
A CS-4 PRIMER

Prepared for:

Sponsored by:

VOLUME I

BASIC FEATURES

Second Edition

February 1975

Robert Fourer

James L. Felty

Intermetrics, Inc.
701 Concord Avenue
Cambridge, Massachusetts

Contract N00123-74-C-00634

02138

Naval Electronics Laboratory Center
San Diego, California 92152

Naval Air Systems Command
Naval Electronic Systems Command
Washington, D. c. 20360

This document is Data Item CDRL A002 A CS-4 Primer:

Volume 1: Basic Features, under Contract N00123-74-C-0634.

Mr. Warren E. Loper, Code 5200, is the Contract Technical Monitor

for the Navy. Dr. James S. Miller is Project Manager for Intermetrics.

Copyright@l975 Intermetrics, Inc.

The U. S. Government possesses a royalty-free, non
exclusive and irrevocable license throughout the world
for Government purposes to publish, tr~nslate, repro
duce, deliver, perform, and dispose of the technical
data contained herein, and to authorize others so to do.

PREFACE

This is the second edition of A CS-4 Primer: Volume 1: Basic

Features. It reflects the revisions made in CS-4 through January,

1975, and thus supercedes the previous draft publication of Volume I

(January, 1974). This volume presents the basic features of CS-4;

it is to be followed by subsequent volumes which whill cover all of

the more advanced features of the language.

Design criteria

The Primer may be used to teach the CS-4 language to programmers

of widely differing experience and capability. It may re employed in

varying educational contexts. To ensure its usefulness in a variety

of situations, the following guidelines have been followed in the

design and writing:

1) The Primer should assume no prior knowledge of computers or

computer languages, so that it can be used to teach CS-4 as a

first language.

2) The Primer should also cover the more advanced aspects of CS-4

which will be taught to experienced programmers.

3) The Primer should be structured so that readers with pro

gramming experience can easily skip over the more elementary

parts of the exposition.

4) The Primer should not assume any degree of supplementary in

struction~ It should be usable with or without classroom

lectures, assigned machine probleros, and the like. To this

end, all points of importance should be introduced with

numerous examples which show the reader how to make use of what

he has learned.

5) Good programming practices should be stressed, both by the

general approach taken, and in the specific examples.

iii

6)

7)

The implementation-dependent aspects of programming should be

left out or played down as much as possible.

The prose style should be simple and conversational, but not

condescending.

iv

TABLE OF CONTENTS

PREFACE

PART 1 -- Elementary Statements and Data Types

Chapter 1.0 -- Introduction: Computer Programs and
Programming Languages

How to use this Primer
What is a computer program?
What is a programming 1 anguage?
How does the computer understand the programming language?
Writing readable programs

Chapter 2.0 -- Arithmetic and Storage

Numerical values
Literals with exponents
Arithmetic operations
Operators
Precedence and associativity
Storing a value
Using the stored value of a variable
Storing a new value of a variable
Names for variables

Chapter 3.0 -- Writing a Simple Program

Putting a program into a form the computer can read
Control cards
Declaring variables
Limits on REAL values
Printing output
Comments
A sample program

Chapter 4.0 -- Input and Looping: Writing a Reusable Program

Assigning values from input cards
Changing input from run to run
Changing the flow of control
A looping program

v

iii

1

3

3
3
4
5
6

8

8
9
9

10
12
13
15
16
16

18

18
19
20
21
22
22
23

25

25
27
29
30

Chapter 5.0 -- Testing Conditions: The IF Statement

Writing equalities and inequalities
Testing equalities and inequalities
Using IF statements to improve the billing program
Adding an ELSE clause
IF statements within IF statements

Chapter 6.0 -- Two New Modes: BOOLEAN and INTEGER

32

32
34
35
36
37

39

BOOLEAN mode 39
Logical operators 41
Boolean expressions in IF statements 42
Using BOOLEAN variables and expressions 43
INTEGER mode 44
Expressions and assignments using only INTEGER values 45
Mixing INTEGER and REAL in arithmetic expressions 46
Mixed assignments - INTEGER to REAL 48
Mixed assignments -- REAL to INTEGER 48
Comparing INTEGER and REAL values 50
Declaring variables of several modes in a single declaration

statement 51
Initializing in a declaration 52
CONSTANT declarations 52

Chapter 7.0 -- Statement Blocks 54

BEGIN blocks 55
Using BEGIN blocks in IF statements 56
Nested BEGINS and IFS 57

Chapter 8. 0 Loop Statements

The form of the REPEAT statement
Qualifying a REPEAT statement with an UNTIL phrase
Qualifying REPEAT with the WHILE phrase
Qualifying REPEAT with both WHILE and UNTIL
Step-and-Test loops
Using the step-and-test qualifiers in special cases
Negative step values
REAL mode in REPEAT statements
Default actions of step-and-test qualifying phrases
Using both step-and-test and comparison qualifying phrases
Nested REPEAT statements
Leaving out the looped statement

vi

59

59
60
61
62
63
65
66
67
68
70
71
72

Chapter 9.0 -- More About Blocks and Loops: The EXIT Statement 74

Using EXIT
REPEAT loops containing EXIT
The need to label blocks
Referring to a labelled block in an EXIT statement
EXITing from a nested REPEAT

PART 2 -- Data Handling with Arrays and Character Strings

Chapter 10.0 -- Declaring and Using Arrays of Values

The need for arrays
Declaring array variables
Referring to individual array elements
Reading and printing arrayed values
Writing a program using arrays
Array inputs of varying size
Using an array for a data base
Building a data base with an array

Chapter 11.0 -- Operations on Whole Arrays and Subarrays

Assignment of whole arrays
Arithmetic operations on whole arrays
Subarray subscript notation
Input and output of subarrays
Using subarrays in arithmetic expressions
An example with subarray calculations
Summing over an array
The product over an array

Chapter 12.0 -- Boolean Arrays

General properties of arrays applied to BOOLEAN mode
A BOOLEAN array as a look-up table
Distributivity of comparison operators over REAL and

INTEGER values
Distributivity of comparison operators over BOOLEAN values
Distributivity of logical operators
ALL and ANY expressions
An example

vii

74
75
77
78
79

81

83

83
85
86
89
89
90
92
94

96

96
98

100
100
102
103
105
106

107

107
108

111
112
112
112
113

Chapter 13.0 -- Multi-Dimensional arrays

Declaring multi-dimensional arrays
A two-dimensional problem
Programming the problem with 2-dimensional arrays
Simplifying multi-dimensional array expressions
Whole-array assignment and input/output
Subarray subscripting
A shorter notation for certain subarrays
Distributive operators
ALL and ANY
Using the array-handling tools
Arrays of arrays
The meaning of arrays of arrays
Multiple subscripts in general

Chapter 14.0 -- Character String Data

Character sets
String literals
Adding useful messages to output
Character string variables
Using STRING variables

Chapter 15.0 -- String Processing

Strings as arrays
Subscripting STRING variables
String equality comparisons
An example with subscripted strings
Concatenation
String inequality comparisons
Mixing STRING and other modes
Arrays of strings
Distributivity of string operators
A string-processing example

PART 3 -- Programming with Functions

Chapter 16.0 -- Functions

The need for a structured program
Function calls
Rewriting a program with function calls
Defining a function
Writing some FUNCTION definitions
The RETURN statement in FUNCTION bodies
Terminating the program from within a function
Calling a function from within a function body
Putting it all together

viii

body

Page

115

115
116
120
122
124
126
130
131
131
132
133
135
137

139

139
140
142
146
147

150

150
150
152
152
153
155
157
158
159
160

163

165

165
169
171
172
173
176
177
178
180

Chapter 17.0 -- Arguments to Functions

Passing argument values
A one-argument function
Functions with more than one argument
Rules for argument passage
Array parameters of changeable size
Automatic resolution of parameter size
The pre-defined function SIZE
STRING parameters of unresolved length

Chapter 18.0 -- Parameter Bindings

INPUT parameter binding
INOUT parameter binding
OUTPUT parameter binding
A restriction on arguments sent to INOUT and OUTPUT

parameters
COPYIN parameters
Advanced topics

Chapter 19.0 -- Return Values of Functions

Why return values?
Defining a function to have a return value
Specifying a return mode
Indicating the return value
Array return values of unresolved size
STRING return values of unresolved length
Returning the empty string
Advanced topics

Chapter 2 0. 0 Pre-defined Functions for Arrangement
of Input and Output

Centering character strings on output
Arrangement of INTEGER output in columns
Using LPAD with arrayed variables
Arrangement of REAL output items
Printing REALs in exponential form
Printing on the same line twice
Advancing the printer to a new page
Printing multi-dimensional arrays as tables
Using variables as second arguments in LPAD functions
Input of data items using READ LINE
Input of data items not separated by blanks
Irrelevant input data

Chapter 21.0 -- Internal Names and Storage Types

Declarations inside a FUNCTION definition
Storage types
Initialization of AUTOMATIC storage
AUTOMATIC arrays and strings of unresolved size
STATIC variables and constants internal to a function
Function definitions internal to a function
Names restricted to BEGIN blocks

ix

Page

185

185
187
190
192
193
196
198
199

200

200
201
202

203
204
204

205

205
207
208
209
210
211
212
214

215

215
216
221
222
224
227
228
229
231
234
237
241

243

244
245
247
248
249
250
251

Chapter 22.0 -- Recognition of Names

General definitions
Restrictions on the definition of names
Rules for references to names
An example with multiple declarations
Scopes of parameter names
Names used in parameter declarations
Names used in declaration statements
Scope of function names
Scopes of BEGIN block names

Chapter 23.0 -- More Pre-defined Functions

Trigonometric functions
Logarithms and exponentials
Other functions on single numerical values
Array handling
String handling
Operating system interface functions

Chapter 24.0 -- Definition of Operators

Operator names
Defining pref ix and infix operators
Examples of operator definitions
Precedence in operator definitions
Associativity in operator definitions
The COMMUTATIVE attribute
The assignment operator
Pre-defined operators

APPENDICES

APPENDIX A

APPENDIX B

ASCII Character Set and Collating Sequence

Precedence nnd Associativity of
Pre-defined Operators used in this
Volume

Reader's Comment Form -- A CS-4 Primer

Update Request Form -- A CS-4 Primer

Change of Address Form -- A CS~4 Primer

Index

x

254

255
256
257
258
263
263
264
265
267

268

268
269
269
270
270
272

273

274
275
276
278
280
281
282
283

285

287

290

291

295

297

299

PART 1

ELEMENTARY STATEMENTS AND

DATA TYPES

1. 0

INTRODUCTION: COMPUTER PROGRAMS AND PROGRAMMING LANGUAGES

How to use this Primer

This Primer is an introduction to writing computer programs in

the programming language CS-4. If you are unfamiliar with writing

programs for a computer, you should keep reading right here. If you

have had some experience with a programming language, you may prefer to

skim the introductory chapters, and concentrate on those which treat

concepts that seem unfamiliar. If you have already done a substantial

amount of programming, you may want to skip directly to Volume 2 of

the Primer, which contains a summary of all aspects of CS-4 which are

introduced in this volume.

However you read .this Primer, it will be of most use to you if

you write and run your own programs while you are going through it.

The Primer itself contains some sample programs, which you might also

like to run, perhaps with your own modifications. Actually writing and

correcting programs is the best way to learn how CS-4 is used.

Once you get past the most elementary chapters, you will

probably want to keep handy copies of the two reference manuals for the

language the CS-4 Language Reference Manual and CS-4 Operating System

Interface. They contain a concise and complete description of all

features of CS-4, including a number of special and advanced points which,

for simplicity, are omitted from this Primer.

What is a computer program?

In order to do something with a computer, you have to write a

program for it. A program is a set of instructions that tells the computer

how to do what you have in mind. Without these written instructions -

telling it exactly how to do the job -- a computer cannot perform any task

for you at all.

You may not be familiar with this meaning of the word "program".

It has been used this way only since the invention of the computer. But

the i&ea behind it -- a set of precise instructions to be carried out

3

literally and in some order is one you have encountered many times.

A carefully marked road map is one obvious example -- it is a way of

listing, in order, the various left and right turns a driver must make to

reach a certain destination. Another example is a recipe, whose detailed

instructions enable a cook to produce an unfamiliar dish. A program is

also a series of instructions, but one that can be carried out by a

computer.

A computer does not carry out instructions in quite the same

way that a person does. For one thing, it works considerably faster than

a person ever could. It also has a much greater capacity for storing and

retrieving detailed data. A third difference is perhaps less obvious:

a computer follows its instructions literally, much more so than, say,

human beings follow a recipe. If a recipe calls for 11 cups of sugar,

you may recognize it as a misprint and use 1 cup instead. But if an

instruction you give the computer can be carried out, it will be

carried out regardless of whether or not it makes sense in the context of

what you are trying to do. Moreover, if an instruction cannot be carried

out -- because it is misspelled, or otherwise impossible to interpret

as stated -- the computer will cut its work short and report that it has

encountered an error. A friend or a cook might hazard a guess at what

you meant by an incorrect instruction, but the computer will not. So a

computer program must be written with special care, to be sure that it

says exactly what you want it to, and to be sure that it says it in the

right way.

What is a programming language?

A computer must be given instructions in a language it can

understand. Such a language is called a programming language. You

might wish to program a computer in English, since that is a language you

use to communicate with other people as well. But computers cannot

understand English; they can be programmed to recognize a few dozen, or

even a few hundred, English words, but an entire natural language is too

complex and too ambiguous for them. What is more, Engl~sh is not well

suited to describing many of the things you might want a computer to do.

Numerical calculations, for example, are more easily and more concisely

described using the symbols of arithmetic. So programming languages

usually describe calculations with algebraic notation, instead of with words.

4

Programming languages also incorporate the formulas of mathematical logic,

because they are an especially brief way of stating conditions that can

be true or false.

The traditional notations of arithmetic, algebra, and logic were

not devised with the computer in mind. Hence they are not sufficient to

describe everything you might want a computer to do. What is needed is a

language more extensive than mathematical notation, but more restricted

and more precise than natural English. A language that meets these needs

will be suitable for programming a computer.

This Primer introduces the programming language CS-4. A set of

instructions written in CS-4 can also be carried out by any person who

understands the language: they do.not have to be done by a machine. But

the important thing is that a computer can understand them, and can carry

them out much faster and more reliably than a person could.

How does the computer understand the programming language?

language

Each type of computer is built to understand one particular

its own machine language, so to speak. This language is

designed to be stored in the computer as patterns of electronic signals,

and it is interpreted automatically by the computer's circuitry. It is

possible to write programs in machine language, by encoding the proper

electronic patterns on a tape or some other medium that can be read by

the computer; but such a process is extremely cumbersome and time

consuming. Moreover, a program in one computer's machine language will

not be understood by other computers.

Fortunately, you do.not have to know anything about machine

languages in order to use a computer. You can write all of your programs

in CS-4. The computer will translate your CS-4 instructions into its own

internal machine language instructions. Then it will carry out the trans

lated instructions.

The computer translates CS-4 instructions into its internal

language by following a special set of instructions called the compiler.

This process of translation is thus known as compiling. Your entire

program -- all of your instructions for doing a particular thing -- is

compiled all at once. After the translation is complete, the computer

begins to carry out the instructions in the proper order. When the machine

5

is actually carrying out the instructions we say it is executing the

program.

So you see there are two steps to running any CS-4 program on

the computer: compilation and execution. If the compiler finds an instruc

tion in your program that it cannot understand, or that is written

improperly, it will not be able to translate that instruction. As a

result, it will not allow the program to be executed. You will have to

correct the erroneous instruction and submit the program to the compiler

again.

Once the compiler accepts a whole program, it can be executed:

however, that does not guarantee that it is error~free. The compiler can

only tell that the program is written properly, according to the rules of

the language. It cannot tell whether it is written properly for the

computer to do what you wanted it to do. You have to check for that

yourself.

Practically every program (unless it is extremely small and

simple) initially has a couple of errors or "bugs", as they are commonly

known. The process of correcting all the errors called debugging

is every bit as important as writing the program in the first placP-.

Often a careless programmer must spend more time debugging his work than

writing it.

Writing readable programs

In CS-4, as in most languages, there is usually more than one

way to give the same set of instructions. To the computer, it usually

matters little which way the instructions are given -- it follows them

with its customary speed and precision in any case.

It is important to keep in mind, however, that although your

programs are always executed by a computer, they will have to be read

by people, too. You will have to read them yourself -- when you are

debugging, or when you want to make changes to a program after it is

running properly. Often other people will want to read your programs,

too -- to modify them for their own use, or to look for errors you might

not have caught. Even when you are first writing a program, it is

valuable to organize and write your instructions in a way that makes it

easy for you to keep track of what you are doing.

6

One of the objectives of this Primer is to help you develop a

good CS-4 "style". To do this, we have tried to present many sample

programs which are relatively easy to read and understand. The text also

makes some explicit conunents about readability and good progranuning

practice.

7

2.0

ARITHMETIC AND STORAGE

People usually think of a computer as a machine that works with

numbers. It can add, subtract, multiply, and divide them. It can put

a number in storage, and recall it later.

A useful general programming language must be able to tell the

computer how to do arithmetic and storage. This chapter explains how

you write these operations in cs-4.

Numerical values

You can write numbers in CS-4 the same way you do in arithmetic.

A decimal point is allowed, but it is not required. For example:

12

32.731

7

7.

7.0

.8

0.8

0. 0001728901

627000000000000

Commas or spaces within numbers are not accepted by the compiler. For

example, if the last example above were written

627,000,000,000,000 or 627 000 000 000 000

it would not be correctly recognized as a number, and would probably

be rejected outright as an error (whether the compiler can detect the

error will depend on the context in which the error appears).

Numbers written in a program are called literal constants (or

simply literals), since their values are indicated by the way they

are written.

8

Literals with exponents

There is another type of numerical literal in CS-4 which might

not be as familiar to you. It is a literal with an exponent part

an adaptation of the "scientific notation" used in chemistry and

physics. It consists of a mantissa value, followed by a letter E,

followed by an integral exponent value; it represents the mantissa

multiplied by 10 to the power of the exponent. Here are some examples:

With exponent

2.3E4

2.3E-4

2.3EOO

147.E3

.091E-5

2E+25

7.9375892E-15

Equivalent without exponent

23000.

.00023

2.3

147000

.00000091

20000000000000000000000000

.0000000000000079375892

The last two examples demqnstrate how literals with exponents con

veniently represent very large or very small magnitudes.

The exponent part of the literal must not have a decimal point;

it may be preceded by a plus or minus sign, as the examples show.

Spaces or commas within the literal are prohibited, as they are in

non-exponential literals.

Arithmetic operations

You can write addition, subtraction, multiplication, and

division in CS-4 in much the same way as they are usually written in

arithmetic:

2 + 3 2 plus 3

2 - 3 2 minus 3

2 * 3 2 times (multiplied by) 3

2 I 3 2 divided by 3

(* has been chosen for multiplication, and / for division, because

they are much more commonly found on card punches and printers than

the traditional x and +).

9

You can also use a minus or plus sign in front of a single

operand. The former negates a value, while the latter leaves it the

same:

-2.3E-4 the negative of 2.3E-4 (-. 00023)

12 * -6.7 the product of 12 and neg a :::.i ve 6.7

2 ** -4 2 to the power -4 (0.0625)

2 ** +4 2 to the 4th power (16)

(-80.4)

CS-4 does not recognize the usual superscript notation for

raising a number to a power (2 5
, for instance, for 2 to the 5th power).

Instead, there is a symbol for exponentiation. It is written as two *
characters, with no space between them:

2 ** 5 2 to the 5th power

2 ** 0.5 2 to the power 0.5 -- the square root of 2

Operators

Symbols such as+, -, *, **, and/ are referred to as operators.

The entities (such as numbers) that they operate upon are called their

operands. When operators are used in expressions like these:

4 + 5

3.2 - 15

12 * 700

2 ** 15

0.05 I o.03

they are called infix operators, because they are placed in between

their operands. When a plus or minus sign is used like this:

0.5 * -6.3

-3 I +4

it is called a prefix operator, because it appears before its one

operand. CS-4 has other infix and prefix operators, which you will

learn about in the next several chapters.

10

In general, the amount of spacing between operator and operand(s)

makes no difference. For example, the following all are legal, and

mean the same thing:

2 + 3

2+3

2 +3

2+ 3

2 + 3

Programs are usually most readable, however, if the first example above

is followed.

Many operators of CS-4 are written, like**, with two or more

characters. Do not leave any spaces between the characters of a

multi-character operator: the characters must be adjacent, or the

compiler will not interpret the operator as you intended. For instance,

2 * * 3

will be read as having two * operators between the literals, instead

of one ** operator.

When two operators appear in succession, they must be sepa~ated

by at least one space. For example, you can write "six times negative

three" in any of these ways:

6 * -3

6* -3

6 * - 3

but if you write it like this:

6*-3

your intentions will not be understood by the compiler. The compiler

will not be able to tell that * and - are supposed to be separate

operators. (You can play it safe by leaving spaces on both sides of

your operators; that way, the compiler will always read them as you

intended.)

11

Precedence and associativity

When more than one operator is used in an expression, the

compiler must have some way of determining just what each operator's

operands are. For instance, in

7.3 + 6.9 * 2.0

is 6.9 the right operand of+? Or is its right operand 6.9 * 2.0?

One way to distinguish alternatives such as these is to group

operands in parentheses, just like it is done in algebra:

7.3 + (6.9 * 2.0)

{7.3 + 6.9) * 2.0

-(5.5 - 2.1)

(-5.5) - 2.1

7.3 plus the product of 6.9 and

2.0 (21.1)

2.0 times the sum of 7.3 and

6.9 (28.4)

the negation of 5.5 minus 2.1 (-3.4)

negative 5.5 minus 2.1 (-7.6)

If the grouping of operations is not fully indicated by

parentheses, it is determined by the precedence of the operators.

Operators with higher precedence are applied (grouped with their

operands) before those of lower precedence. The operators we have

introduced so far are ranked as follows:

infix **
prefix + -
inf ix * I
inf ix + -

highest precedence

lowest precedence

So ** is applied before the prefix arithmetic operations, which are

applied before * and/, which are applied before infix+ and -

For example:

Expression

7.3 + 6.9 * 2.0

-5.5 - 2.1

-2 ** -5 * 3 - 10

Equivalent expression with parentheses

7.3 + (6.9 * 2.0)

(-5.5) - 2.1

((-(2 ** (-5))) * 3) - 10

12

Sometimes two infix operators with the same precedence occur

together, in expressions like:

2 I a * 4

3.4 - 2.1 + 0.9

2 ** 3 ** 0.5

If the operators are+, -, *, or/, the leftmost one is applied

first; we say that these operators are left associative. On the

other hand, ** is right associative -- the rightmost occurrence of

the operator is applied first. Thus the examples above are evaluated

like this:

Expression

2 I a * 4

3.4 - 2.1 + 0.9

2 ** 3 ** 0.5

Storing a value

Equivalent expression with parentheses

(2 I a) * 4

(3.4 - 2.1) + 0.9

2 ** (3 ** 0.5)

You can save a numerical value, or the result of a calculation,

by assigning it a space in storage. A stored item of data is called

a variable. Every variable has a ~, which is associated by the

computer with the value assigned to it.

To assign a value to a variable, you write an assignment, which

looks like this:

DISTANCE : :;:: 12

The colon followed by an equals sign is called an assignment operator.

An assignment causes the value expressed to the right of the assign

ment operator to be associated with the variable whose name is to the

left of the assignment operator. In the example above, the value of

12 is associated with the variable named DISTANCE. You can read this

as "12 is assigned to DISTANCE'' or "DISTANCE gets the value 12" or

just "DISTANCE gets 12".

13

Assignments often appear as individual statements in a program.

A statement is a basic unit of a CS-4 program; in the chapters to come

you will learn many types of statements in addition to assignment

statements. A program's statements -- of any type -- are separated by

semicolons. The compiler assumes that what follows a semicolon is

intended to begin a new statement.

Here is a sample sequence of four assignment statements:

TEMP := 99.8;

DIFFERENCE := 9.7 - 9.6;

BAL := 50000 * (1 + 0.0015);

x := -1;

As you can see, the left operand of the assignment operator is always

a variable name. It makes no sense to write

3 := 3.14159;

because the literal constant 3 has a fixed value; you cannot assign a

new value to 3. The compiler will reject such an assignment as an error.

The spacing rules for := are the same as for any two-character

infix operator. Hence, your program will not be interpreted by the

compiler as you intended it if you write

X:=-1;

x = 3

(space required between the two

operators := and -)

(space not allowed between the two

characters of :=)

The semicolon is not an operator; the amount of space around it makes

no difference.

(Spacing rules for CS-4 are quite liberal -- usually any reason

able spacing is allowed. The rest of this primer will therefore often

omit detailed spacing rules. Instead, a preferred style will be

shown in the examples. You can find complete rules for spacing in the

Language Reference Manual.)

14

Using the stored value of a variable

Once a value is assigned to a variable, you can use the variable

name to represent that value in an arithmetic expression. For example,

X := A + 2

takes the value associated with A and adds 2 to it; the result is then

assigned to x. If you had previously written A := 3, then X would be

assigned the value of 3+2.

men ts

Here are some more examples: assume you have made the assign-

DISTANCE := 30.;

TIME := 2.5;

WEIGHT := 1000.0;

Following are some subsequent assignments you might make, along with

their meanings:

RATE := DISTANCE /
TIME;

WORK := WEIGHT *
DISTANCE / 100;

NEWRATE := (DISTANCE

- 2) I TIME;

J := TIME / TIME;

15

12.0 (30. divided by 2.5) is

assigned to RATE

300 (30. times 1000.0 over 100)

is assigned to WORK

9.2 (the quotient of 30. - 2

and TIME) is assigned to

NEWRATE

1 (2.5 divided by 2.5) is

assigned to J

Storing a new value of a variable

Suppose you have already written

WIDTH := 5;

LENGTH := 3;

X := WIDTH * LENGTH;

which assigns the value 15 to X. Then later you write

X := WIDTH - LENGTH;

which assigns 2 to X. What happens to the 15? It is erased. When a

new value is assigned to a variable, the old value is simply replaced;

it is not saved. If you really wanted to save both WIDTH * LENGTH

and WIDTH - LENGTH, you would have to assign them to different

variables.

It is often very useful to be able to replace an old value of

a variable with a new one, as you will see in the examples in the

following chapters. Keep in mind, however, that assignments will be

carried out in exactly the order you write them. For instance, if

you write

A := l;

B := 4;

c := 9;

B := A + l;

c := B + l;

the three assignments with only literals on the right will be per

formed first. Then the fourth will be executed, changing the value

of B to 2. When the fifth assignment is executed, C's value is

changed to 3 (2 + l); the old value of B, 4, has already been erased.

Names for variables

The name of a variable must begin with a letter, which may be

followed by up to 31 more letters or numerals. No spaces are allowed

within names. However, the underscore character (_) is allowed within

16

names, and it is often used to give the appearance of a space. (Under

score may not be the first or last character of a name.) Characters

other than letters, numerals, and underscore cannot be used in

variable names.

You may often find it helpful to choose names that have some

mnemonic significance -- TIME, DISTANCE, NEW_RATE, ACCELERATION_TIMES_lO

-- but of course the compiler is not influenced by what a variable

name may or may not mean in English. Nor can the compiler tell a

right spelling from a wrong one. Every different spelling is treated

as a different variable.

Names which meet the restrictions we have given are referred

to as identifiers or words. Nearly any word may legally be used for

a variable. However, there are certain ones, called reserved words, which

have special meanings in cs-4. They cannot be used as variables --

any attempt to do so will result in an error message from the compiler.

A full list of reserved words may be found in an appendix to the Language

Reference Manual.

17

3.0

WRITING A SIMPLE PROGRAM

Once you know how to use variables and assignment statements,

you are nearly ready to begin writing simple cs-4 programs which can

be compiled and run on the computer. The other things you must know

about to write a complete program are explained in this chapter.

Putting a program into a form the computer can read

Usually a program is first written by hand on paper. But in

order to run it, you must transcribe it into a form that a computer

can read. The two most common forms are:

1) Data cards punched on a standard keypunch.

2) Records which are entered on a disk or other storage device

through a remote terminal.

The installation where you are working will teach you to use

one of these methods before you are allowed to run programs. In this

primer, for simplicity, we will assume that all programs are read

from cards. However, you can substitute "record" for "card" through

out; the rules will be the same. In our sample programs, one line

on the page will always represent the contents of a single card.

There is no required format for CS-4 statements. The com~iler

reads your program as if it were a continuous stream of characters,

with the last column of each card directly followed by the first column

of the next card. The end of a card never implies the end of a state

ment. Instead, statements are explicitly separated by semicolons.

As a result of this freedom, you can type statements anywhere

on a card:

A := l;

B := 2;

c := 3;

18

You can type more than one statement on a single card:

A := l; B .- 2; c := 3;

And you can start a statement on one card and end it on a subsequent

card:

A :=

l; B :=

2; c .-
3;

However, it is best to type simple statements like assignments one to

a card and all in the same columns:

A := l;

B := 2;

c := 3;

The statements are easiest to read this way, and it is easy to

correct a single statement by just retyping it on a single new card.

Of course, it is important to keep your cards in the right

order. In a simple program, the compiler assumes you want the state

ments executed in the order their cards were read in. (There are

ways to have statements executed in different orders -- but that is

a topic for subsequent chapters.)

Control cards

When you submit your punched program to be run, you will have

to add a few special cards to it. These control cards will, among

other things, give your name and account number, ask to use the CS-4

compiler, and tell where your program begins and ends.

The statements on control cards are not part of cs-4. They

are part of a special language used by the computer installation on

which you are running your program. Different installations require

different control cards. You will be told what control cards to use

before you are allowed to run programs.

19

Declaring variables

So far we have been assuming that any variable name can be

used to store numerical values in any program. However, this is not

really true. As you will learn, CS-4 variables can represent many

classes (or kinds) of values besides numerical values (for instance,

they may represent character strings, or arrays of one or more

dimensions). Therefore it is necessary to declare in your program

that your variables represent numerical values, so that statements

which use the variables can be compiled correctly.

Each class of values which can be assigned to variables in

cs-4 is called a mode. One mode, which contains numerical values,

is named the REAL mode (the term "real" comes from mathematics).

A variable may take values of only one mode; a variable

mode, for

To

write one

example, can only represent numerical

tell the compiler that your variables

or more declaration statements, like

VARIABLE HEIGHT IS REAL;

VARIABLES Al, A2, A3 ARE REAL;

values.

are of

this:

of REAL

REAL mode, you

The first word of the statement is always VARIABLE (or VARIABLES).

It is followed by either a single variable name and IS REAL, or by a

comma-separated list of variable names and ARE REAL.

Every variable in a program must appear in a declaration state

ment in the program. If an undeclared name appears -- either because

of misspelling, or because its declaration was left out -- the compiler

reports an error, and the program cannot be run.

Declaration statements differ in a basic way from other state

ments such as assignment. The latter are said to be executable -

because when the program is run they are executed, in a specified

order, and each results in some specific action. Declarations are

non-executable -- they are not part of the order of execution when

the program is run. Instead, they provide a general sort of informa

tion to the compiler, such as the modes of variables; the compiler

decides what actions are to be performed as a result of a declaration,

and when they are to be performed. For instance, the above declara

tion of HEIGHT might cause storage for a numerical value to be set

aside when the program begins.

20

In a simple program it is usually best to place declarations

together at the beginning, before statements of any other type. Pro

grams are more readable this way. Furthermore, placing declarations

at the beginning guarantees they always have the same effect; in more

complex programs, declarations not at the beginning may have some

what different effects, depending on their context.

Limits on REAL values

CS-4 imposes no restrictions on the numerical values that may

be represented by REAL variables. Unfortunately, there is no way a

computer can actually store any arbitrary value in a fixed space.

Thus, in practice, there are limits on the values that can be given

to variables declared as REAL. These limits vary from machine to

machine. But they are all of two basic types, which we can explain

briefly here.

First, there are restrictions of magnitude. The absolute value

of a REAL (its value with the sign made positive) may not exceed a

certain limit; if a value greater than the maximum is generated by

some calculation, an error condition called overflow occurs. An

overflow normally results in an immediate end to execution of a pro

gram, and an error message in the printout. (There are ways to con

tinue running after an overflow, but that is an advanced topic.)

The absolute value of a non-zero REAL must also be greater than

a certain minimum. Otherwise, an error condition called underflow

occurs. An underflow also causes execution to end.

The second type of restriction is one of precision. There is

a limit to the number of significant digits that a REAL value can

have. (The first non-zero digit and all subsequent digits are con

sidered significant.) If no more than three significant digits

could be stored, for instance, then both of:

HEIGHT := 3926;

HEIGHT := 0.0004070;

would be errors, since they assign HEIGHT values with a precision of

4 digits. For uniformity, all examples in this volume will assume 6

digits of precision.

21

Printing output

You can print out the values of variables, literals, or any

other expressions by using the PRINT statement of CS-4. It is an

executable statement, written like this:

PRINT (LENGTH, WIDTH, LENGTH* WIDTH, 0.0025);

The values associated with the items in parentheses are printed out

in the order they are listed. If LENGTH and WIDTH above were de

clared as REALs, and had values of 1.5 and 37.5, respectively, then

the following line would appear in the printout:

l.50000E+OO 3.75000E+Ol 5.6200E+Ol 2.2500E-03

The items inside the parentheses of the PRINT statement must be

separated by commas. There is no comma after the last item. If there

is only one item, no commas are written:

PRINT (AREA);

There may be no items at all in the PRINT list:

PRINT;

in which case a blank line is left in the printout.

Comments

One way to make a program easier to read is to insert comments

explaining what is going on. The start of a comment may be indicated

by the symbol #, and its end by a second #. Alternatively, the start

may be indicated by { and the end by }. The following are both valid

comments:

THE AREA IS COMPUTED #
{STEP #4: THE OUTPUT VALUE(S) ARE PRINTED}

Any symbol may appear within a comment, except whichever end-comment

symbol (# or }) is being used.

22

The content of a comment is never interpreted by the compiler.

Instead, the ent.ire comment is interpreted as if it were a space

character. Hence a comment may be inserted anywhere a space is

allowed.

A sample program

You now know enough to write an extremely elementary CS-4 pro

gram. As a sample of what you can do, we have chosen a simple

commercial application: a billing program which updates accounts of

the common revolving-credit type.

VARIABLES OLD_BAL, NEW_BAL, PURCHASE, PAST_DUE, INTEREST,

PAYMENT ARE REAL;

OLD BAL := 44.00; # FIRST ACCOUNT #

PAYMENT := 44.00;

PURCHASE := 25.00;

PAST DUE := OLD BAL - PAYMENT;

INTEREST := PAST_DUE * 0.015;

NEW_BAL := PAST_DUE + INTEREST + PURCHASE;

PRINT (OLD_BAL, PAYMENT, PAST_DUE, INTEREST, PURCHASE,

NEW_BAL);

OLD BAL := 196.95;

PAYMENT := 25.00;

PURCHASE : = 0 ;

SECOND ACCOUNT #

PAST DUE := OLD_BAL - PAYMENT;

INTEREST := PAST_DUE * 0.015;

NEW BAL := PAST DUE + INTEREST + PURCHASE;

PRINT (OLD_BAL, PAYMENT, PAST_DUE, INTEREST, PURCHASE,

NEW_BAL);

OLD_BAL := 59.50; # THIRD ACCOUNT #

PAYMENT := 29.75;

PURCHASE := 99.95;

PAST DUE := OLD_BAL - PAYMENT;

INTEREST := PAST_DUE * 0.015;
NEW BAL := PAST DUE + INTEREST + PURCHASE;

PRINT (OLD_BAL, PAYMENT, PAST_DUE, INTEREST, PURCHASE,

NEW_BAL);

23

The first statement declares all six variables used in the pro

gram. The executable statements follow. First OLD_BAL is assigned

the balance (in dollars) at the beginning of the month for some

account; PAYMENT is assigned the amount of payments for the month; and

PURCHASE is assigned the amount of new purchases during the month.

Then PAST DUE is calculated as the amount of the old balance less pay

ments. INTEREST is set to 1.5% of PAST DUE and NEW BAL is calculated

as the sum of the amount past due, the interest on it, and the amount

of new purchases during the month. Finally, the values of all six

variables are printed out. At this point the process is repeated a

second and third time, with values for a different account assigned

to OLD_BAL, PAYMENT and PURCHASE. After the last statement in the

list is executed, the program's execution is completed. The printed
output looks like this:

4.40000E+Ol 4.40000E+Ol o.oooooE+oo o.oooooE+oo
2.SOOOOE+Ol 2.SOOOOE+Ol
1. 96950E+02 2.SOOOOE+Ol 1. 71950E+02 2.57925E+OO
O.OOOOOE+OO 1. 7 4529E+02
5.95000E+Ol 2.97500E+Ol 2.97500E+Ol 4.46250E-01
9.99500E+Ol 1. 30146E+02

If you change the results to non-exponential notation, and then round

them to two decimal places, you get the answers in dollars and cents.

This is not at all a very sophisticated program. It scarcely

begins to take advantage of the capabilities of a computer. In the

following chapters we will show how this program can be made better

and more powerful, using other statements of CS-4.

24

4.0

INPUT AND LOOPING: WRITING A REUSABLE PROGRAM

The biggest problem with the program in the previous section is

that every account has its own set of statements. Every time you use

the program you have to write new assignment statements for OLD_BAL,

PAYMENT, and PURCHASE, and then recompile the whole program.

ments:

There is another deficiency: you have to write the four state-

PAST DUE := OLD_BAL - PAYMENT;

INTEREST := PAST_DUE * 0.015;

NEW BAL := PAST DUE + INTEREST + PURCHASE;

PRINT {OLD_BAL, PAYMENT, PAST_DUE, INTEREST, PURCHASE,

NEW_BAL) ;

over and over again, once for each account you are processing. This

means the compiler must compile these same statements repeatedly,

which would be quite a waste of time if there were hundreds or

thousands of accounts.

In this chapter you will see how to read and assign values from

input cards, and how to execute the same statements more than once.

The result will be a very short program that can process any number of

accounts.

Assigning values from input cards

You don't have to assign initial values to variables by writing

assignment statements in your program. Instead, you can punch the

values on separate input cards, and write a READ LINE statement that

reads values from the cards and assigns them to the variables.

Input cards are not part of the CS-4 program which is compiled,

and they are not read by the compiler. They are read by the trans

lated program itself, when it is executed. They are usually placed

after the cards that contain the program; in any case, the control

cards that accompany the program will indicate where the input cards

begin and end.

25

The READ LINE statement has the same basic form as the PRINT

statement:

READ LINE (OLD_BAL, PAYMENT, PURCHASE);

When it is executed it causes an input card to be read, and causes the

values punched on the card to be assigned to the respective variables

in the list in parentheses. For example, if the statement above

read the input card

59.50 29.75

it would have the same effect as

OLD BAL := 59.50;

PAYMENT := 29.75;

PURCHASE := 99.95;

99.95

You are not required to punch all the input values on a single card.

The READ LINE statement will read as many cards as are necessary in

order to assign one value to each of its variables. In our example,

the READ LINE statement would make the same assignments if it en

countered two input cards like this:

59.50

99.95

29.75

or three input cards like this:

59.50

29.75

99.95

The only thing that matters is that the input values appear in the

right order.

26

Input values may be punched anyWhere on the input card, as

long as they are separated from each other by at least one space.

There is no semicolon after the last value on the input card, because

the input values are not CS-4 statements.

Every time a READ LINE statement is executed, it starts reading

a new card. This means you cannot read a single input card like

59.50 29.75 99.95

by writing two statements:

READ LINE (OLD_BAL, PAYMENT);

READ LINE (PURCHASE);

The first READ LINE will assign the first two values and ignore the

99.95; and then PURCHASE will be assigned a value from the next

input card.

READ_LINE may be thought of as a sort of inverse of PRINT.

PRINT outputs values from the program; READ_LINE inputs values to it.

However, keep in mind that READ_LINE does change the values of the

variables in the parentheses, while PRINT does not. Hence, only

PRINT statements can contain literals. The statement

READ LINE (2.0);

is an error, since it is meaningless to assign a new value to the

literal constant 2.0.

Changing input from run to run

READ LINE makes it unnecessary to write a separate set of

assignment statements for every set of account data. Instead, you

can write

READ LINE (OLD_BAL, PAYMENT, PURCHASE);

and just provide a separate input card for each set of data. Then

the accounting program will look like this:

27

VARIABLES OLD_BAL, NEW_BAL, PURCHASE, PAST_DUE,

INTEREST, PAYMENT ARE REAL;

READ_LINE (OLD_BAL, PAYMENT, PURCHASE);

PAST DUE := OLD_BAL - PAYMENT;

INTEREST := PAST_DUE * 0.015;

ACCT l #

NEW BAL := PAST DUE + INTEREST + PURCHASE;

PRINT (OLD_BAL, PAYMENT, PAST_DUE, INTEREST,

PURCHASE, NEW_BAL);

READ_LINE (OLD_BAL, PAYMENT, PURCHASE);

PAST DUE := OLD_BAL - PAYMENT;

INTEREST := PAST_DUE * 0.015;

ACCT 2 #

NEW BAL := PAST DUE + INTEREST + PURCHASE;

PRINT (OLD_BAL, PAYMENT, PAST_DUE, INTEREST,

PURCHASE, NEW_BAL);

READ_LINE (OLD_BAL, PAYMENT, PURCHASE);

PAST_DUE := OLD_BAL - PAYMENT;

INTEREST := PAST_DUE * 0.015;

ACCT 3 #

NEW BAL := PAST DUE + INTEREST + PURCHASE;

PRINT (OLD_BAL, PAYMENT, PAST_DUE, INTEREST,

PURCHASE, NEW_BAL);

and to do the same work as the example in the previous chapter, it

would need the following sequence of input cards:

44.00

196.95

59.50

44.00

25.00

29.75

44.00

0.00

99.95

If you want to process a different set of account data, you just run

the same program again with new input cards.

The program is now basically just a declaration statement

followed by a sequence of five statements -- a READ_LINE, three

assignments, and a PRINT -- which is repeated over and over again.

Each five-statement sequence is exactly the same; but each calculates

with different values -- because each READ LINE reads a different

input card.

28

Changing the flow of control

Normally each executable statement in a program is executed

immediately after the statement before it. In other words, the flow

of control begins with the first statement, and passes to each succeed

ing statement until the end of the program.

However, as we have seen from the sample billing program, the

same statements may actually be executed many times. One way to

have statements executed repeatedly is to write them in the program

repeatedly, as we did in the last section, so that control passes to

them again and again. But it is much more useful to have a way of

altering the flow of control, so that a statement or sequence of

statements that is written once is performed over and over again.

(In other cases, which you will see in the next chapter, it is de

sirable to alter the flow of control so that some statements are skipped

over and not executed at all.)

A statement or sequence of statements that is executed repeatedly

is called a loop. You can indicate that a list of statements in CS-4 is

to be looped by writing

REPEAT

statement;

statement;

statement;

END;

where each "statement" is an executable statement.

The sequence of statements between REPEAT and END will be

interpreted by the compiler as a loop. After each time the last

statement in the sequence is executed, the flow of control passes back

to the first statement in the sequence.

29

The word REPEAT followed by a statement list and END is called

a REPEAT statement. REPEAT statements have more general and powerful

uses than the simple one we have just used. However, we will postpone

a general exposition of the REPEAT statement until Chapter 8.

A looping program

We can use REPEAT to rewrite the sample billing program as a

simple program of about half a dozen statements:

VARIABLES OLD_BAL, NEW_BAL, PURCHASE, PAST_DUE, INTEREST,

PAYMENT ARE REAL;

REPEAT

READ_LINE (OLD_BAL, PAYMENT, PURCHASE);

PAST DUE := OLD BAL - PAYMENT;

INTEREST := PAST_DUE * 0.015;

NEW BAL := PAST DUE + INTEREST + PURCHASE;

PRINT (OLD_BAL, PAYMENT, PAST_DUE, INTEREST,

PURCHASE, NEW_BAL);

END;

Let us assume that each input card contains three input values. When

execution of this program begins, the first executable statement in

the loop -- the READ_LINE statement -- is performed first. It assigns

values to OLD_BAL, PAYMENT, AND PURCHASE from the first input card.

Subsequent statements calculate PAST_DUE, INTEREST, and NEW_BAL, and

print out the values of all six variables.

The PRINT statement is the last statement of the loop. After

it is executed, control is returned to the loop's first statement -

the READ_LINE statement. The READ LINE statement is thus executed

again. It assigns new values to its three variables from the second

input card. The calculations and printout are then repeated using

these new values. Finally, control is again passed back to the READ_

LINE statement, which reads in new values from still another card.

30

In short, the five statements from READ LINE to PRINT are re

peated indefinitely, as long as there are new input cards to be

read. There will be one set of values printed for every card that is

read. This same program can be run many times with different sets

of input cards, and the number of input cards can vary from run to run.

Loops are essential to writing efficient programs that process

input data. In almost any program of this sort you will find at least

one loop.

31

s.o

TESTING CONDITIONS: THE IF STATEMENT

Our sample billing program is now short and efficient. If anything,

it is too short -- it fails to take into account two important possibi

lities:

1) What if an account is overpaid? The program as it is now

written computes a negative interest in this case. However,

in most revolving charge accounts of this type, the interest on

an overpayment is zero.

2) What happens when there are no more accounts to be processed?

As the program is now written, it continues looping indefinitely.

On some installations, the program is automatically terminated

when you run out of input cards, but it is not good practice

to rely on this.

These two situations demonstrate an important fact about computer

programming: you must explicitly provide for all possibilities. If you

want to compute interest differently in some cases, or if you want to

tell which input card is last, you have to write statements to do it.

How is this done? In both cases, you want to test some condition

whether there is an overpayment, whether the last card has been reached

and perform different actions depending on the result of the test. The

CS-4 IF statement, which is described in this chapter, enables you to make

such tests.

Writing equalities and inequalities

Since so far you have been working only with numerical values, the

only sorts of conditions you can test are numerical equality and inequality.

In order to test an equality or inequality in CS-4, you must first write

it in CS-4 notation.

32

CS-4 has six infix comparison operators, whose forms resemble

familiar symbols of arithmetic:

equal

- not equal

> greater than

< less than

>= greater tha.n or equal

<= less than or equal

These symbols are used to form comparison expressions, such as:

Expression Expression is true when

A = B + 1 the value of A equals the value of B

C + D -= 5.1 the value of the expression c + D is

equal to the value 5.1

plus

not

COUN'l' > LIMIT the value of COUNT is greater than that of

LIMIT

B*B - 4*A*C >= 0 the value of the expression B*B - 4*A*C is

greater than or equal to O

As you see, at any given time during execution of a program, a comparison

expression may be either true or false, depending on the values of the

variables in it. There may be arithmetic operators in a comparison

expression, in which c.ase the arithmetic operations are performed before

the comparison operation.

1

Comparison operators in CS-4 are used only to write conditions to

be tested; they never change the values of their operands. To cause a new

value to be assigned to a variable, you use the assignment operator.

Hence it is correct to write either of the two expressions:

2 A

A 2

both of which are true only if A has the value 2. On the other hand,

the expression

A := 2

33

does not have a truth value; it assigns the value 2 to the variable A.

And its reverse:

2 := A

is an error -- one cannot assign a new value to the literal 2 ·.

Testing equalities and inequalities

Now you are ready to write a statement that tests a comparison

expression, and that says what to do if the expression is true. This

is the IF statement, which is written generally like this:

IF comparison THEN statement;

where "comparison" is some comparison expression, and "statement" is any

CS-4 executable statement. When the IF statement is executed, it first

evaluates the comparison expression. The statement following THEN is

executed next if the comparison expression is true; if the comparison is

false, it is not executed at all.

As an example, consider

IF COUNT 0 THEN PRINT (ALTITUDE) ;

This statement causes PRINT (ALTITUDE) to be executed when the value of

COUNT is 0; otherwise it has no effect. In either case, the program then

continues with the next statement. We say that the PRINT statement is

conditionally executed. That is, the flow of control is passed to it only

when the condition -- COUNT having the value 0 -- is true.

IF only tests a condition -- it does not change the values of any

of the variables in the comparison expression. In our example, COUNT will

have the same value after the IF that it did before.

IF is an example of compound statement: a statement that contains

another statement. CS-4 has several other compound statements -- including

the general forms of REPEAT and BEGIN -- which will be introduced in

succeeding chapters.

34

Using IF statements to improve the billing program

Now you can test for an overpayment, by using an IF statement of

the form

IF PAYMENT> OLD BAL THEN ...

How do you test for the last card? One way is by using an addi

tional input -- an account number, for example. You use only positive

numbers for real accounts, and zero as a dununy account number to indicate

the last card. Then a test of the form

IF ACCT NO<= 0 THEN ...

where ACCT NO holds the account number value, will identify the last card.

The program can now be written like this:

VARIABLES ACCT_NO, OLD_BAL, NEW_BAL, PURCHASE, PAST_DUE,

INTEREST, PAYMENT ARE REAL;

REPEAT

READ_LINE (ACCT_NO, OLD_BAL, PAYMENT, PURCHASE);

IF ACCT_NO <= 0 THEN TERMINATE;

PAST_DUE := OLD_BAL - PAYMENT;

IF PAYMENT > OLD_BAL THEN PAST_DUE := 0;

INTEREST := PAST DUE * 0.015;

NEW BAL := OLD BAL - PAYMENT + INTEREST + PURCHASE;

PRINT (ACCT_NO, OLD_BAL, PAYMENT, PAST_DUE, INTEREST,

PURCHASE, NEW_BAL);

END;

The first IF statement checks ACCT NO. If it is not positive,

control passes to a type of statement we have not used before:

TERMINATE;

which causes the program to stop executing immediately.

35

If ACCT NO is positive, control passes to the next statement, which

is the assignment of a value to PAST DUE. Then comes another IF, which

checks whether PAYMENT is greater than OLD_BAL. If it is, the value of

PAST DUE is changed to zero; otherwise, PAST_DUE is left the same.

Note that the order of the two statements

PAST_DUE := OLD_BAL - PAYMENT;

IF PAYMENT > OLD BAL THEN PAST DUE := O;

is significant. It would have been wrong to write

IF PAYMENT > OLD BAL THEN PAST DUE := 0;

PAST DUE := OLD BAL - PAYMENT;

With the statements in this order, PAST DUE is still set to zero when there

is an overpayment. But then control passes to the second statement, which

incorrectly resets PAST DUE to OLD_BAL - PAYMENT.

Note also the importance of choosing the comparison expression

carefully. The program as it now stands will terminate when an account

number is negative. Had we written

IF ACCT NO 0 THEN TERMINATE;

negative account numbers would be accepted. In practice, we would expect

only non-negative account numbers: positive ones for real accounts, and

zero to signal the end of the inputs. But it is possible that some error

would produce a negative account number; in that case we would want to stop.,

execution so that the error could be corrected before the rest of the

accounts were processed. We have therefore chosen to write the test with

<=. (In the same vein, we might want to add a test that PAYMENT is non

negative, if a negative payment is definitely an error.)

Adding an ELSE clause

Our revised billing program in the previous section was somewhat

inefficient in checking for an overpayment. We used two statements:

PAST_DUE := OLD_BAL - PAYMENT;

IF PAYMENT > OLD BAL THEN PAST DUE := O;

36

When there is an overpayment, the first statement sets PAST DUE to a

negative value; then the second statement resets it to zero. Thus, for

overpaid accounts, the first assignment serves no purpose, because it is

immediately overridden by the assignment in the IF statement.

