

The Jade Big Z CPU board is a Z80 Main processor card for the S-100 computer bus system

developed around 1980. The board was developed before the IEEE-696 standards were put

into effect so there are a few complications when using this card with more modern S-100

systems.

The card was known as “The Big Z” or the “JGZ80” board and had revisions A through C with the

C version being the final version produced. The board offers the following features…

● Zilog Z-80 CPU

 ● EPROM onboard accessed on 1K, 2K or 4K boundaries (2708, 27C16 or 27C32)

● POJ power on jump to EPROM at boot

● one M1 wait state

● 8251 USART onboard for RS-232 communication to another Host or Terminal/Console

● CPU speed selectable between 2Mhz and 4Mhz

● Front Panel DIP connector to enable using a front panel (IMSAI)

● Fully buffered S-100 address and data lines

● Voltage regulators for all onboard voltages

Jade Computer Products

The Big Z Revision C

Rev:8 07/15/24

The Jade Big-Z revision “C”

The Jade board was engineered before the IEEE specifications were finalized and therefore

some incompatibilities exist.

● sXTRQ* – Pin#58 is not implemented on the Big Z (16 bit wide I/O request)

● pSTVAL*- Pin#25 is not implemented (signals when address and status lines are valid)

● SIXTN* - Pin#60 is not implemented (this is an acknowledgement to the sXTRQ* signal)

● RFSH* - Pin#66 is implemented by the Big Z on undefined S-100 pin#66 (Memory Refresh)

● MRQ – Pin#65 is implemented by the Big Z on undefined S-100 pin#65 (Memory Request)

● pWAIT- Pin#27 is implemented by the Big Z on undefined S-100 pin#27 (Wait signal)

● DMA0* – Pin#55 is not implemented (temporary bus master signal)

● DMA1* – Pin#56 is not implemented (temporary bus master signal)

● DMA2* – Pin#57 is not implemented (temporary bus master signal)

● DMA3* – Pin#14 is not implemented (temporary bus master signal)

● GND – Pin#20 is not implemented

● GND – Pin#53 is not implemented

● GND – Pin#70 is not implemented

● CLOCK1 or PHI 1 – Pin#25 is implemented and in violation of IEEE standards

 The Pin#9 on U29 has been bent out to disconnect this line from the S-100 Bus

 S-100 Pin#25 should be pSTVAL* and is not implemented, could cause problems.

 NOTE: If the “S100Computers.com” System Monitor Board V2 or later is used, U29

 should remain intact. The SMB requires pSTVAL* to operate but an inverted PHI 1 on

 S-100 Bus Pin#25 will enable the SMB Address Display to function (pSTVAL* hack for

 slower boards).

● SSWDSB*- Pin#53 is implemented and in violation of IEEE standards (Sense switch disable)

 The S-100 bus Pin#53 is a GND line. On the Jade Big Z, the S-100 bus pin#53 has been cut

 at pull-up resistor pack U31 pin#8.

It has been noted that the Jade Big Z does not work with all memory cards. Most reliable

operation of the Jade Big Z will be accomplished using Static RAM memory cards with 8 Data

lines and 16 Address lines. Dynamic RAM boards work, but may require rebooting a few times

before stable (ie…Jade Memory Bank). So, memory boards that have been used and verified

working with the Jade Big Z are the “S100Computers.com” 4MB memory card, Jade Memory

Bank, Static Memory Systems “The Last Memory Board” and the Compupro RAM-20. There

should be many more boards that work but these are the ones available for testing. The Jade

can access 64K of RAM but has no provision for memory paging or extended addressing (A16-

A23).

EPROM INTERFACE:

The Jade Big Z will accommodate three types of EPROM’s (2708, 27C16 or 27C32). The board is
originally configured for the 2708 EPROM but due to it’s small 1K size and limited supply, it was
never used. There are jumpers on the board to configure the card for the other two EPROM
types. In fact, there are just two wires to connect for Pin#21 on the EPROMS (either Vpp or
A11). All other connections remain the same for the 27C16 and the 27C32. EEPROMS such as
the Atmel AT28C16 can also be used in place of a 27C16 EEPROM. There is no counterpart for
the 27C32 though.

The EPROM is first accessed at power on (if the POJ option is enabled) by starting at address
0000H and moving upward in address space until the address space set for the EPROM is
reached. When this happens, the EPS* signal becomes active low, and the EPROM is enabled.

 ● Use only single voltage EPROM or EEPROM

 ● Voltage +5V DC

 ● Cut trace L to E on Big Z to isolate (-5V)
 Note: Remove C12 as it interferes with A11

 ● Cut trace F to M on Big Z to isolate (+12V)

 ● Cut trace G to H on Big Z to isolate (A11)

Code in the EPROM is then read and acted upon by the Z80 CPU. Typically this is where the
Monitor Program for the Jade Board would reside in EPROM at a high address range such as
E800H, F000H or F800H (more on this later).

The DIP Switch U33 is used to select the address for the EPROM. The Big Z is capable of utilizing

“Shadow EPROM” mode that will enable the EPROM on boot-up, but thereafter will not be seen

by the system. This might be useful for a boot to Disk System (refer to the users manual for

details).

Wiring up a 27C16 EPROM is as follows…

Wiring the 27C16 only requires running a wire-wrap wire from Point (E) to Point (+5V), this

routes +5V to Pin#21 on the EPROM which is Vpp that needs to be High to operate.

Then run a wire-wrap wire from Point (H) to Point (G) thereby routing the A11 comparator bus

sense input to A11. That’s it as all other wires are already attached.

● Wire (E) to (+5V)

● Wire (H) to (G)

● Wire (C) to (A)

The DIP Switch address for the EPROM has to be set using the U33 DIP Switch. See the section

below on how to do this.

Wiring up a 27C32 EPROM is as follows…

Wiring the 27C32 only requires running a wire-wrap wire from Point (E) to Point (G), this routes

address line A11 to Pin#21 on the EPROM which is A11. Then run a wire-wrap wire from Point

(H) to Point (I) thereby grounding the A11 comparator bus sense input. That’s it as all other

wires are already attached.

● Wire (E) to (G)

● Wire (H) to (I)

● Wire (C) to (A)

The DIP Switch address for the EPROM has to be set using the U33 DIP Switch. See the section

below on how to do this.

EPROM ADDRESS SELECTION:

The EPROM address is selected by using U33 to enter the required address to activate the EPS*

signal for the EPROM enable. The chart below illustrates some possible locations in High

Memory for the EPROM to reside (27C16 or 27C32). Since the 27C16 is a 2Kx8 device there are

smaller memory blocks allocated to it. The larger 27C32 is a 4Kx8 device and therefore fewer

choices. The bits to the left of the red line are bits that identify memory blocks. These can be

entered into the DIP switch by using an “open switch” as a logic 1 and a “closed switch” as a

logic 0. A11 is special and A10 is not used unless a lower memory address is used. By “special”,

this means the Jade Big Z has added a complicated way to represent these two bits. This is to

allow more versatility for address selection to the board.

Note the drawing on the lower right of the DM8131 comparator and DIP Switch. For a 27C32

the A11 line is routed to the EPROM via point (G) and the S5 switch is simply set O or C as

shown in the charts. A10 on the other-hand is hard-wired to the DM8131 and it’s selection is

accomplished by using three switches S6, S7 and S8.

The A10 logic state is selected by DIP S6 and will select the logic level to be compared as

described above. S7 and S8 will route either A11 or GND (logic 0) to the bus comparator circuit

side of the DM8131. S7 is the GND signal line and S8 is the A10 signal line. Either of these

signals can be routed to the DM8131 but not both. Refer to the diagram above to clarify.

In the example chart shown above, the 27C32 does not use the A11 or A10 to enable the

EPROM.

● Point (H) is tied to (GND) physically on the board with wire-wrap thereby setting the bus

 comparator sense input to “0” taking it out of the picture (not used).

● A11 DIP S5 is closed or “0” thereby making it match the unchanging bus comparator input

 and taking it out of the picture (not used).

● DIP S7 is closed “0” and DIP S8 is open not allowing A10 to reach the comparator input and

 taking it out of the picture (not used)

● A10 DIP S6 is closed or “0” thereby making it match the unchanging bus comparator input

 and taking it out of the picture (not used).

The same process is used for the 27C16 except A11 is used and only A10 has to be adjusted

using DIP S6, S7 and S8 to get it out of the picture.

● DIP S7 is closed “0” and DIP S8 is open not allowing A10 to reach the comparator input and

 taking it out of the picture (not used)

● A10 DIP S6 is closed or “0” thereby making it match the unchanging bus comparator input

 and taking it out of the picture (not used).

This is how the address is set for the EPROM. There are charts in the Jade Big Z manual that

just give the “O” or “C” positions of the U33 DIP switch, but there are errors in the chart

depending upon which revision of the board is being used. The above information describes

how the DIP switch is set for any address and applies to the revision “C” version of the board.

Remember that capacitor C12 is installed for filtering the surge current when using the -5 volt

supply on a 2708 EPROM. This capacitor appears to attenuate or distort the A11 signal to a

2732 EPROM making the EPROM incapable of being accessed. This may be due to bad

capacitors used on the Jade Board as some of the .1mfd monolithic capacitors have been found

to be shorted out. In any case, if not using the 2708 EPROM it is a good idea to remove the C12

capacitor located directly below the 1.8432 MHz crystal.

8251 USART:

The Jade Big Z has an onboard 8251 USART to be primarily used as a console input/output

allowing the Jade to communicate to the outside world. The USART could also be used as an

RS-232 serial port but there are better dedicated cards that perform this function so this limits

the USART to console I/O.

The connector for the USART is the DIP socket U19 on the Jade board. One side of this socket is

used for the RS-232 communication and the other side can be used for a front panel

connection. NOTE PIN#1 LOCATION ON U19! DON’T INSERT PLUG BACKWARDS!

 A DB-9 (RS-232) cable can be constructed

 by wiring the following pins…

 ● TXD (Pin12) to RD (Pin2)

 ● RXD (Pin16) to TD (Pin3)

 ● GND (Pin15) to Ground (Pin5)

 That’s it, no handshaking required

There is a “Reverse Channel” signal line provided by the Big Z on Pin#14 of U19. RVC can be

used as a “Busy” or “Data Not Ready” signal from the Host Equipment to the Jade Big Z USART.

This would be accomplished by wiring U19 Pin#14 (RVC) to Pin#6 (DSR).

In practice, for console I/O, this signal was not needed as the Big Z controlled all communication

and would be fast enough to loop waiting for a keyboard input from the USART and then

sending output back at such a slow data rate (9600 baud) that both Host and Jade had no

problem keeping up. The other end of the cable should be connected to a RS-232 (VT-100)

capable terminal (+/- 12VDC). A PC running emulation software. A laptop or any other terminal

device can be used. One option is to use the Propeller driven “Pocket Term” by Briel

Computing.

A VGA Monitor is connected to the “blue” connector in the picture above. The Big Z RS-232

cable is connected to the “HOST” connector (one of two on back) and an IBM keyboard is

connected to the PS/2 connector on the front of the board. The (2) jumpers in the middle may

have to be switched (they act as gender changers). When working, the following is displayed…

Address for the 8251 USART:

The USART is accessed as one of 255 Ports available to the Z80 CPU. The address of the USART

Port is set by using DIP Switch U23 (S1-S6). The USART appears to the Z80 as two consecutive

port I/O address. U24 on the Big Z decodes a group of four consecutive addresses and the two

lower addresses are used for USART communication. An “ODD” address will select the “Status

Port” and an “EVEN” address will select the “Data Port”.

U23 is used to set the Port Address for the USART. In this example, the USART has been

assigned Port 10H and Port 11H as Data Port and Status Port.

10H = [0001 0000]B

11H = [0001 0001]B

 OR

So this is what is entered into the U23 DIP Switch (S1-S6).

A7 A6 A5 A4 A3 A2

 0 0 0 1 0 0

A7 A6 A5 A4 A3 A2

 C C C O C C

As to the 8251 USART itself, different commands can be entered to the USART and different

status bits can be used to indicate conditions within the USART itself such as “BUSY”, “READY

TO SEND” ect…

DATA PORT & STATUS PORT:

As mention above, the two Ports chosen for the USART communication are described as Data

Port and Status Port. These are 8-bit words used to transmit data to and from the Big Z.

In it’s most simple form, the Status Port provides hand shaking control while the Data Port

actually transmits and receives the 8-bit data word. A code snippet to do this is shown below…

This is how data gets into and out of the Jade Big Z; but before this can happen, the 8251 USART

must be initialized via software. This is quite complex but offers great versatility without hard

wiring the USART.

INPUT: IN A,(11H) ;Read keyboard status [0000 00X0]

 AND 02H ; 02H = [0000 00X0] evaluate the “X”

 JP Z,INPUT ;Loop if not ready, [0000 0010]=RDY [0000 0000]=NOT RDY

 IN A,(10H) ;Get keyboard data

OUTPUT: IN A,(11H) ;Read keyboard status [0000 0X00]

 AND 04H ; 04H = [0000 0X00] evaluate the “X”

 JP Z,OUTPUT ;Loop if busy, [0000 0000]=BUSY [0000 0100]=NOT BUSY

 LD A,C

 OUT A,(10H) ;Output character to console

PROGRAMMING THE 8251 USART:

Before the 8251 USART can be used for anything, it must be initialized with word length, stop

bits, parity and parity type. This is done by sending a “MODE WORD” to the 8251 prior to

communicating with it. A MODE WORD is described as follows…

So, to initialize the 8251 USART for 8 data bits, no parity, odd parity, and 1 stop bit, the

following “MODE WORD” would be sent to the 8251 USART…

[0100 1110]B or [4E]H is the MODE WORD sent to the USART

After writing the Mode Word to the 8251, there should be a slight delay and then the

“COMMAND WORD” would be sent. The delay is accomplished by using a “LD A” instruction

followed by the Command Word. The Command Word is sent to control the transmit or receive

function of the USART.

