
@ LATTICE,INC.
P. O. BOX 3072 ·GLENÉLLYN·LLNOIS 60138· 3l2/858ñ9!5OU1NX9lO29l-2l9O

TECHNICAL BULLETIN

TB841101.001

DATE: November 1, 1984

PRODUCT: 8086/8088 C Compiler
SUBjECT: Known Bugs in Version 2.14

Recently three bugs concerning the Version 2.14 libraries and

startup modules have come to light. Two of these pertain to the
sensing and use of the 8087 co-processor, and the other concerns
the use of the "malloc'° and "getmem" functions under MS-DOS 1 in
the s and P models of the compiler. In addition some code was

oMtted from the file " main.c".

1. Floating Point Bugs

(a) Sensing cjf the 8087

The technique employed in the run-time library to sense
the presence of the 8087 co-processor does not work in
V2.14 because the 8087 is not initialized prior to the
test. Correcting this problem is rather easy. You need

only add a line of code to the file °'c.asm" provided with
the compiler and reassemble this file to replace the
current "c.obj".
In the file "c.asm" you will find a line:

CALL JLAIN

just prior to this line, insert the fcülowing line
DB ODBh,OE3h ; FNINIT instruction

Then reassemble "c.asm" for each of the memory models as

follows:

--
Copy "c.asm" to the appropriate model subdirectory
(i.e., \lc\s, \lc\d, \lc\p, or \lc\l) so that it is
in the same directory as "dos.mac" for the
appropriate memory mcdel.

-- Use the command

1

@ LATTICE,1NC.
W

P. O. BOX 3Q72 ·GL£N ELLYN ·ILLNO1S 60138 · 312/858-7950·TWX9lO291-2

masm c;

to assemble "c.asm" into "c.obj".
The instruction is specified here as a "DB" pseudo-op
rather than an "FFNIT' instruction since many assemblers
do not properly handle floating point instructions.
Should your assembler be able to handle such instructions,
be sure to use an "FNINIT" instruction rather than "FINIT"
Qr else the assembler will generate a "WAIT" instruction
prior to the °'FINIT" and resulting programs will wait
endlessly on machines not containing a co-processor.

(b) Floating Point in the D arid L Mdels

In attempting to repair an earlier bug concerning the 8087

we accidentally broke its use in the D and L models. To

correct the problem you can use "debug" to patch the
libraries "lcmd.lib" and "lcml.lib" as follows.
(Underlined portions are what you must type. Each line
must be entered with a carriage return.)
(i) Patching lcmd.lib

>debuq lcmd.lib
-eA97A 10.12
-eA9CC 78.76
-W
-SI
>

(ii) Patching lcml.lib
Aebug Icínl.Iíb
-eBB71 12.14
-eBBC7 3D.3B

-W

-g
>

(C} Bug in 8087 Library Divide Routine

Under certain circumstances the floating point division
function Cxd55 will return the incorrect value when an

2

@ LATTICE, INC.
P. O. BOX 3072 · GLEN ELLYN · LUNOIS 60138 · 312/858-7950 · TWX 9lO29l-2l90

8087 is present since this function fails to save and

restore the DI register. This bug will be repaired in a

future release .

(2) Ma1loc and Getmem under MS-DOS 1

The S and P model library memory allocation functions
"malloc" and "getmem" will n<jt return the correct values in
an application running under MS-DOS 1 when a call to one of
these would cause the total memory allocated to exceed 6 4K.

In particular the failure value of NULL will not be returned
in this case. This problem will be fixed in a future
release, and it does not effect the D and L modelm

(3) Omission in 'Lmain.c"

The last "exit(O);" statement should be replaced with

Ñifndef TINY

' exit(0);
#else
exit(0);Tencí if

*** END **"

3

@ LATTICE,INC.
P. O. BOX 3072 · awELLvN· LLINOQS 6Ol380 JR/B58J950·TWX9I029I-2I%

TECHNICAL BULLETIN

TB8410¶0.001

DATE: october TO, 1984

PRODUCT: 8086/8080 C Compiler
SUBjECT: Ver3ion 2.14 Update

VerMon 2.14 of the 8D86/808B C compiler hm been released to
correct the following problenm

1. In VerMon 2,¶3, the S model libr&ríeg were built in 8UCÍll

a way that the floating poInt operattom did not me the
8087 chip ff pregent. The other memory model$ worked
correctly.
2. Klhíle ffxfng the PUTC problem In VerMon 2.fj, we broke
the level 2 buffer flmh function 9n mich & way that buffer8
were mnnethnes written twice. Thlg would occur when you did
several FSEEKg without intervening re&dg or vrítm.
3. UNGETC did not alwayg work correctly under the d md L
modelg, depending on where the buffer ma® lomted.

000END$0*

1

@ LATTICE,INC.
P. O BOX 3on·cA£NELlNN·LLlNo|s6oí38· 3u/85B-795o0Twx9m9l.2l9o

TECHNICAL BULLETIN

TB8410¶0.002

DATE: October tO, 1984

PRODUCT: 8086/0088 C Complier
SUBjECT: Insufficient Memory Mesmge

In bulletfn TB840914.otn we mentioned a problem observed during
the tesMng of vergjcyn 2.13 that resulted in an "!nsuff!cient
memory" message. At that tfme, we believed that the message was

orSgínatfng from Hs-ljOS. Hell, we must admit with a blush that
the message was coming from C.ASl'l, our start-up mdule.

The situation leading to this meggage wá3 that we forked a child
prDc'e53 wttcjse .EXE file jU9t barely fit into the available
memory. After loading the .EXE file, FfS-ljOS passed control to
the child procesg at the C.ASM entry point. C.ASM then attempted
to allocate gtack and he€p 8pace for the C program, but there wá9

not enough memory. When that occurred, C.ASK dlmplayed the
'°ínsufficient memory" me33age and aborted with a non-zero exit
code.

The migtake we made in our tmt program w39 to examine only the
return code from the FORKL function. Thig wIll indicate an error
only If MS-DOS wá9 unable to obtain the needed gpace and load the
ch9ld program. He should have &Ííorj U3ed the WAIT functfon to
check the exit code from the child.

""END°""

E

@ LATTICE,INC.
P O DOX 3072·GLENELLYN·LLNOS 60138· 312/858795O·TwX91O29i-2l9O

TECHNICAL BULLETIN

TBB41010.003

WLTE: October 10, 1984

PRODUCT: 8086/8088 C Compiler
SUBJEC"I); Combining LC and LCM Librar!eg

In TB840914.OQI we g&ve a Mmple procedure for combtnlng the LC

and LCM librarfes. Some people who tried this procedure became

concerned about the duplicate symbol me3gageg that regulted.
Here is a better procedure:

1. Use your favorite editor to create the file MIXLC.LNK

containing the following:

bu Icc.lfb
tí lcm.líb
fL lc.lib
exc _pfmt,cprlntf,fprintf,printf,gprintf
exc gfmt,c8canf,fgcanf,gcanf,g5c8nf

—

2. For each memory model, copy MIXLC.LNK into the \lc\x
directory, where x is g, p, d, or I. Then U9é CD to get

into that directory, and execute PLIB86 &g follows:

plib86 émlxlc

Thig procedure creatm a combined library LCC.LIB which ínclude3
the complete verMons of the PRINTF/SCANF functlonm If you vant
8 combined library that contains the abbreviated verMons, Mmply
Interchange the two "ft" commandg In HIXLC.LNK.

"'"END000

1

@ LATTICE, INC.
P O BOX jon·gLENEtlYN·LlNcMs 6Olj8 · 312/858795O·TWx9l029l.2l9O

TECHNICAL BULLETIN

TB8U)9ICOO1

DATE: September u, 1984

PRODUCT: 8086/8088 C Compiler
SUBJECT: Version 2.¶3 UHate

VerMOn 2.1J of the 8086/8088 C compiler has been relemed to
correct the following problems:

I. STRCMP and STRNC6IP did not return the correct results
when ccmparlng string3 of unequal lengthm

2. The various form8 of PUTC did not work correctíY under
the D and L modelm

j. The results of a floatfng-polnt divide-by-zero operation
with an 8087 installed were not the Bame 88 when the 8007

wag removed.

4. Several problems exi8ted in the varÍoü8 FORK functfonm

(a) The environment 8trlng array va8 sot pamed
correctly to the child Process under the S &nd P memory

models.

tb) An extra backslash wa8 appended to the PATH

variable. ThG wm usually accepted by PCDOS, but waB

rejected by 9otñe MSDOS fmplementationm

(C) The construction of default FCBS did not Hop vhen
an argument beginnfng with a Uash w33 reached. This
caused problem for 8ocñe older programs that relied on

the FCB setup done by the MSDOS command processor.

(d) The fork logic searched for a .EXE file before a
.COM fije. Thi8 hag been reversed because some people
keep the .EXE version around even after they have
generated a .COM.

1

@ LATÍ1CE, INC.
P. O BOX 3072 · GLEN ELLYN · UNOSS 60138 · JJ2/858 7950· JWX 910 291 219'

(e) A carriage return was not appended to the generated
command string, which caused some forked programs to
f a t I .

These problems usually showed up when you tried to fork the
command processor or when the chi Id process attempted to use

the inherited environment. Td sImplify the invocation of
the command processor, we've addeQ & UNIX-compatfble SYSTEI·)

f unct ion. The function has one argument, the command

gtríng, and returns the same results as FORKL. For exemple,

systemC"dir a:")
calls the command processor to display the directory frorn
drSve A.

Nhíle testing the fork functions, we observed what appears
to be an HS-IJOS bug. Hhen the operating system cannot
obtain enough memory to load the child prográm, it's
supposed to return error

cocjé B that we wIll then pass back
to you In _oserr. However, En some cases, t·lS-DOS displays
the message "jnsuf f lcient memDTy" on the screen and returns
a succem code. This has been observed on PC-DOS 2.1 and

3.0 running on the IBH-XT and IBH-AT and in the version of
MS-DOS currently running on the TANDY 2000. We are pursuing
a solution, but if anybody can give us any further
informatfon, we vould appreciate the help.

5. The SETJHP/LONGJKP f unctions did not viork correctly under
the p mode! . Note that thh correctfon required a change in
the SETJMP.H header file and that ALL PROGRAPIS USING THIS

HEADER MUST BE RE-COHPILED regard)esg of which memory model

they employ.

6. Detection of the 8087 .did not work correctly on sYstems
using an 80286, such ag the IBI4-AT.

7. The POW function did not always return the correct
result.
B. Several people complained that the libraries became way

tejo larqqe uhen we added the math functions. Therefore, we

have sp it the library for each memory model into two
pieces. LCV.L,IB contains the "core functSons" for memorY

mode! x, and I.CMX.LIEj contains the floating point math

2

@ LATTICE,INC.
P O BOX 3072 ·GLEÑELLYN·LLNOS60138 · 3l2/858-7950·l"WX9lO-29l-2l9O

functions. If you need to use both libraries, make sure
that LCM is mentioned before LC at link time. If you are
also using our CF(JOD Smorgasbord, its library (LCX) should
be mentioned before LCFI. At this time we are pretty
confident that the library wa3 split in the correct place,
but if you find any interdependence problems that we

overlooked, please report them to lbS. If you want to re-
combine the two libraries, use PLIB86, as follows:

ren lc.lib lcc.lib
plib86 bu lc.lib fi lcc.lib,lcm.lib

Note that the batch files that we've been supplying for
linking, named LLNKx.BAT, OtÁY use LC.LIB. The release
disks include some new batch files named LINKMX.BAT that use
both LC61.LIB and LC.LIB.

You snould also be aware that two versions of the PRINTF and
SCÁNF families are provided. If you don't use LCM.LIB,
you'll get a vergton that does not support floatln3 point
conversÍoñ3, which saves about 3 Kbytes in the loa module.
With LCM.LIB, you get the full PRINTF and SCANF conversion
capabilities.
9. we've eliminated the need for TINYMAIN.C by putting
conditional compilation statements into _MAIN.C, and the
release disks now contain pre-comptled versiom of the
abbrev¡ated0_bjAIN under the names jQAINx.OBj, where x i3 the
memory model (S,P,D, or L). If you need to recompile MAIN,

use the LC option -dTINY=1 to get the abbreviated versTon.

The LC libraries still contain the full version of J4AIN,
which is the default. Because this full version supports
the stdin, stdout, and stderr files, it force3 all of the
level 2. I/O functions to be included. If you don't need
these standard files and don't use any level 2 I/O, your
load module size will be reduced by using the abbreviated
version;

*'*END"°

J

LIFEBOAT
a 8 S O C i a t 0 8

LMtice C Manual
kMiao ~~cc·mNM

Fumtbnd DescripHon Released Nty 25, 1982

Nkmud
This document describes

Revision 2 d the compiler

and librory.

Copyright " 1982,)984 by

Lattice, Inc.

Note: Supplement to üjttice C v. 2.)

Qppended to this document
May 29,)984.

Published by:

Lifeboat Associates
1651 Third Avenue

New York, New York ÍOÍ28

Tefe: (212)8600300
Telex: 424490 (LBSOFT Ul)

PREFACE

Lattice, Inc., a developer of portable softwarz products based in
Chicago, Illinois originally developed Lattice C for its own

internal use on a minicomputer. When the IBM PC was introduced
in 1981, the company recognized the potential for developing a

full implementation of the C programming language for 16-bit
microcomputers. Lifeboat Associates, a New York-based software
publisher, then provided Lattice with funding which enabled the
company to make the conversion. It is believed that Lattice C

was the first minicomputer product successfully "ported" to the
IBM PC. In 1983, Microsoft, based in Bellevu.e, Washington,
selected Lattice C to become Microsoft C. Also in 1983, Lattice
developed a version of its compiler for the Motorola 68000

microprocessor and a 280 cross-compiler for B-bit CP/M-based
microsystems. with Revision 2, Lattice C implements MS-DOS 2.0
pathnames and large memory models, giving software developers the
ability to create programs and data structures which can better
utilize the large memory available on 8086/8088-based systems.

TRADEMARK ACKNCMLEDOBNT8

Lattice is a regi8tered trademark of Lattice, Inc.
MS-DOS 18 a regi8tered trademark of Kicro8oft, Inc.
CP/M is a registered trademark of Digital Re8earch, Inc.
UNIX is a trademark of Bell Telephone Laboratoriem
Intel 18 a trademark of Intel Corporation.
Motorola 18 a trademark of Motorola Corp.
280 is a trademark of Zilog, Inc.

TABLE OF CONTENTS

Section l Introduction I-L
Section 2 Language Definition

2.1 Summary of Mfferenc"."s 2-l

2.1.1 Differ>"nccs from the Standard 2-l
2.1.2 Arbitíary LimIt3tions 2-3

2.2 Major Language Features 2-4

2.2.1 Pre-processor Features 2-G

2.2.2 Arithmetic objects 2-5
2.2.3 Derived Objects 2-6
2.2.4 Storage Classes 2-6
2.2.5 Scopc' of Identifiers 2-B

2.2.6 Initializers 2-8
2.2.7 Expression Evaluation 2-9
2.2.8 Control Flow 2-ll

2.3 Comparison to the C Reference Manual 2-ll
Section 3 Portable Library Functions

3.1 mmory Allocation Functions 3-l

3.1.1 Level 3 Memory Allocation 3-2
3.1.2 Level 2 Memory Allocation 3-6
3.1.3 Level l Memory Allocation 3-12

3.2 I/O and System Functiom 3-lS

3.2.1 Level 2 I/O FUnction8 and Macros 3-15
3.2.2 Level I I/O Functiom 3-40
3.2.3 Direct Console K/O Functions 3-49
3.2.4 program Exit Functiom 3-56

J.3 Utility Functions and Macros 3-59

3.3.1 Memory Utilities 3-59
3.3.2 Character Type lqacro8 3-63
3.3.3 String Utility Functions 3-64
3.3.4 Utility Macros 3-83

Section 4 Compiler and Run-time Implementation

4.1 Operating Instructions 4-l
4.1.1 Phase l 4-3
4.1.2 Phase 2 4-7
4.1.3 Program Linking 4-8
4.1.4 Program Execution 4-9
4.1.5 Function Extract Utility 4-13
4.1.6 object Module Dissassembler 4-15

4.2 Machine Dependencies 4-18

4.2.1 Data Elements 4-18
4.2.2 External Names 4-19
4.2.3 Include File Processing 4-20
4.2.4 Arithmetic Operations and Conversions 4-20
4.2.5 Floating Point Operations 4-21
4.2.6 Bit Fields 4-22
4.2.7 Register Variables 4-23

4.3 Compiler Processing 4-23

4.3.1 Phase l 4-23
4.3.2 Phase 2 4-24
4.3.3 Error Processing 4-25
4.3.4 Code Generation 4-25

4.4 Memory Áddressing Models

4.4.1 Choo8ing the Memory Model 4-28
4.4.2 Compiling the Memory Models 4-29
4.4.3 Linking Program8 4-30
4.4.4 Code Generation for Pointer Operations 4-30
4.4.5 The -s option for Four-byte Pointers 4-32
4.4.6 Creating an Array Greater than 64K 4-33

4.5 Run-time Program Structure 4-34

4.5.1 object Code Conventiom 4-36
4.5.2 Linkage Conventions 4-37
4.5.3 Function Call Conventiom 4-38
4.5.4 Assembly Language Interface 4-40
4.5.4 Stack Overflow Detection 4-44

Section 5 System Library Implementation

5.1 File I/O 5-l
5.2 Device I/O 5-2
5.3 Memory Allocation 5-4
5.4 Program Entry/Exit 5-5
5.5 Special Functions 5-5

Lattice 8086/8088 C Compiler Introduction

SECTION I:
Introduction

This document provides a functional description of an
implementation of the Lattice C compiler, a portable compiler for
the high level programming language called Ca It makes no

attempt to discuss either programming fundamentals or how to
progEam in C itself. Extensive reference is made to the
definitive text The C, Proqramming Language, by Brian W. Kernighan
and Dennis M. Ritchie (Prentice-Hall, Inc., Englewood Cliffs, New

jersey, 1978). This description of Lattice C is incomplete
without the Kernighan and Ritchie text, as it is called, which
also provides an excellent tutorial introduction to the language.

l.l Documentation

The manual is divided into five sections. First, this
introduction. Second, the language accepted by the compiler,
which differs from the standard in only a few minor details, is
described. The third section presents the portable library
functions in functional groups with calling sequences and

examples. Fourth, the details of the compiler and run-time
program execution are presented for this implementation,
including detailed operating instructions, machine dependencies,
and program structure. Fifth, the operating system interfaces
are described in terms of the portable library functions (file
naming conventions, etc.) and the special functions provided with
this implementation.

as this document is intended to serve as a reference manual, each
topic is usually presented in full technical detail as it is
encountered. Some reference to'sections not yet encountered is
unavoidable, but thege references are gpecificalIy noted.

to get an overview of the compiler, read the first portion of
each of the major suMections in the implementation description
(Section 4), the language summary at the beginning of the
language definition (Section 2), and the function summaries at
the beginning of the library groups (Section 3), and the
introductions to the subsections in the system interface
information (Section S). Error messages are described in
Appendix A and error reporting procedures in Appendix B. Method8
of converting C programs written for CP/M microcomputer gygtems
are de3cribed in Appendix c. a list of files Mipped with
Lattice C are contained in Appendix D.

I-l

Lattice 8086/8088 C Compiler Language Definition

SECTION 2:
Language Definition

The Lattice portable C compiler accepts a program written in the
C programming language, determines the elementary actions
specified by that program, and eventually translates those
actions into machine language instructions. Although the final
result of these processes is highly machine-dependent, the actual
language accepted by the compiler is, for the most Dart,
independent of any sYstem or implementation details. This
section presents the language defined by the Lattice C compiler
using the Kernighan and Ritchie (K&R) text The C Programming
Lanquaqe as a reference point. Since this language conforms
closely to that described in the text, only the major differences
are first presented. The major features of the language are then
discussed, not in any attempt at completeness, but simply for the
sake of showing them from a different perspective. Finally, a
comparison with the Kernigban and Ritchie "C Reference Manual" is
made to show more precisely how the Lattice implementation
differs from the standard.

2.1 Summary of Differences

There are two classes of differences that appear in a discussion
of an implementation of a programmÍng language. The first class
is that of actual semantic differences; that is, variations which
cause the meaning of language constructs to differ. The second

class is merely a reflection of the practical limitations to
which all programs -- including compilers -- are subject. Each

of the following subsections presents the respective details for
the Lattice implementation of C.

2.1.1 Differences from the Standard

Deviating from a standard has its own peculiar set of perils and

rewards. On the one hand, the differences create problems for
those who have conformed to the standard in the past; on the
other, they may make life easier for those who take advantage of
them in the future. Most of the differences listed below were
prompted by a desire to make the language both more portable and

more comprehensible. The vast majority of programs will not
encounter these Potential troublespots; those that do will in
most cases be improved by adjusting to conform to them. Here,
then, is a summary of the major differences:

o Comments normally can be nested in the Lattice compiler; in
the standard, they cannot. A compile-time option forces the
compiler back to the standard non-nesting mode.

o Pre-processor macro substitutions using arguments must be

specified on a single line; for example, when max(a,b) is
used, the invocation text from max to the final closing
parenthesis must be defined within a single input line.

2~1

Lattice 8086/8088 C Compiler Language Definition

o The dollar sign (S) is permitted as an embedded (i.e., not
the first) character in identifiers.

o Identically written string constants refer to the same

static storage location; that is, only one copy of the
string is generated by the compiler. This is in contrast to
the statement in Kernighan and Ritchie that all strings are
distinct, even when written identically.

o Multiple character constants are accepted by this compiler;
in the standard, only a single character enclosed in single
quotes is legal. The resulting value may be @9,FE or long,
and its exact value is machine-dependent.

o In processing structure and union member declarations, the
compiler builds a separate iist of member names for each

structure (or union). Thus, identical names may be used for
members in different structures, even though both the offset
and the attributes may be different in each declaration.
The specific structure being referenced determines which
member name (and therefore which offset and set of
attributes) is meant. The typing rules for structure member

refeEences are strictly enforced so that the patticular list
of valid member names can be determined. In other words,
the expression in front of the . or -> operators must be

identifiable by the compiler as a structure or pointer to a

strueture of a definite type.

o Implicit pointer conversion (by assignment) is legal but
generates a warning message; this occurs whenever any value
other than a pointer of the same type or the constant zero
is assigned to a pointer. A cast operator can be used to
eliminate the warning. A more stringent requirement is
enforced for initializers, where the expression to
initialize a pointer must evaluate to a pointer of the same

type or to the constant zero; any other value is an error.

o If a structure of union appears as a function argument
without being preceded by the address-of operator &, the
compiler generates a warning message and assumes that the
address of the aggregate was intended.

o An array name may be preceded by the address-of operator &;

the meaning, however, is not that of a pointer to the first
element but of a pointer to the array. This construct
allows initialization of pointers to arrays.

o The constant expression following an tif conditional
statement may not contain the sizeof operator and must be

completed in less than a single line.
A more systematic and detailed explanation of the above

differences is presented in Section 2.3, but some of the most

important items above deserve immediate clarification.

2-2

Lattice 8086/8088 C Compiler Language Definition

The intent behind making the structure and union member names a

separate class of identifiers for each structure is twofold.
First, the flexibility of member names is greatly increased,
since now the programmer need not worry about a possible conflict
of names between different structures. Second, the requirement
that the compiler be able to determine the type of the structure
being referenced generally improves the clarity of the code, and

disallows such questionable constructs as

int *p;
© D U
p->xyz = 4;

which is considered an error by this compiler. Those who grumble
about this restriction should note that one can. accomplish the
equivalent sequence in Lattice C by using a cast:

((struct ABC ")p)->xyz = 4;

The parentheses are required since the -> operator binds more

tightly than the cast. The idea is not that such code should be

prohibited unconditionally but that any such constructs should be

clearly visible for what they are; the cast operator serves this
purpose nicely.

Exactly the same intent is present in the pointer conversion
warning. By using a cast operator, the programmer can eliminate
the warning; the conversion is then explicitly intentional, and

not simply the result of sloppy coding. In addition, there is a
more important reason for the warning. Although many C programs
make the implicit assumption that pointers of all types may be

stored in int variables (or other pointer types)" and retrieved
without difficulty, the language itself makes no guarantee of
this. On word-addressed machines, in fact, such conversions will
not always work properly; the warning message provides a gentle
(and non-fatal) reminder of this fact.

Finally, the warning generated when a structure oí union is used
as a function argument without the address-of operator is
intendeCi to remind programmers that this compiler does not allow
an aggregate to be passed to a function -- only pointers to such

objects.

2.1.2 Arbitrary Limitationg

Although the definition of a programming language is an idealized
abstraction, any real implementation is constrained by a number

of factors, not the least of which is practicality. Thé Lattice
compiler imposes the following arbitrary restrictions on the
language it accepts:

o The maximum size, in bytes, of any declared object is the
largest positive integer which can be represented as an int.
This implies, for example, a maximum size of 32767 bytes for

2-3

Lattice 8086/8088 C Compiler Language Definition

l6—bit int machines. The total size of all objects declared
with the same storage class is also 6ubject to the same

restriction.
o The maximum value of the constant expression defining the

size of a single subscript of an array is one less than the
largest pQsitive int (32766 for a 16-bit int).

o The total size of the formal parameters for any function is
limited to a maximum of 256 bytes. Thus, the maximum number

of formal parameters depends on their sizes.

o The maximum size of a string constant is 256 bytes.

o Macros with arguments are limited to a maximum number of 8

arguments.

o The maximum level of Finclude file nesting is 4.

These limitations are impomd because of the way objects are
represented internally by the compiler; our hope is that they are
reasonably large enough for most real programs.

2.2 Major Language Features

The material presented in this section is meant to clarify some

of the language feature8 which are not always fully defined in
the Kernighan and Ritchie text. These are features which depend
on" implementation decisions made in the design of the compiler
itself, or on interpretations of the language definition. Those

language features which are specifically machine dependent are
described elsewhere in this manual.

2.2.1 Pre-processor Features

The Lattice C compiler supports the full set of pre-processor
commands described in Kernighan and Ritchie. Most

implementations perform the pre-processor commands concurrently
with lexical and syntactic analysis of the source file, because
an additional compilation step can be avoided by this technique.
Other versions of the compiler incorporate a separate pre-
processor phase in order to reduce the size of the first phases
of the compiler. In either case, the analysis of the pre-
processor commands is largely independent of the compiler's C

language analysis. Thus, tdefine text substitutions are not
generally performed for any of the pre-processor commands,

although nesting of macro definitions is possible since
substituted text is always re-scanned for new #define symbols.

An exception Dccurs for the #if command, which is processed
differently., As noted in the list of differences, sizeof cannot
be used in áif expressions, and the expression must apDear

entirely on a single line. These restrictions result ftom a

desire to keep #if expressions simple, and because the pre-
processor generally has no information about the size of declared

2-4

Lattice 8086/8088 C Compiler Language Definition

objects. One other clarification should be noted: if a symbol
appears in an tif expression which has not been defined in a

tdefine command, it is interpreted as if a value of zero had been

specified. This seems consistent with #ifdef usage and permits
the use of symbols which may or may not be defined. Otherwise,
#if expressions support the full range of operations described in
Section 15 of Appendix A of Kernighan and Ritchie.

The Qdefine command, as noted in Section 2.1.1, has the
limitation that the macro invocation text must all be contained
on a single input line. Because the compiler uses a text buffer
of fixed size, a particularly complex macro may occasionally
cause a line buffer overflow condition; usually, however, this
error occurs when more than one macro reference occurs in the
same source line, and can be circumvented by placing the macros

on different lines. Circular definitions such as

tdefine A B

tdefine B A

will be detected by the compiler if either A or B is ever used,
as will more subtle loops. Like many other implementations of C,

the Lattice compiler supports nested macro definitions, so that

if the line
tdefine XYZ 12

is followed later by

tdefine XYZ 43

the new definition takes effect, but the old one is not
forgotten. In other words, after encountering

#undef XYZ

the former definition (12) is restored. To completely undefine
XYZ, an additional tundef is required. The rule is that each

tdefine must be matched by a corresponding tundef before the
symbol is truly "forgotten".
2.2.2 Arithmetic objects

Six types of arithmetic objects are supported by the Lattice
compiler; along with pointers, these objectb represent the
entities which can be manipulated in a C program. The types are:

short or 8hort int
char
unsigned or unMgned int
long or long int
float
double or long float

2-5

Lattice 8086/8088 C Compiler Language Definition

Note that in this implementation, unsigned is not a modifier but
a separate data type.

The natural size of integers for the target machine (the machine
for which code is being generated) is indicated by a plain int
type specifier; this type will be identical to either short or
long, depending on the architecture of the target machine.
Although the size of all these objects is technically machine-
dependent, the Lattice compiler assumes the target machine has an
B-bit, I6-bit, or 32-bit architecture and that the fundamental
storage quantity is an B-bit byte. Only in connection with bit
fields does this assumption ever become important.

The compiler follows the standard pattern for conversions between
the various arithmetic types, the so-called "usual arithmetic
conversions" described in the Kernighan and Ritchie text. The

only exception to this occurs in connection with byte-oriented
machines, where expansion of char to int uiay be avoided if both
operacds in an expression are char, and the target machine
supports byte-mode arithmetic and logical operations.

2.2.3 Derived objects

The Lattice C compiler supports the standard extensions leading
to various kinds of derived objects, including pointers,
functions, arrays, and structures and unions. Declarations of
these types may be arbitrarily complex, although not all
declarations result in a legal object. For example, arrays of
functions or functions returning aggregates are illegal. The

compiler checks for these kinds of declarations and also verifies
that structures or unions do not contain instances of themselves.
objects which are declared as arrays cannot have an array length
of zero, unless they are formal parameters or are declared extern
(see Section 2.2.4). All pointe,rs are assumed to be the same

size -- usually, that of a plain int -- with one exception. On

word-addressed machines, pointers which point to objects which
can appear on any byte boundary are assumed to require twice as
much storage as pointers to objects which must be word-aligned.

Note that the size of aggregates (arrays and structures) may be

affected by alignment requirements. For example, the array

struct {

short i;
char c;
} xtl0];

will occupy 40 bytes on machines which require short objects to
be aligned on an even byte address.

2.2.4 Storage Classes

Declared objects are assigned by the compiler to storage offsets
which are relative to one of several different storage bases.
The assigned storage base depends on the explicit storage class

2-6

Lattice 8086/8088 C Compiler Language Definiticm

specified in the declaration, or on the context of the
declaration, as follows:

External An object is classified as external if the extern
keyword is present in its declaration, and the
object is not later defined in the source file (that
is, it is not declared outside the body of any

function without the extern keyword). Storage is
not allocated for external items because they are
assumed to exist in some other file, and must be

included during the linking process that builds a

set of object modules into a load module.

Static An object is classified as static if the static
keyword is present in its declaration or if it is
declared outside the body of any function without an

explicit storage class specifier. Storage is
allocated for static items in the data section of
the object module; all such locations are
initialized to zero unless an initializer expression
is included in the declaration (see Section 2.2.6).
Static items declared outside the body of any

function without the static keyword are visible in
other files, that is, they are externally defined.
Note that string constants are allocated as static
items, and are treated as unnamed static arrays of
char.

Auto An object is classified as auto if the auto keyword
is present in its declaration, or if it is declared
inside the body of any function without an explicit
storage class specifier (it is illegal to declare an

object auto outside the body of a function).
Storage is presumably allocated for auto items using
a stack mechanism during execution of the function
in'which they are defined.

Formal An object is classified as formal if it is a formal
parameter to one of the functions in the source
file. Storage 18 presumably allocated for formal
items when a function call is made during execution
of the program.

Note that the first phase of the compiler makes no assumption
about tbe validity of the reqister storage class declarator.
Items which are declared register are so flagged, but storage is
allocated for them anyway against either the auto or the formal
storage base. The implementation of register is machine-
dependent and may not be supported in some cases.

Note also that if the x compile-time option is used, the implicit
storage class for items declared outside the body of any function
changes from static to extern. This allows a single header file
to be used for all external data definitions. When the main

2-7

Lattice 8086/8088 C Compiler Language Definition

function is compiled, the x option is not used, and so the
various objects are defined and made externally visible; when the
other functions are compiled the x option causes the same

declarations to be interpreted as references to objects defined
elsewhere.

2.2.5 Scope of Identifiers
The Lattice compiler conforms almost exactly to the scope rules
discussed in Appendix A of the Kernighan and, Ritchie text (pp.
205-206). The only exception arises in connection with structure
and union member names, where (as noted in Section 2.1) the
compiler keeps separate lists of member names for each structcre
or union; this means that additional classes of nm-conflicting
identifiers occur for the various structures and unions. Two

additional points are worth clarifying.

First, when identifiers are declared at the beginning of a

statement block internal to a function (other than the first
block immediately following the fanction name), storage for any

auto items declared is allocated against the current base of auto
storage. When the statement block terminates, the next available
auto storage offset is reset to its value preceding those
declarations. Thus, that stQrage space may be reused by later
local declarations. Rather than generate explicit allocate and

dealLcxmte operations, the compiler uses this mechanism to
compute the totsl auto storage required by the function; the
resulting storage is allocated whenever the function is called.
With this scheme, functions will allocate possibly more storage
than will be needed (in the event that those inner statement
blocks are not executed), but the need for run-time dynamic
allocation witjÁn the function is avoided.

Second, when an identifier with a previous declaration is
redefined locally in a statement block with the extern storage
class specifier, the previous definition is superseded in the
normal fashion but the compiler also verifies compatibility with
any preceding extern definitions of the same name. This is done

in accordance with the principle expressr"d in the text, namely
that all functions in a given program which refer to the same

external identifier refer to the same object. Within a source
file, the compiler also verifies that all external declarations
agree in tjLE!e. The point is that in this particular case --where a local block redefines an identifier as extern -- the
declaration effectively does not disappear upon termination of
the block, since the compiler now has an additional external item
for which it must verify equivalent declarations.

2.2.6 IrÜtialiµers
objects which are of the static storage class (as defined in
Section 2.2.4) are guaranteed to contain binary zeros when the
program begins execution, unless an initializer expression is
used to define a different initial value. The Lattice compiler

2-8

Lattice 8086/8088 C Compiler Language Definition

supports the full range of initializer expressions described in
Kernighan and Ritchie, but restricts the initialization of
pointers somewhat. An arithmetic object may be initialized with
an expression that evaluates to an arithmetic constant which, if
not of the appropriate type, is converted to that of the target
object.

The expression used to initialize a pointer is more restricted:
it must evaluate to the int constant zero or to a pointer
expression yielding a pointer OE exactly the same type as the
pointer being initialized. This pointer expression can include
the address of a previously declared static or extern object,
plus or minus an int constant, but it cannot incorporate a cast
(type conversion) operator, because pointer conversions are not
evaluated at compile time (exception: a cast operator can be

used on an int constant but not on a variable" name). This
restriction makes it impossible to initialize a pointer to an

array unless the & operator is allowed to be used on an array
name, because the array name without the preceding & is
automatically converted to a pointer to the first element of the
array. Accordingly, as noted in Section 2.1, the Lattice
compiler accepts the & operator on an array name so that
declarations such as

int a[5]0 ("pa) [5] = &a;

can be made. Note that if a pointer to a structure (or union) is
being initialized, the structure name used to generate an address
must be preceded by the & operator.

More complex objects (arrays and structures) may be initialized
by bracketed, comma-separated lists of initializer expressions,
with each expression corresponding to an arithmetic or pointer
element of the aggregate. A closing brace can be used to
terminate the list early; see Appendix A of Kernighan and Ritchie
for examples. Unions may not be initialized under this
implementation, although the first part of a structure containing
a union may be initialized if the expression list ends before
reaching the union. A character array may be initialized with a

string constant which need not be enclosed in braces; this is the
only exception to the rule requiring braces around the list of
initializers for an aggregate.

Initializer expressions for auto objects can only be applied to
simple arithmetic or pointer types (not to aggregates), and are
entirely equivalent to assignment statements.

2.2.7 Expression Evaluation

All of the standard operators are supported by the Lattice
compiler, in the standard order of precedence (see p. 49 of
Kernighan and Ritchie). Expressions are evaluated using. an

operator precedence parsing technique which reduces complex
expressions 'to a sequence of unary and binary operations
involving at most two operands. Operations involving only

2-9

Lattice 8086/8088 C Compiler Language Definition

constant operands (including floating point constants) are
evaluated by the compiler immediately, but no special effort is
made to re-order operands in order to group constants. Thus,
expressions such as

C - 'A' + 'a'
must be parenthesized so that the compiler can evaluate the
constant part:

C + ('a' - 'A')

If at least one operand in an operation is not constant, the
intermediate expression result is represented by a temporary
storage location, known as a temporary. The temporary is then
"plugged into" the larger expression and becomes an operand of
another binary or unary operation; the process continues until
the entire expression has been evaluated. The lifetimes of
temporaries and their assignment to storage locations are
determined by a subroutine internal to the first phase of the
compiler, which recognizes identically generated temporaries
within a straight-line block of code and eliminates recomputation
of equivalent results. Thus, common sub-expressions are
recognized and evaluated only once. For example, in the
statement

a[i+l] = b{i+l);
the expression i+l will be evaluated once and used for both
subscripting operations. Expressions which produce a result that
is never used and which have no side effects, such as

i+j;
are discarded by this same subroutine.

Within the block of code examined by the temporary analysis
subroutine, operations which produce a temporary result are noted
and remembered so that later equivalent operations may be

deleted, as noted above. Two conditions (other than function
calls, which may have undetermined side effects) cause the
subroutine to discard an operation and no longer check for the
equivalent operation later: (I) if either of its operands
appears directly as a result of a subsequent operation; or (2) if
a subsequent operation defines an indirect (i.e., through a

pointer) result for the same type of object as one of the
original operands. The latter condition is based on the
compiler's assumption that pointers are always used to refer to
the correct type of target object, so that, for example, if an

assignment is made using an int pointer only objects of type int
can be changed. Only when the programmer indulges in tjLEe

punning -- using a pointer to inspect an object as if it were a

different type -- is this assumption invalid, and it is hard to
conceive of a case where the common sub-expression detection will
cause a

prob"1em with this somewhat dubious practice. Such

2-ID

Lattice 8086/8088 C Compiler Language Definition

inspections are generally better left to assembly language
modules in any case.

with the exception of this common sub-expression detection, which
may replace an operation with a previous, equivalent one,
expressions ate evaluated in strict left-to-right order as they
are encountered, except, of course, where that is prevented by

operator precedence or parentheses. It is best not to make any

assumptions, however, about the order of evaluation, since the
code generation phase is generally free to re-order the sequence
of many operations. The most important exceptions are the
logical OR (||) and logical AND (&&) operators, 'for which the
language definition guarantees left-to-right evaluation. The

code generation phase may have other effects on expression
evaluation; usually, some favorable assumptions about pointer
assignments are made, though these can be shut off by a compile-
time option. Check the implementation section of this manual for
full details.
2.2.8 Control Flow

C offers a rich set of statement flow constructs, and the Lat"tice
compiler supports the full complement of them. Some minor
points of clarification are noted here. First of all, the
compiler does verify that switch statements contain (I) at least
one case entry; (2) no duplicate case values; and (3) not more

than one "default" entry. In addition, the first phase of the
compiler recognizes certain statement flow constructs involving
constant test values, and may discard certain portions of code

accordingly. (Even those portions ultimately discarded are fully
analyzed, lexically and syntactically, before being eliminated.)
If an if statement has a constant test value, only the code for
the appropriate clause (the then or else portion) is retained;
while, do, and for statements with zero test values are entirely

.discarded.

The code generation phase generally makes a special effort to
generate efficient sequences for control flow. In particular,
the size and number of branch instructions is kept to a minimum

by extensive analysis of the flow within a function, and switch
statements are analyzed to determine the most efficient of
several possible machine language constructs. Check the
impleñentation section of this manual for the details regarding
this particular code generator.

2.3 Comparison to the Kernighan & Ritchie "C Reference Manual"

The -most precise definition of the C programming language
generally available is in Appendix A of the Kernighan and Ritchie
text, which is entitled C. Reference Manual. This section
presents, in the saíne order defined in the text, a series of
amendments or annotations to that 'manual; this commentary
explicitly states any deviations of the Lattice C language
implementation from the features described. Because this
implementation is very close to the Kernighan and Ritchie

2-ll

Lattice 8086/8088 C Compiler Language Definition

standard, many of the sections appjY exactly as written; these
sections will riot be commented upon. Any section not listed here
can be assumed to be fully valid for the language accepted by the
Lattice C compiler.

