
Jacquard Systems

SYSTEM II

Reference Manual

V1-005

SYSTEM II

REFERENCE MANUAL

Publication VI-005-13
October 1981

REVISION HISTORY

Number D.a1.e

VI-005-0 3/75

VI-005-1 7/75

VI-005-2 9/75

VI-005-3 12/75

VI-005-4 2/76

VI-005-5 3/76

VI-005-6 8/76

VI-005-7 11/76

VI-005-8 5/77

VI-005-9 1/78

VI-005-10 12/78

VI-005-11 3/79

Notes

Initial release.

Rep I ac em en t •

Revision.

Replacement. Release 2 of System II.

Revision.

Revision.

Replac ement. Release 4.

Revision. Release 5.

Replac ement. Release 6.0.

Rev i s ion • ReI e as e 6.1.

Replac ement. Release 7.0.

Revision. P ag es replac ed: Ti tle, ii, TOC -5 ,
10-3 to 10-7, A-I to A-4.

V1-005-12 5/79 Revision. Release 8.0, including J500. Pages
replaced: Title, 0-2 (was ii), 0-3 (was iii),
Table of Contents, 1-1, 1-2, 2-3 to 2-6,3-1,
3-2, 9-1, 9-2, 9-26 to 9-36, Section 10,11-4,
11-17, 12-1 to 12-5, Section 15, B-9, Index.

V1-005-13 10/81 Replacement. Release 9.0.

RELATED DOCUMENTS

Number ~

V2-005 System II Utilities Manual

V3-005 System II Error Messages

© AM Jacquard Systems, 1975, 1976, 1977, 1978, 1979, 1981

ii V1-005-13

VI-005-13

PREFACE

The information in this manual falls into two general
categories:

1. The structure and function of System II, the
standard operating system software for AM Jacquard
Systems computers.

2. Interfaces which provide System II services to
assembly language programs.

For application programmers who use Super BASIC or the
Data-Rite package, some information in the first
category may be useful as a supplement to the System II
Utilities Manual (V2-005), the System II Error IVlessages
Manual (V3-005), and the language manuals. In
particular, the following material is suggested:

Chapters 1,2,3, and 5.

Chapter 6: page 6-1 to 6-6.

Chapter 7: pages 7-1 to 7-8.

Chapter 8: pages 8-1 to 8-5.

Chapter 9: pages 9-1 to 9-6; 9-26 to 9-35.

Chapters 10, 11, 12, and 15: as relevant.

iii

(THIS PAGE INTENTIONALLY BLANK)

iv VI-005-13

Chapter

1

2

3

CONTENTS

INTRODUCTION ..
Terminals
Commands
Resources

· .. . · .. . · .. .
SYSTEM II STRUCTURE AND FILE CONCEPTS
File Input/Output Concepts •••••••••••••••••••••••••••••••••
File Attributes ..
File Ref erenc ing Conven tions •••••••••••••••••••••••••••••••
Primary Disk •••
Nominal Disk •••

Device Names •••

SYSTEM FILES AND COM MANDS
Special Files ..
System Overlays ••
Command Language •••

1-1

1-1
1-2
1-2

2-1

2-1
2-2
2-3
2-4
2-4
2-4

3-1

3-1
3-2
3-2

4 LINKAGE FACILITIES ••••••••••••••••••••••••••••••••••••••• 4-1

5

VI-005-13

System Calls ...
Linkage Parameters •••
Returns ••

MEMORY MANAGEMENT
System Buffer Pool •••

Buffer Sizes ..
Buff er Ownership ••••••••••••••••••••••••••••••••••••••

Buff er Management Calls •••••••••••••••••••••••••••••••••••
Get a Buffer (GBF)
Free a Buffer (FBF) •••••••••••••••••••••••••••••••••••

4-1
4-1
4-3

5-1

5-1
5-1
5-2
5-2
5-2
5-3

v

Chagter

5
(cont.)

6

7

vi

CONTENTS (Continued)

Partition Address Space ••••••••••••••••••••••••••••••••••••
Partition Management Calls •••••••••••••••••••••••••••••••••

Get a Partition (GPA) •••••••••••••••••••••••••••••••••
Free a Partition (FPA) ••••••••••••••••••••••••••••••••

JOB INITIATION AND TASK SCHEDULING
Jobs•...............••••....................•..
Job Initiation ...
Tasks•.•...••••...•....................
System Scheduler •••
Sharable Programs ••
Job and Task Termination •••••••••••••••••••••••••••••••••••
Deadloc k A voidanc e ••
Sc heduler Reques ts •••

Schedule a Task (TASK) •••••••••••••••••••••••••••••••
Terminate a Task (TEND) ••••••••••••••••••••••••••••••
Job Abort (ABT) ••••••••••••••••••••••••••••••••••••••
Abort Control (ABTC) •••••••••••••••••••••••••••••••••
Suspend Until Next Scheduler Pass (SUSP) •••••••••••••
Suspend Until Loc at ion Changes (SUSC) ••••••••••••••••
Suspend Until Location Zero (SUSZ) ••••••••••••••••••••
Suspend Until Loction Non-Zero (SUSN) ••••••••••••••••
Test Flag and Suspend (SUST) •••••••••••••••••••••••••
Suspend Not Allowed (SUSX) •••••••••••••••••••••••••••
Suspends Allowed (SUSA) ••••••••••••••••••••••••••••••
Link to Secondary Job (LINK) •••••••••••••••••••••••••
Release From Predecessor Job (RELJ) ••••••••••••••••••

SEQUENTIAL FILE MANAGEMENT
File Conc epts ••

File Names ••
Devic e Names ••••••••••••••••••••••.•••••••••••••••••••
File Charac teristics File Attributes
Sharing Files ...

System I/O Concepts ••
Cr ea ting aNew File ••••••••••••••••••••••••• · ••••••••••
Opening a File ••
Data Transfer •••
Clos ing a File ••
Disk Directory Functions ••••••••••••••••••••••••••••••
Fil e Name Bloc ks ••••••••••••••••••••••••••••••••••••••

File I/O Calls ...
C r eat e a File (C RE A) •••••••••••••••••••••••••••••••••
Open Sequential File for Reading (OPNR) ••••••••••••••

5-4
5-4
5-4
5-5

6-1

6-1
6-2
6-3
6-3
6-4
6-5
6-5
6-6
6-6
6-7
6-7
6-7
6-8
6-8
6-9
6-9
6-9
6-10
6-10
6-10
6-11

7-1

7-1
7-1
7-2
7-2
7-2
7-4
7-4
7-4
7-5
7-6
7-7
7-7
7-8
7-9
7-9
7-9

V1-005-13

Cha~ter

7
(cont.)

8

VI-005-13

CONTENTS (Continued)

Open Sequential File for Writing (OPNW) •••••••••••••.
Open Sequential File for Reading

and Writing (OPEN) •••••••••••••••••••••••••••••••••
Read Sequential (RDS) ••••••••••••••••••••••••••••••••
Write Sequential (WRS) ••••••••••••••••••••••••••••••••
Read Line (RDL) ••••••••••••••••••••••••••••••••••••••
Read Line Quickly (RDLQ) ••••••••••••••••••••••••••••
Write Line (WRL) •••••••••••••••••••••••••••••••••••••
Write Line Compressed (WRLC) ••••••••••••••••••••••••
Close File (CLOS) ••••••••••••••••••..•••••••••••••••••
Delete a File (DELT) ••••••••••••••••••••••••••••••••••
Rename a File (RN.AM) ••••••••.•••••.••••••••••••••••.
Change Attributes (CHTR) •••••••••••.••••••••••••••••.
Rewind Sequential File (RWND)
Disk Space Available (DSKSP) •••••••.•••••••••••••••••
Read Disk Volume Identification (VOLID) ••••••••••••••

HASH FILE MANAGEMENT
f'ile Concepts •••.

File Narrles •••..•
File Attributes
Sharing Files

.......................................
System I/O Concepts ••

Creating a New Hash File ••••••••••••••••••••••••••••••
Opening a 1-1 ash Fil e •••••••••••••••••••••••••••••••••••
Record Access and Data Transfer ••••••••••••••••••••••
Closing a flash File ••••••••••••••••••••••••••••••••••••
Deleting a Hash File ••••••••••••••••••••••••••••••••••
Rec ord Loc k ••
End-of-File •••

Hash File Formats ••
Rec ord Buff er Forma t •••••••••••••••••••••••••••••••••
Rec ord Format ••

File I/O Calls ...
Hash File Add Record (HFADD) ••••••••••••••••••••••••
Hash File Exchange Record (HFXCH) ••••••••••••••••••
Hash File Find Record (HFFND) •••••••••••••••••••••••
Hash File Find Next Record (HFNXT) ••••••••••••••••••
Hash Fil e Delete Rec ord (HFDEL) •••••••••••••••••••••
Hash File Sequential Read (HREAD) •••••••••••••••••••
Hash File Find and Lock Record (HLFND) ••••••••••••••
Hash File Find and Lock Next Record (HLNXT) ••••••••
Delete a Hash File (DELHF) •••••••••••••••••••••••••••
Clear a Hash File (HFCLR) ••••••••••••••••••••••••••••

7-11

7-12
7-14
7-14
7-15
7-16
7-17
7-18
7-19
7-20
7-21
7-22
7-23
7-23
7-24

8-1

8-1
8-1
8-2
8-2
8-2
8-2
8-3
8-3
8-3
8-4
8-4
8-4
8-4
8-4
8-5
8-6
8-6
8-6
8-8
8-9
8-10
8-11
8-13
8-14
8-15
8-16

vii

CONTENTS (Continued)

Chapter

9 COMPUTER TERMINALS..................................... 9-1

viii

Terminal Input/Output Handler •••••••••••••••••••••••••••••• 9-2
Command Mode •• 9-2
Roll Mode... 9-3
Free Screen Mode..................................... 9-4
Split Screen Mode ••••••••••••••••••••••••••••••••••••• 9-4
Keyboard Translation •••••••••••••••••••••••••••••••••• 9-4
Terminal Message Facility ••••••••••••••••••••••••••••• 9-5

System Message Line •• 9-5
Sys tern Error M essag e File ••• • • • • • • • • • • • • • •• • • • • • • • • • •• 9-5

System Error Message Format ••••••••••••••••••••••••••••••• 9-6
Terminal Calls ••• 9-7

Mode Setting Calls •••••••••••••••••••••••••••••••••••• 9-7
Read Calls •• 9-7
Write Calls ••• 9-7
Messag e Display Calls................................. 9-8
Misc ellaneous Terminal Calls •••••••••••••••••••••••••• 9-8
Set Roll Mode (ROLCRT, NSPCRT) •••••••••••••••••••• 9-8
Set Free Screen Mode (FULCRT) ••••••••••••••••••••••• 9-9
Set Split Screen Mode (SPCRT) •••••••••••••••••••••••• 9-9
Set Split Screen Boundary (SPBCRT) •••••••••.•.••••••• 9-10
Return to Command Mode (CTLCRT) ••••••••••••••••••• 9-10
Read Bottom Line (RCRTB, RDL, RDS) •••••••••••••••• 9-10
Read Bottom Line Without Roll (RCRTBN) ••••••••••••• 9-11
Read Free Screen (RCRT) ••••••••••••••••••••••••••••• 9-12
Copy Data From Screen (MCRT) ••••••••••••••••••••••• 9-13
Write to Bottom Line of Terminal (WCRTB) •••••••••••• 9-14
Wri te Line to Terminal (W RL) ••••••••••••••••••••••••• 9-15
Write Sequential to Terminal (WRS) •••••••••••••••••••• 9-16
Write Screen (WCRT) •••••••••••••••••••••••••••••••••• 9-16
Display System Error Message (SMSG) •••••••••••••••••• 9-17
Error Message to Computer Terminal (MSVS) ••••••••••• 9-19
Display System Error Message and File Name (FMSG) ••• 9-20
Error Message with File Name to Computer

Terminal (MSVF)..................................... 9-21
Display Message (MSG) •••••••••••••••••••••••••••••••• 9-23
Message Read and Display (MSRD) ••••••••••••••••••••• 9-23
Set or Release Lowerc ase Option (CRTLCI) •••••••••••• 9-26
Set or Read Terminal Status Lights (CRLGTS) •••••••••• 9-27
Erase Free Screen (CEFREE) •••••••••••••••••••••••••• 9-27
Erase Unprotec ted Fields (CEPROT) ••••••••••••••••••• 9-28
Erase Entire Screen (CEllALL) ••••••••••••••••••••••••• 9-28
Er ase Roll Part (CEROLL)............................. 9-29

Keyboard Character Codes •••••••••••••••••••••••••••••••••• 9-29
Generated Codes - Standard Keyboard ••••••••••••••••• 9-30
Layout - Model 4800 English Keyboard ••••••••••••••••• 9-31
Generated Codes - Model 4800 English Keyboard ••••••• 9-32

V1-005-13

Chapter

9
(cont.)

10

11

VI-005-13

CONTENTS (Continued)

Input Echoing
Input Echoing
Input Echoing
Input Echoing
Screen Controls

Command and Roll Mod es •••••••••••••••••••
Free Screen Mode ••••••••••••••••••••••••••
Field Entry ••••••••••••••••••••••••••••••••
Single-Field Read •••••••••••••••••••••••••• ..

COMMUNICATIONS AND ASYNCHRONOUS
CHARACTER I/O•..••.•.....•.•••...•..••••.•....

Asynchronous Drivers ••••••••••••••••••••••••••••••••••••••
Sync hronous Drivers •••••••••••••••••••••••••••••••••••••••
Asy nc hronous Communic a tions Drivers ••••••••••••••••••••••

Software Restrictions ••••••••••••••••••••••••••••••••
Baud Rate •••••••••••••••••••••••• · ••••••••••••••••••••
Duplex Modes ••

X -Off and X-On •••
Auto-Dialer Driver ••
Printer Drivers ...

Printer Wheel Table Usage ••••••••••••••••••••••••••••

9-35
9-36
9-38
9-38
9-39

10-1

10-2
10-2
10-2
10-3
10-4
10-4
10-4
10-5
10-6
10-7

MAGNETIC TAPE FILE MANAGEMENT •••••••••••••••••••••• 11-1

Introduc tion ..
Sequential File I/O Open ••••••••••••••••••••••••••••••••••

ERTIO - Tape I/O Error ••••••••••••••••••••••••••••••
ERTPE - Tape Parameter Error •••••••••••••••••••••••
ERNPA - No Partition A v ailable ••••••••••••••••••••••

Physical Tape Structure and Data Transfer •••••••••••••••••
Fixed-Length Records ••••••••••••••••••••••••••••••••
Variable-Length Records ••••••••••••••••••••••••••••••
Undefined-Length Records ••••••••••••••••••••••••••••

Abnormal Conditions •••••••••••••••••••••••••••••••••••••••
ERTIO - Tape I/O Error ••••••••••••••••••••••••••••••
ERE OF - End of File •••••••••••••••••••••••••••••••••
EREOT - End of Tape Mark •••••••••••••••••••••••••••

Sequential Functions •••••••••••••••••••••••••••••••••••••••
Write File Marks (MTSQWE) ••••••••••••••••••••••••••
Rewind Tape Volume (MTSQR W) •••••••••••••••••••••••
Skip File Marks (MTSQSF) ••••••••••••••••••••••••••••
Skip Logic al Rec ords (MTSQSR) •••••••••••••••••••••••

Abnormal Conditions •••••••••••••••••••••••••••••••••••••••
ERICL - Illegal Call ••••••••••••••••••••••••••••••••••
ERFAP - File Attributes Prohibit •••••••••••••••••••••
ERTIO - Tape I/O Error ••••••••••••••••••••••••••••••
ERTPE - Tape Parameter Error •••••••••••••••••••••••

Sequential File Close •••••••••••••••••••••••••••••••••••••
Driver Calls ••

MTWD - Write Data Block ••••••••••••••••••••••••••••

11-1
11-2
11-6
11-6
11-6
11-7
11-7
11-10
11-11
11-12
11-12
11-12
11-13
11-13
11-13
11-14
11-14
11-15
11-16
11-17
11-17
11-17
11-17
11-17
11-18
11-23

ix

Chapter

11
(cont.)

12

13

14

x

CONTENTS (Continued)

MTRD - Read Data Block ••••••••••••••••••••••••••••• 11-23
MTSFF - Skip File Mark Forward •••••••••••••••••••••• 11-24
MTSFR ~ Skip File Mark Reverse •••••••••••••••••••••• 11-25
MTSD - Skip Data Blocks ••••••••••••••••••••••••••••• 11-25
MTWEF - Write File Mark •••••••••••••••••••••••••••• 11-26
MTR WD - Rewind Tape Volume •••••••••••••••••••••••• 11-26
MTERS - Erase ••••••••••••••••••••••••••••••••••••••• 11-27
MTRS - Read Device Status •••••••••••••••••••••••••• 11-27

SORT ••• ••• 12-1

Sort Calling Sequence ••••••••••••••••••••••••••••••••••••• 12-2
Sort Definition Table •••••••••••••••••••••••••••••••• 12-3
Standard Comparisons ••••••••••••••••••••••••••••••••• 12-6
String Key Translation ••••••••••••••••••••••••••••••• 12-6
Reader Routine Linkage •••••••••••••••••••••••••••••• 12-7
Writer Rou tine Linkage ••••••••••••••••••••••••••••••• 12-7
Compare Routine Linkage ••••••••••••••••••••••••••••• 12-8
Memory Requirements ••••••••••••••••••••••••••••••••• 12-9

SYSTEM FUNCTIONS ••••••••••••••••••••••••••••••••••••••• 13-1

Time and Date Functions ••••••••••••••••••••••••••••••••••• 13-1
Get S y stem D ate (G D AT) ••••••••••••••••••••••••••••• 13 -1
Get Tim e 0 fDa y (G TO D) ••••••••••••••••••••••••••••• 13 -1
Set S y stem D ate (S D AT) •••••••••••••••••••••••••••••• 13 - 2
Set Time of Day (STOD) ••••••• •• 13-2
ASCII Time and Date Routines (DATE .RB) •••••••••••• 13-3
ASCII Date (ADATE) ••••••••••••••••••••••••••••••••• 13-3
ASCII Time of Day (ATOD) ••••••••••••••••••••••••••• 13-3

Arithmetic Functions •••••••••••••••••••••••••••••••••••••• 13-3
Arithmetic Processor Call (ARITH) ••••••••••••••••••• 13-5

Numeric Representation.................................... 13-6
ARITH Rou tine Descriptions.......................... 13-6
ASCII to Decimal Conversion (YICONV.RB) ••••••••••• 13-14
Convert ASCII String to Internal Dec imal

(CSTDEC) •••••••• a ••••••••••••••••••••••••••••••••• 13-15
Convert Internal Decimal to ASCII String

(CDECST) •••••• •• 13-15

APPLICATION PROGRAM DEVELOPMENT 14-1

Binary File Loader •• 14-2
Load Program (LDPRG) ••••••••••••••••••••••••••••••• 14-3
System Release Level ••••••••••••••••••••••••••••••••• 14-3

VI-005-13

CONTENTS (Continued)

Chapter

15 CODE TRANSLATION FILES •••••••••••••••••••••••••••••••• 15-1

ASCII Chart ••• 15-3

16 SYSTEM A UDIT TRAIL ••••••••••••••••••••••••••••••••••••• 16-1

A~pendix

Standard System Audi t Rec ords ••••••••••••••••••••••• 16-2
Application Code and Record Type •••••••••••••••••••• 16-2
Audit Log In (AULG) ••••••••••••••••••••••••••••••••• 16-9
Au d it W r i t e R ec or d (A U W R) ••••••••••••••• • • • • • • • • • •• 16 -10
Record Format as Input to A UWR ••••••••••••••••••••• 16-11
Record Format as Returned by A UWR and

as Written to the Audit Trail File ••••••••••••••••• 16-11

A SYSTE M CALL INDEX....................................... A-I

B COMMAND LINE PARSER AND TABLE STRUCTURE •••••••••• B-1

VI-005-13

LINLOC - Address of Command Line •••••••••••••••••••••••••
CHRPOS - Current Charac ter Position ••••••••••••••••••••••
DATLOC - Data Area Location •••••••••••••••••••••••••••••
FLDID - Field Identifiers ••••••••••••••••••••••••••••••••••
Field Types ••

Field Type, Bit 15 File Name Reference •••••••••••••
Field Type, Bit 14 - Numeric Range •••••••••••••••••••
Field Type, Bit 13 - Numeric Expression •••••••••••••••
Field Type, Bit 12 - Switches ••••••••••••••••••••••••••
Field Type, Bit 11 - File Name Reference Pattern

Allowed •••
Field Type, Bit 10 - String Field •••••••••••••••••••••

Flags •••
Flag,
Flag,
Flag,
Flag,
Flag,

Bit 15
Bit 14
Bit 13
Bit 12
Bit 11

- Field "Use" Flag •••••••••••••••••••••••
Hex Numeric Mode Flag •••••••••••••••••

- Switches Flag ••••••••••••••••••••••••••
- Mandatory Field ••••••••••••••••••••••••

File Name-Field Pattern
Encountered •••

Switches •••
Parse Command Line (CMDPAR) •••••••••••••••••••••••••••••
Global Constants •••
General System II Command Line Syntax •••••••••••••••••••••

B-2
B-2
B-2
B-2
B-3
B-3
B-3
B-4
B-4

B-4
B-5
B-6
B-6
B-6
B-6
B-6

B-7
B-7
B-8
B-9
B-I0

xi

(THIS PAGE INTENTIONALLY BLANK)

xii VI-005-13

Chapter 1

INTRODUCTION

System II, the operating system for Jacquard Systems computers, performs
scheduling, resource management, and file management for multiple users
executing a mix of identical or unrelated programs. For programs written in
Super BASIC, Data-Rite, or assembly language, the available servic es
include:

• Devic e and file I/O rou tines

• Terminal screen formatting routines

• Terminal keyboard editing and programmable function keys

• Memory management routines

• Sort routines

• Communication protocols

TBRMINAI,s

System II is a terminal-oriented system. Any terminal can function either
as an operator console or as an I/O device available to user programs.
Terminal services include preliminary editing of keyboard input according
to the current mode of the terminal, and extended capabilities via user­
programmable function keys.

The terminal may be in control mode or in user mode. In control mode, the
operating system interprets input. In user mode, the operating system
passes input to the user program; the screen can be formatted for field­
oriented input, or it can be used as a line-by-line device similar to a
typewriter.

VI-005-13 introduction 1-1

COMMANDS

Operators interface to System II through commands entered at any of the
terminals connected to the system.

A command consists of the name of the disk where the program resides and
the file name of the executable program, optionally followed by parameters
to be interpreted by that program. System II responds to a command by
loading and executing the requested program (or, when appropriate, by re­
entering a copy already in memory). During execu tion, the program remains
in control of the terminal unless that devic e is deliberately released.

RESODRCES

Memory is divided into an area for the resident portion of the operating
system, a number of user partitions for program execution, a buffer pool
area, and (for certain hardware configurations) a time-sliced display area.

Application programs interface with the operating system through service
calls. These calls provide for I/O to all system-supported devices,
resource management, task scheduling, file management, terminal I/O, and
communications. When a program terminates, its resources are recovered
automatically by System II.

1-2 introduction V1-005-13

Chapter 2

SYSTEM II STRUCTURE AND FILE CONCEPTS

FILE IKPUf/OUfPJJT CONCEPTS

System II provides support for both sequential and hash files. A sequential
file can be viewed as a string of 8-bit characters whose ordering is
arbitrary but fixed at the time the file is written. File I/O facilities in
the system allow data from sequential files to be transferred in records
whose size is either variable or fixed.

A hash file consists of discrete records, each of which has an identifying
key field. The address of a record is found by applying a randomizing
function to its key value. Access to a particular record is therefore
independent of other records in the file.

File size is subject only to the restriction that System II does not
provide for files which span device boundaries. That is, every file must
reside on a single storage device.

The system supports a variety of devices, including moving-head cartridge
disk drives, flexible (foppy) disk drives, CDC storage moudle disk drives,
magnetic tape drives, line printers, character printers, communication
lines, and computer terminals. Magnetic tape drives support only sequential
files; disk drives support both sequential and hash files.

Disks must be formatted before they can be used by System II. The format­
ting process writes the required logical structure onto the disk. The
structure includes a file name directory, disk space allocation records, a
bootstrap area, and the data sector pool. The file name directory is used
to keep track of the name, attributes, size, and location of each file on
the disk. The disk space allocation records indicate which data sectors are
in use and which are available. The bootstrap area is reserved for a boot­
strap program which is loaded by the Automatic Program Load (APL)
facility.

VI-005-13 system II structure and file concepts 2-1

FILE ATrRIBllI'BS

In early EDP prac tic e, a sharp distinction was drawn between programs and
files of data. A payroll application program, for example, was seen as
having very little in common with a file of weekly time cards processed by
the program. In current data management thinking, however, the distinction
between programs and files has virtually disappeared, as it serves no
useful function. For purposes of storage or transfer, it is simpler to
consider all programs and named sets of data records as files.

That unifying concept is carried a step further in the I/O management
facilities of System II, which view (1) writing a record out to a data file
and (2) writing that record out to a printer as much the same event. In
that view, nondisk physical devices become files.

All files in the system have attributes that describe their characteris­
tics. In the case of nondisk devices, these attributes are fixed, defining
such operating charac teristics as "read only" or "write only." These files
are intrinsically "attribute protec ted;" their attributes are fixed and
cannot be changed.

Files residing on disks are assigned attributes which reflect usage of the
data they contain: read only, write only, secure, permanent, execution
sharable, etc. An exhaustive list of attributes is given in Chapters 7 and
8, which discuss sequential file and hash file management, respectively.

Supporting multiple users requires the system to arbitrate conflicting
claims for files. The ability to provide file sharing depends upon inter­
preting the attributes assigned to files. If a particular file has been
declared "read sharable," for example, the system is able to maintain the
file open for reading by several independent users. Similarly, if a file
has been given the "write sharable" attribute, multiple users are permitted
to write into the file concurrently.

The characteristics of being execution sharable and top loading are rele­
vant only for binary files executable under the system. Program files which
are declared execution sharable must be reentrant and capable of supporting
multiple users. The system job initiator keeps track of the execution
sharability of the programs in all active partitions. Top loading programs
are loaded into the uppermost available partitions of memory while other
programs are loaded into the lowest available partitions. Chapter 6
describes the System II segmentation of user-available memory into parti­
tions and the strategy for their alloc ation.

2-2 system II struc ture and file concepts V1-005-13

PII,B REFERENCING CmD'ENTIQKS

A file is referenced in a command in accordance with one of the following
formats:

devic e
devic e:filename
devic e:filename. extension

The name to be written in plac e of "device" consists of up to six letters
and numerals, the first of which must be a letter. Exactly the same rule
applies to "filename." An extension (a way of giving similar but not iden­
tical names to closely related files) consists of either one or two char­
acters, chosen from any combination of letters and numerals.

Examples of perihperal devic e names include LPT! (line printer) and DE02
(double-density cartridge disk). Within a command, a reference to a
perihperal devic e omits any filename. extension suffix:

DSKOPY DED! DE03
ACUP/C LPT! LU

The first command causes the utility DSKOPY to copy the contents
from device DEO! to device DE03. The second command causes the ACUP utility
to change the characteristics of line printer LPT! so that it will print
lowerc ase as well as upperc ase letters.

Where a command references a particular file, the file is identified by
either the second or third of the formats given above: a specific file
name, perhaps with an extension, following the name of the devic e on which
the file resides. For example:

DELETE FPOO:INFO.AP

However, a file residing on either the "primary" or the "nominal" disk
(explained below) may be referred to without explicitly naming the devicec,

Note that a period - and no other character - is required to separate a
file name from an extension. The colon separating devic e and filename may
be replac ed with a semicolon, as in these examples:

DELETE FPOO;INFO
DPO!;J!639.RB

The commands in all of the foregoing examples, like every System II
command, are file names that conform to the stated conventions: that is, a
command is itself the name of an executable file, which must be a single
module as output by the Assembler, Super BASIC compiler, Data-Rite
compiler, Report-Rite compiler, or the Relocating Link Loader (RLDR).

V!-005-!3 system II structure and file concepts 2-3

PRIMARY DISK

For all the terminals attached to a computer, a particular disk is
designated the "primary" disk. Typic ally, software programs are stored on
the primary disk. Files on it can be referenced from any terminal by writ­
ing a "$" character in place of the device name (followed by a colon). For
example, if diskette FPOl is the current primary, then the following
references are equivalent in a command input from any of the attached
terminals:

FPOl:GTAD
$GTAD

The CHPRI utility changes the primary or displays its name depending on the
format used to call it. Changing the primary via CHPRI from any terminal
changes it for all the terminals attached to the same computer.

NOMINAL DISK

While all terminals share the same primary, each c an have a unique
"nominal" disk. Typically, word processing documents or data files are
stored on the nominal disk. The file on the nominal disk of a particular
CRT can be referenced without specifying a device; that is, in the absence
of a device name or dollar sign, the default is the nominal disk. For
example, if the nominal for CRTl is FPOl, the following two references are
equivalent:

FPOl:AFILE
AFILE

The CHNOM utility changes the nominal or displays its name, as needed. A
change affects only the terminal from which CHNOM was called.

DEVICE NAMES

Listed below are System II's standard device names. They are reserved for
the indic a ted purpose and must not be used as disk file names. In each
category, additional names c an be formed by incrementing the suffixed
decimal number, e.g., ACY2, ACY3, etc.

• ACYl Asynchronous remote terminal

• ASYl Asynchronous communications line

• BDOO Storage Module disk

• BMAl BSC line, multipoint, ASCII control

• BMEl BSC line, multipoint, EBCDIC control

• BPAl BSC line, point-to-point, ASCII control

2-4 system II structure and file concepts Vl-005-l3

• BPE1 BSC line, point-to-point, EBCDIC control

• COM1 General synchronous communications line

• CRT1 J100/J105/J50/J500 computer terminal

•
•
•
•
•
•
•
•
•
•
•

DAOO

DDOO

DEOO

DH04

DILl

DPOO

DPL1

DPR1

FAOO

FDOO

FPOO

Cartridge disk, double-density, 512-word sectors

Cartridge disk, double-density, 9144 256-word sectors

Cartridge disk, double-density, 9744 256-word sectors

Multiplexer line

Auto-dialer

Cartridge disk, single-density

Diablo printer (or compatible Qume or NEC), legal-size page

Diablo printer (or compatible Qume or NEC), letter-size page

Floppy disk, double-density, double-sided

Floppy disk, double-density, single-sided

Floppy disk, single-density, single-sided

• LPT1 Line printer

• MCAO Multiplexed remote terminal

• MTOO Magnetic tape

• MXAO Mul tiplexer line

• MXBO Multiplexer line

• NPP1 NEC printer, proportional spacing, PS wheel

• NPR.1 NEC printer, non-proportional spacing, non-PS wheel

• NPS1 NEC printer, with sheet feeder

• QPR1 Qume printer, standard

• QPS1 Qume printer, with sheet feeder

• QPW1 Qume printer, WideTrack

• QTRI Qume printer, TwinTrack

• UJE1 UNIVAC RJE line

V1-005-13 system II structure and file concepts 2-5

(THIS PAGE INTENTIONALLY BLANK)

\

2-6 system II structure and file concepts VI-005-13

Chapter 3

SYSTEM FILES AND COMMANDS

SPBCIA If FII,BS

Certain disk files have reserved names, typically with the extension "SB"
for "System Binary." When such files are required, they must be available
on the current primary disk. These files include: compiler language run­
time libraries; non-resident device drivers; command processors for the
Type-Rite word processing package; overlays for SGBASC, one of the Super
BASIC compilers; and bootstrap programs which the FORMAT utility copies
onto new disks.

A complete list of these files may be found in a separate publication, the
Software Guide (VI-073). The following examples are selected for their
general interest:

• DPRDRV.SB - Charac ter printer driver

• CDODRV.SB - Line printer driver

• CHRGEN .SB - Default dot patterns for J500 screen

• DEBUGX.SB - Debugger

• DEINTR.SB - Data-Rite run-time library

• FOFPl.SB - Bootstrap program, FPnn on JIOO

• FOFPU.SB - Bootstrap program, FPnn on J500

• SRTLIB.SB - Super BASIC run-time library

• SORTM .SB - Generalized sort module

VI-005-13 system files and commands 3-1

SYSTEM OVERLAys

For certain configurations of System II, some of the system code is in
overlays which are kept on the primary disk. These overlays are read into
memory and executed in a special overlay area immediately following the
resident portion of the system. Several overlay configurations are avail­
able, which provide a variety of trade-offs between resident system size
and overlay loading time. Consult the JI00 or J500 System Generation
manuals for details.

A note of warning: since the system always loads its overlays from the
primary disk, the user needs to be especially careful whenever that disk
must be removed or switched.

The primary disk can be removed safely (after entering a REMOVE command)
or switched to another device safely (after entering a CHPRI command) only
if the system configuration has no overlays, or if the new disk contains an
identically configured version at the same software release level.

COMMAND I.ANGDAGE

Unlike many operating systems of comparable power, System II does not limit
terminal facilities to a fixed set of commands. Instead, each system
command is, in fact, simply an execution request for a program.

As a result, user application programs can be designed to supplement, or
even to replace, the standard general-purpose programs distributed by AM
Jacquard.

Command line parsing, at the assembly language level, is described in
Appendix B of this manual.

For details on standard programs and on the syntax of their execution
requests, refer to publication V2-005, System II Utilities.

3-2 system files and commands Vl-005-13

Chapter 4

LINKAGE FACILITIES

SYSTEM CAI,IS

Transf er of control to System II from an assembly language applic ation
program is accomplished by executing a JSR indirect routine (Jump-Save­
Return to Address) through loc ation 0003. The standard proc edure used on
system calls is to handle the JSR @3 mnemonically with the assembler
directive .FORM (refer to System II Assembler Manual, V1-024):

.FORM CALL,16{X'2C03)

A statement containing CALL in the operation field can then be used to
transfer to the system when necessary. One such. FORM directive is required
in each assembly module where CALL statements appear.

Immediately following each CALL must be a word containing a constant that
specifies the system entry point desired. The convention established for
this purpose is to use the • WORD pseudo-operator with the name of the entry
point in the operand field.

All system entry points used within a module must be declared as external
references in .GLOBL statements; absolute values are assigned when that
module is link-edited (refer to System II Utilities manual, V2-005, RLDR)
with a special module called SYSSYM .RB. (SYSSYM .RB assigns values to the
global names of all system entry points. It is furnished as part of the
standard System II software. Refer to Chapter 14 for more information.)

IJNKAGE PARAMETERS

Input and output parameters on system calls are contained in registers.
Except where noted, a register not used for parameters is restored to its
original value. However, the contents of the status register are destroyed,
and SEL (the Select flag, used in "Branch on Condition" instructions) is
always off after a system call.

V1-005-13 linkage facilities 4-1

If an error return is taken, ACO will contain a code identifying the type
of error that occurred. Each possible error code is assigned a global
symbolic name and a value in a special module called ERCODE.RB. These
symbolic names are listed in the Error Messages Manual, V3-005.

If a user program wishes to examine ACO to determine which type of error
occurred after an error return is taken, he must link-edit ERCODE.RB with
his program and declare all error code symbols used as global. (ERCODE. RB
is also provided as part of the standard System II software.) One possible
way to determine which type of error occurred is to use the SKNE
instruction on ACO as illustrated below:

.GLOBL
• FORM

ERRA, ERRB, PARM ; EXTERNAL REFERENCES
CALL, 16 (X T 2CO 3) ; DEF INE S TIIE TfCALL Tf OPERATOR

CALL
• WORD
JlVIP

PARM
ERTN

ERfN: SKNE o ,A
LOCA
o ,B
LOCB

A:
B:

JMP
SKNE
JMP

.WORD ERRA

.WORD ERRB

; SYSTEM LINKAGE
;PARAMETER FOR SYSTEM ENTRY
; ERROR RETURN
;NORMAL RETURN

; SKIP NEXT INSTRlCI'ICN IF (ACO) 1- (A)

; SKIP NEXT INSTRlCI'ICN IF (ACO) 1- (B)

; (A) = HEX VALUE, ERROR COOE "ERRA"
; (B) = HEX VALUE, ERROR COOE "ERRE"

In this illustration, ERRA and ERRB are the symbolic names of two error
codes. Locations A and B contain the numeric values which will be found in
ACO should errors ERRA or ERRB, respectively, happen to occur; in that
case, the above statements will cause a branch to either location LOCA or
LOCB. Not shown here, they would be the entry points of error handling
routines for the two possible cases. Refer to the end of this chapter for
another example of the procedure ou tlined above.

4-2 linkage facilities VI-005-13

RETURNS

There are three possible outcomes after a system call: no return, normal
return only, and both error and normal returns.

• No return (control is never returned to the user task):

CALL
• WORD entry

• Normal return only (error return not possible, control returned to the
next available location):

CALL
• WORD entry
normal return location

• Both error and normal returns (the next available location is an error
return, the one following is a norIlial return):

CALL
• WORD entry
error return location
normal return location

An example of system calls containing one call for each type of return is
shown on the following page. The call to TEND has no return and is used to
terminate the task. SUSP has only a normal return with no input or output
parameters, and suspends the task for one scheduler pass. GBF obtains a
buffer from the system buffer pool; it requires an input in ACI and pro­
vides an error code in ACO if the error return is taken, or outputs in ACI
and AC2 if the normal return is taken. Potential error codes from GBF are
ERBIS (illegal size requested) and ERBNA (no buffers available).

VI-005-I3 linkage facilities 4-3

ERR:

IBS:
NBA:

END:

.TITLE SAMPLE

.GLOBL TEND,SUSP,GBF ;SYSTEM ENTRY POINTS
• GLOBL ERB IS, ERBNA ; ERROR CXDES FROVI GBF
.FORM CALL,16(X'2C03) ;DEFlNE CALL OPERATOR

CALL
• WORD

LI
CALL
• WORD
JMP
ST
JlVIP

SKNE
JlVIP
SKNE
JlVIP

• WORD
• WORD

CALL
• WORD
• END

SUSP

1,1

GBF
ERR
2,BUFLOC
END

O,IBS
BADSIZ
O,NBA
NOBFR

ERBIS
ERENA

TEND

;SUSPEND FOR ONE SCHEDULER PASS

; BUFFER SIZE
;GEr A BUFFER BY
;CALLING SYSTEM ENTRY GBF
;ERROR EXIT
;NORlVIAL EXIT

; TEST FOR ILLEGAL SIZE
;JUMP IF ILLEGAL SIZE
;TEST FOR NO BUFFERS AVAIL
;JUMP IF NONE AVAILABLE

; ERROR CCDES FROVI GBF

;TERMlNATE THIS TASK

;END OF ASSEMBLY

4-4 linkage facilities V1-005-13

Chapter 5

MEMORY MANAGEMENT

System II provides dynamic memory management services for application use
as well as to support system services. Memory is divided into space for
System II, a buffer pool of size selected at system generation, and par­
tition space. A vailable partition space is determined during system ini­
tialization by testing all possible memory. In a JI00 with extended memory
all possible memory banks are tested.

In a system with extended memory, the lowest physical memory address space,
o - X'7FFF (called bank zero) is permanently resident; i.e., cannot be
switched. The higher address space X'8000 - X'FFFF is switched between
banks 1 through 7 as required. System II always resides in lower memory
(bank 0).

SYSTBM BUFFBR POOL

The system buffer pool is allocated immediately after the system is booted
and the size of available memory has been determined. In a standard JI00 or
J500, it is placed at the end of the first contiguous segment of memory or
just below the lowest address CRT refresh area if the memory extends that
far. In a JI00 with extended memory, the buff er pool resides in bank 0
(address space 0 - X'7FFF) after System II. The size of the buffer pool
area is defined at system generation time. It can be redefined without
performing a new system generation by using the CHBUFS utility and
rebooting the system.

BUPPER SIZES

Buffers of 16, 32, 64, 128, 256, 512, or 1024 (decimal) words are avail­
able. The buffer manager breaks down larger buffers as necessary when
smaller buffers are requested and recombines them as the smaller buffers
are returned.

V1-005-13 memory management 5-1

BUPFER OWNEBSHIP

When a buffer is requested by either the system or a user task, the size of
the buffer and the job number of the task requesting it are noted in a
special t.able called the BCT (Buffer Control Table). This information is
used when the buffer is returned to verify proper ownership and to
determine its size. It is also used to release all buffers belonging to a
job upon termination.

DUPlER MANAGEMENT CALLS

GET A BUPFER (GBF)

CALL
• WORD GBF
error return
normal return

Entry Parameters: ACI = Requested buffer size in words, divided by 16;
values must lie in the range 1-64.

Exit Parameters: ACO = Error code, if error return is taken.

Error Codes:

ACI = Size of buffer actually assigned, divided by 16
(1, 2, 4, 8, 16, 32, or 64).

AC2 = Location of buffer.

ERBIS Requested buffer size illegal: (ACl) at entry
less than 1 or greater than 64.

ERBNA Insufficient contiguous space available.

GBF removes a buffer from the pool of available buffers and assigns it to
the current job. The size of the requested buffer is specified as an
integral number of 16-word segments, so that a buffer of n words is
requested by calling GBF with (AC1) = n/16. Permissible values in ACl are 1
to 64, corresponding to buffers of 16 to 1024 words, respectively.