The Mode and Command Word are sent only once after a power-on sequence or reset is

performed.

The Status Register of the USART is used to determine operating conditions within the 8251

USART as follows…

If the 8251 USART is used solely for console I/O, the main Status Register bits to be concerned

with are D1 and D2.

The other Status Register bits are useful if more advanced RS-232 data operations are being

used.

INPUT PORT [00]H = 02H then DATA RDY from keyboard; if the Port is = 00H then DATA NOT RDY

OUTPUT PORT [00]H = 04H then the HOST NOT BUSY; if the Port = 00H then HOST BUSY.

Block Diagram of the

 8251 USART

The following code snippet will initialize and set up the 8251 USART for operation…
(Note Foxit PDF reader ver 4.3.0.110 can convert this listing into ASCII text for use in a Z80 compiler)

; **
; BIG Z SAMPLE MONITOR USART I/O VERSION 1.0
; **
; Asynchronous Communication Mode
; Reset
; Mode Instruction (Asych or Synch, Baud Rate, Word Length, Stop Bits, Parity)
; Mode Word (Write): D7+D6=Stop Bits,D5=E/O Parity,D4=Parity Enable,D3+D2=Char Length,D1+D0=Baud
; *Note: a different Mode Word for Asynchronous Communication is used
; Command Instruction (DTR, RTS, Hunt Mode, Xmt Enable, Rxv Enable)
; Cmd Word (Write): D7=Hunt,D6=Int Rst,D5=RTS,D4=Err Rst,D3=Snd Brk,D3=Rx Enable,D1=DTR,D0=Tx Enable
; Status Word (Read): D7=DSR,D6=Syn Det,D5=Frame Err,D4=Overrun Err,D3=Parity Err,D2=Tx Empty,D1=Rx Rdy,D0=Tx Rdy
 ORG 0E000H
;
SSTAT EQU 11H ;8251 Status port
SDATA EQU 10H ;8251 Data port
TXRDY EQU 01H ;TRANSMIT READY = (0000 0001) or (01)H
;
; initialize USART send 00H three times to guarantee device in "Command Word" mode
;
INIT: LD A,00H ;initialize USART
 OUT (SSTAT),A
 LD A,00H ;initialize USART
 OUT (SSTAT),A
 LD A,00H ;initialize USART
 OUT (SSTAT),A
 LD A,40H ;Send reset "Command Word “ (0100 0000) or 40H and ready 8251 to receive a "Mode Word"
 OUT (SSTAT),A
; Mode word:(01)-1 stop bits (00)-parity disabled (11)-char length 8 bit (10)-baud 16X
; Mode word: (01001110) or (4E)Hex...1xBaud = 153,600 1/16xBaud = 9,600 1/64xBaud = 2,400
 LD A,4EH ;Mode register 8,1,n,9600 or 4EH
 OUT (SSTAT),A
; Command word:(0)-disable hunt mode (0)-do not return to mode word (1)-reset output 0
; Command word:(1)-reset all error flags (0)-normal operations (1)-receive enable
; Command word:(1)-DTR will output "0" (1)-transmit enable
; Command word: (0011 0111)Binary or (37)Hex
 LD A,37H ;Command register 37H essentially enables both transmit & recieve modes
 OUT (SSTAT),A
;
TEST: IN A,(SSTAT)
 AND TXRDY ;is transmitter buffer ready (0&0=0,0&1=0,1&0=0,1&1=1)...if SSTAT=1 AND TXRDY=1 the loop exits
 JP Z,TEST ;loop until it's empty
;
; Output to say we reached this point "U"
 LD A,56H
 OUT (SDATA),A
;
 JP TEST
 END

8251 USART BAUD RATE:

The Baud Rate for the 8251 is selected by using DIP Switch U1. The Baud Rates are clearly

labeled on the circuit board. Rates go from 110 baud to 9600 baud. Only one switch on U1 can

be closed at a time or the baud rate generator will not function.

REVISITING U23 DIP SWITCH:

The remaining two switches (S7 & S8) are option switches controlling the M1 Wait State and

the (POJ) Power-On Jump to EPROM functions.

DIP Switch U23

● S7- OPEN=Wait Off

● S7- CLOSE=M1 Wait On
 Jumper R to F

● S8- OPEN=POJ Off

● S8-CLOSE=POJ On

BIG Z SPEED OPTION:

The Big Z CPU can operate at 2MHz or 4MHz depending upon the position of the T, V, U jumper.

Operation at 4MHz has been successful with the Jade DD Controller Card and a static RAM

board but this depends on many factors and is not easy to get working. The other problem with

the 4MHz operation may be due to the 8251 not being a 4MHz part. Substitution of a faster

USART may resolve the issue or a USART wait state could be implemented as described in the

Big Z Manual and Engineering Update #104.

ENGINEERING UPDATES:

Engineering updates or “ECN” are listed in the back of the revision C Big Z user’s manual. Most

of the ECN’s deal with errors in the User’s Manual due to board revisions, EPROM tables,

EPROM connections and errors in the program listings included within the User’s Manual. In

particular, the Jade Monitor listing in the manual does not work.

Two of the ECN’s have been performed on the Jade Big Z revision C board…

● Erratic Reset ECN#101

● Status Delay Signal ECN#102

Erratic Reset Operation is caused by excessive time constant on RC network on input to U21

Pin#1. This time constant was chosen for operation with front panel systems and resulted in a

delay of 470 ms after the Reset was activated. This may be too long of a delay for non-front

panel systems. Capacitor C22, a 100mfd capacitor was removed and a smaller 10mfd capacitor

was installed in it’s place. This may have to be fine-tuned up to around 22mfd before

acceptable operation is observed.

The Status Signals from a front panel display are latched by U40 to provide for a stable display

operation of the front panel. Unfortunately, passing the status signals through U40 slows them

down enough to become non-compliant with some dynamic memory boards operating at

4MHz. To correct this, U40 is removed and a jumper DIP is installed in it’s place. This removes

the pSYNC delay introduced by the original circuit.

OTHER MODIFICATIONS:

If the Jade Double D Disk Controller board is used in the system, one of the Engineering Notice

Bulletins #4 was for erratic operation between the Jade Big Z and the Jade DD (from the Jade

DD manual) was to modify U22. Cut the trace going to pin#13 of U22 and jump pin#13 to

pin#3. If the Jade DD is not used this modification is not needed.

EPS & HALT:

One other modification done to the Big Z CPU board was the addition of two signal LED’s to

indicate when the EPROM address space is being accessed, and an LED to indicate when a

software HALT instruction has been accessed by the CPU. These indicators are useful in

determining if the EPROM is set up correctly and if the Big Z board is working by installing an

EPROM filled with HALT instructions (76H) that will cause the processor to HALT and turn on

the LED indicator.

● BLUE LED: ON=EPROM being accessed EPS (within the U33 DIP switch address range)

● RED LED: ON=HALT instruction has been read by the CPU and stopped

Jade Big Z Front:

Jade Big Z Back:

Jade Memory Map for Disk Based System:

Troubleshooting and Observations:

Hot +5V Regulator Heatsink: The +5V Regulator at VR4 gets rather hot during normal

operation. Other (larger heatsinks) have been tried but still, this regulator runs hot. I believe

this is normal operation for this board and should not cause problems but it is undesirable.

For this reason, a new switching regulator was installed that does not heat up at all. This

regulator is manufactured by (EzSBC.COM) and is rated at +5V @ 3 Amps.

This is a 5V 2.5A switch-mode voltage regulator. It is a high-efficiency
replacement for popular three-terminal LM323T linear regulators and it is
pin-to-pin compatible with the common and now obsolete LM323T linear
regulators. The mechanical design allows the PSU5a to fit anywhere where an
LM323T or an LM7805 was used. The maximum continuous output current is 3A and
at room temperature the PSU5a does not need a heatsink to maintain this
current indefinitely. All the required capacitors are included on the module,
no external capacitors are required and additional input capacitors do no
harm. The output voltage guaranteed to be within +/-1% as the load varies.
The original LM323T had a rather loosely specified output voltage and it
could vary by as much as 250mV without load and at room temperature. The
PSU5a is accurate to winthin +/-2%. The module has thermal shutdown and
current limit protection. The absolute maximum input voltage is 20V.

 Drop-in replacement of the obsolete LM323T or equivalent linear voltage
regulator.

 Guaranteed 3A output current.
 Input voltage range of 7.2V to 20V
 Suitable for use in Pinball machines and video game consoles
 High efficiency switching regulator design reduces power dissipation

with superior voltage regulation compare to the LM323T.
 Thermal shutdown and current limit protection
 All components are mounted on one side of the PCB
 Highest component is the inductor at 5mm above the PCB.
 Available with or without pins.
 Gold plated pins and PCB to withstand harsh environments over the long

term.
 Can drive inductive loads such as solenoids and DC motors.
 500kHz Switching Frequency
 Made in the USA

PSU5a 5V 3A Regulator in TO-220 form Factor

As a side note, the previous +5V regulator was changed out with another regulator with
a higher Amp rating prior to trying the EzSBC switching regulator. This regulator worked
but provided an output of 4.98 volts. This caused strange behavior in the Big Z CPU
board. Random crashes, random HALT’s and weird operation of the front panel displays
(flickering of status LED’s). I can’t state emphatically that the lower 4.98 volts caused
this problem, but after replacing the regulator with the EzSBC switching regulator, along
with the two filter capacitors C16 & C17, all problems stopped occurring. The EzSBC
output voltage was 5.01 volts. Food for thought…in the future, check the voltage output
of the VR4 regulator to insure it is operating at +5.00 volts.

8251 USART Port: Problems with the serial port can be hard to diagnose. The RS-232
connection from the Terminal Equipment to the Jade Big Z is through the 16-Pin DIP
socket on the board U19. If the connector plug is installed backwards, +/- 12 volts is
applied to the CPU data bus directly and can cause damage. Make sure the plug
inserted into U19 is correctly oriented with Pin #1 closest to the Gold Fingers on the
bottom of the card. Verify Pin #1! If the serial port becomes unresponsive, replace the
MC1488 and MC1489 chips first as they are the interface between the RS-232 and TTL
logic. If the computer is turned off, the Big Z plugged in with serial connection on, and
there is a small voltage bleeding through on the +12V or -12V system rails; this may
indicate failure of the 1488 and/or 1499.

System Monitor known working … JADEV3F.BIN/JADEV3F.ASM 2K 2716 EPROM
Origin= E800-EFFF 8251 Data Port=10H & Status/CMD Port=11H

SWITCH 1 2 3 4 5 6 7 8

U1= C O O O O O O O

U23= C C C O C C O C

U33= O O O C O C C O

JADE Firmware: (EPROM and/or Disk)

Big Z Monitor "A" SFX-58001020E $29.95
Monitor program on 2708 EPROM for JADE Big Z CPU,
original JADE parallel-serial I/O board, serial terminal,
and Versafloppy I or Tarbell disk controller.

Big Z Monitor "B" SFX-58001025E $29.95
Similar to version A, but uses Tarbell cassette for tape I/O.

Big Z Monitor "C"/5-1/4" SFX-58001030E $49.95
Combination monitor and CP/M BIOS for Big Z,
serial terminal, Versafloppy I, and 5-1/4" drives (2716).

Big Z Monitor "C"/8" SFX-58001040E $49.95
Same as above, for use with 8" drives.

Big Z Monitor "D"/5-1/4" SFX-58001050E $49.95
Combination monitor and CP/M BIOS for Big Z, serial terminal,
JADE Double-D disk controller, and 5-1/4" drives.

Big Z Monitor "D"/8" SFX-58001060E $49.95
Same as above, for use with 8" drives.

Double-D Boot SFC-58001200E $20.00
Standard bootstrap routine for JADE Double-D
disk controller (2708).