CRM 2.1 Colnment6

The Lattice compiler allows comments to be nested, that is,.each
/" encountered must be matched by a corresponding */ before the
comment terminates. This feature makes it easy to "comment out"
large sections of code which themselves contain comments. The c

compile-time option forces the compiler to process comments in
the standard, non-nesting mode.

2.4.3 Character constant8

Two extensions to character constants ate provided. First, more

than one character may be enclosed in single quotes; the result
may be int or long, depending on the number of characters, and

its value is machine-dependent. Second, if the first character
following the backslash in an escape sequence is x, the next one

or two digits are interpreted as a hexadecimal value. Thus,

'\xf9'
generates a character with the value 0XF9.

CRM 2.5 Strings

The Lattice compiler recognizes identically wíitten string
constants and oñiY generates one copy of the string. (Note that
strings used to initialize char arrays -- not char *

-- are not
actually generated, because they are really just shorthand for a

comma-separated list of single-character constants.) The same \X
convention described above can be employed in strings, where it
is generally more useful.

CRM 2.6 Hardware characteristics

See the implementation section of this manual for hardware
characteristics.
CRt'l 7.1 primary expressions

The Lattice compiler always enforces the rules for the use of
structures and unions for the simple reason that it cannot
otherwise determine which list of member names is intended.
Recall from Section 2.1 that the compiler maintains a separate
list of members for each type of structure or union. Therefore,
the primary expression preceding the . or -> operator must be

immediately recognizable as a structure or pointer to a structure
of a specific type.

2-12

Lattice 8086/8088 C Compiler Language Definition

CRM 7.2 Unary operators

The requirement that the & operator can only be applied to an

lvalue is relaxed slightly to allow application to an array" name

(wtÜch is not considered an lvalue). Note that the meaning of
such a construct is a pointer to the array itself, which is'quite
different from a pointer to the first element of the array. The

difference between a pointer to an array and to an array's first
element is only important when the pointer is used in an

expression with an int offset, because the offset must be sealed
(multiplied) by the size of the object to which the pointer
points. In this case the target object size is the size of the
whole array, rather than the size of a single element, if the
pointer points to the array as a whole.

CRPf 7.6 Relational operators

When pointers of different types are compared, the right-hand
operand is converted to the type of the left-hand operand;
comparison of a pointer and one of the integral types causes a

conversion of the integer to the pointer type. Both of these are
operations of questionable value and are certainly machine-
dependent.

CRM 7.7 Equality operators

The same conversions noted above are applied.

CRM 8.1 Storage class-specifiers

The text states that the storage class-specifier, if omitted from
a declaration outside a function, is taken to be extern. This is
somewhat misleading, if not plainly inaccurate; in fact (as the
text points oUt in CRM 11.2), the presence or absence of extern
is critical to determining whether an object is being defined or
referenced. As noted in Section 2.2.4 of this document, if
extern is ptesent, then the declared object either exists in some

other file or is defined later in the same file; if no storage
class specifier is present, then the declared object is being
defined and will be visible in other files. If the static
specifier is present, the object is also defined but is not made

externally visible. The only exception to these rules occurs for
functions, where it is the presence of a defining statement body
that determines whether the function is being defined.

The Lattice compiler can be forced to assume extern for all
declarations outside a function by means of the x compile time
option. Declarations which explicitly specify static or extern
are not affected.

CRM 8.5 Structure and union declarations

The Lattice compiler treats the names of structure members quite
differently from Kernighan and Ritchie. The names of members and

tags do not conflict with each other or with the identifiers used

2-13

Lattice 8086/8088 C Compiler Language DefinitÁon

for ordinary variables. Both structure and union tags are in the
same class of names, so that the same tag cannot be used for both
a structure and a union. A separate list of members is
maintained for each structure; thus, a member name may not appear
twice in a particular structure, but the same name may be used in
several different structures within the same scope.

CRM 8.7 Type name8

Although a structure or union may appear in a type name

specifier, it must refer to an already known tag, that is,
structure definitions cannot be wade inside a type name. Thus,
the sequence

(struct { int high, low; } *) x

is not permitted, but

struct HL { int high, low; };
O O 0
(struct HL ") x

is acceptable.

CRM l0.l External function definitions
AS noted in the text, formal parameters declared float are
actually interpreted as double; similarly, formals áeclared char
or short ate read as int. For co.nsistency, the Lattice compiler
applies the same rules to functions: a function declared to
return float is assumed to return double, and char or short
functions to return int.
CRM 10.2 External data definitions
The Lattice compiler applies a simple rule to external data
declarations: if the keyword extern is present, the actual
storage will be allocated elsewhere, and the declaration is
simply a reference to it. Otherwise, it is interpreted as an

actual definition which allocates storage (unless the x option
has been used; see the comments on CRM 8.1).

CRM 12.3 Condi-tional compilation

As noted in Section 2.2.1 of this document, the constant
expression following #if may not contain the sizeof operator, and

must appear on a single input line.
Crm 12.4 Line control

Although the filename for #line is denoted as identifier, it need

not conform to the characteristics of C identifiers. The

compiler takes whatever string of characters is supplied; the
only lexical requirement for the filename is that it cannot
contain any white space.

2-14

Lattice 8086/8088 C Compiler Language Definition

CRM 14.1 Structures and unions

The escape from typing rules described in the text is explicitly
not allowed by the Lattice compiler. In a reference to a

structure or union member, the name on the right must be a member

of the aggregate named or pointed to by the expression of the
left. This implementation, however, does not attempt to enforce
any restrictions on reference to union members, such as requiring
a value to be assigned to a particular member before allowing it
to be examined via that member.

Future versions of the compiler may support structure assignment,
but the value of other operations (such as passing aggregates
directly to or returning them from functions) seems questionable.

2~15

Lattice 8086/8088 C Compiler portable Library Functions

Section 3:

Portable Library Functions

In order to provide real portability, a C programming environment
must provide -- in a machine-independent way -- ñOit only a well-
defined language but a library of useful functions as well. The

portable library provided with the Lattice C compiler attempts to
fulfill this requirement. Álthough not all of the features of
these functions can be implemented on every system supported by

the compiler, all systems must be able to provide the basic
functions of memory allocation, file input/output, and ch.3racter
string manipulation; otherwise, the compiler itself could not be

implemented. An important side benefit of presenting the
functions from a machine-independent viewpoint is that it helps
the programmer think of them as such.

when referring to the function descriptions presented in this
seccion, remember that the compiler assumes that a function will
return an int value unless it is explicitly declared otherwise.
Any function which returns any other kind of value must be

declared as that kind of function in advance of its first usage

in the same file.
3.1 Memory Allocation Functions

The standard library provides memory allocation capabilities at
several different levels. The higher level functions call the
lower levels to perform the work, but provide easier interfaces
in exchange for the extra overhead. The actual amount of memory

available is system-dependent and usually depends on the size of
the program. In most systems the memory made available' for
dynamic allocation by these functions is the same memorjj' used for
the run-time stack (used for function calls and auto variables).
On these systems a default number of bytes is reserved for the
stack, and the remainder of the memory is used by the memory

allocation functions. In order to allow programs to adjust the
amount of memory reserved for the stack (and thus the amount

available for dynamic allocation), the main program usually
supports a special =n option to override the default stack size;
altermatively, a program may define the size internally. Check

the implementation section of the manual for details. The user
is. cautioned that o,n. many systems there ,i,s, no, check aqainst the
stack overrunninq its allotted size and destroying portions o_f,

the memory pooI.

All" of the memory allocation functions return a pointer which is
of type char *, but is guaranteed to be properly aligned to store
any object.

3-I

Lattice 8086/8088 C Compiler portable Library Functions

3.1.1 Level 3 Memory Allocation

The functions described in this section provide a ÚNIX-compatible
memory-allocation facility. The blocks of memory obtained may br
released in any order, but it is an error to release somethinq
not obtained by calling one of these functions. Recause thcsc>

functions use overhead locations to keep track of allocation
sizes, the free function does not require a size auíument. The

overhead does, however, decrease the efficiency with which thesr·
functions use the available memory. If many small allocmtinn':
are requested, the available memory will be more efficié"ntly
utilized if the level 2 functions are used instead.

—

3~ 2

Lattice 8086/8088 C Compiler Portable Library Functions

name

malloc -- UNIX-compatible memory allocation

SYNOPSIS

p = malloc(nbytes);

char *p; block pointer
unsigned nbytes; number of bytes requested

DESCRIPTION

Allocates a block of memory in a way that is compatible with
UNIX. The primary difference between malloc and getmem is
that the former allocates a structure at the front of each

block. This can result in very inefficient use of memory
when making many small allocation requests.

returns

p = null if not enough space available
= pointer to block of nbytes of memory otherwise

CAUTIONS

Return value must be checked for NULL. The function should
be declared char " and a cast operator used if defining a
pointer to some other kind of object, as in:

char *mal1oc();
int "pi;
0 D O
pi = (int *)malloc(N);

3-3

Lattice 8086/8088 C Compiler Portable Library Functions

NAME

calloc -- allocate memory and clear

SYNOPSIS

p = calloc(ne1tf eltsiz);
char *p; block pointer
unsigned ne.lt; number of elements
unsigned eltsiz; element size in bytes

Allocates and clears (sets to all zeros) a block of memory.
The size of the block is specified by the product of the two

parameters; this calling technique is obviously convenient
for allocating arrays. Typically, the second argument is a

sizeof expression.

RETURNS

p = NULL jr not enough space available
= pcñnter to block of memory otherwise

CAUTIONS

Return value must be checked for NULL. The function should
be declared char * and a cast used if defining a pointer to
some other kind of object, as in:

char "calloc();
struct buffer "pb;
D U e
pb = (struct buffer ")calloc(4, sizeof(struct buffer));

3-4

Lattice 8086/8088 C Compiler Portable Library Functions

name

free -- UNIX-compatible memory release function

SYNOPSIS

ret = free(cp);

int ret; return code

char *cp; block pointer

DESCRIPTION

Releases a block of memory that was previously allocated by

malloc or calloc. The pointer should be char " and is
checked for validity; that is, verified to be an element of
the memory pool.

RETURNS

ret = 0 if successful
= -I if invalid block pointer

cautions

Remember to cast the pointer back to char "u as in:

char "malloc();
int "pi;
* * 0
pi = (int *) malloc(N);
P P *

if (free((char *)pi) != D) {

... error ...
}

3-5

P

Lattice 8086/8088 C Compiler portable Library Functions

3.1.2 Level 2 Memory AlloCation

The functions described in this section provide an efficient arid

convenient memory allocation capability. Like the level 3

functions, allocation and de-allocation requests may be made in
any order, and it is an error to free memory not obtained by

means of one of these functions. The caller must retain both the
pointer and the size of the block foF use when it is freed;
failure to provide the correct length may lead to wasted memory

(the functions can detect an incorrect length when it is too
large, but not when it is too small). An additional convenience
is provided by the sizmem function, which can be used to
determine the total amount of memory available.

The level 2 functions maintain a linked list of the blocks of
memory released by calls to rlsmem, called the free space list.
Initially, this list is null, and getmem acquires memory by

calling the level l memory allocator sbrk. As blocks are
released by the program, the free space list is created; when a
block adjacent to one already on the list is freed, it is
combined with any adjacent blocks. Thus, the size of the largest
block available may be smaller than the total amount of free
memory, due to breakage.

3-6

Lattice 8086/8088 C Compiler Portable Library Functions

NAME

getmem, getml -- get a memory block

SYNOPSIS

p = getmem(nbytes);
p = getml (lnbytes);

char "p; block pointer
unsigned nbytes; number of bytes requested
long lnbytes; long number of bytes requested

DESCRIPTION

Gets a block of memory from the free memory pool. If the
pool is empty or a block of the requested size is not
available, more memory is obtained via the level I function
sbrk.

RETURNS

p = null if not enough space available
= pointer to memory block otherwise

CAUTIONS

Return value must be checked for NULL. The function should
be declared char * and a cast used if defining a pointer to
some other kind of object, as in:

char *getmem();
struct xyz "px;
O 0 O
px = (struct xyz ")getmem(sizeof(struct XYZ));

3-7

Lattice 8086/8088 C Compiler Portable Library Functions

name

rlsmem, rlsml -- release a memory block

synopsis

ret = rlsmem(cp, nbytes);
ret = rlsml(cp, lnbytes);

int ret; return code

char *cp; block pointer to be freed
unsigned nbytes; size of block
long lnbytes; size of block as long integer

description

Releases the memory block by placing it on a free block
list. If the new block is adjacent to a block on the list,they are combined.

returns

ret = 0 if successful
= -I if supplied block is not obtained by getmem or

getml or if it overlaps one of the blocks on the
list

cautions

Return value should be checked for etror. If the correct
size is not supplied, the block may not be freed proDer}y.

3-8

Lattice 8086/8088 C Compiler Portable Lib'rary Functions

NAME

allmem, bldmem
-- allocate level 2 memory pool

SYNOPSIS

ret = allmem();
ret = bldmem(n);

int ret; return code

int n; maximum number of I kilobyte blocks

DESCRIPTION

The bldmem function uses the level 1 function sbrk to
allocate up to n I kilobyte blocks of iíiemory. If n is 0,
then all availabTe memory is allocated.

The alhnem function merely calls bldmem with n set to CL

Subsequent getmem and getml calls will make allocations from
this memory pool. All of the memory allocated by getmem

calls following a call to getmem can be freed by a call to
the rstmem function described below.

RETURNS

ret = -I if first sbrk fails
= 0 if successful

CAUTIONS

Should be called only once during the lifetime of the
program.

3-9

Lattice 8086/8088 C Compiler portable Library Functions

NAME

sizmem
-- get memory pool size

SYNOPSIS

bytes = sizmem();

long bytes; number of bytes

DESCRIPTION

Returns the number of unallocated bytes in the memory pool
used by getmern and getml. Note that getmem and getml
dynamically expand the pool by calling sbrk whenever a

request cannot be honored. Therefore, the value returned by
sizmem does not necessarily indicate how much memory is
actually available. If used after calling a.llmem, however,
the actual memory pool size will be returned.

RETURNS

bytes = (long) number of bytes in mermry pool

CAUTIONS

Note that this function returns a long integer, and must be

declared long before it is used.

3-ID

Lattice 8086/8088 C Compiler Portable Library Functions

NAME

rstmem -- reset memory pool

SYNOPSIS

rstmem();

DESCRIPTION

Resets the ,l,ey.e,l. ? memory pool to its initial state. All
memory allocated by calls to getmem and getml made after
allmem was called is released by rstmem; memory allocated
before allmem was called is not affected. This function
makes it possible to make a certain number of initial sbrk,
getmem, or getml calls, and then to initialize a memory pool
by calling allmem. Any allocations made after the call to
allmem are freed by rstmem, but the preceding sbrk or getmem

calls are not affected.

CAUTIONS

This function cannot be used if any files have been opened

after the immediately preceding allmem call for access using
any of the leve} 2 I/O functions, because these functions
use getmem to allocate buffers. Files shÓuld be opened

before the allrnem call to avoid this problem.

3-ll

Lattice 8086/8088 C Compiler portable Library Functions

3.1.3 Level l Memory Allocation

The two functions defined at the lowest level of memory

allocation are primitives which perform the basic operations
needed to implement a more sophisticated facility; they are used
by the level 2 functions for that purpose. sbrk treats the total
amount of memory available as a single block, from which portions
of a specific size may be allocated at the low end, creating a
new block of smaller size. rbrk merely resets the block back to
its original size. The "break point" mentioned here shouZd not
be confused with the breakpoint concerjt used in debugging; this-term simply refers to the address of the low end of the block of
memory manipulated by sbrk.

3-12

Lattice 8086/8088 C Compiler Portable Library Functions

NAME

sbrk, lsbrk -- set memory break point

SYNOPSIS

p = sbrk(nbytes);
p = lsbrk(lnbytes);

char *p; points to low allocated address
unsigned nbytes; number of bytes to be allocated
long In bytes; long number of bytes to be allocated

DESCRIPTION

Allocates a block of memory of the requested size, ifpossible. These functions form the basic UNIX memory

allocator. The first time one of them is called, it will
allocate the largest available block of high memory. Then

the requested number of bytes is subtracted from the low end

of the block for use by the caller.
returns

p = -l if request cannot be fulfilled (sbrk only)
p = 0 if request cannot be fulfilled (lsbrk only)

= pointer to low address of block if successful

CAUTIONS

For consistency with the UNIX function, sbrk returns -l ifit cannot satisfy the request, although the rest of the
memory allocators return NULL. Both functions should be

declared char * and a cast used if defining a pointer to
some other kind of object.

3-13

Lattice 8086/8088 C Compiler portable Library Functions

NAME

rbrk -- reset memory break point

SYNOPSIS

rbrk();
DESCRIPTION

Resets the memory break point to its original starting-
point. This effectively returns all memory to the free
space block.

CAUTIONS

Like rstmem above, this function cannot be used if any files
are open and being accessed using the .l.eye.l. E I/O functions.

3-14

Lattice 8086/8088 C Compiler Portable Library Functions

3.2 I/O and System Functions

The standard library provides 1,/0 functions at several different
levels, with single character 2ÉÉ and put functions and formatted
l/O at the highest levels, and direct byte stream T/Q functions
at the lowest levels. The major system dependency arises in
connection with text files, where some systems perform certain
translations to accommodate the particular text file
representation usc"d in the local environment. Although the
translation is generally transparent at the higher levels, I/O at
the lowest levels, particularly I/O involving binary data, must
be aware cjf the translation. Check the implementation section of
this manual for the details appropriate to a particular sYstem.

Three general classes of I/O functions are provided. First, the
level 2 functions define a buffered text file interface which
implements the single character I/O functions as macros rather
than function calls. Second, the level l functions define a byte
stream-oriented file interface, primarily useful for manipulation
of disk files, though most of the same functions are applicable
to devices (such as the user's console) as well. FinaZZy, since
one of the most common I/O interfaces is with the user's console,
a special set of functions allows single character T/O directly
to the user's terminal, as well as formatted and string I/O.

The system functions discussed in this section are concerned with
program exit. Additional system functions are described in the
implementation section of the manual.

3.2.1 Level 2 I/O Functions and Macros

These functions provide a buffered interface using a special
structure, manipulated internally by the functions, to which a
pointer called the file pointer is defined. This structure is
defined in the standard I/O header file (called stdio.h on most

systems) which generally must be included (by means of a #include
statement) in the source file where .l.eye,l. 2 features are being
used. The file pointer is used to spécíÉy"the file upon which
operations are to be performed. Some functions require a filepointer, such as

FILE "fp;

to be explicitly included in the calling sequence; others imply a
specific file pointer. In particular, the file pointers stdin
and stdout are implied by the use of several functions and

macros; these files are sci commonly used that on most gYgtems

they are opened automatically before the main function of a

program begins execution. Other file pointers must be declared
by the programmer and initialized by calls to the topen function.

The level ,2. functions are designed to work primarily with text
files. The usual C convention for line termination uses a single
character, the newline (\n), to indicate the end of a line.
Unfortunately, many operating environments use a multiple

3-15

Lattice 8086/8088 C Compiler Portable Library Functions

character sequence -- usually carriage return/line feed, but
occdsionally even more exotic delimiters. In order to allow all
C programs to work with text files in the same way, the Lattice
functions support the standard newline convention but may --depending on the system -- perform a text mode translation so
that end-of-line sequences will conform to local conventions.
This translation is usually beneficial and transparent but may

cause problems when working with binary files. Normally, all
files accessed through the level 2 functions are opened in the
text, or translated mode, but the programmer may override this
mode by defining the external location

int _fmode = 0X8000;

in one of im functions in the program (this statement must

appear outside the body of the function itself in order to be

considered an external definition). The value at fmode is
passed to the level 1 function open or creat when the" file is

—opened. If zero, the file is opened in the text mode; if (jx8000,
the file is opened in the binary, or untranslated mode. Note
that if fmodé is defined as above, the stdin, stdout, and stderr
files opened for the main function will áZsO be opened in the
binary mode. If this is undesirable, fmode can be initialized
with zero and then set to Gx8000 before"specific fopen calls are
made; in this way, different files may be opened in different
modes. Check the implementatior: section of this manual for more
information about the file access modes.

The actual I/O operations are petformed by the level 2 functions
through calls to the level l L/O functions described in the next
section. The normal moU of buffering, designed to supDort
sequential operations, performs read and write functions in 512-
byte blocks.

Normally the ,l.ey.e_l. 2 functions acquire buffers via the level 2

memory allocator unless the file is on a device other than 3

disk. Alternatively, the setbuf function allows a private buffer
to be attached. This function assumes that the buffer is the
standard size, which is defined via the BUFSIZ constant in
stdio.h. If for some reason operating the level 2 I/O functions
in the buffered mode is not desirable, the setnbf function can be

called. This is done automatically for non-disk files or ifsetbuf is called with a NULL buffer pointer.

In the descriptions below, some cjf the function calls are
actually implemented as macros; these are noted explicitly. The

reason the programmer should be aware cf the distinction is
because most macros involve the conditional operator and may,

under certain conditions, evaluate an argument expression more

than once. This can cause unexpected results if that expression
involves side effects, such as increment or decrement operators
or function calls.

3-16

Lattice 8086/8088 C Compiler Portable Library Functions

NAME

fopen -- open a buffered file
SYNOPSIS

fp = fopen(name, mode);

FILE "fp; file pointer for specified file
char "name; file name

char "mode; access mode

DESCRIPTION

Opens a file for buffered access; the translated mode is the
default mode but may be overridden as described in the
introduction to this section. The NULL-terminated string
which specifies the filename must conform to local file
naming conventions. The access mode is also specified as a

string, and may be one of the following:

r to read a file
w to write a file
a to append to a file
r+ to update a file (read and write)
w+ to create a file for update
a+ to append to and update a file

The mode character must be specified in lower case. The a
option adds to the end of an existing file, or creates a new

one; the w option discards any data in the file, if italready exists. On most systems, no more than 16 files
(including stdin, stdout, and stderr, if those are opened

for main) can be opened using fopen.

When a file is opened for update, both reading and writing
may be performed on the file pointer. In order to switch
modes, an fseek or rewind must be executed. Opening the
file to append forces all data to be written to the current
end of file, regardless of previous seeks.

RETURNS

"fp = NULL if error
= file pointer for specified file if successful

CAUTIONS

The return code must be checked for NULL; the error return
may be generated if an invalid mode was specified or if the
file was not found, could not be created, or too many files
were already open.

3-17

Lattice 8086/8088 C Compiler Portable í,ibrary Functions

NAME

freopen -- reopen a buffered file
SYNOPSIS

fpr * freopen(name, mode, fp);
FILE *fpr; file pointer after re-opening
char *name; file name

char *mode; access mode

FILE *fp; current file pointer

DESCRIPTION

Reopens a buffered file; that is, attaches a new file to a

previously used file pointer. This function is useful for
programs which must open several files, but only one at a
time; this avoids using up file pointers unnecessarily. The

previous file is automatically closed before the file
pointer is reused. The name and mode arguments are the same

as those for fopen.

RETURNS

fpr = NULL if error
= fp'if successful

CAUTIONS

TPie return code should be checked for NULL; the same errors
defined for fopen may occur.

3-18

t*

Lattice 8086/8088 C Compiler Portable Library Functions

NAME

fclose -- close a buffered file
SYNOPSIS

ret = fclose(fp);
int ret; return code

FILE "fp; fike pointer for file to be closed

DESCRIPTION

Completes the processing of a file and releases all related
resources. If the file was being written, any data which
has accumulated in the buffer is written to the file, and

the level I close function is called for the associated file
descriptor. The buffer associated with the file block is
freed. fclose is automatically called for all open files
when a program calls the exit function (see Section 3.2.4)
or when the main program returns, but it is good programming
practice to close files explicitly. As the last buffer is
not written until fclose is called, data may be lost if an

output file is not properly closed.

RETURNS

ret = —I if error
= 0 if successful

3-19

Lattice 8986/8088 C Compiler Portable Library Functions

NAME

gete, getchar -- get character from file
SYNOPSIS

c = getc(fp);
c = getchar();

int c; next input character or EOF

FILE "fp; file pointer

DESCRIPTION

Gets the next character from the indicated file (stdin, in
the case of getchar). The value EOF (-I) is returned on
end—of-file or error.

RETURNS

c = character
= eoe if end-of-file or error

CAUTIONS

These are implemented as macros, so beware of side effects.

3-20

Lattice 8086/8088 C Compiler portable Library Functions

NAME

putc, putchar -- put- i'"hírí('"t("r to flit"'

SYNOPSIS

r = putc(c, fp);
r = putchar(c);

int r; same ass character SÉ'ñt, nr prr()r í""odé

char c; charaí"ter to Y)("? output
FILE "fp; file pointer

DESCRIPTION

E'u t s t h e character to the indicated file (stdout, i n r Pip

case tjf putchar) .
The va 1(1€" EOF (-I) is rett.irned on ond-nS-

file or error.
RETURNS

r = character sent if successful
= eof if error or end-of-file

CAUTIONS

These are implemented as macros, so beware of sick' rffec"ts.

3-21

Lattice 8086/8088 C Compiler Portable Library Functions

NAME

fgetc, fputc -- get/put a character

SYNOPSIS

G
r = fgetc(fp);
r = fputc(c, fp);
int r; return character or code

char c; character to be sent (fputc)
FILE *fp; file pointer

DESCRIPTION

These fjmctions get (fgetc) or put (fputc) a single
character to the indicated file. Since they are functions,
they are often recommended for use rather than the
corresponding macros (getc and putc) in two types of
situations: (I) if many calls are made and/or (2) if the
programmer is concerned about the amount of memory used in
the macr,o expansions. The tradeoff is the usual one: the
macro executes more quickly because it saves a function
call; the function requires less memory since its code is
present in the program only once.

RETURNS

r = character if successful (c, for fputc)
= eof if error or end-of-file

3-22

Lattice 8086/8088 C Compiler Portable Library Functions

NAME

ungetc -- push character back on input file
SYNOPSIS

r = ungetc(c, fp);

int r; return character or code

char c; character to be pushed back

FILE "fp; file pointer

DESCRIPTION

Pushes back a character to the specified input file. The

character supplied must be the character most recently
obtained by a getc (or getchar, in which case fp should be

supplied as stdin) invocation.

RETURNS

r = character if successful
= EOF if previous character does not match

3-23

Lattice 8086/8088 C Compiler Portable Library Functions

NAME

fread, fwrite -- read/write blocks of data from/to a file
SYNOPSIS

naet = fread(p, s, n, fp);
nact = fwrite(p, s, n, fp);

int nact; actual number of blocks read or written
char *p; pointer to first block of data
int s; size of each block, in bytes
int n; number of blocks to be read or written
FILE *fp; file pointer

DESCRIPTION

These functions r ead (fread) or write (fwrite) blocks o f
data írom or to the specified file. Each block is of size s
by t£?s; blocks statt at d and are stored contiguously f rom

A—that location. n specif les the number of blocks (of size s)
—that are to be read or wrntten.

RETURNS

rjgo t = actual number of blocks (c) f size S) read or written;
may be less than n if error or end-cf-tile occerte"í

CAUTIONS

Return va lúe mu s t be checked to verify that t h e correct
number of blocks was processed. The ferror and feof macros
ca n be used to determine the cause if the return value i s

less than n.

3-24

Lattice 8086/8088 C Compiler Portable Library Functions

name

gets, fgets -- get a string

SYNOPSIS

p = gets(s);
p = fgets(s, n, fp);

char "p; returned string pointer
chat 's; buffer for input string
int n; number of bytes in baffler
FILE *fp; file pointer

DESCRIPTION

Gets an input string from a file. The specified file
(stdin, in the case of gets) is read until a newline is
encountered or n-l characters have been read (fgets only)-
Then, gets replaces the newline with a NULL byte, whi)e
fgets passes the newline through with a NULL byte appended.

RETURNS

p = NULL if end of file or error
= s if successful

CAUTIONS

For gets, there is no length parameter, so the input
buffer must be large enough to accommodate the string.

3-25

Lattice 8086/8088 C Compiler Portable Library Functions

NAME

puts, fputs -- put a string

SYNOPSIS

r = puts(s);
r = fputs(s, fp);

int r; return code

char *s; output string pointer
FILE "fp; file pointer

DESCRIPTION

Puts an output string to a file. Characters from the"string
are written to the specified file (stdout, in the case of
puts) until a NULL byte is encountered. The NULL byte is
not written, but puts appends a newline.

RETURNS

r = EOF if end-of-file or error

3-26

Lattice 8086/8088 C Compiler Portable Library Functions

NAME

scanf, fscanf, sscanf -- perform formatted input conversions

SYNOPSIS

n = scanf(cs, ...ptrs...);
n = fscanf(fp, cs, ...ptrs...);
n = sscanf(ss, cs, ...ptrs...);
int n; number of input items matched, or EOF

FILE *fp; file pointer (fscanf only)
char *ss; input string (sscanf only)
char "cs; format control string

---- ...ptrs...; pointers for return of input values

DESCRIPTION

These functions perform formatted input conversions on text
obtained from three types of files:
L) the stdin file (scanf);
2) the specified file (fmanf);
3) the specified string (sscanf).

The control string contains format specifiers and/or
characters to be matched from the input; the list of pointer
arguments specify where the results of the conversions are
to go. Format specifiers are of the form

B("]{rÍ](llX
where

I) the optional " means that the conversion is to be

performed, but the result value not returned;
2) the optional ,n. is a decimal number specifying a maximum

field width;
3) the optiona! I (e,l.) is used to indicate a ,lgng int or

lorg float (í.e., double) result is desired; ""'

4) X is one of the format type indicators from the
following list:

d
-- decimal integer

o -- octal integer
x -- hexadecimal integer
h

-- short integer
c -- single character
s -- character string
f -- floating point number

The format type must be specified in lower case. white
space characters in the control string are ignored;
characters other than format specifiers are expected to
match the next non-white space characters in the input. The

3-27

Lattice 8086/8088 C Compiler portable Library Functions

input is scanned through white space to loccíté the next
input item in all cases except the c specifier, where the
next input character is returned without this initial scan.
See the Kernighan and Ritchie text for a more detailed
explanation of the formatted input functions.

RETURNS

n = number of input items successfully matched, i.e., for
which valid text data was found; this includes all
single character items in the control string

= E.O.F. if end-of-file or error is encountered during scan

CAUTIONS

All of the input values must be pointers to the result
locations. Make sure that the format specifiets match up

properly with the result locations. If the assignment
suppression feature (") is used, remember that a pointer
must not be supplied for that specifier.

3-28

Lattice 8086/8088 C Compiler Portable Library Functions

NAME

printf, fprintf, sprintf -- genetate formatted output

SYNOPSIS

printf(cs, ..-arqs...);
fprintf(fp, cs, ...args.-.);
n = sprintf(ds, cs, ...args...);
int n; number of characters (spíintf only)
FILE *fp; file pointer (fprintf)
char "ds; destination string pointer {sprintf)
char *cs; format control string

---- ...args...; list of arguments to be formatted

DESCRIPTION

Tbese functions perform formatted output conversions and

send the resulting text to:

I) the stdout file (printf);
2) the specified file (fprintf); or
3) the specified output string (sprintf).
The control string contains ordinary characters, which are
sent without modification to the appropriate output, and

format specifiers of the form

%[-][m][.p)[l]X
where

l) the optional - indicates the field is to be left
justified (right justified is the default);

2) the optional m field is a decimal number specifying a
minimum field width;

3) the optional :£ field is the character . followed by a

decimal number specifying the precision"of a floating
point image or the maximum number of characters to be

printed from a string;
4) the optional l (el) indicates that the item to be

formatted is io6g; and
5) X is one of the format type indicators from the

Íollowing list:
d

-- decimal signed integer
u -- decimal unsigned integer
x -- hexadecimal integer
o -- octal integer
s -- character string
c -- single character
f -- fixed decimal floating point
e -- exponential floating point
g -- use e or f format, whichever is shorter

3-29

Lattice 8086/8088 C Compiler Portable Library Functions

The format type must be specified in lower case. Characters
in the control string which ate not part of a format
specifier are sent to the appropriate output; a * may be

sent by using the sequence u. See the Kernighan and

Ritchie text for a mote detailed explanation of the
formatted output functions.

RETURNS

n = number of characters placed in ds (sprintf only), not
including the NULL byte terminator

CAUTIONS

For sprintf, no check of the size of the output string area
is made, so it must be large enough to contain the resulting
image. In all cases, the format specifiers must match up

properly with the supplied values for formatting.

3-30

Lattice 8086/8088 C Compiler portable Library Functions

NAME

fseek - -- seek to a new f i Ip posit iíjn

SYNOPSIS

ret = fseek (fp, pos, mode) ;

int ret; return code

FILE "fp; file pointer
long pos; desired file position
int mode; of fset mode

DESCRIPTION

Seek s t o a new position in the specified fi le. See the
lseek function description (Section 3.2.2) for the meaninq

of the of fset mode argument.

RETURNS

re t = 0 if successful
= - l if error

CAUTIONS

1 f m,ode ! is specified, the file position established f or
f i íe9" be ing accessed i n the translated mode may be

incorrect.

4

3-31

Lattice 8086/8088 C Compiler Portable Library Functions

NAME

ftell -- return current file position

SYNOPSIS

pos = fte"1l(fp);
long pos; current file position
FILE *fp; file pointer

DESCRIPTION

Returns the currient file position, that is, the number o f
bytes f rom the beginning of the file to the byte at which
the next read or write operation will transfer data.

RETURNS

pos = current file position (long)

CAUTIONS

'I'híú f i Le p'j'íitio!1 returned takes account M the buffering
used ci"! the ti2c: , -sr the file position retutmed is a logic"a]
f i i t? positzot: rather than the actual position. Note tha l-
Le x t mode transZation may cause an incorrect fi le posit.ion
!:u be tetut"neci, since the nurnbeí of characters in the buf fer
i s not r)ec¿!ssari iy the number that will he actmally read or
written because of the translation.

3- 32

Lattice 8086/8088 C Compiler Portable Library Functions

NAME

ferror, feof -- check if error/end of file
SYNOPSIS

ret = feof(fp);
ret = ferror(fp);

int ret; return code

FILE *fp; file pointer

DESCRIPTION

These macros generate a non-zero value if the indicated
condition is true for the specified file.

RETURNS

ret = non-zero if error (ferror) or end of file (feof)
= zero if not

3-33

Lattice 8086/8088 C Compiler Portable Library Functions

NAME

clrerr -- 'clear error flag for file
SYNOPSIS

clrerr(fp);
FILE "fp; file pointer

DESCRIPTION

Clears the error flag for the specified file. Once set, the
flag will remain set, forcing EOE returns for functions on
the file, until this function is called.

3-34

Lattice 8086/8088 C Compiler Portable Library Functions

NAME

fileno -- return file number for file pointer

SYNOPSIS

fn = fileno(fp);
int fn; file number associated with file pointer
FILE *fp; file pointer

DESCRIPTION

Returns the file number, used for the level l I/O calls, for
the specified file pointer.

RETURNS

fn = file number (file desc;riptor) for level ,1 calls
CAUTIONS

Implemented as a macro.

U+ 3 5

Lattice 8086/8088 C Compiler Portable Library Functions

NAME

rewind -- rewind a file
SYNOPSIS

rewind(fp);

FILE "fp; file pointer

DESCRIPTION

Resets the file position of the specified file to the
beginning of the file.

CAUTIONS

Implemented as a macro.

3-36

Lattice 8086/80R9 C Compiler Portable Library Functions

NAME

fflush -- flush output buffer for file
SYNOPSIS

fflush(fp);
FILE *fp; file pointer

DESCRIPTION

Flushes the output buffer of the specified file, that is,
forces it to be written.

CAUTIONS

This macro must be used only on files which have been opened

for writing or appending.

3_37

Lattice 8086/8088 C Compiler portable Library Functions

NAME

setbuf --
change buffer for level 2 file I/O

SYNOPSIS

setbuf(fd,buf);
FILE "fd;
char "buf;

DESCRIPTION

This function attaches a private buffer to the file whose

descriptor is fd. The length of the buffer is assumed to be

the same as bufsiz, which is defaulted to the constant
BUFSIZ in stdio.h..

If the buffer pointer is NULL, then this function is the
same as setnbf.

CAUTIONS

buf must be large enough to handle the data specified in
bufsiz.

—

3-38

Lattice 80'86/8088 C Compiler Portable Library Functions

NAME

setnbf -- set file unbuffered

SYNOPSIS

setnbf(fp);

FILE *fp; file pointer

DESCRIPTION

Changes the buffering mode for the specified file pointer
from the default SH-byte block mode to the unbuffered mode
used for devices (including the user's console). In thismode, read and write oDerations are performed using single
characters.

CAUTIONS

Although the unbuffered mode may be used without difficulty
on files, the standard buffering mode is generally more

efficient, so this function should only be used for those
"files" which are definitely known to be devices.

3-39

Lattice 8086/8088 C Compiler Portable Library Functions

3.2.2 Level I I/O Functions

These functions provide a basic, low-level I/O interface which
allows a file to be viewed as a stream of randomly addressable
bytes. Operations are performed on the file using the functions
described in this section; the file is specified by a file number

or file <iescriptor, such as

int fd;

which is returned by open or creat when the file is opened. Data

may be read or written in blocks of any size, from a single byte
to as much as several kilobytes in a single operation. The

concept of a file position is key: the file position is a long
integer, such as

long fpos;

which specifies the position of a byte in the file as the number

of bytes from the beginning of the file to that particular byte.
Thus, the first byte in the file is at file position DL. Two

distinct file positions are maintained internally by the level I
functions. The current file position is the point at which data
transfers take place between the program and the file; it is set
to zero when the file is opened, and is advanced by the number of
bytes read or written using the read and write functions. The
end of file position is simply the total number of bytes
contained in the file; it is changed only by write operations
which increase the size of the file.
The current file position can be set to any value from zero up to
and including the end of file position using the lseek function.
Thus, to append data to a file, the current file position is set
to the end of the file using lseek before any write operations
are performed. When data is read from near the end of file, as
much of the reqoested count as can be satisfied is returned; zero
is returned for attempts to read when the file position is at the
end of file.
The level I functions operate in one of two mutually exclusive

—modes: the text or translated mode, and the binar¥ or
untranslated mode. On some systems the two modes are iderjtIca1.
The desired mode is specified when the file is opened or created,
and remains in effect until the file is closed. The two modes

are provided so that any required translation of text file end-
of-line sequences can be performed automatically even by the
lowest level operations (read and write functions), while at the
same time a program may disable the translation, as needed, when

working with binary files. The problem is that not all systems
use the standard C end-of-line delimiter, the newline (\n); the
translated mode converts the newline to whatever the local
delimiter may be. Since this may involve expansion or
contraction of the number of bytes read or written, the count
returned by read or write may not correctly reflect the actual
change in the file position. In the binary mode, this problem

3-40

Lattice 8086/8088 C Compiler Portable Library Functions

does not occur since no translation is performed.

a public sj'mbol called iomode presets the translation mode.

Normally, iomode is 0 and translated mode is used unless 0 RAW

is specified (see open function). If iomode is changed" to
0X8000, then the untranslated mode is used unless 0 RAW is
specified. In other words, 0 RAW toggles the meaning of "iomode.

Although the level I functions are primarily useful for working
with files, they can be used to read and write data to devices
(including the user's terminal), as well. The exact nature of
the I/O performed is system-dependent, but it is generally
unbuffered and may have different effects, dependinq on whether
the translated or untranslated mode is in effect. The lseek
function has no effect on devices, and usually returns an error
status. Direct I/O to the user's terminal may also be performed
using the functions described in Section 3.2.3.

The actual I/O operations on disk files are buffered, but at a
level that is generally transparent to the programmer. The

buffering makes close operations a necessity for files that are
modified.

3-41

Lattice 8086/8088 C Compiler Portable Library Functions

NAME

open -- open a file
SYNOPSIS

file = open(name, rwmode);
.

int file; file number or error code
char *name; file name

int mode; indicates read/write mode and other
options (see below)

DESCRIPTION

Opens a file for access using the .l.e.v.e,l. I I/O functions.
The file name must conform to local naming conventions. The

mode word indicates the type of I/O which will be performed
on the file. The header file fnctl.h defines the codes for
the mode arguments:

0 RDONLY Read only access
0 WRONLY Write only access
0 RDWR Read/write access

Also, the following flags can be oRed into the above codes:

0 CREAT Create the file if it doesn't exist
0 TRUNC Truncate (set to zero length) the file

if it does exist
0 EXCL Forces create to fail if file exists
0 APPEND Seek to end-of-file before each write

—0 RAW Use untranslated I/O (see introduction
to section 3.2.2)

The current file position is set to zero if the file is
successfully opened. On most systems, no more than 16 files
(including any which are being accessed through the level .2,

functions, such as stdin, stdout, etc.) can be open at the
same time. Closing the file releases the file number for
use with some other file.