An alternative way to write the program, so that only one value is

assigned to PAST DUE in any case, uses two IFs:

IF PAYMENT > OLD_BAL THEN PAST_DUE := 0;

IF PAYMENT <= OLD BAL THEN PAST DUE := OLD BAL - PAYMENT;

In this construction, however, the conditional expression in the second IF

is redundant. It is true only when the conditional in the first IF is

false, and is false only when the conditional in the first IF is true. We

could be still more efficient if there were some way to append two state-

ments to the first IF: one to be performed when the condition is true,

the other when it is false. This can be done by adding an ELSE clause:

IF PAYMENT > OLD BAL THEN PAS'!' DUE := 0;

ELSE PAST DUE := OLD BAL - PAYMENT;

The effect of this statement is the same as that of the two IFs above.

In general, an ELSE clause -- consisting of ELSE followed by a

CS-4 executable statement -- may be part of any IF statement. When an

IF has both THEN and ELSE clauses, the THEN clause always comes first.

There need be no semicolon between the two clauses (though of course

there must be a semicolon at the end of the entire IF statement); but in

this Primer we always do put a semicolon after the THEN clause, because

the statement reads a bit easier that way.

Each time control passes to an IF statement, either the THEN clause

or the ELSE clause (if any) is executed -- the former if the condition is

true, the latter if it is false. Control then passes to the statement

following the IF, unless the clause executed was a TERMINATE.

IF statements within IF statements

The statement in a THEN or ELSE clause may be another IF statement.

This is often quite useful when there are more than two possibilities to

choose from.

37

For example, in some states the law limits interest rates in steps.

The legal amount might be 1.5% on balances not more than $500, 1.25% on any

part of a balance over $500 but not more than $1000, and 1% on any part of

a balance over $1000. To compute the interest you could write

IF PAST DUE <= 500 THEN INTEREST := PAST DUE * 0.015;

ELSE

IF PAST DUE <= 1000 THEN INTEREST :=PAST DUE * 0.0125

+ 1.25;

ELSE INTEREST :=PAST DUE * 0.01 + 3.75;

When an IF statement appears in a THEN clause, the result may appear

ambiguous:

IF X >= 0 THEN

IF Y >= 0 THEN Z := Y * X;

ELSE Z := O;

The compiler must decide which IF statement the ELSE clause is part of.

The rule it follows is this: an ELSE clause is always part of the closest

IF which does not already have an ELSE clause. In our example, therefore,

the ELSE is interpreted as part of the second IF.

38

6.0

TWO NEW MODES: BOOLEAN AND INTEGER

Thus far we have dealt only with variables of REAL mode, whose

values are numerical values. In this chapter we introduce another

numerical-valued mode, INTEGER. We also introduce the mode BOOLEAN,

which allows only two values which represent "true" and "false".

BOOLEAN mode

All the arithmetic expressions we have seen so far have values

of REAL mode. But how about the comparison expressions described in

the previous chapter? Do they have a value the same way arithmetic

expressions do? If so, what mode is it?

Comparison expressions do have values. They are of a mode called

BOOLEAN. Whereas REAL represents all possible numerical values,

BOOLEAN represents all possible truth values. So there are only two

possible values of mode BOOLEAN -- one that represents "true", and one

that represents "false". These are all the values that are needed,

since every comparison expressions is either true or false.

You can use the mode name BOOLEAN in ways analogous to the uses

of the mode name REAL. You can define BOOLEAN-valued variables in

declaration statements:

VARIABLE COMPARE IS BOOLEAN;

VARIABLES SWITCHl, SWITCH2 ARE BOOLEAN;

Variables declared in this way can only represent one of the two truth

values.

There are two BOOLEAN literals, written

FALSE

TRUE

which can be assigned to BOOLEAN variables:

COMPARE := TRUE;

SWITCHl := FALSE;

39

You can also make the assignments with a READ_LINE instruction

READ LINE (COMPARE, SWITCH!);

that reads an input card punched:

TRUE FALSE

BOOLEAN variables can be assigned the values of comparison

expressions, in the same way that REAL variables can be assigned the

results of arithmetic expressions. For example:

SWITCH2 := INTEREST O;

COMPARE := B * B >= 4 * A * C;

SWITCH2 is set to TRUE when INTEREST is zero, and FALSE when it is

non-zero. COMPARE is set to FALSE when B*B is less than 4*A*C, and

to TRUE otherwise. (Note again that variables in the comparison

expressions -- INTEREST, B, A, C -- are not changed in value by the

comparison operators. Only the variables to the left of an assignment

operator -- SWITCH2 and COMPARE -- are assigned new values.)

BOOLEAN values may be used as operands to the comparison

operators = and -=. For example

SWITCH! - SWITCH2

has the value TRUE when SWITCH! and SWITCH2 have different values (one

TRUE, the other FALSE), and has the value FALSE when they have the

same value (both TRUE, or both FALSE). (Using the terminology of

formal logic, -= is exclusive OR, and = is equivalence.)

BOOLEAN values cannot be used as operands to the other comparison

operators or to arithmetic operators. Expressions such as

SWITCH! + SWITCH2

COMPARE <= INTEREST

will be rejected as errors by the compiler. The compiler will also

40

reject any attempt to assign a BOOLEAN value to a REAL variable, or a REAL

value to a BOOLEAN variable:

INTEREST := FALSE;

COMPARE := l;

Logical operators

There are six logical operators in CS-4 wich accept BOOLEAN values

as operands. They perform the common truth functions:

& logical AND (infix) -- A & B has the value TRUE if both A

and B have the value TRUE; otherwise A & B has the value

FALSE

logical inclusive OR (infix) -- A I B has the value TRUE

if A or B or both have the value TRUE; otherwise A I B has

the value FALSE

XOR logical exclusive OR (infix) -- A XOR B has the value FALSE

if both A and B have the value TRUE or if both have the value_

FALSE; otherwise A XOR B has the value TRUE

NAND logical NAND (infix) -- A NAND B has the value FALSE if both

A and B are TRUE; otherwise ANAND B has the value TRUE

NOR logical NOR (infix) -- A NOR B has the value TRUE if both A

and B are FALSE; otherwise A NOR B is FALSE

logical NOT (prefix) --~A has the value TRUE if A has the

value FALSE, and ~A has the value FALSE if A has the value

TRUE

We will call expressions formed from logical operators boolean expressions,

because they always have values of BOOLEAN mode.

BOOLEAN variables, comparison expressions, or some combination of

them may be used in boolean expressions. For example:

x = 0 & y = 0

INTEREST >= 1.25 & (Switchl I ~swITCH2)
~(SWITCH! & SWITCH2 & COMPARE)

41

The first expression has the value TRUE only if both X and Y have the

value 0. The second has TRUE only if INTEREST is at least 1.25, and if

either SWITCHl is TRUE or SWITCH2 is FALSE. The third has FALSE only if

SWITCHl, SWITCH2 and COMPARE all are TRUE.

When logical operators are used together in expressions, paren

theses may be used to force evaluation in a certain order. When paren

theses do not dictate otherwise, the order of evaluation is determined

by operator precedence: ~ is applied before & and NANO, which are applied

before I , NOR, and XOR. That is

is interpreted as if it were parenthesized

Unless parentheses alter the order, logical infix operators are applied

after all arithmetic and comparison operators. (A complete table of

precedences of all operators used in this volume is given in Appendix B,

P· 290.)

Only BOOLEAN values may be operands to logical operators. Use of

REAL~valued operands, such as

PAST DUE & INTEREST > 0

ACCT_NO I 1

will be rejected as errors by the compiler.

Boolean expressions in IF statements

We can now generalize one of the rules for writing IF statements.

The expression which is placed between IF and THEN may be any BOOLEAN

valued expression. For example, these are valid IF statements:

IF SWITCHl THEN SWITCH2 := TRUE;

IF (X < 0 & y < 0) THEN z := x * Y;

ELSE Z := 0;

IF ACCT NO 0 & COMPARE THEN TERMINATE;

ELSE PRINT (ACCT_;NO);

If the expression evaluates to TRUE, the statement following THEN is

executed. If the expression evaluates to FALSE, the statement following

ELSE, if any, is executed.

42

Using BOOLEAN variables and expressions

To demonstrate some uses of BOOLEAN mode and logical operators, we

add two new requirements to the sample billing program:

1) Some accounts will be interest-free. This will be indicated by a

BOOLEAN value on each input card, which will be TRUE when the

account is interest-free, and FALSE otherwise.

2) The number of accounts that had interest charged on them will be

printed out after all the input has been read.

VARIABLES ACCT_NO, OLD_BAL, NEW_BAL, PURCHASE, PAST_DUE,

INTEREST, PAYMENT, PAST_COUNT ARE REAL;

VARIABLE INTEREST FREE IS BOOLEAN:

PAST COUNT := O;

REPEAT

READ_LINE (ACCT_NO, OLD_BAL, PAYMENT, PURCHASE,

INTEREST_FREE);

IF ACCT NO <= 0 THEN PRINT (PAST_COUNT);

IF ACCT NO <= 0 THEN TERMINATE;

INTEREST FREE := INTEREST FREE I PAYMENT >= OLD BAL;

IF INTEREST FREE THEN PAST DUE := O;

ELSE PAST DUE := OLD_BAL - PAYMENT;

INTEREST := PAST DUE * 0.015;

NEW_BAL := OLD BAL - PAYMENT + INTEREST + PURCHASE;

PRINT (ACCT_NO, OLD_BAL, PAYMENT, PAST_DUE, INTEREST,

PURCHASE, NEW_BAL);

IF ~INTEREST FREE THEN PAST COUNT := PAST COUNT + l;

END;

The BOOL~AN input value is assigned to INTEREST_FREE. After the

test of ACCT_NO, we assign a new value to INTEREST FREE with this state

ment:

INTEREST FREE := INTEREST FREE I PAYMENT >= OLD_BAL;

43

The new value of INTEREST FREE is FALSE only when its original input value

was FALSE, and PAYMENT is less than OLD BAL. In other words, this state

ment modifies INTEREST FREE so that it is FALSE only when there is some

interest to be paid, and is TRUE otherwise. (It is entirely proper to use

a variable name on both sides of an assignment operator. The old value of

the variable is always used in computing the value of the right-hand expres

sion before the new value is assigned.)

PAST DUE is computed if INTEREST_FREE is FALSE, and is set to zero

if it is TRUE. The loop then continues as before. A new IF has been

added at the end of the loop which increases the value of PAST_COUNT by 1

only if INTEREST_FREE is FALSE. (Again, we have a variable on both sides

of the assignment operator. It assigns PAST_COUNT a new value one greater

than its old value.) Notice that PAST COUNT was set to zero before the

loop began,.

As before, the loop continues indefinitely until a non-positive

value of ACCT NO signals the last card:

IF ACCT NO <= 0 THEN PRINT (PAST_COUNT);

IF ACCT NO <= 0 THEN TERMINATE;

Then PAST COUNT is printed out, and the program is terminated by TERMINATE.

INTEGER mode

There is another mode in CS-4 whose values are numerical. It is

called INTEGER. As the name suggests, variables of this mode can only

represent integral values (O, 1, 2, 3, ..• and -1, -2, -3, ...).

Of course, REAL variables can also be used to represent integral

numerical values. Why does CS-4 include a separate INTEGER mode? There

are a number of reasons:

1) Because of the problems of representing a large range of numerical

values in a finite space in a computer, the representation of REAL

values may be slightly inexact. (This fact is related to the limit

on the number of significant digits.) INTEGER values, which are

more limited in range, are always represented exactly. Very often

a program has variables that are only used for counting (such as

44

PAST_COUNT in the billing program) or numbering (such as ACCT_NO).

These variables always have integral values. They are often used

in comparisons, where exactness is important. So variables of

this sort are usually declared of INTEGER rather than REAL mode.

2) Because INTEGER values do not have decimal points to be kept track

of, some machines can store or manipulate them more efficiently

than REAL values. Thus some programs can be run more economically

using INTEGERS rather than REALS.

3) INTEGER mode can be used to force REAL values to be rounded off

to the nearest integer. We will show how this can be done, and

how it is useful, in a later section.

Variables of INTEGER mode are declared in the same way as other

variables:

VARIABLE PAST_COUNT IS INTEGER;

VARIABLES Il, I2, I3 ARE INTEGER;

Literals without decimal points and without exponent parts are

INTEGER-literals; they can stand for values with INTEGER representations.

Literals with decimal points or exponent parts are REAL-literals, whose

values must be stored with the REAL representation.

Expressions and assignments using only INTEGER values

The arithmetic operators +, -, and * produce an INTEGER value from

two INTEGER operands, just as they produce a REAL value from two REAL

operands. If an expression uses only+, -, and*, if all the variables

in it are INTEGER, and if all literals are INTEGER-literals, then the

value of the expression is of INTEGER mode. For instance, assuming

VARIABLES I, J, KARE INTEGER;

then the following:

45

I + J

I - 1

I * -K

100 - J * (1 - K)

are all proper INTEGER-valued expressions.

The assignment operator is used with INTEGER values in the same

way as with REAL values:

I := J * 2 + K

J := J + 1

The comparison operators also can use INTEGER operands in the same way as

REAL ones:

I -= 1

J > I * K

The latter expression, for instance, has the BOOLEAN value TRUE if the

value of J is greater than the value of I * K, and has FALSE otherwise.

If you want to take advantage of the computer's ability to handle

INTEGER values more exactly and efficiently than real ones, you should

as much as possible:

1) use INTEGER-valued expressions;

2) assign INTEGER values to INTEGER variables;

3) use only INTEGER values in comparison expressions.

Mixing INTEGER and REAL in arithmetic expressions

It is permissable, and often convenient, to use +, -, or * with

one INTEGER operand and one REAL operand. In such a case, the representa

tion of the INTEGER operand is first converted to REAL representation; then

the operator can be applied to two REALs, producing a REAL. It is almost

always possible to perform a conversion from INTEGER to REAL representation,

without changing the operand's numerical value -- because the values

represented by INTEGERs are a subset of the values represented by REALs.

46

The only exception comes when an INTEGER has more significant digits than

a REAL can represent; an attempt to convert an over-precise INTEGER of this

sort to REAL would be in error. (The term conversion is used generally

in cs~4, to refer to any procedure for transforming a value of one mode to

a value of another mode.)

The other two arithmetic operators, I and**, always produce a REAL

value, even when applied to two INTEGER operands. Any INTEGER operands

to / or ** are converted to REAL before the operation is applied.

Taking the behavior of the five arithmetic operands together, we

can say that any arithmetic expression is of REAL mode if it:

1) contains at least one REAL variable; or

2) contains at least one REAL-literal; or

3) uses the / or ** operator -- even with two INTEGER operands.

For example, assume

VARIABLES Il,

VARIABLES Rl,

Il := l;

!2 := 3;

Rl := 2.7;

R2 := -4.9;

then we can write

Expression

-Il + R2

12 * 3.0

Rl I 3

Il + !2 + (Rl * 3)

Il I 12

I2 ** Il

I2 ARE

R2 ARE

INTEGER;

REAL;

Value (REAL mode)

-5.9

9.0

0.9

12.1

0.33333333

3.0

Any of these expressions could be assigned to a REAL-mode variable.

47

Conversions from INTEGER to REAL sometimes take time, so expres

sions with all REAL variables are often more efficient than mixed ones.

There is no penalty, however, for using INTEGER-literals in a REAL-valued

expression. When the compiler encounters an INTEGER-literal in a place

where an INTEGER value would have to be converted to a REAL, it uses a

REAL representation for the literals. Thus writing

3. * (Rl ** 2.)

is no more efficient than the same expressions with decimal points

dropped:

3 * (Rl ** 2)

Mixed assignments -- INTEGER to REAL

An INTEGER-mode value may be assigned to a REAL-mode variable. The

INTEGER value is automatically converted to the corresponding REAL repre

sentation before the assignment is made. For instance, given the declara

tions and assignments of the previous section, the following all assign

the same value to R2:

R2 := Il + I2;

R2 := Il + 3;

R2 := 4;

R2 := 4.0;

In the first two examples, the expression on the right hand side yields an

INTEGER value, which must be converted to a REAL before it can be stored

in R2. In the latter two examples, the literals are stored with REAL

representations, and no conversion is necessary.

None of these assignments changes the mode of a2. An assignment

statement never changes the mode of any variable in it.

Mixed assignments -- REAL to INTEGER

It is permissible to write an assignment of a REAL-mode value to an

INTEGER-mode variable. When such an assignment is executed, the REAL value

is converted to INTEGER by rounding to the closest INTEGER value before the

48

assignment is made. That. is, if the absolute value of the REAL has a frac

tional part >= 0.5, it is converted to the INTEGER with the next larger

absolute value. Otherwise, the fractional part is dropped.

Then

To make some examples, assume

VARIABLE I IS INTEGER;

VARIABLES Al, A2, A3 ARE REAL;

Al := 2.3;

A2 := 4.5;

A3 := 3.7;

Value (REAL)

of right operand

I := Al; 2.3

I := A2; 4.5

I := A3; 3.7

I := -A2; -4.5

I := -A3; -3.7

I := A2 * 2.0; 9.0

I := Al + A2 + A3; lB.95

I := 5 I 3; 1.66666666

Value (INTEGER)

assigned to I

2

5

4

-5

-4

9

19

2

Again, the mode of the left-hand variable, I, is not changed by any of the

assignments. Rather, the value of the right-hand side is converted to an

INTEGER value before the assignment is made.

Occasionally the rounding triggered by a REAL to INTEGER assignment

is especially useful. For example, our billing program sometimes produces

values of INTEREST and NEW BAL in fractions of a cent; we would prefer to

round these values off to the nearest cent.

We can easily change the program to perform rounding. The variables

must be declared INTEGER instead of REAL:

VARIABLES ACCT_NO, OLD_BAL, NEW_BAL, PURCHASE, PAST DUE

INTEREST, PAYMENT, PAST COUNT ARE INTEGER;

49

and the input must be in cents instead of dollars:

Old input form: 705 59.50 29.75 99.95 FALSE

New input form: 705 5950 2975 9995 FALSE

When INTEREST is calculated

INTEREST := PAST DUE * 0.015;

the right hand side has the REAL value 44.625, because of the presence of

the REAL literal 0.015 in the expression. However, since INTEREST is of

INTEGER mode it is assigned the rounded value 45. The calculation of

NEW BAL then makes use of this rounded value:

NEW BAL := OLD BAL - PAYMENT + INTEREST + PURCHASE;

The resulting output is uniformly in whole cents:

Old output form:

7.05000E+02 5,95000E+Ol 2,9750-0E+Ol 2.97500E+Ol

4.46250E-Ol 9,99500E+Ol l.30146E+02

New output form:

705 5950 2975 2975 45 9995 13015

Comparing INTEGER and REAL values

It is legal to write a comparison expression in which one operand

has a REAL value and the other has an INTEGER value. The INTEGER operand

value is converted to the corresponding REAL value before the comparison

is made.

On some computers, mixed comparisons may yield unintended results,

because of the inexactness in the way REAL values are stored. For example,

you would expect the sequence of statements

50

VARIABLE I IS INTEGER;

VARIABLES Rl, R2, ARE REAL;

I := 9;

Rl := 1. 8;

R2 : = 5 . 0 * Rl ;

IF I <= R2 THEN

to compute the value TRUE for I <= R2. However, on some machines R2

would be left with a slightly inexact value like

8.99999999

This is close enough to 9.0 for almost any calculational purpose. Yet

it causes I <= R2 to have the value FALSE, because the value of I will

be converted to the REAL representation of 9, which is greater than

8.99999999.

Actually, you can get into the same sort of trouble comparing

two REALs, when they have nearly the same values. For example, if I

above were declared of REAL mode, I <= R2 would still be computed as

FALSE.

Because of the imprecise representation of REALs, you should be

especially cautious when writing comparisons with one or two REAL

operands when the values are expected to be very close.

Declaring variables of several modes

in a single declaration statement

If you are declaring variables of different modes:

VARIABLE I IS INTEGER;

VARIABLES Al, A2, A3 ARE REAL;

you do not have to write two declaration statements. You can put both

declarations in one statement, separated by commas:

VARIABLE I IS INTEGER,

Al, A2, A3 ARE REAL;

The meaning is the same either way.

51

Initializing_ in a declaration

Often you will want to assign a value to a variable at the begin

ning of a program. For example, we give PAST COUNT in the billing program

an initial value of 0:

VARIABLE PAST COUNT IS INTEGER;

PAST COUNT := O;

These statements can be combined by using an initialization operator, which

is written as two colons followed by an equal sign (::=). The declaration

is placed to the left of the initialization operator, and the intial value

to its right:

VARIABLE PAST COUNT IS INTEGER::= 0;

This statement both declares the mode of PAST COUNT and causes it to be

assigned 0 before each time the program is executed. If an initial value

is specified for a declaration of several variables:

VARIABLES SWITCHl, SWITCH2, SWITCH3 ARE BOOLEAN ::=TRUE;

The initial value is assigned to each of them before execution. In this

case, SWITCHl, SWITCH2 and SWITCH3 are all assigned TRUE.

CONSTANT declarations

Sometimes a name is used in a program to represent a fixed value.

Such a name may be declared as a variable, of course. But it may also be

declared as a constant. A declaration statement for a constant is almost

the same as one for a variable; but the word VARIABLE or VARIABLES is

replaced by CONSTANT:

CONSTANT INTEREST RATE IS REAL ::= 0.015;

A constant may not be assigned a value in an executable statement, such as

an assignment statement or a READ LINE. It may only be given a value with

the initialization operator.

52

CONSTANT declarations permit you to give a name to bulky

literals that are used in many places. For instance, you might write

CONSTANT PI IS REAL ::= 0.314159E+Ol;

to avoid repeating the long literal many times in a program. The name

PI is also a mnemonic that makes the significance of the value clearer

to the reader. And because PI is a constant and not a variable, the

compiler will report an error if an attempt is made to assign it some

value elsewhere in the program.

53

7.0

STATEMENT BLOCKS

The IF statement as we have described it may have only one simple

statement (like assignment or TERMINATE) in a THEN or ELSE clause. This

often proves to be a cumbersome limitation. Even our small billing pro-
' gram could be more efficient in a number of ways if several simple state-

ments could be executed by a single THEN or ELSE clause.

The most obvious example is the pair of IF statements which test

ACCT NO:

IF ACCT NO <= 0 THEN PRINT (PAST_COUNT);

IF ACCT NO <= 0 THEN TERMINATE;

The same condition has to be tested twice, because each IF can only have

one statement in its THEN clause. For a similar reason, we have to test

INTEREST FREE twice:

IF INTEREST FREE THEN PAST_DUE := 0;

ELSE PAST DUE ·= OLD BAL - PAYMENT;

IF -INTEREST FREE THEN PAST COUNT ·= PAST COUNT + l;

This redundancy could be avoided if

PAST COUNT := PAST COUNT + l;

could be added to the ELSE clause of the first IF.

We also waste some time by computing

INTEREST := PAST DUE * 0.015;

even when PAST_DUE has just been set to zero by the preceding IF statement.

It would be more efficient to execute

PAST DUE := O;

INTEREST := O;

54

with a single THEN clause, or

PAST DUE := OLD_BAL - PAYMENT;

INTEREST := PAST DUE * 0.015;

with a single ELSE clause.

These problems are handled in CS-4 by grouping statements together

into what are known as BEGIN blocks. In this chapter we give a description

of BEGIN blocks, and demonstrate their ~se with IF statements.

BEGIN blocks

A BEGIN block consists of the word BEGIN, followed by any number

of CS-4 statements of any type, followed by END. For instance, this is a

BEGIN block:

BEGIN;

PAST DUE ::;;:: 0;

INTEREST := O;

END;

It is usually clearest and most convenient to punch each statement of a

BEGIN block on a separate card, but it is not necessary to do so:

BEGIN; PAST DUE := O; INTEREST := O; END;

The semicolon after BEGIN is optional, as is the semicolon between the last

statement of the block and END. However, it is a good idea to leave them

both in, for uniformity.

A BEGIN block is treated as a single executable statement. It may

appear anywhere a single statement may appear -- in particular, it may be

used in a THEN or ELSE clause.

How is a BEGIN block executed? By executing the statements within

it, in sequence, beginning with the first one. Execution of the block

concludes, normally, when control passes beyond the last statement in the

list to the boundary statement END. You can thus think of the statements

within a BEGIN block as a sort of "sub-program" within the main program.

Executing the block means executing this "sub-program", from beginning to

end. (However, if TERMINATE is executed within the block, execution does

not continue to END -- because TERMINATE terminates the entire program

inunediately, even from within a BEGIN block.)

55

Non-executable statements, such as declarations, may also appear

in a BEGIN block. However, declarations are interpreted slightly

differently when they appear within a block, so you should keep all of

your declarations outside of BEGIN blocks for the time being.

Using BEGIN blocks in IF statements

Our billing program can now be rewritten more efficiently with

BEGIN blocks in each THEN and ELSE clause:

VARIABLES ACCT NO, OLD_BAL, NEW_BAL, PURCHASE, PAST_DUE,

INTEREST, PAYMENT ARE INTEGER,

PAST COUNT IS INTEGER::= O,

INTEREST _FREE IS BOOLEAN;

REPEAT

READ_LINE (ACCT_NO, OLD_BAL, PAYMENT, PURCHASE,

INTEREST _FREE) ;

IF ACCT NO <= 0 THEN

BEGIN;

PRINT (PAST_COUNT};

TERMINATE;

END;

IF INTEREST FREE I PAYMENT >= OLD BAL THEN

BEGIN;
PAST DUE := 0;

INTEREST := O;

END;

ELSE

BEGIN;

PAST DUE := OLD_BAL - PAYMENT;

INTEREST := PAST_DUE * 0.015;

PAST COUNT := PAST COUNT + l;
END;

NEW BAL := OLD BAL - PAYMENT + INTEREST + PURCHASE;

PRINT (ACCT_NO, OLD_BAL, PAYMENT, PAST_DUE, INTEREST,

PURCHASE, NEW_BAL);

END;

56

Only one IF is needed to test ACCT_NO. When ACCT NO is non

positive, the BEGIN block in the THEN clause prints PAST COUNT and then

terminates the program. Otherwise, the THEN clause is skipped over, and

its BEGIN block is not executed.

The second IF executes either the BEGIN block following THEN or

the one following ELSE. Both of these blocks always terminate by passing

control to an END. So after either block is executed, control is passed

in the normal manner, to the statement which follows the IF -- the assign

ment to NEW BAL.

Note that we are now able to mo~e the boolean expression

INTEREST_FREE I PAYMENT >= OLD_BAL

inside the second IF, because we only have to test its value once. Pre

viously, we had to assign the value of this expression to INTEREST_FREE,

so that we could test its value twice without having to compute the ex

pression twice.

Finally, notice that END appears three times in the program -- once

to conclude each of the three BEGIN blocks, and once after the last state

ment in the REPEAT loop. Since the first three ENDs are paired with BEGINs,

only the final END marks the last statement to be repeated. One must keep

careful track of which END concludes which group of statements. That is

another reason for maintaining a consistent system of indentation.

Nested BEGINS and IFS

It is often useful to write an IF statement within a BEGIN block,

or to write a BEGIN block for one or both clauses of an inner IF. In

general, you can nest IFs within BEGINs, and BEGINs within IFs, to any

degree.

As a practical example, suppose that when INTEREST FREE is true we

do want to calculate PAST_DUE, but INTEREST is still to be set to zero,

and PAST COUNT is not to be incremented. We then need to write:

57

IF PAYMENT >= OLD BAL THEN

BEGIN;

PAST DUE := O;

INTEREST := O;

END;

ELSE

BEGIN;

PAST DUE := OLD BAL - PAYMENT;

IF INTEREST FREE THEN INTEREST := 0;

ELSE

END;

BEGIN;

INTEREST := PAST DUE * 0.015;

PAST COUNT := PAST COUNT + l;

END;

In this case, an IF statement is nested in a BEGIN block in an ELSE clause.

But we can do exactly the same work by writing the IF this way:

IF PAYMENT < OLD BAL THEN

BEGIN;

PAST DUE := OLD BAL - PAYMENT;

IF INTEREST FREE THEN INTEREST := 0;

ELSE

BEGIN;

INTEREST := PAST_DUE * 0.015;

PAST COUNT := PAST COUNT + l;

END;

END;

ELSE

BEGIN;

PAST DUE := 0;

INTEREST := O;

END;

In this case, the nested IF is in a THEN clause. Notice how the ind~n

tation in the example makes the structure of the program apparent.

58

8.0

LOOP STATEMENTS

You have already seen how to loop a group of statements indefinitely

by using a REPEAT statement. In each of these loops there was a condition

ally executed TERMINATE, such as

IF ACCT NO < 0 THEN TERMINATE;

which eventually stopped the looping by terminating the whole program.

In this chapter we re-introduce REPEAT in a more general way. We

will show how you can terminate a REPEAT loop without terminating the

whole program, by adding qualifying phrases to the REPEAT statement. In

the process, we will show a few new applications for loops within programs.

The form of the REPEAT statement

A REPEAT statement (or loop statement) is a compound statement,

written like this:

qualifying-phrase-list REPEAT statement-list END

where "statement-list" is a sequence of one or more executable statements,

with semicolons between them if there are more than one. The "statement

list" part is also called the loop.

The "qualifying-phrase-list" is optional. When it is omitted, the

result is a simple REPEAT statement like the ones we have already seen:

REPEAT statement-list END

In a simple REPEAT statement, the loop is executed repeatedly, without

limit. In earlier examples, we terminated the loop (along with the entire

program) with a statement which contained a TERMINATE; we have introduced

no other way to make a simple REPEAT stop looping.

It is important that every REPEAT statement you write have some

way of terminating. A REPEAT that has no way of terminating creates

what is called an infinite loop. In theory, an infinite loop goes on

being executed forever, or until an error condition occurs -- such as

59

execution of READ_LINE when there are no input cards left. In practice,

all programs have a time limit after which they are automatically

terminated. Even so, an infinite loop can cause a considerable waste of

computer tiroe.

Qualifying a REPEAT statement with an UNTIL phrase

An alternative way to assure the termination of a REPEAT statement

is to qualify it with an UNTlL phrase., A REPEAT with an UNTIL phrase has

this form:

UNTIL condition REPEAT statement-list END

where "condition" is a BOOLEAN-valued expression. The "condition" is

evaluated after every repetition of the loop. If it is FALSE, the loop

is executed again. If it is TRUE, the REPEAT statement is terminated,

and control passes to the next statement of the program.

Here is one way UNTIL might be used in the billing program. This

version computes PAST_COUNT, but does not make use of INTEREST FREE:

VARIABLES ACCT_NO, OLD_BAL, NEW_BAL, PURCHASE,

PAST_DUE, INTEREST, PAYMENT ARE INTEGER,

PAST COUNT IS INTEGER::= O;
UNTIL ACCT NO <= 0

REPEAT

READ LINE (ACCT_NO, OLD_BAL, PAYMENT, PURCHASE);

IF PAYMENT >= OLD BAL THEN

BEGIN;

PAST DUE := 0;

INTEREST := 0;

END;

ELSE

BEGIN;

PAST DUE := OLD_BAL - PAYMENT;

INTEREST := PAST DUE * 0.015;

END;

NEW BAL := OLD BAL - PAYMENT + INTEREST + PURCHASE;

PRINT (ACCT_NO, OLD_BAL, PAYMENT, PAST_DUE, INTEREST,

PURCHASE, NEW_BAL);

END;

PRINT (PAST __ COUNT);

60

After each execution of the loop, ACCT_NO <= 0 is evaluated. If ACCT NO

is still positive, the loop continues. If ACCT_NO is not positive, then

the REPEAT statement is terminated, and control passes to the next state

ment -- the statement that prints PAST_COUNT -- which happens to be the

last statement. The program then terminates automatically, because the

last statement has been executed. (Note that this version of the program

produces an extra line of output, because ACCT NO is not tested until

after the PRINT statement in the loop.)

As you can see, a REPEAT qualified with UNTIL does not require a

TERMINATE inside the loop. You should be aware that even a REPEAT with

an UNTIL phrase can be an infinite loop, if you make a mistake in writing

it. It is up to you to insure that the condition tested by UNTIL does

always become true after a finite number of loops. There is no way the

compiler can detect that you have inadvertently written an infinite loop.

Qualifying REPEAT with the WHILE phrase

A second type of qualifying phrase is the WHILE phrase. Its form

is analogous to UNTIL:

WHILE condition REPEAT statement-list END

Like UNTIL, WHILE tests the BOOLEAN-valued "condition". But there are

two notable differences;

1) As its name suggests, WHILE specifies that the REPEAT will be

terminated when "condition" is FALSE, and that looping will

continue when "condition" is TRUE. This is the opposite of

UNTIL's effect.

2) The BOOLEAN expression following WHILE is evaluated before each

execution of the loop (whereas the UNTIL condition is evaluated

after each execution). In particular, the WHILE condition is

evaluated before the first execution of the loop; if it is FALSE

at the first evaluation, the REPEAT is terminated before the loop

is ever executed. With UNTIL, the REPEAT cannot be terminated

until the loop has been executed at least once.

61

Some loop statements are written more readably and more effi

ciently with WHILE than with UNTIL. As a simple example, consider a

program that reads an INTEGER value N, and if N is positive prints a

table of factorials for all integers from 1 to N. (X factorial -

written X! -- is the product of all integers from 1 to X.} This is

an implementation using UNTIL:

VARIABLE N IS INTEGER,

MULT, FACT ARE INTEGER ::= l;

READ_LINE (N};

IF N <= 0 THEN TERMINATE;

UNTIL MULT > N

REPEAT

FACT := MULT * FACT;

PRINT (MULT, FACT};

MULT := MULT + l;

END;

If we substitute a WHILE phrase for the UNTIL phrase:

WHILE MULT <= N REPEAT ..• END;

then the IF statement is unnecessary. WHILE will cause MULT <= N

to be tested before any execution of the loop. If N <= o, MULT <= N

will evaluate to FALSE, the loop will not be performed at all, and

the program will terminate immediately since the REPEAT is its last

statement.

Qualifying REPEAT with both WHILE and UNTIL

Occasionally it is useful to qualify a REPEAT with both a

WHILE phrase and an UNTIL phrase. The two phrases are written one

after the other, in either order:

WHILE conditionl UNTIL condition2 REPEAT statement-list END

UNTIL condition2 WHILE conditionl REPEAT statement-list END

62

The WHILE condition is still tested before each loop, and the UNTIL

after. The REPEAT is terminated when either test is satisfied -- in

other words, when "condition!" is tested and found FALSE, or

"condition2" is tested and found TRUE, whichever occurs first.

Both WHILE and UNTIL could be used in the factorial program's

REPEAT, to make it stop once FACT exceeds 10000, no matter what the

input value of N is:

VARIABLE N IS INTEGER,

MOLT, FACT ARE INTEGER::= l;

READ_LINE (N);

WHILE MOLT <= N UNTIL FACT > 10000

REPEAT

FACT := MOLT * FACT;

PRINT (MOLT, FACT);

MOLT := MOLT + l;

END;

Only one WHILE or UNTIL phrase may qualify a REPEAT. It would thus be

illegal to write:

WHILE MULT <= N WHILE FACT<= 10000 REPEAT ••• END;

The proper way to express two WHILE conditions like this is to connect

them with & :

WHILE MOLT<= N & FACT<= 10000 REPEAT ••. END;

to produce a single boolean expression that can follow WHILE.

Step-and-Test loops

Let us take a closer look at the problem of printing a table of

factorials, which we introduced in the previous sections. This time we

will write it with only a simple REPEAT statement:

VARIABLE N IS INTEGER,

MULT , FACT ARE INTEGER : : = 1 ;

READ LINE (N) ;

63

IF N <= 0 THEN TERMINATE;

REPEAT

FACT := MULT * FACT;

PRINT (MULT, FACT);

MULT := MULT + l;

IF MULT > N THEN TERMINATE;

END;

This program employs a step-and-test-loop. Like all loops of this sort,

it is identified by three essential features:

1) Before any execution of the loop, MULT is initialized to 1.

2) At the end of each pass through the loop, MULT is stepped by 1.

3) Immediately after stepping, MULT is tested against a limit, N.

If MULT exceeds N, the loop is terminated; if not, the loop is

executed again.

Step-and-test loops are extremely common in computer programming.

So CS-4 provides four qualification phrases which are designed to make

step-and-test loops easier to write. The phrases may be used together,

like this:

FOR variable FROM expression BY expression THRU expression

REPEAT statement-list END

where "variable" is the name of a variable (usually an INTEGER) and

"expression" is an arithmetic expression. The meanings of the phrases

are as follows:

FOR phrase -- specifies a variable (sometimes referred to

as the "control variable") which is to be initialized

before looping, and stepped and tested after each loop.

FROM phrase specifies the initial value.

THRU phrase -- specifies the limit value against which

each test is made.

BY phrase -- specifies a step value.

64

Using these qualifying phrases, the factorial program can be

written more compactly and more readably:

VARIABLES N, MULT ARE INTEGER,

FACT IS INTEGER::= l;

READ LINE (N);

IF N <= 0 THEN TERMINATE;

FOR MULT FROM 1 THRU N BY 1

REPEAT

FACT := MULT * FACT;

PRINT (MULT, FACT);

END;

The statement-list following REPEAT will be executed exactly N times,

and N lines will be printed out.

It is not necessary to write the individual qualifying phrases in

any particular order. The REPEAT statement above could also have been

written:

FOR MULT FROM 1 BY 1 THRU N REPEAT

FROM 1 FOR MULT THRU N BY 1 REPEAT

THRU N BY 1 FROM 1 FOR MULT REPEAT

BY 1 FOR MULT THRU N FROM 1 REPEAT

END;

END;

END;

END;

or any of 19 other possible ways. But it is a good idea to choose one

easy-to-read order, and stick with it in all your programs.

Using the step-and-test qualifiers in special cases

Let us take as an example an even simpler program than the one we

used in the previous section. This one moves the PRINT stat~ment outside

the loop, so that it prints only N!:

VARIABLES N, MULT ARE INTEGER,

FACT IS INTEGER::= l;

READ LINE (N);

IF N <= 0 THEN TERMINATE;

FOR MULT FROM l THRU N BY 1 REPEAT FACT := MULT * FACT; END;

PRINT (N, FACT);

65

(Note that the PRINT statement now prints N instead of MULT; alternatively,

we could have written

PRINT (MULT, FACT);

since MULT is always equal to N when the REPEAT is terminated.)

The IF statement in this program insures that N is always at least

1 when the REPEAT statement is executed. So the THRU value is never less

than the FROM value, and the loop is always executed at least once.

What would happen if the IF were left out? In that case, the THRU

value might be less than the FROM value. In other words, the initial

value of MULT might already be greater than the limit. When this happens,

the effect is the same as when a WHILE condition is initially FALSE: the

REPEAT statement is terminated immediately, and the loop is never executed.

This behavior of REPEAT can often be used to advantage. For ex

ample, we can make the sample program more efficient by setting the initial

value of MULT at 2:

FOR MULT FROM 2 THRU N BY 1 REPEAT FACT := MULT * FACT; END;

When N is 2 or greater, the loop is executed N - 1 times; the superfluous

step of calculating MULT * FACT when MULT is 1 is eliminated. When N is

1, the THRU value is less than the FROM value, so the loop is not executed

at all. The value of FACT remains equal to 1, which is what it should

be when N is 1.

There is one other situation when the loop is never executed:

when the BY value is equal to zero. This makes it impossible to accident

ally write an infinite loop that steps a variable by zero forever. It

can also occasionally be used to advantage in other cases.

Negative step values

It is permissible to use a negative BY value. However, it causes

the REPEAT statement to act differently in some respects:

1) The FOR variable is stepped down after each execution of the loop.

66

2) Looping continues until the FOR variable is stepped below the

THRU value.

3) The loop statement is never executed if the THRU value is greater

than the FROM value.

As an example, we could have replaced the REPEAT statement in the

program in the previous section by

FOR MULT FROM N THRU 2 BY -1 REPEAT FACT := MULT * FACT; END;

The result is the same, for any N.

REAL mode in REPEAT statements

So far all our examples have used INTEGER values and variables in

the qualifying phrases. However, all the rules are the same if you use

REAL values and variables.

If a FROM, BY, or THRU value is not of the same mode as the FOR

variable, the value is converted to the mode of the variable. The con

version is performed before the regular actions of the REPEAT statement.

In particular, if a FROM, BY, or THRU value is of REAL mode, and the FOR

variable is INTEGER, the value will be rounded before the REPEAT state

ment is carried out.

As an example, take

VARIABLE I IS INTEGER;

VARIABLE R IS REAL;

FOR R FROM 1.7 THRU 4.1

FOR I FROM 1.7 THRU 4.1

BY 0.6

BY 0.6

REPEAT

REPEAT

END;

END;

The first REPEAT statement initializes R to 1.7, and steps it by 0.6

until its value exceeds 4.1. The loop will be executed five times in all.

In the second REPEAT, the values in the qualifying phrases are rounded

first. So it is executed the same as if it read

FOR I FROM 2 THRU 4 BY 1 REPEAT .•. END;

The loop will be executed only three times.

67

In any step-and-test loop, the FOR variable is involved in a com

parison after each execution of the loop. It is therefore best to avoid

REAL-mode FOR variables whenever possible, because of the inexactness in

REAL comparison that we mentioned in Chapter 5. If it is necessary to

use REAL FOR variables, it is a good idea to arrange the THRU value so

that the last test is sure to produce the desired result. For example,

to step from 1.7 through 4.1 by 0.6, you could write

FOR R FROM 1.7 THRU 4.4 BY 0.6 REPEAT ... END;

Then when R is stepped to 4.1, it is distinctly less than 4.4, and exe

cution of the loop continues; the next value for R is 4.7, which clearly

fails the test and terminates the REPEAT.

Default actions of step-and-test gualifying phrases

In many cases you can shorten the REPEAT statement by leaving out

one or more qualifying phrases. Whenever a step-and-test qualifying phrase

is left out, the compiler assumes that a standard default action was in

tended. (The term "default" refers to something the compiler does for you

when you leave out information it needs to know. It does not mean that

you made an error.)

When FROM or BY phrases are omitted, default values of 1 are assumed.

Thus the loop in the factorial program:

FOR MULT FROM 1 THRU N BY 1 REPEAT FACT := MULT * FACT; END;

can be written with any of these shorter forms:

FOR MULT FROM 1 THRU N REPEAT FACT := MULT * FACT; END;

FOR MULT THRU N BY 1 REPEAT FACT := MULT * FACT; END;

FOR MULT THRU N REPEAT FACT := MULT * FACT; END;

If the variable in a FOR phrase is not actually used in the loop,

then the FOR phrase can be omitted. The compiler assumes that a REAL

mode FOR variable was intended. For instance, here is a loop which sets

POWER to~:

68

VARIABLES MULT, M, N ARE INTEGER,

POWER IS INTEGER::= l;

READ_LINE (M, N);

FOR MULT THRU N REPEAT POWER := POWER * M; END;

Here MULT does not appear in the loop at all, so the FOR phrase can be

dropped:

THRU N REPEAT POWER := POWER * M; END;

(Of course, the compiler assumes a REAL FOR variable, whereas we originally

used an IN~EGER one; but in this case -- and many others -- it makes no

difference.)

When the THRU phrase is omitted, the FOR variable is stepped with

out limit. To avoid creating an infinite loop, some other means must be

provided to terminate the REPEAT statement.

One use of a REPEAT without a THRU phrase is to count the number

of times through the loop. For example, our billing program makes one

loop for each account processed, so we can use a REPEAT like this to

count the number of processed accounts:

VARIABLES ACCT_NO, OLD_BAL, NEW_BAL, PURCHASE, PAST_DUE,

INTEREST, PAYMENT, COUNT ARE INTEGER;

FOR COUNT FROM 0

REPEAT

READ_LINE (ACCT_NO, OLD_BAL, PAYMENT, PURCHASE);

IF ACCT NO <= 0 THEN

END;

BEGIN;

PRINT (COUNT) ;

TERMINATE;

END;

COUNT will be stepped until some input value of ACCT NO is non-positive.

Then COUNT is printed out before the program terminates.

69

Using both step-and-test and comparison gualifying phrases

It is legal, and often useful, to combine WHILE or UNTIL or both

with FOR, FROM, THRU, and BY. The loop may then be terminated by a false

WHILE condition, a true UNTIL condition, or the stepping of the FOR

variable past its limit, whichever occurs first. The rules are:

1) A WHILE condition is always tested immediately before each loop

begins. It is thus tested after initialization the first time,

and after stepping each subsequent time.

2) An UNTIL condition is always tested immediately after each loop

ends. It is therefore tested before stepping.

Here is a simple example which combines a step-and-test loop with

WHILE. It prints out a table of numbers and their factorials:

VARIABLES N, MOLT ARE INTEGER,

FACT IS INTEGER::= l;

READ_LINE (N);

FOR MOLT THRU 20 WHILE FACT <= N

REPEAT

FACT := MOLT * FACT;

PRINT (MOLT, FACT);

END;

The last line in the table will be for 20, or the greatest number whose

factorial is less than N -- whichever is smaller. Note that if N is less

than 1, nothing is printed out,

WHILE or UNTIL can also be used to insure termination of a REPEAT

statement that has a FOR phrase but no THRU phrase. For instance, you

could also write the billing program example of the previous section as

FOR COUNT FROM 0 UNTIL ACCT NO <= 0

REPEAT

END;

PRINT (COUNT) ;

70

Nested REPEAT statements

REPEAT statements used in combination can produce very compact but

powerful programs -- especially if one REPEAT is nested inside the loop

of the other. Then the inner REPEAT will itself be executed repeatedly.

As an example, we present here a program to compute all prime

numbers less than or equal to some input value N. A prime is a number

that can't be evenly divided by any number between 1 and itself -- such

as 2, 3, 5, 7, 11, or 13 (to name the first six}. Two is the only even

prime, since all other even numbers are divisible by 2. There is an in

finite number of odd primes.

To check if an odd number is prime, we try dividing it by odd

numbers less than it, starting with 3. We can save some time by taking

advantage of the fact that a non-prime number's divisors come in pairs;

for instance we can break down 225 as:

225 = 3 * 75

5 * 45

9 * 25

= 15 * 15

For any number N, each divisor greater than the square root of N (15 in our

example) has a corresponding divisor less than the square root of N. So if

we don't find any divisors less than the square root of N, we can assume N

is prime.

VARIABLES N, CANDIDATE, TEMP, DIVISOR ARE INTEGER,

EVEN DIVIDE IS BOOLEAN ::=FALSE;

READ LINE (N} ;

IF N >= 2 THEN PRINT (2);

ELSE TERMINATE;

FOR CANDIDATE FROM 3 THRU N BY 2

REPEAT

FOR DIVISOR FROM 3 THRU CANDIDATE ** 0.5 BY 2

UNTIL EVEN DIVIDE

REPEAT

TEMP := CANDIDATE / DIVISOR;

EVEN DIVIDE := DIVISOR * TEMP CANDIDATE;

END;

IF ~EVEN DIVIDE THEN PRINT (CANDIDATE) ;

END;

71

The best way to appreciate the nuances of this program is to follow it

through for a few small values of N. The general logic of the program

is as follows:

CANDIDATE ranges through all odd numbers from 3 to N. Each pass

through the outer loop tests whether some value of CANDIDATE is prime.

For each value of CANDIDATE, DIVISOR can range through all odd

numbers from 3 to CANDIDATE ** 0.5 (the square root of CANDIDATE}.

Each pass through the inner loop checks some value of DIVISOR to see if

it evenly divides CANDIDATE. EVEN DIVIDE is set to TRUE or FALSE

accordingly.

The inner loop is terminated as soon as EVEN DIVIDE is TRUE for

some value of DIVISOR. If no value of DIVISOR evenly divides CANDIDATE,

then the loop terminates when DIVISOR steps past the limit, and

EVEN DIVIDE remains FALSE.

If the inner loop terminates with EVEN_DIVIDE = FALSE, then

CANDIDATE is prime, so it is printed. If the inner loop terminates with

EVEN DIVIDE = TRUE, then CANDIDATE is not a prime and is not printed.

Leaving out the looped statements

Some simple tasks can be accomplished by a REPEAT that has no looped

statement at all. An example is:

FOR I WHILE 2 ** I - 1 < TEST_VALUE REPEAT; END;

This statement finds the smallest positive I such that 2I-l is greater

than or equal to TEST_VALUE. There is no looped statement to be executed;

so after each test of the WHILE condition, the REPEAT goes on inunediately

to step and test I again.

There are two ways to look at this situation. You can think of

this as a special form of the REPEAT statement, in which no looped

statement follows REPEAT -- and so there is no execution of a looped

statement. Or you can imagine that the compiler automatically inserts

an empty statement when it finds no statement between the words REPEAT

and END. An empty statement can be thought of as a space filler, which

has no effect on anything when it is executed; it's just put there to

follow the rules, because the rules specify a statement-list between

REPEAT and END.

72

The empty statement approach is broader -- it doesn't require a

special form to describe cases where a statement can be left out.

There are actually many such cases in CS-4. In fact, we can make a

quite general rule: anywhere other cs-4 executable statements may

appear, an empty statement may be left instead. An empty statement can

thus come, for instance, after THEN:

IF N = 0 THEN;

ELSE N : = N + 1;

in which case no action is performed when the THEN clause is executed -

control just skips over ELSE to the next statement.

73

9.0

MORE ABOUT BLOCKS AND LOOPS:

THE EXIT STATEMENT

When we introduced BEGIN blocks and REPEAT loops we said that they

could be terminated by passing control to END, or by terminating the

whole program through TERMINATE. There is one more very useful way to

terminate a block or loop in CS-4 -- by executing an EXIT statement.

EXIT can be used in a number of powerful ways. A discussion of

some of these uses will have to wait until you are more proficient in the

language. But at this point we can introduce two of the simpler forms of

EXIT, and show how to use EXIT to simplify the writing of REPEAT loops.

Using EXIT

The most elementary form of the EXI~ statement is written simply:

EXIT;

When this statement is executed, it causes control to pass directly to

the point following END. A BEGIN block is thus terminated immediately; any

statements between the EXIT and END are skipped. As a simple example, we

could write

BEGIN;

PAST DUE := OLD BAL - PAYMENT;

IF PAYMENT <= OLD BAL THEN EXIT;

PAST DUE := O;

END;

INTEREST :~ PAST_DUE * 0.015;

Suppose this block is executed with PAYMENT <= OLD BAL. Then the IF

statement causes EXIT to be executed, terminating the block immediately.

Control passes directly to the next statemPnt following the block --

the assignment to INTEREST. That assignment is the next statement that

is executed. The assignment PAST_DUE := 0 is not executed at all. On the

other hand, if PAYMENT is greater than ODD_BAL, the IF does not execute

EXIT. The block is eventually concluded when control reaches END in the

normal sequence -- after PAST DUE is assigned 0.

74

EXIT is meaningful only when it appears within an executable block,

such as the BEGIN block above, or a REPEAT loop statement list. If you

write EXIT where it is not meaningful, the compiler will signal an error

and will not let the program be executed,

We have said that a BEGIN block is executed as if it were a sort

of "sub-program" in itself. You can think of EXIT as having the same re

lation to a BEGIN block "sub-program" that TERMINATE has to whole programs.

Both cause immediate termination -- but TE~INATE terminates an entire program,

whereas EXIT just terminates the "sub-program" which is contained in the block.

~EPEAT loops containing EXIT

REPEAT loops, like BEGIN blocks, contain a list of statements followed

by END. Each execution of the statement-list is one pass through the loop; a

pass through the loop ends when control reaches the END of the list. When

one of the conditions in the REPEAT loop's qualifying-phrase-list is met, the

REPEAT loop stops looping and control passes to the point following END.

The execution of EXIT in a REPEAT loop, as in a BEGIN block, causes control

to pass immediately to the point following END. So when EXIT is executed in

a REPEAT loop, the looping process terminates, just as it would if one of

the conditions in the qualifying-phrase-list were suddenly tested and met.

