ITHACA INTERSYSTEMS
LINK Z
A LINKING LOADER
REVISICN 1.0

Copyright by
® ithaca Intersystems, Inc.

LINK/Z

A Linking Loader

© Copyright 1980 by
Ithaca InterSystems, Inc.

Manual Revision 1

TABLE OF CONTE&TS

Introduction
Why Link?
Worked Example
Linker Operation
Command Line
Librarian
Query
Auxiliary File
Load
Loading Space
Loading Buffer
Loading Order
Offset Load
Input Files
Linking
Load Map
Unresolved EXT Symbols
Symbol Table
Search
Qutput Files
Exit, Go
Command Summary
Linker Modes
File Names
-Librarian Options
Load Options
Error Messages
Linking under K3

This program is dedicated to and named after a good friend, Link
Hogthrob.

INTRODUCTION

This manual is concerned with the actual operation of the
linker. The RELOCATION section in the assembler manual discusses
the use of the assembler and 1linker together to produce a
program.

You may be reading this manual because you want to know how to
link and run a program written in Pascal. 1If this is the case,
you need read only the first few sections of this manual up to
and including the WORKED EXAMPLE.

On the other hand, you may want to add your own assembler
routines to a Pascal program, or Yyou may want to write a
stand-alone assembler program. In that case, you should first
read the entire assembler manual and then rezd this manual
including the sections immediately following.

The examples in this manual assume that you are using the linker
with ‘the CP/M~ operating system.

-1 - LINK/Z

WHY LINK?

Linking together and loading a program from relocatable modul es
gives you the following advantages:

1) You may load the program almost anywhere in memory. -
2) You may use a library of pre-assembled subroutines in
your program. '

3) The search option loads only the needed modules from
the library which keeps the program size down.

4) Editing and assembling a small main module and linking
it with a 1library 1is qgquicker than editing and
assembling a single large equivalent program.

Let us look at the steps you go through from the creation of a
Pascal program to its execution.

1) Run the text editor, create a new PAS file on a disk,
and type in your Pascal program. '

2) Run the Pascal compiler which translates your Pascal
statements into assembler mnemonic statements.

3) Run the 'éssémbler which translates the ‘assembler
mnemonic statements into a relocatable machine
Tanguage module.

4) Run the 1linker ‘and load the relocatable module you
generated in the previous step along with the Pascal
subroutine library.

5) Save your new program (1f you want to) and run it.

The compiler translates your Pascal statements into assembler
statements which, after assembling and linking, are translated
into machine executable code. This code is capable of loading
and storing variables and of doing a few other general tasks.
The compiler handles the more specialized tasks (multiplying
floating point numbers, reading and writing data files, etc.) by
calling subroutines contained in the library. This is why the
module that you create must be linked with the library to make a
complete executable program.

LINK/Z -2 -

WORKED EXAMPLE

In this example, assume that you have already used the text
editor to create a Pascal file called TESTPROG.PAS. Below is an
example of what your console might look like after the creation
of an executable program.

A>PASCAL TESTPROG
InterSystems Pascal v-3.0 Copyright 1980 by Jeff Moskow

A>ASMBL MAIN, TESTPROG/REL
PASCAL RUN-TIME SUPPORT LIBRARY ASMBLE v-5b

A>LINK TESTPROG /N:TESTPROG /E
LINK version le

‘Load mode

Generate a COM file

A>

The first command, PASCAL TESTPROG, runs the Pascal compiler and
compiles TESTPROG.PAS into TESTPROG.SRC.

The second command, ASMBL MAIN,TESTPROG/REL, runs the assembler
and assembles MAIN.SRC (the start-up code) with your program,
TESTPROG.SRC, into TESTPROG.REL. ’)

The third command, LINK TESTPROG /N:TESTPROG /E, runs the linker
and loads your module, TESTPROG.REL, into memory. It then
automatically loads the necessary parts of the library, LIB.REL,
" in search mode, writes a COM file, TESTPROG.COM, and returns to
the monitor. You may now run this COM file by typing:

TESTPROG

When you are debugging a program you do not have to generate a
COM file in order to test the program. 1Instead, you may give the
following linker command:

LINK TESTPROG /G
This loads your module along with the necessary parts of the

library and starts it. When you have completely debugged your
program you may link it again and save it in a COM file.

