
AI:: LUi:»

USER GUIDE
48-165 FOO R01

concurren§
Computer Corporation

The information in this document is subject to change without notice and
should not be construed as a commitment by The Concurrent Computer
Corporation. The Concurrent Computer Corporation assumes no
responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and it
may be used or copied only in a manner permitted by that license. Any copy
of the described software must include any copyright notice, trademarks, or
other legends or credits of The Concurrent Computer Corporation and/or its
suppliers. Title to and ownership of the described software and any copies
thereof shall remain in The Concurrent Computer Corporation and/or its
suppliers.

The licensed programs described herein may contain certain encryptions o,r
other devices which may prevent or detect unauthorized use of the Licensed
Software. Temporary use permitted by the terms of the License Agreement
may require assistance from The Concurrent Computer Corporation.

The Concurrent Computer Corporation assumes no responsibility for the use
or reliability of the software on equipment that is not supplied by Concurrent
Computer Corporation.

XELOSs is a Concurrent Computer Corporation licensed product derived
from UNIXQl\ System V Release 2.0 and DOCUMENTER'S WORKBENCH@
under license from AT&T.

XELOS is a trademark of The Concurrent Computer Corporation

UNIXQl\ is a registered trademark of AT&T Bell Laboratories

DOCUMENTER'S WORKBENCH is a trademark of AT&T Technologies

IMAGEN is a trademark of the IMAGEN Corporation

c 1984 AT&T Technologies - All Rights Reserved

c 1987 The Concurrent Computer Corporation - All Rights Reserved

The Concurrent Computer Corporation
2 Crescent Place

Oceanport, New Jersey 07757

Printed in the United States of America

This manual was typeset on an IMAGENsIMPRINT 8/300 laser
Drinter driven by the troff formatter operating

CONTENTS

Chapter 1 INTRODUCTION

Chapter 2 PRIMER

Chapter 3 BASICS FOR BEGINNERS

Chapter 4 TUTORIAL-TEXT EDITOR

Chapter 5 AN INTRODUCTION TO THE SHELL

Chapter 6 GLOSSARY

-i-

GENERAL

CAVEATS

Chapter 1

INTRODUCTION

- i -

PAGE

1

2

Chapter 1

INTRODUCTION

GENERAL
The XELOS· User Guide covers the following topics:

• A description of the features in the XELOS operating system

• A general overview of the capabilities of the XELOS operating
system

• Instructions on how to use the XELOS operating system.

Not all of the capabilities of the XELOS operating system are described or
illustrated herein, but enough are described so that a new user can become
familiar with the use of the XELOS operating system.

Using the available information, users who have more interest than the
novice can utilize the information herein to accomplish their tasks with
some experimenting and self-teaching.

Throughout this volume, each reference of the form name(1M), name(7),
or name(8) refers to entries in the XELOS Administrator Reference Manual.
Other references to entries of the form name(N), where "N" is a number
(1 or 6) possibly followed by a letter, refer to entry name in section N of
the XELOS User Reference Manual. Entries where "N" is a number (2
through 5) possibly followed by a letter, refer to entry name in section N
of the XELOS Programmer Reference Manual.

III XELOS is a trademark of The Perkin-Elmer Corporation

48-165 FOO R01 (2.4) 1-1

INTRODUCTION

CAVEATS
Document processing features described throughout the following sections
may not be available on your system. Contact your system administrator
to see if the DOCUMENTER'S WORKBENCH. software option has been
installed.

'" DOCUMENTER'S WORKBENCH is a trademark of AT&T Technologies, Inc.

1·2 48·165 FOO ROI (2.4)

INTRODUCTION

HUMAN INTERFACE

Chapter 2

PRIMER

Concept of a Login •

Logging In • • • • • •

Logging Off

Entering Commands

Stopping a Program

Mail • • • • • •

Writing to Other Users. • •

On-line Manual

- i -

PAGE

1

2

2

3

5

5

10

10

11

13

Chapter 2

PRIMER

INTRODUCTION
This section of the XELOS User Guide provides the information that users
will need to access the XELOS operating system. It is not intended to be a
detailed description. Many of the subjects described are discussed in detail
in other sections of this volume or the XELOS User Reference Manual.

Throughout this section, each reference of the form name(1M), name(7),
or name(8) refers to entries in the XELOS Administrator Reference Manual.
Other references to entries of the form name(N), where "N" is a number
(1 or 6) possibly followed by a letter, refer to entry name in section N of
the XELOS User Reference Manual. Entries where uN" is a number (2
through 5) possibly followed by a letter, refer to entry name in section N
of the XELOS Programmer Reference Manual.

In this primer, software programs that can be executed by users are
referred to as programs. A program that is in some state of execution is
referred to as a process. The request typed by the user is referred to as a
command or "command line."

In this primer, the following graphic conventions are used in examples:

(RETURN)

(DEL)

Indicates that the user should press the RETURN
key on the terminal keyboard.

Indicates that the user should press the key marked
DEL, DELETE, or RUBOUT (whichever is
appropriate for the terminal being used).

48-165 FOO ROI (2.6) 2-1

PRIMER

HUMAN INTERFACE

Concept of a Login

The XELOS operating system is accessed by the use of a login. A login is
usc!d by the system to uniquely identify users. Before the user can access
the system, the user must be assigned a login by the system administrator.
Every login consists of the following components:

login name

user identification number (uid)

group identification number (gid)

password.

A login name is a unique string of letters (should be all lower-case) and/or
numbers that identifies an individual to the system. The login name must
begin with a letter. In many cases, a person's login name is their real first
name, last name, initials, or nickname. Any string of letters and/or digits
can be used as your login name, as long as it is unique (Le., different
from all other login names). Only the first eight characters of a login
name are used by the system. Login names are assigned by the system
administrator.

The uid of a login is a unique number assigned to each login by the system
administrator. This number is used by the system to identify the owners
of information stored on the system and the commands that users are
executing.

The gid is a unique number assigned by the system administrator to each
group. This number identifies groups of users that have something in
common. For example, all logins used by people in the same department
(oJ' working on the same project) may have the same gid. The gid is
important for security and accounting reasons. The impact of gid numbers

2-2 48-165 FOO ROI (2.6)

PRIMER

on the user and the group that the user belongs to is described later.

The password is a string of 13 characters chosen from a 64-character
alphabet (., \, 0-9, A-Z, a-z) that serves to control access to a login. The
password for a login is the main security feature of the XELOS operating
system. Usually, every login is assigned a password. When a user logs in
to the system, the password (if any) assigned to the login being used is
requested. Access to the system is not permitted until the correct
password is entered. The user can change a password as needed to ensure
that others are not accessing the user's login (and consequently the user's
data).. Any string of letters, numbers, etc., can be used as a password as
long as it is from six to thirteen characters in length and composed of
upper-case letters, lower-case letters, numbers, or punctuation.

It is recommended that obvious strings such as the user's social security
number, birth date, or other data that could be well known about the user
not be used as passwords. If the password is something that is well known
about the user, someone could gain access to the user's login with little
effort. The more unusual your password, the more effective your
security.

Logging In

In order to log in, the power to the terminal must be turned' on and the
appropriate switches set. Depending on the type of terminal and
communication link, the user may need to press the return or break key a
couple of times. This is to synchronize your terminal with the system.
When communication is established, the system will prompt with:

login:

The user should type in his/her login name followed by a return. After
the system digests your login name, it will prompt for your password with:

48-165 FOO ROt (2.6) 2-3

PRIMER

Password:

The user should then type hislher password followed by a return. The
system does not echo your password on the terminal as you type it in.
This is an extra security measure. If you entered your login name and
password correctly, the system may print one or more "messages of the
day" . Following the messages, the system will prompt you with the
primary prompt string, which is usually the $ symbol. If a mistake is
made while logging in or the system administrator has not set up the user's
login on the system, the following error message is printed:

login incorrect

This error message is followed by the login: message. The user should
attempt to log in again.

The XELOS operating system has a hierarchy of directories. When the
system administrator gave the user a login name, the administrator also
created a "directory" for the user. This directory ordinarily is the same
name as the user login name and is known as the login or home directory
of the user. When the user logs in, the home directory becomes the
current directory or working directory of the user. Any file created under
the login name (assuming no other subdirectories have been created yet) is
by default in the home directory. The user may, however, create one or
more directories under the home directory. The user may then change to
subdirectories by appropriate use of a "change directory" command. See
cd(l) for details. Under a directory or a subdirectory, the user may create
files as necessary. The user is the owner of the home directory and all
subdirectories created under the home directory. As the owner, the user
has full permission to create, alter, and remove (destroy) all files and
subdirectories of the home directory. To change from one directory to
another, the command cd is used.

2-4 48·165 FOO ROI (2.6)

PRIMER

Logging Off

After completing your work, it is best to log off the system. Before
logging off, you should have received the prompt string "$ " from the
system. That is, all your commands have been completed; and the system
is ready for another command.

The preferred method for logging off is accomplished by typing an
American Standard Code for Information Interchange (ASCII) end of text
(EOT) character which is sometimes called the end of file (EOF). On
most terminals, the EOT character is generated by holding down the
"CONTROL" key and pressing the lower-case "d" key once. This is also
referred to as a CONTROL-d. Regardless of the terminal type, the power
to it should be turned off when the terminal is no longer needed. For a
terminal connected via a phone line, you should hang up the phone.

Entering Commands

The XELOS operating system shell (command interpreter) serves as the
interface between the user and the system. The shell accepts requests
from the user in the form of a command line and invokes the appropriate
program to fulfill the request. The shell prompts (i.e., notifies) the user
when it is ready to accept another request. The prompt of the XELOS
operating system shell is the primary prompt string which is by default
"$ " (a dollar sign followed by a space).

Command Line Syntax

Commands or requests to the shell are usually in the form of a single line,
that is, a string of one or more words followed by a return. This single
line request entered following the prompt is referred to as a "command
line" . The command line is divided into two major parts-the program

48-165 FOO ROI (2.6) 2-5

PRIMER

name and arguments.

The first word of the command line is the name of the program to be
executed. This is referred to as the command. All subsequent words are
arguments to the command. Arguments are used to provide information
required by the program.

Spaces and tabs serve as the delimiters for words on the command line.
That is, all characters on the command line up to the first space or tab are
interpreted as the command. All characters between the first space (or
tab) and the second space (or tab) is the first argument, etc. Thus, the
syntax for the command line is:

command argument argument argument (RETURN)

When spaces or tabs are needed within a single argument, that argument is
enclosed by double quote marks. For example, to execute a program that
requires two arguments such as john I and doe. The first argument should
be john and the initial', that is, "john 1". The second argument should be
doe. The required command line in this case would be:

command "john 1" doe(RETURN)

Correction and Deletion

All users are likely to make mistakes, especially when typing. The XELOS

operating system provides two features to correct command lines. These
features are only effective for the current line (Le., you have not ended the
line with a return yet).

The first correction feature is the erase character (by default, :#), and the
second correction feature is the kill character (by default, @). The erase
character erases the character preceding it. For example, a command line
entered as

2-6 48-165 FOO ROI (2.6)

PRIMER

caf#t the fik#le (RETURN)

actually is "cat the file". The first # erases the first f and the second #
erases the k. The erase character can be used to erase a series of
characters such as in

this# # # #the cat had kittens (RETURN)

which results in "the cat had kittens". The entire word "this" is erased by
the series of # characters following it. The first # erases the s, the
second # erases the i, the third # erases the h, and the fourth # erases the
t. If you miscount the number of erase characters you need, as in

this # # #the cat had kittens (RETURN)

the result would be "ththe cat had kittens". The three erase characters
erase the space, the s, and the i preceding them.

If the user needs to enter a # in the command line for some reason,
preceding the # with the backslash character (\) will turn off the "erase
last character" meaning of the #. For example, a command line entered
as

thsi##is is the \#7# 7 cat (RETURN)

is actually "this is the # 7 cat".

The second correction feature is the kill character. The kill character
deletes the entire current line. For example, the user enters the command
line

command#####omma#####mmad argm##gmu##ment

48-165 FOO ROI (2.6) 2-7

PRIMER

when the user was trying to enter "command argument". This command
line is so full of mistakes and corrections it is hard to determine if it is
right. It would be best to delete the entire line and start over. The user
can delete the line by ending it with an @ instead of a return. For
example in this sequence

kat###catteh##he file######## the flie##e@
cat the file (RETURN)

the first line is deleted by the @ character. It is much easier to delete it
and reenter it (as in the second line of the example).

If the @ character is needed in a line, the backslash character (\) should
precede it. For example, entering the line

The kill character is a \@ (RETURN)

results in "The kill character is a @".

Strange Terminal Behavior

Sometimes you can get into a state where your terminal acts strangely.
For example, each letter may be typed twice (terminal may be in the half
duplex mode) or the RETURN may not cause a line feed or a return to
the left margin. The user can often change this by logging out and logging
back in. If logging back in fails to correct the problem, check the
following areas:

keyboard

2-8

Keys such as caps lock, local, block, etc. should not
be depressed.

48-165 FOO ROI (2.6)

dataphone

switches

PRIMER

For terminals connected via phone lines, the baud
rate could be incorrect.

The rear panel of your terminal normally has several
switches used to control terminal operations. These
switches should be set to be compatible with the
XELOS operating system.

If all else fails, the description of the stty(l) command can be read to
determine the appropriate action to take. To get intelligent treatment of
tab characters (which are much used in the XELOS operating system) if
your terminal does not have tabs, type the command

stty -tabs

and the system will convert each tab into sufficient blanks to space to the
next 8-character field. If your terminal does have hardware tabs, the
command tabs(l) will set the stops correctly for you.

Read-ahead

The XELOS operating system has full read-ahead, which means that the
user can type as fast as desired, whenever the user wants, even when some
command is already outputting on the terminal. If typing is done during
output, the input characters will appear intermixed with the output
characters, but they will be stored away and interpreted in the correct
order. So the user can type several commands one after another without
waiting for the first to finish or even begin.

48-165 FOO R01 (2.6) 2-9

PRIMER

Stopping a Program

Most programs can be stopped by typing the character "DEL" (perhaps
called "delete" or "rubout" on your terminal) . The "interrupt" or
"break" key found on most terminals can also be used. In a few
programs, like the text editor, "DEL" stops whatever the program is
doing but leaves you in that program. Hanging up the phone with the talk
button depressed will also stop most programs.

Mail

After logging in, the user may sometimes get the following message:

You have mail.

The XELOS operating system provides a postal system so you can
communicate with other users of the system. To read your mail, type the
following command:

mail

Your mail will be printed, one message at a time, most recent message
first. After each message, mail (1) waits for you to say what to do with it.
The two basic responses are d, which deletes the message, and RETURN,
whi,ch does not (so it will still be there the next time you read your
mailbox). Other responses are described in the XELOS User Reference
Manual.

How is mail sent to someone else? Assume that "jones" is someone's
login name which is recognized by 10gln(I). The easiest way to send mail
to "jones" is as follows:

2-10 48-165 FOO R01 (2.6)

mail jones
now type in the text of the letter
on as many lines as you like ...
After the last line of the leuer
type the character '·'CONTROL-d" I
that is, hold down '·~CONTROL" and type
a leuer "d".

PRIMER

The "CONTROL-d" sequence, often called end of file (EOF), is used
throughout the system to mark the end of input from a terminal.

For practice, send mail to yourself. (This is not as strange as it might
sound-mail to oneself is a handy reminder mechanism.)

There are other ways to send mail-you can send a previously prepared
letter, and you can mail to a number of people all at once. For more
details, see mail(l).

Writing to Other Users

At some point, out of the blue will come a message like

Message from jones tty07 ...

which is accompanied by a startling beep on terminals that have the
capability to beep. It means that Jones (jones) wants to talk to you, but
unless you take explicit action, you will not be able to talk back. To
respond, type the following command:

write jones

This establishes a two-way communication path. Now whatever jones

48·165 FOO ROt (2.6) 2·11

PRIMER

types on his terminal will appear on yours and vice versa. However, if
you are in the middle of some program, you must get back to a state
where you are talking to the command interpreter. Normally, whatever
program you are running has to terminate or be terminated. If you are
editing, you can escape temporarily from the editor-see the "Tutorial
Text Editor" section of this document. If you are printing and do not
want this message in your printout or you simply do not want to be
disturbed, enter the following:

mesg n

If you never wish to be disturbed, add the "mesg n" command line to
your . profile.

A protocol is needed to keep what you type from getting garbled up with
what jones types. Typically, a sequence like the following is used:

Jones types "write smith" and waits.

