
ITHACA INTERSYSTEMS
PASCAUZ

PASCAUBZ
USER'S MANUAL

VERSION 4D

CI Copyright 1981 JEFF MOSKOW
Revised 11/1/81

ITHACA INTERSYSTEMS

PASCAL/Z AND PASCAL/SZ

USER'S MANUAL

VERSION 4.0

(c) Copyright 1981

by Jeff Moskow

Revised 11/1/81

COPYRIGHT NOTICE. •• 1

INTRODUCTION ••••••••••••••••••
PASCAL/Z OBJECTIVES ••••••••• -.-.
IMPLEMENTATION FEATURES •••••••••••••••••
EXTENSIONS TO THE STANDARD LANGUAGE ••• -•••
PASCAL/Z RESTRICTIONS ••••••
SYSTEM REQUIREMENTS ••.•••••
RECEIVING INSPECTION •••••••

Contacting Intersystems ••••
CONTENTS OF THE PASCAL/Z DISTRIBUTION DISKETTE.
CONTENTS OF THE PASCAL/Z LIBRARY DISKETTE ••
JENSEN & WIRTH EXAMPLE PROGRAMS ••••••••
GETTING STARTED ••••••••••••••••••••••••

INTRODUCTION TO PASCAL ••••••••••••••••••
Declarations & Definitions •••••••••••
Intrinsic Constants & Data Types ••••
Scalar Data Types •••••••••••••••••
Structured Data Types •••• ~ ••••••••

• • ~ • 2
• .' ~ ~ 3
· . • . 4

.4

.5
•• 6

• •• 7
• •• 8

• . • • • 9
• ••• 10

• .12
..13

• •• 14
• •• 15
• •• 16
• •• 17
• •• 18

The Pointer Type •••••••••••••••••••••
Constants •••••••••••••••••••••••••••
Variables ••••••••••••••••••••••••••••

..••• 20

Global & Local Variables ••••••••••••
Accessing Variables •••••••••••••• ; ••

Assignment Statements ••••••••••••••••••
Repeat & While Statements..... • ••••
For Statements ••••••••••••••••
Conditional Statements.; •••••••••••••••
Compoound S ta temen'ts ••• ' • • • • • • ••••••• . . .

• •• 22
• •• 23
• •• 23

• ••• 24
• •• 25
••• 26

.26
• •• 27

• ••• 28
With Statements •• o..................... .-.. 29
Procedures & Functions.............. • •••••••• 30
Pascal Standard Functions ••••••••••••••• 0 •••••••• 31
Pascal Standard Procedures................. • •• 31
Program Structure & Use of Semi-Colons •••••.•••• 32

THE PASCAL/Z
The Symbol

COMPILER •••••••••••••••••••••
Table ••••••••••••••••••••••

The Type Table ••••••• ~ ••••••••••••••••
COMPILER OPTIMIZATIONS ••••••••••••••••
VOCABULARy •••••••••••••••••••••••••••
PASCAL SPECIFICATIONS & LIMITATIONS ••••

Specifications ••••••••••
Limitations •••••••••••••••••••••••••

COMPILER OPTIONS •••••••••••••••••••••••
PASCAL/Z PROGRAMS FOR SPEED •••••

DECLARATIONS.

.34

.34
• •. 34
••• 36

.37
• ••• 38

• •• 38
• ••• 40

..41
. ••. • 43

• ••• 44
OPTIMIZING
PASCAL/Z TYPE
HOW TO RUN PASCAL/Z ••••••••••••••••••••••• ' ••••• • ••• 46

COMPI LE. SUB ••••••••••••••••••••••••••••••••••••• 48
INTERPRETING PASCAL/Z LISTINGS & ERROR MESSAGES. • •• 50

••• 51 Run-Time Errors -- Stack Overflow ••••••••••••
PASCAL/Z INPUT & OUTPUT.
DIRECT FILE ACCESS •••••••••
RENAME & ERASE •••••••••••••
DEVICE INPUT & OUTPUT ••••••
PASCAL/Z EXTENSIONS ••••••••••••

Pascal/Z Constants •••••
Pascal/Z Functions •••••

• ••• 53
• ••••..• . 58

• .59
• •• 60

• ••• 61
• .6364

Pascal/Z Strings •••••••••••••••••• • ••• 66

Pa sea liZ CAS E S ta temen t •••••• , •••••• " ••••• ' •••••••• 69
, S epa rat e Com p i 1 a t'i 0 n .". • • • • .,." •.• ,.. • • • "': • • • • • • • • • • • • 7 0
Paseal/Z External Routines ••••••••••••• ~~ ••••••• 74
o v e r 1 a y i rig ••• ~ • .' • -." ' ••• '.'." ••••••••••••••••••• 7 9
INCLUDE Files •. ' •. • :".<~.':.: .• -' ••••• ' .'." ••••••••• ' ••••••••• • 85

> • ,- ~,: ::" '-,'.- ,,~ ~-'

CHAINING ••••.•••••••••• ~ •••••• • -•••••••••••••••.•••• 86
PASCAL!Z POINTERS •••• ' ••••••• ." "'.~~ •••• ' .••...•••• ~ ' •••••• 87
PASCAL/Z FLOATING POINT NUMBERS ••.••••••••••••.•.•. 89
FORMATTING OUTPUT ' ••••.••••••••.•• 90
ASSEMBLER & LINKER ERRORS ••••••••• ' •••••..•••••••.•• 92
MEMORY USAGE ••••••••••••••••••••••••••• ~ ••••••••••• 93
STACK & HEAP ORGANIZATION •••••••••••••••• ~ •••••••.• 95
INSTALLING PASCAL/Z PROGRAMS IN ROM •••.••.•••••..•• 96

APPENDICES ' .•.••.•..... 97
Appendix One -- Parameter Stack Configurations~.97
Appendix Two -- Troubleshooting ••••..•.•••••••.. 98
Appendix Three -- Fixed Point Paekage ••••.••••• l01
Appendix Four -- Pascal/Z Users' Group ••••••••• 108
Appendix Five -- Warranty ••••••••••.••••••••••• 109
Appendix Six -- Error Messages ••••••••••••••••• 110
Appendix Seven -- Paseal/BZ •••••••••••••••••••• 114

PASCAL/Z COMMENTS & BUG'REPORTS •••••••••••••••••.. 121

INDEX,

Pascal/Z User's Manual Page 1 -

,COPYRIGHT NOTICE

'This copyrighted software product is distributed
exclusively by ITHACA INTERSYSTEMS for the use of the
original purchaser only, and no license is granted herein to
copy, duplicate, sellar otherwise distribute to any other
person, firm or entity. Further, this software product and
all forms of the program are copyrighted by JEFF MOSKOW, and
all rights are reserved~'

Wherever referred to throughout these manuals, CP/M and Z-80 are
registered trademarks of Digital Research and Zilog, Inc.,
respectively.

Pascal/Z User's Manual Page 2,

INTRODUCTION

Pascal was designed in 1971'-by Niklaus Wirth to:

" .•• make available a language suitable to teach programming
as a systematic discipline... (and) to develop
implementations of this language which are both reliable and
efficient on presently available computers."

I

The Ithaca InterSystems, Inc. Pascal/Z compiler w~s designed to
compile programs written in the Pascal language into Z-80
macro-assembler code. Its design closely follows that of Jensen
and Wirth's Pascal User Manual and Report (Second "Edition).
Pascal/Z is presently available to run under Digital Research's
CP/M operating sy~tem.

The Pascal/Z software package includes object code for tne
P,ascal/Z compiler in both 48K and 54K versions, object" code for
the debugger (InterPEST), the assembler (ASMBLE/Z)" and the
linker/loader (LINK/Z), and both object code and,commented source
code for the library routines. Also on the diskettes are several
example programs, including the .PAS and .COM files for the"
exar.1ple prog rams in the Jensen & Wi rth USER MANUAL AND REPORT,
and some utility programs to facilitate using the Pascal/Z
package. Documentation includes the Pascal/Z Implementation
Manual, the InterPEST Reference Manual, the ASMBLE/Z and LINK/Z
manual.s, and the Jensen & Wirth USER MANUAL AND REPORT.'

" Pascal/Z User' s Manual Page 3

PASCAL/Z OBJECTIVES

Pascal/Z is a recursive descent Pascal compiler for the Z-80, and
was designed to be useful in a variety of environments. Our
design objectives were:

I} To run resident on a Z-80.

2}'To. generate ROM-able re-entrant code.

3) To ~reate a compiler which could be easily re-hosted for use
as a cross-compiler.

4) To write the compiler in Pascal for ease of maintenance and
reliability.

5} To write a compiler which could be easily modified to
generate code for the new 16 bit processors.

6) To produce code which is efficient and to minimize the
amount of threaded code.

7) To add extensions necessary for industrial and scientific
pros ramming.

While objectives one throu9h six are straightforward, our seventh
objective is m~ch more difficult and 1S constantly being
reconsidered. The extensions which have been added were added
only if they allowed the user to easily do something that
previously would have been impossible or awkward; or if they
greatly increase the readability of Pascal programs. In all
cases we have striven to maintain the "spirit" of Pascal.

Pascal/Z User's Manual Page 4

*

*

*

*

*

*

*

*

*

*

*

*

*

IMPLEMENTATION FEATURES

The code generated by Pascal/Z is both, ROM-able and
r e- en t ran t' ~

Dedicated Pascal/Z programs may be as small as a few hundred
bytes.

The compiler generates code optimized for a 2-80 processor
and takes advantage of special cases.

2-80 macro assembly code is generated
includes Pascal source lines as comments
peephole optimization if desired.

and
to

optionally
allow user

Pascal/Z supports separate compilation of user programs in
order to reduce the time to re-compi Ie, re-assemble and
re-link large programs.

Overlays are supported to permit execution of programs
larger than system memory size.

InterPEST (InterSystems Pascal Error Solving Tool), an
interactive symbolic debugger designed specifically to
isolate and correct faults in a Pascal/Z program.

EXTENSIONS TO THE STANDARD LANGUAGE

Separate compilation permitted to speed program
development.

Assembly language
routines.

interface allows versatile EXTERNAL

INCLUDE files allow insertion of any file within a Pascal/Z
program.

Overlay capabilities provided.

A STRING type is provided.

Direct File Access (random access) is supported.

* An ELSE clause is allowed with the CASE statement.

*

*

*

Symbolic I/O of enumeration types immensely simplifies
interactive programs.

Integer constants can use the operators +, -
CONSTI = CONST2 DIV CONST3) •

Functions may now return structured types.

* DIV (i.e.,

Pascal/Z User's Manual Page 5

*

*

*

*

*

*

TIME/SPACE optimization is user selectable when using the
CASE statement •

. - See page 61 for more detail on Pascal/Z extensions.

PASCAL/Z RESTRICTIONS

GOTO may not leave a block (procedure or function).

Standard GET/PUT I/O is not implemented.

Procedural parameters not implemented. A procedure/function
cannot be passed as a parameter to another
procedure/function.

Dynamic storage is implemented using NEW, MARK and RELEASE
rather than NEW and DISPOSE

The PAGE routine is not implemented.

. See page 40 for more detail on Pascal/Z restrictions.

Pascal/Z User's Manual Page 6

SYSTEM REQUIREMENTS

Pascal/Z runs under the Digital Research CP/M Operating System.
We recommend version 2.2, since earlier versions of CP/M did not
implement Random File Access, and thus the Random Access (called
Direct File Access in Pascal/Z) capabilities of Pascal/Z would be
lost when using any early release of CP/M.

While a compilation is in progress, Pascal/Z requires 48K of RAM
for itself (54K for the non-overlaying version), plus additional
memory for the operating system - usually 8K in the- case of
CP/M. However, after a program has been compiled, assembled and
linked the actual program module may be considerably less than
lK.

The' system must also have at least one disk drive while compiling
.since all compilations read a Pascal source file from the disk
and output the resulting macro code to the disk.

A 64K system with two disk drives is recommended for Pascal
program development.

'Pascal/Z User's Manual Page 7

RECEIVING INSPECTION

When your Pascal/Z diskette arrives, inspect both the diskette
and the shipping carton immediately for evidence of damage during
shipping. If, the shipping' carton is damaged or water-stained,
request the carrier's agent to be present when the carton is
opened. If the carrier's agent is not present when the carton is
opened, and the contents of the carton are damaged, save the
carton and packing material for the agent's inspection. Shipping
damages should be immediately reported to the carrier.

We advise that in any case you should save the shipping container
for ~se in returning the module to InterSystems, should it become
necessary to do so.

Factory Service

Your Pascal/Z compiler comes with updates for one year from the
date of original purchase. These updates are available for a
nominal copying charge. Contact InterSyste~s for details.

Before returning the diskette to InterSystems, for any reason,
first obtain a Return Authorization Number from our Sales
Department. This may be done by calling us, sending us a TWX, or
by writing us. After the return has been authorized, proceed as
follows:

1) Include an explanatory letter.

2} Include a listing of the malfunctioning program or
operation. If no listing is enclosed we can make no
guarantee regarding correction of the error, since it may be
impossible for us to duplicate the problem without a listing
illustrating the malfunction. YOU CAN EXPECT AN
ESSENTIALLY IMMEDIATE. RESPONSE IF YOU 'INCLUDE· A LISTING.
Please send the smallest program which demonstrates the
'error so that we may isolate and correct the problem in the
shortest possible time. If you are working with standard
8", soft-sectored, single density CP/M compatible diskettes,
sending the program on disk in addition ,to the listing would
also be helpful. All materials will be returned to you upon
request once the problem has been diagnosed.

3) Include the Return Authorization Number.

4) Pack the above information in a container sui table to the
method of shipment.

5) Ship prepaid to InterSysterns.

Pascal/Z User's Manual

Contacting InterSystems:

The following apply.-for both correspondence and service.

Ithaca InterSystems Inc.
1650 Hanshaw Road
P.O. Box 91
Ithaca, New York 14850
U.S.A.

Telephone
TWX

In Europe:

(607) 257-0190
510 255-4346

Ithaca InterSystems (U.K.) Ltd.
58 Crouch Hall Road
London N& 8HG U.K.

Telephone
Telex

01-341-2447
299568

Page 8

::"P,age ·9

. Be fo re:d.o in~"··a.riy·th1.rig· 'wr' th '-y~::~r': ·pa:~~·al:/-Z";:·"d:fs'k:~·tte:s.~::-~MAKE~;A: BACKUP
COPY .. 0 F .. '" E'ACH ~DI.s,K:ET,TE. '.' 'Us·e. '.:,th·eO:':~ :,.:back\ip<·.:~:for ... ' all·' .0 f yo ur
prog'rammlng ~ e.ffor·ts·· to elim.i.n·a.t.e,,·t'h-e· po·ssTb11i"tY .. ·of d.e's,tr·oy.ing
th'e d'i str..i·butlo:n·',.:di~s-ke·t te:"'- i·t· i,s'" i.n· .. ·, yo:u;r,:·.:be:s·t' 'inte-r,e.$ts." NEVER TO
WRITE ON' THE ·]j·ISTRIBUTION, D1-SI<ETTES ~ ... '.. ,..,.

If y.o.u· pu.rchase.d Pasc:al/a-Z~,·,';the<-business versio'n",o.f>.·th:e compiler,
i'nstead of o'r fn' ·o·ddi .. t.io-n, ... ·to ~ Pa'scal/Z ~ . s'e'e Append:i.x·· S-even for
information.' .

T.he first, ,si-d'e .. o·f .:yo·ur. ··P·s,sc·al/Z", ··Ma·s'te.r,··,Di·s-k-ette contains the
follow i ng f i 1 e s :

PASCAL 4·8·~ COM
PAS248'
PASCA'L54·. C·OM·
PAS254
DECS

PFSTAT

DEBUG. REL

HOWTO.·,RUN

HELLO. PAS
COM·PI L·E • .5 UB.·

LIB. REL
MAI'N. SRC

EMAIN. SRC.

XMAIN.SRC

XEMAIN.SRC

ASMBL. COM
LINK. COM
INFO.NEW

A· p-reli,mtnary :p-r'o-gram which loads PAS248
The .ac:t~ual-:·c:om'p':i.le rOo (-ove'rla'yi ng ver s ion)
'Th'e54K ver.s·{on of PASCAL. COM
Th-e' ":54'K"v'e-rsio:ri' of . PAS 2 ..
Ove·rlay: m·o·dtil,e··:·~·f-o:r;· the:' 4-8K>. ve.r.s-ion of the

:c'omp-fi'e'r::" '. .
Over,l.ay _.r module fo r t'he' 4'8K ver:s'io'n 0 f the
'(;'otirpflei .: .' ",
The "Lnterclctive . 'symbol ic. debugg'e'r, InterPEST
(InterSystems Pascal Erro·r Solving Tool)

A descrip'cion of how to run the compiler,
·assembler and 1 inker
Demonstration program
·A· ·su·,bm-it macr'o .to".compi,le.,. assemble, 1 ink and
-r'Ut1'.· :.f'ascal,"· pro',g'r'am's' . fA d'e'sc ri pt ion 0 f
'C OMPILE ... SUB. : b eg Ln:s' . ci.n . ':pa:g e' .4:9.) ..
·T.h"e', :.Pa:s:c'a-l ···run,..··t·im-e s~ppo rt. 1 ib'r'a ry
DefinLtion.s and routin·e's· to b-e a'ssembled wi th
the' o~ut'put 0 f the c'omp'i l"e'r -.. ' .. '
Ro·u.tin.e:s··:.· <·t·o ':- be assembled with compiled
'ex'ternal . Pascal r·o·l.ltine-s
:comp-l1e-d' :mod-ul es'

and s e pa rat ely

Def.in.i tions a'nd' routin'es to b'eas-sembled with
the output .. of the. compLIer .. when· usi-n-g the
debugger·.
Defini tio·ns and r'outines to' be ·as·se'mbled wi th
separa't'el y compi led m-od ul'e-s when us i ng the
d:ebugger "
Z":'80" Macro assembler·
Rel06atable- linker/loader
Hot. in-fo·r.ma·tion not yet. inclu-d'ed in the
manual .

"-, -:

The s'ecdn'd s'ide 0 f your.' Pascal./Z Mast'er ·d'isk·e t·te·.' cO'rita ins the
follow'ing·,·f:iles· for . the' ·Fix·e~'. po·in.t Package (see Appendix Three
for d eta i 1 s.) :

FIXED. PAS

FI XCONST. PAS·

.k collection ~f procedures which
. a cbftr.ar'y: ":. pr ec.i.s ion . 'ar i thmet ic in

. ··flxed"",:po··int.dec imal , ;

perform
signed

." ,- " : ·De·c.:1;ar.-e-d,-,'-::···:con·-stants. :.:.fo.[.·-the
.. : . "p-ackage .. '

'fixed-point

Pascal/Z User's Manual Page 10

FIXTYPE.PAS
FIXVAR.PAS

FIXEDEX.PAS

Declared types for the fixed-point package
Declared variables for the ·fixed-point
package
Example for use of fixed point package

Also on this side of the Master Diskette are the following files:

PASOPT
CMAIN.SRC
OVLYGEN.COM
OVERLAY. SRC
UCTRANS.*
PRIMES.*

FILEIO.PAS
EXTENS.PAS

EXTENS.LST
EXTENS.SRC
EXTENS.REL

EXTENS.COM

CALL.*

RENERA.SRC

RENDRV.PAS
ERADRV.PAS
EXAMPLE.*

PEEK.*

Optimizer for Z-80 source output of compiler
Commented version of MAIN.SRC
Program to be used when overlaying
Source for the overlay routine in LIB.REL
Programs to allow UCSD --> CP/M file transfer
Demonstration program to generate the primes
factors of the numbers from 1 to 1000
A demonstration of Pascal/Z file I/O
A demonstration program containing at least
one example of each Pascal/Z extension.
Listing file generated by Pascal/Z
Macro code generated by' Pascal/Z
Relocatable object code module generated by
ASMBLE/Z
Program module generated by LINK/Z. EXTENS
cannot be relinked by the user. It is for
demonstration purposes only.
Loads Z-80 registers and transfers control to
a specified address
2-80 source for the RENAME and ERASE routines
contained in·LIB.REL.
Sample program which drives RENAME
Sample.program which drives ERASE
A progr~m to calculate the transient program
area available in a CP/M system
PEEK and POKE for Pascal/Z -- allows the user
to exam ine any location in memo ry and sto re
into that location

Also on this side are the .PAS files for the Jensen & Wirth
example programs on the second side of the Library Diskette,
provided with permission from Springer-Verlag New York, the
publishers of the USER MANUAL AND REPORT.

CONTENTS OF THE PASCAL/Z LIBRARY DISKETTE

The first side of your ·Pascal/Z Library Diskette contains the
following files:

P-.B SSQR. SRC

ADDSUB.SRC
ARCTAN.SRC
BYTIN.SRC

BYTOT .. SRC

CHAIN.SRC

Integer absolute value and square floating
point absolute value
Does BCD addition and subtraction
Arctangent function
Passes a character from file buffer to A
register
Passes a character from A register to file
buffer
Routine to chain Pascal/Z programs

Pascal/Z User.t s· M·a·noal Page 11

CHKD.SRC
C.LS QT·. S Re .
CMPCHK. SRC ..

CONSOL.SRC
CVTFLT. SRC .

CVTSFP.SRC
DEFLT.SRC

DIVD.SRC
DONE2.SRC

DSKFIL.SRC

DYNALL.SRC
ENTEXT. SRC·

EOFLN. SRC .
ERROR.SRC

EXPFCT.SRC
FADDSB.SRC
FCTMAC.SRC

FILEXT.SRC
FILNAM.SRC
FLTIN.SRC
FMULT.SRC
FOUT.SRC
FPDIVD.SRC
FPERR.SRC

FPINIT.SRC

FPMAC.SRC

FPRLOP.SRC
FPSQR.SRC
FPTEN.SRC
FXDCVT.SR~

INDIR.SRC
INPT.SRC
LAST.SRC
LO.SRC
LOOK.SRC
MAIN.SRC

MPNORM.SRC

MULT.SRC
NATLOG.SRC
OPFILE.SRC
OUT PT. SRC
PSTAT.SRC
RBLOCK.SRC

.. Rang·e c hec.k
Clos~s 6Qtput file

··Flo·a.t1ng·: . point rout·in·e·s·. to . complein·e·nt· an
·o·perand ·and check. numb-e.r .. fo r . a zero·
Console· read·· and print
Co·nvert 16 bi t in.t·e·ge:r.- t·o flo a t.ing po in t-

.numbe·r.· .
Convert a string to a floating point number
Con·ta.ins . defaul t v·alues used in assembl ing
some library.:modules
Divide ro·utines
F.inishes· two-operand floating point
opera t.ions
Routines to specify device name and delete
files from directory
Dynamic storage allocation and dea.llocation
·Enter and exit routines for procedures and
functions
End of file and end of· line routines

·Closes output. files. wne.n. run t.ime error is
encountered.
Exponential function
Floating·point add and subtract
Cont·a ins macros used in assembl ing some
libr.ary modules
Routines shared by reset and rewri·:e routines
Passes file name to file control block
Floating point input
Floating point multiply
Floating point output
Floating point divide
Floating point ·rout ine returns a zero and
set sea r. ry bit
Conta ins in i ti-allza tion-s 0 f val ues used in
assembling some library modules
Contains mac·ros used in assembling some
library modules
Floating point relational operators
Floating· point square
Floating point multiply and divide by 10
Converts a f10a t ing po 1.n t n umber to fixed
poi·nt format
Indirect load and store
Read and Readln
Marks the last location of the user program
Routine for closing output files
Looks one character ahead
Definitions and routines to be assembled with
the output of the compi.ler
Multiple prec·ision add and subtract, and
no-rmali zing .a . floating· point number
Multiply ro~tines
Natural log function
Opens input and 0 utput f i 1 e's·
Wri~e and Writeln .
Trace and extende·d e-r.ror me·ssage routine

··Calculates random access block number and
size, and loads file buffer .

Pascal/Z User's Manual Page 12

RESET.SRC
REWRIT.SRC
ROTATE.SRC

ROUND.SRC

SAVREG.SRC

SETCON.SRC

SETFTN.SRC

SINCOS.SRC
SQRT.SRC
SRELOP .. SRC
STRFCT.SRC
STRLOP.SRC
TEXT.SRC

URELOP. SRC

Resets a file
Rewrites a file

.Rotates floating point mantissa one bit right
or 1 eft
Truncate and round functions used to convert
floating point to integer
Saves HL register and sets up pointers to two
sets on stack
Routines to construct a set, take the union
and intersection of two sets, and test for
membership
Set relational operators, and difference
routines
Sine and Cosine functions
Square root function
Structural relational operators
String length, setlength, append, and index
String relational op~rators
Buffers flow of characters to and from
console
Unstructured relational operators.

Each of these routines is self documented.

JENSEN & WIRTH EXAMPLE PROGRAMS

On the second side of the Library Diskette are the .COM files
the Jensen & Wirth example programs. (The .PAS files are on
second side of the Master.) Also included are data files
those programs which require input. Look at the
JENWIRTH.DOC on the second side of the Library Diskette
detailed information on these programs. "

for
the
fa r

file
fa r

Pascal/Z User's Manual Page 13

GETTING STARTED

Before doing anything with your Pascal/Z diskette, make a backup
copy of the diskett·e· and use that for all of your programming
effo r ts. It is in your best interests NEVER TO WRITE ON THE
DISTRIBUTION DISKETTE.