-3 - LINK/Z

LINKER OPERATION

The linker may operate in one of two modes: the librarian mode
(to build libraries) or the load mode (to load programs). ‘ ‘

In the librarian mode, the linker reads in several relocatable

modules and writes them all out together to a single library
file. '

In the 1load mode (the default mode), it reads one or more
relocatable modules, loads them into memory, and 1links them
together (matches external symbols with entry points).

LINK/Z -4 -

.COMMAND LINE

A command line tells the 1linker what to do. You can put a
complete set of commands on one line or you can put the commands
on many lines. ¥For example, you could write:

NAVIGAT, TRIG/G
or ybu could write:

NAVIGAT
TRIG

/G

Both have the same meaning to the linker.

The command lines are made of one or more items (file names,
options) which are separated from each other by spaces or commas
or carriage returns. These items are grouped together to form
entries which consist of a file name and/or options. An entry
consists of . everything in the line up to but not including the
next file name. Each option starts with a slash (/). An option
may be followed by a colon (:) and an output file name. A
command line is read and executed from left to right, entry by
entry. For example, consider the following command line:

- " /A FILEl FILE2/B:OUTFILE/C FILE3/D

The first entry is just an option, /A. It is executed first.
The next entry is FILEl with no options. It names an input file
which is read in. The next entry is FILE2/B:D0UTFILE/C. The
input file name is FILE2 which 1is read in. Two optlons,
/B:OUTFILE and /C, apply to this entry. The /B option is
followed by a file name, OUTFIL, which is opened for output. The
last entry in the line is FILE3/D. FILE3 is read in. An optien,
/D, applies-to this entry.

If you "forget to specify an output file name or if the file
cannot be successfully opened the linker will not let you proceed
with an operation which requires an output file. It prints an
error message and ignores the remainder of the command line. At
that time you should specify the option and file name again. For
example:

/B:OUTFILE

When the linker has exhausted a command line it prompts you for
another one by printing an asterisk (*).

-5 - : LINK/Z

LIBRARIAN

A library is a collection of subroutines which are related in
some way. For example, the Pascal system uses a library which
contains subroutines to multiply and divide, do floating point
operations, handle files, etc. This library is called LIB.REL.
You may want to generate your own libraries. For example,
suppose you write a lot of text processing programs and you
notice that certain subroutines appear in many of the programs
(search a buffer for a string, print a string, etc.). You may
put these subroutines 1into a 1library and add them to vyour
programs at link time. This saves a lot of writing, assembling,
and debugging.

To make a library you first assemble each subroutine (one at a
time) into a relocatable (REL) module. Then you run the linker
and type /L:filename as the very first command (filename 1is
replaced by the actual name of the library file you wish to
create). For example, you might type:

. LINK /L:TRIG

It is important to type /L as the first command to tell the
linker to enter the librarian mode. If you make a mistake and
type something else the linker enters the load mode. You can
restart it by typing /R (on a line by itself) and then /L. 1If a
file with the same name exists on that device it is deleted
before the new output file is opened. For example:

LINK /L:B:TRIG

Now you specify the modules you want to be included in the output
file in the order in which they should appear. You might type:

COoT
TAN
SIN
C0oS
DIV
MULT

or you could specify all the files names on a single line (80
characters max).

coT,TAN,SIN,COS,DIV,MULT

As each module is read its internal name (specified by the NAME
command in the assembler) is printed on the console.

LINK/Z | ' -6 -

If you make a mistake and include a module that you really didn't
want you can start over by typing /R. This restarts the linker.
You now have to type /L:filename and all of the input file names
again.

QUERY

The librarian has a gquery option, /Q. If you select this option
(for a given file) the linker asks you if you want to include a
particular meodule from an existing library in the output file.
It does this by printing OK? after the module name. If you want
to include the module type Y (yes), if you do not want to include
any more modules from this file type Q (gquit), if you want to
skip Jjust this one module type any other key. This is a one
keystroke response. The linker begins including or skipping the
module as soon as you hit a key, so be careful. You can't delete
a wrong keypress. The linker is purposely made this way so that
you can place your fingers over two keys (Y and space, €for
example) and quickly zip through a library.