EXIT, though, has a versatility that the qualifying-phrase-list doesn't have:

statements containing EXIT may appear anywhere within the loop. EXIT enables

you to test for a condition that is not specified in the qualifying-phrase

list, and test it at whatever point in the statement list you choose to

place the statement containing EXIT.

There is another important way in which EXIT statements may be used in

REPEAT loops. Sometimes you want to exit not from the entire looping process,

but from just one pass through the loop. You want to make the control pass

directly to END, skipping over the intervening statements. Then you want to

have the conditions of the REPEAT loop tested {as they would if control had

reached END normally) to determine whether the loop should be executed

again. This effect may be achieved using EXIT, if you simply place the entire

statement-list portion of the REPEAT statement within a BEGIN block. An EXIT

from such a BEGIN block has the effect of passing control immediately to

the "bottom" of one pass through the loop.

There are many natural applications of EXITing from one pass through a

REPEAT loop. For instance, you might want the billing program to skip over

accounts that did not change for the month -- accounts with OLD BAL, PAYMENT,

and PURCHASE all zero. If you place the entire statement list within a BEGIN

block, you then can put in an IF with an EXIT statement to do the job:

75

VARIABLES ACCT_NO, OLD_BAL, NEW_BAL, PURCHASE, PAST_DUE,

INTEREST, PAYMENT, PAST COU~!T ARE INTEGER : := 0;

UNTIL ACCT NO <= 0

REPEAT

BEGIN;

READ_LINE (ACCT_NO, OLD_BAL, PAYMENT, PURCHASE);

IF OLD BAL = 0 & PAYMENT = 0 & PURCHASE = 0 THEN EXIT;

IF PAYMENT >= OLD BAL THEN

BEGIN;

PAST DUE := O;

INTEREST := O;

END;

ELSE

BEGIN;

PAST DUE := OLD BAL - PAYMENT;

INTEREST := PAST_DUE * 0.015;

PAST COUNT := PAST COUNT + l;

END;

NEW BAL := OLO_BAL - PAYMENT + INTEREST + PURCHASE;

PRINT (ACCT_NO, OLD_BAL, PAYMENT, PAST_DUE,

INTEREST, PURCHASE, NEW_BAL);

END;

END;

PRINT (PAST_COUNT);

Notice that there are two END statements just before PRINT. One of

these marks the end of the BEGIN block; the other marks the end of the

REPEAT loop. When the dollar input values are all zero, EXIT gets executed.

It terminates the BEGIN block and that pass through the loop -- the rest of

the statements in it are skipped over. Then the UNTIL phrase is tested,

and if it yields FALSE the loop starts again at the beginning of the BEGIN

block. On the other hand, if EXIT is not executed the loop ends in the

usual way, when control passes to END after the statement that prints

ACCT NO and all the dollar values.

Note that with the entire loop within a BEGIN block, EXIT does not

cause the REPEAT statement to stop looping. It just causes one particular

pass through the loop to end, and another pass to begin immediately after
the test. The only way looping can be stopperl is for ACCT_NO to be non-

posi tive; only then will PRINT (PAST_COUNT) finally be executed.

76

The need to label blocks

Suppose you tried to make a slight modification to the program we

just wrote, so that ACCT_NO was still printed out when an account re

quired no processing. You might want to simply add PRINT (ACCT_NO) to

the first IF statement, just before the EXIT:

UNTIL ACCT NO <= 0
REPEAT

BEGIN;

READ_LINE (ACCT_NO, OLD_BAL, PAYMENT, PURCHASE);

IF OLD BAL = 0 & PAYMENT = 0 & PURCHASE = 0 THEN

BEGIN;

END;

END;

PRINT (ACCT_NO);

EXIT;

END;

But this does not do what you want it to. The problem is that now EXIT

is inside two BEGIN blocks -- an outer one, (enclosing all the statements

within the REPEAT loop), and an inner one {the THEN clause). The EXIT
statement does not say which block is to be terminated, so the compiler

assumes you want to terminate only the innermost block. The outer block

the one you wanted to terminate -- still continues normally until END
is reached. The same problem arises when EXIT is placed in a REPEAT

statement that is within the block you wish to EXIT from.

To resolve this problem, CS-4 lets you specify explicitly which

block you want to terminate. But to do this, you first have to put a

label on the block in question, so that you have a way to refer to it,

A label is a name followed by a colon. For a BEGIN block it is placed

just before the word BEGIN, usually on a separate line so it stands out:

NEW INPUT CASE:

BEGIN;

The label name is also placed after the word END in the labelled block's

END statement:

NEW INPUT CASE:

BEGIN;

END NEW INPUT_CASE;
77

Actually, labelling the END is optional -- the compiler accepts unlabelled

ENDs on labelled blocks. Labelled ENDs are preferable, however, because

they improve the program's readability.

REPEAT statements may be labelled in the same way as BEGIN blocks.

EXIT and EXIT FROM behave the same for REPEAT statements as they do for

BEGIN blocks. (So for simplicity's sake, in the .rest of this chapter we

will use the term "block" to mean either a BEGIN block or a REPEAT statement.)

Labelling a block does not change the way it is executed. It

just gives the block a name, so you can refer to it. The rules for

forming label names are the same as for variable names. A name may not

be used for both a label and a variable at the same time.

Referring to a Labelled block in an EXIT statement

To terminate a block by name, you add a FROM phrase to the EXIT

statement:

EXIT FROM label;

where "label" is the label name of one of the blocks that contains the

EXIT statement. The named block -- and all blocks nested within it -

will be terminated immediately.

Now we can get around the problem that came up in the previous

section, by labelling the outer block:

UNTIL ACCT NO <= 0

REPEAT

NEW ACCT:

BEGIN;

READ_LINE (ACCT_NO, OLD_BAL, PAYMENT, PURCHASE);

IF OLD BAL = 0 & PAYMENT = 0 & PURCHASE = 0 THEN

BEGIN;

PRINT {ACCT_ NO) ;

EXIT FROM NEW_ACCT;

END;

END NEW_ACCT;

END;

The EXIT statement specifies that the outer block as well as the inner

one is to be terminated.

78

The rules for EXIT can be summarized like this: an EXIT statement

transfers control to the point following the end of the block named in

its FROM phrase. In the process, any blocks nested within that named

block which are also being executed are also terminated. If there is no

FROM phrase, only the innermost block is terminated. (If none of the

blocks containing the EXIT statement is labelled with the name in the

FROM phrase, then the compiler signals an error, and the program cannot

be executed.)

EXITing from a nested REPEAT

An EXIT statement with a FROM phrase can be used to simplify the

prime-generating program we presented at the end of the last chapter, so

that there is no need to set or test the BOOLEAN variable EVEN DIVIDE.

VARIABLES N, CANDIDATE, TEMP, DIVISOR ARE INTEGER;

READ LINE (N);

IF N >= 2 THEN PRINT (2);

ELSE TERMINATE;

FOR CANDIDATE FROM 3 THRO N BY 2

REPEAT

TEST:

BEGIN;

FOR DIVISOR FROM 3 THRU CANDIDATE ** 0.5 BY 2

REPEAT

TEMP := CANDIDATE / DIVISOR;

IF DIVISOR * TEMP CANDIDATE THEN EXIT FROM TEST;

END;

PRINT (CANDIDATE);

END TEST:

END;

If some value of DIVISOR is found to evenly divide CANDIDATE, then

EXIT FROM TEST;

is executed. It causes control to pass directly to the point following

END TEST, which is the END of the outer loop. As a result, the inner

79

REPEAT statement is terminated immediately: DIVISOR is not stepped or

tested any further, and no more passes are made through the inner loop.

CANDIDATE, the outer loop's FOR variable, is immediately stepped by 2,

and, if it does not exceed N, the outer loop starts once more at the

beginning. (One thing this example demonstrates is that an EXIT can

terminate a REPEAT statement, if it terminates a block containing the

REPEAT.)

Of course, the EXIT statement also causes PRINT (CANDIDATE)

to be skipped over. So when CANDIDATE is divisable by some DIVISOR

value, it is not printed out as a prime. On the other hand, when

CANDIDATE is prime the EXIT never gets executed, and the inner REPEAT

terminates when divisor is stepped past CANDIDATE ** 0.5. Then

CANDIDATE does get printed out.

80

PART 2

DATA HANDLING WITH ARRAYS

AND CHARACTER STRINGS

10.0

DECLARING AND USING ARRAYS OF VALUES

Very often, computer programs deal with sets of values. Some

examples are:

inputs from a line or field of sensors

a list of primes

vectors

scores on a series of tests

a list of invalid account numbers

Programs would become quite cumbersome if you had to declare a separate

variable name to refer to each value in a set. So CS-4 lets you declare

array variables, which refer to whole collections of values.

This chapter is an introduction to the use of CS-4 arrays. It

explains how to write declarations for them, how to refer to individual

values in an array, and how to input and output arrays; and it presents

some simple programs using arrays of INTEGER and REAL values.

The need for arrays

Let's consider a simple physics problem, which will show how use

ful arrays can be. We want to write a program to find the center of

gravity of a rod on which five weights are hung. We assume the weight

of the rod is negligible. The situation can be drawn like this:

I
0

'--~~~' '--~--

The wi are the individual weights and the xi are the corresponding posi

tions relative to the center point, 0. (Positions are measured positive

to the right, and negative to the left.) The formula for the position

of the center of gravity (again in terms of distance from the center

point) is:

83

or, using the more compact ~-notation for sums:

c

The input for each case will be on two sequences of cards -- the weights

first, and then the corresponding distances.

It is possible to write a program for this problem without using

array variables. The program would have to declare five variables for

weights, and five for distances, and would look something like this:

VARIABLES WEIGHT!, WEIGHT2, WEIGHT3, WEIGHT4, WEIGHTS,

DISTl, DIST2, DIST3, DIST4, DISTS, WEIGHT_SUM,
CENTER ARE REAL;

REPEAT

READ LINE (WEIGHT!, WEIGHT2, WEIGHT3, WEIGHT4, WEIGHTS,

DISTl, DIST2, DIST3, DIST4, DISTS);

WEIGHT SUM := WEIGHT! + WEIGHT2 + WEIGHT3 + WEIGHT4 +

WEIGHTS;

IF WEIGHT SUM = 0 THEN TERMINATE;

CENTER := (WEIGHTl*DISTl + WEIGHT2*DIST2 + WEIGHT3*DIST3 +

WEIGHT4*DIST4 + WEIGHTS*DISTS} / WEIGHT_SUM;

PRINT (WEIGHT!, WEIGHT2, WEIGHT3, WEIGHT4, WEIGHTS,

DIST!, DIST2, DIST3, DIST4, DISTS, CENTER);

END;

The IF statement serves two purposes. First, it prevents division by zero

in the calculation of CENTER. (If a program does try to divide by zero,

its execution is immediately terminated, and an error message is printed in

the output.) Second, the IF provides a convenient way to terminate the

program correctly -- just set all five weights equal to zero on the last

input card.

There are several reasons why you would want to improve on this

program. It is somewhat bulky and hard to read. It is useful only for

problems with five weights -- if you wanted to have, say, six input

weights and distances, you would have to declare two more variables

84

(called, perhaps, WEIGHT6 and DIST6), and practically every statement

would have to be changed. The more inputs you want to have, the

bulkier you must make the program. To handle 25 input weights, you

would have to declare 50 different variables for input, and the express

ion to compute CENTER would have 25 additions and 25 multiplications

written out.

Finally, there is no simple way to adapt the above program to

handle a variable number of inputs. Each possible number of inputs re

quires a different set of statements. For example, suppose for each

case you first read a value N that tells how many weights there are for

that case; suppose N can be 3, 4, or 5. Just to read in the input

values, you would have to write:

READ_LINE (N};

IF N = 3 THEN

READ LINE (WEIGHTl, WEIGHT2, WEIGHT3, DISTl,

DIST2, DIST 3) ;

ELSE

IF N = 4 THEN

READ LINE {WEIGHTl, WEIGHT2, WEIGHT3, WEIGHT4,

DISTl, DIST2, DIST3, DIST4);

ELSE

IF N = 5 THEN

READ_LINE (WEIGHT! I WEIGHT2' WEIGHT3' WEIGHT4 I

WEIGHTS, DIST!, DIST2, DIST3, DIST4, DISTS);

ELSE TERMINATE;

and the rest of the program would be more complicated, too (try it and

see}. A program to take any number of weights from 1 to 25 would fill
many pages.

Declaring array variables

A concise and flexible program for the center-of-gravity problem

can be written by declaring a variable to represent more than one value

of a given mode. A variable so declared is called an array variable.

Like all variables, it must be named in a declaration statement.

As an example, suppose that instead of declaring five individual

weight variables

VARIABLES WEIGHT!, WEIGHT2, WEIGHT3, WEIGHT4,

WEIGHTS ARE REAL;

85

you want to declare a single variable WEIGHT that has five REAL values.

You would write a declaration for WEIGHT like this:

VARIABLE WEIGHT IS ARRAY(S) REAL;

The word ARRAY coming directly after IS (or ARE) indicates that WEIGHT

is an array variable. The number in parentheses after ARRAY tells the

number of elements in WEIGHT. Then comes the mode name -- REAL -- that

indicates what mode each element of the array is.

You can declare arrays of any number of elements of any mode; for

example:

VARIABLE SCORE IS ARRAY(lOO) INTEGER;

VARIABLES TESTl, TEST2 ARE ARRAY(2) BOOLEAN;

SCORE is here declared to represent an array of 100 elements of INTEGER

mode. TESTl and TEST2 represent arrays of two BOOLEAN elements.

ARRAY is our first example of what is called a mode generator.

It has the effect of generating new modes from old ones. You can think

of the expression

ARRAY (5) REAL

as the name of a new mode. The "values" that this new mode represents are

lists of five numerical values -- whereas the values that the mode REAL

represents are single numerical values. When you write

VARIABLE WEIGHT IS ARRAY(S) REAL;

you can think of it as saying that the mode of WEIGHT is ARRAY(S) REAL.

Referring to individual array elements

The name of an array variable can be very useful all by itself.

Nonetheless, it is necessary to have a way of naming each element of the

array-, so that individual elements can have operations performed on them,

and can be read or printed.

The way array elements are referred to in CS-4 has a lot in common

with familar mathematical notation. Remember that when we defined the

center of gravity problem, we used the letter w to stand for weights.

The individual weights were represented by subscripted w's:

86

The sum of the weights was written

5
E

i=l
w.

1

where wi represented each of the weights w
1

through w
5

, as i ranged from

1 through 5.

In CS-4, we also write subscripts to select individual values.

However, there is no way to write a number "below the line" on a punched

card. Subscripts are indicated in a different way -- by putting them in

parentheses after the array name. So, given

VARIABLE WEIGHT IS ARRAY(S) REAL;

the five elements of WEIGHT are written

WEIGHT(l), WEIGHT(2), WEIGHT(3), WEIGHT(4), WEIGHT(S)

Furthermore, if you declare an individual variable

VARIABLE I IS INTEGER;

then you are allowed to write

WEIGHT(!)

which can represent any of the values WEIGHT(!) through WEIGHT(S), depend

ing on the current value of I. If WEIGHT(!) appears in a loop, and the

value of I is different each time through the loop, then WEIGHT(!) will

represent a different element of WEIGHT each time through the loop. So

you can calculate the sum of all the values in array WEIGHT like this:

VARIABLE WEIGHT SUM IS INTEGER::= 0;

FOR I THRU 5 REPEAT WEIGHT SUM:= WEIGHT SUM+ WEIGHT(!); END;

87

Expressions such as WEIGHT(l) and WEIGHT(!) are subscripted

variable names. They represent single values in the array WEIGHT. In

the present example they represent REAL values, since WEIGHT is an array

of REALs. They can be used in a program in all the same ways that non

subscripted REAL-mode variables can be used. For example:

WEIGHT (3) := 0;

IF WEIGHT(l) > WEIGHT(2)

THEN TERMINATE;

assign the value 0 to the third

element of WEIGHT

execute TERMINATE if the first element

of WEIGHT has a greater value than

the second element

WEIGHT(!) := WEIGHT(!) + l; the Ith element of WEIGHT is assigned

a new value equal to its present

value plus 1

IF TEST(3) THEN TERMINATE; TEST must be declared as an array of

BOOLEAN elements; the statement causes

TERMINATE to be executed if the third

element of TEST has the value TRUE

Subscripts are not limited to literals and single variables. Any

arithmetic expression may be used as a subscript. For instance, you can

legally write

WEIGHT(2 * I - 1)

which refers to WEIGHT(!) when I is 1, to WEIGHT(3) when I is 2, and to

WEIGHT(S) when I is 3.

If you use variables in a subscript expression, you must be

careful that the subscript value remains in bounds. If I is 4, refer

ence to WEIGHT(2 * I - 1) is in error, since there is no element

WEIGHT(7).

Only expressions that yield INTEGER values may be used as
subscripts.

88

Reading and printing arrayed values

To assign input values to elements of an array, you can put sub

scripted variables in a READ_LINE statement. For instance, here we

read values into all five elements of array WEIGHT:

VARIABLE WEIGHT IS ARRAY(S) REAL;

READ_LINE (WEIGHT(!), WEIGHT(2) / WEIGHT(3), WEIGHT(4),

WEIGHT(S));

You can also do the same thing, more compactly, by writing just the

array name in the READ LINE statement:

READ LINE (WEIGHT) ;

This statement causes one value to be read for each element of WEIGHT.

The first value read is assigned to WEIGHT(!), the second to WEIGHT(2),

and so on. Of course, if you only want to read values into certain

elements, you have to specify them explicitly with subscripted variables.

The operation of the PRINT statement is similar. To print out

all the elements of WEIGHT in order, you write:

PRINT (WEIGHT) ;

To write out just the first, fifth, and third elements, in that order,

you write

PRINT (WEIGHT(l), WEIGHT(S), WEIGHT(3));

Writing a program using arrays

Now we are prepared to rewrite the center of gravity program in an

improved form. The input values are read into two arrays of five

elements -- called WEIGHT and DISTANCE -- and then the elements of these

arrays are multiplied and summed in a loop.

VARIABLES WEIGHT, DISTANCE ARE ARRAY(S) REAL,

WEIGHT_SUM, PRODUCT_SUM, CENTER ARE REAL,

I IS INTEGER;

89

REPEAT

WEIGHT_SUM := O;
PRODUCT_SUM := O;

READ_LINE (WEIGHT, DISTANCE);

FOR I THRU 5

REPEAT

WEIGHT_SUM := WEIGHT_SUM + WEIGHT(I);

PRODUCT SUM :=

PRODUCT SUM+ WEIGHT(I) * DISTANCE(I);

END;

IF WEIGHT SUM = 0 THEN TERMINATE;

CENTER := PRODUCT_SUM / WEIGHT_8UM;

PRINT (WEIGHT, DISTANCE, CENTER);

END;

When the inner loop is terminated, WEIGHT_SUM is the sum of all the

weights, and PRODUCT_SUM is the sum of the weight-distance products.

If WEIGHT SUM is not zero, CENTER is computed as PRODUCT SUM /

WEIGHT SUM.

Only two slight changes need be made to this program to process

any other number of input weights. To handle, say, 25 weights, the

changed lines would be

VARIABLES WEIGHT, DISTANCE ARE ARRAY(25) REAL;

FOR I THRU 25

The program stays the same size, no matter how many inputs it is written

to handle.

Array inputs of varying size

Once you declare that an array has a fixed number of elements, you

cannot change its size during execution. If you write

VARIABLES WEIGHT, DISTANCE ARE ARRAY(25) REAL;

then WEIGHT and DISTANCE have 25 elements throughout the program. As a

result, every time the statement

90

READ LINE (WEIGHT, DISTANCE);

is executed, 25 values are read into the array WEIGHT, and 25 into

DISTANCE.

Even so, there are ways to write a program to accept a varying

number of input values. One method that works for the center of gravity

problem is to precede each set of WEIGHT and DISTANCE input cards with

a separate "size" input card. The size card contains an INTEGER value

that indicates the number of WEIGHT and DISTANCE values which follow.

To implement this arrangement, we add a READ_LINE statement at

the beginning of the program loop which reads the size value into a

variable N. Input values are then read into elements 1 through N of

WEIGHT and DISTANCE, and the loop which calculates WEIGHT SUM and

PRODUCT SUM is performed with I ranging from 1 to N.

VARIABLES WEIGHT, DISTANCE ARE ARRAY(25) REAL,

WEIGHT_SUM, PRODUCT_SUM, CENTER ARE REAL,

I, N ARE INTEGER;

REPEAT

WEIGHT_SUM := 0;

PRODUCT SUM := O;

READ_LINE (N);

IF N < 1 I N > 25 THEN TERMINATE;

FOR I THRUN REPEAT READ LINE (WEIGHT(!)); END;

FOR I THRUN REPEAT READ LINE (DISTANCE(!)); END;

FOR I THRU N

REPEAT

WEIGHT SUM:= WEIGHT SUM+ WEIGHT(!);

PRODUCT SUM :=

PRODUCT SUM+ WEIGHT(!) *DISTANCE(!);

END;

IF WEIGHT SUM = 0 THEN TERMINATE;

CENTER := PRODUCT_SUM / WEIGHT_SUM;

FOR I THRUN REPEAT PRINT (WEIGHT(!)); END;

FOR I THRUN REPEAT PRINT (DISTANCE(!)); END;

PRINT (CENTER) ;

END;

91

This program handles any number of inputs from 1 to 25. It could handle

a greater number of inputs if the sizes of the arrays were increased.

(Note the necessity of an additional IF statement, to check that the

value of N is in bounds.)

There is one defect in the program as it now stands. The state

ment READ_LINE (WEIGHT(I)) is executed N times for each case. Each time

it is executed, it starts reading a new card -- so each input WEIGHT

value must be on a separate card. The same goes for each DISTANCE value.

And we have a similar problem with the PRINT statements -- they print

only one value to a line. However, there is a simple way to avoid this

inconvenience, which will be demonstrated in the next chapter. Even in

its present form, the program is a considerable improvement over any

program that does the same work without using array variables.

Using an array for a data base

We have seen how arrays are useful for storing many values of

data that are to be processed. Arrays also come into use when a list or

table of values must be stored for reference later on in a program.

The array then serves as a data base -- a store of information that the

program can draw on.

Consider the billing program we have been developing. The in

formation for each account is read in from a card:

READ_LINE (ACCT_NO, OLD_BAL, PAYMENT, PURCHASE,

INTEREST_FREE);

INTEREST FREE is a BOOLEAN variable; its input value is TRUE only when

no interest is to be charged to the account. ACCT NO is an account

number.

Suppose we prefer to have the computer do the work of deciding

which accounts are interest-free. We take the list of interest-free

accounts and punch their numbers onto cards. The billing program will

then read these numbers into an array at the very beginni~g, and will

refer to this array later to determine when INTEREST FREE should be set

to TRUE.

92

To implement this scheme, let us make a few assumptions:

1) There are always less than 100 interest-free accounts -- we have

to set some limit, because there must be a maximum size for the

array we declare;

2) The numbers are punched one to a card -- this makes it easiest

to remove or add numbers when necessary;

3) The first input card contains an INTEGER value which is the

number of account numbers to be read.

Only a few additions to our standard billing program are necessary.

We need some new declarations:

VARIABLE FREE ACCT NO IS ARRAY(lOO) INTEGER,

I, N ARE INTEGER;

and we need to add three statements before the main processing loop, to

read in the interest-free account numbers:

READ_LINE (N) ;

IF N < 1 I N > 100 THEN TERMINATE;

FOR I THRUN REPEAT READ_LINE (FREE_ACCT_NO(I)); END;

Inside the main loop, we add a REPEAT statement that sets INTEREST FREE:

FOR I THRU N UNTIL INTEREST FREE REPEAT

INTEREST FREE := ACCT NO FREE ACCT_NO(I); END;

If ACCT NO matches one of the first N elements of FREE_ACCT_NO, then

INTEREST FREE is set to TRUE and the REPEAT terminates. If ACCT NO does

not match any of the first N elements of FREE_ACCT_NO, the REPEAT termin

ates by stepping past the limit, with INTEREST FREE remaining FALSE.

The entire revised program looks like this:

VARIABLES ACCT_NO, OLD_BAL, NEW BAL, PURCHASE, PAST_DUE,

INTEREST, PAYMENT, I, N ARE INTEGER,

PAST COUNT IS INTEGER::= 0,

93

FREE ACCT NO IS ARRAY(lOO) INTEGER, - -
INTEREST_FREE IS BOOLEAN;

READ_ LINE (N) ;

IF N < 1 I N > 100 THEN TERMINATE;

FOR I THRUN REPEAT READ LINE (FREE_ACCT NO(I)); END;

UNTIL ACCT NO <= 0

REPEAT

READ LINE (ACCT_NO, OLD_BAL, PAYMENT, PURCHASE);

FOR I THRU N UNTIL INTEREST FREE REPEAT

INTEREST FREE :~ ACCT NO = FREE ACCT_NO(I); END;

IF INTEREST FREE I PAYMENT >= OLD BAL THEN

BEGIN;

PAST DUE := 0;

INTEREST : = 0;

END;

ELSE

BEGIN;

PAST DUE := OLD_BAL - PAYMENT;

INTEREST := PAST_DUE * 0.015;

PAST COUNT := PAST COUNT + l;

END;

NEW BAL :~ OLD BAL - PAYMENT + INTEREST + PURCHASE;
PRINT (ACCT_NO, OLD_BAL, PAYMENT, PAST_DUE, INTEREST,

PURCHASE, NEW_BAL);

END;

PRINT (PAST_COUNT);

You might want to try writing this variation of the billing program without

using an array variable. You will discover that it requires literally

hundreds of extra statements.

Building a data base with an array

Sometimes you build up a data base in an array as you go along.

An efficent prime-number generator is a good example. Our prime program

in the previous chapter was somewhat wasteful: it checked for primeness

by dividing each candidate number by every odd number less than the

candidate's square root. It would have been enough to divide by every

prime number less than the candidate's square root. But to do that we

need a list of prime numbers.

94

The solution is to have the program make a list of prime numbers

as it proceeds. The list is stored in an array. Every time a new

prime is found, it is added to the array, so the list of primes is

always current.

There are many ways to write a program that keeps a list of primes.

The following will compute and print out up to the first 500 odd primes.

The number of primes to be actually printed is read into NUMBER OF PRIMES

at the start of the program.

VARIABLES CANDIDATE, TEMP, NUMBER_OF_PRIMES, I ARE INTEGER,

N IS INTEGER::= O,

PRIME IS ARRAY(500) INTEGER;

READ_LINE (NUMBER_OF_PRIMES);

IF NUMBER OF PRIMES < 1 NUMBER OF PRIMES > 500 THEN TERMINATE;

FOR CANDIDATE FROM 3 BY 2 UNTIL N = NUMBER OF PRIMES

REPEAT

TEST:

BEGIN;

FOR I THRUN WHILE PRIME(I) <= CANDIDATE ** 0.5

REPEAT

TEMP :=CANDIDATE/ PRIME(I);

IF PRIME(I) * TEMP = CANDIDATE THEN EXIT

FROM TEST;

END;

N := N + l;

PRIME(N) := CANDIDATE;

END TEST;

END;

FOR I THRUN REPEAT PRINT (PRIME(!)); END;

The basic plan of this program is not much different than that of our

previous one. However, now the primes are stored in array PRIME, which

is printed out at the end. PRIME(I) is now the divisor which is

different each time through the inner loop. N keeps track of how many

primes have been found so far. When a new prime is found, N is stepped

by 1, and the new prime is stored in PRIME(N).

95

11.0

OPERATIONS ON WHOLE ARRAYS AND SUBARRAYS

In the last chapter, most of our processing of arrays was done

element-by-element, using REPEAT loops and subscripted variables~ We

used the FOR variable as a subscript, stepping it by 1 each time

through the loop; thus we were able to perform identical actions on a

sequence of elements of one or more arrays.

This sort of processing of successive array elements is very

common in programming. So for convenience CS-4 provides several

features that make it possible to work with more than one element of

an array at once, without writing REPEAT loops. You have already seen

two of these features -- input and output of whole arrays. In this

chapter we introduce some more: assignment of whole arrays, arithmetic

operations on whole arrays, subarray subscript notation, and expressions

for the sum and product over an array.

Assignment of whole arrays

For purposes of discussion in the next few sections, let us

assume the following declarations:

VARIABLES A, B ARE ARRAY(lO) INTEGER,

C IS ARRAY(lO) REAL,

D IS ARRAY(l2) INTEGER,

I, J ARE INTEGER;

In the last chapter we explained how you can assign input values

to all the elements of an array by writing just the array name -- with

no subscript -- in a READ LINE statement:

READ LINE (A) ;

In a like manner, you can assign all the elements of one array to all the

corresponding elements of a second array using the assignment operator:

B :=A;

96

This statement has exactly the same effect as the ten assignments:

B (1)

B(2)

B (3)

:=

:=

:=

A (1) ;

A (2) ;

A (3) ;

B (9) := A(9);

B(lO) := A(lO);

or the REPEAT loop:

FOR I THRU 10 REPEAT B(I) := A(I); END;

If the elements of the two arrays are of different modes, the appropriate

conversions are performed. For instance, the assignment

A := C;

causes each REAL element of C to be rounded before being assigned to the

corresponding INTEGER element of A.

It is only legal to assign an array to another array of the same

size. Assignments to a larger or smaller array, such as

A := D;

D := B;

will be rejected by the compiler.

Assignment of an array to a non-array variable, like

J := A;

is also prohibited. However, you are permitted to assign a non-array

variable to an array, which causes the variable's single value to be

assigned to every element of an array:

A

D

c

:=

:=

:=

J;

B (5) ;

1. 5;

Here every element of C, for instance, has been assigned the value

1.5. The effect is the same as the loop

97

FOR I THRU 10 REPEAT C(I) := 1.5; END;

A single value may also be assigned to an array with the initialization

operator. Thus one may write

VARIABLE C IS ARRAY(lO) REAL ::= 1.5;

to initialize all the elements of c to 1.5.

Arithmetic operations on whole arrays

Any of the arithmetic infix operators (+ - * / **) can take two

array operands of the same size. The operation is performed between all

corresponding pairs of array elements. For instance, the expression

A + B

will cause ten additions to be performed:

A(l) + B(l)

A(2) + B (2)

A(lO) + B(lO)

The result is an array of ten elements -- the same size as A and B -

which can be assigned to another 10-element array, like C:

C := A + B;

All conversion rules are the same as for non-array variables. If you

write, for example,

A I B

the result will be an array of 10 REALs.

The prefix negation operator can also be applied to an array. It

has the effect of negating each element of the array.

It is also permissible to write an infix arithmetic operator with

one single INTEGER or REAL operand and one array operand. The operation

will be performed between the single-value operand and each element of

the array. For example, the expression

98

A * 2

will result in ten multiplications by 2:

A (1) * 2

A(2) * 2

A(lO) * 2

The result is an array of 10 elements, which could be assigned, say,

to B:

B := A * 2;

Again, the conversion rules are analogous to those for single-value

operations.

Whole-array operations can be used to write expressions that might

seem a bit confusing at first. For instance, we could write:

A:= A+ A(l);

The compiler interprets this as an addition followed by an assignment.

First it computes the array A+ A(l), by performing ten additions:

A(l) + A(l)

A(2) + A(l)

A{3) + A{l)

A(lO) + A(l)

Then it assigns the ten results to the respective elements of A. The

assignment causes A(l) to receive a new value; but it is the old value of

A(l) that is used to compute all 10 additions.

The array-handling properties of arithmetic operators are known

collectively as distributivity. Thus we say that the arithmetic operators

are distributive over REAL and INTEGER arrays. You will learn in

succeeding chapters that most other CS-4 operators also have distributive

properties.

99

Subarray subscript notation

Single elements of an array are specified by subscripting the

array name with a single value. In an analogous manner, a block of

elements of an array -- in other words a subarray -- can be referenced

by subscripting the array name with a pair of values. The two values

are separated by the word AT, like this:

A (4 AT 2)

The first value indicates the number of elements in the subarray, while

the second indicates the element which begins it. In this example, we

have specified a subarray of 4 elements, beginning with A(2} and ending

with A (S}.

A subscript like (4 AT 2) is called a subarray subscript. The

values in it do not have to be literals; they can be any arithmetic

expressions. In general,

A(I AT J}

is a subarray of I elements, whose first element is A{J} and

whose last element is A(J + I - 1). I must not be negative, and both

J and J + I - 1 must be within the "bounds" dictated by the declared

size of A. (In this case, J and J + I-1 must both be between 1and10.)

A subarray is itself an array. In other words, a subarray of,

say, 4 elements can be used just like any array of 4 elements. You can

even subscript it -- for instance, the expression

A (4 AT 2} (3)

means the third element of A(4 AT 2}, which is A(4).

Input and output of subarrays

In the previous chapter we encountered a problem with reading a

variable number of elements into an array. In the center-of-gravity

program, we read an INTEGER input value N, and then wanted to read in

puts into the first N elements of array WEIGHT, and the first N elements

of array DISTANCE. To do this we had to write

100

FOR I THRUN REPEAT READ LINE (WEIGHT(!)); END;

FOR I THRUN REPEAT READ LINE (DISTANCE(!)); END;

which has the disadvantage that each input value must be on a separate

card (because each READ_LINE is executed N times, and each execution

causes a new card to be read.)

Subarray subscripting provides a natural solution to this

problem. The first N elements of WEIGHT are simply the subarray

WEIGHT (N AT l)

which, as we have said, can be used just like any array of N elements.

In particular, it can appear in a READ_LINE statement:

READ LINE (WEIGHT(N AT l));

which has exactly the same effect on WEIGHT as the first REPEAT above.

That is, it causes N values to be read, consecutively, into WEIGHT(!)

through WEIGHT(N). However, it does not require the values to be punched

one to a card -- because it is a single READ_LINE statement that reads

N values, rather than a loop of N statements that each read one value.

Of course, we can also read in DISTANCE(N AT 1) and eliminate

the other REPEAT statement. And we can use the same subarray expressions

when we print out the first N elements of WEIGHT and DISTANCE, so that the

output values no longer appear one to a line.

VARIABLES WEIGHT, DISTANCE ARE ARRAY(25) REAL,

WEIGHT_SUM, PRODUCT_SUM, CENTER ARE REAL,

I, N ARE INTEGER;

REPEAT

WEIGHT_SUM := 0;

PRODUCT SUM := O;

READ_ LINE (N) ;

IF N < 1 I N > 25 THEN TERMINATE;

READ_LINE (WEIGHT(N AT 1), DISTANCE(N AT l);

FOR I THRU N

101

REPEAT

WEIGHT SUM:= WEIGHT SUM+ WEIGHT(!);

PRODUCT SUM :=

PRODUCT SUM+ WEIGHT(!) * DISTANCE(I);

END;

IF WEIGHT SUM = 0 THEN TERMINATE;

CENTER := PRODUCT_SUM / WEIGHT_SUM

PRINT (WEIGHT(N AT 1), DISTANCE(N AT 1), CENTER);

END;

Now, the program not only handles input and output better, but is shorter

and simpler as well.

Using subarrays in arithmetic expressions

Subarrays can be used with the assignment and arithmetic operators.

They are treated just like whole arrays: the operators are applied to all

corresponding elements of the operands. Given the declarations

VARIABLES A, B, C ARE ARRAY(lO) INTEGER,

D IS ARRAY{4) INTEGER;

you are free to write statements like the following, to operate on sub

arrays or assign values to them:

Expression

D : = A (4 AT 4) ;

C(4 AT 2) :=

A(4 AT 2) + B(4 AT 3);

C (6 AT 5) .-

A (6 AT 1) I 2;

102

Actions Resulting

assigns elements 4 through 7 of

A to elements 1 through 4 of D,

respectively

computes A(2) + B{3), A(3) +

B (4) , A (4) + B (5) , and A (5) +

B(6), and assigns them to C(2),

C (3) , C (4) , and C (5)

divides elements 1 through 6 of

A by 2, and assigns the results

to elements 5 through 10 of C

Note that the array size rules are strictly observed. It is not

legal, for instance, to write

D := A(3 AT 1);

because D has 4 elements, while A(3 AT 1) has 3 elements.

An example with subarray calculations

Subarray calculations and assignments can sometimes be used to

advantage in writing programs to perform numerical algorithms. As an

elementary example, let us construct a program to print a table of binomial

coefficients -- also known as Pascal's Triangle. The first seven rows of

the triangle look like this:

1

1 1

2

3

4

5

6

7

1

1

1

1

1

1

2

1

2

3

4

5

6

3

1

3

6

10

15

column number

4

1

4

10

20

5

1

5

15

6

1

6

7

1

Row number N always has N entries. Its easy to calculate the elements

in any row, once you know the row above it. The element in the first

column is always 1. Every other element is the sum of the number

directly above it, and the number diagonally above it to the left.

(The 1 at the far right of each row doesn't have a number above it; but

if you imagine there is a zero above, the rule still holds.)

Before writing a program, it helps to state the rules more

formally. Assume you already have row N-1, for N~2; then the

following steps produce row N:

Step 1: add a zero in column N of row N-1.

Step 2: row N, column 1 is assigned 1.

Step 3: row N, column I is assigned row N-1, column

+ row N-1, column I-1, for 2~Is;N.

103

I

Now, it is not difficult to write a CS-4 statement to perform

these steps. We declare an INTEGER array, named PASCAL. Assume this

array "contains" row N-1 -- that is, its first N-1 elements are the

entries of row N-1, and the rest of its elements are zeros. We want

to change its elements so that it "contains" row N instead.

Step 1 already is satisfied, since PASCAL(N) = 0. Step 2 says

that PASCAL(l), which is already 1, remains unchanged. Step 3 says we

make the following assignments to PASCAL(2) through PASCAL(N):

PASCAL(I) ·-PASCAL(!)+ PASCAL(I - l); 2S!SN

With subarray subscript notation, this can be written as a single array

assignment:

PASCAL(N - l AT 2) := PASC,AL(N-1 AT 2) + PASCAL(N-1 A,T 1);

This single statement transforms the contents of PASCAL from row N - 1

to row N. Then we can print out row N by printing out the first N

elements:

PRINT (PASCAL(N AT l));

After printing out row N we need only step N by 1 and repeat the trans

formation to compute the next row. A complete program to print out

rows 1 through 20 looks like this:

VARIABLE N IS INTEGER,

PASCAL IS ARRAY(20) INTEGER::; O;
PAS CAL (1) : = 1 ;

PRINT (PASCAL(l));

FOR N FROM 2 THRU 20 REPEAT

REPEAT

PASCAL(N - 1 AT 2) := PASCAL(N - 1 AT 2) +

PASCAL(N - 1 AT 1);

PRINT (PASCAL(N AT 1));

END;

The first two assignments are necessary to initialize PASCAL to row 1.

104

Subarray addition and assignment is especially powerful in this

case. You should be able to satisfy yourself that there is no way to

write a REPEAT loop of the form

FOR I FROM 2 THRU N REPEAT • • • END;

which does the same work without subarray operations, unless you declare

some additional temporary storage.

Summing over an array

There still is one element-by-element REPEAT loop in our center

of-gravi ty program. It is the one that does the summing:

FOR I THRU N

REPEAT

WEIGHT SUM:= WEIGHT SUM+ WEIGHT{!);

PRODUCT SUM :=

PRODUCT SUM+ WEIGHT{I) * DISTANCE(!);

END;

This loop, too, can be eliminated by use of a convenient and brief CS-4

expression. It consists of the name SUM followed by an array name in

parentheses:

SUM (WEIGHT)

Its value is equal to the sum of all the array-element values (the sum

"over the array", so to speak). Thus it represents an INTEGER value for

an INTEGER array, and a REAL value for a REAL array. You can use it

just like any INTEGER or REAL variable, in expressions like

WEIGHT SUM := SUM {WEIGHT);

IF SUM {WEIGHT) = 0 THEN TERMINATE;

The first statement assigns the sum over WEIGHT to WEIGHT SUM. The

second executes TERMINATE if the sum over WEIGHT is zero.

SUM (WEIGHT) is the sum of all elements of WEIGHT. In our program,

we want the sum of just the first N elements of WEIGHT -- the sum over

WEIGHT (N AT 1) :

SUM (WEIGHT(N AT 1))

105

we also want to find the sum of the first N weight-distance products. We

can do so by distributing * over WEIGHT(N AT 1) and DISTANCE(N AT 1)

to compute an array of weight-distance products:

WEIGHT(N AT 1) * DISTANCE(N AT 1)

The sum of the products is the sum over this array:

SUM (WEIGHT(N AT 1) * DISTANCE(N AT 1))

With these last two SUM expressions we can shorten and simplify

the center-of-gravity program still further:

VARIABLES WEIGHT, DISTANCE ARE ARRAY(25) REAL,

WEIGHT_SUM, PRODUCT_SUM, CENTER ARE REAL,

N IS INTEGER;

REPEAT

READ_ LINE (N) ;

IF N < 1 I N > 25 THEN TERMINATE;

READ_ LINE (WEIGHT (N AT 1) , DISTANCE (N AT 1));

WEIGHT SUM:= SUM (WEIGHT(N AT l));

IF WEIGHT_SUM = 0 THEN TERMINATE;

PRODUCT SUM :=

SUM (WEIGHT(N AT 1) * DISTANCE(N AT l));

CENTER := PRODUCT_SUM / WEIGHT_SUM;

PRINT (WEIGHT(N AT 1), DISTANCE(N AT 1), CENTER);

END;

Not only is the inner REPEAT loop eliminated; we are also saved the

trouble of initializing WEIGHT SUM and PRODUCT SUM to zero before each

input case.

The product over an array

There is also an expression, analogous to SUM, for the value ob

tained by multiplying together all the elements of an array. It uses the

name PRODUCT:

PRODUCT (VALUES)

As an example, if VALUES here were an ARRAY(S) INTEGER, then PRODUCT (VALUES)

would be an INTEGER equal to

VALUES(l) * VALUES(2) * VALUES(3) * VALUES(4) * VALUES(S)

106

12.0

BOOLEAN ARRAYS

You have now seen most of the tools for working with arrays in

CS-4. They include:

the ARRAY mode generator

single and subarray subscripts

array input, output, and assignment

distributivity of operators

expressions like SUM and PRODUCT

We introduced these tools in working with REAL and INTEGER arrays. In

this chapter, we show how to use them with BOOLEAN arrays as well.

General properties of arrays applied to BOOLEAN mode

You already know quite a few things about BOOLEAN arrays -- just

from your knowledge of the properties of arrays in general. Here is a

refresher:

1) Introducing the ARRAY mode generator in Chapter 10, we said it

could be used with any element-mode. Hence we can use ARRAY to

declare arrays of BOOLEANs:

VARIABLE CHECK IS ARRAY(lOO) BOOLEAN;

VARIABLES TESTl, TEST2 ARE ARRAY(5) BOOLEAN;

2) The rules for subscripting hold for any array declared with ARRAY,

whatever the element-mode. So you know that

CHECK(43)

TEST2(1)

are subscripted variable names with single BOOLEAN values; and

CHECK(5 AT 11)

is a subarray of the same size as TESTl.

107

3) The properties of READ_LINE and PRINT hold for arrays of any mode.

So you can write statements like

READ_LINE (TEST2);

PRINT (CHECK(lO AT 91));

to read five BOOLEAN values into TEST2, and print the last ten

values from CHECK.

4) Assignment for any mode can be extended to arrays of that mode

declared with ARRAY. You know already that a single BOOLEAN

variable can be assigned a single BOOLEAN value. So it follows

that a BOOLEAN array variable can also be assigned a single

BOOLEAN value (in which case the value is assigned to each ele

ment of the array), or it can be assigned a BOOLEAN array value

of matching size.

These tools -- ARRAY, subscripting, array input/output, array

assignment -- are all part of the general concept of "array" in cs-4.
You can use them with INTEGER, REAL, or BOOLEAN -- or any other mode.

A BOOLEAN array as a look-up table

We can use a BOOLEAN array to improve upon array use in our last

version of the billing program (toward the end of Chapter 10). That ex

ample defined an INTEGER array called FREE_ACCT_NO, into which we read

all the numbers of interest-free accounts. Then, in the main loop,

we checked the number of each input account by comparing it with the

numbers in the FREE ACCT NO array. This is the relevant part of the pro

gram:

VARIABLES ACCT_NO, OLD_BAL, NEW_aAL, PURCHASE, PAST_DUE,

INTEREST, PAYMENT, I, N ARE INTEGER,

PAST COUNT IS INTEGER::= O,

INTEREST FREE IS BOOLEAN,

FREE_ACCT_NO IS ARRAY(lOO) INTEGER;

READ_LINE (N) ;

IF N < 1 I N > 100 THEN TERMINATE;

FOR I THRUN REPEAT READ_LINE (FREE_ACCT NO(I)); END;

UNTIL ACCT NO <= 0

108

REPEAT

READ_LINE {ACCT_NO, OLD_BAL, PAYMENT, PURCHASE);

FOR I THRU N UNTIL INTEREST FREE REPEAT

INTEREST FREE := ACCT NO= FREE ACCT_NO{I); END;

IF INTEREST FREE j PAYMENT >= OLD BAL THEN

N is the number of interest-free accounts; it is read from the first

input card.

The drawback in this approach lies in the inner REPEAT loop:

FOR I THRU N UNTIL INTEREST_FREE REPEAT

INTEREST FREE := ACCT NO FREE ACCT_NO(I); END;

It loops N times for every non-interest-free account, and between 1 and N

times for every interest-free account. Unless N is very small, that adds

up to quite a lot of time spent looping.

What we need is a scheme that avoids having to "search" through

the whole list of account numbers every time we process an account. We

could create a sort of table, in which we can "look up" an account

number to see if its account is interest-free, without having to do a lot

of comparisons.

In practice, how do we create such a table? By declaring BOOLEAN

array. Let's say account numbers range from 1 to 999; then we define

FREE ACCT TABLE as a BOOLEAN array of 999 elements:

VARIABLE FREE ACCT TABLE IS ARRAY{999) BOOLEAN;

We initialize all elements of FREE ACCT TABLE to FALSE; then we set the

elements corresponding to interest-free accounts to TRUE. If account

number 50, for instance, were interest-free, FREE_ACCT_TABLE{SO) would

be TRUE; otherwise FREE_ACCT_NO(SO) would be FALSE.

Now, in the main REPEAT loop, FREE_ACCT_TABLE serves as a table.

Every time a value of ACCT_NO is read, we check FREE_ACCT_TABLE(ACCT_NO).

If it's FALSE, we compute interest (if any) for the account; if it's

TRUE, we don't. Each element of the array serves as an entry in our

conceptual table. We can look up individual elements -- or entries -

without searching through other entries. The beginning of the rewritten

billing program looks like this:

109

VARIABLES FREE_}\CCT, ACCT_NO, OLD_BAL, NEW_BAL, PURCHASE,

PAST_DUE, INTEREST, PAYMENT, I, N ARE INTEGER,

PAST_COUNT IS INTEGER::= O,

FREE ACCT TABLE IS ARRAY(999) BOOLEAN ::=FALSE; - -
READ _LINE (N) ;

FOR I THRU N

REPEAT

READ_ LINE (FREE_ ACCT) ;

IF FREE_ACCT < 1 I FREE_ACCT > 999 THEN TERMINATE;

FREE_ACCT_TABLE(FREE_ACCT) := TRUE;

END;

UNTIL ACCT NO <= 0

REPEAT
READ LINE (ACCT_NO, OLD_BAL, PAYMENT, PURCHASE);

IF ACCT_NO < 1 I ACCT_NO > 999 THEN TERMINATE;

IF FREE_ACCT_TABLE(ACCT_NO) I PAYMENT >= OLD BAL THEN

Note the use of whole-array assignment to initialize FREE_ACCT_TABLE;

and the use of a single element of that array in a boolean expression

in the last IF statement.

To be fair, we ought to mention that the revised program has a

drawback, too: it requires an array of 999 elements, which might well

take up more space than the 100-element array of the old program. If

account numbers had six digits, as they often do, an array of a million

BOOLEAN elements would be required to guarantee a place in the table for

every possible account number -- even if only a fraction of the possible

account numbers were in use at any one time. In such a case, economy in

execution speed is achieved only by using more storage space -- which

may also be costly. Tradeoffs of this sort, between speed and size, are

common considerations in programming. Often the best implementations

employ some form of compromise, as we shall see in more advanced

examples.

llO

Distributivity of comparison operators over REAL and INTEGER values

All the cs-4 comparison operators are distributive -- they can

take one or two REAL or INTEGER array operands and yield a BOOLEAN array

result. In more detail, the rules are:

1) If both operands are REAL or INTEGER arrays, they must be of the

same size. Corresponding elements of the two arrays are compared,

and the result is a BOOLEAN array of the same size as the operands.

2) If one operand is a single INTEGER or REAL, the other an INTEGER

or REAL array, the single operand is compared with each element

of the array. The result is a BOOLEAN array of the same size as

the array operand.

3) INTEGER-to-REAL conversion is performed before each comparison of

an INTEGER value with a REAL value.

Here are a few examples. We can compare two INTEGER arrays and

assign the result to a BOOLEAN array:

VARIABLES TEST, DATA ARE ARRAY(lO) INTEGER,

COMPARE IS ARRAY(lO) BOOLEAN;

COMPARE := TEST ~= DATA;

The comparison of TEST and DATA causes ten comparison operations to be

performed on their elements:

TEST(l)

TEST(2)

- DATA(l)

- DATA(2)

TEST(lO) ~= DATA(lO)

The result is an array of ten BOOLEAN elements, which are assigned to

the corresponding elements of COMPARE. The expression

DATA > 3.14

also results in 10 comparisons yielding an ARRAY(lO) BOOLEAN:

111

DATA(!) > 3.14

DATA(2) > 3.14

DATA(lO) > 3.14

Each comparison is between an INTEGER and a REAL, so the INTEGER values

in DATA are converted to REALs before the comparison.

Distributivity of comparison operators over BOOLEAN values

The operators = and -= can be applied to BOOLEAN operands, and

they are distributive over BOOLEAN arrays. Thus comparison of two

equal-sized BOOLEAN arrays, or a BOOLEAN array and a single BOOLEAN

yields a BOOLEAN array of the same size as the array operand(s). The

rules for actually applying the operators are the usual ones.

Distributivity of logical operators

As you have probably guessed by now, the CS-4 logical operators

are also distributive. The infix operators I and & accept one or two

BOOLEAN arrays as operands, and produce a BOOLEAN array: and the prefix

operator ~ can operate on and produce a BOOLEAN array. The exact rules

are analogous to those for the other distributive operators, so we won't

belabor them here.

ALL and ANY expressions

In the last chapter we showed how it was convenient to have an

expression for the result of adding or multiplying together all the

elements of a REAL or INTEGER array. There are similar, equally use

ful expressions for the result of ANDing or ORing together the ele

ments of a BOOLEAN array.

The expression for applying the operator & between all elements

of an array uses the name ALL. For instance,

ALL {COMPARE)

has the value of

COMPARE(!) & COMPARE{2) & ... & COMPARE{lO)

112

which is TRUE only if all elements of COMPARE are TRUE {hence the name

ALL). ALL is applied to an array, but its result is a single BOOLEAN

value {just as SUM is applied to an array and yields a single REAL or

INTEGER value) .

The name ANY is used analogously, for the result of applying the

operator I between all elements of an array. The expression

ANY (COMPARE)

has the same value as

COMPARE{l) I COMPARE(2) ••• I COMPARE(lO)

which is TRUE if any one element of COMPARE is TRUE (hence the name ANY).

An example

The concepts introduced in the last three sections are often most

valuable when they are used together. As an example, we consider the

problem of adding some checking to the center-of-gravity problem.