Throughout this manual, whenever a sample dialogue is given, both
the computer and user responses will be shown; the user responses
should always end with a carriage return.

Now that you have a backup copy of the distribution diskette,
insert it into the currently 'logged in' drive (drive 'A' if the
system was just booted). In order to verify your copy of the
distribution software you may compile, assemble and link
HELLO.PAS. To do this try the following dialogue:

A>pasca148 hello
InterSysterns Pascal v-4.0
HELLO 1--
o compilation error(s).

A>asmbl main,hello/rel
PASCAL run-time support interface

A>link hello /n:hello /e
LINK version 2b

A>

ASMBL v-7d

If any of the above steps did not work as indicated, refer to the
section on TROUBLESHOOTING in Appendix Two.

Now that you have successfully compiled, assembled and linked
your~ first Pascal program you may run it as follows:

A>HELLO

If the program did not welcome you to the land of Pascal/Z then
refer to the section on TROUBLESHOOTING.

Once you have verified your diskette by. being formally welcomed,
continue reading for a brief introduction to the Pascal
language. If you are already familiar with Pascal, you may wish
to skip to page 34 for information on the Pascal/Z
implementation.

If you are using Pascal/BZ, the business version of Pascal/Z, see
Appendix Seven for details on how to use BCD numbers, and for an
explanation of the differences between Pascal/Z and Pascal/BZ.

Pascal/Z User's Manual Page 14

INTRODUCTION TO PASCAL

The Pascal/Z Implementation.Manual

The first section of the Pascal/Z Implementation Manual contains
a br ief descr i pt ion 0 f the Pascal prog rammi ng languag e and the
facilities available to you; however, the discussion here is by
no means complete and if you feel that you need additional
material, you are advised to refer to a Pascal programming text.
Many books about~Pascal have recently appeared; among the better
ones are:

An Introduction to Pascal by Rodnay Zaks (Sybexf 1980)

An .Introduction to Programming and Problem Solving Using
by G.M. Schneider, S.W. Weingart and D.M. Perlman

'1978)

and a slightly more advanced and in-depth book:

Pa sca 1
(Wiley,

Programming in Pascal by Peter Grogono (Addison Wesley, 1978)

The Pascal USER MANUAL AND REPORT shipped with the Pascal/Z
compl~er is an excellent reference manual and is the "standard"
by which this compile~ was written; it may, however, be a little
heavy for the newcomer to Pascal.

The design of the Pascal language was ·based on the idea that
computer programs have two main parts. The first part of a
program is the data (variables and constants)' and the second part
is the "actions" which act upon that data. The data is described
by "declarations" and "definitions" while the actions are
descr~bed by "s~atements". The following sections decribe how to
declare and define the dat~ and then how to write the statements
that act upon the data.

This description does not include a discussion of Variant records
or GOTO statements: the former because of its complexity and the
latter in an effort to discourage its use. The user is referred
to the above mentioned texts for a discussion of these topics.

The second section of this manual describes the Pascal/Z
impl~mentation of the language. If you are already familiar with
Pascal then branch to page 34 for information on using Pascal/Z.
If you purchased Pascal/BZ instead of or in addition to Pascal/Z,
read Appendix Seven before going on to the rest of the manual.

Pascal/Z User's Manual Page 15

DECLARATIONS AND DEFINITIONS

Pascal is a nstrongly typed n language. This means that each
piece of data (whether it is a variable, constant or a parameter)
has an associated data type (i.e., integer, real,
character ••••). In addition, each variable must be declared
BEFORE it can be used; this .. allows the compiler to check all
operations to make sure that the operands are compatible and are
not being misused~ There are a number of intrinsic data types
(pre-declared by the Pascal language) and there is a fac iIi ty by
which the programmer can construct his/her own data types if
desired.

There are two basic classes of data in Pascal. These are scalar
and structured. Examples of scalar data are INTEGER, REAL and
CHAR. Examples of structured data are ARRAY, FILE, SET and
RECORD.

·Pascal allows users to create their own data types through use of
the TYPE declaration section. This is a section of the program
where it is possible to define a type which is used later in the
program.

Types other than the standard pre-declared types may be declared
i~ the TYPE declaration section of a program. The following four
sections of this manual describe 'both the pre-declared types,and
how to declare your ow~ data types.

Pascal/Z User's Manual Page 16

(INTRINSIC CONSTANTS AND DATA TYPES

Pascal has five pre-declared
redefined by the p·rogrammer.
are described below.

data types which may be used or
These types and their attributes

INTEGER

REAL

CHAR

BOOLEAN

TEXT
rj

A variable of type INTEGER is an integer in the range
-MAXINT •• MAXINT. Pascal has the pre-defined constant
MAXINT which is the maximum allowable INTEGER value for
a particular implementation (MAXINT = 32767 in
Pascal/Z) •
A variable of type REAL is a floating point number.
REAL numbers are 32 bits and have a precision of
approximately 6 1/2 digits
A variable of type CHAR may be assigned any legal ASCII
character.
BOOLEAN is actually a pre-declared enumeration type
with the definition: BOOLEAN = (FALSE, TRUE).
TEXT is a pre-declared FILE OF CHAR and is used for
I/O.

There is also the pre-defined value NIL. For more information
about NIL, see the sections on THE POINTER TYPE and PASCAL/Z
POINTERS.

Pascal/Z User's Manual Page 17

SCALAR DATA TYPES

One very powerful feature of Pascal -is the ability to create a
new type which is a ~ubrange of an existing type, for example:

TYPE INDEX = 1 •• 10j

This is useful both because it forces the programmer to decide in
advance how a particular variable will be used, and because it
allows the compiler to generate code to insure that the
particular variable remains within the specified range (if an
assignment outside the specified range is attempted, an error
will result) ..

A prog rammer may create his own scalar data type, which is
referred to as an enumeration type (so called because all of the
possible values are enumerated when the user declares the type).

Example of a TYPE declaration section:

TYPE COLOR = (RED, BLUE, YELLOW, GREEN, ORANGE, VIOLET);
SMALL = 0 •• 99;"
PRIMARY = RED •• YELLOW;
SECONDARY = GREEN •• VIOLET;
LETTERS = 'A' •• 'Z·;
ASCII = CHAR;

COLOR is an enumerated type; PRIMARY and SECONDARY are subranges
of COLOR.

In the following' examples, the
standard Pascal comment markers.
be used for the same purpose.

curly brackets -
In Pascal/Z n (*"

{} - are the
and If*) H may

The COLOR definition will be used in examples throughout this
manual.

Pascal/Z User's Manual Page 18

STRUCTURED DATA TYPES

Pascal allows the user to constru~t his own data type by
combining other types. Each of the major structures will be
discussed in this section.

First is the ARRAY (similar to the array in BASIC). An ARRAY has
two basic parts: the index type and the element type. The index
~ype determines how a particular point in the ARRAY is referenced
and the element type defines what type of data exists at that
pqj:nt.

{ THIS WILL BE AN ARRAY INDEXED FROM 1 TO 50 AND }
{ EACH ELEMENT IS"OF TYPE INTEGER}
TYPE TABLE = ARRAY(1 •• 50] OF INTEGER;

{ THIS ARRAY IS EQUIVALENT TO THE LAST ONE
TYPE INDEX = 1 •• 50;

ELEMENT = INTEGER;
TABLE = ARRAY[INDEX] OF ELEMENT;

{ THIS WILL BE AN ARRAY, INDEXED BY SIZE, OF PRICE}
TYPE SIZE = (TINY, SMALL, MEDIUM, LARGE, XLARGE);

PRICE = REAL;
CHART = ARRAY[SIZE] OF PRICE;

The next data structure is . the RECORD.. Like the ARRAY', the
RECORD allows the programmer to combine many pieces of data into
one type. A RECORD is a collection of elements (which may be of
different types) where eac~ element is given a unique name.

{ A RECORD TO SPECIFY THE SIZE AND WEIGHT OF AN OBJECT }
TYPE OBJECT = RECORD

S 12 E: ('T INY, SMALL, MEDI UM, LARGE, XLARGE);
WEIGHT: REAL

END;

{ A RECORD TO SPECIFY A DATE AND TIME ••• }
{ w •• AND A CALENDAR OF IMPORTANT DATES}
TYP& MONTHS = (JANUARY, FEBRUARY, MARCH, APRIL, MAY,

JUNE, JULY, AUGUST, SEPTEMBER, OCTOBER,
NOVEMBER, DECEMBER);

DATE = RECORD
MONTH: MONTHS;
DAY: 1 •• 31;
YEAR: 1900 •• 2100;
HOUR: 1 .• 12;
MINUTE, SECOND: 0 •• 59

END;
CALENDAR = ARRAY ((BIRTHDAY, ANNIVERSARY, GRADUATION,

VACATION, HOLIDAY, PAYDAY)] OF DATE;

Pascaliz User's Manual

{ A RECORD TO RECORD INFORMATION ABOUT A FRIEND }
TYPE NAME = ARRAY (1 •• 30] OF CHAR;

ADDRESS = RECORD .
STREET: ARRAY [1 .. 30] OF CHAR;
NUMBER: O •• MAXINT;
TOWN, CITY: ARRAY (1 •• 30] OF CHAR;

END;
FRIEND = RECORD

WHO: NAM·E;
WHERE: ADDRESS

END;

Page 19

The next type of structure is a SET. A SET is a collection of
objects of a given type. A SET is declared to have a particular
el ement type. Each SET var iable may contain none, one, some 0 r
all· of the possible elements for that SET. For example, consider
the following:

TYPE STOCK = (PAINT, BRUSHES, THINNER, TOOLS, ROLLERS);
IN_STOCK = SET OF STOCK;

A variable of type IN STOCK will indicate for each of the
possible values of STOCK-; whether or not the particular element
is present.

Pascal allows the programm~r to test for SET membership,
inclusion: (is one SET a subset of another),· equal-ity and
inequality. In addition the programmer may take the difference,
union or intersection of two SETs.

Here are some more examples of SET declarations:

TYPE DIGITS = SET OF 0 •• 9;
ATTENDEES = SET OF (DAVE, BILL, STEVE, JEFF~ ROB);

The last structured type is the FILE. FILEs are used to
communicate with the world outside of Pascal. Each file has a
particular element type so that both you and the compiler know
what type of data will be read or written. The following
examples should help to clarify the use of FILE types.

{ A TEACHER'S GRADE RECORDS MIGHT BE STORED AS •.• }
TYPE BLUE BOOK = FILE OF RECORD

NAME: ARRAY [1 •• 30] OF CHAR;
GRADE: • A' •• IF 1

END;

{ A LIST OF #'S MIGHT BE STORED AS •••. }
TYPE NUMBERS = FILE OF INTEGER;

PaScal/Z User's Manual Page 20

THE POINTER TYPE

The 1 a s tty p e 0 fda t a i s a po in t e r • A po in t e r va ria b 1 e i son e
which points to another variable of a specified type. This type
is useful when constructing linked lists or other data structures
where one datum has a need to know about another. In Pascal
pointers are used in connection with dynamic variables
variables which DO NOT have to be declared ahead of time.

A co mmo n e x am pIe i s the ere at ion 0 f ali n ked 1 i s t 0 f r e cor d s .
The idea is this: a type is defined as a pointer to a record of
type; the record of type is the kind of record we want to have
linked together and created dynamically. An example (from
Jensen/Wirth User Manual and Report):

type link = Aperson;

person = record

next: link;

end;

Here, person is a type defined as a record presumably with
various fields in it concerned with age, health, sex, social
security number (these fields are indicated by the periods), but
including at lea.st pne f.ield whicp is a .pointer to a record of
the same type.

After such a type definition, the variable declaration would be
something like this:

var first, p: link;

To write a program that creates a linked list of these records,
the' Pascal built-in procedure NEW is used. Every time the
program statement NEW(p) is encountered, it will create another
record of type person, because "p" is a variable of type link
which is defined as a pointer to the type person. In addition,
the NEW procedure assigns to the variable p the value that points
to this newly created record. Since this record that is being
created by each NEW(p) statement has, as one of its fields, a
pointer variable, one may link each newly created recqrd to the
next record by proper arrangement of assignment statements. Many
schemes are possible, with pointers that point both forward and
backward, but the important thing to remember is that the
procedure NEW creates an entirely new variable. The example from
the User Manual and Report goes like this (using the types
declared above):

Pascal/Z User's Manual,"

var p, first: link;
i: integ er;
socialsecurity: file of array[l •• 3] of integer;

begin

first := nil; { "nil" is a special value which
indicates that the poi~ter points
to nothing }

for i := 1 to n do

end.

begin
read(socialsecurity, s);
new(p);
pA. next := first;
p" .ss := s;
first := p

end;

Page 21

What happens here is that n records are created, of the type"
person. "pA. SS := s" assigns a value to a field in the present
record, s i~ retrieved from a file in the previous read
statement. "pA .next := first" assigns the value of the pointer
"first" to the pointer field that was built into the record; then
"first := p" makes first point to the present record.

Each time this group of statements is executed by the FOR loop,
the pointer "first" is set to point to the most recently created
record, and the pointer field within that record is set to point
to the previous record.

To get the data out of such a structure, a program could use the
•• fir s t " po in t e r to 10 cat e the m os tree en t· r ec 0 r d, and the nth e
pointer within the record to reference the second record, and so
forth. One might create another variable of type pointer, which
could be 'assigned the values of the pointers from each record,
one "after another, to inspect the other fields in the record
(stopping when the "next" pointer is nil) •

The advantage of such a data structure is largely its dynamic
nature, since it is not necessary to declare the size of the list
ahead of time.

Dynamically created storage may be returned when it is no longer
needed (see the section on Pascal/Z pointers).

To assist those users wi th non-standard keyboards, the po inter
symbol A has the ASCII value SE hex.

A later section, PASCAL/Z
implementation of pointers.

POINTERS, decribes Pascal/Z's

Pascal/Z User's Manual Page 22

CONSTANTS

Many programs make use of constants such as the maximum number of
items, size of table, perfect score, etc. In Pascal it is
possible to define scalar constants and strings symbolically in
the CONST declaration section. In addition to making your
program more legible and easier to maintain, the use of constants
rather than variables will help the compiler to generate more
compact and efficient code.

Example of CONSTant declarations:

CONST TABLE SIZE = 50;
VERSION = TVersion la';
PI = 3.1415926;
NEGATIVE = -TABLE_SIZE;

'It is clearly advantageous to declare constants and use them
throughout your program since it gives you,the ability to change
the value of all occurrences of the constant throughout the
entire program by redefining one constant ~t the beginning (e.g.,
changing all references to a table size from 50 to 100).

Pascal defines a constant string, such as VERSION in the example,
to be:

ARRAY [1 •. N,] OF CHAR

where N > 1. If N = 1 then the constant is of type CHAR, not
ARRAY OF CHAR.

Pascal/Z User's Manual Page 23

VARIABLES

All variables must be declared before. a Pascal program is allowed
to refer to them. In addition each variable must be explicitly
decl ared to be 0 f a c erta in type. The type 0 f a var iabl e
determines the amount of storage that it requires, as well as
defining how it may be used throughout the program.

Example of VARiable declarations (the two groups of declarations
here are equivalent):

and

VAR COUNTER: ARRAY [-4 •• 20] OF COLOR;
FLAG: BOOLEAN;
SIZE: (TINY, SMALL, MEDIUM, LARGE, XLARGE)i
I,J: INTEGER;
TABLE: ARRAY [1 •• 50] OF INTEGER;
LETTER: ' A' •• ' Z f ;

TEMPERATURE: REAL;

CONST TABLE_SIZE = 50;

TYPE EXPANSE = (TINY, SMALL, MEDIUM, -LARGE, XLARGE);
LETTERS = 'A' •• 'Z';
NUMBER : INT~GER;

TABLE ~NGE = I •• TABLE SIZE;
TABLE-ELEMENT = INTEGER;

VAR COUNTER: ARRAY [-4 •• 20] OF COLOR;
FLAG: BOOLEAN;
SIZE: EXPANSE;
I,J: NUMBER;
TABLE: ARRAY[TABLE RANGE) OF TABLE_ELEMENT;
LETTER: LETTERS; . -
TEMPERATURE: REAL;

Global and Local Variables

A global variable is one which is defined under the main program
heading. It may be used, referenced or changed anywhere within
the program. Global variables may be. accessed by any procedure
or function which does not use the same identifiers.

, .

A local variable is one which is defined within a procedure or
function. It will disappear once the procedure or function has
been executed, and will have no effect outside its procedure or
function. A local variable will have no effect on a global
variable.

Pascal/Z User's Manual Page 24

Accessing variables

Variables are accessed simply
"name. However, sometimes it
particular part of a variable,
of a RECORD, or the target of a
are illustrated below:

by referring to the variable by
is desirable to refer to a

such as an ARRAY element," a field
pointer. These types of accesses

TABLE [24] { THE 24TH ELEMENT OF OUR ARRAY }
DATE.MONTH { THE MONTH FIELD OF A DATE RECORD }
FRIEND.NAME[1 { THE FIRST CHARACTER OF A NAME }
FRIEND.NAME[I { THE Ith CHARACTER OF A NAME }
LINK { THE RECORD POINTED TO BY LINK }
LINK SIZE { THE SIZE FIELD IN THIS RECORD }

Now that you know about the intrinsic data types, Now that you
know about the instrinsic data types, how to create new data
types, declare constants and declare var iables, the following
sections will describe the statements which manipulate the data.

Pascal/Z User's Manual Page 25

ASSIGNMENT STATEMENT

One of the most basic statements in any· language is the
assignment statement (called the LET statement in BASIC). All
assignment statements in Pascal have the same form, which is:

<variable> :~ <expression>

Where <expression> may be any combination of constants, variables
and function calls, as long as the type of <expression> is
compatible with that of <variable>.

Examples of assi~nment statements are:

{ two assignments to a variable of type INTEGER}
A : = 4;
RESULT := X * Y DIV Z;

{ assignment to a variable of user defined type COLOR }
STOCK. ITEM := GREEN;

{ assignment to an element of an ARRAY OF CHAR }
TAB LE [20 J : = f Z ' ;

{ This is an assignment to a variable of type BOOLEAN }
{ the effect of this statement is to: }
{ 1) INTEGER divide A by B }
{ 2). multiply the iesult ~f' step 1 by B }
{ 3) compare result of step 2 to A }
{ 4) assign result of the comparison to DIVISIBLE }
{ this works without parenthesis because relational }
{ operators are the lowest precedence operators }
DIVISIBLE := A DIV B * B = A;

{ The variable MY NAME is of type:
{ ARRAY [1.e4-] OF CHAR
{ This assignment copies one ARRAY into another
MY_NAME := 'Lyla';

}
}
}

{ This assignment copies one RECORD into another of }
{ the same type. (The type of these RECORDs is DATE }
{ which was defined in the section on structured types) }
PARTY DATE := BIRTH_DATE;

Pascal/Z User's Manual Page 26

REPEAT AND WHILE STATEMENTS

The REPEAT and WHILE statements are used to execute a loop until
some desired condition is reached. The main difference between
the two statements is that the REPEAT loop does a test for
completion at the end of the loop; and the WHILE loop does a test
at the beginning. This means that the body of a REPEAT loop is
executed at least once before the loop is terminated, but the
same is not true for a WHILE loop'. The form of these statements
is :

REPEAT <one or more statements separated by >
UNTIL <expression>

WHILE <expression> DO <statement>

In both statements <expression> must be a BOOLEAN expression.
The REPEAT loop terminates when the expression is TRUE and the
WHILE loop exits when the expression is FALSE.

FOR :3TATEMENT

~he FOR 'statement should be used ·irt ~lace of the REPEAT or WHILE.
statements when it is possible to determine in advance the number
of repetitions necesssary. The format of a FOR statement is:

FOR <control variable> := <initial value> TO/DOWNTO
<final value> DO

The type of variable allowed is any variable of scalar type
except REAL. The following examples should give an idea of the
flexibility of this statement:

FOR INDEX := 1 TO 50 DO <statement>

FOR ITEM := PAINT TO ROLLERS DO <statement>

FOR TINT := VIOLET DOWNTO RED DO <statement>

Pascal/Z User's Manual

The next statement
statement in BASIC).

CONDITIONAL STATEMENTS

is the IF statement
Its form is:

IF <expression> THEN <statement>
or

(similar

IF <expression> THEN <statement> ELSE <statement>

Page 27

to the IF

The expression must be a BOOLEAN expression and the statement
following the THEN is executed if the expression is TRUE,
otherwise the statement following the ELSE (if there is an ELSE)
is executed instead.

There is another conditional statement, the CASE statement. The
CASE statement is similar to, but more powerful than, the
ON ••• GOTO statement in BASIC. Its form is:

CASE <case selector> OF
<case label list>: <statement>;

<case label list>: <statement>
end;

The <case selector> may be a variable or an expression. Each
<case label list> is a,list of constants (they MUST be constants)
for use in selecting ·a particular CASE. Here is an example of
the use of the CASE statement:

CASE TINT OF
WHITE, RED: <statement>;
GREEN: <statement>;
YELLOW, ORANGE, BLUE: <statement>
END;

Pascal/Z' User's Manual Page 28

COMPOUND STATEMENTS

Sometimes it is desirable to have a group of statements act as
one statement so that the programmer can insert the group into a
construct which expects only one statement. For example it might
be useful to be able to do the following, which is. not legal in
Pascal:

IF <expression> THEN
<statement 1>
<statement 2>
<statement n>

ELSE <sta tement>

This can
statement.

easily be done in Pascal by constructing
The compound statement takes the form:

BEGIN
<statement> ;

a compound

<statement> { This line may be repeated zero or more times}
END

The above example becomes:

IF <expression> THEN
BEGIN

<statement 1> i
<sta tement 2>
<statement n>

END
ELSE <statement>

A compound statement may be used ANYWHERE a statement is used.

Pascal/Z Userts Manual Page 29

WITH STATEMENT

The WITH s.tatement is used when a particular RECORD; is being
accessed repeatedly. It is both shorthand for the programmer and
in some cases allows? the· compiler to produce more efficient
code. The CALENDAR RECORD from the RECORD d~scription section is
used in this example of the WITH ~tatement:·

VAR C: CALENDAR;
BEGIN

END;

C(BIRTHDAY].MONTH := JANUARY;
C[BIRTHDAY].DAY := 17;
C[BIRTHDAY].YEAR := 1958;
C[BIRTHDAY].HOUR := 12;
C [BIRTHDAY]. MINUTE : = 18;
C[BIRTHDAY].SECOND := 0;.

The following group of statements accomplishes the same thing:

VAR C: CALENDAR;
BEGIN

WITH C[BIRTHDAY] DO BEGIN
MONTH := JANUARY;

DAY := 17;
YEAR := 1958;
HOUR := 12;
M.INUTE· : = 18·;
SECOND := 0;

END;
END;

Notice how the compound statement was used in the second example
to reduce the verbiage and increase the readability of the code.

Pascal/Z User's Manual Page 30

PROCEDURES AND FUNCTIONS

In Pascal there are two. types of subroutines -- procedures and
functions. Functions are basically the same as procedures except
that functions return a scalar value (e.g., ASS, SIN, SQRT,
etc.). Procedures are called explicitly as statements (procedure
statements). Functions are used in expressions.

Pascal allows parameters to be passed to procedures/functions.
There may be as many parameters as desired and each parameter may
be passed either by value or by reference (VAR parameter). In
addi tion each procedure/function may have its own local
constants, types and variables. Procedures and functions may be
nested and each can access the constants, types and variables of
all surrounding blocks. All procedures/functions are fully
recursive. Listed below are some examples of procedures and
functions:

TYPE STUDENTS = (:M.OB, JEFF, BILL, LAURIE,- LYLA, NEAL);
TEST SCORES = ARRAY [STUDENTS] OF 0 •• 100;

{ A PROCEDURE TO OUTPUT THE SCORES OF A TEST }
PROCEDURE RESULTS (TEST N: TEST SCORES);
VAR STUDENT: STUDENTS; -
BEGIN

END;

FOR STUDENT := ROB TO NEAL DO
BEGIN

END;

WRITE (STUD&NT:lO, TEST N(STUDENT]:3);
IF TEST N(STUDENT] = TOD THEN WRITELN{ 'A+'
ELSE WRITELN;

{ A FUNCTION TO RETURN THE MAXIMUM OF TWO NUMBERS }
FUNCTION MAX(X~ Y: INTEGER): INTEGER;
BEGIN

MAX := Xi
IF X < Y THEN MAX := Y

END;

Pascal/Z User's Manual Page 31

PASCAL STANDARD FUNCTIONS

Pascal contains a variety of pre-defined functions which are
available to ,the programmer. Each function and its description
are listed below:

ABS(X)

SQR(X)

ODD (X

CHR (X

ORD'(X

PRED(X

SUCC(X

EOLN (X

EOF(X

TRUNC (X

ROUND (X

Return the absolute value of X. This function
takes either a REAL or an INTEGER argument and
returns a value of the same type.
Return the square of X. This function takes
either a REAL or an INTEGER argument and returns a
value of the same type.
The type of X must be INTEGER. Returns TRUE if X
is odd, FALSE otherwise.
The type of X must be INTEGER and the result is
the character with the ordinal' value of X.
The type of X may be any scalar except REAL and
the result is the ordinal number of that element.
The type of X may be any scalar except REAL and
the result is the value which precedes X.
The type 0 f X may be any seal ar except REAL and
the result is the value which succeeds X.
Th e type 0 f X m us t be FILE 0 F CHAR (i. e ., TEXT)
and the result is TRUE if the file is at the end
of the current line.
The type of X must be FILE and the result is TRUE
if end-of-file has been reached.
The type of X must be REAL and the r~sult is the
INTEGER whose absolute value is less than x.
The type of X must be REAL and the result is the
INTEGER whose value is closest to X.