Due to the nature of the algorithm used to assign and recombine available
space, only blocks whose size is an integral power of 2 are actually
allocated, that is, blocks of 16, 32, 64, 128, 256, 512, or 1024 words.
Consequently, GBF automatically increases a requested size that does not
meet this criterion to the next higher even power of 2. The increased size,
divided by 16, is then returned in AC1.

5-2 memory management Vl..;.005-13

The following table gives some examples of this procedure:

Buffer Size Entry Number of Value
Desired (words) ACI Value Words Allocated Returned in ACI

16 1 min 16 1
32 2 32 2

48 3 64 4
64 4 64 4

80 5 128 8
96 6 128 8

112 7 128 8
128 8 128 8

144 9 256 16

256 16 256 16

272 17 512 32

512 32 max 512 32

1024 64
1024 64 max

FREE A BUPFER (FDF)

CALL
• WORD FBF
error return
normal return

Entry Parameters: AC2 = Buffer address.

Exit Parameters: ACO = Error code, if error return is taken.

Error Codes: ERBIA Illegal buffer address in AC2.

VI-005-13

ERBNJ Buffer is already unassigned or belongs to
another job.

memory management 5-3

FBF ret.urns a buffer to the pool of available buffers. It verifies that AC2
contains a valid buff er address and, if so, that the buff er spec ified is
assigned to the job calling FBF.

PARTITION ADDRESS SPACE

Partition address spac e consists of those areas of implemented main memory
which are not used for the operating system, buffer pool, terminal display
buffers and the APL ROM area.

Partition address spac e is dynamic ally segmented into partitions by system
calls. Requests for partitions are satisfied on a first-fit basis, pro­
c eeding from low memory to high unless a high to low searc h is requested
(see GPA below and CHATR utility). Partitions are primarily used to hold
programs being executed by the operating system. For this purpose, a par­
tition is allocated at job initiation time and deallocated when no further
jobs are executing the program residing in the partition. A partition may
consist of both a base sector (BSECT) and a top sector (TSECT) portion. The
TSECT portion may be requested in any size; however, all allocations of
TSECT spac e are rounded up to the nearest non-zero integer multiple of 16.
Both BSECT and TSECT portions are contiguous within themselves.

The maximum number of partitions that may be allocated at one time is 100.
Other uses for partition address space include the allocation of a data
area to support a Data-Rite, Report-Rite, or a BASIC language user (in both
generative and interactive mode). The System II sort/merge program and
other utilities also allocate partitions to provide working space.
Partition address space is also required for certain device drivers which
are not system resident (for example, line printer and magnetic tape).

As a general rule, system buffers should be used for small segments of
memory instead of partitions, since fragmentation of partition address
space should be kept to an absolute minimum.

The operating system keeps track of the ownership and usage of partitions
by associating them with jobs. An active partition is in use by at least
one job and possibly more (for example, a multi-user program). At the
termination of a job, the system automatically reduces the use count for
all partitions used by the job. Any partition with a zero use count may be
rec ombined into available partition address spac e when needed.

PARTITION MANAGEMENT CALI,s

GBT A PARTITION (GPA)

CALL
• WORD GPA
error return
normal return

Entry Parameters: ACO =
AC1 =

5-4 memory management

BSECT length or l's complement of BSECT length.
TSECT length.

V1-005-13

Exit Parameters: ACO :: Error code, if error return is taken. On normal
return, BSECT area origin.

ACI :: TSECT area origin.

AC2 :: Partition number.

Error Code: ERNPA No partition available.

GPA allocates a partition consisting of a BSECT area and a TSECT area. The
BSECT area will be exactly the size specified; the TSECT area will be
rounded up to a multiple of 16 words. Either of the requested BSECT or
TSECT lengths may be zero. A minimum of 16 words of TSECT area are always
allocated. The partition is allocated from the partition address space of
memory which was determined at system boot time. The system looks for an
unused slot by scanning from low addresses upward. If (ACO) > 0, the lowest
available partition will be assigned. If (ACO) < 0 (1 's complement of
BSECT length) the highest available partition will be assigned. Partitions
containing programs which are not in use are freed as necessary to produce
an available slot large enough to accommodate the requested partition. The
TSECT area of a partition will always have an address that is an integer
mul tiple of 16. The BSECT area may begin on any address between X'12 and
X'FF. The first word of the BSECT and TSECT areas will contain the
respective lengths of the partition. In a system with extended memory, GPA
will allocate a partition in the same memory bank as the calling program.

All partitions assigned to a job will be reclaimed by the system at job
termination if not freed beforehand. A partition may be freed by a call to
FPA.

PREE A PARTITION (FPA)

CALL
• WORD FPA
error return
normal return

Entry Parameters: AC2:: Partition number or partition TSECT address.

Exit Parameters: ACO = Error code on error return. All registers are
restored on a normal return.

Error Code: ERPNJ Partition not assigned to current job.

FPA frees a partition that was previously allocated to a user. If the
partition is not assigned to the job making this request, the error return
is 'taken.

VI-005-13 memory management 5-5

(THIS PAGE INTENTIONALLY BLANK)

5-6 memory management VI-005-1~

Chapter 6

JOB INITIATION AND TASK SCH·EDULING

A job is a collection of one or more tasks which are all part of the same
program. The maximum number of concurrent jobs is 100 (decimal). Each job
can obtain up to 30 partitions. The terminal from which a job is initiated
becomes its message terminal; the association of a message terminal with a
job persists until explicitly dissolved by the job.

A job initiated in response to a user command entered at a terminal is a
primary or first-level job; it has no predecessor job. One initiated from
within a program by means of a LINK call (explained below) is a secondary
job; its predec essor is the issuing program.

When a job is created, it consists of a single task, which is started by
the Job Initiator. The Job Initiator's function is to cause the program to
be loaded into a partition. If the program is not sharable for execution, a
new copy must be loaded each time it is called. If the program file is
sharable for execution, subsequent commands calling for it will not cause
it to be, reloaded, so long as an available copy remains in memory. In some
circumstances in a system with extended memory multiple copies of sharable
programs may be loaded in different banks. See the BANK utility in the
System II Utilities manual.

While a job starts as a single task, that task may in turn create others,
which become part of the same job. As the tasks execute, they may obtain
system resources, which become attached to the job and are shared by all
the tasks constituting the job. A job terminates when all its tasks have
either terminated or aborted. At that point, the system closes any open
files, releases any system allocated buff ers still attached to the job,
releases any partitions assigned to the job, releases the task control
block, and, if necessary, returns the message terminal to control mode.

In addition to the BSECT and TSECT areas in the partition assigned to the
program, each task has access to a fixed four-word area in base page memory
known as "task page zero space." These four words can be referenced
directly by the global system symbols TPZO, TPZ1, TPZ2, and TPZ3, which

V1-005-13 job initiation and task scheduling 6-1

should be declared as external. All tasks use the same four-word area;
interference is eliminated by saving the contents of these locations
elsewhere when switching among tasks.

The system file SYSSYM .RB contains the definitions for the global symbols
TPZO-TPZ3. It should be included in a link edit of the program.

JOB INITIATION

The initial task of a job receives the following parameters when it begins
execution:

ACO-ACl = Number of words in the TSECT portion of the partition
containing the program.

AC2 = Start address.

AC3 = Address of 64-word buffer containing the command.

TPZO-TPZ3 = Terminal identification in ASCII characters, stored two
per word with trailing nulls (X'OO).

The first D'41 words of the command-line buffer contain the command line
itself; the remaining 23 words may be used by the application program.
After processing the command line, the program may use the entire buffer,
or release it by calling FBF. While job termination will free the buffer if
it has not already been released by the program, a job that runs for very
long after processing the command line should release the buffer explicitly
as soon as possible.

In most cases, the terminal initiating a job is left attached to the job
until the job terminates. However, it is possible for the job to return the
terminal to command mode before it terminates. In this event, the terminal
can be used to initiate a new job before the first has terminated. A user
can continue to initiate new jobs as soon as each releases the terminal.
Although a job may detach from it, the terminal continues to function as
its message terminal. Messages generated by the job will go to that
terminal if it is in command mode and the job was not initiated by a LINK.
Having detached from its initiating terminal, a job can open another, which
then becomes its message terminal.

When a job is initiated, its task page zero space (TPZO-TPZ3) is set to the
name of the terminal it is to use, referred to here as its TPZ terminal; it
need not be a computer terminal. Thus a remote terminal (via the utility
MONITR) can invoke those utilities which limit their terminal use to
sequential I/O calls.

If the command to initiate the job gives the name of a terminal within
brackets, that terminal becomes the TPZ terminal. If it is not a computer
terminal, then it is attached to the job.

6-2 job initiation and task scheduling Vl-005-13

If the command does not specify a terminal, then the TPZ terminal is
determined by the first of the following conditions which is met:

1. The job has been started by a predecessor job having a non­
computer terminal attached to itself. In this case, the job's TPZ
terminal is that non-computer terminal. .

2. The job is a foreground job. In this case, the TPZ terminal is
the job message terminal.

3. In all other cases, the job does not have a TPZ terminal, and its
task page zero space is set to zero.

TASKS

A task is the focal point for CPU scheduling. The purpose of the system
scheduler is to equitably share the CPU among whatever tasks exist at each
point in time. Each task represents an independent CPU process. These
independent processes generally run asynchronously with regard to one
another, but in some cases synchronization between tasks is required. The
system provides several mechanisms to support this requirement.

Conceptually, every task acts as if it has its own CPU since the system
simulates a virtual CPU for each. This is done by switching control among
the active tasks, giving each of the tasks in succession a small slice of
the available CPU time. When switching from one task to another, the
contents of the CPU registers for the current active task are saved and the
previously saved contents of the registers for the next task are loaded
back into the CPU registers. Each task also has its own contents for the
task base page locations TPZO, TPZl, TPZ2 and TPZ3, which are swapped when
switching among tasks.

When a job is created, it consists of a single task. That task may in turn
use system calls to create other tasks, which become attached to the same
job. While each task has its own contents for the CPU registers and task
base page locations, other resources can be shared by the various tasks
comprising a job. Resources that can be shared are the partition (TSECT and
BSECT), buffers and files.

SYSTEM SCHEDULBR

The sequencing of task execution is controlled by the system scheduler. Its
primary responsibility is the allocation of CPU time to the various tasks.
There are three ways that the CPU can be taken away from a task:

• The task voluntarily gives up the CPU via a
r

suspend call or another
call which suspends (most I/O calls suspend).

• The task has exhausted its current time slice.

• A higher priority task needs to run.

VI-005-13 job initiation and task scheduling 6-3

There are two basic kinds of suspend requests that a task can make:

• Give up the CPU until a specific event occurs which is denoted by a
flag posted in a memory location (SUSC, SUSN, SUSZ, SUST calls).

• Give up the CPU for now, and put this task at the bottom of the
scheduler queue, but marked as ready to run (SUSP call).

Whenever a task gets suspended, the scheduler puts that task onto one of
three priority queues: high, medium and low. The high priority queue is
used only for the system character input distributor task (CID). The medium
priority queue is for tasks which have suspended by a SUSC, SUSN, SUSZ, or
SUST call. The low priority queue is for tasks suspended by a SUSP call or
a time slice.

The tasks on the various queues are linked in the order in which the
suspends occurred. A task on a queue can be in one of two states: ready to
run, or waiting for an event to occur. When the scheduler must select a
task to execute, it searches the queues in priority order (high, medium and
low). The first task it encounters that is ready to fun is the one that
is executed. In order for a task on the low priority queue to get executed,
there can be no tasks on the high or medium priority queues ready to run.
Tasks waiting for an event have a timer which is decremented every clock
period. If the timer runs out before the event occurs, the task becomes
ready to run, but is instead started up at a time-out location.

A task will not be suspended except by program request when it is running
in system code. A task running in user code may also prohibit time slice
suspends by making a special scheduler call SUSX (suspends not allowed).
This prohibition remains in effect until the next system call is made,
which may be the complementary SUSA (suspends allowed).

When a task is activated, an internal timer is set to limit the time the
task may run. The limit is two clock periods, which are 0.1 second each.
However, since the first clock interrupt can occur anywhere from 0 to 0.1
second after the task is activated, the time slice may in fact be anywhere
from 0.1 to 0.2 seconds. If the task has not suspended or terminated before
the timer runs out, the system will suspend it. However, if the task has
made a system call when the timer runs out, suspension is postponed until
control is back in the application program.

SHARABLE PROGRAMS,

A sharable program is a reentrantly coded program which has the "sharable
for execution" attribute set in the disk catalog entry. The primary
characteristic of reentrant code is that there is no local storage of
variable information; otherwise, there are no particular restrictions on
what a sharable program may do • Like a nonsharable program, the first time
a sharable program is called, it is loaded into a partition. Unlike
nonsharable programs, however, a subsequent call for it will not reload it
from disk if it is still in memory. Rather, a new job calling for it simply
begins executing at the start address of the program. It is passed startup

6-4 job initiation and task scheduling V1-005-13

parameters in the manner described earlier. There are some exceptions to
this in JIOO systems with extended memory. See BANK utility in the System
II Utilities manual.

JOB AND TASK TERMINATION

A job can be terminated in any of three different ways:

• If all the tasks constituting a job terminate normally by a TEND
(Terminate a Task) system call.

• If any task makes an ABT (Job Abort) system call. This aborts each of
the job's tasks that do not have an abort control routine.

• If the job is attached to a terminal and the user at the terminal
presses <CANCEL). This aborts each of the job's tasks that
do not have an abort control routine.

The job is not completely terminated until the last task in the job has
terminated. Once the job abort flag has been set, the system scheduler is
responsible for terminating all the tasks in the job. This can be a
complicated procedure since a task cannot be terminated while it is making
a system call. Thus, the scheduler must wait until the task returns from
any system call and is back in the application program.

When the last task in the job terminates, the system closes any files still
open and releases any resources still attached to the job, such as system
buff ers and partitions. If necessary, the job's message terminal is
returned to command mode.

DEADLOCK AVOIDANCE

A deadlock is defined as a condition in which all the tasks in the system
are making system requests that cannot be satisfied. When a deadlock
occurs, it is often the case that the requests of any single task could be
satisfied if that task were running by itself. The problem arises because
the system cannot predict which resources each task will request, and must
satisfy requests on a first-come first-served basis. The result can be that
no one task gets all of its requests satisfied.

Another type of deadlock occurs when a task sets an interlock flag and then
inadvertently fails to clear it. Other tasks may then wait indefinitely for
the interlock to be cleared. This situation is usually caused by a software
bug or design error and should not occur after a program has been thor­
oughly checked ou t.

The system makes no effort to prevent deadlocks of either type. Since all
resource requests have a "Not Available" error return, it is left to the
application program to recognize that a resource deadlock may have occurred
and to take appropriate action.

VI-005-13 job initiation and task scheduling 6-5

Once a resource deadlock has occurred, the only solution is for some of the
tasks to return resources they have already obtained. This can be done
either by voluntary action on the part of the program, or by users at
terminals aborting some jobs.

In order to avoid deadlocks, application programs should observe the
following rule: resources granted by the system should be retained on an
all or nothing basis - that is, if any resource request is refused, all
other resources should be returned to the system (rather than held until a
denied resource becomes available). After an appropriate delay, the program
can attempt to acquire the resources again. Those resources hardest to
acquire should be obtained first. The following order for requesting
resources is suggested:

1. Devices such as printers, paper tape readers, etc.

2. Disk files

3. Buffers

The remainder of this section describes various system calls for control­
ling the execution of tasks. TASK, TEND and ABT create, terminate and abort
tasks. The ABTC call specifies a recovery address for jobs which have been
aborted. SUSP, SUSC, SUSZ, SUSN and SUST suspend tasks until a specified
condition occurs. The SUSX and SUSA calls disable and enable time-slice
suspensions.

All of the calls for task suspension, except SUSP, require a timer value to
be specified in register ACI. The value is in units of one-tenth of a
second. A timer value of -1 (X'FFFF) is treated as infinite. If the timer
runs out before the specified event occurs, the task will be restarted at
the timeou t return address.

Recall that in those calls where an error return is possible, the error
c ode will be found in ACO. Refer to Chapter 4 for details of the possible
outcomes of system calls.

SCBJIDULE A TASK (TASK)

CALL
• WORD TASK
error return
normal return

Entry Parameters: AC2 = Entry, point address of task.

Exit Parameters: None.

Error Codes: ERBNA No buffer available.

6-6 job initiation and task scheduling VI-005-13

TASK builds a task control block (TCB) for a new task and places it on the
scheduler low priority queue. The new task will be attached to the same job
as the task making the request. The module whose entry point is supplied in
AC2 must be present in memory; no checking is performed on this input. The
only error condition is that no memory is available for the TCB.

The initial contents of the CPU registers for the new task will be the same
as the contents of the registers for the current task when the TASK call is
made. The initial contents of the 4-word task page zero area will be the
same as that of the current task.

TERMINATE A TASK (TEND)

CALL
• WORD TEND

TEND terminates the task making this call. If there are other tasks still
active in the same job, the only action taken in this call is to release
the task control block. If this is the last task in the job, the system
will close any files still open, release any disk sector blocks still
assigned to the job, release any buffers sfill attached to the job and
decrement the job count of the partition used by the job. TEND does not
return to the user program.

JOB ABORT (ABT)

CALL
• WORD ABT

The ABT system call sets the job abort flag, which causes all tasks
belonging to the job to be aborted. When the last task is terminated, any
resources still attached to the job are released. A task that calls ABT
will terminate with the abnormal termination message. It will not go to its
abort control handler (if any), set by calling ABTC.

ABORT CONTROL (ABTC)

CALL
.WORD ABTC
normal return

Entry Parameters: ACO = Abort return address.

Exit Parameters: ACO = Old abort return address.
ACI-AC3 = Unchanged.

The ABTC call specifies an address to which control is to be transferred
when <CANCEL) is pressed. When the abort occurs, the location where the
program was interrupted is pushed onto the stack and control is transferred
(via a jump) to the abort return address. This abort recovery only applies
to the particular task making this call. If this call is made with ACO = 0,

VI-005-13 job initiation and task scheduling 6-7

the task will simply be terminated when the job is aborted. If this call is
made with ACO = -1, aborts on this task are inhibited. Aborts on a task are
also inhibited after an abort recovery has occurred. The job abort flag is
cleared on an ABTCcall.

In a job with several tasks, each task that wants to execute an abort
routine must make a separate call to ABTC. When <CANCEL) is pressed, those
tasks will each receive control in arbitrary order; the others will be
KILLed.

Note that after <CANCEL) is pressed, if any task makes an ABTC call, the
abort flag will be effectively cleared for all tasks. This means that any
task which has not yet gone to its abort recovery rou tine will not do so
and will go on executing as though <CANCEL) was never pressed.

KILL has the same effect as <CANCEL). Note that a job can be KILLed even
when it is not attached to any terminal.

Causing a STFL or JZER panic task abort has the same effect as <CANCEL),
except that the task causing the STFL or JZER is terminated without going
to its abort recovery address.

SUSPEND UNTIL NBXT SCHEDULER PASS (SUSP)

CALL
• WORD SUSP
normal return

SUSP suspends the current task by placing it at the end of the low priority
scheduler queue in a "ready to run" condition. The scheduler will activate
the task again on its next pass through the queue.

SUSPBND UNTIL LOCATION CHARGES (Suse)

CALL
• WORD SUSC
timeout return
normal return

Entry Parameters: ACO = Old value in location.

Exit Parameters:

AC1 = Timer value in units of 0.1 second.
AC2 = Location address.

None.

SUSC suspends a task until the location given in AC2 contains a value
different from the value in ACO, or until the timer runs out.

6-8 job initiation and task scheduling V1-005-13

SUSPEND UNTIL LOCATION ZERO (SUSZ)

CALL
• WORD SUSZ
timeout return
normal return

Entry Parameters: AC1 = Timer value in units of 0.1 second.
AC2 = Location address.

Exit Parameters: None.

SUSZ suspends a task to wait for the location specified in AC2 to become
zero, or the time given in AC1 to elapse. SUSZ provides the ability to wait
for some other task to post a communication word with, a zero. This type of
suspend is used by some operating system routines, but is also available to
user programs.

SUSPEND UNTIL LOCATION NOH-ZERO (SUSB)

CALL
• WORD SUSN
timeou t return
normal return

Entry Parameters: AC1 = Timer value in units of 0.1 second.
AC2 = Location address.

Exit Parameters: None.

SUSN suspends the task until the location given in AC2 becomes non-zero, or
th e time given in AC1 elapses. The use of SUSN is similar to SUSZ.

TEST FLAG AND SUSPBND (SUST)

CALL
• WORD SUST
timeout return
normal return

Entry Parameters: ACO = Value of flag (must be nonzero). If this value
is zero, SUST uses a non-zero value instead.

AC1 = Timer value in units of 0.1 second.

AC2 = Location of flag.

Exit Parameters: None.

SUST is basically a test and set flag routine. If the flag is zero on
entry, SUST sets it (to a nonzero value) and returns to the calling task.

V1-005-13 job initiation and task scheduling 6-9

If the flag is not zero, SUST suspends the task until it is zero. Then. it
sets the flag and returns to the user task.

SUST is the proper way to implement a sequencing interlock for a serially­
reusable (but not reentrant) subroutine.

SUSPEND ROT ALLOWBD (SUSX)

CALL
• WORD SUSX
normal return

SUSX prevents the system from suspending a task because its time slice has
elapsed. Any subsequent system call will clear the SUSX status. A special
call, SUSA, is normally used to clear the SUSX status.

SUSPENDS ALLOWED (SUSA)

CALL
• WORD SUSA
normal return

SUSA reenables time slice suspends after a SUSX.

LINK TO SBCONDARY JOB (LINK)

CALL
• WORD LINK
error return
normal return

Entry Parameters: ACO = Address of command line.

Exit Parameters:

Error Codes:

ACO = 0 Secondary job executed without error;
otherwise,

ACO -::j. 0 System error code; if return was made to the
error-return location, error code indicates
that secondary job not started; if return to
normal-return location, error code is from
secondary job. (See RETURNS, Chapter 4).

ERCROP Message terminal open

LINK causes a secondary job to be created and started, using the command
line addressed by ACO. The command line must be in standard ASCII format
packed two characters per word, beginning with the name of the program to
be run, and ending with a line terminator character if less than 80
characters long. The # (Debugger invocation, see page 3-1) is ignored.

6-10 job initiation and task scheduling V1-005-13

The task making this call is suspended until the secondary job has
terminated normally, aborted, or executed an RELJ call.

If the secondary job cannot be successfully started, the error return from
this call will be taken, with ACO set to a system error code. If the sec­
ondary job is initiated properly, the normal return is taken on completion
of the job or when an RELJ call is made. When the normal return is taken,
ACO will be zero unless the secondary job called SMSG, FMSG, or ABT. In
this case ACO will contain the system error code.

If the current job is a foreground job and has its message terminal open,
LINK returns error code ERCROP. This terminal must be closed because the
secondary job is started as a foreground job on this terminal.

RELEASE FROM PREDECESSOR JOB (RBLJ)

CALL
• WORD RELJ
error return
normal return

Entry Parameters: None.

Exit Parameters: ACO = Error code on error return.
AC1-AC3 = Unchanged.

Error Code: ERCROP Terminal already open.

This call is used to detach a secondary job from the predecessor job which
initiated it. The predecessor job will be taken out of the suspended state
and allowed to continue running. If the predecessor job was attached to its
message terminal at th e time of its most rec ent c all to LINK, and either
the job calling RELJ has the terminal or no job has the terminal, then the
predecessor job is reattached to the terminal. Hence, it must be closed
before making this call.

If the job calling RELJ was initiated directly from a terminal, the only
effect of the call is to put the terminal back into command mode.

The end result of this call is always that the job is left running in
background mode, that is, not attached to any terminal.

When a task with a command file attached to its job calls RELJ, the command
file is detached from the job, and the next line of the command file (if
any) is used to initiate a job with the command file attached to this new
job.

When a task in a primary, foreground job without a command file calls RELJ,
the job is detached from its message terminal, and this terminal is
returned to command mode. (In the preceding sentence "primary, foreground
job" describes the job at the instant when one of its tasks calls RELJ.)

V1-005-13 job initiation and task scheduling 6-11

When a task in a primary, foreground job with a command file calls RELJ,
the job is detached from its message terminal, and the next line (if any)
of the command file is used to initiate an initially primary, foreground
job on this terminal with the command file attached to this new job. The
terminal is not available for keyboard input until the command file is
exhausted.

When a task in a secondary job without a command file calls RELJ, its
immediate predecessor job is marked as ready to continue execution, and it
is detached from the job whose task called RELJ.

When a task in a secondary job with a command file attached to its job
calls RELJ, the next line (if any) of the command file is used to initiate
a job with the command file attached to this new job. This new job has the
same immediate predecessor job as the job that called RELJ. This predeces­
sor job is not marked ready to continue execution until the command file is
exhausted.

6-12 job initiation and task scheduling V1-005-13

Chapter 7

SEQUENTIAL FILE MANAGEMENT

FILE CONCEPTS

System II sequential file management provides file oriented inpu t and
output support for all system devices. A file is a collection of related
information which is associated with a particular (source or destination)
device and identified by a file name.

A sequential file is a continuous data string which is transferred to or
from the application program in segments as requested by sequential file
calls. The segments are either lines terminated by special line delimiters
or strings of a length dictated by the user program. New segments are
always added to the end of the file. Particular segments can be retrieved
only by reading through the file from the beginning. A sequential file may
be associated with any system device; physical differences between devices
are handled within the file management routines. Only one file at a time
can be assigned to a sequential device such as a printer or a terminal.

A directory-structured device such asa disk may contain many sequentiel
files at once since each platter or cartridge contains a file name
directory entry for every file on the particular medium. The directory
entry includes the logical file name, the current size and location of the
file, the date the file was written, and the file attributes (see CHTR
call). A disk file must reside on one volume.

PILE NAMES

A file name is specified to the system when an "open" request is made. This
implies that the application program intends to transfer data to or from
that file. In the case of sequential devices, the standard device name or
device identifier serves as the file name. For disk files, both the device
identifier and logical file name must be included unless the disk is the
nominal or primary disk. (Refer to Chapter 2, File Naming Conventions.) For
example, FPOl:ABC refers to the file ABC on the flexible disk unit one.
LPTI refers to a line printer file.

VI-005-13 sequential file management 7-1

The file names to be used in open requests may be assembled in a user
program or may be acquired by the program through keyboard input. The file
names may be passed to the program in the command line which invoked the
program or may be keyed in later in response to read line requests to the
terminal.

A file name must be formatted in a "file name block" to be passed to system
routines (required by OPEN·, OPNW, OPNR, CREA, DELT, CHTR, and
RENAM). (See File Name Blocks in this chapter.) The Command Line Parser
(see Appendix B) can be called to format file names for this purpose.

DEVICE NAIIES

Each device has a standard name, linking a user's reference to a device
with the appropriate system tables and routines to operate it. A list of
these names appears in Chapter 2.

FILE CHARACTERISTICS

The characteristics of a file that is a device are defined during system
generation. The user may exercise some runtime control over the charac­
teristics of a disk file by changing the file's attributes in its directory
entry.

The characteristics defined for the system devices inform the file manage­
ment routine of special processing requirements. These characteristics are
described in System Generation manuals.

FILE ATTRIBUTES

The attributes of a file define the manner in which it can be used. Non­
disk devices have predefined attributes; the attributes for disk files can
be defined and changed by users with the CHTR call or the CHATR utility.
The CHTR call and the CHATR utility set attributes in the directory entry
for the file. Special execution attributes related to execution in a J100

. with extended memory can be set by the BANK utility. These attributes are
set in the title block of a binary module. Directory attributes and their
meanings are as follows:

• Attribute Protected

The current attributes cannot be altered.

• Execution Sharable

The program in this file may be shared by multiple users. This implies
a reentrant program.

• Read Sharable

The file may be read by multiple users simultaneously.

7-2 sequential file management Vl-005-13

• Write Sharable

The file may be written into by multiple users simultaneously.

• Read Only

The file may be read bu t not written into.

• Write Only

The file may be written into but not read (appears as an attribute for
ou tput devices such as the printer).

• permanent

The file cannot be deleted or renamed. Permanent does not imply read
only; you can write to a permanent file.

• TOQ Loadin~

The file, a binary program, should be loaded in the highest available
partition, rather than the lowest; recommended for jobs which will be
used continuously (in order to minimize the fragmentation of partition
space) •

• Secure File

Access to the file is restricted.

System utilities, but not user programs, can set the following attributes:

• Hash File

The file is keyed.

• Du~lic ate Keys

The same key may appear in more than one record.

• Batch

The file is a batch file (a special file structure used by Data-Rite).

• permits on File

The file is secure, but the owner has permitted someone else access
to it.

For non-disk devices, the predefined attributes always include Attribute
Protected and, as appropriate, either Read Only or Write Only; no sharing
is set for devices such as terminals and printers.

VI-005-I3 sequential file management 7-3

SBAIUNG FILES

Files associated with some non-disk devices cannot be shared. The
predefined attributes of such a file cause the rejection of requests to
share. Since it is possible for the user to define the attributes of disk
files, such files may be shared or not according to the current setting of
the attributes in the file's directory entry.

In addition to the attributes given in the directory for a disk file, its
current availability for sharing is affected by the open requests made by
programs using it. The effect of the open on the file's availability for
sharing is temporary, lasting only until the file is no longer open. The
sharing attributes of a file can only be limited by the open. To expand the
sharing, a change attributes command (CHATR) or call (CHTR) must be made.
For example, a file defined in the directory as both read sharable and
write sharable can be opened with a request for only shared reading. As
long as that file is in use (until the close request), it will only be
available to additional requests for shared reading, not exclusive reading.

The Execution Sharable attribute has meaning only for binary program files
suitable for system loading and execution. When this attribute is set, the
system considers the program reentrant and will allow more than one job to
use the same copy simultaneously. If this attribute is not set, a second
request for the same program will cause a second copy of the program to be
loaded.

SYSTBM I/O CONCEPTS

CREATING A NEW PILE

Prior to performing any file input or output, the user must acquire the
file through a successful open request. An open will be refused if the file
is not known to the system or is not available for the use requested.

A file is known to the system if it is called by a standard sequential
device name or if it currently exists in the directory of the disk unit
referenced in the file name passed in the open call. To introduce a new
sequential file into a directory, a CREATE command must be keyed in from a
terminal or a CREA call given in a program. Once the file name entry is
created, it will remain in the directory until deleted with a DELETE
command or a DELT system call. If the permanent file option is set, the
file name entry cannot be deleted.

The availability of a file for a particular use depends upon its attributes
and its current use. For sequential devices, the attributes are fixed such
that most of these devices are not shared and are available for either
reading or writing (or both as appropriate). A request to open a non­
sharable device type file that is already open will be refused, as will a
request for incorrect use such as opening a printer for reading.

When a sequential disk file is created, no attributes are set. If the file
is to be shared or have any other attributes, these must be set with a
CHATR command from the terminal or a CHTR call from a program.

7-4 sequential file management Vl-00~-13

OPENING A FILE

The file open calls (OPNR, OPNW, and OPEN) associate a file with the user's
job, and the system device on which the file will be accessed. The open
call also informs the system of the manner in which the file will be
accessed and whether the user wishes to share the file. The open will be
refused if the file does not exist or the intended use of the file cannot
be allowed 'because of the file's attributes or a previous open.

The share attributes of a disk file are combined with the share flags
declared at the first open for that file to produce a file "share status".
As long as any opens are in effect, the system maintains this dynamic share
status which is a composite of share flags for all opens for the file and
the original file attributes. When a file has been closed by all its users,
the dynamic share status is dropped by the system.

The initial open for a file is the most important as it causes the system
to create and maintain the share status. The initial share status can be
determined from the table shown below. It shows the resulting share status
given the file attributes and the share flags declared at the initial open.

Fi Ie
Attributes

NS

RS

WS

BS

FILE SHARE STATUS TABLE

Ini tial Open Share Flags

NS RS WS BS

NS NS NS NS

NS RS NS RS

NS NS WS WS

NS RS WS BS

NS = no share
RS = read share
WS = write share
BS = read/write share

Open requests subsequent to the first must declare share flags that match
the share status determined from the above table or the open will be
refused.

When the file is opened successfully, the address of a User File Table
(UFT) is returned to the calling program. This UFT address must be passed
to the data transfer routines and the close routine. The user is
responsible for retaining the UFT address and passing it with each of these
calls.

VI-005-13 sequential file management 7-5

DATA TRANSFER

Two major levels of sequential data transfer support are provided by System
II. This support allows data to be transferred as a block of specified size
or as a block of unspecified size ended by a line terminator. The system
provides devices and disk files with identical support, which allows device
independent I/O by application programs. All characters are considered to
be 8-bit bytes.

All data transfer calls provided by the system require a User File Table
address to be specified. A UFT is built by system routines during open
processing. Therefore, in order to transfer data, an open must have been
succ essfully completed for that file.

Transfer of character blocks of specified length is termed "read/write
sequential." In this mode, a specified number of characters (to a maximum
of 32,767) is transferred between the file and the user area. The character
string must be packed two characters per word (left to right) for a write.
Similarly, for a read, the characters will appear in the user work area in
this form. On a read of an odd number of characters, the low order
character of the user area will be null.

Transfer of an ASCII line of unspecified length is termed "read/write
line". In this mode, characters are transferred until a line terminator is
encountered in the character stream. On a read this is subject to a maximum
count. TAB characters (X'09, ASCII HT) are expanded to an appropriate
number of blanks during input. Compression on output is left to the user
program.

A line terminator is defined to be any 8-bit character less than or equal
to X'OF except X'09 (TAB).

Transferred character strings are packed two characters per word, left to
right, in the buffer area. When a line with an odd number of characters is
read, the low order character of the user area will be lost just as if an
even number had been transferred (the extra is a null character).

Once a file has been opened, data transfer may proceed with either read/
write line or read/write sequential system calls. These calls may be arbi­
trarily mixed since they are completely compatible. An application program
should exercise caution when reading a file in "line" mode if it were
written using the "sequential" mode, to ensure that terminators were prop­
erly included at write time. Each character is treated as an 8-bit byte
which is read or written without change unless translation has been
requested or TABs are expanded.

For read line calls, where data transfer proceeds subject to a maximum
count, if the count is exhausted before a terminator is encountered, an
error return will be made with the partial line in the user's work area.
A subsequent read request will continue with the balance of the line. No
data will be dropped, but tab expansion may be incorrect (see RDL call).

7-6 sequential file management Vl-005-13

End-of-file is indicated with an error return. When such a return occurs,
some data may have been transferred, so the return count should always be
inspected. For devices, end-of-file will occur when the device is timed out
for no response. For disk files, end-of-file is implied after the last
character written to the file.

The system data transfer routines support shared files on disk. File
attributes have to be properly defined in order to successfully open files
in share mode. A file being shared for reading allows mul tiple, independent
reading to occur on the file. Each read process will access the file as if
it were the only read occurring on that file.

A file being shared for writing will similarly appear to each write process
as if it were not being shared, except the contents of the file will be an
interleaving of the data output by the independent write processes. In such
a file, all data provided in a single system write call will always appear
together.

The system also allows sequential disk files to be shared for both reading
and writing which permits multiple I/O processes to be concurrently reading
and writing the same file. In such a situation, the write processes behave
as if there were no read processes operating on the file. The read pro­
c esses are only indirectly aware of the write processes. A read request can
access all data provided to the file up to the instant of the read call.
Data being added to the file via an in-progress write process is not avail­
able until the write process is completed. In order to intersperse both
reading from, and writing to, the same file, the file must be opened twice;
once for reading and again for writing, thus maintaining two UFTs.

In a multi-task program environment, the sharing of a UFT between tasks is
generally not permitted. Specifically, a task may not call the system with
a UFT that is in use by another task in a system call that is yet to be
completed. Caution must be exercised since failure to adhere to this rule
may lead to system failure.

CLOSING A FILE

When all data transfers are complete, the CLOS call is used to disassociate
the file from the job, perform any final device specific functions (sucli as
page ejection on a printer), free the system resources used for processing
the file and, in the case of disk files open for writing, update the direc­
tory to reflect the current size of the file and the current system date.

DISK DIRECTORY FUNCTIONS

The system calls Create (CREA), Delete (DELT), Rename (RNAM), and
Change Attributes (CHTR) operate on disk file directory entries. These
calls are all rejected if the file named is currently in use (open). CREA
places an entry in the directory for the file name passed to it. DELT
removes the file name given and releases the disk space used by the file.
RNAM changes the name of an existing file. CHTR alters the file attributes
in the directory entry for the referenced file.

VI-005-I3 sequential file management 7-7

FILE NAME BLOCKS

The internal representation of file names differs from the external form
used in commands. The Command Line Parser (Appendix B) converts external
form to internal form. The following conventions apply to file name blocks:

Each part of a name (prefix, root, extension) must be left justified with a
filler of trailing nulls (X'OO).

The contents of the root and extension words determine the meaning of the
prefix words. If the root and extension words spec ify a devic e, then with a
single exc eption noted below, the prefix is irrelevant. If the root and
extension words do not spec ify a devic e, then the prefix identifies a disk,
as follows:

• A prefix consisting of a dollar sign, left justified with trailing
nulls, spec ifies the primary disk;

• Three words of hexadec imal zero spec ifies the nominal disk;

• Otherwise, the prefix explic itly names the disk.

The single exception referred to occurs when the root and extension is the
name of one of certain commuilic ations devic es. In this case, the prefix
words may contain user identification characters, which the communications
device appends to each message to identify its source.

If the root and extension words contain the name of a computer terminal,
then the prefix is irrelevant. This fact allows the task page zero space
(TPZQ-TPZ3), as set by job initiation, to be used in place as the last four
words of a file name block specifying the job's TPZ terminal, thereby
obviating the need for a file name block.

If the root and extension words contain the name of a nondisk device other
than those covered above, then the prefix is not used and not examined. In
the future, however, a new device may assign a special meaning to the
prefix, just as certain communications devices have done. Consequently, the
three-word prefix segment should be zeroed when it is not used.

File Name Block

3 Words Prefix

3 Words Root

1 Word Extension

7-8 sequential file management VI-005-13

PILB I/O CAIJ,s

CREATE A FILE (CREA)

CALL
• WORD CREA
error return
normal return

Entry Parameters: ACO = Pointer to file name block.

Exit Parameters:

Error Codes:

ACO = Error code on error return.
ACO = As input if normal return.

ERBNA No buffer available.

ERFNA File (in this case, the disk drive) not
available now.

ERli'NE File name already exists.

ERFNI Illegal file name.

File Name Block

3 Words prefix

3 Words root

1 Word extension

See File Name Blocks, page 7-8, for formats of file name blocks.

CREA makes a new directory entry and this must be done before any other
acc ess to the file is allowed. CREA initializes the new entry to contain
the file name and extension, the date, and the first sector in the file.
All other fields are set to zero.

CREA checks to make sure that the file name is legal. A CREA call for
devices such as printers is permitted, but no catalog entry is built.

OPEN SEQUENTIAL PILE FOR READING (OPNR)

CALL
.WORD OPNR
error return
normal return

VI-005-13 sequential file management 7-9

Entry Parameters: ACO = Pointer to file name block.
AC1 = Share flags.

Exit Parameters: ACO = Error code on error return.

Error Codes:

ACO = File name pointer on normal return.
AC1 = Share flags.
AC2 = UFT address.
AC3 = Unchanged.

Buffer not available.
Device not available.
Cannot load device driver.
File attributes prohibit request.
File name is a disk.
File not available now.

ERBNA
ERDVNA
ERDVR
ERFAP
ERFDSK
ERFNA
ERFND
ERFNF
ERFOP
ERFSH
ERVLG
ERVSP

File name device prefix is not a disk.
File not found in directory.
File open options prohibit request.
File sharing reques t conflic ts with use.
User not logged on.
Security prohibits.

File Name Block

3 Words prefix (see note)

3 Words root

1 Word extension

See File Name Blocks, page 7-8, for formats of file name blocks.

~: When opening standard system devices (see Device Identifiers, Chap­
ter 2), the device name should appear in the root and extension of the file
name block illustrated above. The prefix field should contain zero.

OPNR opens the spec ified devic e, sequential disk file, or hash file for
reading, creates a user file table (UFT) and increments the use count in
the System File Table. The user passes a request for sharing or no sharing
in AC1.

The share flag settings are:

o no sharing
2 share for write
4 share for read
6 share for both read and write

If the file is not already open, the open routine checks the open request
against the file attributes from the directory entry. The request is

7-10 sequential file management V1-005-13

refused if the attributes do not allow the file to be read or shared in the
manner requested. For details, see the section titled Opening a File on
page 7-5.

If the file is already open, this request must conform to the sharing
permitted by the previous open.

If the previous open did not allow sharing for read, the requ es t is
rejected. In addition, the current sharing request (ACl) must agree with
the sharing allowed by the previous open. It is not possible to override
the first open's sharing request.

OPEN SEQUENTIAL FILE FOR WRITING (OPKW)

CALL
• WORD OPNW
error return
normal return

Entry Parameters:

Exit Parameters:

Error Codes:

ACO = Pointer to file name block.
ACI = Share flags.