(Note Foxit PDF reader ver 4.3.0.1110 can convert this listing into ASCII text for use in a Z80 compiler)

Monitor listing based on Big Z Monitor “A” and Big Z Monitor “B”
Note: Cassette functions are untested on actual hardware 07/15/24 so may not work all other functions should work

;**
; BIG Z MONITOR (2K VERSION 3.0) 9/10/79 AB
;**
; VERSION: JADEV3FC.Z80 JUNE 25,2020 BY AD
; TAPE FUNCTIONS INCLUDED NOW...VERSION C
; BACKGROUND-THIS MONITOR CODE IS FROM THE JADE BIG Z REVISION C MANUAL 1K ROM MONITOR
; THE VERSION WAS 2.0 A/B FOR CASSETTE STORAGE A=JADE 2S1P/AND B=TARBELL
; FROM THE ENGINEERING NOTES, THIS VERSION WAS KNOWN NOT TO WORK AND WAS POORLY COMMENTED
; THE CODE WAS MODIFIED WITH THE GOAL OF KEEPING THE BASIC MONITOR FUNCTIONS INTACT AND
; ADDING TO THE MONITOR WITH IMPROVEMENTS AND EXTENSIVE COMMENTS WHERE POSSIBLE
; BETTER MENUS & PROMPTS, DR DOBBS MEMORY MAP, PORT IDENTIFER (S100.COM). TAPE FUNCTIONS
; THAT LOAD & SAVE DATA FOR KCTAPE ARE JADE ORIGINALS W/CHECK SUMS (BUT THERE IS NO
; STANDARD FOR THIS SO EXAMINE THE CODE). THE TARBELL TAPE ROUTINES ARE BASED ON THE TARBELL
; MANUAL AND ARE NOT JADE ORIGINAL ROUTINES.
; THE MONITOR ROM WENT FROM A 1K 2708 TO A 2K 2716 EPROM.
;
; ASSUMPTIONS:
; 8251 SERIAL PORT ON BIGZ IS SET TO PORTS 10 AND 11H
; OR S100.COM PROPELLER CONSOLE BOARD AT PORTS 00H AND 01H
; (s100.COM PROP MUST ONLY ADDRESS THE 256 PORTS FOR A PRE-IEEE696 MACHINE)
; TARBELL TAPE USING STANDARD TARBELL PORTS
; OR KC STANDARD VIA JADE SERIAL/PARALLEL CARD 2S1P
; WITH AY51013 UART SET TO PORTS 00 & 80 HEX
; NO MEMORY SIZE IS ASSUMED
; ASSUME A VT-100 SERIAL TERMINAL CONNECTED TO JGZ80 8251 USART USING VT-100 'ESC' COMMANDS
;
; PROGRAMMING THE JGZ80 8251 UART
; Asynchronous Communication Mode
; Mode Instruction MSB(Asych or Synch, Baud Rate, Word Length, Stop Bits, Parity)LSB
; MODE WORD (Write): D7+D6=Stop Bits,D5=Even Parity,D4=Parity Enable,D3+D2=Char Length,D1+D0=Baud
; *Note: a different Mode Word for Synchronous Communication is used but not used here
; Command Instruction MSB(DTR, RTS, Hunt Mode, Xmt Enable, Rxv Enable)LSB
; COMMAND WORD (Write): D7=Hunt,D6=Int Rst,D5=RTS,D4=Err Rst,D3=Snd Brk,D3=Rx Enable,D1=DTR,D0=Tx Enable
; STATUS WORD (Read): D7=DSR,D6=Syn Det,D5=Frame Err,D4=Overrun Err,D3=Parity Err,D2=Tx Empty,D1=Rx Rdy,D0=Tx Rdy
;
; PROGRAMMING THE JADE 2S1P CASSETTE PORT A AY51013/TRI602 UART
; (note: This board does not actually have a programmable UART; but JADE used 74LS125 & 74LS97 to emulate one)
; DATA Ports: "FOR A" can be either (00H,04H,08H,0CH,10H,14H,18H or 1CH) => HOLDS THE DATA WORD FOR I/O
; CONTROL Ports: (DATA Port) + (80H) => WRITE ONLY MSB(NP,TSB,NB2,NB1,EPS,XX,XX,XX)LSB
; NP=1(NO PARITY),TBS=1(2 STOP BITS),NB2+NB1(00=5,01=6,10=7,11=8 BITS/CHAR),EPS=1(EVEN PARITY)
; STATUS Ports: (DATA Port) + (80H) => READ ONLY MSB(TBMT,PE,FE,DAV,XX,XX,XX,XX)LSB
; TMBT=1(TX BUFF EMPTY),PE=1(PARITY IS BAD),FE=1(STOP BIT IS BAD),DAV=1(RX IS READY TO READ)
;
; PROGRAMMING THE TARBELL- THE TARBELL CASSETTE CARD ONLY HAS TTL LOGIC WITH CONTROL/STATUS BITS STORED IN A 74LS75 LATCH
; CORRESPOUNDING TO DATA BITS (D7,D6,D5,D4) OF AN 8 BIT WORD. DATA PORT IS AT "6FH" AND THE CONTROL/STATUS PORT AT "6EH"
; THE PORT ADDRESS BIT "A0" DIFFERENTIATES BETWEEN THE TWO.
; DATA WORD= I/O (6FH)..............MSB[D7,D6,D5,D4,D3,D2,D1,D0]LSB
; CONTROL/STATUS WORD= I/O (6EH)....MSB[X,X,TXRDY,RXRDY, X,X,X,X]LSB RXRDY=10H,TXRDY=20H
; RXRDY=00H TARBEL READY TO RECEIVE,TXRDY=00H TARBEL READY TO TRANSMIT
; GP OUTPUT PORT (J1)- PORT 6EH MSB[X,X,X,X, D3,D2,D1,D0]LSB WRITING A "1" TURNS BIT ON AND "0" TURNS IT OFF
; GP INPUT PORT (J1)- PORT 6EH MSB[X,X,X,X, D3,D2,D1,D0]LSB READING THESE 4 BITS FROM PORT 6EH WITH CARE
; COULD BE USED AS INPUT CONTROLS
; THE GP OUTPUT PORT HAS FOUR BITS (40mA) AND "D0" IS USED TO CONTROL CASSETTE TAPE "MOTOR-ON" FUNCTION VIA RELAY
; TARBELL DEFINES: [3CH]=START BYTE, [E6H]=SYNC BYTE, [FFH]=LEADER BYTE NOTHING ELSE IS SPECIFICALLY DEFINED
;
; SLR SYSTEMS ASSEMBLER USED TO GENERATE HEX CODE FOR USE-(Z80ASM.COM) EXAMPLE: "Z80ASM JADEV3FC.Z80 FH"
; JADE MONITOR ROM HAS BEEN COMPILED TO RESIDE AT (F800H-FFFFH). THIS WAS TO ALLOW FOR A DISK BOOT ROM TO RESIDE
; AT (F000H-F7FFH) WITHOUT WASTING MEMORY SPACE.
;
; COMPILER: COMPILED CODE SHOULD FIT INTO A 2716 EPROM WITH 2048 BYTES AVAILABLE
; 1999 BYTES - PROP/TARB
; 2023 BYTES - SERIAL/TARB
; 1889 BYTES - SERIAL/JADE
; 1865 BYTES - PROP/JADE
;
; MENU COMMANDS:
; A(MMOD)-MODIFY A MEMORY LOCATION
; D(MDUMP)-DUMP A RANGE OF MEMORY TO THE CONSOLE
; G(RUN)-GOTO AND RUN A PROGRAM AT THAT ADDRESS
; K(MENU)-REFRESH THE MENU SELECTIONS/SCREEN
; C(MMOVE)-THIS ACTUALLY COPIES A BLOCK OF MEMORY TO A NEW LOCATION
; T(MTEST)-SIMPLE NON-DESTRUCTIVE MEMORY TEST THAT DISPLAYS MEMORY BITS THAT CAN'T BE CHANGED AS "11111111"
; F(MFILL)-WILL FILL A BLOCK OF MEMORY WITH A SELECTED HEX CHARACTER
; M(MMAP)-DR DOBBS MEMORY MAPPER THAT DISPLAYS RAM,ROM, AND MISSING MEMORY
; L(MWRT)-ROUTINE TO ENTER SHORT PROGRAMS INTO CONSECUTIVE MEMORY LOCATIONS (MACHINE LANGUAGE PROGRAMS)
; P(PORTS)-WILL SCAN THE 0-255 I/O PORTS AND DISPLAY VALUES THAT IT FINDS
; S(CSAVE)-SAVE A BLOCK OF MEMORY TO CASSETTE TAPE
; R(CLOAD)-LOAD FROM CASSETTE TAPE TO A SPECIFIED STARTING LOCATION IN MEMORY
; V(MVER)-VERIFY A COPIED BLOCK OF MEMORY BY SPECIFIED STARTING, ENDING, AND NEW LOCATION ADDRESS
; X(CSYNC)-GENERATE A SYNC STREAM TAPE USED TO ADJUST THE CASSETTE TAPE VOLUME VIA THE (CADJ) ROUTINE
; Y(CASJ)-ROUTINE TO ADJUST THE CASSETTE PLAYER VOLUME CONTROL USING A SYNC STREAM TAPE
; B(TARB)-TARBELL FLOPPY DISK BOOT ROUTINE WRITTEN TO MEMORY AND THEN RUN; WORKS ON A FD-1771; NO BOOT ROM REQUIRED
; E(VERSA)-ROUTINE TO JUMP TO A VERSAFLOPPY BOOT ROM AT F000H AND LOAD A DISK SYSTEM FROM THERE
; U(XPORT)-CHANGE AN I/O PORT VALUE 0-255 BY ENTERING PORT HEX NUMBER, THEN NEW HEX VALUE FOR THAT PORT
;
;
; CONDITIONAL ASSEMBLY PARAMETERS
;
; DEFINE VALUES OF TRUE/FALSE
TRUE: EQU 0FFFFH
FALSE: EQU 0
;
; ########### Note: Choose either 8251 UART I/O or PROP I/O ############
;
; DEFINE CONSOLE I/O
UART: EQU FALSE ; USE BIG Z ONBOARD 8251 FOR CONSOLE I/O
PROP: EQU TRUE ; USE S100.COM PROPELLER CONSOLE BOARD FOR I/O
;
; DEFINE CASSETTE TAPE SYSTEM
TARBEL: EQU TRUE ; USE THE DON TARBELL CASSETTE BOARD
KCTAPE: EQU FALSE ; USE THE JADE SERIAL/PARALLEL BOARD
;
; SYSTEM EQUATES
;
MON: ORG 0F800H ; LOCATION OF JADE MONITOR ROM
;
; ASSUME JADE BIG Z MONITOR IS AT (F800)H - (FFFF)H 2KROM
; ASSUME VERSAFLOPPY II BIOS ROM AT (F000)H - (F7FF)H OR OTHER FLOPPY BIOS
 IF KCTAPE ; =========(f)IF
TAPE: EQU 00H ; JADE 2S1P BOARD SELECT PORT B KC CASSETTE 'CURRENTLY SET TO PORT 0H'
TAPST: EQU 80H ; JADE 2S1P BOARD ADDRESS UART B I/O (80H + SELECT PORT) 'CURRENTLY PORT O & PORT 80'
 ENDIF ; JADE 2S1P: TO PROGRAM THE UART OPERATION MODE LOAD THE SELECT PORT + 80 =========(f)ENDIF
; AS THE I/O ADDRESS THEN OUTPUT THE CONTROL WORD TO THAT ADDRESS...BAUD,PARITY,ETC
; THE INPUT & OUTPUT ADDRESS IS THE SAME. THE CONTROL WORD IS AN OUTPUT WHILE THE
; STATUS SENSE IN AN INPUT.
; JADE 2S1P CNTL WORD (10110000)B = B0H => NOP,1STOP,8DATA
; JADE 2S1P STATUS SENSE (1xxxxxxx)B = 80H => TRANSMITTER BUFFER IS EMPTY (TBMT)=1
; JADE 2S1P STATUS SENSE (xxx1xxxx)B = 10H => CHARACTER READY TO TRANSMIT (DAV)=1
;

WAIT: EQU 0FCH
SECT: EQU 0FAH
DCOM: EQU 0F8H
DDATA: EQU 0FBH
DSTAT: EQU 0F8H
SBOOT: EQU 007DH
TARBL EQU 06EH ; TARBELL CONTROL/STATUS PORT
;
 IF UART ; ===============(e)IF
KBDST: EQU 11H ; 8251 Command port
KBDDT: EQU 10H ; 8251 Data port
KBDIN: EQU 02H ; 8251 RECEIVE READY = (0000 0002)B or (02)H
KBDOT: EQU 01H ; 8251 TRANSMIT READY = (0000 0001)B or (01)H
 ENDIF ; ===============(e)ENDIF
;
 IF PROP ; ===============(g)IF
KBDST: EQU 00H ; Status port is PORT (00)H
KBDDT: EQU 01H ; Data port is PORT (01)H
KBDIN: EQU 02H ; RECEIVE READY = (0000 0002)B or (02)H
KBDOT: EQU 04H ; TRANSMIT READY = (0000 0100)B or (04)H
 ENDIF ; ===============(g)ENDIF
;
; THE FOLLOWING ARE JUMP SUBROUTINES THAT CAN BE ACCESSED BY OTHER PROGRAMS
; FOR THIS REASON THEY ARE LISTED HERE; BUT PROGRAM FLOW ONLY USES "INIT"