Smith types "write jones" and waits.

Jones now types a message
(as many lines as necessary).
When he is ready for a reply, he
signals it by typing
(0)
which stands for "over".

Now Smith types a reply, also
terminated by
(0).

This cycle repeats until
someone gets tired; he then
signals his intent to quit with
(00)
for "over and out".

2·12 48·165 FOO R01 (2.6)

To terminate
the conversation, each side must
type a "CONTROL-d" character alone
at the beginning of a line. ("DELETE" also works.)
When the other person types "CONTROL-d",
you will get the message
EOF
on your terminal.

PRIMER

If you write to someone who is not logged in or who does not want to be
disturbed, you will be told. If the target is logged in but does not answer
after a decent interval, simply type "CONTROL-d".

On-line Manual

The XELOS User Reference Manual, XELOS Programmer Reference Manual,
and XELOS Administrator Reference Manual are kept on-line. If you get
stuck on something and cannot find an' expert to assist you, you can print
on your terminal some manual section that might help. This is also useful
for getting the most up-to-date information on a command. To print a
manual section, type "man command-name". Thus, to read up on the
who(l) command, type

man who

and, of course,

man man

tells all about the man(l) command.

48-165 FOO ROI (2.6) 2-13

Chapter 3

BASICS FOR BEGINNERS

DAY-TO-DAY USE

Creating Files-The Editor

What Files Are Out There?

Printing Files • • • •

Moving Files Around

What's in a File Name •

What's in a File Name, Continued •

Using Files for 110 Instead of the Terminal. •

Pipes • • • • • • • • • •

The Shell • • • • • • • • • • • • •

DOCUMENT PREPARATION

Formatting Packages ••••

Supporting Tools. • •

Hints for Preparing Documents •

Programming • • •

Shell Programming •

Programming with Shell

Programming in C

Other Languages. •

- i -

PAGE

1

1

2

4

6

7

11

16

18

20

22

23

25

27

28

28

30

31

32

Chapter 3

BASICS FOR BEGINNERS

DA Y-TO-DA Y USE

Creating Files-The Editor

If you have to type a paper, a letter, or a program, how do you get the
information into the machine? These tasks can be performed using the
XELOS operating system "text editor". See ed(l) and the
"TUTORIAL-TEXT EDITOR" section of this volume for a detailed
description.

Throughout this section, each reference of the form name(N) refers to
entries in the XELOS Administrator Reference Manual, XELOS User Reference
Manual, or XELOS Programmer Reference Manual.

The XELOS operating system "text editor" operates on a "file". Simply
stated, a file is just a collection of information stored in the machine. The
following text will describe how to make some files. To create a file called
junk with text in it, do the following:

ed junk (invokes the text editor)
?junk (indicates a new file named junk)
a (command to "ed" to add text)
now type in
whatever text you want ...

(signals the end of text addition)

The"." that signals the end of adding text must be at the beginning of a

48-165 FOO ROI (2.5) 3-1

BASICS FOR BEGINNERS

line by itself. Do not forget it, for until it is typed, no other ed commands
will be recognized-everything you type will be treated as text to be
added. Also note that no system prompt appears while you are
appending, inserting, or changing text while in the text editor.

After a file exists, the user can do various editing operations on the text
which was typed in, such as correcting spelling mistakes, rearranging
paragraphs, etc. Finally, the user must write the information typed into a
file with the editor command:

w

The ed will respond with the number of characters it wrote into the file
junk.

Nothing is stored permanently in the junk file until the w command is
used. If the user is editing a file and terminates before using the w
command, the changes are not stored in the working file. The data in this
case is saved in a file called ed.hup which the user can continue working
with at the next editing. session. But after w, the information is there
permanently. The user can reaccess it any time by typing the following:

ed junk

Type a q command to quit the editor. (If you try to quit without writing,
the text editor will print a "1 H to remind you. A second q gets the user
out of the text editor regardless.) Now create a second file called temp in
the same manner. You should now have two files, junk and temp.

What Files Are Out There?

The Is(l) command lists the names (not contents) of any of the files that
the XELOS operating system knows about. If you type

3-2 48-165 FOO ROI (2.5)

BASICS FOR BEGINNERS

Is

the response will be

junk
temp

which are, indeed, the two files just created.

The names are sorted into alphabetical order automatically, but other
variations are possible. For example, the command

Is -t

causes the files to be listed in the order in which they were last changed,
most recent first. The -I option gives a "longH listing and is used as
follows

Is -I

to produce something like

-rw-rw-rw- 1 bwk bsk 41 Jul 22 02:56 junk
-rw-rw-rw- 1 bwk bsk 78 Jul 22 12:57 temp

The date and time is the date and time of the last change to the file. The
41 and 78 are the number of characters (which should agree with the
numbers you got from ed). The "bwkH is the owner of the file; i.e., the
person who created it. The "bsk" identifies the group associated with
"bwk". The "-rw-rw-rw-" determines who has permission to read,
write, or execute the file. In this case, the owner, group, and others all
have permission to read (r) and write (w). Note that there is no
permission for anyone to execute (x). The first character in "

48-165 FOO R01 (2.5) 3-3

BASICS FOR BEGINNERS

rw- rw- rw-" is a "-" which indicates this is a file of data. A "d" in the
first character would indicate a directory. The remaining nine characters
are divided into three sets of permissions. Each set consists of three
characters. The three sets correspond to the permissions of the owner,
group, and all other users.

Options can be combined: Is -It gives the same thing as Is -I but sorted
into time order. The user can also list the files by name, and Is will list
the information about them only. More details can be found in Is(l).

The use of optional arguments that begin with a minus sign (like - t and
-It) is a common convention for XELOS system programs. In general, if
a program accepts such optional arguments, they precede any file name
arguments. It is also vital that you separate the various arguments with
spaces: Is-I is not the same as Is -I since the command Is must be
separated from its argument -I by a space.

Printing Files

Now that' you've created a file of text, how can the file be printed so
people can look at it? There are several ways to print a file. One simple
way to obtain a print is to use the editor, since printing is often done just
before making changes anyway. The editor is used to print as follows:

ed junk
1,$p

The ed will reply with the count of the characters in junk and then print all
the lines in the file. The user can also be selective about the parts of a file
to be printed as follows:

3-4 48-165 FOO ROI (2.5)

BASICS FOR BEGINNERS

ed junk
20,35p

There are times when it's not feasible to use the editor for printing. For
example, there is a limit on how big a file ed can handle (several thousand
lines). Secondly, it will only print one file at a time; and sometimes you
want to print several, one after the other. So here are a couple of
alternatives.

The simplest of all the printing programs is cat(l). The cat command
simply prints on the terminal the contents of all the files named and in the
order listed. Thus the files are concatenated and printed. For example:

cat junk

prints one file, and

cat junk temp

prints two files. The files are simply concatenated onto the terminal.

The pr(l) command produces formatted printouts of files. As with cat,
pr prints all the files named in a list. The difference is that it produces
headings with date, time, page number, and file name at the top of each
page, and extra lines to skip over the fold in the paper.

Thus,

pr junk temp

will print junk neatly, then skip to the top of a new page and print temp
neatly.

The pr command can also produce multicolumn output. Inputing

48-165 FOO ROI (2.5) 3-5

BASICS FOR BEGINNERS

pr -3 junk

prints junk in 3-column format. You can use any reasonable number in
place of "3", and pr will do its best. The pr command has other
capabilities also. See pr(1) for more information.

It should be noted that pr is not a formatting program in the sense of
shuffling lines around and justifying margins. The true formatters are
nroff and troff, which we will get to in the section on document
preparation.

There are also programs that print files on a hard copy printer. See Ip(1)
for more information.

Moving Files Around

The user is ready for bigger things after gaining experience in creating and
printing files. For example, the user can move a file from one place to
another (which amounts to giving it a new file name), like this:

m v junk precious

This means that what used to be named junk is now named precious. An
18(1) command would now result in the following:

precious
temp

The contents of junk are now in precious. Notice that the junk file no
longer exists. Beware that if you move a file to another one that already
exists, the already existing file contents are lost forever.

3-6 48-165 FOO R01 (2.5)

BASICS FOR BEGINNERS

If you want to make a copy of a file (i.e., to have two versions of
something), use the cp(l) command as follows:

cp precious tempI

This makes a duplicate copy of precious in tempI.

When you are finished creating and moving files, the files can be removed
from the file system by the rm(l) command. The command is used as
follows:

rm temp tempI

This will remove both the temp and tempI files.

The user will get a warning message if one of the named files is not there,
but rm, like most XELOS system commands, does its work silently. There
is no prompting or response, and error messages are just occasionally
shortened. This terseness is sometimes disconcerting to newcomers, but
experienced users find it desirable.

What's in a File Name

So far we have used file names without ever saying what is a legal name,
so it is time for a couple of rules. First, file names are limited to 14
characters, which is enough to be descriptive. Second, although any
character can be used in a file name, common sense dictates sticking to
ones that are visible and avoiding characters that could be used with other
meanings. We have already seen, for example, that in the Is(l) command,
Is - t means to list in time order. So if a file existed whose name was - t,
you would have a tough time listing it by name. Besides the minus sign,
there are other characters which have special meaning. To avoid pitfalls,
use only letters, numbers, and the period until you are familiar with the

48-165 FOO ROI (2.5) 3-7

BASICS FOR BEGINNERS

system.

On to some more positive suggestions. Suppose you are typing a large
document like a book. Logically, this divides into many small pieces, like
chapters and perhaps sections. Physically, it must be divided too, for ed
will not handle really big (over 90,000 characters) files. Thus, the
document should be typed as a number of files. One possible method is to
have a separate file for each chapter as follows:

chapl
chap2
etc

Another method is breaking each chapter into several files as follows:

chap1.1
chap 1. 2
chap1.3

chap2.1
chap2.2

It can now be determined at a glance where a particular file fits into the
whole.

There are advantages to a systematic naming convention which are not
obvious to the novice XELOS system user. To print the whole book, the
user could enter the following:

pr chap1.1 chap1.2 chap1.3 ...

Using the pr(l) command like this would be tiring and possibly lead to
making mistakes. Fortunately, there is a shortcut. The use.r can enter:

3-8 48-165 FOO ROI (2.5)

BASICS FOR BEGINNERS

pr chap·

The * means "anything at all", so this translates into "print all files whose
names begin with chap listed in alphabetical order" .

This shorthand notation is not a property of the pr command by the way.
It is system-wide, a service of the program that interprets commands-the
"shell", sh(l). The files in the book can be listed by using

Is chap·

which produces the following:

chap1.l
chapl.2
chap 1. 3

The * is not limited to the last position in a file name. The * can be used
anywhere and can occur several times. Thus, entering

rm ·junk· ·temp·

removes all files that contain junk or temp as any part of their name. As a
special case, * by itself matches every file name, so

pr •

prints all your files (alphabetical order), and

rm •

48-165 FOO ROI (2.5) 3-9

BASICS FOR BEGINNERS

removes all files. (Before using the rm * command, make sure all files
are not needed!)

The * is not the only pattern-matching feature available. To print only
chapters 1 through 4 and 9, use the following command:

pr chap[12349] *

The [•••] means to match any of the characters inside the brackets. A
range of consecutive letters or digits can be abbreviated as follows:

pr chap[1-49]*

Letters can also be used within brackets. The [a-z] pattern-matching
feature matches any character in the range a through z.

The? pattern matches any single character, so

Is ?

lists all files which have single-character names, and

Is -1 chap?l

lists information about the first file of each chapter chapl.l, chap2.l, etc.

Of these niceties, * is certainly the most useful to become familiar with.
The others are frills, but worth knowing.

If the special meaning of *, ?, etc. needs to be turned off, enclose the
entire argument in single quotes as follows:

Is '1'

3-10 48-165 FOO ROI (2.5)

BASICS FOR BEGINNERS

Some examples of this will be shown in the following paragraphs.

What's in a File Name, Continued

When the file called junk is first created, how does the system know that
there is not another junk somewhere else, especially since the person in the
next office could also be reading this tutorial? The answer is that
generally each user has a private directory, which contains only the files
that belong to that particular user. When you login, you are "in" your
directory. Unless the user takes special action when creating a new file,
the new file is made in the directory that the user is currently in. This is
most often your own directory, and thus the file is unrelated to any other
file of the same name that might exist in another (someone else's)
directory.

The set of all files is organized into a (usually big) tree with your files
located several branches into the tree. It is possible for you to "walk"
around this tree and find any file in the system by starting at the root of
the tree and walking along the proper set of branches. Conversely, you
can start at your present location and walk toward the root.

Try the latter first. The basic tool is the command pWd(l) (print working
directory) which prints the name of the directory the user is currently in.

Although the details will vary according to the system the user is on, the
pWd(l) command will print something like:

/usr/your.-name

This message indicates that the user is currently in the directory
your -flame, which is in turn in the directory lusr, which is in turn in the
root directory called by convention just I. (Even if it is not called lusr on
your system, the message will be something analogous. Recognize any
differences between your machine's pathname and the standard setup and

48-165 FOO R01 (2.5) 3-11

BASICS FOR BEGINNERS

make the corresponding changes to the following command lines when
appropriate.)

If user now types

Is !usr/your_name

the results should be exactly the same list of file names as obtained from a
plain Is(1). With no arguments, Is lists the contents of the current
directory. Given the name of a directory, it lists the contents of that
directory.

Next, try using the following command:

Is lusr

This should print a long series of names, among which is your own login
name your -"arne. On many systems, usr is a directory that contains the
directories of all the normal users of the system.

The next step is to try the following:

Is /

The response should be something like this (although again the details
may be different):

bin
dev
etc
lib
tmp
usr

3-12 48-165 FOO R01 (2.5)

BASICS FOR BEGINNERS

This is a collection of the basic directories of files that the system knows
about; we are at the root of the tree.

If junk is still in your directory, enter the following:

cat /usr/yourJlame/junk

The name

/usr/yourJlame/junk

is called the pathname of the file that is normally thought of as junk. The
pathname represents the full name of the path as followed from the root
through the tree of directories to get to a particular file. It is a universal
rule in the XELOS operating system that anywhere an ordinary file name
can be used, the pathname can also be used.

This is not too exciting if all the files of interest are in your own directory;
but if you work with someone else or on several projects concurrently, it
becomes handy indeed. For example, your friends can print your book by
entering the following:

pr /usr/yourJlame/chap*

Similarly, you can find out what files your neighbor has by entering:

Is /usr/neighbor

The "neighborJt just entered represents the login name of your neighbor.
A copy of one of your neighbor's files can be made as follows:

cp /usr/neighborlhisJile yourJile

48-165 FOO ROI (2.5) 3-13

BASICS FOR BEGINNERS

If a file owner does not want someone else to have access to the owner's
files or vice versa, privacy can be arranged. Each file and directory has
read-write-execute (rwx) perm.issions for the owner, a group, and
everyone else, which can be set to control access. See 18(1) and chmod(1)
for details. Most users find openness of more benefit than privacy (most
of the time).

As a final experiment with pathnames, try the following:

Is Ibin lusrlbin

Do some of the names look familiar? When a program is run by typing
its name after the prompt character, the system simply looks for a file of
that name. It normally looks first in your directory (where it typically
does not find it), then in Ibin and finally in lusrlbin. There is nothing
magic about commands like cat(1) or 18(1), except that they have been
collected into a couple of places to be easy to find and administer.

It is possible for two or more users to work regularly with common
information in the same document. This common document should be
divided up into several files. To prevent users from working in the same
file at the same time, the users should be allowed to work only on
specified files. The files that make up this common document can be
located in the directories of several users. These files can be combined into
one document using the copy command [cp(l)] or the .so macro. If this
common document is to be located in the same directory, the users can
change the current working directory as follows:

cd fulLpath~ame

Now you are ready to edit your specified files in this directory.

Another method of working on the same document is to locate the files in
your friend's directory and login as your friend. Take into consideration
that this defeats the accounting purpose of individual logins. If you are
already logged in as yourself and want to work in a friend's files, change

3-14 48-165 FOO ROl (2.5)

BASICS FOR BEGINNERS

the current working directory as follows:

cd lusr/yourJriend

Now when a file name is used in something like cat(l) or pr(l), the
command refers to the file in your friend's directory. Changing
directories does not affect any permissions associated with a file. If you
cannot access a file, get the owner to change permissions via chmod(l).
Of course, if you forget what directory you are in, type

pwd

to find out.