ACO = Error code on error return.
ACO = File name pointer if normal return.
ACI = Share flags.
AC2 = UFT address.
AC3 = Unchanged.

ERBNA
ERDVNA
ERDVR
ERFAP
ERFDSK
ERFNA
ERFNF
ERFOP
ERFSH
ERVLG
ERVSP

Buffer not available.
Device not available.
Cannot load device driver.
File attributes prohibit request.
File name is a disk.
File not available now.
File not found in directory.
File open options prohibit request.
File sharing request conflicts with use.
User not logged on.
Security prohibits.

File Name Block

3 Words prefix (see note)

3 Words root

1 Word extension

See File Name Blocks, page 7-8, for formats of file name blocks.

VI-005-13 sequential file management '7-11

N.o..t..e.: When opening standard system devices (see Device Identifiers, Chap­
ter 2), the device name should appear in the root and extension of the
file name block illustrated above. The prefix field should contain zero.

OPNW opens the specified device, sequential disk file, or hash file for
writing. The file must already exist before it can be opened for writing
(see CREA). If data already exists on the file, any new data is appended to
the end. The user passes a request for sharing or no sharing in AC1.

The share flag settings are:

o no sharing
2 share for write
4 share for read
6 share for both read and write

If the file is not already open, the open routine checks the open request
against the file attributes from the directory entry. The request is
refused if the attributes do not allow the file to be written or shared in
the manner requested.

If the file is already open, this request must conform to the sharing
permitted by the previous open.

If the previous open did not allow sharing for write, the request is
rejected. In addition, the current sharing request (AC1) must agree with
the sharing allowed by the previous open. It is not possible to override
the first open's sharing request.

OPEN SEQUENTIAL FILE FOR READING AND WIUTIBG (OPDf)

CALL
• WORD OPEN
error return
normal return

Entry Parameters: ACO = Pointer to file name block.
AC1 = Share flags.

Exit Parameters: ACO = Error code on error return.

Error Codes:

ACO = File name pointer on normal return.
AC1 = Share flags.
AC2 = UFT address on normal return.
AC3 = Unchanged.

Buffer not available.
Device not available.
Cannot load device driver.
File attributes prohibit request.
File name is a disk.
File not available now.

ERBNA
ERDVNA
ERDVR
ERFAP
ERFDSK
ERFNA
ERFND
ERFNF

File name devic e prefix is not a disk.
File not found in directory.

7-12 sequential file management VI-005-13

ERFOP
ERVLG
ERVSP

File open options prohibit request.
User not logged on.
Security prohibits.

File Name Block

3 Words prefix (see note)

3 Words root

1 Word extension

See File Name Blocks, page 7-8, for formats of file name blocks.

N..Q.1e: When opening standard system devices (see Device Identifiers, Chap­
ter 2), the device name should appear in the root and extension entry of
the file name block illustrated above. The prefix field should contain
zero.

OPEN opens the specified device, sequential disk file-, or hash file for
both reading and writing. This open can be used for terminals, sequential
files, hash files (see Chapter 8), magnetic tape (see Chapter 11), and
communication lines. The file must be available for both reading and
writing; it cannot be either a read only file or a write only file. If it
is already open, both read and write sharing must be allowed.

The share flag settings are:

o no sharing
2 share for write
4 share for read
6 share for both read and write

If the file is not already open, the open routine checks the open request
against the file attributes from the directory entry. The request is
refused if the attributes do not allow the file to be read, written or
shared in the manner requested.

If the file is already open, this request must conform to the sharing
permitted by the previous open.

If the previous open did not allow sharing for read or write, the request
is rejected. In addition, the current sharing request (AC1) must agree with
the sharing allowed by the previous open. It is not possible to override
the first open's sharing request.

V1-005-13 sequential file management 7 -13

READ SEQUENTIAL (RDS)

CALL
• WORD RDS
error return
normal return

Entry Parameters: ACO = Work area address.

Exit Parameters:

Error Codes:

AC1 = Byte count.
AC2 = UFT address.

ACO = Error code if error.
AC1 = Byte count.
AC2, AC3 = Saved.

Bad UFT address.
End of file.
File open options prohibit request.
Illegal system call.
Illegal size request.
Sequential I/O call on hash file.

ERBUFT
EREOF
ERFOP
ERICL
ERISZ
ERSQHF
ERSQNS Sequential I/O not supported on this devic e.

RDS reads the next block of characters from the file associated with the
specified UFT. The data will be packed in the work area, and the number of
characters in the block is determined by the byte count specified with the
call. This count must be positive and non-zero or an error return will
result. If an odd number of bytes are transferred, the right byte of the
last word will be set to zero. Translation occurs if requested (see
Chapters 10 and 11).

Both the UFT in AC2 and the contents of AC3 which may be arbitrary, will be
returned intact after the call. If the normal return occurs, ACO will
contain its original value as well. A byte count will always be returned in
AC1 to indicate the actual characters moved. For the error return, ACO will
always contain a system error code.

An end-of-file will cause an error return and will occur if the entire
block size requested could not be satisfied from the file. Since an EOF
will accompany a short block, the return byte count should be inspected to
determine if any data was transferred. Subsequent read c aIls will also
produc e EOF returns.

WRITE SEQUENTIAL (was)

CALL
• WORD WRS
error return
normal return

Entry Parameters: ACO = Work area address.
AC1 = Byte count.
l\C2 = UFT address.

7-14 sequential file management V1-005-13

Exit Parameters:

Error Codes:

ACO = Error code if error return.
ACI = Byte count.
AC2, AC3 = Saved.

ERBUFT
ERDSNA
ERFOP
ERICL
ERISZ
ERSQHF
ERSQNS

Bad UFT address.
No disk space available.
File open options prohibit request.
Illegal system call.
Illegal block size.
Sequential I/O call on hash file.
Sequential I/O not supported on this device.

WRS will transfer the specified block of characters from the user work area
into the file associated with the specified UFT. The block size must be
positive and non-zero for non-BSC devices. For BSC devices a negative count
means "perform a control function." The data will be added to the end of
any other data in the file and the EOF for any read process on the file
will be correspondingly extended. Translation occurs if requested (see
Chapters 10 and 11).

Both the UFT in AC2 and the contents of AC3, which may be arbitrary, will
be returned intact after the call. If the normal return occurs, ACO will
contain its original value. A byte count will always be returned in ACI to
indicate the actual characters moved. For the error return, ACO will always
contain a system error code.

SUbstantial time can be saved by writing blocks with an even number of
characters. This is because character boundary realignment is avoided.

READ LINE (RDL)

CALL
.WORD RDL
error return
normal return

Entry Parameters: ACO = Work area address.

Exit Parameters:

Error Codes:

VI-00S-13

ACI = Maximum byte count.
AC2 = UFT address.

ACO = Error code if error return.
ACI = Byte count.
AC2, AC3 = Saved.

ERBUFT
EREOF
ERFOP
ERICL
ERISZ
ERLTL
ERSQHF
ERSQNS

Bad UFT address.
End -of -file.
File open options prohibit request.
Illegal system call.
Illegal maximum count.
Line exceeds maximum count.
Sequential I/O call on hash file.
Sequential I/O not supported on this device.

sequential file management 7-15

RDL reads the next ASCII line from a sequential file and packs it to the
user's work area. The copy is terminated by a line terminator character, or
by exhausting the maximum byte count, which must be positive and non-zero.
If the maximum byte count is exhausted before a terminator is detected, the
next RDL will continue with the balance of the long line. Tabs (ASCII HT)
are converted to blanks; translation occurs if requested (see Chapter 15).

Both the UFT address in AC2 and the contents of AC3, which may be
arbitrary, will be returned intact after the call. If the normal return
occurs, ACO will contain its original value. A byte count will always be
returned in AC1 to indicate the actual number of characters moved. For the
error return, ACO will always contain a system error code.

An end-of-file causes an error return; it occurs if the file data is
exhausted before either a terminator is encountered or the maximum count is
exceeded. The return byte count should be inspected to determine how much
data has been moved. Subsequent read calls will also produce EOF returns.

An error code of ERLTL is returned if the user's work area is too short to
contain an entire line; in this case, there will not be a line terminator
in the work area. Subsequent reads will expand tabs correctly if and only
if the maximum byte count for each call is an integer multiple of 8.
Satisfying this requirement allows RDL to fully expand each tab when it is
encountered and before any error return.

READ LINE QillCKLY (RDLQ)

CALL
• WORD RDLQ
error return
normal return

Entry Parameters: ACO = Address of line buffer.

Error Exit:

Normal Exit:

Error Codes:

ACl = Maximum number of bytes allowed.
AC2 = Address of UFT.

ACO = System error code.
ACl = Number of bytes moved into line buffer.
AC2, AC3 = Unchanged.

ACl = Number of bytes moved into line buff er including
the line terminator.

ACO, AC2, AC3 = Unchanged.

ERBUFT
EREOF
ERFOP
ERISZ
ERLTL
ERSQHF
ERSQNS

Bad UFT address.
End-of -file.
File open options prohibit request.
Illegal maximum count.
Line too long.
Sequential I/O call on hash file.
Sequential I/O not supported on this device.

7-16 sequential file management V1-005-13

RDLQ reads the next line from the specified file and sets appropriate
values into the specified line buffer. The values set into the specified
line buffer depend on the line contents and the device associated with the
'specified User File Table (UFT).

If the specified maximum byte count is not positive and non-zero, RDLQ
returns error code ERISZ. If RDLQ returns error code ERLTL (line too long),
the next sequential read call will continue reading the long line. When
RDLQ returns error code ERLTL, there is no line terminator in the line
buffer.

When RDLQ returns error code EREOF, the number of bytes returned should be
inspected to determine if a partial line was returned. Subsequent
sequential read calls will also return error code EREOF.

If the device associated with the specified UFT' does not support sequential
I/O, RDLQ returns error code ERSQNS.

RDLQ From 8 Seguential rUe 00 • Disk or Remote-Disk

RDLQ performs more quickly than RDL because RDLQ does not expand tabs, nor
does it compress blanks into tabs. RDLQ does not change the data read in
from the file.

RDLQ From 8 COIRpgter Termigal

RDLQ from a Computer Terminal (CT) is precisely the same as RDL from the
CT. The screen contents are moved unchanged from the screen to the speci­
fied line buffer. No expansion or translation is done when tbe data is
moved from the screen. However, if the CT has a keyboard translation table,
then each key code entered by depressing a keyboard key is translated
before it is put on the screen.

RDLQ Prom 8 NOD-GT Deyice

RDLQ from a non-CT device is exactly the same as RDL from the device.

Translation occurs if requested. See Chapters 10 and 11.

WRITE LINE (WRL)

CALL
• WORD WRL
error return
normal return

Entry Parameters: ACO = Work area address.
AC2 = UFT address.

V1-005-13 sequential file management 7-17

Exit Parameters:

Error Codes:

ACO = Error code if error return.
AC1 = Byte count.
AC2, AC3 = Saved.

Bad UFT address.
No disk space available.
File open options prohibit request.
Illegal system call.
Sequential I/O call on hash file.

ERBUFT
ERDSNA
ERFOP
ERICL
ERSQHF
ERSQNS Sequential I/O not supported on this device.

WRL writes the next ASCII line into a sequential file. Data is transferred
until a line terminator is encountered in the data stream. The new line
will be added to the end of any other data in the file, and the EOF for any
read process on the file will be correspondingly extended. Conversion of
blanks to TABs is left to th e user. Translation occurs if requested (see
Chapters 10 and 11).

Both the UFT in AC2 and the contents of AC3, which may be arbitrary, will
be returned intact after the call. If the normal return occurs ,ACO will
contain its original value. A byte count will always be returned in AC1 to
indicate the actual characters moved. For the error return, ACO will always
contain a system error code.

Substantial time savings can be obtained by always writing lines with an
even number of characters. This is because character boundary realignment
is avoided.

WRITE LINE COMPRESSED (WRLC)

CALL
• WORD WRLC
error return
normal return

Entry Parameters: ACO = Address of line buffer.

Error Exit:

Normal Exit:

Error Codes:

AC2 = Address of UFT.

ACO = System error code.
AC1 = Number of bytes moved.
AC2, AC3 = Unchanged.
Contents of line buff er unchanged.

AC1 = Number of bytes appended to file.
ACO, AC2, AC3 = Unchanged.
Contents of line buff er unchanged.

Bad UFT address.
No disk space available.
File open options prohibit request.
Sequential I/O call on hash file.

ERBUFT
ERDSNA
ERFOP
ERSQHF
ERSQNS Sequential I/O not supported on this device.

7-18 sequential file management V1-005-13

WRLC appends the specified line to the specified file. The contents of the
line appended to the file depends on the specified line contents and the
device associated with the specified User File Table (UFT).

W RLC never changes the contents of the specified line buff er.

The line is terminated by any byte less than X'10 except X'09 (tab).

If the device associated with the specified UFT does not support sequential
file I/O, WRLC returns error code ERSQNS.

WBLC to • Sequential FDe 00 a Disk or Remote-Disk

WRLC compresses the specified line by dropping blanks and inserting tabs at
the standard system tab stops (offsets 0, 8,16, etc. into the line buffer)
as appropriate. Then WRLC appends the compressed line to the file
associated with the specified User File Table (UFT). The number of bytes
appended to the file (including the line terminator) is returned.

WRLC compresses the line as it moves it from the specified line buffer into
the sector buffer used for disk I/O. Hence, WRLC does not change the
contents of the line buffer.

WRLe to a Cgmputef

WRLC to a Computer Terminal (CT) is exactly the same as WRL to the
CT. The keyboard translation table is not used by WRLC. WRLC moves the
exact contents of the specified line to the screen of the specified CT.
WRLC does not compress or translate the line.

WRLe to • Boo=CT Device

WRLC to a non-CT device is exactly the same as WRL to the device.

If the device has a translation table, each byte is translated before it is
written to the device. See Chapters 10 and 11.

CLOSE PILE (CLOS)

CALL
• WORD CLOS
error return
normal return

Entry Parameters: AC2 = UFT address.

Exit Parameters: ACO = Error code on error return.
ACI-AC3 = Unchanged.

VI-005-13 sequential file management 7-19

Error Codes: ERBNA
ERFNF
ERFNOP
ERSNR

Buffer not available.
File name not in directory.
File not open.
Disk sector not released.

CLOS decrements the use count in the system file table (SFT), deletes the
user file table (UFT) for the file, and updates the directory if the file
resides on disk and was open for writing.

DBLETB A PILE (DBLT)

CALL
• WORD DELT
error return
normal return

Entry Parameters: ACO = Pointer to file name block.

Exi t Parameters:

Error Codes:

ACO = Error code if error return.
ACI-AC3 = Unchanged.

ERENA Buff er not available.

ERFAP File attributes prohibit request.

ERFNA File or device not available now
directory is not available).

ERFNF File name not found in directory.

ERVOW Only th e owner may.

ERVPP Permits ou tstanding.

File Name Block

3 Words prefix

3 Words root

1 Word extension

(the

See File Name Blocks, page 7-8, for formats of file name blocks.
DELT deletes a sequential file name from the file name directory and
releases any disk space associated with that file. The file cannot be
deleted while it is open, and a permanent file cannot be deleted. A hash
file cannot be deleted with this call.

7 -20 sequential file mana£tement Vl-005-13

RENAME A PILI: (RNAII)

CALL
.WORD RNAM
error return
normal return

Entry Parameters: ACO = Pointer to old file name block.
AC1 = Pointer to new file name block.

Exit Parameters: ACO = Error code if error return.
AC1-AC3 = Unchanged.

Error Codes: ERBNA Buffer not available.

ERFAP File attributes prohibit request.

ERFNA File or device not available now
directory is not available).

ERFNE New file name already exists.

(the

ERFNF Old file name not found in directory.

ERVOW Only the owner may.

ERVPP Permits outstanding.

File Name Block

3 Words prefix

3 Words root

1 Word extension

See File Name Blocks, page 7-8, for formats of file name blocks.

RNAM changes the file name to the new name. The file name cannot be changed
while the file is in use. If a file already exists with the new name, the
error return is taken. The prefix field in the "new file name block" is
ignored.

RNAM checks the attributes in the old name's entry to be sure a name chang"e
is allowed. A file that is permanent cannot have its name changed. Since
the directory is constructed by applying a hashing algorithm to the
file name, after a rename the file will have moved in a catalog list of the
disk directory.

V1-005-13 sequential file management 7-21

CHANGE A'ITRIBUTES (CBTR)

CALL
• WORD CHTR
error return
normal return

Entry Parameters: ACO = File name block address.
ACI = Attribute word.

Exit Parameters: ACO = Error code if error return; else unchanged.
ACI-AC3 = Unchanged.

Error Codes: ERBNA

ERFAP

ERFNA

ERVLG

ERVOW

ERVPP

Buffer not available.

File attributes prohibit request.

Directory not available.

User not recognized by File Security system.

Only the file owner may call for the action
requested.

Permits outstanding.

CHTR is used to change a file's attributes. The file must not be in current
use. The word specified in A,CI is used to modify certain bits in the disk
directory entry for the file; the prohibited bits (see below) must be
zeros. Error returns leave the file's attributes unchanged.

A hash file is always Read Sharable and Write Sharable, regardless of CHTR
calls. Similarly, the Secure File attribute, once set, is not affected by a
CHTR call unless the Unsecure File bit is I in the call's Attribute Word.

It is illegal to make a CHTR call if a file is Attribute Protected, or to
set Execution Sharable or Top Loading for a hash file. It is also illegal
to process a secure file if the current file security user is not the
file's owner, or to unsecure a file that has permits outstanding.

Attribute-word bits:

X'2000 Attribute Protected

X'IOOO Permanent File

X'0800 Execu tion Sharable

X'0400 Read Sharable

X'0200 Write Sharable

X'OO80 Secure File

7-22 sequential file management VI-005-I3

X'0040

X'0020

Read Only

Write Only

X'0002 Top Loading

X'OOOI Unsecure File (clears Secure File bit in directory)

X'CIIC Prohibited Bits (representing attributes that cannot be
changed by CHTR, e.g., Permits are outstanding); must be
zero.

REWIND SEQUENTIAL PILE (RWND)

CALL
• WORD RWND
error return
normal return

Entry Parameters: AC2 = UFT address.

Exit Parameters:

Error Codes:

ACO = Error code if error return.
ACI = Changed.
AC2, AC3 = Unchanged.

ERFAP File attributes prohibit.

R WND sets the read pointers back to the beginning of a disk file, or
rewinds a magnetic tape to its load point.

DISK SPACE AVAILABLE (DSKSP)

CALL
• WORD DSKSP
error return
normal return

Entry Parameters: AC2 = UFT address.

Exit Parameters: ACO = Number of sectors available (unsigned), or

Error Codes:

error code on error return.

ACI = Number of sectors used (unsigned), or undefined
on error return.

AC2, AC3 = Unchanged.
ERBNA Buffer not available.
ERFND File name device prefix is not a disk.

DSKSP returns the number of sectors available and the number of sectors
used on a disk.

VI-005-13 sequential file management 7-23

READ DISK VOLUME IDBNTIFICATION (VOLID)

CALL
• WORD VOLID
error return
normal return

Entry Parameters: ACO = Address of File Name Block.
ACl = Address of 12-word buffer.

A File Name Block prefix that is null specifies the nominal disk. A File
N arne Block prefix containing "$" specifies the system's primary disk. The
root and extension may contain any values except the name of a device.

Error Exit:

Normal Exit:

Error Codes:

ACO ;::; System error code.
AC1-AC3 ;::; Unchanged.

ACO-AC3 ;::; Unchanged.

(ACO + 0, ••• ACO + 11) ;::; Directory's volume
identification entry for the media in the disk device
specified.

ERDIO
ERDVNA
ERFDT
ERFDSK
ERFNDD
ERFND

Disk I/O error.
Device not available.
Device type prohibits.
Root and extension name a disk.
Root and extension name a non-disk device.
Prefix does not specify a disk.

VOLID returns the whole volume identification entry from the directory on
the media in the specified disk drive. This volid is specified to and
written by FORMAT. Currently the meaningful words in this directory entry
are:

Wm:.d Symbol Meanjn2'

0
1 FCNM File name root
2

3 FCNE File name extension

5 FCDT Date formatted

If the root and extension specify a disk, VOLID returns error code ERFD8K.
If the root and extension specify a non-disk device, VOLID returns error
code ERFNDD. If the prefix of the file name block does not specify a disk,
then VOLID returns error code ERFND.

If the FNB does not specify any currently existing System File Table (8FT),
then VOLID returns error code ERFNF. If the FNB specifies a non-disk
device, then VOLID returns error code ERFDT. If the the specified disk's
long term lock is set, then VOLID returns error code ERDVNA.

7 -24 sequential file management VI-005-13

Chapter 8

HASH FILE MANAGEMENT

FILE CONCBPTS

System II hash file management provides record oriented direct and
sequential access support for hash files on all System II disks. A hash
file can only be accessed through the hash file management routines.

A hash file is organized to allow access to individual records based on a
key field. Instead of reading through the file from the beginning to find a
particular record, a mathematical computation is performed on the key field
to produce the location of a node which contains the desired record or
space to add a new record. Conceptually, a hash file consists of a number
of contiguous nodes on a disk. Each node may be empty or may contain one or
more records. The records at a node each have their own key field, the
values of which mayor may not be the same. The only relationship between
records at a node is that their associated key fields all produced the same
result when the hash calculation was performed.

A hash file must be initialized before it can be used. The initialization
is performed as a part of the hash file creation process (see System II
Utilities, V2-005, HCREAT). The creation process involves making a disk
directory entry, allocating contiguous index space on the disk, marking all
nodes as empty and storing the key field length, in words, into the
directory entry. In addition, a hash file may be specified as allowing
records with duplicate key fields or as a "batch" file (see Data-Rite
Manual V1-057); no duplicate keys is the default.

PILE NAMES

File names are specified in the standard manner (see Chapter 2).

V1-005-13 hash file management 8-1

FILE ATTRIBllTES

Hash files are initialized with the following attributes:

• Hash file

• Shared for reading

• Shared for writing

Two optional attributes are:

• Duplicate keys permitted, or prohibited

• Batch file

A hash file's attributes can be changed (system call CHTR or utility CHATR)
to add or drop any of the following attributes:

• AP (Attribute protected)

• PF (permanent file)

• SF (secure file)

• RD (read only)

• W 0 (write only)

Changing a hash file's attributes does not change any of the attributes
listed in the initialization section above.

SHARING FILES

Hash files are created as sharable files. As with all disk files, the
current availability for sharing can be limited by open requests. The
effect of the options used with open is temporary, lasting only until the
file is closed.

SYSTEM I/O CONCEPTS

CREATING A NEW HASH FILE

The directory entry for a hash file is created with the HCREAT command. The
creation process involves making a disk directory entry, allocating
contiguous index space on the disk (data space is allocated dynamically),
marking the index empty and storing the key field length' (in words) into
the directory entry.

8-2 hash file management VI-005-13

OPENING A HASH PILE

Prior to performing any file input or output, the user must acquire the
file through a successful open request. An open will be refused if the hash
file name is not present in the system directory or is not available for
the use requested. ..

A hash file normally is opened with the OPEN call. The open request is
processed in the same manner as that described for sequential files. OPNW
or OPNR may also be used to open a hash file if limited I/O functions are
desired.

RBCORD ACCESS AND DATA TRANSFER

A hash file is accessed in terms of logical records rather than lines or
blocks. Access may be "direct" or sequential. Direct access requires a key
as input and uses the hash calculation on the binary value of the key to
locate the proper record for update or retrieval. Sequential access is
available only for reading the file. In this case, retrieval begins with
the first record from the first node in the file and, with subsequent
calls, proceeds to the next record in that node, and then the first record
in the next node, until an end of file occurs.

The following calls are available:

• HFADD - Add a record.

• HFDEL - Delete a record.

• HFFND - Retrieve a record.

• HFNXT - Retrieve the next occurrence of the same key (only useful in
files containing records with duplicate keys).

• HFXCH - Replace (exchange) a record.

• HLFND - Retrieve a record and lock it.

• HLNXT - Retrieve the next occurrence of the same key and lock the
record.

• HREAD - Read sequentially.

CLOSING A BASH PILE

When all file accesses are complete, a CLOS call is used to disassociate
the file from the job and free system resources used in file processing.

VI-005-13 hash file management 8-3

DELETING A HASH FILE

A hash file can be deleted or cleared using the command HDELT. There is a
system call, DELHF, that can be used to delete a hash file in assembly
programs. A hash file can be cleared but not deleted using the HFCLR call.
The command DELETE will not delete a hash file. HFCLR is not a "record
access or data transfer" call. qt requires that the target is closed; HFCLR
is like HDELT.

RECORD LOCK

Record lock is provided by the hash file management routines Find and Lock
Record (HLFND) and Find and Lock Next Record (HLNXT). They enable a user
to prevent the record retrieved from being accessed by another user until
the first user clears the lock by making another file access c all through
the same UFT. The lock is effective against HFDEL, HFXCH, HLFND and
HLNXT calls specifying a UFT other than the one used in setting the lock.

HLFND and HLNXT are especially useful for retrieval of a record that is to
be updated, for example, by means of an exchange call. Record lock must be
employed if a second user could modify the file while it is being
accessed. Failure to observe this requirement can result in destroying the
logical structure of the disk. Cross-linked files, a destroyed directory,
or a destroyed bit map are the most common symptoms of the destruction of
the logical structure of a disk.

HREAD, HFFND ,and HFNXT ignore the record locks and should not be used
with one UFT while another UFT is doing locked record access or changing
the contents of the hash file.

HFADD also ignores the record locks because a new record can't be locked.
HFADD may be used in conjunction with locked record access.

END-OF-FILE

HFNXT, HLNXT, BREAD give one end-of-file error and then start over at the
beginning of the node or file.

HASH FILE FORMATS

RECORD BUFFER FORMAT

The hash file I/O rou tines require a specific format for both key field and
record buffers. The data structure is designed to allow the use of linked
system buffers, so large contiguous data areas are not required. Each
buffer in the linked string must be in the following format:

8-4 hash file management VI-005-I3

Word 0

1

2

3

WORDS

LINK

Number of data words in
this buffer

Address of next data buffer
or zero

Start of data area in buffer

Using the above format, a small record may be contained in one data area or
system buffer while a large record may be placed into some number of linked
system buffers.

RECORD FORMAT

System II hash file management allows the use of varying record lengths.
The minimum numeric record size is the key field size specified when the
hash file was created, while the maximum size allowed is 32,767 decimal.
The record size is specified in the first word of the record. Each hash
file record must be of the following form:

Word 0

1

SIZE

SIZE Total number of words
in record

Key field

Record data

The key field must always be at the start of the record and is considered a
part of the file record, as is the size specification. The key field is the
only part of a record which must be a fixed length. The data following the
key field may be of varying length as long as the total record size limi­
tation is not exceeded. In the case of a file access or inquiry, when only
the key field is required as input, the above format is required but SIZE
is ignored.

VI-005-13 hash file management 8-5

FILE I/O CAI,I,S

HASH FILE ADD RECORD (HFADD)

CALL
• WORD HFADD
error return
normal return

Entry Parameters: ACl = Address of first buffer in chain of buffers
containing the record to be added to the hash
file.

Error Exit:

Normal Exit:

Error Codes:

AC2 = Address of the file's UFT.

ACO = System error code.
ACl-AC3 = Unchanged.

ACO-AC3

ERBNA
ERDIO
ERDSNA
ERFOP
ERHDR
ERHNHF
ERHRBE
ERSCE
ERVSP

= Unchanged.

Sys tern buff er not available.
Disk I/O error.
No disk space available.
Open options prohibit.
Duplicate record found.
File not a hash file.
Record buffers exceeded.
Hash file structural error.
Security prohibits.

HFADD adds the new record to the specified hash file. The record's key
value is used by the hash algorithm to determine the node in which the
record is to be placed. It is placed in the node in the first contiguous
space large enough to contain it. HFADD considers a series of contiguous
deleted records as one contiguous space. No program should be sensitive to
the physical ordering of the records in a node.

If duplicate keys are not allowed in the specified hash file and a record
with the same key value as that in the new record already exists, the hash
file contents are not changed and HFADD returns error code ERHDR.

If the User File Table (UFT) does not allow writing (i. e., was obtained
from OPNR), then HFADD returns error code ERFOP. If the file is secure and
is not owned by the current security user who is not the SECOFF user, then
HFADD returns error code ERVSP unless the current user had been granted add
record permits at open time (PERMIT's /W option).

HASH FILE EXCHANGE RECORD (HFXCB)

CALL
.WORD HFXCH
error return
normal return

8-6 hash file management VI-005-13

Entry Parameters: ACl = Address of first buffer in chain of buffers

Error Exit:

Normal Exit:

Error Codes:

containing a new record to replace the old.

AC2 = Address of UFT.

.l\CO - System error code.
ACI-AC3 = Unchanged.

ACO-AC3

ERRNA
ERDIO
ERDSNA
ERFOP
ERHBKL
EHHNHF
ERHRBE
ERHRNA
ERRNF
ERSCE
ERVSP

= lJne.hanged.

Sys tern buffer not available.
Disk I/O error.
No disk space available.
Open options prohibit.
Bad key length.
File not a hash file.
Record buffers exceeded.
Record not available.
Record not found.
Hash file structural error.
Security prohibits.

HFXCH replaces an existing record with the specified record. HFXCH is
equivalent to HFDEL immediately followed by HFADD.

If the hash file does not allow duplicate keys, then HFXCH replaces the
only record that has the specified key.

If it allows duplicate keys, then HFXCH searches from the position indi­
cated by current values in the UFT, and replaces the first record it
encounters with the specified key. Hence, if the UFT is used with ,HFNXT to
read the third record with a particular key, and then the UFT is used with
HFXCH to replace a record with that key, then HFXCH replaces the third
record.

In any case, the replacement is put in the first space large enough to
contain it. This may be before or after the old record. No program should
depend on the physical ordering of records in a node.

HFXCH returns errol' code ERRNF (record not found) if and only if there is
no record in the specified hash file with the specified key. If the record
to be replaced is locked by another User File Table (UFT), HFXCH returns
error code ERHRNA. If the specified UFT does not allow writing (i.e., was
obtained from OPNR), then HFXCH returns error code ERFOP 0 If the file is
secure and is not owned by the current security user who is not the SECOFF
user, elen HFXCH returns error code ERVSP unless the current user had been
granted modify aCC2SS at open time (PERMIT's /M option).

HFXCH deletes the old record by marking i.t as deleted; it continues to
reside in the same space. While HFADD and HFXCH may reuse the space occu­
pied by deleted records, the quantity of such space usually grows as
records fire deleted and replaced. This costs execution time as well as disk
space because the deleted records must be read in order to reach undeleted

Vl-005-13 hash file management 8-7

records. Consequently, the hash file should be repacked periodically by
creating a new hash file and using HKOPY to copy the old file to the
new file.

HASH FILE FIND RECORD (HFFND)

CALL
.WORD HFFND
error return
normal return

Entry Parameters: ACI = Address of first buffer in chain of buffers.

Error Exit:

containing a record key.

AC2 = Address of UFT.

ACO = System error code.
ACI-AC3 = Unchanged.

Normal Exit: ACO = Address of first buffer in chain of record
buffers.

ACI-AC3 = Unchanged.

Each record buffer must be freed by calling FBF.

Error Codes: ERBNA
ERDIO
ERFOP
ERHBKL
ERHNHF
ERRNF
ERSCE

System buffer not available.
Disk I/O error.
Open options prohibit.
Bad key length.
File not a hash file.
Record not found.
Hash file structural error.

HFFND returns a copy of the first record with the specified key.

If the hash file does not allow duplicate keys, HFFND returns the unique
record with the specified key. If the hash file allows duplicate keys,
HFFND searches the node determined by hashing the specified key, and
returns the first record it finds with that key. No program should be
sensitive to the physical ordering of the records in a node. In particular,
the record returned by HFFND mayor may not be the record that was added
first in time.

The record is returned in the shortest chain of 64-word system buffers
sufficient to contain it. When processing of this record is finished, each
of these buffers should be freed by calling FBF. If they are not explicitly
freed, job termination frees them.

HFFND ignores record locks.

If the UFT does not allow reading (i. e., was obtained from OPNW:), then
HFFND returns error code ERFOP.

8-8 hash file management Vl-005-13

If the file is secure and is not owned by the current security user who is
not the SECOFF user, then the current user can open the file for read
access only if the current' user has been granted keyed read access
(PERMIT's /F or/R option).

BASH PILE FIND NEXT RECORD (HFNXT)

CALL
.WORD HFNXT
error return
normal return

Entry Parameters: ACl = Address of first buffer in chain of buffers

Error Exit:

Normal Exit:

containing record key.

AC2 = Address of UFT.

ACO = System error code.
ACl-AC3 = Unchanged.

ACO = Address of first buffer in chain of record
buffers.

ACl-AC3 = Unchanged.

Each record buffer must be freed by calling FBF.

Error Codes: ERBNA
EREOF
ERDIO
ERFOP
ERHBKL
ERHNHF
ERRNF
ERSCE

Sys tern buffer not available.
End-of-file.
Disk I/O error.
Open options prohibit.
Bad key length.
File not a hash file.
Record not found.
Hash file structural error.

HFNXT searches the node determined by hashing the specified key, and re­
turns a copy of the next record, with that key. The next record is the
record physically next to the last one accessed. No program should depend
on the physical ordering of records in a node. This ordering may have no
resemblance to the chronological order in which the rtreords were added to
the file.

If the record at the position indicated by current values in the UFT does
not have the specified key, the HFNXT acts just like HFFND and returns the
first record with the specified key.

HFNXT is intended to be used only on hash files which permit duplicate
keys, but it may be used on any hash file.

The record is returned in the shortest chain of 64-word system buffers
sufficient to contain it. When processing of this record is finished, each
of these buffers should be freed by calling FBF. If they are not explicitly
freed, job termination frees them.

Vl-005-13 hash file management 8-9

When the record at the position indicated by the UFT has the specified key,
and no subsequent record has the same key, HFNXT returns error code EREOF
(end-of -file). If HFNXT is called immediately after returning EREOF,
HFNXT returns the first record with the specified key. HFNXT ignores
record locks.

If the UFT does not allow reading (i. e., was obtained from OPNW), then
HFNXT returns error code ERFOP.

If the file is secure and is not owned by the current security user who is
not the SECOFF user, then the current user can open the file for read
access only if the current user has been granted keyed read access
(PERMIT's /F or /R option).

HASH PILE DELETE RECORD (HPDBL)

CALL
• WORD HFDEL
error return
normal return

Entry Parameters: ACl = Address of first buffer in chain of buffers

Error Exit:

Normal Exit:

Error Codes:

containing a record key.

AC2 = Address of UFT.

ACO = System error code.
AC1-AC3 = Unchanged.

ACO-AC3

ERBNA
ERDIO
ERFOP
ERHBKL
ERHNHF
ERHRNA
ERRNF
ERSCE
MVSP

= Unchanged.

System buffer not available.
Disk I/O error.
Open options prohibit.
Bad key length.
File not a hash file.
Record not available.
Record not found.
Hash file structural error.
Security prohibits.

HFDEL deletes one record from the specified hash file.

If the hash file does not allow duplicate keys, then HFDEL deletes the only
record in the hash file that has the specified key.

If the hash file allows duplicate keys, then HFDEL deletes the first record
with the specified key encountered when searching from the position indi­
cated by current values in the UFT. Hence, if the UFT is used with HFNXT to
read the third record with a particular key and then the UFT is used by
HFDEL to delete a record with that key, then HFDEL deletes the third
record, that is, the last obtained by HFNXT. If HFDEL is immediately called
again, it searches for a fourth record with the specified key. If none is

8-10 hash file management V1-005-13

found, then HFDEL continues the search from the beginning of the node. In
this case, it would delete the (physically) first record with the specified
key.

HFDEL returns error code ERRNF (record not found) if and only if there is
no record in the specified hash' file with the specified key. If the record
to be deleted is locked by another User File Table (UFT), HFDEL returns
error code ERHRNA.

If the specified UFT does not allow writing (i.e., was obtained from OPNR),
then HFDEL returns error code ERFOP. If the file is secure and is not owned
by the current security user who is not the SECOFF user, then HFDEL returns
error code ERVSP unless the current user had been granted delete access at
open time (PERMIT's /D option).

HFDEL deletes a record by marking it as deleted. The deleted record takes
up the same space used by the record. While HFADD and HFXCH can reuse the
space occupied by deleted records, the quantity of such space usually grows
as records are deleted and replaced. This costs execution time as well as
disk space because the deleted records must be read in order to reach
undeleted records. Consequently, the hash file should be repacked periodi­
cally by creating a new hash file and using HKOPY to copy the old file to
the new file.

HASH FILE SEQUENTIAL READ (BREAD)

CALL
• WORD HREAD
error return
normal return

Entry Parameters: AC2 = Address of UFT.

Error Exit:

Normal Exit:

ACO = System error code.
AC1-AC3 = Unchanged.

ACO = Address of first buffer in chain of record
buffers.

AC1-AC3 = Unchanged.

Each record buffer must be freed by calling FBF.

Error Codes:

V1-005-13

ERBNA
ERDIO
EREOF
ERFOP
ERHNHF
ERSCE
ERHUP

ERVSP

System buffer not available.
Disk I/O error.
End of file encountered.
Open options prohibit.
File not a hash file.
Hash file struc tural error.
UFT position lost due to changes made
by other UFTs.
Security prohibits.

hash file management 8-11

BREAD returns a copy of the next record in the specified hash file.

If the immediately preceding call using the specified User File Table (UFT)
was not HREAD, then HREAD returns the first record in the hash file. If the
immediately preceding call using the specified UFT was HREAD, then it
returns the record following (physically) the record returned by the previ­
ous c all in the sequential ordering of the hash file obtained by appending
the second node to the first node, the third node to the second node, etc.

1'1"0 program should depend on a simple relationship between key and node
number. The hash algorithm is a pseudorandom number generator that evenly
distributes the domain of keys over the range of nodes.

No program should depend on the sequential ordering of records within a
node. This ordering may have no resemblance to the order in time in which
the records were added to the file.

The record is returned in the shortest chain of 64-word system buffers
sufficient to contain it. When processing of this record is finished, each
of these buff ers should be freed by calling FBF. If they are not explic i tly
freed, job termination frees them.

HREAD treats the hash file as a circular structure with the first node
following the last node. If HREAD is called immediately after it returns an
error code, HREAD returns the first record in the next node. This means
that BREAD may be used to obtain all the recoverable data from a hash file
which contains structural errors or sectors that cause disk errors. It also
means that HREAD returns error code EREOF once at the end of the file
before starting over at the beginning.

If HREAD is to use the current position of the specified UFT within a node,
and the first word of the key of the record at this position is not equal
to its contents when the last call to HREAD using this UFT returned this
record, then HREAD returns error code ERHUP. HREAD ignores record locks
and does not lock the record it returns. Hence, in the window between two
calls to HREAD, a second UFT can be used to change the contents of the hash
file in such a way that the first UFT is no longer positioned at the begin­
ning of a record. This problem can be avoided by opening the hash file
withou t write sharing.

If the UFT does not allow reading (i.e., was obtained from OPNW), then
HREAD returns error code ERFOP. If the file is secure and is not owned by
the current security user who is not the SECOFF user, then HREAD returns
error code ERVSP unless the current user had been granted sequential read
access at open time (PERMIT's /R option).

8-12 hash file management V1-005-13

HASH FILE FIND AND LOCK RECORD (HLPlfD)

CALL
. WORD HLFND
error return
normal return

Entry Parameters: ACI = Address of first buffer in chain of buffers

Error Exit:

Normal Exit:

containing a record key.

AC2 = Address of UFT.

ACO = System error code.
ACI-AC3 = Unchanged.

ACO = Address of first buff er in chain of rec ord
buff ers.

ACI-AC3 = Unchanged.

Eac h rec ord buff er mus t be freed by calling FBF.

Error Codes: ERBNA
ERDIO
ERFOP
ERHBKL
ERHNHF
ERHRNA
ERRNF
ERSCE

System buffer not available.
Disk I/O error.
Open options prohib it.
Bad key length.
File not a hash file.
Rec ord not available.
Record not found.
Hash file struc tural error.

HLF~D locks the first record in the specified hash file with the specified
key and returns a copy of it.

If the hash file does not allow duplicate keys, HLFND returns the unique
record with the specified key. If the hash file allows duplicate keys,
HLFND searc hes the node determined by hashing the spec ified key, and
returns the first record it finds having the specified key. No program
should be sensitive to the physical ordering of the records in a node. In
particular, the record returned by HLFND mayor may not be the record that
was added first in time.

Each User File Table (UFT) is allowed only one record lock. Each hash file
call clears any record lock previously set by the specified UFT.

The record is returned in the shortest chain of 64-word system buffers
sufficient to contain it. When processing of this record is finished, each
of th ese buff ers should be freed by calling FBF. If they are not explic i tly
freed, job termination frees them.

If the record to be locked is already locked by another User File Table
(UFT), HLFND returns error code ERHRNA.

V1-005-13 hash file management 8-13

If HLFND returns error code ERHRNA, access to the locked record can be
retried by calling HLFND again. The locked record can be skipped by calling
HLNXT.

If the UFT does not allow reading (i. e., was obtained from OPNW), then
HFFND returns error code ERFOP.

