poorly specified or improperly used.

An expression which did not evaluate to a constant was
encountered in a context which required a constant result.
This may occur if one of the operators not wvalid for
constant expressions was present (see Kernighan and Ritchie,
appendix A, p. 211).

An identifier declared as a structure, union, or function
was encountered 1in an expression without being properly
qualified (by a structure reference or function call
operator).

This non-fatal warning occurs when an identifier declared as
a structure or union appeared as a function argument without
the preceding & operator. Expression evaluation continues
with the & assumed (i.e., a pointer to the aggregate is
generated).

The conditional operator was used erroneously. This may
occur if the ? operator is present but the : was not found
when expected.

The context of the expression required an operand to be a
pointer. This may occur if the expression following * did
not evaluate to a pointer.

The context of the expression required an operand to be an
lvalue. This may occur if the expression following & was
not an 1lvalue, or if the left side of an assignment
expression was not an lvalue.

The context of the expression required an operand to be
arithmetic (not a pointer, function, or aggregate).

The context of the expression required an operand to be
either arithmetic or a pointer. This may occur for the
logical OR and logical AND operators.

During expression evaluation, the end of an expression was
encountered but not enough operands were available for

Lattice 8086/8688 C Compiler Error Messages

29

30

31

32

33

34

35

36

37

38

evaluation. This may occur if a binary operation is
improperly specified.

An operation was specified which was invalid for pointer
operands (such as one of the arithmetic operations other
than addition).

This non-fatal warning occurs when in an assignment
statement defining a value for a pointer variable, the
expression on the right side of the = operator did not

evaluate to a pointer of the exact same type as the pointer
variable being assigned, 1.e., it did not point to the same
type of object. See Section 2.1 for an explanation of the
philosophy behind this warning. Note that the same message
becomes a fatal error if generated for an initializer
expression.

The context of an expression required an operand to be
integral, 1i.e., one of the integer types (char, int, short,
unsigned, or long).

The expression specifying the type name for a cast
(conversion) operation or a sizeof expression was invalid.
See Kernighan and Ritchie, Appendix A, pp. 199-280 for the
valid syntax.

An attempt was made to attach an initializer expression to a
structure, wunion, or array that was declared auto. Such
initializations are expressly disallowed by the language.

The expression used to initialize an object was invalid.
This may occur for a variety of reasons, including failure
to separate elements in an initializer list with commas or
specification of an expression which did not evaluate to a
constant. This may require some experimentation to
determine the exact cause of the error.

During processing of an initializer list, a structure, or
union member declaration list, the compiler expected a
closing right brace, but d4id not find it. This may also
occur if too many elements are specified in an initializer
expression 1list or if a structure member was improperly
declared.

This implementation does not allow initializer expressions
to be used for unions.

The specified statement label was encountered more than once
during processing of the current function.

In a body of compound statements, the number of opening left
braces { and closing right braces } was not equal. This may
also occur if the compiler got ®"out of phase"™ due to a
previous error.

Lattice 8286/8088 C Compiler Error Messages

39

40

41

42

43

44

45

46

47

48

49

5@

51

52

One _of the C language reserved words appeared in an invalid
context (e.g., as a variable name). See Kernighan and
Ritchie for a list of the reserved words (p. 180). Note
that entry is reserved although it is not implemented in the
compiler.

A break statement was detected that was not within the scope
of a while, do, for, or switch statement. This may occur
due to an error in a preceding statement.

A case prefix was encountered outside the scope of a switch
statement. This may occur due to an error in a preceding
statement.

The expression defining a case value did not evaluate to an
int constant.

A case prefix was encountered which defined a constant value
already used in a previous case prefix within the same
switch statement.

A continue statement was detected that was not within the
scope of a while, do, or for loop. This may occur due to an
error in a preceding statement.

A default prefix was encountered outside the scope of a
switch statement. This may occur due to an error in a
preceding statement.

A default prefix was encountered within the scope of a
switch statement 1in which a preceding default prefix had
already been encountered.

Following the body of a do statement, the while clause was
expected but not found. This may occur due to an error
within the body of the do statement.

The expression defining the looping condition in a while or
do loop was NULL (not present). Indefinite 1loops must
supply the constant 1, if that is what is intended.

An else keyword was detected that was not within the scope
of a preceding if statement. This may occur due to an error
in a preceding statement.

A statement label following the goto keyword was expected
but not found.

The indicated identifier, which appeared in a goto statement
as a statement label, was already defined as a variable
within the scope of the current function.

The expression following the 1if keyword was NULL (not
present).

Lattice 8086/8988 C Compiler Exrror Messages

53

54

55

56

57

58

59

68

61

62

63

The expression following the return keyword could not be
legally converted to the type of the value returned by the
function. This may be generated if the expression specifies
a structure, union, or function.

The expression defining the value for a switch statement did
not define an int value or a value that could be legally
converted to int.

The statement defining the body of a switch statement did
not contain at least one case prefix.

The compiler expected but did not find a colon (:). This
error message also may be generated if a case expression was
improperly specified, or if the colon was simply omitted
following a label or prefix to a statement.

The compiler expected but did not find a semi-colon (;).
This error generally means that the compiler completed the
processing of an expression but did not find the statement
terminator (;). This may also occur if too many closing
parentheses are included or if an expression is otherwise
incorrectly formed.

A parenthesis required by the syntax of the current
statement was expected but was not found (as in a while or
for loop). This may also occur if the enclosed expression
is 1incorrectly specified, causing the compiler to end the
expression early.

In processing external data or function definitions, a
storage class invalid for that declaration context {such as
auto or register) was encountered. This may also occur if,
due to preceding errors, the compiler begins processing
portions of the body of a function as if they were external
definitions.

A storage class other than register appeared on the
declaration of a formal parameter.

The indicated structure or union tag was not previously
defined; that is, the members of the aggregate were unknown.

A structure or union tag has been detected in the opposite
usage from which it was originally declared (i.e., a tag
originally applied to a struct has appeared on an aggregate
with the wunion specifier). The Lattice compiler defines
only one class of identifiers for both structure and union
tags.

The indicated identifier has been declared more than once
within the same scope. This error may be generated due to a
preceding error, but is generally the result of improper
declarations.

Lattice 8086/8088 C Compiler Error Messages

64

65

66

67

68

69

78

71

72

73

74

A declaration of the members of a structure or union did not
contain at least one member name.

An attempt was made to define a function body when the
comp iler was not processing external definitions. This may
occur if a preceding error caused the compiler to "get out
of phase™ with respect to declarations in the source file.

The expression defining the size of a subscript in an array
declaration did not evaluate to a positive int constant.
This may also occur if a zero length was specified for an
inner (i.e., not the leftmost) subscript.

A declaration specified an illegal object as defined by this
version of C. Illegal objects 1include functions which
return aggregates (arrays, structures, or unions) and arrays
of functions.

A structure or union declaration included an object declared
as a function. This is illegal, although an aggregate may
contain a pointer to a function.

The structure or union whose declaration was just processed
contains an instance of itself, which is illegal. This may
be generated if the * is forgotten on a structure pointer
declaration, or if (due to some intertwining of structure
definitions) the structure actually contains an instance of
itself.

A function's formal parameter was declared illegally; that
is, it was declared as a structure, union, or function. The
compiler does not automatically convert such references to
pointers.

A variable was declared before the opening brace of a
function, but it did not appear in the list of formal names
enclosed in parentheses following the function name.

An external item has been declared with attributes which
conflict with a previous declaration. This may occur if a
function was used earlier, as an implicit int function, and
was then declared as returning some other kind of value.
Functions which return a value other than int must be
declared before they are used so that the compiler is aware
of the type of the function value,

In processing the declaration of objects, the compiler
expected to find another line of declarations but did not,
in fact, find one. This error may also be generated if a
preceding error caused the compiler to "get out of phase"”
with respect to declarations.

During processing of external declarations, an attempt was
made to define a function, but it was not the first
identifier declared on the input line.

Lattice 8086/8088 C Compiler Exrror Messages

75

76

77

78

79

81

82

83

An attempt was made to define the same function more than
once within the same source module.

The compiler expected, but did not find, an opening 1left
brace in the current context. This may occur if the opening
brace was omitted on a list of initializer expressions for
an aggregate.

In processing a declaration, the compiler expected to find
an identifier which was to be declared. This may occur if
the prefixes to an identifier in a declaration (parentheses
and asterisks) are improperly specified, or if a sequence of
declarations is listed incorrectly.

The indicated statement 1label was referred to in the
previous function in a goto statement, but no definition of
the label was found in that function.

In processing a list of declared items, the compiler
expected a separator (comma or semi-colon) but did not find
one. This usually results from an improperly specified list
of names being declared, or from an attempt to initialize an
object for which initialization is not permitted (such as an
extern object).

The number of bits specified for a bit field was invalid.
Note that the compiler does not accept bit fields which are
exactly the length of a machine word (such as 16 on a 16-bit
machine); these must be declared as ordinary int or unsigned
variables.

The current input line contained a reference to a pre-
processor symbol which was defined with a circular
definition, or loop. See Section 2.2.1 for an example.

The size of an object exceeds the maximum legal size (which
is the largest positive int); or, the last object declared
caused the total size of declared objects for that storage
class to exceed that maximum. This may also occur if the
size of formal parameters exceeds 256 bytes.

This non-fatal warning complains of an indirect reference
(usually a subscripted expression) which accesses memory
beyond the size of the object used as a base for the address
calculation. It generally occurs when an element beyond the
end of an array is referred to.

Lattice 8086/8088 C Compiler Compiler Errors

APPENDIX B:
Compiler errors

This appendix describes the procedure to be used for reporting

compiler errors. These are errors that result not from the
user's incorrect specifications but from the compiler itself
failing to operate properly. There are five general kinds of

errors which can occur:

1. The compiler generates an error message for a source
module which is actually correct.

2. The compiler fails to generate an error message for an
incorrect source module.

3. The compiler detects an internal error condition and
generates an error message of the form

CXERR: nn
where nn is an internal error number.

4. The compiler dies mysteriously (crashes) while compiling
a source module.

5. The compiler generates incorrect code for a correct
source module.

The last type of error is, of course, the most difficult to
determine and the most vexing for the programmer, who has no
indication that anything is wrong until something inexplicably
doesn't work; who only concludes that the compiler is at fault
after a long and painstaking study of his or her own code.

Lattice, Inc. 1is anxious to know about and repair any compiler
errors as quickly as possible, so please report any problems
promptly. The difficulties encountered may be spared the next
programmer if this is done. In order to maintain a more precise
record of the bugs that are discovered, all problems should be
reported in writing to:

Lattice, Inc.

P.O. Box 3@72

Glen Ellyn, Illinois
60138

In all cases, include the following items of information:

1. A listing of the source module for which the error
occurred. Don't forget to include 1listings of any
#include files used (and watch out for #include file
nesting; don't forget the inner files as well).
Supplying the source on IBM PC-compatible disk format
will save time.

Lattice 8886/8088 C Compiler Compiler Errors

2.

The revision number of the compiler, when it was
purchased and the serial number.

Your name and address and, if possible, a telephone
number with information about the best time to call.

A description of the problem, along with any other
information which may be helpful such as the results of
your investigation into the problem. Obviously, errors
of type 3 (see above) don't need anything more than a
terse "Causes CXERR 23."

Our current policy in cooperation with our publisher,
Lifeboat Associates in New York, calls for a free update
to the first finder of a bona fide bug!

Meanwhile, attempt to code around the problem; if that
doesn't work, mutter a few curses directed at "lousy
compiler writers™ and work on something else. Remember,
Lattice 1is in the business of supplying portable C
compilers and uses them for its own development work;
the motivation to fix the bugs immediately is definitely
there.

Lattice 8086/8988 C Compiler Conversion of CP/M Programs

APPENDIX C:
Conversion of CP/M-80 Programs

Because of its similarity to CP/M-88, it is reasonable to expect
that C programs written for that operating system will be
transported to MS-DOS without a great deal of difficulty. This
appendix attempts to point out some of the pitfalls likely to be
encountered when moving source from CP/M to MS-DOS or vice-versa
for compilation with the Lattice C compiler.

The least amount of trouble lies in store for those who have
written programs for the BDS C compiler. At the source code
level, every effort has been made to be compatible. While the
Lattice compiler is a little stricter in some things, generally
the correction 1is accepted by the BDS compiler as well, which
facilitates keeping one set of source code for both systems. For
example, a sequence like

char *cp;

cp = cfunct(i);

char.'cfuncc(n)
int n;
{

will cause the Lattice ccmpiler to complain about a mismatch of
external attributes, because cfunct is used implicitly as int
before it is defined as char *. Inserting

char *cfunct{);

prior to the first use of cfunct eliminates the error, and is
acceptable to the BDS compiler as well. As for other coding
constructions, the warning generated for structures supplied as
function arguments without a preceding & was included
specifically for BDS C programs. The problem of external data
definitions posed by the BDS implementation's lack of storage
class specifiers is solved by the -x compile-time option. Here
are the rules for using it on BDS C programs:

1. When compiling the main module, 4o not specify the -x
option. The various external declarations are
interpreted as definitions of the objects, and storage
is actually allocated for them.