Supposg thét you rewrite the COT medule and want to put it in the
library teo replace the existing module. The best place to put
the new module is at the beginning of the library. You might
type: ' : -

LINK /L:TRIGNEW COT TRIG/Q/E

LINK loads and starts the linker. /L puts it inte the librarian
mode . :TRIGNEW generates a new ocutput file called TRIGNEW.REL.
Notice that its name is different from the old 1library file,
TRIG.REL. If it was given the same name the old library file
would be deleted before. it is read in. After the linking session
is complete you can delete the old library and rename TRIGNEW.REL
to TRIG.REL.

The new COT module 1is included in the new library. The old
library, TRIG.REL, is read in guery mode. You select which
modules vou want to include.

When you have includad everything vyou want in the library type
/E. This closes the output file- and returns control to the
operating system.

-7 - LINK/Z

The;donéole‘lookswlike this .at the end of the previous example:.

A>LINK /L:TRIGNEW COT TRIG/Q/E-
LINK version 1

Librarian mode

Module name is COT

Mcdule name is COT OK?
Module name is TAN OK? Y
Module name is SIN OK? ¥
Module name is COS OK? Y
Module name is DIV OK? ¥
Module name is MULT 0K? Y
A>

AUXILIARY INPUT FILE

It is often necessary to replace one or two modules in the middle

of a 1library file. You can easily do this by opening an

auxiliary file in the middle of a normal library file and adding

~ the modules from the auxiliary file. You .then continue
processing the remainder of the normal file.

If you are reading a library file in query mode you may respond
to the 0K? with A ("auxiliary"™). The linker saves the current
normal module, prompts you with an asterisk (*), and waits for
you to type an.input file name. When you give it a file name it
reads that file and prints the name of the first module in the
file followed by OK?. You may respond by typing Y, Q, or any
other key. When the linker has finished processing the auxiliary
- file it returns to the normal file, prints the name of the module
" again (the name to which you responded with A), and continues.
Note: the remainder of the command 1line is 1ignored when an
auxiliary file name is given. '

Suppose you have rewritten the SIN module. You might replace it
in the library as follows. First you type:

LINK /L:TRIGNEW TRIG/Q

This is the same command line that you used before. You tell the
linker to include the COT and TAN modules in the library. When
it comes to the SIN module vyou tell it to open an auxiliary file
and include the new SIN module. Then you tell it to skip the old
SIN meodule and 1include the remainder of the old library. The
console looks like this at the end of the operation:

LINK/2Z - 8 =~

ASLINK /L:TRIGNEW TRIG/Q
LINK version 1
Librarian mode

Module name is COT OK? Y
'Module name is TAN OK? Y
Module name is SIN OK? A
*STN

Aux Module name is SIN OK? Y
Module name is SIN - OK?
Module name is COS OK? Y
Module name is DIV OK? Y
Module name is MULT OK? Y
*/E

A>

-9 - . LINK/Z

LOAD

I1f the first command you give the linker is anything but /L it
enters the load mode. If you make a mistake (load a module you
really didn't want to, for example) you may restart the linker by
typing /R. The linker forgets everything it has loaded and
starts from scratch.

LOADING SPACE

The linker takes up some space in memory (five or six kilobytes,
depending upon the version). It generates two symbol tables; one
for entry points and one for unresolved external symbols. Each
symbol takes up eight bytes. Suppose that your system has twenty
kilobytes of user space and that you want to locad a program with
125 symbols. The linker (AK) and the symbol table (1K) take up
about seven kilobytes of memory. You have thirteen kilobytes
left for your program. You may load anywhere in that space from
location zero on up.

LOADING BUFFER

The linker does not load code directly into memory but instead
puts it in a loading buffer. After all the code for a program
has been 1loaded the linker moves the code down to its actual
execution location (where you want it). This means that you may
load code anywhere you want, even at location zero. It will not
interfere with the operating system because the code that vyou
load does not actually appear in low memory until after the
linker has completed its task. The code to execute the move
consists of a block move instruction (LDIR, two bytes) and a jump
to the beginning of the program or a return to the operating
system (three bytes). This code is placed at location 80H (the
command line buffer). In a CP/M environment, COM files (the
usual type of file containing an executable program) must start
at 100H; the linker automatically puts eight bytes of code there
to initialize the stack pointer and jump to the beginning of the
program. (The stack pointer is initialized to the top of the TPA
- the transient program area.) You are free, then, to store code
from 0 to 7FH, from 85H to FFH, and from 108H to the top of the
TPA - assuming, of course, that the gquantity of code you load
leaves room for the operation of the linker.