If the file is secure and is not owned by the current security user who is
not the SECOFF user, then the current user can open the file for read
access only if the current user has been granted keyed read access
(PERMIT's /F or /R option).

HASH FILE FIND AND LOCK NEXT RECORD (HLNXT)

CALL
• WORD HLNXT
error return
normal return

Entry Parameters: AC1 = Address of first buffer in chain of buffers

Error Exit:

Normal Exit:

containing a record key.

AC2 = Address of UFT.

ACO = System error code.
AC1-AC3 = Unchanged.

A CO = Address of firs t buff er in chain of r ec ord
buffers.

AC1-AC3 = Unchanged.

Each record buffer must be freed by calling FBF.

Error Cod es: ERBNA
ERDIO
EREOF
ERFOP
ERHBKL
ERHNHF
ERHRNA
EHRNF
ERSCE
ERVSP

Sys tern buffer not available.
Disk I/O error.
End-of-file encountered.
Open options prohibit.
Bad key length.
File not a hash file.
Rec ord not available.
Rec ord not found.
Hash file structural error.
Security prohibits.

HLNXT locks the next record with the specified key in the specified hash
file and returns a copy of it. The next record is the physically next
record in the same node. No program should depend on the sequential order­
ing of records in a node. This ordering may have no resemblanc e to the
order in time in which the records were added to the file.

8-14 hash file management V1-005-13

If the record at the position indicated by current values in the UFT does
not have the specified key, then HLNXT acts just like HLFND by locking and
returning a copy of the first record with the specified key.

HLNXT is intended to be use~ only on hash files which permit duplicate
keys, but it may be used on any hash file.

Each User File Table (UFT) is allowed only one record lock. Each hash file
call clears any record lock previously set by the specified UFT.

The record is returned in the shortest chain of 64-word system buffers
sufficient to contain it. When processing of this record is finished, each
of these buffers should be freed by calling FBF. If they are not explicitly
freed, job termination frees them.

When the record at the current position of the specified UFT has the
specified key and no subsequent record has the same key, HLNXT returns
error code EREOF (end-of-file). If HLNXT is called immediately after
returning EREOF, HLNXT returns the first record with the specified key.

If the record to be locked is already locked by another User File Table
(UFT), HLNXT returns error code ERHRNA.

If HLNXT returns error code ERHRNA, the locked record may be retried by
calling HLFND. The locked record may be skipped by calling HLNXT a second
time.

If the UFT does not allow reading (i. e., was obtained from OPNW), then
HLNXT returns error code ERFOP.

If the file is secure and is not owned by the current security user who is
not the SECOFF user, then the current user can open the file for read
access only if the current user has been granted keyed read access
(PERMIT's /F or /R option).

DELETE A HASH PILE (DELHP)

CALL
• WORD DELHF
error return
normal return

Entry Parameters: ACO = Address of file name block.

Error Exit:

Normal Exit:

Error Codes:

VI-005-13

ACO = Error code if error return.
ACI-AC3 = Unchanged.

ACO-AC3 = Unchanged.

ERBNA
ERDIO
ERFAP
ERFNA

Buffer not available.
Disk I/O error.
File attributes prohibit request.
File not available now.

hash file management 8-15

ERFNF
ERVLG
ERVOW
ERVPP

File name not found in directory.
Not logged on.
Only the owner may.
Permits outstanding.

File Name Block

I
I 3 Words prefix
I
I
I 3 Words root
I
I
I 1 Word extension
L

See File Name Blocks, page 7-8, for formats of file name blocks.

DELHF deletes a hash file name from the file name directory and releases
any disk space associated with that file. The file cannot be deleted while
it is open. A sequential file cannot be deleted with this call.

If the file is open, then DELHF returns error code ERFNA. If the file is
permanent (PF) or is not a hash file (not HF), then DELHF returns error
code ERFAP. If the file is secure and the current user is not logged on,
then DELHF returns error code ERVLG. If the file is secure and the current
file security user is not the file's owner nor the SECOFF user, then DELHF
returns error code ERVOW.

CLEAR A HASH FILE (BFCLR)

CALL
.WORD HFCLR
error return
normal return

Entry Parameters: ACO = Address of file name block.

Error Exit:

Normal Exit:

Error Codes:

ACO = Error code if error return.
ACI-AC3 = Unchanged.

ACO-AC3 = Unchanged.

ERBNA
ERDIO
ERFAP
ERFNA
ERFNF
ERVLG
ERVOW

Buffer not available.
Disk I/O error.
File attributes prohibit request.
File not available now.
File name not found in directory.
Not logged on.
Only the owner may.

8-16 hash file management VI-005-13

File Name Block

1
3 Words I prefix

_,._1
I

3 Words 1 root
1
I

I Word I extension
I

See File Name Blocks, page 7-8, for formats of file name blocks.

HFCLR releases all of the hash file's data sectors and reinitializes its
index sectors. Only its owner is allowed to clear a secure hash file.

HFCLR stops at the first error. Hence, HFCLR may leave the hash file
partially cleared.

If the file is open, then HFCLR returns error code ERFNA. If the file is
not a hash file (not HF), then HFCLR returns error code ERFAP. If the file
is secure and the current user is not logged on, then HFCLR returns error
code ERVLG. If the file is secure and the current file security user is not
the file's owner nor the SECOFF user, then HFCLR returns error code
ERVOW.

VI-OOS-13 hash file management 8-17

(THIS PAGE INTENTIONALLY BLANK)

8-18 hash file management V1-005-13

Chapter 9

COMPUTER TERMINALS

Jacquard computers include one or more Cathode Ray Tube (CRT) terminals,
each with a keyboard. The terminals may be either Standard or Inter­
national; some documentation refers to the latter as the Universal
terminal. Different character sets are involved: a fixed set for the
Standard terminal, and any of a variety of optional sets for the
International terminal. Furthermore, the J500 allows user-defined dot pat­
terns for characters in the range X'80 to X'FF. For details, refer to the
Utilities Manual under CHRGEN.

Standard and International terminals both have a 1920-character screen 80
columns wide by 24 lines long. The display is produced from character codes
stored in a refresh memory. This memory is accessible to both the refresh
generator and the CPU. Data is output to the scre,en by storing characters
in the refresh memory.

A separate 1024-word area of memory must be assigned to each Standard
terminal in the system. For International terminals, all users share the
same 1024-word area.

Various screen features, such as blinking and underscoring, are controlled
by the display of certain codes. Details are given at the end of this
section.

When a terminal I/O operation expects keyboard input, a cursor (a blinking
underscore) appears at the relevant screen position. At other times, when
no input is expected, the cursor disappears.

Computer keyboards include character keys, shift keys, edit keys, and
function keys. Character keys generate data according to the current shift.
The standard keyboard has one shift for uppercase. The International key..;.
board has three shift modes, with effects which depend on the options
ordered. For example, on the English-language version, <SHIFT 1) operates
like a typewriter shift. <SHIFT 2), used alone or in combination with
<SHIFT 1), generates additional characters.

V1-005-13 computer terminals 9-1

Edit keys cause System II to perform some control function; cursor move­
ment, character insertion, line deletion, and, so on, as detailed later in
this sec tion.

Function keys «PI> to <FlO> on the Standard keyboard, <FI> to <F20> on the
International keyboard) are programmable. When the CRT is in Free Screen or
Split Screen Mode, their meanings are defined by the user program.

Details on keyboard code generation and processing appear later in this
section.

TBRMINAL INPUf/OIlIPUI HANDLER

The terminal I/O handler is a section of re-entrant software in the opera­
ting system which can handle any number of terminals simultaneously. Its
basic functions are to:

• Process interrupts from the keyboard and display keyed characters on
the screen.

• Position the cursor on the screen as determined by keyboard inpu ts and
system calls.

• Obtain characters from the refresh memory in response to read
requests.

• Place characters in the refresh memory in response to write requests.

• Create standard error messages in response to requests from programs.

• Accept command lines entered by the operator.

A t any given time a terminal is in one of four states:

Command Mode
Roll Mode
Free Screen Mode
Split Screen Mode

Command Mode enables the user to communicate with the operating system by
entering command lines. In this mode no job is attached to the terminal. In
the other three modes, a particular program is attached to the terminal,
and can open it. Only the program which has opened the terminal can com­
munica te with it.

COMMAND MODE

In Command Mode, the terminal accepts keyboard input at any time.
Characters typed on the keyboard are displayed on the bottom line of the
screen. As each character is typed, it is displayed at the position indi­
cated by the cursor, and the cursor is advanced one position to the right.

9-2 compu ter terminals VI-OOS-13

<RETURN> is pressed to indicate keyboard input is finished and the line is
ready to be processed by the system. After the key is struck, the screen is
rolled up, the bottom line is cleared, the cursor position is set to the
left end of the bottom line and the cursor is removed from the display.

If the system recognizes the line as a valid command, the terminal becomes
the message terminal for the job initiated by the command. It is taken out
of Command Mode and left in a state where it can be opened by the program.
The terminal will be in Roll Mode after it is opened. When it is subse­
quently closed, it will be left in a state where it can be reopened by the
program. It will not be returned to Command Mode until the program termi­
na tes itself or releases the terminal.

If the system does not recognize the command, an error message is dis­
played, the screen is rolled up, the bottom line is cleared and the cursor
is displayed at the left end of the bottom line - indicating that the
terminal is ready to accept another command. <DOWN ARROW> can be used to
roll the incorrect command line down to the bottom line for correction.

If an application program releases the terminal, the terminal is returned
to Command Mode. However, it is still considered the message terminal for
the job unless the job subsequently opens another terminal.

Any program can open a terminal that is in Command Mode if the bottom line
is blank. In that event, the cursor is removed from the display and the
terminal is taken out of Command Mode and put into Roll Mode. When it is
subsequently ("losed, it will be put back into Command Mode unless it is the
job's message terrrinal.

ROLL MODE

Roll Mode is so named because, in this state, a string that is output to
the terminal is displayed on the bottom line, and when the string ends, the
screen is rolled up (scrolled upwards one line) and the bottom line is
cleared, making it ready for a new line. A terminal defaults to Roll Mode
on being opened. Roll Mode can also be entered by means of the ROLCRT
call.

In Roll Mode, output can be transferred to the screen in strings of user­
specified length (W RS call) or delineated by an explic it line terminator
(WRL, WCRTB calls). Characters are transferred to the screen beginning at
the current cursor position. After each transfer, the cursor is set one
column to the right of the last character transferred to the screen.
Whenever a line terminator is encountered, the screen is rolled up, the
bottom line is blanked and the cursor is set to the left end of the bottom
line.

Input from the keyboard to the bottom line of the screen can be made only
if the application program issues a request to read that line by an RDL,
RCRTB or RCRTBN call. <RETURN> is pressed to indicate that keyboard input
is finished. At that time, the screen is rolled up, the bottom line is
cleared, the cursor position is set to the left end of the bottom line and

VI-005-13 computer terminals 9-3

the cursor is removed from the display. A special read request (RCRTBN
call) is available to suppress the roll after the read is finished.

When a terminal read is done, the cursor is displayed at the current cursor
position as determined by the previous output call. Thus, if the last
output call was a WRS, the cursor may appear anywhere on the bottom line.
If the last call was WRL, WCRTB or RDL the cursor will be displayed at the
left end of the bottom line, which will be blank.

FREE SCREEN MODE

Free Screen Mode enables a program to display or accept characters from any
place on the screen. This mode is entered by means of the FULCRT call.

In this mode, fields of data are transferred to the screen by means of a
WCRT call. Each call must supply a character string, its length, and the
X-Y coordinates (column, line) on the screen where the string is to begin.

Inpu t from the keyboard is possible only if the application program issues
a read request (RCRT) to the terminal, that is, a request to read keyboard
input to the screen. In response to a read, the cursor is displayed at the
X-Y coordinates specified by the RCRT call. The cursor should be positioned
in an unprotected field. Protected fields cannot be overwritten by keyboard
input. A field is protected if it begins with a protect code (X'IE) and
ends with an unprotect code (X'IF). As each character is typed, it is
displayed at the position indicated by the cursor, and the cursor is
advanced one position to the right. If that position contains a protect
code, the cursor is skipped right to the beginning of the next unprotected
field. This prevents the keyboard operator from overwriting protected
fields.

Keyboard inpu t is terminated when any function key «FI> -(F20 » is pressed.
The function key code is returned to the program which issued the terminal
read. After the read is finished, the program can use the MCRT call to read
fields from the screen and write them into a user work area.

SPLIT SCREEN MODE

Split Screen Mode is a combination mode in which the top of the screen is
in Free Screen Mode and the bottom is in Roll Mode. Split Screen Mode is
entered by a SPCRT call and is cleared by either a NSPCRT call or termina­
tion of the program. By default the top 15 lines are in free mode and the
bottom 9 are in roll mode. A SPBCRT call can be used to change where the
split occurs.

KEYBOARD TRANSLATION

The calls RCRT, RCRTB, RCRTBN, RDL, and RDS allow keyboard input. If
there is a keyboard translation table, each 8-bit key code is translated
before it is stored into the terminal refresh. When RCRTB, RCRTBN, RDL, or
RDS terminates, the translated key code is moved from the terminal refresh

9-4 computer terminals VI-005-I3

to the user's buff er. After RCRT terminates, MCRT c an be used to copy the
translated key codes from the terminal refresh to the user's buffer.

The TCUP utili ty program installs or frees a keyboard translation table.

Keyboard Trlns) ation Table Fonnat

A translation table is 256 words long. These words are numbered 0, 1, 2,
••• 255. Word n contains the translations for the 8-bit byte with value n.
If lowercase is not allowed, the left byte of word n is the translation of
n. If lowercase is allowed, the right byte of word n is the translation
of n.

TERMINAL MESSAGE FACILITY

The operating system provides a facility for displaying messages on a
terminal. These messages may be system error messages or user specific, and
the message text may be held in a disk file. Such message files are created
and maintained by the MSGUPD utility which is described in the appropriate
section of the System II Utilities Manual, V2-005.

SYSTBM MESSAGE LIKE

The message routines will display the message on the system message line.
Note that MSRD will optionally display a message at any given screen
position.

The system message line is either the bottom line or the next to the bottom
line on the screen. Use of the system message line involves either rolling
the roll part of the screen or blanking the message line before displaying
the message.

If the terminal is in command mode or has a roll mode read in progress, the
system message line is the next to the bottom line. The roll part of the
screen down to the next to the bottom line is rolled up one line before the
message is displayed on the next to the bottom line. Note that this does
not change the contents of the bottom line.

If the terminal is not in command mode or full mode, and does not have a
roll mode read in progress, the system message line is the bottom line. The
roll part of the screen is rolled up one line before the message is
displayed on the bottom line.

If the terminal is in full mode, the system message line is the bottom
line. The bottom line is blanked before the message is displayed.

SYSTEM ERROR MBSSAGB FILE

Any message file may be declared to be the System Error Message File by
using the MSGFIL utility. If such a system error message file has been

VI-005-13 c ompu ter terminals 9-5

declared, then the appropriate text will be retrieved from this file and
will appear on all error messages displayed by the system. System II pro­
vides a standard error message file called SY2ERF.

The more general message file facility is used via the system call MSRD.
There may be any number of message files, but there can only be one system
error message file. Note that MSRD optionally uses the system error message
file if so requested.

SYSTEM BRROR MBSSAGE FORMAT

The default formats for system error messages are documented in the Error
Messages Manual, V3-005. The following formats are used when there is a
system error message file and no error occurs in acc essing it.

*program [dsknam A=aaaa H=hhhh] [FN=dddddd:ffffff .ff] message text

program is the current job's name (from the job name buff er). If the cur­
rent job is the operating system, this name will be "(Cx) SY Rxx.x", where
Cx indicates the configuration and Rxx.x indicates the release level. This
field is always present and always contains 17 bytes (including trailing
blank) •

[dsknam ••• '] appears only on a system error 8 (disk error). Dsknam is the
name of the disk on which the error occurred. aaaa is the logical disk
address in hexadec imal on which the error occurred. hhhh is the hardware
status in hexadecimal. When this field appears it contains 21 bytes or less
(including trailing blank).

[FN= ••• l appears only if FMSG or MSVF was c aIled. Dddddd:ffffff .ff is th e
name of the file associated with the UFT specified to FMSG or MSVF. When
this field appears it contains 20 bytes or less (including trailing blank).

Hence the message text for system error 8 to be used via FMSG or MSVF
should not contain more than 22 bytes. Message text for a system error
other than 8 to be used via FMSG or MSVF should not contain more than 43
bytes.

message text for system error 8 to be used only via SMSG or MSVS should not
contain more than 42 bytes. Message text for a system error other than 8 to
be used only via SMSG or MSVS should not contain more than 63 bytes.

Message text that is too long is truncated when it is displayed.

ExamDles

1. Delete utility calls SMSG to report system error 34.

*DELETE File not found

2. Delete utility calls SMSG to report system error 8.

*DELETE FPOO A=0005 H=0020 Disk I/O error

9-6 computer terminals VI-005-13

3. Program DRLA calls FMSG to report system error 87.

*DRLA FN=FPOO:TEMP Record not found

4. Program DRLA calls FMSG to report system error 8.

*DRLA FPOO A=OOlO H=0060 FN=FPOO:TEMP Disk I/O error

5 • Operating system c aUs SMSG to report system error 7.

(Cl) SY R09.0 Command line error

TERMINAl, CAl,IS

The various terminal calls are summarized below.

MODE SETTING CALLS

ROLCRT, NSPCRT Set Roll Mode

FULCRT Set Free Screen Mode

SPCRT Set Split Screen Mode

CTLCRT ,RELJ Release Job (return terminal to Command Mode)

READ CALLS

RDL, RCRTB, RDS Read Bottom Line (Roll Mode)

RCRTBN Read Bottom Line, No Roll (Roll Mode)

RCRT

MCRT

WRITE CALLS

WCRT

WCRTB

WRL

WRS

Vl-005-l3

Read Screen (Free Screen Mode)

Copy Data From Screen (Free Screen Mode)

Write Screen (Free Mode)

Write to Bottom Line (Free Mode or Roll Mode)

Write Line (Free Mode or Roll Mode)

Write Sequential (Free Mode or Roll Mode)

computer terminals 9-7

MESSAGE DISPLAY CALLS

SMSG Display System Error Message

MSVS Display System Error Message to any designated

FMSG Display System Error Message and File Name

lVISVF Display System Error Message and File Name to
designa ted terminal

MSG Display Message

MSRD M essag e Read and Display

MISCELLANEOUS TERMINAL CALLS

CRTLCI Set or Clear Lowercase Input Option

CRLGTS Set or Read Terminal Status Lights

CEFREE Erase Free Screen

CEPROT Erase Only Unprotected Fields

CERALL Erase Entire Screen Including Protected Fields

CEROLL Erase Roll Part

SPBCRT Set Split-Screen Boundary

SET ROLL MODE (ROLCRT, NSPCRT)

Entry:

CALL
• WORD ROLCRT
error return
normal return

CALL
• WORD NSPCRT
error return
normal return

AC2 = Address of UFT.

Error Return: ACO = System error code.
ACI-AC3 = Unchanged.

Normal Return: Registers unchanged.

Error Codes: ERCRNC CT type call on a non-CT device.

terminal

ROLCRT and NSPCRT are exactly the same. They put the terminal into Roll
Mode. The terminal is in Roll Mode by default when it is opened.

9-8 compu ter terminals VI-005-13

When ROLCRT (NSPCRT) mode clears Free Mode, the screen is rolled immedi­
ately before the next RDL, RCRTB, RCRTBN, WRS, WRL, or WCRTB call.
This is in addition to any roll that may occur after these calls.

The cursor is left in the roll home position (lower left corner of screen).

For more details see the description of Roll Mode.

SET FREE SCREEN MODE (FULCRT)

Entry:

CALL
• WORD FULCRT
error return
normal return

AC2 = Address of UFT.

Error Return: ACO = System error code.
ACI-AC3 = Unchanged.

Normal Return: Registers unchanged.

Error Codes: ERCRNC CT type CALL on a non-CT device.

FULCRT puts the terminal into Free Mode. It does not change the cursor
position. For more details see the description of Free Mode.

SET SPLIT SCREEN MODE (SPCRT)

Entry:

CALL
• WORD SPCRT
error return
normal return

AC2 = Address of UFT.

Error Return: ACO = System error code.
ACI-AC3 = Unchanged.

Normal Return: Registers unchanged.

Error Codes: ERCRNC CT type CALL on a non-CT device.

SPCRT puts the terminal into Split-Screen Mode. The default split screen
boundary is 15. The split sc reen boundary may be changed to any value of K
from 1 to 23 by calling SPBCRT. When the boundary is line K, lines 0, 1 •••
K-l are the Free Mode part; and lines K, K+l ••• 23, are the Roll Mode
part. The cursor is left at the roll mode home position (lower left corner
of screen).

VI-005-13 c'omputer terminals 9-9

SET SPLIT SCREEN BOUNDARY (SPBCRT)

CALL
• WORD SPBCRT
error return
normal return

Entry Parameters: ACO = Number of lines to be in Free Screen mode.

Error Exit:

Normal Exit:

AC2 = Terminal UFT address from OPEN.

ACO = System error code.
ACI-AC3 = Unchanged.

Registers unchanged.

Error Codes: ERCRXY Number of lines specified was ou tside the
allowed range of 1 to 23.

EBCRNC YCT type CALL on non-YCT device

The SPBCRT call sets the line number at which the split-screen boundary
occurs. Specifying k as the number of lines causes lines 0 through k-l to
be in Free Screen mode, and lines k through 23 to be in Roll mode. Until
this call has been made, the split occurs at line 15. When the terminal is
closed, the split is reset to line 15.

This call may be made in any screen mode. Changing screen mode does not
change the split-screen boundary.

RETURN TO COMMAND MODE (CTLCRT)

CALL
• WORD CTLCRT
error return
normal return

Entry Parameters: None.

Exit Parameters: ACO = Error code if error.

Error Codes: ERCROP Terminal is open.

For details of CTLCRT's operation, see the description of RELJ.

READ BarrOM LINE (KCRTB, RDL, RDS)

CALL
• WORD RCRTB or
error return
normal return

9-10 compu ter terminals

CALL
• WORD RDL or
error return
normal return

CALL
• WORD RDS
error return
normal return

YI-005-13

Entry:

Error Return:

Normal Return:

Error Codes:

ACO = Address of user's line buff er.
AC1 = Maximum number of bytes to be read.
AC2 = Address of UFT.

ACO = System error code

AC1 = Number of bytes moved into the user's buff er
including the line terminator (unless error
ERLTL) •

AC2-AC3 = Unchanged.

ACO, AC2-AC3 = Unchanged.
AC1 = Number of bytes read (including line terminator).

ERCRNC CT type call on a non-CT device.
ERLTL Line too long.
ERABT Keyboard abort.

RCRTB, RDL, and RDS read the bottom line of the terminal. They are all
prec isely the same. If the terminal is in free mode when any of these calls
are made, then they put the terminal into roll mode. In some cases the ter­
minal is left in roll mode when the error return is taken. This happens for
example when the read is terminated by hitting the cancel key. If the ter­
minal is in spli t mode when any of these c aIls are made, the mode is not
changed.

The task is suspended until the read is completed.

If the current cursor position is not on the bottom line when this call is
made, then it is set to the lower left corner of the screen. Then the cur­
sor is displayed at the cursor position and input is allowed.

After the line has been copied to the user's work area, the screen is
rolled up, the bottom line is blanked and the cursor position is set to the
lower left corner of the screen. The cursor is no longer displayed and
keyboard input is inhibited until the next read request.

READ BOI'TOM LINE WITHOUT ROLL (RCRTBN)

CALL

Entry:

• WORD RCRTBN
error return
normal return

ACO = Address of user's buff er.
AC1 = Maximum number of bytes to read.

Error Return: ACO = System error code.

AC1 = Number of bytes moved into the user's buffer
including the line terminator (unless error
ERLTL) •

V1-005-13 computer terminals 9-11

Normal Return:

Error Codes:

AC2-AC3 = Unchanged.

ACO, AC2-AC3 = Unchanged.
ACI = Number of bytes moved into the user's buffer

including the line terminator.

ERABT Keyboard abort.
ERCRNC CT type call on a non-CT devic e.
ERLTL Line too long.

RCRTBN is like RCRTB, RDL, and RDSexcept: (1) The screen is never rolled
before input is allowed. (2) When the read is completed, the screen is not
rolled. (3) The cursor is left at its position at the time the read was
completed.

RCRTBN allows the application program to issue a second RCRTBN to allow
corrections and additions to the line. Note that the entire non-blank
contents of the line are copied to the user's buff er on each read.

After an RCRTBN call the screen is rolled immediately before processing the
next RCRTB, RDL, RDS, WCRTB, WRL, or WRS call to the terminal.

READ FREE SCREEN (RCRT)

CALL
• WORD RCRT
error return
normal return

Entry:

Error Return:

Normal Return:

Error Codes:

ACO = X-coordinate (column position, 0 leftmost).
ACI = Y-coordinate (line position, 0 topmost).
AC2 = Address of UFT.

ACO = System error code.
ACI-AC3 = Unchanged.

In some cases the terminal is changed from roll to free
mode before the error return is taken.

ACO = Function key code.
ACI-AC3 = Unchanged.

ERCRNC CT type call on a non-CT device.

ERCRXY Cursor position specified lies in the roll
part of the screen.

ERCRPR A protect or unprotect code is at the cursor
position specified.

RCRT reads the free part of the screen in Free or Split Mode. If the ter­
minal is in Roll Mode when this call is made, then RCRT changes the mode

9-12 computer terminals VI-005-13

to Free. The task making this call is suspended until a keyboard response
completes the read.

Unlike all the other terminal read calls, RCRT takes its normal return when
the cancel key is used to terminate the read. In this case, just as in
every other case, the cancel key sets the job abort flag and initiates
abnormal termination of all the job's tasks.

An unprotected field that wraps around from the lower, right corner of the
screen to the upper, left corner of the screen begins after the unprotect
code, not at the upper left corner of the screen.

When the cursor position specified contains a protect or unprotect code,
then every key is read terminating. This means that the first key depressed
terminates the read, the read does not change the contents of the screen,
and the key code is returned to the user. This allows the application
program to handle every key.

If cursor motion can not be completed because the whole screen is pro­
tected, then RCRT takes its normal return.

COpy DATA FROM SCREEN (MCRT)

CALL
.WORD MCRT
error return
normal return

Entry:

Error Return:

Normal Return:

Error Codes:

ACO = Address of transfer table.
AC2 = Address of UFT.

ACO = System error code.
ACI-AC3 = Unchanged.

ACO, AC2-AC3 = Unchanged.
ACI = Number of bytes moved from last field.

ERCRNC CT type call on non-CT device.
ERCRXY X or Y out of range.

MCRT copies data from the screen to user buffers. This call may be made in
Free, Split, or Roll modes. It is usually used only on the free part of the
screen in conjunc tion with RCRT.

MCRT's transfer table has the same structure as RCRT's transfer table (see
RCRT). The bytes specified by the table are copied from the screen without
regard for protected fields or other logical structure. The bytes are
copied to the user's buffer two 8-bit bytes per I6-bit word in left-right
order.

If a field begins on the screen but extends beyond the screen, the transfer
stops at the end of the screen.

VI-005-I3 computer terminals 9-13

Transfer Table Structure·

The transfer table must contain one four-word entry for each field of the
screen to be copied. An entry gives the starting coordinates of the field,
the length of the string, and the address of the work area into which it is
to be written. Each entry in the table has the following structure:

Word 0 = Number of bytes to copy.
Word 1 = User work area address where data is to be written.
Word 2 = X-coordinate (column number) of field.
Word 3 = Y-coordinate (line number) of field.

The table must be terminated by an entry in which word 0 contains a zero.

Bytes in the specified strings are copied from the screen regardless of the
logical structure of the display, e.g., without regard to whether a field
is protected or not. Strings are stored in ASCII code (eight bytes per
character), and written ·from left to right, two bytes per word, in the
designated work area.

Note that the location having zero coordinates (X=O, Y=O) is the leftmost
column of the top line of the screen.

WRITE TO BOTTOM LINE OF TERMINAL (WCRTB)

CALL
.WORD WCRTB
error return
normal return

Entry:

Error Return:

Normal Return:

Error Codes:

ACO = Address of user's buff er.
AC1 = Maximum number of bytes.
AC2 = Address of UFT.

ACO = System error code.
AC1-AC3 = Unchanged.

ACO, AC2-AC3 = Unchanged.
AC1 = Number of bytes moved.

ERCRNC CT type call on non-CT device.
ERISZ Illegal size request.

WCRTB writes to the bottom line of a computer terminal. If when the call is
made the cursor is not somewhere on the bottom line, it is set to the lower
left corner of the screen. Each character is copied to the current cursor
position and the cursor position is updated. If the cursor is at the right
edge of the bottom line, the character is counted but is not copied and the
cursor position is not changed. A line terminator (any code less than X'10
'except X'09) is not put on the screen. A line terminator stops WCRCTB.The
maximum byte count specified also stops WCRTB. In free mode the screen is
never rolled, but the bottom line is blanked and the cursor set to the
lower, left corner of the screen before copying any characters to the

9-14 computer terminals V1-005-13

screen, and the undisplayed cursor is left at the end of the string copied.
In roll mode and split mode WCRTB rolls the screen whenever the bottom line
is non-blank after the transfer. If the transfer does not end with a line
terminator, this roll is included in the charac ter count returned. The
effect of this is that WCRTB never leaves the bottom line non-blank. The
cursor is not displayed.

The count returned includes one for each tab expanded.

WRITE LINE TO TERMINAL (WRL)

CALL
• WORD WRL
error return
normal return

Entry:

Error Return:

Normal Return:

Error Codes:

ACO = Address of user's buff er.
AC2 = Address of UFT.

ACO = System error code.
AC1-AC3 = Unchanged.

This error return should never be used in normal opera­
tion. It indicates that the system has been damaged and
should be re-booted as soon as possible.

ACO, AC2-AC3 = Unchanged.
AC1 = Number of bytes moved.

ERCRNC CT type call on a non-CT device

WRL with a computer terminal User File Table (UFT) writes to the bottom
line of a computer terminal. If when the call is made the cursor is not
somewhere on the bottom line, it is set to the lower left corner of the
screen. Each character is copied to the current cursor position and the
cursor position is updated. If the cursor is at the right edge of the
bottom line, the character is counted but is not copied and the cursor
position is not changed. A line terminator (any code less than X'10 except
X'09) is required to stop WRL. The line terminator is not put on the
screen. In free mode WRL never rolls the screen, but the bottom line is
blanked and the cursor is set to the lower, left corner of the screen
before copying any characters to it; the undisplayed cursor is left at the
end of the string transferred. In roll mode and split mode, WRL ends by
rolling the screen. This blanks the bottom line and leaves the undisplayed
cursor at the lower, left corner of the screen. The cursor is not dis­
played.

The count returned includes one for each tab expanded.

V1-005-13 c ompu ter terminals 9-15

WRITE SEQUENTIAL TO TERMINAL (WRS)

CALL
. WORD WRS
error return
normal return

Entry:

Error Return:

Normal Return:

Error Codes:

ACO = Address of user's buff er.
ACI = Number of bytes.
AC2 = Address of UFT.

ACO = System error code.
ACI-AC3 = Unchanged.

ACO, AC2-AC3 = Unchanged.
ACI = Number of bytes moved.

ERISZ Illegal size request

WRS with a computer terminal User File Table (UFT) writes to the bottom
line of a computer terminal. If when the call is made the cursor is not
somewhere on the bottom line, it is set to the lower, left corner of the
screen. Fach character is copied to the current cursor position and the
cursor position is updated. If the cursor is at the right edge of the
bottom line, the character is counted but is not copied and the cursor
position is not changed. A line terminator (any code less tban X'lO except
X'09) is not put on the screen. In free mode, a line terminator stops WRS.
Hence, in free mode WRS never rolls the screen, and the byte count returned
may be smaller than the byte count specified. In roll mode and split mode,
a line terminator causes the screen to roll. Hence, WRS rolls the screen
only when it encounters a line terminator and the screen is in roll mode or
split mode.

Tabs are expanded. The count returned includes one for each tab expanded
and one for each line terminator encountered.

WRITE SCREEN (WeRT)

Entry:

CALL
.WORD WCRT
error return
normal return

ACO = Address of transf er table.
AC2 = Address of UFT.

Error Return: ACO = System error code.
ACl, AC2-AC3 = Unchanged.

Normal Return: ACO, AC2-AC3 = Unchanged.
ACI = Number of bytes moved to last field.

9-16 computer terminals VI-005-13

Error Codes: ERCRNC CT type call on a non-CT device.
ERCRXY Cursor position specified out of range.

weRT copies data from a user's buffer onto the terminal screen. The screen
may be in Roll, Free or Split mode.

WCRT is given the address of a transfer table specifying where the data is
to be obtained and where it is to be copied on the screen. This table may
contain any number of entries. Each entry is four words long and described
below.

Copying each string of data will terminate either on the byte count speci­
fied or by encountering a line terminator. The byte count returned will
include one for the terminator (if any). A line terminator is any value
less than X'10 except for tab (X'09) which is expanded to blanks and X'01
which is stored on the screen. WCRT is the only way to write X'01 (the
solid box character) on the screen. The byte count returned will include
one for each tab expanded in the last field.

If a field begins within the screen and extends beyond the screen, all
characters to be copied beyond the screen are counted but are not copied.

weRT does not change the cursor position.

Trlpaler Table Structure.

The transfer table contains a separate entry for each field to be copied.
Each entry is four words long with the following structure:

Word 0 = Number of bytes to copy.

Word 1 = Address from which data is to be copied.

Word 2 = X-coordinate (column number) of field. (Byte offset into
refresh if word 3 is zero.)

Word 3 = Y-coordinate (line number) of field.

The table must be terminated by an entry in which word 0 contains zero.

Note that X-Y coordinates (0, 0) specify the upper left corner of the
screen.

DISPLAY SYSTEM ERROR MESSAGE (S.SG)

CALL

Entry:

• WORD SMSG
error return
normal return

ACO = System error code.

V1-005-13 computer terminals 9-17

Error Exit:

Normal Exit:

Error Codes:

ACO = System error code. Possibly different from the
system error code input.

AC1-AC3 = Unchanged.

ACO-AC3 = Unchanged.

ERDIO Disk I/O error.
ERSCE Hash file structural error.
ERRNF Record not found.

SMSG displays on the current job's message terminal an error message for
the specified system error code.

If messages are suppressed for this terminal, then SMSG does not display
anything. If the current job is running in the background and has a
predecessor, then SMSG does not display anything.

SMSG sets the current job's error code to the specified error code. The
job's error code is passed back to the predecessor job when its execution
is restarted at LINK's normal return.

If there is currently no system error message file, the message displayed
has the standard format described in the Error Messages manual. If there is
a system error message file, the message has the following format:

*program [dsknam A=aaaa H=hhhh] message text

Fields have variable length as appropriate. Unused fields are not present.
Those fields that are present are separated by one blank. Hence, the total
message length is minimized.

program is the current job's name. If the current job is the operating
system, this name will be n(cx) SY Rxx.x", where Cx indicates the
configuration and Rxx.x indicates the release level. If there is no current
job, this field is not present.

[dsknam ••• 1 appears only on a system error 8 (disk error). Dsknam is the
name of the disk on which the error occurred. Aaaa is the logical disk
address in hexadecimal on which the error occurred. Hhhh is the hardware
status in hexadecimal.

The message is displayed on the system message line in the manner described
in the System Message Line section. If necessary, the message is truncated.
Truncation is not an error and does not cause SMSG to take its error
return.

9-18 computer terminals V1-005-13

Errors

If there is currently a system error message file and an error occurs in
trying to access this file, SMSG returns the appropriate error code after
displaying the standard format message for entry parameter ACO. Hence, if
there is a system error message file, but it does not contain a message for
tHe specified error code, SMSG displays the standard format error message
for the error code and then returns error code ERRNF (record not found).
Even when SMSG returns an error code, it sets the current job's error code
to its entry parameter ACO.

ERROR MESSAGE TO COMPtJTBR TERMINAL (MSVS)

CALL
• WORD MSVS
error return
normal return

Entry:

Error Exit:

Normal Exit:

Error Codes:

ACO = System error code.

ACI = Address of File Name Block specifying a computer
terminal.

o ---) display message on the current job's message
terminal.

ACO = System error code.
ACI-AC3 = Unchanged.

ACO-AC3 = Unchanged.

ERFNF File not found.
ERCRNO Terminal not a computer terminal.
ERDIO Disk I/O error.

MSVS displays on the specified computer terminal an error message for the
specified error code.

MSVS sets the current job's error code to the specified error code. The
job's error code is passed back to the predecessor job when its execution
is restarted at LINK's normal return.

If there is currently no system error message file, the message displayed
has the standard format described in the Error Messages manual. If there is
a system error message file, the message has the following format:

*program [dsknam A=aaaa H=hhhh] message text

program is the current job's name (from the job name buffer). If the
current job is the operating system, this name will be "(Cx) SY Rxx.x",

V1-005-13 computer terminals 9-19

where Cx indicates the configuration and Rxx.x indicates the release level.
This field is always present and always contains 17 bytes or less
(including trailing blank).

(cIak 1 appears only on a system error 8 (disk error). Dsknam is the
name of the disk on which the error occurred. Aaaa is the logical disk
address in hexadecimal on which the error occurred. Hhhh is the hardware
status in hexadecimal. When this field appears it contains 21 bytes or less
(including trailing blank).

The message is displayed on the system message line in the manner described
in the System Message Line section.

If the specified File Name Block does not specify an exising file, MSVS
returns error code ERFNF. If the specified File Name Block specifies an
existing file that is not a computer terminal, MSVS returns error code
ERCRNO. If there is an error in accessing the system error message file,
MSVS displays the standard' format system error message for the specified
error code before taking its error return. Even when MSVS takes its error
return, it sets the current job's error code to its entry parameter ACO.

DISPLAY SYSTEM ERROR MESSAGE AND PILE RAIIB (P.SG)

CALL
• WORD FMSG
error return
normal return

Entry:

Error EXit:

Normal Exit:

Error Codes:

ACO = System error code
AC2 = UFT address of file assoc iated with error.

ACO = System error code
ACI-AC3 = Unchanged.

ACO-AC3 = Unchanged.

ERDIO Disk I/O error.
ERSCE Hash file structural error.
ERRNF Record not found.

FMSG displays on the current job's message terminal and the system error
message associated with the specified system error code. In addition, FMSG
will append the file name associated with the specified UFT to the
displayed error message.

If messages are suppressed for this terminal, then FMSG does not display
anything. If th'e current job is running in the background and has a
predecessor, then FMSG does not display anything.

9-20 computer terminals VI-005-13

FlVISG sets the current job's error code to the specified error code. The
job's error code is passed back to the predecessor job when its execution
is restarted at LINK's normal return.

If there is currently no system error message file, the message displayed
has the standard format desc~bed in the Error Messages manual. If there is
a system error message file, the message has the following format:

*program [dsknam A=aaaa H=hhhh] FN=filename message

Fields have variable length as appropriate. Unused fields are not present.
Those fields that are present are separated by one blank. Hence, the total
message length is minimized.

program is the current job's name. If the current job is the operating
system, this name will be "(ex) SY Rxx.x tt , where ex indicates the
configuration and Rxx.x indicates the release level. If there is no current
job, this field is not present.

[dsknam ••• 1 appears only on a system error 8 (disk error). Dsknam is the
name of the disk on which the error occurred. Aaaa is the logical disk
address in hexadecimal on which the error occurred. Hhhh is the hardware
status in hexadecimal.

filename is the name of the file associated with the UFT specified in AC2.

The message is displayed on the system message line in the manner described
in the System Message Line section. If necessary, the message is truncated.
Truncation is not an error and does not cause FMSG to take its error
return.

Errors

If there is currently a system error message file and an error occurs in
trying to access this file, FMSG returns the appropriate error code after
displaying the standard format message for entry parameter ACO. Hence, if
there is a system error message file but it does not contain a message for
the specified error code, FMSG displays the standard format error message
for the error code and then returns error code ERRNF (record not found).
Even when FMSG returns an error code, it sets the current job's error code
to its entry parameter ACO.

BRROR MESSAGB WITH FILB NAME TO COMP11I'BR TERMINAL (MSVF)

CALL
• WORD MSVF
error return
normal return

V1-005-13 computer terminals 9-21

Entry:

Error Exit:

Normal Exit:

Error Codes:

ACO = System error code.

ACl = Address of File Name Block specifying a computer
terminal.

o ---) display message on the current job's message
terminal.

AC2 = Address of UFT.

ACO = System error code.
AC1-AC3 = Unchanged.

ACO-AC3 = Unchanged.

ERFNF File not found.'

~

ERCRNO Terminal not a computer terminal.
ERDIO Disk I/O error.

MSVF displays on the specified computer terminal an error message for the
specified error code and with the name of the file associated with the
specified User File Table (UFT).

MSVF sets the current job's error code to the specified error code. The
job's error code is passed back to the predecessor job when its execution
is restarted at LINK's normal return.