2. wWhen compiling any of the other modules, specify the -~x
option on the LCl command. The various external
declarations are then interpreted as references to
objects defined elsewhere (presumably in the wmain
module) .,

Be careful not to compile more than one of the modules in the

c-1

Lattice B086/8688 C Compiler Conversion of CP/M Programs

program without using the -x option; otherwise, the linker will
inform you that multiple definitions of the external items were
encountered.

At the library level, there are other, more serious difficulties.
Although the BDS library does a good job of supplying most of the
standard functions described in the Kernighan and Ritchie text,
the details of their operation are different from the Lattice

functions in a number of small ways. In particular, putchar and
getchar are direct console 1/0 functions under BDS C, whereas
they are implemented as macros in Lattice C. This problem can be
avoided by using the console I/0 functions described in Section
3.2.3. In general, it is best to review all of the functions
supplied in both libraries with a view toward locating potential
trouble spots. Many of the more specialized CP/M functions have

not yet been provided in the Lattice library, but check the
latest compiler addendum; others will probably be added as newer
versions of the compiler are released.

Users of the Whitesmiths C compiler are not likely to encounter
any problems with source language compatibility, but the library
is for the most part completely different. Hint: Jjudicious use
of #defines may eliminate some problems.

Lattice 8086/8888 C Compiler List of Files

APPENDIX D:
LIST OF FILES

The following files are supplied as part of the compiler package:

Executable Files

LCl.EXE
LC2.EXE
FXU.EXE
OMD . EXE

C compiler (phase 1)

C compiler (phase 2)
Function Extract Utility
Object Module Disassembler

Run-time and Library Files

CS.0BJ
CP.OBJ
CD.0BJ
CL.OBJ
LCS.LIB
LCP.LIB
LCD.LIB
LCL.LIB

C Source Files

MAIN.C
TINYMAIN.C
FTOC.C
CAT.C
FXU.C
CONIO.C

C Header Files

STDIO.H
CTYPE.H
ERROR.H
FCNTL.H
IOS1.H

DOS.H

MSDOS .H
SMB8@86.H
PMB8G86.H
DM8G86.H
LM80986.H

C program entry/exit module (S model)
C program entry/exit module (P model)
C program entry/exit module (D model)
C program entry/exit module (L model)
Run-time and I/0 library (S model)
Run-~time and 1/0 library (P model)
Run~time and I1/0 library (D model)
Run-time and I/0 library (L model)

Standard library version of main
Abbreviated version of main
Fahrenpheit-to-Celsius sample program
File concatenation sample program
Source for function extract utility
Basic console I/0 functions

Standard I/0 header file

Character type macros header file

Header file defining UNIX error numbers
Header file defining level 1 1/0 codes
Header file defining level 1 1/0 structures
Environment information header file

Defines MS-DOS version

Memory model header file for S model
Memory model header file for P model
Memory model header file for D model
Memory model header file for L model

(Note: in order to use the DOS.H header file, you must copy one
of the last four files into M8@86.H.)

Assembly Language Source Files

C.ASM
10.ASM

Source for C.0BJ (all versions)
Sample assembler language function

Lattice B8086/8088 C Compiler

Assembly Language Macro Files

(Note:

SM8d@86 .MAC
PMB8@86.MAC
DMB8@86 .MAC
LM8@86 .MAC

Macro
Macro
Macro
Macro

includa file used with
include file used with
include file used with
include file used with

copy one of the last four files into DOS.MAC.)

D-2

Hallelk-13%]

List

model
model
model
model

in order to assemble the sample source modules,

of Files

you must

Latt iee 8#86/8888 C Compiler

INDEX
& address operator

8087 numeric data processor
8088 processor

-a option

address operator
aliasing

alignment requirements
allmem function
arguments

arithmetic conversions
arithmetic objects
arithmetic operations
array name

ASCII

assembly language interface
auto storage class

-b option

bdos function

BDOS function entries
binary mode

bit fields

branch instructions
buffering

byte alignment

byte ordering

-c option

calloc function

CAT proqram

CD.OBJ

cgets function
character constants
character type

char

CL.OBJ

close function

clrerr function

code generation
comments

common subexpressions
compile-time option
compiler errors
compiler processing
conditional compilation
console 1I/0 functions
constant operands
control flow analysis
conversions

CP.OBJ

cprintf function

2-2,

4-18,
4-18,

4-5,
2-2,
4-5,

[I A T I |
AN

L LRSI VRS I,
|
BN W0

@

Wk e NN W R0 o e i NN B W W b WD ol b o
|

Index

2-9, 2-11

4-21, 4-22
4-33, 4-34

4-25
2-12, 4-5, 4-14

4-8, 4-17, 4-28

Lattice 8086/8088 C Compiler

cputs function
creat function
CS.0BJ
cscanf function
CTYPE.H
ctype array
CXERR error message
CXFERR library function

-d option

D memory model
data elements
data formats
DATA segment
debugging
#define

derived objects
device 1/0
device names
DGROUP group
differences from standard language
division by zero
dollar sign
double precision

echo

equality operators

error processing

escape character

exit function

_exit function

expression evaluation
external data definitions
external declarations
external function definitions
external names

external reference
external storage class

fclose function
feof macro
ferror macro
fgetc function
fgets function
file access mode
file descriptor
file 1/0

file names
fileno macro
file number
file pointer
file position

floating point
_fmode location

1-2

i

t

i
(NSRS SRy
>

)
[I S B B |
W W N U WD —

t

[
FS

1
N A= QU N

O

N B e N RN Lo RO e N

Index

Lattice 8086/8088 C Compiler

fopen function

formatted input

format ted output

formal storage class
fprintf function

fputc function

fputs function

fread function

freopen function

free function

fscanf function

fseek function

ftell function

function arguments
function call conventions
Function Extract Utility
function return value
fwrite function

FXU.EXE

-g option
getchar macro
getch function
getmem function
getml function
getc macro

gets function
groups

hardware characteristics
hardware registers

-i option
#if
#include
include files
initialization
initializers
int86x function
int86 function
intdosx function
intdos function
integer overflow
inp function
iomode location
Tsalnum macro
isalpha macro
isascii macro
iscntxl macro
iscsymf macro
iscsym macro
isdigit macro
isgraph macro
islower macro
isprint macro

Index

3-17, 5-1
3-27, 3-55
3-29, 3-55
2-6

3-29

3-22

3-26

3-24

3-18

3-5

3-27

3-17, 3-31
3-32

4-38

4-38

4-13

4-40

3-24

4-13

4-8

3-206, 3-23, 3-49
3-58, 3-55

3-7, 5-1

3-7

3-20, 3-23

3-25, 3-49

4-37

4-18
4-27

4-6

2-2, 2-4, 2-14

3-15, 4-6, 4-17, 4-20, 4-25
4-6, 4-28

Lattice 8086/8088 C Compiler

ispunct macro
isspace macro
isupper macro
isxdigit macro

kbhit function

L memory model
language definition
LC1l.EXE

LC2.EXE

LCD.LIB

LCL.LIB

LCP.LIB

LCS.LIB

library functions
linkage conventions
linking

$line

line control

local declarations
logical end-of-file
1sbrk function
1seek function
lvalue

-m option
machine dependencies
macros
main function

main function
malloc function

maximum dize of declared object

maximum subscript length
member names

memory allocation

memory models

movedata function

movmem function

MS-DOS

~n option

-0 option

object code conventions
Object Module Disassembler
operating instructions
operating system
operators

open function
optimization

order of evaluation
outp function

overflow

Index

N W W NRN b e b b b b b N
| [T B B B |
Lol - SN Rl V- OV i S IRVC VRV N il]

~ v N
L.
]
W
[~

-
¢
w

-

4-9, 4-30

E I R N S N B B |
F]

W W

- JNUSTRS, V- SRV N S R SRRV IR, I N
| [N S|
HAPEORFRN & WWOW

’
-1, 4-34, 5-4
-6, 4-28
~16
-61
-1, 5-1
4-6
4-6, 4-8
4-36
4-15
4-1
4-1
2-93
3-41, 5-2
4-26
2-9
4-44, 5-12
4-22

Lattice 8686/8088 C Compiler

P memory model

peek function

PGROUP group

phase 1 command line options
phase 1 processing

phase 2 command line options
phase 2 processing
pointers

pointer conversion warning
pointer overlap

pointer variables

poke function

portable library functions
pre-processor features
primaxy expressions

printf function

program entry/exit

program execution

program exit

program generation

program linking

program segment

program structure

putch function

putchar macro

putc macro

puts function

quadruples
quad file

rbrk function

read function
registers

register storage class
register variables
relational operators
repmem function

rewind macro

rlsmem function

rlsml function

rstmem function
run-time program structure

-8 option

S memory model

sbrk function

scanf function
scope of identifiers
segment definitions
segment registers
segread function
setbuf function
setmem function
setnbf function

[A S T T N N | [0 R I A Y A S S I A A |
WIWONUFHUNFEEHEFEEFNNNMDMDOANON BWHN
L~ W~ [t R N s = o

- O

W L e e e b Wb W RN WL i B RO b b b i e U
U

1
N w;
-

3-21

4-34

4-6,
4-29
3-13,
3-27,
2-8
4-36
4-35
5-9
3-16,
3-60
3-39

4-33
3-49

3-38

NN
1
w o
-
L]
|
-
@«
-

Index

Lattice 8086/8@¢88 C Compiler

shift operations

sign extension

sizeof operator
sizmem function
sprintf function
sscanf function

stack

_stack location

stack overflow

stack pointer SP
stack size

standard error
standard input
standard output
static storage class
stcarg function
stccpy function
stcd_i function
stch_i function
stcisn function
stci_d function

stcis function

stclen function
stcpma function

stcpm function

stcu_d function
stderr

stdio.h

stdin

stdout

storage classes
storage class specifiers
stpblk function
stpbrk function
stpchr function
stpsym function
stptok function
strcat function
stremp function
strcpy function
string constants
string uvtility functions
strlen function
structures and unions
structure and union declarations
structure member references
stscmp function
stspfp function
subexpressions

switch statement

tags
temporaries
text mode
tolower macro

I-6

LI I I I |
~N O v @@
~

|
N O e~
RN

|
AN~ WWwERHNNOINNN

e el

’
’

LI I I
[- V-

Wl W W N i b e b e b B W W W N e e
1 t
~ -~
Lot~

1
~
@©

3-65
3-81
3-89
31-69
3-16,
3-18,
3-16,
3-16,
2-6
2-13
3-73
3-77
3-76
3-74
3-75
3-67
3-68
31-66
2-2,
3-64
3-65
2-2,
2-13
2-2,
3-68
3-82
2-19
4-26

2-13
2-10,

'3-16,

3-63

4-21
2-4, 2-14
3-19
4-38, 4-44,
4-45, 5-4
4-38, 4-44
4-38
4-11, 4-45
4-12

4-12

4-11, 4-17,
3-38, 3-83,
3-20, 4-11,
3-21, 4-11,
2-4, 2-12
2-14, 4-18
2-12

4-39

3-4¢, 5-2

5-4

Index

Lattice 8686/89888 C Compiler

toupper macro
translated mode
type-ahead

type names

type punning

unary operators
tundef

underflow

ungetch function
ungetc function
uninitialized pointer
unions

unlink function
unresolved externals
untranslated mode
utility functions and macros

-v option

warning message
write function

-x option

zerodivide

3-63
3-16,
3-49
2-14
2-1¢

3-51
3-23
4-33
2-9,
3-44
4-10
3-16,
3-59

3-49,

2-14,

3-40,

5-2

4-5,

5-3

4-18

Index

fattice 8086/8888 C Compiler Supplement for Version 2.1¢

Lattice 8#86/8088 C Compiler

MANUAL SUPPLEMENT FCR VERSION 2.18

1.9 SUMARY OF DIFFERENCES

The following 1list summarizes the most Iimportant differences
between Version 2.10 and Version 2.900. Please note that this
document is intended as a supplement to the Version 2.00 manual.
If you do not yet have that manual, you must contact the
publisher from whom you purchased the compiler and make arrange-
ments to obtain it.