It is usually convenient to arrange your own files so that all the files
related to one thing are in a directory separate from other projects. For
example, when writing your book, the user might want to keep all the text
in a directory called book. A directory can be made using the mkdir(l)
command. The book directory is made as follows:

mkdir book

The book directory can now be accessed to input chapters as follows:

cd book

If you logged in as yourself, the pathname of book is:

lusr/youc.namelbook

To remove the book directory, type:

48-165 FOO ROI (2.5) 3-15

BASICS FOR BEGINNERS

rm book!·
rmdir book

or
rm -r book

The rm book/· command removes all files in the book directory. The
rmdir book command is then used to remove the empty directory. The
book directory must be empty before the rmdir command will work. The
rm -- r book command recursively deletes the entire contents of the book
directory and then removes the book directory itself.

The user can go up one level in the tree of files by entering:

cd ..

The " •• " is the name of the parent of whatever directory you are
currently in. For completeness, "." is an alternate name for the directory
you are in.

Using Files for 1/0 Instead of the Terminal

Most of the commands used so far produce output on the terminal. Other
commands, like the editor, take input from the terminal. It is universal in
XELOS systems that the terminal can be replaced by a file for either or
both of input and output.

As one example,

Is

makes a list of files on your terminal. But if the user enters

3-16 48-165 FOO ROI (2.5)

BASICS FOR BEGINNERS

Is > filelist

a list of your files will be placed in the file ./ilelist (which will be created if
it does not already exist or overwritten if it does). The symbol > means
"put the output on the following file rather than on the terminal".
Nothing is produced on the terminal. As another example, the user could
combine several files into one by capturing the output of cat in a file:

cat f1 f2 f3 >temp

Another symbol, that operates very much like> does, is ». The »
means "add to the end of". That is,

cat f1 f2 f3 »temp

means to concatenate /1, 12, and /3 to the end of whatever is already in
temp instead of overwriting the existing contents. As with>, if tempdoes
not exist, it will be created.

In a similar way, the symbol < means to take the input for a program
from the following file instead of from the terminal. Thus, the user could
make up a script of commonly used editing commands and put them into a
file called script. The script could then be run on a file by entering:

ed file < script

Another example is using ed to prepare a letter in file let. The letter (file
let) could then be sent to several people as follows:

mail adam eve mary joe < let

48-165 FOO R01 (2.5) 3-17

BASICS FOR BEGINNERS

Pipes

One of the novel contributions of the XELOS operating system is the idea
of a pipe. A pipe is simply a way to connect the output of one program to
the input of another program, so the two run as a sequence of
processes-a pipeline.

For example,

pr f g h

will print the files /, g, and h, beginning each on a new page. Instead of
printing the files separately, the files can be printed together as follows:

cat f g h >temp
pr <temp
rm temp

This method is more work than necessary. To take the output of cat and
connect it to the input of pr, use the following pipe:

cat f g h I pr

The vertical bar I means to take the output from cat which would normally
have gone to the terminal and put it into pr to be neatly formatted.

There are many other examples of pipes. For example,

Is I pr -3

prints a list of your files in three columns. The program we(l) counts the
number of lines, words, and characters in its input; while the who(l)
command prints a list of users currently logged on the system, one per
access port.

3-18 48-165 FOO ROI (2.5)

· BASICS FOR BEGINNERS

Thus, the command line

who Iwc-l

tells how many people are logged on. And of course

Is I wc -1

counts your files.

Most programs that read from the terminal can read from a pipe instead.
Most programs that write on the terminal can write on a pipe instead.
There can be as many commands in a pipeline as desired.

Many XELOS operating system programs are written to take input from
one or more files if file arguments are given. If no arguments are given,
the programs will read from the terminal, and thus can be used in
pipelines. One example using the pr(l) command to print files Q, b, and c

in three columns and in the order specified is as follows:

pr -3 abc

But in

cat abc I pr - 3

the pr prints the information coming down the pipeline, still in three
columns.

48-165 FOO R01 (2.5) 3-19

BASICS FOR BEGINNERS

The Shell

The mysterious "shell" mentioned previously is actually the sh(l)
command. The shell is the program that interprets what is typed as
commands and arguments. The shell also looks after translating *, etc.,
into lists of file names, and <, >, and I into changes of input and output
streams.

The s,hell has other capabilities too. For example, the user can run two
programs with one command line by separating the commands with a
semicolon. The shell recognizes the semicolon and breaks the line into
two commands. Thus

date; who

does both commands before returning with a prompt character.

More than one program can run simultaneously if desired. This is
beneficial when doing something time-consuming, like using the editor
script. The act of running programs in the background prevents waiting
around for the results before starting something else. An example
follows:

ed file < script &

The ampersand (&) at the end of a command line means "start this
command running, then take further commands from the terminal
immediately", that is, don't wait for it to complete. Thus the script will
begin, but the user can do something else at the same time. Of course, to
keep the output from interfering with what you are doing on the terminal,
it would be better to enter

ed file <script >script.out &

which saves the output lines in a file called script.out.

3-20 48-165 FOO ROI (2.5)

BASICS FOR BEGINNERS

When a command is initiated with &, the system replies with a number
called the process number. Programs running simultaneously can be
terminated as follows:

kill processJIumber

The process number is used to identify the command to be stopped. If
you forget the process number, the ps(l) command will list the process
number for all programs you are running. (Entering kill 0 will kill all
your processes.) If you are curious about other people, ps -a will
provide information about all active programs that other users are
running.

To start three commands that will execute in the order specified and in the
background, enter the following:

(command_1; command~; command_3) &

A background pipeline can be started as follows:

command_1 I command~ &

Just as the editor or some similar program can get its input from a file
instead of from the terminal, the shell can read a file to get commands.
For example, suppose the user wants to perform a sequence of actions
after every login such as:

• Set the tabs on the terminal

• Find out the date

• Find out who's on the system.

The three necessary commands to perform these actions [tabs(l), date(l),

48-165 FOO ROI (2.5) 3-21

BASICS FOR BEGINNERS

and who(l)] could be put in a file called startup. The startup file would
then be run as follows:

sh startup

This instruction commands the machine to run the shell with the file
startu p as input. The effect is the same as typing the contents of startup
on the terminal.

If this is to be a regular thing, the need to type sh every time can be
eliminated by typing the following command only once:

chmod + x startup

To run the sequence of commands thereafter, the user only needs to enter:

startup

The chmod(l) command marks the file as being executable. The shell
recognizes this and runs it as a sequence of commands.

If the user wants startup to run automatically for every login, create a file
in your login directory called .profile and place in it the line "startup".
Upon logging in, the shell gains control and executes the commands found
in the . profile file. We will get back to the shell in the section on
programming.

DOCUMENT PREPARATION

XELOS operating systems are used extensively for document preparation.
There are two major formatting programs, that is, programs that produce
a text with justified right margins, automatic page numbering and titling,

3-22 48-165 FOO ROl (2.5)

BASICS FOR BEGINNERS

automatic hyphenation, etc. The nroff program is designed to produce
output on terminals and line-printers. The troff (pronounced "tee-roff")
program was designed to drive a phototypesetter, which produces very
high quality output on photographic paper. This document was formatted
with troff. The document preparation packages mayor may not be
installed on your XELOS system. Check with your system administrator to
see if your system contains the DOCUMENTER'S WORKBENCH software
package.

Formatting Packages

The basic idea of nroff and troff(l) is that the text to be formatted
contains within it "formatting commands" that indicate in detail how the
formatted text is to look. For example, there may be commands that
specify how long lines are, whether to use single or double spacing, and
the running titles to use on each page.

Because nroff and troff are relatively hard to learn to use effectively,
several "packages" of canned formatting requests are available to let you
specify paragraphs, running titles, footnotes, multicolumn output, etc.
with little effort and without having to learn nroff and troff. These
packages take a modest effort to learn, but the rewards for using them are
so great that it is time well spent.

This section provides a brief description of the "memorandum macros"
package known as mm(l). Formatting requests typically consist of a
period and two upper-case letters, such as

.TL

which is used to introduce a title or

48-165 FOO R01 (2.5) 3-23

BASICS FOR BEGINNERS

.P

to begin a new paragraph.

The text of a typical document is entered so it looks something like this:

.TL
title
.AU "author information"
.MT "memorandum type"
.P
Enter text ---

.P
More text ---

.SG "signature"

The lines that begin with a period are the formatting macro requests. For
example, .P calls for starting a new paragraph. The precise meaning of .P
depends on the output device being used (typesetter or terminal, for
instance) and the publication the document will appear in. For example,
- mm normally assumes that a paragraph is preceded by a space-one line
in nroff, and one-half line in troff, and the first word is indented. These
rules can be changed if desired, but they are changed by changing the
interpretation of .P, not by retyping the document.

To actually produce a document in standard format using - mm, use the
command

troff - mm files ...

for the typesetter and

3-24 48-165 FOO R01 (2.5)

BASICS FOR BEGINNERS

nroff - mm files ...

for a terminal. The - mm argument tells troff and nroff to use the
manuscript package of formatting requests. There are several similar
packages; check with a local expert to determine which ones are in
common use on your machine. The proper terminal filter for the terminal
should be used in the command line. The terminal filter option is
indicated by - T followed by the terminal type. The terminal types are
known by various XELOS system utility calls found in Section 1 of the
XELOS User Reference Manual.

Supporting Tools

In addition to the basic formatters, there is a host of supporting programs
that help with document preparation. The list in the next few paragraphs
is far from complete, so browse through the XELOS User Reference Manual
and check with XELOS operating system users for other possibilities.

Both eqn(l) and neqn (see eqn for more information) programs let you
integrate mathematics into the text of a document in an easy-to-Iearn
language that closely resembles the way you would speak it aloud.

For example, the eqn input

sum from i=O to n x sub i -=- pi over 2

produces the output

l:x = .1L
/-0 / 2

The program tbl(1) provides an analogous service for preparing tables.

48-165 FOO R01 (2.5) 3-25

BASICS FOR BEGINNERS

The tbl program does all the computations necessary to align complicated
columns with elements of varying widths.

The spell(l) program detects possible spelling mistakes in a document.
The spell program compares the words in your document to a dictionary
(stored in memory) and prints those words that are not in the dictionary.
It knows enough about English spelling to detect plurals and the like, so it
does a good job.

The grep(l) program looks through a set of files for lines that contain a
particular text pattern (rather like the editor's context search does, but on
a bunch of files). For example,

grep 'ing$' chap·

will find all lines that end with the letters ing in the files cha p* • The "$"
indicated that the pattern to search for is at the end of the line, whereas a
"AU indicates that the pattern to search for is at the beginning of a line. (It
is almost always a good practice to put single quotes around the pattern to
be searched for in case it contains characters like * or $ that have a special
meaning to the shell.) The grep program is often used to locate the
misspelled words detected by the spell program.

The diff(l) program prints a list of the differences between two files, so
that two versions of something can automatically be compared. This is a
vast improvement over proofreading by hand.

The we(l) program counts the words, lines, and characters in a set of
files. The tr(l) program translates characters into other characters. For
example, tr will convert upper-case to lower-case and vice versa. This
translates upper-case into lower-case:

tr [A-Z] [a-z] <input >output

The sort(l) program sorts files in a variety of ways while exref(l) makes
cross-references. The ptx(l) program makes a permuted index (keyword
in-context listing). The sed(l) program provides many of the editing

3-26 48-165 FOO R01 (2.5)

BASICS FOR BEGINNERS

facilities of cd but can apply them to arbitrarily long inputs. The awk(1)
program provides the ability to do both pattern matching and numeric
computations and to conveniently process fields within lines. These
programs are for more advanced users and are not limited to document
preparation. Put them on your list of things to learn.

Most of these programs are either independently documented in the
supplemental package like cqn(1) and thl(1) in the DOCUMENTER'S

WORKBENCH software option, or the programs are sufficiently simple
enough so that the description in the XELOS User Reference Manual is an
adequate explanation.

Hints for Preparing Documents

Most documents go through several versions (always more than expected)
before they are finally finished. Accordingly, you should do whatever
possible to make the job of changing them easy.

First, when you do the purely mechanical operations of typing, type so
that subsequent editing will be easy. Start each sentence on a new line.
Make lines short, and break lines at natural places, such as after commas
and semicolons, rather than randomly. Since most people change
documents by rewriting phrases and adding, deleting, and rearranging
sentences, these precautions simplify any editing needed later.

Keep the individual files of a document down to modest size, perhaps 10
to 15 thousand characters. Larger files edit more slowly. If a dumb
mistake is made, it is better to clobber a small file than a big one. Split
the files at natural boundaries in the document for the same reasons that
you start each sentence on a new line.

The second aspect of making changes to documents easy is not to commit
to the formatting details too early. One of the advantages of formatting
packages is permitting format decisions to be delayed until the last
possible moment. Indeed, until a document is printed, it is not even
decided whether it will be typeset or printed out on a line printer.

48-165 FOO ROI (2.5) 3-27

BASICS FOR BEGINNERS

As a rule of thumb, a document should be produced in terms of a set of
requests or commands (macros) for all but the most trivial jobs. The
macros used should then be defined either by using one of the existing
macro packages (the recommended way) or by defining your own nroff
and/or troff macros. As long as the text is entered in some systematic
way, it can always be cleaned up and formatted by a judicious combination
of editing commands and macro definitions.

Programming

There will be no attempt made to teach any of the programming languages
available, but a few words of advice are in order. One of the reasons why
the XELOS operating system is a productive programming environment is
that there is already a rich set of tools available. Facilities like pipes, I/O
redirection, and the capabilities of the shell often make it possible to do a
job by pasting together programs that already exist instead of writing a
program completely from scratch.

The XELOS Programmer Reference Manual contains the XELOS system
programming utilities.

Shell Programming

The pipe mechanism lets you fabricate quite complicated operations out of
spare parts that already exist. For example, the first draft of the spell
program was (roughly)

cat ... collect the files

I tr ... put each word on a new line

3-28 48-165 FOO ROt (2.5)

I tr ...

I sort

I uniq

Icomm

BASICS FOR BEGINNERS

delete punctuation, etc.

into dictionary order

discard duplicates

print words in text but not in dictionary

More pieces have been added subsequently, but this goes a long way for
such a small effort.

The editor can be made to do things that would normally require special
programs on other systems. For example, to list the first and last lines of
each of a set of files, such as a book, the user could laboriously type:

ed
e chap1.1
lp
$p
e chap1.2
lp
$p
etc.

The same job can be performed much more easily. One procedure is to
type

Is chap· >temp

to get the list of file names into a file called temp. The temp file is then
edited using global commands as follows:

48-165 FOO ROI (2.5) 3-29

BASICS FOR BEGINNERS

1,$ sr. ·$/e &\
1p\
$p/

The results are written into the script file (1,$ w script) and then the
following command is entered:

ed <script

This will produce the same output as the laborious hand typing. Another
method is using shell loops to repeat a set of commands over and over
again for a set of arguments as illustrated below:

for i in chap·
do

ed $i <script
done

This sets the shell variable i to each file name in turn, then does the
command. This command can be entered at the terminal or put in a file
for later execution. Before the file can be executed, it may be necessary to
change the mode by entering the following:

chmod + x filename

Programming with Shell

An option often overlooked by new users is that the shell is itself a
programming language, with variables, control flow If-else, while, for,
case, subroutines, and interrupt handling. Since there are many building
block programs, the user can sometimes avoid writing a new program
merely by piecing together some of the building blocks with shell

3-30 48-165 FOO ROI (2.5)

BASICS FOR BEGINNERS

command files.

We will not go into any details here; examples and rules can be found in
section "AN INTRODUCTION TO SHELL" described later in this
volume.

Programming in C

The C language is a reasonable choice of a programming language when
undertaking anything substantial. Everything in the XELOS operating
system is based on the C language. The system itself is written in C, as
are most of the programs that run on the system. The C language is also
an easy language to use once you get started. The C language is
introduced and fully described in The C Programming Language by B. W.
Kernighan and D. M. Ritchie (Prentice-Hall, 1978). Several sections of
the manual describe the system interfaces, that is, how to do 110 and
similar functions.

Most input and output in C is best handled with the standard 110 library,
which provides a set of 110 functions that exist in compatible form on
most machines that have C compilers. In general, it's wisest to confine the
system interactions in a program to the facilities provided by this library.
(Refer to Section 3 of the XELOS User Reference Manual.)

The C programs that do not depend too much on the special features of
the XELOS operating system (such as pipes) can be moved to other
computers that have C compilers.

There are a number of supporting programs that go with C. The IInt(l)
program checks C programs for potential portability problems and detects
errors such as mismatched argument types and uninitialized variables.