The following functions take either a REAL or INTEGER argument
and return a REAL result.

SIN (X) The trigonometric SINE of X.
COS (- X) The trigonometric COSINE of X.
ARCTAN (X The trigonometric ARCTANGENT of X.
SQRT(X) The squa re root of X.
LN (X) The Natural Logarithm of x.
EXP (X) e raised to the Xth power.

PASCAL STANDARD PROCEDURES

Pascal defines a number of standard procedures which may be used
by the programmer. They are Llsed in I/O and dynamic storage
allocation/deallocation. For a discussion of these procedures,
see the sections on PASCAL/Z INPUT AND OUTPUT, THE POINTER TYPE
and PASCAL/Z POINTERS.

Pascal/Z User's Manual Page 32

PROGRAM STRUCTURE AND USE OF SEMI-COLONS

The actual format of Pascal programs is not fixed. You may put
symbols anywhere on a line and any statement or declaration may
be spread over many lines, as long as each individual symbol is
not broken by any separators. However, there is a structure to
Pascal programs which must be followed. This structure is:

<program> ::= PROGRAM <program identifier> i
<block>

<block> ::= <label declaration part>
<constant declaration part>
<type declaration part>
<variable declaration part>
<statement part>

For a more detailed description of program structure see the
syntax tables in Jensen and Wirth, page 110.

One of the more confusing aspects of Pascal is where to put
semi-colons. To the Pascal newcomer it seems as if their
placement is purely arbitrary. However, there is a rationale
behind this scheme. S~mi-colons are used to separate two
adjacent statements and to terminate a declaration. The
following are all legal Pascal program fragments:

{ NOTICE HOW EACH DECLARATION" IS TERMINATED BY A
CONST C1AX = 100;

TITLE = 'World' 's greatest program';
TYPE COLOR = (RED, BLUE, YELLOW, GREEN);

LETTERS = 'A' •. 'Z';
VAR I,J: INTEGER;

HOUSE: COLOR;

, • I
I

{ This shows adjacent statements separated by ifS }

{ BEGIN •••• END is one statement so there is no need to }
{ put a semi after BEGIN or before END. Similarly }
{ REPEAT ..•. UNTIL is one statement so there is no }
{ need to put a semi after REPEAT or before UNTIL. }
BEGIN

END

I := 4 ;
HOUSE := RED;
REPEAT

HOUSE := SUCC(HOUSE
UNTIL HOUSE = GREEN

Pascal/Z User's Manual

{ Pascal allows null statements, for example the}
{ following group of statements contains an IF }
{ statement with no effect because the statement}
{ following the THE~ is a null statement }
BEGIN

END

HOUSE := SUCe(HOUSE);
IF HOUSE = GREEN THEN ;
I : = 23

Page 33

{ Pascal programmers shouid be aareful when using null }
{ statements since they can introduce subtle bugs into }
{ Pascal programs. The following two code segments }
{ illustrate this. If X is less than Y the first }
{ segment loops for a while and then continues. and the }
{ s~cond segment loops forever }
BEGIN

END

WHILE X < Y DO
BEGIN

END

WRITE(X);
X := X + 1

and
BEGIN

END

WHILE X < Y DC ;
BEGIN

WRITE (X);
X := X + 1

END

Pascal/Z User's Manual Page 34

THE PASCAL/Z COMPILER

The Pascal/Z compiler accepts as input a program written in the
Pascal programming language (.PAS file), and outputs two files.
One contains the Z-80 macro-code generated by the compiler, and
is specified as <filename).SRC. The other file output is the
listing file, or .LST file. This file contains the original
Pascal program, with pagination, line numbers, statement numbers,
and'nesting levels indicated. Any errors in the program are also
indicated, and their location in the program specified.

There are four sections to the Pascal/Z compiler. The first is
PASCAL48.COM, which. contains initialization code for PAS248
the actual compiler. PASCAL48 chains to PAS248 after
initialization is completed. There are two overlay modules
called by PAS248: DECS and PFSTAT. This version of the compiler
requires a minimum of 48K to compile -- approximately 37K for the
'PAS248 code, 8K of symbol and· type table and overlay space, arid
3K of stack space.

Two versions of the compiler are supplied on the distribution
diskette. The first is descrjbed above. The difference between
it and the second version is that the second version, PASCAL54,
runs j n 54K. The symbol and, type tables are approximately the
same ~;ize as those for the smaller compiler, but the 54K version
will (:ompile about tw,ice as quickly because it does not use
overlays. This will have no effect on the execution speed of the
final code.

The 54K version which has slightly larger symbol and type tables
and which does not use overlays is named PASCAL54.COM and PAS254
on the diskette. It requires 54K to compile. To invoke the 54K
compiler, type 'PASCAL54 f rather than 'PASCAL48 I. PASCAL54. COM
chains automatically to PAS254.

The Symbol Table

The symbol table for the 48K version will accept
entries, and that for the 54K version will accept
entries. An entry is made into the symbol table
identifier declared in the Pascal/Z program.

The Type Table

up to 400
up to 500
fo revery

The type table is structured differently from the symbol table in
that it is allocated in bytes rather than entries. The type
table for the 48K version is 1500 bytes in size, and that of the
5 4 K ve r s ion i s 1 7 0 0 b yt e 5 ins i z e • An y dec 1 a rat ion 0 fat y p e
will result ,in the_appropriate number of bytes being allocated in
the type table.

There are a number of pre-defined entries in both the symbol and
type, tables (such as INTEGER, REAL, CHAR, BOOLEAN, TEXT).

Pascal/2 User's Manual Page 35

All local entries to the symbol and type tables (except for those
which are predefined above) are deallocated upon exitting a block
so that the space may be reused.

See the section on PASCAL/Z TYPE DECLARATIONS for information on
how to reduce type table usage.

PASCAL/B2

Pascal/B2 is a version of the original Pascal/Z compiler which
has been modified to accommodate the business user. The Pascal/2
floating point routines are replaced in Pascal/B2 by BCD
(binary-coded decimal) fixed point routines to allow for the
~reater precision and accuracy necessary for the business
programmer.

If you licensed Pascal/B2 in addition to qr instead of Pascal/2,
you will find a description of the differences between the two in
Appendix Seven of this manual, as well as detailed information on
how to use Pascal/B2 BCD numbers.

Pascal/Z ,User's Manual Page 36

COMPILER OPTIMIZATIONS

This section contains a list of the kinds of optimizations
performed by the compiler.

1) Constant folding.

2) Temporary vari.able allocation.

3) Expression reordering for optimal register and temporary
use.

4) Different code generation for one byte expressions involving
single byte values.

5) Processor independent peephole optimization.

6) Increments/decrements used
wh~rever possible.

in place of adds/subtracts

7) Additions
possible.

used in place of mul ti pI ications wherever

8) Variable storage is ordered to ~llow faster variable
access.

9) Processor specific optimizations exploited.

10) Compiler always exploits the use of a non-real constant.

11) Whenever possible a check
(except for divide by zero
until run-time).

is performed at
wh ich is detected

compile-time
and ignored

PasFal/Z User's Manual Page 37

VOCABULARY

All Pascal prog rams .a re made up of the following basic symbols:

<basic symbol> : : = <letter> I <digit> I <special symbol>

<letter> : : = a b c d e f g h i j k 1
n 0 p q r s t u v w x y
A B C D E F G H I J K L
N 0 P Q R T S U V W X Y
$ *

< dig i t> :: = 0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 9

<special symbol> ::= + I -
(I

I t

* I / I = I <> I < I > <= I >=
(. I .) I [I) I := I • I , I ;

A I •• I (* I *) I { I } I
<reserved word>

m
z
M
Z

<reserved word> ::= and I array I begin I case I canst I div I
do I downto I else I end I external I file I
for I forward I function I goto I if / in I
label I mod I nil I not I of I or I packed I
procedure I program I record I repeat I set I
string I then I to I type I until I var I
while I with

In Pascal/Z the following also applies:

Only standard ASCII characters may be 'used in writing Pascal/Z
programs. Any other characters may be used only in quoted
strings. Introducing non-standard ASCII characters (i .e.
control characters) into a Pascal/Z program will cause
inconsistent, and often disastro'us, results.

The. use of some editors when composing a Pascal/Z program may
cause parity bits to be set. This can cause strange results, and
can be remedied by stripping the parity bits from the file before
compiling the program.

(. is equivalent to [
(* is equivalent to {
*) is equivalent to }
$ * have been defined as letters
UPPER case letters are equivalent to lower case letters
<space> <comment> <cr> <If> <ff> <tab> are separators

Separators may not occur within numbers, strings, identifiers or
reserved words.

At least one separator is required between any two consecutive
numbers, identifiers or reserved words.

Pascal/ZUser's Manual Page 38

PASCAL/Z SPECIFICATIONS AND LIMITATIONS

In many places throughout the PASCAL REPORT, Jensen and Wirth
leave certain aspects of Pascal Llndefined. This section
describes what happens in the Pascal/Z implementation. The user
is cautioned against writing programs which depend on these since
they are implementation specific and are therefore not guaranteed
to be transportable.

SPECIFICATIONS

MAXINT:

REALS:

LARGEST REAL:

MAXIMUM SET SIZE:

32767 (The max imum in teg er allowabl e
under Pascal/Z). The smallest integer
allowable is -32767.

REAL numbers in Pascal/Z are 32 bits and
have a precision of 6-1/2 digits (tI1e
7th digit may contain a round-off
error) •

The largest
Pascal/Z is
2.9£-39.

allowable REAL number
1.7E+38. The smallest

in
is

256 elements in the range 0 tC) 255. All
sets are 32 bytes in size.

LINE/SYMBOL LENGTH: The max imum allowabl e 1 eng th () f any line .
or symbol is eighty characters.

CONSOLE INPUT:

STRING LENGTH:

,IDENTIFIERS:

RECORDS:

OUTPUT FILES:

PARAMETERS:

NESTING LEVELS:

The buffer will hold up to
characters.

The maximum string length is 255.

The first eight characters of
identifiers are significant.

80

all

No RECORD may have more than forty
fields. This can be circumvented by
nesting the records.

The maximum n~~ber of open output files
is four. This may be changed by
redefining MAXOUT in MAIN.SRC. See the
section on PASCAL/Z INPUT AND OUTPUT for
further detail.

The max imum numbe r 0 f par arneters wh ich
may be passed to a procedure or function
is fifteen.

The maximum number of nesting levels is
fifteen ..

Pascal/Z User's Manual

GOTO statement:

"Page 39

Jumps out of proc edures and functions
are not allowed (This is generally a bad
practice). - '

Jumps out of FOR loops will take up four
bytes of storage for each loop exitted
prematurely (a jump out of a nested FOR
loop will result in a disaster).

Jumps into structured statements are not
recommended but will work properly as
long as the jump is into a REPEAT or
WHILE loop_

BOOLEAN EXPRESSIONS:These are only evaluated as far as
necessary (i. e. , when executing the
statement 'IF A OR B THEN ••• ', the
va ria b 1 e B i s no t ev al ua t ed i f A i s
TRUE, since the value of the expression
is already known).

FUNCTIONS:

CASE sta t'emen ts:

JUMP TABLE SIZE:

~ WITH statement:

PACK/UNPACK:

INPUT/OUTPUT:

POINTERS:

Non-real scalar functions return the
val ue zero (0 r FALSE) if no ass ignmen t
to the function identifier is made.
Structured functions have no default
val ue.

The statement after the CASE is executed
if nClne of the case lists is selected
(no error).

The max imum jump table
the' CASE statement
incl ud ing o.

size when using
is 76 entries

WITH A [I DO BEGIN.... if I changes,
as long as the WITH statement is not
exitted the original record will be
referenced (i .e., the expression is NOT
re-evaluated) •

Arrays and records are implicitly packed
in Pascal/Z, therefore PACK and UNPACK
are no t permi tted. .

'INPUT' and 'OUTPUT' are not allowed in
the program heading, as input and output
are implicit in Pascal/Z. However,
INPUT and OUTPUT are not assumed as the
default files, as they are in othe~
implementations. Pascal/Z uses its
modified I/O routines to cover all
ranges of input and output (see PASCAL/Z
INPUT AND OUTPUT).

Pas c a 11 Z imp 1 em en t s ' po in t e r sus i n g NEW,
MARK and RELEASE, rather than the NEW

Pascal/Z User's Manual

READ/WRITE:

LARGEST PROGRAM:

LIMITATIONS

Page 40

and DISPOSE described by Jensen &
Wirth. This is done to maintain
compatibility with most existing Pascal
compilers. (See PASC.2\L/Z POINTERS for
more detail.)

Each parameter to a READ/WRITE call of a
text file should have a size less than
256 bytes.

The largest program which can run under
Pascal/Z is limited by memory size" and
by the linker, since LINK/Z must be
resident in memory at link time.

The limitations of Pascal/Z are as follows.:

* No passing of procedures or functions as parameters.

* Variable declarations limited to 32K per group (i.e., no
procedure/function or main program can declare more than 32K of
local storage.

* In order for the types of two records or arrays to match, they
must be the same size (see the section on MEMORY USAGE). The
following example should help "t"o" clarify this:

These do not match:
X : ARRAY [1 •• 10] of 0 •• 255;
Y : ARRAY[1 •• 10] of INTEGER;

because X requires 10 bytes of storage and Y requires 20.

These do match:
X : ARRAY [1 •• 10] of INTEGER;
Y : A RRA Y [1.. 1 0] 0 f 0.. 1 0 0 0 ;

because both X and Y require 20 bytes of storage.

These do match:
X : 0 •• 255;
Y : INTEGER;

because X and Yare not records or arrays.

The compiler flags as errors operations on types which do not
match.

See the section on PASCAL/Z TYPE DECLARATIONS
information.

for more

* Standard GET/PUT input/output is not imp~emented. Pascal/Z
uses its modified READ/WRITE facilities to handle all
input/outP~t. See PASCAL/Z INPUT AND OUTPUT for more detail~

* The PAGE routine is not implemented. (This routine is being
considered for elimination from the proposed ISO standard.)

Pascal/Z User's Manual Page 41

COMPILER OPTIONS

There are twelve 'switchable compiler options which may be
enabled/disabled at any point in the compilation. Compiler
options are specified in the first part of any comment. The
format for enabling/disabling compiler options is:

(*Sx+,y-, ••• <any comment) *)

where x, y, •• ~ are any of the compiler options described below
and the '+'. means enabl e (turn ON 0 r I eave ON) and the f - I means
disable (turn OFF or leave OFF) •

NOTE: Do not use more than one dollar sign ($ in the same
comment -- it will cause a disaster. Also, there should be no
space or other character between the opening bracket (and
the dollar sign--in such an instance the compiler will ignore the
intended compiler options and the entire comment.

The defaul t for each of the options is ON unless otherwise
specified. The options are:

C Indicates that the compiler should generate code to check
for CTRL-C (typed at the keyboard) before every GOTO
statement and at the bottom of every REPEAT, WHILE and FOR
loop. If this option is enabled and a CTRL-C 5.s detected
al~ open output files will be closed and· program execution
will oe terminated.

E Indicates that the compiler should generate code to include
the statement number of the statement being executed if
ther e is a run-t ime er ro r. De fa ul t fo r ex tend ed run- time
error messages is OFF.

F Indicates that the compiler should generate code to check
for floating point (REAL) over/underflow errors.

I Imbed Pascal source statements in the macrocode output of
the compiler. Default for this option is OFF.
(NOTE: $I when used in a comment can also mean INCLUDE. See
the section on INCLUDE FILES and be aware of the
difference.)

J This option is used to generate a particular type of CASE
statement. For information about its use see the section
PASCAL/Z CASE STATEMENT. NOTE: This must be the last option
specified in an options list.

L Indicates that the Pascal source program should be listed.
Lines with errors are always listed. Each time that this
option is used a new listing page is started; so this option
can be used to paginate the listing of your Pascal programs
by repeatedly turning this option ON.

Pascal/Z User's Manual Page 42

M Indicates that the compiler should generate the code
necessary to:check for INTEGER m~ltiply and divide errors.
If an error is detected a message is printed and the program
execution is· t:erminated.Addition and subtraction errors
are i g no red.

P Allows symbolic Input/Output of enumeration types declared
while this option is enabled.

R Indicates that the compiler should generate code to do range
and bounds checking. If enabled this option generates code
to detect range (assignment out of range) and bounds (array
index out of range) errors.

S Enables stack overflow checking dur ing procedure/function
entry.

T Trace program. execution. Each time a statement compiled
with t~is option is exe9uted the statement number is printed
on the console device. Default setting for tracing is OFF.

U Indicates thet the compiler should generate code to do range
and bounds checking of parameters passed to user routines.
Default is ON.. This option will work only if the R option
is enabled. vIARNING: This o.pticn will check only value
parameters.

Below is our sample program with some compiler options added:

SAMPLE Page 1

1 1 0 PROG.RAM Sample, (*~:::...J.,. , ~ __ 1 G:~tended error m~ssages
3 1 1 VAR I, J . COLOR; .
4 1 1 S 1, c:., : ARRAY. [1 ~ .5] OF CHAR; "'-

5 1 1 BEGIN {$i+ imbed the Pascal source in the
macro-code

,
j

6 1 1 FOR I := RED TO YELLOW DO
7 2 2 WRITELN ('COLOR IS: f ,

,
I : 1) ; ,

*)

8 3 1 {$l+, i- new listing page, stop imbedding

SAMPLE Page 2

9 3 1 SI := 'FIRST t ;

10 4 1 S2 : = 'LAST •• ,
11 5 1 WRITE (SI, S2) ;
12

,.
1 END. 0

}

Pascal/Z User's Manual Page 43

OPTIMIZING PASCAL/Z PROGRAMS FOR SPEED

This is a guideline for writing faster programs in Pascal/Z.

General

Constants

INTEGERs

RECORDs

Research by Niklaus Wirth has shown that greater
than 90% of all variable accesses in most
programs are to either local or global data
areas. In Pascal/Z var iable access has been
optimized for accesses to the local and global
levels, therefore greatly increasing the
efficiency of variable accesses (by
approximately four times).

With th~ ex~eption of SETs, it is always faster
to use constants than it is to use var iables.
Declared string constants are more efficient (by
one relative jump) than in-line string
constants.

It is usually faster to use one byte INTEGERs
instead of two byte INTEGERs when possible.
However, if range checking is enabled,
ass ignments to subranges take longer than
assignments to INTEGERs.

In Pascal/Z the use of the WITH statement does
not affect execution speed unless the RECORD is
"dynamic". A RECORD is "dynamic" if:

1) it is a member of an ~ .. RRAY with something.
other than a constant for the index (i.e., A[I
] as opposed to A[3])

2) it is a parameter passed by reference.

I f the RECORD is n dynam ic n then the use 0 f the
WITH statement increases the program speed in
case 1 and decreases the speed in case 2.

ARRAYs When accessing ARRAYs it is possible to get at
an element more quickly if the index (or any-of
the indices, if there are more than one) is a
constant. Also range checking (which is only
done at compile-time for constant indices), can
slow down ARRAY accesses considerably.

CASE It is always faster to use a CASE statement
instead of a list of two or more IF statements.

Number Crunching When using constants it is MUCH MUCH MUCH faster
to use REAL constants in assignments to REALs
rather than to use INTEGER constants which must
be implicitly converted to REAL (e.g., n:=n*6.0
ism uc h fa s t e r t han n : = n * 6 i f n i s aREA L
number) •

Pascal/Z User's-Manual Page 44

PASCAL/Z TYPE DECLARATIONS

When declaring types in Pascal/Z, there are certain methods of
declaration which result not only in more readable code, but also
in less use of the type table. This section contains a few hints
on how to declare types so as to utilize a minimum of type table
space. Efficient type declarations also result in faster
compilation time~.

In Pascal, any two or more types may be compared for STRUCTURED
EQUIVALENCE or for NAMED EQUIVALENCE. Structured equivalents are
the same in structure, but are declared in different type
declarations. Named equivalents are the same in structure and
are also named within the same type declaration. Thus if two
types are named equivalents, they must also be structured
equivalents, but not necessarily vice versa.

The following examples should help to il.1ustrate the idea of
structured and named equivalents.

EXAMPLE *1:

type employee_name = ·array(1 •• 30

var x
y
z

employee name;
real; -
array[1 •• 30 of char;

of char;

In the above declarations, X and Z are STRUCTURED -ecluivalents,
but are not named equivalents, because al though X and Z are
structurally the same, two· separate type declarations are made.

In Example iI,

type employee_name = array(1 •. 30] of chari

is an explicit type declaration, and it results in one entry in
the type table. The size of the entry will be determined by the
complexity of the type declared.

Also in Example iI,

var z array(1 •• 30 of chari

is an implicit type declaration, and it results in an additional
entry in the type table, which could have been avoided by
declaring it as follows:

var z employee_name;

Since employee name was already declared as a type of
array(1 .. 30] of char, using the expression again is redundant.

Pascal/Z User's Manual Pag e 45

EXAMPLE #2:

type employeeinfo = record
n am e : a r ray [1. ~ 3 0] 0 f c h a r i

ag e : in t eg e r ;

var x
y

. sex : (m, f);
salary real

end; { employee info }

employeeinfo;
employeeinfo;

The above variables are STRUCTURED equivalents, because X and Y
are identical in st.ructure. Since X and Yare declared within
the same type declaration, they are also NAMED equivalents.

Pascal/Z allows both STRUCTURED and NAMED equivalents.
in Pascal/Z it is always more efficient to
equivalents.

However,
use named

Pascal/Z User's Manual Page 46

HOW TO RUN PASCAL/Z

The following files -are necessary to-compile, assemble, and link
an ordinary Pascal/Z program (one which makes no use of special
features such as external routines or separate compilation):

<your program>
PASCAL48.COM
PAS248
DECS
PFSTAT
(or PASCAL54.COM and PAS254)

ASMBL.COM
MAIN.SRC
LINK.COM
LIB.REL

To run the Pascal/Z compiler, make sure that the necessary files
are on the currently logged-in drive and type:

PASCAL48 <filename>.<source drive><output drive><listing drive>

where,

< filename>

<source drive>

<output drive>

<listing drive>

i s the f i len am e 0 f the t ext f i lew i t h the
extension .PAS

is "the ie~ter naming the drive that the
source file is on. The currently logged-in
drive is the default.

is the letter naming the drive to which the
Z-80 macro-code gen.rated by the compiler
should be sent. The currently logged-in
drive is the default.

is the letter naming the drive to which the
Pascal listing should go. The currently
logged-in drive is the default.

A space in place of an option letter specifies the default.

EXAMPLES

A)PASCAL48 PRIMES

This will compile the text file PRIMES.PAS on
PRIMES.LST (the program listing) and PRIMES.SRC
macro-code) will be sent to drive A.

B)PASCAL48 PRIMES.ABC

drive A.
(the 2-80

This will compile the text file PRIMES.PAS on drive A.
PRIMES.SRC will be sent to drive B, and PRIMES.LST will be sent
to drive c.

Pa~cal/Z User's Manual Page 47

B)PASCAL48 PRIMES.bAb { where a "b" represents a blank }

This will compile. the text file PRIMES.PAS
default). PRIMES.SRe will be sent to drive A.
will be sent to drive B (the default) •

on drive B (the
Th eli s t i ng f i 1 e

The listing (.LST file) of a Pascal/Z program may also be sent
directly to the console or the printer during compilation by
replacing the third letter of the file extension with "x" to
specify the console and "y" the printer.

EXAMPLE

A)PASCAL48 PRIMES.AAX

This will compile the text file PRIMES.PAS on drive A.
PRIMES.SRC (the Z-80 macro-code) will be sent to drive A, and the
lis~ing file will be sent to the console.

A)PASCAL48 PRIMES.BBY

This will compile the text file PRIMES.PAS on drive B.
PRIMES.SRe will be sent to drive 8, and the listing file will be
sent to the printer.

While compiling, the console output of Pascal/Z is as follows.
Every time a procedure/function declaration is encountered, its
name and· the pr.esent line number are printed. A I_I is outp.ut
every time that a new procedure or function declaration is
encountered and every time that 10 lines have been compiled. An
rEt is output instead of a '-' if there was an error in the last
group of lines (not necessarily 10 lines depending on
procedure/function declarations). When compilation is completed,
the total number of errors i·s output to the console~ (NOTE: The
errors are listed individually in the .LST file, 'but the total
nurnb,er of errors is not.) The compiler may be stopped at any
time by typing CTRL-C.

After compilation, a Pascal/Z program must be assembled and
linked before it may be run.

Before assembly, however, you may wish to optimize the output of
the compiler by running it through PASOPT, a peep-hole optimizer
designed for use only with the code generated by the Pascal/Z
compiler. To invoke the optimizer, type:

A)PASOPT PRIMES.SRe

The optimizer will scan through the Z-80 source file and reorder
certain patterns in the code to make them more efficient. The
optimizer will rename the old source file to PRIMES.ORG (for
original) and generate a new optimized file called PRIMES.SRe.
When it has f ini shed optim i zi ng , a message g i v ing the to tal
number of bytes eliminated will appear.