1.1 Compiler Differences

The compiler has been been upgraded in a few minor ways, as the
following list indicates:

-— Extern/static objects as large as 64K now permitted

— New -d flag to $define symbols fram command line

— Pre~defined symbols for memory model, operating system

— New —w flag forces word aligmment as in Version 1.04

— Larger input lines/macro definitions supported

—— Additional warnings issued for questionable constructs
1.2 Library Differences

Most of the differences between Version 2.1 and Version 2.0 are
in the library, as sumarized in the following list:

— Automatic sensing of MS-DOS 1 vs. MS-DOS 2
— Automatic sensing and use of 8¢87 math chip
— UNIX-compatible math functions
— FORK/EXEC cambination functions
- ASCII/BINARY mode specifiers on FOPEN
— Access to environment strings
—— Miscellaneous library additions
We have attempted to keep all of the 2.1 chamges upward

campatible with Version 2.4, and so you should not have to change
any existing programs. However, the addition of MS-DOS version

Lattice 8086/8088 C Compiler Supplement for Version 2.18

sensing and 8887 sensing has caused the library to grow a bit.
Therefore, programs that were close to a memory limit might be
affected. Also, the FORK/EXEC capability forced us to change our
approach to memory allocation, which may affect programs that
bypass our standard memory management functions. This change in
the memory layout for the S and P models forced a change in the
code generated to detect stack overflow, which means that
programs using these models must be entirely recompiled before
they can use the new library. See section 6 for more details.

Version 2.1 also includes buy fixes in both the compiler and the
library. These should all be transparent, since none of the
documented interfaces were changed.

Finally, we've improved the operating procedures by adding an LC
command that invokes both compiler passes and by adding several
batch files that copy the release disks to our recammended
directory structure on systems with hard disks.

The following sections describe these differences in detail.

TABLE OF CONTENTS

2.8 NEWw COMPILER FEATURES 3
3.8 MS5-DOS VERSION SENSING 6
4.9 AUTCMATIC SENSING AND USE OF 8887 MATH CHIP 7
5.8 UNIX-COMPATIBLE MATH FUNCTIONS 8
6.8 'ORK/EXEC COMBINATION FUNCTIONS 20
7.8 ASCII/BINARY MODE SPECIFIERS ON FOPEN 24
8.0 ACCESS TO ENVIRONMENT STRINGS 25

9.0 MISCELLANEOUS LIBRARY ADDITIONS AND CORRECTIONS 27
10.8 CONVENIENCE FEATURES 34

11.9 LIST OF FILES 36

Lattice 8686/8088 C Compiler Supplement for Version 2.18

2.0 NEW COMPILER FEATURES

In addition to the usual bug fixes, this version of the compiler
has been enhanced in several ways. These enhancements make it
easier to perform conditional compilations, and allow a larjer
class of programs to be accepted by the compiler. At the sane
time, several helpful warnings have been added which can often
point to coding errors.

2.1 New Storage Class Size Limitations

In the previous version of the compiler, no object could exceel
32767 bytes in size; moreover, the combined size of all objects
declared for a particular storage class was subject to the sane
limitation. In Version 2.1, the limit has been changed to 55535
bytes, for static and extern objects only. Structures may be
declared which are in excess of 32767 bytes, but the error
message "maximum object/storage size exceeded” will be generated
if an attempt is made to declare an auto structure of that size.

2.2 Command Line Definition of Pre-processor Symbols

The -d flag has been extended to allow symbols to be $#defined
from the command line. This feature allows source files contain-
ing conditional compilation directives (#ifdef, #ifndef, #if,
felse, #endif) to be used to produce different results without
modifying the source file, simply by defining the appropriate
symbol on the LC1 command. The -d flag in its simplest form
retains the same meaning as in the previous version (i.e., it
causes the compiler to include line-number information in the
object file). The new forms of the command are

—dsymbol
~dsymbol=val ve

where "symbol" is a standard C identifier. The first form merely
defines the symbol with a null substitution text; the equivalent
C statement is

f$define symbol

The second form uses an egual sign to attach a substitution text
"value"; its equivalent is

$define symbol value

Several definitions can be used in the same ICl1 comnand; however,
macros with arguments cannot be defined from the command line.

2.3 Pre-defined Symbols

As a further assistance to conditional compilation, the compiler
now automatically f§defines several symbols, which can be tested
in conditional compilation statements to select appropriate code
sequences for the operating system, memory model, and so forth.

Lattice 8086/8¢88 C Compiler Supplement for Version 2.19

These sSymbols have also simplified the new version of DOS.H and
eliminated the need for the MSDOS.H, M8086.H, PM8086.H,
DMB086. H, and IM8@86.H header files supplied with Version 2.00 of
the conpiler.

Two symbols are always defined in the compiler:

tdefine MSDOS 1
$define 18486 1

One of the following symbols is defined, depending on the memory
model specified:

$define 18086S 1 defined if 5 model, else undefined
fdefine I8@86P 1 defined if P model, else undefined
f#define 18@88D 1 defined if D model, else undefined
#define 18986L 1 defined if L model, else undefined

One or the other of the following is also defined, depending on
the memory model:

#define SPIR 1 defined if S or P model
#define LPIR } defined if D or L model

If the -8 option was specified on IC1l, the following symbol is
defined:

#define SFLAG 1

Finally, 1if the —d flag was specified (as "-d", not "-dsymbol"),
the following symbol is defined:

#define DEBUG 1

The automatic definition of these symbols can be prevented by
using a new compiler flag:

-u
Specifying this flay on ICl cancels all of the above definitions.
2.4 Optional Word Aligrment

An option to support aligmment of data elements other than char
to an even (word) offset has been provided:

-

Specifyiny this flag on IC1 causes all data elements except char
items to be assigned to even offsets. This aligmment produces
more efficient code on an 8086 processor, where fetching a word
on an odd byte bourdary requires four additional clock periods.
The same aligmment was used as the default in Version 1.84 of the
compiler .

Lattice 8086/8088 C Compiler Supplement for Version 2.18

2.5 BExpanded Line and Macro Sizes

Formerly, the substitution text for a #define macro was limited
to a maximum of 88 bytes; in Version 2.18, the new maximum is 256
bytes. Similary, the previous maximum size of an input source
line was 132 bytes; the new maximum is 256 bytes.

2.6 New Warning Messages

Two new warning messages have been added to Versicn 2.18 of the
compiler. They are:

Warning 84: redefinition of pre-processor symbol “xxxx"
Warning 85: function return value mismatch

The first warning is issued whenever a #define statement 1is
encountered for an already #defined symbol. As noted in the
manuval, the second definition takes precedence, but requires an
additional #undef statement before the symbol is truly undefined.

The second warning is issued whenever the value returned by a
function is not of the same type as the function Iitself. The
value specified is automatically converted to the appropriate
type; the warning merely serves to notify you of the conversion.
The warning can be eliminated by using a cast operator to force
the return value to the function type.

Version 2.80 of the compiler generated warning 33 {("pointers do
not point to same object™) only when the result of an assigmment
sStatement was a pointer. In Version 2.10, the same warning is
generated when a pointer of any type is assigned to an arithmetic
object. A new warning (duplicate declaration of item."xxxx") is
now generated when a formal parameter for a function is
redeclared at the lowest level inside the function, as in

f (x)
char x;
{

int x;

Finally, the use of an undefined structure tag in a pointer
declaration now causes only a warning, not an error, if the
structure is never defined —— as long as no attempt is made to
refer to the structure's members, or to perform arithmetic with
the pointer.

2.7 New Error Messxjes

If either operand in a logical OR (1]) or logical AND (&&)
expression is constant, the compiler now will generate the error
message "invalid constant expression®. If the end of source file
input is detected inside a constant, the error message
*unexpected end of file™ will be generated.

Lattice 8886/8088 C Compiler Supplement for Version 2.1

3.8 MS-DOS VERSION SENSING

The start-up program (see C.ASM) now sets up a global variable
named dos that indicates which version of MS-DOS is active.
The 1library functions then test this variable at appropriate
points in order to call the proper low-level operating system
service functions.

You can refer to _dos in two ways, as follows:

extern char _dos;
extern char dos(2];

The MS-DOS major version number (1 or 2) is then found at _dos
(first method) or _dos[#)] (second method). The minor version
number is found at _dos{1) for the second method only.

As you can see by examining C.ASM, the MS-DOS version information
is obtained via operating system call 3@, which is fully
described in the MS-DOS or PC-DOS Technical Reference. We ensure
that dos will never contain a value of @ when operating under

MS-DOS, and we may use the @ value to Indicate CP/M-86 in a
future release.

Lattice 8086/8088 C Compiler Supplement for Version 2.16

4.8 AUT(MATIC SENSING AND USE OF B@87 MATH CHIP

The floating point simulation functions in the library have bewn
changed to detect the presence of the 8857 math chip. 1£ the
chip is -installed, you should notice a larjyn performance
improvement in projgrams that do many floatiny point operations.

Notice that you do not need to use the -f £l i3 order ' obtai
the benefits of the 8887 under Version 2.1. Furthamore, tus
programs that you generate will run corr: T or a system withou!
the math chip. We are still considoring tho use of the ~f flaj
to stimulate in-line 8@37 code j-n:vation, but this may he
dropped if the bi-modal library approich proves adequate.

Lattice 8886/8888 C Compiler Suppleament for Version 2.18

5.8 UNIX-COMPATIBLE MATH FUNCTIONS

version 2.1 includes a large portion of the floating point math
functions that are usually provided with UNIX. Detailed
specifications are given in the following manual pages. Note
that the header files math.h and limits.h should usually be
included when you are using these functions.

Lattice 8686/8888 C Compiler Supplement for Version 2.18

NAME

exp,log,logld,pow,sqrt -~ exponential functions

SYNOPSIS
r = exp(x); compute E¥ty
r = log{x); compute natural log of x
r = logld(x); compute base 18 log of x
r = pow{x,y): compute x*#*y
r = sqrt{x); compute square root of X
double r; result
double x,y; arguments

DESCRIPTION

For log, logld, and sqrt, the x argument must be positive,
and for pow, the y argument must be an integer if x is
negative.

Lattice 8086/8888 C Compiler Supplement for Verslon 2.18

NAME
sin,cos,tan,asin,acos,atan,atan2 — transcendental functions
SYNOPSIS

sin(r); campute sine of r (r in radians)
cos(r); compute cosine of r

tan(r); campute tangent of r

asin(x); canpute arcsin of x

acos(x) ; compute arccosine of x

atan(x) ; campute arctangent of x
atan2(y,x); campute arctangent of y/x

oMo X XX
uowuoR N B

double r,X,Y;
DESCRIPTION

The sin, cos, and tan functions compute the normal
trigonometric functions of angles expressed in radians.

The asin function camputes the inverse sine and retwns a
radian value in the range -PI/2 to +PI1/2.

The acos function computes the inverse cosine and returns
a radian value in the range 8 to PI.

The atan function computes the inverse tamgent and returns a
radian value in the range —-PI1/2 to +P1/2.

The atan2 function computes the inverse sine of y/x and
returns a radian value in the range -PI to +PI.

10

Lattice 8886/8088 C Compiler Supplement for Version 2,10

NAME
sinh,cosh,tanh —— hyperbolic functions
SYNOPEIS
x ~ sinh(y); sompute hyperbo!l
x = cosh(y}; compritn hyperboli :
% = tanhiy); compute hyperbslic tangent
double x,y;
DESCRIPTION

These functions simnly compute the normal ayperbolics.

11

Lattice B@#86/8888 C Compiler Supplement for Version 2.10

NAME

rand,srand — simple random number generation
SYNOPSIS

x = rand();
srand(seed);

int x; random number
unsigned seed; random number seed

DESCRIPTION

The rand function returns pseudo-random numbers in the range
from @ to the maximum positive integer value. At any time,
you can call srand to reset the number generator to a new
starting -point. The initial default seed is 1. See the
description of drand for more sophisticated random number
generation.

12

Lattice 8886/8088 C Compiler Supplement for Version 2.1@

NAME
drand —— generate random numbers

SYNOPSIS
x = drand48(); generate double (internal seed)
x = erand48(y); generate double (external seed)
z = lrandas(); generate positive long (internal seed)
z = nrand48(y); generate positive long (external seed)
z = mrand48(); generate long (internal seed)
z = jrand4s(y); generate long (external seed)
srand48(2); set high 32 bits of internal seed
p = seed48(y); set all 48 bits of internal seed
lcongd8(k) ; set linear congruence parameters
double x;
unsigned short y[3];
long 2;

unsigned short *p;
ungigned short k[7];

DESCRIPTION

These functions generate pseudo-random numbers using the
lipear congruential algorithm and 48-bit integer arithmetic.
The normal versions (drand48, lrand48, mrand48) utilize an
internal 48-bit storage area for the seed value. Special
versions (erand48, nrand48, jrand48) are provided for cases
where several seeds are in use at the same time, in which
case the user provides the seed storage areas.

The drand48 and erand48 functions return values uniformly
distributed over the interval from 6.8 up to but not
including 1.8.

The 1lrand48 and nrand48 functions return non-negative long
integers uniformly distributed over the interval from 8 to
2%%3]1-1.

The mrand48 and jrand48 functions return signed long
integers uniformly distributed over the interval from -2*#3]
to 2**3]1-1.