Suppose the rod on which the weights are hung is ten feet long,

so that a weight cannot be more than five feet either way from.the center

of the rod. Then we want to write a test to check that no DISTANCE

value is greater than 5 or less than -5. Remembering that N is the number

of weights whose distances are being measured, we can write

DISTANCE(N AT l} > 5

to compare the N DISTANCE inputs with 5 1 and similarly

DISTANCE(N AT 1) < -5

to compare them with -5. Each of these expressions yields a BOOLEAN

array of N elements, so we can OR the results together:

DISTANCE(N AT 1) > 5 I DISTANCE(N AT 1) < -5

113

This expression also yields a BOOLEAN array of N elements; the Ith

element of this resultant array is TRUE only if DISTANCE(!) is out

of bounds (greater than 5 or less than -5). We have an error if

any element of DISTANCE(N AT 1) is out of bounds, that is, if

ANY (DISTANCE(N AT 1) > 5 I DISTANCE(N AT l) < -5)

So we can test for an error with a single IF statement:

IF ANY (DISTANCE(N AT 1) > 5 I DISTANCE(N AT 1) < -5)

THEN TERMINATE;

While we're at it, we might as well also test

ANY (WEIGHT(N AT 1) < 0)

to avoid negative weights, and

ALL (WEIGHT(N AT 1) 0)

to make sure that WEIGHT SUM won't be zero. Putting all these ex

pressions together, the program looks like this:

VARIABLES WEIGHT, DISTANCE ARE ARRAY(25) REAL,

WEIGHT_SUM, PRODUCT_SUM, CENTER ARE REAL,

N IS INTEGER;

REPEAT

READ_LINE (N);

IF N < 1 I N > 25 THEN TERMINATE;

READ_LINE (WEIGHT(N AT 1), DISTANCE(N AT l));

IF ANY (DISTANCE(N AT 1) > 5 I
DISTANCE(N AT 1) < -5)

ANY (WEIGHT(N AT 1) < 0)

ALL (WEIGHT(N AT 1) = O)

THEN TERMINATE;

WEIGHT_SUM :=SUM (WEIGHT(N AT l));

PRODUCT SUM :=

SUM (WEIGHT(N AT 1) * DISTANCE(N AT 1));

CENTER := PRODUCT_SUM / WEIGHT_SUM;

PRINT (WEIGHT(N AT 1), DISTANCE(N AT 1), CENTER);

END;

114

13.0

MULTI-DIMENSIONAL ARRAYS

This chapter widens still further the family of arrays to which

the standard tools can be applied. Just as we naturally extended the

concept of array to BOOLEAN arrays in the last chapter, here we demon

strate the use of so-called "multi-dimensional" arrays in CS-4.

Multi-dimensional arrays can be thought of simply as arrays that

are numbered in more than one direction, or along more than one axis.

They are often used to program problems involving surfaces or spaces;

it's the geometrical analogy that gives them their name.

Multi-dimensional arrays can also be thought of as arrays whose

elements are arrays. They can be seen as a natural outgrowth of CS-4's

general definition of the ARRAY mode generator.

This chapter introduces multi-dimensional arrays first through

the geometrical approach, because it is somewhat more intuitive. The

array of arrays approach is also outlined, after the basic rules have

been established.

Declaring multi-dimensional arrays

The principle behind multi-dimensional arrays is fairly straight

forward, so we will introduce them briefly before showing what can be

done with them.

Each element of a multi-dimensional array is specified by a list

of two or more subscripts. The subscripts are separated by commas. For

example, if TABLE were a 2-dimensional array, then each element of TABLE

would be written with two subscripts, in this manner:

TABLE (2, 7)

TABLE (5, 5)

TABLE (1, 10)

TABLE (7, 2)

These are all different elements of TABLE -- in particular, TABLE(7,2)

is different from TABLE(2,7).

115

As before, a declaration statement must state the number and mode

of the elements of TABLE. In this case, the declaration might have been

VARIABLE TABLE IS ARRAY(8,12) INTEGER;

This says that the first subscript of TABLE ranges from 1 to 8, and the

second subscript ranges from 1 to 12. There will be an element of TABLE

for every combination of first subscript and second subscript; in all,

8 * 12 = 96 elements, of INTEGER mode.

The same reasoning extends to arrays of higher dimensions. For

instance, this statement declares a 4-dimensional array:

VARIABLE HYPER IS ARRAY(l0,2,20,20) BOOLEAN;

Each element of HYPER is specified by a different list of four subscripts:

HYPER(2,2,l,5)

HYPER{l,2,20,19)

HYPER{l0,1,1,1)

The first subscript may range from 1 to 10, the second from 1 to 2, the

third and fourth from 1 to 20. In all there are 10 * 2 * 20 * 20 = 8000

elements. Each element is a BOOLEAN.

A two-dimensional problem

We will start off with a problem that uses two-dimensional arrays

to store and calculate measurements at points on a two-dimensional sur

face. Our surface, diagranuned in Figure 13-1, is a sheet of metal or some

other material that conducts heat. It is 5 inches wide and 8 inches long.

We assume that, initially, the entire sheet has a temperature of 0 degrees.

Now, suppose we can change the heat distribution along the edges, so that

some parts of the edges are kept warmer than other parts; the problem is

to write a program that predicts what the temperatures will be on the

interior of the sheet, after the heat has spread itself out, or "reached

an equilibrium."

Of course, it's impossible to measure the temperature at every

point on the sheet, because there's an infinite number of points. What

we do is mark out a grid of horizontal and vertical lines on the sheet

{see Figure 13-1) and restrict the problem to measuring the temperatures

where the grid lines intersect. There are nine rows of six grid points

116

each: common mathematical notat~on represents the temperature of a grid

point by using two subscripts, one for the row number and one for the

column number, so that

tij' 1 s i s 9'

stands for the temperature of the grid point in the jth column and the

ith row. The temperature of the point circled in Figure 13-1, for ex

ample, would be t 35 • Initially, we are assuming all tij = O.

1

2

3

Ul 4
$....(
Q)

~ 5
z
~
0

6 p:;

7

8

9

Column Numbers

1 2 3 4 5 6

I .
I

I

- - - -·-'ot

35

Figure 13-1

The temperature grid. The temperature of
the circled point -- the 3rd row and 5th
column -- is t 35 •

117

Next heat is applied, at the edge points. These points are in
dicated with x's in Figure 13-2. (The corners are special cases -- we'll

ignore them for the present.) Using the tij notation, applying heat at

the edges means changing the values of the following t's:

1

2

3

Ul 4
"-!
Q)

~ 5 :z

~
6 p:;

7

8

9

tlj' 2 s j s 5

t9j' 2 s j s 5

til' 2 s i s 8

ti6' 2 s i s 8

Column Numbers

1 2 3 4 5 6

x x 0 x
tl4

x 0 D 0 x

t23 t24 t25

x 0 x

t34

x x

x x

x x

x x

x x

x x x x

Figure 13-2

Boundary and neighbor points. The boundary
points are marked with x's. The point with
temperature t 24 -- marked with a square -
is shown surrounded by its four neighbor
points, which are circled.

118

As the heat spreads, the values of the interior t's also change, To find

the new interior t's, we apply the following simple model: the tempera

ture at a grid point must be the average of the temperatures of the four

points around it. For instance, look at t 24 in Figure 13-2. By our

model, its temperature at equilibrium must be

Initially, all t's are zero, so all points are in equilibrium. But after

the edges are heated, the interior points are out of equilibrium, so

their temperatures all have to be recalculated as follows:

tij = (tCi-l)j + t{i+l)j + ti(j-1) + ti(j+l)) I 4 ,

2 $ i $ 8, 2 $ j $ 5

Is this all that has to be done? Probably not -- probably, after just

one recalculation, the t's are still out of equilibrium. To see why,

consider t 24 again. The new value of t 24 is the average of the old

values of its neighbors, t 14 , t 34 , t 23 , and t 25 . But t 34 , t 23 , and t 25
have also acquired new, recalculated values (t14 , remember, is a fixed

boundary point). So the new t 24 may still be out of equilibrium, with

the new values of its neighbors; and we will have to recalculate t 24 , and

all the other t's, yet again. The recalculation of the t's must go on

indefinitely, until every t .. is in equilibrium with its neighbors.
1]

You can imagine the whole process intuitively as follows. If any

t .. is cooler than the average of its neighbors, heat will flow to it
1]

to make up the deficiency. So it will get warmer. While a point is

warming up, its neighbors may also be warming up; in that case the

point's temperature has to increase still further. Heat continues

flowing until every interior point of the sheet has reached equilibrium;

then the sheet's temperature is again stable (as it was when all t's
were 0).

Of course, in reality the heating process proceeds continuously

over time, not in discrete steps. But our model approximates the real

process well enough so that the end results are virtually the same.

119

(What about the corner points? They play no part in our calcu

lations -- because they are not neighbors to any interior points. The

best we can come to guessing their temperatures is by assigning them the

average of the two closest edge points. So we'll have our program set

and similarly for the other three corners.)

Programming the problem with 2-dimensional arrays

By now it should be obvious that the double-subscript notation

we've been using for grid points on a plane should translate very nicely

into double-subscript, 2-dimensional arrays in CS-4. It is possible to

program the problem with 1-dimensional arrays -- but only at a cost in

simplicity and clarity.

Accordingly, our sample program begins by declaring two two

dimensional array variables. The first subscript of each varies from

1 to 9, the second from 1 to 6:

VARIABLES TEMPERATURE, NEW TEMPERATURE ARE ARRAY(9,6) REAL;

TEMPERATURE(I,J) represents the temperature of the metal sheet at the

grid point in the jth column of the ith row what we called tij in

the previous section. NEW TEMPERATURE holds the corresponding "new t's"

that are calculated in finding the equilibrium.

The executable part of the program divides logically into three

parts. First, an initialization section reads in the boundary tempera

tures and sets the interior temperatures to zero. Second, a main loop

repeatedly calculates each interior temperature as the average of its

neighbors, until equilibrium is reached. Third, a conclusion section

assigns temperatures to the four corner points, and prints out the

whole equilibrium array of temperatures.

Altogether, the program looks like this:

120

VARIABLES TEMPERATURE, NEW_TEMPERATURE ARE ARRAY(9,6) REAL,

I, J ARE INTEGER,

EQUILIBRIUM IS BOOLEAN;

FOR I FROM 2 THRU 8 REPEAT

FOR J FROM 2 THRO 5 REPEAT

TEMPERATURE(I,J) := O; END; END;

FOR I FROM 2 THRU 8 REPEAT

READ LINE (TEMPERATURE(I,l));

FOR I FROM 2 THRO 8 REPEAT

READ LINE (TEMPERATURE(I,6));

FOR J FROM 2 THRO 5 REPEAT

READ LINE (TEMPERATURE(l,J));

FOR J FROM 2 THRO 5 REPEAT

READ_LINE (TEMPERATURE(9,J));

UNTIL EQUILIBRIUM

REPEAT

EQUILIBRIUM := TRUE;

FOR I FROM 2 THRU 8

REPEAT

FOR J FROM 2 THRU 5

END;

END;

END;

END;

REPEAT

NEW_TEMPERATURE(I,J) :=

{TEMPERATURE(I-1,J) + TEMPERATURE(I+l,J) +

TEMPERATURF.(I,J-1) + TEMPERATURE(I,J+l)) / 4;

END;

IF NEW_TEMPERATURE(I,J) - TEMPERATURE(I,J)

>0.0011

END;

NEW_TEMPERATURE(I,J) - TEMPERATURE(I,J)

< -0.001

THEN EQUILIBRIUM := FALSE;

IF ~~QUILIBRIUM THEN

FOR I FROM 2 THRU 8 REPEAT

FOR J FROM 2 THRU 5 REPEAT

TEMPERATURE(I,J) := NEW_TEMPERATURE(I,J); END; END;

END;

TEMPERATURE(l,l) :=

TEMPERATURE(l,6) :=

TEMPERATURE(9,l) :=

TEMPERATURE(9,6) :=

FOR I FROM 1 THRU 9

REPEAT

(TEMPERATURE(l,2)

(TEMPERATURE(l,5)

(TEMPERATURE(S,l)

(TEMPERATURE(9,5)

121

+ TEMPERATURE(2,l)) I 2. ,
+ TEMPERATURE(2,6)) I 2· ,
+ TEMPERATURE(9,2)) I 2. ,
+ TEMPERATURE(8,6)) I 2;

PRINT (TEMPERATURE(I,l), TEMPERATURE(I,2),

TEMPERATURE(I,3), TEMPERATURE(I,4),

TEMPERATURE(I,5), TEMPERATURE(I,6));

END;

The critical statement in the inner loop is the one that compares

TEMPERATURE and NEW TEMPERATURE:

IF NEW_ TEMPERATURE (I' J} - TEMPF.'RATURE (I I J) > 0. 001 I
NEW_TEMPERATURE(I,J) - TEMPERATURE(I,J) < -0.001

THEN EQUILIBRIUM := FALSE;

EQUILIBRIUM is reinitialized to TRUE at the beginning of each loop. This

statement says: if the old and new temperatures at any grid point differ

by more than 0.001, then equilibrium has not yet been reached; so set

EQUILIBRIUM to FALSE. The value 0.001 is not important in itself; it's

an arbirtrary standard we've picked for this particular problem. It's

tempting to try to simplify the IF statement by dispensing with an

equilibrium standard, and writing

IF NEW_TEMPERATURE(I,J) ~= TEMPERATURE(I,J) THEN

EQUILIBRIUM := FALSE;

But, as we explained in Chapter 6, comparisons of REALs are somewhat

unpredictable. In thi$ particular case, there is a definite risk that

the main loop will be an infinite loop, unless we specify some "fuzz" -

such as 0.001 -- that indicates when two te~~eratures are so close that

they can be considered equal for our purposes.

To keep the sample program simple, we restricted it to processing

one 9-by-6 case per run. It can be generalized, though, to handle many

cases in one run, and to take input for grids of varying length and

width. And a similar program can be written to handle the analogous

problem for 3-dimensional blocks, using 3-dimensional arrays and six

neighbors per interior point.

Simplifying multi-dimensional array expressions

Our sample program unintentionally demonstrates something about

programming with arrays of several dimensions: element-by-element pro

cessing of multi-dimensional arrays requires a lot of nested REPEAT loops

and long, bulky expressions. Tools for manipulating all or part of an
array at once could do a lot to shrink and simplify a program

more than they do for a program using !-dimensional arrays.

122

even

Fortunately, all the array-handling tools introduced in previous

chapters extend in a natural way to multi-dimensional arrays. In

succeeding sections, we will show how. But before we do so, we must de

fine some more precise terminology.

The number of dimensions a variable has is called its rank. Thus,

the arrays we dealt with in Chapters 10-12 all had a rank of l;

TEMPERATURE in our latest example has a rank of 2. A variable that

represents a single value, like EQUILIBRIUM or I or TEMPERATURE(I,J), is

said to have a rank of zero.

We also talk about the size of each dimension of an array. The

first dimension of TEMPERATURE, for instance, has a size of 9, while the

second dimension has a size of 6. As we mentioned in the first section

of this chapter, the total number of elements in an array is found by

multiplying together the sizes of all its dimensions. Be sure you

understand the difference between dimension size and total number of

elements. It's possible to declare two different arrays, such as

VARIABLE TABLE_A IS ARRAY(6,3,2) INTEGER,

TABLE B IS ARRAY(2,2,9) INTEGER;

which have the same element total (36), but which differ in the size of

each of their dimensions. (Of course, for a I-dimensional array, the

size of its single dimension is the same as the total number of its

elements; that's why we could use "size" and "number of elements" inter

changeably in previous chapters.)

The dimension sizes and rank of an array, taken together, are

called its arrayness. Thus, two arrays have the same a~rayness only

when they have the same rank, and their corresponding dimensions have

the same sizes. In the special case of I-dimensional arrays, equal size

always implies equal arrayness. But this is not true in general; for

instance these two 35-element arrays:

VARIABLE BLOCK! IS ARRAY(5,7) REAL,

BLOCK2 IS ARRAY(7,5) REAL;

do not have the same arrayness, because BLOCK! has a first-dimension

size of 5, while BLOCK2 has a first-dimension size of 7. (Nor do they

have the same second dimension sizes.)

123

Whole-array assignment and input/output

One array can be assigned to another with the assignment operator,

provided they have the same arrayness. The assignment causes each element

of the right-hand operand to be assigned to the corresponding element of

the left-hand operand. For instance, given the declarations in the

temperature-grid program, we could write

TEMPERATURE := NEW_TEMPERATURE;

which would cause the 54 assignments:

TEMPERATURE(I,J) := NEW_TEMPERATURE(I,J); 1 s I s 9, 1 s J s 6

One can also assign a single value to all the elements of an array of any

rank, with either the assignment or initialization operator. For example,

either this declaration:

VARIABLE TEMPERATURE IS ARRAY(9,6) REAL ::= 0;

or this assignment:

TEMPERATURE := 0;

sets all 54 elements of TEMPERATURE to zero.

Values can be read into all the elements of an array by writing

its name in a READ LINE statement:

READ LINE (TEMPERATURE):

Since the input to READ LINE is always a one-dimensional stream of values,

there must be some rule that tells in what order the elements of a multi

dimensional array receive their assignments. The rule is this: elements

with a given first subscript are assigned values before elements having

a larger first subscript; among elements having the same first subscript,

those with a given second subscript are read in before those with a

larger second subscript; among elements with the same second subscript,

the ordering depends on the third subscript; and so on. The READ LINE

above would thus assign 54 values to elements of TEMPERATURE in the

following order:

124

TEMPERATURE(l,l)

TEMPERATURE(l,2)

TEMPERATURE (1 , 3)

TEMPERATURE (1, 6)

TEMPERATURE(2,l)

TEMPERATURE(2,2)

TEMPERATURE (2 , 6)

TEMPERATURE(3,l)

TEMPERATURE (6 , 6)

Again, for a 3-dimensional array

VARIABLE TAB IS ARRAY(2,2,3) BOOLEAN;

READ_ LINE (TAB);

12 BOOLEAN values are read into elements of TAB in this order:

TAB(l,1,1)

TAB(l,1,2)

TAB (1, 1, 3)

TAB(l,2,1)

TAB(l,2,2)

TAB(l,2,3)

TAB(2,l,l)

TAB (2, 1, 2)

TAB(2,l,3)

TAB(2,2,l)

TAB(2,2,2)

TAB(2,2,3)

The process of ordering the elements of an array into a one-dimensional

list is called unraveling. One good way to remember the unraveling rule

for multi-dimensional arrays is to think of it as a numerical equivalent

o.f alphabetizing: first you compare elements in the first (subscript)

place, then in the second, then in the third, and so forth until you

find a mismatch; the order of two elements is determined by the numeri

cal order of their subscripts in the first place where they don't match.

125

Another way to remember the rule is to think of the subscripts varying

like the numbers on the odometer of a car: each place is held constant

while the subscript to its right goes through its entire range.

Whole arrays can be printed out with the PRINT statement:

PRINT (TEMPERATURE);

The order in which the elements are printed out is also determined by

the unraveling rules.

Subarray subscripting

The use of subarray subscripts extends naturally and conve

niently to multi-dimensional arrays. For a two-dimensional array,

such as

VARIABLE A IS ARRAY{8,6) INTEGER;

we can illustrate the rules with a row-and-column diagram like the one

in Figure 13-3.

Two single subscripts:

A{3,6)

yield, as you already know, a value of rank zero -- the INTEGER value

of a single element. In the diagram, this element is found at the inter

section of row 3 and column 6.

Suppose the first subscript is still single, but the second is a

subarray subscript; for example:

A(2,4 AT 2)

This subscripted variable names an array of rank 1 and size four, whose

elements are identical with, respectively: A(2,2), A(2,3), A(2,4), and

A{2,5). In the diagram, this array is represented as a series of ele

ments -- numbers 2 through 5 -- in the second row.

126

Column Numbers

1 2 3 4 5 6
.-------- .-

1 A(l,l) A(l,2) A(l,3) A(l,4) : A(l,5) A(l,6)
I
I

r--------------~---,
2 A(2,l) I A(2,2) A(2,3) A(2,4) : A(2,5) I A(2,6)

---------------~----

3 A (3, 1) A(3,2) A(3,3) A(3,4) A(3,5) !i(3~6) ~
Cl)

\ --,~
1-1
Q) 4 A (4, 1) A(4,2) A(4,3) A(4,4) A(4,5) I

A(4,6) § I
I
J

z J

~ 5 A (5, 1) A(5,2) A(5,3) A(5,4) A(5,5) I A(5,6) I
0 I

p;::; I
I

6 A(6,l) A(6,2) A(6,3) A(6,4) A(6,5) J A(6,6) J
I
I
1

7 A(7,l) A(7,2) A(7,3) A(7,4) A(7,5) I A(7,6) I
I
I
I

8 A (8, 1) A(8,2) A(8,3) A(8,4) A(8,5) I A(8,6) I
L---------'

.- -.-. A(3,6)

- - - - - A (2 I 4 AT 2)

--------- A (8 AT l, 5)

A (5 AT 3, 3 AT 2)

Figure 13-3

Subarray Subscripting of a Two-Dimensional Array

127

An analogous interpretation applies to subarray subscripting in

the first position only:

A(8 AT 1, 5)

Again, we have an array of rank l; this one has size 8. In the diagram

it is represented by elements of a column -- all of them, in this case,

since there are just 8 rows.

In the final case we have two subarray subscripts :

A (5 AT 3 , 3 AT 2)

This names an array of rank 2, ~ith first and second dimension sizes 5

and 3, respectively. It thus represents a total of 15 elements, which

correspond to all A(I,J) with 3 s I s 7 and 2 s I s 4. In the diagram,

this array is represented by a smaller rectangle, formed by the inter

section of rows 3 through 7, and columns 2 through 4.

We can generalize our observations so far in the following table:

size of 1st size of 2nd
ex12ression rank dimension dimension elements represented

A(Il,Jl) 0 A{Il,Jl) only

A(Il,Jl AT J2) 1 Jl A(Il,J), J2sJsJ2tJl~l

A(Il AT I2,Jl) 1 Il A(I,Jl), I2sisI2+Il-l

A(Il AT I2, 2 I1 Jl A{I,J), I2sISI2+Il-l,
Jl AT J2) J2SJSJ2+Jl-l

In each case, the rank of the expression is equal to the number of subarray

subscripts; the size of the first dimension is equal to the size of the

first subarray subscript, if any (by the size of a subarray subscript

we mean the value preceding the word AT); and the size of

the second dimension is equal to the size of the second subarray sub

script, if any. The elements represented are exactly those which "match"

the subscript list in both places -- by being equal to a single subscript,

or within the range specified by a subarray subscript. {Notice that,

as in the example A(Il,Jl AT J2), the first subscript may

actually be the second subscript in the list. Thus A(Il,Jl AT J2) has

the same rank and size as A(Jl AT J2,Il), though their meanings are

quite different -- the former represents a "column", the latter a "row".)

128

It is only a short step to generalizing the subarray subscript

ing rules to arrays of any number of dimensions·. Given any subscripted

variable -- the name of an n-dimensional array followed by a list of n

subscripts, single or subarray -- we can infer:

1) It represents a value whose rank is equal to the number of" sub

array subscripts in the list.

2) The size of its kth dimension is equal to the size of the kth sub

array subscript in the list.

3) It represents exactly those elements which "match" the list of

subscripts in every place.

To see if you understand this definition, try to follow it through

for the array

VARIABLE BIS ARRAY(6,2,8) REAL;

subscripted

B(3 AT 4,1,4 AT 5)

You should be able to see why this is a subarray of rank 2, with 1st

dimension size 3 and 2nd dimension size 4, representing the following

12 elements of B:

B(4,l,5)

B(S,1,5)

B(6,l,5)

B(4,l,6)

B(S,1,6)

B(6,l,6)

B(4,l,7)

B(S,1,7)

B(6,l,7)

(In what order are these elements printed by

PRINT (B(3 AT 4,1,4 AT 5)); ?

B(4,l,8)

B(S,1,8)

B(6,l,8)

According to the unraveling rules, the second subscript of a rank 2

array is varied faster than the first. So the elements are printed in

the order you get by reading the first row above from left to right,

followed by second row from left to right, followed by the third from

left to right.)

129

A shorter notation for certain subarrays

In many applications a subarray subscript is used to select all

elements of a particular dimension. For instance, in the last section

we showed how a 2-dimensional array:

VARIABLE A IS ARRAY(8,6) INTEGER;

can be subscripted

A \8 AT 1, 5)

to represent a "slice" through the entire array -- that is, an array of

all elements of A with second-subscript 5.

CS-4 provides a convenient, shorter notation for slices of this

sort: the entire subarray subscript can be replaced by the single

character * Thus A(8 AT 1,5) can be abbreviated

A(*,5)

Similarly, we can use * in the second dimension:

A(I,*)

as an abbreviation, in this case, for

A(I,6 AT 1)

A(*,*), it should be clear, represents the same set of values as A.

The use of * is not limited to two-dimensional arrays. For in

stance, given

VARIABLE B IS ARRAY(S,2,8) REAL;

then the following pairs of expressions have identical meanings:

B(3,2,*)

B(3,*,4)

B(*,l,*)

B(*,*,7)

B(*,*,*)

B(3,2,8 AT l)

B(3,2 AT 1 1 4)

B(5 AT 1,1,8.AT 1)

B(S AT 1,2 AT 1,7)

B(S AT 1,2 AT 1,8 AT 1) or B

130

Distributive operators

Operators which distribute over single-dimensional arrays are

also distributive over arrays of rank 2, 3, or 4. The rules we have

already given are easily extended to cover the multi-dimensional cases

just substitute the word "arrayness" for "size". Thus when an operator

takes two array operands (of any rank from 1 to 4), they must have the

same arrayness; and the result of a distributed operation has the same

arrayness as the operand(s). The rules governing legal element modes,

and the actual distribution of the operations, are as before.

When you distribute an infix operator between two subarrays, it's

important to keep straight just which elements of the two arrays corres

pond. For instance, given

VARIABLE C IS ARRAY(5,5) INTEGER,

D IS ARRAY(6,6,2) INTEGER;

it is legal to write

C(3 AT 1,2 AT 3) * D(3 AT 2,5,*)

since both operands have rank 2, 1st dimension size 3, and 2nd dimension

size 2. Six multiplications will be performed:

ALL and ANY

C(l,3) * D(2,5,l)

C(l,4) * D(2,5,2)

C(2,3) * D(3,5,l)

C(2,4) * D(3,5,2)

C(3,3) * D(4,5,l)

C(3,4) * D(4,5,2)

The array-handling expressions using ALL and ANY -- introduced in

Chapter 12 -- may be applied to BOOLEAN arrays of any rank. Their value

is always computed by applying the appropriate operator -- & for ALL,

for ANY -- between all the elements of the array being operated upon.

Thus for example if one declares

131

VARIABLE TABLE IS ARRAY(l0,12,2) BOOLEAN;

then the expression

ALL (TABLE)

is a single BOOLEAN which is true if and only if all 240 elements of

TABLE are TRUE.

(By the way, the SUM and PRODUCT expressions of Chapter 11 can

not be applied to multi-dimensional arrays of INTEGERS or REALs, except

for certain special ones of modes we have not yet introduced.)

Using the array-handling tools

Making use of the material in the last few sections, we can now

rewrite the temperature-grid program in more compact form:

VARIABLE TEMPERATURE IS ARRAY(9,6) REAL ::= O,

NEW_ TEMPERATURE IS ARRAY (7 I 4) REAL I

EQUILIBRIUM IS BOOLEAN ::=FALSE;

READ_LINE (TEMPERATURE(7 AT 2,1));

READ LINE (TEMPERATURE(7 AT 2,6));

READ LINE (TEMPERATURE(l,4 AT 2));

READ LINE (TEMPERATURI:(9,4 AT 2));

UNTIL EQUILIBRIUM REPEAT

REPEAT

NEW TEMPERATURE := (TEMPERATURE(? AT 1, 4 AT 2)

+TEMPERATURE(? AT 3,4 AT 2)

+ TEMPERATURE(? AT 2,4 AT 1)

+TEMPERATURE(? AT 2,4 AT 3)) / 4;

IF ANY (NEW TEMPERATURE - TEMPERATURE(7 AT 2,4 AT 2)

> 0.001) I
ANY (NEW TEMPERATURE - TEMPERATURE(? AT 2,4 AT 2)

< -0.001)

THEN TEMPERATURE(7 AT 2,4 AT 2) := NEW_TEMPERATURE;

ELSE EQUILIBRIUM := TRUE;

END;

132

TEMPERATURE(l,l) := (TEMPERATURE(l,2) + TEMPERATURE(2,l)) I 2 i

TEMPERATURE (1, 6) := (TEMPERATURE(l,5) + TEMPERATURE(2,6)) I 2;

TEMPERATURE(9,l) := (TEMPERATURE (8I1) + TEMPERATURE(9,2)) I 2;

TEMPERATURE(9,6) := (TEMPERATURE(9,5) + TEMPERATURE(8,6)) I 2;

PRINT (TEMPERATURE) ;

Every REPEAT loop that did array processing in the old program is here re

placed with a whole-array expression. Note that NEW TEMPERATURE can be

conveniently declared as an ARRAY(7,4) REAL -- giving it the same array

ness as TEMPERATURE(7 AT 2,4 AT 2), which represents the interior of

the grid. Also, by the rules we gave, the elements of TEMPERATURE are

printed out in the same order as before.

Arrays of arrays

Our basic exposition of multi-dimensional arrays is now complete.

In the next few sections we present another prograrruning problem, which

serves to show the need for multi-dimensional arrays from a different

point of view.

The problem is this: we want to change the center-of-gravity pro

gram of previous chapters so that it finds the center of gravity of a

group of stationary weights, positioned anywhere in three-dimensional

space -- not just along a one-dimensional rod. For simplicity, we

assume -- as·in Chapter 10 -- that each case has input for exactly five

weights.

In the one-dimensional rod problem, as you may remember, the pro

gram depends on the following formula:

c
5
l.:

i=l
w.x. I

1. 1.

5
l.:

i=l
w.

1.

The position of each weight value w is specified by the corresponding n
value xn' which is the weight's distance, positive or negative, from the

rod's center point. Only a single xi value is needed to determine each

weight's position, because the rod is one-dimensional. For the same

reason, only one value is needed to specify the position of the center

of gravity, c.

133

In the three-dimensional problem, we use Cartesian coordinates to

fix positions. That is, we imagine a set of three "rods", called axes,

each perpendicular to the other two, and all three intersecting at a

common center point. Now, each wn's position must be specified by three

distance values -- call them xnl' xn2 ' and xn3 • The value xnl is weight
wn's distance from the center point along the first axis, xn2 is its

distance along the second axis, and xn 3 is its distance along the third

axis. In the same way, the position of the center of gravity is

specified by three values: c1 , c2 , and c
3

• So in the three-dimensional
problem, we have a set of three formulas, one for each C.:

J

5 5
E w1 x .. / E

i=l l.J i=l
w.

l.
1 ~ j ~ 3

Notice that each Cj is computed from a different sum of products.

The one-dimensional rod program of Chapter 10, to refresh your

memory, looked like this:

VARIABLES WEIGHT, DISTANCE ARE ARRAY(S) REAL,

WEIGHT_SUM, PRODUCT_SUM, CENTER ARE REAL,

I IS INTEGER;

REPEAT

WEIGHT_SUM ;::: 0;

PRODUCT_SUM :::: O;

READ_LINE (WEIGHT, DISTANCE);

FOR I THRU 5

REPEAT

WEIGHT_SUM :::: WEIGHT_SUM +WEIGHT(!);

PRODUCT SUM :=

PRODUCT_SUM +WEIGHT(!) *DISTANCE(!);

END;

IF WEIGHT_SUM = 0 THEN TERMINATE;

CENTER :::: PRODUCT_SUM / WEIGHT_SUM;

PRINT (WEIGHT, DISTANCE, CENTER);

END;

134

In a three-dimensional program, CENTER must represent a list of three

values (c1 , c 2 , and_c3), and for each CENTER value there is a different

PRODUCT_SUM; so CENTER and PRODUCT SUM are declared as arrays of three

REALS:

VARIABLES CENTER, PRODUCT_SUM ARE ARRAY(3) REAL;

Each element of DISTANCE should also represent three values (xnl, xn 2 '

and xn 3). That is, we want each element of DISTANCE to be, not a single

REAL, but an ARRAY(3) REAL; we would like to be able to declare

DISTANCE as

VARIABLE DISTANCE IS ARRAY(5) ARRAY(3) REAL;

Given only these new declarations, we wouldn't have to make any other

changes to handle the three-dimensional weight problem! The statement

READ_LINE (WEIGHT, DISTANCE);

would read in a REAL value for each element of WEIGHT, and three REAL

values for each element of DISTANCE. The assignment in the inner loop:

PRODUCT SUM:= PRODUCT SUM+ WEIGHT(!) *DISTANCE(!);

calculates all three sums of products simultaneously, using the dis

tributivity of + and * and array assignment. Similarly,

CENTER := PRODUCT SUM / SUM;

calculates all three values of CENTER using array division and assign-

ment.

The meaning of arrays of arrays

We have shown a simple and elegant way to adapt the weights pro

gram to three dimensions, by changing nothing but a few declarations.

But two questions remain: Is the declaration

VARIABLE DISTANCE IS ARRAY(5) ARRAY(3) REAL;

135

a legal CS-4 statement? And if so, what does it tell us about DISTANCE -

in particular, what are its rank and dimension sizes?

If you can remember back to what we said about the ARRAY mode

generator in Chapter 10, you will see that the declaration of DISTANCE

has to be legal. We said then that a generator like ARRAY(S) could be

followed by any mode name; and we said that a generated mode like

ARRAY(3) REAL is as valid a mode name as any other. Putting these prin

ciples together, we have to allow

ARRAY(S) ARRAY(3) REAL

in cs-4.

Passing to the second question, we can say this: DISTANCE has

precisely the same arrayness as a variable of mode

ARRAY(S,3) REAL

DISTANCE has a total of 5 * 3 = 15 REAL elements; its first dimension

has size 5, and its second dimension has size 3. Subscripting DISTANCE

with a single value:

DISTANCE(!) 1 ~ I ~ 5

yields a slice of mode ARRAY(3) REAL -- a one-dimensional slice of size 3.

Subscripting DISTANCE(!) with a second value:

DISTANCE(!) (J) 1 ~ I ~ S, 1 ~ J ~ 3

yields a single REAL value.

All these similarities derive from one basic fact: the two

declarations

VARIABLE DISTANCE IS ARRAY(5) ARRAY(3) REAL;

VARIABLE DISTANCE IS ARRAY(5,3) REAL;

are entirely equivalent in CS-4. Either declaration makes the new

weights program work. As a consequence of this equivalence, the ex

pressions DISTANCE(!) (J) and DISTANCE(I,J) have the same meaning; so do

the slice expressions DISTANCE(I) and DISTANCE(I,*).

136

Furthermore, as you would expect, the properties revealed by this

one example can be generalized to arrays of any rank:

1) A multi-dimensional array may optionally be defined in terms of

arrays

arrays

of arrays.

named C:

VARIABLE c
VARIABLE c
VARIABLE c

IS

IS

IS

For example, the following declare identical

ARRAY(S,6,7) INTEGER

ARRAY(S,6) ARRAY(7) INTEGER;

ARRAY(S) ARRAY(6,7) INTEGER;

VARIABLE C IS ARRAY(S) ARRAY(6) ARRAY(7) INTEGER;

2) Single subscripts may be broken up for clarity, if you desire.

A(l,2,3), for instance, can be written A(l) (2) (3) or

A (1, 2) (3) or A (1) (2 , 3) •

3) Subscript *'s at the end of a subscript list are optional; so

for instance if B is a rank 4 array, the following pairs mean the

same:

B (1)

B (4 AT 2, 4)

B{3,*,5)

Multiple subscripts in general

B(l,*,*,*)

B (4; AT 2, 4, *, *)

B(3,*,S,*)

We have said that when the subscripts on an array are all single,

not sub-array, they may be combined into one subscript list. But when

some of the subscripts are sub-array, combining subscripts is no longer

always valid.

To see why, assume we have this declaration from the previous

st!ction:

VARIABLE DISTANCE IS ARRAY(S) ARRAY(3) REAL;

Remember that we explained the meaning of DISTANCE(2) (3) by saying that

it represented the 3rd element of the rank 1 array DISTANCE(2); this

turned out to be just the same thing as DISTANCE(2,3). But now consider

this expression:

137

DISTANCE(4 AT 2) (3)

By the same reasoning, this must be interpreted as the third element of

the rank 2 array DISTANCE{4 AT 2). Thus it'is a rank 1 array of 3

elements which is the same as DISTANCE(4,*). On the other hand,

DISTANCE(4 AT 2,3)

though it is also of rank 1, represents a different set of four

elements.

In general, a subscript is applied to whatever value is written

to the left of it. When there are two or more subscripts on a variable,

this means that each one is applied, independently, to whatever array

results from applying all the preceding subscripts. Subscripts applied

independently do not always produce the same value that they would if

applied together, in a comma-separated list.

There is no limit to the number of sub-array subscripts that may

be applied independently to a variable, provided they are all within

bounds. One could conceivably write:

TEMPERATURE(? AT 2,4 AT 2) (5 AT 2) (2 AT 2,3 AT 2)

which represents the same array as TEMPERATURE (2 AT 4,3 AT 3).

Any single subscript, however, reduces the rank of the result by l; so

the number of single subscripts applied to an array may never exceed its

rank.

138

14.0

CHARACTER STRING DATA

This chapter is an introduction to the use of character strings

as data in CS-4. It shows how to include messages in output, to

clarify it or make it easier to read. It also explains how to declare

variables whose values are character strings, so that words or names

can be read from input cards, stored, and output later with the com

puted results.

Computers actually do many more things with character strings

than just input, store, and output them. The compiler, for instance,

is a huge program that accepts character strings -- CS-4 programs --

as input; it performs a complicated analysis on these strings to deter

mine their meaning and translate them. In the process of translation

it also constructs new character strings, which are later printed to

form the tables, error messages, and so on that you read on the com

pilation listing. This chapter only begins the discussion of string

processing; we will continue to look at strings, and the tools for

working with them, in the following chapter.

Character sets

A character string, or string, is a piece of data whose value

is, as the name implies, a sequence of characters. In some ways,

strings are similar to other modes -- INTEGERS, REALS, BOOLEANS

which represent single pieces of data. But since strings are a

different class of values character-sequence values rather than

numerical or truth values they have different properties and are

treated somewhat differently in cs-4.

Just what is a "character"? The most familiar ones are those

associated with what are called printing graphics -- letters, numerals,

symbols used in operators, decimal point, semicolon, comma, parentheses,

and others. Also included is the space character -- which shows up as

a blank space when printed. Certain other characters, called control

characters, also have no associated printing graphic; they are used

for various purposes, such as sending instructions to printers and

other output devices. (For the most part, control characters are in

serted automatically by statements such as PRINT, and you need not be

concerned about them.)

139

The entire group of characters available to make up strings is

called the character set. Different users have different character

sets available to them, depending on the input and output devices they

employ; the installation where you run your programs can tell you

what character sets are available to you. (To be consistent, this

primer uses the ASCII character set throughout, as does the Language

Reference Manual. A complete list of ASCII printing graphics appears

in an appendix to the present volume.)

String literals

You can refer to a particular string value in a program by

writing a string literal -- just as you refer to particular INTEGER,

REAL or BOOLEAN values by means of literals. A string literal is

written as a sequence of characters surrounded by apostrophe

characters:

'THE CENTER OF GRAVITY IS:'

'NO. OF INPUT VALUES EXCEEDS MAXIMUM OF 5.'

'INTEREST PAYABLE='

OLD BALANCE

The value of each of these literals is precisely the string of char

acters between the apostrophes. If a program contained the statements

PRINT ('THE CENTER OF GRAVITY IS:');

PRINT (CENTER) ;

and CENTER had the value 3.0, the following lines would be printed out:

THE CENTER OF GRAVITY IS:

3.00000E+OO

Note that the apostrophes are not part of the string represented by

the string literal; they just mark the beginning and end of the literal.

All spaces within a string literal are significant. Each one

represents a space character in the character string. The importance

of spaces in a literal can be seen when it is printed out; the

statement

140

PRINT ('THE VALUE OF COUNT COUNT);

causes, when COUNT is 5, the output

THE VALUE OF COUNT 5

while this PRINT statement:

PRINT (' THE VALUE OF COUNT COUNT) ;

results in this output:

THE VALUE OF COUNT = 5

A PRINT statement like this does not leave a space after strings the

way it does after numeric values. So if you want one space between

the = and the 5, leave a space between the = and the closing apostrophe

of the character string. Comments, which normally are equivalent to

spaces, are not recognized within string literals. A start-comment

character (# or {) appearing in a string literal is interpreted as

just another character in the string. So the statement

PRINT ('ACCOUNT#');

prints out the line

ACCOUNT #

as you would want it to.

A special problem arises in writing the literal for a string

which itself contains an apostrophe. Consider, for instance, how to

print out the following line:

INVALID 'SIZE' VALUE -- CAN'T EXCEED 50

It wouldn't do to write a PRINT statement like this:

PRINT ('INVALID 'SIZE' VALUE -- CAN'T EXCEED 50');

141

because the compiler will assume the apostrophe before SIZE marks the

end of the string -- it is unable to tell that this apostrophe, and

the two that follow, are supposed to be part of the string. To get

around this problem, a special rule is provided: an apostrophe

character within a string is represented by two consecutive apostrophes

in the string's literal representation. The desired output, therefore,

can be produced by

PRINT ('INVALID I 'SIZE' I VALUE -- CAN' 'T EXCEED 50');

This notation is perfectly unambiguous: a single apostrophe closes

a string literal, while a pair of consecutive apostrophes represents

a single apostrophe within the literal.

It is sometimes useful to speak of the length of a string. By

this we mean the number of characters it contains. The length of a

string literal can be determined from the number of characters between

the apostrophes:

string literal

'THE CENTER OF GRAVITY IS:'

OLD BALANCE

'='

length

25

28

1

7

Keep in mind, however, that a pair of apostrophes within a literal

represents only a single character in the string. So

'INVALID ''SIZE'' VALUE -- CAN' 'T EXCEED 50'

has a length of 39, although there are 42 characters in all between the

first and last apostrophes.

Adding useful messages to output

By adding some messages to the center-of-gravity program of

Chapter 12, we can make it a lot easier to tell what actually happened

during execution. As the program stood in Chapter 12, there were four

different conditions on which it would terminate:

142

(1) the array size input, N, could be out of range; (2) one or more

distance values could be out of range; (3) one or more weight values

could be negative; (4) all the weight values could be zero. Case (4)

was the "normal" termination; the other three were errors. But there

was no way to tell from the output which condition caused termination

in any particular run.

Using character string literals in PRINT statements, we can

produce messages that distinguish the four cases. We'll also change

the operation of the program somewhat: on conditions (2) and (3),

execution of the program won't be terminated. Instead, calculation

of the center of gravity will be skipped for the erroneous case, and

the program will proceed to the next case. WEIGHT and DISTANCE will

still be printed out, so you can find the out-of-range distance or

negative weight that caused the error. We'll introduce a BOOLEAN

variable, SKIP_CASE, that records when condition (2) or (3) holds.

Here's one way the program can be written, with the message

literals inserted:

VARIABLES WEIGHT, DISTANCE ARE ARRAY(25) REAL,

WEIGHT_SUM, PRODUCT_SUM, CENTER ARE REAL,

N IS INTEGER,

SKIP CASE IS BOOLEAN ::=FALSE;

REPEAT

READ _LINE (N) ;

IF N < 1 I N > 25 THEN

BEGIN;

PRINT('*****ERROR: SIZE VALUE OF ', N,
'IS OUT OF RANGE.');

PRINT (' SIZE MUST BE>= 1 and<= 25.');

PRINT ('EXECUTION HAS BEEN TERMINATED DUE TO '
'THIS ERROR.');

TERMINATE;

END;

READ_LINE (WEIGHT(N AT 1), DISTANCE(N AT l);

IF ALL (WEIGHT(N AT 1) = 0) THEN
BEGIN;

PRINT ('EXECUTION TERMINATED NORMALLY ON CASE '
'WITH ALL WEIGHTS= O.');

TERMINATE;
END;

143

IF ANY (WEIGHT (N AT 1) < 0) THEN

BEGIN;

PRINT ('*****ERROR: ONE OR MORE WEIGHT VALUES '

'ARE NEGATIVE.');

SKIP CASE := TRUE;

END;

IF ANY (DISTANCE(N AT 1) > 5 I DISTANCE(N AT 1)

< -5) THEN

BEGIN;

PRINT ('*****ERROR: ONE OR MORE DISTANCE VALUES '

'ARE OUT OF RANGE.');

PRINT (' DISTANCE VALUES MUST BE <= 5 AND '

I>= -5 • I) i

SKIP CASE := TRUE;

END;

PRINT (1 NUMBER OF WEIGHTS IS ' , N) ;

PRINT ('WEIGHT VALUES ARE:');

PRINT (WEIGHT(N AT l));

PRINT ('DISTANCE VALUES ARE:');

PRINT (DISTANCE(N AT l));
IF ~SKIP CASE THEN

BEGIN;

WEIGHT_SUM :=SUM (WEIGHT(N AT l));

PRODUCT SUM :=

SUM (WEIGH'!' (N AT 1) * DISTANCE (N AT 1)) ;

CENTER := PRODUCT_SUM / WEIGHT_SUM;

PRINT ('POSITION OF CENTER OF GRAVITY IS '

CENTER);

END;

ELSE

BEGIN;

PRINT ('CENTER OF GRAVITY NOT CALCULATED FOR '

'THIS CASE DUE TO ERROR.');

SKIP CASE := FALSE;

END;

PRINT;

END;

144

(Note how we've had to break some of the longer character strings in

two. It's tempting to write simply

PRINT ('CENTER OF GRAVITY NOT CALCULATED FOR

THIS CASE DUE TO ERROR.');

But the literal in this PRINT starts on one card and ends on the next;

it includes all the spaces after FOR on the first card, and all the

spaces preceding THIS on the second. When we break the literal in

two, these unwanted spaces are not included, but the indentation of

the program is maintained.)

Here's an example of what the program does. Suppose it has the

following input cards to read:

4

10.3

-4.0

2

s.s
2.5

5

12.2

-4.9

27

10.0

-2.0

1

o.o
o.o

13.5

-1.1

-.1

4.9

14.7

-0.3

10,0

3.0

7.2 9.1

3.1 3.9

o.o
1.1

19.0

4.9

2.2

5.1

There are two keypunching errors: -.1 has been typed in the fifth

line instead of 0.1, and 27 was punched in the tenth line when 2 was

intended. The user of the program has also made the mistake of

specifying a distance value of 5.1 in the ninth line. Our revised

program provides the following output:

145

NUMBER·OF WEIGHTS IS 4

WEIGHT VALUES ARE:

l.03000E+Ol l.35000E+Ol 7.20000E+09 9.lOOOOE+OO
DISTANCE VALUES ARE:

-4.00000E+OO -1.lOOOOE+OO 3.lOOOOE+OO 3.90000E+OO

POSITION OF CENTER OF GRAVITY IS 4,38903E-02

*****ERROR: ONE OR MORE WEIGHT VALUES ARE NEGATIVE.

NUMBER OF WEIGHTS IS 2

WEIGHT VALUES ARE:

5.SOOOOE+OO -l.OOOOOE-01

DISTANCE VALUES ARE:

2.SOOOOE+OO 4.90000E+OO

CENTER OF GRAVITY NOT CALCULATED FOR THIS CASE DUE TO ERROR.

*****ERROR: ONE OR MORE DISTANCE VALUES ARE OUT OF RANGE.

DISTANCE VALUES MUST BE <= 5 AND >= -5.

NUMBER OF WEIGHTS IS 5

WEIGHT VALUES ARE:

l.22000+E+Ol l.47000E+Ol O.OOOOOE+OO l.90000E+Ol

2.20000E+OO

DISTANCE VALUES ARE:

-4.90000E+OO -3.00000E-01 l.lOOOOE+OO 4.90000E+OO

5.lOOOOE+OO

CENTER OF GRAVITY NOT CALCULATED FOR THIS CASE DUE TO ERROR.

*****ERROR: SIZE VALUE OF 27 IS OUT OF RANGE.

SIZE MUST BE >= 1 AND <= 25.

EXECUTION HAS BEEN TERMINATED DUE TO THIS ERROR.

Notice that the last three cards are never read, because of the termina

tion due to error.

Character string variables

To have a variable represent character-string values, it must

be declared with the mode STRING:

VARIABLE NAME IS STRING(24);

146

The number in parentheses following STRING is the length of the

strings represented by the variable. In the example, NAME is de

clared so that it can be assigned character strings of length 24:

NAME:= 'DAVID G. COOPER, MANAGER';

NAME:= 'BRUCE S. MARTEN ';

NAME := I;

The length value of a STRING-mode variable cannot be changed once it

is fixed in a declaration. Thus NAME can only represent strings of

length 24. However, strings shorter than 24 may appear to the right

of the assignment operator; such strings' values are extended to the

right with space characters before they are assigned to NAME. Hence

the following all assign NAME the same value:

NAME ;= 'DAVIDOFF

NAME := 'DAVIDOFF

NAME := 'DAVIDOFF';

' . I

I•
I

It is an error to assign a string longer than 24 to NAME.

Of course, the value of one STRING variable may also be

assigned to another STRING variable. In general, an assignment of

the form:

STRING! := STRING2;

is valid if the length of STRING2 is less than or equal to the length

of STRING!. If STRING2 is shorter than STRING!, enough spaces are

added to the right of STRING2's value to make it as long as STRINGl.

Like variables of other modes, STRING variables can be assigned

values by READ_LINE statements, and have their values printed out by

PRINT statements.

Using STRING variables

One piece of data conspicuously lacking in our sample billing

program is the name of the customer who has each account. Using a

STRING-mode variable, we can now read in a name with each set of in

put figures, and write it out with the output.

147

We'll say a name is at most thirty characters; so we declare

VARIABLE CUSTOMER NAME IS STRING(30);

Supposing that the name input string is placed before the rest of the

customer's data, the billing program READ LINE statement would be changed

to:

READ_LINE (CUSTOMER_NAME, ACCT_NO, OLD_BAL, PAYMENT

PURCHASE);

The input for each case might now be on a card that looks like this:

MAURICE R. STANTON 705 5950 2975 9905

Notice that enclosing apostrophes do not appear around strings on

the input card. Instead of looking for a string within apostrophes,

READ_LINE simply inputs however many characters necessary to fill the

string variable. In this case, since CUSTOMER_NAME is of length 30, and

since it is the first variable in READ_LINE, the contents of the first 30

positions on the card (whatever they are -- blanks included) are assigned

to CUSTOMER NAME. Then, beginning in position 31, READ_LINE begins looking

for the values to assign to the other variables. (Rules governing STRING

variables in READ LINE will be discussed in more detail in a later chapter.)

We could also add to the billing program a more informative set of

PRINT statements:

PRINT ('ACCOUNT # I' ACCT_NO, I CUSTOMER_NAME);

PRINT ('OLD BALANCE: ', OLD_BAL);

PRINT ('PAYMENT REC' 1 D: 1
, PAYMENT);

IF -INTEREST FREE THEN

PRINT ('BALANCE PAST DUE: ', PAST_DUE,

INTEREST ON PAST DUE BAL.: ', INTEREST);

PRINT ('PURCHASES MADE: PURCHASE);

PRINT ('NEW BALANCE: NEW_BAL);

PRINT;

If account #705 is not interest-free, the output will be:

ACCOUNT # 705 MAURICE R. STANTON
OLD BALANCE: 5950
PAYMENT REC'D: 2975
BALANCE PAST DUE: 2975 INTEREST ON PAST DUE BAL.: 45
PURCHASES MADE: 9995
NEW BALANCE: 13015

148

If it is interest-free, the output will be one line shorter:

ACCOUNT # 705
OLD BALANCE:
PAYMENT REC'D:
PURCHASES MADE:
NEW BALANCE:

MAURICE R. STANTON
5950
2975
9995
12970

149

15.0

STRING PROCESSING

Now that you are familiar with the concept of character string

data, we can go on to explain how strings are manipulated in a pro

gram. This chapter shows how to refer to substrings of a string, and

how to put strings or substrings together to form larger strings. It

also gives the definitions of comparison operators and some

conversions for string data.