RETURNS

file = file number to access file, if successful
= —l if error

CAUTIONS

Check the return value for error.

3-42

Lattice 8086/8088 c compiler Portable Library Functions

NAME

creat -- create a new file
SYNOPSIS

file = creat(name, pmode);

int file; file number or error code

char "name; file name

int pmode; access privilege mode bits; bit Z5 has

same meaning as for open

DESCRIPTION

Creates a new file with the specified name and prepares itfor access via the level 1 I/O functions. The file name
—must conform to local naming conventions. Creating a device

is equivalent to opening it. The access privilege mode bits
are system-dependent and on some systems may be largely
ignored; however, bit 15 is interpreted in the same way as
for open: if set, operations are performed on the file
without translation. If the file already exists, its
contents are discarded. The current file position and the
end-of-file are both zero (indicating an empty file) if the
function is successful.

RETURNS

file = file number to access file, if successful
= —I i f error

CAUTIONS

Check the return value for error. creat should be used only
on files which are being completely rewritten, since any
existing data is lost.

3-43

Lattice 8086/8088 C Compiler portable Library Functions

NAME

unlink -- remove file name from file system

SYNOPSIS

ret = unlink(name);

int ret; return code: 0 if successful
char *name; name of file to be removed

DESCRIPTION

Removes the specified file from the file system. The file
name must conform to local naming conventions. The

specified file must not be currently open. All data in the
file is lost.

RETURNS

ret = 0 if successful
= -l if error

CAUTIONS

Should be used with care since the file, once removed, is
generally irretrievable.

3-44

Lattice 8086/8088 C Compiler Portable Library Functions

NAME

read -- read data from file
SYNOPSIS

status = read(file, buffer, length);

int status; status code or actual length
int file; file number for file
char *buffer; input buffer
int length; number of bytes requested

DESCRIPTION

Reads the next set of bytes from a file. The return count
is always equal to the number of bytes placed in the buffer
and will never exceed the lenqth parameter, except in the
case of an error, where -l is returned. The file position
is advanced accordingly.

RETURNS

status = 0 if end-of-file
= -I if error occurred
= number of bytes actually read, otherwise

CAUTIONS

If fewer than the requested number of bytes remain between
the current file position and the end-of-file, only' that
number is transferred and returned. The number of bytµs by

which the file position was advanced may not equal the
number of bytes transferred if text mode translation
occurred.

3-45

Lattice 8086/8088 C Compiler Portable Library Functions

NAME

write —- write data to file
SYNOPSIS

status = write(fi1e, buffer, length);

int status; status code or actual length
int file; file number

char "buffer; output buffer
int length; number of bytes in buffer

DESCRIPTION

Writes the next set of bytes to a file. The return count is
equal to the number of bytes written, unless an error
occurred. The file position is advanced accordingly.

RETURNS

status = -I if error
= number of bytes actually written

CAUTIONS

The number of bytes written may be less tban the supplied
count if a physical end-of-file limitation was encountered.

3-46

Lattice 8086/8088 C Compiler Portable Library Functions

NAME

lseek -- seek to specified file position

SYNOPSIS

pos = lseek(file, offset, mode);

long pos; returned file position or error code

int file; file number for file
long offset; desired position
int mode; offset mode:

0 = relative to beginning "of file
I = relative to current file position
2 = relative to end-of-file

DESCRIPTION

Changes the current file position to a new position in the
file. The. offset is specified as a long int and is added to
the current position (mode I) or to the logical end-of-file
(mode 2). Not all implementations support offset mode 2.

RETURNS

pos = -li if error occurred
= new file position if successful

CAUTIONS

The offset parameter must be a long quantity; therefore a

long constant should be indicated when supplying a zero. In
most cases, the return code should be checked for error,
which indicates that an invalid file position (beyond the
end-of-file) was specified. Note that the current file
position may be obtained by

long cpos, lseek();
0 0 0
cpos = lseek(file, DL, I);

which will never return an error code.

3-47

Lattice 8086/8088 C Compiler Portable Library Functions

NAME

close -- close a file
SYNOPSIS

status = close(file);
int status; status code: 0 if successful
int file; file number

DESCRIPTION

Closes a file and frees the file number for use in accessing
another file. Any buffers allocated when the file was
opened are released.

RETURNS

status = 0 if successful
= —l if error

CAUTIONS

This function must be called if the file was modified;
otherwise, the end-of-file and the actual data on disk may

not be updated properly.

3-48

Lattice 8086/8088 C Compiler Portable Library Functions

3.2.3 Direct Console I/O Functions

These functions provide a direct I/O interface to the user's
console. Because there is no buffering of characters, the
functions are particularly useful for applications which use

cursor positioning to define special screen formats or which
implement special single character responses to program prompts.
In order to distinguish these functions from the corresponding
level 2 functions, different names are used for them. This
allows programs to make use of both kinds of I/O, if desired.
Programs which perform console I/O exclusively' can use the
#define mechanism to establish the following equivalencies for
some of the level 2 functions:

4define getchar getch
#define putchar putch
tdefine gets cgets
#define puts cputs
tdefine 8canf cscanf
#define printf cprintf

Several system dependencies arise in connection with the direct
console functions. whether or not characters are echoed as they
are input is system-dependent but there is usually a mechanism to
enable or disable the echo. On some systems the characters that
are typed when the program is not actually waiting for input are
saved, and then presented to the getch function when it requests
input. Often only one character is saved; however some sYstems

may save none while others retain several. The presence of type-
ahead, as this feature is usually called, rarely affects the
program itself, although its absence may be a source of
irritation to users who have to communicate with the program.

3—49

Lattice 8086/8088 C Compiler Portable Íjibrary Functions

NAME

geteh, putch -- get/put character directly from/to console

SYNOPSIS

c = getch();
putch(c);
int c; character received/sent to console

DESCRIPTION

These functions get (getch) or put (putcb) single characters
from or to the user's console.

RETURNS

c = character received (getch)

CAUTIONS

There is no notion of an end of file or error status, but
some implementions may use .E.O.F (-I) as an error return.

3-50

Lattice 8086/8088 C Compiler Portable Library Functions

NAME

ungetch -- push character back tQ console

SYNOPSIS

r = ungetch(c);

int r; return code
char c; character to be pushed back

DESCRIPTION

pushes the indicated character back on the console. Only
one character of pushback is allowed. The effect is to
cause getch to return the pushed-back character next time itis called.

RETURNS

r = EOF if a character has already been pushed back
= c if successful

3—51

Lattice 8086/8088 C Compiler Portable Ubrary' Functions

NAME

kbhit -- ch,eck for keyboard hit
SYNOPSIS

hit = kbhit();

int hit; 0 if no hit
DESCRIPTION

Returns a non-zero value if a keyboard character is
available.

RETURNS

hit = 0 if no character available
" non-zero if character available

3-52

Lattice 8086/8088 C Compiler Portable Library Functions

NAME

cgets -- get string directly from console

SYNOPSIS

p = cgets(s);

char "p; returned string pointer
char *s; input string buffer

DESCRIPTION

Gets a string directly from the user's console. Characters
are input until a system-dependent terminator (usually CR,
0: x0D) is encountered. The carriage return is replaced by a

null byte.

RETURNS

p = pointer to string received, which does not include the
terminating carriage return

CAUTIONS

Cbeck the implementation section of this manual for details
of the operation of this function.

3-53

Lattice 8086/8088 C Compiler Portable Library Functions

NAME

cputs -- put string directly to console

SYNOPSIS

cputs(s);

char *s; string to be output

DESCRIPTION

Puts a NULL terminated string directly to the user's
console. Does not automatically generate a carriage return
or linefeed.

3—54

Lattice 8086/8088 C Compiler Portable Library Functions

NAME

cscanf, cprintf -- formatted I/O directly to console

SYNOPSIS

same as scanf and printf
DESCRIPTION

These functions perform the equivalent of scanf and

printf, but characters are sent directly to or received
directly from the console.

RETURNS

n = number of input items matched (cscanf)

CAUTIONS

cscanf performs its I/O directly using getch, so there are
none of the usual input conveniences such as back spacing or
line deletion. If an implementation's version of cgets
provides some of these conveniences, it may be better to
call cgets and then use sscanf to decode the resulting
string.

3-55

Lattice 8086/8088 C Compiler Portable Library Functions

3.2.4 Program Exit Functions

The program entry mechanism, that is, the means by which the
main function gains control, is sufficiently system-dependent
that it must be described in the implementation section of this
manual. program exit, however, is somewhat more general,
although not without its own implementation dependencies.

The simplest way to terminate execution of a C program is
for the main function to execute a return statement, or -- even
simpler -- to "drop through" its terminating brace. In many

cases, however, a more flexible program exit capability is
needed; this is provided by the exit and exit functions
described in this section. They offer the advanfage of allowing
any function -- not just main -- to cause termination of the
program, and in some systems, they allow information to be passed
to other programs.

3—56

Lattice 8086/8088 C Compiler Portable Library Functions

NAME

exit -- terminate execution of program and close files
3YNOPSIS

exit(errcode);

int errcode; exit error code

DESCRIPTION

Terminates execution of the current program, but first
closes all output files which are currently open through the
level .2, I/O functions. The error code is normally set to
zero to indicate no error, and to a non-zero value if some

kind of error exit was taken.

CAUTIONS

Note that exit only closes those files which are being
accessed using the level 2 functions. Files accessed using
the .l.e.vel !, functions are not automatically closed.

g

3-57

Lattice 8086/8088 C Compiler Portable Library Functions

NAME

_exit -- terminate execution immediately

SYNOPSIS

exit(errcode);
int errcode; exit error code

DESCRIPTION

Terminates execution of the current program immediately,
without checking for open files.

3-58

Lattice 8086/8088 C Compil{E'hr portable Library Functions

3
.

3 Utility Functions and Macros

The' p{}rt.lt)lf" líbt.iry !)r{)L'!: it"s 'l v,3ri+'ty of' .?d(lit.inn,ll furic: t ions
us,' t"u I fnt in...jñY of the cummcm cÍjt'.3 maniF)u|atI(jns y'r formt'd by c

pr'-"jr 'gms. 1'hrT!t? uril Jtie'Á pr'}Ui{.j(." f íxt mt"mnry tr.-3nsft'r: ;; a Sat

4)f mrgÍ"l'OS .íllow'; q\ji(-"k tt'St in'; of ch,iracte'r typr's; a nd several
utiLíty {unc'tluns f3("Ilit-fít." ("h,lr3{"t.er string h-3nd1in('1.

3
.

3
.

I Memory Utilities
The throe utility funut ions "jescr íbed here í'l r e usually
implemented in machim·' l.'m'jaa'je fcjr m.íximum t.'f f iciency'. These

.j r e t ht' cqulÜalt?nt Qt the n lmost \.)ni'/Arsa| F j.[;[. a nd M_()V,F

subrout im's dt.'f'int"d in many othRr ianquaqt's.

3-59

Lattice 8086/8088 C Compiler Portable Library Functions

NAME

setmem -- initialize memory to specified char value

SYNOPSIS

setmem(p, n, c);

char *p; bage of memory to be initialized
unsigned n; number of bytes to be initialized
char c; initialization value

DESCRIPTION

Sets the specified number of bytes of memory to the
specified byte value. On many sYstems a hardware block fillinstruction is used to perform the initialization. This
function is useful for the initialization of auto char
arrays.

CAUTIONS

Some systems may distinguish between char " pointers and

pointers of other types, so it is good practice to use a

cast operator when arrays or pointers of other types are
used for the p argument.

3-60

Lattice 8086/8088 C Compiler Portable Library Functions

NAME

movmem -- move a block of memory

WNOPSIS

m<jvíñem(s, d, n);

char "s; source memory block
char "d; destination memory block
unsigned n; number of bytes to be transferred

DESCRIPTION

Moves memory " -m one location to another. The function
checks the relative locations of source and destination
blocks, and performs the move in the order necessary to
preserve the data in the event of overlap. On many systems
a hardware .b.l.ock m.gy.e instruction is used to perform the
transfer.

CAUTIONS

Some systems may distinguish between char * pointers and

pointers of other types, sc) it is good practice to use a

cast operator when arrays or pointers of other types are
used for the s and d arguments.

3-61

Lattice 8086/8088 C Compiler Portable Library Functions

NAME

repmem -- replicate values thrcugh memory

SYNOPSIS

repmem(s, v, lv, nv);

char "s; memory to be initialized
char "v; template of values to be replicated
int lv; number of bytes in template
int nv; number of templates to be replicated

DESCRIPTION

Replicates a set of values throughout a block of memory.

This function is a generalized version of setmem, and can be

used to initialize atrays of items other than char. Note
that the replication count indicates the number of copies of
v which are to be made, ñQt the total number of bytes to be

initialized.
CAUTIONS

Some sYstems may distinguish between char " pointers and

other types of pointers, 90 it is good practice to use a

cast operator when arrays or pointers of other types are
used for the s and v arguments.

3-.62

Lattice 8086/8088 C Compiler Portable Library Functions

3.3.2 Character Type Macros

The character type header file, caLÉed ctype.h on most systems,
defines several macros which are useful in the analysis of text
dátcí. Most allow the programmer to determine quickly the type of
a character, i.e., whether it is alphabetic, numeric,
punctuation, etc. These macros refer to an external array called
ctype which is indexed by the character itself, so they are—generally much faster than functions which check the character

against a range or discrete list of values. Although ASCII is
defined as a 7-bit code, the ctype array is defined to be 257

bytes long so that valid results are obtained for any character
value. This means that a character with the value 0xbl, for
instance, will be classified the same as a character with the
vaije 0x3l. Programs that need to distinguish between these
values must test for the 0x8(j bit before using one of these
macros. Note that ctype is actually indexed by the character
value Ejjj± one; ttñs allows the standard EOF value (-I) to be

tested in a macro without yielding a nonsense result. EOF j'ields
a zero result for any of the macros: it is not defined as any of
the character types.

Here are the macros defined in the character type header file
ctype.h. Note that many of these will evaluate argument
expressions more than once, so beware of using expressions with
side effects, such as function calls or increment or decrement
operators. Note that the file ctype.h must be included if any of
these macros are used; otherwise, the compiler will generate a

reference to a function of the same name.

isalpha(c) non-zero if c is alphabetic, 0 if not
isupper(c) non-zero if c is upper case, 0 if not
islower(c) non-zero if c is lower case, 0 if not
isdigit(c) non-zero if c is a digit 0-9, 0 if not
isxdigit(c) non-zero if c is a hexadecimal digit, 0

if not (0-9, a-f, a-f)
isspace(c) non-zero if c is white space, 0 if not
ispunct(c) non-zero if c is punctuation, 0 if not
isalnum(c) non-zero if c is alphabetic or digit
isprint(c) non-zero if c is printable (including

blank)
isgraph(c) non-zero if c is graphic (excluding

blank)
iscntr1(c) non-zero if c is coÍjtroi character
isascii(c) non-zero if c is ASCII (0-127)
iscsym(c) non-zero if valid character for C

identifier, 0 if not
iscsymf(c) non-zero if valid firgt character for C

identifier, 0 if not
toupper(c) converts c to upper case, if lower case
tolower(c) converts c to lower case, if upper case

Note that the last two macros generate the value of c unchanged
if it does not qualify for the conversion.

3—63

Lattice 8086/8088 C compiler portable Library Functions

3.3.3 String Utility Functions

The portable library provides several functions to perform many

of the most common string manipulations. These functions all
work with sequences of characters terminated by a NULL (zero)
byte, which is the C definition of a character string. A special
naming convention is used, which works as follows: The first two

characters of a string function are always st, while the third
character indicates the type of the return value from the
function:

stc function returns an int count
stp function returns a character pointer
sts functioD returns an int status value

Thus, the name of the function shows at a glance the type of
value it returns.

For compatibility with other C implementations, four of the most

common functions are provided with stt names; these are the
functions mentioned in Kernighan and Ritchie: strlen, strcpy,
strcat, and strcmp.

3-64

Lattice 8086/8088 C Compiler Portable Library Functions

NAME

sErien, stclen -- measure length of string

SYNOPSIS

length = strlen(s);
length = stclen(s);

int length; number of bytes in s (before NULL)

DESCRIPTION

Counts the number of bytes in s before the NULL terminator.
The terminator itself is not included in the count.

RETURNS

length = number of bytes in string before NULL, byte

3-65

Lattice 8086/8088 C Compiler portable Library Functions

NAME

strepy, stccpy -- copy one string to another

SYNOPSIS

strcpy(to, from);
actual = stccpy(to, from, length);

int actual; actual number of characters moved

(stccpy only)
char *to; destination string pointet
char *from; source string pointer
int length; sizeof(to) (stccpy only)

DESCRIPTION

Moves the NULL-terminateci source string to the destination
string. strcpy does not get a length parameter, so all of
the source string is copied unconditionally. For stccpy, ifthe source is too long for the destination, its rightmost
characters are not moved. The destination string is always
NliLL-terminated.

RETURNS

actual " actual number of characters moved, including the
NULL terminator (stccpy only)

CAUTIONS

As noted above, strcpy does not get a length parameter, so
the destination st.ring must be latge enough. Use stccpy
it this causes problems.

3-66

Lattice 8086/8088 C Compiler Portable Library Functions

NAME

strcat -- concatenate strings

SYNOPSIS

strcat(to, from);

char *to; string to be concatenated to
char *from; string to be added

DESCRIPTION

Concatenates from to the end of to. The result is always
NULL-terminated.

CAUTIONS

No Length parameter is present, so the destination string
must be large enough to receive the combined result.

3-67

Lattice 8086/8088 C Compiler portable Library Functions

NAME

strcmp, stscmp -- compare two strings

SYNOPSIS

status = strcmp(s, t);
status = stscmp(s, t);
int 8tatus; result of comparison

>0 if s>t, 0 if s==t, <0 if s<t
char "S; first string to compare
char *t; second string to compare

DESCRIPTION

Compares two NULL-terminated strings, byte by byte, and

returns an int status indicating the result of the
comparison. If zero, the strings are identical, up to and

including the terminating byte. If non-zero, the status
indicates the result of the comparison of the first pait of
bytes which were not equal.

RETURNS

status = 0 if strings match
< 0 it first string less than second string
> 0 if first string greater than second string

CAUTIONS

The result of the comparison may depend on whether
characters are considered signed, if any of the characters
is greater than 127.

3-68

Lattice 8086/8088 C Compiler Portable Library Functions

NAME

stcu d
-- convert unsigned integer to decimal string

*

SYNOPSIS

length = stcu d(out, in, outlen);

int length; output string length (excluding NULL)

char *out; output string
unsigned in; input value
int outlen; sizeof(out)

DESCRIPTION

Converts an unsigned integer into a string of decimal digits
terminated with a NULL byte. Leading zeros are not copied
to the output string, and if the input value is zero, only a

single 0 character is produced.

RETURNS

length = number of characters placed in output string, not
including the NULL terminator

CAUTIONS

If the output string is too small for the result, only the
rightmost digits are returned.

3-69

Lattice 8086/8088 C Compiler Portable Library Functions

NAME

gtci d
-- convert Mgned integer to decimal string

SYNOPSIS

length = 8tci d(out, in, outlen);

int length; output string length (excluding NULL)

char "out; output 8tring
int in; input value
int outlen; sizeof(out)

DESCRIPTION

Converts an integer into a string of decimal digits
terminated with a NULL byte. If the integer is negative,
the output string is preceded by a -. Leading zeros are not
copied to the output string.

RETURNS

length = number of characters placed in output string, not
including the NULL terminator

CAUTIONS

If the output string is too small for the result, the
returned length may be zero, or a partial string may be

returned.

3-70

Lattice 8086/8088 C Compiler Portable Library Functiom

NAME

stchi -- convert hexadecimal string to integer

SYNOPSIS

count = stchi(p, r);
int count; number of characters scanned
char "p; input string
int *r; result integer

DESCRIPTION

Converts a hexadecimal string into an integer. The procms
terminates only when a non-hex character is encountered.
Valid hex characters are D-9, A-F, and a-f.

RETURNS

count = 0 if input string dom not begin with a hex digit
" number of charactem scanned

CAUTIONS

No check for overflow is made during the processing.

3 '//

Lattice 8086/8088 C Compiler portable Library Functions

MAME

stcdi -- convert decimal string to integer

SYNOPSIS

count = stcd i(p, r);—

int count; number of characters scanned
char *p; input string
int "r; result integer

DESCRIPTION

Converts a decimal string into an integer. The processterminates when a non-decimal character is found. Valid
decimal characters are 0-9. The first character may be + or -.

RETURNS

count " 0 if input string does not begin with a decimal
digit

" number of character8 scanned

CAUTIONS

No check for overflow is made during proceming.

T

3—72

Lattice 8086/8088 C Compiler Portable Library Functions

NAME

stpblk -- skip blanks (white space)

SYNOPSIS

q = stpblk(p);

char *q; updated string pointer
char "p; initial string pointer

DESCRIPTION

Advances the string pointer past white space characters
(space, tab, or newline).

RETURNS

q = updated string pointer (advanced past white space)

CAUTIONS

Must be declared char *, as the stp prefix indicates.

3-73

Lattice 8086/8088 C Compiler Pcntable Library Functions

NAME

stpsym -- get a symbol from a string
SYNOPSIS

p = stpsym(s, sym, symlen);

char *p; points to next character in s

char "s; input string
char "sym; output string
int symlen; sizeof(sym)

DESCRIPTION

Breaks out the next symbol from the input string. The first
cbaracter of the symbol must be alphabetic (upper or lower
case), and the remaining characters must be alphanumeric.
Note that the pointer is not advanced past any initial white
space in the input string. The output string is the NULL-

terminated symbol.

RETURNS

p = pointer to next character (after symbol) in input string

CAUTIONS

Must be declared char ", as the stp prefix indicates. If no

valid symbol characters are found, p will equal s, and sym

will contain an initial null byte.

3-74

,

Lattice

8086/8088

C

Compiler

Portable

Library

Functiom

name

stptok

--

get

a

token

from

a

8tring

SYNOPSIS

p
=

8tptok(8,

tok,

toklen,

brk);

char

"p;

point8

to

next

char

in

8

char

"s;

input

gtring

char

"tok;

output

8tring

int

toklen;

Uxeof(tok)

char

"brk;

break

string

DESCRIPTION

Breaks

out

the

next

token

from

the

input

8tring.

The

token

consists

of

all

character8

in

s

up

to

but

not

including

the

first

character

that

is

in

the

break

string.

In

other

words,

the

break

string

defines

a

list

of

character8

which

cannot

be

included

in

a

token.

Note

that

the

pointer

18

not

advanced

past

any

initial

white

space

characters

in

E6é

input

string.

The

output

string

is

the

NULL-terminated

token.

RETURNS

p
=

pointer

to

next

character

(after

token)

in

input

string

CAUTIONS

Must

be

declared

char

",

as

the

stp

prefix

indicates.

If

no

valid

token

characters

are

found,

p
will

equal

s,

and

tok

will

contain

an

initial

NULL

byte.

3-75

Lattice 8086/8088 C Compiler Portable Library Functions

name

stpchr -- find specific character in string

synopsis

p = stpchr(s, C);

char *p; points to c in 8 (or is NULL)

char *s; points to string being scanned

char c; character to be located

DESCRIPTION

Scans the specified string to find the first occurrence of
the specified character. If the NULL terminator byte is hit
first, a NULL pointer is returned.

RETURNS

p = NULL if c not found in s

= pointer to first c found in 8 (from left)
CAUTIONS

Must be declared char % as the stp prefix indicates.

3—76

Lattice 8086/8088 C Compiler Portable Library Functions

NAME

stpbrk -- find break character in string
SYNOPSIS

p = 5tpbrk(8, b);

char "p; points to element of b in s

char "s; points to string being scanned
char "b; poinu to break character string

DESCRIPTION

Scans the specified 8tring to find the first occurrence of a

character from the break 8tring b. In other words, b 18 a
NULL terminated list of characters being sought. If the
terminator byte for 8 is hit first, a NULL pointer is
returne<L

RETURNS

p = null if no element of b is found in s
= pointer to first element of b in 8 (from left)

CAUTIONS

Must be declared char h, as the stp prefix indicates.

3-77

Íjattice 8086/8088 C Compiler portable Library Functions

NAME

stcis, stcisn measure span of a character set

SYNOPSIS

length = stcis(s, b);
length = Mxñsn(s, b);

int length; span length in bytes
chaK *s; points to string being scanned
char "b; points to character set string

DESCRIPTION

These functions compute the number of characters at the
beginning (left) of s that corrie from a specified character
set.. For stcis, the character set consists of all
characters in b, while for stcisn, the character set
consists of all characters not in b.

RETURNS

length = number of characters from the specified set which
appear at the beginning (left) of s

i

3-78

Lattice 8086/8088 C Compiler Portable Library FunctÍoñ8

NAME

stcarg -- get an argument

SYNOPSIS

length = stcarg(sr b);

int length; number of bytes in argument
char "s; text string pointer
char "b; break string pointer

DESCRIPTION

Scans the text string until one of the break character8 is
found or until the text string ends (as indicated by a NULL

character). While scanning, the function skips over partial
strings enclosed in single or double quotes, and the
backslash is recognized as an escape character.

RETURNS

length = number of bytes (in S) in argument
= 0 if not found

3-79

Lattice 8086/8088 C Compiler portable Library Functions

NAME

stcpm -- pattern match (unanchored)

SYNOPSIS

length = 8tcpm(8, p, q);

int length; length of matched string
char *s; string being scanned
char *p; pattern string
char **q; points to matched string if found

DESCRIPTION

Scans the specified string to find the firrt substring that
matches the specified pattern. The pattern is specified in
a simple form of regular expre3sion notation, where

? matches any character
8* matches zero or more occurrences of s
5+ matches one of more occurrences of s

The backslash is used as an escape character (to match one
of the special characters ?, ", or +). The scan is not
anchored; that is, if a matching string is not found at the
first position of g, the next position is tried, and so orj.
A pointer to the first matchinq ""bstring is returned'at *q.

RETURNS

length = 0 if no match
= length of matching substring, if succe8sful

CAUTIONS

Note that the third argument must be a pointer to a

character pointer, since this function really returns two
values: a pointer to, &ñcÍ the length of the first matching
mbstring.

3-80

.

Lattice 8086/8088 C Compiler Portable Library Functions

NAME

.
stcpma -- pattern match (anchored)

SYNOPSIS

length = stcpma(s¶ p);

int length; length of matching string
char "s; string being scanned
char "p; pattern string

DESCRIPTION

Scans the specified string to determine if it begins with a

substring that matches the specified pattern. See the
description of stcpm for a specification of the pattern
format.

RETURNS

length = 0 if no match
= length of matching substring if successful

3-Bl

Lattice 8086/8088 C Compiler Portable Library Functions

NAME

stspfp -- parse file pattern

SYNOPSIS

error = stspfp(p, n);

int error; return code: —I if error
char "p; file name string
int n[16]; node index array

DESCRIPTION

parses a file name pattern which consists of node names

separated by slashes. Each slash is replaced by a NULL

byte, and the beginning index of that node is placed in the
index array. For example, the pattern /abc/de/f has three
nodes, and their indexes are l for abc, 5 for de, and 8 fcjr
f. Note that the leading slash, if present, is skipped.
Note also that a slash that is part of a node name (usually
unwise) must be preceded by a backslash. The last entry in
the node array n is set to -I (in the example above, this
causes n{3) to be -I).

RETURNS

error = 0 if successful
= -I if too many nodes or other error

3-82

Lattice 8086/8088 C Compiler Portable Library Functioñs

3.3.4 Utility Macros

The standard I/O header file stdio.h defines three general

utility macros which are useful in working with arithmetic
objects. They are:

max(a,b) returns the maximum of a and b

min(a,b) returns the minimum of a and b

at?s(a) returns the absolute value of a

Several important restrictions must be noted.

First, since these are macros which use che conditional operator,
arguments with side effects (such as function calls or increment
or decrement operators) cannot be used, and the address-of
operator cannot be applied to these "functions". Second, beware
of using the macro names in declarations such as

int min;

because the compiler will try to expand min as a macro, and an

error message complaining of invalid macro usage will be

generated. Third, only arithmetic data items should be used as

arguments to these macros; max and min should be supplied two

arguments of the same data type, although conversion will be

perEormed if necessary.

3-83

Lattice 8086/8088 C Compiler Compiler/Run-time Implementation

SECTION 4:
Compiler and Run-time Implementation

a version of the Lattice C compiler for the 8086/8088 runs under
Microsoft's MS-DOS operating system. It accepts program8 written
in the C programming language (the full language -- not a subset)
and produces relocatable machine code in Intel's 8086 object
module format, suitable for use by Microsoft's program linker.
The library defines a comprehensive set of I/O subroutines which
implement under MS-DOS most of the UNIX-compatible standard
functions described in the text by Kernighan and Ritchie.

The 8086 instruction set is well-suited to the implementation of
a high-level language like C, and the Lattice compiler generates
machine code which takes full advantage of its features.
Although the 8086 architecture supports up to I megabyte of
addressable memory, its segmented addressing approach works most
efficiently with 64K-byte program and data address spaces. In
order to provide the most flexibility, the compiler supports four
different memory addressing environments, or models, from which
the programmer can select the combination of efficiency and

addressability required for a particular application. These

models are discussed in more detail in Section 4.4; initially,
onlv the simplest and most efficient model will be presented in
examples: the so-called S model in which a program may have a
maximum of 64K bytes of program section (functions), pl-us a
maximum of 64K bytes of data section (including static data, auto
or stack data, and dynamically allocatable memory). Despite
these limitations, programs of considerable complexity and power

(including the compiler itself) can be developed.

4.1 Operating Instructions

See Appendix d for the most current list of the files supplied
with the compiler package. The executable files LCI.EXE and
LC2.EXE make up the actual compiler. Each performs a portion of
the compilation process and must be invoked by' separate commands;

LCl does not automatically load LC2 when it completes its
processing. Normally, LC2 should be executed immediately after
LCl if there are no errors in the source file. A batch procedure
file can be used to execute LCL and LC2 in succession, using the
same file name (the normal sequence). The compilation process
can be diagtamed as follows:

file.C -> LCl -> file.Q
file.Q -> LC2 -> file.OBj

LCl reads a C source file, which must have a .C extension, and

(provided there are no fatal errors) produces an intermediate
file of the same name with a .Q extension. LC2 reads an

intermediate file created by LCl and produces an object file of
the same name with an .OBJ extension. The .Q file is deleted by
LC2 when it completes its processing. Each phase normally
creates its output file on the same drive and directory as the

4-l

Lattice 8086/8088 C Compiler Compiler/Run-time Implementation

input file. Note that if a source file defines more than one

function, so does its resulting object file. Individual
functions cannot be broken out from the object file when a

program is linked; see Section 4.3.2 for more information.

The .OBJ file must be supplied as input to the linker in order to
produce an executable program file- Two special files must also
be involved in the linking process, in addition to any .OBJ files
created by the user. The linking process can be diagrammed as

follows:

(Note that the actual filenames used depends upon the memory
model selected; see Section 4.4 for more information. In this
discussion and in the example below, the S model will be used to
illustrate the linking process.)

CS.OBJ + user.OBj +
...

+ LCS.LIB -> LINK -> user.ExE

The special files required are CS.OBJ and LCS.LIB. First, the
file CS.OBJ must be specified as the first module on the LINK

execution command; this module defines the execution entry and

exit points for any program generated using the Lattice C

compiler. Second, the file LCS.LIB must be specified as the
library; this file defines all of the run-time and I/O library
functions incladed as part of the Lattice C package. The user
must also specify at link time the names of any .OBJ files which
are to be included, as well as the name of the .EXE file which
will be created by the linker.
To illustrate the program generation sequence, the following
commands necessary to compile, link, and execute the Fahrenheit-
to-Celsius sample program (FTOC.C). This example assumes that
all of the .EXE files (LCl, LC2, and LINK) reside on the same

disk and directory. The commands will be shown in upper case,
although lower case commands will work as well. (Note: the
linker prompts described here are for version I.I0 of the
Microsoft linker; for LINK.EXE versions other than l.l, and for
use with linkers other than the Microsoft linker, appropriate
documentation should be consulted. Generally, the default
responses are correct.)

STEP I: Execute the first phase of the compiler by typing

LCl FTOC<ENTER>

Note that the .C extension is not supplied (although
the command will work properly even if it is).

STEP 2: When the MS-DOS prompt is issued after LCI has

completed its processing, execute the second phase of
the compiler with

LC2 FTOC<ENTER>

Again, no extension is specified; LC2 supplies the .Q

4-2

Lattice 8086/8088 C Compiler Compiler/Run-time Implementation

extension.

STEP 3: When the prompt is issued after LC2 has completed its
processing, the linker is invoked by typing

LINK CS+FTOC,FTOC,NUL,LCS

Note that CS (meaning CS.OBJ) is specified as the firstobject module on the LINK command; this is required for
the linking of any C program. Then FTOC (meaning
FTQC.OBJ, which was just produced by LC2) is specified
as an additional object module. The second FTOC causes
the run file to be named FTQC.EXE, NUL 8kips the
generation of a link map, and LCS cause8 LINK to search
LCS.LIB for external references.

STEP 4: Execute the .EXE file by typing

FTOC<ENTER>

The program writes a list of Fahrenheit temperature
values and their Celsius equivalents to the user's
console.

Detailed instructions for compiling, linking, and executing
programs are presented in the following sections. See Section
4.3 for a detailed discussion of the processing performed by the
compiler pbases.

In presenting the various command line formats, the term field
will be used to describe a sequence of non-white space characters
in the command line. Optional fields will be shown enclosed in
square brackets II: the brackets are not to be included when the
actual command is typed. Examples are provided at the end of
each section.

Versions of Lattice C designed to take advantage of MS-DOS

version 2.0 recognize the full Version 2 pathnames for all
filenames. The name can be specified on the command line, as in:

LCl b:\lowleve1\file
(which specifies b:\lowlevel\file.c for compilation), or it can
be specified in tinclude statements, as in

#include "b: \headers\stdio.h"

See option -id below for further uses of command line pathnames.

4.1.1 Phase I

The first phase of the compiler reads a C source file and

produces an intermediate file of logical records ' called
quadruples, or quads. See Section 4.3.1 for a more detailed
discussion of the processing performed. The format of the

4—3

Lattice 8086/8088 C Compiler Compiler/Run-time Implementation

command to invoke the first phase of the compiler is:
LCl {=stack] [>listfile] filename [options]<ENTER>

The various command line specifiers are shown in the order they
must appear in the command. Required specifier are shown in
emphasized type. Optional specifiers are shown enclosed in
brackets. The first two options are part of the general command

line options for all C programs (see Section 4.1.4). This allows
the use of if expressions in batch files, such as:

Lcl ílif errorlevel l goto errs

=stack The first option is used to override the number of
bytes reserved for the stack (see Section 4.5 for a
complete description of the structure of C programs).
The default is 2048 (decimal) bytes, which is
sufficient for most programs. If present, the stack
size override field must be the first field after the
name of the first phase (LCl). It is specified as an

equals sign followed by a decimal number (for example,
=4096 specifies a value of 4096 decimal bytes). Since
the compiler uses recursion to process C statements,
heavily-nested statements cause the compiler to use
more stack space than straightforward, linear
sequences. If a source program with many embedded

statements (ifs within ifs within ifs, etc.) causes the
first phase to terminate execution with a STACK
OVERFLOW error message, the program should compile
successfully if LCl is re-execmted using an increased
stack size, such as 4096. Some experimentation may be

required to determine the necessary stack size. On

systems which are cramped for memory, the stack size
may be trimmed down in an attempt to eliminate a Not
enough memory error; there is no guarantee, however,
that the compilation will be successful, particularly
if the stack size is reduced below 1024 bytes.

>listfile The second option is used to direct the first phase
messages to a specified file. These messages include
the compiler sign-on message and any error or warning
messages which may be generated. The full filename
must be specified, including extension, if any. If the
file already exists, it is truncated and reused. This
option is useful for reviewing long lists of error
messages.

filename This is tbe only command line field which must be

present; it specifies the name of the C sour=fi1e
which is to be compiled. The filename should be

specified without the .C extension; the first phase

supplies the extension automatically. Note that only
files with a .C extension can be compiled; if some

other extension is specified, the compiler ignores it
4~4

Lattice 8086j8088 C Compiler Cowpíler/Run-time Implementation

and tries to find name.C. (tinclude files, on the
other harA, must be fully specified with extensions.)
The default drive and directory (hereafter
drive/directory) are used unless a pathname preceding
the filename specifies another drive/directory; the
quad file is created ° Eke sanie drive and directory as

the source Eá~mnless the -o option is ased (see
below). Alphabetic characters may be either upper or
lower case in filenames.

options Compile time options are specified as a hyphen followed
by a single letter. The letter must be typed in lower
case; the corresponding upper case option will have no

effect. Each option must be specified separately, with
a separate hyphen and letter (that is, they cannot be

combined as they can for certain UNIX programs).
Current options include:

-a Causes the compiler to assume worst-case aliasing, that
is, to abandon any optimizations based on favorable
assumptions about pointers. Normally, the compiler
assumes that objects referenced through pointers are
not the same as objects being referenced directly in
the same section of the program; this option cancels
that assumption. The -a option additionally forces all
assignment statements to be performed (i.e., the actual
store to memory) before execution of the next
statement. Normally, the code generated for assignment
causes a value to be loaded to a register, but it may

not be stored immediately; the -a flag now forces the
store operation. This is important only in (I) unions,
where a value is stored and then immediately inspected
or passed to a function via another member; (2) real-
time processing where shared data values are used as

"lock" words, and immediate execution of an assignment
statement is critical to subsequent actions; and (3)
memory-mapped I/O assignments, where values must be

stored repeatedly in the same "memory" location.

-b Forces byte alignment for all offset calculations. The

first phase normally aligns all objects which are not
pointers, structures, or unions on a wc>rd boundary.

-c Causes comments to be processed without nesting. The

Lattice compiler normally assumes that comments may be

nested; this allows large sections of code to be

commented out very easily. This option allows the user
to force the compiler to the standard, non-nesting mode

of operation.

-d Causes debugging information to be included in the quad
file. Specifically, line separator quads are inter-
spersed with the normal quads. This allows the second
phase to collect information relating input line num-
bers to program section offsets. If this option is

4—5

Lattice 8086/8088 C Compiler Compiler/Run-time Implementation

used, the object file produced will contain line num-

ber/offset records, and can be processed by the object
Module Disassembler to produce an intermixed source
code and machine code listing (see Section 4.1.6
below). Note that the -d option does not affect the
size of the function itself, only the object file.

-iprefix Specifies that #include files are to be searched for by

prepending the filename with the string prefix, unless
the filename in the #include statement is already
prefixed by a drive or directory identifier. Up to 4

different -i strings may be specified. Note that when

an unprefixed tinclude filename is encountered, the
cutrent drive/directory is searched; then
drive/directories are searched using prefixes specified
in -i options, in the same left-to-right order as they
were supplied orí the command line. The drive/directory
specification should follow DOS 2.0 naming conventions
(see example below). No intervening blanks are
permitted in the string following the i.

—mM Causes the compiler to generate code for the specified
memory model. The model can be specified as a single
letter, either upper- or lower-case, naming the model;
or a numeric indicator from (J to 3 may be used (S=0,
P=l, 0=2, L=3). The model specifier must be adja¿ent

—to the m (no intervening blanks). (See Section 4.4.2).

-n Causes the compiler to retain up to 39 characters for
all identifier symbols, including #define symbols. The

default symbol retention length is 8 characters.

-oprefix Specifies that the output file (the .Q or quad file) is
to be formed by prependíng the input filename (the .C

file which is being compiled} with prefix. The drive
is specified by a single alphabetic character, either
upper or lower case, followed by a colon. Thus -ob:
causes prepending with b:. Any drive or directory
prefixes attached to the input filename are discarded
before the prepending is performed. No intervening
blanks are permitted in the string following the o.

-8 Changes the way code is generated for four-byte
pointers in the D and L models; see Section 4.4.5.