The srand48 and seed48 functions allow you toc initialize the
internal 48-bit seed value to something other than the

defaults. For srand48, the specified long value is copied
into the high 32 bits of the seed, and the low 16 bits are
set to #x33¢e. For seedd8, the entire 48-bits are loaded
from the specified array, and the function returns a pointer
to the internal seed array.

13

Lattice 8#86/8888 C Compiler Supplement for Version 2.18

The loong48 function allows you to do a much more intricate
initialization of the linear congruential algorithm. ‘The
algorithm is of the form:

Xintl] = {a* X{n] + ¢) mod m

where m is 2%%48 and the default values for a and ¢ are
#x5deece66d and #xb, respectively. ‘The array passed to
lcong48 contains the valwve for X{n} in k{@#] to k[2}, the
valve for a in k{3] to k(S], and the value for c in k{6].
when you call seed48, a and ¢ are reset to their original
default values.

14

Lattice 8686/8088 C Compiler Supplement for Version 2.18

NAME

ceil ,fabs,floor,fmod,frexp,ldexp,modf ~- float conversions

SYNOPSIS
x = ceil(y); get ceiling integer
x = fabs(y); get absolute value
x = floor(y); get floor integer
x = fmod(y,z); get mod value
x = frexp(y,p): split into mantissa and exponent
x = 1dexply,i});: load exponent
x = modf(y,p); split into integer and fraction

double x,y,z;
int i;
double *p;

DESCRIPTION

These functions convert floating point numbers into various
other foms.

The floor and ceil functions return the integer values that
are just below and just above the specified wvalue,
respectively.
The fmod function returns y 1if z is =zero. Otherwise, it
returns a value that has the same sign as y, is less than z,
and satisfies the relationship

y=1*2+x
where i is an integer.
The frexp function splits y into its mantissa and exponont
parts. The exponent is placed into the area pointed o by
p, while the mantissa is returned by the function.

The ldexp function returns y * (2 ** i),

The modf function returns the fractional part of y with tihe
same sign as y and places the integer portion into the area
pointed to by p.

15

Lattice 8886/8888 C Compiler Supplement for Version 2.18

NAME

atof ,atoi,atol — simple ASCII conversions
SYNOPSIS
atof({p); ASCII to floating point

atoi(p); ASCII to integer
atol(p); ASCII to long integer

i
1

oo

double x;
int i;
lorg 1;
char *p;

DESCRIPTION

These functions »mip over any leading white space (i.e.
blanks and tabs) and then perform the appropriate
cunversion. The conversion stops at the first unrecognized
character, and no check is made for overflow.

For atof, the ASCII string may contain a decimal point and
may be Ffollowed by an eor an E and a signed integer
exponent, For all functions, a leading minus sign indicates
3 negative nunber. white space is not allowed between the
minus sign and the number or between the number and the
exponent .,

16

Lattice 8686/8088 C Compiler Supplement for Version 2.10

NAME
strtol —— convert ASCII to long integer
SYNOPSIS

r = strtol(s,p,base);

long r; result
char *s; string to be scanned
char **p; returns pointer to terminating character
int base; conversion base
DESCRIPTION

This function converts an ASCII string into a lorng integer,
using the specified number base for the conversion. Leadiny
white space (i.e. blanks and tabs) is skipped, and the
conversion proceeds until an unrecognized character is hit.
The pointer to the unrecognized character is returned in p.
If no conversion can be performed, p will contain s, and the
result will be @.

The conversion base can be in the range from @ to 36. If it
is non-zero, then the ASCII string may contain digit
characters from @ through 9 and from the letter A through as
many letters as necessary, with no distinction made between
upper and lower case. For example, if base is 13, then the
allowable digit characters are # through 9 and A,3, and C or
a, b, and c. 1If base is 16, then a leading "@x" or "@X" may
appear in the string.

If base is @, then the leading characters of the string are
exanined to determine the conversion base. A leadiny 0
indicates octal conversion (base 8), while a leading 8x or
PX indicates hexadecimal conversion (base 16). A leadim
digit from 1 to 9 indicates decimal conversion (base 18).

17

Lattice 8886/8088 C Compiler Supplement. for Version 2.10

NAME
ecvt ~— convert floating point to ASCII
SYNOPSIS

p = ecvt{value,ndig,dec,sign);

char *p; pointer to ASCII string
double value; value to convert
int ndig; number of digits in string
int *dec;j returns position of decimal point
int *sign; non-zero if negative
DESCRIPTION

This function converts the specified valuwe into a null-
terminated ASCII string containing the specified number of
digits. The integer pointed to by dec will then contain the
relative 1location of the decimal point, with a negative
value meaning that the decimal is to the 1left of the
returned digits. The actual decimal point character is not
included in the generated string.

Lattice 8686/8888 C Compiler Supplement for Version 2.19

NAME
matherr —— handle math function error
SYNOPSIS

code = matherr(x);

int code; non-zero for new return value
struct exception *x; math exception block
DESCRIPTION

This function is called whenever one of the other math
functions detects an error. Upon entry, it receives the
exception block that describes the error in detail. This
structure is defined in math.h, as follows:

struct exception

int type; error type

char *name; name of function having eryor
double argl; first argument

double arg2; second argument

double ret; proposed return value

}:

The error type names defined in math.h are:

DOMAIN => domain error

SING => singularity

OVERFLOW = over flow

UNDERFLOW = under flow

TLOSS = total loss of significance
PLOSS = partial loss of significance

when matherr is called, the function that detected the error
will have placed its proposed return value into the
exception structure. If you want to substitute a different
value, then matherr must return a non-zero code.

If you do not supply a version of matherr, the standard

version will put the appropriate error number into errno and
return a code of 9.

19

Lattice 8986/8888 C Campiler Supplement for Version 2.10

6.0 FORK/EXEC COMBINATION FUNCTIONS

MS-DOS Version 2 contains a system call that behaves 1like a
cambination of the WNIX fork and exec functions. That is, it
creates a "child® process which executes a specified load module.
The “parent® process can then retrieve the child's campletion
code via another new system call that is similar to the UNIX wait
function.

of course, MS-DOS Version 2 does not really support multi-
programming, and so the parent and child processes do not
actually timeshare the camputer. The parent remains suspended
until the child terminates. However, if multi-programming is
added to MS-DOS in the future, we expect that the interface
provided in our library will be unaffected except that the parent
will no longer be totally out of business while the child
executes.

After reviewing the new functions described in the following
manual page, you might wonder why we did not provide an exact
equivalent of INIX's fork function. The answer is simply that we
could ot figure out a general way to replicate the parent
process's address space on the 8986. ‘That is, the typical
progran operating under MS-DOS contains absolute segment numbers,
which makes it impossible to move the program for execution in
another area of memory.

Memory Management Change

In order to implement the FORK/EXEC capability, we had to change
our approach to memory allocation for the S and P memory models.
Version 2.8 of Lattice C remained fully compatible with the
earlier small-model versions by placing the stack as high as
possible in the data segment and by placing the memory pool (i.e.
the "heap”) between the static data area and the stack. However,
for the D and L models introduced with Version 2.4, we placed the
stack immediately above the static data and made all remaining
memory above the stack available for the heap.

In Version 2.1, the stack is located just above the static data
for all memory models. Under MS-DCOS 2, then, the start-up
program (see C,.ASM) returns all remaining memory space to the
operating system so that there is roam to create a child process.
When you call sbrk, it will attempt to obtain the required amount
of space back fram MS5-D0OS, and when you call rbrk, the space thus
obtained will once again be given back to MS-DOS. In other
‘ords, the memory allocation functions will appear to operate as
hey did under Version 2.8 of the compiler, but in fact they will
.e much more closely coupled to the operating system.

e fly in the ointment is that a child process can choose to

terminate but remain resident in memory. If that happens, the
parent may find that its heap cannot jrow because the child

20

lattice 8086/8088 C Compiler Supplement for Version 2.18

process is in the way. Tb help avoid this problem, we've added a
global variable called mneed. This is simply a long integer
that specifies the minimum number of bytes neaded in the heap.
At start-up time and each time you call rbrk, mneed is
consulted. If sufficient space cannot be allocated, the start-up
program aborts or rbrk returns a -1 failure code. Note that you
can change mneed each time you call rbrk.

Finally, if you referenced the pointers wmbase and mnext
directly without going through the memory allocation functions,
be aware that these are both 4-byte pointers under all memory
models. This implies that wunder the S and P models these
pointers should not be treated as D6-relative offsets. The sbrk
function adds top to the first word of mnext in order to return
a D6-relative offset to you. Also, sbrk ensures that the heap
remains within the addressing range of DS.

21

Lattice 8086/8888 C Compiler Supplement for Version 2.19

NAME
fork/wait -- create child process and wait for it
SYNOPSIS

error = forkv(name,argv);

error = forkl(name,arg#,argl,...,argn,NULL};
error = forkvp(name,argv);

error = forklp(name,arg#,argl,...,argn,NULL);
code = wait();

int error; @ for success, non-zero for error
int code; child process return code

char *name; file name of load module

char *argvl]; argument pointer array

char *arg@,*argl,.. argument pointers
DESCRIPTION

These functions create a child process that executes the
specified load module and then passes a return code back to
the parent process. The specified arguments are passed to
the child's main entry point via the nomal argc/argv
mechanism. By convention, the first argument (i.e. arg8 or
argv[@)) is the name of the child process load module, which
is usually the same as name. Note, however, that this first
aryument is not actually passed to the child process because
of limitations in the MS-DOS process creation primitives.
Also note that these same limitations restrict the total
length "of all argument strings to be no more than 127
char acters.

The function names have been chosen to match the various
forms of the UNIX exec function. The "v*" suffix on forkv
and forkvp indicates that the arguments are supplied as a
vector in the aryv form. ‘The last pointer in the vector
must be null. The "1" suffix on forkl and forklp indicates
that the arguments are supplied as a list of pointers, with
the last pointer being null. The "p" suffix on forkvp and
forklp indicates that the PATH enviromment variable should
be used if the load module is not found in the current
directory. hhen stepping through the directories, the
functions look for "name.COM" and then “name.EXE" in each
directory.

RETURNS

If the child process cannot be created, the fork function
returns a non-zero result. Under MS-DOS, the global integer
oserr will contain the operating system error code. If it
1s 8, the error occurred while processing the fork call
par ameters.

CAUTIONS

22

Lattice 8886/8888 C Compiler Supplement for Version 2.12

Under MS-DOS the arguments are converted into a text string
no lorger than 127 bytes. ‘The first argument (i.e. arg@ or
argv{e]) is dropped, and a blank is placed between
succeeding arguments. The resulting string is passed to the
child in its comand line buffer. If the child is a C
program, its startup phase will convert the coammand line
back into an arg list.

23

Lattice 8986,/8088 C Compiler Supplement for Version 2.18

7.8 ASCII/BINARY MODE SPECIFIERS ON FOPEN

Since the use of the finode global flag has confused some users,
we've added another way to specify translated or untranslated
mode when opening a level 2 file via fopen or freopen. You can
now specify translated mode by placing the letter ‘a’ in the
second position of the mode string. Similarly, the letter 'b*
specifies untranslated mode. If the second letter is neither of
these, _ﬁnode is used as before.

Note that this new approach is not currently UNIX-compatible.
However , several other C compiler packages work this way, and
proposals for this approach are floating around some of the
standards committees.

In summary, fopen axd freopen now recognize the following mode
strings:

r —- open for reading (translation according to _fmode)
ra — open for reading (translated)

tb — open for reading (untranslated)

w — open for writing (translation according to _fmode)
wa — open for writing (translated)

wb -— open for writing (untranslated)

a — open for appending (translation according to _fimode)
aa — open for appending (translated) -
ab — open for appending (untranslated)

You can also place a plus sign after any of these codes to
indicate opening for both reading and writing. If you open for
reading with a plus, then the file must already exist; but if you
open for writing with a plus, the file will be created anew.
Opening for appending with a plus will allow you to read from
anywhere in the file, but all write operations will occur at the
end of the file.

I1/0 ERROR CODES

when we wrote the Version 2 manual, we forgot to mention the
method by which you can determine what went wrong when one of
your I/0 calls fails. In general, we've tried to adhere to
WIX's technique for reporting errors. vwhen you get a failure
indication from an I/0 function, consult the global integer
errno, which will contain one of the error codes defined in the
header file error.h. As a further refinement, you can look at
the global integer oserr to see the MS-DOS error code, {f any.
These codes are described in the MS-DOS and PC-DOS Reference
Manuals .