If there is currently no system error message file, the message displayed
has the standard format described in the Error Messages manual. If there is
a system error message file, the message has the following format:

*program [dsknam A=aaaa H=hhhh] FN=dddddd:ffffff .ff message text

program is the current job's name. If the current job is the operating
system, this name will be "(Cx) SY Rxx.x", where Cx indicates the
configuration and Rxx.x indicates the release level. This field is always
present and always contains 17 bytes or less (including trailing blank).

[dskn8Dl ••• 1 appears only on a system error 8 (disk error). Dsknam is the
name of the disk on which the error occurred. Aaaa is the logical disk
address in hexadecimal on which the error occurred. Hhhh is the hardware
status in hexadecimal. When this field appears it contains 21 bytes or less
(including trailing blank).

ddddddd'lllfl.11 is the name of the file associated with the specified UFT.
This field contains 20 bytes or less.

The message is displayed on the system message in the manner described in
the System Message Line section.

9-22 computer terminals V1-005-13

Brron

If the specified File Name Block does not specify an eXlslng file, MSVF
returns error code ERFNF. If the specified File Name Block specifies an
existing file that is not a computer terminal, MSVF returns error code
ERCRNO. If an error occurs in accessing the system error message file, MSVF
displays the standard format error message for the specified error code
before taking its error return. Even when MSVF takes its error return, it
sets the current job's error code to its entry parameter ACO.

DISPLAY MESSAGB (IISO)

CALL
• WORD MSG
error return
normal return

Entry: ACO = Address of message.

ACI = Number of words in message (maximum length D'40
words) •

Error Exit: Never used.

Normal Exit: ACO-AC3 = Unchanged.

MSG displays the specified message on the current job's message terminal.

If messages are suppressed for this terminal, then MSG does not display
anything. If the current job is running in the background and has a
predec essor, then MSG does not display anything.

If the current job is running in the background and does not have a
predecessor, then MSG prefixes the name of the current job to the message
and truncates the message if necessary.

The message is displayed on the system message line in the manner described
in the System Message Line section.

MESSAGE READ AllD DISPLAY (IISRD)

CALL
• WORD MSRD
error return
normal return

Entry:

VI-005-13

ACO = Message number. Key to hash record containing
message text.

ACI = Address of message command block.

o ---) No message command block.

computer terminals 9-23

Error Exit:

Normal Exit:

Error Codes:

Display the message as specified by the current
message parameters for the job message terminal.

AC2 = Address of UFT for message hash file.

o ---) No message hash file.

-1 --) Use the system error message file.

If AC2 is not 0 or -1, then it must be the address of
a UFT.

ACO = System error code.
ACI = Number of bytes displayed or put in output buffer.
AC2, AC3 = Unchanged.

ACI = Number of bytes in message.
ACO, AC2, AC3 = Unchanged.

ERLTL
ERHNHF
ERCRNO
ERRNF
ERFNOP

Line too long.
Not a hash file.
Not a computer terminal.
Record not found.
File not open.

Ma, .. e ClMDID8pd Block Format

Offset

o

Meanin2'

Display options:

o 0 --) Do not blink message
1 --) Blink message

1 & 2 Not used if word 2 contains a non-zero value

o --) Display message on system message line with
screen rolling and line blanking as appropriate.
See "System Messge Line" description.

1 --) Display the messge in the specified terminal's
message area.

2--) Display message as specified by the message
parameters for the terminal used.

3 --) Display message at the screen position specified
by bits 4-15 of this word and do not roll the
screen or blank any line. The message is
truncated at the end of the line.

9-24 computer terminals VI-005-13

Offset

3 Not used.
4-8 Line number (range: 0 to 23).
9-15 Column number (range: 0 to 79).

1 Address of File Name Block specifying a computer terminal.

o --) Display message on job message terminal.

2 Address of 41-word ou tpu t buffer.

o --) Display message on terminal. There is no output buffer.

Non-zero --) Do not display message on terminal. Move message
to output buffer.

3 Number of bytes in supplementary text.

o --) No supplementary text. In this case the word at offset 4
is not used.

4 Address of supplementary text.

MSRD optionally does any combination of the following:

1. Obtains message text from a message file. See the section "Message
File Format."

2. Obtains message text from the system error message file (if any). The
system error message file has the same format as a message file.

3. Appends supplementary text to the message text.

4. Displays the message on any specified computer terminal, or moves it
to a specified output buffer. If messages are suppressed on this
terminal, then MSRD does not display anything. In any event, MSRD
returns the number of bytes displayed or moved into the output buffer.
This applies to all four options.

If no message command block is specified, the message receives the default
message handling for the current job's message terminal. See the System
Message Line section for a description of screen handling when the system
message line is used.

If input parameter AC2 is zero, the message consists of the supplementary
text (if any). If the supplementary text byte count is zero, the message
consists of the message text from the message file (if any) or system error
file (if any) as specified. If input parameter AC2 is -1, the message text
is obtained from the system error message rUe (if any).

V1-005-13 computer terminals 9-25

If no 41-word output buffer is specified, the message is displayed on the
specified computer terminal. If necessary, the message is truncated at the
end of the line. Hence, the maximum number of bytes displayed is D'BO (one
full line). If the message command block specifies a screen position with a
non-zero column number, the maximum messag.e length is less than D'BO. When
the message is displayed, the byte count returned does not include a line
terminator, because no line terminator is moved to the screen.

If a 41-word ou tpu t buff er is spec ified, the message is not displayed, bu t
it is moved into the 41-word output buffer truncated to D'BO bytes if
necessary and terminated with a carriage return (X'OD). In this case, the
byte count returned includes the line terminator.

If the message is truncated, MSRD displays or moves it to the user's buffer
before returning error code ERLTL. If the specified computer terminal can
not be found, MSRD returns error code ERFNF. If the specified file is not a
computer terminal, IVISRD returns error code ERCRNO. If input parameter AC2
is -1 and there is currently no system error message file, MSRD returns
error code ERFNOP.

SET OR RELEASE LOWERCASE OPTION (CRTLCI)

Entry:

CALL
• WORD CRTLCI
error return
normal return

ACO = 0 Implies translate lowercase characters from the
keyboard into uppercase; or use left bytes of the
keyboard translation table.

ACO t- 0 Implies do not translate lowerc ase c harac ters
from the keyboard; or use the right bytes of the
keyboard translation table.

AC2 = Address of UFT.

Error Return: ACO = Sys tern error code.
ACI-AC3 = Unchanged.

Normal Return: Registers unchanged.

Error Codes: ERCRNC CT type call on a non-CT device.

CRTLCI turns the lowercase input option on and off. If there is a keyboard
translation table, then· no lower to uppercase translation is done. By
default keyboard input is translated from lower to uppercase.

Utility program TCUP is used to install or free a keyboard translation
table.

9-26 computer terminals VI-005-13

SET OR llBAD TBB.mAL STATUS LIGHTS (CB.LOTS)

CALL
• WORD CRLGTS
error return
normal return

Entry Parameters: AC2 = Terminal UFT address from OPEN.

Exit Parameters:

Error Codes:

ACO = -1. Read the current state of the CRT status
lights.

ACO =I -1. Update the CRT status lights as indicated by
bits 8-15 in ACO.

If on input ACO = -1, current light status is returned
in ACO. Bits 0-'1 and bit 15 are always 0 on return.

If on input ACO ;. -1, no change to registers.

ACO = Error code if error return.

ERCRCM Terminal in Command mode.

The leftmost of the eight status lights on the JI00/J105 is not program­
mable; it merely indicates that power is on the terminal.

CRLGTS reads or sets the seven programmable lights. If ACO contains zero
when the call is made, the lights are read and their state is returned in
bits 8-14 of ACO:

LIGHrS: • • • • • • •
ACO : o 1 2 3 4 5 6 '1 8 9 10 11 12 13 14 15

Bit = 1 light is ON.
Bit = 0 light is OFF.

Similarly, setting bits 8-14 on or off in any desired pattern before making
the call causes CRLGTS to turn the corresponding lights on or off.

BRASE PJlBB SCllBBlf (CBPIlEB)

CALL
• WORD CEFREE
error return
normal return

Entry Parameters: AC2 = Address of UFT.

Error Exit: ACO = System error code.
AC1-AC3 = Unchanged.

Normal Exit: Registers unchanged.

V1-005-13 computer terminals 9-2'1

Error Codes: ERCRMO
ERCRNC

Mode conflict. The terminal is in roll mode.
CT type CALL on a non-CT device.

CEFREE erases all of the free part of the specified computer terminal
sc reen. Both protec ted and unprotec ted fields are erased. All protec t and
unprotect characters are blanked. The cursor is left at the Free home
position (the upper, left corner of the screen).

ERASE UNPRorECTHD FmLDS (CEPROT)

Entry:

CALL
• WORD CEPROT
error return
normal return

AC2 = Address of UFT.

Error Return: ACO - System error code.
ACI-AC3 = Unchanged.

Normal R.eturn: Registers unchanged.

Error Codes: ERCRNC CT type call ona non-CT device.

ERCHPR There is no free home position because the whole
screen is protected.

CEPROT erases the unprotected fields in the Free part of the screen if the
screen is in Split mode or Free mode. If the screen is in Roll mode CEPROT
erases the unprotected fields anywhere on the screen. The cursor is left at
the Free home position: the lowest unprotected position. The upper, left
c orner of the screen is position o.

ERASE ENTIRE SCREEN (CERALL)

CALL
.WORD CERALL
error return
normal return

Entry Parameters: AC2 = Terminal UFT address from OPEN.

Exit Parameters: None.
ACI-AC3 = Unchanged.

Error Codes: ERCRNC CT type call on a non-CT device.

CERALL erases the entire screen, including the contents of protec ted
fields. ·The cursor remains at the home position of the line last accessed.
It does not return to the bottom of the screen.

9-28 computer terminals VI-005-13

•

ERASE ROLL PART (CEROLL)

CALL
• WORD CEROLL
error exit
normal exit

Entry Parameters: AC2 = Address of UFT.

Error Exit:

Normal Exit:

ACO = System error code.
ACI-AC3 = Unchanged.

Registers unchanged.

Error Codes: ERCRMO Mode conflict. The terminal is in Free Mode.
ERCRNC CT type CALL on non-CT device.

CEROLL erases only the roll part of the specified computer terminal screen.
The cursor is left at the Roll home position (the lower left corner of the
screen) •

KBYBOARD CHARACTBB COOlS

The next few pages show the character codes generated by the Standard
keyboard and by the English-language version of the International keyboard.

The I/O handler for the Standard terminal changes the value of function key
(F8) from Xt7F to Xt06 before the user program actually receives the data.
The International keyboard generates Xt06 for this key.

For either keyboard the system automatically converts lowercase letters
into uppercase letters before the user program receives the data. If true
lowercase input is required, this conversion can be disabled with a CRTLCI
system call.

VI-005-I3 computer terminals 9-29

•

GENERATED CODES - STANDARD KEYBOARD

~ ReA ~ Rex ~ H.ex

@ 40
,

60
21 A 41 a 61

tI 22 B 42 b 62
23 C 43 c 63
$ 24 D 44 d 64
% 25 E 45 e 65
& 26 F 46 f 66 , 27 G 47 g 67
(28 H 48 h 68
) 29 I 49 i 69

* 2A J 4A j 6A
+ 2B K 4B k 6B

2C L 4C 1 6C
2D M 4D m 6D . 2E N 4E n 6E

/ 2F 0 4F 0 6F
0 30 P 50 P 70
1 31 Q 51 q 71
2 32 R 52 r 72
3 33 S 53 s 73
4 34 T 54 t 74
5 35 U 55 u 75
6 36 V 56 v 76
7 37 W 57 w 77
8 38 X 58 x 78
9 39 y 59 Y 79

3A Z 5A z 7A
; 3B [5B
< 3C \ 5C

= 3D] 5D
> 3E 5E
? 3F 5F

<ERASE> or <RULER/PRINT> 03 <Fl> lC
<ERASE LINE> 04 <F2> ID
<HOME> 07 <F3> IE
<CANCEL> 08 <F4> IF
<TAB> 09 <F5> OB
<RETURN> OA <F6> lB
<BACK TAB> OC <F7> 05
<CHAR DELETE> 17 <F8> 7F (becomes 06)
<CHAR INSERT> 18 (F9> 01
Space Bar 20 <FlO> 10
< I> (vertical) or <CENTER> 7C

<DOWN ARROW> 00
<UP ARROW> 02
<RIGHT ARROW> lA
<LEFT ARROW> 19

9-30 computer terminals V1-005-13

I I

VI-OOS-I3

LAYOUT - MODEL 4800 ENGLISH KEYBOARD

13

LINE LINE
ERASE INSERT DELETE

CHAR CHAR
INSERT DELETE

f +

- -

SH~FT ~ ~ SHIFT

1.1 ,. 2

NOSHIFT~ I_--,--_~~I SHIFT
2

14 15 16 17 18 19

35 36

52 53

69 70 71

88 89

SH~FT ~ %' SHIFT

I.. _I "2

NO SHIFT --l"~--:_--r------II SHIFT
2

ERASE
LINE

HOME

ALT

20

37

54

72

90

computer terminals 9-31

GENERATED CODES - MODEL 4800 ENGLISH KEYBOARD (PART 1)

SHIFT1+2 SHIFT 2 SH I FT 1 NO SHIFT

KEY KEY HEX I KEY ! HEX KEY HEX KEY HEX
NO, SYM CODE SYM

I .
SYM CODE SYM CODE t CODE I

I Fl lC Fl lC Fl lC Fl lC

2 ~L 10 F2 IU F2 10 F2 10

3 F3 lE F3 lE F3 lE F3 lE
4 F4 IF F4 1 F F4 1 F F4 1 F

5 F5 OB F5 OB F5 OB F5 OB
6 F6 lB F6 lB F6 1B F6 1 B
7 F7 05 F7 05 F7 05 F7 05

8 F8 06 F8 06 F8 06 F8 06

9 F9 01 F9 01 F9 01 F9 01
10 FlO 10 FlO 10 FlO 10 FlO 10

11 F 11 Fl F 11 Fl F 11 Fl F 11 Fl _ ..

12 F12 F2 FJ2 F2 F12 F2 F12 F2

13 F13 F3 F13 FJ F13 F3 F13 F3

14 F14 F4 F14 F4 F14 F'4 F14 F4

15 F15 F5 F15 F5 F15 F5 F15 F5

16 F16 F6 F16 F6 F16 F6 F16 F6

17 F17 F7 F17 F7 F17 F7 F17 F7

18 F18 F8 F18 F8 F18 F8 F18 F8

19 F19 F9 F19 F9 F19 F9 F19 F9

20 F20 FA F20 FA F20 FA F20 FA

21 21 21 ! 21 1 31

22 40 40 @ 40 2 32

23 23 23 # 23 3 33

24 24 24 $ 24 4 34

25 25 25 % 25 5 35

26 83 83 ~ 83 6 36

27 26 26 & 26 7 37

28 2A 2A * 2A 8 38

29 ¢ 30 28 (28 9 39

30 29 29) 29 (/) 30

31 5F 5F - 5F - 20

32 2B 2B + 28 = 3D

33 > 81 ~ 80 } 70 { 78

34 CANCEL 08 CANCEL 08 CANCEL 08 CANCEL 08

35 LINE 16 LINE 16 LINE 16 LINE 16
INS INS INS INS

36 LINE 15 LINE 15 LINE 15 LINE 15
DEL DEL DEL DEL

9-32 computer terminals VI-005-13

GENERATED CODES - MODEL 4800 ENGLISH KEYBOARD (PART 2)

SHIFT 1+2 SHIFT 2 SHIFT 1 NO SHIFT

KEY KEY HEX KEY HEX KEY HEX KEY HEX
NO. SYM CODE SYM CODE SYM CODE SYM CODE

37 ERASE 03 ERASE 03 ERASE 03 ERASE 03
38 TAB ~ TAB 09 TAB 09 TAB 09

39 51 51 a 51 q 71
4t 57 57 W 57 w 77
41 45 45 E 45 e 65
42 52 52 R 52 r 72
43 54 54 T 54 t 74
44 59 59 Y 59 y 79
45 1 31 31 U 55 u 75
46 2 32 32 I 49 i 69
47 3 33 33 0 4F 0 6F
48 50 50 P 50 p 70
49 50 50] 50 [5B
50 t E5 + E7 I 7C \ 5C I

51 - E8 - E6 - 7E /\ 5E
52 CHAR 18 CHAR 18 CHAR 18 CHAR 18

INS INS INS INS
53 CHAR 17 CHAR 17 CHAR 17 CHAR 17

DEL DEL DEL DEL
54 ERASE 04 ERASE 04 ERASE 04 ERASE 04

LINE LINE LINE LINE
55 SHIFT SHIFT SHIFT SHIFT

2 2 2 2
56 SHIFT SHIFT SHIFT SHIFT

1 1 1 1
57 41 41 A 41 a 61
58 53 53 S 53 s 73
59 44 44 0 44 d 64

60 46 46 F 46 f 66
61 - 20 20 G 47 9 67
62 + 2B 2B H 48 h 68
63 4 34 34 J 4A j 6A
64 5 35 35 K 4B k 6B
65 6 36 36 l 4C I 6C
66 3A 3A 3A I 3B
67 E4 £ 85 " 22 I 27 J:l

68 :::: E3 :;. 82 I 7F \ 60

69 RETURN OA RETURN OA RETURN OA RETURN OA
70 CURS 02 CURS 02 CURS 02 CURS 02

UP UP UP UP

VI-005-13 computer terminals 9-33

GENERATED CODES - MODEL 4800 ENGLISH KEYBOARD (PART 3)

SHIFT 1+2 SHIFT 2 SHIFT 2 NO SHIFT

KEY KEY HEX KEY HEX KEY HEX KEY HEX
NO. SYM CODE SYM CODE SYM CODE SYM CODE
71 CURS 00 CURS 00 CURS 00 CURS 00

OWN OWN OWN OWN
72 HOME 07 HOME 07 HOME 07 HOME 07

73 SHIFT SHIFT SHIFT SHIFT
2 2 2 2

74 SHIFT SHIFT SHIFT SHIFT
1 1 1 1

75 5A 5A Z 5A z 7A
76 58 58 X 58 x 78
77 43 43 C 43 c 63
78 = 3D 3D V 56 v 76
79 2C 2C B 42 b 62
80 2E 2E N 4E n 6E
81 7 37 37 M 40 m 60
82 8 38 38 < 3C 2C
83 9 39 39 > 3E 2E
84 3F 3F ? 3F / 2F
85 SHIFT SHIFT SHIFT SHIFT

1 1 1 1
86 SHIFT SHIFT SHIFT SHIFT

2 2 2 2
87 REPEAT REPEAT REPEAT REPEAT
88 CURS 19 CURS 19 CURS 19 CURS 19

LT LT LT LT
89 CURS 1A CURS lA CURS lA CURS 1A

RT RT AT RT
90 ALT OF ALT OF ALT OF ALT OF

MODE MODE MODE MODE
91 TAB 09 TAB 09 TAB 09 TAB 09

92 SPACE 20 SPACE 20 SPACE 20 SPACE 20

93 BACK OC BACK OC BACK OC BACK OC
TAB TAB TAB TAB

9-34 computer terminals VI-005-13

IIfPIlr BCBQIBG - COMMABD ABP ROLL MODIS

If the terminal is in either Command Mode or Roll Mode, the following
response occurs for the various keys. No echoing occurs in the Roll Mode
unless the terminal is open and an input operation is pending. All echoing
appears on the bottom line of the screen.

<Fl) through <FlO) No response.

<Fll) through <F20) International keyboard only. No response.

ASCII Characters

<ERASE)

<CHAR INSERT>

<CHAR DELETE>

<ERASE LINE>

<UP ARROW>

<DOWN ARROW>

<HOME>

<LEFT ARROW>

<RIGHT ARROW>

<CANCEL>

<RETURN)

VI-005-13

Displayed at the current cursor location. Moves the
cursor one position to the right. Wraps around the
bottom line as needed.

Erases the entire screen. The cursor then appears at
the start of the bottom line.

Character Insert. Causes all characters from the cur­
rent cursor position to be shifted right one posi­
tion. Any character which was on the righthand edge
of the screen is lost.

Character Delete. Causes all characters from the cur­
rent cursor position to be shifted left one position.
A blank is supplied for the last position on the
line.

Erases all characters from the current cursor posi­
tion to the end of the line.

No effect.

Rolls the screen down one line.

Returns the cursor to the start of the bottom line.

Moves the cursor one position to the left. Wraps
around the bottom line as needed.

Moves the cursor one position to the right. Wraps
around the bottom line as needed.

No effect in Command Mode. In Roll mode, it aborts
the job attached to the terminal, unless an ABTC
system call is in effect.

Causes information on the bottom line to be trans­
f erred to the system if in Command Mode. In Roll
Mode, it completes the application program's input
operation.

computer terminals 9-35

<TAB>

<BACK TAB>

<ALT>

Moves the cursor to the next tab stop. (Tab stops are
located at every eighth column.) After the last tab
stop, the cursor wraps around to the home position.

Moves the cursor to the preceding tab stop. No effect
if the cursor is at the home position.

Universal keyboard only. No effect.

INPut ECHOING - FRRB SCRBIN MODI

If the terminal is in the Free Screen Mode, the following response occurs
for the various keys - assuming that a program is doing a read (RCRT)
operation. Echoing occurs anywhere on the screen.

<FI> through <FlO> Terminate the read and return the function key code
to the user program:

<FI>
<F2>
<F3>
<F4>
<F5>

X'IC
X'ID
X'IE
X'IF
X'OB

<F6>
<F7>
<FS>
<F9>
<FlO>

X'IB
X'05
X'06 *
X'OI
X'IO

*The Standard keyboard generates x'7F for <FS>, but
the system converts this to X'06 - the same code
generated by the International keyboard.

<Fll> through <F20> International keyboard only. Terminate the read and
return the function key code to the user program:

ASCII Characters

<ERASE>

<CHAR INSERT>

<FII> X'FI
<FI2> X'F2
<FI3> X'F3
<FI4> X'F4
<FI5> X'F5

<FI6> X'F6
<F17> X'F7
<FIS> X'FS
<FI9> X'F9
<F20> X'FA

Displayed at the current cursor location. The cursor
then moves right one position.

Erases all unprotected data from the free screen. The
cursor does not move.

Character Insert. Causes all characters from the cur­
rent cursor position to be shifted right one posi­
tion. Characters are not shifted into protected
fields. The shift stops at the end of a line or at
the first protected character encountered. The Jast
character, if shifted into the end of the line or
into a protected position, is lost.

9-36 ·computer terminals VI-005-13

<CHAR DELETE>

<ERASE LINE>

<UP ARROW>

<DOWN ARROW>

<HOME>

<LEFT ARROW>

<RIGHT ARROW>

<CANCEL>

<RETURN>

<TAB>

<BACK TAB>

VI-005-13

Causes all characters from the current cursor posi­
tion to be shifted to the left one character posi­
tion. The shift stops at the end of a line or if a
protected field is encountered. A blank is used as
the fill character.

Erases all characters from the current cursor posi­
tion to the first protected character or to the end
of the screen, whichever occurs first.

Moves the cursor up one line. If that position is
protected, it moves left until an unprotected posi­
tion is found. The cursor wraps around from the top
line to the bottom line as needed.

Moves the cursor down one line. If that position is
protec ted, it moves righ t until an unprotec ted loc a­
tion is found. The cursor wraps around from the
bottom line to the top line as needed.

Moves the cursor to the first unprotected position on
the screen.

Moves the cursor one position to the left. If that
position is protected, it moves left until an unpro­
tected position is found. The cursor wraps around to
the next line as needed.

Moves the cursor one position to the right. If that
position is protected, it moves right until an unpro­
tected position is found. The cursor wraps around the
line as needed.

Aborts the job attached to the terminal, unless an
ABTC system call is currently in effect.

The cursor is moved to the beginning of the next
line. If that position is protec ted, it is moved
right until an unprotected position is found. Wrap­
around occurs at the end of the screen.

If there are no unprotec ted fields, the cursor does
not move. Otherwise, the cursor is moved right-wards
to the start of the next unprotected field; wrap­
around occurs at the end of the free part of the
screen.

If there are no protected fields; the cursor does not
move. Otherwise, it is moved to the left until it is
at the beginning of an unprotected field. If it was
already at the start of an unprotected field, it
moves to the start of the preceding unprotected
field. Wraparound occurs from the beginning of the
free part to its end.

computer terminals 9-37

<ALT> Universal keyboard only. Terminates the read and
returns X'OF to the user program.

INPll[ECHWNG - FIELD ENTRY

<Fl> - <F20>

ASCII characters

<ERASE>

<UP ARROW>

<DOWN ARROW>

<HOME>

<LEFT ARROW>

<nIGHT ARROW>

<RETURN>

<TAB>

<BACK TAB>

Completes the current field, inhibit input, and
returns the function key code to the user program.

Displayed at the current cursor location. Moves the
cursor one position to the right. If this position is
protected, the cursor is positioned at the start of
the next unprotected field to the right.

Erases the current unprotec ted field and positions
the cursor to the start of this field.

Ignored.

Ignored.

Positions the cursor to the start of the field.

Moves the cursor one position to the left, unless the
cursor is at the start of the field in which case
<LEFT ARROW> is ignored.

Moves the cursor one position to the right. If this
position is protec ted, the cursor is positioned at
the start of the next unprotected field to the right.

Ignored.

The cursor is positioned at the start of the next
unprotec ted field to the right.

Cursor is positioned at the start of the current
field.

INPll[ECHOING - SINGLB-FmLD MAD

<Fl> - <F20>

ASCII charac ters

<ERASE>

<UP ARROW>

Completes the current field, inhibits input, and
returns the function key code to the user program.

Can not complete the current field, can not move the
cursor out of the current field. At the end of the
current field, overstriking occurs.

Erases the current unprotec ted field and positions
the cursor to the start of this field.

Ignored.

9-38 computer terminals VI-005-13

<DOWN ARROW>

<HOME>

<LEFT ARROW>

<RIGHT ARROW>

<RETURN>

<TAB>

<BACK TAB>

SCRBIN CONTROLS

Ignored.

Positions the cursor to the start of the field.

Moves the cursor one position to the left, unless the
cursor is at the start of the field in which case
<LEFT ARROW> is ignored.

Moves the cursor one position to the right, unless
this position is protected. Can not move the cursor
out of the current field. Can not complete the cur­
rent field.

Ignored.

Completes the current field and inhibits input.

Cursor is positioned at the start of the current
field.

Computer terminal screens have display features which are controlled by
special characters. These control characters occupy screen positions but,
except for certain underscore controls, they display as blanks.

The following table lists the display features and the hexadecimal value of
the associated control characters. For each of the features, a "5" in the
N/A column indicates that it is not available on the JI00; a "IS" indicates
that the feature is not available on the JI00/JI05/J50 wjth Standard key­
board controllers.

Feature Hex Code NlA

Half intensity starts 11 5
Half intensity ends 12 5
Blinking starts 13
Blinking ends 14
Inversion starts 15 IS
Inversion ends 16 IS
Blanking starts lA IS
Blanking ends IB IS
Protected area starts IE
Protected area ends IF
Underscoring starts 17 IS
Underscoring ends 18 IS
Underscoring starts (with marker on JI00) 10 IS
Underscoring ends (with marker on JI00) 19 IS

A control character affects all the screen positions following it, until
it is either reversed by another code or removed from the screen by further
output. A screen area may be affected by several unrelated codes.

VI-005-13 computer terminals 9-39

Inversion causes each character to be displayed as dark dots against a
light background. The X'16 code itself will appear as an inverted blank;
the X'17 will be a normal blank. Blanking makes an area invisible without
disturbing its actual contents. Protected areas affect the processing of
keyboard editing operations, 'as described earlier.

On a J500, underscoring affects all screen positions between X'17, which
appears as an underscored blank, and X'18, which appears as a normal blank.

On a JI00 with an International keyboard, both X'17 and X'18 appear as
normal blanks. Underscoring affects only characters in the range X'21
through X'E6; an ASCII blank (X'20) is not undersc ored.

X'10 and X'19 appear as right-triangular markers (sloping left and right
respectively) on a JI00 with a International keyboard. In all other
respects, they are equivalent to X'17 and X'18.

9-40 computer terminals VI-005-13

Chapter 10

COMMUNICATIONS AND
ASYNCHRONOUSCHARACTER~O

Standard System II software includes drivers for printers, for auto-dial
units, and for both asynchronous and synchronous communications devices.
Jacquard also offers specialized communications drivers and emulators for
line protocols such as IBM 2780/3780, IBM 3270, and UNIVAC 1004; these
software produc ts mus t be ordered separately.

To reduce the amount of memory required by the system when printers or
communications devices are not in use, the drivers and emulators reside on
disk. System II loads th e appropriate driver in response to an "OPEN"
request for the relevant device.

System II provides a common device-independent interface to all supported
devices. To conform to this standard, the printer and communications device
drivers perform the following functions:

• Interrupt level I/O processing.

• Buffering data input from the device.

• Buffering data to be output to the device.

• Error checking on input, and error recovery where possible.

• Charac ter code translation, as described in Chapter 15.

• Specialized protocol handling where applicable.

This section describes the asynchronous character device drivers. Other
communications drivers are described in the publications cited in the
following summary.

VI-005-13 communications and asynchronous character I/O 10-1

ASYNCHRONQUS DRIVBRS

Driver

CDLDRV.SB

CDODRV.SB

CDXDRV.SB

MUXDRV.SB

DPRDRV.SB

DILDRV.SB

DeVice

SILA
(Synchronous­
Isochronous
Adapter)

Line Printer
Controller

Asynchronous
Multiplexer,
Single Line

Asynchronous
Multiplexer,
Eight Lines

Character
Printer

Auto-Dialer

SYKCHRONOUS DRIVBRS

Driyer

SILDRV.SB
SIL5DR .SB

UJEDRV.BB

CSEAOO.SB

Deyice

SILA

SILA

SILA

Description

J100 only. Asynchronous inpu t and ou tpu t
using SILA.

au tpu t only. Included in standard software.

Input and output for remote terminals.
Included in standard software.

JI00 only. Input and output for multiple
remote terminals or printers. Included
in standard software.

Output only. Included in standard
software.

J500 only. Included in standard software.

Description

General synchronous drivers for SILA
and user-written communications protocols.
Included in standard software. Write-up on
request.

Driver used alone or with URJE emulator
(UNIVAC 1004 RJE). Driver and emulator
in "URJE" package; manual V1-066.

BSC (Binary Synchronous Communic a tions)
drivers, multi-point and point-to-point,
for ASCII or EBCDIC controls. Used alone
or with BRJE utility. Drivers and BRJE in
"CSA" package; manual V1-066.

AsYNCHRONOUS COMMUNICATIONS DBIYBBS

The three asynchronous communications drivers are CDXDRV.SB for the single­
line asynchronous controller, and MUXDRV.SB for the 8-line asynchronous
multiplexer and CDLDRV for SILA. The asynchronous controllers support
communications with devices such as remote terminals and printers, as well
as communication between computers. Support is provided only for devices
included in the current AM Jacquard Systems sales catalog.

10-2 communications and asynchronous character I/O V1-005-13

Asynchronous drivers process standard system calls: OPEN, OPNW, OPNR,
CLOS, WRL, WRS, RDL, and RDS (see Chapter 7). Any code translation occurs
automatically just after input, or just before output, as described in
Chapter 15.

In addition to the usual RDS/RDL errors, these codes are possible:

ERCMBO Buffer overflow
ERCMPE Parity error
ERCMFE Framing error
ERCMNR Data set not ready

When such an error occurs, the last character delivered to the user program
(and included in the ACI byte count) is the one which caused the error. To
obtain the rest of the buffer, another read is needed.

Both hardware and software options control the manner in which characters
are handled. Controller hardware options include:

• Character size in bits

• Character parity generation and checking

• Number of start and stop bits

• Baud rate

In addition, modems, remote terminals, and printers may have switches for
several of the hardware options above, as well as half/full duplex, gene­
ration of XON/XOFF, and spacing/form feed. Controller hardware options,
terminal or printer options, and device characteristics chosen during
system generation must be considered together when installing hardware and
software for these devices.

Hardware and software impose some restrictions on the options which may be
selected in the hardware and during system generation for asynchronous
character I/O.

SOFTWARE RESTRICTIONS

Standard software does not support screen operations in Free Mode or Split
Mode for remote CRTs on asynchronous lines, as opposed to JI05 satellites,
which use main memory refresh.

This restriction excludes not only user-written programs in BASIC or
assembly language, it also excludes Type-Rite, the Account-Rite packages
(General Ledger, Payroll, etc.), any application created with Data-Rite,
and standard utilities with full screen displays (such as FILES, JOBS,
PARTS, DSKOPY, EDIT, and interactive SORT).

Vl-005-13 communications and asynchronous character I/O 10-3

BAUD RATE

The practical upper limit is 4800 baud for a JIOO and 9600 baud for a J500;
however, baud rate really depends upon the application and the total hard­
ware configuration. When an asynchronous line is used to transfer data to a
device without long pauses between records or groups of characters, the
baud rate must suit the receiving device. If data is being copied to a
floppy disk the maximum is 300 baud. For a cartridge disk the maximum is
1200 baud.

The maximum baud rate for output to a remote character printer is affected
by the printer's response to commands such as carriage return and form
feed. The asynchronous drivers have no means of detecting that the remote
printer is busy with one of these time consuming commands and will continue
to transmit characters. The printer may then behave peculiarly or lose
characters.

The Diablo HyTerm 1610 operates correctly at 1200 baud. The Texas
Instruments 810 prints correctly at 300 baud; in some cases it may run
correctly at 1200.

DUPLEX MODES

All asynchronous drivers and associated hardware operate in full-duplex
mode. The J100 CDLDRV driver and all J500 asynch drivers will also operate
in half duplex mode. In general, all printers and remote CRTs should
operate full duplex.

X=,OFF AHD X-ON

In some full duplex circuits, data flow is regulated with two characters
called "X-OFF" and "X-ON" on a teletypewriter keyboard.

Sending X-OFF (or "Control/S" - DC3 in ASCII, X'13) requests "quiet" - the
other end of the line should halt its transmission.

Sending X-ON (or "Control/Q" - DC1 in ASCII, X'll) indicates "restart" -
the other end of the line may resume its transmission.

In System II, this convention may be enabled for a full-duplex asynch
device by setting the XO characteristic, either at system generation time
or through the ACUP utility. The following guidelines should be observed:

• Only ASCII can be used, and neither X-OFF nor X-ON can appear as data
characters.

• The minimum acceptable buffer size is 32 characters.

• Several X-OFF or X-ON characters can be sent consecutively for a
single "quiet" or "restart" request.

10-4 communications and asynchronous character I/O VI-005-I3

• If one end of the line is echoing all the data received, it is manda­
tory for the· other end to read back at least as many characters as it
writes. Furthermore, the writes must not proceed faster than the
reads; in other words, echoing implies that characters must not be
sent faster than they can be received.

AVI'O=DIAI.IB DRIVER

DILDRV.SB is a J500 device driver for initiating a telephone call on either
a synchronous or an asynchronous communications line.

The required hardware connections are:

1. J500 auto-dialer port to Bell 801 (or equivalent) auto-dial unit. This
is an RS-366 connection.

2. J500 communications port to a dialer-compatible modem. The System II
device on this line must be defined with the DC option; that is,
disconnected when closed.

3. Phone line (through a DAA) to both the modem and the dialer.

Programming a single telephone call involves the following steps:

1. Open the dialer and the communications device; it does not matter
which is opened first.

2. Use a WRL or WRS call to output the phone number to the dialer. The
caller will be suspended until one of these events occurs:

• The call is completed successfully.

• The dialer abandons the call. Typical reasons are dialer timeout,
no dial tone, busy signal, or out-of-service signal.

• No response from the dialer for two minutes.

3. For a normal return from the WRL/WRS, close the dialer. The communi­
cations device will then be connected to the phone line.

4. For an error return from the WRL/WRS, close the dialer. After a suit­
able real-time wait (no less than 15 seconds), re-open the dialer and
go to step 2.

Each digit of the the phone number is normally an ASCII numeral, from "0"
(X'30) to "9" (X'39), or a punctuation mark from X'3A to X'3F, which some
dialers will recognize as a pause for another dial tone. With the excep­
tions noted below, other values from X'10 to X'FF are also acceptable.
In any case, the low-order four bits are taken as the digit to be passed to
the dialer.

Values X'20 (space), X'2D (hyphen), and X'09 (horizontal tab) are ignored;
nothing is passed to the dialer.

V1-005-13 communications and asynchronous character I/O 10-5

The string must end with a line terminator, typically X'OD, although any
value less than X'10, except X'09, is also a valid terminator.

The error codes generated by DILDRV.SB are ERICL, ERISZ, ERABT, and
ERLTL, plus the unique auto-dialer codes ERDLNP, ERDLAC, and ERDLTO.

2.B.INTBR DRIVERS

As defined at SYSGEN time, local printers and their controllers use one of
the printer drivers, CDODRV.SB (Data Products, Centronics, Printronix,
Texas Instruments) or DPRDRV.SB (Qume, Xerox, NEC, or Diablo other than
HyTerm). Remote or asynchronous printers require an asynch driver, as
described previously. In any case, support is provided only for printers
included in the AM Jacquard sales catalog.

All printer drivers process standard system calls: OPNW, CLOS, WRL, and
WRS (see Chapter 7). In general, when default characteristics have been
chosen during system generation, a line terminator, a character less than
X'10 except for Horizontal Tab (X'09) and Form Feed (X'OC), is converted to
a Carriage Return (X'OD) followed by a Line Feed (X'OA). The drivers
respond to X'OC with a page ej ect and to X'09 by generating blanks for tab
expansion. Data code translation through a nCT" file, as described in
Chapter 15, is also supported.

Driver behavior is influenced by SYSGEN device characteristics.
For instance, by selecting transparent mode (TM) or extended character set
(ES), the user can output any bit pattern without interpretation by the
driver. Some line printers have "built-in" features, such as au tomatic form
feed every 10 inches. To eliminate such features, the hardware must be
modified, and the characteristic must be omitted from those selected during
sys tern g ener a tion.

For a printer using DPRDRV.SB (or for a Diablo HyTerm using an asynch
driver), two special control sequences are recognized: X'IBIF' (Set
Horizontal Pitch) and X'IBIE' (Set Vertical Pitch). The next output
character after the sequence specifies the pitch.

Horizontal pitch, in characters per inch:

X'82 120 cpi X'8B 12 cpi X'99 5 cpi
87 20 8D 10 9F 4
88 17 90 8
89 15 95 6

Vertical pitch, in lines per inch:

X'82 48 lpi X'89 6 lpi X'91 3 lpi
87 8 8B 5
88 7 8D 4

For Diablo HyType and Qume Sprint 3 printers, 96-character wheels include a
position corresponding to X'20. Because this value is defined as a space by
ASCII and by System II, the drivers accept X'10 instead to print this

10-6 communications and asynchronous character I/O VI-005-13

position. Two more control codes are defined for these printers: X'17
(Start Underscore Mode) and X'18 (End Underscore Mode). Only non-blank
positions are underscored, and the control codes themselves will appear in
the output as spaces.

PRINTER WHEEL TABLE USAGE

Printer wheel tables are provided for translation of characters displayed
on the CRT screen, causing the print-wheel/thimble to strike at the correct
character position. The tables also give information on printer hammer
intensity and ribbon advance. For Release 9.0, they are contained on disk­
ette TBL190. Those tables which are needed should be copied to the primary
disk.

V1-005-13 communications and asynchronous character I/O 10-7

(THIS PAGE INTENTIONALLY BLANK)

10-8 communications and asynchronous character I/O V1-005-13

Chapter 11

MAGNETIC TAPE FILE MANAGEMENT

INTRQDUCTIOH

The magnetic tape facilities of the System II operating system have been
designed to support magnetic tape devices with an absolute minimum of
effort and yet allow enough flexibility to perrPlt intlmatp control of the
device if desired.

Two independent types of support for magnetic tape files are available In

the operating system. The first type provides standard system sequential
file I/O on 9-track tape devices. Chapter 7 details the standard systerr!
sequential file I/O philosophy; however, the support f or tape files has
been expanded sufficiently to justify that a separate se~tion be included
to explain these facilities. The second type of support provides dev lr e
level control over 9-track tape devices by means of driver calls.

All of the facilities to be described in this section are incorporated 1(1 8

binary file named MT9DRV.SB which is disk resident. This file must be
available on the system primary disk when a 9-track magnetic tape devicf-' is
opened. It is loaded into memory at "open-time" and will remain resident
until all 9-track tape devices are closed. The MT9DRV.SB file is sharable
(/E8) and only one copy is required for concurrent support of all 9-track
tape devices which have been configured in the system (via system
generation). ~

A system user (application program) must select which of the two types of
tape support is more suitable since they cannot be arbitrarily intermixed.
As a rule of thumb, sequential file I/O should always be used unless more
flexibility is needed to deal with unusual tape formats. The support type
is dynamically selected via the open call:

Open Call

OPEN
OPNR
OPNW

VI-005-I3

Support Type

Driver level calls
Sequential file I/O (input)
Sequential file I/O (output)

magnetic tape file management 11-1

SRQ1IBlfJlAL FILE liO OEEH

An open call must be made for a tape file before activity of any kind may
occur on that file. The open call for a magnetic tape device is in the
standard form described in Chapter 7 with certain optional extensions. The
following information is defined by the open call:

• Sequential file I/O support

o Input or output file

o Share/no share output file

e Tape mode

1. Undefined length records

2. Variable length records

30 Fixed length records

o Physical block size

• Logical record size

• Code translation

• Initial volume position

The specific form for the open call is:

Input: CALL Ou tpu t: CALL
• WORD OPNR
error return
normal return

• WORD OPNW
error return
normal return

The open call, on normal return, provides a User File Table (UFT) address
in AC2. This UFT must be supplied to every subsequent file service call
since it identifies the file to the system. A UFT should be used only by a
single task; multiple tasks should perform multiple opens so that each has
its own UFT.