Not e t hat s 1. n c ePA S 0 PT has bee n d ev e lope d s pe c i f i call y for use
with the output of Pascal/Z, running any orclnary assembly
lan~uage programs through it will cause false (and usually fatal)

Pascal/Z User's Manual Page 48

results. Therefore, do not run any file through the optimizer
more than once.

To assemble a Pascal/Z program, type:

A>ASMBL MAIN,PRIMES/REL

The console will display:

Pascal/Z run-time support interface ASMBLE v-7c

This command will cause the assembler (ASMBLE/Z) to automatically
search for the .SHC file associated with the filenames MAIN and
PRIMES. MAIN.SRC is a file containing definitions and routines
to be asse~bled with the output of the compiler, and MUST ALWAYS
BE THE FIRST FILENAME SPECIFIED.

ASMBLE/Z will assemble the Z-80 macro-code
relocatable object code module, as specified by
.REL. When assembly is successfully completed,
message appear:

and
the
the

output a
ext·ension
following

o errors. X symbols generated. Space for X more symbols.
X characters stored in X macros.
X bytes of program code.

where X is an integer number.

The next step is to link the program with any necessary
subroutines.

(If you wish to use the pa·scal/Z interactive symbolic debugger,
InterPEST [InterSystems Pascal Error Solving Tooll, see the
InterPEST Reference Manual for details· on linking Pascal/Z
programs.)

To do so, type:

A>LINK PRIMES/N:PRIMES/E

The console will display:

LINK version 2b
Load mode
Generate a COM file

This command will cause the linker (LINK/Z) to automatically link.
the file PRIMES.REL with the library subroutines contained in
LIB.REL, provided on the distribution diskette. Only the library
modules which are called by the Pascal/Z program PRIMES will be
linked in, reducing the size of the final code.

The /N:PRIMES option specifies that the linker should generate a
.COM file with the name PRIMES.

The /E option indicates that after generati"ng a .COM file, the
linker should exit and return to CP/M.

Pascal/Z User's Manual Page 49

When the link is completed, the console will display the
following:

Lo = X Hi = X Start = X Save X blocks

The first three XS will be hex addresses, and the last X will be
an integer.

To run the program, simply type:

A>PRIMES

The command

A>LINK PRIMES/N:PRIMES/G

will yield the same results, except that instead of returning to
the operating system, the program will be executed as soon as the
link is finished, as specified by /G, or "gb".

(For more detailed information on the assembler and the linker,
see the accompanying manuals ASMBLE/Z and LINK/Z.)

* COMPILE.SUB

A Pascal/Z program may be compiled, assembled, I inked and run
automatically by using the COMPILE.SUB file on the distribution
diskette. PASCAL48.COM, PAS248, PFSTAT, DECS, MAIN.SRC, LIB.REL,
ASMBL.COM, LINK.COM, COMPILE.SUB and SUBMIT.COM must be on the
diskette in drive A. Note that although the version of
COMPILE.SUB supplied on the diskette uses the 48K overlaying
version of the compiler, .those users who wish to use the 54K
vers,ion may change COMPILE.SUB quite simply by editing the file
and changing PASCAL48 to PASCAL54 (BZ users may wish to change it
to PASCALBZ). NOTE: If you change the invocation command, be
cer ta in tha t the necessary f i 1 es a re on the logged- in d rive
(i.e. PASCAL54.COM needs PAS254, etc.).

The proper command to submit the Pascal/Z program for processing
is:

SUBMIT COMPILE <your program name> X

followed by a carriage return, where X is the letter of the drive
containing the diskette which your program is. on. All files
(.SRC, .LST, .REL, .COM) will be sent to the drive specified by
x. If the drive letter is not specified, the process will be
halted at link time, and the message "Can't find <program>.REL"
will be displayed.

Note that once the COMPILE. SUB file is submitted, processing will
continue thr~ugh the execution of your program regardless of any
errors which may be present. The submit file can be halted by
typing CTRL C twice. It will finish executing the current
command of the COMPILE. SUB file and then return to the operating
systEm.

Pascal/Z User's Manual Page 50

INTERPRETING PASCAL/Z LISTINGS AND ERROR MESSAGES

When your Pascal program is compiled,. the compiler generates a
1 i st ing f il e 0 f your program· which incl udes pag ination, line,
statement, and nesting level numbers, as well as any compilation
errors (.LST file). The number to the far left of each line is
the I ine number. The next number is the number of the fir st
statement on that line (if there is no statement on that line
then ~he same number will appear on the next line). Statement
numbers are used in conjunction with the trace and extended error
message options (see section on PASCAL/Z COMPILER OPTIONS). The
other number preceding each line is the number of levels that
that statement is nested.

Here is a sample listing of a program with no errors:

SAMPLE

Line Stmt
1 1
2 1
3 1
4 1
5 1
6 1
7 ~.

8 3
9 4

10 5
11 6

Level
a
0
1
1
1
I
2
1
1
1
1

Page 1

PROGRAM Sample;
TYPE COLOR = (RED, BLUE, GREEN, YELLOW);
VAR I, J : COLOR;

51, 52 : ARRAY [1 •• 5 OF CHAR;
BEGIN

FOR I := RED TO· YELLOW DO
WRrTELN ('COLOR IS:', " I ': 1);

51 := tFIRST'i
5 2 : = • LAST ';
WRITE (51, 52);

END.

In the unlikely event that you have written a program which
generates compilation errors, the program listing will show the
type' and location of the error(s). If the error is a syntax
error, the error message will be given in English and a ... will
mark the location of the error. If the error is a semantic error
then the error message will be one of the compile-time error
codes listed on pages 119-121 of the PASCAL USER MANUAL AND
REPORT, as well as in Appendix 5ix at the back of this manual.
In addition to the standard error codes listed in the manual,
Pascal/Z ~as further defined the implementation restriction error
(398) as follows:

3980 Symbol table overflow (one way to help avoid this error
is to minimize the number of FORWARD declared procedures
and functions).

-3980' Type table overflow One way to avoid this is to

3981

3982

minimize the number of type declarations. See the
section on PASCAL/Z TYPE DECLARATIONS.).

Function value may not be qualified.

Jump out
Pascal/Z.

of a procedure/function not allowed in

Pascal/Z User's Manual Page 51

3983 Non-string compared ~ith ~tiing.

3984 ··Program·has too many levels of nesting. Depends upon: the
complexity of the user's program.

-3984 No more than forty fields in a record. (Can be avoided
by nesting records.)

3985

3986

3987

3988

-3988

3989

Cant t output/input this value because compiler option P
was disabled when this enumeration type was declared.

Line or symbol too long. The maximum line/symbol length
is eighty characters.

Maximum string length is 255.

String too small for call by reference.

Declarations of
match exactly.

BCD numbers passed by reference must
(Only generated when using Pascal/BZ.)

(This error message has changed from Version 3.2-1.
Structured values returned by functions are now allowed
as parameters to a WRITE or WRITELN.)

The error message 3989 now indicates that an EXTERNAL was
declared in a separate module. .All EXTERNALs must be
declared in the main.program~

One of the most common error messages is 'Program too complex';
this error message will appear on the console at compile-time,
and compilation will be halted. This message usually means there
is not enough memory in the system to run the compiler. If using
the 54K version, try switching to the 48K version. Otherwise,
adding memory to the system will usually solve the problem. It
may also mean that there is not enough stack space remaining. To
remeuy this, stack usage must be reduced before trying to
recompile. .

The message "Too many errors" means th?t an integer constant is
out of range of the allowable integer values.

Another error encountered when using separate compilation is
'premature EOF'. This generally means that the CP/M file names
of the modules do not correspond to the internal module names as
specified in the module headings. The problem is easily solved

-by checking to make certain the names correspond. This error
will also occur if the fourth drive letter is not specified when
compiling the program modules.

* RUN-TIME· ERRORS -- STACK OVERFLOW

One of the most common run-time errors is stack overflow. This
indicates that the stack space has been exhausted, and is a fatal
error. One ~ay bf avoiding this is to keep the number o·f nesting
levels to a minimum. Also, if the same parameters are passed to
a n urn be r 0 f· d iff ere n t r 0 uti n e s , i t may be po s sib 1 e to dec 1 are

them globally, and thus reduce stack usage.

Pascal/Z User's Manual Page 52

Here is the same program as above with a few errors added:

SAMPLE

Line Stmt Level
1 1 0
2 1 0
3 1 1
4 1 1

5 1 1
6 1 1

7 2 2
8 3 1
9 4 1

10 5 1

11 6 1

Page 1

PROGRAM Sample;
TYPE COLOR = (RED, BLUE, GREEN, YELLOW);
VAR I, J : COLOR; "

BEGIN

END.

51, 52 : ARRAY [1 •• 5 OF CHAR;
...] EXPECTED

FOR I := RED YELLOW DO
... TO EXPECTED

WRITELN ('COLOR IS:', , ., I : 1);
S1 := 'FIRST';
S2 = I LAST ';
... : = EXPECTED
WRITE(Sl, S3);

... ERROR 104
... ERROR 116

Since Pascal/Z is a recursive descent compiler, errors are
sometimes not discovered until a couple of symbols after the

"symbol which" is erroneous; -this is espec"ially 1 ikely to occur
with multi-line statements. The'" mark in the error descriptions
is placed as close as possible to the symbol which is in error
(for accurate placement of ... refrain from using tabs). Also
sometimes errors "percolate" through a program (i .e., one error
may cause the compiler "to become ·confused" and generate
additional errors even if thera is nothing wrong); in these cases
the first error is the one which should be believed.

Pascal/Z User's Manual Page 53

PASCAL/Z INPUT AND OUTPUT

All input/output and related operations in Pascal/Z are dorie with
eight standard routines: RESET, REWRITE, READ, READLN, WRITE,
WRITELN, EOLN, and EOF. These routines allow the user to create,
delete, read, write, and test the status of operating system
files. Although these routines differ slightly from the standard
Pasca-l I/O routines, they are more flexible and are easier to
use. These routines are the only way to access file data; GET
and PUT (and also <fvar>) may not be used. In this table
<fnam> is any legal Pascal file name, <fvar> is any legal Pascal
file variable and anything enclosed in square brackets is
optional.

RESET(<fnam>, <fvar>)
RESET is used to reset an input file to the
beginning of the file and open it for access.
<fnam> is any legal operating system filename (may
be a quoted string , an ARRAY OF CHAR or a
STRING) , and <fvar> is· the Pascal/Z file
variable. A RESET must be dohe before any
non-console input file may be read.

REWRITE (<fnam>, <fvar>)
REWRITE· is used to open a file for output. If" the
file already exists. then the old file is deleted
before the new file is opened. A REWRITE must be
done before any non"':'console file is written to.
(See section on DEVICE INPUT AND OUTPUT for device
output specification.)

Note that the return value of a function may not
be used to spec i fy a f il e name in a RESET 0 r
REWRITE statement [e.g. R&SET«£unction return
value>, fvar) is not allowed].,

READ ([<fvar>,] pI, ••.• , pn)
READ reads the previously opened input file and
stores the information in the variables
specified. The file mayor may not be of type
TEXT. For TEXT files the allowable parameter
types are INTEGER, CHAR, BOOLEAN, ARRAY OF CHAR,
REAL and correctly declared enumeration ~ypes.
The number of parameters is variable, but at least
one must be used. If the <fvar> parameter and
trailing comma are omitted, the console is used
for input (the console file is of type TEXT) 0

READLN([<fvar>,] pI, .•• , pn)
READLN is the same as READ except that a new line
is found after the READ is finished. READLN
should only be used on TEXT files.

WRITE(.[<fvar>,] pI, •..• , pn
WRITE is used to write into a previously opened
output file. If the file is of type TEXT, then
the parameters may be INTEGER, BOOLEAN, CHAR,

Pascal/Z User's Manual Page 54

ARRAY' OF" CHAR (includ ing quoted str ings), REAL,
and any pro'perl y declared enumeration type. 'As in
READ and-" READLN, the number of parameters is
var iqble, "but must be -greater than zero. If _ the
<fvar> parameter is ommitted, then the console is
used, for "utput (type TEXT).

W R I T E LN ([< f va r > ,] p 1 ,, p n)
WRITELN is the same as WRITE except that it should
only be used to write into files of type TEXT, and
it appends a carriage return/line feed to the data
being output. If WRI·TE~N is Llsed with no
parameters, a blank line is written to the
console.

EOLN (< fvar>)
EOLN is a BOOLEAN function defined for input files
of type TEXT and returns TRUE if the file
indicated is at t~ end of a line. EOLN(O)
returns TRUE if there is no more input in the
console input buffer.

EOF(<fvar>)
EOF is a BOOLEAN function which returns TRUE if
the specified input file is exhausted cr if there
has been any type of operating system file error
(i.e .', file not found,. read error, etc.) A note
of caution· ---:-' Because CP/M does no': keep any
information regarding partially filled blocks at
the end a fan 0 n- t ext f i 1 e , i tis i m po s sib let 0

make EOF«non-text file» work correctly unless
the record size used is a multiple of 128. The
suggested way of working around this problem is to
either know how many records are in the file or to
have a spec,ial end-of-file record configuration.

Each parameter to a READ/WRITE call of a text file should have a
size less than 256 bytes.

As the compiler is shipped to you, the maximum permissible number
of simultaneously open output files is four. However, the user
may increase this number be redefining MAXOUT in MAIN. SRC (the
time required to exit a procedure/function increases as MAXOUT
increases) •

There is no way of explicitly closing a file; however, whenever
the block containing a file buffer is exitted (or if the program
terminates) the file will be closed. If a file buffer is used in
another RESET, the file being RESET will be closed prior to the
opening of the second file.

After starting a Pascal/Z program the CP/M command tail is stored
in the input buffer and may be read by subsequent read requests.
Pascal/Z uses the console input buffer to build file names when
opening a disk file. Therefore, if there is some information in
the console 'input buffer which you would like to read, read it
before opening any files.

Pascal/Z User's Manual Pag~ 55

The following example programs demonstrate the different uses of
the P.ascal/Z IIO routines;' The first' example reads input from
the console and writes it back to the console. The second uses
file I/O, and takes input from the file named 'data', then writes
the output to the file named 'result'.

Program IO;

{This is a simple program to demonstrate Pascal/Z Input/Output.}
{The following is an example of how the READ, READLN and WRITE,}
{WRITELN statements work. }
{READ will read input, in this case from the console. }
{READLN will do an initial read, and then skip to the next line}
{o£ input. }
{WRITE will write output, in this case to the console. }
{WRITELN will do an initial write, and then append a carriage }
{return, line feed to the specified output. }

var x, y : in t eg e r ;
i integer;

{ input data }
{ index variable }

begin {the following block demonstrates the use of READ, }

end.

{ WRITE and WRITELN. }

for i := 1 to 3 do
begin

end;

read (. x, y);
writeln('The numbers are:', x : 5, y : 5);
wr i t e ('Th e sum is: ., x + y);
writeln(' The difference is: " x - y);
writeln

{ the· following block demonstrates the use of READLN, }
{ WRITE and WRITELN. }

for i := 1 to 3 do
begin

readln(x, y);
writeln('The numbers are:', X : 5, y : 5);
wr i t e ('Th e sum is: " x + y);
writeln(' The difference is: I, X - Y);
writeln

end

When the program is run and the following data is input from the
console:

354 26 492 1032 783 97 564 928 37
471 216 34 841
1985 672 47

the following results will be obtained:

354 26 492 1032 783 97 564 928 37
The numbers are: 354 26

Pascal/Z'User's Manual Page 56

The sum is: 380 ,The difference is: 328

The numbers . are:' 492 1032
The sum is: 1524 The difference is: -540

The numbers are: 783 97
The sum is: 880 The difference is: 686

The numbers are: 564 928
The sum is: 1492 The difference is: -364

471 216 34 841
The numbers are: 471 216
The sum is: 687 The difference is: 255

1985 672 47
The· numbers are: 1985 672
The sum is: 2657 The difference is: 1313

Pascal/Z User's Manual Page 5?

Program Fileio;

{ This is a program to demonstrate file I/O using Pascal/Z. }
{ Pascal/Z=.does not allow,the use of GET and PUT, but does }
{ all input/output utilizing its modified READ / WRITE and }
{ RESET and REWRITE routines. }

var x, y : i n t eg e r ;
in f i 1 e : t ex t ;
ou:tfile : text;

{ input data
{ data input file variable

{ data output file variable}
}

}

{ In this program, data is read from an input file 'data' and}
{ the results o~ the program are written to an output file }
{ I result'. }

begin

end.

{ reset the input file 'data' to the beginning}
reset ('data', inf ile.) ;
{ open the file 'result ' for output from the program
r e wr it e ('r e s ul t', 0 u t f i 1 e);
while not eof(infile) do

begin

end·

readln(ihfile, x, y);
w r i tel n (0 u t f i 1 e , , The n urn be r s are: r, x : 5, Y : 5);
wr i t e (0 u t f i 1 e ,. 'Th e sum is: " X + Y);
writeln(outfile,' The difference is: ., x - y);
writeln(.outfile)

With the following data contained in the input file 'data':

354 26 492 1032 783 97 564 928 37
471 216 34 841
1985 672 47

the· results will be as follows, and will be contained in the
output file 'result':

The numbers are: 354 26
The sum is: 380 The difference is: 328

The numbers are: 471 216
The sum is: 687 The difference is: 255

The numbers are: 1985 672
The sum is: 2657 The difference is: 1313

A description of how to use PASCAL/Z INPUT AND OUTPUT with Direct
Access Files is included in the section on DIRECT FILE ACCESS.

, Pascal/Z User's Manual Page 58

DIRECT FILE ACCESS

Pascal/Z provides the user with a Direct ~ccess' Facility which is
used to directly re.ad or write any r'ecord in a file. ,The term
"direct access n is used rather than random access since ,all file
accesses are not equal. Moving a disk head from track 1 to track
2 is much faster than moving it to track 50;, such accesses are
not truly random.

The syntax for these direct reads and writes is as follows:

DIRECT WRITE:
WRITE (<fvar>:<record number>, <record variable>)

DIRECT READ:
READ (<fvar>:<record number>, <record variable>)

where the record variable is a Pascal record variable.

EXAMPLES:

Write a record to position 35 in file Q:
WRITE (Q:35, <record variable>)

Read record I from file Q:
READ (Q:I, <record variable>

The records and the record numbers correspond directly; READ(Q:l,
<record variable» reads the first record in the file, READ(Q:12,
<record variable» reads the twelfth record in the file.

If after a file has been repositioned a subsequent read or write
does not specify a record position, then the next sequential
record is assumed.

All files start at logical record one; an attempted access of
logical record zero will access the next sequential record. If a
write is attempted beyond the current EOF then the file is
extended to that point before the write is performed.

REWRITE is used to create a new file. If a file with the same
attributes already exists it is deleted before the new file is'
created.

RESET is used to work with an existing file. A file which has
been reset may still be written to using random writes.

Once a file has been randomly accessed, all subsequent sequential
reads and writes will be much slower (due to CP/M's aversion to
mixing random and sequential access) until the file has been
closed and re-opened.

Random access is implemented in, and thus only supported with,
CP/M 2.0 or higher.

Pas~al/Z User's Manual

RENAME AND ERASE

RENAME and ERASE are two external Pascal routines which allow a
Pascal program--: to --RENAME and ERASE files' from - the file
'directory. In effe<:t they provide a clean interface to the CP/M
system functions RENAME (23) and DELETE (19).

To incorporate these functions in a Pascal program the following
declarations are required:,

Type filestring = string 14 ;

Fun c t ion RENAME (old f i 1 e, new f i 1 e : f i 1 est ring) :
Boolean ; External;

Function ERASE (oldfile: filestring): Boolean; External;

Oldfile contains an unambiguous file name (ufn) of an existing
CP/M file. Newfile also contains a ufn. NOTE that when using
the Pascal external RENAME function, the old file name comes
fir st, and the new f il e name second, unl i ke the CP 1M RENAME
facility.

Each function returns TRUE if its operation was successful, FALSE
otherwise. Failures can result from files not being found or
from illegal file names.

Th~ user should also be sure that all files affected are closed
when a RENAME or E~RASE is attempted.

Examples:

if RENAME ('P.COM', 'PIP.COM')
then writeln ('PIP');

if ERASE ('MASTER.BAK')
then writeln('master.bak has been deleted');

RENAME and ERASE are in the LIB.REL file and are automatically
linked by LINK/Z at link-time. The 2-80 source code for the
RENAME and ERASE routines are contained in the file RENERA.SRC.
It is found on the same side of the disk containing the fixed
point package.

Two sample programs RENDRV.PAS and DELDRV.PAS are provided which
drive RENAME and ERASE. After compiling and linking they may be
run to rename or erase files from the console (erase with
caution!). Exit either program by typing "'c instead of a file
name.

Pascal/Z User's Manual Page 60

DEVICE INPUT AND OUTPUT

INPUT

Pascal/Z allows the user to specify input from the console using
CON: •

To input from the console:

RESET ('CON:', <fvar>)i
READ (<fvar), Pascal variable) i

OUTPUT

Pascal/Z allows the user to specify output to the console or to a
printer using CON: or LST:. To access the console or printer
use:

REWRITE (
REWRITE (

'CON:·',
'LST:' ,

<fvar)
<fvar>

) i
) ;

{
{

console }
printer }

and then write to the device the same way you would to any other
output file. For example, the following program copies a text
file to the console.

PROGRAM CONSOLE;
TYPE STR = STRING 80;
VAR FNAM, FOUT : TEXT;

LINE : STR;
BEGIN

RESET ('TEST. TXT' ,. FNAM);
REWRITE (• CON: ., FOUT);
WHILE NOT EOF(FNAM) DO BEGIN

READLN(FNAM, LINE);
WRITELN(FOUT, LINE)
END

END.

When using Pascal/Z device input and output, the file variable
(fvar) must be declared as type TEXT.

Pascal/Z User's Manual Page 61·

PASCAL/Z EXTENSIONS

Whi 1 e we at In terSystems feel strong ly tha tit is impo rtan t to
keep Pascal extensions to a ~inimum in order to maintain
simplicity, clarity and transportability, we also feel: that in
order for Pascal to be useful in the business and scientific
communities a few necessary extensions must be made. The
extensions presented in Pascal/Z represent an attempt to extend
the utility of Pascal while maintaining the "spirit" of the
language.

Each. of the extensions in Pascal/Z is listed here along with a
justification for including it in the language. Full
descriptions of how to use the extensions, along with examples,
are given in the appropriate sections later in this manual.

1) Pascal/Z allows certain types of expressions where Pascal
requires a constant to be used. This allows the user to
declare a series of inter-related constants where it is
only necessary to change· one cons,tant when a change is
desired.

2) Another extension made to Pascal/Z is to allow functions
to return structured, as well as scalar, values. T'his
greatly increases the range of applications for
functions.

3) A variable length string.' tYPE~
Pascal/Z. It is extremely useful
and for certain types of I/O.

.. has be-en added to
for text manipulation

4) There is now an ELSE clause for the CASE statement. This
is one of the most 'common extensions to Pascal (sometimes
called OTHERS or OTHERWISE) and is extremely useful when
it is desirable to use the power of the CASE statement
without listing all of the possible cases.

5) Separate .compilation is permitted. This decreases
program development time by allowing the user to divide
his prog ram into d isti net modul es, wh ich can then be
debugged, compiled and assembled separately, avoiding the
need to recompile and reassemble the entire program.

6) 'Pascal/Z provides the user with a facility to link
EXTERNAL routines to Pascal programs. These routines
allow the user to communicate direc'tly with I/O devices
as well as to perform operations which are more naturally
done in assembly language.

7) Overlay capabilities are supported to permit development
of programs larger' than system memory size. This
facility is extremely useful for the software developer
who may be forced to limit program function to
accommodate system restrictions.

8) PasC,al/Z suppo rts INCLUDE files to allow the use r to
insert a file at any point in a Pascal program. This is
useful in decreasing typing and editing time, since

Pascal/Z User's Manual Page 62

9)

program blocks which' are, u'sed frequently can be contained
in a unique file, and then INCLUDED in the Pascal/Z
program.

One of the contradictions in
symbolically input/output the
defined as an enumeration type

BOOLEAN = (FALSE, TRUE)

Pascal
type

is the ability to
BOOLEAN, which is

but not to be allowed to symbolically input/output the
val u e s 0 fan y 0 the r (i . e ., use r dec 1 a r ed) en urn era t ion
types. In Pascal/Z the user is allowed to symbolically
input/output the values of any enumeration type.

10) It is often useful to be able to directly access any
record in a FILE. Pascal/Z has added Direct File Access
(sometimes called random access in other implementations)
to allow this to be done in a reasonable fashion.

Pascal/Z User's Manual Page 63

PASCAL/Z CONSTANTS

The fir s t Pas cal / Z ext ens ion i s the r ed e fin i t ion 0 f . a con s tan t .
In the USER MANUAL AND REPORT a constant is defined as:

<constant> ::= <unsigned number> I <sign> <unsigned number>
<constant identifier> I
<sign) <constant identifier> I <string>

In Pasca1/Z a constant is defined as:

<new constant) ::= <constant)
<integer constant> * <integer constant> I
<integer constant> + <integer constant> I
<integer constant> - <integer constant> I
<integer constant) div <integer constant>

This is extreme~y useful for the following type of declaration:

CONST CLASS = 30; { number of students }
GIRLS = 17; { number of girls}
BOYS = CLASS - GIRLS; { number of boys }

Pascal/Z User's Manual Page 64

PASCAL/Z FUNCTIONS

Pascal/Z. versions 3.2 and later allow functions to return
structured values, as well as scalar ~~lues. Functions returning
structured values are declared in the same manner as functions
returning scalar values, the only difference being in the
specification of the return value.