Strings as arrays

You may already have noticed some similarities between char

acter strings and one-dimensional arrays. Characters are the units

of a string, just like elements such as INTEGERs are the units of an

array. The length of a string (the number of characters) is akin to

the size of an array (number of elements). Both ARRAY and STRING

variables cannot change size (or length) once their sizes are fixed

in a declaration.

These correspondences are not a coincidence. Fundamentally,

strings ~ "arrays of characters" in the same way that other variables

you have learned to declare are arrays of INTEGERs. However, STRINGs

have some important differences from the sort of array we have been

declaring with the ARRAY mode generator. Furthermore, certain

operators behave specially with STRING operands -- assignment, for

instance, was shown in the last chapter to take two STRING operands

of different lengths, although it cannot take two INTEGER array oper

ands of different sizes. This chapter explores the similarities and

differences in the behavior of STRINGS and other arrays.

Subscripting STRING variables

One important way in which strings are like arrays is that

they can be subscripted. A single subscript selects a character from

the string, while a subarray subscript selects a substring. This is

just like the situation with regard to arrays, where a single subscript

on an array of REALs selects a single REAL, while a subarray subscript

on an array of REALs selects a subarray of REALs.

150

What is the mode of a "substring'' from a string? It is

STRING, and its length is equal to the value before AT in the

subscript. In this respect, too, STRINGS behave in a manner exactly

analogous to ARRAYS. If NAME is a STRING(25), then NAME(! AT J)

is, as you would expect, a STRING of length I.

If you think of the nth character of a string as its nth

"element'', then the rules for applying subscripts to strings should

be evident from your knowledge of arrays. Here's an example to make

things clear: assume

VARIABLE NAME IS STRING(20);

NAME := 'BROWNEL, BEN';

then here are the values of some subscriptings of NAME:

Subscripted Variable

NAME(l)

NAME (8)

NAME (20)

NAME (7 AT 1)

NAME(3 AT 10)

NAME (13 AT 1)

NAME (8 AT 13)

Value (written as a literal)

'B'
I I

'
I I

'BROWNEL'

'BEN'

'BROWNEL, BEN'

Since a subscripted string variable is itself of STRING mode,

it may be used just like an unsubscripted variable of the same length.

For instance, one can write

PRINT (NAME(4 AT 10), NAME(? AT l));

to print out

BEN BROWNEL

A substring may have a value assigned to it; for example, either of

the following:

NAME (4 AT 10) : = I JOHN I ;

NAME(ll AT 10) := 'JOHN';

151

changes the value of NAME to 'BROWNEL, JOHN

illegal, however, to write

NAME(4 AT 10) := 'HAROLD';

It would be

because the length of 'HAROLD', 6, exceeds the length of NAME(4 AT 10),

which is 4.

String equality comparisons

The equality operators = and ~= may be applied to two STRING

operands. Two STRING values are equal if and only if they have the

same lengths, and they consist of the same characters in the same

order.

Note that = and ~= act quite differently on STRINGs than they

do on one-dimensional INTEGER or REAL arrays. Equality comparisons of

the latter are distributive -- they are applied between each of the

elements, and produce an array of BOOLEANS. But equality comparison

treats STRING values as single entities, and produces a single BOOLEAN

result for two STRING operands of any length.

An example with subscripted strings

In our modifications to the billing program in the last chapter,

we added a string variable to store the name of the customer who held

each account:

VARIABLE CUSTOMER NAME IS STRING(30);

Every time we read in account data, we read a character string into

CUSTOMER_NAME; later we printed out this string along with ACCT NO:

PRINT ('ACCOUNT# I' ACCT_NO, I , CUSTOMER_NAME) ;

Let's now add a few extra requirements, to show some simple

string processing. Assume that the strings read into CUSTOMER_NAME

are like the sample one in the previous section -- last name, comma,

first name:

152

BROWNEL, BEN

JOHNSON, EDMUND

MEGALOPOULOS, THEODORE

Suppose further that we just want to print out the last name with the

account number. We must therefore search through each CUSTOMER_NAME

string for a comma character, and then print out just the substring

that comes before the comma.

To do this, we have to subscript CUSTOMER_NAME. The PRINT

statement above is replaced by the following two statements:

FOR I FROM 2 THRU 30 UNTIL CUSTOMER_NAME(I)

PRINT ('ACCOUNT# ' ACCT_NO, '

CUSTOMER NAME(I - 1 AT 1));

' ' '
REPEAT; END;

The REPEAT tests each character of CUSTOMER_NAME, from the second

through the 30th, until it finds a comma. Then the last-name substring

all the characters of CUSTOMER NAME up to the one before the comma -

is printed out.

Concatenation

Now you know how to take strings apart, by subscripting, into

characters and substrings. The next step is to learn how to put strings

together, to form larger strings. This process is called concatenation.

Concatenation is an operation on two strings; it produces a

single string which consists of all the characters of the first string

followed by all the characters of the second. In CS-4, concatenation

is performed by the infix concatenation operator, which is a pair of

vertical strokes:

NAME I I NAME2

Concatenation takes STRING-mode operands of any length; they may be

string literals or variables, possibly subscripted.

153

String concatenation is a fairly intuitive operation, as a few

examples should show. Again, let's assume

VARIABLE NAME IS STRING(20);

NAME := 'BROWNEL, BEN I•
I

We can produce various new strings by concatenating parts of NAME:

expression

NAME (10 AT 1) I I I • I

'DR. I 11 NAME (7 AT 1)

NAME (4 AT 10) 11

NAME (7 AT 1)

NAME (7 AT 1) I I I I I I
NAME (12 AT 9)

NAME (10) 11 ' • I 11

NAME (7 AT 1)

value

I BROWNEL I B • I

'DR. BROWNEL'

'BEN BROWNEL'

'BROWNEL BEN

'B. BROWNEL'

Obviously, the length of A I I B is equal to the length of A plus the

length of B.

Concatenation is very useful for rearranging strings, as you

can tell from the example. It can also serve to put related strings

together. For instance, it might happen that the input to the billing

program consists of two name strings, a first name and a last name,

each 35 characters long; in special cases (corporate names, perhaps),

the first name string might be all blank. Say that we want to print

out the customer's first initial, if any, and whole last name. We

would make these declarations:

VARIABLES FIRST_NAME, LAST_NAME ARE STRING(35),

CUSTOMER NAME IS STRING(38);

and perform this processing to create CUSTOMER NAME:

READ_LINE (FIRST_NAME, LAST_NAME);

IF FIRST NAME = 1
' THEN

CUSTOMER NAME := LAST_NAME;

ELSE

CUSTOMER NAME := FIRST_NAME(l) I I I I I I LAST_NAME;

154

String inequality comparisons

The four inequality operators (< <= > >=) are defined to take two

STRING-mode operands. Like the equality operators, their operands

need not be of equal length.

What does it mean for one string to be less than another one?

If Sl and S2 consist entirely of letters, then

Sl < 82

is TRUE only when Sl comes before S2 in alphabetical order. More pre

cisely, let N be the length of whichever of Sl and S2 is shorter. If,

for some I s N, Sl and 82 are the same through the I-1st character,

but Sl{I) comes before S2(I) in the alphabet, then Sl < S2 is TRUE;

if Sl{I) comes after S2(I), then Sl < 82 is FALSE. If Sl and 82 are

the same through the Nth character, then the shorter of the two is

considered the lesser. For example, the following expressions are all

TRUE:

'AAAAA' < 'ZZZZZ'

'AAAAB' < 'AAAAC'

'TAAAA' < 'UAAAA'

'A' < 'ZZZ'

'AAA' < 'Z'
'BB' < 'BBB'

'HERMAN' < 'HERMANN'

The general definition of < is just an extension of the concept

of alphabeti.zation. The entire character set has a collating sequence

an ordering that tells which characters come before any given character,

and which come after. Thus, we define

Sl < S2

to be TRUE when Sl and S2 are the same through some (I-l)th character

(I s N), but Sl(I) comes before 82(I) in the collating sequence; or

if Sl and 82 are the same through the Nth character, and 81 is shorter

than 82. Otherwise, the expression is FALSE.

155

Within the collating sequence for the ASCII character set (the

one used in this Primer), letter characters are in alphabetical order,

and digit characters are in numerical order (0 first, 9 last). The

space character precedes all the digits, which precede all the letters.

So, for example, we have the following TRUE relations:

I AAAA I < I AAAAA'

'AAAAl' < 'AAAAA'

'A Z' < 'AAAAA'

'AlZ' < 'AAAAA'

'12345' < '12346'

'12378' < '1238'
1 234' < '2345'

You will find the full collating sequence for the ASCII character set

in an appendix to this volume.

The meanings of the three remaining comparisons (<= > >=) are

derived in the obvious way from the meanings of= and <.

It hardly needs saying that string inequalities are essential

to programs that alphabetize strings. They are also valuable for

certain sorts of checking; for instance, the expression

NAME(!) >= 'A' & NAME(!) <= 'Z'

is true only when NAME(!) is a letter, and so can be used to check that

no spurious characters have been punched within a name.

(It is important to be aware that string inequality comparisons,

like string equality comparisons, operate on strings as single

entities -- they do not distribute over individual "characters". One

cannot write

NAME > '

to compare ','with each character of NAME and so produce an array of

BOOLEANs. Rather, this comparison yields a single BOOLEAN, whose

value depends on the relative position of ' ' and the first character

of NAME in the collating sequence.)

156

Mixing STRING and other modes

When an INTEGER value is an argument to concatentation, it is

converted to a string of digits. This makes it possible to write a

statement like

PRINT ('ACCOUNT# I I I ACCT NO I I '.');

in which the literal representation of ACCT_NO is made part of a

string. If ACCT NO were 156, this line might be printed:

ACCOUNT # 156.

while if ACCT NO were 3 the output would be

ACCOUNT # 3.

As you can see, the length of the string that ACCT_NO is converted

to varies according to the number of characters needed to represent

the integer. 156 converts to a string of J~ngth three, 3 converts

to a string of length one, and -3 would convert to a string of length

two. In the above concatenation, we left a space after # in the string

'ACCOUNT # ' so that the resulting string would have a space between

and the number.

Assignment of an INTEGER value to a STRING value also triggers

conversion. For example, given

then

VARIABLE ACCT_NO IS INTEGER,

ACCT_NO STRING IS STRING(7);

ACCT NO STRING := ACCT_NO;

is legal, assuming that ACCT NO contains seven digits or less (or

a minus sign followed by six digits or less). If ACCT NO is 156,

ACCT NO STRING is assigned '156

157

All the foregoing applies equally well if you substitute REAL

for INTEGER. Generally, a REAL is converted to its exponential literal

representation in STRING form; the length of the STRING value depends

on the precision of the REAL. You can find the detailed rules spelled

out in the Language Reference Manual.

There is also a conversion from BOOLEAN to STRING(5): TRUE

becomes 'TRUE~' and FALSE 'FALSE'. The conversion is performed when

a BOOLEAN value is an argument to a concatenation, or is assigned to

a STRING variable of length 5 or more.

Arrays of strings

STRING values of a given length, like values of any mode, can

be declared in arrays with the ARRAY mode generator. For example,

VARIABLE NAME IS ARRAY{50) STRING{20);

declares NAME as a one-dimensional array of 50 strings of length 20.

How is such an array of strings subscripted? Certainly NAME(!)

must refer to the Ith string in NAME. But how about the Jth character

of NAME{I)? That is written

NAME(I,J)

in just the same way that we subscript two-dimensional arrays. This

is as it should be: a single string is subscripted as if it were an

array of characters; an array of strings ought to be treated like an

array of arrays of characters -- in other words, a two-dimensional

array of characters. And so it is; you can even write

NAME{*, 10 AT 1)

to refer to an array of substrings of length 10, and

158

NAME(I, 10 AT 1)

to refer to a substring of the Ith string of NAME.

By similar reasoning, you can see that a two-dimensional array

of strings:

VARIABLE MESSAGE IS ARRAY(2,16) STRING(24);

is essentially a three-dimensional array. The first two subscripts

refer to "rows" and "columns" of the array, while the third subscript

distinguishes particular characters of each string. And so for arrays

of still higher rank: an n-dimensional array of strings is subscripted

like an n+l-dimensional array.

Distributivity of string operators

The concatenation operator, and the string comparison operators,

are distributive over arrays of strings. More specifically:

1) The concatenation of two arrays of strings, or of a single

string and an array of strings, yields an array of strings of

the same arrayness as the operand(s). If A is an array of

strings of length m, and B is an array of strings of length n,

then A I I B is an array of strings of length m+n; similarly,

if C is a single string of length k, A I I C is an array of

strings of length m+k.

2) A comparison of two arrays of strings, or of a single string

and an array o.f strings, yields an array of BOOLEANs of the

same arrayness as the operand(s).

Like any distributive operators, concatenation and string com

parison can be applied only to two arrays of identical arrayness.

At this point you may be having some trouble distinguishing the

concepts of character, character string, array of characters, and

array of strings, especially when you have to figure out which ones

apply when. The important distinction to keep in mind is this: for

the purpose of subscripting -- to refer to substrings of various

159

lengths (including length 1) -- strings are treated as arrays of

characters. For the purpose of operating on strings -- to concatenate

or compare them -- they are treated as single, unarrayed values.

This rule generalizes to arrays of strings. An n-dimensional array

of strings may be treated, for the purpose of subscripting, as an

n+l-dimensional array of characters. But for the purpose of operating

on its string elements -- by distributing concatenation or comparison

it is treated like an n-dimensional array of whole strings.

A string-processing example

Now we can present a fairly short program that demonstrates all

the string-processing features in action. The input to this program

is a single INTEGER, read into N, and N strings each 20 characters

long; the program handles up to 50 input strings, Each string must

contain a single name, which may be preceded or followed by blanks;

there must be no blanks, or other non-letter characters, within the

name.

The program reads the input strings into an array, NAME. It

searches for each name among the blanks, and checks that all char

acters in the name are letters; if a name has blanks preceding it,

they are removed (the name is moved to the beginning of the string,

in other words). Then, if there were no errors, the names are printed

out in two columns, in the order they were read in -- the first half

of them running down the first column, and the other half running

down the second.

Knowing this much, now take a look at the program:

VARIABLE NAME IS ARRAY(SO) STRING(20),

FIRST, LAST, I, J, N, DEPTH ARE INTEGER,

ERROR IS BOOLEAN ::=FALSE;

READ_LINE (N);

IF N < 1 I N > so THEN

BEGIN;

PRINT ('PROGRAM CANNOT HANDLE' I I NI I 'NAMES.');

TERMINATE;

END;

160

READ_LINE (NAME(N AT l));

FOR I THRU N

REPEAT

NAME SEARCH:

BEGIN;

FOR FIRST THRU 20 UNTIL NAME(I,FIRST)

IF NAME(!, FIRST)

BEGIN;

I I THEN

I I REPEAT; END;

PRINT (I NAME # I I I I I I I IS BLANK. I) ;

ERROR ~= TRUE;

EXIT FROM NAME_SE1u~CH;

END;

FOR LAST FROM 20 BY -1 UNTIL NAME(I,LAST) ~= ' '

REPEAT; END;

FOR J FROM FIRST THRU LAST

REPEAT

IF NAME(I,J) < 'A' NAME(I,J) > 'Z' THEN

BEGIN;

PRINT (I NAME # I I I I I I I HAS INVALID I I I
1 CHARACTER OR EMBEDDED SPACE:');

PRINT (NAME(I));

ERROR : = TRUE;

EXIT FROM NAME SEARCH:

END;

END; # OF REPEAT FOR J #

IF FIRST -= 1 THEN

NAME(!) := NAME(I, LAST - FIRST+ 1 AT FIRST);

END NAME_SEARCH;

END; # OF REPEAT FOR I # '

IF ERROR THEN TERMINATE;

DEPTH : = N / 2 ;

IF N ~=DEPTH * 2 THEN NAME(N + 1) :=

PRINT (NAME(DEPTH AT 1) I I I I I I
NAME(DEPTH AT DEPTH+ l));

I I •

'

A few explanations are in order. The large REPEAT in the middle of

the program does the checking of each string. The THEN clause at the

end of the loop:

NAME(!) := NAME(I,LAST - FIRST+ 1 AT FIRST);

moves the name to the far left of the string if it isn't already there.

161

DEPTH -- the number of names in each output column -- is half

of N. If N is odd, DEPTH will be rounded up to the next integral

value; and the IF that follows:

IF N - DEPTH * 2 THEN NAME(N + 1) •- I I•
.- I

adds an extra blank name at the end, so that the PRINT statement will

work out properly.

The PRINT uses distributed concatenation. The expression

printed:

NAME(DEPTH AT 1) 11 ' ' 11

NAME(DEPTH AT DEPTH+ 1)

is an array of DEPTH elements of length 45; when each element is printed

out on a separate line, the result is the two-column arrangement we

desire.

You can make this into a more useful program by adding state

ments to alphabetize the names before they are printed out. You

might also want to try to adapt the billing program in,a similar way,

so that it stores all the names and account numbers as they are pro

cessed, and prints out at the end of the run a summary (in alphabeti

cal order) of customers serviced.

162

PART 3

PROGRAMMING WITH FUNCTIONS

16.0

FUNCTIONS

In Part 1 of this Primer we demonstrated most of the basic tools for

directing flow of control in CS-4 programs. At the same time, we described

the manipulation and storage of the most basic types of data. Pa~t 2 was

given over to the introduction of new and more powerful tools for data

handling -- arrays, array expressions, and strings.

In this and subsequent chapters, we return to the topic of flow of

control. Our subject is the definition of functions -- a tool which is

essential to the logical and efficient construction of all but the simplest

programs.

The need for a structured program

Back in Chapter 3 we introduced a very simple example of a program

that computed billing information for an imaginary set of charge accounts.

In subsequent chapters we used many features of CS-4 to make that program

more powerful. In one example or another, we showed how to achieve all

of the following:

1) Construction of a look-up table of interest-free accounts.

2) Reading in, processing, and writing a name character string

for each customer.

3) Printing out, at the end, the total number of accounts processed,

and the total number of accounts with past-due balances.

4) Printing out just the account number and skipping the rest of

the calculations when all the other output values would be zero.

165

Each of these features adds something else besides power. Each

adds to the length and complexity of the program. So far, we've only

incorporated one or two of these features at a time, to keep the

examples reasonably short. Now let's consider implementing all of

them together.

We can do this with just the tools you've learned so far -

REPEAT loops, BEGIN blocks, EXITs, and various data-handling devices.

The resulting program is long and complicated indeed, compared to

previous examples:

VARIABLES ACCT_NO, OLD_BAL, PAYMENT, PURCHASE, INTEREST,

PAST_DUE, NEW_BAL, FREE_ACCT, FIRST, I, LAST ARE INTEGER,

COUNT, PAST_COUNT ARE INTEGER::= 0;

VARIABLE ERROR MESSAGE IS STRING(40),

NAME IS STRING(20);

VARIABLE ERROR IS BOOLEAN ::=FALSE,

FREE_ACCT_TABLE IS ARRAY(999) BOOLEAN ::=FALSE;

STORE FREE ACCT NUMBERS #

READ_LINE (N);

IF N < 0 I N > 999 THEN

BEGIN;

ERROR := TRUE;

ERROR MESSAGE := 'NUMBER OF FREE ACCOUNTS NEGATIVE' I I
I OR >999';

END;

FOR I THRU N WHILE ~ERROR

REPEAT

NEXT NUMBER:

BEGIN;

READ_LINE (FREE_ACCT);

IF FREE ACCT < 1 I FREE_ACCT > 999 THEN

BEGIN;

ERROR : = TRUE ;

ERROR MESSAGE := 'FREE ACCOUNT NUMBER' I I
' IS <l OR >999 I~

166

EXIT FROM NEXT_NUMBER;

END;

FREE_ACCT_TABLE(FREE_ACCT) := TRUE;

END NEXT_NUMBER;

END;

MAIN PROCESSING LOOP #
FOR COUNT WHILE -ERROR UNTIL ACCT NO <= 0

REPEAT

NEW ACCT:

BEGIN;

PROCESS NEXT ACCOUNT #

READ_LINE (NAME, ACCT_NO, OLD BAL, PAYMENT, PURCHASE);

PROCESS INPUT NAME #

NAME SEARCH:

BEGIN;

FOR FIRST THRU 20 UNTIL NAME(FIRST) ~- 1 '

REPEAT; END;

IF NAME(FIRST) = ' ' THEN EXIT FROM NAME_SEARCH;

FOR LAST FROM 20 BY -1 UNTIL NAME(LAST) ' '

REPEAT; END;

FOR I FROM FIRST THRU LAST

REPEAT

'A' NAME (I) > I z I) & IF (NAME(I) <

NAME(I) -= I I & NAME(I) -= ''II THEN

END;

BEGIN;

ERROR := TRUE;

ERROR MESSAGE := 'INVALID CHARACTER'

11 I WITHIN A NAME;

EXIT FROM NEW_ACCT;

END;

167

IF FIRST -= 1 THEN

NAME := NAME(LAST - FIRST + 1 AT FIRST);

END NAME_SEARCH;

PROCESS INPUT DATA #

IF ACCT NO <= 0 THEN EXIT FROM NEW_ACCT;

IF ACCT NO > 999 THEN

BEGIN;

ERROR := TRUE;

ERROR MESSAGE := 'ACCOUNT HAS NUMBER >999';

EXIT FROM NEW_ACCT;

END;

IF OLD BAL = 0 & PAYMENT = 0 & PURCHASE = 0 THEN

BEGIN;

PRINT (ACCT_NO, NAME);

EXIT FROM NEW_ACCT;

END;

IF FREE_ACCT_TABLE(ACCT_NO) I PAYMENT >= OLD BAL THEN

BEGIN;

PAST DUE := 0;

INTEREST := 0;

END;

ELSE

BEGIN;

PAST DUE := OLD_BAL - PAYMENT;

INTEREST := PAST_DUE * 0.015;

PAST COUNT := PAST COUNT + l;

END;

NEW BAL := OLD BAL - PAYMENT + INTEREST + PURCHASE;

PRINT (ACCT_NO, NAME, OLD_BAL, PAYMENT,

PAST_DUE, INTEREST, PURCHASE, NEW_BAL);

END NEW_ACCT;

END;

IF ERROR THEN

TERMINATE WITH ERROR#

BEGIN;

IF COUNT = 0 THEN

PRINT ('EXECUTION TERMINATED BY ERROR BEFORE ' I I
'PROCESSING: 1

, ERROR_MESSAGE);

168

ELSE

PRINT ('EXECUTION TERMINATED BY ERROR DURING' I I
' PROCESSING: ' ~RROR_MESSAGE);

TERMINATE;

END;

PRINT STATISTICS #
PRINT; PRINT;

PRINT (COUNT I I ' ACCUUNTS WERE PROCESSED');

PRINT (PAST_COUNT I I I ACCOUNTS HAD BALANCES PAST DUE');

We've added a few comments to try to show where the different tasks

of the program begin and end. Most of the routines should be pretty fami

liar to you by now. The input customer names are assumed to be last names

only; a name must be made up of letters, spaces, and apostrophe characters.

Blank name fields are allowed. We have introduced a BOOLEAN variable

ERROR, which is set to TRUE whenever there is an error that causes termin

ation of processing. When such an error occurs, the STRING variable

ERROR MESSAGE is assigned a message string which is printed out later in

the program.

Is there any way we can make this program much shorter? Not really.

What we ~do is to structure it into a number of functions, so that the

flow of control is clearer, and so that the program is easier to read,

write, and debug.

Function calls

An identifier followed by a list of one or more values in paren

theses is a fairly common expression in CS-4. Some of these expressions are

subscripted array or string variables. But there are some, such as

PRINT (ACCT_NO, NAME);

SUM (WEIGHT) ;

which fall in another category. They are known as function calls. Each

performs a specific purpose, or "function", in a program -- such as adding

the elements of an array, or printing out certain values.

Let's consider the function call

SUM (WEIGHT)

169

in more detail. The identifier in front -- SUM is called the function

name. The array value in parentheses is called the function's argument.

(Some functions, like PRINT, may have more than one argument, in which

case the arguments are written in a comrna-separated list.} Each function

name indicates the action, or function, to be performed, while the arguments

supply values or variables that are used in performing the action. In

our example, SUM indicates that array sumrning is to be done, while the

argument tells which array is to have its elements sumrned.

Thus, every time SUM (WEIGHT) is encountered during execution,

the elements of WEIGHT are added together. After the summing is completed,

one more action is performed: a return value -- the REAL value equal to

the sum of the elements. -- is given to the expression SUM (WEIGHT) • The

function call can therefore be used as one element of a larger expression,

such as

WEIGHT SUM := SUM (WEIGHT) ;

which assigns the sum of the weights to WEIGHT SUM. {There's a meaning

behind the term "return value" which will become relevant later.)

How is SUM useful? It is not necessary in writing a program

our first several array-handling examples did without it. But it does

contribute to the clarity and ease of programrning. Calling SUM lets

you avoid the details of writing a REPEAT loop to do the summing,

declaring its FOR variable, and initializing the variable that holds

the partial sums. All this is taken care of by the execution of the

function call.

The function name SUM is part of CS-4; that is, a SUM function

call (or "call to SUM") results in the performance of a particular action

which is defined as part of the language. SUM is thus called a pre-defined

function. The functions PRODUCT, ALL, ANY, READ_LINE, and PRINT are also

pre-defined. These functions are available to any programmer who finds

their use convenient.

In this and subsequent chapters, we will show how it can be

equally convenient to call functions of your own devising, in addition

to using the pre-defined ones. Once you have decided what you want your

functions to do, you will be able to write calls to them -- like you

do with SUM -- without worrying about their internal structure. But

170

since these functions aren't pre-defined, you will also have to write

your own definitions for them, and submit the definitions to the

compiler along with the rest of your program. Writing such definitions

will be the key to improving the long billing program we just displayed.

Although there are many sophisticated types of functions in CS-4,

in this chapter we'll be concerned with only the very simplest sort. Our

functions will not take any arguments -- so the parentheses following

their names won't be written at all. Our functions won't return

any values, either -- so we'll use them by themselves in statements, like

we do PRINT and READ LINE. You've already seen a few function calls of

this elementary sort, such as the call to PRINT:

PRINT;

which leaves a blank line. (To be accurate, we should add that PRINT

and READ LINE do have return values. However, at this point we have no

use for their return values, and so we call them as if they have none.}

Rewriting a program with function calls

Return now to the billing program. Imagine we can invent any

function we want in order to simplify the program -- as long as it's a

function of the very simple type we just described (no arguments, no

return value). Here are some functions we could want:

STORE_FREE_ACCT_NUMBERS -- takes care of reading in

the numbers of the interest-free accounts, and setting

up FREE ACCT TABLE.

PROCESS NEXT ACCOUNT reads in the next account, and

does all the account calculations, including the

processing of NAME.

171

TERMINATE_WITH_ERROR -- prints out the appropriate error

message and terminates the program.

PRINT STATISTICS -- prints out the run statistics at the

end.

Each of these functions does a different task of the program. In

fact, if you look back at the conunents we used to mark off the different

tasks, you'll see that each function name corresponds to one of the

conunents.

Suppose that all the hypothetical functions could be defined

to do just what we want them to do. Then we could shorten the program

a great deal. The declarations would remain as they are. But the rest

of the program could be reduced to this:

STORE_FREE_ACCT_NUMBERS;

FOR COUNT WHILE ~ERROR UNTIL ACCT NO <= 0

REPEAT PROCESS_NEXT_ACCOUNT; END;

IF ERROR THEN TERMINATE_WITH_ERROR;

PRINT_STATISTICS;

There's a catch, of course these functions are not pre-defined, like

PRODUCT or PRINT. We have to write the definitions ourselves, and

submit them to the compiler as part of the program. Otherwise, the

program will be rejected, with a message that reports that the function

names are undefined.

Defining a function

Now we come to the crucial point. What does a function definition

consist of? How is it written?

Fundamentally, a function definition is a sequence of CS-4

statements, which specify what is to be done each time the function is

called. These statements are compiled along with the rest of the program;

172

they are executed when a function call is encountered during the program's

execution.

The statements that make up a function definition have to be

written in some particular order. When the function is called, the

first executable statement in the definition is executed first; then

control passes to subsequent statements in the definition, according

to the rules for flow of control. After the last statement of the function

definition is executed, control passes back to the place of the function

call, and execution of the program continues from there.

A function definition can, therefore, be looked at as a sort of

"sub-program". Control passes to this sub-program every time the function

is called. When the sub-program is concluded, control passes back to the

main program, which starts executing again where it left off.

We encountered the concept of a sub-program once before

in introducing BEGIN blocks in Chapter 7. BEGIN blocks can also be

thought of as sub-programs. However, the BEGIN block sub-program is

executed when control passes to it by the usual rules for sequential

flow of control. A function definition sub-program, by contrast, can

have control passed to it only by a function call.

For the rest of this chapter, we'll concern ourselves with writing

definitions for the particular functions we hypothesized for the billing

program. In the process you will be able to get a more concrete

appreciation of the working of function calls, executions, and returns.

Writing some FUNCTION definitions

We'll start by writing the FUNCTION definition for PRINT_STATISTICS,

since its few essential features are common to all FUNCTIONs. It

begins with a heading that resembles the start of a labelled BEGIN block:

PRINT STATISTICS:

FUNCTION;

Next comes the body of the definition -- the statements that are to be

executed when PRINT STATISTICS is called. These are:

PRINT; PRINT;

PRINT (COUNT I I 'ACCOUNTS WERE PROCESSED');

PRINT (PAST_COUNT I I ' ACCOUNTS HAD BALANCES PAST DUE');

173

Finally, the end of the FUNCTION is marked with an END statement, identical

in form to the type that ends a labelled BEGIN:

END PRINT_STATISTICS;

Putting these together, we have the FUNCTION definition for

PRINT STATISTICS:

PRINT_STATISTICS;

FUNCTION;

PRINT; PRINT;

PRINT (COUNT I I I ACCOUNTS WERE PROCESSED');

PRINT (PAST_COUNT I I I ACCOUNTS HAD BALANCES PAST DUE');

END PRINT_STATISTICS;

What happens now when the function call

PRINT_STATISTICS;

is executed? The call causes the flow of control to jump to the first

executable statement in the body of the FUNCTION definition -- in this

case, the statement that prints a blank line. Control then passes to sub

sequent statements within the FUNCTION definition, until it reaches the

END. When END is reached, control returns to the point of the call, and

the program continues from there. In our program, the statement that

called PRINT STATISTICS:

PRINT_STATISTICS;

is now finished. And, since that statement is the last one in the program,

the whole program is finished. (However, if another statement followed

the call to PRINT_STATISTICS, that statement would now be executed.)

Unlike BEGIN blocks, FUNCTION definitions are not executable

statements. You cannot cause a function body to be executed by placing

its FUNCTION and letting control pass to it in the normal sequence. A

function definition is executed only when it is called from some other

statement in the program. Since FUNCTION definitions are non-executable,

they may appear in just those places where other non-executable statements

such as declaration statements -- may appear. Customarily, they are all

placed at the beginning or the end of a program. (Function calls,

though, ~ appear in THEN clauses, in REPEAT statements, or anywhere

other executable statements can appear.)

174

It sometimes helps to think of a function definition as a sort

of declaration -- but one that declares a function name instead of a

variable or constant name. We will go further into the declaration-like

properties of FUNCTION definitions in Chapter 22. You will learn that

both declaration statements and FUNCTION definitions have their meanings

somewhat modified when they appear inside of BEGIN blocks or other

FUNCTION definitions; so in the meantime you should play safe by

keeping non-executable statements outside of BEGINs or FUNCTIONs.

Including the declaration statements and the PRINT STATISTICS

definition, the program now looks like this:

VARIABLES ACCT_NO, OLD_BAL, PAYMENT, PURCHASE, INTEREST,

PAST_DUE, NEW_BAL, FREE_ACCT, FIRST, I, LAST ARE INTEGER,

COUNT, PAST_COUNT ARE INTEGER ::= O,

VARIABLE ERROR MESSAGE IS STRING(40),

NAME IS STRING(20);

VARIABLE ERROR IS BOOLEAN ::=FALSE;

FREE ACCT TABLE IS ARRAY(999) BOOLEAN ::=FALSE;

STORE_FREE_ACCT_NUMBERS;

FOR COUNT WHILE ~ERROR UNTIL ACCT NO <= 0

REPEAT PROCESS_NEXT_ACCOUNT; END;

IF ERROR THEN TERMINATE_WITH_ERROR;

PRINT_STATISTICS;

PRINT STATISTICS:

FUNCTION;

PRINT; PRINT;

PRINT (COUNT I I I ACCOUNTS WERE PROCESSED');

PRINT (PAST_COUNT I I I ~:COUNTS HAD BALANCES PAST DUE');

END PRINT_STATISTICS;

Before defining the remaining three functions, we introduce here

a few useful terms. Program-level statements are those not contained

within any block or function; other statements are said to be at lower

levels. Analogously, a program-level variable is one whose declaration

is at program level. And a program-level function is one whose defining

FUNCTION is not contained within any other block or FUNCTION. Pre-defined

175

functions are also treated as program-level functions. Our program

contains five executable program-level statements (some of them compound) ,

and all the functions and variables are program-level.

The RETURN statement in FUNCTION bodies

It is often advantageous to terminate a FUNCTION before control

passes normally to END. Whereas BEGIN blocks and REPEAT statements

force termination by executing EXIT, FUNCTIONS require a different

statement: RETURN. When RETURN is executed within a FUNCTION body,

it causes execution of the function to be terminated. It has the same

effect as passing control in sequence to the END of the FUNCTION body.

RETURN thus results in an immediate return to the calling point -

hence its name.

RETURN enables the work of a function to come to an end at any

of several different points in its body. Take STORE_FREE_ACCT_NUMBERS,

for instance. Its task is completed upon any of three conditions:

1) An error is found in the input value for N.

2) An error is found in some account number input.

3) All N inputs are processed correctly.

We write the FUNCTION definition so that cases (1) and (2) cause a

RETURN to be executed, while in case (3) control passes in the normal

sequence to END:

STORE FREE ACCT NUMBERS:

FUNCTION;

READ LINE (N) ;

IF N < 0 I N > 999 THEN

BEGIN;

ERROR := TRUE;

ERROR MESSAGE := 'NUMBER OF FREE ACCOUNTS ' I I
''NEGATIVE OR >999';

RETURN;

END;

176

FOR I THRU N

REPEAT

READ_LINE (FREE_ACCT);

IF FREE ACCT < 1 I FREE_ACCT > 999 THEN

BEGIN;

ERROR := TRUE;

ERROR MESSAGE := 'FREE ACCOUNT NUMBER IS I I I
1 <1 OR >999';

RETURN;

END;

FREE_ACCT_TABLE(FREE_ACCT) := TRUE;

END;

END STORE FREE ACCT_NUMBERS;

Note that the EXIT FROM NEXT NUMBER statement in the original program is

here replaced by a RETURN. (Be sure to keep RETURN and EXIT straight:

the former terminates FUNCTIONs, the latter terminates only blocks

and REPEATs. When a RETURN is inside a BEGIN block which is in a FUNCTION

body, it terminates the BEGIN along with the FUNCTION -- in fact, the

second RETURN in our example terminates both a BEGIN and a REPEAT. But

there is no way to use an EXIT to cause a return from a function call.)

Terminating the program from within a function body

The function TERMINATE_WITH_ERROR i= supposed to print out an

error message and then terminate the program. But we have not yet

shown how it can do the terminating. It certainly isn't enough to

execute RETURN within TERMINATE_WITH_ERROR's function body -- that

would just cause a return to the calling point. What's needed is a

way to terminate the program from anywhere inside it -- even from

within a function body.

Our need is satisfied by the pre-defined function TERMINATE,

which we have used frequently already. Wherever it is located,

its effect is to end execution of the program immediately.

Now we can write the error-handling function:

177

TERMINATE WITH ERROR:

FUNCTION;

IF COUNT= 0 THEN PRINT ('EXECUTIO~ TERMINATED BY ' I I
'ERROR BEFORE PROCESSING: ', ERROR_MESSAGE);

ELSE PRINT ('EXECUTION TERMINATED BY I I I
'ERROR DURING PROCESSING: ' ERROR_MESSAGE);

TERMINATE;

END TERMINATE_WITH_ERROR;

TERMINATE is best used in functions like this one -- functions that are

called only on an error or other exceptional conditions. If TERMINATE

is used in too many functions, it becomes hard to tell where execution

ends in normal cases, and so some of the clarity that comes from

splitting a program into functions is lost.

Calling a function from within a function

So far all our program-level functions have been executed by calls

from within program-level statements. But calls to program-level

functions may also come from within FUNCTION bodies. In other words,

during the execution of one function, it may call yet a second function;

when this second function ends, it returns control to the point from

which it was called in the first function.

You have already seen some examples of this -- when we call the

pre-defined functions PRINT and READ_LINE from within other functions.

But we can also define our own functions to be called within others.

Consider the problem of defining PROCESS_NEXT_ACCOUNT. It is by far the

longest and most complicated function of the program. To keep it

from getting too long, we can postulate another function -- call it

PROCESS_INPUT_NAME -- to do the processing and checking of NAME. By

calling PROCESS_INPUT_NAME from within PROCESS_NEXT_ACCOUNT, we can keep

the latter's definition to a reasonable size:

178

0

PROCESS NEXT ACCOUNT:

FUNCTION;

READ_LINE (NAME, ACCT NO, OLD_BAL, PAYMENT, PURCHASE);

PROCESS_INPUT_NAME;

IF ERROR THEN RETURN;

IF ACCT NO <= 0 THEN RETURN;

IF ACCT NO > 999 THEN

BEGIN;

ERROR := TRUE;

ERROR MESSAGE.- '~CCOUNT HAS NUMBER >999';

RETURN;

END;

IF OLD BAL = 0 & PAYMENT

BEGIN;

0 & PURCHASE

PRINT (ACCT_NO, NAME);

RETURN;

END;

0 THEN

IF FREE_ACCT_TABLE(ACCT_NO) I PAYMENT >=OLD BAL THEN

BEGIN;

PAST DUE := O;

INTEREST := O;

END;

ELSE

BEGIN;

PAST DUE .- OLD_BAL - PAYMENT;

INTEREST := PAST_DUE * 0.015;

PAST COUNT := PAST COUNT + l;

END;

NEW BAL := OLD BAL - PAYMENT + INTEREST + PURCHASE;

PRINT (ACCT_NO, NAME, OLD_BAL, PAYMENT,

PAST_DUE, INTEREST, PURCHASE, NEW BAL);

END PROCESS_NEXT_ACCOUNT;

Each time PROCESS_NEXT_ACCOUNT is called, its first action is to call

READ_LINE, which reads in the values and returns control to PROCESS_NEXT_

ACCOUNT. The next statement is a call to PROCESS_INPUT_NAME, which does

all the work on NAME. Eventually, PROCESS_INPUT_NAME will also return

control to the point of call, and then the rest of PROCESS NEXT ACCOUNT

will be executed. Of course, now we have to define PROCESS_INPUT_NAME;

179

but that's a simple matter:

PROCESS INPUT NAME: - -
FUNCTION;

FOR FIRST THRO 20 UNTIL NAME(FIRST) - I I REPEAT; END;

IF NAME (FIRST) ' ' THEN RETURN;

FOR LAST FROM 20 BY -1 UNTIL NAME(LAST) - 1
' REPEAT; END;

FOR I FROM FIRST THRU LAST

REPEAT

IF (NAME(I)

NAME(I) -

< 'A' NAME(I) > 'Z') &
I I & NAME(I) -= I I I I THEN

BEGIN;

ERROR : = TRUE;

ERROR MESSAGE := 'INVLAID CHARACTER WITHIN '

11 I A NAME I;

RETURN;

END;

END; # OF REPEAT FOR I #

IF FIRST - 1 THEN

NAME := NAME(LAST - FIRST+ 1 AT FIRST);

END PROCESS_INPUT_NAME;

PROCESS INPUT NAME is ended when control passes in sequence to END, or

when one of the two RETURNS is executed. Whichever way it ends,

PROCESS_INPUT_NAME always returns control to the point of call. Since

it is called from within PROCESS_NEXT_ACCOUNT, it can only return control

to PROCESS NEXT ACCOUNT. There is no way PROCESS_INPUT_NAME can return

control to the program level -- because it is never called from the

program leve 1.

Putting it all together

All the functions we want are now defined. It remains only to

put them all together, to produce a program suitable for submission

to the compile~. We reproduce the entire program below, to give you

a feel for its size and appearance:

180

VARIABLES ACCT_NO, OLD_BAL, PAYMENT, PURCHASE, INTEREST,

PAST_DUE, NEW_BAL, FREE_ACCT, FIRST, I, LAST ARE INTEGER,

COUNT, PAST_COUNT ARE INTEGER::= O;

VARIABLE ERROR_MESSAGE IS STRING(40),

NAME IS STRING(20);

VARIABLE ERROR IS BOOLEAN ::=FALSE,

FREE_ACCT_TABLE IS ARRAY(999) BOOLEAN ::=FALSE;

STORE FREE ACCT_NUMBERS;

FOR COUNT WHILE -ERROR UNTIL ACCT NO <= 0

REPEAT PROCESS_NEXT_ACCOUNT; END;

IF ERROR THEN TERMINATE_WITH_ERROR;

PRINT_STATISTICS;

PRINT STATISTICS:

FUNCTION;

PRINT; PRINT;

PRINT (COUNT I I I ACCOUNTS WERE PROCESSED');

PRINT (PAST_COUNT I I I ACCOUNTS HAD BALANCES PAST DUE');

END PRINT_STATISTICS;

STORE FREE ACCT NUMBERS:

FUNCTION;

READ_LINE (N);

IF N < 0 I N > 999 THEN

BEGIN;

ERROR := TRUE;

ERROR MESSAGE := 'NUMBER OF FREE ACCOUNTS I I I
'NEGATIVE OR >999';

RETURN;

END;

FOR I THRU N
REPEAT

READ_LINE (FREE_ACCT);

IF FREE ACCT < 1 I FREE_ACCT > 999 THEN

BEGIN;

ERROR := TRUE;

181

ERROR MESSAGE := 'FREE ACCOUNT NUMBER IS I I I
'<l OR >999';

RETURN;

END;

FREE ACCT TABLE(FREE ACCT) := TRUE;

END;

END STORE FREE ACCT_NUMBERS;

TERMINATE WITH ERROR:

FUNCTION;

IF COUNT= D THEN PRINT ('EXECUTION TERMINATED BY I I I
'ERROR BEFORE PROCESSSING: ', ERROR_MESSAGE);

ELSE PRINT ('EXECUTION TERMINATED BY I I I
'ERROR DURING PROCESSING: ' ERROR_ MESSAGE) ;

TERMINATE;

END TERMINATE_WITH_ERROR;

PROCESS NEXT ACCOUNT:

FUNCTION;

READ_LINE (NAME, ACCT NO, OLD_BAL, PAYMENT, PURCHASE);

PROCESS_INPUT_NAME;

IF ERROR THEN RETURN;

IF ACCT NO <= 0 THEN RETURN;

IF ACCT NO > 999 THEN

BEGIN;

ERROR := TRUE;

ERROR MESSAGE := 'ACCOUNT HAS NUMBER >999';

RETURN

END;

IF OLD BAL = 0 & PAYMENT = 0 & PURCHASE

BEGIN;

PRINT (ACCT_NO, NAME);

RETURN;

END;

0 THEN

IF FREE ACCT TABLE(ACCT_NO) I PAYMENT>= OLD BAL THEN

BEGIN;

PAST DUE := 0;

INTEREST : = 0;

END;

182

ELSE

BEGIN;

PAST DUE := OLD_BAL - PAYMENT;

INTEREST := PAST_DUE * 0.015;

PAST COUNT := PAST COUNT + l;

END;

NEW BAL := OLD BAL - PAYMENT + INTEREST + PURCHASE;

PRINT (ACCT_NO, NAME, OLD_BAL, PAYMENT,

PAST_DUE, INTEREST, PURCHASE, NEW_BAL);

END PROCESS_NEXT_ACCOUNT;

PROCESS INPUT NAME:

FUNCTION;

FOR FIRST THRU 20 UNTIL NAME(FIRST) -= ' 1 REPEAT; END;

IF NAME(FIRST) = ' ' THEN RETURN;

FOR LAST FROM 20 BY -1 UNTIL NAME(LAST) - ' ' REPEAT; END;

FOR I FROM FIRST THRU LAST

REPEAT

IF (NAME (I) < I A I NAME (I) > I z I) &

NAME (I)

BEGIN;

I I & NAME(!) -= I II I THEN

ERROR := TRUE;

ERROR MESSAGE := 'INVALID CHARACTER WITHIN 1

11 I A NAME';

RETURN;

END;

END: # OF REPEAT FOR I #

IF FIRST -= 1 THEN

NAME := NAME(LAST - FIRST + 1 AT FIRST);

END PROCESS_INPUT_NAME;

It is obvious that our new version is even longer than the old one.

But length is not the main concern; the important factors are ease of

progranuning and debugging, and readability.

We have already demonstrated how programs structured in this

way are somewhat easier to write, once you master the concept

183

of a function. First you write a short, general program-level program,

writing just a function call for each major task. Then you program each

task in detail by writing a FUNCTION definition that does the work.

If a FUNCTION definition (such as FUNCTION_NEXT_ACCOUNT in our example)

is itself fairly complex, you can implement one or more of its

tasks as functions, too. This process can be repeated indefinitely, so

that even in the most complicated program you do not have to write

any single FUNCTION definition of more than about a page in length.

A program structured this way is also easier to read. First

you look at the program level part, to get a general idea of what it

does. Then you can inspect individual function bodies to see how

various tasks are implemented. No individual function body is ever

so long that you cannot keep track of what is going on. The flow of

control is clearly indicated by calls and RETURNs, which are easier

to follow than the EXITS and complicated IFs that would have to be

used otherwise.

Finally, it is easier to debug or otherwise modify a program

structured into FUNCTIONs. If you take care that the tasks per

formed by individual functions are independent of each other, then

you can often modify a single function without changes to any of

the rest of the program. For instance, if customer names were being

read in incorrectly, or if the format for input names were changed,

you could probably rewrite parts of PROCESS_INPUT_NAME without changes

to any of the rest of the program. You could even change the error

messages without altering TERMINATE_WITH_ERROR, so long as you do not

change the way ERROR and ERROR_MESSAGE are set.

Structuring a program in this way also sometimes makes it

easier to catch unanticipated errors which are detected at execution

time -- such as wrongly formatted input, array subscripts out of bounds,

and the like. The error message that results always indicates which

function was being executed when the error occurred. In a large program,

that may make the error easier to track down.

184

17.0

ARGUMENTS TO FUNCTIONS

In the last chapter we mentioned that common pre-defined functions

like SUM and PRINT take arguments in their function calls:

SUM (WEIGHT(N AT 1) * DISTANCE(N AT l));

PRINT (ACCT_NO, NAME);

The actions these functions perform depend in part on the values of the

arguments they are called with.

Programmer-defined functions may also take and use arguments.

This chapter is in introduction to how such FUNCTIONS are written, and

how arguments are used in function calls.

Passing argument values

Functions with arguments are fairly easy to define and call, once

you understand the principles behind them. In particular, you need to

know why arguments are needed, and how they are used. To get at the

answers we must discuss a concept that we brought up at the end of the

last chapter: the independence of functions. One of the advantages of

dividing a program into FUNCTIONs1 we said, ~omes from giving each

function a different, independent task to perform. Then corrections or

changes can often be made to one FUNCTION without necessitating changes

in other functions. As a result, there is less chance of introducing new

mistakes in the program each time you make changes.

Notice that we have said only that changes can "often" be made

independently in a FUNCTION. Actually, the simple functions we

introduced in the last chapter cannot easily be kept independent. In

large part, the problem is due to the way variable and constant names are

declared: they are all declared at program level, and many are shared

between functions.

185

We can demonstrate the problem with an example. Look again at

the definition of TERMINATE WITH ERROR from the last chapter:

TERMINATE WITH ERROR:

FUNCTION;

IF COUNT = 0 THEN PRINT ('EXECUTION TERMINATED BY I I I
'ERROR BEFORE PROCESSING: ', ERROR_MESSAGE};

ELSE PRINT ('EXECUTION TERMINATED BY I I I
'ERROR DURING PROCESSING: ' ERROR_MESSAGE};

TERMINATE;

END TERMINATE_WITH_ERROR;

This function only works properly if a STRING variable named ERROR MESSAGE

is declared at program level, and if other functions in the program

properly assign to ERROR MESSAGE the proper error-message strings.

Conceivably, we could decide to make some changes involving ERROR_MESSAGE,

such as

1)

2)

declaring a variable with a different name -- ERROR_STRING,

maybe -- in its place; or

declaring it as an ARRAY(4} STRING(40}, each element of which

is initialized to a different error message; then printing

out the appropriate element of the array when an error is

found.

Either of these changes would require corrections to TERMINATE WITH ERROR

to keep it working correctly.

We can reason similarly with regard to the variable COUNT.

If the program logic were changed so that COUNT would be -1 before

processing began, and 0 or greater during processing, then the old

TERMINATE WITH ERROR would no longer work correctly.

We can restate the trouble we are running up against in a more

revealing way. In order to operate, TERMINATE WITH ERROR needs two essential

186

pieces of information: whether or not the error occurred before account

processing began, and what the error-message string is. The function gets

this information by sharing the variables COUNT and ERROR MESSAGE with other

functions and with the program-level program. If changes are made to the

shared variables elsewhere in the program, then changes will probably

have to be made to TERMINATE_WITH_ERROR, too.

Functions with arguments are a solution to this problem. Arguments

ar~ an alternative way of passing data to a function -- a way that does not

require name-sharing. When you make a function call like

SUM (WEIGHT(N AT 1) * DISTANCE(N AT 1))

the body of SUM does not have to use the names WEIGHT, DISTANCE, and N.

Instead, the value of the argument:

WEIGHT(N AT 1) * DISTANCE(N AT 1)

is assigned to a special kind of variable called a parameter. The para

meter is a variable that belongs to SUM; it cannot be referred to anywhere

in the program outside of SUM's FUNCTION body. In its body, SUM adds

together all the elements of the parameter variable. This computation is

entirely unaffected by any changes that are made in the declarations of

WEIGHT, DISTANCE or N -- and in fact, we made quite a few such changes

in writing the center-of-gravity program. No matter how the argument to

SUM is changed, its value is always assigned to the parameter variable;

and since the parameter is not affected by changes to the rest of the

program, it can always be manipulated by SUM in exactly the same way.

This is the theory behind function arguments. As with other

theories, it becomes clearer in practice; so we will move on now to some

examples.

A one-argument function

Let us rewrite the function TERMINATE_WITH_ERROR, so that it gets

the error-message value by argument passage instead of by referring to the

name ERROR MESSAGE.

The first step is to declare a parameter of mode

STRING(40). The declaration is placed in parentheses within the FUNCTION

heading:

187

TERMINATE WITH ERROR: - -
FUNCTION (MESSAGE_OUTPUT IS STRING(40));

Here MESSAGE_OUTPUT is defined as the parameter for TERMINATE_WITH ERROR.

When the function is called, the value of its argument is assigned to

MESSAGE OUTPUT. In the present case, the argument is always a STRING(40)

containing an error message; so MESSAGE OUTPUT is also declared as
a STRING(40).