 JP INIT
 JP EXEC
 JP CONIN
 JP CONOUT
 JP HEXIN
 JP HEXOUT
 JP DHXOT
 JP CRLF
 JP SPACE
 JP TREAD
 JP TWRIT
;
; + + + + DEFINE MESSAGES HERE + + + +
;
 ; MESSAGE PRINT ROUTINE [DO NOT USE COMMA AS PUNCTUATION!!!]
;
 IF TARBEL ; ===================(h)IF
MSG1: DEFM 'JADE COMPUTER SYSTEMS BIG Z MONITOR 3.0B'
 DEFB 03H ; 03H=END OF TEXT
 ENDIF ; ===================(h)ENDIF
;
 IF KCTAPE ; ===================(i)IF
MSG1: DEFM 'JADE COMPUTER SYSTEMS BIG Z MONITOR 3.0A'
 DEFB 03H ; 03H=END OF TEXT
 ENDIF ; ===================(i)ENDIF
;
MSG2: DEFM 'TOP OF RAM:'
 DEFB 03H ; 03H=END OF TEXT
;
MSG3: DEFM '(A)MMOD (D)MDUMP (L)MWRT (F)MFILL (C)MMOVE (M)MMAP (V)MVER (T)MTEST (G)RUN'
 DEFB 0DH,0AH ; 0DH=CARRIAGE RTN 0AH=LINE FEED
 DEFB 03H ; O3H=END OF TEXT
;
MSG4: DEFM '(S)CSAVE (R)CLOAD (P)PORT (U)XPORT (X)CSYNC (Y)CADJ (B)TARB (E)VERSA (K)MENU'
 DEFB 0DH,0AH ; 0DH=CARRIAGE RTN 0AH=LINE FEED
 DEFB 03H ; O3H=END OF TEXT
;
MSG10: DEFM ' xxxx <CR> <BS> <xx.> or </>exit'
 DEFB 0DH,0AH,03H ; CR LF EOT
;
MSG11: DEFM 'BAD:'
 DEFB 03H ; END OF TEXT '03H'
;
MSG12: DEFM ' xxxx,xxxx <CR>'
 DEFB 0DH,0AH,03H ; C/R L/F EOT
;
MSG13: DEFM ' xxxx <CR> or </>exit'
 DEFB 0DH,0AH,03H ; C/R L/F EOT
;
MSG14: DEFM ' xxxx,xxxx,xx <CR>'
 DEFB 0DH,0AH,03H ; C/R L/F EOT
;
MSG15: DEFM ' xxxx,xxxx,xxxx <CR>'
 DEFB 0DH,0AH,03H ; C/R L/F EOT
;
MSG16: DEFM ' ADJ VOL GOOD(+)/BAD($)'
 DEFB 0DH,0AH,03H ; C/R L/F EOT
;
MSG17: DEFM ' SYNC STREAM TAPE:'
 DEFB 0DH,0AH,03H ; C/R L/F EOT
;
MSG18: DEFM ' xxxx,xxxx,xxxx <CR> MEMORY: <STRT>,<END>,<NEW>'
 DEFB 0DH,0AH,03H ; C/R L/F EOT
;
MSG19: DEFM 'END'
 DEFB 03H ; END OF TEXT '03H'
;
MSG20: DEFM ' xxxx <CR>'
 DEFB 0DH,0AH,03H ; C/R L/F EOT
;
MSG21: DEFM ' XXXX <CR> PORT VALUE'
 DEFB 0DH,0AH,03H ; C/R L/F EOT
;
MSG22: DEFM ' DISK BOOTSTRAP LOADER'
 DEFB 0DH,0AH,03H ; C/R L/F EOT
;
MSG23: DEFM ' DISK BOOT ROM AT F000H'
 DEFB 0DH,0AH,03H ; C/R L/F EOT
;
INIT: ; SET UP THE UART AND THEN INITIALIZE THE STACK
;
 IF UART ; ================(j)IF
 LD A,00H ; Initialize USART send 00H three times to guarantee device in "Command Instruction"
 OUT (KBDST),A
 LD A,00H ; INITIALIZE USART
 OUT (KBDST),A
 LD A,00H ; INITIALIZE USART
 OUT (KBDST),A
 LD A,40H ; Send internal reset "Command Instruction" (0100 0000) or 40H and ready 8251 to recieve a
"Mode Instruction"
 OUT (KBDST),A
; Mode word:(01)-1 stop bits (00)-parity disabled (11)-char length 8 bit (10)-baud 16X
; Mode word: (01001110) or (4E)Hex...1xBaud = 153,600 1/16xBaud = 9,600 1/64xBaud = 2,400
 LD A,4EH ; Mode register 8,1,n,9600 or 4EH
 OUT (KBDST),A
; Command word:(0)-disable hunt mode (0)-do not return to mode word (1)-reset output 0
; Command word:(1)-reset all error flags (0)-normal operations (1)-receive enable
; Command word:(1)-DTR will output "0" (1)-transmit enable
; Command word: (0011 0111)Binary or (37)Hex
 LD A,37H ; Command register 37H essentially enables both transmit & recieve modes
 OUT (KBDST),A ; INITIALIZE THE ONBOARD UART
 ENDIF ; ===============(j)ENDIF
;
; TOP OF MEMORY ROUTINE AND SETUP STACK

FTOP: LD B,1 ; SET POINTER TO "1"
 LD HL,TRUE ; PRELOAD MEMORY ADDRESS WITH "FFFF"
FTOP1: INC HL ; ADD 1 TO MEMORY POINTER HL (START AT "0000" GOING TO "FFFF")
 LD A,(HL) ; LOAD "A" WITH (HL) CONTENTS
 CPL ; MODIFY THE MEMORY CONTENTS
 LD (HL),A ; LOAD MEMORY LOCATION (HL) WITH MODIFIED CONTENT
 CP (HL)
 CPL ; SEE IF MEMORY CONTENT COULD BE CHANGED
 LD (HL),A ; IF CHANGED=RAM, IF NOT CHANGED=TOP OF RAM
 JP NZ,FTOP2 ; IF CHANGED=TOP OF RAM, JUMP OUT; OTHERWISE REPEAT
 LD B,0 ; SET POINTER TO "0", FOUND SOME MEMORY!
 JR FTOP1
FTOP2: LD A,B ; LOAD "A" WITH "MEMORY POINTER"
 OR A ;
 JP NZ,FTOP1 ; IF POINTER IS "1", THERE IS NO MEMORY AT THIS LOCATION, TRY AGAIN
 DEC HL ; SUBTRACT BY 1
 DEC HL ; SUBTRACT BY 1
 LD SP,HL ; LOAD THE (SP) STACK POINTER WITH HL
 PUSH HL
 POP IY ; SAVE STACK ADDRESS IN IY
;
 CALL CLRSCN ; CLEAR SCREEN AND MOVE CURSOR TO UPPER LEFT CORNER
 LD HL,MSG2 ; TOP OF MEMORY MESSAGE - ONE TIME ONLY AT BOOT
 CALL MARQ ; MESSAGE MARQUEE ROUTINE
 LD HL,1
 ADD HL,SP
 CALL DHXOT ; DISPLAY THE TOP OF MEMORY - HEX OUT TO CONSOLE
 CALL CRLF
;
INIT1: LD HL,MSG1 ; DISPLAY THE JADE SIGN-ON MESSAGE
 CALL MARQ ; MESSAGE MARQUEE ROUTINE
 CALL CRLF
;
EXEC:
 IF TARBEL ; NOT SURE OF THIS ROUTINE - CHECK IF USING TARBEL =======================(d)IF
 CALL CRLF ; CRLF TO CONSOLE
 LD SP,IY ; LOAD SP FROM IY....IY CONTAINS THE SP ??
 SUB A ; A=A=0
 OUT (TARBL),A ; OUTPUT TO TARBEL STATUS PORT MSB[X,X,TXRDY,RXRDY, X,X,X,X]LSB
 ENDIF ; =======================(d)ENDIF
;
 LD HL,MSG3 ; ROUTINE TO PRINT THE TWO LINES OF MENU COMMANDS
 CALL MARQ ; MESSAGE MARQUEE ROUTINE
 LD HL,MSG4
 CALL MARQ ; MESSAGE MARQUEE ROUTINE
;
EXEC3: ; DISPLAY MONITOR PROMPT
 LD A,'#' ; MONITOR PROMPT: # SIGN
 CALL CRLF
 CALL CONOUT
; + + + MENU TABLE ENTRIES + + +
;
EXEC4: CALL CONIN ; GET CONSOLE INPUT IN REGISTER 'A'
 CP 21H ;
 JP M,EXEC4 ; LOOP ON CONTROL CHARACTERS ASCII(00H-20H)
 CP 'A'
 JP Z,ALTER ; MODIFY MEMORY ROUTINE = A
 CP 'D'
 JP Z,DUMP ; DUMP MEMORY ROUTINE = D
 CP 'G'
 JP Z,GO ; JUMP TO ADDRESS AND RUN = G
 CP 'K'
 JP Z,KMENU ; PRINT THE MENU CHOICES = K
 CP 'C'
 JP Z,COPY ; MOVE MEMORY ROUTINE = C
 CP 'T'
 JP Z,MTEST ; TEST MEMORY ROUTINE = T
 CP 'F'
 JP Z,FILL ; FILL MEMORY ROUTINE = F
 CP 'M'
 JP Z,MEMMAP ; MAP RAM AREAS = M
 CP 'L'
 JP Z,MLOAD ; WRITE DIRECT INTO MEMORY = L
 CP 'P'
 JP Z,PORTS ; DISPLAY AVAILABLE PORTS
 CP 'S'
 JP Z,TSAVE ; SAVE MEMORY ON CASSETTE = S
 CP 'R'
 JP Z,TLOAD ; LOAD MEMORY FROM CASSETTE = R
 CP 'V'
 JP Z,VERIFY ; VERIFY MEMORY BLOCK COPY/MOVE = V
 CP 'X'
 JP Z,STRM ; DO A SYNC STREAM OUTPUT = X
 CP 'Y'
 JP Z,TUNE ; ADJUST CASSETTE VOLUME ROUTINE = Y
 CP 'B'
 JP Z,BOOT ; TARBELL BOOT ROUTINE = B
 CP 'E'
 JP Z,BIOS ; VERSAFLOPPY II FLOPPY BIOS ROM = E
 CP 'U'
 JP Z,QUERY ; CHANGE PORT VALUE
;
 JP EXEC4 ; IF INCORRECT OR NO SELECTION IS MADE, TRY AGAIN
;
BIOS: LD HL,MSG23 ; OUTPUT BRIEF INSTRUCTION
 CALL MARQ ; OUTPUT TO CONSOLE
 JP 0F000H ; JUMP TO FLOPPY ROM AT F000H
;
GO: ; JUMP TO A MEMORY LOCATION AND RUN A PROGRAM THERE
 LD HL,MSG20 ; OUTPUT BRIEF INSTRUCTION
 CALL MARQ ; OUTPUT TO CONSOLE
 CALL SPHIN
 CALL CRLF
 JP (HL) ; EXECUTE A PROGRAM AT '(HL)' NO RETURN NEED RE-BOOT
;
ALTER: ; MODIFY OR EXAMINE MEMORY ROUTINE
; # A _ _ _ _ <enter> # A 0100 <CR>
; 0100 00 _ _ <memory location 0100 displayed>
; 0100 00 FF. <memory location 0100 changed to FF and PC INC>
; 0101 00 _ _ <memory location 0101 displayed>
; 0101 00 / <memory unchanged exit routine>
; 0101 00 <CR> <memory unchanged and PC DEC>
; 0101 00 <BS> <memory unchanged and PC INC>
; 0100 FF _ _
 LD HL,MSG10 ; OUTPUT BRIEF INSTRUCTION
 CALL MARQ ; OUTPUT TO CONSOLE
 CALL SPHIN
ALT1: CALL CRLF
 CALL DHXOT
 CALL SPACE
 LD A,(HL)
 CALL HEXOUT
 PUSH HL
 CALL SPHIN
 LD E,L
 POP HL
 CP 0DH ; ODH=CR MEANS DON'T CHANGE BUT DECREMENT TO THE NEXT LOCATION
 JP Z,ALT3
 CP '/' ; THE '/' IS THE EXIT CHARACTER W/O CHANGE