24

Lattice 8@86/8088 C Compiler Supplement for Version 2.10

8.0 ACCESS TO ENVIRGMMENT STRINGS

MS-DOS vVersion 2 supports the UNIX notion of *“enviromment
strings", which are of the form "name=value" and are usually
defined by the SET cammand. The strings are stored one after
another in the environment array, and the last one is followed by
a null string. Upon entry, the public pointer env points to
the current enviromment array. For the S and P models, the
startup program copies the enviromment into the stack so that you
can address it relative to DS. Note that the stack space
required for this is added to the value you specify in stack ot
on the command line. -

The WNIX-compatible getenv function has been added to the library

to enable you to easily find a particular name in the
environment .

25

Lattice 8086/8088 C Compiler Supplement for Version 2.16

NAME

getenv — get enviromment string by name

SYNOPSIS
P = getenv(name);
char *p; points to value part of matching env string
char *name; env name

DESCRIPTION

This function searches the enviromment array pointed to by
_env and returns a pointer to the value portion of the first
string whose name portion matches name. If no match occurs,
a NULL pointer is returned.

26

Lattice 8986/8688 C Compiler Supplement for Version 2.19@

9.# MISCELLANEOUS LIBRARY ADDITIONS AND CORRECTIONS

By popular request, we've added more of the string manipulation
functions from the proposed UNIX standard. Also, we've added the
following functions:

remove — same as unlink

clearerr — same as clrerr

rename - rename a file

bdosx —— bdos function with pointer

getche — getch with echo

setjmp -~ save current stack for long return
longjmp —- make long return

The library now contains callable versions of some of the
character type macros described in section 3 of the Lattice C
Manual. Specifically, the following macros are also available in
function form:

isalpha(c) non-zero if ¢ is alphabetic

isupper (c) non-zero if ¢ is upper case

islower (c) non-zero if ¢ is lower case

fsdigit(c) mon-zero if ¢ is a decimal digit
{sspace(c) non-zero if ¢ is white space

isalnum(c) non-zarp if ¢ is alphanumeric
iscntrl(c) non-zero if c is a control character
toupper (¢) converts ¢ to upper case if it is lower
tolower (C) converts c to lower case if it is upper

In order to use the function forms, do not #include the ctype.h
header file in your compilation. If you need ctype.h for some
reason, you can $undef the specific macros that should be treated
as functions.

The following manual pages describe the functions that have been
added.

27

Lattice 8086/8088 C Compiler Supplement for Version 2.1¢

NAME

strcat/strncat -- string concatenation
stramp/strnanp —— string compar ison
strcpy/strncpy — string copy

strlen —— measure string length
strchr/strrchr — find first or last occurrence of character
strpbrk -- find break character

strspn/strcespn — find longest initial span
SYNOPSIS

to = strcat(to,from);
to = strncat(to,from,max);

order = strcmp(a,b);
order = strnamp(a,b,max) ;

to = strcpy(to,from);
to = strncpy(to,from,max);

length = strlen(s);

p = strchr(s,c);
p = strrchr(s,c);

p = strpbrk(s,t);

length = strspn(s,t);
length = strcspn(s,t);

char *to,*from; destination and source strings
int max; max imum number of characters
char *a,*b; strings to compare
int order; -ifa<hb
Pifa==ph
+ifa>hb
char *s; string to test
char *t; test string
int length; result length
char *p; result pointer
DESCRIPTION

The strcat and strncat functions append the "from" string to
the "to" string. Por strncat, no more than the specified
maximum number of characters will be appended.

The stramp and strnomp functions perform an unsigned
character comparison of the specified strings. For strnomp,
no more than the specified maximum number of characters will
be compared.

The strcpy and strncpy functions copy the from string to the
to string. For strncpy, no more than the specified maximum

28

Lattice 8¢86/8088 C Compiler Supplement for Version 2.18

nunber of characters will be copied.

The strlen function returns a count of the number of
characters in the specified string, not including the
terminating null.

The strchr function returns a pointer to the first
occurrence of tie specified character in the specified
string. Similarly, strrchr returns a pointer to the last
occurrence of the character. Both functions return a null
pointer if the character is not found in the string.

The strpbrk function returns a pointer to the first
occurrence in string s of any character from string t. A
null pointer 1is returned if no character from the test
string is found.

The strspn function returns the length of the initial
segment of string s that consists entirely of characters
from string t. Similarly, strcspn returns the length of the
initial string of characters not from string t.

29

Lattice 8086/8088 C Compiler Supplement for Version 2.1¢

NAME
rename -- rename a file
SYNOPSIS
error = rename{old,new);
int error; @ for success
char *old; old file name
char *new; new file name
DPESCRIPTION

This function renames a file, if possible. A failure will
occur {f the new file name already exists or if the old file
name does not.

30

Lattice 8086/80888 C Compiler Supplement for Version 2.1@

NAME

bdos/bdosx —— call BDOS function

SYNOPSIS

ret = bdos(fn,dx,al);

ret = bdosx(fn,dp,al};

int ret; return code

int fn; BDOS function number placed in AH

int dx; value to be placed in DX

char *dp; pointer to be placed in DS:DX

int al; value to be placed in AL
DESCRIPTION

Performs a BDOS call via interrupt number 8x21. For the S
and P memory models, bdos and bdosx behave identically. For
the D and L models, you must use bdosx if the BDOS function
requires a pointer in DS:DX or bdos if BDOS only wants an
integer in DX.

31

Lattice 8086/8888 C Compiler Supplement for Version 2.18

NAME
getch/putch — get/put character directly to/from console

SYNOPSIS
c = getch(); get character with no echo
c = getche(); get character with echo
putch(c); put character
int c;

DESCRIPTION

These functions get and put characters directly to and from
the console using the lower-numbered BDOS functions. No
special processing is done except that putch puts a carriage
return character in front of each newline.

Previous versions of putch masked off the high order bit of
the character and did mot automatically emit carriage
returns. Existing programs that generate "™\r\n" sequences
should still behave the same because the second '\r' emitted
by putch is merely redundant.

32

Lattice 8086/8088 C Ccmpiler Supplement for ‘Version 2.1w

NAME
setjmp/longjmp —- per fora non-lozal joto
SYNOPSIS

ret = setjmp{save);
longjmp{save,value) ;

int vet; return code
int value; return value
jmp_buf save;

DESCRIPTION

The setjmp function saves the curcent stack mark in the
buffer area specified by save and returns a valuwe of 0.
‘Then a later call to longjmp will return to the next
statement after the oriyinal setjmp call with value a3 the
return code. If value is 0, it i5 forced to 1 by longjmp.

The jmp buf descriptor is defined in the header file called
setjmp.h.

This mechanisn i3 useful for quickly popping back up through
multiple layers of function calls under exceptional
cir-umstances. Structured programming gurus lose a lot of
sleep over the “"pathological connections” that can result
from indiscriminate usaye.

CAUTIONS

Calling longjmp with an invalid save area is an effective
way to disrupt your system. ne cammon error is to use
longjmp after the function calling setjmp has returned to
its caller. 1f you think about how the stack works, you'll
see why this doesn't.

33

Lattice 8086/8088 C Compiler Supplement for Version 2.1¢

19.9 CONVENIENCE .FEATURES

This version contains several things that should make it easier
to use the Lattice C Compiler, including:

—- Batch files for loading the coampiler onto an IBM-XT
—- A single LC cammand to invoke both compiler passes
-- Batch files for compiling and linking in standard ways

These are described in the following sections.

18.1 Batch Files for Loading Compiler onto IBM-XT

Since the IBM-XT and equivalent MS-DOS hard-disk machines seem to
be very popular with Lattice C users, we've included a batch file
that constructs our recommended directory structure and a second
batch file that loads the compiler onto the hard disk.

MAKELC.BAT creates a directory structure that will contain the
various modules that make up the compiler package. To execute
it, place the first release disk into drive A and type A:MAKELC.
when the procedure completes, the hard disk will contain the
following directory structure:

\lc Contains compiler, header files, and utilities.

\lc\s Contains headers, abjects, and libraries for S
memory model .

A\lc\p Contains headers, objects, and libraries for P
memory model.

\1c\d Contains headers, objects, and libraries for D
memory model.

\1c\1 Contains headers, objects, and libraries for L
memory model.

\1c\¢c Contains headers, objects, and 1libraries for
building .CaM files.

\lc\src Contains source files for utility and
demonstration programs.

The LOADLC.BAT procedure copies the information from the release
disks to the hard disk. If you don't want to keep a particular
meamory model online, simply remove its subdirectory before
executing the load procedure. To execute LOADLC, place the first
release disk into drive A and type:

34

Lattice 8086/8688 C Compiler Supplement for Version 2.1

cz
od \1lc
copy a:loadlc.bat
loadlc

At the appropriate times you will be prompted to chanje the disk
in drive A.

After loading the compiler modules, you should set the default
search path for the command interpreter to include \lc. This can
either be done via the PATH command or via the AUTOEXEC.BAT file
as described in the MS-DOS reference manual .

10.2 IC Command

The release disk contains a program called LC.CaM that uses the
new FORK/EXEC functions to call the two compiler passes
repeatedly for multiple compilations. ‘The command has the
format:

IC options files

where options is a list of compiler options and files is a 1list
of Eiles, which can include "wild cards".

In general, the options are the same as for the LC1 and LC2
commands, except where IC1 and [£2 used the same option letter to
mean different things. ‘These cases were resolved as follows:

-nds This option specifies the D model with the -s
option on I£2.

~m2s Same as -mds.

-mls L model with -s option on IC2.

-m3s Same as -mls.

- Specifies prefix for gquad files, same as ICl -o.

In other words, the -s flag for pass 2 appears as a suffix on the
-md and -ml memory model specifiers, and the quad file drive is
indicated via -q instead of -o. Note that these changes apply
only to the new IC command, not to IC1 and 1C2.

LC allows you to put a blank between an option letter and the
string that follows it, as in

IC -d xyz
This is compatible with UNIX, but causes a problem if the -d item

is just before the file name part of the command and was intended
to indicate debugging mode instead of defining a symbol, as in

35

Lattice 8986/8088 C Compiler Supplement for Version 2.1@

IC -d program
The symbol "progran" will be #defined instead of being treated as
a file name to be compiled. To get around this problem, use the
UNIX convention of ending the options with a single dash:

IC -4 - program
1¢.3 Batch Files for Compiling and Linking

The release disks contain several batch files that should
simpl ify the most common compiling and linking scenarios.

ICS Compile for S model
LCP Compile for P model
Ico Compile for D model
ICL Compile for L model
LINKS Link for S model
LINKP Link for P model
LINKD Link for D model
LINKL Link for L model
LINKC Link for .COM file

The LCx procedures accept up to 9 arguments consisting of options
(as defined for LC.COM) and file names or file name patterns.
The options must appear first. The LINKx procedures accept a
single argument that is the name of the .0BJ file containing your
main program.

11.6 LIST OF FILES

Version 2.16 is normally shipped on disks in the IBM 320K format.
As discussed in section 18, the first disk contains batch files
that facilitate copying the release disks onto your hard disk if
you use an IBM-XT or equivalent. The actual release files are:

Batch Files
MAKELC.BAT Make hard disk directory structure
LOADLC.BAT Ioad Lattice C onto hard disk
ICx .BAT Campile under memory model x
LINKx.BAT Link under memory model x

Executable Files

LC.COM Compiler command line handler
IC1.EXE C compiler (phase 1)

LC2.EXE C compiler (phase 2)

FXU.EXE Function extract utility
OMD.EXE (bject module disassembler
PLIB86.EXE Object module librarian

36

Lattice 8086/8888 C Compiler Supplement for Version 2.1d

Run-time and Library Files

CS.0BJ C program entry/exit module (for S model)
cp.BJ C projram extry/exit module (for P model)
CD.0BJ C programn extry/exit module (for D model)
CL.BJ C program extry/exit module {for L model)
cc.mJ C program entry/exit module (for .COM files)
LCS.LIB Run—-time and 1/0 library (for S model)
LCp.LIB Run-time and I/0 library (for P model)
LCD.LIB Run-time and 1/0 library (for D model)
LCL.LIB Run-time and I/0 library (for L model)

C Source Files

MAIN.C Standard library version of main
TINYMAIN.C Abbreviated version of main
CONIO.C Basic console I/O functions

FTOC.C Fahrenheit-to-Celsius sample program
CAT.C File concatenate sample program
FXU.C Function extract utility

C Header Files

STDIO.H Standard I/0 header file

CTYPE.H Character type macros header file

DOS.H Environnent jnformation header file

ERROR. tH Header file defining UNIX error numbers
FCNTL.H Header file defining level 1 I/0 codes
1051.H4 Header file defining level 1 I/0 structures
MATH.H Mathematical functions header file
LIMITS.H Defines limiting values for math functions

Assembly Lanquage Source Files

C.ASM C progran entry/exit module (all versions)
10.AM Sample assembler language function

Assembly Language Macro Files

M808% . MAC Macro include file used for .COM files
SMB8386.MAC Macro include file used with S model
PMB0O86 . MAC Macro include file used with P model
DM8086.MAC Macro include file used with D model
LM8086.MAC Macro include file used with L model

(Note: in order to assemble the source modules, one of the above
files must be copied into DOS.MAC; use the version appropriate
for the memory model desired.)