-x Changes the default storage class for external
declarations (made outside the body of a function) from
external definition to external reference. The usual
meaning of an exteroal declaration for which an

explicit storage class is not present is to define
storage for the object and make it visible in other
files: i.e., external definition. The -x option
causes such declarations to be treated as if they were

preceded by the extern keyword, that is, the object

4-6

Lattice 8086/8088 C Compiler Compiler/Run-time Implementation

being declared is present in some other file. This
option is provided for use on programs written for the
BDS C compiler; see Appendix C for more information.

EXAMPLES

LCl xyzfile -b: \headers\

This command executes the first phase of the compiler
using file XYZFILE.C as input, creating file XYZFILE.Q

in the current directoryr Any binclude files not found
in the current drive/directoty will be searched for in
the directory B: \HEADERS. Note the trailing backslash
on the prefix attached to the -i flag; it is not
automatically assumed by the compiler.

LCl XYZ -ob: -X

This command executes the first phase of the compiler
using file XYZ.C as input, creating file XYZ.Q on B:;it sets all external declarations without a storage
class to be interpreted as extern declarations.

LCl =4096 >tns.err tris

This command executes the first phase of the compiler
using file TNS.C as input, creating file TNS.Q on the
currently logged-in disk; it causes the stack size to
4096 decimal bytes, and create a file TNS.ERR to
contain all of the messages generated by the compiler.

4.1.2 phase 2

The second phase of the compiler reads a quad file created by the
first phase and creates an object file in the standard MS-DOS

format. See Section 4.3.2 for a more detailed discussion of the
processing performed. The format of the command to invoke the
second phase of the compiler is:

LC2 filename (options]<ENTER>

The command format is very similar to that for the first phase.
The stack size override and listfile options can a}so be used,
but they are generally less useful and úill not be described here
in any detail. Note that neither phase of the compiler does any
processing of the standard input, so the < option has no effect
on either phase (see Section 4.1.4 for the general C program
execution options).

filename This field must be present; it specifies the name of
the intermediate file for which code is to be

generated. This intermediate file is a quad file with
a .Q extension, created by the first phase of the
compiler. The fije name should be specified without
the .Q extension; the second phase supplies the

4-7

Lattice 8086/8088 C Compiler Compiler/Run-time Implementation

extension automatically. Alphabetic characters may be

supplied in either upper or lower case. The default
directory is used unless another drive/directory name
is specified, and the object file is created in the
same drive as the quad file unless the -o option is
used (see below).

options Compile time options are specified as a hyphen

followed by a single letter. The letter must be typed
in lower case; the corresponding upper case option will
have no effect, Each option must be specified
separately, with a separate hyphen and letter (that is,
they cannot be combined as they can for certain UNIX

programs). Current options include:

-ggroup Assigns a name of the user's choice to be used for the
code group in the .OBJ module. group may be 15 or
fewer characters in length, and must be adjacent to the
-g {no intervening blanks).

-oprefix Specifies that the output file (the .OBJ file) is to be

formed by prepending the input filename (the .Q file
which is being compiled) with prefix. The drive is
specified by a single alphabetic character, either
upper or lower case, followed by a colon. Thus -ob:
causes prepending with b:. Any drive or directory
prefixes attached to the input filename are discarded
before the prepending is performed. No intervening
blanks are permitted in the string following the o.

-ssegment Assigns a name of the user's choice to be used for the
code segment in the .OBJ module. segment must be 15 or
fewer characters in length, and must be adjacent to the
-S (no intervening blankg).

-v Causes the code generator to omit the code at the entry
tD each function which checks for stack overflow (See

Section 4.5.5).
The -g and -s options for LC2 are provided to override the
default code group arA segment names. Only users who need to
interface to very specialized applications (other languages,
etc.) will need to make use of these options.

EXAMPLE

LC2 u790 -OC:

This command executes the second phase of the compiler
using file U790.Q as input, causing the file U790.OBJ

to be created on drive C: .

4-8

Lattice 8086/8088 C Compiler Ccmpiler/Run-thne Implementation

4.1.3 Program Linking
d

After all of the component source modules for a program have been

compiled, they must be linked together to form an executable
program file. This step is necessary for several reasons.
First, the object file produced by the second phase of the
compiler is not in a state suitable for execution. Second, most
programs make use of functions not defined in the current module;
before such programs can execute, they must be "connected" with
those other modules. These external functions may be defined by

the user, in which case they must be compiled and be available as
.OBJ files, cir they may be defined in the library supplied with
the compiler. (The portable functions are described in Section
3; others defined only under MS-DOS are described in Section
5.5.) Third, although C normally defines the function called
main to be the execution point of a C program, there is usually a

considerable amount of system-dependent processing which must be

performed before main is actually called; the module to perform
this processing is integrated into the program when it is linked.

Although the usual concept of linking involves external function
calls, C also permits functions to access data locations defined
in other modules. This kind of reference is possible because the
external linkage mechanism supported by the object code
associates an external symbol with a memory location; this symbol
is the identifier used to declare the object in a c program. The

programmer must be careful to declare an object with the same

attributes in both the module which defines it and the module
which refers to it, because the linker cannot verify the type of
reference made

-- it simply connects memory references using
external symbols» The Lise of include files f,o,k common external
declarations will usually prevent this'"kiñd Ó7"error.,

The linking process in a general sense requires that all of the
components of a program be specified, either directly or
indirectly, as input to the linker. Three types of input are
required.

]. A start-up file CS.OBJ (or CP.OBJ, CD.OBJ, or CL.OBJ)
must be specified as the first module included by the
linker. This file defines the MS-DOS entry point for
all C programs compiled using the Lattice C compiler.

2. Functions generated by the user must be specified as

additional modules to be included. These modules
include the main module, as well as any additional
functions defined in other source modules.

3. A Zibraty file LCS.LIB (or LCP.LIB, LCD.LIB, or LCL.LIB)
must be specified as the library to be searched during
linking.

In the case of the Microsoft linker supplied with MS-DOS, these
inputs are specified by:

4-9

Lattice 8086/8088 C Compiler Compiler/Run-time Implementation

l. Making CS (or CP, CD, or CL) the first module on the
LINK command.

2. Including the names (without the .OBJ extension) of the
user's object files on the LINK command, after the CS

(or CP, CD, or CL) specification.
3. Typing LCS (or LCP, LCD or LCL) in response to the

Libraries prompt from the linker.
Note that for step (2)", one of the files included on the LINK
command must be the main module.

If the linker cannot find one of the .OBJ files mentioned on the
LINK command, it will stop processing without creating a .EXE

file. Another error condition can arise if the linker cannot
find all of the external items referred to in the .OBJ files
specified. In this case, the message Unresolved Externals will be

generated by the linker, followed by a list of the external names

which were not defined. SÉj. attempt ,t.o. execute a. program with
unresolved externals should be made unless it is certain that the
missing functions will never b.e. called.

See Section 4.2.2 for a discussion of external names. See

Section 4.4 for a discussion of the startup and library files
used in the four memory models. See Section 4.5 for a technical
description of the object code features used in this
implementation. If the linker being used allows generation of a

public symbol map, a .MAP file may be created, allowing the
examination of the components in the resulting load module.

EXAMPLE

LINK CS XYX QRS<BNTER>

Run File [cs.ExEj: XYE<ENTER>

List File [NUL.MAP]: <ENTER>

Ubraries (.LIB]: LCS<ENTER>

This command executes the linker, prodacing XYZ.EXE as
an executable program, and causes the files XYZ.OBJ and
QRS.OBJ to be included in the program. AnswerS to the
prompts from the linker used for this compilation are
also shown.

Álternatively, these Linket instructions can appear on

a single command line:
LINK CS+XYZ+QRS,XYZ,NUL.,LCS<ENTER>

4.1.4 Program Execution

When a C program is executed, the function main is called to
begin execution. Two important services are performed for main
before it receives control.

4-ID

Lattice 8086/8088 C Compiler Compiler/Run-time Implementation

I. The command which executed the program is analyzed, and

information from the command line is supplied as

parameters to main. The analysis performed and the
nature of the parameters supplied will be discussed in
detail below. This feature is designed to make iteasier to process command line inputs to the program.

2. The buffered text files stdin (standard input), stdout
(standard output), and stderr (standard error) are
opened and thus available for use by the program.
Normally, all three units are assigned to the user's
console, but stdin and stdout may be assigned elsewhere
by command line options described below. This feature
allows flexibility in the use of programs which work
with text file I/O using the standard getchar and

putchar macros.
The simplest way to execute a C program 18 to type the name of
the .EXE file (without the .EXE extension), followed by a return
(<enter>). Since the command line provides a convenient way to
supply input to a program, a program execution request will often
contain other information. The general format of the command

line to execute a C program is:
["stack] [<infile) [>outfile) [args)<ENTER>

Everything after pgmname is optional, as the brackets indicate.
The various additional items ("stack, <infile and >outfile), ifpresent, must appear before all other command line arguments
following the program name. Note that these three items do not
contribute to the argument count.

pgmname This field names the pEogram to be executed; it is the
name of the .EXE file created when the program was

linked. It must be specified without the .EXE

extension.

=8tack The first optional field is used to specify a decimal
number of bytes to be reserved for the stack when the
program executes. The default value used if this field
is not present is 2048 bytes. The stack size is
specified as a decimal number immediately preceded by

an equals sign. All objects declared auto are
allocated from the stack, but the memory used for these
allocations is freed when the function in which they
are declared returns to its caller. The dynamic nature
of this allocation makes it generally difficult to
predict how much stack space is actually needed for a

particular program. The stack size option on the
command line allows the user to adjust the amount of
memory reserved for the stack without having to
recompile the program. The memory reserved for the
stack affects the amount of memory available for
dynamic allocation by the various library functions

4-ll

mttice 8086/8088 C COmpiler Compiler/Run-time Implementation

described in Section 3.1. See Section 4.5 for more
information about the structure of C programs.

<infile The second optional field names a file or device to
which the standard input (stdin) is to be assigned.
This option is useful only if the program being
executed actually uses the standard input (that is, it
processes text input using getchar or scanf or makes

explicit getc or fscanf calls using stdin). The file
or device name must be immediately preceded by a <

character; if a file, the full name including
extension, if any, and pathname, if any, must be

specified. See section 5.2 for a list of valid device
names. The file must exist, or the program will be

aborted with the error message Can't open stdin file.
>outfile The third optional field names a file or device to

which the standard output (stdout) is to be assigned.
This option is useful only if the program being
executed actually uses the standard output (that is, itgenerates text output using putcbar or printf or makes

explicit putc or fprintf calls using stdout). The file
or device name must be immediately preceded by a >

character; if a file, the full name including
extension, if any, must be specified. See Section 5.2
for a list of valid device names. The file is opened

as a new file, which discards its previous contents ifthey already existed and creates an empty file. If the
filename specified is invalid or not enough directory
space is available to create the new file, the ptogram
is aborted with the error message Can't creat2 stdout
file.
If two > characters are used instead of one, the file
is opened flor appending, and any output is added on to
the end of the file. This option is useful for
accumulating logging information. The file is created
if it does not exist.

arg8 Any additional fields beyond the program name and the
three optional fields are extracted and passed to the
function main as two arguments:

main(argc, argv)
int argc; r number of arguments */
char *argv{]; /" array of ptrs to arg strings "/

Each arg string is terminated by a null byte. On most

systems which support C, argv[0] is the name by which
the program was invoked. Unfortunately, under MS-DOS

the program name is not readily available, although all
of the other information from the command line is. A
dummy argv[0j is therefore supplied (all programs are
named c according to argv[0]) but subsequent elemeots
of argv are defined properly. Arguments appear in argv

4-12

Lattice 8086/8088 C Compiler Compiler/Run-time Implementation

in the same order in which they were found on the
command line. Note that the optional stack and file
specifiers are not included in the argv list of
strings.

Although all of the above features are intended as conveniences
for writing utility programs under MS-DOS, many of the library
I./O functions are forced to be a part of the program because of
this processing (specifically, the opening Df the buffered input
and output fiLes). For programs which were going to use the
buffered I/O functions anyway, this does not present a problem,
even though these functions add a substantial number of bytes of
code to the size of the linked program. Users who must be

concerned about program size and who are not using these
functions can avoid including the extra modules by supplying a

special version of main, the library function which calls main.
See Section 5.4 for"details.
EXAMPLES

CPROG =8000 <INPUT.R PQP 12

This command executes CPROG.EXE, sets the stack size to
8000 decimal bytes, and connects stdin to the file
INPUT.R. The main function will be supplied an argc
value of 3, with strings c, PQP, and 12 in the argv
array.

errlog >>errors.log data

This command executes ERRLOG.EXE with stdout connected
to ERRORS.LOG for appending (adding to the end of
file). The main function will be supplied with an argc
value of 2, with strings c and data in the argv array.

4.1.5 Function Extract Utility
Because the compiler generates a single, indivisible object
module for ali of the functions defined in a source file, the
Function Extract Utility (FXU) is provided so that groups of
small functions may be kept together in a single source file and

object modules produced for them individually. The utilityoperates by extracting the source text for a single, specified
function, thus creating a source module which can then be

compiled to produce an object module defining only that specific
function.

Those who are somewhat puzzled by the need for this utility may
find the following example helpful. Suppose that one user has a
module called STRING.C, which defines several string handling
functions, and that a program calls one of those functions (say,
strcnt). If STRING.C is compiled as a single source module, the
resUítiDg object module defines strcnt along with several other
functions. When the program is linked, then, the machine code

for strcnt is included (as part of the object module produced

4—13

mttice 8086/8088 C Compiler Compiler/Run-time Implementation

when STRING.C was compiled), but the code for all of the other
functions is included as well, even though the program does not
make use of them. Only by compiling 8trcnt as the only function
defined in its source module will the compiler produce an object
module which defines only that function. FXU can be used -to
produce such a source file.
The format of the ccmmand to invoke the Function Extract Utility
is

FXU [<header-file] [>output-fi1e) filename function<enter>

The various command line specifiers are shown in the order they
must appear in the command; optional specifiers are shown

enclosed in brackets. The first two options are part of the
general command line options for all C programs (see Section
40 I P

4)
e

<header-file The first option specifies a file which will be

copied to the output file when the specified
function is found. The entire file is copied
before any text from the function is written. If
only the function itself is to be written to the
output file, the <NUL option should be used. If
this option is omitted, text will be read from the
user's console and copied to the output file
until a control-Z is typed.

>output-file The second option specifies the output file which
will contain the text of the extracted function
(preceded by the header file text, if any). If
this option is omitted, text is written to the
user's console.

filename Specifies the name of the file containing the
function to be extracted.

function Specifieg the name of the function to be extracted
from the 3pecified file. The function name must
be specified exactly as it appears in its
definition, except that alphabetic characters may
be specified in either upper or lower case.

The Function Extract Utility counts braces defined in the'body of
the functions in order to determine when it has reached the end

of a function. Although it recognizes comments and will not make

the mistake of counting any braces which might be enclosed in
them, it assumeg that comments can be nested, which is the same

assumption normally made by the compiler. The compiler, however,
can be requmted Mc command line option to process comments as ifthey did not nest; FXU has no such option.

The text extracted consists of all the characters between the
closing brace of the preceding function, up to and including the
closing brace of the extracted function. If the specified

4-14

Lattice 8086/8088 C Compiler Compiler/Run-time Implementation

function is the first one defined in the source file, then all
characters from the beginning of the file to the function's
closing brace are included. Note that functions which refer to
external data items defined in the source module cannot be easily
processed with the function extract utility. As the example
below illustrates, however, the header file option can be used to
avoid this limitation.

If the specified function is not encountered in the specified
source file, the output file will receive the single error
message Named function not found. Note that FXU works on only a

single function, not a list of functions. A source module
defining more than one extracted function can be generated,
however, by executing E'XU repeatedly and then combining the
extracted texts using the CAT program, which is supplied as an

example source file.
The supplied version of FXU uses an internal buffer to store
characters between functions, while it scans for the next. The

buffer size can be expanded, if necessary, by a simple
modification to the source text, which is supplied as FXU.C.

EXAMPLES

FXU <NUL STRING.C strcnt

This command extracts the function called strcnt from the
text file STRING.C and causes the extracted text to be

written to the user's console.

FXU <IOS.H >INPUT.C XOFUNC.C input

This command extracts the function called input from the
text file IOFUNC.C, prepends the output with the text from
the file IOS.H and writes the resulting text to INPUT.C.
If each function in IOFUNC.C can refer to the external
locations flagl and flag2, for example, and ne,eds the
information from the standard I/O header file, then IOS.H

should include the text

tinclude <stdio.h>
extern int flagl, flag2;

A similar technique can be used for functions which need more

extensive external references.

4.1-.6 object Module Disassembler

For programmers who wish to debug C modules at the machine code
level, the object Module Disassembler (OMD) provides a listing of
the machine language instructions generated for a particular C

source module. If the module is compiled with the -d option so
that line number/offset information is included in the object
file, the disassembler utility can produce a listing with
interspersed source code lines. This listing can then be used in

4-15

Lattice 8086/8088 C Compiler Compiler/Run-time Implementation

association with the link map for the program to perform
interactive debugging using Microsoft's DEBUG.

The format of the command to invoke the object module
disassembler is

OMD [>1istfile] [options) objfile [textfile]
The various command line specifiers are shown in the order they
must appear in the command. Optional specifiers are shown

enclosed in brackets.

>listfile The first option is used to direct the listing produced
by OMD to a specified file or device. If this option
is omitted, the listing output is written to the user's
console.

options Four override options can be specified; each consists
of a hyphen followed by a single letter which indicates
the value to be overridden, and a string of decimal.
digits specifying the override value. There must be no
embedded blanks in any single option, but each must be

specified as a separate field. The valid options are:

-Pnnn Overrides the default size provided for the program
section of the object module being processed. nnn

specifies a decimal number of bytes of storage to be

allocated for the program section. The default value
is 1024 bytes.

-Dnnn Overrides the default size provided for the data
section of the object module being processed. nnn
specifies a decimal number of bytes of storage to 75é

allocated for the data section. The default value is
1024 bytes.

—Xnnn Overrides the default maximum number of external items
which can be processed by OMD; this number applies
separately to both external definitions and external
references. nnn specifies a decimal number of external
items which can be processed. The default value i':
200.

-Lnnn Overrides the default size for the line number and

offset information tables. These tables are used only

if the object file was produced with the -d 'option;
line number/offset information from the file is placed
in these tables. The default size (which defines the
maximum number of line number/offset pairs which can be

processed) is 100.

objfile Specifies the name of the object file, produced by tbe
compiler, which is to be processed by OMD. The full
name including the .OBJ extension must be specified.

4-16

Lattice 8086/8088 C Compiler Compiler/Run-time Implementation

textfile Specifies the name of a C source code file which is to
be listed along with the disassembled instructions. Ifthis option is present, the object file must have been

compiled using the -d option for the LCl command. The

full name including the .C extension must be specified.

OMD processes only a single object module. The entire module is
read and loaded into memory before the listing is generated. The

various override options are useful for processing very large
object modules, or for reducing the amount of memory needed by
OMD on systems which are cramped for memory.

If the textfile option is used, only the source text from the
specified file is listed; if it refers to any tinclude files,
they will not be listed. Some limitations of the textfile option
should be noted. First, the code generated for the ttiírd portion
of for statements is placed at the bottom of the loop; that code
will appear in front of the next statement after the end of the
loop. Second, the compiler tends to defer storing registers
until the last pQssible moment, so that the code shown for
assignment statements often consists merely of loading values
into registers; the registers will be stored later. Finally, the
code generated for entry to a function will often be displayed in
front of the source lines defining that function. Thus,
inspection of the surrounding code may be necessary to determine
the actual code generated for a source file construct.

EXAMPLES

OPID -P2048 -D8000 QRS.OBJ

This co=aDd disassembles the object module QRS.OBJ and

writes the listing to the user's console; it causes
2048 decimal bytes of storage to be allocated for the
program section defined in the object module, and 8000

decimal bytes for the data section.

OMD >TEMP.LST -X400 XYZ.OBJ XYZ.C

This command disassembles the object module XYZ.OBJ and

writes the listing to the file TEMP.LST; it causes the
source code lines from XYZ.C to be placed in the
listing, provided that line number and offset
information is present in the object file. It also
provides for a maximum number of 400 external items
(same limit for both external definitions and external
references).

ERROR MESSAGES

a variety of error conditions are detected by the object Module
Disassembler; all cause early termination of the output file and

result in the writing of an appropriate error message to stderr.
These messages are self-explanatory for the most part. If one of
the run-time-specifiable options is not sufficiently large, the

4—17

D

Lattice 8086/8088 C Compiler Compiler/Run-time Implementation

etror message will indicate the specific option which was not
large enough; for example, if the module defines too many words

of program section, the message

Program section overflow

will be produced. Note that OMD was designed specifically for
use with modules generated by the C compiler; attempts to use itwith other object modules will probably cause an error message to
be generated.

4.2 Machine Dependencies

The C language definition does not completely specify all aspects
of the language; a number of important features are described as

machine-dependent. This flexibility in some of the finer details
permits the language to be implemented on a variety of machine
architectures without forcing code generation sequences that are
elegant on one machine and awkward on another. This section
describes the machine-dependent features of the language as

implemented on the 8086/8088. See Section 2 of the manual for a
description of the machine-independent features of the Lattice
implementation of the language.

4.2.1 Data Elements

The standard C data types are implemented according to the
following descripticms. The only data elements which free
alignment to a word offset are pointers, structures, and unions;
as noted in Section 4.1.2, this alignment can be disabled by a

compile time option. In all cases, regardless of the length of
the data element, the low order (least significant) byte is
stored first, followed by successively higher order bytes. This
scheme is consistent with the general byte ordering used on the
8086, and with the memory formats expected by the 8087 numeric
data processor. The following table. summarizes the character,-
istics of the data types:

Type Length in Bits Range

char 8 0 to 255 (ASCII character set)
int 16 -32768 to 32767

8)ijort 16 -32768 to 32767

unsigned 16 0 to 65535

long 32 -2E9 to 2E9

float 32 +/- I0E37 to +/- I0E38
double 64 +/- I0E-307 to +/- WW08

char defines an B-bit unsigned integer. Text
characters are generated with bit 7 reset,
according to the standard ASCII format.

int defines a l6-bit signed integer; short and short
int are synonyms.

4~18

Lattice 8086/8088 C Compiler Compiler/Run-time Ímplementation

unsigned or
unsigned int defines a í6-bit unsigned integer. Note that in

this implementation, unsigned is not a modifier
but a separate data type.

long or
long int defines a 32-bit signed integer.

float defines a 32-bit signed floating point number,
with an B-bit biased binary exponent, and a 24-
bit fractional part which is stored in normalized
form without the high-order bit being explicitly
represented. The exponent bias is 127. This
representation is equivalent to approximately 6

or 7 decimal digits of precision.

double or
long float defines a 64-bit signed floating point number,

with an ll-bit biased binary exponent, and a 53-
bit fractional part which is stored in normalized
form without the high-order bit being explicitly
represented. The exponent bias is 1023. This
representation is equivalent to approximately 15

Dr 16 decimal digits of precision.

pointers to the various data types are either two bytes or four
bytes in length, depending on the memory addressing model used.
See Section 4.4 for more information.

4.2.2 External Names

External identifiers in the MS-DOS implementation differ from
ordinary identifiers in one important respect: the MS-DOS linker
treats upper and lower case letters as if they were the same.

This means that, although the compiler will consider main and

MAIN to be two different functions, the linker will not.
External names may be up to 8 characters in length, and the
underscore is a valid character. Since the compiler always
assumes that external names have the same characteristics as

ordinary identifiers, programmers must be careful not to define
external names which the compiler believes are different but
which the linker will interpret as the same name. A safe rule is
to use lower case letters only for all externally visible items,
including functions and data items which are to be defined for
reference from functions in other source files.
A user may define external objects with any name that does not
conflict with the following classes of identifiers:
******* Certain library functions and data elements (defined in

modules written in C) are defined with an initial
underscore.

CX***h Run-time support functions (written in assembly
language) which implement C language features such as

4-19

Lattice 8086/8088 C Compiler Compiler/Run-time Ímplementation

long integer multiply and divide, floating point
arithmetic, and the like are defined with CX as the
first two characters.

XC"*** Low-level operating system interface functions (written
in assembly language) are defined with XC as the first
two characters.

The likelihood of collision with library definitions is remote,
but users should be aware of these conventions and avoid applying
these types of identifiers to external, user-defined functions
and data.

4.2.3 Include File Processing

Include files may be specified as:

tinclude "filename.ext"
or

tinclude <filename.ext>

The two forms have exactly the same effect. The name between the
delimiters is taken at face value; the extension must be

specified if one is defined for the file. The usual convention
is to use .H for all header files, as was done with the header
files included with the compiler package. Alphabetic characters
in a filename may be specified in either upper or lower case.
The file must be present in the default drive/directory unless a

drive specifier or pathname is included in the filename (not
recommended). The -i option (see Section 4.1.1) is the
recoñmenáed method for specifying a different drive and,/or
directory path. The filename is retained internally by the
compiler for error reporting (see Section 4.3.3).

4.2.4 Arithmetic Operation8 and Conversions

Arithmetic operations for the integral types (floating type
operations are discussed in the next section) are generally
performed by' in-line code. Integer overflows are ignored in all
cases, although 16-bit signed comparisons correctly include
overflow in determining the relative size of operands. Division
bjj zero generates an interrupt which is processed by MS-DOS; on

the operating system used to develop the compiler, the message

Integer overflow is generated and execution of the offending
program aborted. Division of negative integers causes truncation
toward zero, just as it does for positive integers, and the
remainder has the same sign as the dividend. Right shifts are
arithmetic, that is, the sign bit is copied into vacated bit
positions, unless the operand being shifted is unsigned; in that
case, a logical (zero-fill) right shift is performed.

Function calls to library routines are generated only for long
integer multiplication, division, and comparison. Product
overflow is ignored. Division by zero yields a result of zero.
The sign of the remainder is the same as the sign of the

4-20

Lattice 8086/8088 C Cowpiler Compiler/Run-time Iwplewentatiot3

dividend. Comparison is signed but does not take account of
overflow.

Conversions are generated according to the "usual arithmetic
conversions" described in Kerntghan and Ritchie, and are
generally trouble free. The following four points should be

noted:

I. char objects are unsigned in thi8 implementation. Sign
extension is n.o.t. performed during expansion to int;
instead, the high byte 18 simply set to zero. Code

sequences such as

char i;
0 D O
for (i"8; i >" D; i--)

will not work (in this case, the loop never terminates).

2. Conversion of int or 8hort to long causes sign
exteosion. The inverse operation is a truncation; the
result is und<Eined if its absolute value is too large
to be represented.

3. Conversions from integral to floating types are fairly
straightforward. The inverse conversions cause any

fractional part to be dropped.

4. Conversion from float to double is well-defined, but the
inverse operation may cause an underflow or overflow
condition since double has a much larger exponent range.
Considerable precision is also lost, though the fraction
is rounded to its nearest float equivalent.

4.2.5 Floating point Operatiom

In accordance with the language definition, all floating point
arithmetic operations are performed using double precision
operands, and all function arguments of type float are converted
to type double before the function is called. The formats used

are identical to the short real and long real formats expected by

the 8087 numeric data processor (the formats are described in
Section 4.2.1). Legal floating point operations include simple
assignment, conversion to other aritlmetic types, unary minus
(change sign), addition, subtraction, multiplication, division,

and comparison for equality or relative size. Note that,' in
contrast to the signed integer representations, negative floating
point values are not represented in two's complement notation;
positive and negative numbers differ only in the sign bit. 'This
means that two kinds of zero are possible: positive and

negative. All floating point operations treat either value as

true zero and generally produce positive zero, whenever possible.
Note that code which checks float or double objects for zero by

type punning (that is, examining the objects as if they were int
or some other integral type) may assume (falsely) neqative ,z.e.r.o,

4-21

Lattice 8086/8088 C Compiler Compiler/Run-time Ímplementation

to be not zero.

Floating point arithmetic and comparison operations are performed
by generating calls to library functions. These functions do not
make use of the 8087, although the floating-point formats are
compatible with the 8087. Note that these functions were
designed for accuracy, not speed, using straightforward,
unsophisticated algorithms.

Floating point exceptions are processed by a library function
called CXFERR that is called according to the following
coovention:

CXFERR(errno);
int errno;

where errno can be

I = underflow
2 = overflow
3 = divide by zero

The standard version of CXFERR supplied in the library file
LCS.LIB (and LCP.LIB, LCD.LIB, and LCL.LIB) simply ignores all
error conditions. You may write a different version (in either C

or assembly language) to print out an error message and terminate
processing, or take any other action. If CXFERR returns to the
library function which called it, each exception is processed as

follows:

Underflow Sets the result equal to zero.
Overflow sets the result to plus or minus infinity.
zerodivide Sets the result equal to zero.

Consult the 8087 description for more information about the
floating-point formats.

4.2.6 Bit Fields

Bit fields are fetched on a word basis, that is, the entire word
containing the desired bit field is loaded (or stored) even ifthe field is 8 bits or less in size. Bit fields are assigned
from left to right within a machine word; the maximum field size
is 15 bits. Bit fields are considered unsigned in this
implementation; sign extension is not performed when the value of
a field is expanded in an arithmIetic expression. If a structure
is declared

struct {

unsigned x : 5;
unsigned y : 4;
unsigned z : 3;
} a;

then a occupies a single 16-bit word, a.x resides in bits 15

4-22

Lattice 8086/8088 C Compiler Compiler/Run-time Implementation

through li, a.y in bits ID through 7, and a.z in bits 6 through
4. Because of the way bytes are ordered on the 8086, this
results in a.y being split between the low and high bytes.

4.2.7 Register Variables

This version of the compiler does not implement register
variables because of the comparatively limited number of
registers available on 8086/8088 microprocessor. However,
declarations using register are accepted if properly' made.

Storage is reserved fW these objects as if they had been

declared auto.

4.3 Compiler Processing

The Lattice C compiler under MS-DOS is implemented as two

separately executable programs, each performing part of the
compilation task. This section discusses the structure of the
compiler in general terms, and describes the processing performed
by both phases. Special sections are devoted to a discussion of
the topics of error processing and code generation.

4.3.1 Phase I

The first phase of the compiler performs all pre-processor
functions concurrently with lexical and syntactical analysis of
the input file. It generates the symbol tables, which contain
information about the various identifiers in the program, and

produces an intermediate file of logical records called
quadruples, which represent the elementary actions specified by

the program. The intermediate file (also called the quad file)
is reviewed as it is written, and locally common sub-expressions
are detected and replaced by equivalent results. When the entire
source program has been processed (assuming there are no fatal
errors), selected symbol table information is written to the quad

file, for use by the second phase. The first phase is thus very
active as far as disk I/O is concerned. Generally, if the disk
activity stops for more than a few seconds, it is reasonable to
assume that the compiler has failed. See Appendix B for the
cqmpiler error reporting prpcedure if this happens.

When the first phase begins execution, it writes a sign-on
message to the standard output, unless (I) the specified sjource
file could not be found, or (2) a quad file with a .Q extension
could not be created (owing to lack of directory space). The

sign-on message identifies the version of the compiler which is
being executed. The MS-DOS 2.0 implementation returns an exitcode of zero if no errors were detected, and a code of I
otherwise. This allows the use of if expressions in batch files,
such as:

LCl uif errorlevel l goto errs

See Section 4.3.3 for more information about error processing.

4-23

Lattice 8086/8088 C Compiler Compiler/Run-time Implementation

Note that the quad file is deleted if any fatal errors are
detected.

4.3.2 Phase 2

The second phase of the compiler scans the quad file produced by

the first phase, and produces an object file in the Intel 8086

format. This object code supports all of the necessary relocation
and external linkage conventions needed for C programs (see
Section 4.5.2 for details). A logical segment of code specifying
the 8086 machine language instructions which make up the
executable portion of the program is generated first, followed by

a segment of data-defining code for all static items. Unlike the
first phase, the code generator is not always actively performing
disk I/O. Each function is constructed in memory before its
object code is generated, so there may be fairly sizable pauses

during which no appatent activity is taking place. In general,
these delays should not last more than several seconds. Anything
longer than a 30-second delay can safely be assumed to ·be a

crash; see Appendix B for information about reporting compiler
problems.

When the second phase begins execution, it writes a sign-on
message to the standard output, unless (I) the specified quad

file could not be found, or (2) an object file with a .OBJ

extension could not be created (owing to lack of directory
space). When code generation is complete, the second phase

writes a message of the form

Module size p=pppp D=dddd

to the standard output (usually the user's console). pppp

indicates the size in bytes of the program or executable portion
of the module generated, and dddd indicates the size in bytes of
the data portion; both values are given in hexadecimal. These

sizes include the requirements for all of the functions included
in the original source file. Note that the sizes define the
amount of memory required for the module once it is loaded (as

part of a program) into memory; the .OBJ file requires mote space

because it contains additional relocation information.

As noted in the introduction to Section 4.1, the code generator
produces a single .OBJ module for a given source module,
regardless of how many functions were defined in that module.
These functions (if more than one is defined) cannot be separated
at link time; if any one of the functions is needed, all of them

will be included. Functions must be separated into individual
source files and compiled to produce separate object modules ifit is necessary to avoid this collective inclusion. As

previously mentioned, a Function Extract Utility (FXU.EXE) is
provided sso that multiple functions may be stored in a single .C

file and extracted individually for compilation; see Section
4.1.5.

4~ 2 4

Lattice 8086/8088 C Compiler Compiler/Run-time Implementation

4.3.3 Error Processing

All error conditions (with the exception of internal compiler
errors) are detected by the first phase. As soon as the first
fatal error is encountered, the compiler stops generating quads
and deletes the quad file just before it terminates execution.
This prevents the second phase from attempting to generate code
from an erroneous quad file. As mentioned in Section 4.3.1, under
DOS 2.0 the compiler returns a zero if no errors are detected,
and a l otherwise. When the compiler detects an error in an input

file, it generates an error message of the form:

filename .l,i.n,e, Error nn: descriptive .t.e.x.t.

where filename is the name of the current input file (which may

not be the original source file if Sinclude files are used); line
is the line number, in decimal, of the current line in that file;
LYj. is an error number identifying the error; and descriptive text
is a brief description of the error condition. (Appendix A

provides expanded explanations for all error and warning messages

produced by the compiler.) All error messages are written to the
standard output, which is normally the user's console but can be

directed to a file if desired (see Section 4.1.1). A message
similar to the one above but with the text Warning instead of
Error is generated for non-fatal errors; in this case, generation
of the quad file continues normally. In some cases, an error
message will be followed by the additional message:

Execution terminated

which indicates that the compiler was too confused by the error
to be able to continue processing. The compiler uses a very
simple-minded error recovery technique which may cause a single
error to induce a succession of subsequent errors in a "cascade"
effect. In general, the programmer should attempt to correct the
obvious errors first and not be overly concerned about error
messages for apparently valid source lines (although all lines
for which errors are reported should be checked).

Error messages which begin with the text CXERR are internal
compiler errors which indicate a problem in the compiler itself.
See Appendix B for the compiler error reporting procedure. The

compiler generates a few other error messages that are not
numbered; theY are usually self-explanatory. The most common of
these is the Not enough memory message, which means that the
compiler ran out of working memory.

4.3.4 Code Generation

The code generation phase reads the quad file and builds an image

of the instructions for each function in working memory, before
writing the instructions to the object file. This implies that
at least as much working memory must be present as is required by

the largest function in the source file; actually, considerably
more memory (as much as several times that size) is required

4—25

Lattice 8086/8088 C Compiler Compiler/Run-time Implementation

because of the additional overhead used by tbe compiler. Since
the compiler uses the S memory model which has a 64K byte data
space limitation, there is a definite limit to the size of a
functicn which can be compiled even when the maximum amount of
memory is available. Nonetheless, all of the compiler's own

source modules -- some of which contain very large functions --can be compiled without difficulty. In any case, C is a language
which encourages modularity; most programs consist of! numetous
functions, most of them small. It is therefore doubtful that the
function size limitation will prove to be a problem.

One reason for the extra overhead in buffering the function in
memory is that branch instructions are not explicitly represented
in the function image. Instead, they are represented by special
structures denoting the type and target of each branch. when the
function has been completely defined, the branch instructions are
analyzed and several important optimizations are performed:

l. Any branch instruction that passes control directly to
another branch instruction is re-routed to branch
directly to the target location.

2. A conditional branch instruction that branches over a

single unconditional branch is replaced by a single
conditional branch instruction of the opposite sense.

3, Sections of code into which control does not flow are
detected and discarded.

4. Each branch instruction is coded in the smallest
possible machine' language sequence required to reach the
target location.

Most of these optimizations are applied iteratively until no

further improvement is obtained.

The code generator also makes a special effort to generate
efficient code for the switch statement. Three different code

sequences may be produced, depending on the number and range of
the case vqlues.

I. If the number of cases is three or fewer, control is
routed to the case entries by a series of test and

branch instructions.
2, If the case values are all positive and the difference

between the maximum and minimum case values is less than
twice the number of cases, the compiler generates a

branch table which is directly indexed by the switch
value. The value is adjusted, if necessary, by the
minimum case value and compared against the size of the
table before indexing. This construction requires
minimal execution time and a table no longer than that
required for the type cjf sequence described in No. 3.

4-26

Lattice 8086/8088 C compiler Compiler/Run-time Implementation

3. Otherwise, the compiler generates a table of {cas,e.

value, branch address) pairs, which is linearly searched
for the sYitcíj value.

All of the above sequences are generated in-line without Eunction
calls because the number of instruction bytes 18 small enough

that little benefit would be gained by implementing them as

library functions.

Áside from these special control flow analyses, the compiler does

not perform any global data flow analysis or any loop
optimizations. Thus, values in registers are not preserved
across regions into which control may be directed. The compiler
does, however, retain information about register conteñt8 after
conditional branches which cause control to leave a region of
code. Throughout each section of code into which control cannot
branch (although it may exit via conditional branche8), values
which are loaded into registers are retained as long as possible
so as to avoid redundant load and store operations. The

allocation of registers is guided by next-use information,
obtained by analysis of the local block of code, which indicates
which operands will be used again in subsequent operationm This
information also assists the compiler, in analyzing binary
operations, in its decision whether to load both opetands into
registers or to load one operand and use a memory reference to
the other. Generally, the result of such an operation will be
computed in a register, but sequences like

i += j;
will load the value of j into a register and compute the result
directly into the memory location for i (but only if i is not
used later in the same local block of code).

The hardware registers AX, BX, CX, and DX are used as general
purpose accumulators, while SI and DI (along with BX) are used

for access to indirect operands. BP 18 u8ed to address the
current stack frame; see Section 4.5.3 for more information. In
the d and L memory addressing models, the ES segment regigter is
used for indirect pointer references, see Section. 4.4.

In order to generate the most efficient code for the largest
number of source language constructiom, the compiler u8uaIly
makes a favorable assumption about pointer variables.
specifically, it assumes that the actual objects accessed using
pointer variables are not the same as other objects which can be

accessed directly. This allows the compiler to avoid discarding
register contents (thus forcing them to be reloaded, perhaps
unnecessarily, at a later time) whenever a remüt is assigned
using a pointer. Consider the following example:

int i, j, k, "pi;
C 0 e

i = j+2;
"pi " j;

4-27

tmttice 8086/8088 C Compiler Compiler/Run-time Implementation

k = 1"4;

In the general case, it is quite possible that pi might actually
point to i, which would change the value assigned to k in the
next statement. In the vast majority of C programs, however, i
will be a local variable to which it is not possible for pi to
point. The compiler normally makes this assumption, that is,
that *pi cannot be equivalent to i, and therefore can retain the
value computed in the first statement for i in a register, which
saves having to reload it to perform the multiply operation in
the third statement.

On the other hand, there are rare cases where this assumption is
not valid. C programmers almost never code sequences such as:

pi = U;
*pi = 12;

but more subtle cases of pointer overlap can occur, particularly
when both the pointer and its target are externa1iy defined. For
these cases, the -a compile-time option is provided (Section
4.1.1);, this forces the compiler to assume worst-case aliasing
(which is compiler jargon for pointer overlap) when generating
code. The compiler is so designed because instances of pointer
overlap are more the exception than the rule. Thus, rather than
default to worst-case assumptions that produce correct code in
all cases and unnecessary inefficiencies in most cases, the
compiler normally makes a favorable assumption that produces
efficient code which works correctly in nearly ali cases.

A final note on this subject: even when the -a option is used,
the compiler assumes that only objects of the pointed-to type can
be changed in pointer assignments. Thus, if an int pointer is
used in an indirect assignment, only registers containing int
values will be discarded.