 JP Z,EXEC3
 CP '.' ; THE '.' IS THE MODIFY CHARACTER AS IN '0100 00 12.'
 JP NZ,ALT2 ; IF THE '.' IS DETECTED
 LD (HL),E ; LOAD THE VALUE IN 'E' TO MEMORY LOCATION '(HL)'
ALT2: INC HL ; INCREMENT THE MEMORY LOCATION '(HL)'
 JR ALT1 ; START AGAIN AT ALT1
ALT3: DEC HL ; DECREMENT THE MEMORY LOCATION AND START AGAIN AT ALT1
 JR ALT1
;
DUMP: ; DUMP MEMORY ROUTINE
; # D _ _ _ _ , _ _ _ _ <enter> # D 0100 <CR>
; 0100 D3 <memory location 0100 displayed>
; # D _ _ _ _ , _ _ _ _ <enter> # D 0100,0110 <CR>
; 0100 D3 D3 D3 D3 D3... <memory locations displayed>
; 0110 D3 D3 D3 D3 D3... <memory locations displayed>
 LD HL,MSG12
 CALL MARQ
 CALL DHXIN
DUMP1: CALL CRLF
 CALL DHXOT
 LD B,16
DUMP2: CALL SPACE
 LD A,(HL)
 CALL HEXOUT
 CALL CMPDH
 JP C,EXEC3 ; EXIT THE ROUTINE
 INC HL ; INCREMENT THE PC 'HL'
 DEC B
 JP NZ,DUMP2
 JR DUMP1
;
MEMMAP: ; MEMORY MAP PROGRAM CF.DR.DOBBS VOL 31 P40 AND JOHN MONAHAN S-100.COM
 LD HL,0 ; IT WILL SHOW ON CONSOL TOTAL MEMORY SUMMARY OF RAM, PROM, AND NO MEMORY
 LD B,1
MAP1A: LD E,'R' ; PRINT R FOR RAM
 LD A,(HL)
 CPL
 LD (HL),A
 CP (HL)
 CPL
 LD (HL),A
 JP NZ,MAP2A
 CP (HL)
 JP Z,PRINTA
MAP2A: LD E,'p'
MAP3A: LD A,0FFH
 CP (HL)
 JP NZ,PRINTA
 INC L
 XOR A
 CP L
 JP NZ,MAP3A
 LD E,'.'
PRINTA: LD L,0
 DEC B
 JP NZ,NLINEA
 LD B,16
 CALL CRLF
 CALL HXOT4 ; 16 HEX CONSOL OUT ROUTINE
NLINEA: LD A,20H ; LOAD REG A WITH 'SPACE' (20H)
 CALL OTA ; SEND TO CONSOL WHAT'S IN REG A
 LD A,E
 CALL OTA ; SEND TO CONSOL WHAT'S IN REG A
 INC H
 JP NZ,MAP1A
 CALL CRLF
 JP EXEC3
;
MLOAD: ; WRITE DIRECTLY INTO MEMORY ROUTINE:
; THIS ROUTINE WILL ACCEPT A STARTING ADDRESS FOLLOWED BY HEX DATA THAT IS
; PLACED CONSECUTIVELY INTO MEMORY. ENTERING AN '/' WILL EXIT THE ROUTINE.
; THIS COULD BE USED TO ENTER SHORT PROGRAMS INTO MEMORY TO BE RUN WITH THE
; 'GO' COMMAND.
;
; ENTER HEX VALUES STARTING AT SPECIFIC MEMORY LOCATION
; # L _ _ _ _ <enter> # L 0100 <CR>
; 0100 _ _ <memory location 0100 displayed>
; 0100 AF <CR> <memory location 0100 changed to AF and PC INC>
; 0101 _ _ <memory location 0101 displayed>
; 0101 _ _ / <memory unchanged exit routine>
;
 LD HL,MSG13
 CALL MARQ
ML1: CALL SPHIN ; GET A MEMORY ADDRESS TO PLACE THE CODE
 CALL CRLF ; GOTO A NEW LINE
ML2: CALL DHXOT ; DISPLAY THE MEMORY ADDRESS
 CALL SPACE ; ADD A SPACE
 PUSH HL ; REG PAIR 'HL' CONTAINS ADDRESS OF DATA LOCATION IS PUSHED ONTO STACK
 CALL SPHIN ; ENTER SOME HEX DATA, A <CR> OR A '/'
 LD E,L
 POP HL
 CP '/' ; THE '/' IS THE EXIT CHARACTER W/O CHANGE
 JP Z,ML4 ; EXIT TO EXEC
 CP 0DH ; <CR> = 0DH
 JP NZ,ML3 ; IF THE '.' IS DETECTED
 LD (HL),E ; LOAD THE VALUE IN 'E' TO MEMORY LOCATION '(HL)'
ML3: INC HL ; INCREMENT THE MEMORY LOCATION '(HL)'
 CALL CRLF
 JR ML2 ; START AGAIN AT ML2
ML4: CALL CRLF
 CALL CRLF
 LD A,'D'
 CALL CONOUT
 LD A,'O'
 CALL CONOUT
 LD A,'N'
 CALL CONOUT
 LD A,'E'
 CALL CONOUT
 JP EXEC3
;
KMENU: ; ROUTINE TO CLR SCREEN & HOME POSITION
 CALL CLRSCN ; FILL SCREEN WITH BLANKS AND HOME CURSOR
 JP INIT1 ; JUMP TO INIT1 - DISPLAY JADE SIGN-ON MESSAGE
;
;
FILL: ; MEMORY FILL ROUTINE
; # F _ _ _ _ , _ _ _ _ , _ _ <enter>
; # F 0100,0150,DE <enter>
; This will write "DE" into all memory locations
; between 0100 - 0150
; Only one byte "_ _" entered is valid as the fill
 LD HL,MSG14
 CALL MARQ
 CALL DHXIN
 SUB 0DH
 JP Z,FILL0
 PUSH HL
 CALL HEXIN

 LD A,L
 POP HL
FILL0: DEC HL
FILL1: INC HL
 LD (HL),A
 CALL CMPDH
 JP NC,FILL1
 JP EXEC3
;
COPY: ; COPY MEMORY FROM ONE LOCATION TO ANOTHER LOCATION
; # C _ _ _ _ , _ _ _ _ , _ _ _ _ <enter>
; # C 0100,0150,0200 <enter>
; Copies Memory Block between 0100 - 0150 to Memory
; starting at 0200 This will over-write what is
; at Memory Location 0200 leaving 0100-0150 unchanged
;
 LD HL,MSG15
 CALL MARQ
 CALL TRPIN ; TRPIN: INPUT 3 WORDS...PLACE IN [HL],[DE],[BC]...ex: (hhll),(ddee),(bbcc) <CR>
; [HL]=END [DE]=BEG [BC]=DEST...WANT TO INC DE AND BC UNTIL DE=HL
 CALL CRLF
COPY0: LD A,(DE)
 LD (BC),A
 CALL CMPDH ; COMPARES [DE] TO [HL] IF EQUAL [CARRY FLAG] = 1
 JP C,EXEC3 ; EXIT THE ROUTINE IF [CARRY FLAG] = 1
 INC DE
 INC BC
 JP COPY0
;
; MEMORY TEST ROUTINE: (64K OR LESS)
; # T _ _ _ _ , _ _ _ _ <enter>
; # T 0100,0200 <enter>
; - WILL TEST MEMORY FROM 0100H TO 0200H
; - WILL RETURN NOTHING IF MEMORY IS OK OR
; - ADDRESS OF BAD MEMORY WITH BAD BITS
;
; THIS IS A 'QUICKIE' MEMORY TEST TO SPOT
; HARD MEMORY FAILURES, OR ACCIDENTLY
; PROTECTED MEMORY LOCATIONS. IT IS NOT
; MEANT TO BE THE DEFINITIVE MEMORY DIAGNOSTIC.
; IT IS, HOWEVER, NON-DESTRUCTIVE. ERRORS ARE
; PRINTED ON THE CONSOLE AS FOLLOWS-
; <ADDR> 00000100 WHERE <1> IS THE BAD BIT.
; BIT LOCATION OF THE FAILURE IS EASILY
; DETERMINED. NON-R/W MEMORY WILL RETURN
; WITH- 11111111
;
;
MTEST: LD HL,MSG12
 CALL MARQ ; INPUT TWO HEX NUMBERS IN REGISTER PAIR 'HL' AND 'DE' (XXh XXh) AND (XXh XXh)
 LD HL,0 ; INITIALIZE HL TO ZERO
 CALL DHXIN ; GET TWO PARAMETERS FROM THE CONSOL HL=(START ADDR) DE=(END ADDR)
 CALL CRLF
MT1: LD A,(HL) ; LOAD 'REG A' WITH BYTE (HL)
 LD B,A ; STORE ORIGINAL BYTE (HL) TO 'REG B'
 CPL ; COMPLEMENT A...(INVERT A)...if 'REG A'=[11110001] => 'REG A'=[00001110]
 LD (HL),A ; LOAD (COMPLEMENT'd) A TO (HL)
 XOR (HL) ; XOR: (both bits same, then make '0')...IF NOT '0' THEN BITS ARE STUCK, BAD OR ROM
 JP Z,MT2 ; IF JUMP TO MT2, NO BAD MEMORY FOUND
; BAD MEMORY FOUND, DISPLAY IT ON CONSOL
 PUSH DE ; SAVE END POINTER 'DE' ON STACK SO 'REG D' AND 'REG E' ARE AVAILABLE FOR USE
 LD D,B ; LOAD 'REG D' WITH ORIGINAL BYTE (HL) THAT IS BAD
 LD E,A ; LOAD 'REG E' WITH CMP AND XOR BYTE (HL) ???
 CALL BAD ; PRINT 'BAD: ' TO THE CONSOL (AF AND HL ARE UNCHANGED IN ROUTINE 'BAD')
 LD A,E ; MAKE SURE 'REG A' IS UNCHANGED AFTER MSG
 CALL HLSP ; PRINT 'HL' TO CONSOL FOLLOWED BY A SPACE
 LD A,' ' ; SEND ' ' BLANK TO CONSOL OUT
 CALL CONOUT
 LD A,E
 CALL BITS1 ; CONVERT HEX TO BINARY BITS AND DISPLAY
 CALL CRLF
 LD B,D
 POP DE
MT2: LD (HL),B ; RESTORE SAVED BYTE (HL)
 ; NOW SEE IF WE REACHED THE END
MND1: LD A,H ; COMPARE H[XXXX]L TO D[XXXX]E
 LD C,D
 CP C ; DOES H=D
 JP Z,MND2 ; IF H=D GOTO MND2
 JR INCR1 ; H<>D GOTO INCR1
MND2: LD A,L ; COMPARE H[XXXX]L TO D[XXXX]E
 LD C,E ; DOES L=E
 CP C ; IF L=E WE ARE ALL DONE SO GOTO MND3
 JP Z,MND3 ; IF L<>E CONTINUE TO INCR1
;
INCR1: INC HL ; INC HL, THIS MOVES HL (START) CLOSER TO DE (END)
 JR MT1 ; NOT THERE YET SO GO BACK FOR MORE
;
MND3: CALL CRLF ; REACHED THE END
 LD HL,MSG19 ; LOAD MESSAGE "END "
 CALL MARQ ; DISPLAY MESSAGE
 JP EXEC3
;
PORTS: ; PORTS ROUTINE TO DISPLAY DETECTED PORTS - FROM JOHN MONAHAN S100.COM
;
 CALL CRLF
 LD B,0 ; LOOP THROUGH ALL PORTS (0-FF)
 LD D,6 ;Display 6 ports across
 LD E,0FFH ;Will contain port number
;
LOOPIO: LD C,E ; LOAD 'REG C' WITH 0FFH
 LD A,E ; LOAD 'REG A' WITH 0FFH
;
 IN A,(C) ; Remember [ZASMB does not work with this opcode,SLR is OK]
 CP 0FFH ;
 JR Z,SKIP ; IF DATA PORT C CONTAINS (FF)H, SKIP IT
 LD H,A ; DATA PORT C HAS SOMETHING SO STORE IN 'H' FOR BELOW
 LD A,E ; LOAD CURRENT PORT NUMBER TO 'REG A'
 CALL LBYTE ; PRINT PORT NUMBER
 LD A,'-'
 CALL CONOUT
 LD A,'>'
 CALL CONOUT
 LD A,H ; GET PORT DATA STORED IN 'H'
 CALL LBYTE ; PRINT TO CONSOL
 LD A,09H ; 09H = TAB
 CALL CONOUT
 DEC D ; 6 PORTS PER LINE
 JR NZ,SKIP
 LD D,6
 CALL CRLF
SKIP: DEC E ; NEXT PORT
 DJNZ LOOPIO
 CALL CRLF
 JP EXEC3
;
 ; OUTPUT VALUE TO A PORT
QUERY: LD HL,MSG21 ; GET INPUT PROMPT "XXXX <CR> PORT VALUE" EX: PORT(10)=>(FF).."10FF <CR>" SET (PORT 10) TO (FF)
 CALL MARQ ; DISPLAY MESSAGE TO CONSOLE