The open calls for both input and output files require the following entry
parameters:

ACI = Flags.

ACO = File name block (FNB) address.

The flags provided in ACI specify file share information and whether an
extended FNB is being used in the call.

11-2 magnetic tape file management VI-005-13

Ela" BU

14
8

Descri~tion

Write share output tape file.
Extended FNB specified in ACO.

Since 9-track magnetic tape devices are configured into the operating
system as write sharable devices, an output file on magnetic tape can be
opened concurrently by multiple jobs. Each such job may then act as an
independent write process and the collective output will be pooled into a
single sequential file on tape. Records will be added to a shared file on a
"first come" basis. Interleaving can occur only at a record level; each
record will be contiguous within the file.

Bit 14 of the flags (ACl) must be set only for an output file (OPNW) and
then only to indicate the user is willing to share the output tape file
with other write processes that may have already opened the file or are yet
to request file open. If this bit is not set, the open call will succeed
only for the first open; subsequent open requests will be refused since the
file has been opened non-sharable.

Bit 8 of the flag word, when set, indicates that three extra words appear
at the end of the standard 7-word FNB whose address is specified in ACO.
The first seven words must contain the devic e file name in standard form
(in words 4, 5, and 6). An extended FNB must appear as follows:

1

2

3
Devic e File name

4

5

6

7
Positioning,

8 Code Translation, Tape Mode
Optional FNB
Extension 9 Block Size (characters)
(Bit 8 on)

10 Record Size (characters)

The eighth word of the FNB (if it appears) must have this format:

o 7 10 11 12 15

1//////1

(a) (b) (c) (d)

VI-005-13 magnetic tape file management 11-3

(a) Bits 0-7 o - No skip (default).

n - Skip n EOF marks where n is a signed integer.
Negative implies motion toward the load point.

(b) Bit 10

(c) Bit 11

(d) Bits 12-15

o - No rewind (default).
1- Rewind before any EOF skips.

o - No translate (default).
1 - Translate.

Mode: 0 - Variable (default).
1 - Undefined
2 - Variable
3 - Fixed

An initial tape volume position may be established for an unshared file by
use of the rewind and skip fields in the eighth word. Volume positioning
requests on a write share open will result in an error return. The rewind
bit (10) is inspected first and, if set, causes the volume to be rewound to
load point. The skip field (bits 0-7) is a signed integer (-128 to +127)
which, if non-zero, causes the specified number of EOF marks to be skipped.
A negative count causes motion towards the load point.

The code translation option is selected by setting bit 11 in word 8 of an
extended FNB. If code translation is specified, a file with this name

$device.CT

must be available, or the OPEN will fail with an error code 34. A standard
file named EBCDIC. CT is supplied. If translation is required, a copy of
that file (with an appropriate name, such as MTOO.CT) could be employed to
effect translation from ASCII to EBCDIC during output, and translation from
EBCDIC to ASCII during inpu t.

For further details on "eT" files, refer to Chapter 15.

The mode field (bits 12-15) defines the basic physical structure of the
tape file. In brief, these modes have the following characteristics:

• Undefined length records (U-mode)

No information is implied at open time about the tape file block size.
For an output file, each record output (each WRS, WRL call) will be
written as a separate physical block on tape. Any translation and the
device data transfer occur from the user's data area. Similarly, for
input files, each record input (each RDS, RDL call) will cause the
next physical block on tape to be read directly into the user's data
area. Any translation also occurs in the user's data area. This mode
requires the least overhead since there is no blocking/deblocking in a
system buffer area.

11-4 magnetic tape file management VI-005-13

• variable leog-th records (y-mode)

No information is implied at open time about the tape file logical
record size; however, for output files, records will be blocked to the
defined block size before being written to tape. As each record is
output (WRS, WRL call), it is added to the current block. Any data
which does not fit in the current block will be continued in the next
block. For inpu t files, records will be deblocked based on delimiters
(terminators) on tape or based on character counts. V-mode is the
default if no mode is supplied.

• Fixed leo2'th records (F-mode)

Both the physical block size and the logical record size are defined,
where the block size is an integer multiple of the record size. This
integer is the blocking factor. For output files, each record is
either truncated or padded with blanks to agree with the record size.
These records are blocked to the specified block size in a system
buffer area and ultimately written to tape. For input files, records
are deblocked according to the declared record size. Each input
request (RDS, RDL) causes an entire record to be obtained.

In an ex tended FNB, the ninth word, when non-zero, specifies a physical
block size in characters; this block size must be positive. This field is
ignored for V-mode tape operation. When the field is zero, a default value
of 800 characters will be supplied for V- or F-mode tape files.

The tenth word when non-zero specifies a logical record size in characters.
This record size must be positive, and it must divide the block size
evenly. This field is required only for F-mode tape operation and ignored
otherwise. When the field is zero, a default value of 80 characters will be
supplied for an F-mode tape file.

An open c all made with no extended FNB will result in a tape file with the
following default characteristics:

• No volume positioning

• No translation

• V-mode

• 800 character block size

H.Q.t.e.: Block size can be altered by using the MCUP utility. See the System
II Utilities Manual for additional information.

A variety of error conditions may occur during open processing. Certain
general system errors are itemized in Chapter 7. The following itemizes
several additional error codes (and their causes) that may result for
sequential file I/O open requests on a 9-track magnetic tape device.

V1-005-13 magnetic tape file management 11-5

ERTIO - TAPE I/O ERROR

This code is generally reserved for errors involving the device itself.
Possible causes are:

Tape Device Status

Rewind Error

Skip EOF Error

File Protect

Resul ts if th e devic e is offline, not ready, or
some abnormal status occurs (see UFT description
in this section).

Resul ts if an abnormal status occurs during an
attempt to rewind the tape volume (FNB word 8, bit
10) •

Resul ts if the requested tape position cannot be
established due to load point, EOT marker, or an
abnormc..l status (FNB word 8, bits 0-7).

For an output file only; results if no write ring
is on the tape volume, causing a file protect
status indication.

ERTPE - TAPE PARAMETER ERROR

This code is generally reserved for errors involving parameters and system
level rules. Possible causes are:

Block Size

Record Size

Share Conflic ts

Resul ts if the block size in characters is not
positive (V- or F-mode only).

Results if the record size in characters is not
positive or does not divide the block size evenly
(F-mode only).

Results on write share opens when volume posi­
tioning is requested or when the following
parameters do not agree with those declared by
previous opens:

Mode
Block Size (V, F only)
Record Size (F only)
Translation

ERNPA - NO PARTITION AVAILABLE

This is a standard system error that may occur on V-or F-mode opens only,
or any open specifying translation. It indicates that insufficient con­
tiguous main memory was available to allocate tape I/O buffer space, or
translation table space. The amount requested for an I/O buffer is the
declared block size. For a shared d~vice, this may occur only on the first
open.

11-6 magnetic tape file management VI-005-13

PHYSICAL TAPE STRUCTUBB ABU DATA TRAlfSlER

Magnetic tape often serves as a medium for the exchange of information
between different types of computer systems. As a result, it is often
important to know the exact physical structure of files on tape volumes.

,A discussion follows which details the structures that the System II tape
facilities can handle.

A file is composed of a collection of records that usually have some logi­
cal relation to one another. The record is the basic unit of information
read from or written to a file by an application program.

Chapter 7 details the system I/O philosophy and includes the system calls
available for file handling. The data transfer calls have an important
relationship to the physical structure of a tape file and will be reviewed
briefly.

The system provides two major means for specifying data for transfer from/
to a file: read/write line (RDL, WRL) and read/write sequential (RDS, WRS).
The first is intended for transferring ASCII information. In this scheme, a
character string of arbitrary length is ended with a terminator character
which is any code in the range O:F (hex) except 9 (which is a tab). The
string length is implied by the terminator's position.

The second scheme is intended for transferring non-ASCII (binary) informa­
tion. In this method, string lengths are explicitly determined by a
character count provided with the system call.

The information passed in one data transfer call is considered by the
operating system to be a record.

The process of grouping a number of records before writing them on a tape
volume is referred to as blocking. A block is considered to be made up of
the data between interrecord gaps. All blocks need not necessarily be the
same size; however, a block is the minimum amount of data that may be read
from or written to the tape device by the operating system.

On a magnetic tape file, records may be in one of three formats: fixed­
length (F), variable-length (V), or undefined-length (U). This determines
the tape mode which is defined at the time of the open call for the tape
file. The maximum record and block size is 32767 characters.

FIXED-LENGTH B.BCORDS

The size of fixed-length (F-mode) records is the same for all records in
the file. This size is declared in the record size parameter in the file
open call. The tape structure resulting from this tape mode is shown below:

Block Block Block

Blocked I recd I recd I reed I I recd I recd I recd I I recd I recd I recd I

VI-005-13 magnetic tape file management 11-7

Block

Unblocked I recd I I recd I I recd I I recd I I recd I I recd I

The blocking factor (records/block) is determined by the block size
parameter declared in the file open call. For F-mode tapes, block size must
be an integral multiple of the logical record size.

For data input through an RDL call, as much of the next record will be
moved into the user's data area as is permitted by the maximum character
count provided with the call. If the entire record was moved into the
user's data area, and if room for one more character also exists, a ter­
minator will be generated and included at the end of the data. If a
terminator cannot be fit into the user's data area, an error return will
occur with the system "line too long" error code (ERLTL). In any event,. a
return count is provided with both normal and abnormal returns which
specifies the amount of data in the user's data area. If a normal return
occurs, the entire record and a terminator appear in the user's data area.
Regardless of the amount of data which fits in the user's data area, the
entire record will be "consumed" by the read call so that the next read
call will begin with the first character of the subsequent record. Data
missing due to a line too long error may be obtained only by rereading the
record with a larger data area.

For data input using an RDS call, the comments above apply except that no
terminator will be generated. In both cases, the system will not attempt to
trim trailing blanks or perform any other editing, but will move a record
intact (subject to size) into the user's data area.

Even though all records in the file are the same size, the data provided in
a write call (WRL, WRS) may be of arbitrary length. This data string will
be truncated or padded with ASCII blanks in order to match the declared
file record size. The terminator associated with the data on a WRL call
will not be written on tape but merely serves to imply the data length to
the system. For a WRS call, the count is interpreted as the actual data
count, then truncated or padded as necessary to construct the record.

For F-mode tapes, each standard WRS, WRL call causes a complete logical
record to be written to the tape file. However, the WRS call does allow a
non-standard form of the call to permit a single record to be built from
multiple WRS calls. This non-standard WRS call applies only to tape files.
The non-standard form requires that the character count be specified as a
negative value. This will cause the data provided to be added to the cur­
rent record without "closing out" this record. This may be done repeatedly
as necessary to build up a single logical record. The maximum data accumu­
lated is, of course, still subject to the declared logical record size.
Data over this limit will be lost. A standard WRS, WRL call will close out
the logical record in progress after such a series of non-standard WRS
calls. Such a call need not specify any data; the current record will be
padded if necessary by the standard call.

11-8 magnetic tape file management V1-005-13

The following diagrams illustrate the standard and non-standard use of the
WRS call for a tape file. This is applicable only to F-mode tapes; in the
example, the logical record size is 10 characters and the block size is 20
characters.

Block 1

rec 1 rec 2
----------------1--------------------

1 ABeD 1 blank I XYZ I JK 1 blank 1
1 1 fill(6) 1 1 1 fill(5) 1
----------------1--------------------

(a) (b) (c)

(a) 4 characters from standard WRL (or WRS) with automatic blank fill of
record.

(b) 3 characters from first non-standard WRS call.

(c) 2 characters from second standard WRS (or WRL) call.

Block 2

rec 3 rec 4
---------------------------1-----------------------------

1 ABCDEFGHI I xl AB I CD IABCDEF 1
I I I I I I

(a) (b) (c) (d) (e) (f)

(a) 9 characters from non-standard WRS call.

(b) 5 characters from standard WRL, WRS call; adds 1 character, loses 4
and completes current record.

(c) 2 characters from non-standard WRS.

(d) 2 characters from non-standard WRS.

(e) 10 characters from non-standard WRS call; adds 5, loses 5.

(f) Standard WRS (WRL) call closes out record.

Since an output file on tape may be shared by multiple write processes, and
since, for such a shared file, data interleaving can occur only on a logi­
cal record level, the use of this non-standard WRS call can effectively
lock out other write processes which are sharing the same output tape file.
This can happen if a write process outputs a partial record with a non­
standard WRS call. Until the record is completely filled, any other write
process attempting to write to the tape file will be forced to wait (sus­
pended in the write call). Other write processes may proceed only when data
in the file is on a record boundary. For standard WRS, WRL calls, this is
the condition after every call. It is possible for other write processes to
proceed even if one process is using non-standard calls, provided that

V1-005-13 magnetic tape file management 11-9

enough data has been supplied to fill the record (even though the non­
standard write process has not closed the record with a standard call) or
if the non-standard write process issues a close call on the tape file.
A file close call always fills and closes out any partial record.

VARIABLE-LENGTH RECORDS

In this mode, records of arbitrary sizes will appear on tape grouped
together into fixed size blocks. This tape structure provides an efficient
method for writing both ASCII and binary information. It is intended pri­
marily for use only within System II since the tape structure does not
observe any industry conventions. For data written with WRS calls, no
control information is added into the file; however, for (ASCII) data
written with WRL calls, the terminator will be included to allow deblocking
on an RDL call. Input deblocking for RDS calls is based on the specified
character count provided with the call.

Data is accumulated until a block of the declared size has been filled;
this block is then written on the tape volume. A record may span tape
blocks. The following diagram illustrates V-mode tape structure with six
character blocks where "I" is a terminator:

rec 1 rec 2 rec 3

IABC/ixyl I Z 0 1 2 341 I 5 I I A B I I
--·-----·--1-·--·-- -----1-----1---

(a) I (b) I (c) I (d)

(a) 3 data characters and terminator output via WRL call.

(b) 9 characters and terminator output via WRL call, spanning three
blocks on tape.

(c) 2 characters output via WRS call.

(d) Available space in current block.

When data input is requested (via RDS, RDL) from a V-mode tape file, a user
data area and its size are specified with the call. An RDS call will pro­
vide the requested count of characters in the specified data area unless an
abnormal return occurs (e.g., tape error, end-of -file).

An RDL call will similarly transfer data into the user data area subject to
the specified count as a maximum, but each character is inspected after it
is moved. The data transfer will stop before the count is exhausted if a
terminator is detected; this is the normal mode of operation and will
result in a normal return from the call. If the count is exhausted before a
terminator character is encountered, an error return will occur with the
system "line too long" error code (ERLTL) but the user data area will be
filled with data. A subsequent input call will proceed with the next
character in the file; no data will be lost.

11-10 magnetic tape file management VI-005-13

For V-mode tape files being shared among mUltiple write processes, data
interleaving in the file can occur only on a record boundary.

For V- or F-mode output files, the block size determines the amount of data
written to tape in each physical block (except for a possible short block
at file close). For input files, certain flexibility is available for
processing V- or F-mode tapes whose block size is not known exactly. If an
inadequate block size is declared, data will be lost without the system
knowing; unpredictable data transfer may result due to missing terminators
in V-mode tapes for instance. When there is uncertainty, a definite upper
bound on the actual tape block size should be declared; this will avoid
lost data. In this case for V-mode tapes, all data transfer and tape
functions will operate properly. For F-mode tapes, only the record skip
function will operate improperly since it depends on the blocking factor
which is determined from the declared block size. Otherwise, the tape file
may be processed normally. In these circumstances, it might be best to
declare U-mode or use driver level support to allow the block to be
inspected more closely.

UNDEPINED-LENGTH RECORDS

There is no record blocking performed by the system for U-mode magnetic
tape files. Each read/write call will cause a physical tape block to be
input/output. Furthermore, actual device data transfer occurs into or out
of the user data area. For this mode, the terms record and block are
synonymous.

For data input using an RDL call, as much of the next record will be moved
into the user's data area as is permitted by the maximum character count
provided with the call. If room for one more character also exists, a
terminator will be generated and included at the end of the data. If a
terminator cannot be fit into the user's data area, an error return will
occur with the system "line too long" error code (ERLTL). In any event, a
return count is provided with both normal and abnormal returns which
specifies the amount of data in the user's data area. If a normal return
occurs, the entire record and a terminator appear in the user's data area.
Regardless of· the amount of data which fits in the user's data area, the
entire record will be "consumed" by the read call so that the next read
call will begin with the first character of the subsequent record. Data
missing due to a "line too long" error may be obtained only by rereading
the record with a larger data area.

For data input using an RDS call, a single tape block will be read into the
user data area, subject to the maximum data count specified with the call.

To insure that no data is lost due to an insufficiently sized data area, a
size should be established that is at least one character larger than the
largest anticipated tape block. Only if the returned data read count is
equal to the maximum is there uncertainty as to whether the block was
truncated or fit exactly.

VI-005-13 magnetic tape file management 11 ... 11

For data output via a WRL call on a U-mode tape file, a terminator search
will occur to determine the length of the record. The terminator itself is
not included as part of the data. Once the data length is determined it
will be written directly to tape from the user's data area.

The output process resulting from a WRS call differs only in that the data
length is specified as a count instead of implied via a terminator.

If translation was selected at file open, for U-mode tapes, this transla­
tion will occur in place in the user's data area.

This diagram illustrates a possible U-mode tape structure:

rec 1 rec 2 rec 3 rec 4 rec 5 rec 6
----------- ----- --------- ------- -------------

I A BCDE I I A B I I A B CD I I A BC I I A I A BCD E F I
----------- ----- --------- ------- -------------

5 chars 2 chars 4 chars 3 chars 1 char 6 chars

Each record (block) would be read/written by a single data transfer call.

ABNORMAL CONDITIONS

The data transfer calls all provide an error return for use when an
abnormal condition occurs. In general, a return data count is always pro­
vided on both read and write calls resulting in either normal or abnormal
returns. An error code is specified in ACO to indicate the nature of the
abnormal condition. Several possible error codes that may occur are
itemized below.

ERTIO - TAPE I/O ERROR

This error code is reserved for a class of errors associated with the tape
device itself. When it occurs, the contents of UFST in the UFT must be
inspected to determine the specific nature of the problem. Typical causes
include not ready, offline, parity error, channel overrun and write pro­
tect. The UFT description in this section includes more detail about this
s ta tus word.

EREOP - END OP PILE

This error code occurs when a file mark is encountered on tape while trying
to read data to satisfy an input request. After such an encounter, the file
is left positioned down tape from the file mark. A subsequent read would
encounter any block immediately following the file mark. For V-mode tape
files, data may have been transferred into the user data area even though
an end-of-file return occurs; the return count should be inspected. (To
write a file mark, see Sequential Functions in this section.)

11-12 magnetic tape file management VI-005-I3

EREM - END OF TAPB MARK

The operating system does not consider the EOT mark on a tape volume to be
sufficient reason to abort a data transfer request. This error return
indicates that the requested data transfer occurred properly but that the
tape volume is currently positioned beyond the EOT mark on tape. Any other
error condition will take precedence over this one.

For write processes, it is suggested that they cease writing on the current
volume as quickly as possible, yet writing some logical end of volume
indication (possibly a simple file mark). The operating system will take no
ac tion to prevent writing off the tape volume.

A read process needs to know the rules used when the tape was generated.
The operating system will allow read requests to continue (each with an
EREOT return) and presumes the read process can avoid reading off the end

SBQJJENTIAL FUNCTIONS

Four additional operations are provided by the operating system specifi­
cally for the support of files on magnetic tape.

WRITE FILE MARKS (MTSQWE)

This function is restricted to output tape files (opened via an OPNW call).

CALL
• WORD MTSQWE
error return
normal return

Entry Parameters: ACO = Number of file marks.
AC2 = File UPT address.

Exit Parameters: AC2, AC3 = Res tored.

For U-mode tapes where there is no blocking, the specified number of file
marks will be written at the current tape position.

For V and F-mode tapes, if any data outpu t has occurred since the open,
there will be data in memory that has not yet been written to tape. This
function will cause such data (possibly a short block) to be written to
tape followed by the specified number of file marks.

When this function has completed, the new tape position will be immediately
downtape from the last file mark, and the file will be available for con­
tinued use.

For shared tape files, this function can proceed only if the data in the
file is on a record boundary. This is always true for U- and V-mode tapes
as long as no write process has an incompleted output call pending. For F­
mode tape files, the only exception is if non-standard WRS calls are being

VI-005-13 magnetic tape file management 11-13

used to build a record. In this case, if the file contains an incomplete
record, it will automatically be filled and the block written followed by
the requested file marks. The file is then on a record boundary and avail­
able to other write processes.

RBWIND TAPB VOLUME (MTSQRW)

This function may be employed on either input or output files.

CALL
• WORD MTSQRW
error return
normal return

Entry Parameters: AC2 = File UFT address.

Exit Parameters: AC3 = Restored.
AC2 = Changed.

A rewind operation will be initiated on the corresponding tape drive.
A subsequent read request will process data from the tape volume load
point.

A more general rewind function (RWND) is available. It will rewind either
an input disk file or tape file.

SKIP PILE MARKS (MTSQSF)

This function is restricted to input tape files (opened via an OPNR call).

CALL
• WORD MTSQSF
error return
normal return

Entry Parameters: ACO = Signed file mark count.
AC2 = File UFT address.

Exit Parameters: AC2, AC3 = Restored.

A skip operation will be initiated on the corresponding tape drive. The
direction of tape motion is determined by the sign of the count specified
in ACO; a positive sign causes forward tape motion while a negative sign
causes reverse tape motion. Motion will continue until the specified number
of file marks has been encountered. For this situation, a normal return
will occur and the file will be positioned just beyond (in the direction of
tape motion) the last encountered file mark. For reverse motion the load
point will also terminate the skip operation. A normal return will occur if
only one more file mark is needed to terminate when the load point is
encountered; the file will be positioned at the load point. If more than
one file mark is needed, a system "tape load point" error code (ERTLP) will
be returned via the abnormal return; again the file will be positioned at

11-14 magnetic tape file management V1-005-13

load point. The end-of-tape indicator will also terminate a skip operation
in either direction and will return abnormally with the system "end of
tape" error code (EREOT) in ACO.

SKIP LOGICAL RECORDS (MTSQSR)

This function is restricted to input tape files (opened via an OPNR call).

CALL
• WORD MTSQSR
error return
normal return

Entry Parameters: ACO = Signed record count.
AC2 = File UFT address.

Normal Exit: ACO, ACl, AC3 = Changed.
AC2 = Unchanged.

Error Exit: ACO = System error code.
AC2 = Unchanged.
ACl, AC3 = Changed.

The tape file will be repositioned relative to the current position
according to the signed record count specified in ACO. A positive sign
indicates forward positioning while a negative sign causes reverse
posi tioning •

For U-mode tapes, since each logical record is a physical block, this
function is simply a skip data block operation.

For V-mode tapes, since each logical record can vary in length, and since
the record boundaries are implied by terminator characters embedded in the
file (or if not, the record boundaries cannot be deduced from the file
alone), record skipping proceeds by terminator search. The file is examined
character by character for terminators in order to establish the desired
position. It is the user's responsibility to ensure that his data file
contains terminators. This essentially means that a binary file (written
via WRS calls) in V-mode does not have a well-defined record skip function.

For ASCII data with terminators, it is possible for the current read posi­
tion to be in the middle of a record rather than always on a boundary. This
would result after a "line too long" situation. As a result, a zero record
count is useful as well as a non-zero value. Zero should be interpreted to
mean that the file position needs to be reestablished at the first charac­
ter of the current record. A record count of -1 causes the file to be
repositioned at the beginning of the last full record read while +1 causes
positioning to the beginning of the next full record in the file. Consider
the following diagram where "I" is a terminator:

VI-005-13 magnetic tape file management 11-15

Block 1 Block 2 Block 3 Block 4 Block 5

IAB/11 123451 I//Xyl IZ/ABI ICD/11

-3

Load
Point
or
File
Mark

-2 -1 0 +1 +2

current record

The signed counts show the corresponding new position which would be
established by the skip record function if the current file position were
anywhere inside the indicated record.

For a skip in the forward direction, a file mark or an end-of-tape indica­
tor will terminate the operation with the EREOF or EREOT error codes,
respectively. For a file mark, the tape volume will be left positioned
beyond the file mark.

For a skip in the reverse direction, either load point or a file mark will
terminate the operation. A normal return will occur for either if only one
further terminator is required to terminate anyway. If load point causes
this situation, the file will be left at load point; however, if a file
mark is encountered leading to a normal return, the file will be reposi­
tioned back over the file mark on the side from which it was approached.
The diagram above illustrates the situation. If either the load point or a
file mark precede block 1, the -3 skip operation will end at the position
shovJn in spite of no explicit terminator. However a -4 skip request would
end in an error return with either the EREOF or ERTLP error codes. If the -
4 ended on load point, the file position would be the same as the -3 posi­
tion (indeed all higher negative skip counts would position the same). On
the other hand, a file mark termination for a -4 (and higher negative) skip
would position on the other side of the file mark (to the left in the
diagram) •

For F-mode tapes, no searching is required to determine the desired posi­
tion. Since the logical record size and the blocking factor are known from
their open-time declaration, the new position can be calculated and moved
to directly. For a skip to a position in the current block, no tape opera­
tion will occur.

In the course of skipping records on a F-mode tape file, if a file mark,
end-of-tape indicator or load point is encountered, the skip function will
use the error return with the corresponding system error code (EREOF, EREOT
or ERTLP, respectively). For a file mark, the file will be left positioned
beyond the file mark in the direction of tape motion.

ABBOR.AL COHDITION&

Several general error conditions can occur for these functions:

11-16 magnetic tape file management VI-005-13

ERICL - ILLEGAL CALL

These functions will return this system error code if an input file
function (skip or rewind) is called to operate on an output file or vice
versa. All four functions will error return with this code if OPEN was used
to open the file since these are sequential I/O functions and only OPNR and
OPNW imply sequential support.

ERPAP - FILE ATI'RlBUTBS PROHIBIT

If the file represented by the specified UFT is not on a magnetic tape
devic e, these functions are not applicable, and this error code will be
returned.

ERTIO - TAPE I/O ERROR

If a device-related abnormal condition occurs, this error code will be
returned. Further investigation of the status word UFST in the UFT is
required to determine the specific problem.

ERTPE - TAPE PARAMETER ERROR

For F-mode tape files, the skip record function can run into an arithmetic
overflow situation which will cause this system error code to be returned
in ACO via an error return. This situation cannot occur as long as the
requested skip count plus the blocking factor is less than 32768.

Also, for these functions, it is possible for file mark (EREOF), end-of­
tape (EREOT), and load point (ERT~P) conditions to occur. These have been
discussed in the descriptions for each specific function.

SEQUBNTIAL '11'£ CLOSB

A close file call is the last logical step in the processing of a file.
This call advises the system that the file need no longer be attached to
the job, and all resources supporting the open file may be released and
reused. A close call may be made by the application program or left to the
system, which will close all open files associated with a job at termina­
tion (normal or abnormal).

When a close call is issued for an input file on magnetic tape, the device
is not physically affected and the tape volume is left at its last posi­
tion.

When a close call is issued for an output file, additional cleanup acti­
vities must occur. For F-mode, if the closing write process left the file
off a record boundary by use of non-standard WRS calls, the partial record
will be filled with ASCII blanks. If other write processes have also opened
the file, the close call terminates; otherwise, the last block, if any,
will be written to tape (V and F-mode only) followed by a single file mark.

V1-005-13 magnetic tape file management 11-17

For both input and ou tput files on tape, internal control blocks supporting
this previously open file are freed for reuse, as is the tape I/O buffer
area (V-and F-modes only). If the last tape file has been closed, the
partition occupied by the disk resident driver file MT9DRV. SB is available
for use to support other job requests. However, since the driver is
sharable (hence reusable) if the partition is still intact on the next tape
file open, the driver file will not be reloaded but the intact copy in
memory will be used.

DRIYBRCAI,I,s

Provisions have been made to allow user calls directly into the tape driver
to permit handling tape files which cannot be dealt with using the stan­
dard, device-independent sequential I/O scheme of the operating system.
These calls correspond closely with the functions provided by the tape
device controller.

An open call is required as the first step. This allows the tape driver
program (MT9DRV .SB) to be loaded from the primary ($) disk device and also
allows certain control blocks to be set up by the operating system. In
order to select driver call support, the OPEN function must be used to open
the tape file.

The specific form for this open call is:

CALL
• WORD OPEN
error return
normal return

Entry Parameters: ACI = Flags.
ACO = File name block (FNB) address.

Th e open call provid es, on a normal return, a User File Table (UFT) address
in AC2. This VET must be provided with every subsequent file service call
since it identifies the file to the system. After a successful open, the
UFT word UEST has a current status which indicates the state of the device.
A UFT. should be used only by a single task; multiple tasks should perform
multiple opens so that each has its own UFT'.

Flag Bit

14
8

Description

Write share output tape file.
Extended FNB specified in ACO.

The write share bit may be set to indicate a willingness to allow other
write processes to open and use the same device concurrently. If the first
OPEN allows write sharing, subsequent OPNW's for write sharing are allowed.
Magnetic tapes are /WS but not /RS.

Bi t 8 of the flag word, when set, indic a tes that an extr a word appears at
the end of the standard 7-word FNB specified in ACO. The first seven words
must contain the device file name in standard form (in words 4, 5 and 6).

11-18 magnetic tape file management VI-005-13

An extended FNB must appear as follows:

1

2

3

4

5

6

7

8

Device File name

Positioning, Code Translation

The eighth word of the FNB (if it appears) must have the following format:

o 7 10 11 12 15

I111111I I11111111I

(a) (b) (c)

(a) Bits 0-7 0 - No skip.
n - Skip n EOF marks where n is a signed integer.

Negative implies motion toward the load point.

(b) Bit 10 Rewind before any EOF skips.

(c) Bit 11 0 - No translate (default).
1 - Translate.

An initial tape volume position may be established for an unshared file by
use of the rewind and skip fields in the eighth word. Volume positioning
requests on a write share open will result in an error return. The rewind
bit (10) is inspected first and, if set, causes the volume to be rewound to
load point. The skip field bits (0-7) contain a signed integer (-128, +127)
which, if non-zero, causes the specifed number of EOF marks to be skipped.
A negative count causes motion towards the load point.

The code translation option is selected by setting bit 11 in word 8 of an
extended FNB.

The driver provides nine functional calls. Each must be accompanied by the
UFT address which was provided by the open call. Certain functions require
parameters (which will be passed in the UFT); others require none.

VI-005-13 magnetic tape file management 11-19

The general form for the driver calls is the same for each function; only
the linkage name changes:

CALL
• WORD linkage name
error return
normal return

Entry Parameters: AC2 = File UFT address.

Exit Parameters: AC2, AC3 = Restored.

The UFT is a 16-word table area which identifies a particular file to the
operating system and provides a central area for parameter communications
and data storage. A UFT should not be shared between tasks; that is, a UFT
specified in a system call should not be stored into or used in another
call until the first call completes. The general structure of a magnetic
tape UFT is illustrated in the following diagram:

Mag Ia~e un

UFQL - 0
UFSF - 1
UFOP - 2
UFTB - 3
UFUN - 4
UFUB - 5 -----
UFUP - 6
UFRB - 7 ------
UFRP - 8
UfWB - 9 -------
UFWP - A
UFBS - B
UFFL - C
UFST - D ----
UFRS - E
UFRC - F -------

Notation Key

* - Inpu t Parameter
r - Return Parameter

*

*
*
r
r
r
r

Descri~tion

System UFT queue linkage
Device SFT linkage
Open flags
System TeB pointer
User scratch
Never used by driver
User scratch
Data buffer addr
Driver queue linkage
Driver scratch usage
Block count for skip data
Data count (bytes)
Device controller status
Device operation status
Data or skip count
Retry count

The first three locations contain system information which must be left
intact. The three user slots (UFUN, UFUP, UFWP) are never used by the tape
driver. The remainder of the UFT will be used when a driver function call
is made except that UFWP is required only when a skip data function is
requested. '

The last four slots are used for return information after every driver
function call. The UFFL word will contain the tape device controller status
word intact (described in the product specification). The UFST wora will
contain the driver operation status for the last function requested. This
is a combination of certain key controller status bits and some additional

11-20 magnetic tape file management VI-005-13

information. This operation status is detailed in the next diagram. The
UFRS word contains a calculated count of either the number of characters
transferred for a read or write function or the count of blocks skipped for
any of the skip functions. For a file mark skip, this count is an unsigned
integer. The last word, UFRC, is a retry count. Only data transfer func­
tions will be retried. Five retries will be attempted before the operation
is terminated in error.

The user will vary input parameters from function to function and even call
to call for the same function. In any event, the magnetic tape driver never
changes the input parameter slots in the UFT (i.e., UFRB, UFWP, and
UFBS) •

The driver provides an operation status word in the UFST slot of the UFT
after every function call. The following diagram illustrates the magnetic
tape operation status word:

o
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

o 4 8 12

I I I I 1 1 1 I 1 I 1 I 1 1 1 1 1
-----------1-----------1-----------1-----------

Descri~tion

Error flag.
Write protect indicator.
Load point indicator.
File mark indicator.
End-of-tape indicator.
Parity error.
Channel overrun.
Devic e offline.
Devic e not ready.
Timeout, device no response.
Maximum retries performed.
Error recovery in progress.
Retries performed.
Pending in-queue.
In progress.
Complete.

Explanation

o Always set when an error return from the driver occurs. It shows that
other bits are set in this status word which indicate the specific
problem. Error conditions vary from function to function and are
explained in the function descriptions.

1 No write enable ring is present on the tape volume mounted on the
transport. No data write can occur.

2 The volume on the transport is at load point.

VI-005-13 magnetic tape file management 11-21

I.ti..t. Explanation

3 A file mark was either written or encountered during a read or skip
operation.

4 The volume on the transport is beyond the end-of-tape mark.

5 A parity error occurred during a read or write (with read after write
option) operation; one of the following occurred:

• Vertical parity on character

• Longi tudinal parity error

• Cyclic redundancy check character (CRCC) error

This bit will also occur if the file mark indicator is on.

6 A channel overrun condition occurred. The JI00 DMA channel did not
respond in time to prevent loss of data.

7 The tape transport was not! online. The JI00 cannot command the
device in this state.

8 The tape device was not ready. The JI00 cannot command the device in
this state. This may be caused by device power off or disconnected.

9 The device did not respond within the allotted 5.5 second timeout
period. No retries will be attempted for this condition. This will
always cause a driver error return.

10 The maximum number of retries (5) were performed. When this occurs,
either parity error or channel overrun should also occur. This condi­
tion will always cause a driver error return.

11 This bit is used internal to the driver to control retries and should
never appear in a final operation status word.

12 At least one retry occurred. The actual retry count is contained in
UFRC of the UFT.

13 This bit is used internal to the driver to indicate that the UFT has
been placed on the channel queue. It should never appear in a final
s ta tus word.

14 This bit is used internal to the driver to indicate the UFT is in
progress on the channel. It should never appear in a final status
word.

15 This bit indicates that the driver has completed the operation (either
normally or abnormally) and allows the execution of the write process
to continue. This bit will always appear in the final operation status
word.

11-22 magnetic tape file management VI-005-13

The following discussion describes each driver function, lists its linkage
name, describes the parameters it requires and notes the possible condi­
tions for an error return. On an error return, ACO will always contain the
system tape I/O error code (ERTIO) unless a job abort occurs. Then the
system abort code (ERABT) will be used.

MTWD - WBITB DATA BLOCK

This function will cause a data block to be written on the tape device file
represented by the UFT. Two parameters are required and must be specified
in the UFT:

UFRB - Data location in memory

UFBS - Data byte count (32767 maximum)

The data must begin on a word boundary in memory, and the maximum block
size is 32767 characters. Retries will occur if either a channel overrun or
a parity error (requires read after write option) occurs. An error return
will be used for any of the following conditions:

• Offline

• Not ready

• Timeout

• Max retries

• Write protect

• Load point

• File mark

If requested at open time, translation will occur in place in the write
buffer. If an odd data byte count is specified, an extra character will be
translated (although not written to tape).

The parameter returned in UFRS of the UFT after the write will be a byte
count of the data actually written to tape.

MTRD - IlEAD DATA BLOCK

This function will cause a data block to be read from the tape device file
represented by the UFT. Two parameters are required and must be specified
in the UFT:

UFRB - Memory address for data

UFBS - Maximum data byte count (32767 maximum)

V1-005-13 magnetic tape file management 11-23

On completion, any data will begin on a word boundary at the memory address
specified. The actual number of characters read into memory is calculated
and returned in the UFRS slot of the UFT. If requested at open time, trans­
lation will be performed in place on the actual data transferred. If the
byte count is odd, an extra character will be translated.

The data count specified in the UFT will act as maximum limit on the data
read. Any extra data will be lost; recovery is possible only with a reread
into a larger data area. To insure no data is being lost, the data buffer
should be made larger than the largest tape block. This insures that the
actual data count returned in UFT slot UFRS will always be less than the
maximum data count.

Retries will occur if either a channel overrun or a parity error occurs, an
error return will be used for any of the following conditions:

• Offline

• Not ready

• Timeout

• Max retries

• Load point

• File mark

MTSPP - SKIP PILE MARK FORWARD

This function will cause a skip operation to be initiated in a forward
direction. The skip will terminate at either a file mark or an end-of-tape
indication. No parameters are required for this function.

A count of the blocks skipped will be returned in the UFT slot UFRS. This
count is an unsigned integer. If the operation terminated due to a file
mark, the count will include the file mark as a data block. The tape will
be left positioned immediately down tape from the file mark.

No retries will be attempted for this function. An error return will be
used for any of the following conditions:

• Offline

• Not ready

• Timeout

• Load point

• Channel overrun

• End-of-tape

11-24 magnetic tape file management V1-005-13

A timeout will only occur if the device is found offline during the skip or
if the device controller indicates it is not busy.

MTSP'R - SKIP PILE MA1lK RBYBBSB

This function will cause a skip operation to be initiated in a reverse
direction. The skip will terminate at either a file mark or a load point
indication. No parameters are required for this function.

A count of the blocks skipped will be returned in the UFT slot UFRS. This
count is an unsigned integer.

No retries will be attempted for this function. An error return will be
used for any of the following conditions:

• Offline

• Not ready

• Timeout

• Channel overrun

• End-of-tape

A time'out will only occur if the device is found offline during the skip or
if the device controller indicates it is not busy.

MTSD - SKIP DATA BLOCKS

This function will cause a skip operation over a specified number of data
blocks. A signed block count must be specified:

UFWP - Signed block count

The sign of this parameter indicates the direction of tape motion: positive
implies forward, negative implies reverse. The skip operation will termi­
nate when the specified number of blocks has been skipped, or earlier if
either the hlad point or end-of-tape mark is encountered. A file mark on
tape will also terminate the operation. A positive count of the data blocks
actually skipped is calculated and returned in the UFT slot UFRS. If a file
mark is encountered, the count returned includes the file mark. When ter­
minated by a file mark, the tape volume will be left positioned beyond (in
the direction of motion) the file mark.

No retries will be attempted for this function. An error return will be
used for any of the following conditions:

• Offline

• Not ready

VI-005-13 magnetic tape file management 11-25

• Timeout

• Load point

• File mark

• Channel overrun

• End-of-tape (if block count not satisfied)

End-of-tape will cause an error return only if the actual count of blocks
skipped does not match the requested count. A timeout will occur only if
the device is found offline during the skip or if the device controller
indicates it is not busy.

MTWEP - WRITE PILE MARK

This function will cause a file mark to be written on the tape device file
represented by the UFT. No parameters are required for this function.

No retries will be attempted for this function. An error return will be
used for any of the following conditions:

• Offline

• Not ready

• Timeout

• Write protect

• Load point

• Channel overrun

MTRWD - REWIND TAPE VOLUME

This function will cause a rewind to occur on the tape device file rep­
resented by the UFT. No parameters are required for this function.

No retries will be attempted for this function. An error return will be
used for any of the following conditions:

• Offline

• Not ready

• Timeout

A timeout will occur only if the device is found offline during the rewind
or if the device controller indicates it is not busy.

11-26 magnetic tape file management V1-005-13

liTERS - ERASE

This function will cause a short section of tape (about 3.75 inches) to be
erased. This will permit spacing past bad sections of tape detected during
a write operation. No parameters are required for this function.

No retries will be attempted. An error return will be used for any of the
following conditions:

• Offline

• Not ready

• Timeout

• Write protect

• Load point

• File mark

• Parity

• Channel overrun

• End-of-tape

MTRS - RKAD DEVICE STATUS

This function causes no physical operation to be initiated but simply
determines the device status and returns. No parameters are required and no
retries will occur. An error return will be used for any of the following
condi tions:

• Offline

• Not ready

• Timeout

• File mark

• Parity

• Channel overrun

• End-of-tape

V1-005-13 magnetic tape file management 11-27

•

(TliIS PAGE INTENTIONALLY BLANK)

11-28 magnetic tape file management V1-005-13

Chapter 12

SORT

System II provides a generalized sorting program (SORTM .SB) which operates
as a sharable, re-entrant subroutine.