4.4 Memory Addressing Models

The segmented architecture of the 8086 and 8088 processors
presents special problems for the implementation of high level
languages. In order to provide programmers with the ability to
select the combination of efficiency and addressability needed

for a particulat application, the compiler supports four
different sets of memory addressing assumptions, called memotY

models. Each is identified by a single capital letter, and

reflects a different view of the addressing of functions and data
within a C program. These views can be expressed by the
limitation on the size of the respective space for program text
(the functions) and data objects (all OÉ the declared or
allocated data structures), as follows:

4-28

Lattice 8086/8088 C Compiler Compiler/Run-time Implementation

Model Program Address Space Data Address Space

S 64K 64K

P up to Im 64K

D 64K up to IM

L up to IFI up to Im

The D and L models use four-byte pointers, and the P and L models
generate FAR calls and returns. The S and P models produce
compact, efficient code limited to addressing a 64K data area,
while the D and L models allow access to all of the I megabyte of
available memory.

4.4.1 Choosing the Memory Model

The compiler is most efficient (both in terms of code size and

execution speed) for the S model. All of the examples in
—previous sections have shown commands for compiling with the S

model, and this memory model is particularly recommended for
beginning C programmers.

All of the functions in a single program must be compiled and

linked with one and only one of the available memorjj models. In
other words, functions compiled for different models may not be

combined. It becomes important, 'therefore, to choose the right
memory model for the particular application. The tradeoff is
between efficiency and memory addressability. There are two

choices that must be made.

l. will the combined size of the functions in the program
be greater than 64K bytes? If not, one of the models
that uses NEAR calls (the s or D models) should be

selected, as these are faster and require less code.
Otherwise, a model that supports .F.A.R calls (the p or L

models) should be selected. """ " "
2. Does the application require more than 64K bytes of data

storage? If not, one of the models that uses 2-byte
data pointers (the S or P models) should be selected,
because pointer operations are performed much more

efficiently in these models. If the program simply
needs access to specific memory locations beyond the
program's 64K address space, the library functions peek
and poke can be used, allowing the program to retain the
efficient 2-byte pointers. Otherwise, if data storage
in excess of 64K bytes is a must, a model that uses the
4-byte data pointers (the d or ,[; models) must be

selected, even though this wÍll produce somewhat less
efficient code.

4.4.2 Compiling for the Memory Models

Generation of code for the various models is controlled by a

compile-time option specified on the first phase ([.Cl) of the

4-29

Lattice 8086/8088 C Compiler CompÉLer/Run-time Implementation

compiler. The -m option must be followed immediately (no spaces)
by a letter (either lower or upper case) specifying the desired
memory model. The model may also be specified as a single
numeric digit from 0 to 3. If no -m option is present, code is
generated for the S model.

—

S model: LCl filename (no flags)
Lcl filename -mS

P model: LCl filename -mp

LCl filename -ml

D model: LCl filename -mD

LCl filename -m2

L model: LCl filename -ml)

LCl filename -m3

4.4.3 Linking programs

When using the various memory models, care must be taken to link
with the appropriate library (LCS.LIB, LCP.LIB, LCD.LIB, or
LCL.LIB). The compiler generates code segments with different
names for each model, which allows examination of the LINK map to
determine if code for different models has been erroneously
mixed. Only one of the following segment names should appear on

the link map.

S model: PROG (code group PGROUP)

P model: CODE

D model: Code (code group CGROUP)

L model: PROG

Note that for the P and L models, several segments with the name
_CODE (or PROG) will be included (one for each separately, com-

piled module containing functions).

4.4.4 Code Generation for Pointer Operatiom

In the S and P models, pointers to the various data types consist
of the ÍÍ6—bit"offset of the low order (least significant) byte of
the data element. Since the ccmbined size of the data elements
in these models cannot exceed 64K bytes, the address of an item
is fully specified in 16 bits. Indirect data references are made

by loading the pointer into one of the indexing registers SI, DI,
or BX.

Function pointers differ in each of the memory models. In the S
—and d models, pointers to functions consist of the 16-bit offset

of 'Éhe first byte of the code defining the function. In the .S.

model, this pointer is stored in two bytes, while in the D. model,
it is stored as the first two of four bytes (the last 'Ewo are
zero since they are not used, but are merely required to conform
to the four-byte size of other pointers in the .D model). In the .P

model, a two-byte pointer (required because of the two-byte size

4-30

Lattice 8086/8088 C Compiler Compiler/Run-time Implementation

of data pointers) is used to store the offset of a four-byte
function address contained in the data section. This function
pointer has the same format as function pointers in the .L. model,
where the first two bytes contain a l6-bit offset and the next
two contain the l6-bit segment base for the function.

The code generated by the D and L models uses four-byte pointers
and can therefore address any location in memory. These pointers
are stored as an offset portion in the low two bytes, followed by

a base portion in the high two bytes (the format expected by the
machine language instructions LDS and LES). objects are ad-
dressed from these pointers by Loading the base portion into the
extra segment register ES, the offset portion into an index
register, and using the segment override prefix for ES to force
the indexed operation to refer to the correct memory location.
Since there is only one ES register, such common operations as

copying from one pointer to another require ES to be reloaded for
each step in the copying process. Pointer references are there-
fore less efficient than in the 2-byte memory models.

The four-byte pointers used in the D and L models are manipulated
according to the following rules:

l. Pointer arithmetic is performed by adding or subtracting
a 32-bit offset to the pointer, using a call to a

library routine. Thus, dynamically allocated arrays
(addressed by subscripting a pointer variable) may be

larger than 64K, and address manipulations work properly
for all offset values. Note that, since the compiler
requires statically declared arrays (extern, static, or
auto) to be less than 64K bytes in size, only a 16-bit
offset is used in accessing elements of these arrays,
resulting in more efficient code.

2. When two 4-byte pointers are subtracted, a library
routine is called which returns a long result.

3. Conversions between long integers and 4-byte pointers
are automatically performed, again by calling library
routines.

4. Comparison of pointers for equality or relative rank is
performed by calling a library routine which converts
the pointers to normalized (canonical) form before
comparing. Thus, two pointers which have different base
and offset portions, but which actually point to the
same location will be recognized as equal.

5. Any function which returns a pointer as its return value
calls a library routine which converts that pointer to
normalized (i.e., offset in the range 0 to 15) form.

4-31

Lattice 8086/8088 C Compiler Compiler/Run-time Implementation

4.4.5 The -s Option for Four-byte É'ointers

While the above rules generally describe use of four-byte
pointers, the additional overhead of Library routine calls can be

inefficient if a significant amount of pointer manipulation is
being performed. A special compile-time option (specified on

LCl) is provided for knowledgeable users who are willing to work

within certain restrictions. Adding the -S flag to LCl causes
the following changes in the above rules:

l. Pointer arithmetic is performed by adding or subtracting
a l6-bit offset tD the pointer. Thus, no single object
may be greater than 64K bytes in size.

2. Pointer arithmetic affects only the offset portion of the
pointer (not the base). When pointers are compared for
equality, an exact match of both base and offset portions
is required. When compared for relative rank, only the
offset portions are compared, so the comparison is
meaningful only if they are pointers to the same array.

3. when two pointers are subtracted, only the offset
portions patticipate in the operation, and the result is
a short.

4. Pointers and long integers are not converted when one is
amigned to the other; instead, a simple copy operation
is performed.

5. The return value from a function which returns a pointer
is not normalized.

Most functions can be safely compiled with the -s option,
resulting in improved code generation quality. In fact, all of
the library functions written in C supplied in the libraries are
compiled with the -s option, except,for the memory allocation
functionm Note that the'-3 flag has no effect on the s and' E

models. "
A8 noted above, the biggest potential problem when converting
code to use the four-byte pointers of the p. and L models is that
pointers and integers are no longer the same sizé. while it may

appear that a program's source code does Dot depend in any way on

this fact, programmers must be alert for subtle problems that
might relate to this. Here are three important cautions:

l. when supplying pointer arguments to C functions,' it is
common practice to supply a null pointer (i.e., one that
does not point to anything) as the #define constant NULL,

which is defined as 0 by stdio.h. When compiling code

for the D or L models, NULL must be changed to DL so that
the null"poinfer value supplied to functions is the same

size as the pointer argument. Failure to do this will
cause the called function to incorrectly address its
parameters, resulting in serious problems.

4-32

Lattice 8086/8088 C Compiler Compiler/Run-time Implementation

2. The sbrk memory allocator is supposed to return a value
of -l when no more memory is available (for compatibility
with other implementations). Under the ,D and .L. models,
the result of casting -l into a character pointer depends
on whether the -S option was used (see Sections 4.4.4).
Since the library function was compiled without the -s
option, the -l gets converted to the four-byte pointer
format. The result is that a function compiled with the
-s option cannot properly test for the -l value! All of
these problems can be avoided by using the library
function lsbrk, which accepts a long integer number of
bytes and returns zero if no morcz space is available (see
Section 3.1).

3. The four-byte pointers implemented under the ,D, and ,L,

models allow direct access to all of the memory on the
machine. This can be extremely useful, but it can also
be extremely dangerous. Memory on the 8086 and 8088

processors is not protected, and storing values via an

uninitialized pointer can crash the system -- or worse.
MS-DOS stores a number of very important system elements
in lower memory, so that use of an uninitialized pointer
to store data can have disastrous consequences (such as

destroying the File Allocation Table (FAT) for a hard
,disk!). Programmers should exercise extreme caution when

using these memory models. Beginnin9 programmers ,a.t.e

advised to use the S o,r. P models, where uninitialized
pointers are much less likely .tg. access critical
locations.

4.4.6 Creating an Array Greater than 64K Bytes

Since static data in all of the memory models is limited to a
maximum of 64K bytes, the only way to create an object of greater
size is through the memory allocation functions.

t

Suppose that an array of 10,000 double precision values must be

allocated; 80,000 bytes of storage will be required for such an

array. First, a pointer must be declared which will contain the
array's address after allocation:

double "d;

Note tbat a simple double pointer is all that is needed, despite
the fact that it will actually point to an array. Next, the
memory allocation function

char "getml();

must be declared.

Also note that the memory allocation function must be declared to
return a pointer; otherwise, the compiler will assume it returns

4-33

Lattice 8086/8088 C Compiler Compiler/Run-time Implementation

an int and the cast operation shown below will not work

correctly. The array is then allocated by the expression:

d = (double *) getml(80000L);

Note the L (el) specifier on the constant. The size could also
be specified as (I0000L * sizeof(double)). (Note: if the size
argument for getml is computed using a multiplication expression,
be sure that one of the operands is a long constant or is cast to
a long before the multiplication; otherwise, the compiler will
perform the multiplication in short arithmetic and obtain an

incorrect result. If the example above is written as

((long)(10000 * sizeof(double)), the size argument is incorrectly
computed as 14464!

The returned pointer, of course, must be checked for null (zero)
before use; NULL is returned if there is not enough memory

available for the requested allocation. The variable d can now
be subscripted as if it were an array, i.e., d[12] will address
the thirteenth (13th) element of d, etc. In this example, the
number of elements in the array is less thañ 64K, so ordinary int
variables can be used as subscripts; it a char array had been

allocated, long integers would be needed to subscript an array of
this size. Also note that since an object with a size greater
than 64K is being addressed, the -S option cannot be used.

4.5 Run—time Program Structure

This section describes the structure of C programs under the
8086/8088 MS-DOS implementation of the Lattice C compiler. Some

knowledge of the architecture of the 8086 processor and of the
8086 object code and linkage concepts is required in order to
understand much of the information presented. Readers who are
not interested in the precise technical details of the hardware
implementation may safely skim through or skip over this section;

it is primarily intended for programmers who must provÍde an

interface between C and assembly language.

postponing discussion of the specific object code details used to
create it (see Section 4.5.1 below), the general structure of a C

program is illustrated by the diagrams on the next page.

4-34

Lattice 8086/8088 C Compiler Compiler/Run-time Implementation

S and P Models

High Address <- SP

stack
(auto data)

dynamic memory

static data

<- DS, ES, SS

f6aoctóom

Low Addre88 <- CS

D and L models

High Addrem -
dynamic
memory

<- SP

8tack
(auto data)

<- SS

static data

"——_"" <~ DS

functions

Low Addre8s ------- <- CS

The C programming language provides for three basic kinds of
memory allocation: the instructions which make up the executable
functions, the static data items which persist independently of
any of the functions which refer to them, and the automatic data
items which exist only while a function is invoked. Most
implementations (including this one) support, through library
functions, an additional dynamic memory allocation facility which
returns pointers to objects not explicitly declared. The

diagrams above show the way these allocations are made; as one

might expect, the auto data items are allocated on the 8086

hardware stack.

4-35

Lattice 8086/8088 C Compiler Compiler/Run-time Implementation

Two different memory layouts are used, depending on the size of
pointers. In either case, the functions are grouped together in
the lowest portion of the address space defined by the program,
and the static data items are grouped together immediately above

the functions. In the S and P models, the segment registers DS,

ES, and SS all. contain the same value, which is the base segment

address for all of the static data items in the program. The

stack pointer SP is initialized to point to the highest available
offset relative to this segment; this value is X'FFF0' ifsufficient memory is available, and is adjusted acc: ordingly if
less than 64K bytes of memory remain above the data segment base.
A certain number of bytes is reserved for the stack, which grows
downward. The remainder of memory between the end of the static
data items and the lowest address allotted to the stack is
available fot dynamic memory allocation using library functions.
The stack overflow detection mechanism described in Section 4.5.'5
can be used to prevent stack allocations from exceeding the
allotted space and colliding with the dynamic memory pool or the
static data items. The stack size override feature described in
Section 4.1.4 allows the number of bytes to be reserved for the
stack to be specified when a program is executed.

In the D and L models, the stack resides immediately above the
—static áata arz·a, and the free memory pool (allocated by the

functions described in Section 3.1) is above the stack, which can
be as large as G4K bytes. Segment register DS points to the base

of the static data area, SS points to the base of the stack, and

ES is undefined. The stack pointer SP is initialized to contain
the number of bg"tes allocated for the stack (defined in _stack;
see Section 4.5.S). As noted above, the stack overflow detection
mechanism prevents collision with the static data elements.

4.5.1 object Code conventiom

The object file created by the second phase is in the standard
ms-dos object code format, which is compatible with the Intel
8086 object module format. The object file defines the
instructions and data necessary to .implement the module specified
by the C source file, and also contains relocation and linkage
information necessary to guarantee that the components will be

addressed properly when the module is executed or referenced as

part of a linked program. In order to force the parts of the
module into,the proper locations after linking, the object file
defines two logical segments which are marked for concatenation
with other segments of the same name.

The program segment is the segment which includes the
instructions which perform the actions specified by any functions
defined in the source file. As noted in Section 4.4.3, the
segment name used for the program segment depends on the memory

model.

DATA is the segment which includes all static data items which
are defined in the source file. This includes not only those
data items explicitly' declared static but also items declared

4-36

Lattice 8086/8088 C Compiler Compiler/Run-time Implementation

outside the body of a function without an explicit storage class
speCifier, string constants, and double precision constants.
(Auto data items are simply allocated on the stack at run time
and are not explicitly defined in the object file.)
The DATA segment is defined to be combinable with other segments
of the same name. In the S and D models, the program segment is
also made combinable. Program segments combine with byte-
alignment, that is, as closely as possible; data segments combine
with word-alignment. Thus, no space is wasted when functions are
combined during linking, and the word alignment of elements
within a particular DATA segment is preserved after combination.
This alignment of data items is important for efficient data
fetches on the 8086, where word fetches from an odd byte address
require an additional four clock periods. Note that although a

compile-time option (described in Section 4.1.1) allows the
alignment requirement for data items within a particular module
to be relaxed, the word alignment of DATA segments during linking
is not affected.

The net effect of these segment definitions is to force, at link
time, all functions to be collected together and all static data
items to be similarly combined. Thjs achieves the most important
part of the program structure diagrammed above. The segment

directives needed to combine assembly language modules with C

modules are shown in Section 4.5.4.

4.5.2 Linkage Conventions

The 8086 qroup concept is used to guarantee that the data portion
of the final linked program does not exceed 64K bytes; in the ,S.

and D models, it is similarly used to force the combined program
section to fit into 64K. The groups which may be defined are:

PGROUP " BASE segment + PROG segment (S model)
CGROUP X BASE segment +·CODE 8egment (D model)
DGROUP X DATA segment + STACK segment (all modeIM

The PROGRAM and DATA segments are obtained from the C modules in
the program, as previously discussed. The other two segments are
defined in the startup module (CS.OBJ, CP.OBJ, CD.OBJ, or
CL.OBJ), which must be the first module encountered during
linking. The BASE segment serves two purposes: (I) it forces
PGROUP (or CGROUP) lower in memory because it is the first
segment within the startup module, and (2) it contains a byte
which identifies the memory model used. The latter feature allows
programs to be examined with a program debugger to determine the
memory module used when the program was linked. The STACK segment
has a dual role as well: (I) it defines the base of the stack
and dynamic memory portion of the data section of the program,
and (2) it satisfies the linker's need for a segment of type
STACK (if one is not encountered, the linker generates a warning
message).

4-37

Lattice 8086/8088 C Compiler Compiler/Run-time Implementation

The startup module (CS.OBJ, CP.OBJ, CD.OBJ, or CL.OBJ) also
defines its own program and DATA segments. The PROGRAM segment

defines the initial execution address of the linked program. The

segment registers are initialized, and the amount of memory

remaining above the STACK segment is determined. The stack
pointer is adjusted to its initial value, as noted in the
discussion in Section 4.5. In the DATA segment of the star"tup
module, the address of the stack base and top are saved for use
by the memory allocation functions. At the top of the stack, the
address of the program segment prefix is saved so that an orderly
return to MS-DOS can be made when the program terminates. The

characters from the command line which executed the program are
transferred from the program segment prefix to the stack. A

pointer to this copy of the command line is then passed to the
function main, which begins execution of the program (see
Section 5Á).
As noted in Section 4.2.2, extetnal names differ from ordinary
identifiers in C in that upper and lower case letters are
equivalent. All external names are defined as an unspecified
type, that is, there is no set of attributes associated with the
name; it is simply an offset within one or the other of the two

defined groups. It is therefote an error to define two items
with the same external name in the same progtam. It is the
programmer's responsibility to prevent this occurrence and also
to make sure that programs refer to external names in a

consistent way (i.e., a function should not refer to xyz as long
when it is actually defined as int in some other module).
External definition and reference from assembly language modules
are discussed in Section 4.5.4.

See the appropriate linker documentation for information on how

to obtain a public symbol map for a linked program. As a

convenience, the DGROUP segments are defined with class name

DATA, the PGROUP segments with class name PROG, and the CGROUP

segments with the class name CODE.

4.5.3 Function Call Conventions

When a C function makes a call to another function, it first
pushes the values of any arguments onto the stack and then makes

a call to that function. a NEAR call (which changes IP but not
CS) is used in the S and .D. models; a FAR call (which changes both
IP and CS) is used in the p and L models. The argument values are
pushed in reverse (right-to-left) order because the stack grows
downward on the 8086; this allows the called function to address
the arguments in the natural left-to-right (low-address-to-high-
addre3s) order. The first actions taken by the called function
are:

I. The BP register is pushed onto the stack; this saves the
value of BP used by the caller.

2. The stack pointer SP is reduced (i.e., a v.alue is
subtracted from it) by the number of bytes of stack

4-38

ittice 8086/8088 C Compiler Couipiler/Run-time Ímplementation

space required by the called function. This value is
rounded to the nearest word sq that the stack pointer is
always word-aligned. The stack space includes all auto
data elements declared in the function, and also may

include additional space for the temporary storage
locations which are often required during expression
evaluation. If no auto items or temporaries are needed,
this step is skipped; SP is unchanged.

3. If the function was compiled with stack overflow
detection, it then checks the stack pointer for a legal
value, as described in Section 4.5.5. If stack overflow
is detected, control is routed to tbe entry point XCOVF

(defined in the startup module) by means of a jump

instruction.
4. The stack pointer SP is moved into BP to allow

addressing of the elements on the stack: function
arguments, auto storage, and temporaries.

he offsets of the varÜjUB componenü are indicated by the
ollowing diagram. Note that of the registers used by the
ailing program, only BP is saved.

High - <- Caller's BP

argumenU
0 0 e

return addreB8
(2 or 4 byte8)

callerW 8aved BP

auto data items

temporarie8
Low <- BP, SP

uring execution of a C function, BP and SP normally contain the
ame value. The temporaries are allocated closest to BP,

ollowed by the auto elements declared, in the order of their
eclaration. This addressing scheme has the disadvantage that
he arguments supplied to the function are at an offset
etermined in part by the amount of auto storage declared. Ifhe function declares more than approximately 124 bytes of auto
torage, the arguments require an additional offset byte in the
nstructions which refer to them.

he compensating advantage to this mechanism appears when a

unction calls another function and supplies it with argument
alues. Because a C function may in special cases have a

ariable number of arguments (printf is the classic example), the
ailed function cannot deallocate the stack space used in pushing

4-39

Lattice 8086/8088 C Compiler Compiler/Run-time Implementation

the argument values; the calling function must do so. By

retaining the normal SP value in BP, Lattice C functions can

restore the stack pointer after a function call with the two-byte
instruction:

MOV SP,BP

If BP is not set up in this way, a value must be explicitly added

to SP, which requires a three- or four-byte instruction.
A second advantage to this technique is that it is easy to
implement assembly language functions (to be called from C) with
a variabte oumber of arguments. Since the caller's BP contains
the value in SP before argument values were pushed (as the
diagram shows), it defines the upper limit for the address of any

arguments. In other words, only the space between the saved

return address arjá the address in the caller's BP register can

contain arguments.

When a function returns to its caller, it first loads the
function return value, if any, into predefined registers. The

size of the value returned determines the register(s) used:

16 bits AX register
32 bits (AX,BX) register pair
64 bits (AX,BX,CX,DX) register quadruplet

In the multiple register returns, AX contains the high order bits
of the value. Note that in the d and L models, this means that
the segment portion of a pQinter return value is contained in BX

and the base portion in AX.

After the return value is loaded, the function adds to sp the
sanie value that was subtracted on entry. Then BP is popped,
restoring the caller's base pointer, and a near return is
executed. The calling function now regains control, and must

restore SP if any argument values were pushed.

4.5.4 Assembly Language Interface

Programmers may write assembly language modules for
inclusion in C programs, provided that these modules adhere to
the object code, linkage, and function call conventions described
in the preceding sections. In order to facilitate assembly
language programming for the various memory models, four macro

libraries have been provided as part of the compiler package.
These libraries define values for symbols which can be tested for
conditional assembly purposes, including:

LPROG I for p or L model, 0 otherwise
DATA l for 6 or í model, 0 othew*S8e
8086 l for S mo&íi, 0 otherwise
8086 l for F model, 0 otherwise
8086 l for 6 model, 0 otherwise
8086 l for k model, 0 otherwise

4-40

Lattice 8086/8088 C Compiler Compiler/Run-time Implementation

Also defined are four special macros, used to delimit the
beginning and end of the program and data segments:

PSEG defines start of program segment
ENDPS define8 end of program segment
DSEG defines start of data segment
ENDDS defines end of data segment

In order to use these symbols and macros, an INCLUDE statement
must be used at the beginning of the assembly language module.
For example:

INCLUDE DM8086.MAC

makes available the symbol and macro definitions for the D memory

model. By using the generic include file named DOS.KAC, an

assembly language module can be assembled under any of the
models, as long as the appropriate header file is copied to
DOS.MAC before the module is assembled.

An assembly language module which defines one or more functions
to be called from C must define the start of the program segment:

PSEG

followed by PUBLIC declarations of the functions:

PUBLIC AFUNC,
...

followed by' the functions themselves:

AFUNC PROC NEAR/FAR

WO0
ENDP

Note that the PROC statement must define the function NEAR in the
S and D models, and FAR in the P and L models. The function must
conform to the conventions detailed in Section 4.5.3. If a value
is to be retutned by the function, it must be placed in the
appropriate register(s).
To call a function from assembly language, an EXTRN declaration
most be included for that function, and the caller must supply
any expected arguments in the proper order (see Section 4.5.3).
Note that the position of the EXTRN statements for functions is
critical: lor the P and L models, they mast appear before the
program segment definitions:

EXTRN XYZ: PAR,
PSBG

AFUNC PROC FAR

For the S and D models, they must appear after the definition of
the program segment:

4-41

Lattice 8086/8088 C Compiler Compiler/Run-time Implementation

PSEG

EXTRN XYZ: NEAR,
...AFUNC PROC NEAR

An assembly language module may also define data locations to be

accessed (using "extern" declarations) from C programs:

DSEG

PUBLIC DXI,DX2,DX3
Dxl DW 4000H

DX2 DW 8000H
DX3 DB 'Text string',0

ENDDS

Note that if the address of an item is to be defined, the name

must be prefixed with the group name if it is used as the operand
of the OFFSET operator or of the DW or DD statements. If DX4 is
used to define the address of DXl in the example above, it must

be coded:

DX4 DW DGROUP: DXI

Otherwise, a segment-relative offset is generated, which will not
be the actual address of the item as it is defined within the
context of a C program. (NQte: the prefix is not required for
the LEA instruction, which refers to the current ASSUME

directive.)

Similarly, to refer to data elements defined in a C module,
include appropriate EXTRN statements:

EXTRN XDI: WORD,XD2:BYTE

W
V
0
MOV AX,XDI

Note that any EXTRN statements for data elements must be defined
within a DATA segment declaration like the one shown previously.
The BYTE attribute rñu8t be used for external char items. If an

element is larger than a word, a STRUC can be used to define it,
or its off8et can be loaded into an index and used to fetch its
component parts. The same caution about addresses requiring a

group prefix applies to an external reference. For example:

DW DGROUP: XDI

must be used to define the address of XDl. Otherwise, a segment-
relative offset is generated, which will not be the actual
address of the item as it is defined within the context of a C

program. Note that the prefix is not required for the LEA

instruction, which refers to the current ASSUME directive.

4_42

Lattice 8086/8088 C Compiler Compiler/Run-time Implementation

Upper and lowet case letters for external names (and for all
symbols within assembly language modules) are equivalent, so an

assembly language function XYZ can be called from C as either XYZ

or xyz.

Assembly language functions need to preserve BP only, as the
compiler does not make any assumptions regarding register
contents following a function call (except for return values).

As noted above, DS always points to the base of static storage
for any of the memory models, so assembly language functions must
be careful not to change DS. In the S and .P, models, ES must also
be preserved (but not in the D and L Ñodelsj.

Note the differences between the use of pointers in the S and .P.

models from their usage in the !2 and .L. models, as in the
following example:

S/P model: MOV BX,[BP].ARG1 ;get a pointer arg
MOV AX,[BX] ;use it

D/L model: LES BX,[BP].ARGI ;get offset and base
MOV AX,ES: [BX] ;use it

The following example (supplied with the compiler package as the
file IO.ASM) illustrates many of the above requirements, and also
demonstrates the use of DOS.MAC and conditional assembly fer the
different memory models.

TITLE PORT I/O FUNCTIONS

SUBTTL Copyright 1982 by Lattice, Inc.
NAME PORTIO

INCLUDE DOS.MAC

IF LPROG

X EQU 6 ;OFFSET OF ARGUMENTS

ELSE
X EQU 4 ;OFFSET OF ARGUMENTS

ENDIF

PSEG

- kik
ir
OV
; name inp -- input byte from port
WW
; synopsis c = inp(port);
; int c; returned byte
; int port; port address
eV
; de8cription This function inputs a byte from the specified por
; addre88 and returns it as the function value.
Or
· **G

PUBLIC INP

IF LPROG

4-43

Lattice 8086/8088 C Compiler Compiler/Run-time Implementation

INP PROC FAR

ELSE

INP PROC NEAR
ENDIF
PUSH BP ;SAVE BP

MOV BP,SP
MOV DX,[BP+X] ;GET PORT ADDRESS

IN AL,DX ;'3ET INPUT BYTE

XOR AH,AH ;CLEAR HIGH BYTE

POP BP
RET

INP ENDP
PAGE

·**P
0V
; name outp -- output byte to port
0r
; synopsis outp(port,c);
; int port; port address
; int c; byte to send

0B
; description TFÜs function sends t-he specified character to
; tbe specified port.
HV
·**I

PUBLIC 'JUTF

IF LE'ROG

OUTP PROC FAE'
ELSE

OUTP PROC NEAR
ENDIF

PUSH BP ;SAVE BP

MOV BP,SP

MOV DX,[BP+X) ;GET PORT ADDRESS

MDV AX,[BP+X+2} ;GET OUTPUT BYTE

OUT DX,AL
POP BP
RET

OUTP ENDP
ENDPS

END

4.5.5 stack Overflow Detection

The compiler, by default, generates code at the beginning of each

function to check for stack overflow. The cost in code size for
each function is 9 bytes for tbe S and D models, and li bytes for
the P and L models. The benefit is elimination of a very nasty
class of etrors which can be very difficult to find. When stack
overflow is detected, the error message:

" STACK OVERFLOW ***

is written to the console, and the program terminates immedi-
ately.

4-44

Lattice 8086/8088 C Compiler Compiler/Run-time Implementation

Stack overflow occurs when the program fails to supply sufficient
storage for the run-time stack. The number of bytes of storage
for which the stack is set up is defined in the external location
stack, and can be changed when the program is executed by the

Jnnn Option on the command line. The size of the stack can thus
be set in any of three ways:

l. If no definition for stack is found in the user's
object modules during linking, the Lattice C library
provides a definition of _stack containing 2048 (2K).
Thus, the default stack size is 2048 bytes.

2. If one of the user's object modules includes a

definition for stack, that value will be used. All
that is required is that a statement such as

int stack = 4096;

appear outside the body of a function. That value then
becomes the default stack size.

3. Either one of the above methods can be overridden at
execution time (after linking) by executing the program
with a command such as

PROGNAME =8000

The decimal value after the equals sign becomes the
stack size during execution of the program.

Unfortunately, there is no hard and fast rule for determining how

much stack space a program will need. At least as much storage
as the largest amount of auto storage declared in any of the
functions included in the program will be needed (i.e., if a

function has an auto array of 4000 bytes, at least that much

stack space is needed, because auto data items are allocated on

the stack). Since C functions typically call other functions,
the storage needed by the called function must be added to that
needed by the caller, and so on. The intention in supplying the
various setting mechanisms described above is to make the stack
size easily adjustable.

The code for stack overflow detection can be eliminated by com-

piling your source file with the -v option on LC2 (SecÉion
4.1.2). Library functions are supplied with stack overflow
detection included.

4-45

Lattice 8086/8088 C Compiler System Library Implementation

SECTION 5:
System Library Implementation

Although the portable library functions described in Section 3 of
this manual define a general purpose interface to the typical
environment provided for C programs, there are inevitably many

details and variations which are system-dependent. In this
section, some of the details of the MS-DOS library implementatior
are presented in order to clarify the peculiarities of this
particular environment.

Fortunately, MS-DOS supports a number of powerful features which
allow a full implementation of the standard file I/O functions,
although the representation of text files presents a minor
problem; Section 5.1 discusses file I/O. Several standard device
names are also supported by MS-DOS, and the Lattice C I/C
interface processes these in special ways, as explained ir
Section 5.2. The structure of Lattice C programs (see Sectior
4.5) allows the full set of memory allocation functions, althougF
care must be taken to provide sufficient space for the stack, aj
Section 5.3 warns. The basic program entry and exit functiom
are described in Section 5.4, and some special functions unique
to the MS-DOS implementation are presented in Section 5.5. As

additional functions wilt probably be provided as the compiler
evolves, the programmer should check the addendum for the current
version of the compiler.

5.1 File I/O

Filenames are specified according to the following format:

d: \pathname\filename.ext

where d,: . is an optional drive specifier, pathname is an optional
directory specifier, filename is the name of the file, and ,±u!
is the file extension. If the drive specifier is omitted, the
currently logged-in disk is used; if the pathname is omitted, the
current directory is used. The filename is specified without
trailing blanks if less than 8 characters; the extensior
(including the ".") must be omitted if one is not defined for ttiÉ
file. Alphabetic characters may be supplied in either upper or
lower case; actual filenames use upper case letters only. Only
those characters which are legal for filenames under MS-DOS are
acceptable; consult the MS-DOS documentation for details.
Certain names are recognized as devices rather than files; seE

Section 5.2.

The level I I/O functions perform disk I/O by making direct calls
to MS-DOS, so that all buffering is performed by the operatinc
system. Programs using the level 2 I/O functions cannot use the
rbrk function, because fopen allocates a buffer using getmem.

In the MS-DOS implementation, both the level 2 (fopen, putc,
getc, fclose) and the level l (open, creat, read, write, close)

5-I

Lattice 8086/8088 C Compiler System Library Implementation

I/O functions are limited to 20 open files, including devices,
and including the three (stdin, stdout, stderr) which are
automatically opened for the main program. Note that the number

of files available under MS-DOS version 2 is also affected by the
CONFIG.SYS file, since an MS-DOS file handle is used for every
open file (see MS-DOS documentation).

The portable library provides a system-dependent option when a

file is opened or created; the programmer may select one of two
modes of I/O operation while a file is open. On some systems the
modes are in fact the same, but in the MS-DOS implementation they
differ in some important details.
Translated or text mode is the default condition. In this mode,

the line terminator normally used by C programs (a single newline
character, \n or 0x0A) is translated to the MS-DOS line
terminator, which consists of the two characters, carriage return
and linefeed (0X0D fcñlowed by 0X0A). This translation is
performed when the file is written using calls to the write
library function; the inverse translation is performed when the
file is read using the read library function. programs which use

the higher level I/O functions (putchar, getchar, printf, etc.)
ate usually not affected, but programs which call read and write
directly must beware of these translations. On read calls, the
count returned may be less than the actual number of bytes by

which the file position was advanced (because of CR deletions).
Note that all carriage returns are discarded when reading from a

file in the translated mode; similarly, all linefeeds are
expanded to CR/LF when writing to the file.
Untranslated or binary mode is an option which can be selected
when the file is opened or created. By adding 0x8000 to the mode

for the open call or to the access privilege mode word for the
creat call, the programmer indicates that read/write operations
on the file are to be performed without translation. In this
mode, bytes are transferred between the caller's area and the
file without modification. This option must be used for files
containing binary data; otherwise data bytes which happen to take
on CR and LF values will be translated incorrectly.
In addition to the file I/O modes discussed above, two other
functions should be clarified under the heading of file I/O. The

creat function gets a system-dependent argument, the access
privilege mode bits; these are ignored under the Ms-nos

implementation, except for bit 15 (the 0x8000 bit) which, if set,
causes the file to be accessed in untranslated or binary mode.

The lseek function has an offset mode, not always implemented,
which specified an offset relative to the end of file. Because
MS-DOS retains the exact file size in its directory, this mode

can be and is implemented in this version.

5.2 Device I/O

Several special file names are checked for by the Lattice I/O
interface under MS-DOS, and processed using single character

S-2

Lattice 8086/8088 C Compiler System Library Implementation

reads and writes. These device names may be specified in either
upper or lower case, but will be recognized by the level l open
and creat functions only if the trailing colon is suppliéá. Ifthe colon is omitted, the name is passed to the operating system
and may be processed specially by it; however, the level l
functions will deal with a device reference sans colon as if ifwere a reference to a disk file. The device names recognized are
as follows:

Console CON:

printer PRN: , LST: , LPT: , LPTI
Aux port AUX: , COM: , RDR: , PUN:

Null NUL: , NULL:

I/O is performed to these devices, one character at a time, using
the appropriate BDOS function calls. One exception occurs for
the console device: if a translated mode ,r.e.a.d. operation requests
more than l byte, the BOOS buffered console input function is
used to read the data (a maximum of 128 bytes per read). Any

special editing features supported by the operating system
(backspace processing, etc.) will therefore be enabled.

The following table lists the devices and the corre6ponding BDOS

functions used for read and write operations in translated and

untranslated modes.

Device Translated Mode Untranslated Mode

Name Read FN Write FN Read FN Write FN

CON l 2 7 6
AUX 3 4 3 4

corn 3 4 3 4
PRN — 5 — 5

LPTI — 5 — 5
NUL - - - -

A - for the function number indicates that the correspondiDg
operation is not supported for that device. The read function
returns end of file (count = D) if read is not supported. Ifwriting is not supported, the write function returns a normal
count indicating success, but does not actually send the data.
An additional special device name, specified by a NULL string
("", which consists of just a '\0'), is recognized and processed

as if CON: had been specified.

In translated mode, a newline (0x0A) is converted to a carriage
return/linefeed sequence. A carriage return on input is
converted to a newline, and terminates the read operation even ifthe byte count is not satisfied. In untranslated mode,

characters are sent without modification, and read operations do

not terminate until the requested number of characters has been

received. Note that a read operation to the console in
untranslated mode does not echo the characters received.

Programmers may also perform direct single character I/O

5-3

Lattice 8086/8088 C Compiler System Library Implementation

operations using the bdos function, and several additional
functions support direct I/O to the console. See Section 5.5 for
details.

If one of these devices is opened for access using fopen, input
and output are performed in unbuffered mode, which means that
single characters are received and sent immediately. The only
exception to this rule occurs for stdin, which main opens in
buffered mode so that the buffered console input function can be

used. If desired, stdin can be changed to the unbuffered mode

using setnbf; see Section 3.2.2 for more information.
+

5.3 Memory Allocation

The full set of memory allocation functions described in Section
3.1 is provided under MS-DOS. The following cautions apply:

l. The reset functions rstmern and rbrk cannot be used if
any of the level 2 I/O functions are also being used on

currently open files. Note that only disk files
allocate a file access block using getmem; the reset
functions may be used if the only open files are
actually connected to devices. A file may be closed,
then re-opened after the reset function is called;
however, any file pointers must be updated if this is
done, because there is no guarantee that the same value
will be returned when the file is opened again.

2. The dynamic memory used by the memory allocation
functions is the same memory used for the run-time
stack. Programmers must be careful to provide enough

space for the stack to prevent its collision with the
dynamic memory pool, either by getting an override value
from the command line (see Section 4.1.4) or by defini'ng
an external int location called _stack and initializing
it with a desired value. See Section 4.5.5 for a
complete discussion of the stack size.

3. Programmers who wish to implement their own memory

allocation functions can refer to the data locations in
the startup module which define the total stack space
available:

extern umigned _base;

contaim the offset (from DS) of the lowest portion of
the stack, which is the same as the highest offset of
the static data items in the program (see diagram at
Section 4.5).

extern unsigned _top;

contains, in the S and P models, the offset of the top
of the stack, either X'FFF0' or whatever was determined
to be the highest usable offset; in the 9 and L models,

5-4

Lattice 8086/8088 C Compiler System Library Implementation

it contains the number of bytes allocated for the stack
(same as stack). As noted above, the external location
stack contains the default or specified stack size

aesired; user-written memory allocators may wish to make

use of that value, as a convenience.

5.4 Program Entry/Exit

The startup module CS.OBJ (or CP.OBJ, CD.OBJ, or CL.OBJ) calls
main to begin execution of a C program, and passes to it a copy

Of the command line which executed the program. Actually,
because MS-DOS does not save the program name portion of the
command, the command line passed to main consists of the
characters "c " (lower case 'c' followed by a blank) immediately
followed by all of the characters typed after the program name.
The standard version of main supplied in the libraries analyzes
the command line for all of the elements described in Section
4.1.4, and then passes the command-line arguments to main. Ifthe stack override and file specifier features are not needed,
the version supplied as TINYMAIN.C can be used instead. Please
note the following important cautions if this is done.

I. The library function printf sends its output to the pre-
defined file pointer stdout, which is normally opened by
main. If the code that performs this function isFemovecí, printf calls will produce no visible output

(the I/O library functions ignore attempts to read or
write unopened files). a similar caveat applies to the
use of 8canf, which reads from stdin.

2. If the goal is to avoid including the level 2 I/Q
functions in the linked program, the library function
exit should not be called, since it closes all buffered
output file before terminating execution and

automatically causes level 2 functions to be included.
Call _exit instead.

The program exit functions exit and exit are aescFibed irt
Section 3.2.4. The error code argumenf is passed back to thq
operating system, where it can be tested in a batch file using d
command such as:

if error level I goto error

5.5 Special Functiom

The functions discussed in this section provide low-level access
to various system resources. They tend to be machine-dependent
and are therefore not portable.