 CALL DHXIN ; GET TWO HEX VALUES [HL]; H=PORT,L=VALUE
 LD C,H ; LOAD REG "C" WITH THE HARDWARE PORT
 LD A,L ; LOAD REG "A" WITH THE NEW VALUE
 OUT (C),A ; WRITE PORT (C) WITH VALUE "A"
;
 JP EXEC3
;
;******************************** CASSETTE TAPE ROUTINES *******************************
;
 IF KCTAPE ; KANSAS CITY TAPE ===(a)IF
;
 ; ROUTINE TO LOAD TAPE DATA TO MEMORY
 ; PREPARE CASSETTE PLAYER, ENTER <LOAD ADDR START>, <LOAD ADDR END>,<CR>, START PLAYER,
 ; LEADER LOADS, DATA STARTS,"$" DISPLAYED, DATA ENDS,"*" DISPLAYED IF BAD CHKSUNM
TLOAD: LD HL,MSG20 ; LOAD KANSAS CITY TAPE DATA AT SPECIFIED MEMORY LOCATION
 ; GET STARTING MEMORY ADDRESS...XXYY <CR> HL=(XX), DE=(YY)
 CALL MARQ ; DISPLAY MESSAGE
 CALL DHXIN ; GET TWO HEX VALUES FROM KEYBOARD
 CALL TREAD ;
 JP Z,EXEC3 ; TAPE LOAD WAS SUCCESSFUL
 CALL SPACE ; TAPE LOAD ERROR; SEND SPACE TO CONSOLE
 LD A,'*'
 CALL CONOUT ; SEND "*" TO CONSOLE INDICATING A CHKSUM ERROR
 JP EXEC3 ;
 ;
 ; TAPE FORMAT: [FF][FF][FF][FF][E6][DD][DD][DD][DD][CHKSUM]
TREAD: LD A,0B0H ; SET UP 2S1P AY51013 UART ON CASSETTE PORT A
 OUT (TAPST),A ; WRITE B0H TO "CONTROL WORD PORT" MSB(NP,TSB,NB2,NB1,EPS,X,X,X)LSB
 ; B0H=(1,0,1,1, 0,0,0,0)=(NO PARITY,1 STOP BIT,8 DATA BITS,ODD PARITY)
 LD HL,TRUE ; HL IS A DELAY SEED; TRUE = 0FFFFH
 CALL DELAY
TRDA: LD B,4 ; SET COUNTER B=4; LATER B BECOMES CHKSUM
TRDB: CALL CIN ; GET CASSETTE DATA
 CP 0FFH ; IF DATA IS NOT "FFH" THEN LEADER HASN'T STARTED YET NZ=FALSE
 JR NZ,TRDA ; IF DATA IS "FFH", FOUND LEADER SO KEEP READING CASSETTE DATA, IF "E6H"
 DEC B ; DECREMENT THE COUNTER B
 JR NZ,TRDB ; GET NEXT (4) BYTES FROM CASSETTE [FF][FF][FF][FF]
TRDC: CALL CIN ; READ DATA FROM THE TAPE
 CP 0FFH ; IS DATA LEADER "FFH"
 JR Z,TRDA ; IF IT IS LEADER; START ALL OVER READING THE NEXT (4) BYTES
 CP 0E6H ; IS BYTE "E6H"...START OF DATA WITH "SYNC BYTE"
 JR NZ,TRDA ; IF IT IS NOT "E6H" SOMETHING IS WRONG SO START AGAIN
 LD B,0 ; FOUND THE "SYNC BYTE" (E6); SO SET CHECKSUM=B=0
 LD A,'$'
 CALL CONOUT ; SEND "$" TO CONSOLE INDICATING START OF MEMORY LOAD FROM TAPE
 DEC HL
TRD1: INC HL ; INCREMENT LOAD ADDRESS HL
 CALL CIN ; LOAD TAPE DATA IN "A"
 LD (HL),A ; WRITE "A" TO MEMORY LOCATION (HL)
 ADD A,B ; ADD CHKSUM TO A
 CALL CMPDH ; COMPARE "D" TO "H"...START=END NC=FALSE
 JR NC,TRD1
 CALL CIN ; LOAD TAPE DATA [CHKSUM]
 CP B ; IF TAPE CHKSUM = B; THEN Z=TRUE
 RET
;
CIN: IN A,(TAPST) ; READ "STATUS SENSE PORT" FOR 2S1P AY51013 UART ON CASSETTE PORT B
 AND 10H ; MSB(TBMT,PE,FE,DAV,X,X,X,X)LSB 10H=(0,0,0,1, 0,0,0,0)=> DAV=0 (RX IS RDY)
 JR Z,CIN
 IN A,(TAPE) ; READ DATA INTO "DATA WORD PORT"
 RET
 ; ROUTINE TO ALLOW FOR ADJUSTMENT OF TAPE PLAYER VOLUME CONTROL-NEED SYNC STREAM TAPE AS INPUT
TUNE: LD A,0B0H ; SET UP 2S1P AY51013 UART ON CASSETTE PORT B
 OUT (TAPST),A ; WRITE B0H TO "CONTROL WORD PORT" MSB(NP,TSB,NB2,NB1,EPS,X,X,X)LSB
 CALL CLRSCN ; B0H=(1,0,1,1, 0,0,0,0)=(NO PARITY,1 STOP BIT,8 DATA BITS,ODD PARITY)
TUN0: LD B,30 ; B IS A LINE COUNTER TO PRINT 30 LINES TO CONSOLE
 CALL HOME ; MOVE CURSOR TO UPPER TOP LEFT OF SCREEN
 LD HL,MSG16 ;
 CALL MARQ ; LOAD A "SYNC STREAM TAPE" AND OBSERVE DISPLAY FOR "$" OR "+"
 CALL SPACE ; ADJUST THE TAPE PLAYER VOLUME TO ONLY DISPLAY "+"
TUN1: CALL CRLF ; SEN CRLF TO CONSOLE
 LD H,40 ; LOAD COUNTER TO 40; PRINTS 40 "+" OR "$" TO CONSOLE = 1 LINE
TUN2: CALL CIN ; INPUT TAPE DATA
 CP 0FFH ; IS DATA [FF]; IF IT IS, Z=TRUE
 JR Z,TUN2 ; DATA IS LEADER, TRY AGAIN...OHERWISE CONTINUE BELOW
 LD L,'+' ; L="+"
 CP 0E6H ; IS DATA [E6] THE SYNC BYTE...IF SO, Z=TRUE
 JR Z,TUN3 ; IF FOUND [E6] GOTO TUN3...(L="+" GOOD/L="$"BAD)
 LD L,'$' ; L="$"
TUN3: LD A,L
 CALL CONOUT ; SEND L TO CONSOLE
 DEC H ; DECREMENT COUNTER H
 JR NZ,TUN2 ; IF H=0, START ALL OVER AGAIN
 DEC B
 JR NZ,TUN1
 JP TUN0
;
 ; TSAVE ROUTINE-USED TO SAVE A BLOCK OF MEMORY TO CASSETTE TAPE
TSAVE: LD HL,MSG12 ; CONSOLE PROMPT FOR BEGINNING AND ENDING MEMORY ADDRESS
 ; TSAVE XXXX,YYYY <CR> STARTS THE TAPE SAVE
 CALL MARQ ; FORMAT: [FF][FF]--16--[FF][E6][DD][DD][DD][DD][CHKSUM][CHKSUM][CHKSUM]
 CALL DHXIN ; GET STARTING MEMORY ADDRESS...XXYY <CR> HL=(XX), DE=(YY)
 CALL TWRIT
 JP EXEC3
TWRIT: LD A,0B0H ; SET UP 2S1P AY51013 UART ON CASSETTE PORT A
 OUT (TAPST),A ; WRITE B0H TO "CONTROL WORD PORT" MSB(NP,TSB,NB2,NB1,EPS,X,X,X)LSB
 ; B0H=(1,0,1,1, 0,0,0,0)=(NO PARITY,1 STOP BIT,8 DATA BITS,ODD PARITY)
 LD B,16 ; COUNTER B=16
TWRT0: LD A,0FFH ; LOAD A=[FF]
 CALL COUT ; WRITE [FF] TO TAPE
 DEC B ; DECREMENT COUNTER B
 JR NZ,TWRT0 ; KEEP GOING UNTIL 16 [FF]'S HAVE BEEN WRITTEN TO TAPE
 LD A,0E6H ; LOAD A WITH [E6] THE SYNC BYTE
 CALL COUT ; WRITE SYNC BYTE TO TAPE
 DEC HL
 LD B,0 ; LOAD CHKSUM B=0
TWRT1: INC HL ; INCREMENT HL
 LD A,(HL) ; LOAD DATA FROM (HL) TO A
 CALL COUT ; WRITE DATA TO TAPE
 ADD A,B ; ADD CHKSUM TO A
 LD B,A ; SAVE SUM BACK TO CHKSUM
 CALL CMPDH ; COMPARE D TO H
 JR NZ,TWRT1 ; KEEP WRITING DATA UNTIL NZ=FALSE
 LD A,B ; LOAD THE CHKSUM TO A
 CALL COUT ; WRITE CHECKSUM ONCE
 CALL COUT ; WRITE CHCKSUM TWICE
 JR COUT ; WRITE CHKSUM A THIRD TIME
COUT: PUSH AF ; PUSH DATA TO BE WRITTEN ONTO AF
 IN A,(TAPST) ; READ STATUS PORT MSB(TBMT,PE,FE,DAV,XX,XX,XX,XX)LSB
 AND 80H ; 80H=[1,0,0,0, 0,0,0,0] IF TBMT=1, TRANSMIT BUFFER NOT RDY
 JR Z,COUT+1 ; IF TBMT <> 0 KEEP CHECKING
 POP AF ; POP DATA TO BE WRITTEN TO TAPE
 OUT (TAPE),A ; WRITE DATA TO TAPE
 RET
;
STRM: LD HL,MSG17 ; STREAM ROUTINE-GENERATES A SERIES OF "FFH" AND "E6H"...[FF] [E6] [FF] [E6] [FF]
 CALL MARQ ; START THE ROUTINE AND RECORD THE OUTPUT TO CASSETTE TAPE
 ; THIS WILL CREATE A "SYNC STREAM TAPE" USED TO CALIBRATE THE TAPE VOLUME
 LD A,0B0H ; SET UP 2S1P AY51013 UART ON CASSETTE PORT A

 OUT (TAPST),A ; WRITE B0H TO "CONTROL WORD PORT" MSB(NP,TSB,NB2,NB1,EPS,X,X,X)LSB
STRM1: LD A,0FFH ; B0H=(1,0,1,1, 0,0,0,0)=(NO PARITY,1 STOP BIT,8 DATA BITS,ODD PARITY)
 CALL COUT ; WRITE [FF] TO TAPE
 LD A,0E6H
 CALL COUT ; WRITE [E6] TO TAPE
 JR STRM1
;
 ENDIF ; KANSAS CITY TAPE ===(a)ENDIF
;
 IF TARBEL ; TARBELL TAPE ===(b)IF
;
 ; TAPE FORMAT: [FF][FF][FF][3C][E6][DD][DD][DD][DD][1A][FF][CHKSUM][FF][FF][FF][FF]
 ; [FF][FF][FF]= TAPE LEADER; [3C]=START BYTE; [E6]=SYNC BYTE; [DD]=DATA BYTES;
 ; [1A]+[FF]=STOP BYTES; [CHKSUM]=CHECKSUM...SIMPLE SUM OF DATA BYTES
 ; END OF RECORD- [1A][FF][CHKSUM][FF][FF][FF][FF]
 ; NOTE: ROUTINES ARE FROM THE DON TARBELL MANUAL WHERE POSSIBLE AS THEY SEEM MUCH BETTER
 ; THAN THE JADE TARBEL ROUTINES...REFERENCE "WRITING PROGRAMS FOR THE CASSETTE INTERFACE",
 ; "CASSETTE INTERFACE INPUT ROUTINE", "CASSETTE INTERFACE OUTPUT ROUTINE"
;
 ; LOAD MEMORY FROM TAPE ROUTINE-CASSETTE INTERFACE INPUT ROUTINE
 ; GET STARTING MEMORY ADDRESS...XXYY <CR> HL=(XX), DE=(YY)
TLOAD: LD HL,MSG20 ; LOAD MESSAGE PROMPT
 CALL MARQ ; DISPLAY MESSAGE
 CALL DHXIN ; GET STARTING MEMORY ADDRESS...XXYY <CR> HL=(XX), DE=(YY)
 DEC HL ;
 INC HL ;
 ;
 CALL TREAD ; TARBELL OUTPUT PORT J1 BIT D0=CASSETTE MOTOR CONTROL ON/OFF
 JP Z,EXEC3 ; IF THE CHKSUM MATCHED (FLAG Z IS TRUE), THEN EXIT
 CALL CRLF ; IF THE CHECKSUM DID NOT MATCH...
 LD A,C ; LOAD TAPE CHKSUM
 CALL CONOUT
 CALL SPACE
 LD A,B ; LOAD THE CALCULATED CHKSUM
 CALL CONOUT
 CALL SPACE
 LD HL,MSG11 ; "BAD" MESSAGE
 CALL MARQ
 JP EXEC3
;
TREAD: LD A,11H ; LOAD 11H TO "A" BECAUSE WE WANT TO RESET THE INTERFACE & START THE CASSETTE MOTOR
 OUT (TARBL),A ; WRITE 11H TO THE STATUS PORT (6EH) MSB[X,X,TXRDY,RXRDY, 0,0,0,D0]LSB
 ; MSB[0,0,0,1, 0,0,0,1]LSB = 11H
 LD B,0 ; B=CHKSUM BYTE, SET TO "00"
 LD C,0 ; REG "C" IS USED AS PATTERN IDENTIFER=(1)[FF];(2)[3C];(3)[E6];(4)[1A];(5)[FF] following [1A]
TRD0: LD A,C
 CP 3
 JR Z,TRD1 ; IF Z=TRUE; [FF][3C][E6] PATTERN FOUND SO GO GET DATA [DD]
 CALL CIN ; GET CASSETTE DATA IN REG "A"
 CP 0FFH ; LEADER [FF]
 JR Z,IDB1 ;
 CP 03CH ; START BYTE [3C]
 JR Z,IDB2 ;
 CP 0E6H ; SYNC BYTE [E6]
 JR Z,IDB3 ;
 LD C,0 ; RESET "C" TO 0
 JR TRD0 ; TRY AGAIN TO FIND PATTERN
 ;
IDB1: LD C,1 ;
 JP TRD0 ;
IDB2: LD C,2 ;
 JP TRD0 ;
IDB3: LD C,3 ;
 JP TRD0 ;
 ; TO GET HERE, THE PATTERN [FF][3C][E6] WAS FOUND..."C"=3
TRD1: LD C,0 ; RESET "C" TO 0
 CALL CIN ;
 PUSH HL ; PUSH [DATA] ONTO HL
 CP 01AH ; FOUND [1A], COULD BE A STOP BYTE...
 JR Z,IDB4 ;
 CP 0FFH ; FOUND [FF], COULD BE "END OF RECORD"...
 JR Z,IDB5 ;
 JP TRD2 ;
;
IDB4: LD C,4 ; [1A] FLAG ?
 ; [DATA]=[DATA1] AND IS IN HL
 JP (TRD1+1) ; GET NEXT DATA BYTE
 ;
IDB5: LD A,C ; [1A][FF] FLAG ?
 CP 4 ;
 JP NZ,TRD2 ;
 LD C,5 ; IF C=4; THEN [1A][FF] IS TRUE AND C=5
 ;
TRD2: LD A,C ; GET C
 CP 4 ; IF C=4; [1A] FLAG SET
 JR Z,TRD4
 CP 5 ; IF C=5; [1A][FF] FLAG SET
 JR Z,TRD5
;
TRD3: POP HL ; POP [DATA] FROM HL INTO "A"
 CALL DATIN ; [DATA] INSERTED TO MEMORY (HL); HL INCREMENTED; CHKSUM UPDATED
 JP TRD1 ; GO GET MORE DATA
;
TRD4: POP HL ; TO GET HERE, END NOT FOUND AND [DATA1]=HL, [DATA2]=HL
 LD C,A ; "C" IS REUSED AS VARIABLE STORAGE; [DATA2] STORED IN "C"
 POP HL ; POP [DATA1] FROM HL INTO "A"
 CALL DATIN ; [DATA1] INSERTED TO MEMORY (HL); HL INCREMENTED; CHKSUM UPDATED
 LD A,C ; RESTORE [DATA2] TO A
 CALL DATIN ; [DATA2] INSERTED TO MEMORY (HL); HL INCREMENTED; CHKSUM UPDATED
 JP TRD1 ; GO GET MORE DATA
;
TRD5: POP HL ; TO GET HERE, "END OF RECORD" FOUND AND [DATA1]=1A, [DATA2]=FF
 POP HL ; STOP BYTE AND FOLLOWING FF ARE DISCARDED
 CALL CIN ; GET TAPE [CHKSUM]
 LD C,A ; REGISTER "C" IS REUSED; STORE TAPE [CHKSUM] = C
 LD A,B ; GET CAKCULATED [CHKSUM] = A
 CP C ; COMPARE TAPE TO CALCULATED CHKSUM
 JR Z,TRD6 ; CHKSUM MATCHED...SHUTDOWN AND RETURN
 RET ; CHKSUM DID NOT MATCH, RETURN WITH CP=NZ
;
TRD6: LD A,10H ; LOAD 10H TO "A" BECAUSE WE WANT TO RESET THE INTERFACE & STOP THE CASSETTE MOTOR
 OUT (TARBL),A ; WRITE 10H TO THE STATUS PORT (6EH) MSB[X,X,TXRDY,RXRDY, 0,0,0,D0]LSB
 CP A,10H ; SET Z FLAG
 RET
;
CIN: IN A,(TARBL) ; READ STATUS PORT (6EH) MSB[0,0,0,1, 0,0,0,1]LSB RDY=MSB[0,0,0,0, 0,0,0,1]LSB =01H
 AND 01H ; 01H=[0,0,0,0, 0,0,0,1]...IF RXRDY=0 AND D0=0 CASSETTE MTR=ON, RXRDY=0=RDY TO RECEIVE
 JR NZ,CIN ; LOOP WAITING FOR RXRDY=0
 IN A,(TARBL+1) ; LOAD DATA WORD FROM DATA PORT (6FH)
 RET
;
DATIN: INC HL ; LOAD DATA INTO MEMORY, CHKSUM, AND INCREMENT HL
 LD (HL),A
 ADD A,B
 LD B,A
 RET
 ; ROUTINE TO ALLOW FOR ADJUSTMENT OF TAPE PLAYER VOLUME CONTROL-NEED SYNC STREAM TAPE AS INPUT
TUNE: LD A,11H ; LOAD 11H TO "A" BECAUSE WE WANT TO RESET THE INTERFACE & START THE CASSETTE MOTOR
 OUT (TARBL),A ; WRITE 11H TO THE STATUS PORT (6EH) MSB[X,X,TXRDY,RXRDY, 0,0,0,D0]LSB