LINK/Z | | - 10 -

LOADING ORDER

If no forced loading is specified all relocatable code is loaded
starting at location 108H as follows:

1) All common sections from the first module are loaded
first. _

2} The program section from the first module is loaded
next.

3) The data section from the first module is loaded.

4) Common sections from the second module that have not
vyet been defined (whose names are different from those
in the previous modules) are loaded.

5) The program section from the second module is loaded.

5) The data section from the second module is loaded.

7) Etc. for the remaining modules.

You may force all of the sections (/A), the common sections (/C),
the data sections (/D), or the program sections (/P) to be loaded

starting at a particular location. These options must always be
followed by a colon and a hex address. For example:

/A:1234

forces the modules to be loaded, in the order given above,
starting at location 1234H. ' ' '

The /C, /D, and /P options break up the loading order. For
example: ' ‘

/C:4000

forces all common sections to be loaded starting at 1location
4000H. Since the data and program section locations have not
been forced they are loaded in their normal order starting at the
default location (108H); PROGl, DaTAl, PROG2, DATA2, etc.

A program which is to be burned into a PROM may be locaded as
follows: Suppose the PROM is to:be at location 1000H and the data
space is to be in RAM at location zero.

/P:1000 /D:0
Any or all of these options may be used together (if you are
careful). When the linker loads code it checks to make sure that

the code fits in the available space (that 1is, it doesn't
overwrite the linker, tables, or operating system). However, it

- 11 - LINK/Z

does not keep track of what has been written in the available
space (where your program is). You must carefully examine the
load map to make sure that one section has not overwritten
another section. If you discover that something has been

overwritten you can start over (with /R) and allow more room .to
prevent the overwrite.

LINK/Z - 12 -

OFFSET LOAD

Sometimes it is necessary to load code outside of the normal
linker loading space (for instance, when patching or building an
operating system). The offset load mode lets you do this. You
enter the offset load mode by typing /0:XXXX (letter oh) as the
first command to the linker {(or as the first command following a
/R). XXXX is the lowest address into which you want to lecad

ccde. For example, if you want to load a routine at EO00 you
would type: : :

/0:EQ00
Several things happen differently in the offset load mode:

1) The start-up <code at location 100H (load stack
pointer, Jjump to beginning of ©program) is not
generated. ‘

2) The slide-down code (LDIR, jump to start) 1is not
generated and the code in the buffer is not moved down
(or up) to its execution location.

3) You cannot generate a true COM file, only a HEX file.
. (1If you use the /N option, the linker will display the
message "Generate a nan-standard object code file",
and will generate an output file designed specifically
~for use with the Pascal/Z overlaying compiler. The
format of this file is as follows: the first two bytes
give the address at which the code is supposed to be
executed. This is followed by 126 nulls. Then the
actual code begins. For the code to be executed, the
address and the 126 nulls must be stripped off, and
the code must be moved to the specified address. The
extension COM will not be added to the output file
name -- it is left with no extension.)

4) You cannot start the program with a /G command. You
may only exit with /E.

You use the offset load mode to load code into the buffer andg
then store it in a HEX file. You can later load the HEX file and
execute the program.

You may use the /a, /C, /D, and /P options to force the loading
address of any section of code as long as the forced address is
at or above the address given in the /0 command. The amount of
loading space is the same as in the normal mode except that now
the available locations start at the address given in the /0
command instead of starting at location zero.

- 13 - . LINK/Z

INPUT FILES .

An input file may be preceded by a device specification and may
be followed by one or more options. The extension 1is always
forced to REL. The file is loaded as soon as its name 1is
encountered in the command 1line. Any options immediately
following a file name apply to that file.

LINK/Z ' - 14 -

LINKING

The linker does several operations when it loads a module:

i) If /V ("verbose") has been specified it prints the
module name.

2) Entry points (if any) are added to the entry point
symbol table.

3) The sizes of the common, program, and data sections
‘ are defined. 1If /V has been specified the sizes and
section addresses are printed.

4) The code is loaded.

5) External symbols (if any) are added to the external
symbol table.

A} External symbols are resolved (if ©possible) and
removed from the external symbol table.