5+5

Lattice 8086/8088 C Compiler System Library Implementation

NAME

bdos -- call BDOS function

SYNOPSIS

ret = bdos(fn,dx);
int ret; returns code

int fn; BDOS function number

int dx; value to be placed in DX

DESCRIPTION

Performs a BDOS call by placing fn in the AH register, dx in
the DX register, and operating an INT 21H. The value
returned by BDOS in the AX register is passed back as ret.

CAUTIONS

In the D and L models, it is better to use the intdosx
function aescri6ed next, since some BDOS function calls need

a pointer defined relative to DS, which may not contain the
correct segment base in these models.

5-6

Lattice 8086/8088 C Compiler System Íjibrary Implementation

NAME

intdos, intdosx -- generate DOS function call
SYNOPSIS

ret = intdos(inregs, outregs);
ret = intdosx(inregs, outregs, segregs);

int ret; operating system return code
union REGS '"inregs; input registers
union REGS *outregs; output registers
struct SREG "segregs; segment registers (intdosx only)

DESCRIPTION

Generates a DOS function request to the operating system.
The operating system specifications should be checked to
determine the DOS functions and calling sequences supported;
the values in the registers are used as inputs. In
particular, the exact function request is specified by

placing a value in one of the registers (under MS-DOS, the
function number is specified in AH; under CP/M-86, in CL).
inregs must contain the values which will be loaded into the
working registers before the function call is made; outregs
will receive the values in the registers after control
returns from the function request. with intdosx, the values
which will be placed in the segment registers before the
interrupt may be specified; although the SREGS structure
defines all of the segment registers, only DS and ES will
actually be loaded. The REGS and SREGS structures are
defined in the DOS.H header file.

CAUTIONS

Defining the segment register values for intdo8x is best
acco%lished by calling segread to obtain current values
(see below for details on this function).

Note that inregs, outregs, and segregs are shown as pointers
above; the usual technique is to declare them directly, and

then use the address-of operator to pass a pointer to them.

S-7

Lattice 8086/8088 C Compiler System Library Ímplementation

NAME

int86, int86x -- generate 8086 software interrupt
SYNOPSIS

int86(intno, inregs, outregs);
int86x(intno, inregs, outregs, segregs);

int intno; interrupt number

union REGS "inregs; input registers
union REGS *outregs; output registers
struct SREGS "segregs; segment registers (int86x only)

DESCRIPTION

Performs an 8086 software interrupt of the specified number.
The operating system should be checked to determine the
interrupts and calling sequences supported; generally,
values in the registers are used as inputs. inregs must

contain the register values which will be loaded into the
working registers before the interrupt is performed; outregs
yill receive the register values after control returns from
the interrupt. with int86x, the values which will be placed
in the segment registers before the interrupt can be

specified; although the SREGS structure defines all of the
segment registers, only DSand ES will actually be loaded.
The REGS and SREGS structures are defined in the DOS.H

header file.
CAUTIONS

The software interrupts on the 8086 are used to implement
multi-level system processing, and invalid input data can

cause unpredictable (and occasionally disastrous) results.
Defining the segment register values for int86x is best
accomplished by calling segread to obtain current values
(see below for details on this function).

Note that inregs, outregs, and segregs are shown as pointers
above; the usual technique is to declare them directly, and

then use the address-of operator to pass a pointer to them.

5-8

Lattice 8086/8088 C Compiler system Library Ímplementation

NAME

segread -- return current segment register values

SYNOPSIS

segread(segregs);

struct SREGS "segregs; structure for return of values

DESCRIPTION

Places the current 8086 segment register values into the
SREGS structure whose pointer is supplied. Its main purpose
is to obtain current values in order to make a subsequent
call to int86x or intdosx. The definition for the SREGS

structure is found in the DOS.H header file.

5-9

Lattice 8086/8088 C Compiler System Library Implementation

NAME

movedata -- move data bytes from/to segment/offset address

SYNOPSIS

movedata(sseg, soff, dseg, doff, nbytes);
irjt sseg; segment portion of source address
int soff; offset portion of source address
int dseg; segment portion of destination address
int doff; offset portion of destination address
unsigned nbyte3; number of bytes to move

DESCRIPTION

Moves the specified number of data bytes from the source to
the destination address. The addresses must be specified as

(segment: offset) in accordance with the standard 8086 nota-
tion. This function is primarily intended for use in pro-
grams compiled using the S and P models; in the D and L

models, the standard library function movmem can be used.
The segread function can be used to obtain segment register
values.

CAUTIONS

Memory is not protected on the 8086, so supplying invalid
parametem to this function can have disastrous results.

5~ I 0

Lattice 8086/8088 C Compiler System Library Implementation

NAME

peek, poke -- examine/modify arbitrary memory locations

SYNOPSIS

peek(segment, offset, buffer, nbytes);
poke(segment, offset, buffer, nbytes);

int segment; segment portion of memory address
int offset; offset portion of memory address
char *buffer; local memory buffer
unsigned nbytes; number of bytes to transfer

DESCRIPTION

These functions copy data values between an arbitrary memory

location and a local memory buffer: peek moves data to the
local buffer from a specified memory address, while poke
moves data from the local buffer to the arbitrary memory

address. These functions are primarily intended for use in
programs compiled using the .S. and E models; in the ,D, and .L.

models, the standard library function movmem can be used.

CAUTIONS

Memory is not protected on the 8086, so supplying invalid
parameters to the poke function can have disastrous results.

5~ l I

Lattice 8086/8088 C Compiler System Library Implementation

NAME

inp, outp -- direct port I/O functions

SYNOPSIS

v = inp(p);
outp(p,v);

int v; I/O value
int p; I/O port number

DESCRIPTION

The inp function reads I/O port p and returns whatever data
is there. The outp function writes value v to port p.

CAUTIONS

Direct port operations can cause all sorts of problems,
including physical damage to some systemm Extreme care
should be exercised.

5~12

Lattice 8086/8088 C Compiler Error Messages

APPENDIX A:

Error Messages

This appendix describes the various messages produced by the
first and second phases of the compiler. Error messages which
begin with the text CXERR are compiler errors which are described
in Appendix B.

A.l Unnumbered Messages

These messages describe error conditions in the environment,
rather than errors in the source file due to improper
language specifications.

Can't create object file
The second phase of the compiler was unable to create the
.OBJ file. This error usually results from a full directory
on the output disk.

Can't create quad file
The first phase of the compiler was unable to create the .Q

file. This error usually results from a full directory on

the output disk.

Can't open quad file
The second phase of the compiler was unable to open the .Q

file specified on the LC2 command, usually because it did
not exist on the specified (or currently logged-in)
drive/directory.

Can't open source file
The first phase of the compiler was unable to open the .C

file specified on the Lcl command, usually because it did
not exist on the specified (or currently logged-in)
drive/directory.

File name missing

A file name was not specified on the LCl or LC2 command.

Intermediate file error

The first phase of the compiler encountered an error when

writing to the .Q file. This error usually results from an

out-of-space condition on the output disk.

Invalid command line option

An invalid command line option (beginning with a -) was

specified on either the LCl or the LC2 command. See

A-I

Lattice 8086/8088 C Compiler Error Messages

Sections 4.1.1 and 4.1.2 for valid command line options.
The option is ignored, but the compilation is not otherwise
affected. In other words, this error is not fatal.

No functions or data defined

A source file which did not define any functions or data
elements was processed by the computer. This error always
terminates execution of the compiler. It can be generated
by forgetting to terminate a comment, which then causes the
compiler to treat the entire file as a comment.

Not enough memory

This message is generated when either phase of the compiler
uses up all the available working memory. The onLy cure for
this error is either to increase the available memory on the
system, or (if the maximum is already available) reduce the
size and complexity of tbe source file. Particularly large
functions will generate this error regardless of how much

memory is available; break the task into smaller functions
if this occurs.

object file error

The second phase of the compiler encountered an error when

writing to the .OBJ file. This error usually results from
an out-of-space condition on the output disk.

A.2 Numbered Error Memages

These error messages describe syntax or specification errors in
the source file; they ate generated by the first phase of the
compiler. a few are warning messages that simply remark on

marginally acceptable constructions but do not prevent the
creation of the quad file. See Section 4.3.3 for more

information about error processing.

I This error is generated by a variety of conditions in
connection with pre-processor commands, including specifying
an unrecognized command, failure to include white space
between command elements, or uge of an illegal pre-proce3sor
symbol.

2 The end of an input file was encountered when the compiler
expected more data. This may occur on an tinclude file or
the original source file. In many cases, correction of a

previous error will eliminate this one.

3 The file name specified on an Unclude command was not
found.

4 An unrecognized element was encountered in the input file
that could not be classified as any' of the valid lexical
constructs (such as an identifier or one of the valid

A-2

Lattice 8086/8088 C Compiler Error Messages

expression operators). This may occur if control characters
or other illegal (i.e., high bit set) characters are
detected in the source file. This may also occur if a pre—

píocessor command is specified with the t not in the first
position of an input line.

5 A pre-processor tdefine macro was used with the wrong number

of arguments.

6 Expansion of a #define macro caused the compiler's line
buffer to overflow. This may occur if more than one lengthy
macro appears on a single input line.

7 The maximum extent of iinclude file nesting was exceeded;
the compiler supports tinclude nesting to a maximum depth of
4.

8 An invalid arithmetic or pointer conversion was specified.
This usually results when an attempt is made to convert
something into an array, a structure, or a function.

9 The named identifier was undefined in the context in which
it appeared, that is, it had not been previously declared.
This message is only generated once; subsequent encounters
with the identifier assume that it is of type int (which may

cause other errors).
10 An error was detected in the expression following the [

character (presumably a subscript expression). This may

occur if the expression in brackets is NULL (not present).

II The length of a string constant exceeded the maximum allowed
by the compiler (256 bytes). This will occur if the closing
" (quotes) are omitted in specifying the string.

12 The expression preceding the . (period) or -> structure
reference operator was not recognizable by the compiler as a

structure or pointer to a structure. This may occur even
for constructions which are accepted by other compilers; see
Section 2.1.

13 An identifier indicating the desired aggregate member was

not found following the . (period) or -> operator.

14 The indicated identifier was not a member of the structure
or union to which the . (period) or -> referred. This may

occur for constructions which are accepted by other
compilers; see Section 2.1.

15 The identifier preceding the (function call operator was

not implicitly or explicitly declared as a function.

16 A function argument expression specified following the (

function call operator was invalid. This may occur if an

argument expression was omitted.

A-3

Lattice 8086/8088 C Compiler Error Messages

17 During expression evaluation, the end of an expression was

encountered but more than one operand was still awaiting
evaluation. This may occur if an expression contained an

incorrectly specified operation.

18 During expression evaluation, the end of an expression was

encountered but an operator was still pending evaluation.
This may occur if an operand was omitted for a binary
operation.
L

19 The number of opening and closing parentheses in an
expression was not equal. This error message may also
occur if a macro was poorly specified or improperly used.

20 An expression which did not evaluate to a constant was

encountered in a context which tequired a constant result.
This may occur if one of the operators not valid for
constant expressions was present (see Kernighan and Ritchie,
Appendix A, p. 211).

21 An identifier declared as a structure, union, or function
was encountered in an expression without being properly
qualified (by a structure reference or function call
operator).

22 This non-fatal warning occurs when an identifier declared as
a structure or union appeared as a function argument without
the preceding & operator. Expression evaluation continues
with the & ássumed (i.e., a pointer to the aggregate is
generated).

23 The conditional operator was used erroneously. This may

occur if the ? operator is present but the : was not found
when expected.

?4 The context of the expression required an operand to be a

pointer. This may occur if the expression following * did
not evaluate to a pointer.

25 The context of the expression required an operand to be an

lvalue. This may occur if the expression following & was

not an lvalue, or if the left side of an assignment
expression was not an lvalue.

26 The context of the expression required an operand to be

arithmetic (not a pointer, function, or aggregate).

27 The context of the expression required an operand to be

either arithmetic or a pointer. This may occur for the
logical OR and logical AND operators.

28 During expression evaluation, the end of an expression was

encountered but not enough operands were available for

A-4

Lattice 8086/8088 C Compiler Error Messages

evaluation. This may occur if a binary operation is
improperly specified.

29 An operation was specified which was invalid for pointer
operands (such as one of the arithmetic operations other
than addition).

30 This non-fatal warning occurs when in an assignment
statement defining a value for a pointer variable, the
expression on the right side of the = operator did not
evaluate to a pointer of the exact same type as the pointer
variable being assigned, i.e., it did not point to the same

type of object. See Section 2.1 for an explanation of the
philosophy behind this warning. Note that the same message
becomes a fatal error if genera€e<i for an initializer
expression.

31 The context of an expression required an operand to be

integral, i.e., one of the integer types (char, int, short,
unsigned, or long).

32 The expression specifying the type name for a cast
(conversion) operation or a sizeof expression was invalid.
See Kernighan and Ritchie, Appendix A, pp. 199-200 for the
valid syntax.

33 An attempt was made to attach an initializer expression to a

structure, union, or array that was declared auto. Such

initializations are expressly disallowed by the language.

34 The expression used to initialize an object was invalid.
This may occur for a variety of reasons, including failure
to separate elements in an initializer list with commas or
specification of an expression which did not evaluate to a

constant. This may require sorne experimentation to
determine the exact cause of the error.

35 During processing of an initializer list, a structure, or
union member declaration list, the compiler expected a

closing right brace, but did not find it. This may also
occur if too many elements are specified in an initializer
expression list or if a structure member was improperly
declared.

36 This implementation does not allow initializer expressions
to be used for unions.

37 The specified statement label was encountered more than once

during processing of the current function.

38 In a body of compound statements, the number of opening left
braces { and closing right braces) was not equal. This may

also occur if the compiler got "out of phase" due to a

previous error.

A-5

Lattice 8086/8088 C Compiler Error Messages

39 one .of the C language reserved words appeared in an invalid
context (e.g., as a variable name). See Kernighan and

Ritchie for a list of the reserved words (p. 180). Note
that entry is reserved although it is not implemented in the
compíler.

40 A break statement was detected that was not within the scope
of a while, do, for, or switch statement. This may occur
due Lo an error in a preceding statement.

41 A case prefix was encountered outside the scope of a switch
statement. This may occur due to an error in a preceding
statement*

42 The expression defining a case value did not evaluate to an

int constant.

43 A case prefix was encountered which defined a constant value
already used in a previous case prefix within the same
switch statement.

44 a continue statement was detected that was not within the
scope of a while, do, or for loop. This may occur due to an

error in a preceding statement.

45 a default prefix was encountered outside the scope of a

switch statement. This may occur due to an error in a

preceding statement.

46 A default prefix was encountered within the scope of a

switch statement in which a preceding default prefix had

already been encountered.

47 Following the body of a do statement, the while claw'e was

expected but not found. This may occur due to an error
within the body of the do statement.

48 The expression defining the looping condition in a while or
do loop was NULL (not present). Indefinite loops must

supply the congtant I, if that is what is intended.

49 An el8e keyword was detected that was not within the scope

of a preceding if statement. This may occur due to an error
in a preceding statement.

50 A statement label following the goto keyword was expected
but not found.

51 The indicated identifier, which appeared in a goto statement
as a statement label, was already defined as a variable
within the scope of the current function.

52 The expression following the if keyword was NULL (not
present).

A-6

Lattice 8086/8088 C Compiler Error Messages

53 The expression following the return keyword could not be

legally converted to the type of the value returned by the
function. This may be generated if the expression specifies
a structure, union, or function.

54 The expression defining the value for a switch statement did
not define an int value or a value that could be legally
converted to int.

55 The statement defining the body of a switch statement did
not contain at least one case prefix.

56 The compiler expected but did not find a colon (:). This
error message also may be generated if a case expression was

improperly specified, or if the colon was simply omitted
following a label or prefix to a statement.

57 The compiler expected but did not find a semi-colon (;)·
TFÜs error generally means that the compiler completed the
processing of an expression but did not find the statement
terminator (;). This may also occur if too many closing
parentheses are included or if an expression is otherwise
incorrectly formed.

58 A parenthesis required by the syntax of the current
statement was expected but was not found (as in a while or
for loop). This may also occur if the enclosed expression
is incorrectly specified, causing the compiler to end the
expression early.

59 In processing external data or function definitions, a

storage class invalid for that declaration context (such as

auto or register) was encountered. This may also occur if,due to preceding errors, the compiler begins processing
portions of the body of a function as if they were external
definitions.

60 a storage class other than register appeared on the
declaration of a formal parameter.

61 The indicated structure or union tag was not previously
defined; that is, the members of the aggregate were unknown.

62 A structure or union tag has been detected in the opposite
usage from which it was originally declared (i.e., a tag
originally applied to a struct has appeared on an aggregate
with the union specifier). The Lattice compiler defines
only one class of identifiers for both structure and union
tags.

63 The indicated identifier has been declared more than once

within the same scope. This error may be generated due to a

preceding error, but is generally the result of improper
declarations.

Á-7

Lattice 8086/8088 C Compiler Error Messages

64 a deelaration of the members of a structure or union did not
contain at least one member name.

65 An attempt was made to define a function body when the
compiler was riot processing external definitions. This may

occur if a preceding error caused the compiler to "get out
of pbase" with respect to declarations in the source file.

66 The expression defining the size of a subscript in an array
declaration did not evaluate to a positive int constant.
This may also occur if a zero length was specified for an
inner (i.e., not the leftmost) subscript.

67 A declaration specified an illegal object as defined by this
version of C. Illegal objects include functions which
return aggregates (arrays, structures, or unions) and arrays
of functions.

68 A structure or union declaration included an object declared
as a function. This is illegal, although an aggregate may
contain a pointer to a function.

' 69 The structure or union whose declaration was just processed
contains an instance of itself, which is illegal. This may
be generated if the " is forgotten on a structure pointer
declaration, or if (due to some intertwining of structure
definitions) the structure actually contains an instance of
itself.

70 A function's formal parameter was declared illegally; that
is, it was declared as a structure, union, or function. The

compiler does not automatically convert such references to
pointers.

71 A variable was declared before the opening brace of a
function, but it did not appear in the list of formal names

enclosed in parentheses following the function íjame.

72 An external item has been declared with attributes which
conflict with a previous declaration. This may occur if a

function was used earlier, as an implicit int function, and

was then declared as returning some other kind of value.
Functions which return a value other than int must be

declared before they are used so that the compiler is aware

of the type of the function value.

73 In processing the declaration of objects, the compiler
expected to find another line of declarations but did not,
in fact, find one. This error may also be generated if a

preceding error caused the compiler to "get out of phase"
with respect to declarations.

74 During processing of external declarations, an attempt was
made to define a function, but it was not the first
identifier declared on the input line.

A~8

Lattice 8086/8088 C Compiler Error Messages

75 An attempt was made to define the same function more than
once within the same source module.

76 The compiler expected, but did not find, an opening left
brace in the current context. This may occur if the opening
brace was omitted on a list of initializer expressions for
an aggregate.

77 In processing a declaration, the compiler expected to find
an identifier which was to be declared. This may occur ifthe prefixes to an identifier in a declaration (parentheses
and asterisks) are improperly specified, or if a sequence of
declarations is listed incorrectly.

78 The indicated statement label was referred to in the
previous function in a goto statement, but no definition of
the label was found in that function.

79 In processing a list of declared items, the compiler
expected a separator (comma or semi-colon) but did not find
one. This usually results from an improperly specified listof names being declared, or from an attempt to initialize an

object for which initialization is not permitted (such as an

extern object).

80 The number of bits specified for a bit field was invalid.
Note that the compiler doe8 not accept bit fields which are
exactly the length of a machine word (such as 16 on a 16-bit
machine); these must be declared as ordinary int or umigned
variables.

81 The current input line contained a reference to a pre-
processor symbol which was defined with a circular
definition, or loop. See Section 2.2.1 for an example.

82 The size of an object exceeds the maximum legal size (which
is the largest positive int); or, the last object declared
caused the total size of declared objects for that storage
class to exceed that maximum. This may also occur if the
size of formal parameters exceeds 256 bytes.

83 This non-fatal warning complains of an indirect reference
(usually a subscripted expression) which accesses memory

beyond the size of the gbject used as a base for the address
calculation. It generally occurs when an element beyond the
end of an array is referred to.

A-9

Lattice 8086/8088 C Compiler Compiler Errors

APPENDIX B:

Compiler errors

This' appendix describes the procedure to be used for reporting
compiler errors. These are errors that result not from the
user's incorrect specifications but from the compiler itself
failing to operate properly. There are five general kinds of
errors which can occur:

I. The compiler generates an error message for a source
module which is actually correct.

2. The compiler fails to generate an error message for an

incorrect source module.

3. The compiler detects an internal error condition and

generates an error message of the form

CXERR: nn

where na is an internal error number.

4. The compiler dies mysteriously (crashes) while compiling
a source module.

5. The compiler generates incorrect code for a correct
source module.

The last type of error is, of course, the most difficult to
determine and the most vexing for the programmer, who has no

indication that anything is wrong until something inexplicably
doesn't work; who OñÍY concludes that the compiler is at fault
after a long and painstaking study of his or her own code.

Lattice, Inc. is anxious to know about and repair any compiler
errors as quickly as possible, so please report any problems
promptly. The difficulties encountered may be spared the next
programmer if this is done. In order to maintain a more precise
record of the bugs that are discovered, all problems should be

reported in writing to:

Lattice, Inc.
P.O. Box 3072

Glen Ellyn, Illinoi8
60138

In all cases, include the following items of information:

I. A listing of the source module for which the error
occurred. Don't forget to include listings of any

tinclude files used (and watch out for tinclude file
nesting; don't forget the inner files as well).
Supplying the source on IBM PC-compatible disk format
will save time.

B-l

Lattice 8086/8088 C Compiler Compiler Errors

2. The revision number of the compiler, when it was

purchased and the serial number.

3. Your name and address and, if possible, a telephone
number with information about the best time to call.

4. A description of the problem, along with any other
information which may be helpful such as the results of
your investigation into the problem. Obviously, errors
of type 3 (see above) don't need anything more than a

terse "Causes CXERR 23."

Our current policy in cc)operation with our publisher,
Lifeboat Associates in New York, calls for a free update
to the first finder of a bona fide bug!

Meanwhile, attempt to code around the problem; if that
doesn't work, mutter a few curses directed at "lousy
compiler writers" and work on something else. Remember,

Lattice is in the business of supplying portable C

compilers and uses them for its own development work;
the motivation to fix the bugs immediately is definitely
there.

B-2

Lattice 8086/8088 C Compiler ConverUon of CP/M program

APPENDIX C:

Conversion of CP/M-80 Programs

Because of its similarity to CP/M-80, it is reasonable to expect
that C programs written for that operating system will be

transported to MS-DOS without a great deal of difficulty. This
appendix attempts to point out some of the pitfalls likely to be

encountered when moving source from CP/M to MS-DOS or vice-versa
for compilation with the Lattice C compiler.

The least amount of trouble lies in store for those who have

written programs for the BDS C compiler. At the source code

level, every effort has been made to be compatible. while the
Lattice compiler is a little stricter in some things, gene,rally
the correction is accepted by the BDS compiler as well, which
Facilitates keeping one set of source code for both sYstems. For
example, a sequence like

char "cp;
V e 0
cp = cfunct(i);
0 0 O
char *cfunct(n)
int n;
{

0 V 0

will cause the Lattice ccmpiler to complain about a mismatch of
external attributes, because cfunct is used implicitly as int
before it is defined as char *. Inserting

char "cfunct();
prior to the first use of cfunct eliminates the error, and is
acceptable to the BDS compiler as well. As for other coding
constructions, the warning generated for structures supplied as
function arguments without a preceding & was included
specifically for BDS C programs. The problem of external data
definitions posed bj' the bds implementation's lack of storage
class specifiers is mlved by the -x compile-time option. Here

are the rules for using it on BDS C programs:

I. When compiling the main module, do not specify the -x
option. The various external declarations are
interpreted as definitions of the objects, and storage
is actually allocated for them.

2. When compiling any of the other modules, gpecify the -x
option on the LCl command. The various external
declarations are then interpreted as references to
objects defined elsewhere (presumably in the main

module).

Be careful not to compile more than one of the modules in the

C-l

Lattice 8086/8088 C Compiler Conversion of CP/M Programs

program without using the -x option; otherwise, the linker will
inform you that multiple definitions of the external items were
encountered.

At the library level, there are other, more serious difficult·ies.
Although the BDS library does a good job of supplying most of the
standard functions described in the Kernighan and RÍtchie text,
the details of their operation are different from the Lattice
functions in a number of small ways. In particular, putchar and

getchar are direct console I/O functions under BDS C, whereas
they are implemented as macros in Lattice C. This problem can be

avoided by using the console I/O functions described in Section
3.2.3. In general, it is best to review all of the functions
supplied in both libraries with a view toward locating potential
trouble spots. Many of the more specialized CP/M functions have

not yet been provided in the Lattice library, but check the
latest compiler addendum; others will probably be added as newer
versions of the compiler are released.

O * e

Users of the Whitesmiths C compiler are not likely to encounter
any problems with source language compatibility, but the library
is for the most part completely different. Hint: judicious use
of tdefines may eliminate some problems.

C-2

Lattice 8086/8088 C Compiler LÁ8t of Film

APPENDIX D:

LIST OF FILES

The following files are supplied as part of the compiler package:

Executable Film
LCI.EXE C compiler (phase l)
LC2.EXE C compiler (pha8e 2)

F'XU.EXE Function Extract Utility
okd.exe object Module Disassembler

Run-time and Library File8

CS.OBJ C program entry/exit module (S model)
CP.OBJ C program entry/exit module (F model)
CD.OBJ C program entry/exit module (6 model)
CL.OBJ C program entry/exit module ([model)
LCS.LIB Run-time and I/O library (S mÓdel)

LCP.LIB Run-time and I/O library (F model)
LCD.LIB Run-time and I/O library (ÍJ model)
LCL.LIB Run-time and I/O library (i model)

C Source Files

MAIN.C Standard library version of main
TINYMAIN.C Abbreviated version of main"
FTOC.C Fahrenheit-to-Celsius sample program
CA,T.C File concatenation 8ample program
FXU.C Source for function extract utilityCONIO.C Easic console I/O functions

C Header File8

STDIO.H Standard I/O header fileCTYPE.H Character type macro8 header file
ERROR.H Header file defining UNIX error numbers
FCNTL.H Header file defining level I I/O codes
IOSI.H Header file defining level I I/O 8tructure8
DOS.H Environment information header file
MSDOS.H Defines MS-DOS version
SP'!8086.H Memory model header file for S model
PM8086.H Memory model header file for F model
DM8086.H Memory model header file for iS model
LM8086.H Memory model header file for í model

—

(Note: in order to use the DOS.H header file, you must copy one
of the last four files into M8086.H.)

Amembíy Language Source Film
CeASM Source for C.OBJ (all versions)
IO.ASM Sample assembler language function

D-l

Lattice 8086/8088 C Compiler Íjist of Files

Assembly Language Macro Files

SM8086.MAC Macro includ" file used with S model
PM8086.MAC Macro include file used with p model

DP!8086.MAC Macro include file used with D model
LM8086.MAC Macro include file used with L model

(Note: in order to assemble the sample source modules, you must

copy one of the last four files into DOS.MAC.)

D-2

Lattié@ 0086/8088 C Compiler Index

INDEX

& address operator 2-2, 2-9, 2-ll
8087 numeric data processor 4-18, 4-21, 4-22
8088 processor 4-18, 4-33, 4-34

-a option 4-5, 4-28
address operator 2-2, 2-9, 2-ll
aliasing 4-5, 4-28
alignment requirements 2-6
aliment function 3-9, 3-10, 3-ll
arguments 4-39
arithmetic conversions 4-20
arithmetic objects 2-5
arithmetic operations 4-20
array name 2-2, 2—13

ASCII 3-63, 4-18
assembly language interface 4-40
auto storage class 2-7, 4-39

-b option 4-5
bdos function 5-6
BDOS function entries 5-3
binary mode 3-16, 3-40, 5-2
bit Fields 4-22
branch instructions 4—26

buffering 3-16, 3-41
byte alignment 4—5

byte ordering 4-18

-c option 4-5
calloc function 3-4, 3-5
CAT proqram 4-15
CD.OBJ 4-9, 4-37
cgets function 3-53
character constants 2-2, 2—12

character type 3-63
char 4-18, 4-21
CL.OBJ 4-9, 4-37
close function 3-48
clrerr function 3-34
code generation 4-24, 4-25
comments 2-l, 2-12, 4-5, 4-14
common subexpressions 2-ID
compile-time option 4-5, 4-8, 4-17, 4-28
compiler errors 4-25
compiler processing 4-23
conditional compilation 2-14
console I/O functions 3-49
constant operands 2-9, 2-ID
control flow analysis 2-11, 4-26, 4-27
conversions 4-20
CP.OBJ 4-9, 4-37
cprintf function 3-49, 3-55

I-l

Lattice 8086/8088 C Compiler Index

cputs function 3-49, 3-54
creat function 3-43, 5-l
cs.obj 4-2, 4-9, 4-37
cscanf function 3-49, 3-55
ctype.h 3-63

ctype array 3-63

Cxerr error message 4-25
CXFERR library function 4-22

i

-d option 4-5
D memory model 4-29
data elements 4-18
data formats 4-18
DATA segment 4-36
debugging 4-5, 4-lS
tdefine 2-4, 3-49
derived objects 2-6
device I/O 5-2
device names 5-3
DGROUP group 4-n, 4-38
differences from standard language 2-l
division by zero 4-20
dollar sign 2-2

double precision 4-21

echo 3-49
equality operators 2-13
error processing 4-25
escape character 2-12, 3-79, 3-80
exit function 3-13, 3-57
exit function 3-58

expression evaluation 2-9
external data definitions 2-14
external declarations 4-6
external function definitions 2-14
external names 4-19, 4-38
external reference 4-6
external storage class 2-7

fclose function 3-19
feof macro 3-33
ferror macro 3-33
fgetc function 3-22
fgets function 3-25
file access mode 3-17
file descriptor 3-40, 3-42
file I/O 5-l
file names 5-l
fileno macro 3-35
file number 3-40, 3-42
file pointer 3-15, 3-17
file position 3-31, 3-32, 3-40, 3-45,

3-46, 3-47
floating point 4-19, 4-21, 4-22

fmode location 3-16

2

Lattice 8086/8088 C Compiler Index

fopen function 3-17, 5-l
formatted input 3-27, 3-55
formatted output 3-29, 3-55
formal storage class 2-6
fprintf function 3-29
fputc function 3-22
fputs function 3-26
fread function 3-24
freopen function 3-18
free function 3-5
fscanf function 3-27
fseek function 3-17, 3-31
ftell function 3-32
function arguments 4-38
function call conventions 4-38
Function Extract Utility 4-13
function return value 4-40
fwrite function 3-24
FXU.EXE 4-13

-g option 4-8
getchar macro 3-20, 3-23, 3-49
getch function 3-50, 3-55
getmem function 3-7, 5-l
getml function 3—7

getc macro 3-20, 3-23
gets function 3-25, 3-49
groups 4-37

hardware characteri8tics 4-18
hardware regi8ters 4-27

-i option 4-6
óíf 2-2, 2-4, 2-14
Hnclude 3-15, 4-6, 4-17, C-20, 4-25
include files 4-6, 4-20
initialization 2-8
initializers 2-8
int86x function 5-8
int86 function 5-8
intdo8x function 5-7
intdos function S-7

integer overflow 4-20
inp function '1-43, 5-12
iomode location 3-41

Tminum macro 3-63
imlpha macro 3-63
i8a8cii macro 3-63
i8cntKl macro 3-63
imcáymf macro 3-63
i8c8y1m macro 3-63
iMigit macro 3-63
i8graph macro 3-63
i8lower macro 3-63
isprint macro 3-63

I-3

rjattice 8086/8088 C Compiler Index

ispunct macro 3-63
isspace macro 3-63
isupper macro 3-63
i8xdigit macro 3-63

kbhit function 3-52

L memory model 4-29
language definition 2-]
LCI.EXE 4-l
LC2.EXE 4-l
LCD.LIB 4-9, 4-30
LCL.LIB 4-9, 4-30
LCP.LIB 4-9, 4-30
LCS.LIB 4-2, 4-3, 4-9, 4-30
library functions 3-l
linkage conventions 4-37
linking 4-9
#line 2-14
line control 2-14
local declarations 2-7
logical end-of-file 3-40, 3-47
lsbrk function 3-13
lseek function 3-47
lvalue 2-13

-m option 4-6, 4-29
machine dependencies 4-LB

macros 3-16
main function 4-S, 4-12

main function 5-5
malloc function 3-3

maximum Size cjf declared object 2-3
maximum subscript length 2-4
member names 2-2, 2-12, 2-13, 2-15
memory allocation 3-l, 4-34, 5-4
memory models 4-6, 4-28
movedata function 5-ID
movmem function 3-61
MS-DOS 4-l, S-l

-n option 4-6

-o option 4-6, 4-8
object code conventions 4-36
object Module Disassembler 4-15
operating instructions 4-l
operating system 4-l
operators 2-9
open function 3-41, 5-2
optimization 4-26
order of evaluation 2-9
outp function 4-44, 5-12
overflow 4-22

I-4

Lattice 8086/8088 C Compiler Index

P memory model 4-28
peek function 5-ll
PGROUP group 4-37
phase l command line options 4-4, 4-5, 4-6
phase l processing 4-23
phase 2 command line options 4-8
phase 2 processing 4-24
pointers 2-6, 2-9, 4-18, 4-30, 4-32
pointer conversion warning 2-2, 2-3
pointer overlap 4-28
pointer variables 4-27
poke function 5-ll
portable library functions 3-l
pre-processor features 2-l, 2-4
primary expressions 2-12
printf function 3-29, 3-49
program entry/exit 5-5
program execution 4-ID
program exit 3-54
program generation 4-2
progrqm linking 4-9
prográm segment 4-36
program structure 4-34
putch function 3-50
putchar macro 3-21
putc nacro 3—21

puts function 3-26, 3-49

quadruples 4-23
quad file 4-3, 4-23, 4-25

rbrk function 3-12, 3-14, 5-l, 5-4
read function 3-40, 3-45, 5-2
registers 4-27, 4-38, 4-39
register storage class 2-7
register variables 4-23
relational operators 2-13
repmern function 3-62
rewind macro 3-17, 3-36
rl8menj function 3—8

rlsml function 3-8
r8tmem function 3-11, 5-4
run-time program structure 4-34

-8 option 4-6, 4-8
S memory model 4-29
ebrk function 3-13, 4-33
scanf function 3-27, 3-49
scope -of identifiers 2-8
segmerit definitions 4-36
segment registers 4-35
8egread function 5-9
setbuf function 3-16, 3-38
setmem function 3-60
8etnbf function 3-39

I-5

Lattice 8086/8088 C Compiler Index

shift operations 4-20
sign extension 4-20, 4-21
sizeof operator 2-2, 2-4, 2-14
sizmem function 3-6, 3-10
sprintf function 3-29
sscanf function 3-27
stack 3-l, 4-38, 4-44, 5-4

stack location 4-44, 4-45, 5-4
stack overflow 4-.36, 4-38, 4-44
stack pointer SP 4-36, 4-38
stack size 4-4, 4-11, 4-45
standard error 4-ll
standard input 4-11, 4-12
standard output 4-11, 4-12
static storage class 2-7
stcarg functicm 3-79
stccpy function 3-66
stcd i function 3-72
stch"i function 3-71
stcisn function 3-78
stci d function 3-70
stcis function 3-78
stclen function 3-65
stcpma function 3-Bl
stcpm function 3-80
stcu d function 3-69

—stderr 3-16, 4-11, 4-17, 5-2

stdio.h 3-1: 5, 3-38, 3-83, 4-32
stdin 3-16, 3-20, 4-11, 5-2

stdout 3-16, 3-21, 4-11, 5-2

storage classes 2-6
storage class specifiers 2-13
stpblk function 3-73
stpbrk function 3-77
stpchr function 3-76
stpsy: mm function 3-74
stptok function 3-75
strcat function 3-67
strcmp function 3-68
strcpy function 3-66
string constants 2-2, 2-4, 2-12
string utility functions 3-64
strlen function 3-65
structures and unions 2-2, 2-14, 4-18
structure and union declarations 2-13
structuee member references 2-2, 2-12
stscmp function 3-68
stspfp function 3-82
subexpressions 2-ID
switch statement 4-26

tags 2-13
temporaries 2-10, 4-39
text mode '3-16, 3-40, 5-2
tolower macro 3-63

I-6

Lattice 8086/8088 C Compiler Index

toupper macro 3-63
translated mode 3-16, 3-40, 5-2
type-ahead 3-49
type names 2-14
type punning 2-ID

unary operators 2-13
tundef 2—5

underflow 4-22
ungetch function 3-51
ungetc function 3-23
uninitialized pointer 4-33
unions 2-9, 2-14, 4-5, 4-18
unlink function 3-44
unresolved externals 4-ID
untranslated mode 3-16, 3-40, 5-3

utility functions and macros 3-59

-v option 4-8

warning message 2-3
write function 3-46, 5-2

-x option 4-6

zerodivide 4-22

I-7

Lattice 8086/8088 C Compiler Suppltmmt for version 2.10

Lattice 8086/8088 C Canpiler

manual sUppLmRtr fcr veaskn 2.10

1.0 SIFMARY CE

The fo1lowim list sumar izes the tnost important differences
tetween Version 2.10 and Version 2.00. Please no te that UÜ3

docunent is intended as a supplenent to the Version 2.(J0 manual
.

If you do not yet have that manual
, you must contact the

publ isher from wbcm jpu purchased the compiler and make arrange-
mmts to obtain it.
l. 1 Ctmpiler Dtif fermces

'Ihe compiler bas been been upgraded in a few minor ways, as the

following list indicates:

— Extem/static objects as large as 64K now permitted

— New -d fliig to tdefine symbols frcxn ccmnand line

— pre-defined synbols for manory model
,

operating system

— New -w fleg forces mrd aligrnent as in Version 1.04

— Wrger inµit lines/macro def initions supprted

— Additional warnings issued for questionable constructs

1.2 Library Differes
xjst of the differmces betRen Version 2.1 aíü version 2.0 are

in the library, as stmnarized in the Eollowim list:
— Automatic sensiW of MS-DOG I vs. MS-DOS 2

— Autcmatic ms: tnj and use of 8087 math chip

— UNIX-cmpatible math fmctions

— FauvExEc ccmbination f imctions

— ASCII/BINARY rmde specifiers on FOPEN

— Mcess to errvirornent strings

— Miscellmeow library add itions

W? have attanpted to keep all of the 2.1 chatyjes upward

canpatible with Version 2.0, arü so you should not have to change

my existim pr¢jgrans. lbwever, the Mdi tion of MS-DCS version

I

Lattice 8086/8088 C Compiler SuFpl%mt for Version 2.10

sensing and 8087 sensing has caused the library to grow a bit.
Therefore

, prcgrans that were close to a manory limit might be

affected. Also, the FCRK/EXEC caµíbility forced us to chanje our
approach to memory allocation, which may affect prograns that
bypass our staMard m~ry managanent functions. This change in
the manory lajput for the S and P imdels forced a change in the

code generated to detect stack overflow, which means that
prograns using these models must be entirely reccmpiled before

they can use the new library. See section 6 for more details.

Version 2.1 also includes bug fixes in both the ccmpiler and the

library. These sMuld all Le transparmt, since none of the

doctíaented interfaces were changed
.

Finally, m've improved the operating procedures by aiding an LC

canínarü that invokes both canpiler passes and by aiding several

batch f lies that copy the release disks to our rec«mended

directory structure on systans with hard disks.

The following sections describe these di fferences in detail.

table Of camtns

2.0 NEW CCMPI= FExñRE3 3

3.0 -MS-COS VERSION SENSING 6

4.0 AUKMATIC SEN3ING AND USE (JÉ 8087 MATH CHIP 7

5.0 UNIX-CCMPATIBLE MATH FLNcTr= 8

6.0 FCRK/EXEC CCMBINATION FUNCTICN3 20

7. 0 ASCII/BINARY MOLE SPECIFIERS CN FDPEN 24

8.0 access m mIRcNqENT strings 25

9.0 MISCELLANEOUS LIBRARY AñDITIcNs AND CORRECTIONS 27

10. 0 CCNVENIENCE FEAMES 34

11.0 LIST (JE FILES 36

2

Lattice 8086/8088 C Ccmpiler Supplm«it for Version 2.10

2.0 NEW CCMPILER FEATURES

In addition to the wual buj fixes, this version of the compiler

has been enhanced in several ways. These enhancements make i t
easier to Ejerforln conditional ccxnpilations, and allow a larger
class of prcgrans to be accepted by the compiler. At the sane
tiíne

,
several helpful warnings have been added which can often

point to coding errors.