 ; MSB[0,0,0,1, 0,0,0,1]LSB = 11H
 CALL CLRSCN ; CLEAR THE CONSOLE
TUN0: LD B,30 ; B IS A LINE COUNTER TO PRINT 30 LINES TO THE CONSOLE
 CALL HOME ; MOVE CURSOR TO UPPER TOP LEFT OF SCREEN
 LD HL,MSG16 ; B IS A LINE COUNTER TO PRINT 30 LINES TO CONSOLE
 CALL MARQ ; LOAD A "SYNC STREAM TAPE" AND OBSERVE DISPLAY FOR "$" OR "+"
 CALL SPACE ; ADJUST THE TAPE PLAYER VOLUME TO ONLY DISPLAY "+"
TUN1: CALL CRLF ; SEND CRLF TO CONSOLE
 LD H,40 ; LOAD COUNTER TO 40; PRINTS 40 "+" OR "$" TO CONSOLE = 1 LINE
TUN2: CALL CIN ; INPUT TAPE DATA
 CP 0FFH ; IS DATA [FF]; IF IT IS, Z=TRUE
 JR Z,TUN2 ; DATA IS LEADER, TRY AGAIN...OHERWISE CONTINUE BELOW
 LD L,'+' ; L="+"
 CP 0E6H ; IS DATA [E6] THE SYNC BYTE...IF SO, Z=TRUE
 JR Z,TUN3 ; IF FOUND [E6] GOTO TUN3...(L="+" GOOD/L="$"BAD)
 LD L,'$' ; L="$"
TUN3: LD A,L
 CALL CONOUT ; SEND L TO CONSOLE
 DEC H ; DECREMENT COUNTER H
 JR NZ,TUN2 ; IF H=0, START ALL OVER AGAIN
 DEC B
 JR NZ,TUN1
 JP TUN0
;
 ; ROUTINE TO SAVE A BLOCK OF MEMORY TO THE TARBELL TAPE
TSAVE: LD HL,MSG12 ; FORMAT: [FF][FF][FF][3C][E6][DD][DD][DD][DD][1A][FF][CHKSUM][FF][FF][FF]
 CALL MARQ ; MESSAGE PROMPT FOR START/END MEMORY ADDRESS INPUT
 CALL DHXIN ; GET STARTING MEMORY ADDRESS...XXXX,YYYY <CR> HL=(START ADDR), DE=(END ADDR)
 CALL TWRIT ; THE "TAPE WRITE" ROUTINE
 JP EXEC3
;
TWRIT: LD A,21H ; MSB[X,X,TXRDY,RXRDY, X,X,X,D0]LSB 21H=[X,X,1,0, 0,0,0,1]...SET TXRDY=1 AND D0=1...MTR ON
 OUT (TARBL),A ; WRITE TO STATUS PORT (6EH), THIS SHOULD RESET THE TARBELL TXRDY TO NOT RDY AND START THE MTR
 PUSH HL ; STORE HL ON THE STACK (START ADDR)
 LD HL,0FFFFH ; LOAD DELAY SEED
 CALL DELAY ; WAIT A BIT, THIS ASSUMES WITH NO DIRECT OUTPUT, THE TARBELL WRITES [FF][FF][FF] TO TAPE AS
THE LEADER
 POP HL ; LEADER IS FINISHED, RECOVER HL
 SUB A ; AFTER "DELAY", REG "A" SHOULD CONTAIN (00)..."A" SUB "A" = 0
 LD B,A ; LOAD THE CHCKSUM "B" WITH (00)
 LD A,03CH ; LOAD "A" WITH THE START BYTE (3CH)
 CALL COUT ; WRITE [3C] TO THE TAPE
 LD A,0E6H ; LOAD "A" WITH THE SYNC BYTE (E6H)
 CALL COUT ; WRITE [E6] TO THE TAPE
 DEC HL
TWRT1: INC HL ; DECREMENT THE STARTING BLOCK OF MEMORY ADDRESS STORED IN HL
 LD A,(HL) ; LOAD REG "A" WITH THE BYTE OF MEMORY IN LOCATION (HL)
 CALL COUT ; WRITE [(HL)] TO TAPE
 ADD A,B ; ADD "A" + CHKSUM
 LD B,A ; STORE RESULT TO CHKSUM
 CALL CMPDH ; COMPARE START ADDRESS TO END ADDRESS
 JR NC,TWRT1 ; IF NC=TRUE, KEEP SENDING MEMORY BYTES TO TAPE
 LD A,01AH ; LOAD "A" WITH FIRST PART OF STOP BYTE (1AH)
 CALL COUT ; WRITE [1A] TO TAPE
 LD A,0FFH ; LOAD "A" WITH SECOND PART OF STOP BYTE (FFH)
 CALL COUT ; WRITE [FF] TO TAPE
 LD A,B ; LOAD REG "A" WITH THE CHECKSUM VALUE
 CALL COUT ; WRITE [CHKSUM] TO TAPE
 LD A,21H ; AGAIN SET TXRDY=1 AND D0=1
 OUT (TARBL),A ; WRITE TO STATUS PORT (6EH), THIS SHOULD RESET THE TARBELL TXRDY TO NOT RDY AND KEEP MTR
RUNNING
 LD HL,07FFFH ; LOAD DELAY SEED...SHORTER THAN STARTING LEADER
 CALL DELAY ; WAIT A BIT, THIS ASSUMES WITH NO DIRECT OUTPUT, THE TARBELL WRITES [FF][FF][FF] TO TAPE AS
THE LEADER
 LD A,00H ; MSB[X,X,TXRDY,RXRDY, X,X,X,D0]LSB 00H=[X,X,0,0, 0,0,0,0]...SET TXRDY=0 AND D0=0...MTR OFF
 OUT (TARBL),A ; WRITE [0,0,0,0, 0,0,0,0] TO STATUS PORT; (TURN OFF CASSETTE MTR) AND SET RXRDY=TXRDY=0
 CALL CRLF
 LD HL,MSG19 ; LOAD MESSAGE "END "
 CALL MARQ ; DISPLAY MESSAGE
 RET
;
COUT: PUSH AF ; STORE BYTE TO BE WRITTEN TO TAPE IN AF
 IN A,(TARBL) ; READ STATUS PORT (6EH)
 AND 20H ; MSB[X,X,TXRDY,RXRDY, X,X,X,X]LSB 20H=[X,X,1,0, 0,0,0,0]...IF TXRDY=1 NOT RDY TO TRANSMIT
 JR NZ,COUT+1
 POP AF ; TARBEL RDY TO TRANSMIT; POP DATA BYTE FROM AF
 OUT (TARBL+1),A ; WRITE [DATA] TO TAPE
 RET
;
STRM: LD HL,MSG17 ; STREAM ROUTINE-GENERATES A SERIES OF "FFH" & "E6H"...[FF][FF][FF][E6][E6][E6][E6][E6][E6]...
 CALL MARQ ; START THE ROUTINE AND RECORD THE OUTPUT TO CASSETTE TAPE
 LD B,1EH ; THIS WILL CREATE A "SYNC STREAM TAPE" USED TO CALIBRATE THE TAPE VOLUME
 LD A,11H ; MSB[X,X,TXRDY,RXRDY, X,X,X,X]LSB 11H=[X,X,1,0, 0,0,0,1]...IF TXRDY=1 NOT RDY TO TRANSMIT
 OUT (TARBL),A ; SEND TO STATUS PORT (6EH) TO RESET TARBELL AND START TAPE RECORDER MOTOR
STRM1: LD A,0FFH ;
 CALL COUT ; WRITE [FF] TO TAPE
 DEC B ; DECREMENT COUNTER B
 JR NZ,STRM1 ; IF NOT ZERO, CONTINUE WRITING LEADER
STRM2: LD A,0E6H
 CALL COUT ; WRITE [E6] TO TAPE
 JR STRM2 ; CONTINUE UNTIL TAPE RECORDER IS SHUT OFF
;
 ENDIF ; TARBELL TAPE ===(b)ENDIF
;
;******************************** SUBROUTINES BELOW **
;
VERIFY: LD HL,MSG18 ; VERIFY ORIGINAL MEMORY BLOCK TO COPIED/MOVED MEMORY BLOCK
 CALL MARQ ; IF MISMATCH, PRINT...<ORIG ADDR> <ORIG DATA> <COPY/MOVE DATA> TO CONSOLE
 CALL TRPIN ; CALL TRIPLE INPUT...X,Y,Z WHERE X=START ORG(HL), Y=END ORG(DE), Z=START MOVE/COPY BLOCK(BC)
 EX DE,HL
 DEC HL
 DEC BC
VRFY1: INC HL ; INCREMENT ORIGINAL STARTING ADDRESS HL
 INC BC ; INCREMENT COPIED/MOVED STARTING ADDRESS BC
 LD A,(BC) ; LOAD "A" WITH COPY MEMORY DATA (BC)
 CP (HL) ; CP (BC) TO (HL); IF (BC)=(HL) Z=TRUE
 JR Z,VRFY2 ; (BC) AND (HL) MATCH, ALL IS GOOD SO CONTINUE CHECKING
 CALL CRLF ; (BC) <> (HL), ERROR EXISTS; PRINT CRLF TO CONSOLE
 CALL DHXOT ; SEND CURRENT HL VALUE TO CONSOLE...ORIG MEMORY ADDRESS
 CALL SPACE ; SEND SPACE TO CONSOLE
 LD A,(HL) ; LOAD "A" WITH (HL) LOCATION CONTENTS
 CALL HEXOUT ; SEND HEX VALUE (HL) TO CONSOLE
 CALL SPACE ; SEND SPACE TO CONSOLE
 LD A,(BC) ; LOAD "A" WITH (BC) LOCATION CONTENTS
 CALL HEXOUT ; SEND HEX VALUE (BC) TO CONSOLE
VRFY2: CALL CMPDH ; COMPARE START HL TO END ADDRESS DE
 JR NC,VRFY1 ; IF START <> END KEEP CHECKING
 JP EXEC3 ; ALL DONE
;
 ; DELAY USES SEED STORED IN HL AS A BASIS FOR TIME DELAY
DELAY: EX (SP),HL ; WASTE TIME FOR DELAY
 EX (SP),HL ; WASTE TIME FOR DELAY
 DEC HL ; DECREMENT SEED IN HL....example 20000=HL=[4E][20]...DEC HL=[4E][1F]
 LD A,L ; REGISTER "L" AS IN HL...example L=[1F]
 OR H ; REGISTER "H" AS IN HL...example H=[4E]
 JR NZ,DELAY ; KEEP DECREMENTING UNTIL HL=[00][00]
 RET
;
CMPDH: PUSH AF ; COMPARE 'D' TO 'H'...H[XX XX]L AND D[XX XX]E