37

TECHNICAL BULLETIN
TB840523.001

DATE: May 23, 1984
PRODUCT: 8086,/8888 C Compiler, Version 2.10
SUBJECT: Support for .COM files

The Version 2.1 disks contain several files that support the
construction of .COM files. However, we neglected to include
information in the Version 2.1¢ addendum about this feature.

If you use our standard installation procedure as described in
the addendum, your hard disk will contain a directory "\1c\c" and
a batch file "linkc.bat". In the former you will find versions
fo "c.obj" and "dos.mac" that must be usad when constructing .CM
files. The general procedure is:

1. Compile your C modules under the snall model (e.g. via
the LCS batch ptocedure);

2. Assemble your assembly-language programs using
"\lc\c\dos.mac" .

3. Link everything using the LINKC batch procedure. This

should cause a "NO STACK SEGMENT" warning message, which can
be ignored. LINKC also calls the MS-DOS utility EXE2BIN to
convert the linker .EXE output into the desired .COM format.

Note that you cannot produce a .CM file if any of the included
modules defines a stack segment or contains segment fixups.
Compiling under the small model and linking with the special
version of "c.obj" guarantees that these two criteria are met.
Assembling with the special version of “dos.mac” does not
guarantee that your assembly-languajge can be used to construct a
.CiM, so you might want to take a look at "c.asm” to see how we
set 1t up to avoid segment fixups.

*RAPNDY X

TECHNICAL BULLETIN
TB840523.092

DATE: May 23, 1984
PRODUCT: 8086/8088 C Compiler, Version 2.14
SUBJECT: Return values for INTDOS and INT86

The Version 2.10 addendum did not mention a change that we made
in INTDOS, INTDOSX, INTS86, and INT86X as a result of requests
from many users. These functions now return the processor status
flags instead of the AX register value. Many MS-DOS interrupt
functions use the flays (especially the carry flag) to convey
information back to the caller, and there was previously no way
for the C program to obtain this information after calling one of
the above functions. The flags are defined in any 8086/8083
instruction manual .

Note that if your program is assuming that these functions return
AX, it must be changed to obtain AX from the “outregs" structure
as described in the Lattice C Manual.

We have also had several queries from people who are trying to
use INT86 or INT86X to perform absolute disk reads and writes via
interrupts @x25 and #x26. This will not work because those two
interrupts return with the status flags still pushed on the
stack, as is discussed in the MS-DOS and PC-DOS Programner's
Reference.

AR ENDAAS

TECHNICAL BULLETIN
TB840615.001

DATE: June 15, 1984
PRODUCT: B086/8088 C Compiler, Version 2.11
SUBJECT: Version 2.12 Update

Version 2,12 of the 8086/8088 C compiler has been released to
correct the following problems:

1. Null #defines were not handled correctly. That is, a
statement such as

¥define XYZ
caused a spurious error message.

2. The STRNCMP function did not always return the correct
value.

3. The character count returned by the STCCPY function did
not include the null terminator under some circumstances.

4. 8it fields were not compiled correctly as a result of
changes introduced in Version 2.10.

5. The INT86 and INT86X functions did not work correctly in
ail cases because some DOS interrupts destroyed the BP
register.

6. Wwhen you defined fmode to 0x8000, the standard files
{stdin, stdout, and stderr) were not switched into raw mode
by _main.

7. Because of a packaging error, the Version 2.00 copy of
MAIN.C was included on the 2.1 release disks. The correct
file is called MAIN.C and is now included. Do not use the
old MAIN.C with Version 2.1.

8. STPIO.H has been changed to define NULL as 0 for the S
and P memory models and as 0L for the D and L models.

9. Several people complained abhout the load module size
increase caused by the DOS compatibility feature described
in Section 3 of the 2.1 addendum. Therefore, we have
changed the standard libraries so that the I/0 fuanctions
work only with DOS 2. If you still want to be compatible
with DOS 1, the relecase disks contain files named 10S1x.0BJ,
where x is the memory model (S,D,P, or L). Include the
appropriate copy of 10S1 when you link, and your program
will work with both DOS 1 and DOS 2. If you want to save a
little more memory, examine _MAIN.C and remove the code that
is specific to DOS 1.

10. If you declared a function to return a char or float
value, the function would actually return an int or a
double, respectively. This has been corrected. Note that
this bug is suspected to exist in several other compilers,
particularly on UNIX systems, and some people have fallen
into sloppy coding practices because of it. The most common
pitfall is illustrated below:

In module #1:
char func()

char c;
return(c);

In module $2:

int x;
x = func();

The contents of x“s high order byte will be garbage, because
the module $#2 implicitly declares func to return an int even
though it is actually returning a char. On the 8086, what
this means is that func places c in the AL register and does
nothing with AH, which is a code improvement,

11. Section 2.7 of the 2.1 addendum indicates that constants
are not allowed as operands in logical expressions. This
restriction has been removed because it broke several
existing programs.

12. There is a typo on page 5 of the 2.1 addendum. 1In the
second last line, the word "constant" should be "comment”.

13. There is a typo on page 35 of the 2.1 addendum. 1In the
description of the -mds option, the -s flag applies to LCl,
not LC2.

14. The -x and -n flags were not recognized by the LC.COM
command.

15. The header file SETIJMP.H was omitted from the 2.10 and
2.11 release disks.

16. The 2.10 and 2.11 releases contained libraries that were
not compiled with the -s option, which resulted in a
per formance degradation.
17. The 2.1 addendum did not make it clear that LC.COM only
recognizes C source files that are in the current directory.
I1f you type

LC \stuffl\abc

the command will not find the source file.

1f you have already purchased 2.10 or 2.11, you can receive a
free update to 2.12 by simply sending the original release disks
to us with a return mailer.

i*iEND**ﬁ

URWIYS>sSIIEl A AqQ

S808/79808 123U] 10Jy
ADDSVUVIA] Axvaqr)y

oa2fqQO

OBSdAI I

Phoenix Software Associates-°

|

P1ibB86: PSA Object Library Manager
Table of Contents

Table of Contents

Library Manager Concepts

Using Plib86
Creating/Merging Libraries . . .
Library Search
Updating a library
Module Extraction
Cross reference listing

P1ib86 Commands + « . .
Input Format
Identifiers
Disk File Names
Initiating Plib86
Command Format
Object Files
FILE, LIBRARY, SEARCH
N
INCLUDE, EXCLUDE
Building a Library
BUILD « . ¢« « ¢ ¢« « &
INTEL
Extracting a Library Module . .
Generating Reports
WIDTH, HEIGHT
BRIEF ¢« ¢ + « o« « & &
Controlling the Library Index .
NOINDEX + ¢ o o « « =
BLOCKS + « ¢ ¢ « « &
Miscellaneous Commands
VERBOSE ¢« ¢ « & « « &
BATCH . . ¢ ¢ ¢ & o « « o o« &
LOWERCASE« « « « .

Appendix A - Warning Messages . . .
Appendix B - Error Messages

Appendix C - Reporting Problems . .

-
1
e

SN ST SN S0 S 0 V]
[)
W

[T |

! }

[

1

l wWwwiwwwwwwwww
1 l
HRWWEOODNNUIWN

)

Wl W W W W W
i
fe
w

Pl1ib86: PSA Object Library Manager i
Introduction

Pl1ib86 (tm) is a Phoenix Software
Associates Ltd. software system that can
manipulate libraries of object files. It
supplements the PSA linkage editor
Plink86 (tm), and is intended for use on
the Intel Corporation (1) 8086 (or 8088)
processor (tm) under the MS-DOS (2) or
CP/M-86 (3) operating systems.

Plib86 handles object files and
libraries conforming to the INTEL
relocatable file format described in
their document "8086 Relocatable Object
Module Formats" #121748-061. This format
is used in compilers written by Microsoft
Corporation, creator of the MSDOS
operating system, by most other companies
writinu compilers for MSDOS, and by a few
compilers written for Digital Research's
CP/M-86 operating system. However, a
different library index is used by
Microsoft to achieve faster library
searches. Plib86 can read and generate
both the Intel and Microsoft library
index tormats.

The first dection of this manual
provides an explanation of the "object
library" concept and the capabilities of
Plib8é6. User's unfamiliar with library
managers would do well to start here.
Also, the PlinkB86 user's guide contains a
chapter discussing object files and
linkage editors that may oe helpful.

The next section of this manual
describes how to use Plib86 to handle
several common object library situations.
At the same time it provides an informal
explanation of what the commands do.
Those readers experienced with linkage

Plib86: PSA Object Library Manager ii
Introduction

editors and library managers may wish to
skip directly to this portion of the
manual: it provides enough information
to handle most jobs.

The final portion of the manual is
an exhaustive list of the commands and
features offered by P1ib86. This should
be examined when it becomes necessary to
go beyond the examples given in the
previous section. Side issues such as
error codes are generally referred to
appendices.

Trademark Acknowledgements:

(1) INTEL is a trademark of Intel
Corporation

(2) MS-DOS is a trademark of Microsoft,
Inc.

(3) CP/M-86 is a trademark of Digital
Research.

Pl1ib86: PSA Object Library Manager 1-1
Library Manager Concepts

Typically it is convenient (if not
essential) to divide a large programming
job into smaller pieces called "modules”
that can be edited and compiled
separately. Actually, compilers
available on micro-computers tend to have
severe limitations on how many lines of
code can be compiled at one time, forcing
the programmer to use modularization
anyway. On the positive side, modular
programming offers a method of organizing
a program into manageable pieces that are
easier to understand and work with,

After the program modules are
created and compiled the programmer must
"link" them together with a "linkage
editor™ to produce the executable program
(see P1ink86 user's manual).

Once one has created a modular
program one may find that some of the
modules are useful in a different
program. With a little effort these
modules can be made more general in
function and can be used in many
programs. The programmer can gradually
build up a "library" of useful routines
that can be hooked in by the linkage
editor whenever needed.

In fact, virtually all compilers are
sold with a "library", since functions
like arithmetic on real numbers are often
not supported by the hardware and have to
be implemented as procedure calls. The
compiler library also contains modules
that support the high level features of
the language such as formatted output in
FORTRAN. This library is often called
the "run time support”" since its modules
are required while the program executes.

PlibB86: PSA Object Library Manager 1-2
Library Manager Concepts

Other software products in addition
to compiler runtime support routines are
sold in the form of libraries. An
example might be a set of data base
management routines that is combined with
the application program by the linkage
editor to produce a complete system.

Because of the importance of
libraries, linkage editors typically have
special facilities for handling them. To
save memory space, only those modules in
the library that are actually required by
the program are linked in. Sometimes a
library is simply a concatenation of
object modules, requiring the linkage
editor to search sequentially for the
required modules. More sophisticated
systems provide a "library index". It
contains a list of the public symbols
offered by each library module, and the
location of the module that defines each
symbol. Therefore the linkage editor can
rapidly locate the modules that are
required. The Microsoft and Intel
library formats are indexed structures.

The purpose of the library manager
is to create and manipulate object module
libraries. It is therefore a useful
assistant to the linkage editor.

P1ib86 provides commands to create
libraries from individual object modules,
and to extract a selected module from a
library. It can also merge libraries,
and can replicate the library search
process undertaken by the linkage editor
while creating a program. In other
words, one can create a library
consisting of only those modules that the
linkage editor would include in a
particular program.

Plib86: PSA Object Library Manager 1-3
Library Manager Concepts

Plib86 also provides a powerful
cross~reference function. It optionally
generates a .report listing each public
symbol, the module which defines it, and
a list of other modules that refer to it.
This may be used to cross-reference a
single library or several libraries
together, or, in combination with the
library search feature described above,
to generate a cross-reference of a
program that will be created by the
linkage editor.

Plib86: PSA Object Library Manager 2-1
Using Plib86

Creating/Merging Libraries

To create a new library use the
BUILD command and the FILE command. For
example, executing Plib86 and entering

BUILD DB.LIB
FILE BTREE, SORT, REPGEN,
FIRSTLIB.LIB;

in response to the prompt would create a
library named DB.LIB containing the files
listed after the FILE command. These
files could be single object modules or
complete libraries. Everything is merged
into a single library. The default file
type for the files appearing in the FILE
statement is "OBJ".

Plib86: PSA Object Library Manager 2-2
Using Plib86

Normally you can just execute Plib86
and type in commands on as many lines as
desired. Then end the last line with a
semi-colon to begin processing. Each
statement begins with a key word like
BUILD or FILE and is followed by
arguments, possibly separated by commas.
Input is free format, and blank lines are
ignored. Also, key words may be
abbreviated by leaving off characters at
the end. For example, you can use BU and
FI instead of BUILD and FILE. An error
message will be given if the abbreviation
could be confused with another command.