External symbols are resolved as follows: The linker takes a
symbol from the external symbol table and tries to find a match
for it in the entry symbol table. 1If it finds & match it sets
all of the corresponding external references to the address value
found in the entry symbol table and removes the external symbol
from “the table. If it cannot find a match it skips the symbol
and. goes on to the next one.

Note that some 'space is taken up by unresolved symbols but when
all the modules in a program are loaded and all external symbols
are resolved the external symbol table is empty and the space it
occupied is reclaimed.

- 15 - LINK/Z

LOAD MAP

The /M option prints a load map, that is, a list of entry points
(to date) with their absolute addresses followed by a 1list of
unresolved external symbols (marked with asterisks). The map
tells you which entry points have been loaded (and where) and
which have not. The map is normally printed on the console.
However, if you follow the /M with a colon and a file name the
map 1is stored in a file with that file name. The extension is
set to MAP. For example, the following command line generates a
file called TRIG.MAP on drive B:

/M:B:TRIG
Note that if generating a load map when linking a program with a
collection of library subroutines, the library must be specified
in the command line; the default library will not be linked in
automatically.

UNRESOLVED EXT SYMBOLS

The /U option prints a list of the unresolved external symbols.
BEach symbol is preceded by an asterisk (*) to mark it as
unresolved. Like the /M option, the /U option normally prints
the list on the console but it may also take a file name and
‘generate a file with the extension MAP.

SYMBCL TABLE

The /Y option sets up a request to generate a symbol table. The
table is generated when a /G or /E command is given, that is,
when everything has been loaded. The symbol table is in the same
format as the load map. Like the /M option, the /Y option
normally prints the symbol table on the console but it may also
take a file name and generate a file with the extension SYM.

INK/Z - 18 -

SEARCH

Library files usually contain more modules than are needed by a
program being linked. The search option (/S) tells the linker to
locad only the - modules needed to resclve pending external
symbols., For example, you might type: :

NAVIGAT TRIG/S

The main program, NAVIGAT.REL, is loaded first. It has probably
generated some entries in the external symbol table. The
library, TRIG.REL, is loaded next in search mode. This means
that as each library module is read in its entry symbols are
compared with external symbols from the table. If a match is
found the module 1is 1loaded. If net it 1is skipped. This
continues until all the modules 1in a 1library have been
processed.

Note that a module in the library which is loaded may add more
external symbols to the table. These symbols will (hopefully) be
resolved by subsequent modules in the library. This is very
useful, especially with Pascal, since vou end up with a minimum
run-time package.

- 17 - . LINK/Z

OUTPUT FILES.

The linker's primary task in the lcad mode is to load a program
into memory. After the program is loaded you may save it in
either COM file or in a HEX file. VYou may request a COM file
with the /N option ("name"”) or a hex £file with the /H option
("hex") followed by a colon (:) and the file name. The
extension is forced to COM or HEX. Notice that this is only a
request for an output file. The file is not actually generated
until the 1linker executes a /E or /G option (see below).
Therefore, you may rename the output file as often as you like
and you may even change its type. For example, you might type:

/N:NAVIGAT Request NAVIGAT.COM.
/N:B:FLY Change it to FLY.COM on drive B.
/8 Change it to FLY.HEX on drive B.

The linker keeps track of the lowest and highest addresses into
which it has actually loaded code. When it saves a program it
uses the lowest and highest addresses as bounds and saves
everything in between. (A COM file always starts at location
100B:and therefore always uses 100H as the lowest address). This
means that if your program reserves some space at the very end
with the DS instruction those locations are not saved as part of
the output file (this saves some space).

1f the linker is operating ‘in the offset load mode it cannot
generate a COM file, only a HEX file.

JINK/Z ' ’ - 18 -

EXIT, GO

After you have finished loading a program you leave the linker
with either the /E ("exit") or /G (exit and "go") options. ' The-
linker does several operations when it executes either of the
options:

1) It checks the external symbol table. If it finds any
unresolved external symbols it loads the library file,
usually LIB.REL, (on the logged-in drive) in search
mode (/S). s

2) It checks the external symbol table again. If it
still finds any unresolved external symbols it prints
a list of the external symbols, ignores the remainder
of the command 1line, and prompts you for a new
command line. -

3) It generates a COM or HEX file if one has been
requested. :

4) It generates a symbol table,
5) It sets up the block move routine (at location 80H).
6) It sets either the program starting address (for /G)

or zero (for /E) into the jump address in the block
move routine.) ‘ ‘

7Y It prints the lowest, highest, and starting addresses
of the program. : .