In the body of the function, there is just one change. It is

now the parameter, MESSAGE_OUTPUT, that gets printed out, instead of the

program-level variable ERROR_MESSAGE. The new FUNCTION definition in

its entirety is therefore as follows:

statement

TERMINATE WITH ERROR:

FUNCTION (MESSAGE_OUTPUT IS STRING(40));

IF COUNT= 0 THEN PRINT ('EXECUTION TERMINATED BY I I I
'ERROR BEFORE PROCESSING: ', ERROR_MESSAGE);

ELSE PRINT ('EXECUTION ~~RMINATED BY I I I
'ERROR DURING PROCESSING: ', ERROR_MESSAGE);

TERMINATE;

END TERMINATE_WITH_ERROR;

How is this new function called? Instead of the program-level

IF ERROR THEN TERMINATE_WITH_ERROR;

which calls the function with no arguments, it is now necessary to write

IF ERROR THEN TERMINATE WITH ERROR (ERROR_MESSAGE);

Now, if ERROR is TRUE, the function call

TERMINATE_WITH_ERROR (ERROR_MESSAGE)

is executed. The first action performed by the call is argument passage:

188

the value of the argument (ERROR_MESSAGE) is assigned to the parameter

variable (MESSAGE_OUTPUT). After this assignment is made, the function

body is executed, and MESSAGE_OUTPUT gets printed out by one or the

other PRINT statement. Since MESSAGE_OUTPUT has been assigned the value

of the argument, ERROR_MESSAGE, it is actually the value of ERROR MESSAGE

that ends up being printed out.

Since MESSAGE OUTPUT is a parameter, it may not be used

in the billing program outside of the FUNCTION definition for

TERMINATE WITH ERROR. So changes in the rest of the program .. cannot directly

affect the parameter, or the way it is used in the function body.

What about the changes to ERROR MESSAGE that we hypothesized a

few sections back? They can be taken care of by just changing the a~gument

to the function call. lr ~RROR STRING is used instead of ERROR_MESSAGE,

then the program-level state~ent is just changed to read:

IF ERROR THEN TERMINATE_WITH_ERROR (ERROR_STRING);

If ERROR MESSAGE is made an ARRAY(4) STRING(40), and ERROR NO is a value

from 1 to 4 that tells which element to print out, then the proper

statement is:

IF ERROR THEN TERMINATE WITH ERROR (ERROR_MESSAGE(ERROR_NO));

If ERROR MESSAGE is changed to a STRING(35), one can use:

IF ERROR THEN TERMINATE_WITH_ERROR (ERROR_MESSAGE I I I ');

In each case, the argument value is a STRING(40), and is assigned to the

parameter; there is no need to change the declaration of the parameter,

or to change the way it is used in the function body.

One other alternative is worth mentioning. It is possible to

eliminate the BOOLEAN variable ERROR from the billing program entirely,

so that instead of setting

ERROR := TRUE;

when an error occurs, one can execute TERMINATE WITH ERROR directly.

189

Here is how such a change would be made to STORE FREE ACCT NUMBERS:

STORE FREE ACCT NUMBERS:

FUNCTION;

READ LINE (N) ;

IF N < 0 I N > 999 THEN

TERMINATE WITH ERROR ('NUMBER OF FREE ACCOUNTS I I I
'NEGATIVE OR >999');

FOR I THRU N

REPEAT

READ LINE (FREE_ACCT);

IF FREE_ACCT < 1 I FREE_ACCT > 999 THEN

TERMINATE WITH.ERROR ('FREE ACCOUNT NUMBER IS I I I
'<l OR >999 I) i

FREE_ACCT_TABLE(FREE_ACCT) := TRUE;

END;

END STORE_FREE_ACCT_NUMBERS;

Similar changes would have to be made to handle errors in PROCESS NEXT ACCOUNT

and PROCESS_INPUT_NAME. Note that, when TERMINATE WITH ERROR is called

directly, the STRING-literals for the messages can themselves be used as

arguments; the variable ERROR_MESSAGE is not needed at all. MESSAGE OUTPUT

still serves as the function's parameter, of course, and is unaffected

by these changes.

Functions with more than one argument

Functions are not limited to one parameter (and thus one argument) .

A FUNCTION heading may contain a list of any number of parameter

declarations, separated by commas. Thus several arguments of different

modes may be passed to a function when it is called.

As an example, we can eliminate the use of the shared variable

COUNT in TERMINATE_WITH_ERROR, by declaring a second parameter of mode

BOOLEAN:

190

TERMINATE WITH ERROR: - -
FUNCTION (MESSAGE_OUTPUT IS STRING(40),

PROCESSING IS BOOLEAN) ;

IF -PROCESSING THEN

PRINT ("EXECUTTON TERMINATED BY ' I I
'ERROR BEFORE PROCESSING: I I MESSAGE_OUTPUT);

ELSE

PRINT ('EXECUTION TERMINATED BY II 11

'ERROR DURING PROCESSING: I MESSAGE_OUTPUT);

TERMINATE;

END TERMINATE_WITH_ERROR;

If FALSE is passed to the parameter PROCESSING, the function assumes the

error occurred before processing; if TRUE is passed, it assumed the error

was during processing.

In the structured billing prograrLi as it was written in the last

chapter, this function would be called by the program-level statement:

IF ERROR THEN

TERMINATE WITH_ERROR (ERROR_MESSAGE, COUNT > 0);

If the logic of the program were modified, so that COUNT was negative before

processing, and non-negative during, this statement would just have to be

changed to

IF ERROR THEN

TERMINATE WITH ERROR (ERROR_MESSAGE, COUNT >= 0);

Finally, if we wanted to call the function directly on finding an error

as we proposed in the last section the BOOLEAN argument could be a
literal. For instance, this would be the first error test in

STORE FREE ACCT NUMBERS:

IF N < 0 I N > 999 THEN

TERMINATE WITH ERROR ('NUMBER OF FREE ACCOUNTS I I I
'NEGATIVE OR 999', FALSE);

The second argument here is FALSE, because in STORE FREE ACCT NUMBERS

processing has not yet begun.

191

Rules for argument passaqe

Any number of parameters, we have said, may be declared in a

function heading, and they may be declared of any mode. Several para

meters of the same mode may be declared together with ARE:

ABC:

FUNCTION (A, B, CARE INTEGER);

This is equivalent to declaring the same three in the same order

separately:

ABC:

FUNCTION (A IS INTEGER, BIS INTEGER, C IS INTEGER);

When a function call with arguments is executed, the first

value in the argument list is assigned to the first parameter in the

declaration list, the second argument is passed to the second parameter,

and so on. The number of argument values in the call must equal the

number of parameters in the function definition. If a call has the wrong

number of arguments, the compiler rejects it, and the program cannot

be run.

An argument value must have the same mode as the parameter

it is assigned to, unless the parameter specification allows more tol

erance. (That subject is not covered in this volume of the Primer.)

If a function has arrayed parameters of a given size, such as

CENTER:

FUNCTION (WEIGHT, DISTANCE ARE ARRAY(S) REAL);

then the arguments must have the same arrayness as the parameters. The

arguments to CENTER must be ARRAY(S) REAL; they may not be ARRAY(lO) REAL,

or ARRAY(S,3) REAL, or just REAL. The same restrictions apply for

STRING-mode parameters, In the TERMINATE WITH ERROR example:

192

TERMINATE WITH ERROR: - -
FUNCTION (MESSAGE_OUTPUT IS STRING(40},

PROCESSING IS BOOLEAN);

the first argument must be a STRING(40); it may not be a STRING(35) or

STRING(45).

Parameters may generally be used in a function body in all

ways other variables may. However, there is an important restriction

on the type of parameters we are using in this chapter: they may not

be assigned values within the function body. Tn other words, our

parameters may not appear on the left-hand side of an assignment

operator, or as arguments to READ LINE. The same restrictions apply to

subscripted array and STRING parameters. Ways do exist to declare

parameters so that these restriction are lifted; the next chapter will

demonstrate how.

Array parameters changeable size

Some properties of parameters differ from those of program

level variables. The most important difference is the one you already

know: parameters can be used only in the function where they are

defined. Another difference concerns array parameters. Program-level

arrays must be declared of some fixed size and rank; thus they have the

same arrayness throughout a program. Parameter arrays may be declared

with a variable size in one or more dimensions. As a result the size

of a parameter array may vary from call to call.

Variable-sized parameters prove useful in numerous applications.

As an example, we can re-structure the center-of-gravity program of

Chapters 10 and 11, using FUNCTIONs. This program accepts input data

for N weights, where N can range from 1 to 25. The program-level

part of the program could look like this:

193

VARIABLES WT, DIS ARE ARRAY(25) REAL,

CENTER IS REAL,

N IS INTEGER; -

REPEAT

READ_LINE (N);

IF N = 0 THEN TERMINATE;

IF N < 0 I N > 25 THEN

BEGIN;

PRINT ('*****ERROR: NUMBER of WEIGHTS IS ' I I
I NEGATIVE OR > 25 I) i

TERMINATE;

END;

READ_LINE (WT(N AT 1), DIS(N AT l));

FIND_CENTER_OF_GRAVITY (WT(N AT 1), DIS(N AT 1));

PRINT (WT(N AT 1), DIS(N AT 1), CENTER);

END;

We have left only one function, FIND_CENTER_OF_GRAVITY, to be defined; it

needs two array parameters. But notice that the arguments to
FIND_CENTER_OF_GRAVITY may range from ARRAY(l) REAL to ARRAY(25) REAL,

depending on the last input value of N. So if the function were defined

with parameters of fixed size, the program would not work: arguments of

any other size would be errors.

The solution is to declare the parameters as ARRAY(N) REAL, so

that FIND CENTER OF GRAVITY is defined as follows:

FIND CENTER OF GRAVITY: - -
FUNCTION (WEIGHT, DISTANCE ARE ARRAY(N) REAL);

IF SUM (WEIGHT) = 0 THEN

BEGIN;

PRINT ('*****ERROR: WEIGHT SUM 0');

TERMINATE;

END;

CENTER := SUM (WEIGHT * DISTANCE) / SUM (WEIGHT) ;

END FIND_CENTER_OF_GRAVITY;

194

Each time this function is called, WEIGHT and DISTANCE are made arrays

of size N. If N varies from call to call, so does the size of the

parameters. However, during execution of FIND_CENTER_OF_GRAVITY, the

size of WEIGHT and DISTANCE is fixed. It cannot be changed, even if the

function changes N.

There is a way to restate the rules for program-level and parameter

array sizes, so that they are fairly analogous. Program-level arrays have

their size fixed, or resolved, when the program's execution begins; their

size cannot be changed thereafter. Parameter arrays have their size

resolved each time the function that defines them is called; their

size cannot be changed while the function is being executed. (The rank

of any array variable, by the way, is fixed through the program.)

The concept of varying-size parameters can of course be ex

tended to arrays of size 2 or greater. Here is an example: a version

of the 3-dimensional center-of-gravity program of Chapter 13. Re

structured using a function with varying-size parameters, the program

can take from 1 to 25 weights:

VARIABLE WT IS ARRAY(25) REAL,

DIS IS ARRAY(25,3) REAL,

WEIGHT_SUM, PRODUCT_SUM, CENTER ARE REAL,

I, N ARE INTEGER;

REPEAT

READ_LINE (N);

IF N 0 THEN TERMINATE;

IF N < 0 N > 25 THEN

BEGIN;

PRINT ('*****ERROR: NUMBER OF WEIGHTS IS I I I
'NEGATIVE OR 25');

TERMINATE;

END;

READ LINE (WT(N AT 1), DIS(N AT l));

FIND_CENTER_OF_GRAVITY (WT(N AT 1), DIS(N AT 1));

PRINT (WT(N AT 1), DIS(N AT 1), CENTER);

END;

195

FIND CENTER OF GRAVITY:

FUNCTION (WEIGHT IS ARRAY(N) REAL,

DISTANCE IS ARRAY(N,3) REAL);

WEIGHT_SUM := 0;

PRODUCT SUM := O;

FOR I THRU N

REPEAT

WEIGHT SUM :=WEIGHT SUM+ WEIGHT(I);

PRODUCT SUM :=

PRODUCT SUM+ WEIGHT(I) * DISTANCE(!);

END;

IF WEIGHT SUM 0 THEN

BEGIN;

PRINT ('*****ERROR: WEIGHT SUM O');

TERMINATE;

END;

CENTER := PRODUCT_SUM / WEIGHT_SUM;

END FIND_CENTER_OF_GRAVITY;

Another application would be in our temperature-grid program, if the size

of the grid could vary in one or both dimensions.

Automatic resolution of parameter size

There is an unfortunate drawback to the programs of the previous

section. The program-level variable N is used to resolve the sizes of the

array paramters. N is thus a shared variable -- exactly what parameters

are supposed to eliminate. Worse yet, there is no way that N can be

passed as an argument of a function such as FIND CENTER OF GRAVITY.

Let's see why. Suppose we try to make N one of the arguments to

the function:

FIND_CENTER_OF_GRAVITY (WT(N AT 1) l DIS(N AT 1), N);

Then we have to add an INTEGER parameter, call it SIZE, to the function

heading:

196

FIND CENTER OF GRAVITY: - - -
FUNCTION (WEIGHT IS ARRAY(SIZE) REAL,

DISTANCE IS ARRAY(SIZE) REAL, SIZE IS INTEGER);
J

In order for this to work, a call to FIND CENTER OF GRAVITY would have to

proceed in the following manner: (1) the value of N is passed to SIZE;

(2) the value of SIZE is used to resolve the sizes of WEIGHT and DISTANCE;

(3) values are passed to WEIGHT and DISTANCE. But the compiler does not

work this way. It does all the necessary size resolution before any argu

ment passage. Thus SIZE has not yet been assigned a value when the sizes

of WEIGHT and DISTANCE are to be resolved, and the above heading is in

error.

One way to circumvent these problems is to use automatic size reso

lution. This feature permits you to say that·the size of an array para

meter is to be set automatically to the size of the argument that is passed.

Automatic resolution is indicated by writing a * instead of a dimension

size in the array parameter declaration:

FIND CENTER OF GRAVITY:

FUNCTION (WEIGHT, DISTANCE ARE ARRAY(*) REAL);

This heading says that WEIGHT and DISTANCE are !-dimensional arrays, and

that when the function is called they will take their sizes from those

of the corresponding arguments. If we add the same body as before,

FIND CENTER OF GRAVITY will do exactly the same calculations, but with

no reference to the name N.

Multi-dimensional array parameters may have one or more dimension

sizes resolved automatically. For instance, in the three-dimensional

center-of-gravity program, FIND_CENTER_OF_GRAVITY can be defined with:

FIND CENTER OF GRAVITY:

FUNCTION (WEIGHT IS ARRAY(*) REAL,

DISTANCE IS ARRAY(*,3) REAL);

This says that DISTANCE will take its first-dimension size from the corres

ponding argument; but the argument's second-dimension size must be 3. On

the other hand,

197

FIND CENTER OF GRAVITY: - - -
FUNCTION (WEIGHT IS ARRAY(*) REAL,

DISTANCE IS ARRAY(*,*) REAL);

says that both of DISTANCE's dimension sizes will be taken from the argu

ment. You might want to try using this heading in a program that handles

a variable number of weights in a space of a variable number of dimensions.

The pre-defined function SIZE

It is sometimes necessary to refer to the size of an array parameter

within the function body. This was done in the 3-dimensional

FIND_CENTER_OF_GRAVITY, in the statement:

FOR I THRU N REPEAT END;

where N was the first-dimension size of WEIGHT and DISTANCE. It would be

better not to use N, however, since it is a program-level variable,

One alternative is to use the pre-defi:ned function SIZE. It takes

one or two arguments. The first (or only) argument is an array of any

element-mode; SIZE calculates the size of one of its dimensions. The

second argument is an INTEGER that tells which dimension's size is returned.

If there is no second argument, SIZE returns the size of the first dimen

sion. Thus in FIND CENTER OF GRAVITY we could write

FOR I THRU SIZE {DISTANCE, 1) ...

or

FOR I THRU SIZE {DISTANCE)

instead of using N.

SIZE is also valuable for checking parameters which are size-resolved

automatically. For instance, FIND_CENTER_OF_GRAVITY requires that the number

of weight values be equal to the number of distance values. But the heading:

FIND CENTER OF GRAVITY:

FUNCTION {WEIGHT IS ARRAY{*) REAL,

DISTANCE IS ARRAY{*,3) REAL);

198

imposes no such restriction. It accepts any first-dimension sizes for

WEIGHT and DISTANCE. So we ought to write an extra test in the function

body:

IF SIZE (WEIGHT) ~= SIZE (DISTANCE) THEN

BEGIN;

PRINT (*****ERROR: 'NUMBER OF WEIGHTS DOES NOT I I I
'EQUAL NUMBER OF DISTANCES,,) ;

TERMINATE;

END;

which catches the error when the parameter sizes do not match. Of course,

this can only happen when the argument sizes are incorrect -- when there

is some sort of error in writing the function call.

STRING parameters of unresolved length

Since STRING values are basically arrays of characters,

STRING parameters of unresolved length may be produced by the same

means used for arrays of unresolved size. An expression containing

a variable may be used instead of an INTEGER-literal to specify the

string's length. Or a* may be written instead of a length, to

indicate automatic length resolution.

One application of this would be to write the function

TERMINATE WITH ERROR as:

TERMINATE WITH ERROR:

FUNCTION (MESSAGE_OUTPUT IS STRING(*));

This eliminates the need to make every error message come out exactly

40 characters long, and so does away with bugs that result from careless

slips in counting.

A pre-defined function LENGTH performs the same service for

strings that SIZE does for arrays declared with ARRAY. LENGTH takes

a single STRING-mode argument, and returns the length of the argument.

199

18.0

PARAMETER BINDINGS

All the parameters we showed how to declare in the last

chapter have the same basic properties. They are passed an argument

value each time their function is called, and, because no new value

can be assigned to them, they ke.ep that value throughout the execution

of the function.

In many applications it is desirable to declare parameters

with different or additional properties. Sometimes one wishes not

to send a value ~ a parameter, but to have that parameter pass a

value back to the argument when the function returns. Sometimes one

wishes to pass a value to a parameter, then have the function modify

that value, and finally have the new value returned. To meet these

various requirements, CS-4 provides a means of declaring different types

of parameters (or, more exactly, different types of parameter "binding"

ways of binding parameters to their arguments) . This chapter shows how

parameter bindings are indicated in a declaration, and explains the

meanings of three types in addition to the one you already know.

INPUT parameter binding

Each type of parameter in CS-4 has a name. The parameters we

declared in the preceding chapter are called INPUT parameters. We

have not had to mention this fact before now, because when .!!£ type

of binding is specified in a parameter declaration the compiler

assumes an INPUT binding is intended. (INPUT is thus said to be the

default parameter binding.)

How is a parameter binding indicated explicitly? By placing

the parameter-binding name after the mode name in the parameter's
declaration. For example:

TERMINATE WITH ERROR: - -
FUNCTION (MESSAGE_OUTPUT IS STRING(40) INPUT,

PROCESSING IS BOOLEAN INPUT);

200

Here MESSAGE_OUTPUT and PROCESSING are explicitly declared to be INPUT

parameters. Including the name INPUT here is optional, of course -

because INPUT is the default binding. To use other types, however,

you ~ name them in the declaration.

INOUT parameter binding

We have seen that INPUT binding allows data to pass into a

function. Sometimes, however, we need a parameter which also permits

the function to assign new values to the parameter variables and which

will pass the new values back to the argument variables when the function

returns. The INOUT binding is for use in this situation. Consider, for

example, the PROCESS_INPUT_NAME function from the billing program. This

function moves the leading blank characters in NAME to the other end

of the string. If the function is re-written so that the value of

NAME is assigned to an INOUT parameter, the function can have the added

feature of being able to accept strings of any length. The original

value of NAME will be passed to the function's parameter variable, the

function will make the modification to that variable, and the new

value will be passed back to NAME when the function returns. The

PROCESS_INPUT_NAME function, using INOUT parameter binding, may be

written like this:

PROCESS INPUT NAME: - -
FUNCTION (STR IS STRING(*) INOUT);

FOR FIRST THRU SIZE (STR) UNTIL STR(FIRST) .-= ' ';

REPEAT; END;

IF STR(FIRST) ' ' THm; RETURN ;

FOR LAST FROM SIZE (STR) UNTIL STR(FIRST) ~= ' ';
REPEAT; END;

STR := STR(LAST - FIRST+ 1 AT FIRST);

END PROCESS_INPUT_NAME;

The function may be invoked by the call

PROCESS_INPUT_NAME (NAME);

and the value of NAME after control returns from PROCESS INPUT NAME

will be the new value of STR. The INPUT binding could not have been

201

used here, because INPUT does not allow values of parameters to be

changed within the function.

OUTPUT parameter binding

OUTPUT parameter binding, as you might guess from the name,

is used in situations in which the function makes no use of the value

passed to the parameter in the call, but does assign to it a new value

to be passed back when the function returns.

One application of OUTPUT binding could be in a function

named GET_NEW_ACCT_NO, to be invoked when the account being processed

is a new one that does not already have an account number assigned

to it. ACCT NO could be the argument of the call to the function:

GET NEW ACCT NO (ACCT_NO);

and the purpose of the function will be to pass back to ACCT NO a

number which is not already assigned to someone else's account.

The details of how the function body comes up with the new

account number need not concern us here. Perhaps the program could keep

a list of obsolete or unused account numbers, and the function could

remove one of the numbers from the list and assign it to the new

customer's ACCT NO. Or, perhaps, the function could designate for

the new customer an ACCT_NO one higher than the highest account number

already in use.- In any case, the heading and end statement of

GET NEW ACCT NO could look like this:

GET NEW ACCT NO:

FUNCTION (NEW ACCT NO IS INTEGER OUTPUT) ;

END GET NEW_ACCT_NO;

One way to indicate that a customer needs a new account

number is to place in the input data a "durmny" account number of zero

along with every new customer's name. That value of zero can be

used to signal that the GET NEW ACCT NO function is to be called:

IF ACCT NO 0 THEN GET NEW ACCT NO (ACCT_NO};

202

When GET_NEW_ACCT_NO is called, the value of ACCT_NO that is passed

to the NEW_ACCT_NO parameter is lost. GET_NEW_ACCT_NO assigns an

appropriate integer value to NEW_ACCT_NO. When the function

returns, that value is passed back to ACCT_NO, and is the new customer's

account number. We are able to use OUTPUT as the parameter binding

here, because the function makes no use of the old value of ACCT NO.

A restriction on arguments sent to INOUT and OUTPUT parameters

INOUT and OUTPUT parameters are sucject to an important

restriction which does not apply to INPUT ones. Art INOUT or OUTPUT

parameter may not be passed an argument which is a literal, a CONSTANT

name, or an expression using any of the operators we have defined so

far. None of these objects can legally be assigned a value, so there is

no way to pass a value back to them.

Variables (including subscripted variables) ~ be used as

arguments to INOUT and OUTPUT parameters. (This is nothing but a

generalization of the rules we gave for READ_LINE, a function that

happens to pass values back to all its arguments.)

In other respects, INOUT and OUTPUT parameters come under the

same rules as INPUT ones. They may not be referred to outside of the

function where they are declared. If they are arrays or strings, they

may have unresolved size (length), or may be subject to automatic size

(length) resolution.

If a function has more than one parameter, it is permissible

to give each a different binding. For instance, in

STORE FREE ACCT NUMBERS:

FUNCTION (NUMBER_OF_INPUTS IS INTEGER,

TABLE IS ARRAY(*) BOOLEAN OUTPUT);

NUMBER OF INPUTS is an INPUT parameter (by default), while TABLE is an

OUTPUT parameter whose size is automatically resolved. A function

with this heading might be called from the billing program with:

READ LINE (N);

STORE FREE ACCT NUMBERS (N, FREE_ACCT_TABLE);

203

COPYIN parameters

Occasionally it is useful to be amle to modify the value of

a parameter that is only used for passing data into a function. Such

a parameter may be declared with a parameter type named COPYIN.

As its name implies, the argument value passed to a COPYIN

parameter is "copied" into a separate storage space. Subsequent

changes (such as assignments) to the parameter change just this copy;

they do not change the argument's value. INPUT parameters, by contrast,

are not always passed a copy. Instead, in some cases, they share

storage space with their arguments. Because it is impossible for a

programmer to tell when an INPUT parameter is passed a copy and when

it is not, assignments to INPUT parameters are forbidden entirely.

In other respects, the properties of COPYIN and INPUT

parameters are identical. In particular, the argument to a COPYIN

parameter may be any sort of expression, not just a variable.

Advanced topics

In addition to the four parameter bindings explained in this

chapter, CS-4 has five others, which give the programmer explicit

control over whether the function "copies" the argument values into

separate storage. How to use those bindings is explained in the

Language Reference Manual.

Some of the pre-defined functions can do more with their

arguments than any of the functions we have shown how to define.

PRINT, for instance, can take a varying number of arguments. It is

possible to define your own functions that do this, as well as perform

different actions depending on whether certain arguments are of certain

modes. But to define those kinds of functions, you need to use forms

other than the ones we have been describing. These forms are described

in the Primer's second volume, and in the Language Reference Manual.

204

19.0

RETURN VALUES OF FUNCTIONS

A function has several means of making its internal data

values it has calculated, or values it has read in -- available to

the rest of the program. Two of these you have already learned to

use. The values can be assigned to program-level variables, or they

can be assigned to INOUT or OUTPUT parameters.

There is a third method, which you have only seen so far in pre

defined functions. A function may have a return value -- a value which

is assigned to the function call itself. The call of such a function

can be used in expressions to represent the return value, just like a

variable, constant, or literal is used to represent a value:

IF ANY (DISTANCE < -5) I ANY (DISTANCE > 5) THEN RETURN;

FOR I THRU SIZE (DISTANCE, 1) REPEAT •.. END;

PRODUCT SUM:= SUM (WEIGHT(N AT 1) * DISTANCE(N AT l));

This chapter explains how functions are defined to have return values,

and how they determine what value is to be returned.

Why return values?

Any piece of data that can be a return value of a function can

also be passed out by assigning it to an INOUT or OUTPUT parameter. Thus the

concept of return values doesn't add much to the power of CS-4 functions.

What it does improve is the clarity of certain function calls, and

hence the ease with which a program can be written and read.

What sort of function lends itself to using a return value?

Usually it is one whose task is to take one or more arguments, and to

compute a single result. SUM, for instance, takes an array and com

putes the sum of its elements. SIZE takes an array, and an INTEGER; it

interprets the latter to refer to a particular dimension of the former,

and produces another INTEGER equal to the size of that dimension.

205

If you're familiar with algebra, you can look at the matter

from another point of view. A "function" in algebra is a method

of taking any value or combination of values within a certain domain,

and producing a unique result value. The notation for such

"functions":

f (a)

sin (x +'y)

g (x,y,z)

is a lot like the CS-4 notation. Each expression like f (a) repre

sents a calculated value, which may be subject to operations like

addition and multiplication:

So these "functions" are indeed used very much like CS-4 functions

that have return values. We can turn the analogy around and say that

CS-4 functions most apt to have return values are ones which calcu

late a value which is some unique "function" of their arguments.

(But whereas algebraic "functions" are defined by English and

traditional mathematical notation, CS-4 functions are defined by

statements of cs-4.)

Of the functions we have been using as examples, there are a

few that could be usefully defined to have a return value.

FIND_CENTER_OF_GRAVITY, for instance, calculates the center of

gravity's position from the values of two array arguments (weights

and distances). PROCESS_INPUT_NAME, from the billing program, pro

duces a unique reformatted string for each string passed to it in

the variable NAME.

On the other hand, any function tha·L returns more than one value

is better written with OUTPUT or INOUT parameters.

There are exceptions to these guidelines, of course, but

they're a good start in deciding where to make use of what you

learn in this chapter.

206

Defining a function to have a return value

Our first example uses the center-of-gravity problem. Pre

viously we defined a function FIND_CENTER_OF_GRAVITY, which computed

the position of the center from the parameters WEIGHT and DISTANCE.

The computed value was passed back to program level by assigning

it to a program-level variable, CENTER. The entire program, including

the function definition, looked like this:

VARIABLES WT, DIS ARE ARRAY{25) REAL,

CENTER IS REAL,

N IS INTEGER;

REPEAT

READ_LINE {N);

IF N = 0 THEN TERMINATE;
IF N < 0 I N > 25 THEN

BEGIN;

PRINT (I *****ERROR: NUMBER OF WEIGHTS IS I 11

'NEGATIVE OR> 25');

TERMINATE;

END;

READ LINE {WT(N AT 1), DIS{N AT 1));

FIND_CENTER_OF_GRAVITY (WT{N AT 1), DIS(N AT l));

PRINT (WT(N AT 1), DIS(N AT 1), CENTER);

END;

FIND CENTER OF GRAVITY:

FUNCTION {WEIGHT, DISTANCE ARE ARRAY(*) REAL);

IF SUM (WEIGHT) = 0 THEN

BEGIN;

PRINT ('*****ERROR: WEIGHT SUM 0');

TERMINATE;

END;

CENTER:= SUM (WEIGHT* DISTANCE) /SUM (WEIGHT);

END FIND_CENTER_OF_GRAVITY;

We want to replace the function in this program with a revised

one, call it GRAVITY_CENTER, which passes back the position of the

center as a return value. Then we can replace the call to

FIND CENTER OF GRAVITY at program level with

207

CENTER:= GRAVITY_CENTER (WT(N AT 1), DIS(N AT l));

Alternatively, we could eliminate CENTER entirely, by placing the call

in the PRINT statement:

PRINT (WT(N AT 1), DIS(N AT 1),

GRAVITY_CENTER (WT(N AT 1), DIS(N AT 1)));

(Notice that here the call to GRAVITY_CENTER is itself an argument to

the function PRINT; the value returned by the former function is

passed directly to the latter.)

Specifying a return mode

Every function which returns a value must specify a return mode

in its heading. This is done by placing a mode name after the para

meter declarations. For instance:

GRAVITY CENTER:

FUNCTION (WEIGHT, DISTANCE ARE ARRAY(*) REAL) REAL;

Here we indicate that GRAVITY CENTER returns a REAL value.

Any mode may be returned by a function. Thus the return mode

may be an array:

GRAVITY CENTER 3:

FUNCTION (WEIGHT IS ARRAY(*) REAL,

DISTANCE IS ARRAY(*,3) REAL) ARRAY(3) REAL;

or a string:

PROCESS INPUT NAME:

FUNCTION (INPUT IS STRING(40)) STRING(40);

If a function has no parameters, the return mode comes directly after

the word FUNCTION:

RANDOM:

FUNCTION REAL;

208

Indicating the return value

A function that returns a value has to indicate explicitly what

value is returned. This is done by using a form of the RETURN state

ment. The returned value is indicated by an expression which follows

the word RETURN:

RETURN SUM (WEIGHT* DISTANCE) /SUM (WEIGHT);

This is the RETURN statement for the function GRAVITY CENTER. Like

the simple RETURNs we used before, it causes control to be passed

back to the point of call. But before it does so, the expression

SUM (WEIGHT * DISTANCE) / SUM (WEIGHT)

is evaluated. When control is returned, its value is passed back as

the return value.

If a function is defined with a return mode, it may return control

only by using a RETURN statement with a return-value expression.

A simple RETURN (without an expression) is illegal, as is an implied

return which occurs when control passes in sequence to the END of the

FUNCTION body. Furthermore, the expression in the RETURN must be

either of the return mode, or of a mode convertible to the return mode.

A function that is defined to return a REAL, for instance, may not

contain a RETURN statement that specifies a BOOLEAN return value.

We have now covered enough to be able to revise the center-of

gravi ty program in the desired manner. This is the result:

VARIABLES WT, DIS ARE ARRAY(25) REAL,

N IS INTEGER;

REPEAT

READ LINE (N);

IF N 0 THEN TERMINATE;

IF N < 0 I N > 25 THEN

BEGIN;

PRINT ('*****ERROR: NUMBER OF WEIGHTS IS I I I
'NEGATIVE OR >25 1);

TERMINATE;

END;

209

READ_LINE (WT(N AT 1), DIS(N AT l));

PRINT (WT(N AT 1), DIS(N AT 1),

GRAVITY CENTER (WT(N AT 1), DIS(N AT l)));

END;

GRAVITY CENTER:

FUNCTION (WEIGHT, DISTANCE ARE ARRAY(*) REAL) REAL;

IF SUM (WEIGHT) = 0 THEN

BEGIN;

PRINT ('*****ERROR: WEIGHT SUM 0');

TERMINATE;

END;

RETURN SUM (WEIGHT* DISTANCE) /SUM (WEIGHT);

END GRAVITY_CENTER;

Array return values of unresolved size

Size resolution of array return values may be specified in ways

exactly analogous to those for size resolution of array parameters.

That is, one or more of the dimension sizes following ARRAY in the re

turn mode may be indicated by an expression containing a variable, in

which case the size of the returned value may vary from call to call.

Alternatively, automatic size resolution of the return value may

be indicated, by writing a * instead of one or more sizes. The size of

the return value is then set to match the size of the expression in the

RETURN statement that ends the function.

Automatic size resolution is especially important when you want

the size of the return value to depend on the size of one of the para

meters. One example is a function to sum over just the first dimension

of a two-dimensional array. This function has a two-dimensional REAL

parameter ARRAY_2, whose sizes are resolved to those of the argument.

It finds the sum of all ARRAY_2(I), where I ranges from 1 to SIZE

(ARRAY_2, 1). The size of the return value is always set equal to

SIZE (ARRAY_2, 2).

210

SUM 2:

FUNCTION (ARRAY_2 IS ARRAY(*,*) REAL COPYIN)

ARRAY(*) REAL;

FOR I FROM 2 THRU SIZE (ARRAY 2, 1) REPEAT

ARRAY_2(1) := ARRAY_2(1) + ARRAY_2(I); END;
RETURN ARRAY_2(1);

END SUM_2;

We assume here that I is declared as a program-level variable.

A variable is also needed to hold the partial sums. The partial sums

are one-dimensional arrays, whose sizes vary from call to call (be

cause of the unresolved sizes of ARRAY_2). Therefore, it is not

possible to declare a program-level variable to hold the partial sums,

because such variables must have their sizes fixed. Instead, we

make ARRAY_2 a COPYIN parameter, and use ARRAY_2(1) for the partial

sums. (There are some better solutions to these problems, which are

explored in a later chapter.)

STRING return values of unresolved length

Since strings are basically arrays of characters, all the

rules for unresolved-size array return values carry over naturally

to unresolved-length STRING return values.

A good example is a replacement for the billing program's

PROCESS INPUT NAME. We want it to take an argument of 20 characters,

remove surrounding blanks, and return a string whose length is equal

to the number of characters in the name. If the argument is all spaces,

a single space is returned. We can call the new function NAME CHECK:

211

NAME CHECK:

FUNCTION (INPUT IS STRING(20)) STRING(*);

FOR FIRST THRU 20 UNTIL INPUT(FIRST) - ' ' REPEAT; END;

IF INPUT (FIRST) = 1
' THP:~! # RETURN A SPACE #

RETURN I ';

FOR LAST FROM 20 BY -1 UNTIL INPUT (LAST)

REPEAT; END;

I I

FOR I FROM FIRST THRU LAST

REPEAT

CHECKING LOOP #

IF (INPUT(I) < 'A'

INPUT (I) -= I I

INPUT(I) > 'Z') &

& INPUT(I) -= '''I THEN

TERMINATE WITH ERROR ('INVALID CHARACTER I I I
'WITHIN A NAME');

END;

RETURN INPUT(LAST - FIRST+ 1 AT FIRST); #RETURN NAME#

END_NAME_CHECK;

The value returned by this function can be assigned back to NAME:

NAME:= NAME_CHECK (NAME);

because its length is always less than or ec:!11.al to NAME' s length. Or

the function may be called directly from a PRINT statement:

PRINT (ACCT_NO, NAME_CHECK (NAME), OLD_BAL, PAYMENT,

PAST_DUE, INTEREST, PURCHASE, NEW_BAL);

Returning the empty string

There are certain cases where it is very useful to be able to

have a function return a string of length zero -- a STRING-mode value

that contains no characters. such a STRING value is called the
empty string. It is represented by a literal consisting of two apostrophes

with no characters between them:

I I

212

You can assign the empty string to a variable of mode STRING:

NAME := ''. I

in which case NAME is filled out entirely with spaces. The function

NAME CHECK of the previous section could be written to return the null

string when it finds that its parameter contains nothing but spaces:

IF NAME(FIRST) = I I THEN RETURN

Then the assignment

NAME := NAME CHECK (NAME)

I I •
I

would, as before, leave NAME unchanged if it were all spaces to begin

with.

Returning the empty string is perhaps most valuable when the

return value is an operand to a concatenation. Concatenating the

empty string to any other string leaves that string unchanged. For

instance, both of:

NAME 11 I I

I I 11 NAME

have the same value as NAME.

Imagine now that the data for each billing program account is

accompanied by three input strings: a first name, a middle name, and

a last name. We could read these strings into three variables called

FIRST_NAME, MIDDLE_NAME, and LAST_NAME, apply NAME_CHECK to all three,

and concatenate the results together to form NAME:

NAME := NAME_CHECK (FIRST_NAME) 11

NAME CHECK (MIDDLE_NAME) I I I I

213

I I II
11 NAME CHECK (LAST_NAME);

If MIDDLE NAME is all blanks, NAME_CHECK (MIDDLE_NAME) returns the

empty string; NAME is assigned just the first and last names (separated

by two blanks). If all three parts of the name are blank, NAME ends up

all blank, as before.

Advanced topics

We have covered here just about everything that can be done

with return values. The main exception is typified by SUM, which re

turns an INTEGER or a REAL depending on the mode of its argument.

It is possible to define your own functions that return more than one

possible mode. The mechanics of doing so are explained in the Primer's

second volume.

214

20.0

PRE-DEFINED FUNCTIONS FOR ARRANGEMENT OF INPUT AND OUTPUT

The PRINT statement, as we have been using it, does not leave

very much choice in the arrangement of output. Each output value is

printed in the standard form for its mode -- and the standard form for

REALs, in particular, is often cumbersome. When more than one numeric

value is output, the values are all strung together, separated by single

spaces; it's difficult or impossible. to get values to line up in columns.

The READ_LINE statement, too, has its limitation. Input items must be

separated by blanks in order to be read as separate items.

What is needed are some ways of making the arrangement of items to

be output and input more flexible. We need some way to specify what form

a piece of data will ~ake and how many spaces will appear on each side of

it, in order that it be positioned properly on the page and be properly

aligned with other items of its kind. On input, we need a way to separate

items which were not separated by blanks on the cards and a way to specify

which columns the pertinent data will appear in. The purpose of this

chapter is to show you some ways of specifying those facts about data items.

Centering character strings on output

Let's take a simple sort of problem first. Suppose you want to

print a heading, such as TABLE #1, and you want that heading to be centered

in the middle of the printout paper. If you specify simply

PRINT ('TABLE #1');

the character string will be printed way over on the left side of the

paper:

TABLE #1

One way to solve the problem would be to increase the length of the

character string by adding enough blanks onto the left of the heading

so that even when it begins at the left margin of the paper, the "visible"

portion will be positioned correctly on the page, held in place by a

carefully counted number of invisible blank character spaces of "padding":

215

PRINT (I TABLE #1');

This method works conveniently enough if the amount of "padding" to be

added is small. But if the printout paper is 132 characters wide, there

will not be enough spaces on a card to hold all of the blank characters

between the opening apostrophe and the first letter of the title.

Fortunately, CS-4 has a pre-defined function which solves the

problem by allowing you to specify the number of blank spaces which are

to precede a given STRING. The name of the function is LPAD. The first

argument of LPAD is the string to be "left padded", and the second argument

is an integer. The return value of LPAD is of mode STRING, and its length

is specified by the integer argument. The rightmost characters of that

string are the characters of the string argument to LPAD, and the remaining

characters to the left of it are space-characters. Applied to 'TABLE #1',

the LPAD function can look like this:

LPAD ('TABLE #1', 70)

The return value of this function is a string 70 characters long. The

first 62 characters are space-characters, and the remaining characters are

the eight characters of 'TABLE #1'. When the LPAD function is used in

the PRINT statement, like this,

PRINT (LPAD ('TABLE #1', 70));

the heading will be properly positioned in the center of the 132-character

wide printout paper. The string is still printed beginning at the left

margin, but the first 62 characters of it are "invisible" space characters.

Arrangement of INTEGER output in columns

Let's review what the PRINT function does with integer arguments.

Simply including a comma-separated list of data items in a PRINT statement

like this:

PRINT (ACCT_NO, OLD_BAL, PAYMENT, PAST_DUE, INTEREST,

PURCHASE, NEW_BAL);

will produce printed lines that look like this:

216

705 5950 2975 2975 45 9995 13015

7 0 0 0 0 13090 13090

26 -750 0 0 0 1250 500

0000000

Each successive execution of the PRINT statement, with new values for the

INTEGER variables, produces a new line of printout. Each integer takes up

only the space that is required in order to print it, with the larger in

tegers taking up more space than the smaller ones. To keep the numbers from

all running together, PRINT leaves one extra space after each number printed.

But that one space separating each item does not provide easily readable

columns of numbers. What we want is output that looks like this:

705 5950 2975 2975 45 9995 13015

7 0 0 0 0 13090 13090

26 -750 0 0 0 1250 500

0 0 0 0 0 0 0

We want each integer to be aligned with the one above it, "right justified"

within a "field" whose width is independent of the size of the number at any

given execution of the PRINT. Even when the value of the item is zero, we

want enough blank characters "padded" on the left of it so that the zero

is aligned with the right-most digit of the corresponding item above it.

Whatever the size of the integer, we want the amount of padding to vary

accordingly, so that the padding plus the size of the integer always fills

up the total width of the column.

If we know, for example, that ACCT_NO will always be 999 or less,

we want to be able to specify a constant column width of three for all

ACCT Nos. CS-4 permits the LPAD function to be used in situations like

this. To specify that the ACCT NO variable is to take up three character

spaces, simply write

LPAD (ACCT_NO, 3)

and ACCT NO will be padded on the left with enough space-characters to

make it a total of three characters long. The LPAD function is defined

in such a way that if its first argument is not a STRING already, but

is one of the other basic modes in CS-4 (such as INTEGER, REAL, or BOOLEAN) ,

217

the value of the argument will be converted to STRING before the padding

is done. Given the following values of ACCT_NO, here are the corresponding

return values of LPAD (ACCT_NO, 3):

ACCT NO LPAD (ACCT_NO, 3)

705 '705'

7 7'

26 ' 26'

0 0'

Notice that for ACCT_NO 705, no space-characters need to be added, since

'705' is already of length 3.

The LPAD function with its integer argument may be placed directly

in a PRINT statement, and the returned, padded STRING will be printed out

just like any other STRING. (Apostrophes, of course, do not appear on the

printout.) Since we want all of the items in the PRINT statement in the

billing program to line up in columns, we may place each item in its own

LPAD function, specifying for each the width that we desire its column to

be. Remember that the return values will be printed as STRINGs, so PRINT

will not leave an extra space after each item as it does when it prints

INTEGERS. So we must make the second argument to each of the LPADs large

enough to insure that even for the largest integer in a given column, there

will always be at least one space separating it from the item on its left.

The complete PRINT statement will look like this:

and the

PRINT (LPAD (ACCT_NO, 3), LPAD (OLD_BAL, 8),

LPAD (PAYMENT, 8), LPAD {PAST_DUE, 8), LPAD (INTEREST, 5),

LPAD (PURCHASE,8), LPAD (NEW_BAL, 8));

output it produces will be in columns, like this:

705 5950 2975 2975 45 9995 13015

7 0 0 0 0 13090 13090

26 -750 0 0 0 1250 500

0 0 0 0 0 0 0

Now let's consider another possible change we might want to make

in the output. Suppose we want to left-pad ACCT_NO, not with blanks,

but with zeros. If we know that all account numbers will be less than 1000,

218

how do we make the integers appear on the paper as ranging from 000 to

999? (When ACCT_NO is 7, we want to print 007; when it is 26, we want

to print 026, etc.)

LPAD may be used to solve this problem, too. LPAD may be given an
optional third argument, which is the character to be used as padding. It

must be a single character (enclosed in apostrophes if it's a literal), and

it is separated from the first two arguments by a comma, like this:

LPAD (ACCT_NO, 3, 'O')

This function has as its return value a STRING of length 3, the last

characters of which are the characters of ACCT_NO (which LPAD first

converts from INTEGER to STRING), and the preceding characters on the left

are 'O' characters:

ACCT NO

705

7

26

0

LPAD (ACCT_NO, 3, 'O')

'705'

'007'

'026'

'000'

Notice that for ACCT_NO 705, no '0' characters need to be added, since

'705' is already of length 3.

We are now ready to write the complete PRINT statement that will

produce the desired lines of putput:

The output

PRINT (LPAD (ACCT_NO, 3, '0'), LPAD (OLD_BAL, 8),

will

705

007

026

000

LPAD (PAYMENT, 8), LPAD (PAST_DUE, 8), LPAD (INTEREST, 5),
LPAD (PURCHASE, 8), LPAD (NEW_BAL, 8));

look like this:

5950 2975 2975 45 9995 13015

0 0 0 0 13090 13090

-750 0 0 0 1250 500

0 0 0 0 0 0

219

The third argument of LPAD, the character to be used for padding,

is optional. If it is omitted, a ' ' character is supplied by default.

(We could have, if we had wanted to, written LPAD (INTEREST, 5, ' ')

instead of LPAD (INTEREST, 5). The returned string would have been the

same.) The third argument may, of course, be any character, not just ' '

or 'O'.

A few words of caution concerning the use of LPAD: first, make

sure that the length of the item to be padded does not exceed the value of

the integer expressing the length of the string to be returned. It would

be an error to write LPAD (OLD_BAL, 3) and then send it an OLD_BAL whose

value was 5950 or -750. Second, remember that LPAD produces a STRING

value, regardless of the mode of the expression to be padded. If OLD BAL

is an integer, it is perfectly legal to add another integer to it:

OLD BAL + 30

but it would be an error to write

LPAD (OLD_BAL, 8) + 30

because one cannot add STRINGS to INTEGERs.

Because LPAD returns a STRING value, it is permissible to use the

string concatenation operator I I to join LPAD-ed expressions together or

to join them to other strings. It is even legal to use sub-string sub

scripting to extract a "slice" of a STRING returned from an LPAD function.

The expression

LPAD ('JONES, BILL', 15, '*') (7 AT 1)

has the value '****JON'.

LPAD has an additional provision, which facilitates the printing of

numbers with leading zeros. If the first argument of an LPAD function is

INTEGER or P~AL and is less than zero, and if the padding character is a

'O', then the minus sign in the resulting string is moved to the left-most

position. If NEW BAL is -300, the function LPAD (NEW_BAL, 7, 'O') returns

the string '-000300' and not '000-300'. This provision permits you to use

LPAD to print numbers with leading zeros without having to worry about

embedding minus signs after leading zeros in the returned strings.

220

Using LPAD with arrayed variables

You will recall that if the argument of PRINT or READ_LINE is an

arrayed item, the array is "unraveled" and the function behaves as if it

had a whole list of arguments consisting of the unraveled elements of the

array. LPAD has an analogous property with regard to arrays. If the first

argument of an LPAD is an array, LPAD is executed for each of the unraveled

elements. The return value of such an LPAD is not just a single string,

but an array of strings, each padded according to the specifications

given in the other argument(s). If VALUES is declared to be an ARRAY(S)

INTEGER, then the call LPAD (VALUES, 8) returns a five-element array of

STRINGS, each element of which is eight characters long. This array can

then be used like any other array of length-eight STRINGs. It may be

assigned to a variable of mode ARRAY(S) STRING(8), or it may be used

as the argument of a PRINT statement:

PRINT (LPAD (VALUES, 8));

which, upon execution, will print the contents of each of the five

character strings, one after another, on the same line:

483641 289 1850399 15 270

The integers of VALUES, after being converted to STRINGS in LPAD, are

right-justified in string fields of eight characters, with blanks used as

padding. Each eight-column field is printed with no additional space

after it, since what it printed is a series of character strings, and not

a series of integers. Comma-separated STRING arguments in PRINT statements

are printed juxtaposed on the paper, just as they would be if they

were concatenated before being sent to PRINT. The statement

PRINT (LPAD (ACCT_NO, 3, 'O'), LPAD (OLD_BAL, 8),

LPAD (PAYMENT, 8) / LPAD (PAST_DUE, 8), LPAD (INTEREST, 5),

LPAD (PURCHASE, 8), LPAD (NEW_BAL, 8));

and the statement

PRINT (LPAD (ACCT_NO, 3, 'O') I I LPAD (OLD BAL, 8) I I
LPAD (PAYMENT, 8) I I LPAD (PAST_DUE, 8) I I LPAD (INTEREST, 5)

I I LPAD (PURCHASE, 8) I I LPAD (NEW_BAL, 8));

are identical in their effect.

221

Arrangement of REAL output items

As we explained in an early chapter, there are two ways to represent

REALs in CS-4. They can be written simply as a sequence of digits with

a decimal point among them; or the digits may be followed by an exponent

(the letter E followed by a number). A REAL appearing as an argument in

a PRINT statement is always printed in the exponential form. Because that

form is not very natural to the billing proaram, we have for the last

several chapters been using integers instead of reals. In this section,

we show how to use REAL values for the amounts in the billing program,

and obtain the output in the more conventional decimal form. Printed
with two digits to the right of the decimal point, they will be in the

standard form used to represent dollars and cents.

Here is how the output from one execution of the PRINT statement

looked in chapter six, using REALs instead of INTEGERs.

7.05000E+02 5.95000E+Ol 2.97500E+Ol 2.97500E+Ol 4.46250E-01

9.99500E+Ol l.30146E+02

(Actually, all seven items would be printed on one line, if the line were

long enough. Most printout paper is wider than this page.)

What is needed is a way to convert those reals from exponential

representation to decimal form, with the ability to specify how many

decimal digits are printed out. This may be accomplished with the pre

defined function DSTRING. DSTRING is a function which converts a REAL

to STRING representation. The STRING will contain the REAL in decimal

form.

DSTRING takes three arguments: the first is a REAL which is to be

converted into a STRING. The second is an INTEGER giving the number of

characters which precede the decimal point, and the third is an INTEGER

giving the number of characters which follow the decimal point. If NEW BAL

is a REAL that we wish to represent in decimal instead of exponential form,

we can specify six digits to precede the decimal point and two to follow

the decimal point, by the following DSTRING function:

DSTRING (NEW_BAL, 6, 2)

Here are some values of DSTRING {NEW_BAL, 6, 2) corresponding to various

values of NEW BAL.

222

NEW BAL

l.30146E+02

l.30902E+02

5.00000E+OO

O.OOOOOE+OO

DSTRING (NEW_BAL, 6, 2)

130.15'

130.90'

5.00'

0.00'

(The apostrophes, again, aren't actually part of the returned value. The

above examples show them merely to indicate where the strings begin and

end.) As you can see, the length of the string produced by DSTRING depends

only on the values of its second and third arguments; it is independent

of the values of the REAL which is being converted. More specifically,

if m and n are the second and third arguments respectively, the length of

the resulting string ism+ n + 1, where the (m + l)st character is the

decimal point. The second argument to DSTRING determines how many characters

will appear to the left of the decimal point; this number must be at least

large enough to contain the largest REAL to be sent to the function. (Any

extra spaces on the left of the decimal point will be padded in with

space-characters.) If the REAL is negative, a'-' character will be inserted

adjacent to the left-most digit. If the REAL is between -1 and +l, a 'O'

character will appear in the position immediately to the left of the decimal.

The third argument determines how many character positions will appear

to the right of the decimal point. (The REAL will be rounded to this number

of places.) If needed to fill out the field specified by this third argument,
'O' characters will be added.