 LD A,D
 CP H
 JP NZ,CMP1 ; IF D <> H THEN GOTO CMP1, [CLEAR CARRY] AND RETURN
 LD A,E
 CP L
 JP NZ,CMP1 ; IF E <> H THEN GOTO CMP1, [CLEAR CARRY] AND RETURN
 POP AF
 SCF ; H=D AND L=E [SET CARRY] AND RETURN
 RET
CMP1: POP AF ; POP WHAT WAS SAVED IN AF
 SCF ; SET CARRY FLAG
 CCF ; CLEAR CARRY FLAG
 RET
;
DHXIN: CALL SPHIN ; OUTPUT A SPACE AND GET SOME CONSOL INPUT
 PUSH HL ; PUSH 'HL' ONTO THE STACK
 CP 0DH ; COMPARE...subtract <REG A> - <0D> = NZ...IS IT '0DH' A <CARRIAGE RTN>
 CALL NZ,HEXIN ; IF 'NOT ZERO' ... NOT <CR>... GO GET MORE
 EX DE,HL ; <CR> DETECTED SO EXCHANGE THE 'DE' AND 'HL' REGISTERS
 POP HL
 RET
;
; THIS IS THE MAIN "PARAMETER-GETTING" ROUTINE.
; THIS ROUTINE WILL ABORT ON A NON-HEX CHARACTER.
; IT TAKES THE MOST RECENTELY TYPED FOUR VALID
; HEX CHARACTERS, AND PLACES THEM UP ON THE STACK.
; (AS ONE 16 BIT VALUE, CONTAINED IN TWO
; 8-BIT BYTES.) IF A CARRIAGE RETURN IS ENTERED,
; IT WILL PLACE THE VALUE OF "0000" IN THE STACK.
;
SPHIN: CALL SPACE ; LOAD 'A' WITH 20H 'SPACE' AND SEND TO CONSOLE OUTPUT
 CALL SPACE
 CALL SPACE
HEXIN: LD HL,0 ; LOAD HL WITH '0'...THIS ROUTINE IS FOR HEX INPUT, SO REJECTS ANYTHING ELSE
HXIN1: CALL CONIN ; GET CONSOL INPUT AND RETURN IN 'REG A' CAN BE '00H TO 7FH'
 CP '0' ; COMPARE...subtract <REG A> - <0> = M...IF NOT '0' OR LARGER RETURN
 RET M ; IF 'SIGN NEG' RETURN
 CP 'F'+1 ; COMPARE...subtract <REG A> - <F'+1> = P...IF IT IS LARGER THAN 'F' IE NOT HEX RETURN
 RET P ; IF 'SIGN POS'
 CP '9'+1 ; COMPARE...subtract <REG A> - <9 + 1> = M...IF IT IS LARGER THAN '9'
 JP M,HXIN2 ; IF 'SIGN NEG' GOTO HXIN2
 CP 'A' ; COMPARE...subtract<REG A> - <A> = M...IF IT IS NOT 'A' THEN RETURN
 RET M ; IF 'SIGN NEG'
 ADC A,9 ; ADD "A" + 9 + "CARRY FLAG 0 OR 1"
HXIN2: AND 0FH
 ADD HL,HL ; MULTIPLY BY 16
 ADD HL,HL
 ADD HL,HL
 ADD HL,HL
 OR L ; 'OR' IN THE SINGLE NIBBLE
 LD L,A
 JR HXIN1 ; GET SOME MORE FROM CONSOL IN
;
TRPIN: CALL SPHIN ; TRPIN: INPUT 3 BYTES...PLACE IN [HL],[DE],[BC]...ex: (hhll),(ddee),(bbcc) <CR>
 EX DE,HL ; EXCHANGE THE DE AND HL REGISTERS - LOAD ALL THREE PAIRS WITH HEX
 CALL HEXIN ; ENTRIES
 PUSH HL
 CALL HEXIN
 PUSH HL
 POP BC
 POP HL
 RET
;
DHXOT: LD A,H ; DISPLAY CURRENT HL VALUE
 CALL HEXOUT
 LD A,L
;
HEXOUT: PUSH AF
 RRCA
 RRCA
 RRCA
 RRCA
 CALL HXOT1
 POP AF
HXOT1: AND 0FH
 ADD A,30H
 CP '9'+1
 JP M,CONOUT
 ADD A,7
 JP CONOUT
;
CRLF: PUSH AF
 LD A,0DH
 CALL CONOUT
 LD A,0AH
 CALL CONOUT
 POP AF
 RET
;
SPACE: PUSH AF ; PUSH CONTENTS OF AF ONTO THE STACK
 LD A,20H ; A IS LOADED WITH 20H = 'SPACE'
 CALL CONOUT ; A 'SPACE' IS SENT TO THE CONSOL OUTPUT
 POP AF ; POP FROM THE STACK BACK TO AF
 RET
;
CLRSCN: ; ROUTINE TO CLEAR THE CONSOLE SCREEN AND HOME TO UPPER LEFT CORNER
; VT-100 'ESC' COMMANDS...CLR_SCRN='ESC'[2J HOME='ESC'[H
;
CLEAR: DEFB 1BH,5BH,32H,4AH ; ESC=1BH [=5BH 2=32H J=4AH
 DEFB 03H ; O3H=END OF TEXT
 LD HL,CLEAR
CALL MARQ
;
HOME: DEFB 1BH,5BH,48H ; ESC=1BH [=5BH H=48H
 DEFB 03H ; O3H=END OF TEXT
 LD HL,HOME
CALL MARQ
 RET
;
MARQ: ; MARQUEE ROUTINE TO SEND MESSAGE IN (HL) TO CONSOLE SCREEN
MAR2: LD A,(HL)
 CALL CONOUT
 INC HL
 CP 03H ; LOOKING FOR "03H" TO INDICATE END OF MESSAGE
 JP NZ,MAR2
 RET
;
CONOUT: ; ROUTINE FOR CONSOLE OUTPUT TO DISPLAY
 PUSH AF ; STORE CONTENTS OF 'A' REGISTER "OUTPUT CHARACTER" IN 'AF' REGISTER PAIR
CONO1: IN A,(KBDST) ; LOAD STATUS PORT INTO 'A'
; STATUS PORT=MSB[0][0][0][0][0][0][0][0]LSB MEANS DISPLAY BUSY
; STATUS PORT=MSB[0][0][0][0][0][1][0][0]LSB MEANS DISPLAY READY
 AND A,(KBDOT) ; 'AND' REGISTER 'A' WITH 04H=MSB[0][0][0][0][0][1][0][0]LSB
 JR NZ,CONO2 ; IF RESULT IS NOT-ZERO, JUMP OUT OF LOOP TO CONO2
 JR CONO1
CONO2: POP AF ; RESTORE "OUTPUT CHARACTER" TO REGISTER 'A'
 OUT (KBDDT),A ; SEND "OUTPUT" TO (KBDDT)
 RET
;

CONIN: ; ROUTINE FOR CONSOLE INPUT FROM KEYBOARD
 IN A,(KBDST) ; STATUS PORT=MSB[0][0][0][0][0][0][0][0]LSB MEANS NO CHARACTER WAITING
; STATUS PORT=MSB[0][0][0][0][0][0][1][0]LSB MEANS CHARACTER IS WAITING
 AND A,(KBDIN) ; 'AND' REGISTER 'A' WITH 02H=MSB[0][0][0][0][0][0][1][0]LSB
 JP NZ,CONI1 ; IF RESULT IS NOT-ZERO, JUMP OUT OF LOOP TO CONI1
 JP CONIN ; RESULT IS ZERO, SO GO BACK AND CHECK STATUS PORT AGAIN
CONI1: IN A,(KBDDT) ; INPUT FROM DATA PORT 01H FOR PROPELLER CONSOLE
 ; CODE BELOW FILTERS INPUT AND RETURNS...
 AND 7FH ; ASCII RANGE 00H-7FH COVERS ALL 128 CHARACTERS; PASSES ALL ASCII UP TO 7FH, THEN 'A'= 0,1,2...

 CP 61H ; 61H-7FH ARE LOWER CASE LETTERS; ASCII (00H-61H)=C;ASCII (62H-7FH)=NC;ASCII (80H-FFH)=C BUT
NOT ON KEYBOARD
 JP C,ECHO ; SENDS ASCII(00H-60H) TO OUTPUT CONSOLE DISPLAY; NOTE-CARRY SET IF NEG OR GREATER THAN FF
 CP 7CH ; ONLY ASCII(61H-7FH) REMAIN; FILTER OUT ASCII < 7CH
 JP NC,ECHO ; SENDS ASCII(7DH-7FH) TO OUTPUT CONSOLE DISPLAY ONLY ASCII(61H-7CH) REMAIN
 SUB 20H ; ONLY ASCII(41H-5CH) REMAIN...IE...(A TO \) WHICH GO TO CONSOLE DISPLAY
ECHO: CP 18H ; 18H='CAN' OR CANCEL
 JP Z,EXEC4 ; IF 'A' IS 'CAN' RETURN WITH NO ACTION
 JR CONOUT ; SEND 'A' TO CONSOLE OUTPUT DISPLAY
;
PTXT: LD A,(HL)
 CP 03H ; PRINT A MESSAGE
 RET Z ; IF [03H], THEN END AND RETURN
 CALL CONOUT
 INC HL
 JR PTXT
;
HXOT4: LD C,H ; 16 HEX OUTPUT ROUTINE
 CALL HXO2
 LD C,L
HXO2: LD A,C
 RRA
 RRA
 RRA
 RRA
 CALL HXO3
 LD A,C
HXO3: AND 0FH
 CP 10
 JP C,HADJ
 ADD A,7
HADJ: ADD A,30H
OTA: PUSH BC
 LD C,A
 CALL CONOUT ; SEND TO CONSOL WHAT'S IN REGISTER A
 POP BC
 RET
;
; PRINT [HL] AND A SPACE
HLSP: PUSH HL
 PUSH BC
 CALL LADR
 LD A,20H
 CALL CONOUT
 POP BC
 POP HL
 RET
;
; PRINT [HL] ON CONSOL
LADR: LD A,H
 CALL LBYTE
 LD A,L
LBYTE: PUSH AF ; STORE "H" IN "AF"
 RRCA ; MSB[X000 000]LSB = MSB[0X00 0000]LSB
 RRCA ; MSB[0X00 000]LSB = MSB[00X0 0000]LSB
 RRCA ; MSB[00X0 000]LSB = MSB[000X 0000]LSB
 RRCA ; MSB[000X 000]LSB = MSB[0000 X000]LSB
 CALL SF598
 POP AF ; RESTORE "H" FROM "AF"
SF598: CALL CONV
 LD A,C
 JP CONOUT
;
; CONVERT HEX TO ASCII
CONV: AND 0FH
 ADD A,90H
 DAA
 ADC A,40H
 DAA
 LD C,A
 RET
;
BITS1: PUSH DE ; DISPLAY 8 BITS OF [A]
 PUSH BC
 LD E,A
 CALL BITS
 POP BC
 POP DE
 RET
;
BITS: LD B,08H ; DISPLAY 8 BITS OF [E]
 CALL SPACE
SF76E: SLA E
 LD A,18H
 ADC A,A
 LD C,A
 CALL CONOUT
 DJNZ SF76E
 RET
;
BAD: PUSH AF ; PRINT BAD
 PUSH HL ; SAVE ORIGINAL 'AF' AND 'HL'
 LD HL,MSG11 ; PRINT 'BAD: ' TO CONSOL
 CALL MARQ ; PRINT MARQUEE ROUTINE
 POP HL ; RESTORE HL
 POP AF ; RESTORE AF
 RET
;
BOOT: LD HL,MSG22 ; OUTPUT MESSAGE
 CALL MARQ ; OUTPUT TO CONSOLE
;
 ; THIS ROUTINE CAN ACCESS THE FLOPPY DISK CONTROLLER'S SIX I/O PORTS STARTING AT F8H
 ; IT CAN BE USED TO CREATE CBOOT CODE IN MEMORY AT LOCATION (007D)H
 ; THIS CODE SEEMS TO WORK ON WESTERN DIGITAL FD-1771 CONTROLLERS BUT MAYBE NOT LATER ONES
 ; AS THE PORT VALUES MAY HAVE BEEN CHANGED.
 ;
 ; (0F8H)-OUT DISK COMMAND PORT
 ; (0F8H)-IN DISK STATUS PORT
 ; (0F9H)-I/O TRACK REGISTER PORT
 ; (0FAH)-I/O SECTOR REGISTER PORT
 ; (0FBH)-I/O DATA PORT
 ; (0FCH)-IN DISK WAIT PORT (XRDY/PRDY)
 ; (0FCH)-OUT DISK EXTENDED COMMAND PORT
 ;
 ; THE CODE APPEARS VERY SIMILAR TO THE BOOT LOADER FOR TARBELL 1011D (FD-1771) CONTROLLER
 ; IT'S PURPOSE IS TO READ THE FIRST SECTOR OF TRACK 0 INTO MEMORY AT 0000H, AND THEN EXECUTE IT
;
 IN A,(WAIT) ; WAIT FOR HOME
 XOR A ; COMPLETE

 LD L,A ; SET L=0
 LD H,A ; H=0; L=0
 INC A ; SET A=1
 OUT (SECT),A ; SECTOR=1
 LD A,8CH ; READ SECTOR
 OUT (DCOM),A ;
RLOOP: IN A,(WAIT) ; WAIT FOR DRQ OR INTRQ
 OR A ; SET FLAGS
 JP P,RDONE ; DONE IF INTRQ
 IN A,(DDATA) ; READ A BYTE OF DATA
 LD (HL),A ; LOAD IT INTO MEMORY
 INC HL ; INCREMENT MEMORY POINTER
 JP RLOOP ; DO IT AGAIN
RDONE: IN A,(DSTAT) ; READ DISK STATUS
 OR A ; SET FLAGS
 JP Z,SBOOT ; IF ZERO, GO TO SBOOT AT 007DH
 HALT ; DISK ERROR, SO HALT
;
 END