For example;

TYPE NUMBERS = ARRAY[l •• 100] OF INTEGER;
NAME = STRING 20;

VAR NUM : NUMBERS;
ID : NAME;

{A FUNCTION TO INCREMENT EACH ELEMENT OF AN ARRAY}
FUNCTION INCREMENT (CNT:NUMBERS): NUMBERS;

VAR X INTEGER;
BEGIN

FOR X := 1 TO 100 DO CNT[X] := CNT[X] + 1;
INCREMENT := CNT

END;

{A FUNCTION TO CREATE AN ARRAY WITH EACH}
{ELEMENT 20 GREATER TF~N THE OLD ARRAY}

FUNCTION XXPLUS(CNT:NUMBERS): NUMBERS;
VAR X : INTEGER;
BEGIN

FOR X := I TO 100 DO
XXPLUS[X] := CNT(X] + 20

END;

{A FUNCTION TO APPEND A I ESQ.' TO A NAME}
FUNCTION ADDESQ(VAR PERSON:NAME):NAMEi

BEGIN
IF LENGTH (PERSON) <= 15 THEN

APPEND (PERSON, t ESQ.')i
ADDESQ := PERSON

END;

BEGIN

NUM := INCREMENT (NUM);

NUM := XXPLUS(NUM);

ID := ADDESQ(ID);

NOTE: In the third example, the function LENGTH must be declared
as shown in the section on STRINGS.

In the example above of function INCREMENT, the entire array eNT
wa sass igned to INCREMENT; wh il e in XXPLUS, each el ement was
individually assigned. Both of these formats are legal within
the function'~ However, an element of a fu.nction returning an
array (or a field of a function returning a record), cannot
appear on the right side of an assignment statement. The entire

Pascal/Z User's Manual Page 65

value of the return value. must be assigned to a variable of the
defined return type.

NUM :=INCREMENTLNUM)i {LEGAL STATEMENT}

NUM [10] : = INCREMENT (NUM [10]); {ILLEGAL}

The entire return value of a function can also be passed by value
as a parameter, or compared usinq relational operators.

Pascal/Z User's Manual Page 66

PASCAL/Z STRINGS

In addition to the standard Pascal string (see Pascal User Manual
.and Report, pages 40-41), Pascal/Z introduces variable leI).gth
strings to the Pascal language. While this extension is the
least Pascal-like of all Pascal/Z extensions, it is none .the less
quite useful for programmers who are used to the availability of
such types.

Variable length strings are declared using the reserved word
STRING followed by the maximum length of that string (maximum
allowable string length is 255).

yAR Z: STRING 126; { string with a maximum length of 126 }

There is also an additional intrinsic procedure APPEND.
is used to append one string to another; for example:

APPEND'< Z, I l'); { add '!. to Z }
APPEND (Z, • FINI',); { add' FINI' to Z }
APPEND (Z, Z); { add Z to Z }

APPEND

APPEND was implemented rather than a concatenate procedure
because many string operations are appends and appending is more
efficient than concatenating; however concatenate may be
simulated as follows:

VAR TEMP: STRING 255·;
BEGIN

TEMP := Z;
Z := '1) ';
APPEND (Z, TEMP); {append Z to 1) and store in Z }

There are other string routines in the Pascal Run-Time Support
Library, but the programmer must declare them externally in order
to a'ccess them. Before declaring these external routines the
following types must be declared:

$STRINGO = STRING 0;
$STRING255 = STRING 255;

The routines and their declarations are:

FUNCTION LENGTH (X: $STRING255): INTEGER; EXTERNAL;
returns the present length of a string.

FUNCTION INDEX { X, Y: $STRING255): INTEGER; EXTERNAL;
returns the place in string X where the substring Y begins. If Y
is not in X, ~ zero is returned.

PROCEDURE SETLENGTH(VAR X: $STRINGO; Y: INTEGER); EXTERNAL;
set the length of X to Y.

Strings may be initialized to the NULL string with the SETLENGTH
routine.

Pascal/Z User's Manual Page 67

The following restr ictions. apply when using the type STRING in
Pascal/Z programs:

1) When passed by refer"ence,
must be great~r than or
parameter, hence the use
SETLENGTH.

the maximum length of a ·STRING
equal to that of· the formal

of $STRINGO above in procedure

2) When passed by value the actual length of a STRING must be
less than or equal to that of the formal parameter, hence
the use of $STRING255 above in functions LENGTH and INDEX.

3) When used with relational operators a constant STRING may
not appear to the left of the relational operator (generates
com pi 1 at ion err 0 r 3989).

IF STRINGI = STRING2 THEN (statement)
IF S~RINGI = 'HELLO· THEN <statement)
IF 'HELLO' = STRINGI THEN (statement)

{ legal }
{ legal }
{ i l1eg al }

It is possible to access the Nth character in a string using the
form

Z (N]

The value of N will be checked
and the maximum length of Z
turned off).

to make sure that it is between 1
(unless. range checking has been

Note that at compile time a quoted string will take twelve bytes
in the type table before it is written out. This space will be
reallocated as soon as the statement containing the string has
been executed.

Pascal/Z User's Manual

Here is a short program using Pascal/Z ~TRING functions.

PROGRAM LONGLINE; {$I+ }
CONST LINESIZE = 80;
TYPE $STRINGO = STRING 0;

$STRING255 = STRING 255;
VAR LINE: STRING LINESIZE;

WORD: STRING 80;
FUNCTION LENGTH (X: $STRING255): INTEGER; EXTERNAL;

Page 68

FUNCTION INDEX (X, Y: $STRING255): INTEGER; EXTERNAL;
PROCEDURE SETLENGTH(VAR X: $STRINGO; Y: INTEGER); EXTERNAL;
BEGIN

WRITELN('TYPE ONE WORD AT A TIME AND THIS PROGRAM WILL',
, ASSEMBLE THE WORDS INTO LINES OF I,

LINESIZE:l, , WORDS EACH');
WRITELN("'TYPE 1"'>$ TO STOP');
SETLENGTH (WORD, O') i { INITIALIZ E WORD TO NOTHING }
REPEAT

SETLENGTH(LINE, 0); { INITIALIZE LINE TO NOTHING}
WHILE (LENGTH (LINE) + LENGTH (WORD) < LINESIZE)

AND (INDEX(WORD, '1"i$') = 0) DO BEGIN
APPEND (LINE, WORD);

END;

IF LENGTH (LINE) < LINESIZE THEN
APPEND (LINE, , ,)i { WORD SPACE WORD}

WRITE ('THE WORD IS: I);

READLN (WORD);

WRITE"LN (I THE" t.INE IS:' "); WRITE (LINE); .
UNTIL INDEX (WORD, 'l"i$') <> 0;

END.

Pascal/Z User's Mariual Page 69

PASCAL/Z. CASE STATEMENT

As mentioned earlier an ELSE clause has been added to the CASE
statement. The following example should help to clarify its use:

CASE COLOR OF
RED, YELLOW, BLUE: PRIMARY := TRUE;
ELSE: PRIMARY := FALSE
END;

The CASE statement in Pascal/Z is usually implemented as a series
of successive value tests, and while more efficient and neater
than using IF statements, the,benefit is not as large as it could
be. Another method of implementing the CASE statement is with a
jump table (i.e. using a table lookup to select the appropriate
cas e); t his isM U C H fa s t e r but s em e tim e s r e qui res a 1 a r 9 e j urn p
table to work. For example, it would take 128 entries of 2 bytes
each (total of 256 bytes) just for the jump table to have a CASE

'statement that used a jump table for CASE CH OF •.••. where CH
is of type CHAR. However, for some CASEs the required jump table
is small or the speed gain is worth the table space and for this
reason there is a compiler option to allow the generation of a
jump table instead of individual value t~sts. The maximum table
size allowed is 76 entries including O. The user is responsible
for making sure that the table size is large enough to handle the
statement in question.

The' j~mp table option' is set using compiler 'opt'ion J (which MUST
be the last option in an option list) and is disabled as soon as
the first CASE statement has been encountered. Instead.of using
J+ and J-, the jump option takes one argument. The argument to
the J option is the ordinal value of the last desired jump table
entry. The above example., recoded to use a jump table would
appear as follows:

{$J5 maximum value is yiolet, and the ordinal
value of violet is five (ord(violet) = 5
so this will generate table entries for 0 •• 5

CASE COLOR OF
RED, YELLOW, BLUE: PRIMARY := TRUE;
ELSE: PRIMARY := FALSE
END;

If one of the CASE branches above had contained a CASE statement,
it would not have been generated with a jump table unless there
had been another J option used after the st~rt of the first CASE
statement.

When using the J option to create a CASE statement with a jump
table, there is NO range checking done on the case selector.

Pascal/Z User's Manual . Page 70

SEPARkTE COMPILATION"

Pascal/Z versions 3.2 and later support separate compilation of
user prog rams. Separa te compila tion·- is the ab iIi ty to d i v ide a
large program into two or more pieces so that each piece can be
compiled and assembled separately and then linked together. This
feature is especially useful when modifying a large program since
the time requi red to re-compile, assemble and 1 ink a 5, 000 1 in~
program can sometimes reach one hour, while with separate
compilation this can often be reduced to as little as ten
minutes.

Now that a motivation for separate compilation has been esta
blished, we can proceed to the actual details of how it is and is
not used.

1). Separate compilation in Pascal/Z assumes that there is a
main module which contains the main program and external
declarations (the same as those for an assembly language
routine) for all external (i.e. those in another module)
routines.

2) Each routine in a module which is not the main module
must be declared as if it were being declared for the
first time (i.e. it must have a fully defined formal
parameter section and this must agree with the
declaration" in the main module, although the compiler
will NOT check to make sure that this is the case) .

3) Each separate module has access to anything declared at
the global level in the main module, including externally
declared routines in other separate modules.

4) Because of assembler and linker limitations all routines
which are accessed from ano ther module must have
assembler legal names and have only eight significant
characters. Names of externally declared procedures must
not conflict with names already in use by MAIN.SRC and
the library.

5) At any time a separate module may be changed,
re-compiled, re-assembled and re-linked without any other
changes. However, if there are any changes to the rna in
module, then all other modules must be re-compiled,
re-assembled and re-linked also -- this encourages the
user to make the main module as small as possible to
reduce the probability of its requiring change.

6) To use separate compilation no changes to the main module
are required except those regarding declaration of
externals as described above; however, when compiling the
main module, the compiler must be invoked as follows:

PASCAL48 <filename).x:xxy

(where xxx are drive letters as described
PASCAL/Z and y is the drive on which to
files <filename).SYM and <filename>.TYP).

in HOW TO RUN
write two new
These files

Pas'cal/Z User f s Manual

conta in symbol and 'type info rmation
compilation of the separate modules.

used

Page 71

during

7) The syntax for separate modules differs from, that of the
main module as follows:

{Main program heading}
Program <main filename>(O);

External <main filename>::<module name>(X);

<zero or more procedure/function declarations
which need not have been declared in the main
module (but if they were not declared in the
main module they can NOT be accessed outside
this module> •

The "X" in the external module heading represents the
number of the module, and must be in the range 0 to 15.
The default is O. The numbering of modules is used when
the compiler options T (trace) and/or E (extended error
messages)' are enabled, or when using InterPEST. Both the
statement number and the module number (as specified by
the "X" in the module heading) in which said statement is
contained will be listed when the T and/or E options are
enabled.

Note -- separate module.s must end Itlith a period '

The compiler is invoked in a manner similar to that for
the main module except that the fourth drive letter
indicates the drive from which to read the two auxiliary
files.

8) Separate modules are assembled with EMAIN.SRC rather than
MAIN.SRC. This prevents the duplication of a few common
routines and insures that the correct ENTRY and EXT
statements are used. The main program module is still
assembled with MAIN.SRC.

9) The error message I premature EOF I may occur when using
separate compilation. This generally means that the CP/M
file names of the modules do not correspond to the
internal module names as specified in the module
headings. The problem is easily solved by checking to
make certain the names correspond. This error message
will also occur if the fourth drive letter is not
specified when compiling the program modules.

Pascal/Z User's Manual Page 72

This example of a main module and two separate modules- should
help clarify the use of separate compilation.

program test(O); {This is the start of the file TEST.PAS }
const max score = 100;

min score = 000;
type score = min score •• max score;

student = (dave,john,bilI,peter,susan,mary,ruth,linda);
test = (math, geography, history, english, science);

var blue book: array[student] of array(test] of score;
i , j , k: in teg er ;
51, s2: st,udent;
tl, t2: test;

function average(name: student): score; external;
function classavg: score; external;
procedure hilo(name: student; var high, low: score); external;

begin
for sl := dave to linda do
for tl := math to science do begin

write(51:1, '1'5 I, tl:l, ' score is t);
readln(blue book[51, t1]);

end; -
for sl := dave to linda do begin
write(51:1, I' 's average score is: a v e r ag e (s 1): 3);
.i := 0;
j : = 0;
hilo(51, i, j);
writeln(t with a high of '

end;
writeln;
writeln('The class average

end.

i : 3, • and a low 0 f '

is: classavg:3)

{ This is the start of the file INDIV.PAS }

j : 3);

External test::indiv(l); { report on individual student}

function average(name: student): score;
va r i: i n t eg e r ;

j: in teg er i
t: test;

begin
i : = 0;
j : = 0;
for t := math to science do begin

i := i + 1;
j := j + blue_book(name, t]

end;
average := j div i

end;

fun c t ion min (i, j: in t eg e r): in t eg e r ;
beg in

min := i;.
if j < i then min := j

end;

Pascal/z User's Manual

function max (i,: j: integer.): integer i.
begin

max := i;
if j > i then max := j

end;

procedure hilo(name: student; var -high, low:
var t: test;
beg in

low := 100; { minimum score is <= 100
high := 0; { maximum score is >= 0
for t := math to science do beg in

low := min(low , blue book [name, t
high max(high, blue - book[:= name, t -end;

end;

{ This is the start of the file CLASS. PAS J
External test::class(2)i

function classavg: score;
var i,j: integer;

s: student;
t: test;

begin
i : = 0;
j : = 0;
for s := dave to linda do

for t := math to science do begin
i := i + 1;

j + blue_book [s, t] j : =
end;

classavg :=
end;

j div i

}
}

]
]

Page 73

score) ;

) ;
) ;

This example has been tested and is KNOWN to work with Pascal/Z
4. O. The main module is called 'TEST' and the two subordinate
mod u I e s are c a 11 ed I I ND I V ' and ' C LA sst res pee t i vel y • The
following command sequence will compile, assemble and link this
program:

pasca148 test.aaaa
asmbl main,test/rel
pasca148 indiv.aaaa
asmbl emain,indiv/rel
pascal48 class.aaaa
asmbl emain,class/rel
link /n:test test indiv class /g

The sample module 'INDIV' has two local functions, MIN and MAX,
which can NOT be accessed anywhere outside of the INDIV module.
Had it been desired, any of the routines in INDIV could have
called CLASSAVG and CLASSAVG could have called HILO and AVERAGE.

Pascal/Z User's Manual Pag'e 74

PASCAL/Z.EXTERNAL ROUTINES

EXTERNAL routines are used to communicate with the world outside
of Pascal/Z. To Pascal/Z, external' routines look' and behave
EXACTLY.LIKE INTERNAL routines; so using an EXTERNAL routine is
the same as using a regular Pascal procedure/function. EXTERNAL
routines are declared just like FORWARD declared procedures and
functions except that instead of using the reserved word FORWARD,
the reserved word EXTERNAL is used instead. EXTERNAL modules
should be assembled with EMAIN.SRC, while the main program should
be assembled as usual with MAIN.SRC.

The following conventions must pe followed in order for EXTERNAL
routines to work properly:

1) The X, Y and alternate BC, DE, HL registers must be
maintained.

2) Upon return from the EXTERNAL routine the accumu.lator must
contain a zero.

3) If the routine is a function then:
a) BOOLEANs return CARRY SET -> TRUE

CARRY CLEAR -) FALSE
b) Other non-REAL scalars return value in DE register pair
c) REALs return in the four bytes above thE~ function
parameters on the stack
d) Structured types return' in the n, bytes above the
parameter list on the stack (where n = size of return value) ,

4) Each EXTERNAL routine is responsible for removing all of its
parameters from the stack before returning.

All parameters to EXTERNAL routines are passed on the, stack.
They are pushed onto the stack in the order that they are
declared. The table in Appendix One shows exactly what the stack
looks like after they have been pushed. After all of the
parameters have been pushed onto the stack the EXTERNAL routine
is called (using the Z-80 CALL instruction).

In the case of external procedures, variable values to be
returned simply replace the variables passed; that is, the
external routine accesses the address of the variable provided on
the stack, uses this address to get the variable itself,
processes it, and places the new value back at the same address.
The external routine may alter value parameters passed directly
on the stack, but this will have no effect on any var iables in
the prog ram. ,

If we use the following contrived type declaration of COLOR, then
the EXTERNAL function declared below it will return the colo r
obtained by mixing two primary colors.

Pascal/Z'User's Manual

{' this type was specially_designed "SO that the
following is true:

1) :,ord (red)". + ord (., yellow-)
2) ord(red) + ord(blue).
3) ord(yellow) + ord(blue)

COLOR = (CLEAR, RED, BLACK, BLUE,
ORANGE, WHITE, GREEN);

= ord(orange
= 'ord(violet)

= ord{ green
VIOLET, YELLOW,

Page 75

FUNCTION MIX(PRIMARYI, PRIMARY2: COLOR): COLOR; EXTERNAL;

i the

MIX:

assembly
ENTRY
POP
POP
MOV
ADD
MOV
XRA
MOV
PCHL

language
MIX
H
D
A,D
E
E,A
A
D,A

routine will look like this
;entry point for the linker
;get the ~eturn address
;get the two colors
;get primaryl in A
;add in primary2
iset low half of return value
;clear accumulator
;set high half of return value
;return

Note that the ENTRY point of the routine must be declared for the
linker (only the first eight letters of the ENTRY point will be
significant) •

In the file, EMAIN.SRC, which is included on the distribution
disk, there are two macro dt=fini tions, ENTR and EXIT. These
macros may be assembled with your EXTERNAL routines and used to
simplify the writing of your routines. ENTR is used as follows:

ENTR D,LVL,VSIZ

where D is a dummy argument (that is, any value may be us'ed), LVL
is the declaration level of the routine (the global level is
level 1, for EXTERNAL routines the value 2 should be used) and
VS I i' is the numbe r 0 f bytes 0 f local var i abIes necessary fo r t.he
EXTERNAL routine. Assuming n (where n is a nice number) bytes of
parameters to the EXTERNAL routine then they may be addressed as

n+7 (IX)
n+6(IX)

8 (IX)

ifirst byte of parameters = 8+n-l(IX)
;second byte of parameters = 8+n-2(IX)
ilast byte of parameters = 8+n-n(IX)

Local storage (as requested by VSIZ) may be addressed as
O(IX) ;first byte of local storage

l-VSIZ (IX) i last byte of local storage,

And for non-REAL functions the return value must be stored in
2(IX) ;low byte of return value
3(IX) ihigh byte of return value

the return value is initialized to a by ENTR.

For real fUnctions the return value must be stored in
n+8 (IX) ;least significant byte

n+ll(IX) iffiost significant byte (exponent)

Pascal/Z User'sManua~ Page 76

For structured functions the return value- must be stored in
n+8(IX) ; least significant byte
n+size-1JIX) ; most significant byte

A pictorial representation of the stack after execution of the
ENTR macro is as follows:

1-------------------------1 1 * 1st parameter I
\-------------------------1
1-------------------------1
I last parameter I
1-------------------------1
\ return address I Proc/Fct activation
1 ••••••••••••••••••••••••• \ record-7 bytes total
I old IX pointer
I .' •••••••••••••••••••• • • • • I
I return value
I • I
I level number (one byte) I
\-------------------------l

IX ---) I I
I local variables I
I ,I
\-------------------------1

SP ---) I temporary storage \
I \'

EXIT is used as follows:

EXIT D,PARMSZ

where D is a dummy argument and PARMSZ is the number of bytes of
pa rameter s to the EXTERNAL routine. Thi s' routine will remove
local storage and parameters, restore the stack and IX registers
to their correct values, clear the accumulator, install the
correct return value and return to the routine which called the
EXTERNAL routine.

The EXTERNAL routine MIX can be recoded using ENTR and EXIT as
follows:

; the assembly

PRIMl:
PRIM2:
RESULT:
MIX:

ENTRY
EQU
EQU
EQU

ENTR
MOV
ADD
MOV

EXIT

language
MIX

9
8

routine will look like this
ifor linker

2
D,2,0
A,PRIMl(IX)
PRIM2(IX)
RESULT (IX) ,A

0,2

iPRIMARYl is 9 bytes above IX
iPRIMARY2 is 8 bytes above IX
ilow byte of result is 2(IX)
;level 2, no local storage
;get primaryl in A
;add in primary2
iset low half of return value
;the high byte is already zero
jtwo bytes of parameters

~ascal/Z User's Manual

These last examples will allow a user program to do
direct'I/O. '

PROCEDURE OUTPUT (PORT, VALUE: INTEGER); EXTERNAL;

,
; assembly language output routine
i
PORT:
VALUE:

OUTPUT:

EQU
EQU
ENTRY
ENTR
MOV
MOV
OUTP
EXIT

10
8

OUTPUT
D;2,0
C,PORT(IX)
B,VALUE(IX)
B
D,4

iLOW BYTE OF PORT NUMBER
;LOW BYTE OF OUTPUT VALUE
;FOR LINKER

iNa LOCAL STORAGE
iC <- OUTPUT PORT
iB <- OUTPUT VALUE
iOUTPUT THE VALUE TO THE PORT

iDONE, FOUR BYTES OF PARAMETERS

. TYPE BYTE = 0 •• 255;
PROCEDURE INPUT (PORT: BYTE; VAR VALUE: BYTE)i EXTERNAL;

assembly language input routine .
I

PORT: 11 iLOW BYTE OF PORT NUMBER

Page 77

HADDR:
EQU
EQU
EQU
EQU
ENTRY
ENTR
MOV
INP
MOV
MOV
MOV
CPI
JRNZ
MVI
DCX
MOV
EXIT

10 iHIGH BYTE OF INPUT VALUE ADDR
LADDR:
LENGTH:

INPUT:

NOPE:

9 ;LOW BYTE OF INPUT VALUE ADDR
S ;LENGTH OF CALL-BY-REF INTEGER

INPUT ;FOR LINKER
D,2,0 iNC LOCAL STORAGE
C,PORT(IX) ;C <- INPUT PORT
B iINPUT THE VALUE FROM THE PORT
H,HADDR{IX) iGET HIGH BYTE OF ADDRESS
L,LADDR(IX) ;GET LOW BYTE OF ADDRESS
A,LENGTH(IX) ;GET SIZE
2 iCHECK FOR 2 BYTE INTEGER
NOPE iNO, 1 BYTE INTEGER
M,O iYES, CLEAR HIGH BYTE
H ;POINT TO LOW BYTE
M,S ;STORE LOW (OR ONLY) BYTE
D,4 iDONE, FOUR BYTES OF PARAMETERS

If a Pascal routine is to be used as an EXTERNAL routine for
other Pascal programs and you do not wish to use separate
compilation, then you must assemble it wi th ·EMAIN. SRC in 0 rdl~r to
create a .REL file which can be linked to the main Pascal
program. Before assembling the EXTERNAL routine you must edit
the .SRC file containing the Z-80 macro code for that routine.

You can do this as follows (this example is taken from the
OVERLAY section later in the manual):

1) Add an ENTRY statement at the beginning of the
ide n t i f Y the n am e 0 f the r 0 uti n e (s) wit h i nth e
linker.

E • G • ENTRY MIN, MAX

. SRC f i 1 e to
file for the

Pascal/Z-User's Manual Page 78

where MIN and MAX are the names of procedures/functions within
the module. (No spaces after the comma or the assembler will
become v~~y upset.)

2) Delete all EXTR' and EXTD macro instructions from the • SRC
file.

3) You must also identify each procedure/function for the linker
by placing the name of the procedure/function, followed by a
colon, immediately prior to the label indicating the beginning of
that procedure/function. (A label which marks the beginning of a
procedure or function will always be followed by an ENTR macro
ins tr uct ion. In the • SRe f i leo, the code fo r the
procedures/functions will be found in the same order in which the
routines occur in the Pascal module.)

EXAMPLE:

MIN:
L140

L148

MAX:
Ll61

L169

L99

ENTR D,2,O
STMT 0,1
MOV L,lO(IX)

EXIT 0,4
ENTRY Ll40

ENTR D,2,0
STMT 0,4
MOV L,lO(IX)

EXIT 0,4
ENTRY L161

ENTR 0,1,0
STMT 0,7
FINI

4) All code which may have been generated as part of the
program should be removed since you are only concerned
extracting one or more procedures or f-unctions. To do
delete all code from the L99 label to the end of the file.

5) Assemble and link as follows:

A>ASM~L EMAIN,MINMAX/REL
A>LINK /N:(com file name> <main program> MINMAX /G

main
with

this,

Pascal/Z User's Manual Page 79

OVERLAYING

Pascal/Z implements overlaying of modules containing procedures
and functions, in C?rder; to allow programs to be executed which
might not· normally fit in available memory. An overlaying
program is comprised of a resident program which remains in
memory throughout the execution of the program, and one or more
overlay modules, containing procedures and/or functions, which
are swapped into an allocated section of memory pri~r to a call
of a routine contained within an overlay module.