For larger programs (anything whose source is on more than one file), the
make(l) program allows you to specify the dependencies among the
source files and the processing steps needed to make a new version. The
program then checks the times that the pieces were last changed and does

48-165 FOO ROI (2.5) 3-31

BASICS FOR BEGINNERS

the minimal amount of recompiling to create a consistent updated version.

The debugger sdb(l) program is useful for digging through the dead
bodies of C programs but is rather hard to learn to use effectively. The
most effective debugging tool is still careful thought, coupled with
judiciously placed print statements.

The C compiler provides a limited statistical service, so a user can find
where programs spend their time executing and what parts of a program
are worth optimizing. Compile the programs with the - p option; after the
test run, use the prof(l) command to print a program execution profile.
The command tlme(l) will give the gross run-time statistics of a program,
but the times are not very accurate or reproducible.

Other Languages

If FORTRAN must be used, there are two possibilities- FORTRAN 77
and ratfor. The user might consider ratfor which provides decent control
structures and free-form input that characterize C, yet permits the writing
of code that is also portable to other environments. Bear in mind that
XELOS operating system FORTRAN tends to produce large and relatively
slow-running programs. Furthermore, supporting software like prof(l),
etc., are all virtually useless with FORTRAN programs. If there is a
FORTRAN 77 compiler on your system, it may be a viable alternative to
ratfor and has the nontrivial advantage that it is compatible with the C
language and related programs. (The ratfor processor and C tools can be
used with FORTRAN 77, too.)

If your application requires translating a language into a set of actions or
another language, the user is, in effect, building a compiler, though
probably a small one. In that case, the yacc(l) compiler-compiler is
recommended for use, which aids in developing a compiler quickly.

The lex(l) lexical analyzer generator does the same job for the simpler
languages that can be expressed as regular expressions. It can be used by
itself or as a front-end to recognize inputs for a yacc-based program.

3-32 48-165 FOO ROI (2.5)

BASICS FOR BEGINNERS

Both yacc and lex require some sophistication to use, but the initial effort
of learning them can be repaid many times over in programs that are easy
to change later.

48-165 FOO R01 (2.5) 3-33

Chapter 4

TUTORIAL - TEXT EDITOR

INTRODUCTION

GENERAL •••

GETTING STARTED

EXERCISES - TRY THEM!

EXERCISE 1 •

EXERCISE 2 •

EXERCISE 3 •

EXERCISE 4 •

EXERCISE 5 •

EXERCISE 6 •

EXERCISE 7 •

THE GLOBAL COMMANDS

SPECIAL CHARACTERS

SUMMARY OF COMMANDS AND LINE
NUMBERS • • • • .• •• • • • • •

- i -

PAGE

1

1

2

7

7

10

13

17

21

25

28

30

31

36

Chapter 4

TUTORIAL - TEXT EDITOR

INTRODUCTION
Almost all text input on the XELOS operating system is done with the
standard text editor ed(1). This is a tutorial guide to help beginners get
started with text editing.

Although this guide does not cover everything about the XELOS operating
system, it does discuss enough for most user's day-to-day needs. This
includes printing, appending, changing, deleting, moving, and inserting
entire lines of text; reading and writing files; context searching and line
addressing; substituting; global changing; and using some special
characters for easier editing.

Throughout this section, each reference of the form name(1M), name(7),
or name(8) refers to entries in the XELOS Administrator Reference Manual.
Other references to entries of the form name(N), where "N" is a number
(1 or 6) possibly followed by a letter, refer to entry name in section N of
the XELOS User Reference Manual. Entries where "N" is a number (2
through 5) possibly followed by a letter, refer to entry name in section N
of the XELOS Programmer Reference Manual.

GENERAL
The ed program is a "text editor", that is, an interactive program for
creating and modifying "text" using directions (commands) provided by a
user at a terminal. The text is often a document like this one or perhaps
data for a program.

This tutorial is meant to simplify learning ed. The recommended way to
learn ed is to read this document, while simultaneously using ed to follow

48-165 FOO ROI (2.6) 4-1

TUTORIAL - TEXT EDITOR

the examples, then to read the description in Section 1 of the XELOS User
Reference Manual. Getting advice from experienced XELOS operating
system users and experimenting with ed are also useful.

Do the exercisesl The exercises illustrate techniques not completely
discussed in the actual text. A summary at the end of this section
summarizes the commands.

Disclaimer

This is a tutorial introduction and guide only. For this reason, no attempt
is made to cover more than a part of the facilities that ed offers (although
this fraction includes the most useful and frequently used facilities). Also,
there is not enough space to explain the basic XELOS operating system
procedures. It is assumed that the user knows how to log on to the
XELOS operating system and has a vague understanding of what a XELOS

operating system file is. For more on the XELOS operating system
facilities, refer to the section, "Basics For Beginners".

The user must also know what character to type as the end of line
character on the user's particular terminal. This character is the RETURN
or newline character (key) on most terminals. Hereafter, reference to the
end of line character, whatever it is, will be referred to as RETURN.

GETTING STARTED
Assume that the user has logged in to a XELOS operating system and it
has just printed the prompt character, usually a

$

The easiest way to invoke ed is to type:

4-2 48-165 FOO ROI (2.6)

TUTORIAL - TEXT EDITOR

ed (followed by a RETURN)

You (the user) are now ready to go. The ed program is waiting to be told
what to do.

Creating Text - The Append Command "a"

As your first problem, suppose some text is to be created starting from
scratch. Perhaps the very first draft of a document or paper is to be
entered. Normally, it will have to start somewhere and undergo
modifications (editing) later. This part will describe how to enter some
text to get a file of text started. How to make changes and corrections to
the text is described later.

When ed is first invoked, it is rather like working with a blank piece of
paper (the file) - there is no text or information present on the paper (in
the file). The text must be supplied by the person using ed; it is usually
done by typing in the text or by reading it into ed from a file. We will
start by typing in some text and return shortly to how to read files.

First a bit of terminology. In ed jargon, the text being worked on is said
to be "kept in a buffer." Think of the buffer as a work space, if desired,
or simply as the information that is to be edited. In effect, the buffer is
like the piece of paper on which we will write things, then change some of
them, and finally file the whole thing away for another day.

The user tells ed what .to do to the text by typing instructions called
"commands." Most commands consist of a single lower-case letter. Each
command is typed on a separate line. (Sometimes the command is
preceded by information about the line or lines of text to be affected -
these will be described below.) Theed text editor makes no response to
most commands - there is no prompting or response messages like
"ready" . (This silence is preferred by experienced users). The first
command is append, written as the letter

48-165 FOO R01 (2.6) 4-3

TUTORIAL - TEXT EDITOR

a

on a command line all by itself. It means "append (or add) text lines to
the buffer as I type them in."

Appending is rather like writing fresh material on a piece of paper. So to
enter lines of text into the buffer, just type an

a

followed by a RETURN and the lines of text, like this:

a
N ow is the time
for all good men
to come to the aid of their party.

The only way to stop appending is to type a line that contains only a
period. The"." is used to tell ed that the appending is finished. (Even
experienced users forget to terminate appending with a "." sometimes. If
ed seems to be ignoring your entries, type an extra line with just the "."
on it. You may then find you have added some garbage lines to your text,
which you will have to take out later.)

After the append command has been used, the buffer will contain the
following three lines:

Now is the time
for all good men
to come to the aid of their party.

The a and the "." are not there because they are not text.

4-4 48-165 FOO R01 (2.6)

TUTORIAL - TEXT EDITOR

To add more text to what already exists, just issue another a command and
continue typing.

Error Messages (?)

If at any time the user makes an error in the commands typed into ed, the
text editor will tell the user by typing the following:

?

This is about as cryptic as it can be, but with practice, the user can usually
figure out the goof. The user can get a brief explanation of the error by
typing

h

The help command gives a short error message that explains the reason
for the most recent? diagnostic.

Writing Text File - The Write Command "w"
It is likely that you will want to save your text for later use. To write out
the contents of the buffer onto a file, use the write command

w

followed by the file name to write on. This will copy the buffer's contents
onto the specified file (destroying any previous information on the file).
To save (write) the text in a file named junk, for example, type:

48-165 FOO R01 (2.6) 4-5

TUTORIAL - TEXT EDITOR

w junk

Leave a space between wand the file name. The ed program will respond
by printing the number of characters it wrote out. In this case, ed would
respond with:

68

(Remember that blanks and the return character at the end of each line are
included in the character count.) Writing a file just makes a copy of the
text - the buffer's contents are not disturbed, so the user can go on
adding lines to it. This is an important point. The ed program at all times
works on a copy of a file, not the file itself. No change in the contents of
a file takes place until you give a w command. (Writing out the text onto
a file from time to time as it is being created is a good idea. If the system
crashes or if the user makes some horrible mistake, all the text in the
buffer will be lost but any text that was written onto a file is relatively
safe.)

Leaving ed - The Quit Command "q"

To te:rminate a session with ed, first save your text by writing it onto a file
using the w (write) command, and then type the q (quit) command:

q

The system will respond with the prompt character:

$

At this point your buffer vanishes, with all its text, which is why the user

4-6 48-165 FOO ROI (2.6)

TUTORIAL - TEXT EDITOR

would want to write before quitting. Actually ed will print the character

?

if the user tries to quit without writing. At this point, the user writes if
desired; if not, another q will get you out regardless and will not save the
text in the buffer.

EXERCISES - TRY THEM!

EXERCISE 1
Enter ed and create some text using the append command a

a
... text ...

Note that no system prompt appears while in the text editor. Do not forget
to write the text into memory with the write command w. Write it into
memory using the w command. Then leave ed with the q command and
print the file to see that everything worked. To print a file, enter

pr filename
or

cat filename

in response to the prompt character ($). Try both.

48·165 FOO R01 (2.6) 4-7

TUTORIAL - TEXT EDITOR

Reading Text File - The Edit Command "e"

A common way to get text into the buffer is to read it from another file in
the file system. This is what you do to edit text that you saved with the w
command in a previous session. The edit command

e

retrieves the entire contents of a file into the buffer.

So if the user had saved the three lines "Now is the timeH
, etc., with a w

command in an earlier session, the edit command

ejunk

would place the entire contents of the file junk into the buffer and respond
with a number

68

which is the number of characters in the file junk. If anything was already
in the buffer, it is deleted first.

If the e command is used to read a file into the buffer, then the user does
not need to use a file name after a subsequent w command; ed remembers
the last file name used in an e command, and w will write on this file.
Thus a good practice to follow is:

4-8

ed
e filename
[editing session]

w
q

48-165 FOO ROI (2.6)

TUTORIAL - TEXT EDITOR

This way, the user can simply enter w from time to time and be secure in
the knowledge that if the user got the file name right at the beginning, the
user is writing into the proper file each time. Note that after each edit
command e or each write command w the number of characters is returned
by ed. The user can find out at any time what file name ed is
remembering by typing the file command f. In this example, if you typed

f

ed would reply

junk

Reading Text - The Read Command "r"

Sometimes you want to read a file into the buffer without destroying
anything that is already in the buffer. This is done by the read command
r. The command

rjunk

will read the file junk into the buffer. The command appends the file
specified to the end of whatever file is already in the buffer. So if you do
a read after an edit command such as

e junk
r junk

the buffer will contain two copies of the original text as follows:

48·165 FOO R01 (2.6) 4-9

TUTORIAL - TEXT EDITOR

Now is the time
for all good men
to come to the aid of their party.
Now is the time
for all good men
to come to the aid of their party.

Like the wand e commands, r prints the number of characters read in
after the reading operation is complete. Generally speaking, r is much
less used than e.

The read command r may also be used to read a file external to the buffer
into the file in the buffer. While in ed and at the current line, enter the
command

.r filename

and filename will be read into the file (already in the buffer) immediately
after the current line. None of the file in the buffer is destroyed, rather
the external file filename has been read into and been combined with the
file already in the buffer. The file that was read remains in filename also.
You only copied it. Notice the difference between "r" and" .r" .

EXERCISE 2

Experiment with the e command - try reading and printing various files.
The user may get an error ?name where name is the name of a file. This
means that the file does not exist. Some typical causes of getting an empty
file are spelling the file name wrong or perhaps trying to read or write a
particular file which your permissions will not allow. Try alternately
reading and appending to see that they work similarly. Verify that

4-10 48-165 FOO R01 (2.6)

TUTORIAL - TEXT EDITOR

ed filename

is exactly equivalent to

ed
e filename

What does

f filename

do?

Printing Buffer Contents - Print Command "p"

To print or list the contents of the buffer (or parts of it) on the terminal,
use the print command p. This is done as follows. Specify the line
numbers where printing is to begin and end. These numbers have a
comma between the beginning number and the ending number, i.e.,
"beginning line number, ending line number p". Thus, to print the first
ten lines of the contents of any buffer (i.e., lines 1 through 10), type:

1,10p (prints lines 1 through 10)

The ed will respond by printing the specified starting line (1) through the
specified ending line (10).

Suppose it is desirable to print all the lines in the buffer. You could use
"1,30p" as above if it is known there were exactly 30 lines in the buffer.
But in general, it is not known how many lines there are, so what can be
used for the ending line number? The ed program provides a shorthand

48-165 FOO R01 (2.6) 4-11

TUTORIAL - TEXT EDITOR

symbol for "line number of the last line in the buffer" - the dollar sign $.
To print all the lines in the buffer, use it this way:

l,$p (Prints allUnes in buffer)
or

,p (Prints all lines in buffer also)

This will print all the lines in the buffer (line 1 through the last line). The
"l,$p" can be abbreviated "$,p". To stop the printing before the last line
is printed, push the DEL key or the DELETE (or equivalent) key on the
terminal. The ed program will respond

?

and wait for the next input command.

To print the last line of the buffer, you could use

$,$p

but ed lets you abbreviate this to

$p

Any single line can be printed by typing the line number followed by a p.
Thus

Ip

produces the response

4-12 48-165 FOO R01 (2.6)

TUTORIAL - TEXT EDITOR

Now is the time

which is the first line of the buffer.

In fact, ed lets you abbreviate even further. You can print any single line
by typing just the line number - no need to type the letter p. So by
entering

$

ed will print the last line of the buffer. Entering a single line number will
print that line only.

It is also possible to use $ in combinations like

$-5,$p

which prints the last five lines of the buffer. This helps to determine the
end of the contents of the buffer when more is to be entered.

EXERCISE 3
Create some text using the a command and experiment with the p
command. The user will find, for example, that line 0 or a line beyond
the end (last line) of the buffer cannot be printed. Attempts to print a
buffer in reverse order by entering

3,lp

will not work.

48·165 FOO R01 (2.6) 4-13

TUTORIAL - TEXT EDITOR

The Current Line "." or Dot

Suppose the buffer still contains the six lines of text (as in Exercise 1), and
the following was entered

1,3p

and ed has printed the three lines.

Try typing just

p (no line numbers)

This will print

to come to the aid of their party.

which is the third line of the buffer. In fact it is the last (most recent) line
that anything was done to. (The line just printed!) The p command can
be repeated without line numbers, and it will continue to print line 3.

The reason is that ed maintains a record of the last line that anything was
done to (in this case, line 3, which was just printed) so that it can be used
instead of an explicit line number. This most recent line is referred to by
the shorthand symbol

(Pronounced "dot")

Dot is a line number in the same way that $ is. Dot means exactly "the
current line", or loosely, "the line something was done to most recently."
The dot can be used in several ways - one possibility is to enter:

.,$p

4-14 48-165 FOO R01 (2.6)

TUTORIAL - TEXT EDITOR

This will print all the lines from (including) the current line to the end
(last line) of the buffer. In our example, these are lines 3 through 6.

Some commands change the value of dot, while others do not. The print
command p sets dot to the number of the last line printed; the last
command entered (. ,$ p) will set both"." and $ to the last line in the
buffer (line 6).

Dot is most useful when used in combinations like:

.+1 (or equivalently, .+lp)

This means "print the next line" and is a handy way to step slowly
through a buffer. The user can also enter

.-1 (or .-lp)

which means "print the line before the current line." This enables
stepping through the buffer backwards if desired. Another useful one is
something like

.-3,.-lp

which prints the previous three lines.

Do not forget that all of these change the value of dot. The user can find
out what dot is at any time by typing

(dot line number is 1)

The ed program will respond by printing the value (line number) of dot.