The sorting program produces the final sorted sequence by repeatedly
merging sorted subsets (runs) of the input records. With each merge these
runs grow larger and fewer in number until, on the final merge, the final
sorted file is ou tpu t.

The sort program will allow an arbitrary number of records to be sorted
into an order determined by multiple sort keys of various types. Each
record to be included in the sort is obtained by a call from the sort
program to a user specified reader routine. This reader routine must be
constructed by the user to provide a record on each call at the memory
address specified. Each record must be contiguous and may not exceed the
spec ified record size.

In the general case, enough disk space to write each record once is
required. In general, sorting time is decreased by increasing the merge
order. Merge order is determined primarily by the size of sort's memory
work space.

By default, the sort program obtains a work partition just big enough to
use space on the scratch disk. Thus, the partition size depends on sector
size and record length, measured in words. Given 12-word records, for
example, these decimal approximations apply: 64 words per sector (wps) -
432 memory words; 256 wps - 1008 memory words; 512 wps - 1776 memory words.
The work partition is used for I/O buffers and tables. 1'here is a direct
proportion between the number of tables and the merge order, and thus
between the merge order and the size of the work partition.

If only memory, with no scratch disk, is used, the default size of the work
partition is 2048 (decimal) words.

V1-005-13 sort 12-1

During the final merge, the complete sorted file is generated and output
record by record to a user specified "writer" routine. This writer routine
must be constructed by the user to accept a record and move it out of the
specified buffer area prior to returning to the sort program.

The sort program can be aborted by pressing the <CANCEL> key. This causes
the initiation of a cleanup operation. When the cleanup is complete, an
abnormal return will be taken with the appropriate error code. This may
take some time to complete, so the abnormal return will not necessarily be
immedia te.

The sort program saves user-task base page on entry and restores it when
the reader, writer, or any user compare routine is called, and at sort
termination. Also, the top eight entries in the stack are saved for the
duration of the sort and are restored only at termination.

SORT CALLING SBQUENCB

The sort module, SORTM.SB, is sharable and re-entrant; it should be
dynamically loaded at run-time by using the LDPRG (Load Program) call.
LDPRG searches memory for a copy of SORTM .SB; only if none is present will
it load the module from the current primary disk.

Upon return from LDPRG, AC1 contains the TSECT origin and the entry point
of the SORTM .SB module. The calling sequence is:

JSR entry point of SORTM .SB
error return
normal return

Entry Parameter: AC3 = Address of the Sort Definition Table.

Exit Parameters: ACO = On error return, system error code.
On normal return, changed.

AC1 = Changed.

AC2 = Changed.

AC3 = Address of Sort Definition Table.

12-2 sort V1-005-13

Programming example:

LD
LI
CALL
.WORD
JMP

O,FNB
1,0

;ADDRESS OF FILE NAME BLOCK FOR $SORTM .SB
;NO EXTRA TSECT SPACE

;
ST
LD
JSR
JMP

LDPRG
ERROR

I,SORTMP
3,SDTP
@SORTMP
SERROR

;ERROR TRYING TO LOAD

;SAVE ENTRY POINT
;ADDRESS OF SORT DEFINITION TABLE
;START THE SORT
;ERROR IN SORT
;NORMAL RETURN, SORT COMPLETE

SORT DEPINITION TABLE

A Sort Definition Table consists of the following words, as detailed on the
next few pages. Recommended symbolic offsets are shown here, but they are
not predefined in SYSDEF. RB.

Overall Control:

SRCSZ Translation flag and record size

SRDR "Reader" rou tine address

SWTR "Writer" routine address

SPSZ Work partition size

SFILNM Scratch unit file name block address (or X'OOOO)

SRECTI Is t word of double-word record count

SRECT2 2nd word of double-word reGord count

SFILES Number of scratch files used

SRECDS Number of records in memory atone time

SPASS Passes made over the records

SR UNS Initial sorted runs created

Definition of each key:

SLKEY Sort key flags and length

SKORG Key displac ement, in words

VI-005-13 sort 12-3

SCTYP Comparison-type code

SURTN Address of Compare, a user-provided rou tine (or X'OOOO)

(Further definitions follow as needed.)

The word following the last key definition:

X'OOOO, "End of Definitions" marker, indicating
end of table

The word following the "End of Definitions" marker is used only if
translation is requested:

STFNBA Address of FNB for string-key translation table,
or X'OOOO for the default table, $EBCDIC.CT

The Sort Definition Table provides all the parameters necessary to define
the sort, and provides several locations which the sort program uses to
communicate certain statistics back to the user. The sort-key definitions
are contiguous in the table.

SRCSZ

SRDR

SWTR

SPSZ

Bit 0 (the high-order bit) must be 1 to request string key
transla tion (described later), and 0 otherwise. Bits 1 to 15
contain the record size in words; all records to be sorted
mus t be the same size.

Entry address of the user-provided "reader" rou tine. It will
be called repeatedly to provide each record (one per call)
to be included in the sort.

Entry address of the user-provided "writer" rou tine. During
the final merge each record in sort sequence will be output
by a call to the writer routine.

If there is no scratch disk, when SPSZ is zero a default
partition of 2048 (decimal) words is obtained; when SPSZ is
non-zero it specifies the number of words in the work
partition to be obtained.

If there is a scratch disk, when SPSZ is zero a default
merge order of 2 is used to calculate a minimum work
partition, based on the scratch disk's device type; when
SPSZ is between 1 and 50 (decimal) it is taken to be the
merge order, and is used to determine the partition size;
when SPSZ is greater than 50 it specifies the number of
words for the work partition.

SFILNM When non-zero, this entry is the address of a standard
7-word File Name Block (FNB). The scratch disk is specified
by the prefix part of this file name block. See Chapter 7
for the details of how the prefix specifies a disk.

12-4 sort V1-005-13

SFILES

If SFILNM is zero, thus specifying no scratch disk, an
attempt will be made to perform the sort entirely in memory.
This will be successful only if all records will fit in the
work space simultaneously.

If this word contains a value between 2 and 50, that value
is used as the maximum merge order. If not, a value of 50 is
used.

The next six words in the Sort Definition Table are for the return of
statistical parameters which describe the sort.

SRECTI
SRECT2

SFILES

SRECDS

SPASS

SRUNS

Two words which form a 32-bit integer quantity, giving a
count of the number of records which were sorted. (SRECT1 is
the high-order part of the count.)

The merge order.

A count of the number of records that could be simulta­
neously held in the sort work space.

A count of the number of passes made over the pool of
records.

A count of the initially generated sorted subfiles or "runs"
produced by the sort program (unsigned 16-bit integer).

The above eleven words form the basic Sort Definition Table. The balance of
the table is variable in length; for each sort key to be employed, it
contains a 4-word entry with the following structure:

SLKEY

SKORG

SCTYP

SURTN

Bits 0-1: flags. Bits 2-15: key length in words.

Key displacement in the record (words).

Comparison type code, described on the next page.

Address of User Compare rOll tine; zero otherwise.

A t least one sort key must be specified. The end of the table is indicated
by an entry in which SLKEY contains all zeros.

A key is not considered valid unless it falls completely within the
boundaries of a single record. Furthermore, SCTYP must be a legal value
unless a User Compare rou tine is specified (SURTN nonzero).

Al though SLKEY and SKORG are word-oriented, it is still possible to process
character-oriented keys which do not actually coincide with word boundaries
within a record.

For SCTYP codes 6 to 9, if bit 0 of SLKEY is 1, then the first eight bits
of the specified key's first word will participate in neither translation
nor comparison. If bit 1 of SLKEY is 1, then the last eight bits of the

VI-005-13 sort 12-5

key's last word are similarly excluded. Both of these SLKEY flags may be 1
at the same time. The flags are ignored for other SCTYP codes.

STANDARD COMPARISONS

If a key does not have a User Compare routine (that is, if SURTN is zero),
then the sort program performs a standard comparison, as determined by the
SCTYP codes listed here with typical applications.

o Ascending, signed compare over entire key.
1 Descending.

For 64-bit decimals (chapter 14), and similar data.

2 Ascending, signed 16-bi t compare on each word.
3 Desc ending.

For I6-bit signed integer data.

4 Ascending, logical I6-bit compare on each word.
5 Descending.

For unsigned integ ers and similar data.

6 Ascending, logical 8-bit compare on each character.
7 Desc ending.

For normal ASCII characters.

8 Ascending, logical compare on bits 1 to 7 in each character.
9 Desc ending.

For characters with a high-order parity bit.

STRING KEY TRANSLATION

If bit 0 of SRCSZ is 1, then the user is requesting automatic translation
of all string keys (those with SCTYP codes 6 to '9). After the Reader
routine passes string keys to the sort, all the characters in those keys
are translated according to a specified table. The translated keys then
participate in record ordering, but they are translated again, presumably
to their original values, before the Writer routine receives them.
(Overlapping string keys produce unpredictable results, and should be
avoided.) The user thus gains the ability to specify a non-standard
collating sequenc e for charac ter -orien ted da ta.

A user-supplied translation table must be a disk file with the format
described in Chapter 15; STFNBA must contain the address of the file's FNB,
as described in Chapter 7. The "output" section of the table is used before
record sorting; the "input" section is used to restore each key's value
before the Writer receives it.

If bit 0 of SRCSZ is 1, but STFNBA is X'OOOO, then the default table file,
$EBCDIC.CT, is used. This file is included with each release of the
standard utilities, and is listed in Chapter 15.

12-6 sort V1-005-13

READER ROUTINE LINKAGE

Within the sort module itself, the equivalent of the following sequence is
used to call a user-supplied Reader routine:

JSR Reader
Error return
End of input return
Normal return

Entry:

Error Exit:

End of Input Exit:

Normal Exit:

ACO = Address of record buffer.

ACO = System error code.
AC1-AC3 = May be changed.

ACO-AC3 = May be changed.

ACO-AC3 = May be changed.

The Reader places the next logical record in the record buffer.

The buffer will be sized according to the record-size entry in the Sort
Defini tion Table.

Three returns are provided:

• Record available

• End of input

• Error return

RTS 2 shows the specified buffer area has been
filled with the next logical record.

RTS 1 indicates that no further input will be
provided. Proceed to sort records already
provided.

RTS 0 indicates an unrecoverable error has been
encountered by the reader routine. The sort
program will cleanup and abnormally terminate.

For an error return, the value in ACO will be passed back as an error code
when the sort program abnormally terminates.

WRITER ROUTINE LINKAGE

Within the sort module itself, the equivalent of the following sequence is
used to call a user-supplied Writer routine:

JSR Writer
Error return
Normal return

Entry:

V1-005-13

ACO = Address of next logical record in sorted
sequence.

sort 12-7

Error Exit: ACO = System error code.
AC1-AC3 = May be changed.

Normal Exit: ACO-AC3 = May be changed.

The Writer processes the specified logical record. In most cases the Writer
writes the information contained in the record to a sequential file or
device.

When the Writer returns to the Sort program, the record buffer is reused.

Two returns are provided:

•

•

Normal return

Error return

RTS 1 shows that the logical record provided has
been transferred out of the buffer area and that
"writer" is prepared to accept the next record is
sequence.

RTS 0 indicates that an unrecoverable error has
been encountered by the writer routine. No further
ou tpu t is desired; the sort program will cleanup
and abnormally terminate.

For an error return, the value in ACO will be passed back as an error code
when the sort program abnormally terminates.

COMPARE ROUl'INE LINKAGE

Provisions are made in the sort key table for a user-provided Compare
routine. This is done on a key-by-key basis, which allows a different
Compare routine for each key if desired.

Within the sort module itself, the equivalent of the following sequence is
used to call the user-supplied Compare routine:

JSR Compare
Record-ACO-before-record-AC1 return
Rec ord -ord ering -not -determined return
Record -AC1-b ef or e-r ec ord -ACO return

The Compare routine is passed the buffer addresses for the two records to
be compared. In addition, an address is passed for the particular entry in
the sort key table which specifies the key to be checked.

Three returns are permitted from the Compare routine:

• Record 1 first

12-8 sort

RTS 0 shows that the record indicated via ACO
should appear in the final sort before the record
indicated via AC1. No further keys will be
compared.

V1-005-13

• Keys equal

• Record 2 first

RTS 1 shows that the ordering of the two records
is not determined by the current key. Further keys
will be compared to differentiate between them. If
no more keys are specified, the record indicated
via ACO will appear before the record indicated
via AC1.

RTS 2 shows that the record indicated via ACO
should appear in the final sort after the record
indicated via ACI. No further keys will be
compared.

MEMORY RBQWREMENTS

The sort program maintains all data and other working information in a
system provided partition. Each sort request is allocated a work space
independent from any concurrent sorts; it is this fact that allows the sort
program to operate reentrantly.

The following symbols are ·used in the subsequent discussion to represent
quantities that may vary from sort to sort.

S Scratch unit sector size (words).

R User record size (words).

W Work partition size (words).

F Fixed overhead area size (words).

M Merge order.

P Sort order (maximum number of records which can fit in the work
space) •

M and P are calculated from the other four quantities.

There are certain fixed assignments in the work space that exist for the
dura tion of the sort:

• Fixed area - F

• Output buffer

• I/O tables

Contains pointers, counters and other parameters
used by the sort program (approx. 64 words).

Used to buffer data records being output to
scratch on disk (S+R-1 words).

64*M words.

Then the total space required for these three items is:

F+(S+R-1)+(64*M)

V1-005-13 sort 12-9

There are two major sort phases. The work space is used differently in
these phases. The first is the distribution phase during which all runs are
written to to the scratch disk from the data records obtained from calls to
the reader rou tine.

During the distribution phase the work space will also contain the
following items in addition to the fixed assignments:

• Record buffers

• Sort vector

Used to buffer sort records obtained from the
reader routine (p buffers at R words each).

Used to keep order relationships between all sort
records held in memory (3*P words).

These, when combined with the fixed assignments, yield an expression for
the distribu tion phase work area requirements:

W=F+(S+ R-1)+ (64* M) +(3*P) +(P*R) (Equation I)

Similarly, for the merg e phase, the following items are required:

• Inpu t buff ers For each run being merged, an input buffer of size
S+R-1 words is needed.

• Sort vector Used to keep order relationships between all runs
(3*M words).

For merge phase work area requirements, we combine these two items with the
fixed assignments to yield:

W=F+(S+ R-1)+(64* M) +(3*M) + (M* (S+ R-1»

Rearranging equation II we obtain an expression for M:

M= (W -F-S-R+1)/ (S+R+66)

Rearranging equation I we obtain an expression for P:

P= (W -F-S-R-(64*M)+1)/(R+3)

Consider an example:

w
F
S
R

=
=
=
=

2048 words
64 words
256 words
30 words

work space
sort fixed area
scratch unit sector size
data record size

M=(2048-64-256-30+1)/(256+30+66)=4.8

The merge order is 4 •.

P=(2048-64-256-30-(64*4)+1)/(30+3)=43.7

43.7 records may be held in memory at once.

12-10 sort

(Equation II)

VI-005-I3

For a slightly different point of view, it can be useful to know how much
additional memory is required to increase the merge order by one. This
turns out to be simply S+R+63 words.

Unfortunately, it is not as simple for increasing the sort order. In the
worst case, a minimum of R+3 words will be required for each additional
record desired. However, if the additional space allows an increase in the
merge order, 67 words for I/O tables will be subtracted from the record
buffer area.

As a rule of thumb, R+3 words will increase the sort order by one, while
S+R+63 words will increase the merge order. The expressions for M and P
should be re-evaluated to ensure the desired results.

In addition to partition work space, certain system buffer pool space is
required. A sector size buffer is obtained to support disk sector
allocation/deallocation. Insufficient space will cause an abnormal sort
program termination.

The sort program will attempt to sort without scratch space if the scratch
unit FNB pointer is zero. In order to be successful, enough work space must
be allocated to simul taneously hold P+1 records when there are P records to
be sorted. Since no space is required to support disk I/O the expression
for P reduces to:

P=((W-F)/(R+3»-1 (Equation III)

For the earlier example:

P=«2048-64)/(30+3»-1=(1984/33)-1=59

A maximum of 59 records could be sorted without scratch file I/O.

V1-005-13 sort 12-11

(THIS PAGE INTENTIONALLY BLANK)

12-12 sort VI-005-13

Chapter 13

SYSTEM FUNCTIONS

System II includes entry points for several function calls: date, time, and
arithmetic. In addition some standard conversion routines are provided as
binary modules which can be linked with user assembly language programs
using RLDR.

TIMB ABD DATE FJJHCTIOMS

The time and date calls either set or retrieve the time or date in binary
format. The conversion routine, DATE.RB can be used to retrieve time or
da te in ASCII format.

GET SYSTBM DATB (GDAT)

CALL
.WORD GDAT
normal return

Entry Parameters: None.

Exi t Parameters: ACO = Year.
AC1 = Month.
AC2 = Day.

GDAT returns the system date using a base of 1900. Thus, if ACO = 75, the
year is 1975.

GET TIMB OF DAY (GTOD)

CALL
.WORD GTOD
normal return

Entry Parameters: None.

V1-005-13 system functions 13-1

Exit Parameters: ACO = Hours.
ACI = Minutes.
AC2 = Seconds.

GTOD returns the current time of day.

SET SYSl'EM DATE (SDAT)

CALL
• WORD SDAT
normal" return

Entry Parameters: ACO = Year.

Exit Parameters:

ACI = Month.
AC2 = Day.

ACO = -1. Invalid date specified. System date not
changed; ACl, AC2 changed.

ACO ::j. or not equal -1. Valid date specified. System
date changed; ACO, ACI and
AC2 changed.

AC3 = Unchanged.

SDAT sets the system date using 1900 as the base year. Thus, if (ACO) = 75,
the year is 1975.

SET TIME OF DAY (STOD)

CALL
• WORD STOD
normal return

Entry Parameters: ACO = Hours.

Exit Parameters:

ACI = Minutes.
AC2 = Seconds.

ACO = -1. Invalid time specified. System time not
changed; ACl, AC2 changed.

ACO ::j. or not equal -1. Valid time specified. System
time changed; ACO, ACI and
AC2 changed.

AC3 = Unchanged.

STOD resets the time of day clock.

13-2 system functions VI-005-13

ASCII TIME AND DATE KO'DTINES (DATE.RB)

The module DATE.RB has two entry points, ADATE and ATOD. When DATE.RB
is linked to an application program the date and time can be obtained in
ASCII form by using JSR@ to these entry points. The entry point names must
be defined as globals. For example:

.GLOBL ADATE,ATOD

GDATE: .WORD ADATE
GTIME: • WORD ATOD

JSR @GDATE

JSR @GTIME

ASCII DATE (ADATE)

JSR ADATE return

Entry Parameters: ACI = Byte offset into buff er.
AC2 = Address of buffer.

Exit Parameters: ACO-AC3 = Unchanged.

ADATE returns an ASCII date in the format YY/MM/DD beginning at byte ACI
in the specified buffer. The date returned is packed two characters per
word.

ASCII TIME OF DAY (ATOD)

Entry Parameters: ACI = Byte offset into buffer.
AC2 = Address of buffer.

Exit Parameters: ACO-AC3 = Unchanged.

ATOD returns an ASCII time in the format HH:M M:SS beginning at byte ACI in
the specified buffer. The time is packed two characters per word.

ARITHMETIC FUNCTIONS

The ARITH system call provides access to the following arithmetic
functions:

ZDEC Convert integer to decimal number.

VI-005-I3 system functions 13-3

\

ZIFIX Truncate decimal number and convert to integer.

ZDNEG Negate a decimal number.

ZDABS Get absolute value of a decimal number.

ZFIX Truncate decimal number, leave as decimal.

ZINT Get largest whole decimal number not greater than input number.

ZROUND Round to nearest whole decimal number.

ZIINT

ZIROUN

ZISGN

ZIISGN

ZRND

ZMPY

ZDIV

ZIDV

ZEXP

ZIEXP

ZDLD

ZDADD

ZDSUB

ZDCMP

Get largest integer not greater than input number.

Round to nearest integer.

Give decimal result of -1 for negative number, 0 for zero, +1 for
positive number.

Give integer result of -1 for negative number, 0 for zero, +1 for
positive number.

Generate pseudo-random decimal number between 0 and 1.

In teg er multiply.

Integer divide.

Integer inverse divide.

Integer to integer power, with integer result.

Inverse (in terms of argument order) integer to integer power,
with integer result.

Load DAC* from user area.

Dec imal addition.

Decimal subtraction.

Decimal comparison, with integer result of 0 if argument and
contents of DAC are equal, 1 if contents of DAC are greater, or
-2 if argument is greater.

ZDMPY Decimal multiply.

* DAC = Decimal Accumulator, described on the next page.

13-4 system functions VI-005-13

ZDDVD Decimal divide.

ZDIVD Decimal inverse divide.

ZDEXP Decimal to integer power.

ZDST Store contents of DAC in user area.

In order to support these functions, the system configuration must include
either one of the BASIC arithmetic modules, BARITH.RB or BARSTR.RB; or
ZARITH.RB, which does not support BASIC. A program that uses the ARITH
call to access a function must list the name of the function as a .GLOBL
symbol; then the assembly module must be linked with BDEF.RB or YIBDEF.RB,
whichever defines the symbol.

The arithmetic routines operate on values in internal binary form. For
conversion of ASCII decimal data to or from internal decimal form the
modu,le YICONV.RB must be linked to the user program. That module is
described later in this chapter.

ARITHMETIC PROCESSOR CALL (ARlTH)

CALL
• WORD ARITH
• WORD (name of arithmetic function)
error return (Always present. NOP for some calls.)
normal return

DAC, the Decimal Accumulator, is a 40-word block used during arithmetic
operations. The first four words contain one argument for operations with
decimal arguments.

Entry Parameters: AC2 = Decimal Accumulator address.

ACO = For operations with integer arguments, contains
value of one argument; unused for decimal
arguments.

AC1 = For operations with two arguments, either integer
or decimal, contains the address of the second
argument. Note: The arithmetic processor was
developed to support BASIC, and the convention
of using ACO for integer values and ACl for
address pointers derives from code generation
procedures in the BASIC compiler.

AC3 = Saved and restored.

V1-005-13 system functions 13-5

Exit Parameters: AC2-AC3 = Unchanged.

ACO = For operations with integer results, contains
integer value.

On error returns, contains error number.

Unchanged for calls which return decimal result.

ACI = For ZDIV and ZIDV calls, contains remainder of
integer division.

For all other calls, unchanged.

DAC = For operations with decimal result, contains
resul t. If error return, set to larg es t dec imal
number with appropriate sign.

Error Codes: ERDVEX Division by zero.
EROVFL Arithmetic overflow.

NUMBRIC RBPRESENTATION

Integers can range from -32,768 to 32,767. An integer is contained in a
single word in signed two's-complement form.

A decimal number requires four words of storage. Decimal numbers
are represented internally by a signed two's complement 4-word binary
integer, with an implied scale factor of 10**-9 (10 to the negative 9th).
Thus, decimal numbers can range from -9,223,372,036.854775808 to
9,223,372,036.854775807. The internal representation of decimal 1.0 in hex
is 0000 0000 3B9A CAOO. .

Addition and subtraction of decimal numbers are performed as four-word
binary operations. Multiplication is also performed as a four-word binary
opera tion, then scaled by dividing by 10**9 (X'3B9A CAOO). Division is done
by first scaling the dividend (multiplying by 10**9), then performing a
four-word binary division.

ARITH ROUfINE DESCRIPTIONS

ZDEC - Convert Integ-er to Decimal

CALL
.WORD ARITH
• WORD ZDEC
error return
normal return

Entry Parameters: ACO = Integer value.
AC2 = Address of DAC block.

Exit Parameters: DAC = Decimal value. Registers unchanged.

13-6 system functions VI-00S-13

ZIFIX - Truncate Decimal Number tQ Intee-er

CALL
• WORD ARITH
• WORD ZIFIX
error return
normal return

Entry Parameters: DAC = Decimal value.
AC2 = Address of DAC block.

Exit Parameters: ACO = Integer result. Other registers unchanged.
ACO = EROVFL if error overflow.

ZDNEG - DAC = -DAC

CALL
• WORD ARITH
• WORD ZDNEG
error return
normal return

Entry Parameters: DAC = Decimal number.
AC2 = Address of DAC block.

Exit Parameters: DAC = Decimal result. Registers unchanged.

ACO = EROVFL if error; input value is largest nega­
tive number, which has no positive counterpart.

ZDABS - DAC = I DAC I

CALL
• WORD ARITH
• WORD ZDABS
error return
normal return

Entry Parameters: DAC = Decimal number.
AC2 = Address of DAC block.

Exit Parameters: DAC = Result. Registers uQchanged.

Error CQdes: See ZDNEG.

V1-005-13 system functions 13-7

ZFIX - Truncate to Whole Number

CALL
• WORD ARITH
• WORD ZFIX
error return
normal return

Entry Parameters: DAC = Decimal number.
AC2 = Address of DAC block.

Exit Parameters: DAC = Decimal result. Registers unchanged.

ZINT - Greatest Whole Number Not Greater Than Value

CALL
• WORD ARITH
• WORD ZINT
error return
normal return

. Entry Parameters: DAC = Decimal value.
AC2 = Address of DAC block.

Exit Parameters: DAC = Decimal whole number. Registers unchanged.

Error Codes: See ZDNEG.

ZROUND - Round to Nearest Whole Number

CALL
• WORD ARITH
• WORD ZROUND
error return
normal return

Entry Parameters: DAC = Decimal value.
AC2 = Address of DAC block.

Exit Parameters: DAC = Decimal whole number. Registers unchanged.
ACO = EROVFL if error.

ZUNT - Greatest Integer Not Greater Than value

CALL
• WORD ARITH
• WORD ZIINT
error return
normal return

13-8 system functions V1-005-13

Entry Parameters: DAC = Decimal value.
AC2 = Address of DAC block.

Exit Parameters: ACO = Integer result. Other registers unchanged.
ACO = EROVFL if error.

ZIROUND - Round to Nearest Intefler

CALL
• WORD ARITH
• WORD ZIROUN
error return
normal return

Entry Parameters: DAC = Decimal value.
AC2 = Address of DAC block.

Exit Parameters: ACO = Integer result. Other registers unchanged.
ACO = EROVFL if error.

ZISGN - Indicate Si"n of Arflument (Decimal)

CALL
• WORD ARITH
• WORD ZISGN
error return
normal return

Entry Parameters: DAC = Decimal value.

Exit Parameters:

AC2 = Address of DAC block.

ACO = -1 if DAC is negative.
ACO = 0 if DAC is zero.
ACO = 1 if DAC is greater than zero. Other registers

unchanged.

ZIISGN - Indicate Sifln of Intefler Argument

CALL
• WORD ARITH
• WORD ZIISGN
error return
normal return

Entry Parameters: ACO = Integer value.
AC2 = Address of DAC block.

Exit Parameters: ACO = -1 if entry value negative.

V1-005-13

ACO = 0 if entry value zero.
ACO = 1 if entry value greater than zero. Other

registers unchanged.

system functions 13-9

ZRND - Generate Pseudo-Random Number

CALL
• WORD ARITH
• WORD ZRND
error return
normal return

Entry Parameters: ACO = Integer value (see Method paragraph below).
AC2 = Address of DAC block.

Exit Parameters: DAC = Pseudo-random number in range 0 to 1.

Method: If value in ACO is not zero, a specific number which is a
func tion of (ACO) is returned. The value in ACO will also
generate an integer "seed" stored in the 32nd word of DAC block.
If the value in ACO is zero, the current seed is used to generate
a new integer seed and a new decimal result. A sequence of 65,536
calls to ZRND, each with (ACO)=O, will generate 65,536 different
decimal numbers in the range 0 to 1, in a pseudo-random order.
After 65,536 calls, the cycle repeats.

The pseudo-random numbers generated by this process are not a
"dense" set in the JIOO decimal number representation. If the
numbers are sorted they will differ by an interval of
approximately .000015.

ZMPY - Inte2'er MultiDly

CALL
• WORD ARITH
• WORD ZMPY
error return
normal return

Entry Parameters: ACO = Integer value.
ACI = Address of integer value.
AC2 = Address of DAC block.

Exit Parameters: ACO = Integer result. Other registers unchanged.
ACO = EROVFL if error.

ZDIY - Inte2'er Diyide

CALL
• WORD ARITH
• WORD ZDIV
error return
normal return

13-10 system functions VI-005-13

Entry Parameters: ACO = Value of numerator.
ACI = Address of denominator.
AC2 = Address of DAC block.

Exit Parameters: ACO = Quotient.
ACI = Positive remainder. Other registers unchanged.
ACO = ERDVEX if error.

ZIDY - Inte2'er Inyerse Divide

CALL
• WORD ARITH
• WORD ZIDV
error return
normal return

Entry Parameters: ACO = Value of denominator.

Exit Parameters:

Error Codes:

ACl = Address of numerator.
AC2 = Address of DAC block.

See ZDIV.

See ZDIV.

ZEXP - Inte2'er Raised to Inte2'er Power

CALL
• WORD ARITH
• WORD ZEXP
error return
normal return

Entry Parameters: ACO = Value of integer base.
ACI = Address of integer exponent.
AC2 = Address of DAC block.

Exit Parameters: ACO = Integer result. Other registers unchanged.
ACO = EROVFL if error.

ZIEXP - Integ-er Raised to Inte2'er Power

CALL
• WORD ARITH
• WORD ZIEXP
error return
normal return

Entry Parameters: ACO = Value of integer exponent.

VI-005-13

ACI = Address of integer base.
AC2 = Address of DAC block.

system functions 13-11

Exit Parameters: See ZEXP.

N.Q1.e.: Inverse argument order from ZEXP.

ZDLD - Load DAC (Words 0-3) From User Area

CALL
• WORD ARITH
• WORD ZDLD
error return
normal return

Entry Parameters: AC1 = Address of user area.
AC2 = Address of DAC block.

Exit Parameters: DAC = Decimal value. Registers unchanged.

ZDADD - Decimal Addition

CALL
• WORD ARJTH
• WORD ZDADD
error return
normal return

Entry Parameters: AC1 = Address of decimal value to be added to DAC.
AC2 = Address of DAC block.
DAC = Decimal value.

Exit Parameters: DAC = Sum of decimal values. Registers unchanged.
ACO = EROVFL if error.

ZDSUB - Decimal Subtraction

CALL
• WORD ARITH
• WORD ZDSUB
error return
normal return

Entry Parameters: AC1 = Address of value to be subtracted from DAC.
AC2 = Address of DAC block.
PAC = Decimal value.

Exit Parameters: PAC = DAC -ACI. Registers unchanged.
ACO = EROVFL if error.

13-12 system functions VI-005-I3

ZDCMP - Decimal Com[;!arison

CALL
• WORD ARITH
• WORD ZDCMP
error return
normal return

Entry Parameters: ACl = Address of value to be compared with DAC.

Exit Parameters:

AC2 = Address of DAC block.
DAC = Decimal value.

ACO = 0 if DAC = ACl.
ACO = -2 if DAC less than ACl.
ACO = 1 if DAC greater than ACl. Other registers

unchanged.

ZDMPY - Decimal Multiply

CALL
• WORD ARITH
• WORD ZDMPY
error return
normal return

Entry Parameters: ACl = Address of decimal value.
AC2 = Address of DAC block.
DAC = Decimal value.

Exit Parameters: DAC = DAC*ACl. Registers unchanged.
ACO = EROVFL if error.

ZDDYD - Dec imal Divide

CALL
• WORD ARITH
• WORD ZDDVD
error return
normal return

Entry Parameters: ACl = Address of denominator.
AC2 = Address of DAC block.
DAC = Numerator.

Exit Parameters: DAC = DAC/ACl. Registers unchanged.
ACO = ERDVEX (divide by zero) if error.
ACO = EROVFL if error.

V1-005-13 system functions 13-13

ZDIYD - Inyerse Decimal Divide

CALL
.WORD ARITH
• WORD ZDIVD
error return
normal return

Entry Parameters: AC1 = Address of numerator.
AC2 = Address of DAC block.
DAC = Denominator.

Exit Parameters: DAC = AC1/DAC. Registers unchanged.

Error Codes: See ZDDVD

ZDEXP - Decimal to an Integ-er power

CALL
• WORD ARITH
• WORD ZDEXP
error return
normal return

Entry Parameters: ACO = Integer exponent.
AC2 = Address of DAC block.
DAC = Decimal base value.

Exit Parameters: DAC = DAC**ACO. Registers unchanged.
ACO = EROVFL if error.

ZDST - Decimal Store, From DAC to User Area

CALL
• WORD ARITH
• WORD ZDST
error return
normal return

Entry Parameters: AC1 = Address of user area (four words).
AC2 = Address of DAC block.
DAC = Decimal value.

Exit Parameters: AC1 = DAC address.· Registers unchanged.

ASCII TO DECIMAL CONVERSION (YICOHV .BB)

The module YICONV. RB has two entry points:

CSTDEC converts a numeric ASCII string to internal decimal format.

CDECST converts an internal decimal value to an ASCII string.

13-14 system functions V1-005-13

When the module YICONV.RB is linked to the user program these entry points
are available through JSR@ instructions as follows:

• GLOBL CSTDEC ,CDECST

ASTD: • WORD CSTDEC
ADST: • WORD CDECST

JSR @ASTD ;convert to internal form

JSR @ADST ;convert to ASCII form

CONVERT ASCII STRING TO INTBBlIAL DBCIMAL (CSI'DEC)

The routine, CSTDEC, converts a number from ASCII string format to a
four-word internal decimal format suitable for input to the System II ARITH
call. The ASCII string must be preceded by a word containing the byte
count, and may contain numeric digits, a decimal point, and a + or - sign
on either the left or right. Blanks and commas are ignored. Any characters
other than 0-9, +, -, comma, or blank cause an error return from the
conversion rou tine.

The module, YICONV.RB, must be linked to the application program with RLDR.
The entry point is CSTDEC. The interface to the conversion routine is:

ACO = Address of the ASCII string.

ACI = Address of a four word area for the resulting internal decimal
number.

AC2 = Address of a 16-word work area.

All four registers are restored on return.

Returns are: RTS 0 if there is an error.
RTS 1 if the conversion is successful.

CONVERT INTEllHAL DECIMAL TO ASCII STRING (CDBCsr)

The routine CDECST converts a four-word internal decimal value to an ASCII
string. The format of the resulting string is a byte count followed by the
number. The byte count is always 21 and the number is a full 21-character
representation with 10 integer digits, a decimal point, 9 fractional
digits, and a sign on the right.

V1-005-13 system functions 13-15

The module, YICONV.RB, must be linked to the application program with RLDR.
The entry point is CDECST. Input to the conversion is:

ACO = Address of a 12-word area to receive the ASCII result.

AC1 = Address of the four-word internal decimal value.

AC2 = Address of a 16-word work area.

All four registers are restored on return.

There is only a normal return.

13-16 system functions V1-005-13

Chapter 14

APPLICATION PROGRAM DEVELOPMENT

A System II application program is a program which is developed by a user
to be run under the control of the System II operating system. When running
as a job in the system environment, it resides in a system partition and
calls on the system for supervisory, memory management and I/O support.

User programs can be written in BASIC, Data-Rite, Report-Rite, or Assembly
language. The BASIC and Data-Rite compilers produce executable modules
which conform to System II standards. When writing in Assembly language,
the programmer must comply with the following rules to produce a module
which can be loaded by System II:

• The load module must be relocatable; no absolute sections (ASECT) are
allowed.

• Base sector (BSECT) memory requirements must not exceed the maximum
contiguous BSECT space available at load time.

• Top sector (TSECT) memory requirements must not exceed the maximum
contiguous TSECT space available at load time. This will depend on the
hardware memory configuration and other currently loaded programs.

• The load module must have a start address.

• All external references must be resolved.

The relocating link loader combines multiple object modules into a single
load module and resolves external references among the object modules.
Several binary files are provided with the system which can be specified in
the link edit process to resolve references to system-defined symbols. They
require no memory at run time, and are needed only to define global symbols
during the link step. They include:

SYSSYM.RB

V1-005-13

Includes all linkage parameters for system calls
(listed in Appendix A) as well as task base page symbol
definitions (TPZO - TPZ3).

application program development 14-1

ERCODE.RB

YIBDEF .RB

CPLNK.RB

Includes all error code parameters (listed in Error
Messages, V3-005).

Includes linkage parameters for the ARITH or BDEF. RB
c all to arithmetic routines.

Defines symbols in tables for the command parser. (Also
see Global Constants, Appendix B.)

SYSSYM. RB and ei ther YIBDEF. RB or BDEF. RB together provide symbol
definitions for calls to the system for services, while ERCODE.RB defines
the error code symbols used by the system.

As explained under File Referencing Conventions, the command to load a
program also causes it to execute. The command specifies the disk file or
non-disk device from which a binary-formatted copy of the program can be
loaded, and passes any parameters that may be required to the newly created
job when execution begins.

The operating system searches all the partitions in the system for a
sharable copy of the requested program. If a partition is found containing
the program, a new job is created for the partition and no loading occurs.

Only if no sharable copy of the specified file is found will it be loaded.
An .. adequately sized partition will be obtained (if possible), and the
operating system will proceed to relocate the specified load module into
the selected partition. It then passes control to the new job at the
starting address obtained from the binary file. Alternatively, the operator
can instruct the system to pass control to the DEBUGGER utility rather than
the program's start address. This is done by keying the character "#"
immediately before the first character of the command to load the program.
That utility allows the user to make minor changes and to set break points
prior to the ex ecu tion of the program.

For a disk file containing a reentrant (multi-user) program, the attributes
of the disk file must be declared (via the CHATR system command; see System
II Utilities Manual, V2-005) to be sharable for execution. Other attributes
related to extended memory may be declared with the BANK utility.

For disk files containing non-reentrant (single user) programs, multiple
copies in different partitions would be built to handle multiple users.

BINARY FILE LOADER

The Load Program call LDPRG, provides for direct loading of binary program
files by an application. Input to LDPRG is a file name block containing the
program name.

14-2 application program development V1-005-13

LOAD PROGRAM (LDPRG)

CALL
• WORD LDPRG
error return
normal return

Entry Parameters:

Exit Parameters:

ACO = Address of a file name block (same format as
required by OPEN).

ACO = Partition BSECT address.
AC1 = Partition TSECT address.
AC2 = Partition number.

In a J100 or J500 without extended memory, System II searches for a shar­
able copy of the requested program. If one is located, the use count is
incremented and the partition location is returned to the caller. In a J100
with extended memory, LDPRG must provide the requested module in the same
bank as the caller. If a sharable copy is present in the same bank, it will
use it. If the requested program has the "unique" attribute (see BANK
utility) and a copy is in use in another bank, the request will be refused.
A requ es t to load a "user sharable" program will also be refused.

Otherwise, the system will open the file, read the title block of the
program to determine its size, allocate a partition for the program, load
the program, close the file, and return the partition location. If the
program to be loaded has the top loading attribute (TL), it will be loaded
in the highest available partition space. If it does not have this attri­
bu te, it will be loaded in the lowest available partition. The specified
program must not contain any absolute sections (ASECT) nor any unresolved
external reference. The auxiliary partition and program are released from
the job by either the FPA system call or job termination.

SYS'I'HM RELBASE LEVEL

It may be useful for an application program to know what release of System
II it is running under. Starting with Release 8.1, this information is
available at absolute TSECT address RLVL, a global symbol defined in
SYSDEF .RB (not SYSSYM .RB).

For Release r.n, the word at RLVL has this structure:

Bits 0 to 7
Bits 8 to 12
Bits 13 to 15

V1-005-13

Reserved for flags
Value of r
Value of n

application program development 14-3

Thus, Release 8.1 is encoded in binary as:

0000 0000 0100 0001

wi th this interpretation:

0000000
01000
001

Flags
Value of 8
Value of 1

14-4 application program development V1-005-13

Chapter 15

CODE TRANSLATION FILES

Most device drivers, and some utility programs, provide for the code
translation of input and output data. This process occurs if a "code
translation file" with the appropriate name and the reserved extension "CT"
is present on the current primary disk. If no such file is found ~ then no
translation is done.

For a driver, the name of the relevant file is the same as the device being
opened, but with the "CT" extension suffixed. As an example, a file named
$LPTl.CT would be used by the line printer driver (CDODRV.8B) for trans­
lating output to device LPTI.

A customized file should be assembled and cataloged on the primary disk
under a dummy name, then renamed as needed when it must be made active or
inactive. The extension "DT" ("Dummy Table") is recommended for this
purpose.

The file contains a table of 16-bit words; normally, the table has two
sections, each 128 words long. The first section is for output processing;
the second section is for input processing, and is not required for an
ou tput-only device.

Note that a Diablo HyTerm does need an input table, even if it has no
keyboard. The printer hardware will send X'06 and X'86 back to the driver;
both of these must have translated values of X'06, an ACK character in
ASCII. Keyboard data may be translated as desired, but each resulting value
must be less than X'80.