Overlaying is implemented in Pascal/Z as follows:

1) The program is broken into a main module and separate modules
in the same manner as a separately compiled program (see section
on "SEPARATE COMPILATION). Modules which are to be overlay
modules must contain routines which are accessed ONLY from the
resident program or from other routines within the overlay
module. Overlaying between overlay modules is NOT allowed.
Other separate modules are allowed and become a part of the
resident program.

2) To call a procedure or function in an overlay module, the
Pascal/Z OVERLAY routine must first be called using the command:

OVERLAY« name of file containing overlay I?od~l"e »;

followed by one or more calls to procedures or functions in the
overlay module.

The < name of file containing overlay module> may be either a
quoted string or an ARRAY (1 •• N] of" CHAR. Note that OVERLAY is
a predeclared identifier in Pascal/Z.

3) The main module and all separate modules, both overlay and
non~overlay, are compiled and assembled in the same manner as a
separately compiled program.

4) Before linking, the resulting .REL files must be processed by
QVLYGEN.COM, a program included on the Pascal/Z d;stribution
disk. OVLYGEN.COM generates memory maps of the main module
(MAINMAP.REL) and the library (LIBMAP.REL), a memory map of the
entry points of all routines in overlay modules (OVLYMAP.REL) I

allocates an area in memory where overlaying will take place, and
generates an output file which contains the commands necessary to
link the program and its overlay modules.

5) When the link commrnands generated in step 3 are executed, the
results are i) a .COM file which is the main program and all
linked library modules, and ii) one or more files with no
extension -- each containing an object code overlay module. When
the program is run, these overlay files are loaded at the correct
location in memory by the OVERLAY routine in the Pascal/Z run
time 1 ibra'ry.

Pascal/Z User's.Manual Page 80

6) In order to minimi ze the si ze of the resident module, it is
advisable to modify LIB.REL, the Pascal/Z run tim~ support
library provided on the distribution disk, prior to processing it
using OVLYGEN.COM. This· can be easily done using the Query
option of the linker.

To determine which library modules should be
library for a specific overlayingl program,
procedure may be followed:

included in the
the following

After all modules have been compiled and assembled, the main
module should be linked with the standard LIB.REL, ~sing the
/5 (search) option and the IV (verbose) .option of the
linker. A list of all modules linked will be generated.

Then follow the same procedure wi th each separate module,
overlay module, and external module.

A.composite list of all library modules linked during these
'pre-links' will determine those librar1 modules which must
be included in the program's library.

Use the /Q (query) option to generate the new 1 ibrary by
loading the standard library as the input file and excluding
those modules not included in the composite list generated
above. It is important that the relative position of
modules within the library be maintained, and this is most
easily achieved using the query option.of the linker.

If the standard library is not modified prior to processing by
QVLYGEN.COM, the .COM file generated after linking will contain
all the library modules, whether or not they are needed, and will
probably be much larger than necessary, perhaps defeating the
purpose of overlaying.

The following example should help clarify overlaying and the use
of OV~YGEN.COM. The program TEST 1S almost identical to the
e-xample in the section describing SEPARATE COMPILATION. But in
this case, the program contains a main module, a separate module,
a module containing two Pascal external functions, and two
overlay modules.

{ Main module contained in file TEST. PAS }

prog ram test (0) ;
canst max score =100;

min-score =000;
type

var

score = min score •• max score;
student ~ (dave,john~bill,peter,susan);
test = (rnath,geography,history,english,science);
blue book: array[student] of array[test) of score;
i , j , k : in teg e r i
sl,s2:student;
tl,t2:test;

Pascal/Z 'User's Manual Page 81

,-

function average(name:student):, score; external;-
function classav~: score; external;
function rnin(i, j: integer): integer; external;
function max(i, j: integer): integer; external;
procedure hilo(name: student; var high,low:score); external;

begin
for sl := dave to susan do

for tl := math to science do begin
write(51:1, "'s " tl:l, I score is -- ,);
readln(blue book(sl,tl]);
end; -

overlay ('indiv') i { first overlay}
for 51 := dave to susan do begin

write(51:1, "t S average score is : "
average(sl):3);

i := 0;
j : = 0;
hilo(sl, i, j);
writeln(• with a high of '-, i:3,

I and a low 0 f '
end;

writeln;

j : 3);

overlay(r class'); { se-::ond overlay}
writeln('The class average is : " classavg:3)

end.

{ separate module contained in file AVE.PAS }

external test::ave;

function average(name: student): score;
va r i, j: in t eg e r ;

t: test;
beg in

-,i := 0;
j : = 0;
for t := math to science do begin

i := i + 1;
j := j + blue book[name, t]
end;

average := j div i
end;

{ external functions contained in file MINMAX.PAS }
{ see section on Pascal/Z External Routines }

prog ram minmax;

fun c t ion min (i, j: i n t eg e r)
beg in

min := i;
if j < i then min := j

end;

i nteg er;

Pascal/Z User's Manual

function max(i,j: integer): integer;
begin

max : = i;-
if j > i then-max := j

end;

beg in
end.

{ overlay module contained in file INDIV.PAS }

external test::indiv;

procedure hilo(name: student; var high, low: score);
var t: test;
beg in

end;

low := 100;
high := 0;
for t := math to science do begin

low := mine low, blue book[name, t]);
high := max(high, blue book(name, t]);
end; -

{ overlay module contained in file CLASS~PAS }

external test::class;

function classavg: score;
var i,j:integer;

s: student;
t: test;

begin
i : = 0 i
j := 0;
for s := dave to susan do

for t := math to science do begin
i := i + 1;
j := j + blue_book[s,t
end;

classavg := j div i
end;

Page 82

The following command sequence will compile and assemble the
modules of this program:

pasca148 test.aaaa
asmbl .rna in, test/reI
pasca148 ave.aaaa
asrnbl ernain,ave/rel
pasca148- indiv.aaaa
asrnbl emain;indiv/rel

Pascal/Z User's Manual.

pasca148 class.aaaa
asmbl emain,class/rel
pasca148 minmax.aaa

{ see section on Pascal/Z external routines'}
{ for modifications to MINMAX.SRC prior to }
{ assembly }

asmbl emain,minmax/rel

To generate a new library do:

link test Iv lib/s Ir Ie
link ave Iv lib/s Ir Ie
link minmax Iv lib/s Ir Ie
libk indiv Iv lib/s /r Ie
link class Iv lib/s Ir Ie

Page tij

After each link note the modules that have been linked and then
generate a new lib.rary using the command:

link /l:newlib lib/q /e

OVLYGEN.COM is then executed, prompting the user for:

1) the name of the .REL file containing the Pascal/Z CHAIN
routine if chaining - is being done between this program and
another program.

2) the name of the .REL file containing the main module.

3) the name of all .REL files containing separate modules.

4) the name of all .REL files containing external routines.

5) the name of all user~created libraries.

6) the name of all .REL files containing overlay modules.

7) the name of the Pascal/Z run time support library to be used.

(If using the debugger InterPEST with an overlaying program, the
debugger should be specified as a user-created library.)

At the completion of execution, OVLYGEN.COM will generate a file
TEST.SUB which will contain the following commands.

link /n:test test ave minmax ovlymap newlib /u /e
link /o:0~75 /n:indiv indiv mainprog libmap /u Ie
link /0:0675 In:class class majnprog libmap lu /e

Not e: A 'I u ' i s 9 en era ted" in e a chI ink e r comma n d lin e • T his i s
included to flag any library modules which might have been
inadvertently left out of the modified library. If any library
entry points are listed as unresolved external symbols, the
modified library should be regenerated, even if the -'je' option
(which loads the library usually LIB.REL) resolves the
indicated unresolved externals. Not doing so will result in
unpredictable, and often disastrous results.

Pascal/Z User's Manual ,Page 84

After execution of these· commands, TEST.COM may be run.

Pascal/Z User's Manual Page 85

INCLUDE FILES

Pascal/Z provides an INCLUDE facility, with which any file may be
included at any-point in a Pascal/Z program.

The file or files to be INCLUDEd must be on the default drive or
the drive must be specified, followed by a colon and the
filename. (The compiler will not check to make certain the file
is present, and will generate no error message if it is not.)

To use INCLUDE files, type the following at the point at which
the file is to be inserted:

{$I<filename> }

The "I" specifies that the file following it should be INCLUDEd.
Please note that $I+ or $I- in a comment with no filename

"specified indicates that the IMBED compiler option should tie
enabled/disabled be careful that there are no spaces or
characters between the "I" and the filename. Also, there must be
a space between the filename and the closing bracket (}).

Care must be taken to ensure that there are no conflicting
declarations in the various files -- it is very easy to INCLUDE a
file which uses variables already declared in another of the
files.

To" INCLUDE more than one file in the same pl"ace, each fil"ename
must be specified in a separate comment.

INCLUDE files may be nested, limited only by available stack
space.

Pascal/Z User's Manual Page 86

CHAINING

While we advise against" overlays'and.chaining, we realfze that in
some instances ther~ is no choice. Overlays wer~ discussed in an
earlier section. In Pascal/Z there is also a'way for one program
to chain to another with. the same global declarations (programs
must chain at the main program level). In the Pascal program the
following is used to do the chain:

FTXTIN(<name of file to call>); CHAIN;

The <name of file to call> may be either a quoted string or an
ARRAY [I .• N] of char. Then each of the programs involved in the
chaining must be re-linked with the chain module (shipped in
source on the library diskette) as follows:

LINK CHAIN <Pascal REL filename>/N:<COM filename>/E

For CHAIN to work correctly it is imperative that,it be the first
f i 1 eli n k ed •

It is also possible for one
different global data areas
indicated in CMAIN.SRC.

prog ram to cha in to anothe r wi th
by changing the ENTR macro as

If chained programs are to use the heap then the LAST routine in
the 1 ibrary. shou:.d be changed, to set LAST to, the si ze of the
largest program being chained.

Pascal/Z User's Manuai Page 87

PASCAL/Z POINTERS

Pointers, combined with ~heir associated intrinsic routines, NEW,
MARK, and RELEASE, .are the means by which a user can dynamically
allocate and deallocate variable storage. While the PASCAL
REPORT describes NEW and DISPOSE, we have implemented NEW, MARK
and RELEASE. These procedures are used as follows:

NEW(P) P.may be any pointer variable. NEW allocates storage
for P'" from the heap and assigns P the address of
this NEWly allocated storage.

MARK (P) P must be a pointer variable. MARK sets P equal to
the present top of heap (the information stored in P
is used by a subsequent RELEASE).

RELEASE (P) P is a pointer variable which has been previously
"MARKed". RELEASE (P) releases all of the heap which
has been allocated since P was "MARKed".

Note:

The RELEASE of a pointer to a file -variable will
close the output file pointed to.

A variable which has been "MARKed w should not be used
for anything other than a RELEASE if you wan t to
maintain the "MARK".

The prog ram on the next page wi 11 input a 1 ist 0 f names, sto re
them in a linked list, output the list, release the storage and
end.

Pascal/Z User's Manual

PROGRAM POINTERS;
TYPE LINK = ANAMEREC;

NAMEREC = RECORD
NAME: STRING 20;
NEXT: LINK
END;

VAR Ml: LINK;
FIRST: LINK;
LAST: LINK;
X~ LINK;

{ FOR STORING THE MARK }
{ FOR FINDING THE FIRST NAME
{ FOR FINDING THE LAST NAME}
{ FOR CHASING THROUGH THE LIST

BEGIN

END.

MARK (Ml);
FIRST := NIL;
REPEAT

IF FIRST = NIL- THEN BEGIN

END

NEW(LAST); {ALLOCATE A NEW RECORD}
FIRST := LAST

ELSE BEGIN

END;

NEW(LASTA.NEXT);
LAST := LASTA.NEXT

WRITE ('Name (* = DONE) ,);
READLN(LASTA.NAME); {GET PERSONS NAME}
LASTA.NEXT := NIL

UNTIL LASTA.N~~E = '*';
{ PRINT OUT THE NAMES }
X :.= FIRST; -
WHILE XA.NEXT <> NIL DO BEGIN

WRITELN(XA.NAME);
X := X NEXT

END;
{ RESTORE THE STORAGE }
RELEASE (Ml);

Pag e 88

Pasca 1/ Z Use r f· S Manual Page 8 9

PASCAL/Z FLOATING POINT NUMBERS

In Pascal/Z all floating point numbers are 4 bytes and are
organized as follows:

byte 1 byte 2 byte 3 byte 4
1--! I r It' , , , I I ' " r r I , " """" t 1
1--1

0 ••• 7 8 9 •.• 15 16 ••. 23 24 ••. 31

2's complement
exponent

sign mantissa (9 .• 31)

There is an implied binary point to the left of bit 9. The value
of the mantissa is multiplied by 2'"'(exponent) to achieve the
flnal value • .. ~

Float ing po int' prec ision is approx imatel y' 6 1/2 dec imal dig its
(the r e will be a r 0 u nd o·f fer r 0 r in th e s even t h dig it). I f t his
is inadequate for your purposes, the' fixed point routines
described in Appendix Three might provide sufficient precision
(or try Pascal/BZ, the business version of Pascal/Z) .

Other floating point formats are possible (i.e. AMD9511 could be
used to process floating point); contact InterSystems for details
if you need to use another format.

Pascal/Z User's Manual Pag egO

FORMATTING OUTPUT·

When outputting the data types INTEGER, REAL and BOOLEAN, it is
often desirable to format the output into columns. This is done
by s p e c i f y i ng a fie 1 d wid th s u c h t hat all d a t a i s pro per 1 y
al igned •

In Pascal/Z, the standard field width for outputting the data
types INTEGER, REAL and BOOLEAN is eight. This can be overridden
by specifying the minimum field width preceded by a colon, as
follows:

X := LAURIE
\I/RITE{ X : 10);

X will be written in ten places and aligned to the right:

bbbbLAURIE

where b indicates a blank place.

If the item to be output requires more than the allotted number
of columns, it will use as many as is necessary.

When outputting a REAL, the us~r may specify not only the field
width, but also the number of digits to be printed after the
decimal point. This is done by adding another colon followed by
an integer specifying the nwnber of digits to be placed aft~r the
decimal point. .

Jensen & Wirth dictate that floating point output should always
be preceded by two spaces--cne blank and one for the sign (which
is only actually printed if it i~ negative; otherwise it is left
blank) •

Example:

X := 12.352
WR I TE (X : 7 : 2);

This will output X as follows:

bb12.35

The number will be rounded to display the prescribed number of
places after the decimal point. If the number of places
specified to be output is larger than the nUInber of existing
digits, it will be padded with zeroes.

With the same number as a negative (i.e. -12.352), the following
statements will return the following results:

WRITE(X 7 2 -----> b-12.35

WRITE (X 5 2 -----> b-12.35

Note that al·though in the second example a field width of five is
specified, since the two preceding spac~s are needed, the field

Pascal/Z User's Manual PagE 91

width is automatically expanded to accept the number. Whenever
the field width specified is not large enough to output the
number as specified, as many places as necessary will be taken.

Also note that the number is printed in fixed point notation,
rather than exponential/scientific notation. Had X originally
been specified in scientific notation, the result would be as
follows:

X := 1.34E+3
WRITE (X : 6 4) ;

Result: bb1340.0000

If the number is too large to be represented in fixed point
notation (e.g. 1.34E+25), the number will be output in
scientific notation, but will still place the proper number of
digits after the decimal point.

~esul t:

X := 1.34E+25;
WRITE(X : 6 4);

b1.3400E+25

No~e as well that the decimal point occupies one place, and must
be accounted for when specifying field width.

Pascal/Z User's Manual Page 92

ASSEMBLER AND LINKER ERRORS

There are a few assembler errors which can occur during the
assembly of a Pas9al/~ program. These result from the few
program errors which are not caught by the compiler. The first
error is an attempted invocation of a FORWARD declared
procedure/functi'on which is never actually defined; in this case
the error will be:

Symbol not found
CALL L?????

The second error is a GOTO to a label which was declarec but not
defined; Ll this case the error will be:

Symbol not found
JMP L?????

The next error is a READ/WRITE to/from a textfile of a parameter
which is larger than 255 bytes; in this case the error will be:

Arg umen t too big
MVI <register>,<value>

Pascal/Z User's Manual Page 93

. MEMORY USAGE

This section is included to allow users of Pascal/Z. to make
efficient use of memory by describing the amount of storaae
necessary for certain types of variables and statements. Since
in Pascal/Z the reserved word PACKED is implicit in all ARRAY
declarations its u~e is unnecessary (but still allowed).

BOO LEANs
stored 1 byte/variable

CHARs
stored 1 byte/variable

INTEGERs
stored 2 bytes/variable

REALs
stored 4 bytes/variable

Enumeration types
stored 1 byte/variable

Subranges
stored in one byte unless the base type is INTEGER and the
range doesn't fit in one byte (the lower bound is less than
zero or the upper bound is greater than 255).

Pointers
stored 2 byte/pointer

File variables
stored 300 bytes/variable

ARRAYs & RECORDs
require the amount of memory
requirements of the individual
require storage sufficient to
case.

Quoted strings

equa I to
element.s.
sto re the

the sum
Varian~

largest

of the
RECORDs
variant

each quoted string takes up three bytes plus one additional
byte for each character in the string.

Declared constants
numerical constants require no memory; string constants use
one byte/character plus one byte of overhead.

Procedure activation (each call of a procedure)
each activation record requires seven bytes of storage plus
the memory for the parameters and local variables. This
storage is allocated dynamically from the run-time stack and
is released when the procedure is exitted.

Function activation
same' as procedure activation, except for REAL functions
which require eleven bytes of memory_

Pascai/z User's Manual Pag e 94

Value parameters
each parameter requires storage as defined above.

Reference parameters (VAR parameters)
all reference parameters require two bytes of storage except
for those of base type INTEGER which require three by.tes.

SETs
All sets are stored in 32 bytes.

FOR statements
require four bytes of storage for each active FOR loop.

WITH statements
require two bytes of memory for each active dynamic WITH
statement.

All of the memory usage described in this section (with the
exception of quoted strings and string constants) is allocated
dynamically from the run-time stack and is only used when a
particular routine or statement is active.

Pascal/Z User's Manual page 95

STACK AND HEAP ORGANIZATION

This section is intended mainly for those users interested in
using Pascal/Z programs in a multi-tasking environment.

ALL code generated by the Pascal/Z is completely ROM-able and is
also re-entrant as long as separate stacks and heaps are
maintained as described in this section.

All Pascal/Z programs start by initializing their stacks. The
code to do this is in MAIN.SRC. ALL non-dynamic variables are
stored on the run-time sta,ck. By changing the stack
initializa'tion code, many different processes can run with the
same memory image of the Pascal/Z program as long as each one has
a different, and non-overlapping, stack.

At any given time during program execution the IY register points
to the global variable stack frame and the IX register points tp
the local stack frame.

Although all variC1bles are stored on and accessed through the
stack, the stack can not be reloca~ed once program execution has
begun. This is because there are often references from one part
of the stack to another part of the stack which, in the interest
of efficiency, are stored a~3 absolute addresses and not stack
rela~ive addresses~

The heap, like the stack, is allocated at run-time, not compLle
time. This means 'that the heap too may be initialized at a
differen~ point in memory for each ?rocess. The initial value of
the he a pis d e t e r-m i ned by t h € LA S T iii 0 d u 1 e ; t his co u 1 d e a s i 1 Y be
changed whenever desired.. It is initially set to the first
location following the user program.

The run-time package is set up to allocate the stack from the top
of memory downwards and ,the heap from the bottom of memory
upwards and to give an appropriate error if they collide. If you
are' allocating many stack-heap pairs for different processes then
it is most reasonable to allocate them in contiguous memory to
ensure that the stack and heap overflow checking is not
defeated.

Pascal!Z User's Manual' Page 9~

INSTALLING PASCAL!Z PROGRAMS IN ROM

When installing a ~ascal!Z program into a ROM it is NOT necessary
to make any changes to the program. However, it is possible to
further reduce the 'size of the object code before burning a ROM.
This is especially true for programs which are to run in a
dedicated environment.

When your program is assembled and linked, a certain amount of
e r ro r recovery and term ina tion code is i ncl uded. Thi s i ncl udes
code to close any open output files, to print error messages and
to check for AC. If your program does not use any files for
output, then much of this code can be eliminated by replacing the

JMP LO

instruction in the FINI macro (which is found in MAIN.SRe) with a

JMP <location at which execution should resume
after completion of the prbgram)

by replacing the

JZ ERROR

instruction in the CTRL macro (in MAIN. SRC) wi th the same JMP
instruction as ab~ve, and by removing the

CNZ CLSOT

in the ENTEXT.SRC module.

Similarly, if you do I/O but do not do any floating po int
operations, the floating point code can be eliminated by
modifying the INPT.SRC module with the removal of the

CZ FLTIN

call.

Pascal/Z User's Manual Page 97

APPENDIX ONE

PARAMETER STACK CONFIGURATIONS

This appendix describes the form of parameters that are pushed
onto the stack for use in external routines.

In this appendix all diagrams have the high memory locations
towards the top of the page and the lower locations towards the
bottom of the page. In addition each box represents one byte
unless otherwise specified.

All reference parameters (except those of base type INTEGER) take
the form of a two byte address and are passed like this:

1--------------------------1
1 high byte of address I

I--------------------------!
I low byte of address I
i--------------------------I

Call by reference INTEGERs take form:

I-----------------~--------I
I high byte of ad~ress [
1--------------------------1
I low byte of address
1--------------------------1 r INTEGE~ size 1; 2 bytes' I
1--------------------------1

All reference parameter addresses (excep~ those of type FILE) are
the address of t.t:e higz:est t,yte (~,ighest memory location) of the
variable. FILE parameter addresses are the lowest byte o'f the
variable since operating systems are usually concerned with the
lower end of the ~~f£er.

Val~e parameters are copied directly onto the stack and take the
form cescribed belaw:

300LEANs, CEI-.Rs, enL.:.;.';1er-a<:.io:l ::ypes r one byte INTEGERs:

1--------------------------------1
, ordinal value of t~e ?arailleter I
1--------------------------------1

Two byte INTEGERs:

I-----------j
I high byte !
1-----------1
I low byte i
! --.----....;----!.

Pascal/Z User's Manual

ARRAYs:

�-------~---I
1 A [1] 1
1-----------1
1 A [2] I

1 A [N] 1

1-----------1

Multi-dimensional ARRAYs:

1-----------1
I A[1, I] 1

1-----------/
1 A[1, 2] 1
1-----------1
I A[1, 3] I
1-----------1
1 A[2, I] I

1 A[N, 3] 1
1-----------1

RECORDs:

1-------------1
I A 1
1-------------1
I B I
1-------------1
1 c I
1..:..------------1
1 D [1] I
1-------------1
1 D [2] I

1-------------1
1 D [3] 1
·1------------- I

I LETTER 1

1-------------/
I X I
1-------------1

Page 98

ARRAY [l .. N] OF COLOR

ARRAY [I •. N) OF

A RRA Y (l •• 3] 0 F

BOOLEAN;

RECORD
A, B, C: o •• 255;

D: ARRAY (1.e3 J OF
BOOLEAN;

LETTER: CHAR;

X: BOOLEAN
END i

Pascal/Z User's Manual Pag e 99

Pointer variables: ...

1--------------------------1
1 high byte of address 1
I--------------------------! 1 low byte of addres$ I
1--------------------------1

STRINGs:

1-----------\ STRING N
I LENGTH I
1-----------1
! S [1] i
1-----------1
I S [2] I

I S [N] !
1-----------[

The entire strins is passed even if the length is zero.

REp.Ls (floating point- numbers) :

1--------------------------- I
\ exponent I
1--------------------------1
I sign, 7 bits of mantissa I
I--------------------~-----I
! middle byte of mantissa I
1--------------------------1
I low byte of mantissa 1

1------:-------------------1 , I

SETs:
i---------------------------i
I bits 0 •. 7 I BYTE 1
1---------------------------1
I I

I I
i---------------------------I
! bits 248 •. 255 I BYTE 32
1---------------------------1

Pascal/Z User's Manual Page 100

APPENDIX TWO

TROUBLESHOOTING

Most problems. enco.untered when using the Pascal/Z compiler are
manifestations of hardware problems.

It is common fa r memo ry boards, in non-IEEE S 10 0 standard bus
mach~nes, to run memory tests for many hours and then not be able
to run the Pascal compiler. This is usually due to the inability
of the memory to be able to handle M1 states in all of the first
40K.

Often Pascal/Z will be the first program you ever run that uses
all of high memory. Therefore it is in your best interest. to
save time and frustration by making sure your memory is good
(this can sometimes be done by re-arranging memory boards) ·

Another problem is not enough memory_ The compiler will output a
message to this effect if this is the case (but will not be able
to in the cases where the shortage is too severe).

I f yo u are u.n a. b 1 e tor e ad the dis k ,
standard CP/t'1 diskette, then check
d r i·ves.

which is a single density
the calibration of your

If you receive the message 'Unable to Chain· then the problem is
that PAS248 (or PAS254) is not on the currently logged-in drive.

If you receive the message 'Unable to overlay' then the problem
is that one or more of the overlay modules called is not on the
currl~ntly logged-in drive. This will occur if the modules DECS
and PFSTAT are not on the drive with PASCAL48.COM and PAS248.