Let us summarize some things about the p command and dot. Essentially,
p can be preceded by 0, 1, or 2 line numbers (for our example). If there
is no line number given, it prints the "current line", the line that dot

48-165 FOO ROI (2.6) 4-15

TUTORIAL - TEXT EDITOR

refers to. If there is one line number given with or without the letter p, it
prints that line and sets dot there. If there are two line number~ separated
by a comma, it prints all the liq~~ in that range from the first number to
the last number, ~nd sets dot to tbe I!4$t lip~ printeq. If two line numb~rs
are specified, the first cannot be bigger than the second (refer to the
beginning of "EXERCISE 3").

Typing a single RETURN will cause printing of the next line - it is
eq ui valent to:

.+lp

Try it. Typing a A is equivalent to typing the minus -. It can be used in
multiples, as AAA, which will move the current line or dot line backwards
three lines from the current line. The" -" or the "A" can be considered
equivalent to "-lp" since either moves the dot back one line.

Deleting Lines - The Delete Command "d"

Suppose three extra lines in the buffer are not needed. They may be
removed by use of the delete command:

d

Except: that d deletes lines instead of printing them, its action is similar to
that of the print command p. The lines to be deleted are specified for d
exactly as they are for p as follows:

starting line, ending line d

Thus the command

4-16 48-165 FOO R01 (2.6)

TUTORIAL - TEXT EDITOR

4,$d

deletes lines 4 through the end. There are now three lines left that can be
checked by using:

1,$p

And notice that $ now is line 3! Dot is set to the next line after the last
line deleted, unless the last line deleted is the last line in the buffer. In
that case, dot is set to $.

The delete command d and the print command p may be used together,
thus

dp

which deletes the current line, prints the following line, and sets dot to the
line printed.

EXERCISE 4
Experiment with a, e, r, W, p, and d until you become familiar with their
use. While experimenting, also use "dot", $, and line numbers to
understand their use.

When you start to feel adventurous, try using line numbers with a, r, and
w as well. The user will find that a will append lines after the line number
that you specify (rather than after dot); r reads a file in after the line
number you specify (not necessarily at the end of the buffer); and w will
write out exactly the lines specified, not necessarily the whole buffer.
These variations are sometimes handy. For instance, a file can be inserted
at the beginning of a buffer by entering:

48-165 FOO ROI (2.6) 4-17

TUTORIAL - TEXT EDITOR

Or filename

Lines can be entered at the beginning of the buffer by using:

Oa
... text ...

Notice that ".w" is very different from

w

Modifying Text - The Substitute Command "s"

We are now ready to try one of the most important of all commands - the
substitute command

s

This is the command that is used to change individual words or letters
within a line or group of lines. The substitute command is used for
correcting spelling mistakes and typing errors.

Suppose that, because of a typing error, line 1 says

Now is th time

notice the e has been left off. The s command can be used to fix this as
follows:

4-18 48-165 FOO ROI (2.6)

TUTORIAL - TEXT EDITOR

1s/thlthe/

This says: in line 1, substitute for the characters th the characters the.
Since ed will not print the result automatically, enter

p

to verify that the substitution worked, and you should get

Now is the time

which is what is desired. Notice that dot must have been set to the line
where the substitution took place since the p command printed that line.
Dot is always set this way with the s command.

The general way to use the substitute command is

starting-line, ending-line s/change this/to this/

Whatever string of characters is between the first pair of slashes is
replaced by whatever is between the second pair, in all the lines between
starting-line and ending-line. Only the first occurrence on each line is
changed however. If every occurrence is to be changed, see "EXERCISE
5" . The rules for line numbers are the same as those for the print
command p except that dot is set to the last line changed. (But there is a
trap for the unwary: if no substitution took place, dot is not changed. This
causes an error response? as a warning.)

Thus, the following can be entered

1,$s/speling/spelling/

to correct the first spelling mistake (speling in this case) on each line in the

48-165 FOO R01 (2.6) 4-19

TUTORIAL - TEXT EDITOR

text. (This is useful for people who are consistent misspellers!)

If no line numbers are given, the 8 command assumes we mean "make the
substitution on line dot", so it changes things only on the current line.
This leads to the very common sequence

s/something/something else/p

which makes some correction on the current line and then prints it (current
line) to make sure it worked out right. If it did not, you can try again.
Notice that there is a p on the same line as the s command. With few
exceptions, p can follow any substitute command.

It is also legal to say

s/ .••. //

which means change the first string of characters (....) to nothing, Le.,
remove them. This is useful for deleting extra words in a line or
removing extra letters from words.

For instance, if the buffer contained

Nowxx is the time

this can be corrected by entering

s/xX//p

to get

Now is the time

4-20 48-165 FOO ROI (2.6)

TUTORIAL - TEXT EDITOR

Notice that II (two adjacent slashes) means "no characters" not a blank.
There is a difference! (See "Context Searching" under "EXERCISE 5"
for another meaning of "II").

EXERCISE 5
Experiment with the substitute command. See what happens if you
substitute for some word on a line with several occurrences of that word.
For example, enter

a
the other side of the coin

s/the/on the/p

which results in the following:

on the other side of the coin

A substitute command changes only the first occurrence of the first string.

All occurrences can be changed by adding a g (for "global") command to
the s command, like this:

s/ .. .I .. .Igp

Try other characters instead of slashes to delimit the two sets of characters
in the s command - anything should work except blanks or tabs.

If strange results are produced by inputing

48-165 FOO ROI (2.6) 4-21

TUTORIAL - TEXT EDITOR

$ [• \ &

read the part under "Special Characters" in this section.

Context Searching "/ .•.. ./"

When the substitute command is mastered, you may move on to another
highly important feature of ed(l) - context searching.

Suppose the original three lines of text in the buffer is as follows:

Now is the time
for all good men
to come to the aid of their party.

Suppose the word their is to be changed to the. How is the line that
contains their located? With only three lines in the buffer, it is pretty easy
to keep track of what line the word their is on. But if the buffer contained
several hundred lines and you had been making changes, deleting and
rearranging lines, etc., you would no longer really know what this line
number would be. Context searching is simply a method of specifying the
desired line, regardless of what its number is, by specifying some context
(uniq ue text) on it.

The way to say "search for a line that contains this particular string of
characters" or "unique text" is to type:

/string of characters to find/

For example, the ed expression

4·22 48-165 FOO ROl (2.6)

TUTORIAL - TEXT EDITOR

Itheirl

is a context search which is sufficient to find the desired line - it will
locate the next occurrence of the characters between slashes ("their"). It
also sets dot to that line and prints that line for verification:

to come to the aid of their party.

"Next occurrence" means that ed starts looking for the string at line
" . + 1" and searches to the end of the buffer, then continues at line 1 and
searches to line dot. That is, the search "wraps around" from $ to 1. It
scans all the lines in the buffer until it either finds the desired line or gets
back to dot again. If the given string of characters cannot be found in any
line, ed types the error message

?

Otherwise, it prints the line it found.

The search for the desired line and the substitution can be done together,
like this

Itheirls/their/the/p

which will yield

to come to the aid of the party.

There were three parts to that last command: context search for the
desired line, make the substitution, and print the line.

The expression "/their/" is a context search expression. In the simplest
form, all context search expressions are like this - a string of characters

48-165 FOO ROI (2.6) 4-23

TUTORIAL - TEXT EDITOR

surrounded by slashes. Context searches are interchangeable with line
numbers, so they can be used by themselves to find and print a desired
line or as line numbers for some other command, like s. They were used
both ways in the examples above.

Suppose the buffer contains the three familiar lines

Now is the time
for all good men
to come to the aid of their party.

Then the ed line numbers

1N0w/+1
/good/
/party/-l

are all context search expressions, and they all refer to the same line (line
2). To make a change in line 2, enter

1N0w/+ ls/goodlbad/
or

/ good/sf good/bad/
or

/party/ -ls/goodlbad/

The choice is dictated only by convenience. All three lines could be
printed by entering

/Now/,1party/p
or

/Now/,lNow/+ 2p

4-24 48-165 FOO ROI (2.6)

TUTORIAL - TEXT EDITOR

or by any number of similar combinations. The first one of these might
be better if you do not know how many lines are involved. The basic rule
is: a context search expression is the same as a line number, so it can be
used wherever a line number is needed.

EXERCISE 6

Experiment with context searching. Try a body of text with several
occurrences of the same string of characters and scan through it using the
same context search.

Try using context searches as line numbers for the substitute, print, and
delete commands. They can also be used with r, w, and 8.

Try context searching using "?text?" instead of "/text/" This scans lines
in the buffer in reverse order rather than normal (forward order). This is
sometimes useful if you go too far while looking for some string of
characters - it is an easy way to back up.

If funny results are obtained with any of the characters

$
., \ &

read the part in this section on "Special Characters".

The ed program provides a short method for repeating a context search
for the same string. For example, the ed line number

/string/

will find the next occurrence of '·string". It often happens that this is not
the desired line, so the search must be repeated. This can be done by
typing merely:

48-165 FOO ROI (2.6) 4-25

TUTORIAL - TEXT EDITOR

II

This short method stands for "the most recently (last) used context search
expressionu

• It can also be used as the first string of the substitute
command, as in

/stringl/sllstring2/

which will find the next occurrence of string 1 and replace it by string2.
This can save a lot of typing. Similarly

11

means "scan backwards for the same expression."

Change and Insert Commands "e" and "i"
This section discusses the change command

c

which is used to change the current line or to replace the current line with
a group of one or more lines, and the insert command

which is used for inserting a group of one or more lines immediately
before the current line.

4-26 48-165 FOO ROI (2.6)

TUTORIAL - TEXT EDITOR

"Change", written as

c

is used to replace a number of lines with different lines, which are typed
in at the terminal. For example, to change the first line (.+1) past the
current line through the last line ($) of a file to something else, type

. + 1,$c

... type the lines of text you want here ...

The lines typed between the c command and the '.' (dot) command will
take the place of the original lines between start line and end line. This is
most useful in replacing a line or several lines which have errors.

If only one line is specified in the c command, then just that line is
replaced. (You can type in as many replacement lines as you like.)
Notice the use of '.' (dot) to end the input - this works just like the '.'
(dot) in the a command and must appear by itself at the beginning of a
new line. If no line number is given, line dot is replaced. The value of
dot is set to the last line you typed in.

"Insert" is similar to append - for instance

/string/i
... type the lines to be inserted here ...

will insert the given text before the next line that contains "string". The
text between i and the '.' (dot) is inserted before the specified line. If no
line number is specified, the dot line is used. Dot is set to the last line
inserted.

48-165 FOO ROI (2.6) 4-27

TUTORIAL - TEXT EDITOR

EXERCISE 7

"ChangeU is rather like a combination of delete followed by insert.
Experiment to verify that

starting-line,ending-line d
i
... text ...

is almost the same as

starting-line,ending-line c
... text ...

These are not precisely the same if the last line ($) gets deleted. Check
this out. What is dot?

Experiment with the append command 8 and the insert command i to see
that they are similar but not the same. You will observe that

line-number a
... text ...

appends after the given line, while

line-number i
... text ...

inserts before it. Observe that if no line number is given, i inserts before
line dot, 8 appends after line dot, and c changes line dot.

4-28 48-165 FOO ROI (2.6)

TUTORIAL - TEXT EDITOR

Moving Text Around - The Move Command "m"

The move command m is used for cutting and pasting - it allows a group
of lines to be moved from one place to another in the buffer. Suppose the
first three lines of the buffer are to be placed at the end of the buffer
instead of at the beginning. This could be performed by entering:

1,3w temp
$r temp
1,3d

(Do you see why?) This method will work, but it is a lot easier using the
m command as follows:

1,3m$

The general case is:

starting-line,ending-line m after this line

Notice that there is a third line to be specified - the line after which the
other lines are to be moved. Of course, the lines to be moved can be
specified by context searches; if you had

First paragraph

end of first paragraph.
Second paragraph

end of second paragraph.

the two paragraphs could be reversed like this:

48·165 FOO ROI (2.6) 4·29

TUTORIAL - TEXT EDITOR

ISecond/,/end of second/mlFirstl-1

Notice the "-1" - the moved text goes after the line mentioned. Dot gets
set to the last line moved.

THE GLOBAL COMMANDS

The two global commands are g and v. The global command g is used to
execute one or more ed commands on all those lines in the buffer that
match some specified string. For example

g/peling/p

prints all lines that contain "peling". More usefully,

g/peling/sl/pellingl gp

makes the substitution everywhere on the line, then prints each corrected
line.

Compare this to

1,$ s/peling/pellingl gp

which only prints the last line substituted. Another subtle difference is
that the g command does not give a ? - if "peling" is not found, where
the s command will.

There may be several commands used in conjunction with the g command,
but every line except the last must end with a backslash "\". For example:

4-30 48-165 FOO ROI (2.6)

TUTORIAL - TEXT EDITOR

g/xxxl -ls/abc/defA
. + 2s/ghiIjklA
.-2,.p

makes changes in the lines before and after each line that contains "xxx",
then prints all three lines.

The v command is the same as g except that the commands are executed
on every line that does not match the string following v. The following
input

vlld

deletes every line that does not contain a blank.

SPECIAL CHARACTERS

You may have noticed that things just did not work right when you used
some characters like .,., $, and others in context searches and in the s
command. The reason is rather complex, although the cure is simple.
Basically, ed treats these characters as special, with special meanings. For
instance, in a context search or the first string of the substitute command
only,

Ix.yl

means "a line with an x, any character, and a y", not just "a line with an
x, a period, and a y."

The following is a complete list of the special characters that can cause
trouble:

48-165 FOO ROI (2.6) 4-31

TUTORIAL - TEXT EDITOR

$ • \ &

Warning: The backslash character "\" is special to "ed". For safety's
sake, avoid it where possible.

If you have to use one of the special characters in a substitute command,
you can turn off its magic meaning temporarily by preceding it with the
backslash. Thus

sl\\\.\· /backslash dot star/

will change "\ .• " into "backslash dot star".

Here is a brief synopsis of the other special characters. First, the
circumflex "A" signifies the beginning of a line. Thus

/"string/

finds "string" only if it is at the beginning of a line. It will find

string

but not

the string ...

The dollar sign "$" is just the opposite of the circumflex; it means the end
of a line.

The input

/string$/

4-32 48-165 FOO ROI (2.6)

TUTORIAL - TEXT EDITOR

will only find an occurrence of "string" at the end of some line. This
implies, of course, that

/"string$1

will find only a line that contains just "string" and

/".$1

finds a line containing exactly one character.

The character ".", as we mentioned above, matches anything. For
example, the input

Ix.yl

matches any of the following:

x+y
x-y
xy
x.y

This is useful in conjunction with "*,, which is a repetition character. The
"a *" is a shorthand input for "any number of a's" therefore". *" matches
any number of any things.

For example, input

s/. */stuffl

which changes an entire line, or

48~l6S FOO ROl (2.6) 4·33

TUTORIAL - TEXT EDITOR

st. * ,1/

which deletes all characters in the line up to and including the last comma.
(Since ".*" finds the longest possible match, this goes up to the last
comma.)

The "l" is used with the "1" to form character classes; for example,

/[0123456789]/

matches any single digit - anyone of the characters inside the brackets
will cause a match. This can be abbreviated to

[0-9]

Finally, the "&" is another shorthand character - it is used only on the
right-hand part of a substitute command where it means "whatever was
matched on the left-hand side". It is used to save typing.

Suppose the current line contained

Now is the time

and you wanted to put parentheses around it. One tedious method is just
to retype the line. Another method is to enter

sr/(/
s/$I)/

using your knowledge of "A" and "$". But the easiest way uses the "&"
as follows:

4-34 48-165 FOO ROl (2.6)

TUTORIAL - TEXT EDITOR

s/. ·/(&)1

This says "match the whole line and -replace it by itself surrounded by
parentheses." The "&" can be used several times in a line; consider using

s/. ·I&? &!!I

to produce

Now is the time? Now is the time!!

You do not have to match the whole line, of course. If the buffer contains

the end of the world

you could type

Iworld/sll & is at handl

to produce

the end of the world is at hand

Observe this expression carefully, for it illustrates how to take advantage
of ed to save typing. The string "/world/" found the desired line; the
shorthand "II" found the same word in the line; and the "&" saves you
from typing it again.

The "&" is a special character only within the replacement text of a
substitute command and has no special meaning elsewhere. You can turn
off the special meaning of "&" by preceding it with a backs lash "\".

48-165 FOO ROI (2.6) 4-35

TUTORIAL - TEXT EDITOR

Inputing

slam persand/\&I

will convert the word "ampersand" into the literal symbol "&" in the
current (dot) line.

SUMMARY OF COMMANDS AND LINE NUMBER~

The general form of the ed text editor commands is the command name,
perhaps preceded by one or two line numbers. In the case of the edit
command e, the read command r, and the write command w, the
command name is also followed by a file name. Normally, only one
command is allowed to be entered per line, but a print command p may
follow any other command (except for the edit command e, the read
command r, the write command w, and the quit command q).