2.1 New Storage Class Size Lhnitatíom

In the previous version of the ccxnpiler, no object could exceM

32767 bytes in size; moreover ,
the combined size of all objects

declared for a particular storage class was subject to the sane

limitation. In Version 2.í, the limit has been charged to 65535

bytes, for static arkj extern objects only. Structures may be
declared which are in excess of 32767 bytes, but the error
message "maximun object/storage size exceeded" will be generated

if an attanpt is made to declare m auto structure of that size.

2.2 CkmRrKj Line Definition of Pre-processor Sydxñs

'Ihe -d flag has bem exterüed to allow symbols to be ídef ined

frcm the ccmnarxi line .
7his feature allo'ws source files contain-

ing conditional ccnpilation directives (#ifdeE, Ufridef, tit,
telse, #eMif) to be used to prodtre dif ferent results witMut
modifying the source Elle, simply by definiW the appropr late
syntxil on the Lcl cQmnam. The -d fWj in its simplest form

retains the same meaning as in the previous version (i .e. , it
causes the ccmpiler to include line-number information in the

object file) .
The new forms of the ccmnand are

-ásydbol
4SµdbD1"value

where "symbol" is a stardard C idmtifier. The first form merely

defines the symbol with a null substitution text; the equivalent
C statmmt is

Klefine syt±ol

'Ihe second Eorm ees an equal sign to attach a substitution text
"value"; its equivalmt is

tdeflne ~1 value

Several definitions can be wed in the sane LCl cxmnand; however,

macros with argments cannot be defined fran the ccmnand line .

2.3 Pre-deffned ~Is
As a further assistance to conditional empilation, the compiler

now autcmatically #def ines several sµtols, which can be tested

in coMitional cxmpilation statments to select appropr late cede

sequences for the operating systm, memory mcdel, and so forth.

3

LÁttice 8086/8088 C Ccmpíler Supplanent for Version 2.10

These symbols have also simplified the new version of LCG.H aM

eliminated the need for the MSÍXJS. H, SM8086.EI, R'18086.H,

IM8086. H, and LM8086.H heiáder files supplied with Version 2.00 of
the canpiler .

'I\nkj sµnWls are alwYs defined in the compiler:

[define MSJXE3 l
Hefine 18086 I

One of the following symbols is defined, depending on the manory
mcxiel s£?ecified:

ídefine IB086S l defined if S mcdel, else trdefined
fdefine Í8086P l defined if P mdel, else mdefined

tdefine I8086D I defined if D model
, else tmdefined

tdefine I8086L I defined if L model, else uMefined

One or the other of the following is also defined, deWMi% on
the manory model:

tdefine SPTR I defined if S or P cmdel

#def ine ~ i defined if D or L model

If the -s option ms spcified on LCl, the following symbol is
defined:

tdefíne SELIG l
Finally, if the -d fliqj was specified (as "d", not "-dsyntx)]")

f
the following symi»l is defined:

idef ine I

The automatic definition of these synúbols can be µevmted by

usirg a new ccinpiler flag:

—u

Specifying this fW on LCl cancels all of the above definitions.

2.4 Optional Wjüí Aligment

An option to s%Fxjrt aligment of data elanmts other than cMr
to an even (mrd) offset has bem provided :

-W

Speci fyinj this flag on LCl causes all data elanents except char

itans t"j be assigned tÁj even offsets. Uiis aligmmt prcduces

mre efficient cede on art 8086 processor, mere fetchirg a mrd
on an odd byte Hundary requires four additional clock pericds.
tibe sane aligment was used as the default in version 1.04 of the
ccmpileL

.

4

Lattice 8086/8088 C Qmpiler Supplanmt for Version 2.10

2.5 &icpaMed Line ani Macro Sizes

Formerly, the substitution text for a #define macro was limited
to a maximm of 80 bytes; in Version 2.10, the new maximun is 256
bytes. Similary, the previous maximun size of an input source

line was 132 bytes; the new maximun is 256 bytes.

2.6 New WarniW Messqjes

M new warniW messages have been aided tiO Versicn 2. ID of the

canpiler. They are:

Warning 84: redefinition of pre-processor symbol "xxxx"
Warning 85: fimction return value mismatch

'lbe fi rst warning is issued whenever a #define statemen t i 3
enco un ter ed for m alreerly #defined synbol. As noted in tho

inanual ,
the second definition takes precedence, but requires An

additional #undef statment before the symbol is truly undefined.

The secorü warning is issued Üjenever the value returned by a

function is mt of the sane type as the function itself. The
value specified is autcmatically converted to the appropriate

tyµz; the warning merely serves to notify you of the conver: ñon.
The warning can be eliminated by usirg a cast 3perator to Fo rce
the return value to the fmction type.

Version 2.00 of the compiler generated warning 30 ("pointers clo

not point to sane object") only when the result of an assigment

statanent was a pointer. In Version 2.10, the same warning 1:3

generated when a pointer of any type is assigned to an arithnetic
object. a new warning (duplicate declarat.ion of item. "XXXX") is
now generated whm a formal par ane ter for a function 1:3

redeclared at the lowest level inside the fmction, as in

f (X)
char x;
{

int x;

Finally, the Lgé of an undefined structure tm in a pointer
declaration now causes only a warnim

, not an error , if the

structure is never defined — as loW as no attmpt is mMe to

refer to the structure's members, or to perform arithnetic with
the pinter .

2.7 New Error -|· · · ,1'·1~

If either oFerand in a logical CR (II) or logical AND (&&)

expression is constant, the ccxnpiler now will generate the err3r
messaje " invalid constant expression". If the end of source file
input is detected inside a constant, the error message
"mexpected end of file" will be generated.

5

mttice 8086/8088 C Gcmpiler Supplanmt for Version 2.10

3.0 ms-dc6 vmsxm sen3ing

The start-up prcgran (see C.A&°l) now sets up a global variable
naned dos that indicates which version of MS-DKJS is active.
'Ihe li6rary fmctions then test this variable at appropriate

points in order to call the proper low-level operating systan
service fmctions.

You can refer to dos in twD mys, as follow:

extern char dos;

extern char "dos [2] ;
—

The ms-= major version ntxüer (l or 2) is then ffómd at dos
—.(fl rst rnetMd) or dos[0] (secoM metPM)

.
The mino r versionntxnber is fotrid at dos[l] for the second metMd only.

As jpu can see by exanining c.m, the MS-= version information
is obtained via operatim sYstaa call 30, ídüch is fully
described in the MSAJOS or FC~ Téchnical Refermce. We wsurethat dos will never contain a value of 0 when operating uwüer

and we may use the 0 value to indicate CP/M-86 in a
future release.

6

Lattice 8086/8088 C Qxnpiler Supplanent for Version 2.10

4.0 AUKMATÍC SEN3ING AND USE OF 8087 MATH CHIP

The floatíryj point simulation functions in the library have betm
changed to detect the presence C1É the 8087 níath chip. IE the

chi p is -installed, Y3ü should notice a l áLjQ pzr Eu)rmáníü"
improvment in prograns that do many floatinj µÁnt Qµeratic}i1s.

Ñjtice that you do not need to usc" |.!íc? -E f!:vj i j or"h±í '..) obtát':
the benefits ctf the 8087 under Ver: Mn 2. :- F·-lrth: ?rmore, tim

progrms that you generate will rim c?rrg-: ¿:}' o: ' a sys: am 'withou:
the math chip. Ink are still c-3n3íd'.'ri¡ij t'iú u.f.e of the -t fj'jj
to stimulate in-line 803? ccxle ,j'·m: itian, but this may bo
dropped if the bi-modal library appro ich píoy·g?s adequate.

7

uttice 8086/8088 C Ckinpiler Suppl@mt for Version 2.10

5.0 LNIX-CCMFATIBLE MA7H FLNCTICN3

Version 2.1 incluies a large portion of the floating pint math

functions that are usually provided with LNIX. Detailed

specif ications are given in the following manual pages. bbte

that tN heaier files math.h and limits.h should usually be
included when jNjU are using these functions.

8

Wttice 8086/8088 C Ccxnpiler Supplanent for Version 2-ID

NIWE

exp,lcg Jcgl0,pw,sqrt -- exponential ftmctions

SYNOPSIS

r = exp(x) ; coonpute E**x

r = log(x); canµite natural leg of x

r = Icgl0(x); compute base 10 lcig of x

r = Fow(Xgy); compute x**y
r = sqrt(x); ccmpute square root of x

double r; result
dotble x,y; arg merits

[mmFTIcN

For lago jmgl0, and sqrt, the x argment mwt be positive,
and for pow, the y argunent mwt be an integer if x is
negative.

9

Lattice 8086/8088 C Ocmpiler Supplanmt for Version 2.10

NNQE

sin ,cos ,tan ,asin ,aco5 ,atan ,atan2 — transceMmtal fmctions

SYNOPSIS

x = sin(r); canpute sine of r (r in radians)

x = cos(r); canpute cosine of r
x = tan(r) ; canpute tammt of r
r = asin(x); canpite arcsin of x

r = acos(x); compAe arccosine of x

r " atan(x) 7 ccmµite arctangmt of x

r = atm2(y,x) ; canpute arctargmt of y/x

double r,x,y;

The sin, cos, and tan fmctíons canpite the normal

tr igometric fmctions of angles expressed in rMians.

The asín ftmction ccnputes ttM inverse sine and returns a

rallan value in the range -PI/2 to +PI/2.

7he acos function ccmputes the inverse cosine and retwns
a rallan value in the range 0 to PI.

7te atan f~tion cmNtes the inverse tangmt arid returns a

radian value in tN rmge -PI/2 to +PI/2.

The atan2 fmctíon ccmµites the imíerse sine of y/x aM

returns a rMian value in the rarge -PI to +PI.

10

Lattice 8086/8088 C Cíxnpiler Supplement for Ver': ion 2.lcj

L

sinh,cosh ,tanh -- hyperbcl i: : func'ims

SJ/NOFE'IS

x -- sirih(y) ; -»mptíte hypcrbo: i: .:i::í-'

x = ccx: h(y); c{ycÉ)'jrl.? }:n-erb:}:! : ¿'·jSZ:l?

x = tanh'g'); :a!íy'jt.e 7in?etb·}iz3 t.míje'rít

double x,y;

DESCRIPTION

'These fancticms si: mly zompute the normal :}Ype[!jot 'us.

l!

Lattice 8086/8088 C Compiler ~lment for version 2.10

rand,sraM — símµle random nanber generation

S!LN0PSIS

x X rand();
srard(seed);

int x; random nunber
msigned seed; randcm number seed

The rarid fmction returns pseudo-randcm numbers in the rarEje

fran 0 t3 the maximijn positive integer value. At any time,
you cauj call sreM to reset the nunber generator to a new

sta[tirü ·point. The initial default seed is I. See the

description Qf draM for more sophisticated rarxkm nuítber

generation .

12

Lattice 8086/8088 C Qmpiler SUqÉjp1mmt for Version 2.10

bUWE

drard — generate random nunljers

SYNOFSIS

x = drand48(); generate dotble (internal seed)

x = eraM48(y) ; generate double (external seed)

z = Irard48(); generate posi tive lom (internal seed)

z = nrand48(y) ; generate positive long (external seed)

z = wand48(); generate long (internal seed)

z *. jrand48(y) ; generate lorg (external seed)

srarid48(z) ; set high 32 bits of internal seed

p = seed48 (y) ; set al] 48 bits of internal seed
lcong48 (k) ; set linear congruence µiraneters

double x;
msigned stK)rt y{3];
long z;
msigned stort "p;
tnsigned stmt k[7];

Imm1?TIcN

These fmctions generate pseudo-randcm nunbers using the

linear congruential algorithn and 48-bit integer arithnetic.
The normal versions (drand48, lraM48, mrand48) utilize an

internal 48-bit storWe area for the seeá value. Special

versions (eraM48, nrand48, jrand48) are provided for cases
where several seeds are in use at the sane time, in which

case the =r provides the seed storage areas.

7he draü48 and erarñ48 f ímctions return values mi founly
distr ibuted aver the interval from 0.0 up to but ntjt
including 1.0.

'Ihe lrand48 and nrand48 fmctions return non-negative lorU3

fntegers m iformly distributed over the interval from 0 to

2"*31-1.

The mrand48 and jraM48 fuictions return signed 1orY3

integers miformly dístr ibuted over tm interval from -2**31

to 2** 31—L

The srtM48 arid seed48 fmctions allow ydu to initialize the

internal 48-bit seed value to sKmethim other than the

defaults. Fbr sreM48, the speciEied long value is copied

into the high 32 bits of the seed, and + low 16 bits are

set to 0x330e. Fbr seed48, the mtire 48-bits are lomed

frcm the sFecified array, and the finction returns a pointer
to the internal seed array.

13

Lattice 8086/8088 C Cainpiler SuFpleum1t for version 2.10

'The lcong48 f mction allow you to do a much more intr icate
initialization of the linear cQWruential álgorithn. tlhe

algoritkn is of the form:

X[n+l] = (a* xInj + C) fllKÁm

where m is 2*"48 and the default values for a and c are
0x5deece66d dKKÍ 0xb, resµzctively. ¶ie array passed to
lcorg48 contains the value for x{n] in k{0) to kf2}

,
the

value for a in k[3] tD k[5], and m value for c in k[6]-
Ptien you call seed48, a arid c are reset to their original
default VálüéSe

14

Uttice 8086/8088 C Ctmpiler &|Fp1m@t for Version 2.10

NAME

cei1,fabs,fkor ,Emod ,frexp,ldexp,mcdf -- float conversions

SYNOPSIS

x = ceil(y); get ceiling integer

x = Eabs(y); get absolute value

x = floor(y); get floor integer

x = ~(Y,Z); get njcxí value

x = frexp(jhp); split into mantissa and exponent

x = ldexp(YÁN load exponent

x = md£(yfp); split into integer and fraction

double x,y,z;
int i ;
double *p;

'These functions convert floating point nmbers into var ious

other forms.

The floor and ceil functions return the integE"r values that
are just below and jl-gt above the spec ified value,
respectively.

The HikxÍ fmction returns y if z is zero .
Otherwi se ,

i t

returns a value that has the same sign as y, is less than z,
and satisfies the relationship

y = i * z + x

where i is an integer.

The frexp fimction splits y into its mantissa arid exj»n·mt

urts. 'The expcment is placed into the area pointed ro b'j

p, b&ji1e the mantissa is returned by the functiDn.

'Ihe ldexp function returns y * (2 ** i) .

The mcdf fmction returns the fractional part of y with the

same sign as y and places the integer portion into the area

pinted to by p.

15

Lattice 8086/8088 C Compiler Supplmmt for Version 2.10
*

1unke

atof ,atoi ,atol — simple ASCII conversions

SYNOFSIS

x = atof (p); ASCII to floatimg point
i = atoi(p) ; ASCII to integer

l = ato1(p); ASCII to lopj integer

double x;
int i;
long I;
char *p;

DESCRIPTI(JN

'Ihese Etmctions >^Ljj over my leMing 'diite space (i -e.
bIaí1k3 and tabs) and then per form the appropriate
cuñv€Tsion. 'Ihe conversion stops at the f irst ímrecognized

character, and no check is rnMe for overflow.

Fbr atof, the ASCII string may contain a decimal pint and

may be Followed by an e or an E arid a signed integer

exµmimt. For all functions, a leading minus sign indicates

j negative noit±er. \díite space is not allowed between the
¿ninus sign and the number or betwem the number and the
?KEjonent*

16

Wttice 8086/8088 C Ccmpiler SuWlanmt for Version 2.10

bQWE

strtol — eonver t ASCII to long integer

SJQK)FSIS

r = strtol(s,p,base);

long r; resul t
áar *3; strim to be scmned
char **p; returns pointer to terminating character

int base; conversion base

[EsaunIcN

ibis fmction converts an ascii strim into a lom integer.
usim the sFecified number base for the conversion. Leatlinj

rdiite space (i.e. blanks and tabs) is skipped, aM the
conversion proceeds mtil m unreccgnized character is hi t.The pcñnter to the unreccgnized character is returned in p.

If no conversion can be performed, p will contain s, and the

result will be 0.

The conversion base can be in the ranje from 0 to 36. If it
is non-zero ,

then the ASCII str ing may contain digit
characters frorn 0 throüjh 9 and frcxn the letter A throcgh as
many letters as necessary, with no distinction made between

tpper and lower case. For exanple, if base is !3, then tiií-'

allowable digit characters are 0 through 9 and A,i3, and C '-k
a, b, and c. If base is 16, then a leading "Ox" or "OX" may

appear in the string.

If base is 0, then the leading characters of the stxifYj are
exanined to determine the conversion base. a 1eMin;j O

indicates octal conversion (base 8) , while a leeding Ox or
DX iMicates hexMec iinal conversion (base 16)

.
A leadin'j

digit from 1 to 9 indicates decimal conversion (base ID)
.

17

Lattice 8086/8088 C Ckmpiler Súfpimmt for Version 2.10

NAME

ecvt -- convert floatiW point to ASCII

SYNOFSIS

p = ecvt(value ,ridig ,dec,sign) ;

char *p; pinter to ascii strim
double value ; value to convert

int ridig; nunber of digits in string
int *dec¿ returns position of decimal point
int "sign; non-zero if negative

This fmction converts the specified value into a null-
terminated ASCII string cQntainim the specified number off
dig its. 7he integer pointed to by dec will then contain the

relative location of the decimal point, with a negative
value meaning that the decimal is to the left of the
returned dig its. 'The actual decimal point character is not
incl txied in the generated string.

18

Lattice 8086/8088 C Qmpiler Supplanmt for Version 2.10

NAME

matherr
-- haMle math fmction error

SYNOPSIS

code = mtherr(x) ;

int code; non-zero for new return value

struet exception *x; math exception block

ImmIprIcN

flhis fmction is called whenever one OE the other mat-h

functions detects an error. Upon entry, it receives the
exception block that describes the error in detail. 'M3
structure is defined in math.h, as follow:

struct exception
{

int type; error type
char *nane; nane of fmction having error
double argl; f irst. argunent
double arg2; second argunent
double ret; proposed return value
9:

The error type nanes defined in math.h are:

DCMAIN => domain error
SING => singularity
(NERFLKM => overflow

=> under f low

=> total loss of significance
FLOSS => partial loss of significance

Hjctj matherr is called ,
the fmction that detected the error

will have placed its proposed return value into the
exception structure. If you want to substitute a different
value, then matherr mwt return a non-zero code.

If you do mt supply a version of matherr, the stand ard

version will put the appropriate error nurber into errno and

return a cede of 0.

19

Lattice 8086/8088 C Ckmpiler SuEpl%mt for version 2.10

6.0 FQRFYEXEC c~IbuLTIcN EUETIcFí6

Version 2 contains a systm call tmt behaves like a
combination of + LNIX fork and exec functions. 1hat is, it
creates a "child" process which executes a specified IOM module.

!Ihe "parent" process can @n retrieve the child's canpiletion

cede via another new systan call that is similar to the INIX mit
f unct ion.

Qf course , MS4jOS Version 2 does not really sL«ort multi-
prcgrarmirg, arid so the parmt and child processes do not
actuaiiY timeshare the ccmpiter .

Uie j;ár«jt umains swpeMed

mtil the child terminates. Ebwever , if multi-progr=im is
added tD MS4X)S in the future, we expect that the interface
provided in our library will te maffected «cept tMt the parmt
will nc> lomer be totally out of bminess while ttm child
executes .

After reviewiW ~ new ftnctions described in « followiW
manual pagm jpu might mrüer u}y we did not provide m exact

equivalent of LNIX's fórk fmction. The mswer is simply tmt 1Ñe
could not figure out a general way to repl icate the parmt
process' s aídress spa: e on the 8086. mt is, ~ typical
prcqran oFeratim txüer MS-4XJS contains absolute "'"j"' ""'" nuúbers,
which nakes it impossible to move tie progran for mecution in
another area of mmory.

Meukky Manqjanmt CNuige

In order to implanmt the FÚRK/EXEC capebility, = hM to chame

our approach to mmory allocation for ¶ S and p mdels.
Version 2.0 of Lattice C rwained fully cxmpatíhle with the

earlier wallmw: del versions by placing the stack as high as
possible in the data segmmt and by µlacing the inanory pxíl {i .e.
the "heap") between the Static data area and ~ stack. However ,
for the D and L mdels intrcxíwed with Version 2.0, r

placed tm
stack imediately above the static data and male all rmainirg
manory above the stack available for the heap.

In Version 2.1, the stack is located just above the static data

for all mmory models. \kder MS-DOG 2, thm, ~ start-up
µo;jran (see " c./Lqq) returns all umainirg manory space to the
operatirrg systan so that there is roan to create a child process.
Ken you call djrk, it will attenpt to obtain tte r~ired anotnt

of space back frcm MS-DOS, and when you call rbrk, the space thw
obta int-d will once .again be givm back to MS-DC6. In other
'rjrcis, the manory allocation functions will appear to operate as
'íey did íxíder Version 2.0 cñ the compiler, but in fact tjñey will

.e much mjte closely coupled to the operating systm.

Che fly in the ointmmt is that a child process cm cMose to

terminate but remain resident in memory. If that happens, the

Farent may f irid that its heap cannot grow because the child

20

Lattice 8086/8088 C Qmpiler MPlmmt for version 2.10

process is in the my. lb help avoid this problan, @!ve added a

global variable called meed
.

'Ihis is simply a long integer

that sµecifies the minTnun nunber of bytes neMed in the heap.
At star t-up time and each time yum call rbrk, meed is
consul ted

. If sufficient sµce cannot be allocated, trié start-uµ
µrcgran aborts or rbrk returns a -l failure ccxie. Ñjt2 that ydli
can charge WbC£Xj each time jpu call rbrk.

Finally, if you referenced the pinters wbase and mext
directly witMut goiW throWh the tnmory al1&ation functions,
be aware that these are both 4-byte pointers cxxIer all memory
mcxiels. This impl les that under the S ard P models thés<-·

pointers sMuld not be treated as [6-relative offsets. .The sbrk

fmction aMs top to the first mrd of

_
in order to return

a N-relative offset tD you. Also
, sbrk ensures that the heap

rmains within tM aidressing range of DEL

21

Lattice 8086/8088 C Gcmpiler suFp}anent for Version 2.}0

NNQE

forkjwit -- create child process and wit for it
SYNOFSIS

error = forkv(nme,argv) ;

error = Eorkl (nane,arg0,argl, ...
,argn.NKL) ;

erro r = forkvp(nane,argv) ;

error = forkjp(naoe,arg0,argl, . . · ¶argn0NULL) ;
code = mit();
int error; 0 for success, ñoHzéro for error
int ccxie; child process return code

char "nane; file nme of loai module
char *argv[]; argunent pinter array
char *arg0,"argl, .. argment pñnters

DE3CRIPTKN

These fmctions create a child process that executes the

sµxñ£i«í load mdule and then passes a return code back to
the prent process. The sFecified argtnents are passed to
the child's main entry' p'int via the normal argc/argv

inechanim. By convention, the first argunmt (i.e. arg0 or
argv[0)) is the nane of the child µrocess loal mdule, which

is usually the sume as nane. Note, however, that this first
ar'junent is not actually passed to the child process because

of limitations in the MS—DQS process creation pr imitives.
Also note that these same limitations restrict the total
length " of all argunent strings to be no more than 127

characters.

The fmction naaes have been cMsen to match the var ious

forms of the LNIX exec fimction. 'The "V" suffix on forkv
and forkvp indicates that the argments are suppl led as a

vec tor in the argv form. 7hz last pointer in the vecto r
must be null. The "I" suffix on Eorkl arü forklp iMicates
that the argtmmts are supplied as a list of f'ointers, with
the last pointer being null. 'The "p" suffix on Eorkvp and

forklp indicates that the PATH enviroment variable sFmüd

be wed if the load mcxiule is not found in the current
jirectory. id~ stepping through the directDries, the

functions look for "name.CCM" and then "nane.EXE" in each

directory.

It the child process cmnot be created, the fork fmction
returns a non-zero result. Under MS-tOS, the global integer
oserr will contain the operating sYstxm error cede. If it

Is 0, the error occurred while processing the fork call
par meters .

cAUrI~

22

Lattice 8086/8088 C Cjcmpiler Supplwmt for Version 2.10

urder MS-DOS the argunents are converted into a text string
no longer than 127 bytes. !n7e first argunmt (i.e. arg0 or

argv{0]) is dropµxi, arü a blank is placed between
sUcceediW argunmts. 1he resultim strim is passed to the

child in its camand line buffer . If the child is a C

pragran, its startup ©ase will comert the camnaM line
back iñtÁj an arg list.

23

Lattice 8086/8088 C Compiler Supplanmt for Version 2.10

7.0 ASCII/BINARY MOFE SPBCIFWRS CN FOPEN

Since the Éé of the finode global flag bas confused some users,
we've added mother"way to specify translated or mtranslated
mode when openim a level 2 file via fopen or freopen. You can

now specify translated mcxle by placing the letter 'a' in the
seco"nd position of the mode string. Similarly, the letter 'b'
sµci fies mtranslated mcrle. If the second letter is neither of
these, Einode is wed as before.

Note that this new approach is ncjt currwtly LNIX-compatible.

Fbwever ,
several other C ccmpiler packages mrk this way, airü

proposals for this apprOach are floating around sene of the
standards ccjmnittees.

In sumary, foFen and freopen now reccgnize the following mcxie

strings:

r — open for reading (translation according to Encde)

ra — open for reading (translated) "
rb — open for re¿Kjim (mtrmslated)

w — open for writinj (translation accordirg to hncde)

wa — 3perl Edi writing (translated) "
wb -- open for wr it¿W (mtranslated)

a — open for appendiW (trmslation accordiW to finode)

aa — open for appendiW (translated) "ab — open for appending (mtranslated)

You cm also place a plus sign after any
, of these codes to

indicate opening for both reading md writing . If jk)u open for
reMing with a plim thm the file must alre&!y exist; but if ydu

open for writing with a plm, the file will be created anew.
Qpming' for appending with a plw will allow ydu to reed frcn
anjMhere in the file, but all write operations will occur at the

end of the file.

I/O ERRCR C=
Nm we wrote the Version 2 manual

, we fngot to mention the

methDd by which you can determine what went wrom üíen one of
jptr I/O calls fails. In gmeral ,

we've tried to adhere to

LNIX's technique for reporting errors. &en you get a failure
indication Eren m I/O f mction, consult the global integer
errno, which will contain one of the error cedes defined in the

healer file error.h. As a further refinmmt, you cm look at

~ global integer _omrr to see the MS~ error code, if any.
These codes are de&ribed in the MS4XX3 and FC4JC6 Reference
Mmuals.

24

Lattice 8086/8088 C Compiler %pp1anent for Version 2.10

8 .0 ACCESS TO STRINGS

MS-ljOS Version 2 supports the LNIX notion of " env irorrnent

strings", díich are of the fbrm "nane=value" ard are usually
def ined by the SET camand . 'Ihe strings are stored one after
another in the erivironment at'ray, and the last one is followed by
a null strinj. Ü[joñ entry, the public pointer env point3 to
the cur rent enviroment array. Ebr the S and P" mdel.z: , the

startup prcxjran copies the enviroment into the stack sc) that you
can address i t relative to [g. Note that the stack sfjáce
requir«] for this is added to the jaiue jpu specify' in stack oí
on the camard line.

7he LNIX-compatible getenv function has been aided to the library
t:j «iabl p you to easily find a µrticular nane in the
env irorvnent

.

25

Kttice 8086/8088 C Cmpiler Supplmmt for Version 2.10

NAME

getenv — get envirorxnent striW by nane

SYNOPSIS

p = getemr(nane) ;
char "p; points to value prt of matching mv string
char *nane ; errv nane

lmmpTIoN

'This fmction searches the errviroment array pointed to by

env and returns a pinter to the value prtíon of the first
str ing wMse name prtion matches nme. If m match occurs,
a NULL pointer is returned.

26

Lattice 8086/8088 C Compiler SuRplanEs)t for Version 2.10

9.0 14ISCELLANE(XS LIBRARY ADOITI~ AND CCRRKTI=

By popular request, we've aided more of the string manipulation

functions from the proposed LNIX standard. Also, we've added the
Following functions:

rmove — sane as ml ink

clearerr — sane as clrerr
renane — renane a file
bdosx -- trios ftmction wi th pinter
getche — getch wi th eclK)
setjnip -- save current stack for lorg return
longjmp

-- make lorA return

The library now contains callable versions of scxne of the

character type macros described in section 3 of the Lattice C

Manual. Specifically, the following macros are also available in
function form:

isalFtba(c) non-zero if c is alphabetic
isupeer (c) non-zero if c is upper case
islower (C) non-zero if c is lower case

kdigft(c) non-zero if c is a decimal digit
iwpace(c) non-zero if c is white space
isa1ntm(c) non-zzro if c is alphanuneric

iscntrl (c) non-zero if c is a control character

toupFer (C) converts c ix) üpper case if it is lower

tolower (c) converts c to lower case if it is upper

In order to use the function forms, do not #incluie the ctype.h
header f lle in your compilation. If jNjü need ctype.h for sane

reason, jpu can #uMef the specific macros that should be treated
as fmctions.

The followim manual pages describe the fmctions that have been

added.

27

Lattice 8086/8088 C Gmpiler SuFplmmt for Version 2.IC

NAKE

strcat/strncat — str ing concatenation

3tranFj/strnQnp — str ing ccmpar ison

strcpy/strncpy — str ing copy

strlm — measure str % lmjth
strchr/strrchr — find first or last occurrmce of character

strpbrk — tim break cMracter
strspVstrcsµ7 — find loWest initial sFan

SYNOFSIS

to m strcat(to,fre) ;

to " strncat(to ,frcim,mw) ;

order = stranp(a,b) ;

order * 8trn=p(agbemax) ;

to = 8trcpy(to ,f rum) ;

to " stirncpy(to ,frcmómax) ;

lergth " str1m(s) ;

p w strchr(src)$
p m strrchr(s.c);

p - strFbrk(8,t);

length * strgpn(8Ft);
lergth " Gp-.'-g'y (mt):

cMr *tjcj ,*frmj destination m 9otirce strims
int mimtn nmber of characters

cMr "a,"bb strings to canpare

int order 6 - if a < b
0 IE a — b

+ifa>bcMr "W string to test
cMr "t; test str Lng

int 1ermh; result l€mth
cMr "p; result pinter

tmcRrpTIcN

The strcat and strncat fmctions append the " from" str kg to

tM "tD" string. Fbr 8txñcat, m more than tibe specified
maximim ntmber of characters will be appeMed.

¶ie stranp ard strnmp f mctions perform m msigned

character ccmparison of the specif Fed strings. Fbr strnanp,

no mre thm tte speci fled maximun nurber of characters will
be cxmpared-

The strcFy ard strncpy hmctions copy the Eran strim to the

to str im . Fbr 8trrKpyb no more tMn the sFecifLed maximun

28

Lattice 8086/8088 C Canpiler Supplan«it for Version 2.10

nmber of characters will be cmpied.

'Ihe strlen function returns a count :jf the nunber d f
characters in the sµecified str ing, not inclíxiing the

terininatirg null .

'Ihe strchr function returns a pointer to the first
occurrence of the sµ"cified character in the sµ"cified
str ing. Similarly, strrchr retur,ns a pointer to the last
occur rence of the charactet .

Both functions return a null
pointer if the character is mt found in the string.

The str pbr k f unction returns a pinter to the first
occur rence in string s of any character Eran string t. A

null po inter is t"eáirned if m character frcxa the test
strirvj is fourri.

The strsµi fmction returns the lmth of the initial
segment of string s that consists entirely of characters

from strim t. Similarly, strcspn returns the length of the

initial stri% of characters not frocn string t.

0

29

Lattice 8086/8088 C ampíler Suppltmmt for Version 2.10

NNQE

rmane -- rmane a file
SINOPSIS

error = rmane (old ,new) ;

int error; 0 for sUccess

cMr "old; old file naae
char *new; new file nane

This fmction rmanes a file, if pssibl e. A failure will
occur If the new file nme alreay wists or if the old file
nane does m t .

30

Lattice 8086/8088 C Gcmpiler SuWlanent for Version 2.10

nnqe

txios/bdosx — call BOOS function

SYNOPSIS

ret = bdos(fn Ax ,al) ;

ret = tx1osx(fn,dp,al) ;

int ret; return cede

int fn; BIXJS ftmction ntnber placed in AH

int dx; value to be placed in DX
char *dp; fjointer to be placed in 1j6: DX

int al; value t: j be placed in AL

Performs a BOOS call via interrupt nunber 0x21. Fbr ttje S
arü P manory mcxíels, txlos ard txiosx behave identically. Fbr
the D and L mdels, jpu must use bdosx if the BDCG function
requi res a FDinter in IX3:DX or tdos if BW only wants an
integer in DX.

31

Lattice 8086/8088 C Chnpiler SUFpl«nmt for Version 2.10

NAME

getch/prtch — get/µit character directly to/from console

SYNOPSIS

c = getch(); get cMracter with m ecM

c = getcte() ; get character with ecN
µitch(c) ; put character

int c;

These fmctions get arid pit characters directly to imid Eran
the console usiMg the lower-ntmbered BIXJE3 f unctions. Ni)

special processing is done except that pNch µíts a carriage
return character in front of each newline.

Previow versions of pitch masked off the high order bit of
the character imxj did not autmatically «nit carriWe
returns. EXisting prcgrms that gmerate "\r\n" sequences
dimild stfll behave the sane became the second '\r' anitted
by)h is merely redurdmt.

32

Lattice 8086/8088 C Cbmpiler Supplanent For 'jersion 2. 11·)

N/AM£

setjÍnp/lQrR jmp -- git Í-)l"q rK)E)-l32jl goto

SYNOPSIS

ret = setjmp(save) ;
1Dm jmp(save ,value) ;

int ret; return code

int value; return üaíúe

jtnp but save;
—

DESCRIPTION

'Ihe setjmp function saves the curcent stack tuatk 1!1 the

buffer area spmi fled by save and returns a value of 0.

'lhen a later cAl to lorujmp will retur 11 to the next

statment after the original setjmp call wi th value as the

retucn ccxIe. If value is 0, it is forced to ! by longjmp·

1he jmp_buf descriptor is defined in the header file called
setjmp.h.

'Ihis iaechanim 13 useful f:n" quickly popping back up through

multiple layers gf f unct ion calls under except ional

cl r :unstances. StructurM pr(jgrmlnim "gurus lose a lot of
sleep over the "patholog ical connections" that can result
from indiscriminate waye·

CAJJTI06B

Calling longjmp with an inval id save area is an ef fective
my to d isrupt jpur sYstan. (he carmon error is to use
lo'xjjmp after the f unction calling setjmp has returned to

its caller. If you think atjout how the stack mrks,)pú'1l
see \Áljf this doesn' t.

33

Lattice 8086/8088 C Camµiler Supplanmt for Version 2. ID

10.0 ccN\mIENcE .FEA=ES

This version contains severa! things that should make it easier

to use the Lattice C CXxnpiler, incl®irig:

—- Batch files for ZoMing the ccmpiler onto an IBM-XT

-- a simle la ccmnand to invoke both compiler passes

--
Batch files for canpiling and linking in standard ways

These are descr ibed in tte followim sections.

10.1 Batch Files for Lotding Qampiler onto IHYI-XT

Since the IEM-XT arü equivalent MS-DOS hard-disk machines sean to
be very ppular with Lattice C users,-w'e've included a batch file
that constructs our reccmnended directory structure ard a secorü
batch file that 1o&is the compiler onto the hard disk.

MAKEL£.BAT creates a directory structure that will contain the

vario= mediales that make up the compiler package. 'R) execute

it, place the first release disk into drive a and type A: MAKELC.

Nen the procedure ccmpletes, the hard disk will conta in tm
following directory strtrture:

\lc Contains cxmpiler, heeder files, and utilities.
\lc\s Cbntains he&lers, objects, and libraries for S

mmory model
.

\lc\p Cbntains heaers, objects, and librar les for P

manory model.

\lc\d Cbntains heMers, objects, and librar les for D

m«nory mdeL

\lc\l Cbntains healers, objects, and librar les for L

m«nory model
.

\lc\c Cbnta ins heMers, objects, and librar les for
building .C(M files.

\lc\src Cbnta ins source Elles for utility and

dmonstration prograns .

The UJAIJLC.BAT procedure copies 6 information from the release

disks to the hard disk. If jpu don't want to keep a particular
mmory mcdel onl ine, simply renové its sttdirectory before
executing the lo?d procedure. 'Ib execute IAADLC, place the first
release disk into drive A arid type:

34

Lattice 8086/8088 C Cknpiler ~anent for Version 2.10

c:
cd \lc
oopy a :loadlc.bat
IoMIc

At the appropriate times),kju will be prompted to chacrje the disk
in drive A.

After loaiing the compiler mcdules, you should set the default
search path f3r the camarü interpreter to include \lc. This can

either be done via the PATH comnaM or via the NJTCEXEC.BAT file
as demr ibed in the MS-IXJS reference manual

.

10.2 LC

¶ie release disk contains a progran called LC.CCM that uses the

new FCRK/EXEC fiímc tions to call the tWD canpiler passes
repeatedly for muí ti pI e compilations. The ccxnmand has the
format:

IJC options files

where options is a list of ccmpiler oµions arid files is a list
of files, diich can include "wild cards"

.

In gmeral ,
the options are the same as for the LjCi and LC2

ccmands, except where ICl arid LC2 used the sine option letter to
mean different things. 'These cases were resolved as follows:

This option sFeciEies the D mcxíel with the -S

option on LC2.

Sane as -mds.

-mis L mcxíel with -s option on lC2.

mn3s Sane as -mis.

-qx %eciEie5 prefix for cpaj files, sane as LCl -o.

In other mrds, the -s flag for pass 2 aFpears as a suffix on the

-m and -ml manory rnMel sEecifiers, and the quad file drive is
indicated via -q insteixí of -o. Ncjte that these charUjes apply

only to the new lC

,
not to LCl and LC2.

LC allow jpu to put a blank betwem an option letter arxí the

string that follow it, as in

IE -d xyz

bis is compatible with (NIX, but causes a problan if the -d itm
is just before the file rime part of the camand and ws intended

tD iMicate debljggim mcxle instead of defining a symbol, as in

35

Lattice 8086/8088 C Ccmpiler SuFp1mmt for Version 2.10

IE -d µrogrm

'Ihe synbol "progran" will be Sdefined instead of beiW treated as

a file nane to be ccmpiled. Tb get around this problan, use the

UNIX convention of endiwj the options with a siwjle dash:

LC -d - prcgran

10.3 Batch Files for Cknpilinj and Linking

The release disks contain several ba tch f lies that should

simpl ify the most camion compiling and linking scmarios.

LCS Cjcmpile for S mdel
LCP CMpile for P ímdel

ICD Ccmpile for D model

LCL Gmpile for L model

LINES Link for S mcxiel

LINKP Link for P mrxíel
LINKD Link for D rmdel
LINKL Link for l mcdel

LINK Link for .CCM file
The LCX procedures acceFt up to 9 argunmts consistirg of options
(as defined for 1£.CCM) and file nanes or file nane patterns.
'Ihe options met appear first .

lhe LINKX µocdíures accept a

single argmmt that is the nane of the .(BJ file containing jpur
main prog ran.

11.0 LIST CF FIW

Version 2.10 is normally shipped on disks in the IBM 320K format.