If you have performed the above steps and still can not
successfully compile even the demo programs then contact the
deal\~r from whom the Pascal/Z package was purchased or the
f aC,to r y for assistance.

?ascal/Z User's Manual Page 101

APPENDIX THREE

FIXED POINT PACKAGE

The Fixed Point Package is a collection of procedures which
perform arbitrary precision arithmetic in signed fixed-point
decimal. The Pascal/Z fixed point routines are implemented in
binary-coded decimal (~CD) I and are packed two digits per byte.
In addition to the four basic functions add (ADD), subtract
(SUB), multiply ($MULT), and divide (SDIVD), function~ are
supplied that convert between real and fixed point and between
string and fixed point.

The source code for these £~nctions is supplied so that the user
may include it in his or her program. The bulk of the code is in
the file 'FIXED.PAS'. This has all of the procedures and none of
the declarations. There are fcur const2n~s, seven types, and two
variables that must be dec~ared. These are in the files
'FIXCONST~PAS;, 'FIXTYPE.PAS', and fFIXVAR.PAS t respectively.
All three of these files ~re very short. In the event that any
of the global identifiers used by the fixed-point package are the
same as ones used by a user program, either the fixed-point code
will have to be char.ged or the USEr code will have to be
changed. We suggest that the user be aware of these identifiers
when writing code that uses the fixe~-?oi~t package.

Often the USEr w'il.l r:o'C. need all 0: the functions supplied. In
the inte~est of faster compilations, shorter listings, and
smaller source and object files,.. the L:nused functions may be
deleted as long as they are not called b~ functions that remain.
The dependencies 'are as ::ollows: subtract: calls add, greater
calls subtract, divide calls subtract, add calls subbyte and
addbyte, just about everything calls shiftleft and shiftright.

The Type 'FIXED'

The user declares a fixed-point n~~ber as follows:

r1YVAR: FI XED;

A fixed point nUi.uber can be an element:. of an array, record or
~ . ,
~l..L.e. For example:

DIV TOTALS: AR?AY[lo.DIV MAX OF FIXED;

DIV INFO: RECORD
NAME: STRING 40;
DIV LOCATION: l .. DIV MAXi
DIV-SALES: FIXED

END;

MYFILE: FILE OF FIXED;

The type fixed takes up en0ugh
digits r~quested by the constants
form plus one (for: the sign).

spa c eta s tor e the n urn be r 0 f
'LEFT! and 'RIGHT' in a packed

Pascal/Z User's Manual Page 102

The Constants 'LEFT' and 'RIGHT'

These constants are found in the file FIXCONST.PAS and are set by
the user for the amount of precision needed. 'LEFT' specifies
the n~~ber of decimal digits that fixed-point numbers are to have
tot h e 1 eft 0 £ the dec i mal po i n t . L ike wi s e, I RIG H T ' s p e c i fie s
the number of digits to the right of the decimal point. Both
number s must be non-nega tive and the irs urn must be po si t ive. A
program may have only one size of fixed-point number. Also, a
file written with one size of fixed-point cannot be read as
another size. So, if you have a collection of programs that
share common files with fixed-point numbers in them, they all
must be the same size.

The Arithmetic Functions

Add, subtract, multiply, and divide all take two fixed parameters
by' value and return a fixed. Subtract takes the minuend as the
first parameter and the subt:,:ahend as the second parameter (the
sec 0 nd iss ub t rae t ad from th e fir s t) • D i v ide t..a k est h e fir s t
parameter as the dividend and the second as the divisor (the
first is divided by the second). All four functions will set the
global boolean 'PIXEuSRROR' true if there is an arithmetic
overflow. Divide by zero wilJ. cause the flag to be set true and
a value of zero will be returned.

All nth'nbers to be ope::-ated upon must be read in as strings or as
real :-lumbers. Before the numbers can be uSed, they must be
converted to fixed po int numbers, using ei ther . the STRTOFIX
(string to fixed) or REALTOFI~~ (real to fixed) routines described
below. They can. then be opera ted upon LlS fng the fixed po in t
operators ADD, SUB, $MULT and $DIVD, or the relational operator
GREATER, as shown in the exarr.ple program. ONLY the fixed point
operators may be used on fixed point numbers.

Once all arithmetical c?erations have been completed, the fixed
point numbers must be conv·erted to the format in which they were
read in before they can be written out, using either the FIXTOSTR
(fixed to string) or FIXTOREJl..I. (fixed to real) routines.

Real and Fixed Conversions

The func'C.ions I REALTOFIX f and 'FIXTOREAL I convert. real numbers to
fixed-point and vice-versa respectively. Both have their single
paramet.ers passed by value. f FIXEDERROR ' . will be set if the
number being converted is too big for the result type.

String and Fixed Conversions

The functions 'STRTOFIX ' and 'FIXTOSTR' convert strings to
fixed-po in t and vic e-ver sa r especti vely. 80 th have the i r
parameters passed by value.

STRTOFIX scans the string from left to right ignoring all
characters other than the decimal digits, the minus sign, and the
period (decimal point). Thus the string may have a dollar sign

Pascal/Z User's Manual Page 103

and commas and it will still be converted properly (i.e. the
strings '$12,314.43' and '12314.43' would be converted to the
same fixed-point number) •

FIXTOSTR takes three parameters. The first is the fixed number
to be converted. The second is the format mode. The format mode
is an enumerated type that specifies the operations to be
performed on the number as it is being converted. The different
formats follow:

none: No formatting is done, no zeros are suppressed.

suplzer: Leading zeros are suppressed.

supltzer: Both leading and trailing zeros are suppressed.

wdollar: Leading zeros are suppressed and a dollar sign is
placed before the most signif{~ant digit.

wcomma:

wboth:

Leading
between
po in t.

zeros
every

are suppressed
third digit to

and
the

comma s a re in serted
left of the decimal

Leading zeros are suppressed, commas are. inserted every
between every third digit to the left of the decimal
po int, and. a dollar sign is placed befa re the most
significant digit.

The t h i r d par am e t e r s pe c i fie s the numb e r 0 f t r ail i 1"1 9 dig its to
display past the decimal point.

Relational Function

The function cGREATER' compares t·W'o fixed-point numbers. It
returns true if the first ?perand is greater than or equal to the
second operand.

USING THE FIXED POINT ROUTINES

The fixed point routines, including the constant, type and
variable declarations, must actually be inserted into the
Pascal/Z prog ram; they are not part 0 f the l·ibrary LIB. REL.

This may be done using INCLUDE files (see page 79) as follows.

The user must first examine the file FIXCONST.PAS, whith contains
the constant declarations for the fixed point routines. He
specifies the precision of the fixed point· number in FIXCONST.PAS
by setting the value of the constants LEFT and RIGHT to the
precision desired. Once the precision is established, it CANNOT
be changed within the same program to save storage space.

He must insert the declarations for the fixed point routines with
the other declarations at the beginning of his program. The
fixed point declarations must be included in the appropriate
declaration

Pascal/Z User's Manual Page 104

section before any declarations of fixed point numbers are made
(otherwise the error "Identifier not declared n will be
encountered). He can do this using INCLUDE files by typing

{SIFIXCONST.PAS ~ at the end of the constant declarations,

{$IFIXTYPE.PAS } at the end ?f the type declarations, and

{$IFIXVAR.PAS } at the end of the variable declarations.

Note, however, that the reserved words CONST., TYPE and VAR are
contained in the fixed point declarations, and- that these must be
removed if any constant, type or variable __ declarations have
already been made in the program. Failure to do this can cause
disastrous results during compilation.

Then he may INCLUDE the fixed point routines in his program at
any point before they are accessed (we suggest at the beginning
of the procedure and function declarations) by typing:

{SIFIXED .. PAS }

The entire Pascal/Z program is then compiled, assembled and
linked as usual.

EXAMPLE

Program checkbook;

{ This is a simple checkbook balancing program designed }
{ to demonstrate the use of the fixed point package }

const max t = 100;

{ The following comment INCLUDES the fixed point constant}
{declarations. The FIXCONST.PAS file has already been }

eqitted to remove the reserved word CONSTe }

{Sifixconst.pas
type

The following comment INCLUDES the fixed point type
declarations. The FIXTYPE.PAS file has already been
editted to remove the reserved word TYPE.

{Sifixtype.pas }

transaction = (inq, dep, chk, stmt, stop)i
daterec = record

month (jan, feb, mar, apr, may, jun, jul ,
aug, sep, oct, nov, cec);

day: 1 .• 31;
yea r : i n t eg e r i

end;
transrec = record

oldbal, newbal : fixed;
date : daterec;

Pascal/Z User's Manual

var

t type : transaction;
amount : fixed;

end;
sequence = l.,max_t;

{ The following comment INCLUDES the fixed point variable
{declarations. The FIXVAR.PAS file has already been
{ editted to remove the reserved word VAR.

{Sifixvar.pas

number: string 20; { number to be read }

Page 105

dummy,
income,

{ dummy variable for comparison
{ present deposit}

withdrawal,
balance : fixed;
option : transaction;
done : boolean;
today : daterec;

{ present withdrawal
{ current balance }
{ current operation
{ test for stop }
{ date }

{ array to ~tore individual transactions
history: array[1 •. max t] of transreci
t# : sequence; - { transaction number
i : sequence; { index variable }

forward declaration of procedure print
procedure print; forward;

{Sl-} {turn off listing to eliminate fixed point}

{ The following comment INCLUDES the fixed point routines.
{Sifixed.pas }

{Sl+} {turn the listing back on }

{ enter the date }
procedure getdate;
begin

w r i t e ('En t e r d ate (E • G. J UN 1 7 1 981) - - f);

with today do
read(month, day, year);

end;

{ add deposits}
procedure increment;
begin

\vr i te (, De po sit -- ,) i
read (number); "
{ convert the string to a fixed point # }
income := strtofix(number);
{ perform a fixed point addition}
balance" : = add (balance, income);
{ store the current information in the array }
with history(t*] do

Pascal/Z User's Manual

beg in
(perform a fixed point subtraction
oldbal := sub(balance, income)i
newbal := balance;
date := today;
amount := income;
t type := option;

end;

Page 106

{ convert the fixed point * to a string and write it out}
wr i teln (fixtost:r (balance t wboth t 2)) i
t * : = t# + 1;

end;

{ decrement withdrawals
procedure decrement;
beg in

write('Withdrawal amount -- ,);
read(number);
{ convert the st:ring to a fixed point # }
withdrawal := strtofix(number)i
with history(tt] do
begin

oldbal :=, balance;
newbal := sub(balance, withdrawal);
date := today;
t type := option;
amount : = wi tt.drawal;

end;
t* := t* + 1;
{ perform a fixed point subtraction}
balance := sub(balance, withdrawal)i
history(ti - 1].newbal := balance;
{ convert the fjxed point * to a string and write it out}
writeln(fixtostr(balanc~, wboth, 2));
{ routine to check for overdrawn account }
d umm y : = S t r to fix (lOt);

if greater(dummy, balance} then writeln('Oops! Overdrawn'
end;,

{ procedure to print out statement}
pro c ed u r e - p r in t ;
beg in

w'ith history(i 1, date do
begin

{ convert all fixed point *s to strings and write out}
write(fixtostr(newbal, wboth, 2));
write(fixtostr(oldbal, wboth, 2));
wrice(month, day, year, t type);
writeln(fixtostr(amount,-wboth, 2))

end;
end;

beg in
done := false;
ttf := 1;
getdate;

main program }

write('Starting balance -- I)i

rea d (n urn b 'e r);

Pascal/Z U~er's Manual Page 107

{ convert the string to a fixed point * and assign it to balance}
bala.nce : = strtofix (number);
repeat

write('Option (ing, dep, chk, stmt, stop). -- I);

read(option);
case option of

inq: writeln(fixtostr(balance, wboth, 2))i
de p : inc r em en t ;
chk : dec r ement;
strnt for i := 1 to ti - 1 do print;
stop : done := true

end;
until done;

end.

The fixed point declarations and routines may also be inserted by
typing·or editing the files FIXCONST.PAS, FIXTYPE.PAS, FIXVAR.PAS
and. FIXED. PAS into the Pascal program itself.

(Note that the Fixed Point Package is suppl·ied with Pascal/Z
only, and that the routines are not intrinsic to the compiler.
For users desiring greater speed, precision and flexibility,
Pascal/BZ should be used. You will have received Pascal/5Z· only
if it was specifically ordered, as it is a distinct produc~ from
Pascal/Z. See Appendix Seyen for details on Pascal/BZ.)

Pascal/Z User's Manual Page 108

APPENDIX FOUR

PASCAL/Z USER'S GROUP

The Z Users' Group 'was formed by Charles Foster of Sacramento,
California to provide a forum for information and discussion
about Pascal/Z.

The organization publishes a bi-monthly newsletter containing
information on current and forthcoming vet sions of Pascal/Z, as
well as user comments and suggestions. The newsletter also
describes public domain software, written in Pascal/Z, available
from the USeTS' Group. There are currently twelve disks
containing programs donated by users of Pascal/Z, with more to
follow.

The. cost to be placed on the mailing list f6r the newsletters is
$9.00 (U.S.) annually. The cost for the User Disks is $10.00 per
disk/volume. (ALL DISKS ARE CP/M COMPATIBLE, SOFT-SECTORED,
SINGLE DENSITY, IBM 3740 FORMAT.)

Any request for further information must be accompanied by a
self-addressed, stamped envelope. Contact:

Mr. Charles Foster
Z Users r Group
7962 Center Parkway
Sacramento, California
95823 .

916-392-2789
916-447 6077

5PM - 10PM (PST)
BAM - 5PM (PST)

Pascal/Z User's Manual Page 109

APPENDIX FIVE

ITHACA INTERSYSTEMS LIMITED WARRANTY

ITHACA INTERSYSTEMS disclaims any warranty as to this product.
This product is sold for commercial, and not consumer, use.

SELLER MAKES NO WARRANTY EXPRESS OR IMPLIED, AND ANY IMPLIED
WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE WHICH EXCEEDS THE FOREGOING WARRANTY IS HEREBY
DISC~.IMED BY SELLER AND EXCLUDED FROM ANY AGREEMENT.

Buyer expressly waives its rights to any consequential damages,
" loss or expense arising in connection with the use of or the"

inabiity to use its goods for any purpose whatsoever.

No warranty shall be applicable to any damages arising out of any
act of the Buyer, his employees, agents, patrons or other
persons.

The remedies set forth herein are exclusive an~ the liability of
Seller to any contract or sale or anything done in connection
therewith, whether in contract, in tort, under any warranty, or
otherwise, shall not, except as expressly provided herein, exceed
the p ric e 0 f t h E~ e qui pm en tor pa r ton wh i c h sa i d 1 i a b iIi t Y i s
based.

No employee or representative of Seller ,is authorized to change
this warranty in any way or grant any other guarantee or
warranty.

Pascal/Z User's Manual Page 110

APPENDIX SIX

ERROR MESSAGES

The following are the error messages listed by Jensen & Wirth on
pages 119 - 121 of the USER MANUAL AND REPORT shipped as part of
the Pascal/Z software package. The error messages which are
specific to Pascal/Z are listed under the 398 category:
implementation restriction.

Note that not all of the error messages are applicable to
Pascal/Z.

1
2
3
4

·5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

50
51
52
53
54
55
56
57
58
59

101
102
103
104
105
106
107
108
109
110
111

error in simple type
identifier expected
'program' expected
') I expected
': t expected
illegal symbol
error in parameter list
'of' expected
'(' expected
error in type
'(' expected
']' expected
'end' expected
I; f expected
integer expected
'=' expected
'beg in' expected
error in declaration part
error in field-list.

" expected
'*' expected

error in constant
I : = I expected
'then' expected
'until' expected
'do' expected .
'to'/'downto' expected
, if' expected
'file' expected
error in factor
error in variable

identifier declared twice
low bound exceeds high bound
identifier.is not of appropriate class
identifier not declared
sign not allowed
number expected
incompatible subrange types
file nat allowed here
type must nat be real
tagf~e1d must be scalar or subrange
incompatiblp with tagfield type

Pascal/Z User's Manual Page III

112
113
114
115
116
117
118
119

120
121
122

123
124
125
126
127
128

129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144-
145
146
147
148
149
150
151
152
153
154
155

156
157
158
159
160
161

, 162
163
164
165

index type must not be real
index type must be scalar or subrange
base type must not be real
base type must be scalar or sub range
error in type of standard procedure parameter
unsatisfied forward reference
forward reference type identifier in variable declaration
forward declared; repetition of parameter list not
allowed
function result type must be scalar, subrange or pointer
file value parameter not allowed
forward declared function; repetition of result type not
allowed
missing result type in function declaration
F-format for real only
error in type of standard function parameter
number of parameters does not agree with declaration
illegal parameter substitution
resul t type of parameter function does not agree wi th
declaration
type conflict of operands
expression is not of set type
tests on equality allowed only
strict inclusion not allowed
file comparison not allowed
illegal type of operand
type of operand must be boolean
se~ element type must be scalar or subrange
set element types not compatible
type of variable is not array
index type is not compatible with declaration
type of variable is not record
type of variable must be file or pointer
illegal parameter substitution
illegal type of loop control variable
illegal type of expression
type conflict
assignment of files not allowed
label type incompatible with selecting e~pression
subrange bounds must be scalar
index type must not be integer
assignment to standard function is not allowed
assignment to formal function is now allowed
no such field in this record
type error in read
actual parameter must be a variable
control variable must not be declared on intermediate
level
multidefined case label
too many cases in case statement
missing corr~sponding variant declaration
read or string tagfields not allowed
previous declaration was not forward
again forward declared
parameter size must be constant
missing variant in declaration
substitution of standard proc/func not allowed
multidefined label

Pascal/Z User's Manual' Page 112

166
167
168
169
170
171
172
173
174
175
176
177
178
179

180
181.
201
202
203
204
205
206
250
251
252
253

254
255
256
257
258
259
260

300
301
302
303
304
398

3980
-3980

3981
3982
3983
3984

-3984
3985

multideclared label
undeclared label
undefined label
error in base set
value paramecer expected
standard file was redeclared
undeclared external file
fortran procedure or function expected
pascal procedure or function expected
missing file "input" in program heading
missing file "output- in program heading
assignment to function identifier not allowed here
multidefined record variant
x-opt of actual proc/func does not match format
declaration
control variable must not be formal
constant part of address out of range
error in real constant: digit expected
string constant must not exceed source line
integer constant exceeds range
8 or 9 in octal number
zero string not allowed
integer part of real constant exceeds range
too many nested scopes of identifiers
too many nested procedures and/or functions
too many forward references of procedure entries
procedure too long
In Pascal/Z, ~bis err:)r usually means that the compiler
reached the· last END 'and found no period (i.e., the
BEGINs and ENDs do not match up) •
too many long constants in this procedure
too many errors on this source line
too many external references
too many externals
too many local files
expression too complicated
too many exit labels

division by zero
no case provided for this value
index expression out of bounds
value to be assigned is out of bounds
element expression out of range
implementation restriction
More detailed explanations of the following
implementation dependent error messages are available on
pages 50 - 52 of the Pascal/Z Implementation Manual.

Symbol table overflow
Type table overflow
Function value may not be qualified
Jump out of a procedure/function not allowed
Non-string compared with string
Program has too many levels of nesting
~o more than forty fields in a record
Cannot input/output this value because compiler option
P was disabled when this enumeration type was
declared.

Pascal/Z User's Manual

3986
3987
3988

Line or symbol too long
Str ing too. long
String too small for call by reference

Page 113

-3988
3989

BCD number passed by reference must match exactly
EXTERNAL must be declared in main program

399 variable dimension arrays not implemented

There are a few other f unnumbered err.or messages which may be
generated either during compilation or during run-time. These
are described in detail on the page numbers given in parentheses
after the brief description here.

Program too complex Usually means that there is not enough
~emory in the system to compile (page 51).

Too many errors -- Integer constant out of range of the allowable
integer values (page 51).

Premature EOF Error encountered when
compilation. CP/M file names do not correspond
module names OR fourth drive letter was not
compila tion (pages 51, 71).

using separate
to the internal

specified during

Stack overflow -- Stack space has been exhausted (page 51).

Unable to overlay Overlay mod.ule being calle'a is not on
currently logged-in "drive (page 100).

Unable to chain -- PAS248 (or P.~S254 if using 54K version) is not
on currently logged-in drive (page 100).

Can't find <program).REL -- When using COMPILE.SUB,
means that no drive letter was specified in the
(pag e 49).

this message
command 1 ine

Pascal/Z User's-Manual Page 114

APPENDIX SEVEN

PASCAL/BZ

This section of the Pascal/Z Implementation Manual describes the
differences between the original Pascal/Z compiler and its
business counterpart, Pasca+/BZ.

Pascal/BZ is a version of the Pascal/Z compiler which has been
chang ed to accornrnoda te the bus iness user. - The Pascal/Z floa t i ng
point routines are replaced in Pascal/B2 by SCD (binary-7o~ed
decimal) fixed point routines to allow for the greater preclslon
and accuracy necessary for the business programmer. Pascal/BZ
provides precision of up to thirty digits (fifteen to either side
of the decimal point) Llnder user control. Pascal/B2 fixed. point
numbers of different sizes can be mixed within the same program,
permitting great flexibility in business applications'
prog ramming.

Pascal/BZ is available only in a 54K version (that is, a 54K TFA
is necessary to compile programs with Pascal/BZ).

The following pages detail specific changes made in the software
package for Pascal/BZ, as well as the use of Pasc.:l/BZ BCD
numbers.

USING PASCAL/BZ FIXED POINT NUMBERS

* Declaring a BCD number

A BCD constant, type or variable declaration will be of the form:

CONST TAX = 13.5;
TYPE SALARY = BCD X:Y;
VAR RATE: BCD X:Y;

where BCD is a reserved word denoting a fixed point binary-coded
decimal number. "X" indicates the number of digits to be placed
to the left of the decimal point and "Y" indicates the number of
places to the right. (Note that this specification is not needed
when declaring a constant, since a constant will not change and
cannot have a new value assigned to it.) There may be up to
fifteen digits to either side of the decimal point.

A constant cannot be defined as the negative of another
constant. For example:

CONST X = 14.7;
Y = -X;

· Pascal/Z User's Manual

is not permitted, but

CONST X = 14.7;
Y = -14.7;

is allowed.

Page 115

BCD types and variables may be of varying sizes, and these do not
have to rna teh when per fo rming ar i thmet ic oper at ions. The onl y
exception to this rule is that when passing a variable by
reference, the declarations of the variables must match exactly,
or the error code -3988 will be generated by the compiler. When
passing a :BCD nu..'11ber by value, the number is converted to the
s1 ze of the formal parameter (as declared), not the actual
parameter (as passed at run-time).

Integers may be used in BCD expressions (provided of course that
they are smaller than MAXINT or greater than -MAXINT). An
integer used in a BCD expression will be converted by the
compiler internally to a 15:15 BCD number, "although its type and
value will remain unchanged.

B CD n urn be r s sue has .·1 0 r 1. may not b e used. A z e rom us t b e
placed before the deeim~l point in the first case (0.1) and after
thedecimal point in the second case (1.0).

When performing BCD operations r the standard operators may be
used (including relationals). The expression is evaluated, and
the return value will be of size 15:15. This value is then
automatically converted to .the size of the variable to which it
is finally aSSigned. Note that using the operator / (real
divide) will yield a BCD number, regardless of the types of the
operands.

If the number of digits to the left of the decimal point
(excluding leading zeros) is less than or equal to that in the
ass i g nm en t va ria b 1 e , t he en t ire pro c e ssw i 11 t a k e pIa c e wit h no
problem. If the number of digits to the left is bigger than the
s i z e 0 f the ass i g nm en t va ria b 1 e , i t wi 11 res u 1 tin a r un - tim e
error.

If the number of digits to the right of the decimal point in the
return value is greater than the number .of digits in the
assignment variable, the number will be truncated to fit.

I f ass ·i g n i ng a con stan t to aBC D n urn b e r 0 r us i ng a con s tan tin a
BCD expression, the same rules apply_

* Files of BCD numbers

A file of BCD numbers is declared as follows:

VAR NUMFILE : FILE OF BCD X:Yi

The n urn b e r s will be w r itt e n 0 U t tot h e f i 1 e as the s i z e vJ h 1 c h
they are declared to be. For example, a 6: 4 number will be
written out in six bytes (see section on PASCAL/BZ STORAGE), and

Pascal/Z User's Manual Page 116

a 5:7 number will be written as seven bytes. A file must be read
as the same type in which it was written, that is a file written·
as BCD 6:4 must be read as BCD 6:4.

OUTPUTTING BCD NUMBERS

When outputting a BCD number, if no field width is specified, the
variable will be written with a leading space (or a "_It sign if
neg ati ve) followed by the number. The en ti renumber wi 11 be
right-justified with no leading zeros.

E.G.

~RITE(variable); where variable is 34562.12

will result in b34562.l2

I f a fie 1 d wid th iss pe c i f i ed, the v a ria b 1 e wi 11 be w r itt e n as
described above, with a leading blank if positive, but will be
right-justified in a field of the width indicated. If there are
not enough places in the field to output the number as speci fied,
the field width will be expanded to the right to accommodate the
number. Leading zeros will be suppressed. Note that the decimal
point occupies one place.

E.G.