Another way to use Plib86 is to give
the commands as it is executed. For
example, the above library could have
been created by entering (on one line):

PLIB86 BU DB FI BTREE, SORT,
REPGEN, FIRSTLIB.LIB

Note that the output file type
defaults to "LIB" automatically.

Library Search

Suppose you want to create a library
consisting of several modules plus those
portions of another library that are
referenced by the modules. Use the
LIBRARY command:

BU DB FI BTREE, SORT, REPGEN
LIB FIRSTLIB.LIB

The portions of FIRSTLIB not
referenced by the three.other files are
not put into the DB library.

Plib86: PSA Object Library Manager 2-3
Using Plib86

Updating a library

To update a library it is necessary
to copy the old library to the output
file while omitting the module to be
updated, and to include the new module.
For example, to replace module COSINE in
library MATHLIB, rename the current
MATHLIB.LIB to MATHLIB.OLD and enter

BU MATHLIB FI COSINE,
MATHLIB.OLD EXC COSINE

The EXCLUDE statement applies to the
previous file name given and causes the
COSINE module in the MATHLIB to be
omitted.

Module Extraction

The EXTRACT statement causes a
single object module file to be created.
It may not be used at the same time as
BUILD. The first object module found in
the input files is extracted, so the
particular module to be selected from a
library must be specified. The object
file extracted may be given any file
name. The module name remains the same.
For example, typing

EXT OLDCOS FI MATHLIB.LIB
INCLUDE COSINE

creates file OLDCOS.0BJ containing object
module COSINE. The INCLUDE statement is
the counterpart of EXCLUDE: it applies
to the previous input file and causes
only those modules named to be considered
for processing. There wouldn't be any
point to INCLUDing more than one module
in this case since only the first one
found is extracted.

Plib86: PSA Object Library Manager 2-4
Using Plib86

Cross reference listing

To create a cross-reference listing
use the LIST command with input file
statements similar to those given in
previous examples. For example,

LIST = DB §
F1 BTREE, SORT, REPGEN, FIRSTLIB.LIB

creates a cross reference report named
DB.LST describing the modules in all of
the files listed. The "“S" selects the
cross-reference report. For a
description of other reports available
see the LIST command description. The
"=" specifies that the report is to be
put into a disk file. 1If omitted the
report appears on the console.

P1ib86: PSA Object Library Manager 3-1
Pl1ib86 Commands

Input Format

This portion of the manual describes some
basic input elements. Later sections
show how these are combined to create
full statements.

Identifiers

- — ————

An identifier is the name of some
object, such as a module or symbol. An
identifier is a sequence of no more than
64 characters containing no spaces, and
containing none of the following:

“=;<>/,\!1'#&*+-:@ DEL

Lower case letters, when used, are
automatically translated into upper case.
The first character of an identifier may
not be a digit @ - 9.

The above restrictions on valid
identifier characters may be avoided by
using the escape character "“°. The
character immediately following the
escape character is treated as a normal
identifier character.

The following are examples of valid
identifiers:

Programl
SORT3
ABC"@ (the *@° is escaped)

The following are not valid
identifiers:

34ABC - begins with a number
NIM A - contains a space

PlibB86: PSA Object Library Manager 3-2
Pl1b86 Commands

N

PROG$l - starts a comment with " §

The above identifiers could all be
made valid witn the escape character:

“34ABC
NIM™ A
PROG™ %1

To include the escape character in
an identifier enter two escape characters

Identifiers appearing in object
files are truncated to 50 characters for
purposes of comparison with other
identifiers in the program. Identifiers
may be truncated again for inclusion in
rzports (see the LIST command).

Disk File Names

Plib86 adapts itself to the file
name format used by the operating system
it is executing under. The first
character not allowed to be in a file
name terminates the name. The escape
character may be used to put any
character into a file name.

In this manual, MS-DOS format file names
are used for purposes of discussion.
These file names are of the form
(device:]name|.type], with optional
portions in brackets. Here are some
examples:

MATHLIB.LIB
B:CHESS.OBJ
SCANNER

Plib86: PSA Object Library Manager 3-3
P1ib86 Commands

When the "device:" is not given,
Plib86 assumes that the cuyrrently
logged-in disk is to be used.

Initiating P1ib86

o ———

P1ib86 may be used interactively, or
input may be given as it is executed:

Plib86 statements <cr>

where <cr> means to press the RETURN key.
This means that P1ib86 may used in .BAT
files.

To use Plib86 in the interactive
mode, enter

PlibB8é<cr>

on the console. P1lib86 will read lines
from the console, prompting with "=>"

The standard line editing features
supplied by the operating system are
available. Plib86 checks input lines for
syntax and stores them until a semi-colon
';' is entered at the end of a line,

Then processing of the input files
begins.

A disk file containing all or only
part of a command may be inserted into
the input at any point by preceding the
disk file name with an "@". The default
file type is ".LNK". These disk files
can contain further "@" specifications,
up to three levels deep. The most common
use of this feature is to prepare a file
containing a complete command; then,
entering

P1ib86 8file name <cr>

P1ib86: PSA Object Library Manager 3-4
Plib86 Commands

creates the library. Sometimes these
".LNK" files may be prepared once for a
given library and used over and over
again, greatly simplifying the whole
process,

Plib86 reads an entire command,
checking for syntax only, before any file
processing is done,

Pl1ib86: PSA Object Library Manager 3-5
Plib86 Commands

Command Format

- — . - —

All Plib86 input is free format.
Blank lines are ignored, and a command
may extend to any number of lines.
Comments may be included with input from
any source by using a percent sign "%".
When this is encountered, all remaining
characters on the same line are ignored.

Input is a list of statements:
{statement> <statement> ... <{statement>

Each statement begins with a key
word, and many are followed by arguments
separated by commas. For example, in

FILE A,B,C

»

FILE is the key word, and A, B, and
C are the arguments. Key words may be
abbreviated by omitting trailing
characters, as long as the abbreviation
is unique among the entire group of key
words. For instance, the previous
statement could have been entered as

EI A'B'C

1f a syntax error is found, the
current input line is echoed with two
question marks inserted after the point
at which the error was detected. This is
followed by an error message (see
Appendix). Plib86 must then be
re-executed.

1f an error occurs during file
processing, Plib86 terminates with an
error message also listed in the
appendix.

Plib86: PSA Object Library Manager 3-6
Plib86 Commands

Object Files

FILE, LIBRARY, SEARCH

——— v > —————

Pl1ib86 must be told what object
files and libraries to use for input and
what modules to select from them. The
FILE command is typically used, and
normally causes all modules with the
given files to be processed:

FILE COSINE, SIN, ARCTAN

The LIBRARY and SEARCH commands are
similar, but are used only on libraries
and select only those modules that define
a public symbol that is needed by some
other module that has already been
processed. This is called a "library
search" and is a process carried out by
most linkage editors. It insures that
only those library modules that are
a~ ally needed are included in the

sgram. '

LIBRARY MATHLIB
SEARCH FORTRAN

The LIBRARY command causes the given
libraries to be searched once. When the
SEARCH command is used the libraries are
searched repeatedly as long as undefined
symbols remain. This won't be needed
unless two or more libraries are being
searched that each refer to symbols
defined i1n the others.

If P1ib86 can't find a requested
object file, and is running under the
MSDOS 2.0 operating system, it will look
in the environment for a string named
“"oBJ". The value of this string is

Plib86: PSA Object Library Manager 3-7
P1ib86 Commands

assumed to be one or more directory path
names, separated by semi-colons (just
like the MSDOS 2.0 PATH command). These
path names are appended to the front of
the object file name (any disk drive ID
is removed first) one at a time in an
effort to find the file. The path name
separator '\' is added between the path
name and file name. For example, if

SET OBJ = \OBJECT; \LIBRARIES

were entered before running Plib86, and
file TEST.OBJ was being searched foér, it
would look for \OBJECT\TEST.OBJ and
\LIBRARIES\TEST.OBJ. fThis means that
commonly used object files can be left in
a directory for use by many programs.

If an input file can't be found by
using the OBJ path names, or if MSDOS 2.0
is not the operating system being used,
the operator will be asked to enter a
file name prefix string (e.g. "A:" or
"\OBJECT\" that will be appended to the
front of the file name after stripping
any drive id . Diskettes may be changed
at this time if necessary. Of course,
the operator must insure that any
diskettes removed do not contain open
files like the BUILD or EXTRACT file.
Also, if Plib86 runs out of memory a work
file is opened on the default disk, which
then may not be removed.

Plib86: PSA ObLject Library Manager 3-8
PlibB86 Commands

AS

If an object file (not a library) is
being processed the module it contains is
given the same module name as the name of
the file it came from. This is done
because some compilers don't supply a
unique module name. This default may be
changed by using the AS statement. It
supplies the module name for the last
file name given. For example,

FILE MATH1 AS COSINE

would name the module in MATH1 COSINE
instead of MATHI.

INCLUDE, EXCLUDE

The modules selected from a library
may be further restricted by using the
INCLUDE and EXCLUDE statements. These
are followed by a list of module names:

FILE MATHLIB INCLUDE SIN, COSINE
LIB MATHLIB, DB EXCLUDE BTREE

The INCLUDE statement causes only
those modules listed to be considered for
processing, and this selection precedes a
library search. EXCLUDE is the opposite.
The modules listed are not processed.
INCLUDE anad EXCLUDE apply to the FILE,
LIBRARY or SEARCH file immediately
preceding. In the second example above,
for instance, the EXCLUDE BTREE applies
only to the DB library, not MATHLIB.

Plib86: PSA Object Library Manager 3-9
P1ib86 Commands

Building a Library

The BUILD command is used to create
a library out of the modules selected
from the input files. It is followed by
the name of the file to create. The file
type defaults to .LIB:

BUILD DB.LIB
BUILD D:MATHLIB

After all modules are output the library
index 1s created.

One must be careful that the output
file does not have the same name as any
of the input files. For instance,
entering

BUILD MATHLIB
FI COSINE, ARCTAN, MATHLIB

won‘t work because MATHLIB will be erased
before it is read.

The BUILD command may not be used
simultaneously with the EXTRACT command
(described next). If no output is
requested from Plib86 (i.e there is no
BUILD, EXTRACT or LIST command) then
Pl1ib86 will simply read the input modules
and report any errors it finds.

Plib86: PSA Object Library Manager 3-18
Plib86 Commands

By default, the BUILD command
constructs a Microsoft format index for
the library file under construction.
When this statement appears, however, an
INTEL format index is constructed
instead. No arguments are required.
When creating an INTEL format index, the
LOWERCASE statement may have to be used
to inhibit translation of symbol name
characters in the index to upper case.
Some compilexrs using Intel format
libraries distinguish between upper and
lower case when comparing symbol names.

Pl1ib86: PSA Object Library Manager 3-11
P1ib86 Commands

Extracting a Library Module

The EXTRACT command is used to
extract a single object module from a
library file and place it into a separate
disk file. It is followed by the name of
the file to create:

EXTRACT COSINE.OBJ
EXTRACT ARCTAN

I1f the file type is omitted OBJ 1is
assumed.

The EXTRACT command extracts the
first module found in the input files.
Therefore it is usually necessary to use
the INCLUDE statement to specify which
library module should be extracted. For
instance,

EXTRACT COSINE FI MATHLIB
extracts the very first module in
MATHLIB, even if it is not the COSINE

module. To get the correct one enter

EXTRACT COSINE FI MATHLIB INC COSINE

Plib86: PSA Object Library Manager 3-12
Plib86 Commands

Generating Reports

The LIST command is used to generate
reports about the object files being
processed. It may optionally be followed
by a file name, causing the reports to be
directed to that disk file or device.

The file name must be preceded by an
equal sign. Then a character is entered
for each report desired, separated by
commas. There are two reports available:

M - A list of all modules processed
in alphabetical order. Next to
each module is listed all of the
symbols defined within it.

S - A list of all public and
external symbols in alphabetical
order, Each is followed by the
name of the module defining the
symbol in parenthesis (this will
be blank for symbols not defined
by any module read). Following
this is an alphabetical list of
all modules that access the
symbol (i.e. this is a
cross-reference report).

Here are some examples:
LIST

LIST
LIST

DB.LST M, S
XREF.LST S

L T 4

Plib86: PSA Object Library Manager -13
Plib86 Commands

WIDTH, HEIGHT

The report generator can be
re-configured for different size paper.
It assumes 88 columns and 66 rows per
page as a default. The number of columns
may be changed with the WIDTH command,
and the number of rows with the HEIGHT
command. Here are some examples:

WIDTH 132
HEIGHT 88

The S option of the LIST command can
be quite long. If the BRIEF command is
used, however, all undefined symbols are
deleted from the report, making 1t more
manageable. These undefined symbols
might be from libraries that you did not
search in creating the report, and might
not be necessary in the report. The
BRIEF statement has no arguments.