Each 128-word section of the table contains 256 replacement values, packed
two per word in ascending order by the binary value of the data to be
replaced.

A programming example appears on the next page. The table would be
appropriate for two-way translation between ASCII and the English-language
version of EBCDIC.

To aid in the creation of similar tables, a complete ASCII reference chart
follows the example.

VI-005-13 code translation files 15-1

• TITLE AET AB, 'ASCII/EBCDIC TABLE'

Output section -- the computer's internal ASCII data
is translated into EBCDIC output. For example, an ASCII
space (X'20) should become an EBCDIC space (X'40). Call the
WORD directives Row 0 to Row F; for each row, call the 8-bit
values Column 0 to Column F. Now look at Row r, Column c to
find the value which replaces X'rc.

;
• WORD
• WORD
• WORD
• WORD
• WORD
• WORD
• WORD
• WORD
• WORD
• WORD
• WORD
• WORD
• WORD
• WORD
• WORD
• WORD

01 23 45 67 89 AB CD EF
X'OOOI,X'0203,X'372D,X'2E2F,X'1605,X'250B,X'OCOD,X'OEOF ;0
X'1011,X'1213,X'3C3D,X'3226,X'1819,X'3F27,X'ICID,X'lEIF ;1
X'405A,X'7F7B,X'5B6C,X'507D,X'4D5D,X'5C4E,X'6B60,X'4B61 ;2
X'FOFl,X'F2F3,X'F4F5,X'F6F7,X'F8F9,X'7A5E,X'4C7E,X'6E6F ;3
X'7CCl,X'C2C3,X'C4C5,X'C6C7,X'C8C9,X'DlD2,X'D3D4,X'D5D6 ;4
X'D7D8,X'D9E2,X'E3E4,X'E5E6,X'E7E8,X'E94A,X'E04F,X'5F6D ;5
X'7981,X'8283,X'8485,X'8687,X'8889,X'9192,X'9394,X'9596 ;6
X'9798,X'99A2,X'A3A4,X'A5A6,X'A7A8,X'A9CO,X ' 6ADO,X'AI07 ;7
X'OOOO,X'OOOO,X'OOOO,X'OOOO,X'OOOO,X'OOOO,X'OOOO,X'OOO0 ;8
X'OOOO,X'OOOO,X'OOOO,X'OOOO,X'OOOO,X'OOOO,X'OOOO,X'OOO0 ;9
X'OOOO,X'OOOO,X'OOOO,X'OOOO,X'OOOO,X'OOOO,X'OOOO,X'OOO0 ;A
X'OOOO,X'OOOO,X'OOOO,X'OOOO,X'OOOO,X'OOOO,X'OOOO,X'OOO0 ;B
X'OOOO,X'OOOO,X'OOOO,X'OOOO,X'OOOO,X'OOOO,X'OOOO,X'OOO0 ;C
X'OOOO,X'OOOO,X'OOOO,X'OOOO,X'OOOO,X'OOOO,X'OOOO,X'OOO0 ;D
X'OOOO,X'OOOO,X'OOOO,X'OOOO,X'OOOO,X'OOOO,X'OOOO,X'OOO0 ;E
X'OOOO,X'OOOO,X'OOOO,X'OOOO,X'OOOO,X'OOOO,X'OOOO,X'OOO0 ;F

Input section - EBCDIC is translated into ASCII. For example,
an EBCDIC asterisk, X'5C, becomes the value at Row 5, Column C,
which is X'2A - an ASCII asterisk.

;
• WORD
• WORD
• WORD
• WORD
• WORD
• WORD
• WORD
• WORD
• WORD
• WORD
• WORD
• WORD
• WORD
• WORD
• WORD
• WORD
;
• END

o 1 2 3 4 5 6 7 8 9 ABC D E F
X'0001,X'0203,X'0009,X'007F,X'0000,X'000B,X'OCOD,X'OEOF ;0
X'1011,X'1213,X'OOOD,X'0800,X'1819,X'0000,X'ICID,X'IEIF ;1
X'0000,X'OOOO,X'000A,X'171B,X'OOOO,X'0000,X'0005,X'0607 ;2
X'OOOO,X'1600,X'0000,X'0004,X'OOOO,X'0000,X'1415,X'OOIA ;3
X'2000,X'OOOO,X'OOOO,X'OOOO,X'OOOO,X'5B2E,X'3C28,X'2B5D ;4
X'2600,X'0000,X'OOOO,X'0000,X'0000,X'2124,X'2A29,X'3B5E ;5
X'2D2F,X'OOOO,X'OOOO,X'OOOO,X'OOOO,X'7C2C,X'255F,X'3E3F ;6
X'OOOO,X'OOOO,X'OOOO,X'OOOO,X'0060,X'3A23,X'4027,X'3D22 ;7
X'0061,X'6263,X'6465,X'6667,X'6869,X'OOOO,X'OOOO,X'OOO0 ;8
X'006A,X'6B6C,X'6D6E,X'6F70,X'7172,X'OOOO,X'OOOO,X'OOO0 ;9
X'007E,X'7374,X'7576,X'7778,X'797A,X'OOOO,X'OOOO,X'OOO0 ;A
X'OOOO,X'OOOO,X'OOOO,X'OOOO,X'OOOO,X'OOOO,X'OOOO,X'OOO0 ;B
X'7B41,X'4243,X'4445,X'4647,X'4849,X'OOOO,X'OOOO,X'OOO0 ;C
X'7D4A,X'4B4C,X'4D4E,X'4F50,X'5152,X'0000,X'OOOO,X'OOO0 ;D
X'5COO,X'5354,X'5556,X'5758,X'595A,X'0000,X'OOOO,X'OOO0 ;E
X'3031,X'3233,X'3435,X'3637,X'3839,X'OOOO,X'OOOO,X'OOFF ;F

15-2 code translation files VI-005-13

ASCII CHART

The designation or printable character associated with each 8-bit value
from X'OO to X'7F is defined by ASCII, the American Standard Code for
Information Interchange. The following chart shows the decimal and hex
values for these characters. The character printed as a space is decimal 32
or hex 20, designated SP in ASCII.

Dec Hex ASCI I Dec Hex ASCI I Dec Hex ASCI I Dec Hex ASCI I

00 00 NUL 32 20 SP 64 40 @ 96 60
,

01 01 SOH 33 21 65 41 A 97 61 a
02 02 STX 34 22 " 66 42 B 98 62 b
03 03 ETX 35 23 # 67 43 C 99 63 c
04 04 Ear 36 24 $ 68 44 D 100 64 d
05 05 ENQ 37 25 % 69 45 E 101 65 e
06 06 ACK 38 26 & 70 46 F 102 66 f
07 07 BEL 39 27 71 47 G 103 67 g

08 08 BS 40 28 (72 48 H 104 68 h
09 09 HT 41 29) 73 49 I 105 69 i
10 OA LF 42 2A * 74 4A J 106 6A j
11 OB VT 43 2B + 75 4B K 107 6B k
12 OC FF 44 2C 76 4C L 108 6C 1
13 OD CR 45 2D 77 4D M 109 6D m
14 DE SO 46 2E . 78 4E N 110 6E n
15 OF SI 47 2F / 79 4F 0 111 6F 0

16 10 DLE 48 30 0 80 50 P 112 70 P
17 11 OC1 49 31 1 81 51 Q 113 71 q
18 12 OC2 50 32 2 82 52 R 114 72 r
19 13 OC3 51 33 3 83 53 S 115 73 s
20 14 OC4 52 34 4 84 54 T 116 74 t
21 15 NAK 53 35 5 85 55 U 117 75 u
22 16 SYN 54 36 6 86 56 V 118 76 v
23 17 ETB 55 37 7 87 57 W 119 77 w

24 18 CAN 56 38 8 88 58 X 120 78 x
25 19 EM 57 39 9 89 59 Y 121 79 Y
26 1A SUB 58 3A 90 5A Z 122 7A z
27 1B ESC 59 3B ; 91 5B [123 7B {
28 Ie FS 60 3C < 92 5C \ 124 7C I
29 1D GS 61 3D = 93 , 5D] 125 7D }
30 IE RS 62 3E > 94 5E A 126 7E
31 IF US 63 3F ? 95 5F 127 7F DEL

V1-005-13 code translation files 15-3

(THIS PAGE INTENTIONALLY BLANK)

15-4 code translation files V1-005-13

Chapter 16

SYSTEM AUDIT TRAIL

The System Audit Trail is a facility to gather and retain information about
system activities, including information provided by application and util­
ity programs. Such a facility has a number of uses, some of which are
listed below:

• User accounting for billing supervision.

• Applica tion accounting for billing and supervision.

• Job accounting.

• Resource usage statistics for capacity planning.

The Audit facility consists of:

• The Audit utility.

• The Audit Trail file.

• The System calls AULG, AUWR.

The Audit utility is invoked by the Audit command line, and it can open or
close an Audit Trail file as well as specify which record types are to be
allowed in th e Audit Trail file. Each CRT may be audited by only one file,
but each Audit Trail file may audit many CRTs. There may be as many active
Audit files as there are CRTs. The Audit utility is described in more
detail in the System II Utilities Manual.

The Audit Trail file is a sequential binary file that is written by the
Audit facility. System calls will be made by the operating system,
utilities and application programs to add information to this file. The
information types that will be accepted by the Audit facility and the
programs or terminals that are allowed to add information' are specified
using the Audit utility. The Audit Trail file may be used as input to a
program (e.g., Report-Rite) that will extract meaningful subsets and
records for report generation (see Figure 16-8, page 16-8). The Audit Trail

VI-005-13 system audit trail 16-1

file can be made secure at the user option to prevent unauthorized modifi­
cation of the Audit Trail data. Data will be added to the Audit Trail even
if the security level of the Audit Trail is different from the user's
security level. LOGIN and LOGOFF (see System II Security) can be used to
associate a user name with a terminal and this name will then be inserted
by the system into the header of each audit record associated with jobs run
on that terminal.

The system call AULG is executed once by an application and provides a
means of associating standard system audit information with the application
by inserting an application specific code in the header of each audit
record generated by the system. The system call A UWR is used by the oper­
a ting system, utilities and applications to write a record to the Audit
Trail file. Each record written has a standard header whose format is shown
in Figure 16-1.

STANDARD SYSTEM AUDIT RECORDS

System II has a number of intercept points which will write out a record to
the Audit Trail file. Such system audit records are output at the following
points:

• Job initiation and termination.

• File open and close.

• Error messag e ou tpu t.

If the audit facility is active for a given terminal, then error message
records will always be written to the Audit Trail file. The first two
intercepts, however, may be enabled/disabled by the Audit utility on a per
terminal basis.

The format of each standard audit record is shown in Figures 16-2 through
16-6.

APPLICATION CODE AND RECORD TYPE

In order to classify the data produced by the Audit facility, each record
contains two identifying integers (see Figure 16-1). One is associated with
an application or utility and specified by the A ULG system call; the other
is associated with the record and passed to the Audit facility for the A UWR
system call.

Each application is given a different code number, and they should be
assigned so that the codes for applications of a similar nature fall within
a given range. An example scheme is shown in Figure 16-7. Similiarly,
records associated with the same activity should have the same record type
and record format.

16-2 system audit trail VI-005-13

The intention of such allocations is that it becomes possible to extract
meaningful subsets of information held in the Audit Trail; for example,
by selecting only those Audit Trail records that have a certain range of
application codes and/or record types.

WORD FIELD
OFFSET TYPE CONTENT

0 STRING USER NAME

6 STRING MESSAGE TERMINAL NAME

10 INTEGER SYSTEM DATE (YEAR)

11 INTEGER SYSTEM DATE (MONTH)

12 INTEGER SYSTEM DATE (DAY)

13 INTEGER SYSTEM TIME (HOUR)

14 INTEGER SYSTEM TIME (MIN)

15 INTEGER SYSTEM TIME (SEC)

16 INTEGER JOB IDENTIFICATION NUMBER

17 INTEGER APPLICATION CODE

18 INTEGER RECORD TYPE

19 INTEGER RECORD BODY BYTE COUNT

N.Q1.e: This record header is part of every record placed in the
Audit Trail file by the AUWR system call. Only the application
code, record type, and record body byte count is set by the
calling application. The rest of the fields are set by the AUWR
system call prior to writing the record to the file.

Figure 16-1. Record'Header

VI-005-13 system audit trail 16-3

(HEADER)

INTEGER

INTEGER

INTEGER

INTEGER

STRING

STRING

STRING

STRING

(HEADER)

INTEGER

INTEGER

INTEGER

X'01 = Command line from VCT
X'02 = Command line from command file
X'03 = Command line from a link

BSECT size

TSECT size

Predecessor JIC code (zero if none)

Predecessor job name (null string if none)

Command file name (null string if none)

Remote device name (null string if none)

Command line image

Application code and record type = D'15

Figure 16-2. Job Initiation Record

X'01 = Normal termination
X'02 = Abnormal termination
X'03 = Killed

CPU usage (upper half)

CPU usage (lower half)

Application code and record type = D'20

Figure 16-3. Job Termination

16-4 system audit trail V1-005-13

(HEADER)

INTEGER

INTEGER

INTEGER

INTEGER

INTEGER

INTEGER

INTEGER

STRING

(HEADER)

INTEGER

INTEGER

INTEGER

INTEGER

STRING

VI-005-13

X'OO = Not a secure file
X'OI = Secure file

File attribute flags

Share flags

Type of open

Use count

of words in file (upper half)

of words in file (lower half)

File name

Application code and record type = D'25

Figure 16-4. File Open

File attribute flags

Use count

of words in file (upper half), zero if hash

of words in file (lower half), zero if hash

File name

Application code and record type = DI30

Figure 16-5. File Close

system audit trail 16-5

FIELD CONTENT

(HEADER) SEE RECORD HEADER FORMAT FOR DETAILS

STRING ERROR MESSAGE TEXT (NEVER NULL)

N.Q1.e: This record is generated by the system error message
rou tines whenever a system error message is generated.

Figure 16-6. Error Message Record

16-6 system audit trail V1;...005-13

A partial scheme for business applications might be:

II. 1000;10,000 - Business Applications

A. 1000;1999 - General Ledger Programs

1. 1000;1249 - Data Entry Programs

a) 1000;1099 - Batch Data Entry

b) 1100;1149 - Batch Corrections

c) 1150;1199 - Master File Maintenance

d) 1200;1249 - Miscellaneous Data Entry

2. 1250;1599 - File Processing Programs

a) 1250;1399 - Sort/Select/Merge Programs

b) 1400;1499 - Master File Batch Updates

c) 1500;1599 - Miscellaneous File Processing

3. 1600;1999 - Report Generation

a) 1600;1699 - Edi t Lists and Daily Reports

b) 1700;1799 - Weekly and Monthly Reports

c) 1800;1899 - Quarterly and Yearly Reports

d) 1900;1999 - Miscellaneous Reports

B. 2000;2999 - A/R Programs

1. 2000;2249 - Data Entry Programs

a) 2000;2099 - Batch Data Entry Programs

b) 2100;2149 - Batch Corrections

Figure 16-7. Example Scheme for Business Applications

VI-005-13 system audit trail 16-7

~
0)

I
00

00
tc::::
00
f"+
CD
3
!3:> c:
0-.....
f"+

f"+
"'1
~

<:
~
I

<::)
<::)

01
I
~
c,..,

Batch AIR
Data Entry

Batch AlP
Data Entry

Batch Time
Card Entry

Total Batch
Data Entry

Total Batch
Correc tions

AIR File
Update

AlP File
Update

Job
Run
Time
(Hrs)

2.1

1.3

5.6

9.0

.7

.75

.41

Deviatian Deviation Deviation
Per- From From From

CPU cent Previous Number of Previous 6 Period
Usage of Period Records Period Average
(Hrs) Total (%) Processed (%) (%)

.15 2.5 +5 525 +6.0 +2.3

.OS 1.3 +1 207 +2.0 +0.5

1.1 lS.0 +12 6,326 +15.0 +12.0

1.33 23.0 +8 7,058 +12.0 +10.0

.1 1.6 -4 52 -1.5 -2.0

.5 S.3 +4 525 +5.0 +2.0

.32 5.3 +.S 207 +l.S +0.3

.~-

Figure 16-S. A Possible Report Format

AUDIT LOG Of (AULG)

CALL
• WORD AULG
not accepting return
normal return

Entry: ACO = Audit application code.

Not Accepting Exit: ACO-AC3 = Unchanged.

Normal Exi t: ACO-AC3 = Unchanged.

A ULG sets the calling job's audit application code into the job's JCT. Each
time a job calls A UWR if the job's audit application code is non-zero and
the application code specified in the record is greater than or equal to 0
and less than or equal to D'49, A UWR replaces the application code speci­
fied with the job's application code. Application codes and record types 0
through D'lOO are reserved for the operating syst~m.

The purpose of the above application code replacement scheme is to simplify
the post-processor's association of operating system generated records with
a non-system application. For example, the accounts receivable application
program might set its job's application code to identify itself. Subse­
quently, every operating system generated Audit Trail record, such as file
opens and closes, and job termination, would be immediately identifiable by
application code as associated with accounts receivable.

A ULG also indicates to the caller whether or not the Audit Trail is
currently accepting application records from the caller's job. The Audit
Trail is currently accepting application records from the caller's job if
and only if the caller's job's message terminal currently has an Audit
Trail file which is accepting application records.

There is no audit application code associated with a computer terminal or
with a command file. Hence, the effects of A ULG last only until the calling
job terminates or calls A ULG again. In most if not all cases, A ULG should
not be used to change a job's application code from one non-zero integer to
another. However, A ULG may be called many times to determine whether or not
the Audit Trail is currently accepting records from the calling job.

Anyone word integer value may be specified as the Audit application code.
A ULG does not check for any error conditions.

V1-005-13 system audit trail 16-9

AUDIT WRITE RECORD (AUWR)

CALL
• WORD AUWR
error return
normal return

Entry: ACO = Address of buffer containing record.

(ACO + D'17) = Audit application code. If this application
code is >= 0 and <=D'49 and the job's appli­
cation code (set by AULG) is non-zero, AUWR
will set the job's application code into (ACO
+ D'17).

(ACO + D'18) = Record type.

(ACO + D'19) = Number of bytes in record body (allowed
range: 0-D'254).

(ACO + D'20), ••• = Record body.

Error Exit: ACO = System error code.
ACI-AC3 = Unchanged.
Record header set and compressed (see below).

Normal Exit: ACO-AC3 = Unchanged.
Record header set and compressed (see below).

Disk error.
No disk space available.
Illegal block size.
Bad UFT address.
Illegal system call.

Error Codes: ERDIO
ERDSNA
ERISZ
ERBUFT
ERICL
ERSQHF
ERSQNS

Sequential I/O call on a hash file.
Sequential I/O not supported on this device.

A UWR writes one Audit Trail record to the Audit Trail file for the job's
message terminal if and only if there is such an Audit Trail file and this
Audit Trail is currently accepting records with the application code
specified by input parameter (ACO + D'17). Else, AUWR does nothing and
tak es its normal return.

After determining whether or not to add the record to the Audit Trail, but
before writing it to the Audit Trail, the application code input is
replaced by the job's application code if appropriate. If the record type
is greater than or equal to zero, and less than or equal to D'49, and the
job's application code is non-zero, then the input application code is
replaced by the job's application code.

The buffer containing the record may be in a partition or in a system
buffer. Note that AUWR returns this buffer to the caller.

16-10 system audit trail VI-005-13

Note that while there may be many Audit Trail files (as many as one per
computer terminal) each call to AUWR only writes the specified record
to at most one Audit Trail file.

A UWR does not check the format of the record body. It is the caller's
responsibility to observe the BASIC, Data-Rite, and Report-Rite data
formats. Remember that the Audit Trail file is intended for processing by
Report-Rite. See the Data-Rite manual for descriptions of the various
Binary file data formats (e.g., Integer, String, Decimal, etc.).

A UWR does not compress or change the record body in any way.

RECORD FORMAT AS INPUT TO AUWR

0-16

17 Integer

18 Integer

19 Integer

20-

Meaning

To be set by A UWR

Audit application code

Record type code

Number of bytes in record body
(allowed range: 0 - D'254)

Record body

RECORD FORMAT AS RETURNED BY AUWR AND AS WRITrBN
TO THE AUDIT TRAIL FILE

Note that the two strings are compressed down against word 10 so that the
origins of these fields depend on the string lengths. Words that are not
used at the beginning of the header are not written to the Audit file.

String

String

10 Integer

11 Integer

12 Integer

13 Integer

14 Integer

VI-005-13

Meaning

User name; if nec essary padded to an even number
of bytes by a trailing blank.

Name of job message terminal; if nec essary padded
to an even number of bytes by a trailing blank.

Year (e.g., 1980,1981, •••)

Month (e.g., 1, 2, 3 ••• 12)

Day (e.g., 1, 2, 3 ••• 31)

Hour (e.g., 0, 1, 2 ••• 23)

Minute (e.g., 0, 1, 2 ••• 59)

system audit trail 16-11

WJlr..d ~ Meaning

15 Integer Sec 0 n d (e. g ., 0, 1, 2 ... 59)

16 Integer Job identification code.

17 Integer Audit application code.

18 Integer . Record type code.

19 Integer Number of bytes in record body
(allowed range: O-D'254).

20- Rec ord body.

Remember that the format for String type data is as follows:

WJlr..d Contents

0 Number of bytes in string (allowed range: 0-D'254).

1 Byte #1 in left byte, byte #2 in right byte.

2 Byte #3 in left byte, byte #4 in rig h t by t e •

etc.

16-12 system audit trail VI-005-13

Appendix A

SYSTEM CALL INDEX

Listed below are the system call linkage parameters. These symbols are
defined in the module SYSSYM.RB, which can be linked with the user's
application program (see Chapter 14).

Symbol ~

ABT 03 6-7

ABTC 04 6-7

ARITH 7F 13-5

AULG AO 16-9

AUWR Al 16-10

CEFREE 81 9-27

CEPROT 47 9-28

CERALL 46 9-28

CEROLL 82 9-29

CHTR 17 7-22

CLOS 14 7-19

CMDPAR 38 B-8

CREA 10 7-9

CRLGTS 23 9-27

CRTLCI 68 9-26

VI-005-I3

Function

Job abort.

Abort control.

Arithmetic processor call.

Audit log in.

Audi t write record.

Erase free screen.

Erase unprotected fields.

Erase entire screen.

Erase roll part.

Change attributes.

Close file.

Parse command line.

Create a file.

Set or read terminal status lights.

Set or release lowercase option.

system call index A-I

Symbol H.eK

CTLCRT IF

DELHF 7E

DELT 11

DSKSP 7C

FBF OD

FMSG 30

FPA 40

FULCRT 21

GBF OC

GDAT 36

GPA 3F

GTOD 34

HFADD 57

HFCLR 80

HFDEL 5A

HFFND 59

HFNXT 5D

HFXCH 58

HLFND 69

HLNXT 6A

HREAD 5B

LDPRG 4D

LINK 7A

MCRT 29

MSG 2E

MSRD B5

~

9-10

8-15

7-20

7-23

5-3

9-20

5-5

9-9

5-2

13-1

5-4

13-1

8-6

8-16

8-10

8-8

8-9

8-6

8-13

8-14

8-11

14-3

6-10

9-13

9-23

9-23

A-2 system call index

Function

Return to command mode.

Delete a hash file.

Delete a file.

Disk spac e available.

Free a buff er.

Display system error message and file name.

Free a partition.

Set free screen mode.

Get a buff er.

Get system date.

Get a partition.

Get time of day.

Hash file add record.

Clear a hash file.

Hash file delete record.

Hash file find record.

Hash file find next record.

Hash file exchange record.

Hash file find and lock record.

Hash file find and lock next record.

Hash file sequential read.

Load program.

Link to secondary job.

Copy data from screen.

Display messag e.

Message read and display.

VI-005-13

Symbol Iie.x ~ Fynction

MSVF B6 9-21 Error message with file name to computer
terminal.

MSVS B7 9-19 Error message to computer terminal.

MTERS 73 11-27 Erase.

MTRD 6F 11-23 Read data block.

MTRS 74 11-27 Read device status.

MTRWD 71 11-26 Rewind tape volume.

MTSD 6E 11-25 Skip data blocks.

MTSFF 6C 11-24 Skip file mark forward.

MTSFR 6D 11-25 Skip file mark reverse.

MTSQRW 75 11-14 Rewind tape volume.

MTSQSF 76 11-14 Skip file marks.

MTSQSR 77 11-15 Skip logical records.

MTSQWE 78 11-13 Write file marks.

MTWD 70 11-23 Write data block.

MTWEF 72 11-26 Write file marks.

NSPCRT 25 9-8 Set roll mode.

OPEN 3B 7-12 Open sequential file for reading and writing.

OPNR 12 7-9 Open sequential file for reading.

OPNW 13 7-11 Open sequential file for writing.

RCRT 28 9-12 Read free screen.

RGRTB 2B 9-10 Read bottom line.

RCRTBN 2D 9-11 Read bottom line without roll.

RDL 18 7-15 Read line.

RDL 18 9-10 Read bottom line.

RDLQ AC 7-16 Read line quickly.

RDS lA 7-14 Read sequential.

VI-005-13 system call index A-3

Symbol H.e.x ~ Function

RELJ 79 6-11 Release from predecessor job.

RNAM 16 7-21 Rename a file.

ROLCRT 20 9-8 Set roll mode.

RWND 3C 7-23 Rewind sequential file.

SDAT 37 13-2 Set system date.

SMSG 2F 9-17 Display system error message.

SPBCRT 53 9-10 Set split screen boundary II

SPCRT 24 9-9 Set spli t screen mode.

STOD 35 13-2 Set time of day.

SUSA DB 6-10 Suspends allowed.

SUSC 06 6-8 Suspend until location changes.

SUSN 08 6-9 Suspend until location non-zero.

SUSP 05 6-8 Suspend until next scheduler pass.

SUST 09 6-9 Test flag and suspend.

SUSX OA 6-10 Suspends not allowed.

SUSZ 07 6-9 Suspend task until location equals zero.

TASK 01 6-6 Schedule a new task.

TEND 02 6-7 Terminate a task.

VOLID 97 7-24 Read disk volume identification.

WCRT 2A 9-16 Write screen.

WCRTB 2C 9-14 Write to bottom line of terminal.

WRL 19 7-17 Write line.

WRL 19 9-15 Wri te line to terminal.

WRLC AB 7-18 Write line compressed.

WRS IB 7-14 Write sequential.

WRS IB 9-16 Write sequential to terminal.

A-4 system call index V1-005-13

Appendix B

COMMAND LINE PARSER AND TABLE STRUCTURE

System II includes a generalized program which parses and converts command
line character strings into data structures for ease of handling by
application programs and other parts of the system itself.

The parser program accepts the general System II command line syntax as
illustrated at the end of this appendix. However, when invoked, a table
must be passed which contains pointers to the command line character
string, definitions of the allowable syntactical constructs and addresses
of data areas.

The syntax table is serially (not reentrantly) reusable. It has the fol­
lowing structure:

LINLOC I Address of Command Line
1--------------------

CHRPOS Current Character
-------------------- Position

1st Field Entry (3 words)

2nd Field Entry (3 words)

•
1

--------------------1
nfth Field Entry (3 words) 1

1
--------------------1

-0- 1 Table Terminator

V1-005-13 command line parser and table structure B-1

LlNLOC - ADDRBSS OF COMMAND IdlfB

This is the first word address of the command line.

CBRPOS - CDRRBNT CHARACTBR POSITION

This is the character position at which the parser is to begin its scan.
This location is maintained by the parser to always point to the next
character to process or" may be considered a count of consumed characters,
relative to the contents of LINLOC.

It can be seen from the syntax definition that a statement consists of
fields of three basic types. Each entry in the table corresponds to a
"field" in the command line. Each entry in the table consists of three
words and has the following structure:

DATLOC 1 1 Address of Data Area
1--------------------1

FInID I KEY / TYPE / Key and Field Type
/--------------------1

FLAGS I I Field Flags

DATLOC - DATA ARRA LOCATION

This is the first word address of several locations in memory where data
related to the command line field is to be placed (size requirements are
defined in the associated field descriptions). A zero entry in this word
indica tes the end of the table.

If the current field is of the string type, DATLOC contains the address of
a three-word control block associated with string fields.

FLDID - FIBLD IDENTIFIEBS

This quantity defines the permissible type of field which will correspond
to this table entry. It is a two-byte field containing an eight-bit field
type identifier in the right byte and a seven-bit ASCII key character or
zero in the left byte.

Five basic field types are permitted: file name, string, switch, numeric
expression, or numeric range. In addition, the entry may require a prefix
of the form "[ascii]::" on the field of specified type. The key character in
the table entry indicates this. If non-zero, the field in the command line
used to satisfy this table entry must be of the form "[ascii=parm]" where
[ascii] is the seven-bit key character and [parm] is of the type indicated
in the table entry. If the key character is zero, the field in the com­
mand line must not have a prefix "ascii=" and must conform to the type
indicated.

B-2 command line parser and table structure VI-005-I3

The parser program uses the order of entries in the table to define the
command line. Two exceptions to this rule exist: they are KEYED fields
and switch fields. The occurrence of these causes the parser program to
scan the complete table for an unused field entry which matches that found
in the command line. If no match is found in the table, a "syntax" error
condition is returned to the caller.

FIBLD TYPBS

FIELD TYPB, BIT 15 - PILE NAME RBPBRBNCB

The corresponding field will be expected to conform to the syntax for a
file name reference. Seven words are required in the data area for a
file name plus two additional words for switches if allowed (see FLAGS, Bit
13) for a total of nine words for this field type.

prefix - 6 characters

root - 6 characters

• extension - 2 characters

-------------------- switches - 2 words
(space required only if FLAGS Bit 13 is set)

All characters are packed left to right from the origin of their respective
sub-fields, with unused character positions containing nulls.

PIELD TYPE, BIT 14 - NUMERIC RANGE

The general syntax for a numeric range will be used to interpret the
corresponding field. The default mode for numeric conversion is decimal
unless overridden in the field itself, or via FLAGS, Bit 14 in the table
entry. Two words are required for the range values and two for switches (if
permitted) •

V1-005-13 command line parser and table structure B-3

1 1 value - 1st expression
1--------------------1
1 1 value - 2nd express ion
1--------------------1
1 1
1--------------------1 switches - if pennitted
1 1

The syntax for a numeric range allows a single expression to suffice.
In such cases, both value entries in the data area will contain the value
of the single expression.

FIELD TYPE, BIT 13 - NUMERIC EXPRESSION

The data area for this field type requires only a single location for the
expression value plus two words for switches (if permitted).

1 1 expression value
1--------------------1
1 1
1--------------------1 switches - if permitted
1 1

FIELD TYPE, BIT 12 - SWITCHES

The syntax for a "switches only" field is exactly the same as switches
appended to another field. The data area for this field type requires only
two words for the switches.

1 1
1--------------------1 switch bits
1 1

FIELD TYPE, BIT 11 - FILE NAME REFERENCE PATTERN ALLOWED

The syntax and data area for this field is the same as a file name
reference field with the exception that. the characters "*" and "-" are
allowed as pattern specifiers.

B-4 command line parser and table structure V1-005-13

FIELD TYPE, BIT 10 - Sl'RlHG FIELD

Upon encountering a string type field, the parser program will begin moving
characters from the input command line to the specified data area. Movement
will continue until end-of-line is encountered or until either the speci­
fied character count is exhausted or the specified terminating character is
encountered. Associated with this field type is a three-word control block,
addressed by word DATLOC of the field entry. The control block is of the
form:

0 718 15
1

Word 0 TRM 1
I

Word 1 AOC S tr i ng Control
Block

Word 2 SIlA.

Word 3 SWI

Word 4 SW2

where:

TRM String terminator. Contains the string termination
character. The parser program will move characters from the
input command line to the associated data area until this
character is encountered or end-of -line is reached. The
terminating character will not be transferred to the data
area. If the value specified is zero, the data movement will
terminate when either a space or a comma character is
encountered, or when end-of-line is reached.

MCC Maximum character count. The value of MCC is equal to the
maximum number of characters the user can accept into the
data area. The value of Mec cannot exceed Dt255. If this
count is exhausted and the next character is not equal to
the terminating character, the parser program will return
control to the user at the error return with error code
ERSLE specified. A count equal to zero will cause the user
to regain control at the error return with error code ERSLE
specified. The maximum character count does not include the
string terminator.

Ace Actual character count. The parser program will place in
this location a value equal to the number of characters
transferred to the data area. If error action has been taken
with respect to this string field, Ace will contain an
invalid value.

VI-005-13 command line parser and table structure B-5

SDA

SWI/2

FI.AGS

String data area address. The first word address of several
locations in memory where data associated with this field
are to be placed. Characters are transferred from the input
command line and packed into the data area two per word.
The data area must be large enough to contain the maximum
allowable number of characters (MCC). The data area is not
cleared prior to moving in the current string, but a null
(X'OO) is placed after the string if there is room.

Two words reserved for switches, if permitted. If switches
are disallowed, these two words need not be reserved.

Four bits are currently assigned meanings in the table entry flag word:

FLAG, BIT 15 - FIELD RUSE" FLAG

This bit in every table entry is cleared when the parser program is
invoked. Then, as the command line is parsed, the "use" flag is set in each
table entry that is used (in the sense that a field was found to correspond
to the entry).

FLAG, BIT 14 - HEX NUMERIC MODE FLAG

The default conversion mode assumed for numeric fields is decimal.
This bit, when set, changes the default conversion mode to hexadecimal.
Note as well that the command syntax allows the mode of a numeric field to
be specified by prefixing either an "X" or "D" to the digit string. These
imply either hexadecimal or decimal, respectively. This hi t is ignored if
the field is not numeric.

FLAG, BIT 13 - SWITCHES FLAG

The general syntax permits switches to be appended to any field type.
If switches are permitted for a particular field, the corresponding table
entry should have tllis bit set. Note that switches require two additional
words in the data area. Use of this bit requires allocation of switch space
in the corresponding data area.

FLAG, BIT 12 - MANDATORY FIELD

If this bit is set in the flags word of a particular field entry, there
must exist in the command string a field corresponding to the field entry.
The parser program, upon successful completion, checks all the field
entries for flag bit 12 on; if at least one field entry has its field use
bit (15) off and its mandatory field bit (12) on, the error return will be
taken with error code ERMFNU.

B-6 command line parser and table structure VI-005-13

FLAG, BIT 11 - FILE NAME-FIELD PA'ITERR ENCOUNTERED

This bit is set when a pattern has been detected while processing a file
name field which allows a pattern to be specified. This bit is cleared in
every file name type table entry when the parser program is invoked.

SWUCBBS

The general command line syntax permits switches to be associated with any
field. Switches are of the form "/alpha" and may be strung together to
arbitrary lengths.

When permitted (see FLAGS, Bit 13) and when encountered in the command
line, these switches will be encoded and stored into two words included as
part of the field's data area.

Since switches are restricted to single letter alphabetic characters, there
are only 26 possibilities. The appearance of a letter as a switch causes a
bit to be set in the switch words of the data area.

The correspondence is:

Letter

A

B

C

D

p

Q

R

z

VI-005-13

WJl.r..(l

0

0

0

0

o

1

1

1

Bit.

0

1

2

3

15

o

1

9

The corresponding bit will be set to show that a
letter appeared. The switch words will be
initialized to zero before switch interpretation
begins.

command line parser and table structure B-7

PABSR COMMAND LINE (CMDPAR)

CALL
• WORD CMDPAR
error return
normal return

Entry: AC3 = Address of syntax table.

Error Exit: ACO = System error code.

ACI-AC3 = Unchanged.

Syntax table changed as noted below. Each token value
set into its buffer.

Normal Exit:

Error Codes:

ACO-AC3 = Unchanged.

Syntax table changed as noted below. Each token value
set in to its buffer.

ERC M D Command error.
ERMFNU Mandatory field not used.
ERSLE String length error.

CMDPAR parses the specified command line into the specified fields.

Parsing stops when each of the fields specified by the syntax table has
been found, or when a line terminator is encountered. A line terminator is
any byte less than X'20 (except TAB, X'09) or the exclamation mark (0.
Because the exclamation mark is treated as a line terminator, a comment
beginning with an exclamation mark may be appended to a command line.

The order in which non-keyed, non-switches-only fields occur in the command
line must be the same order in which their field specification blocks occur
in the syntax table. When a non-keyed, switches-only field is encountered
in the command line, the first unused switches-only field specification
block is used. Any keyed field may appear f;\nywhere in the command line.

Each time a field is found, the use flag b;it for the field is set in the
syntax table. Each time that an asterisk or hyphen is found in a pattern
field, the PTRN (X'OOlO) flag bit for the field is set in the syntax table.

A non-string field buffer is zeroed only when the field is encountered.
A string buffer is never zeroed, but a null byte (X'OO) is stored following
it if there is room. Hence, a default value for an optional token can be
set into a token buffer before calling CMDPAR.

CMDPAR returns error code ERCMD if an illegal character is encountered, if
a string token is longer than the maximum length specified for it, if a
token not allowed by the specified syntax table is encountered, or if the
unkeyed token order is not allowed by the specified syntax table. CMDPAR
returns error code ERMFNU if a mandatory token is not encountered. If a
string exceeds the maximum length specified for it, CMDPAR returns error
code ERSLE.

B-8 command line parser and table structure VI-005-13

GLQBAI,CQB8TA1TR

A collection of global constants may be used with programs that call the
Command Line Parser. They are defined in the module CPLNK. RB and are listed
below:

Syntax Table Header

Global
Y.alu.e. Symbol Meanioi

0 LINLOC Pointer to Command Line
1 CHRPOS Current Character Scan Position
2 FLD01 Offset to First Field Packet

Offsets Into Field Packets

Global
Y.alu.e. Symbol MeaDini

0 DATLOC Pointer to Data Block
1 FLDID Field Type Entry
2 FLAGS Field Flags Entry
3 FLDSIZ Field Packet Size

Field Types

Global
Y.alu.e. Symbol MeaniDi

1 FNAM File Name
2 NRNG Numeric Range
4 NEXP Numeric Expression
8 SWCH Switches Only

16 PTRN File Name - Pattern Allowed
32 STNG String Field

F1a" Bits

Global
Y.alu.e. Symbol MeaDiDi

1 USED In-Use Bit
2 HEXI Hexadecimal Flag Bit
0 DEC I Dec imal Flag = HEXI Off
4 SWON Switches Included Bit
0 SWOF No Switches
8 MANDF Mandatory Field Bit

16 PTRN File Name Pattern Encountered

VI-005-13 command line parser and table structure B-9

GBNERAL SYSTEM II COMMAND LINE SYNTAX

Notation key:

::= is generated from
I inclusive or
<x> element of type "x"

<line> ::= <comment marker> anything I <statement>

<comment marker> ::= * I !

< s ta temen t>

<delimiter>

<field>

< argument>

<parameter>

<range>

<expr>

<switches>

<alpha>

<num>

<dec value>

<hex value>

<dec string>

<hex string>

<sign>

<file>

<fileref>

<device>

<filename>

.. -.. -

.. -.. -

.. -.. -

.. -.. -

.. -.. -

.. -.. -

.. -.. -

.. -.. -

.. -.. -

.. -.. -

.. -.. -

.. -.. -

.. -.. -

.. -.. -

.. -.. -

<field> I <statement> <delimiter> <field>

commalblank(s) Icomma followed by blank(s)

<argument> I <argument> <switches>

<alpha> = <parameter> I <parameter>

<file> I <expr> I <range> I <switches>

<expr> : <expr>l<expr>

<num>l<num> + <numz>l<num> - <num>

/ <alpha> I <switches> / <alpha>

any single uppercase letter

<sign> <dec value> I <sign> <hex value>

<sign> <dec string> I <sign> D' <dec string>

<sign> <hex string> I <sign> X' <hex string>

string of decimal digits (range 0:32767)

string of hex digits (range O:FFFF)

+I-Inull

::= <devide> <fHeref> 1$ <fileref> I <fileref>

::= <filename>. <extension> I <filename>

::= <name>

::= <name>

B-IO command line parser and table structure VI-005-13

<name>

<extension>

VI-005-13

::= uppercase letter, followed by any combination of 0
to 5 numerals and uppercase letters

::= any combination of 1 or 2 numerals and uppercase
letters

command line parser and table structure B-11

(THIS PAGE INTENTIONALLY BLANK)

B-12 command line parser and table structure Vl-005-13

u
~
j

::l
u

V1-00S-13

COMMENT SHEET

AHA Jacquard Systems

FROM

Name

Business Address

Does this publication meet your requirements? yes 0 no 0

If not. please explain.

Do you wish a reply? yes 0 no 0

COMMENTS

Descrtbe any errors and/or suggested changes. Please include page number.

(010:1)

I II III

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN UNITED STATES

POSTAGE WI LL BE PAID BY:

Atten ~ion: Software Support
Documentation Department

MA Jacquard Systems

P.O. BOX 6044
INGLEWOOD, CA 90312

(FOLD)

I
I
I
I
I
I
I
I
I
/

I
I
I
I
I
I

I
I
I
I
I
I
Ig

-!

I~
I~

C')

10
o
I~ m
/0

r

I~

3340 Ocean Park Boulevard
Santa Monica, California 90405

.AHA Jacquard Systems

3340 Ocean Park Boulevard
Santa Monica, California 90405

~~ Jacquard Systems