We are now ready to revise our billing program, using REALs instead

of INTEGERS for all of the values to be printed out (except for ACCT_NO,

which will remain an integer). DSTRING function calls now replace the

REALs in the PRINT statement. The new version of the PRINT statement looks

like this:

PRINT (LPAD (ACCT_NO, 3, 'O'), DSTRING (OLD_BAL, 6, 2),

DSTRING (PAYMENT, 6, 2), DSTRING (PAST_DUE, 6, 2),

DSTRING (INTEREST, 3, 2), DSTRING (PURCHASE, 6, 2),

DSTRING (NEW_BAL, 6, 2));

The printout will be in columns, with decimal points aligned:

223

705 59.50 29.75 29.75 0.45 99.95 130.15

007 0.00 o.oo o.oo o.oo 130.90 130.90

026 -7.50 o.oo o.oo o.oo 12.50 5.00

000 o.oo o.oo o.oo o.oo o.oo o.oo

To get more spaces between a given item and the one to its left, simply

increase the size of the second argument of that item's DSTRING function.

Remember that the return value of DSTRING is a STRING, not a REAL or

INTEGER, so PRINT does not supply an additional space after DSTRINGs.

Care must be taken in the selection of values for the second and

third arguments. If the third argument is too small, too much data will

be lost when the REAL is rounded off. If the third argument is zero,

the decimal point will be the last character in the string, and the number

will be rounded to the nearest whole number.

It is even more important that the second argument of the DSTRING

function be large enough. If that argument does not allow enough characters

to the left of the decimal point to contain the largest REAL to be sent

to that DSTRING, that function call is in error. (There are ways to "re

cover" from errors like this, but that's a ~ubject for the advanced

features volume of the Primer.) If the REAL is negative, you must allow

enough space for a minus sign as well as the digits. It's a good idea to

allow a few extra characters for "padding", to separate DSTRINGs from items

on the left.

Printing REALs in exponential form

The default representation of REALs is in exponential form. If

VALUE is a REAL equal to 2.07385E+03, the command PRINT (VALUE) will cause

the entire REAL to be printed: 2.07385E+03. Sometimes, however, what is

desired is a shortened form of the REAL, but still in exponential form:

2.074E+03, or 2.1E+3. There is a function in CS-4 which allows you to

specify the number of digits of mantissa and the number of digits of

exponent in a STRING representation of REAL. It is a function like DSTRING

in that it converts the REAL to STRING representation. The function is

ESTRING, and the parentheses following it require three arguments: the

REAL, an INTEGER specifying the number of digits of mantissa you want to

precede the 'E', and an INTEGER specifying the number of digits of

224

exponent that you want to follow the 'E'. If R is the REAL to be converted,

a call to ESTRING specifying 3 digits of mantissa and 1 digit of exponent

is written like this:

ESTRING (R, 3, 1)

Here are some examples of strings produced by that call, for various values

of R:

R ESTRING (R, 3, 1)

3.81752E+02 ' 3.82E+2'

6.57831E+Ol ' 6.58E+l'

-7.61420E+Ol '-7.61E+l'

9.75241E-Ol ' 9.75E-l'

The length of the returned string depends only on the values of the second

and third arguments; it is independent of the value of the REAL. Spe

cifically, if m is the second arg11JIUent and n is the third argument, the

return value of ESTRING is as follows: The first character is a space or

a minus sign, depending on the sign of the REAL. The next character is the

first digit of the mantissa, the third character is a decimal point, and

then the remaining m-1 digits of mantissa follow. The remaining characters

are an E followed by a + or - sign, and finally, n digits of exponent. The

length of the returned string, then, is always equal to the second argument

plus the third argument plus four.

As with DSTRING, you must choose the value of the second and third

arguments carefully. With ESTRING, the value of the second and third

arguments must both be 1 or more, or the function call is in error. If

the second argument is less than the number of digits of mantissa held

in the machine, the mantissa will. be rounded off as required. If the value

you specify is greater than the number of digits of mantissa held in the

machine, zeros will be added as necessary. The third argument should

almost always be 1 or 2, except for extremely large numbers. (Remember,

it indicates how many digits of exponent you want included in the string,

not what those digits are. If you specified ESTRING (R, 6, 5), and R is

3.81752E+04, the returned string would be ' 3.81752E+00004'.) The function

call will be in error if the third argument is 1 and the REAL is so large

that it requires a two-digit exponent.

225

Like the strings returned by LPAD, strings produced by DSTRING

and ESTRING may be used in any expressions where STRINGs are permitted,

assuming their lengths are appropriate. Substring subscripting may be used

to extract a selected number of digits of the REAL (should you for some

reason ever want to do so). If R is 3.81752E+04, the expression

ESTRING (R, 6, 1) (3 AT 6)

selects the character string'752'.

Like LPAD, the functions DSTRING and ESTRING may take an array as

a first argument. (With DSTRING and ESTRING, though, this array must

be an array of REALs.) If the first argument is arrayed, the function

is performed for each of the items in the array. The results may then be

sent to a PRINT statement where they will be treated just like a comma

separated list of items. For example, if VALUES is an ARRAY(5) REAL, of

which VALUES(!) is 3.81752E+04, VALUES(2) is 6.58317E+Ol, VALUES(3) is

7.61420E+Ol, VALUES(4) is l.56001E-Ol, and VALUES(5) is 9.75241E+OO, the

statement

PRINT (VALUES);

causes the following line to be printed:

3.81752E+04 6.58317E+Ol 7.61420E+Ol l.56001E-Ol 9.75241E+00

The statement

PRINT (DSTRING (VALUES, 5, 2));

causes the following line to be printed:

38175.20 65.83 76.14 0.16 9.75

Similarly, the statement

PRINT (ESTRING (VALUES, 4, l));

causes the following line to be printed:

3.818E+4 6.583E+l 7.614E+l l.560E-l 9.752E+O

226

Remember that when the first argument to ESTRING is negative,

the returned string does not begin with a space-character. When printing

such an ESTRING, therefore, make sure that at least one space separates

the ESTRING from the item on its left. If the previous i.tem in the

PRINT function is numeric, that space will be supplied automatically.

But if the previous item is a string, you must insert a space-character

argument in the PRINT command, or LPAD the entire ESTRING function.

A programmer does not need to know in advance how many elements an

arrayed first argument to an LPAD, DSTRING, or ESTRING function will

have. If, for example, WEIGHT is an array of REALs, and N may vary from

1 through 10, it is possible to write

PRINT (N, DSTRING (WEIGHT(N AT 1), 4, 2));

and the DSTRING will be executed N times, and the N strings that are

returned will be printed out, one after another, on the same line, following

the integer N.

Printing on the same line twice

Sometimes it is advantageous to ''overprint" on the same line. Over

printing is occasionally used in printing graphs, where one line of output

needs to be superimposed on another. More often it is used to print

underscores for lines of words. CS-4 has a statement which enables one

to print over what has already been printed; this is the function OVER PRINT.

OVER_PRINT takes arguments and behaves in exactly the same way that PRINT

does, except it does not advance the paper to a new line. So whatever

OVER_PRINT puts out gets printed on top of whatever was printed on the

previous line. For example, the statements

PRINT ('THE VALUES FOR TEMPERATURE RANGE ARE:');

OVER_PRINT (LPAD (LPAD (' I' 17, I ')I 32));

cause the following line to be printed:

THE VALUES FOR TEMPERATURE RANGE ARE:

The PRINT statement causes the string of English words to be printed

on one line (actually, the command PRINT advances the paper to a new

line, and then the string is printed)~ Then the OVER PRINT statement

227

is evaluated and executed. The inner LPAD expands the string '-' by

padding 16 additional '-' characters on to the left of it, Then the

result of that padding operation is used as a string argument to the

outer LPAD function, which pads enough blank spaces onto the left of

it so that the final string is 32 characters long. The first 15 char

acters of the completed string are space characters, and the last 17

characters are ' ' characters from the inner LPAD function. That long

string is then printed out, superimposed on the previously printed

line. The 15 space characters padded onto the left of the underscores

are just enough to position the underscores under the proper words.

Advancing the printer to a new page

Suppose you want only 50 lines of numeric output from the billing

program on a page (there is not room for much more, in any case). You

may force the printer to advance to a new page by a command called PAGER,

which can take arguments just like PRINT and OVER_PRINT do. PAGER simply

directs the printer to advance to the beginning of a new page before any

items in the argument are printed out.

We may use PAGER to have the headings of the various columns

of billing program figures printed out at the top of each page. we

may also put in a page number -- whose value is maintained in an INTEGER

variable PAGES. The statement

PAGER ('ACCT # OLD BAL. PAYMENT PAST DUE INTEREST

'PURCHASE NEW BAL.', LPAD ('PAGE' 60), PAGES);

advances the paper to a new page and then prints the column headings.

And, toward the right-hand side of the same line (assuming the paper is

132 character-spaces wide), it prints the word PAGE and the page number.

(Of course, now that we have column headings for the values in the

billing program, it will be necessary to select values for LPAD and

DSTRING arguments in the PRINT statement so that the various numbers

will line up neatly under the proper headings.)

228

The above PAGER command may be added to the billing program in

a new function we may define and name START_NEW_PAGE. If the number of

lines printed is stored in an INTEGER variable LINE_COUNT, we may define

START NEW PAGE as follows:

START NEW PAGE: - -
FUNCTION;

PAGES := PAGES + l;

PAGER ('ACCT # OLD BAL. PAYMENT PAST DUE INTEREST

'PURCHASE NEW BAL.', LPAD ('PAGE' 60), PAGES);

PRINT;

LINE COUNT := l;

END START NEW_PAGE;

The function increments the page number, turns the page, and prints out

the column headings and the new page number. Then, just before the function

returns, it resets LINE_COUNT to one, so that we are ready to begin the

line counting for the new page.

At program level, we will need a statement which increments LINE COUNT

whenever a line is printed. Then, to test whether START NEW PAGE should

be invoked, we execute a statement such as:

IF LINE COUNT >=51 THEN START_NEW_PAGE;

which calls START NEW PAGE if 50 lines have been printed.

Printing multi-dimensioned arrays as tables

The pre-defined functions explained in the preceding sections may

be used in various combinations in order to print arrayed quantities in

whatever format you desire. This allows you to output values in a form that

is much more easily readable than is possible with the default output

arrangement. Consider, for example, the output from the temperature grid

problem of chapter 13, where TEMPERATURE is an ARRAY(9,6) REAL. The

default output arrangment provided by PRINT (TEMPERATURE) produces an

unraveled list of the 54 elements, printed one after another, beginning on

a new line only when one line is filled. The first few lines of such

output might look like this:

l.34254E+02 l.34778E+02 l.34671E+02 l.34698E+02 l.34730E+02

l.34053E+02 l.33732E+02 l.24907E+02 l.16734E+02 l.16854E+02

l.28236E+02

229

The values appear neatly aligned, but that is just because the default

representation of REALs has a consistent number of digits placed in each

positive number. A new line is begun only when a previous line is

filled, and that does not necessarily occur when all the items in one

dimension of the array are printed. What we want is a table with nine

rows of six columns each.

We may use PAGER, OVER_PRINT, LPAD, and DSTRING not only to

produce the desired table, but to include whatever column and row

headings we wish. TEMPERATURE is the (9,6) REAL of the temperature-grid

problem that we mentioned earlier, and I is an INTEGER control variable.

(In order that all 54 values not be identical, let's assume the values in

the array represent temperatures on the sheet of metal at some time before

equilibrium is reached.)

The following statements will produce the desired table:

PAGER (LPAD ('TABLE #1', 32));

PRINT (LPAD ('TEMPERATURE GRID', 36));

OVER PRINT (LPAD (LPAD (' ', 16, ' '), 36));

PRINT;

PRINT (' COL. 1 COL. 2 COL. 3 COL. 4 COL.5 COL.6');

OVER PRINT (LPAD (' I' 56, I '));

FOR I THRU 9

REPEAT

PRINT {' I , > ;

PRINT ('ROW', I, I I I I DSTRING (TEMPERATURE(!), 5, 2));

END;

The table will be printed at the top of a new page:

230

ROW 1

ROW 2

ROW 3

ROW 4

ROW 5

ROW 6

ROW 7

ROW 8

ROW 9

TABLE #1

TEMPERATURE GRID

COL. 1 COL. 2 COL. 3 COL. 4 COL. 5 COL. 6

134.25 134.78 134.67 134.70 134.73 134.05

133.73 124.91 116.73 116.85 128.24 136.32

133.68 113.70 96.32 98.75 119.76 139.02

133.62 105.82 75.42 76.38 109.40 140.72

133.55 102.67 68.52 69.70 105.08 140.97

133.48 106.72 80.62 81.37 112.60 140.58

133.40 117.85 101.69 102.83 120.03 140.16

132.31 125.21 117.54 118.27 127.41 139.06

132.18 133.02 134.15 135.20 136.96 138.15

Since TEMPERATURE is a two-dimensional array, TEMPERATURE(!) is a one

dimensional "slice" (one row) of that array. Therefore, the PRINT state

ment with TEMPERATURE(!) in the REPEAT loop causes the whole row of

temperatures to be printed out, each appropriately in decimal form with

five characters (including spaces} on the left side of the decimal

point, and two on the right. An extra PRINT statement in the REPEAT

loop makes for double-spacing between rows.

Using variables as second arguments in LPAD functions

LPAD has uses other than right-justifying columns of figures. We

have seen some of these in the previous example of the table of temperatures.

Another type of display can be created by using an INTEGER variable as the

second argument of LPAD.

231

Suppose a program were devised that keeps track of the number of days

during which the outdoor temperature falls within certain ranges. If

we are interested, say, in the temperatures =or April and May, we may use

an array declared as follows:

VARIABLE AM TEMP IS ARRAY(lOO) INTEGER;

to count the days during which the temperature falls within each degree

range between 1 and 100 degrees above zero. For every day during which

the temperature falls within zero and one degree above zero, AM_TEMP(l)

is increased by one; every day during which the temperature gets between

eight and nine degrees above zero, AM_TEMP(9) is increased by one, etc.

(The details of how the program is written or how the temperatures are

recorded need not concern us -- we are interested only in how to arrange

the printed output.)

By using LPAD to display the contents of this array, it is possible

to construct a horizontal bar graph to show the relative frequencies of

occurrence of the various temperatures. The following statements will
produce the graph:

PAGER (LPAD ('TEMPERATURE CURVE FOR APRIL - MAY', 45));

OVER PRINT (LPAD (LPAD (1 ', 33, '_,), 45));

PRINT;

PRINT ('DAYS: I 1

40

10

50') ;

OVER_PRINT (LPAD (I - ' ' 58, I - I)) ;

PRINT (' TEMP: I I) ;

FOR I THRU 100

REPEAT

20 30',

PRINT (LPAD (I, 5) , ' I ' , LPAD (' +' , AM_ TEMP (I) + 1, ' - ')) ;
END;

The following graph will be printed, beginning at the top of a new page:

232

TEMPERATURE CURVE FOR APRIL - MAY

DAYS: I 1 10 20 30

TEMP: I
1 I+
2 I-+
3 1--+
4 1--+
5 1---+
6 1---+
7 1----+
8 1----+
9 1----+

10 1-----+
11 1-------+
12 1--------+
13 1----------+
14 1------------+
15 1---------------+
16 1------------------+
17 1-------------------+
18 1------------------------+
19 1---------------------------+

96
I ______ +

97 I __ +
98 I-+
99 I+

100 I+

233

40 50

The column of figures on the left contains the subscripts of AM_TEMP,

and the length of the line of dashes for each subscript represents the

number of days during the two-month period during which the temperature

was within the range of that subscript and the one above it. LPAD places

that many dash characters on the left of the '+' character. (The '+'
was chosen to make the right-hand end of the horizontal line more defin~tely

marked.) What makes the graph is that each time the REPEAT statement

loops, a new line of the graph is printed. Its length is determined by the

magnitude of the value of that particular element in the array. Of course,

with 100 subscripted values, the whole graph will not fit on one page

of printout. The graph may be split onto two pages, or it may be shortened

by adding adjacent pairs of elements together and printing a "compressed"

graph.

In constructing this kind of display, make sure that the second

argument of the LPAD function always evaluates to an INTEGER that is

at least as large as the length of the item to be left-padded. (In this

example, 1 was added to AM_TEMP(I) to cover those cases in which the number

of days was zero.) Also, make sure that the magnitude of the various

elements does not 'exceed what can··be·printed on one line.

Input of data items using READ LINE

Fortunately, you do not need to worry about arrangement of data

items as much on input as on output. On output, alignment with LPAD,

DSTRING, or ESTRING was often necessary in order that the proper number

of spaces separate the various columns of data items on paper. But on

input, the number of blanks separating numeric and BOOLEAN data items

is irrelevant. As long as they are separated by at least one blank,

they are assigned in the order that they appear to the respective "target

variable" arguments of READ LINE.

For the CS-4 modes that are used in this volume of the Primer,

PRINT and READ LINE are "compatible" that is, whatever variables

appear in a PRINT function can later appear in a READ_LINE function,

in the same order, and whatever form the values were printed in will

be acceptable for variables of that same mode on input. That is why

PRINT inserts a blank space after each numeric and BOOLEAN item printed.

That way, we are guaranteed that at least one space will be present to

assure that READ LINE will be able to separate adjacent data items.

234

(There is a way to read data items that are not separated by any blanks at

all; how to do that will be the subject of a subsequent section in this

chapter.)

INTEGERS printed with the aid of LPAD and REALS printed with

DSTRING or ESTRING can, of course, be read with READ_LINE as numerics

(INTEGERS or REALs), even though they technically were STRINGs when they

Were printed. If NAME is a STRING(20) variable, AGE is INTEGER, and

WAGES is REAL, the statement

PRINT (NAME, LPAD (AGE, 3), DSTRING (WAGES, 3, 2));

will produce lines of output that look like this:

KATHERINE M. O'NEILL 42

CHRISTIANSEN JONES 35

JOEL MILLER 19

4.25

5.80

1.25

Assuming that the above output is punched on cards, the output could be

read as input with the statement

READ_LINE (NAME, AGE, WAGES);

where NAME is STRING(20), AGE is INTEGER, and WAGES is REAL. (In volume

2 of this Primer we'll show how to get the computer to punch output on

cards instead of printing it on paper.) REA~_LINE assigns to NAME the

contents of the first 20 characters (whatever they are -- blanks included).

Then it assigns the next data item to AGE and skips a space (just as PRINT

would have done had it printed AGE as an INTEGER without LPAD). Then

it does the same for WAGES. Like PRINT, READ_LINE skips a space after

numb~rs, but not after STRINGs. Therefore, no space is mandatory between

the NAME data item and AGE. (In this case, AGE may begin in column 21.)

A space is, however, necessary between AGE and WAGES, since both are read

as numerics. Had AGE and WAGES not been converted to STRING through

LPAD and DSTRING prior to being printed, that space would have been

inserted automatically. But since they were printed as STRINGs, it is up

to the programmer to insure that enough padding is allowed that a space

will remain on even the largest data items. As you can see, this is

especially important if the output data are to be subsequently read with

235

READ LINE. Of course, any number of blanks, may appear between any

of these items.

The fact that READ_LINE skips a space after numerics is particularly

important when STRINGs follow numeric items. If AGE is INTEGER and

NAME is STRING(20), the statement

READ LINE (AGE, NAME);

unlike the READ LINE on the previous page, would require that AGE and NAME

be separated by a blank. If the right-most digit of AGE is in column 6,
READ_LINE (AGE, NAME) would assign columns 8 through 27 to NAME.

There is another precaution that you should take when reading

REAL values with READ LINE. You will recall that each REAL is stored

in the computer with six digits of precision. (There is a way to vary

that degree of precision; it will be explained in volume 2 of the Primer.)

We just discussed in the previous section that it is possible to print out

fewer than six digits of precision by using DSTRING or ESTRING. What

happens if output from a cs-4 program using DSTRING is used as input to

another program? If a variable R in a program has the value 2.58385E+02

and is printed with DSTRING (R, 3, 1), and the value that is printed

out (258.4) is read into variable X in another program with READ_LINE,

the digits of precision that are lost with DSTRING will be made up with

zeros. X in the second program will not be 2.5838E+02, but 2.58400E+02.

This loss of precision varies according to the amount of rounding that

takes place in DSTRING or ESTRING. So, if

PRINT {DSTRING {X, 4, 2));

produced these lines of output:

7430.21

386.67

64.83

0.07

there was no loss of precision in producing 7430.21, for all six digits

of precision were printed with DSTRING. However, it is quite possible

that 0.07 was a REAL with exponential representation of 6.63719E-02. All

but one of the significant digits of precision were lost in the DSTRING

print statement. If this number were read with READ_LINE, 0.07 would be

236

assigned to a REAL as 7.00000E-02, These facts should be kept in mind

when printing out REALs. The ease in readability of evenly aligned

decimals might in certain cases be offset by the loss of precision,

especially when the values vary over a wide range. The loss of pre

cision would have been less, or at least more uniform, had the values

been printed with ESTRING.

Input of data items not separated by blanks

Suppose that each card to be read has punched on it a post office

zip code number and the number of pieces of mail postmarked at that office

in one day. The first four cards might look like this:

63034

63012
63054

63082

15632

1472
7915

13901

Suppose further that we want to split apart the zip code number and assign

the first three digits of it (which indicate the postal zone) to. an

integer variable ZONE_NO and the last two digits of it (which indicate the

particular post office building) to an integer variable PO NO.

The READ_LINE statement, however, treats the zip code number as

one data item, not two. If we tried to read this data with the statement

READ LINE (ZONE_NO, PO_NO, PIECES);

the entire zip code on the first card, 63034, would be assigned to ZONE_NO,

and the other ·number would be assigned to PO NO. PIECES would have no
value from that card to be assigned to it at all. (READ_LINE would then

read the second card and assign the zip code number on that card to PIECES.)

Run-together items like this may be assigned to the proper variables

by first assigning the item to be sub-divided to a STRING variable, and

then using sub-string subscripting to divide it into the proper data items.

(In this example, the first three characters of the zip code will be

the zone number and the remaining two wilJ be the post office number.)

So, if we declare

VARIABLE ZIP CODE IS STRING(S);

237

then the command

READ LINE (ZIP_CODE, PIECES);

reads in a card of the above, data. Assuming that the zip code number

begins in column one, ZIP_CODE(3 AT 1) may then be assigned to a variable

ZONE NO.

One problem still remains, though, before we can make that assign

ment. ZIP_CODE(3 AT 1) is still of mode STRING, and we want ZONE NO to be

an INTEGER. Earlier, we learned that integers were converted to strings

(for use in LPAD) "implicitly" -- that is, the compiler performed the con-

version for us when it found the integer where it "expected" to find a

string. The other basic modes in CS-4 (such as REAL and BOOLEAN) convert

to STRING in the same way. But now we want to make the conversion in the

other direction -- we want to convert string-to-integer, not vice-versa.

This kind of conversion does not take place implicitly in CS-4. Instead,

there are special pre-defined functions that you must use if you wish to

convert '630' to 630. The STRING-to-INTEGER conversion function is S2I

(which is short for STRING-to-INTEGER), and it takes one argument, the

string to be converted. The return value is the integer that would

result if the apostrophes were removed from the string-literal. Thus,

S2I ('630')

evaluates. to the integer 630.

The argument of S2I must contain a sequence of digits. Space

characters and/or a sign may precede the digits in the string, and space

characters may follow it, but no other characters are permitted.

We are now ready to read the cards with the run-together data. Here

are the cards, with the data punched beginning in column one:

63034

63012

63054

63082

15632

1472

7915

13901

238

In order to divide the first data item and make the conversions and

assignments, these declarations are necessary:

VARIABLE ZIP CODE IS STRING(S),

ZONE_NO, PO_NO, PIECES ARE INTEGER;

These statements will produce the desired assignments:

READ_LINE (ZIP_CODE, PIECES);

ZONE_NO := S2I (ZIP_CODE(3 AT l));

PO NO:= S2I (ZIP_CODE(2 AT 4));

Sometimes it is necessary to read run-together data that were pre

pared by persons who left out blanks in an attempt to squeeze as much data

as possible onto each card. Because reading run-together data requires the

round-about method of assignment to a STRING variable and then conversion

from sub-strings to the desired target mode, most programmers prefer

to have each data item on the input cards separated by one or more blanks.

Blanks also make it easier to sight-check the cards for accuracy. CS-4

encourages the separation of data items by supplying a blank space auto

matically after each numeric and BOOLEAN ar~nment in the PRINT function.

(It is possible to run CS-4 output together, by converting the data items

to STRINGS before printing. But the practice is not recommended.)

CS-4 provides conversion functions from STRING to other basic

modes as well, which you can use in case you need to separate run-together

data other than integers. The STRING-to-REAL function is

S2R (S);

where S is a STRING. S may consist of characters constituting either ex

ponential or real-without-exponent representation. No blanks may appear

between the first digit of the mantissa and the last digit of the exponent.

(Leading and trailing blanks are permitted; these will be removed before

the conversion is performed.) The following character strings are legal

arguments to S2R, and they illustrate the kind of character strings that

may be converted to REALs.

239

s

I 2 • 5 I

I_ • 5 I

I +
0

2 I

'2.5E4'

'-.25E-4

I 50 • I

'l.5237496714E+02'

S2R (S)

2.SOOOOE+OO

-5.00000E-01

2.00000E-01

2.50000E+04

-2.50000E-05

5.00000E+Ol

1. 52375E+02

The following character strings, though, cannot be converted to REALs

using S2R. Attempting to use them as the argument to S2R will result in

an error.

ILLEGAL

5'

I • 2 0 I

'2.50E.2'

I .TEN'

'50'

'.E+02'

'2. E02'

'2 I loo•

These numerous examples are given not to encourage you to use "unusual"

representations of REALs in STRINGs, but merely to show what the require

ments for the conversion function are. Actually, these rules are identical

to the rules for preparing REAL data for input to READ_LINE, except that

here a sign may "float" anywhere in the field of leading blanks.

One other basic mode is used in this volume of the Primer: BOOLEAN.

It is possible to convert from STRING to BOOLEAN with the function

S2B (S)

After leading or trailing blanks are removed from S, S converts to TRUE

if S consists of 'TRUE' or 'T', or it converts to FALSE if S consists of

'FALSE' or 'F'. All other contents of S will be in error.

You may have noticed that STRING-to-INTEGER, -REAL, and -BOOLEAN

conversions place rather strict stipulations as to which sequences of

characters are legal and which are not. One reason for not being more

240

liberal and allowing wider variations in legal strings is that this strict

ness permits READ_LINE and the conversion functions to check for errors

in the input data. Furthermore, if you wish to use STRING input and sub

string subscripting prior to conversion to other modes, you may make the

additional check that the data always appear in the proper columns. Error

checking like this protects programs from some common errors in data

preparation as well as from your using the wrong input data.

Irrelevant input data

If the cards you wish to use for input were punched for other

uses in addition to yours, you may not wish to use all the data on the

cards. The only items you are interested in reading may be punched say,

in columns 41 through 80. Columns 1 through 40 may contain irrelevant

material. The easiest way to read the cards and get the data you are

interested in, but "throw away" the "garbage", is to assign those columns

you wish to disregard to a "dummy" STRING of that length. If, for example,

ACCT_NO, OLD_BAL, PAYMENT, and PURCHASE were in columns 41 through 80,

and any number of irrelevant items of whatever sort were punched in the first

40 columns, the pertinent data could be read as follows:

VARIABLE DUMMY IS STRING(40),

ACCT_NO IS INTEGER,

OLD_BAL, PAYMENT, PURCH~SE ARE REAL;

READ LINE (DUMMY, ACCT_NO, OLD_BAL, PAYMENT, PURCHASE);

The contents of columns 1 through 40 are now in DUMMY, but you need never

use it. ACCT_NO may begin in col. 41; it need not be preceded by a blank,

because READ LINE does not skip a space after STRINGs.

If you need to make more than one "skip" per card, you can make

the READ LINE statement easier for you and other programmers to understand

by making the dummy string of length 80:

VARIABLE DUMMY IS STRING(80);

and using subscripting to keep track of the columns to be skipped:

READ LINE (DUMMY(20 AT 1), ACCT_NO, OLD_BAL,

DUMMY(l6 AT 45), PURCHASE, NEW_BAL);

241

You can skip ~ whole card in the input file by executing READ LINE

with no arguments. The statement

READ_LINE;

reads ,a card and "throws it away", regardless of its cont~nts. You are then

ready to read the next card.

242

21. 0

INTERNAL NAMES AND STORAGE TYPES

A substantial part of our discussion of functions has been concerned

with their use of variable and constant names. We can separate the names

that appear in functions into three informal classes, according to how

they are employed:

1) Names external to the function -- on~s also referred to at

program level or in other functions; we have been.calli:ng them

shared names. They are used for data that must be known or man

ipulated in several different parts of the program.

2) Parameter names -- ones declared in function headings; they can

be referred to only within the function that declares them. But

they are used to pass data in or out of the function, to another

part of the program.

3) Names local to the function -- ones which are referred to only

within a function, and which contain data that is used only

within that function. These include names of FOR variables needed

only locally, and names of other variables needed to hold tem

porary results such as partial sums.

We have dealt with the first two classes fairly thoroughly,

while the third class has been largely ignored. Names local to our

sample functions have all been defined at program level, in the same way as

external names; the only difference was that local names just happened to

be used solely within a particular FUNCTION. This chapter shows how local

names can be distinguished from external names, by declaring them within

the body of the FUNCTION itself. We also explain how the programmer can

decide in what way storage is to be set aside for local variables and

constants. Finally, the similar properties of names declared within

BEGIN blocks are described.

243

Toward the end of the ~hqpter, we take up a related topic: the

definiti9n of functions within other functic~s, or within BEGIN blocks.

This will set the qtage for the following chapter, which is a general

discussion of the recognition of names in a structured program.

Declarations inside a FUNCTION d~finition

. As a first example, consider the billing program function

STORE_FREE_ACCT_NUMBERS. Our last version of it was on page +90, Chapter l7.

It contains three variables -- N, I, and FREE_ACCT -- which are just

temporary storage for its own purposes and which are used nowhere else

in the program. On the other h~n~ its remaining variable, FREE_ACCT_NO,

is not just used internally; it is shared with PROCESS_NEXT_ACCOUNT.

The three variables which are used only locally may be declared

within the function body itself, instead of at program level. Normally

they are placed right after the headipg:

STORE_FREE_ACCT_NUMBERS:

FUNCTION;

VARIABLES N, I, FREE ACCT ARE INTEGER;

READ_LINE (N);

IF N < 0 I N > 999 THEN

r:J;ERMINATE_WITH_ERROR ('NUMBER of FREE ACCOUNTS ' 11

'NEGATIVE OR >999'):

FOR I THRU N

REPEAT

READ_LINE (FREE ACCT);

IF F~E_ACCT < 1 I FREE_ACCT > 999 THEN

TERMINATE WITH_ERROR .('FREE ACCOUNT NUMBER IS ' j j.
'<l OR >999 1);

FREE_ACCT_TABLE(FREE_ACCT) := TRUE;

END;

END STORE_FREE_ACCT_NUMBERS;

Declarations such as these are said to be internal to the function. One

advantage of int~rnal declarations is immediately apparent here: they make

244

a function definition easier to read. Variables and constants internal

to a function are declared right where they are used, rather than at the

top of the program -- where they would be mixed in with other names used

by other functions.

When a variable or constant is declared internal to a function,

it cannot be used outside of the function. This results in a subtle form

of error-checking. If FREE ACCT were accidentally written, say, instead

of ACCT_NO in the function PROCESS_NEXT_ACCOUNT, the compiler would catch

the error -- because FREE ACCT is only declared for use within

STORE FREE ACCT NUMBERS.

Storage types

When we first introduced the concept of variable, we said that

each variable had associated with it an area of storage in the computer.

Constants, too, may have storage areas. The compiler makes sure that the

storage space given to a variable or constant will be sufficient to hold

a ~epresentation of whatever value the variable or constant might have.

The compiler does not itself set aside, or allocate, storage for

variables or constants. Storage space is only allocated when it is needed

when the program is run. Thus what the compiler actually does is to

translate the program in such a way that the program, as it is running,

can allocate space in the machine for itself when it needs it.

Program-level variables or constants can contain values used

throughout the program. Therefore, the storage for names in program-level

declarations is allocated as soon as execution of the program commences -

before control is passed to any of the program-level executable statements.
Furthermore, the storage for these names is not relinquished, or freed,

until the program's execution is concluded. (When a program is done it

has to give up the space it is using, so that the space can be used by

other programs.)

Storage allocation of this sort -- where allocation is the first act

of the program, and freeing the last -- is only one of the storage types (or

storage classesj in CS-4. The term storage type (or class) is always used

to refer to the way storage is allocated -- not to where or how it is actually

arranged in the computer. Each storage type has a name, so that it is pos

sible to refer to it in a CS-4 program. All program-level variables, for in

stance, are of the type STATIC. STATIC is the default type for program-

245

level declarations. But if present, it is placed after the mode name:

VARIABLE ERROR IS BOOLEAN STATIC,

FREE_ACCT_TABLE IS ARRAY(999) BOOLEAN STATIC;

VARIABLE PAGES IS INTEGER STATIC::= 0;

Storage allocation for parameter variables depends on their type.

Some parameters have their own space allocated, while others share storage

with their corresponding arguments. But whatever the case, storage is

never allocated for a parameter until the function that declared the

parameter is called; and storage for a parameter is freed when the function

returns. Thus when a function finishes, the space used by its parameters

is relinquished, and it may later be used by other functions' parameters.

This treatment of parameter storage casts some light on why array

parameters may have different sizes at different calls. The amount of

storage an array takes up depends on its size. Since storage for a

parameter is not allocated until the function is called, the size of an

array parameter need not be determined until the function is called.

And since space has to be allocated again each time the function is

called (because it is freed each time the function returns), the size of

the array can vary from call to call.

Variables declared internal to a function are treated very much

like parameters. Their storage areas are allocated when the function is

called, and freed when it returns. This storage type has the name

AUTOMATIC. It is the default type for variables declared internal to a

function, but it may be written in declarations just like STATIC:

VARIABLES N, I, FREE ACCT ARE INTEGER AUTOMATIC;

Program-level variables must be STATIC, so writing AUTOMATIC in a program

level declaration is an error.

The position of a declaration within a function body does not

affect when the storage is allocated. Even if an AUTOMATIC variable is

246

declared just before the END statement, its storage is allocated before

any statement of the body is executed. The variable may thus be used in

an executable statement that precedes its declaration statement. Similarly,

program-level STATIC variables may be declared anywhere at the program

level, but their storage is always allocated at the very start of execution.

Initialization of AUTOMATIC storage

If an AUTOMATIC variable is declared with an initialization

expression, it is assigned that initial value each time it is allocated.

For instance, in this function that takes an INTEGER value and returns its

factorial:

FACTORIAL:

FUNCTION (N IS INTEGER) INTEGER;

VARIABLE MULT IS INTEGER,

FACT IS INTEGER:;= l;

FOR MULT FROM 2 THRU N REPEAT

FACT := MULT * FACT; END;

RETURN FACT;

END FACTORIAL;

the local variable FACT is initialized to 1 each time the function is called.

The initialization expression need not be just a literal. It may

contain variables (or constants) external to the function, or parameters.

Thus a local variable may be initialized to different values at different

calls.

All the above applies with equal force to CONSTANT declarations.

One consequence of this is that a constant local to a function may be

declared to have different values at different calls. For example:

GRAVITY CENTER:

FUNCTION (WEIGHT, DISTANCE ARE ARRAY(*) REAL) ARRAY(*) REAL;

CONSTANT NUMBER IS INTEGER::= SIZE (WEIGHT);

Here on each allocation of NUMBER it is given a value equal to the size of

WEIGHT. NUMBER may thus be allocated with several different values during

the same execution of the program. But since NUMBER is a constant, it may

not be assigned a new value during execution of GRAVITY CENTER.

247

AUTOMATIC arrays and strings of Unreso~ved size

An array (or string) which is AUTOMATIC need not have the same

dimension sizes at each allocation. One or more dimensions may be varied,

by writing their sizes as expressions containing parameters or external

variables. This feature can be put to use in the function SUM_2 of the

previous chapter, which can use a local variable to store its partial

sums:

SUM 2:

FUNCTION (ARRAY_2 IS ARRAY(*,*) REAL) ARRAY(*) REAL;

VARIABLE I IS INTEGER,

ARRAY SUM IS ARRAY(SIZE (ARRAY_2, 2)) REAL ::= 0;

FOR I THRU SIZE (ARRAY_2, 1) REPEAT

ARRAY SUM :=ARRAY SUM+ ARRAY_2(I); END;

RETURN ARRAY_SUM;

END SUM_2;

Each time this function is called, ARRAY_SUM is allocated with a size

equal to that of ARRAY_2's second dimension, and all its elements are

initialized to 0.

When an arrayed variable or constant is AUTOMATIC and has an

initialization expression, a * may replace the size expression for one or

more dimensions. These dimensions' sizes will then automatically be set

to the sizes of the corresponding dimensions in the initialization

expression. As a one-dimensional example, we could write SUM 2 with

ARRAY SUM initialized to the first element of ARRAY 2:

SUM 2:

FUNCTION (ARRAY_2 IS ARRAY(*,*) REAL) ARRAY(*) REAL;

VARIABLE I IS INTEGER,

ARRAY SUM IS ARRAY(*) REAL ::= ARRAY_2(1); END;

FOR I FROM 2 THRU SIZE (ARRAY_2, 1) REPEAT

ARRAY SUM :=ARRAY SUM+ ARRAY_2(I);

RETURN ARRAY_SUM;

END SUM_2;

ARRAY SUM is here automatically allocated with a size equal to that of

ARRAY_2{1). This version is a bit more efficient than the previous one,

since the summing loop starts with I equal to 2 instead of 1.

248

STATIC variables and constants internal to a function

A variable internal to a function may be declared with the

STATIC storage type. Because the default for internal variables is

AUTOMATIC, the name STATIC must be written explicitly in the declara

tion. Like all internal variables, STATIC ones cannot be used outside

the function where they are declared. However, storage for an internal

STATIC variable is only allocated once -- when execution of the program

that contains the function begins -- and its storage is not freed

until the program is terminated. Thus the value of a STATIC variable

is not lost when the function returns; it is saved for use during

subsequent calls.

There are many uses of STATIC variables internal to functions.

As an example, consider the function START_NEW_PAGE in the billing

program. It is the only part of the program that refers to the page

number value, so the variable that holds the page number can be declared

internal to it. But it won't do to use an AUTOMATIC variable. The

most recent page number has to be saved after the function returns, so

that on the next call to START NEW PAGE it can be stepped by 1 and

printed out at the top of the next page. What's required is a STATIC

variable:

START NEW PAGE:

FUNCTION;

VARIABLE PAGES IS INTEGER STATIC .. - O;

PAGES := PAGES + l;

PAGER ('ACCT# OLD BAL. PAYMENT PAST DUE INTEREST

'PURCHASE NEW BAL.', LPAD ('PAGE ' 60), PAGES);

PRINT;

LINE COUNT := l;

END START NEW_PAGE;

Storage for PAGES is allocated and assigned zero when execution of

the program commences. But its value can only be used within

START_NEW_PAGE, because its declaration is internal to that function. Each

time START NEW PAGE is called, PAGES is stepped by l; because it is

STATIC, its storage is not freed -- and its new value is not lost --

when the function returns.

249

Constants may also be declared internal to a function with

STATIC storage, but it often doesn't make much difference, since

constants cannot be assigned n~w values by the function. Thus the

only difference between

CONSTANT PI IS REAL .. - 0.314159E+Ol;

and

CONSTANT PI IS REAL STATIC ::= 0.314159E+Ol;

lies in when storage for PI is allocated, and when it is freed. Either

way, it can only be used within the function it is internal to, and it

can never have a value other than 0.314159E+Ol.

Function definitions internal to a function

So far, all the functions we have defined have been program

level functions. Like our program-level variables, their names have been

known throughout the program -- so that they could be called from any

point in the program.

However, just as some variables are used only by a particular

function, some functions are called only by a particular function. That

is, one can think of a function as having its own local functions, just

like it has its own local variables. And just as local variables may be

declared within the body of the function to which they belong, local

functions may be defined within the body of the function that uses them.

We can give an example from the billing program. The function

PROCESS_INPUT_NAME is not called by any program-level statement; it is

called only from within PROCESS NEXT ACCOUNT. Thus the former function

could be defined within the body of the latter. In outline, the result

would be as follows:

PROCESS NEXT ACCOUNT:

FUNCTION;

PROCESS_INPUT_NAME;

PROCESS INPUT NAME:

FUNCTION;

END PROCESS_INPUT_NAME;

END PROCESS NEXT_ACCOUNT;

250

Defined in this way, a call to PROCESS_INPUT_NAME may only be made from

within PROCESS_NEXT_ACCOUNT; it will not be recognized as a valid

function name at program level or in other functions of the program.

How is it useful to define a function within another function?

For one thing, it makes the structure of the program clearer, just as

declaring variables within functions does. When we sketched out the program

level part of the billing program, we postulated program-level functions

to perform the program's major tasks; but PROCESS_INPUT_NAME was not among

these functions. Rather, PROCESS_INPUT_NAME was postulated to handle

a "sub-task" within the task of PROCESS NEXT ACCOUNT. This relationship

is made clearer by placing PROCESS_INPUT_NAME within PROCESS_NEXT_ACCOUNT.

There's no reason one has to stop at two levels of functions

within-functions. In a really complex program, sub-tasks can be broken

into sub-sub-tasks, and those into sub-sub-sub-tasks, and so on.

Consequently, functions can be usefully nested within other function to

depths of three or four or more. In fact, cs-4 places no limit except

convenience on the number of outer functions in which a function may be

contained. You just have to remember the general rule: a function

may not be called from outside the innermost function that contains it.

What about variables internal to nested functions? Are declara

tions at the beginning of PROCESS_NEXT_ACCOUNT known within

PROCESS INPUT NAME? Are declarations within PROCESS_INPUT_NAME known

throughout PROCESS_NEXT_ACCOUNT? The answers are yes and no, respectively.

In general, a variable or constant can be used throughout the function

where it is declared; but it cannot be used outside the function it is

internal to. We will give more precise rules for this in the next chapter,

where we discuss the more general topic of recognition of names.

Names restricted to BEGIN blocks

So far our discussion has dwelled entirely on how the use of a

name can be restricted to a particular FUNCTION -- by writing the name's

declaration (for variables or constants) or definition (for functions)

within the FUNCTION body. This is the most narrow view of things, however.

The same rules apply to the declaration or definition of a name within

BEGIN blocks.

251

The most common use of BEGIN blocks in this way is to take

advantage of AUTOMATIC storage. When a variable is declared within

a BEGIN block, the default storage type is AUTOMATIC (just as it is for

a variable declared in a FUNCTION definition). Storage for the variable

is allocated each time the block is entered, and freed each time the block

is exited. If an array or STRING is declared within a BEGIN block, it

may be allocated with varying size.

As an example, we present yet another example of the center

of-gravity program:

VARIABLE CENTER IS REhl,

N IS INTEGER;

REPEAT

READ LINE (N) ;

IF

IF

N 0 THEN RETURN;

N < 0 THEN

BEGIN;

PRINT ('*****ERROR: NEGATIVE NUMBER OF WEIGHTS');

RETURN;

END;

BEGIN;

VARIABLE WEIGHT, DISTANCE ARE ARRAY(N) REAL;

READ_LINE (WEIGHT, DISTANCE);

IF SUM (WEIGHT) = 0 THEN

BEGIN;

PRINT ('*****ERROR: WEIGHT SUM 0');

RETURN;

END;

CENTER := SUM (WEIGHT * DISTANCE) / SUM (WEIGHT);

PRINT (WEIGHT, DISTANCE, CENTER);

END;

END;

Note the order of actions in each pass through the loop: first N is read

in, then WEIGHT and DISTANCE are allocated with size N, then the two

arrays are filled with input values and the usual calculations are

252

performed. Finally, storage for WEIGHT and DISTANCE is freed, when

control reaches the END of the BEGIN block they were declared in. This

program has a feature that none of ouF previous ones had: it imposes

no limit on the number of input weights. Whatever the value of N, it

allocates the arrays large enough to hold all the input data.

253

22.0

RECOGNITION OF NAMES

So far, we have demonstrated a number of advantages to structuring

a program into FUNCTIONs and BEGIN blocks. Briefly, these include:

1) Programs can be written in a more logical way, by dividing the

problems into tasks, the tasks into sub-tasks, and so on.

2) When these tasks are programmed separately, the logical structure

of the program is clearer to someone reading it or to a pro

grammer debugging it.

3) FUNCTIONS and blocks can take advantage of AUTOMATIC storage,

especially in using arrays.

4) Parameters and declarations internal to FUNCTIONs and blocks

can be exploited to keep those sections as independent of each

other as possible, simplifying both writing and debugging of

large programs.

There remains a problem, however, that we have not dealt with.

When we added a function definition to the center-of-gravity program, for

instance, we introduced new program-level variables and called them

WT and DIS to distinguish them from the parameters named WEIGHT and

DISTANCE. But we avoided saying if this is really necessary. Must there

be two different sets of names? Or can one take the obvious step of

defining WEIGHT and DISTANCE as both program-level and parameter variables?

We skirted a similar problem in the last chapter. Because the

variable I was used in STORE_FREE_ACCT_NUMBERS independently of the rest

of the billing program, we declared I internal to that function. But

I is also used, independently of all other f~nctions, in PROCESS INPUT NAME.

Can I be defined internal to that function, too? Or must another name

be used instead?

There are many questions of a similar nature. Can a variable be

defined at program level, and also internal to a function? When can a name

be used for a function in one part of a program, and for a variable in

254

another part? Can a BEGIN block have the same name as a FUNCTION?

These are not trivial questions. Even moderately large programs

employ a great many names, so that a great deal of checking would be

required to insure that no name were used for two or more independent

purposes. To produce really large programs, independent blocks and

functions must be written by different prograrruners -- and keeping names

unique would become a horrendous job of management. Thus it is highly

desirable to let a name be used independently to serve different purposes

in different parts of one program.

Of course, some rules are needed. We have to say exactly when

a name may be multiply defined (you already know, for instance, that

only one definition of a name may be at program level). We also have to

say exactly where each definition of a name is recognized.

Structuring into blocks and FUNCTIONS proves ideal for these

purposes. Using the concepts of block and FUNCTION, this chapter pre

sents a simple and straightforward set of rules for the recognition of

names. The rules eliminate most worry over duplication of names in

independent parts of a program, and they spell out what effect the position

of a definition has on the name defined.

General definitions

Toward the end of the last chapter, we indicated that FUNCTION

definitions may be nested in other FUNCTION definitions, or in BEGIN

blocks. Of course, BEGIN blocks may also be nested in other BEGIN blocks

or FUNCTION definitions. Thus in general, a program may contain an arbitrary

number of these segments, nested in some arbitrary way. The aim of this

chapter is to give rules that hold for any scheme of nesting. To do this

in a clear and precise way, some general definitions are required.

The term block, as we have been using it, refers to a BEGIN block.

(Actually, there are three types of blocks in CS-4; the other two will

be explained in volume 2 of this Primer.) A FUNCTION in CS-4 is really

one of the five kinds of procedures. (Two more kinds will be introduced

in Chapter 24; the remaining ones will be explained in volume 2.) The

rules given in the following paragraphs apply with equal force to all

three kinds of blocks and all five kinds of procedures. In the rest of

this chapter, for simplicity's sake, we'll use the term "block" rather

informally to mean any kind of block (including BEGIN blocks) and any

kind of procedure (including FUNCTIONs).

255

A block is said to contain some object (statement, another

block, or whatever) if the object appears in the body of the block.

have occasion to speak of the innermost block containing an object:

is that block which contains the object, and which does not contain

any other block containing the object.

We

this

A name, for present purposes, is a word defined in any of the

following ways: by a declaration statement, by a parameter declaration

in a FUNCTION heading, as a label to a BEGIN block, as the name of a CS-4

pre-defined function, or as the name of a FUNCTION which you define.

(As with blocks, there are other types of names we have not yet encountered.)

A definition of a name is internal to a block if:

1) the block is the innermost block that contains some declaration

that defines the name; or

2) the block is a FUNCTION that defines the name as a parameter

in the heading; or

3) the block is the innermost block that contains some other block,

and the name is a label on this other block.

Each definition of a name is thus internal to at most one block.

A definition not internal to any block is said to be external (or program

level, as we have been calling it). Names of program-level functions, and

names declared in program-level declarations, are thus externally defined;

so are the names of all pre-defined functions. A parameter name, on the

other hand, is always internal to some FUNCTION.

A reference to a name is any use of the name apart from its

definition. Thus a function call refers to a function name, an EXIT

statement may refer to a BEGIN block name, an arithmetic expression may

refer to any number of variable names, and so on.

Restrictions on the definition of names

A name may be defined any number of times within a program. But

the placement of its definitions is limited by the following rule:

Rule 1: there may be only one external definition of a given

name (in any one program);

Rule 2: only one definition of a given name may be internal

to any one block.

256

The first rule yields the simpler restriction you already know:

two program-level variables cannot have the same name. It also says that

two program-level functions cannot have the same name, that a program-level

function cannot have the same name as a program-level variable or BEGIN

block, and so forth.

The second rule is just a generalization of the restrictions.

It says that a name can be defined in only one way internal to each block.

Rules for references to names

What does it signify for a name to be defined more than once in

a program? It means that the compiler will interpret a reference to the

name in different ways, depending on where the reference occurs. A re

ference in one part of the program will be interpreted according to one

definition, in other parts according to other definitions. Thus, it

is not enough to just have rules that tell where a name may be defined

legally. There must be a rule that tells where a name can be referred

to legally. And there must be a rule that says which definition applies

to a reference in a particular place.

In short, we need a way to determine precisely that area of a program

where a given definition is applied when the name it defines is referred

to. This area of application -- known as the scope of the definition --

is determined as follows:

Rule 3: a non-external definition of a name is applied through

out the body of the block it is internal to --

except in the bodies of any contained blocks that

have a different definition of the name internal to

them. In other words, the scope of the definition

is the body of the block it is internal to, minus

any scopes for the same name that are contained in

that block.

Rule 4: an external definition of a name is applied through

out the program -- except in the bodies of any blocks

with different definitions of the name internal to

them.

257

Thus the definition's scope is the whole program,

minus any other scopes for the same name that are

contained in the program.

Rules 1 through 4 together guarantee that no two scopes for

definitions of the same name ever overlap in a valid program. So there

is no question which definition of a name the compiler applies at any

given point. Of course, there may be some places where a name is

undefined; these cases are governed by one last rule:

Rule 5: a name may only be referred to within the scope

of one of its definitions; otherwise, the reference

is in error.

Each of the rules of this section is a general case of one you

already know. Rule 4 implies that a name defined only at program level

is known throughout the program. Rule 3 implies that a name defined only

as a parameter or internal name within one function is known through-

out that function; and rule 5, such a name is not known outside the body

of the one function where it is defined.

An example with multiple declarations

The rules we have given are best appreciated by seeing how they

work together in actual examples. We, therefore, present here the entire

billing program of Chapter 16, incorporating many of the changes intro

duced by subsequent chapters, plus a few brand new changes. In particular,

there is now one name that appears in three different declarations, and

another that appears in two:

258

VARIABLES I, PAST_COUNT, ACCT NO ARE INTEGER::= 0,

LINE COUNT IS INTEGER::= 50;

VARIABLE FREE ACCT TABLE IS ARRAY(999) BOOLEAN ::=FALSE;

STORE FREE ACCT_NUMBERS;

FOR I UNTIL ACCT NO <= 0

REPEAT

LINE COUNT := LINE_COUNT + l;

IF LINE COUNT = 51 THEN START_NEW_PAGE;

PROCESS_NEXT_ACCOUNT;

END;

PRINT_STATISTICS;

STORE FREE ACCT NUMBERS:

FUNCTION;

VARIABLES I, N, FREE_ACCT ARE INTEGER;

READ_LINE (N);

IF N < 0 I N > 999 THEN

TERMINATE WITH ERROR ('NUMBER OF FREE ACCOUNTS I I I
'NEGATIVE OR >999');

FOR I THRU N

REPEAT

READ_LINE (FREE_ACCT);

IF FREE_ACCT < 1 I FREE_ACCT > 999 THEN

TERMINATE_WITH_ERROR ('FREE ACCOUNT NUMBER IS '

11 I <l OR >999 I) ;

FREE_ACCT_TABLE(~REE_ACCT) := TRUE;

END;

END STORE_FREE_ACCT_NUMBERS;

259

START NEW PAGE:

FUNCTION;

VARIABLE PAGES IS INTEGER STATIC ::= 0;

PAGES := PAGES + l;

PAGER ('ACCT # CUSTOMER NAME OLD BAL.