8) It executes the block move routine (which moves the
program down to the location at which it will execute)
and jumps to either the beginning of the program (/G)
or to the operating system via location zero (/E).

At this time the 1linker is no 1longer in memory. It has been
replaced by your program.

If the linker is operating in the offset load mode it stops after
step 4 and returns to the monitor without moving any code.

- 19 - | LINK/Z

COMMAND SUMMARY

Commands may be glven to the linker on the same lzne in which it
is called:

'LINK FILEl FILE2 FILE3

and/or they may be given while the 1linker is operating. The
command line is read and executed from left to right, entry by
entry. An entry 1is everything 1in the line up to but not
including the next file name. Any options follewing a file name
are part of that entry and are executed with it. For example:

/A FILEB/B/C FILED

The first entry is just the option /A. The second entry is the
name, FILEB, and its options, /B and /C. The third entry is just
the file name, FILED, with no options. Note that in this example
A, B, and C are arbitrary options.

The linker has two operating modes: the librarian mode and the
load mode. You may enter the 1librarian mode by typing
/L:filename as the very first command given to the linker. 1If
you start with anything else you enter the load mode. You may
enter the offset load mode by typing /O:XXXX as the very first
command given to the linker. XXXX is the lowest address that you
want to load code into. ' :

At any time you may restart the linker by typing /R ("restartl).
This clears all internal tables and tells the linker to forget
that it has read, loaded, or written any flles. It also ignores
the remainder of the command line.

Input file names are not preceded by anything and may be followed
by one or more options. The input £file extension 1is always
forced to REL.

Output file names follow colons (:) in options. The output file
extension is forced to COM, HEX, MAP, SYM, or REL.

LINK/Z - 20 -

A file name may contain a'drive specification. For example:

INPUT1/M:A:LIST B:INPUT2/H:0UTPUT

The following options are valid in the librarian mode:

/L:NAME

/Q

/E

Open a library output file named NAME.REL. Once this
option is given and the file 1is opened the name 1is
fixed. It cannot be renamed with this option.

Ask, module by module, if it is OK to keep each of the
modules in this library file. You may respond with Y
(yes: accept this moduley, Q (quit: 1ignore the
remainder of this file), A (open an auxiliary. input
file), or ‘any other key (skip this module). This
option takes effect while its input file is read.

Close the library file and return to the monitor. This
option takes effect after its input file (if any) is
read.

The following options are valid in the load mode:

/0:XXXX

/S

/v

/A XXX

/C s XXXX
/D XXXX
/P s XXXX

/H:NAME
/N :NAME

Load in the offset ﬁode. XXXX is the lowest address
available for loading.

"Load a file (probably a file already created by the
linker in the 1librarian mode) in search mode. Load
only the modules needed to resolve symbols in the
external symbol table. Skip the rest. This option
takés effect while its input file is read.

Print the name of each module 1loaded and the
locations and sizes of each of its sections. This
option takes effect before its input file (if any) is
read and stays in effect forever.

The address setting options takes effect before their
input files (if any) are read.

Load all sections (unless otherwise specified)
starting at location XXXX.

Load all common sections starting at location XXXX.
Load all data sections starting at location XXXX.
Load all program sections starting at location XXXX.

Request a hex file called NAME.HEX.
Request a COM file called NAME.COM.

- 21 - : LINK/Z

/M:NAME

/U :NAME

/Y :NAME

/E

/G

LINK/Z

,Théf mép andgglistfféptions take effect after their’

input files (if any) are read.

Generate a map of all symbols in both symbol tables
and send it to a file called NAME.MAP. If :NAME is
missing print the map on the console.

Generate a list of unresolved external symbols and
send it to a file called NAME.MAP. If :NAME is
missing print the list on the console.

Generate a symbol table just before a /E or /G
command 1is executed and sent it to a file called
NAME.SYM. If :NAME is missing print the table on the
console.

Load the library file (usuvally LIB.REL), if
necessary, generate an output file if requested, move

-the program down to 1its actual execution location

(if not in the offset load mode), and return te the
monitor. This option takes effect after its input
file (if any) 1is read.