8

c

d

4-36

Append, adds lines to the buffer (at line dot, unless a
different line is specified). Appending continues
until a dot "." is typed at the beginning (first
character) of a new line. Dot is set to the last line
appended.

Change the specified lines to the new text which
follows. Entering new lines is terminated by a dot
" ." as with a. If no lines are specified, the current
line (dot) is replaced. Dot is set to last line changed.

Delete the lines specified. If none are specified,
delete line dot. Dot is set to the first undeleted line
unless $ is specified, in which case dot is set to the
last line, $.

48-165 FOO R01 (2.6)

e

f

g

m

n

p

q

r

s

TUTORIAL - TEXT EDITOR

Edit new file. Any previous contents of the buffer
are thrown away, so issue a write command w
beforehand.

Print the remembered file name. If a name follows
f, the remembered name will be set to it.

The global command g/---/commands will execute
the commands on those lines that contain " ... ".

Insert lines before the specified line or the current
line (dot line) until a "." is typed at the beginning
of a new line. Dot is set to last line inserted.

Move lines specified to the line named after m. Dot
is set to the last line moved.

Print the number of the addressed line(s) followed
by a tab and the line itself.

Print specified lines. If none specified, print line
dot. A single line number is equivalent to "line
number" . A single RETURN prints the next line,
i.e., the dot plus one line, ". + 1".

The quit command exits from ed. It wipes out all
text in buffer if you give it twice in a row without
first giving a write command w.

Read a file into buffer (at end unless specified
elsewhere). Dot set to last line read. If.r filename
is used, the filename is read into the buffer
immediately after the dot line.

The s/stringllstring21 command is used to substitute
the characters "string1" into "string2" in the
specified lines. If no lines are specified, make the
substitution in line dot. Dot is set to last line in
which a substitution took place; if no substitution
took place, dot is not changed. The command s
changes only the first occurrence of "string1" on a

48-165 FOO ROt (2.6) 4-37

TUTORIAL - TEXT EDITOR

v

w

1-----1

1-----1

4-38

line; to change all occurrences on a line, type a g
after the final slash.

The exclude command v/---/commands executes
commands only on those lines that do not contain "-

"

The write command writes out the buffer contents
onto a file. Dot is not changed.

The ". =" causes the printout of the current line
number. The dot value prints the line number of the
current line (dot line). The" =" by itself prints the
value of the last line in the file.

The "!" is a temporary escape command. The line
"command-line" causes "command-line" to be
executed as a XELOS operating system command.

The context search command searches for next line
which contains this string of characters "----,, and
prints it. Dot is set to the line where string was
found. Search starts at line ". = 1" then wraps
around from the last line "$" to line "1" and
continues to dot (the current line) if necessary.

Performs context search in reverse direction. Starts
search at the previous line ". -1", scans to line 1,
wraps around to the last line "$", and scans back to
the current line (dot line) if necessary.

48-165 FOO ROt (2.6)

Chapter 5

AN INTRODUCTION TO THE SHELL

INTRODUCTION

SIMPLE COMMANDS

Background Commands • • • • •

Input/Output (I/O) Redirection

Pipelines and Filters •

File Name Generation •

Quoting • • • • •

Prompting by the Shell •

The Shell and Login. •

Summary

SHELL PROCEDURES

Control Flow-for

Control Flow-case •

Here Documents •

Shell Variables

Test Command

Control Flow-while

Control Flow-if. • •

Debugging Shell Procedures •

The "man" Command • •

- i -

PAGE

1

2

2

3

3

4

6

7

7

8

8

9

11

13

14

17

18

19

23

23

KEYWORD PARAMETERS

Parameter Transmission

Parameter Substitution •

Command Substitution •

Evaluation and Quoting

Error Handling

Fault Handling

Command Execution

Invoking the Shell

- ii -

. . . . 24

25

25

26

28

31

32

35

38

Chapter 5

AN INTRODUCTION TO THE SHELL

INTRODUCTION
The shell is a command programming language that provides an interface
to the XELOS operating system. Its features include control-flow
primitives, parameter passing, variables, and string substitution.
Constructs such as while, if then else, case, and for are available. Two
way communication is possible between the shell and commands. String
valued parameters, typically file names or flags, may be passed to a
command. A return code is set by commands that may be used to
determine control-flow, and the standard output from a command may be
used as shell input.

The shell can modify the environment in which commands run. Input and
output can be redirected to files, and processes that communicate through
pipes can be invoked. Commands are found by searching directories in
the file system in a sequence that can be defined by the user. Commands
can be read either from the terminal or from a file which allows command
procedures to be stored for later use.

The shell is both a command language and a programming language that
provides an interface to the XELOS operating system. This volume
describes, with examples, the XELOS operating system shell. The "Simple
Commands" part of this section covers most of the everyday requirements
of terminal users. Some familiarity with the XELOS operating system is
an advantage when reading this section; refer to the section "BASICS
FOR BEGINNERS". The "Shell Procedures" part of this section
describes those features of the shell primarily intended for use within shell
commands or procedures. These include the control-flow primitives and
string-valued variables provided by the shell. A knowledge of a
programming language would be helpful when reading this section. The
last part, "Keyword Parameters", describes the more advanced features of
the shell. See Table S.A for a defined listing of grammar words used in

48-165 FOO R01 (2.5) 5-1

SHELL INTRODUCTION

this section.

Throughout this section, each reference of the form name(1M), name(7),
or name(8) refers to entries in the XELOS Administrator Reference Manual.
Other references to entries of the form name(N), where "N" is a number
(1 or 6) possibly followed by a letter, refer to entry name in section N of
the XELOS User Reference Manual. Entries where "N" is a number (2
through 5) possibly followed by a letter, refer to entry name in section N
of the XELOS Programmer Reference Manual.

SIMPLE COMMANDS

Simple commands consist of one or more words separated by blanks. The
first word is the name of the command to be executed; any remaining
words are passed as arguments to the command. For example,

who

is a command that prints the names of users logged in. The command

Is -1

prints a list of files in the current directory. The argument -I tells Is(1) to
print status information, size, and the creation date for each file.

Background Commands

To execute a command, the shell normally creates a new process and waits
for it to finish. A command may be run without waiting for it to finish.
For example,

cc pgm.c &

calls the C compiler to compile the file pgm.c. The trailing "&" is an
operator that instructs the shell not to wait for the command to finish. To
help keep track of such a process, the shell reports its process number

5-2 48-165 FOO ROl (2.5)

SHELL INTRODUCTION

following its creation. A list of currently active processes may be obtained
using the ps(1) command.

Input/Output (110) Redirection

Most commands produce output to the standard output that is initially
connected to the terminal. This output may be directed to a file by the
notation ">" thus:

Is -1 >file

The notation > file is interpreted by the shell and is not passed as an
argument to Is(1). If file does not exist, the shell creates it; otherwise, the
original contents of file are replaced with the output from Is(1). Output
may be appended to a file using the notation "»" as follows:

Is -1 »file

In this case, file is also created if it does not already exist.

The standard input of a command may be taken from a file instead of the
terminal by the notation "<" thus:

wc <file

The command wc(1) reads its standard input (in this case redirected from
file) and prints the number of characters, words, and lines found. If only
the number of lines is required, then

wc -1 <file

can be used.

Pipelines and Filters

The standard output of one command may be connected to the standard
input of another by writing the "pipe" operator, indicated by I, between

48-165 FOO ROI (2.5) 5-3

SHELL INTRODUCTION

commands as in

Is -11 wc

Two or more commands connected in this way constitute a pipeline, and
the overall effect is the same as

Is -1 >file; wc <file

except that no file is used. Instead the two processes are connected by a
pipe [see pipe(2)] and are run in parallel. Pipes are unidirectional, and
synchronization is achieved by halting wc(1) when there is nothing to read
and halting Is(1) when the pipe is full.

A filter is a command that reads its standard input, transforms it in some
way, and prints the result as output. One such filter, grep(1) selects from
its input those lines that contain some specified string. For example,

Is I grep old

prints those lines, if any, of the output from Is that contain the string
"old". Another useful filter is sort(1). For example,

who I sort

will print an alphabetically sorted list of logged in users.

A pipeline may consist of more than two commands, for example,

Is I grep old I wc -1

prints only the number of file names in the current directory containing
the string "old".

File N arne Generation

Many commands accept arguments which are file names. For example,

Is -1 main.c

prints only information relating to the file main.c. The "Is -I" command
alone prints the same information about all files in the current directory.

5-4 48-165 FOO ROI (2.5)

SHELL INTRODUCTION

The shell provides a mechanism for generating a list of file names that
match a pattern. For example,

Is -1 *.c

generates as arguments to Is(l) all file names in the current directory that
end in .c. The character "*,, is a pattern that will match any string
including the null string. In general, patterns are specified as follows:

*

?

[...]

For example,

[a-z]*

Matches any string of characters including the null
string.

Matches any single character.

Matches anyone of the characters enclosed. A pair
of characters separated by a minus will match any
character lexically between the pair.

matches all names in the current directory beginning with one of the letters
a through z.

The input

lusr/fred/testl?

matches all names in the directory lusrlfredltest that consist of a single
character. If no file name is found that matches the pattern then the
pattern is passed, unchanged, as an argument.

This mechanism is useful both to save typing and to select names
according to some pattern. It may also be used to find files. For
example,

echo lusr/fred/* Icore

finds and prints the names of all core files in subdirectories of lusrlfred.
[The echo(l) command is a standard XELOS operating system command
that prints its arguments, separated by blanks.] This last feature can be
expensive, requiring a scan of all subdirectories of lusrlfred.

48-165 FOO R01 (2.5) 5-5

SHELL INTRODUCTION

There is one exception to the general rules given for patterns. The
character"." at the start of a file name must be explicitly matched. The
input

echo *

will, therefore, echo all file names in the current directory not beginning
with ".". The input

echo .*

will echo all those file names that begin with".". This avoids inadvertent
matching of the names "." and " •• " which mean "the current directory"
and "the parent directory", respectively. [Notice that Is(1) suppresses
information for the files"." and" •• " .]

Quoting

Characters that have a special meaning to the shell, such as

< > * 1 I &

are called metacharacters. A complete list of metacharacters is given in
Table S.B. Any character preceded by a \ is quoted and loses its special
meaning, if any. The \ is elided so that

echo \1

will echo a single ?, and

echo \\

will echo a single \. To allow long strings to be continued over more than
one line, the sequence \new line (or RETURN) is ignored. The \ is
convenient for quoting single characters. When more than one character
needs quoting, the above mechanism is clumsy and error prone. A string
of characters may be quoted by enclosing the string between single quotes.
For example,

5-6 48-165 FOO ROI (2.5)

SHELL INTRODUCTION

echo xx'····, xx

will echo

xx····xx

The quoted string may not contain a single quote but may contain new
lines which are preserved. This quoting mechanism is the most simple and
is recommended for casual use. A third quoting mechanism using double
quotes is also available and prevents interpretation of some but not all
metacharacters. Details of quoting are described under "Evaluation and
Quoting" in part "Keyword Parameters".

Prompting by the Shell

When the shell is used from a terminal, it will issue a prompt to the
terminal user indicating it is ready to read a command from the terminal.
By default, this prompt is "$ ". The prompt may be changed by entering

PSi = newprompt

This sets the prompt to be the string "newprompt". If a new line is typed
and further input is needed, the shell will issue the prompt "> ".
Sometimes this can be caused by mistyping a quote mark. If it is
unexpected, then an interrupt (DEL) will return the shell to read another
command. The other prompt (">") may be changed by entering:

PS2=more

The Shell and Login

Following the user's login(l), the shell is called to read and execute
commands typed at the terminal. If the user's login directory contains the
file . profile , then it is assumed to contain commands and is read
immediately by the shell before reading any commands from the terminal.

48-165 FOO ROI (2.5) 5-7

SHELL INTRODUCTION

Summary

Is Prints the names of files in the current directory.

Is > file Puts the output from Is into file.

Is I we -I Prints the number of files in the current directory.

Is I grep old Prints those file names containing the string "oldu
•

Is I grep old I we -I Prints the number of files whose name contains the
string "old".

ee pgm.e & Runs ee in the background.

SHELL PROCEDURES

The shell may be used to read and execute commands contained in a file.
For example, the following call

sh file [args ...]

calls the shell to read commands from file. Such a file call is called a
"command procedure" or "shell procedure". Arguments may be supplied
with the call and are referred to in file using the positional parameters $1,
$2, •••. For example, if the file wg contains

who I grep $1

then the call

sh wg fred

is equivalent to

who I grep fred

All XELOS operating system files have three independent attributes (often
called "permissions"), read, write, and execute (rwx). The XELOS
operating system command ehmod(l) may be used to make a file
executable. For example,

5-8 48-165 FOO ROI (2.5)

SHELL INTRODUCTION

chmod +x wg

will ensure that the file wg has execute status (permission). Following
this, the command

wg fred

is equivalent to the call

sh wg fred

This allows shell procedures and programs to be used interchangeably. In
either case, a new process is created to execute the command.

As well as providing names for the positional parameters, the number of
positional parameters in the call is available as $#. The name of the file
being executed is available as $0.

A special shell parameter $* is used to substitute for all positional
parameters except $0. A typical use of this is to provide some default
arguments, as in,

nroff -T450 -cm $.

which simply prepends some arguments to those already given.

Control Flow-for

A frequent use of shell procedures is to loop through the arguments ($1,
$2, •••) executing commands once for each argument. An example of
such a procedure is tel that searches the file lusrllibltelnos that contains
lines of the form

fred mh0123
bert mh0789

The text of tel is

48-165 FOO R01 (2.5) 5-9

SHELL INTRODUCTION

for i
do

grep $i lusrllib/telnos
done

The command

tel fred

prints those lines in lusrllibltelnos that contain the string "fred".

The command

tel fred bert

prints those lines containing "fred" followed by those for "bert".

The for loop notation is recognized by the shell and has the general form

for name in wl w2
do

command-list
done

A command-list is a sequence of one or more simple commands separated
or terminated by a new line or a semicolon. Furthermore, reserved words
like do and done are only recognized following a new line or semicolon.
A name is a shell variable that is set to the words wI w2 ... in turn each
time the command-list following do is executed. If "in wl w2 ... " is
omitted, then the loop is executed once for each positional parameter; that
is, in $* is assumed.

Another example of the use of the for loop is the create command whose
text is

for i do >$i; done

The command

create alpha beta

ensures that two empty files alpha and beta exist and are empty. The
notation > file may be used on its own to create or clear the contents of a
file. Notice also that a semicolon (or new line) is required before done.

5-10 48-165 FOO ROI (2.5)

SHELL INTRODUCTION

Control Flow-case

A mUltiple way (choice) branch is provided for by the case notation. For
example,

case $# in
1) cat »$1 ;;
2) cat »$2 <$1 ;;
*) echo 'usage: append [from 1 to' ;;

esac

is an append command. (Note the use of semicolons to delimit the cases.)
When called with one argument as in

append file

$# is the string "1", and the standard input is appended (copied) onto the
end of file using the cat(l) command.

append filel file2

appends the contents of filel onto file2. If the number of arguments
supplied to append is other than 1 or 2, then a message is printed
indicating proper usage.

The general form of the case command is

case word in
pattern) command-list;;

esac

The shell attempts to match word with each pattern in the order in which
the patterns appear. If a match is found, the associated command-list is
executed and execution of the case is complete. Since * is the pattern that
matches any string, it can be used for the default case.

Caution: No check is made to ensure that only one pattern matches the
case argument.

The first match found defines the set of commands to be executed. In the
example below, the commands following the second "*,, will never be
executed since the first "*,, executes everything it receives.

48-165 FOO ROI (2.5) 5-11

SHELL INTRODUCTION

case $# in
.) "
.) "

esac

Another example of the use of the case construction is to distinguish
between different forms of an argument. The following example is a
fragment of a cc(l) command.

for i
do

case $i in
- [ocs]) ... ;;
- *) echo 'unknown flag $i' ;;
* .c) /lib/cO $i ... ;;
*) echo 'unexpected argument $i' ;;

esac
done

To allow the same commands to be associated with more than one pattern,
the case command provides for alternative patterns separated by a I. For
example,

case $i in
-xl-y)···

esac

is equivalent to

case $i in
-[xy]) ...

esac

The usual quoting conventions apply so that

case $i in
\?) ...

will match the character ?