WRITE(variable 9); where variable is 34562.12

will result in b34562.l2

WRITE (variable: 12); where variabLe is -34562.12

will result in bbb-34S62.12

In both ,cases, the number will be pr inted as declared, wi th x
digits to the left of the decimal point and y to the right.

FORMATTING BCD OUTPUT

Normally a BCD number may be output by doing a simple WRITE or
WRITELN. Sometimes, however, it is desirable to format BCD
numbers, and Pascal/BZ offers a variety of formatting options to
accomplish this.

To format a BCD number, three types must be declared wi thin the
program, as follows:

TYPE 8CDlS15 = BCD 15:15;
$STRING15 = STRING 15;
$STRING40 = STRING 40;

Also, the FORMAT function must be declared as follows:

FUNCTION FORMAT (X:BCD1515; Y:$STRINGIS): SSTRING40; EXTERNAL;

Pascal/Z User's Manual Page 117

When call ing the FO~MAT routine to output a BCD number, seve r al
options can be specified in quotes, as shown below:

FORMAT (<BCD variable>, '<options> I : <field width>);

These options may be in any order, and can be separated by
blanks. The options are:

S Print the number with a leading dollar sign.
Add commas every three digits to the left of the decimal""
point.

s Suppress trailing zeros.
m Print the minus sign after the number (the default is before

the number for negative numbers) •
p Print the negative number in parentheses racher chan with a

minus sign.
x Print x (where x is any integer between 0 and 15) digits to

the right of the decimal point (the default is fifteen).
r Round the number to fit in x places (refers to above option;

default is truncate).

Note that if any of the specified options conflict (for example
specifying both m and p for a negative number), the result at: the
statement will be undefined.

The FORMAT function returns· a string of
($STRING40) I which can then be output using a
statement.

forty characters
WRITE or WRITELN

The FORMAT routines are supplied in source
changed to accommodate differing format
European users, for example, the dollar sign
appropriate monetary sign and the commas and
reversed.

HOW TO USE PASCAL/BZ

so that they can be
requirements. For

can be changed to an
decimal point can be

To invoke Pascal/BZ, follow the instructions on HOW TO RUN
PASCAL/Z (pages 46-49 of this manual), substituting PASCALBZ for
PASCAL48 or PASCAL54.

When assembling, use BMAIN.SRC or
compilation or EXTERNAL routines}
EMAIN. SRC •.

BEMAIN.SRC (for separate
rather than MAIN.SRC or

The library for Pascal/BZ is named BZLIB.REL,
aut a mat i call y wit h the / E co mm and wh e nus i ng
section on HOW TO RUN PASCAL/Z on pages 46-49).

and is linked in
Pascal/BZ (see

Pascal/Z User's Manual Page 118

Using InterPEST with Pascal/BZ programs

If the debugger InterPEST (InterSystems Pascal Error Solving
Tool) is to be used with a Pascal/BZ program, it must be compiled
as described in the InterPEST Reference Manual, invoking PASCALBZ
rather than PASCAL48 or PASCAL54. Then resulting .SRC file
should then be assembled with 8XMAIN.SRC or BXEMAIN.SRC (if using
externals or separate compilation). The .REL file generated can
then be linked with BZBUG.REL as described in the InterPEST
Reference Manual.

BZBUG.REL contains a version of InterPEST designed to work with
Pascal/BZ programs. In this version, all that applies to REAL
numbers in the Pascal/Z version of InterPEST now applies to BCD
numbers.

BCD numbers may be displayed, but may not be modified. When a
BCD number is displayed, not only will the value be displayed,
but also the declared size of the number will be given. The
number will always be displayed as a 15:15 nwnber, regardless of
the declared size.

* Error messages

If the compiler generates any error messages referring to REAL
numbers, they will in fact refer to BCD numbers.

The $F option to generate an error message if a floating point
overflow/underflow is encountered will now refer to a BCD fixed
point overflow/underflow.

* The Fixed Point Package

The Pascal/Z Fixed Point Package is not supplied as a part of
Pascal/5Z, since the compiler has intrinsic BCD fixed point
numbers. (The Fixed Point Package also requires REALs to perform
many of its operations, and REALs have been removed from
Pascal/BZ.)

* Pascal/BZ EXTERNAL routines

When using EXTERNAL routines as described on .pages 74-78, BCD
numbers returned by functions will be stored above the function
parameters on the stack (see page 74). The least significant
byte will be stored at n+8(IX), and the number will occupy space
on the stack according to its size (as described in PASC}~.L/BZ
STORAGE) •

* TRUNC & ROUND

The Pascal procedures TRUNC and ROUND will work slightly
differently with BCD numbers than they do with REALs. The
numbers to be truncated or rounded will be converted to integers,
and an overflow/underflow error will be generated if attempting

Pascal/Z Userls Manual Page 119

to truncate or round numbers which convert to greater than MAXINT
or less than·-MAXINT.

* PASCAL FUNCTIONS

In Pascal/BZ, none of the standard functions may be passed a BCD
number, with the exception of ASS, SQR and SQRT. (See the
section on PASCAL STANDARD FUNCTIONS for more information on
these routines.)

PAS~AL/BZ STORAGE

In Pascal/aZ, fixed point numbers are implemented in binary-coded
decimal. The numbers may be variable in length, and ar~ stored
two digits per byte, organized as follows:

byte 1 byte 2 byte n
I sign/digiti Idigit/digitl I dig i t/ d ig it I •

(for digits to the left of the decimal point)

where n may be up to eight bytes to accomodate a number wi th
fifteen digits to the left of the deci~al point.

I digit/digiti I dig i t/ dig it I

(for digits to the right of the decimal point)

Thus for a number with an odd number of digits to the left and an
even, number of digits to the right, there will never be any
wasted sto rag e. Fo r a. number wi th an even number 0 f dig its to
the left or an odd number of digits to the right, there will be
some waste, as shown below:

For a 3:4 BCD number) 2 bytes left, 2 bytes right = 4 bytes
(no waste)

For a 2:4 BCD number> 2 bytes left, 2 bytes right = 4 bytes
(one wasted nibble to the left)

~ For a 1:4 BCD number> 1 byte left, 2 byies right = 3 bytes
(no waste)

For a 4:5 BCD number> 3 bytes left, 3 bytes right = 6 bytes
(one wasted nibble to the left, one wasted nibble to
the right)

(Not e t hat an eve n : 0 d d n urn be r i s the m 0 s tin e f f i c i en t , with a
total of two wasted nibbles.)

If there is wasted space on the left side of the decimal point
the wasted nibble will be the nibble after the sign; on the right
side of the decimal point the wasted nibble .will be the nibble
af~er the last digit.

The maximum precision allowed in Pascal/BZ is fifteen digits to

Pascal/Z User's Manual Page 120

either side of the decimal point, for a total of thirty digits.
See USING PASCAL/BZ FIXED POINT NUMBERS for more information on
how to make use of BCD numbers.

Pascal/Z User's Manual Page 121

PASCAL/Z COMMENTS & BUG REPORTS

Please use this sheet (and any -additional sheets if necessary)
when sending your comments and bug reports to INTERSYSTEMS.

NAME:
--

ADDRESS: ______________________________________ ~ ________________ __

PHONE: --,-------
VERSION: SERIAL NUMBER: ----------------------- --------------------

BUGS (include a listing I description of the problem, etc):

SUGGESTIONS FOR IMPROVEMENTS TO THE COMPILER:

Pascal/Z User's Manual Page 122

SUGGESTIONS FOR IMPROVEMENTS TO THE MANUAL:

EXTENSIONS:

WHAT DO YOU THINK OF EXISTING PASCAL/Z EXTENSIONS:

Pascal/Z User's Manual Page 123

WHAT EXTENSIONS WOULD YOU LIKE TO SEE:

DO YOU HAVE ANY UNANSWERED QUESTIONS ABOUT PASCAL/Z:

abs
, absolute value

ABSSQR. SRC
access
accumulator
activation
activation records
actual parameter
ADD
add
address
ADDSUB.SRC
allocation
and
append
appendices

one
two
three
four
five
six
seven

ARCTAN. SRC
a rc tang ent
array
ascii
ASMBL.COM
asmble
assembler
assignments

base types
BCD
beg in
BEMAIN.SRC
binary
binary-coded decimal
bit
block
BMAIN"SRC
boolean

bound
brackets
buffer
byte

BYTIN .. SRC
BYTOT.SRC
BXEMAIN.SRC
BXMAIN.SRC
SZ
BZBUG.REL
BZL::B.REL

INDEX

31,119
10,31
10
6,11,36,43,58,62
74,75,76
76,93
76,93
115
101,102,104-107
10,11,36,101,102,104-107
74,75,76,77,87,97-99
10
10,36,79-84,87-88,95
37
11,64,66,68

97-99
100
101-107
108
109
110-113
114-120
10,31
10,31
15,18,22,37,39,40,43,53-54,86,93,98
16,21,37
9,13,48"
2,9,48
2,4,9,13,47-48,70-73,74-78,79-80,92
20,25,39,42,43,64,114-115

93,94,97
10,35,51,101,114-120
28,37
117
89
10,35,51,101,114-120
11,16,38,89,99

·5,30,32,35,54
117
16,25,26,27,34,39,53,54,59,62,74,90,93,
97-98,102
42,93
17,37
10-11,38,54,97
34,36,38,39,40,43,54,67,69,74-77,89,92,93-94,
97-99,101,115-116,119-120
10
10
118
118
35,51,114-120
118
11 7

- .. -. .:... ..
-call
call by reference
called
case
case label list
case selector
CHAIN.SRC
chain
char
character
check
CHKD.SRC
chr
CLSOT.SRC
CMAIN.SRC
CMPCHK.SRC
.COM
comma
command tail
comments
compare
compatibility
compatible
compilation
COMPILE. SUB
comp i ler
complement
compound statement
CON:

'concatenate
conditional statement
CONSOL..SRC
console
console input
console input buffer
console output
const
constant

constant folding
constant strings
construct
control C
cos
cosine
cpi
CVTFLT.SRC
CVTSFP. SRC

data
data areas
data types
dcx
deal location
DEBUG.REL
debugger
decimal
dec i mal po in t
declaration

,~,;;,-

1 0 , 2 5 , 4 0 -i~5l , 54 , 7 4 , 7 9 , 9 2 , 9 3 , 96 , 9 7 , 1 0 1
51,77,97
30,48,74,76,101
4,5,27,37,39,41,43,61,69,93
27,39,61
27,159
10,83,86
10r 34 ,80,83,86,100
15,16,22,31,53,69,86,92,97
10,11,15,16,31,37,38,51,67,70,85,92,93
10,15,36,41-42,43,67,69,70,95,86,100
11
31
11,96
11,86
10
48
102-103,117
54
4,17,37,41,85
25,103
40
6,7,15,25
46-49,79-84
9,49
2,3,4,34,36
10,89
28,29
60
66
27
11
10,11,38,46,47,53-54,59,60
60
38,54
60
4,22,32,37,63,104,114-115
4,9,14,15,l6,22,27,32,36,43,51,61,63,93,
94,101-107,114-115
36
67
28
41,47,945
31
11,31
77
11
11

14,15,16,17,18
43,86
16-21,90
77
10,20-21,87-88
9
4,9,48
9,89,90-91,101-104,114-120
90-91,114-120
32,34,40,44-45,47,50,51,66,70,71,86,93,101-107,
114-115,116

declaration level
decremen,ts
DECS
default
jeflne
definitions
DEFLT.SRC
delete
density
d ev ice
device input
device output
digit
Digital Research
direct file access
directory
disable
dispose
div
SDIVD
DIVD.SRC
divide
divide by zero
dollar sign
DONE2.SRC
downto
DSKFIL.SRC
DYNALL. SRC
d ynam ic sto rag e

~di tors
efficiency
element
element type
EMAIN.SRC
enable
end
end of file
end of line
enter
ENTEXT. SR<;
entr
entry

'~

entry point
enumeration type
eof
EOFLN.SRC
ea1n
equivalence
ERROR.SRC
error messages
errors

EXAMPLE
execution
execution speed
<::xit
2XP
EXPFCT.SRC
exponent

75-76
36
9,34,46,49,100
10,39,41-42,46,71,85
22,31
9,11,14,15,16,75
11
10,53,59'
100
10,53,60
60
60
16,37,38,71,89,90-91,101-104,114-120
1,2,6
4,6,11,58,62
10,59
41
5,40,87
37,63
101,102
11
10,11,36,42,101,102,115
36

. 41,85,102-103,117
11
26,37
11
11
5 , 10 , 20 - 21 , 87· .. 88 , 93 - 94 , 95

37
3,22,29,43,44-45,66,69,93
18-19,23,25,38,43,64,93,101
18-19
9,71,73,74-78,82-83
41-42
10,28,32-33,37
See, EOF, EOFLN
See EOLN,EOFLN
11
11,96
75-78,86
42,69,70-71,75-76,92
70,75-78,79,83,92
4,16,17,42,51,53-54,62,93,97,103
31,51,53-54,58
11
31,53-54
44-45
11
11,41,42,50-51,70,71,100,115,118
7,10-11,17,34,38,39,40,41-42,47,49,50-52,54,
67,70,71,89,92,110-113,115
10
41,42,48-49,76,79,83,95
34,43
10,26,48,54,75-77
31
11
75,89,99

exponential notation
expressions
ext
EXTENS
extensions
external routines
EXTD
EXTR

FADDSB.SRC
FCTMAC. SRe
fields
field width
FILE
file

file data
FILEIO.PAS
file names
file variables
FILEXT.SRC
FILNAM.SRC
fin i
FIXCONST.PAS
FIXED. PAS
fixederror
fixed point arith.
FIXEDEX.PAS
f ixto real
fixtostr
FIXTYPE.PAS
fIXVAR.PAS
flag
floating point
flo a t i ng pt. form at s
floating point output
FLTIN.SRC
FMULT.SRC
FOR
FOR loop
formal parameter
FORMAT
format mode
formatting output
forward declarations
foster, charles
FOUT.SRC
FPDIVD.SRC
FPERR.SRC
FPINIT.SRC
FPMAC.SRC
FPRLOP.SRC
FPSQR.SRC
FPTEN.SRC
ftxtin
function

function activation
FXDCVT.SRC

10,91
25,26,30,36,39,61,115
71
10
3,4,9,46-47,61-62,63-85
4,9,37,38,51,61,66,70-73,74-78,79-84,97,118
78
78

11
11
23,38,51,64
90-91,116-117
15,16,19,31,37,62,97
4,6,10-11,15,16,19,21,31,34,37,38,39,53-54,71,
79-84,86,87,115-116 '
53
10,56
46-47,51,53,54,59,70,71,79
87
11
11
96
9,101-107
9,101-107
102
9-11,35,89,91,101-107,114-120
10,104-107
102
102-107
10,101-107
10,101-107
102
10-12,16,35,41,89,90-91,96,99,114
89,99
90-91
11,96
11
21,26,37,39,41,94
26,39,41,94
115
116-117
103
90-91,116-117
92
108
11
11
11
11
11
11
11
11
86
4,5,10-11,25,30,31,37,38,39,40,42,47,50,51,
53,54,59,61,64-65,66-68,71,74,75-78,79,92,
93,101-104,116-117,118,119
93
11

aet
global data areas
global declarations
alobal level
global variables
GOTO

hardware problems
heap
HELLO
hex
HOWTO.RUN

I/O po r ts
identifier
imbed
impl emen ta t ion
include files
increments
INDEX
index
INDIR.SRC
INFO. NEW
initialization
INPT. SRC
INPUT
input
input files
installing in ROM
in teg er s

interactive
intersection
intrinsic data types
intrinsic procedures
in trod uction

Jensen & Wirth
jrnp
jump
jump table

keyboard

LO.SRC
label
1 ang uage
LAST.SRe
legality
LENGTH
length
LIB.REL
library
library modules
limitations
line
LINK.COM
linked lists
linker/loader
list

5,40,53
43,86
51,86
23,43,70,75
23,95,101,102
5,14,39,41

100
86,87,95
9,13
21,48
9

76-77
32,34,37,38,39,63,101
41
4,14,38-40,50,61-62
4,41,61,85,103-107
36
66-67
18,42,43,55
11
9
11,34,95
11,96
39
11,34,38,39,40,42,51,53-54,60,61-62,77
10-11,39,53-57
96
4,10-11,15,16,31,34,38,42,43,51,53,63/90,93,
94,97',115
4
11,19
16
66,87
2,14

2,12,20,32,38,40,90
92,96
39,43,50
39,69

21

11
27,32,37,78,92
2,4,14,15,34,38,61,66,70,74-77
11,86,95
16,28,32,53,64-65,67,70
11,64,66-68,99
38,51,61,64,66-68
9,10,48,59,79-80,83,103
2,9,10~11,48,66,70,79~80,83,86,103
9-11,48,79-84,86,95,96
40
10,31,32,38,51,53-54
9,13,49
20-·21,87
2,9,40,48-49,59,70,75-78,79-84,80,92
43,69,74

1 i s t i ng f i 1 e s
load
local data areas
local level
local variables
log
logarithm
LOOK.SRe
loops
.lst
.LST:
LVL

macro-code
macros
MAIN.SRC
i'1AINMAP
ma in module
main program
mantissa
MARK
max irowns
MAXINT
maxo ut
membership
memory
memory locations
memory requirements
memory usage
minuend
mod
MPNORM. SRC
$MULT
MULT.SRC
multiply

named equivalence
NATLOG.SRC
negative numbers
nesting
nesting levels
NEW
nibble
non-reals
null
numbers

objec t code
odd
open files
operands
operations
operators
OPFILE.SRC
optimization
optimizer
options
ord
ordinal
ordinal vc:lue

9,34,41-42,46-47,50
10, 11·
30,43,76
23,30,43
23,30,40,75,93
11
31
11
26,33,39,41,94
9,34,46-49,50-52
60
75

2,4,6,34,41,46-47,74-78
75-78,86,96
9,10,11,38,47,48,54,70,74,95,96
79
7 a - 7 1 , 7 9'- 8 4
40,51,70,79-84,85,86
11,89,99
5,40,87-88
16,38-39,51,54,66~67,69

16,38.,115,119
38,54
11,19
6,10,40,51,79-80,93-94,95,97,100
10,11,79-84,95,96,97
6,40,51,93,101
40,93-94,95,97-99
102
37
11
101,102
11
11,42,101,102

44-45
11
90
30,38,39,51,85
34,38,50,51
5,20-21,40,87-88
119
36,39
33,66
10-11,16,31,37,38,43,63,89,90,91,99,
101-107
2,9,47,96
31
38,53-54,96
15,103
15,40,61,66,102-103,114-115
4,115
11

. 4,5,36,43,91i
10,47-48
41-42,46,48,50,51,69,71,85,116-117,118
31
31,97
69

.ORG
out 0 f r; a ng e
OUTPT.SRC
OUTPUT
output
output files
overflow
overhead
OVERLAY.SRC
overlays
overlay modules
OVLYGEN.COM
OVLYMAP

pack
padding
page
pairing
parameters

parentheses
parity
parrnsz
.PAS
PAS248
PAS254
PASCAL48
PASCAL54
P_~SOPT

passing by value
passing by reference
PEEK
PFSTAT
pointers
ports
precision
pred
PRIMES
print
printer
procedural parameters
procedure

procedure activation
processor
program structure
PSTAT.SRC
PUT

query option
quoted str ings

random access
range-checking
rang es
RBLOCK. SRC
read
readln
real

47
42
11
39
42,47,51,60,61-62,76,90-91,100,11~-117
6,10-11,34,38,39,41,4n,53-57,87,96
42(50,51,95,102,118
93
10
4,9,10,34,61,79-84,86,100
9,34,46,79-84,100
10,79-80,83
79,83

39
90
5,40
95
30,38,40,42,43,51,53,54,65,67,70,74-77,92,93,
114-115,118
94,97-99,103
25,37
37 .~
76
34,46
9,34,46,49,100
9,34,46,49
9,34,46,49,100
9,34,46,49,100
~_ 0,4 i -48
30,65,67,102,115
:~0,43,5i,67
:~o
9,34,46,49,100
20-21,23,40,87-88,93,99
76-77
9,11,16,38,89,101-104,114-120
31
10
10
46-47,60
5,40
5,10,20,30,31,37,38,39,40,42,47,50,51,54,
66-67,70,71,74-78,79,87,92,93,101-104
93
4,36
32
11
5,40,53

80,83
37,54,67,79,86,93,94

4,6,11,58,62
10,42,43,57,69
17,38,93
11
10~11,21,40,53-54,58,60,92
11,53-54
15,16,25,31,34,38,41,43,53-54,74,75,90,93,99,
101,102,114,118

realtofix
record

recurd numbers
record zero
recursion
re-entrancy
reference parameters
references
registers
relational operators
relative addresses
r e 1 at i v e j urn ps
relocatab1e modules
relocatable object

code modules
relops
RENERA.SRC
RENDRV.PAS
repeat ..)
repeat loop
rese rved wo rds
reset
RESET.SRC
resident program
restrictions
return values
rewrite
REWRIT.SRC
ROM
ROTATE.SRC
round
ROUND.SRC
roundoff error

S-101 bus
SAVREG. SRC
scalars
scientific notation
search option
semi-colons
separate compilation
separate modules
separato rs
sequential access
sets
SETCON.SRC
SETFTN.SRC
setlength
shiftleft
shiftright
sign
significance
sin
SINCOS.SRC
sine
size

source code
spaces

102
15,18-19,20-21,23,29,37,38,39,40,43,51,54,58,
62,64,76,93,98
58 -
58
3,30,52
3,4,95
94,97
22
10,11,36,74-77,92,95
11,25,67,103,115
95
43
9,48

48
See relational operators
10,59
10,59
26,37,39,41
26,39,41
37,114
12,53,58,60
12
79
5
53,74-77,115,118
12,53,60
12
3,4,95,96
12
12,31,89,117,118-119
12
89

100
12
15,17,22,26,30,31,39,64,74
91
80,83
32-33
4,9,51,61,70-73,77
51,61,70-73,79-84
32,37
58
11,15,19,37,38,43,94,99
12
12
11,66-68
101
101
63,89,90,99,101-107
38;70,75,103
30,31
12
11,31
11,21,34,38,40,44,54,69,80,86,96,102,114,115,
119-120
2,4,6,10,41,46,59,86,101
37,41,46,85,90

specifications
sqr
sqrt

·SQRT.SRC
square

38-40
31,119
12,30,31,119
12
10,11,31
11,31 square root

.SRC
SRELOP. SRC

.·9,lO~11,34,46-49,77-78

stack
stack overflow
standard functions
standard language
standard procedures
statements
s to rage
STRFCT.SRC
s tr i ng cons tan ts .
strings

strlop
strto fix
structured

equivalence
SUB
subbyte
subrni t
subranges
subroutines
subsets
substr ing s
subtract
succ
supltzer
suplzer
InterPEST

(InterSysterns Pascal
Error Solving Tool)

• SYM
symbol
symbo1-ic input/output
symbol table
syntax
syntax errors

tabs
tables
TEST.SUB
text
TEXT. SRC
text files
threaded code
trace
transportability
trigonometric fcts
troubleshooting
trunc
tr unca te
.TYP
type

12
11,34,42,51,74-77,85,93-94,95,97-99,118
42,51
31
4,5,14,17,31,37,40,53,66
31
4,14,20-21,25,26,27,28,29,30,32,33,39,41,42,
5,10,20-21?23,36,39,40,75,76,87-88,93-94,103
12
22,43,63,86,93,94
4,lO-11,22,37,38,43,51,53,61,63,66-n8,79,86"
93,94,99,102-103
11
102

44-45
101,102,104-107
101
9,49 .
17,43,93
30,48
19
66
11,36,101,102,104-107
31
103
103

4,9,48,118
70
21,32,34,37,38,51,52,70-71,83,92
4,42 Also see enumeration types
5,34':'35,50
32,58,71
~O

37,52
69
83
12,16,31,53-56,60

~ 12
40,46,61,92
3
11,42,501'71
61
31
100
31
11,31,115,117,118-119
71
10,15,16,17,18,19,20-21,23,26,30,31,32,34-35,
37,40,42,44-45,50,53,54,61-62,65,66-67,70-71,
90,94,97,101-107,114.116

type declarations
type table

U.C.S.D.
JCTRANS
underflow
union
unpack
unstructured relops
unti 1
updates

___ URE LO P • S RC

-,Jal ue pa rameters
values
var
variable

variable access
variable declarations
variable length

strings
variable storage
variant records
verbose optic,n
vocabulary
vsiz

warranty
wboth
wcomma
wdollar
:,,.rhi Ie
·wh.l.l e loop
Wirth
with
words
write
writeln

XEMAIN.SRC
XMAIN.SRC

zero

15-21,32,34,40,44-45,50
6,34-35,44-45,50,67 ..

9
10
41,118
11,19
39
11
26,37
7
12

42,94,97-99
30,31,39,50,51,61,62,64,67,89,95,103
23,37,94,104,114
10,15,16,17,20-21,23-24,25,26,27,30,32,36,39,40,
43,45,53,58,60,65,74-76,93,95,97-99,101,103,
114-116
24,36,43
23-24,32,40

4,10-11,61,66-68,99
20-21,36,87,97-99
14,87
80,83
37
7.5

109·
103,104-107
103
103
26,37,39,41,
26,33,39,41
2,43
29,37,39,43
37
11,40,53-57,58,60,90-91,92
11,54-57

9
9

10,11,36,39,66,74,99,102,103,115,117

	0001
	0002
	0003
	0004
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08
	I-09
	I-10