As discwsed in section 10, the first disk contains batch files
that facilitate copying the release disks onto jpur mrd disk if
ydu use m IEM-XT or equivalmt. The actual release files are:

Batch Files

MAKELC.BAT Make bard disk directory structure
LQADLC.BAT Ibai Lattice C onto hard disk
LCX.BAT Ckmpile tMer m«nory mcxlel x
LñúCx.BAT Link urüer manory mcdel x

Executable Files

LC.CCM Qmpiler comand line MMler
LCI.EXE C c<mpi1er (phase l)
LC2.EXE C ccmpiler (phase 2)
FXU.EXE Ftnction extract utility
cmd.exe Qjject meddle disassmbler
plib86. exe cbject module librarian

36

Lattice 8086/8088 C (jampiler Wpplanmt for Version 2.10

Run-time and Library Files

CS.CBj C progran mtry/exit mcdule (for S mcxiel)

cp.m C prcrjran extry/exit module (for P inodel)
CD.CBJ C progran extry/exit module (for D model)

ct~m C progran extry/exit mcxlule (for L nkxiel)
CC.CBJ C progran mtry/exit module (for .CCM files)
LCS. LIB Run-time and I/O library (for S model)
LCP.LIB Run-time arid I/O library (for P incxjeL)
LCD.LIB Rm-time arid I/O library (for D model)
LCL. LIB Rm-time and I/O library (for L mcxiel)

C Source Files

MAIN.C Standard library version of wain

TINYMAIN.C Ptbreviated version of main

CONIC) C Basic console I/O functTons

FTUC.C Fahrenheit-to-Celsius sample prcg ran
CAT.C File concatenate sanple prcgram
FAJ.C Function extract utility

C Header Files

STDIO.H Standard I/O header File
CTYPE. H Character' t'{p" macros healer file
DOS. li Enviroment information Nader file
ERROR. H Healer file defining (NIX error nunbers

FCNTL.H lkadet" file definin;j level l I/O codes
IOSI.H Healer file definiUj level I I/O structures
MATH.H Mathmatical Emctions heaer file
LIMITS.H Defines limitirg values for math functions

Assanbly Langu¿uj2 Sourte Files

c.asm c pr%ran mtry/ex.it mcdule (all versions)
IO.ASM Sanple assanbler larrjuaje function

Assembly Lang%e Macro Files

CM8086 .MAC Macro include file used for .CCM files
SM8086.MAC Macro include file used with S model
M8086.MAC Macro include file oed with p model

IM8086.MAC Macro include file used with d tnodel
LM8086.MAC Macro include file wed with l mcdel

(Ñjte: in order to assanble the source modules, one of the above

files must be copied into IXjS.MEC; use the version aEpropriate

for the manory mcxlel desired-)

37

TECHNICAL BULLETIN
1B840523.001

DATE: May 23, 1984

PRODUCT: 8086/8088 C Ocmpiler, Version 2.10

SLBjE9CT: Supprt for .CCM files

lhe Version 2.10 disks contain several files that supprt the

construction of .CCM files. However , we neglected to inclttle
information in the Version 2.10 addendun about this feature.

If y: >u use our standard installation procedure as dem"ribed in
the aidendun, your hard disk will contain a directory "\lc\c" and

a batch file "linkc.bat". In the former)pü will find versions

Ed "c.obj" and "dos.mac" that must be lg21Í 'when constructing .CCM

f lies. !Ihe general procedure is:

l. Compile ytjlk C incdulc's under the mall mcidel (e.g . via
the LCS batch procedure) ;

2. Assemble yrmr assembl Y-larWjage prog rms wirK3

"\lc\c\dos .mac"
.

3. Link everything oing the LINKC batch [Kocedure. This

sMuld cause a "NO stack sEayENr warning messaje, which can
be ignored

.
LINKC also calls the ms-ujs utility EXE2BIN to

convert the linker .EXE output into the desired .CCM fo mat.

Njte that j,rjl1 cannot produce a .CXM file if any of the included

modules defims a stack segment or contains segment fixups.
Compiling mder the mall model md linking with the sFecial

version of "c-obj" guarmtees that these two criteria are met.

Assmbl irig with the special version of "dos.mac" does not
guarantee that your asstnbly-language can be used to construct a
.CXMr so you might want to take a look at "c.am" tD see Ikyw" we

set it up to avoid segment fixups.

"**ENIM*

TECFNICAL BULLETIN
'IB840523. 002

IjATE: May 23, 1984
FR(XjUCT: 8086/8088 C Gcmpiler, Version 2.10

SLBjBCT: Nturn values for wrocs and INT86

°Ihe Version 2.10 iáddendun did not mmtim a change that we made

in IÑITRS, INT'DC6X, INT86, arxí IbW86X as a result of requests

frcxn many users. These fmctions now return the processor status
flags instead of the AX register valw. Many MS-lXj¢3 interrupt
functions use the flags (especially the carry flag) to convey

information back to the caller, arid there fS previously no way

for the C pí»;jran to obtain this information after calling one 3É

the above functions. The fl'ags are defined in any 8086/8088

instruction manual
.

Note that if jpur prcxjran is assuning that these functions return
AX, it must be changed to obtain AX fran the "outregs" stcucture
as descr ibed in the Lattice C Manual.

We have also had several queries Eran people ^ are tryim to

use IW86 or INT86X to perform absolute disk reads and writes via
interrupts 0x2S and 0X26. This will not mrk because tNse Uk)

interrupts return with the status flags still µished on the

stack, as is discussed in the MS-DOS aM FC-IXJG Programér's
Reference.

END

TECHNICAL BULLETFN

TB8406I5.001 '

DATE: june 15, 1984

PRODUCT: 8086/8088 C Compiler, Version 2.Zl
SUBjECT: Vecsion 2.12 Update

Version 2.12 of the 8086/8088 C compiler has been released to
correct the following problems:

l. Null #defines were not handled correctly. That is, a

statement such as

#define XYZ

caused a spurious error message.

2. The STRNCMP function did not always return the correct
vaíue.

3. The character count returned by the STCCPY function did
not include the null terminator under some circumstances.

4. Flit fields were not compiled correctly as a result of
changes introduced in Version 2.10.

5. The ÍNT86 and INT86X functions did not work correctly in
ail cases because some DOS interrupts destroyed the bp

register.
6. When you defined fmode to Ox8000, the standard files
(stáin, stdotit, and átáerO were not switched into raw mode
by main.

7. Because of a packaging error, the Version 2.00 copy of
MAIN.C was included on the 2.1 release disks. The correct
fiLe is called MAIN.C and is now included. Do not use the
old MAIN.C with Version 2.1.

8. STDIO.H has been changed to define NULL as O for the S
and p inemory models and as DL for the D and L models.

9. Sevetml people complained about the load module size
increase caused by the DOS compatibility feature described
in Section 3 of the 2.1 addendum. Therefore, we have

changed the átandard libraries so that the I/O functions
work only with DOS 2. If you still want to becompati5le
vñth DOS I, the release disks contain files named IOSIX.OBj,
where x is the memory model (S,D,P, or L). Include the
approDriate copy of IOSl when you link, and your program
will work with both DOS I andDOS 2. If you want to save a

Little more memory, examine _MAIN.C and remove the code that
is specific to DOS I.
LO. If you declared a function to return a char or float
value, the function would actually return an int or a

double, respectively. This has been corrected. Note that
this bug is suspected to exist in several other compilers,
particularly on UNIX sYstems, and some people have fallen
into sloppy coding practices because of it. The most common

pitfaLl ia illustrated below:

In module ti:
char func()
{

chac c;
return(c);
]

In module 12:

int x;
x = func();

The contents of x"s high order byte will be garbage, because

the modale 42 implicitly declares func to return an int even

though it is actually returning a char. On the 8086, what
this means is that func places c in theAL register and does
nothing with AH, which is a code improvement.

II. Section 2.7 of the 2.1 addendum indicates that constants
are not allowed as operands in logical expressions. This
restriction has been removed because it broke several
existing programs.

12. There is a typo on page 5 of the 2.1 addendum. In the
second last line, the word "constant" should be "comment".

13. There is a typo on page 35 of the 2.1 addendum. In the
description of the -mds option, the -3 flag applies to LCl,
not LC2.

14. The -X and -n flags were not recognized by the LC.COM
command.

15. The header file SETJMP.H was omitted from the 2.10 and

2.11 release disks.

16. The 2.10 and 2.11 releases contained libraries that were
not compiled with the -s option, which resulted in a
performance degradation.

17. The 2.1 addendum did not make it clear that LC.COM only
recognizes C source files that are

"in the current directory.
If you type

LC \stuff\abc
the command will not find the source file.

If you have already purchased 2.10 or 2.11, you can receive a
free update to 2.12 by simply sending the original release disks
to us with a return mailer.

END

0

~

T:O 5:;' W0*eqPy© >W

1?Ij1j3á96

É

obj

ect

A

Library"

manaKer

;'

£cwk7

Intel

808618088

fjb © W ©

'Lpy

TJ»nre

Hir'scHman

?lib86: PSA object Library Manager
Table of Contents

Table of Contents

Library Manager Concepts l-l
Using Plib86 2-l

Creating/Merging Libraries 2-l
Library Search 2-2
Updating a library 2-3
Module Extraction 2-3

Cross reference listing 2-4

Plib86 Commands 3-l
Input Format 3-l

Identifiers 3-l
Disk File Names 3-2

Initiating Plib86 3-3
Command Format 3-5

object Files 3-6

FILE, LIBRARY, SEARCH
. 3-6

AS
. 3-8

INCLUDE, EXCLUDE 3-8
Building a Library 3-9

BUILD 3-9
INTEL 3-lO

Extracting a Library Module
. . 3-ll

Generating Reports 3-12
WIDTH, HEIGHT

3-13
BRIEF 3-13

Controlling the Library Index . 3-14
NOINDEX ·. 3-14
BLOCKS 3-15

Miscellaneous Commands 3-17
VERBOSE 3-17
BATCH 3-17
LOWERCASE

. 3-17

Appendix A

- Warning Messages A-l

Appendix B

- Error Messages B-l

Appendix C

- Reporting Problemg . . . C-l

Plib86: PSA object Library Manager i
Introduction

Plib86 (tm) is a Phoenix Software
Associates Ltd. software system that can
manipulate libraries of object files. Itsupplements the PSA linkage editor
Plink86 (tm), and is intended for use on
the Intel Corporation (l) 8086 (or 8088)

processor (tm) under the MS-DOS (2) or
CP/M-86 (3) operating systems.

plib86 handles object files and

libraries conforming to the INTEL
relocatable file format described in
their document "8086 Reloeátable object
Module Formats" #121748-001. This format
is used in compilers written by Microsoft
Corporation, creator of the MSDOS

operating system, by most other companies

wUtinú compilers for MSDOS, and by a few

compilers written for Digital Research's
CP/M-86 operating system. However, a

different library index is used by

Microsoft to achieve faster library
searches. ?lib86 can read and generate
both tkt' Intel and Microsoft library
index torrnats.

The first Section of this manuál
provides an explanation of the "object
library" concept and the capabilities gf
Plib86. User's unfamiliar with library
managers would do well to start here.
Also, the Plink86 user's guide contains a

chapter discussing object files and

linkage editors that may be helpful.
The next section of this manual

describes how to use plib86 to handle
several common object library situations.
At the same time it provides an informal
explanation of what the commands do.
Those readers experienced with linkage

plib86: PSA object Library Mañager iiIntroduction

ediÉors and library managers rnay wish to
skip directly to this portion of the
manual: it provides enough information
to handle most jobs.

The final portion of the manual is
an exhaustive list of the commands and

features offered by PIib86. This should
be examined when it becomes necessary to
go beyond the examples given in the
previous section. Side issues such as

error codes are generally referred to
appendices.

Trademark Acknowledgements:

(I) INTEL is a trademark of Intel
Corporation

(2) MS-DOS is a trademark of Microsoft,
Inc.

(3) CP/M-86 is a trademark of Digital
Research.

Plib86: PSA object Library Managér l-lLibrary Manager Concepts

Typically it is convenient (if not
essential) to divide a large programming

job into smaller pieces called "modules"
that can be edited and compiled
separately. Actually, compilers
available on micro-computers tend to have

severe limitations on how many lines of
code can be compiled at one time, forcing
the programmer to use modularization
anyway. On the positive side, modular
programming offers a method of organizing
a program into manageable pieces that are
easier to understand and work with.

After the program modules are
created and compiled the programmer must

"link" them together with a "linkage
editor" to produce the executable program
(see Plink86 user's manual).

Once one has created a modular
program one may find that some of the
modules are useful in a different
program. With a little effort these
modules can be made more general in
function and can be used in many
programs. The programmer can gradually
build up a "library" of useful routines
that can be hooked in by the linkage
editor whenever needed.

In fact, virtually all compilers are
sold with a "library", since functions
like arithmetic on real numbers are often
not supported by the hardware and have to
be implemented as procedure calls. The

compiler library also contains modules

that support the high level features of
the language such as formatted output in
FORTRAN. This library is often called
the "run time support" since its modules

are required while the program executes.

Plib86: PSA object Library Manager l-2
Library Manager Concepts

Other software products in addition
to compiler runtime support routine8 ate
sold in the form of libraries. An
example might be a set of data base
management routines that is combined with
the application program by the linkage
editor to produce a complete system.

Because of the importance of
libraries, linkage editors typically have
special facilities for handling them. To
save memory space, only those modules in
the library that are actually required by

the program are linked in. Sometimes a
library is simply a conCatenation of
object modules, requiring the linkage
ediÉor to search sequentially for the
required modules. More sophisticated
systems provide a "library index". Itcontains a list of the public symbols
offered by each library module, and the
location of the module that defines each

symbol. Therefore the linkage editor can
rapidly locate the modules that are
required. The Microsoft and Intel
library formats are indexed structures.

The purpose of the library manager

is to create and manipulate object module

libraries. It is therefore a useful
assistant to the linkage editor.

plib86 provides commands to create
libraries from individual object modules,
and to extract a selected module from a

library. It can also merge libraries,
and can replicate the library search
process undertaken by the linkage editor
while creating a program. In other
words, one can create a library
consisting of only those modules that the
link"age editor would include in a

particular program.

Plib86: psa object Library Manager l-3
Library Manager Concepts

Plib86 also provides a powerful
cross-reference function. It optionally
generates a.report listing each public
symbol, the module which defines it, and
a list of other modules that refer to it.This may be used to cross-reference a

single library or several librarje3
together, or, in combination with the
library search feature described above,
to generate a cross-reference of a
program that will be created by the
linkage editor.

Plib86: PSA object Library lqanage¥ 2-l
Using plib86

Creating/Merging Libraries

To create a new library use the
BUILD command and the FILE command. For
example, executing plib86 and entering

BUILD DB.LIB
FILE BTREE, SORT, REPGEN,

FIRSTLIB.LIB;

in response to the prompt would create a
library named DB.LIB containing the files
listed'after the FILE command. These

files could be single object modules or
complete libraries. Everything is merged
into a single library. The default file
type for the files appearing in the FILE
statement is "OBJ".

PIib8ÉA PSA Object Library Manager 2-2
Using Plib86

Normally you can just execute Plib86
and type in commands on as many lines as
desired. Then end the last line with a
semi-colon to begin processing. Each

statement begins with a key word like
BUILD or FILE and is followed by

arguments, possibly separated by commas.
Input is free format, and blank lines are
ignored. Also, key words may be
abbreviated by leaving off characters at
the end. For example, you can use BU and

FI instead of BUILD and FILE. An error
message will be given if the abbreviation
could be confused with ánotíjer command.

Another way to use Plib86 is to give
the commands as it is executed. For
example, the above library could have
been created by entering (on one line):

PLIB86 BU DB FI EJTREE, SORT,
REPGEN, FIRSTLIB.LIB

Note that the output file type
defaults to "LIB" automatically.

Library Search

Suppose you want to create a library
consisting of several modules plus those
portions of another library that are
referenced by the modules. Use the
LIBRARY command:

BU DB FI BTREE, SORT, REPGEN

LIB FIRSTLIB.LIB

The portions of FIRSTLIB not
referenced by the three.other files are
not put into the DB library.

plib8G: PSA object Library Manager 2-3

Using plib86

Updating a library
To update a library it is necessary

to copy the old library to the output
file while omitting the module to be

updated, and to include the new module.
For example, to replace module COSINE in
library MATHLIB, rename the current
MATHLIB.LIB to MATHLIB.OLD and enter

BU MATHLIB FI COSINE,
MATHLIB.OLD EXC COSINE

The EXCLUDE statement applies to the
previous file name given and causes the
COSINE module in the MATHLIB to be

omitted.

Module Extraction

The EXTRACT statement causes a

single object module file to be created.
It may not be used at the same time as
BUILD. The first object module found in
the input files is extracted, so the
particular module to be selected from a

library must be specified. The object
file extracted may be given any file
name. The module name remains the same.
For example, typing

EXT OLDCOS FI MATHLIB.LIB
INCLUDE COSINE

creates file OLDCOS.OBJ containing object
module COSINE. The INCLUDE statement is
the counterpart of EXCLUDE: it applies
to the previous input file and causes
only those modules named to be considered
for processing. There wouldn't be any
point to INCLUDing more than one module

in this case since only the first one
found is extracted.

plib86: PSA object Library Manager 2-4

Using plib86

Cross reference listing
To create a cross-reference listing

use the LIST command with input file
statements similar to those given in
previous examples. For example,

LIST = DB S

FI BTREE, SORT, REPGEN, FIRSTLIB.LIB

creates a cross reference report named
DB.LST describing the modules in all of
the.files listed. The "S" selects the
cross-reference report. For a

description of other reports available
see the LIST command description. The

"=" specifies that the report is to be

put into a disk file. If omitted the
report appears on the console.

Plib86: PSA object Library Manager 3-l
Plib86 Commands

Input Format

This portion of the manual describes some
basic input elements. Later sections
show how these are combined to create
full statements.

Identifiers

An identifier is the name of some
object, such as a module or symbol. An

identifier is a sequence of no more than
64 characters containing no spaces, and

containing none of the following:

"=;<>/,\!'#U'+-: @ DEL

Lower case letters, when used, are
automatically translated into upper case.
The first character of an iáentifier may
not be a digit 0

- 9.

The above restrictions on valid
identifier characters may be avoided by

using the escape character """. The

character immediately following the
escape character is treated as a normal
identifier character.

The following are examples olE valid
identifiers:

Programl
SORT3
ABC"@ (the "@" is escaped)

The following are not valid
identifier8:

34ABC - begins with a number
NII'I A

- containB a space

Plib86: PSA object Linirary Kanágc'r :J-¿

Plíb86 Commands

PROGtl - starts a comment wittj "*"

The above identifíers could all be
made valid witn the escape character:

"34ABC
NIM" A

PROG"tl

To include the escape character in
an identifier enter two escape characters

Identifiers appearing in object
files are truncated to 50 characters for
purposes of comparison with other

identifiers in the program. Identifiers
may be truncated again for inclusion in
reports (see the LIST command).

Disk file Names

Plib86 adapts itself to the file
name format used by the operating system

it is executing under. The firstcharacter not allowed to be in a file
name terminates the name. The escape
character rnay be used to put any
character into a file name.

In this manual, MS-DOS format file names

are used for purposes of discussion.
These file names are of the form
[device:]namel.type), with optional
portions in brackets. Here are some
exampi¢zs:

MATHLIB.L"IB
B: CHESS.OBJ
SCANNER

Plib86: PSA Object Library Manager 3-3
Plib86 Commands

When the "device: " is not given,
plib86 assumes that the ctjrrently
logged-in disk is to be used.

Initiating Plib86

Plib86 may be used interactively, or
input may be given as it is executed:

plib86 statements <cr>

where <cf> means to press the RETURN key.
This means that Plib86 may used in .BAT

files.
To use Plib86 in the interactive

mode, enter

Plib86<cr>

on the console. Plib86 will read lines
from the console, prompting-with "=>"
The standard line editing features
8upplied by the operating system are
available. plib86 checks input lines for
syntax and stores them until a semi-colon
';' is entered at the end of a line.
Then processing of the input files
begins.

A disk file containing all or,only
part of a command may be inserted into
the input at any point by preceding the
disk file name with an Y". The default
file type is ".LNK". These disk files
can contain further "@" specifications,
up to three levels deep. The most common
use of this feature is to prepare a filecontaining a complete command; then,
entering

plib86 @file name <cr>

Plib86: PSA object Library Manager 3-4
Plib86 Commands

creates the library. Sometimes these
".LNK" files may be prepared once for a
given library and used over and over
again, greatly simplifying the whole

process.

plib86 reads an entire command,
checking for syntax only, Defore any fileprocessing is done.

Plib86: PSA object Library Manager 3-5

Plib86 Commands

Command Format

All Plib86 input is free format.
Blank lines are ignored, and a command

may extend to any number of lines.
Comments may be included with input from
any source by using a percent sign "%".
When this is encountered, all remaining
characters on the same line are ignored.

Input is a list of statements:

<statement> <statement> ... <statement>

Each statement begins with a key
word, and many are followed by arguments
separated by commas. For example, in

FILE A,B,C
0

FILE is the key word, and A, B, and
C are the arguments. Key worás may"be

abbreviated by omitting trailing
characters, as long as the abbreviation
is unique among the entire group of key
words. For instance, the previous
statement could have been entered as

FI A,B,C

If a syntax error is found, the,
current input line is echoed with two
question marks inserted after the point
at which the error was detected. This is
followed by an error message (see
Appendix). Hib86 pust then be

re-executed.

If an error occurs during fileprocessing, plib86 terminates with ar,

error message also listed in the
appendix.

Plib86: PSA Object Litnary Manager 3-6
plib86 Commands

Object Files

FILE, LIBRARY, SEARCH

Plib86 must be told what object
files and libraries to use for input and

what modules to select from them. The
FILE command is typically used, and
normally causes all modules with the
given files to be processed:

FILE COSINE, SIN, ARCTAN

Ttie library and SEARCH commands are
similar, but are used only on libraries
and select only those modules that define
a public symbol that is needed by some
other module that has already been

processed. This is called a "library
search" and is a process carried out by
most linkage editors. It insures that
onl',' those library modules that are
ar ally needed are included in the

>gram.

LIBRARY MATHLIB
SEARCH FORTRAN

The LIBRARY command causes the given
libraries to be searched once. When the
SEARCH command is used the libraries are
searched repeatedly as long as undefined
symbols remain. This won't be needed

unless two or more libraries are being
searched that each refer to symbols
defined in the others.

If Plib86 can't find a requested
object file, and is running under the
MSDOS 2.0 operating system, it will look
in the environment for a string named
"OBJ". The value of this string is

Plib86: PSA object Library Manager 3-7

plib86 Commands

assumed to be one or more directory path
names, separated by semi-cqlons (just
like the MSDOS 2.0 PATH Command). These

path names are appended to the front of
the object file name (any disk drive ID

is removed first) one at a time in an

effort to find the file. The path name
separator '\' is added between the path
name and file name. For example, 'if

SET OBJ = \OBJECT; \LIBRARIES

were entered before running plib86, and

file TEST.OBJ was being searched fór, itwould look for \OBJECT\TEST.OBJ and
\LIBRARIES\TEST.OBJ. This means that
commonly used object files can be left in
a directory for use by many programs.

If an input file can't be found by

using the OBJ path names, or if MSDOS 2.0
is not the operating system being used,

the operator will be asked to enter a

file name prefix string (e.g. "A:" or
"\OBJECT\" that will be appended to the
front of the file name after stripping
any drive id . Diskettes may be changed

at tÍÜ8 time if necessary. of course,
the operator must insure that any
diskettes removed do not contain open

file8 like the BUILD or EXTRACT file.AÁbo, if Plib86 runs out of memory a work

file 18 opened on the default diMc, which
then may not be removed.

Plib86: psa OLject Library f!arjdger 3-8
Plib86 Commands

AS

If an object file (not a library) is
being processed the module it contains is
given the same module name as the name of
the file it came from This is done
because some compilers don't supply a
unique module name. This default may be
changed by using the as statement. Itsupplies the module name for the last
file náme given. For example,

FILE MATHI AS COSINE

would name the module in KATHI COSINE
instead of HATHI.

INCLUDE, EXCLUDE

The modules selected from a library
may be further restricted by using the
INCLUDE and EXCLUDE 6tatements. The6e

are followed by a list of module names:

FILE MATHLIB INCLUDE SIN, COSINE

LIB t'lATHLIB, DB EXCLUDE BTREE

The INCLUDE statement causes only
those modules listed to be considered for
processing, and this selection precedes a
librSlry search. EXCLUDE is the opposite.
The modules listed are not processed.
INCLUDE ana EXCLUDE apply to the FILE,
LIBRARY or SEARCH file immediately
preeeding. In the second example above,

for instance, the EXCLUDE BTREE applies
only to the DB. library, not MATHLIB.

plib86: PSA Object Library Manager 3-9

Plib86 Commands

Building a Library

BUILD

The BUILD command is used to create
a library out of the modules selected
from the input files. It is followed by

the name of the file to create. The file
type defaults to .LIB:

BUILD DB.LIB
BUILD D:PIATHLIB

After all modules are output the library
index is created.

One must be careful that the output
file does not have the same name as any
of the input files. For instance,
entering

BUILD MATHLIB

FI COSINE, ARCTAN, MATHLIB

won't work because MATHLIB will be erased
before it is read.

The BUILD command may not be used

Mnultaneously with the EXTRACT command

(described next). If no output is
requested from plib86 (i.e there is no
BUILD, EXTRACT or LIST command) then
plib86 will simply read the input modules
and report any errors it finds.

plib86: PSA object Library Manager 3-ID
Plib86 Commands

INTEL

By default, the BUILD command

constructs a Microsoft format index for
the library file under construction.
When this statement appears, however, an
INTEL format index is constructed
instead. No arguments are required.
When creating an INTEL format index, tbe
LOWERCASE statement may have to be used

to inhibit translation of symbol name
characters in the index to upper case.
Sorne compilers using Intel format
libraries distinguish between upper and

lower case when comparing symbol names.

plib86: PSA Object Library Manager 3-ll
plib86 Commands

Extracting a LÍbrary'Module

The EXTRACT command is used to
extract a single object module from a

library file and place it into a separate
disk file. It is followed by the name of
the file to create:

EXTRACT COSINE.OBJ
EXTRACT ARCTAN

If the file type is omitted OBJ is
assumed.

The EXTRACT command extracts the
first module found in the input files.
Therefore it is usually necessary to use
the INCLUDE statement to specify which
library module should be extracted. For

instance,

EXTRACT COSINE FI MATHLIB

extracts the very first module in
PLATHLIB, even if it is not the COSINE
module. To get the correct one enter

EXTRACT COSINE FI MATHLIB INC COSINE

Plib86: PSA Object Library Manager 3-12

Plib86 Commands

Generating Reports

The LIST command is used to generate
reports about the object files being
processed. It may optionally be followed
by a file name, causing the reports to be
directed to that disk file or device.
The file name must be preceded by an
equal sign. Then a character is entered
for each report desired, separated by
commas. There are two reports available:

M

-
A list of all modules processed
in alphabetical order. Next to
each module is listed all of the
symbols defined within it.

S
-

A list of all public and

external symbols in alphabetical
order. Each is followed by the
name of the module defining the
symbol in parenthesis (this will
be blank for symbols not defined
by any module read). Following
this is an alphabetical list of
all modules that access the
symbol (i.e. this is a

cross-reference report).

Here are some examples:

LIST YI

LIST = DB.LST PI, S

LIST = XREE.LST S

plib86: PSA Object Library lianager Y-13

plib86 Commands

WIDTH, HEIGHT

The report generator can be

re-configured for different size paper.
It assumes 80 columns and 66 rows per
page as a default. The number of columns

may be changed with the WIDTH command,
and the number of rows wíth the HEIGHT
command. Here are sorne examples:

WIDTH 132
HEIGHT 88

BRIEF

The S option of the LIST command can
be quite long. If the BRIEF command is
used, however, all undefined symbols are
deleted from the report, making it more
manageable. These undefined symbols

might be from libraries that you did not
search in creating the report, and wight
not be necessary in the report. The
BRIEF statement has no arguments.

plib86: PSA object Library Manager 3-14
Plib86 Commands

Controlling the Library Index

NOINDEX

Normally all public symbols from all
modules are inserted into the library
index. If a duplicate symbol is found

library creation continues but a warning
message is given and the index entry for
that symbol will select the first module

defining the symbol.

Sometimes it is useful to exclude
certain symbols from the library index.
This may be accomplished by using the
NOINDEX command. For example,

NOINDEX SYMI, SYM2, SYM3

excludes SYMI, SYM2, and SYPi3 from the
index.

Suppose you wish to create a library
that contains several versions of the
same module, for instance a device driver
for some kind of hardware. If you try to
place all of the modules into the library
you will get duplicate symbol warnings,
and at link time the linkage editor
wouldn't be able to select the desired
module.

This can be made to work by using
NOINDEX on most of the moáule entry
points. This excludes all of these
symbols from the library index. To get
the linkage editot to select the correct
module insert an un-used but unique dummy
symbol into each one. At linkage edit
time one of these dummy symbols would be
accessed in order to create a need for
the desired modulo. TfW linkage editor

Plib86: PSA Object Library Mañager 3-15

Plib86 Commands

would then select it when the library is
searched.

Using plink86, for instance, one
could use a statement like

DEFINE FOO=DRIVERI

to select the module containing the
"driverl" dummy entry point. An
alternative which works in a Microsoft
format library is to rely on the fact
that the name of each module is actually
in the library index as well, followed by
an exclamation point. For example, ifthe library contains a module nainea
DRIVERI then there will be a dummy index
entry named DRIVERI!. These symbols can
be used instead of creating a durnmy
module entry point as discussed above.

BLOCKS

The Microsoft library index consists
of a prime number of hash blocks. Plib86
will choose the amount of index space
needed so that everything fits and then
adds about a 10% slop factor. The extra
is added because the hash blocks are set
up as a "scatter table" (see Knuth's
volumes of computer programming) and

search time can increase dramatically as
the blocks become nearly filled.
However, if the linkage editor reads most

or all of the index into memory when
doing a library search (as plink86 does)

this may not matter too much. The extra
time spent comparing iáentifiers is more
than made up for by the savings from
reading fewer index blocks from disk.

plib86: PSA object Library Manager 3-16
Plib86 Commands

The BLOCKS command functions only
when the BUILD command is used, and

specifies the number of index blocks to
be used. For example,

BLOCKS 7

forces Plib86 to use 7 blocks. If
some of the symbols won't fit into the
index Plib86 will print warning messages.

If the argument to the blocks command is
not a prime number Plib86 will increase

it until it is. The limit on the number

of library index blocks is 997.

plib86: PSA Object Library Manager 3-17

plib86 Commands

Miscellaneous Commands

VERBOSE

When processing a large library file
it is sometimes useful to know what

plib86 is doing. When the VERBOSE

statement is used Plib86 will maintain a
status line at the bottom of the CRT

screen indicating what is going on. This
statement should not be used on a

hard-copy terminal.

BATCH

If Plib86 can't find an object file
or library it will normally prompt the
operator to enter the name of a disk
drive or directory path name where the
file may be found. The BATCH command

will cause Plib86 to stop with a fatal
error without prompting the operator. Itis useful when running plib86 from within
a batch file and no operator is available
to respond to a prompt.
LOWERCASE

Any object files and libraries
conforming to the Microsoft standard
normally use only upper case letters in
identifiers. Therefore Plib86 normally
translates all lower case letters to
upper case. This statement inhibits this
translation for all identifiers found in
object files, library indices, or Plib86
commands. It is sometimes necessary to
use this command when an Intel format
library is being built (see the INTEL
command).

plib86: PSA object Library Mañager 3-J.
Appendix A

- Warning Messages

Occasionally PliD8E. ctetectm a

situation that looks like It ÍüiYtjt be a

problem when the iñpti'c Cbt outp: " object
files are processed by the link: age

editor. It then issues a uarning m"?32;age
and continues to execute. TMse lne.4sages
should be self-explanatory, but a nurabc!:

is also given that may be lookec' '.ip in
this appendix to get a more complete
explanation of what has happened.

I - There may be only one definition for
each global (i.e. PUBLIC) symbol in
the object modules being processed.
Plib86 ignores the duplicate
definition and retains the first one
lck use in any library index or
reports being generated.

2
- Each record in an object filecontains a check field at the end

for validation purposes. This
message indicates the checksum was
bad, but processing continues.
These messages are inhibited after a
few have been printed. Was the
object file patched on disk before
Plib86 read it? TYpically people
who patch object files don't bother
changing the checksum. Also, some
compilers and other librarians seem
to be sloppy about making sure the
checksums are correct. If the fileis really smashed a fatal error will
probably occur soon after this
message appears.

Plib86: PSA object Library Manager A-2
Appendix A

- Warning í'tessages

3

- Each record in an object file is
preceded by a word giving the record
size. This error means that Plib86
reached the end of the record and

found that the number of bytes
processed iSdifferent from the
specified size. The object file is
probably smashed, but Plib86 will
attempt to continue reading it.

4 — There is no room in the Microsoft
library index being created with the
BUILD command for the named symbol.
You probably used the BLOCKS command

to reduce the size of the index, and
now it is too small to hold
everything. This warning should
never occur if you haven't used the
BLOCKS command: contact Phoenix

Software if i" does.

plib86: psa object Library Mañager B-l
Appendix B

- Error Messages

When a fatal error is detected by

plib86 a console message is printed which
should be self-explanatory. However, an

error number is also printed which may be

looked up in the table below. A longer
discussion of the error will be found
there.

Command Syntax Errors

These errors are caused by mistakes
made in the input given to Plib86.
Re-run Plib86 after correcting the
problem The input line causing the
problem will be displayed on the
terminal, with a couple of question marks

inserted after the point where the error
was detected. These should aid in
locating the problem, but occasionally
Plib86 may not detect the error until
more text is processed. In other words,

if the error location is given as the
front of a line, check the end of the
previous line.
I - "@" files are nested too deeply.

Only three levels of "e" files may
be active at any given time. Do
you have a loop in your "@" filereferences?

2

- Disk error encountered while
reading Y" file. Try re-building
the file.

5

- The item given for input at thi8
point is too large. The maximum
size allowed is 64 characters.

plib86: psa object Library Manager B-2
Appendix B

- Error Messages

6

- Invalid digit in number (i.e. not 0

thru 9).

10 - Invalid file name. The input
stream should contain a valid file
name for the particular operating
system being used.

II - Expecting a statement. A key word
which begins a statement should be

present here.

12 - The INCLUDE and EXCLUDE statements
may not be used simultaneously on
the same input file.

í4 - Expecting identifier. A section,
module, segment, or symbol name
must be entered at this point.

16 - Expecting a value. An expression
or l6-bit quantity must appear at
this point.

17 -
No files were given to process!
You must use the FILE statement and
specify at least one input file.

18 - The BUILD and EXTRACT commands may
not be used simultaneously. You
must run Plib86 twice with one
command in each.

plib86: PSA object Library Manager B-3

Appendix B

- Error Messages

Work File Errors

when Plib86 runs out of memory it opens a
woEk file on disk named Plib86.WRK to
hold the description of the library.
These error codes indicate a problem with
processing the work file.
30 - The work file can't be created.

Probably there is no space in the
disk directory.

31 - An I/O error occurred while writing
the work file.

32 - Ari I/O error occurred while reading
the work file.

33 - An I/O error occurred while
positioning the work file.

34 - There are too many module

description objects in this library
(about 50,000 symbols, modules, and
so on may be defined). This
library is too large for plib86 to
handle.

Plib86: PSA object Library Manager B-4
Appendix B

- Error Messages

Input object File Errors

The following errors have to do with the
object files that are given to plib86 to
process. Usually they occur when a filehas been corrupted somehow. Try
re-compiling to get a new copy of the
object file. If it is a library supplied
by the compiler manufacturer that is
causing the problem, try to get a fresh
copy of it.
41 — premature end of input object file.The end of the indicated file was

reached unexpectedly. Possibly,
the file was truncated by copying
it with a program that assumes a
CNTL-Z (IAH) is end of file.

42 - Fatal read error in object input
file.

plib86: PSA object Library Manager B-5
Áppendix B

- Error Messages

Output File Errors

The following errors are caused by a
problem in creating the output code file
or memory map file (when written to
disk). Often, they are caused by a fulldísk or disk directory, a disk that is
write-protected, or some kind of hardware
problem with the disk.

45 - Can't create output disk file.Possibly the disk directory is
full, or the disk is write
protected.

46 - Output file too large. The given
modules won't fit into the library.
You will have to break up the
library into one or wore smaller
ones.

47 - Fatal disk write error in output
file. Possibly the disk is full or
write protected, or some kind of
hardware error has occurred.

48 - Fatal disk read error in output
file. An irrecoverable hardware
error has probably occurred.

49 - Can't close output file. The disk
is probably write protected, or a
hardware error has occurred.

50 - Can't create the LIST output file.possibly the disk directory is
full, or the disk is write
protected.

plib86: PSA object Library Manager B-6
Appendix B

- Error Messages

Miscellaneous Errors

51 - There are too many symbols to be

placed into the library index. You

will have to break up the library
into one or more smaller ones.

52 -
No modules were selected (by

library search, INCLUDE, or
EXCLUDE) to be placed in the output
file (BUILD or EXTRACT).

54 - There isn't enough memory in the
computer to run plib86. You must
have a really tiny memory - better
buy more!

Plib86: PSA object Library Manager B-7

Appendix B
- Error Messages

Plib86 Bugs

These errors indicate a bug in Plib86 has

occurred through no fault of your own.
They are li8ted here for completeness in
the manual, although it is unlikely that
you can do anything to correct them. Try
running plib86 again. If the error
persists, please gather the relevant
information and contact Phoenix Software
Associates.

201 - No NeedRead Buffers (NRnew).

20S - Seek errors while writing output
file (attempt to seek past end of
file).

210 - Requested record size too large
(Newrec).

219 - Bad object block (GetBlock).

221 - Invalid object key (Q).

222 - Invalid object key (QK).

Plib86: PSA object Library Mañager C-l
Appendix C

- Reporting problems

We ask that you make a reasonable
effort to solve your difficulties
yourself before contacting us, and to
phone only if you are trying to deal with
an emergency. Otherwise, please report
your problem in writing. We can read
much more quickly than we can listen.
Our address is:

Phoenix Software Associates, Ltd.
1420 providence Highway
Suite 260
Norwood, MA 02062

Be sure to include with your
description of the problem the input you

are trying to use and where your object
files came from. If you like, send

input, object, and library files on
diskettes (MSDOS l.l or 2.0 5 1/4 format,
single or double sided), and instructions
on how to run the software to make the
error condition occur. Source files are
usually unnecessary. We will be happy to
sign non-disclosure agreements to protect
your software, if having it will help us

identify a bug more quickly, and to
return the diskettes to you after the
problem has been identified.

LIFKbOiAT ASSOCIATKS sorrvw ñO6W RKPORT

Ple&8e u8é thíB form to report error8 or problea8 Id Boftv&re BupplIed by

Lifeboat ABBocÍaCem Thh form i$ deB[Brbed to act a6 a tranBmí[t&l 8Íleet.

Software Product Name: Kedí& Format:

Ver6íorj No.: SeríU No.: Invoice No.:

Purchaoed Froa:

Wte of Purchaee: Kecurn AuehorizmEFon t:
H8b the mftvnre reglstmtíon card been recurned?

Co.puter [ked: CPÚ (8080/B085/Z-dO):

WbÍk C&paclty: Nmber of Drlveo: Mmory S1Ee:

Operating Sy8tem/Ver8¿oQ (If not liBted &bove): l

Softvare uBed vlth the above product, (e.g. int the BASIC umd if you are

reporting a problem with m Payroll progrem that ubcb ft).
Nmme of Software VerUon

Docb che 8oftY&re come wLth B8Rple or té8t prograwH

If bo, Mve you been &b1e to ubc tbm BucceB8ful}y?

Pleaee deecríbe the problem you Imve encountered. Include reterence6 to the
mwiudl ff appropriate. Try to reduce the problem to a wSmple teBt caBe.
Enclo8e aoy appropriate programs (preferably on dhk). It you feel thA[the
proble® m8y be camed by the d[8k being defective, you my prefer to retura the

origlKj8l U8jl with U1Íb report to &chieve the faBteDt re&olutiorl of the

problem. (U bo, cUI for & Return Authortzú£on No. a handjAmg cMrge m»y be

incurred. No handllmg ch&r8e will be m&de it & product or portion thereof io
returned DUB TO DISKKTTE PQKDIA DEYECTS wíthlm JO d&yB from the dete of ule).

0 Inform&tion on product ehAnBe8, bugji, fíxé$ and current verwion Rumber8 are
publLBhed tu Llfelimm our ooftware oevUetter.

PRQBLEK WSCRIPTION: (Cotltíaue on Md£tlonU p&ge6 if neceuary)

Aru Phoñe Wum EXtw

Mme: () " ()

Addre8B: () " ()

City: StÁte: up Code:

Return to: Lifeboat MBoci&te8 Technicnl B8BIBtánce í8 &v&llab]e
1651 Third Avenue Honday - Friday, from ll: üO mm.
Nev York, N.Y., 10028 to 7: 00 pm., É88terrj tine.

1-(212) 860-0300

002prob.bn.09.8l TVX: 710-581-2524 Telex: 64U693