Plib86: PSA Object Library Manager 3-14
Plib86 Commands

Controlling the Library Index

NOINDEX

Normally all public symbols from all
modules are inserted into the library
index. If a duplicate symbol is found
library creation continues but a warning
message is given and the index entry for
that symbol will select the first module
defining the symbol.

Sometimes it is useful to exclude
certain symbols from the library index.
This may be accomplished by using the
NOINDEX command. For example,

NOINDEX SYM1l, SYM2, SYM3

excludes SYM1l, SYM2, and SYM3 from the
index.

Suppose you wish to create a library
that contains several versions of the
same module, for instance a device driver
for some kind of hardware. 1If you try to
place all of the modules into the library
you will get duplicate symbol warnings,
and at link time the linkage editor
wouldn't be able to select the desired
module.

This can be made to work by using
NOINDEX on most of the module entry
points. This excludes all of these
symbols from the library index. To get
the linkage editor to select the correct
module insert an un-used but unique dummy
symbol into each one. At linkage edit
time cne of these dummy symbols would be
accessed in order to create a need for
the desired module. The linkage editor

Plib86: PSA Object Library Manager 3-15
Plib86 Commands

would then select it when the library is
searched.

Using Plink86, for instance, one
could use a statement like

DEFINE FOO=DRIVER1

to select the module containing the
"driverl" dummy entry point. An
alternative which works in a Microsoft
format library is to rely on the fact
that the name of each module is actually
in the library index as well, followed by
an exclamation point. For example, 1if
the library contains a module named
DRIVER1 then there will be a dummy index
entry named DRIVER1!. These symbols can
be used instead of creating a dummy
module entry point as discussed above.

BLOCKS

The Microsoft library index consists
of a prime number of hash blocks. P1lib86
will choose the amount of index space
needed so that everything fits and then
adds about a 10% slop factor. The extra
is added because the hash blocks are set
up as a "scatter table" (see Knuth's
volumes of computer programming) and
search time can increase dramatically as
the blocks become nearly filled.

However, if the linkage editor reads most
or all of the index into memory when
doing a library search (as Plink86 does)
this may not matter too much. The extra
time spent comparing identifiers is more
than made up for by the savings from
reading fewer index blocks from disk.

Plib86: PSA Object Library Manager 3-16
Plib86 Commands

The BLOCKS command functions only
when the BUILD command is used, and
specifies the number of index blocks to
be used. For example,

BLOCKS 7

forces P1lib86 to use 7 blocks. If
some of the symbols won't fit into the
index PlibB86 will print warning messages.
If the argument to the blocks command is
not a prime number Plib86 will increase
it until it is. The limit on the number
of library index blocks is 997,

Plib86: PSA Object Library Manager 3-17
P1ib86 Commands

Miscellaneous Commands

VERBOSE

When processing a large library file
it is sometimes useful to know what
P1lib86 is doing. When the VERBOSE
statement is used P1ib86 will maintain a
status line at the bottom of the CRT
screen indicating what is going on. This
statement should not be used on a
hard-copy terminal.

I1f Plib86 can't find an object file
or library it will normally prompt the
operator to enter the name of a disk
drive or directory path name where the
file may be found. The BATCH command
will cause Plib86 to stop with a fatal
error without prompting the operator. It
is useful when running Plib86 from within
a batch file and no operator is available
to respond to a prompt.

LOWERCASE

Any object files and libraries
conforming to the Microsoft standard
normally use only upper case letters in
identifiers. Therefore Plib86 normally
translates all lower case letters to
upper case. This statement inhibits this
translation for all identifiers found in
object files, library indices, or Plib86
commands. It is sometimes necessary to
use this command when an Intel format
library is being built (see the INTEL
command) .

Pl1ib86: PSA Object Library Manager A=
Appendix A - Warning Messages

Occasionally Plib8¢ cetect:s a
situation that looks like 1t miuht be a
problem when the input sr outpu* object
files are processed by the linkage
editor. It then issues a warning m:3sage
and continues to execute. These me.sages
should be self-explanatory, but a number
is also given that may be looked up in
this appendix to get a more complete
explanation of what has happened.

1 - There may be only one definition for
each global (i.e. PUBLIC) symbol in
the object modules being processed.
P1ib86 ignores the duplicate
definition and retains the first one
tor use in any library index or
reports being generated.

2 - Each record in an object file
contains a check field at the end
for validation purposes. This
message indicates the checksum was
bad, but processing continues.

These messages are inhibited after a
few have been printed. Was the
object file patched on disk before
Pl1ib86 read it? Typically people
who patch object files don't bother
changing the checksum. Also, some
compilers and other librarians seem
to be sloppy about making sure the
checksums are correct. If the file
is really smashed a fatal error will
probably occur soon after this
message appears.

Plib86: PSA Object Library Manager A-2
Appendix A - Warning Messages

3

- Each record in an object file is

preceded by a word giving the record
size. This error means that Plib86
reached the end of the record and
found that the number of bytes
processed i§ different from the
specified size. The object file is
probably smashed, but Pl1ib86 will
attempt to continue reading it.

There is no room in the Microsoft
library index being created with the
BUILD command for the named symbol.
You probably used the BLOCKS command
to reduce the size of the index, and
now it is too small to hold
everything. This warning should
never occur if you haven't used the
BLOCKS command: contact Phoenix
Software if i* does.

Plib86: PSA Object Library Managerx B-1
Appendix B - Error Messages

When a fatal error is detected by
P1ib86 a console message is printed which
should be self-explanatory. However, an
error number is also printed which may be
looked up in the table below. A longer
discussion of the error will be found
there.

Command Syntax Errors

These errors are caused by mistakes
made in the input given to Plib8é6.
Re-run Plib86 after correcting the
problem. The input line causing the
problem will be displayed on the
terminal, with a couple of guestion marks
inserted after the point where the error
was detected. These should aid in
locating the problem, but occasionally
Plib86 may not detect the error until
more text is processed. In other words,
if the error location is given as the
front of a line, check the end of the
previous line.

1 - "@" files are nested too deeply.
Only three levels of "@" files may

be active at any given time. Do
you have a loop in your "@" file

references?

2 - Disk error encountered while
reading "@" file. Try re-building
the file.

5 -~ The item given for input at this
point is too large. The maximum
size allowed is 64 characters.

P1ib86: PSA Object Library Manager B-2
Appendix B - Error Messages

le

11

12

14

16

17

18

Invalid digit in number (i.e. not @
thru 9).

Invalid file name. The input
stream should contain a valid file
name for the particular operating
system being used.

Expecting a statement. A key word
which begins a statement should be
present here.

The INCLUDE and EXCLUDE statements
may not be used simultaneously on
the same input file.

Expecting identifier. A section,
module, segment, or symbol name
must be entered at this point.

Expecting a value. An expression
or 16-bit quantity must appear at
this point.

No files were given to process!
You must use the FILE statement and
specify at least one input file.

The BUILD and EXTRACT commands may
not be used simultaneously. You
must run Plib86 twice with one
command in each.

Plib86: PSA Object Library Manager B-3
Appendix B - Error Messages

Work File Errors

When Plib86 runs out of memory it opens a
work file on disk named Plib86.WRK to
hold the description of the library.
These error codes indicate a problem with
processing the work file.

30

31

32

a3

34

The work file can't be created.
Probably there is no space in the
disk directory.

An 1/0 error occurred while writing
the work file.

An 1I/0 errxor occurred while reading
the work file.

An I/0 error occurred while
positioning the work file.

There are too many module
description objects in this library
(about 50,0088 symbols, modules, and
so on may be defined). This
library is too large for Plib86 to
handle.

P1ib86: PSA Object Library Manager B-4
Appendix B - Error Messages

Input Object File Errors

The following errors have to do with the
object files that are given to Plib86 to
process. Usually they occur when a file
has been corrupted somehow. Try
re-compiling to get a new copy of the
object file. 1If it is a library supplied
by the compiler manufacturer that is
causing the problem, try to get a fresh
copy of it.

41 - pPremature end of input object file.
The end of the indicated file was
reached unexpectedly. Possibly,
the file was truncated by copying
it with a program that assumes a
CNTL-Z (lAH) is end of file.

42 - Fatal read error in object input
file.

Plib86: PSA Object Library Manager B-5
Appendix B - Error Messages

Output File Errors

The following errors are caused by a
problem in creating the output code file
or memory map file (when written to
disk). Often, they are caused by a full
disk or disk directory, a disk that is
write-protected, or some kind of hardware
problem with the disk.

45 - Can't create output disk file.
Possibly the disk directory is
full, or the disk is write
protected.

46 - Output file too large. The given
modules won't fit into the library.
You will have to break up the
library into one or more smaller
ones.

47 - Fatal disk write error in output
file. Possibly the disk is full or
write protected, or some kind of
hardware error has occurred.

48 - Fatal disk read error in output
file. An irrecoverable hardware
error has probably occurred.

49 - Can't close output file. The disk
is probably write protected, or a
hardware error has occurred.

58 - Can't create the LIST output file.
Possibly the disk directory is
full, or the disk is write
protected.

P1ibB6: PSA Object Library Manager B-6
Appendix B - Error Messages

Miscellaneous Errors

51 -~ There are too many symbols to be
placed into the library index. You
will have to break up the library
into one or more smaller ones.

52 - No modules were selected (by
library search, INCLUDE, or
EXCLUDE) to be placed in the output
file (BUILD or EXTRACT).

5S4 - There isn't enough memory in the
computer to run Plib86. You must
have a really tiny memory - better
buy more!

Pl1ib86: PSA Object Library Manager B-7
Appendix B - Error Messages

Plib86 Bugs

These errors indicate a bug in Pl1ib86 has
occurred through no fault of your own.
They are listed here for completeness in
the manual, although it is unlikely that
you can do anything to correct them. Try
running Plib86 again. If the error
persists, please gather the relevant
information and contact Phoenix Software
Associates.

291 - No NeedRead Buffers (NRnew).

205 - Seek errors while writing output
file (attempt to seek past end of
file).

210 - Requested record size too large
(Newrec) .

219 - Bad object block (GetBlock).
221 ~ Invalid object key (Q).

222 - Invalid object key (QM).

Plib86: PSA Object Library Manager c-1
Appendix C - Reporting Problems

We ask that you make a reasonable
effort to solve your difficulties
yourself before contacting us, and to
phone only if you are trying to deal with
an emergency. Otherwise, please report
your problem in writing. We can read
much more guickly than we can listen.

Our address is:

Phoenix Software Associates, Ltd.
1420 pProvidence Highway

Suite 260

Norwood, MA 02062

Be sure to include with your
description of the problem the input you
are trying to use and where your object
files came from. If you like, send
input, object, and library files on
diskettes (MSDOS 1.1 or 2.6 5 1/4 format,
single or double sided), and instructions
on how to run the software to make the
error condition occur. Source files are
usually unnecessary. We will be happy to
sign non-disclosure agreements to protect
your software, if bhaving it will help us
identify a bug more quickly, and to
return the diskettes to you after the
problem has been identified.

LIFEBOAT ASSOCIATES SOFTWARK PROBLEM REPORT

Please use this fors to report errors or probleas in software supplied by
Lifebost Associates. This form is designed to act as a transmittal sheet.

Software Product Naae: Media Format:

Version No.: Serial No.: Invoice No.:

Purchased Froa:

Date of Purchase: Return Authorization f:
Has the softwvare registration card been returned?

Computer Used: CPl (8080/8085/¢-80):

Disk Capacity: Nusber of Drives: Memory Sige:

Operating Systew/Version (I1f pot listed above): /

Softvare used with the above product, (e.g. list the BASIC used {f you are
reporting & probles with a Payroll program that uses fit).
Name of Software Version

Does the software come with sample or test programs?
1f so, have you been able to use them successfully?

Plesse describe the problem you have encountered. Include reterences to the
manual if appropriate. Try to reduce the problem to a simple test case.
Enclose any appropriste programs (preferably on disk). If you feel that the
problem may be caused by the disk being defective, you msy prefer to returan the
original disk with this report to achieve the fastest resolution of the
problea. (If so, call for a Return Authorization No. A handling charge may be
incurred. No handling charge will be made it a product or portion thereof is
returned DUE TO DISEKETTE MEDIA DEFPECTS within 30 days from the date of sale).

Information on product changes, bugs, fixes and current version numbers are
published fn Lifelines, our software newsletter.

PROBLEM DESCRIPTIUN: (Continue on sdditional pages if necessary)

Area Phone Num. Ext.

Name : () -~

Address: () - ()

City: State: Zip Code:

Return to: Lifeboat Associates Technical assistance is available
1651 Third Avenue Monday - Friday, froam 11:00 a.m.
New York, N.Y., 10028 to 7:00 p.m., Eastern time.

1-(212) 860-0300
002prodb.bn.09.81 TWX: 710-581-2524 Telex: 640693