Do the same as /E except start the program instead of
returning to the monitor. The /G option 1is not
available in the offset load mode.

- 22 -

ERROR MESSAGES

Bad address

Bad command character

<name> is a bad EXT chain

Bad file name

Bad input file

Bad option
Can't find <name>

Can't open output file

Code below lowest address

/A, /¢, /D, /0O, or /P 1is not
followed by a colon. The remainder
of the command line is ignored.

There is an extraneous character in
“the command line, probably a
punctuation character. The
remainder of the command line is
ignored.

An address 1link in an external
symbol chain points to a location
outside of the available program
area. The relocatable input file
may be bad or some code may have
overwritten part of the chain.
This is a fatal error.

There 1is something wrong 1in the
file name specification. The
remainder of the command line is
ignored.

The input file does not make sense
as a REL file. A read error may
have occured or the file may not
actually contain relocatable code.
The remainder of the command line
is ignored. .

An option was specified which is
not valid in the-current mode. The
remainder of the command line is
ignored.

The specified input file does not
exist on the specified device. The
remainder of the command line is
ignored.

The specified output file cannot be
open on the specified device. The
device may be full or not
operating. The remainder of the
command line is ignored.

You have attempted to 1load code

below the lowest available address
(usually in the offset load mode).

- 23 - LINK/Z

Code overwrites tables

Entry point symbol .redefined

Error writing file

»

Name too long

No COM file in offset mode

No GO in offset mode

No ocutput file

LINK/Z

This is.a fatal error..

* There is not endugh memory to hold

the linker, its symbol tables, and
your program. You lose. This is a
fatal error. ‘

The linker tried to load a module
containing an entry point symbol
identical to one already 1in the
entry point table. It may be
trying to load the same module
twice.

A write error occurred while
writing an output £ile. It may not
be valid. You may have to write it
again. The remainder of the
command line is ignored.

There are too many .characters 1in
the file name. The remainder of
the command line is ignored.

You cannot generate a COM file in
the offset load mode because the
load image in the buffer is not the
same as a COM file memory image.
You can generate a HEX file
instead.

You cannot execute a /G command. in
the offset load mode because the
load image in the buffer is not
moved down (or up) after everything
has been 1loaded. You can only
generate a HEX file and load it
later.

You attempted to read an input file
in the librarian mode without

opening an output file. The
remainder of the command 1line is
ignored. Open 1t now with the

/L:filename option.

You attempted to exit the linker in
the load mode with an output £file
request pending but no output file
name. The remainder of the command
line is ignored. Specify the
output file now with the

Second common larger

Starting address redefined

Too many commons

Undefined common

Undefined REL entry

~ /H:filename or /N:filename option:

You loaded a module which attempted
to define an existing common to . a
larger size. This is not allowed.
If a module contains a common
section which has already been
defined (by a previous module) it
may use less than or all of that
common space but not more. This is
a fatal error. '

You loaded two modules which both
have starting addresses. You may
have 1loaded the same one twice.
Only one starting address may be
specified in a program.

More than 15 commons have been
defined. This is a fatal) error.

A module tried ¢to reference a
common section which has not been
defined. The input file is
defective. It may not actually
contain relocatable ‘code.

A module contains a relocation
instruction which the 1linker does
not understand. The relocation
instruction is ignored. The input
file may be defective or it may
contain a feature which this
version of. the linker cannot
handle.

25 - : LINK/Z

" LINKING UNDER THE K3 OPERATING SYSTEM

There dre several differences between u51ng a K3 operating system
and using a CP/M operating system.:

1)

2) .

3)

4)

5)
A)

You must tell the operating system to run the linker
with the command R LINK. You may type a string of
commands on the same line if you wish.

A SAV file is created instead of a COM file.

A SAV file may be created in the offset load mode.

The K3 operating system is able to start a program no
matter where it is located in memory. It also has a

sufficient stack space for most programs. Therefore,

no code is automatically generated at location 100H to
set the stack and Jjump to the start of the program.
You may load code into location 100H if you wish.

The default loading address is 70H.
The code that moves the program from the offset buffer

to its final execution address (LDIR, JMP start) |is
stored at location 3.

-A-command to link-a test program from DKO:, print a load map on
the line printer, and save the program in a SAV file on DK2: is

as follows:

.R LINK TSTPRG/M:LP:/N:DKZ:TEST/B

LINK/Z