5-12 48-165 FOO ROI (2.5)

SHELL INTRODUCTION

Here Documents

The shell procedure tel described under "A. Control Flow-for" in this
section uses the file lusrllibltelnos to supply the data for grep(l). An
alternative is to include this data within the shell procedure as a here
document, as in,

for i
do

grep $i «!

fred mh0123
bert mh0789

done

In this example, the shell takes the lines between < < ! and ! as the
standard input for grep(l). The string "!" is arbitrary. The document is
being terminated by a line that consists of the string following < < .

Parameters are substituted in the document before it is made available to
grep(l) as illustrated by the following procedure called edg.

ed $3 «%
g/$lIsl/$2/ g
w
%

The call

edg stringl string2 file

is then equivalent to the command

ed file «%
g/stringl/sl/string2/ g
w
%

and changes all occurrences of "stringl" in file to "string2". Substitution
can be prevented using \ to quote the special character $ as in

48-165 FOO ROI (2.5) 5-13

SHELL INTRODUCTION

ed $3 «+
1,\$s/$1I$2/g
w

+
[This version of edg is equivalent to the first except that ed(l) will print a
? if there are no occurrences of the string $1.]

Substitution within a here document may be prevented entirely by quoting
the terminating string, for example,

grep $i «#

The document is presented without modification to grep. If parameter
substitution is not required in a here document, this latter form is more
efficient.

Shell Variables

The shell provides string-valued variables. Variable names begin with a
letter and consist of letters, digits, and underscores. Variables may be
given values by writing

user = fred box=123 acct=456

which assigns values to the variables user, box, and acct. A variable may
be set to the null string by entering

null =

The value of a variable is substituted by preceding its name with $; for
example,

echo $user

will echo fred.

5-14 48-165 FOO ROI (2.5)

SHELL INTRODUCTION

Variables may be used interactively to provide abbreviations for
frequently used strings.

For example,

b = /usr/fred/bin
mv file $b

will move the file from the current directory to the directory lusrlfredlbin.
A more general notation is available for parameter (or variable)
substitution, as in,

echo ${ user}

which is equivalent to

echo $user

and is used when the parameter name is followed by a letter or digit. For
example,

tmp=/tmp/ps
ps a >${tmp}a

will direct the output of ps(l) to the file Itmplpsa, whereas,

ps a >$tmpa

would cause the value of the variable tmpa to be substituted.

Except for $1, the following are set initially by the shell.

$1

$#

The exit status (return code) of the last command
executed as a decimal string. Most commands return
a zero exit status if they complete successfully;
otherwise, a nonzero exit status is returned. Testing
the value of return codes is dealt with later under if

and while commands.

The number of positional parameters in decimal.
Used, for example, in the append command to check
the number of parameters.

48-165 FOO ROI (2.5) 5-15

SHELL INTRODUCTION

$$

$f

$-

The process number of this shell in decimal. Since
process numbers are unique among all existing
processes, this string is frequently used to generate
unique temporary file names. For example,

ps a > Itmp/ps$$

rm Itmp/ps$$

The process number of the last process run in the
background (in decimal).

The current shell flags, such as - x and - v •

Some variables have a special meaning to the shell and should be avoided
for general use.

$MAIL

$HOME

5-16

When used interactively, the shell looks at the file
specified by this variable before it issues a prompt.
If the specified file has been modified since it was
last looked at, the shell prints the message "you
have mail" before prompting for the next command.
This variable is typically set in the file .profile in the
user's login directory. For example:

MAIL = lusr/maillfred

The default argument for the cd(l) command. The
current directory is used to resolve file name
references that do not begin with a I and is changed
using the cd command.

For example,

cd lusr/fred/bin

makes the current directory /usr/fred/bin. Then

cat wn

will print on the terminal the file wn in this
directory. The command cd(l) with no argument is
equivalent to

48-165 FOO ROI (2.5)

$PATH

$PSl

$PS2

$lFS

Test Command

SHELL INTRODUCTION

cd $HOME

This variable is also typically set in the user's login
profile.

A list of directories containing commands (the
search path). Each time a command is executed by
the shell, a list of directories is searched for an
executable file. If $P ATH is not set, the current
directory, Ibin, and lusrlbin are searched by default.
Otherwise, $P ATH consists of directory names
separated by:. For example,

PATH = :/usr/fredlbin:lbin:/usrlbin

specifies that the current directory (the null string
before the first :), lusrlfredlbin, Ibin, and lusrlbin
are to be searched in that order. In this way,
individual users can have their own 'private'
commands that are accessible independently of the
current directory. If the command name contains a
I, this directory search is not used; a single attempt is
made to execute the command.

The primary shell prompt string, by default, "$ ".

The shell prompt when further input is needed, by
default, "> ".

The set of characters used by blank interpretation.
(See "D. Evaluation and Quoting" in part "Keyword
Parameters" .)

The test command is intended for use by shell programs. For example,

test -f file

48-165 FOO R01 (2.5) 5-17

SHELL INTRODUCTION

returns zero exit status if file exists and nonzero exit status otherwise. In
general, test evaluates a predicate and returns the result as its exit status.
Some of the more frequently used test arguments are given below [see
test(l) for a complete specification].

test s

test -f file

test -r file

test -w file

test -d file

Control Flow-while

true if the argument s is not the null
string

true if file exists

true if file is readable

true if file is writable

true if file is a directory

The actions of the for loop and the case branch are determined by data
available to the shell. A while or until loop and an if then else branch are
also provided, whose actions are determined by the exit status returned by
commands.

A while loop has the general form

while command-listl
do

command-list2
done

The value tested by the while command is the exit status of the last simple
command following while. Each time around the loop command-listl is
executed; if a zero exit status is returned, then command-list2 is executed;
otherwise, the loop terminates. For example,

5-18 48·165 FOO R01 (2.5)

while test $1
do

shift
done

is equivalent to

for i
do

done

SHELL INTRODUCTION

The shift command is a shell command that renames the positional
parameters $2, $3, ••• as $1, $2, ••• and loses $1.

Another kind of use for the while/until loop is to wait until some external
event occurs and then run some commands. In an until loop, the
termination condition is reversed. For example,

until test - f file
do

sleep 300
done
commands

will loop until file exists. Each time around the loop, it waits for 5
minutes (300 seconds) before trying again. (Presumably, another process
will eventually create the file.)

Control Flow-if

Also available is a general conditional branch of the form,

48-165 FOO ROI (2.5) 5-19

SHELL INTRODUCTION

if command-list
then

command-list
else

command-list
fi

that tests the value returned by the last simple command following if.

The U' command may be used in conjunction with the test command to test
for the existence of a file as in

if test - f file
them

process file
else

do something else
fi

An example of the use of if, case, and for constructions is given in "I. The
Man Command" in part "Shell Procedures".

A multiple test if command of the form

if ...
then

else

fi

if ...
then

else

fi

if ...

fi

may be written using an extension of the if notation as,

5-20 48-165 FOO R01 (2.5)

SHELL INTRODUCTION

if ...
then

elif ...
then

elif ...

fi

The touch command changes the "last modifiedH time for a list of files.
The command may be used in conjunction with make(l) to force
recompilation of a list of files.

The following example is the touch command:

flag =
for i
do

case $i in
-c) flag=N ;;
*) if test -f $i

then
In $i junk$$
rm junk$$

elif test $flag
then

echo file \'$i\' does not exist
else

>$i
fi ;;

esac
done

The -c flag is used in this command to force subsequent files to be
created if they do not already exist. Otherwise, if the file does not exist,
an error message is printed. The shell variable flag is set to some non
null string if the -c argument is encountered. The commands

48-165 FOO ROI (2.5) 5-21

SHELL INTRODUCTION

In ... ; rm ...

make a link to the file and then remove it.

The sequence

if commandl
then

command2
fi

may be written

commandl && command2

Conversely,

commandl II command2

executes command2 only if commandl fails. In each case, the value
returned is that of the last simple command executed.

Command Grouping

Commands may be grouped in two ways,

{ command -list ; }

and

(command-list)

The first form, command-list, is simply executed. The second form
executes command-list as a separate process. For example,

(cd x; rm junk)

executes rm junk in the directory x without changing the current directory
of the invoking shell.

The commands

cd x; rm junk

have the same effect but leave the invoking shell in the directory x.

5·22 48-165 FOO ROI (2.5)

SHELL INTRODUCTION

De bugging Shell Procedures

The shell provides two tracing mechanisms to help when debugging shell
procedures. The first is invoked within the procedure as

set -v

(v for verbose) and causes lines of the procedure to be printed as they are
read. It is useful to help isolate syntax errors. It may be invoked without
modifying the procedure by entering

sh -v proc ...

where proc is the name of the shell procedure. This flag may be used in
conjunction with the -0 flag which prevents execution of subsequent
commands. (Note that typing "set -0" at a terminal will render the
terminal useless until an end of file is typed.)

The command

set -x

will produce an execution trace with flag -x. Following parameter
substitution, each command is printed as it is executed. (Try the above at
the terminal to see the effect it has.) Both flags may be turned off by
typing

set -

and the current setting of the shell flags is available as $ - •

The "man" Command

The following discussion of the man command assumes the existence of
the document preparation features available as an option on the XELOS

system.

The following is the mao command which is used to print sections of the
XELOS User Reference Manual. It is called by entering

48-165 FOO R01 (2.5) 5-23

SHELL INTRODUCTION

mansh
man -t ed
man 2 fork

In the first call, the manual section for sh is printed. Since no section is
specified, section 1 is used. The second call will typeset (-t option) the
manual section for ed. The last call prints the fork manual page from
section 2 of the manual.

KEYWORD PARAMETERS
Shell variables may be given values by assignment or when a shell
procedure is invoked. An argument to a shell procedure of the form
name=value that precedes the command name causes value to be assigned
to name before execution of the procedure begins. The value of name in
the invoking shell is not affected. For example,

user= fred command

will execute command with user set to fred. The - k flag causes
arguments of the form name=value to be interpreted in this way anywhere
in the argument list. Such names are sometimes called keyword
parameters. If any arguments remain, they are available as positional
parameters $1, $2, •••.

The set command may also be used to set positional parameters from
within a procedure.

For example,

set - ...

will set $1 to the first file name in the current directory, $2 to the next,
etc. Note that the first argument, -, ensures correct treatment when the
first file name begins with a - .

5-24 48-165 FOO ROI (2.5)

SHELL INTRODUCTION

Parameter Transmission

When a shell procedure is invoked, both positional and keyword
parameters may be supplied with the call. Keyword parameters are also
made available implicitly to a shell procedure by specifying in advance that
such parameters are to be exported. For example,

export user box

marks the variables user and box for export. When a shell procedure is
invoked, copies are made of all exportable variables for use within the
invoked procedure. Modification of such variables within the procedure
does not affect the values in the invoking shell. It is generally true of a
shell procedure that it may not modify the state of its caller without an
explicit request on the part of the caller. (Shared file descriptors are an
exception to this rule.)

Names whose value is intended to remain constant may be declared
readonly. The form of this command is the same as that of the export
command,

read only name ...

Subsequent attempts to set readonly variables are illegal.

Parameter Substitution

If a shell parameter is not set, then the null string is substituted for it. For
example, if the variable d is not set,

echo $d

or

echo ${d}

will echo nothing. A default string may be given as in

echo ${d-.}

which will echo the value of the variable d if it is set and ". U otherwise.

48-165 FOO R01 (2.5) 5-25

SHELL INTRODUCTION

The default string is evaluated using the usual quoting conventions so that

echo ${d- }

will echo * if the variable d is not set. Similarly,

echo ${d-$l}

will echo the value of d if it is set and the value (if any) of $1 otherwise.
A variable may be assigned a default value using the notation

echo ${d=.}

which substitutes the same string as

echo ${d-.}

and if d were not previously set, it will be set to the string
notation ${ ... = ... } is not available for positional parameters.)

If there is no sensible default, the notation

echo ${d?message}

" " (The

will echo the value of the variable d if it has one; otherwise, message is
printed by the shell and execution of the shell procedure is abandoned. If
message is absent, a standard message is printed. A shell procedure that
requires some parameters to be set might start as follows:

: ${user?} ${acct?} ${bin?}

Colon (:) is a command built into the shell and does nothing once its
arguments have been evaluated. If any of the variables user. acct, or bin
are not set, the shell will abandon execution of the procedure.

Command Substitution

The standard output from a command can be substituted in a similar way
to parameters. The command pWd(l) prints on its standard output the
name of the current directory. For example, if the current directory is

5-26 48-165 FOO ROt (2.5)

SHELL INTRODUCTION

/usr/fred/bin, the command

d='pwd'

is equivalent to

d = /usr/fredlbin

The entire string between single quotes (' ... ') is taken as the command to
be executed and is replaced with the output from the command. The
command is written using the usual quoting conventions except that a '
must be escaped using a \.

For example,

Is 'echo "$1'"

is equivalent to

Is $1

Command substitution occurs in all contexts where parameter substitution
occurs (including here documents), and the treatment of the resulting text
is the same in both cases. This mechanism allows string processing
commands to be used within shell procedures. An example of such a
command is basename, which removes a specified suffix from a string.
For example,

basename main.c .c

will print the string "main". Its use is illustrated by the following
fragment from a cc(1) command.

case $A in

• .c) B= 'basename $A .c'

esac

that sets B to the part of SA with the suffix .c stripped.

Here are sonte composite examples .

• for i in 'Is -t'; do ...

48-165 FOO ROI (2.5) 5-27

SHELL INTRODUCTION

The variable i is set
to the names of files in time order,
most recent first .

• set 'date'; echo $6 $2 $3, $4

will print, e.g.,
1977 Nov 1, 23:59:59

Evaluation and Quoting

The shell is a macro processor that provides parameter substitution,
command substitution, and file name generation for the arguments to
commands. This section discusses the order in which these evaluations
occur and the effects of the various quoting mechanisms.

Commands are parsed initially according to the grammar given in Table
S.A. Before a command is executed, the following substitutions occur:

1. Parameter substitution, e.g., $user

2. Command substitution, e.g., 'pwd'

Only one evaluation occurs so that if, for example, the value of the
variable X is the string "$y" then

echo $X

will echo "$y".

3. Blank interpretation

5-28

Following the above substitutions, the resulting characters are
broken into nonblank words (blank interpretation). For this
purpose, 'blanks' are the characters of the string "$/FS". By
default, this string consists of blank, tab, and newline. The null
string is not regarded as a word unless it is quoted. For example,

echo'" '"

48-165 FOO ROI (2.5)

SHELL INTRODUCTION

will pass on the null string as the first argument to echo, whereas

echo Snull

will call echo with no arguments if the variable null is not set or set
to the null string.

4. File name generation

Each word is then scanned for the file pattern characters *, ?, and
[•••]; and an alphabetical list of file names is generated to replace
the word. Each such file name is a separate argument.

The evaluations just described also occur in the list of words associated
with a for loop. Only substitution occurs in the word used for a case
branch.

As well as the quoting mechanisms described earlier using \ and ' ••• ', a
third quoting mechanism is provided using double quotes. Within double
quotes, parameter and command substitution occurs; but file name
generation and the interpretation of blanks does not.

The following characters have a special meaning within double quotes and
may be quoted using \.

$ parameter substitution
command substitution
ends the quoted string

\ quotes the special characters $, " \

For example,

echo "Sx"

will pass the value of the variable x as a single argument to echo.
Similarly,

echo "S*"

will pass the positional parameters as a single argument and is equivalent
to

echo "S1 S2 ... "

The notation $@ is the same as $* except when it is quoted. Inputting

48-165 FOO R01 (2.5) 5-29

SHELL INTRODUCTION

echo "$@"

will pass the positional parameters, unevaluated, to echo and is equivalent
to

echo "$1" "$2" ...

The following illustration gives, for each quoting mechanism, the shell
metacharacters that are evaluated.

metacharacter

I \ $ *
I ,
I n n n n n t , I y n n t n n

" I y y n y t n

I

t terminator
y interpreted
n = not interpreted

In cases where more than one evaluation of a string is required, the built
in command eval may be used. For example, if the variable X has the
value H$y" and if y has the value "pqr", then

eval echo $X

will echo the string "pqr".

In general, the eval command evaluates its arguments (as do all
commands) and treats the result as input to the shell. The input is read
and the resulting command(s) executed. For example,

wg= 'eval who I grep'
$wg fred

is equivalent to

who I grep fred

5-30 48-165 FOO ROI (2.5)

SHELL INTRODUCTION

In this example, eval is required since there is no interpretation of
metacharacters, such as I, following substitution.