'PAYMENT PAST DUE INTEREST PURCHASE

'NEW BAL.' I LPAD ('PAGE I I 60), PAGES) i

PRINT;

LINE COUNT := l;

END START NEW PAGE; - -

PROCESS NEXT ACCOUNT:

FUNCTION;

VARIABLES OLD_BAL, PAYMENT, PURCHASE,

NEW_ BAL ARE REAL I

PAST_DUE, INTEREST ARE REAL ::= O;
VARIABLE NAME IS STRING(20);

CONSTANT ERROR_MESSAGE IS STRING(23) ::=

'ACCOUNT HAS NUMBER >999';

READ_LINE (NAME, ACCT_NO, OLD_BAL, PAYMENT, PURCHASE);

NAME:= NAME_CHECK (NAME);

IF ACCT_NO <~ 0 THEN RETURN;

IF ACCT NO > 999 THEN

TERMINATE WITH ERROR (ERROR_MESSAGE);

IF OLD BAL = 0 & PAYMENT = 0 & PURCHASE = 0 THEN

BEGIN;

PRINT (I

RETURN;

END;

I LPAD (ACCT_NO, 3, 'O') I I I I NAME);

IF ~FREE ACCT_TABLE(ACCT_NO) & PAYMENT < OLD BAL THEN

BEGIN;

PAST DUE := OLD BAL - PAYMENT;

INTEREST := PAST_DUE * 0.015;

PAST COUNT := PAST COUNT + l;

END;

NEW BAL := OLD BAL - PAYMENT + INTEREST + PURCHASE;

PRINT (I I I LPAD (ACCT_ NO I 3 I I 0 I) ' I I I NAME I

DSTRING (OLD_BAL, 5, 2) I DSTRING (PAYMENT, 5, 2) I

DSTRING (PAST_DUE, 7, 2) I DSTRING (INTEREST, 7, 2) I

DSTRING (PURCHASE, 7, 2), DSTRING (NEW_BAL, 7, 2));

260

NAME CHECK:

FUNCTION (INPUT IS STRING(20)) STRING(*);

VARIABLES I, FIRST, LAST ARE INTEGER;

VARIABLE ERROR_MESSAGE IS STRING(31) ::=

'INVALID CHARACTER WITHIN A NAME';

FOR FIRST THRU 20 UNTIL INPUT(FIRST)-= ' '

REPEAT; END;

IF INPUT(FIRST) = ' ' THEN RETURN;

FOR LAST FROM 20 BY -1 UNTIL INPUT(LAST)

REPEAT; END;

FOR I FROM FIRST THRU LAST REPEAT

I I

IF (INPUT (I) < 'A' I INPUT (I) > I z ') &

INPUT(I) -=' ' & INPUT(I) -=I I'' THEN

TERMINATE_WITH_ERROR (ERROR MESSAGE);

END;

RETURN INPUT(LAST - FIRST+ 1 AT FIRST);

END NAME_CHECK;

END PROCESS_NEXT_ACCOUNT;

PRINT STATISTICS:

FUNCTION;

PRINT; PRINT;

PRINT (I I I ' ACCOUNTS WERE PROCESSED');

PRINT (PAST_COUNT I I ' ACCOUNTS HAD BALANCES PAST DUE');

END PRINT_STATISTICS;

TERMINATE WITH ERROR: - -
FUNCTION (MESSAGE_OUTPUT IS STRING(*));

IF I = 0 THEN PRINT ('EXECUTION TERMINATED BY I I I
'ERROR BEFORE PROCESSING: I I MESSAGE_OUTPUT);

ELSE PRINT ('EXECUTION TERMINATED BY I I I
'ERROR DURING PROCESSING: ' MESSAGE_OUTPUT);

TERMINATE;

END TERMINATE_WITH_ERROR;

261

ERROR MESSAGE is declared as a STRING(23) constant internal to

PROCESS NEXT ACCOUNT. It is also declared a STRING(31) variable internal

to NAME_CHECK, a function which is contained in PROCESS NEXT ACCOUNT.

Thus the scope of the constant ERROR MESSAGE is all of the body of

PROCESS_NEXT_ACCOUNT, except for the body of NAME_CHECK; the body of

NAME_CHECK is the scope of the variable ERROR MESSAGE. This means that

the compiler interprets the statement

TERMINATE WITH_ERROR (ERROR __ MESSAGE);

as referring to a variable STRING(31) when it appears within NAME CHECK's

body, and to a constant STRING(23) when it appears within

PROCESS NEXT ACCOUNT but not NAME CHECK.

Notice that only the ability to refer to the STRING(23) data is

lost when NAME CHECK is called -- the storage area for the data remains

allocated, even though a second, STRING(31) storage area for ERROR MESSAGE

is also allocated. After NAME_CHECK returns, the STRING(23) may again be

referred to with the name NAME_CHECK, in the rest of PROCESS NEXT ACCOUNT.

This illustrates an important point. Scopes are not determined by rela

tions between data types or by the flow of control; they depend only on

position within the program. Several pieces of data with the same name

may be in storage at the same time -- but only one of them can be ref erred

to in any one scope.

We can demonstrate this point again by considering the variable I.

There are two AUTOMATIC variables called I -- one whose scope is the body

of NAME_CHECK, and one whose scope is the body of STORE FREE ACCT NUMBERS.

There is also an external STATIC declaration of I, whose scope is the rest

of the program. Storage for this latter I is maintained throughout the

program's execution -- but its value cannot be referred to within the

body of NAME_CHECK or STORE_FREE_ACCT_NUMBERS. Now consider what happens

when NAME CHECK is called with an invalid name. The I used as a FOR variable

is NAME CHECK'S internal one. But when TERMINATE WITH ERROR is called,

control moves to the scope of the external I; thus the value that is tested

in TERMINATE WITH ERROR is the value of the STATIC I, which is what we

want to test. Storage for NAME CHECK's I is still allocated when

TERMINATE WITH_ERROR is being executed, but the value being stored can no

longer be referred to -- since the program is terminated without control

returning to NAME CHECK's body.

262

In our examples, a name declared several times still represented

the same type of data in each declaration. This is most often the case,

because names are usually chosen for their mnemonic significance -- NAME is

more likely to be a STRING than a REAL, ACCT_NO is more likely an INTEGER

than a BOOLEAN. But none of this is required by the rules. A name may

refer to data of any number of different modes in different scopes.

Scopes of parameter names

Under the scope rules, a function call may contain argument

variables whose names are the same as their corresponding parameters. This

is because the parameters' scope lies entirely within the body of the

function that declares them. The call is outside the function's body,

where the arguments are interpreted according to declarations with a

different scope. (Some special rules apply when a function is called

from within its own body. But that is an advanced topic -- all of the

functions we have showed how to define thus far may not legally be called

from within themselves.)

As an example, we can now write the center-of-gravity program

(p. 209) with external arrays named WEIGHT and DISTANCE instead of WT

and DIS. The scope of the parameters with these names is limited to the

body of GRAVITY_CENTER; the scope of the external declarations is the rest

of the program, including the call to GRAVITY CENTER.

Names used in parameter declarations

Some parameter declarations use names other than the ones they

declare. For instance, variables or constants may be used to specify

array parameter sizes, as you saw in Chapter 17. Each use of a variable

or constant in a parameter declaration constitutes a reference, which is

interpreted according to the name scope rules.

The interpretation of most such references is obvious. But

there is one tricky case. Consider a variable used in a parameter decla

ration, and declared internal to the function as well:

VARIABLE N IS INTEGER;

CENTER:

FUNCTION (WEIGHT, DISTANCE ARE ARRAY(N) REAL);

VARIABLE N IS REAL;

263

The scope of the REAL N is the body of the function CENTER, while the

scope of the INTEGER N is the text external to the definition of

CENTER. However, the N in the array specification (which is part of the

heading), refers to the INTEGER N. Any use of N in the body of the

function, though, will be a reference to the REAL N.

Names used in declaration statements

Variable or constant names are used in declarations internal to

a function the same way they are used in parameter declarations -- to

specify array sizes. They are also used in initialization expressions.

If the names used are only declared outside of the function, then the

scope rules can be applied without raising any problems. However, it

is a different matter when a name used in a declaration was itself

declared internal to the same function.

To see why, consider first this example:

ABC!:

FUNCTION;

VARIABLE A IS REAL .. - B;

VARIABLE BIS REAL::= A;

The scope rules say that the B and the A in the initialization expres

sions refer to the B and A internal to ABC!. Thus each variable is being

initialized to the other -- clearly a circular definition. Now consider

this possibility:

ABC2:

FUNCTION;

VARIABLE A IS P~AL ::= l;

VARIABLE BIS REAL::= A;

This seems as though it should work. First A is initialized to 1, then B

is initialized to A. But what if the declarations were reversed:

264

ABC3:

FUNCTION;

VARIABLE BIS REAL::= A;

VARIABLE A IS REAL ::= l;

Is this an error, because B is initialized to A before A has any initial

value? Or does the compiler recognize this, and initialize A first, even

through its declaration comes second?

CS-4 resolves such cases by a simple method. Expressions used in

declarations of variables and constants (such as expressions for initializa

tion or array-size values) are always evaluated in the order that the de

clarations appear in the function body. If a name is used in a declaration

that precedes its own declaration internal to the same block, it is in

error. Thus function ABC2 is correct, while ABCl and ABC3 are wrong.

Since parameters are always the first names declared internal to

a function, they may be used legally anywhere in subsequent internal

declarations. And, of course, names declared externally or in

containing functions, are not subject to the restrictions we have described.

In external declarations, only external names can be used

they are the only ones at program level. The same .rule applies: names

cannot be used in external declarations that come before their own.

Scope of function names

The scope rules affect functions much as they do variables and

constants. A name may be defined to refer to different functions

in different parts of a program. One definition may be superceded by

another with the same name in a contained block.

Both declarations and function definitions create new scopes

for a name. Thus a name cannot be defined as both a variable and a

function internal to the same block. Furthermore, a variable or constant

declaration overrides any function definition in a containing block

(or at program level), and vice versa. This can have serious consequences:

if PRINT is declared as an INTEGER, you cannot refer to the PRINT function

within the scope of that declaration.

265

It is important to realize that a function definition can only

be internal to a block that contains it -- it is never in any sense

internal to itself. Thus it is perfectly legal to write

TEST!:

FUNCTION;

TEST2:

FUNCTION;

VARIABLE TEST2 IS BOOLEAN;

END TEST2;

END TEST!;

The BOOLEAN TEST2 is internal to the FUNCTION definition TEST2, while the

function TEST2 is internal to the FUNCTION definition TEST!. Thus the scope

of the TEST2 variable name is the body of TEST2, while the scope of the

TEST2 function name is all of the body of TEST! outside the body of TEST2.

Function names, like variable or constant names, may be used

in declarations. For example:

SAMPLE:

FUNCTION (XIS ARRAY (SZ (Y)) REAL);

VARIABLE USER IS STRING (LTH (NAME)) ::=

CONSTANT N IS INTEGER::= SUM (X);

I•

'

There is a difficulty that may arise here in one particular case: if

the function LTH is itself defined internal ~o SAMPLE. If LTH

happens to refer to the variables USER or N which are being declared, it

must be an error neither has been initialized yet, and the length of

USER is not even determined. It is not possible for the compiler to check

for all errors of this sort. Instead, the language imposes a stronger

restriction: a declaration statement may not call a function internal

to the same block. For the same reasons, external declarations may not call

any functions defined in the program; they may call pre-defined functions,
however.

266

Scopes of BEGIN block names

The scope rules make it possible to use the name of a BEGIN

label for unrelated purposes elsewhere in a program, without committing

an error. In addition, it is occasionally desirable to have two or more

BEGIN blocks with the same name. In such a case, the scope rules are

used to determine which block is ref erred to by a FROM phrase of an EXIT

statement. In particula~, if a statement such as

EXIT FROM TEST;

is within two or more BEGIN blocks named TEST, only the innermost one

will be terminated -- because it is the scope of the innermost definition

of TEST that contains the EXIT statement.

267

23.0

MORE PRE-DEFINED FUNCTIONS

CS-4 provides many functions for your use, in addition to the

ones we have already described. This chapter provides brief summaries of

many of them; a complete listing can be found in the Language Reference

Manual.

Trigonometric functions

Pre-defined functions are available to compute both the natural

trigonometric and the hyperbolic functions, and their inverses. Each

accepts a REAL (or convertible to REAL) argument, and returns a REAL:

Function Value computed

SIN sine

cos cosine

TAN tangent of argument in radians
COT cotangent

SEC secant

csc cosecant

ARCS IN inverse of sine

l ARC COS inverse of cosine result in radians

ARCTAN inverse of tangent

SINH hyperbolic sine

COSH hyperbolic cosine

TANH hyperbolic tangent

COTH hyperbolic cotangent

SECH hyperbolic secant

CSCH hyperbolic cosecant

ARCSINH inverse of hyperbolic sine

ARCCOSH inverse of hyperbolic cosine

ARCTANH inverse of hyperbolic tangent

An error is signalled if any of these functions is called with a value

outside of its domain, or a value that would produce an infinite result

(details are in the table for trigonometric functions in the Language

Reference Manual).

268

Logarithms and exponentials

There are four pre-defined functions in this category. Each

produces a REAL result with a single REAL (or convertible to REAL)

argument:

Function

LOG

LN

LOG2

EXP

Value computed

logarithm to the base 10

natural logarithm (to the base e)

logarithm to the base 2

e to the power of the argument (uses a faster

algorithm than the ** operator)

An error is signalled if one of the three logarithmic functions is called

with a non-positive argument.

Other functions on single numerical values

Several other pre-defined functions on INTEGER or REAL values

are provided because of their convenience in certain applications. Each

takes a single argument.

SQRT. Computes the square root of the argument. SQRT (X) employs

a more efficient algorithm than X ** 0.5. The argument must be REAL or

convertible to REAL, and the result is REAL.

ABS and SGN. ABS returns the absolute value of the argument.

SGN returns 1 if the argument is positive, -1 if it is negative, and 0

if it is zero. (Thus, for any X,

X ABS (X) * SGN (X)

is TRUE.) ABS returns a REAL when called with a REAL argument, and an

INTEGER when called with an INTEGER argument; SGN returns an INTEGER,

with either a REAL or INTEGER argument.

CEIL, FLOOR and TRUNC. CEIL (short for ceiling) returns the

smallest integral value not less than the argument; FLOOR returns the

largest integral value not greater than the argument. TRUNC returns the

269

argument value with its fractional part truncated. Thus TRUNC (X) =
CEIL (X) for X ~ O, and TRUNC (X) = FLOOR (X) for X ~ 0. All three

functions take a REAL argument, and return an INTEGER.

Array handling

A number of pre-defined functions are provided to make it easier

to work with arrays. You have seen most of these already, but we repeat

them here for convenience.

SIZE. Returns an INTEGER which is the size of one dimension

of an array. SIZE (A), where A is an array of any element mode, finds

the size of the first dimension of A. SIZE (A, N) , where N is an

INTEGER, finds the size of the Nth dimension of A.

ALL and ANY. The ALL function applies & between all the elements

of its argument; ANY applies I between the elements. Both accept a

BOOLEAN array of any rank, and return a BOOLEAN.

SUM and PRODUCT. The SUM function computes the sum of its argu

ment's elements; PRODUCT computes their product. Both return a REAL when

called with an ARRAY(n) REAL, and an INTEGER when called with an ARRAY(n)

INTEGER (where n represents an arbitrary size value).

MAX and MIN. MAX returns the greatest element of its argument,

and MIN returns the least element. Both produce an INTEGER value for

a rank 1 INTEGER array, and a REAL value for a rank l REAL array.

NDXMAX and NDXMIN. For an INTEGER ·or REAL array A of one

dimension, NDXMAX (A) is the least index of MAX (A) -- in other words,

NDXMAX (A) is equal to the lowest N such that A(N) = MAX (A). NDXMAX

thus tells where the first occurrence of the maximum element in A appears.

Analogously, NDXMIN (A) is the least index of MIN (A). Both functions

return a single INTEGER value.

String handling

The following pre-defined functions are provided for working

with character strings. In every case, where an argument of STRING mode

is indicated one may substitute an argument of a mode convertible to

STRING (such as REAL, INTEGER, or BOOLEAN).

276

LENGTH. Takes a STRING-mode argument, and returns an INTEGER

which is the length of the string. (LENGTH is equivalent to SIZE, except

that it can only be applied to STRING values; it is included for mnemonic

convenience.)

SUBSTR. This function selects a substring from a string. It

thus has the same effect as string subscripting.

SUBSTR may be called with two or three arguments; the first is

STRING, the others INTEGER. SUBSTR (S, N, L) returns a substring of S

of length L, beginning with the Nth character of S; in other words, it

returns S(L AT N) if Lis positive, and the empty string if Lis zero.

The substring SUBSTR (S, N) contains all characters of S from the Nth

to the last; hence it is the same as S(LENGTH (S) - N + 1 AT N)). A

call to SUBSTR is in error if N is non-positive or greater than LENGTH (S);

or if L is negative or greater than LENGTH (S) - N + 1.

INDEX AND RINDEX. These functions search a string for the

occurrence of particular substring. Each takes two STRING arguments.

INDEX (S, SUB) searches for the first occurrence of SUB as a substring

of S, while RINDEX (S, SUB) searches for the last occurrence of SUB in

S (in other words, it searches from right to left). Both return an

INTEGER that indicates at which character of S the found occurrence of

SUB begins; if SUB is not found in S, they return 0. Here are some

examples:

Expression

INDEX ('ABCDE', 'BC')

RINDEX ('ABCDE', 'BC')

INDEX ('ABCABC', 'BC'}

RINDEX ('ABCABC', 'BC')

INDEX ('ABCABC', 'Z')

Value

2

2

2

5

0

A call to INDEX or RINDEX is in error if the length of the second argument

exceeds the length of the first.

271

PAD. This function "right pads" a string with spaces. Its first

argument is a STRING, and its second an INTEGER. PAD (S, N) returns a

STRING value of length N, whose first LENGTH (S) characters are the

characters of s, and whose remaining characters are blank characters.

A call to PAD is in error if N is less than the length of s.

Operating system interface functions

PRINT, OVER_PRINT, PAGER, READ_LINE, and TERMINATE perform their

actions by communicating with the computer's operating system -- a program

or group of programs that regulate how and when your program uses the

different parts of the computer. These functions are thus known as

operating system interface functions. PRINT, OVER_PRINT, PAGER, and READ LINE

request to use input or output devices connected to the computer; TERMINATE

requests that a program be terminated.

There are many other operating system interface functions, all

of which are described in the Operating System Interface manual. We

will not explore these functions further in this Primer, however, since

generally they require a more than elementary knowledge of the properties

of operating systems.

272

24.0

DEFINITION OF OPERATORS

Operators in CS-4 work in very much the same way that functions

do. Consider these similarities:

1) Each operator, like each function, has a distinct name that

distinguishes it from other operators or functions.

2)

3)

4)

Each reference to an operator name. specifies some particular

set of actions we have been calling it an operation --

that is to be performed; this is analogous to what a function does.

The actions performed by an operator depend on its arguments -

or operands, as we have called them.

An operator may have a return value, which we have been referring

to as a result value.

There are indeed, only two important differences between functions

and operators. First, there are different rules for forming their names -

operators may be composed of certain special symbols. Second, the syntax

of their calls differs. A prefix operator is placed directly before

its single argument; an infix operator is placed between its two argu

ments. Operator calls are thus limited to one or two arguments, while

functions may have any number of arguments, even none.

We mentioned earlier that CS-4 had other "procedures" in

addition to FUNCTIONS. As you may have guessed by now, prefix

operators and infix operators are two of those procedures. These

operators, like FUNCTIONs, may be defined by the programmer. This chapter

will show how this is done. As you will see, they are defined in almost

exactly the same way that functions are defined.

273

Operator names

All the operators we have used so far are named by operator

symbols. Programmer-defined operator symbols may be composed of one

or more of the following characters:

$ % & * + - I <=>?@\"I'-.

subject to three restrictions:

1)

2)

3)

An operator symbol may not begin or end with the decimal

point character(.).

The operator symbol may not exceed 32 characters in length.

Four operators are reserved:

: : =

Like the reserved words discussed in Chapter 2, these have fixed meanings

in CS-4, and may not be redefined in a program.

The following are thus examples of valid operator symbols:

+:+ +.* ?

while these are all illegal names for operators:

. + // . (&) +,* 7= PLUS@

Operators may also be named by identifiers, just as variables

and functions are. We have shown no examples of this so far, but we can

mention here that the logical operators &, ·I, and may also be referred

to with the names AND, OR, and NOT, respectively. Thus the expression

may equivalently be written as

NOT A AND NOT B OR C

274

Note that two adjacent identifiers, like adjacent operators, must be

separated by a space so that they can be distinguished by the compiler.

Defining prefix and inf ix operators

A prefix operator is defined by writing a PREFIXOP definition.

It is identical to a FUNCTION definition, except that the word FUNCTION

is replaced by PREFIXOP. Also, a PREFIXOP definition must declare

exactly one parameter, or it is in error.

An infix operator is defined by writing an INFIXOP definition.

It, too, is identical to a FUNCTION definition, except that the word

INFIXOP replaces FUNCTION. An INFIXOP must declare exactly two para

meters. The first parameter is passed the left operand, and the second

is passed the right operand, unless you specify otherwise (we will show

how to do so later in this chapter).

The rules we have given that relate to FUNCTIONs also apply

to operators. Thus the label (or labels) on the heading of a PREFIXOP

or INFIXOP definition name the operator that is being defined; these

labels may be either operator symbols or identifiers. Parameters and

return values are manipulated in the ways you already know, and the

mechanics of call and return are the same.

PREFIXOP and INFIXOP definitions obey the same rules as all

procedures and blocks with respect to storage allocation and the scope

of names. There is an important extension of the scope rules, however,

when they apply to operator names. Essentially, an operator may be

defined as both an infix and a prefix operator at the same time. More

exactly we can say:

1)

2)

A name may be defined as both a prefix operator and an infix

operator internal to the same block or procedure.

The scope cf a prefix operator's name is the body of the block

or procedure to which its definition is internal, except for

the bodies of any contained blocks or procedures internal to

which the name is redefined as something other than an infix

operator. And vice-versa -- this same rule holds if you switch

the words inf ix and pref ix.

275

You have already seen two pre-defined operators, + and -,

which are both infix and prefix. This causes no problems of interpretation,

because the context of an operator always determines whether it is

intended as infix or prefix.

A procedure invocation is anything that causes a procedure's

body to be executed; a function call is thus an invocation, as is the

operation of an operator on one or two operands.

One further fact about procedures is useful here. The heading

of a procedure may be labelled with two or more names, in which case any

one of the names may be used to refer to the function or operator being

defined. For example:

& : AND:

INFIXOP (A, B ARE BOOLEAN) BOOLEAN;

might be the heading for the logical operator that can be invoked by

either & or AND.

Examples of operator definitions

Our first example is a prefix operator which sums over the first

dimension of a two-dimensional array of REALs, like the function SUM 2

of chapter 19:

+/ : SUM2:

PREFIXOP (ARRAY_2 IS ARRAY(*,*) REAL) ARRAY(*) REAL;

VARIABLE I IS INTEGER,
ARRAY SUM IS ARRAY(*) REAL ::= ARRAY_2(1);

FOR I FROM 2 THRU SIZE (ARRAY_2, 1) REPEAT

ARRAY SUM :=ARRAY SUM+ ARRAY_2(I); END;

RETURN ARRAY_SUM;

END +/;

If DISTANCE is declared as

VARIABLE DISTANCE IS ARRAY(M,N) REAL;

then either of the following:

276

+/DISTANCE

SUM2 DISTANCE

represents an ARRAY(N) REAL equal to the sum over the first dimension

of DISTANCE. Notice that, since +/ and : are both operator symbols,

they must be separated by a space in the definition.

We will give two examples of infix operator definitions.

The first one raises an integral value (left operand) to a non-negative

integral power (right operand) • It takes two INTEGERS and returns an

INTEGER:

*** :

INFIXOP (BASE, EXPONENT ARE INTEGER) INTEGER;

VARIABLE PARTIAL PRODUCT IS INTEGER ::= l;

IF EXPONENT < 0 THEN
BEGIN;

PRINT ('*****ERROR: NEGATIVE'

I I ' EXPONENT TO*** OPERATOR');

PRINT (' PROGRAM TERMINATED BY ERROR');

TERMINATE;

END;

THRU EXPONENT REPEAT

PARTIAL PRODUCT := PARTIAL PRODUCT * BASE; END;

RETURN PARTIAL_PRODUCT;

END ***;

This operator can be invoked, in the scope where it is known, by

expressions such as:

A *** B

2 *** SIZE LIMIT

x *** 0

y *** -3

If SIZE_LIMIT above is a REAL, its value is converted to INTEGER by

rounding before it is assigned to the parameter EXPONENT. The invocation

277

with right operand -3 causes the procedure to terminate the program, as

would either of the first two invocations if B or SIZE_LIMIT were negative.

Our second inf ix operator takes a STRING value as right operand,

and a STRING variable as left operand, and assigns the former to the latter.

If the value to be assigned is longer than the variable, excess characters

at the right of it are discarded (in other words, the right operand's

value is truncated at the right, if necessary).

I=
INFIXOP (TARGET IS STRING(*) OUTPUT, VALUE IS STRING(*));

IF LENGTH (TARGET) >= LENGTH (VALUE) THEN

TARGET := VALUE;

ELSE TARGET := VALUE (LENGTH (TARGET) AT 1) ;·

END I=;

This is an example of a useful operator that does not need a return

value. It passes its result back to the left operand through an OUTPUT

parameter. (Of course, you could give it a return value, too, if you

wished.)

Precedence in operator definitions

When a programmer-defined operator is used with other operators

in an expression, what is its relative precedence? When no precedence

is specified in the definition -- as in those of the previous section -

the defined operator is given a default precedence which is just greater

that that of := (but which is less than the precedence of any previously

defined operator whose precedence is greater than :=) .

It is sometimes valuable, though, to be able to define an

operator with some other precedence relative to previously defined operators.

This is done within an ATTRIBUTES phrase which is placed at the end of the

INFIXOP or PREFIXOP heading. Here is an example of an ATTRIBUTES phrase

that specifies the precedence of *** :

*** :

INFIXOP (BASE, EXPONENT ARE INTEGER) INTEGER

ATTRIBUTES (PRECEDENCE = **);

278

This says that *** has the same precedence as ** I ~ pre-defined operator.

The expression

PRECEDENCE = oper

where "oper" is the name of some operator, is called an attribute. There

are two other forms of attributes that may be used to specify precedence:

PRECEDENCE > aper

PRECEDENCE < oper

The first says that the operator being defined has a precedence just

greater than the one named "aper"; in other words, the defined operator

has greater precedence than "aper", but less precedence than any pre

viously defined operator with precedence greater than "oper". Similarly,

-the other attribute above says that the defined operator has precedence

just less than "oper", in the same sense.

The presence of some "aper" in a precedence attribute is consi

dered a reference to that name in the definition heading. Thus the

attribute is in error if it is not within the scope of some definition

of "oper". If "aper" is defined as both infix and prefix operator in the

scope that contains the precedence attribute, it is assumed to refer to

the infix one if the attribute is in an INFIXOP definition heading, and to

the prefix one if it is in a PREFIXOP definition.

The names =, >, <, and PRECEDENCE, when they appear in a

precedence attribute, are not interpreted as references to definitions

of these symbols. Instead, they have special context meanings, which

are independent of where or whether they have been defined in the program.

Thus it is even possible to write

ATTRIBUTES (PRECEDENCE > >)

which specifies a precedence just greater than that of >. The first

> symbol is interpreted with the special context meaning; the second >

symbol refers to a defined operator > whose scope contains the proce

dure heading in which the ATTRIBUTES phrase appears.

279

(We have encountered names with special context meanings before,

although we did not identify them as such. Among them are the storage type

names STATIC and AUTOMATIC, the parameter type names INPUT, OUTPUT, INOUT, and

COPYIN, and the operator symbol * used as an abbreviation for a subarray

subscript. The names used in the attributes defined in the next two sec

tions are also interpreted with special context meanings.)

Associativity in operator definitions

Precedence is just one of the two factors that determine the

grouping of operands. The other is associativity. The associativity of

a defined infix operator may be specified explicitly with one of the follow

ing attributes:

LEFT ASSOCIATIVE

RIGHT ASSOCIATIVE

Each attribute is written as two words.

The default associativity attribute is LEFT ASSOCIATIVE. So only

RIGHT ASSOCIATIVE need be written explicitly in an ATTRIBUTES phrase:

*** .

INFIXOP (BASE, EXPONENT ARE INTEGER) INTEGER

ATTRIBUTES (RIGHT ASSOCIATIVE) ;

How does one specify both an associativity and a precedence

attribute? When a definition contains two or more attributes, they are

placed in a comma-separated list in the ATTRIBUTES phrase:

*** :
INFIXOP (BASE, EXPONENT ARE INTEGER) INTEGER

ATTRIBUTES (RIGHT A.SSOCIATIVE, PRECEDENCE * *) ;

The order of the attributes does not matter. There may not be more than

one ATTRIBUTES phrase in a definition, nor may any type of attribute

appear more than once in the ATTRIBUTES phrase.

280

The COMMUTATIVE attribute

It is sometimes convenient to let the arguments to an infix

operator appear in either order -- that is, to let the left operand

be assigned to the second parameter, and the right operand to the first

parameter, instead of the other way around. This property can be in

dicated by adding an attribute consisting of the single word

COMMUTATIVE

To see how COMMUTATIVE works, consider the following operator

which returns a string concatenated with itself an integral number of

times:

I* I :
INFIXOP (UNIT IS STRING(*), N IS INTEGER) STRING(*)

ATTRIBUTES (COMMUTATIVE);

IF N <= 0 THEN

BEGIN;

PRINT (I *****ERROR: I* I INVOKED WITH NON- I I I
'POSITIVE ARGUMENT.');

TERMINATE;

END;

BEGIN;

CONSTANT LIS INTEGER::= LENGTH (UNIT);

VARIABLE OUTSTRING IS STRING(N * L) ::=UNIT,

I IS INTEGER;

FOR I FROM L THRU (N - l) * L BY L REPEAT

OUTSTRING(L AT I + l) := UNIT; END;

RETURN OUTSTRING;

END;

END l*I;

This operator may be invoked with either an INTEGER left operand and

STRING right operand, or a STRING left operand and INTEGER right operand.

Either way, the STRING is concatenated with itself as many times as the
INTEGER specifies. For instance,

281

3 I* I I ABC I

I ABC I I* I 3

both return the value 'ABCABCABC'.

The situation is a bit more complicated when the operand modes

do not match the parameter modes, even when the order of the operands is

reversed. The compiler then tries to find a suitable conversion for one

or both operands. It first looks for a conversion of the left operand

to the first parameter's mode, and the right operand to the second para

meter's mode; if this doesn't work, it tries to find conversion for the

reverse order. Here are some examples, using the 1*1 operator:

Expression Value

'ABC' I* I 3.7 'ABCABCABCABC'

3.7 I* I 'ABC' 'ABCABCABCABC'

3 I* I 2 I 33 I

2 I* I 3 •222'

2 I* I 2.9 1 222'

The order of the operands is reversed in the second example -- because

there is no_conversion from the STRING 'ABC' to INTEGER. In all the

other cases, conversions can be found for the operands in the order

they appear.

The assignment operator

Now that we have explained the concepts which underlie operator

definitions, we present some additional information about how the assign

ment operator :~ has been defined and how it operates.

The assignment operator is defined for every mode used in a

program's declarations, including modes that are used as part of generated

modes (that is, if you declare an ARRAY(lO) BOOLEAN), .- is defined

both for ARRAY(lO) BOOLEAN and for BOOLEAN). When the left operand is

of a mode generated with ARRAY, and the right operand is of the array's

element-mode, := is applied according to the rules we have given for

array assignmento

The return value of := is the value of the left operand after

the assignment has been performed. One may thus assign the same value

282

to more than one variable with a statement such as:

FACT:= (MULT := l);

Assignment is right associative, so the parentheses above may be

dispensed with. As another example, one could replace these two

statements which we showed earlier in a prime-generating program:

TEMP := CANDIDATE/ PRIME(I);

IF PRIME(I) * TEMP= CANDIDATE THEN EXIT FROM TES1r;

with a single statement:

IF (PRIME(I) * (TEMP :=CANDIDATE /PRIME(I))) =CANDIDATE

THEN EXIT FROM TEST;

PRIME(I) is here multiplied by the value assigned to TEMP, which is

the value of CANDIDATE / PRIME(I) after rounding.

Pre-defined operators

You already know most of the ~S-4 pre-defined operators. They

are the ones for arithmetic, comparison, and logical operations,

and for concatenation. We mention here only one more, which has

not come up in previous discussions. (A tabulation of all

pre-defined operators used in this volume, along with their asso~

ciativity and relative precedence, appears in Appendix B.)

Integer divide. The infix operator IDIV takes two INTEGER

operands and returns an INTEGER value. A IDIV B is equal to A I B

with its fractional part truncated; for example:

Value of A Value of B A I B A IDIV B

5 4 1.25 1

15 4 3.75 3

-5 4 -1. 25 -1

-15 4 -3.75 -3

10 5 2. 2

IDIV can be useful in programs concerned with the divisibility

of one number by another. In a program that generates prime numbers,

for instance, one could make use of this expr~ssion:

283

CANDIDATE= PRIME(!) ~ (CANDIDATE IDIV PRIME(I))

which evaluates to TRUE only if PRIME(!) evenly divides CANDIDATE.

284

APPENDICES

APPENDIX A

ASCII CHARACTER SET AND COLLATING SEQUENCE

Below is the full ASCII character set, including control char

acters. The character code determines the collating sequence -- char

acters with numerically lower codes precede those with higher codes.

Character Graphic
Code (if any) Remarks

000
001

002

003

004

005

006

007
008

009
010

011
012

013

014
015
016

017

018

019

020

null
start of head

ing; start
of message

start of text;
end of
address

end of text;
end of
message

end of trans
mission

enquiry; who
are you?

acknowledge;
are you ... ?

ring bell
backspace;

format
effector

horizontal tab
line feed;

line space
vertical tab
form feed to

top of next
page

carriage return
to beginning
of line

shift out
shift in
data link

escape
device con

trol 1
device con

trol 2
device con

trol 3
device con

trol 4

Character Graphic
Code (if any) Remarks

021

022
023

024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039

040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055

287

II

$
%
&

(
)

*
+

I
0
1
2
3
4
5
6
7

negative acknow
ledge; error

synchronous idle
end of transmission

block; logical
end of medium

cancel
end of medium
substitute
escape
file separator
group separator
record separator
unit separator
space

apostrophe; replaced
by acute accent
(...) on some in
stallations

hyphen or minus sign

numeral zero

Character Graphic
Code (if any) Remarks

056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094

Notes:

8
9

<

>
?
@

A
B
c
D
E
F
G
H
I
J
K
L
M
N
0
p
Q
R
s
T
u
v
w
x
y
z
[

\
J
A circumflex;

also vert
ical arrow
(t) on some
installations

Character Graphic
Code (if any) Remarks

095

096
097
098
099
100
101
102
103
104
105
106
107
108
109
llO
111
112
ll3
114
115
116
ll7
118
119
120
121
122
123
124
125
126
127

a
b
c
d
e
f
g
h
i
j
k
1
m
n
0

p
q
r
s
t
u
v
w
x
y
z
{

I
}

underscore; also
horizontal arrow
(+-) on some in
stallations

grave accent

delete; rub out

1) For control characters (codes 0 through 31, and 127) the

definitions under "remarks" are those given by ASCII.
The actual effect of a given control character depends on

the device to which it is sent.

288

2) On many installations, only the upper case alphabet can be input

or output. If the lower case alphabet is available, lower case

letters may be used in CS-4 identifiers, where they are con

sidered distinct from upper case ones. For example, any of

these three names could be declared as a variable:

DISTANCE

Distance

distance

If all three were referred to, they would be interpreted as

different names by the compiler. Lower case letters may not

be used in place of upper case ones in words which have a

special meaning in CS-4 (including reserved words, words with

special-context meanings, and names of pre-defined functions

and operators).

289

APPENDIX B

PRECEDENCE AND ASSOCIATIVITY OF PRE-DEFINED

OPERATORS USED IN THIS VOLUME

Operators Precedence* Associativit:)l

**

+

* ,

+

11

=,

& '

I ,
.-

I

10 right

(prefix) , - (prefix) ,
NOT 9

/, IDIV 8 left

(infix) , - (infix) 6 left

5 left

- >I <, >=, <= 4 left

AND, NAND 3 left

OR, XOR, NOR 2 left

1 right

* Numbers in this column indicate relative precedence -

operators with higher numbers have higher precedence than

those with low$r ones. (The numbers themselves are taken

from the full table on page 71 of th$ Language Reference

Manual.)

290

Reader's Comment Form

A CS-4 PRIMER

Your comments on this Primer are encouraged, so that we

may make improvements to subsequent editions. Opinions on the

Primer's usefulness and readability, suggestions for additions

and deletions, and notes of specific errors and omissions are

all welcome.

COMMENTS

Name:

Organization or Company:

Address:

Date of latest update incorporated in your Primer:

291

I
I

I
-· __ _ ___ fold _ -- --· -- -- -- -- ~

01
I

Mr. Warren E. Loper
Code 5200
Naval Electronics Laboratory Center
San Diego, California 92152

-- fold - --

292

I
l
I
I

Reader's Comment Form

A CS-4 PRIMER

Your comments on this Primer are encouraged, so that we

may make improvements to subsequent editions. Opinions on the

Primer's usefulness and readability, suggestions for additions

and deletions, and notes of specific errors and omissions are

all welcome.

COMMENTS

Name:

Organization or Company:

Address:

Date of latest update incorporated in your Primer:

293

- fold

Mr. Warren E. Loper
Code 5200
Naval Electronics Laboratory Center
San Diego, California 92152

-- -- fold-

294

-oi
I

Update Request Form

A CS-4 PRIMER

It is planned that updates will be issued to the

Primer on an "as required" basis. If you wish to be

placed on the distribution list for these updates, please

complete this form and mail it to the address on the

reverse side.

Name:

Organization or Company:

Address:

Telephone:

Date:

Date of Latest Update Incorporated in Your Primer:

295

- fold

Mr. Warren E. Loper
Code 5200
Naval Electronics Laboratory Center
San Diego, California 92152

fold

296

Change of Address Form

A CS-4 PRIMER

If you are currently on the distribution list for

updates to this Primer and your address changes, please

complete this form and mail it to the address on the

reverse side:

Name:

Address presently on the distribution list:

New Organization or Company:

New Address:

New Telephone:

Effective Date:

Today's Date:

Date of Latest Update Incorporated in Your Primer:

297

-- -- fold --

Mr. Warren E. Loper
Code 5200
Naval Electronics Laboratory Center
San Diego, California 92152

fold --

298

INDEX

ABS function 269
ALL function 112-13, 131-32, 270
allocation of storage 245-47

AUTOMATIC data 246-48
parameters 246
STATIC data 245-47

AND operator 274
ANY function 112-13, 131-32, 270
arguments to functions 185-99

advanced topics 204
arrays of varying size 193-99
automatic length resolution 199
automatic size resolution 196-98
passed to INOUT parameters 201-03
passed to OUTPUT parameters 202-03
rules for passing 192-93
varying number of 204

Arithmetic operators 9-13
distributivity over arrays 98-99
INTEGER and REAL operands 46-48
INTEGER division 283
relative procedence 290

ARRAY mode generator 86, 107, 115
arrayness 123
arrays

ALL and ANY over 112-13, 131-32
arithmetic operators distributive

over 98-99
array elements of 133-37
arrayness 123
assignment 96-98, 108, 124
BOOLEAN 107-14
character.string elements of 158-62
comparison operators distributive

over 111-12
distributivity over multi-

dimensional arrays 131
initialization 98
INTEGER 83-95
logical operators distributive

over 112
multi-dimensional 115-38
one-dimensional 83-114
OR over 113 131-32
printing 8~108, 126, 221, 226-27,

229-31
product over 106,132
rank 123
reading 89, 108, 124-26
REAL 83-95
subarrays of 100-05, 126-30
sum over 105-06, 132
varying size 225-31

299

ASCII character set 140, 287-88
assignment 13-16, 282-83

arrays 96-98, 108, 124
character strings 147
INTEGER to REAL 48
REAL to INTEGER 48-50

assignment operator 13, 282-83
relative precedence 290

associativity(of operators) 13,
280, 290

associativity attributes 280
AT (in subscripts) 100-05
attributes

a~~ociativity 280
COMMUTATIVE 281-82
precedence 278-80

ATTRIBUTES phrase 278-80
automatic length resolution

AUTOMATIC data 248
parameters 199
return values 211-14

automatic size resolution
AUTOMATIC data 248
parameters 196-98
return values 210-11

AUTOMATIC storage 246-48, 252-53
in BEGIN blocks 252-53
initialization of 247-48
size resolution of 248

BEGIN blocks 54-56
declarations internal to 251-52
definitions internal to 251-52
labelled 77-78
nested 57-58
terminated by EXIT 74-80

block 255
inntermost 256
internal to 256
scope of names in 257-58
scope of names of 267, 275-76
see also BEGIN block, FUNCTION

definition, INFIXOP definition
PREFIXOP definition, REPEAT
statement

boolean expressions 41-44
BOOLEAN mode 39-44

conversion to STRING 158
literals 39-40

BY phrase (of REPEAT statement)
63-70
default action 68
negative value 66-67
zero value 66

calls to function 169-71
CEIL function 269-70
change of address form 297
character set 140

ASCII 287-88
character strings 139-62

arrays of 158-62
centering of 215-16
comparison of 152, 155-56
concatenation of 153-54
distributivity of operators

on 159-60
empty 212-14
length of 142
padding of see LPAD, PAD
similarity to arrays 150
subscripting 150-52
unresolved length 211-12

classes of storage see storage types
collating sequence ~5-56

ASCII 287-88
comments 22, 141
COMMUTATIVE attribute 281-82
comparison operators

BOOLEAN operands 40
character string operands

152, 155-56
distributivity over arrays

111-12, 159-60
INTEGER and REAL operands 50-51
REAL operands 33-34, 51
relative precedence 290

compiler 5-6, 25, 139, 245
compound statement 34
concatenation 153-54, 159-60
concatenation operator 153

relative precedence 290
constants 52-53, 247

internal to a function 250
see also literals

control cards 19
control characters 139, 287-88
control variable 64
conversion functions

STRING-to-BOOLEAN 240
STRING-to-INTEGER 238-39
STRING-to-REAL 239-40

conversions
BOOLEAN to STRING 158
INTEGER to REAL 46-48
INTEGER to STRING 157
REAL to INTEGER 48-50
REAL to STRING 158

300

COPYIN parameters 204, 211
CS-4 Language Reference Manual

3, 14, 17, 158, 204, 268, 290
CS-4 Operating System Interface

3, 272

debugging 6
declaration statements

constants 52-53
function names used in 266
initialization in 52
names used in 264-65, 266
order of 264-65
several modes in 51
storage type in 244-45
variables 20-21

distributivity
arithmetic operators 98-99
arrays of character strings

159-60
comparison operators 111-12,

159-60
concatenation 159-60
logical operators 112
multi-dimensional arrays 131

DSTRING function 222-24, 226-27,
236-37
arrays in 226-27

ELSE clause (of IF statement) 37
empty statement 72-73
empty string 212-14
END statement

BEGIN block 55
FUNCTION definition 174
label name in 77
RE.PEAT statement 29

equality operators see comparison
operators ~-

ES TRI NG function 224-27, 237
arrays in 226-27

executable statements 20
execution 6
EXIT statement 74-80

compared with RETURN 176
FROM phrase 78-79
REPEAT loops containing

75-76, 78-80
EXP function 269
external

function 256
variable 256

FLOOR function 269-70
flow of control 29
FOR phrase (of REPEAT statement) 63-70

default action 68-69
freeing of storage 245-46
FROM phrase (of REPEAT statement)

63-70
default action 68
value exceeding THRU value 65-66

FUNCTION definition 172-75
body 173
heading 173
see also functions

functions 165-272
advanced topics 204, 214
arguments to 185-99
arrangement of input and

output with 215-42
array parameters to 193-99
calls to 169-71, 174
declarations internal to

244-45
definition of 172-75
function definitions internal

to 250-51
independence of 185-87
internal to a block 256
parameter declarations in 187-90
parameter bindings 200-04
pre-defined 170, 175-76, 215-42,

268-72
RETURN statement in 176-77
return values to 205-14
scopes of names internal to

257-58
scopes of names of 265-66
STRING parameters to 199
structuring a program with 165-69,

180-84, 251
terminating a program from

within 177-78
two or more names for 275
used in declaration statements

266
see also arguments to functions,

parameters, return values

identifiers 17, 289
IDIV operator 283

relative precedence 290
IF statement 32, 34-38, 42

apparaent ambiguity 38

301

IF statement
boolean expressions in 42
ELSE clause 37

INDEX function 271
inequality operator see

comparison operators
infinite loop 59-60
inf ix operator 10

defining 275-82
scope of 275
see also operators

INFIXOP definition 275-76
initialization operator 52

arrays with 98
AUTOMATIC storage with 246-47

innermost block 256
input cards 25-27
input to program see READ_LINE

statement --
INTEGER-literals 45
INTEGER mode 44-51

conversion to REAL 46-48
conversion to STRING 157

INTEGER output in columns 216-20
internal to 244-45, 250, 256
invocation of procedures 276
irrelevant input data 241-42

label
BEGIN block 77-78
FUNCTION definition 173
internal to a block 256

Language Reference Manual 3, 14, 17,
158, 204, 268, 290

LENGTH function 199, 271
literals

BOOLEAN 39
exponents in 9
INTEGER 45
numerical 8
REAL 45
STRING 140-42

LN function 269
LOG function 269
LOG2 function 269
logical operators 41-42

distributivity over arrays
112

relative precedence 290
loop 29
loop statement see REPEAT

statement

looped statement 59, 72
LPAD function

strings in 216
integers in 216-20
arrays in 221-34
variable second arguments in 231-34

machine language 5
MAX function 270
MIN function 270
mode generator 86
modes 20

see also ARRAY mode generator,
BOOLEAN mode, INTEGER mode,
REAL mode, STRING mode

names
definition of 256
operators 274-75
reference to 256, 263-64
restrictions on definition of

17, 256-58, 274
scopes of 257-67, 275-76
variables 16-17

NAND operator 41
NDXMAX function 270
NDXMIN function 270
non-executable statements

20, 175
NOR operator 41

operands 10-11, 273
operating system 272
operating system interface

functions 272
Operatin' System Interface manual

3' 2 2
Operator symbols 274
operators 10-11

associativity 280
commutative 281-82
definition of 273-82
names for 274-75
precedence of 278-79
pre-defined 283
scope of names for 275-76
two or more names for 276

output from program see PRINT
statement

302

OUTPUT parameter binding 202-03
overflow 21
OVER-PRINT function 227-28, 272

PAD function 272
PAGER function 228-29, 272
parameters 187-204

advanced topics 204
arrays of varying size 193-99
automatic length resolution 199
automatic size resolution 196-99
bindings of 200-04
character strings of

unresolved length 199
COPYIN 204, 211
declaration of 187-90
inf ix operators 275
INOUT 201-03
INPUT 200-01
names used in 263-64
OUTPUT 202-03
pref ix operators 275-76
scopes of 263
types of 200-04

precedence (of operators) 12,
278-80, 290

precedence attriQute 278-80
precision (of REALs) 21, 236-37
pre-defined functions 170,175-76,

215-42' 268-72
array handling 270
declaration statements

using 266
exponentials 269
logarithms 269
on single numerical values

269-70
operating system interface

272
string handling 270-72
trigonometric 268

pre-defined operators 283, 290
pref ix operator 10

defining 275-77
scope of 275-76
see also operators

PREFIXOP definition 275-76
PRINT statement 22,215-17, 272

arrays in 89, 108, 126

printing graphics 139-40, 287-88
printing twice per line 227-28
procedures 255, 273, 275
PRODUCT function 106, 132, 270
program 3-7

form for submission to
computer 18-19

readibility 6-7
programming language 4-7

rank (of arrays) 123
READ-LINE statement 25-29, 234-42,

272
arrays in 89, 108, 124-26

readability of programs 6-7
reader's comment form 291, 293
REAL-literals 45
REAL mode 20

conversion to INTEGER 48-50
conversion to STRING 158
limits on values represented

21
precision 21

references to names 256, 263-65,
266, 275

REPEAT statement 30, 59-72
BY phrase 63-69
default actions 68-69
empty looped statement in

72-73
FOR phrase 63-69
FROM phrase 63-69
FROM value exceeds THRO value

65-66
mode of FOR variable 67-68
negative BY value 66-67
nested 71-72
step-and-test qualifying

phrases 63-69
step-and-test qualifying

phrases with WHILE and
UNTIL 70

THRU phrase 63-69
UNTIL and WHILE phrases

together 62-63
UNTIL phrase 61-62
without qualifying phrases

30, 59-60

303

reserved words 17, 274, 289
resolution of array size 193-99,

210-11, 248
resolution of character string

length 199, 211-14, 248
RETURN statement

in FUNCTION definition 176-77,
207-14

return value in 207-14
see also return values

return values
defining functions with

209-14
empty strings as 212-14
functions with 205-14
indicated in RETURN statement

207-14
length resolution of 209-14
operators with 273, 276-77
reasons for 205-06
size resolution of 210-11
varying modes of 214

RINDEX function 271
rounding 48-50

scope of a definition 257-67
BEGIN block name 267
function name 265-66
operator name 275-76
parameter name 263
rules for 257-58

SGN function 269
SIZE function 198-99, 270
space character 139
spacing rules 14

for literals 8, 9
for operators 11

special context meanings 279-80,
289

SQRT function 269
statement 14
STATIC storage 245-47, 249-50
storage allocation see

allocation of storage
storage types 243-50, 252-63

AUTOMATIC 246-48, 252-53
STATIC 245-47, 249-50

STRING mode 146-47

conversions from 238-41
conversions to 157-58
empty string 212-14
literals 140-42

S2B function 240
S2I function 238-39
S2R function 239-40
strings see character strings
subarray subscripts 100

abbreviated with * 130
subarrays 100-05, 126-30
subscripts

abbreviated with * 130
multiple 115-16, 136-38
single 86-88, 107
subarray 100, 107

SUBSTR function 271
SUM function 105-06, 132.

TERMINATE Function 35, 55, 59,
177-78, 272

THRU phrase (of REPEAT statement)
63-70
default action 69
value less than FROM value 65-66

trigonometric functions 268
TRUNC function 269-70

underflow 21
unraveling 125-26, 129
UNTIL phrase (of REPEAT statement)

60-63
update request form 295

variable 13-17
internal to a block 256
storage types 245-47
subscripted 86-88, 150-52

WHILE phrase (of REPEAT statement)
61-63

words 17, 289

XOR operator 41

304

	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304