Error Handling

The treatment of errors detected by the shell depends on the type of error
and on whether the shell is being used interactively. An interactive shell
is one whose input and output are connected to a terminal [as determined
by gtty(2)). A shell invoked with the -I flag is also interactive.

Execution of a command (see also "G. Command Execution") may fail
for any of the following reasons:

• Input/output (I/O) redirection may fail. For example, if a file does
not exist or cannot be created.

• The command itself does not exist or cannot be executed.

• The command terminates abnormally, for example, with a "bus
error" or "memory fault" signal.

• The command terminates normally but returns a nonzero exit status.

In all of these cases, the shell will go on to execute the next command.
Except for the last case, an error message will be printed by the shell. All
remaining errors cause the shell to exit from a command procedure. An
interactive shell will return to read another command from the terminal.
Such errors include the following:

• Syntax errors, e.g., if ... then ... done

• A signal such as interrupt. The shell waits for the current
command, if any, to finish execution and then either exits or returns
to the terminal.

• Failure of any of the built-in commands such as cd(l).

The shell flag - e causes the shell to terminate if any error is detected.
The following is a list of the XELOS operating system signals:

48-165 FOO ROI (2.5) 5-31

SHELL INTRODUCTION

1 hang up

2 interrupt

3· quit

4· illegal instruction

5· trace trap

6· lOT instruction

7· EMT instruction

8· floating point exception

9 Kill (cannot be caught or ignored)

10· bus error

11· segmentation violation

12· bad argument to system call

13 write on a pipe with no one to read it

14 alarm clock

15 software termination [from kill(1)]

The XELOS operating system signals marked with an asterisk "*,, as
shown in the list produce a core dump if not caught. However, the shell
itself ignores quit which is the only external signal that can cause a dump.
The signals in this list of potential interest to shell programs are 1, 2, 3,
14, and 15.

Fault Handling

Shell procedures normally terminate when an interrupt is received from
the terminal. The trap command is used if some cleaning up is required,
such as removing temporary files. For example,

5-32 48-165 FOO R01 (2.5)

SHELL INTRODUCTION

trap 'rm /tmp/ps$$; exit' 2

sets a trap for signal 2 (terminal interrupt); and if this signal is received, it
will execute the following commands:

rm /tmp/ps$$; exit

The exit is another built-in command that terminates execution of a shell
procedure. The exit is required; otherwise, after the trap has been taken,
the shell will resume executing the procedure at the place where it was
interrupted.

XELOS operating system signals can be handled in one of three ways.

1. They can be ignored, in which case the signal is never sent to the
process.

2. They can be caught, in which case the process must decide what
action to take when the signal is received.

3. They can be left to cause termination of the process without it
having to take any further action.

If a signal is being ignored on entry to the shell procedure, for example,
by invoking it in the background (see "G. Command Execution"), trap
commands (and the signal) are ignored.

The use of trap is illustrated by the following modified version of the
touch command:

48-165 FOO ROI (2.5) 5-33

SHELL INTRODUCTION

flag =
trap "'rm - f junk$$; exit'" 1 2 3 15
for i
do

case $i in
-c) flag=N;;
.) if test -f Si

then
In Si junkSS; rm junkSS

elif test Sflag
then

echo file \"'Si\' does not exist
else

>Si
fi ;;

esac
done

The cleanup action is to remove the file junk$$. The trap command
appears before the creation of the temporary file; otherwise, it would be
possible for the process to die without removing the file.

Since there is no signal 0 in the XELOS operating system, it is used by the
shell to indicate the commands to be executed on exit from the shell
procedure.

A procedure may, itself, elect to ignore signals by specifying the null
string as the argument to trap. The following:

trap'" "'12 3 15

is a fragment taken from the nohup(1) command which causes the XELOS
operating system HANGUP, INTERRUPT, QUIT, and SOFTWARE
TERMINATION signals to be ignored both by the procedure and by
invoked commands. Traps may be reset by entering

trap 2 3

which resets the traps for signals 2 and 3 to their default values. A list of
the current values of traps may be obtained by writing

5-34 48-165 FOO ROI (2.5)

SHELL INTRODUCTION

trap

The scan procedure is an example of the use of trap where there is no exit
in the trap command. The scan takes each directory in the current
directory, prompts with its name, and then executes commands typed at
the terminal until an end of file or an interrupt is received. Interrupts are
ignored while executing the requested commands but cause termination
when scan is waiting for input. The scan procedure follows:

d='pwd'
for i in *
do

if test - d Sd/Si
then

fi
done

cd Sd/Si
while echo "Si:" && trap exit 2 && read x
do

done

trap: 2
eval Sx

The read x is a built-in command that reads one line from the standard
input and places the result in the variable x. It returns a nonzero exit
status if either an end-of-file is read or an interrupt is received.

Command Execution

To run a command (other than a built-in), the shell first creates a new
process using the system call fork (2) . The execution environment for the
command includes input, output, and the states of signals and is
established in the child process before the command is executed. The
built-in command exec is used in rare cases when no fork is required and
simply replaces the shell with a new command. For example, a simple
version of the nohup command looks like

48-165 FOO R01 (2.5) 5-35

SHELL INTRODUCTION

trap , , 1 2 3 15
exec $*

The trap turns off the signals specified so that they are ignored by
subsequently created commands, and exec replaces the shell by the
command specified.

Most forms of liD redirection have already been described. In the
following, word is only subject to parameter and command substitution.
No file name generation or blank interpretation takes place so that, for
example,

echo ... >*.c

will write its output into a file whose name is ·.c. liD specifications are
evaluated left-to-right as they appear in the command. Some liD
specifications are as follows:

> word

» word

< word

« word

>& digit

5-36

The standard output (file descriptor 1) is sent to the
file word which is created if it does not already exist.

The standard output is sent to file word. If the file
exists, then output is appended (by seeking to the
end); otherwise, the file is created.

The standard input (file parameter 0) is taken from
the file word.

The standard input is taken from the lines of shell
input that follow up to but not including a line
consisting only of word. If word is quoted, no
interpretation of the document occurs. If word is not
quoted, parameter and command substitution occur
and \ is used to quote the characters \, $, " and the
first character of word. In the latter case, \newline is
ignored (e.g., quoted strings).

The file descriptor digit is duplicated using the
system call dup(2), and the result is used as the
standard output.

48·165 FOO ROI (2.5)

<& digit

<&

>&-

SHELL INTRODUCTION

The standard input is duplicated from file descriptor
digit.

The standard input is closed.

The standard output is closed.

Any of the above may be preceded by a digit, in which case the file
descriptor created is that specified by the digit instead of the default 0 or
1. For example,

... 2>file

runs a command with message output (file descriptor 2) directed to file.
Another example,

... 2>&1

runs a command with its standard output and message output merged.
(Strictly speaking, file descriptor 2 is created by duplicating file descriptor
1; but the effect is usually to merge the two streams.)

The environment for a command run in the background such as

list ·.c Ilpr &

is modified in two ways. First, the default standard input for such a
command is the empty file Idevlnull. This prevents two processes (the
shell and the command), which are running in parallel, from trying to read
the same input. Chaos would ensue if this were not the case. For
example,

ed file &

would allow both the editor and the shell to read from the same input at
the same time.

The other modification to the environment of a background command is to
turn off the QUIT and INTERRUPT signals so that they are ignored by
the command. This allows these signals to be used at the terminal without
causing background commands to terminate. For this reason, the XELOS
operating system convention for a signal is that if it is set to 1 (ignored)
then it is never changed even for a short time. Note that the shell

48-165 FOO R01 (2.5) 5-37

SHELL INTRODUCTION

command trap has no effect for an ignored signal.

Invoking the Shell
The following flags are interpreted by the shell when it is invoked. If the
first character of argument zero is a minus, commands are read from the
file . profile.

-c string

-s

-I

item

sim pie-command:

command:

5-38

If the - c flag is present, then commands are read
from string.

If the - s flag is present or if no arguments remain,
commands are read from the standard input. Shell
output is written to file descriptor 2.

If the -I flag is present or if the shell input and
output are attached to a terminal [as told by
getty(8)], this shell is interactive. In this case,
TERMINATE is ignored (so that kill 0 does not kill
an interactive shell, and INTERRUPT is caught and
ignored (so that walt is interruptible). In all cases,
QUIT is ignored by the shell.

TABLE 5.A

GRAMMAR

word
input-output
name = value

item
simple-command item

sim pie-command

48-165 FOO ROI (2.5)

pipeline:

, andor:

command-list:

in put-output:

(command-list)
{ command-list}

SHELL INTRODUCTION

for name do command-list done
for name in word ... do command-list done
while command-list do command-list done
until command-list do command-list done
case word in case-part ... esac
if command-list then command-list else-part ff

command
pipeline I command

pipeline
andor & & pipeline
andor II pipeline

andor
command-list;
command -list &
command -list ; andor
command-list & andor

> word
< word
» word
« word

file word
& digit
&-

case-part: pattern) command-list ;;

pattern: word
pattern I word

else-part: elif command-list then command-list else-part
else command-list

empry: empry

word: sequence of nonblank characters

48·165 FOO ROI (2.5) 5·39

SHELL INTRODUCTION

name

digit:

5-40

sequence of letters, digits, or underscores
starting with a letter

0123456789

48-165 FOO ROl (2.5)

SHELL INTRODUCTION

TABLE 5.B

METACHARACTERS AND RESERVED WORDS

(a) syntactic:

pipe symbol

&& 'andf' symbol

I i cod' symbol

command separator

;;

&

()

<

«

>

»
(b) patterns:

*
?

[...]
(c) substitution:

${ ••• }

' ... '
(d) quoting:

\

case delimiter

background commands

command grouping

input redirection

input from a here document

output creation

output append

match any character(s) including none

match any single character

match any of the enclosed characters

substitute shell variable

substitute command output

quote the next character

quote the enclosed characters except for the ~

48-165 FOO ROI (2.5) 5-41

SHELL INTRODUCTION

quote the enclosed characters except for the $, ' ,\,
and ..

(e) reserved words:

if then else eHf fi
case in esac
for while until do done
{ } [] test

5-42 48-165 FOO ROI (2.5)

Chapter 6

GLOSSARY

The following list defines terms and acronyms used in this volume which
may not be familiar to the user.

argument - Words following the command on a command line that
provide information necessary to execute a program. Command
arguments are very often file names.

ASCII - American Standard Code for Information Interchange.

background - A mode of program execution when the shell does not wait
for the command to terminate before prompting for another command.

C language - A general-purpose, low level programming language used
to write programs (such as numerical, text-processing, and data base) and
operating systems (such as the XELOS operating system).

command - The first word of a command line. It is the name of an
executable file that is a compiled program.

command line - A sequence of nonblank arguments separated by blanks
or tabs typed in by a user. The first argument usually specifies the name
of a command.

command list - A sequence of one or more simple commands separated
or terminated by a new line or a semicolon.

command procedure - A command procedure is an executable file that is
not a compiled program. It is a call to the shell to read and execute
commands contained in a file. A sequence of commands may thus be
preserved for repeated use by saving it in a file which can also be called a
shell procedure, a command file, or a runcom according to local
preference.

48-165 FOO ROI (2.5) 6-1

GLOSSARY

command substitution - When the shell reads a command line, any
command or commands enclosed between grave accents (' ... ') are excc.uted
first and the output from these commands replace the whole expression
(' ... ').

current working directory - The current point of reference for accessing
data within the file system.

directory - A type of file that is used to group and organize files and
other directories.

EO F - The end of file character is the same as an ASCII EOT character.
See EOT.

EOT - The end of text character is generated by holding down the
"CONTROL" key and pressing the lower-case "d" key once. The EOT is
used to terminate the shell which usually logs a user off the system.

erase character - The character which is used to delete the previous
character on the current line. To turn off the special meaning of the erase
character, it must be preceded with a "\". By default, the erase character
is #. See stty(1) to change the default character.

file - An organized collection of information containing data, programs,
or both which allows users to store, retrieve, and modify information. A
simple file name is a sequence of characters other than a slash (I).

filter - A command that reads its standard input, transforms it in some
way, and prints the result as output.

foreground - A mode of program execution when the shell waits for the
command to terminate before prompting for another command.

full pathname - The pathname of a specific file starting from the root
directory.

6-2 48-165 FOO R01 (2.5)

GLOSSARY

group identification number (gid) - A unique number assigned to one or
more logins that is used to identify groups of related users.

here documents A command procedure that has the form
command < < eofstring which causes the shell to read subsequent lines as
standard input to the command until a line is read consisting of only the
eofstring. Any arbitrary string can be used for the eofstring.

HOME - Another name for the login directory.

in-line input documents - See here documents.

keyword parameters - An argument to a command procedure of the
form name= value command argl arg2 • •• here name is called the
keyword parameter. This allows shell variables to be assigned values
when a shell procedure is called. The value of name in the invoking shell
is not affected, but the value is assigned to name before execution of the
procedure. The arguments (arg1 arg2 ...) are available as positional
parameters ($1 $2 ...).

kill character - The character which is used to delete all the characters
typed before it on the current line. To turn off the special meaning of the
kill character, it must be preceded with a "\". By default, the kill
character is @. The default character can be changed via stty(1).

login - A means by which a user can gain access to the XELOS operating
system.

login name - A unique string of letters and numbers used to identify a
login.

log off - A procedure to disconnect the user from the XELOS operating
system.

memorandum macros - The standard, general-purpose package of text
formatting macros used in conjuction with nroff and troff to produce

48-165 FOO ROI (2.5) 6-3

GLOSSARY

many common types of documents.

metacharacters - Characters that have a special meaning to the shell,
such as <, >, ·,7, I, &, $, ;, (,), \,",',"', [,], etc.

mode - An absolute mode is an octal number used in conjunction with
chmod(1) to change permissions of files.

nroff -- A text formatting program for driving typewriter-like terminals
and printers to produce a screen copy or a hardcopy.

parent directory - The directory immediately above another directory. A
" .. " is the shorthand name for the parent directory. To make the parent
directory of your current working directory your new current directory
enter the "cd •• " command.

partial pathname - The pathname between the current working directory
and a specific file.

password - A string of up to 13 characters chosen from a 64 character
alphabet (., \, 0-9, A-Z, a-z).

pathname - A sequence of directory names separated by the / character
and ending with the name of a file. The pathname defines the connection
path between some directory and a file.

pipe - A simple way to connect the output of one program to the input of
anothe:r program, so that each program will run as a sequence of
processes.

pipeline - A series of filters separated by the character I. The output of
each filter becomes the input of the next filter in the line. The last filter in
the line will write to its standard output.

positional parameters - Arguments supplied with a command procedure
that are placed into variable names $1, $2, ... when the command

6-4 48-165 FOO ROI (2.5)

GLOSSARY

procedure is invoked by the shell. The name of the file being executed is
positional parameter $0.

primary prompt - A notification (by default "$ ") to the user that the
XELOS operating system shell is ready to accept another request.

process - A program that is in some state of execution. The execution of
a computer environment including contents of memory, register values,
name of the current directory, status of open files, information recorded at
login time, and various other items.

program - Software that can be executed by a user.

secondary prompt - A notification (by default "> ") to the user that the
command typed in response to the primary prompt is incomplete.

shell - A XELOS system user program written in C language that handles
the communication between the system and users. The shell accepts
commands and causes the appropriate program to be executed.

shell procedure - See command procedure.

standard input - The standard input of a command is sent to an open file
which is normally connected to the keyboard. An argument to the shell of
the form "< file" opens the specified file as the standard input thus
redirecting input to come from the file named instead of the keyboard.

standard output - Output produced by most commands is sent to an open
file which is normally connected to the printer or screen. This output may
be redirected by an argument to the shell of the form "> file" which
opens the specified file as the standard output.

text editor - An interactive program (ed) for creating and modifying text,
using commands provided by a user at a terminal.

troff - A text formatting program for driving a phototypesetter to

48-165 FOO ROI (2.5) 6-5

GLOSSARY

produce high quality printed text.

user-defined variables - A user variable can be defined using an
assignment statement of the form name= value where name must begin
with a letter or underscore and may then consist of any sequence of
letters, digits, or underscores up to 512 characters. The name is the
variable. Positional parameters cannot be in the name.

user identification number (uid) - A unique number assigned to each
login that is used to identify users and the owner of information stored on
the system.

variables - A variable is a name representing a string value. Variables
which are normally set only on a command line are called parameters
(positional parameters and keyword parameters). Other variables are
simply names to which the user (user-defined variables) or the shell itself
may assign string values.

6-6 48·165 FOO R01 (2.5)

